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Preface

ICALP 2016, the 43rd edition of the International Colloquium on Automata, Languages and
Programming, was held in Rome, Italy during July 12–15, 2016. ICALP is a series of annual
conferences of the European Association for Theoretical Computer Science (EATCS), which
first took place in 1972. This year, the ICALP program consisted of the established track A
(focusing on algorithms, automata, complexity, and games) and track B (focusing on logic,
semantics, and theory of programming), and of the recently introduced track C (focusing
on foundations of networking). In response to the call for papers, the Program Committee
received 515 submissions, the highest ever: 319 for track A, 121 for track B, and 75 for track
C. Out of these, 146 papers were selected for inclusion in the scientific program: 89 papers
for Track A, 36 for Track B, and 21 for Track C. The selection was made by the Program
Committees based on originality, quality, and relevance to theoretical computer science. The
quality of the manuscripts was very high indeed, and many deserving papers could not be
selected.

The EATCS sponsored awards for both a best paper and a best student paper for each of
the three tracks, selected by the Program Committees. The best paper awards were given to
the following papers:

Track A: Andreas Galanis, Andreas Göbel, Leslie Ann Goldberg, John Lapinskas and
David Richerby. “Amplifiers for the Moran Process”.
Track A: Neeraj Kayal, Chandan Saha and Sébastien Tavenas. “An almost Cubic Lower
Bound for Depth Three Arithmetic Circuits”.
Track B: Olivier Bournez, Daniel Graça and Amaury Pouly. “Polynomial Time corres-
ponds to Solutions of Polynomial Ordinary Differential Equations of Polynomial Length”.

The best student paper awards, for papers that are solely authored by students, were
given to the following papers:

Track A: Samuel Hetterich. “Analysing Survey Propagation Guided Decimation on
Random Formulas”.
Track C: Keerti Choudhary. “An Optimal Dual Fault Tolerant Reachability Oracle”.

Apart from the contributed talks, ICALP 2016 included invited presentations by Devavrat
Shah, Xavier Leroy, Subhash Khot and Marta Z. Kwiatkowska. Abstracts of their talks are
included in these proceedings as well. The program of ICALP 2016 also included presentation
of the EATCS Award 2016 to Dexter Kozen, the Gödel Prize 2016 to Steve Brookes and
Peter O’Hearn, and the Presburger Award 2016 to Mark Braverman.

This volume of the proceedings contains all contributed papers presented at the conference
together with the papers and abstracts of the invited speakers.

We wish to thank all authors who submitted extended abstracts for consideration, the
Program Committees for their scholarly effort, and all referees who assisted the Program
Committees in the evaluation process. We thank the sponsors (Microsoft; Microsoft Research;
AICA, Facebook; Department of Informatics, Sapienza University of Rome; and Austrian)
for their support. We are also grateful to Tiziana Calamoneri, Irene Finocchi, Nicola Galesi
and Daniele Gorla for organizing ICALP 2016 and all the support staff of the Organizing
Committee.

Thanks to Andrei Voronkov for writing the conference management system EasyChair,
which was used in handling the submissions and the electronic Program Committee meeting,
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as well as in assisting in the assembly of the proceedings. Last but not least, we would like
to thank Luca Aceto, the president of EATCS, for his generous advice on the organization
of the conference and Efi Chita and the secretary office of EATCS for their support in the
preparation of the proceedings.

July 2016 Ioannis Chatzigiannakis
Michael Mitzenmacher
Yuval Rabani
Davide Sangiorgi
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Compute Choice
Devavrat Shah

MIT, Cambridge, USA
devavrat@mit.edu

Abstract
In this talk, we shall discuss the question of learning distribution over permutations of n choices
based on partial observations. This is central to capturing the so called “choice” in a variety of
contexts: understanding preferences of consumers over a collection of products based on purchas-
ing and browsing data in the setting of retail and e-commerce, learning public opinion amongst
a collection of socio-economic issues based on sparse polling data, and deciding a ranking of
teams or players based on outcomes of games. The talk will primarily discuss the relationship
between the ability to learn, nature of partial information and number of available observations.
Connections to the classical theory of social choice and behavioral psychology, as well as modern
literature in Statistics, learning theory and operations research will be discussed.
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Formally Verifying a Compiler: What Does It
Mean, Exactly?
Xavier Leroy

INRIA, Paris, France
xavier.leroy@inria.fr

Abstract
Compilers, and especially optimizing compilers, are complicated programs. Bugs in compilers
happen, and can lead to miscompilation: the production of wrong executable code from a correct
source program. Miscompilation is documented in the literature and a concern for high-assurance
software, as it endangers the guarantees obtained by source-level formal verification of programs.

Compiler verification is a radical solution to the miscompilation problem: by applying pro-
gram proof to the compiler itself, we can obtain mathematically strong guarantees that the
generated executable code is faithful to the semantics of the source program. The state of the
art in this line of research is arguably the CompCert verified compiler. This talk will give an
overview of this optimizing C compiler and of its formal verification, conducted with the Coq
proof assistant.

A formal verification is as good as the specifications it uses. In other words, verification
reduces the problem of trusting a large implementation to that of ensuring that its formal spe-
cification enforce the intended correctness properties. In the case of CompCert, the correctness
statement that is proved is rather complex, as it involves large operational semantics (for the C
language and for the assembly languages of the target architectures) and simulations between
these semantics that support both choice refinement and behavior refinement. The talk will re-
view and discuss these elements of the specification, along with some of the accompanying proof
principles.
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Hardness of Approximation
Subhash Khot

Computer Science Department, Courant Institute of Mathematical Sciences,
New York University, New York, USA
khot@cims.nyu.edu

Abstract
The talk will present connections between approximability of NP-complete problems, analysis,
and geometry, and the role played by the Unique Games Conjecture in facilitating these connec-
tions.
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Model Checking and Strategy Synthesis for
Stochastic Games: From Theory to Practice∗

Marta Z. Kwiatkowska

University of Oxford, Oxford, UK
marta.kwiatkowska@cs.ox.ac.uk

Abstract
Probabilistic model checking is an automatic procedure for establishing if a desired property
holds in a probabilistic model, aimed at verifying quantitative probabilistic specifications such
as the probability of a critical failure occurring or expected time to termination.

Much progress has been made in recent years in algorithms, tools and applications of prob-
abilistic model checking, as exemplified by the probabilistic model checker PRISM (http://www.
prismmodelchecker.org). However, the unstoppable rise of autonomous systems, from robotic
assistants to self-driving cars, is placing greater and greater demands on quantitative model-
ling and verification technologies. To address the challenges of autonomy we need to consider
collaborative, competitive and adversarial behaviour, which is naturally modelled using game-
theoretic abstractions, enhanced with stochasticity arising from randomisation and uncertainty.
This paper gives an overview of quantitative verification and strategy synthesis techniques de-
veloped for turn-based stochastic multi-player games, summarising recent advances concerning
multi-objective properties and compositional strategy synthesis. The techniques have been im-
plemented in the PRISM-games model checker built as an extension of PRISM.
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seconds is at most 10−10”. Probabilistic model checking involves conventional model checking
techniques, for example symbolic and automata-theoretic methods, in combination with
numerical or statistical analysis. For models that allow nondeterministic choices, it also
enables strategy synthesis from temporal logic specifications to automate decision-making in
applications such as robotics and security, where it can be employed to generate controllers
or counter-attacks. This is similar to motion planning and optimal control, except that
temporal logics are used to rigorously specify high-level goals, yielding controllers that are
guaranteed to be correct.

Quantitative verification has been the focus of much interest in recent years, resulting in
the adoption of tools such as the real-time model checker UPPAAL [3] and the probabilistic
model checker PRISM [51] in several application domains. While UPPAAL is based on the
theory of timed automata developed in the 1990s [2], the algorithms underlying PRISM
have been known since the mid-1980s [69, 31], but have not entered the mainstream until
around year 2000, enabled by symbolic techniques [7, 33, 50, 60] implemented in PRISM’s
first release [49]. Since then several new models and features have been added, including
continuous-time Markov chains and probabilistic timed automata. PRISM has been success-
fully used to verify quantitative properties of a wide variety of real-life systems, automatically
discovering design flaws in some of them. These include anonymity protocols [65], randomised
distributed algorithms [53], wireless communication protocols [37], security [8], nanotechno-
logy designs [59], probabilistic software [47], self-adaptive systems [15], molecular signalling
pathways [45] and computational DNA circuits [57, 32].

Despite much success of probabilistic model checking, the accelerating technological ad-
vances in autonomous systems, to mention robotic assistants, self-driving cars and closed-loop
medical devices, place greater and greater demands on quantitative verification technologies.
Increasingly, we wish to delegate day-to-day tasks to autonomous, wirelessly connected,
Internet-enabled and software-controlled devices, whose aim is to achieve certain objectives,
such as safe and fuel efficient autonomous driving on a motorway. This incurs the need to
consider cooperative, competitive and adversarial behaviour due to conflicting goals, e.g.,
safety versus fuel efficiency, while also taking into account their (possibly adversarial) inter-
action with environment, e.g., other cars. We also need to consider communities comprising
digital and human agents, able to represent typical interactions and relationships present in
scenarios such as semi-autonomous driving scenarios or collaborating with robotic assistants.
Game-theoretic approaches, which explicitly represent the moves and countermoves of players
and adversaries, are a natural model to represent and analyse such behaviours through the
study of winning strategies. Strategy synthesis from quantitative specifications, in particular,
can be viewed as constructing a strategy that is winning against all adversarial players. In
these data-rich dynamic environments, stochasticity is needed not only to quantify aspects
such as failure, safety and sensor uncertainty, but also to facilitate model derivation through
inference from data, for example GPS sensor data.

In this paper we summarise recent progress made towards development of algorithmic
techniques, tool implementation and real-life applications for turn-based stochastic multi-
player games, implemented in an extension of the PRISM model checker called PRISM-
games [25, 54]. Game theory is widely studied in areas such as economics and mechanism
design, though is less well established as a modelling abstraction for autonomy. In the
verification community, the majority of current research activity is focused on the study
of algorithmic techniques and their computational complexity. In contrast, we report on
ongoing effort towards the “theory to practice” transfer of quantitative verification and
synthesis techniques to the challenging application domain of mobile autonomy. The overview
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will cover verification and strategy synthesis from quantitative temporal logic specifications,
with a focus on zero-sum, complete observation stochastic games, and will include both
single- and multi-objective properties, together with a wide range of quantitative objectives
(expected total reward, longrun average and ratio objectives) and compositional assume-
guarantee strategy synthesis. We will also briefly describe a number of real-life examples from
autonomous systems and lessons learnt through applying PRISM-games in these scenarios.
We conclude the paper with a discussion of work in progress and future research in this area.

2 Stochastic Multi-Player Games

Stochastic multi-player games (SMGs) [64, 30] are a generalisation of Markov decision
processes, where we distinguish between several types of nondeterministic choices, each
corresponding to a different player. SMGs thus allow us to reason about strategic decisions of
multiple players competing or collaborating to achieve the same objective. Several stochastic
game models exist, which include concurrent games [64, 22] and partial-observation games [18,
20]. Here we focus on turn-based games as studied in [30], in which a single player controls
the choices made in a given state. The presentation is based on [23, 24, 26, 11, 10, 9, 67],
where we refer the reader for further details.

Let D(X) denote the family of all probability distributions over a set X.

I Definition 1 (Stochastic multi-player game (SMG)). A stochastic multi-player game (SMG)
is a tuple G = (Π, S, (SΠ, Sp), sinit,∆,A, L), where Π is a finite set of players; S is a finite
nonempty set of states partitioned into player states SΠ =

⋃
Si∈Π and probabilistic states

Sp; sinit ∈ SΠ is an initial state; ∆: S × S → [0, 1] is a probabilistic transition function
such that for all player states s, t ∈ SΠ and probabilistic states s′ ∈ Sp we have ∆(s, t) = 0,
∆(s, s′) ∈ {0, 1} and

∑
t∈SΠ

∆(s′, t) = 1; A is a finite nonempty set of actions; and L : Sp → A
is an action labelling function.

Note that each state of an SMG is controlled by a single player. The game proceeds as
follows. It starts in the initial player state sinit and, when in a player i ∈ Π state s, the
player chooses the next state s′ such that ∆(s, s′) = 1, and when in a probabilistic state
s ∈ Sp the next state is sampled according to the probability distribution ∆(s′, ·).

Stochastic games can be equivalently defined, see e.g. [24], by partitioning the state space
into player states SΠ only, and associating with each such state s ∈ SΠ a set of action-
distribution pairs (a, µ) called moves, where a = L(s′) for some s′ ∈ Sp such that ∆(s, s′) = 1
and the distribution µ, defined by µ(t) = ∆(s′, t) for all t ∈ S, gives the probability of moving
to a successor state. If the sets of all players but one are empty, then a stochastic turn-based
game is a probabilistic automaton in the sense of Segala [63], a mild generalisation of a
Markov decision process (MDP).

We unfold an SMG G into paths, namely possibly infinite sequences λ = s0s1s2 . . . such
that ∆(si, si+1) > 0 for all i ≥ 0. Note that player states and probabilistic states alternate
in a path. For a finite path λ = s0s1 . . . sk we use |λ| = k + 1 to denote the length of the
path and last(λ) = xk denotes its last element. A trace of λ is the sequence of actions that
label the probabilistic states within λ. We use PathG,s to denote the set of all infinite paths
originating in a state s ∈ S and PathG =

⋃
s∈S PathG,s. The sets FPathG,s,FPathG of finite

paths are defined analogously.
SMGs can be annotated with rewards, which allows us to formulate a variety of quantitative

analyses that assign reward values to paths. We consider cumulative, longrun average and
ratio rewards. The analysis typically involves ensuring that the game achieves a certain
reward bound or optimising these values in the game.
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I Definition 2 (Reward structure). Given a game G = (Π, S, (SΠ, Sp), sinit,∆,A, L), a reward
structure for G is a function r : S → R.

To resolve the nondeterminism in an SMG, similarly to MDPs we use strategies, except we
now have a strategy for each player i ∈ Π. We work with an explicit memory representation
of strategies due to [14].

I Definition 3 (Strategy). For an SMG G = (Π, S, (SΠ, Sp), sinit,∆,A, L), a strategy σi for
player i of G is a tuple σi = (M,σui , σ

n
i , σ

init
i ), whereM is a countable set of memory elements,

σui : M × S → D(M) is a memory update function, σni : M × Si → D(S) is a next move
function such that σni (m, s)(s′) > 0 only if ∆(s, s′) > 0, and σinit

i : S → D(M) is an initial
memory element function. If the memory update function maps to point distributions, i.e. is
of type σui : M × S →M , the strategy σi is deterministic memory update, and otherwise it
is stochastic memory update. The set of all strategies for player i ∈ Π is denoted by ΣiG . A
strategy profile σ = σ1, ...σ|Π| comprises a strategy for every player in G.

For a given strategy σi of player i, the game proceeds as follows. It starts in a player
state with memory sampled according to the initial distribution function σinit

i . Then, in every
step of the game, player i updates the current memory element based on the current state of
the game using the memory update function σui . Moreover, if the game is in a player i state,
player i chooses the next state of the game using the next move action σni .

Strategies can be classified according to the use of randomisation or memory. A given
strategy σi of player i is deterministic (pure) if the next move action σni is of type σni : M ×
Si → S, and otherwise it is randomised. Similarly, σi is memoryless if M is a singleton, finite
memory ifM is finite, and infinite memory otherwise. An alternative, standard representation
of a deterministic player i strategy is as a function from finite paths terminating in a player
i state to distributions over the available moves (a, µ) in the given state. Deterministic
memoryless strategies can be simply represented as functions σni : Si → S.

Stochastic memory update strategies have the same power as deterministic memory update
but are exponentially more succinct than deterministic memory update [66]. Stochastic
memory update strategies can be determinised if their memory is not restricted [10, 9]; in
fact, a finite stochastic memory update strategy can result in a finite or infinite deterministic
update strategy. Memory elements of the determinised strategies are probability distributions
over memory elements, which can be interpreted as the belief that the player has about
the memory element, knowing only the history and rules to update them, while the actual
memory based on sampling is kept secret.

For a given strategy profile σ = σ1, ...σ|Π|, the behaviour of an SMG G is fully probabilistic
and we use PathσG,s, PathσG , FPathσG,s and FPathσG , respectively, to denote paths obtained
under the strategy profile σ. Following standard methods [13], we can define a probability
measure PrσG,s over the set of infinite paths PathσG,s. Given a random variable ρ over this
probability space, the expected value of ρ is defined as EσG,s(ρ) =

∫
PathσG,s

ρ dPrσG,s.
We will sometimes require restrictions on SMGs. One such restriction to so called stopping

games was introduced to avoid infinite accumulation of rewards.

I Definition 4 (Stopping game). A state sf ∈ S of a stochastic multi-player game G =
(Π, S, (SΠ, Sp), sinit,∆,A, L) is called terminal if and only if ∆(sf , sf ) = 1 and ∆(sf , s′) = 0
for all s′ 6= sf , s

′ ∈ S. A game is called stopping if it has at least one terminal state and if it
holds that, for every strategy profile σ = σ1, ...σ|Π| and starting from the initial state, with
probability 1 the game eventually stops, i.e., a terminal state is reached.
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3 Property Specification

We now introduce a notation for specifying temporal and reward-based properties of stochastic
games. The presentation employs a variant of the probabilistic temporal logic called RPATL,
based on Probabilistic Computation Tree Logic (PCTL) [12] with rewards [41], enhanced with
the coalition operator from Alternating Temporal Logic (ATL) [1]. We discuss both single
and multi-objective properties. The full logics RPATL and RPATL* are studied in [23, 29].

I Definition 5 (RPATL property). A single-objective, respectively multi-objective, RPATL
property is a formula φ, respectively Φ, in the following grammar:

φ ::= 〈〈C〉〉P./p[ψ] | 〈〈C〉〉Rr./x[ρ] | 〈〈C〉〉Rr/c./x[S]

Φ ::= 〈〈C〉〉(
n∧
i=1

P./pi [ψi]) | 〈〈C〉〉(
m∧
j=1

Rrj./xj [ρj ]) | 〈〈C〉〉(
m∧
j=1

Rrj/cj./xj [S])

ψ ::= F a

ρ ::= C | S

where a ∈ AP is an atomic proposition, C ⊆ Π is a coalition of players, ./∈ {≤,≥}, p ∈ [0, 1],
r, c are reward structures, and x ∈ R.

The operator P./p[ψ] is the PCTL probabilistic operator, where ψ is a CTL path formula.
To simplify the presentation we only consider the reachability path formulas F a. The
operators Rr./x[C] and Rr./x[S] respectively denote the expected total reward and longrun
average reward (mean payoff), whereas Rr/c./x[S] is a longrun average ratio reward. We combine
these operators with the coalition operator 〈〈·〉〉 of ATL as follows. Intuitively, 〈〈C〉〉P./p[ψ]
means that the players in coalition C can collectively ensure that P./p[ψ] is satisfied, no
matter what the players outside the coalition do. For example, in a game with players 1,
2 and 3, the property 〈〈{1, 3}〉〉P≥1[F end] states that players 1 and 3 have a strategy to
ensure that the game reaches an end-state almost surely, irrespective of what player 2 does.
〈〈C〉〉Rr./x[C] means that the players in coalition C can collectively ensure that the expected
total reward is in relation ./ to x. 〈〈C〉〉Rr./x[S] and 〈〈C〉〉Rr/c./x[S] are defined similarly, except
that they respectively concern expected average rewards cumulated over infinite paths and
expected ratio rewards. Both probabilistic and reward properties can be interpreted in
quantitative fashion, e.g. 〈〈C〉〉Pmax=?[F a], meaning the maximum probability of reaching an
a-state that players in C can ensure, regardless of the other players, and similarly for the
minimum.

We also allow formulti-objective properties Φ defined as conjunctions of coalition properties
of the same type, with the interpretation that all conjuncts are required to be satisfied
simultaneously; see [26, 10] for a more general definition of multi-objective properties as
Boolean combinations. Intuitively, the property 〈〈C〉〉(

∧n
i=1 P./pi [ψi]) means that players in

coalition C have a collective strategy to ensure that, for all i = 1, . . . , n, we have that P./pi [ψi]
holds, no matter what the other players do. 〈〈C〉〉(

∧m
j=1 Rrj./xj [ρj ]) is defined similarly, so, for

example, 〈〈{4, 5}〉〉(Rprofit
≥5 [S] ∧ Rfuel

≤10 [S]) states that players 4 and 5 have a collective strategy
to ensure that expected longrun average profit is at least 5 and expected longrun average fuel
usage is at most 10, no matter what the other players do. Property 〈〈C〉〉(

∧m
j=1 Rrj/cj≥xj [ρj ])

is a ratio reward, so for example 〈〈{1, 2}〉〉(Rfuel/time
≤10 [S] ∧ Rvisit/time

≥20 [S]) states that players 1
and 2 have a collective strategy to ensure that expected longrun fuel consumption per time
unit is at most 10 and expected longrun number of visits is at least 20, no matter what the
other players do.
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In order to define the semantics of the coalition and multi-objective properties, we require
the notion of a coalition game based on the analogous notion for ATL.

I Definition 6 (Coalition game). Given an SMG G = (Π, S, (SΠ, Sp), sinit,∆,A, L) and
coalition of players C ⊆ Π, the coalition game of G induced by C is the two-player stochastic
game GC = (Π, S, (S′1, S′2), sinit,∆,A, L), where S′1 =

⋃
i∈C Si and S′2 =

⋃
i∈Π/C Si. The sets

of strategies of player 1 and 2 in the coalition game are respectively denoted Σ1
GC and Σ2

GC .

I Definition 7 (RPATL semantics). Let G = (Π, S, (SΠ, Sp), sinit,∆,A, L) be an SMG whose
states are labelled with atomic propositions a ∈ AP . We identify a proposition a with the
set of states Sa = {s ∈ S | s |= a} satisfying a, also denoted a. The satisfaction relation |= is
defined as follows, where formulas φ and Φ are interpreted over states of the game, whereas
temporal formulas ψ and reward functions ρ are interpreted over paths:

G, λ |= F a ⇐⇒ ∃i ≥ 0 : (λiλi+1 . . . |= a)

G, s |= 〈〈C〉〉P./p[ψ] ⇔ ∃ σ1 ∈ Σ1
GC s.t. ∀ σ2 ∈ Σ2

GC .

Prσ1,σ2
GC ,s {λ ∈ PathGC ,s | GC , λ |= ψ} ./ p

G, s |= 〈〈C〉〉Rr./xρ ⇔ ∃ σ1 ∈ Σ1
GC s.t. ∀ σ2 ∈ Σ2

GC .

Eσ1,σ2
GC ,s (rew(r, ρ)) ./ x

G, s |= 〈〈C〉〉Rr/c./xS ⇔ ∃ σ1 ∈ Σ1
GC s.t. ∀ σ2 ∈ Σ2

GC .

Eσ1,σ2
GC ,s (rew(r, S)) ./ x

G, s |= 〈〈C〉〉(
∧n
i=1 P./pi [ψi]) ⇔ ∃ σ1 ∈ Σ1

GC s.t. ∀ σ2 ∈ Σ2
GC , 1 ≤ i ≤ n.

Prσ1,σ2
GC ,s {λ ∈ PathGC ,s | GC , λ |= ψi} ./ pi

G, s |= 〈〈C〉〉(
∧m
j=1 Rrj./xj [ρj ]) ⇔ ∃ σ1 ∈ Σ1

GC s.t. ∀ σ2 ∈ Σ2
GC , 1 ≤ j ≤ m.

Eσ1,σ2
GC ,s (rew(r, ρj)) ./ xj

G, s |= 〈〈C〉〉(
∧m
j=1 Rrj/cj./xj [S]) ⇔ ∃ σ1 ∈ Σ1

GC s.t. ∀ σ2 ∈ Σ2
GC , 1 ≤ j ≤ m.

Eσ1,σ2
GC ,s (rew(r/c, S)) ./ xj

where GC=(Π, S, (S′1, S′2), sinit,∆,A, L) is the coalition game of G induced by C, r is a reward
structure for Gc, c is a nonnegative reward structure for GC s.t. the probability of its mean
payoff under any strategy profile is at least some constant value, and

rewk(r)(λ) =
∑k
i=0 r(λi)

rew(r, C)(λ) = lim infk→∞ rewk(r)(λ)
rew(r, S)(λ) = lim infk→∞ rewk(r)(λ)

k+1

rew(r/c, S)(λ) = lim infk→∞ rewk(r)(λ)
1+rewk(c)(λ)

The properties defined above can be employed for verification as well as strategy synthesis
for stochastic multi-player games.

4 Single-objective Properties

Model checking and strategy synthesis for single-objective RPATL properties in stochastic
games reduces to checking the existence of, respectively finding (if it exists), a winning strategy
in two-player stochastic games, and specifically coalition games. Formally, given a stochastic
multi-player game G and a single-objective RPATL property φ, e.g., φ = 〈〈C〉〉P./p[ψ] or
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φ = 〈〈C〉〉R./x[ρ], the model checking problem is to establish whether sinit |= φ in the coalition
game GC . The strategy synthesis problem, on the other hand, for a stochastic game G and a
property φ as above is to construct a strategy σ1 for player 1 in the coalition game GC (if it
exists) that is a witness to the satisfaction sinit |= φ.

Similarly to MDPs, deciding the verification and strategy synthesis problems involves
computing the optimal values of path formulas ψ and reward functions ρ defined for the
minimum in the coalition game GC as follows:

Prmin
GC ,s(ψ) = inf

σ1∈Σ1
GC

sup
σ2∈Σ2

GC

Prσ1,σ2
GC ,s (ψ),

Emin
GC ,s(rew(r, ρ)) = inf

σ1∈Σ1
GC

sup
σ2∈Σ2

GC

Eσ1,σ2
GC ,s (rew(r, ρ)),

(1)

where we swap infimum and supremum to compute the maximum value. A strategy σ1 ∈ Σ1
GC

of player 1 starting from state s is called optimal if it achieves the optimal value, e.g.,
supσ2∈Σ2

GC
Prσ1,σ2
GC ,s (ψ) = Prmin

GC ,s(ψ). Similarly, the strategy is called ε-optimal, for ε > 0, if
it achieves a value deviating by at most ε from the optimum, e.g., supσ2∈Σ2

GC
Prσ1,σ2
GC ,s (ψ) ≥

Prmin
GC ,s(ψ) + ε.
The optimal values and strategies can be used to solve the RPATL single-objective model

checking problem in the following way. For example, to establish the verification problem
for G, s and property 〈〈C〉〉P≥p[ψ], it suffices to verify that in the coalition game GC player
1 can ensure Prmax

GC ,s(ψ) ≥ p. The remaining single-objective properties can be addressed
in a similar fashion. To solve the strategy synthesis problem, we compute an optimal or
a suitable ε-optimal strategy for the coalition, that is, for player 1. Since the games are
zero-sum, for every single-objective RPATL property φ there exists a winning strategy for
one of the players.

The problems of computing the optimal values and strategies for the variant of RPATL
discussed here are in NP ∩ coNP [26, 9]. No polynomial-time algorithm is known, and the
method used in practice to compute optimal values is a value iteration algorithm [30]. For
probabilistic reachability properties, given the quantitative probabilistic reachability property
〈〈C〉〉Pmax=?[F a], the value iteration algorithm [30] computes the optimal values for player 1
states s ∈ S1 in the coalition game as

Prmax
GC ,s(ψ) = v∗(s) = lim

n→∞
v∗n(s), (2)

where v∗n(s) is computed iteratively as indicated in Fig. 1, with the computation terminated
when a suitable precision threshold α is reached, i.e. the maximum difference between v∗n(s)
and v∗n+1(s), for s ∈ S, is not more than α. The computation of minimum values proceeds
analogously.

It has been shown that for single-objective probabilistic reachability properties both
players have optimal strategies and memoryless deterministic strategies suffice, and an
optimal player 1 strategy can be constructed from the optimal values in time linear in the
size of the game [4]. For more complex RPATL* properties not discussed here, where ψ is an
LTL formula, pure finite-memory strategies may be required, see [4, 21, 23] and references
therein. LTL properties ψ involve converting the formula to a Rabin or parity automaton,
building the product of the automaton with the coalition game, and computing optimal
values for a probabilistic reachability property on the product.

For single-objective cumulative reward properties ρ = C, if a game is non-stopping then
the set of states that receive infinite total reward can be computed by solving the game with
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v∗n(s) =


1 if s |= a

0 if s 6|= a and n = 0,
max{v∗n−1(s), v′n(s)} if n > 0,

v′n(s) =


maxs′∈S{∆(s, s′) · v∗n−1(s′)} if s 6|= a and s ∈ S1,

mins′∈S{∆(s, s′) · v∗n−1(s′)} if s 6|= a and s ∈ S2,∑
s′∈S ∆(s, s′) · v∗n−1(s′) if s 6|= a and s ∈ Sp.

Figure 1 Value iteration algorithm for the quantitative probabilistic reachability property
〈〈C〉〉Pmax=?[F a] computed on the coalition game GC .

respect to a parity condition [66]. After removing these states, value iteration algorithm
similar to that for probabilistic reachability can be applied to compute the (bounded) optimal
values for the remaining states. An optimal (memoryless deterministic) player 1 strategy for
a stopping game can be constructed from the optimal values in time linear in the size of the
game [4].

Longrun average reward properties ρ = S are more involved since average reward disregards
all transient behaviour. Nevertheless, memoryless deterministic strategies still suffice for
both players to win [43, 58] and an optimal strategy can be constructed by reduction to the
discounted reward problem. An alternative, more practical, method, which also extends to
expected and almost sure ratio rewards, was formulated for multi-objective properties [10, 9]
under certain restriction on the models. The method employs stochastic memory update
strategies and reduction to expected energy objectives, and is discussed in the next section.

5 Multi-objective Properties

In this section, we discuss the problem of multi-objective verification and strategy synthesis
for stochastic multi-player games, previously also studied for MDPs [38, 42], where the goal
is to simultaneously satisfy a certain combination of properties. Recall that we defined
a multi-objective RPATL property Φ as a conjunction of properties of the same type,
e.g. 〈〈C〉〉(

∧n
i=1 P./pi [ψi]) or 〈〈C〉〉(

∧m
j=1 Rrj./xj [ρj ]) (note that in [26] any positive Boolean

combinations are allowed). As for single-objective properties, for a given coalition C we
reduce the analysis of a multi-player stochastic game G to the coalition game GC , and thus it
suffices to consider two-player stochastic games.

Let ΦC be a multi-objective property for coalition C involving m probabilistic or reward
properties and GC be the induced two-player coalition game. Let r = (r1, . . . , rm) denote
the vector of reward structures and r(s) = (r1(s), . . . , rm(s)), for every s ∈ S. Similarly,
p = (p1, . . . , pm) and x = (x1, . . . , xm) denote the vectors of probability and reward bounds.
We say that the vector of bounds (p,x) for ΦC , denoted ΦC(p,x), is achievable if and only if
there exists a winning strategy for player 1 that guarantees all properties in ΦC with bounds
p,x. The optimal achievable vectors of bounds are called Pareto vectors.

I Definition 8 (Pareto set). Let ΦC be a multi-objective property for coalition C involving
n probabilistic or reward properties. A vector (p,x) ∈ Rm is called a Pareto vector if the
property ΦC(p − ε,x − ε) is achievable in GC for every ε > 0 and ΦC(p + ε,x + ε) is not
achievable for any ε > 0. The set P of all Pareto vectors for ΦC is called a Pareto set.
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V ∗n (s) =


{x ∈ Rm≥0 | x ≤ r(s)} if n = 0,
dwc(r(s) + conv(

⋃
∆(s,s′)=1 V

∗
n−1(s′))) if n > 0 and s ∈ S1,

dwc(r(s) +
⋂

∆(s,s′)=1 V
∗
n−1(s′)) if n > 0 and s ∈ S2,

dwc(r(s) +
∑

∆(s,s′)>0 ∆(s, s′) · V ∗n−1(s′)) if n > 0 and s ∈ Sp,

x ·X = {x · x | x ∈ X},
x +X = {x + x′ | x′ ∈ X},

dwc(X) = {y | ∃x ∈ X : y ≤ x},
conv(X) = {y | ∃x,x′ ∈ X,α ∈ [0, 1] : y = αx + (1− α)x′}.

Figure 2 Iterative computation of an ε-approximation of the Pareto set for a multi-objective
expected total reward property in a two-player stochastic game. Here, x ∈ R≥0 is a real number,
x ∈ Rm≥0 is a vector, X ⊆ Rm≥0 is a set, ≤ is the componentwise partial order on Rm≥0, dwc(X) is the
downward closure of the set X, and conv(X) is the convex closure of X. Given a two-player stopping
game G with multiple reward structures r and a multi-objective total reward property Φ(x), the
approximation is computed for every state s ∈ S in k = |S|+ d|S| · ln(ε·(n·M)−1)

ln(1−δ) e iterations, where
M = |S| · maxi,s∈S ri(s)

δ
, δ = ∆|S|min, and ∆min is the smallest positive probability in G.

The problems of multi-objective verification and strategy synthesis are formulated similarly
to the single-objective case discussed in the previous section. However, unlike in the single-
objective case, optimal strategies might not exist, as shown in [27] for conjunctions. Further,
an infinite-memory strategy may be required, even for stopping games with reachability
objectives [26]. Existing solutions therefore compute ε-approximations of Pareto sets and
the corresponding ε-optimal strategies.

I Definition 9 (Pareto set approximation). For ε > 0, an ε-approximation of the Pareto set
is a set of vectors Q such that for every (q,y) ∈ Q there exists a Pareto vector (p,x) ∈ P
with ‖(q,y)− (p,x)‖ ≤ ε, and vice versa, for every Pareto vector (p,x) ∈ P there exists a
vector (q,y) ∈ Q with ‖(q,y)− (p,x)‖ ≤ ε, where ‖ · ‖ is the Manhattan distance defined
as the sum of componentwise differences.

The ε-approximation of the Pareto set for a stopping coalition game GC and a multi-
objective property ΦC(x) can be computed using the iteration algorithm in Fig. 2. The
algorithm successively computes, for each state s ∈ S, the sets V ∗n (s), where the nth such set
is the downward closure of vectors of bounds achievable by the coalition (player 1), from s,
in up to n steps. Since player 1 can randomise between its successor states, the set V ∗n (s) for
s ∈ S1 is computed as a downward, convex closure of the union of V ∗n−1(s′), for all s′ such
that ∆(s, s′) = 1. For s ∈ S2, the bounds must be achievable for all successor states, and
hence we take the intersection. Finally, for probabilistic states s ∈ Sp, we consider the sum
weighted by the corresponding probabilistic distribution.

Once an ε-approximation of the Pareto set has been computed, the corresponding ε-
optimal player 1 strategy can be constructed [29, 26, 70], where the stochastic memory
update, σ1 = (M,σu1 , σ

n
1 , σ

init
1 ), representation is employed. In the construction, the vertices

of approximation sets V ∗n (s), s ∈ S, act as memory elements M and represent the vector of
reward bounds that the strategy currently aims to achieve. The distributions in functions
σu1 and σinit

1 are constructed so that the expected value of the next memory element is
an ε-approximation of the target reward bounds x. Employing stochastic memory update
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representation enables a reduction in the memory required from up to infinite to finite for
stopping games [26].

Since probabilistic reachability properties can be reduced to total reward properties, the
iterative algorithm in Fig. 2 can be adapted to compute ε-approximations of Pareto sets for
any stopping stochastic game with a multi-objective property that involves only probabilistic
reachability properties. This can be extended, for stopping games, to probabilistic LTL
properties [29] by employing reduction to Rabin automata and building a synchronous
product of all the automata and the original SMG G, with a new terminal state which is
entered after G enters any of its terminal states. However, the strategy synthesis problem for
multi-objective probabilistic LTL properties in general stochastic games remains open.

Unfortunately, this method cannot be used for multi-objective strategy synthesis for
longrun average reward properties. This is because the algorithm in Fig. 2 approximates the
Pareto set in a finite number of iterations by combining the achievable values of successive
states, but expected average reward disregard all transient behaviour. Nevertheless, for the
special case of almost sure average reward properties [10], strategy synthesis for multi-objective
properties of this type reduces to synthesis for multi-objective expected energy properties.
The corresponding decision problem is in co-NP, as shown in [9] and [19]. In addition, [9]
also formulate an algorithm to construct a strategy, if it exists, where stochastically updated
memory strategies are generated, which can yield exponentially more compact representations
than deterministically updated strategies used in [19]. Further, [9] identify a general class of
games for which the synthesis algorithm can be extended to arbitrary Boolean combinations
of expected mean-payoff objectives.

Finally, in [10, 9] a method to handle multi-objective ratio reward properties is provided.
To solve the strategy synthesis problem for a single-objective ratio reward property in a
coalition game, it suffices to solve the problem for an almost sure average reward property,
and this can be extended to (conjunctive) multi-objective properties using vectors.

6 Compositional Strategy Synthesis

One difficulty with multi-objective strategy synthesis, in view of high computational com-
plexity [26], is its scalability. To deal with this problem, [11, 70] formulate a compositional
framework for strategy synthesis, which allows one to derive a strategy for the composed
system by synthesising only for the (smaller) individual components. Firstly, recall that
probabilistic automata of [63] correspond to coalition games with only one player present.
In verification, the nondeterminism that is present in the probabilistic automaton models
an adverse, uncontrollable, environment. By applying a coalition strategy to a game to
resolve the controllable nondeterminism, we are left with a probabilistic automaton where
only uncontrollable nondeterminism for the remaining players remains. This observation
allows us to reuse rules for compositional verification of probabilistic automata, such as those
in [56], to derive strategy synthesis rules for SMGs.

The compositional framework of [11, 9, 70] is based on a parallel composition operation
for stochastic games, which is closely related to that of probabilistic automata [63], except
that the identity of the player is preserved through composition. When composed, the com-
ponent SMGs G = (Π, S, (SΠ, Sp), sinit,∆,A, L) and G′ = (Π′, S′, (S′Π, S′p), s′init,∆′,A′, L′)
synchronise on shared actions A ∪A′, yielding the composed game G′′ = G ‖ G′. Properties
of the component SMGs, as well as the composed game, are then defined on traces, that is,
sequences of actions that label the probabilistic states in the path, rather than over paths.
Under the assumption that the component games are compatible, i.e., all actions of player 1
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in each composite game are enabled and fully controlled by player 1, the player 1 strategy
σ′′1 = σ1 ‖ σ′1 for G′′ that is a composition of player 1 strategies for component games preserves
all properties. More precisely, if strategies σ1 and σ′1 guarantee (possibly multi-objective)
properties Φ, Φ′ in component games, then the composed strategy σ′′1 guarantees property
Φ′′ in G′′, where Φ′′ is any property for the composed game that can be derived from Φ and
Φ′ using, for example, assume-guarantee rules in [56]. In particular, player 1 of different
component games can cooperate to achieve a common goal: if in one component game
player 1 guarantees a property Φ2 under some assumption Φ1 on the environment, i.e.,
Φ1 ⇒ Φ2, and player 1 in a different component game ensures Φ1, then the composition
satisfies property Φ2. A broad range of such assume-guarantee contracts can be supported
for both probabilistic and reward multi-objective properties.

The method for compositional strategy synthesis [11] first computes an under-approximation
Q of the Pareto set for Φ′′ based on ε-approximations Q,Q′ of Pareto sets for Φ,Φ′. For a
chosen achievable vector of bounds (p,x) for Φ′′, player 1 strategies σ1, σ

′
i are synthesised for

component games that achieve Φ(p,x), Φ′(p′,x′), where (p,x), (p′,x′) are the respective
bounds obtained by projecting (p,x) from Q′′ to Q,Q′. The composed strategy σ′′1 = σ1 ‖ σ′1
then achieves Φ′′(p′′,x′′). Note that, since assume-guarantee contracts may involve im-
plication, to be able to apply this framework and, in particular, to take full advantage
of assume-guarantee rules, we would need to be able to synthesise strategies for arbitrary
Boolean combinations of properties, which is possible [9, 70] under certain restrictions on
models and properties.

7 Tool Implementation and Applications

All techniques overviewed in this paper, including single- and multi-objective, as well as
compositional, strategy synthesis problems for turn-based stochastic multi-player games,
have been implemented in the open-source tool called PRISM-games [25, 54], developed as
an extension of the probabilistic model checker PRISM [52]. PRISM-games can be used to
model, verify, solve and simulate stochastic multi-player games with complex properties. As
a modelling notation, PRISM-games uses an extension of PRISM’s modelling language based
on reactive modules. The specification notation is based on RPATL [23], and includes support
for the coalition operator; single-objective properties, namely probabilistic reachability, total
reward properties for stopping games, average reward and ratio properties for a special
class of games called controllable multichain games (for details, see [70]), and almost sure
average reward and ratio properties; and multi-objective properties, and specifically Boolean
combinations of the same type of reward properties, except for the almost sure average and
ratio reward properties for which only conjunctions are supported.

Currently, PRISM-games is an explicit state model checker, which extends the Java-based
engine of PRISM, and relies on the Parma Polyhedra Library [6] for symbolic manipulation
of convex sets during ε-approximate computation of Pareto sets, see [66, 70].

Below we report on a variety of case studies of autonomous systems that employed
stochastic game models and were analysed using PRISM-games. For more information, see
[66, 70, 68, 67] and the PRISM-games website [61].

Microgrid demand-side management [66]. The example models a decentralised energy
management protocol for smart grids that draw energy from a variety of sources. The system
consists of a set of households, where each household follows a simple probabilistic protocol
to execute a load if the current energy cost is below a pre-agreed limit, and otherwise it only
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executes the load with a pre-agreed probability. The energy cost to execute a load for a
single time unit is the number of loads currently being executed in the grid. The analysis of
the protocol with respect to the expected load per cost unit for a household, formulated as a
single-objective total reward property, exposed a protocol weakness. The weakness was then
corrected by disincentivising non-cooperative behaviour.

Human-in-the-loop UAV mission planning [40]. This case study concerns autonomous
unmanned aerial vehicles (UAV) performing road network surveillance and reacting to
inputs from a human operator. The UAV performs most of the piloting functions, such as
selecting the waypoints and flying the route. The operator primarily performs sensor tasks
at waypoints but may also pick a road for the UAV at waypoints. The optimal UAV piloting
strategy depends on mission objectives, e.g., safety, reachability, coverage, and operator
characteristics, i.e., workload, proficiency, and fatigue. The main focus of the case study is on
studying a multi-objective property to analyse the trade-off between the mission completion
time and the number of visits to restricted operating zones, which have been investigated by
computing Pareto sets.

Autonomous urban driving [29]. A stochastic game model of an autonomous car is de-
veloped, which considers the car driving through an urban environment and reacting to
hazards such as pedestrians, obstacles, and traffic jams. The car does not only decide on
the reactions to hazards, which are adversarial, but also chooses the roads to take in order
to reach a target location. The presence and probability of hazards is based on statistical
information for the road. Through multi-objective strategy synthesis, strategies with optimal
trade-off between the probability of reaching the target location, the probability of avoiding
accidents and the overall quality of roads on the route are identified.

Aircraft power distribution [10]. An aircraft electrical power network is considered, where
power is to be routed from generators to buses through controllable switches. The generators
can exhibit failures and switches have delays. The system consists of several components,
each containing buses and generators, and the components can deliver power to each other.
The network is modelled as a composition of stochastic games, one for each component.
These components are physically separated for reliability, and hence allow limited interaction
and communication. Compositional strategy synthesis is applied to find strategies with
good trade-off between uptime of buses and failure rate. By employing stochasticity, we can
faithfully encode the reliability specifications in quantitative fashion, thus improving over
previous results. The property is modelled as a conjunction of ratio reward properties.

Self-adaptive software architectures [44, 16]. Self-adaptive software automatically adapts
its structure and behaviour according to changing requirements and quantitative goals.
Several self-adaptive software architectures, such as adaptive industrial middleware used
to monitor and manage sensor networks in renewable energy production plants, have been
modelled as stochastic games and analysed. Both single- and multi-objective verification of
multi-player stochastic games has been applied to to evaluate their resilience properties and
synthesise pro-active adaptation policies.

DNS Bandwidth Amplification Attack [35]. The Domain Name System (DNS) is an
Internet-wide hierarchical naming system for assigning IP addresses to domain names, and
any disruption of the service can lead to serious consequences. A notable threat to DNS,
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namely the bandwidth amplification attack, where an attacker attempts to flood a victim
DNS server with malicious traffic, is modelled as a stochastic game. Verification and strategy
synthesis is used to analyse and generate counter-measures to defend against the attack.

Attack-defence scenarios in RFID goods management system [5]. This case study con-
siders complex attack-defence scenarios, such as an RFID goods management system, trans-
lating attack-defence trees to two-player stochastic games. Probabilistic verification is then
employed to check security properties of the attack-defence scenarios and to synthesise
strategies for attackers or defenders which guarantee or optimise some quantitative property.
The properties considered include single-objective properties such as the probability of a
successful attack or the incurred cost, as well as their multi-objective combinations.

8 Challenges

Clearly, there has been much progress towards quantitative verification and aspects of
quantitative synthesis for autonomy, with a wide variety of relevant case studies serving as
proof of concept. However, a number of significant challenges have yet to be overcome. We
briefly review a selection of these below.

Partial information. Practical quantitative verification, as exemplified by PRISM, has so
far mostly been limited to complete information systems. This restriction is not applicable
to many autonomous scenarios, where agents in the system only have partial information.
Partial observability [18, 20] raises a number of algorithmic challenges that need to be tackled.

Modelling social interactions. Autonomous systems are increasingly often employed to
assist and interact with humans, and operator models have to be taken into account. Though
some progress has been made, for example in the context of UAVs [40], models that incorporate
cognitive processes and social interactions, such as those based on trust [39, 46], and the
corresponding verification techniques are needed.

Model learning and adaptation from data. Quantitative verification has so far mainly
focused on modelling system dynamics, but the behaviour of many autonomous and semi-
autonomous systems, such as those involving perception, is data-driven [62]. Techniques
that integrate model learning from data in order to inform adaptation in real-time and
programming with uncertain data within quantitative verification methodologies are needed.

Model synthesis from specifications. Though correct-by-construction synthesis of strategies
has been tackled in a range of models, model synthesis from quantitative specifications requires
further study. A possible approach is combining template-based and parameter synthesis
methods already developed for Markov chains and MDPs [34, 28, 17] and via discretisation
for timed and hybrid automata [36, 55], but more effort is required to tackle autonomous
systems.

Scalability, efficiency and precision. Existing model checking and strategy synthesis tools
for stochastic games are in early stages of development and substantial effort is necessary
to ensure their effectiveness in industrial applications. Compositional approaches, symbolic
techniques and methodologies based on induction, deduction and machine learning, as well
as their judicious combinations, have great potential.
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9 Conclusion

As autonomous systems are becoming an integral part of our society, their failure carries
potentially unacceptable and life-endangering risks. Rigorous model-based verification
technologies incorporated within the design process can improve their safety and reliability
and reduce development costs. This paper has briefly summarised quantitative verification
and strategy synthesis techniques developed for autonomous systems modelled as turn-based
stochastic multi-player games as implemented in the tool PRISM-games and outlined future
research challenges in this challenging yet exciting field.
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Abstract
We analyze two classic variants of the Traveling Salesman Problem using the toolkit of
fine-grained complexity.

Our first set of results is motivated by the Bitonic tsp problem: given a set of n points in
the plane, compute a shortest tour consisting of two monotone chains. It is a classic dynamic-
programming exercise to solve this problem in O(n2) time. While the near-quadratic dependency
of similar dynamic programs for Longest Common Subsequence and Discrete Fréchet
Distance has recently been proven to be essentially optimal under the Strong Exponential Time
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1, . . . , n and the sequence of labels in the solution is required to have at most one local maximum.
Our algorithms for the bitonic (bottleneck) tsp problem also work for the pyramidal tsp problem
in the plane.

Our second set of results concerns the popular k-opt heuristic for tsp in the graph setting.
More precisely, we study the k-opt decision problem, which asks whether a given tour can be
improved by a k-opt move that replaces k edges in the tour by k new edges. A simple algorithm
solves k-opt in O(nk) time for fixed k. For 2-opt, this is easily seen to be optimal. For k = 3
we prove that an algorithm with a runtime of the form Õ(n3−ε) exists if and only if All-Pairs
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that a runtime of f(k)·no(k/ log k) would contradict the Exponential Time Hypothesis. The results
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5:2 Fine-Grained Complexity Analysis of Two Classic TSP Variants

1 Introduction

1.1 Motivation
We analyze two classic variants of the Traveling Salesman Problem (tsp) by applying
the modern toolkit of fine-grained complexity analysis. The first tsp variant can for instance
be found in Chapter 15 of the well-known textbook “Introduction to Algorithms” by Cormen,
Leiserson, Rivest, and Stein [15]. The chapter discusses dynamic programming, and its
problem section poses the following classic exercise:

15-3 Bitonic euclidean traveling-salesman problem
In the euclidean traveling-salesman problem, we are given a set of n points in the plane,
and we wish to find the shortest closed tour that connects all n points. The general problem
is NP-complete, and its solution is therefore believed to require more than polynomial time.
J. L. Bentley has suggested that we simplify the problem by restricting our attention to
bitonic tours, that is, tours that start at the leftmost point, go strictly rightward to the
rightmost point, and then go strictly leftward back to the starting point. In this case, a
polynomial-time algorithm is possible. Describe an O(n2)-time algorithm for determining an
optimal bitonic tour.

This exercise already showed up in the very first edition of the book in 1991. Since
then, thousands of students pondered about it and (hopefully) found the solution. One
might wonder whether O(n2) runtime is best possible for this problem. As one of our main
contributions, we will show that in fact it is not.

The second tsp variant concerns k-opt, a popular local search heuristic that attempts to
improve a suboptimal solution by a k-opt move (or: k-move for short), which is an operation
that removes k edges from the current tour and reconnects the resulting pieces into a new
tour by inserting k new edges. The cases k = 2 [16] and k = 3 have been studied extensively
with respect to various aspects such as experimental performance [7, 24, 27], (smoothed)
approximation ratio [13, 26], rate of convergence [13, 17], and algorithm engineering [19, 21,
29, 30]. The decision problem associated with k-opt asks, given a tour in an edge-weighted
graph, whether it is possible to obtain a tour of smaller weight by replacing k edges. There
are Θ(nk) possibilities to choose k edges that leave the current tour, and for each choice the
number of ways to reconnect the resulting pieces back into a tour is constant (for fixed k). As
the weight change for each reconnection pattern can be evaluated in O(k) time, this simple
algorithm finds the best k-opt improvement in time O(nk) for each fixed k. The survey
chapter [25] by Johnson and McGeoch extensively discusses k-opt. On page 233 they write:

To complete our discussion of running times, we need to consider the time per move as well
as the number of moves. This includes the time needed to find an improving move (or verify
that none exists), together with the time needed to perform the move. In the worst case,
2-opt and 3-opt require Ω(n2) and Ω(n3) time respectively to verify local optimality, assuming
all possible moves must be considered.

The two lower bounds in the last sentence are stated without further justification. It
is clear that finding an improving k-move takes Ω(nk) time, if we require that all possible
moves must be enumerated explicitly. However, one might wonder whether there are other,
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faster algorithmic approaches that proceed without enumerating all moves. As one of our
main contributions, we will show that such faster approaches do not exist for k = 3 (under
the All-Pairs Shortest Paths conjecture), but do exist for all k ≥ 4.

1.2 Our contributions

We investigate whether the long-standing runtimes of O(n2) for bitonic tours and O(nk)
for finding k-opt improvements are optimal. Such optimality investigations usually involve
two ingredients: fast algorithms and runtime lower bounds. While proving unconditional
lower bounds is far out of reach, in recent years there has been an influx of techniques for
establishing lower bounds on the running time of a given problem, based on a hypothesis
about the best-possible running time for another problem. Recent results in this direction
consider the problems of computing the Longest Common Subsequence [1, 10] of two
length-n strings, the Edit Distance [5, 10] from one length-n string to another, or the
Discrete Fréchet Distance [9] between two polygonal n-vertex curves in the plane. If
one of these problems allows an algorithm with running time O(n2−ε), then this would yield
an algorithm to test the satisfiability of an n-variable CNF formula φ in time (2−ε)n · |φ|O(1).
As decades of research have not led to algorithms with such a running time for cnf-sat,
this gives evidence that the classic O(n2)-time algorithms for these problems are optimal up
to no(1) factors.

Pyramidal tours in the plane. Consider a symmetric tsp instance that is defined by an
edge-weighted complete graph. For a linear ordering 1, . . . , n of the vertices in the graph,
a pyramidal tour has the form (1, i1, . . . , ir, n, j1, . . . , jn−r−2), where i1 < i2 < . . . < ir and
j1 > j2 > . . . > jn−r−2. A bitonic tour for a Euclidean tsp instance is pyramidal with
respect to the left-to-right order on the points in the plane. Bitonic and pyramidal tours play
an important role in the combinatorial optimization literature on the tsp; see [6, 11, 20].
They form an exponentially large set of tours over which we can optimize efficiently, and
they lead to well-solvable special cases of the tsp. Combined with a procedure for generating
suitable permutations of the vertices, heuristic solutions to tsp can be obtained by computing
optimal pyramidal tours with respect to the generated orders [12].

We will show that the classic O(n2) dynamic program for finding bitonic tours in the
Euclidean plane is far from optimal: by an appropriate use of dynamic geometric data
structures, the running time can be reduced to O(n log2 n). To the best of our knowledge,
this presents the first improvement in finding bitonic tours since the problem was popularized
in Introduction to Algorithms [15] in 1991. In fact, we prove the stronger result that an
optimal pyramidal tour among n points in the plane can be computed in O(n log2 n) time
with respect to any given linear order on the points. Our techniques extend to the related
Bottleneck Pyramidal tsp problem in the plane, where the goal is to find a pyramidal
tour among the cities that minimizes the length of the longest edge. We prove that the
underlying decision problem (given a linearly ordered set of points and a bottleneck value B,
is there a pyramidal tour of the points whose longest edge has length at most B?) can
be solved in O(n logn) time, while the underlying optimization version (given a linearly
ordered set of points, compute a bitonic tour that minimizes the length of the longest edge)
can be solved in O(n log3 n) time. For the decision version of the bottleneck problem, we
prove a matching Ω(n logn) time lower bound in the algebraic computation tree model by a
reduction from Set Disjointness with integer inputs [34]; this reduction even applies to
the bitonic setting where the points are ordered from left to right.
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k-OPT in the graph setting. The complexity of k-opt has been analyzed using the
framework of parameterized complexity theory. Marx [28] proved that deciding whether there
is a k-move that improves a given tour is W[1]-hard parameterized by k, giving evidence
that there is no algorithm with runtime f(k) · nO(1). Guo et al. [22] refined this result
and proved that, under the Exponential Time Hypothesis [23], there is no algorithm that
determines whether a tour in a weighted complete graph can be improved by a k-move in
time f(k) · no(k/ log k) for any function f . This lower bound shows that the exponent of n in
the runtime of any k-opt algorithm must grow almost linearly with k. The next question that
we settle in this paper is: can one do better than O(nk) for finding a k-opt improvement?
The answer turns out to depend on the value of k. For 2-opt, an easy adversarial argument
shows that any deterministic algorithm must inspect all the edge weights. This gives a
trivial lower bound of Ω(n2), matching the upper bound. For larger values of k, the question
becomes more interesting.

The 3-opt Detection problem asks whether the weight of a given tour can be reduced
by some 3-move. We show that it is unlikely that 3-opt Detection with weights in the
range [−M, . . . ,M ] allows an algorithm with a truly subcubic runtime of O(n3−ε polylog(M))
for ε > 0. We prove that the Negative Edge-Weighted Triangle problem (given an
edge-weighted graph, is there a triangle of negative weight?) reduces to 3-opt Detection
by a reduction that takes O(n2) time and increases the size of the graph by only a constant
factor. As Negative Edge-Weighted Triangle is equivalent to All-Pairs Shortest
Paths in weighted digraphs (apsp) with respect to having truly subcubic algorithms [33], a
truly subcubic algorithm for 3-opt Detection would contradict the apsp conjecture [2, 3]
which states that apsp cannot be solved in truly subcubic time. We also give a reduction in
the other direction: finding a 3-opt improvement reduces to finding a negative edge-weighted
triangle. Consequently, 3-opt Detection is equivalent to Negative Edge-Weighted
Triangle and apsp with respect to truly subcubic runtimes. This adds yet another classic
problem to the growing list of such equivalent problems [2, 33].

As a final result in this direction, we design an algorithm that finds the best k-opt
improvement in weighted n-vertex complete graphs in O(nb2k/3c+1) time for each fixed value
of k. For k = 2 and k = 3, this expression simply boils down to the straightforward time
complexities of O(n2) and O(n3) for 2-opt and 3-opt respectively. For k ≥ 4, however, our
result yields a substantial improvement over the trivial O(nk) time bound. For example,
4-opt can be solved in Θ(n3) time, matching the best-known algorithm for 3-opt. The
algorithm mixes enumeration of partial solutions with a simple dynamic program.

Faster 2-OPT in the repeated setting and in the planar setting. For the 2-opt problem
in graphs, the runtime for finding a single tour improvement cannot be improved below the
trivial Θ(n2). However, in the context of local search we are often interested in repeatedly
finding tour improvements. It is therefore natural to consider whether speedups can be
obtained when repeatedly finding improving tours on the same tsp instance. We prove that
this is indeed the case: after O(n2) preprocessing time, one can repeatedly find the best
2-opt improvement in O(n logn) time per iteration.

The quadratic lower bound for 2-opt applies only in the graph setting. This raises the
question: can we solve 2-opt faster for points in the plane? We show the answer is yes, by
giving an algorithm for 2-opt Detection with runtime O(n8/5+ε) for all ε > 0. Similarly,
3-opt Detection can be solved in expected time O(n80/31+ε).
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2 Faster pyramidal TSP

In this section we show that the pyramidal tsp and the bottleneck pyramidal tsp problem in
the plane can be solved in subquadratic time. For simplicity we only show how to compute
the value of an optimal solution; the actual tour can be computed in the standard manner.

Let P be the ordered input set of n points with distinct x-coordinates in the plane. Our
algorithm will consider the points in P in order, and maintain a collection of partial solutions
that are locally optimal. To make this precise, define Pi := {p1, . . . , pi} to be the first i
points in P . A partial solution for Pi, for some 1 ≤ i ≤ n, is a pair P ′, P ′′ of monotone paths
(w.r.t. the order on P ) that together visit all the points in Pi and that only share p1. We call
a partial solution for Pi an (i, j)-partial tour, for some 1 ≤ j < i, if one of the paths ends
at pi – this is necessarily the case in a partial solution for Pi – and the other path ends at pj .

Our starting point is the standard dynamic-programming solution. It uses a 2-dimensional
table1 A[1..n, 1..n], where A[i, j], for 1 ≤ j < i ≤ n, is defined as the minimum length of an
(i, j)-partial tour; for i ≤ j ≤ n the entries A[i, j] are undefined. We can compute the entries
in the table row by row, using the recursive formula

A[i+ 1, j] =
{

A[i, j] + |pipi+1| if 1 ≤ j < i

min1≤k<i (A[i, k] + |pkpi+1|) if j = i
(1)

where A[2, 1] = |p1p2|. Let us briefly verify this recurrence. For (i + 1, j)-partial tours
with j < i, the path P ′ that visits pi+1 must also visit pi: the other path P ′′ ends at
index j < i and the monotonicity requirement ensures P ′′ cannot visit i and go back to j.
So for j < i any (i + 1, j)-partial tour consists of an (i, j)-partial tour together with the
segment pipi+1. For (i+ 1, i)-partial tours, the predecessor of pi+1 cannot be pi, since a path
ends at pi. Hence an (i+ 1, i)-partial tour consists of an (i, k)-partial tour for some 1 ≤ k < i

together with the segment pkpi+1. The cheapest combination yields the best partial tour.
After computing the last row of A, the minimum length of a pyramidal tour can be found

by computing min1≤k<n (A[n, k] + |pkpn|). There are O(n2) entries in A of the first type
that each take constant time to evaluate. There are O(n) entries of the second type that
need time Θ(n). Hence the dynamic program can be evaluated in O(n2) time.

Our subquadratic algorithm is based on the following two observations. First, any two
subsequent rows A[i, 1..n] and A[i+ 1, 1..n] are quite similar: the entries A[i+ 1, j], for j < i,
can all be obtained from A[i, j] by adding the same value, namely |pipi+1|. Second, the
computation of A[i+ 1, i] can be sped up using appropriate geometric data structures. Thus
our algorithm will maintain a data structure that implicitly represents the current row and
allows for fast queries and so-called bulk updates (see below).

Recall that Pi := {p1, . . . , pi}. The point that defines min1≤k<i (A[i, k] + |pkpi+1|) is the
point pk ∈ Pi−1 closest to the query point q := pi+1 if we use the additively weighted distance
function

dist(pk, q) := wk + |pkq|, (2)

where wk := A[i, k] is the weight of pk. Thus we need a data structure for storing a weighted
point set that supports the following operations:

1 Some of our results can also be obtained from an alternative DP with n states. As we need the
2-dimensional approach for Theorem 4, we present all our results in this setting.
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perform a nearest-neighbor query with a query point q, which reports the point pk closest
to q according to the additively weighted distance function,
perform a bulk update of the weights, which adds a given value ∆ to the weights of all
the points currently stored in the data structure;
insert a new point with a given weight into the data structure.

Answering nearest-neighbor queries for the weighted point set P can be done by performing
point location in the additively weighted Voronoi diagram [18] of P augmented by a point
location data structure [32]. This (static) data structure has size O(n), can be computed
in O(n logn) time, and allows for O(logn)-time queries. To allow for insertions we use the
logarithmic method [8]. The logarithmic method makes a data structure semi-dynamic by
storing O(logn) static data structures of increasing size (resulting in an additional log-factor
in the query time). The main observation is that we can handle bulk updates by storing a
correction term for the weights with each of the static additively weighted Voronoi diagrams.
The additively-weighted nearest neighbor structure does not change when adding the same
constant to each point weight, which means we do not have to update the Voronoi diagrams
when performing bulk updates. This leads to an implementation that supports each operation
in O(log2 n) amortized time. The details are deferred to the full version. Using the data
structure we obtain the following theorem.

I Theorem 1. Let P be an ordered set of n points in the plane. Then we can compute a
minimum-length pyramidal tour for P in O(n log2 n) time and using O(n) storage.

Proof. We aim to speed up the classic dynamic-programming algorithm using the data
structure described above. Instead of computing the entire dynamic programming table A
explicitly, we maintain an implicit representation of one row of the table and compute the
rows one by one. The i-th row of A has i − 1 well-defined entries. We define an implicit
representation of row i to be an instance of the data structure storing the weighted point
set Pi−1 = {p1, . . . , pi−1} such that w(pj) = A[i, j]. The first nontrivial row in A is the
second row, A[2, 1..n]. An implicit representation for that row consists of the point p1 of
weight A[2, 1] = |p1p2|.

If we have an implicit representation of row i, we can efficiently obtain an implicit
representation of row i+ 1, as we describe next. By our choice of implicit representation, the
value of A[i+ 1, i] according to (1) is exactly the distance from pi+1 to its closest neighbor
in the data structure under the additively weighted distance function. Hence, the value
of k that minimizes the lower expression in (1) can be found by a nearest neighbor query
with pi+1. We can therefore transform a representation of row i into a representation for
row i+ 1 as follows:
1. Query with point pi+1 to find the value A[i+ 1, i] and remember this value.
2. Perform a bulk update to increase the weight of the points p1, . . . , pi−1 that are already

in the structure by ∆ := |pipi+1|. Recall that for cells j with 1 ≤ j < i their value in
row i+ 1 is obtained from their value in row i by adding |pipi+1|.

3. Insert point pi of weight A[i+ 1, i] into the structure.2
It is easy to verify that this yields an implicit representation of row i+1. Since a representation
of the first nontrivial row can be found in constant time, and each successive row can
be computed from the previous using three data structure operations that take O(log2 n)

2 We could also insert pi with weight A[i + 1, i] − ∆. This way we would not have to subtract ∆ from the
weights of p1, . . . , pi−1 in Step 2, and the bulk updates are not needed. As they are trivial in our data
structure, we prefer the version that keeps the correspondence between weights and A[i, j] values.
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amortized time each, it follows that an implicit representation of the final row can be computed
in O(n log2 n) time. The minimum cost of a pyramidal tour is min1≤k<n (A[n, k] + |pkpn|),
which can be found by querying the representation of the final row with point pn. J

Bottleneck pyramidal TSP. Using a similar global approach but different supporting data
structures we can also solve the bottleneck version of the problem – here the goal is to
minimize the length of the longest edge in the tour – in subquadratic time. For the decision
version of the problem we need the following result.

I Theorem 2. We can maintain a collection D of n congruent disks in a data structure such
that we can decide in O(logn) time if a query point q lies in Union(D). The data structure
uses O(n) storage and a new disk can be inserted into D in O(logn) amortized time.

This result is obtained as follows. Assume the disks have radius
√

2 and consider the integer
grid. Let D(C) ⊆ D be the set of disks whose centers lie inside a grid cell C. To decide if
q ∈ Union(D) we need to test if q ∈ Union(D(C)) for O(1) grid cells C that are sufficiently
close to q. Now consider a cell C with D(C) 6= ∅. Obviously C itself is completely covered
by Union(D(C)). Let `top(C) be the line containing the top edge of C. Then the part
of Union(D(C)) above `top(C) – the other parts are handled similarly – is x-monotone.
Moreover, we can show that each disk Di ∈ D(C) contributes at most one arc to the
boundary of Union(D(C)) above `top(C), and the left-to-right order of the contributed arcs
is consistent with the left-to-right order of the corresponding disk centers. Using this fact,
we can do point locations and insertions in O(logn) time. Details can be found in the full
version.

Combining the global technique of the previous section with Theorem 2 we obtain the
following theorem.

I Theorem 3. Let P be an ordered set of n points in the plane, and let B > 0 be a given
parameter. Then we can decide in O(n logn) time and using O(n) storage if P admits a
pyramidal tour whose longest edge has length at most B. This problem requires Ω(n logn)
time in the algebraic computation tree model of computation.

The algorithm for the decision version does not easily extend to solve the minimization
version of the problem. We therefore design a specialized data structure – a tree storing
unions of disks and (regular) Voronoi diagrams – that allows us to obtain the following result.

I Theorem 4. Let P be an ordered set of n points in the plane. Then we can compute a
pyramidal tour whose bottleneck edge has minimum length in O(n log3 n) time and using
O(n logn) storage.

3 The k-OPT problem in general graphs

In this section we change the perspective from Euclidean problems to the tsp in general
graphs. A tour of an undirected graph G is a Hamiltonian cycle in the graph. Depending on
the context, we may treat a tour as a permutation of the vertex set or as a set of edges. We
consider undirected, weighted complete graphs to model symmetric TSP inputs. The weight
of a tour is simply the sum of the weights of its edges. Recall that a k-move of a tour T is
an operation that replaces a set of k edges in T by another set of k edges from G in such a
way that the result is a valid tour. In degenerate cases, such an operation may delete and
reinsert the same edge. The associated decision problem is defined as follows.
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k-opt Detection
Input: A complete undirected graph G along with a (symmetric) distance func-
tion d : E(G)→ N, an integer k, and a tour T ⊆ E(G).
Question: Is there a k-move that strictly improves the cost of T?
The optimization problem k-opt Optimization is to compute, given a tour in a graph,

a k-move that gives the largest cost improvement, or report that no improving k-move exists.

3.1 On truly subcubic algorithms for 3-OPT
We say that an algorithm for n-vertex graphs with integer edge weights in the range
[−M, . . . ,M ] runs in truly subcubic time if its runtime is bounded by O(n3−ε polylog(M))
for some constant ε > 0. Vassilevska-Williams and Williams [33] introduced a framework for
relating the truly subcubic solvability of several classic problems to each other. We use it to
show that the existence of a truly subcubic algorithm for 3-opt is unlikely. Their framework
uses a notion of subcubic reducibility based on Turing reducibility [33, §IV] that solves one
instance of problem A by repeatedly solving inputs of problem B. For our applications,
simple reductions suffice that transform one input of problem A into one input of problem B

of roughly the same size, in O(n2) time.3 Such reductions preserve the existence of truly
subcubic algorithms, so we take this simpler viewpoint. The following problem is the starting
point for our reductions.

Negative Edge-Weighted Triangle
Input: An undirected, complete graph G and a weight function w : E(G)→ Z.
Question: Does G contain a triangle whose total edge-weight is negative?
Vassilevska-Williams and Williams [33, Thm. 1.1] proved that Negative Edge-

Weighted Triangle has a truly subcubic algorithm if and only if the All-Pairs Shortest
Paths problem on digraphs with non-negative integral edge weights has a truly subcubic
algorithm.

I Lemma 5. Negative Edge-Weighted Triangle can be reduced to 3-opt Detection
in time O(n2), increasing the size of the graph and the largest weight by a constant factor.

Proof. Consider an instance (G,w) of Negative Edge-Weighted Triangle, and let
v1, . . . , vn be an enumeration of the vertices of G. Let M be the largest absolute value of an
edge weight. We introduce an instance of 3-opt Detection that consists of 2n vertices
a1, . . . , an and b1, . . . , bn, where the starting tour T uses the ordering a1, b1, a2, b2, . . . , an, bn.
The (symmetric) distances d(·, ·) between these vertices are defined as follows:

d(ai, bi) = 0 for 1 ≤ i ≤ n;
d(bn, a1) = −3M , and d(bi, ai+1) = −3M for 1 ≤ i ≤ n− 1;
d(ai, bj) = w({vi, vj}) for 1 ≤ i < j ≤ n;
d(bi, aj) = w({vi, vj}) for 1 ≤ i < j − 1 ≤ n− 1;
d(ai, aj) = d(bi, bj) = 3M for 1 ≤ i 6= j ≤ n.

(For convenience, we allow distances to be negative in this construction. One easily moves to
non-negative distances by adding the constant 4M to all distances.)

I Claim 6. The constructed instance of 3-opt Detection allows an improving 3-opt
move, if and only if the graph G contains a triangle of negative edge-weight.

3 We assume that simple arithmetic on weights can be done in constant time. The polylog(M) factors
used in the framework originate from repeated executions to perform binary search on weight values.
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Proof. (⇐) Assume that the vertices vi, vj , vk span a triangle of negative edge-weight in G
for i < j < k. We remove the three edges {ai, bi}, {aj , bj}, and {ak, bk} from tour T , and we
reconnect the resulting pieces by the three edges {ai, bj}, {aj , bk}, and {ak, bi}. The three
removed edges have total length 0, while the three inserted edges have negative total length.

(⇒) Now assume that there exists an improving 3-move for tour T . This improving
move cannot remove any edge {bi, ai+1} or {bn, a1}, as these edges have length −3M while
all newly inserted edges have non-negative length. Consequently, the three removed edges
will be {ai, bi}, {aj , bj}, and {ak, bk} for some i < j < k. As these three edges have total
length 0, the total length of the three inserted edges must be strictly negative. The edges
{ax, ay} and {bx, by} all have length 3M , while the edges {ax, by} all have length between
−M and M . This implies that every inserted edge is either of the type {ax, by}, or coincides
with one of the removed edges. Suppose for the sake of contradiction that one of the inserted
edges coincides with a removed edge {ak, bk}, so that we are actually dealing with a 2-move.
Then the two inserted edges in the 2-move must be {ai, aj} and {bi, bj}, so that the new tour
is by 6M longer than the old tour T . This contradiction leaves only two possibilities for the
three inserted edges: either {ai, bj}, {aj , bk}, {ak, bi}, or {ai, bk}, {ak, bj}, {aj , bi} (of which
the latter is actually not a valid 3-move). Since the total length of the three inserted edges
is strictly negative, the three vertices vi, vj , vk form a triangle of strictly negative weight
in G. J

The claim shows the correctness of the reduction. It is easy to perform in O(n2) time. J

There is an analogous reduction in the other direction, which can be found in the full
version. Together, these lemmata show the equivalence of finding negative-weight triangles
and detecting improving 3-opt moves. From our reductions and the results of Vassilevska-
Williams and Williams [33, Thm. 1.1], we obtain the following theorem.

I Theorem 7. There is a truly subcubic algorithm for 3-opt Detection if and only if
there is such an algorithm for All-Pairs Shortest Paths on weighted digraphs.

3.2 A fast k-OPT algorithm
We will prove that the k-opt Optimization problem can be solved significantly faster
than Θ(nk) when k ≥ 4. To this end, we first analyze the structure of k-opt moves.
Consider a k-move for a given tour T ⊆ E(G), and let e1, . . . , ek be the removed edges with
ei = {v2i−1, v2i}. We assume throughout that these vertices (and edges) are indexed in such
a way that T traverses the vertices vi in order of increasing index. We assume furthermore
that the vertices v1, . . . , v2n are pairwise distinct; all our arguments also go through without
this assumption, but the notation becomes more complicated in the equality case. The k
edges that are then inserted into T are denoted f1, . . . , fk. The signature of this k-move is a
permutation π of {1, . . . , 2k}, such that vj and vπ(j) form the endpoints of one of the edges
f1, . . . , fk; see Fig. 1.

Note that the removed edges e1, . . . , ek together with the signature π fully determine the
k-move (and in particular determine the inserted edges f1, . . . , fk).

Note furthermore that not every permutation π yields a feasible signature that corresponds
to some k-move: First, in a feasible signature π(i) = j always implies π(j) = i, and we
will always have π(i) 6= i. Secondly, in a feasible signature the edge set that results from
T by removing e1, . . . , ek and by inserting f1, . . . , fk must form a single Hamiltonian cycle –
it must never form a collection of two or more cycles. It is easy to check whether a given
permutation π constitutes a feasible signature, and to enumerate all feasible signatures.
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Figure 1 A 4-change with signature 4,5,7,1,2,8,3,6. Edges e1 and e4 are non-interfering. As we
work on symmetric TSP, the graph and distance function are undirected; the arc directions merely
indicate the traversal direction with respect to an arbitrary orientation of the tour.

We say that two of the removed edges ei and ej interfere with each other in a k-move, if
there exists an inserted edge f that connects one of the endpoints of ei to an endpoint of ej .

I Lemma 8. For any signature π, we can find a subset Eπ ⊆ {e1, . . . , ek} of at least dk/3e
removed edges that are pairwise non-interfering.

Proof. The 2k edges e1, . . . , ek and f1, . . . , fk induce a set of cycles on the vertices v1, . . . , v2k.
If such a cycle contains an even number of removed edges, say 2`, we put every other removed
edge along this cycle into Eπ; this yields ` out of 2` edges for Eπ. If the cycle contains only
a single removed edge, we put this single edge into Eπ; this yields one out of one edge for Eπ.
If the cycle contains an odd number of removed edges, say 2`+ 1 ≥ 3, we ignore the first
removed edge and then put every other removed edge along the cycle into Eπ; this yields `
out of 2`+ 1 edges for Eπ. The weakest contribution to Eπ comes from cycles with three
removed edges, which yield only one out of three edges for Eπ. The claimed bound dk/3e
follows. J

I Theorem 9. For every fixed k ≥ 3, the k-opt Optimization problem on an n-vertex
graph can be solved in O(nb2k/3c+1) time.

Proof. For computing the best k-move for tour T , it is sufficient to compute for every feasible
signature π – for fixed k there are only O(1) such signatures – the best k-move for tour T
with that particular signature. This is done as follows. We first determine a set Eπ of
pairwise non-interfering edges according to the above lemma. Then we enumerate and handle
all possible cases for the locations of the b2k/3c removed edges not in Eπ along T . This
yields O(nb2k/3c) cases to handle, and every such case will be handled in O(n) time; note
that this yields the claimed complexity. In handling a case, the positions of the removed
edges not in Eπ are frozen, while the edges in Eπ have to be embedded into T . The cost of a
k-move with signature π decomposes into two parts:

The first part consists of the total weight of all frozen edges (which is subtracted) and
the total weight of inserted edges between frozen edges (which is added).
The second part consists of the individual contributions of the edges in Eπ. For an edge
e ∈ Eπ and an edge e′ ∈ T , the cost of embedding e into e′ equals the weight of the two
inserted edges adjacent to e minus the weight of e′. As the edges in Eπ are pairwise
non-interfering, their individual cost contributions do not interact with each other.

As the cost of the first part is fixed in every considered case, our goal is to minimize the
total cost of the second part. The frozen edges subdivide the tour T into a number of tour
pieces, and we have to find the cheapest way of embedding the corresponding edges from Eπ
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into such a tour piece. The following paragraph sketches a straightforward dynamic program
for finding the optimal embedding for each tour piece in time proportional to the length of
the piece. As the length of all tour pieces combined is O(n), every case is indeed handled in
time O(n).

We are essentially dealing with the following optimization problem. There are r locations
L1, . . . , Lr (the edges along tour T between two consecutive frozen edges) and s objects
O1, . . . , Os (the edges in Eπ that should be embedded between the two considered frozen
edges). The objects are to be embedded into the locations, so that the location of object Oi
always precedes the location of object Oi+1. The cost of embedding object Oi into location
Lj is denoted c(i, j). For 1 ≤ x ≤ s and 1 ≤ y ≤ r, let V (x, y) denote the smallest possible
cost incurred by embedding the first x objects O1, . . . , Ox into the first y locations L1, . . . , Ly.
As V (x, y) equals the minimum of V (x, y − 1) and V (x− 1, y − 1) + c(x, y), all these values
V (x, y) can easily be computed in O(rs) time. In our situation, r is the length of the
considered tour piece and s ≤ k is a constant that does not depend on the input; hence the
complexity is indeed proportional to the length of the considered tour piece. J

4 Faster 2-OPT

In this section we show that it is possible to beat the quadratic barrier for 2-opt in two
important settings, namely when we want to apply 2-moves repeatedly, and in the Euclidean
setting in the plane.

Repeated 2-OPT. In the repeated 2-opt problem, we apply 2-opt repeatedly (e.g. until no
further improvements are possible). One can considerably speed up the 2-opt computations
at each of the iterations, except the first one. The following theorem gives our improvement
for the 2-opt Optimization problem, where the goal is to find the best 2-move (rather
than any 2-move that improves the tour).

I Theorem 10. After O(n2) preprocessing and using O(n2) storage we can repeatedly solve
the 2-opt Optimization problem in O(n logn) time per iteration.

The speedup claimed in the theorem relies on a tour representation that supports efficient
2-moves. To apply a 2-move that removes two edges e and e′ and replaces them by the
appropriate diagonal connections, one effectively has to reverse the part of the tour between e
and e′, or the part between e′ and e. It can therefore take Ω(n) time to apply a 2-move to a
tour represented as a sequence of vertices in an array. Chrobak et al. [14] give a speedup by
storing the cities on the tour in an ordered balanced binary search tree. Each node in the
tree stores a bit indicating whether the tour order is given by an in-order traversal of the
subtree rooted there, or by the reverse of the in-order traversal. This allows a 2-move to be
applied in O(logn) time by manipulating reversal bits.

Our approach for repeated 2-opt Optimization is based on a similar data structure
that represents tours in balanced search trees. However, instead of having only one tree that
stores the current tour, we have n trees; one for each edge e1, . . . , en in the current tour. A
query in the tree T (ei) corresponding to edge ei can be used to determine which edge ej
yields the most profitable 2-move together with ei. After initializing these n trees, which
takes O(n2) time, an iteration of 2-opt Optimization can be performed as follows. For
each ei on the current tour, we query in tree T (ei) to find the best 2-move that removes ei
and some unknown edge ej in O(logn) time. In this way we find the best overall 2-move
which removes, say, edges ei and ej . We can update all trees T (e`) for ` 6= i, j by deleting ei
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and ej , and inserting the appropriate replacement edges. Using the reversal bits this can be
done in O(logn) time. Trees T (ei) and T (ej) are destroyed; we build two new trees from
scratch for the two new edges ei′ and ej′ that enter the tour. This gives O(n logn) time per
iteration.

It is likely that these techniques can be extended to speed up repeated 3-opt as well. As
the technical details become substantially more cumbersome, we do not pursue this direction.

The planar case. For points in the plane (and under the Euclidean metric) we can speed
up 2-opt computations by using suitable geometric data structures for semi-algebraic range
searching; the details had to be omitted from this extended abstract. (Note that we do
not consider the repeated version of the problem, but the single-shot version.) A similar
approach can be used to speed up 3-OPT in the Euclidean setting in the plane. This leads
to the following theorem.

I Theorem 11. For any fixed ε > 0, 2-opt Detection in the plane can be solved in
O(n8/5+ε) time, and 3-opt Detection in the plane can be solved in O(n80/31+ε) expected
time.

5 Conclusion

Revisiting the worst-case complexity of k-opt and pyramidal tsp led to a number of new
results on these classic problems. Some, such as the equivalence between 3-opt and apsp
with respect to having truly subcubic algorithms, rely on very recent work. Other results,
such as the near-linear time algorithm for finding bitonic tours, and the k-opt algorithm
that beats the trivial O(nk) upper bound, are obtained using classic techniques. In this
respect, it is surprising that these results were not found earlier. These examples show that
the availability of new lower bound machinery can inspire new algorithms.

Our findings suggest several directions for further research, both theoretical and applied.
An interesting open problem regarding k-opt Detection is whether the problem is fixed-
parameter tractable when improving a given tour in an edge-weighted planar graph. This
question was also asked by Marx [28] and Guo et al. [22]. Similarly, it is open whether
the problem is fixed-parameter tractable when improving a given tour among points in the
Euclidean plane. It would be interesting to settle the exact complexity of k-opt in general
weighted graphs. Is Θ(nb 2k

3 c+1) the optimal running time for k-opt Detection? When all
weights lie in the range [−M, . . . ,M ], one can detect a negative triangle in an edge-weighted
graph in time O(M · nω) using fast matrix multiplication [4, 31, 35]. By our reduction, this
gives an algorithm for 3-opt Detection with weights [−M, . . . ,M ] in time O(M ·nω). Can
similar speedups be obtained for k-opt for larger k?

Given the great industrial interest in tsp, establishing the practical applicability of
these theoretical results is an important follow-up step. Several of our results rely on data
structures that are efficient in theory, but which are currently impractical. These include
the additively-weighted Voronoi diagram used for pyramidal tours on points in the plane,
and the semi-algebraic range searching data structures used to speed up 2-opt Detection.
In contrast, the O(nb2k/3c+1) algorithm for finding the best k-move improvement is self-
contained, easy to implement, and may have practical potential.

Acknowledgments. We are grateful to Hans L. Bodlaender, Karl Bringmann, and Jesper
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Abstract
We study the following basic problem called Bi-Covering. Given a graph G(V,E), find two (not
necessarily disjoint) sets A ⊆ V and B ⊆ V such that A ∪ B = V and that every edge e
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6:2 Bicovering: Covering Edges With Two Small Subsets of Vertices

1 Introduction

We study the Bi-Covering problem - Given a graph G(V,E), find two (not necessarily
disjoint) sets A,B ⊆ V such that A∪B = V and that every edge e ∈ E belongs to either the
graph induced by A or to the graph induced by B. The goal is to minimize max{|A|, |B|}.

The problem we study is closely related to the problem of Channel Allocation which was
studied in [10]. The Channel Allocation Problem can be described as follows: there is a
universe of topics, a fixed number of channels and a set of requests where each request is a
subset of topics. The task is to send a subset of topics through each channel such that each
request is satisfied by set of topics from one of the channel i.e. for every request there must
exists at least one channel such that the set of topics present in that channel is a superset of
the set of topics from the request. Of course, one can achieve this task trivially by sending
all topics through one channel. But, the optimization version of Channel Allocation Problem
asks for a way to satisfy all the request by minimizing the maximum number of topics sent
through a channel.

Any connected undirected graph G(V,E) on n vertices and m edges along with an integer
k can be viewed as a special case of channel allocation problem - The set of topics is a set of
n vertices, each edge represents a request, where the requested set of topics corresponding to
an edge is a pair of its endpoints and the number of channels is k. If we fix the number of
channels to k = 2 then the optimization problem exactly corresponds to the Bi-Covering
problem. Specifically, the optimization problem asks for two subsets A and B of V minimizing
max{|A|, |B|} such that A ∪B = V and every edge is totally contained in a graph induced
by either A or B.

2 Our Results

Getting 2 approximation for Bi-Covering problem is trivial (by setting A = B = V). We
show that Bi-Covering problem is hard to approximate within any factor strictly less
than 2 assuming a strong Unique Games Conjecture (UGC) similar to the one in [5] (see
Conjecture 12).

I Theorem 1. Let ε > 0 be any small constant. Assuming a strong Unique Games Conjecture
(Conjecture 12), given a graph G(V,E), it is NP-hard to distinguish between following two
cases:
1. G has Bi-Covering of size at most (1/2 + ε)|V |.
2. Any Bi-Covering of G has size at least (1− ε)|V |.
In particular, it is NP-hard (assuming strong UGC) to approximate Bi-Covering within a
factor 2− ε for every ε > 0.

Given this structural hardness result, we get a 3
2 − ε hardness of Bi-Covering restricted

to bipartite graphs by transforming a hard instance from Theorem 1 into a bipartite graph
in a natural way (getting a 3

2 -approximation is easy - given a bipartite graph on X and Y
with |X| ≥ |Y |, one can take arbitrary partition X into two equal sized parts X1 and X2
and set the Bi-Covering to be X1 ∪ Y and X2 ∪ Y ).

I Theorem 2. Assuming the strong Unique Games Conjecture, for every ε > 0, Bi-Covering
is NP-hard to approximate within a factor 3

2 − ε for bi-partite graphs.

Our Theorem 1 implies hardness result for the following well known problem:

Max-Bi-Clique problem is as follows:
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Input: A bipartite graph G(X,Y,E) with |X| = |Y | = n.
Output: Find largest k such that there exists two subsets A ⊆ X,B ⊆ Y of size k and the
graph induced on (A,B) is a complete bipartite graph.

Inapproximability of Max-Bi-Clique problem has been studied extensively [1, 6, 8, 13].
Feige[8] showed that using an assumption of average case hardness of 3SAT instance, Max-
Bi-Clique cannot be approximated within any constant factor in polynomial time (and
hence within nδ for some δ > 0 using known amplification technique [1, 6]). Feige-Kogan [9]
showed that assuming SAT /∈ DTIME(2n3/4+ε) there is no 2(logn)δ approximation for Max-
Bi-Clique. They also showed that it is NP-hard to approximate Max-Bi-Clique within any
constant factor assuming Max−Clique (finding a maximum sized clique in a graph) does not
have a n/2c

√
logn-approximation. Khot [13] later proved a similar inapproximability result

but assuming NP * ∩ε>0 BPTIME(2nε) using a quasi-random PCP. It is an important open
problem to extend similar hardness results based on weaker complexity assumptions [2]. In
particular, it is still not known if UGC implies a constant factor hardness for Max-Bi-Clique.
A straightforward corollary from Theorem 1 (see 4.2.2) implies that we get similar hardness
results for Max-Bi-Clique based on Conjecture 12.

I Corollary 3. Assuming strong Unique Games Conjecture, it is NP-hard to approximate
Max-Bi-Clique within any constant factor.

As mentioned above, the hardness factor can be boosted to nδ for some δ > 0 using known
techniques. (such as described in [1, 6])

UGC and strong UGC

Unique games conjecture so far helped in understanding the tight inapproximability factors
of many problems including, but not limited to, Vertex Cover [14], optimal algorithm for
every Max-CSP[16], Ordering CSPs[11], characterizing strong approximation resistance of
CSPs[15] etc. The inherent difficulty in showing hardness results assuming Unique Games
Conjecture for the problems that we study is that we need some kind of expansion
property on the unique games instance which it lacks. It is shown that Unique Games are
easy when the constraint graph is an expander[4]. In general, in [3] it is shown that Unique
Games are easy when a normalized adjacency matrix of a constraint graph has very few
eigenvalues close to 1. So the natural direction is to modify the unique games instance to
get some expansion property but weak enough so that it is not tractable by the techniques
of [4], [3]. A similar Strong Unique Games Conjecture, which has a weak expansion
property, has been used earlier in [5] and [17] to show inapproximability results for minimizing
weighted completion time on a single machine with precedence constraints and minimizing
makespan in precedence constrained scheduling on identical machines respectively. Our result
adds another interesting implication of Unique Games Conjecture with weak expansion
property, namely inapproximability of Max-Bi-Clique and Bi-Covering. We hope that
our results will help motivate study of Strong Unique Games Conjecture and ultimately
answering the question about its equivalence to the Unique Games Conjecture.

Algorithmic Results

We give better than 2 approximation for Bi-Covering on numerous special graph classes.

Graph types. A δ-vertex expander is a graph so that for every S of size |S| ≤ n/2,
N1(S) ≥ δn, where N1(S) is the set of neighbors of S not in S. A chordal graph is a graph
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6:4 Bicovering: Covering Edges With Two Small Subsets of Vertices

that does not contain a cycle of size at least 4 as an induced subgraph. A split graph is
a graph whose vertex set is a union of a Clique and and independent set, with arbitrarily
connections between the clique and the independent set.

A minor of a graph is any subgraph G′ that can be derived from G by contracting and
removing edges. A minor free graph is a graph that does not contain some constant size
graph H as a minor.

An interval graph is the intersection graph of a family of intervals on the real line. It
has one vertex for each interval in the family, and an edge between every pair of vertices
corresponding to intervals that intersect.

The algorithmic results can be summarized in the following theorem.

I Theorem 4. The Bi-Covering problem admits polynomial time algorithms that attain
the following ratios (Graph type: approximation ratio):
1. Chordal graphs : 1.876.
2. Interval Graphs: exact O(n5) time algorithm.
3. Minor Free Graph: 1 + o(1).
4. Graph with minimum degree δn: 2− 4δ/3 .
5. δ-vertex expander Graph: 2/(1 + δ2/8).
6. Split Graphs : 8/5.
7. Graphs with minimum degree d: 2− (6/5) · 1/d.

Our algorithms are quite non-trivial. Most of our algorithmic results relies on the fact
that if we can find two disjoint sets each of size at least εn with no edges in between, then
this itself gives 2− ε approximation. To get better bound on ε in some special cases we use
known theorems related to the structural results of graphs, size of separator, lower bound
on independent set size etc. In some of the cases, we create a bipartite graph from a given
graph instance and show that the vertex cover in the bipartite graph is small. We then use
the bound on the size of vertex cover to find a better bi-covering of the edges in a graph.

3 Organization

In Section 4, we prove the main inapproximability of Bi-Covering and related problems.
We refer to the full version of the paper for algorithmic results.

4 Inapproximability of Bi-Covering

The Bi-Covering problem is:

Input: A graph G(V,E)
Output: Two subsets A,B ⊆ V such that A ∪ B = V and every edge (u, v) ∈ E either
{u, v} ⊆ A or {u, v} ⊆ B. Minimize max{|A|, |B|}.

The optimal value of a Bi-Covering on instance G(V,E) is always at least |V |/2 and
hence getting a 2-approximation for this problem is trivial by setting A = V and B = ∅. In
order to beat 2-approximation, one should be able to solve the following weaker problem.

Problem

For small enough ε > 0, given an undirected graph G(V,E), distinguish between the following
two cases:
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1. There exists two disjoint sets A,B ⊆ V , |A|, |B| ≥ (1/2 − ε)|V | such that there are no
edges between A and B.

2. There exists no two disjoint sets A,B ⊆ V |A|, |B| ≥ ε|V | such that there are no edges
between A and B.

In this section, we show that it is UG-Hard to distinguish between (1) and (2) for any
constant ε > 0 proving Theorem 1.

4.1 Preliminaries
Let q be any prime for convenience. We are interested in space of functions from Fnq to R.
Define inner product on this space as 〈f, g〉 = 1

qn

∑
x∈Fnq

f(x)g(x). Let ωq be the qth root of
unity. For a vector α ∈ Fnq , we will denote αi the ith coordinate of vector α. The Fourier
decomposition of a function f : Fnq → R is given as

f(x) =
∑
α∈Fnq

f̂(α)χα(x)

where χα(x) := ω
〈α,x〉
q and a Fourier coefficient f̂(α) := 〈f, χα〉.

I Definition 5 (Symmetric Markov Operator). Symmetric Markov operator on Fq can be
thought of as a random walk on an undirected graph with the vertex set Fq. It can be
represented as a q × q matrix T where (i, j) th entry is the probability of moving to vertex j
from i.

I Definition 6. For a symmetric Markov operator T , let 1 = λ0 ≥ λ1 ≥ λ2 . . . ≥ λq−1 be
the eigenvalues of T in a non-increasing order. The spectral radius of T , denoted by r(T ), is
defined as:

r(T ) = max{|λ1|, |λq−1|} .

For a Markov operator T the condition r(T ) < 1 is equivalent to saying that the induced
regular graph (self-loop allowed) on Fq is non-bipartite and connected.

For T as above, we also define a Markov operator T⊗n on [q]n in a natural way i.e
applying a Markov operator T⊗n to x ∈ [q]n is same as applying the Markov operator T
on each xi independently. Note that if T is symmetric then T⊗n is also symmetric and
r(T⊗n) = r(T ).

I Definition 7 (Influence). Let f : Fnq → R be a function. the influence of the i′th variable
on f , denoted by Inf i(f) is defines as:

Inf i(f) = E[Varxi [f(x)|x1, x2, . . . , xi−1, xi+1, . . . , xn]]

where x1, . . . , xn are uniformly distributed. In terms of Fourier coefficients, it has the
following formula:

Inf i(f) =
∑
αi 6=0

f̂(α)2.

The low-level (level k) influence of i′th variable is defined as:

Inf≤ki (f) =
∑

αi 6=0,|α|≤k

f̂(α)2.

where |α| is the number of non-zero co-ordinates in α.
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6:6 Bicovering: Covering Edges With Two Small Subsets of Vertices

We will need the following Gaussian stability measure in our analysis:

I Definition 8. Let φ : R→ [0, 1] be the cumulative distribution function of the standard
Gaussian random variable. For a parameter ρ, µ, ν ∈ [0, 1], we define the following two
quantities:

Γρ(µ, ν) = Pr[X ≤ φ−1(µ), Y ≥ φ−1(1− ν)]

Γρ(µ, ν) = Pr[X ≤ φ−1(µ), Y ≤ φ−1(ν)]

where X and Y are two standard Gaussian variables with covariance ρ.

We are now ready to state the invariance principle from [7] that we need for our reduction.

I Theorem 9 ([7]). Let T be a symmetric Markov operator on Fq such that ρ = r(T ) < 1.
Then for any τ > 0 there exists δ > 0 and k ∈ N such that if f, g : Fnq → [0, 1] are two
functions satisfying

min(Inf≤ki (f), Inf≤ki (g)) ≤ δ

for all i ∈ [n], then it holds that

〈f, T⊗ng〉 ≥ Γρ(µ, ν)− τ

where µ = E[f ], ν = E[g].

Our hardness result is based on a variant of Unique Games conjecture. First, we define
what the Unique game is:

I Definition 10 (Unique Game). An instance G = (U, V,E, [L], {πe}e∈E) of the Unique
Game constraint satisfaction problem consists of a bi-regular bipartite graph (U, V,E), a
set of alphabets [L] and a permutation map πe : [L] → [L] for every edge e ∈ E. Given a
labeling ` : U ∪ V → [L], , an edge e = (u, v) is said to be satisfied by ` if πe(`(v)) = `(u).

G is said to be at most δ-satisfiable if every labeling satisfies at most a δ fraction of the
edges.

The following is a conjecture by Khot [12] which has been used to prove many tight
inapproximability results.

I Conjecture 11 (Unique Games Conjecture [12]). For every sufficiently small δ > 0
there exists L ∈ N such that the following holds. Given a an instance G = (U, V,E, [L],
{πe}e∈E) of Unique Game it is NP-hard to distinguish between the following two cases:

YES case: There exist an assignment that satisfies at least (1− δ) fraction of the edges.
NO case: Every assignment satisfies at most δ fraction of the edge constraints.

Our hardness results are based on the following stronger conjecture which is similar to the
one in Bansal-Khot [5]. We refer readers to [5] for more discussion on comparison between
these two conjectures.

I Conjecture 12 (Strong Unique Games Conjecture). For every sufficiently small
δ, γ, η > 0 there exists L ∈ N such that the following holds: Given an instance G =
(U, V,E, [L], {πe}e∈E) of Unique Game which is bi-regular, it is NP-hard to distinguish
between the following two cases:
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Figure 1 Gadget.

YES case: There exist sets V ′ ⊆ V such that |V ′| ≥ (1− η)|V | and an assignment that
satisfies all edges connected to V ′.
NO case: Every assignment satisfies at most γ fraction of the edge constraints. Moreover,
the instance satisfies the following expansion property. For every set S ⊆ V , |S| = δ|V |,
we have |Γ(S)| ≥ (1− δ)|U |, where Γ(S) := {u ∈ U | ∃v ∈ Ss.t.(u, v) ∈ E}.

I Remark. We would like to point out that the above conjecture differs from the one in
[5] in the completeness case. In [5], the Yes instance has a guarantee that there exists sets
V ′ ⊆ V,U ′ ⊆ U with |V ′| ≥ (1− η)|V |, |U ′| ≥ (1− η)|U | such that all edges between V ′ and
U ′ are satisfied.

4.2 (2 − ε)-inapproximability
In order to prove the (2− ε) hardness, we first start with a dictatorship test that we will use
as a gadget in the actual reduction.

4.2.1 Dictatorship Test
We design a dictatorship test for the problem Bi-Covering. We are interested in functions
f : Fnq → R. f is called a dictator if it is of the form f(x1, x2, . . . , xn) = xi for some i ∈ [n].

4.2.1.1 Dictatorship gadget

For convenience, we will let q > 2 be any prime number for the description of the dictatorship
gadget. Let G(Fq, E) be a 3-regular graph on Fq (where we identify the elements of Fq by
{0, 1, . . . . , q − 1}) with self loops as shown in figure 1:

It is constructed as follows : Take a cycle on 0, 1, 2, . . . , q − 1, 0, then add a self loop
to every vertex except to the vertex 0. Remove the edge (bq/2c, bq/2c + 1), add an edge
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6:8 Bicovering: Covering Edges With Two Small Subsets of Vertices

(0, bq/2c). Finally, to make it 3-regular, add a self loop to the vertex bq/2c + 1. This
completes the description of graph G. Since the graph G is connected and non-bipartite, the
symmetric Markov operator T defined by the random walk in G has r(T ) < 1. One crucial
thing about G is that it has two large disjoint subsets of vertices, namely {1, 2, . . . , bq/2c}
and {bq/2c+ 1.bq/2c+ 2, . . . , q − 1}, with no edges in between.

Consider the vertex set V = FRq for some constant R. We will construct a graph H on V
as follows : (x, y) ∈ (FRq )2 forms an edge in H iff they satisfy the following condition:

∀i ∈ [R], (xi, yi) ∈ E ,

x is adjacent to y iff T⊗R(x↔ y) 6= 0.

4.2.1.2 Completeness

Let f : FRq → R be any dictator, say ith dictator i.e. f(x) = xi. By letting set A to be
f−1(0) ∪ f−1(1) ∪ . . . ∪ f−1(bq/2c) and set B to be f−1(0) ∪ f−1(bq/2c+ 1) ∪ f−1(bq/2c+
2)∪ . . .∪ f−1(q− 1), it can be seen easily that there is no edge between sets A \B and B \A.
More precisely,

A \B = {x ∈ FRq | xi ∈ {1, 2, . . . , bq/2c}
B \A = {y ∈ FRq | yi ∈ {bq/2c+ 1, bq/2c+ 2, . . . , q − 1}}

By the property of Markov operator T⊗R, (x, y) are not adjacent if (xi, yi) /∈ E for some
i ∈ [R]. Hence, there are no edges between A \B and B \A. Thus, the optimal value is at
most

1
|V |
·max{|A|, |B|} = 1

2 + 1
2q .

4.2.1.3 Soundness

Let A,B ⊆ V such that A ∪B = V and f, g : FRq → {0, 1} be the indicator functions of sets
A \B and B \A respectively. Suppose |A \B| = ε|V | and |B \A| = ε|V | for some ε > 0 and
that there are no edges in between A \B and B \A. We will show that in this case, f and g
must have a common influential co-ordinate. Since, there are no edges between these sets,
we have

E
x∼FRq ,

y∼T⊗R(x)

[f(x)g(y)] = 〈f, T⊗Rg〉 = 0 .

For the application of Invariance principle, Theorem 9, in our case we have E[f ] = E[g] =
ε > 0 and ρ = r(T ) < 1. Thus, for small enough τ := τ(ρ, ε) > 0,

Γρ(ε, ε)− τ > 0.

We can now apply Theorem 9 to conclude that there exists i ∈ [R] and k ∈ N independent of
R such that

min(Inf≤ki (f), Inf≤ki (g)) ≥ δ,

for some δ(τ) > 0. Hence, unless f and g have a common influential co-ordinate, 1
|V | ·

max{|A|, |B|} ≥ 1− ε. Thus, the optimum value is at least 1− ε



A. Bhangale, R. Gandhi, M. T. Hajiaghai, R. Khandekar, and G. Kortsarz 6:9

4.2.2 Actual Reduction
The above dictatorship test for large enough q can be composed with the Unique Games
instance having some stronger guarantee (Conjecture 12) in a straightforward way that gives
(2− ε) hardness for every constant ε > 0 assuming UGC. Details as follows:

Let G = (U, V,E, [L], {πe}e∈E) be the given instance of Unique Game with parameters
δ < ε

4 , γ, η > 0 from Conjecture 12 . We replace each vertex v ∈ V by a block of qL vertices,
namely by a hypercube [q]L. We will denote this block by [v]. As defined in the dictatorship
test, let G be the graph on Fq and T be the induced symmetric Markov operator. For every
pair of edges e1(u, v1) and e2(u, v2) in G, we will add the following edges between [v1] and
[v2] : Let π1 and π2 be the permutation constraint associated with e1 and e2 respectively.
x ∈ [v1] and y ∈ [v2] are connected by an edge iff T⊗L((x ◦ π−1

1 ) ↔ (y ◦ π−1
2 )) 6= 0 (where

(x ◦ π−1)i = xπ−1(i) for all i ∈ [L]) i.e. for every i ∈ [L], xπ−1
1 (i) and yπ−1

2 (i) are connected by
an edge in graph G. This completes the description of a graph. Let’s denote this graph by
H.

I Lemma 13 (Completeness). If there exists an assignment to vertices in G that satisfies all
edges connected to (1− η) fraction of vertices in V then H has a Bi-Covering of size at
most (1− η)(1/2 + 1/2q) + η.

Proof. Fix a labeling ` such that for at least (1− η) fraction of vertices in V in G, all edges
attached to them are satisfied. Suppose X be the set of remaining η fraction of vertices of V
in G. For every vertex v ∈ V , consider the following two partitions of [v]:

Av = {x ∈ [q]L : x`(v) ∈ {1, . . . , bq/2c}}
Bv = {x ∈ [q]L : x`(v) ∈ {bq/2c}+ 1, bq/2c}+ 2, . . . , q}}
Cv = {x ∈ [q]L : x`(v) = 0}

Let A = ∪v∈V (Av ∪ Cv) ∪z∈X [z] and B = ∪v∈V (Bv ∪ Cv) ∪z∈X [z]. The claim is that
this is the required edge separating sets. To see this, consider any vertex pair (a, b) such
that a ∈ A \ B and b ∈ B \ A. We need to show that (a, b) must not be adjacent in H.
Suppose a ∈ [v1] and b ∈ [v2]. If v1 and v2 don’t have a common neighbor then clearly, there
is no edge between a and b. Suppose they have a common neighbor u and let e1 = (u, v1)
and e2 = (u, v2) be the edges and π1 and π2 be the associated permutation constraints.
Since X ⊆ A ∩ B, v1, v2 /∈ X. Hence ` satisfies all constraints associated with v1 and
v2. In particular, π1(`(v1)) = π2(`(v2)) =: j for some j ∈ [L]. Since a ∈ Av1 , we have
aπ−1

1 (j) = a`(v1) ∈ {1, . . . , bq/2c}}. Similarly, bπ−1
2 (j) ∈ {bq/2c} + 1, bq/2c} + 2, . . . , q}. By

the construction of edges in H, a and b are not adjacent.
For any v, |Av ∪ Cv| = |Bv ∪ Cv| = ( 1

2 + 1
2q )qL. Thus,

|A| = |B| ≤
(
η + (1− η)

(
1
2 + 1

2q

))
|V |qL . J

I Lemma 14 (Soundness). For every constant ε > 0, there exists a constant γ such that, if
G is at most γ-satisfiable then H has Bi-Covering of size at least 1− ε.

Proof. Suppose for contradiction, there exists an Bi-Covering of size at most (1− ε). This
means there exists two disjoint sets X,Y of size at least ε fraction of vertices in H such that
there are no edges in between X and Y . Let X∗ be the set of vertices in v ∈ V such that
[v] ∩X ≥ ε

2 |[v]|. Similarly, Y ∗ be the set of vertices in v ∈ V such that [v] ∩ Y ≥ ε
2 |[v]|. By

simple averaging argument, |X∗| ≥ ε
2 |V | and |Y

∗| ≥ ε
2 |V |.
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I Lemma 15. The total fraction of edges connected to X∗ whose other end point is in
Γ(X∗) ∩ Γ(Y ∗) is at least 1

2 .

Proof. Let G has left-degree d1 and right-degree d2. We have d1 = d2|V |
|U | . Suppose the

claim is not true, then at least 1
2 fraction of edges have there endpoint in U \ Γ(Y ∗). As,

|U \ Γ(Y ∗)| ≤ δ|U |, the average degree of a vertex in U \ Γ(Y ∗) is at least (1/2)d2|X∗|
δ|U | ≥

(d2/2)·(ε/2)|V |
δ|U | which is greater than d1 as ε > 4δ. J

For v ∈ X∗ ∪ Y ∗, let fv : [q]L → {0, 1} be the indicator function of a set [v] ∩ (X ∪ Y ).
Define the following label set for v ∈ X∗ ∪ Y ∗ for some τ ′ > 0 and k ∈ N:

F(v) := {i ∈ [L] | Inf≤ki (fv) ≥ τ ′} .

We have |F(v)| ≤ τ ′

k as
∑
i Inf≤ki (fv) ≤ k.

I Lemma 16. There exists a constant τ ′ := τ ′(q, ε) and k := k(q, ε) such that for every
u ∈ U and edges e1(u, v), e2(u,w) such that v ∈ X∗ and w ∈ Y ∗, we have

πe1(F(v)) ∩ πe2(F(w)) 6= ∅ .

Proof. As there are no edges between X and Y , we have

E
(x◦π−1

e1 )∼FLq ,
(y◦π−1

e2 )∼T⊗L(x◦π−1
e1 )

[fv(x ◦ π−1
e1

)fw(y ◦ π−1
e2

)] = 0 .

By the soundness analysis of the dictatorship test, it follows that there exists i ∈ [L] such
that

min(Inf≤k
π−1
e1 (i)(fv), Inf≤k

π−1
e2 (i)(fw)) ≥ τ ′,

for some τ ′, k as a function of q and ε. Thus, i ∈ πe1(F(v)) and i ∈ πe2(F(w)). J

J

4.2.2.1 Labeling

Fix τ ′ and k from Lemma 16. We now define a labeling ` to vertices in X∗ ⊆ V and in
Γ(X∗) ∩ Γ(Y ∗) ⊆ U as follows: For a vertex v ∈ X∗ set `(v) to be an uniformly random
label from F(v). For u ∈ Γ(X∗) ∩ Γ(Y ∗), select an arbitrary neighbor w of u in Y ∗ and set
`(u) to be an uniformly random label from the set π(u,w)(F(w)) of size at most k

τ ′ . Fix an
edge (u, v) such that u ∈ Γ(X∗) ∩ Γ(Y ∗) and v ∈ X∗. By Lemma 16, for any w ∈ Y ∗ since
π(u,w)(F(w))∩π(u,v)(F(v)) 6= ∅, The probability that the edge is satisfied by the randomized

labeling is at least
(
τ ′

k

)2
. Thus in expectation, at least

(
τ ′

k

)2
fraction of edges between X∗

and Γ(X∗)∩ Γ(Y ∗) are satisfied. By Lemma 15, at least 1
2 fraction of edges connected to X∗

are in between X∗ and Γ(X∗) ∩ Γ(Y ∗). Finally using bi-regularity, this labeling satisfies at
least 1

2
ε
2

(
τ ′

k

)2
fraction of edges in G. Setting γ < 1

2
ε
2

(
τ ′

k

)2
completes the proof. J

Proof of Theorem 1

The proof follows from Lemma 13, Lemma 14 and Conjecture 12.
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Proof of Theorem 2

Given an input as a bipartite graph, there is a trivial 3/2 approximation for Bi-Covering -
Take set A to be the union of a smaller part and half of the larger bi partition and B to be
union of smaller part and remaining half of the larger part. It is easy to see these two sets A
and B satisfy the property of being a Bi-Covering. As max{|A|, |B|} ≤ 3

4 |V |, this is a
3
2

approximation as OPT is at least |V |2 .
The 3

2 + ε inapproximability follows easily from the above (2 − ε) inapproximability
for the general case. The reduction is as follows: Let G(V,E) be the given instance of a
Bi-Covering. Construct a natural bipartite graph G′ between V × V where (i, j) forms
an edge if (i, j) ∈ E (or (j, i) ∈ E). Fix a small enough constant ε > 0. It is easy to see
that if G has a solution of fractional size 1/2 + ε then so does G′. Next, if there are sets A′
and B′ where 1

2|V | max{|A′|, |B′|} ≤ 3
4 − ε which satisfy the Bi-Covering property, we have

1
2|V | |A

′ \ B′| = 1
2|V | (2|V | − |B

′|) ≥ 1 − ( 3
4 − ε) = 1

4 + ε and similarly 1
2|V | |B

′ \ A′| ≥ 1
4 + ε.

Note that A′ \B′ and B′ \A′ are two disjoint sets whose size of union is at least (1 + 2ε)|V |.
Thus, we can find two sets, say X ′ and Y ′ ( namely X ′ is intersection of A′ \ B′ with left
part of the bipartite graph and Y ′ is the intersection of B′ \ A′ with right part) of size at
least ε|V | each, where X ′ is from left side and Y ′ is from right side with no edges in between.
We now think of X ′ and Y ′ as a subset of V . Let Z = X ′ ∩ Y ′. Partition Z into Z1 and Z2
of equal sizes. Take X = Z1 ∪ (X ′ \ Y ′) and Y = Z2 ∪ (Y ′ \X ′). It is now easy to verify
that there are no edges in between X and Y in G and 1

|V | min{|X|, |Y |} ≥ ε
2 . Hence, if we

can find a solution of fractional cost 3
4 − ε in G

′ in polynomial time then we can also find a
solution of fractional cost 1− ε

2 in G in polynomial time and this gives a polynomial time
algorithm with approximation factor 2− ε

2 for small enough constant ε > 0. As Bi-Covering
is UG hard to approximate within (2− ε) for all ε > 0 for general graph, this gives a 3

2 + ε

hardness for Bi-Covering in bipartite graph.

Proof of Corollary 3

We prove it by giving reduction from Bi-Covering. Let G(V,E) be the given instance of
Bi-Covering. Construct a bipartite graph H between V × V where (i, j) forms an edge if
(i, j) /∈ E. Fix a small enough constant ε > 0. In one direction, if G has a Bi-Covering of
fractional size at most (1/2+ ε) then H ′ contains a (1/2− ε)|V |× (1/2− ε)|V | bipartite clique.
In other direction, if H ′ has a bipartite clique of size 2ε|V | × 2ε|V | then let X ′ and Y ′ be the
subset of vertices from left and right side of bipartite clique. As before, let Z = X ′ ∩ Y ′ and
Z1 and Z2 be the partition of Z of equal size. Let X = (X ′ \Y ′)∪Z1 and Y = (Y ′ \X ′)∪Z2.
It follows that |X|, |Y | is at least ε|V | and are disjoint viewed as a subset of V . Also, there
are no edges between X and Y . Therefore, V \X and V \ Y each of size at most (1− ε)|V |
gives a Bi-Covering of G. Thus, Theorem 1 implies that it is hard to distinguish between
Bi−Clique of size (1/2− ε)|V | and ε|V | which completes the proof of corollary.
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Abstract
We study the problem of routing symmetric demand pairs in planar digraphs. The input consists
of a directed planar graph G = (V,E) and a collection of k source-destination pairs M =
{s1t1, . . . , sktk}. The goal is to maximize the number of pairs that are routed along disjoint
paths. A pair siti is routed in the symmetric setting if there is a directed path connecting si to ti
and a directed path connecting ti to si. In this paper we obtain a randomized poly-logarithmic
approximation with constant congestion for this problem in planar digraphs. The main technical
contribution is to show that a planar digraph with directed treewidth h contains a constant
congestion crossbar of size Ω(h/polylog(h)).
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1 Introduction

Disjoint path problems are well-studied routing problems with several applications and
fundamental connections to algorithmic and structural results in combinatorial optimization
and graph theory. Canonical problems here are the edge-disjoint paths problem (EDP) and
the node-disjoint paths problem (NDP) in undirected graphs. In both these problems the
input consists of an undirected graph G = (V,E) and k node-pairs {s1t1, . . . , sktk}. In EDP
the goal is to connect the pairs by edge-disjoint paths and in NDP the goal is to connect
the pairs by node-disjoint paths. The decision versions of these problems are NP-Complete
when k is part of the input. The seminal work of Robertson and Seymour showed that both
these problems are fixed parameter tractable when parameterized by k, the number of pairs.
In this paper we are concerned with an optimization version of the problems where the
goal is to maximize the number of input pairs that can be routed via edge or node-disjoint
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paths. To avoid notational overload we will henceforth use EDP and NDP to refer to these
maximization versions.

The approximability of EDP and NDP has been extensively studied but our understanding
is still limited. The best known approximation for both these problems is O(

√
n) [9, 31] (here

n is number of nodes in G) while current hardness of approximation results only rule out an
O(log1/2−ε n) approximation [2]. Even in planar graphs the best approximation up to very
recently was O(

√
n), with a slight improvement just announced [16]. One of the reasons for

this state of affairs is that the natural multicommodity flow relaxation has an integrality gap
of Θ(

√
n). On the other hand, two closely related relaxations of these problems have seen

significant progress in the last decade. ANF is the relaxation of the disjoint paths problem
where a subset of the input pairsM′ is routed if there is a feasible multicommodity flow
in the graph that routes one unit of flow for each pair in M′. A second relaxation is to
allow some small constant congestion c, i.e., instead of the pairs being routed on disjoint
paths we allow up to c paths to use a given edge or node. ANF admits a poly-logarithmic
approximation [11, 8]. A series of breakthroughs [33, 1, 13] culminated in a poly-logarithmic
approximation for EDP with congestion 2 by Chuzhoy and Li [17]. These ideas have been
extended to NDP as well [6, 4]. These results have been made possible by a number of
non-trivial ideas and techniques at the intersection of algorithms, combinatorial optimization
and graph theory. In particular, the results have been enabled by and contributed to a deeper
understanding of the structure of undirected graphs via the notion of treewidth. Treewidth
is a well-known graph parameter that plays a fundamental role in the graph-minor theory of
Robertson and Seymour; see [3, 4, 5, 14] for some of the recent results.

It is natural to study disjoint paths problems also in directed graphs. Here the graph G
is directed and the input pairsM = {(s1, t1), . . . , (sk, tk)} are ordered and we seek to find a
maximum cardinality subset ofM that can be connected by disjoint paths1. Unfortunately,
it has been shown that disjoint paths problems are highly intractable in directed graphs.
It is known that even the simpler case of ANF and with congestion c allowed is hard to
approximate to within a factor of nΩ(1/c) [15]; moreover this holds in acyclic graphs.

A recent paper by a subset of the authors [7] initiated the study of maximum throughput
routing problems in directed graphs where the demand pairs are symmetric. Here the graph
G is directed but the input pairs are unordered as in the undirected setting. Routing a pair
siti requires finding a path that connects si to ti and a path connecting ti to si. We use
Sym-Dir-EDP, Sym-Dir-NDP and Sym-Dir-ANF to denote the analogues of EDP, NDP and
ANF respectively in this setting. A detailed motivation for the study of this model is given
in [7]. Here we briefly outline some of the key points.

The model is motivated by both theoretical and practical considerations. On the theoret-
ical side the model generalizes (modulo constant congestion) the edge and node disjoint paths
problems in undirected graphs. Moreover, flow-cut gaps in this model have been studied in
the past and have close connections to various problems including feedback edge/vertex set
problems [30, 37, 21, 10]. From the more practical side there are several scenarios where the
communication between users is symmetric while the underlying network that supports the
communication may be asymmetric (hence modeled as a directed graph); see [26, 25] for
instance.

Unlike the case of directed graph routing problems, the symmetric model exhibits
tractability. In particular, the well-linked decomposition framework for undirected graphs
extends to a large extent to this model [7].

1 Although edge and node disjoint paths problems are equivalent in general directed graphs, this is not
necessarily the case in restricted graph classes such as planar graphs.
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To resolve the complexity of disjoint path problems in the symmetric model one needs to
understand the structure of directed graphs as a function of their directed treewidth [23, 34],
that we denote by dtw(G). As we mentioned, the interplay between algorithmic questions
and graph structure theory for undirected graphs has been very successful in the recent past.
There has been recent significant progress on the graph theoretic side on directed treewidth;
in particular Kawarabayashi and Kreutzer recently established the excluded grid theorem in
directed graphs [27, 28].

The main technical contribution of [7] is to generalize the well-linked decomposition
framework of [8] to the symmetric demands setting in directed graphs. As a consequence, [7]
obtained a poly-logarithmic approximation with constant congestion for Sym-Dir-ANF. The
central open question they raised is the following: Is there a poly-logarithmic approximation
for Sym-Dir-NDP with constant congestion in general directed graphs? It was shown in [7] that
this can be answered in the positive by addressing the following question which is the analogue
that was raised in [8] for undirected graphs: If a directed graph G has directed treewidth
h, does it have a constant congestion routing structure (crossbar) of size Ω(h/polylog(h))?
Note that grid-minor theorems establish such a connection between treewidth and routing
structures, however, the quantitative relationship between the treewidth and the size of the
grid is too weak to prove any meaningful approximation for the routing problem. On the
other hand, the routing problem has the flexibility of allowing a large constant congestion
which enables one to prove the existence of routing structures that are not as rigid as a
grid; this relaxation has been the key to algorithmic success on routing. We also note
that it is NP-Complete to decide whether a single pair can be routed without congestion
in the symmetric setting [22]; thus a congestion of at least 2 is necessary for a non-trivial
approximation ratio.

In this paper we take a step towards the general problem by addressing the important
special case of planar graphs. Our main algorithmic result is the following.

I Theorem 1. There is a randomized poly-logarithmic approximation for Sym-Dir-NDP in
planar directed graphs with congestion 5.

The approximation algorithm in the preceding theorem is derived via a natural mul-
ticommodity flow relaxation for the problem. The main new technical ingredient is a graph
theoretic result that shows that if a planar digraph has directed treewidth h then it has a
constant congestion crossbar of size Ω(h/polylog(h)). We remark that an undirected planar
graph with treewidth h has a grid-minor (which is a congestion 2 crossbar) of size Ω(h). In
contrast the known relationship between treewidth and grid-minors in directed planar graphs
is much weaker; recent work [27, 28] only shows that there is a directed-grid of size f(h)
for some weakly growing function of h. We hope that our crossbar result could be used as
a starting point to improve the quantitative bound on the grid-minor theorem for planar
digraphs.

1.1 Overview of the Algorithm and Technical Contributions

Here we give a brief outline of the high-level details of the algorithm and some of our
technical contributions. Let (G,M) be an instance of Sym-Dir-NDP, where G = (V,E) is a
directed planar graph with unit node capacities, andM = {s1t1, . . . , sktk} is a collection
of source-destination pairs. We refer to the nodes participating inM as terminals, and we
use T to denote the set of terminals. It is convenient to assume that the pairsM form a
matching on T .

ICALP 2016
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Well-linked sets: A key notion that we make use of is well-linkedness. Given a directed
graph G = (V,E) a subset of nodes X ⊆ V is said to be well-linked if for any two disjoint
subsets Y and Z of X of equal size, there exist |Y | node-disjoint paths from Y to Z; note
that the definition is symmetric since we can swap Y and Z. We need a relaxation of
well-linkedness. For some parameter β ∈ [0, 1], X is β-well-linked if for all disjoint Y,Z ⊂ X
of equal size there are |Y | paths from Y to Z such that no node is in more than d1/βe
of these paths; in other words, the node-congestion caused by the paths is at most d1/βe.
The case β = 1 corresponds to well-linkedness. It is well-known that in both directed and
undirected graphs well-linkedness is closely connected to treewidth. More precisely, a graph
has treewidth k iff it has a well-linked set of size Θ(k); see [34]. Moreover, if X is β-well-linked
in G then the treewidth of G is Ω(β|X|).

Algorithm: Here we outline the high-level steps of our algorithm.

1. Solve a multicommodity flow based LP relaxation that routes each pair siti fractionally
to an amount xi ∈ [0, 1] to maximize

∑k
i=1 xi. See Fig. 2 and the description in Section 2.

2. Use the LP relaxation and the well-linked decomposition framework from [7] to reduce
the problem, at the loss of a poly-logarithmic factor in the approximation, to instances in
which the terminals T are α-well-linked for some fixed constant α.

3. Assuming that T is α-well-linked in G we have dtw(G) = Ω(k) where k = |T |. Using this
fact show that G has a large routing structure and use this structure to route a large
number of terminal pairs. Use the following steps.
a. From G obtain an Eulerian multigraph H = (V,EH) whose support is a subgraph

of G such that (i) T is α′-well-linked in H for α′ = Ω( 1
polylog(k) ) and (ii) ∆(H), the

maximum degree in H, is polylog(k).
b. Using the fact that H is Eulerian, has treewidth Ω(k/polylog(k)), and has max-

imum degree polylog(k), show that it has a cylinder-like routing structure of size
Ω(k/polylog(k)). See Fig. 1.

c. Route terminals to the routing structure and use it to connect a large number of input
pairs.

The preceding algorithm follows the general framework that has been very successful in
the undirected graph setting in the recent past. The first two steps follows the well-linked
decomposition framework from [8] that has been extended to the symmetric demand instances
in directed graphs by [7]. This framework allows one to reduce, via the LP relaxation, general
instances to instances in which the terminals are well-linked. This incurs a poly-logarithmic
factor loss in the approximation. With this reduction in place we have the following property
for our instance. The graph G has a terminal set T of size h and since T is α-well-linked for
some fixed constant α, G has directed treewidth Ω(h). Now, the remaining task is to show a
graph-theoretic result that any directed graph with treewidth h has a constant congestion
crossbar routing structure of size Ω(h/polylog(h)). By crossbar we mean a directed graph H
with an interface I ⊂ V (H) with the following property: any matching on I can be routed in
a symmetric fashion in H with constant congestion. The idea then is to route the terminals
to the interface of the crossbar and use it to route the desired matching on the terminals.

In undirected planar graphs if G has treewidth h then it has grid-minor of size Ω(h) [36],
and this grid-minor can be used as a crossbar to route Ω(h) input pairs (see [8] for instance).
What about directed graphs? Johnson et al. [23], who introduced the notion of directed
treewith, conjectured that any directed graph with sufficiently large treewidth contains a
cylindrical grid (see Fig. 1) as a butterfly minor. The cylindrical grid can be used as a
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crossbar. In an unpublished manuscript, Johnson et al. [24] outlined a proof for the case
of planar graphs. Kawarabayashi and Kreutzer [27] recently gave a different proof for the
planar and minor-free case, and very recently gave a proof for all graphs [28]. However, as we
already mentioned, the quantitative relationship between the size of the cylindrical grid and
treewidth is very weak. Hence, these results would not yield any meaningful results for our
routing problem. Here, we build on the high-level ideas in the work of Johnson et al. [24] to
establish our main result which gives a constant congestion crossbar of size Ω(h/polylog(h))
where h is the treewidth of G; our result applies only to planar graphs and establishing a
similar result for general graphs is a challenging open problem. Due to space constraints we
only mention the key steps.

A key insight from [24] is that given directed graph G one can create an Eulerian
multigraph H of bounded degree whose support is a subgraph of G such that dtw(H) ≥
f(dtw(G)) for some function f . Eulerianness as well as small degree are critical for further
manipulations. Our first contribution is to show that H can be chosen such that (i) dtw(H) =
dtw(G)/polylog(dtw(G)) and (ii) the maximum degree in H, ∆(H) = O(log2 dtw(G)). For
this purpose we use Louis’s extension of the cut-matching game of Khandekar, Rao and
Vazirani [29] to directed graphs [32], combined with the well-linked decomposition framework
of [7, 8].

I Theorem 2. Suppose that there is a polynomial time algorithm for Ω(1)-node-well-linked
instances of Sym-Dir-NDP in planar directed Eulerian graphs of maximum degree ∆ that
achieves a β(∆)-approximation with congestion c. Then there is a polynomial time randomized
algorithm that, with high probability, achieves a β(O(log2 k)) ·O(log6 k) approximation with
congestion c for arbitrary instances of Sym-Dir-NDP in planar directed graphs, where k is
the number of pairs in the instance.

Another key insight from [24] is to consider the undirected version of G, denoted by
GUN, to obtain a large undirected grid-minor using the fact that tw(GUN) = Ω(dtw(G)). In
particular this allows the construction of several disjoint concentric directed cycles in G by
exploiting the structure of the grid, Eulerianness, and planarity. We follow their ideas and
show that the entire construction can be done in polynomial time to yield Ω(dtw(H)/∆(H))
concentric disjoint cycles.

The final step is to find many disjoint paths that cross the concentric cycles from the
inner cycle to the outer cycle and many disjoint paths from the outer cycle to the inner
cycle. We show that we can find such paths via some ideas in [24] but with the additional
property that these paths originate at the terminals. The collection of concentric cycles with
these crossing paths is our desired crossbar and we also obtain the required property that
the terminals are linked to this crossbar. We note that [24] have to do considerable work to
obtain the cylindrical grid while we are satisfied with the constant congestion properties of
the cycles plus paths (see Fig.1).

In the end, we arrive at the following statement whose proof is presented in Section 3.

I Theorem 3. Given a plane directed Eulerian graph G of maximum in-degree at most ∆
and an α-node-well-linked set X in G with |X| = Ω(∆2/α), one can in polynomial time find
a set of Ω(α|X|/∆) concentric cycles going in the same direction (i.e., all clockwise or all
counter-clockwise), sets Y +, Y − ⊆ X of size |Y +| = |Y −| = Ω(α2|X|/∆2) each, and families
P+ and P− of node-disjoint paths, such that either
1. none of the cycles enclose any vertex of Y + ∪ Y −, the family P+ consists of |Y +|

node-disjoint paths from Y + to the innermost cycle, and the family P− consists of |Y −|
node-disjoint paths from the innermost cycle to Y −; or
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Figure 1 A cylinder (left) and a crossbar
we obtain in our proof (right); the vertices in
the rounded rectangle is a set of α-well-linked
terminals.

max
k∑
i=1

xi∑
p∈P(si,ti)

f(p) = xi i ∈ [k]

∑
p∈P(ti,si)

f(p) = xi i ∈ [k]

∑
p: v∈p

f(p) ≤ 1 v ∈ V (G)

f(p) ≥ 0 p ∈ P
xi ∈ [0, 1] i ∈ [k]

Figure 2 Relaxation Sym-Dir-NDP LP.

2. all cycles enclose Y + ∪ Y −, the family P+ consists of |Y +| node-disjoint paths from Y +

to the outermost cycle, and the family P− consists of |Y −| node-disjoint paths from the
outermost cycle to Y −.

Although we are inspired by [24], in the proof of Theorem 3 we use different methodology
based on well-linked sets. We also point out that there are significant technical hurdles in
working with directed graphs and treewidth. For instance, one can prove that if an undirected
graph has treewidth k then it has Ω(k/ log k) disjoint cycles. This is closely related to the
well-known Erdos-Posa theorem [20]. Relating treewidth and disjoint cycles in directed
graphs is significantly harder and was resolved in [35] (and also via the more recent result
[28]) but the quantitative relationship is weak and far from the known lower bounds.

Using Theorem 3, we show the following statement, which in turn, together with The-
orem 2, immediately yields Theorem 1.

I Theorem 4. There is an O(∆2/α3) approximation with congestion 5 for Sym-Dir-NDP in
instances for which the input digraph is planar and Eulerian with maximum degree ∆, and
the terminals are α-node-well-linked for some α ≤ 1.

In this extended abstract, we focus on proving Theorem 3 on constructing the crossbar
in Section 3, and we defer the remaining details and proofs to a longer version of this paper.

2 Preliminaries on LP Relaxation and plane Eulerian digraphs

LP relaxation. Our algorithm uses a standard multicommodity flow relaxation for the
problem given in Figure 2. We use P(u, v) to denote the set of all paths in G from u to v,
for each ordered pair (u, v) of nodes. Our assumption that the pairsM form a matching
ensures that the sets P(si, ti), P(ti, si), P(sj , tj) and P(tj , sj) are pairwise disjoint. Let
P =

⋃k
i=1(P(si, ti) ∪P(ti, si)). The LP has a variable f(p) for each path p ∈ P representing

the amount of flow on p. For each (unordered) pair siti ∈ M, the LP has a variable xi
denoting the total amount of flow routed for the pair (in the corresponding IP, xi denotes
whether the pair is routed or not). The LP imposes the symmetry constraint that there is a
flow from si to ti of value xi and a flow from ti to si of value xi. Additionally, the LP has
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capacity constraints that ensure that the total amount of flow on paths using a given node is
at most one.2

It is convenient to assume that the pairsM form a matching on T and each terminal is
a leaf of G, i.e., it is attached to a single neighbor using an edge in each direction. As shown
in [7], these properties can be ensured as follows. Given an instance (G,M) with terminal T ,
we create a new instance (G′,M′) by attaching a new leaf neighbor t′ to every t ∈ T with
arcs (t, t′) and (t′, t), and move the terminal t to t′. Given a solution to the LP relaxation on
(G,M), we can easily find a solution of at least half of the value by extending the flow along
arcs (t, t′) and (t′, t); the loss of the flow is due to potential capacity violation at vertex t
that is now counted twice along the flow paths. If we obtain an integral solution in (G′,M′)
(i.e., a routing of some pairs fromM′) with congestion c > 1, by shortening the paths we
obtain a routing with the same congestion in (G,M).

Plane Eulerian Digraphs: First, let us recall the following lemma that encapsulates the
main property of Eulerian digraphs that make them similar to undirected graphs.

I Lemma 5. Let G be an Eulerian digraph of maximum in-degree ∆, let A,B ⊆ V (G), and
let ` be an integer. If there exist (∆ + 1)`+ 1 undirected vertex-disjoint paths from A to B in
G, then there exist `+ 1 directed ones as well.

We also need some notation with respect to planar embeddings. Let Π denote the euclidean
plane. For a closed Jordan curve γ and a point p ∈ Π\γ, by ζp(γ) ∈ Z we denote the element
of the fundamental group of Π \ {p} where γ belongs (with the convention that a clockwise
cycle around p is the +1 element). A Jordan curve γ is in general position with respect
to the plane graph G if it has finite number of intersections with G, its starting point and
ending point do not belong to G, and whenever a point p lies both on γ and in the interior
of an edge e ∈ E(G), then γ traverses the edge e at this point. A face-edge curve in a plane
digraph G is a Jordan curve in general position that does not traverse any vertex of G.

For a curve γ in general position with respect to G, we introduce the following notions.
Assume γ intersects an edge e while going from a face f to a face f ′. If e has the face f on
the right and the face f ′ on the left, then we say that e crosses γ from left to right and,
otherwise, if e has the face f on the left and the face f ′ on the right, then we say that e
crosses γ from right to left. By crossL→R(γ) and crossR→L(γ) we denote the number of times
an edge crosses γ from left to right and from right to left, respectively; note that in these
numbers we may count one edge multiple times, one for each moment γ crosses the edge.

For a vertex v in a digraph G, an imbalance of v is the number imbG(v) := indegG(v)−
outdegG(v). A graph is balanced if imbG(v) = 0 for every v ∈ V (G), and Eulerian if it is
additionally weakly connected. Furthermore, let the imbalance of a curve γ in a general
position with respect to G be imb(γ) = crossL→R(γ)− crossR→L(γ). A standard argument
shows the following:

2 There is a subtle issue here with regards to the capacity usage at the endpoints of a path. In the integral
solution, a pair of paths, one from si to ti and one from ti to si, is regarded as using the vertex si only
once and using the vertex ti only once; in other words, such a pair can be seen as a simple cycle passing
through si and ti. To simulate it in the LP relaxation, we consider that the starting vertex belongs
to a flow path, but the ending vertex does not belong to it. Alternatively, we can assume that a flow
path uses only half of the capacities at its endpoints; these interpretations are equivalent due to the
symmetry of the demands.
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Figure 3 A wall (left) and a subdivided wall (right). The red vertices denote the interface of the
wall.

I Lemma 6. Let γ be a closed face-edge curve in a plane digraph G. Then

imb(γ) =
∑

v∈V (G)

ζv(γ) · imbG(v).

We also need the following flow/cut duality.

I Lemma 7. Given a plane digraph G, two distinguished faces f in and fout, and an integer
k, one can in linear time find either:
1. a family of directed vertex-disjoint cycles C1, C2, . . . , Ck, all having f in to the right and

fout to the left;
2. a curve γ in general position with respect to G, that starts in f in, ends in fout, intersects

at most k vertices, and satisfies crossL→R(γ) = 0.

3 The crossbar construction for Eulerian graphs

We first remark that the two outcomes of Theorem 3 are the same if one considers embeddings
on the sphere, while on the plane they differ only by the choice of the outer face of the
embedding. Furthermore, note that all paths in P+ and in P− intersect every constructed
concentric cycle due to planarity.

In the proof of Theorem 3, without loss of generality we assume that every vertex of X is
incident to one outgoing arc and one incoming arc, and these two arcs have the same second
endpoint: We can achieve it by creating a pendant vertex x′ for every x ∈ X, connected to x
with arcs (x, x′) and (x′, x); note that the well-linkedness of X may drop to α/(α + 1) in
this manner. Consequently, every cycle and path has no vertices in X (except for possibly
some endpoints); henceforth we will implicitly use this property multiple times.

Obtaining an undirected grid. We start by applying the construction for undirected planar
graphs from [8]. Let GUN be the underlying undirected graph of G. Clearly, X is α-node-
well-linked in GUN and thus GUN has (undirected) treewidth Ω(α|X|). Hence we can obtain
a large grid minor linked to the terminals X using the following theorem of [8]. In what
follows, it is notationally more convenient to work with subdivided walls as subgraphs, instead
of minors. A t× t wall and a subdivided wall are shown in Figure 3. The (t− 1) vertices of
degree three in the top row of a t× t wall Γ are called the interface of the wall, denoted IΓ.

I Theorem 8 (Theorem 4.5 of [8]). For every constant α ≤ 1, given an undirected planar
graph H and an α-node-well-linked set X in H, one can in polynomial time find an integer
t = Ω(α|X|), a subdivided t× t wall Γ in H, and a family of t node-disjoint paths connecting
X and the interface of Γ.
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Figure 4 Illustration of Corollary 9. The cycles are blue, while the paths are dashed red.

In our construction we do not need the entire structure of a subdivided wall, but only
part of it, as in the following immediate corollary (see Fig. 4).

I Corollary 9. One can in polynomial time find an integer r = Ω(α|X|) and a sequence of
node-disjoint concentric undirected cycles C1, C2, . . . , Cr in GUN, with C1 being the outermost
and Cr being the innermost cycle, with the additional property that for every 1 ≤ i ≤ r there
exists r vertex-disjoint paths in GUN from X to V (Ci).

Isles Sout and Sin. Let us fix a choice of r and cycles C1, C2, . . . , Cr stemming from
Corollary 9. For a while, we work only with the undirected graph GUN. Our goal is to
strengthen the requirement of the existence of many undirected paths between X and the
innermost and outermost cycles by getting more properties about their endpoints, so that
we can use an argument similar to the one of [24] to reason about the existence of directed
concentric cycles with similar connectivity towards X.

To this end, we identify two small connected parts of GUN, Sout and Sin, one around C1
and one around Cr. The parts will be large enough so that there is a substantial number of
vertex-disjoint directed paths between them and X, but small enough so that they are placed
very locally in the graph, and their boundary is small. This last property ensures that after
deletion of these parts, the graph is close to Eulerian, and we can make use of Lemma 6.

For a vertex set Q ⊆ V (GUN), a vertex v /∈ Q, and an integer ` ≥ 2∆, we say that a
vertex set S is a (v,Q, `)-isle if v ∈ S, GUN[S] is connected, S ∩Q = ∅, and |NGUN(S)| ≤ `.3
We will rely on the following greedy procedure, that is inspired by the enumeration algorithm
for important separators in parameterized complexity (cf. [12] and [18, Chapter 8]).

I Lemma 10. Given a set Q ⊆ V (GUN), a vertex v /∈ Q, and an integer ` ≥ 2∆, one can
in O(`3n) time find an inclusion-wise maximal (v,Q, `)-isle.

Proof. We perform the following iterative procedure. Start with S = {v}; clearly, S is a
(v,Q, `)-isle, as v /∈ Q by assumption and the maximum in-degree of G is ∆. In an iterative
step, we assume that S is a (v,Q, `)-isle, and our goal is to check if S is an inclusion-wise
maximal one, or produce a (v,Q, `)-isle S′ with S ( S′.

3 We use the following notation with respect to neighborhoods. Let G be an undirected graph, x ∈ V (G),
and S ⊆ V (G). Then NG(x) is the set of neighbors of x in G, NG[x] = {x} ∪ NG(x), NG[S] =⋃

x∈S
NG[x], NG(S) = NG[S] \ S, N2

G[S] = NG[NG[S]], and N2
G(S) = NG(NG[S]).
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To this end, consider every w ∈ NGUN(S) \Q; note that, by the connectivity of S′ and
S, there exists such w ∈ S′ \ S for every isle S′ we are looking for. Collapse in GUN the
set S ∪ {w} into a single vertex s and add a super-source vertex t adjacent to all vertices
of Q. Let G′ be the resultingg (undirected) graph. Find a minimum s− t vertex cut Z in
G′, or conclude that such a minimum cut is of size larger than `; this can be done using
O(`) rounds of the Ford-Fulkerson algorithm, taking total time O(`n). Moreover, within this
time we can find the minimum cut closest to t, that is, the unique one with inclusion-wise
maximal set of vertices remaining in the connected component with the vertex s (cf. [18]).

If such a cut is found, let S′ be the subset of vertices of G corresponding to the connected
component of G′ \Z containing the vertex s. Clearly, NGUN(S′) = Z, and S′ is a (v,Q, `)-isle
containing S and w. Otherwise, we conclude that no (v,Q, `)-isle containing both S and w
exists, since for every such isle S′, the set NGUN(S′) is an s− t cut in G′ of size at most `.

The computation for fixed S and w takes O(`n) time. Since S is an (v,Q, `)-isle, there
are at most ` vertices w to try. Due to the fact that we always take the s− t cut closest to t,
the size of the set NGUN(S) strictly grows at every iteration (possibly except the first one,
when S = {v}). Consequently, they are at most `+ 1 iterations of the procedure, and the
running time bound follows. J

We pick an arbitrary vertex vout on C1 and an arbitrary vertex vin on Cr, and use
Lemma 10 for both these vertices, the set Q := X, and threshold ` := br/(4∆ + 2)c; recall
that |X| = Ω(∆2/α) by the assumptions of Theorem 3 thus we may assume ` ≥ 2∆. Let
Sout and Sin be the two isles obtained. Since ` < r, and every cycle Ci is connected with r
vertex-disjoint paths to X, no cycle Ci is contained in either Sout or Sin. Since an isle is
connected, we obtain the following.

I Lemma 11. The isle Sout does not contain any vertex that is enclosed by C`+1, and the
isle Sin does not contain any vertex that is not strictly enclosed by Cr−`.

Proof. The proofs for Sin and Sout are symmetrical, so we just focus here on the case of Sout.
Assume to the contrary that Sout contains a vertex enclosed by C`+1. Since vout ∈ Sout and
by the connectity of Sout, Sout contains a vertex from every cycle Ci, 1 ≤ i ≤ `+ 1. Since
|NGUN(Sout)| ≤ `, for some 1 ≤ i ≤ ` + 1 we have that V (Ci) is completely contained in
Sout. However, recall that there are r > ` vertex-disjoint paths in GUN connecting Ci with
X. This contradicts the facts that Sout ∩X = ∅ and |NGUN(Sout)| ≤ `. J

By Lemma 11, the isles Sout and Sin are somewhat local in the graph: they do not
go too deep into the set of cycles C1, C2, . . . , Cr. On the other hand, recall that they are
inclusion-wise maximal isles; by the next lemma, this ensures that they are connected by a
large number of vertex-disjoint undirected paths to the set X. Let W out = N2

GUN [Sout] and
W in = N2

GUN [Sin].

I Lemma 12. In GUN, there are `+ 1 node-disjoint undirected paths connecting W out and
X and `+ 1 node-disjoint undirected paths connecting W in and X.

Proof. By symmetry, we can focus on the case of W out. The intuition is as follows: if there
does not exist a sufficient amount of desired node-disjoint paths, then the corresponding cut
would allow us to construct a strictly larger isle, a contradiction to the maximality of Sout.
In some sense, NGUN(Sout) is the “last bottleneck” of size at most ` between vout and X,
and, after passing it, we should have more than ` paths between X and N2

GUN [Sout] = W out.
Formally, assume the contrary of the lemma statement; by Menger’s theorem, there exist

vertex sets A,B ⊆ V (GUN) such that A ∪ B = V (GUN), |A ∩ B| ≤ `, W out ⊆ A, X ⊆ B,
and no edge of GUN has one endpoint in A \B and the second endpoint in B \A.
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Recall that Sout∩X = ∅ by the definition of an isle, while N2
GUN [Sout] = W out ⊆ A. Hence

we may assume that (NGUN [Sout] \X) ⊆ (A \B), as removing all vertices of NGUN [Sout] \X
from B would not invalidate any of the properties of the pair (A,B). Recall also that
GUN[Sout] is connected; let SA be the vertex set of the connected component of GUN \ (A∩B)
containing Sout. Clearly, SA ⊆ A \B, so SA ∩X = ∅. Furthermore, NGUN(SA) ⊆ A ∩B, so
|NGUN(SA)| ≤ `. As Sout ⊆ SA, by the maximality of Sout, we infer that SA = Sout. Since
NGUN [Sout] \X ⊆ SA, we infer that NGUN(Sout) ⊆ X. However, this is a contradiction, as
GUN is connected and Sout ( V (GUN) \X. J

Finding directed concentric cycles. We now use the undirected cycles C1, C2, . . . , Cr to
find a large number of node-disjoint directed concentric cycles separating Sin and Sout. Recall
that ` := br/(4∆ + 2)c.

I Lemma 13. One can in polynomial time find d`/2e node-disjoint directed concentric cycles,
all going in the same direction (all clockwise or all counter-clockwise), such that all vertices
of Sin are strictly enclosed by the innermost cycle, and all vertices of Sout are not enclosed
by the outermost cycle, or vice versa, with the roles of Sin and Sout swapped.

Proof. Denote G′ = G \ (NGUN [Sout] ∪ NGUN [Sin]). Let fout and f in be the faces of G′
that contain Sout and Sin, respectively; by Lemma 11, the cycle Cdr/2e remains in G′ and
fout 6= f in. Furthermore, the vertices of N2

GUN(Sout) lie on the face fout of G′, and the
vertices of N2

GUN(Sin) lie on the face f in. We apply Lemma 7 twice to the graph G′ and the
requirement of ` cycles, once for the pair of faces (fout, f in) and once for the pair (f in, fout).
If at least one of the applications returns a family of cycles, then we are done, as every cycle
encloses either Sin or Sout. Thus, we are left with the case when both the applications return
a curve; let us denote these curves γ1 and γ2, respectively.

Before we proceed to the formal calculations leading to a contradiction, let us give some
intuition. The curves γ1 and γ2 are very skewed in terms of the directions of edges crossing
it: only edges in one direction are allowed, while in the second direction only ` vertices are
allowed, and every vertex is of maximum in-degree ∆. The locality of isles Sout and Sin

(Lemma 11) implies that γ1 and γ2 cross most of the cycles Ci; consequently, they need to
cross much more than `∆ arcs in one direction. However, the graph G′ is very close to an
Eulerian one, as we have a bound of ` on the size of the boundary of Sout and Sin. This
leads to a contradiction with Lemma 6 for a closed curve being essentially a concatenation of
γ1 and γ2.

Formally, let us first modify the curve γ1 to obtain a face-edge curve γ′1 as follows:
whenever γ1 crosses a vertex v, we move it slightly to avoid v, at the cost of intersecting
some of the arcs incident to v. Since the maximum in-degree and out-degree of G (and thus
G′) is at most ∆, we have that crossL→R(γ′1) ≤ ∆(`− 1). Similarly, we obtain a curve γ′2
with crossL→R(γ′2) ≤ ∆(`− 1). Since γ′1 starts in fout and ends in f in, while γ′2 starts in f in

and ends in fout, we can concatenate these curves (without introducing any new intersection
with G′) and obtain a closed face-edge curve γ′. This curve γ′ visits both fout and f in, and
satisfies

crossL→R(γ′) ≤ 2∆(`− 1). (1)

By Lemma 11, the undirected cycles C`+2, C`+3, . . . , Cr−`−1 remain in G′, and both γ′1 and
γ′2 need to cross at least one edge of each of these cycles. Consequently,

crossL→R(γ′) + crossR→L(γ′) ≥ 2(r − 2`− 2). (2)
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By merging (1) and (2), and by the choice of `, we obtain that:

− imb(γ′) = crossR→L(γ′)− crossL→R(γ′) ≥ 2(r − 2`− 2− 2∆(`− 1)) > 4∆`. (3)

On the other hand, note that every vertex of G′ with a non-zero imbalance is a former
neighbor of a vertex of NGUN(Sout∪Sin). As there are at most 2` vertices in NGUN(Sout∪Sin),
and every such vertex has in-degree and out-degree bounded by ∆, we have∑

v∈V (G′)

| imbG′(v)| ≤
∑

u∈N
GUN (Sout∪Sin)

indegG(u) + outdegG(u) ≤ 4∆`. (4)

Equations (3) and (4) stand in contradiction with Lemma 6. J

Finishing the crossbar construction. Let C ′1, . . . , C ′d`/2e be the concentric directed cycles
found by Lemma 13; by symmetry, assume they all enclose Sin. Let q := d`/4e. We consider
two cases, depending on whether at least half of the vertices of X are enclosed by C ′q or not.
The two cases correspond to the two symmetric outcomes of Theorem 3. In what follows, we
describe only the first case, when at least half of the vertices of X are enclosed by C ′q, and
we use cycles C ′1, C ′2, . . . , C ′q and vertex-disjoint paths from X to W out; the second case is
completely symmetric, but uses cycles C ′q+1, C

′
q+2, . . . , C

′
` and paths from X to W in.

Consider the set of ` + 1 paths in GUN connecting W out and X, whose existence is
promised by Lemma 12, and let Xout be the set of the endpoints of the paths. The vertices
in Xout may not be enclosed by C ′q. Our goal is to find a different set of vertices that are
enclosed by C ′q such that they have disjoint paths to W out; we use well-linkedness of X for
this purpose. As `+ 1 ≤ |X|/2 and the set X is α node-well-linked, for every set X ′ ⊆ X

of ` + 1 vertices enclosed by C ′q, there exist α(` + 1) node-disjoint paths connecting Xout

and X ′. By combining these paths with the paths connecting W out and Xout, we obtain
a flow that sends α(`+ 1)/2 amount of flow in GUN with unit node capacities from X ′ to
W out, with 1/2 originating in every vertex in X ′. Consequently, there exists a set Y ⊆ X of
size at least α(`+ 1)/2, whose vertices are all enclosed by C ′q, and such that there exist |Y |
node-disjoint paths in GUN connecting Y and W out.

By Lemma 5, there exist at least (α`− 2)/(2(∆ + 1)) node-disjoint directed paths from
Y to W out (we let Y + ⊂ Y denote the end points of these paths) and the same amount of
node-disjoint directed paths from W out to Y (we let Y − ⊂ Y denote the end points of these
paths). Recall that ` = Θ(α|X|/∆), thus (α`− 2)/(2(∆ + 1)) = Θ(α2|X|/∆2). As no vertex
of W out is strictly enclosed by C ′1, these paths, together with the cycles C ′1, C ′2, . . . , C ′q, form
the desired structure. This concludes the proof of Theorem 3.

4 Concluding Remarks

Our main technical contribution in this paper is to show that a planar directed graph has
a constant congestion routing structure of size Ω(h/polylog(h)), where h = dtw(G). This
structural result was motivated by the algorithmic problem of routing symmetric demands
in directed graphs. Recent results, in the undirected graph setting, have demonstrated
effectively the inherent synergy between approximation algorithms for routing problems and
structural results in graph theory related to treewidth. The work in [7] and here are steps
towards extending this synergy to directed graphs. The directed graph setting is significantly
more challenging, however, and progress in this direction could yield several new benefits.
We raise some open problems below.
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Does a planar directed graph with treewidth h have a constant congestion crossbar of size
Ω(h). This would strengthen our result. In particular, is there a cylindrical grid minor of
size Ω(h)?
The techniques in this paper could likely be extended to directed graphs that can be
embedded on a bounded genus surface, and more generally to directed graphs whose
undirected support graph is from a proper minor-closed family. The ideas of well-linked
decomposition and degree-reduction do not rely on planarity. Moreover, there is a linear
relationship between treewidth and the size of a grid-minor in undirected graphs from a
proper minor-closed family [19].
Does a general directed graph with treewidth h have a constant congestion crossbar of
size Ω(h/polylog(h))? Is there a cylindrical grid minor of size Ω(hδ) for some fixed δ > 0?
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Abstract
We introduce a new decomposition of a graphs into quasi-4-connected components, where we call
a graph quasi-4-connected if it is 3-connected and it only has separations of order 3 that separate
a single vertex from the rest of the graph. Moreover, we give a cubic time algorithm computing
the decomposition of a given graph.

Our decomposition into quasi-4-connected components refines the well-known decomposi-
tions of graphs into biconnected and triconnected components. We relate our decomposition
to Robertson and Seymour’s theory of tangles by establishing a correspondence between the
quasi-4-connected components of a graph and its tangles of order 4.
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1 Introduction

Decompositions of graphs into their connected, biconnected and triconnected components
are fundamental in structural graph theory, and they also belong to the basic toolbox
of algorithmic graph theory. The existence of such decompositions goes back to work of
MacLane [12] from the 1930s (also see Tutte [21]). In the 1970s, Hopcroft and Tarjan [10, 20]
showed that the decompositions can be computed in linear time.

In modern terms, the decompositions into biconnected and triconnected components are
best described as tree decompositions. To state the decomposition theorems and also our
main result, a few technical definitions are unavoidable. Recall that a tree decomposition of a
graph G is a pair (T, β), where T is a tree and β a mapping that associates a set β(t) ⊆ V (G),
called the bag at t, with every node t of the tree T (subject to certain conditions; see
Section 2). The adhesion of the decomposition is the maximum of the sizes |β(t) ∩ β(u)| for
tree edges tu, which intuitively is the order of the separations of the decomposition. Now
the decomposition into biconnected components can be phrased as follows: every graph G
has a tree decomposition (T, β) of adhesion at most 1 such that for all tree nodes t the
induced subgraph G[β(t)] is either 2-connected or a complete graph of order at most 2.
The decomposition into triconnected components is more complicated, mainly because the
triconnected components of a graph are no longer induced subgraphs, but just topological
subgraphs. We say that the torso of a set X ⊆ V (G) of vertices of a graph G is the
graph GJXK obtained from the induced subgraph G[X] by adding edges vw for all distinct
v, w ∈ X such that there is a connected component C of G \ X with v, w ∈ N(C), the
neighbourhood of C in G. For example, the torso of the set X = {x1, . . . , x4} in the graph G
shown in Figure 1(a) is the complete graph on X. Now the decomposition into triconnected
components can be phrased as follows: every graph G has a tree decomposition (T, β) of
adhesion at most 2 such that for all tree nodes t the torso GJβ(t)K is a topological subgraph
of G that is either 3-connected or a complete graph of order at most 3.
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Figure 1 A graph and its decomposition into triconnected components.

Figure 2 Hexagonal grids of radius 2 and 3.

How about decompositions into 4-connected components, or k-connected components
for k ≥ 4? At least in the clean form of the above decomposition theorems, they simply do
not exist. Consider, for example, a hexagonal grid (see Figure 2). Even though the grid
is not 4-connected, and it does not even have a nontrivial 4-connected subgraph, there is
no good way of decomposing it in a tree-like fashion by separations of order 3. In fact, the
only separations of the grid of order 3 are those splitting off a single vertex. If we ignore
such separations, we may view the whole grid as one highly connected region. Let us call
a graph G quasi-4-connected if it is 3-connected and for all separations (Y, S, Z) of order 3
(that is, |S| = 3 and Y, S, Z form a partition of V (G) and there are no edges between Y and
Z), either |Y | ≤ 1 or |Z| ≤ 1. Surprisingly, with this mild relaxation of 4-connectivity we get
a nice decomposition theorem along the lines of the decompositions into biconnected and
triconnected components.

I Theorem 1 (Decomposition Theorem). Every graph G has a tree decomposition (T, β) of
adhesion at most 3 such that for all tree nodes t the torso GJβ(t)K is a minor of G that is
either quasi-4-connected or a complete graph of order at most 4.

Furthermore, this decomposition can be computed in cubic time.

The decomposition is not unique, but the isomorphism types of the quasi-4-connected
components into which we decompose are.

There have been earlier generalisations of the decomposition of graphs into triconnected
components. The most prominent of these are Robertson and Seymour’s tangles [17],
which play an important role in the structure theory for graphs with excluded minors [16].
Intuitively, a tangle of order k describes a “k-connected region” in a graph by “pointing to
it”, that is, by assigning a direction to each separation of order less than k in such a way
that “most” of the region described by the tangle is on the side the separation is directed
towards. It is known that the tangles of orders 1, 2, 3 are in one-to-one correspondence to
the connected, biconnected and triconnected components of a graph [17, 8]. We establish a
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similar correspondence between the tangles of order 4 and the quasi-4-connected components.
This is our second main theorem, which I think is interesting in its own right, but which is
also essential for the proof of Theorem 1. We defer the precise technical statement of this
Correspondence Theorem to Section 4 (Theorem 4).

This paper grew out of my work on descriptive complexity theory for graph classes with
excluded minors [6, 5], and this may also serve as an illustration of potential applications of
our Decomposition Theorem. Separations of order 3 play a special, but somewhat annoying
role in the main structure theorems for graph classes with excluded minors such as the
“Flat Grid Theorem” of [18] and the structure theorem of [19], and the theorems simplify
for quasi-4-connected graphs. In [5] I exploited some of the main ideas underlying our
Decomposition Theorem to obtain such simplifications in the context of logical definability,
and I believe the Decomposition Theorem proved here may turn out to be similarly useful in
an algorithmic context.1

Due to space limitations, I had to omit many proof details, examples, and remarks from
this conference version of the paper. They can be found in the full version [7] (available on
arXiv).

1.1 Related work
It was shown in [17, 1] that for every k, every graph admits a canonical decomposition into
its tangles of order k. Related to this is the decomposition into so-called (k−1)-blocks due to
[3]. An important difference between these results and ours, or rather an additional feature
of our decomposition, is that the pieces of our decomposition are quasi-4-connected graphs
in their own right and can be dealt with separately (for example in an algorithmic context),
whereas tangles of order 4 or 3-blocks are only defined relative to the surrounding graph.

In [15, 14], a notion of k-edge connected component is considered. It is similar to the
(k − 1)-blocks, but with respect to edge connectivity.

On the algorithmic side, it was shown in [9] that the decomposition of a graph into its
tangles of order k can be computed in time nO(k). I believe that our techniques can be used
to improve this to cubic time for k = 4.

There is a different line of work on “k-connected components” that, as far as I can see, is
unrelated to ours. There, k-connected components are simply defined as maximal k-connected
subgraphs (see, for example, [13]). This leads to completely different decompositions. For
example, a graph of maximum degree 3 will only have trivial 4-connected components in this
framework. However, what I see as the crucial difference between our form of decomposition
and this line of work is that we get tree decompositions. This is important for typical
dynamic-programming or divide-and-conquer algorithms on the decomposition.

2 Preliminaries

We assume basic knowledge of graph theory and refer the reader to [4] for background. Our
notation is standard, let us just review the most important and frequently used notations.

1 Let me clarify the relation of this work to Chapter 10 of the forthcoming monograph [5]. The basic
ideas are the same, and actually my original motivation for the present paper was to make these ideas
accessible to readers not interested in logic. However, when I started to work on this paper I noticed
the connection to tangles, and it is this connection that provides the right framework and also makes
the decomposition much simpler. On the other hand, the main goal of [5] is to obtain a decomposition
that is definable in fixed-point logic with counting, and the decomposition we obtain here is not. So,
except for some of the basic lemmas underlying the proof of the Correspondence Theorem, the results
are incomparable.
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All graphs considered in this paper are finite and simple. The vertex set and edge set of a
graph G are denoted by V (G) and E(G), respectively. The order of G is |G| := |V (G)|. For
a set W ⊆ V (G), we denote the induced subgraph of G with vertex set W by G[W ] and the
induced subgraph with vertex set V (G) \W by G \W . For a vertex v, we denote the set of
neighbours of v in G by NG(v). In this and similar notations, we omit the index G if G is
clear from the context. For a set W ⊆ V (G), we define N(W ) :=

(⋃
v∈W N(v)

)
\W, and

for a subgraph H ⊆ G we let NG(H) := NG(V (H)).
A tree decomposition of a graph G is a pair (T, β), where T is a tree and β : V (T )→ 2V (G)

such that for all v ∈ V (G) the set {t ∈ V (T ) | v ∈ β(t)} is connected in T and for all
vw ∈ E(G) there is a t ∈ V (T ) such that v, w ∈ β(t).

A minor of G is a graph obtained from G by deleting vertices and edges and contracting
edges. A model of H in G consists of a family (Mw)w∈V (H) of mutually disjoint connected
subsets of V (G) and a family (ef )f∈E(H) of edges of G such that for every edge f = ww′ of
H the edge ef has one endvertex in Mw and one endvertex in Mw′ . Then H is a minor of G
if and only if there is a model of H in G. We call the sets Mw, for w ∈ V (H), the branch sets
of the modelM. When reasoning about a model, it is often enough to know the branch sets.

A faithful model of H in G is a model
(
(Mw)w∈V (H), (ef )f∈E(H)

)
such that w ∈Mw for

all w ∈ V (H). We say that H is a faithful minor of G if V (H) ⊆ V (G) and there is a faithful
model of H in G.

Separations of a graph G are usually defined as pairs of subgraphs. However, in this
paper it will be more convenient to view them as partitions of the vertex set. We say that a
separation of G is a triple (Y, S, Z) of (possibly empty) mutually disjoint subsets of V (G)
such that Y ∪ S ∪ Z = V (G) and there is no edge vw ∈ E(G) such that v ∈ Y and w ∈ Z.
The order of the separation (Y, S, Z) is |S|, and the separation is proper if both Y and
Z are nonempty. The set of all separations of G is denoted by Sep(G), and the subset of
all separations of order less than k (at most k, exactly k) by Sep<k(G) (resp. Sep≤k(G),
Sep=k(G)).

A set S ⊆ V (G) is a separator of G of order k := |S|, or a k-separator, if there are two
vertices v, w ∈ V (G) \ S such that there is a path from v to w in G, but no path from v to
w in G \ S. Note that if G is connected then S is a separator if and only if there is a proper
separation (Y, S, Z) of G.

A graph G is k-connected if |G| > k and G has no proper (k − 1)-separation.
A subset X ⊆ V (G) of the vertex set of a graph G is k-inseparable if |X| > k and there

is no separation (Y, S, Z) of G of order at most k such that X ∩ Y 6= ∅ and X ∩ Z 6= ∅.

3 Tangles

Let G be a graph. Deviating from Robertson and Seymour’s [17] original definition, we define
tangles as families of separations of the vertex set (as we defined them in Section 2) rather
than separations viewed as pairs of graphs or partitions of the edge set. (We show that the two
notions are equivalent in the full version [7].) A G-tangle of order k is a family T ⊆ Sep<k(G)
of separations of G of order less than k satisfying the following conditions.

(T.1) For all separations (Y, S, Z) ∈ Sep<k(G) either (Y, S, Z) ∈ T or (Z, S, Y ) ∈ T .

(T.2) If (Y1, S1, Z1), (Y2, S2, Z2), (Y3, S3, Z3) ∈ T then either Z1 ∩ Z2 ∩ Z3 6= ∅ or there is
an edge e ∈ E(G) that has an endvertex in each Zi.

(T.3) If (Y, S, Z) ∈ T then Z 6= ∅.
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For background on tangles and examples, I refer the reader to [17, 8].
Let G be a graph. We define a partial order � on Sep(G) by letting

(Y, S, Z) � (Y ′, S′, Z ′) :⇐⇒ S ∪ Z ⊂ S′ ∪ Z ′ or
(
S ∪ Z = S′ ∪ Z ′ and S ⊆ S′

)
. (1)

For a G-tangle T , we let Tmin be the set of minimal elements of T with respect to the partial
order �. The minimal elements of a tangle will play an important role later. It can be shown
that if (Y, S, Z) ∈ Tmin then Z is connected in G and S = N(Z).

It is shown in [17, 8] that the tangles of order at most 3 are in one-to-one correspondence
to the connected, biconnected, and triconnected components of a graph. The following
characterisation of the triconnected components motivates our definition of quasi-4-connected
regions in the next section.

I Proposition 2. Let G be a graph and R ⊆ V (G). The the following are equivalent.
1. R is an inclusionwise maximal subset of G such that GJRK is 3-connected and a topological

subgraph of G.
2. GJRK is 3-connected and a topological subgraph of G, and for every connected component

C of G \R we have |N(C)| ≤ 2.

We call sets R satisfying the conditions of this proposition the triconnected regions of a
graph and the graphs GJRK the triconnected components.

We can “lift” a tangle from a minor of a graph to the original graph. Let G be a graph,
H a minor of G, and M a model of H in G, say, with branch sets (Mw)w∈V (H). For a
separation (Y, S, Z) ∈ Sep(G), theM-projection of (Y, S, Z) to H is the triple πM(Y, S, Z) =
(Y ′, S′, Z ′) of subsets of V (H) defined by Y ′ :=

{
w ∈ V (H)

∣∣ V (Mw) ⊆ Y
}
, S′ :=

{
w ∈

V (H)
∣∣ V (Mw)∩S 6= ∅}, Z ′ :=

{
w ∈ V (H)

∣∣ V (Mw) ⊆ Z
}
. It is easy to see that (Y ′, S′, Z ′)

is a separation of H of order |S′| ≤ |S|.

I Lemma 3 ([17]). Let G be a graph, H a minor of G, andM a model of H in G. Let T ′
be an H-tangle of order k. Then the set T of all separations (Y, S, Z) ∈ Sep<k(G) such that
πM(Y, S, Z) ∈ T ′ is a G-tangle of order k.

We call T be the lifting of T ′ to G with respect to the modelM. Clearly, the lifting may
depend on the model. This is even the case if we only consider faithful minors and models.

4 Tangles of Order 4

Let us now look at tangles of order 4. We restrict our attention to 3-connected graphs. This
is natural; in the full version of the paper we also give a formal justification that we can do
this without loss of generality. For the rest of this section, we assume that G is a 3-connected
graph.

The main result of this section is a correspondence between tangles of order 4 and what
we will call quasi-4-connected regions of a graph. This correspondence holds for all but a
small number of exceptional regions, which we shall completely characterise. We first state
the theorem; the necessary definitions follow.

I Theorem 4 (Correspondence Theorem). With every non-exceptional quasi-4-connected
region R of G we can associate a G-tangle TR of order 4 and with every G-tangle T of order 4
a non-exceptional quasi-4-connected region RT such that T = TRT .

We shall call the torsos GJRT K for the G-tangles of order 4 the quasi-4-connected
components of G.

ICALP 2016
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Figure 3 The exceptional quasi-4-connected graphs.

In general, the mapping R 7→ TR is not injective; the mapping T 7→ RT is (otherwise the
theorem could not hold). The mapping R 7→ TR is canonical (or isomorphism invariant).
This means that for any two graphs G,G′ and regions R,R′, if f is an isomorphism from G

to G′ that maps R to R′ then f also maps TR to TR′ . The mapping T 7→ RT is not canonical.
However, the mapping from T to the quasi-4-connected component GJRT K, viewed as an
abstract graph, is.

We can only give a very high-level outline of the proof of the Correspondence Theorem.

4.1 Quasi-4-Connected Graphs and Regions
Recall from the introduction that a graph G is quasi-4-connected if G is 3-connected and for
all separations (Y, S, Z) ∈ Sep=3(G), either |Y | ≤ 1 or |Z| ≤ 1. A quasi-4-connected graph
G is exceptional if it is isomorphic to a subgraph of one of the graphs TH +3 or TR+3 shown
in Figure 3.

I Theorem 5. Let G be a quasi-4-connected graph. Then G has a tangle of order 4 if and
only if it is not exceptional. Furthermore, if G has a tangle of order 4, it has exactly one
such tangle, which consists of all separations (Y, S, Z) ∈ Sep<4(G) such that |Y | < |Z|.

A quasi-4-connected region of G is a subset R ⊆ V (G) satisfying the following condi-
tions.

(Q.1) GJRK is a faithful minor of G.

(Q.2) GJRK is quasi-4-connected.

(Q.3) For every connected component C of G \R it holds that N(C) = 3.

While conditions (Q.1) and (Q.2) are, to some extent, natural, condition (Q.3) may seem less
so. It is a (weak) maximality condition: if R′ ⊃ R such that GJR′K is quasi-4-connected, then
R′ \R contains at most one vertex of every connected component C of G\R (unless |R| = 4);
otherwise N(C) would be separator of GJR′K witnessing that it is not quasi-4-connected.
Conditions (Q.1)–(Q.3) are motivated by the characterisation of the triconnected components
given in Proposition 2(2). The reason for choosing these conditions instead of adding some
maximality condition is simply that they work best in combination with tangles and for the
Decomposition Theorem; it is condition (Q.3) which guarantees that our decomposition will
have adhesion 3.

Let R be a quasi-4-connected region of G. If GJRK is a non-exceptional quasi-4-connected
graph, then it has a unique tangle of order 4, and using Lemma 3, we can lift this tangle to a
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G-tangle of order 4. It can be proved that the lifted tangle does not depend on the model of
GJRK in G, as long as it is faithful. In this case we let TR (of the Correspondence Theorem)
be this lifted tangle.

However, sometimes we can even associate a tangle with a quasi-4-connected region R if
GJRK is exceptional. A non-exceptional extension of R is a graph Ĥ satisfying the following
conditions.

(X.1) Ĥ is a faithful minor of G.

(X.2) Ĥ is non-exceptional quasi-4-connected.

(X.3) R ⊆ V (Ĥ), and for each connected component C of G\R we have |V (Ĥ)∩V (C)| ≤ 1.

(X.4) Subject to (X.1)–(X.3), V (Ĥ) is inclusionwise minimal.

We call the region R non-exceptional if it has a non-exceptional extension. Note that if GJRK
is a non-exceptional quasi-4-connected graph, then GJRK is a non-exceptional extension of R.

If GJRK is exceptional and Ĥ is a non-exceptional extension of R, then there is a unique
Ĥ-tangle T̂ of order 4. Let I be a faithful image of Ĥ in G. Using Lemma 3, we can lift this
tangle to a G-tangle T (Ĥ, I) of order 4. It turns out that this tangle neither depends on the
choice of Ĥ nor on the choice of I. We let TR := T (Ĥ, I).

4.2 The Region of a Tangle
The goal of this section is to define the mapping T 7→ RT from G-tangles of order 4 to
quasi-4-connected regions. This is much more difficult than defining the mapping R 7→ TR;
technically it is clearly the most difficult part of the paper. We can only give the basic idea
here. We fix a G-tangle T of order 4 for the rest of the section.

We call two separations (Y1, S1, Z1), (Y2, S2, Z2) ∈ Sep(G) orthogonal if (Y1 ∪ S1) ∩ (Y2 ∪
S2) ⊆ S1 ∩ S2. It is not hard to show that the minimal separations of a tangle of order 3
in a graph are mutually orthogonal. The minimal separations of a tangle of order 4 are
not necessarily orthogonal, but the next lemma shows that they can only “cross” in a very
restricted way.

I Lemma 6 (Crossing Lemma). Let (Y1, S1, Z1), (Y2, S2, Z2) ∈ Tmin be distinct. Then either
(Y1, S1, Z1) and (Y2, S2, Z2) are orthogonal or Y1 ∩ Y2 = ∅ and S1 ∩ S2 = ∅ and there is an
edge s1s2 ∈ E(G) such that for i = 1, 2 we have Si ∩ Y3−i = {si}.

In the latter case, we call the edge s1s2 the crossedge of (Y1, S1, Z1) and (Y2, S2, Z2).

We call a proper separation (Y, S, Z) ∈ Sep=3(G) degenerate if |Y | = 1 and S is an
independent set of G. It can be shown that if (Y, S, Z) is non-degenerate then GJZK is a
faithful minor of G. We call a crossedge e of separations (Y1, S1, Z1), (Y2, S2, Z2) ∈ Tmin
non-degenerate if the two separations are non-degenerate. The key to our proof is the
following lemma (which is actually easy to prove).

I Lemma 7 (Crossedge Independence Lemma2). The set of non-degenerate crossedges is a
matching of G.

Let e1, . . . , em be the non-degenerate crossedges of T , and suppose that ei = si
1s

i
2. We

contract all these edges to their endvertex si
1. The order of the contractions is irrelevant

2 Actually, this is only a corollary to what we call the “Crossedge Independence Lemma” in the full
version [7].
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8:8 Quasi-4-Connected Components

because the edges form a matching. Up to isomorphism, it is also irrelevant whether we
contract ei to si

1 or si
2. Let G(m) be the resulting graph. We show that G(m) is still

3-connected and has a tangle T (m) of order 4 such that T is the lifting of T (m) to G.
Furthermore, T (m) has no non-degenerate crossedges. Hence the non-degenerate separations
in T (m)

min are mutually orthogonal. We let

RT := V (G(m)) \
⋃

(Y,S,Z)∈T (m)
min

non-degenerate

Y. (2)

We show that RT is a non-exceptional quasi-4-connected region of G and that T = TRT .

5 Decomposition into Quasi-4-Connected Components

With the Correspondence Theorem at hand, it is now relatively easy to prove the Decompos-
ition Theorem 1.

I Theorem 8. Let G be a 3-connected graph. Then G has a tree decomposition (T, β) of
adhesion at most 3 such that for all t ∈ V (T ), the torso GJβ(t)K is either a complete graph
K3 or K4 or a quasi-4-connected component of G.

Furthermore, such a decomposition can be computed in time O(n2(n+m)).

Here, and throughout this section, we denote the numbers of vertices and edges of the
input graph G of our algorithms by n and m, respectively.

The Decomposition Theorem 1 follows by combining the decomposition of Theorem 8
with the standard decomposition of a graph into its triconnected components.

The proof of Theorem 8 requires some preparation. For the rest of this section, we assume
that G is a 3-connected graph. Let (Y, S, Z) ∈ Sep=3(G) be non-degenerate. A split vertex
of (Y, S, Z) is a vertex z ∈ Z such that for every connected component C of G \ (S ∪ {z}) it
holds that |N(C)| = 3.

I Lemma 9. Let (Y0, S0, Z0) ∈ Sep=3(G) be a non-degenerate proper separation such that Z0
is connected and (Y0, S0, Z0) has no split vertex. Then the set T (Y0, S0, Z0) of all separations
(Y, S, Z) ∈ Sep<4(G) such that either Z0 ⊆ Z or |Z ∩S0| > |Y ∩S0| is a G-tangle of order 4.

Proof. Let T := T (Y0, S0, Z0). To see that T satisfies (T.1), let (Y, S, Z) ∈ Sep<4(G). If
S ⊆ Y0 ∪ S0, then the connected set Z0 is either a subset of Z or of Y , and thus either
(Y, S, Z) ∈ T or (Z, S, Y ) ∈ T . Suppose next that |S ∩Z0| = 1. Let z be the unique vertex in
S ∩Z0. Then z is not a split vertex of (Y0, S0, Z0), and hence there is a connected component
C of G \ (S0 ∪ {z}) such that N(C) = S0 ∪ {z}. Then V (C) ⊆ Z0, because z ∈ Z0, and thus
V (C) ∩ S = ∅. It follows that either V (C) ⊆ Y or V (C) ⊆ Z. Without loss of generality
we may assume that V (C) ⊆ Z. As S0 ⊆ N(C), this implies S0 \ S ⊆ Z. As S0 \ S 6= ∅, it
follows that (Y, S, Z) ∈ T . Finally, suppose that |S ∩ Z0| ≥ 2. If S ∩ S0 = ∅, then either
|Z ∩ S0| ≥ 2 or |Y ∩ S0| ≥ 2, and thus either (Y, S, Z) ∈ T or (Z, S, Y ) ∈ T . If |S ∩ S0| = 1,
then S ∩ Y0 = ∅, and as G is 3-connected and Y0 6= ∅, the vertices in S0 \ S belong to the
same connected component of G \ S. Hence either both are in Z or both are in Y , and again
it follows that either (Y, S, Z) ∈ T or (Z, S, Y ) ∈ T .

Observe next that |V (G)| ≥ 6, because |Y0| ≥ 1 and |S0| = 3 and |Z0| ≥ 2 (otherwise the
unique vertex in Z0 would be a split vertex).

I Claim 10. For all (Y, S, Z) ∈ T we have |S ∪ Z| ≥ 4.
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Proof. It follows from the definition of T that Z 6= ∅. If Y = ∅, then |S ∪ Z| = |V (G)| ≥ 6.
Otherwise, (Y, S, Z) is a proper separation and thus |S| = 3, which implies |S ∪ Z| ≥ 4. J

The claim implies that T satisfies (T.3).
To prove that T satisfies (T.2), let (Yi, Si, Zi) ∈ T for i = 1, 2, 3. Suppose for contradiction

Z1 ∩ Z2 ∩ Z3 = ∅ and that there is no edge that has an endvertex in each Zi.

I Claim 11. For distinct i, j, k ∈ [3] and x ∈ V (G), if x ∈ Zi ∩ Zj then x ∈ Yk.

Proof. We have x 6∈ Zk, because Zi∩Zj∩Zk = ∅. Suppose that x ∈ Sk, and let z ∈ N(x)∩Zk.
Such a z exists, because Zk 6= ∅ and N(Zk) ⊆ Sk, and as |Sk| ≤ 3 and G is 3-connected, this
implies N(Zk) = Sk. But the edge xz has an endvertex in every Zi, which contradicts our
assumption that no such edge exists. J

Case 1: There is an i ∈ [3] such that Si ⊆ Y0 ∪ S0. Without loss of generality, we may
assume that i = 1 and (Y1, S1, Z1) = (Y0, S0, Z0). We may further assume that Si 6⊆ Y0 ∪ S0
for i = 2, 3. Then |Zi ∩ S0| > |Yi ∩ S0|.

By Claim 11 we have Z2 ∩ Z3 ∩ S0 = Z2 ∩ Z3 ∩ S1 = ∅. Thus for some i ∈ {2, 3}
|Zi ∩ S0| < 2. Without loss of generality we assume |Z2 ∩ S0| < 2. Then |Y2 ∩ S0| = ∅ and
thus |S2 ∩S0| = 2. Since S2 6⊆ Y0 ∪S0, we have |S2 ∩Z0| = 1. As the vertex in S2 ∩Z0 is not
a split vertex, there is a connected component C of G \ (S0 ∪ S2) such that N(C) = S0 ∪ S2.
Then V (C) ⊆ Z0 ∩ Z2 = Z1 ∩ Z2. Now let v ∈ Z3 ∩ S0, and let w ∈ V (C) be adjacent to v.
Then the edge vw has an endvertex in each Zi.

Case 2: |Si∩Z0| 6= ∅ for all i ∈ [3]. Then |Zi∩S0| > |Yi∩S0|. If |Zi∩Zj∩S0| = ∅ for all
i 6= j, then |Zi ∩S0| = 1 and thus |Yi ∩S0| = 0 for all i. Thus |Si ∩S0| = 2 and |Si ∩ Y0| = ∅,
because Si 6⊆ S0 ∪ Y0. But this implies Y0 ⊆ Z1 ∩ Z2 ∩ Z3, which is a contradiction.

Hence without loss of generality we may assume that Z1∩Z2∩S0 6= ∅. Let s ∈ Z1∩Z2∩S0.
Then by Claim 11, s ∈ Y3. Then |Y3 ∩ S0| ≥ 1, and this implies |Z3 ∩ S0| ≥ 2. Let
s′, s′′ ∈ Z3 ∩ S0. Then S0 = {s, s′, s′′}.

If |S3∩Z0| ≤ 1, there is a connected component C of G\(S0∪S3) such thatN(C) = S0∪S3.
But then there is a path from s ∈ Y3 to s′ ∈ Z3 in G \ S3, which is impossible. Hence
|S3 ∩ Z0| ≥ 2.

Thus |S3∩Y0| ≤ 1. Since G is a 3-connected and Y0 6= ∅, there is a path from s to {s′, s′′}
with all internal vertices in Y0. Hence |Y0∩S3| = 1, and the unique vertex y ∈ Y0∩S3 separates
s ∈ Y3 from {s′, s′′} ⊆ Z3 in the graph G[Y0 ∪ S0]. Then ss′, ss′′ 6∈ E(G). Furthermore,
sy ∈ E(G) and y is the only neighbour of s in Y0 ∪ S0, because otherwise {y, s} would be
separator of G. By Claim 11 and because y ∈ S3, we have y 6∈ Z1 ∩ Z2. Say, y 6∈ Z2. Then
y ∈ S2, because y is adjacent to s ∈ Z2. As S2 6⊆ Y0 ∪ S0, it now follows that s′ and s′′ are
not both in S2. As |Z2 ∩ S0| > |Y2 ∩ S2|, one of these vertices, say, s′ is in Z2.

By Claim 11, s′ ∈ Z2 ∩ Z3 implies s′ ∈ Y1. Arguing as above with (Y1, S1, Z1) instead
of (Y3, S3, Z3), we see that Z1 ∩ S0 = {s, s′′} and |S1 ∩ Z0| = 2 and |S1 ∩ Y0| = 1, and the
unique vertex y′ ∈ S1 ∩ Y0 separates s′ from s, s′′ in G. Furthermore, s′s, s′s′′ 6∈ E(G), and
s′y′ ∈ E(G) and y′ is the only neighbour of s′ in Y0 ∪ S0.

Now we have s′′ ∈ Z1 ∩ Z3, and again by the same argument we see that s′′ ∈ Y2 and
Z2 ∩ S0 = {s, s′} and |S2 ∩ Z0| = 2 and |S2 ∩ Y0| = 1 and the unique vertex y′′ ∈ S1 ∩ Y0
separates s′ from s, s′′ in G. Furthermore, s′′s, s′′s′ 6∈ E(G), and s′′y′′ ∈ E(G) and y′′ is the
only neighbour of s′′ in Y0 ∪ S0.

Let us rename the vertices s, s′, s′′ to s12, s23, s13 and the vertices y, y′, y′′ to y12, y23, y13.
Then for distinct i, j, k we have sij ∈ S0 ∩ Zi ∩ Zj ∩ Yk and Sk ∩ Y0 = {yij} and N(sij) ∩
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8:10 Quasi-4-Connected Components

(Y0 ∪ S0) = {yij}. Note that this implies that S0 = {s12, s13, s23} is an independent set.
Moreover, Y0 \ {yij} ⊆ Zk, because all y ∈ Y0 \ {yij} are reachable in G[Y0 ∪ S0] \ {yij} by a
path from {sik, sjk} ⊆ Zk.

As the separation (Y0, S0, Z0) is non-degenerate and S0 is an independent set, we have
|Y0| > 1. Since N(S0) = {y12, y23, y13} and N(yij) ∩ S0 = {sij} and G is 3-connected, it is
easy to see that this implies that the vertices yij are mutually distinct. Now let e = vw be
an arbitrary edge of G[Y0]. Such an edge exists, and it has an endvertex in each Zk. Again,
this is a contradiction. J

LetW,X ⊆ V (G). Then a (W,X)-separation is a separation (Y, S, Z) such thatW ⊆ Y ∪S
and X ⊆ Z ∪ S. It is proper if W ∩ Y 6= ∅ and X ∩ Z 6= ∅. A (proper) (W,X)-separation
(Y, S, Z) is minimum if its order is minimal, that is, there is no (proper) (W,X)-separation
(Y ′, S′, Z ′) such that |S′| < |S|. It is leftmost minimum if it is minimum and, subject to
this condition, Y is inclusionwise minimal. It can be shown by a standard submodularity
argument that there always is a unique leftmost minimum (W,X)-separation. There is not
necessarily a unique leftmost minimum proper (W,X)-separation, but the number of such
separations is (polynomially) bounded in terms of k.

I Lemma 12. Let k ≥ 1. Then there is a linear time algorithm that, given a graph G and
sets W,X ⊆ V (G), decides if there is a proper (W,X)-separation of order at most k, and if
there is computes the set of all leftmost minimum proper (W,X)-separations.

Let us say that a separation (Y0, S0, Z0) ∈ Sep=3(G) defines a tangle if (Y0, S0, Z0) is
non-degenerate and Z0 is connected in G and (Y0, S0, Z0) has no split vertex. Then the
tangle defined by (Y0, S0, Z0) is T (Y0, S0, Z0) (of Lemma 9).

I Lemma 13. There is an algorithm that, given a 3-connected graph G and a separation
(Y0, S0, Z0) of G of order 3 defining the tangle T = T (Y0, S0, Z0), computes the set of all
non-degenerate separations in Tmin and the set of all non-degenerate crossedges of T in time
O(n(n+m)).

Proof. We show how to compute the set Tmin; then we can easily filter out the non-degenerate
separations.

Let x ∈ Z0. Observe that if (Z, S, Y ) is a proper (S0, {x})-separation of order at most
3, then (Y, S, Z) ∈ T . This follows immediately from the definition of T . It implies the
following equivalence for every separation (Y, S, Z) of G of order 3.
1. (Y, S, Z) ∈ Tmin and (Y, S, Z) does not cross (Y0, S0, Z0).
2. There is an x ∈ Z0 such that (Z, S, Y ) is a leftmost minimum proper (S0, {x})-separation.
We can use this equivalence to compute the set of all (Y, S, Z) ∈ Tmin such that (Y, S, Z)
does not cross (Y0, S0, Z0) (repeatedly applying the algorithm of Lemma 12 to all x ∈ Z0).
Note that the equivalence also gives us a linear bound on the number of such (Y, S, Z).

It remains to deal with the (Y, S, Z) ∈ Tmin crossing (Y0, S0, Z0). For each s ∈ S0 that
has a unique neighbour y ∈ Y0 ∪ S0, the edge sy may be a crossedge. This gives us at most
three potential crossedges, and we deal with them separately. So let s ∈ S and y ∈ Y0 such
that N(s) ∩ (Y0 ∩ S0) = {y}. Then for every separation (Y, S, Z) ∈ Sep=3(G) the following
are equivalent.
3. y ∈ S and

(
Z ∩ (S0 ∪ Z0), S ∩ (S0 ∪ Z0), Y ∩ (S0 ∪ Z0)

)
is a leftmost minimum proper

(S \ {s}, {s})-separation in the graph G[S0 ∪ Z0].
4. (Y, S, Z) ∈ Tmin and (Y, S, Z) crosses (Y0, S0, Z0) with crossedge ys.
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To see this, note that (3) implies that |S ∩ Z0| = 2, because (Y0, S0, Z0) has no split vertex.
The equivalence between (3) and (4) allows us to compute the remaining separations in Tmin.

As we have an overall linear bound on the number of separations in Tmin, we can easily
compute the set of non-degenerate crossedges. J

Let us a call a 3-separator S of G degenerate if there is a connected component C of
G \ S such that the separation (G \ (S ∪ V (C)), S, V (C)) is degenerate. It is easy to see that
this is the case if and only if S is an independent set and G \ S has exactly two connected
components, one of which has order 1.

I Lemma 14. There is an a algorithm that, given a 3-connected graph G, decides if G has
a non-degenerate 3-separator and computes one if there is in time O(n2(n+m)).

Proof. We first test if there is an S ⊆ V (G) such that |S| = 3 and all connected components
of G \ S have order 1. In this case, S is a non-degenerate 3-separator if |G| ≥ 6 or if |G| ≥ 5
and S is not an independent set.

In the following, we assume that for every S ⊆ V (G) such that |S| = 3 there is at least one
connected components C of G\S such that |C| ≥ 2. Now suppose that S is a non-degenerate
3-separator of G. Let Y be the vertex set of a connected component of G of size |Y | ≥ 2,
and let Z := V (G) \ (S ∪ Y ). Let y ∈ Y and z ∈ Z.

Then there is a leftmost minimum proper ({y}, {z})-separation (Y ′, S′, Z ′) with Y ′∪S′ ⊆
Y ∪ S, because (Y, S, Z) is a minimum proper ({y}, {z})-separation. The separator S′ is
non-degenerate unless Y ′ = {y} and S′ is an independent set. Then S′ = N(y). However, in
this case there is a leftmost minimum proper (S′, {z}) separation (Y ′′, S′′, Z ′′) such that S′′
is non-degenerate. To see this, let y′ ∈ N(y) ∩ Y . Then there is a proper leftmost minimum
(S′, {z}) separation (Y ′′, S′′, Z ′′) with y, y′ ∈ Y ′′ and Y ′′ ∪ S′′ ⊆ Y ∪ S, because (Y, S, Z)
is a minimum proper (S′, {z}) separation with y, y′ ∈ Y . The set S′′ is a non-degenerate
3-separator.

Thus we can find a non-degenerate 3-separator as follows. For all pairs y, z of distinct
vertices, we compute all leftmost minimum proper ({y}, {z})-separations (Y ′, S′, Z ′) and
check if there is one such that S′ is a non-degenerate 3-separator. If y has degree 3 and
S′ := N(y) is an independent set, we also compute all leftmost minimum proper (S′, {z})
separations (Y ′′, S′′, Z ′′) and check if S′′ is a non-degenerate 3-separator. J

Proof of Theorem 8. If G has no non-degenerate 3-separator, then G is quasi-4-connected,
and we return the trivial tree decomposition with a one-node tree. In the following, we
assume that G has at least one non-degenerate 3-separator.

We view the tree T in the tree decomposition as directed with all edges pointing away
from the root, and we denote the descendant order in the tree by E. With each (directed)
edge e = (s, t) of the tree we associate a separation sep(s, t) = (Y, S, Z) of order 3 such that
Z is connected in G and S = β(t) ∩ β(s) and S ∪ Z =

⋃
uDt β(u).

We build the tree decomposition iteratively starting from the root r of the tree. We pick
an arbitrary non-degenerate 3-separator Sr of G and let β(r) := Sr. For every connected
component C of G \ Sr we create a child t of r, and we let sep(r, t) := (V (G) \ (Sr ∪
V (C)), Sr, V (C)).

At every step of the construction, we pick a leaf t of the current tree such that β(t) is not
yet defined. Let s be the parent of t and sep(s, t) = (Y0, S0, Z0).

Case 1: |Z0| ≤ 1. Then |S0 ∪Z0| ≤ 4, and we let β(t) := S0 ∪Z0. The node t will remain
a leaf of the final tree.
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Case 2: |Z0| > 1 and (Y0, S0, Z0) has a split vertex z0 ∈ Z0. Then we let β(t) :=
S0 ∪ {z0}. For every connected component C of G \ (S0 ∪ {z0}) with V (C) ⊆ Z0 we create a
child u of t and let sep(t, u) := (V (G) \ (N(C) ∪ V (C)), N(C), V (C)).

Case 3: |Z0| > 1 and (Y0, S0, Z0) has no split vertex. Let T = T (Y0, S0, Z0) be the
G-tangle of Lemma 9. Note that (Y0, S0, Z0) ∈ Tmin. Let RT be the quasi-4-connected region
associated with T . When contracting the non-degenerate crossedges that involve S0, we
make sure that we contract them to their endvertices in S0. Then S0 ⊆ RT and Y0 ∩RT = ∅.
We let β(t) := RT .

For every connected component C of G \RT we create a child u of t and let sep(t, u) :=
(V (G) \ (N(C) ∪ V (C)), N(C), V (C)).

The completes the description of our construction. We need to describe a time O(n2(n+
m))-algorithm implementing it. By Lemma 14, we can compute a non-degenerate 3-separator
Sr (for the root r) within this time if there is one.

Now we show that we can handle every step of the construction in time O(n(n+m)). So
let t be a leaf of the current tree, s its parent, and (Y0, S0, Z0) := sep(s, t). Case 1 is easy.
For Case 2, we need to compute all connected components of G \ (S0 ∪ {z}) for all z ∈ Z0,
which we can do in time O(n(n+m)). For Case 3, we need to compute Tmin and RT for the
tangle T = T (Y0, S0, Z0), and Lemma 13 allows us to do this. J

Note that the results of Section 4, in particular the Correspondence Theorem 4, are used
in Case 3 of the proof of Theorem 8 (and this is the only place in the proof where they are
used).

I Remark. Let (T, β) be tree decomposition of G into quasi-4-connected components. The
G-tangles of order 4 are associated with all nodes t such that either |β(t)| ≥ 5 or |β(t)| = 4 and
for each subset S ⊆ β(t) of size |S| = 3 there is a neighbour u of t such that β(u) ∩ β(t) = S.
In the second case, the neighbours of t allow us to find a non-exceptional extension of the
quasi-4-connected region β(t).

6 Conclusions

Relaxing 4-connectedness, we introduce the notion of quasi-4-connectedness of graphs and
prove that every graph has a decomposition into quasi-4-connected components. We show
that the quasi-4-connected components correspond to the tangles of order 4, putting our result
in the context of recent work on tangles and decompositions [1, 2, 3, 9, 11, 17]. Furthermore,
we prove that our decomposition can be computed in cubic time. Although we do not explore
this in the present paper, I believe that the decomposition may turn out to be a useful
algorithmic tool, just like the decomposition into 3-connected components (though maybe
not quite as broadly applicable).

The most obvious question is whether our result has a generalisation to “quasi-k-connected
components”, whatever they may be, for k ≥ 5. I am skeptical, because we exploit many
special properties of separators of order 3 here, most importantly the limited way in which
they can cross. However, our decomposition is not a straightforward generalisation of the
decomposition into 3-connected components either, and it may well be that new ideas lead
to perfectly nice decompositions of higher order.

Finally, in particular when thinking of applications, it would be desirable to have a
decomposition algorithm working in quadratic or even in linear time. I see no fundamental
obstructions to the existence of such an algorithm.
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Abstract
We establish the complexity of several graph embedding problems: Subgraph Isomorphism,
Graph Minor, Induced Subgraph and Induced Minor, when restricted to H-minor free
graphs. In each of these problems, we are given a pattern graph P and a host graph G, and
want to determine whether P is a subgraph (minor, induced subgraph or induced minor) of G.
We show that, for any fixed graph H and ε > 0, if P is H-Minor Free and G has treewidth tw,
(induced) subgraph can be solved 2O(kεtw+k/ log k)nO(1) time and (induced) minor can be solved
in 2O(kεtw+tw log tw+k/ log k)nO(1) time, where k = |V (P )|.

We also show that this is optimal, in the sense that the existence of an algorithm for one of
these problems running in 2o(n/ logn) time would contradict the Exponential Time Hypothesis.
This solves an open problem on the complexity of Subgraph Isomorphism for planar graphs.

The key algorithmic insight is that dynamic programming approaches can be sped up by
identifying isomorphic connected components in the pattern graph. This technique seems widely
applicable, and it appears that there is a relatively unexplored class of problems that share a
similar upper and lower bound.
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1 Introduction

We study several problems related to recognizing a pattern graph P as substructure of a host
graph G: Subgraph Isomorphism, Induced Subgraph, Graph Minor and Induced
Minor. We consider the case in which P excludes a specific minor H, ε > 0 is a constant
and give algorithms parameterized by the treewidth tw of G and the number of vertices k of
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9:2 Subexponential Time Algorithms for Embedding H-Minor Free Graphs

P . Specifically, we show that for any ε > 0 and graph H, if P is H-minor free and G has
treewidth tw, (induced) subgraph can be solved 2O(kεtw+k/ log k)nO(1) time and (induced)
minor can be solved in 2O(kεtw+tw log tw+k/ log k)nO(1) time.

The k/ log k dependence in the exponent is optimal: we present lower bounds based on
the Exponential Time Hypothesis, showing that all these problems can not be solved in time
2o(n/ logn), even when P is a tree and G is connected and series-parallel (and thus planar).
Our lower bound answers a question of Marx [24] negatively: assuming the ETH, there is no
2O(
√
k)nO(1) algorithm for subgraph isomorphism on planar graphs. This result is surprising,

since for many problems on planar graphs a square root does appear in the exponent.
As an important special case of our result, we show that subgraph isomorphism can be

solved in time 2O(kε
√
n+k/ log k) on H-Minor Free graphs (which includes planar, bounded-

treewidth and bounded-genus graphs). Our result can be combined with a recent result of
Fomin et al. [17] to show that subgraph isomorphism can be solved in 2O(k/ log k)nO(1) if P is
connected and G is apex-minor free, which our lower bound shows is optimal (under ETH).

Subgraph isomorphism has received considerable attention in the literature. Results
include polynomially solvable cases, such as recognizing a fixed pattern in planar graphs
[13, 15], biconnected outerplanar graphs [22], graphs of log-bounded fragmentation [20] and
graphs of bounded genus [10] and certain subclasses of graphs of bounded treewidth [26],
exact algorithms [30], lower bounds [19, 11, 28] and results on parameterized complexity [25].

For a pattern graph P of treewidth t, subgraph isomorphism is solvable in 2O(k)nO(t)

time using the color-coding technique [3]. If the host graph is planar, subgraph isomorphism
can be solved in 2O(k)n time [13]. In general graphs, subgraph isomorphism can be solved in
2O(n logn) time and, assuming the ETH, this is tight [16].

Graph minor problems are also of interest, especially in the light of Robertson and
Seymour’s seminal work on graph minor theory (see e.g. [29]) and the recent development
of bidimensionality theory [12]. Many graph properties can be tested by checking for the
inclusion of some minor. Testing whether a graph G contains a fixed minor P can be done in
O(n3) time [27], this was recently improved to O(n2) [21]. However, the dependence on n is
superexponential in a strong sense. Testing whether a graph P is a minor of a planar graph
G can be done in 2O(k)nO(1) time [1], which is only single-exponential. Our lower bound
shows this running time can not be improved to 2o(k/ log k), assuming ETH. Our algorithms
are subexponential in k, but (in contrast to [1, 21]) superpolynomial in n. This is to our
knowledge the first subexponential minor testing algorithm (for a non-trivial class of graphs).

Our algorithms are based on dynamic programming on tree decompositions. In particular,
we use dynamic programming on the host graph and store correspondences to vertices in
the pattern graph. The key algorithmic insight is that this correspondence may or may not
use certain connected components of the pattern graph (that remain after removing some
separator vertices). Instead of storing for each component whether it is used or not, we
identify isomorphic connected components and store only the number of times each is used.

In [20], the authors give an algorithm for subgraph isomorphism, which runs in polynomial
time for a host graph of bounded treewidth and a pattern graph of log-bounded fragmentation
(i.e. removing a separator decomposes the graph into at most logarithmically many connected
components). This is achieved using a similar dynamic programming technique, which (in
general) uses time exponential in the number of connected components that remain after
removing a separator. By assuming the number of connected components (fragmentation)
is logarithmic, the authors obtain a polynomial time algorithm. In contrast, we consider a
graph class where fragmentation is unbounded, but the number of non-isomorphic connected
components is small. This leads to subexponential algorithms.



H. L. Bodlaender, J. Nederlof, and T. C. van der Zanden 9:3

This paper builds on techniques due to Bodlaender, Nederlof and van Rooij [7, 9]. They
give a 2O(n/ logn)-time algorithm for finding tree decompositions with few bags and a matching
lower bound (based on the Exponential Time Hypothesis), and a 2O(n/ logn) algorithm for
determining whether a given k-colored graph is a subgraph of a properly colored interval
graph. These earlier papers, coupled with our results, suggest that this technique may have
many more applications, and that there exists a larger class of problems sharing this upper
and lower bound.

2 Preliminaries

Graphs. Given a graph G, we let V (G) denote its vertex set and E(G) its edge set.
Given X ⊆ V (G), let G[X] denote the subgraph of G induced by X and use shorthand
E(X) = E(G[X]). Let Nb(v) denote the neighbourhood of v, that is, the vertices adjacent
to v. For a set of vertices S, let Nb(S) = ∪v∈SNb(v) \ S. Let CC(G) denote the set of the
connected components of G. Given X ⊆ V (G), we write as shorthand CC(X) = CC(G[X]).

Functions. Given a function f : A→ B, we let f−1(b) = {a ∈ A | f(a) = b}. Depending on
the context, we may also let f−1(b) denote (if it exists) the unique a ∈ A so that f(a) = b.
We say g : A → B is a restriction of f : A′ → B′ if A ⊆ A′ and B ⊆ B′ and for all a ∈ A,
g(a) = f(a). We say g is an extension of f if f is a restriction of g.

Isomorphism. We say a graph P is isomorphic to a graph G if there is a bijection f :
V (P ) → V (G) so that (u, v) ∈ E(P ) ⇐⇒ (f(u), f(v)) ∈ E(G). We say a graph P is a
subgraph of G if we can obtain a graph isomorphic to P by deleting edges and or vertices
from G, and we say P is an induced subgraph if we can obtain it by deleting only vertices.

Contractions, minors. We say a graph G′ is obtained from G by contracting edge (u, v), if
G′ is obtained from G by replacing vertices u, v with a new vertex w which is made adjacent
to all vertices in Nb(u)∪Nb(v). A graph G′ is a minor of G if a graph isomorphic to G′ can
be obtained from G by contractions and deleting vertices and/or edges. G′ is an induced
minor if we can obtain it by contractions and deleting vertices (but not edges).

Tree decompositions. A tree decomposition of a graph G is a rooted tree T with for every
vertex i ∈ V (T ) a bag Xi ⊆ V (G), such that ∪i∈V (T )Xi = V (G), for all (u, v) ∈ E(G) there
is an i ∈ V (T ) so that {u, v} ⊆ Xi and for all v ∈ V (G), T [{i ∈ V (T ) | v ∈ Xi}] is connected.
The width of a tree decomposition is maxi∈V (T ) |Xi|− 1 and the treewidth of a graph G is the
minimum width over all tree decompositions of G. For a node t ∈ T , we let G[t] denote the
subgraph of G induced by the vertices contained in the bags of the subtree of T rooted at t.

To simplify our algorithms, we assume that a tree decomposition is given in nice form,
where each node is of one of four types:

Leaf: A leaf node is a leaf i ∈ T , and |Xi| = 1.
Introduce: An introduce node is a node i ∈ T that has exactly one child j ∈ T , and Xi

differs from Xj only by the inclusion of one additional vertex.
Forget: An introduce node is a node i ∈ T that has exactly one child j ∈ T , and Xi

differs from Xj only by the removal of one vertex.
Join: A join node is a node i ∈ T with exactly two children j, k ∈ T , so that Xi = Xj =
Xk.

ICALP 2016
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A tree decomposition can be converted to a nice tree decomposition of the same width
and of linear size in linear time [5].

3 Algorithmic Results

We begin by describing our algorithm for subgraph isomorphism, which is based on dynamic
programming on a tree decomposition T of the host graph G. The algorithm is somewhat
similar to that of Hajiaghayi et al. [20] for subgraph isomorphism on log-bounded fragmenta-
tion graphs, and we use similar notions of (extensible) partial solutions and characteristic
of a partial solution (Section 3.1). Our main contribution is the canonization technique
(Section 3.2) and its analysis (Section 3.3), which gives the subexponential running time.

3.1 An algorithm for Subgraph Isomorphism
I Definition 1 ((Extensible) Partial Solution). For a given node t ∈ T of the tree decomposition
of G, a partial solution (relative to t) is a triple (G′, P ′, φ) where G′ is a subgraph of G[t],
P ′ is an induced subgraph of P and φ : V (G′)→ V (P ′) is an isomorphism from G′ to P ′.

Say that a partial solution (G′, P ′, φ) relative to t is extensible if there exists an extension
of φ, ψ : V (G′′) → V (P ) which is an isomorphism from a subgraph G′′ of G to P where
V (G′′) ∩ V (G[t]) = V (G′).

To facilitate dynamic programming, at node t of the tree decomposition we only consider
partial solutions (G′, P ′, φ) which might be extensible (i.e. we attempt to rule out non-
extensible solutions). Note that in a partial solution we have already decided on how the
vertices in G[t] are used, and the extension only makes decisions about vertices not in G[t].
Instead of dealing with partial solutions directly, our algorithm works with characteristics of
partial solutions:

I Definition 2 (Characteristic of a Partial Solution). The characteristic (f, S) of a partial
solution (G′, P ′, φ) relative to a node t ∈ T is a function f : Xt → V (P ) ∪ {�}, together
with a subset S ⊆ V (P ) \ f(Xt), so that:

for all v ∈ V (G′) ∩Xt, f(v) = φ(v) and f(v) = � otherwise,
f is injective, except that it may map multiple elements to �,
S = V (P ′) \ φ(Xt).

The following easy observation justifies restricting our attention to characteristics of
partial solutions:

I Lemma 3 (Equivalent to Lemma 10, [20]). If two partial solutions have the same charac-
teristic, either both are extensible or neither is extensible.

I Lemma 4. If (f, S) is the characteristic of an extensible partial solution (G′, P ′, φ) relative
to a node t ∈ T , then S is a union of connected components of P [V (P ) \ f(Xt)].

Proof (due to Hajiaghayi et al. [20]). Suppose there exist adjacent vertices v1, v2 ∈ V (P )\
φ(Xt) and v1 ∈ V (P ′), v2 6∈ V (P ′). Then it is never possible to find a preimage u for v2 in
an extension of (G′, P ′, φ): we require that u 6∈ V (G[t]), but all vertices adjacent to φ−1(v1)
are contained in V (G[t]). J

The latter fact will be key to achieving the subexponential running time. The requirement
that S is a union of connected components also appears in the definition of ‘good pair’ in
Bodlaender et al. [7]. We show how to compute the characteristics of partial solutions in
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Procedure 1 Leaf case: computes the partial solution characteristics for a leaf bag t ∈ T ,
with Xt = {v}.

1: let R = ∅
2: for each u ∈ V (P ) ∪ {�} do
3: let f : Xt → V (P ) ∪ {�} be the function so that f(v) = u

4: let R = R ∪ {(f, ∅)}
5: end for
6: filter R
7: return R

Procedure 2 Introduce case: introduces a vertex v into a bag Xt.
1: let R be the set of partial solution characteristics for t
2: let R′ = ∅
3: for each (f, S) ∈ R and each u ∈ V (P ) \ (f(Xt) ∪ S) ∪ {�} do
4: if u = � or for all w ∈ Nb(u) ∩ f(Xt), (v, f−1(w)) ∈ E(G) then
5: let f ′ : Xt ∪ {v} → V (P ) ∪ {�} be the extension of f so that f(v) = u

6: let R′ = R′ ∪ {(f ′, S)}
7: end if
8: end for
9: filter R′

10: return R′

Procedure 3 Forget case: forgets a vertex v from a bag Xt.
1: let R be the set of partial solution characteristics for t
2: let R′ = ∅
3: for each (f, S) ∈ R do
4: let f ′ be the restriction of f to Xt \ {v}
5: if f(v) = � or f(v) is not adjacent to any vertex of V (P ) \ (f(Xt) ∪ S) then
6: let R′ = R′ ∪ {(f ′, S ∪ {f(v)} \ {�})}
7: end if
8: end for
9: filter R′

10: return R′

Procedure 4 Join case: combines the partial solution characteristics for two bags Xs = Xt.
1: let R be the set of partial solution characteristics for s
2: let T be the set of partial solution characteristics for t
3: let R′ = ∅
4: for each (f, S) ∈ R and each (g,Q) ∈ T do
5: if f = g and S ∩Q = ∅ then
6: let R′ = R′ ∪ {(f, S ∪Q)}
7: end if
8: end for
9: filter R′

10: return R′

ICALP 2016



9:6 Subexponential Time Algorithms for Embedding H-Minor Free Graphs

a bottom-up fashion, so that we can tell whether G has a subgraph isomorphic to P by
examining the characteristics of the root bag. We proceed by giving pseudocode for the leaf,
introduce, forget and join cases and argue for their correctness.

The correctness of Procedure 1 is self-evident, as we simply enumerate all the possibilities
for f (which means guessing a vertex in P to map v to). We will give details of the filter
procedure in the next section, for now it suffices to treat the pseudocode as if this call were
not present.

Procedure 2 extends existing partial solutions by choosing a vertex to map v to. To
ensure we obtain valid characteristics of partial solutions, we check that for any edge incident
to v in P [S ∪ f(Xt)] there is a corresponding edge in G. Because S is a union of connected
components of G[V (P ) \ f(Xt)], f(v) can not be adjacent to any vertex in S, and thus
it suffices to check adjacency only against vertices in f(Xt). Then S remains a union of
connected components since the removal of a vertex can only further disconnect S. Note
that u is chosen so that f remains injective.

Procedure 3 discards any solutions that would result in S not remaining the union of
connected components that we require after forgetting a vertex (note that this means we
keep only partial solutions were we have already chosen preimages for all of the neighbours
of the image of the vertex being forgotten).

Finally, consider Procedure 4. Because (as a basic property of nice tree decompositions)
V (H[i]) ∩ V (H[j]) = Xi, we obtain an injective function if and only if S ∩R = ∅. We can
therefore merge two partial solutions if they map the vertices of Xt = Xs in the same way
and S ∩ R = ∅. Note that we do indeed create all possible partial solutions in this way:
given a partial solution, we can split it into partial solutions for the left and right subtrees
since (as there are no edges between the internal vertices of the left and right subtrees) a
connected component of S must be covered entirely by either the left or right subtree.

These procedures, applied bottom-up on the tree decomposition, give an algorithm that
decides subgraph isomorphism. Note that if one exists, a solution can be reconstructed from
the characteristics.

3.2 Reducing the number of partial solutions using isomorphism tests
In this section, we show how adapt the algorithm from the previous section to achieve the
claimed running time bound. This involves a careful analysis of the number of characteristics,
and using isomorphism tests to reduce this number. Currently, if the connected components
of S are small (e.g., O(1) vertices each) then their number is large (e.g., Ω(n) components)
and thus in the worst case we have 2Ω(n) partial solutions. However, if there are many small
connected components many will necessarily be isomorphic to each other (since there are
only few isomorphism classes of small connected components) and we can thus reduce the
number of characteristics by identifying isomorphic connected components:

I Definition 5 (Partial Solution Characteristic Isomorphism). Given a bag t ∈ T , two charac-
teristics of partial solutions (f, S), (g,R) for t are isomorphic if:

f = g,
there is a bijection h : CC(S)→ CC(R),
for all connected components c ∈ CC(S), c and h(c) are isomorphic when all vertices
v ∈ c vertices are labelled with Nb(v) ∩ f(Xt) (i.e. the set of vertices of f(Xt) to which
v is adjacent).

Clearly, the algorithm given in the previous section remains correct even if after each
procedure we remove duplicate isomorphic characteristics. To this end, we modify the join
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Procedure 5 Connected Component Canonization: Computes a canonical representation
for a union of connected components S ⊆ V (P ) \ f(Xt)

1: let S′ be the union of the large connected components of S
2: let Q = ∅
3: for each small connected component s of S do
4: compute the canonical representation r of s when each v ∈ V (s) is labelled with
Nb(v) ∩ f(Xt)

5: let Q = Q ∪ {r}
6: end for
7: Sort S′ and Q lexicographically
8: return (S′, Q)

Procedure 7 Filtering Procedure: Filters a set of partial solution characteristics R to
remove duplicates

1: compute the canonical representation CS for every (f, S) ∈ R using Procedure 5
2: sort R first by f , then by CS in lexicographical order
3: loop over R, removing all but one of each group of isomorphic partial solutions
4: return R

case (Procedure 4): the disjointness check S ∩Q = ∅ should be replaced with a check that if
P [V (P ) \ f(Xt)] contains NP (y) connected components of isomorphism class y, and P [S]
(resp. P [Q]) contains NS(y) (resp. NQ(y)) connected components of isomorphism class y,
then NS(y) +NQ(y) ≤ NP (y). Similarly, the statement S ∪Q needs to be changed to, if the
union is not disjoint, replace connected components that occur more than once with other
connected components of the same isomorphism class (so as to make the union disjoint while
preserving the total number of components of the same type).

Call a connected component small if it has at most c log k vertices, and large otherwise.
We let c > 0 be a constant that depends only on |V (H)| and ε. We do not state our choice
of c explicitly, but in our analysis we will assume it is “small enough”.

For a small connected component s, we label each of its vertices by the subset of vertices
of f(Xt) to which it is adjacent. We then compute a canonical representation of this labeled
component, for example by considering all permutations of its vertices, and choosing the
permutation that results in the lexicographically smallest representation. Note that since we
only canonize the small connected components using such a trivial canonization algorithm
does not affect the running time of our algorithm, as (c log k)! is only slightly superpolynomial.

Procedure 5 computes a canonical representation of a partial solution. It requires that
we have some predefined ordering of the vertices of G. The canonization procedure 5 allows
us to define the filter procedure (Procedure 6).

Traditionally, a canonization is a function that maps non-isomorphic graphs to distinct
strings, and isomorphic graphs to identical strings. We use this term slightly more loosely, as
our canonization procedure 5 may map isomorphic graphs to distinct strings since it only
canonizes the small connected components. Thus, Procedure 6 may not remove all duplicate
isomorphic partial solutions. However, we will show that it removes enough of them.
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3.3 Bounding the number of non-isomorphic partial solutions

In this section, we analyse the number of non-isomorphic partial solutions, and show that
the algorithm given in the previous section indeed achieves the stated time bound. In the
following, let ε > 0 and let G be a graph of treewidth at most tw. Furthermore, suppose
that P is H-minor free for some fixed graph H.

Recall that a partial solution for a node t ∈ T of the tree decomposition consists of
f : Xt → V (P ) ∪ {�} and a subset S ⊆ V (P ) \ f(Xt), which is a union of connected
components of the subgraph induced by S ⊆ V (P ) \ f(Xt). The number of choices for f is
at most (k + 1)|Xt| = 2O(tw log k). We now proceed to bound the number of cases for S.

We distinguish between connected components of V (P ) \ f(Xt) of which there are “few”,
and connected components of V (P ) \ f(Xt) of which there can be “many”, but few non-
isomorphic ones. For some constant c, we say a component is small if it has at most c log k
vertices, and large otherwise. The large connected components are amongst the few, since
there are at most k/(c log k) components with at least c log k vertices. For each of these
components, we store explicitly whether or not it is contained in S. They contribute a factor
of 2O(k/ log k) to the number of cases. For the small connected components, we will show a
partition into the “few” (which we treat similarly to the large connected components), and
into the “many, but few non-isomorphic” (for which we store, for each isomorphism class,
the number of components from that isomorphism class contained in S).

I Claim. For a given node t and function f : Xt → V (P ), there are at most O(kε/2tw)
isomorphism classes of small connected components.

Proof. For a (small) connected component x ∈ CC(V (P ) \ f(Xt)), its isomorphism class
is determined by the isomorphism class of x itself, and the adjacency of vertices v ∈ x to
vertices in f(Xt). Since |x| ≤ c log k and P is H-minor free, there exists a constant CH > 1
so that there are at most 2CH ·c log k cases for the isomorphism class of x itself (see [4]).

What remains is to bound the number of cases for adjacency of x to Xt. In this specific
case, Nb(x) denotes the set of vertices of Xt to which x is incident, that is, v ∈ Nb(x) if and
only if v ∈ Xt and there exists a vertex u ∈ x so that (u, v) ∈ E(P ). Using the following
lemma, we further divide the small connected components into two cases: the components
with a large neighbourhood, and the components with a small neighbourhood.

I Lemma 6 (Gajarskỳ et al., special case of Lemma 3 of [18]). Let H be a fixed graph. Then
there exists a constant d (depending on H), so that if G = (A,B,E) is H-minor free and
bipartite, there are at most

O(|A|) vertices in B with degree greater than d,
O(|A|) subsets A′ ⊆ A such that A′ = Nb(u) for some u ∈ B.

Taking A = Xt, deleting the edges between vertices in Xt and contracting every connected
component x ∈ CC(V (P ) \ f(Xt)) to a single vertex in B, the lemma states that there are at
most O(tw) components with |Nb(x)| > d and that the components with |Nb(x)| ≤ d have
at most O(tw) distinct neighbourhoods in Xt.

For the connected components x ∈ CC(V (P )\f(Xt)) with |Nb(x)| ≤ d, we have 2CH ·c log k

cases for the isomorphism class of x, O(tw) cases for Nb(x) and for every vertex of x, at
most 2d cases for incidence to Nb(x). We thus have at most 2Ch·c log k · O(tw) · (2d)c log k

isomorphism classes for x ∈ CC(S) with Nb(x) ≤ d. For sufficiently small c > 0, the
asymptotic complexity is O(kε/2tw). J
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Since of each component there can be most k occurrences in S, the total number of cases
for storing the multiplicity of each class of components is (k + 1)O(kε/2tw) = 2O(kε/2tw log k) =
2O(kεtw).

We now have all the results we need to finish the analysis. Storing the multiplicities
of the small connected components gives 2O(kεtw) cases, while storing the subset of large
connected components explicitly contributes 2O(k/ log k) cases. A partial solution is further
characterized by f , for which there are only 2O(tw log k) cases. For a given node t of the tree
decomposition, there are thus at most 2O(kεtw+k/ log k) partial solutions.

Finally, we can compute a 5-approximate tree-decomposition of G in time exponential in
tw [6], perform dynamic programming as described in Procedures 1-6 to obtain:

I Theorem 7. For any graph H and ε > 0, Subgraph Isomorphism can be solved in time
2O(kεtw+k/ log k)nO(1) if the host graph has treewidth tw and the pattern graph is H-minor
free.

3.4 Adaptation to other problems
In this section, we discuss how our algorithm for Subgraph Isomorphism can be adapted
to Induced Subgraph and (Induced) Minor. We begin by describing the graph minor
case, then give a brief note on how to adapt both algorithms for the induced case. Some
details are omitted from this extended abstract.

Note that P is a minor of G if and only if we have a function f : V (G)→ V (P ) ∪ {�},
such that

for all v ∈ V (P ), f−1(v) is non-empty, and induces a connected subgraph of G,
for all (v, w) ∈ E(P ), there are x ∈ f−1(v) and y ∈ f−1(w) with (x, y) ∈ E(G).

Vertices that are deleted are mapped to �, otherwise f(v) gives the vertex that v is contracted
to. Call such a function a solution for the Graph Minor problem.

If we restrict such solutions to a subgraph G[t], we obtain the notion of partial solution:

I Definition 8 (Partial Solution (Graph Minor)). Given a node t ∈ T of the tree decomposition
of G, a partial solution for the Graph Minor problem relative to a node t is a function
f : V (G[t])→ V (P ) ∪ {�}, such that
1. For each v ∈ V (P ), at least one of the following three cases holds:

a. each connected component of G[t][f−1(v)] contains at least one vertex from Xt,
b. G[t][f−1(v)] has one connected component,
c. f−1(v) is empty.

2. For all (v, w) ∈ E(P ), at least one of the following cases holds:
a. Some vertex of f−1(v) is adjacent to some vertex of f−1(w) in G[t],
b. f−1(v) ∩Xt 6= ∅ and f−1(w) ∩Xt 6= ∅,
c. f−1(v) ∩Xt 6= ∅ and f−1(w) = ∅,
d. f−1(w) ∩Xt 6= ∅ and f−1(v) = ∅.
e. f−1(w) = ∅ and f−1(v) = ∅.

Intuitively, in 1) we require that the preimage of v can still be made connected (a), is already
connected (b) or has not been assigned yet (c), and in 2) we require that the edge (v, w) is
already covered (a), can still be covered (b,c,d,e).

As before, our dynamic programming algorithm uses characteristics of partial solutions:

I Definition 9 (Characteristic of a partial solution (Graph Minor)). Given a node t ∈ T of the
tree decomposition of G and a partial solution for the Graph Minor problem relative to a
node t f : V (G[t])→ V (P ) ∪ {�}, the characteristic of f is a tuple (f ′, S,∼, F ) such that:
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1. f ′ is the restriction of f to Xt,
2. S ⊆ V (P ) with S = f(V (G[t])) \ (f(Xt) ∪ {�}),
3. ∼ is an equivalence relation on Xt, with v ∼ w, if and only if f(v) = f(w) and there

exists a path from v to w in G[t] such that for all vertices x on this path f(x) = f(v).
4. F ⊆ E(P [f(Xt)]) such that for every (v, w) ∈ E(P [f(Xt)]), it holds that (v, w) ∈ F if

and only if each of the following holds:
a. f−1(v) ∩Xt 6= ∅,
b. f−1(w) ∩Xt 6= ∅,
c. There are x ∈ f−1(v) and y ∈ f−1(w) with (x, y) ∈ E(G[t]).

As before, it is easy to see the equivalence between the existence of a minor, solution,
and partial solution with certain characteristic.

Compared to our approach for subgraph isomorphism, we no longer require f to be
injective – f−1(v) corresponds to the vertices that are contracted to form v. We require
that f−1(v) eventually becomes connected. This can either be achieved inside the bag, be
achieved below the bag (in the tree decomposition), or above the bag. The relation ∼ tracks
which components are already connected by vertices below the bag. Similarly, edges inside
P [f(Xt)] might not have corresponding edges inside G[Xt], but might instead correspond to
edges below or above this bag. The set F stores which edges correspond to edges below the
current bag.

This lemma is the counterpart of Lemma 3 and shows that we can apply dynamic
programming:

I Lemma 10. If partial solutions for the Graph Minor problem f and g have the same
characteristic and are both relative to t, then f can be extended to a solution if and only if g
can be extended to a solution.

The following lemma shows that we can apply our technique of reducing the number of
partial solution characteristics by using isomorphisms:

I Lemma 11. A partial solution for Graph Minor f with characteristic (f ′, S,∼, F ) can
be extended to a solution only if S is a union of connected components of G[V (P ) \ f(Xt)].

The analysis of the number of cases of f ′ and S remains unchanged. There are at most
(tw)tw = 2O(tw log tw) cases for ∼, and since P is sparse, at most 2O(tw) cases for F .

For the induced cases, only a small modification is needed: it suffices to check in the
introduce case that all neighbours (in Xt) of the vertex being introduced are mapped to
vertices that are adjacent to the image of the introduced vertex and discard the partial
solution otherwise. We thus obtain the following theorem:

I Theorem 12. For any graph H and ε > 0, if the host graph has treewidth tw and the
pattern graph is H-minor free, Subgraph Isomorphism and Induced Subgraph can be
solved in time 2O(kεtw+k/ log k)nO(1) and Graph Minor and Induced Minor can be solved
in time 2O(kεtw+tw log tw+k/ log k)nO(1).

As a direct corollary, we have that Subgraph Isomorphism, Graph Minor, Induced
Subgraph and Induced Minor can be solved in 2O(n0.5+ε+k/ log k) time if the host graph
is H-minor free for some fixed graph H, as H-minor free graphs have treewidth O(

√
n) [2].

Important special cases include planar graphs, graphs of bounded genus, and graphs of
bounded treewidth.
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(a) Host graph (b) Guest graph

Figure 1 Construction used in the proof of Theorem 14. Host graph (a), representing a string
101001 ∈ A and pattern graph (b), representing strings 000100 ∈ B and 010010 ∈ C. The dashed
lines represent additional paths attached to vertices u and u′.

4 Hardness Results

Both (Induced) Subgraph and (Induced) Minor are known to be NP-complete, even if
P is a tree and G is series-parallel (and thus planar), connected and all but one vertex of P
and G have degree at most 3, by reduction from Three-Dimensional Matching [26].

We obtain our 2o(n/ logn) lower bound by a reduction very similar to the reduction from
Three-Dimensional Matching in [26]. We instead reduce from the String 3-Groups
problem [7]. In the following, given a string s, we let si denote the ith character of s.

String 3-Groups
Instance: Sets A,B,C ⊆ {0, 1}6dlogne+1, |A| = |B| = |C| = n

Question: Do there exist n triples, so that for each chosen triple (a, b, c) ∈ A×B ×C
and for all i, ai + bi + ci ≤ 1 and each element of A,B,C occurs in exactly one triple?

I Theorem 13 ([7], [8]). Assuming the Exponential Time Hypothesis, there is no algorithm
solving String 3-Groups in 2o(n) time.

I Theorem 14. Assuming the Exponential Time Hypothesis, there is no algorithm solving
Subgraph Isomorphism in 2o(n/ logn) time, even when the pattern graph is a tree and the
host graph is connected and series-parallel and in both the host graph and pattern graph, all
vertices but one have maximum degree 3.

Proof. Let A,B,C be an instance of String 3-Groups. We modify the instance by
prepending a 0 to each string in A and B, and a 1 to each string in C. Let m = 6dlogne+ 2.

To construct the host graph G, we take a vertex u. For each a ∈ A we take a path
p1, . . . , pm and a path q1, . . . , qm. We add edges (p1, u) and (q1, u). Whenever ai = 0, we
create a vertex ri and edges (pi, ri), (ri, qi).

To construct the pattern graph P , we take a vertex u′. For each b ∈ B (resp. each c ∈ C)
we take a path s1, . . . , sm. We add an edge (s1, u

′). Whenever bi = 1 (resp. ci = 1), we
create a vertex ti and an edge (si, ti).

A solution to the String 3-Groups problem and this instance of Subgraph Isomorph-
ism correspond as follows: u is mapped to u′. If (a, b, c) is a triple in a solution to String
3-Groups, then the path s1, . . . , sm corresponding to b can be mapped to the path p1, . . . , pm
corresponding to a, while the path s1, . . . , sm corresponding to c is mapped to the path
q1, . . . , qm. Clearly such a mapping is possible if and only if for each i, at most one of ai, bi
or ci is 1, since the vertex vi only exists if ai = 0 and can be used at most once (by either
the vertex ti corresponding to bi or the vertex ti corresponding to ci).
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In the reverse direction, note that any subgraph isomorphism must map u to u′ by virtue
of their degrees. Clearly, the paths in H must correspond one-to-one with paths in G. The
correspondence of the paths immediately gives us a partition into triples. The construction
enforces that in each such triple, in each position at most one of the strings has a 1, as
required. Note that since we modified the instance so that each string c ∈ C starts with a
1, no triple will contain more than one string from c and consequently, each triple contains
exactly one string from each of a, b, c.

Since the graph created in the reduction has O(n logn) vertices, and assuming the
Exponential Time Hypothesis there is no 2o(n) algorithm for String 3-Groups, there is
no 2o(n/ logn) time algorithm for Subgraph Isomorphism, even for the graph classes as
claimed in the theorem. J

The proof of Theorem 14 can be adapted to Induced Subgraph by subdividing each
edge (pi, ri) once. Furthermore, the proof also works for (Induced) Graph Minor, since
performing a contraction in H is never beneficial.

I Theorem 15. Assuming the Exponential Time Hypothesis, there is no algorithm solving
Subgraph Isomorphism, Graph Minor, Induced Subgraph and Induced Minor
in 2o(n/ logn) time, even when the pattern graph is a tree and the host graph is connected
and series-parallel and in both the host graph and pattern graph, all vertices but one have
maximum degree 3.

5 Conclusion

We have presented algorithms for (Induced) Subgraph and (Induced) Minor that, by
taking advantage of isomorphic structures in the pattern graph, run in subexponential time
on H-minor free graphs. These algorithms are essentially optimal since we have shown
that the existence of 2o(n/ logn) time algorithms would contradict the Exponential Time
Hypothesis. We have thus settled the (traditional) complexity of these problems on (general)
H-Minor Free graphs.

Our result applies to a wide range of graphs: we require P to be H-Minor Free and G to
have truly sublinear treewidth. Some restriction on G is indeed necessary, since if G is an
arbitrary graph then Hamiltonian path is a special case (in which P is a path) and a 2o(n)

algorithm would contradict the ETH [23].
An interesting open question is whether the parameterized complexity can still be

improved. Perhaps the dependence of the running time on the treewidth of G can be
removed: does there exist an algorithm for subgraph isomorphism on planar graphs running
in 2O(k/ log k)nO(1)? Our result, combined with one due to Fomin et al. [17] implies that the
answer to this question is yes if P is connected and G is apex-minor free, but the problem
remains open otherwise.

We note that our lower bound proof also works for Immersion [14]. However, our
algorithmic technique does not seem to work for immersion. Does the immersion problem
also have a 2O(n/ logn) algorithm, or is a stronger lower bound possible?

Lemma 6 holds for a more general class of graphs, and we believe it may be possible to
extend our result to patterns from a graph class with expansion O(1) or perhaps expansion
O(
√
r). We note that for different graph classes, a tradeoff between the size of the small

connected components and the factor k/ log k in the exponent is possible: it might be possible
to obtain a 2O(n/ log logn)-time algorithm for less restrictive graph classes.
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Together with the Minimum Size Tree/Path Decomposition problem [7], these problems
are amongst the first for which a 2Θ(n/ logn) upper and lower bound is known. Our work
shows that the techniques from [7] can be adapted to other problems, and we suspect there
may be many more problems for which identifying isomorphic components can speed up
dynamic programming algorithms.
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Abstract
The thickness of a graph G = (V,E) with n vertices is the minimum number of planar subgraphs
of G whose union is G. A polyline drawing of G in R2 is a drawing Γ of G, where each vertex is
mapped to a point and each edge is mapped to a polygonal chain. Bend and layer complexities
are two important aesthetics of such a drawing. The bend complexity of Γ is the maximum
number of bends per edge in Γ, and the layer complexity of Γ is the minimum integer r such that
the set of polygonal chains in Γ can be partitioned into r disjoint sets, where each set corresponds
to a planar polyline drawing. Let G be a graph of thickness t. By Fáry’s theorem, if t = 1, then
G can be drawn on a single layer with bend complexity 0. A few extensions to higher thickness
are known, e.g., if t = 2 (resp., t > 2), then G can be drawn on t layers with bend complexity 2
(resp., 3n+O(1)).

In this paper we present an elegant extension of Fáry’s theorem to draw graphs of thickness
t > 2. We first prove that thickness-t graphs can be drawn on t layers with 2.25n+O(1) bends
per edge. We then develop another technique to draw thickness-t graphs on t layers with reduced
bend complexity for small values of t, e.g., for t ∈ {3, 4}, the bend complexity decreases to O(

√
n).

Previously, the bend complexity was not known to be sublinear for t > 2. Finally, we show that
graphs with linear arboricity k can be drawn on k layers with bend complexity 3(k−1)n

(4k−2) .
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Graph Theory

Keywords and phrases Graph Drawing, Thickness, Geometric Thickness, Layers, Bends
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1 Introduction

A polyline drawing of a graph G = (V,E) in R2 maps each vertex of G to a distinct point,
and each edge of G to a polygonal chain. Many problems in VLSI layout and software
visualization are tackled using algorithms that produce polyline drawings. For a variety of
practical purposes, these algorithms often seek to produce drawings that optimize several
drawing aesthetics, e.g., minimizing the number of bends, minimizing the number of crossings,
etc. In this paper we examine two such parameters: bend complexity and layer complexity.

The thickness of a graph G is the minimum number θ(G) such that G can be decomposed
into θ(G) planar subgraphs. Let Γ be a polyline drawing of G. Then the bend complexity
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(a) (b) (c)

`

Figure 1 (a) A polyline drawing of K9. (b) A drawing of a matching of size 5. (c) A monotone
topological book embedding of some graph. The edges that crosses the spine ` are shown in bold.

of Γ is the minimum integer b such that each edge in Γ has at most b bends. A set of
edges E′ ⊆ E is called a crossing-free edge set in Γ, if the corresponding polygonal chains
correspond to a planar polyline drawing, i.e., no two polylines that correspond to a pair of
edges in E′ intersect, except possibly at their common endpoints. The layer complexity of
Γ is the minimum integer t such that the edges of Γ can be partitioned into t crossing-free
edge sets. Figure 1(a) illustrates a polyline drawing of K9 on 3 layers with bend complexity
1. At first glance the layer complexity of Γ may appear to be related to the thickness of G.
However, the layer complexity is a property of the drawing Γ, while thickness is a graph
property. The layer complexity of Γ can be arbitrarily large even when G is planar, e.g.,
consider the case when G is a matching and Γ is a straight-line drawing, where each edge
crosses all the other edges; see Figure 1(b).

The layer complexity of a thickness-t graph G is at least t, and every n-vertex thickness-t
graph admits a drawing on t layers with bend complexity O(n) [20]. The problem of drawing
thickness-t graphs on t planar layers is closely related to the simultaneous embedding problem,
where given a set of planar graphs G1, . . . , Gt on a common set of vertices, the task is to
compute their planar drawings D1, . . . , Dt such that each vertex is mapped to the same point
in the plane in each of these drawings. Figure 1(a) can be considered to be a simultaneous
embedding of three given planar graphs.

1.1 Related Work
Graphs with low thickness admit polyline drawings on few layers with low bend complexity.
If θ(G) = 1, then by Fáry’s theorem [16], G admits a drawing on a single layer with bend
complexity 0. Every pair of planar graphs can be simultaneously embedded using two bends
per edge [15, 17]. Therefore, if θ(G) = 2, then G admits a drawing on two layers with bend
complexity 2. The best known lower bound on the bend complexity of such drawings is
one [10]. Duncan et al. [9] showed that graphs with maximum degree four can be drawn on
two layers with bend complexity 0. Wood [21] showed how to construct drawings on O(

√
m)

layers with bend complexity 1, where m is the number of edges in G.
Given an n-vertex planar graph G and a point location for each vertex in R2, Pach and

Wenger [20] showed that G admits a planar polyline drawing with the given vertex locations,
where each edge has at most 120n bends. They also showed that Ω(n) bends are sometimes
necessary. Badent et al. [1] and Gordon [18] independently improved the bend complexity to
3n+O(1). Consequently, for θ(G) ≥ 3, these constructions can be used to draw G on θ(G)
layers with at most 3n+O(1) bends per edge.
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A rich body of literature [3, 4, 12, 13] examines geometric thickness, i.e., the maximum
number of planar layers necessary to achieve 0 bend complexity. Dujmović and Wood [7]
proved that dk/2e layers suffice for graphs of treewidth k. Duncan [8] proved that O(logn)
layers suffice for graphs with arboricity two or outerthickness two, and O(

√
n) layers suffice

for thickness-2 graphs. Dillencourt et al. [6] proved that complete graphs with n vertices
require at least d(n/5.646) + 0.342e and at most dn/4e layers.

1.2 Our Results
The goal of this paper is to extend our understanding of the interplay between the layer
complexity and bend complexity in polyline drawings.

We first show that every n-vertex thickness-t graph admits a polyline drawing on t

layers with bend complexity 2.25n+O(1), improving the 3n+O(1) upper bound derived
from [1, 18]. We then give another drawing algorithm to draw thickness-t graphs on t layers,
which improves the bend complexity for smaller values of t, e.g., for graphs with t ∈ {3, 4},
it reduces the bend complexity to O(

√
n). No such sublinear upper bound on the bend

complexity was previously known for t > 2. Finally, we show that every n-vertex graph with
linear arboricity k ≥ 2 admits a polyline drawing on k layers with bend complexity 3(k−1)n

(4k−2) ,
where the linear arboricity of a graph G is the minimum number of linear forests (i.e., each
connected component is a path) whose union is G.

The rest of the paper is organized as follows. We start with some preliminary definitions
and results (Section 2). In the subsequent section (Section 3) we present two constructions
to draw thickness-t graphs on t layers. Section 4 presents the results on drawing graphs of
bounded arboricity. Finally, Section 5 concludes the paper pointing out the limitations of
our results and suggesting directions for future research.

2 Technical Details

In this section we describe some preliminary definitions, and review some known results.
Let G = (V,E) be a planar graph. A monotone topological book embedding of G is a

planar drawing Γ of G that satisfies the following properties.

P1: The vertices of G lie along a horizontal line ` in Γ. We refer to ` as the spine of Γ.
P2: Each edge (u, v) ∈ E is an x-monotone polyline in Γ, where (u, v) either lies on one side

of `, or crosses ` at most once.
P3: Let (u, v) be an edge that crosses ` at point d, where u appears before v on `. Let

u, . . . , d, . . . , v be the corresponding polyline. Then the polyline u, . . . , d lies above `, and
the polyline d, . . . , v lies below `.

Figure 1(c) illustrates a monotone topological book embedding of a planar graph. Let
G1 = (V,E1) and G2 = (V,E2) be two graphs on a common set of vertices. A simultaneous
embedding Γ of G1 and G2 consists of their planar drawings D1 and D2, where each vertex
is mapped to the same point in the plane in both D1 and D2. Erten and Kobourov [15]
showed that every pair of planar graphs admit a simultaneous embedding with at most three
bends per edge. Giacomo and Liotta [17] observed that by using monotone topological book
embeddings Erten and Kobourov’s [15] construction can achieve a drawing with two bends
per edge. Here we briefly recall this drawing algorithm. Without loss of generality assume
that both G1 and G2 are triangulations. Let πi, where 1 ≤ i ≤ 2, be a vertex ordering that
corresponds to a monotone topological book embedding of Gi. Let Pi be the corresponding
spinal path, i.e., a path that corresponds to πi. Note that some of the edges of Pi may not
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Figure 2 (a)–(b) Monotone topological book embeddings of G1 and G2. (c)–(d) Simultaneous
embedding of G1 and G2, where the deleted edges are shown in dashed lines.

exist in Gi, e.g., edges (a, d) and (b, c) in Figures 2(a) and (b), respectively, and these edges
of Pi create edge crossings in Gi. Add a dummy vertex at each such edge crossing. Let
δi(v) be the position of vertex v in πi. Then P1 and P2 can be drawn simultaneously on an
O(n)×O(n) grid [5] by placing each vertex at the grid point (δ1(v), δ2(v)); see Figure 2(c).
The mapping between the dummy vertices of P1 and P2 can be arbitrary, here we map the
dummy vertex on (a, d) to the dummy vertex on (b, c). Finally, the edges of Gi that do not
belong to Pi are drawn. Let e be such an edge in Gi. If e does not cross the spine, then it is
drawn using one bend on one side of Pi according to the book embedding of Gi. Otherwise,
let q be a dummy vertex on the edge e = (u, v), which corresponds to the intersection point
of e and the spine. The edges (u, q) and (v, q) are drawn on opposite sides of Pi such that
the polyline from u to v do not create any bend at q. Since each of (u, q) and (v, q) contains
only one bend, e contains only two bends. Finally, the edges of Pi that do not belong to Gi
are removed from the drawing; see Figure 2(d).

Let Γ be a planar polyline drawing of a path P = {v1, v2, . . . , vn}. We call Γ an uphill
drawing if for any point q on Γ, the upward ray from q does not intersect the path v1, . . . , q.
Note that q may be a vertex location or an interior point of some edge in Γ. Let a and
b be two points in R2. Then a and b are r-visible to each other if and only if their exists
a polygonal chain of length r with end points a, b that does not intersect Γ at any point
except possibly at a, b. A point p lies between two other points v, w, if either the inequality
x(v) < x(p) < x(w) or x(w) < x(p) < x(v) holds.

A set of points is monotone if the polyline connecting them from left to right is monotone
with respect to y-axis. Let S be a set of n points in general position. By the Erdös-Szekeres
theorem [14], S can be partitioned into O(

√
n) disjoint monotone subsets, and such a partition

can be computed in O(n1.5) time [2].

3 Drawing Thickness-t Graphs on t Layers

In this section we give two separate construction techniques to draw thickness-t graphs on t
layers. We first present a construction achieving 2.25n+O(1) upper bound (Section 3.1),
which is simple and intuitive. Although the technique is simple, the idea of the construction
will be used frequently in the rest of the paper. Therefore, we explained the construction in
reasonable details.
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Later, we present a second construction (Section 3.2), which is more involved, and relies
on a deep understanding of the geometry of point sets. In this case, the upper bound on the
bend complexity will depend on some generalization of Erdös-Szekeres theorem [14], e.g.,
partitioning a point set into monotone subsequences in higher dimensions (Section 3.2.3).

3.1 A Simple Construction with Bend Complexity 2.25n+ O(1)
Let G1, . . . , Gt be the planar subgraphs of the input graph G, and let S be an ordered set of
n points on a semicircular arc. Let V = {v1, v2, . . . , vn} be the set of vertices of G. We show
that each Gi, where 1 ≤ i ≤ t, admits a polyline drawing with bend complexity 2.25n+O(1)
such that vertex vj is mapped to the jth point of S. To draw Gi, we will use the vertex
ordering of its monotone topological book embedding. The following lemma will be useful to
draw the spinal path Pi of Gi.

I Lemma 1. Let S = {p0, p1, . . . , pn+1} be a set of points lying on an x-monotone semicir-
cular arc (e.g., see Figure 3(a)), and let P = {v1, v2, . . . , vn} be a path of n vertices. Assume
that p0 and pn+1 are the leftmost and rightmost points of S, respectively, and the points
p1, . . . , pn are equally spaced between them in some arbitrary order. Then P admits an uphill
drawing Γ with the vertex vi assigned to pi, where 1 ≤ i ≤ n, and every point pi satisfies the
following properties:
(A) Both the points p0 and pn+1 are (3n/4)-visible to pi.
(B) One can draw an x-monotone polygonal chain from p0 to pn+1 with 3n/4 bends that

intersects Γ only at pi.

Proof. We prove the lemma by constructing such a drawing Γ for P . The construction
assigns a polyline for each edge of P . The resulting drawing may contain edge overlaps, and
the bend complexity could be as large as n − 2. Later we remove these degeneracies and
reduce the bend complexity to obtain Γ.

Drawings of Edges: For each point pi ∈ S, where 1 ≤ i ≤ n, we create an anchor point
p′i at (x(pi), y(pi) + ε), where ε > 0. We choose ε small enough such that for any j, where
1 ≤ i 6= j ≤ n, all the points of S between pi and pj lie above (p′i, p′j). Figure 3(a) illustrates
this property for the anchor point p′1.

We first draw the edge (v1, v2) using a straight line segment. For each j from 2 to n− 1,
we now draw the edges (vj , vj+1) one after another. Assume without loss of generality
that x(pj) < x(pj+1). We call a point p ∈ S between pj and pj+1 a visited point if the
corresponding vertex v appears in v1, . . . , vj , i.e., v has already been placed at p. We draw
an x-monotone polygonal chain L that starts at vj , connects the anchors of the intermediate
visited points from left to right, and ends at vj+1. Figure 3(b) illustrates such a construction.

Since the number of bends on L is equal to the number of visited points of S between pj
and pj+1, each edge contains at most α bends, where α is the number of points of S between
pj and pj+1.

Removing Degeneracies: The drawing Dn of the path P constructed above contains edge
overlaps, e.g., see the edges (v3, v4) and (v4, v5) in Figure 3(c). To remove the degeneracies,
for each i, we spread the corresponding bend points between pi and p′i, in the order they
appear on the path, see Figure 3(d). Consequently, we obtain a planar drawing of P . Let
the resulting drawing be D′n. Since each edge (pj , pj+1) is drawn as an x-monotone polyline
above the path p1, . . . , pj , D′n satisfies the uphill property. Note that D′n may have bend
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Figure 3 Illustration for the proof of Lemma 1. Anchor points are shown in black squares. For a
larger view of this figure, see Appendix A.

complexity n− 2, e.g., see Figure 3(e). We now show how to reduce the bend complexity
and satisfy Properties A–B.

Reducing Bend Complexity: A pair of points in S are consecutive if they do not contain
any other point of S in between. Let e be any edge of P . Let Ce be the corresponding
polygonal chain in D′n. A pair of bend points on Ce are called consecutive bends if their
corresponding points in S are also consecutive. A bend-interval of Ce is a maximal sequence
of consecutive bends in Ce. Note that we can partition the bends on e into disjoint sets of
bend-intervals.

For any bend-interval s, let l(s) and r(s) be the x-coordinates of the left and right
endpoints of s, respectively. Let s1 and s2 be two bend-intervals lying on two distinct edges
e1 and e2 in D′n, respectively, where e2 appears after e1 in P . We claim that the intervals
[l(s1), r(s1)] and [l(s2), r(s2)] are either disjoint, or [l(s1), r(s1)] ⊆ [l(s2), r(s2)]. We refer
to this property as the balanced parenthesis property of the bend-intervals. To verify this
property assume that for some s1, s2, we have [l(s1), r(s1)] ∩ [l(s2), r(s2)] 6= φ. Since e2
appears after e1, and since s2 is a maximal sequence of consecutive bends, the inequalities
l(s2) ≤ l(s1) and r(s2) ≥ r(s1) hold, i.e., [l(s1), r(s1)] ⊆ [l(s2), r(s2)]. We say that s1 is
nested by s2. Figure 3(f) illustrates such a scenario, where s1, s2 are shown in thin and thick
gray lines, respectively.

We now consider the edges of P in reverse order, i.e., for each j from n to 2, we modify
the drawing of e = (vj , vj−1). For each bend-interval s = (b1, b2 . . . , br) of Ce, if s has three
or more bends, then we delete the bends b2, . . . , br−1, and join b1 and br using a new bend
point w. To create w, we consider the two cases of the balanced parenthesis property.

If s is not nested by any other bend-interval in D′n, then we place w high enough above br
such that the chain b1, w, br does not introduce any edge crossing, e.g., see the point w1(= w)
in Figure 3(g). On the other hand, if s is nested by some other bend-interval, then let s′
be such a bend-interval immediately above s. Since s′ = (b′1, b′2, . . . , b′r) is already processed,
it must have been replaced by some chain b′1, w′, b′r. Therefore, we can find a location for b
inside ∠b′1w

′b′r such that the chain b1, w, br does not introduce any edge crossing, e.g., see
the points w′ and w2(= w) in Figure 3(g). Let the resulting drawing of P be Γ.
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We now show that the above modification reduces the bend complexity to 3n/4. Let
e be an edge of P that contains α points from S between its endpoints. Let Ce be the
corresponding polygonal chain in D′n. Recall that any bend-interval of length ` in Ce
contributes to min{`, 3} bends on e in Γ. Therefore, if there are at most α/4 bend-intervals
on Ce, then e can have at most 3α/4 bends in Γ. Otherwise, if there are more than α/4
bend-intervals, then there are at least α/4 points1 of S that do not contribute to bends on
Ce. Therefore, in both cases, Ce can have at most 3α/4 bends in Γ.

Satisfying Properties A–B: Let pi be any point of S \ {p0, pn+1}. We first show that p0
is (3n/4)-visible to pi. Let Di, where 1 ≤ i ≤ n, be the drawing of the path v1, v2, . . . , vi.
Observe that one can insert an edge (p0, pi) using an x-monotone polyline L such that the
bends on L correspond to the intermediate visited points. Now the drawing of the rest of
the path vi, vi+1, . . . , vn can be continued such that it does not cross L. Therefore, if the
number of points of S between p0 and pi is α, then L has at most α bends. Finally, the
process of reducing bend complexity improves the number of bends on L to 3α/4.

Similarly, we can observe that pn+1 is at most 3α′/4 visible to pi, where α′ is the number
of points of S between pi and pn+1. Since the edges (p0, pi) and (pi, pn+1) are x-monotone, we
can draw an x-monotone polygonal chain from p0 to pn+1 with at most 3(α+α′)/4 ≤ (3n/4)
bends that intersects Γ only at pi. J

I Theorem 2. Every n-vertex graph of t admits a drawing on t layers with bend complexity
2.25n+O(1).

Proof. Let G1, . . . , Gt be the planar subgraphs of the input graph G, and let V = {v1, v2,

. . . , vn} be the set of vertices of G. Let S = {p0, p1, . . . , pn+1} be a set of n + 2 points
lying on a semicircular arc as defined in Lemma 1. Let Pi be spinal path of the monotone
topological book embedding of Gi, where 1 ≤ i ≤ t. We first compute an uphill drawing Γi of
the path Pi. We then draw the edges of Gi that do not belong to Pi. Let e = (u, v) be such
an edge, and without loss of generality assume that u appears to the left of v on the spine.

If e lies above (resp., below) the spine, then we draw two x-monotone polygonal chains;
one from u to p0 (resp., pn+1), and the other from v to p0 (resp., pn+1). By Lemma 1, these
polygonal chains do not intersect Γi except at u and v, and each contains at most 3n/4
bends. Hence e contains at most 1.5n bends in total.

If e crosses the spine, then it crosses some edge (w,w′) of Pi. Draw the edges (u,w) and
(w, v) using the polylines u, . . . , p0, . . . , w and w, . . . , pn+1, . . . , v, respectively. The polylines
u, . . . , p0 and pn+1, . . . , v are x-monotone, and have at most 3n/4 bends each. The polyline
C = (p0, . . . , w . . . , pn+1) is also x-monotone and has at most 3n/4 bends. Hence the number
of bends is 2.25n in total. It is straightforward to avoid the degeneracy at w, by adding a
constant number of bends on C.

Note that we still have some edge overlaps at p0 and pn+1. It is straightforward to remove
these degeneracies by adding only a constant number of more bends per edge. J

3.2 A Construction for Small Values of t
In this section we give another construction to draw thickness-t graphs on t layers. We first
show that every thickness-t graph, where t ∈ {3, 4}, can be drawn on t layers with bend
complexity O(

√
n), and then show how to extend the technique for larger values of t.

1 Every pair of consecutive bend-intervals contain such a point in between.
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Figure 4 Illustration for the proof of Lemma 3. The edge (p10, p11) is shown in bold. Passing
through each intermediate set requires at most 4 bends.

3.2.1 Construction when t = 3
Let S be an ordered set of n points, where the ordering is by increasing x-coordinate. A (k, n)-
group Sk,n is a partition of S into k disjoint ordered subsets {S1, . . . , Sk}, each containing
contiguous points from S. Label the points of S using a permutation of p1, p2, . . . , pn such
that for each set S′ ∈ Sk,n, the indices of the points in S′ are either increasing or decreasing. If
the indices are increasing (resp., decreasing), then we refer S′ as a rightward (resp., leftward)
set. We will refer to such a labelling as a smart labelling of Sk,n. Figure 4 illustrates a
(5, 23)-group and a smart labelling of the underlying point set S5,23.

Note that for any i, where 1 ≤ i ≤ n, deletion of the points p1, . . . , pi removes the points
of the rightward (resp., leftward) sets from their left (resp., right). The necklace of Sk,n
is a path obtained from a smart labelling of Sk,n by connecting the points pi, pi+1, where
1 ≤ i ≤ n− 1. The following lemma constructs an uphill drawing of the necklace using O(k)
bends per edge.

I Lemma 3. Let S be a set of n points ordered by increasing x-coordinate, and let Sk,n =
{S1, . . . , Sk} be a (k, n)-group of S. Label Sk,n with a smart labelling. Then the necklace of
Sk,n admits an uphill drawing with O(k) bends per edge.

Proof. We construct this uphill drawing incrementally in a similar way as in the proof of
Lemma 1. Let Dj , where 1 ≤ j ≤ n, be the drawing of the path p1, . . . , pj . At each step of
the construction, we maintain the invariant that Dj is an uphill drawing.

We first assign v1 to p1. Then for each i from 1 to n − 1, we draw the edge (pi, pi+1)
using an x-monotone polyline L that lies above Di and below the points pj′ , where j′ > i+ 1.
Figure 4 illustrates such a drawing of (pi, pi+1).

The crux of the construction is that one can draw such a polyline L using at most O(k)
bends. Assume that pi and pi+1 belong to the sets Sl ∈ Sk,n and Sr ∈ Sk,n, respectively. If
Sl and Sr are identical, then pi and pi+1 are consecutive, and hence it suffices to use at most
O(1) bends to draw L. On the other hand, if Sl and Sr are distinct, then there can be at
most k − 2 sets of Sk,n between them. Let Sm be such a set. While passing through Sm, we
need to keep the points that already belong to the path, below L, and the rest of the points
above L. By the property of smart labelling, the points that belong to Di are consecutive in
Sm, and lie to the left or right side of Sm depending on whether Sm is rightward or leftward.
Therefore, we need only O(1) bends to pass through Sm. Since there are at most k − 2 sets
between Sl and Sr, O(k) bends suffice to construct L. J

We are now ready to describe the main construction. Let G be an n-vertex thickness-3
graph, and let G1, G2, G3 be the planar subgraphs of G. Let Pi be the spinal path of the
monotone topological book embedding of Gi, where 1 ≤ i ≤ 3. We first create a set of n
points and assign them to the vertices of G. Later we route the edges of G.
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Figure 5 Creating vertex locations for drawing thickness-3 graphs, where P1, P2 and P3 are
shown in dotted, dashed and thick solid lines, respectively.

Creating Vertex Locations: Assume without loss of generality that P1 = (v1, . . . , vn). For
each i from 1 to n, we place a point at (i, j) in the plane, where j is the position of vj in P2.
Let the resulting point set be Q. Recall that Q can be partitioned into disjoint monotone
subsets Q1, . . . , Qk, where k ∈ O(

√
n) [2]. Figure 5(a) illustrates such a partition in black,

gray and white.
The sets Q1, . . . , Qk are ordered by the x-coordinate, and the indices of the labels of

the points at each set is in increasing order. Therefore, if we place the points of the ith set
between the lines x = 2(i− 1)n and x = (2i− 1)n, then the resulting point set Q′ would be a
(k, n)-group, labelled by a smart labelling. Finally, we adjust the y-coordinates of the points
according to the position of the corresponding vertices in P3. Let the resulting point set be S.
Figure 5(b) illustrates the vertex locations, where P1 = (v1, v2, . . . , vn), P2 = (v11, v1, . . . , v3),
and P3 = (v6, v11, . . . , v10).

Edge Routing: It is straightforward to observe that the path P1 is a necklace for the current
labelling of the points of Sk,n. Therefore, by Lemma 3, we can construct an uphill drawing of
P1 on S. Observe that for every set S′ ∈ Sk,n, the corresponding points are monotone in Q,
i.e., the points of S′ are ordered along the x-axis either in increasing or decreasing order of
their y-coordinates in Q. Therefore, relabelling the points according to the increasing order
of their y-coordinates in Q will produce another smart labelling of S, and the corresponding
necklace would be the path P2. Therefore, we can use Lemma 3 to construct an uphill
drawing of P2 on S. Since the height of the points of S are adjusted according to the vertex
ordering on P3, connecting the points of S from top to bottom with straight line segments
yields a y-monotone drawing of P3.

We now route the edges of Gi that do not belong to Pi, where 1 ≤ i ≤ 3. Since P3 is
drawn as a y-monotone polygonal path, we can use the technique of Erten and Kobourov [15]
to draw the remaining edges of G3. To draw the edges of G2, we insert two points p0 and pn+1
to the left and right of all the points of S, respectively. Then the drawing of the remaining
edges of G1 and G2 is similar to the edge routing described in the proof of Theorem 2.
That is, if the edge e = (u, v) lies above (resp., below) the spine, then we draw it using two
x-monotone polygonal chains from p0 (resp., pn+1). Otherwise, if e crosses the spine, then
we draw three x-monotone polygonal chains, one from u to p0, another from p0 to pn+1, and
the third one from v to pn+1. Since k ∈ O(

√
n), the number of bends on e is O(

√
n). Finally,

we remove the degeneracies, which increases the bends per edge by a small constant.
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3.2.2 Construction when t = 4

We now show that the technique for drawing thickness-3 graphs can be generalized to draw
thickness-4 graphs with the same bend complexity.

Let G1, . . . , G4 be the planar subgraphs of G, and let P1, . . . , P4 be the corresponding
spinal paths. While constructing the vertex locations, we use a new y-coordinate assignment
for the points of S. Instead of placing the points according to the vertex ordering on the
path P3, we create a particular order, by transposing the x- and y-axis, that would help to
construct uphill drawings of P3 and P4 with bend complexity O(

√
n). That is, we first create

a (k′, n)-group S′k′,n using P3 and P4, where k′ ∈ O(
√
n), in a similar way that we created

Sk,n using P1 and P2. We then adjust the y-coordinates of the points of S according to the
order these points appear in S′k′,n. Appendix B includes an example of such a construction.

The construction of G1 and G2 remains the same as described in the previous section.
However, since P3 and P4 now admit uphill drawings on S with respect to y-axis, the drawings
of G3 and G4 are now analogous to the construction of G1 and G2.

3.2.3 Construction when t > 4

De Bruijn [19] observed that the result of Erdös-Szekeres [14] can be generalized to higher
dimensions. Given a sequence ρ of n tuples, each of size κ, one can find a subsequence of at
least n1/λ tuples, where λ = 2κ, such that they are monotone (i.e., increasing or decreasing)
in every dimension. If we repeatedly extract such monotone sequences, then we obtain a
partition of ρ into a set of monotone subsequences. We use this idea to extend our drawing
algorithm to higher thickness.

Let G1, . . . , Gt be the planar subgraphs of G, and let P1, . . . , Pt be the corresponding
spinal paths. Let v1, v2, . . . , vn be the vertices of G. Construct a corresponding sequence
ρ = (τ1, τ2, . . . , τn) of n tuples, where each tuple is of size t, and the ith element of a tuple
τj corresponds to the position of the corresponding vertex vj in Pi, where 1 ≤ i ≤ t and
1 ≤ j ≤ n. We now partition ρ into a set of monotone subsequences. Let f(n, t) be the
number of monotone subsequences in this partition.

For each of these monotone sequences, we create an ordered set of consecutive points
along the x-axis, where the vertex vj corresponds to the point pj . It is now straightforward
to observe that these sets correspond to a (k, n)-group Sk,n, where k ≤ f(n, t). Furthermore,
since each group corresponds to a monotone sequence of tuples, for each Pi, the positions
of the corresponding vertices are either increasing or decreasing. Hence, every path Pi
corresponds to a necklace for some smart labelling of Sk,n. Therefore, by Lemma 3, we can
construct an uphill drawing of Pi on S. We now add the remaining edges of Gi following the
construction described in Section 3.2.1. Since k ≤ f(n, t), the number of bends is bounded
by O(f(n, t)).

Observe that all the points in the above construction have the same y-coordinate. There-
fore, we can improve the construction by distributing the load equally among the x-axis and
y-axis as we did in Section 3.2.2. Specifically, we draw the graphs G1, . . . , Gdt/2e using the
uphill drawings of their spinal paths with respect to the x-axis, and the remaining graphs
using the uphill drawings of their spinal paths with respect to the y-axis. Consequently,
the bend complexity decreases to O(f(n, dt/2e)). We can improve this bound further by
observing that we are free to choose any arbitrary vertex labelling for G while creating
the initial sequence of tuples. Instead of using an arbitrary labelling, we could label the
vertices according to their ordering on some spinal path, which would reduce the bend
complexity to O(f(n, d(t− 2)/2e)). As shown in Sections 3.2.1 and 3.2.2, if t ∈ {3, 4}, then
f(n, d(t− 2)/2e) ∈ O(

√
n).
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I Theorem 4. Every n-vertex graph G of thickness t ≥ 3 admits a drawing on t layers
with bend complexity O(β), where β is the minimum integer such that the sequence of n
tuples obtained from the spinal paths of G can be partitioned into β monotone subsequences.
Furthermore, if t ∈ {3, 4}, then β ∈ O(

√
n).

A careful analysis of the generalization of Erdös-Szekeres [14] theorem gives an O(
√

2t ·
n1−(1/γ)) upper bound on the bend complexity, where γ = 2d(t−2)/2e. For the details, we
refer to the full version of the paper [11].

4 Drawing Graphs of Linear Arboricity k

In this section we construct polyline drawings, where the layer number and bend complexities
are functions of the linear arboricity of the input graphs. We show that the bandwidth of a
graph can be bounded in terms of its linear arboricity and the number of vertices, and then
the result follows from an application of Lemma 1.

The bandwidth of an n-vertex graph G = (V,E) is the minimum integer b such that the
vertices can be labelled using distinct integers from 1 to n satisfying the condition that for
any edge (u, v) ∈ E, the absolute difference between the labels of u and v is at most b. The
following lemma proves an upper bound on the bandwidth of graphs.

I Lemma 5. Given an n-vertex graph G = (V,E) with linear arboricity k, the bandwidth of
G is at most 3(k−1)n

(4k−2) .

Proof. Without loss of generality assume that G is a union of k spanning paths P1, . . . , Pk.
For any ordered sequence σ, let σ(i) be the element at the ith position, and let |σ| be the
number of elements in σ. We now construct an ordered sequence σ = σ1 ◦ σ2 ◦ . . . ◦ σk ◦ σk+1
of the vertices in V , as follows.

σ1: We initially place the first x vertices of P1 in the sequence, where the exact value of x is
to be determined later.

σ2: We then place the vertices that are neighbors of σ1 in P2, in order, i.e., we first place the
neighbors of σ1(1), then the neighbors of σ1(2) that have not been placed yet, and so on.

σi: For each i = 3, . . . , k, we place the vertices that are neighbors of σ1 in Pi in order.
σk+1: We next place the remaining vertices of P1 in order.

Figure 6(a) illustrates an example for three paths with x = 2. Observe that |σ1| ≤ x, and
|σt| ≤ 2x, where 1 < t ≤ k. We now compute an upper bound on the bandwidth of G using
the vertex ordering of σ.

For any i, j, where 1 ≤ i < j ≤ k + 1, let σi,j be the sequence σi ◦ . . . ◦ σj . The edges of
P1 that are in σ1 have bandwidth 1, and those that are in σ1(x) ◦ σ2,k+1 have bandwidth at
most (n− x), e.g., see Figure 6(b). Now let (v, w) be an edge of G that does not belong to
P1. We compute the bandwidth of (v, w) considering the following cases.

Case 1. If none of v and w belongs to σ1, then the bandwidth of (v, w) is at most (n− x).
Case 2. If both v and w belong to σ1, then the bandwidth of (v, w) is at most x.
Case 3. If at most one of v and w belongs to σ1, then without loss of generality assume that

v belongs to σ1. Since (v, w) does not belong to P1, we may assume that w belongs to the
path Pt, where 1 < t ≤ k. By the construction of σ, w belongs to σ1,t, e.g., see Figure 6(b).
Without loss of generality assume that w belongs to σr, where 1 < r ≤ t. Let v be the qth
vertex in the sequence σ. Then the position of w cannot be more than q+ 2x · (r−2) + 2q,
where the term 2x · (r − 2) corresponds to the length of σ2 ◦ . . . ◦ σr−1. Therefore, the
bandwidth of the edge (v, w) is at most 2x · (r − 2) + 2q ≤ 2x(r − 1) ≤ 2x(t− 1).
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Figure 6 (a) Construction of σ. (b) A schematic representation of P1 and (v, w), where (v, w)
belongs to P3.

Observe that the bandwidth of the edges of P1 is upper bounded by (n − x). The
bandwidth of any edge that belongs to Pt, where 1 < t ≤ k is at most max{n− x, 2x(k− 1)}.
Consequently, the bandwidth of G is at most max{n − x, 2x(k − 1)} ≤ (2k−2)n

(2k−1) , where
x = n

(2k−1) . J

The following theorem is immediate from the proof of Lemmas 1 and 5.

I Theorem 6. Every n-vertex graph with linear arboricity k can be drawn on k layers with
at most 3(k−1)n

(4k−2) < 0.75n bends per edge.

5 Conclusions

In this paper we have developed algorithms to draw graphs on few planar layers and with
low bend complexity. Although our algorithms do not construct drawings with integral
coordinates, it is straightforward to see that these drawings can also be constructed on
polynomial-size integer grids, where all vertices and bends have integral coordinates. We leave
the task of finding compact grid drawings achieving the same upper bounds as a direction
for future research.

We believe our upper bounds on bend complexity to be nearly tight, but we require
more evidence to support this intuition. The only related lower bound is that of Pach and
Wenger [20], who showed that given a planar graph G and a unique location to place each
vertex of G, Ω(n) bends are sometimes necessary to construct a planar polyline drawing of G
with the given vertex locations. Therefore, a challenging research direction would be to prove
tight lower bounds on the bend complexity while drawing thickness-t graphs on t layers.
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11:2 Optimal Approximate Matrix Product in Terms of Stable Rank

1 Introduction

Much recent work has successfully utilized randomized dimensionality reduction techniques
to speed up solutions to linear algebra problems, with applications in machine learning,
statistics, optimization, and several other domains; see the recent monographs [19, 32, 42]
for more details. In our work here, we give new spectral norm guarantees for approximate
matrix multiplication (AMM). Aside from AMM being interesting in its own right, it has
become a useful primitive in the literature for analyzing algorithms for other large-scale
linear algebra problems as well. We show applications of our new guarantees to speeding
up standard algorithms for generalized regression and low-rank approximation problems.
We also describe applications of our results to k-means clustering (discovered in [11]) and
nonparametric regression [43].

In AMM we are given A,B each with a large number of rows n, and the goal is to compute
some matrix C such that ‖C −ATB‖X is “small”, for some norm ‖ · ‖X . Furthermore, we
would like to compute C much faster than the usual time required to exactly compute ATB.

Work on randomized methods for AMM began with [15], which focused on ‖ · ‖X = ‖ · ‖F ,
i.e., Frobenius norm. They showed by picking an appropriate sampling matrix Π ∈ Rm×n,
‖(ΠA)T (ΠB)−ATB‖F ≤ ε‖A‖F ‖B‖F with good probability if m = Ω(1/ε2). By a sampling
matrix, we mean the rows of Π are independent, and each row is all zero except for a 1 in
a (non-uniformly) random location. If A ∈ Rn×d and B ∈ Rn×p, note (ΠA)T (ΠB) can be
computed in O(mdp) time once ΠA and ΠB are formed, as opposed to the straightforward
O(ndp) time to compute ATB.

Frobenius error was also later achieved in [38] via a different approach, with some later op-
timizations in [22]. This was not via sampling, but rather to use Π drawn from a distribution
satisfying an “oblivious Johnson-Lindenstrauss (JL)” guarantee, i.e. a distribution D over
Rm×n satisfying the following condition for some ε, δ ∈ (0, 1/2): ∀x ∈ Rn, PΠ∼D(|‖Πx‖22 −
‖x‖22| > ε‖x‖22) < δ. Such a matrix Π can be taken with m = O(ε−2 log(1/δ)) [21]. Further-
more, one can take Π to be a Fast JL transform [1] (or any of the follow-up improvements
[2, 24, 36, 4, 20]) or a sparse JL transform [14, 22] to speed up the computation of ΠA and
ΠB. One could also use the Thorup-Zhang sketch [40] combined with a certain technique of
[28] (see [42, Theorem 2.10] for details) to efficiently boost success probability.

Other than Frobenius error, the main other error guarantee investigated in previous work
is spectral error. That is, we would like ‖C − ATB‖ to be small, where ‖M‖ denotes the
largest singular value of M . If one is interested in applying ATB to some set of input vectors
then this type of error is the most meaningful, since ‖C −ATB‖ being small is equivalent
to ‖Cx‖ ≈ ‖ATBx‖ for any x. The first work along these lines was again by [15], who gave
a procedure based on entry-wise sampling of the entries of A and B. The works [17, 39]
showed that row-sampling according to leverage scores also provides the desired guarantee
with few samples.

Then [38], combined with a quantitative improvement in [9], showed that one can take
a Π drawn from an oblivious JL distribution with δ = 2−Θ(r) where r(·) denotes rank and
r = r(A) + r(B). Then for Π with m = O((r + log(1/δ))/ε2), with probability at least 1− δ
over Π,

‖(ΠA)T (ΠB)−ATB‖ ≤ ε‖A‖‖B‖. (1)

As we shall see shortly via a very simple lemma (Lemma 3), a sufficient deterministic condition
implying Eq. (1) is that Π is an O(ε)-subspace embedding for the r-dimensional subspace
spanned by the columns of A,B. The notion of a subspace embedding was introduced by
[38].
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I Definition 1. Π is an ε-subspace embedding for U ∈ Rn×r, UTU = I, if Π satisfies Eq. (1)
with A = B = U , i.e. ‖(ΠU)T (ΠU)− I‖ ≤ ε. This is equivalent to ∀x ∈ Rr, (1− ε)‖x‖22 ≤
‖ΠUx‖22 ≤ (1 + ε)‖x‖22, i.e. Π preserves norms of all vectors in the subspace spanned by the
columns U .

An (ε, δ, r)-oblivious subspace embedding (OSE) is a distribution D over Rm×n such that
∀U ∈ Rn×r, UTU = I, it holds that PΠ∼D(‖(ΠU)T (ΠU)− I‖ > ε) < δ.

Fast subspace embeddings Π, i.e. such that the products ΠA and ΠB can be computed
quickly, are known using variants on the Fast JL transform such as the Subsampled Ran-
domized Hadamard Transform (SRHT) [38, 29, 41, 30], or via sparse subspace embeddings
[9, 33, 34, 27, 12, 10]. We also refer the reader to a slightly improved analysis of the SRHT in
our full version [13]. In most applications it is important to have a fast subspace embedding
to shrink the time it takes to transform the input data to a lower-dimensional form. The
SRHT is a randomized Π with the property that ΠA can be computed in time O(nd logn).
The sparse subspace embedding constructions have some parameter m rows and exactly s
non-zero entries per column, so that ΠA can be computed in time O(s · nnz(A)), where
nnz(·) is the number of non-zero entries, and there is a tradeoff in the upper bounds between
m and s.

An issue addressed by the work of [31] is that of robustness. As stated above, achieving
Eq. (1) requires Π be a subspace embedding for an r-dimensional subspace. However, consider
the case when A (and similarly for B) is of high rank but can be expressed as the sum of a
low-rank matrix plus high-rank noise of small magnitude, i.e., A = Ã + EA for Ã of rank
r(Ã)� r, and where ‖EA‖ is very small but EA has high (even full) rank. One would hope
the noise could be ignored, but standard results require Π to have a number of rows at least
as large as r, regardless of how small the magnitude of the noise is. Another case of interest
(as we will see in Section 3) is when A and B are each of high rank, but their singular values
decay at some appropriate rate. As discussed in Section 3, in several applications where
AMM is not the final goal but rather is used as a primitive in analyzing an algorithm for
some other problem (such as k-means clustering or nonparametric regression), the matrices
that arise do indeed have such decaying singular values.

The work [31] remedied this by considering the stable ranks r̃(A), r̃(B) of A and B. Define
r̃(A) = ‖A‖2F /‖A‖2. Note r̃(A) ≤ r(A) always, but can be much less if A has a small tail
of singular values. Let r̃ denote r̃(A) + r̃(B). Among other results, [31] showed that to
achieve Eq. (1) with good probability, one can take Π to be a random (scaled) sign matrix
with either m = Ω(r̃/ε4) or m = Ω(r̃ log(d+ p)/ε2) rows. As noted in follow-up work [25],
both the 1/ε4 dependence and the log(d+ p) factor are undesirable. In their data-driven low
dimensional embedding application, they wanted a dimension m independent of the original
dimensions, which are assumed much larger than the stable rank, and also wanted lower
dependence on 1/ε. To this end, [25] defined the nuclear rank as ñr(A) = ‖A‖∗/‖A‖ and
showed m = Ω(ñr/ε2) rows suffice for ñr = ñr(A) + ñr(B). Here ‖A‖∗ is the nuclear norm,
i.e., sum of singular values of A. Since ‖A‖2F is the sum of squared singular values, it is
straightforward to see that ñr(A) ≥ r̃(A) always. Thus there is a tradeoff: the stable rank
guarantee is worsened to nuclear rank, but dependence on 1/ε is improved to quadratic.

We show switching to the weaker ñr guarantee is unnecessary by showing quadratic
dependence on 1/ε holds even with stable rank. This answers the main open question of
[31, 25].
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To state our results in a more natural way, we rephrase our main result to say that we
achieve

‖(ΠA)T (ΠB)−ATB‖ ≤ ε

√(
‖A‖2 + ‖A‖

2
F

k

)(
‖B‖2 + ‖B‖

2
F

k

)
. (2)

for an arbitrary k ≥ 1, and we do so by using subspace embeddings for O(k)-dimensional
subspaces in a certain black box way (which will be made precise soon) regardless of the
ranks of A,B.
I Remark 1. Note that our previously stated main contribution is equivalent, since one
could set k = r̃(A) + r̃(B) to arrive at the conclusion that subspace embeddings for O(r̃)-
dimensional subspaces yield the guarantee in Eq. (1). Alternatively one could obtain the
Eq. (2) guarantee via Eq. (1) with error parameter ε′ = Θ(ε ·min{1,

√
(r̃(A) · r̃(B))/k}).

Henceforth, we use the following definition.

I Definition 2. For conforming matrices AT , B, we say Π satisfies the (k, ε)-approximate
spectral norm matrix multiplication property ((k, ε)-AMM) for A,B if Eq. (2) holds. If Π is
random and satisfies (k, ε)-AMM with probability 1− δ for any fixed A,B, then we say Π
satisfies (k, ε, δ)-AMM.

Our main contribution: We give two different characterizations for Π supporting (k, ε)-
AMM, both of which imply (k, ε, δ)-AMM Π having m = O((k+log(1/δ))/ε2) rows. The first
characterization applies to any OSE distribution for which a moment bound has been proven
for ‖(ΠU)T (ΠU)− I‖ (which is true for the best analyses of all known OSE’s). In this case,
we show a black box theorem: any (ε, δ, 2k)-OSE provides (k, ε, δ)-AMM. Since matrices with
subgaussian entries and m = Ω((k + log(1/δ))/ε2) are (ε, δ, 2k)-OSE’s, our originally stated
main result follows. This result is optimal, since [35] shows any randomized distribution over
Π with m rows having the (k, ε, δ)-AMM property must have m = Ω((k + log(1/δ))/ε2) (the
hard instance there is when A = B = U has orthonormal columns, and thus rank and stable
rank are equal).

Our second characterization (appearing in the full version) identifies certain deterministic
conditions which, if satisfied by Π, imply the desired (k, ε)-AMM property. These conditions
are of the form: (1) Π should preserve a certain set of O(log(1/ε)) different subspaces
of varying dimensions (all depending on k, ε and not on the ranks of A,B) with varying
distortions, and (2) for a certain two matrices in our analysis, left-multiplication by Π should
not increase their operator norms by more than an O(1) factor. These conditions are chosen
carefully so that matrices with subgaussian entries and m = Ω(k/ε2) satisfy all conditions
simultaneously with high probability, again thus proving our main result while also suggesting
that the conditions we have identified are the “right” ones.

Due to the black box reliance on the subspace embedding primitive in our proofs, Π
need not only be a subgaussian map. Thus not only do we improve on m compared with
previous work, but also in terms of the general class of Π our result applies to. For example
given our first characterization, not only does it suffice to use a random sign matrix with
Ω(k/ε2) rows, but in fact one can apply our theorem to more efficient subspace embeddings
such as the SRHT or sparse subspace embeddings, or even constructions discovered in the
future. That is, one can automatically transfer bounds proven for the subspace embedding
property to the (k, ε)-AMM property. Thus, for example, the best known SRHT analysis
(see the full version) implies (k, ε, δ)-AMM for m = Ω((k + log(1/(εδ)) log(k/δ))/ε2) rows.
For sparse subspace embeddings, the analysis in [10] implies m = Ω(k log(k/δ)/ε2) suffices
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with s = O(log(k/δ)/ε) non-zeroes per column of Π. The only reason for the log k loss in
m for these particular distributions is not due to our theorems, but rather due to the best
analyses for the simpler subspace embedding property in previous work already incurring the
extra log k factor (note being a subspace embedding for a k-dimensional subspace is simply
a special case of (k, ε)-AMM where A = B = U has k orthonormal columns). In the case of
the SRHT, this extra log k factor is actually necessary [41]; for sparse subspace embeddings,
it is conjectured that the log k factor can be removed and that m = Ω((k + log(1/δ))/ε2)
actually suffices to obtain an OSE [34, Conjecture 14]. We also discuss in Remark 2 that
one can set Π to be Π1 ·Π2 where Π1 has subgaussian entries with O(k/ε2) rows, and Π2
is some other fast OSE (such as the SRHT or sparse subspace embedding), and thus one
could obtain the best of both worlds: (1) Π has O(k/ε2) rows, and (2) can be applied to
any A ∈ Rn×d in time T + O(km′d/ε2), where T is the (fast) time to apply Π2 to A, and
m′ is the number of rows of Π2. For example, by appropriate composition as discussed in
Remark 2, Π can have O(k/ε2) rows and support multiplying ΠA for A ∈ Rn×d in time
O(nnz(A)) + Õ(ε−O(1)(k3 + k2d)).

We also observe the proof of the main result of [3] can be modified to show that given any
A,B each with n rows, and given any ε ∈ (0, 1/2), there exists a diagonal matrix Π ∈ Rn×n
with O(k/ε2) non-zero entries, and that can be computed by a deterministic polynomial time
algorithm, achieving (k, ε)-AMM. The original work of [3] achieved Eq. (1) with m = O(r/ε2)
for r being the sum of ranks of A,B. The work [3] stated their result for the case A = B,
but the general case of potentially unequal matrices reduces to this case; see Section 4. Our
observation also turns out to yield a stronger form of [23, Theorem 3.3]; also see Section 4.

As mentioned, aside from AMM being interesting on its own, it is a useful primitive widely
used in analyses of algorithms for several other problems, including k-means clustering [5, 11],
nonparametric regression [43], linear least squares regression and low-rank approximation
[38], approximating leverage scores [16], and several other problems (see [42] for a recent
summary). For all these, analyses of correctness for algorithms based on dimensionality
reduction via some Π rely on Π satisfying AMM for certain matrices in the analysis.

After making certain quantitative improvements to connections between AMM and
applications, and combining them with our main result, in Section 3 we obtain the following
new results.

1. Generalized regression: Given A ∈ Rn×d and B ∈ Rn×p, consider the problem of
computing X∗ = argminX∈Rd×p ‖AX−B‖. It is standard that X∗ = (ATA)+ATB where
(·)+ is the Moore-Penrose pseudoinverse. The bottleneck here is computing ATA, taking
O(nd2) time. A popular approach is to instead compute X̃ = ((ΠA)T (ΠA))+(ΠA)TΠB,
i.e., the minimizer of ‖ΠAX −ΠB‖. Note that computing (ΠA)T (ΠA) (given ΠA) only
takes a smaller O(md2) amount of time. We show that if Π satisfies (k,O(

√
ε))-AMM

for UA, PĀB, and is also an O(1)-subspace embedding for a certain r(A)-dimensional
subspace (see Theorem 7), then

‖AX̃ −B‖2 ≤ (1 + ε)‖PAB −B‖2 + (ε/k)‖PAB −B‖2F

where PA is the orthogonal projection onto the column space of A, PĀ = I −PA, and UA
has orthonormal columns forming a basis for the column space of A. The punchline is
that if the regression error PĀB has high actual rank but stable rank only on the order
of r(A), then we obtain multiplicative spectral norm error with Π having fewer rows.
Generalized regression is a natural extension of the case when B is a vector, and arises for
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example in Regularized Least Squares Classification, where one has multiple (non-binary)
labels, and for each label one creates a column of B; see e.g. [7] for this and variations.

2. Low-rank approximation: We are given A ∈ Rn×d and integer k ≥ 1, and we want
to compute Ak = argminr(X)≤k ‖A − X‖. The Eckart-Young theorem implies Ak is
obtained by truncating the SVD of A to the top k singular vectors. The standard way
to use dimensionality reduction for speedup, introduced in [38], is to let S = ΠA then
compute Ã = APS . Then return Ãk, the best rank-k approximation of Ã, instead of Ak
(it is known Ãk can be computed more efficiently than Ak; see [8, Lemma 4.3]). We show
if Π satisfies (k,O(

√
ε))-AMM for Uk and A−Ak, and is a (1/2)-subspace embedding for

the column space of Ak, then

‖Ãk −A‖2 ≤ (1 + ε)‖A−Ak‖2 + (ε/k)‖A−Ak‖2F .

The punchline is that if the stable rank of the tail A−Ak is on the same order as the rank
parameter k, then standard algorithms from previous work for Frobenius multiplicative
error actually in fact also provide spectral multiplicative error. This property indeed
holds for any k for popular kernel matrices in machine learning such as the gaussian and
Sobolev kernels (see [37] and Examples 2 and 3 of [43]), and low-rank approximation
of kernel matrices has been applied to several machine learning problems; see [18] for a
discussion.

We also explain in Section 3 how our result has already been applied in recent work on
dimensionality reduction for k-means clustering [12], and how it generalizes results in [43] on
dimensionality reduction for nonparametric regression to use a larger class of embeddings Π.

1.1 Preliminaries and notation
We frequently use the singular value decomposition (SVD). For a matrix A ∈ Rn×d of rank
r, consider the compact SVD A = UAΣAV

T
A where UA ∈ Rn×r and VA ∈ Rd×r each have

orthonormal columns, and ΣA is diagonal with strictly positive diagonal entries (the singular
values of A). We assume (ΣA)i,i ≥ (ΣA)j,j for i < j. We let PA = UAU

T
A denote the

orthogonal projection operator onto the column space of A. We use span(A) to refer to the
subspace spanned by A’s columns.

Often for a matrix A we write Ak as the best rank-k approximation to A under Frobenius
or spectral error (obtained by writing the SVD of A then setting all (ΣA)i,i to 0 for i > k).
We often denote A−Ak as Ak̄. For matrices with orthonormal columns, such as UA, (UA)k
denotes the n × k matrix formed by removing all but the first k columns of U . When A
is understood from context, we often write UΣV T instead of UAΣAV

T
A , and Uk to denote

(UA)k (and Σk for (ΣA)k, etc.).

2 Analysis of matrix multiplication for stable rank

First we record a simple lemma relating subspace embeddings and AMM; proof in full
version [13].

I Lemma 3. Let E = span{A,B}, and let Π be an ε-subspace embedding for E. Then
Eq. (1) holds.

Lemma 3 implies that if A,B each have rank at most r, it suffices for Π to have Ω(r/ε2)
rows.
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In the following subsection, we give one characterization for Π to provide (k, ε, δ)-
AMM, only requiring Π to have Ω((k + log(1/δ))/ε2) rows, independent of r. The other
characterization also allows for this many rows, but is different in that it identifies certain
deterministic conditions such that, if those hold, Π provides (k, ε)-AMM. Thus, the second
characterization can even apply to deterministic Π such as the truncated SVD. We provide
this second characterization only in the full version.

2.1 Characterization for (k, ε, δ)-AMM via a moment property
Here we provide a way to obtain (k, ε)-AMM for any Π whose subspace embedding property
has been established using the moment method, e.g. sparse subspace embeddings [33, 34, 10],
dense subgaussian matrices (as analyzed in the full version), or even the SRHT (also, as
analyzed in the full version). Our approach in this subsection is inspired by the introduction
of the “JL-moment property” in [22] to analyze approximate matrix multiplication with
Frobenius error. The following is a generalization of [22, Definition 6.1], which was only
concerned with d = 1.

I Definition 4. A distribution D over Rm×n has (ε, δ, d, `)-OSE moments if for all matrices
U ∈ Rn×d with orthonormal columns, EΠ∼D

∥∥(ΠU)T (ΠU)− I
∥∥` < ε` · δ.

The acronym “OSE” refers to oblivious subspace embedding, a term coined in [34] to refer to
distributions over Π yielding a subspace embedding for any fixed subspace of a particular
bounded dimension with high probability. We start with a simple lemma; proof in full
version.

I Lemma 5. Suppose D satisfies the (ε, δ, 2d, `)-OSE moment property and A,B (1) have the
same number of rows, and (2) sum of ranks at most 2d. Then EΠ∼D

∥∥(ΠA)T (ΠB)−ATB
∥∥` <

ε`‖A‖`‖B‖`δ.

Then, just as [22, Theorem 6.2] showed that having OSE moments with d = 1 implies
approximate matrix multiplication with Frobenius norm error, here we show that having
OSE moments for larger d implies approximate matrix multiplication with operator norm
error.

I Theorem 6. Given k, ε, δ ∈ (0, 1/2), let D be any distribution over matrices with n columns
with the (ε, δ, 2k, `)-OSE moment property for some ` ≥ 2. Then, for any A,B,

P
Π∼D

(
‖(ΠA)T (ΠB)−ATB‖ > ε

√
(‖A‖2 + ‖A‖2F /k)(‖B‖2 + ‖B‖2F /k)

)
< δ (3)

Proof. We can assume A,B each have orthogonal columns. This is since, via the full SVD,
there exist orthogonal matrices RA, RB such that ARA and BRB each have orthogonal
columns. Since neither left nor right multiplication by an orthogonal matrix changes operator
norm,

‖(ΠA)T (ΠB)−ATB‖ = ‖(ΠARA)T (ΠBRB)− (ARA)TBRB‖.

Thus, we replace A by ARA and similarly for B. We may also assume the columns
a1, a2, . . . of A are sorted so that ‖ai‖2 ≥ ‖ai+1‖2 for all i. Henceforth we assume A has
orthogonal columns in this sorted order (and similarly for B, with columns bi). Now, treat
A as a block matrix in which the columns are blocked into groups of size k, and similarly
for B (if the number of columns of either A or B is not divisible by k, then pad them
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with all-zero columns until they are). Let the spectral norm of the ith block of A be
si = ‖a(i−1)·k+1‖2, and for B denote the spectral norm of the ith block as ti = ‖b(i−1)·k+1‖2.
These equalities for A,B hold since their columns are orthogonal and sorted by norm. We
claim

∑
i s

2
i ≤ ‖A‖2 + ‖A‖2F /k (and similarly for

∑
i t

2
i ). To see this, let the blocks of

A be A′1, . . . , A′q where si = ‖A′i‖. Note s2
1 = ‖A′1‖ ≤ ‖A‖. Also, for i > 1 we have

s2
i = ‖a(i−1)·k+1‖22 ≤ 1

k

∑
(i−2)·k+1≤j≤(i−1)·k ‖aj‖22 = 1

k‖A
′
i−1‖2F . Thus

∑
i>1 s

2
i ≤ ‖A‖2F /k.

Define C = (ΠA)T (ΠB) − ATB. Let v{i} denote the ith block of a vector v (the k-
dimensional vector whose entries consist of entries (i− 1) · k + 1 to i · k of v), and C{i},{j}
the (i, j)th block of C, a k × k matrix (the entries in C contained in the ith block of rows
and jth block of columns).

Now, ‖C‖ = sup‖x‖=‖y‖=1 x
TCy. For any such vectors x and y, we define new vectors x′

and y′ whose coordinates correspond to entire blocks: we let x′i = ‖x{i}‖, with y′ defined
analogously. We similarly define C ′ with entries corresponding to blocks of C, where
C ′i,j = ‖C{i},{j}‖. Then xTCy ≤ x′TC ′y′, simply by bounding the contribution of each block.
Thus it suffices to upper bound ‖C ′‖, which we bound by its Frobenius norm ‖C ′‖F . Now,
recalling for a random variable X that ‖X‖` denotes (E |X|`)1/` and using Minkowski’s
inequality (that ‖ · ‖` is a norm for ` ≥ 1),

‖‖C ′‖2F ‖`/2 =

∥∥∥∥∥∥
∑
i,j

‖(ΠA′i)T (ΠB′j)−A′Ti B′j‖2
∥∥∥∥∥∥
`/2

≤
∑
i,j

‖‖(ΠA′i)T (ΠB′j)−A′Ti B′j‖2‖`/2

≤
∑
i,j

ε2s2
i t

2
j · δ2/` (Lemma 5) = ε2

(∑
i

s2
i

)
·

∑
j

t2j

 δ2/`,

which is at most (ε
√

(‖A‖2 + ‖A‖2
F

k )(‖B‖2 + ‖B‖2
F

k )δ1/`)2. Now, E ‖C ′‖`F = ‖‖C ′‖2F ‖
`/2
`/2,

implying

P

(
‖C ′‖ > ε

√
(‖A‖2 + ‖A‖

2
F

k
)(‖B‖2 + ‖B‖

2
F

k
)
)

≤ P

(
‖C ′‖F > ε

√
(‖A‖2 + ‖A‖

2
F

k
)(‖B‖2 + ‖B‖

2
F

k
)
)

<
E ‖C ′‖`F(

ε

√
(‖A‖2 + ‖A‖2

F

k )(‖B‖2 + ‖B‖2
F

k )
)` ,

and the latter is at most δ. J

We now discuss the implications of applying Theorem 6 to specific OSE’s.

2.1.1 Subgaussian maps
In the full version we show that if Π has independent subgaussian entries and m = Ω((k +
log(1/δ))/ε2) rows, then it satisfies the (ε, δ, 2k,Θ(k + log(1/δ))) OSE moment property.
Thus Theorem 6 applies to show that such Π will satisfy (k, ε, δ)-AMM.

2.1.2 SRHT
The SRHT is the matrix product Π = SHD where D ∈ Rn×n is n × n diagonal with
independent ±1 entries on the diagonal, H is a “bounded orthonormal system” (i.e. an
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orthogonal matrix in Rn×n with maxi,j |Hi,j | = O(1/
√
n)), and the m rows of S are inde-

pendent and each samples a uniformly random element of [n]. Bounded orthonormal systems
include the discrete Fourier matrix and the Hadamard matrix; thus such Π exist supporting
matrix-vector multiplication in O(n logn) time. Thus when computing ΠA for some n× d
matrix A, this takes time O(nd logn) (by applying Π to A column by column). In the full
version we show that the SRHT with m = Ω((k + log(1/(εδ)) log(k/δ))/ε2) satisfies the
(ε, δ, 2k, log(k/δ))-OSE moment property, and thus provides (k, ε, δ)-AMM. Interestingly our
analysis of the SRHT in the full version seems to be asymptotically tighter than any other
analyses in previous work even for the basic subspace embedding property, and even slightly
improves the by now standard analysis of the Fast JL transform given in [1].

2.1.3 Sparse subspace embeddings
The sparse embedding distribution with parameters m, s is as follows [9, 34, 22]. The matrix
Π has m rows and n columns. The columns are independent, and for each column exactly s
uniformly random entries are chosen without replacement and set to ±1/

√
s independently;

other entries in that column are set to zero. Alternatively, one could use the CountSketch [6]:
the m rows are equipartitioned into s sets of size m/s each. The columns are independent,
and in each column we pick exactly one row from each of the s partitions and set the
corresponding entry in that column to ±1/

√
s uniformly; the rest of the entries in the column

are set to 0. Note ΠA can be multiplied in time O(s · nnz(A)), and thus small s is desirable.
It was shown in [33, 34], slightly improving [9], that either of the above distributions

satisfies the (ε, δ, k, 2)-OSE moment property for m = Ω(k2/(ε2δ)), s = 1, and hence (k, ε, δ)-
AMM (though this particular conclusion follows easily from [22, Theorem 6.2]). It was also
shown in [10], improving upon [34], that they satisfy the (ε, δ, k, log(k/δ))-OSE moment
property, and hence also (k, ε, δ)-AMM, for m = Ω(Bk log(k/δ)/ε2), s = Ω(logB(k/δ)/ε)
for any B > 2. The work [10] does not explicitly discuss the OSE moment property for
sparse subspace embeddings, but it is implied; see the full version. It is conjectured that for
B = O(1), m = Ω((k + log(1/δ))/ε2) should suffice [34, Conjecture 14].

I Remark 2. Currently there appears to be a tradeoff: one can either use Π s.t. ΠA can be
computed quickly, such as sparse subspace embeddings or the SRHT, but then m is at least
k log k. Alternatively one could achieve the optimal m = O(k/ε2) using subgaussian Π, but
then multiplying by Π is slower: O(mnd) time for A ∈ Rn×d. However, settling for a tradeoff
is unnecessary. One can obtain the “best of both worlds” by composition so that ΠA will
have the desired O(k/ε2) rows and ΠA computed in time O(nnz(A)) + Õ(ε−O(1)(k3 + k2d));
see full version.

3 Applications

Spectral norm approximate matrix multiplication with dimension bounds depending on
stable rank has immediate applications for the analysis of generalized regression and low-rank
approximation problems. We also point out to the reader recent applications of this result to
kernelized ridge regression [43] and k-means clustering [11].

3.1 Generalized regression
Here we consider generalized regression: attempting to approximate a matrix B as AX, with
A of rank at most k. Let PA be the orthogonal projection operator to the column space of A,
with PĀ = I−P ; then the natural best approximation will satisfy AX = PAB. This minimizes
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11:10 Optimal Approximate Matrix Product in Terms of Stable Rank

both the Frobenius and spectral norms of AX −B. A standard approximation algorithm
for this is to replace A and B with sketches ΠA and ΠB, then solve the reduced problem
exactly (see e.g. [8], Theorem 3.1). This will produce X̃ = UA((ΠUA)TΠUA)−1(ΠUA)TΠB.
Below we give a lemma on the guarantees of the sketched solution in terms of properties of
Π; proof is in full version.

I Theorem 7. If Π (1) satisfies the (k,
√
ε/8)-approximate spectral norm matrix multiplic-

ation property for UA, PĀB, and (2) is a (1/2)-subspace embedding for the column space
of A (which is implied by Π satisfying the spectral norm approximate matrix multiplication
property for UA with itself), then ‖AX̃ −B‖2 ≤ (1 + ε)‖PAB −B‖2 + (ε/k) · ‖PAB −B‖2F .

3.2 Low-rank approximation

Now we apply the generalized regression result from Section 3.1 to obtain a result on low-rank
approximation: approximating A in the form ŨkΣ̃kṼ Tk , where Ũk has only k columns and
both Ũk and Ṽk have orthonormal columns. Here, we consider a previous approach (see e.g.
[38]): (1) let S = ΠA, (2) let PS be the orthogonal projection operator to the row space of S
and Ã = APS , and (3) compute an SVD of Ã and keep only the top k singular vectors, then
return the resulting low rank approximation Ãk of Ã. It turns out computing Ãk can be
done much more quickly than computing Ak; see details in [8, Lemma 4.3]. Let Ak, Uk, Ak̄
be as in Section 1.1.

I Theorem 8. If Π (1) satisfies the (k,
√
ε/8)-approximate spectral norm matrix multiplica-

tion property for Uk, Ak̄, and (2) is a (1/2)-subspace embedding for the column space of Uk
then ‖A− Ãk‖2 ≤ (1 + ε)‖A−Ak‖2 + (ε/k)‖A−Ak‖2F

3.3 Kernelized ridge regression

In nonparametric regression one is given data yi = f∗(xi) + wi for i = 1, . . . , n, and the goal
is to recover a good estimate for the function f∗. Here the yi are scalars, the xi are vectors,
and the wi are independent noise, often assumed to be distributed as mean-zero gaussian
with some variance σ2. Unlike linear regression where f∗(xi) is assumed to take the form
〈β, x〉 for some vector β, in nonparametric regression we allow f∗ to be an arbitrary function
from some function space. Naturally the goal then is to recover some f̃ from the data that is
close to f∗ whp over the noise.

Recent work [43] considers the well studied problem of obtaining f̃ so that ‖f̃ − f∗‖2n
is small with high probability over the noise w, where one uses the definition ‖f − g‖2n =
1
n

∑n
i=1(f(xi)− g(xi))2. The work [43] considers the case where f∗ comes from a space of

functions which is the closure of all functions g expressable as g(x) =
∑N
i=1 αik(x, zi) over

all N , α ∈ RN , and vectors zi for some PSD kernel function k. See the full version for
details, but the punchline is the maximum likelihood estimator for f̃ is then the solution
fLS to a Kernelized Ridge Regression (KRR) problem, and fLS(x) can be expressed as
a linear combination of kernel evaluations

∑n
i=1 αik(x, xi). Then defining matrix K with

Ki,j = k(xi, xj), KRR is equivalent to computing

αLS = argmin
α∈Rn

{
1

2nα
TK2α− 1

n
αTKy + λnα

TKα

}
=
(

1
n
K2 + 2λnK

)−1
· 1
n
Ky,

which can be computed in O(n3) time. The work [43] then focuses on speeding this up, by
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instead computing a solution to the lower-dimensional problem

α̃LS = argmin
α∈Rm

{
1

2nα
TΠK2ΠTα− 1

n
αTΠKy + λnα

TΠKΠTα

}
=
(

1
n

ΠK2ΠT + 2λnΠKΠT

)−1
· 1
n

ΠKy

and then returning as f̃ the function specified by the weight vector α̃ = ΠT α̃LS . Note that
once various matrix products are formed (where the running time complexity depends on the
Π being used), one only needs to invert an m×m matrix thus taking O(m3) time. They then
prove that ‖f̃ − f∗‖n is small with high probability as long as Π satisfies two deterministic
conditions (see the proof of Lemma 2 [43, Section 4.1.2], specifically equation (26) in that
work): (1) Π is a (1/2)-subspace embedding for a particular low-dimensional subspace, and
(2) ‖ΠB‖ = O(‖B‖) for a particular matrix B of low stable rank (B is UD2 in [43]). Note
by the triangle inequality, ‖ΠB‖ ≤ ‖(ΠB)TΠB − BTB‖1/2 + ‖B‖, and thus it suffices for
Π to provide AMM for the product BTB, where B has low stable rank. Item (1) simply
requires a subspace embedding in the standard sense, and for item (2) [43] avoided AMM by
obtaining a bound on ‖ΠB‖ directly by their own analyses for gaussian Π and the SRHT.
Our result thus provides a unifying analysis which works for a larger and general class of Π,
including for example sparse subspace embeddings.

3.4 k-means clustering
In the works [5, 11], the authors considered dimensionality reduction methods for k-means
clustering. Recall in k-means clustering one is given n points x1, . . . , xn ∈ Rd, as well as an
integer k ≥ 1, and the goal is to find k points y1, . . . , yk ∈ Rd minimizing

∑n
i=1 minkj=1 ‖xi−

yj‖22. One key observation common to both [5, 11] is that k-means clustering is closely
related to the problem of low-rank approximation. More specifically, given a partition
P = {P1, . . . , Pk}, define the n × k matrix XP by (XP)i,j is 1/

√
|Pj | if i ∈ Pj , and zero

otherwise. Let A ∈ Rn×d have rows x1, . . . , xn. Then the k-means problem can be rewritten
as computing P∗ = argminP‖A−XPXT

PA‖2F , where P ranges over all partitions of {1, . . . , n}
into k sets (the yi are the distinct rows of XPXT

PA). It is easy to verify the columns of XP
are orthonormal, so XPXT

P is the orthogonal projection onto the column space of XP . Thus
if one defines S as the set of all rank k orthogonal projections obtained as XPXT

P for some
k-partition P, then the above can be rewritten as the constrained rank-k projection problem
of computing P∗ = argminP∈S‖(I − P )A‖2F .

The work [11] showed that if S is any subset of projections of rank at most k (henceforth
rank-k projections) and Π ∈ Rm×d satisfies certain technical conditions to be divulged soon,
then if P̃ ∈ S minimizes the Π-reduced problem minP∈S ‖(I − P )AΠT ‖2F up to a factor of γ,
then P̃ minimizes the original problem minP∈S ‖(I − P )A‖2F up to (1 +O(ε))γ.

One set of sufficient conditions for Π is as follows (see [11, Lemma 10]). There is a matrix
B ∈ R(n+2k)×d of stable rank O(k), where k is the number of cluster centers yi above, such
that if

‖(ΠBT )T (ΠBT )−BBT ‖ < ε, (4)
and

∣∣‖ΠB2‖2F − ‖B2‖2F
∣∣ ≤ εk (5)

then P̃ provides good error as discussed above. Thus for Eq. (4) it suffices for Π to provide
(O(k), ε/2)-AMM for BT , BT , and our results apply. Obtaining Eq. (5) is much simpler and
can be derived from the JL moment property (see the proof of [22, Theorem 6.2]).
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Without our results on stable-rank AMM provided in this current work, [11] gave a different
analysis, avoiding [11, Lemma 10], which for subgaussian Π required m = Θ(k · log(1/δ)/ε2)
rows (note the product between k and log(1/δ) instead of the sum).

4 Stable rank and row selection

As well as random projections, AMM (and subspace embeddings) by row selection are also
common in algorithms. This corresponds to setting Π to a diagonal matrix S with relatively
few nonzero entries. Unlike random projections, there are no oblivious distributions of such
matrices S with universal guarantees. Instead, S must be determined (either randomly or
deterministically) from the matrices being embedded.

There are two particularly algorithmically useful methods for obtaining such S. The first
is importance sampling: independent random sampling of the rows, but with nonuniform
sampling probabilities. For rank-k matrices, O(k(log k)/ε2) samples suffice [17, 39]. The
second method is the deterministic selection method given in [3], often called “BSS”, choosing
only O(k/ε2) rows. This still runs in polynomial time, but originally required many expensive
linear algebra steps and thus was slower in general; see [26] for runtime improvements.

The method used in [39] (matrix Chernoff bound) can be extended to the stable-rank
case, making even the log factor in the number of samples depend only on the stable rank;
see the full version for details. We here give an extension of BSS that covers low stable rank
matrices as well. The proof is in the full version, and follows by observing that it suffices to
just perform a slight modification of the original BSS proof.

I Theorem 9. Given two matrices A and B, each with n rows, and an ε ∈ (0, 1), there
exists a diagonal matrix S with O(k/ε2) nonzero entries satisfying the (k, ε)-AMM property
for A, B. Such an S can be computed by a polynomial-time algorithm.

When A = B and ATA is the identity, this is just the original BSS result. It is also
stronger than Theorem 3.3 of [23], implying it when A is the combination of the rows√
N/T · vi from that theorem statement with an extra column containing the costs, and a

constant ε. The techniques in that paper, on the other hand, can prove a result comparable
to Theorem 9, but with the row count scaling as k/ε3 rather than k/ε2.

Acknowledgments. We thank Jarosław Błasiok for pointing out the connection between
low stable rank approximate matrix multiplication and the analyses in [43].
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Abstract
Span programs are a model of computation that have been used to design quantum algorithms,
mainly in the query model. It is known that for any decision problem, there exists a span
program that leads to an algorithm with optimal quantum query complexity, however finding
such an algorithm is generally challenging. In this work, we consider new ways of designing
quantum algorithms using span programs. We show how any span program that decides a
problem f can also be used to decide “property testing” versions of the function f , or more
generally, approximate a quantity called the span program witness size, which is some property
of the input related to f . For example, using our techniques, the span program for OR, which can
be used to design an optimal algorithm for the OR function, can also be used to design optimal
algorithms for: threshold functions, in which we want to decide if the Hamming weight of a string
is above a threshold, or far below, given the promise that one of these is true; and approximate
counting, in which we want to estimate the Hamming weight of the input up to some desired
accuracy. We achieve these results by relaxing the requirement that 1-inputs hit some target
exactly in the span program, which could potentially make design of span programs significantly
easier. In addition, we give an exposition of span program structure, which increases the general
understanding of this important model. One implication of this is alternative algorithms for
estimating the witness size when the phase gap of a certain unitary can be lower bounded. We
show how to lower bound this phase gap in certain cases.

As an application, we give the first upper bounds in the adjacency query model on the
quantum time complexity of estimating the effective resistance between s and t, Rs,t(G). For this
problem we obtain Õ( 1

ε3/2n
√
Rs,t(G)), using O(logn) space. In addition, when µ is a lower bound

on λ2(G), by our phase gap lower bound, we can obtain an upper bound of Õ
(

1
εn
√
Rs,t(G)/µ

)
for estimating effective resistance, also using O(logn) space.
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tight lower bound on the quantum query complexity of any decision problem [18, 19]. As a
means of designing quantum algorithms, it is known that for any decision problem, there exists
a span-program-based algorithm with asymptotically optimal quantum query complexity,
but this fact alone gives no indication of how to find such an algorithm. Despite the relative
difficulty in designing quantum algorithms this way, there are many applications, including
formula evaluation [20, 19], a number of algorithms based on the learning graph framework [3],
st-connectivity [5] and k-distinctness [2]. Although generally quantum algorithms designed
via span programs can only be analyzed in terms of their query complexity, in some cases
their time complexity can also be analyzed, as is the case with the quantum algorithm for
st-connectivity. In the case of the quantum algorithm for k-distinctness, the ideas used in
designing the span program could be turned into a quantum algorithm for 3-distinctness
with time complexity matching its query complexity up to logarithmic factors [4].

In this work, we consider new ways of designing quantum algorithms via span programs.
Consider Grover’s quantum search algorithm, which, on input x ∈ {0, 1}n, decides if there is
some i ∈ [n] such that xi = 1 using only O(

√
n) quantum operations [10]. The ideas behind

this algorithm have been used in innumerable contexts, but in particular, a careful analysis
of the ideas behind Grover’s algorithm led to algorithms for similar problems, including a
class of threshold functions: given x ∈ {0, 1}n, decide if |x| ≥ t or |x| < εt, where |x| denotes
the Hamming weight; and approximate counting: given x ∈ {0, 1}n, output an estimate of
|x| to some desired accuracy. The results in this paper offer the possibility of obtaining
analogous results for any span program. That is, given a span program for some problem
f , our results show that one can obtain, not only an algorithm for f , but algorithms for a
related class of threshold functions, as well as an algorithm for estimating a quantity called
the span program witness size, which is analogous to |x| in the above example (and is in fact
exactly 1/|x| in the span program for the OR function — see Section 2.3).

We give several new means of constructing quantum algorithms from span programs.
Roughly speaking, a span program can be turned into a quantum algorithm that decides
between two types of inputs: those that “hit” a certain “target vector”, and those that don’t.
We show how to turn a span program into an algorithm that decides between inputs that get
“close to” the target vector, and those that don’t. Whereas traditionally a span program has
been associated with some decision problem, this allows us to now associate, with one span
program, a whole class of threshold problems.

In addition, for any span program P , we can construct a quantum algorithm that estimates
the positive witness size, w+(x), to accuracy ε in 1

ε3/2

√
w+(x)W̃− queries, where W̃− is the

approximate negative witness complexity of P . This construction is useful whenever we can
construct a span program for which w+(x) corresponds to some function we care to estimate,
as is the case with the span program for OR, in which w+(x) = 1

|x| , or the span from for
st-connectivity, in which w+(G) = 1

2Rs,t(G), where G is a graph, and Rs,t(G) is the effective
resistance between s and t in G. We show similar results for estimating the negative witness
size as well.

Our analysis of the structure of span programs increases the theoretical understanding of
this important model. One implication of this is alternative algorithms for estimating the
witness size when the phase gap (or spectral gap) of a certain unitary associated with the
span program can be lower bounded. This is in contrast to previous span program algorithms,
including those mentioned in the previous paragraph, which have all relied on effective
spectral gap analysis. We show how the phase gap can be lower bounded by σmax(A)

σmin(A(x)) , where
A and A(x) are linear operators associated with the span program and some input x, and
σmin and σmax are the smallest and largest nonzero singular values.
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In addition, our exposition highlights the relationship between span programs and
estimating the size of the smallest solution to a linear system, which is a problem solved by
Harrow, Hassidim and Lloyd in [11]. It is not yet clear if this relationship can lead to new
algorithms, but it is an interesting direction for future work.

An immediate application of our results is a quantum algorithm for estimating the effective
resistance between two vertices in a graph, Rs,t(G). This example is immediate, because
in [5], a span program for st-connectivity was presented, in which the positive witness size
corresponds to Rs,t(G). The results of [5], combined with our new span program algorithms,
immediately yield an upper bound of Õ( 1

ε3/2n
√
Rs,t(G)) for estimating the effective resistance

to relative accuracy ε. This upper bound also holds for time complexity, due to the time
complexity analysis of [5]. Using our new spectral analysis techniques, we are also able to get
an often better upper bound of Õ

(
1
εn
√
Rs,t(G)/µ

)
, on the time complexity of estimating

effective resistance, where µ is a lower bound on λ2(G), the second smallest eigenvalue of the
Laplacian. Both algorithms use O(logn) space. We also show that a linear dependence on n
is necessary, so our results cannot be significantly improved.

These are the first quantum algorithms for this problem in the adjacency query model.
Previous quantum algorithms have been in the edge-list model for d-regular graphs [22].
These results can be naively extended to the adjacency query model by simulating an edge
query with

√
n/d adjacency queries, using quantum search, which gives an upper bound of

Õ
(
d3/2

Φ2ε

√
n/d

)
queries, where Φ is the conductance of the input graph. Our upper bounds

improve on this in many cases, including, but not limited to, d-regular graphs with d > 4
√
n,

and furthermore, our results do not assume the input graph is regular. Classically, the effective
resistance can be computed exactly by inverting the Laplacian, which costs O(m) = O(n2),
where m is the number of edges in the input graph.

1.1 Preliminaries
To begin, we fix notation. For vector spaces V and W , we let L(V,W ) denote the set of linear
operators from V to W . For any operator A ∈ L(V,W ), we denote by colA the columnspace,
rowA the rowspace, and kerA the kernel of A. σmin(A) and σmax(A) denote the smallest and
largest non-zero singular values, respectively. A+ denotes the Moore-Penrose pseudo-inverse.

The algorithms in this paper solve either decision problems, or estimation problems.
For f : X ⊆ [q]n → {0, 1}, we say that an algorithm decides f with bounded error if for
any x ∈ X, with probability at least 2/3, the algorithm outputs f(x) on input x. For
f : X ⊆ [q]n → R≥0, we say that an algorithm estimates f to relative accuracy ε with
bounded error if for any x ∈ X, with probability at least 2/3, on input x the algorithm
outputs f̃ such that |f(x)− f̃ | ≤ εf(x). In both cases, using 2/3 is without loss of generality:
any algorithm with success probability bounded above 1/2 by a constant can be amplified to
success probability arbitrarily close to 1 by taking the median of the outputs of a constant
number of repetitions of the algorithm. We generally omit the description “with bounded
error”, as all of our algorithms have bounded error.

All algorithms presented in this paper are based on the following structure. We have some
initial state |φ0〉, and some unitary operator U , and we want to estimate ‖Π0|φ0〉‖, where
Π0 is the orthogonal projector onto the 1-eigenspace of U . The first step in this process is a
quantum algorithm that estimates, in a new register, the phase of U applied to the input
state.

I Theorem 1 (Phase Estimation [14, 9]). Let U =
∑m
j=1 e

iθj |ψj〉〈ψj | be the spectral decom-
position of a unitary, with θ1, . . . , θm ∈ (−π, π]. For any Θ ∈ (0, π) and ε ∈ (0, 1), there

ICALP 2016
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exists a quantum algorithm that makes O
( 1

Θ log 1
ε

)
controlled calls to U and, on input |ψj〉,

outputs a state |ψj〉|ω〉 such that if θj = 0, then |ω〉 = |0〉, and if |θj | ≥ Θ, |〈0|ω〉|2 ≤ ε. If U
acts on s qubits, the algorithm uses O(s+ log 1

Θ ) space.

The precision needed to isolate Π0|φ0〉 depends on the smallest nonzero phase of U , the
phase gap.

I Definition 2 (Phase Gap). Let {eiθj}j∈S be the eigenvalues of a unitary operator U , with
{θj}j∈S ⊂ (−π, π]. Then the phase gap of U is ∆(U) := min{|θj | : θj 6= 0}.

In order to estimate ‖Π0|φ0〉‖2, given a state |0〉Π0|φ0〉+ |1〉(I−Π0)|φ0〉, we use the following.

I Theorem 3 (Amplitude Estimation [7]). Let A be a quantum algorithm that outputs√
p(x)|0〉|Ψx(0)〉+

√
1− p(x)|1〉|Ψx(1)〉 on input x. Then there exists a quantum algorithm

that estimates p(x) to precision ε using O
(

1
ε

1√
p(x)

)
calls to A.

If we know the amplitude is either ≤ p0 or ≥ p1 for some p0 < p1, then we can use
amplitude estimation to distinguish between these two cases.

I Corollary 4 (Amplitude Gap). Let A be a quantum algorithm that, on input x, outputs√
p(x)|0〉|Ψx(0)〉 +

√
1− p(x)|1〉|Ψx(1)〉. For any 0 ≤ p0 < p1 ≤ 1, we can distinguish

between the cases p(x) ≥ p1 and p(x) ≤ p0 with bounded error using O
( √

p1
p1−p0

)
calls to A.

In order to make use of phase estimation, we will need to analyze the spectrum of a
particular unitary, which, in our case, consists of a pair of reflections. The following lemma
first appeared in this form in [15]:

I Lemma 5 (Effective Spectral Gap Lemma). Let U = (2ΠA − I)(2ΠB − I) be the product of
two reflections, and let ΠΘ be the orthogonal projector onto span{|u〉 : U |u〉 = eiθ|u〉, |θ| ≤ Θ}.
Then if ΠA|u〉 = 0, ‖ΠΘΠB |u〉‖ ≤ Θ

2 ‖|u〉‖.

The following theorem was first used in the context of quantum algorithms by Szegedy [21]:

I Theorem 6 ([21]). Let U = (2ΠA − I)(2ΠB − I) be a unitary on a space H containing
A = span{|ψ1〉, . . . , |ψa〉} and B = span{|φ1〉, . . . , |φb〉}. Let ΠA =

∑a
i=1 |ψi〉〈ψi| and

ΠB =
∑b
i=1 |φi〉〈φi| be the orthogonal projectors onto these spaces. Let D = ΠAΠB be the

discriminant of U , and suppose it has singular value decomposition
∑r
j=1 cos θj |αj〉〈βj |, with

θj ∈ [0, π2 ]. Then the spectrum of U is {e±2iθj}j . The 1-eigenspace of U is (A∩B)⊕(A⊥∩B⊥)
and the (−1)-eigenspace is (A ∩B⊥)⊕ (A⊥ ∩B).

Let ΛA =
∑a
j=1 |ψj〉〈j| and ΛB =

∑b
j=1 |φj〉〈j|. We note that in the original statement

of Theorem 6, the discriminant is defined D′ = Λ†AΛB . However it is easy to see that D′ and
D have the same singular values: if D′ =

∑
i σi|vi〉〈ui| is a singular value decomposition of

D′, then D =
∑
i σiΛA|vi〉〈ui|Λ

†
B is a singular value decomposition of D, since ΛA acts as

an isometry on the columns of D′, and ΛB acts as an isometry on the rows of D′.
The following corollary to Theorem 6 will be useful in the analysis of several algorithms.

I Corollary 7 (Phase Gap and Discriminant). Let D be the discriminant of a unitary U =
(2ΠA − I)(2ΠB − I). Then ∆(−U) ≥ 2σmin(D).
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2 Approximate Span Programs

2.1 Span Programs and Decision Problems
In this section, we review the concept of span programs, and their use in quantum algorithms.

I Definition 8 (Span Program). A span program P = (H,V, τ, A) on [q]n consists of
1. finite-dimensional inner product spaces H = H1 ⊕ · · · ⊕Hn ⊕Htrue ⊕Hfalse, and {Hj,a ⊆

Hj}j∈[n],a∈[q] such that Hj,1 + · · ·+Hj,q = Hj ,
2. a vector space V ,
3. a target vector τ ∈ V , and
4. a linear operator A ∈ L(H,V ).
To each string x ∈ [q]n, we associate a subspace H(x) := H1,x1 ⊕ · · · ⊕Hn,xn

⊕Htrue.

Although our notation in Definition 8 deviates from previous span program definitions,
the only difference in the substance of the definition is that the spaces Hj,a and Hj,b for
a 6= b need not be orthogonal in our definition. This has the effect of removing log q factors
in the equivalence between span programs and the dual adversary bound (for details see
[12, Sec. 7.1]). The spaces Htrue and Hfalse can be useful for designing a span program, but
are never required, since we can always add an (n + 1)th variable, set xn+1 = 1, and let
Hn+1,0 = Hfalse and Hn+1,1 = Htrue.

A span program on [q]n partitions [q]n into two sets: positive inputs, which we call P1,
and negative inputs, which we call P0. The importance of this partition stems from the fact
that a span program may be converted into a quantum algorithm for deciding this partition
in the quantum query model [18, 19]. Thus, if one can construct a span program whose
partition of [q]n corresponds to a problem one wants to solve, an algorithm follows. In order
to describe how a span program partitions [q]n and the query complexity of the resulting
algorithm, we need the concept of positive and negative witnesses and witness size.

I Definition 9 (Positive and Negative Witness). Fix a span program P on [q]n, and a string
x ∈ [q]n. We say that |w〉 is a positive witness for x in P if |w〉 ∈ H(x), and A|w〉 = τ . We
define the positive witness size of x as:

w+(x, P ) = w+(x) = min{‖|w〉‖2 : |w〉 ∈ H(x), A|w〉 = τ},

if there exists a positive witness for x, and w+(x) =∞ else. We say that ω ∈ L(V,R) is a
negative witness for x in P if ωAΠH(x) = 0 and ωτ = 1. We define the negative witness size
of x as:

w−(x, P ) = w−(x) = min{‖ωA‖2 : ω ∈ L(V,R), ωAΠH(x) = 0, ωτ = 1},

if there exists a negative witness, and w−(x) =∞ otherwise. If w+(x) is finite, we say that
x is positive (with respect to P ), and if w−(x) is finite, we say that x is negative. We let
P1 denote the set of positive inputs, and P0 the set of negative inputs for P . Note that for
every x ∈ [q]n, exactly one of w−(x) and w+(x) is finite; that is, (P0, P1) partitions [q]n.

For a decision problem f : X ⊆ [q]n → {0, 1}, we say that P decides f if f−1(0) ⊆ P0 and
f−1(1) ⊆ P1. In that case, we can use P to construct a quantum algorithm that decides f .

I Theorem 10 ([18]). Fix f : X ⊆ [q]n → {0, 1}, and let P be a span program on [q]n that
decides f . Let W+(f, P ) = maxx∈f−1(1) w+(x, P ) and W−(f, P ) = maxx∈f−1(0) w−(x, P ).
Then there exists a quantum algorithm that decides f using O(

√
W+(f, P )W−(f, P )) queries.

ICALP 2016
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We call
√
W+(f, P )W−(f, P ) the complexity of P . It is known that for any decision

problem, there exists a span program whose complexity is equal, up to constants, to its
query complexity [18, 19] ([12, Sec. 7.1] removes log factors in this statement), however, it is
generally a difficult task to find such an optimal span program.

2.2 Span Programs and Approximate Decision Problems
Consider a span program P and x ∈ P0. Suppose there is some |w〉 ∈ H(x) such that A|w〉
comes extremely close to τ . We might say that x is very close to being in P1. If all vectors
in H(y) for y ∈ P0 \ {x} are very far from τ , it might be slightly more natural to consider
the partition (P0 \ {x}, P1 ∪ {x}) rather than (P0, P1).

As further motivation, we mention a construction of Reichardt [18, Sec. 3 of full version]
that takes any quantum query algorithm with one-sided error, and converts it into a span
program whose complexity matches the query complexity of the algorithm. The target of
the span program is the vector |1, 0̄〉, which corresponds to a quantum state with a 1 in the
answer register and 0s elsewhere. If an algorithm has no error on 1-inputs, it can be modified
so that it always ends in exactly this state, by uncomputing all but the answer register. An
algorithm with two-sided error cannot be turned into a span program using this construction,
because there is error in the final state. This is intuitively in opposition to the evidence
that span programs characterize bounded (two-sided) error quantum query complexity. The
exactness required by span programs seems to contrast the spirit of non-exact quantum
algorithms.

This motivates us to consider the positive error of an input, or how close it comes to
being positive. Since there is no meaningful notion of distance in V , we consider closeness
in H.

I Definition 11 (Positive Error). For any span program P on [q]n, and x ∈ [q]n, we define
the positive error of x in P as:

e+(x) = e+(x, P ) := min
{∥∥ΠH(x)⊥ |w〉

∥∥2 : A|w〉 = τ
}
.

Note that e+(x, P ) = 0 if and only if x ∈ P1. Any |w〉 such that
∥∥ΠH(x)⊥ |w〉

∥∥2 = e+(x) is
called a min-error positive witness for x in P . We define

w̃+(x) = w̃+(x, P ) := min
{
‖|w〉‖2 : A|w〉 = τ,

∥∥ΠH(x)⊥ |w〉
∥∥2 = e+(x)

}
.

A min-error positive witness that also minimizes ‖|w〉‖2 is called an optimal min-error positive
witness for x.

Note that if x ∈ P1, then e+(x) = 0. In that case, a min-error positive witness for x is
just a positive witness, and w̃+(x) = w+(x).

We can define a similar notion for positive inputs, to measure their closeness to being
negative.

I Definition 12 (Negative Error). For any span program P on [q]n and x ∈ [q]n, we define
the negative error of x in P as:

e−(x) = e−(x, P ) := min
{∥∥ωAΠH(x)

∥∥2 : ω(τ) = 1
}
.

Again, e−(x, P ) = 0 if and only if x ∈ P0. Any ω such that
∥∥ωAΠH(x)

∥∥2 = e−(x, P ) is called
a min-error negative witness for x in P . We define

w̃−(x) = w̃−(x, P ) := min
{
‖ωA‖2 : ω(τ) = 1,

∥∥ωAΠH(x)
∥∥2 = e−(x, P )

}
.
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A min-error negative witness that also minimizes ‖ωA‖2 is called an optimal min-error
negative witness for x.

It turns out that the notion of span program error has a very nice characterization as
exactly the reciprocal of the witness size. We prove in the full version (Theorems 2.10 and
2.11):

∀x ∈ P0, w−(x) = 1
e+(x) , and ∀x ∈ P1, w+(x) = 1

e−(x) .

This is a very nice state of affairs, for a number of reasons. It allows us two ways of thinking
about approximate span programs: in terms of how small the error is, or how large the
witness size is. That is, we can say that an input x ∈ P0 is almost positive either because its
positive error is small, or equivalently, because its negative witness size is large. In general,
we can think of P as not only partitioning P into (P0, P1), but inducing an ordering on [q]n
from most negative — smallest negative witness, or equivalently, largest positive error —
to most positive — smallest positive witness, or equivalently, largest negative error. For
example, on the domain {x(1), . . . , x(6)} ⊂ [q]n, P might induce the following ordering:

x(1) x(2) x(3) x(4) x(5) x(6)

increasing positive error/
decreasing negative witness size

increasing negative error/
decreasing positive witness size

The inputs {x(1), x(2), x(3)} are in P0, and w−(x(1)) < w−(x(2)) < w−(x(3)) (although it is
generally possible for two inputs to have the same witness size). The inputs {x(4), x(5), x(6)}
are in P1, and w+(x(4)) > w+(x(5)) > w+(x(6)). The span program exactly decides the
partition ({x(1), x(2), x(3)}, {x(4), x(5), x(6)}), but we say it approximates any partition that
respects the ordering. If we obtain a partition by drawing a line somewhere on the left
side, for example ({x(1), x(2)}, {x(3), x(4), x(5), x(6)}), we say P negatively approximates the
function corresponding to that partition, whereas if we obtain a partition by drawing a
line on the right side, for example ({x(1), x(2), x(3), x(4), x(5)}, {x(6)}), we say P positively
approximates the function.

I Definition 13 (Functions Approximately Associated with P ). Let P be a span program
on [q]n, and f : X ⊆ [q]n → {0, 1} a decision problem. For any λ ∈ (0, 1), we say that
P positively λ-approximates f if f−1(1) ⊆ P1, and for all x ∈ f−1(0), either x ∈ P0,
or w+(x, P ) ≥ 1

λW+(f, P ), where W+(f, P ) := maxx∈f−1(1) w+(x, P ). We say that P
negatively λ-approximates f if f−1(0) ⊆ P0, and for all x ∈ f−1(1), either x ∈ P1, or
w−(x, P ) ≥ 1

λW−(f, P ), where W−(f, P ) := maxx∈f−1(0) w−(x, P ). If P decides f exactly,
then both conditions hold for any value of λ, and so we can say that P 0-approximates f .

This allows us to consider a much broader class of functions associated with a particular
span program. This association is useful, because as with the standard notion of association
between a function f and a span program, if a function is approximated by a span program,
we can convert the span program into a quantum algorithm that decides f using a number
of queries related to the witness sizes. Specifically, we get the following theorem.

I Theorem 14 (Approximate Span Program Decision Algorithms). Fix f : X ⊆ [q]n → {0, 1},
and let P be a span program that positively λ-approximates f . Define

W+ = W+(f, P ) := max
x∈f−1(1)

w+(x, P ) and W̃− = W̃−(f, P ) := max
x∈f−1(0)

w̃−(x, P ).
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There is a quantum algorithm that decides f with bounded error in O

(√
W+W̃−

(1−λ)3/2 log 1
1−λ

)
queries. Similarly, let P be a span program that negatively λ-approximates f . Define

W− = W−(f, P ) := max
x∈f−1(0)

w−(x, P ) and W̃+ = W̃+(f, P ) := max
x∈f−1(1)

w̃+(x, P ).

There is a quantum algorithm that decides f with bounded error in O

(√
W−W̃+

(1−λ)3/2 log 1
1−λ

)
queries.

With the ability to distinguish between different witness sizes, we can obtain algorithms
for estimating the witness size.

I Theorem 15 (Witness Size Estimation Algorithm). Fix f : X ⊆ [q]n → R≥0. Let P be
a span program such that for all x ∈ X, f(x) = w+(x, P ) and define W̃− = W̃−(f, P ) =
maxx∈X w̃−(x, P ). There exists a quantum algorithm that estimates f to accuracy ε in

Õ

(
1

ε3/2

√
w+(x)W̃−

)
queries. Similarly, let P be a span program such that for all x ∈ X,

f(x) = w−(x, P ) and define W̃+ = W̃+(f, P ) = maxx∈X w̃+(x, P ). Then there exists a

quantum algorithm that estimates f to accuracy ε in Õ
(

1
ε3/2

√
w−(x)W̃+

)
queries.

Proofs of Theorem 14 and 15 can be found in the full version (Theorems 2.7 and 2.8), but
we give a high-level outline here. As in the case of algorithms previously constructed from
span programs, our algorithms will consist of phase estimation of a unitary on H, applied to
some initial state. Unlike previous applications, we will use |w0〉 = A+τ (discussed more in
full version, Section 2.4), as the initial state. This state is independent of the input, and so
can be generated with 0 queries. For negative span program algorithms, where we want to
decide a function negatively approximated by P , we will use a unitary U(P, x), defined as
follows:

U(P, x) := (2ΠkerA − I)(2ΠH(x) − I).

This is similar to the unitary used in previous span program algorithms. Note that (2ΠkerA−I)
is input-independent, and so can be implemented in 0 queries. However, in order to analyze
the time complexity of a span program algorithm, this reflection must be implemented (as
we are able to do for our applications, following [5]). The reflection (2ΠH(x) − I) depends on
the input, but requires only two queries to implement.

For positive span program algorithms, where we want to decide a function positively
approximated by P , or estimate the positive witness size, we will use a slightly different
unitary, U ′(P, x).

In order to show how these unitaries can be used to distinguish between inputs with small
negative (resp. positive) witnesses, and those that only have large negative (resp. positive)
witnesses, we analyze the overlap of the initial state, |w0〉 with the 1-eigenspace of U(P, x)
(resp. U ′(P, x)) in terms of the witness size. Specifically, we show that the overlap of |w0〉
with the 1-eigenspace of U(P, x) is exactly 1

w−(x,P ) (full version, Lemma 3.3), and the overlap
of |w0〉 with the 1-eigenspace of U ′(P, x) is exactly 1

w+(x,P ) (full version, Lemma 3.5). We
can then use phase estimation, followed by amplitude estimation, to estimate the witness
size.

There are then two possibilities for bounding the required precision of phase estimation,
which also tells us the number of times we will need to call U(P, x) (resp. U ′(P, x)), and
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therefore, the query complexity of the algorithm. Similar to previous span program algorithms
we use the effective spectral gap lemma to show that the overlap of |w0〉 with eiθ-eigenspaces
of U(P, x) (resp. U ′(P, x)) is not too large for small θ (full version, Lemmas 3.2 and 3.4).
This leads to Theorem 14 and Theorem 15.

The second way to bound the required precision of phase estimation is to lower bound the
phase gap of U(P, x) (resp. U ′(P, x)), which may be very difficult in general. However, by
relating the phase gap of U(P, x) (resp. U ′(P, x)) to the spectrum of A and A(x) = AΠH(x)
in a novel way, we show how to lower bound the phase gap in some cases, which may give
better results. This leads to the following theorem.

I Theorem 16 (Witness Size Estimation Algorithm Using Real Phase Gap). We say that a
span program is normalized if ‖A+τ‖ = 1. Any span program can be normalized by scaling τ .

Fix f : X ⊆ [q]n → R≥0 and let P = (H,V, τ, A) be a normalized span program on [q]n
such that for all x ∈ X, f(x) = w+(x, P ) (resp. f(x) = w−(x)). If κ ≥ σmax(A)

σmin(AΠH(x)) for all
x ∈ X, then the quantum query complexity of estimating f(x) to relative accuracy ε is at
most Õ

(√
f(x)κ/ε

)
.

In particular, in our application to effective resistance, it is not difficult to bound the
phase gap in this way, which leads to an improved upper bound.

2.3 Example

To illustrate how these ideas might be useful, we will give a brief example of how a span
program that leads to an algorithm for the OR function can be combined with our results to
additionally give algorithms for threshold functions and approximate counting. We define a
span program P on {0, 1}n as follows:

V = R, τ = 1, Hi = Hi,1 = span{|i〉}, Hi,0 = {0}, A =
n∑
i=1
〈i|.

So we have H = span{|i〉 : i ∈ [n]} and H(x) = span{|i〉 : xi = 1}. It’s not difficult to see
that P decides OR. In particular, we can see that the optimal positive witness for any x
such that |x| > 0 is |wx〉 =

∑
i:xi=1

1
|x| |i〉. The only linear function ω : R→ R that maps τ

to 1 is the identity, and indeed, this is a negative witness for the string 0̄ = 0 . . . 0, since
H(0̄) = {0}, and so ωAΠH(0̄) = 0.

Let λ ∈ (0, 1), t ∈ [n], and let f be a threshold function defined by f(x) = 1 if |x| ≥ t and
f(x) = 0 if |x| ≤ λt, with the promise that one of these conditions holds. Note that if f(x) = 1,
then w+(x) = ‖|wx〉‖2 = 1

|x| ≤
1
t , so W+(f, P ) = 1

t . On the other hand, if f(x) = 0, then
w+(x) = 1

|x| ≥
1
λt = 1

λW+(f, P ), so P positively λ-approximates f . The only approximate
negative witness is ω the identity, so we have W̃− = ‖ωA‖2 = ‖A‖2 = n. By Theorem 14,
there is a quantum algorithm for f with query complexity 1

(1−λ)3/2

√
W+W̃− = 1

(1−λ)3/2

√
n/t.

Furthermore, since w+(x) = 1
|x| , by Theorem 15, we can estimate 1

|x| to relative accuracy
ε, and therefore we can estimate |x| to relative accuracy 2ε, in quantum query complexity

1
ε3/2

√
n/|x|.

These upper bounds do not have optimal scaling in ε, as the actual quantum query com-
plexities of these problems are 1

1−λ
√
n/t and 1

ε

√
n/|x| [6, 7, 1], however, using Theorem 16,

the optimal query complexities can be recovered.
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3 Applications

In this section, we will demonstrate how to apply Theorem 15 and 16 to get new quantum
algorithms. Specifically, we will give upper bounds of Õ(n

√
Rs,t/ε

3/2) and Õ(n
√
Rs,t/λ2/ε)

on the time complexity of estimating the effective resistance, Rs,t, between two vertices, s
and t, in a graph. Unlike previous upper bounds, we study this problem in the adjacency
model.

A unit flow from s to t in G is a real-valued function θ on the directed edges
→
E(G) =

{(u, v) : {u, v} ∈ E(G)} such that:
1. for all (u, v) ∈

→
E, θ(u, v) = −θ(v, u);

2. for all u ∈ [n] \ {s, t},
∑
v∈Γ(u) θ(u, v) = 0, where Γ(u) = {v ∈ [n] : {u, v} ∈ E}; and

3.
∑
u∈Γ(s) θ(s, u) =

∑
u∈Γ(t) θ(u, t) = 1.

Let F be the set of unit flows from s to t in G. The effective resistance from s to t in G is
defined:

Rs,t(G) = min
θ∈F

∑
{u,v}∈E(G)

θ(u, v)2.

This quantity gives the resistance of a network of unit resistors described by G, but is also
an interesting quantity for graph theoretic reasons. For instance, the commute time between
s and t, which is the expected number of steps in a random walk starting from s to reach t,
and then return to s, is exactly the product of the number of edges in G, and Rs,t(G) [8].

In the adjacency model, the input is a string x ∈ {0, 1}n×n, representing a graph
Gx = ([n], {{i, j} : xi,j = 1}) (we assume that xi,i = 0 for all i, and xi,j = xj,i for all i, j).
The problem of st-connectivity is the following. Given x ∈ {0, 1}n×n and s, t ∈ [n], decide if
there exists a path from s to t in Gx. A span-program-based algorithm for this problem was
given in [5], with time complexity Õ(n√p), under the promise that, if s and t are connected
in Gx, they are connected by a path of length ≤ p. They use the following span program,
defined on {0, 1}n×n:

H(u,v),0 = {0}, H(u,v),1 = span{|u, v〉}, V = Rn, A =
∑

u,v∈[n]

(|u〉−|v〉)〈u, v|, |τ〉 = |s〉−|t〉.

We have H = span{|u, v〉 : u, v ∈ [n]}, and H(x) = span{|u, v〉 : {u, v} ∈ E(Gx)}. Through-
out this section, P will denote the above span program. We will use this span program to
define algorithms for estimating the effective resistance. Ref. [5] are even able to show how
to efficiently implement a unitary similar to U(P, x), giving a time efficient algorithm. In
the full version, we adapt their proof to our setting, showing that our algorithms are time
efficient as well.

The effective resistance between s and t is related to st-connectivity by the fact that
if s and t are not connected, then Rs,t is undefined (there is no flow from s to t) and if
s and t are connected then Rs,t is related to the number and length of paths from s to t.
In particular, if s and t are connected by a path of length p, then Rs,t(G) ≤ p (take the
unit flow that simply travels along this path). In general, if s and t are connected in G,
then 2

n ≤ Rs,t(G) ≤ n− 1. The span program for st-connectivity is amenable to the task of
estimating the effective resistance due to the following.

I Lemma 17 ([5]). For any graph Gx on [n], x ∈ P1 if and only if s and t are connected,
and in that case, w+(x, P ) = 1

2Rs,t(Gx).

A near immediate consequence of this, combined with Theorem 15, is the following.



T. Ito and S. Jeffery 12:11

I Theorem 18. There exists a quantum algorithm for estimating Rs,t(Gx) to accuracy ε

with time complexity Õ
(
n
√
Rs,t(Gx)
ε3/2

)
and space complexity O(logn).

By analyzing the spectra of A and A(x), and applying Theorem 16, we can get an
often better algorithm (Theorem 19). The spectral gap of a graph G, denoted λ2(G), is the
second largest eigenvalue (including multiplicity) of the Laplacian of G, which is defined
LG =

∑
u∈[n] du|u〉〈u| −

∑
u∈[n]

∑
v∈Γ(u) |u〉〈v|, where du is the degree of u, and Γ(u) is the

set of neighbours of u. The smallest eigenvalue of LG is 0 for any graph G. A graph G is
connected if and only if λ2(G) > 0. A connected graph G has 2

n2 ≤ λ2(G) ≤ n.
The following theorem is an improvement over Theorem 18 when λ2(G) > ε. In particular,

it is an improvement for all ε when we know that λ2(G) > 1.

I Theorem 19. Let G be a family of graphs such that for all x ∈ G, λ2(Gx) ≥ µ. Let
f : G × [n]× [n]→ R>0 be defined by f(x, s, t) = Rs,t(Gx). There exists a quantum algorithm
for estimating f to relative accuracy ε that has time complexity Õ

(
1
εn
√
Rs,t(Gx)/µ

)
and

space complexity O(logn).

Proof. We will apply Theorem 16. We first compute ‖|w0〉‖2, in order to normalize P .

I Lemma 20. ‖|w0〉‖2 = 1
n .

Proof. Recall that |w0〉 = A+τ . This is the smallest |w0〉 such that A|w0〉 = τ . Since
H(x) = H when Gx is the complete graph, by Lemma 17, we need only compute Rs,t in
the complete graph. It’s simple to verify that the optimal unit st-flow in the complete
graph has 1

n units of flow on every path of the form (s, u, t) for u ∈ [n] \ {s, t}, and 2
n units

of flow on the edge (s, t). Thus, Rs,t(Kn) =
∑
u∈[n]\{s,t} 2(1/n)2 + (2/n)2 = 2/n. Thus

‖|w0〉‖2 = 1
2Rs,t(Kn) = 1

n . J

Next, we compute the following:

I Lemma 21. For any x ∈ G, σmax(A)
σmin(A(x)) =

√
n

λ2(Gx) ≤
√

n
µ , so κ(f) ≤

√
n
µ .

Proof. Let Lx denote the Laplacian of Gx. We have:

A(x)A(x)T =
∑
u∈[n]

∑
v∈Γ(u)

(|u〉−|v〉)(〈u|−〈v|) = 2
∑
u∈[n]

du|u〉〈u|−2
∑
u∈[n]

∑
v∈Γ(u)

|u〉〈v| = 2Lx.

Thus, if L denotes the Laplacian of the complete graph, we also have AAT = 2L. Letting
J denote the all ones matrix, we have L = (n − 1)I − (J − I) = nI − J , and since
J = n|u〉〈u| where |u〉 = 1√

n

∑n
i=1 |i〉, if |u1〉, . . . , |un−1〉, |u〉 is any orthonormal basis of Rn,

then L = n
∑n−1
i=1 |ui〉〈ui|+ n|u〉〈u| − n|u〉〈u| =

∑n−1
i=1 n|ui〉〈ui|, so the spectrum of L is 0,

with multiplicity 1, and n with multiplicity n− 1. Thus, the only nonzero singular value of
A is

√
2n = σmax(A). Furthermore, since λ2(Gx) is the smallest nonzero eigenvalue of Lx,

and A(x)A(x)T = 2Lx, σmin(A(x)) =
√

2λ2(Gx). The result follows. J

Finally, by scaling τ to τ
‖A+τ‖ = nτ to get a normalized span program, which has the effect of

scaling all positive witnesses by n, we can apply Theorem 16 to get an algorithm that makes
Õ
(
κ(f)
ε

√
nw+(x, P )

)
= Õ

(
1
ε

√
n/µ

√
nRs,t

)
calls to U ′(P, x). In the full version, we show

that this algorithm has time complexity Õ
(

1
εn
√
Rs,t/µ

)
and space complexity O(logn). J
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Both of our upper bounds have linear dependence on n, and this is optimal (see full
version). Classically, the best known method of estimating the effective resistance is to
compute it, which costs O(m) = O(n2), where m is the number of edges in the graph. This
is accomplished by inverting the Laplacian.

The algorithms from Theorem 18 and 19 are the first quantum algorithms for estimating
the effective resistance in the adjacency model, however, the problem has been studied
previously in the edge-list model [22], where Wang obtains a quantum algorithm with
complexity Õ

(
d3/2 logn
Φ(G)2ε

)
, where Φ(G) ≤ 1 is the conductance (or edge-expansion) of G. In

the edge-list model, the input x ∈ [n][n]×[d] models a d-regular graph (or d-bounded degree
graph) Gx by xu,i = v for some i ∈ [d] whenever {u, v} ∈ E(Gx). Wang requires edge-list
queries to simulate walking on the graph, which requires constructing a superposition over all
neighbours of a given vertex. This type of edge-list query can be simulated by

√
n/d adjacency

queries to a d-regular graph, using quantum search, so Wang’s algorithm can be converted
to an algorithm in the adjacency query model with cost Õ

(
d3/2

Φ(G)2ε

√
n
d

)
. We can compare

our results to this by noticing that Rs,t ≤ 1
λ2(G) [8], implying that our algorithm always runs

in time at most Õ
(

1
ε
n
µ

)
. If G is a connected d-regular graph, then λ2(G) = dδ(G), where

δ(G) is the spectral gap of a random walk on G. By Cheeger inequalities, we have Φ2

2 ≤ δ
[16], so the complexity of the algorithm from Theorem 19 is at most Õ

( 1
ε
n
dδ

)
= Õ

( 1
ε

n
dΦ2

)
,

which is an improvement over the bound of Õ
(

1
ε
d3/2

Φ2

√
n
d

)
= Õ

( 1
ε
d

Φ2

√
n
)
given by naively

adapting Wang’s algorithm to the adjacency model whenever d > 4
√
n. In general our upper

bound may be much better than 1
ε

n
dΦ2 , since the Cheeger inequality is not tight, and Rs,t

can be much smaller than 1
λ2
.

4 Conclusion and Open Problems

We have presented several new techniques for turning span programs into quantum algorithms,
which we hope will have future applications. Specifically, given a span program P , in addition
to algorithms for deciding any function f such that f−1(0) ⊆ P0 and f−1(1) ⊆ P1, we also
show how to get several different algorithms for deciding a number of related threshold
problems, as well as estimating the witness size. In addition to algorithms based on the
standard effective spectral gap lemma, we also show how to get algorithms by analyzing the
real phase gap.

We hope that the importance of this work lies not only in its potential for applications,
but in the improved understanding of the structure and power of span programs. A number
of very important quantum algorithms rely on a similar structure, using phase estimation of
a unitary that depends on the input to distinguish between different types of inputs. Span-
program-based algorithms represent a very general class of such algorithms, making them
not only important to the study of the quantum query model, but to quantum algorithms in
general.

The main avenue for future work is in applications of our techniques to obtain new
quantum algorithms. We stress that any span program for a decision problem can now
be turned into an algorithm for estimating the positive or negative witness size, if these
correspond to some meaningful function, or deciding threshold functions related to the
witness size. A natural source of potential future applications is in the rich area of property
testing problems (for a survey, see [17]).

One final open problem is a possible relationship between estimating the witness size and
the HHL algorithm [11]. The HHL algorithm can be used to estimate ‖M+|u〉‖2, given the
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state |u〉 and access to a row-computable linear operator M . When M = A(x) and |u〉 = τ ,
this quantity is exactly w+(x), so if A(x) is row-computable — that is, there is an efficient
procedure for computing the ith nonzero entry of the jth row of A(x), then HHL gives us yet
another means of estimating the witness size, whose time complexity is known, rather than
only its query complexity. We note that the complexity of HHL depends on σmax(A(x))

σmin(A(x)) , the
condition number of A(x), which is upper bounded by σmax(A)

σmin(A(x)) , upon which the complexity
of some of our algorithms depends as well. We leave further exploration of this connection
for future research.
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13:2 Power of Quantum Computation with Few Clean Qubits

1 Introduction

1.1 Background
One of the most important goals in quantum information processing is to realize a quantum
mechanical machine whose computational ability is superior to classical computers. The
ultimate goal is, of course, to realize a large scale universal quantum computer, which still
seems to be many years off despite extensive experimental efforts. Plenty of attention has
thus been paid to “intermediate” (i.e., non-universal) models of quantum computation, which
are somehow easier to physically implement. Such intermediate models do not offer universal
quantum computation, but are believed to still be able to solve some problems that are hard
for classical computers.

The deterministic quantum computation with one quantum bit (DQC1 ), often mentioned
as the one-clean-qubit model, is one of the most well-studied examples of such intermediate
models. This model was introduced by Knill and Laflamme [15] to reflect some actual
experimental setups such as nuclear magnetic resonance (NMR), where pure clean qubits
are very hard to prepare and therefore are considered as very expensive resources. For
example, in nuclear spin ensemble systems such as liquid state NMR systems, it is usually
extremely hard, although not impossible, to polarize a spin (i.e., to initialize a qubit to
state |0〉), since energy scale of a nuclear spin qubit is quite small, while it is favorable for
long coherence time. A DQC1 computation over w qubits starts with the initial state of
the totally mixed state except for a single clean qubit, namely, |0〉〈0| ⊗

(
I
2
)⊗(w−1). After

applying a polynomial-size unitary quantum circuit to this state, only a single output qubit
is measured in the computational basis at the end of the computing in order to read out the
computation result. No initializations of qubits are allowed during the computation, nor are
intermediate measurements. The DQC1 model is believed not to have full computational
power of the standard polynomial-time quantum computation, and is indeed strictly less
powerful under some reasonable assumptions [5]. At first glance the model even looks easy
to classically simulate and does not seem to offer any quantum advantage, partly because its
highly-mixed initial state obviously lacks “quantumness” such as entanglement, coherence,
and discord, which are widely believed to be origins of the power of quantum information
processing, and also because any time-evolution over a single-qubit state or a totally mixed
state is trivially simulatable by a classical computation. Nevertheless, the DQC1 model
is not trivial, either, in the sense that it can efficiently solve several problems for which
no efficient classical algorithms are known, such as estimating the spectral density [15],
testing integrability [20], calculating the fidelity decay [19], approximating the Jones and
HOMFLY polynomials [23, 13], and approximating an invariant of 3-manifolds [12]. As many
of these problems have physically meaningful applications, the DQC1 model is one of the
most important intermediate quantum computation models.

Despite its importance explained thus far and the fact that tons of papers in physics have
focused on it, very little has been studied on the genuinely complexity-theoretic aspects of
the DQC1 model (to the best knowledge of the authors, no such studies exist other than
Refs. [5, 21, 22]). The primal purpose of the present paper is to establish for the first time
the fundamental core of detailed complexity-theoretic treatments of the DQC1 model and its
generalization. To provide the very base of the study of computational complexity of such
models, this paper investigates how robust these models are against computation error.

Computation error is an inherent feature of quantum computing, as the outcome of a
computation is inevitably probabilistic and hence may not always be correct. Error reduction,
or success-probability amplification, is thus one of the most fundamental issues in quantum
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computing. Computation error can be efficiently reduced to be negligibly small in many
standard computation models via a simple repetition-based method. Typical examples
are polynomial-time quantum computations with bounded error, and in particular, the
error can be made exponentially small in BQP both in completeness and in soundness,
which provides a reasonable ground for the well-used definition of BQP that employs
bounds 2/3 and 1/3 for completeness and soundness, respectively. In many other computation
models, however, it is unclear whether the error can be reduced efficiently by the standard
repetition-based method, and more generally, whether error reduction itself is possible.
Typically, for models with very limited computational resources like space-bounded quantum
computations, it is simply impossible to repeat the original computation sufficiently many
times, which becomes an enormous obstacle to error reduction when initializations of qubits
are disallowed after the computation starts. Indeed, it is impossible in the case of one-way
quantum finite state automata to reduce computation error below a certain constant [4].
Also, the reducibility of computation error is unclear in various logarithmic-space quantum
computations. For computations of one-sided bounded error performed by logarithmic-space
quantum Turing machines, Watrous [28] presented a nontrivial method that reduces the
error to be exponentially small. Other than this result, error-reduction techniques have not
been developed much for space-bounded quantum computations.1

The computation models with few clean qubits, including DQC1, may be viewed as
variants of space-bounded quantum computations in a sense, and thus, it is highly nontrivial
to reduce computation error in these models. On the other hand, the reducibility of
computation error is particularly desirable in these models, as the DQC1 computations
mentioned above that solve the classically-hard problems in fact solve the decisional versions
of the problems only with two-sided bounded error. Computation error can be quite large
in such computations, and the gap between completeness and soundness is allowed to be
polynomially small. The only method known for amplifying success probability of these
computations is to sequentially repeat an attempt of the computation polynomially many
times, but this requires the clean qubit to be initialized every time after finishing one attempt,
and moreover, the result of each attempt must be recorded to classical work space prepared
outside of the DQC1 model. It is definitely more desirable if computation error can be
reduced without such initializations, the operations that are very expensive for the model.
The situation is similar even when the number of clean qubits is allowed to be logarithmically
many with respect to the input length. It is also known that any quantum computation of
two-sided bounded error that uses logarithmically many clean qubits can be simulated by a
quantum computation still of two-sided bounded error that uses just one clean qubit, but
the known method for this simulation considerably increases the computational error, and
the gap between completeness and soundness becomes polynomially small.

1.2 The results

This paper develops methods of reducing computation error in quantum computations with
few clean qubits, including the DQC1 model. As will be presented below, the methods

1 After the completion of this work, Fefferman, Kobayashi, Lin, Morimae, and Nishimura [10] developed
methods of error reduction for space-bounded unitary quantum computations. Both of this very recent
method and the one by Watrous [28] do not apply to quantum computations with few clean qubits, for
these methods assume the easiness of “exact initialization check” (i.e., the easiness of checking whether
the given state is exactly equal to the initial state of the computation), which is no longer the case for
quantum computations with few clean qubits where many qubits are initially in the totally mixed state.
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13:4 Power of Quantum Computation with Few Clean Qubits

proposed are unexpectedly powerful and are able to simultaneously reduce both computation
error and the number of necessary clean qubits, providing an almost fully satisfying solution
in the cases of one-sided bounded error. In the two-sided-error case, the methods in this paper
are applicable only when there is a constant gap between completeness and soundness in the
original computation, but still significantly improve the situation of quantum computations
with few clean qubits as to both the reducibility of computation error and the reducibility of
the number of necessary clean qubits. These results are the first error-reducible properties
for intermediate quantum computation models, not limited to the DQC1 model.

The results may alternatively be interpreted as that any problem solvable by a DQC1
computation with constant computation error is still solvable with constant computation
error even when a bit noisy initial state is given instead of the ideal one-clean-qubit state,
for the problem is also solvable with very small error when given an ideal one-clean-qubit
initial state, thanks to the error-reduction results. This is perhaps very helpful in actual
implementation, as the initial state prepared does not need to be very close to the ideal
one-clean-qubit state, and can be away from it by, say, a constant δ in trace distance to still
have success probability close to 1− δ. In particular, the qubit that is supposed to be clean
does not need to be thoroughly purified and may be noisy to some extent.

The result for the two-sided-error case has another implication that the power of DQC1
computations with small two-sided error is characterized by the Trace Estimation problem
defined with fixed constant threshold parameters. This may also be viewed as the first “gap
amplification” result for the Trace Estimation problem. The Trace Estimation problem
is ubiquitous in quantum many-body physics as observables, related to various important
quantities in physics like the fidelity decay characterizing quantum chaos [9] and the Jones
polynomials corresponding to the expected values of the Wilson loops in SU(2) Chern-Simons
topological quantum field theory [29]. The results thus provide a useful tool to understand
computational complexity of such quantum many-body systems, and establish a new bridge
between computational complexity theory and quantum many-body physics.

Simultaneous reducibility of computation error and the number of clean qubits. Let
QlogP(c, s), Q[1]P(c, s), and Q[2]P(c, s) denote the classes of problems solvable by polynomial-
time quantum computations with completeness c and soundness s that uses logarithmically
many clean qubits, one clean qubit, and two clean qubits, respectively. First, in the one-sided-
error case, it is proved that any problem solvable by a polynomial-time quantum computation
with one-sided bounded error that uses logarithmically many clean qubits is also solvable by
that with exponentially small one-sided error using just two clean qubits. If only one clean
qubit is available, the problem is still solvable with polynomially small one-sided error (and
thus with any small constant one-sided error).

I Theorem 1.1. For any polynomially bounded function p : Z+ → N and any polynomial-
time computable function s : Z+ → [0, 1] satisfying 1− s ≥ 1

q for some polynomially bounded
function q : Z+ → N,

QlogP(1, s) ⊆ Q[2]P(1, 2−p).

I Theorem 1.2. For any polynomially bounded function p : Z+ → N and any polynomial-
time computable function s : Z+ → [0, 1] satisfying 1− s ≥ 1

q for some polynomially bounded
function q : Z+ → N,

QlogP(1, s) ⊆ Q[1]P
(

1, 1
p

)
.
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The above two theorems are for the case of perfect completeness, and similar statements
hold even for the case of perfect soundness, by considering the complement of the problem.

I Corollary 1.3. For any polynomially bounded function p : Z+ → N and any polynomial-
time computable function c : Z+ → [0, 1] satisfying c ≥ 1

q for some polynomially bounded
function q : Z+ → N,

QlogP(c, 0) ⊆ Q[2]P(1− 2−p, 0) and QlogP(c, 0) ⊆ Q[1]P
(

1− 1
p
, 0

)
.

In the two-sided-error case, it is proved that any problem solvable by a polynomial-time
quantum computation that uses logarithmically many clean qubits and has a constant gap
between completeness and soundness can also be solved by that with exponentially small
two-sided error using just two clean qubits. If only one clean qubit is available, the problem
is again still solvable with exponentially small error in one of the completeness and soundness
and polynomially small error in the other.

I Theorem 1.4. For any polynomially bounded function p : Z+ → N and any constants c and s
in (0, 1) satisfying c > s,

QlogP(c, s) ⊆ Q[2]P(1− 2−p, 2−p).

I Theorem 1.5. For any polynomially bounded function p : Z+ → N and any constants c and s
in (0, 1) satisfying c > s,

QlogP(c, s) ⊆ Q[1]P
(

1− 2−p,
1
p

)
∩ Q[1]P

(
1− 1

p
, 2−p

)
.

The ideas for the proofs of these statements and techniques developed therein may be of
independent interest in themselves, and will be overviewed in Section 2.

Completeness results for Trace Estimation problem. Define the complexity classes BQlogP
and BQ[1]P by BQlogP = QlogP

( 2
3 ,

1
3
)
and BQ[1]P = Q[1]P

( 2
3 ,

1
3
)
, respectively. An immedi-

ate but important consequence of Theorem 1.5 is that the Trace Estimation problem is
complete for BQlogP and BQ[1]P under polynomial-time many-one reduction, even when the
problem is defined with fixed constant parameters that specify the bounds on normalized
traces in the yes-instance and no-instance cases.

Given a description of a quantum circuit that specifies a unitary transformation U , the
Trace Estimation problem specified with two parameters a and b satisfying −1 ≤ b < a ≤ 1
is the problem of deciding whether the real part of the normalized trace of U is at least a or
it is at most b.

Trace Estimation Problem: TrEst(a, b)

Input: A description of a quantum circuit Q that implements a unitary transfor-
mation U over n qubits.

Yes Instances: 1
2n<(trU) ≥ a.

No Instances: 1
2n<(trU) ≤ b.
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The paper by Knill and Laflamme [15] that introduced the DQC1 model already pointed
out that this problem is closely related to the DQC1 computation. This point was further
clarified in the succeeding literature (see Refs. [21, 22, 23], for instance). More precisely,
consider a variant of the Trace Estimation problem where the two parameters a and b
may depend on the input length (i.e., the length of the description of Q). It is known that
this version of the Trace Estimation problem, for any a and b such that the gap a− b
is bounded from below by an inverse-polynomial with respect to the input length, can be
solved by a DQC1 computation with some two-sided bounded error where the completeness
and soundness parameters c and s depend on a and b. It is also known that, for any two
nonnegative parameters a and b such that the gap a− b is bounded from below by an
inverse-polynomial with respect to the input length, the corresponding version of the Trace
Estimation problem is hard for the complexity class Q[1]P(c, s) for some completeness and
soundness parameters c and s that depend on a and b. Hence, the Trace Estimation
problem essentially characterizes the power of the DQC1 computation. One subtle matter to
be pointed out in the existing arguments above is that, when the parameters a and b are fixed
for the Trace Estimation problem, the completeness c and soundness s with which the
problem is in Q[1]P(c, s) are different from the completeness c′ and soundness s′ with which
the problem is hard for Q[1]P(c′, s′). Namely, given two nonnegative parameters a and b

of the problem, the computation solves the problem with completeness c = (1 + a)/2 and
soundness s = (1 + b)/2, while the problem is hard for the class with completeness c′ = a/4
and soundness s′ = b/4. Therefore, the existing arguments are slightly short for proving
BQ[1]P-completeness of the Trace Estimation problem with fixed parameters a and b (and
Q[1]P(c, s)-completeness of that for fixed completeness and soundness parameters c and s, in
general).

In contrast, with Theorem 1.5 in hand, it is immediate to show that the Trace Estima-
tion problem is complete for BQlogP and for BQ[1]P for any constants a and b satisfying
0 < b < a < 1.

I Theorem 1.6. For any constants a and b in (0, 1) satisfying a > b, TrEst(a, b) is complete
for BQlogP and for BQ[1]P under polynomial-time many-one reduction.

Hardness of weak classical simulations of DQC1 computation. Recently, quite a few
number of studies focused on the hardness of weak classical simulations of restricted models
of quantum computing under some reasonable assumptions [26, 7, 2, 18, 14, 17, 25, 8, 24].
Namely, a plausible assumption in complexity theory leads to the impossibility of efficient
sampling by a classical computer according to an output probability distribution generatable
with a quantum computing model. Among them are the IQP model [7] and the Boson
sampling [2], both of which are proved hard for classical computers to simulate within
multiplicative error, unless the polynomial-time hierarchy collapses to the third level (in
fact, the main result of Ref. [2] is a much more meaningful hardness result on the weak
simulatability of the Boson sampling within polynomially small additive error, but which
needs a much stronger complexity assumption than the collapse of polynomial-time hierarchy).

An interesting question to ask is whether a similar result holds even for the DQC1 model.
Very recently, Morimae, Fujii, and Fitzsimons [17] settled the case of the DQC1m-type
computation, the generalization of the DQC1 model that allows m output qubits to be
measured at the end of the computation, by proving that a DQC1m-type computation
with m ≥ 3 cannot be simulated within multiplicative error unless the polynomial-time
hierarchy collapses to the third level. Their proof essentially shows that any PostBQP circuit
can be simulated by a DQC13-type computation, where PostBQP is the complexity class



K. Fujii, H. Kobayashi, T. Morimae, H. Nishimura, S. Tamate, and S. Tani 13:7

corresponding to bounded-error quantum polynomial-time computations with postselection,
which is known equivalent to PP [1]. By an argument similar to that in Ref. [7], it follows that
PP is in PostBPP (the version of BPP with postselection), if the DQC13-type computation
is classically simulatable within multiplicative error. Together with Toda’s theorem [27], this
implies the collapse of the polynomial-time hierarchy to the third level.

One obvious drawback of the existing argument above is an inevitable postselection
measurement inherent to the definition of PostBQP. This becomes a quite essential obstacle
when trying to extend this argument to the DQC1 model, where only one qubit is allowed
to be measured. To deal with the DQC1 model, this paper takes a different approach by
considering the complexity class NQP introduced in Ref. [3] or the class SBQP introduced
in Ref. [16]. Let NQ[1]P and SBQ[1]P be the variants of NQP and SBQP, respectively, in
which the quantum computation performed is restricted to a DQC1 computation. From one
of the technical tools used for proving the main results of this paper, it is immediate to show
that the restriction to a DQC1 computation does not change the classes NQP and SBQP.
I Theorem 1.7. NQP = NQ[1]P and SBQP = SBQ[1]P.

If any DQC1 computation were classically simulatable within multiplicative error, however,
the class NQ[1]P would be included in NP and the class SBQ[1]P would be included in SBP,
where SBP is a classical version of SBQP in short, introduced in Ref. [6]. Similarly, if any
DQC1 computation were classically simulatable within exponentially small additive error,
both NQ[1]P and SBQ[1]P would be included in SBP. Combined with Theorem 1.7, any of the
inclusions NQ[1]P ⊆ NP, SBQ[1]P ⊆ SBP, and NQ[1]P ⊆ SBP further implies an implausible
consequence that PH = AM, which in particular implies the collapse of the polynomial-time
hierarchy to the second level. Accordingly, the following theorem holds.
I Theorem 1.8. The DQC1 model is not classically simulatable either within multiplicative
error or exponentially small additive error, unless PH = AM.

The above argument based on NQP and SBQP to prove Theorem 1.8 is very general, and
can also be used to show the hardness of weak classical simulations of other quantum com-
puting models. In particular, it can replace the existing argument based on PostBQP, which
was developed in Ref. [7] and has appeared frequently in the literature [2, 14, 17, 25, 8, 24].
This also weakens the complexity assumption necessary to prove the hardness results for
such models, including the IQP model [7] and the Boson sampling [2] (the polynomial-time
hierarchy now collapses to the second level, rather than the third level when using PostBQP).
Moreover, the hardness results for such models now hold for any constant multiplicative
error c ≥ 1, rather than only for c satisfying 1 ≤ c <

√
2 as in Refs. [7, 17].

2 Overview of error-reduction results

This section presents an overview of the proofs for the error reduction results. First,
Subsection 2.1 provides high-level descriptions of the proofs of Theorems 1.1 and 1.2, the
theorems for the one-sided error case of perfect completeness. Compared with the two-sided-
error case, the proof construction is relatively simpler in the perfect-completeness case, but
already involves most of key technical ingredients of this paper. Subsection 2.2 then explains
the further idea that proves Theorems 1.4 and 1.5, the theorems for the two-sided-error case.

2.1 Proof ideas of Theorems 1.1 and 1.2
Let A = (Ayes, Ano) be any problem in QlogP(1, s), where the function s defining the sound-
ness is bounded away from one by an inverse-polynomial, and consider a polynomial-time
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13:8 Power of Quantum Computation with Few Clean Qubits

uniformly generated family of quantum circuits that puts A in QlogP(1, s). Let Qx denote
the quantum circuit from this family when the input is x, where Qx acts over w(|x|) qubits
for some polynomially bounded function w, and is supposed to be applied to the initial
state (|0〉〈0|)⊗ k(|x|) ⊗

(
I
2
)⊗(w(|x|)−k(|x|)) that contains exactly k(|x|) clean qubits, for some

logarithmically bounded function k.
Theorems 1.1 and 1.2 are proved by constructing circuits with desirable properties from

the original circuit Qx. The construction is essentially the same for both of the two theorems
and consists of three stages of transformations of circuits: The first stage reduces the number
of necessary clean qubits to just one, while keeping perfect completeness and soundness
still bounded away from one by an inverse-polynomial. The second stage then makes the
acceptance probability of no-instances arbitrarily close to 1/2, still using just one clean
qubit and keeping perfect completeness. Here, it not only makes the soundness (i.e., the
upper bound of the acceptance probability of no-instances) close to 1/2, but also makes
the acceptance probability of no-instances at least 1/2. Finally, in the case of Theorem 1.2,
the third stage further reduces soundness error to be polynomially small with the use of
just one clean qubit, while preserving the perfect completeness property. If one more clean
qubit is available, the third stage can achieve exponentially small soundness, which leads to
Theorem 1.1. The analyses of the third stage effectively use the fact that the acceptance
probability of no-instances is close to 1/2 after the transformation of the second stage.

The rest of this subsection sketches the ideas that realize each of these three stages.

One-Clean-Qubit Simulation Procedure. The first stage uses a procedure called the One-
Clean-Qubit Simulation Procedure. Given the quantum circuit Qx with a specification
of the number k(|x|) of clean qubits, this procedure results in a quantum circuit Rx such that
the input state to Rx is supposed to contain just one clean qubit, and when applied to the
one-clean-qubit initial state, the acceptance probability of Rx is still one if x is in Ayes, while
it is at most 1− δ(|x|) if x is in Ano, where δ is an inverse-polynomial function determined
by δ = 2−k(1− s). It is stressed that the One-Clean-Qubit Simulation Procedure
preserves perfect completeness, which is in stark contrast to the straightforward method of
one-clean-qubit simulation.

Consider the k(|x|)-clean-qubit computation performed with Qx. Let Q denote the
quantum register consisting of the k(|x|) initially clean qubits, and let R denote the quantum
register consisting of the remaining w(|x|)− k(|x|) qubits that are initially in the totally
mixed state. Further let Q(1) denote the single-qubit quantum register consisting of the first
qubit of Q, which corresponds to the output qubit of Qx. In the one-clean-qubit simulation
of Qx by Rx, the k(|x|) qubits in Q are supposed to be in the totally mixed state initially
and Rx tries to simulate Qx only when Q initially contains the clean all-zero state. To do so,
Rx uses another quantum register O consisting of just a single qubit, and this qubit in O is
the only qubit that is supposed to be initially clean.

For ease of explanations, assume for a while that all the qubits in Q are also initially clean
even in the case of Rx. The key idea in the construction of Rx is the following simulation of Qx

that makes use of the phase-flip transformation: The simulation first applies the Hadamard
transformation H to the qubit in O and then flips the phase if and only if the content of
O is 1 and the simulation of Qx results in rejection (which is realized by performing Qx to
(Q,R) and then applying the controlled-Z transformation to (O,Q(1)), where the content 1
in Q(1) is assumed to correspond to the rejection in the original computation by Qx). The
simulation further performs the inverse of Qx to (Q,R) and again applies H to O. At the end
of the simulation, the qubit in O is measured in the computational basis, where measuring 0
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corresponds to acceptance. The point is that this phase-flip-based construction provides a
quite “faithful” simulation of Qx, meaning that the rejection probability of the simulation is
polynomially related to the rejection probability of the original computation of Qx (and in
particular, the simulation never rejects when the original computation never rejects, i.e., it
preserves the perfect completeness property).

As mentioned before, all the qubits in Q are supposed to be in the totally mixed state
initially in the one-clean-qubit simulation of Qx by Rx, and Rx tries to simulate Qx only when
Q initially contains the clean all-zero state. To achieve this, each of the applications of the
Hadamard transformation H is replaced by an application of the controlled-H transformation
so that H is applied only when all the qubits in Q are in state |0〉. By considering the
one-clean-qubit computations with the circuit family induced by Rx, the perfect completeness
property is preserved and soundness is still bounded away from one by an inverse-polynomial
(although the rejection probability becomes smaller for no-instances by a multiplicative factor
of 2−k, where notice that 2−k is an inverse-polynomial as k is a logarithmically bounded
function).

Randomness Amplification Procedure. The second stage uses the procedure called the
Randomness Amplification Procedure. Given the circuit Rx constructed in the first
stage, this procedure results in a quantum circuit R′x such that the input state to R′x is
still supposed to contain just one clean qubit, and when applied to the one-clean-qubit
initial state, the acceptance probability of R′x is still one if x is in Ayes, while it is in the
interval

[ 1
2 ,

1
2 + ε(|x|)

]
if x is in Ano for some sufficiently small function ε.

Consider the one-clean-qubit computation performed with Rx. Let O denote the single-
qubit register consisting of the initially clean qubit, which is also the output qubit of Rx.
Let R denote the quantum register consisting of all the other qubits that are initially in the
totally mixed state (by the construction of Rx, R consists of w(|x|) qubits).

Suppose that the qubit in O is measured in the computational basis after Rx is applied to
the one-clean-qubit initial state |0〉〈0| ⊗

(
I
2
)⊗w(|x|) in (O,R). Obviously from the property

of Rx, the measurement results in 0 with probability exactly equal to the acceptance
probability pacc of the one-clean-qubit computation with Rx. Now suppose that Rx is
applied to a slightly different initial state |1〉〈1| ⊗

(
I
2
)⊗w(|x|) in (O,R), where O initially

contains |1〉 instead of |0〉 and all the qubits in R are again initially in the totally mixed
state. The key property here to be proved is that, in this case, the measurement over the
qubit in O in the computational basis results in 1 again with probability exactly pacc, the
acceptance probability of the one-clean-qubit computation with Rx. This implies that, after
the application of Rx to (O,R) with all the qubits in R being in the totally mixed state, the
content of O remains the same with probability exactly pacc, and is flipped with probability
exactly 1− pacc, the rejection probability of the original one-clean-qubit computation with
Rx, regardless of the initial content of O.

The above observation leads to the following construction of the circuit R′x. The con-
struction of R′x is basically a sequential repetition of the original circuit Rx. The number N
of repetitions is polynomially many with respect to the input length |x|, and the point is that
the register O is reused for each repetition, and only the qubits in R are refreshed after each
repetition (by preparing N registers R1, . . . ,RN , each of which consists of w(|x|) qubits, the
same number of qubits as R, all of which are initially in the totally mixed state). After each
repetition the qubit in O is measured in the computational basis (in the actual construction,
this step is exactly simulated without any measurement – a single-qubit totally mixed state
is prepared as a fresh ancilla qubit for each repetition so that the content of O is copied to
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this ancilla qubit using the CNOT transformation, and this ancilla qubit is never touched
after this CNOT application). Now, no matter which measurement result is obtained at the
jth repetition for every j in {1, . . . , N}, the register O is reused as it is, and the circuit Rx

is simply applied to (O,Rj+1) at the (j + 1)st repetition. After the N repetitions, the qubit
in O is measured in the computational basis, which is the output of R′x (the output 0
corresponds to acceptance). The point is that at each repetition, the content of O is flipped
with probability exactly equal to the rejection probability of the original one-clean-qubit
computation of Rx. Taking into account that O is initially in state |0〉, the computation of
R′x results in acceptance if and only if the content of O is flipped even number of times during
the N repetitions. An analysis on Bernoulli trials then shows that, when the acceptance
probability of the original one-clean-qubit computation of Rx was in the interval

[ 1
2 , 1

)
,

the acceptance probability of the one-clean-qubit computation of R′x is at least 1/2 and
converges linearly to 1/2 with respect to the repetition number. On the other hand, when the
acceptance probability of the original Rx was one, the content of O is never flipped during
the computation of R′x, and thus the acceptance probability of R′x remains one.

Stability Checking Procedures. In the case of Theorem 1.2, the third stage uses the
procedure called the One-Clean-Qubit Stability Checking Procedure. Given the
circuit R′x constructed in the second stage, this procedure results in a quantum circuit R′′x
such that the input state to R′′x is still supposed to contain just one clean qubit, and when
applied to the one-clean-qubit initial state, the acceptance probability of R′′x is still one
if x is in Ayes, while it is 1/ p(|x|) if x is in Ano for a polynomially bounded function p

predetermined arbitrarily.
Consider the one-clean-qubit computation performed with R′x. Let Q denote the single-

qubit register consisting of the initially clean qubit, which is also the output qubit of R′x.
Let R denote the quantum register consisting of all the other qubits that are initially in the
totally mixed state, and let w′(|x|) denote the number of qubits in R.

Again the key observation is that, after the application of R′x to (Q,R) with all the qubits
in R being in the totally mixed state (followed by the measurement over the qubit in Q in
the computational basis), the content of Q is flipped with probability exactly equal to the
rejection probability of the original one-clean-qubit computation with R′x, regardless of the
initial content of Q.

This leads to the following construction of the circuit R′′x. The construction of R′′x is
again basically a sequential repetition of the original circuit R′x, but this time the qubit in
Q is also supposed to be initially in the totally mixed state. The circuit R′x is repeatedly
applied 2N times, where N is a power of two and is polynomially many with respect to the
input length |x|, and again the register Q is reused for each repetition, and only the qubits in
R are refreshed after each repetition (by preparing 2N registers R1, . . . ,R2N , each of which
consists of w′(|x|) qubits, all of which are initially in the totally mixed state). The key idea
for the construction of R′′x is to use a counter that counts the number of attempts such that
the measurement over the qubit in Q results in |1〉 after the application of R′x (again each
measurement is simulated by a CNOT application using an ancilla qubit of a totally mixed
state). Notice that the content of Q is never flipped regardless of the initial content of Q,
if the original acceptance probability is one in the one-clean-qubit computation with R′x.
Hence, in this case the counter value either stationarily remains its initial value or is increased
exactly by 2N , the number of repetitions. On the other hand, if the original acceptance
probability is close to 1/2 in the one-clean-qubit computation with R′x, the content of Q is
flipped with probability close to 1/2 after each application of R′x regardless of the initial
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content of Q. This means that, after each application of R′x, the measurement over the qubit
in Q results in |1〉 with probability close to 1/2 regardless of the initial content of Q, and
thus, the increment of the counter value must be distributed around 1

2 · 2N = N with very
high probability. Now, if the counter value is taken modulo 2N and if the unique initially
clean qubit is prepared for the most significant bit of the counter (which picks the initial
counter value from the set {0, . . . , N − 1} uniformly at random), the computational-basis
measurement over this most significant qubit of the counter always results in |0〉 if x is in
Ayes, while it results in |1〉 with very high probability if x is in Ano (which can be made
at least 1− 1

p(|x|) for an arbitrarily chosen polynomially bounded function p, by taking an
appropriately large number N).

One drawback of the construction of R′′x above via the One-Clean-Qubit Stability
Checking Procedure is that, in the case of no-instances, there inevitably exist some “bad”
initial counter values in {0, . . . , N − 1} with which R′′x is forced to accept with unallowably
high probability. For instance, if the initial counter value is 0, R′′x is forced to accept when
the increment of the counter is less than N , which happens with probability at least a
constant. This is the essential reason why the current approach achieves only a polynomially
small soundness in the one-clean-qubit case in Theorem 1.2, as the number of possible initial
counter values can be at most polynomially many (otherwise the number of repetitions must
be super-polynomially many) and even just one “bad” initial value is problematic to go
beyond polynomially small soundness. In contrast, if not just one but two clean qubits are
available, one can remove the possibility of “bad” initial counter values, which results in
the Two-Clean-Qubit Stability Checking Procedure. This time, the circuit R′x is
repeatedly applied 8N times, and the counter value is taken modulo 8N . The two initially
clean qubits are prepared for the most and second-most significant bits of the counter, which
results in picking the initial counter value from the set {0, . . . , 2N − 1} uniformly at random.
Now the point is that the counter value can be increased by N before the repetition so
that the actual initial value of the counter is in {N, . . . , 3N − 1}, which discards the tail
sets {0, . . . , N − 1} and {3N, . . . , 4N − 1} of the set {0, . . . , 4N − 1}. As the size of the tail
sets discarded is sufficiently large, there no longer exists any “bad” initial counter value,
which leads to the exponentially small soundness in the two-clean-qubit case in Theorem 1.1.

2.2 Proof ideas of Theorems 1.4 and 1.5
The results for the two-sided error case need more complicated arguments and is proved in
eight stages of transformations in total, which are split into three parts.

The first part consists of three stages, and proves that any problem solvable with constant
completeness and soundness using logarithmically many clean qubits is also solvable with
constant completeness and soundness using just one clean qubit. At the first stage of the
first part, by a standard repetition with a threshold-value decision, one first reduces errors
to be sufficiently small constants, say, completeness 15/16 and soundness 1/16. For this,
if the starting computation has a constant gap between completeness and soundness, one
requires only a constant number of repetitions, and thus, the resulting computation still
requires only logarithmically many clean qubits. The second stage of the first part then
reduces the number of clean qubits to just one. The procedure in this stage is exactly the
One-Clean-Qubit Simulation Procedure developed in the first stage of the one-sided
error case. The gap between completeness and soundness becomes only an inverse-polynomial
by this transformation, but the point is that the gap is still sufficiently larger (i.e., a constant
times larger) than the completeness error. Now the third stage of the first part transforms
the computation resulting from the second stage to the computation that still uses only one

ICALP 2016



13:12 Power of Quantum Computation with Few Clean Qubits

clean qubit and has constant completeness and soundness. The procedure in this stage is
exactly the Randomness Amplification Procedure, developed in the second stage of
the one-sided error case, and it makes use of the difference of the rates of convergence to 1/2
of the acceptance probability between the yes- and no-instance cases.

The second part consists of two stages, and proves that any problem solvable with
constant completeness and soundness using just one clean qubit is also solvable with almost-
perfect (i.e., exponentially close to one) completeness and soundness below 1/2 using just
logarithmically many clean qubits. At the first stage of the second part, one reduces both
of the completeness and soundness errors to be polynomially small, again by a standard
repetition with a threshold-value decision. Note that the computation resulting from the first
part requires only one clean qubit. Thus, even when repeated logarithmically many times, the
resulting computation uses just logarithmically many clean qubits, and achieves polynomially
small errors. The second stage of the second part then repeatedly attempts the computation
resulting from the first stage polynomially many times, and accepts if at least one of the
attempts results in acceptance (i.e., takes OR of the attempts). A straightforward repetition
requires polynomially many clean qubits, and to avoid this problem, after each repetition
one tries to recover the clean qubits for reuse by applying the inverse of the computation
(the failure of this recovery step is counted as an “acceptance” when taking the OR). This
results in a computation that still requires only logarithmically many clean qubits, and has
completeness exponentially close to one, while soundness is still below 1/2.

Now the third part is essentially the same as the three-stage transformation of the one-sided
error case. From the computation resulting from the second part, the first stage of the third
part decreases the number of clean qubits to just one, via the One-Clean-Qubit Simulation
Procedure. The completeness of the resulting computation is still exponentially close to
one and its soundness is bounded away from one by an inverse-polynomial. The second stage
of the third part then applies the Randomness Amplification Procedure to make the
acceptance probability of no-instances arbitrarily close to 1/2, while keeping completeness
exponentially close to one. Finally, the third stage of the third part proves that one can
further decrease soundness error to be polynomially small using just one qubit via the
One-Clean-Qubit Stability Checking Procedure, or to be exponentially small using
just two qubits via the Two-Clean-Qubit Stability Checking Procedure, while
keeping completeness exponentially close to one.

By considering the complement problem, the above argument can also prove the case of
exponentially small soundness error in Theorem 1.5.
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Abstract
This paper presents a general space-efficient method for error reduction for unitary quantum
computation. Consider a polynomial-time quantum computation with completeness c and sound-
ness s, either with or without a witness (corresponding to QMA and BQP, respectively). To con-
vert this computation into a new computation with error at most 2−p, the most space-efficient
method known requires extra workspace of O

(
p log 1

c−s
)
qubits. This space requirement is too

large for scenarios like logarithmic-space quantum computations. This paper shows an error-
reduction method for unitary quantum computations (i.e., computations without intermediate
measurements) that requires extra workspace of just O

(
log p

c−s
)
qubits. This in particular gives

the first method of strong amplification for logarithmic-space unitary quantum computations with
two-sided bounded error. This also leads to a number of consequences in complexity theory, such
as the uselessness of quantum witnesses in bounded-error logarithmic-space unitary quantum com-
putations, the PSPACE upper bound for QMA with exponentially-small completeness-soundness
gap, and strong amplification for matchgate computations.
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1 Introduction

1.1 Background
A very basic topic in various models of quantum computation is whether computation error
can be efficiently reduced within a given model. For polynomial-time bounded error quantum
computation, the most standard model of quantum computation, the computation error can
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be made exponentially small via a simple repetition followed by a threshold-value decision.
This justifies the choice of 2/3 and 1/3 for the completeness and soundness parameters in
the definition of the corresponding complexity class BQP. This is also the case for quantum
Merlin-Arthur (QMA) proof systems, another central model of quantum computation that
models a quantum analogue of NP (more precisely, MA), and the resulting class QMA may
again be defined with completeness and soundness parameters 2/3 and 1/3.

An undesirable feature of the simple repetition-based error reduction above is that the
necessary workspace enlarges linearly with respect to the number of repetitions. More
explicitly, for a given p, the number of repetitions necessary to achieve an error of 2−p is
O
(

p
(c−s)2

)
, and thus both the workspace size and the witness size become O

(
p

(c−s)2

)
times

larger. This implies that the simple repetition-based method is no longer useful when either
the workspace size or the witness size is required to be logarithmically bounded.

Marriott and Watrous [13] developed a more sophisticated method of error reduction
for QMA proof systems that does not increase the witness size at all. For a given p, their
method still requires O

(
p

(c−s)2

)
calls of the original computation and its inverse to achieve

the computation error 2−p, but the method reuses both the workspace and the witness
every time it calls the original computation and its inverse. Hence, the witness size never
increases in their method. This is a strong property that allows them to show the uselessness
of logarithmic-size quantum witnesses in QMA proof systems (i.e., QMAlog = BQP, where
QMAlog is the class of problems having QMA proof systems with logarithmic-size quantum
witnesses). Their method is also more efficient in workspace size than the simple repetition-
based method, but still requires extra workspace of size O

(
p

(c−s)2

)
, as it must record outcomes

of all the calls of the original computation and its inverse.
Nagaj, Wocjan, and Zhang [15] succeeded in reducing to O

(
p
c−s
)
the number of calls of

the original computation and its inverse necessary to achieve the computation error 2−p
for a given p, while keeping the witness size unchanged. Their method makes use of the
phase-estimation algorithm, an essential component of many quantum algorithms including
the celebrated factoring algorithm. To achieve error 2−p for a given p, their method must
repeat O(p) times the phase-estimation algorithm with precision of at least O

(
log 1

c−s
)
bits

and record all these estimated phases. Hence, this phase-estimation-based method uses extra
workspace of size O

(
p log 1

c−s
)
.

As can be seen from above, both of the Marriott-Watrous method and the phase-
estimation-based method are still insufficient for the case where the workspace size must
be logarithmically bounded. No efficient error-reduction method is known that keeps the
size of additionally necessary workspace logarithmically bounded. This is not limited to
the case of QMA proof systems, and in fact almost no efficient error-reduction method is
known even in the case of logarithmic-space quantum computations, and in the case of space-
bounded quantum computations in general. The study of general space-bounded quantum
computations was initiated by Watrous [21] based on quantum Turing machines. Several
models of space-bounded quantum computations have been proposed and investigated since
then in the literature [22, 23, 24, 9, 14, 18], some considering only logarithmic-space quantum
computations and others treating general cases. It is not known whether any of these models
are computationally equivalent. It is also not known whether error reduction is possible for
logarithmic-space quantum computation defined according to any of these models, except the
only known affirmative answer shown by Watrous [22] on computation of one-sided bounded
error performed by logarithmic-space quantum Turing machines. As negative evidence in the
case where computational resources are too limited, computation error cannot be reduced
below a certain constant for one-way quantum finite state automata [1].
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1.2 Main result and its consequences
This paper presents a general method of strong and space-efficient error reduction for unitary
quantum computations. In particular, the method is applicable to logarithmic-space unitary
quantum computations and logarithmic-space unitary QMA proof systems. All the results
in this paper are model-independent and hold with any model of space-bounded quantum
computations as long as it performs unitary quantum computations. The unitary model is
not the most general in that it does not allow any intermediate measurements (notice that
the standard technique of simulating intermediate measurements by unitary gates requires
unallowably many ancilla qubits in the case of space-bounded computations), but is arguably
one of the most reasonable models of space-bounded quantum computation.

Let N and Z+ denote the sets of positive and nonnegative integers, respectively. Let
QMAUSPACE[lV, lM](c, s) denote the class of problems having QMA proof systems with
completeness c and soundness s, where the verifier performs a unitary quantum computation
that has no time bound but is restricted to use lV(n) private qubits and to receive a quantum
witness of lM(n) qubits on every input of length n. The main result of this paper is the
following strong and space-efficient error-reduction for such QMA-type computations.

I Theorem 1.1. For any functions p, lV, lM : Z+ → N and for any functions c, s : Z+ → [0, 1]
satisfying c > s, there exists a function δ : Z+ → N that is logarithmic with respect to p

c−s
such that

QMAUSPACE[lV, lM](c, s) ⊆ QMAUSPACE[lV + δ, lM](1− 2−p, 2−p).

As will be found later, the proof is based on a reduction that is in space logarithmic and
also in time polynomial with respect to p

c−s . Actually, the argument used in the reduction is
remarkably simple. Nevertheless, the theorem is very powerful in that it fruitfully leads to
many consequences that substantially deepen the understanding on the power of QMA proof
systems and quantum computations in general, both in the space-bounded scenario and in
the usual polynomial-time scenario. In what follows, a function f : Z+ → N is polynomially
bounded if f is polynomial-time computable and f(n) is in O(nd) for some constant d > 0,
and is logarithmically bounded if f is logarithmic-space computable and f(n) is in O(logn).

Strong amplification for unitary BQL. The first consequence of Theorem 1.1 is a remark-
ably strong error-reducibility in logarithmic-space unitary quantum computations. Let
QUL(c, s) denote the class of problems solvable by logarithmic-space unitary quantum com-
putations with completeness c and soundness s. The following amplifiability is immediate
from Theorem 1.1 by taking a function p to be logarithmic-space computable and polynomi-
ally bounded, functions c and s to be logarithmic-space computable and to satisfy c− s ≥ 1/q
for some polynomially bounded function q : Z+ → N, a function lV to be logarithmically
bounded, and a function lM = 0.

I Corollary 1.2. For any polynomially bounded function p : Z+ → N that is logarithmic-space
computable and for any logarithmic-space computable functions c, s : Z+ → [0, 1] satisfying
c− s ≥ 1/q for some polynomially bounded function q : Z+ → N,

QUL(c, s) ⊆ QUL(1− 2−p, 2−p).

This in particular justifies defining the bounded-error class BQUL of logarithmic-space
unitary quantum computations by BQUL = QUL(2/3, 1/3), employing 2/3 and 1/3 for
completeness and soundness parameters. Before this work, Watrous [22] showed a similar
strong error-reducibility in the case of one-sided bounded error, and Corollary 1.2 extends
this to the two-sided bounded error case.
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Uselessness of quantum witnesses in logarithmic-space unitary QMA. Let QMAUL(c, s)
denote the class of problems having logarithmic-space unitary QMA proof systems (i.e.,
such systems in which a verifier performs a logarithmic-space unitary computation upon
receiving a logarithmic-size quantum witness) with completeness c and soundness s. Similarly
to Corollary 1.2, the following amplifiability is immediate from Theorem 1.1 by taking a
function p to be logarithmic-space computable and polynomially bounded, functions c and s
to be logarithmic-space computable and to satisfy c− s ≥ 1/q for some polynomially bounded
function q : Z+ → N, and functions lV and lM to be logarithmically bounded.

I Corollary 1.3. For any polynomially bounded function p : Z+ → N that is logarithmic-space
computable and for any logarithmic-space computable functions c, s : Z+ → [0, 1] satisfying
c− s ≥ 1/q for some polynomially bounded function q : Z+ → N,

QMAUL(c, s) ⊆ QMAUL(1− 2−p, 2−p).

Again this justifies defining the bounded-error class QMAUL of logarithmic-space unitary
QMA proof systems by QMAUL = QMAUL(2/3, 1/3). By a standard technique of replacing
a quantum witness by a totally mixed state as a self-prepared witness (to do this in a unitary
computation, one can simply prepare sufficiently many EPR pairs and then take a qubit
from each pair), Corollary 1.3 together with Corollary 1.2 further implies the equivalence of
QMAUL and BQUL.

I Corollary 1.4. QMAUL = BQUL.

As mentioned before, Marriott and Watrous [13] showed the equivalence QMAlog = BQP,
the uselessness of quantum witnesses of logarithmic size in the standard QMA proof systems
with a polynomial-time verifier. In this respect, Corollary 1.4 states that quantum witnesses of
logarithmic size do not increase the power of logarithmic-space unitary quantum computations
at all, and indeed extends the result of Marriott and Watrous to logarithmic-space case.

Space-efficient amplification for QMA. Let QMA[lV, lM](c, s) be the time-efficient version
of QMAUSPACE[lV, lM](c, s), i.e., the class of problems having standard polynomial-time
QMA proof systems with completeness c and soundness s in which a polynomial-time
unitary quantum verifier receives a quantum witness of lM(n) qubits and uses workspace of
lV(n) qubits on every input of length n. As the reduction is in time polynomial with respect to
p
c−s in the proof of Theorem 1.1, the following amplifiability is immediate from Theorem 1.1
by taking functions p, lV, and lM to be polynomially bounded, and functions c and s to
be polynomial-time computable and to satisfy c− s ≥ 1/q for some polynomially bounded
function q : Z+ → N.

I Corollary 1.5. For any polynomially bounded functions p, lV, lM : Z+ → N and for any
polynomial-time computable functions c, s : Z+ → [0, 1] satisfying c− s ≥ 1/q for some poly-
nomially bounded function q : Z+ → N, there exists a function δ : Z+ → N that is logarithmic
with respect to p

c−s such that

QMA[lV, lM](c, s) ⊆ QMA[lV + δ, lM](1− 2−p, 2−p).

Recall that the Marriott-Watrous amplification [13] requires δ to be in O
(

p
(c−s)2

)
and

the phase-estimation-based method by Nagaj, Wocjan, and Zhang [15] requires δ to be in
O
(
p log 1

c−s
)
, instead of δ in O

(
log p

c−s
)
of Corollary 1.5. Hence, the method in this paper is

most space-efficient among known error-reduction methods for standard QMA proof systems,
and also among those for BQP.
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Strong amplification for unitary QMAPSPACE. Let QUPSPACE(c, s) denote the class
of problems solvable by polynomial-space unitary quantum computations with complete-
ness c and soundness s, and let QMAUPSPACE(c, s) denote the class of problems having
polynomial-space unitary QMA proof systems (i.e., such systems in which a verifier performs
a polynomial-space unitary computation upon receiving a polynomial-size quantum witness)
with completeness c and soundness s. The following corollary states the scaled-up versions
of Corollaries 1.2 and 1.3, and again is immediate from Theorem 1.1 by taking a function p
to be polynomial-space computable and exponentially bounded, functions c and s to be
polynomial-space computable and to satisfy c− s ≥ 2−q for some polynomially bounded func-
tion q : Z+ → N, and functions lV and lM to be polynomially bounded (or a function lM = 0
in the case of QUPSPACE(c, s)).

I Corollary 1.6. For any polynomially bounded function p : Z+ → N and for any polynomial-
space computable functions c, s : Z+ → [0, 1] satisfying c− s ≥ 2−q for some polynomially
bounded function q : Z+ → N,

QUPSPACE(c, s) ⊆ QUPSPACE
(
1− 2−2p

, 2−2p)
, and

QMAUPSPACE(c, s) ⊆ QMAUPSPACE
(
1− 2−2p

, 2−2p)
.

Again by a standard technique of replacing a quantum witness by a totally mixed state as a
self-prepared witness, the following corollary follows from Corollary 1.6 together with the fact
that RevPSPACE = PrQPSPACE = PSPACE [2, 21], where RevPSPACE and PrQPSPACE
are the complexity classes corresponding to deterministic polynomial-space reversible compu-
tations and unbounded-error polynomial-space quantum computations, respectively.

I Corollary 1.7. For any polynomial-space computable functions c, s : Z+ → [0, 1] satisfying
c− s ≥ 2−q for some polynomially bounded function q : Z+ → N,

QMAUPSPACE(c, s) = PSPACE.

Now the PSPACE upper bound immediately follows for the class of problems having stan-
dard polynomial-time QMA proof systems with exponentially small completeness-soundness
gap. More precisely, for the class QMA(c, s) of problems having standard polynomial-time
QMA proof systems with completeness c and soundness s, the following corollary holds.

I Corollary 1.8. For any polynomially bounded function p : Z+ → N and for any polynomial-
time computable functions c, s : Z+ → [0, 1] satisfying c− s ≥ 2−q for some polynomially
bounded function q : Z+ → N,

QMA(c, s) ⊆ PSPACE.

For QMA proof systems with exponentially small completeness-soundness gap, the
PSPACE upper bound was known previously only for the one-sided-error case (following
from the result in Ref. [7]), and only the EXP upper bound was known for the two-sided-error
case (following from the result in Ref. [10]). Natarajan and Wu [16] independently proved
a statement equivalent to Corollary 1.8. In fact, statements equivalent to Corollary 1.8
were also proved with different proofs independently by the first and third authors of the
present paper in Ref. [4] (see Ref. [5] also) and by the complement subset of the present
authors. The first and third authors of the present paper further proved in Refs. [4, 5] that
the converse of Corollary 1.8 also holds, i.e., PSPACE is characterized by QMA proof systems
with exponentially small completeness-soundness gap.
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Strong amplification for matchgate computations. A matchgate is defined to be a two-
qubit gate of the form G(A,B) corresponding to the four-by-four unitary matrix in which the
four corner elements form A and the four inner-square elements form B for matrices A and B
in SU(2), and all the other elements are 0. A matchgate circuit is a quantum circuit such that:
(i) the input state is a computational basis state, (ii) all the gates of the circuit are matchgates
which are applied to two neighbor qubits, and (iii) the output is a final measurement in
the computational basis on any single qubit. Matchgate computations were introduced and
proved classically simulable by Valiant [20]. Terhal and DiVincenzo [19] related them to
noninteracting-fermion quantum circuits. Let MG(c, s) denote the class of problems solvable
by polynomial-time matchgate computations with completeness c and soundness s. Using
the equivalence of polynomial-time matchgate computations and logarithmic-space unitary
computations shown by Jozsa, Kraus, Miyake, and Watrous [9, Corollary 3.3], the following
is immediate from Corollary 1.2.

I Corollary 1.9. For any polynomially bounded function p : Z+ → N that is logarithmic-space
computable and for any logarithmic-space computable functions c, s : Z+ → [0, 1] satisfying
c− s ≥ 1/q for some polynomially bounded function q : Z+ → N,

MG(c, s) ⊆ MG(1− 2−p, 2−p).

2 Overview of the proof of main theorem

We assume familiarity with basic quantum formalism (see Refs. [17, 11, 26], for instance).
The main theorem can be proved with three different proofs. Due to space limitations,
this version presents only one of the three proofs. The other two proofs, as well as precise
definitions and technical proofs, are deferred to the full version [3].

Consider any unitary transformation Vx of the verifier on input x, and let pacc be
the maximum acceptance probability of it (and thus, pacc ≥ c(|x|) for yes instances, and
pacc ≤ s(|x|) for no instances). Then the idea is to guess pacc with mild precision δ = 2− l(|x|),
where c−s

2
√

6q < 2−l ≤ c−s√
6q for some appropriately chosen function q and the (integer-valued)

function l determined uniquely by given c, s, and q.
For each j in {1, . . . , 2l(|x|)}, let rj = jδ be a possible guess of pacc. Pick an integer k

from {1, . . . , 2l(|x|)} uniformly at random, and reject immediately if rk = kδ < c(|x|) (so
that no k can result in a good guess at pacc for no instances). Otherwise rk is used as
a guess at pacc. The point is that, for yes instances, there exists a choice of k such that
|rk − pacc| < δ ≤ c(|x|)−s(|x|)√

6 q(|x|)
, while for no instances, it holds that |rk − pacc| > c(|x|)− s(|x|)

for any choice of k. Hence, by using the Reflection Procedure [12] combined with the
additive adjustment of acceptance probability [8], the acceptance probability can be mildly
amplified to at least 1− (c(|x|)−s(|x|))2

6 q(|x|) in the yes-instance case, if the appropriate guess rk is
made. It is stressed that this mild amplification is the key for the efficiency in workspace. For
no instances, the acceptance probability is at most 1−

(
c(|x|)− s(|x|)

)2 for any guess rk.
Fix an index k of the guess rk and let V ′x,k be the unitary operator corresponding to the pro-

cedure constructed so far. Now repeat the following procedure N(|x|) times for a function N
defined byN =

⌈
q

2(c−s)2

⌉
: One applies V ′x,k, and then increments a counter by 1 if the state cor-

responds to a rejection state of it. One further applies (V ′x,k)†, and then increments a counter
by 1 if any of the work qubits of V ′x,k is in state |1〉. After the repetition, one accepts if and only
if the counter value remains 0. In short, these repetitions essentially take the AND of the
N(|x|) attempts of V ′x,k (with each initialization try by (V ′x,k)†). The rigorous analysis
shows that the initialization steps also contribute to taking AND, and this process is exactly
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Additive Adjustment Procedure associated with (U, ∆, Π, l, k)

1. Prepare a single-qubit register B and an l-qubit register R, where all the qubits in B and R
are initialized to state |0〉. Receive a quantum register Q that contains a state in the subspace
corresponding to the projection ∆.

2. Apply the Hadamard transformation H to each qubit in (B, R), and apply U to Q.
3. Accept either if B contains 0 and the state in Q belongs to the subspace corresponding to Π or if

B contains 1 and the content of R is greater than k (when viewed as an integer in {1, . . . , 2l}),
and reject otherwise.

Figure 1 The Additive Adjustment Procedure.

equivalent to taking the AND of 2N(|x|) attempts of V ′x,k. The acceptance probability is at
least 1

2 for yes instances when the appropriate guess rk at pacc is made, while it is at most
e− q(|x|) < 2− q(|x|) for any guess rk for no instances. Taking into account that the index k of rk
is chosen uniformly at random, this results in a unitary procedure V ′′x with acceptance proba-
bility at least 2− l(|x|) · 1

2 >
c(|x|)−s(|x|)
4
√

6 q(|x|)
for yes instances and at most 2− q(|x|) for no instances.

Finally, by using a repetition similar to above based on V ′′x that takes OR instead of AND,
it is clear that the completeness acceptance probability becomes exponentially close to 1
with respect to q, while the soundness acceptance probability is still exponentially small with
respect to q. To achieve error below 2−p for a target p, one chooses q to be slightly larger than p
when constructing V ′′x (more precisely, one can choose a function q =

⌈
2
(
p+ log 6p

c−s + 1
)⌉
).

3 Basic procedures

Let Σ = {0, 1} denote the binary alphabet set. For every positive integer n, let C(Σn) denote
the 2n-dimensional complex Hilbert space whose standard basis vectors are indexed by the
elements in Σn. In this paper, all Hilbert spaces are complex and of dimension a power of
two. A quantum register is a set of single or multiple qubits. For a quantum register R, let
IR denote the identity operator over the Hilbert space associated with R.

LetH be any Hilbert space of dimension a power of two. Given a unitary transformation U
and two projections ∆ and Π, all acting over H, define the Hermitian operator M over H by

M = ∆U†ΠU∆,

which plays crucial roles in many well-known amplification methods in quantum computation,
including the Grover search [6], the Marriott-Watrous amplification for QMA [13], and
quantum rewinding for zero-knowledge proofs against quantum attacks [25].

Additive Adjustment Procedure. Consider the procedure described in Figure 1, called the
Additive Adjustment Procedure, which uses the additive adjustment technique of
acceptance probability proposed in Ref. [8].

The following properties hold with the Additive Adjustment Procedure.

I Proposition 3.1. Let U be a unitary transformation and ∆ and Π be projections, all acting
over the same Hilbert space. Consider the Hermitian operator M = ∆U†ΠU∆. For any
positive integer l and any integer k in {1, . . . , 2l}, the following two properties hold:
(Completeness) Suppose that M has an eigenstate |φλ〉 with its associated eigenvalue λ.

Then, the Additive Adjustment Procedure associated with (U,∆,Π, l, k) results in
acceptance with probability 1

2 + 1
2
(
λ− k

2l

)
when |φλ〉 is received in register Q in Step 1.
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Reflection Procedure associated with (U, ∆, Π)

1. Receive a quantum register Q that contains a state in the subspace corresponding to the
projection ∆.

2. Apply U to Q.
3. Perform a phase-flip (i.e., multiply the phase by −1) if the state in Q belongs to the subspace

corresponding to the projection Π. That is, apply the unitary transformation IQ − 2Π to Q.
4. Apply U† to Q.
5. Reject if the state in Q belongs to the subspace corresponding to ∆, and accept otherwise.

Figure 2 The Reflection Procedure.

(Soundness) Suppose that all the eigenvalues of M are at most ε for some ε in [0, 1).
Then, the Additive Adjustment Procedure associated with (U,∆,Π, l, k) results in
acceptance with probability at most 1

2 + 1
2
(
ε− k

2l

)
regardless of the quantum state received

in register Q in Step 1.

Reflection Procedure. Now consider the procedure described in Figure 2, which is exactly
the Reflection Procedure in a general form originally developed in Ref. [12].

The following proposition holds with the Reflection Procedure.

I Proposition 3.2 ([12]). Let U be a unitary transformation and ∆ and Π be projections, all
acting over the same Hilbert space. Consider the Hermitian operator M = ∆U†ΠU∆. The
following two properties hold:
(Completeness) Suppose that M has an eigenstate |φλ〉 with its associated eigenvalue λ.

Then, the Reflection Procedure associated with (U,∆,Π) results in acceptance with
probability 4λ(1− λ) when |φλ〉 is received in register Q in Step 1.

(Soundness) Suppose that none of the eigenvalues of M is in the interval
( 1

2 − ε,
1
2 + ε

)
for

some ε in
(
0, 1

2
]
. Then, the Reflection Procedure associated with (U,∆,Π) results

in acceptance with probability at most 1− 4ε2 regardless of the quantum state received in
register Q in Step 1.

AND-Type and OR-Type Repetition Procedures. Given a unitary transformation U and
two projections ∆ and Π all acting over a Hilbert space, consider the process of applying
U to a fixed initial state |φ〉 in a quantum register Q that is in the subspace corresponding
to ∆ and then accepting if and only if the resulting state is projected onto the subspace
corresponding to Π by the projective measurement {Π, IQ −Π}. Let p denote the acceptance
probability of this process. By running N independent attempts of such a process, the
probability clearly becomes pN for the event that all the attempts result in acceptance, but
which requires N copies of the initial state |φ〉. When |φ〉 is an eigenstate of the Hermitian
operator M = ∆U†ΠU∆, the AND-Type Repetition Procedure described in Figure 3
essentially simulates such independent attempts with just one copy of |φ〉.

The following proposition holds with the AND-Type Repetition Procedure.

I Proposition 3.3. Let U be a unitary transformation and ∆ and Π be projections, all
acting over the same Hilbert space, and let N be a positive integer. Consider the Hermitian
operator M = ∆U†ΠU∆. The following two properties hold:
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AND-Type Repetition Procedure associated with (U, ∆, Π, N)

1. Let l = dlog(2N + 1)e, and prepare an l-qubit register C, where all the qubits in C are initialized
to state |0〉. Receive a quantum register Q that contains a state in the subspace corresponding
to the projection ∆.

2. For j = 1 to N , perform the following:
2.1. Apply U to Q.
2.2. If the state in Q belongs to the subspace corresponding to the projection IQ −Π, apply

U+1(Z2l ) to C, where U+1(Z2l ) is the unitary transformation defined by

U+1(Z2l ) : |j〉 7→
∣∣(j + 1) mod 2l

〉
, ∀j ∈ Z2l .

2.3. Apply U† to Q.
2.4. If the state in Q belongs to the subspace corresponding to the projection IQ −∆, apply

U+1(Z2l ) to C.
3. Accept if the content of C is 0 (i.e., all the qubits in C are in state |0〉), and reject otherwise.

Figure 3 The AND-Type Repetition Procedure.

(Completeness) Suppose that M has an eigenstate |φλ〉 with its associated eigenvalue λ.
Then, the AND-Type Repetition Procedure associated with (U,∆,Π, N) results in
acceptance with probability λ2N when |φλ〉 is received in register Q in Step 1.

(Soundness) Suppose that all the eigenvalues of M are at most ε for some ε in [0, 1).
Then, the AND-Type Repetition Procedure associated with (U,∆,Π, N) results
in acceptance with probability at most ε2N regardless of the quantum state received in
register Q in Step 1.

One can also construct a procedure that essentially simulates the process of taking OR of
the N independent attempts mentioned before with just one copy of |φ〉. One now applies
U+1(Z2l) to C when the state in Q belongs to the subspace corresponding to the projection Π
at Step 2.2, and rejects if and only if the content of C is 0 at Step 3. The resulting procedure
is called the OR-Type Repetition Procedure, which has the following properties.

I Proposition 3.4. Let U be a unitary transformation and ∆ and Π be projections, all
acting over the same Hilbert space, and let N be a positive integer. Consider the Hermitian
operator M = ∆U†ΠU∆. The following two properties hold:
(Completeness) Suppose that M has an eigenstate |φλ〉 with its associated eigenvalue λ.

Then, the OR-Type Repetition Procedure associated with (U,∆,Π, N) results in
acceptance with probability 1− (1− λ)2N when |φλ〉 is received in register Q in Step 1.

(Soundness) Suppose that all the eigenvalues of M are at most ε for some ε in [0, 1).
Then, the OR-Type Repetition Procedure associated with (U,∆,Π, N) results in
acceptance with probability at most 1− (1− ε)2N regardless of the quantum state received
in register Q in Step 1.

4 Guess-based amplification framework

Consider any QMA-type computation for a problem A = (Ayes, Ano) induced by a fam-
ily {Vx}x∈Σ∗ of a unitary transformation Vx of the verifier on input x in Σ∗ that acts over a
quantum register Q = (V,M), where V is the quantum register consisting of all the private
qubits of the verifier, and M is the one for storing a received quantum witness. Let Πinit
be the projection onto the subspace spanned by the legal initial states of the QMA-type
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Mild Completeness Amplification with Guess k associated with (Vx, p)

Define functions l and C by l =
⌈

1
2 log p

(c−s)2

⌉
and C = d2lce. Let Πinit and Πacc be the projections

onto the subspaces spanned by the legal initial states and the accepting states, respectively, in the
verification with Vx. Given an integer k in {1, . . . , 2l(|x|)} as a guess, consider the Additive Adjust-
ment Procedure associated with (Vx, Πinit, Πacc, l(|x|), k). Let V ′x,k be the unitary transformation
induced by it, let Π′init be the projection onto the subspace spanned by the legal initial states of it,
and let Π′acc,k be the projection onto the subspace spanned by the accepting states of it.
Reject if k < C(|x|), and continue otherwise by performing the Reflection Procedure associated
with

(
V ′x,k, Π′init, Π′acc,k

)
.

Figure 4 The Mild Completeness Amplification with Guess k.

computation induced by Vx (i.e., the subspace spanned by those in which all the qubits in V
is in state |0〉) and let Πacc be the projection onto the subspace spanned by the accepting
states of the QMA-type computation associated with Vx (i.e., the subspace spanned by states
for which the designated output qubit of Vx is in state |0〉).

The maximum eigenvalue of the Hermitian operator Mx = ΠinitV
†
xΠaccVxΠinit exactly

corresponds to the maximum acceptance probability of the verifier on input x over all possible
quantum witnesses received in M. Hence, Mx has an eigenvalue at least c(|x|) if x is in
Ayes, while all eigenvalues of Mx are at most s(|x|) if x is in Ano, where c, s : Z+ → [0, 1] are
functions that provide completeness and soundness conditions of the QMA-type computation
induced by {Vx}x∈Σ∗ , respectively.

Mild completeness amplification with a guess. Fix arbitrarily a function p : Z+ → N
and functions c, s : Z+ → [0, 1] satisfying c > s, and let l, C : Z+ → N be functions defined
by l =

⌈ 1
2 log p

(c−s)2

⌉
and C = d2lce. Fix an input x and an integer k in {1, . . . , 2l(|x|)}.

Given the triplet (Vx,Πinit,Πacc) and an integer k, one first constructs the Additive
Adjustment Procedure associated with

(
Vx,Πinit,Πacc, l(|x|), k

)
, if k is at least C(|x|)

(and automatically rejects otherwise so that no k can result in a good guess at the acceptance
probability when the actual value of it is unallowably small). Let V ′x,k be the unitary
transformation induced by it, let Π′init be the projection onto the subspace spanned by
the legal initial states of it, and let Π′acc,k be the projection onto the subspace spanned
by the accepting states of it. Next, from the triplet

(
V ′x,k,Π′init,Π′acc,k

)
, one constructs

the Reflection Procedure associated with
(
V ′x,k,Π′init,Π′acc,k

)
, and performs it. The

resulting procedure is called the Mild Completeness Amplification with Guess k, and
is summarized in Figure 4.

From the properties of the Additive Adjustment Procedure and the Reflection
Procedure (Propositions 3.1 and 3.2), one can show the following lemma.

I Lemma 4.1. Given functions lV, lM : Z+ → N and c, s : Z+ → [0, 1] satisfying c > s, let
A = (Ayes, Ano) be a problem in QMAUSPACE[lV, lM](c, s), and let V = {Vx}x∈Σ∗ be the
(lV, lM)-space-bounded quantum verifier witnessing this membership. Then, for any func-
tion p : Z+ → N and for every x in Σ∗, letting l =

⌈ 1
2 log p

(c−s)2

⌉
,

(Completeness) if x is in Ayes, there exists an integer k in {1, . . . , 2l(|x|)} as a guess such
that the Mild Completeness Amplification with Guess k associated with (Vx, p)
results in acceptance with probability at least 1− (c(|x|)−s(|x|))2

p(|x|) , and
(Soundness) if x is in Ano, for any integer k in {1, . . . , 2l(|x|)} as a guess, the Mild Com-

pleteness Amplification with Guess k associated with (Vx, p) results in acceptance
with probability at most 1−

(
c(|x|)− s(|x|)

)2.
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Soundness Error Reduction with Guess k associated with (Vx, p)

Define functions l and N by l =
⌈

1
2 log 6p

(c−s)2

⌉
and N =

⌈
p

2(c−s)2

⌉
. Given an integer k in

{1, . . . , 2l(|x|)}, consider the Mild Completeness Amplification with Guess k associated with
(Vx, 6p). Let V ′x,k be the unitary transformation induced by it, let Π′init be the projection onto the
subspace spanned by the legal initial states of it, and let Π′acc,k be the projection onto the subspace
spanned by the accepting states of it.
Perform the AND-Type Repetition Procedure associated with

(
V ′x,k, Π′init, Π′acc,k, N(|x|)

)
.

Figure 5 The Soundness Error Reduction with Guess k.

Soundness error reduction with a guess. Again fix arbitrarily a function p : Z+ → N and
functions c, s : Z+ → [0, 1] satisfying c > s, and let l, N : Z+ → N be functions defined by
l =

⌈ 1
2 log 6p

(c−s)2

⌉
and N =

⌈
p

2(c−s)2

⌉
. Fix an input x and an integer k in {1, . . . , 2l(|x|)}.

Given the pair (Vx, p) and the integer k, consider the Mild Completeness Amplification
with Guess k associated with (Vx, 6p). As before, let V ′x,k be the unitary transformation
induced by it, let Π′init be the projection onto the subspace spanned by the legal initial
states of it, and let Π′acc,k be the projection onto the subspace spanned by the accepting
states of it. From the triplet

(
V ′x,k,Π′init,Π′acc,k

)
and a positive integer N(|x|), one constructs

the AND-Type Repetition Procedure associated with
(
V ′x,k,Π′init,Π′acc,k, N(|x|)

)
, and

performs it. The resulting procedure is called the Soundness Error Reduction with
Guess k, and is summarized in Figure 5.

From the properties of the AND-Type Repetition Procedure and the Mild Com-
pleteness Amplification with Guess k (Proposition 3.3 and Lemma 4.1), one can show
the following lemma.

I Lemma 4.2. Given functions lV, lM : Z+ → N and c, s : Z+ → [0, 1] satisfying c > s, let
A = (Ayes, Ano) be a problem in QMAUSPACE[lV, lM](c, s), and let V = {Vx}x∈Σ∗ be the
(lV, lM)-space-bounded quantum verifier witnessing this membership. Then, for any func-
tion p : Z+ → N and for every x in Σ∗, letting l =

⌈ 1
2 log 6p

(c−s)2

⌉
,

(Completeness) if x is in Ayes, there exists an integer k in {1, . . . , 2l(|x|)} as a guess such
that the Soundness Error Reduction with Guess k associated with (Vx, p) results
in acceptance with probability at least 1

2 , and
(Soundness) if x is in Ano, for any integer k in {1, . . . , 2l(|x|)} as a guess, the Soundness

Error Reduction with Guess k associated with (Vx, p) results in acceptance with
probability at most 2− p(|x|).

Soundness error reduction with a random guess. Again fix arbitrarily a function p : Z+ → N
and functions c, s : Z+ → [0, 1] satisfying c > s, and let l : Z+ → N be a function defined by
l =

⌈ 1
2 log 6p

(c−s)2

⌉
. Fix an input x. Given the pair (Vx, p), consider choosing an integer k from

{1, . . . , 2l(|x|)} uniformly at random, and performing the Soundness Error Reduction
with Guess k associated with (Vx, p). The resulting procedure is called the Soundness
Error Reduction with Random Guess and is summarized in Figure 6.

Lemma 4.3 below follows from the Soundness Error Reduction with Random
Guess together with the properties of the Soundness Error Reduction with Guess k
stated in Lemma 4.2.

I Lemma 4.3. For any functions p, lV, lM : Z+ → N and any functions c, s : Z+ → [0, 1]
satisfying c > s and c−s

4
√

6p > 2−p, there exists a function δ : Z+ → N that is logarithmic with

ICALP 2016
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Soundness Error Reduction with Random Guess associated with (Vx, p)

Define a function l by l =
⌈

1
2 log 6p

(c−s)2

⌉
.

Pick an integer k from {1, . . . , 2l(|x|)} uniformly at random and perform the Soundness Error
Reduction with Guess k associated with (Vx, p).

Figure 6 The Soundness Error Reduction with Random Guess.

Space-Efficient Amplification Based on Random Guess associated with (Vx, p)

Define functions q and N by q =
⌈
2
(
p + log 6p

c−s
+ 1
)⌉

and N =
⌈ 2
√

6q
c−s
· p
⌉
. Consider the Soundness

Error Reduction with Random Guess associated with (Vx, q). Let V ′x be the unitary transfor-
mation induced by it, let Π′init be the projection onto the subspace spanned by the legal initial states
of it, and let Π′acc be the projection onto the subspace spanned by the accepting states of it.
Perform the OR-Type Repetition Procedure associated with

(
V ′x, Π′init, Π′acc, N(|x|)

)
.

Figure 7 The Space-Efficient Amplification Based on Random Guess.

respect to p
c−s such that

QMAUSPACE[lV, lM](c, s) ⊆ QMAUSPACE[lV + δ, lM]
(
c− s
4
√

6p
, 2−p

)
.

Space-efficient amplification based on a random guess. Again fix a function p : Z+ → N
and functions c, s : Z+ → [0, 1] satisfying c > s arbitrarily. Let q,N : Z+ → N be functions de-
fined by q =

⌈
2
(
p+ log 6p

c−s + 1
)⌉

and N =
⌈

2
√

6q
c−s · p

⌉
. Fix an input x. Given the pair (Vx, p),

consider the Soundness Error Reduction with Random Guess associated with (Vx, q).
Let V ′x be the unitary transformation induced by it, let Π′init be the projection onto the
subspace spanned by the legal initial states of it, and let Π′acc be the projection onto the
subspace spanned by the accepting states of it. From the triplet

(
V ′x,Π′init,Π′acc

)
and a

positive integer N(|x|), one constructs the OR-Type Repetition Procedure associated
with

(
V ′x,Π′init,Π′acc, N(|x|)

)
, and performs it. The resulting procedure is called the Space-

Efficient Amplification Based on Random Guess and is summarized in Figure 7.
Now Theorem 1.1, the main theorem of this paper, is proved by using the Space-

Efficient Amplification Based on Random Guess combined with the properties of the
Soundness Error Reduction with Random Guess and the OR-Type Repetition
Procedure stated in Lemma 4.3 and Proposition 3.4, respectively.
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Abstract
A canonical result about satisfiability theory is that the 2-SAT problem can be solved in linear
time, despite the NP-hardness of the 3-SAT problem. In the quantum 2-SAT problem, we are
given a family of 2-qubit projectors Qij on a system of n qubits, and the task is to decide whether
the Hamiltonian H =

∑
Qij has a 0-eigenvalue, or it is larger than 1/nc for some c = O(1).

The problem is not only a natural extension of the classical 2-SAT problem to the quantum
case, but is also equivalent to the problem of finding the ground state of 2-local frustration-free
Hamiltonians of spin 1/2, a well-studied model believed to capture certain key properties in
modern condensed matter physics. While Bravyi has shown that the quantum 2-SAT problem
has a classical polynomial-time algorithm, the running time of his algorithm is O(n4). In this
paper we give a classical algorithm with linear running time in the number of local projectors,
therefore achieving the best possible complexity.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases Quantum SAT, Davis-Putnam Procedure, Linear Time Algorithm

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.15

1 Introduction

Various formulations of the satisfiability problem of Boolean formulae arguably constitute
the center piece of classical complexity theory. In particular, a great amount of attention has
been paid to the SAT problem, in which we are given a formula in the form of a conjunction
of clauses, where each clause is a disjunction of literals (variables or negated variables),
and the task is to find a satisfying assignment if there is one, or prove that none exists
when the formula is unsatisfiable. In the case of the k-SAT problem, where k is a positive
integer, in each clause the number of literals is at most k. While k-SAT is an NP-complete
problem [4, 12, 17] when k ≥ 3, the 2-SAT problem is well-known to be efficiently solvable.

Polynomial time algorithms for 2-SAT come in various flavors. Let us suppose that the
input formula has n variables and m clauses. The algorithm of Krom [15] based on the
resolution principle and on transitive closure computation decides if the formula is satisfiable
in time O(n3) and finds a satisfying assignment in time O(n4). The limited backtracking
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technique of Even, Itai and Shamir [9] has linear time complexity in m, as well as the
elegant procedure of Aspvall, Plass and Tarjan [1] based on computing strongly connected
components in a graph. A particularly simple randomized procedure of complexity O(n2) is
described by Papadimitriou [18].

For our purposes the Davis-Putnam procedure [6] is of singular importance. This is a
resolution-principle based general SAT solving algorithm, which with its refinement due
to Davis, Putnam, Logemann and Loveland [5], forms even today the basis for the most
efficient SAT solvers. While on general SAT instances it works in exponential time, on 2-SAT
formulae it is of polynomial complexity.

The high level description of the procedure for 2-SAT is relatively simple. Let us suppose
that our formula φ contains only clauses with two literals. Pick an arbitrary unassigned
variable xi and assign xi = 0. The formula is simplified: a clause (x̄i ∨ xj) becomes true
and therefore can be removed, and a clause (xi ∨ xj) forces xj = 1. This can be, in turn,
propagated to other clauses to further simplify the formula until a contradiction is found
or no more propagation is possible. If no contradiction is found and the propagation stops
with the simplified formula φ0, then we recurse on the satisfiabilty of φ0. Otherwise, when a
contradiction is found, that is at some point the propagation assigns two different values to
the same variable, we reverse the choice made for xi, and propagate the new choice xi = 1.
If this also leads to contradiction we declare φ unsatisfiable, otherwise we recurse on the
result of this propagation, the simplified formula φ1.

There is a deep and profound link between k-SAT formulas and k-local Hamiltonians,
the central objects of condensed matter physics. A k-local Hamiltonian on n qubits is a
Hermitian operator of the form H =

∑m
i=1 hi, where each hi is by itself a Hermitian operator

acting non-trivially on at most k qubits. Local Hamiltonians model the local interactions
between quantum spins. Of central importance is the minimal eigenstate of the Hamiltonian,
known as the ground state, and its associated eigenvalue, known as the ground energy. The
ground state governs much of the low temperature physics of the system, such as quantum
phase transitions and collective quantum phenomena [19, 20]. Finding the ground state of a
local Hamiltonian shares important similarities with the k-SAT problem: in both problems
we are trying to find a global minimum of a set of local constraints. This connection with
complexity theory is of physical significance. Indeed, with the advent of quantum information
theory and quantum complexity theories, it has become clear that the complexity of finding
the ground state and its energy is intimately related to its entanglement structure. In recent
years, much attention has been devoted into understanding this structure, revealing a rich
an intricate behaviour such as area laws [8] and topological order [13].

The connection between classical k-SAT and quantum local Hamiltonian was formalized
by Kitaev [14] who introduced the k-local Hamiltonian problem: one is given a k-local
Hamiltonian H, along with two constants a < b such that b− a > 1/nα for some constant
α. It is promised that the ground energy of H is at most a (the YES case) or is at least
b (the NO case), and the task is to decide which case holds. Broadly speaking, given a
quantum state |ψ〉, the energy of a local term 〈ψ|hi|ψ〉 is a measure of how much |ψ〉 “violates”
hi, hence the ground energy is the quantum analog of the minimal number of violations
in a classical k-SAT. Therefore, in spirit, the k-local Hamiltonian problem corresponds to
MAX-k-SAT, and indeed Kitaev has shown [14] that the 5-local Hamiltonian problem is
QMA-complete, where the complexity class QMA is the quantum analogue of classical class
MA, the probabilistic version of NP.

The problem quantum k-SAT, the quantum analogue of k-SAT, is a close relative of the
k-local Hamiltonian problem. Here we are given a k-local Hamiltonian that is made of k-local
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projectors, H =
∑m
i=1Qi, and we are asked whether the ground energy is 0 or it is larger

than b = 1/nα for some constant α. Notice that in the YES case, the energy of all projectors
at the ground state is necessarily 0, since by definition, projectors are non-negative operators.
Classically, this corresponds to a perfectly satisfiable formula. Physically, this is an example
of a frustration-free Hamiltonian, in which the global ground state is also a ground state of
every local term. Bravyi [2] has shown that quantum k-SAT was QMA1-complete for k ≥ 4,
where QMA1 stands for QMA with one-sided error (that is on YES instances the verifier
accepts with probability 1). The QMA1-completeness of quantum 3-SAT was recently proven
by Nagaj [10].

This paper is concerned with the quantum 2-SAT problem, which we will also denote
simply by 2QSAT. One major result concerning this problem is due to Bravyi [2], who has
proven that it belongs to the complexity class P. More precisely, he has proven that 2QSAT
can be decided by a deterministic algorithm in time O(n4), together with a ground state
that has a polynomial classical description. In the case of 2QSAT, the Hamiltonian is given
as a sum of 2-qubits projectors; each projector is defined on a 4-dimensional Hilbert space
and can therefore be of rank 1, 2 or 3. In this paper, we give an algorithm for 2QSAT of
linear complexity.

I Theorem 1. There is a deterministic algorithm for 2QSAT whose running time is O(n+m)
where n is the number of variables and m is the number of local terms in the Hamiltonian.

Our algorithm shares the same trial and error approach of the Davis-Putnam procedure
for classical 2SAT, but handles many difficulties arising in the quantum setting. First, a
ground state of 2QSAT input may be entangled, a distinctive feature that classical 2SAT does
not have. Thus the idea of setting some qubit to a certain state and propagating from there
does not have a foundation in the first place. Indeed, if a rank-3 projector forces the only
allowed state to be entangled, then any ground state is entangled in those two qubits. We
overcome this by showing a product-state theorem, which asserts that for any frustration-free
2QSAT instance H that contains only rank-1 and rank-2 projectors, there always exists a
ground state in the form of a tensor product of single-qubit states.

This structural theorem grants us the following approach: We try some candidate solution
|ψ〉i on a qubit i, and propagate this along the graph. If no contradiction is found, it turns out
that we can detach the explored part and recurse on the rest of the graph. If a contradiction
is found, then we can identify two candidates (i, |ψ〉i) and (j, |φ〉j) such that either assigning
|ψ〉i to qubit i or assigning |φ〉j to qubit j is correct, if there exists a solution at all. More
details follow next.

To illustrate the main idea of our algorithm, let us suppose that the input contains
only projectors of rank at most two. Such a system can be further simplified to a system
consisting only of rank-1 projectors, by writing every rank-2 projector as a sum of two rank-1
projectors. Consider, for example, qubits 1 and 2 and a rank-1 projector Π12 = |ψ〉〈ψ| over
these qubits. The product-state theorem implies that it suffices to search for a product
ground state. Thus on the first two qubits, we are looking for states |α〉, |β〉 such that
(〈α| ⊗ 〈β|)Π12(|α〉 ⊗ |β〉) = 0, which is equivalent to (〈α| ⊗ 〈β|) · |ψ〉 = 0. In other words, we
look for a product state |α〉⊗ |β〉 that is perpendicular to |ψ〉. Assume that we have assigned
qubit 1 with the state |α〉 and we are looking for a state |β〉 for qubit 2. The crucial point,
which enables us to solve 2QSAT efficiently, is that just like in the classical case, there are
only two possibilities: (i) for any |β〉, the state |α〉 ⊗ |β〉 is perpendicular to |ψ〉, or (ii) there
is only one state |β〉 (up to an overall complex phase), for which (〈α| ⊗ 〈β|) · |ψ〉 = 0. The
first case happens if and only if |ψ〉 is by itself a product state of the form |ψ〉 = |α⊥〉 ⊗ |ξ〉,
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Figure 1 Handling a contradicting cycle: we slide edges that touch i along the two paths to j

until we get a double edge with a ‘tail’. We then use a structure lemma to deduce that at least one
of these edges can be written as a product projector.

where |α⊥〉 is perpendicular to |α〉 and |ξ〉 is arbitrary. If the second case happens, we say
that state |α〉 is propagated to state |β〉 by the constraint state |ψ〉.

This dichotomy enables us to propagate a product state |s〉 on part of the system until
we reach a contradiction, or find that no further propagation is possible and we are left with
a smaller Hamiltonian Hs. This smaller Hamiltonian consists of a subset of the original
projectors, without introducing new projectors. It turns out that once an edge is checked for
potential propagation, then no matter whether a propagation happens along the edge or not,
the edge can be safely removed without changing the satisfiability. Thus the satisfiability of
the original Hamiltonian H is the same as that of the smaller Hamiltonian Hs.

We still need to specify how the state |α〉 is chosen to initialize the propagation. An
idea is to begin with projectors |ψ〉〈ψ| for which |ψ〉 is a product state |α〉 ⊗ |β〉. In such
cases a product state solution must either have |α⊥〉 at the first qubit or |β⊥〉 at the second.
To maintain a linear running time, we propagate these two choices simultaneously until
one of the propagations stops without contradiction, in which case the corresponding qubit
assignment is made final. If both propagations end with contradiction, the input is rejected.

The more interesting case of the algorithm happens when we have only entangled rank-1
projectors. What should our initial state be then? We make an arbitrary assignment (say,
|0〉) to any of the still unassigned qubits and propagate this choice. If the propagation
ends without contradiction, we recurse. If a contradiction is found then we confront a
challenging problem. In the classical case we could reverse our choice, say x0 = 0, and
try the other possibility, xi = 1. But in the quantum case we have an infinite number of
potential assignment choices. The solution is found by the following observation: Whenever
a contradiction is reached, it can be attributed to a cycle of entangled projectors in which
the assignment has propagated from qubit i along the cycle and returned to it with another
value. Then using the techniques of ‘sliding’, which was introduced in Ref. [11], one can show
that this cycle is equivalent to a system of one double edge and a ‘tail’ (see Fig. 1). Using a
simple structure lemma, we are guaranteed that at least one of the projectors of the double
edge can be turned into a product state projector, which, as in the previous stage, gives us
two possible free choices.

Let us state here that our algorithm works in the algebraic model of computation: we
suppose that every arithmetic operation on complex numbers can be done in unit time.

Classically, Davis-Putnam [6] and DPLL algorithms [5] are widely-used heuristics, forming
the basis of today’s most efficient solvers for general SAT. For quantum k-SAT, it could
also be a good heuristic if we try to find product-state solutions, and in that respect our
algorithm makes the first-step exploration.

Simultaneously and independently from our work and approximately at the same time, de
Beaudrap and Gharibian [7] have also presented a linear time algorithm for quantum 2SAT.
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The main difference between the two algorithms is how they deal with instances with only
entangled rank-1 projectors. Contrarily to us, [7] handles these instances by using transfer
matrix techniques to find discretizing cycles [16]. Most proofs are omitted from this version
of the paper owing to space constraints.

2 Preliminaries

2.1 Notation
We will use the notation [n] = {1, . . . , n}. For a graph G = (V,E), and for a subset U ⊆ V
of the vertices, we denote by G(U) the subgraph induced by U . Our Hilbert space is defined
over n qubits, and is written as H = H1 ⊗H2 ⊗ · · · ⊗ Hn, where Hi is the two-dimensional
Hilbert space of the ith qubit. We shall often write |α〉i to emphasize that the 1-qubit state
|α〉 lives in Hi. Similarly, |ψ〉ij denotes a 2-qubit state that lives in Hi ⊗Hj . For a 1-qubit
state |α〉 = α0|0〉+ α1|1〉, we define its perpendicular state as |α⊥〉 = α1|0〉 − α0|1〉.

We shall denote local projectors either by Πij , or by Πe, where e = (i, j). When i < j,
Πij is a 2-local projector on the qubits i, j; it can be written as Πij = Π̂ij ⊗ Irest, where
Π̂ij is a projector working on Hi ⊗Hj and Irest is the identity operator on the rest of the
system. Similarly, when i = j, Πii = Π̂ii ⊗ Irest, where Π̂ii is a projector defined in Hi.
Often, in order not to overload the notation, we shall use Πij instead of Π̂ij , even when
acting on states in Hi ⊗Hj . Similarly, with a slight abuse the notation, we define the rank
of a projector Πe to be the dimension of the subspace that its local projector Π̂e projects to,
and it will be denoted by rank(Πe). We call a rank-1 projector Πe = |ψ〉〈ψ|, entangled if |ψ〉
is an entangled state, and product if |ψ〉 is a product state.

2.2 The 2QSAT problem
A quantum 2-SAT Hamiltonian on an n-qubit system is a Hermitian operator H =

∑
e∈I Πe,

for some I ⊆ {(i, j) ∈ [n] × [n] : 1 ≤ i ≤ j ≤ n}. We suppose that rank(Πii) = 1, for all
(i, i) ∈ I, and 0 < rank(Πij) < 4, for all (i, j) ∈ I when i < j. The single-qubit projectors of
H as well as its 2-qubit projectors of rank-3 are called maximal rank.

The ground energy of a Hamiltonian H =
∑
e∈I Πe is its smallest eigenvalue, and a

ground state of H is an eigenvector corresponding to the smallest eigenvalue. The subspace
of the ground states is called the ground space. A Hamiltonian is frustration-free if it has a
ground state that is also simultaneously the ground state of all local terms. As explained in
the introduction, if the Hamiltonian is made of local projectors, it is frustration-free if and
only if there is a state that is a mutual zero eigenstate of all projectors, which happens if
and only if the ground energy is 0. Therefore, if |Γ〉 is a ground state of a frustration-free
quantum 2-SAT Hamiltonian, Πe|Γ〉 = 0 for all e ∈ I. We can also view each local projector
as a constraint on at most two qubits, then a ground state satisfies every constraint.

It turns out that for the representation of the 2QSAT Hamiltonian, it will be helpful to
eliminate the rank-2 projectors by decomposing each one of them into a sum of two rank-1
projectors. For every (i, j) ∈ I such that rank(Πij) = 2, let Πij = Πij,1 + Πij,2, where Πij,1
and Πij,2 are rank-1 projectors. Such projectors can be found in constant time. We therefore
suppose without loss of generality that H is specified by

H =
∑

rank(Πij)6=2

Πij +
∑

rank(Πij)=2

(Πij,1 + Πij,2),

which we call the rank-1 decomposition of H.
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To the rank-1 decomposition we associate a weighted, directed multigraph with self-
loops G(H) = (V,E,w), the constraint graph of H. By definition V = {i ∈ [n] : ∃j ∈
[n] such that (i, j) ∈ I or (j, i) ∈ I}, For every rank-3 and rank-1 projector acting on two
qubits, there is an edge in each direction between the two nodes representing them. For every
projector acting on a single qubit, there is a self-loop. Finally, for every rank-2 projector,
there are two parallel edges in each direction between nodes representing its qubits. Because
of the parallel edges, E is not a subset of V × V . Formally, E = E1 ∪ E2 where respectively

E1 = {(i, j) ∈ [n]× [n] : (i, j) ∈ I and rank(Πij) ∈ {1, 3}, or
(j, i) ∈ I and rank(Πji) ∈ {1, 3}},

and

E2 = {(i, j, b) ∈ [n]× [n]× [2] : (i, j) ∈ I and rank(Πij) = 2, or
(j, i) ∈ I and rank(Πji) = 2}.

We say that an edge e ∈ E goes from i to j if e ∈ {(i, j), (i, j, 1), (i, j, 2)}. For a projector Π
acting on two qubits, we define its reverse projector Πrev by Πrev|α〉|β〉 = Π|β〉|α〉, and for
i ≤ j and b ∈ [2], we set Πji = Πrev

ij and Πjib = Πrev
ijb . Then for an edge (i, j), its weight is

defined as w(i, j) = Πij , and analogously for an edge (i, j, b), we set w(i, j, b) = Πijb.
We will suppose that the input to our problem is the constraint graph G(H) of the

Hamiltonian, given in the standard adjacency list representation of weighted graphs, naturally
modified for dealing with the parallel edges. In this representation there is a linked list of
size at most n containing one element for each vertex, and the element i in this list is also
pointing towards a linked list containing an element for every edge (i, j) or (i, j, b). For an
edge (i, j), this element contains j, the projector Πij and a pointer towards the next element
in the list, for an edge (i, j, b) it also contains the value b. The problem 2QSAT is defined
formally as follows.

2QSAT
Input: The constraint graph G(H) of a 2-local Hamiltonian H, given in the adjacency
list representation.
Output: A solution if H is frustration free, “H is unsatisfiable” if it is not.

2.3 Simple ground states
Our algorithm is based crucially on the following product state theorem, which says that
any frustration-free 2QSAT Hamiltonian composed has a ground state which is a product
state of single qubit and two-qubit states, where the latter only appear in the support of
rank-3 projectors. A slightly weaker claim of that form has already appeared in Theorem 2
of Ref. [3]. The difference here is that we specifically attribute the 2-qubits states in the
product state to rank-3 projectors. Just as in Ref. [3], our derivation begins with Theorem 1
of Ref. [3], which we give below. It relies on the notion of a genuinely entangled state in
an n-qubit system, which is a pure state that is not a product state with respect to any
bi-partition of the system. Then Theorem 1 in [3] states

I Proposition 2. A 2-local frustration-free Hamiltonian on n qubits which has a genuinely
entangled ground state always has a product ground state, whenever n ≥ 3.

We will also need the following simple fact about 2-dimensional subspaces in C2 ⊗ C2.
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I Fact 3. Any 2-dimensional subspace V of the 2-qubit space C2 ⊗ C2 contains at least one
product state, which can be found in constant time.

The proofs of Fact 3 and our Product State Theorem are omitted owing to space constraints.

I Theorem 4 (Product State Theorem). Any frustration-free 2QSAT Hamiltonian has a
ground state which is a tensor product of one qubit and two-qubit states, where two-qubit
states only appear in the support of rank-3 projectors.

2.4 Assignments
Let H =

∑
e∈I be a 2-local Hamiltonian. By Theorem 4, if H is frustration free then it has

a ground state which is the tensor product of 1-qubit and 2-qubit entangled states, where
the latter only appear in pairs of qubits corresponding to rank-3 projectors. To build up a
ground state of such form, our algorithm will use partial assignments, or shortly assignments.
An assignment s is a mapping from [n]. For every i ∈ [n], the value s(i) is either a 1-qubit
state |α〉, or a 2-qubit entangled state |γ〉ij for some j 6= i, or a symbol from the set {�, X}.
If s(i) = |α〉 or s(i) = |γ〉ij , then this value is assigned to qubit variable i, and in the latter
case the entangled state is shared with variable j. The symbol � is used for unassigned
variables, and the symbol X is used when several values are assigned to some variable.

We define the support of s by supp(s) = {i ∈ [n] : s(i) 6= �}. The assignment s is empty
if supp(s) = ∅. When there is no danger of confusion, we will denote the empty assignment
also by �. We say that an assignment is coherent if for every i, we have s(i) 6= X, and
whenever s(i) = |γ〉ij , we also have s(j) = |γ〉ji. For coherent assignments s and s′, we say
that s′ is an extension of s, if for every i, such that s(i) 6= �, we have s′(i) = s(i). A coherent
assignment is total if s(i) 6= �, for all i. Clearly, a coherent assignments defines a product
state of 1-qubit and 2-qubits states on qubits in its support. We denote this state by |s〉. We
say that a coherent assignment s satisfies a projector Πe, or simply that it satisfies the edge
e, if for any total extension s′ of s we have Πe|s′〉 = 0.

For H =
∑
e∈I Πe given in rank-1 decomposition, and a coherent s, we define the reduced

Hamiltonian Hs of s as Hs = H −
∑
s satisfies e Πe. We will denote the constraint graph

G(Hs) of the reduced Hamiltonian Hs by Gs = (Vs, Es). We call a coherent assignment s a
pre-solution if it has a total extension s′ satisfying every constraint in H, and we call s is a
solution if s itself satisfies every constraint in H. Obviously, an assignment is a solution if
and only if Gs is the empty graph. A coherent assignment s is closed if supp(s) ∩ Vs = ∅.

3 Propagation

The crucial building block of our algorithm is the propagation of values by rank-1 projectors.
This is the quantum analog of the classical propagation process when for example the clause
xi ∨ xj propagates the value xi = 0 to the value xj = 1 in the sense that given xi = 0, the
choice xj = 1 is the only possibility to make the clause true. In the quantum case this notion
has already appeared in Ref. [16], and can in fact be traced back also to Bravyi’s original
work. Here, we shall adopt the following definition

I Definition 5 (Propagation). Let Πe = |ψ〉〈ψ| be a rank-1 projector acting on variables
i, j, and let |α〉 be either a 1-qubit state assigned to variable i, or a 2-qubit entangled state
assigned to variables k, i for some k 6= j. We say that Πe propagates |α〉 if, up to a phase,
there exists a unique 1-qubit state |β〉 such that Πe|α〉i ⊗ |β〉j = 0. In such a case we say
that |α〉 is propagated to |β〉 along Πe, or that Πe propagated |α〉 to |β〉.
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We establish a sequence of Lemmas on propagation whose proofs are not discussed here owing
to space contraints. The first lemma shows how the propagation properties of Πe = |ψ〉〈ψ|
are determined by entanglement in |ψ〉.

I Lemma 6. Consider the rank-1 projector Πe = |ψ〉〈ψ|, defined on qubits i, j. If |ψ〉 is
entangled, it propagates every 1-qubit state |α〉i to a state |β(α)〉j such that if |α〉i 6= |α′〉i
then |β(α)〉j 6= |β(α′)〉j. This propagation can be calculated in constant time. When |ψ〉 is a
product state |ψ〉 = |x〉i⊗|y〉j , the projector Πe does not propagate states that are proportional
to |x⊥〉i, while all other states are propagated to |y⊥〉j.

We now present two lemmas that describe the structure of the global ground state of the
system, if we know that part of it is in a tensor product of 1-qubit or 2-qubits states, which
are then propagated by some Πe.

I Lemma 7 (Single qubit propagation). Consider a frustration-free 2QSAT system H =∑
e∈I Πe with a rank-1 projector Πe = |ψ〉〈ψ| between qubits i, j, and assume that H has a

ground state of the form |Γ〉 = |α〉i ⊗ |rest〉. Then:
1. If Πe propagates |α〉i to |β〉j then necessarily |rest〉 = |β〉j ⊗ |rest′〉.
2. |Γ〉 is also a ground state of the 2QSAT Hamiltonian H −Πe.

I Lemma 8 (Entangled 2-qubits propagation). Consider a frustration-free 2QSAT system H

with a rank-1 projector Πe = |ψ〉〈ψ| between qubits i, j. Assume that H has a ground state
of the form |Γ〉 = |φ〉ik ⊗ |rest〉, where |φ〉 is an entangled state on qubits i, k with k 6= j.
Then:
1. |ψ〉 is a product state |ψ〉 = |x〉|y〉.
2. Πe propagates |φ〉 to |y⊥〉 and necessarily |rest〉 = |y⊥〉j ⊗ |rest′〉.
3. |Γ〉 is also a ground state of the 2QSAT Hamiltonian H −Πe.

Let H be a 2QSAT Hamiltonian in rank-1 decomposition, let s be a coherent assignment,
and let Gs = (Vs, Es) be the constraint graph of the reduced Hamiltonian Hs. We would like
to describe in Gs the result of the iterated propagation process when a value given to variable
i is first propagated along all possible projectors, followed by these propagated values being
propagated on their turn, and so on until no more values assigned during this process can be
propagated further. The propagation can start when the initial value is already assigned
by s, that is, when s(i) = |δ〉 for |δ〉 ∈ {|α〉, |γ〉ij}, where |α〉 is some 1-qubit state and |γ〉ij
some 2-qubit state, or it can get started when s(i) = �, in which case we shall explicitly
choose a 1-qubit state |α〉 and assign it to i.

Now, let s, i and |δ〉 be such that s(i) ∈ {�, |δ〉}. We say that an edge e ∈ Es, in
the constraint graph Gs, from i to j propagates |δ〉 if Πe propagates it, and we denote by
prop(s, e, |δ〉) the state |δ〉 is propagated to. We further generalize the notion of propagation
in Gs from edges to paths. Let i = i0, i1, . . . ik be vertices in Vs, and let ej be an edge from
ij to ij+1, for j = 0, . . . , k − 1. Let s(i) ∈ {�, |δ〉}, and set |α0〉 = |δ〉. Let |α1〉, . . . , |αk〉 be
states such that the propagation of |αj〉 along Πej is |αj+1〉, for j = 0, . . . , k−1. Then we say
that the path p = (e0, . . . , ek−1) from i0 to ik propagates |δ〉, and we set prop(s, p, |δ〉) = |αk〉.
We say that a vertex j ∈ Vs is accessible by propagating |δ〉 from i if either j = i or there is
a path from i to j that propagates |δ〉. We denote by V prop

s (i, |δ〉) the set of such vertices,
and by extprop

s (i, |δ〉) the extension of s by the values given to the vertices in V prop
s (i, |δ〉) by

iterated propagation.
Let us suppose that s′ = extprop

s (i, |δ〉) is also coherent. The set V prop
s (i, |δ〉) divides the

edges Es into three disjoint subsets: the edges E1 of the induced subgraph G(V prop
s (i, |δ〉)),

the edges E2 between the induced subgraphs G(V prop
s (i, |δ〉)) and G(Vs \V prop

s (i, |δ〉)), and the
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Algorithm 1 Propagation(s,Gs, i, |δ〉)
s(i) := |δ〉
create a list L and a queue Q, and put i into Q
while s is coherent and Q is not empty do

remove the head j of Q
for all edge e from j to k do

remove e from Es
if e propagates s(j) then

s(k) :=
{

prop(s, e, s(j)) if s(k) = �

X if s(k) 6∈ {�, prop(s, e, s(j))}
enqueue k

if e is not propagating and k is not in L then put k into L
remove j from Vs

if s is not coherent return “unsuccessful"
for all k in L do

for all edges e from k to ` do
if ` was removed from Vs then remove e

if all edges outgoing from k were removed then remove k from Vs

edges E3 of the induced subgraph G(Vs\V prop
s (i, |δ〉)). While the edges in E1∪E2 are satisfied

by s′, none of the edges in E3 is satisfied. Therefore Gs′ is nothing but G(Vs \ V prop
s (i, |δ〉))

without the isolated vertices, and it can be constructed by the following process. Given s
and i, the edges in E1 ∪ E2 can be traversed via a breadth first search rooted at i. The
levels of the tree are decided dynamically: at any level the next level is composed of those
vertices whose value is propagated from the current level. The leaves of the tree are vertices
in Vs \ V prop

s (i, |δ〉). The algorithm Propagation uses a temporary queue Q to implement this
process.

I Lemma 9 (Propagation Lemma). Let Propagation(s,Gs, i, |δ〉) be called when Hs doesn’t
have rank-3 constraints, and s(i) ∈ {�, |δ〉}. Let s′ and G′ = (V ′, E′) be the outcome of the
procedure. Then:
1. If Propagation(s,Gs, i, |δ〉) doesn’t return “unsuccessful" then s′ = extprop

s (i, |δ〉) and G′ =
Gs′ . Moreover, if s is a pre-solution then s′ is a pre-solution, and if s is closed then s′ is
also closed.

2. If Propagation(s,Gs, i) returns “unsuccessful" then there is no solution z which is an
extension of s and for which z(i) = |δ〉.

3. The complexity of the procedure is O(|Es| − |Es′ |).

4 The main algorithm

4.1 Description of the algorithm
We now give in broad strokes the description of our algorithm called 2QSATSolver. It takes as
input the adjacency list representation of the constraint graph G(H) of a 2-local Hamiltonian
H in rank-1 decomposition. The algorithm uses four global variables: assignments s0 and s1
initialized to �, and graphs G0 and G1 in the adjacency list representation, initialized to
G(H). The algorithm consists of four phases, and except the first one, each phase consists of
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Algorithm 2 2QSATSolver(G(H))

s0 = s1 := �, G0 = G1 := G(H) . Initialize global variables

MaxRankRemoval() . Remove maximal rank constraints

while there exist i ∈ V0 such that s(i) 6= � do . Propagate all assigned values
Propagate(s0, G0, i, s0(i)) for some vertex i in G0 such that s0(i) 6= �
if the propagation returns “unsuccessful" output “H is unsatisfiable"
s1 := s0, G1 := G0

while there exists in G0 a product edge with constraint |α⊥0 〉i0 ⊗ |α⊥1 〉i1〈α⊥0 |i0 ⊗ 〈α⊥1 |i1
do

ParallelPropagation(i0, |α0〉, i1, |α1〉) . Remove product constraints

while G0 is not empty do . Remove entangled constraints
ProbePropagation(i) for some vertex i

output |s〉 for any total extension s of s0.

several stages, where essentially one stage corresponds to one Propagation process. In the case
of an unsatisfiable Hamiltonian the algorithm at some point outputs “H is unsatisfiable" and
stops. This happens when either the maximal rank constraints are already unsatisfiable, or
at some later point when several values are assigned to the same variable during a necessary
propagation process.

In the case of a frustration-free Hamiltonian, at the beginning and end of each stage, we
will have s0 = s1, and G0 = G1 = Gs0 . In the first two phases only (s0, G0) develops, and
is copied to (s1, G1) at the end of the phase. In the last two phases, (s0, G0) and (s1, G1)
develop independently, but only the result of one of the two processes is retained and is
copied into the other variable at the end of the phase. This parallel development of the two
processes is necessary for complexity considerations, ensuring that the useless work done is
proportional to the useful work.

In the first phase the procedure MaxRankRemoval satisfies, if possible, all constraints of
maximal rank. In the second phase all these assignments are propagated, which, if successful,
result in a closed assignment s such that Hs has only rank-1 constraints. In the third phase
the procedure ParallelPropagation satisfies the product constraints one by one and propagates
the assigned values. To satisfy a product constraint, the only two possible choices are tried
and propagated in parallel. In the fourth phase the remaining entangled constraints are taken
care of, again, one by one. To satisfy a constraint, an arbitrary value is tried and propagated.
In case of an unsuccessful propagation we are able to efficiently find a product constraint
implied by the entangled constraints considered during the propagation, and therefore it
becomes possible to proceed as in phase three. In case of success we are left with a satisfying
assignment and the empty constraint graph. Theorem 1 is an immediate consequence of the
following result.

I Theorem 10. Let G(H) = (V,E) be the constraint graph of a 2-local Hamiltonian.
Then:
1. If H is frustration-free, the algorithm 2QSATSolver(G(H)) outputs a ground state |s〉.
2. If H is not frustration-free, the algorithm 2QSATSolver(G(H)) outputs “H is unsatisfiable”.
3. The running time of the algorithm is O(|V |+ |E|).

The proofs of the series of lemmas in the following sections is omitted. Theorem 10 will be
proven in Section 4.5.
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Algorithm 3 ParallelPropagation(i0, |α0〉, i1, |α1〉)
Run in parallel Propagation(s0, G0, i0, |α0〉) and Propagation(s1, G1, i1, |α1〉)
until one of them terminates successfully or both terminate unsuccessfully

if both propagations terminate unsuccessfully then
output “H is unsatisfiable”

else let Propagation(s0, G0, i0, |α0〉) terminate first (the other case is symmetric)
undo Propagation(s1, G1, i1, |α1〉)
s1 := s0, G1 := G0

4.2 Max rank removal
The MaxRankRemoval procedure is conceptually very simple. Since every maximal rank
constraint has a unique solution (up to a global phase), it makes this assignment for each
constraint, and then checks if this is globally consistent. The description of the procedure
and the proof of Lemma 11 are omitted.

I Lemma 11. Let s0, G0, s1, G1 be the outcome of MaxRankRemoval. Then:
1. If MaxRankRemoval doesn’t output “H is unsatisfiable" then s0 is coherent, it satisfies

every maximal rank constraint, G0 = G(Hs0) and s0 = s1, G0 = G1. Moreover, if H is
satisfiable then s0 is a pre-solution.

2. If MaxRankRemoval outputs “H is unsatisfiable" then indeed H is unsatisfiable.
3. The complexity of the procedure is O(|V |+ |E|)|.

4.3 Algorithm ParallelPropagation
The procedure ParallelPropagation is called when s0 is a closed assignment, and in Gs0 there
is a product edge. Since there are only two ways to satisfy a product constraint, these are
tried and propagated in parallel. If one of these propagations terminates successfully, the
other is stopped, which ensures that the overall work done is proportional to the progress
made.

I Lemma 12. Let ParallelPropagation be called when s0 is closed, Hs0 doesn’t have rank-
3 constraints, G0 = Gs0 , in G0 there exists a product edge from i0 to i1 with constraint
|α⊥0 〉 ⊗ |α⊥1 〉, and s1 = s0, G1 = G0. Let s′0, s′1, G′0, G′1 be the outcome of the procedure.
Then:
1. If ParallelPropagation doesn’t output “H is unsatisfiable” then s′0 is a proper closed

extension of s0, G′0 = Gs′0 , and s
′
1 = s′0, G′1 = G′0. Moreover, if s is a pre-solution then

s′0 is a pre-solution.
2. If ParallelPropagation outputs “H is unsatisfiable” then indeed H is unsatisfiable.
3. The complexity of the procedure is O(|Es0 | − |Es′0 |).

4.4 Algorithm ProbePropagation
The procedure ProbePropagation is evoked when s0 is a closed assignment, and in Gs0 there
are only entangled constraints. It picks an arbitrary vertex in i ∈ Vs, assigns |0〉 (an arbitrary
value) to it, and propagates this choice. In the lucky case of successful propagation this
is repeated. Otherwise, we reach a contradiction: there is some j ∈ Vs, such that two
propagating paths assign different values to it. We prove below the Sliding Lemma which
already appeared in Ref. [11]. It implies that when i0 → i1 → . . .→ ik is a propagating path of
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Algorithm 4 ProbePropagation(i)
Propagation(s0, G0, i, |0〉).
if the propagation is successful then s1 := s0, G1 := G0
else

Let j such that |s0(j)| > 1
find two paths p1 and p2 in G0 from i to j such that prop(s0, p1, |0〉) 6= prop(s0, p2, |0〉)
find a product state |α⊥〉i ⊗ |β⊥〉j in the two dimensional space

span{slide(p1), slide(p2)}
undo Propagation(s0, G0, i, |0〉)
ParallelPropagation(i, |α〉, j, |β〉)

entangled rank-1 projectors, the ground space of the Hamiltonian Πi0,i1 +Πi1,i2 +. . .+Πik−1,ik

is equal to the ground state of the Hamiltonian Πi0,ik +Πi1,i2 + . . .+Πik−1,ik , where Πi0,ik is a
new projector defined on the qubits (i0, ik) that replaces the projector Πi0,i1 . Graphically, this
can be viewed as if we are sliding the (i0, i1) edge on the path i1 → . . .→ ik. Therefore, if we
have two propagating paths starting at i and ending at j, they define two projectors on qubits
(i, j). As we shall see, if these two paths are contradicting then necessarily the two projectors
are different, which by Lemma 3 implies the existence of a product constraint between (i0, ik)
variables. In this case, we can proceed by calling the procedure ProbePropagation.

I Lemma 13 (Sliding Lemma). Consider a system on 3 qubits i, j and k. Suppose that we
have a two rank-1 constraints Π1 = |ψ1〉〈ψ1|ij on qubits (i, j) and Π2 = |ψ2〉〈ψ2|jk on qubits
(j, k). If |ψ2〉 is entangled, there is another rank-1 constraint Π3 = |ψ3〉〈ψ3|ik on qubits (i, k)
such that the ground space of Π1 + Π2 is identical to the ground space of Π2 + Π3. In addition,
if a single qubit state |α〉i is propagated by Π1 + Π2 to |β〉k, then it is also propagated to |β〉k
directly via Π3.

Applying Lemma 13 iteratively, we reach the following corollary

I Corollary 14. Let H =
∑
e∈I He be a 2-local Hamiltonian in rank-1 decomposition. Let

i0, i1, . . . ik be vertices in V , and let ej be an edge from ij to ij+1, for j = 0, . . . , k − 1 such
that the rank-1 constraints Πej

are entangled. Then there exists a 2-qubit entangled state |γ〉
between i0 and ik such that the ground space of

∑k−1
j=0 Πej is identical to the ground space

of
∑k−1
j=1 Πej

+ |γ〉〈γ|i0,ik . Moreover, if |α〉i0 is propagated to |β〉ik along the path, then it is
also propagated directly by |γ〉〈γ|i0,ik .

We will denote the state |γ〉 in the conclusion of the corollary by slide(p).

I Lemma 15. Let ProbePropagation be called when s0 is closed, Hs0 has only rank-1 entangled
constraints, G0 = Gs0 , and s1 = s0, G1 = G0. Let s′0, s′1, G′0, G′1 be the outcome of the
procedure. Then:
1. If ProbePropagation doesn’t output “H is unsatisfiable” then s′0 is a proper closed extension

of s0, G′0 = Gs′0 , and s
′
1 = s′0, G′1 = G′0. Moreover, if s is a pre-solution then s′0 is a

pre-solution.
2. If ParallelPropagation outputs “H is unsatisfiable” then indeed H is unsatisfiable.
3. The complexity of the procedure is O(|Es0 | − |Es′0 |).

4.5 Analysis of the algorithm
Proof of Theorem 10. If H is frustration free then by Lemma 11 MaxRankRemoval outputs
a pre-solution s0 that satisfies every maximal rank constraint. By the Propagation Lemma, at
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the end of Phase two, in addition s0 is a closed assignment. By Lemma 12 ParallelPropagation
outputs s0 such that there are only entangled constraints in Hs. By Lemma 15 at the end of
the algorithm in addition Hs is empty, and therefore s is a solution.

If the algorithm doesn’t output “H is unsatisfiable" then by Lemma 11, by the Propagation
Lemma, and by Lemmas 12 and 15 it outputs a coherent assignment s such that Gs is the
empty graph, and therefore s is a solution.

The complexity of MaxRankRemoval by Lemma 11 is O(|E|). After the second phase, the
propagation of the assigned values during MaxRankRemoval, the copying of s0 and G0 into
respectively s1 and G1 can be done by executing the same propagation steps this time with
s1 and G1. The complexity of the rest of the algorithm by the Propagation Lemma, and
Lemmas 12 and 15 is a telescopic sum which sums up to also O(|E|). J
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Abstract
We consider the number of quantum queries required to determine the coefficients of a degree-d
polynomial over Fq. A lower bound shown independently by Kane and Kutin and by Meyer
and Pommersheim shows that d/2 + 1/2 quantum queries are needed to solve this problem with
bounded error, whereas an algorithm of Boneh and Zhandry shows that d quantum queries are
sufficient. We show that the lower bound is achievable: d/2 + 1/2 quantum queries suffice to
determine the polynomial with bounded error. Furthermore, we show that d/2+1 queries suffice
to achieve probability approaching 1 for large q. These upper bounds improve results of Boneh
and Zhandry on the insecurity of cryptographic protocols against quantum attacks. We also
show that our algorithm’s success probability as a function of the number of queries is precisely
optimal. Furthermore, the algorithm can be implemented with gate complexity poly(log q) with
negligible decrease in the success probability. We end with a conjecture about the quantum query
complexity of multivariate polynomial interpolation.
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1 Introduction

Let f(X) = cdX
d + · · ·+ c1X + c0 ∈ Fq[X] be an unknown polynomial of degree d, specified

by its coefficient vector c ∈ Fd+1
q . Suppose q and d are known and we are given a black

box that evaluates f on any desired x ∈ Fq. (We assume q > d so that different coefficients
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correspond to distinct functions f : Fq → Fq.) In the polynomial interpolation problem, our
goal is to learn f – that is, to determine the vector c – by querying this black box. We would
like to determine how many queries are required to solve this problem.

The classical query complexity of polynomial interpolation is well known: d+ 1 queries
to f are clearly sufficient and are also necessary to determine the polynomial, even with
bounded error. Shamir [17] used this fact to construct a cryptographic protocol that divides
a secret into d+ 1 parts such that knowledge of all the parts can be used to infer the secret,
but any d parts give no information about the secret. The security of this protocol relies
on the fact that if f is chosen uniformly at random, and if we only know d function values
f(x1), . . . , f(xd), then we cannot guess the value f(xd+1) for a point xd+1 /∈ {x1, . . . , xd}
with probability greater than 1/q (that is, there is no advantage over random guessing).
This example motivates understanding the query complexity of polynomial interpolation
precisely, since a single query can dramatically increase the amount of information that can
be extracted.

The quantum query complexity of polynomial interpolation has also been studied pre-
viously. Kane and Kutin [9] and Meyer and Pommersheim [12] independently showed that
d/2+1/2 quantum queries are needed to solve the problem with bounded error. Furthermore,
Kane and Kutin conjectured that d+1 quantum queries might be necessary. This was refuted
by Boneh and Zhandry, who showed that d quantum queries suffice to solve the problem
with probability 1 − O(1/q) [3]. (While the notation O(·) only indicates an asymptotic
upper bound on the absolute value, we sometimes write 1−O(·) to indicate a bound on a
quantity that is at most 1.) To show this, they described a 1-query quantum algorithm that
determines a linear polynomial with probability 1−O(1/q). The result for general d follows
because d− 1 classical queries can be used to reduce the case of a degree-d polynomial to
that of a linear polynomial. However, this work left a substantial gap between the lower and
upper bounds.

Here we present an improved quantum algorithm for polynomial interpolation. We show
that the aforementioned lower bounds are tight: with d fixed, k = d/2 + 1/2 queries suffice
to solve the problem with constant success probability. While the success probability at this
value of k has a q-independent lower bound, it decreases rapidly with k, scaling like 1/k!.
This raises the question of how the success probability increases as we make more queries.
We show that there is a sharp transition as k is increased: in particular, with k = d/2 + 1
queries, the algorithm succeeds with a probability that approaches 1 for large q.

Our algorithm is motivated by the pretty good measurement (pgm) approach to the
hidden subgroup problem (hsp) [1]. In this approach, one queries the black box on uniform
superpositions to create coset states and then makes entangled measurements on several coset
states to infer the hidden subgroup. As in the pgm approach (and in other approaches to the
hsp using the so-called standard method), our algorithm makes nonadaptive queries to the
black box and performs collective postprocessing. Also, similarly to previous analysis of the
pgm approach, we can express our success probability in terms of the number of solutions of
a system of polynomial equations.

However, our approach to polynomial interpolation also has significant differences from
the pgm approach to the hsp. In particular, we introduce a different way to query the black
box that simplifies both the algorithm and its analysis. In the pgm approach, we query
the black box on a uniform superposition and then uncompute uniform superpositions over
certain sets. For polynomial interpolation, we instead query a carefully-chosen non-uniform
superposition of inputs so that the subsequent uncomputation is classical. Furthermore, the
success probability of our method is higher, and its analysis is more straightforward, than
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if we used a direct analog of the pgm approach. We hope that these techniques will prove
useful for other quantum algorithms, perhaps for the hidden subgroup problem or for other
applications of the pgm approach [5, 7].

We also show that our strategy is precisely optimal: for any number of queries k, we
describe a k-query algorithm with the highest possible success probability. We give a simple
algebraic characterization of this success probability, as follows.

I Theorem 1. The maximum success probability of any k-query quantum algorithm for
interpolating a polynomial of degree d over Fq is |Rk|/qd+1, where Rk := Z(Fkq × Fkq ) is
the range of the function Z : Fkq × Fkq → Fd+1

q defined by Z(x, y)j :=
∑k
i=1 yix

j
i for j ∈

{0, 1, . . . , d}.

We present an explicit quantum algorithm that achieves this success probability, and
we show that no algorithm can do better. We establish optimality with an argument based
on the dimension of the space spanned by the possible output states, which appears to be
distinct from arguments using the two main approaches to proving limitations on quantum
algorithms, the polynomial and adversary methods. Instead, our approach is closely related
to a linear-algebraic lower bound technique of Radhakrishnan, Sen, and Venkatesh [16] and
to the “rank method” of Boneh and Zhandry [3].

We characterize the query complexity by proving bounds on |Rk|, as follows.

I Theorem 2. For any fixed positive integer d, the success probability of Theorem 1 is
(i) |Rk|/qd+1 = 1

k! (1−O(1/q)) if d is odd and k = d
2 + 1

2 , and
(ii) |Rk|/qd+1 = 1−O(1/q) if d is even and k = d

2 + 1.

To show the former bound, we explicitly characterize the possible (x, y) ∈ Fkq × Fkq such
that Z(x, y) takes a particular value. We prove the latter bound in a completely different
way, using a second moment argument.

Theorem 2 shows that the success probability has a sharp transition as a function of k,
from subconstant for k < d/2 + 1/2 (by known lower bounds [9, 12]), to a (d-dependent)
constant for k = d/2 + 1/2, to 1 − o(1) for k = d/2 + 1. Note that since k must be an
integer, the success probability varies differently with k depending on whether d is odd or
even. For fixed even d, k = d/2 + 1 queries give success probability 1− o(1), whereas k = d/2
queries give success probability o(1). For fixed odd d, the success probability is o(1) for
k = d/2 − 1/2 and constant for k = d/2 + 1/2. To achieve higher success probability, we
can make k = d/2 + 3/2 queries and treat f as a polynomial of degree d+ 1 with cd+1 = 0,
giving success probability 1− o(1).

In light of these results, polynomial interpolation is reminiscent of the task of computing
the parity of n bits, where the classical query complexity is n (even for bounded error)
and the quantum query complexity is n/2 [2, 8]. More generally, a similar factor-of-two
improvement is possible for the oracle interrogation problem, where the goal is to learn
the entire n-bit string encoded by a black box [18]. However, polynomial interpolation is
qualitatively different in that the oracle returns values over Fq rather than F2. Note that for
the oracle interrogation problem over Fq, one can only achieve speedup by a factor of about
1− 1/q [3]*Section 4, which is negligible for large q.

Our algorithm improves results of Boneh and Zhandry giving quantum attacks on certain
cryptographic protocols [3]. For a version of the Shamir secret sharing scheme [17] where the
shares can be quantum superpositions, their d-query interpolation algorithm shows that a
subset of only d parties can recover the secret. Our algorithm considerably strengthens this,
showing that a subset of d/2 + 1/2 parties can recover the secret with constant probability,
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and d/2 + 1 can recover it with probability 1−O(1/q). Boneh and Zhandry also formulate a
model of quantum message-authentication codes (macs), where the goal is to tag messages
to authenticate the sender. Informally, a mac is called d-time if, given the ability to create
d valid message-tag pairs, an attacker cannot forge another valid message-tag pair. Boneh
and Zhandry show that there are (d + 1)-wise independent functions that are not d-time
quantum macs. Our result improves this to show that there are (d+ 1)-wise independent
functions that are not (d/2 + 1/2)-time quantum macs.

Finally, we consider the gate complexity of polynomial interpolation. We call an algorithm
gate-efficient if it can be implemented with a number of 2-qubit gates that is only larger than
its query complexity by a factor of poly(log q). We construct a gate-efficient variant of our
algorithm that achieves almost the same success probability. (Note that while our algorithm
for k = d/2 + 1/2 has gate complexity polynomial in both log q and d, the algorithm for
k = d/2 + 1 has gate complexity k! poly(log q). Improving the dependence on d is a natural
open question.)

I Theorem 3. For any fixed positive integer d, there is a gate-efficient quantum algorithm
for interpolating a polynomial of degree d over Fq using
(i) k = d

2 + 1
2 queries, succeeding with probability 1

k! (1−O(1/q)), if d is odd; and
(ii) k = d

2 + 1 queries, succeeding with probability 1− o(1), if d is even.

The main step in implementing the algorithm is to invert the function Z described in the
statement of Theorem 1, i.e., to find some x, y ∈ Fkq so that Z(x, y) takes a given value. We
achieve this by characterizing the solutions in terms of a polynomial equation and a system
of linear equations.

In Section 5 we discuss the more general case where f ∈ Fq[X1, . . . , Xn] is a multivariate
polynomial of degree d. While our algorithm generalizes straightforwardly, the analysis of its
success probability is more complicated. We conjecture that the quantum query complexity
of this problem is smaller than the classical query complexity by a factor of n+ 1.

The remainder of the paper is organized as follows. After introducing some definitions
in Section 2.1, we describe our k-query algorithm in Section 2.2. We analyze the success
probability of this algorithm for k = d/2 + 1/2 in Section 2.3, and for k = d/2 + 1 in
Section 2.4. We also show in Section 2.5 that essentially the same performance can be
achieved using k independent queries to the oracle, each on a uniform superposition of inputs
(which might make some cryptographic attacks easier, depending on the model). We establish
optimality of our algorithm in Section 3. In Section 4, we describe the gate-efficient version
of our algorithm. Finally, we conclude in Section 5 with a brief discussion of some open
questions.

2 Quantum algorithm for polynomial interpolation

2.1 Preliminaries
Let f(X) = cdX

d + · · ·+ c1X + c0 ∈ Fq[X] be an unknown polynomial of degree d that is
specified by the vector of coefficients c ∈ Fd+1

q , where q = pr a power of a prime p. Access to
f is provided by a black box acting as |x, y〉 7→ |x, y + f(x)〉 for all x, y ∈ Fq.

Let e : Fq → C be the exponential function e(z) = e2πi Tr(z)/p, where the trace function
Tr: Fq → Fp is defined by Tr(z) = z + zp + zp

2 + · · ·+ zp
r−1 . The Fourier transform over Fq

is the unitary transformation acting as |x〉 7→ 1√
q

∑
y∈Fq

e(xy)|y〉 for all x ∈ Fq.
We can compute the value of f into the phase by Fourier transforming the second query

register. If we apply the inverse Fourier transform, perform a query, and then apply the
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Fourier transform, we have the transformation

|x, y〉 7→ 1
√
q

∑
z∈Fq

e(−yz)|x, z〉 7→ 1
√
q

∑
z∈Fq

e(−yz)|x, z + f(x)〉 (1)

7→ 1
q

∑
z,w∈Fq

e(−yz + (z + f(x))w)|x,w〉 = e(yf(x))|x, y〉 (2)

for any x, y ∈ Fq, where we used the fact that
∑
z∈Fq

e(zv) = qδz,v. We call the transformation
|x, y〉 7→ e(yf(x))|x, y〉 a phase query. Since a phase query can be implemented with a single
standard query and vice versa, the query complexity of a problem does not depend on which
type of query we use.

For vectors x, y ∈ Fkq , we denote the inner product over Fq by x · y :=
∑k
i=1 xiyi. The

k-fold Fourier transform (i.e., the Fourier transform acting independently on each register)
acts as |x〉 7→ 1√

qk

∑
y∈Fk

q
e(x · y)|y〉 for any x ∈ Fkq .

2.2 The algorithm
We now describe our algorithm for polynomial interpolation. An ideal algorithm would
produce the Fourier transform of the coefficient vector c ∈ Fd+1

q , that is, the state

|ĉ〉 = 1√
qd+1

∑
z∈Fd+1

q

e(c · z)|z〉. (3)

Instead we use k quantum queries to create the approximate state

|ĉRk
〉 := 1√

|Rk|

∑
z∈Rk

e(c · z)|z〉 (4)

for some set Rk ⊆ Fd+1
q . A measurement of this state in the Fourier basis gives c with

probability |〈ĉRk
|ĉ〉|2 = |Rk|/qd+1.

Our algorithm performs k phase queries in parallel, each acting on a separate register.
On input |x, y〉 for x, y ∈ Fkq , these k queries introduce the phase e(

∑k
i=1 yif(xi)). To define

the set Rk, recall the function Z : Fkq × Fkq → Fd+1
q defined by

Z(x, y)j :=
k∑
i=1

yix
j
i for j ∈ {0, 1, . . . , d}. (5)

Then we have
∑k
i=1 yif(xi) =

∑k
i=1
∑d
j=0 yicjx

j
i = c · Z(x, y) for all x, y ∈ Fkq . The range

Rk := Z(Fkq × Fkq ) of the function Z is the set

Rk = {Z(x, y) : (x, y) ∈ Fkq × Fkq} ⊆ Fd+1
q . (6)

For each z ∈ Rk we choose a unique (x, y) ∈ Fkq ×Fkq such that Z(x, y) = z. Let Tk ⊆ Fkq ×Fkq
be the set of these representatives. Clearly, Z : Tk → Rk is a bijection.

To create the state |ĉRk
〉, we prepare a uniform superposition over Tk, perform k phase

queries, and compute Z in place (i.e., perform the unitary transformation |x, y〉 7→ |Z(x, y)〉),
giving

1√
|Tk|

∑
(x,y)∈Tk

|x, y〉 7→ 1√
|Tk|

∑
(x,y)∈Tk

e(c · Z(x, y))|x, y〉 7→ 1√
|Rk|

∑
z∈Rk

e(c · z)|z〉. (7)

The above procedure is a k-query algorithm for polynomial interpolation that succeeds
with probability |Rk|/qd+1, establishing the lower bound on the success probability stated in
Theorem 1. To analyze the algorithm, it remains to lower bound |Rk| as a function of k.
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2.3 Performance using d/2 + 1/2 queries
We now consider the performance of the above algorithm using k = d/2 + 1/2 queries. Let

Z−1(z) = {(x, y) ∈ Fkq × Fkq : Z(x, y) = z} (8)

be the set of those (x, y) ∈ Fkq × Fkq corresponding to a particular z ∈ Fd+1
q . Clearly |Rk|

is the number of values of z such that Z−1(z) is nonempty. To analyze this, we focus on
“good” values of (x, y). Define Xgood

k := {x ∈ Fkq : xi 6= xj ∀ i 6= j} and Y good
k := (F×q )k and

let Z−1(z)good := Z−1(z) ∩ (Xgood
k × Y good

k ). We claim the following:

I Lemma 4. If k = d/2 + 1/2, then for all z ∈ Fd+1
q , either |Z−1(z)good| = 0 or

|Z−1(z)good| = k!.

Proof. See the proof in the extended version [6] of this article. J

Using Lemma 4, we can show that k = d/2 + 1/2 queries suffice to perform polynomial
interpolation with probability that is independent of q, but that decreases with d.

Proof of Theorem 2(i): k = d/2 + 1/2. We have |Xgood
k | = q!/(q − k)! and |Y good

k | = (q −
1)k, so∑

z∈Fd+1
q

|Z−1(z)good| = |Xgood
k | · |Y good

k | = q!
(q − k)! (q − 1)k = q2k(1−O(1/q)). (9)

Thus, invoking Lemma 4, the number of values of z for which |Z−1(z)good| = k! is at least
q2k

k! (1−O(1/q)). Since k = d/2 + 1/2, it follows that |Rk|/qd+1 is at least 1
k! (1−O(1/q)), as

claimed. J

2.4 Performance using d/2 + 1 queries
Next we show that with more than d/2 + 1/2 queries, the success probability approaches 1
for large q.

Proof of Theorem 2(ii): k = d/2 + 1. Under the uniform distribution on z ∈ Fd+1
q , we have

|Rk|/qd+1 = 1− Pr[|Z−1(z)| = 0]. (10)

We use a second moment argument to upper bound the number of z ∈ Fd+1
q for which

|Z−1(z)| = 0. The mean of |Z−1(z)| is µ := q−(d+1)∑
z∈Fd+1

q
|Z−1(z)| = q2k−(d+1). Let δ[P]

be 1 if P is true and 0 if P is false. For the second moment, we compute∑
z∈Fd+1

q

|Z−1(z)|2 =
∑

u,v,x,y∈Fk
q

δ[Z(u, v) = Z(x, y)] (11)

=
∑

u,v,x,y∈Fk
q

1
qd+1

∑
λ∈Fd+1

q

e(λ · (Z(u, v)− Z(x, y))) (12)

= q4k

qd+1 + 1
qd+1

∑
λ∈Fd+1

q \(0,...,0)

( ∑
x,y∈Fq

e

(
y

d∑
j=0

λjx
j

))2k

(13)

= q4k−(d+1) + 1
qd+1

∑
λ∈Fd+1

q \(0,...,0)

(
q
∑
x∈Fq

δ

[
d∑
j=0

λjx
j = 0

])2k

(14)

≤ q4k−(d+1) + (qd)2k. (15)
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Thus for the variance, we have

σ2 := 1
qd+1

∑
z∈Fd+1

q

|Z−1(z)|2 − µ2 ≤ (qd)2k

qd+1 . (16)

(note that σ2 ≥ 0 by the Cauchy inequality). Applying the Chebyshev inequality, we find

Pr[Z−1(z) = 0] ≤ σ2

µ2 ≤
(qd)2k/qd+1

q4k−2(d+1) = d2kqd+1−2k. (17)

Therefore |Rk|/qd+1 = 1− Pr[Z−1(z) = 0] ≥ 1− d2kqd+1−2k. With k = d/2 + 1, we have

|Rk|/qd+1 ≥ 1− d2k/q = 1−O(1/q) (18)

as claimed. J

Note that one can improve the dependence on d in (16) using results on the distribution
of zeros in random polynomials [10].

2.5 An alternative algorithm
The algorithm described above queries the oracle nonadaptively, that is, all k queries can
be performed in parallel. However, the input state to these queries is correlated across all
k copies. In this section, we describe an alternative algorithm that queries the black box
on a state that is independent and identical for each of the k queries, namely, a uniform
superposition over all inputs. This algorithm is suboptimal, but its performance is not
significantly worse than that of the optimal algorithm described in Section 2.2.

Analogous to the so-called standard method for the hidden subgroup problem, querying f
on a uniform superposition gives the state 1√

q

∑
x∈Fk

q
|x, f(x)〉. If we use k queries to prepare

k copies of this state and then perform the Fourier transform on the second register (or
equivalently, perform k independent phase queries), we obtain the state

1
qk

∑
x,y∈Fk

q

e(c · Z(x, y))|x, y〉 = 1
qk

∑
z∈Fd+1

q

e(c · z)
√
|Z−1(z)| |Z−1(z)〉 (19)

where |Z−1(z)〉 :=
∑

(x,y)∈Z−1(z)|x, y〉/|Z−1(z)|1/2. Motivated by the pgm approach to the
hidden subgroup problem [1], suppose we perform the transformation |Z−1(z)〉 7→ |z〉, giving
the state

|φck〉 := 1
qk

∑
z∈Fd+1

q

e(c · z)
√
|Z−1(z)| |z〉. (20)

Measuring this state in the Fourier basis gives the outcome c with probability

|〈φck|ĉ〉|2 = 1
q2k+d+1

( ∑
z∈Fd+1

q

√
|Z−1(z)|

)2
. (21)

If k = d/2+1/2, we claim that this algorithm succeeds with constant probability. From the
proof of Theorem 2 for k = d/2 + 1/2, we have that |Z−1(z)| ≥ k! for at least q2k

k! (1−O(1/q))
values of z. Therefore the success probability is at least 1

k! (1−O(1/q)).
If k = d/2 + 1, then this algorithm succeeds with probability that approaches 1 for large

q. To see this, recall from the proof of Theorem 2 for k = d/2 + 1 that, under a uniform
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distribution over z ∈ Fd+1
q , the quantity Z−1(z) has mean µ = q and standard deviation

σ = √qdk. Thus, by the Chebyshev inequality, we have

Pr
[
|Z−1(z)| ≤ q − α√qdk

]
≤ 1
α2 . (22)

It follows that |〈φck|ĉ〉|2 ≥ (1 − αdk
√
q )(1 − 1

α2 )2 Choosing α = Θ(q1/6), this gives a success
probability of |〈φck|ĉ〉|2 = 1−O(q−1/3), which approaches 1 for large q.

3 Optimality

In this section, we show that the query complexity of our algorithm is precisely optimal: no
k-query algorithm can succeed with a probability larger than |Rk|/qd+1. We begin with a
basic result showing that m states spanning an n-dimensional subspace can be distinguished
with probability at most n/m.

I Lemma 5. Suppose we are given a state |ψc〉 with c ∈ C chosen uniformly at random.
Then the probability of correctly determining c with some orthogonal measurement is at most
dim span{|ψc〉 : c ∈ C}/|C|.

Proof. Consider a measurement with orthogonal projectors Ec, and let Π denote the projec-
tion onto span{|ψc〉 : c ∈ C}. Then we have that Pr[success] equals

1
|C|

∑
c∈C
〈ψc|Ec|ψc〉 ≤

1
|C|

∑
c∈C

tr(EcΠ) = tr(Π)
|C|

= dim span{|ψc〉 : c ∈ C}
|C|

(23)

as claimed. J

We apply this lemma where |ψc〉 is the final state of a given quantum query algorithm when
the black box contains c ∈ Fd+1

q . There is no loss of generality in considering an orthogonal
measurement at the end of the algorithm since we allow the use of an arbitrary-sized ancilla.

I Lemma 6. Let |ψc〉 be the state of any quantum polynomial interpolation algorithm after
k queries, where the black box contains c ∈ Fd+1

q . Then dim span{|ψc〉 : c ∈ Fd+1
q } ≤ |Rk|.

Proof. See the proof in the extended version [6] of this article. J

We can now prove our upper bound on the success probability of quantum algorithms for
polynomial interpolation.

Proof of Theorem 1 (upper bound on success probability). By combining Lemma 5 with
Lemma 6, we see that if the coefficients c ∈ Fd+1

q are chosen uniformly at random, no
algorithm can succeed with probability greater than |Rk|/qd+1. Since the minimum cannot
be larger than the average, this implies a lower bound on the success probability in the worst
case of |Rk|/qd+1. J

This result also shows that the exact quantum query complexity of polynomial interpola-
tion is maximal.

I Corollary 7. The exact quantum query complexity of interpolating a degree-d polynomial
is d+ 1.

Proof. See the proof in the extended version [6] of this article. J
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4 Gate complexity

In Section 2, we analyzed the query complexity of our polynomial interpolation algorithm.
Here we describe a (d/2 + 1/2)-query algorithm whose gate complexity is poly(log q), and
whose success probability is close to that of the best algorithm using this number of queries (in
particular, for fixed d it still succeeds with constant probability). We also give an algorithm
for the case k = d/2 + 1 whose gate complexity is larger by a factor of poly(log q), but with
an additional factor of k!.

4.1 Algorithm for k = d/2 + 1/2 queries
To simplify the computation of unique representatives of values z ∈ Rk, we restrict attention
to the “good” case considered in Section 2.3. Let

Rgood
k := {Z(x, y) : x ∈ Xgood

k , y ∈ Y good
k }. (24)

For any z ∈ Rgood
k , we show how to efficiently compute representative values x ∈ Xgood

k and
y ∈ Y good

k with Z(x, y) = z, defining a set of representatives T good
k . Then we consider an

algorithm as described in Section 2.2, but with Rk replaced by Rgood
k and Tk replaced by

T good
k . Clearly the success probability of this algorithm is |Rgood

k |/qd+1. Our lower bound
on |Rk| in Section 2.3 was actually a bound on |Rgood

k |, so this algorithm still succeeds with
probability 1

k! (1 +O(1/q)).
To give a gate-efficient algorithm, it suffices to show how to efficiently compute the

function Z−1 : Rgood
k → T good

k (that is, to compute this function using poly(log q) gates).

I Lemma 8. Suppose there is an efficient algorithm to compute Z−1 : Rgood
k → T good

k . Then
the algorithm of Section 2.2 can be made gate-efficient (with Rk replaced by Rgood

k and Tk by
T good
k ).

Proof. It is trivial to compute Z : T good
k → Rgood

k efficiently. Given an efficient procedure for
computing Z−1 : Rgood

k → T good
k , this gives us the ability to efficiently compute Z in place

(that is, to perform the transformation |x, y〉 7→ |z〉 as required by the algorithm). To do this,
we first compute z in an ancilla register by evaluating Z (which only requires arithmetic over
Fq) and then uncompute (x, y) by applying the circuit for Z−1 in reverse.

It remains to prepare the initial uniform superposition over T good
k . This can also be done

using the ability to compute Z−1. Suppose we create a uniform superposition over all of
z ∈ Fd+1

q and then attempt to compute Z−1. If z /∈ Rgood
k , this is detected, and we can set a

flag qubit indicating failure. Thus we can prepare a state of the form

1√
qd+1

( ∑
(x,y)∈T good

k

|Z(x, y), 0, x, y〉+
∑

z∈Fd+1
q \Rgood

k

|z, 1, 0, 0〉
)
. (25)

A measurement of the flag qubit gives the outcome 0 with probability |Rgood
k |/qd+1. Since

this is our lower bound on the success probability of the overall algorithm, we do not
have to repeat this process too many times before we successfully prepare the initial state
(and by sufficiently many repetitions, we can make the error probability arbitrarily small).
When the measurement succeeds, we can uncompute the first register to obtain the state∑

(x,y)∈T good
k
|x, y〉/|T good

k |1/2 as desired. J

In the remainder of this section, we describe how to efficiently compute Z−1(z) for
z ∈ Rgood

k . Our approach appeals to “Prony’s method” [14] (a precursor to Fourier analysis)
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and the theory of linear recurrences. We start with the following technical result, where ej
denotes the jth elementary symmetric polynomial in k variables, i.e.,

ej(x1, . . . , xk) =
∑

1≤i1<i2<···<ij≤k
xi1xi2 · · ·xij . (26)

I Lemma 9. We have xki = −
∑k
j=1 x

k−j
i (−1)jej(x1, . . . , xk) for all i ∈ {1, . . . , k}.

Proof. See the proof in the extended version [6] of this article. J

Using this fact, we can show that each component of Z(x, y) satisfies a kth-order linear
recurrence.

I Lemma 10. If zj =
∑k
i=1 yix

j
i for all nonnegative integers j, then we have for all

nonnegative integers n that zn+k = −
∑k−1
j=0 (−1)k−jek−j(x1, . . . , xk)zn+j.

Proof. See the proof in the extended version [6] of this article. J

We are now ready to describe the gate-efficient algorithm for polynomial interpolation.

Proof of Theorem 3(i): k = d/2 + 1/2. By Lemma 8, it suffices to give an efficient algo-
rithm for computing a representative (x, y) ∈ Z−1(z)good for any given z ∈ Rgood

k . See the
proof in the extended version [6] of this article. J

4.2 Algorithm for k = d/2 + 1 queries

We now present a similar algorithm for the case k = d/2 + 1 that also has gate complexity
poly(log q), although it has more overhead as a function of d.

To apply the approach of Section 4.1, we again focus on solutions of Z(x, y) = z with
(x, y) ∈ Xgood × Y good. However, recall that our lower bound on the success probability for
k = d/2 + 1 in Section 2.4 used all solutions (x, y) ∈ Fkq × Fkq . Thus we begin by showing
that the success probability of the algorithm remains close to 1 even when restricted to good
solutions.

I Lemma 11. If k = d/2 + 1, then |Rgood
k |/qd+1 = 1−O(1/q).

Proof. See the proof in the extended version [6] of this article. J

Now consider the problem of computing a value (x, y) ∈ Xgood×Y good such that Z(x, y) = z

for some given z ∈ Rgood
k . We can approach this task using the strategy outlined in the

proofs of the lemmas of Section 4.1, which can be found in the extended version [6] of this
article.

We claim that choosing a random zd+1 ∈ Fq gives a solution with probability nearly 1/k!.

I Lemma 12. Suppose z = (z0, . . . , zd) is chosen uniformly at random from Fd+1
q . Then

with probability 1− o(1) (over the choice of z), choosing zd+1 uniformly at random from Fq
and solving for (x, y) ∈ Z−1(z)good as in the proof of Theorem 3(ii) gives a solution with
probability (1− o(1))/k! (over the choice of zd+1).

Proof. See the proof in the extended version [6] of this article. J
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Lemma 12 gives a method for computing a representative (x, y) ∈ Xgood × Y good such
that Z(x, y) = z: simply choose zd+1 ∈ Fq at random until we find a solution. Repeating
this process O(k!) times suffices to find a solution with constant probability (for almost all
z). However, since this approach constructs a random (x, y) ∈ Z−1(z)good rather than a
unique representative, it does not define a set T good

k , and it cannot be directly applied to our
quantum algorithm as described so far. Instead, we construct an equivalent algorithm that
represents the sets Z−1(z)good using quantum superpositions.

I Lemma 13. Suppose there is an efficient algorithm to generate the quantum state

|Z−1(z)good〉 := 1√
|Z−1(z)good|

∑
(x,y)∈Z−1(z)good

|x, y〉 (27)

for any given z ∈ Rgood
k . Then there is a gate-efficient k-query quantum algorithm for the

polynomial interpolation problem, succeeding with probability |Rgood
k |/qd+1.

Proof. We essentially replace (x, y) ∈ T good
k by |Z−1(Z(x, y))good〉 throughout the algorithm.

More concretely, we proceed as follows.
Observe that the ability to perform the given state generation map |z〉 7→ |z〉|Z−1(z)good〉

implies the ability to perform the in-place transformation

|z〉 7→ |Z−1(z)good〉. (28)

After applying the state generation map, we simply uncompute the map Z to erase the
register |z〉.

The algorithm begins by creating a uniform superposition over all of z ∈ Fd+1
q and

applying the map (28). As in the proof of Lemma 8, we can detect whether z /∈ Rgood
k , and

we can postselect on the outcomes for which z ∈ Rgood
k with reasonable overhead, giving the

state
∑
z∈Rgood

k
|Z−1(z)good〉/|Rgood

k |1/2. Then perform k phase queries and apply the inverse
of the transformation (28), giving the state

1√
|Rgood
k |

∑
z∈Rgood

k

e(c · z)|Z−1(z)good〉 7→ 1√
|Rgood
k |

∑
z∈Rgood

k

e(c · z)|z〉. (29)

As discussed in Section 2.2, measuring this state gives c with probability |Rgood
k |/qd+1. J

Finally, we show how to prepare |Z−1(z)good〉 and thereby give a gate-efficient quantum
algorithm for polynomial interpolation with k = d/2 + 1 queries.

Proof of Theorem 3(ii): k = d/2 + 1. We use |Z−1(z)good〉 as a quantum representative of
the set of solutions Z−1(z)good as described in Lemma 13. We claim that we can efficiently
perform the transformation |z〉 7→ |Z−1(z)good〉 for a fraction 1 − o(1) of those z ∈ Rgood

k ,
which in turn are a fraction 1 − o(1) of all z ∈ Fd+1

q (by Lemma 11), giving the claimed
success probability.

To prepare |Z−1(z)good〉, we first prepare a uniform superposition over zd+1 ∈ Fq and
use the procedure of Section 4.1 to compute the corresponding (x, y), if it exists. Lemma 12
shows that a fraction (1− o(1))/k! of the values of zd+1 correspond to a valid (x, y), so this
process can be boosted to prepare a state close to |Z−1(z)good〉 with overhead O(k!) (or with
amplitude amplification, O(

√
k!)), which in particular is independent of q. We can easily

uncompute zd+1 given (x, y), giving the desired transformation. J
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5 Open problems

In this paper, we have precisely characterized the quantum query complexity of polynomial
interpolation. We conclude by briefly discussing some possible directions for future work.

In Section 4, we gave an algorithm for the case k = d/2+1 whose gate complexity is larger
than its query complexity by a factor of k! poly(log q). This gate complexity is polynomial in
log(q) but superexponential in d. Is it possible to give an algorithm with gate complexity
only poly(d, log q)?

A natural extension of our results would be to consider the problem of learning a multi-
variate polynomial f ∈ Fq[X1, . . . , Xn] of degree at most d. Montanaro gave asymptotically
optimal bounds for this problem assuming f is multilinear [13], but it is also natural to
consider the more general case where f is not necessarily multilinear. The quantum algorithm
described in Section 2.2 can be extended to the multivariate case in a fairly straightforward
manner, and we conjecture that it performs as follows.

I Conjecture 14. For any fixed positive integers d and n, there exists a k-query quantum
algorithm for interpolating a degree-d multivariate polynomial in n variables that, as q grows,
has success probability 1− o(1) provided k >

(
n+d
d

)
/(n+ 1).

Note that classically one needs
(
n+d
d

)
queries to solve the same problem, so our conjecture

states that the quantum query complexity is smaller by a factor of n+ 1. We now discuss
why computing the success probability of the quantum algorithm appears to be a difficult
problem in algebraic geometry.

Let f ∈ Fq[X1, . . . , Xn] be of degree at most d. For j ∈ Nn and x ∈ Fnq , we let
xj :=

∏n
t=1 x

jt

t . To define the set of possible polynomials, we use the set of allowed exponents
J with size

J := |J | := |{j ∈ Nn : j1 + · · ·+ jn ≤ d}| =
(
n+ d

d

)
. (30)

We now define the function Z : (Fnq )k × Fkq → FJq by Z(x, y)j =
∑k
i=1 yix

j
i and consider

its range Rk := Z((Fnq )k × Fkq ) ⊆ FJq . A straightforward generalization of the univariate
interpolation algorithm described in Section 2.2 gives a multivariate interpolation algorithm
with success probability |Rk|/qJ . We expect that this algorithm solves the interpolation
problem with probability 1− o(1) using bJ/(n+ 1)c+ 1 queries. This would be implied by
the following:

I Conjecture 15. With J :=
(
n+d
d

)
and Rk as above, we have |Rk| = qJ (1− o(1)) provided

k > J/(n+ 1).

Note that this holds for n = 1 (according to Lemma 11) and also for d = 1. Unfortunately,
the approach via exponential sums used in the proof of Lemma 11 only works if k > J/2.
Thus, while it gives a tight result for n = 1, it appears to be inefficient for n > 1.

Another way to approach Conjecture 15 is to consider the affine variety Vk : Z(x, y) = z

in kn+ k + J variables x ∈ (Fnq )k, y ∈ Fkq , z ∈ FJq . Clearly |Vk(Fq)| = qkn+k. It is not hard
to show that Vk is a complete intersection and has only one absolutely irreducible component.
Thus it suffices to show that for almost all specializations of z ∈ FJq , the corresponding
variety Vk(z) is absolutely irreducible; then provided k(n+1) > J , a version of the Lang-Weil
bound [11] applies and gives the desired result. Although results of this type are known
(see [4, 15] and references therein), unfortunately none of them seems to imply the desired
statement. Nevertheless, since a generic variety is absolutely irreducible, the conjecture
appears plausible.
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Lower Bounds for the Approximate Degree of
Block-Composed Functions∗

Justin Thaler

Yahoo! Research, New York, NY, USA

Abstract
We describe a new hardness amplification result for point-wise approximation of Boolean func-
tions by low-degree polynomials. Specifically, for any function f on N bits, define

F (x1, . . . , xM ) = OMB(f(x1), . . . , f(xM ))

to be the function on M ·N bits obtained by block-composing f with a function known as ODD-
MAX-BIT. We show that, if f requires large degree to approximate to error 2/3 in a certain
one-sided sense (captured by a complexity measure known as positive one-sided approximate
degree), then F requires large degree to approximate even to error 1 − 2−M . This generalizes a
result of Beigel (Computational Complexity, 1994), who proved an identical result for the special
case f = OR.

Unlike related prior work, our result implies strong approximate degree lower bounds even for
many functions F that have low threshold degree. Our proof is constructive: we exhibit a solution
to the dual of an appropriate linear program capturing the approximate degree of any function.
We describe several applications, including improved separations between the complexity classes
PNP and PP in both the query and communication complexity settings. Our separations improve
on work of Beigel (1994) and Buhrman, Vereshchagin, and de Wolf (CCC, 2007).

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes

Keywords and phrases approximate degree, one-sided approximate degree, polynomial approx-
imations, threshold degree, communication complexity

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.17

1 Introduction

Approximate degree and threshold degree are two measures of Boolean function complexity
that capture the difficulty of point-wise approximation by low-degree polynomials. The
ε-approximate degree of a function f : {−1, 1}n → {−1, 1}, denoted d̃egε(f), is the least
degree of a polynomial that point-wise approximates f to error ε. The threshold degree,
denoted deg±(f), is the least degree of a real polynomial that agrees in sign with f point-wise.

Approximate degree and threshold degree have found a diverse array of algorithmic and
complexity-theoretic applications. On the complexity side, approximate degree lower bounds
underlie many tight lower bounds on quantum query complexity [2, 3, 25, 6, 41], and have
proven instrumental in resolving a host of long-standing open problems in communication
and circuit complexity [40, 39, 35, 42, 16, 44, 34, 41, 14, 12, 13, 27, 8]. On the algorithms side,
upper bounds on these complexity measures underlie the fastest known learning algorithms
in a number of important models, including the PAC, agnostic, and mistake-bounded
models [23, 24, 20, 36]. They also yield fast algorithms for private data release [49, 11].

∗ The full version of this paper is available at http://eccc.hpi-web.de/report/2014/150/.
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17:2 Lower Bounds for the Approximate Degree of Block-Composed Functions

Despite these applications, our understanding of approximate and threshold degree
remains limited. While tight upper and lower bounds are known for some specific functions,
including symmetric functions [32, 38, 15] and certain read-once formulae, few general
results are known, and characterizing the approximate and threshold degrees of many simple
functions remains open. However, a handful of recent works has established various forms of
“hardness amplification” for approximate degree [43, 9, 10, 46, 45, 26, 47]. Roughly speaking,
these results show how to take a function f which is hard to approximate by low-degree
polynomials in a weak sense, and turn f into a related function F that is hard to approximate
by low-degree polynomials in a much stronger sense.

Our Contributions. We extend this recent line of work by establishing a new, generic form
of hardness amplification for approximate degree. Unlike prior work, our result implies strong
lower bounds even for many functions F that have low threshold degree (e.g., halfspaces). In
contrast, analogous hardness amplification results [43, 9, 10, 46, 45, 26, 47] apply only to
functions with polynomially large threshold degree. We describe several applications of our
result, including an improved separation between the complexity classes PNP and PP in
both the query and communication complexity settings (see Section 1.3 for details).

We prove our results by constructing explicit dual polynomials, which are dual solutions
to an appropriate linear program capturing the approximate degree of any function. This
“method of dual polynomials” has proven to be a powerful technique for establishing lower
bounds on approximate degree. Our construction departs qualitatively from earlier applica-
tions of the method, and we believe it to be of interest in its own right. In addition to implying
approximate degree lower bounds, dual polynomials have been used to resolve several long-
standing open problems in communication complexity, and they yield explicit distributions
under which various communication problems are hard [40, 42, 16, 44, 34, 41, 14].

1.1 Overview of Our Results
Let f : {−1, 1}n → {−1, 1} be a Boolean function. Our hardness amplification method relies
heavily on a complexity measure known as one-sided approximate degree, or, more precisely,
its “positive” and “negative” variants, denoted d̃eg+,ε(f) and d̃eg−,ε(f) respectively. These
are intermediate complexity measures that lie between ε-approximate degree and threshold
degree, and they have played a central role in recent prior work on hardness amplification for
approximate degree [46, 10, 9, 43].1 Unlike the latter two complexity measures, d̃eg+,ε(f)
and d̃eg−,ε(f) treat inputs in f−1(+1) and inputs in f−1(−1) asymmetrically.

In more detail, a polynomial p is said to be a positive one-sided ε-approximation for
a Boolean function f if |p(x) − f(x)| ≤ ε for all x ∈ f−1(−1), and p(x) ≥ 1 − ε for all
x ∈ f−1(+1). The positive one-sided ε-approximate degree of f is the least degree of a
positive one-sided ε-approximation for f . Negative one-sided ε-approximate degree is defined
analogously. Notice that d̃eg+,ε(f) and d̃eg−,ε(f) are always at most d̃egε(f), but can be
much smaller. Similarly, d̃eg+,ε(f) and d̃eg−,ε(f) are always at least deg±(f), but can be
much larger.

1 Strictly speaking, the terms positive and negative one-sided approximate degree were introduced by
Kanade and Thaler [21], who gave applications of these complexity measures to learning theory. Earlier
works on hardness amplification for pointwise approximation by polynomials only used negative one-
sided approximate degree, and referred to this complexity measure without qualification as one-sided
approximate degree [10, 46]. For our purposes, the distinction between positive and negative one-sided
approximate degree is crucial.
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Let OMB : {−1, 1}n → {−1, 1} denote a specific polynomial size DNF formula known
as ODD-MAX-BIT, defined as follows. On input x = (x1, . . . , xn), let i∗ denote the
largest index such that xi∗ = −1, and let i∗ = 0 if no such index exists. We define
OMB(x1, . . . , xn) = −1 if i∗ is odd, and OMB(x1, . . . , xn) = 1 otherwise. When appropri-
ate, we also use subscripts after function symbols to indicate the number of variables over
which the function is defined. Thus, OMBM denotes the OMB function on M inputs.

For any function f : {−1, 1}N → {−1, 1}, define F :
(
{−1, 1}N

)M → {−1, 1} to be the
block-composition of OMBM with f , i.e., F = OMBM (f, . . . , f). Our hardness amplification
result establishes that if d̃eg+,ε(f) is large for some ε bounded away from 1, then d̃eg+,ε(F )
is large even for ε exponentially close to 1.

I Theorem 1. Fix an f : {−1, 1}N → {−1, 1}, and let F = OMBM (f, . . . , f). If d̃eg+,2/3(f)
≥ d, then d̃eg+,ε(F ) ≥ d for ε = 1− 2−M .

A Matching Upper Bound for Theorem 1. To understand the intuition underlying The-
orem 1, it is instructive to consider (matching) upper bounds. We begin by giving the
well-known sign-representing polynomial for OMBM itself. Define p : {−1, 1}M → R via

p(x1, . . . , xM ) := 1 +
M∑
i=1

(−2)i · (1− xi)/2.

It is easy to see that OMBM (x) = sgn (p(x)), and in fact 2−M−1 ·p(x) approximates OMBM

to error ε = 1− 2−M−1.
We now turn to constructing approximants for OMBM (f, . . . , f), for an arbitrary inner

function f . Fix a W ≥ 2, and let q : {−1, 1}N → R be any degree d polynomial satisfying
the following two properties.

q(x) = 0 for all x ∈ f−1(+1). (1)
1 ≤ q(x) ≤W − 1 for all x ∈ f−1(−1). (2)

Denoting an (M ·N)-bit input as (x1, . . . , xM ) ∈
(
{−1, 1}N

)M , it is easy to check that

F (x1, . . . , xM ) = sgn(h(x1, . . . , xM )), where h(x1, . . . , xM ) = 1 +
M∑
i=1

(−W )i · q(xi).

In fact, W−M−1 ·h(x) approximates F to error 1−W−M−1, and has degree equal to that of q.
If W = O(1), then this construction shows that F can be approximated to error 1− 2−O(M)

by a degree d polynomial, which matches the error bound of Theorem 1 up to a constant
factor in the exponent.

I Observation 2. If there exists a polynomial q of degree d satisfying Eq. (1) and Eq. (1)
with W = O(1), then d̃egε(F ) ≤ d for some ε = 1− 2−O(M).

A few words are in order regarding the relationship between the hypothesis of the upper bound
(Observation 2), and the hypothesis of the lower bound (Theorem 1) that d̃eg+,2/3(f) ≥ d.
Conditions 1 and 1 together imply that r(x) := 1

2W · (1 − 2q(x)) is a positive one-sided
approximation to f for error parameter ε = 1− 1

2W . Moreover, r has the additional (crucial)
property that this approximant is constant on inputs in f−1(+1). Observe that the smaller
W is, the smaller the error of the one-sided approximant r(x) for f(x), and the smaller the
error of the derived approximant W−M−1 · h(x) that we constructed for F .
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In general, requiring that r be constant on inputs in f−1(+1) is a very stringent condition,
which will not be satisfied by all one-sided approximations for f . However, Bun and Thaler [10,
Theorem 2] have identified a large class of functions for which any one-sided approximation
for f can be transformed into one that is constant on inputs in f−1(+1), without increasing
its degree. This class includes important functions such as f = OR (see Section 1.2.2), and
f = ED, where ED is the well-studied Element Distinctness function that we use in our
applications to communication and query complexity. For such functions, Observation 2
implies that Theorem 1 is tight.

Can the Hypothesis in Theorem 1 be Weakened? There are two natural ways to weaken
the hypothesis of Theorem 1, and it is natural to wonder whether Theorem 1 would continue
to hold under these hypotheses. Specifically, we can ask:

Does Theorem 1 hold if we replace the outer function OMBM function with the simpler
function ORM , as in previous hardness amplification results for approximate degree [46,
10, 9, 43]?2
Is a one-sided hardness assumption really essential for Theorem 1 to hold? That is, does
OMBM still amplify the hardness of f if we replace the assumption that d̃eg+,2/3(f) ≥ d
with the weaker assumption that d̃eg2/3(f) ≥ d?

The answer to the first question is no. A counterexample is given by f = ORN . It is known
that d̃eg+,2/3(ORN ) = Ω(N1/2) (see, e.g., [30, 10, 17]), yet ORM (ORN , . . . ,ORN ) = ORN ·M
can be approximated to error 1− 1/(MN)� 1− 2−M by a polynomial of degree 1. Thus,
the use of OMBM as the “hardness amplifier” is essential to Theorem 1.

The answer to the second question, unfortunately, remains unknown. Formally, we leave
the resolution of the following conjecture as an open problem.

I Conjecture 3. Suppose that f : {−1, 1}N → {−1, 1} satisfies d̃eg2/3(f) ≥ d. Then letting
F = OMBM (f, . . . , f), it holds that d̃egε(OMBM (f, . . . , f)) ≥ d, for some ε = 1− 2−Ω(M).

1.2 Technical Comparison to Prior Work
1.2.1 The Method of Dual Polynomials
A dual witness to the statement d̃egε(f) ≥ d is a non-zero function ψ : {−1, 1}N → R satisfy-
ing two conditions: (a)

∑
x∈{−1,1}N ψ(x) · f(x) ≥ ε · ‖ψ‖1, where ‖ψ‖1 =

∑
x∈{−1,1}N |ψ(x)|,

and (b) ψ has zero correlation with all polynomials of degree at most d. We refer to Property
(a) by saying that ψ is ε-correlated with f . We refer to Property (b) by saying that ψ has
pure high degree d. We refer to ψ as a dual polynomial for f .

A dual witness to the statement that d̃eg+,ε(f) ≥ d must satisfy an additional correlation
condition, namely: (c) φ(x) agrees in sign with f(x) for all x ∈ f−1(+1). We refer to
Property (c) by saying that φ has positive one-sided error. (Due to space constraints, we
defer further discussion of the duality theory to the full version of the paper.)

We prove Theorem 1 by showing the following: given a dual polynomial ψin witnessing
the assumed d̃eg+,2/3 lower bound on the inner function f , one can construct an explicit

2 One may also ask about replacing OMBM with ANDM in the statement of Theorem 1. Analyses
from prior works [10, 46] apply in this case, but show that the resulting function in fact has high
threshold degree, and hence is not suitable for our applications to query and communication complexity.
We discuss this point in detail in the next section (see Theorem 5, Footnote 5, and the surrounding
discussion).
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dual polynomial ψcomb witnessing the claimed lower bound on the composed function
F = OMB(f, . . . , f).

1.2.2 Prior Work on the Approximate Degree of OMB
Beigel [7] proved that for any d > 0, there is an ε ∈ 1−2−Ω(n/d2) such that d̃egε(OMBn) ≥ d,
and used this result3 to give an oracle separating the (Turing Machine) complexity class
PP from PNP. Note that OMBM (ORN , . . . ,ORN ) is a sub-function of OMBM ·(2N). As
mentioned in Section 1.1, it is known that d̃eg+,2/3(ORN ) = Ω(N1/2). Hence, Theorem 1
can be viewed as a substantial strengthening of Beigel’s result: we recover Beigel’s lower
bound as a special case of Theorem 1 by letting f = ORd2 . Unlike Beigel’s proof, which used
a non-constructive symmetrization technique, our proof of Theorem 1 constructs an explicit
dual polynomial witnessing the lower bound.

For any ε > 0, Klivans and Servedio [24] gave an optimal ε-approximating polynomial for
the function OMB, showing that Beigel’s lower bound (and hence also our Theorem 1 in the
case f = ORN ) is asymptotically tight for all d > 0.4

1.2.3 Earlier Constructions of Dual Polynomials
Given functions gM , fN , Sherstov [45] and Lee [26] independently described a powerful
method for constructing a dual polynomial for the composed function F = gM (fN , . . . , fN ) :
{−1, 1}M ·N → {−1, 1}. This method takes a dual polynomial ψin for fN , and a dual
polynomial ψout for g, and combines them to obtain a dual polynomial ψcomb for the composed
function F . Specifically, denoting an (M · N)-bit input as (x1, . . . , xM ) ∈

(
{−1, 1}N

)M ,
Sherstov and Lee defined

ψcomb(x1, . . . , xM ) = ψout (s̃gn (ψin (x1)) , . . . , s̃gn (ψin (xM ))) ·
M∏
i=1
|ψin(xi)|. (3)

Here, s̃gn : R → {−1, 0, 1} denotes the function satisfying s̃gn(t) = 1 if t > 0, s̃gn(t) =
−1 if t < 0, and s̃gn(0) = 0.

Recall that for ψcomb to witness a good lower bound for the approximate degree of F , it
must be well-correlated with F (Property (a) of Section 1.2.1), and it must have large pure
high degree (Property (b) of Section 1.2.1). Sherstov and Lee showed that the pure high
degree of ψcomb is multiplicative in the pure high degrees of ψin and ψout. That is, if ψin
has pure high degree d1, and ψout has pure high degree d2, then ψcomb has pure high degree
d1 · d2. And while ψcomb is not in general well-correlated with the composed function F ,
several important examples have been identified in which this is the case, as we now explain.

Sherstov [43] and independently Bun and Thaler [9] used the combining technique of
Eq. (3) to resolve the (1/3)-approximate degree of the two-level AND-OR tree. Subsequent
work by Bun and Thaler [10] used Eq. (3) to establish a hardness amplification result that
looks similar to our Theorem 1. Specifically, Bun and Thaler proved:

I Theorem 4 (Bun and Thaler [10]). Suppose d̃eg−,2/3(f) ≥ d. Then d̃eg−,ε(ORM (f, . . . , f))
≥ d, for ε = 1− 2−M .

3 Beigel describes his result as a lower bound on the degree-d threshold weight of OMBn. However, his
argument is easily seen to establish the claimed approximate degree lower bound.

4 Like Beigel, Klivans and Servedio state their results in terms of degree-d threshold weight. However,
their construction is easily seen to imply the claimed upper bound on the approximate degree of OMBn.

ICALP 2016



17:6 Lower Bounds for the Approximate Degree of Block-Composed Functions

Theorem 4 is identical to our Theorem 1, but for two differences: first, in our Theorem 1,
the outer function in the composition is OMB, while in Theorem 4 it is OR. Second, the
hypothesis in Theorem 1 is that the inner function f satisfies d̃eg+,2/3(f) ≥ d, while the
assumption in Theorem 4 is that d̃eg−,2/3(f) ≥ d. Both of these differences are crucial for
obtaining a hardness amplification result that applies to functions with low threshold degree
(which is essential for our applications to the communication and query complexity described
in Section 1.3 below). Indeed, subsequent work by Sherstov refined Theorem 4 to yield a
threshold degree lower bound, rather than a d̃eg−,ε lower bound [46].

I Theorem 5 (Sherstov [46]). Suppose d̃eg−,2/3(f) ≥ d. Then deg±(ORM (f, . . . , f)) ≥
min{d, cM} for some constant c > 0.5

Sherstov gives several proofs of Theorem 5. One proof draws heavily on Eq. (3): he
constructs a dual witness of the form ψcomb+ψfix, where ψcomb is the dual witness constructed
by Bun and Thaler using Eq. (3) to prove Theorem 4, and ψfix “zeros out” ψcomb on points
x such that 0 6= s̃gn(ψcomb(x)) 6= s̃gn(ORM (f, . . . , f)). This ensures that ψcomb + ψfix is
perfectly correlated with F .

Sherstov used Theorem 5 to give a depth three circuit with threshold degree Ω̃(n2/5). He
also established the following result, which yields a polynomially stronger lower bound for
depth k > 3.

I Theorem 6 (Sherstov [46]). For any k ≥ 2, there is a depth k (read-once) Boolean circuit
computing a function F satisfying deg±(F ) = Ω(n(k−1)/(2k−1)).

Sherstov’s proof of Theorem 6 is not a refinement of the proof Theorem 4 from [10]. Rather
it relies on an elaborate inductive construction of a dual polynomial (which is nonetheless
reminiscent of Eq. (3)).

In the full version of the paper, we explain why any dual witness establishing Theorem 1
must qualitatively depart from the dual witnesses constructed in prior work. In brief, we
first argue that the dual witnesses constructed in prior work are implicitly tailored to show
optimality of a specific technique for approximating block-composed functions. We then
explain that this technique is far from optimal for the functions to which Theorem 1 applies.

1.3 Applications
This section gives an overview of our applications to query and communication complexity.
Due to space constraints, formal definitions of the complexity classes involved in these
applications, and statements and proofs of the relevant theorems, are deferred to the full
version of the paper.

Notation. Given a query or communication model C and a function f , the notation C(f)
denotes the least cost of a protocol computing f in the model C. Following Babai et al. [4],
we define a corresponding complexity class, also denoted C, consisting of all problems that
have polylogarithmic cost protocols in the model C. Throughout, we use the superscript
cc to denote communication complexity classes, and the subscript query to denote query
complexity classes. Any complexity class without a subscript refers to a classical (Turing
Machine) class.

5 By De Morgan’s laws and the observation that d̃eg−,ε(f) = d̃eg+,ε(f), the following is an equivalent
formulation of Theorem 5. Suppose that d̃eg+,2/3(f) ≥ d. Then deg±(ANDM (f, . . . , f)) ≥ min{d, cM}
for some constant c > 0.
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1.3.1 Query Complexity
Connecting Query Complexity, Approximate Degree, and Oracle Separations. A signi-
ficant motivation for studying query complexity is that separations of query complexity
classes immediately yield oracle separations of their classical counterparts. Such oracle separ-
ations are sometimes construed as evidence that the same separation applies to the classes’
classical counterparts. At a minimum, oracle separations imply a formal barrier (called the
relativization barrier [5]) to disproving the corresponding Turing Machine separation.

It is well-known that approximate degree lower bounds imply lower bounds on (even
quantum) query complexity. So to summarize, approximate degree lower bounds imply
query complexity lower bounds, which in turn often imply oracle separations for classical
complexity classes.

ODD-MAX-BIT, Counting, and the Polynomial Hierarchy. An important question in
complexity theory is to determine the relative power of alternation (as captured by the
polynomial-hierarchy PH), and counting (as captured by the complexity class #P and its
decisional variant PP). Both PH and PP generalize NP in natural ways. Toda famously
showed that their power is related: PH ⊆ PPP [50].

Beigel [7] was interested in determining how much of the Polynomial Hierarchy is contained
in PP itself, and he set out to give an oracle separating PNP from PP. To do so, he introduced
the function OMB and observed that OMB is in the query complexity of analog of PNP –
essentially, the query protocol uses the NP oracle to perform a binary search for the largest
index i∗ such that xi∗ = −1. Then, to show that OMB is not in the query complexity
analog of PP, Beigel proved a lower bound on the approximate degree of OMB. (Recall
from Section 1.2.2 that in [7] Beigel proved that for any d > 0, there is an ε ∈ 1− 2−Ω(n/d2)

such that d̃egε(OMBn) ≥ d).
Thus, Beigel’s result separated the query complexity classes PPquery and PNP

query, and this
in turn implied an oracle separating the classical classes PP from PNP.

An Improved Separation for Query Complexity. Quantitatively, Beigel’s analysis implies
that PPquery(OMB) = Ω(n1/3), and prior to our work, this was the best known separation
between PPquery(f) and PNP

query(f) for any function f . We improve on this separation by
giving a function F in PNP

query such that PPquery(F ) = Ω̃(n2/5).

Details of the separation. The function F we use to exhibit this improved separation is

F := OMBn2/5(EDn3/5 , . . . ,EDn3/5), (4)

where ED is the negation of the well-studied Element Distinctness function (due to space
constraints, we defer a formal definition of the Element Distinctness function to the full
version of the paper). Prior work has shown that EDN satisfies d̃eg+,2/3(EDN ) = Ω̃(N2/3)
[10], so Theorem 1 implies that d̃eg+,ε(F ) = Ω̃(n2/5) even for ε = 1− 2−n2/5 . This in turn
implies the claimed lower bound PPquery(F ) = Ω̃(n2/5). Meanwhile, ED is in NPquery, and
hence the same binary search-based PNP

query protocol that works for OMB also works for F .

1.3.2 Communication Complexity
Babai, Frankl, and Simon [4] defined the (two-party) communication analogs of many complex-
ity classes from the Turing Machine world. Since their seminal paper, these communication
classes have been studied intensely, with the following motivation.

ICALP 2016
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Relationship to Turing Machine Complexity. Just as query complexity separations are
sometimes construed as evidence that the same separation applies to the classes’ classical
counterparts, so too are communication complexity separations. In addition, Aaronson and
Wigderson [1] showed that a separation of communication complexity classes implies a formal
barrier (called the algebraization barrier) to disproving the analogous separation in the Turing
Machine world. Their result is analogous to how query complexity separations imply that
the relativization barrier applies in the Turing Machine world. Thus, studying PNPcc and
PPcc sheds additional light on the relationship between their Turing Machine counterparts.
These communication classes are also of interest in their own right, as we now explain.

The class PNPcc . PNPcc lies near the frontier of our current understanding of communication
complexity classes, in that it is one of the most powerful communication models against which
we know how to prove lower bounds. This communication class has received considerable
attention in recent years: Impagliazzo and Williams [19] were the first to prove lower bounds
against this class, and Papakonstantinou et al. [31] characterized the class in terms of
limited memory communication models. Göös et al. [18] related PNPcc to various other
communication classes near the frontier of understanding.

The class PPcc. PPcc captures the difficulty of computing functions to small-bias, and it
turns out to be characterized by an important combinatorial quantity known as discrepancy
[22]. Motivated in part by this characterization, PPcc has received intense study (cf. [40, 39,
8, 18, 22, 29, 48] and many others).

An improved separation between PPcc and PNPcc . Buhrman, Vereshchagin, and de Wolf [8]
gave the first separation between PPcc and PNPcc .6 Specifically, they “lifted” Beigel’s
query complexity lower bound for OMB to the communication setting, showing that a
certain communication problem G derived from OMB satisfies PNPcc(G) = O(log2 n), but
PPcc(G) = Ω(n1/3). Prior to our work, this was the best separation between these two
communication classes.

We improve on this separation. By applying Sherstov’s pattern matrix method [40] to
the function F of Eq. (4), we obtain a communication problem F ′ that satisfies PNPcc(F ′) =
O(log2 n), but PPcc(F ′) = Ω̃(n2/5).

An improved separation between PPcc and UPPcc for an AC0 function. Buhrman et al.’s
function G also exhibited the first separation between PPcc and a related communication
class called UPPcc, which captures the difficulty of computing f to strictly positive bias
(Sherstov [37] independently separated these two classes). In more detail, the function G used
by Buhrman et al. satisfies UPPcc(G) = O(logn), while PPcc(G) = Ω(n1/3), and until our
work this remained the best known separation between PPcc and UPPcc for any function in
AC0. Our communication problem F ′ improves on this separation, giving a function F ′ in
AC0 satisfying UPPcc(F ′) = O(logn), but PPcc(F ′) = Ω̃(n2/5).

To further motivate this application, we mention that PPcc is characterized not only by
discrepancy, but also by the learning-theoretic notion of margin complexity [29, 28], while
UPPcc is characterized by the notion of dimension complexity [33]. Both margin complexity

6 Buhrman et al. framed their result as an exponential separation between the PPcc and a related class
called UPPcc. As pointed out in subsequent work [18], their result also separates PNPcc

and PPcc.



J. Thaler 17:9

and dimension complexity underly state-of-the-art learning algorithms for constant-depth
circuits in a variety of learning models (for details, see [24, 35, 10, 40, 23] and the references
therein). Separating these two quantities sheds light on the relative power of these algorithms.

1.3.3 Roadmap for the Rest of the Paper
We introduce notation and establish preliminary lemmas in Section 2. Section 3 provides an
intuitive overview of the dual witness we construct to prove Theorem 1, before providing
proof details. In the full version of the paper, we collect formal definitions of approximate
degree and its one-sided variants, along with their dual characterizations, and formalize our
applications to query and communication complexity.

2 Notation and Preliminary Facts

Given a set T ⊆ {−1, 1}N , we let IT denote the indicator vector of T ; that is, IT (x) = 1
if x ∈ T , and IT (x) = 0 otherwise. Given a dual polynomial ψ : {−1, 1}N → R, we define
the L1-weight of T under ψ to be Wψ(T ) =

∑
x∈T |ψ(x)|. We use the standard notation

‖ψ‖1 := Wψ({−1, 1}N ), and refer to ‖ψ‖1 as the L1-norm of ψ. Define the function s̃gn : R→
{−1, 0, 1} via: s̃gn(t) = 1 if t > 0, s̃gn(t) = −1 if t < 0, and s̃gn(t) = 0 if t = 0. We say that
a dual polynomial ψ for a function f makes an error on input x if 0 6= s̃gn(ψ(x)) 6= s̃gn(f(x)).

Crucial to our proof are the following two facts that provide methods of combining
multiple dual witnesses while preserving their pure high degree.

I Fact 7. If ψ1, ψ2 :
(
{−1, 1}N

)M → {−1, 1} both have pure high degree d, then so does
ψ1 + ψ2.

I Fact 8. Suppose that ψ1, . . . , ψM : {−1, 1}N → {−1, 1} are each defined over disjoint
sets of variables, and there is some i such that ψi has pure high degree d. Then so does the
function ψ :

(
{−1, 1}N

)M → {−1, 1} defined via ψ(x1, . . . , xM ) =
∏M
i=1 ψi(xi).

3 Proof of Theorem 1

This section proves Theorem 1, which we restate here for the reader’s convenience. Recall
from the introduction that for any Boolean function f : {−1, 1}N → {−1, 1}, F denotes the
function OMBM (f, . . . , f) that maps {−1, 1}M ·N to {−1, 1}.

I Theorem 1 (restated). If d̃eg+,2/3(f) ≥ d, then d̃eg+,ε(F ) ≥ d for ε = 1− 2−M

Proof. Let ψin denote a dual witness for the fact that d̃eg+,2/3(f) ≥ d, normalized to ensure
that its L1-norm is 1. Recall from Section 1.2.1 that ψin satisfies three properties: (a) ψin
has pure high degree at least d, (b) ψin has correlation ε′ ≥ 2/3 with f , and (c) ψin has
positive one-sided error for f , i.e., ψin(xi) ≥ 0 for all xi ∈ f−1(+1). Let E denote the set of
all xi ∈ {−1, 1}N on which ψin(xi) is in error, i.e., 0 6= s̃gn(ψin(xi)) 6= s̃gn(f(xi)).

Proof Overview. For any vector x = (x1, . . . , xM ) ∈
(
{−1, 1}N

)M , we think of xM as the
“most significant” block in x, because if f(xM ) = −1, then F evaluates to −1 regardless of
the values of the other blocks x1, . . . , xM−1. Similarly, we think of x1 as the “least significant
block” of x.

We think of our dual witness ψcomb as being constructed iteratively. The first iteration
creates a dual witness ψ(1) that “uses” the least significant block x1 to “achieve” pure high
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degree at least d. That is, ψ(1) will be uncorrelated with any polynomial p, unless the degree
of p is at least d even when restricted to the variables in the first block. However, ψ(1) will
only have correlation ε′ with F , and hence it will make errors if ε′ < 1. The second iteration
creates a dual witness ψ(2)

comb = ψ(1) + ψ(2), where ψ(2) is a correction term that zeros out
there errors of ψ(1). Moreover, ψ(2) will use the second block x2 to achieve pure high degree
at least d. By Fact 7, this ensures that ψ(2)

comb also has pure high degree at least d.
If ψ(2) zeroed out all of the errors of ψ(1) without introducing any new errors, then ψ(2)

comb
would have perfect correlation with F , and we would be done. Unfortunately, ψ(2) does
introduce new errors. But we have made tangible progress: we show that the number of
errors ψ(2) makes, relative to ψ(1), falls by a factor of Wψin(f−1(+1))/Wψin(E) = ε′/(1− ε′).
Since ε′ ≥ 2/3, we conclude that ε′/(1− ε′) ≥ 2, and hence that ψ(2) makes at most half as
many errors as ψ(1).

In general, the ith iteration adds in a correction term ψ(i) that zeros out all of the
errors of the dual witness ψ(i−1)

comb constructed in the previous iteration. ψ(i) will use the
ith input block xi to achieve pure high degree at least d, and will introduce at most
a Wψin(E)/Wψin(f−1(+1)) ≤ 1/2 fraction of the errors made by ψ(i−1). At the end of
iteration M , we have constructed a dual witness ψcomb :=

∑M
i=1 ψ

(i) that makes only a(
Wψin(E)/Wψin(f−1(+1))

)M = ((1− ε′)/ε′)M ≤ 2−M fraction of the errors made by ψ(1),
and we are done.

Proof Details. Throughout, we assume without loss of generality that M is odd (we only
exploit this assumption in the proof of Lemma 17, which shows that ψcomb has positive
one-sided error for F ).

Properties of ψin. Throughout, we let Q−, Q+ ⊆ {−1, 1}N denote the set of inputs xi for
which ψin(xi) < 0 and ψin(xi) > 0 respectively. We assume d ≥ 1, as otherwise Theorem 1
holds trivially. We make use of the following simple facts about IQ+ and IQ− .

I Fact 9.
∑
xi∈{−1,1}N IQ−(xi) · |ψin(xi)| =

∑
xi∈{−1,1}N IQ+(xi) · |ψin(xi)| = 1/2.

Proof. Since ψin witnesses the fact that d̃eg+,1/2(f) ≥ d, ψin has pure high degree at least d ≥
1. In particular, ψin is uncorrelated with any constant function. Hence,

∑
xi∈{−1,1}N ψin(xi) =

0. Since
∑
xi∈{−1,1}N |ψin(xi)| = 1, it follows that

∑
xi∈{−1,1}N :xi∈Q+ |ψin(xi)| =∑

xi∈{−1,1}N :xi∈Q− |ψin(xi)| = 1/2, which is equivalent to what we wished to prove. J

A crucial implication of the fact that ψin has positive one-sided error is that if ψin outputs
a negative value on input xi, we can “trust” that f(xi) = −1. This is formalized as follows.

I Fact 10. For all xi ∈ Q−, it holds that f(xi) = −1. Equivalently, E ⊆ f−1(−1), or in
other words E ∩ f−1(+1) = ∅.

The following two facts relate the correlation of ψin with f to the L1-weight of the sets
E and f−1(+1) under ψin.

I Fact 11. Wψin(E) = (1− ε′)/2.

Proof. By Property (a), ε′ =
∑
xi∈{−1,1}N ψin(xi) · f(xi) = 1− 2

∑
xi∈E |ψin(xi)|. J

I Fact 12. Wψin(f−1(+1)) = ε′/2.
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Proof. This holds by the following sequence of equalities:

1/2=
∑
xi∈Q+

|ψin(xi)| =
∑
xi∈E
|ψin(xi)|+

∑
xi∈f−1(+1)

|ψin(xi)|=(1/2− ε′/2)+
∑

xi∈f−1(+1)

|ψin(xi)|.

The first equality holds by Fact 9, the second because ψin satisfies Property (c), and the
third by Fact 11. J

Construction of ψcomb. The dual witness we construct is:

ψcomb(x1, . . . , xM ) =
M∑
i=1

ψ(i), where (5)

ψ(i) =(−1)i−1 ·(2/ε′)M−1

∏
j<i

IE(xj)·|ψin(xj)|

 · ψin(xi)·

 M∏
j=i+1

If−1(+1)(xj) · |ψin(xj)|

.
(6)

Recall that, to show that ψcomb is a dual witness for the property d̃eg+,ε(F ) ≥ d for
ε = 1− 2−M , it suffices to establish three properties of ψcomb (cf. Section 1.2.1): (a) it must
have pure high degree at least d, (b) it must satisfy

∑
x∈({−1,1}N )M ψcomb(x) ·F (x) ≥ ‖ψ‖1 ·ε,

where ‖ψ‖1 =
∑

(x∈{−1,1}N )M |ψcomb(x)|, and (c) it must have positive one-sided error. We
establish each in turn below, in Propositions 13, 14, and 17.

I Proposition 13. ψcomb has pure high degree at least d.

Proof. Since ψin has pure high degree at least d, Fact 8 implies that each term ψ(i) in
the sum within Eq. (5) also has pure high degree at least d. The lemma then follows by
Fact 7. J

I Proposition 14.
∑
x∈({−1,1}N )M ψcomb(x) · F (x) ≥ ‖ψ‖1 · ε.

The proof of Proposition 14 will make use of the following two lemmas.

I Lemma 15. ‖ψ‖1 ≥ 1/2.

Proof. Consider the set S = {(x1, . . . , xM ) : x1 ∈ Q− and x2, . . . , xM ∈ f−1(+1)}.We claim
that the weight, Wψcomb(S), that ψcomb places on the set S is 1/2. The lemma clearly follows.

To see this, fix x = (x1, . . . , xM ) ∈ S. We first note that for all i ≥ 2, ψ(i)(x) = 0. Indeed,
Q− ∩ E = ∅ (cf. Fact 10), and hence IE(x1) = 0. Thus, it is immediate from Eq. (6) that
ψ(i)(x) = 0 for i ≥ 2.

So it suffices to show that
∑
x∈S −ψ(1)(x) ≥ 1/2. This follows from the following

calculation:

∑
x∈S
−ψ(1)(x)=(2/ε′)M−1 ·

 ∑
x1∈Q−

−ψin(x1)

·
 M∏
j=2

 ∑
xj∈{−1,1}N

If−1(+1)(xj)·|ψin(xj)|


= (2/ε′)M−1 · (1/2) ·

M∏
j=2

(ε′/2) = 1/2,

where the first equality holds by Eq. (6), and the second holds by Facts 9 and 12. J
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I Lemma 16. Let Ecomb ⊆
(
{−1, 1}N

)M denote the set of inputs on which ψcomb makes an
error, i.e., 0 6= s̃gn(ψcomb(x)) 6= s̃gn(F (x)). Let EM ⊆

(
{−1, 1}N

)M denote {(x1, . . . , xM ) :
xi ∈ E for all i}. Then Ecomb = EM .

Proof. We first show that EM ⊆ Ecomb before showing that Ecomb ⊆ EM . Suppose that
x = (x1, . . . , xM ) ∈ EM . Fact 10 states that E ⊆ f−1(−1), and hence If−1(+1)(xM ) = 0. It
is then immediate from Eq. (6) that ψ(i)(x) = 0 for all i < M . Meanwhile, by Eq. (6) it
holds that

s̃gn(ψ(M)(x)) = (−1)M−1 · s̃gn(ψin(xM )) = (−1)M−1.

Here, we used the fact that s̃gn(ψin(xM )) > 0 if xM ∈ E. (To see this, note that since
xM ∈ E, it holds that 0 6= s̃gn(ψin(xM )) 6= f(xM ) = −1, where the final equality holds
because E ⊆ f−1(−1).) At the same time,

F (x) = OMBM (−1,−1, . . . ,−1) = (−1)M .

Thus, x ∈ Ecomb as claimed.
Fix any x = (x1, . . . , xM ) ∈

(
{−1, 1}N

)M such that there exists an i ∈ {1, . . . ,M}
satisfying xi 6∈ E. To show that Ecomb ⊆ EM , we must show that x 6∈ Ecomb. To this end, let
i∗ be the smallest coordinate such that xi∗ 6∈ E. It is clear that ψcomb(x) = 0 if ψin(xi) = 0
for any i ∈ [M ], and hence x 6∈ Ecomb. So assume throughout that ψin(xi) 6= 0 for all i. The
proof proceeds via a case analysis.

Case 1: There exists a j > i∗ such that xj 6∈ f−1(+1). In this case, If−1(+1)(xj) = 0,
so it is immediate from Eq. (6) that ψ(k)(x) = 0 for all k < j. Meanwhile, since
IE(xi∗) = 0, it is immediate from Eq. (6) that ψ(k)(x) = 0 for all k ≥ j. Thus,
ψcomb(x) =

∑M
k=0 ψ

(k)(x) = 0, implying that x 6∈ Ecomb.
Case 2: i∗ = 1, and xj ∈ f−1(+1) for all j > i∗. In this case, it is clear by Eq. (6) that

s̃gn(ψ(1)(x)) = (−1)0 · s̃gn(ψin(x1)) = s̃gn(ψin(x1)) = s̃gn(f(x1)) = F (x1, . . . , xM ). (7)

Here, the third equality holds because x1 6∈ E, and the fourth equality exploits the fact
that if xj ∈ f−1(+1) for all j > 1, then F (x) = f(x1).
Meanwhile, since x1 6∈ E, it holds that IE(x1) = 0, and so it is clear by Eq. (6) that
ψ(k)(x) = 0 for all k ≥ 2. Combining this with Eq. (7), we conclude that s̃gn(ψcomb(x)) =
s̃gn(ψ(1)(x)) = F (x1, . . . , xM ). Thus, x 6∈ Ecomb.
Case 3: i∗ ≥ 2, and xj ∈ f−1(+1) for all j > i∗. First, we argue that ψ(k) = 0 for all
k < i∗ − 1. Indeed, for all such k, xk+1 ∈ E ⊆ f−1(−1) (cf. Fact 10), and so it holds that
If−1(+1)(xk+1) = 0. Hence, it is immediate from Eq. (6) that ψ(k)(x) = 0.
Next, we argue that ψ(k) = 0 for all k ≥ i∗ + 1. Indeed, xi∗ 6∈ E, so IE(xi∗) = 0. It is
then immediate from Eq. (6) that ψ(k)(x) = 0 for all k ≥ i∗ + 1.
Finally, we claim that either ψ(i∗−1)(x)+ψ(i∗)(x) = 0 or s̃gn(ψ(i∗−1)(x)+ψ(i∗)(x)) = F (x).
This follows from the following calculation.

Case 3a: Suppose xi∗ 6∈ f−1(+1), i.e., that If−1(+1)(xi∗) = 0. Then is clear from
Eq. (6) that ψ(i∗−1)(x) = 0. Meanwhile, since xi∗ 6∈ E, it is clear from Eq. (6) that

s̃gn(ψ(i∗)(x)) = (−1)i
∗−1 · s̃gn(ψin(xi∗)) = (−1)i

∗−1 · f(xi∗) = F (x),

where the final equality exploits the fact that if xj ∈ f−1(+1) for all j > i∗, and
xi∗−1∈E⊆ f−1(−1) (Fact 10), then F (x) = (−1)i∗−1 · f(xi∗).
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Case 3b: Suppose xi∗ ∈ f−1(+1). We claim that it holds that ψ(i∗−1)(x) = −ψ(i∗)(x).
To see this, note that in this case

ψ(i∗−1)(x) = (−1)i
∗−2 · (2/ε′)M−1 · ψin(xi∗−1) ·

∏
j 6=i∗−1

|ψin(xj)|, and (8)

ψ(i∗)(x) = (−1)i
∗−1 · (2/ε′)M−1 · ψin(xi∗) ·

∏
j 6=i∗
|ψin(xj)|. (9)

Both of the above quantities are clearly equal in absolute value, but it remains to
show that ψ(i∗−1)(x) = −ψ(i∗)(x). Since xi∗−1 ∈ E ⊆ f−1(−1) (Fact 10), it holds that
s̃gn(ψin(xi∗−1)) = +1. Meanwhile, since xi∗ 6∈ E, s̃gn(ψin(xi∗)) = f(xi∗) = +1. Hence,
s̃gn(ψ(i∗−1)(x)) = (−1)i∗−2, while s̃gn(ψ(i∗)(x)) = (−1)i∗−1, completing the proof.

Combining all of the above, we conclude that ψcomb(x)=
∑M
j=1 ψ

(j)
comb(x)=ψ

(i∗−1)
comb (x) +

ψ
(i∗)
comb(x), and the latter expression is either equal to 0 or agrees in sign with F (x). Thus,
x 6∈ Ecomb. This completes the proof of Lemma 16. J

Proof of Proposition 14. Note that∑
x∈({−1,1}N )M

ψcomb(x) · F (x) =
∑

x∈({−1,1}N )M

|ψcomb(x)| − 2
∑

x∈Ecomb

|ψcomb(x)|

= ‖ψ‖1 − 2
∑

x∈Ecomb

|ψcomb(x)|, (10)

where we recall from Lemma 16 that Ecomb = EM is the set of points on which ψcomb makes
an error. Observe that for each j:

∑
x∈EM

ψ(j)(x)≤(2/ε′)M−1
M∏
i=1

(∑
xi∈E
|ψin(xi)|

)
≤(2/ε′)M−1 ·

M∏
i=1

((1− ε′)/2)≤3M−1/6M <2−M−1

(11)

Here, the first equality holds because, for all x ∈ EM and j < M , ψ(j)(x) = 0; this follows by
combining Eq. (6) with the fact that E ∩ f−1(+1) = ∅ (Fact 10) (see also the EM ⊆ Ecomb
direction in the proof of Lemma 16). The second inequality holds by Fact 11, and the third
because ε′ ≥ 2/3. Combining Lemma 15 with Eq. (10) and Eq. (11), we conclude that∑
x∈({−1,1}N )M ψcomb(x) ·F (x) ≥ ‖ψ‖1−2−M−1 ≥ ‖ψ‖1(1−2−M ), completing the proof. J

I Proposition 17. ψcomb(x) ≥ 0 for all x ∈ F−1(+1).

Proof. Lemma 16 implies that the set Ecomb on which ψcomb makes an error is equal to
EM . Since E ⊆ f−1(−1) (cf. Fact 10), and we assumed that M is odd, it is obvious from
the definition of F that EM ⊆ F−1(−1). It follows that ψcomb makes no errors on F−1(+1),
implying the proposition. J

Theorem 1 follows from Propositions 13, 14, 17 and the dual characterization of d̃eg+,ε. J
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Abstract
In this paper we study graph problems in dynamic streaming model, where the input is defined by
a sequence of edge insertions and deletions. As many natural problems require Ω(n) space, where
n is the number of vertices, existing works mainly focused on designing Õ(n) space algorithms.
Although sublinear in the number of edges for dense graphs, it could still be too large for many
applications (e.g. n is huge or the graph is sparse). In this work, we give single-pass algorithms
beating this space barrier for two classes of problems. We present o(n) space algorithms for
estimating the number of connected components with additive error εn and (1+ε)-approximating
the weight of minimum spanning tree. The latter improves previous Õ(n) space algorithm given
by Ahn et al. (SODA 2012) for connected graphs with bounded edge weights. We initiate the
study of approximate graph property testing in the dynamic streaming model, where we want to
distinguish graphs satisfying the property from graphs that are ε-far from having the property.
We consider the problem of testing k-edge connectivity, k-vertex connectivity, cycle-freeness and
bipartiteness (of planar graphs), for which, we provide algorithms using roughly Õ(n1−ε) space,
which is o(n) for any constant ε. To complement our algorithms, we present Ω(n1−O(ε)) space
lower bounds for these problems, which show that such a dependence on ε is necessary.
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1 Introduction

Graphs or networks are a natural way to describe structural information. For example, users
of Facebook and the acquaintance relations among them form a social network, the proteins
together with interactions between them define a biological network, and web-pages and
hyperlinks give rise to a huge web graph. Due to the rapid development of information
technology, many such graphs become extremely large, and are constantly changing, which
poses great challenges for analyzing their structures. Over the last decade, the data stream
model [34] has proven to be successful in dealing with big data. In this model, the algorithm
should make only one pass (or a few passes) over the stream, and use sublinear working space.
The time required to output the final answer and process each element is also important.
There is a growing body of work studying graph problems over data streams. Graph streams
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were first considered by Henzinger et al. [24], and later have been extensively studied in
the insertion-only model (eg., [17, 18, 34]), where there is no edge deletion in the stream.
Recently, starting from the seminal works of Ahn, Guha and McGregor [2, 3], the interest has
shifted to the dynamic streaming model, where the edges can be both inserted and deleted
(see eg., [28, 29, 1, 5, 9, 10, 7, 31, 6, 33, 15, 23]). In this setting, most algorithms designed are
linear sketch-based, which is also an effective technique for processing distributed graphs. For
more information about graph streaming algorithms see the recent survey by McGregor [32].

For graph streams, both insertion-only and dynamic, the research in the past has mostly
focused on the semi-streaming model, in which the algorithms are allowed to use Õ(n) space,
where n is the number vertices in the graph. (For notational convenience, we will use Õ(g)
and Ω̃(g) to hide poly log(g) factors.) The reason behind this is that even in the insertion-only
model, many natural graph problems require Ω(n) space (e.g. testing if the graph is connected
[18]). Note that the allowed space in semi-streaming model is sublinear in the input size
as the number of edges of the graph might be as large as Ω(n2). However, in many real
applications n is huge and the input graph is already very sparse, an Õ(n) algorithm might
be even worse than just storing all the edges. From this perspective, one may naturally ask
the question which kind of problems can be solved with even less space, i.e., o(n) space.

To the best of our knowledge, very few results are known in this direction. Chitnis et
al. [10] and Fafianie and Kratsch [16] introduced parameterized graph stream algorithms which
may only use o(n) space with some promise of the size of the solution. This parameterized
setting has been further investigated in [9]. In addition, it has been shown that the size of
the maximum matching can be approximated within constant factor in Õ(n4/5) space for
graphs with bounded arboricity [14, 9, 7].

In this paper, we study two classes of graph problems that admit single-pass o(n) space
algorithms in the dynamic streaming model. The first class contains the problems of
estimating the number of connected components and the weight of minimum spanning tree
(MST). We show that one can estimate the number of connected components within an
additive error of εn with o(n) space and post-processing time, for any small constant ε > 0.
We also present an algorithm to (1 + ε)-approximate the weight of MST with o(n) space and
post-processing time for connected graphs with bounded edge weights, which improves the
best known algorithm with Õ(n) space in the same setting given by Ahn et al. [2]. It is worthy
noting that the problem of estimating the number of connected components within small
multiplicative error requires Ω(n) space, as it is generally harder than the problem of (exactly)
testing graph connectivity; and that estimating the weight of MST for graphs with arbitrarily
large edge weights (e.g., Ω(logn)) requires Ω(n) space (see Theorem 12). Previously these two
problems have been studied in the framework of sublinear time algorithms (see eg. [8, 39]).

The second class consists of problems that are relaxations of deciding graph properties.
Given a huge graph, it is very useful to know whether the graph has some predetermined
property, such as k-connectivity, bipartiteness, cycle-freeness and etc., which provide valuable
information about the graph. However, besides the requirement of Ω(n) space, exactly testing
of these properties sometimes is a too strong requirement for analyzing highly dynamic
graphs, since the answer may change in the next second due to an insertion or deletion of
a single edge. In this paper, we initiate the study of approximate graph property testing in
the dynamic streaming model: we want to test whether a graph satisfies some property or
one has to modify a small constant fraction of edges to make it have the property. This
notion of approximation is adapted from the framework of property testing [21, 22, 36], and
a large number of existing literatures have given efficient testing algorithms (called testers)
for many properties under different query models (see surveys [20, 38]). We show that some
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Table 1 Upper and lower bounds of streaming testers.

Space Space lower bound
Õ Ω

Connectivity n1−ε n1−8ε

k-edge connectivity k1+ε · n1−ε

k-vertex connectivity k1+ε/4

ε
· n1−ε/4

Cycle-freeness n1−ε+ε2
n1−8ε

Bipartiteness of planar graphs n1−Ω(ε2) n1−4ε

fundamental properties can be tested in both o(n) space and post-processing time in the
dynamic streaming model and we also present close lower bounds for these problems which
hold even in the insertion-only model. We remark that McGregor [32] also suggested to
study the (approximate) property testers in graph streaming model, and asked whether more
space-efficient algorithms exist for these problems, and we thus give affirmative answer to
this question.

1.1 Our results

Now we formally state our main results. Our results regarding estimating the number of
connected components and the MST weight are as follows.

Estimating the number of connected components. We present a dynamic streaming
algorithm that estimates the number of connected components within additive error εn
in Õ(n1−ε+εq+1) space and post-processing time for any constant q ≥ 1. We note that a
lower bound of Ω(n1−O(ε)) for this problem follows from the work [41].
Estimating the weight of minimum spanning tree (MST). In this problem, we want to
estimate the weight of the MST of a graph with edge weights in the set {1, 2, · · · ,W}. We
give a dynamic streaming algorithm that computes a (1 + ε)-approximation of the MST
weight and uses space and post-processing time Õ(Wn

1− ε
W−1 + εt

(W−1)t ) for any constant
t ≥ 1. By an argument in [8], the result can be extended to non-integral weights, as long
as the ratio between the largest and the smallest weight is bounded. A space lower bound
of Ω(n1− 4ε

W−1 ) is shown for this problem.

We also present approximate testing algorithms for a number of fundamental graph
properties. Before stating the performance of these algorithms, we first introduce some
definitions. Given a graph property Π, an m-edge graph G is called ε-far from having Π if
one has to modify more than εm edges of G to get a graph G′ satisfying Π. This distance
definition is adapted from [36] and is most suitable for general graphs where neither edge
density nor maximum degree is restricted. We call an algorithm a (dynamic) streaming
tester for Π, if it makes a single-pass over a stream of edge insertions and deletions, with
probability at least 2/3, accepts any graph satisfying Π, and rejects any graph that is ε-far
from having Π.

We give sketch-based streaming testers for properties of being connected, k-edge connected,
k-vertex connected, cycle-freeness and bipartite (for planar graphs). The performance of our
testers are summarized in Table 1. We stress that most of our testers have (asymptotically)
the same post-processing time as the space they used except for testing k-edge connectivity
when k ≥ Ω(nε/(1+ε)) and k-vertex connectivity when k ≥ Ω(nε/(4+ε)).
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1.2 Our techniques

To estimate the number of connected components with small additive error εn, we note
that it is sufficient to estimate the number scc(G) of connected components of small size
(i.e., O(1/ε)), since the number of components of size larger than this is at most O(εn) (see
also [8]). To estimate scc(G), the following vertex sampling framework is used: we sample a
sufficient large set of vertices S by sampling each vertex in G with some probability p, and
then use the statistics of the sampled connected components of the original graph to estimate
scc(G). For any small connected component C in G, it is likely that all the vertices in C
will be sampled out. Conditioned on this, we add 1/p|C| to our final estimator, which is the
reciprocal of the probability that C is entirely sampled out. Now the task is then to identify
which subsets of S are connected components in the original graph. A trivial way is to check
all subsets of S, which takes too much time. A more efficient way is to only check all the
connected components in G[S], since a sampled component of G must also form a component
in G[S]. We carefully use a set of linear sketches to do this. More specifically, we first recover
all connected components in G[S] by invoking a sketch-based streaming algorithm given
in [2], which only needs space near-linear in |S|. Then we use (different) linear sketches to
check if any of these components is indeed a connected component of the original graph. We
remark that the first set of linear sketches of a vertex v sketch its neighborhood information
in G[S], while the second set sketch its neighborhood information in G. Our o(n) space
streaming algorithm for (1 + ε)-approximating the weight of MST follows via a connection
between the number of connected components and the weight of MST established in [8].

To give testers for some graph property Π in dynamic streaming model, we start from
the observation that if a graph G is far from having Π, then typically, there exist many
small disjoint subgraphs, each of which is a witness that the graph G does not satisfy Π.
(For example, if Π is connectivity, then there exists at least Ω(εm) connected components
of size at most O(1/ε) in a graph that is ε-far from being connected.) This implies that by
sampling a sufficient large set of vertices, with high probability, one of such subgraphs will
be entirely sampled. Checking which vertices form a witness of the original graph can then
be done by using the aforementioned framework. Different sketches will be used for testing
different properties.

To prove lower bounds for our studied problems, we give reductions from Boolen Hidden
Hypermatching (BHH) problem that was studied in [41]. Our reductions share similarity
with the reduction in [41] to the cycle-counting problem and the reductions in [27, 30] to the
approximate max-cut problem.

1.3 Related work

Ahn et al. [2] initiated the study of graph sketches, and gave dynamic semi-streaming
algorithms for computing a spanning forest (which can be used to count the exact number of
connected components), and (1 + ε)-approximate the weight of MST. They also proposed
algorithms to exactly testing of a set of properties, including testing connectivity, k-edge
connectivity, and bipartiteness. Recently, Guha et al. gave dynamic streaming algorithms
for exactly testing of k-vertex connectivity [23]. All these algorithms use Õ(n) space (Õ(kn)
for k-connectivity). On the other hand, the randomized space lower bounds for these exact
testing problems were known to be Ω(n) in the insertion-only model [17, 18]. Recently, Sun
and Woodruff improved these lower bounds to Ω(n logn) [40]. Verbin and Yu [41] proved a
lower bound for cycle-counting, which implied a lower bound of Ω(n1−O(ε)) for estimating
the number of components.
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In the random order insertion-only model Kapralov et al. [26] gave a one pass streaming
algorithm that estimates the maximum matching size with polylogarithmic approximation
ratio in polylogarithmic space. Although sublinear in n, the model considered is very different
from ours.

Sublinear time algorithms for estimating the number of connected component and the
weight of MST were first given by Chazelle et al. [8]. Later these two problems have been
further considered in geometric settings [11, 13, 19]. In particular, Frahling et al. studied the
problem of (1 + ε)-approximating the weight of MST in dynamic geometric data stream [19].

There has been a rich line of work on graph property testing in the query model (see
surveys [38, 20]) and the goal there is to design fast algorithms that make as few queries as
possible. The query models that are mostly related to ours are bounded degree model and
general graph model. In particular, our definition of ε-far is adapted from the general graph
model. Goldreich and Ron [22] initiated the study of property testers in bounded degree
graph model, and gave testers for connectivity, k-edge connectivity, 2, 3-vertex connectivity,
cycle-freeness, Eulerianity. Testing k-vertex connectivity in bounded degree graphs for
arbitrary constant k was given in [42]. These testers have later been generalized to general
graph model [36, 35]. Testing bipartiteness in planar graphs was studied in [12].

After having submitted the paper, we became aware that Hossein Jowhari [25] has
independently studied the problem of estimating the number of connected components and
provided similar results as ours, while he did not consider the streaming property testers
considered here.

2 Preliminaries

2.1 Notations
We use [n] = {1, · · · , n} to denote the vertex set of the graph G defined by the stream, and
let m denote the number of edges of G. For an undirected graph G = ([n], E) and a vertex
i ∈ [n], we let Γ(i) denote all the neighbors of i. For a set C ⊆ [n], let Γ(C) denote the set
of vertices in V \ C that have at least one neighbor in C, that is, Γ(C) = ∪i∈CΓ(i) \ C. Let
E(C, V \ C) denote the set of edges crossing C and V \ C. We will use G[C] to denote the
subgraph induced by C.

For each vertex i, we define two vectors ∆i ∈ {−1, 0, 1}(
n
2) and Λi ∈ {0, 1}n to encode

the neighborhood information of i as follows:

∆i
j,k =


1 if i = j < k and (j, k) ∈ E
−1 if j < k = i and (j, k) ∈ E
0 otherwise

Λi
j =

{
1 if j ∈ Γ(i) or j = i

0 otherwise

By simple induction arguments, it is easy to prove that for any vertex set C ⊂ V , the
nonzero entries in the vector ∆C :=

∑
i∈C ∆i corresponds to the edges between C and

its complement V \ C. The nonzero entries in
∑
i∈C Λi corresponds exactly to vertices in

C ∪ Γ(C).

2.2 Linear sketches
Linear sketch (or sketch for short) is a powerful tool widely used in the streaming model and
other areas. Given a large vector x ∈ Rn, we want to construct a small sketch L(x), from which
certain properties of x can be recovered. We call L a linear sketch if L(x + y) = L(x) +L(y)
for all x,y, and this additive property make it trivial to implement linear sketches in the
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dynamic streaming model. As in the previous works, we will use linear sketches as our main
tool.

AGM sketch. We will use a dynamic streaming algorithm for constructing a spanning forest
of a graph by Ahn, Guha and McGregor [2], which is summarized as follows.

I Theorem 1 (AGM sketch [2]). There exists a single-pass sketch-based dynamic streaming
algorithm that uses O(n log3 n) space, and recovers a spanning forest of the graph with
probability 0.99. The recovery time of the algorithm is Õ(n), and the update time is poly logn.

AMS sketch. To check whether the input vector x is 0 or not, one can simply maintain a
constant approximation of its second frequency moment, that is F2(x) :=

∑
i x

2
i , which can

be done in O(logn) space by using the classical AMS sketch that was introduced by Alon,
Matias and Szegedy [4].

Exact k-sparse recovery. We call a vector k-sparse if |supp(x)| ≤ k. Given a non-zero
vector x ∈ Rn, the goal here is to recover x if x is k-sparse, otherwise outputs Fail. We have
the following result from [37].

I Lemma 2 ([37]). There exists an O(k logn logk δ−1) space sketch-based algorithm that
takes as input a non-zero vector x ∈ Rn, and with probability 1 − δ, recovers x if x is
k-sparse, otherwise outputs Fail. The update time is O(poly logn) and the recovery time is
O(k · poly logn).

3 Estimating the number of connected components and MST weight

In this section, we present and analyze our algorithms for estimating the number of the
connected components in a graph and (1 + ε)-approximating the weight of the MST.

3.1 Estimating the number of connected components
Our first observation is that, to estimate the number of connected components within additive
error εn, we can simply ignore all the large components (see also [8]). In particular, the
number of components of size larger than Ω(1/ε) is at most O(εn). Thus it will be sufficient
to estimate the number of components of small size, for which we have the following theorem.

I Theorem 3. For any constant t ≥ 1, there exists a one-pass dynamic streaming algorithm
that uses O(etn1−ε · poly logn) space and post-processing time to estimates the number of
connected components of size at most 1/ε within an additive error εtn. The update time is
O(poly logn).

By invoking Theorem 3 with parameter ε′ = (1−εq)ε and t = (q+1), we get an estimator
for the number of connected components of size smaller than 1/ε′ within additive error at
most εq+1n. Since the number of components of size at least 1/ε′ is at most ε′n = εn−ε1+qn,
the estimator also approximates the total number of connected components within additive
error at most εn. The space of the algorithm is Õ(eq+1n1−ε+εq+1), and we have the following
result.

I Theorem 4. Let q ≥ 1 be a constant. There exists a one-pass dynamic streaming algorithm
that with constant success probability, estimates the number of connected components of a
graph within an additive error εn in O(eq+1n1−ε+εq+1 · poly logn) space and post-processing
time.
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Algorithm 1 EstimateNumSCC

1: Sample each vertex with probability p := (ε2tn/16)−ε. If more than 16np vertices are
sampled, then abort and output Fail. Let S denote the set of sampled vertices.

2: Maintain an AGM sketch of G[S] using Theorem 1.
3: For each v ∈ S, maintain an AMS sketch AMS(∆v), sketching the neighborhood of v in
G.

4: Post-Processing:
5: Use the AGM sketch to recover a spanning forest F of the induced graph G[S] using

Theorem 1.
6: For each component C ∈ F , estimate F2(∆C) using the AMS sketch AMS(∆C) =∑

v∈C AMS(∆v), and set XC = 1 if F2 = 0, otherwise set XC = 0. For each 1 ≤ ` ≤ 1
ε ,

let X` :=
∑
C:|C|=`XC .

7: Output Y :=
∑
`≤ 1

ε

X`

p` .

Now we give the proof of Theorem 3. Recall that the vectors ∆C encode the information
of the number of edges between C and V \ C.

Proof of Theorem 3. Let scc(G) denote the number of connected components of size at
most 1/ε in G. Our algorithm for estimating scc(G) is as follows. We first sample each vertex
with probability p := (ε2tn/16)−ε. Let S be the set of sampled vertices. We then use the
AGM sketch from Theorem 1 to maintain a spanning forest F of the subgraph induced by
S. Then for each component C in F , we test whether C is actually a connected component
in G by testing whether the vector ∆C :=

∑
v∈C ∆v is 0, which can be done by the AMS

sketch. If ∆C = 0, we set XC = 1, otherwise set XC = 0. Our estimator is then defined as∑
C

XC

p|C|
, where C ranges over all components of F with size at most 1

ε . See Algorithm 1 for
the details.

Note that the algorithm samples at most 16np = O(ε−2tε·n1−ε) vertices and we maintained
an AGM sketch on G[S] and an AMS sketch for each sampled vertex, which imply that the
space complexity of the algorithm is O(ε−2tεn1−ε · poly logn). By simple calculus, for any ε,
it holds that ε−2ε ≤ e2/e < e, so the space is at most Õ(etn1−ε). The post-processing time
is near linear in the space, and the update time is O(poly logn).

Now we prove the correctness of the above algorithm. First we note that the expected
number of sampled vertices in Step (1) is np, and thus by Markov inequality, the probability
that more than 16np vertices are sampled is at most 1

16 . Also note that with probability at
least 1− 1

16 , the AGM sketch returns a true spanning forest of G[S]. In addition, since the
number of components in F is at most n, we will query the AMS sketch at most n times.
Thus if we set the error probability of the AMS sketch to be 1

16n (with an extra logn factor
in space), then with probability at least 1− 1

16 , all invocations of AMS sketches for testing if
∆C = 0 will give the correct answer. Conditioned on this event, X` defined in Step (6) is
exactly the number of connected components B of size ` in G such that all vertices in B are
sampled out, which is true since for any component C ∈ F , F2(∆C) = 0 if and only if C is a
connected component in G.

Let B1, · · · , Bscc(G) be the connected components of size at most 1
ε of G. For any

integer ` ≤ 1
ε , let B` denote the set of connected components of size ` in G, that is,

B` = {Bi : 1 ≤ i ≤ scc(G), |Bi| = `}. Let b` := |B`|. Note that scc(G) =
∑
`≤ 1

ε
b`. For any

set B, let ZB denote the indicator random variable that all the vertices in B have been
sampled. Note that Pr[ZB = 1] = p|B|. Now by the above argument, X` =

∑
B∈B`

ZB,

ICALP 2016
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and E[X`] = b` · p`. Furthermore, we have Y =
∑
`≤ 1

ε

X`

p` =
∑
`≤ 1

ε

∑
B∈B`

ZB

p` , and thus
E[Y ] =

∑
`≤ 1

ε
b` = scc(G).

Note that all ZBi
’s are mutually independent for all i, so it holds that

Var[Y ] =
∑
`≤ 1

ε

∑
B∈B`

Var[ZB ]
p2` =

∑
`≤ 1

ε

b`(p` − p2`)
p2` ≤

∑
`≤ 1

ε

b`
p`

≤
∑
`≤ 1

ε
b`

p1/ε = scc(G)
p1/ε ≤

n

p1/ε = ε2tn2/16, (1)

where we use the fact that scc(G) ≤ n, and p = (ε2tn/16)−ε. Then by Chebyshev’s inequality,

Pr[|Y − scc(G)| ≥ εtn] = Pr[|Y − E[Y ]| ≥ εtn] ≤ Var[Y ]
ε2tn2 ≤ 1/16.

By the union bound, the algorithm will succeed with probability at least 2
3 . J

3.2 Approximating the weight of minimum spanning tree
We use the previous algorithm on estimating the number of connected components to
approximate the weight of a minimum spanning tree of a weighted graph. Let W ≥ 2 be
an integer, G be a connected graph with integer edge weights from [W ] := {1, · · · ,W}, and
c(MST) be the weight of an MST of G. For any 1 ≤ ` ≤ W , let G(`) denote the subgraph
of G consisting of all edges of weight at most `. Let cc(`) denote the number of connected
components of G(`). Chazelle et al. [8] give the following lemma relating the weight of MST
to the number of connected components of G(`).

I Lemma 5 ([8]). It holds that c(MST) = n−W +
∑W−1
`=1 cc(`).

For a connected graph with integer edge weights, the weight of any MST is at least n− 1,
so it is sufficient to estimate cc(`) within an additive error of εn/(W − 1) for each `. To do
this, we can simply run W − 1 parallel instances of Theorem 4, each of which sketches a
subgraph G(`). Then the space of the algorithm will be Õ(Wn1− ε

W−1 ).

I Theorem 6. Let t ≥ 1 be any constant. There exists a single-pass dynamic stream-
ing algorithm that uses space and post-processing time O(etWn

1− ε
W−1 + εt

(W−1)t poly logn) to
compute a (1 + ε)-approximation of the weight of the MST.

We remark that Ahn et al. [2] have given a dynamic streaming algorithm for this problem
for any graph with maximum edge weight upper bounded by O(poly(n)), and their algorithm
uses space O(n · poly logn). Our algorithm uses o(n) space for any connected graph with
maximum edge weight bounded by o(logn) (for constant ε), which improves the algorithm
of [2] in this setting. We also note that Ω(n) space is necessary for estimating the weight of
MST for graphs with maximum edge weight at least c logn for constant ε and some large
universal constant c (see Theorem 12). Finally, we remark that the algorithm can also be
extended to the setting where non-integral weights are allowed (see [8] for more details).

4 Dynamic streaming testers

In this section, we give our streaming testers for k-edge connectivity and cycle-freeness. Due
to space constraints, we present the testers for k-vertex connectivity, Eulerianity and planar
graph bipartiteness in the full version of the paper.
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Algorithm 2 TestConnectivity
1: Sample each vertex with probability p := (εn/10)−ε. If more than 16np vertices are

sampled, abort and output Fail. Let S denote the set of sampled vertices.
2: For each v ∈ S, maintain an AMS sketch AMS(∆v), sketching the neighborhood of v in
G.

3: Maintain an AGM sketch of G[S] using Theorem 1.
4: Post-Processing:
5: Use the above sketch to construct a spanning forest F of G[S] as guaranteed by Theorem 1.
6: For each connected component C ∈ F , estimate F2(∆C) using the AMS sketch
AMS(∆C) =

∑
v∈C AMS(∆v). If the answer F̃2 = 0, Reject.

7: Accept.

4.1 Testing k-edge connectivity
A graph is k-edge connected if the minimum cut of the graph has size at least k. We start
from the simplest case, i.e., k = 1, which is equivalent to the problem of testing connectivity.

4.1.1 Connectivity
It is clear that if G is ε-far from being connected, one must add at least εm edges to make it
connected, which implies that there are at least εm+ 1 connected components in G [22, 36].
Therefore, we can also solve this by estimating the number connected components by setting
the error parameter appropriately, however, by a more careful analysis, we can improve this
by a factor of O(nO(ε)).

I Theorem 7. There exists a dynamic streaming tester for 1-edge connectivity that runs in
Õ(n1−ε) post-processing time and space.

Proof. First observe that one can simply reject the input graph if m < n− 1, since in this
case, the graph is disconnected. Thus, in the following we assume m ≥ n− 1 and our tester
is described in Algorithm 2.

It is easy to see that Algorithm 2 only use Õ(|S|) space, which is bounded by Õ(np) =
Õ(ε−εn1−ε) = Õ(n1−ε). The post-processing time is nearly linear in the size of S, since the
AGM algorithm needs Õ(|S|) post-processing time, and we invoke at most |S| AMS queries,
each of which takes Õ(1) time. The update time is poly logn.

For the correctness of the algorithm, we condition on the event that the number of
sampled vertices is at most 16np, which occurs with probability at least 1− 1

16 , and on the
event that the spanning forest F is constructed correctly, which occurs with probability 0.99.
By setting the error probability of the AMS sketch to be 1/n2 (with an extra logn factor in
space), with probability 0.99, all the answers from AMS sketches are all correct, and we also
condition on this.

If G is connected, then it will always be accepted, since for each C ∈ F , ∆C 6= 0, and
conditioned on the correctness of the AMS sketch, F̃2 will never be 0. On the other hand, if
the graph is ε-far from being connected, the number of connected components in G, denoted as
cc(G), is at least 1+εm ≥ εn. Let B1, · · · , Bcc(G) denote all connected components in G. Let
pi = p|Bi| for 1 ≤ i ≤ cc(G). Using the inequality 1− x ≤ e−x for all x, the probability that
none of the components is entirely sampled out is (1−p1) · (1−p2) · · · · (1−pcc(G)) ≤ e−

∑
i
pi .

Then by the AM-GM inequality, this probability is at most

e−cc(G)·(
∏

i
pi)1/cc(G)

= e−cc(G)·pn/cc(G)
≤ e−cc(G)·p1/ε

≤ e−εn·p
1/ε

≤ 1/16,
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where we use the fact that p = (εn/10)−ε and cc(G) ≥ εn. So the probability that at least
one of the components is sampled out is at least 15/16. Conditioned on this, F2(∆C) = 0
for some component in G[S] and the algorithm will output Reject. By union bound, our
algorithm will succeed with probability 1− 1

16 − 0.01− 0.01− 1
16 > 3/4. J

4.1.2 k-edge connectivity: k ≥ 2
By using a slightly more involved argument and replacing AMS sketches with (k − 1)-sparse
recovery sketches, we can generalize the above idea to testing k-edge connectivity for k ≥ 2.
We have the following theorem on testing k-edge connectivity. See the full version for the
proof.

I Theorem 8. Let k ≤ O(nε/(1+ε)). There exists a single-pass dynamic streaming tester for
k-edge connectivity with post-processing time and space O(k1+ε · n1−ε · poly logn).

4.2 Testing cycle-freeness
Now we consider the problem of testing cycle-freeness, which is equivalent to testing if the
graph is a forest. Let cc(G) denote the number of connected components of the input graph
G. Let B1, · · · , Bcc(G) be the connected components in G. Note that if G is cycle-free, then
for each i ≤ cc(G), |E(Bi)| = |Bi| − 1, and thus the total number of edges in G is

m =
cc(G)∑
i=1
|E(Bi)| =

cc(G)∑
i=1

(|Bi| − 1) = n− cc(G),

that is, cc(G) = n−m. If G is ε-far from being cycle-free, i.e., one has to delete more than
εm edges to make it cycle-free, then cc(G) > n−m+ εm. Therefore, to test cycle-freeness
of a graph, it will be sufficient to approximate the number of connected components with
additive error εm/2. One may try to directly invoke Algorithm 1 with parameter ε′ = εm

2n .
However, m could be much smaller than n and we do not know m in advance. We overcome
this obstacle by a case analysis.

I Theorem 9. There exists a single-pass dynamic streaming algorithm that tests cycle-freeness
of a graph with space and post-processing time O(n1−ε+ε2 · poly logn).

Proof. Note that if m > n− 1, then the graph must contain at least one cycle, and thus we
can safely reject the graph. In the following, we assume that m ≤ n− 1. Our algorithm for
testing cycle-freeness depends on the construction of AGM sketch, in which each vertex u
maintains a linear sketch of ∆u (denoted as A(∆u)). Each such sketch has size poly logn
and the property that A(0) = 0 (it consists of O(logn) l0-samplers, see [2] for details). Our
main idea is to maintain a sparse recovery sketch for the AGM sketch (i.e. a composition of
sparse recovery sketch and AGM sketch). Now we describe our algorithm as follows.

Note that the space used by the algorithm is max{Õ(np), k · poly logn} = Õ(n1−ε+ε2),
and the post-processing time is near linear in space. Now we prove the correctness of
the algorithm. We define G′ ⊆ G to be a subgraph which consists of all the vertices of
positive degree. Let n′ = |G′|. Note that m ≥ n′/2. If n′ ≤ n1−η, then the vector Υ is
Õ(n1−η)-sparse, since for all isolated vertices u, we have A(∆u) = 0, and thus we can recover
the entire Υ exactly. Then by Step (2) and Theorem 1, we can get the exact number of
components of G′. Since the number of vertices of G′ is |Y |, and λ = m is the total number
of edges, then the graph is cycle-free if and only if c̃1 = |Y | − λ.
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Algorithm 3 TestCycleFreeness
1: Maintain a count λ of the number of edges.
2: Let η = ε/(1 + ε+ ε2). Let k = n1−ηpoly logn. Maintain an exact k-sparse recovery

sketch S of the vector Υ := (A(∆u))u∈V using Lemma 2.
3: Run Algorithm 1 with parameter p = (22tn1−η/16)−η, while in step (6) of Algorithm 1,

ignore all the isolated vertices that are sampled out (i.e., set XC = 0 whenever |C| = 1).
4: Post-Processing:
5: Recover Υ from S.
6: if The recovery does not fail then
7: Use Υ to construct a spanning forest on vertex set Y := {u : A(∆u) 6= 0} using

Theorem 1. Let c̃1 denote the number of connected components of this forest. If
c̃1 = |Y | − λ, Accept; otherwise, Reject.

8: else
9: Let c̃2 be the resulting estimator of Algorithm 1 in Step 3. If c̃2 ≤ n− (1− ε− ε3

4 )λ,
Accept; otherwise, Reject.

10: end if

If n′ > n1−η, then by Theorem 3, c̃2 is an estimator for the number of components in G′
of size smaller than 1/η with additive error ηt

√
n′n1−η. This follows by the upper bound

η2tn1−ηn′/16 of the variance of the estimator (which can be shown similarly to inequality
(1) in Section 3) and the Chebyshev’s inequality. Now note that the additive error is at
most ηtn′ ≤ ε3m/8 for some constant t since n′ > n1−η and m ≥ n′/2. Let L be the number
of components in G′ of size larger than 1/η, then −ε3m/8 ≤ cc(G′) − c̃2 ≤ L + ε3m/8
holds with high probability. Conditioned on this, Step (8) outputs the correct answer if
L+ ε3m/8 + ε3m/8 = L+ ε3m/4 < εm. Now if L < εm/4, we are done. If L ≥ εm/4, then
by our choice of η and the fact that m ≥ L · (1/η − 1), εm ≥ L+ Lε2 ≥ L+ ε3m/4. This
completes the proof of the theorem. J

5 Lower bounds

In this section we present lower bounds, which hold in the insertion-only model. Our proofs
are based on the reductions to the Boolean Hidden Hypermatching (BHH) problem (See [41]),
which are in the same spirit as the lower bound proof for the Cycle Counting problem in [41].
We first give the definition of the boolean hidden hypermatching problem.

I Definition 10 (BHHtn). In this problem, Alice gets a boolean vector x ∈ {0, 1}n, where n =
2kt for some integer k. Bob gets a partition (or hypermatching) of the set [n], {m1, · · · ,mn/t},
where the size of each mi is t, and a vector w ∈ {0, 1}n/t. For convenience, we will also use
the corresponding n-dimensional boolean indicator vector Mi to represent mi, and let M be
a n/t× n matrix, the i row of which is Mi. The promise of the input is either Mx+ w = 1
or Mx+w = 0, where all the operations are modulo 2. The goal of the problem is to output
1 when Mx+ w = 1, and output 0 otherwise.

I Theorem 11 ([41]). The randomized one-way communication complexity of BHHtn when
n = 2kt for some integer k ≥ 1 is Ω(n1−1/t).

Our lower bounds will be built upon the following basic construction.

Construction of G(x, M). Given vector x and matrix M respectively, Alice and Bob
construct a bipartite graph G(x,M) = (U, V,E), where U = {u1, · · · , u2n} and V =
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v2i−1

v2i

u2i−1

u2i

v2i−1

v2i

u2i−1

u2i

xi = 0 xi = 1

Figure 1 Parallel (left) and crossing (right) matching according to the value of xi.

v2mi,j−1

v2mi,j u2mi,j

v2mi,j+1−1

v2mi,j+1

u2mi,j+1−1

u2mi,j+1

xmi,j
= 0 xmi,j+1

= 1

u2mi,j−1

Figure 2 Bob connects (u2mi,j −1, v2mi,j+1−1) and (u2mi,j , v2mi,j+1 ) for each j ∈ [t− 1].

{v1, · · · , v2n}, as follows. Given x ∈ {0, 1}n, Alice adds a perfect matching between U

and V . For each i ∈ [n], if xi = 0, she adds two parallel edges (u2i−1, v2i−1) and (u2i, v2i);
otherwise if xi = 1, she adds two crossing edges (u2i−1, v2i) and (u2i, v2i−1) (see Figure 1).

Given M , Bob will do the following. For each i ∈ [n/t] and the hyperedge mi ⊂ [n] (that
corresponds to the ith row Mi), we use mi,j ∈ [n] to denote the jth element in mi and we
let Si := {w|w = v2mi,j−1 or v2mi,j or u2mi,j−1 or u2mi,j , j ∈ [t]}. For each i ∈ [n/t] and
j ∈ [t− 1], Bob adds two edges (u2mi,j−1, v2mi,j+1−1) and (u2mi,j

, v2mi,j+1) (See Figure 2).
Observe that the edges added by Alice and Bob form two paths p2i−1, p2i over vertex

set Si, where p2i−1 starts from v2mi,1−1 and p2i starts from v2mi,1−1 for each i. The entire
graph G(x,M) consists of 2n/t disjoint paths {p1 · · · , p2n/t}.

Note that G(x,M) has the following property. Based on the value of (Mx)i, we have: 1)
if (Mx)i = 0, then p2i−1 is a path from v2mi,1−1 to u2mi,t−1 and p2i is a path from v2mi,1 to
u2mi,t ; 2) if (Mx)i = 1, then p2i−1 is a path from v2mi,1−1 to u2mi,t and p2i is a path from
v2mi,1 to u2mi,t−1.

5.1 Minimum spanning tree

I Theorem 12. In the insertion-only model, if all edges of the graph have weights in [W ],
any algorithm that (1± ε)-approximates the weight of the MST must use Ω(n1− 4ε

W−1 ) bits of
space.

Proof. Given x and M , Alice and Bob first construct the graph G(x,M) as describe above.
Next Bob adds (u2mi,t−1, v2mi,1−1) and (u2mi,t

, v2mi,1) if wi = 0; adds (u2mi,t−1, v2mi,1) and
(u2mi,t

, v2mi,1−1) if wi = 1. The weight of all the edges added so far is 1. Next Bob places
edges (v2mi,t , v2mi+1,1) with weight 1 for i = 1, · · · , n/t − 1 and edges (v2mi,t , u2mi,t) with
weight W for each i ∈ [n/t], so that the graph become connected. By similar argument
as above, if Mx + w = 0, all the edges (v2mi,t , u2mi,t) must be picked in any minimum
spanning tree, since each of these edges forms a cut, and thus the weight of any MST is
nW/t + 4n − n/t − 1 = 4nε + 4n − 1, where we set t = (W − 1)/4ε. On the other hand,
when Mx+ w = 1, the weight of the MST is 4n− 1, since in this case, the graph is already
connected without those edges with weight W . So if the algorithm can compute an (1 + ε)-
approximation of the weight of the minimum spanning tree, it solves the BHHtn problem.
This completes the proof. J



Z. Huang and P. Peng 18:13

5.2 Testing connectivity

I Theorem 13. In the insertion-only model, to distinguish whether a graph of 4n vertices is
connected or 1

8t+1 -far from being connected, any algorithm must use Ω(n1−1/t) bits of space.

Proof. Given x and M , Alice and Bob first construct the graph G(x,M). Next Bob
adds another set of edges based on vector w. If wi = 0, he adds (u2mi,t−1, v2mi,1−1)
and (u2mi,t

, v2mi,1); if wi = 1, he adds (u2mi,t−1, v2mi,1) and (u2mi,t
, v2mi,1−1). So when

(Mx)i+wi = 0, p2i−1 and p2i become 2 disjoint cycles. On the other hand, when (Mx)i+wi =
1, p2i−1 and p2i together form a larger cycle. Now Bob places (v2mi,t

, v2mi+1,1) in E for
i = 1, · · · , n/t − 1 which connect p2i with p2(i+1) for all i ∈ [n/t − 1], i.e. all the paths in
G(x,M) with even indices become a connected component. The total number of edges is
8n + n/t. When Mx + w = 0, the graph has n/t + 1 components which is 1

8t+1 -far from
connected; when Mx + w = 1 the graph is connected. So if a streaming algorithm can
distinguish whether a graph of size 4n is connected or 1/8t-far from being connected, it
solves BHHtn, since Alice can first run the algorithm on her part of the graph and send the
memory to Bob, and then Bob continues to run the algorithm on his part and output the
answer. Therefore, the communication lower bound of BHHtn implies a space lower bound of
testing connectivity. J

5.3 Testing cycle-freeness

As in the proof of Theorem 13, given x and M , Alice and Bob first construct G(x,M). Then,
for i ∈ [n/t], Bob adds (u2mi,t−1, v2mi,1−1) if wi = 0; adds (u2mi,t−1, v2mi,1) if wi = 1. The
total number of edges is less than 8n. Through similar arguments, it is easy to verify that
if if Mx + w = 0, the graph has exactly n/t cycles and n/t paths, which is 1/8t-far from
cycle-free. On the contrary, if Mx+ w = 1, the graph has n/t paths and no cycle. So if an
algorithm can distinguish whether a graph of size 4n is cycle-free or 1/8t-far from cycle-free,
it solves BHHtn.

I Theorem 14. In the insertion-only model, any algorithm that can distinguish whether a
graph of 4n vertices is cycle-free or 1/8t-far from being cycle-free, must use Ω(n1−1/t) bits of
space.

5.4 Testing bipartiteness of planar graphs

Alice and Bob first construct the graph G(x,M). Next, for each i ∈ [n/t], Bob adds edges
(v2mi,1−1, ξ1) and (v2mi,1 , ξ2), where ξ1, ξ2 are new vertices. For i ∈ [n/t], Bob also adds
(u2mi,t−1, ξ1) and (u2mi,t

, ξ2) if wi = 0; adds (u2mi,t−1, ξ2) and (u2mi,t
, ξ1) if wi = 1. For this

problem we assume t is odd. So by similar arguments, we can easily verify that, ifMx+w = 0,
the graph contains 2n/t edge-disjoint cycles of length 2t+ 1, and if Mx+ w = 1, the graph
has no odd cycle, and thus bipartite. The graph constructed is planar and has 4n+ 2 vertices
and 8n+ 4n/t edges, so we have the following lower bound for testing bipartiteness.

I Theorem 15. In the insertion-only model, any algorithm that can distinguish whether
a planar graph of 4n + 2 vertices is bipartite or 1

4t+2 -far from being bipartite, must use
Ω(n1−1/t) bits space.
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Abstract
In this paper we develop streaming algorithms for the diameter problem and the k-center clus-
tering problem in the sliding window model. In this model we are interested in maintaining a
solution for the N most recent points of the stream. In the diameter problem we would like to
maintain two points whose distance approximates the diameter of the point set in the window.
Our algorithm computes a (3 + ε)-approximation and uses O(1/ε lnα) memory cells, where α is
the ratio of the largest and smallest distance and is assumed to be known in advance. We also
prove that under reasonable assumptions obtaining a (3 − ε)-approximation requires Ω(N1/3)
space.

For the k-center problem, where the goal is to find k centers that minimize the maximum
distance of a point to its nearest center, we obtain a (6 + ε)-approximation using O(k/ε lnα)
memory cells and a (4 + ε)-approximation for the special case k = 2. We also prove that any
algorithm for the 2-center problem that achieves an approximation ratio of less than 4 requires
Ω(N1/3) space.
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1 Introduction

Analyzing big data sets from streams is a topic that has received considerable attention
among theoretical and applied researchers. One of the most popular summarization and
aggregation tasks studied in this context is to determine k clusters that represent key features
of the input data with respect to certain properties.

In this paper we focus on variants of the k-center problem where we aim to find k points
such that the maximum distance over all points to their closest center is minimized.

In the standard streaming setting, we constrain our algorithms to use as little space as
possible while computing high-quality solutions. The complexity of clustering in general
and k-center in particular is well understood for insertion-only streams where input points
arrive one by one. The more general settings like dynamic streams and the sliding window
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19:2 Diameter and k-Center in Sliding Windows

model have also received some attention for other clustering objectives. Both models aim to
incorporate dynamic behavior; in dynamic streams input points are removed via a dedicated
delete operation and in the sliding window model older input expires as new elements arrive.
In this paper, we consider a fixed window size consisting of N points, which is the most
widely studied variant of this model in theoretical computer science, but our algorithms also
work in the case that the maximum number of points within the window is a function of
time.

Our Contribution

The metric diameter problem is to find two points of maximum distance among a set of points
lying in some metric space. For this problem, we give a (3+ε)-approximation algorithm in the
sliding window model that stores O( 1

ε logα) points, where α = maxp,q dist(p,q)
minp,q dist(p,q) is the ratio of

largest and smallest possible distance between the points. This is a substantial improvement
over the best and to our knowledge only sliding window algorithm for diameter in general
metric spaces by Chan and Sadjad [8] which computes a (2m+2 − 2 + ε) approximation with
O(N1/(m+1) logα) points for any m > 0.

Under reasonable assumptions (which are common for our model of computation), we
obtain a lower bound of Ω( 3

√
N) for any algorithm achieving a 3− ε approximation to the

diameter problem for any ε > 0.
To our knowledge there exists no previous work on k-center in sliding windows. For 2

centers our diameter algorithm yields a (4 + ε)-approximate clustering. Under the afore-
mentioned assumptions, we are also able to obtain a matching lower bound. For arbitrary
values of k, we are able to obtain a (6 + ε)-approximate algorithm using O(k/ε logα) points
in metric spaces.

Techniques

The popular histogram approaches introduced by Datar et al. [12] and Braverman and
Ostrovsky [6] do not seem to be applicable to max-norm objectives such as diameter and
k-center. Our algorithm for the diameter (see Section 3) aims to find for each estimate
of the value γ of the diameter two certificate points with distance greater than γ, while
maintaining the two most recent points close to the two points forming the certificate. With
every additional input point, we check whether we are able to update the certificate to a
more recent timestamp.

For our lower bounds, we utilized the fact that any algorithm working in the metric
distance model is restricted to storing only input points. For deterministic algorithms, we are
then able to insert an appropriately hard instance based on the points forgotten by the input.
For randomized algorithms, we add additional points in which we hide a hard, randomly
chosen instance for deterministic algorithms. A more in-depth description of our approach
as well as a discussion on the generality of our results can be found in Section 5.

The analysis of the 2-center algorithm is similar to that of the popular 2-approximation
by Gonzales [14] and Hochbaum and Shmoys [16]. Since it does not yield an approximation
of the optimum value, this technique seems difficult to generalize for larger values of k.

Related Work
Diameter

Feigenbaum et al. [13] were the first to consider the diameter in the sliding window model. For
d dimensions in Euclidean space, their algorithm uses O(

( 1
ε

)(d+1)/2 log3 N(logα+ log logN +
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1
ε )) bits of space. They also give a lower bound of Ω( 1

ε logN logα) for a (1+ε) approximation
factor in one dimension and, implicitly, a Ω(logα) space bound for any multiplicative
approximation factor. This lower bound was later matched by Chan and Sadjad [8], who also
gave an improved space bound of O(

( 1
ε

)(d+1)/2 log α
ε ) points for higher dimensions. For more

general metric spaces, they obtain a (2m+2 − 2 + ε) approximation with O(N1/(m+1)) points.
In the metric distance oracle model (formally defined in Section 2) there exists a folklore

2 approximation that maintains the first point p and the point with maximum distance from
p. Guha [15] showed this algorithm to be essentially optimal, as no algorithm storing less
than Ω(n) points can achieve a ratio better than 2− ε for any ε > 0. For Euclidean spaces,
the best streaming algorithm with a polynomial dependency on d is due to Agarwal and
Sharathkumar [2] with an almost tight approximation ratio of

√
2 + ε in O(dε−3 log(1/ε))

space. Agarwal et al. [1] proposed a (1 +ε)-approximation using O(ε−(d−1)/2) points. Similar
space bounds seem likely for dynamic streams although none have been published to our
knowledge. For large d, Indyk [17] gave a sketching scheme with approximation factor c >

√
2

and space O(dn1/(c2−1) logn).

k-Center

In one of the earliest works on clustering in streams, Charikar et al. [9] gave a number of
incremental clustering algorithms for metric k-center, among other results. While storing
no more than k + 1 points at any given time, they were able to derive a deterministic
8 approximation and a randomized 2e ≈ 5.437 approximation. They also show that no
incremental algorithm can be better than 3. McCutchen and Khuller [19] and Guha [15]
independently derived a (2 + ε)-approximate algorithm using O(k/ε log 1/ε) space, with
Guha giving an almost tight lower bound of Ω(n) space for any algorithm achieving a better
approximation ratio than 2. In their paper, McCutchen and Khuller [19] also studied the
problem with z outliers, giving a (4 + ε) approximate algorithm that stores O(ε−1kz) points,
see also Charikar et al. [10] for an earlier treatment of the problem. Further improvements
are possible in Euclidean spaces. Zarrabi-Zadeh showed how to maintain ε-coresets in streams
using O(kε−d) points for k-center [20]. For small values of k, Kim and Ahn [18] were able
to break the 2 barrier without having an exponential dependency on d, giving a 1.8 + ε

approximation while storing O(2k(k+ 3)!ε−1) points. The special case of k = 1 for Euclidean
distances also known as the minimum enclosing ball problem is one of the most extensively
studied topics in streaming literature. We only review the best known bounds. Zarrabi-
Zadeh gave an insertion-only algorithm storing O(ε−(d−1)/2 log 1/ε) points [21]. Agarwal and
Sharathkumar [2] showed that no algorithm with polynomial dependency on d can achieve a
better approximation ratio than (1 +

√
2)/2 ≈ 1.207 and provided an algorithm which after

a re-analysis by Chan and Pathak [7] is now known to give a 1.22 approximation with space
roughly O(d).

We are not aware of any work on k-center in sliding windows, though Babcock et al. [3]
and more recently Braverman et al. [4, 5] gave a O(1) approximation for metric and a (1 + ε)
approximation for Euclidean k-median and k-means problems. The related problem of cut
sparsification has also received some attention, see Crouch et al. [11].

The structure of the paper is as follows. Section 2 introduces the model and the definitions.
Section 3 is dedicated to the description and analysis of our algorithm for the diameter
problem. The analysis and description of our algorithm for the k-center problem is in Section
4. Finally, Section 5 contains the lower bounds for both the diameter and k-center problems.
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19:4 Diameter and k-Center in Sliding Windows

Algorithm 1 Sliding Window Algorithm for (γ, 3 · γ)-gap Diameter

1: cold, q, r ← first point of the stream;
2: cnew ← null;
3: for all element p of the stream do
4: if certificate point cold expires then
5: if (cnew 6= null ∧ cold = q) then
6: cold ← r; cnew ← null;
7: if (cnew 6= null ∧ cold 6= q) then
8: cold ← q; cnew ← null;
9: if cnew = null then

10: cold ← r;
11: INSERT(p);
12: r ← p;

13: procedure Insert(p)
14: if cnew = null then
15: if dist(p, r) > γ then
16: cold, q ← r; cnew ← p;
17: else if dist(p, cold) > γ then
18: q ← r; cnew ← p;
19: else
20: if dist(p, r) > γ then
21: cold, q ← r; cnew ← p;
22: else if dist(p, cnew) > γ then
23: cold ← cnew; q ← r; cnew ← p;
24: else if dist(p, q) > γ then
25: if cold 6= q then
26: cold ← q; q ← r; cnew ← p;

2 Preliminaries

Let (A, dist) be a metric space where A is a set of points and dist : A×A 7→ R+ is a distance
function. A stream is a (potentially infinite) sequence of points from the metric space A
(note that a point can be appear multiple times in the stream). The sliding window of size
N contains the most recent N elements of the stream.

We introduce the Time To Live value of a point p: Upon insertion TTL(p) is set to the
window size N and with each subsequently inserted point it is decremented. We say that p
expires if TTL(p) = 0. We extend the common use of TTL to negative numbers to indicate
the number of points submitted after expiration, i. e., TTL(p) = −10 means that 10 points
were submitted after the expiration of p. We define the aspect ratio α = maxp,q∈A dist(p,q)

minp,q∈A dist(p,q) .
To query the distance between two points p and q, we invoke a distance oracle dist(p, q). We
assume that the oracle can accessed only for those points we currently keep in memory and
that the oracle itself requires no additional space.

3 The Metric Diameter Problem

For a given estimate γ of the diameter, our algorithm for the metric diameter problem either
produces two witness points at distance greater than γ or a point c that has a certain degree
of centrality among the points in the current window. More formally, all points of the window
inserted up to the insertion time of c will be proven to have distance at most 2γ from one
another and points inserted after c will have distance at most γ from c. Thus, the diameter
is at most 3γ.

Specifically, Algorithm 1 aims at maintaining a certificate for the diameter consisting
of two points cold and cnew such that dist(cold, cnew) > γ and TTL(cold) < TTL(cnew). In
addition, we also store the point q submitted immediately prior to cnew and the most recent
point r. When a new point arrives, we test whether, based on the points we currently keep in
memory, we can produce two points each with a larger TTL than TTL(cold) with distance
more than γ. If we find such a pair, we update the points accordingly, if not we update r
and possibly q.
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The algorithm has two different states depending on whether it found a pair of points of
distance more than γ or not. The first state is indicated by cnew = null and corresponds to
the case that no such pair of points has been found. In this case, the algorithm maintains
the following invariant, which certifies that the diameter of the points in the sliding window
is at most 3 · γ.

We first observe that cold is always inside the sliding window.

I Invariant 1. If cnew = null, the following statements hold:
(a) For any points a, b with 0 ≤ TTL(a), TTL(b) ≤ TTL(cold), we have dist(a, b) ≤ 2 · γ.
(b) For any point a with TTL(a) > TTL(cold), we have dist(a, cold) ≤ γ.

The second state corresponds to the case that we discover two points cold and cnew with
distance more than γ and is indicated by cnew 6= null. Besides the obvious invariant that
TTL(cnew) > TTL(cold), we also have to maintain the following technical invariants that
are required for a new assignment of cold when it expires from the window.

I Invariant 2. If cnew 6= null then the following statements hold:
(a) dist(cold, cnew) > γ.
(b) For any point a with TTL(cold) < TTL(a) < TTL(cnew), we have dist(a, cold) ≤ γ.
(c) For any point a with TTL(cnew) < TTL(a), we have dist(a, cnew) ≤ γ.
(d) If cold 6= q then for any point a with TTL(q) < TTL(a), we have dist(a, q) ≤ γ.

We observe that all the invariants hold initially, i.e. before line 3 of the algorithm is
executed the first time. We also observe that Invariants 2a)-d) only apply to points that
appear after cold. It suffices to focus on these points because we only change cold to points
that arrive later and so we maintain our certificate at least until the time when cold expires
(and so all earlier points are gone).

I Lemma 1. If cnew = null and Invariant 1 is satisfied before INSERT then one of the
following statements holds:
1. If cnew = null after line 12 then Invariant 1 is satisfied.
2. If cnew 6= null after line 12 then Invariant 2 is satisfied.

Proof. We never execute lines 19–26 of INSERT. If dist(p, r) > γ then cnew 6= null and
Invariant 2(a) holds due to line 16, Invariant 2(b) holds due to the fact that there exists no
point a with TTL(cold) < TTL(a) < TTL(cnew), Invariant 2(c) holds due to the fact that
there exists no point a with TTL(cnew) < TTL(a), and Invariant 2(d) holds due to cold = q.
If dist(p, r) ≤ γ and dist(p, cold) > γ then cnew 6= null, and Invariant 2(a) holds due to line
18, Invariant 2(b) holds due to Invariant 1(b), Invariant 2(c) holds due to the fact that there
exists no point a with TTL(cnew) < TTL(a), and Invariant 2(d) holds due to r = q (before
line 12) and line 15. If dist(p, r) ≤ γ and dist(p, cold) ≤ γ then Invariant 1 continues to be
satisfied for all points with TTL smaller than p and for the point p due to line 17. J

I Lemma 2. If cnew 6= null and Invariant 2 is satisfied before INSERT, then Invariant 2 is
satisfied after line 12.

Proof. If dist(p, r) > γ then Invariant 2(a) holds due to line 21, Invariant 2(b) holds due to the
fact that there exists no point a with TTL(cold) < TTL(a) < TTL(cnew), Invariant 2(c) holds
due to the fact that there exists no point a with TTL(cnew) < TTL(a), and Invariant 2(d)
holds due to cold = q. If dist(p, r) ≤ γ and dist(p, cnew) > γ then Invariant 2(a) holds due to
line 23, Invariant 2(b) and 2(d) hold due to Invariant 2(c) before INSERT, and Invariant 2(c)
holds due to the fact that there exists no point a with TTL(cnew) < TTL(a). If dist(p, r) ≤ γ
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19:6 Diameter and k-Center in Sliding Windows

and dist(p, cnew) ≤ γ, and dist(p, q) > γ and q 6= cold then Invariant 2(a) holds due to line
26, Invariant 2(b) holds due to Invariant 2(d) before INSERT, Invariant 2(c) holds due to the
fact that there exists no point a with TTL(cnew) < TTL(a), and Invariant 2(d) holds due to
q = r and line 20. If dist(p, r) ≤ γ and dist(p, cnew) ≤ γ, and dist(p, q) > γ and q = cold or
dist(p, q) ≤ γ, the Invariants 2(a)–(d) hold for all points except for the newest, for which the
invariants hold due to lines 20, 22, 24 and 25. J

I Lemma 3. If cnew = null and Invariant 1 is satisfied before the line 4, then it is satisfied
before INSERT (line 11).

Proof. If cold does not expire, then the claim obviously holds. Otherwise we execute line
10. Let c′old be the expired point. Then we have for any two points a, b with TTL(c′old) <
TTL(a), TTL(b) ≤ TTL(r) dist(a, c′old), dist(b, c′old) ≤ γ due to Invariant 1(b) before line 4
and hence dist(a, b) ≤ 2γ. Invariant 1(b) follows from cold = r. J

I Lemma 4. If cnew 6= null and Invariant 2 is satisfied before the line 4, then one of the
following statements holds before INSERT (line 11):
1. cnew = null and Invariant 1 is satisfied.
2. cnew 6= null and Invariant 2 is satisfied.

Proof. If cold does not expire the second claim immediately holds. Otherwise, we denote by
c′old the expired point. If c′old = q, then we execute line 6. We set cold = r, naturally satisfying
Invariant 1(b). Further, at this time we have TTL(cnew) = 1, and for any two points a, b
with TTL(cnew) ≤ TTL(a), TTL(b) ≤ TTL(r) we have dist(a, cnew), dist(b, cnew) < γ due
to Invariant 2(c) before line 4 and hence dist(a, b) ≤ 2γ, satisfying Invariant 1(a).

If c′old 6= q, then we execute line 8. We set cold = q. For any two points a, b with
TTL(c′old) < TTL(a), TTL(b) < TTL(cnew) dist(a, c′old),dist(b, c′old) ≤ γ due to Invari-
ant 2(b) before line 4 and hence dist(a, b) ≤ 2γ, satisfying Invariant 1(a). For all points a
with TTL(a) > q, Invariant 1(b) after line 12 follows from Invariant 2(d) before line 4. J

The proof of the theorem is a direct consequence of the invariants but included for
completeness.

I Theorem 5. Given a set of points A with aspect ratio α and a window of size N , there
exists an algorithm computing a 3(1+ε)-approximate solution for the metric diameter problem
storing at most 8/ε · lnα points. The update time per point is O(ε−1 logα).

Proof. For any given estimate γ, we either have two points at distance at least γ, or
Invariant 1 holds. In the latter case, we can bound the maximum diameter of two points p
and q via the following case analysis.
T T L(p), T T L(q) ≤ T T L(cold): Then dist(p, q) ≤ 2γ.
T T L(p) ≤ T T L(cold) < T T L(q): Then dist(p, q) ≤ dist(p, cold) + dist(cold, q) ≤ 3γ.
T T L(cold) < T T L(p), T T L(q): Then dist(p, q) ≤ dist(p, cold) + dist(cold, q) ≤ 2γ.
Now define an exponential sequence to the base of (1 + ε), such that any value between
min dist(p, q) and max dist(p, q) is (1 + ε) approximated. For each power of (1 + ε), we run
Algorithm 1. Let γ be the largest value for which one of the instances of Algorithm 1 returns
two points. The next larger estimate γ · (1 + ε) guarantees us no diameter of size 3(1 + ε)γ,
proving an approximation guarantee of at most 3(1+ε)γ

γ = 3(1 + ε) The memory usage of the
algorithm consists of 4 points per instance of Algorithm 1 and log1+ε α = lnα

ln(1+ε) ≤
2
ε lnα

instances. J
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I Remark. To adapt this algorithm for windows where the maximum number of points are
time dependent (e. g., the diameter of all points seen in the last hour) rather than the last N
points, we can simply decouple the insertion procedure from the deletion routine. Whenever
a point we currently keep in memory expires, we execute lines (4-10) and whenever a new
point arrives, we call the INSERT procedure and line 12. Neither the invariants nor the proofs
are affected in any way by this change.

4 The k-Center Problem

A 4-Approximation for Metric 2 Center
We run Algorithm 1 and show that, in the case of k = 2, it outputs a solution of cost
at most 4 times the optimal solution. More precisely, let γ be the smallest estimate such
that Algorithm 1 produces one point c with dist(q, c) ≤ 2γ for any point q in the current
window. Further let a and b be the two points at distance greater than γ

1+ε outputted by
Algorithm 1 for the next smaller estimate. W.l.o.g let dist(a, c) ≥ dist(b, c). Then {a, c}
form a 4 approximation.

I Theorem 6. Given a set of points A with aspect ratio α and a window of size S, there
exists an algorithm computing a 4(1+ε)-approximate solution for the 2-center problem storing
at most 8/ε · lnα points. The update time per point is O(ε−1 logα).

Proof. For c, the conditions of Invariant 1 apply, i.e. for any point p in our current window,
we have dist(p, c) ≤ 2γ. We now distinguish between two cases.
OPT ≥ γ

2(1+ε) : We have dist(p, {a, c}) ≤ dist(p, c) ≤ 2γ ≤ 4 · (1 + ε) ·OPT.
OPT < γ

2(1+ε) : We first observe that a and b each fall into distinct clusters as their pairwise
minimum distance is at least γ

1+ε . If a and c lie in distinct clusters, we have a 2-
approximate solution, so we assume this not be the case. Then dist(a, c) ≤ 2 ·OPT and by
construction, dist(a, c) ≥ dist(b, c). Then for any point p in the same cluster as b we have
dist(p, b) ≤ 2 ·OPT and hence dist(p, c) ≤ dist(p, b) + dist(b, c) ≤ 2 ·OPT + 2 ·OPT =
4 ·OPT.

The proof of the space bound is analogous to that of Theorem 5. J

6-Approximation for Metric k-Center
A high level description of our algorithm is as follows, see also Algorithm 2 for pseudocode. We
maintain a set A of at most k+1 attraction points. For each attraction point a, we maintain the
newest point R(a) within radius 2γ as a representative, i.e. R(a) = argmax

p: dist(p,a)≤2γ
TTL(R(a)).

When an attraction point expires, the representative point remains in memory. Call the set
of representative points whose attraction points expired, the orphaned representatives O,
and the set of representative points whose attraction points are still in the current window
active representatives R. A new point p may become an attraction point if its distance is
greater than 2γ to any point in A upon insertion. If the cardinality of A is greater than k,
we retain the newest k+ 1 attraction points of A and all points with a greater TTL than the
minimum TTL of A.

When asked to provide a clustering, we iterate through all estimates and either provide a
counter example, or find a clustering which is then guaranteed to be a 6(1+ε)-approximation.
Our set of centers C first consists of an arbitrarily chosen point p ∈ A ∪R ∪O. Thereafter
we greedily add any point point q ∈ A ∪ R ∪ O with distance dist(q, C) > 2γ. If upon
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19:8 Diameter and k-Center in Sliding Windows

termination |C| > k, we have a certificate for OPT > γ and move to the next higher estimate.
The smallest estimate with |C| ≤ k is then guaranteed to be a 6 approximation.

We start by giving the space bound.

Algorithm 2 Sliding Window Algorithm for (γ, 6 · γ)-gap k-Center

1: A,R,O ← ∅;
2: for all element p of the stream do
3: if q ∈ O expires then
4: O ← O \ {q};
5: if a ∈ A expires then
6: DELETEATTRACTION(a);
7: INSERT(p);
8: procedure DeleteAttraction(a)
9: O ← O ∪ {R(a)};

10: R← R \ {R(a)};
11: A← A \ {a};

12: procedure Insert(p)
13: D ← {a ∈ A | dist(p, a) ≤ 2 · γ};
14: if D = ∅ then
15: A← A ∪ {p}
16: R(p)← p

17: R← R ∪ {R(p)}
18: if |A| > k + 1 then
19: aold ← argmin

a∈A
TTL(a);

20: DELETEATTRACTION(aold);
21: if |A| > k then
22: t← min

a∈A
TTL(a);

23: for all q ∈ O do
24: if TTL(q) < t then
25: O ← O \ {q};
26: else
27: for all a ∈ D do
28: Exchange R(a) with p in R;

I Lemma 7. At any given time, the number of points kept in memory is bounded by at most
3(k + 1).

Proof. We number all attraction points we keep in memory via the sequence in which they
arrived, i.e. a1 is the first attraction point, a2 the second, etc. Call this sequence S. Note
that in this sequence a1 also expires before a2.

At any given time, we maintain at most k + 1 attraction points A and k + 1 active
representative points R due to lines 18-20 and the subroutine DELETEATTRACTION (lines
8-11). What remains to be shown is that the number of orphaned representative points O
also never exceeds k + 1.

First, we show that TTL(ai+k+1) > TTL(R(ai)) ≥ TTL(ai). We distinguish between two
cases. If ai expires, then ai+k+1 gets inserted after ai exits the window, hence TTL(ai+k+1) >
N + 1 +TTL(ai) and TTL(R(ai)) +N ≤ TTL(ai). Otherwise, ai gets deleted via lines 18-20
in the exact same time step in which ai+k+1 got inserted, in which case the claim also holds.

Now consider any point of time and let j be the maximum index of any attraction point
in S that has expired. By the above reasoning, any representative spawned by aj−(k+1) is no
longer in memory, and the space bounds holds. J

I Lemma 8. Let P be a set of points in a given window, γ > 0 an estimate of the
clustering cost, A ∪R ∪O the set of points we currently keep in memory with |A| ≤ k. Then
max
q∈P

dist(p,R ∪O) ≤ 4γ.
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Proof. We note that for any attraction point a, the representative R(a) has maximum TTL

among all points with distance at most 2γ. When a point p arrives, it has distance at most
2γ to some attraction point (which may be identical to p if we create a new one). Hence, if
R(a) is still in memory, the claim holds for p.

We now argue that by executing lines 18-25, all points p with dist(p,R ∪O) > 4γ have
TTL(p) < min

a∈A
TTL(a). If TTL(p) > min

a∈A
TTL(a), then there exists an attraction point

a′ such that dist(p, a′) ≤ 2γ. Then we have TTL(R(a′)) ≥ TTL(p) > min
a∈A

TTL(a) and
dist(p,R(a′)) ≤ 4γ. Due to lines 24-25, R(a′) is never deleted until it expires. J

Combining these lemmas and using arguments analogous to those of the proof of The-
orem 5, we have:

I Theorem 9. Given a set of points P with aspect ratio α and a window size N , there exists
an algorithm computing a 6(1 + ε)-approximate solution for the metric k-center problem
storing 6(k + 1) ln(α)/ε) points. The update time per point is O(k2ε−1 logα).

Proof. Again define an exponential sequence to the base (1 + ε) and run Algorithm 2 in
parallel for all powers of (1 + ε) as objective value estimates. The space bound then follows
from Lemma 7.

For each estimate γ, we greedily compute a clustering of A ∪R ∪O where the pairwise
distance between centers is greater than 2γ. Now consider the smallest estimate γ′ for which
the greedy clustering requires at most k centers C.

We have max
p∈A∪R∪O

dist(p, C) ≤ 2γ′. We further have for any point q in the current window

max
q∈P

dist(q, C) ≤ max
q∈P

dist(q,R ∪O) + max
p∈A∪R∪O

dist(p, C) ≤ 4γ′ + 2γ′ ≤ 6γ′ due to Lemma 8.

Since we have OPT > γ′

1+ε , C is a 6(1 + ε) approximation. J

5 Lower Bounds

Our lower bounds for the studied problems hold for the metric oracle distance model.
Whenever we wish to know the distance between two points p, q, we have to store the points
in their entirety in order to invoke the oracle. The fundamental assumption used in the
proofs of this section is that the algorithm cannot create new points, unlike, for instance, in
Euclidean spaces, where we can store projections, means and similar points. In particular,
this implies that once a point is discarded by the algorithm, it cannot be recalled by any
means at a later date. Without any assumptions as to how the points are encoded, we
measure the space complexity of an algorithm via the number of stored points, rather than
the number of bits. We do not consider the space required to store the distance oracle, the
TTL of each point or any other information we might wish to store. A similar reasoning can
be also found in the paper by Guha [15], where the author was able to derive a lower bound
of Ω(k2) points for any deterministic single-pass streaming algorithm approximating the cost
of the optimal k-center clustering up to a factor 2 + 1/k.

We first describe an adversarial input sequence for deterministic algorithms for the
diameter problem and give a proof for randomized algorithms. With some modification,
these ideas can be extended to the k-center problem, as well. We aim for a lower bound of
Ω(
√
N) points for deterministic algorithms. We divide the input into

√
N buckets containing√

N points each. Unless the distances between two points are further specified, we will
set these distances to 1. Denote the ith bucket by Bi and the jth point of bucket Bi by
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pi,j with i, j ∈ {0, . . . ,
√
N − 1}. The points appear bucket by bucket, that is, pi,j is the

i ·
√
N + j + 1th input point.
We assume that an algorithm always stores less than

√
N points. Therefore, the algorithm

must discard at least one point of bucket Bi before reading the first point of bucket Bi+1.
Let fi be such a discarded point in Bi. To any point from some bucket Bj , j > i, we then
set the distance to fi to be 2. By the same reason, there is at least one bucket without any
stored points when the N + 1st input point is read. Let Bt be this bucket. We now introduce
the N + 1st input point p that satisfies the distances dist(p, pi,j) = 1 if i > t, dist(p, pi,j) = 3
and dist(p, pi,j) = 2 otherwise.

We proceed to insert copies of p until all points in buckets Bi with i < t are expired.
Therefore, there is no pair of points in memory with distance larger than 1. The algorithm
can only output two points at distance 1 whereas the true diameter is 3.

I Theorem 10. For windows of size N , any deterministic sliding window algorithm outputting
a solution of cost greater than 1

3OPT for the distance oracle metric diameter problem with
constant aspect ratio requires Ω(

√
N) points.

Recall that the algorithm by Chan and Sadjad [8] achieves a 2m+2 − 2 + ε approximation
using O(N1/(m+1) logα) points, and it also falls under the same computational restrictions
for the algorithms of this lower bound. Therefore, this lower bound cannot be strengthened
by much, as their algorithm achieves a better approximation than 3 using roughly N0.76

points by setting m < log 5/4.
To utilize this instance for randomized algorithms, we require two modifications. First, we

add additional points per bucket and uniformly choose fi such that a randomized algorithm
has little chance of retaining the correct point per bucket. Second, we use p (and its copies) to
uniformly select a bucket Bt which the algorithm will have discarded with good probability.

I Theorem 11. For windows of size N , any randomized sliding window algorithm outputting
a solution of cost greater than 1

3OPT with probability greater than 1
2 for the distance oracle

metric diameter problem with constant aspect ratio requires Ω( 3
√
N) points.

Proof. For ease of exposition, we will use a window of size Θ(N). The theorem then follows
by rescaling N . We use 4N1/3 buckets consisting of 32N2/3 points each. In the following,
any distance that is not further specified is set to be 1.

We iteratively replace one randomly chosen point from bucket Bi with fi where fi has
distance 2 to any point from bucket Bj with j > i. At the end of the stream, we insert a
point p with the following distances. First, choose a random bucket Bt and set dist(p, ft) = 3
and dist(p, q) = 2, where q ∈ Bt \ {ft}. Any point inserted after bucket Bt has distance 1 to
p and any point inserted before Bt has distance 2. We then repeatedly add copies of p at
total of N times.

To show that the distances still satisfy the triangle inequality, we first observe that
only dist(p, ft) is neither 1 or 2 and thus requires special consideration. Here, we have
3 = dist(p, ft) ≤ dist(p, q) + dist(q, ft) = 1 + 2 for q ∈ Bi with i > t, and 3 = dist(p, ft) ≤
dist(p, q) + dist(q, ft) ≤ 2 + 1 for q ∈ Bi with i ≤ t.

At any given time, the algorithm has to output a pair of points whose distance is within
a factor 3 of the diameter of the current window. Observe that if the algorithm did not
store any of the replaced points {f0, . . . , f4N1/3−1} and not any point of bucket Bt then the
algorithm is not able to produce two points at distance greater than 1. Hence, by Yao’s
minimax principle, it is sufficient to bound the number of points used by any deterministic
algorithm against the above input distribution.
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We first bound the probability that the algorithm stores some point fi. Call this event
A. If we assume that the algorithm did not store any of the points {f1, . . . , fi} it follows
that the points in bucket Bi+1 all have the same distance to the stored points. This implies
that we can assume that the decision which points of bucket Bi+1 will be kept is already
fixed. The probability that fi is one of these points is bounded by the hypergeometric
distribution with population 32 ·N2/3, N1/3 samples and 1 success in both population and

sample: (32·N2/3−1
N1/3−1 )·(1

1)
(32·N2/3

N1/3 )
. Then the probability that no fi is stored for any of the 4 · N1/3

buckets can be lower bounded by

1− P[A] ≥

1−
(32·N2/3−1
N1/3−1

)
·
(1

1
)(32·N2/3

N1/3

)
4·N1/3

=
(

1− N1/3

32 ·N2/3

)4·N1/3

≥ 1− 1
8 = 7

8 .

Now we bound the probability that the algorithm retains any point from bucket t upon
submission, which we call event B. Again, conditioned on the event that A does not hold
(A), the buckets from which the algorithm stores at least one point are fixed. The probability
that Bt is among the stored buckets again follows a hypergeometric distribution with
population 4 ·N1/3, N1/3 samples and 1 success in both population and sample. Therefore

P[B|A] = (4·N1/3−1
N1/3−1 )·(1

1)
(4·N1/3

N1/3 )
= 1

4 . Since one of the events A or B has to hold for the algorithm to

output a solution with approximation factor greater than 1
3 , the probability that an algorithm

storing less than N1/3 points produces a solution with the desired approximation guarantee
is at most P[A∪B] ≤ P[A]+P[B] = P[A]+P[B|A] ·P[A]+P[B|A] ·P[A] ≤ 2 ·P[A]+P[B|A] ≤
2
8 + 1

4 = 1
2 . J

We only briefly describe the k-center lower bound. The instance is also divided into
sufficiently large buckets, from which the algorithm is forced to discard one point each. The
main difference with the previous proof will be that the distances between all the points
(except for a randomly chosen missing point ft) are 2 and the distance from ft to the more
recent buckets is 4.

I Theorem 12. For windows of size N , any randomized sliding window algorithm achieving
an approximation factor less than 4 with probability greater than 1

2 for the distance oracle
metric 2 center problem with constant aspect ratio requires Ω( 3

√
N) points.
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Abstract
We consider the problem of computing a (1+ε)-approximation of the Hamming distance between a
pattern of length n and successive substrings of a stream. We first look at the one-way randomised
communication complexity of this problem. We show the following:

If Alice and Bob both share the pattern and Alice has the first half of the stream and Bob the
second half, then there is an O(ε−4 log2 n) bit randomised one-way communication protocol.
If Alice has the pattern, Bob the first half of the stream and Charlie the second half, then
there is an O(ε−2√n logn) bit randomised one-way communication protocol.

We then go on to develop small space streaming algorithms for (1 + ε)-approximate Hamming
distance which give worst case running time guarantees per arriving symbol.

For binary input alphabets there is anO(ε−3√n log2 n) space andO(ε−2 logn) time streaming
(1 + ε)-approximate Hamming distance algorithm.
For general input alphabets there is an O(ε−5√n log4 n) space and O(ε−4 log3 n) time stream-
ing (1 + ε)-approximate Hamming distance algorithm.
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1 Introduction

We study the complexity of one of the most basic problems in pattern matching, that of
approximating the Hamming distance. Given a pattern P of length n the task is to output a
(1 + ε)-approximation of the Hamming distance between P and every n-length substring of a
longer text. We provide the first efficient one-way randomised communication protocols as
well as a new, fast and space efficient streaming algorithm for this problem.

The general task of efficiently computing the Hamming distances offline between a
pattern and a text has been studied for many years. When the input is binary and the text
has length proportional to that of the pattern, then all outputs can be computed exactly
in O(n logn) time by repeated application of the fast Fourier transform [14]. For larger
alphabets, O(n

√
n logn) time solutions were first discovered in the 1980s [1, 22]. The fastest

randomised algorithm for (1 + ε)-approximate Hamming distance computation for large
alphabets was due for many years to Karloff from 1993 [20] running in O(ε−2n log2 n) time
overall. In a breakthrough paper in 2015 a new algorithm was given improving the time
complexity to O(ε−1n log3 n log ε−1) [21]. These fast methods all require linear space and
up until this point no sublinear space solutions have been known.

The first basic question that arises is whether it is in fact possible to give a (1 + ε)-
approximation to the Hamming distance in a streaming setting while using only sublinear
space. In order to explore this question we start our study by considering two natural
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communication complexity problems which may also be of independent interest. Any lower
bound for these communication problems will give a lower bound for the space usage of a
corresponding streaming algorithm. This follows from a standard reduction where a space
efficient streaming algorithm is converted into a communication protocol by taking a snapshot
of memory after some symbol of the input has been read in and then sending this snapshot
to the other player. On the other hand, the communication upper bounds we provide will
set targets for space bounds for algorithms in the streaming setting.

Any streaming pattern matching algorithm using a pattern of length n can be reduced
to repeated application of a streaming algorithm that runs on texts of length 2n. This is
done by splitting the stream into substreams of length 2n which overlap by n symbols. As a
result we consider communication problems with these parameter settings for pattern and
text length.

I Problem 1. Consider a text T of length 2n and a pattern P of length n. Let Alice hold the
information about the first half of the text and the whole of the pattern, and let Bob hold the
information about the second half of the text and the whole of the pattern. Bob must output
(1 + ε)-approximations of the Hamming distance for each alignment of P and T .

A lower bound for the communication complexity of this problem follows from a combin-
ation of the lower bound for the communication complexity of a windowed counting problem
introduced by Datar et al. in 2002 [13] and the one-way communication complexity lower
bound for approximating the Hamming distance between two n-bit strings from [18].

For the first part consider the following communication problem. Assume that there is a
bit vector B of length 2n. Let Alice hold the information about the first half of B, and let Bob
hold the information about the second half of B. Bob must output (1 + ε)-approximations of
the number of set bits in each window of length n. Datar et al. showed that Alice will have
to send to Bob Ω(ε−1 log2 ε−1n) bits of information. There is a straightforward reduction
from this basic counting problem to Problem 1 which then gives us the same lower bound.
We set T = B and P = 00 . . . 0 and then a (1 + ε)-approximation of the Hamming distance
at an alignment i of P and T gives a (1 + ε)-approximation of the number of set bits in the
window T [i, i+ n− 1]. For the second part we use Theorem 4.1 from [18] which states that
the one-way communication complexity of (1 + ε)-approximate Hamming distance for two
strings of length n is Ω(ε−2 logn) for constant error probability. Combining these two lower
bounds together we get a lower bound of Ω(ε−2 logn+ ε−1 log2 ε−1n) for the communication
complexity of Problem 1.

Our first result is an efficient one-way communication protocol for Problem 1 whose
complexity is only slightly higher than this lower bound. In our protocol Alice uses the fact
that Bob knows the pattern as well to give an efficient encoding for parts of her half of the
text which are at small Hamming distance from the pattern.

I Theorem 1. Problem 1 has one-way randomised communication complexity O(ε−4 log2 n).

As a model for streaming pattern matching, this communication upper bound requires
that a copy of the pattern is available at all times. Our main interest is however in algorithms
whose total space complexity is sublinear in the pattern size. In order to model this situation
more accurately we now consider a stronger three party communication problem.

I Problem 2. Assume that there is a text T of length 2n and a pattern P of length n. Let
Alice hold the information about the pattern, let Bob hold the information about the first half
of the text, and let Charlie hold the information about the second half of the text. Alice will
send one message to Bob who will then send one message to Charlie. Charlie must output
(1 + ε)-approximations of the Hamming distance for each alignment of P and T .
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Somewhat surprisingly, we are still able to obtain a sublinear protocol for this new
problem although the bound is higher than for the simpler Problem 1. The main technical
elements of this communication protocol combine the newly introduced idea of approximate
periods with succinct run-length encoded representations of the input.

I Theorem 2. Problem 2 has one-way randomised communication complexity O(
√
n
ε2 logn).

Having investigated the communication complexity of (1 + ε)-approximate Hamming
distance we can now define the streaming (1 + ε)-approximate Hamming distance problem.

I Problem 3. Consider a pattern P of length n and a stream arriving one symbol at a time.
We must output a (1 + ε)-approximation to the Hamming distance between P and the latest
n-length suffix of the stream as soon as a new symbol arrives. In this setting we cannot, for
example, store a copy of the pattern or stream without accounting for it in our space usage.

The upper bounds for the communication complexity of Problem 2 suggest space upper
bounds we shall aim for in order to develop an optimal algorithm for the (1 + ε)-approximate
Hamming distance in the streaming setting. We make the first step towards this direction
and show two randomised sublinear-space algorithms for the problem. We start by giving a
solution for the case when both the pattern and the text are binary strings.

I Theorem 3. When both P and T are binary, there is an algorithm for Problem 3 which
uses O(ε−3√n log2 n) bits of space and runs in O(ε−2 logn) time per arriving symbol.

The same bounds hold for alphabets of constant size σ as we can map each occurrence of
the ith symbol of the alphabet in the pattern or in the text to a binary string 0i−110σ−i,
which will result in doubling the Hamming distance between the pattern and the text at
each particular alignment.

For polynomial size alphabets our bounds are higher by a factor ε−2 log2 n and our
approach is based on the mapping idea of Karloff [20]. In that paper he showed that there
exists Θ(ε−2 log2 n) mappings mapj of the alphabet onto {0, 1} such that an (1 + ε/3)-
approximation of the Hamming distance between P and T at a particular alignment can be
given by a normalised average of the Hamming distances between mapj(P ) and mapj(T ) at
this alignment. Moreover, Karloff showed that the mappings can be generated in O(ε−2 log3 n)
space and O(logn) time per symbol. For each pattern-text pair mapped on to a binary
alphabet we then run the algorithm of Theorem 3 to find (1 + ε/3)-approximations and
finally obtain:

I Theorem 4. There is an algorithm for Problem 3 which uses O(ε−5√n log4 n) bits of
space and runs in O(ε−4 log3 n) time per arriving symbol.

Our solution has guaranteed worst case complexity per arriving symbol and uses roughly
the square root of the space required by the known offline (1 + ε)-approximate algorithms. A
key technical innovation for our space reduction is the notion we introduce of a super-sketch.
This a compact and efficiently updateable representation of consecutive text substrings which
we require to be able to achieve sublinear space. For simplicity we will make the natural
assumption throughout that ε < 1/2.

1.1 Related work and lower bounds
The one-way communication complexity of a number of variants of Hamming distance
computation has been studied over the years. These includes (1 + ε)-approximation [18],
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the so called gap Hamming problem [9] and a bounded version known as k-mismatch [15].
However all this previous work has assumed that both Alice and Bob have strings of the same
length and so need only give a single output. There has also been great interest in efficient
streaming algorithms over the last 20 years, following the seminal work of [2]. In relation
specifically to pattern matching problems, where space is not limited but where an output
must be computed after every new symbol of the text arrives, the Hamming distance between
the pattern and the latest suffix of the stream can be computed online in O(

√
n logn) worst-

case time per arriving symbol or O(
√
k log k + logn) time for the k-mismatch version [11].

Both these methods however require Θ(n) space. Using the same approach, a number of
other approximate pattern matching algorithms have also been transformed into efficient
linear space online algorithms including [4, 3, 5, 8, 7, 6, 23]. In 2013 a small space streaming
pattern matching algorithm was shown for parameterised matching [17] and in 2016 for the
k-mismatch problem [10]. The latter k-mismatch paper is of particular relevance to our work.
In [10] as a part of a space-efficient streaming algorithm for the k-mismatch problem, the
authors presented a (1 + ε)-approximate algorithm with space O(ε−2k2 log7 n) and running
time O(ε−2 log5 n) per arriving symbol that returns a (1+ε)-approximation for all alignments
of the pattern and text where the Hamming distance is at most k. The algorithm we give in
this current paper can be seen a generalisation of this work, both removing the requirement
for a prespecified threshold k and also using less space when k & n1/4.

2 Overview

In this section we give an overview of the main ideas needed for our results. We will make
extensive use of sketching. Alon, Matias and Szegedy were first to show that sketching can
be used to approximate frequency statistics of a stream with a particular emphasis on F2 [2].
Later their sketching technique was generalized to allow approximation of ||x1 − x2||p for
two vectors x1 and x2 and any p ∈ (0; 2] by Indyk et al. [16, 12]. We will use the sketches of
Indyk et al. to show the communication complexity upper bounds. These sketches are based
on p-stable distributions and have the advantage that they can be used even for large-size
alphabets. For our streaming algorithm where we assume that the input alphabet is binary
we will use simpler sketches based on the original technique of Alon et al.

2.1 Communication complexity

To show communication complexity bounds we will be using sketches based on p-stable
distributions (see [16] and Sections 4.1 and 5.1 of [12]). Setting σ to be the alphabet size, a
sketch of a string x is defined as a vector sk(x) of length Θ(ε−2) such that

sk(x)[i] =
∑
j

Yi,j · x[j]

where each Yi,j is drawn independently from a random stable distribution with parameter
p ≤ ε/ log σ. For two vectors x1 and x2 it can be shown that with constant probability the
median of values |sk(x1)[i]− sk(x2)[i]|, appropriately scaled, is a (1 + ε)-approximation of
the Hamming distance. Importantly, variables Yi,j can be generated when we need them
with the help of Nisan’s pseudo-random generator, which requires only O(log2 n) random
bits.
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2.1.1 Problem 1 – both Alice and Bob know the pattern
The main idea of our communication complexity upper bound for Problem 1 is that if the
Hamming distance between the text and the pattern at a particular alignment is (relatively)
small, then Alice and Bob can use the pattern to describe the part of the text aligned with
the pattern.

At each alignment the pattern can be divided into two parts – a prefix, aligned with
Alice’s half of the text, and a suffix, aligned with Bob’s half of the text. Alice needs to
transmit information that will help Bob approximate the Hamming distance between these
different prefixes of the pattern and her half of the text. She does so by selecting a logarithmic
number of prefixes of the pattern with Hamming distances Θ(ε−j) from the text. She then
divides the part of the text aligned with each of these prefixes into blocks such that the
mismatches are evenly spread across the blocks, and sends each block’s starting position and
sketch to Bob.

When Bob wants to compute the Hamming distance between a prefix P ′ of the pattern
and the text and he knows that this Hamming distance is at least Θ(ε−(j−1)), he uses the
prefix Pj with Hamming distance Θ(ε−j) and the sketches of associated text blocks. The
part of Alice’s text aligned with P ′ can be composed of several full blocks and at most one
block suffix. Hamming distances between P ′ and the full blocks can be approximated with
the help of the sketches. To approximate the Hamming distance between P ′ and the suffix
of the block, Bob will substitute the suffix with the aligned part of Pj . As the number of
mismatches between the suffix and Pj is small compared to Θ(ε−(j−1)), it will give a good
approximation of the Hamming distance.

2.1.2 Problem 2 – only Alice knows the pattern
We start by reviewing some notation introduced in [10].

I Definition 5. The x-period of a string S of length n is the smallest integer ` > 1 such
that the Hamming distance between S[1, n− `] and S[`, n] is at most x.

I Definition 6. We define the `-RLE encoding of S to be the ordered set of the run-length
encodings of strings Si = S[i]S[`+ i]S[2`+ i] . . . S[b(n− i)/`c · `+ i], where i ∈ [1, `]. The
size of the `-RLE encoding is the total number of runs in the encodings of strings Si.

I Example 7. Let S = aabaabaabaabaabaabaac. The 3-RLE encoding of S is: the run-length
encoding (a, 7) of S1 = aaaaaaa, the run-length encoding (a, 7) of S2 = aaaaaaa, and the
run-length encoding (b, 6)(c, 1) of S3 = bbbbbbc. The size of the encoding is 1 + 1 + 2 = 4.

Note that `-RLE encoding of S is deterministic and lossless. In [10] it was also shown that
if ` is the x-period of a string S for some integer x, then the size of the `-RLE encoding is
O(`+ x). Intuitively, this is because each new run in the encoding of Si corresponds to a
mismatch between S[1, n− `] and S[`, n], and therefore there can be at most `+ x runs.

We now explain the idea of the communication protocol for Problem 2. Let the block
size B =

√
n and the threshold τ = 2ε−1√n. Bob will compute a sketch for each Bth suffix

of his half of the text and send it to Charlie. Consider a particular alignment of the pattern
and of the text.

Case 1: Hamming distance is large. The pattern can be divided into three parts: a prefix
of length at most B − 1, a middle part aligned with one of the n/B sketched suffixes of
Bob’s half of the text, and a suffix aligned with Charlie’s half of the text. If the Hamming
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distance at the alignment is larger than τ , then the prefix can be discarded as it will change
the Hamming distance by at most B = (ε/2) · τ . The Hamming distance between the rest
of the pattern and the text can be approximated easily. Charlie has received the sketch of
the middle part of the pattern as well as the sketch of the suffix of Alice’s half of the text
which aligns with it. Charlie can combine the sketch from Alice’s part of the text with the
information he has about his half of the text and then compare this sketch to the pattern
sketch as required.

Case 2: Hamming distance is small. The main challenge is therefore alignments where
the Hamming distance is smaller than τ . If the (2 + ε)τ -period of the pattern is larger than
B, then there are at most n/B such alignments. In this case, Bob can simply send the
Hamming distances for all these alignments to Bob. If the period is at most B, then Bob
will find the first alignment with small Hamming distance and will use the `-RLE encoding
of the pattern and the full list of mismatches to describe the text. Using this description
Charlie will be able to fully recover the corresponding suffix of the text and to compute the
Hamming distances for all remaining alignments. The only technicality is that Bob does not
know Charlie’s half of the text and thus will not be able to compute the Hamming distances
between the whole pattern and the text. We elaborate on this in Section 3.2.

2.2 A small space streaming algorithm
In our small space streaming algorithm we will use simpler sketches which provide a (1 + ε)-
approximation to the Hamming distance between two binary strings of the same length
B. The method is now folklore but is essentially an application of the technique of the
Johnson-Lindenstrauss lemma [19]. To do this we create a random ε−2 ×B matrix M whose
entries are from {−1, 1}. The sketch of a string x of length B is then defined to be equal to
Mx, and it is known that the appropriately scaled square of the L2 norm of the difference of
the sketches of two strings gives a (1 + ε)-approximation of the Hamming distance between
them. We will also be using M to define sketches of strings of length ` < B. In this case, we
simply append the strings with (B−`) zeros and use the method describe above. The original
analysis applies here as well. Finally, we will use M to define “super-sketches” of strings of
length n−B. Assume that a string of length n−B is divided into n/B − 1 non-overlapping
blocks of size B. A super-sketch is then defined to be a linear combination of the sketches of
the blocks. We elaborate more on sketches and super-sketches in Section 4.

Now we give a high-level overview of our algorithm. The algorithm starts by preprocessing
the pattern P . It computes and stores a super-sketch of each (n− B)-length substring of
P . The algorithm then processes the text in non-overlapping blocks of length B, computing
a sketch for each block. The blocks’ sketches can be maintained efficiently as we need to
maintain only one sketch at a time. The algorithm also maintains a super-sketch of the last
n/B − 1 blocks. To compute an approximation of the Hamming distance at a particular
alignment, the algorithm divides the pattern into three parts: a prefix of length (B − i), a
middle part of length (n−B), and a suffix of length i, where the middle part is aligned with
a block border (see Figure 1).

The algorithm then starts by computing the (1 + ε)-approximation of the Hamming
distance between the middle part and the text with the help of the super-sketches. If the
Hamming distance is large, the algorithm can simply discard the prefix and suffix parts.
Otherwise, the algorithm also needs to approximate the Hamming distance between the prefix
or the suffix of the pattern and the text. To approximate the Hamming distance between
the prefix of the pattern and the text the idea is to use the information Alice transfers to
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P [1, B − i] P [B − i+ 1, n− i] P [n− i+ 1, n]

Super-sketchProblem 1 Super-sketch Sketch

Figure 1 To estimate the Hamming distances at a particular position the algorithm uses a data
structure containing the information Alice transfers to Bob in our solution for Problem 1 for the
prefix P [1, B − i], a super-sketch for the middle part P [B − i+ 1, n− i], and a sketch for the suffix
P [n− i+ 1, n].

Bob in our solution for Problem 1. For the suffix, the algorithm will use the sketch of the
part of the block between its start and the current alignment.

3 Communication complexity

In this section we show upper bounds for communication complexities of Problems 1 and 2.

3.1 Problem 1

We start by showing an upper bound for the communication complexity of Problem 1.
Remember that in this problem we have two players, Alice and Bob. Alice knows the first
half of the text T and the pattern P , and Bob knows the second half of the text T and the
pattern P . We will show that the communication complexity of this problem is O(ε−4 log2 n).

Let us first explain what Alice sends to Bob. For simplicity, we denote k = 6/ε. First,
Alice selects q = blogk nc positions n ≥ i1 ≥ i2 ≥ . . . ≥ iq ≥ 1 such that the Hamming
distance between T [ij , n] and the prefix P [1, n − ij + 1] is at most kj+1. She does this in
turn starting from j = 1 and selecting the leftmost possible position for each j. Alice then
sends to Bob O(k2 · ε−2 logn) = O(ε−4 logn) bits of information for each j. She starts by
dividing T [ij , n] into k2 blocks such that the Hamming distance between each block and the
corresponding substring of the pattern is at most kj−1. If n ≥ b1 > b2 > . . . > bk2 = ij are
the borders of the blocks, she sends Bob b1, b2, . . . , bk2 = ij and the (1 + ε/6)-approximate
sketches of T [b`, n] for all ` ∈ [1, k2]. In total, Alice sends to Bob O(ε−4 log2 n) bits of
information.

To see how Bob can use this information, consider a particular position i. At this position
P [1, n− i+ 1] is aligned with Alice’s half of the text, whereas P [n− i+ 2, n] is aligned with
Bob’s half of the text. As Bob knows the pattern, he can compute the exact Hamming
distance between P [n− i+ 2, n] and his half of the text with no additional information. We
now go on to explain how he can estimate the Hamming distance h between P [1, n− i+ 1]
and Alice’s half of the text.

Bob starts by locating the position ij that is closest to i from the left, and the block
T [b`+1, b`] of T [ij , n] containing i (see Figure 2). The border b` divides the pattern into two
parts, P1 and P2. Let h1 be the Hamming distance between P1 and the text, and h2 be the
Hamming distance between P2 and the text, h1 + h2 = h. To find a (1 + ε)-approximation
h′2 of h2, Bob uses the sketch of T [b`, n]. He cannot use sketches to estimate h1 as P1 is not
aligned with the block T [b`+1, b`], but he knows that there are only a few mismatches between
T [b`, b`+1] and the pattern aligned at the position ij . So he estimates h1 by computing
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Alice

Text

Pattern

Pattern

ij b`+1 i b`

P1 P2

Figure 2 Figure shows Alice’s half of the text and the rightmost position ij < i. Dashed lines
show block borders for T [ij , n]. Borders b`+1 and b` are the closest to i from the left and from
the right respectively. The border b` divides the pattern into two parts P1 and P2. To estimate
the Hamming distance h1 between P1 and T , Bob uses the pattern aligned at ij . To estimate the
Hamming distance h2 between P2 and T , he uses the sketch of T [b`, n].

the Hamming distance h′1 between P1 and the pattern aligned at the position ij . The next
lemma shows that Bob can output h′ = (h′1 + h′2)/(1− ε/3) as a (1 + ε)-approximation of h.

I Lemma 8. h′ is a (1 + ε)-approximation of h.

Proof. Remember that h′1 is the Hamming distance between P1 and the pattern aligned at
the position ij , and h1 is the Hamming distance between P1 and the text. The Hamming
distance between the pattern aligned at the position ij and T [b`+1, b`] is at most kj−1.
Therefore,

h1 − kj−1 ≤ h′1 ≤ h1 + kj−1

On the other hand, h′2 is a (1 + ε/6)-approximation of h2. Hence,

h1 + h2 − kj−1 ≤ h′1 + h′2 ≤ h1 + kj−1 + (1 + ε/6) · h2 .

We now substitute h = h1 + h2 and estimate h2 ≤ h to obtain

h− kj−1 ≤ h′1 + h′2 ≤ (1 + ε/6) · h+ kj−1 .

Finally, by our choice of ij we have h ≥ kj+1, and therefore

(1− ε/3) · h ≤ (1− ε/6) · h ≤ h′1 + h′2 ≤ (1 + ε/3) · h .

Dividing all parts of this inequality by (1− ε/3), we obtain

h ≤ h′ = (h′1 + h′2)/(1− ε/3) ≤ 1 + ε/3
1− ε/3 h ≤ (1 + ε) · h . J

3.2 Problem 2
In this section we show an upper bound for the communication complexity of Problem 2.
Remember that in this problem we have three players, Bob, Charlie, and Alice. Bob
knows the first half of the text T , Charlie knows the second half of the text T , and Alice
knows the pattern P . We will show that the communication complexity of this problem is
O(ε−2√n logn).

Let the block size B =
√
n and the threshold τ = 2ε−1√n. We start by explaining what

the players send to each other. Alice sends to Bob the following information:
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P [1, n − j?B]

P [1, n − j??B]

Text

Pattern

Pattern

Bob

Block j? Block j??
⊗ ⊗⊗ ×

p
× × ×

Figure 3 The figure shows Bob’s half of the text. Crosses show alignments where the Hamming
distance is at most τ . P [1, n− j?B] is the longest prefix with τ(2 + ε)-period smaller than B. Block
j?? ≥ j? is the first block containing a cross. Bob sends to Charlie sketches of text suffixes starting
at blocks’ borders, locations of all encircled crosses, and the last block.

1. (1 + ε/2)-approximate sketches of suffixes P [i, n] for all i ∈ [1, B] (Charlie will use them
to estimate large Hamming distances);

2. (1 + ε/2)-approximate sketches of prefixes P [1, n− jB] for all j ∈ [1, n/B] (Bob will use
them to find alignments with small Hamming distances);

3. The `-RLE encoding of the longest prefix P [1, n− j?B] with (2 + ε)τ -period ` smaller
than B (Bob will use it to describe the text).

Overall Alice sends O((n/B + B) · ε−2 logn+ ((2 + ε)τ + B) · logn) = O(ε−2√n logn)
bits of information.

Bob starts by forwarding the information he received from Alice to Charlie. Bob also
sends him (1 + ε/2)-approximate sketches of all suffixes T [jB, n]. Next, for each j < j?

Bob uses the sketch of P [1, n− jB] to find (1 + ε/2)-approximations of Hamming distances
in a block j. (Remember that Bob knows T [1, n] and can compute a sketch for any its
substring.) If the approximate value of the Hamming distance for some alignment is smaller
than (1 + ε/2)τ , he sends it to Charlie. Note that there is at most one such alignment in
a block. Indeed, if we have two such alignments in the block, then the Hamming distance
between the patterns at these alignments is at most (2 + ε)τ , which is a contradiction with
the (2 + ε)τ -period being larger than B. Moreover, Bob will not miss any alignment with
the Hamming distance smaller than τ .

After that, Bob decodes P [1, n−j?B] from its `-RLE encoding and computes the Hamming
distances between P [1, n− jB] and the text for all alignments in blocks j ≥ j? precisely. He
finds the first block j?? ≥ j? where there is an alignment of P [1, n− j??B] with the Hamming
distance at most τ . Bob sends Charlie the starting position p of this alignment and the
positions of the mismatches. Finally, he sends Charlie all bits of the last block of his half of
the text. Overall, Bob sends to Charlie O(ε−2√n logn+ (ε−2 logn+ logn) · (n/B) + τ) =
O(ε−2√n logn) bits of information.

We now explain how Charlie computes the Hamming distances. If the Hamming distance
at a particular alignment i in a block j < j?? is smaller than τ , then Charlie already knows
its approximate value. If it is bigger than τ , then Charlie computes its approximation using
the sketch of the longest suffix P [jB − i, n] of P aligned with a block border, the sketch of
T [(j + 1)B,n], and T [n+ 1, 2n]. Let h be the Hamming distance between the text and the
pattern at the alignment i and let h′ be the Hamming distance between T [(j+ 1)B, i+n− 1]
and P [jB − i, n].

I Lemma 9. h ≤ h′ +B ≤ (1 + ε) · h .
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Proof. The left inequality is trivial. To prove the right one, remember that τ ≤ h, which
implies B = (ε/2)τ ≤ (ε/2) · h. J

We now go on to the remaining blocks. The Hamming distances at alignments i < p

in the block j?? are bigger than τ and Charlie can find their approximation in the way
described above. Charlie then decodes P [1, n − j?B] and recovers T [p, n] by fixing the at
most

√
n mismatches between P [1, n− j?B] and T [p, p+ n− j??B + 1] and appending the

last p − (j?? − 1)B symbols of T (Remember that Charlie knows all symbols of the last
block of T [1, n]). Using T [p, n], T [n+ 1, 2n], and the sketch of P , he can approximate the
Hamming distances for all alignments to the right of p.

4 Streaming algorithm

We now show a streaming algorithm for Problem 3. In this problem we are asked to output
a (1 + ε)-approximation of the Hamming distance between the pattern and the text at
each alignment, and we do not assume that we store a copy of the pattern or of the text.
For ε < 1/2, the algorithm uses O(ε−3√n log1.5 n) bits of space and its running time is
O(ε−2 logn) per arriving symbol. For simplicity, we will set k = 1/ε > 2 for the rest of this
section.

Let B = k
√
n. The algorithm starts by selecting a 9k2 × B matrix M and a vector

(σ1, σ2, . . . , σn/B−1) of i.u.d. ±1 random variables. The algorithm then preprocesses the
pattern P . It remembers the first B symbols of P , as well as a super-sketch of each (n−B)-
length substring of P . To compute the super-sketches the algorithm divides a substring into
(n/B− 1) blocks of length B, computes their sketches using M as described in Section 2, and
then sums the sketches multiplying them by σi. The algorithm also computes sketches of the
last B suffixes of P . The sketch of a suffix P [n− i+ 1, n] is defined to be equal to M · Si,
where Si = P [n− i+ 1, n] 0B−i. Finally, for each i ∈ [1, B] and for each j ∈ [0, log1+ε n] it
stores the maximal length of pattern’s prefix such that the Hamming distance between this
prefix aligned at position i and the pattern is at most (1 + ε)j , which takes O(ε−1B log2 n)
bits since log1+ε n = O(ε−1 logn).

4.1 Text processing
The algorithm processes the text in non-overlapping blocks of length B. For each of the
last n/B blocks the algorithm maintains its sketch and a data structure containing the
information Alice transfers to Bob in our solution for Problem 1.

Let us start by explaining how the algorithm maintains the sketches. At the starting
index of each block it initialises the block’s sketch with a zero vector of length 9k2. When
the jth symbol of the block arrives, the algorithm adds the product of the jth column of
M and the symbol to the sketch in O(9k2) time. While reading the block the algorithm
also computes the super-sketch of the (n − B)-length substring consisting of the n/B − 1
most recent blocks. Recall that the super-sketch is defined to be equal to the sum of the
blocks’ sketches multiplied by the variables σi. The total time needed for computing the sum
is O(9k2n/B). The algorithm de-amortises this time over the block executing Ω(9k2n/B2)
steps per arriving symbol.

For each block the algorithm maintains a data structure containing the information Alice
transmits to Bob in our solution for Problem 1. The algorithm starts computing the data
structure when it has received the entire block. It then computes the Hamming distance
between prefixes P [1], P [1, 2], . . . , P [1, B] as being aligned at the right border of the block
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and the block by running the fast Fourier transform algorithm on P [1, B] and the block
appended with B zeros, which takes O(B) space and O(B logB) time in total [14]. The
algorithm then finds i1, i2, . . . , iq, where q = dlogk Be as defined in Problem 1 and for each
ij it computes the borders and the sketches of the blocks, where the sketches are defined
with the help of the matrix M . Remember that the algorithm stores the block and the first
B symbols of the pattern, so this could be done in a naive way, using symbol-by-symbol
comparison. Finally, the algorithm builds binary search trees on i1, i2, . . . , iq and the block
borders for each ij to allow fast access to the information. The total construction time of
the data structure is O((B + k2) · logn). Note that the data structure will only be used
n/B − 1 ≥ 2 blocks later, so we can de-amortise the construction time over the succeeding
block executing Ω((1 + k2/B) · logn) steps of the construction process per symbol. The data
structure occupies O(k4 log2 n) bits of space.

4.2 Hamming distance

To compute the Hamming distance at an alignment i, the algorithm divides the pattern into
three parts: a prefix of length (B− i), a middle part of length (n−B), and a suffix of length i,
where the middle part is aligned with a block border. The algorithm then starts by computing
the square N of the norm of the difference between the super-sketches of the middle part and
the corresponding text substring. Both super-sketches are already known as the middle part
is an (n−B)-length substring of the pattern and we store its super-sketch explicitly, while the
super-sketch of the text substring was computed at the end of the preceding block. As both
sketches have length 9k2, it takes O(9k2) time. Next, the algorithm computes the Hamming
distance Hs between the sketch of the suffix of the pattern and the part of the text block seen
so far. This again takes O(9k2) time. Finally, the algorithm computes an approximation Hp

of the Hamming distance between the prefix and the text as described in Problem 1. With
the help of the binary search trees, ij , b`+1 and b` can be found in O(log logn+ log log k2)
time. Recall that b` divides the prefix into two parts. The Hamming distance between the
second part of the prefix and the text can be approximated in O(9k2) time with the help of
the sketches as in Problem 1, but it is not possible to use symbol-by-symbol comparison for
the first part as this would take too much time. Instead, the algorithm does binary search
on the prefixes’ lengths it calculated during the preprocessing step which allows him to find
(1 + ε)-approximation of the Hamming distance in O(log log1+ε n) time. It then outputs
Hp +Hm +Hs, where Hm = ε2N/9(1− ε/3).

4.3 Analysis

The running time of the algorithm is O(ε−2 logn) per arriving symbol. The space used is
O(ε−3√n log2 n) bits. We now need to show that Hp +Hm +Hs is a (1 + ε)-approximation
of the Hamming distance with constant probability. It suffices to show that Hm is a (1 + ε)-
approximation of the Hamming distance between the middle part of the pattern and the text.
Consider two binary strings t and p of length (n−B). Let skt and skp be their super-sketches
of length 9k2 calculated with the help of M and σi and let N = ‖skt − skp‖2

2 and H̃ = ε̃2N ,
where ε̃ = ε/3. We will show that H̃ is a good approximation of the Hamming distance
between t and p. Recall that t and p are binary, and therefore the Hamming distance between
them is equal to ‖t− p‖2

2.

I Lemma 10. With constant probability (1− ε̃) · ‖t− p‖2
2 ≤ H̃ ≤ (1 + ε̃) · ‖t− p‖2

2.
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Proof. Let ti and pi, i ∈ [1, n/B − 1], be the blocks of t and p of length B. We have

E
[
H̃
]

= ε̃2 · E

∥∥∥∥∥∑
i

σiM · (ti − pi)

∥∥∥∥∥
2

2

 = ε̃2
∑
j

E

(∑
i

σiMj · (ti − pi)
)2


where Mj is the jth row of M . As all rows of M are identically distributed, we have
E
[
(
∑
i σiMj · (ti − pi))2

]
= E

[
(
∑
i σiM1 · (ti − pi))2

]
for all j, which is equal to ‖t− p‖2

2
as if at least one of the inequalities i1 = i2 or j1 = j2 does not hold, then the variables
σi1M1[j1] and σi2M1[j2] are independent and the expectation of σi1σi2M1[j1]M1[j2] is equal
to zero, and otherwise it is equal to one. So finally we have E

[
H̃
]

= ‖t− p‖2
2.

We now compute the variance of H. We again use the fact that the rows of M are
independent and identically distributed.

Var
[
H̃
]

= ε̃2 ·Var

(∑
i

σiM1 · (ti − pi)
)2
 ≤ ε̃2 · E

(∑
i

σiM1 · (ti − pi)
)4
 .

By Khintchine’s inequality there exists a universal constant c > 0 such that

Var
[
H̃
]
≤ c ε̃2 · E

(∑
i

σiM1 · (ti − pi)
)2
2

≤ c ε̃2 · ‖t− p‖4
2 .

The claim then follows by Chebyshev’s inequality. J

Let now H = ε2N/9(1−ε/3) = H̃/(1−ε/3). The probability H is a (1+ε)-approximation
of the Hamming distance between t and p is at least the probability H̃ is in [(1 − ε/3) ·
‖t− p‖2

2 , (1− ε/3)(1 + ε) · ‖t− p‖2
2], which in turn can be estimated from below as

Pr
[
H̃ ∈ [(1− ε/3) · ‖t− p‖2

2 , (1 + ε/3) · ‖t− p‖2
2]
]
≥ 1− 1/c (Lemma 10.)

To justify the last transition note that (1− ε/3)(1 + ε) ≥ (1 + ε/3) for all ε < 1. From
above it follows that with constant probabilities Hp, Hm, and Hs are (1 + ε)-approximations
of the Hamming distances for the prefix, the middle part, and the suffix of the pattern
respectively. We note that the probabilities can be made arbitrarily small by Chebyshev’s
inequality if we run a constant number of independent instances of the algorithm in parallel
and output the sum of the medians of the values Hp, Hm, Hs. Correctness of the algorithm
follows by the union bound.
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original streaming pattern matching problem to us and for explaining how to solve Problem 3
in O(n2/3poly(1/ε))) space. We were also informed that Ely Porat had independently
developed a solution that uses O(

√
n/ε2) space and for each alignment with Hamming

distance H outputs some integer in the interval [(1− ε) ·H−1/2
√
n, (1 + ε) ·H+ 1/2

√
n] [24].
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Abstract
We study competition in a general framework introduced by Immorlica, Kalai, Lucier, Moitra,
Postlewaite, and Tennenholtz and answer their main open question. Immorlica et al. considered
classic optimization problems in terms of competition and introduced a general class of games
called dueling games. They model this competition as a zero-sum game, where two players are
competing for a user’s satisfaction. In their main and most natural game, the ranking duel, a
user requests a webpage by submitting a query and players output an ordering over all possible
webpages based on the submitted query. The user tends to choose the ordering which displays her
requested webpage in a higher rank. The goal of both players is to maximize the probability that
her ordering beats that of her opponent and gets the user’s attention. Immorlica et al. show this
game directs both players to provide suboptimal search results. However, they leave the following
as their main open question: “does competition between algorithms improve or degrade expected
performance?" (see the introduction for more quotes) In this paper, we resolve this question for
the ranking duel and a more general class of dueling games.

More precisely, we study the quality of orderings in a competition between two players. This
game is a zero-sum game, and thus any Nash equilibrium of the game can be described by minimax
strategies. Let the value of the user for an ordering be a function of the position of her requested
item in the corresponding ordering, and the social welfare for an ordering be the expected value
of the corresponding ordering for the user. We propose the price of competition which is the
ratio of the social welfare for the worst minimax strategy to the social welfare obtained by a
social planner. Finding the price of competition is another approach to obtain structural results
of Nash equilibria. We use this criterion for analyzing the quality of orderings in the ranking
duel. Although Immorlica et al. show that the competition leads to suboptimal strategies, we
prove the quality of minimax results is surprisingly close to that of the optimum solution. In
particular, via a novel factor-revealing LP for computing price of anarchy, we prove if the value
of the user for an ordering is a linear function of its position, then the price of competition is
at least 0.612 and bounded above by 0.833. Moreover we consider the cost minimization version
of the problem. We prove, the social cost of the worst minimax strategy is at most 3 times the
optimal social cost.

Last but not least, we go beyond linear valuation functions and capture the main challenge for
bounding the price of competition for any arbitrary valuation function. We present a principle
which states that the lower bound for the price of competition for all 0-1 valuation functions is
the same as the lower bound for the price of competition for all possible valuation functions. It is
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21:2 Price of Competition and Dueling Games

worth mentioning that this principle not only works for the ranking duel but also for all dueling
games. This principle says, in any dueling game, the most challenging part of bounding the price
of competition is finding a lower bound for 0-1 valuation functions. We leverage this principle to
show that the price of competition is at least 0.25 for the generalized ranking duel.

1998 ACM Subject Classification F. Theory of computation

Keywords and phrases POC, POA, Dueling games, Nash equilibria, sponsored search

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.21

1 Introduction

The conventional wisdom is that competition among suppliers will increase social welfare
by providing consumers with competitive prices, high-quality products, and a wide range of
options. A classic example is the Bertrand competition [10] where suppliers compete in price
to incentivize consumers to buy from them and as a result the market price decreases to the
point that it matches the marginal cost of production. Indeed there are many theoretical and
empirical studies for supporting this belief in the economic literature (see, e.g., [29, 25, 24, 2]).
However while in many markets the competition steers businesses to optimize their solutions
for consumers, there are competitive markets in which businesses do not offer the best option
to consumers. An interesting example for describing this situation is a dueling game, namely,
a zero-sum game where two players compete to attract users. Immorlica, Kalai, Lucier,
Moitra, Postlewaite, and Tennenholtz [19] showed surprisingly if players are aimed to beat
their opponents in a dueling game, they may offer users suboptimal results. However, they
raised this question regarding the efficiency of the competition as the authors write, “Perhaps
more importantly, one could ask about performance loss inherent when players choose their
algorithms competitively instead of using the (single-player) optimal algorithm. In other
words, what is the price of anarchy1 of a given duel? . . .Our main open question is (open
question 1): does competition between algorithms improve or degrade expected performance?”
As we describe below, we study this open question for a set of dueling games and in particular
for the ranking duel which is an appropriate representative of dueling games due to Immorlica
et al. [19].

Dueling games. A dueling game G is a zero-sum game where two players compete for the
attention of a user 2. In a dueling game both players try to beat the other player and offer
a better option with a higher value to the user. In particular, while the user’s request is
unknown to both players and they only have access to probability distribution p, the goal
for each player is to maximize the probability that her offer is better than her opponent’s
offer. This framework falls within a general and natural class of ranking or social context
games [7, 11], where each player plays a base game separately and then ultimate payoffs are
determined by both their own outcomes and the outcomes of others. Immorlica et al. argue
that this class of games models a variety of scenarios of competitions between algorithm
designers, such as, competition between search engines (who must choose how to rank search

1 Indeed Immorlica et al. [19] use the term of the price of anarchy in their aforementioned open question
for the same concept of the price of competition in this paper.

2 One can see the user as a population of users with the same behavior.
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results), or competition between hiring managers (who must choose from a pool of candidates
in the style of the secretary problem).

To be more precise a dueling game is defined by 4-tuple G = (Ω, p, S, v), where Ω is the
set of all possible requests from the user, p is a probability distribution over set Ω i.e., pω is
the probability of requesting ω ∈ Ω by the user, S is the set of all possible pure strategies
for both players, and vω(s) is the value of pure strategy s ∈ S for the user upon request
ω ∈ Ω. Note that v is usually considered to be the valuation of the players, but in this paper
valuation function v denotes the value for the user. While a mixed strategy is a probability
distribution over all possible pure strategies in S, we write the value of mixed strategy x as
vω(x) = Es∼x[vω(s)].

A social planner is often interested in choosing a strategy which maximizes the social
welfare, even though it may be a bad strategy in the competition between players. This
means the social welfare maximizer strategy may not appear in any Nash equilibrium of the
game, and thus the competition between players results in a suboptimal outcome for the
users. Knowing the fact that Nash equilibria of a dueling game can be formed by suboptimal
strategies, the following question seems to be an important question to ask regarding the
inefficiency of this competition:

What is the social welfare of any Nash equilibrium in a dueling game in comparison
to the social welfare of the optimal strategy?

Price of competition. As aforementioned while in so many cases the competition motivates
businesses to optimize their solutions for consumers, there are competitive markets and
in particular dueling games of Immorlica et al. [19], in which businesses do not offer the
best option to consumers. We define price of competition in this paper to capture this
phenomenon.

First we note that since dueling games are two-player zero-sum games, Nash equilibria
of these games are characterized by minimax strategies. Therefore, one can measure the
inefficiency of any Nash equilibrium by comparing the welfare of any minimax strategy, in
a game of competition between two players, with the welfare achieved by a social welfare
maximizer. We are now ready to define the following criterion for measuring the quality of
minimax strategies in a dueling game.

I Definition 1. Price of competition (PoC) is the ratio between the social welfare of
the worst minimax strategy and the social welfare of the best possible strategy.

The proposed concept of the price of competition has the same spirit as the concept of
the price of anarchy, and both concepts try to measure the inefficiency of Nash equilibria
quantitatively. The price of anarchy, introduced by the seminal work of Koutsoupias and
Papadimitriou [23], is a well-known concept in game theory that measures the ratio of the
social welfare of the worst Nash equilibrium to the optimal social welfare. Although these
two concepts are defined to capture properties of Nash equilibria, they are meaningfully
different. In the price of anarchy, the social welfare is defined as the expected utility of all
players in an equilibrium “outcome”3 which is always zero for any zero-sum game. However,
in the price of competition, the social welfare is the expected utility of the user (which is not
a player) in a minimax “strategy”. In fact, the price of competition is aimed to analyze the
impact of the competition between players on an external user.

3 Which is essentially the same as the sum of utilities of all players.
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Since the price of competition captures the inefficiency of minimax strategies in two-player
zero-sum games and all Nash equilibria of any two-player zero-sum game can be described
by the set of minimax strategies, we believe the price of competition sheds new light on the
structural analysis of Nash equilibria in two-player zero-sum games. Indeed as Alon, Demaine,
Hajiaghayi, and Leighton [5] mention understanding the structure of Nash equilibiria, and
not just the price of anarchy, is very important in general and thus our work is exactly
toward this direction.

Due to the space constraints, all the missing proofs are provided in the appendices.

1.1 Our results
Ranking duel: To define the ranking duel more precisely, consider a ranking duel with two
players. When a user submits a query to a player, she is basically searching a webpage
which is unknown to the player. The player only has a prior knowledge about the requested
webpage, i.e., for each webpage the probability that this webpage is requested by the user
is known. The strategy of each player is an ordering for displaying webpages. When the
requested webpage is realized, the player which puts this webpage in a higher rank gets the
user attention, and thus wins the competition. The goal of each player is to maximize the
probability of winning the competition. In this situation, a social planner who wants to
minimize the expected rank of the requested webpage lists webpages in a decreasing order of
their probabilities. However, this strategy may lose the competition to another strategy.4

We first investigate the quality of minimax strategies and prove that surprisingly the
social welfare of any minimax strategy is not far from that of the optimal solution; it is 0.612
of the optimal solution for the linear valuation functions and 0.25 of the optimal for any
arbitrary valuation function.

I Theorem 1. Consider an instance of the raking duel. If the valuation function is a
non-negative linear function of the rank, the price of competition is at least 0.612 for |Ω| ≥ 10,
and at most 0.833.

Our proof needs a careful understanding of properties for minimax strategies and has three
main steps. First, we prove nice structural properties of minimax strategies. This step is the
main step toward bounding the price of competition and gives an insight into properties of
the polytope of minimax strategies. For example for every two webpages ω1 and ω2 with
pω1 > pω2 , we prove there is a lower bound on the probability that any minimax strategy
ranks webpage ω1 before webpage ω2. In the next step, we leverage these properties to
write a factor-revealing mathematical program for bounding PoC. At last, we find a linear
program where the set of its feasible solutions is a superset of the set of feasible solutions of
the former mathematical program. We find the optimal solution of this linear program to
formally prove the theorem for |Ω| ≥ 10. Moreover, we write a computer program to find the
optimal solution of the corresponding linear program and show the price of competition is at
least 0.637 for |Ω| ≥ 100 (which is slightly better the case that Ω ≥ 10). To the best of our
knowledge, we are the first to use factor-revealing techniques to bound the inefficiency of
equilibria.

4 For example consider a situation when the user submits a query and she is interested in webpages w1,
w2, and w3 with probabilities 0.35, 0.33 and 0.32 respectively. In this situation the social planner ranks
webpage wi at position i, for i = 1, 2, 3. However, if a player plays based on this strategy, her opponent
puts webpages w2, w3, and w1 at positions 1, 2, and 3 respectively, and thus wins the competition when
the user requests webpages w2 or w3. This means the social planner strategy loses the competition with
probability 0.65.
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Afterwards, we consider the cost minimization version of the ranking duel and prove a
constant upper bound for the social cost of the game using the same technique of Theorem 1.
Note that the only difference between the cost minimization and welfare maximization of a
dueling game is that function v is a cost function rather than a valuation function, and once
a webpage is searched the winner of the cost minimization game is the player who provides a
solution with a lower cost. Moreover, we define the PoCcost of the ranking duel as the ratio
between the minimax strategy with the highest cost and the strategy with the least cost. In
the following theorem we show that PoCcost ≤ 3.

I Theorem 2. For a ranking duel with a linear cost function, we have PoCcost ≤ 3.

It is worth mentioning that the structural properties of minimax strategies do not depend on
the valuation function, and thus the polytope of minimax strategies remains unchanged for
every valuation function which is a decreasing (increasing) function of rank in the welfare
maximization (cost minimization) variant of the game. Therefore, we leverage structural
properties of the polytope of minimax strategies, which is presented in Theorem 1, for
proving Theorem 2 and in general one can apply our techniques for characterizing the
polytope of minimax strategies for an arbitrary valuation function. Nevertheless, writing
the factor-revealing mathematical program totally depends on the linearity of the valuation
function.

General valuation functions: There are situations where the value of the user is not a
linear function of rank. For example, consider a user that only cares about the top search
results and will be satisfied if and only if her requested webpage is ranked higher than a
certain threshold. We investigate the efficiency of minimax strategies for any non-negative
non-linear valuation function. Moreover, we go beyond the ranking duel and consider other
dueling games, in the pioneering work of [19]. While bounding the social welfare for arbitrary
valuation functions and general dueling games seems to be challenging, we present a general
principle to capture the main challenge of this problem. The proposed principle has the same
spirit as the classic 0-1 principle in the sorting network which states: “a sorting network will
sort any given input if and only if it sorts any given 0-1 input [13].” The following principle
has the same message and shows if one can bound the social welfare for any 0-1 valuation
function, the same bound holds for any arbitrary valuation function. This means the main
challenge for bounding the social welfare is to bound it for 0-1 valuation functions. The
main idea for proving Theorem 3 is to decompose any valuation function into 0-1 valuation
functions.

I Theorem 3. 0-1 Principle: Consider a dueling game. If the price of competition is greater
than α when the social welfare is defined based on any 0-1 valuation function, then it is
greater than α when the social welfare is defined based on any valuation function.

One can leverage this principle to analyze the efficiency of competition in any dueling
game. For example, we show that the price of competition in the ranking duel is at least
0.25 for an arbitrary valuation function.

I Theorem 4. The price of competition is at least 0.25 for the ranking duel, when the social
welfare is defined based on an arbitrary valuation function.

In the proof of Theorem 4, based on the 0-1 principle, we first consider the problem with
pseudo-valuation functions in which the value of each position is either 0 or 1. We consider
x∗ as the minimax strategy with the least social welfare and construct a response strategy
x′i for the second player for every 1 ≤ i ≤ n as follows:
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Draw a permutation randomly based on strategy x∗. If the value of the position of the
i-th webpage is 1 then play that permutation. Otherwise, swap the position of the i-th
webpage with one of the positions with value 1 at random and play the new permutation.

Next, we use the fact that minimax strategy x∗ does not lose to strategy x′i for proving a set
of inequalities which later on helps us to bound the price of competition. Finally, we use the
0-1 principle to show that this lower bound holds for all possible valuation functions.

This principle also helps us to provide upper bounds on the price of competition when one
considers a general valuation function. For example we show that the PoC of the following
game introduced by Immorlica et al. [19] cannot be bounded by any constant value:
Binary search duel: The binary search duel is a dueling game where each player chooses a

binary search tree over the set of all possible requests Ω. When the user’s request ω ∈ Ω
is realized, the value for each strategy is defined based on the depth of request ω in the
corresponding binary search tree.

I Theorem 5. The price of competition is O( 1
|Ω| ) for the binary search duel, when the social

welfare is defined based on an arbitrary valuation function.

In order to construct bad instances for these duels, we design a valuation function which
is 1 for low depths, 0 for high depths, and a small positive value ε in between. We show
the price of competition is less than any given number β > 0 for the binary search duel by
constructing an instance of the binary search duel with |Ω| = Θ( 1

β ).

1.2 Related work
Immorlica et al. [19] are the first who considered the concept of dueling games. They present
dueling games in the context of dueling algorithms, where two competitive algorithms try
to maximize the probability of outperforming their opponent for an unknown stochastic
input. While we employ the same model in this paper, our goal completely differs from
that of Immorlica et al. [19]. Immorlica et al. [19] present polynomial-time algorithm for
finding a minimax strategy of a dueling game when the polytope of minimax strategies
can be represented by a polynomial number of linear constraints. Knowing the fact that
the polytope of minimax strategies of any ranking duel has polynomially many facets, they
propose a polynomial-time algorithm for finding a minimax strategy of ranking duels. This
method was later generalized by [3] to solve the Colonel Blotto game. Immorlica et al. [19]
leave the problem of analyzing the social welfare of competitive algorithms as their main
open question. In this paper, we do not deal with the computational complexity of finding
minimax strategies, but we focus on answering the posted open question and analyze the
social welfare of minimax strategies for a given duel.

As we are interested in quantifying the inefficiency of Nash equilibria, our proposed
concept of the price of competition has the same flavor as the concept of the price of anarchy
[23, 26]. The price of anarchy is commonly used for quantifying the inefficiency of a system
which is constructed by selfish agents. For example, it has been used to analyze the inefficiency
of Nash equilibria in congestion games [27, 12], network creation games [16, 14, 4, 5], and
selfish scheduling games [6, 20]. (See, e.g. [26] for more examples).

Kempe and Lucier [21] recently study the impact of competition on the social welfare
in a competitive sponsored search market. In their model, which is a departure from the
model of Immorlica et al. [19], search engines again compete to obtain more users. A user’s
request is defined by a set S of webpages which is unknown to search engines, and the user is
satisfied if and only if at least one of webpages in S is ranked in a better position than a given
threshold t. The strategy of each search engine is an ordering over all possible webpages.
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At last, the user chooses a search engine based on a selection rule which is a function of
probability of being satisfied by each search engine. Kempe and Lucier [21] prove that if
search engines extract utility from satisfied users or the search engine selection rule is convex,
then the social welfare of the game is at least half of the optimum social welfare. Moreover,
they show if the utility of search engines is driven from all customers and the search engine
selection rule is concave, then the social welfare of the game is bounded away from that of
the optimum solution by a factor of Ω(n), where n is the number of all possible webpages.
We would like to note that our model is a general model for studying all dueling games which
is exactly the same as the model of Immorlica et al. [19], and is significantly different from
that of Kempe and Lucier [21].

There is a line of research that study a competition between advertisers in sponsored
search auctions [1, 9, 17, 15, 22]. These works analyze the revenue of a single search engine
in various settings regarding users’ behavior and the business model of advertisers. However,
in ranking duel we investigate a competition between players who provide orderings rather
than advertisers.

There is a rich literature in economics that explains product differentiation in competitive
markets. While producing similar products is supported by classical models such as the
Hotelling model [18], Aspremont, Gabszewicz, and Thisse [8] argue that competitive producers
may improve their revenue by producing different products. See, e.g., [29, 25, 24] for details
on this literature. The same phenomenon can be seen in the sponsored search market, e.g.,
Telang, Rajan, and Mukhopadhyay [28] show low-quality search engines may extract revenue
from the sponsored search market.

2 Model

2.1 Dueling games
In dueling game G both players try to beat the other player and offer a better value in
the competition. Assume players A and B play pure strategies sA and sB respectively,
and event ω has occurred. In this situation, player A wins the competition if and only if
vω(sA) > vω(sB), and thus the utility of player A given event ω can be written as follows:

uAω (sA, sB) =


+1 if vω(sA) > vω(sB)
0 if vω(sA) = vω(sB)
−1 if vω(sA) < vω(sB)

Now consider a situation where players A and B play mixed strategies x and y respectively
and event ω has occurred. The utility of player A is the probability that player A wins the
competition minus the probability that player B wins the competition and can be defined as
follows:

uAω (x,y) = PrsA∼x
sB∼y

[vω(sA) > vω(sB)]− PrsA∼x
sB∼y

[vω(sA) < vω(sB)]

Finally the overall utility of player A is uA(x,y) =
∑
ω pωu

A
ω (x,y). Since dueling game

G is a zero-sum game the utility of player B is the negation of the utility of player A for each
ω, i.e., uBω (x,y) = −uAω (x,y) and thus uB(x,y) = −uA(x,y).

I Definition 2 (Minimax strategy). Strategy x of player A is minimax if
x ∈ argmaxx′{miny{uA(x′,y)}}. Similarly, Strategy y of player B is minimax if y ∈
argmaxy′{minx{uB(x,y′)}}.
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Based on the definition of dueling games and the fact that the set of all possible pure
strategies for both players is S, we can conclude the outcome of both players in any Nash
equilibrium is 0 and moreover the set of minimax strategies of both players coincide. We
define the set of minimax strategies byM.

I Definition 3 (Social welfare). Consider dueling game G = (Ω, p, S, v). The social welfare of
pure strategy s is the expected value of this strategy over all possible events and can be written
as SW(s) =

∑
ω pωvω(s). The social welfare of mixed strategy x is SW(x) = Es∼x[SW(s)].

In this paper, we are interested to study the social welfare of the game in equilibria. Note
that the customer locks into one of the players in long term. On the other hand, both players
only try to offer the customer a better option than the other one, and thus play a minimax
strategy in the competition. These cause inefficiency in the game. Here we define a new
criterion to measure this inefficiency in the game.

I Definition 4 (Price of competition). The price of competition is the ratio of the worst
minimax strategy to the optimal solution which is:

minx∈M SW(x)
maxx SW(x) = minx∈M SW(x)

maxs∈S SW(s) .

Similar to the welfare maximization model, we consider the cost minimization model in
which players try to beat the opponent by offering a lower cost to the user. In particular we
have a cost function c, such that cω(s) denotes the cost of strategy s and event ω. Hence,
the utility of player A would be defined as

uAω (x,y) = PrsA∼x
sB∼y

[cω(sA) < cω(sB)]− PrsA∼x
sB∼y

[cω(sA) > cω(sB)].

Similarly we define the social cost SC(s) =
∑
ω pωcω(s) for a pure strategy s and SC(x) =

Es∼x[SC(s)] for a mixed strategy x. Finally the price of competition in cost minimization
version is defined as

maxx∈M SC(x)
minx SC(x) = maxx∈M SC(x)

mins∈S SC(s) .

2.2 Ranking duel
Ranking duel is a dueling game where Ω = {1, · · · , n} is the set of n webpages which can
be requested by a user. In this game, the set of pure strategies S is equal to the set of all
possible permutations over Ω, i.e., each player outputs an ordering of webpages for the user.
We denote each pure strategy of the ranking duel by π (instead of s) where π(ω) is the rank
of webpage ω. The valuation function v of a raking duel can be defined based on function
f : {1, · · · , n} → R+ ∪ {0} as vω(π) = f(π(ω)). Consider mixed strategy x where xπ is the
probability that strategy x outputs permutation π. The social welfare of strategy x can be
defined as:

SW(x) =
∑
ω

∑
π

pωxπf(π(ω)). (1)

3 Price of competition in the linear ranking duel

3.1 Welfare maximization ranking duel
In this section we give bounds for the PoC in the ranking duel when the valuation function
is non-negative and linear, in other words f(i) = c(n− i) + d, where c, d ≥ 0.
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First we formulate the social welfare of strategy x and the optimal social welfare. Without
loss of generality in this section we assume p1 ≥ p2 ≥ . . . ≥ pn. Let Prπ∼x[π(a) = i] denote
the probability that in a randomly drawn permutation π from strategy x, the rank of webpage
a is i. Similarly let Prπ∼x[π(a) < π(b)] denote the probability that in a randomly drawn
permutation π from strategy x, webpage a comes before webpage b.

I Proposition 5. In a ranking duel with valuation function f and n webpages, the social
welfare of a strategy x is SWf (x) =

∑n
a=1

∑n
i=1 paPrπ∼x[π(a) = i]f(i).

Let OPT be the strategy with the maximum social welfare. Hence SW(OPT) is formulated
as follows.

I Proposition 6. In a ranking duel with valuation function f and n webpages, the optimal
social welfare is SWf (OPT) =

∑n
a=1 paf(a).

Lemma 7 shows that for any minimax strategy x and any linear function f(i) = c(n−i)+d
with c, d ≥ 0, the PoC is no less than the case in which f(i) = n− i.

I Lemma 7. For valuation functions f(i) = n− i, f ′(i) = c(n− i) + d with c, d ≥ 0, and
any strategy x, SWf (x)

SWf (OPT) ≤
SWf′ (x)

SWf′ (OPT) .

Thus any lower bound for the PoC with f(i) = n − i, is also a lower bound for the PoC
with any other linear valuation function. Therefore, from now on we assume f(i) = n− i,
and use SW(x) and SW(OPT) instead of SWf (x) and SWf (OPT), respectively. Hence
SW(OPT) =

∑n
a=1 pa(n− a). Now we try to compute SW(x) from a different perspective.

I Proposition 8. In a ranking duel with n webpages, the social welfare of strategy x is

SW(x) =
n∑
a=1

n∑
b=a+1

paPrπ∼x[π(a) < π(b)] + pbPrπ∼x[π(b) < π(a)].

Intuitively by Proposition 8 we can compute the social welfare of a strategy by comparing
the ranks of every pairs of webpages. Therefore we define hab(x) to be the amount that
the pair of webpages a and b adds to the social welfare in strategy x, i.e. hab(x) =
paPrπ∼x[π(a) < π(b)] + pbPrπ∼x[π(b) < π(a)]. Thus we can rewrite Proposition 8 as
SW(x) =

∑n
a=1

∑n
b=a+1 hab(x). Hence for every strategy x,

SW(x)
SW(OPT) =

∑n
a=1

∑n
b=a+1 hab(x)∑n

a=1 pa(n− a)
.

In Lemma 9 we provide our main tool for bounding the price of competition in the linear
ranking duel.

I Lemma 9. Given a strategy x, if there exist an integer k such that 2 ≤ k ≤ n and for all
k different indices i1 < i2 < . . . < ik,∑k

a=1
∑k
b=a+1 hiaib(x)∑k

a=1 pia(k − a)
≥ α,

then SW(x)
SW(OPT) ≥ α.

Now our goal is to provide a lower bound for α when x is a minimax strategy. In order
to do that, first we provide some structural properties of the minimax strategies. Leveraging

ICALP 2016
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these properties we write a mathematical program with k variables pa and
(
k
2
)
variables hab.

Finally, we provide a factor-revealing linear program to obtain a close lower bound for α in
the corresponding mathematical program.

In Lemmas 10, 11, 13, and Proposition 12 we provide the structural properties of the
minimax strategies.

I Lemma 10. Let x be a minimax strategy and a and b be two webpages such that pa ≥ pb.
Let πba be any permutation in the support of x in which b precedes a. Let i < j be the
respective position of a and b in πba, then strategy x must satisfy,

Prπ∼x[i < π(b) ≤ j]+Prπ∼x[i ≤ π(b) < j] ≥ pa
pb

(Prπ∼x[i < π(a) ≤ j]+Prπ∼x[i ≤ π(a) < j]).

Intuitively Lemma 10 shows that if pa ≥ pb and there is a permutation in which b comes
before a, then the probability that x ranks b in interval [i, j] (counting the non-endpoint
elements twice) is greater than the probability that x ranks a in this interval by a factor of
pa
pb
. Otherwise, by swapping the rank of a and b we can achieve a strategy that beats x.

I Lemma 11. Let x be a minimax strategy and xπ be the probability that strategy x plays
permutation π. For every pair of webpages a and b with pa ≥ pb, we have

Prπ∼x[π(a) < π(b)] ≥ ( pa2pb
− 1)Prπ∼x[π(b) < π(a)]. (2)

Briefly, in the proof of Lemma 11 we propose an algorithm to find a set of permutations
Π in x, such that 1) for each π ∈ Π, b comes before a, 2) for each permutation π′ in x
in which b comes before a, there is a permutation π ∈ Π, such that π(b) ≤ π′(a) ≤ π(a),
and 3) the interval of the ranks of b and a are distinct, i.e. for two permutations π, π′ ∈
Π, [π(b), π(a)] ∩ [π′(b), π′(a)] = ∅. We apply the inequality in Lemma 10 for all permutations
in Π to achieve Lemma 11.

In Proposition 12 and Lemma 13 we provide lower bounds for hab(x) when x is a minimax
strategy. Hence we can use these lower bounds in the proposed mathematical program to
achieve a lower bound for the PoC.

I Proposition 12. For minimax strategy x and webpages a and b such that pa ≥ pb,
hab(x) ≥ pb.

I Lemma 13. For minimax strategy x and webpages a and b such that pa ≥ pb, hab(x) ≥
pa − 2pb + 2p2

b

pa
.

Leveraging the properties of the minimax strategies we write MP 3. In MP 3, Constraints 5
and 6 force pa’s to satisfy the probability constraints. Using Proposition 12, Constraint 7
forces hab to be no less than pb and due to Lemma 13, Constraint 7 forces hab to be no less
than pa − 2pb + 2p2

b

pa
. By Lemma 9, α in Constraint 4 gives a lower bound for the PoC.

minimize α (3)

subject to α =
∑k
a=1

∑k
b=a+1 hab∑k

a=1 pa(k − a)
(4)

pa ≥ 0 ∀1 ≤ a ≤ k (5)∑
1≤a≤k

pa ≤ 1 (6)

hab ≥ pb ∀1 ≤ a < b ≤ k (7)

hab ≥ pa − 2pb + 2p2
b

pa
∀1 ≤ a < b ≤ k (8)
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Figure 1 Lower bound on the solution of MP 3. While we formally prove α10 ≥ 0.612, this figure
shows lower bounds on αk for 2 ≤ k ≤ 100 found by a computer program. Note that, by Lemma 14
the PoC of the ranking duel with linear valuation function is at least αk for all n ≥ k.

For each k, let αk be the optimal value of the objective function in MP 3.

I Lemma 14. αk is a lower bound for the PoC of the linear ranking duel where n ≥ k.

In Theorem 15 we formally prove α10 ≥ 0.612, which results in PoC ≥ 0.612 for any
ranking duel with n ≥ 10 webpages. Moreover, we write a computer program to find αk for
2 ≤ k ≤ 100 (see Figure 1).

I Theorem 15. For a linear ranking duel with n ≥ 10 webpages, PoC ≥ 0.612.

The proof idea is as follows. We design a linear program from MP 3. Constraints 4 and 8
in MP 3 are not linear, thus we first try to replace Constraint 8 by three linear constraints.
Afterwards, intuitively we scale the probabilities such that

∑k
a=1 pa(k − a) equals 1, hence

we can have a linear constraint instead of Constraint 4. Then we show each feasible solution
for MP 3 is also a feasible solution for the achieved linear program. Finally by finding a
feasible solution for the dual of the corresponding LP, we provide a lower bound for α in the
primal LP, which is a lower bound for the optimal solution of MP 3 as well.

4 General framework

In this section we present a general framework for analyzing the price of competition in
dueling games. Proving lower bounds for the price of competition in dueling games highly
depends on the valuation functions and it becomes more challenging when the valuation
functions are complex. However, the behavior of minimax strategies only depends on the
comparison of the valuation functions rather than actual values. We leverage this fact to
provide Theorem 16 which enables us to prove bounds for the price of competition without
concerning the complexities of the valuation functions. We refer to this theorem as the 0-1
principle.

Let (Ω, p, S, v) be a dueling game and α be a non-negative real number. We define the
trigger function vαω(s) for a pure strategy s in the following way:

vαω(s) =
{

1 if vω(s) ≥ α
0 if vω(s) < α

ICALP 2016
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Moreover, we define the pseudo-welfare function SWα(s) as the summation of the values
of the trigger functions when a player is playing strategy s with respect to α, SWα(s) =∑
ω∈Ω pωv

α
ω(s). Furthermore, the pseudo-welfare function for a mixed strategy x is defined as

SWα(x) = Es∼x[SWα(s)]. Let PoCα be the pseudo-welfare of the minimax strategy with the
least social welfare over SW(OPT) which can be formulated by PoCα = SWα(x∗)

SWα(OPT) , where x∗
is the minimax strategy with the least social welfare and OPT is the strategy with highest
social welfare. Note that optimal and minimax strategies are determined regardless of the
pseudo-welfare function. For simplicity, we consider PoCα = 1 when SWα(OPT) = 0. In the
following we show that the PoC of every dueling game is bounded by minα≥0{PoCα}.

I Theorem 16 (0-1 principle). For every dueling game we have PoC ≥ minα≥0{PoCα}.

In the following subsections we show how we can apply the 0-1 principle to dueling games
in order to present lower bounds for the PoC. In Subsection 4.1 we show that the PoC of the
ranking duel is at least 1

4 regardless of the valuation function. Note that, for every α, one
could design a valuation function in such a way that |vαω(x)− vω(x)| ≤ ε while the optimal
and minimax strategies remain the same. Therefore, we have the lowest PoC when the range
of the valuation function is [0, ε] ∪ [1, 1 + ε].

4.1 Ranking duel with general valuation function
Recall that in the ranking duel each position of the permutation has a valuation f(i), each pure
strategy of the players is a permutation of webpages π = 〈π−1(1), π−1(2), π−1(3), . . . , π−1(n)〉,
and Ω = {1, 2, . . . , n} is the set of elements of uncertainty. For a webpage ω ∈ Ω, vω(π) =
f(π(ω)), where π(ω) is the rank of ω in π. In the following, we use the 0-1 principle to show
that the PoC of the ranking duel with an arbitrary valuation function is at least 1

4 .

I Theorem 17. The PoC of the ranking duel is at least 1
4 .

4.2 Binary search duel with general valuation function
In this subsection we study the binary search duel and show that the PoC of this game can
be Ω( 1

n ). In this game Ω = {1, 2, . . . , n} and each pure strategy of the players is a binary
tree such that its in-order traversal visits the elements of Ω in the sorted order. Moreover,
vω(s) is determined by f(ds(ω)) where ds(ω) denotes the depth of element ω in the binary
search tree corresponding to s and f : N→ R≥0 is a decreasing function.

I Theorem 18. For every β > 0 there is an instance of the binary search duel with |Ω| = θ( 1
β )

and PoC ≤ β.
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Abstract
In an instance G = (A∪B,E) of the stable marriage problem with strict and possibly incomplete
preference lists, a matchingM is popular if there is no matchingM ′ where the vertices that prefer
M ′ to M outnumber those that prefer M to M ′. All stable matchings are popular and there is
a simple linear time algorithm to compute a maximum-size popular matching. More generally,
what we seek is a min-cost popular matching where we assume there is a cost function c : E → Q.
However there is no polynomial time algorithm currently known for solving this problem. Here
we consider the following generalization of a popular matching called a popular half-integral
matching: this is a fractional matching ~x = (M1 + M2)/2, where M1 and M2 are the 0-1 edge
incidence vectors of matchings in G, such that ~x satisfies popularity constraints. We show that
every popular half-integral matching is equivalent to a stable matching in a larger graph G∗. This
allows us to solve the min-cost popular half-integral matching problem in polynomial time.

1998 ACM Subject Classification G.2.2 Graph algorithms, G.1.6 Linear programming

Keywords and phrases bipartite graphs, stable matchings, fractional matchings, polytopes

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.22

1 Introduction

Let G = (A∪B,E) be an instance of the stable marriage problem on n vertices and m edges.
Each vertex has a strict preference list ranking its neighbors. A matching M is stable if M
admits no blocking edge, i.e., an edge (a, b) such that both a and b prefer each other to their
respective assignments in M . The existence of stable matchings in G and the Gale-Shapley
algorithm [7] to find one are classical results in graph algorithms.

Stability is a very strict condition and here we consider a relaxation of this called popularity.
This notion was introduced by Gärdenfors [9] in 1975. We say a vertex u ∈ A ∪B prefers
matching M to matching M ′ if u is matched in M and unmatched in M ′ or it is matched in
both and M(u) ranks better than M ′(u) in u’s preference list. For any two matchings M
and M ′ in G, let φ(M,M ′) be the number of vertices that prefer M to M ′.

I Definition 1. A matching M is popular if φ(M,M ′) ≥ φ(M ′,M) for every matching M ′
in G, i.e., ∆(M,M ′) ≥ 0 where ∆(M,M ′) = φ(M,M ′)− φ(M ′,M).

Every stable matching is popular [9]. In fact, it is known that every stable matching is a
minimum-size popular matching [10]. In applications such as matching students to projects
or applicants to posts, it may be useful to consider a weaker notion (such as popularity)
than the total absence of blocking edges for the sake of obtaining larger-sized matchings.
Popularity provides “global stability” since a popular matching never loses an election to
another matching; by relaxing stability to popularity, we have a larger pool of candidate
matchings to choose from in such an application.
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When there is a cost function c : E → Q, what we seek is a min-cost popular matching.
There are several polynomial time algorithms known [11, 5, 6, 16, 14, 15] for computing a
min-cost stable matching in G. However, while a maximum-size popular matching can be
computed in linear time [12], no polynomial time algorithm is currently known for computing
a min-cost popular matching in an instance G = (A ∪ B,E) with strict preference lists,
except when preference lists are complete [4].

A fractional matching ~p is a convex combination of matchings, i.e., ~p =
∑

i pi · I(Mi)
where

∑
i pi = 1, pi ≥ 0 for all i, Mi’s are matchings in G, and I(M) is the 0-1 edge incidence

vector of M . The fractional matching ~p is popular if ∆(~p,M) ≥ 0 for all matchings M in G
where ∆(~p,M) =

∑
i pi ·∆(Mi,M) (see Definition 1). It follows by linearity that if ~p is a

popular fractional matching then ∆(~p, ~q) ≥ 0 for all fractional matchings ~q.
Let P be the polytope defined by the constraints that ~p belongs to the matching polytope

of G and ∆(~p,M) ≥ 0 for all matchings M in G. A simple description of P was given in [13].
Thus a min-cost popular fractional matching can be computed in polynomial time.

Our results and techniques. Our main result is a polynomial time algorithm to compute a
min-cost popular half-integral matching in G. A popular half-integral matching is a vector
~x ∈ {0, 1

2 , 1}
m ∩ P. For any two popular matchings M1 and M2 in G, the half-integral

matching (I(M1) + I(M2))/2 is popular. However not every popular half-integral matching
is a convex combination of popular matchings – we show such an example in Section 2. Thus
if Q is the convex hull of popular half-integral matchings in G, then Q need not be integral.

We show that every extreme point of Q is a stable matching in a new (larger) graph
G∗ that we construct here. Thus the min-cost popular half-integral matching problem in G
becomes the min-cost stable matching problem in G∗ which can be solved in polynomial time.
This also gives us a simple description of the polytope Q via the stable matching polytope of
G∗ (i.e., the convex hull of stable matchings in G∗).

The main tool that we use here is the description of the polytope P from [13]. We first
show that every stable matching S in the new graph G∗ can be mapped to a half-integral
matching in G whose incidence vector belongs to P . We then show that every extreme point
~p of the convex hull Q of popular half-integral matchings in G can be realized as a stable
matching in G∗. We use the fact that ~p ∈ P along with the fact that G is bipartite to show
a “helpful witness” (αu)u∈A∪B ∈ {±1, 0}n. This witness will guide us in building a stable
matching S in G∗ that corresponds to ~p.

A graph G′, similar to the graph G∗ used here, was recently used in [4] to show that any
stable matching in G′ maps to a maximum-size popular matching M in G. However every
maximum-size popular matching in G need not be obtained as a stable matching in G′. In
the special case when preference lists are complete (i.e., G is K|A|,|B|), all popular matchings
in G can be realized as stable matchings in G′. The method used in [4] is similar to the
method used in previous algorithms to compute maximum-size popular matchings [10, 12] –
these show that there is no popularity-improving alternating path or cycle with respect to
the matching returned. In contrast, our technique here is based on linear programming.

A min-cost popular half-integral popular matching has applications – consider the problem
of assigning projects to students where each project can be split into two half-projects. Each
half-project can be assigned to a distinct student and a student can be assigned two half-
projects. A min-cost popular half-integral matching is a feasible assignment here that is
popular and has the least cost. While fractional matchings, in general, may not be feasible
in typical applications, half-integral matchings are more natural and suitable to applications.
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Background. Algorithms for computing popular matchings [1] were first considered in the
one-sided preference lists model where it is only vertices in A that have preferences and cast
votes while vertices in B have no preferences. Popular matchings need not always exist in
this model, however it was shown in [13] that popular fractional matchings always exist and
using the description of P, such a fractional matching can be found in polynomial time (via
linear programming).

In the two-sided preference lists model, when preference lists have ties, G = (A ∪B,E)
need not always admit a popular matching and it is known that determining if G admits
a popular matching or not is an NP-complete problem [2, 3]. When preference lists are
strict, every stable matching is popular. The min-cost stable matching problem in an
instance G = (A ∪ B,E) with strict preference lists is well-studied and descriptions of
the stable matching polytope were given by Vande Vate [16], Rothblum [14], and Teo and
Sethuraman [15].

We discuss preliminaries in Section 2. Section 3 describes the graph G∗ and shows that
every stable matching in G∗ is a popular half-integral matching in G. Section 4 shows
how every popular half-integral matching in G that is an extreme point of Q (the popular
half-integral matching polytope) can be obtained as a stable matching in G∗.

2 Preliminaries

For any vertex u ∈ A ∪B and neighbors v and w, we will use the following function to show
u’s preference for v vs w: voteu(v, w) = 1 if u prefers v to w, it is -1 if u prefers w to v, else
(i.e., when v = w) it is 0. We will be using this function in the description of the popular
fractional matching polytope P.

Recall that a popular fractional matching is a point ~x = (xe)e∈E in the matching polytope
of G such that ∆(~x,M) ≥ 0 for all matchings M in G. It will be convenient to assume that
each vertex u ∈ A∪B is completely matched in every fractional matching ~x in G. So we will
revise ~x so that each vertex u gets matched to an artificial last-resort neighbor `(u) (which
is placed at the bottom of u’s preference list) with weight (1−

∑
e∈E(u) xe), where the sum

is over all the edges e incident on u.
For convenience, we will continue to use ~x to denote the revised ~x in [0, 1]m+n. We use Ẽ

to denote the edge set E ∪ {(u, `(u)) : u ∈ A ∪B} and Ẽ(u) is the set of edges in Ẽ that are
incident on u. The following simple description of P was given in [13]. In the constraints
below, a variable αu is associated with each u ∈ A ∪B and not to last-resort neighbors.

αa + αb ≥
∑

(a,b′)∈Ẽ(a)

x(a,b′) · votea(b, b′) +
∑

(a′,b)∈Ẽ(b)

x(a′,b) · voteb(a, a′) ∀(a, b) ∈ Ẽ

∑
u∈A∪B

αu = 0 and
∑

e∈Ẽ(u)

xe = 1 ∀u ∈ A ∪B and xe ≥ 0 ∀e ∈ Ẽ.

The constraints above arise as the dual to the maximum weight matching problem in the
graph G̃x which is G augmented with last-resort neighbors and with edge set Ẽ, where the
weight of an edge (a, b) is

∑
(a,b′)∈Ẽ(a) x(a,b′) · votea(b, b′) +

∑
(a′,b)∈Ẽ(b) x(a′,b) · voteb(a, a′).

The constraint
∑

u∈A∪B αu = 0 is equivalent to saying that the maximum weight of a
matching in G̃x is 0, in other words, ~x is popular. We refer the reader to Section 3 of [13] for
all the details.

For any fractional matching ~x, if there exists ~α = (αu)u∈A∪B such that ~x and ~α satisfy
the above constraints, then we say ~x ∈ P. The vector ~α will be called a witness to ~x’s
popularity.
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a0 v1

a1 b1 v1

a2 b1 b2

u1 v1 v2 b0

u2 v2 b2 v1

b0 u1

b1 a2 a1

b2 a2 u2

v1 u2 a1 u1 a0

v2 u1 u2

Figure 1 The above table describes the preference lists of all the men and women in G. Here a0

has a single neighbor v1 while a1’s top choice is b1, second choice is v1 and so on for each vertex.

P is not integral. We now show an example of a graph G and a fractional matching ~p ∈ P ,
however ~p is not a convex combination of popular matchings. Let A = {a0, a1, a2, u1, u2},
B = {b0, b1, b2, v1, v2}, and the preference lists of vertices are described in Figure 1.

Consider the half-integral matching ~p which has p(a1,b1) = p(a2,b2) = 1 and pe = 1
2 for

e ∈ {(u1, v1), (u2, v2), (u1, v2), (u2, v1)}. For any other edge e, we have pe = 0. This fractional
matching belongs to P by using the following α values: αa0 = αb0 = 0; αa2 = αb1 = 1;
αa1 = αb2 = −1; and αw = 0 for w ∈ {u1, u2, v1, v2}.

There is only one way to express ~p as a convex combination of integral matchings,
that is, ~p = (I(M1) + I(M2))/2, where M1 = {(a1, b1), (a2, b2), (u1, v1), (u2, v2)} and M2 =
{(a1, b1), (a2, b2), (u1, v2), (u2, v1)}. We show below that neither M1 nor M2 is popular.

The matching M ′1 = {(u1, b0), (a1, v1), (a2, b1), (u2, v2)} is more popular than M1 and the
matching M ′2 = {(a0, v1), (u2, b2), (a2, b1), (u1, v2)} is more popular than M2. Thus ~p is not
in the convex hull of popular matchings in G.

The graph G′. Our input is a graph G = (A∪B,E) on n vertices and m edges. Note that
there are no last-resort neighbors here – they were added only for the formulation of the
polytope P. Vertices in A and in B are usually referred to as men and women, respectively,
and we follow the same convention here.

The construction of the following graph G′ = (A′ ∪B′, E′), based on G, was shown in [4].
The set A′ has two copies a0 and a1 of each man a ∈ A, the men in {a0 : a ∈ A} are called
level 0 men of G′ and those in {a1 : a ∈ A} are called level 1 men of G′. The set B′ consists
of all the women in B along with dummy vertices ∪a∈A{d(a)}, where there is one dummy
vertex per man in A. The preference lists of the vertices are as follows:

each level 0 man a0 has the same preference list as the corresponding man a in G except
that the dummy vertex d(a) occurs as his least preferred neighbor at the bottom of his
preference list
each level 1 man a1 has the same preference list as the corresponding man a in G except
that the dummy vertex d(a) occurs as his most preferred neighbor at the top of his
preference list
each dummy vertex d(a) has a0 and a1 as its neighbors: top choice is a0, followed by a1
every woman b ∈ B has the following preference list in G′: all her level 1 neighbors (in
the same order of preference as in G) followed by all her level 0 neighbors (in the same
order of preference as in G).

We will be using this graph G′ here; in fact, we will have two such graphs G′ and G′′
combining to form our new graph G∗. The graph G′′ is analogous to the graph G′ except
that the roles of men and women (and also that of levels 0 and 1) are swapped here.
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G′ G′′

A′′B′

B′′0

B′′1

A′1

A′0

Figure 2 The graph G′ on the left and the graph G′′ on the right in G∗. For i = 0, 1, we use A′i
to refer to level i men in G′ and we use B′′i to refer to level i women in G′′.

3 The graph G∗

We define the graph G∗ as follows: G∗ consists of two vertex-disjoint subgraphs G′ and G′′
(see Figure 2). The graph G′ was described in Section 2.

In the graph G′′ = (B′′ ∪ A′′, E′′), women are on the left side of G′′ and men are on
the right side – the set B′′ has two copies b0 and b1 of each woman b ∈ B, the women in
{b0 : b ∈ B} are called level 0 women of G′′ and those in {b1 : b ∈ B} are called level 1
women of G′′.

The set A′′ consists of all the men in A along with new dummy vertices ∪b∈B{d(b)},
where there is one dummy vertex per woman in B. The preference lists of the vertices are as
follows:

each level 0 woman b0 has the same preference list as the corresponding woman b in G
except that the dummy vertex d(b) occurs as her most preferred neighbor at the top of
her preference list
each level 1 woman b1 has the same preference list as the corresponding woman b in G
except that the dummy vertex d(b) occurs as her least preferred neighbor at the bottom
of her preference list
each dummy vertex d(b) has only b0 and b1 as its neighbors: its top choice is b1, followed
by b0
every man a ∈ A has the following preference list in G′′: all his level 0 neighbors (in the
same order of preference as in G) followed by all his level 1 neighbors (in the same order
of preference as in G).

We want all stable matchings in G∗ to be perfect matchings – note that all level 0 men
in G′ and all level 1 women in G′′ will be matched in any stable matching in G∗ since they
are top-choice neighbors for their respective dummy neighbors. However the same cannot be
said about level 1 men in G′ and level 0 women in G′′.

In order to take care of these vertices, we add the following “self-loop” edges to G∗: the
edge (a1, a) for each man a in A, where a1 ∈ A′1 and a ∈ A′′, and the edge (b0, b) for each
woman b in B, where b0 ∈ B′′0 and b ∈ B′. The vertex a1 ∈ A′1 regards a ∈ A′′ as his worst
ranked neighbor and similarly, b0 ∈ B′′0 regards b ∈ B′ as her worst ranked neighbor.

For any man a ∈ A′′, the vertex a1 is in the middle of his preference list, sandwiched
between all his level 0 neighbors and all his level 1 neighbors as shown in (1) below. More
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precisely, a1 is sandwiched between b′′0 and b′1, where b′ > · · · > b′′ is a’s preference list in G.
Thus b′′0 is a’s worst level 0 neighbor and b′1 is a’s best level 1 neighbor.

a : b′0 > · · · > b′′0 > a1 > b′1 > · · · > b′′1 ; b : a′1 > · · · > a′′1 > b0 > a′0 > · · · > a′′0 . (1)

Similarly, for any woman b ∈ B′, the vertex b0 is in the middle of her preference list,
sandwiched between all her level 1 neighbors and all her level 0 neighbors as shown in (1).
More precisely, b0 is sandwiched between a′′1 and a′0, where a′ > · · · > a′′ is b’s preference list
in G. Using the fact that all stable matchings in G∗ match the same set of vertices [8], it
can be shown that every stable matching in G∗ is perfect.

The function f . We now define a function f : {stable matchings in G∗} → {half-integral
matchings in G}. Observe that every stable matching in G∗ has to match all dummy vertices
since each of these is a top-choice neighbor for someone. Thus out of a0 and a1 in A′, only
one is matched to a non-dummy neighbor and similarly, out of b0 and b1 in B′′, only one is
matched to a non-dummy neighbor.

Let S be any stable matching in G∗. By removing all self-loops that occur in S and
those edges in S that contain a dummy vertex, the resulting matching is the union of two
matchings S′ and S′′ in G. We define f(S) to be (I(S′) + I(S′′))/2, where I(M) ∈ {0, 1}m

is the 0-1 edge incidence vector of M . So f(S) is a valid half-integral matching in G.

I Theorem 2. For any stable matching S in G∗, the half-integral matching f(S) is popular
in G.

Proof. We are given a stable matching S in G∗. Recall that we pruned all edges that contain
a dummy vertex and all self-loops from S to define f(S). We now prune all dummy vertices,
their partners in S, and self-loops from G∗ also – let H∗ denote the pruned graph G∗. Let
H ′ denote the pruned subgraph G′ and let H ′′ denote the pruned subgraph G′′.

The men in the graph H ′ consist of one copy of each a ∈ A – some of these are in level 0
and the rest are in level 1. The women in H ′ are exactly those in B. The women in H ′′
consist of one copy of each b ∈ B – some of these are in level 0 and the rest are in level 1.
The men in H ′′ are exactly those in A. Thus H ′ and H ′′ are two copies of the graph G.

Let S′ be the pruned matching (resulting from S) restricted to H ′ and let S′′ be the
pruned matching (resulting from S) restricted to H ′′. Let Ã′i denote the set of level i men
in H ′, for i = 0, 1 (see Figure 3). Let B̃′i consist of women matched in S′ to men in Ã′i, for
i = 0, 1. Women unmatched in S′ are added to B̃′1.

Similarly, B̃′′i consists of level i women in the H ′′ part of H∗ and Ã′′i denotes the set of
men matched in S′′ to women in B̃′′i , for i = 0, 1. Men unmatched in S′′ are added to Ã′′0 .

For each edge e = (a, b) ∈ H ′, define the function w′(e) as follows: w′(e) = votea(b, S′(a))
+ voteb(a, S′(b)). If S′(u) is undefined for any vertex u, then voteu(v, S′(u)) = 1 for any
neighbor v of u since every vertex prefers being matched to being unmatched. Note that if
(a, b) ∈ S′ then w′(e) = 0.

Similarly, for each edge e = (a, b) ∈ H ′′, define the function w′′(e) as follows: w′′(e) =
votea(b, S′′(a)) + voteb(a, S′′(b)). For any vertex u that is unmatched in S′′, we take
voteu(v, S′′(u)) = 1, for any neighbor v of u. Note that w′(e) and w′′(e) always take
values in {−2, 0, 2}. Due to the stability of the matching S in G∗, the following observations
hold:

Every edge e ∈ Ã′1 × B̃′0 has to satisfy w′(e) = −2. Similarly, every edge e ∈ Ã′′1 × B̃′′0
has to satisfy w′′(e) = −2.
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Ã′1 B̃′1 B̃′′0 Ã′′0

Ã′′1B̃′′1B̃′0Ã′0

H ′ H ′′

Figure 3 The graph H ′ on the left and the graph H ′′ on the right in the graph H∗.

Consider an edge (a1, b) in Ã′1 × B̃′0. It follows from the definition of preference lists of
women in G′ that the woman b prefers a1 (a level 1 man) to her partner S′(b) (a level 0 man).
Since S is stable, it follows that a1 prefers his partner S′(a1) to b. Moreover, a0 prefers b
to S′(a0) = d(a), since d(a) is a0’s last choice. Thus b prefers her partner S′(b) to a0. So
votea(b, S′(a)) = voteb(a, S′(b)) = −1. A similar proof holds for any edge e ∈ Ã′′1 × B̃′′0 .

Every edge e such that w′(e) = 2 has to be in Ã′0 × B̃′1. Similarly, every edge e such that
w′′(e) = 2 has to be in Ã′′0 × B̃′′1 .

If e is an edge in H ′ such that w′(e) = 2, then e /∈ Ã′i × B̃′i (for i = 0, 1) as such an edge
would block S. We have already seen that any edge e ∈ Ã′1 × B̃′0 satisfies w′(e) = −2. Thus
any edge e such that w′(e) = 2 has to be in Ã′0 × B̃′1. We can similarly show that any edge e
in H ′′ such that w′′(e) = 2 has to be in Ã′′0 × B̃′′1 .

We will now show that f(S) ∈ P by assigning appropriate αu values for all u in A ∪B.
We first define α′u and α′′u:

let α′u = −1 if u ∈ Ã′1 ∪ B̃′0 and let α′u = 1 if u ∈ Ã′0 ∪ B̃′1.
let α′′u = −1 if u ∈ Ã′′1 ∪ B̃′′0 and let α′′u = 1 if u ∈ Ã′′0 ∪ B̃′′1 .

The following is an immediate corollary of the above observations and the definitions
of α′u and α′′u: α′a + α′b ≥ w′(a, b) and α′′a + α′′b ≥ w′′(a, b) for all edges (a, b). Also for any
vertex u that is unmatched in S′ and S′′, we have α′u + α′′u = 0.

Define αu = (α′u + α′′u)/2 for all u ∈ A ∪ B. Observe that
∑

u:A∪B αu = 0. The above
constraints imply that (αu)u∈A∪B and the incidence vector of f(S) satisfy the constraints of
the polytope P. Thus f(S) is a popular half-integral matching. J

4 Constructing a stable matching in G∗

We showed in the previous section that f maps stable matchings in G∗ to popular half-integral
matchings in G. In fact, f(S) is what we will call a full half-integral matching, i.e., for every
vertex u ∈ A ∪ B, either u is fully matched in f(S) or it is fully unmatched in f(S). Let
~p ∈ {0, 1

2 , 1}
m be a full half-integral matching that is popular. Since ~p ∈ P, there exists a

witness (αu)u∈A∪B to ~p’s popularity. The following lemma will be useful to us.

I Lemma 3. There exists a witness (αu)u∈A∪B to ~p’s popularity such that αu ∈ {±1, 0}, for
each u ∈ A ∪B.
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Proof. In order to show such a witness, we will consider the following linear program:

minimize
∑

u∈A∪B

αu (LP1)

subject to

αa + αb ≥
∑

(a,b′)∈Ẽ(a) p(a,b′) · votea(b, b′) +
∑

(a′,b)∈Ẽ(b) p(a′,b) · voteb(a, a′) ∀ (a, b) ∈ Ẽ

Recall that Ẽ is the set E ∪ {(u, `(u)) : u ∈ A∪B}, where `(u) is the artificial last-resort
neighbor of vertex u. In the above constraints, let us denote the right hand side quantity
corresponding to edge e by valuep(e). Since ~p is a full half-integral matching, it is easy to see
that valuep(e) is integral for all edges e.

Consider the polyhedron defined by the above constraints N · ~α ≥ ~c, where N is the
above (m+ n)× n constraint matrix, ~α is the column of unknowns αu, for u ∈ A ∪B, and ~c
is the column vector of valuep(·) values. The top m× n sub-matrix of N is the edge-vertex
incidence matrix U of the graph G and the bottom n× n matrix is the identity matrix I.
Since the graph G is bipartite, the matrix U is totally unimodular and hence the matrix N is
totally unimodular. Since ~c is an integral vector, it follows that all the vertices of N · ~α ≥ ~c
are integral.

Thus there is an integral optimal solution to (LP1), call it ~α∗. We need to now show
that ~α∗ ∈ {±1, 0}n. It follows from the constraints corresponding to the edges (u, `(u)) that
α∗u ≥ −1 if u is matched in ~p and α∗u ≥ 0 for u unmatched in ~p. We now show the following
claim.

I Claim 4. Let e = (a, b) be any edge such that pe > 0. Then the constraint in (LP1)
corresponding to e is tight, i.e., α∗a + α∗b = valuep(e).

Proof. Consider the dual program of (LP1): it is the maximum weight matching problem in
the graph G augmented with last-resort neighbors and with edge set Ẽ, where the weight of
edge e is valuep(e). A maximum weight matching in this graph has weight 0 (because ~p is
popular). Since ∆(~p, ~p) = 0, the fractional matching ~p is an optimal dual solution. It follows
from complementary slackness conditions that if p(a,b) > 0, then the constraint in (LP1) for
edge (a, b) is tight. J

Observe that for any vertex u, there has to be an edge e incident on it with pe > 0 and
either valuep(e) = 0 or valuep(e) = −1 (the edge e between u and its worse partner v in ~p).
Using Claim 4 and the fact that α∗v ≥ −1, we can now conclude that α∗u ≤ 1. J

We will use the above lemma to show the following theorem in this section.

I Theorem 5. Let ~p ∈ {0, 1
2 , 1}

m be a full half-integral matching that is popular. Then
~p = f(S) for some stable matching S in G∗.

We will now build a stable matching S in the graph G∗ such that f(S) = ~p. For every edge
e = (a, b) such that pe > 0, we need to decide which of the edges (a0, b), (a1, b), (b0, a), (b1, a)
will get included in S. In order to make this decision, we will build a graph H∗. The graph
H∗ consists of two copies H ′ and H ′′ of the input graph G.

Every vertex u ∈ A ∪ B gets assigned a level, denoted by level′(u), in H ′. For a ∈ A,
level′(a) = i fixes ai ∈ {a0, a1} to be the one that will be matched to a woman (i.e., a
non-dummy vertex) in S. For b ∈ B, we say level′(b) = i to fix b getting matched to some
level i man in H ′. We will say u is in level i in H ′ to mean level′(u) = i.
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H ′ H ′′

level 1

level 0

level 0

level 1
a b′

ba′

b′ a′

ab

Figure 4 Since α∗a = 1 and α∗b′ = −1, we have level′(a) = level′(b′) = 0 and similarly, level′′(a) =
level′′(b′) = 0. Since α∗b = α∗a′ = 0, we have level′(b) = level′(a′) = 1 and similarly, level′′(b) =
level′′(a′) = 0. So we place a and b′ in level 0 in both H and H ′ and we place a′ and b in level 1 in
H ′ and in level 0 in H ′′.

Similarly, every vertex u ∈ A ∪B gets assigned a level, denoted by level′′(u), in H ′′. For
b ∈ B, level′′(b) = j fixes bj ∈ {b0, b1} to be the one that will be matched to a man (i.e., a
non-dummy vertex) in S. For a ∈ A, we say level′′(a) = j to fix a getting matched to some
level j woman in H ′′. We will say u is in level j in H ′′ to mean level′′(u) = j.

Since ~p is a full half-integral matching that is popular, we know from Lemma 3 that there
exists a witness ~α∗ = (α∗u)u∈A∪B in {−1, 0, 1}n to the popularity of ~p. We will use ~α∗ to fix
level′(u) and level′′(u) for each vertex u as follows.

α∗u = −1: If u ∈ A then level′(u) = level′′(u) = 1. If u ∈ B then level′(u) = level′′(u) = 0.
α∗u = 1: If u ∈ A then level′(u) = level′′(u) = 0. If u ∈ B then level′(u) = level′′(u) = 1.
α∗u = 0: For all u ∈ A ∪B, level′(u) = 1 and level′′(u) = 0.

As an example, consider the 4-cycle G on 2 men a, a′ and 2 women b, b′ where both a
and a′ prefer b to b′ and both b and b′ prefer a to a′. Let ~p be the half-integral matching
with pe = 1/2 for each edge e. This is popular and α∗a = 1, α∗b = α∗a′ = 0, and α∗b′ = −1 is a
witness to ~p’s popularity. Figure 4 shows how these vertices get placed in H ′ and in H ′′.

For any vertex u, let v and v′ be its neighbors in G such that ~p has positive support
on (u, v) and (u, v′). We will refer to v and v′ as partners of u in ~p. We need to show
that either (i) level′(u) = level′(v) and level′′(u) = level′′(v′), or (ii) level′(u) = level′(v′) and
level′′(u) = level′′(v). In other words, we need to show that u, v are level-compatible in one
of H ′, H ′′ and u, v′ are level-compatible in the other graph in H ′, H ′′.

We will now show that our allocation of levels to men and women based on their α∗-values
ensures this. If v = v′ then p(u,v) = 1 and the (tight) constraint for edge (u, v) in the
description of P is α∗u + α∗v = 0. Thus (α∗u, α∗v) has to be one of (1,−1), (0, 0), (−1, 1): in all
three cases we have level-compatibility in both H ′ and H ′′. The following lemma shows that
even when u has two distinct partners v and v′ in ~p, there is level-compatibility.

I Lemma 6. Every vertex that has two distinct partners in ~p is level-compatible in H ′ with
one partner and is level-compatible in H ′′ with another partner.

Proof. We will show this lemma for any vertex b ∈ B. An analogous proof holds for any
vertex in A. Let a 6= a′ be the partners of b in ~p and let b prefer a to a′. We know that
p(a,b) = p(a′,b) = 1/2. Since ~p is a full half-integral matching, a (similarly, a′) has another
neighbor r(a) (resp., r(a′)) with positive support in ~p. We have four cases depending on how
a and a′ rank b versus r(a) and r(a′), respectively.

ICALP 2016



22:10 Popular Half-Integral Matchings

1. If both a and a′ prefer r(a) and r(a′) respectively to b, then valuep(a, b) = − 1
2 + 1

2 = 0 and
valuep(a′, b) = − 1

2 −
1
2 = −1. By Claim 4, we know that α∗a + α∗b = 0 and α∗a′ + α∗b = −1.

So (α∗a, α∗b , α∗a′) is either (1,−1, 0) or (0, 0,−1).
In the former case level′(a) = level′(b) = 0 and level′′(a′) = level′′(b) = 0.
In the latter case level′(a′) = level′(b) = 1 and level′′(a) = level′′(b) = 0.

2. If both a and a′ prefer b to r(a) and r(a′) respectively, then valuep(a, b) = 1
2 + 1

2 = 1 and
valuep(a′, b) = 1

2 −
1
2 = 0. By Claim 4, we know that α∗a + α∗b = 1 and α∗a′ + α∗b = 0. So

(α∗a, α∗b , α∗a′) is either (0, 1,−1) or (1, 0, 0).
In the former case level′(a) = level′(b) = 1 and level′′(a′) = level′′(b) = 1.
In the latter case level′(a′) = level′(b) = 1 and level′′(a) = level′′(b) = 0.

3. If a prefers b to r(a) while a′ prefers r(a′) to b, then valuep(a, b) = 1
2 + 1

2 = 1 and
valuep(a′, b) = − 1

2 −
1
2 = −1. By Claim 4, we know that α∗a + α∗b = 1 and α∗a′ + α∗b = −1.

So (α∗a, α∗b , α∗a′) is (1, 0,−1).
Here level′(a′) = level′(b) = 1 and level′′(a) = level′′(b) = 0.

4. If a prefers r(a) to b while a′ prefers b to r(a′), then valuep(a, b) = − 1
2 + 1

2 = 0 and
valuep(a′, b) = 1

2 −
1
2 = 0. By Claim 4, we know that α∗a + α∗b = 0 and α∗a′ + α∗b = 0. So

(α∗a, α∗b , α∗a′) is (1,−1, 1) or (0, 0, 0) or (−1, 1,−1).
In the first case, all three vertices a, b, and a′ are in level 0 in both H ′ and H ′′.
In the second case, all three vertices are in level 1 in H ′ and in level 0 in H ′′.
In the third case, all three vertices are in level 1 in both H ′ and H ′′. J

For any vertex u with partners v and v′ in ~p, where u prefers v to v′, we call v the better
partner of u and v′ the worse partner of u. If p(a,b) = 1 for some edge (a, b), then we regard
a as both the better partner and the worse partner of b.

We are now ready to describe the construction of our matching S. We give the following
two pairing rules for any b ∈ B (let a be b’s better partner and a′ be b’s worse partner):
1. if α∗b ∈ {±1} then pair b with a in H ′ and with a′ in H ′′.
2. if α∗b = 0 then pair b with a′ in H ′ and with a in H ′′.

More precisely, if α∗b = −1 then we include (a0, b) and (b0, a
′) in S; if α∗b = 1 then we

include (a1, b) and (b1, a
′) in S; and if α∗b = 0 then we include (a′1, b) and (b0, a) in S.

Note that the above rules for pairing vertices follow from the proof of Lemma 6. A woman
b with α∗b = −1 (similarly, α∗b = 1) is level-compatible with her better partner in level 0
(resp., level 1) in H ′ and with her worse partner in level 0 (resp., level 1) in H ′′. Similarly, if
α∗b = 0 then b is level-compatible with her worse partner in level 1 in H ′ and with her better
partner in level 0 in H ′′.

Thus level-compatibility unambiguously fixes for us in which of H,H ′ a vertex gets
paired with which partner till we are left with a set T of vertices forming a cycle: each
vertex in T has both its partners in T , and all these vertices are in the same level in both
H ′ and H ′′. We again know from the proof of Lemma 6 that this happens only when
(α∗a, α∗b) ∈ {(1,−1), (0, 0), (−1, 1)} for each edge (a, b) in this cycle. The cycle can be resolved
as per the two rules above (which is what our algorithm for constructing S does). Thus
rule 1 and rule 2 given above always work.

As the last step, we add the dummy vertices to H ′ and H ′′. We also add the inactive
men and women (the ones who will get matched to dummy vertices in S). We now add to S
the edges (aj , d(a)) for all inactive men aj and similarly, the edges (bj , d(b)) for all inactive
women bj . We also add self-loops to match each unmatched vertex with its copy on the other
side, i.e., we add the edges (a1, a) for each a ∈ A that is unmatched in ~p and the edges (b0, b)
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for each b ∈ B that is unmatched in ~p. Thus the final matching S is a perfect matching in
the graph G∗ and it follows from the construction of S that f(S) = ~p.

In order to prove that the matching S is stable in G∗, we show in Lemmas 7 and 8 that
S has no blocking edge in G′. We can similarly show that S admits no blocking edge in G′′.
Regarding the other edges in G∗, no self-loop (a1, a) or (b0, b) can be a blocking edge since
a is the least preferred neighbor of a1 and similarly, b is the least preferred neighbor of b0.
Similarly, since the dummy vertex d(a) is the least preferred neighbor of a0 and since a1 is
the least preferred neighbor of d(a), no edge (ai, d(a)) can block S. It is the same with edges
(bi, d(b)), for i = 0, 1. Hence S is a stable matching in G∗ and Theorem 5 follows.

I Lemma 7. Let a ∈ A be in level 0 in H ′ and b be any neighbor of a in G. Neither edge
(a0, b) nor edge (a1, b) in G′ can block S.

Proof. The following are the three cases that we need to consider here and show that none
is a blocking edge to S:
1. the edge (a1, b),
2. the edge (a0, b) where b is in level 1 in H ′,
3. the edge (a0, b) where b is in level 0 in H ′.

Consider Case 1. Since a is in level 0 in H ′, the vertex a1 is matched to d(a) in S. Since
d(a) is a1’s most preferred neighbor, it follows that the edge (a1, b) cannot block S for any
neighbor b.

Consider Case 2. The woman b is in level 1 and this implies that S(b) is a level 1 vertex
in H ′. Since b prefers any level 1 neighbor to a level 0 neighbor in G′, it follows that b prefers
S(b) to a0, thus (a0, b) cannot block S.

Consider Case 3. Since both a and b are in level 0 in H ′, we have α∗a = 1 and α∗b = −1.
These α∗-values and p(a,b) satisfy the constraint corresponding to edge (a, b) in the description
of the popular matching polytope P. Thus we have 0 ≥ valuep(a, b), where valuep(a, b) is
the right hand side of the constraint for (a, b) in P. The following sub-cases can occur here
(since valuep(a, b) ≤ 0):
(i) both the partners of a are better than b or both the partners of b are better than a
(ii) p(a,b) = 1/2 and either a regards its other partner better than b or vice-versa
(iii) a has one partner better than b and the other worse than b and similarly, b has one

partner better than a and the other worse than a
Sub-case (i) is straightforward and it is easy to see that (a0, b) does not block S here. In
sub-cases (ii) and (iii), we know that a woman b with α∗b = −1 gets matched to her better
partner in H ′. Thus in sub-case (ii) either b is matched to a (if a is b’s better partner) or to
a partner that b prefers to a. Similarly, in sub-case (iii), b gets matched to a neighbor that
she prefers to a, thus (a0, b) does not block S in any of these cases. This completes the proof
of Lemma 7. J

I Lemma 8. Let a ∈ A be in level 1 in H ′ and b be any neighbor of a in G. Neither edge
(a0, b) nor edge (a1, b) in G′ can block S.

Proof. The following are the three cases that we need to consider here and show that none
is a blocking edge to S:
1. the edge (a0, b),
2. the edge (a1, b) where b is in level 0 in H ′,
3. the edge (a1, b) where b is in level 1 in H ′.
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Consider Case 1. When b is in level 1 in H ′, she is matched to a level 1 man; since b
prefers any level 1 neighbor to a level 0 neighbor in G′, it follows that b prefers S(b) to a0,
thus (a0, b) cannot block S.

Let us consider the case when b is in level 0 in H ′. So α∗b = −1. Since a is in level 1
in H ′, we have either α∗a = −1 or α∗a = 0. So valuep(a, b) ≤ −1. Hence b prefers her better
partner to a and since b satisfies α∗b = −1, she gets matched to her better partner in H ′.
Thus (a0, b) does not block S.

Consider Case 2. We will show that a1 prefers his partner S(a1) to b. Either (i) α∗a = −1
in which case valuep(a, b) ≤ −2 or (ii) α∗a = 0 in which case valuep(a, b) ≤ −1.

In case (i), votea(b, S(a1)) = −1 and so a prefers S(a1) to b. In case (ii), votea(b, S(a1)) ≤ 0
and so a prefers his better partner in ~p to b. It follows from the proof of Lemma 6 that if
α∗a = 0, then the man a is matched to his better partner in H ′. Thus (a1, b) does not block
S in either case.

Consider Case 3. There are four sub-cases here based on possible values of (α∗a, α∗b):
(i) (α∗a, α∗b) = (−1, 1), (ii) (α∗a, α∗b) = (−1, 0), (iii) (α∗a, α∗b) = (0, 1), and (iv) (α∗a, α∗b) = (0, 0).

Cases (i) and (iv) are analogous to case 3 in the proof of Lemma 7 since valuep(a, b) is at
most 0 in both these cases and a similar proof holds here for both these cases.
In case (ii) above, we have valuep(a, b) ≤ −1. So either (I) a prefers both his partners in
~p to b or vice-versa, in which case (a1, b) does not block S or (II) p(a,b) = 1/2 and both a
and b prefer their other partners in ~p to each other, in which case (a1, b) ∈ S.
In case (iii) above, we know that both a and b get paired to their respective better
partners in H ′ (since α∗a = 0 and α∗b = 1). We have valuep(a, b) ≤ 1 here. So either (I) a
prefers its better partner in ~p to b or vice-versa (in which case (a1, b) does not block S)
or (II) p(a,b) = 1/2 and both a and b prefer each other to their other partners in ~p, in
which case (a1, b) ∈ S. Thus (a1, b) does not block S in any of these cases. J

Thus we have shown that f is a surjective map from the set of stable matchings in G∗
to the set of full half-integral matchings in G that are popular. It can be shown that if ~p
is a popular half-integral matching that is not full, then the edge incidence vector of ~p is a
convex combination of the edge incidence vectors of popular half-integral matchings that are
full. Hence the extreme points of the convex hull Q of popular half-integral matchings are
the full ones. Thus the description of Q can be obtained in a straightforward manner from
the description of the stable matching polytope of G∗.

We have shown the following theorem.

I Theorem 9. A min-cost popular half-integral matching in G = (A ∪ B,E) with strict
preference lists and cost function c : E → Q can be computed in polynomial time.

Conclusions. We gave a simple description of the convex hull of popular half-integral
matchings in a stable marriage instance G = (A ∪ B,E) with strict preference lists. This
allowed us to solve the min-cost popular half-integral matching problem in G in polynomial
time. The main open problem here is to settle the complexity of the min-cost popular
matching in G.

Acknowledgments. Thanks to Naveen Garg for useful discussions on this problem. Thanks
to the reviewers for their helpful comments.
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Abstract
We study novel variations of Voronoi games and associated random processes that we call Voronoi
choice games. These games provide a rich framework for studying questions regarding the power
of small numbers of choices in multi-player, competitive scenarios, and they further lead to many
interesting, non-trivial random processes that appear worthy of study.

As an example of the type of problem we study, suppose a group of n miners (or players) are
staking land claims through the following process: each miner has m associated points independ-
ently and uniformly distributed on an underlying space (such as the unit circle, the unit square,
or the unit torus), so the kth miner will have associated points pk1, pk2, . . . , pkm. We generally
here think of m as being a small constant, such as 2. Each miner chooses one of these points as
the base point for their claim. Each miner obtains mining rights for the area of the square that
is closest to their chosen base; that is, they obtain the Voronoi cell corresponding to their chosen
point in the Voronoi diagram of the n chosen points. Each player’s goal is simply to maximize
the amount of land under their control. What can we say about the players’ strategy and the
equilibria of such games?

In our main result, we derive bounds on the expected number of pure Nash equilibria for a
variation of the 1-dimensional game on the circle where a player owns the arc starting from their
point and moving clockwise to the next point. This result uses interesting properties of random
arc lengths on circles, and demonstrates the challenges in analyzing these kinds of problems. We
also provide several other related results. In particular, for the 1-dimensional game on the circle,
we show that a pure Nash equilibrium always exists when each player owns the part of the circle
nearest to their point, but it is NP-hard to determine whether a pure Nash equilibrium exists in
the variant when each player owns the arc starting from their point clockwise to the next point.
This last result, in part, motivates our examination of the random setting.
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1 Introduction

Consider the following prototypical problem: a group of miners are staking land claims. The
kth miner – or player – has m associated points pk1, pk2, . . . , pkm in the unit torus (which
is the unit square with wraparound at the boundaries, providing symmetry). Each miner
via some process will choose exactly one of their m points as the base for their claim. The
resulting n points yield a Voronoi diagram, and each miner obtains their corresponding
Voronoi cell. Each player’s goal is simply to maximize the amount of land under their control.
We wish to study player behavior in this and similar games, focusing on equilibria.

As another application, political candidates can often be mapped according to their
political views into a small-dimensional space; e.g., American candidates are often viewed
as being points in a two-dimensional space, measuring how liberal/conservative they are
on economic issues in one dimension and social issues on the other. Suppose parties must
choose a candidate simultaneously, and their probability of winning is increasing in the area
of the political space closest to their point. Again, the goal in this case is to maximize the
corresponding area in a Voronoi diagram.

There are numerous variations one can construct from this setting. Most naturally,
if the players are (lazy) security guards instead of miners, who have to patrol the area
closest to their chosen base, their goal might be to minimize the area under their purview.
Other alternatives stem from variations such as whether player choices are simultaneous or
sequential, how the points for players are chosen, the underlying metric space, the type of
equilibrium sought, and the utility function used to evaluate the final outcome.

However, the variations share the following fundamental features. There are n players,
with the kth player having mk associated points in some metric space. (We will focus on
mk = m for a fixed m for all players.) Each player will have to choose to adopt one of their
available points. A Voronoi diagram is then constructed, and each player is then associated
with the corresponding area in the diagram. We refer to this general setting as Voronoi
choice games. We discuss below how Voronoi choice games differ from similar recent work,
but the key point is in the problems we study different players have different available choices;
this asymmetry creates new problems and requires distinct methods.

We are particularly interested in the setting where each player’s points are chosen
uniformly at random from the underlying space. While uniform random points are not
motivated by practice, the framework leads to an interesting and, from the standpoint of
probabilistic analysis and geometry, very natural class of games. Our work suggests many
potential connections, to work on Voronoi diagrams for random point sets, and to work
on balanced allocations (or “the power of two choices”), where choice is used to improve
load balancing. Moreover, looking at the setting of uniform random points gives us the
opportunity to understand the nature of these games at a high level; specifically, do most
instances have no pure Nash equilibrium, or could they have exponentially many possible
pure Nash equilibria?

In general, however, we find that results for these types of problems seem very challenging.
In our main result, we limit ourselves to the setting where each player has m associated
points chosen uniformly at random from the unit circle, and each player owns the arc starting
from their point clockwise to the next point – that is, the distance is unidirectional around
the circle. We derive bounds on the expected number of pure Nash equilibria. Even in this
simple setting, our result is quite technical, requiring a careful analysis based on interesting
properties of distributions of random arcs on a circle. This appears, however, to be the
“easiest” interesting version of the problem; currently, higher-dimensional Voronoi diagrams
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are beyond our reach. However, our work suggests that further results are likely to involve
interesting mathematics.

The random case of this specific version of the problem is also motivated by the following
results. We show it is NP-hard to determine whether a pure Nash equilibrium exists when a
player owns the arc starting from their point clockwise to the next point for m ≥ 4, nearly
resolving the worst case. Further, for the different setting when a player owns an arc of the
circle corresponding to the standard Voronoi diagrams, that is a player own all points nearest
to their point, we show a Nash equilibrium always exists (as long as all the possible choices
for the players are distinct).

While other similar Voronoi game models have been introduced previously, our primary
novelty is to introduce this natural type of asymmetric “choice” into these types of games.
We believe this addition provides a rich framework with many interesting combinatorial,
geometric, and game theoretic problems, as we describe throughout the paper. As such, we
leave many natural open questions.

1.1 Related Work
The classical foundations for problems of this type can be found in the work by Hotelling [11],
who studied the setting of two vendors who had to determine where to place their businesses
along a line, corresponding to the main street in a town, with the assumption of uniformly
distributed customers who would walk to the nearer vendor. Hotelling games have been
considered for example in work on regret minimization and the price of anarchy, where the
model studied players choosing points on a general graph instead of on the line as in the
original model [4]. Recent work has also shown that for a Hotelling game on a given graph,
once there are sufficiently many players a pure Nash equilibrium always exists [8]. A useful
survey on economic location-based models is provided by Gabszewicz and Thisse [9].

Other variations of Voronoi games have appeared in the literature. More recent work
refers to these generally as competitive location games; see for example [7, 14, 18, 13], which
discuss Voronoi games on graphs, for additional references.

Our setting appears different from previous work, in that it focuses on players with
limited sets of choices that vary among the players. Our starting point was aiming to build
connections between Voronoi games and random processes based on “the power of two
choices” [3, 15, 6, 1]. While in our games, each player has a limited (typically constant) set
of distinct points to choose from, in previous work generally all players could choose from
any point in the universe of possible choices. In economic terms, in relation to the Hotelling
model, our work models that different businesses may have available a limited number of
differing locations where they may establish their business. For example, businesses may
have optioned the right to set up a franchise at specific locations in advance, and must then
choose which location to actually build. While they could know the options available to
other competing franchises, they may have to decide where to build without knowing the
choices made by competitors. In other situations, it may be possible for franchises to move
(at some cost) to an alternative location. We emphasize that our model is very different than
previously studied symmetric versions of the game; we do not recover earlier results, and
earlier results do not appear to apply once asymmetry is introduced.

1.2 Models
Before beginning, we explain the general class of games we are interested in. We refer to the
following as the k-D Simultaneous Voronoi Game:
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Each of the n players has m associated points from the k-dimensional unit torus [0, 1]k.
We assume that all players know about all of the possible points that can be chosen by
every player (it is a game of complete information).
The n players must simultaneously choose one of their m associated points.
A Voronoi diagram is constructed for the n chosen points, and each player receives utility
equal to the volume of its point’s Voronoi cell in the maximization variation of the game.
(In the minimization version, the utility could be the negation of the corresponding
volume.)

The easiest version to think about is the 1-D version; each player chooses from m points
on the unit circle, and after their choice they own an arc of the circle corresponding to all
points closest to their chosen point. If each player tries to maximize their arc length, then
the utility of a player is the length of their arc. (Or, if each player tries to minimize their
arc length, the negation of the arc length is the utility.) On the unit circle, there is another
variant that we refer to as the One Way 1-D Simultaneous Voronoi Game, in which a player
owns the arc starting from their point and continuing in a clockwise direction until the next
chosen point. Such a variation is quite natural in one dimension; it corresponds to assigning
a “direction” to the unit circle. This variation is chiefly motivated by our connections to
the power-of-two choices. In particular, it resembles the distributed hashing scheme of [6] in
which peers correspond to points on a circle and keys are mapped to the closest peer in one
direction along the circle.

Our contributions include highlighting differences between the 1-D problem and the One
Way 1-D problem, showing that in this case a small difference in the model subtlety leads
to large differences in the behavior with respect to equilibria. Indeed, as we explain, we
believe the One Way 1-D problem potentially offers more insight into the behavior of the
k-D Simultaneous Voronoi Game for k ≥ 2 with respect to pure Nash equilibria.

We focus on analyzing the equilibria of these games. The most common equilibrium
to study is the Nash equilibrium [16], in which each player has a random distribution on
strategies such that no player can improve their expected utility by changing their distribution.
While Nash’s results imply the Voronoi games above all have Nash equilibria, we do not
determine the complexity of finding Nash equilibria for these games; this is left as an open
question. We here focus on pure Nash equilibrium. A pure Nash equilibrium is a Nash
equilibrium in which each player’s distribution has a support of size one. In other words,
each player picks a single strategy to play and, given the other players’ strategies, no player
can improve their utility by choosing a different strategy. Unlike the Nash and correlated
equilibria, a pure Nash equilibrium is not guaranteed to exist.

Pure Nash equilibria can be viewed as a setting where each player can choose to switch
to any of their adopted points at any time. The question is then what are the stable states,
where no player individually has the incentive to switch their adopted point. These stable
states correspond to pure Nash equilibria, and may not even exist. A natural question is
whether simple local dynamics – such as myopic best response, where at each time step some
subset of players decides whether or not to switch the point it has adopted – reach a stable
state quickly. To motivate our study of the random case, we examine the computational
complexity of determining the existence of stable states in the 1-D Simultaneous Voronoi
Game and One Way 1-D Simultaneous Voronoi Game in Section 2. For the former, we show
(making use of known techniques) that a pure Nash equilibrium always exists; for the latter,
we show that determining whether a pure Nash equilibrium exists is NP-complete.

In Section 3 we consider the existence of a pure Nash equilibrium for the Randomized
One Way 1-D Simultaneous Voronoi Game, where each players possible choices for points
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are selected uniformly at random from the unit circle. Here we bound the expected number
of pure Nash equilibria, through a careful analysis based on properties of distributions of
random arcs on a circle.

We also note that we have some results for another type of equilibrium, known as the
correlated equilibrium. Whereas Nash equilibria have the players independently choosing their
strategies, a correlated equilibrium allows the players’ random distributions to be correlated
(for example, by an external party). The stability requirement is then that given knowledge
only of the overall distribution of outcomes and their own randomly chosen strategy, a player
cannot improve their expected utility by deviating from their given strategy distribution
[2]. Since a Nash equilibrium is a special case of a correlated equilibrium, a correlated
equilibrium for the above games must exist. We discuss the computational complexity of
finding a correlated equilibrium for the k-D Simultaneous Voronoi Game in Section 4.

We provide additional results in the full paper [5], including an empirical investigation of
the probability that myopic best response will find a stable state in the Randomized One Way
1-D Simultaneous Voronoi Game and Randomized 2-D Simultaneous Voronoi Game, and
several related conjectures related to the Randomized One Way 1-D Simultaneous Voronoi
Game.

2 Pure Nash Equilibria

In this section, we show a fundamental difference between the One Way 1-D Simultaneous
Voronoi Game and the 1-D Simultaneous Voronoi Game. Recall that for these problems each
of the n players has a choice of m points on the unit circle; all players simultaneously choose
one of their m points. The utility for the One Way variation of given player is equal to the
distance to the nearest chosen point clockwise from its chosen point, while for the standard
variation the utility is the size of the Voronoi cell (in this case, an arc).

We show the standard Voronoi variation always has at least one pure Nash equilibrium (for
any number of choices per player), while it is NP-hard to determine if the maximization version
of the One Way variation has a pure Nash equilibrium. We also suggest the implications of
these results for the higher dimensional setting.

2.1 Existence of Pure Nash Equilibria in the 1-D Simultaneous Voronoi
Game

In the argument that follows we assume the choices of points are distinct. The analysis can
be easily modified for the case where multiple players can choose the same point if ownership
of that point is determined by a fixed preference order (and other players have zero utility).
However, if players choosing the same point share utility, then the theorem does not hold, as
shown in [14].

I Theorem 1. A pure Nash equilibrium for the maximization and minimization versions of
the 1-D Simultaneous Voronoi Game exists for any set of points.

Proof. We follow an approach utilized in [7, Lemma 4]. We define a natural total ordering
on multi-sets of numbers A and B. For any two such multi-sets A and B, if |A| < |B| we
have A � B. When |A| = |B|, we have A � B if max A > max B. If max A = max B, then
let A′ be A with one copy of the value max A removed, and similarly for B′; then A � B

also when max A = max B and A′ � B′.
Now consider a collection of choices in the 1-D Simultaneous Voronoi Game, and let

A = {a0, a1, . . . , an−1} be the corresponding arc lengths, starting from some chosen point
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p1a

p1b

p2a

p2b

p3a p3b

Figure 1 This is an example of a 2-D Simultaneous Voronoi Game in which no pure Nash equilibria
exists. Player 1 has points (p1a, p1b) = ((1/4 + ε2, 1/2 + ε), (1/4 + ε2, 1/2 − ε)), player 2 has points
(p2a, p2b) = ((1/4−ε2, 1/2+ε), (1/4−ε2, 1/2−ε)), and player 3 has points (p3a, p3b) = ((0, 0), (ε, 0)).
The Voronoi diagram shown is constructed from the points (1/4, 1/2) and (0, 0).

and then in clockwise order around the circle, induced by the choice of points. Each player’s
payoff is given by a value of the form (ai + ai+1)/2 for a suitable value of i. (One player’s
payoff is (an−1 + a0)/2.) Consider the maximization version of the game. If some player has
a move that improves their utility, let them make that move. Without loss of generality,
suppose this player’s payoff was given by (ai + ai+1)/2, and it moves somewhere on the arc
with length aj . Note this means aj > ai + ai+1. We see that the arc lengths A′ are those of
A but with ai, ai+1, and aj replaced by ai + ai+1, x, and y where x + y = aj . Hence A � A′,
so after a finite number of moves, this version of myopic best response converges to a pure
Nash equilibrium.

The argument for the minimization variation is analogous. J

We note that we leave as an open question to determine a bound on the number of
steps a myopic best response approach would take to reach a pure Nash equilibrium; in
particular, we do not yet know if the approach of Theorem 1 yields a pure Nash equilibrium
in a polynomial number of steps.

We might have hoped that the above technique could allow us to show that for the 2-D
Simultaneous Voronoi Game (and higher dimensions) that a pure Nash equilibrium exists.
Unfortunately, that is not the case. One can readily find choices of 2 points for each of 3 players
where no pure Nash equilibrium exists for both the maximization and minimization version
of the problem. We have generated many such examples randomly, computing the Voronoi
diagrams for the eight resulting configurations. One example in two dimensions is depicted in
Figure 1. In this example, player 1 has choices ((1/4 + ε2, 1/2 + ε), (1/4 + ε2, 1/2− ε)), player
2 has choices ((1/4− ε2, 1/2 + ε), (1/4− ε2, 1/2− ε)), and player 3 has choices ((0, 0), (ε, 0))
for sufficiently small ε > 0. The idea here is that player 3’s choice is irrelevant, and players 1
and 2 are dividing up the Voronoi cell owned by point (1/4, 1/2) in the Voronoi diagram of
the points (1/4, 1/2) and (0, 0). If both player 1 and 2 choose their first point, or both choose
their second point, then they divide the cell with a vertical line, which due to the geometry
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of the cell favors player 1. However, if one of them chooses their first point and the other
chooses their second point then they divide the cell with a roughly horizontal line, which
gives each of them roughly half. Thus, there is no choice of points for which neither wants to
deviate. This example applies equally in higher dimensions (by making higher dimensional
coordinates all zero).

This example can be extended to show that for any number of players n, there are settings
of points for the players so no pure Nash equilibrium exists, showing that this setting differs
from previous work on symmetric Hotelling games on graphs, where it has been shown
that when there are sufficiently many players a pure Nash equilibrium always exists [8].
Specifically, use the same example but for players 4, . . . , n both of their choices will be in
an epsilon-small neighborhood of (0, 0). We note that such examples do not disprove the
possibility that a pure Nash equilibrium exists with high probability if the points are chosen
randomly.

Given that the 1-D Simultaneous Voronoi Game appears to have a very special structure
(in terms of the existence of pure Nash equilibrium) that differs from k-D Simultaneous
Voronoi Game for k ≥ 2, it is natural to seek a 1-D variant that might shed more insight
into the behavior in higher dimensions. This motivates us to look at the One Way 1-D
Simultaneous Voronoi Game.

2.2 NP-Hardness of the One Way 1-D Simultaneous Voronoi Game
In contrast to the result of the previous subsection, we prove the NP-hardness of the
maximization version of the One Way 1-D Simultaneous Voronoi Game whenever each player
has m ≥ 4 choices. We leave as an open question to find a reduction for m = 2 or 3, as well
as for the minimization version.

I Theorem 2 (For proof see [5]). The problem of determining if a pure Nash equilibrium
(PNE) exists in the maximization version of a One Way 1-D Simultaneous Voronoi Game is
NP-hard for m ≥ 4.

We conjecture that determining if a pure Nash equilibrium exists in the k-D Simultaneous
Voronoi Game is NP-hard for k ≥ 2; however, we suspect that building the corresponding
gadgets will prove technically challenging.

3 Random Voronoi Games

We now consider random variations of the Voronoi games we have considered, where each
player’s available choices are chosen uniformly at random from the underlying universe.
While it is not clear such a model corresponds to any specific real-world scenario, such
random problems are intrinsically interesting combinatorially and in relation to other similar
studied problems. For example, in the context of load-balancing in distributed peer-to-peer
systems, the authors of [6] study a model where one begins with a Voronoi diagram on N

points (chosen uniformly at random from the universe, say the unit torus) corresponding to
N servers. Then M agents sequentially enter; each is assigned k random points from the
universe; and each agent chooses the one of its k points that lies in the Voronoi cell with
the smallest number of agents, or load for that server. Other “power-of-choice” problems,
such as the Achlioptas process [1], have spurred new understanding of phenomena such as
explosive percolation.

Given our hardness results, a natural question is whether the One Way 1-D Simultaneous
Voronoi Game has (or does not have) a pure Nash equilibrium with high probability in the

ICALP 2016



23:8 Voronoi Choice Games

random variation. While we have not proven this result, we have proven bounds on the
expected number of pure Nash equilibria in the random setting that are interesting in their
own right and nearly answer this question. In particular, our careful analysis builds on the
interesting relationship between random arcs on a circle and weighted sums of exponentially
distributed random variables.

The following is our main result.

I Theorem 3. The expected number of PNE for the maximization version of the One Way
1-D Simultaneous Voronoi Game is at most m, and at least 0.19m−1m.

Interestingly, our bounds depend on the number of choices m, not the number of players.
Unfortunately, this means that we cannot use these expectation bounds directly to show
that, for example, the probability of a PNE existing is exponentially small in n. But the
bounds provide insight by showing that pure Nash equilibria are typically few in number in
the random case.

In proving Theorem 3, we need the following well-known property of exponential random
variables. Let X1, . . . , Xn be i.i.d. exponential random variables. Let Sn =

∑n
j=1 Xj . Recall

that Sn is said to have a gamma distribution, and we use facts about the gamma distribution
later in our analysis. Similarly, Sn−1/Sn is said to have a beta distribution, and we use facts
about beta distributions as well. For example,

I Lemma 4. Sn, S1
S2

, S2
S3

, . . . , Sn−1
Sn

are all mutually independent.

See e.g. [10] for its discussion of exponential random variables. In particular, the Xi can be
viewed as the gaps in the arrivals of a Poisson process; the n− 1 arrivals before the last are
uniformly distributed on the interval [0, Sn], from which one can derive the lemma above.

Another important fact we use is the following:

I Fact 5. We have E
[
(Sj/Sj+1)t

]
=
∏t−1

i=0
j+i

j+1+i = j
j+t , since Sj/Sj+1 ∼ Beta (j, 1).

We note that in some of our arguments, the ordering of the variables becomes reversed,
and we consider sums of the form

∑n
j=n−i+1 Xj . Of course this has the same distribution as∑i

j=1 Xi, and the corresponding version of Lemma 4 holds. Where convenient, we therefore
refer to

∑n
j=n−i+1 Xj = Si where there is no ambiguity as to the desired meaning.

Proof of Theorem 3. We begin by using linearity of expectations to write the expected
number of PNE in terms of the probability that each player choosing their first choice will
yield a stable configuration.

E[# PNE] = mn · Pr[first choices are stable]
= mn · E[Pr[first choices are stable | position of first choices]].

Partition the circle into arcs according to the players’ first choice points. Let Ai be the
length of the ith smallest arc. As shown in [10], the Ai are distributed jointly as

Ai ∼
1

Sn

n∑
j=n−i+1

Xj

j

where again the Xj are i.i.d. exponential random variables of mean 1 and Sn =
∑n

j=1 Xj .
We say that an arc is stable if the player whose point starts the arc (going clockwise) does
not wish to deviate to any of their other points. Given the position of the first choices, the
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probability each arc is stable depends only on the other choices available to the player that
owns the arc, and hence the stability of the arcs are independent. Therefore

Pr[first choices are stable | position of first choices]

=
n∏

i=1
Pr[ith smallest arc is stable | position of first choices].

If the arc is the ith smallest, then it will be stable if the other choices fall in the same
arc, one of the i− 1 smaller arcs, or the front Ai-length portion of the (n− i) larger arcs –
except in the latter two cases, we must take into account that if a choice falls immediately
backward into the arc directly counterclockwise of the current arc, then the arc is not stable.
We therefore have the following calculation:

Pr[ith smallest arc is stable | position of first choices]

=

(n− i)Ai +
i∑

j=1
Aj −min(Ai, length of arc before i)

m−1

≤

(n− i)Ai +
i∑

j=1
Aj

m−1

= S−(m−1)
n

(n− i)
n∑

j=n−i+1

Xj

j
+

i∑
j=1

n∑
k=n−j+1

Xk

k

m−1

= S−(m−1)
n

(n− i)
n∑

j=n−i+1

Xj

j
+

n∑
k=n−i+1

(k − n + i)Xk

k

m−1

= S−(m−1)
n

 n∑
j=n−i+1

(n− i + j − n + i)Xj

j

m−1

= S−(m−1)
n

 n∑
j=n−i+1

Xj

m−1

=
(

Si

Sn

)m−1
.

Note we have used
∑n

j=n−i+1 Xj = Si for convenience. Our resulting bound has a surprisingly
clean form in terms of the Si.

Thus, by Lemma 4 and Fact 5:

Pr [first choices are stable] ≤ E
[

n∏
i=1

(
Si

Sn

)m−1
]

= E
[

n−1∏
i=1

(
Si

Si+1
· Si+1

Si+2
· · · · · Sn−1

Sn

)m−1
]

= E
[

n−1∏
i=1

(
Si

Si+1

)i(m−1)
]

=
n−1∏
i=1

E
[(

Si

Si+1

)i(m−1)
]

=
n−1∏
i=1

i

i + i (m− 1) = 1
mn−1 .
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It then follows that

E [#PNE] ≤ mn · 1
mn−1 = m.

We can similarly find a lower bound, although some additional technical work is required.

Pr[ith smallest arc is stable | position of first choices]

=

(n− i)Ai +
i∑

j=1
Aj −min(Ai, length of arc before i)

m−1

≥

(n− i)Ai +
i∑

j=1
Aj −Ai

m−1

=

(n− i− 1)Ai +
i∑

j=1
Aj

m−1

= S−(m−1)
n

 n∑
j=n−i+1

(n− i− 1 + j − n + i)Xj

j

m−1

= S−(m−1)
n

 n∑
j=n−i+1

(j − 1)Xj

j

m−1

Hence

Pr[first choices are stable] ≥ E

S−(m−1)n
n

n∏
i=1

 n∑
j=n−i+1

(j − 1)Xj

j

m−1
 .

A simple stochastic domination argument (provided in full version of the paper [5]) shows
that the expectation on the right side decreases if, in each term in the product, we equalize
the coefficient, so that instead of terms of the form (j−1)Xj

j , the coefficient for all terms of
the sum in the ith term of the product is the average ci = 1

i

∑n
j=n−i+1

j−1
j . This gives

Pr[first choices are stable] ≥ E

S−(m−1)n
n

n∏
i=1

 n∑
j=n−i+1

ciXj

m−1


= E
[

S−(m−1)n
n

n∏
i=1

(ciSi)m−1

]

=
(

n∏
i=1

cm−1
i

)
E
[

n∏
i=1

(
Si

Sn

)m−1
]

.

Observe that this expectation is the same as the one we computed in the upper bound.
Therefore

E[# PNE] ≥
(

n∏
i=1

cm−1
i

)
m ≥ 0.19m−1m.

The proof of the final inequality is presented in the full version of the paper [5]. J
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We note that similar calculations can be done for the minimization version, although we
have not found a clean form for the upper bound. We can, however, state the following lower
bound, showing the expected number of pure Nash equilibria is at least inverse polynomial
in n for a fixed number of choices m.

I Theorem 6 (For proof see [5]). The expected number of PNE for the minimization version
of the One Way 1-D Simultaneous Voronoi Game is at least m(m−1)

(mn−1)nm−1 .

We have done several experiments regarding Random Voronoi games, which prove
consistent with our theoretical results and suggest some interesting conjectures, particularly
for the 2-D Simultaneous Voronoi Game. Chief among these conjectures is that the Random
k-D Simultaneous Voronoi game has a pure Nash Equilibrium with probability approaching
1 as n grows. The complete discussion of these results can be found in the full version of the
paper

4 Correlated Equilibria

Our goal in this section is to show that, for the k-D Simultaneous Voronoi Game, correlated
equilibria can be found in polynomial time. We present the results for k = 1, 2, and 3. The
results appear to extend to higher dimensions but the geometric details are technical; we
note the time required to determine the correlated equilibrium appears to grow as nO(k).
The results also apply to the One Way 1-D Simultaneous Voronoi Game.

I Theorem 7. For k = 1, 2, and 3, and for a fixed m, there is a polynomial time algorithm
for finding a correlated equilibrium in the k-D Simultaneous Voronoi Game.

We appeal to [17] and [12], who present polynomial time algorithms for finding a correlated
equilibrium of games polynomial type. (The running times for these algorithms are not
specifically presented in the papers and appear rather large, but are still polynomial.) A
game of polynomial type is one that can be represented in polynomial space such that
given each player’s strategy, their utilities can be computed in polynomial time. The k-D
Simultaneous Voronoi Game is of polynomial type because it can be represented in O(nmk)
space by a list of each players point choices and, given the players’ strategies, the utilities
can be found by computing the Voronoi diagram of the chosen points.

I Theorem 8 (Theorem 4.5, [12]). Given a game of polynomial type and a polynomial time
algorithm for computing the expected utility of a player under any product distribution on
strategies, there exists a polynomial time algorithm for finding a correlated equilibrium in
that game.

Jiang et al. proved Theorem 8 by constructing a linear program with a variable for each of
the 2n possible strategy profiles. The LP’s constraints are non-negativity, and the constraints
requiring that the variables form a correlated equilibrium. They do not, however, enforce that
the variables sum to one, or even at most one, and rather use the sum of these variables as
the objective. Thus, since a correlated equilibrium is guaranteed to exist by Nash’s Theorem,
this LP is unbounded and its dual is infeasible. They then run the ellipsoid algorithm for
a polynomial number of steps on the dual LP (this takes polynomial time, since the dual
LP has only polynomially many variables). They argue that the intermediate steps of the
ellipsoid algorithm can be used to construct product distributions of which there is a convex
combination that is a valid correlated equilibrium, and which can be found with a second
linear program.
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The second linear program’s separation oracle requires as a subroutine a polynomial time
algorithm for computing the expected utility of a player given a product distribution over
the strategies. (This requirement is referred to in [17] and [12] as the polynomial expectation
property.) Our work is to demonstrate polynomial time algorithms for this subroutine. We
note that it is not immediate that such an algorithm should exist, even when each player has
only m = 2 choices, as the number of possible configurations is mn. Hence, we cannot simply
sum over all configurations when calculating the expectation. In [17] it is noted that for
certain congestion games, these expectations can be computed using dynamic programming,
essentially adding one player in at a time and updating accordingly. Our approach is similar
in spirit, but requires taking advantage of the underlying geometry.

I Lemma 9 (For proof see [5]). Computing a player’s expected utility under a product
distribution on strategies in the k-D Simultaneous Voronoi Game takes O(n2k−1 log n) time
for k ≤ 3.

The proof is trivial for one dimension. For two and three dimensions, the key idea is to
partition the space into regions where the possible Voronoi cell boundaries do not cross.

5 Conclusion

We have introduced a new but we believe important set of variants on Voronoi games, where
each player has a disjoint set of points to choose from. We believe these variations are
motivated both by natural economic settings, and because of the possible connections to
other “power-of-choice” processes in which participants choose from a limited set of random
options.

In particular, we note that the Voronoi choice games we propose offer the chance to
consider randomized versions of the problem, where the set of possible choices for each
player is chosen uniformly over of the space. We have conjectured that the Random k-D
Simultaneous Voronoi Game has a pure Nash equilibrium with high probability, based on a
simulation study. While this is perhaps the most natural open question in this setting, there
remain several other questions for both the simultaneous and sequential versions of Voronoi
choice problems, in the worst case and with random point sets.
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Abstract
The Jordan curve theorem and Brouwer’s fixed-point theorem are fundamental problems in topo-
logy. We study their computational relationship, showing that a stylized computational version
of Jordan’s theorem is PPAD-complete, and therefore in a sense computationally equivalent to
Brouwer’s theorem. As a corollary, our computational result implies that these two theorems
directly imply each other mathematically, complementing Maehara’s proof that Brouwer implies
Jordan [10]. We then turn to the combinatorial game of Hex which is related to Jordan’s theorem,
and where the existence of a winner can be used to show Brouwer’s theorem [6]. We establish
that determining who won an (implicitly encoded) play of Hex is PSPACE-complete by adapting
a reduction (due to Goldberg [7]) from Quantified Boolean Formula (QBF). As this problem is
analogous to evaluating the output of a canonical path-following algorithm for finding a Brouwer
fixed point – and which is known to be PSPACE-complete [8] – we thereby establish a connection
between Brouwer, Jordan and Hex higher in the complexity hierarchy.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes

Keywords and phrases Jordan, Brouwer, Hex, PPAD, PSPACE

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.24

1 Introduction

The Jordan curve theorem states that a simple closed curve C in R2 divides the plane into
two connected components S1, S2 [9]. In particular, any continuous curve from a point x ∈ S1
to a point y ∈ S2 must intersect C. There are several known proofs of this basic topological
fact, including one via Brouwer’s fixed point theorem by Maehara [10]. In an earlier paper,
Gale explores the equivalence between Brouwer’s theorem and a theorem closely related
to Jordan’s, pertaining to the combinatorial game Hex [6]. In Hex, a rhomboidal board is
partitioned into hexagonal tiles as in Figure 1, and two players claim tiles of the board until
one of the players can connect the two opposite sides of the board that belong to him. The
Hex theorem states that, once all tiles on the board are claimed, at least one of the two
players has won.

In this paper we study the relationship of the Jordan, Brouwer and Hex theorems from
both a computational and a mathematical standpoint. In particular, our goal is to show their
‘equivalence’ in both domains. We say that two theorems are mathematically equivalent if
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Figure 1 A sample Hex position, where Player 1 (red) has won.

(informally) they can be used to prove each other in an ‘elementary’ way, and computationally
equivalent if the search problems with solutions guaranteed by them are complete in the
same complexity class. This study is catalyzed by defining a stylized computational problem
inspired by Jordan curve theorem as follows:

ZeroSurfaceCrossing
Input: Two circuits F1, F2 : {0, 1}n × {0, 1}n → {−2m + 1, . . . , 2m − 1}, defining two
continuous surfaces f1, f2 : [0, 1]2 → R in R3 via interpolation.a

Output: A point (x, y) such that f1(x, y) = f2(x, y) = 0, or a violation of the following
boundary conditions:

(1) f1(0, y) ≥ 0 and (2) f1(1, y) ≤ 0 for all y;
(3) f2(x, 0) ≥ 0 and (4) f2(x, 1) ≤ 0 for all x.

a The input to each circuit is interpreted in the obvious way as specifying a point (x, y) ∈ [0, 1]2,
where both x and y are integer multiples of 1/(2n − 1). Hence these circuits determine the values
of f1, f2 at all such points. The values of f1, f2 at all other points are determined from these values
via interpolation.

It is quite intuitive that, if Conditions 1–4 are satisfied, then the surfaces f1 and f2 should
have an intersection on the zero plane. One way to show this is using the Jordan curve
theorem; see Lemma 10. Moreover, given that f1, f2 are defined by circuits via interpolation,
it is easy to see that the problem belongs to NP and thus in TFNP, the class of total problems
in NP. The question is how it relates to other classes in TFNP [11]. We show the following:

I Theorem 1. ZeroSurfaceCrossing is PPAD-complete.

Given that Brouwer, the stylized computational problem of computing fixed points
of continuous functions (defined formally in Section 3), is also PPAD-complete [11, 3,
5], Theorem 1 implies that ZeroSurfaceCrossing and Brouwer are computationally
equivalent. Additionally, it helps establish the mathematical equivalence of the Brouwer and
Jordan theorems. Maehera showed that Brouwer implies Jordan’s theorem. Exploiting the
proof of Theorem 1, we show the other direction, that Jordan implies Brouwer’s theorem.
Moreover, in view of Gale’s proof that the Hex and Brouwer theorems are mathematically
equivalent [6], our result also establishes that all three theorems are equivalent.

I Proposition 2. The Jordan, Brouwer and Hex theorems are mathematically equivalent.
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1.1 Jordanian Action Inside PPAD
A close variant of the problem defined above is the curve crossing problem defined as follows.

CrossingCurves
Input: Two circuits F1, F2 : {0, 1}n → {0, 2−m, 2 · 2−m, . . . , 1}2, defining two continuous
curves f1, f2 : [0, 1]→ [0, 1]2 in [0, 1]2 via interpolation.a

Output: A pair t1, t2 ∈ [0, 1] such that f1(t1) = f2(t2), or a violation of the following
boundary conditions:

(1) f1(0) = (0, 0); (2) f1(1) = (1, 1); (3) f2(0) = (0, 1) and (4) f2(1) = (1, 0).
a The input to each circuit is interpreted in the obvious way as specifying an integer multiple of

1/(2n − 1), so that Fi defines the location of curve fi for all inputs in {0, 1/(2n − 1), . . . , 1}. The
location of the curve at any t ∈ [j/(2n−1), (j +1)/(2n−1)], where j ∈ {0, . . . , 2n−1}, is determined
by linearly interpolating between the locations of the curve at j/(2n − 1) and (j + 1)/(2n − 1).

Again it is quite intuitive that, unless Conditions (1)–(4) in the definition of the problem
fail, the curves defined by any input to CrossingCurves should cross. Indeed, this can
be proven via the Jordan curve theorem, and because of Proposition 2 via Brouwer’s fixed
point theorem as well. We provide a direct proof using Brouwer’s fixed point theorem, which
implies as a corollary that the problem lies within PPAD.

I Theorem 3. CrossingCurves is in PPAD.

Under monotonicity conditions on at least one of the two curves, it is easy to see that
CrossingCurves is in P. For example, suppose that at least one of the two curves fi satisfies
that, for all 0 ≤ t < t′ ≤ 1, fi(t)1 < fi(t′)1, where fi(t)1 represents the first coordinate of
fi(t) and similarly for fi(t′)1. Under this condition, CrossingCurves can be easily solved
via binary search. Similar conditions can be defined with respect to the second coordinate.
When neither curve satisfies such a monotonicity condition with respect to neither coordinate,
we do not see how to construct a polynomial time algorithm. At the same time, we do not
see how an instance of CrossingCurves can encode the several paths and cycles that may
co-exist in an instance of EndOfTheLine, the canonical PPAD-complete problem—see
Section 2. (In comparison, the intersections of the surfaces of ZeroSurfaceCrossing with
the zero-plane may comprise several paths and cycles, which allow encoding EndOfTheLine
instances.) We leave pinning down the precise complexity of CrossingCurves for future
work, expecting that the complexity classes defined in [4] may be useful in this classification.

1.2 Jordanian Action Over PPAD
While so far all action has taken place inside TFNP, we also explore how the three theorems,
Jordan, Brouwer and Hex, are related higher in the complexity hierarchy. It was recently
established that several algorithms for computing Brouwer fixed points and Nash equilibria
are in fact capable of solving all of PSPACE [8]. For example, given an instance I of some
problem in PSPACE, one can construct a 2-player game G such that the Nash equilibrium
output by the Lemke-Howson algorithm provides a solution to I as a byproduct. Similar
facts are known for homotopy methods.

We are thus interested in whether computational problems relating to Jordan and Hex
also have the power of solving PSPACE. We propose the problem WhoWonHex, asking
to determine whether player 1 is the winner of a Hex play. An instance of the problem
comprises a circuit that takes as input the binary description of a cell in the Hex board and
outputs the name of the player, 1 or 2, who claimed it during the play. We provide a formal
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description of Hex in Section 2.3, and define WhoWonHex in Section 5.2, establishing the
following:

I Theorem 4. WhoWonHex is PSPACE-complete.

The proof of Theorem 4 can be obtained fairly easily using recent work of Goldberg [7].
There is a canonical method to determine who is the winner in a play of Hex by performing
a walk on the Hex board. The walk starts at one of the corners of the Hex board and
performs pivoting steps depending on which player has claimed the cells neighboring the
current location of the walk, until another corner of the board is reached, which always
happens due to topological reasons. What corner is reached determines which player won.
This pivoting algorithm is quite reminiscent to the canonical algorithm for solving instances
of 2-dimensional Sperner. An instance of this problem provides a succinct description
of the coloring of the vertices of a square lattice using 3 colors and asks to identify a
trichromatic triangle or a violation of certain boundary conditions by the coloring. The
problem is PPAD-complete [11, 3, 2] and Goldberg recently established that identifying
the tri-chromatic triangle reachable by the standard pivoting algorithm for this problem
is PSPACE-complete. Theorem 4 is proven by making an analogy between the pivoting
algorithms that solve Sperner and WhoWonHex. The precise details are a bit more
intricate than this intuition, as we have to exploit the structure of the Sperner instances
constructed in Goldberg’s proof.

It is worth pointing out that the problem WhoWonHex that we study is very different
than the typical computational problem studied in combinatorial game theory, namely
determining given a configuration of the board whether some player has a winning strategy.
Our problem is instead to determine who is the winner, once the play is completed.

Roadmap. We provide basic definitions in Section 2, recalling the Jordan curve theorem and
Brouwer’s fixed point theorem. We also describe the game of Hex and define the computational
problems Brouwer and EndOfTheLine along with the class PPAD. In Section 3, we show
that Brouwer and Jordan are equivalent, both mathematically and computationally (through
the ZeroSurfaceCrossing problem). In Section 4, we discuss CurveCrossing showing
that it is in PPAD. Finally, in Section 5, we show that WhoWonHex is PSPACE-complete.
In Section 6 we conclude with some open problems suggested by our work.

2 Preliminaries

In this section, we will formally define all the theorems, problems, and constructs which we
will analyze; in particular, we will define:
1. Brouwer’s fixed-point theorem;
2. the Jordan curve theorem;
3. the game of Hex and the Hex theorem;
4. the complexity class PPAD, and the canonical computational problem EndOfTheLine

that is associated with it.
Additionally, in order to formally describe the computational problems given above, we
also need to define the interpolation schemes we use to transform functions over bitstrings
to functions over the (continuous) unit square. We use a standard technique of using the
bitstring to describe a point on a lattice; then, for inputs not on the lattice, the output is
defined by interpolating from the outputs on the lattice. The formal construction is given in
our full paper [1].
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Figure 2 A Hex board and its corresponding dual-graph representation.

2.1 Brouwer’s Fixed-Point Theorem and the Jordan Curve Theorem
We define here the theorems of Brouwer and Jordan. For Brouwer, we give a special case in
two dimensions, involving functions from the unit square to itself. (This can be extended to
the general two-dimensional case on any compact and convex set and higher dimensions; see
e.g. [11, 3, 5] and their references.)

I Theorem 5 (Brouwer’s fixed-point theorem). Given any continuous function f : [0, 1]2 →
[0, 1]2, there is a fixed point, i.e. some x ∈ [0, 1]2 such that f(x) = x.

I Theorem 6 (The Jordan curve theorem). Any simple closed curve φ in R2 divides the space
into two regions, one finite (the inside) and one infinite (the outside).

2.2 PPAD and its Related Computational Problems
I Definition 7 (The PPAD graph). Let N and P be circuits, both of which take as input
an n-bit string and return an n-bit string as output. We then consider the directed graph
whose vertices are n-bit strings such that there is an edge (u, v) if and only if N(u) = v and
P (v) = u.

By this definition, it is clear that each vertex has in- and out-degree of at most 1 (since any
vertex u can only be preceded by P (u) and succeeded by N(u)), and thus the graph must
consist of a disjoint collection of isolated vertices, directed paths, and directed cycles. We
now consider the following computational problem on this graph:

I Definition 8 (EndOfTheLine). Given circuits N and P defining the PPAD graph G:
1. if the vertex 0n is not a source vertex (with in-degree 0 and out-degree 1), return 0n;
2. if the vertex 0n is a source vertex, return any other unbalanced vertex (with in-degree

and out-degree not equal).
EndOfTheLine is the canonical PPAD-complete problem. Because no directed graph can
have exactly one unbalanced vertex, the existence of a solution is guaranteed. Of particular
interest to us is the fact that a computational variant of Brouwer’s fixed-point theorem
(which we will formally describe in the next section) is also PPAD-complete.

2.3 The Game of Hex
The game of Hex is a combinatorial game, played (in its normal, two-player two-dimensional
version) on a hexagonally-tiled board (such as the one shown on the left in Figure 2). Each
player (player 1 represented in red, and player 2 represented in blue) starts in the possession
of two opposing sides of the board; they take turns placing stones of their color on unoccupied
tiles. Each has the goal of connecting their two sides with a path (or bridge) of stones of

ICALP 2016



24:6 The Complexity of Hex and the Jordan Curve Theorem

their color; the first to do so wins. For ease of representation, we imagine instead that the
players are placing stones on the vertices (rather than facets) of the dual graph, which is
represented on the right in Figure 2. In order to escape the restriction that the number of
red and blue stones is the same (or at most differ by 1), we allow players to ‘pass’ (i.e. not
put a stone down); there is no reason to do so if the player is trying to win, but it makes the
following analysis simpler and more general.

Although seemingly just a simple combinatorial game, Hex is known to have very deep
mathematical properties. First, a very elegant proof shows that some player is guaranteed
to win [6], i.e. if every vertex (in the dual-graph representation) is occupied by a stone,
then there must be a pair of opposing sides which are joined by a path of stones of their
corresponding color. In fact, exactly one player must win (the fact that it’s impossible for
both players to have bridges at the same time is intuitively connected to the Jordan curve
theorem). Intriguingly, the theorem that Hex must have a winner (which seems at first to
be merely an interesting curiosity) can, like Sperner’s Lemma, be used to actually prove
Brouwer’s fixed-point theorem [6].

3 Brouwer vs. Jordan in TFNP

In this section, we consider the relationship between Brouwer’s fixed-point theorem and the
Jordan curve theorem. In particular, we want to show that Brouwer’s fixed-point theorem can
be proven directly from the Jordan curve theorem, thus complementing Maehara’s result that
the Jordan curve theorem can be proved directly from Brouwer’s fixed-point theorem [10].
We then consider a computational version of the Jordan curve theorem, which we call
ZeroSurfaceCrossing; this problem is a search problem where the existence of a solution
is guaranteed by the Jordan curve theorem. We then show that ZeroSurfaceCrossing is
PPAD-complete. This makes it equivalent to the computational problem of finding a fixed
point of a function (where the existence of a solution is guaranteed by Brouwer’s fixed-point
theorem), thus demonstrating a computational link between the two theorems in addition to
the mathematical link.

3.1 The Zero Surface Crossing Problem
We define a problem where the existence of a solution is intended to be guaranteed by Jordan.

I Definition 9 (Zero Surface Crossing). We are given continuous functions f1, f2 : [0, 1]2 →
[−1, 1] (which are therefore 2-dimensional surfaces in R3) satisfying the following conditions:
1. f1(0, y) ≥ 0 and f1(1, y) ≤ 0 for all y;
2. f2(x, 0) ≥ 0 and f2(x, 1) ≤ 0 for all x.
The goal is to find some (x, y) ∈ [0, 1]2 such that f1(x, y) = f2(x, y) = 0.

We wish to show that the Jordan curve theorem implies that such a point (x, y) exists;
in order to give this proof, we consider the computational version defined in the introduction
as ZeroSurfaceCrossing.

We will first show that the Jordan curve theorem implies that the computational version
is guaranteed to have a valid output; we will then use basic topological principles to show
that the mathematical version given in Definition 9 also must have a solution. We need the
following notation:
1. let X0 = {(0, y) : 0 ≤ y ≤ 1} and X1 = {(1, y) : 0 ≤ y ≤ 1};
2. let Y0 = {(x, 0) : 0 ≤ x ≤ 1} and Y1 = {(x, 1) : 0 ≤ x ≤ 1}.
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f2 negative

f2 positive

f2 never 0

Exactly one intersection of line to infinity 
with closed curve guarantees this is inside

No intersection of line to infinity with 
closed curve guarantees this is outside

contradiction!

Jordan curve theorem 
guarantees crossing!

S1 contained 
in here

S0 contained 
in here

Figure 3 Left: illustration of proof of assertion 1; Right: illustration of proof of assertion 2.

In short, these sets are the four sides of the square [0, 1]2. For these lemmas, we sketch the
proofs; the full formal proofs are given in the full version of the paper [1].

I Lemma 10 (Jordan to Computational ZeroSurfaceCrossing). The Jordan curve theorem
implies that the computational version of ZeroSurfaceCrossing has a valid output.

Proof Sketch. We assume that the boundary conditions hold; we thus want to show the
existence of a point (x, y) ∈ [0, 1]2 such that f1(x, y) = f2(x, y) = 0. We will show the
following:
1. there exists a path from X0 to X1 such that at every point on the path, f2 has value 0;

by symmetry, there then must also be a path from Y0 to Y1 such that at every point, f1
has value 0.

2. the Jordan curve theorem then implies that these two paths must cross, giving a point
(x, y) ∈ [0, 1]2 such that f1(x, y) = f2(x, y) = 0.

The proofs are depicted in Figure 3 (assertion 1 on the left, assertion 2 on the right). We
remark that assertion 1 only holds because of the computational setting, where the function
is defined by a circuit and the interpolation procedure (see full proof for details). J

We can now use this to tackle the problem of showing the existence of a solution to the
mathematical version as given in Definition 9.

I Proposition 11 (Jordan to Non-Computational Zero Surface Crossing). The Jordan curve
theorem implies that the mathematical version of Zero Surface Crossing always has a solution.

Proof Sketch. We use the following general strategy: we note that only the set of points
where f1 is 0 and the set of points where f2 is 0 matters. Thus, we can use instead two
functions f∗1 and f∗2 which are 0 at the same points, but which are Lipschitz. We can then
show that for any ε > 0, if we approximate f∗1 and f∗2 with circuits F1, F2 with sufficiently
many bits, any point which is a zero of the circuits must be within ε of 0 for f∗1 , f∗2 . We then
take a sequence of such approximate zeroes as ε→ 0; by compactness of [0, 1]2, this sequence
must have at least one limit point, which we can then show is a shared zero of f∗1 , f∗2 and
hence of f1 and f2. J

Finally, we can use this result to prove Brouwer as a consequence of Jordan.

I Theorem 12 (Jordan implies Brouwer). Brouwer’s fixed-point theorem can be shown as a
direct consequence of the Jordan curve theorem.
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Proof. Given any mapping g : [0, 1]2 → [0, 1]2, we wish to show the existence of a fixed point
(x, y) such that g(x, y) = (x, y). Let gx and gy be the x- and y-components of g respectively.

We then define the functions f1, f2 : [0, 1]2 → [−1, 1] as follows: f1(x, y) = gx(x, y)− x
and f2(x, y) = gy(x, y) − y. First, we note that the outputs of f1, f2 indeed must fall in
[−1, 1]; this is because gx and gy have outputs in [0, 1] and −x and −y each range through
[−1, 0]. We also note that f1, f2 satisfy the boundary conditions given in Definition 9,
since f1(0, y) = gx(0, y) ≥ 0 and f1(1, y) = gx(1, y) − 1 ≤ 0 for all y, and similarly
f2(x, 0) = gy(x, 0) ≥ 0 and f2(x, 1) = gy(x, 1) − 1 ≤ 0 for all x. Thus, we can apply
Proposition 11 to show that there is some (x, y) such that f1(x, y) = f2(x, y) = 0.

But this implies that gx(x, y) = f1(x, y) + x = x and gy(x, y) = f2(x, y) + y = y, i.e. that
g(x, y) = (x, y), thus proving Brouwer’s fixed-point theorem as a consequence of Zero Surface
Crossing and hence as a consequence of the Jordan curve theorem. J

This, along with Maehara’s result on showing Jordan from Brouwer [10] and Gale’s
result on the equivalence of Brouwer and the Hex theorem [6], thus concludes the proof of
Proposition 2 (that Brouwer, Jordan, and Hex are all mathematically equivalent theorems).
We also remark that reversing the above reduction yields an alternative proof that Brouwer’s
fixed-point theorem can be used to prove the Jordan curve theorem; however, as this is a
known result, we will not show this in detail.

3.2 Computational Equivalence of Brouwer and Jordan
We now want to show that ZeroSurfaceCrossing is PPAD-complete. To do this, we first
define the computational version of Brouwer, which is well-known to be PPAD-complete [11]:

Brouwer
Input: A circuit G : {0, 1}n × {0, 1}n → {0, 1}n × {0, 1}n, defining a mapping g :
[0, 1]2 → [0, 1]2 via interpolation (as described in Appendix A).

Output: a point (x, y) such that g(x, y) = (x, y) (i.e. a fixed point of g).

I Lemma 13. ZeroSurfaceCrossing is PPAD-hard.

Proof. We prove this by showing that Brouwer can be reduced to it, using the same
reduction as in the proof of Theorem 12. In particular, we note that this reduction requires
no fudging with outputs, as if (x, y) is a lattice point (where x and y can each be expressed by
an n-bit string) then f1(x, y) = gx(x, y)−x can be expressed by an (n+1)-bit string, since the
output gx(x, y) is an n-bit string as well; the same obviously holds for f2(x, y) = gy(x, y)− y.
We then note that since all lattice points behave well under the transformation, and the
interpolation given in Appendix A is linear in both cases, the reduction requires no further
steps; a solution to the derived ZeroSurfaceCrossing instance is immediately a fixed
point of the original Brouwer instance. J

I Lemma 14. ZeroSurfaceCrossing is in PPAD.

Proof. We show this by reducing ZeroSurfaceCrossing to Brouwer. Without loss of
generality, we assume that f1 and f2 take two n-bit strings as input and output two (n+1)-bit
strings (we add the extra bit to account for the fact that they can have negative output, so
as to keep the interval size constant). We can now define g : [0, 1]2 → [0, 1]2 as follows; this
is essentially the above reduction, reversed and with outputs truncated to be within [0, 1]:

gx(x, y) = max
[

min[x+ f1(x, y), 1], 0
]
, and gy(x, y) = max

[
min[y + f2(x, y), 1], 0

]
.
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As before, since the reduction holds exactly at lattice points, it holds exactly everywhere
else as well (by how the interpolation works). Furthermore, it trivially has a fixed point at
any (x, y) such that f1(x, y) = f2(x, y) = 0. We now wish to show that any additional fixed
points can only be a result of f1 or f2 violating a boundary condition (which we recally is an
acceptable output to ZeroSurfaceCrossing).

The only way g could have another fixed point is if the capping of gx or gy to be between
0 and 1 held the displacement to 0 when otherwise it would have been nonzero. This happens
only if the input is already on the boundary (otherwise the cap cannot completely remove a
nonzero displacement in any direction); hence, it can only happen if one of the following four
events happens: (a) f1(0, y) < 0; (b) f1(1, y) > 0; (c) f2(x, 0) < 0; or (d) f2(x, 1) > 0, which
all represent violations of the boundary conditions set by ZeroSurfaceCrossing. Hence,
any fixed point of g corresponds to a solution to ZeroSurfaceCrossing, which means that
ZeroSurfaceCrossing can be reduced to Brouwer, and so it is in PPAD. J

Lemmas 13 and 14 thus imply Theorem 1 (ZeroSurfaceCrossing is PPAD-complete).

4 Crossing Curves

We now discuss the CrossingCurves problem; in particular, we show that it is in PPAD.

Proof of Theorem 3. We recall that the CrossingCurves problem involves two curves
f1, f2 : [0, 1]→ [0, 1]2 such that f1(0) = (0, 0), f1(1) = (1, 1), f2(0) = (0, 1) and f2(1) = (1, 0);
these curves are formally defined by circuits which map n-bit strings to points on a discrete
lattice in [0, 1]2 (with the continuous curves defined by interpolation over these circuits). We
denote fx

1 , f
y
1 , fx

2 , and f
y
2 as the functions describing f1 and f2’s outputs in the dimensions x

and y. We note that although fx
1 (0) = fx

2 (0) = 0 and fx
1 (1) = fx

2 (1) = 1, fx
1 and fx

2 are not
necessarily monotonically increasing; the two curves can snake back and forth. Nevertheless,
the Jordan curve theorem does guarantee that there will be a crossing point, i.e. a pair of
times (if we interpret the input of f1 and f2 to be a time between 0 and 1) t1, t2 such that
f1(t1) = f2(t2). The task is to find the crossing point.

We do this by defining the function g : [0, 1]2 → R2 (where its x and y components are
denoted gx and gy respectively) such that

gx(t1, t2) = t1 − fx
1 (t1) + fx

2 (t2) and gy(t1, t2) = t2 − fy
1 (t1) + fy

2 (t2) .

Clearly this function is continuous, and (t1, t2) is a fixed point if and only if fx
1 (t1) = fx

2 (t2)
and fy

1 (t1) = fy
2 (t2), i.e. if and only if f1(t1) = f2(t2). This is already very close to showing

what we need to show; the only trouble is that an application of g might end up at a point
outside of [0, 1]2, breaking our use of Brouwer. We thus define ĝ to be g, but with upper and
caps to its values at 1 and 0 respectively. Formally:

ĝx(t1, t2) = max
[

min[gx(t1, t2), 1], 0
]
and ĝy(t1, t2) = max

[
min[gy(t1, t2), 1], 0

]
.

We now have a function which does not leave [0, 1]2 and has a fixed point at any t1, t2 such
that f1(t1) = f2(t2). The only trouble is we need to make sure we did not create any new
fixed points by this capping method;

A new fixed point can only happen if one of the following four events happens:
1. −fx

1 (t1) + fx
2 (t2) < 0 when t1 = 0;

2. −fx
1 (t1) + fx

2 (t2) > 0 when t1 = 1;
3. −fy

1 (t1) + fy
2 (t2) < 0 when t2 = 0;

4. −fy
1 (t1) + fy

2 (t2) > 0 when t2 = 1.
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Figure 4 Left: proceeding on a Hex walk through a cell; each step is forced. Right: an empty
board (with player-owned edges) has two entries, A and B, and two exits 1 and 2. If the walk
entering at A exits through 2 (as shown at far right), then player 1 is the winner; if it exits through 1,
then player 2 is the winner.

But we note that since fx
1 (0) = 0 and fx

1 (1) = 1 (and both f1 and f2 are constrained to be
in [0, 1] in both components) that the first two cannot happen; furthermore, since fy

2 (0) = 1
and fy

2 (1) = 0, the second two cannot happen. Thus, a fixed point still occurs at (t1, t2)
if and only if f1(t1) = f2(t2), as we wanted. We can thus apply the Brouwer fixed-point
algorithm to ĝ : [0, 1]2 → [0, 1]2 and read off a solution to the crossing-curves problem. Since
finding a Brouwer fixed-point is in PPAD [11], CrossingCurves is also in PPAD. J

5 Hex, Brouwer, and Jordan in PSPACE

We have already established that the Hex, Brouwer, and Jordan theorems are mathematically
equivalent. We have also identified two problems motivated by Jordan’s curve theorem that
lie in PPAD. One of these is in fact PPAD-complete and thereby computationally equivalent
to Brouwer. It is natural to ask whether a computational version of the Hex theorem is
also related to PPAD. The link between PPAD and the Hex theorem is more immediate and
striking than that between the Jordan curve theorem and PPAD. In particular, Gale’s proof
that Hex always has a winner [6] is strikingly similar to the proof of Sperner’s lemma, another
well-known topological fact giving rise to the PPAD-complete problem called Sperner.
Gale’s proof generates a PPAD type graph, as defined in Section 2.2. In the next sections,
we briefly summarize Gale’s results and discuss natural questions arising from it in relation
to PPAD and, as it turns out, PSPACE.

5.1 Hex and PPAD
As with all PPAD-type problems, in Hex the proof of existence of a ‘bridge’ (a winning
sequence for one of the two players) in a filled board comes with a pivoting algorithm to find
it; this algorithm was described by Gale, who (remarkably) used it to show that Brouwer’s
fixed-point theorem and the Hex theorem are mathematically equivalent. The pivoting
algorithm is briefly sketched in Figure 4 on the dual-graph representation of the Hex board
(in which the stones are placed on vertices, rather than faces, of the graph). In brief, there
are two places on the edge of the board where one can enter with red on their left and blue
on their right, as shown in the figure; suppose one starts at A. Then, one walks over the
faces of the dual graph (or, equivalently, on the vertices of the original board), keeping red
on their left and blue on their right, until they exit the board at either 1 or 2. Exiting at 2
implies a victory for player 1 (red), and exiting at 1 implies a loss. This pivoting algorithm
is especially reminiscent of the Sperner’s Lemma pivoting algorithm [11], and induces a
(directed) PPAD graph with nodes corresponding to the faces of the dual-graph board.
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Even though Gale’s proof induces a PPAD graph, there is no natural analogue of the
EndOfTheLine problem for Hex. This is because the PPAD graph induced by Gale’s
argument only has four unbalanced vertices, corresponding to the entries A and B and the
exits 1 and 2. The natural question is which pairs of unbalanced vertices are connected,
which is equivalent to asking “who won?” after a game of Hex has filled the board. This
corresponds to finding the specific unbalanced vertex of the PPAD graph which is connected
to the starting one, corresponding to entry A. Of course, this would be polynomial-time
solvable if the board were polynomially-sized, so we will assume an exponentially-large board
where a polynomially-sized circuit tells us who claimed any particular tile.

5.2 WhoWonHex
WhoWonHex

Input: a Hex board, such that it takes n bits to uniquely specify a tile (the canonical way
to do this is via the dual graph, by having n/2 bits dedicated to specifying the position
of the tile in each dimension); a circuit C which takes an n-bit string (i.e. a tile) and
outputs either 0 (‘player 1 does not occupy this tile’) or 1 (‘player 1 does occupy this
tile’).

Output: 0 if there does not exist a bridge of tiles occupied by player 1 from the left
facet to the right facet (‘player 1 has not won’), and 1 if there does exist such a bridge
(‘player 1 has won’). Formally, with the canonical tile-specifying scheme described above,
a ‘bridge’ is defined as a sequence of tiles v1, v2, . . . , vm such that: (a) vi is adjacent to
vi+1 for all i = 1, 2, . . . ,m− 1; (b) C(vi) = 1 for all i; (c) the first n/2 bits of v1 are all 0
(it’s adjacent to the left facet), and the first n/2 bits of vm are all 1 (it’s adjacent to the
right facet).

We want to show that WhoWonHex is PSPACE-complete (Theorem 4). It is tempting
to try to prove this hardness via a reduction from the so-called OtherEndOfThisLine
problem,1 which is PSPACE-hard [8], by simulating paths in a given PPAD graph via “Gale
paths.” However, Gale paths do not cross, and the usual embedding of a PPAD graph into
a 2-dimensional plane without crossings results in a drastic change of the graph topology
(unbalanced vertices remain unbalanced vertices, but which unbalanced vertices are connected
to each other changes) [2, 7]. Instead, we will obtain our result as a direct consequence of
Goldberg’s proof that it is PSPACE-hard to identify the solution output by a path-following
algorithm for Sperner [7].

Goldberg’s proof proceeds directly from the well-known PSPACE-complete problem
of evaluating a quantified Boolean formula (QBF). Since our proof is an application of
Goldberg’s proof, we only explain how to make the gadgets required to modify his proof for
our purposes.

Proof of Theorem 4. As described above, we will be adapting Goldberg’s proof that identi-
fying the solution chosen by the standard pivoting algorithm for Sperner is PSPACE-hard.
(The inclusion into PSPACE is easy to establish; the details are given in the full version of
our paper [1])). Given a QBF instance Goldberg defines horizontal and vertical wires in an
exponentially large square lattice in such a way that the existence of a connected path of

1 This problem is: given a PPAD graph via circuits P, N , identify the unbalanced vertex connected to 0n,
if 0n is itself unbalanced.
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Figure 5 Left: A wire occupying part of the space. Middle: The wire, superimposed on the Hex
board, with the appropriate tiles turned to red to carry the wire. Right: The wire, represented only
as a sequence of red Hex tiles.

Goldberg’s QBF reductions

t+

Figure 6 Embedding Goldberg’s rectangular reduction into a Hex board, so that player 1 wins if
and only if s is connected to t+.

wires from a special point s to a special point t+ (which themselves always lie on wires but
may not be connected through wires) is equivalent to the QBF instance evaluating to 1. He
also provides an efficient algorithm to determine if a wire passes through a specific point,
and then simulates wires with paths in the PPAD graph of a Sperner instance.

Our result will be based on a ‘wire’ gadget that is based on Hex rather than Sperner –
which is simply a connected path of red tiles ‘insulated’ from other red tiles by blue tiles (in
fact, all tiles not on a ‘wire’ gadget are defined to be occupied by blue stones, i.e. player 2).
For simplicity, we use only wires whose segments are perfectly vertical or horizontal; how a
wire translates into tiles is shown in Figure 5.

Usefully the special points s and t+ in Goldberg’s construction lie on the left and right
boundary of the square lattice respectively. This allows us to embed Goldberg’s construction
into a Hex board as shown in Figure 6. In particular:

we allocate a part of the board where we replicate Goldberg’s construction using our wire
gadget, as described above given a QBF instance;
we add wires connecting s to the bottom-left edge of the board;
we add wires connecting t+ to the up-right edge of the board.

Since s and t+ lie on wires they are red tiles.
Since we do not have any wires not defined by Goldberg’s construction (other than those

from s and t+ to the boundary of the Hex board shown in Figure 6), there is a bridge
connecting the red edges of the Hex board if and only if s is connected to t+ by wires inside
Goldberg’s construction. This is PSPACE-hard to determine, hence it is PSPACE-hard to
determine if Player 1 wins. J

We remark that this proof had to be derived from Goldberg’s construction itself, and
not his result in a black-box manner. This is because the construction guarantees that the
end-points s and t+ in the proof above lie on the boundaries of the construction (and thus
can be wired to the bottom-left and upper-right edges of the Hex board).
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In contrast, general Sperner instances may very well have the solution reachable through
the standard path-following algorithm residing in the interior of the construction (thereby
making it hard to translate into Hex, since the question in Hex is whether there is a bridge
of red stones joining the left and right edges of the board).

6 Conclusion

In this paper, we explored the links between Brouwer’s fixed-point theorem, the Jordan curve
theorem, and the game of Hex. We showed that Brouwer and Jordan are mathematically and
computationally equivalent, complementing Maehara’s result that Jordan is a consequence of
Brouwer. Combined with Gale’s result that Brouwer’s fixed-point theorem is mathematically
equivalent to the seemingly innocuous Hex theorem (that a completed game of Hex must
have a winner), our result implies that all three theorems, Brouwer, Jordan and Hex,
are mathematically equivalent. Within PPAD, we defined two computational problems,
CurveCrossing and ZeroSurfaceCrossing, which always have solutions by dint of the
Jordan curve theorem. We show that both lie in PPAD, and the second is also PPAD-
complete. Finally, we relate the Hex theorem to results in the literature pertaining to the
complexity of standard pivoting algorithms for EndOfTheLine, Brouwer and Sperner.
It has been shown that identifying the solution computed by standard pivoting algorithms
for these problems is PSPACE-complete, and we show that the problem WhoWonHex,
of determining who is the winner in a play of Hex, is also PSPACE-complete. We thereby
establish computational relations among Brouwer, Hex and Jordan both within PPAD and
at the level of PSPACE. The main problem left open by our work is the complexity of
CurveCrossing. Is it PPAD-complete? We discuss structural properties of instances of
CurveCrossing that make us believe that the problem could lie lower in TFNP. It would be
interesting to identify a potential function argument guaranteeing a solution to this problem,
thereby placing it in the intersection of PLS and PPAD, and potentially one of the classes
defined in [4].
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A Interpolations of Functions on the Unit Square

In order to develop computational problems relating to our theorems of interest, we need
to give a formal definition of how circuits can represent functions on the unit square.
We will consider two types of functions we wish to represent: f : [0, 1]2 → [−1, 1], and
g : [0, 1]2 → [0, 1]2. They are represented by the following circuits:
1. f is represented by a circuit F which takes two n-bit strings as input (representing a

point in [0, 1]2) and returns an m-bit string (representing the value of the function);
2. g is represented by a circuit G which takes two n-bit strings as input and returns two

new n-bit strings.
These circuits directly define the values of their respective functions at lattice points in [0, 1]2,
namely points whose coordinates are integer multiples of 1/(2n− 1); for the values of f and g
at points which are not on this lattice, we use the triangulations depicted in Figure 7. For f ,
we take the output at lattice points (which is directly given by F ) and use them to generate
a ‘mesh’ which defines f at points not on the lattice; for g, we make a similar construction
as shown at center and right in the figure.

Figure 7 Left: the value of f at the three marked lattice points uniquely determines a plane; for
input points in the triangle shared by the three, the output of f is consistent with this plane. Center
and Right: the marked lattice points at right are the outputs of g at the marked lattice points at
center; inputs in the triangle shared by them are mapped to the corresponding point in the triangle
shared by their outputs (for example, the purple ‘x’ at center is mapped to the purple ‘x’ at right).
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1 Introduction

Lower bounds are of central concern all over computational complexity analysis. With
respect to fixed-parameter tractable problems, currently there are two main streams in this
context: (i) ETH-based lower bounds for the running times of exact algorithms [18] and
(ii) lower bounds on problem kernel sizes; more specifically, the exclusion of polynomial-size
problem kernels [17]. Both these research directions for lower bounds rely on plausible
complexity-theoretic assumptions, namely the Exponential-Time Hypothesis (ETH) and
NP 6⊆ coNP /poly, respectively. In this work, we contribute to the second research direction,
developing a new technique that exploits a triangle-based fractal structure in order to exclude
polynomial-size problem kernels (polynomial kernels for short) for edge and vertex deletion
problems in the context of length-bounded cuts.

Kernelization is a key method for designing fixed-parameter algorithms [14, 17]; among
all techniques of parameterized algorithm design, it has the presumably greatest potential
for delivering practically relevant algorithms. Hence, it is of key interest to explore its power
and its limitations. In a nutshell, the fundamental idea of kernelization is as follows. Given
a parameterized problem instance I with parameter k, in polynomial time preprocess I by
applying data reduction rules in order to simplify it and reduce it to an “equivalent” instance
(so-called (problem) kernel) of the same problem. For NP-hard problems the best one can
hope for is a problem kernel of size polynomial in the parameter k. In a way, one may
interpret kernelization (requested to run in polynomial time) as an “exact counterpart” of
polynomial-time approximation algorithms. Indeed, linear-size problem kernels often imply
constant-factor approximation algorithms [20, page 15]. Approximation algorithmics has
a highly developed theory (having produced concepts such as MaxSNP-hardness and the
famous PCP theory) for proving (relative to some plausible complexity-theoretic assumption)
lower bounds on the approximation factors [24].

It is fair to say that in the younger field of kernelization the arsenal for proving lower
bounds (particularly excluding polynomial kernels) so far is of smaller scope and needs
further development. The most influential result in this context is due to Bodlaender et
al. [5] and Fortnow and Santhanam [12]: Based on the assumption NP 6⊆ coNP / poly, it is
shown that e.g. the NP-hard graph problem Longest Path parameterized by solution size
has no polynomial kernel. The core tool for showing this are so-called “OR-compositions”.
To ease the use of this kernel-lower-bound framework, one natural idea is to use “polynomial
parameter transformations”, that is, a form of “parameter-preserving reductions” [7, 10].
An easier-to-use generalization of the OR-composition technique is given by so-called OR-
cross-compositions [6]. Currently, these two approaches constitute the known core tools
to exclude polynomial kernels. Building on OR-cross-compositions, we add a further tool
(which we baptized “fractalism”) in order to extend the range of problems to be addressed by
OR-cross-compositions. The usefulness of our new technique is substantiated by resolving an
open problem posed by Golovach and Thilikos [13], here specifically applying our technique
to the NP-hard Length-Bounded Edge-Cut problem.

Next, we discuss in some more detail OR-(cross)-compositions. Roughly speaking, the
idea behind an OR-composition for a parameterized problem is to encode the logical “or” of
t instances with parameter value k into a single instance of the same problem with parameter
value k′ = kO(1). In particular, given t instances, the obtained instance is a yes-instance if
and only if at least one of the given instances is a yes-instance. If an OR-composition is
possible, then this excludes polynomial kernels. Whereas in OR-compositions one combines
instances of an NP-hard parameterized problem into one instance of a parameterized problem,
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in OR-cross-compositions one combines instances of classical NP-hard problems into one
instance of a parameterized problem (see Section 2 for details and formal definitions).

While for some problems, for example Longest Path with parameter solution size [5],
a simple disjoint union yields the desired OR-composition, other problems seem to require
involved constructions, for example Set Cover with parameter universe size [10]. Indeed,
devising a cross-composition can be quite challenging and the task becomes even harder
when considering several, seemingly orthogonal parameterizations at once. To illustrate the
problem with such combined parameters, let us consider the problem Length-Bounded
Edge-Cut (LBEC). Herein, an undirected graph G = (V,E) with s, t ∈ V , and two integers
k, ` ∈ N are given, and the question is whether it is possible to delete at most k edges such
that the shortest s-t path is of length at least `. Using a simple branching algorithm, one can
show that LBEC(k, `) is fixed-parameter tractable for the combined parameter (k, `) [13, 3].
To exclude the existence of a polynomial kernel for LBEC(k, `), we would like to apply the
OR-cross-composition framework to the problem, and as a natural candidate for the input
problem we decide for LBEC itself.

A standard approach to applying the OR-cross-composition to a problem like LBEC
would be to concatenate the input instances on the source and sink vertices, also referred to
as “serial” composition. To this end, one needs some additional gadgets to ensure that only in
one instance edges are deleted. This form of composition, however, induces a dependency of
the second parameter ` on the number of instances, which is not allowed. Another standard
approach is introducing a “global” sink and source vertex, and connecting all source vertices
with the global source and all sink vertices, also referred to as a “parallel” composition.
This form of composition would keep ` small enough, but induces a dependency of the first
parameter k on the number of instances. Summarizing, the parameter k seems to ask for a
serial composition and the parameter ` seems to ask for a parallel composition. For some
problems using a tree as “instance selector” was helpful, see for example Bevern et al. [4] or
Bazgan et al. [2]. The problem with trees is that they introduce small (constant-size) s-t
cuts, which is problematic for Length-Bounded Edge-Cut. In this work, we introduce
a fractal structure as instance selector which has the nice properties of trees but does not
introduce small cuts. So, our fractal structure helps to exclude polynomial kernels for several
problems.

Our contributions. Our main technical contribution is to introduce a family of graphs that
we call T-fractals and that build on triangles. T-fractals feature a fractal-like structure, in the
sense of self-similarity and scale-invariance. Using these T-fractals in OR-cross-compositions,
we show that the following parameterized graph modification problems and several of their
variants do not admit polynomial kernels (unless NP ⊆ coNP / poly):

Length-Bounded Edge-Cut(k, `) (LBEC(k, `)), where k is the number of edges to
delete, and ` is the lower bound on the length of the shortest path.
Minimum Diameter Edge Deletion(k, `) (MDED(k, `)), that is, given an undirected
connected graph G = (V,E) and two integers k, ` (the parameters), decide whether there
are at most k edge deletions such that the remaining graph remains connected and has
diameter at least `.
Directed Small Cycle Transversal(k, `) (DSCT(k, `)), that is, given a directed
graph G = (V,E) and two integers k, ` (the parameters), decide whether there are at
most k edge deletions such that the remaining graph has no cycle of length smaller than `.

Table 1 surveys our no-polynomial-kernel results and spots an open question.

ICALP 2016



25:4 Fractals for Kernelization Lower Bounds

Table 1 Survey of the concrete results of this paper (under the assumption that NP 6⊆ coNP / poly).
PK stands for polynomial kernel and a “?” indicates that it is open whether a polynomial kernel
exists. We remark that the no-polynomial-kernel results for LBEC(k, `) on directed graphs still hold
for directed acyclic graphs. Note that we claim without proof that, except for the planar variants,
our proofs also transfer to the vertex deletion case, both for directed and undirected graphs.

Problem edge deletion
directed undirected

planar general planar general

LBEC(k, `) No PK [Thm. 12] No PK [Thm. 12] No PK [Thm. 12] No PK [Thm. 11]
MDED(k, `) No PK [Thm. 13] No PK [Thm. 13] No PK [Thm. 13] No PK [Thm. 13]
DSCT(k, `) No PK [Thm. 14] No PK [Thm. 14] PK [25] ?

2 Preliminaries

Graph Theory. Let G = (V,E) be a graph. For C ⊆ V (G) (C ⊆ E(G)) we write G − C
for the graph G where all vertices (edges) in C are deleted. Let s, t ∈ V (G). An edge set
C ⊆ E(G) is an s-t edge cut in G if the vertices s and t are disconnected in G − C. An
s-t edge cut C is called minimal if C\{e} is not an s-t edge cut in G for all e ∈ C. An s-t
edge cut C is called minimum if there is no s-t edge cut C ′ in G such that |C ′| < |C|.

The length of a path (cycle) is the number of edges in the path (cycle). An s-t path is a
path where the vertices s and t are the endpoints of the path. In directed graphs, an s-t path
is a path where all arcs are directed toward t, and a cycle is a connected graph where every
vertex has outdegree and indegree exactly one. The diameter of a graph G is the maximum
length of any shortest v-w path over all v, w ∈ V (G), v 6= w.

For v, w ∈ V (G), we say we merge the vertices v and w if we add a new vertex vw to V
as well as the edge set {{vw, x} | {x, v} ∈ E} ∪ {{vw, x} | {x,w} ∈ E} to E, and we delete
the vertices v and w and all edges incident to v and w.

Parameterized Complexity. A parameterized problem is a set of instances (I, k) where
I ∈ Σ∗ for a finite alphabet Σ, and k ∈ N is the parameter. A parameterized problem L is
fixed-parameter tractable (fpt) if it can be decided in f(k) · |I|O(1) time whether (I, k) ∈ L,
where f is a computable function only depending on k. We say that two instances (I, k)
and (I ′, k′) of parameterized problems P and P ′ are equivalent if (I, k) is yes for P if and
only if (I ′, k′) is yes for P ′. A kernelization is an algorithm that, given an instance (I, k)
of a parameterized problem P , computes in polynomial time an equivalent instance (I ′, k′)
of P (the kernel) such that |I ′|+ k′ ≤ f(k) for some computable function f only depending
on k. We say that f measures the size of the kernel, and if f ∈ kO(1), we say that P admits
a polynomial kernel. We remark that a decidable parameterized problem is fixed-parameter
tractable if and only if it admits a kernel [8].

Given an NP-hard problem L, an equivalence relation R on the instance of L is a
polynomial equivalence relation if (i) one can decide for any two instances in time polynomial
in their sizes whether they belong to the same equivalence class, and (ii) for any finite set S
of instances, R partitions the set into at most (maxx∈S |x|)O(1) equivalence classes.

I Definition 1. Given an NP-hard problem L, a parameterized problem P , and a polynomial
equivalence relation R on the instances of L, an OR-cross-composition of L into P (with
respect toR) is an algorithm that takes `R-equivalent instances I1, . . . , I` of L and constructs
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a) b)

c)

d)

σ τ σ τ

σ τ
σ τ

Figure 1 T-fractals a) 41, b) 42, c) 43, and d) 44. The two special vertices σ and τ are
highlighted by empty circles. In 44 the different boundaries are highlighted by line-types (solid:
boundary B0; dashed: boundary B1; dotted: boundary B2; dash-dotted: boundary B3; dash-dot-
dotted: boundary B4).

in time polynomial in
∑`

i=1 |I`| an instance (I, k) such that
1. k is polynomially upper-bounded in max1≤i≤` |Ii|+ log(`) and
2. (I, k) is yes for P if and only if there is at least one `′ ∈ [`] such that I`′ is yes for L.
If a parameterized problem P admits an OR-cross-composition for some NP-hard problem L,
then P does not admit a polynomial kernel with respect to its parameterization, unless
NP ⊆ coNP /poly [6]. We remark that we can assume that ` = 2j for some j ∈ N since we
can add trivial no-instances from the same equivalence class to reach a power of two. We
refer to the survey of Kratsch [17] for an overview on kernelization and lower bounds.

3 The “Fractalism” Technique

In this section, we describe our new technique based on triangle fractals (T-fractals for short).
We provide a general construction scheme for cross-compositions using T-fractals. To this
end, we first define T-fractals and then discuss several of their properties in Section 3.1.
Subsequently, in Section 3.2 we present a “construction manual” for an application of T-
fractals in cross-compositions.

Roughly speaking, a T-fractal can be constructed by iteratively putting triangles on top
of each other, see Figure 1 for four examples.

I Definition 2. For q ≥ 1, the q-T-fractal 4q is the graph constructed as follows:
(1) Set40 := {σ, τ} with {σ, τ} being a “marked edge” with endpoints σ and τ , subsequently

referred to as special vertices.
(2) Let F be the set of marked edges.
(3) For each edge e ∈ F , add a new vertex and connect it by two new edges with the

endpoints of e, and mark the two added edges.
(4) Unmark all edges in F .
(5) Repeat (2)–(4) q − 1 times.

The fractal structure of 4q might be easier to see when considering the following equivalent
recursive definition of 4q: For the base case we define 40 := {σ, τ} as in Definition 2. Then,
the q-T-fractal 4q is constructed as follows. Take two (q − 1)-T-fractals 4′q−1 and 4′′q−1,
where σ′, τ ′ and σ′′, τ ′′ are the special vertices of 4′q−1 and 4′′q−1, respectively. Then 4q is
obtained by merging the vertices τ ′ and σ′′ and adding the edge {σ′, τ ′′}. Set σ = σ′ and
τ = τ ′′ as the special vertices of 4q. We remark that we make use of the recursive structure
in later proofs.
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In the ith execution of (2)–(4) in Definition 2, we obtain 2i−1 many triangles. We say
that these triangles have depth i. The boundary Bi ⊆ E(4q), i ∈ [q], are those edges of the
triangles of depth i which are not edges of the triangles of depth i − 1. As a convention,
the edge {σ, τ} connecting the two special vertices σ and τ forms the boundary B0. Refer
to Figure 1 for an illustration of the boundaries in the T-fractal44. Moreover, by construction,
we obtain the following:

I Observation 3. In every T-fractal, each boundary forms a σ-τ path, and all boundaries
are pairwise edge-disjoint.

Note that the boundary Bq contains p = 2q edges. Thus, the number of edges in 4q

is
∑q

i=0 2i = 2q+1 − 1 = 2 · p− 1. Further observe that all vertices of 4q are incident with
the edges in Bq, and Bq forms a σ-τ path. Hence, 4q contains p+ 1 vertices.

Reducing the Weighted to the Unweighted Case. In the remainder of the paper, we focus
on the unweighted case of T-fractals without multiple edges or loops. This is possible due to
the following reduction of the weighted to the unweighted case. Equip the T-fractal with an
edge cost, that is, the cost for deleting any edge in the T-fractal. If c ∈ N is the edge cost
of 4q, then we write 4c

q (we drop the superscript if c = 1). To reduce to the case with an
unweighted, simple graph, we add c − 1 further copies for each edge. Thus, to make two
adjacent vertices non-adjacent, it requires c edge-deletions. To make the graph simple, we
subdivide each edge. We remark that in this way we double the distances of the vertices in
the original T-fractal. Thus, whenever we consider distances in the fractal with edge cost
and the graph obtained by the reduction above, we have to take into account a factor of two.

3.1 Properties of T-Fractals
The goal of this subsection is to prove several properties of T-fractals that are used in later
constructions. Some key properties of T-fractals appear in the context of σ-τ edge cuts
in 4q.

The minimum edge cuts in 4q will play a central role when using T-fractals in cross-
compositions since the minimum edge cuts serve as instance selectors (see Section 3.2). First,
we discuss the size and structure of the minimum edge cuts in 4q.

I Lemma 4. Every minimum σ-τ edge cut in 4q is of size q + 1.

Proof. Let C be a minimum σ-τ edge cut in 4q. Note that the degrees of σ and τ are
exactly q+1, and thus |C| ≤ q+1. Moreover, the boundaries in 4q are pairwise edge-disjoint
and each boundary forms a σ-τ path (Observation 3). Since 4q contains q+ 1 boundaries, it
follows that there are at least q + 1 disjoint σ-τ paths in 4q. Menger’s theorem [21] states
that in a graph with distinct source and sink, the maximum number of disjoint source-sink
paths equals the minimum size of any source-sink edge cut. Thus, by Menger’s theorem, it
follows that |C| ≥ q + 1. Hence |C| = q + 1. J

From the fact that the boundaries are pairwise edge-disjoint and each boundary forms a
σ-τ path, we can immediately derive the following from Lemma 4.

I Corollary 5. Every minimum σ-τ edge cut in 4q contains exactly one edge of each
boundary.

In the following we describe a (hidden) dual structure in 4q, that is, a complete binary
tree with p leaves. We refer to Figure 2 for an example of the dual structure in 43. To talk
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σ τ σ τ

Figure 2 Left: The T-fractal 43 (circles and solid lines) and its dual graph (squares and dotted
lines). The filled square is the vertex dual to the outer face in the dual graph. Right: The T-
fractal 43 (circles and solid lines) and its dual structure T3, illustrated by squares and dotted lines,
where the filled square corresponds to the root of the dual structure.

about the dual structure by means of duality of plane graphs, we need a plane embedding
of 4q. Hence we assume that 4q is embedded as in Figure 1 (iteratively extended). By Tq

we denote the dual structure in 4q, where the vertex dual to the outer face is replaced by
p+ 1 vertices (split vertices) such that each edge incident with the dual vertex is incident
with exactly one split vertex. We consider the split vertex incident with the vertex dual to
the triangle containing the edge {σ, τ} as the root vertex of the dual structure Tq. Thus, the
other split vertices correspond to the leaves of the dual structure Tq. Note that the depth of
a triangle one-to-one corresponds to the depth of the dual vertex in Tq.

Observe that there is a one-to-one correspondence between the edges in Tq and the
edges in 4q. The following lemma states duality of root-leaf paths in Tq and minimum
σ-τ edge cuts in 4q, demonstrating the utility of the dual structure Tq.

I Lemma 6. There is a one-to-one correspondence between root-leaf paths in the dual
structure Tq of 4q and minimum σ-τ edge cuts in 4q. Moreover, there are exactly p = 2q

pairwise different minimum σ-τ edge cuts in 4q.

Proof. Observe that each path from the root to a leaf in the dual structure Tq corresponds
to a cycle in the dual graph. It is well-known that there is a one-to-one correspondence
between minimal edge cuts in a plane graph and cycles in its dual graph [9, Proposition 4.6.1].
Herein, every cycle in the dual graph that “cuts” the edge {σ, τ} in 4q is a root-leaf path
in Tq. Thus, the only minimal σ-τ edge cuts are those corresponding to the root-leaf paths.
By the one-to-one correspondence of the depth of the triangles in 4q and the depth of the
vertices in Tq, these edge cuts are of cardinality q + 1. Hence, by Lemma 4, these edge cuts
are minimum edge cuts.

Since |Bq| = p, there are exactly p leaves in Tq, and thus there are exactly p different
root-leaf paths in Tq. It follows that the number of pairwise different minimum σ-τ edge cuts
in 4q is exactly p = 2q. J

Further, we obtain the following.

I Lemma 7. Let C be a minimum σ-τ edge cut in 4q. Let {x, y} = C ∩Bq, where x is in
the same connected component as σ in 4q − C. Then dist(σ, x) + dist(y, τ) = q in 4q − C.

Proof. We prove the lemma by induction on q. For the base case q = 0, observe that C =
{σ, τ} and dist40−C(σ, x) + dist40−C(y, τ) = 0.

For the induction step, assume that the statement of the lemma is true for 4q−1. Now,
let C be a minimum σ-τ edge cut in 4q. Hence, {σ, τ} ∈ C. Denote by u the (unique)
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vertex that is adjacent to the two special vertices σ and τ . Let 4′q−1 and 4′′q−1 be the
two (q − 1)-T-subfractals of 4q, so that 4′q−1 (4′′q−1) has the special vertices σ and u

(u and τ). By Lemma 6, the minimum σ-τ edge cut C corresponds to a root-leaf path
in Tq. Hence, C ′ := C \ {σ, τ} is either a subset of E(4′q−1) or of E(4′′q−1). Assume
w.l.o.g. that C ′ ⊆ E(4′q−1). It follows from the induction hypothesis that dist4′

q−1−C′(σ, x)+
dist4′

q−1−C′(y, u) = q − 1. Since dist4q−C(y, τ) = dist4′
q−1−C′(y, u) + 1, it follows that

dist4q−C(σ, x) + dist4q−C(y, τ) = q. J

I Remark. By an inductive proof like the one of Lemma 7, one can easily show that the
maximum degree ∆ of 4q is exactly 2 · q for q > 0. Moreover, due to Lemma 7, the diameter
of 4q is bounded in O(q).

Another observation on 4q is that any deletion of d edges increases the length of any
shortest σ-τ path to at most d+ 1, unless the edge deletion forms a σ-τ edge cut.

I Lemma 8. Let D ⊆ E(4q) be a subset of edges of 4q. If D is not a σ-τ edge cut, then
there is a σ-τ path of length at most |D|+ 1 in 4q −D.

Proof. We prove the statement of the lemma by induction on q. For the induction base
with q = 0, observe that since D is not a σ-τ edge cut, it follows that D = ∅ and, hence, σ
and τ have distance one.

For the induction step, assume that the statement of the lemma is true for 4q−1. Now,
let D ⊆ E(4q) be a subset of edges of 4q such that D is not a σ-τ edge cut. If {σ, τ} /∈ D,
then there is a σ-τ path of length one and the statement of the lemma holds. Now consider
the case {σ, τ} ∈ D. Denote by u the (unique) vertex that is adjacent to the two special
vertices σ and τ . If {σ, τ} ∈ D, then every σ-τ path in 4q − D contains u and hence
dist4q−D(σ, τ) = dist4q−D(σ, u) + dist4q−D(u, τ). (If there is no σ-u-path or no u-τ -path
in 4q −D, then D is a σ-τ edge cut; a contradiction to the assumption of the lemma.) Now
let4′q−1 and4′′q−1 be the two (q−1)-T-subfractals of4q, so that4′q−1 (4′′q−1) has the special
vertices σ and u (u and τ). It follows that D can be partitioned into D = D′ ∪D′′ ∪ {σ, τ}
with D′ ⊆ E(4′q−1) and D′′ ⊆ E(4′′q−1). By induction hypothesis, it follows that there is a
σ-u path of length at most |D′|+ 1 in 4′q−1 −D′ and a u-τ path of length at most |D′′|+ 1
in 4′′q−1 −D′′. Hence, there is a σ-τ path of length at most |D′| + |D′′| + 2 = |D| + 1 in
4q −D. J

We remark that there is a directed version of T-fractals. Herein, the edges of a T-fractal
are directed in such a way that each boundary forms a directed σ-τ path. Note that the
obtained graph is acyclic, and σ has no incoming arcs, and τ has no outgoing arcs. We
further remark that all stated lemmas also hold for the directed T-fractal. The dual structure
of a directed T-fractal is defined as the dual structure of the underlying undirected T-fractal.
For more details we refer to the full version.

3.2 Application Manual for T-Fractals
The aim of this subsection is to provide a general guideline on how to use T-fractals in
cross-compositions to obtain kernel lower bounds.

I Construction 9. Given p = 2q instances I1, . . . , Ip of an NP-hard graph problem, where
each instance Ii has a unique source vertex si and a unique sink vertex ti.
(i) Equip 4c

q with some “appropriate” edge cost c ∈ N.
(ii) Let v0, . . . , vp be the vertices of the boundary Bq, labeled by their distances to σ in the

σ-τ path corresponding to Bq (observe that v0 = σ and vp = τ).
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s1 t1 s2 t2 s3 t3 s4 t4 s5 t5 s6 t6 s7 t7 s8 t8

σ τσ τ

Figure 3 Illustration of Construction 9 with p = 23 = 8. The vertices s1, . . . , s8 indicate the
source vertices in the eight input instances, and t1, . . . , t8 indicate the sink vertices in the eight input
instances. We use dashed lines to sketch the input graphs.

(iii) Incorporate each of the p graphs of the input instances into 4c
q as follows: for each

i ∈ [p], merge si with vertex vi−1 in 4c
q and merge ti with vi in 4c

q.

Refer to Figure 3 for an illustrative example of Construction 9.
In Construction 9, the T-fractal works as an instance selector by deleting edges corre-

sponding to a minimum edge cut, which, by Lemma 4, is of size q+ 1. Hence, each minimum
edge cut costs c · (q + 1). The idea is that if we choose an appropriate value for c (larger
than the budget in the instances I1, . . . , Ip) and an appropriate budget in the composed
instance (e. g. c · (q + 1) plus the budget in the instances I1, . . . , Ip), then we can only afford
to delete at most q + 1 edges in 4c

q. Furthermore, if the at most q + 1 edges chosen to be
deleted do not form a minimum σ-τ edge cut in 4c

q, then, by Lemma 8, the shortest σ-τ path
has length at most q + 2. Thus, by requiring in the composed instance that σ and τ have
distance more than q + 2, we enforce that any solution for the composed instance contains a
minimum σ-τ edge cut in 4c

q. By Lemma 6, each such minimum edge cut corresponds to one
root-leaf path in the dual structure Tq of 4c

q. Observe that each leaf in the dual structure
of 4c

q one-to-one corresponds to an attached source instance. Hence, with an appropriate
choice of c, the budget in the composed instance, and the required distance between σ and τ ,
the T-fractal ensures that one instance is “selected”. We say that a minimum σ-τ edge cut
in 4c

q selects an instance I if the edge cut corresponds to the root-leaf path with the leaf
corresponding to instance I.

I Observation 10. Every minimum edge cut C in 4c
q selects exactly one instance I. Con-

versely, every instance I can be selected by exactly one minimum edge cut.

We use Construction 9 in OR-cross-compositions to rule out the existence of polynomial
kernels. We call this approach fractalism. In particular, we provide the source and the target
problem, appropriate values for the edge cost c and the budget in the composed instance,
and the required distance between the special vertices σ and τ .

We remark that there is a similar construction for directed graph problems using the
directed T-fractal. Moreover, the construction with directed acyclic input graphs yields a
directed acyclic graph. For more details, we refer to the full version.
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4 Applications to Length-Bounded Cut Problems

In this section, we rule out the existence of polynomial kernels for several problems (and
their variants) under the assumption that NP 6⊆ coNP /poly. To this end, we combine the
framework of OR-cross-compositions with our fractalism technique as described in Section 3.2.

4.1 Length-Bounded Edge-Cut

Our first fractalism application is the Length-Bounded Edge-Cut problem [1], also known
as the problem of finding bounded edge undirected cuts [13], or the Shortest Path Most
Vital Edges problem [19, 3].

Length-Bounded Edge-Cut (LBEC)
Input: An undirected graph G = (V,E), with s, t ∈ V , and two integers k, `.
Question: Is there a subset F ⊆ E of cardinality at most k such that distG−F (s, t) ≥ `?

The problem is NP-complete [16] and fixed-parameter tractable with respect to (k, `) [13].
If k is at least the size of any s-t edge cut, then the problem becomes polynomial-time
solvable by simply computing a minimum s-t edge cut. Thus, throughout this section, we
assume that k is smaller than the size of any minimum s-t edge cut. The generalized problem
where each edge is equipped with positive length remains NP-hard even on series-parallel
and outerplanar graphs [1]. The directed variant with positive edge lengths remains NP-hard
on planar graphs where the source and the sink vertex are incident to the same face [22].
Recently, Dvořák and Knop [11] showed that the problem can be solved in polynomial time
on graphs of bounded treewidth. Here, we answer an open question [13] concerning the
existence of a polynomial kernel with respect to the combined parameter (k, `).

I Theorem 11. Unless NP ⊆ coNP / poly, Length-Bounded Edge-Cut parameterized
by (k, `) does not admit a polynomial kernel.

Proof. We OR-cross-compose p = 2q instances of LBEC into one instance of LBEC(k′, `′).
An instance (Gi, si, ti, ki, `i) of LBEC is called bad if max{ki, `i} > |E(Gi)| or min{ki, `i} <
0. We define the polynomial equivalence relation R on the instances of LBEC as follows:
two instances (Gi, si, ti, ki, `i) and (Gj , sj , tj , kj , `j) of LBEC are R-equivalent if and only
if kj = ki and `j = `i, or both are bad instances. Clearly, the relation R fulfills condition (i)
of an equivalence relation (see Section 2). Observe that the number of equivalence classes
of a finite set of instances is upper-bounded by the maximal size of a graph over the
instances, hence condition (ii) holds. Thus, we consider p R-equivalent instances Ii :=
(Gi, si, ti, k, `), i = 1, . . . , p. We remark that we can assume that ` ≥ 3, since otherwise
LBEC is solvable in polynomial time by counting all edges connecting the source with the
sink vertex. We OR-cross-compose into one instance I := (G, s, t, k′, `′) of LBEC(k′, `′)
with k′ = k2 · (log(p) + 1) + k and `′ = `+ log(p) as follows.

Construction: Apply Construction 9 with edge cost c = k2. In addition, set s := σ and
t := τ . Let G denote the obtained graph.

Correctness: We show that I is a yes-instance if and only if there exists an i ∈ [p] such
that Ii is a yes-instance.
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“⇐”: Let i ∈ [p] be such that Ii is yes. Following Observation 10 in Section 3.2, let C be
the minimum s-t cut in 4c

q that selects instance Ii. Recall that C is of size q + 1 and that
the edge cost equals k2. Thus, the minimum s-t cut C has cost (q+ 1) · k2 = (log(p) + 1) · k2.

Note that after deleting the edges in C, the vertices s and t are only connected via paths
through the incorporated graph Gi. Since Ii is yes, we can delete k edges (equal to the
remaining budget) such that the distance of si and ti in Gi is at least `. Together with
Lemma 7 in Section 3.1, such an additional edge deletion increases the length of any shortest
s-t path in G to at least `+ log(p) = `′. Hence, I is a yes-instance.

“⇒”: Suppose that one can delete at most k′ edges in G such that each s-t path is of
length at least `′. Since the budget allows log(p) + 1 edge-deletions in 4c

q, by Lemma 8 in
Section 3.1, if we do not cut s and t in 4c

q, then there is an s-t path of length log(p) + 2.
Since ` ≥ 3, such an edge deletion does not yield a solution. Thus, in every solution of I, a
subset of the deleted edges forms a minimum s-t edge cut in 4c

q and thus, by Observation 10,
selects an input instance.

Consider an arbitrary solution to I, that is, an edge subset of E(G) of cardinality at
most k′ whose deletion increases the shortest s-t path to at least `′. Let Ii, i ∈ [p], be the
selected instance. Note that any shortest s-t path contains edges in the selected instance Ii.
By Lemma 7, we know that the length of the shortest s-si path and the length of the shortest
ti-t path sum up to exactly log(p). It follows that the remaining budget of k edge deletions
is spent in Gi in such a way that there is no path from si to ti of length smaller than ` in Gi.
Hence, Ii is a yes-instance. J

Using LBEC on planar graphs and on planar directed acyclic graphs as the input problem,
fractalism yields the following (the proof is deferred to the full version).

I Theorem 12. Unless NP ⊆ coNP / poly, Length-Bounded Edge-Cut on planar
undirected graphs as well as on planar directed acyclic graphs parameterized by (k, `) does
not admit a polynomial kernel.

4.2 Further Applications
We present two further problems (and their variants) to which the fractalism technique
applies. First, we consider the following NP-hard [23] problem.

Minimum Diameter Edge Deletion (MDED)
Input: A connected, undirected graph G = (V,E), two integers k, `.
Question: Is there a subset F ⊆ E of cardinality at most k such that G− F remains

connected and diam(G− F ) ≥ `?

Note that MDED on directed strongly connected graphs asks for a subset of arcs such
that the graph after deleting the arcs remains strongly connected and has diameter at least `.
Our second NP-hard [15] problem is the following.

Directed Small Cycle Transversal (DSCT)
Input: A directed graph G = (V,E), two integers k, `.
Question: Is there a subset F ⊆ E of cardinality at most k such that there is no induced

directed cycle of length at most ` in G− F?

Both problems are fixed-parameter tractable with respect to (k, `) (see full version). The
fractalism technique yields the following (the proofs are deferred to the full version).
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Figure 4 The vertex deletion variant 42;5
2 of T-fractals. Vertex types: empty diamonds belong

to the boundary B0, empty triangles belong to the boundary B1, empty circles belong to the
boundary B2. The squares and dashed lines indicate the dual structure, where the filled square
corresponds to the root. We highlighted vertices in gray-filled circles that correspond to the vertices
in the edge-deletion variant 42.

I Theorem 13. Unless NP ⊆ coNP / poly, Minimum Diameter Edge Deletion on
undirected, connected, planar graphs and on directed, strongly connected, planar graphs
parameterized by (k, `) does not admit a polynomial kernel.

I Theorem 14. Unless NP ⊆ coNP / poly, Directed Small Cycle Transversal on
planar directed graphs parameterized by (k, `) does not admit a polynomial kernel.

Like in the proof of Theorem 11, in the proofs of Theorems 13 and 14 we use LBEC
as input problem and compose instances of LBEC using a T-fractal. The main difference
is that we slightly modify the T-fractal. Roughly speaking, for MDED(k, `) we append
“long enough” paths to σ and τ , with endpoints σ′ and τ ′ different to σ and τ . Those paths
ensure that the only two vertices that can yield the required diameter are σ′ and τ ′. For
DSCT(k, `) we add the arc (τ, σ) to the directed T-fractal. Recall that the directed T-fractal
is acyclic, and thus, every directed cycle in the composed graph contains the arc (τ, σ). For
more details, we refer to the full version.

5 Conclusion

We start with briefly sketching how our technique can be adapted such that it also applies to
the vertex deletion (instead of edge deletion) versions of the considered problems. Afterwards,
we discuss future challenges and open problems.

Extension to Vertex-Deletion Variants. Most of our results can be transferred to the
vertex deletion variants of the considered edge deletion problems as follows.

To this end, we modify the T-fractal as displayed in Figure 4:
First, subdivide each edge. Then, replace each vertex v in the original T-fractal by

many pairwise non-adjacent vertices with the same neighborhood as v. The number of these
introduced “false twins” is larger than the given budget such that the only way to disconnect
vertices in the new fractal will be to delete vertices introduced from the subdivision of the
edges. In this way, deleting a vertex in the new T-fractal corresponds to deleting an edge
in the original fractal. This new fractal might not be planar anymore, but, as in the edge
deletion variant, one can direct the edges in such a way that the obtained directed graph is
acyclic.
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We claim that the new T-fractal can be used in the same way as the original T-fractal in
order to exclude polynomial kernels for vertex deletion variants of the problems discussed in
this work – both in undirected and directed, but not for planar variants.

Outlook. We provided several case studies where our fractalism technique applies. It
remains open to further explore the limitations and possibilities of our technique in more
contexts. Table 1 in Section 1 presents an open question which should be clarified. Moreover,
we could not settle the cases for vertex deletion problems when the underlying graphs are
planar.

Acknowledgement. We thank Manuel Sorge (TU Berlin) for fruitful discussions.
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Abstract
A key result in the field of kernelization, a subfield of parameterized complexity, states that the
classic Disjoint Cycle Packing problem, i.e. finding k vertex disjoint cycles in a given graph
G, admits no polynomial kernel unless NP ⊆ coNP/poly. However, very little is known about
this problem beyond the aforementioned kernelization lower bound (within the parameterized
complexity framework). In the hope of clarifying the picture and better understanding the types
of “constraints” that separate “kernelizable” from “non-kernelizable” variants of Disjoint Cycle
Packing, we investigate two relaxations of the problem. The first variant, which we call Almost
Disjoint Cycle Packing, introduces a “global” relaxation parameter t. That is, given a graph
G and integers k and t, the goal is to find at least k distinct cycles such that every vertex of G
appears in at most t of the cycles. The second variant, Pairwise Disjoint Cycle Packing,
introduces a “local” relaxation parameter and we seek at least k distinct cycles such that every two
cycles intersect in at most t vertices. While the Pairwise Disjoint Cycle Packing problem
admits a polynomial kernel for all t ≥ 1, the kernelization complexity of Almost Disjoint
Cycle Packing reveals an interesting spectrum of upper and lower bounds. In particular, for
t = k

c , where c could be a function of k, we obtain a kernel of size O(2c2
k7+c log3 k) whenever

c ∈ o(
√
k). Thus the kernel size varies from being sub-exponential when c ∈ o(

√
k), to quasi-

polynomial when c ∈ o(log` k), ` ∈ R+, and polynomial when c ∈ O(1). We complement these
results for Almost Disjoint Cycle Packing by showing that the problem does not admit a
polynomial kernel whenever t ∈ O(kε), for any 0 ≤ ε < 1.
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1 Introduction

Polynomial-time preprocessing is one of the widely used methods to tackle NP-hard problems
in practice, as it plays well with exact algorithms, heuristics, and approximation algorithms.
Until recently, there was no robust mathematical framework to analyze the performance of
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26:2 Kernelization of Cycle Packing with Relaxed Disjointness Constraints

preprocessing routines. Progress in parameterized complexity [11] made such an analysis
possible. In parameterized complexity, each problem instance is coupled with a parameter
k and the parameterized problem is said to admit a kernel if there is a polynomial-time
algorithm, called a kernelization algorithm, that reduces the input instance down to an
instance whose size is bounded by a function f(k) in k, while preserving the answer. Such
an algorithm is called an f(k)-kernel for the problem. If f(k) is a polynomial, quasi-
polynomial, subexponential, or exponential function of k, we say that this is a polynomial,
quasi-polynomial, subexponential, or exponential kernel, respectively. Over the last decade
or so, kernelization has become a very active field of study, especially with the development
of complexity-theoretic tools to show that a problem does not admit a polynomial kernel [3,
12, 16, 18], or a kernel of a specific size [8, 9, 19]. We refer the reader to the survey articles
by Kratsch [20] and Lokshtanov et al. [21] for recent developments.

One of the first and important problems to which the lower-bounds machinery was applied
is the NP-complete Disjoint Cycle Packing problem. In the Disjoint Cycle Packing
problem, we are given as input an n-vertex graph G and an integer k, and the task is to find a
collection C of at least k pairwise disjoint vertex sets of G, such that every set C ∈ C induces
a cycle in G. The Disjoint Cycle Packing problem can be solved in O(kk log knO(1)) using
dynamic programming over graphs of bounded treewidth [2, 4]. Bodlaender et al. [5] showed
that, when parameterized by k, Disjoint Cycle Packing does not admit a polynomial
kernel unless NP ⊆ coNP/poly (and the polynomial hierarchy collapses to its third level,
which is considered very unlikely). Beyond the aforementioned negative result for polynomial
kernels and the folklore O(kk log knO(1))-time algorithm, the Disjoint Cycle Packing
problem has remained mostly unexplored from the viewpoint of parameterized complexity.

Our problems and results. In this paper we study two variants of Disjoint Cycle
Packing, obtained by relaxing the disjointness constraint. In particular, we focus on the
kernelization complexity of the Disjoint Cycle Packing problem by considering two
relaxed versions of the problem, one with a “local” relaxation parameter and the other with
a “global” relaxation parameter. In the locally relaxed variant, which we call Pairwise
Disjoint Cycle Packing, the goal is to find at least k distinct cycles in a graph G such
that they pairwise intersect in at most t vertices.

Pairwise Disjoint Cycle Packing Parameter: k

Input: An undirected (multi) graph G and integers k and t
Question: Does G have at least k distinct cycles C1, . . . , Ck such that |V (Ci)∩V (Cj)| ≤ t
for all i 6= j?

We consider two cycles to be distinct whenever their edge sets differ by at least one element.
Note that when t = 0, Pairwise Disjoint Cycle Packing corresponds to the original
Disjoint Cycle Packing problem. However, when t = |V (G)| the Pairwise Disjoint
Cycle Packing problem is solvable in time polynomial in |V (G)| and k since we can
enumerate distinct cycles in a graph with polynomial delay [24]. In other words, any k

distinct cycles in a graph will trivially pairwise intersect in at most |V (G)| vertices. We
show that Pairwise Disjoint Cycle Packing remains NP-complete when t = 1. Then,
we complement this result by showing that the problem admits a polynomial kernel for t = 1
and a polynomial compression for t ≥ 2. An interesting problem which remains unclear is to
determine what value of t separates NP-hard instances from polynomial-time solvable ones.

The second relaxation we consider is Almost Disjoint Cycle Packing. The goal in
Almost Disjoint Cycle Packing is to determine whether G contains at least k distinct
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Figure 1 Spectrum of kernelization algorithms for Almost Disjoint Cycle Packing as c grows
in the denominator of t = k

c
.

cycles such that every vertex in V (G) appears in at most t of them. As we shall see, the
kernelization complexity landscape for Almost Disjoint Cycle Packing is much more
diverse than that of Pairwise Disjoint Cycle Packing. In some sense, this suggests
that the global relaxation parameter does a “better job” of capturing the “hardness” of the
original problem.

Almost Disjoint Cycle Packing Parameter: k

Input: An undirected (multi) graph G and integers k and t
Question: Does G have at least k distinct cycles C1, . . . , Ck such that every vertex in
V (G) appears in at most t of them?

Again, for t = 1, Almost Disjoint Cycle Packing corresponds to Disjoint Cycle
Packing and when t = k the problem is solvable in time polynomial in |V (G)| and k by
simply enumerating distinct cycles. However, and rather surprisingly, we show that t has to
be “very close” to k for this relaxation to become “easier” than the original problem, at least
in terms of kernelization. In fact, we show that as long as t = O(k1−ε), where 0 < ε ≤ 1,
Almost Disjoint Cycle Packing remains NP-complete and admits no polynomial kernel
unless NP ⊆ coNP/poly. We complement our hardness result by a spectrum of kernel upper
bounds. To that end, we consider the case t = k

c , where c is a constant or a function of
k. We show that we can (in polynomial time) compress an instance of Almost Disjoint
Cycle Packing into an equivalent instance with O(2c2

k7+c log3 k) vertices. This implies
polynomial, quasi-polynomial, or subexponential size kernels for Almost Disjoint Cycle
Packing, depending on whether c is a constant, c ∈ o(log k), or c ∈ o(

√
k), respectively. It

remains open whether the problem is in P or NP-hard for t = k
c , when c is a constant. A high

level summary of our results for Almost Disjoint Cycle Packing is given in Figure 1.
Most of the technical details and proofs have been omitted from this extended abstract.

Related Results. Our results also fit into the relatively new direction of research that is
concerned with the parameterized complexity of problems with relaxed packing/covering
constraints. For several important problems (that we need to solve), there are settings
in which we need not be very strict about constraints. This is particularly interesting
for “strict” problems where, e.g., (a) it is known that no polynomial kernels are possible
unless NP ⊆ coNP/poly, or where (b) the algorithm with the best running time matches
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26:4 Kernelization of Cycle Packing with Relaxed Disjointness Constraints

the known lower bound, or where (c) no considerable improvements have been made either
algorithmically or in terms of kernel upper/lower bounds. The Disjoint Cycle Packing
problem falls into categories (a) and (c) and is the main subject of this work. Before we state
our results, let us look at some examples where the introduction of relaxation parameters
has been successful. Abasi et al. [1], followed by Gabizon et al. [17], studied a generalization
of the k-Path problem, namely r-Simple k-Path, where the task is to find a walk of length
k that never visits any vertex more than r times. Here r is the relaxation parameter. By
definition, the generalized problem is computationally harder than the original. However,
observe that for r = 1 the problem is exactly the problem of finding a simple path of length
k in G. On the other hand, for r = k the problem is easily solvable in polynomial time, as
any walk in G of length k will suffice. In some sense, the “further away” an instance of the
generalized problem is from being an instance of the original, the easier the instance is. Put
differently, gradually increasing r from 1 to k should make the problem computationally
easier. This intuition was confirmed by the authors by providing, amongst other results,
algorithms for the generalized problem whose worst-case running time matches the running
time of the best algorithm for the original problem up to constants in the exponent, and
improves significantly as the relaxation parameter increases. Also closely related is the work
of Romero et. al. [26, 27] and Fernau et al. [14] who studied relaxations of graph packing
problems allowing certain overlaps.

2 Preliminaries

We let N denote the set of natural numbers, R denote the set of real numbers, R+ denote
the set of non-zero positive real numbers, and R≥1 denote the set of real numbers greater
than or equal to one. For r ∈ N, by [r] we denote the set {1, 2, . . . , r}.

Graphs. We use standard terminology from the book of Diestel [10] for those graph-related
terms which are not explicitly defined here. We only consider finite graphs possibly having
loops and multi-edges. For a graph G, V (G) and E(G) denote the vertex and edge sets of
the graph G, respectively. For a vertex v ∈ V (G), we use dG(v) to denote the degree of v,
i.e the number of edges incident on v, in the (multi) graph G. We also use the convention
that a loop at a vertex v contributes two to its degree. For a vertex subset S ⊆ V (G), G[S]
and G − S are the graphs induced on S and V (G) \ S, respectively. For a vertex subset
S ⊆ V (G), we let NG(S) and NG[S] denote the open and closed neighborhood of S in G.
That is, NG(S) = {v | (u, v) ∈ E(G), u ∈ S} \ S and NG[S] = NG(S) ∪ S. For a graph G
and an edge e ∈ E(G), G/e denotes the graph obtained by contracting e in G.

A path in a graph is a sequence of distinct vertices v0, v1, . . . , v` such that (vi, vi+1) is
an edge for all 0 ≤ i < `. A cycle in a graph is a sequence of distinct vertices v0, v1, . . . , v`
such that (vi, v(i+1) mod `) is an edge for all 0 ≤ i ≤ `. We note that both a double edge
and a loop are cycles. If P is a path from a vertex u to a vertex v in graph G then we
say that u and v are the end vertices of the path P and P is a (u, v)-path. For a path P ,
we use V (P ) to denote the set of vertices in the path P and the length of P is denoted
by |P | (i.e, |P | = |V (P )|). For a cycle C, we use V (C) to denote the set of vertices in the
cycle C and length of C, denoted by |C|, is |V (C)|. For a path or a cycle Q we use NG(Q)
and NG[Q] to denote the set NG(V (Q)) and NG[V (Q)], respectively. For a collection of
paths/cycles Q, we use |Q| to denote the number of paths/cycles in Q and V (Q) to denote
the set

⋃
Q∈Q V (Q). We sometimes refer to a path or a cycle Q as a |Q|-path or |Q|-cycle.

Given a vertex v ∈ V (G), a v-flower of order k is a set of k cycles in G whose pairwise
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intersection is exactly {v}. We say a set of distinct vertices P = {v1, . . . , v`} in G forms a
degree-two path if P is a path and all vertices {v1, . . . , v`} have degree exactly two in G. We
say P is a maximal degree-two path if no proper superset of P also forms a degree-two path.
Finally, a feedback vertex set is a subset S of vertices such that G− S is a forest.

I Theorem 1 ([13]). There exists a constant c such that every (multi) graph either contains
k vertex disjoint cycles or it has a feedback vertex set of size at most ck log k. Moreover,
there is a polynomial-time algorithm that takes a graph G and an integer k as input, and
outputs either k vertex disjoint cycles or a feedback vertex set of size at most ck log k.

Parameterized Complexity. We only state the basic definitions and general results needed
for our purposes. For more details on parameterized complexity in general, and kernelization
in particular, we refer the reader to the books of Downey and Fellows [11], Flum and
Grohe [15], Niedermeier [23], and the more recent book by Cygan et al. [7].

I Definition 2. A polynomial compression of a parameterized language L ⊆ Σ× N into a
language R ⊆ Σ∗ is an algorithm that takes as input an instance (I, k) ∈ Σ× N, works in
time polynomial in |I|+ k, and returns a string I ′ such that:
|I ′| ≤ p(k) for some polynomial p(.), and
|I ′| ∈ R if and only if (I, k) ∈ L.

In case |Σ| = 2, the polynomial p(.) is called the bitsize of the compression.

Note that polynomial compressions are a generalization of kernels and being able to rule
out a compression algorithm automatically rules out a kernelization algorithm.

I Definition 3. Let L,R ⊆ Σ×N be two parameterized problems. An algorithm A is called
a polynomial parameter transformation from L to R if, given an instance (I, k) of problem :,
A works in polynomial time and outputs an equivalent instance (I ′, k′) of problem R, i.e.,
(I, k) ∈ L if and only if (I ′, k′) ∈ R, such that k′ ≤ p(k) for some polynomial p(.).

I Theorem 4 ([7]). Let L,R ⊆ Σ×N be two parameterized problems and assume there exists
a polynomial parameter transformation from L to R. Then, if R does not admit a polynomial
compression, neither does L. In particular, if R does not admit a polynomial kernel unless
NP ⊆ coNP/poly then the same holds for L.

3 Almost Disjoint Cycle Packing

As previously noted, Bodlaender et al. [5] showed that Disjoint Cycle Packing admits no
polynomial kernel unless NP ⊆ coNP/poly. On the other hand, finding k distinct cycles in a
graph is solvable in time polynomial in n and k [24]. The intuition is that the more cycles we
allow a vertex to belong to, the easier the problem of finding k distinct cycles should become.
In this section, we study the spectrum of kernelization algorithms for Almost Disjoint
Cycle Packing based on the “distance” between k and t. Recall that given an instance
(G, k, t) of Almost Disjoint Cycle Packing, our goal is to find at least k distinct cycles
such that each vertex appears in at most t of them. To formalize the notion of distance
between k and t, we define the following class of problems.

Let L = {(G, k, t) | G has k cycles such that every vertex appears in at most t of them}.
Basically, L is the language Almost Disjoint Cycle Packing. For a monotonically
increasing computable function f : N→ R+, we define the following sub-language of L.

Lf = {(G, k, t) | (G, k, t) ∈ L and t = dk/f(k)e}.
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26:6 Kernelization of Cycle Packing with Relaxed Disjointness Constraints

When f is the identity function, i.e. when f(k) = k, Lf is exactly the Disjoint Cycle
Packing problem which is known not to admit a polynomial kernel [5]. In Section 3.1,
we show that even when f(k) = kε, for any fixed 0 < ε ≤ 1, Lf (or equivalently Almost
Disjoint Cycle Packing with t = k1−ε) is NP-complete and does not admit a polynomial
kernel unless NP ⊆ coNP/poly. If f = a (a constant function), where a ≤ 1 and a ∈ R+,
then Lf can be decided in polynomial time (as finding any k distinct cycles is enough). This
implies that for f = a we have a constant kernel. In Section 3.2, we obtain a polynomial
kernel for f = c (another constant function), where c > 1 and c ∈ R. In fact, our result
implies that for f ∈ O(1), f ∈ o(log` k) (` ∈ N), or f ∈ o(

√
k), we can (in polynomial time)

compress an instance of Almost Disjoint Cycle Packing into an equivalent instance of
polynomial, quasi-polynomial, or subexponential size, respectively (see Figure 1).

Before we consider the kernelization complexity of the Almost Disjoint Cycle Packing
problem, we first show, using standard arguments, that the problem is fixed-parameter
tractable when parameterized by k. Armed with Theorem 1, we can assume that, for an
instance (G, k, t) of Almost Disjoint Cycle Packing, the treewidth of G is at most
O(k log k); as G has a feedback vertex set of size at most O(k log k). Courcelle’s Theorem [6]
gives a powerful way of quickly showing that a problem is fixed-parameter tractable on
bounded treewidth graphs. That is, it suffices to show that our problem can be expressed in
monadic second-order logic (MSO2).

I Theorem 5 ([6]). If a graph property can be described as a formula φ in the monadic
second-order logic of graphs, then it can be recognized in time f(||φ||, tw(G))(|E(G)|+ |V (G)|)
if a given graph G has this property, where f is a computable function, ||φ|| is the length of
the encoding of φ as a string, and tw(G) is the treewidth of G.

I Lemma 6. Almost Disjoint Cycle Packing can be solved in f(k)nO(1) time, for
some computable function f . In other words, the problem is fixed-parameter tractable when
parameterized by k.

3.1 Refuting polynomial kernels for t = O(k1−ε)
We now show that Almost Disjoint Cycle Packing restricted to Lf , where f(k) = kε,
does not admit a polynomial kernel, for any 0 < ε ≤ 1, unless NP ⊆ coNP/poly. Here k is
the number of required cycles and t = k

f(k) = k1−ε is the maximum number of cycles a vertex
can belong to. Below we define the Disjoint Factors problem [5] which is known to admit
no polynomial compression unless NP ⊆ coNP/poly.

Let Σq be an alphabet set of q elements. By Σ?q we denote the set of all strings over Σq.
A factor of a string ȳ = y1y2 . . . yn ∈ Σ?q is a pair (s, e), where s, e ∈ [n] and s < e, such that
ysys+1 . . . ye is a substring of ȳ and ys = ye. Two factors (s, e) and (s′, e′) of ȳ are said to be
disjoint if {s, s + 1, . . . , e} ∩ {s′, s′ + 1, . . . , e′} = ∅. The string ȳ is said to have a disjoint
factor over Σq if for all x ∈ Σq there is a factor (sx, ex) such that ysx = yex = x, and for all
x, x̂ ∈ Σq, (sx, ex) and (sx̂, ex̂) are disjoint factors.

Disjoint Factors Parameter: q

Input: Alphabet set Σq, string ȳ ∈ Σ?q
Question: Does ȳ have a disjoint factor?

Construction. We give a polynomial parameter transformation from an instance (Σq, ȳ)
of Disjoint Factors to an instance (G, k, t) of Almost Disjoint Cycle Packing. For
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technical reasons, we will assume that t − 1 = 2l, for some l ∈ N. Note that this can be
achieved by at most doubling the value of t while keeping t in O(k1−ε). We let l = log2(t−1).
The end goal will be to construct a graph in which we have to find k cycles such that every
vertex appears in at most t = O(k1−ε) of them.

The reduction is as follows. Let Σq = {x1, x2, . . . xq}. We create a vertex x̂i ∈ V (G)
corresponding to each element xi, where i ∈ [q]. For ȳ = y1y2 . . . yn ∈ Σ?

q we create a path
Py = (u, ŷ1, ŷ2, . . . ŷn, u

′). We add an edge between x̂i and ŷj , for i ∈ [q] and j ∈ [n], if
and only if xi = yj . We also add four more vertices u1, u2, u′1, and u′2 to V (G) and add
edges (u1, u2), (u2, u), (u, u1), (u′1, u′2), (u′2, u′), and (u′, u′1) to E(G). For each xi ∈ Σ,
we attach t − 1 triangles to x̂i, i.e. we add edges {(z1

i , z̃
1
i ), (z2

i , z̃
2
i ), . . . , (zt−1

i , z̃t−1
i )} and

(zji , x̂i), (x̂i, z̃
j
i ), for j ∈ [t− 1]. Next, we create a path Pw = (w1, w

′
1, w2, w

′
2, . . . , wl, w

′
l) in

G. We add a set R = {ri | i ∈ [l]} of l of independent vertices and for i ∈ [l], we add
the edges (wi, ri) and (w′i, ri) to E(G). Finally, we add edges (u,w1) and (w′l, u′). We set
k = tq + t+ l + 1, which completes the construction.

I Proposition 7. Let P = (s, a1, a
′
1, a2, a

′
2, . . . , an, a

′
n, s
′) be a path and B = {bi | i ∈ [n]}

be a set of independent vertices. Let H be the graph consisting of path P , the set B, and,
for i ∈ [n], the edges (ai, bi) and (a′i, bi). Then, for each B′ ⊆ B, there is a path PB′ such
that V (PB′) ∩B = B′. Moreover, the set B = {PB′ | B′ ⊆ B} is the set of all possible paths
between s, s′ in H.

Applying Proposition 7 to G, for each R′ ⊆ R, we have a (unique) cycle CR′ which
contains all the vertices in V (Py), all the vertices in Pw, and exactly R′ vertices from R.
We define a family of cycles R = {CR′ | R′ ⊆ R} ∪ {(wi, w′i, ri) | i ∈ [l]}. Note that
|R| = 2l + l = t+ l − 1 and each C ∈ R is a cycle in G. The intuition of having the set of
cycles {CR′ | R′ ⊆ R} in G is that each vertex in path Py must be used t− 1 times and can
therefore participate in one additional cycle (which contains vertices in V (Py)). We associate
each such extra cycle with a factor.

I Theorem 8. Let f : N → R≥1 be a computable monotonically increasing function such
that f(k) ∈ O(kε), where 0 < ε ≤ 1. Then, Almost Disjoint Cycle Packing admits no
polynomial kernel over Lf unless NP ⊆ coNP/poly.

3.2 A kernel for Almost Disjoint Cycle Packing
Let f : N→ R≥1 be a computable monotonically increasing function such that f(k) ∈ o(

√
k).

In this section, we consider the Almost Disjoint Cycle Packing problem restricted to Lf .
The kernelization algorithm presented below is inspired by the lossy kernel for the Cycle
Packing problem given in [22]. To simplify notation, we let c = f(k) and use c instead of
f(k) throughout the section, which implies that t = dkc e. As we shall see, the assumption
c ∈ o(

√
k) is required to guarantee that our kernelization algorithm does in fact run in time

polynomial in the input size. We show that, as long as c ∈ o(
√
k), we can in polynomial time

reduce an instance to at most O(2dce2k7+dce log3 k) vertices. Our kernelization algorithm
can be more or less divided into three stages. We start by computing (using Theorem 1) a
feedback vertex set of size at most O(k log k) and denote this set by F (assuming no k vertex
disjoint cycles were found). We let T = G− F and let T≤1, T2, and T≥3, denote the sets of
vertices in T having degree at most one in T , degree exactly two in T , and degree greater
than two in T , respectively. Moreover, we let P denote the set of all maximal degree-two
paths in G[T2]. Next, we bound the size of T≤1, which implies a bound on the size of T≥3
and P. In the second stage, we show that (roughly speaking) the graph can have at most
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26:8 Kernelization of Cycle Packing with Relaxed Disjointness Constraints

dce − 1 vertices of high degree. Using this fact, the last stage consists of bounding the size
of T2.

Bounding the size of T≤1. First, we get rid of vertices of degree one and two using
Reduction Rules A1 and A2.

I Reduction Rule A1. Delete vertices of degree zero or one in G.

I Reduction Rule A2. If there is a vertex v of degree exactly two in G then delete v and
connect its two neighbors by a new edge.

I Reduction Rule A3. If there exists an edge (u, v) ∈ E(G) of multiplicity more than 2t
then reduce its multiplicity to 2t ≤ 2k.

The fact that we can assume 2t ≤ 2k follows from the observation that when t = k the
problem becomes solvable in time polynomial in n and k. Once Reduction Rules A1, A2,
and A3 are no longer applicable, the minimum degree of the graph is three and the multiplicity
of every edge is at most 2t. Note that every vertex in T≤1 is either a leaf or an isolated vertex
in T . Therefore, every vertex of T≤1 has at least two neighbours in F . For (u, v) ∈ F ×F , let
L(u, v) be the set of vertices of degree at most one in T = G− F such that each x ∈ L(u, v)
is adjacent to both u and v (if u = v, then L(u, u) is the set of vertices which have degree at
most one in T = G− F and at least two edges to u). For each pair (u, v) ∈ F × F , we mark
|F |dkc e+ 2k + 1 vertices from L(u, v) if L(u, v) > |F |dkc e+ 2k + 1 and mark all vertices in
L(u, v) if L(u, v) ≤ |F |dkc e+ 2k + 1.

I Reduction Rule A4 [22]. If |T≤1| ≥ |F |2(|F |dkc e+2k+1)+1 then there exists an unmarked
vertex v ∈ T≤1.

If dG−F (v) = 0 then delete v.
If dG−F (v) = 1 contract the unique edge in G−F which is incident to v. We let e denote
this unique edge and we let w denote the other endpoint onto which we contract e.

Bounding the number of high-degree vertices. When none of the aforementioned reduc-
tion rules are applicable, the size of T≤1, T≥3, and P, is at most |F |2(|F |dkc e+ 2k + 1) =
O(k4 log3 k). Consider P , i.e. the collection of maximal degree-two paths in T2, and assume
that there exists a set Fdce = {x1, . . . , xdce} ⊆ F (of size dce) such that for every vertex
x ∈ Fdce there exists a path P ∈ P such that x has at least 4kdce neighbours in P . We show
that if Fdce exists then we have a yes-instance.

I Reduction Rule A5. If there exists a set of dce vertices Fdce = {x1, . . . , xdce} ⊆ F such
that for all xi, 1 ≤ i ≤ dce, |NG(xi) ∩ V (P)| > |F |2(|F |dkc e + 2k + 1)4kdce, then return a
trivial yes-instance.

After applying Reduction Rule A5, there can be at most dce − 1 vertices in F having
more than |F |2(|F |dkc e+ 2k + 1)4kdce = O(k5 log3 k) neighbors in T2. We let Fdce−1 ⊆ F

denote the maximum sized such subset and we let F ? = F \ Fdce−1. For any vertex
x ∈ F ?, |NG(x) ∩ V (P)| ≤ |F |2(|F |dkc e+ 2k + 1)4kdce and, consequently, |NG(F ?) ∩ V (P)|
≤ |F |2(|F |dkc e+ 2k + 1)4kdce|F ?| ≤ |F |3(|F |dkc e+ 2k + 1)4kdce = O(k6 log3 k).

Bounding the size of T2. We start by marking all vertices in F , T≤1, T≥3, and NG(F ?) ∩
V (P). The total number of marked vertices is therefore in O(k6 log3 k). Moreover, all the
unmarked vertices must be in T2 and form degree-two paths. Each unmarked vertex must
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have at least one neighbor in Fdce−1 and cannot have neighbors in F ?. We call a set of
unmarked vertices a region if they form a maximal path in G[T2]. At this point, the total
number of regions is in O(k6 log3 k), as the number of marked vertices is in O(k6 log3 k).
Therefore, our last step is to bound the size of each region. To do so, we first recursively
further subdivide each region as follows. Fix a region R and check for each vertex xi ∈ Fdce−1,
the value of |NG(xi) ∩R|. If |NG(xi) ∩R| < 4kdce2dce, then we again mark the vertices in
NG(xi) ∩R, increasing the number of regions by a multiplicative factor of at most 4kdce2dce.
We repeat this process as long as there exists a region R and a vertex xi ∈ Fdce−1 satisfying
|NG(xi)∩R| < 4kdce2dce. Since |Fdce−1| < dce, repeating this procedure for every region and
every vertex in Fdce−1 increases the number of regions to at most O(2dce2k6+dce log3 k); each
of the initial O(k6 log3 k) regions can be subdivided into at most (4kdce2dce)dce subregions.

I Lemma 9. Let H be a graph consisting of a path P and an independent set X =
{x1, . . . , xdce} of size dce ≥ 1. Let k ≥ dce2 be an integer. If ∀x ∈ X we have |NH(x)| ≥
4kdce2dce and ∀p ∈ V (P ) we have |NH(p) ∩X| > 0, then we can construct a set of distinct
cycles C = C1 ∪ . . . ∪ Cdce such that (a) |Ci| = dkc e, (b) all cycles in Ci pairwise intersect in
xi, and (c) every vertex in P appears in at most one cycle in C.

Using Lemma 9, we can get an upper bound on the size of a region R by applying the
following reduction rule. Recall that by construction (and after subdividing regions), vertices
of a region have neighbours only in Fdce−1, where Fdce−1 is a set of at most dce − 1 vertices.
In fact, for each region R, there exists a set FR ⊆ Fdce−1 such that each vertex in R has at
least one neighbor in FR and each vertex in FR has at least 4kdce2dce neighbors in R.

I Reduction Rule A6. Let R be a region such that |R| > 4kdce4dce. Let Q = {Q1, Q2, . . .} be
a family of sets which partitions R such that for any two vertices u, v ∈ R, we have u, v ∈ Qi
if and only if NG(u) ∩ FR = NG(v) ∩ FR. In other words, two vertices belong to the same
set in Q if and only if they share the same neighborhood in FR. Since |R| > 4kdce4dce and
|Q| ≤ 2dce, there exists a set Q ∈ Q such that |Q| > 4kdce2dce. Let v be a vertex in Q and let
w be a neighbor of v in R (v can have at most two neighbors in R). Contract the edge (v, w)
onto w. Note that since |Q| > 4kdce2dce, each vertex in FR has at least 4kdce2dce neighbors
in R even after the contraction.

Since the number of regions is in O(2dce2k6+dce log3 k) and the size of a region is at most
4kc4c, the theorem follows.

I Theorem 10. Let f : N→ R≥1 be a computable monotonically increasing function such
that f(k) ∈ o(

√
k). For c = f(k), Almost Disjoint Cycle Packing admits a kernel

consisting of at most O(2c2
k7+c log3 k) vertices over Lf .

Theorem 10 implies that when c ∈ o(
√
k) the Almost Disjoint Cycle Packing

problem admits a subexponential kernel. When c ∈ o(log` k), ` ∈ N, the problem admits a
quasi-polynomial kernel. Finally, when c ∈ O(1) the problem admits a polynomial kernel.

4 Pairwise Disjoint Cycle Packing

Recall that in the Pairwise Disjoint Cycle Packing problem, given a graph G and
integers k and t, the goal is to find at least k cycles such that every pair of cycles intersects
in at most t vertices. To show NP-completeness of Pairwise Disjoint Cycle Packing,
for t = 1, we give a reduction from a variant of SAT called 2/2/4-SAT defined as follows:
Each clause contains four literals, each variable appears four times in the formula, twice
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negated and twice not negated, and the question is whether there is a truth assignment of
the variables such that in each clause there are exactly two true literals. This variant was
shown NP-complete by Ratner and Warrnuth [25].

I Theorem 11. Pairwise Disjoint Cycle Packing is NP-complete for t = 1.

4.1 A polynomial kernel for t = 1
There are many similarities but also some subtle differences when dealing with the cases
t = 1 and t ≥ 2. For instance, for any value of t ≥ 1, finding a flower of order k in the
graph is sufficient to solve the problem. On the other hand, not all vertices of degree two
can be bypassed when t ≥ 2. More importantly, finding two vertices in G with more than
2k common neighbors is enough to solve the problem for t ≥ 2 but not for t = 1. As we
shall see, this seemingly small difference requires major changes when dealing with the case
t = 1. We start with some classical results and reduction rules which will be used throughout.
Whenever some reduction rule applies, we apply the lowest-numbered applicable rule.

The first step in our kernelization algorithm is to run the algorithm of Theorem 1 and
either output a trivial yes-instance (if k vertex disjoint cycles are found) or mark the vertices
of the feedback vertex set and denote this set by F . We proceed with the following simple
reduction rules to handle low-degree vertices and self-loops in the graph.

I Reduction Rule B1. Delete vertices of degree zero or one in G.

I Reduction Rule B2. If there is a vertex v of degree exactly two in G then delete v and
connect its two neighbors by a new edge.

I Reduction Rule B3. If there exists a vertex v ∈ V (G) with a self-loop then delete the loop
(not the vertex) and decrease the parameter k by one.

I Reduction Rule B4. If there is a pair of vertices u and v in V (G) such that there are
more than two parallel edges between them then reduce the multiplicity of the edge to two.

Once none of the above reduction rules are applicable, our next goal is to bound the
maximum degree in the graph. To do so, we make use of the following.

I Lemma 12 ([7]). Given a (multi) graph G, an integer k, and a vertex v ∈ V (G), there is
a polynomial-time algorithm that either finds a v-flower of order k or finds a set Zv such that
Zv ⊆ V (G) \ {v} intersects all cycles passing through v, |Zv| ≤ 2k, and there are at most 2k
edges incident to v and with second endpoint in Zv.

A q-star, q ≥ 1, is a graph with q+ 1 vertices, one vertex of degree q and all other vertices of
degree 1. Let G be a bipartite graph with vertex bipartition (A,B). A set of edgesM ⊆ E(G)
is called a q-expansion of A into B if (i) every vertex of A is incident with exactly q edges of
M and (ii) M saturates exactly q|A| vertices in B, i.e. there is a set of q|A| vertices in B
which are incident to edges in M .

I Lemma 13 (See [7, 28]). Let q be a positive integer and G be a bipartite graph with vertex
bipartition (A,B) such that |B| ≥ q|A| and there are no isolated vertices in B. Then, there
exist nonempty vertex sets X ⊆ A and Y ⊆ B such that:

X has a q-expansion into Y and
no vertex in Y has a neighbour outside X, i.e. N(Y ) ⊆ X.

Furthermore, the sets X and Y can be found in time polynomial in the size of G.
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For every vertex v ∈ V (G) of high degree (which will be specified later), we apply the
algorithm of Lemma 12. If the algorithm finds a v-flower of order k, the following reduction
rule allows us to deal with it.

I Reduction Rule B5. If G has a vertex v such that there is a v-flower of order at least k
then return a trivial yes-instance.

Hence, in what follows we assume that no such flower was found but instead we have a set Zv
of size at most 2k such that Zv ⊆ V (G) intersects all cycles passing through v. Consider the
connected components of the graph G[V (G)\ (Zv ∪{v})]. At most k−1 of those components
can contain a cycle, as otherwise we again have a trivial yes-instance consisting of k vertex
disjoint cycles.

I Reduction Rule B6. If there are k or more components in G \ ({v} ∪ Zv) containing a
cycle then return a trivial yes-instance.

Moreover, for every component D of G[V (G) \ (Zv ∪ {v})], we have |NG(v) ∩ V (D)| ≤ 1. In
other words, v has at most one neighbor in any component and out of those components
at most k − 1 are not trees. Let D = {D1, D2, . . . , Dq} denote those trees in which v has a
neighbor. Since the minimum degree of the graph is three, every leaf of a tree in D must
have at least one neighbor in Zv.

I Lemma 14. Let C = {C1, . . . , Ck} be a solution in G and let C be a cycle in C such that
V (C) ∩ (Zv ∪ {v}) 6= ∅. Then, C can intersect with at most 2k + 1 components in D and
therefore the solution C can intersect with at most 2k2 + k components in D.

We now construct a bipartite graph H with bipartition (A = Zv, B = D). We slightly
abuse notation and assume that every component in D corresponds to a vertex in B and
every vertex in Zv corresponds to a vertex in A. For every Di ∈ D and for every z ∈ Zv,
(Di, z) ∈ E(H) if and only if there exists u ∈ V (Di) such that (u, z) ∈ E(G). After exhaustive
application of Reduction Rule B4, every pair of vertices in G can have at most two edges
between them. In particular, there can be at most two edges between any z ∈ Zv and v.
Therefore, if the degree of v in G is more than (2k2 + k + 2)2k + 3k − 1 then the number of
components |D| is at least (2k2 + k + 2)2k (taking into account the at most k − 1 neighbors
of v in components containing a cycle as well as the at most 2k edges incident to v and some
vertex in Zv). Consequently, |D| ≥ (2k2 + k + 2)|Zv|. We are now ready to state our main
reduction rule.

I Reduction Rule B7. If there exists a vertex v ∈ V (G) such that dG(v) > (2k2 + k+ 2)2k+
3k − 1 then apply Lemma 13 with q = 2k2 + k + 2 in the bipartite graph H.

Let D′ ⊆ D and Z ′v ⊆ Zv be the sets obtained after applying Lemma 13 with q = 2k2+k+2,
A = Zv, and B = D, such that Z ′v has a (2k2 + k + 2)-expansion into D′ in H.
Delete all the edges of the form (u, v) ∈ E(G) such that u ∈ Di and Di ∈ D′.
Add two parallel edges between v and every vertex in Z ′v.

We now have all the required ingredients to bound the size of our kernel. From Theorem 1,
we know that the graph has a feedback vertex set F of size at most O(k log k). The degree
of any vertex in the graph is at least three (Reduction Rule B2) and at most in O(k3)
(Reduction Rule B7). Theorem 16 follows from combining these facts with Lemma 15.

I Lemma 15 ([7]). Let G = (V,E) be an undirected (multi) graph having minimum degree
at least three, maximum degree at most d, and a feedback vertex set of size at most r. Then,
|V (G)| < (d+ 1)r and |E(G)| < 2dr.
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I Theorem 16. For t = 1, Pairwise Disjoint Cycle Packing admits a kernel with
O(k4 log k) vertices and O(k4 log k) edges.

4.2 A polynomial compression for t ≥ 2 (independent of t)
When t ≥ 2, finding two vertices in G with 2k internally vertex-disjoint paths connecting them
is enough to pack k cycles pairwise intersecting in at most 2 vertices. Hence, bounding the
maximum degree is relatively easy. We first mark the feedback vertex set F and exhaustively
apply Reduction Rule B1 and the following modified variant of Reduction Rule B2.

I Reduction Rule B8. If there exists a set of vertices P = {v1, . . . , vt+2} ⊆ V (G) such that
G[P ] is a path, dG(vi) = 2, 2 ≤ i ≤ t+ 1, and |P | ≥ t+ 2, then contract the edge v1v2.

As before, for every vertex v ∈ V (G), we apply the algorithm of Lemma 12. If the
algorithm finds a v-flower of order k, we apply Reduction Rule B5. Otherwise, consider
the connected components of the graph G[V (G) \ (Zv ∪ {v})]. We ignore the at most k − 1
components that can contain a cycle and focus on the set D = {D1, D2, . . . , Dq} of trees in
which v has a neighbor (recall that |NG(v) ∩ V (D)| ≤ 1 for all D ∈ D and each component
D must have a neighbor in Zv).

I Reduction Rule B9. If |D| > 4k − 2 (or equivalently if dG(v) > 7k − 3) return a trivial
yes-instance.

Having bounded the maximum degree of any vertex by O(k), we immediately obtain a
bound of O(k2 log k) on |T≤1|, |T≥3|, and the number of maximal degree-two paths in T2.
Recall that T≤1, T2, and T≥3, are the sets of vertices in T = G[V (G) \ F ] having degree
at most one in T , degree exactly two in T , and degree greater than two in T , respectively.
To bound the size of T2, note that if we mark all vertices in F ∪ NG(F ) we would have
marked a total of O(k2 log k) vertices and the only unmarked vertices form (not necessarily
maximal) degree-two paths in T2 (and G), which we call segments. However, we know from
Reduction Rule B8 that the size of any segment is at most t+ 1. Moreover, the total number
of such segments is at most O(k2 log k). Putting it all together, we now have a kernel with
O(tk2 log k) vertices.

I Lemma 17. For any t ≥ 2, Pairwise Disjoint Cycle Packing admits a kernel with
O(tk2 log k) vertices.

More work is needed to get rid of the dependence on t. The first step is to show that
we can solve Pairwise Disjoint Cycle Packing in cp(k)nO(1) time, where c is a fixed
constant and p(.) is a polynomial function in k. In the second step, we introduce a “succinct”
version of Pairwise Disjoint Cycle Packing, namely Succinct Pairwise Disjoint
Cycle Packing, and show that we can reduce Pairwise Disjoint Cycle Packing to an
instance of Succinct Pairwise Disjoint Cycle Packing where all the information can
be encoded using a number of bits polynomially bounded in k alone.

Succinct Pairwise Disjoint Cycle Packing Parameter: k

Input: An undirected (multi) graph G, integers k and t, a weight function α : V (G)→ N,
and a weight function β : E(G)→ N
Question: DoesG have at least k distinct cycles C1, . . . , Ck such that α(V (Ci)∩V (Cj)) ≤
t and β(E(Ci) ∩ E(Cj)) ≤ t for all i 6= j?
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I Lemma 18. For any t ≥ 2, Pairwise Disjoint Cycle Packing can be solved in
2k3 log knO(1) time.

I Theorem 19. For any t ≥ 2, we can compress an instance of Pairwise Disjoint Cycle
Packing to an equivalent instance of Succinct Pairwise Disjoint Cycle Packing using
at most O(k5 log2 k) bits. In other words, Pairwise Disjoint Cycle Packing admits a
polynomial compression.
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Abstract
Given a directed graph G and a list (s1, t1), . . . , (sk, tk) of terminal pairs, the Directed Steiner
Network problem asks for a minimum-cost subgraph of G that contains a directed si → ti path
for every 1 ≤ i ≤ k. The special case Directed Steiner Tree (when we ask for paths from
a root r to terminals t1, . . . , tk) is known to be fixed-parameter tractable parameterized by the
number of terminals, while the special case Strongly Connected Steiner Subgraph (when
we ask for a path from every ti to every other tj) is known to be W[1]-hard parameterized by
the number of terminals. We systematically explore the complexity landscape of directed Steiner
problems to fully understand which other special cases are FPT or W[1]-hard. Formally, if H is a
class of directed graphs, then we look at the special case of Directed Steiner Network where
the list (s1, t1), . . . , (sk, tk) of requests form a directed graph that is a member of H. Our main
result is a complete characterization of the classesH resulting in fixed-parameter tractable special
cases: we show that if every pattern in H has the combinatorial property of being “transitively
equivalent to a bounded-length caterpillar with a bounded number of extra edges,” then the
problem is FPT, and it is W[1]-hard for every recursively enumerable H not having this property.
This complete dichotomy unifies and generalizes the known results showing that Directed
Steiner Tree is FPT [Dreyfus and Wagner, Networks 1971], Strongly Connected Steiner
Subgraph is W[1]-hard [Guo et al., SIAM J. Discrete Math. 2011], and Directed Steiner
Network is solvable in polynomial-time for constant number of terminals [Feldman and Ruhl,
SIAM J. Comput. 2006], and moreover reveals a large continent of tractable cases that were not
known before.
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27:2 Characterization of Tractability for Directed Steiner Network

cost tree connecting the terminals. The problem is well known to be NP-hard, in fact, it was
one of the 21 NP-hard problems identified by Karp’s seminal paper [22]. There is a large
literature on approximation algorithms for Steiner Tree and its variants, resulting for
example in constant-factor approximation algorithms for general graphs and approximation
schemes for planar graphs (see [8, 15, 9, 4, 3, 2, 7, 26, 24, 23, 1, 17]). From the viewpoint of
parameterized algorithms, the first result is the classic dynamic-programming algorithm of
Dreyfus and Wagner [17] from 1971, which solves the problem with k = |R| terminals in time
3k ·nO(1), showing that the problem is fixed-parameter tractable (FPT) parameterized by the
number of terminals. More recently, the running time was improved to 2k ·nO(1) by Björklund
et al. [5] using the technique of fast subset convolution. Steiner Forest is the generalization
where the input contains an edge-weighted graph G and a list (s1, t1), . . . , (sk, tk) of pairs
of terminals and the task is to find a minimum-cost subgraph containing an si–ti path for
every 1 ≤ i ≤ k. The fixed-parameter tractability of Steiner Forest follows from the
observation that the connected components of the solution induces a partition on the set
{s1, . . . , sk, t1, . . . , tk} of terminals, and hence we can solve the problem by for example trying
every partition and invoking a Steiner Tree algorithm for each class of the partition.

On directed graphs, Steiner problems can become significantly harder, and while there
is a richer landscape of variants, very few results are known [21, 11, 18, 10, 27, 14, 13]. A
natural and well-studied generalization of Steiner Tree to directed graphs is Directed
Steiner Tree (DST), where an arc-weighted directed graph G and terminals r, t1, . . . , tk
are given and the tasks is to find a minimum-cost subgraph containing an r → ti path for
every 1 ≤ i ≤ k. Using essentially the same techniques as in the undirected case [5, 17],
one can show that this problem is also FPT parameterized by the number of terminals.
An equally natural generalization of Steiner Tree to directed graphs is the Strongly
Connected Steiner Subgraph (SCSS) problem, where an arc-weighted directed graph G
with terminals t1, . . . , tk is given, and the task is to find a minimum-cost subgraph containing
a ti → tj path for any 1 ≤ i, j ≤ k with i 6= j. Guo et al. [21] showed that, unlike DST, the
SCSS problem is W[1]-hard parameterized by the number k of terminals (see also [14]). A
common generalization of DST and SCSS is the Directed Steiner Network (DSN)
problem (also called Directed Steiner Forest or Point-to-Point Connection), where
an arc-weighted directed graph G and a list (s1, t1), . . . , (sk, tk) of terminal pairs are given
and the task is to find a minimum-cost subgraph containing an si → ti path for every
1 ≤ i ≤ k. Being a generalization of SCSS, the Directed Steiner Network problem
is also W[1]-hard, but Feldman1 and Ruhl [18] showed that the problem is solvable in time
nO(k), that is, in polynomial time for every constant k.

Besides Directed Steiner Tree, what other special cases of Directed Steiner
Network are fixed-parameter tractable? Our main result gives a complete map of the
complexity landscape of directed Steiner problems, precisely describing all the FPT/W[1]-hard
variants and revealing highly non-trivial generalizations of Directed Steiner Tree that
are still tractable. Our results are expressed in the following formal framework. The pairs
(s1, t1), . . . , (sk, tk) in the input of DSN can be interpreted as a directed (unweighted) pattern
graph on a set R of terminals. If this pattern graph is an out-star, then the problem is
precisely DST; if it is a bidirected clique, then the problem is precisely SCSS. More generally,
if H is any class of graphs, then we define the Directed Steiner H-Network (H-DSN)
problem as the restriction of DSN where the pattern graph is a member of H. That is, the

1 We note that Jon Feldman (co-author of [18]) is not the same person as Andreas Emil Feldmann
(co-author of this paper).
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Figure 1 Two 4-caterpillars: an out- (left) and an in-caterpillar (right).

input of H-DSN is an arc-weighted directed graph G, a set R ⊆ V (G) of terminals, and an
unweighted directed graph H ∈ H on R; the task is to find a minimum-cost network N ⊆ G
such that N contains an s→ t path for every st ∈ E(H).

We give a complete characterization of the classes H for which H-DSN is FPT or
W[1]-hard. We need the following definition of “almost-caterpillar graphs” to describe the
borderline between the easy and hard cases (see Figure 1).

I Definition 1. A λ0-caterpillar graph is constructed as follows. Take a directed path
(v1, . . . , vλ0) from v1 to vλ0 , and let W1, . . . ,Wλ0 be pairwise disjoint vertex sets such that
vi ∈Wi for each i ∈ {1, . . . , λ0}. Now add edges such that either every Wi forms an out-star
with root vi, or every Wi forms an in-star with root vi. In the former case we also refer to
the resulting λ0-caterpillar as an out-caterpillar, and in the latter as an in-caterpillar. A
0-caterpillar is the empty graph. The class Cλ,δ contains all directed graphs H such that
there is a set of edges F ⊆ E(H) of size at most δ for which the remaining edges E(H) \ F
span a λ0-caterpillar for some λ0 ≤ λ.

If there is an s→ t path in the pattern graph H for two terminals s, t ∈ R, then adding
the edge st to H does not change the problem: connectivity from s to t is already implied by
H, hence adding this edge does not change the feasible solutions. That is, adding a transitive
edge does not change the solution space and hence it is really only the transitive closure of
the pattern H that matters. We say that two pattern graphs are transitively equivalent if
their transitive closures are isomorphic. We denote the class of patterns that are transitively
equivalent to some pattern of Cλ,δ by C∗λ,δ. Our main result is a sharp dichotomy saying that
H-DSN is FPT if every pattern of H is transitively equivalent to an almost-caterpillar graph
and it is W[1]-hard otherwise. We measure the running time in λ, δ, and the vertex cover
number τ of the input pattern H, i.e. τ is the size of the smallest vertex subset W of H such
that every edge of H is incident to a vertex of W .

I Theorem 2. Let H be a recursively enumerable class of patterns.
1. If there are constants λ and δ such that H ⊆ C∗λ,δ, then H-DSN with parameter k = |R|

is FPT and can be solved in 2O(k+max{ω2, τω logω)})nO(ω) time, where ω = (1 + λ)(λ+ δ)
and τ is the vertex cover number of the given input pattern H ∈ H.

2. Otherwise, if there are no such constants λ and δ, then the problem is W[1]-hard for
parameter k.

Invoking Theorem 2 with specific classes H, we can obtain algorithmic or hardness results
for specific problems. For example, we may easily recover the following facts:

If HDST is the class of all out-stars, then HDST-DSN is precisely the DST problem. As
HDST ⊆ C∗1,0 holds, Theorem 2(1) recovers the fact that DST can be solved in time
2O(k)nO(1) and is hence FPT parameterized by the number k = |R| of terminals [17, 5].
If HSCSS is the class of all bidirected cliques, then HSCSS-DSN is precisely the SCSS
problem. One can observe that HSCSS is not contained in C∗λ,δ for any constants λ, δ
(for example, because every graph in Cλ,δ has at most λ+ 2δ vertices with both positive
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in-degree and positive out-degree, and this remains true also for the graphs in C∗λ,δ).
Hence Theorem 2(2) recovers the fact that SCSS is W[1]-hard [21].
Let Hd be the class of directed graphs with at most d edges. As Hd ⊆ C∗0,d holds,
Theorem 2(1) recovers the fact that Directed Steiner Network with at most d
requests is polynomial-time solvable for every constant d [18]. Note that any pattern of
HSCSS is transitively equivalent to a bidirected star, which has vertex cover number τ = 1.
Hence for the important spacial case of SCSS, our algorithm recovers the running time
of 2O(d log d)nO(d) = nO(d) given in [18].
Very recently, Suchý [25] studied the following generalization of DST and SCSS: in the
q-Root Steiner Tree (q-RST) problem, a set of q roots and a set of k leaves are
given, and the task is to find a minimum-cost network where the roots are in the same
strongly connected component and every leaf can be reached from every root. Building
on the work of [18], Suchý [25] presented an algorithm with running time 2O(k) · nO(q) for
this problem, which shows that it is FPT for every constant q. Let Hq-RST be the class of
directed graphs that are obtained from an out-star by making q−1 of the edges bidirected.
Observe that Hq-RST is a subset of C1,q−1, that q-RST can be expressed by an instance
of Hq-RST-DSN, and that any pattern of Hq-RST has vertex cover number τ = 1. Thus
Theorem 2(1) implies that q-RST can be solved in time 2O(k+q log q) ·nO(q) = 2O(k) ·nO(q),
recovering the fact that it is FPT for every constant q.

Thus the algorithmic side of Theorem 2 unifies and generalizes three algorithmic results: the
fixed-parameter tractability of DST (which is based on dynamic programming on the tree
structure of the solution) and q-RST (which is based on simulating a “pebble game”), and
also the polynomial-time solvability of DSN with constant number of requests (which also
is based on simulating a “pebble game”). Let us point out that our algorithmic results are
significantly more general than just the unification of these three results: the generalization
from stars to bounded-length caterpillars is already a significant extension and very different
from earlier results. We consider it a major success of the systematic investigation that,
besides finding the unifying algorithmic ideas generalizing all previous results, we were able
to find tractable special cases in an unexpected new direction.

There is a surprising non-monotonicity in the classification result of Theorem 2. As DST
is FPT and SCSS is W[1]-hard, one could perhaps expect that H-DSN becomes harder
as the pattern become denser. However, it is possible that the addition of further requests
makes the problem easier. For example, if H contains every graph that is the vertex-disjoint
union of two out-stars, then H-DSN is classified to be W[1]-hard by Theorem 2(2). However,
if we consider those graphs where there is also a directed edge from the center of one star to
the other star, then these graphs are 2-caterpillars (i.e., contained in C2,0) and hence H-DSN
becomes FPT by Theorem 2(1). This unexpected non-monotonicity further underlines the
importance of completely mapping the complexity landscape of the problem area: without
complete classification, it would be very hard to predict what other tractable/intractable
special cases exist.

We mention that one can also study the vertex-weighted version of the problem, where
the input graph has weights on the vertices and the goal is to minimize the total vertex-
weight of the solution. In general, vertex-weighted problems can be more challenging than
edge-weighted variants [15, 4, 23, 12]. However, for general directed graphs, there are easy
transformations between the two variants. Thus the results of this paper can be interpreted
for the vertex-weighted version as well.
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1.1 Our techniques
We prove Theorem 2 the following way. In Section 2, we first establish the combinatorial
bound that there is a solution whose cutwidth, and hence also (undirected) treewidth, is
bounded by the number of requests.

I Theorem 3. A minimal solution M to a pattern H has cutwidth at most 7m if m = |E(H)|.

Then in Section 3 we go on to generalize this to almost-caterpillars, showing that if the
pattern is in C∗λ,δ, then the (undirected) treewidth can be bounded in λ and δ.

I Theorem 4. The treewidth of a minimal solution to any pattern graph in C∗λ,δ is at
most 7(1 + λ)(λ+ δ).

This combinatorial bound can be exploited in an algorithm that restricts the search for a
bounded-treewidth solution.

I Theorem 5. Let an instance of H-DSN be given by a graph G with n vertices, and a
pattern H on k terminals with vertex cover number τ . If the optimum solution to H in G
has treewidth ω then the optimum can be computed in time 2O(k+max{ω2, τω logω)})nO(ω).

Combining Theorem 4 and Theorem 5 proves the algorithmic side of Theorem 2. We
remark that the proof is completely self-contained (with the exception of some basic facts on
treewidth) and in particular we do not build on the algorithms of Feldman and Ruhl [18]. As
combining Theorem 3 and Theorem 5 already proves that DSN with a constant number of
requests can be solved in polynomial time, as a by-product this gives an independent proof
for the result of Feldman and Ruhl [18]. One can argue which algorithm is simpler, but
perhaps our proof (with a clean split of a combinatorial and an algorithmic statement) is
more methodological and better reveals the underlying reason why the problem is tractable.

Finally, in Section 4 we show that whenever the patterns in H are not transitively
equivalent to almost-caterpillars, the problem is W[1]-hard. We first show that there is
only a small number of obstacles for not being transitively equivalent to almost-caterpillars:
the graph class contains (possibly after identification of vertices) arbitrarily large strongly
connected graphs, pure diamonds, or flawed diamonds (see Lemma 22 for the precise
statement). We provide a separate W[1]-hardness proof for each of these cases, completing
the proof of the hardness side of Theorem 2.

Due to space limitations we defer all missing proofs to the full version of this extended
abstract, including the algorithm that implies Theorem 5.

2 The cutwidth of minimal solutions for bounded-size patterns

Consider a minimal solution M to an instance of H-DSN, in which no edge can be removed
without making the solution infeasible. The goal of this section is to prove Theorem 3: we
bound the cutwidth of a minimal solution M to a pattern H in terms of m = |E(H)|. A
layout of a graph G is an injective function ψ : V (G) → N inducing a total order on the
vertices of G. Given a layout, we define the set Vi = {v ∈ V (G) | ψ(v) ≤ i} and say that an
edge crosses the cut (Vi, V i) if it has one endpoint in Vi and one endpoint in V i := V (G) \Vi.
The cutwidth of the layout is the maximum number of edges crossing any cut (Vi, V i) for
any i ∈ N. The cutwidth of a graph is the minimum cutwidth over all its layouts.

Like Feldman and Ruhl [18], we consider the two extreme cases of directed acyclic
graphs (DAGs) and strongly connected components (SCCs) in our proof. Contracting all
SCCs of M without removing parallel edges sharing the same head and tail, but removing
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27:6 Characterization of Tractability for Directed Steiner Network

the resulting self-loops, results in a directed acyclic multi-graph D, the so-called condensation
graph of M . We bound the cutwidth of D and the SCCs of M separately, and then put
together these two bounds to obtain a bound for the cutwidth of M . As we will see, bounding
the cutwidth of the acyclic multi-graph D and putting together the bounds are fairly simple.
The main technical part is bounding the cutwidth of the SCCs.

We will need two simple facts about cutwidth. First, the cutwidth of an acyclic multi-
graph can be bounded using the existence of a topological ordering of the vertices. That is,
for any acyclic graph G there is an injective function ϕ : V (G)→ N such that ϕ(u) < ϕ(v) if
uv ∈ E(G). Note that such a function in particular is a layout.

I Lemma 6. The layout given by a topological ordering ϕD of an acyclic directed multi-
graph D that is the union of m paths, has cutwidth at most m.

I Lemma 7. Let G be a directed graph and D be its condensation multi-graph. If the cutwidth
of D is x and the cutwidth of every SCC of G is at most y, then the cutwidth of G is at
most x+ y.

I Lemma 8. Any SCC U of a minimal solution M to a pattern H with at most m edges
has cutwidth at most 6m.

Proof. First we establish that U is a minimal solution to a certain pattern.

I Claim 9. U is a minimal solution to a pattern HU with at most m edges.

Let RU be the terminals in the pattern HU given by Claim 9 and let us select an arbitrary
root t ∈ RU . Note that HU has at most m edges, hence |RU | ≤ 2m. Let Sin (resp., Sout) be
an in-star (resp., out-star) connecting t with every other vertex of RU . As U is a strongly
connected graph containing every vertex of RU , it is also a solution to the pattern Sin on RU .
Let us select an Ain ⊆ U that is a minimal solution to Sin; it is not hard to see that Ain is
an in-arborescence with at most 2m leaves. Similarly, let Aout ⊆ U be an out-arborescence
that is a minimal solution to Sout. Observe that U has to be exactly Ain ∪ Aout: if there
is an edge e ∈ E(U) that is not in Ain ∪ Aout, then U \ e still contains a path from every
vertex of RU to every other vertex of RU though t, contradicting the fact that U is a minimal
solution to pattern HU .

Let Z be the set of edges obtained by reversing the edges in E(Ain) \ E(Aout). As
reversing edges does not change the cutwidth, bounding the cutwidth of Aout ∪ Z will also
imply a bound on the cutwidth of U = Ain ∪Aout.

I Claim 10. The union Aout ∪ Z is a directed acyclic graph.

Claim 10 implies a topological ordering on the vertices of Aout ∪ Z. This order can be
used as a layout for U . Using some more structural insights, the number of edges crossing
a given cut can be bounded in the number of edges of the pattern graph, as the following
claim shows.

I Claim 11. Any topological ordering ϕ of the graph Aout ∪ Z has cutwidth at most 6m.

As the underlying undirected graph of U and Aout ∪ Z are the same, Claim 11 implies
that the cutwidth of U is at most 6m. This completes the proof of Lemma 8. J

The proof of Theorem 3 follows easily from putting together the ingredients. We remark
that the bound on the cutwidth in Claim 11 is asymptotically tight: Take a constant degree
expander on m vertices. It has treewidth Ω(m) [20], and so its cutwidth is at least as large.
Now bi-direct each (undirected) edge {u, v} by replacing it with the directed edges uv and vu.
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Next subdivide every edge uv to obtain edges ut and tv for a new vertex t, and make t a
terminal of R. This yields a strongly connected instance G. The pattern graph H for this
instance is a cycle on R, which has O(m) edges, since the terminals are subdivision points of
bi-directed edges of a constant degree graph with m vertices. As H is strongly connected,
every minimal solution to H contains the edges ut and tv incident to each terminal t. Thus
a minimal solution contains all of G and has cutwidth Ω(m). Since G is strongly connected,
it also contains the required arborescences Ain and Aout.

3 The treewidth of minimal solutions to almost-caterpillar patterns

In this section, we prove that any minimal solutionM to a pattern H ∈ C∗λ,δ has the following
structure.

I Theorem 12. A minimal solution M to a pattern H ∈ C∗λ,δ consists of a subgraph M c

that is a minimal solution to a sub-pattern Hc of H with at most (1 + λ)(λ+ δ) edges, and a
forest M \M c of out-arborescences, each of which intersects M c only at the root.

According to Theorem 3, the cutwidth of the core M c is therefore at most 7(1 +λ)(λ+ δ).
It is well known [6] that the cutwidth is an upper bound on the treewidth of a graph, and
so also the treewidth of M c is at most 7(1 + λ)(λ+ δ). It is easy to see that attaching any
number of arborescences to M c does not increase the treewidth. Thus we obtain Theorem 4,
which is the basis for our algorithm to solve H-DSN in case every pattern of H is transitively
equivalent to an almost-caterpillar.

In particular, when adding δ edges to the pattern of the DST problem, which is a single
out-star, i.e., a 1-caterpillar, then the pattern becomes a member of C1,δ and hence our
result implies a linear treewidth bound of O(δ). The example given at the end of Section 2
also shows that there are patterns H ∈ Cλ,δ for which every minimal solution has treewidth
Ω(λ+ δ): just consider the case when H is a cycle of length λ+ δ (i.e., it contains a trivial
caterpillar graph). One interesting question is whether the treewidth bound of 7(1 +λ)(λ+ δ)
in Theorem 4 is tight. We conjecture that the treewidth of any minimal solution to a pattern
graph H ∈ C∗λ,δ actually is O(λ+ δ).

Proof (of Theorem 12). Let M be a minimal solution to a pattern H ∈ C∗λ,δ. Since every
pattern in C∗λ,δ has a transitively equivalent pattern in Cλ,δ and replacing a pattern with
a transitively equivalent pattern does not change the space of feasible solutions, we may
assume that H is actually in Cλ,δ, i.e., H consists of a caterpillar of length at most λ and δ
additional edges.

The statement is trivial if |E(H)| ≤ δ. Otherwise, according to Definition 1, H contains
a λ0-caterpillar for some 1 ≤ λ0 ≤ λ and at most δ additional edges. Hence let us fix a set F
of at most δ edges of H, such that the remaining edges of H form a λ0-caterpillar C, for
some 1 ≤ λ0 ≤ λ, with a path (v1, . . . , vλ0) on the roots of the stars Si. We only consider the
case when C is an out-caterpillar as the other case is symmetric, i.e., every Si is an out-star.
Define I = H \

⋃λ0
i=1 Si to be all of H except the stars. Note that |E(I)| ≤ λ+ δ. We fix a

subgraph MI of M that is a minimal solution to the sub-pattern I, and for every st ∈ E(I)
we fix a path Pst in MI . Note that MI is the union of these at most λ+ δ paths, since MI

is a minimal solution. For each star Si, let us consider a minimal solution MSi
⊆M to Si;

note that MSi
has to be an out-arborescence.

For i ∈ {1, . . . , λ0}, let ` be a leaf of Si, and let e be an edge of M . If M \ e has no path
from vi to `, then we say that e is `-necessary. More generally, we say that e is i-necessary if
e is `-necessary for some leaf ` of Si.

ICALP 2016
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I Claim 13. Let P be a path in M , and for some i ∈ {1, . . . , λ0}, let Wi ⊆ E(M) contain
all i-necessary edges f for which f /∈ E(P ), but the head of f is a vertex of P . Then there
exists one leaf ` of Si such that every f ∈Wi is `-necessary.

Using this observation, we identify the core M c of M using the at most λ + δ paths
Pst that make up MI , and then selecting an additional at most λ0 paths for each Pst. To
construct M c together with its pattern graph Hc, we initially let M c = MI and Hc = I and
repeat the following step for every st ∈ E(I) and 1 ≤ i ≤ λ0. For a given st and i, let us
check if there are i-necessary edges f /∈ E(Pst) that have their heads on the path Pst ⊆MI .
If so, then by Claim 13 all these edges are `-necessary for some leaf ` of Si. We add an
arbitrary path of M from vi to ` (which contains all these edges) to M c and add the edge
vi` to Hc. After repeating this step for every st ∈ E(H) and i, we remove superfluous edges
from M c: as long as there is an edge e ∈ E(M c), which can be removed while maintaining
feasibility for the pattern Hc, i.e., for every vw ∈ E(Hc) there is a v → w path in M c not
containing e, we remove e. Finally, we remove any isolated vertices from M c.

Note that the resulting network M c is a minimal solution to Hc by construction. Also
note that Hc contains at most λ + δ edges from I and at most λ0 ≤ λ additional edges
for each edge of I, so that |E(Hc)| ≤ (1 + λ)(λ + δ). We prove that the remaining graph
M c \E(M) consists of arborescences, each of which intersects M c only at the root. For this,
we rely on the following key observation.

I Claim 14. If a vertex u has at least two incoming edges in M , then every such edge is in
the core M c.

Proof. First we show that there is an st ∈ E(I) such that every s → t path in M goes
through u. Suppose for contradiction that for every st ∈ E(I) there is a path from s to t in
M avoiding u. Since M is a minimal solution, the edges entering u must then be needed
for some stars Si of the pattern H instead. Let e and f be two edges entering u. As e and
f have the same head, they cannot be part of the same out-arborescence MSi

. Therefore,
there are indices i < j such that (w.l.o.g.) e is i-necessary and f is j-necessary.

There is a path in M from the root vi of Si to the root vj of Sj , due to the path
(v1, . . . , vλ0) in the caterpillar C ⊆ H. Since path (v1, . . . , vλ0) is part of I, our assumption
on e and f implies that there is a path P in M from vi to vj that avoids both e and f . As
f ∈ E(MSj ), there is a path Q in M starting in vj and passing through f . This path cannot
contain e, as e and f have the same head u. The existence of P and Q implies that u can
be reached from vi by a path through vj and f , avoiding the edge e. Thus for any edge
vi` ∈ E(Si), if there is a vi → ` path going through e (and hence vertex u), then it can
be rerouted to avoid e and use edge f instead. This however contradicts the fact that e is
i-necessary.

We have proved that there is an st ∈ E(I) such that every s → t path in M goes
through u. Suppose that there is an edge e 6∈ E(M c) entering u. If e is needed for some
s′t′ ∈ E(I) in M , then e is also present in M c, and we are done. Otherwise, as M is a
minimal solution, edge e is i-necessary for some i ∈ {1, . . . , λ0}. Consider now the step in
the construction of M c when we considered st ∈ E(I) and integer i. As we have shown,
the s→ t path Pst goes through u. Thus e is an i-necessary edge not in E(Pst) such that
its head is on Pst. This means that we identified a leaf ` of Si such that e is `-necessary,
introduced vi` into Hc, and added a vi → ` path to Hc, which had to contain e. Moreover,
since all paths from vi to ` in M pass through e, edge e then remains in M c when removing
superfluous edges. J
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We are now ready to show that every component of the remaining part is an out-
arborescence and intersects the core only in a single vertex.

I Claim 15. The remaining graph M+ := M \ E(M c) is a forest of out-arborescences, each
of which intersects M c only at the root.

Since we have already established that M c is a minimal solution to Hc with |E(Hc)| ≤
(1 + λ)(λ+ δ), Claim 15 completes the proof of Theorem 12. J

4 Characterizing the hard cases

We now turn to proving the second part of Theorem 2, i.e., that H-DSN is W[1]-hard for
every class H where the patterns are not transitively equivalent to almost-caterpillars.

I Theorem 16. Let H be a recursively enumerable class of patterns for which there are
no constants λ and δ such that H ⊆ C∗λ,δ. Then the problem H-DSN is W[1]-hard for
parameter k.

A major technical simplification is to assume that the class H is closed under identifying
terminals and transitive equivalence. As we show in Section 4.1, this assumption is not really
restrictive: it is sufficient to prove hardness for the closure of H under identification and
transitive equivalence, since any W[1]-hardness result for the closure can be transferred to H.
For classes closed under these operations, it is possible to give an elegant characterization of
the classes that are not almost-caterpillars. There are only a few very specific reasons why a
class H is not in C∗λ,δ for any λ and δ: either H contains every directed cycle, or H contains
every “pure diamond,” or H contains every “flawed diamond” (see Section 4.2 for the precise
definitions). Then in Section 4.3, we provide a W[1]-hardness proof for each of these cases,
completing the hardness part of Theorem 2.

4.1 Closed classes
We define the operation of identifying terminals in the following way: given a partition V of
the vertex set V (H) of a pattern graph H, each set W ∈ V is identified with a single vertex
of W , after which any resulting isolated vertices and self-loops are removed, while parallel
edges having the same head and tail are replaced by only one copy of that edge. A class of
patterns is closed under this operation if for any pattern H in the class, all patterns that can
be obtained by identifying terminals are also in the class. Similarly, we say that a class H
is closed under transitive equivalence if whenever H and H ′ are two transitively equivalent
patterns such that H ∈ H, then H ′ is also in H. The closure of the class H under identifying
terminals and transitive equivalence is the smallest closed class H′ ⊇ H. It is not difficult to
see that any member of the closure can be obtained by a replacement with a transitively
equivalent pattern and a single application of identifying terminals.

The following lemma shows that if we want to prove W[1]-hardness for a class, then it
is sufficient to prove hardness for its closure. More precisely, due to an slight technicality,
the actual statement we prove is that it is sufficient to prove W[1]-hardness for a decidable
subclass of the closure.

I Lemma 17. Let H be a recursively enumerable class of patterns, let H′ be the closure of H
under identifying terminals and transitive equivalence, and let H′′ be a decidable subclass
of H′. There is a parameterized reduction from H′′-DSN to H-DSN with parameter k.
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a) b) c) d) e)

Figure 2 The obstruction appearing in Lemma 19: a) a directed cycle of length 4, b) a pure
4-out-diamond, c) a flawed 4-out-diamond, d) a pure 4-in-diamond, e) a flawed 4-in-diamond.

4.2 Obstructions: SCCs and diamonds
To show the hardness for a closed class that is not the subset of C∗λ,δ for any λ and δ, we will
characterize such a class in terms of the occurrence of arbitrarily large cycles, and another
class of patterns called “diamonds” (cf. Figure 2).

I Definition 18. A pure α-diamond graph is constructed as follows. Take a vertex set L
of size α ≥ 1, and two additional vertices r1 and r2. Now add edges such that L is the leaf
set of either two in-stars or two out-stars S1 and S2 with roots r1 and r2, respectively. If
we add an additional vertex x with edges r1x and r2x if S1 and S2 are in-stars, and edges
xr1 and xr2 otherwise, the resulting graph is a flawed α-diamond. We refer to both pure
α-diamonds and flawed α-diamonds as α-diamonds. If S1 and S2 are in-stars we also refer to
the resulting α-diamonds as in-diamonds, and otherwise as out-diamonds.

The goal of this section is to prove the following useful characterization precisely describing
classes that are not almost-caterpillars.

I Lemma 19. Let H be a class of pattern graphs that is closed under identifying terminals
and transitive closure. Exactly one of the following statements is true:
H ⊆ C∗λ,δ for some constants λ and δ.
H contains every directed cycle, or every pure in-diamond, or every pure out-diamond,
or every flawed in-diamond, or every flawed out-diamond.

For the proof of Theorem 16, we only need the fact that at least one of these two
statements hold: if the class H is not in C∗λ,δ, then we can prove hardness by observing that
H contains one of the hard classes. For the sake of completeness, we give a simple proof that
the two statements cannot hold simultaneously in the full version of this extended abstract.

Showing that at least one of the two statements of Lemma 19 hold is not as easy to prove.
First, the following two lemmas show how a large cycle or a large diamond can be identified
if certain structures appear in a pattern. The main part of the proof is to show that if H
contains patterns that are arbitrarily far from being a caterpillar, then one of these two
lemmas can be invoked (see Lemma 22).

I Lemma 20. Let H be a class of pattern graphs that is closed under identifying terminals
and transitive closure. If some H ∈ H contains a matching of size α, then H contains a
directed cycle of length α.

Proof. A matching of a graph is a subset M of its edges such that no two edges of M share
a vertex. A matching e1, . . . , eα of α edges can be transformed into a cycle of length α

by identifying the head of ei and tail of ei+1 (and the head of eα with the tail of e1). All
remaining vertices that do not belong to the cycle can then be identified with any vertex of
the cycle, so that the resulting graph consists of the cycle and some additional edges. Since
H is closed under identifying terminals, this graph would be contained in H. As this graph
is strongly connected and H is closed also under transitive equivalence, we can conclude that
H contains a cycle of length α. J
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Next we give a sufficient condition for the existence of large diamonds. We say that an
edge uv of a graph H is transitively non-redundant if there is no u→ v path in H \ uv.

I Lemma 21. Let H be a class of pattern graphs that is closed under identifying terminals
and transitive equivalence. Let H ∈ H be a pattern graph that contains two out-stars (or two
in-stars) S1 and S2 as induced subgraphs, with at least α edges each and roots r1 and r2,
respectively. The class H contains an α-diamond if
1. H contains neither a path from r1 to r2, nor from r2 to r1,
2. the leaves of S1 and S2 have out-degree 0 (if S1 and S2 are out-stars) or in-degree 0 (if

S1 and S2 are in-stars), and
3. the edges of the stars are transitively non-redundant.

To show that at least one of the two statements of Lemma 19 hold, we prove that if the
second statement is false, then the first statement is true. That is, if H does not contain all
cycles (i.e., there is an α1 such that H contains no cycle larger than α1), H does not contain
all pure out-diamonds (i.e., there is an α2 such that H contains no pure out-diamond larger
than α2), etc., then H ⊆ C∗λ,δ for some constants λ and δ. In other words, if we let α to
be the maximum of α1, α2, etc., then we may assume that H contains no pure of flawed
α-diamond or cycle of length α, and we need to prove H ⊆ C∗λ,δ under this assumption. Thus
the following lemma completes the proof of Lemma 19.

I Lemma 22. Let H be a class of pattern graphs that is closed under identifying terminals and
transitive equivalence. If for some integer α the class H contains neither a pure α-diamond,
flawed α-diamond, nor a cycle of length α, then there exist constants λ and δ (depending
on α) such that H ⊆ C∗λ,δ.

Proof. Suppose that there is such an integer α. Let λ := 2α and δ := 4α3 + 6α2. Given
any H ′ ∈ H, we show how a transitively equivalent pattern H ∈ Cλ,δ can be constructed,
implying that H ′ belongs to C∗λ,δ. A vertex cover of a graph is a subset X of its vertices such
that every edge is incident to a vertex of X. By Lemma 20, H ′ cannot contain a matching
of size α. It is well-known that if a graph has no matching of size α, then it has a vertex
cover of size at most 2α (take the endpoints of any maximal matching). Let us fix a vertex
cover X of H ′ having size at most 2α.

To obtain H from H ′, we start with a graph H on V (H ′) having no edges and perform
the following three steps.
1. Let us take the transitive closure on the vertex set X in H ′, i.e., let us introduce into H

every edge uv with u, v ∈ X such that there is a u→ v path in H ′.
2. Let us add all edges uv of H ′ to H for which u /∈ X or v /∈ X.
3. Fixing an ordering of the edges introduced in step 2, we remove transitively redundant

edges: following this order, we subsequently remove those edges uv for which there is a
path from u to v in the remaining graph H that is not the edge uv itself.

It is clear that H is transitively equivalent to H ′. Note that X is a vertex cover of H as well,
and hence its complement I = V (H) \X is an independent set, i.e. no two vertices of I are
adjacent. Let EI ⊆ E(H) be the set of edges between X and I. In the rest of the proof, we
argue that the resulting pattern H belongs to Cλ,δ. We show that H can be decomposed
into a path P = (v1, . . . , vλ0) in X, a star Svi

centered at each vi using the edges in EI , and
a small set of additional edges. This small set of additional edges is constructed in three
steps, by considering a sequence of larger and larger sets F1 ⊆ F2 ⊆ F3.

As EI consists of edges between X and I, it can be partitioned into a set of stars with
roots in X. The following claim shows that almost all of these edges are directed towards X
or almost all of them are directed away from X.
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I Claim 23. Either there are less than 2α2 edges uv in EI with head in X, or less than 2α2

edges uv in EI with tail in X.

Assume that the former case of Claim 23 is true, so that the number of edges in EI with
heads in X is bounded by 2α2; the other case can be handled symmetrically. We will use the
out-stars spanned by EI for the caterpillar, which means that we obtain an out-caterpillar.
We use the set F1 to account for the edges in EI with heads in X. Additionally, we will
also introduce into F1 those edges in EI with tails in X that are adjacent to an edge of the
former type. Formally, for any edge uv ∈ Ei with v ∈ X, we introduce into F1 every edge of
EI incident to u. After this step, F1 contains less than 4α3 edges, since there are less than
2α2 edges uv ∈ EI with v ∈ X and u can only be adjacent to vertices in X, which has size
less than 2α.

For any vertex v ∈ X, let Sv denote the out-star formed by the edges of EI \ F incident
to v. Let X ′ ⊆ X contain those vertices v ∈ X for which Sv has at least α leaves.

I Claim 24. For any two distinct u, v ∈ X ′, at least one of uv and vu is in H, and the stars
Su and Sv are vertex disjoint.

We extend F1 to F2 by adding all edges of stars Sv with v ∈ X \ X ′ to F2. Since X
contains less than 2α vertices and we extend F1 only by stars with less than α edges, this
step adds less than 2α2 edges, i.e., |F2| ≤ |F1|+ 2α2 = 4α3 + 2α2.

By Claim 24, X ′ induces a semi-complete directed graph in H, i.e., at least one of the
edges uv and vu exists for every pair u, v ∈ X ′. It is well-known that every semi-complete
directed graph contains a Hamiltonian path (e.g., [16, Chapter 10, Exercise 1]), and so there
is a path P = (v1, . . . , vλ0) with λ0 = |X ′| ≤ 2α = λ in H on the vertices of X ′. We extend
F2 to F3 by including any edge induced by vertices of X ′ that is not part of P . There are less
than 4α2 such edges, and hence we have |F3| ≤ |F2|+ 4α2 ≤ 4α3 + 6α2 = δ. The edges of H
not in F3 span the path P and disjoint out-stars Svi with i ∈ {1, . . . , λ0}, i.e., they form a
λ0-caterpillar. This proves that H ∈ Cλ,δ and hence H ′ ∈ C∗λ,δ, what we had to show. J

4.3 Reductions
Lemma 19 implies that in order to prove Theorem 16, we need W[1]-hardness proofs for the
class of all directed cycles, the class of all pure in-diamonds, the class of all pure out-diamonds,
etc. We provide these hardness proofs and then formally show that they imply Theorem 16.

Let us first consider the case when H is the class of all directed cycles. Recall that,
given an arc-weighted directed graph G and a set R ⊆ V (G) of terminals, the Strongly
Connected Steiner Subgraph (SCSS) problem asks for a minimum-cost subgraph that is
strongly connected and contains every terminal in R. This problem is known to be W[1]-hard
parameterized by the number k := |R| of terminals [21]. We can reduce SCSS to an instance
of DSN where the pattern H is a directed cycle on R, which expresses the requirement that
all the terminals are in the same strongly connected component of the solution. Thus the
W[1]-hardness of SCSS immediately implies the W[1]-hardness of H-DSN if H contains all
directed cycles.

I Lemma 25 (follows from [21]). If H is the class of directed cycles, then H-DSN is W[1]-hard
parameterized by the number of terminals.

Next we turn our attention to classes containing all diamonds. The following reductions
are from the W[1]-hard Multicoloured Clique problem [19], in which an undirected
graph together with a partition {V1, . . . , Vk} of its vertices into k sets is given, such that for
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any i ∈ {1, . . . , k} no two vertices of Vi are adjacent. The aim is to find a clique of size k, i.e.
a set of pairwise adjacent vertices {w1, . . . , wk} with wi ∈ Vi for each i ∈ {1, . . . , k}.

I Lemma 26. If H is the class of all pure out-diamonds, then H-DSN is W[1]-hard paramet-
erized by the number of terminals. The same holds if H is the class of all pure in-diamonds.

The reduction for the case when the pattern is a flawed α-diamond is essentially the same
as the one for pure α-diamonds, as we show next.

I Lemma 27. If H is the class of all flawed out-diamonds, then H-DSN is W[1]-hard
parameterized by the number of terminals. The same holds if H is the class of all flawed
in-diamonds.

Given the three reductions above, we can now prove Theorem 16, based on the additional
reduction given in Lemma 17. We defer the final proof to the full version of this extended
abstract.
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Abstract
Choosability, introduced by Erdős, Rubin, and Taylor [Congr. Number. 1979], is a well-studied
concept in graph theory: we say that a graph is c-choosable if for any assignment of a list of c
colors to each vertex, there is a proper coloring where each vertex uses a color from its list. We
study the complexity of deciding choosability on graphs of bounded treewidth. It follows from
earlier work that 3-choosability can be decided in time 22O(w) · nO(1) on graphs of treewidth w.
We complement this result by a matching lower bound giving evidence that double-exponential
dependence on treewidth may be necessary for the problem: we show that an algorithm with
running time 22o(w) · nO(1) would violate the Exponential-Time Hypothesis (ETH). We consider
also the optimization problem where the task is to delete the minimum number of vertices to
make the graph 4-choosable, and demonstrate that dependence on treewidth becomes triple-
exponential for this problem: it can be solved in time 222O(w)

· nO(1) on graphs of treewidth w,
but an algorithm with running time 222o(w)

· nO(1) would violate ETH.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory

Keywords and phrases Parameterized Complexity, List coloring, Treewidth, Lower bounds under
ETH

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.28

1 Introduction

Most NP-hard algorithmic problems become significantly easier when restricted to bounded-
treewidth graphs. There are notable exceptions that remain NP-hard on graphs of constant
treewidth (e.g., Steiner Forest [1, 20], List Edge Coloring [37], Edge-disjoint Paths
[41]), but most of the natural combinatorial problems can be solved in polynomial time
(or even in linear time) if treewidth is bounded. Courcelle’s Theorem [11] is a meta-result
showing that if a problem can be expressed in the language of monadic second order logic
(MSOL), then it can be solved in linear-time on bounded-treewidth graphs: there is an
algorithm with running time f(w) ·n, where w is the treewidth of the graph. While this result

∗ This work was supported by ERC Starting Grant PARAMTIGHT (No. 280152) and OTKA grant
NK105645.

EA
T

C
S

© Dániel Marx and Valia Mitsou;
licensed under Creative Commons License CC-BY

43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016).
Editors: Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi;
Article No. 28; pp. 28:1–28:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.28
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


28:2 Double-Exponential and Triple-Exponential Bounds for Choosability Problems

immediately gives algorithms for a large number of combinatorial problems, focus has shifted
in recent years towards trying to obtain a tighter understanding of how the running time has
to depend on treewidth, that is, understanding what the best possible f(w) in the running
time can be. On the one hand, recent algorithm advances, such as Cut & Count [14] and fast
subset convolution [3, 47], resulted in improved dependence on treewidth for various problems.
On the other hand, conditional results based on the Exponential-Time Hypothesis (ETH)
[25, 26, 34] give lower bounds on the best possible dependence that can be achieved, and in
many cases these lower bounds tightly match the known algorithms [13, 14, 33, 35, 43]. (ETH
can be informally stated as n-variable 3SAT cannot be solved in time 2o(n).) Most of these
tight bounds are of the form 2O(w) (e.g., 3-Coloring, Hamiltonian Cycle, Triangle
Packing, etc.), but there are surprising exceptions where the best possible dependence
on treewidth is 2O(w logw) [14, 35] or even 2O(wc) for some constant c > 1 [13]. A result
of Frick and Grohe [19] shows that, assuming P 6= NP, the dependence on treewidth can
be really bad for some problems: Courcelle’s Theorem does not remain true if we impose
any elementary bound on the function f(w). That is, for every h ≥ 1, there are MSOL
sentences and corresponding model-checking problems for which the dependence on treewidth
is an exponential tower of height h. Pan and Vardi [42] gave strong evidence that this bad
performance is expected for problems high up in the polynomial hierarchy: they showed

that, under ETH, there is a strict hierarchy of lower bounds of the form 22···
2o(w)

inside
PSPACE. In this paper, we present two fairly standard graph-theoretic problems that require
double-exponential and triple-exponential dependence on treewidth, respectively.

1.1 k-Choosability
A proper k-coloring of a graph G is a mapping f : V (G) → [k] such that f(u) 6= f(v) for
any two adjacent u, v ∈ V (G). List coloring is the generalization where instead of having
the same set [k] of colors available at each vertex, each vertex v has its own list L(v) of
available colors and the question is whether there is a proper coloring f that assigns a color
f(v) ∈ L(v) to each vertex v. The algorithmic aspects of list coloring have received significant
interest [2, 10, 23, 24, 29, 32, 37, 38, 46].

Erdős, Rubin, and Taylor [16] defined a combinatorial property related to list colorings:
we say that a graph G is k-choosable if it has a coloring for any list assignment L that has
size k at each vertex. Clearly, k-choosability implies k-colorability. One may feel that the
converse implication could also be true: after all, it may seem safe to guess that the “worst
case” of list coloring is when every vertex has the same list [k]. But this intuition is wrong:
for example, for any k ≥ 1, there are 2-colorable graphs that are not k-choosable.

From the computational complexity point of view, deciding k-choosability is a much
harder algorithmic problem than deciding k-colorability. Deciding k-choosability does not
seem to belong to the class NP (a witness for k-choosability would need to prove colorability
for every list assignment L) or to the class coNP (an uncolorable list assignment would be a
good witness for non-k-choosability, but it cannot be verified in polynomial time). In fact,
the k-choosability problem is known to lie higher in the polynomial hierarchy.

I Theorem 1 (from [21]). k-Choosability for k ≥ 3 is Πp
2-complete.

We observe a similar gap in complexity between the two problems when looking at
algorithms parameterized by treewidth. 3-colorability can be decided in time 3w · nO(1)

using standard techniques [12]. Fellows et al. [17] showed that deciding 3-choosability is
fixed-parameter tractable parameterized by treewidth. One can make this result quantitative
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by observing that the running time is actually 22O(w) · nO(1) for graphs of treewidth w. Our
first result shows that this double exponential dependence on treewidth is best possible,
assuming ETH.

I Theorem 2. For every fixed k ≥ 3:
1. There is an algorithm for k-Choosability with running time 22O(w) · nO(1) on graphs of

treewidth w.
2. Assuming ETH, there is no algorithm for k-Choosability with running time 22o(w) ·nO(1)

on graphs of treewidth w.

1.2 k-Choosability Deletion
Given any class C of graphs, one can define various graph modification problems where the
task is to transform a given graph G into a member of C with the minimum number of vertex
deletions/edge deletions/edge additions. The parameterized algorithms literature is especially
rich in this type of problems, where the goal is, for example, to make the graph acyclic
[9, 15], bipartite [27, 36, 44, 45], planar [28, 40], chordal [5, 7, 18, 30, 39], or interval [4, 6, 8].
Investigating these problems on graphs of bounded treewidth is an interesting question on
its own right, but additional motivation comes from the fact that some of the algorithms on
general graphs first reduce the treewidth and then invoke an algorithm exploiting bounded
treewidth [28, 39, 40].

If we look at the vertex deletion versions of coloring and choosability problems, then
we can observe an even larger gap than in the decision version. For technical reasons, we
give a proof only for k ≥ 4 colors. It is not difficult to show (we leave it as an exercise
to the reader) that there is an algorithm with running time 2O(w) · nO(1) for 4-Coloring
Deletion that, given a graph G of treewidth w, computes the minimum number of vertices
that needs to be deleted to make the graph 4-colorable. On the other hand, if we consider
the 4-Choosability Deletion problem, which asks for the minimum number of vertices
that need to be deleted to make a given graph G 4-choosable, then we need triple-exponential
dependence on treewidth.

I Theorem 3. For every fixed k ≥ 4:
1. There is an algorithm for k-Choosability Deletion with running time 222O(w)

· nO(1)

on graphs of treewidth w.
2. Assuming ETH, there is no algorithm for k-Choosability Deletion with running time

222o(w)

· nO(1) on graphs of treewidth w.

As a side result, we show that k-Choosability Deletion lies one level higher than
k-Choosability in the polynomial hierarchy (compare this with the fact that k-Coloring
and k-Coloring Deletion are both in NP).

I Theorem 4. For every k ≥ 3, k-Choosability Deletion is Σp3-complete.

The reader may feel that the Πp
2- and Σp

3-completeness of these problems already give
sufficient explanation why double- or triple-exponential dependence on treewidth is needed.
This is true in some sense: the quantifier alternations in the problem definitions are the
common underlying reasons for being in the higher levels of the polynomial hierarchy and
for requiring unusually large dependence on treewidth. But let us point out that these two
types of complexity results require very different proof structures. In Πp

2- or Σp3-completeness
proofs, we start with a canonical Πp

2- or Σp
3-complete quantified satisfiability problem and

we use the alternations inherent in the definitions of k-Choosability or k-Choosability
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Deletion to express the alternations in quantified satisfiability. On the other hand, in the
proofs of Theorems 2(2) and 3(2), we start with problems in NP and use the alternations
inherent in k-Choosability or k-Choosability Deletion for compression: we want
to express the original instance by a graph having treewidth only O(logn) or O(log logn).
Thus the main theme of our proofs is trading alternation for compression: we want to use
alternation to allow the succinct encoding and verification of information. Note also that
both k-Choosability and k-Choosability Deletion can be solved in time 2nO(1) , hence
the exponential explosion appears only in the context of bounded-treewidth graphs.

2 Preliminaries

I Definition 5 (List coloring). Given graph G together with sets L(v) ⊂ IN, one for every
vertex v (we shall call L(v) the list of v), then G is L-colorable if there exists a coloring
c : V (G) → IN, which is proper and for which ∀v ∈ V (G), c(u) ∈ L(v). In that case, c is
called a proper L-coloring.

I Definition 6 (Choice number). Given G and some k ∈ IN, G is called k-choosable if for
any list assignment L : V (G)→ 2IN with |L(v)| = k for all v ∈ V (G), G is L-colorable. The
choice number (or list-chromatic number) of G, denoted by χ`(G), is the minimum number
k such that G is k-choosable.

The notion of f -choosability defined below generalizes k-choosability, but for arbitrary
list sizes for each vertex.

I Definition 7 (f -choosable graphs). A graph G is called f-choosable for some function
f : V (G) → IN (called list-capacity function) if G is L-colorable for any list assignment
L : V (G)→ 2IN where |L(v)| = f(v) for all v ∈ V (G).

As a direct consequence of the definition, we get that the null graph K0 with no vertices
is f -choosable for any list-capacity function f . The reason is the vacuous truth that, for any
list assignment L, the empty function e : ∅ → IN is a proper L-coloring of K0.

I Definition 8 (Color Compatibility). Given a graph G, a list assignment L, an ordered k-tuple
(u1, u2, . . . , uk) ∈ V (G)k and an ordered k-tuple of colors (c1, c2, . . . , ck) with ci ∈ L(ui) for
i ∈ [k], we say that (c1, c2, . . . , ck) is compatible on (u1, u2, . . . , uk) if there exists a proper
L-coloring g of G with g(ui) = ci. We may omit G and L if they are clear from the context.

We define the following algorithmic problems:
(i, j)-Choosability: Given a graph G, integers i, j ∈ IN where i ≤ j, and a list-capacity
function f for which f(v) ∈ {i, . . . , j} for any vertex v ∈ V , decide whether G is
f -choosable.
k-Choosability:= (k, k)-Choosability.
(i, j)-Choosability Deletion: Given a graph G, integers i, j, r ∈ IN with i ≤ j, and a
list-capacity function f for which f(v) ∈ {i, . . . , j} for any vertex v ∈ V , decide whether
there exists U ⊂ V with |U | ≤ r such that G− U is f -choosable.
k-Choosability Deletion:= (k, k)-Choosability Deletion.

Below are some known results about Choosability.

I Theorem 9 (from [16]). (2, 3)-Choosability is Πp
2-complete.

I Theorem 10 (from [21]). k-Choosability for k ≥ 3 is Πp
2-complete.

I Theorem 11 (from [17]). k-Choosability parameterized by the treewidth of the input
graph is in FPT.
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3 Double-exponential lower bound for k-Choosability

The topic of this section is proving Theorem 2(2), the double-exponential lower bound on
3-Choosability parameterized by treewidth. For the proof, we will find it convenient to
start the reduction from Edge 3-Coloring, where given a graph G, the task is to decide if
G has a proper edge 3-coloring (that is, whether there is an assignment c : E(G)→ {1, 2, 3}
such that c(e1) 6= c(e2) for any two edges e1 and e2 sharing an endpoint). Holyer’s proof
[22] for the NP-hardness of Edge 3-Coloring on 3-regular graphs can be observed to
give a tight lower bound under ETH. Note that a 3-regular graph on n vertices has exactly
3n/2 = O(n) edges. We state the lower bound in a slightly awkward way, but this type of
bound is what we exactly need.

I Theorem 12 (follows from [22]). Assuming ETH, Edge 3-Coloring cannot be decided
in time 22o(log n) , where n is the number of vertices of the graph. Moreover, this remains true
even if we consider only 3-regular graphs whose number of vertices is an integer power of 2.

That is, if we reduce Edge 3-Coloring to some other problem by creating an equivalent
instance with treewidth O(logn), then an algorithm of the target problem with running
time 22o(w) · nO(1) for graphs of treewidth w would yield an algorithm with running time
22o(log n) · nO(1) for Edge 3-Coloring, contradicting Theorem 12.

The reason why reducing from this problem is convenient for our proof is that Edge
3-Coloring involves constraints of the form “the three edges e1, e2, e3 incident to a vertex
u use all three colors from {1, 2, 3},” and this type of constraints will be easy to express
in our reduction. However, there is an unfortunate presentation issue: when talking about
colors, vertices, and edges, it may not be immediately clear if we refer to the source Edge 3-
Coloring instance or to the target 3-Choosability instance, and this may cause confusion.
Therefore, we prefer to treat Edge 3-Coloring as a constraint satisfaction problem and
use terminology appropriate to that. Formally, an instance of Edge 3-Coloring can
be interpreted as a problem where we have a set X of n variables (corresponding to the
edges of G), each variable has the domain {1, 2, 3}, and we have a set Y of m constraints
(corresponding to the vertices of G). Each constraint contains exactly three distinct variables,
and the constraint is satisfied if these variables are assigned three different values. Then the
proper edge 3-colorings of G are in one-to-one correspondence with the satisfying assignments
of this constraint satisfaction problem. Note that each variable appears in exactly two
constraints.

Given an instance H of the constraint satisfaction problem described above, we create an
instance of (2, 3)-Choosability, i.e, a graph G and a list-capacity function f : V → {2, 3}.
Then we show that there is a satisfying assignment of I if and only if G is not (2, 3)-choosable.
We will further make sure that tw(G) = O(logm), which will imply the desired time lower
bound. For the forward direction, all we need to do is, given a satisfying assignment
h : X → {1, 2, 3} of H, use h in order to define a list assignment L for which G is not
L-colorable. The converse direction is somewhat more involved, as we need to start from
the assumption that G is not f -choosable and, given some uncolorable list assignment L′,
show that H is satisfiable. However, since we do not know exactly how the list assignment
L′ which fails to proper L′-color G looks like, we need to consider more general properties
which apply to any such potential list assignment.

3.1 Gadgets
Before presenting the main reduction, we introduce three different types of gadgets and
prove their properties. Corresponding to the two directions of the proof of correctness of the
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Figure 1 The Bit-chooser
gadget Bl of the lth bit.
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Figure 2 The Weak-edge gad-
get Wst, connecting vertices s, t.
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Figure 3 The Weak-star
gadget Si for variable xi.

reduction, we show two types of properties for each gadget: an “∃ list L” property, which we
use in order to define a list assignment L for the forward direction, and a “∀ lists L” property,
which shall be useful in proving the converse direction.

1. Bit-chooser gadget Bl (Figure 1). Informally, a list assignment of the bit chooser
gadget can enforce that a certain color appears on at least one of the two outputs pl and ql,
but this is all it can do: in every list assignment, there is a “good” color on pl and ql that is
compatible with every color on the other output.

I ∃L-Property 1. There exists a list assignment L and a color c with c ∈ L(pl)∩L(ql) such
that for any proper L-coloring of Bl, at least one of pl, ql should receive color c.

I ∀L-Property 1. For every list assignment L, there exists a color c ∈ L(pl) (resp., L(ql))
such that for every color c′ ∈ L(ql) (resp., c′ ∈ L(pl)) the pair (c, c′) is compatible on (pl, ql)
(resp., on (ql, pl)).

2. Weak-edge gadget Wst (Figure 2). Informally, the Weak-edge gadget can prevent a
certain combination (c, c′) of colors appearing on the two outputs, but it cannot prevent
more than one such combinations.

I ∃L-Property 2. There exists a list assignment L and colors c ∈ L(s), c′ ∈ L(t) such that
the pair (c, c′) is incompatible on (s, t).

I ∀L-Property 2. For every list assignment L, there exists at most one (c, c′) ∈ L(s)×L(t)
such that (c, c′) incompatible on (s, t). In fact, if (c, c′) is incompatible on (s, t), then the
following hold: c, c′ 6∈ L(r); L(s′) = {c} ∪ L(r); and L(t′) = {c′} ∪ L(r).

Because of their properties, the Weak-edges, if given an appropriate list assignment L,
can define an incompatible pair of colors being mutually assigned to their endpoints. Another
way to view a Weak-edge is to consider it a directed edge between a precolored vertex s and
an uncolored vertex t potentially forbidding a particular color from being assigned to t: if, for
Wst, (c, c′) is incompatible on (s, t) and s has already been assigned color c, then we know
that t cannot receive color c′. Observe that, because of the ∀L-Property, each Weak-edge
defines at most one such incompatible pair between the endpoints.

3. Weak-star gadget Si (Figure 3). Informally, the Weak-star gadget has the property
that there is at most one color c on v that can forbid one specific color c1 on u1 and one
specific color c2 on u2. When using this gadget on a vertex v whose list size is 2, it will act
like an OR-gadget: if this specific color appears on u1 or u2, then it forbids color c on v, and
hence forces it to take the other color in the list of v.
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Figure 4 An overview of the construction.

I ∃L-Property 3. There exist a list assignment L and a color c ∈ L(u1)∩L(u2)∩L(v) such
that (c, c) is incompatible on both (u1, v) and (u2, v).

I ∀L-Property 3. For every list assignment L, there exist colors c1 ∈ L(u1), c2 ∈ L(u2), c ∈
L(v) such that if (d1, d2, d) is incompatible on (u1, u2, v) then d = c and (d1 = c1)∨ (d2 = c2).

3.2 Construction
We will now proceed with the description of the construction of G. Consider an arbitrary
ordering of the m constraints of Y , assigning a unique index {0, . . . ,m− 1} to each of them.
Now construct logm Bit-chooser gadgets B1, . . . , Blogm as shown in Figure 1. For gadget
Bl, vertex pl shall correspond to bit 1 and vertex ql to 0.

Furthermore, for each appearance of a variable xi in constraint yj we construct a Chain
Pij , which is essentially a path on logm vertices u1

ij , . . . , u
logm
ij , where we have substituted

every edge (ulij , ul+1
ij ) by a Weak-edge gadget Wul

ij
ul+1

ij
as the one shown in Figure 2, by

identifying ulij with s and ul+1
ij with t. We also set f(u1

ij) = 2 and f(ulij) = 3 for l > 1.
Then we need to connect the Chains to the Bit-choosers. To do so, for each Chain Pij , we

write j in binary representation and for l = 1, . . . , logm, if the lth bit is 1, we connect ulij to
pl, else we connect it to ql. The connection is by a Weak-edge Wplul

ij
or Wqlul

ij
respectively.

In addition, we construct n variable-vertices v1, . . . , vn, one for each variable x1, . . . , xn
and we set f(vi) = 2. Eventually, we need to connect the two Chains which correspond to
the two appearances of xi to vertex vi. In order to do so, we use a Weak-star gadget Si (see
Figure 3). For Chains Pij and Pij′ with j < j′, corresponding to variable xi in constraints yj
and yj′ , respectively, we identify ulogm

ij with u1, ulogm
ij′ with u2, and v with variable-vertex

vi.
Last, we construct a checker vertex w with f(w) = 3 and connect it to all v1, . . . , vn

(using an ordinary edge). This completes the construction. Our claim is that H is satisfiable
if and only if G is not f -choosable.
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It is easy to verify that the constructed graph G has pathwidth (and hence treewidth)
bounded by O(logm).

I Lemma 13. pw(G) = O(logm).

3.3 Satisfying assignment ⇒ uncolorable list assignment
In this section, we prove the forward direction of the correctness of the reduction.

I Lemma 14. If H is satisfiable, then G is not f -choosable.

Proof. Assume that H is satisfiable. Then there should be an assignment h : X → {1, 2, 3}
satisfying all the constraints in Y . We will produce a list assignment L for which the graph
will not be L-colorable.

First, we construct the lists of the vi’s according to the satisfying assignment of H,
L(vi) = {h(xi), c}. For the checker vertex w, we have L(w) = {1, 2, 3}. For the main vertices
of the Chains Pij , we set L(u1

ij) = {c, c′} and L(ulij) = {c, c′, c′′}, for l ∈ {2, . . . , logm}.
Last, for the gadget vertices, we shall construct their lists according to those from the proofs
of the ∃L-Properties, as described below.

For vertices in the Bit-choosers, lists match exactly those in the proof of ∃L-Property 1.
For vertices in the Weak-stars, lists match exactly those in the proof of ∃L-Property 3.
The Weak-edges should specify appropriate incompatible pairs of colors on their endpoints,
and the list assignment should follow that of proof of ∃L-Property 2: Weak-edges
connecting Bit-choosers to Chains should forbid (c, c′) on (pl, ulij) (resp., (ql, ulij)); Weak-
edges interconnecting Chain-vertices should forbid (c, c′′) on (u(l−1)

ij , ulij).

Let us now explain why G is not L-colorable, no matter which colors we pick from the
lists. We are going to show that any possible coloring of the Bit-choosers accordant with L
corresponds to selecting a constraint y, by selecting a 0-1 value for logm bits, which together
select a constraint index in {0, . . . ,m− 1}.

From ∃L-Property 1 and for the particular list assignment which emerges from its proof,
we are required to select (at least) one of the two endpoints pl, ql by giving it a special color
c. Selecting pl is interpreted as setting the lth bit to 1, whereas selecting ql is interpreted as
setting it to 0. A selection of logm bit-vertices (one from each Bit-chooser) corresponds to
picking a binary number, which shall represent the index of the constraint we select.

Suppose that a constraint yj = (xj1 , xj2 , xj3) is selected this way. This means that for
the 3 Chains Pj1j , Pj2j , Pj3j we have color c′ being removed from all L(uljij

). In particular,
this means that u1

jij
has the unique color c available for it, which in turn forces color c to

u2
jij

by forbidding c′′, and so on. This way, color c will propagate throughout the Chains,
forcing color c on ulogm

ij .
From ∃L-Property 3 and for the list described in its proof, forcing color c on ulogm

ij

forbids color c on vi, forcing us to choose color h(xi), which in turn should forbid h(xi)
from w. Since we have three variable-vertices vj1 , vj2 , vj3 with forced choices and xj1 , xj2 , xj3

belong to the same constraint yj which h satisfies, h(xj1), h(xj2), h(xj3) should all be distinct
values from {1, 2, 3}. Thus, all three colors should be forbidden in w, which is fatal since
L(w) = {1, 2, 3}. J

3.4 Uncolorable list assignment ⇒ satisfying assignment
Let us now proceed with the converse direction. First we determine some properties that
every uncolorable list assignment L′ of G needs to have. Then we extract an assignment
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from L′ for H and use the properties of the lists to show that it is a satisfying assignment.
The following definition will be convenient in the proofs. Let B′ be the vertices of all

the logm Bit-choosers. Given some list assignment L, we say that a partial L-coloring
g : B′ → IN activates vertex ulij if g(pl) = c for some color c ∈ L(pl) and there is a Weak-edge
Wplul

ij
forbidding (c, c′) on (pl, ulij) (or similarly for ql). Thus, if we were to extend g to a

proper L-coloring of the whole graph, we would have one less choice for ulij . In this case,
vertex ulij is called active. A Chain Pij is called active if all its vertices are active. The
crucial observation is that if a Chain Pij is not active, no matter what color c ∈ L′(ulogm

ij )
we assign to ulogm

ij , this can be extended to a proper L′-partial coloring of the chain Pij .
Suppose for example that vertex ulij is not activated, that is, the coloring on the Bit-chooser
Bl does not forbid any color on ulij . Then we can start coloring the vertices u1

ij , u2
ij , . . . ,

ul−1
ij in this order, then the vertices ulogm

ij , ulogm−1
ij , . . . , ul+1

ij in this order, and there is still
at least one available color left for ulij . Furthermore, even if Pij is active, it is possible to
extend the partial coloring of the Bit-choosers to it, but this may force a certain color on
ulogm
ij .

I Lemma 15. If G is not L′-colorable, then any partial L′-coloring of the Bit-choosers
activates at least 3 of the Chains.

Proof. Consider a partial L′-coloring of the Bit-choosers. Suppose that only two Chains
Pi1j1 , Pi2j2 are activated, potentially forcing a coloring on ulogm

i1j1
and ulogm

i2j2
. By ∀L-Property

3, the L′-coloring can be extended through the Weak-stars Si1 and Si2 even if i1 = i2,
potentially reducing |L′(vi1)| and |L′(vi2)| to a unique choice. For every other vertex ulogm

ij

vertex, any color can be extended to its Chain. Hence the Weak-star Si for i 6∈ {i1, i2} does
not forbid any color on vi.

Now observe that, even if both vi1 , vi2 have forced colors c1, c2, there is always a third
color c ∈ L′(w), c1 6= c 6= c2, which we can assign to w. Further observe that, since all other
vi have two available compatible choices with the rest of G, there will be at least one color
in every vi’s list which should be different than c. Use these colors to complete a proper
L′-coloring for G. Of course this is a contradiction. Thus there should be exactly 3 active
Chains. J

I Lemma 16. For every list assignment L′, there is some partial L′-coloring of the Bit-
choosers that activates exactly 3 Chains. Furthermore, for every constraint there exists a
partial L′-coloring that activates its 3 corresponding Chains.

Proof. From ∀L-Property 1, we know that there exists a color cp ∈ L′(pl) which is compatible
with all colors in L′(ql) and a color cq ∈ L′(ql) which is compatible with all colors in L′(pl).
Let c′p be an arbitrary color of L′(pl) different from cp, and let c′q be an arbitrary color
of L′(ql) different from cq. Note that both (cp, c′q) and (c′p, cq) can be extended to the
Bit-chooser Bl and we obtain two different colorings for Bl this way.

Let us consider all possible colorings of the Bit-choosers that arise from selecting one
of these two colorings for each Bl; there are 2logm = m combinations. We claim that each
Chain Pij is activated by at most one of these colorings. Suppose that there are two colorings
that both activate Pij . The two colorings must differ on at least one of the Bit-choosers, say,
on Bl. Suppose that Pij is connected to pl with a Weak-edge (the case when it is connected
to ql is analogous). Color cp appears on pl in one of the colorings and color c′p appears in
the other coloring. As cp 6= c′p, it is not possible that the Weak-edge Wplul

ij
forces a color on

ulij in both cases, a contradiction.
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Since each of the m colorings activates at least 3 Chains by Lemma 15 and we have
shown that each of the 3m Chains is activated by at most one of the colorings, a counting
argument shows that each coloring activates exactly 3 Chains, and each Chain is activated
by exactly one of the m colorings. That is, the Chains can be partitioned into m triples, and
each triple can be activated by one of the colorings. To prove the second statement of the
lemma, we need to show that each such triple contains Chains corresponding to one of the
constraints. Suppose for a contradiction that one of the m colorings activates two Chains
Pij and Pi′j′ with j 6= j′. As the numbers j and j′ are different, there is a bit l where they
differ, which means that, without loss of generality that Pij is connected to pl, while Pi′j′ is
connected to ql. Suppose that this coloring assigns (cp, c′q) to (pl, ql) (the case when (c′p, cq)
appears is similar). Recall that cp on pl is compatible with any color of L′(ql) appearing on
ql. Let c′′q be the third color of L′(ql), different from cq and c′q. We may modify the coloring
on Bi such that (cp, c′′q ) appears on Bit-chooser Bl. Then Pi′j′ will no longer be activated: if
color c′q on ql activated uli′j′ via Weak-edge Wqlul

i′j′
, then color c′′q surely does not activate

it. We observe that this modified coloring cannot activate any Chain that was not active
before. Indeed, if some Chain Pi∗j∗ becomes activated by color c′′q on ql, then Pi∗j∗ was not
activated by any of the m colorings we considered before, as those colorings assigned only
colors cq and c′q to ql. This contradicts our earlier claim that each Pij is activated by exactly
one of the m colorings. Thus the modified coloring satisfies strictly less than 3 of the Chains,
which contradicts Lemma 15. Thus we can conclude that each of the m colorings activates a
(different) triple of Chains corresponding to one the m constraints. J

I Lemma 17. If G is not f -choosable, then H is satisfiable.

Proof. We may assume without loss of generality that L′(w) = {1, 2, 3}. For every Weak-
star Si, consider the color ci ∈ L′(vi) given by ∀L-Property 3. We define the assignment
h(xi) := c∗i , where {c∗i } = L(vi) \ {ci}. We show that this gives a satisfying assignment: for
every constraint yj = (xi1 , xi2 , xi3), the colors appearing on the variables xi1 , xi2 , xi3 form
the set {1, 2, 3}; in particular, this will imply h(i) ∈ {1, 2, 3} for every i.

Let us verify that that constraint yj = (xi1 , xi2 , xi3) is satisfied. By Lemma 16, there is
a partial assignment to the Bit-choosers that activates exactly the Chains Pi1j , Pi2j , and
Pi3j . This means that the vertices ulogm

i1j
, ulogm

i2j
, and ulogm

i3j
are forced to some color, but

the other vertices ulogm
ij are unaffected. Thus for i 6∈ {i1, i2, i3}, the Weak-star Si does

not prevent any color on vit . But for t = 1, 2, 3, the Weak-star St may forbid the use
of color cit on vit . In order to avoid any conflicts, we assign color h(xit) 6= cit to vi. If
{h(xi1), h(xi2), h(xi3)} 6= {1, 2, 3}, then we can assign to w a color not appearing on vi1 , vi2 ,
vi3 , and then extend the coloring to vi for each i 6∈ {i1, i2, i3} by choosing a color different
from the color of w. This would contradict the assumption that L′ is not colorable. Thus
{h(xi1), h(xi2), h(xi3)} = {1, 2, 3}, that is, constraint yj is satisfied. J

3.5 Lower Bounds
Now we are ready to establish the lower bounds stated in Theorem 2(2).

I Theorem 18. (2, 3)-Choosability cannot be decided in time 22o(pw) · nO(1), where pw is
the pathwidth of the input graph, under ETH.

Proof. Suppose we could decide (2,3)-Choosability in time 22o(pw) · nO(1). We know from
Lemma 13 that pw = O(logm).

Thus 22o(pw) · nO(1) = 22o(log m) · nO(1). From Lemmas 14 and 17, this would imply solving
Edge 3-Coloring in time 22o(log m) . This contradicts Theorem 12. J
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I Corollary 19 (Theorem 2(2)). Assuming ETH, k-Choosability for any k ≥ 3 cannot be
decided in time 22o(pw) · nO(1), where pw is the pathwidth of the input graph.

Proof. First observe that the problem for k ≥ pw + 1 is meaningless, since the answer is
trivially yes: a graph G of pathwidth pw is pw-degenerate, and thus (pw + 1)-choosable.

Gutner and Tarsi [21] give a reduction from (2, 3)-Choosability to k-Choosability,
where the pathwidth of the constructed graph G′ is O(pw(G)). J

4 Triple-exponential lower bound for k-Choosability Deletion

The goal of this section is to prove Theorem 3(2): the triple-exponential lower bound for
k-Choosability Deletion. For this proof, we choose a variant of list coloring as the source
problem of the reduction.

Our reduction is from Bipartite List 3-Coloring: given a bipartite graph H with
vertex set X = X1 ∪X2, X1 = {x10, x11, . . . x1(n−1)}, X2 = {x20, x21, . . . , x2(n−1)}, edge set
Y with |Y | = m, and a list assignment D : X → 2{1,2,3} with |D(x)| ≥ 2 for all x ∈ X, the
task is to find a proper 3-coloring φ : V (G) → {1, 2, 3} of G where φ(v) ∈ D(v) for every
vertex v. This problem is known to be NP-hard [31] (to ensure |D(x)| ≥ 2, one needs to
observe that any vertex with |D(x)| = 1 can be removed from the graph after omitting its
unique color from the lists of its neighbors). The NP-hardness proof can be observed to give
a tight lower bound, which we state in the following form.

I Lemma 20. Assuming ETH, there is no algorithm for Bipartite List 3-Coloring with
running time 222o(log log n)

on bipartite graphs with n vertices on each side. This remains true
if we consider only graphs where log logn is integer.

Proof. Given a 3SAT formula with n0-variables and m0-clauses, the reduction of Kratochvíl
[31] creates an equivalent instance (G,D) of Bipartite List 3-Coloring with n1 =
O(n0+m0) vertices andm1 = O(n0+m0) edges. Let n be the smallest integer not smaller than
n1 such that log logn is integer. Observe that n ≤ n2

1 (as log logn ≤ log logn1 + 1 and hence
logn ≤ 2 logn1), hence log logn = log logn2

1 = O(log logn1) = O(log log(n0 +m0)). Let us
add dummy vertices to G until each side has exactly n vertices. Using the assumed algorithm
with running time 222o(log log n)

, we would be able to solve the Bipartite List 3-Coloring
instance and hence the equivalent 3SAT instance in time 222o(log log(n0+m0))

= 2o(n0+m0),
contradicting ETH. J

Given an instance of Bipartite List 3-Coloring, we construct an equivalent instance of
(1, 4)-Choosability Deletion consisting of a graph G and a list-capacity function f . More
precisely, there exists a proper D-coloring h : X → {1, 2, 3} of H if and only if there exists a
subset U ⊆ V (G) of vertices with |U | ≤ 4n such that G−U is f -choosable. Moreover, graph
G has treewidth O(log logn). Thus an algorithm for (1, 4)-Choosability Deletion on
graphs of treewidth w with running time 222o(w)

·nO(1) would give an algorithm for Bipartite
List 3-Coloring with running time 222o(log log n)

· nO(1), contradicting Lemma 20.
Similarly to Section 3, we reformulate Bipartite List 3-Coloring as a constraint

satisfaction problem to improve the presentation: the appearance of colors and lists of
colors in both the source and target problems would be a source of confusion. We can view
Bipartite List 3-Coloring as a constraint satisfaction problem, where the variable set
is X and constraints y = (y1, y2) ∈ Y ⊂ X1 × X2 have arity 2. We call an assignment
h : X → {1, 2, 3} a legal assignment if we have h(x) ∈ D(x) for every x ∈ X. We say
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that H is satisfiable if there exists a legal assignment h : X → {1, 2, 3} such that we have
h(y1) 6= h(y2) for every y = (y1, y2) ∈ Y.

Observe that Choosability Deletion has inherently three levels of quantifier alterna-
tions in its definition: ∃ (set of deleted vertices) ∀ (list assignments L) ∃ (choice of colors
consistent with L). The main idea of the reduction is that we can redefine Bipartite List
3-Coloring using three levels of quantifier alternations. Furthermore, in order to achieve
the triple-exponential lower bound, we need to perform an even tighter compression than the
one we achieved in Section 3. Keeping those two things in mind we proceed with re-defining
Bipartite List 3-Coloring as follows.

From the original definition of Bipartite List 3-Coloring, we have that H is satisfiable
if there exists legal assignment h : X1 ∪X2 → {1, 2, 3}, such that for all x1i ∈ X1, x2j ∈ X2
with h(x1i) 6= h(x2j), we have (x1i, x2j) 6∈ Y . The latter requirement (x1i, x2j) 6∈ Y can
be re-written as ∀y = (x1i′ , x2j′) ∈ Y , either i′ 6= i or j′ 6= j. For some i < n, let
B(i) = [B(i)0,B(i)1, . . . ,B(i)logn−1] be the binary representation of i. Then i 6= i′ can be
expressed as saying that there exists a k ∈ {0, . . . , logn− 1} such that B(i)k 6= B(i′)k.

Putting everything together, we have:

I Definition 21 (CSP Bipartite List 3-Coloring defined with 3 levels of quantifier alterna-
tions). Given a set X = X1 ∪X2 of variables with Xξ = {xξ0, xξ1, . . . , xξ(n−1)} for ξ ∈ {1, 2}
and a set Y ⊆ X1 ×X2 of constraints, the task is to decide if
∃ legal assignment h : Xξ → {1, 2, 3}, such that
∀x1i ∈ X1, ∀x2j ∈ X2, ∀y = (x1i′ , x2j′) ∈ Y with h(x1i) = h(x2j), we have
∃k ∈ {0, . . . , logn− 1} such that either B(i)k 6= B(i′)k or B(j)k 6= B(j′)k.

The reduction closely follows this equivalent definition of Bipartite List 3-Coloring: we
use the three levels of alternation in the definition of (1, 4)-Choosability Deletion to
express these three levels of alternation. Note also that the last level of alternation, when
quantifying over k ∈ {0, . . . , logn − 1} can be described as the selection of log logn bits.
This choice will be expressed by the introduction of log logn Bit-choosers, which will be the
dominating factor in the treewidth of the constructed instance.
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Abstract
We study the cryptographic complexity of two-party differentially-private protocols for a large
natural class of boolean functionalities. Information theoretically, McGregor et al. [FOCS 2010]
and Goyal et al. [Crypto 2013] demonstrated several functionalities for which the maximal possible
accuracy in the distributed setting is significantly lower than that in the client-server setting.
Goyal et al. [Crypto 2013] further showed that “highly accurate” protocols in the distributed
setting for any non-trivial functionality in fact imply the existence of one-way functions. However,
it has remained an open problem to characterize the exact cryptographic complexity of this
class. In particular, we know that semi-honest oblivious transfer helps obtain optimally accurate
distributed differential privacy. But we do not know whether the reverse is true.

We study the following question: Does the existence of optimally accurate distributed differ-
entially private protocols for any class of functionalities imply the existence of oblivious transfer
(or equivalently secure multi-party computation)? We resolve this question in the affirmative for
the class of boolean functionalities that contain an XOR embedded on adjacent inputs. We give
a reduction from oblivious transfer to:

Any distributed optimally accurate ε-differentially private protocol with ε > 0 computing a
functionality with a boolean XOR embedded on adjacent inputs.
Any distributed non-optimally accurate ε-differentially private protocol with ε > 0, for a
constant range of non-optimal accuracies and constant range of values of ε, computing a
functionality with a boolean XOR embedded on adjacent inputs.

Enroute to proving these results, we demonstrate a connection between optimally-accurate two-
party differentially-private protocols for functions with a boolean XOR embedded on adjacent
inputs, and noisy channels, which were shown by Crépeau and Kilian [FOCS 1988] to be sufficient
for oblivious transfer.
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1 Introduction

Differential privacy [7, 8, 11, 14] is a very well-studied and popular privacy notion of recent
years1. It provides powerful input privacy guarantees to participants of a statistical query
database. Informally a randomized function computed on a database is said to be differentially
private, if the output distribution of the function evaluated on the database, induced by the
presence of a particular record, is statistically close to the output distribution induced when
the record is absent. Note that this can be trivially achieved by computing an output that is
independent of the entries in the database. Therefore, to be useful, a non-trivial differentially
private algorithm must compute outputs that satisfy some meaningful notion of accuracy.

Consider a confidential dataset owned by a trusted server. The server must release the
output of some statistic evaluated on the dataset, to an untrusted client. Even in this setting,
where privacy is a concern only at the server’s end, there is an evident tradeoff between
privacy and accuracy. In fact, for any given privacy parameter ε, there is a maximum possible
accuracy (which we call the optimal accuracy) such that any algorithm with better than
optimal accuracy will fail to remain differentially private. Such privacy-accuracy tradeoffs
are reasonably well-understood in the client-server setting [7, 12, 15, 23]. There has also
been a huge body of work in designing algorithms that achieve close to optimal accuracies
for various functionalities and data mining tasks in the client-server setting.

The focus of this work is the distributed setting, where a database is jointly hosted by
multiple mutually distrusting servers. This was first studied by Dwork et al. [10]. As an
illustrative example, consider two hospitals which together wish to compute the correlation
between the occurrence of smoking and lung cancer by taking into account their combined
patient records. In this setting, we require the servers to engage in a protocol, at the end of
which the privacy of each record of both the servers must be guaranteed without a significant
loss in accuracy. Note that the privacy requirements must be met for both servers, given their
entire view of the protocol transcript, not just the computed output; possibly necessitating
an additional loss in accuracy (over and above the loss in the client-server setting).

The intuition that the distributed setting would necessitate a greater accuracy loss
than the client-server setting has been proved to be correct in the information theoretic
world for different classes of functions. Beimel, Nissim and Omri [1] showed accuracy limits
for distributed differentially-private protocols for n parties each holding their own inputs.
McGregor, Mironov, Pitassi, Reingold, Talwar and Vadhan [36] showed large accuracy
gaps in the two-party setting for several natural functionalities with n-bit inputs. Goyal,
Mironov, Pandey and Sahai [19] demonstrated a constant gap between the maximal achievable
accuracies in the client-server and distributed settings for any non-trivial boolean functionality.

In the computational setting this gap vanishes, if a semi-honest protocol for oblivious
transfer exists. In this case, both servers can use secure multi-party computation [18] to
simulate the client-server differentially private function evaluation, thereby obtaining the

1 See [9] for a survey of results.
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optimally accurate output evaluated on the union of their databases. Although oblivious
transfer is sufficient to close this gap, it is not clear whether this is a necessary assumption.

Indeed, there has been a separate line of work, starting with Haitner, Omri and Za-
rosim [21] demonstrating black-box separations between one-way functions and distributed
differentially private algorithms with optimal accuracies, for two-party functionalities with
long outputs. Khurana, Maji and Sahai [25] showed a black-box separation between public-
key encryption and distributed differentially private algorithms with optimal accuracies for
two-party boolean functionalities. These separations also extend to a range of non-optimal
accuracies that are information theoretically impossible to achieve in the distributed setting.
These results provide evidence that some “strong” cryptographic assumption is likely neces-
sary for optimally accurate (or close to optimally accurate) distributed differentially private
function evaluation. Despite this research, the following question has remained elusive:

“Does there exist any class of functionalities whose distributed differentially private
evaluation with optimal accuracy – necessitates the existence of oblivious transfer?”

We prove that any protocol computing the boolean XOR functionality in a distributed differ-
entially private manner with optimal accuracy and overwhelming probability of agreement
(on the output) between both parties, implies the existence of oblivious transfer. Our result
also directly lends itself to any boolean functionality that contains an embedded XOR on
two adjacent inputs. Roughly, a function f is said to contain an embedded XOR if and only
if the ideal functionality for f can be used to compute the boolean XOR functionality in the
semi-honest setting. We give a formal definition of what it means for a function to contain
an embedded XOR in the technical sections of the paper.

Interestingly, in the setting of secure computation, the ideal XOR functionality is known
to be trivial. This is because the output of this functionality combined with the input of
any individual party completely reveals the input of the other party. Thus, parties can
simply send each other their inputs – and this corresponds to a secure evaluation of the
XOR functionality. However, an optimally accurate distributed differentially private (noisy)
protocol for XOR is not trivial, in fact we show that it implies oblivious transfer. Our proof
makes use of the fact that an ideal (non-noisy) XOR is fully informative about the input of
the other party.

Finally, it is interesting to observe the “philosophical” differences between differential
privacy and secure computation:

In (computationally) differentially-private protocols, “privacy comes first.” We would like
to first ensure privacy of each individual input and then with this constraint, would like
to compute an output which is as accurate as possible.
In secure computation, “accuracy comes first.” We would like to release an accurate
output to the function we are computing – and with this constraint, would like to ensure
privacy of the inputs to the extent possible. Here, we require the transcript to leak no
information about the inputs beyond what can be deduced from the output itself.

Nevertheless, as already mentioned, general secure computation immediately helps achieve
the same (optimal) level of accuracy in distributed differentially-private protocols as the best
achievable accuracy in the client-server setting. By relying completely on oblivious transfer
for secure computation [26], our results show that the reverse is true as well (at least for the
differentially private evaluation of any two-party functionality with an embedded XOR).

1.1 Our Contribution
Before elaborating upon our results, we briefly summarize what is known so far about
accuracy gaps in the distributed differentially private computation of boolean functionalities.
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Alice and Bob with inputs x and y, respectively, wish to compute f(x, y) in a differentially
private manner in the distributed setting. An ε-differentially private protocol for some
functionality f ensures that the probability of Alice’s views conditioned on y and y′ are
λ := eε multiplicatively-close to each other, where y and y′ represented as bit-strings differ
only in one coordinate (i.e. they are adjacent inputs). A protocol between them is α-accurate
if for any x and y, the output of the protocol agrees with f(x, y), with probability at least α.

For boolean functionalities, the optimal accuracy (in the client-server model) is α∗ε := λ
λ+1 ,

where λ = eε. Goyal et al. [19] showed that in the information theoretic setting, f = AND can
only be computed ε-differentially privately up to accuracy α(AND)

ε := λ(λ2+λ+2)
(λ+1)3 . Similarly,

for f = XOR the maximal achievable accuracy in the information theoretic setting is
α

(XOR)
ε := λ2+1

(λ+1)2 . Note that α(XOR)
ε < α

(AND)
ε < α∗ε , for any finite ε > 0.

We say that a function f contains an embedded XOR if there exist inputs x0, x1, y0, y1
and outputs z0, z1 such that f(xa, yb) = zXOR(a,b) for all a, b ∈ {0, 1}. Similarly, we can define
an embedded AND (equivalently, an embedded OR). By observing that any boolean function
f which is sensitive to both parties’ inputs either contains an embedded XOR or AND on
adjacent inputs [3], the maximal achievable accuracy becomes

α(f)
ε :=

{
α

(XOR)
ε , if f contains an embedded XOR on adjacent inputs
α

(AND)
ε , otherwise.

(1)

Given a semi-honest secure protocol for oblivious transfer, the optimal accuracy αε is
achievable for any boolean f . With respect to the necessity of cryptographic assumptions,
Goyal et al. [19] showed that achieving any accuracy between αε and α(f)

ε for any function f in
the distributed setting implies the existence of one-way functions. We strengthen their result
to show that any two-party differentially private protocol that computes the XOR functionality
in a differentially private manner with accuracy close to αε implies the existence of semi-
honest secure oblivious transfer. Our result also extends to a weaker variant of differential
privacy, namely computational differential privacy [37]. All our results hold for two-party
functionalities where both parties obtain the same output with overwhelming probability.
Our results can be summarized as follows (with k denoting the security parameter):

I Informal Theorem 1. Semi-honest oblivious transfer reduces to any two-party ε DP protocol
for XOR with accuracy ρ(> 1/2) such that ρ ≥ αε = eε

1+eε (the optimal accuracy).

I Informal Theorem 2. Semi-honest OT reduces to any two-party εk computationally DP
protocol for XOR with accuracy ρk ≥ αεk = eεk

1+eεk (the optimal accuracy).

I Informal Theorem 3. A (ρk, λkmk − 1, λ
mk
− 1) weak noisy channel [6, 43] reduces to any

two-party εk computationally DP protocol for XOR with (possibly non-optimal) accuracy
ρk(> 1/2) where λk = eεk and mk = ρk/(1− ρk).

We prove the first two theorems via a reduction from (standard) noisy channels, which
are known to imply semi-honest OT [5]. The first theorem is just a restriction of the second
to the information-theoretic setting. The first two can also be viewed as special cases of the
third. Furthermore, for a range of non-optimal accuracies we also show a reduction to weak
noisy channels [6, 43]. Invoking known reductions of OT to weak binary symmetric channels,
we obtain that for a small range of values of εk and possibly non-optimal accuracies ρk such
that α(f)

εk ≥ ρk >> α∗εk , there exist constants c1,
{
c2 <

ec1

1+ec1

}
such that for all εk > c1 and

ρk > c2, any two-party εk-private ρk-accurate computational DP protocol for XOR (or more
generally any functionality with an embedded XOR on adjacent inputs) implies OT.
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1.2 Related Work

The tradeoff between privacy and accuracy is quite central in designing differentially private
algorithms. As mentioned before, in the client-server setting (where a single trusted server
owns the entire database), the work of Dinur and Nissim [7] first showed limitations for a
wide class of private algorithms. These limitations were further explored in [12, 15, 23].

The work of Dwork et al. [8, 11] proposed generic techniques for differentially private
function evaluation, based on adding noise as a function of the sensitivity of database queries.
The optimality of such techniques was studied in various settings in [13, 22, 41]. Variants of
these techniques were shown to be optimal for certain classes of queries by [17, 20], and were
shown to be non-optimal for other classes by Brenner and Nissim [2].

As mentioned before, there has also been a significant amount of work characterizing the
accuracy of two-party differentially-private protocols. McGregor et al. [36] first showed that
information theoretically, a large accuracy loss is inherent to the distributed differentially
private computation of functionalities such as the inner product and hamming distance over
n-bit inputs. This was followed by the work of Goyal et al. [19] who showed large gaps in the
client-server and two-party accuracies for the differentially-private computation of boolean
functionalities. Finally, the works of Haitner et al. [21] and Khurana et al. [25] showed that
it is impossible to use one-way functions or even key-agreement in a black-box way to bridge
any of these accuracy gaps. Our work subsumes these results for the case of XOR.

There has also been a bulk of work on the complexity of two-party finite functionalities
in the information theoretic setting [26, 3, 32, 27, 28, 29, 31, 33]. Chor and Kushilevitz [4]
established that all Boolean functions either reduce to SFE or can be trivially simulated.
In the computationally bounded setting, Maji et al. [34] give a complete characterization
of deterministic two-party finite functionalities while a series of works [35, 30, 24] give an
information-theoretic characterization of (randomized, fixed-role) two-party functionalities.

Note that all constant communication protocols for Boolean functionalities can be viewed
as two-party ideal finite functionalities, and therefore characterized according to [35, 30, 24].
Yet, our characterization extends to any polynomial-round protocols for differentially private
computation with optimal accuracy, of certain classes of Boolean functionalities. This requires
extra techniques to account for the entire transcript of protocol execution, which may leak
information over and above the output of the ideal functionality.

1.3 Technical Overview

We consider the simple setting of distributed differentially private evaluation of boolean
functions. Alice and Bob, with inputs x and y respectively, execute a protocol to compute a
Boolean function f(x, y). The protocol must preserve privacy (according to the differential
privacy guarantee) of the input of each party. From [19], we know that any non-trivial
Boolean function must embed an AND or an XOR minor on adjacent inputs. In this work,
we focus on the XOR functionality; and our proof directly extends to any functionality with
an embedded XOR on adjacent inputs. We also consider protocols with perfect agreement,
that is, where Alice and Bob always get the same output at the end of the protocol (which
is equivalent to saying that the output is part of the transcript). However, our proof also
extends to protocols where parties agree on the output with overwhelming probability.2

2 Note that if we relax the requirement of output agreement, then there is a simple information theoretically
secure protocol achieving optimal accuracy.
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Our main idea will be to use any protocol that implements the XOR functionality to
construct an ideal noisy channel. An ideal noisy channel with flip probability p < 1/2 is a
functionality that takes input a bit X from the sender, samples an independent bernoulli
random variable (the ‘error’) E, where E ∼ Ber(p), computes X̃ = (X ⊕ E) and outputs it
to the receiver.

Consider an optimally accurate differentially private evaluation of the boolean XOR
functionality, where both parties agree on the output with overwhelming probability (and can
then publish the output). In this case, the output of the differentially private functionality
can be interpreted as a “noisy” version of the correct output. In the optimally accurate
setting, the probability that the output is correct is exactly αε = eε

1+eε . In other words, let Z
denote the output of the protocol, then for all inputs X,Y ; the output Z = (X ⊕ Y )⊕ E,
where E is a bernoulli random variable E ∼ Ber( 1

1+eε ).
Our protocol to realize a noisy channel is simple: the sender (Alice) and receiver (Bob)

sample independent random (private) input bits X $←{0, 1} and Y $←{0, 1}. They invoke
the differentially private protocol for XOR with inputs (X,Y ) and obtain output Z, where
Z = (X ⊕ Y ) ⊕ E, and E is the error as defined above. The sender outputs X and the
receiver outputs Z ⊕ Y (= X ⊕E). It is easy to see that this protocol correctly implements a
noisy channel with noise E ∼ Ber( 1

1+eε ). However observe that the underlying differentially
private protocol for XOR may not be an ideal secure computation protocol for the noisy
XOR functionality. In particular, the protocol transcript may leak extra information over the
official output. Thus, it remains to prove that the above protocol implements a secure noisy
channel – while only relying on the security guarantee of the differential privacy condition.

In the computational setting, the ideal noisy channel functionality can be realized by a
protocol with the following security property [5]: roughly, no efficient distinguisher on the
sender’s end, or on the receiver’s end respectively, should be able to distinguish the cases
when the error E was 0 from when E was 1. More formally, let DR denote a distinguisher that
obtains the entire view of the receiver, and DS denote a distinguisher that obtains the entire
view of the sender at the end of the protocol. Then, for any non-uniform PPT distinguisher
DR, the following security guarantee is required to hold: Pr[DR = 1|E = 0]−Pr[DR = 1|E =
1] = negl(k) over the randomness of the protocol. Symmetrically, at the sender’s end, for any
non-uniform PPT distinguisher DS , Pr[DS = 1|E = 0]− Pr[DS = 1|E = 1] = negl(k) over
the randomness of the protocol. Here negl(·) denotes some function that is asymptotically
smaller than the inverse of any polynomial function, and k denotes the security parameter.

Now, the challenge is to prove that the protocol outlined above satisfies these security
properties – that is, no efficient distinguisher on the sender side, or on the receiver side can
distinguish the case when E = 0 from when E = 1. Here, we use the following properties of
the optimally accurate differentially private XOR functionality.

Because of optimal accuracy, the protocol output is correct with probability exactly eε

1+eε .
The (ideal, non-noisy) XOR functionality is fully informative: its output along with any
of the parties’ inputs, can be used to correctly compute the input of the other party.

Since the protocol is optimally accurate, the protocol output is correct – that is, Z = X⊕Y
with probability exactly αε = eε

1+eε . Moreover, by the fully-informative property of XOR, the
correct output, together with the input of any party can be used to correctly compute the
other party’s input. In other words, for all X,Y , the noisy output Z of the differentially
private protocol, together with the input Y , helps compute a guess for the other party’s
input that is correct with probability at least αε (Z ⊕ Y equals X with probability αε).

Note that if a party could guess the other party’s input with probability any better than
αε, this would directly violate differential privacy. Therefore, the output already allows
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computing the best possible guess (upto differential privacy limits) for the other party’s
input. Informally, this means that any extra information about the error (say, leaked from
the transcript) could be used to obtain a better guess of the other party’s input and directly
violate differential privacy. To prove security of our noisy channel, we must formalize these
arguments. This is done in Section 3 and forms the core of our proof of security.

2 Preliminaries

Notation. Let π := 〈A,B〉 be a two-party protocol. Let viewPπ (xA, xB) be the random
variable which, in a random execution of π with inputs (xA, xB) consists of (xP , RP , trans),
where RP is the randomness used by party P and trans is the sequence of messages ex-
changed between the parties in the sampled execution. Let outP be the function applied
by party P on viewPπ (xA, xB) to obtain the output for P , outP (viewPπ (xA, xB)). We say
that the protocol is symmetric if both parties receive the same output, i.e., for every x, y:
outA(viewAπ (xA, xB)) = outB(viewBπ (xA, xB)). This is called the official output of the pro-
tocol, denoted by outπ(xA, xB). For the rest of this paper, we consider only symmetric
protocols, however we note that our results can be easily extended to protocols in which
both parties agree on the output with overwhelming probability.

In the computational setting, we consider a family of protocols {πk}k∈N, where k is the
security parameter. Then, the view of party P ∈ {A,B} is denoted by viewPπ (k, xA, xB).

2.1 Noisy Channels
Informally, a noisy channel takes as input a bit b and outputs bit b′ = b ⊕ e where error
bit e ∼ Ber(1 − ρ) is sampled independently, and ⊕ is the bitwise exclusive-or operation.
Roughly, the security requirement is that the error e remains “semantically secure” for both
the sender and the receiver. Somewhat counterintuitively, we consider the flip probability of
a ρ-noisy channel to be (1− ρ). This is done deliberately to match DP protocols.

A (ρ, α, β)-weak binary symmetric channel [6, 43] is a noisy channel where the error is
no longer “semantically secure”. In particular, a malicious sender or receiver obtains partial
leakage on the error added by the channel, and (α, β) denote sender and receiver leakage
respectively. We defer the formal definitions to the full version.

Any protocol implementing a noisy channel is sufficient to implement the semi-honest OT
functionality. A reduction between these primitives was first given by Crépeau and Kilian
[5]. Furthermore, [43] showed that any protocol implementing the weak binary symmetric
channel for a certain range of parameters of ρ, α, β), is sufficient to implement OT. Although
these reductions are information-theoretic, they also carry over to the computational setting.
We use the following corollary from [43]:

I Corollary 1. Let ρ, α, β be constants, and let ε̄ = (1−ρ)2

(1−ρ)2+ρ2 . If at least one of the conditions

2α+β+ ε̄ ≤ 0.12, or β+ ε̄ < (1−α)4

44 , or 88α+44ε̄ < (1− β)2, or 196α+98β+ 49
2 < (1− 2ε̄)2

holds, then there exists a protocol that uses a (ρ, α, β)-passive weak BSC and efficiently
implements OT secure in the semi-honest model.

2.2 Differential Privacy
We give the formal definition of a weak notion of computational differential privacy. Assuming
dense sets, this is a strictly weaker definition than other (simulation-based) definitions of
CDP [37]. Therefore, our reductions automatically extend to other definitions.
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I Definition 2 (ε-Indistinguishable-Computational Differential Privacy, [37]). We say that an
ensemble {Mk}k∈N of randomized functionsMk : {0, 1}n 7→ Rk with finite range Rk, provides
εk-IND-CDP if there exists a negligible function negl : N 7→ R such that for every non-uniform
PPT algorithm (“distinguisher”) D, every polynomial p(·), every sufficiently large k ∈ N,
every (x, x′) ∈ {0, 1}n × {0, 1}n satisfying |x− x′|h = 1, and every advice string zk of size at
most p(k) it holds that: Pr[Dk(Mk(x)) = 1] ≤ eεk × Pr[Dk(Mk(x′)) = 1] + negl(k), where
we write Dk(y) for D(1k, zk, y) and the probability is over the mechanism Mk and Dk.

I Definition 3 (Differential Privacy over a subset of transcripts). We say that an ensemble
{Mk}k∈N of randomized functions Mk : {0, 1}n 7→ Rk with finite range Rk, provides εk-IND-
CDP over some subset of executions S if there exists a negligible function negl : N 7→ R such
that for every non-uniform PPT algorithm (“distinguisher”) D, every polynomial p(·), every
sufficiently large k ∈ N, every adjacent pair (x, x′) ∈ {0, 1}n×{0, 1}n, and every advice string
zk of size ≤ p(k) Pr[Dk(Mk(x)) = 1∧ (Mk(x) ∈ Sk)] ≤ eεk ×Pr[Dk(Mk(x′)) = 1∧ (Mk(x′) ∈
Sk)] + negl(k) where we write Dk(y) for D(1k, zk, y) and the probability is taken over the
randomness of mechanism Mk and distinguisher Dk.

I Definition 4 (Two-Party Differential Privacy). Let π : 〈A,B〉 be a protocol with inputs
of A and B in {0, 1}n. Then π provides ε-DP if: (1) for every x ∈ {0, 1}n the mechanism
represented by the function viewAπ (x, ·) over the inputs y ∈ {0, 1}n is ε-DP, and (2) for every
y ∈ {0, 1}n the mechanism represented by viewBπ (·, y) over the inputs x ∈ {0, 1}n is ε-DP.

In the two-party computational setting, εk-IND-CDP is defined analogously. Formally,
let {πk := 〈A,B〉(1k)}k∈N be an ensemble of interactive functions where the inputs of
A and B are in {0, 1}n. We say that {πk}k∈N provides εk-IND-CDP if: (1) for every
x ∈ {0, 1}n {viewAπ (k, x, ·)}k provides εk-IND-CDP over the inputs y ∈ {0, 1}n, and (2) for
every y ∈ {0, 1}n {viewAπ (k, ·, y)}k provides εk-IND-CDP over the inputs x ∈ {0, 1}n.

I Definition 5 (Accuracy in Differential Privacy [19]). The accuracy of a randomized Boolean
mechanism M : {0, 1}n 7→ {0, 1} with respect to a Boolean function f : {0, 1}n 7→ {0, 1}
is defined as: Accf (M) = minx{Pr[M(x) = f(x)]}, where the probability is taken over the
randomness of M .

The accuracy of a symmetric two-party protocol π := 〈A,B〉 w.r.t. f : {0, 1}n×{0, 1}n 7→
{0, 1} is the accuracy of the (Boolean) mechanism outπ : {0, 1}n × {0, 1}n 7→ {0, 1}; where
outπ returns the official output. Accuracy in the computational setting is defined analogously.

For every Boolean mechanism M : {0, 1}n 7→ {0, 1} and Boolean function f : {0, 1}n 7→
{0, 1}, if M is ε-DP then: Accf (M) ≤ λ

1+λ where λ = eε.3 We call the bound ρ = λ
1+λ ,

the optimal accuracy, achieved by setting M(x) = f(x)⊕ e such that Pr[e = 0] = λ
1+λ .

If M satisfies ε-IND-CDP, then Accf (M) ≤ λ
1+λ + negl(k) for a negligible function negl(·).

If a symmetric protocol ensemble {πk}k∈N provides ε-IND-CDP for a constant ε > 0, then
the accuracy of this ensemble w.r.t. the XOR function is at most λ+negl(k)

1+λ = ρ+ negl′(k)
for constant ε. The accuracy ρ can be achieved using secure two-party computation [37].

3 Noisy Channels Reduce to Optimal Two-Party IND-CDP

I Theorem 6. If there exists a two-party εk-IND-CDP protocol with accuracy ρk(> 1/2)
such that ρk ≥ eεk

1+eεk with respect to the exclusive-or function for a constant εk > 0, then
there exists a protocol implementing the ρk-noisy-channel functionality.

3 Informally, if this is not the case, there exists a distinguisher such that the ratio between the probability
that it guesses the input correctly versus incorrectly is greater than eε, thereby violating ε-DP.
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Proof. Let {πk}k where πk = 〈A,B〉(1k) be an ensemble of εk-IND-CDP protocols for
computing the XOR function with accuracy ρk ≥ λ

1+λ where λ = eεk , and εk > 0 is a constant.
Note that since the protocol is εk-IND-CDP and εk > 0, we have that ρk ≤ λ

1+λ + negl(k) for
some negligible function negl(k). For the rest of the proof, we denote εk by ε, and ρk by ρ.

The following protocol ensemble {πk := 〈S,R〉(1k)}k implements a ρ-noisy-channel: S
receives bit x as input, and R has no input. R samples a random bit y and the parties
execute the ε-IND-CDP protocol 〈A(x), B(y)〉(1k) and obtain the (same) bit z as official
output of this protocol. R outputs x̃ = z ⊕ y and S outputs ⊥. The correctness of this
protocol follows directly from the accuracy of the ε-IND-CDP protocol. We now show that it
satisfies sender-security.

Sender security. Assume to the contrary, that the protocol does not satisfy sender-security.
That is, there exists a non-uniform PPT distinguisher DR, a fixed polynomial q(·), and
infinitely many values k for which (there exists a polynomial-sized advice string zk such that)
AdvRπ (k) ≥ 1/q(k). Fix one such k from now on and let:

pk = Pr[DR(zk, viewRπk) = 1|E = 0]− Pr[DR(viewRπk) = 1|E = 1]. (2)

Note that AdvRπ (k) = |pk|. Without loss of generality, let pk > 0 for this k, and therefore
by assumption pk ≥ 1/q(k). We abuse notation and write DR = 1 to denote the event that
DR(1k, zk, viewRπ′

k
) = 1.4 Since pk 6= 0 we must have that 0 < Pr[DR = 1] < 1.

Let E be the random variable denoting the error bit for the ε-IND-CDP protocol. That
is, for the ε-IND-CDP protocol, E = x̃ ⊕ x. Since we are in the computational setting,
the accuracy of the protocol may be different for each input, denoted by: ρ00, ρ01, ρ10, ρ11.
However, they must all be within a negligible distance from each other and therefore lie
within the interval [ρ− negl(k), ρ+ negl(k)], where ρ denotes ρ00. Since a correct output is
equivalent to E = 0, and each input is selected with equal probability, Pr[E = 0] (which
is equivalent to “average” accuracy) also lies in the same interval. We show that if pk is
noticeable then differential privacy is violated on the set of transcripts where DR outputs 1.

I Claim 7. Pr[E = 0 ∧ DR = 1] > eε × Pr[E = 1 ∧ DR = 1] + pk
2 .

Proof. Let Pr[E = 0] = ρ∗, and µ(k) be a negligible function so that ρ∗ = λ
1+λ +µ(k) > 1/2.

Also, Pr[E = 0]/Pr[E = 1] is equal to ρ∗/(1− ρ∗) = λ+ µ′(k) for some negligible function
µ′. Now, since Pr[DR = 1] 6= 0, we can write (using Bayes’ rule):

Pr[E = 0 ∧ DR = 1] = Pr[DR = 1|E = 0]× Pr[E = 0]
=
(
pk + Pr[DR = 1|E = 1]

)
× Pr[E = 0] (By equation 2)

=
(
pk + Pr[E = 1|DR = 1]× Pr[DR = 1]

Pr[E = 1]

)
× Pr[E = 0] (Bayes’ rule)

= pk · Pr[E = 0] + Pr[E = 1 ∧ DR = 1]× Pr[E = 0]
Pr[E = 1]

Note that: pk ·Pr[E = 0] = pkρ
∗ > pk/2, and Pr[E=0]

Pr[E=1] = ρ∗

1−ρ∗ = λ+µ′(k) > λ. Therefore,
Pr[E = 0 ∧ DR = 1] > pk

2 + λ · Pr[E = 1 ∧ DR = 1]. J

4 Note that the input of the sender in sampling view viewRπ′
k
is uniformly chosen by definition of sender-

security; and further, since k has been fixed, letting DR := DR(1k, zk, viewRπ′
k
) is unambiguous and well

defined. Note that now, pk = Pr[DR = 1|e = 0]− Pr[DR = 1|e = 1].
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Obtain inputs Mk(x), Sk, D′k
If Sk(Mk(x)) = 1, Dk(Mk(x)) = D′k(Mk(x))
If Sk(Mk(x)) 6= 1, Dk(Mk(x)) = 0

Figure 1 Algorithm for ε-IND-CDP Distinguisher Dk.

We say that a subset S of transcripts is PPT-checkable, if there exists a probabilistic
poly-time “checking” algorithm for deciding membership of a transcript in S.

I Claim 8. If Pr[E = 0 ∧ DR = 1] > eε × Pr[E = 1 ∧ DR = 1] + pk
2 is such that pk

2 is
non-negligible over uniformly chosen sender input, then the protocol ensemble {πk}k does
not preserve ε-IND-CDP on the PPT-checkable subset of transcripts satisfying DR = 1.

Proof. From Pr[E = 0 ∧ DR = 1] > eε Pr[E = 1 ∧ DR = 1] + pk
2 it follows that Pr[x̃ =

x ∧ DR = 1] > eε Pr[x̃ 6= x ∧ DR = 1] + pk
2 , over the randomness of x where x̃ denotes the

output of the receiver. Since x is uniformly chosen in {0, 1},

Pr[x̃ = 1 ∧ DR = 1|x = 1] + Pr[x̃ = 0 ∧ DR = 1|x = 0]

> eε (Pr[x̃ = 0 ∧ DR = 1|x = 1]) + eε (Pr[x̃ = 1 ∧ DR = 1|x = 0]) + pk
2

Now, it is easy to observe that either of the following statements are true.
1. Pr[x̃ = 1 ∧ DR = 1|x = 1] > eε × Pr[x̃ = 1 ∧ DR = 1|x = 0] + pk

4 OR,
2. Pr[x̃ = 0 ∧ DR = 1|x = 0] > eε × Pr[x̃ = 0 ∧ DR = 1|x = 1] + pk

4

In either case, it is possible to claim the existence of a distinguisher. If pk is noticeable
and statement 1 holds, then there exists a distinguisher D1

k
′ with output equal to receiver

output x̃, which violates IND-CDP over the PPT checkable subset corresponding to DR = 1.
On the other hand, if pk is noticeable and statement 2 is true, then there exists a distinguisher
D2
k
′ with output equal to 1 − x̃, which violates IND-CDP over the PPT checkable subset

corresponding to DR = 1.
It follows from this claim that if pk is noticeable, then the protocol ensemble {πk}k does

not preserve ε-IND-CDP on the PPT-checkable subset of transcripts on which DR = 1,
because there exists distinguisher D′k ∈ {D1

k
′
, D2

k
′} and a corresponding pair of inputs

(x∗, x∗′) ∈ ({0, 1} × {0, 1}) such that Pr[D′k = 1 ∧DR = 1|x = x∗] > eε × Pr[D′k = 0 ∧DR =
1|x = x∗′] + pk

4 . In other words, there exists a non-uniform distinguisher that violates
ε-IND-CDP on this subset. This proves the claim. J

I Claim 9. A two-party protocol ensemble that provides ε-IND-CDP over all executions also
provides ε-IND-CDP over any PPT-checkable subset of executions.

Proof. Assume to the contrary that there exists a two-party ε-IND-CDP protocol for which
there is a non-uniform PPT distinguisher D′k that violates ε-IND-CDP over some PPT-
checkable subset of executions (denoted by Sk). Let Sk denote the code of a PPT-checking
algorithm that returns 1 if some execution Mk(x) ∈ Sk, and 0 otherwise.

Then, we construct a non-uniform PPT distinguisher Dk (Figure 1) that accepts Sk, D′k
as advice zk, and violates ε-IND-CDP for the protocol.

We know that for some polynomial p(·), some sufficiently large k ∈ N, some (x∗, x∗′) ∈
{0, 1} × {0, 1}, some advice string z′k of size at most p(k) and all functions negl : N 7→ R, it
holds that: Pr[D′k(Mk(x∗)) = 1 ∧ (Mk(x∗) ∈ Sk)] > eεk Pr[D′k(Mk(x∗′)) = 1 ∧ (Mk(x∗′) ∈
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Sk)] + negl(k), where the probability is taken over the randomness of mechanism Mk and
distinguisher D′k, and D′k(y) represents D′(1k, zk, y). Then, by a simple manipulation:

Pr[Dk(Mk(x∗)) = 1] = Pr[Dk(Mk(x∗)) = 1 ∧ (Mk(x∗) ∈ Sk)]
> eε Pr[D′k(Mk(x∗′)) = 1 ∧ (Mk(x∗′) ∈ Sk)] + negl(k)
= eε

(
Pr[Dk(Mk(x∗′)) = 1 ∧ (Mk(x∗′) ∈ Sk)] + Pr[Dk(Mk(x∗′)) = 1 ∧ (Mk(x∗′) 6∈ Sk)]

)
+ negl(k),= eε Pr[Dk(Mk(x∗′)) = 1] + negl(k).

Therefore, we have a non-uniform PPT distinguisher Dk such that for some polynomial
p(·), some sufficiently large k ∈ N, for the same (x∗, x∗′) ∈ ({0, 1} × {0, 1}), some advice
string zk of size at most p(k) and all functions negl : N 7→ R it holds that Pr[D′k(Mk(x∗)) =
1] > eεk × Pr[D′k(Mk(x∗′)) = 1] + negl(k). This completes the proof of this claim. J

From these claims, it follows that if pk is noticeable, then {πk}k does not preserve ε-IND-
CDP. This is a contradiction, therefore pk = negl(k), and the noisy channel is sender-secure.

Receiver security. The output z of the ε-IND-CDP-protocol, obtained by both parties, is
symmetric with respect to the input of each party. Moreover, since the inputs of both parties
are chosen uniformly at random, the security of the receiver follows in a manner similar to
sender security. This completes the proof of the theorem. J

Combining this with Crépeau-Kilian’s reduction [5] of OT to noisy channels, we obtain:

I Corollary 10. If there exists a two-party εk-IND-CDP protocol with accuracy ρk such that
ρk ≥ eεk

1+eεk with respect to the exclusive-or function for a constant εk > 0, then there exists
an ensemble of protocols implementing the semi-honest oblivious-transfer functionality in the
computational setting.

4 Noisy Channels Reduce to Non-Optimal Two-Party IND-CDP

I Theorem 11. If there exists a two-party εk-IND-CDP protocol with non-optimal accuracy
ρ1
k ≤ eεk

1+eεk with respect to the exclusive-or function for a constant εk > 0, then there
exists a protocol implementing the (ρ1

k,
λ
m − 1, λm − 1)-passive weak binary symmetric channel

functionality where ρ1
k > 1/2, λ = eεk and m = ρ1

k

1−ρ1
k

.

The proof of this theorem follows in a similar manner as Theorem 6, and can be found in the
full version of our paper. While our reduction to weak noisy channels holds for all parameters
ε > 0 and accuracies ρ1

k, the range of parameters for which such channels give OT is small.
The following corollary follows from Theorem 11, and Corollary 1.

I Corollary 12. If there exists a two-party εk-IND-CDP protocol with non-optimal accuracy
ρ1
k ≤ eεk

1+eεk with respect to the exclusive-or function for a constant ε > 0, then there exist
constants c1,

{
c2 <

ec1

1+ec1

}
, such that for all εk > c1 and ρ1

k > c2, there is a protocol
implementing the semi-honest oblivious transfer functionality.

5 Conclusion and Open Problems

5.1 Extension to Functionalities with an Embedded XOR
Recall that we say that a function f contains an embedded XOR on adjacent inputs if there
exist adjacent inputs x0, x1, y0, y1 and outputs z0, z1 such that f(x1, yb) = zXOR(a,b) for all

ICALP 2016



29:12 Do Distributed Differentially-Private Protocols Require Oblivious Transfer?

a, b ∈ {0, 1}. It is easy to observe that any finite functionality f with an embedded XOR,
which can be computed with optimal accuracy restricted to its embedded XOR on adjacent
inputs, can be used to obtain a differentially private optimally accurate XOR functionality
over boolean inputs. Accuracy of XOR follows from the accuracy of the original functionality
f , and privacy of XOR follows because differential privacy is a worst-case guarantee which
must be maintained even when restricted to a single bit of the adjacent inputs. The resulting
differentially private optimally accurate XOR protocol can then be used to obtain a secure
noisy channel and therefore, perform oblivious transfer.

5.2 Open Problems

Characterizing All Functionalities. It remains an intriguing open problem to obtain a
complete characterization of functionalities whose differentially private evaluation with
optimal accuracy in a distributed setting, is cryptographically complete. It is interesting to
obtain a complete characterization even for boolean functionalities, since the differentially
private evaluation of any non-trivial functionality with optimal accuracy (such as the inner
product and hamming distance functionalities considered by McGregor et al. [36]) implies the
differentially private evaluation of a non-trivial boolean functionality with optimal accuracy.

Consider, the case of boolean AND. This functionality is interesting, because any non-
trivial boolean functionality must contain embedded AND or XOR on adjacent inputs [3].
Therefore, for instance, showing that any (possibly polynomial round) protocol that gives
a differentially private protocol for the boolean AND functionality with optimal accuracy,
is cryptographically complete – would imply the completeness of an optimally accurate
distributed differentially private protocol for any non-trivial boolean functionality. However,
unlike XOR, the AND functionality is not completely informative about the other party’s
input. In case the input of a party is 0, even a non-noisy output of the ideal AND functionality
conveys absolutely no information about the input of the other party. In case the input is 1,
the output allows to exactly compute the other party’s input. Therefore, if a party has input
0, the differentially-private output would be completely useless for this party, while there
could be additional leakage from the transcript (allowed by differential privacy) that we do
not know how to use. Such functionalities appear to have interesting connections to weak
oblivious transfer, from which it is not completely known how to obtain oblivious transfer.

Characterizing non-optimal accuracies. From the work of McGregor et al. [36] and Goyal
et al. [19] in the information theoretic setting, it is clear that for any privacy parameter ε,
there is a constant gap in the maximal achievable accuracies of any ε differentially private
protocol in the client-server and distributed settings. Goyal et al. [19] additionally showed
that any hope of bridging this gap would imply the existence of one-way functions. The
black box separation results of [21, 25] also hold for differentially private protocols with any
accuracy in this range. Yet, it is unclear whether all protocols with accuracies in this range
must imply the existence of oblivious transfer.

Our techniques for non-optimal accuracies give rise to weak noisy channels and weak
versions of oblivious transfer, which for a constant range of parameters, do imply full-fledged
oblivious transfer. Yet, there is a large gap between the upper and lower bounds for weak
oblivious transfer amplification, and since our reductions go via noisy channels – this gap
lends itself to our setting. We believe that this provides additional motivation to revive (and
continue) research on the characterization of weak noisy channels.
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Abstract
We formalize a cryptographic primitive called functional commitment (FC) which can be viewed
as a generalization of vector commitments (VCs), polynomial commitments and many other spe-
cial kinds of commitment schemes. A non-interactive functional commitment allows committing
to a message in such a way that the committer has the flexibility of only revealing a function of
the committed message during the opening phase. We provide constructions for the functionality
of linear functions, where messages consist of vectors over some domain and commitments can
later be opened to a specific linear function of the vector coordinates. An opening for a function
thus generates a witness for the fact that the function indeed evaluates to a given value for the
committed message. One security requirement is called function binding and requires that no
adversary be able to open a commitment to two different evaluations for the same function.

We propose a construction of functional commitment for linear functions based on constant-
size assumptions in composite order groups endowed with a bilinear map. The construction has
commitments and openings of constant size (i.e., independent of n or function description) and is
perfectly hiding – the underlying message is information theoretically hidden. Our security proofs
build on the Déjà Q framework of Chase and Meiklejohn (Eurocrypt 2014) and its extension by
Wee (TCC 2016) to encryption primitives, thus relying on constant-size subgroup decisional as-
sumptions. We show that FC for linear functions are sufficiently powerful to solve four open
problems. They, first, imply polynomial commitments, and, then, give cryptographic accumu-
lators (i.e., an algebraic hash function which makes it possible to efficiently prove that some
input belongs to a hashed set). In particular, specializing our FC construction leads to the first
pairing-based polynomial commitments and accumulators for large universes known to achieve
security under simple assumptions. We also substantially extend our pairing-based accumulator
to handle subset queries which requires a non-trivial extension of the Déjà Q framework.
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1 Introduction

Commitment schemes are fundamental primitives used as building blocks in a number of
cryptographic protocols. A commitment scheme emulates a publicly observed safe; it allows
a party to commit to a message m so that this message is not revealed until a later moment
when the commitment is opened and the receiver gets convinced that the message was indeed
m. Two important security properties are called hiding and binding. The former requires
that no information about the message is revealed to an observer. The latter property means
that the committing party cannot change the message after committing to it.

Several works considered commitment schemes where the committer has the flexibil-
ity of only revealing some partial information about the message (rather than the entire
message) during the opening phase. In vector commitments [22, 10], messages are vectors
and commitments are only opened with respect to specific positions. Another example is
polynomial commitments, where users commit to a polynomial and only reveal evaluations
of this polynomial on certain inputs.

In this work, we consider functional commitments (FC) for linear functions. Namely,
messages consist of vectors (m1, . . . ,mn) and commitments can be partially opened by having
the sender verifiably reveal a linear combination

∑n
i=1 xi ·mi, for public coefficients {xi}ni=1.

We show that this functionality implies many other natural functionalities, including vector
commitments, polynomial commitments and cryptographic accumulators. We provide an
efficient FC realization for linear functions based on well-studied assumptions in groups with
a bilinear map. In turn, our scheme implies solutions to past natural questions. We give the
first constructions under constant-size assumptions of two important primitives: polynomial
commitments and cryptographic accumulators. In both cases, earlier solutions were based
on non-standard assumptions where the number of input elements (and thus the strength of
the assumption) depended on specific features of the schemes (like the maximal degree of
committed polynomials). Our third result is a solution to an accumulator supporting subset
queries, which is also based on constant size assumptions.

1.1 Related Works and the Open Problems
Functional commitments. Functional commitments can be seen as the natural commitment
analogue of functional encryption [31, 6]. The latter primitive allows restricting what the
receiver learns about encrypted data: when decrypting using a secret key SKF for the
function F , the decryptor learns F (x) and nothing else. Likewise, FC schemes allow the
committer to accurately control what the opening phase can reveal about the message.

Functional commitments were implicitly suggested by Gorbunov, Vaikuntanathan and
Wichs [17] who described a statistically-hiding commitment scheme for which the sender
is able to only reveal a circuit evaluation C(x) when x is the committed input. While
their solution supports arbitrary circuits and relies on well-studied lattice assumptions, its
input x must be committed to in a bit-by-bit manner (or at least by splitting x into small
blocks). We remark that, assuming a common reference string, non-interactive FC for general
functionalities can be realized by combining ordinary statistically-hiding commitments with
non-interactive zero-knowledge (NIZK) proofs [3]. Here, we focus on the problem of achieving

http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.30
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a better efficiency for more restricted (yet, sufficiently powerful for many applications)
functionalities. Assuming a common reference string (as in all non-interactive perfectly
hiding commitments), we aim at efficient constructions supporting short witnesses without
resorting to the machinery of NIZK proofs. In particular, we aim at constant-size commitment
strings (regardless of how long the message is) supporting concise witnesses.

In the literature, a number of earlier works consider settings where a sender is given
the flexibility of revealing only a partial information about committed data. A verifiable
random function [25], for example, can be seen as a perfectly binding commitment to a
pseudo-random function key for which the committer can convince a verifier about the correct
function evaluation for the committed key on a given input. Selective-opening security [16]
addresses the problem of proving the security of un-opened commitments when an adversary
gets to see the opening of other commitments to possibly correlated messages.

Zero-knowledge sets, as introduced by Micali, Rabin and Kilian [24], are another prominent
example where users commit to a set S or an elementary database and subsequently prove
the (non-)membership of some elements without revealing any further information (not
even the cardinality of the committed set S). Ostrovsky, Rackoff and Smith [27] envisioned
committed databases for which the sender can demonstrate more general statements than
just membership and non-membership.

Vector commitments. Concise vector commitments were first suggested by Libert and
Yung [22] and further developed by Catalano and Fiore [10]. They basically consist of
Pedersen-like [30] commitments to vectors (m1, . . . ,mn) where a constant-size opening
(where “constant” means independent of n) allows the sender to open the commitment
for only one coordinate mi without revealing anything on other coordinates. The initial
motivation of vector commitments was the design of zero-knowledge databases with short
proofs [11, 22] via mercurial commitments [12] supporting short coordinate-wise openings
[22]. While concise vector commitments can be based on long-lived hardness assumptions
like RSA or Computational Diffie-Hellman [10], they either require groups of hidden order or
public keys of size O(n2) if n is the dimension of committed vectors. In contrast, solutions
based on variable-size assumptions allow for public keys of size O(n), which leaves open the
following problem.

Problem 1: Is there a concise vector commitment scheme achieving linear-size public keys
under constant-size assumptions in groups with a bilinear map?

Polynomial commitments. As introduced by Kate, Zaverucha and Goldberg [19], polyno-
mial commitments are a mechanism whereby a sender can generate a constant-size commit-
ment to a polynomial P [Z] (where “constant” means independent of the degree) in such a
way that a constant-size witness can convince a verifier that the committed P [Z] indeed
evaluates to P (i) for a given i. Polynomial commitments find natural applications in the
context of verifiable secret sharing [14], anonymous credentials with attributes [7] or in
optimized flavors of zero-knowledge databases which do not seek to hide the size of the
committed set. They also imply vector commitments, as observed in [7]. Camenisch et al.
[7] used vector commitments in a modular design of anonymous credentials where users’
credentials are associated with descriptive attributes. While the commitments in [19, 7] were
based on parameterized assumptions, the problem described below has been open.

Problem 2: Design a polynomial commitment based on constant-size assumptions.

ICALP 2016
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Accumulators. Cryptographic accumulators can be interpreted as commitments, especially
when the hashing algorithm is randomized. Accumulators [2] are closely related to zero-
knowledge sets in that they make it possible to hash a set S while efficiently generating
witnesses guaranteeing the inclusion of certain elements in the hashed set. Unlike zero-
knowledge sets, they do not hide the cardinality of the underlying set but usually achieve
a better efficiency via short membership witnesses. The first family of accumulators based
on number theoretic techniques relies on groups of hidden order [2, 1, 23, 4] and includes
proposals based on the Strong RSA assumption [1, 21]. The second family [26, 8], which was
first explored by Nguyen [26], appeals to bilinear maps (a.k.a. pairings) and assumptions
whose hardness depends on a parameter q determined by features of the scheme or the
number of adversarial queries.

Solutions based on the Strong RSA assumption feature short public parameters and
readily extend into universal accumulators [21] (where non-membership witnesses can show
that a given input was not accumulated) or dynamic accumulators [9] (where witnesses
can be autonomously updated when the hashed set is modified). On the other hand, they
usually require expensive operations to injectively encode set elements as prime numbers.
While pairing-based schemes [26, 8] do not need such a prime-number-encoding, they require
linear-size public parameters in the maximal number of accumulated elements. On the
positive side, they are useful in applications where the number of hashed elements cannot
exceed a pre-determined bound. Pairing-based accumulators also proved useful in the context
of authenticated data structures. Papamanthou et al. [29] used them to authenticate set
operations and notably prove (using a constant-size witness) the inclusion of a given set in
the accumulated set. The same technique was extended [29] to provide evidence that two
accumulated sets have a given intersection.

A third family of accumulators [28, 4] builds on hash trees rather than number theoretic
assumptions. Its disadvantage is that witnesses have size O(logN) (where N denote the
cardinality of hashed sets) whereas number-theoretic solutions enable O(1)-size witnesses.

The security properties of accumulators were recently re-formalized by Derler et al.
[15] who showed connections with other primitives. It was notably showed that, when en-
dowed with an indistinguishability property, accumulators imply non-interactive commitment
schemes and are implied by zero-knowledge sets.

Despite their numerous applications, cryptographic accumulators still have relatively few
assumptions to rely on. So far, known candidates based on standard assumption arise from
a generic construction from vector commitments [10]. While implying solutions based on
RSA or Diffie-Hellman, the generic construction of [10] only supports inputs living in a small
domain: the public key size is indeed linear in the size of the input universe, which prevents
from hashing elements consisting of arbitrary strings. This leaves open Problem 3.

Problem 3: Does there exist a pairing-based accumulator for large input universes secure
under constant-size assumptions?

As mentioned earlier, accumulators are applicable in authenticating set operations ([29])
and a useful extension would allow creating witnesses for set inclusion and intersection that
are of constant size. Namely, a short witness can serve as evidence that some set X is a
subset of the accumulated set or that two sets X1, X2 have a particular intersection I. In
this domain, the following problem still remains open.

Problem 4: Construct a pairing-based accumulator supporting set operations with constant-
size witnesses achieving security under simple assumptions.
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1.2 Our Contributions
We formalize the notion of functional commitments (FCs) for linear functions, a generalization
of vector commitments (VCs). Similar to VCs, such a commitment scheme allows committing
to vectors of messages which can later be opened to specific function evaluations. While
possible [17], the design of FCs for arbitrary functionalities seems unlikely to lead to truly
efficient solutions. Instead, we aim at FCs for linear function families {F~x : Dn × Dn →
D}~x∈Dn defined by F~x(~m) = 〈~x, ~m〉 =

∑n
i=1 ximi for ~m ∈ Dn that suffice for many important

applications. An FC scheme for a family of linear functions {F~x : Dn → D}~x∈Dn produces
commitments to messages of the form ~m = (m1, . . . ,mn) ∈ Dn over the domain D. Fixing a
specific ~x ∈ Dn, such that y =

∑n
i=1 ximi ∈ D, an opening for F~x demonstrates that F~x(~m)

indeed evaluates to y. The security notions of hiding and binding extend to our setting in a
natural way. In addition, we require the commitments and witnesses to be concise i.e., their
size should be independent of the length of messages or function description.

Our first contribution is a construction of functional commitment for linear functions
based on well-studied assumptions in composite order bilinear groups. The scheme is perfectly
hiding and computationally binding under subgroup decision assumptions. The construction
can be seen as a variant of the vector commitment scheme of Izabachène et al. [18] which
was only proved secure under a non-standard variable-size assumption. We show that the
composite-order setting makes it possible to use the Déjà Q framework of [13] so as to
obtain security from constant size assumptions. As FC for linear functions implies vector
commitments, our construction provides a positive answer to Problem 1.

As a second contribution, we show that our FC scheme implies polynomial commitments
and large-universe accumulators supporting subset queries. The resulting schemes are secure
under subgroup decision assumptions of constant-size thus settling Problem 2 and Problem 3.
We finally extend our accumulator into a scheme supporting subset queries while retaining
security from constant size assumptions, partially answering Problem 4 in the affirmative.

Overview of our Construction. Let e : G×G→ GT be a bilinear map with common group
order N = p1p2p3 and let Gq denote the subgroup of G of order q (here q would be of the
form pe1

1 p
e2
2 p

e3
3 for e1, e2, e3 ∈ {0, 1}). The linear functions will be defined over ZN . The

commitment key consists of {gαj}nj=1, {Uj = uα
j}j∈[1,2n]\{n+1} for some g, u ∈ Gp1 . The

trapdoor is Un+1 = uα
n+1 . A commitment to ~m consists of C = gγ ·

∏n
j=1 g

αjmj . Witness for
a function evaluation 〈~x, ~m〉 = y is defined asWy =

∏n
i=1 W

xi
i with the Gp1 component ofWi

being uαn−i+1γ ·
∏n
j=1,j 6=i u

αn+1+j−imj for each i = 1, . . . , n. The absence of Un+1 in the witness
allows verifying that y = 〈~x, ~m〉 by testing if e(C,

∏n
i=1 u

αn−i+1xi) = e(gα, uαn)y · e(g,Wy).
The u-components are randomized with elements of Gp3 . This modification does not affect
verification since the Gp3 components get cancelled upon pairing with Gp1 elements. The
scheme is a composite-order analogue of the one proposed in [22].

Proof Idea. A (q1 → q2) subgroup decision assumption requires random elements of Gq1

to be indistinguishable from random elements of Gq2 . Using Wee’s adaptation [32] of the
Déjà Q framework [13], we prove that our FC scheme is computationally binding based on
(p1 → p1p2) and (p1p3 → p1p2p3) subgroup decision assumptions. An adversary breaking the
binding property is successful if it can produce a commitment C and two conflicting witnesses
Wy and Wy′ for evaluation of a function ~x. Given that both witnesses satisfy the verification
equations, one can say that the adversary can essentially produce ∆W =

(
Wy′/Wy

)1/(y−y′)

which is of the form u(αn+1) · gr2
2 · g

r3
3 for some r2, r3 ∈ ZN and generators g2 ∈ Gp2 and
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g3 ∈ Gp3 . The Gp1 component of ∆W is identical to that of the trapdoor key. Define two
types of keys (resp. attacks) according to {Uj}2n

j=1 (resp. ∆W ) containing a Gp2 component
or not. We argue that the attacker cannot mount an attack of a type different from that
of the key based on the (p1 → p1p2). The distribution of Gp2 components for the keys are
changed gradually via the transition described below.

uα
i

R3,i
subgroup−−−−−−→ uα

i

gr1α
i

2 R3,i
CRT−−−→ uα

i

g
r1α

i
1

2 R3,i,

where α1 is uniformly distributed over ZN . The first transition uses the p1p3 → p1p2p3
subgroup decision assumptions and the second transition is based on the Chinese remainder
theorem (CRT) that states that α mod p1 and α mod p2 are uncorrelated. We can thus replace
α mod p2 by α1 mod p2 as long as the former is unconditionally hidden from the attacker. By

repeating the transition 2n times, we obtain the transformation: uαi → uα
i

g

∑2n
j=1

rjα
i
j

2 R′3,i.

The exponent of g2 is a pseudorandom function [13, 32] and hence can be replaced by
a random exponent, RF (i) for Ui in particular. After the final transition, creating ∆W
consistent with these keys amounts to predicting the value of the random function evaluated
at n+ 1 (for the trapdoor Un+1), which is statistically infeasible.

Polynomial Commitments from Simple Assumptions. We wish to commit to a polynomial
P [Z] = a0 + a1Z + · · ·+ an−1Z

n−1 of degree n over D and reveal an opening for P (x) for
x ∈ D. Using the FC scheme for linear functions, we can commit to (a0, . . . , an−1) ∈ Dn so
that an opening to P (x) is a witness for 〈~x, ~m〉 = P (x) where ~x = (1, x, . . . , xn−1).

Accumulators for Large Universes. An accumulator allows hashing a set to a single element
so that one can prove the membership of a value in the set. Vector commitments are known
to imply accumulators [10], but via a construction that only supports a small universe of
values. Our polynomial commitment naturally leads to an accumulator for large universes
(i.e., the domain size can be exponential in the security parameter). To accumulate a set
of values S = {y1, . . . , yn−1}, use a polynomial commitment to P [Z] =

∏n−1
i=1 (Z − yi). A

witness for x ∈ S (or x /∈ S) is generated based on the fact P [x] = 0 if and only if x ∈ S.

Tackling Subset Queries. Polynomial commitments and universal accumulators can be
seen as direct consequences of the FC for linear functions. On the other hand, proving
security for accumulators with concise subset witnesses requires a novel extension of the Déjà
Q framework. We now provide a brief outline of the same.

Let n be the maximal number of accumulated values and let d be the maximal size
of “provable” subsets. In the commitment scheme, keys consisted of powers of α in the
exponent over the interval [1, 2n] with a hole at position n + 1. We extend this interval
to [1, (d + 1)n] keeping n + 1, 2n + 1, . . . , (d + 1)n powers of α as part of the trapdoor.
The witness component for a specific position i of the linear function was defined as Wi =
uα

n−i+1γ ·
∏n
j=1,j 6=i u

αn+1+j−imj . To combine witnesses for several (at most d) values into a
constant-size witness, we define the witness for the i-th position of the `-th element as a
“shift” of Wi by n. More precisely, W`,i is defined to have uα`n−i+1γ ·

∏n
j=1,j 6=i u

α`n+1+j−imj

as its Gp1 component.
Security for accumulators is captured by the notion of collision-freeness which asserts

that it is computationally infeasible for an attacker to produce a set S and a witness WX

for a subset X = {x1, . . . , xk} 6⊆ S that verifies correctly with an accumulated value for
S (generated using randomness specified by the adversary). Given the randomness, the
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reduction can compute valid witnesses of membership and non-membership for individual
values in X (as in the normal accumulator scheme). Combining appropriate “shifts” of
these witnesses gives us WX∩S (combined membership witness) and WX\S (combined non-
membership witness). We then observe that W/(WX∩SWX\S) has a Gp1 -component of the

form u

∑
`∈[1,k],x` /∈S

w`α
`n+1

(w` 6= 0) which means that the attacker essentially produces a
linear combination of the discrete logarithms of trapdoor keys in the exponent. The rest
of the reduction proceeds similar to the FC scheme with the pseudorandom function now
extending to the larger interval. Using this pseudorandom function, the distribution of the
keys is gradually modified until the Gp2 components of all Ui’s are truly random. We argue
that generating such a witness requires the adversary to predict a linear combination of at
most d specific evaluations of a random function which is clearly infeasible.

2 Background

2.1 Bilinear Maps and Complexity Assumptions
We use groups (G,GT ) of composite order N = p1p2p3 endowed with an efficiently computable
map (a.k.a. pairing) e : G×G→ GT such that: (1) e(ga, hb) = e(g, h)ab for any (g, h) ∈ G×G
and a, b ∈ Z; (2) if e(g, h) = 1GT for each h ∈ G, then g = 1G. Also, pairing two elements of
order pi and pj , with i 6= j, always gives the identity element 1GT .

In the following, for each i ∈ {1, 2, 3}, we denote by Gpi the subgroup of order pi. For all
distinct i, j ∈ {1, 2, 3}, we call Gpipj the subgroup of order pipj . We rely on the following
assumptions introduced in [20], which are non-interactive, falsifiable. In both of them, the
number of input elements is constant (regardless of the number of adversarial queries).

Assumption 1. Given a description of (G,GT ) as well as g R← Gp1 , X3
R← Gp3 and T ∈ G, it

is infeasible to efficiently decide if T ∈ Gp1p2 or T ∈ Gp1 .
Assumption 2. Let g,X1

R← Gp1 , X2, Y2
R← Gp2 , Y3, Z3

R← Gp3 . Given a description of
(G,GT ), (g,X1X2, Z3, Y2Y3) and T , it is hard to decide if T ∈R Gp1p3 or T ∈R G.

2.2 Vector Commitment Schemes
In prime order groups, Libert and Yung [22] introduced concise vector commitment schemes,
which are commitments that can be opened with a short de-commitment string for each
individual coordinate. Such commitments were described in [22, 10]. In [22], the commitment
key is CK = (g, g1, . . . , gn, gn+2, . . . , g2n) ∈ G2n, where gi = g(αi) for each i. The trapdoor is
gn+1. To commit to ~m = (m1, . . . ,mn), one picks r R← Zp and computes C = gr ·

∏n
j=1 g

mκ
n+1−j .

A single elementWi = gri ·
∏n
j=1,j 6=i g

mj
n+1−j+i provides evidence that mi is the i-th component

of ~m as it satisfies e(gi, C) = e(g,Wi) · e(g1, gn)mi . The infeasibility of opening C to two
distinct messages for some i relies on a parametrized assumption [5].

2.3 Functional Commitments for Linear Functions: Definitions
In [18], Izabachène et al. implicitly showed that the vector commitment scheme of [22] can be
generalized into a commitment scheme allowing to commit to a vector ~m while proving – via
a partial opening made of a short piece of information – that the committed vector ~m satisfies
〈~m, ~x〉 = y, for some public ~m and y. We call such a primitive functional commitment for
linear functions. In this section, we formally define this primitive and its security.

ICALP 2016
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I Definition 1 (Functional Commitments). Let D be a domain and consider linear functions
〈·, ·〉 : Dn×Dn → D defined by 〈~x, ~m〉 =

∑n
i=1 ximi for ~x, ~m ∈ Dn with ~x = (x1, . . . , xn), ~m =

(m1, . . . ,mn). A functional commitment scheme FC for (D, n, 〈·, ·〉) is a tuple of four (possibly
probabilistic) polynomial time algorithms – (Setup,Commit,Open,Verify).
Setup(1λ, 1n): takes in a security parameter λ ∈ N, a desired message length n ∈ poly(λ)

and outputs a commitment key CK and, optionally, a trapdoor TK.
Commit(CK, ~m): takes as input the commitment key CK, a message vector ~m ∈ Dn and

outputs a commitment C for ~m and auxiliary information denotes aux.
Open(CK, C, aux, ~x): takes as input the commitment key CK, a commitment C (to ~m),

auxiliary information (possibly containing ~m) and a vector ~x ∈ Dn; computes a witness
Wy for y = 〈~x, ~m〉 i.e., Wy is a witness for the fact that the linear function defined by ~x
when evaluated on ~m gives y.

Verify(CK, C, Wy, ~x, y): takes as input the commitment key CK, a commitment C, a
witness Wy, a vector ~x ∈ Dn and y ∈ D; outputs 1 if Wy is a witness for C being a
commitment for some ~m ∈ Dn such that 〈~x, ~y〉 = y and outputs 0 otherwise.

The correctness condition for a functional commitment scheme requires that for every
(CK,TK) ← Setup(λ, n), for all ~m, ~x ∈ Dn, if (C, aux) ← Commit(CK, ~m) and Wy ←
Open(CK,C, aux, ~x), then Verify(CK,C,Wy, ~x, y) = 1 with probability 1.

The security requirements of functional commitments are formalized as follows. The per-
fect hiding property mandates that the distribution of the commitment string
Commit(CK, ~m) be independent of the message ~m.

I Definition 2 (Perfectly Hiding). A commitment scheme is perfectly hiding if for a key CK
generated by an honest setup, for all ~m1, ~m2 ∈ Dn with ~m1 6= ~m2, the two distributions
{CK,Commit(CK, ~m1)} and {CK,Commit(CK, ~m2)} are identical given that the random
coins of Commit are chosen according to the uniform distribution from the respective domain.

The binding property requires the infeasibility of generating a commitment C and
accepting witnesses for two distinct values y, y′ without knowing the trapdoor TK.

I Definition 3 (Function Binding). A functional commitment scheme FC = (Setup,Commit,
Open,Verify) for (D, n, 〈·, ·〉) is said to be computationally binding if any PPT adversary A
has negligible advantage in winning the following game.
1. The challenger generates (CK,TK) by running Setup(λ, n) and gives CK to A.
2. The adversary A outputs a commitment C, a vector ~x ∈ Dn, two values y, y′ ∈ D and two

witnesses Wy,Wy′ . We say that A wins the game if the following conditions hold.
(i) y 6= y′;
(ii) Verify(CK,C,Wy, ~x, y) = Verify(CK,C,Wy′ , ~x, y

′) = 1.

2.4 Cryptographic Accumulators
The basic functionality of an accumulator is to combine a set S of values into a single value
V so that for any x ∈ S it is possible to prove that x is accumulated in V .

I Definition 4 (Accumulator). Let D be a domain. An accumulator scheme Acc for D is a
tuple (Setup,Eval,WitCreate,Verify) of PPT algorithms defined as follows.
Setup(1λ, 1n): takes as input a security parameter λ and an integer n ∈ N upper bounding

the number of elements that can be accumulated; outputs a pair of keys (PK,SK).
Eval(P K, S): inputs a key PK, a set S ⊂ D of elements (with |S| ≤ n) to be accumulated

and outputs an accumulated value V along with some auxiliary information aux.
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WitCreate(P K, S, V, aux, x, type): inputs a public key PK, a set S, a pair of accumulated
value and state information (V, aux) generated by Eval(PK,S), an element x ∈ D and
a boolean value type ∈ {0, 1} indicating whether the output should be membership or
non-membership witness according as its value is 1 or 0 respectively.
Case type = 1: If x /∈ S, it returns ⊥. Otherwise, a membership witness W is returned.
Case type = 0: It returns ⊥ if x ∈ S and a non-membership witness W otherwise.

Verify(P K, V, W, x, type): takes as input the public key PK, an accumulator V for set S,
a witness W , an element x ∈ D and a boolean value type. Returns 1 if and only if either
W is a valid witness for x ∈ S and type = 1
W is a valid witness for x /∈ S and type = 0.

The above definition consider static accumulators. In dynamic accumulators, the accumulated
value as well as witnesses can be publicly updated whenever an element is added to or deleted
from the set. In this work, we only consider static accumulators.

The correctness condition requires that for all honestly generated keys, all honestly
computed accumulators and witnesses, the Verify algorithm always accepts. An accumulator
scheme is deemed secure if it is at least collision-free. Collision-freeness ensures the computa-
tional infeasibility of producing either a membership witness for a non-accumulated value or
a non-membership witness for an accumulated value.

In accumulators supporting subset queries, witnesses can be generated for a subset of the
accumulated set rather than individual elements. While accumulators have been defined in
the universal setting, i.e., both membership and non-membership witnesses can be generated,
here we only consider the non-universal setting.

I Definition 5 (Accumulator with subset queries). Let D be a domain. An accumulator scheme
Acc for D is defined by a tuple (Setup,Eval,WitCreate,Verify) of probabilistic polynomial
time algorithms defined as follows.
Setup(1λ, 1n, 1d): takes as input a security parameter λ, an upper bound n ∈ N on the

number of elements that can be accumulated and an integer d ∈ N denoting the maximum
size of a set for which a witness can be created; outputs a pair of keys (PK,SK).

Eval(P K, S): takes in a public key PK, a set S ⊂ D of elements (with |S| ≤ n) to be
accumulated and outputs an accumulated value V with some auxiliary information aux.

WitCreate(P K, S, V, aux, X): inputs a public key PK, a set S, a pair of accumulated
value and state information (V, aux) generated by Eval(PK,S), a set X ⊆ S with |X| ≤ d
and outputs a witness WX .

Verify(P K, V, WX , X): takes as input the public key PK, an accumulator V for set S, a
witness WX , a set X ⊆ S. Returns 1 if WX is a witness for X ⊆ S and ⊥ otherwise.

In the above syntax, we assume that the auxiliary information aux includes the randomness
that was used to compute V when Eval is a probabilistic algorithm.

3 A Functional Commitment from Subgroup Decision Assumptions

Here, we prove that the Déjà Q framework [13] allows proving the security of the functional
commitment of [18] under constant size assumptions by switching to composite order groups.

Setup(1λ, 1n): Choose bilinear groups (G,GT ) of composite order N = p1p2p3, where
pi > 2l(λ) for each i ∈ {1, 2, 3}, for a suitable polynomial l : N→ N. Choose g, u R← Gp1,
R3

R← Gp3 and α R← ZN at random in order to define Gj = gα
j for each j ∈ [1, n] and

U1 = uα ·R3,1, . . . Un = u(αn) ·R3,n,

Un+2 = u(αn+2) ·R3,n+2, . . . U2n = u(α2n) ·R3,2n,
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where R3,j
R← Gp3 for each j ∈ [1, 2n]\{n+ 1}. Define the commitment key to consist of

CK :=
(
g, {Gj}nj=1, {Uj}j∈[1,2n]\{n+1}, R3

)
. The trapdoor consists of TK := Un+1 =

u(αn+1) ·R3,n+1, where R3,n+1
R← Gp3 .

Commit(CK, ~m): Given ~m = (m1, . . . ,mn) ∈ ZnN , compute C = gγ ·
∏n
j=1 G

mj
j for a ran-

dom choice of γ R← ZN and output C with the auxiliary information aux = (m1, . . . ,mn, γ).
Open(CK, C, aux, ~x): Given ~x = (x1, . . . , xn) ∈ ZnN , the auxiliary information aux =

(m1, . . . ,mn, γ) allows generating a witness for the function 〈~m, ~x〉 =
∑n
i=1 mi · xi by

computing

Wi = Uγn−i+1 ·
n∏

j=1,j 6=i
U
mj
n+1+j−i ∀i ∈ {1, . . . , n}, (1)

and outputting Wy =
∏n
i=1 W

xi
i .

Verify(CK, C, Wy, ~x, y): Given C ∈ G and ~x = (x1, . . . , xn) ∈ ZnN , accept Wy ∈ G as
evidence that C is a commitment to ~m ∈ ZnN such that y = 〈~m, ~x〉 if and only if it holds
that e(C,

∏n
i=1 U

xi
n−i+1) = e(G1, Un)y · e(g,Wy). If so, output 1. Otherwise, return 0.

The correctness is verified by observing that, for each i ∈ {1, . . . , n}, (1) implies that

e(C,Un−i+1) = e(g, u)(αn+1)mi · e
(
g, Uγn−i+1

n∏
j=1,j 6=i

U
mj
n+j−i+1

)
= e(G1, Un)mi · e(g,Wi).

By raising both members of the above equality to the power xi ∈ ZN and taking the product
over all i ∈ [1, n], we find that Wy satisfies e(C,

∏n
i=1 U

xi
n−i+1) = e(G1, Un)〈~m,~x〉 · e(g,Wy).

It is clear that that the commitment is perfectly hiding: since C lives in the cyclic
subgroup Gp1 , any vector (m1, . . . ,mn) ∈ ZnN has a corresponding opening γ ∈ ZN (and
even p2p3 openings since only γ mod p1 is fixed by ~m).

We now prove it computationally binding under subgroup assumptions. While this
property can be proved via a reduction from the one-wayness of Wee’s broadcast encryption
[32, Section 4], we found it interesting to give a direct proof under the underlying assumptions
for two reasons. First, this proof allows relying on a computational (rather than decisional)
analogue of Assumption 1. Second, the proof provides insights allowing to prove the security
of variants of this commitment or the other primitives it implies. For example, by adapting
the proof of Theorem 6, we design an accumulator supporting subset queries in section 5.
Since the latter scheme has a public key containing more elements than in [32], it can hardly
be proved secure via a reduction from the security of Wee’s broadcast encryption [32].

The proof involves two computationally indistinguishable distributions of parameters
(CK,TK). The normal distribution is as in the real scheme whereas the semi-functional
distribution allows CK and TK to have a Gp2 component. As in [32, Theorem 2], we use the
Déjà Q framework so as to gradually move to a game where the {Ui}2n

i=1 all contain a Gp2

component gR(i)
2 which is determined by a random function R : [1, 2n]→ Zp2 . As in [22, 18],

we rely on the fact that any attack against the binding property publicly reveals a value
Un+1 which contains u(αn+1) as its Gp1 component. Depending on whether Un+1 contains a
Gp2 component or not, we speak of Type B or Type A attacks. The proof uses a subsequence
of 2n games where, in the k-th game, the Gp2 component of Ui is of the form g

Fk(i)
2 , where

Fk : [1, 2n]→ Zp2 is a k-wise independent function. The strategy of the proof is to show that,
unless either Assumption 1 or Assumption 2 can broken, the attack on the binding property
also reveals a Un+1 of the form Un+1 = u(αn+1) · gFk(n+1)

2 ·R3, for some R3 ∈ Gp3 in the k-th
game. Said otherwise, the attack reveals a trapdoor Un+1 which mimics the distribution of
the commitment key CK. When we reach the 2n-th game, the Gp2 component of each Ui
is determined by F2n(i). Since F2n(.) is a 2n-wise independent function, the Gp2 of Un+1
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is thus statistically independent of those of {Ui}i∈[1,2n]\{i}, which appear in the public key.
The proof of Theorem 6 is given in the full version of the paper.

I Theorem 6. The scheme is binding if Assumption 1 and Assumption 2 both hold.

4 Further Constructions

4.1 Polynomial Commitments from Constant-Size Assumptions
It is easy to see that any functional commitment for linear functions implies a polynomial
commitment. Indeed, in order to commit to a polynomial P [Z] = a0+a1Z+· · ·+an−1Z

n−1 of
degree n− 1, we can simply commit to the vector of coefficients ~m = (a0, a1, . . . , an−1) ∈ ZnN .
When the sender wants to convince a verifier that P (x) = y, for some public x, y ∈ ZN , it is
sufficient to generate a witness Wy showing that 〈~m, ~x〉 = y, where ~x = (1, x, x2, . . . , xn−1).
Our construction of Section 3 thus implies the first polynomial commitment based on
constant-size assumptions. Indeed, the schemes of [19, 7] rely on q-type assumptions where q
is proportional to the maximal degree of committed polynomials.

4.2 Large-Universe Pairing-Based (Universal) Accumulators from
Constant-Size Assumptions

Catalano and Fiore [10] designed cryptographic accumulators from vector commitments.
While their construction yields an accumulator based on the Diffie-Hellman assumption, it only
supports small universes. Namely, accumulated values should come from a polynomial-size
domain since the public key has linear size in the cardinality of this domain.

It is easy to see that polynomial commitments imply accumulators for exponential-size
universes. While the size of the public key is linear in the maximal number of accumulated
values (as in Nguyen’s accumulator [26]), it does not depend of the universe size. As a result,
we can accumulate inputs consisting of arbitrary strings of polynomial length.

In order to accumulate a set S = {x1, . . . , xn−1}, one can commit to the vector
(a0, a1, . . . , an−2, 1) that contains the coefficients of the polynomial P [Z] =

∏n−1
j=1 (Z − xj)

and rely on the fact that x ∈ S if and only if P (x) = 0. A witness that xi ∈ S (resp. xi 6∈ S)
is obtained by generating a witness that the committed polynomial satisfies P (xi) = 0 (resp.
P (xi) 6= 0)). A concrete construction based on Assumptions 1 and 2 is described in the the
full version.

5 Accumulators Supporting Subset Queries

We now generalize the accumulator of Section 4.2 so that a constant-size witness W ∈ G can
provide evidence that a purported set X is contained in the hashed set S. Such a commitment
was previously designed by Papamanthou et al. [29] under a non-standard q-type assumption.
Our construction is thus the first realization based on fixed-size assumptions.

Gen(1λ, 1n): Choose bilinear groups (G,GT ) of composite order N = p1p2p3, where pi >
2l(λ) for each i ∈ {1, 2, 3}, for a suitable polynomial l : N → N. Choose g, u R← Gp1 ,
R3

R← Gp3 and α R← ZN at random. Let d ≤ n be the bound placed on size of a subset
(also polynomial in the security parameter). Define Gi = g(αi) for each i ∈ [1, n] and
Uj = u(αj) ·R3,j , where R3,j

R← Gp3 for each j ∈ [1, (d+ 1)n] \ {n+ 1, 2n+ 1, . . . , dn+ 1}.

ICALP 2016
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The secret key is SK := {U`n+1}d`=1, where U`n+1 = u(α`n+1)·R3,`n+1 with R3,`n+1
R← Gp3

for all ` ∈ [1, d]. The public key is
PK :=

(
g, {Gj}nj=1, {Uj}j∈[1,(d+1)n]\{n+1,2n+1,...,dn+1}, R3

)
.

Eval(P K, S): To hash a set S = {y1, . . . , yn′} of cardinality n′ ≤ n − 1, expand the
polynomial PS [Z] =

∏n′

j=1(Z − yj) =
∑n′

j=0 mj · Zj . Choose γ R← ZN to compute and
output

V = gγ ·
n′+1∏
j=1

G
mj−1
j = gγ+α·PS(α), aux = (S, γ) (2)

WitCreate(P K, V, S, aux, X): Given a set S = {y1, . . . , yn′}, a subset X = {x1, . . . , xk} ⊆
S of size k ≤ d (we assume w.l.o.g. that x1, . . . , xk are arranged in some pre-determined
lexicographical order), and the state information aux = (S, γ) such that (V, aux) was
produced by Acc(PK,S), compute PS [Z] =

∏n′

j=1(Z − yj) =
∑n′

j=0 mj ·Zj and define the
corresponding vector ~m = (m0,m1, . . . ,mn′ , 0, . . . , 0) ∈ ZnN . For each ` ∈ [1, k], define
~x` = (x`,1, . . . , x`,n) = (1, x`, x2

` , . . . , x
n
` ) ∈ ZnN which satisfies PS(x`) = ~m · ~x` = 0. For

` ∈ [1, k], generate a witness that 〈~m, ~x`〉 = 0 by first using {U`n+1+j−i}j 6=i to compute

W`,i = Uγ`n−i+1 ·
n∏

j=1,j 6=i
U
mj
`n+1+j−i ∀i ∈ {1, . . . , n}, (3)

which satisfies e(V,
∏n
i=1 U

x`,i
`n+1−i) = e(g,W`,i) for all ` ∈ [1, k] since ~m · ~x` = 0. Then,

compute and output the witness WX =
∏k
`=1
∏n
i=1 W

x`,i
`,i .

Verify(P K, V, WX , X): Given an accumulator value V ∈ G, a subset X = {x1, . . . , xk},
where xi ∈ ZN for each i ∈ [1, k], and a candidate a witness WX , do the following.
1. For each ` ∈ [1, k], define ~x` = (x`,1, . . . , x`,n) = (1, x`, . . . , xn` ) ∈ ZnN .
2. Return 1 if and only if e(V,

∏k
`=1
∏n
i=1 U

x`,i
`n+1−i) = e(g,WX).

From an efficiency standpoint, the size of PK is quadratic in n when d ≈ n so as to
handle queries for arbitrary subsets of size ≤ n. In comparison with [29], we thus achieve
security under simple assumptions at the expense of a somewhat larger public key. We see it
as an interesting open problem to retain O(n)-size public keys under simple assumptions.

We prove that the scheme provides collision-freeness (a detailed definition is given in
the full version) in that no PPT adversary can output a set S (of size ≤ n) along with a
verifying witness WX for another set X which is not contained in S. We thus use a natural
analogue of the definition of collision-freeness used in [15]: since our evaluation algorithm is
randomized, we assume that the adversary outputs the set S and the random coins γ of the
evaluation algorithm that lead to the accumulator value for which WX verifies.

The proof relies on the fact that the adversary outputs both the hashed set S and the
random coins γ of the hashing algorithm. It allows the reduction to use WX in order to
extract a membership witness for the difference X \ S using the homomorphic properties of
the underlying commitment. Having obtained WX\S , the reduction is also able to compute
an aggregation of non-membership witnesses for the same difference X \ S. From these
two conflicting witnesses, it is possible to extract some linear combination of the secret key
components {U`n+1}d`=1. In turn, this forces the adversary to predict a linear combination
of random function evaluations in the final step of the sequence of games. The proof is given
in the full version of the paper.

I Theorem 7. The scheme is collision-free if Assumption 1 and Assumption 2 hold.
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Abstract
Non-malleable codes, introduced by Dziembowski, Pietrzak, and Wichs (ICS ’10) provide the
guarantee that if a codeword c of a message m, is modified by a tampering function f to c′, then
c′ either decodes to m or to “something unrelated” to m. In recent literature, a lot of focus
has been on explicitly constructing such codes against a large and natural class of tampering
functions such as split-state model in which the tampering function operates on different parts
of the codeword independently.

In this work, we consider a stronger adversarial model called block-wise tampering model, in
which we allow tampering to depend on more than one block: if a codeword consists of two blocks
c = (c1, c2), then the first tampering function f1 could produce a tampered part c′1 = f1(c1) and
the second tampering function f2 could produce c′2 = f2(c1, c2) depending on both c2 and c1. The
notion similarly extends to multiple blocks where tampering of block ci could happen with the
knowledge of all cj for j ≤ i. We argue this is a natural notion where, for example, the blocks are
sent one by one and the adversary must send the tampered block before it gets the next block.

A little thought reveals that it is impossible to construct such codes that are non-malleable
(in the standard sense) against such a powerful adversary: indeed, upon receiving the last block,
an adversary could decode the entire codeword and then can tamper depending on the message.
In light of this impossibility, we consider a natural relaxation called non-malleable codes with
replacement which requires the adversary to produce not only related but also a valid codeword
in order to succeed. Unfortunately, we show that even this relaxed definition is not achievable in
the information-theoretic setting (i.e., when the tampering functions can be unbounded) which
implies that we must turn our attention towards computationally bounded adversaries.

As our main result, we show how to construct a block-wise non-malleable code (BNMC) from
sub-exponentially hard one-way permutations. We provide an interesting connection between
BNMC and non-malleable commitments. We show that any BNMC can be converted into a non-
malleable (w.r.t. opening) commitment scheme. Our techniques, quite surprisingly, give rise to a
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non-malleable commitment scheme (secure against so-called synchronizing adversaries), in which
only the committer sends messages. We believe this result to be of independent interest. In the
other direction, we show that any non-interactive non-malleable (w.r.t. opening) commitment
can be used to construct BNMC only with 2 blocks. Unfortunately, such commitment scheme
exists only under highly non-standard assumptions (adaptive one-way functions) and hence can
not substitute our main construction.
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1 Introduction

Non-malleable codes. Error correcting codes allow a message m to be encoded into a
codeword c, such that m can always recovered even from a tampered codeword c′, only if
the tampering is done in a specific way. More formally, the class of tampering functions,
Ffrac, tolerated by traditional error correction codes are ones that erase or modify only a
constant fraction of the codeword c. In particular, no guarantees are provided on the output
of the decoding algorithm when the tampering function f /∈ Ffrac. A more relaxed notion,
error detecting codes, allow the decoder to also output a special symbol ⊥, when m is
unrecoverable from c′, but here too, the codes can not tolerate simple tampering functions
f ∈ Fconst where Fconst contains all constant functions1. To address this shortcoming of error
correction/detection codes, Dziembowski, Pietrzak, and Wichs [12], introduced a more flexible
notion of non-malleable codes (NMC). Informally, an encoding scheme Code := (Enc,Dec)
is a NMC against a class of tampering functions, F , if the following holds: the decoded
message m′ = Dec(c′) is either equal to the original message m or is completely unrelated to
m, when c′ = f(Enc(m)) for some f ∈ F . In general, NMC cannot exist for the set of all
tampering functions Fall. To see this, observe that a tampering function that simply runs the
decode algorithm to retrieve m, and then encodes a message related to m, trivially defeats
the requirement above. However, somewhat surprisingly, Dziembowski et al. [12] showed the
(probabilistic) existence of a NMC against a function family, Falmost, that is only slightly
smaller than the set of all functions. They also constructed an efficient NMC against the
class of tampering functions, Fbit, that can tamper each bit of the codeword independently.
NMC has found important applications in tamper-resilient cryptography [12, 21, 13, 14].

Split-state Tampering. Arguably, one of the strongest class of tampering functions for which
explicit constructions of NMC are known, is in the so called split-state model. Informally, a
split-state model with ` states has the following attributes: (i) the codeword is assumed to be
partitioned into `-disjoint blocks (c1, · · · , c`), and (ii) the class of tampering functions, F`split,
consists of all the functions (f1, · · · , f`) where fi operates independently on ci2. Dziembowski
et al. [12] gave a construction of a NMC against the tampering class F2

split in the random oracle

1 In particular if f always outputs some valid codeword c′, then it is impossible to detect the error. For
some cryptographic application like protecting against memory tampering attack this is too restrictive.

2 Note that the class Fbit can be viewed as Fn
split, where n is the length of the codeword c.
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model. Constructions of NMC against F2
split are now known both in the computational [21]3

and information-theoretic settings [2, 7, 11]. Recently, Chattopadhyay and Zuckerman [6]
gave an explicit information-theoretic NMC against F10

split and Aggarwal et al. [1] showed how
to construct explicit information-theoretic NMC against F2

split.

Going beyond split-state: Block-wise Tampering. A severe restriction of the split-state
model is that every block of the codeword can only be tampered independently of all other
blocks. In particular fi modifies ci with absolutely no knowledge about cj , for any j 6= i.
In this work, we address this restriction by allowing modification of each block depending
on more than one-block. In particular, each ci can be modified in any arbitrary way based
on the first i blocks (c1, . . . , ci). Such a code is called block-wise NMC. More formally a
code is called a block-wise NMC if it is a NMC against the class of tampering functions
F`block: a set of functions (f1, · · · , f`) ∈ F`block if each fi modify ci to some c′i depending on
the first i-blocks. We also consider a stronger class of functions where the tampering can be
done in any order. In particular fi can modify any cj depending on any i blocks. A natural
scenario is a synchronous streaming model when the blocks are coming in one by one and
the adversary on the channel sends across each modified blocks before the next block arrives.

NMC for F`
block is impossible. One can see that it is impossible to construct NMC against

F`block (for any `): consider a tampering function, where the first `−1 functions, (f1, . . . , f`−1)
are identity functions and the function f` (which gets the entire codeword as input) simply
decodes the message and depending on the message, keeps it the same or overwrites it to
something “invalid” (i.e., the modified codeword decodes to ⊥). Note that, in this case the
distribution of the (decoding of the) tampered codeword will indeed depend on the message,
thereby violating non-malleability. In particular, such a tampering attack makes the decoder
output ⊥ with a probability distribution that depends on the input message. Therefore, we
seek for a natural relaxation of the traditional definition of NMC such that it is achievable for
the class F`block and at the same time sufficient for interesting applications. In particular, we
show that such relaxed NMC is sufficient to construct a simple non-malleable commitment
scheme in a black-box manner. We note that the traditional application to tamper-resilient
cryptography does not work with the relaxed version for obvious reason..

NMC with replacement (NMCwR). Essentially in the above attack the adversary breaks
non-malleability by making the codeword “invalid”. So, we take the most natural direction
to relax the definition, in that the adversary is considered to be successful only if it produces
some valid and related codeword via tampering. In particular, the adversary may selectively
“destroy” a codeword depending upon the message we encode, however we show that in
some sense, this is the “only attack” it can perform. Intuitively the guarantee provided
by such an encoding scheme is that any adversary, by tampering with some encoded data
can not produce a related encoded data without destroying it. However, formalizing such
intuition turns out to be non-trivial. We take inspiration from the literature of non-malleable
commitment w.r.t. replacement (introduced by Goyal [16]) and formalize such a relaxation
by introducing an algorithm (possibly inefficient) called replacer which comes into play only
when the tampered codeword is invalid, and in that case it replaces the ⊥ by “anything” of
his choice. Essentially, the idea is that if the invalidity depends on the input message (like

3 In the computational setting, the functions fi are assumed to run in polynomial time.
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described in the above attack) then the replacer would rectify the output to remove such
dependency. We call the new notion non-malleable codes with replacement (NMCwR).

1.1 Our results

In this paper we explore the properties, constructions and applications of NMCwR with
respect to the class of block-wise tampering functions F`block. We call such code block-wise
non-malleable codes (BNMC). Below we provide an overview of the results presented in this
paper.

Information theoretic impossibility. Similar to the notion of continuous non-malleable
codes [13](CNMC), any BNMC must possess a uniqueness property (a slightly different one
than CNMC). For two blocks, uniqueness means that there can not exists two different valid
codewords of the form (c1, c2) and (c1, c′2) which decodes to different messages, i.e., for every
valid code c1, there is a unique decoding. If not, then an attack similar to the CNMC is
possible without making the codeword invalid – the adversary can always tampers the first
block to c1 and depending on the message (since f2 gets the entire codeword) tampers to
one of c2 or c′2 hence making the output distribution depend on the message. Consequently,
just like CNMC, an information theoretic impossibility is evident with the only difference
that in the setting of CNMC, the functions are unbounded, and, therefore (for two blocks)
the function f1 can derive the unique message corresponding to c1 by brute-force and thus
break the scheme. We show the following in the full version [4].

I Theorem 1. It is impossible to construct an information-theoretic BNMC.

Henceforth, in this paper we focus on constructing BNMC based on computational assump-
tions. We stress that even we are in the computationally bounded setting, we do not put any
restriction on the efficiency of the replacer. In particular, the replacer is allowed to run in
super-polynomial (or even exponential) time. In fact, later in this paper, we often encounter
a replacer which runs in exponential time. Nonetheless, we must restrict the reduction to be
probabilistic polynomial time (PPT). We are indeed able to overcome this technical hurdle
by constructing such “efficient” reductions which can correctly simulate behavior of “highly
inefficient” replacers.

Connection to Non-malleable Commitment. Since BNMC satisfies a definition weaker
(that is NMC with replacement) than the traditional NMC, it is not possible to use such
a code to build a tamper-resilient compiler as described in [12, 21] for obvious reason. In
fact, it is nevertheless impossible to protect a system against memory tampering attack
(see [8, 15, 18] for formal expositions on such attack) against any block-wise tampering.
However we are able to show connections with non-malleable commitment with respect to
opening (NMCom). To the best of our knowledge this is the first attempt to bridge these
two non-malleability notions4.

4 In a recent work, Agrawal et al. [3] showed how to use NMC to construct non-malleable string-
commitment from non-malleable bit-commitment. In their work, NMC is used as a tool, and, no
relations are shown between non-malleable commitments and NMC. Recently, another work by Goyal et
al. [17] constructs round-optimal NMCom from split-state NMC, the full version of which appears after
the first version of this work.
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1. Given an `-block BNMC we can construct (in a black-box way) a simple (`− 1) round
commitment protocol which is non-malleable with respect to opening (against synchron-
izing adversaries) as follows: the committer sends the block ci in the i-th round and
sends the last block c` as the opening. The receiver sends only acknowledgements after
receiving each message. The non-malleability essentially follows from the non-malleability
of the underlying BNMC and the perfect binding follows from the uniqueness property
described above. To best of our knowledge, this is the first NMCom protocol where the
receiver is not required to send any message (e.g. challenge) except for acknowledgement.

I Theorem 2. Suppose there is an `-block BNMC. Then there is a (`− 1) round perfectly
binding non-malleable commitment scheme with respect to opening against a synchronizing
man-in-the-middle adversary.

2. We also show that from any non-interactive NMCom one can easily construct an BNMC
even for only ` = 2 blocks (i.e. optimal for F`block). Unfortunately, the only assumptions un-
der which we know how to construct such commitments are either in the (non-tamperable)
CRS model [9] or under the highly non-standard assumption of adaptive one-way func-
tions [22]. Evidently this construction can not substitute our main construction which is
based on much more standard assumption like sub-exponentially hard OWP.

I Theorem 3. Suppose there is a perfectly binding non-interactive non-malleable commitment
scheme (w.r.t. opening) whose input is a k-bit message and output is an n-bit commitment.
Then there is a 2-block BNMC.

Combining Theorem 2 and Theorem 3, we can conclude that when ` = 2 the NMCom and
BNMC are equivalent. The details of these results are elaborated in the full version [4].

Constructing BNMC. As the main result we provide a construction of BNMC from a
standard assumption in the plain model. Precisely, we show that, for any arbitrary constant
ϕ > 0, how to construct a BNMC against F`block for ` = O(κ2+ϕ) (where κ is the security
parameter). The security (i.e. non-malleability) of the construction is based on “sub-
exponentially” hard one-way permutations which says that there exists one-way permutations
(OWP) which are “hard-to-invert” even against an adversary running in sub-exponential
time, precisely in time O(2κs) such that κs = O(κε/2) for some 0 < ε < 1. In particular, our
construction uses any perfectly binding commitment scheme that is computationally hiding
against such sub-exponential adversary (and this primitive can be constructed from the
above assumption). The key technical challenge, as remarked earlier, is that BNMC is not an
interactive primitive that allows bi-directional communication. This limitation renders the
previously proposed techniques for designing non-malleable protocols inherently unusable.
This is because these previous techniques are based on having “challenge-response” rounds
similar to the type also used in designing zero-knowledge protocols. Thus, techniques like
rewinding the sender are not useful in this setting at all: since there are no receiver messages,
one would end up with the same transcript every time. Thus, apriori, it seems unclear what
advantage one could get by having multiple blocks. Our final construction is quite clean
and in fact, also gives arguably one of the simplest known constructions of non-malleable
commitments. We show the following theorem.

I Theorem 4. Assume the existence of sub-exponentially hard one-way permutations. Then
for any ϕ > 0 of our choice, and any message length k ∈ N, there exists an explicit
construction of `-block BNMC of codeword length n = O(kκ6+ϕ), where ` = O(κ2+ϕ).

We give an overview of the construction used to prove Theorem 4 in Section 1.2.
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Strong BNMC. Additionally, we also consider a strictly stronger model of tampering:
assume any permutation π : [`]→ [`] chosen by the adversary. Then each function fi takes
i blocks (cπ(1), . . . , cπ(i)) as input and modifies the π(i)-th block. We call this family of
function strong block-wise and denote it by F`s-block. We also provide a definition of strong
BNMC which is essentially an explicit presentation of NMCwR for F`s-block. We provide an
unconditional generic transformation to construct strong BNMC from any BNMC which,
along with the earlier results imply that any construction of BNMC can be transformed to a
strong BNMC (with some blow up in the length of codeword). We show the following, the
details of which appears in the full version [4].

I Theorem 5. If there is an `-block BNMC with codeword length n, then there is an (`)-block
SBNMC with codeword length Θ(`n).

1.2 Overview of our techniques
We now give a brief overview of our main construction of BNMC along with intuition as to
why it works. The detailed construction is provided in Sec. 3.

First fix a parameter µ (such that µ = O(κ2+ϕ) for any arbitrary constant ϕ > 0 of
our choice where κ is the security parameter) such that we encode a message m using
` = (2µ+ 1)-blocks of codeword for some parameter µ . At a very high level, our encoding
is as follows. Let us first fix some index (or tag) for the encoder i ∈ [µ]. The encoder then
chooses a perfectly binding commitment scheme COM.

Let COMκs(·) and COMκ(·) denote that COM is computationally hidden with respect to
security parameters κs and κ respectively, where κs is as mentioned above. The encoder then
computes commitments to the message using COMκs and COMκ. The first 2µ blocks of the
encoding of m are blocks of all zeroes, except for block i and block (2µ− i) which are the
commitments COMκ and COMκs , respectively. The (2µ+ 1)th block of the encoding contains
the openings to COMκs and COMκ. The decoding algorithm checks if (i) all the openings
are consistent with the commitments and (ii) the messages committed are equal. Now, for a
moment, assume that adversary’s index i′ is not equal to i (this can be removed later on).
Then if i′ < i, then the adversary has to output its first commitment without seeing the first
commitment in the input codeword (rather only seeing on the string of zeros). Thus, the first
commitment in the output is independent of the first commitment in the input. Moreover,
our definition (NMCwR) puts the additional restriction that the adversary has to output a
valid codeword in order to succeed. Combining one can see that the output codeword, if
valid, must contain a message independent of the message encoded in the input. On the
other hand, if i′ > i, then the second commitment of the adversary has to be independent of
the second commitment in the input. In this case, we rely on complexity leveraging to prove
non-malleability. Using this key-observation one can prove the non-malleability except in
one case: when the index chosen by the adversary i′ is equal to i. To prevent mauling in
this case we use one-time signatures. The encoder signs the entire codeword using i as a
public-key and thus leaving the adversary either to forge the signature or change the index.
However, one problem still remains. To use i as a public-key we need it to be sufficiently
long, in particular for a concrete instance of such OTS (we consider variant of Lamport [19])
the length needed to be O(κ2+ϕ) for any arbitrary constant ϕ > 0 of our choice. But note
that, we have i ∈ [µ] and ` = 2µ + 1. Trying to set the size of the index |i| = log(µ) to
even Ω(k) would result in an “inefficient” construction with ` = 2Ω(k) blocks which is not
acceptable. We solve this problem by using a “well-known” technique from non-malleable
commitment, so-called DDN-XOR trick. Through that, it is possible to use a long tag of
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size t = O(κ2+ϕ) keeping the number of blocks also O(κ2+ϕ) just by computing t shares
(XOR’s) of messages and and applying the above construction independently on the shares.
So, our final construction would require a one-time signature which works with a public-key
of bit-length µ = O(κ2+ϕ).

2 Definitions

We introduce the “relaxed” definition of non-malleable codes which is same as the NMC
except there is a so-called replacer Rf which is an “all powerful” algorithm and comes into
play only when the modified codeword is invalid (i.e. decodes to ⊥). In that case, the replacer
may replace the ⊥ by any message in the message space or the symbol same?. (The replacer
can also keep the ⊥ in case when it not harmful (i.e. does not depend on the input) e.g. when
the tampering function always tampers to something invalid). Since the idea of replacer is
similar in spirit with the notion of non-malleable commitment with replacement as introduced
in [16] we call this relaxed version non-malleable codes with replacement (NMCwR in short).
We present the formal definition below.

I Definition 6 (Non-malleable codes with replacement). Let Code = (Enc,Dec) be an (k, n)-
encoding scheme. Let F be some family of tampering functions. Then Code is called
(k, n)-non-malleable code with replacement (NMCwR) if for every f ∈ F there exists an
algorithm called the replacer Rf such that for any pair of messages m0,m1 ∈ {0, 1}k,
TampWRfm0

≈ TampWRfm1
, where for any m ∈ {0, 1}k, TampWRfm is defined as

TampWRfm ≡


c← Enc(m); c′ ← f(c);

If c′ = c set m′ := same? else m′ ← Dec(c′)
If m′ = ⊥ then m′ := Rf (c) ; Output: m′

 ,

where the randomness is over the encoding function Enc.

I Remark. Here, and everywhere in this section, the indistinguishability depends on the
setting (information theoretic or computational). However, we emphasize that even if we are
in the computationally bounded scenario, where the adversary is PPT, we do not restrict
the replacer to be a PPT algorithm. This assumption is justified because the replacer is
required only to establish the meaningfulness of the definition without affecting the natural
intuition. Intuitively the purpose of the replacer is to relax the traditional notion in a way
such that the tampering function is allowed to distinguish the tampering experiments, albeit
only by making the codeword invalid. Nonetheless in the computational setting all the other
algorithms involved as well as the the tampering functions are required to be PPT.

Some intuitions. We first provide some intuition behind why the above definition is mean-
ingful. For every adversary, there is guaranteed to exist another adversary which always
tampers in the same way as the original adversary, except, when the original adversary
were to output an invalid codeword. In that case, the new adversary may employ any other
(PPT) strategy. However when the original adversary outputs an invalid codeword, (in many
applications) it could be considered as aborting or failing in those cases. Hence, our new
adversary could be seen as strictly more powerful than the original one. However as the
definition guarantee, the new adversary actually obeys the standard non-malleable code
guarantee. Thus, in many scenarios, we believe the above weaker notion may be sufficient.
Indeed, as shown in [16], the corresponding weaker notion for non-malleable commitments
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(called non-malleability w.r.t. replacement) turns out to be sufficient for several applications
including for obtaining constant round multi-party computation.

We now give the syntactic definition of block-wise encoding scheme.

I Definition 7 (Block-wise encoding scheme). Let Code = (Enc,Dec) be an (k, n)-encoding
scheme. Then it is called an (`, k, n)-block-wise encoding scheme if each string output by Enc
is an `-tuple: (c1, . . . , c`) where |ci| = ni, with

∑`
i=1 ni = n. Also let νi =

∑i
j=1 ni.

Next we define a property of such block-wise encoding scheme called reveal index, that
will be useful later on.

I Definition 8 (Reveal Index). Let Code = (Enc,Dec) be an (`, k, n)-block-wise encoding
scheme. Then Code is said to have reveal index η if η − 1 ∈ [`] is the largest index for which
the following condition holds: For all pair of messages m0,m1 ∈ {0, 1}k if (c(0)

1 , . . . , c
(0)
` )←

Enc(m0) and (c(1)
1 , . . . , c

(1)
` )← Enc(m1) then (c(1)

1 , . . . , c
(1)
η−1) ≈ (c(1)

1 , . . . , c
(1)
η−1).

I Remark. This definition formalizes the fact that, for any encoding scheme, there is an
index η which reveals some information about the encoded message for the first time in the
sequence and the sequence (c1, . . . , cη−1) before that does not reveal anything about the
encoded message. Obviously η ≤ ` for any block-wise encoding scheme.

Finally, we present our main definition of a block-wise non-malleable encoding scheme
which is essentially an explicit presentation of NMCwR for the class F`block.

I Definition 9 (Block-wise non-malleable codes). Let Code = (Enc,Dec) be an (`, k, n)-block-
wise encoding scheme. Let f = (f1, . . . , f`) be any tuple of functions specified as follows:
∀i ∈ [`], fi : {0, 1}νi → {0, 1}ni . Then Code is called an (`, k, n)-block-wise non-malleable
code (BNMC in short) if, for any such tuple f , there exists a replacer Rf , such that, for any
pair of messages (m0,m1) ∈ {0, 1}k, the following holds: BLTampf

m0
≈ BLTampf

m1
. where

BLTampf
m for any m ∈ {0, 1}k is defined as:

BLTampf
m =


c = (c1, . . . , c`)← Enc(m);

∀i ∈ [`] : c′i = fi(c1, · · · , ci); Let c′ = (c′1, . . . , c′`);
If c′ = c then set m′ := same?;Else decode m′ ← Dec(c′1, . . . , c′`);

If m′ = ⊥ then m′ ← Rf (c1, . . . , c`); Output m′

 .

I Remark. Our notion of block-wise non-malleable codes is identical to the notion of look-
ahead non-malleable codes defined in the concurrent and independent work of Aggarwal et
al. [1]. We choose to use the term block-wise as it is more appropriate in our setting.

3 Our Construction

In this section, we provide our main construction of a BNMC based on sub-exponentially
hard one-way permutations. We construct the encoding scheme in three steps:
(i) In Sec 3.1 we begin by constructing a weaker BNMC that we call tag-based block-wise

non-malleable encoding scheme (TBNMC). In such a code, every codeword has a tag
associated with it and the tampering function must change the tag of a codeword in
order to successfully maul a codeword. In other words, we allow an adversary to create
a related codeword only when the tag remains the same. The tag used here is an index
of the block and hence is only of size log(κ).

(ii) Then in Sec. 3.2 we use a technique, commonly known as the DDN-XOR trick [10], to
construct a tag-based BNMC with tags of length poly(κ).
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(iii) Finally in Sec. 3.3 we construct an BNMC which achieves Def. 9, by using the public
key of a one-time signature scheme as the tag of the above code, and by signing the
entire codeword using the corresponding signing key.

3.1 Tag-based non-malleability
In this section we diverge from our original definition and construct an encoding scheme
which meets a weaker definition of non-malleability, called tag-based non-malleability.

We define the tag to be always the first block of any codeword. A tag-based BNMC
(TBNMC for short) is defined exactly as the same way as BNMC with the only difference
that whenever the tag of the tampered codeword is equal to the tag of the original codeword,
then the tampering experiment outputs same? even if there is any other modification. Clearly
this is strictly weaker than BNMC. Please see the full version [4] for a formal definition.

Now we construct an encoding scheme which satisfies this weaker definition based on
sub-exponentially hard OWP. The proof uses complexity leveraging which essentially forces
us to assume sub-exponential hardness as opposed to standard (super-poly) hardness.

We assume that sub-exponentially hard OWP exist that are considered to be hard to
break even if the adversary is allowed to run in sub-exponential time, namely in O(2κs) such
that κs = κε/2 (recall that κ is the security parameter) for some constant ε ∈ (0, 1). The
proof crucially relies on this as it uses one level of complexity leveraging. In particular, while
reducing to such OWP, we assume that the adversary (the reduction in this case) is unable
to break the one-way permutation (the hiding of a commitment scheme in this case) even
when it is allowed to run in time O(2κs) (but in time o(2κ)).

We use a non-interactive commitment, Com, that is perfectly binding. We write Comκs

and Comκ to denote the commitment scheme has computational hiding with the security
parameters κs and κ, respectively. In particular, Comκ is a computationally hiding com-
mitment scheme even against an adversary running in O(2κs) time. Suppose that such
commitment scheme, on input some bit-string of length k ∈ N, outputs commitments of
length p(κ, k) where p(·) : N×N→ N is a fixed polynomial (determined by the specifications
of the commitment scheme) in security parameter. We stress that such commitments can be
constructed from sub-exponentially hard one-way permutations.

First we give a brief overview of the construction. Let µ ∈ N be a parameter. We will
now construct a TBNMC with ` blocks where ` = 2µ+ 2. For now, assume ` to be a even
number. Now for any tag tg ∈ [µ] we construct the encoding scheme as follows: we put
strings of 0 in all the blocks except the four “special” blocks: the first block is set to tg, the
(tg + 1)-th block is set to the “bigger” commitment Comκ(m), the (`− tg)-th block is set to
the “smaller” commitment Comκs(m) and the `-th (and final) block is set to the openings
of the commitments. Now, for odd `, one can just append one dummy block (string of 0’s)
right before the final block. So, without loss of generality we would assume ` to be even in
this section. The detail construction is presented in Fig. 1. Note that here the blocks are of
different length. However, it is easy to convert the code with equal block-length by padding
additional zeros. We keep it without such padding for simplicity. Also, note that, from the
computational hiding property of the commitment scheme, it follows that the construction
has reveal index ` = 2µ+ 2 for any PPT adversary.

The following theorem states that the construction is a TBNMC. The proof can be found
in the full version [4].

I Theorem 10. Let µ ∈ N be some parameter. Assume that sub-exponentially hard one-
way-permutations exists. Then, for any tag tg ∈ [µ] and any k ∈ N, the encoding scheme
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TCode = (TEnc,TDec) described in Fig. 1 is a (tg, `, k, n)-TBNMC against all PPT adversary
such that n = O(k + µ · p) and ` = 2µ+ 2.

3.2 Non-malleability amplification
In this section we extend our construction to an efficient construction which can support
larger tags. This extension is similar to a well-known phenomenon, namely non-malleability
amplification [20], in the non-malleable commitment literature using the DDN-XOR trick [10].

3.2.1 One-many non-malleability
Towards that, we first show that the construction given in Fig. 1 already satisfies a stronger
notion, which we call one-many tag-based non-malleability (OMTBC). This definition (we
refer to the full version [4] for a formal definition), informally states that an adversary that
is able to tamper a single codeword of m, cannot even come up with a set of codewords such
that one of them is related to m. In particular, each function fi in the tuple f = (f1, . . . , f`)
has much larger range than the domain and produces many c′is together with the knowledge
of the first i blocks of the input codeword.5 Our next theorem shows that our construction
(Fig. 1) achieves this stronger definition.

I Theorem 11. Let µ, t ∈ N be some parameter. Assume that sub-exponentially hard one-
way-permutations exists. Then, for any tag tg ∈ [µ] and any k ∈ N the (tg, `, k, n)-TBC
TCode = (TEnc,TDec) described in Fig. 1 is an (t, tg, `, k, n)-one-many tag-based BNMC
against all PPT adversary such that n = O(k + µ · p) and ` = 2µ+ 2.

3.2.2 Using DDN-XOR trick
In this section we use the DDN-XOR trick to construct an “efficient” TBNMC with “large”
tags. Let us start with some intuitions. The construction uses any OMTBC (called “inner
code” in the following) with “small” tag in a black-box way. The basic idea is as follows:
let the “big” tag TG be t-bit long. Then compute t shares of message m just using XOR’s
i.e. (m1, . . . ,mt) which is nothing but a t-out-of-t secret sharing. Then encode each mj with
the inner code using j‖TG[j] (which is of O(log(t))-size) as tag. Finally put the encodings
in increasing order of j (from 1 to t). The first block of the final codeword is, by definition
the tag TG. the second block would consist of the first t blocks of inner codes in order and
so on. The key-intuitions why the construction works are as follows. In order to break the
tag-based non-malleability of the final encoding (called “outer code” within this sub-section),
the adversary must produce a valid codeword with different“big” tag T̃G 6= TG. In that case,
evidently, there must exist at least one index j ∈ [t] where the “small” tags differ t̃gj 6= tgj .
Moreover notice that, the adversary can’t copy tgj to any other position than j as that
would result in an invalid codeword. Therefore tgj = j‖TG[j] is different from all the “small
tags” of the tampered inner codewords. Then we reduce to the one-many non-malleability of
the inner code in first such position (say j?). In particular, if the adversary tampers with
the j?-th inner code, then by one-many non-malleability of the “inner code” no tampering

5 We note that Chattopadhyay et al. [5] introduced the notion of one-many non-malleable code which is
in turn built on continuous non-malleable code [13](CNMC). It is important not to confuse this notion
with CNMC where the adversary chooses each subsequent tampering function after observing the result
of the previous tamperings.
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Parameters: Let Comκs takes a k-bit message as input and us-bit randomness to produce
a vs-bit commitment and Comκ takes a message of the same length, but randomness of
u-bit to produce a v-bit commitmenta. Let tg ∈ [µ] be the tag of the encoding scheme
for some µ ∈ N. We define a (tg, `, k, n)-block-wise encoding scheme where ` = 2µ+ 2
and n = k + us + u+ µ(vs + v) + blogµc+ 1 as follows:

Encoding TEnc(m): The encoder gets a message m ∈ {0, 1}k as input and do as follows:
1. Initialize: Choose randomnesses rs

$←− {0, 1}us and r $←− {0, 1}u for commitment
scheme. Set the first block c1 := tg.

2. Stage-1: For all i ∈ {2, . . . , µ+ 1}, define the i-th block of codeword ci as follows:

ci :=
{

0v i 6= tg + 1
Comκ(m, r) i = tg + 1

3. Stage-2: For all i ∈ {µ + 2, . . . , 2µ + 1}, define the i-th block of codeword ci as
follows:

ci :=
{

0vs i 6= 2µ+ 2− tg
Comκs(m, rs) i = 2µ+ 2− tg

4. Final stage: Define the last block as the decommitments i.e. the message and the
randomnesses in the order of commitments are sent: c2µ+1 := (m, r, rs).

Decoding TDec(c): On receiving a codeword c parse it as c = (c1, . . . , c2µ+2) such that
|c1| = bµc+ 1, for i ∈ {2, . . . , µ+ 1}, |ci| = v, for i ∈ {µ+ 2, . . . , 2µ+ 1}, |ci| = vs and
for i = 2µ+ 2, |ci| = k + us + u. Then do as follows:
1. Correctness of Structure: First check if the structure is correct: that is if

c1 6= 0 and there are exactly two indexes i1 ∈ {2, . . . , µ + 1}, i2 ∈ {µ + 2, 2µ + 1}
such that:
a. ci1 6= 0v and ci2 6= 0vs .
b. for all other indexes i ∈ {2, . . . , µ+1}\{i1}, ci = 0v and i ∈ {µ+2, . . . , 2µ+1}\{i2},
ci = 0vs .

c. i1 + i2 = 2µ+ 1.
if any of them fails, then the structure of the tampered codeword is incorrect and
therefore output ⊥, else go to the next step.

2. Consistency of commitment: Parse c2µ+2 as (m, r, rs) := c2µ+2 such that |m| = k,
|r| = u and |rs| = us. Then check the validity of the commitment-decommitment pair
(ci1 , (m, r)) and (ci2 , (m, rs)), if any of them are invalid output ⊥, otherwise output
the committed message m.

a We assume |vs|, |v| = poly(κ)

Figure 1 The construction of (tg, `, k, n)-TBNMC for tag size log κ.
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function would not be able to succeed in producing any valid inner codeword that encodes a
value which is “related” to the j?-th original share. Clearly, this implies the entire tampered
outer codeword would have no information about j?-th share which makes the encoded
massage (if valid) completely unrelated to the original message by the property of secret
sharing.

For any tag TG ∈ {0, 1}t we construct a (TG, `′, k′, n′)-TBNMC LCode = (LEnc, LDec)
from a (t, tg, `, k, n)-OMTBC TCode = (TEnc,TDec) for any tg ∈ {0, 1}α such that t =
2α−1 − 1, `′ = `+ 1, k′ = k and n′ = nt as follows.

Encode LEnc(m):
1. Secret-sharing: On receiving an input message m ∈ {0, 1}k′ , first choose (t − 1)

random k′-bit strings (m1, . . . ,mt−1) and then compute mt = m⊕m1 ⊕ · · · ⊕mt−1.
Note that the tuple (m1, . . . ,mt) represents a (t, t)-secret sharing of m.

2. Encode using smaller tag: Then for each j ∈ t, let the j-th “smaller” tag be tgj =
BIT(j)‖TG[j]. Then compute the encoding of mj as: (c1,j , . . . , c`,j)← TEnctgj

(mj).
3. Constructing blocks: Define the tag-block c0 := TG. For all i ∈ [`] define the i-th

block as ci := (ci,1, . . . , ci,t). Output the codeword c = (c0, . . . , c`).
Decode LDec(c):
1. Parsing: On receiving a codeword c, parse it as (c0, . . . , c`) := c such that |c0| = t

and for all i ∈ [`] |ci| = tni. Then, for all i ∈ [`] parse ci as (ci,1, . . . , ci,t) such that for
all j ∈ [t], |ci,j | = ni.

2. Checking Tag consistency: Check if the “bigger” tag is consistent with the
“smaller” tag: c0 = c1,1[α]‖c1,2[α]‖ · · · ‖c1,t[α]. Also check if the positions of the smaller
tags are correct: ∀ j ∈ [t], c1,j [1 . . . (α − 1)] = BIT(j). If any of these fail output ⊥,
otherwise go to the next step.

3. Decoding with smaller tag: For each j ∈ [t] decode each value vj ← TDectgj
(c1,j ,

. . . , c`,j). If any of them is ⊥ then output ⊥. Otherwise, parse each vj as mj and
finally output m = m1 ⊕ · · · ⊕mt.

Formally we show the following theorem. The proof can be found in the full version [4].

I Theorem 12. Let TCode = (TEnc,TDec) be a (t, tg, `, k, n)-OMTBC for any tag tg ∈
{0, 1}α, t = 2α−1 − 1 and k ∈ N. Then for any tag TG ∈ {0, 1}t the above construction
LCode = (LEnc, LDec) is a (TG, `′, k′, n′)-TBNMC for `′ = `+ 1, k′ = k and n′ = nt.

3.3 The full construction by removing tags
Finally we present a transformation to remove tags using one-time signature scheme and a
tag-based code with “large tag” (will be referred to as “inner code” in this section). This is
similar to a standard trick [10] used in the area of non-malleable commitment for the same
purpose. The main idea is to sign the entire codeword and set the public-key as the tag.
This forces the tampering function either to keep the tag same and forge the signature in
order to tamper, otherwise change the tag by producing its own key-pairs and then tamper.
But the “inner code” guarantees that whenever the tag is changed, the tampering would
result in an “unrelated” codeword.

Let TCode = (TEnc,TDec) be an (tg, `, k, n)-TBNMC for any tag tg ∈ {0, 1}t. Let
OTSig = (KGen,Sign,Verify) be a one-time signature scheme with public key pk ∈ {0, 1}t
which takes any km = n− t-bit message to produce a ns-bit signature. Then we construct an
(`, k, n+ ns)-BNMC Code = (Enc,Dec) as follows:
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Encode Enc(m):
1. Generate signature keys: On input message m ∈ {0, 1}k first run the key-

generation algorithm of the signature scheme OTSig to generate a key pair: (pk, sk)←
KGen(1κ).

2. Encode with tag: Run the tag-based encoding scheme with pk as the tag on the
input message m to produce the codeword (c̃1, . . . , c̃`)← TEnc(m). Note that c̃1 = pk.

3. Sign the codeword: Sign the codeword (except the tag) (c̃2, . . . , c̃`) to compute
the signature σ ← Sign(sk, (c̃2, . . . , c̃`)).

4. Output: Set for all i ∈ [` − 1], ci = c̃i and c` = c̃`‖σ. Output the codeword
c = (c1, . . . , c`)

Decode Dec(c1, . . . , c`) :
1. Parse: On input the codeword (c1, . . . , c`), set ∀i ∈ [`− 1], c̃i := ci and parse c` as

(c̃`‖σ) := c` such that |c̃`| = n` and |σ| = ns.
2. Verify signature: Then verify the signature d← Verify (c̃1, (c̃2, . . . , c̃`), σ). If d = 0

(i.e. verification fails) then output ⊥. Otherwise go to the next step.
3. Decode with tag: Decode the codeword as m̃← TDec(c̃1, . . . , c̃`). Output m̃.

Formally, we have the following theorem (see the full version [4] for a formal proof).

I Theorem 13. Let TCode = (TEnc,TDec) be a (tg, `, k, n)-TBNMC for any tag tg ∈ {0, 1}t
and OTSig = (KGen,Sign,Verify) be a one-time signature scheme with public key pk ∈ {0, 1}t
which takes any km = n − t-bit message to produce a ns-bit signature.Then the above
construction Code = (Enc,Dec) is a (`′, k′, n′)-BNMC for `′ = `, k′ = k and n′ = n+ ns.

Theorem 4 now follows by combining Theorem 11, Theorem 12 and Theorem 13 and
instantiating with appropriate parameters.
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Abstract
Protecting software from malware injection is one of the biggest challenges of modern computer
science. Despite intensive efforts by the scientific and engineering community, the number of
successful attacks continues to increase.

This work sets first footsteps towards a provably secure investigation of malware detection.
We provide a formal model and cryptographic security definitions of attestation for systems
with dynamic memory, and suggest novel provably secure attestation schemes. The key idea
underlying our schemes is to use the very insertion of the malware itself to allow for the systems
to detect it. This is, in our opinion, close in spirit to the quantum Observer Effect. The attackers,
no matter how clever, no matter when they insert their malware, change the state of the system
they are attacking. This fundamental idea can be a game changer. And our system does not rely
on heuristics; instead, our scheme enjoys the unique property that it is proved secure in a formal
and precise mathematical sense and with minimal and realistic CPU modification achieves strong
provable security guarantees. We envision such systems with a formal mathematical security
treatment as a venue for new directions in software protection.
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1 Introduction

Protecting software from malware injection is a major goal of computer security. Nonetheless,
the problem of basing solutions on strong theoretical foundations does not seem to have
received sufficient attention in the malware protection literature. In this work we suggest
a novel provably secure and practically efficient paradigm for software protection against
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arbitrary malicious code injection. We provide the first formal cryptographic model tailored
to detect malware injection in modern computers, which we envision as the basis for fruitful
research on provable secure detection and prevention of malware leading into the next
generation of secure systems. Importantly, we provide first matching solutions that are
accompanied by mathematical proofs that any memory oblivious injection will be caught
with arbitrary high probability. Our solutions are practically efficient, demonstrating that
provable security does not come at a too high price.

Our proposed system has the following desirable properties: 1) it requires minor to no
changes to the CPU specification to provably defend against injection attacks that can not
read the code before they inject their malware; 2) it only affects the performance of the
program by a modest amount. The first property implies that it can be used on today’s
computers. The second property means that it can be practical, since performance is critical
in most applications; this is obvious even in its simplified form presented here, where various
optimizations have been avoided for the sake of clarity in the presentation. Finally, we allow
attacks both spatial and temporal freedom: the attack can occur at any time during the
execution and on any part of the memory. It can attack code as well as data.

1.1 Overview of our Contributions
We put forward and formally define the notion of a virus detection scheme (in short, VDS)
which compiles any given program W (and its data) into a new secured program W̃ that
performs the same computation as W but allows us to detect any virus injected in the
memory at any point of the execution path. The detection is done via a provably secure
challenge-response mechanism between the machine executing the (compiled) software and
a verifying external device. Importantly, we insist that the verification algorithm be very
simple, and in particular that it be executed by a very lightweight device (Our constructions
require that the verifier only does an encryption and compares strings for equality.) Thus,
the role of the verifier can be, for example, played by the user with a smartphone, or by a
compact and simple, intrusion-free hardware module that could even be part of the CPU.1
Moreover, the verification uses public key techniques, where the verifier needs only the
public key. This restricts the attack surface to the machine executing the secured code, as
compromising the verifier’s privacy gives an attacker no advantage in breaking our scheme.

We provide our formal cryptographic definitions of VDS security based on the well-
studied Random Access Machine (RAM) model, slightly adapted to be closer to an abstract
version of a modern computer following the von Neumann architecture. The suggested model
corresponds to a simplistic closed-system abstraction of software execution: The code to be
executed along with its associated data is loaded initially on the random access memory
(RMEM,) which, through the execution, only communicates with the CPU.2

In more detail, a secure VDS is described as follows. The software to be executed is
compiled, prior to being loaded onto the memory, to a secure version. Importantly, this
compilation does not necessarily need the source code but for a wide class of software (non-
self-modifying code) can be applied on the binary (machine-language) code of the program;
thus, the compilation can be performed by the program vendor (this might allow for further

1 Unlike software-based attestation techniques (cf. Section 1.2), the verification in our scheme can be
done even over an insecure network, e.g. the Internet.

2 In particular, the current theoretical model does not address how the data is exchanged with secondary
storage devices, e.g., flash memory. It is part of ongoing research to extend this model to more
complicated architectures.
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efficiency optimizations) or by the user without requiring any reverse engineering. The
compiler, in addition to the (binary code) of the program and its data, uses a randomly
chosen compilation key K.

To check/verify that the software running on a system has not been attacked by a virus (or
to detect such an attack in case it has occurred), the following detection process is executed.
The user issues a challenge c that depends on the compilation key K and the system is
required to produce a reply which passes a specified verification test. As already discussed,
we arrange things in such a way that the verifier does not need to know the compilation key,
and he can just know some public information on it. Formally, this is done by the use of
public key cryptography, where the compilation key is the secret key, and the information
held by the verifier, which we refer to as the verification key, is the corresponding public key.
The security of the VDS requires that if the RAM has not been attacked then it can always
reply to the challenge in an accepting manner (verification correctness); otherwise, any reply
will be rejected with high probability (security).

We provide concrete instantiations of practical VDSs which, depending on the assumptions
about the CPU they are executed on, achieve from a reasonably strong security (namely
protection against continuous injection of moderate-sized virus) to security against arbitrary
small viruses injected on locations that might depend on key-share locations. Informally, we
prove the following result for our VDSs.

I Theorem (informal). Under standard complexity assumptions our VDSs compile any non-
self-modifying software into a secure version that detects any malware injection with very
high probability.

Our schemes are independent of the virus code, are platform-independent, and might
require only small modifications to the common CPU architecture (in particular, they do
not assume tamper-resilient hardware); and, with appropriate optimizations we can make it
that they only affect the performance of the executed software by a practically acceptable
amount. As a useful side effect, our scheme is even able to detect hardware errors, e.g.,
random bit-flips in the memory; as demonstrated in [5], such errors might have important
consequences on the security of the executed software.

To construct our VDS we start by constructing a scheme satisfying a weak(er) notion of
security, which (1) catches only injections of continuous and sufficiently long viruses, and (2)
assumes that the response is computed by an external (trusted) device that is given access
to the state of the attacked system. We give a formal definition of this weaker notion which
depending on the application and the desired security level might already be satisfactory. We
then proceed and gradually modify (strengthen) our scheme. The first modification ensures
that the compiled program can compute the response by itself, i.e., without the help of an
external trusted device. We note that the security of our weakest scheme is information
theoretic (it is based on the perfect privacy of one-time pad encryption), whereas the proof
of the more secure scheme requires a leakage-resilient encryption algorithm [9].

The second modification uses a simple message authentication code (in short, MAC) to
remove the limitation to sufficiently long and continuous virus injection. A MAC authenticates
a value using a random key, so that an attacker without access to the key cannot change the
value without being detected. More concretely, to authenticate a word w our scheme relies
on the standard MAC [16] that uses two keys K1 and K2, and compute a MAC tag as t =
w·K1+K2, where w,K1, andK2 are interpreted as elements of an appropriate large arithmetic
field. Observe that such arithmetic operations are implemented in hardware in existing CPUs.
We assume, however, that the executing CPU has a slightly extended instruction-set which,
informally, has each “load” instruction, i.e., read-from-memory instruction, check that the
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MAC is correct before it loads the word on the CPU registers. We stress that this only needs
the architecture to provide us with a very simple extra piece of microcode. By engineering
the CPU’s hardware in a smart way so that these operations are done on the circuit level,
we expect to be able to reduce the effect of our compiler to a barely noticeable slowdown.
Fortunately, the new architecture that Intel recently announced promises to embed such
microcode in its next-generation microchips [24].

Overview of our VDS Construction. So how can we detect an intrusion that we have never
seen before? How can we arrange that any injection of malware into our program by an
attacker who does not know the compilation-key will be detected? The answer is that we
will hide the compilation-key/secret in our program in a way that ensures that with very
high probability, any injection by an adversary must destroy the secret. Once this secret is
destroyed, the adversary may indeed be able to take over the program, but will be quickly
detected. We note that current systems may fail to detect such an attack forever – for the
type of injection we protect against, we are able to detect it in seconds.

A point: We can imagine situations where even such a swift detection of an attack is
not sufficient to stop potential harm. An attacker could, in some situations, do immense
damage even if he is in control of a program for only a fraction of a second. Furthermore,
our approach is not targeted towards fixing buggy software or detecting malware-including
software which might be (unknowingly) installed by the user. Rather, our method offers
protection against "unauthorized" injection of malicious code, e.g., direct injection to the
memory or radiation attacks. But we view the ability to provably detect any such attack,
new, old, clever, or not, as a big improvement over the current state of the art.

So how can we do this? Let W be a program that we wish to protect from malware. We
recompile W to W̃ . The idea is that W and W̃ must compute the same thing, run in about
the same time, and yet W̃ must be able to detect itself against the insertion of malware. An
obvious idea is to have W̃ periodically check to see if its code or data have been maliciously
changed. The trouble with this approach is that the attacker could easily inject his own code,
take over the checker, and thereby disable the checking. In short: who checks the checker?

Here is how we proceed. The protected program W̃ operates normally most of the time.
Periodically it is challenged by another machine to prove that it has a secret key K. This
key is known only to W̃ and not to the attacker. If W̃ has not been attacked, then it simply
uses the key K to answer the challenge and thus proves that it is still operating properly.

The issue is what happens if W̃ has been attacked and some code has been injected into
it. We can arrange W̃ so that no matter how the injection of code has happened the key K
is lost. The attacker’s very injection will have changed the state of W̃ so that it is now in a
state that no longer knows the key K. This is the analog of the quantum observer effect,
often referred to as the Heisenberg Uncertainty Principle: the attacker has damaged the
state of W̃ so that the key has been destroyed.

Making the attack destroy the key is the central idea here. If W̃ simply stores K
somewhere in memory, the attacker will take over the program, look around for the key, and
likely find the key;3 this defeats the protection, since now it can answer the periodic challenges
just like W̃ could. To resolve the above issue we distribute the key K all through memory
by using what is called secret sharing [30]. This is a standard method in cryptography that
breaks a small key, like K, into many small pieces, called shares. These pieces are cleverly
placed throughout all of W̃ ’s memory. Our secret sharing allows K to be reconstructed only

3 Note that we do not assume private memory, i.e., memory which the CPU cannot read.
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if all the pieces are left untouched – if any are changed in any way, then it is impossible to
reconstruct the key. Obviously, if there has been no attack, then in normal operation W̃ can
reconstruct the key from the pieces and answer the challenges. However, if the pieces are not
all intact, then W̃ will be unable to answer the next challenge.

This is the high-level idea of our method: hide the key via secret sharing, and rely on the
attacker to destroy at least one share of the key. This destruction is irreversible and makes
the attack fail the next challenge.

There is one additional point that we must mention. We must arrange that W̃ can be
attacked at anytime, including when the system has collected all the shares and reconstructed
the keyK on its CPU. This is a very dangerous time, since if W̃ is attacked at this moment the
fact that shares are destroyed does not matter. The attacker can simply use the reconstructed
key K. We avoid such time-of-check-time-of-use (TOCTOU) attacks [25] by actually using
two keys K1 and K2 in tandem. Both are stored via secret sharing as before, but now one
must have both in order to answer the challenges. We arrange that W̃ only reconstructs one
key at a time and this means that an attacker must destroy either or both of the keys. This
handles the above dangerous situation and makes our method provably secure.

Tying up the last loose end, we treat the case of very small viruses – i.e., ones that
consist of a single bit or just a few bits – and viruses that know (or guess) the exact memory
locations of key-shares in advance and therefore might not need to overwrite them. We armor
our system to defend even against such tiny/informed viruses by employing an additional
lightweight cryptographic primitive, namely a MAC. We use the MACs in a straightforward
and efficient manner: we authenticate each word in W using the key-shares (also) as MAC
keys, and require that for any word that is loaded from the random access memory, the CPU
verifies the corresponding MAC before further processing the word. Thus, if the MAC does
not check out we detect it (and immediately destroy the share), and if the adversary changes
the MAC key, he loses one of the shares of one of the two secrets, and we detect that as well.

We enforce the above checks by assuming a modified CPU architecture (with only very
small amount of additional computation, so the CPU power consumption is not affected).
More specifically, to get the most out of the MAC functionality we need that when the CPU
executes the program, it verifies authenticity of the words it loads from the memory. That
is, the load operation of the CPU loads a block of several (in our case, five) words – this is
already the case in most modern CPUs – including the program word, the MAC-tag and
the corresponding keys, and check with every load instruction that the MAC verifies before
further processing the word. Importantly, our MAC uses just one field addition and one
field multiplication per authentication/verification; the circuits required to perform these
operation are actually trivial compared to the modern CPU complexity and are part of many
existing CPU specifications.

But to obtain security against any injection, we need one more trick: instead of using the
actual key-shares in the generation/verification of the MAC tag, we use their hash-values.
This ensures that the virus cannot manipulate the keys and forge a consistent MAC unless
he overwrites a large part of them. We anticipate that given our goal’s potential impact on
security, such functionality might be included in the next generations of CPUs [24].

1.2 Related Literature
The literature on defense mechanisms against malware-injection attacks is vast. Due to its
urgency and importance, the problem has been intensively researched. In what follows we
provide a brief overview of the directions most related to our approach.

Closest related to our goals is the literature on verifying the authenticity/integrity of the
internal state of computing devices to confirm that they have not been attacked by malware,
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a mechanism usually referred to as attestation. A rough taxonomy divides this literature
in three general categories, namely hardware-based attestation [2, 6, 11, 21], software-based
attestation [20, 29, 28, 1, 17, 18], and remote attestation [6, 11, 21, 14, 4]. Due to the
similarity in the goals of attestation with our system, we present a detailed overview of the
corresponding literature in the full version of this work [23]. As a general note, we stress
that similarly to other practical defense mechanisms, attestation schemes do not come with
a formal proof of security or even a theoretical security model.4 In contrast, our scheme
is not only backed by a formal mathematical proof, but has several additional advantages
with respect to existing attestation schemes, which are highlighted in the full version of this
work [23]. We note, however, that much of the attestation literature allows the system to
leak its entire state; although our schemes do not account for such leakage (in particular, the
key shares should not leak), one can use sharing-refreshing techniques, e.g., [26, 3], to add
protection against periodic leakage. The details of such a scheme are subject of future work.

On the most theoretical side of cybersecurity, cryptography provides solutions whose
security is backed by rigorous mathematical proofs that typically reduce hardness of breaking
the scheme to hardness of solving a mathematical problem, e.g., factoring. But with only a
few exceptions, e.g., [7, 13, 10, 19, 15, 27], the cryptographic literature has not, to the best
of our knowledge, targeted the problem of malicious code injection. And in contrast to the
security-engineering research, cryptographic solutions that do target this problem are often
inefficient and/or adopt a too-abstract model of computation which makes them inapplicable
or impractical for today’s systems.

1.3 Organization of the Paper
In Section 2 we describe the model of computation and the virus injection model, and in
Section 3 we provide our security definitions for VDSs. Our VDS constructions are then
described in Sections 4 and 5. Due to limited space, some of the formal definitions and proofs
have been moved to [23].

2 The Model

In this section we provide an abstract specification of our model of computation. We use as
our basis the well known Random Access Machine (RAM) model but slightly adapt it to be
closer to an abstract version of a modern computer following the von Neumann architecture.
In a nutshell, this modification consist of assuming that both the program and its data are
written on the RAM’s random access memory5 which is polynomially bounded. A RAM
R consist of two components: A Random Access Memory (in short RMEM) and a Central
Processing Unit (in short CPU). The RMEM and the CPU communicate in fetch-and-execute
cycles, aka CPU cycles, where the number of CPU cycles is the default complexity measure
of a RAM. We will refer to a CPU cycle as a round in the RAM execution.

The memory RMEM is modeled as a vector MEM of m = |MEM| = poly(k) words, where k is
the, often implicit, security parameter. Each word is an L-bit string, where we assume that
L is linear in k. (Wlog, in the following we will assume that L = k.) For i ∈ {0, 1, . . . ,m− 1}
we denote by MEM[i] the ith word, i.e., the contents of the i-th RMEM register. The CPU

4 An exception here is [4] which uses an idea similar in spirit to ours – i.e., sharing a secret through the
memory – for provably protecting against a class of heap overflow attacks (cf. [23] for a comparison).

5 In the literature, a RAM with this modification is usually called a Random Access Stored-Program
machine [12] (in short, RASP).
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consists of a much smaller number of L-bit registers – in this work we assume that the total
amount of storage of the CPU is linear in the security parameter k – and an instruction
set I that defines which operations can be performed on the registers, and how data are
loaded-to/output-from the CPU. The CPU registers include a read-only input-register and
an output register which correspond to its interface with its environment (the user). The
CPU registers are modeled as an array REG of words, where we denote by REG[i] the content
of the ith CPU register. We denote a CPU by the pair C = (REG, I) of the vector REG of
registers and the instruction set I. We denote a RAM with CPU Ck and RMEM MEMk as
Rk = (Ck, MEMk).6 The state of Rk at any point in the protocol execution is the vector
(REGk, MEMk) including the current contents of all its CPU and RMEM registers. Details of
the model and formal definitions can be found in [23].

To allow for asymptotic security definitions – where the word size, the size of the CPU
(i.e., number of its registers), and the size of the memory depend on the security parameter
– we often consider a family of RAMs, R = {Rk}k∈N with Rk = (Ck = (REGk, Ik), {MEMk}).
(The size of each word processed by Rk is L = k.) The RAM families considered in this
work have the following property: The instruction set Ik is the same for all values of the
security parameter k. In particular, we assume that all elements of a RAM family, have the
same constant number c = O(1) of CPU registers, where each register of Rk is of size k, and
there is some set of instructions I that includes operations defined over strings of arbitrary
size such that Ik = I for every k ∈ N. (Of course for each value of k, Ik corresponds to the
restriction of I on k-bit strings.)

Software Execution and Virus Injection. A program to be executed on a RAMR = (C, MEM)
is described as a vectorW = (w0, . . . , wn−1) ∈ ({0, 1}L)n of words that might be instructions,
addresses, or program data. To avoid confusion, we refer to such a vector including the
(binary of a) software and its corresponding data as code for R. By convention, whenever,
for a RAM family R we say that W is code for R, we mean that W is code for the element
Rk ∈ R with register size as long as the word size of W and instruction set that includes
all the instructions used by W . The execution of a program proceeds as follows: The code
W is loaded onto the memory MEM. Unless stated otherwise, we assume that W is loaded
sequentially on the first n = |W | locations of MEM, where all remainder locations are filled
with (no_op) instructions. The user might give input(s) to R by writing them on its input
register. The RAM starts its execution by fetching the word of the RMEM which the program
counter points to, i.e., MEM[pc] (wlog, initially pc = 0). We assume that the RAM is reactive,
i.e., any new input written on its input register, makes the RAM resume its computation
even if it had halted with output (cf. [23]).

A CPU is complete (also referred to as universal) if given sufficient (but polynomial)
random access memory it can perform any efficient deterministic computation (for a formal
definition see [23]). We at times refer to a RAM (family) with a complete CPU as a complete
RAM (family).

Modeling Virus Attacks. In our model, a virus attacks a RAM by injecting its code on
selected locations of the memory RMEM. More formally, an `-bit virus is modeled as a tuple
v = (~α, V ) = ((α0, . . . , α`−1), (b0, . . . , b`−1)), where each αi ∈ ~α is a location in the memory
and each bi is a bit. The effect of injecting a virus v into a RAM R = (C, MEM), is to have, for
each αi ∈ ~α, the αi-th bit on the memory – i.e., the (αi mod L)-th bit of the word written

6 In slight abuse of notation we at times drop the security parameter whenever it is clear from the context.
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on register MEM[bαi

L c] – (over)written with bi. We say that v is valid for R if the following
properties hold: (1) αi 6= αj for every αi, αj ∈ ~α, and (2) αi ∈ {0, . . . , L(|MEM| − 1)} for every
αi ∈ ~α. Furthermore, we say that v is non-empty if |~α| > 0. Note that in this work we do
not consider viruses which inject themselves on the CPU registers.

3 Virus Detection Schemes

We next formalize our notion of provably secure virus detection. More concretely, we
introduce the notion of a virus detection scheme (in short VDS) which demonstrates how to
compile a given program (and its data) into a new program which allows us to detect any
virus injection. The detection is done via a challenge-response mechanism.

I Definition 1. A virus detection scheme (VDS) V consists of five (potentially) randomized
algorithms, i.e., V = (Gen, Comp, Chal, Resp, Ver), defined as follows:7

Gen is a key-generation algorithm; it computes a pair (compilation-key, verification-key),
i.e., (Kc,Kv)

$← Gen.8

Comp on input the description R = {(Ck, MEMk)}k∈N of a RAM family,9 some code W for
Rk, and a compilation key Kc, Comp outputs a new code W̃ for Rk (which we will refer
to as secure code) ; i.e., W̃ $← Comp(Rk,W,Kc).
Chal on input a verification key Kv, and a string z ∈ InpChal ⊆ {0, 1}poly(k), Chal outputs
poly(k)-bit string c called the challenge; i.e., c $← Chal(z,Kv).
Resp on input a string c ∈ OutChal and some code W̃ , Resp outputs a poly(k)-bit string
y called the response; i.e., y $← Resp(c, W̃ ).
Ver on input a verification key Kv, a message z ∈ InpChal, a challenge c and a response
y, Ver outputs a bit b; i.e., b $← Ver(Kv, z, c, y). We say that Ver accepts iff b = 1.

A VDS should satisfy the following four security properties (see [23] for formal defini-
tions).10 The first property is verification correctness which, intuitively, guarantees that if
the RAM has not been attacked, then the reply to the challenge is accepting. The second
property is compilation correctness, which intuitively ensures that the compiled code W̃
performs the same computation (on R) as the original code W . In an application of a VDS,
the verifier inputs the challenge at a point of his choice and checks that the reply verifies
according to the predicate Ver. Thus, the third property of a VDS is self-responsiveness:
the secured code W̃ includes code that on some special input emulates algorithm Resp on
the RAM it executes. Finally, the fourth property requires detection accuracy which states
that if some non-empty malware gets injected onto the RAM, then it is detected with high
probability. This is one of the most challenging properties to ensure and is the heart of any
VDS. We next specify this property by means of a security game between an adversary Adv
who aims to inject a virus on a RAM, and a challenger Ch who aims to detect it.

7 All five algorithms below take as an additional input the security parameter k, which is omitted for
compactness.

8 Note that if we instantiate the VDS with symmetric-key cryptography then Kc = Kv.
9 This description of the family includes the word-size, the size and addresses of the CPU and RMEM
registers and (an encoding) of the instruction set I.

10Without loss of generality, whenever we refer to the secure (i.e., compiled by Comp) version W̃ of some
code W for a RAM family R we will implicitly assume that R has enough memory for writing W̃ on it,
i.e., if the word size of W̃ is k then |MEMk| > |W̃ |.



R. J. Lipton, R. Ostrovsky, and V. Zikas 32:9

3.1 Detection Accuracy as a Security Game
At a high-level, the security game, denoted by GR,V,WVDS , proceeds as follows: The challenger
Ch runs the key-generation algorithm to obtain a key-pair (Kc,Kv), and compiles some code
W for RAM R = (C, MEM) onto a new code W̃ for R by invocation of algorithm Comp; Ch then
emulates an execution of W̃ on R, i.e., emulates its CPU cycles and stores its entire state at
any given point. The adversary is allowed to inject a virus of his choice on any location in the
memory MEM. Eventually, the challenger executes the (virus) detection procedure: It computes
a challenge c by invocation of algorithm Chal(z,Kv), and then feeds input (check, c) to the
emulated RAM and lets it compute the response y. The adversary wins if the output b of the
verification algorithm with this response y equals 1. To capture worst case attack scenarios,
we allow the adversary to inject his virus at any point during the RAM emulation and make
no assumption as to how many rounds the RAM executes after the virus has been injected
and before it receives the challenge. Furthermore, we make no assumptions on how much
information the adversary holds on the original code W or on the inputs/outputs of R. The
formal description of the security game GR,V,WVDS can be found in [23].

I Definition 2. We say that a virus detection scheme V =(Gen,Comp,Chal,Resp,Ver) is secure
for RAM family R if it satisfies the following properties:
1. V is verification correct, compilation correct, and self-responsive.
2. For sufficiently large k for any code W for Rk and any polynomial adversary Adv in

the game GRk,V,W
VDS who injects a valid non-empty virus the following holds: Pr[b = 1] is

negligible, where the probability is taken over the random coins of Adv and Ch.

In our constructions we restrict our statements to a certain class of code that satisfies some
desirable properties making the compilation easier. We will then say that the corresponding
VDS is secure with respect to the given class of code.

The Repeated Detection Game τGR,V1,W
VDS . Definition 2 requires that the adversary is

caught even when he injects its virus while the RAM is executing the Resp algorithm. We next
describe a relaxed security game, which provides a useful guarantee for practical purposes.
In this game the virus detection (challenge/response) procedure is executed multiple times
periodically (on the same compiled code); the requirement is that if the adversary injects
its virus to the RAM at round ρ, then he will be caught by the first invocation of the
virus detection procedure which starts after round ρ. Note that all executions use the same
compiled RAM program and therefore the same key K. The corresponding security game
τGR,V,WVDS which involves τ executions of the detections procedure is detailed in [23]. The
security definition is similar to Definition 2 but requires that any virus that is injected in the
RAM will be caught in the first virus detection attempt performed after the injection . Our
VDSs will be proven secure in this repeated detection game. In [23] we describe a simple
trick which transforms our VDSs to ones that are secure in the standard game using a secure
hash function.

4 A Software-based VDS for Continuous Moderate-size Virus

In this section we provide a VDS which is secure assuming the virus is linear in the
security parameter and that it is injected in continuous memory locations, i.e., if v =
((α0, . . . , α|V |−1), V ), then αi = αi−1 + 1 for all i ∈ [|V |− 1]. This captures the entire class of
tampering accounted for in [4]. In Section 5 we will show how to get rid of these restrictions.
Our construction proceeds in two steps. First, we show how to construct a VDS V1 which
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achieves a weaker notion of security that, roughly, does not have self-responsiveness. In a
second step, we show how to transform V1 into a VDS V2 which is secure in the repeated
detection game.

A VDS without self-responsiveness. We start by describing a VDS V1 = (Gen1, Comp1,

Chal1, Resp1, Ver1) which achieves security without self-responsiveness: The corresponding
attack-game GR,V,WVDS− is derived from the standard attack-game GR,V,WVDS by modifying the
detection procedure so that instead of emulating R on the compiled code W̃ and input
(check, c) to compute y = Resp(c, W̃ ), the challenger evaluates y $← Resp(c, W̃ ) himself on
the current contents W̃ of the memory of the emulated RAM.

At a high level, the idea of our construction is as follows: The key generation algorithm
Gen1 samples a k-bit key K for a symmetric-key cryptosystem, i.e., Kc = Kv = K

$← {0, 1}k.
Given key K, the algorithm Comp1 computes an additive sharing 〈K〉 of K and fills the
entire memory MEM by interleaving a different share of 〈K〉 between every two words in the
original code. Concretely, Comp compiles some code W for a RAM R into some new code
W̃ for R constructed as follows: Between any two consecutive words wi and wi+1 of W the
compiler interleaves a uniformly chosen k-bit string Ki,i+1 = Ki,i+1

1 || . . . ||Ki,i+1
k
L

, where each
Ki,i+1
j ∈ {0, 1}L. In the last k bits of the compiled code (i.e., after the last word w|W |−1)

the string Klast = K ⊕
⊕|W |−2

i=0 Ki,i+1 is written.11

To ensure that the compiled code W̃ executes the same computation as W we need that
while being executed it “jumps over” the key-share locations. For this purpose, we do the
following modification: After each word wj of W we insert a (jumpby, n) instruction where
n is the number of key-shares between this and the next W -word in the compiled code.
Similarly, we modify any “jump" instructions of the original code W to point to the correct
locations in W̃ . Note that this modification is not necessarily applicable to arbitrary code,
e.g., for certain self-modifying code it might even be infeasible. However, it is possible for a
complete class of code, which we refer to as non-self-modifying structured code, – roughly,
this includes code that does not modify its instructions and might only jump by a fixed
amount in each operation.

In the following we provide the description of our compiler. The first step to this direction
is a process, called Spread, which spreads such a code to allow for enough space between
the words to fit the key-shares and adds the extra "jump" instructions to preserve the right
program flow. The compiler Comp1 uses the process Spread to translate, as sketched above,
some non-self-modifying structured code W for a RAM R = (C, MEM) into (secured) code W̃
for R. The algorithm Chal1 chooses random string x ∈ {0, 1}k, and computes the challenge
as an encryption of x with key K; i.e., c← Chal(x,K) = EncK(x). For achieving security
without self-responsiveness, we can take Enc to be the one-time pad, i.e., EncK(x) = x⊕K.
The corresponding algorithm Resp1 works as follows: On input the challenge c = EncK(r)
and the compiled code W̃ , it reconstructs K by summing up all its shares as retrieved from
W̃ , and outputs a decryption of the challenge under the reconstructed key, i.e., outputs
y = c⊕K. The corresponding verification algorithm Ver1 simply verifies that y = x.

The security of the above scheme follows from the fact that an injection of a sufficiently
long continuous virus will have to overwrite a substantial number of bits of a key-share,
which will make it infeasible to correctly decrypt the challenge and thus pass the VDS check.
The formal security proof of the statement can be found in [23].

11Wlog, here we implicitly assume that (|MEM| − |W |) = 0 mod k so that the keys fit exactly in the
memory. The general case can also be easily treated.
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I Theorem 3. Assuming R is a complete RAM family the VDS V1 is secure for R without
self-responsiveness with respect to the class of all non-self-modifying structured codes and the
class of adversaries who injects a virus v with |v| ≥ 2L+ ` where ` = ω(log k) on consecutive
memory locations.

Adding Self-Responsiveness. We next modify V1 so that it is secure (with self-responsiveness)
in the repeated detection game. Due to space limitation, the detailed transformation has
been moved to [23]; here we restrict to an overview of the basic technical ideas. The first
step is to devise a code WResp for computing a given VDS response algorithm Resp and
then combine it with W via a threading mechanism: When executing, the combined code
Emb(W,WResp) (periodically) checks if a verification request-input with challenge c is handed
to R; if so, it stores the CPU state on free memory locations – namely, locations at the end
of the memory that are occupied by (no_op) – and changes the program counter to point to
the location where WResp is stored; once Resp has produced output, it restores the CPU to
its prior state and continues the execution of W .

But the above modification applied on V1 does not yield a secure VDS, as it only detects
attacks (virus injections) that occur outside the virus verification procedure, i.e., has the
TOCTOU vulnerability discussed in the introduction. To solve this, instead of using a single
compilation-key K of length k we use a 2k-bit key K which is parsed as two k-bit keys Kod

and Kev via the following transformation: Let K = x1|| . . . ||x 2k
L
, where each xi is a word.12

Then Kod is a concatenation of the odd-indexed words, i.e., xi’s with i = 1 mod 2, and Kev

is a concatenation of the even indexed words. Now the challenge algorithm outputs a double
encryption of z with keys Kod and Kev, i.e., c = EncKod(EncKev(z)). In order to decrypt, the
response algorithm does the following: First it reconstructs Kod by XOR-ing the appropriate
shares, and uses it to decrypt c, thus computing EncKev(z). Subsequently, it erases Kod from
the CPU register (e.g., by filling the register where Kod is stored with 0’s) and after the
erasure completes it starts reconstructing Kev and uses it (as above) to decrypt EncKev(z)
and output y = z.

The above modification ensures that in order to correctly answer the challenge, the virus
needs both Kod and Kev. However, the keys are never simultaneously written in the CPU.
Thus if the adversary injects the virus before Kod is erased he will overwrite bits from a
share of Kev (which at that point exists only in the memory RMEM); thus he will not be
able to decrypt the challenge. Otherwise, if the adversary injects the virus after Kod has
been erased from the CPU, he will overwrite bits from a share of Kod; in this case he might
successfully pass this detection attempt, but will fail the next detection attempt.

But we are still not done, because the above argument cannot work with any encryption
scheme, e.g., it fails if we instantiate Enc(·) with one-time-pad encryption as in VDS V1. The
reason is that once inside the system, the adversary might be able to use the key material
it has not destroyed to answer the challenge with non-negligible probability. To avoid this,
we make use of a public-key leakage-resilient encryption scheme, e.g., [8], which is secure as
long as the adversary’s probability of guessing the key is negligible even when one leaks a
big part of the key.

The above tricks are the heart of our modified VDS, but a few more low level hacks are
employed to ensure that the modified protocols compose well with the ones from the previous
section. For example, we need to make sure that the part of the code Emb(W,WResp) that

12We provide the general solution for k = Lq for some q; with the simplification that L = k, we get that
K = x1||x2 = Kod||Kev.

ICALP 2016



32:12 Provably Secure Virus Detection

performs the verification accesses the correct key-share locations. We refer to [23] for the
details and the security proof of the resulting VDS V2 = (Gen2, Comp2, Chal2, Resp2, Ver2).

On the performance of our VDS. It is easy to verify that the above VDS induces a
moderate slowdown, i.e., a factor two, due to processing the newly inserted jump instructions
plus whatever slowdown the periodically checking for inputs might impose, on the execution
of the code on the RAM (while the code is not being verified). Both slowdowns can be
reduced. E.g., the factor two is an overestimate as several instructions are already “jumps”
plus reading data does not execute “jumps”; similarly, the check for the input can be executed
periodically (or explicitly assumed as being part of any CPU-cycle). On the other hand,
verification is quite heavy as it needs to traverse almost the entire memory but this is not our
main consideration as (1) we believe that our scheme’s provable security guarantee makes
the waiting acceptable, and (2) unlike existing attestation methods the verification does not
need to stop the normal execution of the program – e.g., in a RAM with parallel processors
it could be done by a single designated processor.

In terms of memory usage, the secured code requires a linear (concretely, a factor four)
amount of memory with respect to the original code. Although we are less concerned about
memory needs – memory is an inexpensive expandable resource the capacities of which
increase faster than computation speed – improving the memory usage is an interesting
research direction.

5 Detecting Arbitrary Injection

The above VDSs are secure only against (sufficiently) long and consecutive viruses. In this
section we describe a construction which is secure independently of the virus length even if
the virus bits are not injected continuously, and in particular even when the virus targets non-
key-share locations. To achieve this ultimate security guarantees we use a compiler similar to
Comp2, but we include, for each code word and pair of key-shares, message-authentication-code
tags (MACs) which we verify every time we load a code word to the CPU. Concretely, the
difference with Comp2 is that Comp3 appends a MAC tag ti to each word, keyed with the
(concatenation of the) key-shares Ki,i+1

od ||Ki,i+1
ev that follow this word. We use a MAC with

a special leakage-resilient property that ensures that the adversary cannot forge a tag even
when he knows a large portion of the key. Thus, if the malware overwrites only a few bits of
some of the key-shares it will be unable to guess an appropriate manipulation of the MAC
key. And if it overwrites a large portion it will be unable to answer decryption challenges.

To use the power of the MACs we need to make sure that during the program execution,
before loading any word to the CPU we first verify its MAC. To this direction, we assume
that, by default, the CPU loads values from the memory RMEM to its registers via a special
load instruction (read_auth, i, j), which fetches five consecutive words (corresponding to w̃i
and its MAC key and tag), verifies the MAC with the corresponding keys, and only if the
MAC verifies, it keeps the word on the CPU to process. If the MAC verification fails, then
(read_auth, i, j) deletes at least one of the key-shares from the memory, thus introducing
an inconsistency that will be caught by the detection procedure. Furthermore, to ensure
that the compiled program will not introduce inconsistencies, our compiler replaces every
(write, j, i) instruction (which writes the contents of register j in RMEM location i) with
microcode, denoted as write_auth, which, when writing a word in the memory it also
updates the corresponding MAC tag. We stress that, unlike read_auth which we need the
CPU to support as an atomic instruction, the instruction write_auth does not require any
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change in the architecture or additional assumptions as it can be implemented in code itself.
The details of the corresponding VDS V3 along with its security proof can be found in [23].

I Theorem 4. Let R be a complete RAM. If the encryption scheme used in V3 is CPA
secure even against an adversary who learns all but ω(log k) bits of the secret key, then V3 is
secure for R in the repeated-detection mode with respect to the class of all non-self-modifying
structured codes and adversaries in the bit-by-bit (non-continuous) injection model.
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Abstract
We show an almost cubic lower bound on the size of any depth three arithmetic circuit computing
an explicit multilinear polynomial in n variables over any field. This improves upon the previously
known quadratic lower bound by Shpilka and Wigderson [CCC, 1999].
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1 Introduction

An arithmetic circuit is a directed acyclic graph with leaves (nodes with in-degree zero)
labeled by formal variables and other nodes labeled by addition (+) or multiplication (×)
operations. Nodes with out-degree zero are the output nodes; for simplicity and without
losing generality we will assume that there is only one output node in a circuit. Non-leaf nodes
are also referred to as addition or multiplication gates. Such a circuit naturally represents
a multivariate polynomial; we say this polynomial is computed at the output node of the
circuit (or simply computed by the circuit). Two parameters that determine the complexity
of a circuit are its size and depth, which are respectively the number of edges and the length
of the longest path from any input node to the output node of the circuit. Computations
involving arithmetic operations can be naturally modeled by arithmetic circuits and hence
study of these objects forms a fundamental aspect of complexity theory.

Research on arithmetic circuits received a great impetus from the seminal paper by Valiant
[42] who defined two non-uniform complexity classes that are algebraic analogues of classes P
and NP. These algebraic complexity classes are known as VP and VNP in the literature. Class
VP consists of families of polynomials {gn}n≥1 such that the number of variables and the
degree of gn are nO(1), and there is an arithmetic circuit of size nO(1) computing gn. A family
of polynomials {fn}n≥1 is in VNP if there is another family of polynomials {gn(x,y)}n≥1
in VP such that fn =

∑
y∈{0,1}|y| gn(x,y). Valiant defined a notion of completeness for the

classes VNP and VP, and showed that the family of permanent polynomials is VNP-complete
whereas the family of determinant polynomials is almost complete for VP. This gave rise

∗ A full version of the paper (which contains all the missing proofs) can be found at http://eccc.hpi-
web.de/report/2016/006/
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to the famous ‘determinantal complexity of the permanent’ problem, a suitable resolution
of which would imply VP 6= VNP or equivalently a super-polynomial size lower bound for
arithmetic circuits. We refer the reader to the surveys [26, 39], the book [4] and the paper
[27] for more on these and other related algebraic complexity classes, their inter-relationships
and their associations with Boolean complexity classes. Throughout this article, whenever
we use the term ‘circuit(s)’ we will mean ‘arithmetic circuit(s)’.

Starting with Valiant’s work there has been significant progress in proving lower bounds
for several restricted models of arithmetic circuits. Multilinear [31, 30, 34], noncommutative
[28, 25], monotone [13] and special low-depth circuits [29, 8, 36, 35, 32, 1, 15, 16, 21, 19]
are examples of such interesting circuit classes. But still, our knowledge of general circuit
lower bound is rather limited. The best known lower bound for general circuits is Baur and
Strassen’s Ω(n log d) bound [40, 3] for circuits computing the simple polynomial

∑
i∈[n] x

d
i . A

recent line of work on depth reduction, starting with [2, 43] and culminating with [20, 10, 41],
has shown that a moderately strong lower bound for circuits of depth three1 implies a
super-polynomial lower bound for general circuits. Also, Raz [33] showed that a strong
enough lower bound for a special kind of (namely, set-multilinear) depth three circuits implies
a super-polynomial lower bound for general arithmetic formulas2. These depth reduction
results have opened up the possibility of proving a super-polynomial lower bound for general
circuits/formulas by first proving strong lower bounds for low-depth, in particular depth
three, circuits. The hope is depth three circuits, which have an apparent simple structure,
might be more amenable to lower bound proofs. But, unfortunately, even at depth three we
do not know of any super-polynomial lower bound over fields of characteristic zero!

Depth three circuits. In this paper, whenever we mention a depth three circuit we will
mean a ΣΠΣ circuit that has an addition gate at the top, followed by a layer of multiplication
gates and finally a bottom layer of sum gates. Such a circuit is a “sum of product of linear
polynomials" representation of the computed polynomial. The fan-in of the top addition gate
is called the top fan-in, and that of the bottom layer of addition gates the bottom fan-in
of the circuit. Observe that bottom fan-in can be at most n+ 1 where n is the number of
variables. The multiplicative complexity of a depth three circuit C is the sum of the fan-ins
of the multiplication gates of the circuit, i.e. if C =

∑s
i=1 li1 · · · lidi where lij ’s are linear

polynomials then multiplicative complexity of C is
∑s
i di. It is easy to see that multiplicative

complexity is less than the size of a depth three circuit. Circuit C is homogeneous if lij ’s are
homogeneous linear polynomials (a.k.a. linear forms).

Previous works on depth three circuit lower bound. In [38, 36], Shpilka and Wigderson
proved an Ω(n2) lower bound on the multiplicative complexity of depth three circuits
computing the elementary symmetric polynomial

ESymd
n(x1, . . . , xn) def=

∑
S⊆[n],|S|=d

∏
i∈S

xi

on n-variables and degree d = Θ(n). This bound is essentially optimal for fields of size more
than n, as n-variate elementary symmetric polynomials can be computed by depth three

1 over fields of characteristic zero
2 a formula is a circuit whose underlying directed acyclic graph is a tree
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circuits with multiplicative complexity O(n2) 3. A similar tight quadratic lower bound but
for the power symmetric polynomial

∑
i∈[n] x

n
i was shown in [12]. Also, a near quadratic

lower bound is known for the determinant polynomial [38, 36]. The situation is a lot better
over small fields or under the restriction of homogeneity. An exponential lower bound was
shown by [8] (and by [9]) for depth three circuits over any fixed finite field computing the
determinant polynomial (even if the circuit and the determinant are treated in the algebra of
functions over the finite field). It was shown in [29] that any homogeneous depth three circuit
computing ESym2d

n has size Ω((n/4d)d). Recently, [16] showed a lower bound of nΩ(
√
d) for

depth three circuits, with bottom fan-in bounded by nε for any fixed ε < 1, computing an
explicit n-variate polynomial of degree d.

1.1 Our results
I Theorem 1 (Depth-3 circuit lower bound). There is a family of homogeneous multilinear
polynomials {fn}n≥1 in VNP, where fn is a Θ(n)-variate polynomial of degree Θ(n) such that
any depth-3 circuit computing fn has multiplicative complexity (and hence size) Ω

(
n3

(lnn)2

)
.

Theorem 1 can be seen as an improvement in the state of the art of the long-standing
quadratic lower bound for depth three circuits [38, 36], although our target polynomial family
is harder – it is in VNP and not known to be in VP. Also, from our analysis, we arrive at a
near quadratic lower bound for the symmetric model defined in [37] thereby improving upon
the linear bound therein (Theorem 2).

Let ESymd
m be an elementary symmetric polynomial in m variables and of degree d.

Borrowing terminologies from [37], a symmetric circuit has a bottom layer of plus gates
computing linear polynomials, and a top gate that computes some elementary symmetric
polynomial on the linear polynomials computed at the bottom level gates. Thus, a symmetric
circuit with m bottom level gates outputs a polynomial of the form ESymd

m(l1, . . . , lm) for
some d, where l1, . . . , lm are linear polynomials computed by the m bottom level gates. The
parameter m is defined as the size of the symmetric circuit. This model was shown to be
complete or universal in [37] (i.e. every polynomial can be computed in this model), and
linear lower bounds were shown on the size of the smallest symmetric circuit computing the
determinant polynomial and the polynomial

∏n/2
i=1 xi +

∏n
i=n/2+1 xi. The following theorem

improves this lower bound but once again the target polynomial family is likely harder than
the ones studied in [37].

I Theorem 2 (Symmetric circuit lower bound). Let {fn}n≥1 be the polynomial family of
Theorem 1. The size of the smallest symmetric circuit computing fn is Ω

(
n2

(lnn)2

)
over any

infinite field.

In an attempt to make progress in understanding lower bounds for circuit models where
formal degree of the circuit is much higher than the number of variables (as might be the case
for a depth three circuit), [17] posed the problem of proving lower bounds for homogeneous
depth three circuits with formal degree much larger than the number of variables. The
following theorem gives a solution to this problem.

I Theorem 3 (Homogeneous depth three circuits with high degree). For any positive integer
d = d(n) ≥ n, there exists an explicit family {fn,d} of n-variate polynomials of degree d

3 this follows from an interpolation trick attributed to Michael Ben-Or in [29]
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such that any homogeneous depth three circuit computing fn,d must have size at least 2Ω(n).
Moreover, one can even choose such a family fn,d so that it can in fact be computed by a
(nd)O(1)-sized algebraic branching program4.

The above theorem can be viewed as a generalization of the lower bound by [29] for homo-
geneous depth three circuits. Since elementary symmetric polynomials in n-variables have
degree at most n, the lower bound in [29] holds for homogeneous depth three circuits with
degree less than the number of variables. To the best of our knowledge, a lower bound of
(nd)ω(1) for homogeneous depth three circuits with degree d much greater than the number
of variables n was not known. Theorem 3 fills in this gap in our understanding as long as
d = 2o(n). However, note that the lower bound in the above theorem is independent of d,
ideally one should get dΩ(n) instead of 2Ω(n).

1.2 Proof ideas
Like in many of the previous works, we use a measure µ : F[x] → N to capture some
‘weakness’ of a circuit family as opposed to a ‘hard’ family of polynomials which leads to a
lower bound for the circuit family. In both Theorem 1 and 3, the improvements are achieved
by applying the dimension of the shifted partials measure, introduced in [14], and used
subsequently (at times with certain crucial alterations) in many other recent lower bound
results [11, 18, 7, 15, 22, 16, 24, 21, 19, 23]. The shifted partials measure is a generalization
of the dimension of the partial derivatives measure used previously in [29, 36]. It is quite
effective in proving lower bounds for the model of depth four (ΣΠΣΠ) circuits with formal
degree close to the actual degree of the computed polynomial, and somewhat low bottom
fan-in [11, 18]. In fact, all the recent lower bounds (for restricted depth 3 and 4 circuits)
obtained using shifted partials ‘reduce’ to this case of depth four circuits one way or the other.
We take a similar route here, but make the crucial observation that a simple “grouping” step
in the analysis with shifted partials gives some leeway to the formal degree of the circuit and
allows it to grow over the actual degree of the computed polynomial. This observation and a
careful construction of the target family of polynomials to take advantage of this leeway are
the primary sources of improvement of the depth three lower bound.

An immediate hurdle in proving lower bounds for depth three circuits is that the formal
degree of the circuit can be much larger than the degree and number of variables of the
computed polynomial. The existing proof techniques and measures have had limited success
in handling high formal degree circuits [16, 23]. To get around this first hurdle, we begin by
following the same approach as in [36] of pruning the circuit of high degree product gates by
going modulo some linear polynomials picked from among the factors of such ‘heavy’ product
gates. This step is exactly (borrowing terminologies from [36]) satisfying some affine linear
constraints and restricting the circuit to an affine subspace. However, the degree threshold
used to define ‘heavy’ product gates can now be chosen higher than that in [36] because of
the ‘leeway to formal degree’ provided by shifted partials. In the pruned circuit, a simple
“grouping” of linear polynomials in every product term of a depth three circuit turns out
to be surprisingly effective in handling the remaining product gates. The grouping step
transforms a depth three circuit to a depth four circuit with bottom fan-in more than 1, but
at the same time brings down the number of factors in every product term. The tradeoff
between the bottom fan-in and the number of factors per product term is then analyzed to
obtain a suitable upper bound on the shifted partials dimension of a depth three circuit.

4 The definition of an algebraic branching program can be found, for example, in [39].
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Finally, in order to maximize the gain and obtain a near cubic bound we need an explicit
multilinear polynomial with degree linear in the number of variables, and that has close to
the maximum possible shifted partials dimension even when restricted to an affine subspace.
The polynomial family {fn}n≥1 in Theorem 1 is a variant of the family of Nisan-Wigderson
polynomials used in [18, 15]. A notable difference between the Nisan-Wigderson families
used in earlier works and the one used here is that the degree of fn is linearly related to its
number of variables, unlike d = no(1) in previous works. Although, a greedy construction of
a Nisan-Wigderson family can make degree Θ(n), it is not clear if such a family is in VNP.
To ensure both – a VNP family and linear degree – we construct a family by ‘composing’
two smaller families of Nisan-Wigderson polynomials, one is obtained by a greedy algorithm
and the other explicitly defined in [18, 15]. A detailed description of the polynomial family
is given in Section 6.

Few more details on the polynomial families. Polynomial fn in Theorem 1 is homogeneous
with three sets of variables u,y,x such that |u| = |y| = |x| = 10n

9 . (To avoid a few ceil and
floor notations in the analysis, we shall assume without any loss of generality that n is divisible
by 1872 = 9 · 13 · 16.) Let u = {u1, . . . , u 10n

9
},y = {y1, . . . , y 10n

9
} and x = {x1, . . . , x 10n

9
}.

Every monomial of fn is a product of a u-monomial of degree du = n, a y-monomial of
degree dy = blnnc, and an x-monomial of degree dx ∈

[ 2n
13 ,

n
3
]
. Thus the number of variables

and the degree of fn are both Θ(n). The x and the y variables are the primary variables;
derivatives of fn of order blnnc with respect to the y-variables give rise to x-monomials
with large ‘pairwise distance’ that help estimate the shifted partials dimension of the target
polynomial. The u-variables are auxiliary variables which ensure that the measure remains
high for the target polynomial even when restricted to an affine subspace.

The polynomial family {fn,d} used in Theorem 3 is a simple variant of the multi-r-ic
iterated matrix multiplication polynomial family used in [19].

1.3 Organization
Sections 3 to 6 are devoted to the proofs of Theorem 1 and 2. We prove Theorem 3 in
Section 7.

2 Preliminaries

2.1 Basic notations
For any m ∈ N, the set of natural numbers, the set {1, . . . ,m} is denoted by [m]. We use
upper-case letters (like A or S) to denote sets of numbers, calligraphic upper-case letters
(like B,D or L) to denote sets of polynomials, and bold lower-case letters (like x or y) to
denote sets of variables. When the base ring of polynomials is clear from the context, the
ideal generated by a set of polynomials of the ring, say L, is denoted by 〈L〉. A circuit is
denoted using typewriter font, as in C or D. For a set of numbers S ⊆ [m], S̄ denote the
complement of S. Sometimes, we use the notation poly(n) to mean nO(1).

2.2 The measure
Although, the results in this paper can be derived using the shifted partials measure as it is
in [14], we choose to work with a variant of this measure for better clarity in the analysis.
This variant is similar in outlook to the shifted skewed partials measure used recently in [19],
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although for our application there is no difference (or skew) between the number of x and y
variables. Such a skew between |y| and |x| was important for the results in [19].

Let A ⊂
[ 10n

9
]
of size |A| = n. Let xA = {xi : i ∈ A} and g(y,xA) ∈ F[y,xA]. For

k, ` ∈ N, define the measure SPk,`,A : F[y,xA]→ N as follows.

SPk,`,A(g) def= dim(x≤`A · σy(∂=k
y g)),

where ∂=k
y g is the set of all k-th order partial derivatives of g with respect to the y-variables,

and σy : F[y,xA]→ F[xA] is a map that sets all the y-variables to zero. Naturally, σy is a
homomorphism from F[y,xA] to F[xA], and σy(D) is defined by {σy(h) : h ∈ D} for any set
of polynomials D ⊆ F[y,xA]. x≤`A is the set of all monomials in the xA-variables of degree
` or less. For two sets of polynomials B and D, B.D def= {h1.h2 : h1 ∈ B and h2 ∈ D}, and
the dimension of a set of polynomials D (denoted by dim(D)) is the dimension of the vector
space spanned by the polynomials in D over the field F.

It is worth noting that the above measure (as in [19]) can be thought of as a hybrid of
the rank of the partial derivatives matrix measure of [28] and the shifted partials measure of
[14]. The former measure has been refined and used in several other subsequent work, most
notably in [31, 35], and is also identified with the evaluation dimension measure in [6] over
fields of characteristic zero. The following proposition is easy to verify.

I Proposition 4 (Sub-additivity). For any k, ` ∈ N, xA ⊆ x and g1, g2 ∈ F[y,xA],

SPk,`,A(g1 + g2) ≤ SPk,`,A(g1) + SPk,`,A(g2).

3 Lower bounding the measure for the target polynomial family

We will show that the measure SP (from Section 2.2) is considerably large when applied
suitably to the polynomial family {fn}n≥1. The precise statement is given in the theorem
below.

Polynomials restricted to an affine subspace. Let S ⊆
[ 10n

9
]
be a set of size n

9 and

LS = {xi − hi}i∈S (1)

be a set of |LS | = |S| = n
9 linear polynomials in F[u,y,x] such that hi ∈ F[u,y,xS̄ ] for every

i ∈ S, where S̄ =
[ 10n

9
]
\S.

Denote the ideal of F[u,y,x] generated by the linear polynomials of LS by 〈LS〉. For any
polynomial f ∈ F[u,y,x], let

f〈LS〉
def= f mod 〈LS〉

be the image of the polynomial f in the ring F[u,y,x]/〈LS〉. Since F[u,y,x]/〈LS〉 is iso-
morphic to F[u,y,xS̄ ], f〈LS〉 can be represented by a polynomial in the ring F[u,y,xS̄ ]; this
polynomial is obtained from f by replacing xi by hi for all i ∈ S. So, we will treat f〈LS〉 as
an element of F[u,y,xS̄ ].

Finally, let f〈LS〉,uS=0 be the polynomial obtained from f〈LS〉 ∈ F[u,y,xS̄ ] by setting the
u-variables to 0/1-values as follows: ui = 0 if i ∈ S, else ui = 1. We will describe the family
{fn}n≥1 and prove the following theorem in Section 6.
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I Theorem 5. Let n be the parameter that defines the polynomial family {fn}n≥1. Let
k = blnnc, q be the smallest prime greater or equal to

⌈
n

1000·lnn
⌉
, ` =

⌊
n2

32·k·ln q

⌋
. Then for

every set S ⊆
[ 10n

9
]
of size |S| = n

9 , and every set of linear polynomials LS as in Equation (1),
and f = fn,

SPk,`,S̄(f〈LS〉,uS=0) ≥ 1
2 · q

k ·
(
n+ `

n

)
.

Next, we show an upperbound of the measure for a depth-3 circuit and prove Theorem 1.

4 Upper bounding the measure for a depth three circuit

Pruning ‘heavy’ product gates from a depth three circuit. Let C =
∑s
i=1 Ti be a depth

three circuit computing f = fn, where Ti is a product term5 of C. Let c0 be a constant to be
fixed later in the analysis. Then either of the following two cases is obviously true.
Case 1: The number of product terms of C, with x-degree greater or equal to

⌊
c0ndx
(lnn)2

⌋
, is

greater than n
9 .

Case 2: The number of product terms of C, with x-degree greater or equal to
⌊
c0ndx
(lnn)2

⌋
, is

less than or equal to n
9 .

If Case 1 is true then the multiplicative complexity of C is at least
⌊
c0ndx
(lnn)2

⌋
· n9 = Ω( n3

(lnn)2 )
as dx ∈

[ 2n
13 ,

n
3
]
and we have nothing to prove in this case. If Case 2 is true then we can

find a ‘few’ linear polynomials such that modulo these the circuit is free of ‘heavy’ product
terms. This is stated formally in the lemma below and the corollary thereafter, and is directly
inspired by a similar argument in [38, 36]. However, the threshold chosen to define ‘heavy’
product gates in [38, 36] is linear in n, whereas the one here has an extra dx

(lnn)2 factor that
finally accounts for the improvement in the lower bound. As mentioned in Section 1, this is
the leeway to the formal degree of the circuit provided by the analysis with shifted partials.

I Lemma 6. Suppose the number of product terms of C, with x-degree greater or equal to⌊
c0ndx
(lnn)2

⌋
, is bounded by n

9 . Then, there is a set S ⊆
[ 10n

9
]
of size n

9 and a set of linear
polynomials,

LS = {xi − hi}i∈S , where hi is a linear polynomial in F[u,y,xS̄ ] for every i ∈ S,

such that f〈LS〉 ∈ F[u,y,xS̄ ] is computed by a depth three circuit, say C〈LS〉, satisfying the
following:
1. top fan-in of C〈LS〉 is upper bounded by the top fan-in of C,
2. every product term of C〈LS〉 has x-degree upper bounded by

⌊
c0ndx
(lnn)2

⌋
.

The proof of the lemma is relatively straightforward and and can be found in the full version
paper.

I Corollary 7. Polynomial f〈LS〉,uS=0 ∈ F[y,xS̄ ] is computed by a depth three circuit, say
C〈LS〉,uS=0, with top fan-in bounded by the top fan-in of C and every product term of C〈LS〉,uS=0

has x-degree bounded by
⌊
c0ndx
(lnn)2

⌋
.

5 a product term corresponds to a multiplication gate of C
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Let us denote the circuit C〈LS〉,uS=0 by D. Let D =
∑s
i=1 Pi, where a term Pi is a product

of linear polynomials in F[y,xS̄ ]. Note that the pruned circuit D has only y and xS̄ variables.
Now, as the degrees of the intermediate gates are bounded, we can upperbound the shifted
partial measure for D by using a grouping argument (as it was done in [19]). We get then the
next lemma.

I Lemma 8. Let k, ` ∈ N be as in Theorem 5. Then

SPk,`,S̄(D) ≤ s ·
(
d32c0dxe

k

)
·
(
n+ `+ kt

n

)
, where t =

⌈
n

32 · (lnn)2

⌉
.

5 Putting together: Proof of Theorem 1

Let C be a depth three circuit computing fn. Then, as explained in Section 4, we have two
cases to handle. In Case 1, the multiplicative complexity of C is already Ω( n3

(lnn)2 ) and we
have nothing to prove. Whereas, in Case 2, the circuit can be pruned of heavy product gates
so that the polynomial f〈LS〉,uS=0 ∈ F[y,xS̄ ] is computed by a depth three circuit, say D,
whose top fan-in is upper bounded by the top fan-in of C (by Corollary 7). Moreover, every
product term of D has x-degree bounded by

⌊
c0ndx
(lnn)2

⌋
so that Lemma 8 is applicable now.

The computations of the next lemma can be found in the full version paper.

I Lemma 9. In Case 2, the top fan-in of D (hence also the top fan-in of C) is ω(n3).

Proof. By Theorem 5 and Lemma 8, the top fan-in s of D can be lower bounded as follows:

s ≥ 1
2 ·

qk ·
(
n+`
n

)(d32c0dxe
k

)
·
(
n+`+kt

n

) ,
which will imply after some computations that s = ω(n3). J

Thus, in Case 2, the top fan-in of D (and hence C) must be ω(n3) and therefore putting
Case 1 and 2 together, the multiplicative complexity of C is min{Ω( n3

(lnn)2 ), ω(n3)} = Ω( n3

(lnn)2 )
for sufficiently large n.

5.1 Proof of Theorem 2
The proof follows from Lemma 9. Suppose f = fn is computed by a symmetric circuit where
l1, . . . , lm are the bottom level linear polynomials. Naturally, f = ESymd

m(l1, . . . , lm) for
some d, and hence (by Ben-Or’s interpolation trick over any field of size more than m) f is
also computed by a depth three circuit C with top fan-in m+ 1 and degree of every product
term bounded by m. If m ≥

⌊
c0ndx
(lnn)2

⌋
then we have nothing to prove. Suppose m <

⌊
c0ndx
(lnn)2

⌋
.

Then the condition of Case 2 (in Section 4) is satisfied as every product term of C has
x-degree (in fact, total degree) bounded by m <

⌊
c0ndx
(lnn)2

⌋
. But then, Lemma 9 tells us that

C has top fan-in ω(n3) which contradicts with the fact that the top fan-in is m+ 1 = O(n2).
So, it must be that m ≥

⌊
c0ndx
(lnn)2

⌋
= Ω

(
n2

(lnn)2

)
.

6 The polynomial family and proof of Theorem 5

6.1 Construction of the Nisan-Wigderson polynomial family
Let z = {z1, . . . , zn} be a set of n formal variables. For any two multilinear monomials m1
and m2 in the z-variables of degree dz each, let |m1∩m2| be the number of variables common
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between m1 and m2. Define distance between the monomials m1,m2 as,

∆(m1,m2) def= dz − |m1 ∩m2|.

As in the statement of Theorem 5, let q be the smallest prime greater or equal to
⌈

n
1000 lnn

⌉
and k = blnnc. The following lemma plays a central role in the construction of the polynomial
family {fn}n≥1.

I Lemma 10. There is a family {gn(z)}n≥1 in VNP such that gn(z) is a homogeneous
multilinear polynomial of degree dz ∈

[ 2n
13 ,

n
3
]
in n z-variables, and ∆(m1,m2) ≥ n

16 for any
pair of distinct monomials m1 and m2 of gn. Further, gn is a sum of qk distinct monomials.

In the previous lemma, we need to find a family whose monomials are pairwise distant,
such that the degree is linear in the number of variables and the family is in VNP. The
Nisan-Wigderson polynomial family in [18] is in VNP but its degree is not linear. On the
other hand, one can greedily get a family such that the degree is linear but which is not
known to be in VNP. We show in the full version paper that by ‘composing’ these two
families one can get both the desired properties.

The family {fn}n≥1. Let (m1, . . . ,mqk) be an ordered sequence of monomials of the
polynomial gn(z) from the above lemma under lexicographic monomial ordering z1 � . . . � zn.
Let w = {w1, . . . , wn} be n formal variables different from z. The number of multilinear

monomials in w-variables of degree k is
(
n
k

)
≥ (nk )k =

(
n
blnnc

)k
≥ qk. Under lexicographic

monomial ordering w1 � . . . � wn, let (β1, . . . , βqk) be the ordered sequence of the first
qk monomials among all multilinear monomials in the w-variables of degree k. Define the
polynomial Fn(w, z) as,

Fn(w, z) def=
qk∑
j=1

βjmj . (2)

Now let u = {u1, . . . , u 10n
9
}, y = {y1, . . . , y 10n

9
} and x = {x1, . . . , x 10n

9
} be the sets of

variables on which fn(u,y,x) is defined as follows.

fn(u,y,x) def=
∑

A⊆[ 10n
9 ]

|A|=n

∏
i∈A

ui · Fn(yA,xA). (3)

We assume the lexicographic order x1 � . . . � x 10n
9

and y1 � . . . � y 10n
9
. The polynomial

Fn(yA,xA) is obtained by substituting the yA-variables {yi : i ∈ A} in place of the w-
variables and xA-variables {xi : i ∈ A} in place of the z-variables such that the underlying
lexicographic orders, z1 � . . . � zn and w1 � . . . � wn, are obeyed. Note that dy =
degy fn = k, du = degu fn = n and dx = degx fn = degz gn = dz ∈

[ 2n
13 ,

n
3
]
. Further, the

polynomial family {fn}n≥1 is in VNP: It would be clear from the proof of Lemma 10 that
the computational problem of finding the ‘index’ of a given monomial in gn can be solved in
poly(n) time, which in turn implies the coefficient of a given monomial in fn can be found in
poly(n) time. The index of a monomial m in gn is the position of m in the lexicographically
ordered list of qk monomials of gn.

6.2 Proof of Theorem 5: The measure on the polynomial family
In this section, we show that the relevant measure is high for the family of polynomials
(defined in Equation 3) even when restricted to an affine subspace. As in Section 3 (Equation
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1), let S ⊆
[ 10n

9
]
be a set of size n

9 . Let LS = {xi−hi}i∈S be any set of n9 linear polynomials in
F[u,y,x] such that hi ∈ F[u,y,xS̄ ] for every i ∈ S, where S̄ =

[ 10n
9
]
\S. Let f = fn(u,y,x)

(as defined in Equation 3).

I Observation 11. f〈LS〉,uS=0 = Fn(yS̄ ,xS̄) ∈ F[y,xS̄ ].

Proof. The polynomial f〈LS〉,uS=0 is obtained from f by substituting every xi by hi for
every i ∈ S, and then setting uj = 0 for every j ∈ S and uj = 1 otherwise. Since the
only x-variables occurring in Fn(yS̄ ,xS̄) are from xS̄ , it remains untouched by the above
substitutions. Finally, the setting of the u-variables retains only Fn(yS̄ ,xS̄) from the sum in
Equation 3. J

So, we need to show that

SPk,`,S̄(Fn(yS̄ ,xS̄)) ≥ 1
2 · q

k ·
(
n+ `

n

)
.

This part of the argument bears close resemblance to and is inspired by similar arguments in
[7, 5]. We begin with the following observation.

I Observation 12. The set ∂=k
y Fn(yS̄ ,xS̄) consists of exactly the monomials of gn(xS̄).

Hence, σy(∂=k
y Fn(yS̄ ,xS̄)) also consists of exactly the monomials of gn(xS̄).

Proof. Follows easily from the definition of the polynomial Fn in Equation 2. J

Reusing notation, let the monomials of gn(xS̄) be {m1, . . . ,mqk} – these are monomials
in xS̄-variables. By Lemma 10, ∆(mi,mj) ≥ n

16 for every i 6= j and 2n
13 ≤ deg(mi) ≤ n

3 for
every i ∈ [qk]. Let

Bi
def= x≤`

S̄
·mi, for i ∈ [qk].

Then,

dim(x≤`
S̄
· σy(∂=k

y Fn(yS̄ ,xS̄))) = |B1 ∪ . . . ∪Bqk |

⇒ SPk,`,S̄(Fn(yS̄ ,xS̄)) ≥
qk∑
i=1
|Bi| −

1
2 ·
∑
i,j

i 6=j

|Bi ∩Bj |

= qk ·
(
n+ `

n

)
− 1

2 ·
∑
i,j

i6=j

|Bi ∩Bj |, (4)

as |S̄| = n and |Bi| =
(
n+`
n

)
.

I Proposition 13. For every i, j ∈ [qk] and i 6= j, |Bi ∩Bj | ≤
(
n+`−n/16

n

)
.

Proof. If a monomial m belongs to both Bi and Bj then m = s1 · mi = s2 · mj where
deg(s1),deg(s2) ≤ `. Since ∆(mi,mj) ≥ n/16,

m = s′ · mj

gcd(mi,mj)
·mi, where deg(s′) ≤ `− n

16 .

Hence, the number of such monomials m is bounded by
(
n+`−n/16

n

)
. J

Therefore, by Equation (4), after some computations.

I Claim 14. SPk,`,S̄(Fn(yS̄ ,xS̄)) ≥ 1
2 · q

k ·
(
n+`
n

)
.

This completes the proof of Theorem 5.
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7 Homogeneous depth three circuits with large degree

We prove Theorem 3 in this section. The measure remains the same as before, but the
notation is simplified a little bit (as we do not need to include a subset of variables in the
definition of the measure). For any g ∈ F[y,x], define the measure SPk,` : F[y,x]→ N as

SPk,`(g) def= dim(x≤` · σy(∂=k
y g)).

Like before, the measure is sub-additive, i.e. for g1, g2 ∈ F[y,x] and k, ` ∈ N,

SPk,`(g1 + g2) ≤ SPk,`(g1) + SPk,`(g2).

Moreover, the measure is invariant under multiplication by any fixed polynomial from F[x]
(the proof of the following lemma is very simple and appears in the full version paper):

I Lemma 15. For any g ∈ F[y,x], h ∈ F[x] and k, ` ∈ N, SPk,`(h · g) = SPk,`(g).

The outline of the proof of Theorem 3 also remains the same: we show a suitable upper
bound on the measure for the circuit, and a lower bound for the target family of polynomials.
The target family of polynomials is basically a multi-r-ic variant of the iterated matrix
multiplication polynomial defined and analysed in [19] – we will recall some parts of the
analysis from there to lower bound the measure for the family of polynomials. Furthermore,
this polynomial can be computed by an algebraic branching program of size polynomial in
the number of variables and degree of the polynomial.

7.1 Upper bound for the circuit
Let C be any homogeneous depth three circuit computing a polynomial in n variables y ] x
and of degree d. More precisely, by identifying the circuit with the polynomial it computes,
C = T1 + T2 + . . . + Ts, where the Ti’s are products of d homogeneous linear polynomials
i.e. Ti = li1 · li2 · . . . · lid, where every lij is a linear form. Let us consider any one product
term, say T . By grouping t linear forms together and multiplying the linear forms within
each group, we obtain T = Q1 · · · · · Qd dt e, where deg(Qj) ≤ t for every j ∈

[⌈
d
t

⌉]
. By

sub-additivity of the measure and following a similar argument as in the proof of Lemma 8,
we get the following lemma.

I Lemma 16. For any k, ` ∈ N and t ≤ d,

SPk,`(C) ≤ s ·
(⌈d

t

⌉
k

)
·
(
|x|+ `+ kt

|x|

)
. (5)

7.2 Lower bound for the polynomial family
The polynomial family. We define a polynomial on n variables y]x and of degree d, where
d is any integer greater or equal to n.

For w, k, r, α ∈ N, consider the following polynomial.

Fw,k,r,α(y,x) def= g1(y1,x1) · g2(y2,x2) · . . . · gk(yk,xk),

where the gi’s are polynomials over the indicated (disjoint) subsets of variables y = y1]. . .]yk
and x = x1 ] . . . ] xk, and defined as,

gi(yi,xi)
def=

∑
a,b∈[w]

yi,a,b ·
∏
c∈[α]

xri,c,a · xri,c+α,b.
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The number of y-variables is |y| = kw2 and the number of x-variables is |x| = 2kαw. The
total number of variables in Fw,k,r,α is (w2 + 2αw) · k, and it has degree d̃ = (2αr + 1) · k.
Our target polynomial is almost Fw,k,r,α, except that we multiply it with a suitable power of
a variable just to match its degree with the given degree parameter d which is any number
more than the number of variables.

Let n = (w2 + 2αw) · k and d ≥ n be a given degree parameter. In the analysis, we
eventually fix α and w to integer constants so that n = Θ(k). Set r =

⌈
d

3αk
⌉
and x be any

arbitrarily fixed variable in x. Our polynomial family {fn,d} is defined by

fn,d
def= xd−d̃ · Fw,k,r,α. (6)

This polynomial is well defined, i.e. d ≥ d̃, as soon as w ≥ 3. Observe that fn,d has the same
set of n variables as Fw,k,r,α and has degree d. Let us record the values for k and r for the
analysis later k = n

w2+2αw and r =
⌈

d
3αk
⌉
. Also, note that fn,d can be computed by a

poly(n, d)-size ABP.

The measure on the polynomial family. The following lemma was essentially proved in
[19] (see Section 7.5 in there) with slightly different notations.

I Lemma 17. Let 0 < δ ≤ 1/5 be a constant and w ≥ 3.
1. Then

SPk,`(Fw,k,r,α) ≥M ·
(
|x|+ `

|x|

)
−M

2

2 ·
(
|x|+ `− dδke · αr

|x|

)
with M =

(⌊
w2−δ

2

⌋)k
.

2. Moreover, if ` ≥ |x| and 2 · |x| ·αr ≥ `β · lnw where β ≥ 4(2− δ)/δ is a constant then we
can also conclude that SPk,`(Fw,k,r,α) is lower bounded by M ·

(|x|+`
|x|
)
/2.

For the choice of parameters below, w
2−δ

2 is an integer. Hence, M =
(
w2−δ

2

)k
.

I Corollary 18. If the conditions of Lemma 17 are satisfied then it follows from Lemma 15

SPk,`(fn,d) ≥
M

2 ·
(
|x|+ `

|x|

)
.

7.3 Putting together: Proof of Theorem 3

Let us choose t = b2εαrc, and ` =
⌊
|x|·t
εβ·lnw

⌋
with the following parameters α = 18, δ =

1
5 , β = 36, ε = 1

200 , and w = 210.
We can notice that t > 0 and dd/te ≤ (2k)/ε. Furthermore, the conditions ` ≥ |x|,

2 · |x| · αr ≥ `β · lnw, and β ≥ 4(2− δ)/δ are satisfied. Hence, if C is a homogeneous depth
three circuit computing fn,d, then by Lemma 16 and Corollary 18,

s ·
(⌈d

t

⌉
k

)
·
(
|x|+ `+ kt

|x|

)
≥ SPk,`(fn,d) ≥

M

2 ·
(
|x|+ `

|x|

)
.

It implies, after some computations that s ≥ 2Ω(n).
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Abstract
One fundamental question in the context of the geometric complexity theory approach to the
VP vs. VNP conjecture is whether VP = VP, where VP is the class of families of polynomials
that can be computed by arithmetic circuits of polynomial degree and size, and VP is the class
of families of polynomials that can be approximated infinitesimally closely by arithmetic circuits
of polynomial degree and size. The goal of this article is to study the conjecture in (Mulmuley,
FOCS 2012) that VP is not contained in VP.

Towards that end, we introduce three degenerations of VP (i.e., sets of points in VP), namely
the stable degeneration Stable-VP, the Newton degeneration Newton-VP, and the p-definable
one-parameter degeneration VP*. We also introduce analogous degenerations of VNP. We show
that Stable-VP ⊆ Newton-VP ⊆ VP* ⊆ VNP, and Stable-VNP = Newton-VNP = VNP* =
VNP. The three notions of degenerations and the proof of this result shed light on the problem
of separating VP from VP.

Although we do not yet construct explicit candidates for the polynomial families in VP \VP,
we prove results which tell us where not to look for such families. Specifically, we demonstrate
that the families in Newton-VP \VP based on semi-invariants of quivers would have to be non-
generic by showing that, for many finite quivers (including some wild ones), Newton degeneration
of any generic semi-invariant can be computed by a circuit of polynomial size. We also show that
the Newton degenerations of perfect matching Pfaffians, monotone arithmetic circuits over the
reals, and Schur polynomials have polynomial-size circuits.
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1 Introduction

One fundamental question in the context of the geometric complexity theory (GCT) approach
(cf. [22, 23], [5], and [21]) to the VP vs. VNP conjecture in Valiant [27] is whether VP = VP,
where VP is the class of families of polynomials that computed by arithmetic circuits of
polynomial degree and size, VNP is the class of p-definable families of polynomials, and
VP is the class of families of polynomials that can be approximated infinitesimally closely
by arithmetic circuits of polynomial degree and size. We assume in what follows that the
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circuits are over an algebraically closed field F. We call VP the closure of VP, and VP \VP
the boundary of VP. So the question is whether this boundary is non-empty. At present, it
is not even known if VP is contained in VNP.

The VP vs. VP question is important for two reasons. First, all known algebraic lower
bounds for the exact computation of the permanent also hold for its infinitesimally close
approximation. For example, the known quadratic lower bound for the permanent [20] also
holds for its infinitesimally closely approximation [18], and so also the known lower bounds
in the algebraic depth-three circuit models [14]; cf. App. B in [11] for a survey of the known
lower bounds which emphasizes this point. These lower bounds hold because some algebraic,
polynomial property that is satisfied by the coefficients of the polynomials computed by
the circuits in the restricted class under consideration is not satisfied by the coefficients of
the permanent. Since a polynomial property is a closed condition,1 the same property is
also satisfied by the coefficients of the polynomials that can be approximated infinitesimally
closely2 by circuits in the restricted class under consideration. This is why the same lower
bound also holds for infinitesimally close approximation. We expect the same phenomenon
to hold in the unrestricted algebraic circuit model as well. Hence, it is natural to expect
that any realistic proof of the VP 6= VNP conjecture will also show that VNP 6⊆ VP, as
conjectured in [22] (note that if VNP 6⊆ VP then there exists a polynomial property showing
this lower bound). This is, in fact, the underlying thesis of geometric complexity theory
that is implicit in [21]. But, if VP 6= VP, as conjectured in [21], this would mean that any
realistic approach to the VP vs. VNP conjecture would even have to separate the permanent
from the families in VP \VP with high circuit complexity.3

Second, it is shown in [21] that, assuming a stronger form of the VNP 6⊆ VP conjecture,
the problem NNL (short for Noether’s Normalization Lemma) of computing Noether normal-
ization of explicit varieties can be brought down from EXPSPACE, where it is currently, to P,
ignoring a quasi-prefix. The existing EXPSPACE vs. P gap,4 called the geometric complexity
theory (GCT) chasm [21], in the complexity of NNL may be viewed as the common cause and
measure of the difficulty of the fundamental problems in geometry (NNL) and complexity
theory (Hardness). If VP = VP, then it follows [21] that NNL is in PSPACE. Thus the
conjectural inequality between VP and VP is the main difficulty that needs to be overcome
to bring NNL from EXPSPACE to PSPACE unconditionally, and is the main reason why
the standard techniques in complexity theory may not be expected to work in the context of
the VP 6= VNP conjecture.

The goal of this article is to study the conjecture in [21] that VP is not contained in VP.

1.1 Degenerations of VP and VNP

Towards that end, we introduce three notions of degenerations of VP and VNP; “degeneration”
is the standard term in algebraic geometry for a limit point or infinitesimal approximation.
These are subclasses of VP and VNP, respectively; cf. Sec. 3 for formal definitions.

1 It is defined by the vanishing of a continuous function, namely, a (meta) polynomial.
2 This means the polynomials are the limits of the polynomials computed by the circuits in the restricted

class under consideration.
3 Although some lower bounds techniques in the restricted models do distinguish between different

polynomials with high circuit complexity (e.g., [25]), we need a better understanding of the families in
VP \ VP in order to know which techniques in this spirit could even potentially be useful in the setting
of the VNP versus VP problem.

4 Or, the EXPH vs. P gap, assuming the Generalized Riemann Hypothesis.
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The first notion is that of a stable degeneration. Recall [24] that a polynomial f
in F[x1, . . . , xn] is called stable with respect to the natural action of G = SL(n,F) on
F[x1, . . . , xn] if the G-orbit of f is closed (in the Zariski topology). We say that a polynomial
f is a stable degeneration of g ∈ F[x1, . . . , xn] if f lies in a closed G-orbit (which is unique
[24]) in the closure of the G-orbit of g. The degeneration is called stable since f in this case
is stable. For any class of polynomials C, the class Stable-C is defined to be the class of
families of polynomials that are either in C or are stable degenerations thereof.

The second notion is that of a Newton degeneration. We say that a polynomial f is
a Newton degeneration of g if it is obtained from g by keeping only those terms whose
associated monomial-exponents lie in some specified face of the Newton polytope of g. For
any class of polynomial families C, the class Newton-C is defined to be the class of families of
polynomials that are Newton degenerations of the polynomials in C, or are linear projections
of such Newton degenerations.5

The third notion, motivated by the notion of p-definability in Valiant [27], is that of
a p-definable one-parameter degeneration. We say that a family {fn} of polynomials is a
p-definable one-parameter degeneration of a family {gn} of polynomials, if fn = limt→0 gn(t),
where gn(t) is obtained from gn by transforming its variables linearly such that (1) the entries
of the linear transformation matrix are Laurent polynomials in t of possibly exponential
degree (in n), and (2) there exists a small circuit Cn of size polynomial in n such that
any coefficient of the Laurent polynomial in any entry of the transformation matrix can be
obtained by evaluating Cn at the indices of that entry and the index of the coefficient.6 Thus
a p-definable one-parameter degeneration is a one-parameter degeneration of exponential
degree that can be encoded by a small circuit. For any class C, the class C* is then defined
to be the class of families of polynomials that are p-definable one-parameter degenerations of
the families in C.

VP and VNP are closed under these three types of degenerations (cf. Propositions 6, 8,
11). Since we want to compare VP with VP, and VNP with VNP, we ask how VP and VNP
behave under these three degenerations. This is addressed in the following result.

I Theorem 1.
(a) Stable-VNP = Newton-VNP = VNP* = VNP, and
(b) Stable-VP ⊆ Newton-VP ⊆ VP* ⊆ VNP.

The statement of this result tells us nothing as to whether any of the inclusions in the
sequence Stable-VP ⊆ Newton-VP ⊆ VP* ⊆ VP can be expected to be strict or not. But its
proof, as discussed below, does shed light on this subject.

Theorem 1 is proved by combining the Hilbert–Mumford–Kempf criterion for stability
[15] with the ideas and results in Valiant [27]. The Hilbert–Mumford–Kempf criterion [15]
shows that, for any polynomial fn in the unique closed G-orbit in the G-orbit-closure of
any gn ∈ F[x1, . . . , xn], with G = SLn(F), there exists a one-parameter subgroup of G that
drives gn to fn. Furthermore, by Kempf [15], such a subgroup can be chosen in a canonical
manner. As a byproduct of the proof of Theorem 1, we get a complexity-theoretic form of
this criterion (cf. Theorem 18), which shows that such a one-parameter group can be chosen

5 Taking a Newton degeneration and a linear projection need not commute, so the set of Newton
degenerations alone will not in general be closed under linear projections. For example, any polynomial
f is a linear projection of a sufficiently large determinant, but the Newton degenerations of the
determinant only consist of polynomials of the form det(X ′) where X ′ is matrix consisting only of
variables and 0s.

6 It is assumed here that the indices are encoded as the lists of 0-1 variables.
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so that the resulting one-parameter degeneration of any {gn} ∈ VP to {fn} ∈ Stable-VP is
p-definable. Thus the inclusion of Stable-VP in VNP ultimately depends on the existence
of a very special type of one parameter degeneration of {gn} to {fn}, as provided by the
Hilbert–Mumford–Kempf criterion, which can be encoded by a small circuit. However, no
such degeneration scheme, which can be encoded by a small circuit, is known if fn is allowed
to be any polynomial in the GL(n,F)-orbit-closure of gn.

If such a scheme exists for every fn in the GL(n,F)-orbit-closure of gn, then it would
follow that VP ⊆ VP*, and in conjunction with Theorem 1, that VP ⊆ VNP. This is one
plausible approach to show that VP ⊆ VNP, if this is true. If, on the other hand, no such
special scheme akin to the Hilbert–Mumford–Kempf criterion for stability exists for every fn
in the GL(n,F)-orbit-closure of gn, as the extensive research in geometric invariant theory
[24] in the last century since the work of Hilbert [12] suggests, then this may be taken as an
indication that VP is not contained in VP*, and hence, also not in VP.

The complexity-theoretic form of the Hilbert-Mumford criterion mentioned above (The-
orem 18) also provides an exponential (in n) upper bound on the degree of the canonical
Kempf-one-parameter subgroup that drives gn to fn, with {gn} ∈ VP and {fn} ∈ Stable-VP.
This canonical Kempf-one-parameter subgroup is known to be the fastest way to approach
a closed orbit [16]. If one could prove a polynomial upper bound on this degree, then it
would follow that Stable-VP = VP (cf. Lemma 17). On the other hand, if a worst-case
superpolynomial lower bound on this degree can be proved, then it would be an indication
that Stable-VP, and hence VP, are different from VP. In other words, this suggests a possible
route to formally separate VP and VP.

An analogue of Theorem 1 also holds for VPws, the class of families of polynomials that
can be computed by symbolic determinants of polynomial size.

Next we ask if one can construct an explicit family in Newton-VPws that can reasonably
be conjectured to be not in VPws or even VP. With this mind, we first construct an
explicit family {fn} of polynomials that can be approximated infinitesimally closely by
symbolic determinants of size ≤ n, but conjecturally cannot be computed exactly by symbolic
determinants of Ω(n2+δ) size, for a small enough positive constant δ < 1; cf. Section 5. This
construction follows a suggestion made in [22, Section 4.2]. The family {fn} is a Newton
degeneration of the family of perfect matching Pfaffians of graphs. However, this family
{fn} turns out to be in VPws. So we need to extend this idea much further to construct an
explicit family in Newton-VPws that can be conjectured to be not in VP.

To see how, note that perfect matching Pfaffians are derived from a semi-invariant of
the symmetric quiver with two vertices and one arrow. This suggests that to upgrade the
conjectural Ω(n2+δ) lower bound to obtain a candidate for a superpolynomial lower bound a
possible route is to replace perfect matching Pfaffians by appropriate representation-theoretic
invariants. This leads to the second line of investigation, which we now discuss.

1.2 On Newton degeneration of generic semi-invariants
Our next result suggests that these invariants should be non-generic by showing that, for many
finite quivers, including some wild ones, Newton degeneration of any generic semi-invariant
can be computed by a symbolic determinant of polynomial size.

A quiver Q = (Q0, Q1) [6, 8] is a directed graph (allowing multiple edges) with the set
of vertices Q0 and the set of arrows Q1. A linear representation V of a quiver associates
to each vertex x ∈ Q0 a vector space V x, and to each arrow α ∈ Q1 a linear map V α

from V sα to V tα, where sα denotes the start (tail) of α and tα its target (head). The
dimension vector of V is the tuple of non-negative integers that associates dim(V x) to
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each vertex x ∈ Q0. Given a dimension vector β ∈ N|Q0|, let Rep(Q, β) denote the space
of all representations of Q with the dimension vector β. We have the natural action of
SL(β) :=

∏
x∈Q0

SL(β(x),F) on Rep(Q, β) by change of basis. Let SI(Q, β) = Rep(Q, β)SL(β)

denote the ring of semi-invariants. The generic semi-invariants in this ring (see [6]) will be
recalled in Section 6.

We will be specifically interested in the following well-known types of quivers, cf. [7].
The m-Kronecker quiver is the quiver with two vertices, and m arrows between the two
vertices with the same direction. It is wild if m ≥ 3; wildness is a universality property in
representation theory, analogous to NP-completeness (see, e.g., [1]). The k-subspace quiver
is the quiver with k + 1 vertices {x1, . . . , xk, y} and k arrows (x1, y), . . . , (xk, y). It is wild if
k ≥ 5. The A-D-E Dynkin quivers are the only quivers of finite representation type – they
have only finitely many indecomposable representations.

The following result tells us where not to look for explicit candidate families in VP \VP.

I Theorem 2. Let Q be an m-Kronecker quiver, or a k-subspace quiver, or an A-D-E Dynkin
quiver. Then any Newton degeneration of a generic semi-invariant of Q with dimension
vector β and degree d can be computed by a weakly skew circuit (or equivalently a symbolic
determinant) of poly(|β|, d) size, where |β| =

∑
x∈Q0

β(x).

The proof strategy for Theorem 2 is as follows. Define the coefficient complexity coeff(E)
of a set E of integral linear equalities in Rm as the sum of the absolute values of the
coefficients of the equalities. Define the coefficient complexity of a face of a polytope in Rm
as the minimum of coeff(E), where E ranges over all integral linear equality sets that define
the face, in conjunction with the description of the polytope; cf. Section 6.1.

Theorem 2 is proved by showing that the coefficient complexity of every face of the
Newton polytope of a generic semi-invariant of any quiver as above is polynomial in |β| and
d, though the number of vertices on a face can be exponential.

In view of this result and its proof, to construct an explicit family in Newton-VPws \VPws,
we should look for appropriate non-generic invariants of representations of finitely generated
algebras whose Newton polytopes have faces with superpolynomial coefficient complexity and
superpolynomial number of vertices.

Of course, we do not have to confine ourselves to Newton-VP in the search of an explicit
candidate family in VP \VP. We may search within VP*, or even outside VP*.

Organization. The rest of this article is organized as follows. In Section 2 we cover the
preliminaries. In Section 3, we formally define the three degenerations of VP and VNP. In
Section 4, we prove Theorem 1. In Section 5 we construct an explicit family {fn} that can be
approximated infinitesimally closely by symbolic determinants of size ≤ n, but conjecturally
cannot be computed exactly by symbolic determinants of Ω(n2+δ) size, for a small enough
positive constant δ < 1. In Section 6, we prove Theorem 2 for generalized Kronecker
quivers. Due to page constraints, some proofs are deferred to the full version. In particular,
there we give additional examples of representation-theoretic symbolic determinants whose
Newton degenerations have small circuits. All these examples suggest that explicit families
in Newton-VPws \VPws have to be rather delicate.

2 Preliminaries

For n ∈ N, let [n] := {1, . . . , n}. We denote by x = (x1, . . . , xn) a tuple of variables; x may
also denote {x1, . . . , xn}. Let e = (e1, . . . , en) be a tuple of nonnegative integers. We usually
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use e as the exponent vector of a monomial in F[x1, . . . , xn]. Thus, xe denotes the monomial
with the exponent vector e. Let |e| :=

∑n
i=1 ei.

For a field F, char(F) denotes the characteristic of F. Throughout this paper, we assume
that F is algebraically closed. Sn denotes the symmetric group consisting of permutations of
n objects.

We say that a polynomial g = g(x1, . . . , xn) is a linear projection of f = f(y1, . . . , ym)
if g can be obtained from f by letting yj ’s be some (possibly non-homogeneous) linear
combinations of xi’s with coefficients in the base field F.

A family of polynomials {fn}n∈N is p-bounded if fn is a polynomial in poly(n) variables
of poly(n) degree. The class VP [27] consists of p-bounded polynomial families {fn}n∈N over
F such that fn can be computed by an arithmetic circuit over F of poly(n) size.

Convention: We call a class C of families of polynomials standard if it contains only
p-bounded families, and is closed under linear projections.

By a symbolic determinant of size m over the variables x1, . . . , xn, we mean the determ-
inant of an m×m matrix, whose each entry is a possibly non-homogeneous linear function
of x1, . . . , xn with coefficients in the base field F. The class VPws is the class of families of
polynomials that can be computed by weakly skew circuits of polynomial size, or equivalently,
by symbolic determinants of polynomial size [19].

The class VNP is the class of p-definable families of polynomials [27], that is, those
families (fn) such that fn has poly(n) variables and poly(n) degree, and there exists a family
(gn(x, y)) ∈ VP such that fn(x) =

∑
e∈{0,1}poly(n) gn(x, e).

The class VP is defined as follows [22, 5]. Over F = C, we say that a polynomial
family {fn}n∈N is in VP, if there exists a family of sequences of polynomials {f (i)

n }n∈N
in VP, i = 1, 2, . . . , s.t. for every n, the sequence of polynomials f (i)

n , i = 1, 2, . . . , goes
infinitesimally close to fn, in the usual complex topology. Here, polynomials are viewed
as points in the linear space of polynomials. There is a more general definition that works
over arbitrary algebraically closed fields – including in positive characteristic – using the
Zariski topology. For a direct treatment, see, e.g. [4, App. 20.6]. The operational version
of this definition we use is as follows: {fn(x1, . . . , xm)} ∈ VP if there exist polynomials
fn,t(x1, . . . , xm) ∈ VPC((t)) – fn,t is a polynomial in the xi whose coefficients are Laurent
series in t – such that fn(x) is the coefficient of the term in fn,t(x) of lowest degree in t.

The classes VPws, VNP, and C, for any standard class C, are defined similarly.
By the determinantal complexity dc(f) of a polynomial f(x1, . . . , xn), we mean the

smallest integer m s.t. f can be expressed as a symbolic determinant of size m over
x1, . . . , xn. By the approximative determinantal complexity dc(f), we mean the smallest
integer m s.t. f can be approximated infinitesimally closely by symbolic determinants of size
m.

Thus the VPws 6= VNP conjecture in Valiant [27] is equivalent to saying that dc(permn)
is not poly(n), where permn denotes the permanent of an n × n variable matrix. The
VNP 6⊆ VPws conjecture in [22] is equivalent to saying that dc(permn) is not poly(n).

A priori, it is not at all obvious that dc and dc are different complexity measures. The
following two examples should make this clear.

I Example 3 (Example 9 in [17]). Let f = x3
1 +x2

2x3 +x2x
2
4. Then dc(f) ≥ 5, but dc(f) = 3.

I Example 4 (Proposition 3.5.1 in [18]). Let n be odd. Given an n× n complex matrix M ,
let Mss and Ms denote its skew-symmetric and symmetric parts. Since n is odd, det(Mss)=0.
Hence, for a variable t, det(Mss + tMs) = tf(M) + O(t2), for some polynomial function
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f(M). Clearly, dc(f) = n, since det(Mss + tMs)/t goes infinitisimally close to f(M) when t
goes to 0. But dc(f) > n.

The VPws 6= VPws conjecture in [21] is equivalent to saying that there exists a polynomial
family {fn} such that dc(fn) = poly(n), but dc(fn) is not poly(n). Instead of this conjecture,
we will focus on the VP 6= VP conjecture in [21], since the considerations for the former
conjecture are entirely similar.

A (convex – we will only consider convex ones here) polytope is the convex hull in Rn of
a finite set of points. A face of a polytope P is the intersection of P with linear halfspace
H = {v ∈ Rn|`(v) ≥ c} for some linear function ` and constant c such that H contains no
points of the (topological) interior of P . Equivalently, a polytope is the intersection of finitely
many half-spaces, a half-space H`,c = {v|`(v) ≥ c} is tight for P if P ⊆ H`,c and P * H`,c′

for any c′ > c, and a face of P is the intersection of P with a half-space of the form H−`,−c
where H`,c is tight for P .

3 Degenerations of VP and VNP

To understand the relationship between VP,VNP, and their closures VP and VNP, we now
introduce three degenerations of VP and VNP. The considerations for VPws and VPws are
entirely similar.

3.1 Stable degeneration
First we define stable degenerations of VP and VNP.

Consider the natural action of G = SL(n,F) on F[x] = F[x1, . . . , xn] that maps f(x) to
f(σ−1x) for any σ ∈ G. Following Mumford et al. [24], call f = f(x) ∈ F[x] stable (with
respect to the G-action) if the G-orbit of f is Zariski-closed. It is known [24] that the closure
of the G-orbit of any g ∈ F[x] contains a unique closed G-orbit. We say that f is a stable
degeneration of g if f lies in the unique closed G-orbit in the G-orbit-closure of g. (If the
G-orbit of g is already closed then this just means that f lies in the G-orbit of g.)

We now define the class Stable-C, the stable degeneration of any standard class C, as
follows. We say that {fn}n∈N is in Stable-C if (1) {fn} ∈ C, or (2) there exists {gn}n∈N in C
such that each fn is a stable degeneration of gn with respect to the action of G = SL(mn,F),
where mn = poly(n) denotes the number of variables in fn and gn.

I Proposition 5. For any class C of p-bounded families of polynomials, Stable-C ⊆ C. In
particular, Stable-VP ⊆ VP and Stable-VNP ⊆ VNP.

I Proposition 6. Stable-C = C, in particular Stable-VP = VP, and Stable-VNP = VNP.

This is a direct consequence of the definitions.

3.2 Newton degeneration
Next we define Newton degenerations of VP and VNP.

Given a polynomial f ∈ F[x1, . . . , xn], suppose f =
∑

e αexe. We collect the exponent
vectors of f and form the convex hull of these exponent vectors in Rn. The resulting polytope
is called the Newton polytope of f , denoted NPT(f). Given an arbitrary face Q of NPT(f),
the Newton degeneration of f to Q, denoted f |Q, is the polynomial

∑
e∈Q αexe.

We now define the class Newton-C, the Newton degeneration of any class C, as follows:
{fn}n∈N is in Newton-C, if there exists {gn}n∈N in C such that each fn is the Newton
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degeneration of gn to some face of NPT(gn), or a linear projection of such a Newton
degeneration.

I Theorem 7. Let C be any standard class (cf. Section 2). Then Newton-C ⊆ C. In particular,
Newton-VP ⊆ VP and Newton-VNP ⊆ VNP.

Proof. Let {fn}n∈N be in Newton-C, and suppose fn ∈ F[x1, . . . , xm(n)].Then there exists
{gn}n∈N ∈ C, such that gn ∈ F[x1, . . . , xm], m = m(n), and fn = gn|Q, where Q is a
face of NPT(gn). Suppose the supporting hyperplane of Q is defined by 〈a,x〉 = b, where
a = (a1, . . . , am). If necessary, by replacing (a, b) with (−a,−b), we make sure that for an
arbitrary exponent vector e in gn, 〈a, e〉 ≥ b. That is, among all exponent vectors, exponent
vectors on Q achieve the minimum value b in the direction a.

Now introduce a new variable t, and replace xi with taixi to obtain a polynomial
g′n(x1, . . . , xm, t) = gn(ta1x1, . . . , t

amxm) ∈ F[x1, . . . , xm, t]. By the definition of fn, g′n =
tb · fn + higher order terms in t. Therefore, {fn} ∈ C. J

Noting that if C is closed under linear projections, then so is C, we have:

I Corollary 8. For any standard class C, Newton-C = C. In particular, Newton-VP = VP
and Newton-VNP = VNP.

3.3 P-definable one-parameter degeneration
Finally, we define p-definable one-parameter degenerations of VP and VNP. We say a family
{fn(x1, . . . , xmn

)}, mn = poly(n), is a one-parameter degeneration of {gn(y1, . . . , yln)}, for
ln = poly(n), of exponential degree, if, for some positive integral function K(n) = O(2poly(n)),
there exist cn(i, j, k) ∈ F, 1 ≤ i ≤ ln, 0 ≤ j ≤ mn, −K(n) ≤ k ≤ K(n), such that
fn = limt→0 gn(t), where gn(t) is obtained from gn by substitutions of the form

yi = ai0+
mn∑
j=1

aijxj , 1 ≤ i ≤ ln, where aij =
K(n)∑

k=−K(n)

cn(i, j, k)tk, 1 ≤ i ≤ ln, 0 ≤ j ≤ mn.

Note that by [3], VP consists exactly of those one-parameter degenerations of VP of expo-
nential degree.

We say that the family {fn(x1, . . . , xmn)}, mn = poly(n), is a one-parameter degeneration
of {gn(y1, . . . , yln)}, ln = poly(n), of polynomial degree if K(n) above is O(poly(n)) (instead
of O(2poly(n))).

We say that a family {fn(x1, . . . , xmn)}, mn = poly(n), is a p-definable one-parameter
degeneration of {gn(y1, . . . , yln)}, ln = poly(n), if, for some K(n) = O(2poly(n)), there exists a
poly(n)-size circuit family {Cn} over F such that fn = limt→0 gn(t), where gn(t) is obtained
from gn by substitutions of the form

yi = ai0+
mn∑
j=1

aijxj , 1 ≤ i ≤ ln, where aij =
K(n)∑

k=−K(n)

Cn(i, j, k)tk, 1 ≤ i ≤ ln, 0 ≤ j ≤ mn.

Here it is assumed that the circuit Cn takes as input dlog2 lne+ dlog2 mne+ dlog2(K(n) + 1)e
many 0-1 variables, which are intended to encode three integers (i, j, k) satisfying 1 ≤ i ≤
l = ln, 0 ≤ j ≤ m = mn, and |k| ≤ K(n), treating 0 and 1 as elements of F.

Thus a p-definable one-parameter degeneration is a one-parameter degeneration of expo-
nential degree that can be specified by a circuit of polynomial size.
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For any class C we now define C*, called the p-definable one-parameter degeneration of C,
as follows. We say that {fn} ∈ C* if there exists {gn} ∈ C such that {fn} is a p-definable
one-parameter degeneration of {gn}.

I Lemma 9. For any standard class C (cf. Section 2), Newton-C ⊆ C*. In particular,
Newton-VP ⊆ VP* and Newton-VNP ⊆ VNP*.

This follows from the proof of Theorem 7, noting that we may always take the coefficients
of a face to have size at most 2poly(n). The following are easy consequences of the definitions:

I Proposition 10. VP* ⊆ VP, and VNP* ⊆ VNP.

I Proposition 11. VP* = VP, and VNP* = VNP.

4 Stable-VNP = Newton-VNP = VNP* = VNP

We now prove Theorem 1, by a circular sequence of inclusions.

Proof of Theorem 1. Since VNP ⊆ Stable-VNP by definition, Theorem 1(a) follows from
the facts that Stable-VNP ⊆ Newton-VNP (cf. Theorem 12 below), Newton-VNP ⊆ VNP*

(Lemma 9), and VNP* ⊆ VNP (cf. Theorem 15 below).
Theorem 1(b) follows from the facts that Stable-VP ⊆ Newton-VP (cf. Theorem 12

below), Newton-VP ⊆ VP* (Lemma 9), and VP* ⊆ VNP (cf. Corollary 16 below). J

I Theorem 12. For any class C of families of p-bounded polynomials, Stable-C ⊆ Newton-C.
In particular, Stable-VP ⊆ Newton-VP and Stable-VNP ⊆ Newton-VNP.

Proof. Suppose {fn} ∈ Stable-C. If {fn} ∈ C then there is nothing to show. Otherwise,
there exists {gn}n∈N in C s.t. each fn is a stable degeneration of gn with respect to the
action of G = SLmn

(F), where mn denotes the number of variables in fn and gn.
It suffices to show that f = fn(x1, . . . , xm), m = mn, is a Newton degeneration of

g = gn(x1, . . . , xm). Let x = (x1, . . . , xm).
By the Hilbert–Mumford–Kempf criterion for stability [15], there exists a one-parameter

subgroup λ(t) ⊆ G such that limt→0 λ(t).g = f . Let T be the canonical maximal torus in G
such that the monomials in xi’s are eigenvectors for the action of T . After a linear change
of coordinates (which is allowed since Newton-C is closed under linear transformations by
definition), we can assume that λ(t) is contained in T . Thus λ(t) = diag(tk1 , . . . , tkm) (the
diagonal matrix with tkj ’s on the diagonal), kj ∈ Z, such that

∑
kj = 1.

It follows that f is the Newton degeneration of g to the face of NPT(g) where the linear
function

∑
j kjxj achieves the minimum value (which has to be zero). J

The following result is subsumed by Theorem 15; we include its proof here both for
expository clarity (it is somewhat simpler but still gives the flavor) and brevity.

I Theorem 13. Newton-VNP ⊆ VNP.

Proof. Suppose {fn} ∈ Newton-VNP. If {fn} ∈ VNP, then there is nothing to show.
Otherwise, there exists {gn}n∈N in VNP such that each fn is the Newton degeneration of gn
to some face of NPT(gn), or a linear projection of such a Newton degeneration. Since VNP
is closed under linear projections, we can assume, without loss of generality, that fn is the
Newton degeneration of gn to some face of NPT(gn).
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By Valiant [27], we can assume that g = gn(x1, . . . , xm), m = mn = poly(n), is a
projection of perm(X),7 where X is a k × k variable matrix, with k = poly(n). This means
g = perm(X ′), where each entry of X ′ is some variable xi or a constant from the base field
F . Since f = fn is a Newton degeneration of g, it follows that there is some substitution,
as in the proof of Theorem 7, xj → xjt

kj , kj ∈ Z, such that f = limt→0 perm(X ′(t)), where
X ′(t) denotes the matrix obtained from X ′ after this substitution.

It is easy to ensure that |kj | ≤ O(2poly(n)). Then, given any permutation σ ∈ Sk, whether
the corresponding monomial

∏
iX
′
iσ(i) contributes to f can be decided in poly(n) time. It

follows that the coefficient of a monomial can be computed by an algebraic circuit summed
over polynomially many Boolean inputs (convert the implicit poly(n)-time Turing machine
into a Boolean circuit, then convert it into an algebraic circuit (as in [27, Remark 1]) that
incorporates the constants appearing in the projection). Hence {fn} ∈ VNP. J

Since VP ⊆ VNP, the preceding result implies:

I Corollary 14. Newton-VP ⊆ VNP.

The following result can proved similarly to Theorem 13; see the full version for its proof.

I Theorem 15. VNP* ⊆ VNP.

I Corollary 16. VP* ⊆ VNP.

In contrast, using the interpolation technique of Strassen [26] and Bini [2] we have:

I Lemma 17 (cf. also [3], [5, §9.4], [10, Prop. 3.5.4]). If {fn} is a one-parameter degeneration
of {gn} ∈ VP of polynomial degree, then {fn} ∈ VP.

A complexity-theoretic form of the Hilbert–Mumford–Kempf criterion. As a byproduct
of the proof of Theorem 1, we get the following complexity-theoretic form of the Hilbert–
Mumford–Kempf criterion [15] for stability with respect to the action of G = SL(m,F)
on F[x1, . . . , xm]. Given a one-parameter subgroup λ(t) ⊆ G, we can express it as A ·
diag(tk1 , . . . , tkm) · A−1, for some A ∈ G and kj ∈ Z, 1 ≤ j ≤ m. We call

∑
i |ki| the total

degree of λ(t). The following theorem is implicit in the proofs of Theorems 12 and 13.

I Theorem 18. Suppose f = f(x1, . . . , xm) belongs to the unique closed G-orbit in the
G-orbit-closure of g = g(x1, . . . , xm) ∈ F[x1, . . . , xm]. Then there exists a one-parameter
subgroup λ(t) ⊆ G such that (1) limt→0 λ(t) · g = f , and (2) the total degree of λ is
O(exp(m, 〈deg(g)〉)), where 〈deg(g)〉 denotes the bitlength of the degree of g.

It follows that if {fn} is a stable degeneration of {gn} ∈ VP, then {fn} is a p-definable
one-parameter degeneration of {gn}.

See the full version for an analogous result for reductive algebraic groups. We formally
propose a question that has ramifications on the Stable-VP vs. VP question (cf. Section 1).

I Question 19. For some positive constant a, does there exist a stable degeneration {fn} of
some {gn} ∈ VP, with an Ω(2na) lower bound on the degree of the canonical Kempf-one-
parameter subgroup [15] λn driving {gn} to {fn}?

7 To get the proof to work in characteristic 2 as well, simply use the Hamilton cycle polynomial
HC(X) =

∑
k-cycles σ∈Sk

∏
i∈[k] xi,σ(i) instead, which is VNP-complete in any characteristic [27].
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5 Newton degeneration of perfect matching Pfaffians

In this section, we construct an explicit family {fn} of polynomials such that fn can be
approximated infinitesimally closely by symbolic determinants of size n, but conjecturally
requires size Ω(n2+δ) to be computed by a symbolic determinant, for a small enough positive
constant δ. However, the family {fn} turns out to be in VPws.

Suppose we have a simple undirected graph G = (V,E) where V = [n]. Let {xe | e ∈ E}
be a set of variables. The Tutte matrix of G is the n × n skew-symmetric matrix TG
such that, if (i, j) = e ∈ E, with i < j, then TG(i, j) = xe and TG(j, i) = −xe; otherwise
TG(i, j) = 0. For a skew-symmetric matrix T , the determinant of T is a perfect square,
and the square root of det(T ) is called the Pfaffian of T , denoted pf(T ). We call pf(TG)
the perfect matching Pfaffian of the graph G, and pf(TG) =

∑
P sgn(P )

∏
e∈P xe, where the

sum is over all perfect matchings P of G, and sgn(P ) takes ±1 in a suitable manner. It is
well-known that pf(TG) ∈ VPws.

Note that NPT(pf(TG)) is the perfect matching polytope of G, which has the following
description by Edmonds. For any S ⊆ V , we use e ∼ S to denote that e lies at the border of
S. When S = {i}, we may write e ∼ i instead of e ∼ {i}.

I Theorem 20 (Edmonds, [9]). The perfect matching polytope of a graph G is characterized
by the following constraints:

(a) ∀e ∈ E, xe ≥ 0;

(b) ∀i ∈ V,
∑

e∈E,e∼i
xe = 1; (1)

(c) ∀C ⊆ V, |C| > 1 is odd,
∑

e∈E,e∼C
xe ≥ 1.

We shall refer to constraints of type (c) in Equation (1) as “odd-size constraints.”

I Theorem 21 (Kaltofen and Koiran, [13, Corollary 1]). Given f, g, h ∈ F[x], suppose h = f/g,
and f and g are in VPws. Then h ∈ VPws.

I Theorem 22. For any graph G and any face Q of NPT(pf(TG)), pf(TG)|Q ∈ VPws.

Proof. Thanks to Edmonds’ description, any face of NPT(pf(TG)) is obtained by setting
some of the inequalities in Equation (1) to equalities. As setting xe = 0 amounts to consider
some graph G′ with e deleted from G, the bottleneck is to deal with the odd-size constraints.

Suppose the face Q is obtained via setting the odd-size constraints corresponding to
C1, . . . , Cs to equalities, where Ci ⊆ V . Note that s = poly(n), because the dimension of
NPT(pf(TG)) is polynomially bounded, thus any face can be obtained by setting polynomially
many constraints to equalities. Let y be a new variable. For any edge e ∈ E, let the number
of i ∈ [s] s.t. e lies at the border of Ci be ke. Then transform xe to xey

ke . Let the
skew-symmetric matrix after the transformation be T̃G. Since each perfect matching touches
the border of every Ci at least once, ys divides pf(T̃G), so f := pf(T̃G)

ys is a polynomial.
Furthermore, the y-free terms in f corresponds to those perfect matchings that touch each
border exactly once. Thus, setting y to zero in f gives pf(TG)|Q.

f is in VPws, because pf(T̃G) and ys are in VPws, and use Theorem 21. J

Construction of an explicit family. Now we turn to the construction of an explicit family
{fn} mentioned in the beginning of this section. We assume that the base field F = C.

First, we give a randomized procedure for constructing fn:
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1. Fix a small enough constant a > 0, and let l be the nearest odd integer to na. Fix
odd-size disjoint subsets C1, . . . , Ck ⊆ [n], k = bn1−ac, of size l. For example, we can let
C1 = {1, . . . , l}, C2 = {l + 1, . . . , 2l + 1}, etc.

2. Choose a random regular non-bipartite graph Gn on n nodes with degree (say)
√
n.

3. Let Q be the face of NPT(pf(TG)) obtained by setting the odd-size constraints corres-
ponding C1, . . . , Ck to equalities.

4. Let fn = det(TG)|Q.

Then, fn can be approximated infinitesimally closely by symbolic determinants of size n;
cf. the proof of Theorem 7. By Theorem 22, fn can be expressed as a symbolic determinant
of poly(n) size. But:

I Conjecture 23. If a > 0 is small enough, then, with a high probability, fn cannot be
expressed as a symbolic determinant of size ≤ n2+δ, for a small enough positive constant δ.

This is because, with high probability, the coefficient complexity of Q is Ω(n1−a+1/2), and
hence interpolation, which lies at the heart of the algorithm in Theorem 22, can be expected
to incur Ω(n1+δ) blow-up in the determinantal size, for a small enough constant δ > 0.
Specifically, if we unwind Strassen’s proof of division gate elimination, the number of terms
in the interpolation is the degree of the polynomial times the degree of the denomenator.
The former number gets increased by a multiplicative factor of the sum of absolute values of
variable coefficients in the equations, and the latter number is the sum of absolute values of
constant terms. It follows that the coefficient complexity determines the blow-up factor.

To get an explicit family {fn}, we let Gn be a pseudo-random graph, instead of a random
graph. Some suggestions can be found in the full version.

6 Newton degenerations of generic semi-invariants of quivers

In this section we prove Theorem 2 for the generalized Kronecker quivers. Due to page
constraints, proofs for k-subspace quivers and A-D-E Dynkin quivers are in the full version.
We assume familiarity with the basic notions of the representation theory of quivers; cf. [6, 8].

6.1 Newton degeneration to faces with small coefficient complexity
We begin by observing that the technique used to prove Theorem 22 can be generalized
further. In the proof of Theorem 22, due to Edmonds’ description of the perfect matching
polytope, every face has a “small” description, by a set of linear equalities whose coefficients
are polynomially bounded in magnitude.

For a face Q of a polytope P , we say that a set of linear equalities E characterizes Q
with respect to P , if the description of P together with that of E characterizes Q. For E, let
coeff(E) be the sum of the absolute values of the coefficients of the linear equalities in E.
We define the coefficient complexity of Q as the minimum of coeff(E) over the linear equality
sets E that characterize Q with respect to P . Adapting the proof of Theorem 22 we easily
get the following; see the full version for a proof.

I Theorem 24. Suppose f ∈ F[x1, . . . , xn] can be computed by a (weakly skew) arithmetic
circuit of size s. Let Q be a face of NPT(f) whose coefficient complexity is poly(n). Then
f |Q can be computed by a (weakly skew) arithmetic circuit of size poly(s, n).

I Remark. If Q has poly(n) coefficient complexity, then it can be shown that f |Q is a
one-parameter degeneration of f of poly(n) degree. Hence, Thm. 24 also follows from
Lem. 17.
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6.2 Generic semi-invariants of generalized Kronecker quivers
We now discuss Theorem 2 for the m-Kronecker quiver; the proof is deferred to the full
version. The m-Kronecker quiver is the graph with two vertices s and t, with m arrows
pointing from s to t. When m ≥ 3, this quiver is wild.

Any tuple of m n× n matrices is a linear representation of the m-Kronecker quiver of
dimension vector (n, n). Let F[x(k)

i,j ] denote the ring of polynomials in the variables x(k)
i,j ,

where i, j ∈ [n], and k ∈ [m]. For k ∈ [m], let Xk = (x(k)
i,j ) denote the variable n× n matrix,

whose (i, j)-th entry is x(k)
i,j . Let R(n,m) consist of those polynomials in F[x(k)

i,j ] that are
invariant under the action of every (A,C) ∈ SL(n,F)× SL(n,F), which sends (X1, . . . , Xm)
to (AX1C

−1, . . . , AXmC
−1). R(n,m) is the ring of semi-invariants for the m-Kronecker

quiver for dimension vector (n, n) or “matrix semi-invariants” due to their similarity with
the well-known matrix invariants. The following is proved using Theorem 24:

I Theorem 25. The Newton degeneration of a generic semi-invariant of the m-Kronecker
quiver with dimension vector (n, n) and degree dn to an arbitrary face can be computed by a
weakly skew arithmetic circuit of size poly(d, n).
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35:2 AC0 ◦ MOD2 Lower Bounds for the Boolean IP

1 Introduction

We study lower bounds for computing the inner product function by AC0 circuits with parity
gates on the level just above the input gates (AC0 ◦MOD2). As we will review, this problem
has emerged as a common, particularly simple special case of several major open problems
in Computational Complexity, about which we know surprisingly little. We therefore view
progress on this special case as a benchmark for new techniques in circuit complexity for
these larger questions.

A core program in Computational Complexity is to understand the power of restricted
circuit families. One facet of such understanding is to identify functions that these circuits
cannot compute. In practice, it turns out that once we can prove such lower bounds, then we
become surprisingly facile with the class, gaining the ability to learn the functions computed
by such circuits [14] (and this is necessary in some form [10, 11, 29]), the ability to generate
inputs that are pseudorandom for the class [16, 18] (again necessary in some form [7, 24, 27]),
and more. As a consequence, “understanding” the class is often identified with proving such
lower bounds. It is therefore interesting when this intuition fails to hold.

Shaltiel and Viola [25] noticed such a gap: although we can prove that, e.g., the MOD3
function has constant hardness for AC0[2] circuits [21, 26] (where AC0[2] is AC0 equipped
with parity gates), we still do not have pseudorandom generators for AC0[2]. The trouble
is that known constructions of pseudorandom generators require strongly hard on average
functions [18], and proofs of hardness amplification require the class in question to compute
the majority function, which AC0[2] cannot even approximate [21]. Shaltiel and Viola
therefore highlight the problem of establishing such strong average case hardness against
AC0[2] circuits as a challenge in circuit complexity. Servedio and Viola [23] pointed out
that such strong hardness is not even known for AC0 ◦MOD2, and suggest the problem as
a natural special case. In particular, they conjecture that, for this special case, the Inner
Product function (IP), defined below, is an example of such a function (although it is trivially
computable by AC0[2]).

I Definition 1. IP(x, y) : {0, 1}2n → {0, 1} is the function
∑n
i=1 xiyi (mod 2).

Thus, showing that IP cannot be computed by small AC0 ◦MOD2 circuits is a natural step
towards a better understanding of AC0[2].

On the other hand, a better understanding of the class AC0 ◦MOD2 turns out to be of
interest to practical cryptography as well. Along similar lines, Akavia et al. [1], in the course
of proposing a candidate weak pseudorandom function of minimal complexity (computable
in AC0 ◦MOD2 in this case), made a strong conjecture; namely that every AC0 ◦MOD2
circuit has a quasipolynomially heavy Fourier coefficient. Since IP only has small Fourier
coefficients, this conjecture also entails the same consequence considered by Servedio and
Viola, and simply showing that IP cannot be computed by small AC0 ◦MOD2 circuits is
again a special case of this problem.

Finally, Servedio and Viola [23] note that a special case of Valiant’s matrix rigidity
problem [28] is to exhibit a function that has low correlation with all sparse polynomials.
AC0 ◦MOD2 circuits are in turn well-approximated by such sparse polynomials, so giving
explicit functions that are not correlated with any AC0 ◦MOD2 functions is again a natural
special case; and IP is again the natural candidate for such a function.

Proving lower bounds for AC0◦MOD2 circuits computing IP is challenging since the usual
techniques from the literature do not immediately apply. Specifically, although Razborov’s
technique [21] establishes strong lower bounds against AC0[2], we note that IP does have
small AC0[2] circuits. There is thus no hope in using Razborov’s technique directly to prove
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lower bounds for IP. And of course, techniques based on random restrictions are helpless
against the input layer parity gates.

Servedio and Viola noted that it follows from Jackson’s work [8, Fact 8] that depth-3
AC0 ◦MOD2 circuits (i.e., a DNF of parities) cannot approximate IP. Also, Jukna [9] has
shown that such circuits computing IP must have exponential size (a bound recently optimized
by Cohen and Shinkar [4]). And yet, as Servedio and Viola noted, nothing is known about
depth-4 circuits, let alone AC0 ◦MOD2 circuits of arbitrary depth.

1.1 Our results

In this work, we give the first nontrivial (superlinear) lower bound for IP against (arbitrary
depth) AC0 ◦MOD2. In fact, our result is slightly stronger and applies to the broader class
of bent functions (i.e., functions whose Fourier coefficients are all equal in magnitude, IP
being a special case).

I Theorem 2. If C is an AC0 ◦MOD2 circuit of depth k and size S that computes the IP
function on n variables, then S = Ω(n1+4−k).

The proof of this theorem follows by an adaptation of the results of Chaudhuri and Radhakrish-
nan [3] who showed a similar bound for AC0 circuits; a similar adaptation for AC0[2] circuits
was previously given by Kopparty and Srinivasan [13].

Our main theorem is an Ω̃(n2) AC0 ◦MOD2 lower bound for IP:

I Theorem 3. Any depth-4 AC0 ◦MOD2 circuit computing the IP function on n variables
must have size s = Ω(n2/ log6 n).

An intuitive interpretation of the above results is the following. IP is a means to “generate”
all possible parities on n bits. AC0 ◦MOD2 circuits are merely AC0 circuits that are given
access to an arbitrary but fixed set of parity functions, bounded in number by the size of
the circuit. Our results address the question of how much these few parities can aid the
computation of most remaining parities.

1.2 Our technique: a moment-matching bound

At the heart of this second lower bound is a lemma that may be of independent interest:

I Lemma 4 (Moment-matching bound). Let X and Y be random variables taking values in
{0, 1, 2, . . . , s}. Suppose that the first d moments of X and Y are equal. Then, Pr(Y = 0) ≤
Pr(X = 0) + e−Ω(d/

√
s).

Several other “moment-matching” bounds appear in the literature, and here we briefly
discuss the relationship of our work to these bounds. First, the classical “truncated moments”
problem concerns the conditions for the existence of a probability distribution on a given
set with a given sequence of moments [2, 5]. But, as noted by Rashkodnikova et al. [20],
the solutions generated by these techniques do not necessarily lie on integers, and so the
conditions refer to a different class of random variables. Klivans and Meka [12] likewise
considered bounds on the difference in probability of general events that may be induced by
distributions with d matching moments. Their bounds apply to much more general properties
(than simply the event X = 0) and much more general distributions; as such, in spite of some
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similarities in the techniques employed in their work1, they do not obtain bounds in a useful
form for our purposes. Rashkodnikova et al. [20] in turn consider nonnegative, bounded, and
integer-valued random variables as we do, but they consider a different property; namely,
given that the first d moments are proportional (not necessarily identical), they maximize
their ratio.

Interestingly, it turns out that the moment-matching bound we obtain has a close technical
relationship to the approximate inclusion-exclusion bounds obtained by Linial and Nisan [15].2
Indeed, the technique we use to prove Lemma 4 is essentially the same as the core technique
underlying Linial and Nisan’s work, and in fact, we can show that our moment-matching
lemma is essentially equivalent to Linial and Nisan’s approximate inclusion-exclusion bounds
(details of this equivalence appear in the full version of the paper). In view of the naturalness
of the statement of our moment-matching bound, we believe that this lemma may be of
interest, even if one is familiar with the approximate inclusion-exclusion bounds.

1.3 Overview of the depth-4 lower bound
Our argument consists of two main steps: (1) We show that any depth-4 AC0 ◦ MOD2
circuit (without loss of generality, with an AND top gate) of size s ≤ n2 computing the Inner
Product function must have a one-sided approximation by a DNF of parities in which the
terms are all small: It is correct when it outputs 0, and the circuit outputs zero on at least a
1/n2 fraction of inputs. (2) We then show that such one-sided approximators for the Inner
Product function can only output 0 with small probability, which can be made smaller than
1/n2 for some s = O(n2/poly logn).

The first part is relatively straightforward. We let a candidate circuit for the inner
product function of size s ≤ n2 be given. We first obtain a one-sided approximation to our
circuit by invoking the Discriminator Lemma of Hajnal et al. [6] to obtain a depth-3 circuit
(eliminating the top AND layer) that is correct whenever it reports 0, and reports 0 on a
large (≥ 1/n2) fraction of the inputs. We then reduce the fan-in of the second (from bottom)
layer of AND gates by trimming the AND gates with large fan-in at a slight cost in the
approximation error (asymptotically smaller than 1/n2).

Towards the second part of our argument, we consider the degree of an arbitrary parity in
the {±1}-representation in terms of the original variables as well as the bottom layer parities.
That is, the degree of a parity χ is now defined as the minimum number of variables and/or
bottom layer parities that need to be added together (over F2) to obtain χ: e.g., a single
parity gate (new variable) has degree 1, and a parity of k new variables (parity gates or
old variables) has degree ≤ k. Given the size of the circuit s, we obtain that w.h.p. over
the setting of the input y variables, the inner product function IP(x, y) is a parity in the x
variables that remains of high degree (at least Ω(n/ log s)) over these new variables.

We show that, for a 1− o(1) fraction of fixings of the y variables, the probability that our
circuit outputs 0 when IP(x, y) = 0 is small as follows. We apply the above-mentioned moment-
matching bound (Lemma 12) to the random variable N(x) (over a random x) that counts the
number of the AND gates in the depth-3 approximator obtained by the Discriminator Lemma
that output 1. We can then show that the first m = Ω̃(n) moments of (N(x) | IP(x, y) = 0)
and (N(x) | IP(x, y) = 1) are identical and Prx(N(x) = 0 | IP(x, y) = 1) = 0 since N(x) = 0

1 Indeed, although like us, Klivans and Meka related this problem to the existence of some polynomials
via LP duality, for Klivans and Meka, constructing these (sandwiching) polynomials was the problem,
not the solution.

2 We are indebted to Johan Håstad for pointing out to us the similarity in the underlying technique.
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precisely when the OR gate at the output of the depth-3 one-sided approximator outputs 0, in
which case the circuit is correct. Using this information in a linear-programming based proof,
we show that Prx(N(x) = 0 | IP(x, y) = 0) . e−Ω̃(m/

√
s). For our m, if s ≤ n2/ poly logn,

the upper bound becomes smaller than 1/n2, completing the second part and finishing the
proof.

To see that the low-degree moments match, we note that N(x) is represented by a low-
degree polynomial: In the {0, 1}-representation, it is simply the summation of monomials of
degree O(logn) corresponding to the second-level AND gates (recall that the degree remains
the same in the {±1}-representation). In the {±1}-representation, however, it is then clear
that the parity in x that we obtain from our setting of the y variables in IP(x, y) is (w.h.p.
over y) uncorrelated with N(x). In other words, Ex(N(x) | IP(x, y) = 0) = Ex(N(x) |
IP(x, y) = 1). This argument can be seen to hold for larger moments as well.

We prove the moment-matching bound by writing a linear program for the probability
distribution satisfying the given moment constraints over {0, . . . , s} that maximizes the
probability of obtaining 0. We bound the value of this LP by giving an explicit dual-feasible
solution; It turns out that the dual can be rewritten as maximizing the lower bound on
the values a bounded degree polynomial attains at the integer points in [0, s], given that it
takes value 0 at the origin and is also upper bounded by 1 at these integer points. This is
quite similar to the conditions for approximators for the OR function sought by Nisan and
Szegedy [17], and our solution follows theirs, using Chebyshev polynomials to construct the
desired (essentially optimal, cf. Paturi [19]) polynomial.

Alternative proof. There is also an alternative way of completing the proof of our lower
bound that uses approximate inclusion-exclusion directly. We believe that the main proof we
describe here, using moment-matching, is more natural. This alternative proof appears in
the full version of the paper.

1.4 Preliminaries and notation

All logarithms in this paper are to the base 2. Let n ≥ 1 be a natural number. We use [n] to
denote the set {1, . . . , n}. We use F2 for the field with 2 elements {0, 1}, where addition and
multiplication are performed modulo 2. We view elements in Fn2 as n-bit binary strings – that
is elements of {0, 1}n – alternatively. If x and y are two n-bit strings, then x+ y (or x− y)
denotes bitwise addition (i.e. XOR) of x and y. We view Fn2 as a vector space equipped with
an inner product 〈x, y〉, which we take to be the standard dot product: 〈x, y〉 =

∑n
i=1 xiyi,

where all operations are performed in F2.
Often times, it is convenient to switch the range of Boolean functions between {0, 1} and

{−1, 1}. We use f± to denote the {−1, 1}-valued Boolean function corresponding to f . They
are related by f± = (−1)f = 1− 2f and f = (1− f±)/2.

A linear threshold gate T a
k (x1, . . . , xt) of fan-in t outputs 1 if and only if

∑t
i=1 aixi ≥ k,

where a = (a1, . . . , at) is vector of weights. The Discriminator Lemma of Hajnal et al. is a
powerful tool for proving lower bounds of threshold circuits.

I Lemma 5 (Discriminator lemma, Lemma 3.3 in [6]). Let C = T a
k (C1, . . . , Cm) be a circuit

on n inputs with a threshold gate at the top level, and write a =
∑m
i=1 |ai|. Let A,B ⊆ {0, 1}n

be any two disjoint sets of inputs such that the circuit C accepts A and rejects B. Then there
exists a subcircuit Ci, i ∈ [m], such that |PrA(Ci(x) = 1)− PrB(Ci(x) = 1)| ≥ 1/a, where
PrA(Ci(x)) (resp., PrB(Ci(x))) denotes the uniform probability over the set A (resp., B).
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2 Lower bound for depth-4 circuit

In this section we will show an Ω̃(n2) lower bound for any depth-4 AC0 ◦MOD2 circuit that
computes IP(x, y). Note that all circuits here are allowed to have negations below the XOR
gates; these negations are not counted in the depth of the circuit.

2.1 Depth-3 discriminator
Let C be any depth-4 AC0 ◦MOD2 circuit that computes IP(x, y). First, without loss of
generality, we may assume the top layer gate of C is an AND gate; the case that top layer
gate is an OR gate follows a similar argument3. Second, suppose C = AND(C1, . . . , Cm),
where each subcircuit Ci is a parity-DNF circuit; then because C(x, y) = IP(x, y) for every
input, each subcircuit Ci must compute IP with one-sided error only. Specifically, for every
input (x, y) with IP(x, y) = 1 and every i, Ci(x, y) = 1.

We invoke a consequence of the Discriminator Lemma of Hajnal et al. [6].

I Claim 6 (Consequence of Lemma 5). There is a subcircuit Ci, i ∈ [m], such that
Pr(x,y) : IP(x,y)=1(Ci(x, y) = 1) = 1, and Pr(x,y) : IP(x,y)=0(Ci(x, y) = 1) ≤ 1− 1/m.

We call such a depth-3 AC0 ◦MOD2 circuit Ci a one-sided 1/m-discriminator for IP. Our
main lemma is an upper bound on the discriminator parameter 1/m of such discriminators
in terms of its size.

I Lemma 7 (Main). Suppose that a depth-3 AC0 ◦MOD2 circuit of size s is a one-sided
ε-discriminator for IP. Then ε satisfies

ε ≤ 4 exp
(
−

√
n2

128s log2 n log2 s

)
+ 4s
n4 + 2−n/2.

The proof of Lemma 7 is discussed in Section 2.3. Assuming Lemma 7, the proof of
Theorem 3 is straightforward. If m ≥ n2, then we are done already. Suppose otherwise,
so ε ≥ 1/n2. Then by Lemma 7, the size of discriminator subcircuit Ci is of size at least
s = Ω( n2

log6 n
) = Ω̃(n2).

2.2 Random y-restrictions
Let C ′ be a size-s depth-3 AC0 ◦MOD2 circuit which is a one-sided ε-discriminator for IP. So
Pr(x,y) : IP(x,y)=0(C ′(x, y) = 0) ≥ ε, and C ′ = OR(f1, f2, . . . , fs′), where each fi is an AND
of parities and s′ < s. Without loss of generality, we can assume that none of these AND
gates are constant (i.e., always 0 or 1).

Reducing the fan-in of AND gates

Define the codimension of fi (each of which is an AND of parities) to be the codimension of
the subspace corresponding to the coset of inputs on which fi evaluates to 1.

For example, if f1 = AND(x1 + x2, x1 + x3,¬(x2 + x3)), then x1 + x2 and x1 + x3 both
evaluating to 1 necessarily implies that ¬(x2 +x3) evaluates to 1. Hence, the set of inputs for

3 One way to see this is to notice that our proof also shows the same lower bound for the negation of the
Inner Product function (since negating only incurs an affine shift that our methods are not sensitive to).
Thus it suffices to note that when the top gate is an OR one can just negate the layers and get a circuit
in which the top gate is AND that computes the negation of the Inner Product.



M. Cheraghchi, E. Grigorescu, B. Juba, K. Wimmer, and N. Xie 35:7

which f1(x) = 1 is the affine subspace specified by {x1 + x2 = 1∧ x2 + x3 = 1}; consequently,
the codimension of f1 is 2.

The codimension of fi measures the “effective” fan-in of the AND gate in C ′. It is
straightforward that without loss of generality one can assume the co-dimension of each
AND gate to be equal to its fan-in (one can simply eliminate linearly dependent inputs to
each AND gate). From now on, we assume that all redundant parity inputs have already
been removed and each AND gate in C ′ has its fan-in equal to its codimension. Our next
step is trim those AND gates of C ′ whose fan-in is large.

Call an AND gate in C ′ “bad” if its fan-in is larger than 4 logn. We reduce C ′ to a circuit
C ′′ by trimming all “bad” AND gates to an arbitrary set of 4 logn inputs in their fan-in. Note
that each trimmed AND gate may cause an error, only from 0 to 1, and only when all its (non-
trimmed) inputs evaluate to 1 (an event that happens with probability at most 2−4 logn, since
the inputs of each gate are uniform and independent). Define τ = Prx,y(C ′(x, y) 6= C ′′(x, y)).
By the union bound, τ ≤ s2−4 logn = s/n4. Further, if C ′(x, y) 6= C ′′(x, y) then we must
have C ′(x, y) = 0 and C ′′(x, y) = 1. In other words, if ε′ := Pr(x,y) : IP(x,y)=0(C ′′(x, y) = 0),
then ε′ ≥ ε − τ , and moreover, if C ′ approximates IP with a one-sided error (i.e., C ′ = 1
whenever IP = 1), then so does C ′′.

I Definition 8. For a function F (x, y) (resp., a circuit C(x, y)) that maps {0, 1}n × {0, 1}n
to {0, 1}, a y-restriction ρ ∈ {0, 1}n is an assignment of all the y variables in the input
according to ρ. Denote the resulting function F (resp., circuit C) after applying restriction ρ
by F |ρ (resp., C|ρ).

A simple fact exploited in the proof is that, for any y-restriction ρ, IP|ρ is a parity over
the x variables, which we denote by `ρ. Note that `ρ(x) =

∑
i:ρi=1 xi mod 2. We next argue

that for any fixed depth-3 AC0 ◦MOD2 circuit C ′′, the parity function `ρ resulting from a
random y-restriction ρ is of “high degree” with respect to the parity inputs of C ′′, and thus
“hard” for the circuit.

Fix an arbitrary depth-3 AC0 ◦ MOD2 circuit C ′′, of which the fan-in of each AND
gates is at most 4 logn. Let the parity inputs for C ′′ be `(a1,Sx1 ,S

y
1 ), . . . , `(as′ ,Sxs′ ,S

y

s′
), where

ai ∈ {0, 1}, Sxi , S
y
i ⊆ [n], `Sx

i
,Sy
i
(x, y) = ai +

∑
j∈Sx

i
xj +

∑
j∈Sy

i
yj , and s′ < s.

Observe that after applying a y-restriction ρ to C ′′, the inputs to C ′′|ρ become the x-part
of the original parities or their negations, namely `(ai,Sxi ,Syi )|ρ = a′i +

∑
j∈Sx

i
xj and a′i = ai

or a′i = 1 − ai. Since there is a natural one-to-one correspondence between subsets of [n]
and vectors in Fn2 , we may use a set of vectors S ⊆ Fn2 to identify the set of parities (or
their negations), namely {Sxi }i∈[s′], that are fed into C ′′|ρ. A key point is that the subset S
depends only on the circuit C ′′, and is essentially independent of the choice of y-restriction
ρ. Note also that |S| ≤ s′ < s. In the following, we will slightly abuse notation and use a
parity and the subset of [n] corresponding to that parity interchangeably.

IP results in high degree parity under random restriction

Following standard additive combinatorial notation, for a subset S ⊆ Fn2 and a positive integer
k, let kS = {x1 + · · ·+ xk : x1, . . . , xk ∈ S}. Clearly we have |S ∪ 2S ∪ · · · ∪ kS| ≤ (|S|+ 1)k.

I Definition 9. For any S ⊆ Fn2 and z ∈ Fn2 , the S-degree of z is the smallest integer d such
that z ∈ dS, or ∞ if no such d exists. Further, the S-degree of a parity function 〈α, x〉 for
α ∈ Fn2 is the S-degree of α.

Our next claim shows that for any fixed size-s depth-3 AC0 ◦MOD2 circuit C ′′, after
applying a random y-restriction, then almost surely, the resulting parity function `ρ is of
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high degree with respect to the parity inputs of C ′′|ρ.

I Claim 10. Let S ⊆ Fn2 be the set of input parities (or their negations) of C ′′|ρ. Then with
probability at least 1− 2−n/2 over the choice of ρ, `ρ has S-degree larger than n/(2 log s).

Proof. Set k = n/(2 log s). We have |S∪2S∪· · ·∪kS| ≤ (|S|+1)k ≤ sk = sn/(2 log s) = 2n/2, so
the probability that the S-degree of `ρ being at most k is no more than 2n/2/2n = 2−n/2. J

We will call a y-restriction ρ good (for circuit C ′′) if the S-degree of `ρ is larger than
n/(2 log s) and bad otherwise. Therefore a random ρ is bad with probability at most 2−n/2.
Let Nρ : {0, 1}n → N be the function that counts the number of AND gates of C ′′|ρ that
are 1.

I Lemma 11. Let S ⊆ Fn2 be the set of input parities (or their negations) of C ′′|ρ. Suppose
`ρ has S-degree larger than k and each AND gate in C ′′|ρ has fan-in at most w, then N i

ρ

is uncorrelated with `ρ for i = 1, 2, . . . , k/w. In other words, Ex(N i
ρ(x) | `ρ(x) = 0) =

Ex(N i
ρ(x) | `ρ(x) = 1) for i = 1, 2, . . . , k/w.

Proof. For convenience, we switch to the {−1, 1} representation of Boolean values for parities,
i.e. χ(x) = (−1)`(x). Let χ1, . . . , χs′ be the input parities of C ′′|ρ, and let f ′1, f ′2, . . . , f ′t′
(each still taking value in {0, 1}) be the functions computed by the AND gates in C ′′|ρ.
Then Nρ(x) = f ′1(x) + f ′2(x) + · · · + f ′t′(x). Note that since each f ′j(x) is the AND of
at most w parities from {χ1, . . . , χs′}, f ′j(x) can be expressed as a polynomial of degree
at most w with χ1, . . . , χs′ as variables (indeed, if f ′1(x) = AND(χ1(x), . . . , χw(x)), then
f ′1 = ( 1−χ1

2 ) · · · ( 1−χw
2 )). Consequently, N i

ρ is a polynomial of degree at most i · w in
χ1, . . . , χs′ . Now because `ρ is of S-degree larger than k ≥ i · w for i = 1, 2, . . . , k/w, we
have that `ρ is not in the support of the polynomial representation of N i

ρ. Finally, by the
orthogonality of parities, letting χρ(x) := (−1)`ρ(x), we have

0 = 〈N i
ρ, `ρ〉 = Ex(N i

ρ(x)·`ρ(x)) = 1
2
(
Ex(N i

ρ(x) | χρ(x) = 0)−Ex(N i
ρ(x) | χρ(x) = 1)

)
. J

Since each of the AND gates in C ′′ has fan-in at most 4 logn and the S-degree of `ρ is
larger than n/(2 log s) for every good ρ, Lemma 11 implies that N i

ρ is uncorrelated with `ρ
for i up to d := n/(8 logn log s) for every good y-restriction.

2.3 Linear programming and feasible solutions based on Chebyshev
polynomials (Proof of Lemma 7)

In this section we prove Lemma 7. Let Xρ (resp. Yρ) be the (conditional) random variable of
Nρ(x) | (`ρ(x) = 1) (resp., Nρ(x) | (`ρ(x) = 0)). Our key observation is that, by Lemma 11,
these two random variables both take values in {0, 1, . . . , s′} and their moments match up
to n/8 logn log s. So intuitively, if s′ is not too large, these two random variables should
have close to identical distributions; in particular, we should have Pr(Xρ = 0) ≈ Pr(Yρ = 0).
Since C ′ (and thus, C ′′) computes IP with only one-sided error, we have that for every y-
restriction ρ, Pr(C ′′|ρ(x) = 1 | `ρ(x) = 1) = 1 and consequently Pr(Xρ = 0) = 0. Combining
this with the consequence of moment-matching condition between Xρ and Yρ implies that
Pr(Yρ = 0) ≈ 0 for every good ρ.

Fix a good y-restriction ρ. The following key lemma provides the desired upper bound
on Pr(Yρ = 0) = Prx(C ′′|ρ(x) = 0 | `ρ(x) = 0). The lemma allows an additional parameter
ξρ which in our application is set to zero (since we have Prx(C ′′|ρ(x) = 0 | `ρ(x) = 1) = 0).
However, since the lemma applies to general random variables with matching moments and
may be of independent interest, it is stated in the more general form.
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Max y0 (primal LP)

s.t.
∑s′

i=0 i
jxi −

∑s′

i=0 i
jyi = 0, j = 1, . . . , d∑s′

i=0 xi = 1∑s′

i=0 yi = 1
x0 = ξρ

xi, yi ≥ 0, i = 0, . . . , s′

Min 1 − (1 − ξρ)z (dual LP)
s.t. p is a polynomial of degree at most d

p(0) = 0
z ≤ p(i) ≤ 1 i = 1, . . . , s′

Figure 1 Primal LP for finding maximum Pr(Y = 0) (top), and the final dual LP for finding
maximum Pr(Y = 0) (bottom).

I Lemma 12. Let Xρ and Yρ be random variables supported on {0, 1, . . . , s′} such that
(i) E(Xi

ρ) = E(Y iρ ) for i = 1, . . . , d; and
(ii) Pr(Xρ = 0) = ξρ.
Then Pr(Yρ = 0) ≤ ξρ + 4(1− ξρ)e−d/

√
2s′ .

Proof. We set up a linear program to maximize Pr(Yρ = 0) over the choices of random
variables Xρ and Yρ. The variables in the LP are xi and yi where xi = Pr(Xρ = i) and
yi = Pr(Yρ = i). Aside from nonnegativity and an upper bound constraint for x0, we have
d+ 2 equality constraints; 2 of them to force Xρ and Yρ to have probability distributions, and
the other d for the moment matching condition. The linear program and the corresponding
dual are listed in Figure 1. In order to upper bound the value of the primal program (i.e.,
Pr(Yρ = 0)) and prove Lemma 12, it suffices to find a feasible solution to the corresponding
dual program. We show that by choosing the polynomial p in the dual to be a Chebyshev
polynomial (appropriately shifted and scaled), an essentially optimal bound on the primal
value can be found.

Denote by Pρ the value of the primal LP in Figure 1. The dual linear program is

minimize zd+1 + zd+2 + ξρzd+3

such that zd+1 + zd+3 ≥ 0
zd+2 ≥ 1
(
∑d

j=1 i
jzj) + zd+1 ≥ 0 i = 1, . . . , s′

(
∑d

j=1 −ijzj) + zd+2 ≥ 0 i = 1, . . . , s′

We can interpret the dual as a problem involving polynomials. The feasible solutions
correspond to coefficients of degree-d polynomials p(x) =

∑d
j=1 zjx

j with p(0) = 0. By
duality, the objective value of the dual is nonnegative for any feasible solution. Thus, by
scaling, we can assume zd+2 = 1. Further, since zd+3 only appears in the first constraint in
this minimization problem, we can always take zd+3 = −zd+1.

Rearranging the last two constraints of this problem yields that p(1), p(2), . . . , p(s′) must
all lie in the interval [−zd+1, zd+2]. Setting z = −zd+1, the dual problem can be rephrased

ICALP 2016
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as the final Dual LP showed in Figure 1.
Denote by Dρ the value of this dual LP. By the Strong Duality Theorem, Pρ = Dρ, and

therefore if V (p) is the value of any feasible solution corresponding to a polynomial p to the
dual LP, we have Pr(Yρ = 0) ≤ Pρ = Dρ ≤ V (p).

The above modified problem about polynomials is strikingly similar to the problem of
approximating OR functions by low-degree polynomials, for which Nisan and Szegedy gave
an optimal solution based on Chebyshev polynomials [17]. Recall that Chebyshev polynomial
(of the first kind) Tk(x) is a degree k polynomial defined by Tk(x) = cos(k arccos(x)), or
more explicitly

Tk(x) = 1
2

[(
x+

√
x2 − 1

)k
+
(
x−

√
x2 − 1

)k]
.

It is well-known that −1 ≤ Tk(x) ≤ 1 for all x ∈ [−1, 1] and Tk(x) > 1 when x > 1. For a
detailed treatment of Chebyshev polynomials see e.g. [22].

We now construct a dual feasible polynomial p based on Chebyshev polynomials. Define

q(x) := 1−
Td( s

′−x
s′−1 )

Td( s′

s′−1 )
, p(x) := q(x)

maxi∈{1,...,s′} q(i)
.

Clearly p(x) is a degree d polynomial, p(0) = 0 and p(i) ≤ 1 for i = 1, . . . , s′, hence a feasible
solution to the dual LP.

I Claim 13. The value of p(x) with respect to the dual LP satisfies that D(p) ≤ ξρ+ 2(1−ξρ)
Td(1+ 1

s′ )
.

Proof. Since −1 ≤ Td(w) ≤ 1 for all −1 ≤ w ≤ 1, then for i = 1, . . . , s′,

p(i) = q(x)
maxi∈{1,...,s′} q(i)

=
Td(1 + 1

s′−1 )− Td( s
′−i
s′−1 )

Td(1 + 1
s′−1 )−minj∈[s′] Td( s

′−j
s′−1 )

≥
Td(1 + 1

s′−1 )− 1
Td(1 + 1

s′−1 ) + 1
=

1− 1/Td(1 + 1
s′−1 )

1 + 1/Td(1 + 1
s′−1 )

≥ 1− 2
Td(1 + 1

s′−1 )
≥ 1− 2

Td(1 + 1
s′ )
.

Therefore the value z in the objective function of dual LP is at least z ≥ 1− 2
Td(1+ 1

s′ )
and

the claim follows. J

We will need the following two inequalities bounding Tk(x)’s growth when x ≥ 1.

I Claim 14. For any nonnegative integer k, we have4

1. Tk(1 + µ) ≥ 1
2e

(
√

2µ+µ2)k/2 for all real number 0 ≤ µ ≤ 1.
2. Tk(1 + µ) ≤ e2(

√
2µ+µ2)k for all µ ≥ 0.

Proof. For the first part, using that 1 + x ≥ ex/2 for 0 ≤ x ≤ 2, we obtain

Tk(1 + µ) ≥ 1
2(1 + µ+

√
2µ+ µ2)k ≥ 1

2(1 +
√

2µ+ µ2)k ≥ 1
2e

(
√

2µ+µ2)k/2,

for all 0 ≤ µ ≤ 1.
For the second part, by the standard inequality (1 + t/n)n ≤ et for all nonnegative t and

n,

Tk(1 + µ) ≤ (1 + µ+
√

2µ+ µ2)k ≤ (1 + 2
√

2µ+ µ2)k ≤ e2(
√

2µ+µ2)k. J

4 The second inequality also appeared in [19].
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Finally, by setting µ = 1/s′ in the first inequality of Claim 14, we have Td(1 + 1/s′) ≥
1
2e

(
√

2/s′+1/s′2)d/2 ≥ 1
2e
√
d2/2s′ . Combining this with Claim 13, we get Pr(Yρ = 0) ≤

ξρ + 4(1− ξρ)e−d/
√

2s′ , which completes the proof of Lemma 12. J

In order to complete the proof of Lemma 7, recall that Xρ (resp. Yρ) is the (conditional)
random variable of Nρ(x) | (`ρ(x) = 1) (resp., Nρ(x) | (`ρ(x) = 0)), where Nρ(x) counts
the number of AND gates in C ′′|ρ that evaluate to 1. Since C ′′|ρ provides a one-sided
approximation of the function `ρ, we have that ξρ := Prx(Nρ(x) = 0 | `ρ(x) = 1) = 0.

Taking d = n
8 logn log s and s′ < s into Lemma 12, we have that for any good y-restriction

ρ,

Pr
x

(C ′′|ρ(x) = 0 | `ρ(x) = 0) = Pr(Yρ = 0) ≤ ξρ + 4(1− ξρ) exp(−d/2
√
s)

= 4 exp(−d/2
√
s). (1)

Taking into account bad ρ’s, which happens with probability at most 2−n/2 (according
to Claim 10), the discriminator parameter ε′ for C ′′(x, y) can now be upper bounded as

ε′ = Pr
x,ρ

(C ′′|ρ(x) = 0 | `ρ(x) = 0) = Eρ(Pr
x

(C ′′|ρ(x) = 0 | `ρ(x) = 0)) = Eρ(Yρ)

= Egood ρ(Yρ) Pr(ρ is good) + Ebad ρ(Yρ) Pr(ρ is bad) ≤ 4 exp(−d/2
√
s) + 2−n/2.

Finally, since ε′ ≥ ε − τ , where we recall that τ = Prx,y(C ′(x, y) 6= C ′′(x, y)) ≤ s/n4, the
proof of Lemma 7 is complete.

2.4 Limitations of our approach

We remark that the Ω̃(n2) lower bound is optimal (up to a polylogarithmic factor) for our
current approach. This follows from a theorem of Paturi [19], which states that if p(x)
is a degree d polynomial such that 0 ≤ p(i) ≤ 1 for i = 0, 1, . . . , s and |p(1) − p(0)| ≥ c

for some constant c, then d = Ω(
√
s), or equivalently s = O(d2). Since in our setting

d = Θ(n/ logn log s), the best lower bound one can show in the current framework is Õ(n2).

3 Superlinear Lower Bound for General Circuits

In this section we prove the following superlinear lower bound for AC0 ◦MOD2 circuits of
arbitrary depth. Throughout this section we find it more convenient to use (x1, . . . , xn) as the
entire input to IP rather than the two-input notation (x1, . . . , xn, y1, . . . , yn) used previously.
We remark that the results of this section hold for a more general class of functions than IP,
namely bent functions5. We state the results here for IP, and prove them for bent functions
in the appendix.

I Theorem 15. If C is an AC0 ◦ MOD2 circuit of depth k and size S that computes
IP: {0, 1}n → {0, 1}, then S = Ω(n1+4−k).

5 A Boolean function is bent if all its Fourier coefficients are equal in magnitude. The Inner Product
function (IP) is a special case. In fact, our result holds for any function whose Fourier coefficients are
all exponentially small in magnitude.
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Deterministic restrictions

The high level idea of the proof is to adapt the technique of “deterministic restrictions” [3]
to AC0 ◦MOD2 circuits. In contrast to random restrictions which simplify circuits probabil-
istically, deterministic restrictions aim to show that, if the circuit size is small, then one can
find a (small) set of input variables deterministically based on the structure of the circuit,
such that fixing them forces the circuit to output a constant. This implies that small circuits
fail to compute functions that cannot be made constant without setting a large number of
input variables. The only twist when applying this framework to AC0 ◦MOD2 circuits is,
instead of fixing independent input variables, one now fixes linear functions which in general
are no longer independent. We use a folklore result (called the Folk Lemma below) that IP
can not be made constant by imposing less than n/2 linear constraints on the inputs; i.e., IP
is not constant on a linear subspace of dimension more than n/2.

The main ingredient of the proof is the following lemma, which is the exact analogue of a
result of Chaudhuri and Radhakrishnan [3] for AC0 circuits.

I Lemma 16. Let C(x) be an AC0 ◦MOD2 circuit of depth k and size S, with variable inputs
x1, . . . , xn and bottom parity gates p1(x), . . . , pr(x). Then there exists a set of t linearly
independent linear restrictions, t < 5S1−4−k , such that imposing them on x1, . . . , xn makes
C(x) constant (on the restricted space).

Proof. We will adapt the argument of [3]. The algorithm of [3] constructs a partial assignment
to the inputs of an AC0 circuits so that the output is fixed and the number of fixed variables
is small. In particular, it fixes the values of gates at each level (by fixing the bottom variables
and propagating the values up the circuit), starting at level 0 (the input level), and proceeding
successively up to the output gate at level k. The specific way of fixing these gates ensures
that after level i is fixed, all gates at levels j ≤ i have both small fan-in and small fan-out
(fan-ins and fan-outs are defined with respect to the current partial restriction and gates that
are not fixed yet). At the end of such fixing, a so-called “regular” circuit is obtained. Then
it is straightforward to show that one can fix an additional small number of variables of such
regular circuit to make it output a constant. Our argument proceeds in an almost identical
way. However, we fix parities in addition to input variables, and once a new parity gate is
fixed, we need to fix the free parity gates which linearly depend on the fixed parity gates.
This can only possibly reduce the number of parity gates needed to be fixed in the process,
thus the original proof works in the setting of AC0 ◦MOD2 circuits as well. We defer the
details to the full version of the paper. J

Now we are ready to prove the main theorem of this section.

Proof of Theorem 15. Suppose C has size S < 1
5n

1+4−k (hence, it has at most that many
parity gates) and computes the IP function. By Lemma 16, there exists a set of linearly
independent linear restrictions of size at most 5S1−4−k < (n1+4−k)1−4−k = n1−16−k < n/2
(for large enough n), under which C becomes a constant function. But by the Folk Lemma,
we must impose at least n/2 linear restrictions to make IP a constant; a contradiction. J
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Abstract
We prove exponential lower bounds on the size of semantic read-once 3-ary nondeterministic
branching programs. Prior to our result the best that was known was for D-ary branching
programs with |D| ≥ 213.
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1 Introduction

A major question in complexity theory is whether polynomial-time is the same as log-space
or nondeterministic log-space. One approach to this problem is to study time/space tradeoffs
for problems in P . For example, for natural problems in P , does the addition of a space
restriction prevent a polynomial time solution? In the uniform setting, time-space tradeoffs
for SAT were achieved in a series of papers [7, 15, 8, 9]. Fortnow-Lipton-Viglas-Van Melkebeek
[9] shows that any algorithm for SAT running in space no(1) requires time at least Ω(nφ−ε)
where φ is the golden ratio ((

√
5 + 1)/2) and ε > 0. Subsequent works [18, 6] improved the

time lower bound to greater than n1.759.
In the nonuniform setting, the standard model for studying time/space tradeoffs is the

branching program. In this model, a program for computing a function f(x1, . . . , xn) (where
the variables take values from a finite domain D) is represented by a directed acyclic graph
with a unique source node called the start node. Each nonsink node is labelled by a variable
and the edges out of a node correspond to the possible values of the variable. Each sink
node is labelled by an output value. For Boolean functions, there is one sink node called
the accept node (or 1-node), and all other sink nodes are rejecting nodes. Executing the
program on an input corresponds to following a path from the start node, using the values
of the input variables to determine which edges to follow. The output of the program is the
value labelling the sink node reached. A D-ary branching program is deterministic if each
non-sink node has exactly D edges, one for every value in D.
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The length of a branching program is the number of edges in the longest path. It is clear
that length of a branching program can be seen as a measure of computation time. The size
of a branching program is the number of nodes in the program. For a boolean function fn
of n variables, let BP (fn) denote the minimum size of a branching program computing fn.
BP (fn) is closely related to the space complexity S(fn) of a non-uniform Turing machine
computing fn: S(fn) = O(log(max {BP (fn), n})) and BP (fn) = 2O(max {S(fn),logn}) [5, 17].
This motivates the study of branching program size lower bounds. In particular, size lower
bounds on length restricted branching programs translate to time/space tradeoffs.

The state of the art time/space tradeoffs for branching programs were proven in the
remarkable papers by Ajtai [1] and Beame-et-al [3]. In the first paper, Ajtai exhibited a
polynomial-time computable Boolean function such that any sub-exponential size determin-
istic branching program requires superlinear length. This result was significantly improved
and extended by Beame-et-al who showed that any sub-exponential size randomized branching
program requires length Ω(n logn

log logn ).
Lower bounds for nondeterministic branching programs have been more difficult to obtain.

In this model, there can be several arcs (or no arcs) out of a node with the same value
for the variable associated with the node. An input is accepted if there exists at least one
path consistent with the input from the source to the 1-node. A nondeterministic branching
program computes a function f if its accepted inputs are exactly equal to f−1(1). From here
on, we shall restrict our attention to non-deterministic branching programs.

Length-restricted nondeterministic branching programs come in two flavors: syntactic
and semantic. A length l syntactic model requires that every path in the branching program
has length at most l, and similarly a read-k syntactic model requires that every path in the
branching program reads every variable at most k times. In the less restricted semantic
model, the requirement is only for consistent accepting paths from the source to the 1-node;
that is, accepting paths along which no two tests xi = d1 and xi = d2, d1 6= d2 are made.
This is equivalent to requiring that for every accepting path, each variable is read at most k
times. Thus for a nondeterminsitic read-k semantic branching program, the overall length of
the program can be unbounded.

Note that any syntactic read-once branching program is also a semantic read-once
branching program, but the the opposite direction does not hold. In fact, Jukna [11] proved
that semantic read-once branching programs are exponentially more powerful than syntactic
read-once branching programs, via the “Exact Perfect Matching"(EPM) problem. The input
is a (Boolean) matrix A, and A is accepted if and only if every row and column of A has
exactly one 1 and rest of the entries are 0’s i.e if it’s a permutation matrix. Jukna gave a
polynomial-size semantic read-once branching program for EPM, while it was known that
syntactic read-once branching programs require exponential size [14, 13].

Lower bounds for syntactic read-k (nondeterministic) branching programs have been
known for some time [16, 4]. However, for semantic nondeterministic branching programs,
even for read-once, no lower bounds are known for polynomial time computable functions
for the |D| = 2 case. The best lower bound known prior to our work is an exponential
lower bound for semantic read-once (nondeterministic) |D|-way branching programs, where
|D| = 213 [10]. In fact this lower bound actually holds more generally for semantic read-k
but where |D| = 23k+10.

Jukna obtains his result by showing that any time restricted semantic branching program
of small size has a large rectangle in f−1(1). He uses the explicit function of computing the
characteristic function of a linear code having minimum distance m+ 1 defined over GF (q).
Given a parity matrix Y ,the function g(Y, x) = 1 iff x is a codeword. Since codewords in a
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linear code of minimum distance m+ 1 can only have an m-rectangle of size 1 he argues that
a time restricted branching program of length kn computing g requires a size of 2Ω(n/k24k).
This exponential lower bound can be obtained whenever D is sufficiently large in comparison
to k, specifically for |D| = q ≥ 23k+10.

Jukna’s result is an improvement over exponential lower bounds with a domain requirement
of 22ck obtained in [2]. Beame et.al [2] obtain their result by characterizing the function
computed by a time restricted branching program of small size as a union of shallow
decision forests where the size of the union depends on the size of the branching program.
Each shallow forest is then shown to be representable by a collection of small number
of βn-pseudo-rectangles in f−1(1). (Pseudo-rectangles are a generalization of what we
call embedded rectangles later). This gives a representation of the branching program
as a union of small (in the size ‘s’) number of βn-pseudo-rectangles. Now, if for some
function f the maximum size of a βn-pseudo-rectangle is |D|(1−ψf (β))n and the number of
yes-instances |f−1(1)| ≥ |D|(1−η(f))n then the number of βn-pseudo-rectangles will be at
least |D|(ψf (β)−η(f))n. This yields an exponential lower bound on s for sufficiently large |D|
whenever (ψf (β)−η(f)) is bounded away from 0 by some ε > 0. They then exhibit an explicit
function with this property. Their function QFM : GF (qn)→ {0, 1} is based on quadratic
forms using a modified Generalized Fourier Transform matrix. They show that there exists a
constant c > 0 such that for all k and ε ∈ (0, 1), if D ≥ 22

c
ε
k

then a non-deterministic BP of
length kn computing QFM needs size at least S = 2n log1−ε |D|. For the specific case of k = 1,
it can be shown that if their analysis of maximum size of βn-pseudo-rectangles in QFM is
tight, a domain size of at least |D| ≥ 264 is needed.

Our main result is an exponential lower bound on the size of semantic read-once non-
deterministic branching programs for a polynomial time decision problem f for 3-ary inputs.
Similar in spirit to these previous results [10, 2] we show that a small sized semantic read
once branching program is bound to have a large rectangle in f−1(1).

(?) However in addition, we show that one can always find a balanced rectangle in f−1(1)
of size r2 where r is some large constant.

A balanced rectangle is one which is reasonably close to being a square.
The particular polynomial time decision problem we use to prove the lower bound is: to

decide if a polynomial over a finite field K evaluates to a value less than a certain threshold at
a given input. The input is a pair (u, x) where u is the description of a degree d−1 polynomial
over [K] and x ∈ [K], and we want to accept if and only if u(x) < K1−δ. We actually
prove a stronger theorem: with high probability over all polynomials u, any nondeterministic
semantic read-once branching program for what we shall call Polyu (along with a hyperplane
constraint) requires exponential size. That is, even if the branching program knows the
polynomial u, for a typical u it cannot efficiently do polynomial evaluation. The main
properties of polynomials over finite fields we are using are polynomial interpolation, and
Lemma 7, which might be interpreted to mean something like: the spread of values of a
typical random polynomial of degree d over a field K is roughly close to being uniform over
K, provided K is sufficiently large.

Continuing with the above observation (?) that we can find a balanced rectangle in f−1(1)
for a function with a small semantic read once branching program, since the number of
balanced rectangles of a certain size d = r2 is small and since each one of them can be
a rectangle in f−1(1) for a relatively small number of degree d polynomials over K as a
consequence of polynomial interpolation, we argue that there must be a polynomial with
no balanced rectangle of this size in f−1(1) and hence the branching program computing it
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should be large. A key idea of this argument is that for a balanced rectangle the sum of the
lengths of the rectangle can be at most a small fraction of its area.

By a simple padding argument, we can modify our problem Polyu and actually achieve
the lower bound for domain size 2 + ε for arbitrarily small ε > 0. In this model, we can define
the problem to have N = n+M variables, M = Θ(N) of them with domain size 3 and the
rest, with domain size 2, do not affect the output. In section 5, we show why it might be
harder to prove lower bounds for semantic read-once branching programs when |D| = 2 by
showing how these branching programs can altogether evade having an exponential number
of states in many purported choices of bottleneck layer by giving polynomial upper bounds.

2 Definitions

Throughout this article, D denotes a finite set. For finite set N , DN is the set of maps from
N to D. An element of N is called a variable index or simply an index. We normally take N
to be [n] for some integer n, and write DN for D[n]. If A ⊆ N , a point σ ∈ DA is a partial
input on A. For a partial input σ, fixed(σ) denotes the index set A on which it is defined and
unfixed(σ) denote the set N−A. If σ and π are partial inputs with fixed(σ)∩fixed(π) = ∅,
then σπ denote the partial input on fixed(σ) ∪ fixed(π) that agrees with σ on fixed(σ)
and with π on fixed(π).

For x ∈ DN and A ⊆ N , the projection xA of x onto A is the partial input on A that
agrees with x. For S ⊆ DN , SA = {xA | x ∈ S}.

2.1 Nondeterministic Semantic Read-Once Branching Programs
Let f : DN → {0, 1} be a boolean function whose input is given in |D|-ary. Let the input
variables be x1, . . . , xn where xi ∈ D for all i ≤ n. A |D|-way nondeterministic branching
program (for f) is an acyclic directed graph G with a distinguished source node qstart and a
distinguished sink node (the accept node) qaccept. We refer to nodes as states. Each non-sink
state is labeled with some input variable xi, and each edge directed out of a state is labeled
with some value b ∈ D for xi. For each Z ∈ DN , the branching program accepts Z if and
only if there exists at least one (directed) path starting at the qstart and leading to the
accepting state qaccept, and such that all labels along this path are consistent with Z. The
size of a branching program is the number states (i.e. nodes) in the graph.

A branching program is semantic read-k if for every path from qstart to qaccept that is
consistent with some input, each variable occurs at most k times along the path. For the
read-once case, a semantic branching program allows variables to be read more than once,
but each accepting path may only query each variable at most once.

2.2 Polynomial Evaluation Problem
Our hard computational problem is the polynomial evaluation problem, Poly, with parameters
K, d, δ, where 0 < δ < 1. The input is a pair (u, x) where u ∈ [K]d specifies a degree d− 1
polynomial over the field [K] (K a prime power), and x ∈ [K] specifies a field value.
Poly(u, x) = 1 if and only if the polynomial specified by u on input x evaluates to a number
less than K1−δ. (We compare two field elements by comparing them using the natural
ordering on ternary strings.)

We will work with |D|-ary branching programs (with |D| prime), and let K = |D|n. The
input will be given as a vector in D(d+1)n. The first dn coordinates specify u and the last
n coordinates specify x. Thus the total input length is (d+ 1)n. In the remainder of the
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paper, |D| = 3, and thus the parameters of Poly are d, δ, n. Both d and δ will be fixed
constants. Let Polyu denote the polynomial evaluation problem with parameters d, δ, n
where the polynomial u is fixed.

The actual lower bounds we show will be for a sensitive function fu obtained from Polyu
as follows. Let a ∈ GF (q) where q = |D| is a prime number. Let h : Dn → {0, 1} be the
characteristic function of the hyperplane at a:

ha(x) = 1 iff x1 + x2 + ...+ xn = a mod q .

Fix an element a(u) for which ha accepts the largest number of vectors accepted by Polyu
and define the function

fu(x) = Polyu(x) ∧ ha(u)(x) .

We call fu sensitive because it has the property that changing the value of exactly one
variable in a yes input always gives an input vector that is a no instance. As a result any
two accepted inputs differ in the value of at least two variables. Similarly for the polynomial
evaluation problem Poly, where the coefficient vector u is part of the input, we define
f(u, x) = Poly(u, x) ∧ ha(u)(x), which is sensitive in x.

2.3 Rectangles and Embedded Rectangles
We use the same definitions and conventions as in [3]. A product U × V is called a
(combinatorial) rectangle. If A ⊆ N is an index subset and Y ⊆ DA and Z ⊆ DN−A, then
the product set Y × Z is naturally identified with the subset R = {σρ | σ ∈ Y, ρ ∈ Z} of
DN , and a set of this form is called a rectangle in DN .

An embedded rectangle R in DN is a triple (πred , πwhite, C) where πred , πwhite are disjoint
subsets of N , and C ⊆ DN satisfies: (i) The projection CN−πred−πwhite consists of a single
partial input w, (ii) if τ1 ∈ Cπred and τ2 ∈ Cπwhite , then the point τ1τ2w ∈ C. C is called the
body of R. The sets πred , πwhite are called the feet of the rectangle; the sets Cπred and Cπwhite

are the legs, and w is the spine. We can also specify an embedded rectangle by its feet, legs
and spine: (πred , πwhite, A,B,w) where πred, πwhite are the feet, A = Cπred , B = Cπwhite are
the legs, and w is the spine.

We will sometimes refer to A as the red side of the rectangle and to B as the white side
of the rectangle. The size of the rectangle is |A| · |B|, and the dimension of the rectangle is
mr-by-mw where mr = |πred | and mw = |πwhite|.

3 Lower Bound for |D| = 3

I Theorem 1. There exists constants d, δ such that for sufficiently large n, for a random u,
with probability greater than 1/4, any 3-ary nondeterministic semantic read-once branching
program for fu requires size at least 2Ω(n).

I Corollary 2. There exists constants d, δ such that for sufficiently large n, any 3-ary
nondeterministic semantic read-once branching program for f(u, x) with parameters d, δ, n
requires size at least 2Ω(n).

Overview of Proof. Call a degree d − 1 polynomial “good" if the fraction of accepting
instances is roughly what you would expect from a random function; that is, the fraction
of yes instances is at least 1

2K
−δ. Lemma 7 shows that at least half of all degree d − 1

polynomials are good.

ICALP 2016



36:6 Lower Bounds for Nondeterministic Semantic Read-Once Branching Programs

The main lemma (Lemma 3) shows that for all good polynomials Polyu to their corres-
ponding sensitive function fu, we can associate with every size s = 2o(n) branching program
P computing fu, an mr-by-mw embedded rectangle RP of size r2, where r will be a large
constant, and mr and mw will be roughly equal, and will each be a constant fraction of
n. For simplicity of calculations for now, assume that mr = mw = m. The rectangle will
have the property that P accepts every input in RP ; in other words, RP is a 1-rectangle
of P. Choosing d = r2, each rectangle of size r2 can be a 1-rectangle for very few degree
d − 1 polynomials – at most a |D|−nδr2 fraction of all degree d − 1 polynomials. (This is
Lemma 6.) Secondly, the total number of such rectangles is fairly small – of size roughly
|D|O(rm) (Lemma 5). The key point is that the number of rectangles is roughly |D|2rm – the
exponent grows linearly in r. (More precisely it grows linearly in the sum of the lengths of
the sides of the rectangle, |A|+ |B|). But on the other hand, the probability that a degree
d = r2 polynomial takes on values less than K1−δ within the rectangle is roughly |D|−mr2 –
that is, the exponent grows quadratically with r. (More precisely it grows linearly in the size
of the rectangle |A|.|B|). Because |D|−nδr2 |D|O(rn) is less than 1/4, this implies that many
good degree d− 1 polynomials have no size r2 1-rectangle, thus proving the theorem.

Note that we set our parameters so that the area of the rectangle RP is at least the
degree d of the polynomial u. (Thus r2 ≥ d.) A crucial point in the above argument is that
the sum of the lengths of the sides of RP must be at most a fraction of its area. This requires
that the rectangle is reasonably close to being square. We put extra effort into making sure
that the rectangle is square (without compromising too much of its size in order to make it
square). This enables us to achieve domain size 3; a somewhat simpler argument achieves
domain size 5.

I Lemma 3 (Main Lemma). Let f : Dn → {0, 1} be any sensitive boolean function such that
the density of 1’s is at least 1

2|D|K
−δ. Suppose that the following inequalities are satisfied for

our parameters:
(1) mw = 4mr = γn;
(2) |D|mr ≤ |D|mw(1/2− 2γ)mw ;
(3) r ≤ 1

4|D|s (1/2− γ)mr |D|mr−δn.
Then if P is a |D|-way nondeterministic semantic read-once branching program of size s for
f then there is an mr-by-mw embedded rectangle R = (πred , πwhite, A,B,w) such that every
input in R is accepted by P, and where |A|, |B| = r.

Proof. Let f be a sensitive function such that the density of 1’s is at least 1
2|D|K

−δ. Suppose
there is a size s nondeterministic semantic read-once branching program, P for f . Let S0 be
the set of inputs that are accepted by P ; since P is assumed to be correct for all inputs of f ,
we have |S0| ≥ 1

2|D|K
−δ|D|n. For each accepted instance I ∈ S0, fix one accepting path, pI ,

in the branching program. Since the function is sensitive each of the n variables must be read
along any accepting path. For if some variable is not read along a computation path then
changing the value of that variable alone would produce an accepting instance. However,
this can’t be the case for a sensitive function since any two accepted inputs will have to differ
in at least two positions. So each of the n variables must be read along this path exactly
once and thus each accepting instance I has an associated permutation πI of the n variables
associated with its accepting path pI . Designate state qI as the state in pI which occurs just
after the first half of the variables in πI . Now define q to be the most common designated
state (over all accepting inputs I ∈ S0), and let S1 ⊆ S0 denote the corresponding set of
inputs whose designated state is q. Thus for each input I in S1, there is an accepting path
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pI that passes through state q. Because P has size s, it follows that

|S1| ≥ |S0|/s ≥
1

2|D|sK
−δ|D|n = 1

2|D|s |D|
n−δn (1)

We now want to pick two subsets of coordinates πred ⊆ N and πwhite ⊆ N , of size mr and
mw respectively, and a set S∗ ⊆ S1 of inputs with the property that for every input I ∈ S∗,
and associated accepting path pI , not only does it pass through state q, but every coordinate
in πred is read before state q, and every coordinate in πwhite read at or after state q.

We will first pick πred greedily. For each I ∈ S1, at least n/2 of the n coordinates in
pI occur in πI before reaching state q, and thus there is some coordinate i such that for
at least half of the inputs I ∈ S1, i occurs in πI before reaching state q. After choosing
the first coordinate, there are at least |S1|/2 inputs remaining. Continue greedily until we
pick mr coordinates, πred, always choosing the most popular coordinate that occurs in πI
before reaching state q. By averaging, when the ith coordinate, i ≤ mr < γn is chosen, the
fraction of inputs that remain is at least (n/2−i)

(n−i) ≥
(n/2−γn)
(n−γn) ≥

(n/2−γn)
n = (1/2 − γ). Let

S2 ⊆ S1 denote the set of inputs such that all coordinates in πred are read before reaching q.
It follows that

|S2| ≥ (1/2− γ)mr |S1| (2)

By assumption (3) in the statement of the Lemma, we have

r ≤ 1
4|D|s (1/2− γ)mr |D|mr−δn (3)

Then from (1), (2), and (3) we have

|S2| ≥ 2r|D|n−mr (4)

For each w ∈ Dn−πred , the average number of extensions of w in S2 is 2r. We want to
prune S2 such that every w ∈ Dn−πred has at least r extensions. To do this, define S3 ⊆ S2,
where we remove all inputs (w, ∗) from S2 such that w has less than r extensions in S2. Since
we delete at most r|D|n−mr elements from S2, and |S2| ≥ 2r|D|n−mr , it follows that

|S3| ≥ r|D|n−mr (5)

Next we will choose mw coordinates, πwhite in the same greedy fashion, and let S4 denote
the set of all inputs in S3 such that all coordinates in πwhite are read after reaching q. Again
by averaging,

|S4| ≥ (1/2− 2γ)mw |S3| (6)

We will express S4 as the disjoint union of sets Rw: choose a value w for the coordinates
outside of πred ∪ πwhite. The corresponding set Rw ⊆ S4 consists of all inputs (α,w, β) such
that α is an assignment to the variables in πred , β is an assignment to the variables in πwhite,
and (α,w, β) ∈ S4.

I Lemma 4. For each w: (i) Rw is an embedded rectangle and (ii) as long as Rw is not
empty, the size of its red leg is at least r.

Proof. We will first show that Rw is an embedded rectangle. Let Sred ⊆ Dπred be the
projection of Rw onto the coordinates of πred and let Swhite ∈ Dπwhite be the projection of
Rw onto the coordinates of πwhite. Setting A = Sred, B = Swhite and w = w, we claim
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that Rw is equal to the embedded rectangle defined by (πred , πwhite, A,B,w). To see this,
consider x, x′ ∈ A and y, y′ ∈ B such that xyw ∈ Rw, and x′y′w ∈ Rw. Let I be the input
corresponding to xyw and let pI be the corresponding path going through state q. Note
that in pI the x-variables are all read prior to reaching q, and the y-variables are read after
reaching q, and there is some split of the w variables into w1, w2 where the w1 variables
are read prior to q and the w2 variables are read after q. Similarly, let I ′ be the input
corresponding to x′y′w and let pI′ be the corresponding path. There is now a possibly
different split of w into w′1, w′2, so x′, w′1 are read before q and y′, w′2 are read after q. We
claim that xy′w ∈ Rw: consider the path (x,w1) (the first half of pI) and (y′, w′2) (the second
half of pI′). This path must be consistent since w1 and w′2 are consistent and x, y′ are on
disjoint variables. Thus there is an input consistent with this path; it is an accepting path
going through q and consistent with w; the variables in πred are all read before q, and the
variables in πwhite are all read after q. Thus it is in Rw. An analogous argument shows that
x′yw ∈ Rw. Thus Rw is an embedded rectangle.

Secondly we will show (ii) for each Rw ⊆ S4, the size of the red leg is at least r. (That
is, |A| ≥ r.) Consider a nonempty rectangle Rw with red leg A, white leg B and spine
w. Recall that the inputs in S3 consist of a partial input w+ ∈ DN−πred together with a
set A ⊆ Dπred such that |A| ≥ r. We obtain S4 from S3 by selecting mw coordinates from
N − πred , one at a time, choosing each coordinate greedily, where a coordinate is chosen if it
is read after state q in the most inputs. Consider a block of inputs (A,w+) ∈ S3. If some
input (α,w+) ∈ (A,w+) survives, then all coordinates in πwhite that were chosen must all be
read after state q on input (α,w+). But this means that for every input (α′, w+) ∈ (A,w+),
all coordinates in πwhite are also read after q. (Otherwise, some coordinate would be read
twice along this accepting input, violating the read-once condition.) Thus, either the entire
block (A,w+) is in S4, or the entire block is removed from S4.

Now let Rw = (πred , πwhite, A,B,w) ⊆ S4 be a nonempty rectangle, w ∈ DN−πred−πwhite .
Rw is obtained by taking the union of (nonempty) blocks (A′, w+) ∈ S4, w+ ∈ DN−πwhite .
Since as we argued above, for each such block, |A′| ≥ r, it follows that |A| ≥ r as well. J

Let ravg denote the average size of the white leg of the rectangle over all rectangles
Rw ⊆ S4. It is easy to see that |D|n−mwravg ≥ r|D|n−mr(1/2 − 2γ)mw . It follows that
ravg ≥ r if |D|mw−mr(1/2 − 2γ)mw ≥ 1. The latter inequality follows from condition (2).
Thus, by condition (2) assumed in the hypothesis of Lemma 3, we can pick some setting w∗
to the remaining n−mr −mw uncoloured coordinates (the coordinates that are not in πred
or πwhite) such that the white leg of the rectangle Rw∗ has size at least ravg = r. Let S∗
equal Rw∗ . By construction, both the red leg of S∗ = Rw∗ and the white leg of Rw∗ have
size at least r. Prune S∗ so that each leg has size exactly r, thus completing the proof of the
lemma. J

I Lemma 5. Let R be the set of all mr-by-mw embedded rectangles over DN such that
|A| = |B| = r, where mw = γn and mr = mw/4. Then |R| ≤ (e/γ) 5

4mw |D| 54 rmw+mw/γ .

Proof. The number of choices for πred , the coordinates of A, is
(
n
mr

)
. Given πred , we choose

r vectors from the |D|mr possible values for the elements of A. Thus the total number of
possible sets A is at most

(
n
mr

)
|D|rmr . Similarly the number of choices for the set B is at

most
(
n
mw

)
|D|rmw . The number of choices for w ∈ DN−πred−πwhite is |D|n−mr−mw . Thus |R|

is at most
(
n
mr

)(
n
mw

)
|D|rmr |D|rmw |D|n− 5

4mw . Using the inequality
(
n
k

)
≤ ( enk )k we conclude

the number of choices for |R| is at most (en/mw)mw(4en/mw) 1
4mw |D|n− 5

4mw |D| 54 rmw ≤
(e/γ) 5

4mw |D| 54 rmw+mw/γ J
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I Lemma 6. Define the predicate Good(R, u) to be true if for every input x in the rectangle
R, the polynomial u on input x is less than K1−δ (i.e. Polyu(x) is true). Then for all
embedded rectangles R of size d, Pru[Good(R, u)] ≤ p where p = |D|−δnd.

Proof. Assume Good(R, u). Suppose that |R| = d and let B′ ∈ [K1−δ]d specify a vector of
d accepting values. Let GoodB′(R, u) to be the event that for all x ∈ R, Polyu(x) = B′(x).
Then Pru[Good(R, u)] = K(1−δ)d · Pru[GoodB′(R, u)].

To bound Pru[GoodB′(R, u)], suppose that it is true that ∀x ∈ R, Fu(x) =
∑
i<d uix

i =
B′(x). Note that this fixes the output of the degree d−1 polynomial for d values of x. By inter-
polation, this uniquely determines the polynomial, u′. Thus, Pru[GoodB′(R, u)] = Pru[u =
u′] = K−d = |D|−nd. Overall, Pru[Good(R, u)] ≤ K(1−δ)d|D|−nd = |D|n(1−δ)d|D|−nd =
|D|−δnd. This completes the proof of Lemma 6. J

I Lemma 7. For a random u,for fixed parameters d, δ the probability that Polyu(x) does
not accept a (1 ± o(1))K−δ fraction of all the inputs is at most o(1). (Here both o(1) are
K−(1−δ)/3.)

Proof. Randomly choose the coefficients u ∈ [K]d of the d−1 degree polynomial. For each
instance x ∈ [K] (and value b ∈ [K]), let A〈x,b〉 denote the event that the output of this
polynomial on input x is b. Let ax denote the event that this value is less than K1−δ so that
x is a yes instance. Let Y =

∑
x∈K ax denote the number of yes instances for the chosen u.

Note p = Pru[ax] = K1−δ/K = K−δ because just choosing the constant coefficient u0 of the
polynomial randomly makes the polynomial’s output on x uniformly random in [K]. Hence, by
linearity of expectation Y = Exp[Y ] = K ·Pru[ax] = K1−δ. We show that the A〈x,b〉 events for
different x are d-wise independent as follows. Consider any subset {x1, x2, . . . , xd} ⊂ [K] of
the instances. Knowing the value of the polynomial at each of these instances, by interpolation,
uniquely determines the coefficients u of the polynomial. Hence, if all you know about u
is the values on d−1 of these instances, then the value on the remaining is still uniformly
random within [K]. Formally stated, Pru[A〈xd,bd〉 | A〈x1,b1〉, . . . , A〈xd−1,bd−1〉] = Pru[A〈xd,bd〉].
Not fully knowing the value of the first d−1 of the instances, but only that their value
is small, give you even less information. Hence, Pru[axd | ax1 , . . . , axd−1 ] = Pru[axd ]. It
follows that Pru[ax1 ∧ . . . ∧ axd ] = Pru[ax1 ] · . . . · Pru[axd ]. Because the ax events are d-wise
independent, it follows that the dth order standard deviation of their sum Y is the same as it
would be if they were completely independent events. We, however, only need to consider the
variance. More formally, for each x, let a′x be an independent event with probability K−δ of
success and Y ′ =

∑
x∈K a

′
x. The variance is Var[Y ] = Expu[(Y −Y )2] = Expu[(

∑
x ax−Y )2].

The non-linear part of this is Expu[(
∑
x ax)2] =

∑
x,x′ Expu[ax · ax′ ], which we know from

pair-wise independence is
∑
x,x′ Expu[ax] ·Expu[ax′ ] =

∑
x,x′ Expu[a′x] ·Expu[a′x′ ]. The same

computation for the a′x, gives that σ2 = Var[Y ] = Var[Y ′] = K ·p(1−p) ≈ KK̇−δ = K1−δ = Y .
By Chebycheff’s inequality, ∀η > 0 we have Pru(|Y −Y )| ≥ ησ) < 1

η2 . Setting η = Y
1
6 , gives

Pru(Y 6∈ (1± Y −
1
3 )Y ) ≤ Y −

1
3 . J

We are now ready to complete the proof of the theorem. Call a polynomial u “good" if
Polyu accepts at least a 1

2K
−δ fraction of all inputs. By Lemma 7, we know that at least

half of all u’s are good. For each good u, the corresponding sensitive function fu has density
at least 1

2|D|K
−δ. Since fu is sensitive and has sufficient density Lemma 3 tells us that any

small branching program for fu implies that there exists an mr-by-mw embedded rectangle
size r2 that is accepted (assuming that conditions (1), (2), and (3) are satisfied).

On the other hand, by union bound Lemmas 5 and 6 together tell us that at most a p|R|
fraction of degree d− 1 polynomials u have such mr-by-mw embedded rectangles of size r2
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that are accepted. Suppose we can choose a setting of the parameters so that p|R| < 1/4. If
follows that for at least 1

4
th of all good polynomials the corresponding sensitive functions

fu do not have such mr-by-mw embedded rectangles of size r2 that are accepted since the
hyperplane constraint ha(u)(x) can only shrink an accepting rectangle. Then by Lemma 3
this implies that at least as many fu cannot have small branching programs, and thus the
theorem is proven.

It is left to show that we can set the parameters such that p|R| < 1/4, and properties
(1), (2), and (3) of Lemma 3 are satisfied. We will set the parameters as follows: |D| = 3,
mw = 4mr = γn, γ = .01, δ = γ/300, r = 3000, and d = r2. To achieve p|R| < 1/4, we
require |D|δmwr2/γ−mw/γ− 5

4 rmw > 4(e/γ) 5
4mw . Using |D| = 3 and factoring out mw, it is

sufficient if we have 3δr2/γ−1/γ− 5
4 r > 4(e/γ) 5

4 . With our choice of parameters, this is satisfied
for r ≥ 3000.

For Lemma 3, we also require assumptions (2) and (3). First for (2): |D|mr ≤ |D|mw(1/2−
2γ)mw . For |D| = 3 and mw = 4mr, this is satisfied. For (3) we require: r ≤ 1

4|D| (1/2 −
γ)mr |D|mr−δn = 1

4|D| (1/2 − γ)mr |D|mr(1−4δ/γ). For |D| = 3, γ = .01, δ = γ/300, we have
(1/2− γ)|D|(1−4δ/γ) ≥ 1.44 and thus it suffices to show r ≤ 1

12 (1.44)mr/s. This holds for our
choice r = 3000 when s ≤ 2cmr = 2cn/(4γ) for some c > 0 and sufficiently large n. Note that
|D| > 2 helps us in ensuring assumptions (2) and (3) hold.

4 Conclusion

We have proved an exponential lower bound on the size of non-deterministic semantic read
once branching programs computing a polynomial time computable function f : Dn → {0, 1}
when D = {0, 1, 2} with just three elements. Our contribution is that we bring down the
size of the domain required to achieve this. Prior to our result the best that was known
was for D-ary branching programs with |D| ≥ 213. The explicit function f for which we
show the lower bound is the decision problem of determining whether a certain degree d
polynomial over a finite field K evaluates to a value less than a certain threshold at a given
input (along with a hyperplane constraint). This result brings down the focus to the first
non-boolean case, |D| = 3 vs the boolean case, |D| = 2, since, interestingly the case where D
is boolean {0, 1} still remains open and no non-trivial lower bounds are known for binary
non-deterministic semantic read once branching programs [12]. In the next section we explore
the Booelan case.

5 Semantic Branching Programs with |D| = 2 can evade Large
Bottleneck Rectangles

In this section we show how binary non-deterministic semantic read once branching programs
can behave differently by evading lower bounds in certain bottleneck layers by having a small
number of states in those layers irrespective of what function f : {0, 1}n → {0, 1} they are
computing. The example upper bounds we give demonstrate why it is likely harder to prove
lower bounds for semantic read once branching programs with domain size |D| = 2.

When the domain size is |D| > 2, the technique is to prove that the set of yes instances
handled by any one state of the branching program contains a rectangle and then identify a
computational problem that has no large rectangle of yes instances. Hence, the rectangle for
each state must be small. Because there are exponentially many yes instances and each must
be handled by at least one state at a selected bottle neck level of the branching program,
there must be an exponential number of states at that level. We show here that for domain
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size |D| = 2, the set of yes instances handled by one state can be quite arbitrary and quite
large. This does not mean that the total number of branching program states can necessarily
be small. But it does mean that at the one level of the branching program that the prover is
hoping to use for a bottleneck, the number of states might be quite small.

A lower bound that attempts to prove that a selected bottleneck level of the branching
program must have many states, must start by selecting which level of the branching program
will be the level in question. It might do this by specifying how many or which variables
have been read so far. Given any boolean computational problem with input from {0, 1}n and
a criteria for choosing the bottle neck level chosen from a wide (but not exhaustive) range
of possible choices, we now show how to fool such a lower bound, by giving a branching
program that gives a polynomial upper bound on the number states at the selected layer.

The branching program is constructed as follows. For each yes instance A ∈ {0, 1}n, we
form an accepting branching program path 〈C1(A), q(A), C2(A)〉 where q(A) denotes the
state A passes through at the bottleneck level, C1(A) the path before this level and C2(A)
that after. Note that to get a counter example to a lower bound technique using some
bottleneck layer, we don’t need to give a full poly-size branching program. We only need
the number of states q(A) to be small. It can have exponential number of states before and
after this layer. Hence, we will have all of these paths C1(A) for different yes instances A be
completely disjoint from each other. Similarly for C2(A). These paths only come together
and interact at the special layer of states q(A). In order to make the properties of this level
more arbitrary, let A1, A2 ⊂ [n] be any partition of the input variables into two parts. Let
C1(A) read all the ones in A1 and all the zeros in A2. Let C2(A) read all the zeros in A1 and
all the ones in A2. Let q(A) = 〈u, v〉 be the state, where u ∈ [n] is the number of ones in A1
and v ∈ [n] is the number of the zeros in A2. Hence only n2 states are needed in the layer.
Note that because we have allowed the computational problem to be arbitrary, other than
partitioning its yes instances based on their hamming weights, the sets of instances handled
by a state q(A) is completely arbitrary.

Note that as long as A1, A2 are comparable in size, for most of the inputs, the incoming
path C1(A) and C2(A) are of comparable length. However, the purported bottleneck layer
for which we give the above upperbound is not identical to the one we use for our lower
bound for |D| ≥ 3 in the sense that the bottleneck states like q(A) do not appear exactly
midway through the accepting paths at length n/2 on all the paths as is required in Lemma 3.
Nevertheless, the upper bound is interesting because for most inputs A the incoming and
outgoing paths through a state in the layer are of comparable length.

We will now in two ways, prove that this branching program solves the given computational
problem. We will start with a communication game interpretation. Think about the algorithm
as a game between two players C1 and C2 and Charlie who they don’t trust. Charlie shows
C1 the ones in the first part A1 of the input and the zeros in the second part A2. Assuming
he trusts Charlie, this lets C1 know the entire input. Hence, he can answer any question
about the input. The only way that Charlie can cheat is to not show all of the entries. In
order to verify that he is not lying, C1 sends to C2 the number of ones in A1 and the number
of zeros in A2. C2 can then check that they have both been shown all of what they were
supposed to see.

Now lets consider the branching program interpretation. Clearly, the branching program
described accepts all yes instances of the given problem, because it has a separate accepting
path 〈C1(A), q(A), C2(A)〉 for each yes instance A. What remains is to prove 1) the branching
program is semantic read once and 2) that no no instances are accepted. We do this by
showing for every pair 〈A,B〉 of different yes instances that pass through the same bottleneck
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states q(A) = q(B) = 〈u, v〉 = q, that the cross path 〈C1(A), q, C2(B)〉 is inconsistent in that
it reads some variable twice with different values. Hence, by the definition of semantic, it
does not matter that this path is not read once and because it is inconsistent, it cannot
be accepting a no instance. Because A and B are different, either A1 and B1 are different
and/or A2 and B2 are different. Assume A1 and B1 are different. Because A1 and B1 have
the same number u of ones, there is an element that is one in A1 and zero in B1. Hence
C1(A) and C2(B) both read it. This element is read twice in 〈C1(A), q, C2(B)〉 with different
values and so is inconsistent.

So for D = 2, presence of a small number of states in a supposed bottleneck layer of
a branching program need not imply that there exists a balanced embedded rectangle of
accepting instances. In particular, our lower bound finds a rectangle within the set of yes
instances handled by narrowing the set down to a subset within which for many variables it
is fixed whether it is read before or after the state. However in this upper bound, whether a
variable is read before or after the state q(A) is completely determined by whether its value
is 0 or 1. Hence, fixing this fixes its value. If this is done for every variable, the set of inputs
left in the eventual rectangle identified by this lower bound method is narrowed down to a
singleton.
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Abstract
The sign-rank of a matrix A with entries in {−1,+1} is the least rank of a real matrix B

with Aij · Bij > 0 for all i, j. Razborov and Sherstov (2008) gave the first exponential lower
bounds on the sign-rank of a function in AC0, answering an old question of Babai, Frankl, and
Simon (1986). Specifically, they exhibited a matrix A = [F (x, y)]x,y for a specific function
F : {−1, 1}n × {−1, 1}n → {−1, 1} in AC0, such that A has sign-rank exp(Ω(n1/3)).

We prove a generalization of Razborov and Sherstov’s result, yielding exponential sign-rank
lower bounds for a non-trivial class of functions (that includes the function used by Razborov
and Sherstov). As a corollary of our general result, we improve Razborov and Sherstov’s lower
bound on the sign-rank of AC0 from exp(Ω(n1/3)) to exp(Ω̃(n2/5)). We also describe several
applications to communication complexity, learning theory, and circuit complexity.

1998 ACM Subject Classification F.2.0 Analysis of Algorithms and Problem Complexity – Gen-
eral

Keywords and phrases Sign-rank, circuit complexity, communication complexity, constant-depth
circuits

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.37

1 Introduction

The sign-rank of a matrix A with entries in {−1,+1} is the least rank of a real matrix B
with Aij · Bij > 0 for all i, j. This fundamental matrix-theoretic complexity measure has
diverse applications in theoretical computer science. For example:

Upper bounds on sign-rank underly many state of the art learning algorithms, including
the fastest known algorithms for PAC learning DNF and read-once formulas. Algorithms
based on sign-rank are additionally robust to random classification noise, a property not
satisfied by the handful of known PAC learning algorithms that cannot be captured in
the sign-rank framework (all of which are based on Gaussian Elimination) [12].
In communication complexity, sign-rank is known to characterize unbounded error com-
munication. Introduced by Paturi and Simon [16] and captured by the communication
complexity class UPPcc, this is a powerful communication model that lies at the frontier
of our understanding. It is essentially the most powerful communication model against
which we know how to prove lower bounds. In fact, the only known communication
models that UPPcc cannot efficiently simulate are the communication analogues of the
polynomial hierarchy introduced by Babai, Frankl, and Simon [4]. We direct the interested
reader to the recent paper of Göös et al. [11] for a detailed overview of communication
complexity classes and their relationships.
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In circuit complexity, sign-rank lower bounds on a matrix A = [F (x, y)]x,y imply lower
bounds on the size of threshold-of-majority circuits computing F .

Despite the importance of these applications, our understanding of sign-rank remains
rather limited, and it is possible to summarize relevant prior work in a single paragraph.
Alon et al. [2] proved lower bounds on the sign-rank of random matrices. The first nontrivial
lower bounds for explicit matrix families was obtained in a breakthrough work of Forster
[8], who proved strong lower bounds on the sign-rank of Hadamard matrices, and more
generally of any sign matrix with small spectral norm. Several subsequent works improved
and generalized Forster’s method [9, 10, 14, 3]. Nearly tight estimates of the sign-rank
were obtained by Sherstov in [20] for all symmetric predicates, i.e., matrices of the form
[D(
∑
i xi ∨ yi)]x,y where D : {0, 1, . . . , n} → {0, 1} is a given predicate and x, y range over

{0, 1}n. Razborov and Sherstov [17] answered an old question of Babai, Frankl, and Simon [4]
by giving the first exponential sign-rank lower bounds on a function in AC0. Specifically,
they gave a matrix A = [F (x, y)]x,y for a function F : {−1, 1}n×{−1, 1}n → {−1, 1} in AC0,
such that A has sign-rank exp(Ω(n1/3)).

Our work strengthens and generalizes the results of Razborov and Sherstov on the
sign-rank of AC0.

1.1 Our Results

The threshold degree of a function h : {−1, 1}n → {−1, 1}, denoted deg±(h), is the least
degree of a real polynomial that agrees in sign with h at all inputs. Minsky and Papert [15]
famously showed that the threshold degree of the DNF formula MPn(x) = ∨n1/3

i=1 ∧n
2/3

j=1 xij –
now known as the Minsky-Papert DNF – is Ω(n1/3). This is the same function that Razborov
and Sherstov used to prove their sign-rank lower bounds, and their analysis is highly tailored
to the Minsky-Papert DNF. We generalize their result as follows.

For any d > 0, we identify a class Cd of functions f : {−1, 1}k → {−1, 1} such that
any f ∈ Cd can be transformed into a function F : {−1, 1}n × {−1, 1}n → {−1, 1}, where
n = O(dk), for which A = [F (x, y)]x,y has sign rank exp(Ω(d)). Crucially, this transformation
is simple in the sense that if f is computed by a polynomial-size circuit of depth t, then F is
computed by a polynomial-size circuit of depth at most t+ 1 (and in some cases, F may be
shallower).

In particular, the k-variate ANDk function is in Cd for some d = Ω(k1/2). Our trans-
formation of ANDk into a function F : {−1, 1}n × {−1, 1}n → {−1, 1} for n = O(k3/2)
recovers Razborov and Sherstov’s function, with the same sign-rank bound of exp(Ω(k1/2)) =
exp(Ω(n1/3)). We also identify a k-variate AC0 function that is in Cd for some d = Ω̃(k2/3),
which in turn yields new sign-rank lower bounds for AC0.

The precise definition of Cd is rather technical, so for expository purposes, we restrict
ourselves to an informal statement of this result in this introduction. We define Cd formally
in Section 2.2.

Informal description of the class Cd. Our class Cd consists of all functions of the form
f : {−1, 1}k → {−1, 1}, where f satisfies the following (informally stated) property: there
exists a “small” set S ⊆ f−1(+1) such that f cannot be uniformly approximated to error
1/2 by degree d polynomials, even under the promise that the input x is in f−1(−1) ∪ S.
The precise definition of Cd is based on a dual (in the sense of linear programming duality)
interpretation of this property.
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Transforming functions in Cd to functions with high sign-rank. For g : {−1, 1}m →
{−1, 1} and f : {−1, 1}k → {−1, 1}, the notation g ◦ f = g(f, . . . , f) denotes the function
on n = mk bits obtained by block-composing g with f . Let ORm and ANDm denote the
logical OR and AND functions on m bits, respectively. Let C be a sufficiently large universal
constant. Given a function f : {−1, 1}k → {−1, 1}, let F : {−1, 1}n × {−1, 1}n → {−1, 1}
be defined by

F = OR2d ◦f ◦ANDC ◦OR2,

and hence n = 2Cdk = O(dk).

I Theorem 1 (Informal). For any f ∈ Cd, the matrix A = [F (x, y)]x,y has sign-rank
exp(Ω(d)).

Examples of functions in Cd. We consider two prominent examples of functions in Cd. As
mentioned above, the first is the function ANDk : {−1, 1}k → {−1, 1}, which we show is in
Cd for d = Ω(k1/2). Hence, we recover a new proof of Razborov and Sherstov’s lower bound.

I Corollary 2. Let MPn = ORn1/3 ◦ANDn2/3 be the Minsky-Papert DNF. Then A =
[MPn(x ∨ y)]x,y has sign-rank exp(Ω(n1/3)).

Let EDk : {−1, 1}k → {−1, 1} denote the well-known Element Distinctness function
(defined in Section 2.6). As we will show, the function EDk is in Cd for some d = Ω̃(k2/3).
Hence, we obtain the following corollary, which improves Razborov and Sherstov’s lower
bound on the sign-rank of AC0 from exp(Ω(n1/3)) to exp (Ω̃(n2/5)).

I Corollary 3. Let FED
n = ORn2/5 ◦EDn3/5 ◦ANDC ◦OR2. Then A = [FED

n (x, y)]x,y has
sign-rank exp(Ω̃(n2/5)).

As discussed in Section 2.6, the function FED
n is computed by a depth-3 AC0 circuit with

logarithmic bottom fan-in.

1.2 Applications
We describe applications of Corollary 3 to communication complexity, learning theory, and
circuit complexity in detail in the full version of this work. Here, we briefly describe these
applications.

Razborov and Sherstov’s result yielded a function in the communication complexity class
PHcc (the communication analog of the polynomial hierarchy) that requires unbounded
error communication complexity Ω(n1/3). This was the first separation between the
communication complexity classes PHcc and UPPcc, answering a longstanding open
problem of Babai, Frankl, and Simon [4]. We improve this separation, giving a function
in the communication complexity class PHcc (indeed, in Σcc

2 ) that requires unbounded
error communication complexity Ω̃(n2/5).
Razborov and Sherstov’s result implied that learning algorithms in the sign-rank framework
cannot PAC learn DNF formulae in time less than exp(O(n1/3)). This essentially matches
the exp(Õ(n1/3)) runtime of the sign-rank based algorithm of Klivans and Servedio [13].
It is reasonable to ask whether the sign-rank framework can be used to learn depth-3
(or deeper) AC0 circuits in the same exp(Õ(n1/3)) time bound. Our results rule this
out, showing that sign-rank based learning algorithms require time exp(Ω̃(n2/5)) to learn
depth-3 AC0 circuits, even when the bottom fan-in is O(logn).
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Razborov and Sherstov’s result implied an exponential (specifically, exp(Ω(n1/3))) lower
bound on the size of threshold-of-majority circuits computing a function in AC0. We
improve their lower bound to exp

(
Ω̃(n2/5)

)
.

1.3 Our Techniques
It is well-known that the threshold degree of any function h : {−1, 1}n → {−1, 1} is character-
ized by an (exponentially large) linear program. Using this formulation, if deg±(h) = d, then
strong LP duality guarantees the existence of a dual solution µ that witnesses the fact that
deg±(h) ≥ d. Specifically, µ takes the form of a distribution on {−1, 1}n such that h is uncor-
related under µ with all polynomials of degree at most d, i.e.,

∑
x∈{−1,1}n µ(x) ·h(x) ·p(x) = 0

for all polynomials p of degree at most d. Razborov and Sherstov refer to µ as a d-
orthogonalizing distribution for h (see Section 2.5 below for details).

In order to establish sign-rank lower bounds for the matrix A = [(h ◦ANDC)(x ∨ y)]x,y,
Razborov and Sherstov extended a lemma of Forster to show that it is enough to give
an orthogonalizing distribution µ for h that additionally satisfies a smoothness property
(cf. Theorem 18 in Section 4 for details). Specifically, a d-orthogonalizing distribution for
h is said to be smooth if µ(x) = exp(−O(d)) for all but an exp(−Ω(d)) fraction of inputs
x ∈ {−1, 1}n. Intuitively, this means that µ is smooth if it places “noticeable” mass on
“almost all” inputs.

Razborov and Sherstov proved (non-constructively) that there exists a smooth d-ortho-
gonalizing distribution for the Minsky-Papert DNF, for d = n1/3. To generalize their result,
for any d > 0 and any function f ∈ Cd, we explicitly construct a smooth d-orthogonalizing
distribution for the function ORd ◦f . Our construction combines new ideas with insights of
Razborov and Sherstov, and ideas from prior works by the authors and Sherstov [7, 23] that
constructed (non-smooth) orthogonalizing distributions for functions of the form OR ◦f .

2 Preliminaries

2.1 Notation
We work with Boolean functions f : {−1, 1}k → {−1, 1}, where −1 corresponds to logical
TRUE and +1 corresponds to logical FALSE. For x ∈ {−1, 1}k, let |x| = #{i : xi = −1}
denote the Hamming weight of x. Note that |x| is computed by the linear function |x| =
k
2 −

1
2
∑k
i=1 xi.

2.2 Symmetrization
I Definition 4. Let T : {−1, 1}k → D, where D is a finite subset of Rn for some n ∈ N.
The map T is degree non-increasing if for every polynomial p : {−1, 1}k → R, there exists a
polynomial q : D → R with deg q ≤ deg p such that

q(T (x)) = E
y s.t. T (y)=T (x)

[p(y)]

for every x ∈ {−1, 1}k. We say that a degree non-increasing map T symmetrizes a function
f : {−1, 1}k → R if f(x) = f(y) whenever T (x) = T (y), and in this case we say that T is a
symmetrization for f .

The canonical example of a degree non-increasing map is that which computes the
Hamming weight.
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I Lemma 5 (Minsky and Papert [15]). The map T : {−1, 1}k → {0, 1, . . . , k} defined by
T (x) = |x| is degree non-increasing. Hence, T is a symmetrization for any symmetric Boolean
function.

For any function ψ : {−1, 1}k → R, a symmetrization T : {−1, 1}k → D for ψ induces a
symmetrized function ψ̃ : D → R defined via ψ̃(z) := Ex∈T−1(z)ψ(x). (If T−1(z) is empty,
then we define ψ̃(z) = 0). It will also be convenient to define an “unnormalized” version ψ̂ of
ψ̃, defined via ψ̂(z) :=

∑
x∈T−1(z) ψ(x). Observe that if µ is a distribution on {−1, 1}k, then

µ̂ is a distribution on D.
Similarly, let T : {−1, 1}k → D be a degree non-increasing map. A function ψ̂ : D →

R naturally induces an un-symmetrized function ψ : {−1, 1}k → R by setting ψ(x) =
1

|T−1(z)| ψ̂(z) where z = T (x). That is, ψ spreads the mass of ψ̂(z) out evenly over points
x ∈ T−1(z). Observe that, for any ψ̂ and any degree non-increasing map T , the induced
function ψ is symmetrized by T .

We will often pass back and forth between a function ψ on {−1, 1}k and its symmetrized
versions ψ̃ and ψ̂ on D, when the underlying symmetrization T : {−1, 1}k → D is understood.

2.3 Norms and Inner Products
For a function ψ : {−1, 1}k → R, define the `1 norm of ψ by ‖ψ‖1 =

∑
x∈{−1,1}k |ψ(x)|. For

functions ψ,ϕ : {−1, 1}k → R, denote the inner product 〈ψ,ϕ〉 =
∑
x∈{−1,1}k ψ(x)ϕ(x). We

say a function ψ : {−1, 1}k → R has pure high degree d if 〈ψ, p〉 = 0 for every polynomial
p : {−1, 1}k → R of degree less than d.

2.4 Dual Objects and the Class Cd
Central to our work is the following definition of a “dual object.” We show that whenever a
Boolean function f can be associated with such a dual object, then f can be transformed
into a function F such that [F (x, y)]x,y has high sign-rank.

I Definition 6. Let f : {−1, 1}k → {−1, 1}, and let T : {−1, 1}k → D be a (degree non-
increasing) symmetrization for f . Let ψ̂ : D → R be any function, and let ψ be the associated
function on {−1, 1}k induced by T . We say that ψ̂ is a (d, ε, η)-dual object for f (with respect
to T ) if:

〈ψ, f〉 ≥ ε (1)
‖ψ‖1 = 1 (2)
〈ψ, p〉 = 0 for every polynomial p : {−1, 1}k → R with deg p < d (3)
f(x) = −1 =⇒ ψ(x) < 0 (4)

ψ̂(z+) ≥ η for some z+ ∈ D satisfying f̃(z+) = 1 (5)

Definition 6 is motivated by a recent line of work establishing lower bounds for polynomial
approximations via linear programming duality. We direct the reader to [21, 5, 25, 7, 23, 22,
19, 18, 6] for thorough discussions of this technique and its applications to longstanding open
questions in complexity theory. In short, one can use linear programming duality to show
that the existence of a (d, 2η, η)-dual object for a function f is implied by the non-existence
of a degree d polynomial that approximates f in a certain precise sense. In a bit more
detail (and still simplifying a little), a (d, 2η, η)-dual object for f always exists if f cannot
be uniformly approximated to error 2η by any degree d polynomial, even under the promise
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that the input x is in f−1(−1) ∪ T−1(z+). We will not use this primal interpretation of dual
objects in our analysis, but we spell out this implication in the full version of this work for
completeness and intuition.

Motivated by the study of uniform approximation of Boolean functions by polynomials,
several works [24, 5, 6] have constructed dual objects directly. In particular, work of Špalek
[24] and the authors [5] explicitly constructed an appropriate dual object for the AND
function.

I Lemma 7 (cf. [24, 5]). Let T : {−1, 1}k → {0, 1, . . . , k} be the degree non-increasing map
T (x) = |x| that computes the Hamming weight. The function ANDk has a (d, 1/2, 1/4)-dual
object with respect to T for d = Ω(

√
k).

We are now ready to define the class Cd of functions to which our techniques can be
applied to yield sign-rank lower bounds.

I Definition 8. Let f : {−1, 1}k → {−1, 1} be a Boolean function, and let d > 0. Then f is
in the class Cd if there exists a symmetrization T : {−1, 1}k → D for f such that:

there exists a (d, 1/2, 1/4)-dual object for f with respect to T , and
the function f evaluates to TRUE (i.e. f(x) = −1) for at most a 2−d fraction of inputs
x ∈ {−1, 1}k.

2.5 Orthogonalizing Distributions
As indicated in Section 1.3, our analysis will make essential use of orthogonalizing distributions,
which represent a dual formulation of the notion of threshold degree.

I Definition 9. A distribution µ : {−1, 1}n → [0, 1] is d-orthogonalizing for a function
h : {−1, 1}n → {−1, 1} if

E
x∼µ

[h(x)p(x)] = 0

for every polynomial p : {−1, 1}n → R with deg p < d. In other words, µ is d-orthogonalizing
for h if the function µ(x)h(x) has pure high degree d.

2.6 The Element Distinctness Function
The Boolean function EDk : {−1, 1}k → {−1, 1} is defined as follows. For simplicity, assume
that k = K log2 K, where K is a power of 2. The function interprets its input x as blocks
x1, . . . , xK , where each xi ∈ {−1, 1}log2 K . Each xi is interpreted as the binary representation
of gx(i) for a function gx : [K]→ [K]. EDk(x) is defined to equal −1 iff the function gx is
1-to-1.

Observe that EDk is symmetric with respect to permutations of the domain and range
of gx. That is, if x, y ∈ {−1, 1}k are such that there exist permutations π, σ of [K] with
gx = π ◦ gy ◦ σ, then EDk(x) = EDk(y).

In the full version of this work, we show that these symmetries imply the existence of a
symmetrization T for EDk and an associated dual object.

I Lemma 10. There exists a symmetrization T : {−1, 1}k → [K]K for the Element
Distinctness function EDk : {−1, 1}k → {−1, 1} such that EDk has a (d, 1/2, 1/4)-dual
object (with respect to the map T ), for some d = Ω(K2/3/ logK).
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I Remark. In fact, an explicit dual object for EDk was constructed in our prior work [6]. In
the full version of this work, we give an alternative primal-based proof of the existence of a
dual object for EDk. The proof is based on Aaronson and Shi’s [1] influential lower bound of
Ω(K2/3) on the approximate degree1 of EDk.

The Element Distinctness function is computed by a natural CNF formula:

EDk(x1, . . . , xK) =
K∧
r=1

∧
i6=j

((xi 6= r) ∨ (xj 6= r)).

Notice that the fan-in of each bottom OR gate is only 2K ≤ 2 log2 k. Recall (cf. Corol-
lary 3) that our aim is to prove a sign-rank lower bound for the function FED

n (x, y) =
(ORn2/5 ◦EDn3/5 ◦ANDC)(x ∨ y). Using the CNF for Element Distinctness described
above, the function FED

n is naturally computed by an AC0 circuit Γ of depth 5, with an OR
gate at the top. However, as we now explain, FED

n is actually computable by a depth-3 AC0

circuit with logarithmic bottom fan-in.
Number the layers of Γ from 1 to 5, with layer 1 corresponding to the OR gate at the

top. Since each OR gate at layer 3 of Γ has fan-in O(logn) (and the gates at layers 4 and 5
have constant fan-in), the sub-circuits rooted at each gate at layer 3 of Γ are functions of
only O(logn) bits of x. Since any function on O(logn) inputs can be computed by a poly(n)
size CNF with logarithmic bottom fan-in, we can replace each sub-tree rooted at layer 3 of Γ
with such a CNF, to obtain a circuit Γ′ of depth 4, in which layers 2 and 3 of Γ′ both consist
of AND gates. Collapsing layers 3 and 4 into a single layer yields a polynomial size depth 3
circuit with logarithmic bottom fan-in that computes FED

n .

3 Constructing a Smooth Orthogonalizing Distribution

Sherstov [23] showed that whenever f has a (d1, 1/2, 0)-dual object2, the function hm :=
ORm ◦f has a d-orthogonalizing distribution for d = min{m, d1}. The goal of this section, and
the main technical contribution of the paper, is to prove that whenever f has a (d1, 1/2, η)-
dual object for η > 0, the function hm has a d-orthogonalizing distribution that places
significant mass on each input x ∈ h−1

m (1). More precisely, we show:

I Theorem 11. Suppose that f : {−1, 1}k → {−1, 1} has a (d1, 1/2, η)-dual object, and let
hm = ORm ◦f . Then there exists a d-orthogonalizing distribution µ : {−1, 1}mk → [0, 1] for
hm such that µ(x) ≥ 4−(m+d+1)η−m/22−mk for every x ∈ h−1

m (1), where d = min{m/2, d1}.

Combining this theorem with Lemmas 7 and 10 yields smooth orthogonalizing distributions
for the functions ORn1/3 ◦ANDn2/3 and ORn2/5 ◦EDn3/5 .

I Corollary 12. There exists a d-orthogonalizing distribution µ for h = ORn1/3 ◦ANDn2/3

such that µ(x) ≥ 2−O(d)2−n on each x ∈ h−1(1), for some d = Ω(n1/3).

I Corollary 13. There exists a d-orthogonalizing distribution µ for h = ORn2/5 ◦EDn3/5

such that µ(x) ≥ 2−O(d)2−n on each x ∈ h−1(1), for some d = Ω̃(n2/5).

1 The approximate degree of a Boolean function f is the minimum degree of a real polynomial for which
|p(x)− f(x)| ≤ 1/3 for all Boolean inputs x.

2 The existence of a (d1, 1/2, 0)-dual object for f is in fact a dual formulation of the property that f has
one-sided approximate degree at least d1. See [5, 23] for the definition of one-sided approximate degree.
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3.1 Proof of Theorem 11

3.1.1 Notation
Let f : {−1, 1}k → {−1, 1} be as in the statement of Theorem 11, and let T : {−1, 1}k → D

be the symmetrization for f associated with the assumed (d1, 1/2, η)-dual object for f .
Define Tm : {−1, 1}mk → Dm by Tm(x1, . . . , xm) := (T (x1), . . . , T (xm)). Since T is degree
non-increasing, it is easy to see that Tm is also degree non-increasing. Moreover, Tm is a
symmetrization for hm. The map Tm induces a symmetrized version h̃m : DM → R of hm
given by h̃m = ORm ◦f̃ .

3.1.2 Proof Outline
Let Z+ := h̃−1

m (1) ⊆ Dm. At a high level, our proof will produce, for every z ∈ Z+, a
d-orthogonalizing distribution µz that is targeted to z, in the sense that

µ̂z(z) ≥ 2−O(m+d) · η−O(m).

Since the property of d-orthogonalization is preserved under averaging, the distribution
µ = 1

|Z+|
∑
z∈Z+ µz remains d-orthogonalizing, and places the required amount of probability

mass on each input x ∈ T−1(Z+) = h−1
m (1). The goal therefore becomes to construct these

targeted distributions µz. We do this in two stages.

Stage 1. In the first stage (see Claim 15 below), we construct distributions µz for every
z belonging to a highly structured subset G ⊂ Z+ that we now describe. Let c ∈ f̃−1(1)
denote the point on which the dual object ψ̂ for f has ψ̂(c) ≥ η (cf. Condition (5) within
Definition 6). The set G consists of inputs in Z+ for which c ∈ D is repeated many times
(specifically, at least m/2 times).

Stage 2. In the second stage (see Claim 16 below), we show that given the family of
distributions {µz : z ∈ G} constructed in Stage 1, we can construct appropriate distributions
µz for z belonging to the entire set Z+.

Both stages can be viewed as generalized dual counterparts to analogous statements in
the work of Razborov and Sherstov (cf. [17, Lemma 3.4] and [17, Theorem 3.6] respectively).
Taking a dual perspective allows us to identify general properties (Definition 6) of a dual
object for f that enable the construction of a smooth orthogonalizing distribution. This
results in a much more general and modular framework for proving the existence of these
distributions. Our framework also has the advantage of constructing smooth orthogonalizing
distributions explicitly.

3.1.3 Proof Details
We begin with a relatively simple lemma that shows that the function ORm/2 ◦f has a
d-orthogonalizing distribution µ such that µ̂ places a lot of probability mass on a particular
highly structured input, where d = min {d1,m/2}. This distribution is an important building
block in the proof of Claim 15 below.

I Lemma 14. Let ` = m/2, and let f , T , and T ` be as above. Consider the function
h` : {−1, 1}k` → {−1, 1} defined by h`(x1, . . . , x`) = OR`(f(x1), . . . , f(x`)). There exists a
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function ψ : {−1, 1}k` → [0, 1] symmetrized by T ` with the following properties.

ψ agrees in sign with h`. That is, ψ(x) · h`(x) ≥ 0 for all x ∈ {−1, 1}k` (6)
‖ψ‖1 = 1 (7)
ψ has pure high degree at least d = min{`, d1} (8)

There exists a c ∈ D such that f̃(c) = 1 and ψ̂(c, . . . , c︸ ︷︷ ︸
` times

) ≥ η−`/2 (9)

We remark that Conditions (6)–(8) are equivalent to requiring that µ := ψ · h` is a d-
orthogonalizing distribution for h`, where d = min{`, d1}.

Proof Sketch. Sherstov [23] showed that when the function f has a (d1, 1/2, 0)-dual witness,
then there is a function ψ satisfying Conditions (6)–(8). In the full version of this work,
we show that if f additionally has a (d1, 1/2, η)-dual witness with η > 0, then Sherstov’s
construction yields a function ψ̂ that also satisfies Condition (9). J

To complete Stage 1 of our proof, we show that for every input w ∈ Dm that is close in
Hamming distance to the special point (c, . . . , c︸ ︷︷ ︸

m times

), there is an orthogonalizing distribution for

hm that places substantial weight on w. Let G ⊂ Z+ = h̃−1
m (1) denote the set of inputs in

h̃−1
m (1) that take the value c on at least m/2 coordinates. That is,

G = {z ∈ Z+ : ∃i1, . . . , im/2 s.t. zi1 = · · · = zim/2 = c}.

I Claim 15. Let G be as above. For every w = (w1, . . . , wm) ∈ G, there exists a d-
orthogonalizing distribution νw : {−1, 1}km → [0, 1] for hm such that νw is symmetrized by
Tm and ν̂w(w) ≥ ηm/2/2.

Proof Sketch. Let I = {i1, . . . , im/2} denote the first m/2 coordinates on which w takes the
value c. Define the distribution ν̂w by

ν̂w(z) =
{
|ψ̂(zi1 , . . . , zim/2)| if zi = wi for all i /∈ I
0 otherwise

where ψ̂ is the function from Lemma 14 for ` = m/2. It is immediate from the definition
that ν̂w is a distribution on Dm, and hence νw is a distribution on {−1, 1}km. Moreover,
ν̂w(w) ≥ ηm/2/2. The fact that νw is d-orthogonalizing follows from the fact that ψ has pure
high degree at least d. This calculation appears in the full version of this work. J

We now proceed to Stage 2 of our proof, in which we use the distributions constructed
in Claim 15 to give orthogonalizing distributions that place significant weight on any input
x ∈ h−1

m (1).

I Claim 16. Let G be as before, and suppose that for every w ∈ G there exists a d-
orthogonalizing distribution νw : {−1, 1}km → [0, 1] for hm that is symmetrized by Tm, and
satisfies ν̂w(w) ≥ δ. Then for every v ∈ (Z+ \G), there exists a d-orthogonalizing distribution
ρv that is symmetrized by Tm, and ρ̂v(v) ≥ δ/4m+d.

The main technical ingredient in the proof of Claim 16 is the construction of a function
ϕ : {0, 1}m → R of pure high degree d for which ϕ(1m) is “large”. This can be viewed as a
dual formulation of a bound on the growth of low-degree polynomials. The construction of ϕ
appears as part of the proof of such a bound in [17].
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I Remark. We choose to state Lemma 17 below for a function ϕ : {0, 1}m → R, rather
than applying our usual convention of working with functions over {−1, 1}m, because it
makes various statements in the proof of Claim 16 cleaner. To clarify the terminology below,
we say a function ϕ : {0, 1}m → R has pure high degree d if

∑
x∈{0,1}m ϕ(x) · p(x) = 0 for

every polynomial p : {0, 1}m → R of degree less than d. The Hamming weight function
| · | : {0, 1}m → [m] counts the number of 1’s in its input, i.e. |s| = s1 + s2 + · · ·+ sm.

I Lemma 17 (cf. [17, Proof of Lemma 3.2]). Let d be an integer with 0 ≤ d ≤ m− 1. Then
there exists a function ϕ : {0, 1}m → R such that

ϕ(1m) = 1 (10)
ϕ(x) = 0 for all d ≤ |x| < m (11)
ϕ has pure high degree at least d (12)∑
|x|≤d

|ϕ(x)| ≤ 2d
(
m

d

)
(13)

Proof of Claim 16. Fix v ∈ (Z+ \ G). Define an auxiliary function ϕ̂v : Dm → [0, 1] as
follows. For any z = (z1, . . . , zm), let

ϕ̂v(z) :=
∑

s∈{0,1}m s.t.
∀i zi=sic+(1−si)vi

ϕ(s),

where ϕ is as in Lemma 17, with d set as in the conclusion of Claim 15 (observe that if there
is some zi such that zi 6= c and zi 6= vi, then ϕ̂v(z) = 0).

Letting ϕv denote the function on {−1, 1}km induced from ϕ̂v by Tm, we record some
properties of ϕv and ϕ̂v.

ϕ̂v(v) = ϕ(1m) = 1 (14)
supp ϕ̂v ⊂ G ∪ {v} (15)
ϕv has pure high degree at least d (16)

‖ϕv‖1 ≤ 2d
(
m

d

)
+ 1 (17)

ϕ̂v is supported on at most 1
22m + 1 points in Dm (18)

Verifying Conditions (14)–(18). Conditions (14), (15), and (18) are immediate from the
definition of ϕ̂v, combined with Conditions (10) and (11) of Lemma 17. For Condition
(16), it is enough to show that if p1, . . . , pm are polynomials over {−1, 1}k whose degrees
sum to less than d, then

∑
x=(x1,...,xm)∈{−1,1}km ϕv(x)

∏m
i=1 pi(xi) = 0. To establish this, let

q1, . . . , qm : D → R denote polynomials satisfying deg(qi) ≤ deg(pi), and such that for all i
and all zi in the image of T , qi(zi) := Ex∈T−1(zi)[pi(zi)]. Such polynomials are guaranteed
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to exist, since T is degree non-increasing. Then:

∑
x=(x1,...,xm)∈{−1,1}km

ϕv(x)
m∏
i=1

pi(xi) =
∑

z=(z1,...,zm)∈Dm

ϕ̂v(z)
m∏
i=1

qi(zi)

=
∑

z=(z1,...,zm)∈Dm

 ∑
s∈{0,1}m s.t.

∀i zi=sic+(1−si)vi

ϕ(s)

 m∏
i=1

qi(zi)

=
∑

s∈{0,1}m

ϕ(s)
m∏
i=1

qi(sic+ (1− si)vi)

= 0,

To see that the final equality holds, recall that that degrees of the polynomials qi sum to
strictly less than d. Hence, p(s1, . . . , sm) :=

∏m
i=1 qi(sic+(1−si)vi) is a polynomial of degree

strictly less than d over {−1, 1}m. The final equality then follows from the fact that ϕ has
pure high degree at least d.

To establish Condition (17), we check that∑
z∈Dm,z 6=v

|ϕ̂v(z)| ≤
∑

s∈{0,1}m,s 6=1m

|ϕ(s)| ≤ 2d
(
m

d

)
,

where the final inequality holds by Condition (13).

Construction and analysis of ρv. Up to normalization, the function ϕv · hm has all of the
properties that we need to establish Claim 16, except that there are locations where it may
be negative. We obtain our desired orthogonalizing distribution ρv by adding correction
terms to ϕ̂v in the locations where ϕ̂v may disagree with h̃m in sign. These correction terms
are derived from the distributions ν̂w whose existence are hypothesized in the statement of
Claim 16. We start by defining

P̂v(z) = δ

2d
(
m
d

)
+ 1

h̃m(z)ϕ̂v(z) +
∑

w∈(supp ϕ̂v\{v})

ν̂w(z). (19)

Observe that each w appearing in the sum on the right hand side of Eq. (19) is in the set G,
owing to Condition (15). This guarantees that each term ν̂w in the sum is well-defined.

Now we check that P̂v is nonnegative. Since each term ν̂w appearing in the sum on the
right hand side of Eq. (19) is a distribution (and hence non-negative), it suffices to check
that P̂v(z) ≥ 0 for each point z ∈ supp ϕ̂v. On each such point with z 6= v, Condition (17)
guarantees that δ

2d(m
d )+1

h̃m(z)ϕ̂v(z) ≥ −δ. Moreover, the contribution of the sum is at least

ν̂z(z) ≥ δ by hypothesis. Hence, P̂v is a non-negative function.
Next, we check that normalizing P̂v yields a distribution ρ̂v := P̂v/‖Pv‖1 for which

ρ̂v(v) ≥ δ/4m+d as required. By construction, P̂v(v) = δ/
(
2d
(
m
d

)
+ 1
)
. Moreover, Condi-

tions (14), (17), and (18) together show that ‖P̂v‖1 ≤ δ + 1
2 2m ≤ 2m. Hence, P̂v(v) ≥

δ/
(
2m ·

(
2d
(
m
d

)
+ 1
))
≥ δ/

(
2m+d+1(m

d

))
≥ δ/22m+d+1 ≥ δ/4m+d.

Finally, we must check that ρv = Pv/‖Pv‖1 is d-orthogonalizing for hm. To see this,
observe that Pv · hm is a linear combination of the functions ϕv and νw · hm for w ∈
(supp ϕ̂v \ {v}). Moreover, each of these functions has pure high degree at least d (ϕv does
so by Condition (16), while νw · hm does by the fact that νw is d-orthogonalizing for hm). By
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linearity, it follows that Pv · hm has pure high degree at least d, so ρv is d-orthogonalizing
for hm as desired.

This completes the proof of Claim 16. J

We are now ready to combine the claims above to prove Theorem 11.

Proof of Theorem 11. By Claim 15, for every w ∈ G there exists a d-orthogonalizing
distribution νw : {−1, 1}km → [0, 1] for hm that is symmetrized by Tm, with ν̂w(w) ≥ ηm/2/2.
Thus, by Claim 16, it is also true that for every v ∈ (Z+ \G), there is a d-orthogonalizing
distribution ρv : {−1, 1}km → [0, 1] that is symmetrized by Tm, with ρ̂v(v) ≥ ηm/24−(m+d+1).
Now consider the distribution

µ̂(z) = 1
|Z+|

∑
w∈G

ν̂w(z) +
∑

v∈(Z+\G)

ρ̂v(z)

 .

The (un-symmetrized) distribution µ : ({−1, 1}k)m → [0, 1] satisfies µ(x) ≥ ηm/24−(m+d+1)2−km
for every point x ∈ T−1(Z+) = h−1

m (1). Moreover, µ remains d-orthogonalizing for hm, as it
is a sum of d-orthogonalizing distributions for hm. J

4 Sign Rank Lower Bounds for AC0

We now use the machinery developed by Razborov and Sherstov to translate our construction
of a smooth orthogonalizing distribution into a sign-rank lower bound.

I Theorem 18 (Implicit in [17, Theorem 1.1]). Let h : {−1, 1}n → {−1, 1} be a Boolean
function, and suppose there exists a d-orthogonalizing distribution µ for h such that µ(x) ≥
2−cd2−n for all but a 2−cd fraction of inputs x ∈ {−1, 1}n. Then there exists a constant
C (depending only on c) such that if F (x, y) := h(. . . ,∧Cj=1(xij ∨ yij), . . . ), then the matrix
[F (x, y)]x,y has sign-rank exp(Ω(d)).

Combining Theorem 18 with Theorem 11 yields the main result of this work.

I Theorem 19. Let f : {−1, 1}k → {−1, 1} be a Boolean function in the class Cd. Let
F : {−1, 1}n → {−1, 1}n be defined by

F = OR2d ◦f ◦ANDC ◦OR2,

where C is the universal constant of Theorem 18 (and hence n = O(dk)). The sign-rank of
the matrix [F (x, y)]x,y is exp(Ω(d)).

Proof. Let h2d : {−1, 1}2dk → {−1, 1} denote the function h2d = OR2d ◦f . By Theorem 11,
there exists a d-orthogonalizing distribution µ for h2d such that µ(x) ≥ 2−9d2−2dk for every
x ∈ h−1

2d (1). Since f ∈ Cd, we have by a union bound that h−1
2d (1) contains all but a

(2d) · 2−d ≤ 2−d/2 fraction of the points in {−1, 1}2dk. Thus, by Theorem 18, there is a
universal constant C for which [F (x, y)]x,y has sign-rank exp(Ω(d)). J

I Corollary 20. Let MPn = ORn1/3 ◦ANDn2/3 be the Minsky-Papert DNF. Then [MPn(x ∨
y)]x,y has sign-rank exp(Ω(n1/3))

Proof. The function ANDk evaluates to TRUE on exactly 1 out of 2k inputs. Hence, by
Lemma 7, we have ANDk ∈ Cd for d = Ω(k1/2). Let F = MPn ◦ANDC ◦OR2. Applying
Theorem 19 implies that the sign-rank of [F (x, y)]x,y = exp(Ω(n1/3)). Merging the two
adjacent layers of AND gates in the natural circuit computing F yields the desired result. J
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I Corollary 21. Let FED
n = ORn2/5 ◦EDn3/5 ◦ANDC . Then [FED

n (x ∨ y)]x,y has sign-rank
exp(Ω̃(n2/5))

Proof. Assume for simplicity that k = K logK. The function EDk evaluates to TRUE on
exactly K! inputs, which is an exp(−O(K)) fraction of the 2k = KK total inputs. Hence,
by Lemma 10, we have EDk ∈ Cd for d = Ω(K2/3/ logK). The result follows by applying
Theorem 19. J
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Abstract
The sensitivity of a Boolean function f : {0, 1}n → {0, 1} is the maximal number of neighbors a
point in the Boolean hypercube has with different f -value. Roughly speaking, the block sensitivity
allows to flip a set of bits (called a block) rather than just one bit, in order to change the value
of f . The sensitivity conjecture, posed by Nisan and Szegedy (CC, 1994), states that the block
sensitivity, bs(f), is at most polynomial in the sensitivity, s(f), for any Boolean function f .
A positive answer to the conjecture will have many consequences, as the block sensitivity is
polynomially related to many other complexity measures such as the certificate complexity, the
decision tree complexity and the degree. The conjecture is far from being understood, as there
is an exponential gap between the known upper and lower bounds relating bs(f) and s(f).

We continue a line of work started by Kenyon and Kutin (Inf. Comput., 2004), studying
the `-block sensitivity, bs`(f), where ` bounds the size of sensitive blocks. While for bs2(f) the
picture is well understood with almost matching upper and lower bounds, for bs3(f) it is not. We
show that any development in understanding bs3(f) in terms of s(f) will have great implications
on the original question. Namely, we show that either bs(f) is at most sub-exponential in s(f)
(which improves the state of the art upper bounds) or that bs3(f) ≥ s(f)3−ε for some Boolean
functions (which improves the state of the art separations).

We generalize the question of bs(f) versus s(f) to bounded functions f : {0, 1}n → [0, 1]
and show an analog result to that of Kenyon and Kutin: bs`(f) = O(s(f))`. Surprisingly, in
this case, the bounds are close to being tight. In particular, we construct a bounded function
f : {0, 1}n → [0, 1] with bs(f) ≥ n/ logn and s(f) = O(logn), a clear counterexample to the
sensitivity conjecture for bounded functions.

Finally, we give a new super-quadratic separation between sensitivity and decision tree com-
plexity by constructing Boolean functions with DT(f) ≥ s(f)2.115. Prior to this work, only
quadratic separations, DT(f) = s(f)2, were known.

1998 ACM Subject Classification F.1.3 Computation by Abstract Devices – Complexity Meas-
ures and Classes

Keywords and phrases sensitivity conjecture, decision tree, block sensitivity

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.38

1 Introduction

A long-standing open problem in complexity and combinatorics asks what is the relationship
between two complexity measures of Boolean functions: the sensitivity and block-sensitivity.
We first recall the definition of the two complexity measures.
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I Definition 1. Let f : {0, 1}n → {0, 1} be a Boolean function and x ∈ {0, 1}n be a point.
The sensitivity of f at x is the number of neighbors y of x in the Hamming cube such that
f(y) 6= f(x), i.e., s(f, x) , |{i ∈ [n] : f(x) 6= f(x⊕ ei)}|.1 The (maximal) sensitivity of f is
defined as s(f) , maxx∈{0,1}n s(f, x).

I Definition 2. Let f : {0, 1}n → {0, 1} be a Boolean function and x ∈ {0, 1}n be a point.
For a block B ⊆ [n], denote by 1B ∈ {0, 1}n its characteristic vector, i.e., (1B)i = 1 iff i ∈ B.
We say that a block B is sensitive for f on x if f(x) 6= f(x⊕ 1B). The block-sensitivity of f
at x x ∈ {0, 1}n is the maximal number of disjoint sensitive blocks for f at x, i.e.,

bs(f, x) = max{r : ∃ disjoint B1, B2, . . . , Br ⊆ [n] , f(x) 6= f(x⊕ 1Bi)} .

The (maximal) block-sensitivity of f is defined as bs(f) , maxx∈{0,1}n bs(f, x).

For shorthand, we will denote (x⊕ ei) and (x⊕ 1B) by (x+ ei) and (x+ B) respectively.
By definition, the block-sensitivity is at least the sensitivity by considering only blocks of
size 1. The sensitivity conjecture, posed by Nisan and Szegedy [14], asks if a relation in the
other direction holds as well.

I Conjecture 3 (The Sensitivity Conjecture). ∃d ∀f : bs(f) ≤ s(f)d.

A stronger variant of the conjecture states that d can be taken to be 2. Despite much work
on the problem [13, 14, 15, 12, 8, 20, 4, 11, 6, 1, 2, 5, 3, 9, 17, 10] there is still an exponential
gap between the best known separations and the best known relations connecting the two
complexity measures.

Known Separations. An interesting example due to Rubinstein [15] shows a quadratic
separation between the two measures: bs(f) = 1

2 · s(f)2. This example was improved by [20]
and then by [4] to bs(f) = 2

3 · s(f)2 · (1− o(1)) which is current state of the art.

Known Relations. Simon [16] proved (implicitly) that bs(f) is at most 4s(f)·s(f). The upper
bound was improved by Kenyon and Kutin [12] who showed that bs(f) ≤ O(es(f) ·

√
s(f)).

Recently, Ambainis et al. [1] improved this bound to bs(f) ≤ 2s(f)−1 · s(f). Even more
recently, Ambainis et al. [3] improved this bound slightly to bs(f) ≤ 2s(f)−1 · (s(f)− 1/3).

To sum up, while the best known upper bound on the block-sensitivity in terms of
sensitivity is exponential, the best known lower bound is quadratic. Indeed, we seem far
from understanding the right relation between the two complexity measures.

1.1 `-block sensitivity
All mentioned examples that exhibit quadratic separations between the sensitivity and block
sensitivity ([15, 20, 4]) have the property that the maximal block sensitivity is achieved on
blocks of size at most 2. For this special case, Kenyon and Kutin [12] showed that the block
sensitivity is at most 2 · s(f)2. Hence, these examples are essentially tight for this subcase.

Kenyon and Kutin introduced the notion of `-block sensitivity (denoted bs`(f)): the
maximal number of disjoint sensitive blocks where each block is of size at most `. Note that
without loss of generality we may consider only sensitive blocks that are minimal with respect
to set-inclusion (since otherwise we could of picked smaller blocks that are still disjoint). A

1 ei is the vector whose i-th entry equals 1 and all other entries equal 0.
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well-known fact (cf. [7, Lemma 3]) asserts that any minimal sensitive block for f is of size
at most s(f), thus bs(f) = bss(f)(f). Kenyon and Kutin proved the following inequalities
relating the `-block sensitivity of different `-s:

bs`(f) ≤ 4
`
· s(f) · bs`−1(f) (1)

bs`(f) ≤ e

(`− 1)! · s(f)` (2)

for all 2 ≤ ` ≤ s(f). Plugging ` = s(f) gives the aforementioned bound bs(f) ≤ O(es(f) ·√
s(f)).

1.2 Our Results
1. In the full version [19], we refine the argument of Kenyon and Kutin giving a better upper

bound on the `-block sensitivity in terms of (`− 1)-block sensitivity. We show that

bs`(f) ≤ e

`
· s(f) · bs`−1(f) (3)

improving the bound in Eq. (1). On the other hand, Kenyon and Kutin gave examples
with bs`(f) ≥ 1

` · s(f) · bs`−1(f). Hence, Eq. (3) (and in fact, also Eq. (1)) is tight up to
a constant. Interestingly, our analysis uses (a very simple) ordinary differential equation.

2. In Section 2, we put focus on understanding bs3(f) in terms of the sensitivity. We
show that an upper bound of the form bs3(f) ≤ s(f)3−ε for some constant ε implies a
sub-exponential upper bound for the sensitivity conjecture: ∀f : bs(f) ≤ 2s(f)1−δ , for
δ > 0. On the other hand, the best known separation (i.e., the aforementioned example by
[4]) gives examples with bs3(f) ≥ bs2(f) ≥ Ω(s(f)2). Thus, improving either the upper or
lower bound for bs3(f) in terms of s(f) will imply a breakthrough in our understanding
of the sensitivity conjecture.

3. In Section 3, we consider an extension of the sensitivity conjecture to bounded functions
f : {0, 1}n → [0, 1]. We show that while Kenyon and Kutin’s approach works in this
model, it is almost tight, i.e., we give functions for which bs`(f) = Ω((s(f)/`)`). In
particular, we give a function with sensitivity O(logn) and block sensitivity Ω(n/ logn) –
a clear counterexample for the sensitivity conjecture in this model.

4. In Section 4, we find better-than-quadratic separations between the sensitivity and the
decision tree complexity. We construct functions based on minterm cyclic functions (as
coined by Chakraborty [8]), that were found using computer search. In particular, we
give an infinite family of functions {fn}n∈I with DT(fn) = n and s(fn) = O(n0.48). In
addition, we give an infinite family of functions {gn}n∈I with s(gn) = O(DT(gn)0.473).

2 Understanding bs3(f) is Important

As the upper and lower bounds for bs2(f) are almost matching, it seems that the next
challenge is understanding the asymptotic behavior of bs3(f). A more modest challenge is
the following.

I Open Problem 4. Improve either the upper or lower bound on bs3(f).

Recall that the upper bound on bs3(f) is O(s(f)3) (see Eq. (2)) and the lower bound is
(2/3) · s(f)2 · (1− o(1)). It is somewhat surprising that any slight improvement on either the
lower or upper bound on bs3 would be a significant step forward in our understanding of the
general question. The following claim shows that a slightly better than quadratic gap on a
single example implies a better than quadratic gap on an infinite family of examples.

ICALP 2016
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I Claim 5. If there exists a function such that bs3(f) > s(f)2 then there exists a family of
functions {fn}n∈N with bs(fn) > s(fn)2+ε for some constant ε > 0 (dependant on f).

This family is simply f1 = f , fn = f ◦ fn−1 where ◦ stands for Boolean function composition
as in [18]. Next, we prove a theorem exhibiting the self-reducibility nature of the problem.

I Theorem 6. Let k, `, a ∈ N such that ` > k and let T : N→ R be a monotone function. If
∀f : bs`(f) ≤ T (bsk(f)), then ∀f ′ : bs`a(f ′) ≤ T (bska(f ′)) .

Proof. Assume by contradiction that there exists a function f ′ such that bs`a(f ′) >

T (bska(f ′)). We will show that there exists a function f such that bs`(f) > T (bsk(f)).
We shall assume WLOG that the maximal bs`a of f ′ is achieved on ~0. Let B1, B2, . . . , Bm
be a family of disjoint sensitive blocks for f at ~0, each Bi of size at most `a. Split every
block Bi to ` sets Bi,1, . . . , Bi,` of size at most a. The function f will have a variable xi,j
corresponding to every set Bi,j of size at most a. The value of f(x1,1, . . . , xm,`) is defined
to be the value of f ′ where the variable in each Bi,j equal xi,j , and all other variables
equal 0. bs`(f,~0) ≥ bs`a(f ′,~0), since for any sensitive block B1, . . . , Bm for f ′, there exists a
corresponding sensitive block B′1, . . . , B′m for f of size `, where B′i = {xi,j : j ∈ [`]}.

On the other hand, any set of disjoint sensitive blocks of size at most k for f corresponds
to a disjoint set of sensitive blocks of size at most ka for f ′. Thus bsk(f) ≤ bska(f ′), giving

T (bsk(f)) ≤ T (bska(f ′)) < bs`a(f ′) ≤ bs`(f) ,

where we used the monotonicity of T in the first inequality. J

Using Theorem 6 we get that any upper bound of the form bs`(f) ≤ s(f)`−ε implies a
sub-exponential upper bound on bs(f) in terms of s(f).

I Theorem 7. Let k ∈ N, ε > 0 be constants. If for all Boolean functions bsk(f) ≤ s(f)k−ε,
then for the constant γ = log(k−ε)

log(k) < 1 it holds that bs(f) ≤ 2O(s(f)γ ·log s(f)) for all f .

For example, Theorem 7 shows that if ∀f : bs3(f) ≤ s(f)2, then ∀f : bs(f) ≤ 2O(s0.631·log(s)).

Proof. Using the hypothesis and Theorem 6 one can show by induction on t that

∀f : bskt(f) ≤ s(f)(k−ε)t . (4)

The base case t = 1 is simply the hypothesis. We assume the claim is true for 1, . . . , t− 1,
and show the claim is true for t. Using Theorem 6 with T (x) = xk−ε and a = kt−1 we get
bskt(f) ≤ T (bskt−1(f)) = (bskt−1(f))k−ε. By induction bskt−1(f) ≤ s(f)(k−ε)t−1 . Hence, we
get bskt(f) ≤ s(f)(k−ε)t , which finishes the induction proof.

Fix f and let s = s(f). Recall that bs(f) = bss(f) since each minimal block that flips
the value of f is of size at most s. Hence,

bs(f) = bss(f) = bskdlogk(s)e(f)

≤ s(k−ε)dlogk(s)e
≤ s(k−ε)logk(s)+1

= 2log(s)·slog(k−ε)/ log(k)·(k−ε) = 2O(sγ ·log(s)) . J

3 The Sensitivity Conjecture for Bounded Functions

In this section, we generalize the definitions of sensitivity and block sensitivity to bounded
functions f : {0, 1}n → [0, 1], extending the definitions for Boolean functions. We generalize
the result of Kenyon and Kutin to this setting (after removing some trivial obstucles). Given
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that, one may hope that the sensitivity conjecture holds also for bounded functions, i.e.,
that the block-sensitivity is at most polynomial in the sensitivity. However, we give a
counterexample to this question, by constructing functions on n variables with sensitivity
O(logn) and block sensitivity n/ log(n). In fact, we show that the result of Kenyon and
Kutin is essentially tight by giving examples for which bs`(f) = n/` and s(f) = O(` · n1/`)
for any ` ≤ logn.

We begin by generalizing the definitions of sensitivity and block-sensitivity. For f :
{0, 1}n → [0, 1] and x ∈ {0, 1}n, we denote the sensitivity of f at a point x by

s(f, x) =
n∑
i=1
|f(x)− f(x⊕ ei)|. (5)

Similarly we define the block sensitivity and `-block sensitivity as

bs(f, x) = max
{∑

i

|f(x)− f(x+Bi)| : B1, . . . , Bk ⊆ [n] are disjoint
}
. (6)

and

bs`(f, x) = max
{∑

i

|f(x)− f(x+Bi)| : B1, . . . , Bk ⊆ [n] are disjoint and ∀i.|Bi| ≤ `
}
.

Naturally we denote by s(f) = maxx s(f, x), by bs(f) = maxx bs(f, x) and by bs`(f) =
maxx bs`(f, x). It is easy to see that for a Boolean function these definitions match the
standard definitions of sensitivity, block sensitivity and `-block sensitivity.

We wish to prove an analog of Kenyon-Kutin result, showing that bs`(f) ≤ c` · s(f)`.
However, stated as is the claim is false for a “silly” reason. Take any Boolean function f
with a gap between the sensitivity and the `-block sensitivity and take g(x) = f(x)/s(f).
Then, we get s(g) = 1 and bs`(g) = bs`(f)/s(f). As there are examples with bs2(f) = n/2
and s(f) =

√
n, we get that bs2(g) =

√
n/2 while s(g) = 1, where n grows to infinity. This

seems to rule out any relation between the sensitivity and block sensitivity (and even 2-block
sensitivity) in the case of bounded functions. To overcome this triviality, we insist that
the block sensitivity is close to n, or alternatively that changing each block dramatically
changes the value of the function. Surprisingly, under this requirement we are able to retrieve
known relations between sensitivity and block sensitivity that were established in the Boolean
setting by Kenyon and Kutin [12].

I Theorem 8. Let c > 0 and f : {0, 1}n → [0, 1]. Assume that there exists a point
x0 ∈ {0, 1}n and disjoint blocks B1, . . . , Bk of size at most ` such that |f(x0)−f(x0 +Bi)| ≥ c
for all i ∈ k. Furthermore, assume that 2 ≤ ` ≤ log(k). Then, s(f) ≥ Ω(k1/` · c).

We get the following corollary, whose proof is deferred to Appendix A.

I Corollary 9. Let f : {0, 1}n → [0, 1] with bs(f) ≥ n/`. Then, s(f) ≥ Ω(n1/2`/`).

Unlike in the Boolean case, we are able to show that Theorem 8 is essentially tight!
That is, for any ` and n we have a construction with bs`(f) ≥ n/` and s(f) = O(` · n1/`).
In particular, picking ` = log(n) gives an exponential separation between block sensitivity
(which is at least n/ logn) and sensitivity (which is O(logn)).

I Theorem 10. Let `, n ∈ N with 2 ≤ ` ≤ n. Then, there exists a function h : {0, 1}n → [0, 1]
with bs`(h) ≥ bn/`c and s(h) ≤ 3 · ` · n1/`.

ICALP 2016
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3.1 Proof of Kenyon-Kutin Result for Bounded Functions
Proof Overview. We start by giving a new proof for Kenyon-Kutin result, based on random
walks on the hypercube. We assume by contradiction that f(x0) = 0 and f(x0 +Bi) = 1 for
all i ∈ [k] and that the sensitivity is o(k1/`). Taking a random walk of length r = n/k1/`

starting from x0 will end up in point y where with high probability f(y) = f(x0). This is
true since in each step with probability at least 1− s(f)/n we are maintaining the value of
f , hence by union bound with probability at least 1− r · s(f)/n we maintain the value of f
in the entire walk. On the contrast, choosing a random i ∈ [k] and starting a random walk
of length r − |Bi| starting from (x0 +Bi) will lead to a point y′ where with high probability
f(y′) = f(x0 +Bi) = 1. However, as we show in the proof below, the distributions of y and
y′ are similar (close in statistical distance). This leads to a contradiction as f(y) tends to be
equal to 0 and f(y′) tends to be equal to 1.

A simple observation, which allows us to generalize the argument above to bounded
functions, is that for a given point x ∈ {0, 1}n and a random neighbor in the hypercube,
y ∼ x, the expected value of f(y) is close to f(x). This follows from Eq. (5). Thus, the
only difference in the argument for bounded functions will be that E[f(y)] is close to 0 and
E[f(y′)] is close to 1, leading to a contradiction as well.

Proof of Theorem 8. First, we make a few assumptions that are without loss of generality,
in order to make the argument later clearer. We assume x0 = 0n and f(x0) = 0. We assume
n = k · ` and that the blocks are given by Bi = {(i− 1)`+ 1, . . . , i`} for i ∈ [k]. We assume
that c = 1, since for c < 1 one can take f ′(x) = min{f(x)/c, 1}, and note that f ′ is a bounded
function with f ′(x0 +Bi) = 1. Proving the theorem for f ′ gives s(f) ≥ s(f ′) · c ≥ Ω(c · k1/`).

Let r = b n
(2k)1/` c, by the assumption 2 ≤ ` ≤ log(k) we have

√
n ≤ r ≤ n/2. Assume by

contradiction that s(f) ≤ ε · k1/` for some sufficiently small constant ε > 0 to be determined
later. Consider the following two random processes.

Algorithm 1 Process A
1: X0 ← 0n
2: for t = 1, . . . , r do
3: Select a random i ∈ [n] among the coordinates for which Xt−1 is 0 and let Xt ←
Xt−1 + ei.

4: end for

Algorithm 2 Process B
1: Select uniformly i ∈ [k] and let Y0 ← Bi
2: for t = 1, . . . , r − ` do
3: Select a random i ∈ [n] among the coordinates for which Yt−1 is 0 and let Yt ←
Yt−1 + ei.

4: end for

For each t ∈ {0, . . . , r − 1}, we claim that

E[f(Xt+1)− f(Xt)] = E

 1
n− t

·
∑

i:(Xt)i=0

f(Xt + ei)− f(Xt)


≤ 1
n− t

·E[s(f(Xt))] ≤
s(f)
n− t

.
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By telescoping this implies that

E[f(Xr)] = E[f(X0)] +
r−1∑
t=0

E[f(Xt+1)− f(Xt)] ≤ 0 + r · s(f)
n− r

≤ O(ε) .

In a symmetric fashion, for each t ∈ {1, . . . , r− `} we have E[f(Yt+1)− f(Yt)] ≥ − s(f)
n−t−` .

Again, telescoping implies that

E[f(Yr−`)] ≥ E[f(Y0)]− (r − `) · s(f)
n− r

≥ 1− r · s(f)
n− r

≥ 1−O(ε) .

So it seems that the distribution of Xr and Yr−` are very different from one another. However,
we shall show that conditioned on a probable event, Xr and Yr−` are identically distributed.
To define the event, consider the sets

Ui = {1A | A ⊆ [n], |A| = r,Bi ⊆ A,∀j 6= i : Bj * A}

for i ∈ [k] and their union

U =
k⋃
i=1

Ui = {1A | A ⊆ [n], |A| = r, ∃!i ∈ [k] : Bi ⊆ A} .

Let EX be the event that Xr ∈ U , and EY be the event that Yr−` ∈ U . We show that

I Claim 11. The following hold:
1. Xr|EX is identically distributed as Yr−`|EY .
2. Pr[EY ] = Ω(1)
3. Pr[EX ] = Ω(1)

We defer the proof of Claim 11 for later. We derive a contradiction from all of the above by
showing that E[f(Xr)|EX ] < E[f(Yr−`)|EY ] (this is indeed a contradiction because by the
claim Xr|EX and Yr−`|EY should be identically distributed and hence the expected values
of f(·) on each of them should be the same). To show this, we note that

E[f(Xr)|EX ] = E[f(Xr) · 1EX ]/Pr[EX ]
≤ E[f(Xr)]/Pr[EX ] = O(E[f(Xr)]) = O(ε) .

On the other hand

E[f(Yr−`)|EY ] = 1−E[1− f(Yr−`)|EY ]
≥ 1−E[1− f(Yr−`)]/Pr[EY ] = 1−O(E[1− f(Yr−`)]) = 1−O(ε) .

Choosing ε to be a small enough constant implies that E[f(Xr)|EX ] < E[f(Yr−`)|EY ], which
completes the proof. J

Proof of Claim 11. We shall use in the proof of Items 2 and 3 the fact that 1/3 ≤ r`k
n`
≤ 1/2

which follows from the choice of r = b n
(2k)1/` c (for large enough n and k).

1. First note that Xr is distributed uniformly over the set of vectors in {0, 1}n with hamming
weight r. In particular, conditioning that Xr is in a set U of such vectors, makes it
uniform over U . We are left to show that Yr−`|EY is distributed uniformly over U . Given
that Y0 = Bi, we have that Yr−` is the OR of 1Bi with a random vector of weight r − `
on [n] \ Bi. Conditioned on EY the only way to reach Ui is if Y0 = Bi, hence, by the
above, all points in Ui are attained with the same probability. Using symmetry, all points
in U =

⋃
i Ui are attained with the same probability.

ICALP 2016
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2. Let Bi be the block selected in the first step of Process B. We analyze the probability
that all indices in Bj for some j 6= i are chosen in the r − ` iterations of Process B.

Pr[Bj is selected] = (# of sequences where Bj is selected)
(# of sequences)

= (r − `)` · (n− 2`)r−2`

(n− `)r−`
= (r − `)!(n− 2`)!(n− r)!

(r − 2`)!(n− r)!(n− `)!

= (r − `)!(n− 2`)!
(r − 2`)!(n− `)! = (r − `) · · · (r − 2`+ 1)

(n− `) · · · (n− 2`+ 1) ≤
( r
n

)`
(recall that nk , n!

(n−k)! ). Hence, Pr[∃j 6= i : Bj is selected] ≤ k · (r/n)` ≤ 1/2 and we
have Pr[EY ] ≥ 1/2.

3. Let π1, . . . , πr ∈ [n] be the sequence of choices made by Process A. For i ∈ [k], let EX,i
be the event that Xr ∈ Ui. By the uniqueness of the block contained in Xr the events
EX,i are disjoint, hence Pr[EX ] =

∑k
i=1 Pr[EX,i]. By symmetry, Pr[EX ] = k ·Pr[EX,1].

The event EX,1 is simply the event that there exists a set S ⊆ [r] of size ` such that
{πj}j∈S = B1 and the sequence {πj : j ∈ [r] \ S} is a sequence of choices for which EY
holds, when starting Process B from Y0 = B1. This shows that Pr[EX,1] = Pr[EY |Y0 =
B1] ·Pr[B1 ⊆ {π1, . . . , πr}]. By Symmetry, Pr[EY |Y0 = Bi] = Pr[EY ] = Ω(1) from the
previous item. In addition,

Pr[B1 ⊆ {π1, . . . , πr}] = r` · (n− `)r−`

nr
= r!(n− `)!(n− r)!

(r − `)!(n− r)!n!

= r!(n− `)!
(r − `)!n! = r · · · (r − `+ 1)

n · · · (n− `+ 1) ≥
(
r − `
n

)`
=
( r
n

)`
· (1− `/r)` =

( r
n

)`
· (1− o(1))

where (1− `/r)` = 1− o(1) follows from ` ≤ log(k) and r ≥
√
n ≥
√
k. Thus,

Pr[EX ] = k ·Pr[EX,1] = k ·Pr[B1 is selected] ·Pr[EY |Y0 = B1]

≥ k ·
( r
n

)`
· (1− o(1)) · 1

2 ≥
1
3 · (1− o(1) · 1

2 = Ω(1) . J

3.2 Separating Sensitivity and Block Sensitivity of Bounded Functions
The Lattice Variant of The Sensitivity Conjecture

The proof of Theorem 10 is more natural in the lattice-variant of the sensitivity conjecture
as suggested by Aaronson (see [6]). In this variant, instead of talking about functions
over {0, 1}n we are considering functions over {0, 1, . . . , `}k for `, k ∈ N. Given a function
g : {0, 1, . . . , `}k → R one can define a Boolean function f : {0, 1}`·k → R by the following
equation:

f(x1,1, . . . , xk,`) = g

(∑̀
i=1

x1,i, . . . ,
∑̀
i=1

xk,i

)
. (7)

For a point y ∈ {0, 1, . . . , `}k and function g : {0, . . . , `}k → R one can define the sensitivity
of g at y as

s(g, y) =
∑
y′∼y
|g(y′)− g(y)|
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where y′ ∼ y if y′ ∈ {0, . . . , `}k is a neighbor of y in the grid {0, . . . , `}k, i.e., if y and y′

agree on all coordinates except for one coordinate, say j ∈ [k], on which |yj − y′j | = 1. The
following claim relates the sensitivity of f to that of g.

I Claim 12. Let g : {0, . . . , `}k → R and let f be the function defined by Eq. (7). Then
s(f) ≤ ` · s(g).

Proof. Let x = (x1,1, . . . , xk,`) ∈ {0, 1}kl and and let x′ ∈ {0, 1}kl be a neighbor of x,
obtained by flipping the (i, j)-th coordinate. Let y = (

∑`
i=1 x1,i, . . . ,

∑`
i=1 xk,i) and similarly

let y′ = (
∑`
i=1 x

′
1,i, . . . ,

∑`
i=1 x

′
k,i). Then y and y′ differ only on the i-th coordinate, and on

this coordinate they differ by a ±1. If y′i = yi + 1, then the number of neighbors x′ ∼ x

that are mapped to y′ by y′ = (
∑
i x
′
1,i, . . . ,

∑
i x
′
k,i) equals the number of zeros in the i-th

block of x, i.e., it equals `− yi. Similarly, in the case y′i = yi − 1 the number of x′ ∼ x that
are mapped to y′ equals yi. In both cases, there are between 1 to ` points x′ ∼ x that are
mapped to each neighbor y′ ∼ y. Thus,∑

x′∼x
|f(x′)− f(x)| =

∑
x′∼x
|g(y′)− g(y)| ≤ ` ·

∑
y′∼y
|g(y′)− g(y)| . J

Construction of a Separation. Let k, ` be integers. We construct f : {0, 1, . . . , `}k → [0, 1]
such that f(0) = 0, f(ei · `) = 1 for all i ∈ [k] and s(f) ≤ O(k1/`).

Define a weight function w : {0, 1, . . . , `} → [0, 1] as follows: w(a) = ka/`/k for a ∈
{1, . . . , `} and w(0) = 0. Take g : {0, . . . , `}k → R+ to be the function g(x1, . . . , xn) =∑k
i=1 w(xi) and take f : {0, . . . , `}k → [0, 1] to be f(x) = min{1, g(x)}. Then f(0k) = 0 and

f(` · ei) = 1 for all i ∈ [k].

I Theorem 13. s(f) ≤ 3 · k1/`.

Proof. Let x ∈ {0, 1, . . . , `}k be a point in the lattice. We distinguish between two cases
g(x) ≥ 2 and g(x) < 2. In the first case, all neighbors x′ ∼ x have g(x′) ≥ 1 since the sums∑
i w(xi) and

∑
i w(x′i) differ by at most 1. Since both g(x) and g(x′) are at least 1 we get

that f(x) = f(x′) = 1 and the sensitivity of f at x is 0.
In the latter case, g(x) < 2, we bound the sensitivity as well. For ease of notation we

extend w to be defined over {−1, . . . , `+ 1} by taking w(`+ 1) = w(`) and w(−1) = w(0).
We extend also g to {−1, 0, . . . , `+ 1} → R+ by taking g(x1, . . . , xn) =

∑
i w(xi). We have

s(f, x) ≤ s(g, x) =
k∑
i=1
|g(x+ ei)− g(x)|+ |g(x)− g(x− ei)|

=
k∑
i=1
|w(xi + 1)− w(xi)|+ |w(xi)− w(xi − 1)|

=
k∑
i=1

w(xi + 1)− w(xi − 1) (w is monotone)

≤
k∑
i=1

w(xi + 1) (w is non-negative)

≤
∑
i:xi=0

w(1) +
∑
i:xi>0

w(xi) · k1/`

≤ k · k
1/`

k
+
∑
i

w(xi) · k1/`

= k1/` + g(x) · k1/` ≤ 3k1/`. J
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We show that Theorem 10 is a corollary of Theorem 13.

Proof of Theorem 10. Let k = n/`. Let f : {0, 1, . . . , `}k → [0, 1] be the function in
Theorem 13. Take h(x1,1, . . . , xk,`) = f

(∑`
i=1 x1,i, . . . ,

∑`
i=1 xn,i

)
. For x = 0n, there are k

disjoint blocks B1, . . . , Bk of size ` each such that h(x+Bi) = 1. Hence, bs`(h) ≥ k = n/`.
By Claim 12, the sensitivity of h is at most s(f) · ` ≤ 3 · k1/` · ` ≤ 3 · n1/` · ` which completes
the proof. J

4 New Separations between Decision Tree Complexity and Sensitivity

We report a new separation between the decision tree complexity and the sensitivity of
Boolean functions. We construct an infinite family of Boolean functions with

DT(fn) ≥ s(fn)1+log14(19) ≥ s(fn)2.115 .

Our functions are transitive functions, and are inspired by the work of Chakraborty [8].
Our construction is based on finding a “gadget” Boolean function f , defined over a

constant number of variables, such that s0(f) = 1, s1(f) = k and DT(f) = ` for ` > k

(recall that s0(f) = maxx:f(x)=0 s(f, x) and similarly s1(f) = maxx:f(x)=1 s(f, x)). Given the
gadget f , we construct an infinite family of functions with super-quadratic gap between the
sensitivity and the decision tree complexity using compositions (which is a well-used trick in
query complexity separations, cf. [18]).

I Lemma 14. Let f : {0, 1}c → {0, 1} such that s0(f) = 1, s1(f) = k and DT(f) = ` > k.
Then, there exists an infinite family of functions {gi}i∈N such that s(gi) = ki and DT(gi) =
(k`)i = s(gi)1+log(k)/ log(`).

Proof. Take g = ORk ◦ f . It is easy to verify that s(g) = k, and that DT(g) = DT(ORk) ·
DT(f) = k` (for the latter, one can use [18, Lemma 3.1]). For i ∈ N, we take gi = gi. It
is well-known (cf. [18, Lemma 3.1]) that s(gi) ≤ s(g)i and that DT(gi) = DT(g)i, which
completes the proof. J

4.1 Finding a Good Gadget
The gadget f will be a minterm-cyclic function. Roughly speaking, a function f : {0, 1}n →
{0, 1} is minterm-cyclic if there exists pattern p ∈ {0, 1, ∗}n such that the function f simply
checks if x matches one of the cyclic shifts of p. The formal definition follows

I Definition 15. A pattern p ∈ {0, 1, ∗}n is a partial assignment to the variables x1, . . . , xn.
We say that a point x ∈ {0, 1}n matches the pattern p, denoted by p ⊆ x, if for all i ∈ [n] such
that pi ∈ {0, 1} we have pi = xi. Given a pattern p, let CS(p) = {p1, . . . , pn} be the set of
cyclic shifts of p, where the i-th cyclic shift of p is given by pi = (pi, pi+1, . . . , pn, p1, . . . , pi−1).
For a pattern p ∈ {0, 1, ∗}n we denote by fp : {0, 1}n → {0, 1} the function defined by

fp(x) = 1 ⇔ ∃pi ∈ CS(p) : pi ⊆ x

and call fp the minterm cyclic function defined by p.

For example, the pattern p = 0011** defines a function fp that checks if there’s a sequence
of two zeros followed by two ones in x, when x is viewed as a cyclic string. We say that two
patterns p, q ∈ {0, 1, ∗}n disagree on a coordinate i if both pi and qi are in {0, 1} and pi 6= qi.
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I Claim 16. Let p ∈ {0, 1, ∗}n be a pattern defining fp : {0, 1}n → {0, 1}. Assume that any
two different cyclic-shifts of p disagree on at least 3 coordinates. Then, s0(fp) = 1.

Proof. Let x ∈ {0, 1}n with fp(x) = 0 and assume by contradiction that s(fp, x) ≥ 2. In
such a case, there are two indices i and j such that fp(x+ ei) = 1 and fp(x+ ej) = 1. Let q
and q′ be the patterns among CS(p) that x+ei and x+ej satisfy respectively. If q = q′, then
since both x+ ei and x+ ej satisfy q and they differ on coordinates i and j, it must be the
case that qi = qj = ∗. However, this implies that x satisfy q as well, which is a contradiction.
If q 6= q′, then we get that q and q′ may disagree only on coordinates i and j, which is also a
contradiction. J

The following fact is easy to verify.

I Fact 17. Let p ∈ {0, 1, ∗}n be a pattern defining fp : {0, 1}n → {0, 1}. Then, s0(fp) ≤
c0(fp) ≤ |{i ∈ [n] : pi ∈ {0, 1}}|.

Next, we demonstrate a simple example with better-than-quadratic separation between
DT(f) and s(f). Take the pattern p = ∗001011. Denote by p1, . . . , p7 all the cyclic shifts of
p, where in pi the i-th coordinate equals ∗. It is easy to verify that any pi and pj for i 6= j

disagree on at least 3 coordinates. Hence, s0(fp) = 1 and s1(fp) ≤ 6. We wish to show that
any decision tree T for fp is of depth 7. Let xi be the first coordinate read by a decision
tree T for fp. Our adversary will answer 0, and will continue to answer as if x matches pi.
Assume the decision tree made a decision before reading the entire input. The decision tree
must decide 1 since the adversary answered according to x which satisfies pi. However, if the
decision tree hasn’t read the entire input, there is still an unread coordinate j, where j 6= i.
Let x′ = x+ ej . Then, the decision tree answers 1 on x′ as well. However x′ does not match
pattern pi as (pi)j ∈ {0, 1} and it must be the case that xj = (pi)j 6= x′j .

We also need to rule out that x′ matches some other pattern. Indeed, if x′ matches some
other pattern pk it means that pk and pi disagree only on at most one coordinate, which as
discussed above cannot happen.

Using Lemma 14 the function fp can be turned into an infinite family of functions gi
with DT(gi) = (6 · 7)i and s(gi) ≤ 6i. This gives a super-quadratic separation since

DT(gi) ≥ s(gi)1+log(7)/ log(6) ≥ s(gi)2.086 .

In a similar fashion, one can show that for the pattern p = **0*10000*101 after reading
any two input bits from the input there exists a cyclic shift pi of the pattern from which no
{0, 1} coordinate has been read yet. However, to verify that the input x matches pi we must
read all {0, 1} positions in pi, which gives DT(fp) ≥ 9 + 2 where 9 is the number of {0, 1}-s
in the pattern p.

The decision tree complexity analysis for the other patterns written below is more involved.
We computed it using a computer program written to calculate the decision tree complexity
in this special case. In the list below, we report several patterns yielding super-quadaratic
separations. For each pattern p we report its length n, the decision tree complexity of fp,
the maximal sensitivity of fp (which equals the number of {0, 1}-s in p) and the resulting
exponent one get by using Lemma 14 (i.e., 1 + log DT(fp)

log s(fp) ).

p = *001011, n = 7, DT = 7, s = 6, exp = 2.086
p = **0*10000*101, n = 13, DT = 11, s = 9, exp = 2.091
p = ******01*1*01100000, n = 19, DT = 14, s = 11, exp = 2.100
p = ******00*0*0010**1*00*011, n = 25, DT = 17, s = 13, exp = 2.104
p = ******1**0**0**1**0**00*0*10*1011, n = 33, DT = 19, s = 14, exp = 2.115
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A Proof of Corollary 9

Proof. Let x ∈ {0, 1}n and B1, . . . , Bm be the blocks that achieve bs(f). Assume without
loss of generality that B1, . . . , Bm′ are of size at most 2` and that Bm′+1, . . . , Bm are of size
larger than 2`. Then, by the disjointness of Bm′+1, . . . , Bm we have that m−m′ ≤ n

2` . Thus,

bs`(f, x) ≥
m′∑
i=1
|f(x)− f(x+Bi)| =

m∑
i=1
|f(x)− f(x+Bi)| −

m∑
i=m′+1

|f(x)− f(x+Bi)|

≥ bs(f, x)− (m−m′) ≥ bs(f, x)− n

2` ≥
n

2` .

Assume without loss of generality thatB1, . . . , Bm′′ are blocks such that |f(x)−f(x+Bi)| ≥ 1
4`

and that Bm′′+1, . . . , Bm′ are not. Then,
∑m′

i=m′′+1 |f(x)− f(x+Bi)| ≤ m′′−m′
4` ≤ n

4` . This
implies that

∑m′′

i=1 |f(x) − f(x + Bi)| ≥ n
4` , and in particular that m′′ ≥ n

4` . Thus, there
are m′′ ≥ n/4` disjoint blocks of size at most 2` which change the value of f by at least 1

4` .
Theorem 8 gives that s(f) ≥ Ω((m′′)1/2`/`) ≥ Ω(n1/2`/`). J
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Randomization Can Be as Helpful as a Glimpse of
the Future in Online Computation∗
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Abstract
We provide simple but surprisingly useful direct product theorems for proving lower bounds
on online algorithms with a limited amount of advice about the future. Intuitively, our direct
product theorems say that if b bits of advice are needed to ensure a cost of at most t for some
problem, then r · b bits of advice are needed to ensure a total cost of at most r · t when solving
r independent instances of the problem. Using our direct product theorems, we are able to
translate decades of research on randomized online algorithms to the advice complexity model.
Doing so improves significantly on the previous best advice complexity lower bounds for many
online problems, or provides the first known lower bounds. For example, we show that

A paging algorithm needs Ω(n) bits of advice to achieve a competitive ratio better than
Hk = Ω(log k), where k is the cache size. Previously, it was only known that Ω(n) bits of
advice were necessary to achieve a constant competitive ratio smaller than 5/4.
Every O(n1−ε)-competitive vertex coloring algorithm must use Ω(n logn) bits of advice. Pre-
viously, it was only known that Ω(n logn) bits of advice were necessary to be optimal.

For certain online problems, including the MTS, k-server, metric matching, paging, list update,
and dynamic binary search tree problem, we prove that randomization and sublinear advice are
equally powerful (if the underlying metric space or node set is finite). This means that several
long-standing open questions regarding randomized online algorithms can be equivalently stated
as questions regarding online algorithms with sublinear advice. For example, we show that there
exists a deterministic O(log k)-competitive k-server algorithm with sublinear advice if and only
if there exists a randomized O(log k)-competitive k-server algorithm without advice.

Technically, our main direct product theorem is obtained by extending an information theo-
retical lower bound technique due to Emek, Fraigniaud, Korman, and Rosén [ICALP’09].

1998 ACM Subject Classification F.1.2 Models of Computation (online computation)

Keywords and phrases online algorithms, advice complexity, information theory, randomization

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.39

1 Introduction

The model of online computation deals with optimization problems where the input arrives
sequentially over time. Usually, it is assumed that an online algorithm has no knowledge of
future parts of the input. While this is a natural assumption, it leaves open the possibility
that a tiny amount of information about the future (which might be available in practical
applications) could dramatically improve the performance guarantee of an online algorithm.

∗ Most proofs have been omitted due to space restrictions. A full version of the paper containing all
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Recently, the notion of advice complexity [17, 29, 34, 28] was introduced in an attempt
to provide a quantitative and problem-independent framework for studying semi-online
algorithms with limited (instead of non-existing) knowledge of the future. In this framework,
the limited knowledge is modeled as a number of advice bits provided to the algorithm by
an oracle (see Definition 7). The goal is to determine how much advice (measured in the
length, n, of the input) is needed to achieve a certain competitive ratio. In particular, one of
the most important questions is how much advice is needed to break the lower bounds for
(randomized) online algorithms without advice. It has been shown that for e.g. bin packing
and makespan minimization on identical machines, O(1) bits of advice suffice to achieve a
better competitive ratio than what is possible using only randomization [5, 3]. On the other
hand, for a problem such as edge coloring, it is known that Ω(n) bits of advice are needed
to achieve a competitive ratio better than that of the best deterministic online algorithm
without advice [41]. However, for many online problems, determining the power of a small
amount of advice has remained an open problem.

With a few notable exceptions (e.g. [15, 29, 16, 20]), most of the previous research on
advice complexity has been problem specific. In this paper, we take a more complexity-
theoretic approach and focus on developing techniques that are applicable to many different
problems. Our main conceptual contribution is a better understanding of the connection
between advice and randomization. Before explaining our results in details, we briefly review
the most relevant previous work.

Standard derandomization techniques imply that a randomized algorithm can be converted
(maintaining its competitiveness) into a deterministic algorithm with advice complexity
O(log log I(n) + logn), where I(n) is the number of inputs of length n [16]. Clearly, there are
problems where even a single bit of advice is much more powerful than randomization, and so
we cannot in general hope to convert an algorithm with advice into a randomized algorithm.
However, using machine learning techniques, Blum and Burch have shown that a metrical
task system algorithm with advice complexity O(1) can be converted into a randomized
algorithm without advice [12]. Problems such as paging, k-server, and list update can be
modeled as metrical task systems (see e.g. [18]).

2 Overview of results and techniques

We will give a high-level description of the results and techniques introduced in this paper.
For simplicity, we restrict ourselves to the case of minimization problems1.

Direct product theorems. Central to our work is the concept of an r-round input distri-
bution. Informally, this is a distribution over inputs that are made up of r rounds such
that the requests revealed in each round are selected independently of all previous rounds.
Furthermore, there must be a fixed upper bound on the length of each round (see Definition 8).

As the main technical contribution of the paper, we prove direct product theorems for
r-round input distributions. Intuitively, a direct product theorem says that if b bits of advice
are needed to ensure a cost of at most t for each individual round, then rb bits of advice
are needed to ensure a cost of at most rt for the entire input. This gives rise to a useful
technique for proving advice complexity lower bounds. In particular, it follows that a linear
number of advice bits are needed to get a (non-trivial) improvement over algorithms without
any advice at all.

1 All of our results (and their proofs) are easily adapted to maximization problems. See [42] for details.
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We provide two different theorems formalizing the above intuitive statement in different
ways: Our main direct product theorem (Theorem 10) is based on an information theoretical
argument similar to that of [29]. In the full paper [42], we also provide an alternative direct
product theorem based on martingale theory. In this extended abstract, we will only consider
the information theoretical version.

Repeatable online problems. We combine our direct product theorems with the following
very simple idea: Suppose that we have a lower bound on the competitive ratio of randomized
online algorithms without advice. Often, such a lower bound is proved by constructing a
hard input distribution and then appealing to Yao’s principle. For some online problems, it
is always possible to combine (in a meaningful way) a set of input sequences {σ1, . . . , σr}
into one long input sequence σ = g(σ1, . . . , σr) such that serving σ essentially amounts to
serving the r smaller inputs individually and adding the costs incurred for serving each of
them. We say that such problems are Σ-repeatable (see Definition 12). For a Σ-repeatable
online problem, an adversary can draw r input sequences independently at random according
to some hard input distribution. This gives rise to an r-round input distribution. By our
direct product theorem, an online algorithm needs linear advice (in the length of the input)
to do better against this r-round input distribution than an online algorithm without advice.
Thus, for Σ-repeatable online problems, we get that it is possible to translate lower bounds
for randomized algorithms without advice into lower bounds for algorithms with sublinear
advice. More precisely, we obtain the following theorem.

I Theorem 1. Let P be a Σ-repeatable online minimization problem and let c be a constant.
Suppose that for every ε > 0 and every α, there exists an input distribution pα,ε : I → [0, 1]
with finite support such that Epα,ε [D(σ)] ≥ (c− ε)Epα,ε [OPT(σ)] + α for every deterministic
algorithm D without advice. Then, every randomized algorithm reading at most o(n) bits of
advice on inputs of length n has a competitive ratio of at least c.

Much research has been devoted to obtaining lower bounds for randomized algorithms without
advice. Theorem 1 makes it possible to translate many of these lower bounds into advice
complexity lower bounds, often resulting in a significant improvement over the previous best
lower bounds (see Table 1).

For a Σ-repeatable problem, the total cost has to be the sum of costs incurred in each
individual round. It is also possible to consider another kind of repeatable problems, where
the total cost is the maximum cost incurred in a single round. We call such problems
∨-repeatable. Many online coloring problems are ∨-repeatable. For ∨-repeatable problems,
we show in the full version of the paper [42] that under certain conditions, a constant lower
bound on the competitive ratio of deterministic algorithms without advice carries over to
randomized algorithms, even if the randomized algorithms have advice complexity o(n). The
proof of this result is straightforward and does not rely on our direct product theorems for
Σ-repeatable problems. However, the result improves or simplifies a number of previously
known advice complexity lower bounds for ∨-repeatable problems.

In Table 1, we have listed most of the repeatable online problems for which lower bounds
on algorithms with sublinear advice existed prior to our work, and compared those previous
lower bounds with the lower bounds that we obtain in this paper. We have also included
two examples of repeatable online problems for which Theorem 1 provides the first known
advice complexity lower bounds.

It is evident from Table 1 that there are many repeatable online problems. On the other
hand, let us mention that e.g. bin packing and makespan minimization are examples of
problems which are provably not repeatable.
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Table 1 New and previously best lower bounds on the competitive ratio for algorithms reading
o(n) bits of advice on inputs of length n. For the Σ-repeatable problems, the lower bounds in
this table are obtained by combining Theorem 1 with known lower bounds for randomized online
algorithms without advice. For the ∨-repeatable problems, the lower bounds are obtained by
combining our general result on ∨-repeatable problems with known lower bounds for deterministic
algorithms without advice. In both cases, references to these previously known lower bounds for
online algorithms without advice are provided in the second column of the table. We refer to the
full paper [42] for a more detailed explanation of the entries in Table 1, and for a comparison with
the current upper bounds.
Bipartite matching and Max-SAT are maximization problems, and hence the lower bound is obtained
via the maximization version of Theorem 1. For paging and reordering buffer management, k denotes
the cache/buffer size. For metrical task systems, N is the number of states. For the metrical task
system problem and the k-server problem, the bounds are for a worst-case metric. It is also possible
to use Theorem 1 together with known lower bounds for specific metric spaces. The lower bound for
unit clustering is for the one-dimensional case.

Lower bound for algorithms
with advice complexity o(n)

Σ-repeatable problem This work Previous best

Paging Ω (log k) [19] 5/4 [17]

k-Server Ω (log k) [19] 3/2 [46]

2-Server 1 + e−1/2 [25] 3/2 [46]

List Update 3/2 [47] 15/14 [22]

Metrical Task Systems Ω (log N) [19] Ω (log N) [29]

Bipartite Matching e/(e− 1) [37] 1 + ε [43]

Reordering Buffer Management Ω (log log k) [1] 1 + ε [2]

2-Sleep States Management e/(e− 1) [36] 7/6 [13]

Unit clustering 3/2 [30] −

Max-SAT 3/2 [7] −

∨-repeatable problem This work Previous best

Edge Coloring 2 [8] 2 [41]

L(2, 1)-Coloring on Paths 3/2 [11] 3/2 [11]

2-Vertex-Coloring ω(1) [9] 2 [10]

Compact online problems. Note that when translating a lower bound on randomized
algorithms without advice to a lower bound on algorithms with o(n) bits of advice via
Theorem 1, we had to make some assumptions on the lower bound. This begs the following
question: Are there online problems where every lower bound (after suitable modifications)
satisfies these assumptions? In order to formally answer this question, we make the following
definition.

I Definition 2. Let P be a minimization problem and let c > 1 be a constant such that
the expected competitive ratio of every randomized P-algorithm is at least c. We say that
P is compact if for every ε > 0 and every α ≥ 0, there exists an input distribution pα,ε
with finite support such that if D is a deterministic online algorithm (without advice), then
Epα,ε [D(σ)] ≥ (c− ε) · Epα,ε [OPT(σ)] + α.
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If an online problem is both Σ-repeatable and compact, we get the following result: Let c
be a constant and let ε > 0. If c is a lower bound on the competitive ratio of randomized
online algorithms without advice, then c− ε is also a lower bound on the competitive ratio of
online algorithms with sublinear advice. Equivalently, by contraposition, the existence of a
c-competitive algorithm with sublinear advice implies the existence of a (c+ ε)-competitive
randomized algorithm without advice. Combining this with existing derandomization results
[16] (see also [42]) yields the following complexity theoretic equivalence between randomization
and sublinear advice (previously, only the forward implication was known [16]):

I Theorem 3. Let P be a compact and Σ-repeatable minimization problem with at most
2nO(1) inputs of length n, and let c be a constant independent of n. The following are
equivalent:
1. For every ε > 0, there exists a randomized (c+ ε)-competitive P-algorithm without advice.
2. For every ε > 0, there exists a deterministic (c + ε)-competitive P-algorithm with ad-

vice complexity o(n).

In this paper, we use a technique due to Ambühl [4] and Mömke [44] to show that the
class of compact and Σ-repeatable problems contains all problems which can be modeled as
a metrical task system (MTS) with a finite number of states and tasks. This means that e.g.
the k-server, list update, paging, and dynamic binary search tree problem are all compact
and Σ-repeatable, assuming that the underlying metric space or node set is finite. For all
these problems, it is known that it is possible to achieve a constant competitive ratio with
respect to the length of the input [42]. Also, the number of inputs of length n for each of
these problems is at most 2nO(1) (this bound holds since when we apply Theorem 3 to e.g. the
k-server problem, the metric space will be fixed and not a part of the input). Thus, for each of
these problems, Theorem 3 applies. Furthermore, for all the problems just mentioned (except
paging), determining the best possible competitive ratio of a randomized algorithm without
advice is regarded as important open problems [18, 27]. For example, the randomized k-server
conjecture says that there exists a randomized O(log k)-competitive k-server algorithm [39].
Theorem 3 shows that this conjecture is equivalent to the conjecture that there exists a
deterministic O(log k)-competitive k-server algorithm with advice complexity o(n). Currently,
it is only known how to achieve a competitive ratio of O(log k) using 2n bits of advice [16, 45].

We also show that there are compact and Σ-repeatable problems which cannot be modeled
as a MTS. One such example is the metric matching problem (on finite metric spaces) [35].

Pessimistically, Theorem 3 may be seen as a barrier result which says that (for compact
and Σ-repeatable online problems) designing an algorithm with sublinear advice complexity
and a better competitive ratio than the currently best randomized algorithm without advice
might be very difficult. Optimistically, one could hope that this equivalence might be
useful in trying to narrow the gap between upper and lower bounds on the best possible
competitive ratio of randomized algorithms without advice. In all cases, Theorem 3 shows
that understanding better the exact power of (sublinear) advice in online computation would
be very useful.

2.1 Other applications of our direct product theorem
The previously mentioned applications of our direct product theorem treat the hard input
distribution as a black-box. However, it is also possible to apply our direct product theorem
to explicit input distributions. Doing so yields some interesting lower bounds which cannot
be obtained via Theorem 1. In what follows, we will state and briefly discuss three such lower
bounds. We refer to the full paper [42] for details and for the proofs of Theorems 4 to 6.
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Repeated matrix games. Let q ∈ N and let A ∈ Rq×q+ be a matrix defining a two-player
zero-sum game. Let V denote the value of the game defined by A. The repeated matrix
game (RMG) with cost matrix A is an online problem where the algorithm and adversary
repeatedly plays the game defined by A. The adversary is the row-player, the algorithm is
the column-player, and the matrix A specifies the cost incurred by the online algorithm in
each round. This generalizes the string guessing problem [15] and the generalized matching
pennies problem [29] (both of these essentially corresponds to the RMG with a q × q matrix
A where A(i, j) = 1 if i 6= j and A(i, i) = 0). Using our direct product theorem, we easily
get that for every ε > 0, an online algorithm which on inputs of length n is guaranteed to
incur a cost of at most (V − ε)n must read Ω(n) bits of advice.

I Theorem 4. Let ALG be an algorithm for the RMG with cost matrix A. Furthermore, let V
be the value of the (one-shot) two-person zero-sum game defined by A and let 0 < ε ≤ V be a
constant. If E[ALG(σ)] ≤ (V − ε)n for every input σ of length n, then ALG must read at least

b ≥ ε2

2 ln(2) · ‖A‖2∞
n = Ω(n) (1)

bits of advice.

Furthermore, we also show how a more careful application of our direct product theorem to
some particular repeated matrix games yields good trade-off results for the exact amount of
advice needed to ensure a cost of at most αn for 0 < α < V .

A better bin packing lower bound via repeated matrix games. We use our results on
repeated matrix games to prove the following advice complexity lower bound for bin packing:

I Theorem 5. Let c < 4 − 2
√

2 be a constant. A randomized c-competitive bin packing
algorithm must read at least Ω(n) bits of advice.

Previously, Angelopoulos et al. showed that a bin packing algorithm with a competitive
ratio of c < 7/6 had to use Ω(n) bits of advice by a reduction from the binary string
guessing problem [5, 23]. From our results on repeated matrix games, we obtain a lower
bound for weighted binary string guessing. Using the same reduction as in [5], but reducing
from weighted binary string guessing instead, we improve the lower bound for bin packing
algorithms with sublinear advice to 4 − 2

√
2. Thus, even though bin packing itself is not

repeatable, we can obtain a better lower bound via a reduction from a repeated matrix game.

Superlinear lower bounds for graph coloring. We obtain the following superlinear lower
bound for online graph coloring by applying our direct product theorem to an ingenious hard
input distribution due to Halldórsson and Szegedy [33] (they show that a randomized graph
coloring algorithm without advice must have a competitive ratio of at least Ω(n/ log2 n)):

I Theorem 6. Let ε > 0 be a constant. A randomized O(n1−ε)-competitive online graph
coloring algorithm must read at least Ω(n logn) bits of advice.

Previously, it was only known that Ω(n logn) bits of advice were necessary to be 1-
competitive [32]. Note that O(n logn) bits of advice trivially suffice to achieve optimality for
graph coloring. Furthermore, it is not hard to prove that for every c = n1−o(1), there exists
a c-competitive graph coloring algorithm reading o(n logn) bits of advice. Thus, our lower
bound saying that Ω(n logn) bits are needed to be O(n1−ε)-competitive for every constant
ε > 0 is essentially tight.
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3 Relation to machine learning

Theorem 3 is very closely related to previous work on combining online algorithms [12, 31, 6].
Let A1, . . . , Am be m algorithms for a MTS of finite diameter ∆. Based on a variant of the
celebrated machine learning algorithm Randomized Weighted Majority (RWM) [40], Blum
and Burch obtained the following result [12, 24]: For every ε > 0, it is possible to combine
the m algorithms into a single randomized MTS-algorithm, R, such that

E[R(σ)] = (1 + 2ε) · min
1≤i≤m

Ai(σ) +
(

7
6 + 1

ε

)
∆ lnm, (2)

for every input σ. An algorithm with b bits of advice corresponds to an algorithm which
runs m = 2b algorithms in parallel (and selects the best one at the end). Thus, equation
(2) immediately implies that given a c-competitive MTS-algorithm with advice complexity
b = O(1), we can convert it to a randomized (c+ ε)-competitive algorithm without advice.

Theorem 3 improves on the result of Blum and Burch in two ways. First of all, it allows us
to convert algorithms with sublinear instead of only constant advice complexity. Furthermore,
Theorem 3 applies to all compact and Σ-repeatable online problems, not just those which
can be modeled as a MTS.

It is natural to ask if it is possible to use the technique of Blum and Burch in order
to obtain a constructive proof of Theorem 3. To this end, we remark that the result of
Blum and Burch relies fundamentally on the fact that the cost incurred by RWM when
switching from the state of algorithm Ai to the state of algorithm Aj for i 6= j is bounded
by a constant. Thus, it does not seem possible to extend the result to those compact and
Σ-repeatable problems which does not satisfy this requirement (such as the metric matching
problem). On the other hand, in the full paper [42], we show that by combining the result of
Blum and Burch with the ideas that we use to prove that the MTS problem is compact, it is
possible to use a variant of RWM to algorithmically convert a c-competitive MTS-algorithm
with advice complexity o(n) (instead of just O(1)) into a randomized (c + ε)-competitive
algorithm without advice. This yields a constructive version of Theorem 3 for problems that
can be modeled as a MTS.

Finally, we note that very shortly after and independently of our work, Böckenhauer et al.
considered applications of machine learning algorithms to the advice complexity model [14].
In [14], the authors present and analyze an algorithm called Shrinking Dartboard which is
similar to the algorithm of Blum and Burch (both algorithms are based on RWM).

4 The computational model

We start by formally defining competitive analysis and advice complexity. Since we are very
much interested in sublinear advice, we will use the advice-on-tape model [17, 34]. In this
model, the algorithm is allowed to read an arbitrary number of advice bits from an advice
tape. There is an alternative model, the advice-with-request model [29], where a fixed number
of advice bits is provided along with each request.

I Definition 7 (Advice complexity [17, 34] and competitive ratio [18]). The input to an online
problem, P, is a sequence σ = (s, x1, . . . , xn). We say that s is the initial state and x1, . . . , xn
are the requests. A deterministic online algorithm with advice, ALG, computes the output
γ = (y1, . . . , yn), under the constraint that yi is computed from ϕ, s, x1, . . . , xi, where ϕ is
the content of the advice tape. The advice complexity, b(n), of ALG is the largest number of
bits of ϕ read by ALG over all possible inputs of length at most n.
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For an input σ, ALG(σ) (OPT(σ)) denotes the non-negative real cost of the output computed
by ALG (OPT) when serving σ. We say that ALG is c-competitive if there exists a constant α
such that ALG(σ) ≤ c · OPT(σ) + α for all inputs σ.

A randomized online algorithm R with advice complexity b(n) is a probability distribution
over deterministic online algorithms with advice complexity at most b(n). We say that
R is c-competitive if there exists a constant α such that E[R(σ)] ≤ c · OPT(σ) + α for all
inputs σ. 4

5 An information theoretical direct product theorem

In this section, we formally state (and sketch how to prove) our direct product theorem
upon which all of our results rely. Given P-inputs σ1, . . . , σr, we define σ = σ1 . . . σr to
be the P-input obtained by concatenating the requests of the r inputs and using the same
initial state as σ1. For example, if σ1 = (s, x1, . . . , xn) and σ2 = (s′, x′1, . . . , x′n′), then
σ1σ2 = (s, x1, . . . , xn, x

′
1, . . . , x

′
n′).

I Definition 8 (r-round input distribution). Let P be a minimization problem and let r ∈ N.
For each 1 ≤ i ≤ r, let Ii be a finite set of P-inputs such that the following holds: If σ1, . . . , σr
are such that σi ∈ Ii for 1 ≤ i ≤ r, then σ = σ1σ2 . . . σr is a valid P-input. Furthermore, let
Ir = I1 × · · · × Ir = {σ1 . . . σi . . . σr | σi ∈ Ii for 1 ≤ i ≤ r}.

For each 1 ≤ i ≤ r, let costi be a function which maps an output γ computed for an
input σ ∈ Ir to a non-negative real number costi(γ, σ). We say that costi is the ith round
cost function.

Let pi : Ii → [0, 1] be a probability distribution over Ii and let pr : Ir → [0, 1] be the (pro-
duct) probability distribution which maps σ1σ2 . . . σr ∈ Ir into p1(σ1)p2(σ2) · · · pr(σr). We
say that pr (together with the associated cost functions costi) is an r-round input distribution.
For 1 ≤ i ≤ r, we say that pi is the ith round input distribution of pr. 4

I Definition 9. Let P be a minimization problem and let r ∈ N. Let pr : Ir → [0, 1] be an
r-round input distribution with associated cost functions costi and with ith round input
distributions pi. Let ALG be a deterministic P-algorithm with advice. We define the following
random variables: Let X be the entire input and Y the output computed by ALG. For 1 ≤ i ≤
r, let Xi be the requests revealed in round i, and let costi(ALG) = costi(Y,X) be the ith round
cost function applied to the output computed by ALG. Also, let cost(ALG) =

∑r
i=1 costi(ALG),

let B be the advice bits read by ALG, and let Wi = (X1, . . . , Xi−1, B). Random variables are
always denoted by capital letters and their support by the calligraphic version of that letter2.

Finally, for every 1 ≤ i ≤ r and every w ∈ Wi, we define the conditional ith round input
distribution pi|w : Ii → [0, 1] as follows:

pi|w(x) = pi(x|Wi = w) = Pr(Xi = x,Wi = w)
Pr(Wi = w) .

4

We prove our information theoretical direct product theorem by extending an entropy
based lower bound technique due to Emek et al. [29]. The statement and proof of the theorem
relies on basic notions and results from information theory (see [42] or [26]). In particular,
given two distributions µ, ν : Ω→ [0, 1] such that supp(µ) ⊆ supp(ν), the Kullback-Leibler

2 For example, the support of Wi is denoted Wi, where Wi = {w : Pr[Wi = w] > 0}.
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divergence DKL(µ‖ν) between µ and ν is defined as DKL(µ‖ν) =
∑
ω∈Ω µ(ω) log(µ(ω)/ν(ω)).

Also, we heavily use the notation of Definitions 8 and 9.

I Theorem 10. Let P be a minimization problem and let pr be an r-round input distribution
with associated cost-functions costi. Furthermore, let ALG be a deterministic algorithm reading
at most b bits of advice on every input in the support of pr. Assume that there exists a
convex and decreasing function f : [0,∞]→ R such that for every 1 ≤ i ≤ r and w ∈ Wi, the
following holds:

E[costi(ALG)|Wi = w] ≥ f
(
DKL(pi|w‖pi)

)
. (3)

Then, E[cost(ALG)] ≥ rf(b/r).

Before sketching the proof of Theorem 10, we informally discuss the theorem. Recall
that Wi is the information available to the algorithm when round i begins (the advice read
and the history of previous requests). Without any advice or knowledge of the history, the
probability of x ∈ Xi being selected as the round i request sequence is pi(x). However, this
probability may change given that the algorithm knows Wi (in the most extreme case, the
advice could specify exactly the request sequence in round i). For any fixed w ∈ Wi, the
probability of x being selected in round i given that Wi = w is denoted pi|w(x). Assumption
(3) informally means that the closer pi|w and pi are to each other, the better a lower bound
we must have on the expected cost incurred by ALG in round i given that ALG knows w. We
remark that the convexity assumption on f is automatically satisfied in most applications.
The conclusion of Theorem 10 essentially says that under these assumptions, an algorithm
with b bits of advice for the entire input can do no better than an algorithm with b/r bits
of advice for each individual round. In particular, this will allow us to conclude that Ω(r)
bits of advice are needed to get a non-trivial improvement over having no advice at all. The
complete proof of Theorem 10 can be found in the full version of the paper [42].

Proof Sketch (of Theorem 10). Fix i such that 1 ≤ i ≤ r. Using first the law of total
expectation and then combining assumption (3) with Jensen’s inequality, we get that

E[costi(ALG)] = Ew[E[costi(ALG)|Wi = w]] ≥ f
(
Ew[DKL(pi|w‖pi)]

)
. (4)

A simple calculation shows that the expected Kullback-Leibler divergence Ew[DKL(pi|w‖pi)]
equals the mutual information I(Xi;Wi) between Xi and Wi. Thus,

E[cost(ALG)] =
r∑
i=1

E[costi(ALG)] ≥
r∑
i=1

f(I(Xi;Wi))

The mutual information I(X;B) between the input X and the advice B is at most b
simply because the entropy H(B) of B is at most b (since ALG reads at most b bits of
advice). On the other hand, using that the r rounds are independent and the chain
rule of conditional entropy, we get that I(X;B) =

∑r
i=1 I(Xi;Wi). Combining these two

observations, we see that I(X1;W1), . . . , I(Xr,Wr) are non-negative real numbers which
sums to at most b. Since f is convex and decreasing, Jensen’s inequality then implies that∑r
i=1 f(I(Xi;Wi)) ≥ rf(b/r). J

6 Application: Repeatable online problems

In this section we will present the main ingredients of the proof of Theorem 1. Before we
begin, we need to formally define the repeated version, P∗Σ, of an online problem P, and
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we need to define precisely what it means to be Σ-repeatable. To this end, given P-inputs
σ1, . . . , σr with the same initial state s, we define (σ1; . . . ;σr) to be a sequence with the
requests of the r inputs concatenated and such that the initial state s arrives together with
the first request of each σi. For example, if σ1 = (s, x1, . . . , xn) and σ2 = (s, x′1, . . . , x′n′),
then (σ1;σ2) = (s, {s, x1}, x2, . . . , xn, {s, x′1}, x′2, . . . , x′n′).

I Definition 11. Let P be an online problem, let S be the set of initial states for P, and
let I (Is) be the set of all possible request sequences for P (with initial state s). Define P∗Σ
to be the online problem with inputs I∗ = {σ∗ = (σ1;σ2; . . . ;σr) | r ≥ 1, s ∈ S, σi ∈ Is}. An
algorithm for P∗Σ must produce an output γ∗ = (γ1, . . . , γr) where γi = (y1, . . . , yni

) is a
valid sequence of answers for the P-input σi = (s, x1, . . . , xni) ∈ Is. The score of the output
γ∗ is score(γ∗, σ∗) =

∑r
i=1 scoreP (γi, σi), where scoreP (γi, σi) is the score of the P-output

γi with respect to the P-input σi. The optimal offline algorithm for P∗Σ is denoted OPT∗Σ. 4

P∗∨ is defined similarly, except that score(σ∗, γ∗) = max{scoreP (σ1, γ1), . . . , scoreP (σr, γr)}.
In order to better understand the definition of P∗Σ, it is useful to imagine that after

serving the last request of round i − 1 but before serving the first request of round i, the
current state is changed to the initial state s (note that the algorithm knows when this
happens since in (σ1; . . . ;σr), the first request of each σi is special). For instance, if P is
the k-server problem, then an initial state s is a placement of the k servers in the metric
space. Thus, in P∗Σ, after serving the last request of round i− 1 and before serving the first
request of round i, the k servers automatically return to their initial position specified by
s. Note that when P is the k-server problem, we can concatenate P-inputs σ1, σ2, . . . , σr
into one long P-input σ = σ1σ2 . . . σr. The only difference between serving the P-input σ
and serving the P∗Σ-input σ∗ = (σ1; . . . ;σr) is that for the P-input σ, the k servers are not
returned to the initial state s when a round ends. However, if the underlying metric space
has finite diameter, this difference in the placement of servers when a new round begins
cannot invalidate a lower bound. In fact, it turns out that for many online problems, there
is a natural reduction from P∗Σ to P that essentially preserves all lower bounds. This is
formalized in Definition 12.

I Definition 12. Let P be an online minimization problem such that for every fixed P-input,
there is only a finite number of valid outputs. Furthermore, let k1, k2, k3 ≥ 0. We say that
P is Σ-repeatable with parameters (k1, k2, k3) if there exists a mapping g : I∗ → I with the
following properties:
Σ1. |g(σ∗)| ≤ |σ∗|+ k1r for every σ∗ ∈ I∗ consisting of r rounds.
Σ2. For every deterministic P-algorithm ALG, there exists a deterministic P∗Σ-algorithm ALG∗

such that ALG∗(σ∗) ≤ ALG(g(σ∗)) + k2r for every σ∗ ∈ I∗ consisting of r rounds.
Σ3. OPT∗Σ(σ∗) ≥ OPT(g(σ∗))− k3r for every σ∗ ∈ I∗ consisting of r rounds. 4

The definition of ∨-repeatable is identical to that of Σ-repeatable, except that P∗Σ and
OPT∗Σ are replaced by P∗∨ and OPT∗∨. The k-server problem on a metric space of diameter ∆
is Σ-repeatable with parameters (0, k∆, k∆).

We will now sketch the proof of Theorem 1. The complete proof is in the full paper [42].

Proof Sketch (of Theorem 1). We prove the desired lower bound for P∗Σ. Let ε and α be
arbitrary. Without loss of generality, we may assume that all inputs in the support of pα,ε
have the same initial state. Draw r inputs independently from pα,ε. This gives rise to an
r-round input distribution prα,ε for P∗Σ. Note that the ith round input distribution, pi, of
prα,ε is simply pi = pα,ε, and that a round of prα,ε corresponds to a round of P ∗Σ.
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Let ALG∗ be a deterministic P∗Σ-algorithm reading at most b bits of advice on inputs in
supp(prα,ε). Fix a round 1 ≤ i ≤ r and let w ∈ Wi. We need to give a lower bound on the
expected cost E[costi(ALG∗)|Wi = w] in terms of the Kullback-Leibler divergence between
pi|w and pi. To this end, we use Pinsker’s inequality. Pinsker’s inequality ([26, Lemma
11.6.1]) says this if the Kullback-Leibler divergence between pi|w and pi is small, then pi|w
and pi must be close in L1-norm: ‖pi|w − pi‖1 ≤

√
ln 4 ·DKL(pi|w‖pi). Thus, it suffices to

bound E[costi(ALG∗)|Wi = w] in terms of the L1-distance between pi|w and pi.
To this end, we construct a P -algorithm, ALGw, without advice by hard-wiring w (i.e.,

the advice and the requests in rounds 1 to i− 1) into the P∗Σ-algorithm ALG∗. That is, for
an input sequence σ ∈ supp(pi|w), the new algorithm ALGw simulates the computation of
ALG∗ on σ when Wi = w and ALG∗ is given the requests σ in round i. Note that this is
possible since w is fixed, and hence the output of ALG∗ in round i given σ as input in this
round is completely determined. For all other input sequences, ALGw behaves arbitrarily
(but does compute some valid output). It follows that ALGw is well-defined for all input
sequences in supp(pi). Thus, ALGw defines a mapping σ 7→ ALGw(σ) on supp(pi) such that
‖ALGw‖∞ = maxσ∈supp(pi) |ALGw(σ)| ≤M and such that if σ ∈ supp(pi|w) ⊆ supp(pi), then
ALGw(σ) is equal to the cost incurred by ALG∗ if Wi = w and σ is given as input in round i.
It follows that

E[costi(ALG)|Wi = w] = Eσ∼pi|w
[ALGw(σ)] ≥ Eσ∼pi

[ALGw(σ)]− ‖ALGw‖∞ · ‖pi|w − pi‖1

≥ (c− ε)Eσ∼pi [OPT(σ)] + α−M ·
√

ln 4 ·DKL(pi|w‖pi).

Let f(d) = (c − ε)Eσ∼pi
[OPT(σ)] + α −M ·

√
ln 4 · d. Note that f is convex. Our direct

product theorem (Theorem 10) therefore yields (remember that pi = pα,ε).

E[cost(ALG∗)] ≥ rf(b/r) ≥ r
(

(c− ε)Eσ∼pα,ε [OPT(σ)] + α− 2M
√
b

r

)
. (5)

Assume that ALG∗ uses sublinear advice, i.e., b = o(n). Note that n = Θ(r) since supp(pα,ε) is
finite. Thus, we can make 2M

√
b/r arbitrarily small by choosing the number of rounds r suf-

ficiently large. Furthermore, by linearity of expectation, rEσ∼pα,ε [OPT(σ)] = E[cost(OPT*Σ)].
Thus, since ε and α was arbitrary, it follows from (5) and Yao’s principle that a randomized
P∗Σ-algorithm with sublinear advice must have a competitive ratio of at least c. Using that
P is Σ-repeatable, it is possible to convert this lower bound into a lower bound for P. J

7 Application: Compact online problems

Recall (Definition 2) that we defined compact online problems to be those for which Theorem 1
could be used to obtain tight lower bounds. Theorem 3 follows trivially by combining
Definition 2 with Theorem 1 (and using previously known derandomization results). In this
section, we will sketch how to prove that several important Σ-repeatable online problems are
compact. Interestingly, our proof will rely on the “upper bound part” of Yao’s principle [48]
which is (much) less frequently used than the lower bound part.

Fix a Σ-repeatable problem P such that for every n (and every fixed initial state), the
number of inputs of length at most n is finite3. Let c > 1 be a constant such that the expected

3 Since P is Σ-repeatable, this assumption automatically implies that there is only finitely many P-
algorithms for inputs of length at most n.
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competitive ratio of every randomized P-algorithm is at least c. What does it mean for P to
not be compact? It means that there exists an ε > 0 and α ≥ 0 such that the following holds:
For every n′ ∈ N and for every probability distribution p over P-inputs of length at most
n′, there exists a deterministic algorithm D such that Eσ∼p[D(σ)] < (c− ε)Eσ∼p[OPT(σ)] + α.
Recall that, by assumption, there is only a finite number of inputs and outputs for P of
length at most n′. This makes it possible to view the problem as a finite two-player zero-
sum game between an algorithm and adversary. Thus (see the full paper [42] for a formal
proof), by Yao’s principle, we get that there exists a randomized P-algorithm Rn′ such that
E[Rn′(σ)] < (c−ε)OPT(σ)+α for every P-input of length at most n′. Now, if we can somehow
show that it is possible to use the algorithms R1, R2, . . . to obtain a single algorithm R which
is better than c-competitive (on all possible inputs), then the problem at hand must, by
contradiction, be compact.

From the above discussion, it is easy to see that the metric matching problem is compact
(on finite metric spaces). Indeed, in this problem, there are k servers placed in a metric
space. Each server can be matched to at most one request (and vice versa). But this means
that for every fixed metric space and fixed set of k servers, the length of the input never
exceeds k. This allow us to construct a single algorithm R which on inputs with k servers run
the appropriate algorithm Rk. The algorithm R will be (c− ε)-competitive. This argument
extends to all Σ-repeatable problems for which an online algorithm knows a priori some
upper bound on the number of requests.

Another important example is the k-server problem on a finite metric space. In this
problem, we also have a metric space and a set of k servers. However, for the k-server
problem, there is no bound on the number of times we may use a single server. Thus, the
length of the input is unbounded, even if we fix the metric space and the set of servers.
This means that we cannot just trivially run the appropriate algorithm Rn′ , since we do
not know an upper bound n′ on the length of the input. However, what we can do is the
following (see the full paper and [4, 44]): Choose n′ to be some sufficiently large number. If
the number of requests exceeds n′, we restart Rn′ . That is, we use a new instantiation of
Rn′ which pretends that the (n′ + 1)’th request is in fact the very first request of the input
sequence. By appropriately handling some technical issues, we can make sure that the price
of performing these restarts is sufficiently small compared to the cost of an optimal solution.
This gives a single algorithm R which is better than c-competitive on inputs of arbitrary
length. Thus, the k-server problem is compact. This technique works for all problems that
can be modeled as a MTS. We refer to the full version of the paper for more details.

8 Further work and open problems

We have attempted to make the results and techniques introduced in this paper as easy as
possible to apply and build on. Komm et al. have used our results on repeated matrix games
to prove lower bounds for certain online hereditary graph problems with preemption [38].
Also, in Boyar et al. [21], we have applied Theorem 1 to online weighted matching.

Currently, the equivalence between advice and randomization stated in Theorem 3 is
mainly being used to obtain knowledge about algorithms with advice using techniques and
results for randomized algorithms. It is an interesting open problem to what extent the
equivalence is also useful in the other direction.

Acknowledgment. The author thanks Joan Boyar, Magnus Find, Lene Favrholdt, and the
anonymous ICALP reviewers for helpful comments on this work and its presentation.
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Abstract
We consider semidefinite programming through the lens of online algorithms – what happens
if not all input is given at once, but rather iteratively? In what way does it make sense for a
semidefinite program to be revealed? We answer these questions by defining a model for online
semidefinite programming. This model can be viewed as a generalization of online covering-
packing linear programs, and it also captures interesting problems from quantum information
theory. We design an online algorithm for semidefinite programming, utilizing the online primal-
dual method, achieving a competitive ratio of O (logn), where n is the number of matrices in the
primal semidefinite program. We also design an algorithm for semidefinite programming with
box constraints, achieving a competitive ratio of O (logF ∗), where F ∗ is a sparsity measure of
the semidefinite program. We conclude with an online randomized rounding procedure.
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1 Introduction

The study of online algorithms is a major theme in computer science. In contrast to an
algorithm that receives all its input at once, an online algorithm receives its input in an
iterative manner, and must make irrevocable decisions after receiving each part of the input.
An online algorithm is evaluated based on the ratio between its cost and the optimal offline
cost, that is, the cost which could have been achieved had the entire input sequence been
known in advance. The worst-case bound on this ratio is called the competitive ratio of the
algorithm. Competitive analysis of online algorithms is a very active area of research and
the last twenty five years have witnessed many exciting new results. For a broad study of
online algorithms, see [2, 3].

Online set cover is a classical online problem; elements arrive one by one, specifying which
sets they belong to, and each element must be covered upon arrival. Once a set is chosen
to the cover it cannot be removed later on, and its cost is accumulated into the final cost.
The objective is to minimize the total cost of the chosen sets. A natural extension is online
fractional set cover, where sets are associated with fractional values, and for each element
the sum of the fractions of the sets containing it is at least 1. Irrevocability is expressed by
requiring the fractional values to be monotonically non-decreasing during the online steps.
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40:2 Online Semidefinite Programming

Set cover further generalizes into general covering problems. In this setting, an element is
not simply contained in a set, but rather a non-negative weight ae,S is associated with each
element-set pair. This is actually equivalent to a linear program where the entries of the
constraint matrix are all non-negative. The objective function is also non-negative. Covering
problems arise naturally in many settings, e.g., graph optimization problems, facility location
and paging. The dual problem of covering is packing which also captures an important family
of combinatorial problems, e.g., flow, routing, matchings, and combinatorial auctions.

The online primal-dual method is a powerful algorithmic technique that has proved
to be extremely useful for a wide variety of problems in the area of online algorithms,
serving as an important unifying design methodology. In general, suppose that an online
problem can be formulated as a linear program, such that requests correspond to linear
constraints. The online nature of the problem translates into the constraint matrix being
exposed row by row, while the dual program is updated by adding a new dual variable. The
idea behind the primal-dual method is to use both primal and dual programs and construct
(simultaneously) feasible solutions for both of them, while maintaining some relationship
between their corresponding objective functions. Then, using weak duality, it is easy to
bound the competitive factor of the primal solution.

For online covering-packing linear programs, the non-negativity of the constraint matrix
facilitates the design of elegant online primal-dual algorithms. This approach has been
amazingly successful in both unifying previously known results, as well as resolving several
important open questions in competitive analysis. This includes, among others, the classic ski
rental problem, the online set-cover problem, paging and weighted paging, graph optimization
problems, the dynamic TCP-acknowledgement problem, various routing problems, load
balancing, machine scheduling, ad auctions, and more. Please refer for more details to a
survey on the covering-packing approach to online algorithms [3].

We explore in this work semidefinite programming in the context of online problems. A
symmetric matrix A ∈ Rm×m is said to be positive semidefinite, i.e., A < 0, if for every
vector v ∈ Rm, it holds that vtAv ≥ 0. A semidefinite program has a constraint requiring
that a matrix of variables X = (xi,j) is positive semidefinite. Such constraints correspond
to an unbounded number of linear constraints, since X < 0 is equivalent to a family of
linear constraints: ∀v ∈ Rn vtXv =

∑
vivjxij ≥ 0. This greatly extends our ability to

express complex problems, since semidefinite programs can be tailored more specifically,
thus decreasing integrality gaps of linear relaxations of combinatorial problems and yielding
tighter approximation factors. In their seminal work, Goemans and Williamson [4] used
a semidefinite programming relaxation for max cut in undirected graphs, obtaining an
approximation factor of 0.878, dramatically improving over the straightforward factor of 0.5.

1.1 Results
We study here further extensions of the successful online primal-dual method and linear
programming relaxations for online problems to the realm of semidefinite programming.
We define the problem of semidefinite covering-packing, which is a semidefinite program in
which all coefficients are non-negative. For matrix coefficients, such as those in constraints
of the form A • X ≤ c, the coefficient matrix A is positive-semidefinite. This problem
arises in several natural settings, e.g., quantum hypergraph covering, studied by [1], is a
semidefinite covering problem with all matrices restricted to the range [0, I]. Our work
extends semidefinite covering-packing to an online setting. For example, our extension
captures the online covering problem as a special case, in which all matrices are diagonal.

We design an online primal-dual algorithm with competitive ratio O(logn) for the semi-
definite covering-packing setting, where n denotes the number of matrices (e.g., corresponding
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to sets in the case of set cover). This is called our general algorithm (Section 3). We then
consider in Section 4 a class of semidefinite covering-packing problems with box constraints
on the variables. We design a primal-dual algorithm with an improved bound of O (logF ∗),
where F ∗ is a sparsity parameter coinciding with the maximum row-sparsity D of the con-
straint matrix in the linear case. This bound can be compared to the O(logD)-competitive
algorithm known for covering in the linear case [3, 5].

In Section 5 we design an online randomized rounding procedure, which is applicable to
both of our algorithms, while adding a factor of O (R (logm+ logn)) to the solution, where
m is the dimension of the matrices and R is a bound on the largest eigenvalue of each matrix.
Our randomized rounding uses a general matrix Chernoff bound due to Tropp [6], which
is based on and improves slightly the novel matrix Chernoff bound developed by Ahlswede
and Winter [1]. In a way, our algorithm is an online variation to Wigderson and Xiaos’s [7]
randomized rounding algorithm for integer semidefinite programming.

Techniques. Our algorithms and proofs strongly utilize the online primal-dual technique,
thus taking advantage of semidefinite weak duality and the fact that semidefinite programming
is defined over a cone. Additionally, we use the fact that a semidefinite constraint of the
form A < B can be expressed as an infinite number of linear constraints, each corresponding
to a projection onto a vector v satisfying vTAv ≥ vTBv.

The heart of our general algorithm is an update step: when considering a primal semi-
definite constraint, it is either already satisfied (and then we are done), or there exists a
matrix (in fact, many) which is a witness to the violation of the primal constraint, also
inducing a linear constraint which is violated. The witness matrix is then used for updating
the primal constraint, and for the direction in which we are going to make dual progress.
Once the witness matrix is determined, our update rule becomes quite similar to the update
rule in the linear case [3]. An important difference though is that, while only a finite number
of (linear) constraints needs to be satisfied in the linear case, now we need to satisfy a
semidefinite constraint, equivalent to infinitely many linear constraints. We address this issue
by over-satisfying constraints, so as to ensure that we make enough progress for our choice
of witness matrix, thus bounding the number of steps needed. Without this over-satisfaction,
we might only make infinitesimal progress, and it is not clear if the algorithm ever terminates.

For box constraints, we define the sparsity of an online semidefinite program, a measure
capturing the potential to overshoot when solving a sub-problem of a semidefinite program.
While the definition also coincides with the notion of row-sparsity for linear programs, it is
not a simple extension, but rather one which is tailored to a very specific observation about
our update rule; each subset of the variables defines such a subproblem when those variables
are saturated (i.e. their value equals the upper bound). In this situation we want to choose
a good progress direction, so that we do not over-satisfy the semidefinite constraint. The
progress direction turns out to have the property that, when projecting the problem onto
that direction, minimizes the ratio between the uncovered coefficients and the remainder
which is left to cover. This proves to be very useful in bounding the primal-dual ratio, and
also in allowing the algorithm to make meaningful progress.

2 Our Model and Definitions

Throughout this paper, all matrices are square, symmetric, real, and have dimension m.
Given two matrices A, B, their Frobenius product, denoted A • B, is defined as A • B =∑
i,j Ai,jBi,j = tr

(
ATB

)
. This is equivalent to standard inner product if the matrices are
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treated as vectors in Rm2 . For any vector v ∈ Rn, it is easy to check that the following useful
identity holds: A •

(
vvT

)
= vTAv =

∑
i.j vivjAi,j .

The eigenvalues of a matrix A are λ1 (A) ≥ λ2 (A) ≥ · · · ≥ λm (A). For a matrix A and
vector v, the Rayleigh quotient is defined as vTAv

vT v
and has the property λm (A) ≤ vTAv

vT v
≤

λ1 (A). A symmetric matrix A is said to be positive-semidefinite (p.s.d.), denoted A < 0, if
all its eigenvalues are non-negative. This induces a partial order over Rm×m, where A < B

if and only if A−B < 0.
Asemidefinite minimization program in standard form and its dual program are:

min
∑n
i=1 cixi maxB • Y

s.t.
∑n
i=1Aixi < B s.t. ∀i ∈ [n] Ai • Y ≤ ci

∀i ∈ [n] xi ≥ 0 Y < 0
.

This pair of programs satisfies weak duality, e.g. every feasible solution of the primal problem
is an upper bound on the dual problem and vice versa. This can readily be seen as follows.
Let x and Y be feasible solutions for the primal and dual problems, respectively. Then

n∑
i=1

cixi ≥
n∑
i=1

(Ai • Y )xi =
(

n∑
i=1

Aixi

)
• Y ≥ B • Y.

The first inequality follows since xi ≥ 0 for all i ∈ [n], and Ai •Y ≤ ci. The second inequality
is due to

∑n
i=1Aixi < B and Y < 0.

We sometimes use the shorthand Ax to denote the matrix
∑n
i=1Aixi, that is, A : Rn →

Rm×m is a linear function defined as A (x) =
∑n
i=1Aixi.

2.1 Our Model
We define a semidefinite covering problem as a semidefinite program in which all scalar
coefficients are non-negative (ci ≥ 0), and all matrix coefficients are positive semidefinite
(Ai < 0, B < 0). We can view the matrix B as being “covered”, and the matrices Ai as the
“covering” matrices. The variable xi specifies “how much” of Ai is used to cover B.

We further define as online semidefinite covering problem as a semidefinite covering
problem in which the covered matrix B is revealed in an online fashion, i.e., in each online
step t a new matrix Bt is revealed as the matrix which must be covered, and the following
relation holds: Bt < Bt−1. The irrevocability property is expressed by the requirement that
each variable xi cannot be decreased at any point of time, and is only allowed to increase (or
stay unchanged). In each step t the semidefinite constraint Ax < Bt must be satisfied.

In the dual online semidefinite packing problem, the objective function B • Y is revealed
online, while the constraints Ai •Y ≤ ci are known in advance. The monotonicity is captured
by allowing the variable matrix Y to only increase, e.g. Yt < Yt−1.

Set Cover and Linear Covering-Packing as a Special Case. When all matrices Ai and
Bt are diagonal, the constraint

∑n
i=1Aixi < Bt defines m linear constraints – one for every

diagonal element
∑n
i=1 (Ai)j,j xi < (Bt)j,j . This is because a diagonal matrix D is p.s.d. if

and only if all of its diagonal entries are non-negative. Thus, revealing parts of the matrix B
is equivalent to revealing new linear constraints. We assume without loss of generality that
the linear constraints are revealed one row at a time, meaning that we reduced the primal
problem to an instance of online fractional covering. Specifically, if all the diagonal entries
are either 0 or 1, the problem then becomes online set cover. In the dual problem, since Y
is only multiplied by diagonal matrices, only its diagonal is taking a part in the program,
therefore the dual problem also becomes equivalent to online fractional packing.
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3 The General Algorithm

In this section we provide an algorithm for the problem of online semidefinite covering, as
defined in the previous section:

min
∑n
i=1 cixi maxBt • Y

s.t.
∑n
i=1Aixi < Bt s.t. ∀i ∈ [n] Ai • Y ≤ ci

∀i ∈ [n] xi ≥ 0 Y < 0
.

In each online step t a new matrix Bt is revealed, satisfying Bt < Bt−1. Our algorithm must
then increase the variables xi, incurring an additional cost of ci∆xi, such that the updated
covering constraint

∑n
i=1Aixi < Bt is satisfied.

3.1 Intuition

Our algorithm performs a sort of binary search on the optimal value of the primal problem.
For a certain guess α, we either find a primal solution whose value does not exceed α, or
find a dual solution whose value is at least α/O (logn). By doubling our guess each time, we
are able to mitigate the cost of failed guesses and only lose a factor of 2 in total. Each guess
α defines a phase, which may extend over many online steps. During a phase, the primal
solution’s value is always less than α, and when the phase ends, the dual solution’s value is
at least α/O (logn).

We maintain monotonicity within each phase by only increasing the primal and dual
variables. Monotonicity is maintained between phases by setting each variable to be the sum
(or the maximum) of its values in the previous phases. We note that the optimal value of the
primal problem in each online step can only increase (or at least not change).

The idea behind the algorithm’s update step is the following. Either the primal constraint
Ax < Bt is already satisfied (and then we are done), or there exists a matrix V < 0 such that
Ax • V < Bt • V (by observing that C < 0 if and only if for every matrix V < 0, C • V ≥ 0).
The requirement that trV = 1 is a simple scaling constraint, which can be achieved by setting
V ′ = V/tr (V ). We can think of the matrix V as a witness to the violation of the primal
constraint; it induces a linear constraint Ax • V ≥ Bt • V which is violated. We use the
witness as the direction in which we make dual progress, and increase the primal according
to the relation we wish to maintain between the primal and dual solutions, until the linear
constraint Ax • V ≥ Bt • V is satisfied. Specifically, the rate at which xi is increased is
proportional to Ai • V , which makes sense, since this is the coefficient of xi in the linear
constraint Ax • V =

∑n
i=1Ai • V xi ≥ Bt • V .

We note that for technical reasons that help simplify the analysis we actually over-satisfy
the above linear constraint, i.e. we continue increasing until Ax • V ≥ 2Bt • V . This is
necessary to ensure that we make enough progress for each choice of V , thus bounding the
number of steps needed. Without this requirement, we might make infinitesimal progress for
each V , and it is not clear if the algorithm will finish its execution, since there are infinitely
many choice of V possible. It turns our that this over-satisfaction only contributes a factor
of 2 to the competitive ratio.

There are many possible choices of progress direction V . One natural choice is V =
vvT , where v is a unit eigenvector corresponding to the smallest eigenvalue of (Ax−Bt).
Since Ax − Bt 6< 0, its smallest eigenvalue λn is negative, therefore (Ax−Bt) • V =
vT (Ax−Bt) v = λn < 0 as required.
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3.2 Algorithm Description
In each phase r we search for a primal solution with cost at most α (r). Whenever the primal
cost exceeds α (r), a new phase starts and α (r + 1)← 2α (r) is doubled. In each new phase
we “forget” about the values of the primal and dual variables from the previous phase, but
we do account for their cost in the analysis. That is, in each phase r, new variables xr,i, Y r
are introduced; however, since the variables are required to be monotonically non-decreasing,
each variable xi is actually set to

∑
r xr,i, and the dual variable is also set to

∑
r Yr.

Let OPTt be the optimal value of the primal problem in phase t. After the first constraint
matrix B1 is introduced, we set the first lower-bound: α (1) ← minni=1

citrB1
trAi

. Note that
α (1) ≤ OPT1 ≤ OPTt, for all t, because the matrix Y0 =

(
minni=1

ci

trAi

)
I is a feasible

solution for the dual problem and its cost is Y0 • B1 = α (1). In the beginning of each
phase, we initialize Y = 0, xi = α(r)

2nci
. Algorithm 2 describes the phase scheme. Algorithm 1

describes the execution during a single online step t, within a single phase r. Algorithm 1
uses an auxiliary variable δ, the measure of progress by which we update all other variables.

Algorithm 1 Primal-Dual Algorithm for step t within phase r
Input: current solutions x, Y , current limit α. Output: updated values for x, Y .
While Ax 6< Bt:
1. Let V be a density matrix (V < 0, trV = 1) such that Ax • V < Bt • V .
2. While Ax • V < 2Bt • V and

∑n
i=1 cixi < α:

a. Set δ = 0 initially, and increase it in a continuous manner.
b. Increase Y continuously by adding V δ to it.
c. Increase x continuously by setting:

xi = α

2nci
exp

(
log 2n
ci

Ai • Y
)
.

Algorithm 2 Phase Scheme
Initialize r = 1, α (0) = minni=1

citrB1
2trAi

.
For t = 1, 2, . . . :
1. Let α (r) = 2α (r − 1), Yr = 0, xr,i = α(r)

2nci
for i = 1, . . . , n.

2. Run Algorithm 1 on xr, Yr, α (r).
3. If

∑
cixr,i ≥ α (r), then update r ← r + 1 and go to step 1.

4. Return solutions
∑
r xr,i,

∑
r Yr.

I Theorem 1.
The scheme generates a feasible primal solution with a competitive ratio of O (logn).
The scheme generates a dual solution with competitive ratio of O (logn), and each
constraint is violated by a factor of at most O

(
log logn+ log OPTt

α(1)

)
.

The scheme terminates, and its runtime is O
(
n
(

log logn+ log OPTt

α(1)

))
Before we prove the theorem, we establish some assisting claims. Let X (r) and Y (r)

be the values of the primal and dual solutions, respectively, generated in the r-th phase.
We say that the r-th phase is finished if the condition in step 3 of Algorithm 2 holds, i.e.∑
cixr,i ≥ α (r).
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I Lemma 2. For each finished phase r, Y (r) ≥ α (r) /4 log 2n.

Proof. In the beginning of phase r, we have xi = α(r)
2nci

, therefore X (r) = α(r)
2 . The dual

cost is zero. When the phase ends, X (r) ≥ α (r). The proof is completed by showing that
at every point in Algorithm 1, we have ∂X(r)

∂δ ≤ 2 log 2n∂Y (r)
∂δ . To show this, we have

∂X (r)
∂δ

= ∂

∂δ

(
n∑
i=1

cixi

)
=

n∑
i=1

ci
∂xi
∂δ

=
n∑
i=1

ci
∂

∂δ

(
α (r)
2nci

exp
(

log 2n
ci

Ai • (Y + δV )
))

=
n∑
i=1

ci
log 2n
ci

(Ai • V ) α (r)
2nci

exp
(

log 2n
ci

Ai • (Y + δV )
)

=
n∑
i=1

log 2n (Ai • V )xi = log 2n
(

n∑
i=1

Aixi

)
• V

= log 2nAx • V ≤ 2 log 2nBt • V = 2 log 2n∂Y (r)
∂δ

.

The last inequality holds since we only increase δ while Ax • V < 2Bt • V . J

I Lemma 3. The dual solution generated during each phase is feasible.

Proof. Consider the i-th dual constraint of the form Ai • Y ≤ ci. Since we are in the r-th
phase, the current primal solution’s value is at most α (r), therefore the value of xi can be at
most α(r)

ci
. Thus:

α (r)
2nci

exp
(

log 2n
ci

Ai • Y
)

= xi ≤
α (r)
ci

.

Simplifying, we get that Ai • Y ≤ ci. The final dual constraint Y < 0 is satisfied since Y is
the sum of p.s.d matrices δV . J

I Lemma 4. The total cost of the primal solutions generated from the first phase until the
r-th phase is less than 2α (r).

Proof. We bound the total cost paid by the online algorithm. The total primal cost in the
r-th phase is at most α (r). Since the ratio between α (k) and α (k − 1) is 2, we get that the
total cost until the r-th phase is at most

∑r
k=1 α (k) = α (r)

∑r
k=1

1
2k−1 ≤ 2α (r). J

I Lemma 5. If the algorithm stops during a certain phase, then x is feasible.

Proof. The algorithm stops only when Ax < Bt. Also, x ≥ 0 throughout the entire run of
the algorithm, since we only increase each xi from an initially positive value α(r)

2nci
> 0. J

I Lemma 6. The number of iterations (= choices of V ) in each phase is at most n+ 1.

Proof. Consider any iteration in Algorithm 1 for which the while loop terminates because
Ax • V ≥ 2Bt • V . In the beginning of the while loop, we have Ax • V < Bt • V . This
implies that at least one xi was doubled during the iteration. Now, xi ≥ α(r)

2nci
, therefore

each iteration increases the primal value by at least cixi ≥ α(r)
2n . Since the primal value

is α(r)
2 in the beginning of the phase, after n such choices of V it must reach α (r) and

the phase will be finished. Accounting for the possibly one extra iteration when the while
loop terminates because the condition

∑
i cixi ≥ α is satisfied, the number of iterations is

bounded by n+ 1. J
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I Lemma 7. The number of phases reached by step t is bounded by O
(

log logn+ log OPTt

α(1)

)
.

Proof. Let R > 1 be the current phase. Then

α (1) 2R−2 = α (R− 1) ≤ 4 log (2n)Y (R− 1) ≤ 4 log (2n)OPTt

⇒ R ≤ 2 + log
(

2 log (2n) OPTt
α (1)

)
= O

(
log logn+ log OPTt

α (1)

)
.

The first inequality above follows by Lemma 2, and the second because Y (R− 1) is a feasible
solution by Lemma 3. J

Proof of Theorem 1. Suppose the online scheme terminates within R phases. Note that if
R = 1 then since X (1) ≤ α (1) ≤ OPT1 and x is feasible (from Lemma 5)), we must have
exactly reached the end of the phase, i.e. X = α (1) = OPT1, Y ≥ OPT1

log 2n , and Y is also
feasible (from Lemma 3). From now on assume R > 1.

By Lemma 5, the primal solution is feasible. The total primal cost is bounded by:

total primal cost ≤ 2α (R) = 4α (R− 1) ≤ 16 log 2nY (R− 1) ≤ 16 log (2n)OPTt.

The first inequality is by Lemma 4, the second by Lemma 2, and the last one by Lemma 3.
By Lemma 3, the dual solution in each phase is feasible. Summing up over R phases and
using the bound for R from Lemma 7, we get that the dual solution is violated up to
R ≤ O

(
log logn+ log OPTt

α(1)

)
. The total dual cost is bounded by:

total dual cost =
R∑
r=1

Y (r) ≥ Y (R− 1) ≥ α (R− 1)
4 log 2n = α (R)

8 log 2n ≥
X (R)
8 log 2n ≥

OPTt
8 log 2n.

The second inequality is by Lemma 2 and the last one by Lemma 5.
The runtime and termination of the scheme follow immediately from Lemmas 6 and 7.

J

4 Box Constraints

In this section we introduce box constraints to our program, i.e. every variable xi is now
limited to a bounded range 0 ≤ xi ≤ ui. Surprisingly, these bounds allows us to achieve
approximation factors which do not depend on n, the number of matrices in the primal
problem, but rather on a natural property of the program which we call the sparsity. Without
loss of generality, we can assume ui = 1 by replacing Ai with A′i = uiAi, and ci with
c′i = uici. We note that this assumption does alter the sparsity of the program. Our
primal-dual problems with box constraints are the following:

min
∑n
i=1 cixi maxBt • Y −

∑n
i=1 zi

s.t.
∑n
i=1Aixi < Bt s.t. ∀i ∈ [n] Ai • Y − zi ≤ ci

∀i ∈ [n] 0 ≤ xi ≤ 1 Y < 0, z ≥ 0
.

4.1 Sparsity
The sparsity of a semidefinite program is defined as:

F ∗ = max
t

max
S⊆[n]

min
V<0:

(
Bt−
∑

i∈S
Ai

)
•V >0

∑
i/∈S Ai • V(

Bt −
∑
i∈S Ai

)
• V

.
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This quantity can be viewed as follows. If we saturate all variables in S, then
∑
i∈S Ai is

the coverage we get from the saturated variables, and Bt −
∑
i∈S Ai is the remainder that

we still need to cover.
∑
i/∈S Ai is the total coverage potential of the unsaturated variables.

We project both of these matrices,
∑
i/∈S Ai and Bt −

∑
i∈S Ai, onto some witness V , and

take the ratio
∑

i /∈S
Ai•V(

Bt−
∑

i∈S
Ai

)
•V

. This is the ratio by which we “over-cover” the remainder

Bt−
∑
i∈S Ai if we use up all non-saturated variables. It turns out that F ∗ ≥ 1. We actually

use a relaxed version of F ∗ which may yield an even better result:

F = max
t,S occuring in the algorithm

min
V<0:

(
Bt−
∑

i∈S
Ai

)
•V >0

∑
i/∈S Ai • V(

Bt −
∑
i∈S Ai

)
• V

.

Here, the maximum is taken only over each online step t and the corresponding set of
saturated variables S at step t. For fixed t, S, we can compute the minimum value of this
ratio (and a minimizer V ) very efficiently, see Lemma 8 below for details. Although we
show that F ≤ F ∗, we still phrase our results using F ∗, since F ∗ only depends on the given
program, while F also depends on the specific choices made by the algorithm. We note
that it is not necessarily the case that F ∗ ≤ n, thus it would only make sense to use this
parameter if the specifics of the problem can guarantee a better bound on F ∗ than n.

To further illustrate the meaning of F ∗, it is useful to consider the set cover problem. As
discussed earlier, set cover is obtained when all matrices Ai and Bt are diagonal, and having
only entries from {0, 1} on the diagonal. To analyze F ∗ in this case, it is sufficient to observe
witness matrices V of the form Ej,j (any other witness is simply a convex combination of
these). Then

∑
i/∈S Ai • V and

∑
i∈S Ai • V are equal to the number of non-saturated and

saturated sets which contain element j respectively; and Bt • V is 1 if element j needs to
be covered and 0 otherwise. Clearly the only way in which

(
Bt −

∑
i∈S Ai

)
• V > 0, is if

element j needs to be covered and none of the sets containing it are saturated. Then, the
expression

∑
i /∈S

Ai•V(
Bt−
∑

i∈S
Ai

)
•V

is exactly the number of sets containing j. Thus, F ∗ in this

case is exactly the maximum number of sets that an element is contained in (taken over the
elements which the algorithm is required to cover). This matches the notion of row sparsity
of a linear program, and clearly in this case F ∗ ≤ n.

I Lemma 8. Let N be a positive semidefinite matrix and D be a symmetric matrix. Then
the minimum value of the ratio N•V

D•V such that V � 0 and D • V > 0 is equal to the smallest
non-negative root of the polynomial equation det(N − λD) = 0.

Proof. Let V be an optimal solution. Since V � 0, we can express it as V =
∑
` v`v

T
` for

some vectors v`. Since N � 0, we have N • v`vT` ≥ 0. Then we claim that D • v`vT` ≥ 0;
otherwise, we could drop v`vT` from the sum forming V and decrease the ratio. Next, note that
N•V
D•V =

∑
`
N•v`v

T
`∑

`
D•v`vT

`

≥ min`
{
N•v`v

T
`

D•v`vT
`

}
, and so we conclude that there is a rank 1 minimizer.

Let this minimizer be V = vvT for some vector v. The minimum ratio is then obtained by
minimizing vTNv subject to vTDv = 1. The Karush-Kuhn-Tucker conditions imply that the
optimal vector v satisfies the generalized eigenvalue equation, Nv = λDv for some constant
λ (the generalized eigenvalue). Note that N•vvT

D•vvT = λ. Since we require vTDv = 1, and
vTNv ≥ 0, only non-negative values of λ are admissible. Since the generalized eigenvalues λ
are roots of the polynomial equation det (N − λD) = 0, and we conclude that the minimum
value of the ratio is the smallest non-negative root of this polynomial equation. J
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4.2 Algorithm Description
We now describe an algorithm for semidefinite covering-packing with box constraints. We
denote by S the set of indices i of saturated primal variables xi, i.e. variables which have
reached their upper bound: S = {i|xi = 1}. We use the following notations for simplicity:
AS̄x =

∑
i/∈S Aixi, and ASx =

∑
i∈S Ai (note that in the second notation, we omit the xi’s

because they are all saturated, so are equal to 1). We use an auxiliary variable δ, which is
the measure of progress by which we update all other variables.

Algorithm 3 Primal-Dual Algorithm For Box Constraints
Initialize x = 0, z = 0, Y = 0.
Upon arrival of a new constraint matrix Bt, while Ax 6< Bt:
1. Let V be a density matrix (V < 0, trV = 1) such that Ax • V < Bt • V , minimizing the

ratio
∑

i /∈S
Ai•V

Bt•V−
∑

i∈S
Ai•V

.

2. Update F = max
{
F,

∑
i /∈S

Ai•V

Bt•V−
∑

i∈S
Ai•V

}
.

3. While AS̄x • V < 2 [Bt • V −ASx • V ]:
a. Set δ = 0 initially, and increase it in a continuous manner.
b. Increase Y continuously by adding V δ to it.
c. For every i such that xi = 1, increase zi continuously at rate Ai • V δ.
d. Update x continuously by setting:

xi = max
{
xi,

1
F

(
exp

(
log (F + 1)

ci
(Ai • Y − zi)

)
− 1
)}

.

I Theorem 9. The algorithm produces a feasible primal solution with a competitive ratio of
O (logF ∗), and a feasible dual solution with a competitive ratio of O (logF ∗).

The proof is omitted due to space constraints.

5 Rounding

In this section, we discuss the integer version of online semidefinite programming, and how
our results in the previous sections can be rounded to an integer solution.

5.1 Changing the Framework
An integer semidefinite program is the following:

min
∑n
i=1 cix̂i

s.t.
∑n
i=1Aix̂i < I

∀i ∈ [n] x̂i ∈ Nn
.

Note the different notation for integer variables x̂i as opposed to real-valued variables xi of
the previous sections. Also note that we now restrict the covered matrix to be the identity
matrix I. This is a necessity for our rounding scheme. To justify why this is not any different
from the general setting, we invoke some linear algebra. First, assume that B is of full rank
(and, of course, p.s.d.). Then B is congruent to I, by some invertible matrix X such that
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XTBX = I. Now
∑n
i=1Aix̂i < B if and only if

∑n
i=1X

TAiXx̂i < XTBX = I. We can
change the matrices A′i = XTAiX so as to arrive at the formulation above.

However, restricting B to be of full rank throughout the entire online algorithm does
not make much sense. To overcome this, we change the framework to allow the dimension
m of the matrices to increase over time. Let mt be the dimension of the online problem at
step t. Then, in step t+ 1, the dimension of the matrices may increase to mt + 1 (or may
stay mt). The covering matrices A(t+1)

i must contain A(t)
i as their top-left submatrix, and

they must be p.s.d., i.e. A(t+1)
i < 0. The covered matrix B(t+1) must also be p.s.d., and

its top-left submatrix of dimension mt must be greater than or equal to B(t) in the p.s.d.
partial ordering. The online integer semidefinite program is therefore:

min
∑n
i=1 cix̂i

s.t.
∑n
i=1A

(t)
i x̂i < B(t)

∀i ∈ [n] x̂i ∈ Nn
,

where A(t)
i , B(t) ∈ Rmt×mt , and B(t) is of full rank for all t.

Under these assumptions, it can be verified that our algorithms from Sections 3 and 4 still
work (for real-valued solutions xi ∈ Rn). For Section 3, it is important to note that OPTt
indeed increases with t. The proof of the next lemma is omitted due to space constraints.

I Lemma 10. With the above assumptions, OPTt ≤ OPTt+1.

Another consideration when discussing rounding is scale – if A1 = (M) and B = (1)
(matrices of dimension 1), then the optimum fractional solution is x1 = 1

M but the optimum
integer solution is 1, which costs M times the fractional solution. Therefore we must assume
some kind of bound on the covering matrices (we use λ1 (Ai) ≤ R), and we will be paying for
this bound in our competitive ratio. As demonstrated by this example, this is unavoidable.

5.2 A Randomized Rounding Algorithm

We use a simple randomized rounding scheme. We run the algorithm described in Section 31
to maintain a fractional solution x(t), and we round that solution to an integer solution x̂(t),
so that Ex̂(t) = ρtx

(t), where ρt is an approximation factor (see algorithm for exact definition),
which we adjust as the dimension of the matrices grows. We then use the feasibility of x(t) to
show that w.h.p. x̂(t) is also feasible. The rounding is done as follows: whenever a variable
xi increases from x

(t−1)
i to x(t)

i , we add 1 to x̂i with probability ρtx(t)
i − ρt−1x

(t−1)
i . Since

mt and x(t) can only increase with t, so can ρt and thus ρtx(t)
i − ρt−1x

(t−1)
i is non-negative.

To make sure that this value is always ≤ 1, we can simply break up the increase in xi into
smaller steps. This is expressed formally in algorithm 4.

I Theorem 11. The resulting solution’s expected cost is at most O (R (logmt + logn)) times
the cost of the fractional solution.

The proof is omitted due to space constraints.

1 If box constraints are given, we can run the algorithm from Section 4 instead. The only modification to
the rounding is that each variable is increased at most once. The same analysis holds for both cases.
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Algorithm 4 Randomized rounding

Let R > 0 be such that λ1 (Ai) ≤ R for all i.
Initialize x̂(0) = 0
For step t = 1, 2, . . . :

Let ρt = 1 + max {8R (log 2mt + logn) , 2}.
Use Algorithms (2) or (3) to compute the fractional solution x(t).
For i = 1, . . . , n:
∗ Let di,t =

⌊
ρtx

(t)
i − ρt−1x

(t−1)
i

⌋
, and δi,t = ρtx

(t)
i − ρt−1x

(t−1)
i − di,t

∗ Let x̂(t)
i,1, . . . , x̂

(t)
i,di,t

= 1.

∗ Let x̂(t)
i,di,t+1 =

{
1 with probability δi,t
0 otherwise

.

∗ return x̂(t)
i = x̂

(t−1)
i + x̂

(t)
i,1 + · · ·+ x̂

(t)
i,di,t+1.

5.3 An Application – Quantum Hypergraph Covering

Quantum hypergraphs originate from the field of quantum information theory. A hypergraph
is a pair (V,E) where E ⊆ 2V . The hypergraph covering problem (finding a collection of
edges covering all vertices) is equivalent to set cover. Let each edge e ∈ E be represented by
a {0, 1} diagonal matrix Ae, where the i-th diagonal entry is 1 if and only if the i-th element
in V belongs to e. The hypergraph covering problem is to find a collection of edges such that∑
e∈cover Ae < I. A quantum hypergraph is a pair (V,E), where each e ∈ E corresponds to a

symmetric matrix Ae of dimension |V |, such that 0 4 Ae 4 I. The difference is that Ae need
not be diagonal or only have {0, 1} eigenvalues. The quantum hypergraph covering problem is
thus the problem of finding a minimum collection of edges in E that satisfy

∑
e∈cover Ae < I.

The fractional quantum hypergraph covering problem is the problem of assigning non-negative
weights xe to each e ∈ E such that

∑
e∈E xeAe < I|V |, while minimizing

∑
e∈E xe.

Ahlswede and Winter [1] used a novel approach to develop a matrix-valued generalization
of the Chernoff inequality. They applied this inequality in the analysis of their randomized
rounding scheme, which takes a fractional quantum hypergraph cover and rounds it to a
quantum hypergraph cover. They showed that this rounding finds a cover which is at most
O (logm) times larger than the minimum cover, where m is the dimension of the matrices
involved. Wigderson and Xiao [7] derandomized this result to provide a deterministic
algorithm for quantum hypergraph covering. Their result also produces an O (logm)-
approximation cover. In addition to the quantum hypergraph covering problem, Wigderson
and Xiao also provided a more general algorithm for integer semidefinite programming.

It is easy to see that the fractional quantum hypergraph covering problem is exactly the
semidefinite covering problem, with the added requirement that all the covering matrices Ae
fall in the range [0, I], and the covered matrix is the identity matrix B = I. When translating
this into an online setting, the most natural approach is to look at the setting presented in
Section 5, where the dimension of the matrices can increase but the covered matrix must
have full rank. The online quantum hypergraph covering problem is thus the problem of
maintaining a monotonically increasing cover while the edges are revealed one dimension at
a time. In this setting, combining algorithms 2 and 4 gives an O (logn logm)-competitive
solution to online quantum hypergraph programming (R = 1 since 0 4 Ae 4 I).
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Abstract
In the online bin packing problem, items of sizes in (0, 1] arrive online to be packed into bins of
size 1. The goal is to minimize the number of used bins. Harmonic++ achieves a competitive
ratio of 1.58889 and belongs to the Super Harmonic framework [Seiden, J. ACM, 2002]; a lower
bound of Ramanan et al. shows that within this framework, no competitive ratio below 1.58333
can be achieved [Ramanan et al., J. Algorithms, 1989]. In this paper, we present an online
bin packing algorithm with asymptotic performance ratio of 1.5815, which constitutes the first
improvement in fifteen years and reduces the gap to the lower bound by roughly 15%.

We make two crucial changes to the Super Harmonic framework. First, some of the decisions
of the algorithm will depend on exact sizes of items, instead of only their types. In particular,
for item pairs where the size of one item is in (1/3, 1/2] and the other is larger than 1/2 (a large
item), when deciding whether to pack such a pair together in one bin, our algorithm does not
consider their types, but only checks whether their total size is at most 1.

Second, for items with sizes in (1/3, 1/2] (medium items), we try to pack the larger items of
every type in pairs, while combining the smallest items with large items whenever possible. To
do this, we postpone the coloring of medium items (i.e., the decision which items to pack in pairs
and which to pack alone) where possible, and later select the smallest ones to be reserved for
combining with large items. Additionally, in case such large items arrive early, we pack medium
items with them whenever possible. This is a highly unusual idea in the context of Harmonic-like
algorithms, which initially seems to preclude analysis (the ratio of items combined with large
items is no longer a fixed constant).

For the analysis, we carefully mark medium items depending on how they end up packed,
enabling us to add crucial constraints to the linear program used by Seiden. We consider the
dual, eliminate all but one variable and then solve it with the ellipsoid method using a separation
oracle. Our implementation uses additional algorithmic ideas to determine previously hand set
parameters automatically and gives certificates for easy verification of the results.

We give a lower bound of 1.5766 for algorithms like ours. This shows that fundamentally
different ideas will be required to make further improvements.
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41:2 Beating the Harmonic Lower Bound for Online Bin Packing

1 Introduction

In the online bin packing problem, a sequence of items with sizes in the interval (0, 1] arrive
one by one and need to be packed into bins, so that each bin contains items of total size
at most 1. Each item must be irrevocably assigned to a bin before the next item becomes
available. The algorithm has no knowledge about future items. There is an unlimited supply
of bins available, and the goal is to minimize the total number of used bins (bins that receive
at least one item). Bin packing is a classical and well-studied problem in combinatorial
optimization. Extensive research has gone into developing approximation algorithms for this
problem, e.g. [5, 7, 6, 12, 17, 9]. Such algorithms have provably good performance for any
possible input and work in polynomial time. In fact, the bin packing problem was one of the
first for which approximation algorithms were designed [10].

For bin packing, we are typically interested in the long-term behavior of algorithms:
how good is the algorithm for large inputs? If we simply compare to the optimal solution,
the worst ratio is often determined by some very small inputs. To avoid such pathological
instances, the asymptotic performance ratio was introduced: For a given input sequence σ,
let A(σ) be the number of bins used by algorithm A on σ. The asymptotic performance ratio
for an algorithm A is defined to be

R∞A = lim sup
n→∞

sup
σ

{
A(σ)

opt(σ)

∣∣∣∣opt(σ) = n

}
. (1)

From now on, we only consider the asymptotic competitive ratio unless otherwise stated.
Lee and Lee [13] presented an algorithm called Harmonic, which partitions the interval

(0, 1] into m > 1 intervals (1/2, 1], (1/3, 1/2], . . . , (0, 1/m]. The type of an item is defined as
the index of the interval which contains its size. Each type of items is packed into separate
bins (i items per bin for type i). For any ε > 0, there is a number m such that the Harmonic
algorithm that uses m types has a performance ratio of at most (1 + ε)Π∞ [13], where
Π∞ ≈ 1.69103.

If we consider the bins packed by Harmonic, then it is apparent that in bins with
type 1 items, nearly half the space can remain unused. It is better to use this space for
items of other types. After a sequence of papers which used this idea to develop ever better
algorithms [13, 15, 16], Seiden [18] presented a general framework called Super Harmonic
which captures all of these algorithms. Super Harmonic algorithms classify items based
on an interval partition of (0, 1] and give each item a color as it arrives, red or blue. For
each type of items j, the fraction of red items is some constant denoted by αj . Blue items
are packed as in Harmonic, i.e., for each item type j, every bin with blue items contains
a maximal number of blue items. (This may leave some space for smaller red items of
different types.) Red items are packed in bins which are only partially filled. The idea is that
hopefully, later blue items of other types will arrive that can be placed into the bins with
red items. Seiden [18] showed that the Super Harmonic algorithm Harmonic++, which
uses 70 intervals for its classification and has about 40 manually set parameters, achieves a
performance ratio of at most 1.58889.

Ramanan et al. [15] gave a lower bound of 19/12 ≈ 1.58333 for this type of algorithm. It
is based on inputs like the one shown in Figure 1, which contains a medium item (size in
(1/3, 1/2]) and a large item (size in (1/2, 1]). Both of these items arrive N times for some
large number N , and although they fit pairwise into bins, the algorithm never combines
them like this. No matter how fine the item classification of an algorithm, pairs of items
such as these, that the algorithm does not pack together into one bin, can always be found.
(To complete the lower bound construction, we also need to consider inputs containing the
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1/3

0.34 0.65

Figure 1 Part of the lower bound construction from Ramanan et al. [15]. The figure shows how
one bin is packed in the optimal solution. Both of these items arrive many times.

(a) Pack items one per bin with provi-
sional coloring.

(b) A provisional red item arrives.

(c) We fix the colors. The smallest item
becomes red.

(d) Additional blue items of the same
type are added.

Figure 2 Illustration of the coloring in Extreme Harmonic. In this example, α = 1/9. Note
that the ratio of 1/9 does not hold (for the bins shown) at the time that the colors are fixed: 1/5 of
the items are red at this point. The ratio 1/9 is achieved when all bins with blue items contain two
blue items.

sizes 1/3 + ε, 1/2 + ε, which can be combined into a single bin, and the input consisting only
of items of size 1/3 + ε.)

We avoid this lower bound construction by defining the algorithm so that it simply
combines medium and large items whenever they fit together in a single bin. Essentially,
we use Any Fit to combine such items into bins (under certain conditions specified below).
This is a generalization of the well-known algorithms First Fit and Best Fit [19, 7],
which have been used in similar contexts before [2, 1]. Proving formally that this helps
to improve the asymptotic performance ratio requires a surprising amount of additional
technical modifications to the algorithm and the proof, in particular setting up a complete
marking scheme (see below).

As in the Super Harmonic framework, medium items that are packed in pairs are
colored blue, and the ones that are packed alone into bins (possibly together with items of
other types) are colored red. At this point it is important to note that medium items of any
given type are not all exactly the same size, since the type only specifies an interval. This
means that the items of any given type could arrive in such an order that all of the red items
are slightly larger than the blue ones. Then, when large items arrive later, it could be that
they are too large to fit in bins with red medium items, so the online algorithm is forced to
pack them into new bins.

In order to benefit from using Any Fit, it is crucial to ensure that for each medium
type, as much as possible, it is the smallest items that are colored red. We will do this by
initially packing each medium item alone into a bin and giving it a provisional color. After
several items of the same type have arrived, we will color the smallest one red and start
packing additional medium items of the same type together with the other items, that are
now colored blue. (See Figure 2.) In this way, we can ensure that at least half of the blue
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41:4 Beating the Harmonic Lower Bound for Online Bin Packing

items (namely, the ones that had already arrived at the time when we select the smallest
to be red) are at least as large as the smallest red items. The point of this is that if those
red items are still alone in bins at the end of the input, opt cannot pack too many bins as
shown in Figure 1, because this can only happen with large items that do not fit with the
red items that remain alone in bins (Lemma 6).

We do not postpone the coloring decisions in the following two cases.
1. If a bin with suitable small red items is available, we will pack p into that bin and color

it blue, regardless of the precise size of p.1 In this case, in our analysis we will exploit
the fact that these small items exist in the input, meaning that not all optimal bins are
packed as shown in Figure 1: the small items must be packed somewhere (Lemma 7).

2. If bins with a large item are available, and p fits into such a bin, we will pack p in one
such bin. This is the best case overall, since finding combinations like this was exactly
our goal! However, there is a technical problem with this, which we discuss below.

Overall, we have three different cases: medium items are packed alone initially (in which case
we have a guarantee about the sizes of some of the blue items), medium items are combined
with smaller red items (so these red items exist and must be packed: Lemma 7), or medium
items are combined with larger blue items (which is exactly our goal). The main technical
challenge is to quantify these different advantages into one overall analysis. In order to do
this (i.e., to prove Lemmas 6 and 7), we introduce - in addition to and separate from the
coloring – a marking of the medium items, which we now describe.

R For any medium type j, a fraction αj of the items marked R are red, and all of these
red items are packed into mixed bins (i.e., together with a large item).

B For any medium type j, a fraction αj of the items marked B are red, and the blue items
are packed into mixed bins (i.e., together with red items of other (smaller) types)

N For any medium type j, a fraction αj of the items marked N are red, and none of the
red and blue items marked N are packed into mixed bins.

Our marking is illustrated in Figure 3. Maintaining the fraction αj of red items for all
marks separately is crucial for the analysis. However, we note here immediately that the
fraction αj of red items is not actually maintained continuously throughout the execution
for all marks. This can be seen clearly for the items marked R, where the ratio only becomes
equal to αj (ignoring rounding) after all the bins with single blue items in them receive
additional blue items (see Figure 2).

Seemingly more problematically, it could happen that many large items arrive first,
leading to more than an αj fraction of the items of type j and mark B being packed with the
large items and colored red. (Potentially, this could even happen to all of them.) While this
is in principle exactly what we want to achieve, there is no guarantee that later in the input,
sufficiently many additional items of type j will arrive to restore the correct ratio αj . This is
a problem for our analysis, which assumes the ratio αj is maintained exactly. However, if we
insist on maintaining this ratio throughout, i.e., if we color some of these items blue and pack
them in pairs even though they could fit with existing large items, we end up with the same
worst case instances as for Super Harmonic. We deal with this case by modifying the input
(for the analysis) after it has been packed. By this and some additional postprocessing, we
ensure that for each mark R,B,N , an αj fraction of the medium items of type j are indeed
colored red in the end (ignoring rounding) as required. The postprocessing also ensures that

1 Unless we already have sufficiently many blue items of the type of p, in which case we pack p into a
separate bin and color it red to maintain the correct fraction of red items.
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(a)

R R R R R

bB or bB + 1 blue items

(b)

B

B
B

B
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B

B

B

B

bN
(c)

N N N N N

Figure 3 Illustrating the marking of the items. Again we take αi = 1/9. (a) Items get mark
R: provisionally blue items and a red item in a mixed bin. Bins with blue R-items will receive a
second blue item of the same type before a new bin is opened for this type. (b) Items get mark B: a
provisionally red item and blue items (in pairs) in mixed bins. (c) Items get mark N : provisionally
blue and provisionally red items. Note that in this step, the colors of items might be fixed to a
different color than their provisional color. Bins with blue items will receive a second blue item of
the same type before a new bin is opened for this type. See Fig. 2.

the marks are all correct. For instance, if a red item is packed with a blue item marked N ,
the mark of that blue item gets adjusted in the end.

Like Seiden [18] and many other authors [19, 13, 15], we use weighting functions to analyze
our algorithm. A weighting function defines a weight for each item type. By analyzing these,
Seiden ended up with a set of mathematical programs that upper bounded the asymptotic
performance ratio of Super Harmonic algorithms. These represented a kind of knapsack
problems where each item has two different weights. Seiden used heuristics to get exact
upper bounds for the solutions of these mathematical programs.

We use a different approach for the Extreme Harmonic framework. First of all we
split each mathematical program into two standard linear programs, where both linear
programs have a constraint that states its objective value should be smaller than that of the
other one (representing for each one that the minimum is achieved for the set of weights it
considers). To each linear program, we add two constraints that are based on the marking
of the medium items. These constraints essentially state that in the optimal solution for a
given input, there cannot be too many bins that are packed as shown in Figure 1 (unless
the online algorithm also packs the items like this). This is the key to our improvement of
the asymptotic performance ratio. However, after adding these constraints, the heuristic
approach by Seiden can no longer be applied. Since each linear program has a very large
number of variables but only four constraints, we take the dual and apply the ellipsoid
method to solve it. To do this, we construct a separation oracle. This separation oracle
solves a standard knapsack problem, making the results much easier to verify.

In order to apply the ellipsoid method, we write the dual in terms of just one variable, by
eliminating two variables and assuming a third one to be given. This means that we can
now do a straightforward binary search for the final remaining variable. We implemented a
computer program which solves the knapsack problems and also does the other necessary work,
including the automated setting of many parameters like item sizes and α values. As a result,
our algorithm Son Of Harmonic requires far less manual settings than Harmonic++.

Our program uses an exact representation of fractions with arbitrary precision in order
to avoid rounding errors. For our final calculations we have set the bound such that every
dual LP is feasible; this means that our results do not rely on the correctness of any
infeasibility claims (which are generally harder to prove). We provide a certificate and a
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41:6 Beating the Harmonic Lower Bound for Online Bin Packing

verifier program, and we also output the final set of knapsack problems directly to allow
independent verification.

Our second main contribution is a new lower bound for all algorithms of this kind. The
fundamental property of all these algorithms is that they color a fixed fraction of all items
red (for each type). We show that no such algorithm can be better than 1.5766-competitive.
Due to space constraints, this result is deferred to the full version.

1.1 Previous Results
The online bin packing problem was first investigated by Ullman [19]. He showed that
the First Fit algorithm has performance ratio 17

10 . This result was then published in [7].
Johnson [11] showed that the Next Fit algorithm has performance ratio 2. Yao showed that
Revised First Fit has performance ratio 5

3 , and further showed that no online algorithm
has performance ratio less than 3

2 [21]. Brown and Liang independently improved this lower
bound to 1.53635 [4, 14]. The lower bound stood for a long time at 1.54014, due to van
Vliet [20], until it was improved to 248

161 = 1.54037 by Balogh et al. [3].
The offline version, where all the items are given in advance, is well-known to be NP-

hard [8]. This version has also received a great deal of attention, for a survey see [5].

2 The Super Harmonic framework [18]

The fundamental idea is to first classify items by size, and then pack an item according to
its type. We use numbers t1 ≥ t2 ≥ · · · ≥ tN to partition the interval (0, 1] into subintervals
(N is a parameter). We define Ij = (tj+1, tj ] for i = 1, . . . , N and IN+1 = (0, tN+1]. An item
of size s has type j if s ∈ Ij . A type j item has size at most tj .

For each type j, a fraction αj ∈ [0, 1] of items are colored red when they arrive, the rest
are colored blue. Blue items are packed using Next Fit: we use each bin until exactly
bluefitj := b1/tjc items are packed into it. Red items are also packed using Next Fit, but
using only some fixed amount of the available space in a bin. This space is not necessarily
exactly some value 1 − bluefitjtj ; for any given type j, there may be several other types
that the algorithm will potentially pack into a bin together with items of type j. For each
type of items that have size at most 1/3, the algorithm chooses in advance an upper bound
for the space that red items may occupy from a fixed set D = {∆i}Ki=1 of spaces, where
∆1 ≤ · · · ≤ ∆K . For medium items (i.e., items whose size is in (1/3, 1/2]), red items are
packed one per bin. The number of red items of type i that are packed in one bin is denoted
by redfiti. In the space not used by blue (resp. red) items, the algorithm may pack red
(resp. blue) items. Each bin will contain items of at most two different types.

A Super Harmonic algorithm uses a function b : {1, . . . , N} → {0, . . . ,K} to map each
item type to an index of a space in D, indicating how much space for red items it leaves
unused in bins with blue items of this type. Here b(j) = 0 means that no space is left for red
items. The algorithm also uses a function r : {1, . . . , N} → {1, . . . ,K} to map how much
space (given by an index of D) red items of each type require.

We say that the class of an item of type j is b(j), if it is blue, and r(j) if it is red.2 Thus,
the class of a blue item reflects how much space is left (at least) in a bin with blue items of
this type, and the class of a red item indicates how much space red items of this type require
(at most) in a bin. There are four kinds of bins.

2 Seiden used the notation φ(j) and ϕ(j) for these functions.
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Pure blue: {i|b(i) = 0, 1 ≤ i ≤ N}. No red items are ever packed into such bins.
Unmixed blue: {(i, ?)|b(i) 6= 0, 1 ≤ i ≤ N}. There is at least one blue item in the bin,
and red items might still be packed into it (in the free space of size ∆b(i)).
Unmixed red: {(?, j)|αi 6= 0, 1 ≤ i ≤ N}. There is at least one red item in the bin and no
blue items, but blue items might still be packed in it (in the free space of size 1−∆r(i)).
Mixed bins: {(i, j)|bi 6= 0, αj 6= 0, tj ≤ ∆b(i), 1 ≤ i ≤ N, 1 ≤ j ≤ N}. There are items of
both colors.

An unmixed blue bin is compatible with a red item of type i if the bin is in a group (j, ?)
and b(j) ≥ r(i). An unmixed red bin is compatible with a blue item of type i if the bin is in
a group (?, j) and b(i) ≥ r(j). In both cases, the condition means that the blue items and
the red items together would use at most 1 space in the bin (the blue items leave enough
space for the red items).

3 Marking the items and the Extreme Harmonic framework

The heart of our improvement over the Super Harmonic framework is marking the medium
items. It enables us to keep track of how they are packed, allowing us to prove the crucial
Lemmas 6 and 7 later, which bound how often “bad” patterns of the form shown in Figure 1
(which have weight > 1.5815) can be used in the optimal solution. Mark Items divides the
medium items into three sets N ,B and R (see Figure 3). Every time an item arrives, after it
is packed using the new framework below, Mark Items performs one of the three steps in
Figure 3 if possible. This is done to keep the number of provisionally colored items small (a
constant). We define Mark Items formally in the full version.

I Theorem 1. At all times, there are at most 5/αi provisionally colored items of type i.

Once assigned, an item remains in a set until the end of the input. This holds even if e.g. a
blue item is packed with a red N -item, meaning that a more appropriate mark for the red
item is B. We change marks where needed only after all items have been packed.

Let ni count the total number of items of type i, and nir count the number of red items
of type i. For a given type i and set X, denote the number of red items in set X by nir(X),
the number of blue items by nib(X), and the total number of items by ni(X). After all items
have arrived and after some postprocessing, we will have

nir(X) = bαini(X)c for X ∈ {N ,B,R} and each medium type i. (2)

I Definition 2. An unmixed bin is red-compatible with a newly arriving item if (1) the bin
contains (provisionally) blue items of type i, the new item is of type j and will be colored
red, and b(i) ≥ r(j), or (2) the bin contains a large item of size s, the new item is medium
and has size at most 1− s. The definition for unmixed bins being blue-compatible to new
items is completely analogous.

We say that a (mixed or unmixed) bin is red-open if it contains some non-provisionally red
items but can still receive additional red items. We define blue-open analogously.

Like Super Harmonic algorithms, an Extreme Harmonic algorithm first tries to
pack a red (blue) item into a red-open (blue-open) bin with items of the same type and color;
then it tries to find a unmixed compatible bin; if all else fails, it opens a new bin. Of course,
the definition of compatible has been extended compared to Super Harmonic (where this
concept was not defined explicitly). Note that the choice of bin depends on the actions of
Mark Items, since that algorithm fixes the colors of some items and bins.
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41:8 Beating the Harmonic Lower Bound for Online Bin Packing

1 ni ← ni + 1
2 if p is medium, αi > 0, and there exists a red-compatible bin B with a large item then
3 Place p in B and label it as bonus item. // special case: existing bin
4 ni ← ni − 1 // we do not count this item for type i

5 else
6 if nir < bαinic then // pack a (provisionally) red item
7 if there is a bin B with a bonus item of type i or there is a bin B with a bonus

item of type j and r(i) ≤ b(j) then
8 Label the medium item in B as type i and color it red. It is no longer a

bonus item.
9 ni ← ni + redfiti // count medium item as type i item(s)

10 nir ← nir + redfiti
11 Pack(p, blue) // since we now have nir ≥ bαinic again
12 else Pack(p, red)
13 else // pack a (provisionally) blue item
14 if b(i) = 0 then pack p using Next Fit into pure bins of type i and color p blue.
15 else Pack(p, blue)
16 Update the marks and colors using Mark Items.
Algorithm 1: How the Extreme Harmonic framework packs a single item p of type
i < n. At the beginning, we set nir ← 0 and ni ← 0 for 1 ≤ i ≤ n.

1 Try the following types of bins to place p with (provisional) color c in this order:
2 a mixed or unmixed c-open bin with items of type i and definite color c
3 a c-compatible unmixed bin (the bin becomes mixed, its items’ colors are fixed)
4 a new unmixed bin
5 If p was packed into a new bin, p is medium and αi > 0, give p provisionally the color

c, else give it the definite color c. If p got the definite color red, nir ← nir + 1.
Algorithm 2: The algorithm Pack(p, c) for packing an item p of type i with color
c ∈ {blue, red}.

The new framework is formally described in Algorithm 1 and 2. We require αi < 1/3
for all types i. We discuss the changes from Super Harmonic one by one. All the changes
stem from our much more careful packing of medium items.

As can be seen in Algorithm 2 (lines 2, 4 and 5), medium items that are packed into
new bins are initially packed one per bin and given a provisional color. The goal of having
provisionally colored items is to try and make sure that the smallest items of each type
become red in the end. Thus, we wait until some number of these items have arrived, and
then color the smallest one red (Figure 2).

When an item arrives, in many cases, we cannot postpone assigning it a color, since a
c-open or c-compatible bin is already available (see lines 2–3 of Pack(p, c)). Additionally,
we need to check right at the start whether a suitable large item has already arrived. We
deal with this case in lines 2–4 of Algorithm 1. In this special case, we ignore the value αi.
We pack the medium item with the large item as if it was a red item, but we do not count it
towards the total number of existing items of its type; instead we label it a bonus item.
Bonus items do not have a color or mark, at least initially.
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N U
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F

Figure 4 Reassigning marks after the input is complete. Items are sorted into their correct sets
whenever possible, updating the marks that they received while the algorithm was running. Some
item sizes are reduced. The bins next to the arrows indicate what sets of bins are being reassigned.
The step marked with F takes place at the end of the postprocessing, after all other steps.

This means that we have (possibly temporarily) too many items of this type that are
packed as red items (we do not count them towards the quantities ni and nir, but we do
record that they exist). There are several ways that this can be fixed later on. Either,
additional blue items of type i arrive and we can restore the correct ratio of red items. Or,
some item of type j and size at most 1/3 arrives that should be colored red and is compatible
with blue items of type i. In this case, for our accounting, we replace the bonus item with
redfitj red items of type j, adjust the counts accordingly in lines 9–10, and color the new
type j item blue.3 Finally, it could also happen that some bonus items remain until the end;
in this case we use careful post-processing so that each item does have a type and color at
the end, and the ratio αi is maintained. Note that we only modify item sizes for the analysis,
and we only make items smaller, so the value of the optimal solution can only decrease and
the implied competitive ratio can only increase as a result. Also note that allowing bonus
items (i.e., occasionally packing too many items as red items) is essential to achieve a better
competitive ratio; without this, we would get the same lower bound instances as before.

It can be seen that blue items of size at most 1/3 are packed as in Super Harmonic.
For red items of size at most 1/3, we need to deal with existing bonus items in lines 9–10,
and in line 3 of Pack(p, c), the provisional color of an existing item may be made permanent.
Otherwise, the packing proceeds as in Super Harmonic. By the order in which existing
bins are tried for packing new items, c-open bins always take precedence over other bins.

4 Postprocessing

After the algorithm has packed all items, we perform some postprocessing. For an overview
of our changes of marks and sizes, see Figure 4. A formal version is given in the full paper.

3 Note that the meanings of i and j are switched in the description of the algorithm for reasons of
presentation.
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I Theorem 3. After postprocessing, (2) holds. Each blue item in N ,R and B is packed in a
bin that contains two blue items. No bins with items in N or red items in B are mixed.

In line 3 of Extreme Harmonic, bonus items are created. These are medium items which
are packed together with a large blue item. Some of them may still be bonus when the
algorithm has finished. Also, some of them may be labeled with a different type than the type
they belong to according to their size. We call such items reduced items. In an additional
postprocessing step, we split up reduced items into (possibly several) red items of the type
with which we labeled the item. If any bonus items remain, we modify the packing that the
algorithm outputs (for the analysis) by replacing some number of bins with a large blue item
and a red medium item by the same number of bins with two blue medium items. Note that
we only make items smaller, so all items still fit in their bins in both the optimal packing
and the online packing. We finally achieve the following result.

I Theorem 4. For each type i, we have nir ∈ [bαinic − 3, bαinic].

5 Analysis using weights

Let A be an Extreme Harmonic algorithm. For analyzing the asymptotic performance
ratio of A, we will use the well-known technique of weighting functions: We assign weights
to each item such that the number of bins that our algorithm uses in order to pack a specific
input is equal to the sum of the weights of all items in this input. Then, we determine the
maximum weight that can be packed in a single bin. Clearly, the offline algorithm cannot
pack more weight than this in any of its bins, thus this maximum weight for a single bin
gives us an upper bound on the competitive ratio.

Recall that the class of a red item of type i is r(i) and the class of a blue item of type i
is b(i). Let r be the smallest red item in a bin that has no blue items. Let the type of r be `,
and k = r(`). The weights of a non-large item p will depend on its class relative to k, and on
its mark in case its class is k. The value of k (and the marks) become clear by running the
algorithm. Note that the algorithm including the postprocessing does not depend on the
weight functions in any way. There are 2K weighting functions in total, where K = |D| is
the number of different spaces used for red items. For each k, wk counts all the blue items,
and vk counts all the red items. The two weight functions of an item p of type i and mark
m are given by the following table. The marks are only relevant for items of class k.

wk(p) = wk(i,m) vk(p) = vk(i,m)
1−αi

bluefiti
+ αi

redfiti
if r(i) > k 1−αi

bluefiti
+ αi

redfiti
if b(i) < k

1−αi

bluefiti
+ αi

redfiti
if r(i) = k,m ∈ {N ,B, ∅} αi

redfiti
if b(i) ≥ k

1−αi

bluefiti
if r(i) = k,m = R

1−αi

bluefiti
if r(i) < k

I Theorem 5. We have A(σ) ≤ max1≤k≤K+1 min {
∑n
i=1 wk(pi),

∑n
i=1 vk(pi)} + O(1) for

any Extreme Harmonic algorithm A and any input σ.

A pattern is a tuple q = {q1, . . . , qm} such that
∑m
i=1 qiti+1 < 1. Intuitively, a pattern

describes the contents of a bin in the optimal offline solution. For a given weight function w,
the weight of pattern q is w(q) = w (1−

∑m
i=1 qiti+1) +

∑
qiw(ti).

Denote the (finite) set of patterns by Q. We can define an offline algorithm for a given
input by a distribution χ over the patterns, where χ(q) indicates which fraction of the bins
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are packed using pattern q. To show that a given Extreme Harmonic algorithm has
performance ratio at most 1.5815 for input sequences with r having class k, we must show

min {
∑n
i=1 wk(pi),

∑n
i=1 vk(pi)}

OPT (σ) = min
{∑n

i=1 wk(pi)
OPT (σ) ,

∑n
i=1 vk(pi)
OPT (σ)

}
≤min

{∑
q∈Q χ(q)wk(q),

∑
q∈Q χ(q)vk(q)

}
≤ 1.5815 (3)

for all such inputs σ. As can be seen from this bound, the question now becomes: what is
the distribution χ (the mix of patterns) that maximizes the minimum in (3)?

For this χ, the following constraints hold. Consider an input where r > 1/3. Let m(q)
be the number of N -items of type ` in pattern q. Let q1 be the pattern with an N -item
of type ` and an item of type i where b(i) = k − 1. (Such an item is larger than 1 − r.)
The parameters of the algorithm, in particular the type boundaries, must be such that this
pattern is unique (i.e., no non-sand item can be added); it is easy to ensure this holds by
setting an appropriate upper bound for the sand.

I Lemma 6. If r > 1/3 and the type of r is `, then m(q) ∈ {0, 1, 2} for all q, and
χ(q1) ≤ 1−α`

1+α`

∑
q 6=q1

χ(q)m(q).

For any j and q, let nj(q) be the number of items of type j in pattern q. Let q2 be the
pattern with a B-item of the type of r and an item larger than 1− r. Like q1, q2 should be
unique (this is easy to guarantee and check). Note that the patterns q1 and q2 are versions
of the pattern shown in Figure 1.

I Lemma 7. If r > 1/3, and ` is the type of r, 1−α`

2 χ(q2) ≤
∑
r(j)≤b(`)

∑
q

αj

redfitj
χ(q)nj(q).

Maximizing the minimum in (3) is the same as maximizing the first term under the
condition that it is not larger than the second term—except that this condition might not
be satisfiable, in which case we need to maximize the second term. We are led to consider
two linear programs, which we will call LP kw and LP kv . Let Q = {q1, . . . , q|Q|} and let
χi = χ(qi), wik = wk(qi), nij = nj(qi),mi = m(qi). LP kw is the following linear program.

max
∑|Q|
i=1 χiwik // First term in (3) (4)

s.t. χ1 − 1−α`

2
∑|Q|
i=2 χimi ≤ 0 // Lemma 6 (5)

1−α`

2 χ2 −
∑
j:r(j)≤b(`)

∑|Q|
i=3

αj

redfitj
χinij ≤ 0 // Lemma 7 (6)∑|Q|

i=3 χi (wik − vik) ≤ 0 // Bound on first term (7)∑|Q|
i=1 χi ≤ 1 // χ is a distribution (8)

χi ≥ 0, 1 ≤ i ≤ |Q| // χ is a distribution (9)

LP kw has a very large number of variables but only four constraints (apart from the
non-negativity constraints). In (7) we use the following proposition.

I Proposition 8. w1k = v1k, w2k = v2k.

The dual DP kw is the following.

min y4 (10)
s.t. y1 + y4 ≥ w1k (11)

1− α`
2 y2 + y4 ≥ w2k (12)

− 1−α`

2 miy1 − y2
∑
j:r(j)≤b(`)

αj

redfitj
nij + (wik − vik)y3 + y4 ≥ wik i = 3, . . . , |Q| (13)

yi ≥ 0 i = 1, . . . , 4 (14)
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If the objective value of DP kw as well as that of DP kv is at most some value y∗4 (or if one is
infeasible), then y∗4 upper bounds the asymptotic performance ratio of our algorithm for this
value of k by duality and by (3). It is easy to see that if for some feasible y∗, constraint
(11) or (12) is not tight, then we can decrease y∗1 or y∗2 and still have a feasible solution. We
therefore restrict our search to solutions for which (11) and (12) are tight. Given y∗4 , we then
know the values of y∗1 and y∗2 . If the constraint (13) does not hold for pattern qi and a given
dual solution y∗, we have the following:

(1− y∗3)wik + y∗3vik + 1− α`
2 miy

∗
1 + y∗2

∑
j:r(j)≤b(`)

αjnj > y∗4 (15)

Note that we get exactly the same condition by considering DP kv due to symmetry.
Recall that wik and vik are just the sums of the respective weights of all the non-sand

items in pattern qi. Based on (15), we define a new weighting function ω(p) as follows.

ω(p) =


(1− y∗3)wk(p) + y∗3vk(p) + 1−α`

2 y∗1 type of p is ` (= type of e)
(1− y∗3)wk(p) + y∗3vk(p) + y∗2αj type of p is j, r(j) ≤ b(`)
(1− y∗3)wk(p) + y∗3vk(p) else

The inequality (15) then turns into ω(qi) > y∗4 . For given y∗4 , we can therefore determine
feasibility of (11)–(13) by using the ellipsoid method, fortunately for only one dimension:
that is, we do a binary search for y∗3 ∈ [0, 1]. For every value y∗3 that we consider, we solve a
simple knapsack problem to determine W = maxq∈Q ω(q) using a dynamic program.

Summarizing the above discussion, proving that an algorithm is c-competitive can be done
by running the described binary search for k = 1, . . . ,K using y∗4 = c. Note that for r ≤ 1/3,
we do not have conditions (5) and (6), and we can define ω(p) = (1− y∗3)wk(p) + y∗3vk(p) for
all items.

For our algorithm Son Of Harmonic we have set initial values as follows. The last three
columns contain item sizes and corresponding αi values that were set manually, separated
by semicolons. Numbers of the form 1/i until the value tN are added automatically by
our program if they are not listed below, but only up to 1/50; for very small items, we
(automatically) merge some consecutive classes without loss of performance to speed up the
binary search.

c = 15815
10000

tN = 1
2100

γ = 2
7

(starting from 1
14 )

Last type before small
type generation: 1

50

Item bounds and α values:
33345/100000;0
33340/100000;0
5/18;2/100
7/27;105/1000

1/4;106/1000
8/39;8/100
1/5;93/1000
3/17;3/100
1/6;8/100

3/20;0
29/200;0
1/7;16/100
1/13;1/8
1/14;1/13

The remaining values αi are set automatically using heuristics designed to speed up the
search and minimize the resulting upper bound. In the range (1/3, 1/2], we automatically
generate item sizes (with corresponding α values and ∆i values) that are less than tN
apart to ensure uniqueness of q1 and q2. The value γ specifies how much room is used by
red items of size at most 1/14; larger items (≤ 1/3) use at most 1/3 room. Our computer
program and more information is available at http://people.mpi-inf.mpg.de/~heydrich/
extremeHarmonic/index.html.
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Abstract
We design the first online algorithm with poly-logarithmic competitive ratio for the edge-weighted
degree-bounded Steiner forest (EW-DB-SF) problem and its generalized variant. We obtain
our result by demonstrating a new generic approach for solving mixed packing/covering integer
programs in the online paradigm. In EW-DB-SF, we are given an edge-weighted graph with a
degree bound for every vertex. Given a root vertex in advance, we receive a sequence of terminal
vertices in an online manner. Upon the arrival of a terminal, we need to augment our solution
subgraph to connect the new terminal to the root. The goal is to minimize the total weight
of the solution while respecting the degree bounds on the vertices. In the offline setting, edge-
weighted degree-bounded Steiner tree (EW-DB-ST) and its many variations have been extensively
studied since early eighties. Unfortunately, the recent advancements in the online network design
problems are inherently difficult to adapt for degree-bounded problems. In particular, it is not
known whether the fractional solution obtained by standard primal-dual techniques for mixed
packing/covering LPs can be rounded online. In contrast, in this paper we obtain our result
by using structural properties of the optimal solution, and reducing the EW-DB-SF problem
to an exponential-size mixed packing/covering integer program in which every variable appears
only once in covering constraints. We then design a generic integral algorithm for solving this
restricted family of IPs.

As mentioned above, we demonstrate a new technique for solving mixed packing/covering
integer programs. Define the covering frequency k of a program as the maximum number of
covering constraints in which a variable can participate. Let m denote the number of pack-
ing constraints. We design an online deterministic integral algorithm with competitive ratio of
O(k logm) for the mixed packing/covering integer programs. We prove the tightness of our result
by providing a matching lower bound for any randomized algorithm. We note that our solution
solely depends on m and k. Indeed, there can be exponentially many variables. Furthermore,
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42:2 Online Weighted Degree-Bounded Steiner Networks

our algorithm directly provides an integral solution, even if the integrality gap of the program is
unbounded. We believe this technique can be used as an interesting alternative for the standard
primal-dual techniques in solving online problems.

1998 ACM Subject Classification I.1.2 Algorithms, G.2.2 [Graph Theory] Network problems

Keywords and phrases Online, Steiner Tree, Approximation, Competitive ratio

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.42

1 Introduction

Degree-bounded network design problems comprise an important family of network design
problems since the eighties. Aside from various real-world applications such as vehicle routing
and communication networks [6, 32, 38], the family of degree-bounded problems has been a
testbed for developing new ideas and techniques. The problem of degree-bounded spanning
tree, introduced in Garey and Johnson’s Black Book of NP-Completeness [29], was first
investigated in the pioneering work of Fürer and Raghavachari [15]. In this problem, we are
required to find a spanning tree of a given graph with the goal of minimizing the maximum
degree of the vertices in the tree. Let b∗ denote the maximum degree in the optimal spanning
tree. Fürer and Raghavachari give a parallel approximation algorithm which produces a
spanning tree of degree at most O(log(n)b∗). This result was later generalized by Agrawal,
Klein, and Ravi [1] to the case of degree-bounded Steiner tree (DB-ST) and degree bounded
Steiner forest (DB-SF) problem. In DB-ST, given a set of terminal vertices, we need to
find a subgraph of minimum maximum degree that connects the terminals. In the more
generalized DB-SF problem, we are given pairs of terminals and the output subgraph should
contain a path connecting each pair. Fürer and Raghavachari [16] significantly improved the
result for DB-SF by presenting an algorithm which produces a Steiner forest with maximum
degree at most b∗ + 1.

The study of DB-ST and DB-SF was the starting point of a very popular line of work
on various degree-bounded network design problems; e.g. [28, 31, 27, 22, 13] and more
recently [14, 13]. One particular variant that has been extensively studied was initiated
by Marathe et al. [28]: In the edge-weighted degree-bounded spanning tree problem, given a
weight function over the edges and a degree bound b, the goal is to find a minimum-weight
spanning tree with maximum degree at most b. The initial results for the problem generated
much interest in obtaining approximation algorithms for the edge-weighted degree-bounded
spanning tree problem [11, 10, 17, 23, 24, 25, 26, 34, 35, 36]. The groundbreaking results
obtained by Goemans [18] and Singh and Lau [37] settle the problem by giving an algorithm
that computes a minimum-weight spanning tree with degree at most b+1. Singh and Lau [27]
generalize their result for the edge-weighted Steiner tree (EW-DB-ST) and edge-weighted
Steiner forest (EW-DB-SF) variants. They design an algorithm that finds a Steiner forest
with cost at most twice the cost of the optimal solution while violating the degree constraints
by at most three.

Despite these achievements in the offline setting, it was not known whether degree-bounded
problems are tractable in the online setting. The online counterparts of the aforementioned
Steiner problems can be defined as follows. The underlying graph and degree bounds are
known in advance. The demands arrive one by one in an online manner. At the arrival of a
demand, we need to augment the solution subgraph such that the new demand is satisfied.
The goal is to be competitive against an offline optimum that knows the demands in advance.

http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.42
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Recently, Dehghani et al. [12] explore the tractability of the Online DB-SF problem by
showing that a natural greedy algorithm produces a solution in which the degree bounds are
violated by at most a factor of O(logn), which is asymptotically tight. They analyze their
algorithm using a dual fitting approach based on the combinatorial structures of the graph
such as the toughness1 factor. Unfortunately, they can also show that greedy methods are
not competitive for the edge-weighted variant of the problem. Hence, it seems unlikely that
the approach of [12] can be generalized to EW-DB-SF.

The online edge-weighted Steiner connectivity problems (with no bound on the degrees)
have been extensively studied in the last decades. Imase and Waxman [21] use a dual-fitting
argument to show that the greedy algorithm has a competitive ratio of O(logn), which is also
asymptotically tight. Later the result was generalized to the EW SF variant by Awerbuch et
al. [4] and Berman and Coulston [7]. In the past few years, various primal-dual techniques
have been developed to solve the more general node-weighted variants [2, 30, 19], prize-
collecting variants [33, 20], and multicommodity buy-at-bulk [9]. These results are obtained
by developing various primal-dual techniques [2, 19] while generalizing the application of
combinatorial properties to the online setting [30, 20, 9]. In this paper however, we develop
a primal approach for solving bounded-frequency mixed packing/covering integer programs.
We believe this framework would be proven useful in attacking other online packing and
covering problems.

1.1 Our Results and Techniques
In this paper, we consider the online Steiner tree and Steiner forest problems at the presence
of both edge weights and degree bounds. In the Online EW-DB-SF problem, we are given a
graph G = (V,E) with n vertices, edge-weight function w, degree bound bv for every v ∈ V ,
and an online sequence of connectivity demands (si, ti). Let wopt denote the minimum weight
subgraph which satisfies the degree bounds and connects all demands. Let ρ = maxe w(e)

mine:w(e)>0 w(e) .

I Theorem 1. There exists an online deterministic algorithm which finds a subgraph with
total weight at most O(log3 n)wopt while the degree bound of a vertex is violated by at most a
factor of O(log3(n) log(nρ)).

If one favors the degree bounds over total weight, one can find a subgraph with degree-bound
violation O(log3(n) log(nρ))

log log(nρ) ) and total cost O(log3(n) log(nρ))
log log(nρ) )wopt.

We note that the logarithmic dependency on ρ is indeed necessary. It follows from the
result of [12] that the competitive ratio of any algorithm is either Ω(n) or Ω(log ρ).

Our technical contribution for solving the EW-DB-SF problem is twofold. First by
exploiting a structural result and massaging the optimal solution, we show a formulation
of the problem that falls in the restricted family of bounded-frequency mixed packing/cover
IPs, while losing only logarithmic factors in the competitive ratio. We then design a generic
online algorithm with a logarithmic competitive ratio that can solve any instance of the
bounded-frequency packing/covering IPs. In what follows, we describe our results in detail.

1.1.1 Massaging the optimal solution
Initiated by work of Alon et al. [2] on online set cover, Buchbinder and Naor developed a
strong framework for solving packing/covering LPs fractionally online. For the applications

1 The toughness of a graph is defined as minX⊆V
|X|

|CC(G\X)| ; where for a graph H, CC(H) denotes the
collection of connected components of H.
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of their general framework in solving numerous online problems, we refer the reader to the
survey in [8]. Azar et al. [5] generalize this method for the fractional mixed packing and
covering LPs. The natural linear program relaxation for EW-DB-SF, commonly used in the
literature, is a special case of mixed packing/covering LPs: one needs to select an edge from
every cut that separates the endpoints of a demand (covering constraints), while for a vertex
we cannot choose more than a specific number of its adjacent edges (packing constraints).
Indeed, one can use the result of Azar et al. [5] to find an online fractional solution with
polylogarithmic competitive ratio. However, doing the rounding in an online manner seems
very hard.

Offline techniques for solving degree-bounded problems often fall in the category of
iterative and dependent rounding methods. Unfortunately, these methods are inherently
difficult to adapt for an online settings since the underlying fractional solution may change
dramatically in between the rounding steps. Indeed, this might be the very reason that
despite many advances in the online network design paradigm in the past two decades, the
natural family of degree-bounded problems has remained widely open. In this paper, we
circumvent this by reducing EW-DB-ST to a novel formulation beyond the scope of standard
online packing/covering techniques and solving it using a new online integral approach.

The crux of our IP formulation is the following structural property: Let (si, ti) denote the
ith demand. We need to augment the solution Qi−1 of previous steps by buying a subgraph
that makes si and ti connected. Let Gi denote the graph obtained by contracting the pairs
of vertices sj and tj for every j < i. Note that any (si − ti)-path in Gi corresponds to a
feasible augmentation for Qi−1. Some edges in Gi might be already in Qi−1 and therefore
by using them again we can save both on the total weight and the vertex degrees. However,
in Section 2 we prove that there always exists a path in Gi such that even without sharing
on any of the edges in Gi and therefore paying completely for the increase in the weight
and degrees, we can approximate the optimal solution up to a logarithmic factor. This
in fact, enables us to have a formulation in which the covering constraints for different
demands are disentangled. Indeed, we only have one covering constraint for each demand.
Unfortunately, this implies that we have exponentially many variables, one for each possible
path in Gi. This may look hopeless since the competitive factors obtained by standard
fractional packing/covering methods introduced by Buchbinder and Naor [8] and Azar et
al. [5], depend on the logarithm of the number of variables. Therefore we come up with a
new approach for solving this class of mixed packing/covering integer programs (IP).

1.1.2 Bounded-frequency mixed packing/covering IPs
We derive our result for EW-DB-ST by demonstrating a new technique for solving mixed
packing/covering integer programs. We believe this approach could be applicable to a
broader range of online problems. The integer program IP1 describes a general mixed
packing/covering IP with the set of integer variables x ∈ Zn≥0 and α. The packing constraints
are described by a m× n non-negative matrix P . Similarly, the q × n matrix C describes
the covering constraints. The covering frequency of a variable xi is defined as the number of
covering constraints in which xi has a positive coefficient. The covering frequency of a mixed
packing/covering program is defined as the maximum covering frequency of its variables.

minimize α , (IP1)
s.t. Px ≤ α .

Cx ≥ 1 .

x ∈ Z≥0, α ∈ R>0 .
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In the online variant of mixed packing and covering IP, we are given the packing constraints
in advance. However the covering constraints arrive in an online manner. At the arrival
of each covering constraint, we should increase the solution x such that it satisfies the
new covering constraint. We provide a deterministic algorithm for solving online mixed
packing/covering IPs.

I Theorem 2. Given an instance of the online mixed packing/covering IP, there exists a
deterministic integral algorithm with competitive ratio O(k logm), where m is the number of
packing constraints and k is the covering frequency of the IP.

We note that the competitive ratio of our algorithm is independent of the number of variables
or the number of covering constraints. Indeed, there can be exponentially many variables.

Our result can be thought of as a generalization of the work of Aspnes et al. [3] on
virtual circuit routing. Although not explicit, their result can be massaged to solve mixed
packing/covering IPs in which all the coefficients are zero or one, and the covering frequency
is one. They show that such IPs admit a O(log(m))-competitive algorithms. Theorem 2
generalizes their result to the case with arbitrary non-negative coefficients and any bounded
covering frequency.

We complement our result by proving a matching lower bound for the competitive ratio
of any randomized algorithm. This lower bound holds even if the algorithm is allowed to
return fractional solutions.

I Theorem 3. Any randomized online algorithm A for integral mixed packing and covering is
Ω(k logm)-competitive, where m denotes the number of packing constraints, and k denotes the
covering frequency of the IP. This even holds if A is allowed to return a fractional solution.

As mentioned before, Azar et al. [5] provide a fractional algorithm for mixed packing/-
covering LPs with competitive ratio of O(logm log d) where d is the maximum number of
variables in a single constraint. They show an almost matching lower bound for deterministic
algorithms. We distinguish two advantages of our approach compared to that of Azar et al.:

The algorithm in [5] outputs a fractional competitive solution which then needs to be
rounded online. For various problems such as Steiner connectivity problems, rounding
a solution online is very challenging, even if offline rounding techniques are known.
Moreover, the situation becomes hopeless if the integrality gap is unbounded. However,
for bounded-frequency IPs, our algorithm directly produces an integral competitive
solution. Thus it does not depend on rounding methods, and is applicable to problems
with large integrality gap, or the problems for which it is shown that rounding methods
do not preserve any approximation guarantee, and as such, the traditional approach fails.
Azar et al. find the best competitive ratio with respect to the number of packing constraints
and the size of constraints. Although these parameters are shown to be bounded in
several problems, in many problems such as connectivity problems and flow problems,
formulations with exponentially many variables are very natural. Our techniques provide
an alternative solution with a tight competitive ratio, for formulations with bounded
covering frequency.

1.2 Preliminaries
Let G = (V,E) be an undirected graph of size n (|V | = n). Let w : E → Z>0 be a function
denoting the edge weights. For a subgraph H ⊆ G, we define w(H) :=

∑
e∈E(H) w(e).

For every vertex v ∈ V , let bv ∈ Z>0 denote the degree bound of v. Let degH(v) denote
the degree of vertex v in subgraph H. We define the load lH(v) of vertex v w.r.t. H as
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degH(v)/bv. In DB-SF we are given graph G, degree bounds, and k connectivity demands.
Let σi denote the i-th demand. The i-th demand is a pair of vertices σi = (si, ti), where
si, ti ∈ V . In DB-SF the goal is to find a subgraph H ⊆ G such that for each demand σi, si
is connected to ti in H, for every vertex v ∈ V , lH(v) ≤ 1, and w(H) is minimized. In this
paper without loss of generality we assume the demand endpoints are distinct vertices with
degree one in G and degree bound infinity.

In the online variant of the problem, we are given graph G and degree bounds in advance.
However the sequence of demands are given one by one. At arrival of demand σi, we are
asked to provide a subgraph Hi, such that Hi−1 ⊆ Hi and si is connected to ti in Hi.

The following integer program is a natural mixed packing and covering integer program for
EW-DB-SF. Let S denote the collection of subsets of vertices that separate the endpoints
of at least one demand. For a set of vertices S, let δ(S) denote the set of edges with exactly
one endpoint in S. In SF_IP, for an edge e, xe = 1 indicates that we include e in the solution
while xe = 0 indicates otherwise. The variable α indicates an upper bound on the violation
of the load of every vertex and an upper bound on the violation of the weight. The first set
of constraints ensures that the load of a vertex is upper bounded by α. The second constraint
ensures that the violation for the weight is upper bounded by α. The third set of constraints
ensures that the endpoints of every demand are connected. Here we assume wopt is known
to the algorithm, although this can be waived by standard doubling techniques.

minimize α . (SF_IP)

∀v ∈ V 1
bv

∑
e∈δ({v})

xe ≤ α . (1)

1
wopt

∑
e∈E

w(e)xe ≤ α . (2)

∀S ⊆ S
∑
e∈δ(S)

xe ≥ 1 . (3)

xe ∈ {0, 1}, α ∈ Z>0 .

1.3 Overview of the Paper
We begin Section 2 by providing a bounded frequency IP for EW-DB-SF. The IP is not
a proper formulation of the problem, however, we can show that one can map feasible
solutions of EW-DB-SF to feasible solutions of the IP without increasing the cost too
much. In Section 3 we provide a deterministic algorithm for online bounded frequency mixed
packing/covering IPs. In the full version of the paper, we also provide a matching lower
bound for the competitive ratio of any randomized algorithm. Finally, in Section 4 we merge
our techniques to obtain online polylogarithmic-competitive algorithms for EW-DB-SF.

2 Finding the Right Integer Program

In this section we design an online mixed packing and covering integer program for EW-DB-SF.
We show this formulation is near optimal, i.e. any f−approximation for this formulation,
implies an O(f log2 n)-approximation for EW-DB-SF. In Section 4 we show there exists
an online algorithm that finds an O(logn)-approximation solution for this IP and violates
degree bounds by O(log3 n logwopt), where wopt denotes the optimal weight.

First we define some notations. For a sequence of demands σ = 〈(s1, t1), . . . , (sk, tk)〉,
we define Rσ(i) to be a set of i edges, connecting the endpoints of the first i demands.
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v1

v2 v4

t2: v6t1: v5

s1:

s2: v3

Figure 1 An example where every vertex has degree-bound 3 and every edge has weight 1. The
first demand is (v2, v5) and the second demand is (v3, v6). The optimal solution for SF_IP is a
subgraph, say H, with the set of all edges and vertices, i.e. H = G. However an optimal solution
for PC_IP is: Two subgraphs H1 for the first request which has edges {e(v1, v2), e(v1, v4), e(v4, v5)}
and H2 for the second request which has edges {e(v2, v3), e(v4, v5), e(v4, v6)}. Note that w(H) = 5
and w(H1) + w(H2) = 6, since we have edge e(v4, v5) in both H1 and H2. Moreover the number of
edges incident with v4 in the solution of PC_IP is 4, i.e. degH1 (v4) + degH2 (v4) = 4.

In particular Rσ(i) :=
⋃i
j=1 e(sj , tj), where e(sj , tj) denotes a direct edge from sj to tj .

Moreover, we say subgraph Hi satisfies the connectivity of demand σi = (si, ti), if si and ti
are connected in graph Hi ∪Rσ(i− 1). Let Hi denote the set of all subgraphs that satisfy
the connectivity of demand σi. In PC_IP variable α denotes the violation in the packing
constraints. Furthermore for every subgraph H ⊆ G and demand σi, there exists a variable
xiH ∈ {0, 1}. xiH = 1 indicates we add the edges of H to the existing solution, at arrival of
demand σi. The first set of constraints ensure the degree-bounds are not violated more than
α. The second constraint ensures the weight is not violated by more than α. The third set
of constraints ensure the endpoints of every demand are connected.

minimize α . (PC_IP)

∀v ∈ V 1
bv

k∑
i=1

∑
H⊆G

degH(v)xiH ≤ α . (4)

1
wopt

k∑
i=1

∑
H⊆G

w(H)xiH ≤ α . (5)

∀σi
∑
H∈Hi

xiH ≥ 1 . (6)

∀H ⊆ G, 1 ≤ i ≤ k xiH ∈ {0, 1} .
α > 0 .

We are considering the online variant of the mixed packing and covering program. We
are given the packing Constraints (4) and (5) in advance. At arrival of demand σi, the
corresponding covering Constraint (6) is added to the program. We are looking for an
online solution which is feasible at every online stage. Moreover the variables xH should be
monotonic, i.e. once an algorithm sets xH = 1 for some H, the value of xH is 1 during the
rest of the algorithm. Figure 1 illustrates an example which indicates the difference between
the solutions of PC_IP and SF_IP.

Let popt and lopt denote the optimal solutions for PC_IP and SF_IP, respectively.
Lemma 4 shows that given an online solution for PC_IP we can provide a feasible online
solution for SF_IP of cost popt.

I Lemma 4. Given a feasible solution {x, α} for PC_IP, there exists a feasible solution
{x′, α} for SF_IP.
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In the rest of this section, we show that we do not lose much by changing SF_IP to
PC_IP. In particular we show popt ≤ O(log2 n)lopt.

To this end, we first define the connective list of subgraphs for a graph G, a forest F , and
a list of demands σ. We then prove an existential lemma for such a list of subgraphs with a
desirable property for any 〈G,F, σ〉. With that in hand, we prove popt ≤ O(log2 n)lopt. In
what follows, we refer the reader to the full version of the paper for detailed proofs.

Given G, a list of demands σ = 〈(s1, t1), . . . , (sk, tk)〉, and a forest F ⊆ G:

I Definition 5. Let Q = 〈Q1, Q2, Q3, . . . , Qk〉 be a list of k subgraphs of F . We say Q is a
connective list of subgraphs for 〈G,F, σ〉 iff for every 1 ≤ i ≤ k there exists no cut disjoint
from Qi that separates si from ti, but does not separate any sj from tj for j < i.

The intuition behind the definition of connective subgraphs is the following: If Q is a
connective list of subgraphs for an instance 〈G,F, σ〉 then for every i we are guaranteed that
the union of all subgraphs ∪ij=1Qi connects si to ti. In Lemma 6 we show for every 〈G,F, σ〉,
there exists a connective list of subgraphs for 〈G,F, σ〉, such that each edge of F appears in
at most O(log2 n) subgraphs of Q.

I Lemma 6. Let G be a graph and F be a forest in G. If σ is a collection of k demands
〈(s1, t1), . . . , (sk, tk)〉, then there exists a connective list of subgraphs Q = 〈Q1, Q2, . . . , Qk〉
for 〈G,F, σ〉 such that every edge of F appears in at most 3 log2 |V (F )| number of Qi’s.

Proof. Here we give a sketch of the proof of lemma; we refer the reader to the full version
for detailed proofs. We first prove a cost-minimization variant of the lemma. Consider an
arbitrary weight vector ŵ : F → R≥0. We argue that there is a connective list Q, such
that

∑
i ŵ(Qi) ≤ O(log2 n)ŵ(F ). Let Ĥi = (V, F ∪ Rσ(i), ŵi) denote a weighted graph

for which ŵi(e) = ŵ(e) for e ∈ F , and ŵi(e) = 0 for e ∈ Rσ(i). Now we note that there
is no cost-sharing among Qi’s in the goal

∑
i ŵ(Qi). Therefore the optimal choice for Qi

corresponds to the minimum-weight (si, ti)-path in Ĥi−1. Hence, we need to analyze the
cost of these greedy choices.

Awerbuch et al. [4] showed that the greedy algorithm is indeed O(log2 n)-competitive for
the edge-weighted Steiner forest problem. The standard greedy algorithm is slightly different
from the greedy process we discussed above. In the greedy algorithm of Awerbuch et al., at
time step i we choose a minimum-cost (si, ti)-path in a graph in which there is a zero-cost
edge between any pair of vertices in the same connected component of the current solution;
not just the (sj , tj) pairs of the previous demands. However, in their analysis they only use
the zero-cost edges among the terminals of a previous demand. This is indeed not surprising
since we hardly have any control on the greedy choices other than the fact that they satisfy
the demands. Therefore the following claim follows from the result of Awebuch et al.2:

I Claim 7 (implicitly proven in Theorem 2.1 of [4]). For any weight function ŵ defined over
F , there exists a connective list Q for which∑

i

ŵ(Qi) ≤ O(log2 n)ŵ(F ).

However, Claim 7 is not enough for us. We need a solution in which every edge is used
at most O(log2 n) times, not just in an amortized sense. Indeed we can show that since

2 There is also a lower bound of Ω(log n) for the competitive ratio of the greedy algorithm. Closing the
gap between this lower bound and the upper bound of O(log2 n) for EW Steiner forest is an important
open problem.



S. Dehghani, S. Ehsani, M. Hajiaghayi, V. Liaghat, H. Räcke, and S. Seddighin 42:9

there is a solution for every weight function, we can have a fractional connective list Q in
which every edge is used (fractionally) at most O(log2 n) times. This implies that we have a
fractional connective list. Finally, we provide a rounding argument which obtains an integral
connective list by losing only a constant factor; which completes the proof of lemma. J

Finally, we can leverage Lemma 6 to show popt ≤ O(log2 n)lopt. This shows we
can use PC_IP as an online mixed packing/covering IP to obtain an online solution for
online edge-weighted degree-bounded Steiner forest losing a factor of O(log2 n).
In Section 4 we show this formulation is an online bounded frequency mixed packing/covering
IP, thus we leverage our technique for such IPs to obtain a polylogarithmic-competitive
algorithm for online EW-DB-SF.

3 Online Bounded Frequency Mixed Packing/Covering IPs

In this section we consider bounded frequency online mixed packing and covering integer
programs. For every online mixed packing and covering IP with covering frequency k,
we provide an online algorithm that violates each packing constraint by at most a factor
of O(k logm), where m is the number of packing constraints. We note that this bound
is independent of the number of variables, the number of covering constraints, and the
coefficients of the mixed packing and covering program. Moreover the algorithm is for integer
programs, which implies obtaining an integer solution does not rely on (online) rounding.

In particular we prove there exists an online O(k logm)-competitive algorithm for any
mixed packing and covering IP such that every variable has covering frequency at most k,
where the covering frequency of a variable xr is the number of covering constraints with a
non-zero coefficient for xr.

We assume that all variables are binary. One can see this is without loss of generality as
long as we know every variable xr ∈ {1, 2, 3, . . . , 2l}. Since we can replace xr by l variables
y1
r , . . . , y

l
r denoting the digits of xr and adjust coefficients accordingly. Furthermore, for now

we assume that the optimal solution for the given mixed packing and covering program is
1. In Theorem 10 we prove that we can use a doubling technique to provide an O(k logm)-
competitive solution for online bounded frequency mixed packing and covering programs
with any optimal solution. The algorithm is as follows. We maintain a family of subsets S.
Initially S = ∅. Let S(j) denote S at arrival of Cj+1. For each covering constraint Cj+1,
we find a subset of variables Sj+1 and add Sj+1 to S. We find Sj+1 in the following way.
For each set of variables S, we define a cost function τS(S(j)) according to our current S
at arrival of Cj+1. We find a set Sj+1 that satisfies Cj+1 and minimizes τS(S(j)). More
precisely we say a set of variables S satisfies Cj+1 if∑

xr∈S Cj+1,rxr ≥ 1, where Cj+1,r denotes the coefficient of Cj+1 for xr.
For each packing constraint Pi,

∑
xr∈S

1
kPir ≤ 1.

Now we add Sj+1 to S and for every xr ∈ Sj+1, we set xr = 1. We note that there always
exists a set S that satisfies Cj+1, since we assume there exists an optimal solution with value
1. Setting S to be the set of all variables with value one in an optimal solution which have
non-zero coefficient in Cj+1, satisfies Cj+1. It only remains to define τS(S(j)). But before
that we need to define ∆i(S) and Fi(S(j)). For packing constraint Pi and subset of variables
S, we define ∆i(S) as ∆i(S) :=

∑
xr∈S

1
kPir. For packing constraint Pi and S(j), let

Fi(S(j)) :=
∑

S∈S(j)

∆i(S) . (7)
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Now let τS(S(j)) =
∑m
i=1 ρ

Fi(S(j))+∆i(S) − ρFi(S(j)), where ρ > 1 is a constant to be defined
later.

Algorithm 1
Input: Packing constraints P , and an online stream of covering constraints C1, C2, . . ..
Output: A feasible solution for online bounded frequency mixed packing/covering.
Offline Process:
1: Initialize S ← ∅.
Online Scheme; assuming a covering constraint Cj+1 is arrived:
1: Sj+1 ← arg minS{τS(S(j)) | S satisfies Cj+1}.
2: for all xr ∈ Sj+1 do
3: xr ← 1.

Let x∗ be an optimal solution, and x∗(j) denote its values at online stage j. We define
Gi(j) as

Gi(j) :=
j∑
l=1

∑
r:Clr>0

1
k
x∗rPir . (8)

Now we define a potential function Φj for online stage j.

Φj =
m∑
i=1

ρFi(S(j))(γ −Gi(j)) , (9)

where ρ, γ > 1 are constants to be defined later.

I Lemma 8. There exist constants ρ and γ, such that Φj is non-increasing.

Proof. We find ρ and γ such that Φj+1 − Φj ≤ 0. By the definition of Φj ,

Φj+1 − Φj =
m∑
i=1

ρFi(S(j+1))(γ −Gi(j + 1))− ρFi(S(j))(γ −Gi(j)) . (10)

By Equation (7), ρFi(S(j+1)) − ρFi(S(j)) = ρFi(S(j))+∆i(S) − ρFi(S(j)). Moreover by Equation
(8), (γ − Gi(j + 1)) − (γ − Gi(j)) = −

∑
r:Cj+1,r>0

1
kx
∗
rPir. For simplicity of notation we

define Bi(j + 1) :=
∑
r:Cj+1,r>0

1
kx
∗
rPir. Thus we can write Equation (10) as:

Φj+1 − Φj =
m∑
i=1

ρFi(S(j+1))(γ −Gi(j)−Bi(j + 1))− ρFi(S(j))(γ −Gi(j)) (11)

=
m∑
i=1

(γ −Gi(j))(ρFi(S(j))+∆i(S) − ρFi(S(j)))− ρFi(S(j+1))Bi(j + 1) Since Gi(j) ≥ 0

≤
m∑
i=1

γ(ρFi(S(j))+∆i(S) − ρFi(S(j)))− ρFi(S(j+1))Bi(j + 1) Fi(S(j + 1)) ≥ Fi(S(j))

≤
m∑
i=1

γ(ρFi(S(j))+∆i(S) − ρFi(S(j)))− ρFi(S(j))Bi(j + 1) .

Now according to the algorithm for each subset of variables S′ such that
∑
xr∈S′ Cj+1(xr) ≥ 1,

either τS(S(j)) ≤ τS′(S(j)) or there exists a packing constraint Pi such that ∆i(S′) > 1. In
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Bi(j + 1), we are considering variables xr such that x∗e = 1, thus for every Pi, Bi(j + 1) ≤ 1.
Therefore setting S′ to be the set of variables xr such that x∗r = 1 and Cj+1,r > 0, we
have τS(S(j)) ≤ τS′(S(j)). Thus

∑m
i=1 ρ

Fi(S(j))+∆i(S)− ρFi(S(j)) ≤
∑m
i=1 ρ

Fi(S(j))+Bi(j+1)−
ρFi(S(j)). Therefore we can rewrite Inequality (11) as

Φj+1 − Φj ≤
m∑
i=1

γ(ρFi(S(j))+Bi(j+1) − ρFi(S(j)))− ρFi(S(j))Bi(j + 1) (12)

=
m∑
i=1

ρFi(S(j))(γρBi(j+1) − γ −Bi(j + 1)) .

We would like to find ρ and γ such that Φj is non-increasing. We find ρ and γ such that for
each packing constraint Pi, γρBi(j+1) − γ −Bi(j + 1) ≤ 0. Thus

γρBi(j+1) − γ ≤ Bi(j + 1) Since 0 ≤ Bi(j + 1) ≤ 1 (13)
γρBi(j + 1)− γ ≤ Bi(j + 1) By simplifying (14)

ρ ≤ 1 + 1/γ . (15)

Thus if we set ρ ≤ 1 + 1/γ, Φj is non-increasing, as desired. J

Now we prove Algorithm 1 obtains a solution of at most O(k logm).

I Lemma 9. Given an online bounded frequency mixed packing covering IP with optimal
value 1, there exists a deterministic integral algorithm with competitive ratio O(k logm),
where m is the number of packing constraints and k is the covering frequency of the IP.

Proof. By Lemma 8 for each stage j, Φj+1 ≤ Φj . Therefore Φj ≤ Φ0 = γm. Thus for each
packing constraint Pi,

ρFi(S(j))(γ −Gi(j)) ≤ γm . (16)

Thus,

ρFi(S(j)) ≤ γm

(γ −Gi(j))
≤ γm

γ − 1 . Since Gi(j) ≤ 1 (17)

Thus we can conclude

Fi(S(j)) ∈ O(logm) . (18)

By definition of Fi(S(j)), Fi(S(j)) =
∑
S∈S(j) ∆i(S) =

∑
S∈S(j)

∑
xr∈S

1
kPir. Since each

variable xr is present in at most k sets, 1
kPi · x(j) ≤ Fi(S(j)) . Thus by Inequality (18)

Pix(j) ∈ O(k logm), which completes the proof. J

Finally we prove there exists an online O(k logm)-competitive algorithm for bounded
frequency online mixed packing and covering integer programs with any optimal value.

I Theorem 10. Given an instance of the online mixed packing/covering IP, there exists a
deterministic integral algorithm with competitive ratio O(k logm), where m is the number of
packing constraints and k is the covering frequency of the IP.
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4 Putting Everything Together

In this section we consider the online mixed packing/covering formulation discussed in
Section 2 for online edge-weighted degree-bounded Steiner forest PC_IP. In this
section we show this formulation is an online bounded frequency mixed packing/covering IP.
Therefore we our techniques discussed in Section 3 to obtain a polylogarithmic-competitive
algorithm for online edge-weighted degree-bounded Steiner forest.

First we assume we are given the optimal weight wopt as well as degree bounds. We can
obtain the following theorem.

I Theorem 11. Given the optimal weight wopt, there exists an online deterministic algorithm
which finds a subgraph with total weight at most O(log3 n)wopt while the degree bound of a
vertex is violated by at most a factor of O(log3 n).

Proof. By Lemma 4, given a feasible online solution for PC_IP with violation α, we can
provide an online solution for SF_IP with violation α. Moreover, in Section 2 we show that
popt ≤ O(log2 n)lopt. Thus given an online solution for PC_IP with competitive ratio f , there
exists an O(f logn)-competitive algorithm for online degree-bounded Steiner forest.
We note that in PC_IP we know the packing constraints in advance. In addition every variable
xiH has non-zero coefficient only in the covering constraint corresponding to connectivity
of the i-th demand endpoints, i.e. the covering frequency of every variable is 1. Therefore
by Theorem 10 there exists an online O(logm)-competitive solution for PC_IP, where m is
the number of packing constraints, which is n + 1. Thus there exists an online O(log3 n)-
competitive algorithm for online degree-bounded Steiner forest. This means the
violation for both degree bounds and weight is of O(log3 n). J

Finally if wopt is not given, we show in the full version of the paper that by applying
standard doubling techniques one can prove Theorem 1 using the result shown above.
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43:2 Carpooling in Social Networks

1 Introduction

In multiple experimental studies involving hundreds of graduate students, Loewenstein,
Thompson, and Bazerman [8] give evidence that individuals are strongly averse to outcomes
where they are at a disadvantage relative to others. Moreover, albeit significantly less so,
the grad students were also averse to outcomes where they have a relative advantage in
payoff. Fehr and Schmidt [6] coined the phrase inequity aversion to describe this phenomena.
Festinger [7] had much earlier introduced the concept of cognitive dissonance, and inequity
aversion is modeled as a special case thereof. Supposedly, inequity aversion may lead
individuals to make significant changes, including stopping interpersonal relationships where
inequities arise.

The carpool problem, introduced by Fagin and Williams [5], is a stylized mathematical
model in which one can study questions related to minimizing inequity. As described in [5],
“suppose that n people, tired of spending their time and money in gasoline lines, decide to
form a carpool. We present a scheduling algorithm for determining which person should drive
on any given day. We want a scheduling algorithm that will be perceived as fair by all the
members.” A priori, it seems that fairness should not be hard to achieve, but – unfortunately
– precise answers as to what extent one can avoid inequity have been sought over two decades
with seemingly little progress.

Formally, each day t, a set of people St ⊆ {1, . . . , n} form a carpool. The goal is to choose
who drives, so that on all days t, the overall driving burden to date has been partitioned
fairly: Let fi(t) be driver i’s fair share of the driving on day t, which is 1/|St| for each i ∈ St
and 0 otherwise. Define Fi(t) to be driver i’s fair share of the driving on all days up to day t,
that is Fi(t) =

∑
τ≤t fi(τ), and let Di(t) be the number of times i has actually driven out of

the first t days. For a particular sequence {St}Tt=1, and algorithm for deciding who drives,
we define

the unfairness on day t = max
driver i

|Di(t)− Fi(t)|. (1)

A carpool algorithm decides which person in St drives on day t; the maximum unfairness of
the algorithm is

max
T≥1

max
{St}T

t=1

[unfairness on day T ] .

Notice that the definition of unfairness takes into account all trips i took, regardless of who
i’s companions were on that trip, that is, it is a global notion of fairness.

The offline version of the problem, when {St}Tt=1 is known in advance, is easy: there is
an algorithm that guarantees maximum unfairness of 1 and this is optimal (see, e.g. [10].)

Ajtai, Aspnes, Naor, Rabani, Schulman, and Waarts [1] studied the online version of
problem, in which the algorithm must select a driver on day t, based only on the history up
to time t. They obtained a number of extremely interesting results. First, they showed that,
up to losing a factor of 2, one may assume that all the sets St consist of two persons. Thus,
one can think of the process as a sequence of edge additions (requests), say St = (i, j) at
time t, to a multigraph on {1, . . . , n} (the people), with the algorithmic decision being one
of choosing the orientation of the edge (towards the driver for that carpool). The goal then
is to minimize

max
vertex i

| indegree(i)− outdegree(i) | .

Ajtai et al. obtained results for two different online settings: when the requests (carpools)
are selected uniformly at random, and when the request sequence is selected by an oblivious
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adversary that knows the algorithm, but not the outcome of any random choices the algorithm
makes.

The first algorithm they considered was Global Greedy: on request (i, j), the driver among
i and j with minimum unfairness (as defined in equation (1)) drives,; in case of a tie, the
choice is arbitrary. For a uniformly random request sequence, they showed that for each t,
Global Greedy has expected unfairness on that day of O(log logn).

For the adversarial case, Ajtai et al showed that every deterministic algorithm has
unfairness bn/2c. They also showed that this is tight: Global Greedy has unfairness at
most n/2 for every request sequence. They were able to obtain a better upper bound using
Randomized Local Greedy: This algorithm considers each pair of drivers separately, and
alternates which one drives each time they form a carpool. The only randomness is in the
uniformly random choice of which of the two drives the very first time they carpool. They
showed that Randomized Local Greedy has maximum unfairness equal to Θ(

√
n logn).

They conjectured that Randomized Global Greedy, the variant of Global Greedy in which
ties are broken at random is much better, perhaps even polylog(n).

Finally, they proved that every randomized algorithm has maximum unfairness of at least
Ω
(
(logn)1/3).

Our Results

We study the carpool problem in the setting where the people involved belong to a social
network G, and every request (carpool) is a pair of people that are connected in the social
network, i.e. an edge of G. In this context, the work of [5, 1] can be seen as studying the
special case where the social network is a clique.

We prove the following results for request sequences restricted to edges of a social network
G with n vertices, and of maximum degree d.

Deterministic algorithms, adversarial requests

We show that for every deterministic algorithm there exists a request sequence on G resulting
in unfairness of at least bd/2c. This is tight: we give a deterministic algorithm that never
generates unfairness greater than d/2 (Theorem 1).

What is most interesting about this result is that, in contrast to the case where the graph
is complete, the optimal deterministic algorithm is not the Global Greedy algorithm. In fact,
we show that for every connected G (irrespective of its maximum degree), there is a request
sequence on which Global Greedy has worst-case unfairness ≥ bn/2c (Theorem 2). Thus,
Global Greedy can be a factor Ω(n) worse than the optimal deterministic algorithm (e.g.,
when the graph has constant degree).

Random requests

Our second set of results concerns random requests: We show that if the sequence of requests
is generated by choosing edges of G uniformly at random, then the removal of edges from the
graph can increase the unfairness for the Global Greedy algorithm: When G is a path, Global
Greedy has expected unfairness at least Ω((logn/ log logn)1/3) (Theorem 5). This stands in
contrast to the O(log logn) upper bound of Ajtai et al when the graph G is a clique.

For a social network G of bounded genus (e.g., planar graphs, the torus, etc.) – we
introduce the “star algorithm” - an algorithm with expected maximum unfairness O(logn)
(Corollary 4).

ICALP 2016



43:4 Carpooling in Social Networks

Randomized algorithms, adversarial requests

Oblivious Adversaries: Oblivious adversaries determine the event sequence in advance, the
algorithm may toss coins, and one considers the expected cost to the algorithm.

The results of Ajtai et al. show that Randomized Local Greedy gives maximum expected
unfairness of O(

√
d log d), since each vertex has degree at most d and the unfairness at each

node is the expected value of the sum of at most d random variables that are equally likely to
be 1 or -1. One can view this algorithm as maintaining an invariant probability distribution
over unfairness configurations: for each t, regardless of the history of requests, each edge is
oriented uniformly at random. In this sense, it is a static algorithm. Static algorithms form
a very natural class of randomized online algorithms. Intuitively, they render an adversary
powerless to construct a bad request sequence: every request sequence will perform the same
against such an algorithm. We show that unfortunately, this intuition is incorrect and that
the competitive ratio of every static algorithm is at least Ω(

√
d).

As mentioned above, the Randomized Global Greedy algorithm has been conjectured
to give a good competitive ratio against oblivious adversaries. We prove that Randomized
Global Greedy has unfairness Ω(logn) (on a clique of size n), improving upon the previous
lower bound of Ω

(
(logn)1/3) from [1]. This involves a rather complex proof, for which we

only give a high level sketch here, the full details are available online.

Adaptive Adversaries: Adaptive adversaries determine the next event in the event sequence
as a function of the previous responses of the online algorithm. I.e., as a function of how the
previous car pooling events were addressed.

We show that no randomized algorithm (static or not) has unfairness better than d/4
against an adaptive adversary [11].

Other Related Work

Another problem that can model fairness issues is Tijdeman’s chairman assignment problem
[10] where a chairman has to be appointed by a community of unequal groups. An axiomatic
approach to the problem and its relationship to the Shapley value of a game was given in [9].
Generalizations of the carpool problem appear in [4, 3, 2].

Notation

In what follows, we often suppress the dependence on t in our notation for the unfairness
of driver i at time t. Specifically, we use xi to denote the unfairness of driver i at time t
(i.e. xi := 2

(
Di(t)− Fi(t)

)
= indegree(i)− outdegree(i)), where t is understood. Note that∑

i xi =
∑
i[indegree(i)− outdegree(i)] = 0 at all times, and that we are assuming that all

carpools are of size 2.

2 Deterministic algorithms

I Theorem 1. Let G be a graph of maximum degree d. Then for every deterministic algorithm
A, there exists a request sequence σ such that after A processes σ the unfairness is dd/2e.
This is tight: there is a deterministic algorithm such that after it processes every request
sequence the unfairness is at most dd/2e.

Proof. For the first part, we restrict our sequences to the subgraph of G consisting of
a maximum degree vertex and all of its neighbors, i.e., a star with d leaves. For each
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deterministic algorithm, we will prove that either the unfairness is unbounded or there is a
sequence of requests for which the root of the star has unfairness ±dd/2e.

Fix a deterministic algorithm. We will say that it is in state ~x = (x1, . . . , xd) when the
unfairness of leaf i is xi (any ordering of the children is fine) and therefore the unfairness of
the root is −

∑d
1 xi. Let S be the set of states that can be reached by some request sequence.

We can assume that for all i, |xi| ≤ dd/2e; if not, we are done. Therefore, S is bounded.
Select ~x ∈ S which minimizes ϕ(~x) = x1 + 2x2 + · · · + 2d−1xd. Let r be a request

sequence that reaches ~x. If we extend r with request (root, 1), then by the minimality of
ϕ(~x), the online algorithm is not allowed to move to (x1 − 1, ~x−1), so it will move to state
(x1 + 1, ~x−1). More generally, for k ∈ [1, d], suppose that we extend r by requests (root plus
leaves) 1, 2, . . . , k. Then since ϕ(x1 + 1, . . . , xk−1 + 1, xk− 1, xk+1, . . . , xd) > ϕ(~x), the online
algorithm will end up at state (x1 + 1, . . . , xk−1 + 1, xk + 1, xk+1, . . . , xd). If we then extend
r by the sequence 1, 2, . . . , d, the online algorithm will move to state ~x+~1. The first state
has root unfairness −

∑d
1 xi and the second state has root unfairness d−

∑d
1 xi, so one of

those two numbers is greater than or equal to dd/2e in absolute value.
For the second part, we show that any G can be oriented so that the indegree and

outdegree of every vertex differ by at most 1. We then run the online algorithm that serves
requests for the edge {i, j} by alternatingly having i as a driver and j as a driver, starting
with i iff the edge is directed from j to i. J

I Theorem 2. Consider the Greedy algorithm and assume that ties are broken by an adversary.
Then for any connected request graph, there exists a request sequence for which Greedy has
unfairness at least bn/2c.

Proof Sketch. The proof is by induction, restricting requests to a subgraph that is a tree.
The idea is to increase the spread of the values by taking an edge {i, j} between a subtree
with low average unfairness and a subtree with high average unfairness. Then perform
requests in the first subtree to maximize xi, in the second subtree to minimize xj . Then,
if xi > xj , requesting edge {i, j} will result in an even greater unbalance between the two
subtrees. J

3 Random requests

3.1 Random requests on bounded genus graphs
We first prove the result for a star.

I Theorem 3. Let G be a star with d leaves, root r and suppose that the requests are
uniformly random. Then there is an algorithm such that for any time t, the unfairness at
each leaf is at most one and the root has expected unfairness O(1), with an exponential tail:
Pr(|Unfairness(r)| > k) ≤ cλk for some (c, λ) with c > 0 and 0 < λ < 1.

Sketch of Proof of Theorem 3. The “star algorithm” is the following:
1. Every leaf 1 ≤ i ≤ d has a counter xi ∈ {−1, 0, 1}. Initially, set xi = 0 for all

i ∈ S0 = {1, . . . , d/2}.1 Set xi = 1 for all i ∈ S1 = {d/2 + 1, . . . , 3d/4}, and set xi = −1
for all i ∈ S−1 = {3d/4 + 1, . . . , d}. The root r maintains a counter x0 = −

∑n
1 xi, which

is initially equal to zero.

1 For simplicity, we will assume that d is a multiple of four; this is not necessary.
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2. When a random request (r, i) arrives, if xi 6= 0 then the algorithm orients the edge so that
xi = 0. If xi = 0 and x0 6= 0 then the algorithm orients the edge so that |x0| decreases.
If xi = x0 = 0 then the choice is random.

To analyze this, observe that, in expectation, half of the leaves have value 0. If the root
has unfairness x, then a request to an edge connecting the root to a non-zero leaf might
increase |x|, but any request to an edge connecting the root to a 0 leaf reduces |x|. Hence,
with some work, we obtain a proof that |x| is bounded on average and that its distribution
has an exponential tail. J

I Corollary 4. Let G be a bounded genus graph on n vertices and suppose that the requests
are random. Then there is a deterministic algorithm with average maximum unfairness
O(logn).

Proof. We partition the edges of G into stars so as to ensure that each vertex is a leaf of at
most a constant number of stars, and the center of exactly one star. To handle a sequence of
requests, for each star, handle the subsequence of the requests that are edges of that star
using the algorithm from Theorem 3. J

3.2 Poor performance of Global Greedy for random requests on the line
Ajtai et al. [1] prove that a uniformly random sequence of requests in the complete graph
induces a unfairness of O(log logn) for Global Greedy with any tie breaking rule. We show
that this is not necessarily true when the possible requests are restricted to edges in the
social network.

I Theorem 5. Consider a sequence of independent requests drawn uniformly at random
when the graph is a line. Then the Global Greedy algorithm, with ties broken at random, has
expected unfairness Ω

(
(logn/ log logn)1/3).

To prove this theorem, we will need the following lemma.

I Lemma 6. When the graph G is a line with n vertices, there exists a sequence of length
f(n) = Θ(n3) that creates maximum unfairness of n/2 for the Global Greedy algorithm
with adversarial tie-breaking. After f(n)/2 steps of that sequence the maximum unfairness is
already at least n/8.

Proof of Theorem 5. The idea is to consider multiple short segments of the line. The
segments are of length k (to be determined below, about log1/3 n), every segment has 2 extra
vertices on the right, so there are about n/k different segments. We refer to the two extra
vertices on the right of each segment as the “buffer zone" of the segment.

Consider a sequence of L random requests on the line, and focus on those, among those
L requests, that fall into a particular segment and its buffer zone. A segment received Lk/n
requests on average. Let L be such that Lk/n = (3/4)f(k) and restrict attention to good
segments, i.e. those segments that receive a number of requests in [f(k)/2, f(k)].

With probability about (1/k)k3 the leftmost and rightmost buffer edges are never requested,
and the requests to the segment follow the exact pattern of (a prefix of) the f(k) requests
required for the lower bound of Lemma 6. Conditioned upon this happening, the probability
that the decisions made for tie breaking are as in Lemma 6 is at least (1/2)f(k), thus the
probability that an unfairness of at least k/8 is reached in a particular good segment is
≥ (1/(2k))f(k).

With probability at least 1/2, the number of good segments is Ω(n/k), and by indepen-
dence of the request sequence inside each segment, the probability that no segment gets
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unfairness k/8 is at most
(

1− 1
(2k)f(k)

)Ω(n/k)
. This is at most 1/e for Ω(n/k) > (2k)Θ(k3).

Taking the logarithm gives logn = Θ(k3) log(k), hence k = Θ
(
(logn/ log logn)1/3). J

4 Lower bounds against Adaptive Adversaries

In this section we show an adaptive adversary which achieves an Ω(d) lower bound for any
randomized algorithm, on a star with d leaves.

Let V = {i1, i2, . . . , id} be the leaves of the star and let r be the root. Define the subsets:

V + =
{
ij ∈ V |xij > 0

}
,

V − =
{
ij ∈ V |xij < 0

}
,

V 0 =
{
ij ∈ V |xij = 0

}
.

I Remark. For simplicity, we assume that d is divisible by 4, but this is not necessary.
Our adversary generates a sequence, until either |xr| ≥ d/4 or there is a leaf ij such that

|xij | ≥ d/4. The sequence is generated as follows:
1. If there is a leaf ij such that v ∈ V 0 then issue the request (r, ij).
2. If V 0 = ∅ and |V +| ≥ d/2 then let V + = {i1, . . . , ik} such that xij ≤ xij+1 and issue the

requests (r, ij) in order of increasing j. Stop after processing a request increases xij .
3. If V 0 = ∅ and |V −| > d/2 then let V − = {i1, . . . , ik} such that xij ≥ xij+1 and issue the

requests (r, ij) in order of increasing j. Stop after processing a request decreases xij .

The following lemma is proved in [11].

I Lemma 7. The request sequence generated by the adaptive adversary described above is
well defined, i.e.,
1. Exactly one of the three cases happens at each iteration.
2. In case 2 either the unfairness of a leaf increases or xr > d/4.
3. In case 3 either the unfairness of a leaf decreases or xr < −d/4.

For our analysis we define the potential function

Φ(V ) =
∑
i∈V

d|xi|.

Note that this potential function does not take into account xr.

I Lemma 8. After each iteration of the adversary’s decision loop the potential Φ(V ) increases
by at least d− 1 or |xr| ≥ d/4.

Proof Sketch. We prove this by case analysis:
1. If there exists a leaf ij such that ij ∈ V 0 then the potential increases by exactly d− 1.
2. If |V +| ≥ d/2 then from Lemma 7 the unfairness of one leaf was increased and at most

the unfairness of d− 1 leaves was decreased.
3. If |V −| > d/2 then from Lemma 7 the unfairness of one leaf was decreased and at most

the unfairness of d− 1 leaves was increased.

In all three cases, the increase in potential caused by just one leaf is greater by more than
d− 1 than the decrease caused by the other leaves. J

I Theorem 9. Assume that the social network is a star with d leaves. For any randomized
algorithm, the adaptive adversary presented achieves unfairness Ω(d).
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Proof. From Lemma 7 the request sequence generated by the adversary is well defined and
from Lemma 8, after each iteration of the adversary’s decision loop either the potential Φ(V )
increases by at least d− 1 or |xr| ≥ d/4.

The initial potential is Φ(V ) = d. If after (d · dd/4−1)/(d− 1)− 1 iterations of the loop
the inequality |xr| < d/4 always holds then

Φ(V ) ≥ d · dd/4−1 − (d− 1) + d ≥ d · dd/4−1 + 1.

So there must be at least one leaf with unfairness ≥ d/4. J

5 Lower bounds against Oblivious Adversaries

5.1 Static Algorithms
Next, we consider static algorithms and bound the optimal unfairness that can be achieved
by an algorithm in this class.

I Definition 10. A state is a vector (xi)i where xi ∈ Z represents the unfairness of vertex i.
A randomized online algorithm is called static if there exists a probability distribution π
over the set of states such that if the algorithm starts in π (i.e., it starts at a state drawn
according to π) then it remains in π after every possible request sequence.

Let U(~x) denote the maximum unfairness of state x. Then2 the expected maximum
unfairness of a static algorithm is∑

~x

π(~x) · U(~x).

As discussed in the introduction, Randomized Local Greedy preserves the distribution π
in which each edge is oriented uniformly at random, and so Randomized Local Greedy is a
static algorithm. The expected unfairness of every vertex i is Θ(

√
di), where di is the degree

of i, and the maximum unfairness is at most O(
√
n logn) [1]. In particular, for the star with

d leaves the unfairness of each leaf is at most 1, and the unfairness of the root is Θ(
√
d).

I Theorem 11. Assume G is the star with d leaves.
1. A slight variant of Local Greedy (Balanced Local Greedy) has optimal unfairness.
2. This value is Θ(

√
d).

Since states ~x that correspond to unfairness always satisfy
∑
i∈V xi = 0, one of the

coordinates can be inferred from the others. For compactness, we will drop the coordinate
associated to the root and represent the state as a vector indexed by the leaves only.

To prove Theorem 11, we first state a property satisfied by the static distributions of
static algorithms for the star with d leaves.

I Lemma 12. Fix a static algorithm and let π(~x) be the corresponding static distribution.
Fix a leaf j and ~x−j . Then the probability of states with even xj must be equal to the
probability of states with odd xj:∑

k∈Z
π(k, ~x−i)(−1)k = 0. (2)

2 There is a subtlety here in that the algorithm does not actually move initially to a state drawn from
this distribution. Rather, it “pretends” to, and hence this definition of expected unfairness can be off
by a factor of 2.
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Proof. Suppose that the next request is the edge from root to leaf j. Conditioning on being
on one of the states with given ~x−j , the state moves from even xj to odd xj and vice versa.
Since the distribution before and after the request is the same, the two events must be
equiprobable. J

Proof of Theorem 11. We define an infinite linear programming relaxation P with one
variable π(~x) for each ~x ∈ Zd. By Lemma 12, the expected unfairness of any static algorithm
is at least

min
∑
x

π(~x)U(~x) s.t.
{ ∑

~x π(~x) = 1∑
k π(k, ~x−i)(−1)k = 0 ∀i∀~x−i

Consider a vector ~x such that xi = 0. Then, by elimination, the second constraint
determines π(~x) in terms of the variables π(k, ~x−i) for k 6= 0, and the vectors (k, ~x−i) have
one fewer zero coordinate than ~x. Extending this by induction on the number of non-zero
coordinates of ~x, we show in Claim 13 below that each variable π(~x) with at least one
zero coordinate in ~x can be expressed as a linear combination of the variables π(~y) with
~y ∈ (Z6=0)d.

I Claim 13. Let Q(~x) = {~y : xi(yi − xi) = 0 and yi 6= 0, for all i}. Then for all ~x

π(~x) = (−1)#0(~x)
∑

~y∈Q(~x)

π(~y)(−1)
∑

i
yi−xi . (3)

Moreover, the set of Equations (3) for all ~x 6∈ (Z6=0)d are equivalent to the set of Equations (2)
in the linear program P .

Proof. We transform Equations (2) to the form of Equations (3), inductively by the number
of zero entries of ~x.

The base case, in which ~x has no 0’s is vacuous. For the induction step, assume that
Equation (3) holds for all ~x that have at most k 0’s. Consider some ~x that has k + 1 0’s:
~x = (0, ~x−i) for some x−i that has k 0’s. Solving (2) for π(~x) we get

π(0, ~x−i) = −
∑
yi 6=0

π(yi, ~x−i)(−1)yi

= −
∑
yi 6=0

(−1)#0(~x−i)
∑

~y−i∈Q(~x−i)

π(yi, ~y−i)(−1)
∑

k 6=i
yk−xk (−1)yi

= (−1)#0(~x)
∑

~y∈Q(~x)

π(~y)(−1)
∑

i
yi−xi .

Notice that there are k + 1 different equations in the set of Equations (2), one for each 0 in
~x, that are transformed into the same equation. J

To simplify the linear program P , substitute the right hand side of every equality of the
form given in Equation (3) for π(~x) (for all ~x 6∈ (Z6=0)d) into the constraint

∑
~x π(~x) = 1.

This yields∑
~y 6∈(Z 6=0)d

α~yπ(~y) = 1, (4)

for some constants {α~y}.
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By construction, any solution to this equation can be extended to a solution to the set
of Equations (2). This allows us to reduce the linear programing relaxation to one with a
single constraint. Therefore it has an optimal solution with only one non-zero variable. Let
π(~y∗) denote this variable. By substituting back to (3), we get that π(~x) is zero unless

~x ∈ H := {~z s.t. for all i zi ∈ {0, y∗i }}.

Moreover, since for ~x ∈ H, there is only one non-zero term on the right hand side of (3), we
can conclude that ∀~x ∈ H, either π(~x) = π(~y∗) or π(~x) = −π(~y∗).

Next, observe that all coordinates of ~y∗ must be odd. Indeed, if some y∗i is even, then (3)
implies that for every vector ~x ∈ H we have π(y∗i , ~x−i) = −π(0, ~x−i), which implies that the
sum of π on the vectors in H is 0, a contradiction. Thus, all coordinates of ~y∗ are odd, and
so π(~x) = π(~y∗) for all ~x ∈ H. Since these probabilities sum to 1, they must all be equal to
1/2d.

Let |~x| = |
∑
i xi|. The expected unfairness of the root is∑

~x

π(~x)|~x| =
∑
x∈H

π(~x)|~x| =
∑

x∈{0,y∗
i
}d

1
2d |~x| = E[|

∑
i

y∗iXi|],

where Xi are 0-1 unbiased Bernoulli random variables. The following claim shows that this
quantity is minimized when exactly half (bd/2c, to be precise) of the y∗i ’s are 1 and the rest
are −1, exactly as in the case of Balanced Local Greedy.

I Claim 14. Let y∗1 , . . . , y∗d be odd integers and X1, . . . , Xn be independent unbiased
Bernoulli variables. The expectation

E[|
∑
i

y∗iXi|]

is minimized when half (bd/2c, to be precise) of the y∗i ’s are -1 and the remaining are +1.
This minimum value is Θ(

√
d).

It follows from the theorem that the optimal unfairness among static algorithms is at
least equal to the unfairness at the root of the Balanced Local Greedy. Since its unfairness on
the leaves is at most one, Balanced Local Greedy has almost optimal unfairness among the
static algorithms, within an additive term of 1. In fact, the additive term can be reduced to
O(1/

√
d).

The main result of this section dashes any hopes to find a static algorithm with small
unfairness. However, many natural algorithms – among them the Global Greedy algorithm –
are not static and we hope that they will be shown to have small unfairness (substantially
less than O(

√
d)).

5.2 Bounds on Randomized Global Greedy
A very natural algorithm, Randomized Global Greedy is a candidate algorithm to give
small competitive ratios against an oblivious algorithm. This algorithm is greedy, choosing
the driver with the lower number of times to her credit, and breaking ties at random.
The difference between Randomized Global Greedy and Randomized Local Greedy is that
Randomized Local Greedy only uses randomization initially to determine the initial state and
then alternates drivers whenever the same pair reappear.

Previously, the lower bound on the competitive ratio of Randomized Global Greedy was
Ω(log1/3 n) (on a clique) whereas the upper bound was O(n). We improve the lower bound
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to Ω(logn). To do this we make use of a potential function, the sum over drivers of the
differences between the number of trips minus the number of times that the driver drove.

The key idea is to repeatedly generate unfairness and “push” it to some target set of
drivers. This process works essentially as follows:
1. Apply a sequence of requests to generate potential in some set of drivers.
2. “Push” the potential to a target set of drivers.
3. Repeat.
4. Eventually, the target set will have high potential, which implies high unfairness.

We present here a sketch of the lower bound proof, full details of this process can be seen
online at [11]. In this MSc thesis (of one of the authors) one can also see similar techniques
applied to other settings.

First, we begin with a definition of the potential function.

I Definition 15. Let i1, i2, . . . , in be n vertices where xij is the unfairness of vertex ij .
Assume that there is a value u ∈ Z such that for all 1 ≤ j ≤ n it holds that xij ∈
{u− 1, u, u+ 1}. Define the potential with respect to base unfairness u as

Φu({xi1 , xi2 , . . . , xin}) =
∑

1≤j≤n
(xij − u).

Now that we have defined the potential function, we define “pushing”.

I Definition 16. Let v′, v′′, r ∈ V be distinct vertices and let S = {i1, i2, i3, . . . , in} be a set
of n vertices such that v′, v′′, r /∈ S.

Let α ∈ N be a large number, as a function of n. The sequence pushu({v′, v′′}, S, r) is
composed of three subsequences:

pushs1u ({v′, v′′}, S, r) = (r, v′), (r, v′′),
pushdu({v′, v′′}, S, r) = (r, in), (r, in), (r, in−1), (r, in−1), . . . , (r, i1), (r, i1),

pushs2u ({v′, v′′}, S, r) = (r, v′′), (r, v′).

And,

pushu({v′, v′′}, S, r) =
(
pushs1u ({v′, v′′}, S, r)‖
pushdu({v′, v′′}, S, r)‖pushs2u ({v′, v′′}, S, r)

)α
.

I Remark. Notation: (v, w) is a shorthand for requesting that v and w carpool together.

We use the following property thats holds after the Randomized Global Greedy algorithm
processes pushu({v′, v′′}, S, r):

Define Φinit(S) = Φ(S) and Φinit({v′, v′′}) = Φ({v′, v′′}) as the potentials before pro-
cessing the sequence pushu({v′, v′′}, S, r). Define Φend(S) = Φ(S) and Φend({v′, v′′}) =
Φ({v′, v′′}) as the potentials after processing the sequence.

I Lemma 17. Assume that: (a) For some u ∈ Z, xr = u, (b) That x′v, x′′v ∈ {u− 1, u+ 1},
and (c) For all i ∈ S, xi ∈ {u− 1, u+ 1}.

If |(xv′−u)+(xv′′−u)+Φinit(S)| ≤ |S| then, with high probability, after the Randomized
Global Greedy algorithm processes the sequence pushu({v′, v′′}, S, r) the equality Φend(S) =
Φinit(S) + Φinit({v′, v′′}) holds.
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Proof Sketch. Observe that if xv′ = u+ 1, xv′′ = u+ 1 and xr = u then after processing the
subsequence (r, v′), (r, v′′), with probability 1/2, xr = u+ 2. Now observe that if xr = u+ 2
and for some j, xij = u− 1 then after processing the two requests (r, ij), (r, ij) it holds that
xij = u+ 1 and xr = u. Thus the potential of {v′, v′′} was “pushed” into ij .

A similar thing happens if xv′ = u− 1, xv′′ = u− 1 and xij = u+ 1. The constant α is
chosen to be large such this occurs with high probability.

The full proof is available online in [11]. J

Now, using this push sequence we “accumulate” a large potential (in respect to base
unfairness u) in a specific set A such that |A| = O(n). I.e., we define a sequence such that
after Randomized Global Greedy processes it Pr(|Φu(A)| > |A/2|) > 1/2. In essence, this is
done by repeatedly using a sequence that creates unfairness in a small set G and “pushing”
this unfairness into A. This is called “accumulation”.

Another useful subsequence is that of “distillation”, which takes the potential of a set and,
with high probability, pushes it into a subset. Let r be a vertex and S = {i1, i2, i3, . . . , im}
be a set of m vertices such that m is even and r /∈ S. The distillu(S, r) event sequence is

distillu(S, r) = pushu({i1, i2}, {i3, . . . , im}, r)‖pushu({i3, i4}, {i5, . . . , im}, r)‖
· · · ‖pushu({im−3, im−2}, {im−1, im}, r).

Define the tail of S, S`, as S` = {ik ∈ S|k ≥ `}.

I Lemma 18. With high probability, after the Randomized Global Greedy algorithm processes
the sequence distillu(S)

Φu(S|S|−|Φu(S)|+1) = Φu(S).

Proof Sketch. This stems from repeatedly applying Lemma 17 to increasingly smaller sets.
The full proof is available online in [11]. J

Now using the sequences “accumulation” and “distillation” we are able to create (with
probability greater than 1/2) a set A such that |A| = O(n) and |Φu(A) = |A|. The latter is
equivalent to all the unfairnesses of vertices in A being equal to either u− 1 or u+ 1.

Now split A into three different sets, A1, A2, and A3 and do “accumulation” and
“distillation” to each set individually. Now, with some probability, one of these subsets has
unfairnesses which are all equal to either u− 2 or u+ 2. Repeat this process. In [11] we prove
that this can be repeated Ω(logn) times with constant probability. And thus the following
theorem is proved:

I Theorem 19. The sequence above achieves an expected unfairness of Ω(logn) for the
Randomized Global Greedy algorithm when run on a clique.

6 Open Questions

The outstanding open questions that follow immediately from this work are:
Is there any randomized algorithm with unfairness o(

√
d) on the star with d leaves?

Does Randomized Global Greedy have o(n) unfairness on the star or on the line?

At this point we have no non-trivial upper bound on the star. The best algorithm we
know is Randomized Local Greedy, which achieves

√
n unfairness.

Acknowledgments. We are grateful to Nimrod Fiat and Clemens von Stengel for their help
during the early stages of this work.
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Abstract
In dictionary learning we observe Y = AX +E for some Y ∈ Rn×p, A ∈ Rm×n, and X ∈ Rm×p,
where p ≥ max{n,m}, and typicallym ≥ n. The matrix Y is observed, and A,X,E are unknown.
Here E is a “noise” matrix of small norm, and X is column-wise sparse. The matrix A is referred
to as a dictionary, and its columns as atoms. Then, given some small number p of samples, i.e.
columns of Y , the goal is to learn the dictionary A up to small error, as well as the coefficient
matrix X. In applications one could for example think of each column of Y as a distinct image
in a database. The motivation is that in many applications data is expected to sparse when
represented by atoms in the “right” dictionary A (e.g. images in the Haar wavelet basis), and the
goal is to learn A from the data to then use it for other applications.

Recently, the work of [24] proposed the dictionary learning algorithm ER-SpUD with prov-
able guarantees when E = 0 and m = n. That work showed that if X has independent entries
with an expected θn non-zeroes per column for 1/n . θ . 1/

√
n, and with non-zero entries being

subgaussian, then for p & n2 log2 n with high probability ER-SpUD outputs matrices A′, X ′
which equal A,X up to permuting and scaling columns (resp. rows) of A (resp. X). They con-
jectured that p & n logn suffices, which they showed was information theoretically necessary for
any algorithm to succeed when θ ' 1/n. Significant progress toward showing that p & n log4 n

might suffice was later obtained in [17].
In this work, we show that for a slight variant of ER-SpUD, p & n log(n/δ) samples suffice

for successful recovery with probability 1 − δ. We also show that without our slight variation
made to ER-SpUD, p & n1.99 samples are required even to learn A,X with a small success
probability of 1/ poly(n). This resolves the main conjecture of [24], and contradicts a result
of [17], which claimed that p & n log4 n guarantees high probability of success for the original
ER-SpUD algorithm.
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1 Introduction

The dictionary learning or sparse coding problem is defined as follows. There is a hidden
set of vectors a1, a2, . . . am ∈ Rn (called a “dictionary”), with span{a1, . . . am} = Rn. We
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44:2 An Improved Analysis of the ER-SpUD Dictionary Learning Algorithm

are given a sequence of samples yi = Axi + εi, where each xi is a sparse vector and εi is
noise. In other words each yi is close to a linear combination of few vectors ak. The goal
is to recover both matrix A and the sparse representations xi. We can write it as a matrix
equation, Y = AX + E, where the vectors yi are the columns of Y , and xi are columns of
X. Let A ∈ Rn×m and X ∈ Rm×p. Traditionally, and as motivated by applications, the
interesting regime of parameters is when A is of full row rank (in particular n ≤ m) [2].

The dictionary learning problem is motivated by the intuition that the dictionary A

is in some sense the “right” spanning set for representing vectors yi since it allows sparse
representation. In some domains this correct basis is known thanks to a deep understanding
of the domain in question: for example the Fourier basis for audio processing, or Haar
wavelets for images. Here we want to infer analogous “nice” representations of the data from
the data itself. As it turns out, even in situations such as audio and image processing in
which traditional transforms are useful, replacing them with dictionaries learned directly
from data turned out to improve quality of the solution (see for example [12], which applied
a dictionary learning algorithm for image denoising).

This problem has found a tremendous number of applications in various areas, such as
image and video processing (e.g. [21, 10, 12]; see [19] for more references), image classification
[23, 20] as well as neurobiology [16]. Given its huge practical importance, a number of effective
heuristics for dictionary learning were proposed [3, 18] – those are based on iterative methods
for solving the (non-convex) optimization problem of minimizing the sparsity of X ′ subject to
Y being close to A′X ′. Some of these algorithms work well in practice but without provable
guarantees.

1.1 Prior work
Until recently there was little theoretical understanding of the dictionary learning problem.
Spielman, Wang and Wright in [24] proposed the first algorithm that provably solves this
problem in some regime of parameters. More concretely, they assumed no presence of noise (i.e.
E = 0), and that A is a basis (that is n = m), potentially adversarially chosen. The vectors xi
are sampled independently at random from some distribution – specifically, each entry xi,j is
nonzero with probability 1− θ, and once it is nonzero, it is a symmetric subgaussian random
variable (i.e. with tails decaying at least as fast as a gaussian), independent from every other
entry. Henceforth we say that a matrix X ∈ Rn×p follows the Bernoulli-subgaussian model
with parameter θ, if the entries Xi,j are i.i.d. with Xi,j = χi,jgi,j , where χi,j ∈ {0, 1} are
Bernoulli random variables with Eχi,j = θ, and gi,j are symmetric subgaussian random
variables. We also say that X follows the Bernoulli-Rademacher model if gi,j in the above
definition are independent Rademachers (i.e. uniform ±1).

Under the Bernoulli-subgaussian model for X, [24] proved that once the number of
samples p is Ω(n logn) and the sparsity s = θn (i.e. expected number of nonzero entries in
each column of X) is at least constant and at most O(n), the matrix Y with high probability
has a unique decomposition as a product Y = AX, up to permuting and rescaling rows of
X and columns of A. Moreover, the number of samples p = Ω(n logn) was proven to be
optimal in the constant sparsity regime s = Θ(1). In particular, it is possible in principle to
find such a decomposition information-theoretically, but unfortunately not necessarily with
an efficient algorithm.

1 As written, their work has certain errors which we discuss later in detail. Nevertheless, using some
of our approaches we believe it should be possible to salvage their sample complexity bound in the
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ref sample complexity noise overcomplete sparsity arbitrary dict.

[24] O(n2 log2 n) No No O(
√
n) Yes

[2] O(m2) No Yes O(n1/4) No
[5] O(m2s−2 + s2m) Yes Yes O(min(m2/5,

√
n

logn )) No
[5] O(poly(m)) Yes Yes O(n1/2−ε) No
[4]* O(poly(m)) No Yes O(n/polylog(n)) No
[7] O(poly(m)) Yes Yes O(n1−ε) Yes
[7]* O(poly(m)) Yes Yes O(n) Yes
[25] O(poly(m,κ(A)))) No No O(n) Yes
[27] O(poly(n)) Yes No O(n) Yes
[17]1 O(n log4 n) No No O(

√
n) Yes

This work O(n logn) No No O(
√
n) Yes

Figure 1 Comparison of algorithms with proven guarantees for dictionary learning. Last column
indicates whether the dictionary can be arbitrary, or if additional structure is assumed in order
to guarantee recovery. Algorithms marked with star require quasi-polynomial running time. κ(A)
denotes condition number.

In addition to the above, they proposed an efficient algorithm ER-SpUD (Efficient
Recovery of Sparsely Used Dictionaries) to find this unique decomposition, in a more restricted
regime of parameters. Namely, they proposed an algorithm and proved that it finds correctly
the unique decomposition Y = AX, with high probability over X, as long as the sparsity s is
at least constant and at most O(

√
n), and the number of samples p is at least Ω(n2 log2 n).

The low sparsity constraint was inherent to their solution: according to the proof in the
same paper, if s = Ω(

√
n logn) the algorithm with high probability fails to find the correct

decomposition. They conjectured however, that with the number of samples p as small
as O(n logn), ER-SpUD should return the correct decomposition with high probability,
matching the sample lower bound for when s = O(1).

Since then, much more theoretical work has been dedicated to the dictionary learning
problem; see Figure 1. In the work of Agarwal et al. [2], and independently Arora et al. [5], an
algorithm was proposed that works for overcomplete dictionaries A (i.e. when m > n), under
additional structural assumptions on A – namely that A is incoherent, i.e. the projection
of any standard basis vector onto the column space of A has small norm. The algorithm
presented in [2] requires p = Õ(m2) samples, where Õ(f) = O(f · logO(1)(f)). A more
detailed analysis of the dependence between sparsity and number of samples was provided in
the work [5] for their algorithm – for s = O(min(

√
n

logn ,m
2/5)), they require Ω̃(m2s−2 +ms2)

samples; if s is larger than m2/5, but smaller than O(min(m1/2−ε,
√
n

logn )) the algorithm
requires O(mC) samples, where C is a large constant depending on ε. In the lowest sparsity
regime, i.e. s = O(polylog(n)), the sample complexity stated in their analysis simplifies to
Ω̃(m2). For comparison, in the most favorable sparsity regime s = Θ(m1/4), the number of
samples necessary for correct recovery is Ω(m3/2). The work [5] also proves correct recovery
by this algorithm in the presence of noise. Later Arora et al. [4] gave a quasipolynomial time
algorithm working for sparsity up to O(n/polylog(n)), but under much stronger assumptions

Bernoulli-gaussian model for X, but not in the more general Bernoulli-subgaussian model (since in
particular, p & n1.99 samples are required for that algorithm even to succeed with polynomially small
success probability; see the full version for details.
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on the structure of A. Those assumptions include in particular, that the dictionary A itself
is assumed to be sparse, which is violated in many natural examples, e.g. the discrete Fourier
basis. They prove that their algorithm correctly recovers the hidden dictionary given access
to p = O(mC) samples, for some unspecified constant C.

Barak et al. [7] proposed an algorithm fitting in the Sum-of-Squares framework, which
works in polynomial time for sparsity O(n1−ε) for any constant ε > 0 and in quasipolynomial
time for sparsity as large as O(n), again given access to O(mC) samples for some unspecified
constant C. Moreover, this algorithm works under the presence of noise and a more general
model of X. In particular, coordinates within a single column are not required to be fully
independent. Recently, Sun et al. [25] proposed a polynomial time algorithm for the case
when n = m and sparsity is as large as O(n). Their result works in a similar model as
in [24], without any additional assumptions on the matrix A, and with matrix X having
independent entries that are product of Bernoulli and gaussian random variables (as opposed
to the weaker subgaussian assumption in [24]). The sample complexity depends polynomially
on n and the condition number of the dictionary matrix A. In particular, in the low sparsity
regime (s = Θ(polylog(n))), this sample complexity is as large as Ω̃(n9) even if the matrix A
is well conditioned.

Work on Independent Component Analysis (ICA) [13, 22, 8, 6, 14, 27] is also relevant
to the dictionary learning problem. In this problem, again one is given Y = AX + E for
square A, with the assumption that the entries of X are i.i.d. (and X need not necessarily be
sparse). The works in ICA then say that A,X can be efficiently recovered using few samples,
but where the sample complexity depends on the distribution of entries of X. For example
in the case of Bernoulli-Rademacher entries with θ = 1/n (constant sparsity per column of
X), these works require large polynomial sample complexity. For example, [27, Theorem 1]
implies a sufficient sample complexity in this setting of p� n12.

From Figure 1, one can see that the “holy grail” of dictionary learning is to achieve
the following features simultaneously: (1) low sample complexity, i.e. nearly-linear in the
dimension n and number of atoms m, (2) the ability to handle noise (the more noise handled
the better), (3) handling overcomplete dictionaries (i.e. dictionaries for which m may be larger
than n), (4) handling a larger range of sparsity, with s = O(n) being the best, (5) making no
assumptions on the dictionary A, (6) a fast algorithm to actually learn the dictionary from
samples, and (7) making few assumptions on the matrix X.

Most of the aforementioned results focus on weakening the sparsity constraint under
which it is possible to perform learning, or handling overcomplete dictionaries or noise. These
all, however, come at an expense: the number of samples necessary for those algorithms to
provably work is quite large, often of order nC for large constant C. Some of the algorithms
also make strong assumptions on A, and/or have quasi-polynomial running time.

Recently, Luh and Vu in [17] made significant progress toward showing that the ER-
SpUD algorithm proposed in [24] actually solves the dictionary learning problem already
with p = O(n log4 n) samples. They claimed to prove that this p in fact suffices for dictionary
learning. In fact however, several probabilistic events were analyzed in [24], and if they all
occurred then ER-SpUD performed correct recovery. The work [17] analyzed arguably
the most complex of these events more efficiently, showing a certain crucial inequality held
with good probability when p & n log4 n (x & y means that x > Ky for some universal
constant K > 0). Unfortunately there is a gap: [24] required this inequality to hold for
exponentially many settings of variables, and thus one wants the inequality to hold for
any fixed instantiation with very high probability to then union bound, and [17] does not
provide such a probabilistic analysis. More seriously, there are other events defined in [24]
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which require p & n2 to hold whp in the Bernoulli-subgaussian model (except in the case the
subgaussians are actual gaussians), and [17] did not discuss these events at all. In fact, in
the full version we prove that in the Bernoulli-Rademacher model the ER-SpUD algorithm
of [24] actually requires p & n1.99 to succeed with probability even polynomially small in n,
contradicting the main result of [17] which claimed 1− o(1) successful learning for p nearly
linear in n.

Our contribution: We very slightly modify the algorithm ER-SpUD to obtain another
polynomial-time dictionary learning algorithm “ER-SpUD(DCv2)” for the noiseless case
with m = n, which circumvents our p & n1.99 lower bound for ER-SpUD in the Bernoulli-
subgaussian model. We then show that ER-SpUD(DCv2) provides correct dictionary
learning with probability 1 − δ with sparsity s = O(

√
n) as long as p & n log(n/δ). In

particular our result shows that a slight modification of ER-SpUD provides correct dictionary
learning for complete dictionaries with no noise, which provably works with high probability
using p & n logn samples. This resolves the main open problem of [24].

Furthermore, the work of [17] observed that the method of their proof is connected to
generic chaining, but that after a certain point the methods “become different in all aspects”
[17, Section G]. They also advertised and proved a new “refined version of Bernstein’s
concentration inequality for a sum of independent variables”. Unlike their work, our analysis
has the benefit of using standard off-the-shelf concentration and chaining results, thus making
the proof simpler and more easily accessible since it is less ad-hoc.

1.2 Approach overview
In Figure 2 we give the algorithm ER-SpUD(DCv2) analyzed in this work, a slight
modification of ER-SpUD(DC) from [24]. The only difference between DCv2 and the
original DC variant in [24] is that we try all

(
p
2
)
pairings of columns, whereas DC tried a

random pairing of the p columns into p/2 pairs. As we show in the full version, one of the
several conditions in [24] necessary for their proof of successful recovery of (A,X) from Y

actually requires p = Ω(n2) if using the DC variant, and hence our switch to DCv2 allows p
to be reduced to O(n logn).

Henceforth when we refer to ER-SpUD, we are referring to ER-SpUD(DCv2) unless
we state otherwise.

The main insight in the recovery analysis of [24] is that the last line of the ER-SpUD
pseudocode in Figure 2 can be rewritten (only in the analysis, since A,X are unknown) as
minw ‖wTAX‖1 subject to (A(Xej1 + Xej2))Tw = 1. Then writing z = ATw, this linear
program (LP) is equivalent to the secondary LP minz ‖zTX‖1 subject to bTj z = 1, since
we could recover w = (AT )−1z since A is invertible. Here bj denotes Xej1 + Xej2 . The
ideal case then is that the only optimal solution to the second LP will be a vector z∗
that is 1-sparse. In this case, the solution to the LP that we actually solve is equal to
w∗ = (AT )−1z∗ = (zT∗ A−1)T and thus a scaled row of A−1, implying wT∗ Y is a scaled row of
X. Thus, if z∗ is 1-sparse in the second LP, then the solution to the first LP allows us to
recover a scaled row of X.

The work [24] then outlines certain conditions for X that, if they hold, guarantee correct
recovery of (A,X). We now state these deterministic conditions, as per [24], which imply
correct recovery of (A,X) via ER-SpUD when they all simultaneously hold.

(P0) Every row of X has positive support size at most (10/9)θp. Furthermore, every linear
combination of rows of X in which at least two of the coefficients in the linear combination
are non-zero has support size at least (11/9)θp.
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ER-SpUD(DCv2): Exact Recovery of Sparsely-Used Dictionaries using the
sum of two columns of Y as constraint vectors.
1. For all pairs j1 < j2 ∈ {1, . . . , p}

Let rj = Y ej1 + Y ej2

Solve minw ‖wTY ‖1 subject to rTj w = 1, and set sj = wTY .
j ← j + 1

Greedy: A Greedy Algorithm to Reconstruct X and A.
1. REQUIRE: S = {s1, . . . , sT } ⊂ Rp.
2. For i = 1 . . . n

REPEAT
l← arg minsl∈S ‖sl‖0, breaking ties arbitrarily
xi = sl
S = S\{sl}

UNTIL rank([x1, . . . ,xi])= i

3. Set X = [x1, . . . ,xn]T , and A = Y Y T (XY T )−1.

Figure 2 ER-SpUD recovery algorithm.

(P1) For every b satisfying ‖b‖0 ≤ 1/(8θ), any solution z∗ to the optimization problem

min ‖zTX‖1 subject to bT z = 1 (1)

has support(z∗) ⊆ support(b).
(P2) Let q be 1

8θ . For every J ∈
([n]
q

)
and every b ∈ Rn satisfying |b|(2)/|b|(1) ≤ 1/2, the

solution to the restricted problem

‖zTXJ,∗‖1 subject to bT z = 1 (2)

is unique, 1-sparse, and is supported on the index of the largest entry of b. Here |b| is the
vector whose ith entry is |bi|, and |b|(j) is the jth largest entry of |b|. Also, XJ,∗ denotes
the submatrix of X with rows in J .

(P3) For every i ∈ [n] there exist a pair of columns Xej1 and Xej2 in X such that for
b = Xej1 +Xej2 with support J , we have that 0 < |J | ≤ 1/(8θ), |b|(2)/|b|(1) ≤ 1/2, and
the unique largest entry of |b| has index i.

The main result of [24] is then obtained by proving the following theorem, and then by
showing that (P0)–(P3) all hold whp for p & n2 log2 n.

I Theorem 1 ([24]). Suppose conditions (P0)–(P3) all hold. Then ER-SpUD and Greedy
from Figure 2 recover (A′, X ′) such that X ′ = ΠDX and A = AD−1Π−1 for some diagonal
scaling matrix D and permutation matrix Π. That is, the recovered (A′, X ′) are correct up to
scaling and permuting rows (resp. columns) of X (resp. A).

It was implicit in [24], and made explicit in [17], that to analyze the probability (P1)
holding as a function of p, it suffices to prove some upper bound on some stochastic process.
Namely, [17] proves that for Π a Bernoulli-subgaussian matrix with p rows, for p = Ω(n log4 n)

P

(
sup
‖v‖1=1

|‖Πv‖1 − E ‖Πv‖1| < c0µmin

)
> 1− o(1) (3)
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for some constant c0 < 1, and µmin := inf‖v‖1=1 E ‖XT v‖1. Both [24, 17] though required
the stochastic process of Eq. (3) to be bounded for roughly

(
n

1/(8θ)
)
choices of Π, formed by

taking various submatrices of XT . The naive approach is to then argue that the inequality
holds with failure probability � 1/

(
n

1/(8θ)
)
for a fixed Π so then union bound over all such

submatrices. Unfortunately the failure probability in [17] was not made explicit and was
only given as o(1), so it does not clearly allow for this union bound.

We show that, first of all, (P1) can be relaxed to some (P1’) such that it suffices to
only show Eq. (3) holds for polynomially many submatrices of X; showing (P1’) suffices
requires only a very minor change in the previous analysis of [24]. Next, more importantly,
we show that p & n log(n/δ) suffices for Eq. (3) to hold with probability 1− δ. This is one
of our main technical contributions, and is established using a generic chaining argument
[26]. It is worth pointing out that simpler chaining inequalities, such as Dudley’s inequality,
would yield suboptimal results in our setting by logarithmic factors.

Next, we also show that (P2) can be weakened to some other event (P2’) that holds
whp as long as p & θ−1 log(n/δ) – this requires only a minor change in the analysis of [24].

Finally, in Lemma 4 we show that event (P3) holds whp for p & n log(n/δ). This is the
part where the modification of the algorithm was necessary, so that pairs of columns Xej1

and Xej2 mentioned in this condition refers to all
(
p
2
)
pairs of columns, as opposed to a fixed

pairing (with bp2c pairs). Note that this condition actually fails to hold for the unmodified
version of the algorithm with p � n2, for example when the matrix X is drawn from the
Bernoulli-Rademacher model, which is the main reason the unmodified algorithm fails to
perform recovery (see the full version).

1.3 Recent and independent work
In a recent and independent work, Adamczak showed a main result similar to ours [1]. In
particular, he showed that by making the same modification to ER-SpUD that we have made
(ER-SpUD(DCv2)), p & n logn suffices for successful dictionary learning with probability
1− 1/p. Unlike our analysis which is based on Bernstein’s inequality and generic chaining,
the proof in [1] combines Bernstein’s inequality with Talagrand’s contraction principle, which
leads to an overall simpler proof than ours. The main differences in the results themselves
are that attention in [1] was not given to dependence of p on the failure probability δ, and
the analysis in our full version that ER-SpUD(DC) fails for p� n2 also does not appear
there, so that our stated results are slightly stronger in these regards.

2 Sufficient conditions for successful recovery

We first define (P1’), (P2’) as follows.
(P1’) For every b that can be expressed as the sum of two columns of X, |S| < p/4 and

∀v ∈ R|J̄|, ‖vTXJ̄,∗‖1 − 2‖vTXJ̄,S‖1 > Cp

√
θ

|J̄ |
‖v‖1 (4)

where C > 0 is some fixed constant, J = support(b), J̄ = [n]\J , and S ⊆ [p] is the set of
columns of X with support intersecting J .

(P2’) Let q be 1
8θ . For every b equaling the sum of two columns of X and with J ⊂ [n] its

support, let b′ ∈ R|J| be the projection of b onto its support. If 0 < |J | ≤ q = 1/(8θ) and
|b|(2)/|b|(1) ≤ 1/2, then the solution to the restricted problem

‖zTXJ,∗‖1 subject to (b′)T z = 1 (5)
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is unique, 1-sparse, and is supported on the index of the largest entry of b′. Here |b′| is
the vector whose ith entry is |b′i|, and |b′|(j) is the jth largest entry of |b′|. Also, XJ,∗
denotes the submatrix of X with rows in J .

In the full version, we show that it suffices that (P1’) and (P2’) hold instead of (P1) and
(P2) to guarantee correctness of ER-SpUD(DCv2). In particular, we show the following
lemma.

I Lemma 2. Suppose conditions (P0), (P1’), (P2’), and (P3) all hold. Then ER-SpUD
and Greedy from Figure 2 recover (A′, X ′) such that X ′ = ΠDX and A = AD−1Π−1 for
some diagonal scaling matrix D and permutation matrix Π. That is, the recovered (A′, X ′)
are correct up to scaling and permuting rows (resp. columns) of X (resp. A).

In the full version, we then show (P0), (P1’), (P2’), and (P3) all simultaneously hold
with probability 1− δ as long as p & n log(n/δ) and 1/n . θ . 1/

√
n, which when combined

with Lemma 2 implies that ER-SpUD has the desired correctness guarantee under this
same regime for p, θ.

I Theorem 3. For p & n log(n/δ) and 1/n . θ . 1/
√
n,

P(¬(P0) ∨ ¬(P1′) ∨ ¬(P2′) ∨ ¬(P3)) < δ (6)

I Remark. Here we sketch just how (P1’) is analyzed in Theorem 3, similarly to the
discussion in [24, 17]. This reveals why our chaining result, Theorem 12, is relevant.

For (P1’), the analysis is almost identical to the proofs of [24, Lemma 11] and [17, Lemma
V.2] regarding (P1). We repeat the slightly modified argument here for (P1’). Let b be a
particular sum of two columns of X. We will show that the condition of (P1’) fails to hold
for b with probability at most δ/p2, which implies P(¬(P1’)) ≤ δ by a union bound over all(
p
2
)
such b. Let J, S be as in the definition of (P1’) above. Define the event ES as the event

that |S| < p/4. Since θn ≤ c
√
n for some small c > 0, if b = X∗,j1 + X∗,j2 , it follows that

any column index j /∈ {j1, j2} has support intersecting J with probability at most 1/10 (by
making c sufficiently small). Thus E |S| < p/10, implying P(¬ES) = P(|S| ≥ p/4) is at most
exp(−Ω(p)) ≤ δ/p2 by the Chernoff bound and fact that p & log(p2/δ).

The definition of EN is the following event:

∀v ∈ R|J̄|, ‖vTXJ̄,∗‖1 − 2‖vTXJ̄,S‖1 > Cp

√
θ

|J̄ |
‖v‖1 (7)

for some constant C, where J̄ denotes [n]\J . Note though that XJ̄,∗ is itself a matrix of i.i.d.
Bernoulli-subgaussian entries (except for the two columns j1, j2, which are both zero). Thus
setting Π = XT

J̄,∗ and applying Theorem 12 with our choice of p, with probability at least
1− δ/p2, for all v ∈ B1,

‖vTXJ̄,∗‖1 ≥
7
8 E ‖vTXJ̄,∗‖1 = 7p

8 E |vT (XJ̄,∗)∗,1|
def= 7p

8 α(v), (8)

where (XJ̄,∗)∗,1 clumsily denotes the first column of the matrix XJ̄,∗. The last inequality
follows from [24, Lemma 16]. Also, conditioned on ES , |S| < p/4. Let X ′ be the matrix XJ̄,S

padded with p/4− |S| additional columns, each independent of but identically distributed to
the columns of X. Then, even conditioned on ES , X ′ is a |J̄ | × p/4 matrix of i.i.d. Bernoulli-
gaussian entries (except for two columns which are both identically zero, corresponding to
j1, j2). Thus applying Theorem 12 to Π = (X ′)T , with probability at least 1− δ/p2,

∀v ∈ B1, ‖vTX ′‖1 ≤
3
2 E ‖vTX ′‖1 = 3p

8 E |vTX ′∗,1| =
3p
8 α(v). (9)
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Then by combining (8), (9) and scaling by ‖v‖1, we see that the left hand side of (7) is
at least p

8α(v) & p
√

θ
|J̄|‖v‖1, with the inequality following from [24, Lemma 16].

We are now going to sketch how to show that with probability 1− δ condition (P3) holds.
The full proof is in the full version.

Consider the special case that Xij = bijgij with Bernoulli random variable bij and
independent continuous subgaussian random variable gij . In such a case there would exist
some fixed threshold t0, such that P(|Xij | > t0) = 1

n – it would mean that a constant fraction
of columns would have unique entry larger than this threshold. For a single index i ∈ [n]
we would expect that at least C p

n > log n
δ columns have a unique entry larger than t0 and

such that this entry has index i. Let us focus on this set of columns. If supports of any two
such columns had common intersection exactly equal to {i} – and if the sign on this i-th
coordinate were matching, then in fact sum of those two columns would exhibit a factor
two gap between the largest and the second largest entry, with largest entry being on the
i-th position – indeed, entry on position i would have magnitude larger than 2t0, whereas
all other entries are at most t0 in absolute value. We can expect to find such a pair with
probability 1− δ

n , as all columns are expected to be O(
√
n) sparse – therefore for a fixed

pair containing {i}, their supports would intersect on exactly {i} with constant probability.
We then prove that there exist such a pair with probability at least δ

n for every fixed i, and
hence by union bound property (P3) holds with probability δ.

In the actual proof we do not assume that gij is continuous, and hence a threshold t0 for
which P(|Xij | > t0) = 1

n might not exist, and the proof is slightly more complicated, but it
follows the same general intuition. We prove the following in the full version.

I Lemma 4. Let X ∈ Rn×p be a Bernoulli-Subgaussian matrix with θ = O( 1√
n

). If
p = Ω(n log n

δ ), then with probability at least 1− δ condition (P3) holds.

3 Chaining background

We now provide some preliminary definitions and results we will need to prove Theorem 12.
As per Lemma 2 and the proof of Theorem 3, Theorem 12 fits in to show that ER-SpUD
achieves correct recovery with probability 1− δ for p & n log(n/δ) and 1/n . θ . 1/

√
n.

In this subsection we provide relevant definitions for a technique called generic chaining,
as well as statements of some of the results in the area. Those tools have been designed to
provide answers about the supremum of the fluctuations from the mean for a large collection
of random variables, when the reasonable bounds for covariances in terms of the geometry of
the set of indices are at hand.

I Definition 5 (Admissible sequence). For an arbitrary set T , we say that a sequence of its
subsets (Tk)∞k=0 is admissible if for every number k it is true that Tk ⊂ Tk+1 and |Tk| ≤ 22k

for k ≥ 1 and |T0| = 1.

I Definition 6 (Gamma functionals). For a metric space (T, d) we define

γα(T, d) := inf
(Tk)

sup
x∈T

∞∑
k=0

2k/αd(x, Tk) (10)

where the infimum is taken over all admissible sequences Tk. In the above formula we define
as usual d(x, Tk) := inft∈Tk

d(x, t).

I Fact 7. If d and d′ are two metrics such that for d(t1, t2) = Cd′(t1, t2) for every pair of
points t1, t2, then γα(T, d) = Cγα(T, d′)
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I Theorem 8 (Generic chaining [26], Theorem 2.2.23). Let T be an arbitrary set of indices,
and d1, d2 : T × T → R≥0 two metrics on T . Suppose that with any point t ∈ T we have
associated random variable Xt, with EXt = 0. Suppose moreover, that for any two points
u,w ∈ T we have a tail bound: P (|Xu −Xv| > λ) . exp

(
− λ2

d1(u,v)2

)
+exp

(
− λ
d2(u,v)

)
. Then

E supu∈T |Xu| . γ2(T, d1) + γ1(T, d2).

I Theorem 9 (Dirksen, [11]). Let T be an arbitrary set of indices and d1, d2 : T × T → R≥0
two metrics on T . Suppose that with any point t ∈ T we have associated random variable Xt,
such that EXt = 0. Suppose moreover that for any two points u,w ∈ T , we have a tail bound

P(|Xu −Xv| > λ) . exp
(
− λ2

d1(u, v)2

)
+ exp

(
− λ

d2(u, v)

)
Then for there exists an universal constant C, such that for any u > 0

P
(

sup
u∈T
|Xu| > C(γ2(T, d1) + γ1(T, d2) +

√
u∆(T, d1) + u∆(T, d2))

)
< e−u

where ∆(T, d) := supu,v∈T d(u, v).

I Theorem 10 (Majorizing measures [26], Theorem 2.4.1). Let T ⊂ Rn, and assume that
g = (g1, . . . gn) is a vector of i.i.d. standard normal random variables. Then E supt∈T 〈g, t〉 '
γ2(T, d2), where dp is the metric induced by the `p norm.

I Theorem 11 ([26], Theorem 10.2.8). Let T ⊂ Rn, and assume that x = (x1, . . . , xn) is a
vector of i.i.d. standard exponential random variables. Then E supt∈T 〈t, x〉 ' γ2(T, d2) +
γ1(T, d∞)

4 Proof of the stochastic process bound

In this section we will prove the following theorem, which provides a stronger form of Eq. (3).

I Theorem 12. Let Π ∈ Rm×n be a random matrix with i.i.d. random entries πij = χijgij,
where χij ∈ {0, 1} is a Bernoulli random variable with Eχij = θ, and gij symmetric
subgaussian random variable. Moreover, assume that 1

n ≤ θ. When m = Ω(ε−2n log n
δ ),

P
Π

(
sup
v∈B1

|‖Πv‖1 − E ‖Πv‖1| > ε · E ‖Πv‖1
)
< δ (11)

We now prove the theorem. Define B1 := {t ∈ Rn : ‖t‖1 ≤ 1}. For each v ∈ B1,
consider X̃v := ‖Πv‖1 − E ‖Πv‖1. We wish to prove that with high probability over Π we
have supv∈B1 |X̃v| ≤ εµmin, where µmin := m

√
θ
n is such that for every v ∈ B1 we have

E ‖Πv‖1 ≥ µmin (see [24, Lemma 16] for a proof). Let π1, . . . πm be the rows of matrix Π.
With each v ∈ B1 we associate another random variable Xv :=

∑m
i=1 σi| 〈πi, v〉 |, with the σi

being independent Rademachers.

I Lemma 13. For every integer p we have

‖ sup
v∈B1

|X̃v|‖p . ‖ sup
v∈B1

|Xu|‖p . (12)

Proof. Without loss of generality consider even integer p, so that |Xu|p = Xp
u. Let Π̃ be a

random matrix, independent and identically distributed as Π. By Jensen’s inequality we
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have

‖ sup
v∈B1

|X̃v|‖p =
∥∥∥∥ sup
v∈B1

‖Πv‖1 − Ẽ
Π
‖Π̃v‖1

∥∥∥∥
p

≤
∥∥∥∥ sup
v∈B1

‖Πv‖1 − ‖Π̃v‖1
∥∥∥∥
p

=

∥∥∥∥∥ sup
v∈B1

m∑
i=1
| 〈πi, v〉 | − | 〈π̃i, v〉 |

∥∥∥∥∥
p

Now each summand | 〈πi, v〉 | − | 〈πi, v〉 | is symmetric random variable, and they are
independent. We can thus introduce independent random signs σi without altering the
distribution:

‖ sup
v∈B1

|X̃v|‖p .

∥∥∥∥∥ sup
v∈B1

m∑
i=1

σi(| 〈πi, v〉 | − | 〈π̃i, v〉 |)

∥∥∥∥∥
p

≤

∥∥∥∥∥ sup
v∈B1

m∑
i=1

σi| 〈πi, v〉 |

∥∥∥∥∥
p

+

∥∥∥∥∥ sup
v∈B1

p∑
i=1

(−σi)| 〈π̃i, v〉 |

∥∥∥∥∥
p

= 2

∥∥∥∥∥ sup
v∈B1

m∑
i=1

σi| 〈πi, v〉 |

∥∥∥∥∥
p

.

∥∥∥∥ sup
v∈B1

|Xv|
∥∥∥∥
p

J

We will first analyze tail behavior of the random variable supv∈B1 |Xv|, and then use
Lemma 13 together with [15, Lemma 4.10] to obtain tail bounds for the random variable of
original interest supv∈B1 |X̃v|.

In order to use Theorem 9 to obtain tail bounds for supremum of Xu, we need to bound
tails of random variables Xu −Xv for u, v ∈ B1.

I Lemma 14. For every pair of points u, v ∈ B1, we have

P(|Xu −Xv| > λ) . exp
(
− λ2

2mθ‖u− v‖22

)
+ exp

(
− λ

‖u− v‖∞

)
(13)

Proof. We can write

Xu −Xv =
m∑
i=1

σi(| 〈πi, u〉 | − | 〈πi, v〉 |) (14)

Define Qi := σi(| 〈πi, u〉 | − | 〈πi, v〉 |). We have Xu − Xv =
∑m
i=1Qi, where all Qi are

symmetric and identically distributed.
Moreover, we have |Qi| = || 〈πi, u〉 | − | 〈πi, v〉 || ≤ | 〈πi, u− v〉 |. Observe that each πij

is (
√

2θ, 1)-subgamma. Here we say a random variable Z is (σ,B)-subgamma if EZ = 0
and ψZ(λ) ≤ λ2σ2/(2(1 − Bλ)) for all |λ| < 1/|B|, where ψZ(λ) = lnE eλZ . By basic
properties of subgamma random variables (see [9, Section 2.4]), we know that 〈πi, u− v〉 is
(
√

2θ‖u− v‖2, ‖u− v‖∞)-subgamma.
Now, as both Qi and 〈πi, u− v〉 are symmetric, and |Qi| ≤ | 〈πi, u− v〉 | always, we

deduce that each Qi is also (
√

2θ‖u− v‖2, ‖u− v‖∞)-subgamma.
Finally, Xu −Xv, as a sum of independent subgamma random variables is (

√
2mθ‖u−

v‖22, ‖u− v‖∞)-subgamma. This, together with [9, Section 2.4] implies the tail bound

P

(∣∣∣∣∣
m∑
i=1

Qi

∣∣∣∣∣ > λ

)
. exp

(
λ2

2mθ‖u− v‖22

)
+ exp

(
λ

‖u− v‖∞

)
(15)

J
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With this lemma in hand, we can use Theorem 9, to deduce the tail bound for supremum
of |Xv|.

P
(

sup
v∈B1

|Xu| > M +
√
uD1 + uD2

)
< e−u (16)

Where M := C1(γ2(B1,
√

2mθd2) + γ1(B1, d∞)), D1 := C2∆(B1,
√

2mθd2), and D2 :=
C3∆(B1, d∞), with d2, d∞ being metrics on Rn induced by norms `2, `∞ respectively, and
C1, C2, C3 are universal constants.

We claim that, we can deduce similar tail bounds for supv∈B1 |X̃u|. Namely

P
(

sup
v∈B1

|X̃u| > L(M +
√
uD1 + uD2)

)
< e−u (17)

for some universal constant L.
Indeed it is known (see [15, Lemma 4.10]) that tail bounds of the form Eq. (16) imply

moment bounds of the form ‖ supv∈B1 |Xv|‖p .M +√pD1 + pD2. By Lemma 13, the same
(up to a constant) p-norm bounds are true for supv∈B1 |X̃v|. Finally, [15, Lemma 4.10] also
implies similar tail behavior of the random variable supv∈B1 X̃v, as in Eq. (17).

If we set u := log 1
δ in Eq. (17), we will get an upper bound for supv∈B1 X̃v which is

satisfied with probability at least 1− δ. We need to understand the values of M ,
√
uD1 and

uD2, for this setting of u, and we will show how to pick m such that sum of those values is
smaller than εµmin.

Let us focus now on boundingM . We have γ2(B1,
√

2mθd2) =
√

2mθγ2(B1, d2). We need
an upper bound for γ2(B1, d2) and γ1(B1, d∞). We prove the following in the full version,
using Theorem 10 and Theorem 11.

I Fact 15. γ2(B1, d2) .
√

logn and γ1(B1, d∞) . logn.

Fact 15 together with previous discussion yield an upper bound M .
√
mθ logn+ logn.

Moreover, as d2(u, v) ≤ d1(u, v) for any u, v ∈ Rn, where d1 is the metric induced by the
`1 norm, we can easily upper bound diameter of B1 in d2 by diameter of B1 and d1 and
therefore obtain an upper bound for D1

D1 = C1∆(B1,
√
emθd2) = C1

√
emθ∆(B1, d2) ≤ C12

√
emθ

and similarly ∆(B1, d∞) = 2. Altogether, we have following inequalities: M .
√
mθ logn+

logn, D1 .
√
mθ, and D2 . 1. Plugging this back to Eq. (17), we have

P

(
supv∈B1 |X̃v| < L2

(√
mθ(logn+ log 1

δ
) + logn+ log 1

δ

))
< δ (18)

where again L2 is some constant.
The following inequalities are equivalent: L2

√
mθ log n

δ ≤
1
2εµmin, L2

√
mθ log n

δ ≤
1
2ε
√

θ
nm, and 4L2

2
ε2 n log n

δ ≤ m. Similarly, the assumption θ ≥ 1
n implies that if m >

2L2
ε n log n

δ , then also L2 log n
δ ≤

1
2εµmin, so once m is larger than both those values, Eq. (18)

implies P
(
supv∈B1 |X̃v| > εµmin

)
< δ, as desired.
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1 Introduction

We develop a new method for analysing correlation decays in spin systems. In particular, we
take the shape of instances in the computation tree into consideration and we amortise against
certain “bad” instances that are created as the recursion proceeds. This enables us to show
correlation decay and to obtain an FPTAS even when strong spatial mixing fails. To the best
of our knowledge, strong spatial mixing is a requirement for all previous correlation-decay
based algorithms. To illustrate our technique, we focus on the computational complexity
of approximately counting independent sets in hypergraphs, or equivalently on counting the
satisfying assignments of monotone CNF formulas.

The problem of counting independent sets in graphs (denoted #IS) is extensively studied. A
beautiful connection has been established, showing that approximately counting independent
sets in graphs of maximum degree ∆ undergoes a computational transition which coincides
with the uniqueness phase transition from statistical physics on the infinite ∆-regular tree.
The computational transition can be described as follows. Weitz [17] designed an FPTAS for
counting independent sets on graphs with maximum degree at most ∆ = 5. On the other
hand, Sly [15] proved that there is no FPRAS for approximately counting independent sets
on graphs with maximum degree at most ∆ = 6 (unless NP = RP). The same connection has
been established in the more general context of approximating the partition function of the
hard-core model [17, 12, 15, 4, 5, 16] and in the even broader context of approximating the
partition functions of generic antiferromagnetic 2-spin models [14, 5, 16, 8] (which includes,
for example, the antiferromagnetic Ising model). As a consequence, the boundary for the
existence of efficient approximation algorithms for these models has been mapped out.

Approximate counting via correlation decay is the core technique in the algorithmic
developments which enabled the sharp delineation of the computational phase transition.
Another standard approach for approximate counting, namely Markov Chains Monte Carlo
(MCMC) simulation, is also conjectured to work up to the uniqueness threshold, but the
current analysis tools that we have do not seem to be powerful enough to show that. For
example, sampling independent sets via MCMC simulation is known to have fast mixing only
for graphs with degree at most 4 [11, 3], rather than obtaining the true threshold of 5.

In this work, we consider counting independent sets in hypergraphs with upper-bounded
vertex degree, and lower-bounded hyperedge size. A hypergraph H = (V,F) consists of a
vertex set V and a set F of hyperedges, each of which is a subset of V . A hypergraph is said
to be k-uniform if every hyperedge contains exactly k vertices. Thus, a 2-uniform hypergraph
is the same as a graph. We will consider the more general case where each hyperedge has
arity at least k, rather than exactly k.

An independent set in a hypergraph H is a subset of vertices that does not contain a
hyperedge as a subset. We will be interested in computing ZH , which is the total number
of independent sets in H (also referred to as the partition function of H). Formally, the
problem of counting independent sets has two parameters – a degree upper bound ∆ and
a lower bound k on the arity of hyperedges. The problem is defined as follows (see also
Section 2 for an equivalent formulation in terms of monotone CNF formulas).

Name #HyperIndSet(k,∆).
Instance A hypergraph H with maximum degree at most ∆ where each hyperedge has

cardinality (arity) at least k.
Output The number ZH of independent sets in H.

Previously, #HyperIndSet(k,∆) has been studied using the MCMC technique by Border-
wich, Dyer, and Karpinski [1, 2] (see also [3]). They give an FPRAS for all k ≥ ∆ + 2 ≥ 5
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and for k ≥ 2 and ∆ = 3. Despite equipping path coupling with optimized metrics obtained
using linear programming, these bounds are not tight for small k. Liu and Lu [9] showed
that there exists an FPTAS for all k ≥ 2 and ∆ ≤ 5 using the correlation decay technique.

Thus, the situation seems to be similar to the graph case – given the analysis tools that
we have, correlation-decay brings us closer to the truth than the best-tuned analysis of
MCMC simulation algorithms. On the other hand, the technique of Liu and Lu [9] does not
extend beyond ∆ = 5. To explain why, we need to briefly describe the correlation-decay-
based algorithm framework introduced by Weitz [17]. The main idea is to build a recursive
procedure for computing the marginal probability that any given vertex is in the independent
set. The recursion works by examining sub-instances with “boundary conditions” which
require certain vertices to be in, or out, of the independent set. The recursion structure is
called a “computation tree”. Nodes of the tree correspond to intermediate instances, and
boundary conditions are different in different branches. The computation tree allows one to
compute the marginal probability exactly but the time needed to do so may be exponentially
large since, in general, the tree is exponentially large. Typically, an approximate marginal
probability is obtained by truncating the computation tree to logarithmic depth so that the
(approximation) algorithm runs in polynomial time. If the correlation between boundary
conditions at the leaves of the (truncated) computation tree and the marginal probability at
the root decays exponentially with respect to the depth, then the error incurred from the
truncation is small and the algorithm succeeds in obtaining a close approximation.

All previous instantiations under this framework require a property called strong spatial
mixing (SSM), which roughly states that, conditioned on any boundary condition on inter-
mediate nodes, the correlation decays (see Section 2.1 in the full version). SSM thus guards
against the worst-case boundary conditions that might be created by the recursive procedure.

Let the (∆− 1)-ary k-uniform hypertree Tk,∆ be the recursively-defined hypergraph in
which each vertex has ∆− 1 “descending” hyperedges, each containing k − 1 new vertices.

I Observation 1. Let k ≥ 2. For ∆ ≥ 6, strong spatial mixing does not hold on Tk,∆.

Observation 1 follows from the fact that the infinite (∆− 1)-ary tree T2,∆ can be embedded
in the hypertree Tk,∆, and from well-known facts about the phase transition on T2,∆.

Observation 1 prevents the generalisation of Liu and Lu’s algorithm [9] so that it applies
for ∆ ≥ 6, even with an edge-size lower bound k. The problem is that the construction
of the computation tree involves constructing intermediate instances in which the arity of
a hyperedge can be as small as 2. So, even if we start with a k-uniform hypergraph, the
computation tree will contain instances with small hyperedges. Without strong spatial
mixing, these small hyperedges cause problems in the analysis. Lu, Yang and Zhang [10]
discuss this problem and say “How to avoid this effect is a major open question whose
solution may have applications in many other problems.” This question motivates our work.

To overcome this difficulty, we introduce a new amortisation technique in the analysis.
Since lack of correlation decay is caused primarily by the presence of small-arity hyperedges
within the intermediate instances, we keep track of such hyperedges. Thus, we track not
only the correlation, but also combinatorial properties of the intermediate instances in the
computation tree. Using this idea, we obtain the following result.

I Theorem 2. There is an FPTAS for #HyperIndSet(3, 6).

Note that #HyperIndSet(2, 6) is NP-hard to approximate due to [15], so our result is tight for
∆ = 6. This also shows that ∆ = 6 is the first case where the complexity of approximately
counting independent sets differs on hypergraphs and graphs, as for ∆ ≤ 5 both admit an
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FPTAS [9]. Moreover, Theorem 2 is stronger than the best MCMC algorithm [2] when ∆ = 6
as [2] only works for k ≥ 8.

We also apply our technique to large k.

I Theorem 3. There exists a constant k0 such that for all positive integers k ≥ k0 and ∆
satisfying k ≥ 1.66∆ there is an FPTAS for the problem #HyperIndSet(k,∆).

In the large k case, our result is worse than that obtained by analysis of the MCMC
algorithm [2] (k ≥ 1.66∆ rather than k ≥ ∆ + 2) but it is incomparable since our algorithm
is deterministic rather than randomised. The reason that our bound is worse is mainly due
to technical difficulty in the analysis that we will explain shortly. In fact, we believe that, in
the long run, analysis of the correlation-decay based algorithm is more likely to reveal the
exact critical threshold than analysis of MCMC simulation, although other new ideas will
probably be required in order to achieve sufficiently precise analysis.

The main technical difficulty in correlation-decay analysis is bounding a function that we
call the “decay rate”. This boils down to solving an optimization problem with (k− 1)(∆− 1)
variables. In previous work (e.g. [13]), this optimization has been solved using a so-called
“symmetrization” argument, which reduces the problem to a univariate optimization via
convexity. However, the many variables represent different branches in the computation tree.
Since our analysis takes the shape of intermediate instances in the tree into consideration,
the symmetrization argument does not work for us, and different branches take different
values at the maximum. This problem is compounded by the fact that the shape of the
sub-tree consisting of “bad” intermediate instances is heavily lopsided, and the assignment of
variables achieving the maximum is far from uniform. Given these problems, there does not
seem to be a clean solution to the optimization in our analysis. Instead of optimizing, we
give an upper bound on the maximum decay rate. In Theorem 2, as k and ∆ are small, the
number of variables is manageable, and our bounds are much sharper than those in Theorem
3. On the other hand, because of this, the proof of Theorem 3 is much more accessible, and
we will use Theorem 3 as a running example to demonstrate our technique.

We also provide some insight on the hardness side. Recall that for graphs it is NP-hard
to approximate #IS beyond the uniqueness threshold (∆ = 6) [15]. We prove that it is
NP-hard to approximate #HyperIndSet(6, 22) (Corollary 29). In contrast, we show in the
full version that uniqueness holds on the 6-uniform ∆-regular hypertree iff ∆ ≤ 28 (Corollary
36). Thus, efficient approximation schemes cease to exist well below the uniqueness threshold
on the hypertree. In fact, we show that this discrepancy grows exponentially in k: for large
k, it is NP-hard to approximate #HyperIndSet(k,∆) when ∆ ≥ 5 · 2k/2 (Theorem 28 and
Corollary 30), despite the fact that uniqueness holds on the hypertree for all ∆ ≤ 2k/(2k)
(Lemma 37 in the full version). Theorem 28 follows from a rather standard reduction to the
hard-core model on graphs. Nevertheless, it demonstrates that the computational-threshold
phenomena in the hypergraph case (k > 2) are different from those in the graph case (k = 2).

As mentioned earlier, there are models where efficient (randomised) approximation
schemes exist (based on MCMC simulation) even though SSM does not hold. In fact, this can
happen even when uniqueness does not hold. A striking example is the ferromagnetic Ising
model (with external field). As [14] shows, there are parameter regimes where uniqueness
holds but strong spatial mixing fails. It is easy to modify the parameters so that even
uniqueness fails. Nevertheless, Jerrum and Sinclair [6] gave an MCMC-based FPRAS that
applies for all parameters and for general graphs (with no degree bounds). It is still an open
question to give a correlation decay based FPTAS for the ferromagnetic Ising model.

We conclude this section by giving an outline of the rest of the paper. In Section 2, we
give some preliminaries. We reformulate #HyperIndSet(k,∆) as the problem of counting
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satisfying assignments in monotone CNF formulas, which will allow us to use the computation
tree of Liu and Lu [9]. In Section 3, we give an overview of our proof approach, describing the
main idea behind our new amortisation technique. In Section 4, we give the main ingredients
which we use to prove Theorem 3 (large k). Section 5 describes the main lemma which yields
Theorem 2 (k = 3). Section 6 gives the formal statements and proofs of the hardness results.

2 Preliminaries: monotone CNF formulas & the computation tree

The problem of counting the independent sets of a hypergraph has an equivalent formulation
in terms of monotone CNF formulas. Given a hypergraph H = (V,F), let C be a Boolean
formula with variable set V . For each hyperedge, construct a clause which is the disjunction
of all variables corresponding to vertices in the hyperedge. Let C be the conjunction of all
such clauses. Note that C is a monotone formula – no variable is negated. Also, independent
sets of H are in one-to-one correspondence with satisfying assignments of C – a variable is
assigned value “true” in an assignment if and only if it is out of the corresponding independent
set. Going the other direction, any monotone CNF formula can be viewed as a hypergraph. In
the technical sections of this paper, we use the monotone CNF formulation and, in particular,
the computation tree of Liu and Lu [9]. Below we give the relevant definitions and notation;
our notation aligns as much as possible with that of [9].

Let C be an instance of a monotone CNF formula. We will denote the set of variables in
C by V and set n := |V |. Variables in V will be denoted by x1, x2, . . . and clauses in C by
c1, c2, . . .. The arity of a clause c will be denoted by |c|, i.e., |c| is the number of variables
appearing in the clause c. We assume throughout that no variable appears twice in the same
clause. For a variable x ∈ V , we denote by dx(C) the number of clauses where x appears.
When x and C are clear from context, we will simply use d to denote dx(C). When C is clear
from context, we will use ∆ to denote maxx∈V dx(C) and we will say that C is a formula
with max degree ∆. Let Ck,∆ be the set of all monotone CNF formulas which have max
degree ∆ and whose clauses have arity at least k. Note that some formulas in Ck,∆ may have
some clauses with arbitrarily large arities.

Our goal is to approximately count the number of satisfying assignments of a formula
C ∈ Ck,∆, which we denote by Z(C). Since C is monotone, an assignment σ : V → {0, 1}
is satisfying if, for every clause in C, there is at least one variable x ∈ c with σ(x) = 1.
Note that Z(C) > 0 since the all-1 assignment satisfies every monotone CNF formula. For
convenience, we will use the simplified notation “x = 1” to denote (the set of) satisfying
assignments of C in which x is set to 1, and we similarly use “x = 0”. We associate the
formula C with a probability distribution in which each satisfying assignment has probability
mass 1/Z(C). We will denote probabilities with respect to this distribution by PrC(·).

Let x be a variable in V . Define R(C, x) := PrC(x=0)
PrC(x=1) , this is well-defined since PrC(x =

1) > 0 by the monotonicity of C. In fact, the monotonicity of C also implies that 0 ≤
R(C, x) ≤ 1, where the upper bound follows from the fact that, for every satisfying assignment
with x = 0, flipping the assignment of x to 1 does not affect satisfiability. Our interest in the
quantity R(C, x) stems from the following simple lemma (the proof follows the argument in
[9, Appendix A] and is given for completeness in the full version).

I Lemma 5. Let k and ∆ be positive integers. Suppose that there is a polynomial-time
algorithm (in n and 1/ε) that takes an n-variable formula C ∈ Ck,∆, a variable x of C, and
an ε > 0 and computes a quantity R̂(C, x) satisfying |R̂(C, x)− R(C, x)| ≤ ε. Then, there
exists an FPTAS which approximates Z(C) for every C ∈ Ck,∆.
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Liu and Lu [9] established that a computation tree approach gives a recursive procedure
for exactly calculating R(C, x) for any monotone CNF formula C and any variable x ∈ C.
We next give the details of this recursive procedure (see [9, Lemma 5]). First, we introduce
the following definitions (see Definitions 6 and 7 in the full version).

We call the variable x forced in C if x appears in a clause of arity 1 in C. We call the
variable x free if x does not appear in any clause of C. We call the clause c redundant in C
if there is a clause c′ in C such that c is a (strict) superset of c′ (note that removing c from
C does not affect the set of satisfying assignments of C). We next give the details of the
computation tree. The nodes in the computation tree will be pairs (C, x) such that

C is a monotone CNF formula and x is a variable which is not forced in C. (1)

Let C, x satisfy (1). We first perform a pre-processing step on C which involves (i) initially
removing all of the redundant clauses, (ii) then, removing all clauses of arity 1. Note that
part (ii) of the preprocessing step removes all forced variables that were present in C; at
the time of the removal, forced variables appear only in clauses of arity 1 since part (i)
of the preprocessing step has already removed all redundant clauses in C (and hence all
clauses of arity greater than 1 that contain forced variables). Denote the formula after the
completion of the preprocessing step by C̃. Note that every clause in C̃ is also a clause in
the initial formula C, so x is not forced in C̃. Further, since removing redundant clauses
does not change the set of satisfying assignments of C, and x is not forced in C, we have
that R(C̃, x) = R(C, x).

If x is free in C̃ (the formula after the pre-processing step), then the start node (C, x) is
(declared) a leaf of the computation tree (note that in this case R(C, x) = 1). In the sequel,
we assume that x is not free in C̃. Denote by {ci}i∈[d] the clauses where x occurs in C̃ and
let wi = |ci| − 1 (note that d ≥ 1). We will use w to denote the vector (w1, . . . , wd). The
variables in clause ci other than x will be denoted by xi,1, . . . , xi,wi . For the pair (C, x),
we next construct pairs (Ci,j , xi,j) for i ∈ [d] and j ∈ [wi], where Ci,j is an appropriate
subformula obtained from C̃, roughly, by hard-coding (some of) the occurrences of the
variables in C̃ to either 1 or 0 (this will be explained below and will henceforth be referred
to as pinning)1.

Precisely, for i ∈ [d], let Ci be the formula obtained from C̃ by removing clauses c1, . . . , ci−1
(note that this has the same effect as pinning the occurrences of x in these clauses to 1) and
pinning the occurrences of x in ci+1, . . . , cd to 0. For j ∈ [wi], the formula Ci,j is obtained
from Ci by further removing clause ci and pinning all the occurrences of xi,1, . . . , xi,j−1 to 0.

In the full version, we prove that the pairs (Ci,j , xi,j) satisfy (1) for all i ∈ [d], j ∈ [wi].
We next state the relation between R(C, x) and the R(Ci,j , xi,j)’s. It is proved in [9, Lemma
5], using a Weitz-type telescopic expansion (see also the full version for the argument), that

R(C, x) =
d∏
i=1

(
1−

wi∏
j=1

R(Ci,j , xi,j)
1 +R(Ci,j , xi,j)

)
. (2)

By applying (2) recursively, it is not hard to see that one can compute the quantity R(C, x)
exactly. Of course, exact computation using this scheme will typically require exponential
time, so as in [9] we will stop the recursion at some (small) depth L to keep the computations
feasible within polynomial time. This will yield a quantity R(C, x, L) and the hope is that,
by choosing L appropriately, the error |R(C, x, L)−R(C, x)| will be sufficiently small.

1 Note that our notation for i, j is different from the one in [9]; there, the roles of i, j are interchanged.
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In light of (2), and analogously to [9], we define R(C, x, L) for integer L ≥ 0 as follows.
Namely, for integer L we set

R(C, x, L) =
{

1, if x is free in C̃ or L ≤ 0,∏d
i=1
(
1−

∏wi
j=1

R(Ci,j ,xi,j ,L−lwi )
1+R(Ci,j ,xi,j ,L−lwi )

)
, otherwise,

(4)

where lwi := dlog6(wi + 1)e (note that l1 = . . . = l5 = 1). The choice of lwi is such that the
size of the computation tree is polynomial for L = O(logn); the particular choice of the
logarithm base in the definition of lwi is not important as long as it is a big enough constant.

Using correlation decay techniques together with a new method to account for the shape
of the computation tree, we will show the following key lemma (proved in Section 5).

I Lemma 10. Let ∆ = 6. There exist constants α, τ with 0 < α < 1 and τ > 0 such that
the following holds for all integers L. Let C be a monotone CNF formula whose clauses all
have arity greater than or equal to 3 and, further, each variable occurs in at most ∆ clauses.
Then, for the quantity R(C, x, L) defined recursively from (4), it holds that

|R(C, x, L)−R(C, x,∞)| ≤ ταL.

In the following section, we give an overview of our approach to proving Lemma 10. We also
prove an analogous lemma in the case where k,∆ are large, see Lemma 11 in Section 4.

Proof of Theorems 2 and 3 assuming Lemmas 10 and 11. Invoke Lemmas 5, 10 and 11
and the reformulation of #HyperIndSet(k,∆) in terms of the monotone CNF problem. J

3 Proof Approach

To prove Lemma 10, the standard approach so far in the literature has been to show that,
for a node (C, x) in the computation tree, the quantity |R(C, x, L)−R(C, x,∞)| is bounded
by αmaxi,j |R(Ci,j , xi,j , L − 1) − R(Ci,j , xi,j ,∞)| for some constant 0 < α < 1 and then,
inductively, to deduce that |R(C, x, L)−R(C, x,∞)| decays exponentially in L. This approach
has been extremely successful when strong spatial mixing holds [14, 8, 9, 13, 18, 10].

In our setting, this inductive approach is problematic since, inside the computation tree,
we are faced with the possibility that the formula at the root of a subtree has many arity-2
clauses. For ∆ ≥ 6, these subtrees prohibit the application of the above proof scheme since
they are in non-uniqueness and hence the desired step-by-step decay is no longer present.

While arity-2 clauses are problematic, clauses with larger arity do at least lead to good
decay of correlation in a single step. Thus, our approach is to do an amortised analysis. In a
single step, we track both the one-step decay of correlation and the immediate creation of
arity-2 clauses, which will later lead to worse decay. More formally, instead of tracking the
quantity R(C, x, L), we track the quantity m(C, x, L) = δb(C)R(C, x, L) where b(C) denotes
the number of arity-2 clauses in the formula C (the “bad” clauses) and δ ∈ (0, 1) is an
appropriate constant. (In fact, in Section 5, we define m(C, x, L) as δb(C)Φ(R(C, x, L)) for
an appropriate function Φ, see (28).)

Crucially, note that the root formula C satisfies |m(C, x, L)−m(C, x,∞)| = |R(C, x, L)−
R(C, x,∞)|, since by the assumption in Lemma 10 we have that b(C) = 0. Thus, the key
step in the proof of Lemma 10 is to show that the quantity |m(C, x, L)−m(C, x,∞)| decays
exponentially with L; we will show that, for some constant α ∈ (0, 1), for an arbitrary node
(C, x) in the computation tree, it holds that

|m(C, x, L)−m(C, x,∞)| ≤ αmaxi,j |m(Ci,j , xi,j , L− 1)−m(Ci,j , xi,j ,∞)|. (5)

ICALP 2016



45:8 Approximation via Correlation Decay When SSM fails

Since arity-2 clauses are the source of problems it is important not to create too many
of them. Therefore, we also have to be careful in the construction of the computational
tree. We achieve this by carefully ordering the clauses that we process at each step to avoid
creating arity-2 clauses as much as possible.

Unfortunately, the quantity m(C, x, L) is more complicated than the plain message
R(C, x, L) which has been studied before since it incorporates combinatorial information
about the formula C and thus it does not satisfy a simple recursion (unlike R(C, x, L)).
Nevertheless, we are able to define a multi-variable quantity κ (see (32)) and to show that
when κ ≤ 1, inequality (5) holds.

The technical details of applying the approach are quite intricate in the context of
Lemma 10. In Section 4, we first apply the approach to the case of large k, where the proof
is (significantly) shorter. There, instead of tracking the number of clauses of arity 2, we track
(roughly) the aggregate arities of the clauses in C. Other than that, the high-level proof
approach is similar to what is described above. In Section 5, we give an outline of the more
difficult proof of Lemma 10.

4 The case of large k

In this section, we show the following lemma. Let c := 0.565 and β ∼ 1.65115 be the solution
to 20.0001cβ = 2× 0.9997(1− cβ)c2.

I Lemma 11. Let β ∼ 1.65 be defined as above. Let k be a sufficiently large positive integer
and let ∆ be a positive integer satisfying k ≥ β∆ + 3. There are real numbers α and τ

satisfying 0 < α < 1 and τ > 0 such that for every C ∈ Ck,∆ and every integer L,

|R(C, x, L)−R(C, x,∞)| ≤ ταL, (6)

where the quantity R(C, x, L) is defined recursively from (4).

To estimate the error |R(C, x, L)−R(C, x,∞)|, we will track a specific quantity m(C, x, L)
which is assigned to each node in the computation tree. Let C be the original monotone
CNF formula and let (N, x) be a node in the computation tree. As explained earlier, each
clause c′ of N is obtained from a clause c of C by pinning a certain number of variables to
0 (possibly none), which effectively is the same as removing those variables. We call these
0-pinnings deficits and let max{0, k − |c′|} be number of deficits of c′. Note that a clause of
arity larger than k is considered to have no deficit, although some variables of it may have
been pinned to 0. Let D(N) =

∑
c′∈N max{0, k − |c′|} denote the total deficits of N . Also

observe that if a clause c of C does not show up in N , it does not contribute any deficits. For
any node (N, x) in the computation tree, let m(N, x, L) := δD(N)R(N, x, L) where δ ∈ (0, 1)
is a constant that we will choose later.

Now let us calculate how the number of deficits changes in one step of the recursion. Let
(N, x) be a node in the computation tree. Note that pinning any variable to 1 will remove
all clauses containing it, and will therefore eliminate all deficits of these clauses. Moreover,
for a clause of arity 2, pinning any of its variables to either 0 or 1 will eliminate the whole
clause due to the preprocessing step. Let b2(N, x) (or simply b2 when N and x are clear
from the context) denote the number of arity-2 clauses containing x in N . In the recursion,
we will always order the clauses so that arity-2 clauses come last. Thus, clauses c1, . . . , cd−b2
each have arity at least 3 and clauses cd−b2+1, . . . , cd each have arity 2. Due to these arity-2
clauses, the deficits in every branch below (N, x) will decrease by at least b2(k − 2).

Now consider an integer i in the range 1 ≤ i ≤ d−b2. Recall that inNi, we pin appearances
of x prior to i to 1, thus eliminating deficits in clauses c1, . . . , ci−1. Together with the removal
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of clause ci, these removals decrease the total deficits by
∑i
t=1 max{0, k − 1− wt}, where

wt = |ct| − 1. Let si =
∑i
t=1 max{0, k − 1− wt}. We also pin all appearances of x after i

to 0, increasing the total number of deficits by at most d − i − b2. Here we have a “−b2”
because pinning a variable to 0 in a arity-2 clause does not increase the deficits. Moreover,
in Ni,j , we pin all appearances of j − 1 other variables to 0. Each of these pinnings may
contribute at most ∆− 1 deficits, giving a total increase of at most (∆− 1)(j − 1). Next
consider i ≥ d− b2 + 1. For such an i, clause ci has arity 2, and it is easy to see that deficits
do not increase in the branch corresponding to Ni,j . Also note that the preprocessing steps
do not increase deficits. Hence we have the following upper bounds on D(Ni,j) for i ∈ [d]:

D(Ni,j) ≤
{
D(N)− b2(k − 2)− si + d− i− b2 + (∆− 1)(j − 1) if 1 ≤ i ≤ d− b2,
D(N)− b2(k − 2)− sd−b2 if d− b2 + 1 ≤ i.

(7)

The key to our analysis is to bound the correlation decay of m(C, x, L). We will analyse
the recursion for m(C, x, L) based on that of R(C, x, L). Recall that the recursion for
R(C, x, L) depends on the function F d,w(r) implicitly defined by (4), i.e.,

F d,w(r) :=
d∏
i=1

(
1−

wi∏
j=1

ri,j
1 + ri,j

)
, (8)

where ri,j ∈ [0, 1] for all i ∈ [d], j ∈ [wi] (so R(C, x, L) = F d,w({R(Ci,j , xi,j , L− lwi)})).
For i ∈ [d], the following quantity ρw,i

δ,α will roughly upper bound the sensitivity of
|m(C, x, L)−m(C, x,∞)| to the i-th clause in which x appears in C, or more precisely, to
the quantities |m(Ci,j , xi,j , L− lwi)−m(Ci,j , xi,j ,∞)| for j ∈ [wi]:

ρw,i
δ,α (r) :=

α
−lwi δsi+i−d+b2

∑wi
j=1 δ

−(j−1)(∆−1)
∣∣∣∂Fd,w∂ri,j

∣∣∣ if 1 ≤ i ≤ d− b2,

α−lwi δsd−b2
∣∣∣∂Fd,w∂ri,1

∣∣∣ if d− b2 + 1 ≤ i ≤ d.
(10)

Note that ρw,i
δ,α (r) depends also on ri′,j with i′ 6= i. The decay rate of |m(C, x, L)−m(C, x,∞)|

in terms of L, for all formulas C with max degree ∆, will be captured by the aggregation
of ρw,i

δ,α(r)’s, namely, κd,b2,wδ,α (r) := δb2(k−2)∑d
i=1 ρ

w,i
δ,α(r). The main technical lemma of the

section is the following.

I Lemma 12. For all sufficiently large ∆, for any k ≥ β∆ + 3 where β ∼ 1.65115 is defined
earlier, there exists constants 0 < δ < 1, 0 < α < 1, and U > 0 such that, for all 0 ≤ r ≤ 1,
κd,b2,wδ,α (r) is at most 1 when d ≤ ∆− 1 and at most U when d = ∆.

Before sketching the proof of Lemma 12, let’s show that it is sufficient to imply Lemma 11.

Proof of Lemma 11 (Sketch). Let δ, α be as in Lemma 12. For C ∈ Ck,∆, we haveD(C) = 0,
so |m(C, x, L)−m(C, x,∞)| = |R(C, x, L)−R(C, x,∞)|.

The lemma will thus follow by showing that for every node (N, x) of the computation
tree the quantity |m(N, x, L)−m(N, x,∞)| decays roughly as αL. The proof is by induction
on L; the base cases L ≤ 0 are easy to show since δ ∈ (0, 1). For the induction step, one
needs the following key inequality (obtained by considering the gradient of F d,w):

|m(N, x, L)−m(N, x,∞)| ≤ max
r


( d∑
i=1

wi∑
j=1

δD(N)−D(Ni,j)α−lwi

∣∣∣∣∂F d,w(r)
∂ri,j

∣∣∣∣ )
×

max
i,j

{
αlwi |m(Ni,j , xi,j , L− lwi)−m(Ni,j , xi,j ,∞)|

}
.

(16)
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Our bounds (7) on D(N)−D(Ni,j) for i ∈ [d], j ∈ [wi] imply that the maxr{·} expression
in (16) is upper bounded by maxr κ

d,b2,w
δ,α (r) (since δ ∈ (0, 1)). Thus, by Lemma 12, one

obtains step-wise decay of m(N, x, L). (The case d = ∆ arises only at the root formula.) J

Proof of Lemma 12 (Sketch). Let α = 0.9999 and δ be such that δ∆ = c (recall, c = 0.565).
The proof has two main steps. In the first step, one obtains a bound on κd,b2,wδ,α (r) that

does not depend on r (i.e., we bound the terms which depend on the “messages" R(C, x, L)).
We do this for each clause ci; the bound we obtain depends only on the arity of the clause, or,
for the purposes of this proof, on wi. The second step is then to maximize over the possible
values of the wi’s.

For wi ≥ 2, let µ(wi) := max{2, wi
(
2− 21−wi

)−1}. The result of the first step is the
following bound on κd,b2,wδ,α (r) (note that r is completely eliminated).

κd,b2,wδ,α (r) ≤ δb2(k−2)
( d−b2∑

i=1
α−lwi δsi+i−d+b2−(wi−1)(∆−1)2−wiµ(wi) + α−1b2

)
, (21)

Using the fact that α−lwi ≤ α−1w0.0001
i for any wi ≥ 2, we obtain that, if wi > k − 1,

then the right hand side of (21) increases if we replace wi with k − 1. Henceforth we may
assume that wi ≤ k − 1, which allows us to rewrite si = si−1 + k − 1− wi. Using the fact
that δ∆ = c, we then obtain

ακd,b2,wδ,α (r) ≤ δk+b2(k−1)ηd(w)+b2δ
b2(k−2), ηd(w) :=

d−b2∑
i=1

δsi−1w0.0001
i (2c)−wiµ(wi). (22)

Convexity arguments show that the maximum of ηd(w) is achieved at w = w′, where
w′i = k − 1 for 1 ≤ i ≤ t and w′i = 2 for t+ 1 ≤ i ≤ d− b2 for some 0 ≤ t ≤ d− b2 − 1. We
thus obtain

ηd(w) ≤ ηd(w′) ≤ ∆(k−1)1.0001(2c)−(k−1) (2− 22−k)−1+ 20.0001

2c2(1− δk−3) ≤ 0.9998c−β , (26)

where the last inequality follows from 20.0001

2c2(1−δk−3) ≤
20.0001

2c2 · 1
1−cβ = 0.9997c−β (using the

definition of c, δ) and that for large ∆ and k, we have ∆(k−1)1.0001(2c)−(k−1) (2− 22−k)−1
<

0.0001 (using that 2c > 1 and k ≥ β∆ + 3). Now, plug (26) into (22):

ακd,b2,wδ,α (r) ≤ δb2(k−2) (0.9998 δkc−β + b2
)
≤ cβb2 (0.9998 + b2) ≤ α, (27)

where the last inequality follows from cβ < 1/2. (27) yields κd,b2,wδ,α (r) ≤ 1, as claimed. J

5 A finer analysis to treat k ≥ 3, ∆ = 6

In this section, we describe the main technical ingredient to prove Lemma 10 (which in turn
was critical in deducing Theorem 2 in Section 2).

Let (C, x) be a non-leaf node in the computation tree, where the root node is a monotone
CNF formula with max degree ∆ = 6 all of whose clauses have arity at least k = 3. Denote
by b(C) the total number of clauses of arity 2 in C. Recall that C̃ is the formula obtained
from C after the preprocessing step. Also, c1, . . . , cd are the clauses in which x appears in C̃
and wi = |ci| − 1. We have d ≥ 1 since (C, x) is a non-leaf node and wi ≥ 1 for all i because
of property (1). Let b3 denote the number of clauses such that |ci| = 3 and let b2 denote the
number of clauses such that |ci| = 2.
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When processing the node (C, x), we will order the clauses in which x appears in C̃

so that clauses with |ci| = 3 are processed first. We thus have that d, b2, b3 ∈ Z and
w = (w1, . . . , wd) ∈ Zd satisfy

1 ≤ d, 0 ≤ b2, b3 ≤ d, b2 + b3 ≤ d
wi = 2 for i = 1, . . . , b3, wi ≥ 3 or wi = 1 for i = b3 + 1, . . . , d.

(30)

As already described in Section 3, to prove Lemma 10, we will track a quantity m(C, x, L)
which is assigned to each node in the computation tree. Let η := η(∆) = (1/2)∆. Define
m(C, x, L) by

m(C, x, L) := δb(C) Φ(R(C, x, L)) (28)

where δ ∈ (0, 1], and Φ : [η, 1]→ R satisfies:

Φ is continuously differentiable on [η, 1], and ϕ := Φ′ satisfies ϕ(z) > 0 for z ∈ [η, 1]. (29)

For ∆ = 6, the value of δ will be later chosen to be δ = 9789/10000 and Φ will be specified in
the upcoming equation (46). Also, note that for all nodes (C, x) in the computation tree the
quantity m(C, x, L) is well-defined; this is because of the property (1) and the lower bound
R(C, x, L) ≥ η (follows from (4), see Remark 8 in the full version).

We will show Lemma 10 with α := 1− 10−4. In particular, we aim to show that α upper
bounds the decay rate of |m(C, x, L) −m(C, x,∞)|, i.e., |m(C, x, L) −m(C, x,∞)| decays
roughly as αL (modulo a multiplicative constant). As in the proof of Lemma 11, this yields
Lemma 10 when applied to the root formula of the tree (since it has no arity-2 clauses).

Ler r be a real vector with components ri,j for i ∈ [d] and j ∈ [wi], 0 ≤ r ≤ 1. For i ∈ [d],
we will use the following analogue of the quantity ρw,i

δ,α (r) defined in Section 4 (see (10)):

ρw,i
δ,Φ,α(r) := α−lwi

wi∑
j=1

(
1
δ

)(j−1)(∆−1) 1
ϕ(ri,j)

∣∣∣∣∂F d,w∂ri,j

∣∣∣∣ , (31)

where recall that the function F d,w(r) gives the recursion (4) that R(·, ·, ·) satisfies (cf. (8)).
Once again, the quantity ρw,i

δ,Φ,α(r) will roughly upper bound the sensitivity of |m(C, x, L)−
m(C, x,∞)| to the quantities |m(Ci,j , xi,j , L)−m(Ci,j , xi,j ,∞)| for j ∈ [wi]. The decay rate
of |m(C, x, L)−m(C, x,∞)| will be captured by the following quantity:

κd,b2,b3,wδ,Φ,α (r) := ϕ(F d,w(r)) δb2
( b3∑
i=1

(1
δ

)b3−i
ρw,i
δ,Φ,α(r) +

d∑
i=b3+1

ρw,i
δ,Φ,α(r)

)
. (32)

Finally, we specify the function Φ. For z ∈ (0, 1], let

Φ(z) := 1
χψ

log
(

zχ

ψ − zχ

)
with χ = 1/2, ψ = 13/10, so ϕ(z) = Φ′(z) = 1

z(ψ − zχ) . (46)

Our main technical lemma is the following (proved in Section 6 of the full version).

I Lemma 14. Let ∆ = 6, χ = 1/2, ψ = 13/10, δ = 9789/10000, α = 1 − 10−4 and Φ be
defined from (46). There exists a constant U > 0 such that, for all d, b,w satisfying (30),
for all (1/2)∆−11 ≤ r ≤ 1, it holds that κd,b2,b3,wδ,Φ,α (r) is at most 1 when d ≤ ∆ − 1 and at
most U when d = ∆.
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Lemma 10 can be derived from Lemma 14 using an argument analogous to the one used to
derive Lemma 11 from Lemma 12, see Section 5 in the full version for the details.

The proof of Lemma 14 is significantly harder however than the proof of Lemma 12. For
one thing, the analysis has to account for the (irrational) function ϕ (without which the
step-wise contraction is simply not true) present in the expression for κd,b2,b3,wδ,Φ,α (r). Further,
the two-step procedure that we followed in the proof of Lemma 12, that is, maximising first
over r and then maximising over w, is far too crude. Instead, we need to slowly reduce
the number of the variables akin to the approach in [9]. In our case, however, to bound
tightly the contribution of δ, we need to prove asymmetric inequalities in several variables
with irrational expressions (see the key Lemmas 15, 19 and 20 in the full version). To keep
the length of the paper reasonable and easier to read through, we rigorously verify certain
two-variable inequalities using a computer; as the reader will notice, in some cases, even
reducing to such two-variable inequalities requires a significant analytical effort (see the
proofs of the aforementioned lemmas, for example).

6 Hardness Results

We prove the hardness results stated in the Introduction. We will work with the problem
#HyperIndSet(k,∆) (instead of the monotone CNF formulation). The proof is via a reduction
to the independent set model on graphs which was used by Bordewich et al. [2]. The precise
inapproximability results for the hard-core model had not yet been proved at the time [2] was
written, so we carry out the details explicitly to obtain the bound that their reduction gives.

We use the inapproximability result of Sly and Sun [16] for the hard-core model. Recall,
for a graph G = (V,E), the partition function of G in the hard-core model with parameter
λ > 0 is given by ZG(λ) :=

∑
I λ
|I| where the sum ranges over all independent sets I of G.

I Theorem 27 ([16]). For ∆ ≥ 3, let λc(∆) := (∆− 1)∆−1/(∆− 2)∆. For all λ > λc(∆), it
is NP-hard to approximate ZG(λ) on ∆-regular graphs G, even within an exponential factor.

I Theorem 28. Let k ≥ 2, ∆ ≥ 3 be integers. Suppose that 2dk/2e − 1 < (∆−2)∆

(∆−1)∆−1 . Then,
it is NP-hard to approximate #HyperIndSet(k,∆), even within an exponential factor.

Proof (Sketch). Let λ := 1/(2dk/2e − 1). Let G be a ∆-regular n-vertex graph. Construct
a hypergraph H by replacing every vertex of G by a (distinct) set of dk/2e vertices and
place a hyperedge among the corresponding sets of vertices for each edge of G. Then
ZH = (2dk/2e − 1)n ZG(λ), from which the theorem easily follows (see full version for
details). J

I Corollary 29. Let k = 6, ∆ = 22. It is NP-hard to approximate #HyperIndSet(k,∆).

I Corollary 30. Let k ≥ 2. For ∆ ≥ 5·2k/2, it is NP-hard to approximate #HyperIndSet(k,∆).
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Abstract
We examine the computational complexity of approximately counting the list H-colourings of a
graph. We discover a natural graph-theoretic trichotomy based on the structure of the graph H.
If H is an irreflexive bipartite graph or a reflexive complete graph then counting list H-colourings
is trivially in polynomial time. Otherwise, if H is an irreflexive bipartite permutation graph or
a reflexive proper interval graph then approximately counting list H-colourings is equivalent to
#BIS, the problem of approximately counting independent sets in a bipartite graph. This is
a well-studied problem which is believed to be of intermediate complexity – it is believed that
it does not have an FPRAS, but that it is not as difficult as approximating the most difficult
counting problems in #P. For every other graph H, approximately counting list H-colourings
is complete for #P with respect to approximation-preserving reductions (so there is no FPRAS
unless NP = RP). Two pleasing features of the trichotomy are (i) it has a natural formulation in
terms of hereditary graph classes, and (ii) the proof is largely self-contained and does not require
any universal algebra (unlike similar dichotomies in the weighted case). We are able to extend
the hardness results to the bounded-degree setting, showing that all hardness results apply to
input graphs with maximum degree at most 6.
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think of the mapping σ as specifying a colouring of the vertices G, and we can interpret the
graph H as specifying the allowed colour adjacencies: adjacent vertices in G can be assigned
colours i and j, if and only if vertices i and j are adjacent in H.

Now consider the graph G together with a collection of sets S = {Sv ⊆ Q : v ∈ V (G)}
specifying allowed colours at each of the vertices. A list H-colouring of (G,S) is an H-
colouring σ of G satisfying σ(v) ∈ Sv, for all v ∈ V . In the literature, the set Sv is referred to
as the “list” of allowed colours at vertex v, but there is no implied ordering on the elements
of Sv – Sv is just a set of allowed colours.

Suppose that H is a reflexive graph (i.e., a graph in which each vertex has a loop). Feder
and Hell [4] considered the complexity of determining whether a list H-colouring exists, given
an input (G,S). They showed that the problem is in FP if H is an interval graph, and that
it is NP-complete, otherwise. Feder, Hell and Huang [5] studied the same problem in the
case where H is irreflexive (i.e., H has no loops). They showed that the problem is in FP
if H is a circular arc graph of clique covering number two (which is the same as being the
complement of an interval bigraph [12]), and that it is NP-hard, otherwise. Finally, Feder,
Hell and Huang [6] generalised this result to obtain a dichotomy for all H. They introduced
a new class of graphs, called bi-arc graphs, and showed that the problem is in FP if H is a
bi-arc graph, and NP-complete, otherwise.

We are concerned with the computational complexity of counting list H-colourings.
Specifically we are interested in how the complexity of the following computational problem
depends on H.

Name #List-H-Col.
Instance A graph G and a collection of colour sets S = {Sv ⊆ Q : v ∈ V (G)}, where

Q = V (H).
Output The number of list H-colourings of (G,S).

Note that it is of no importance whether we allow or disallow loops in G – a loop at vertex
v ∈ V (G) can be encoded within the set Sv – so we adopt the convention that G is loop-free.
As in the case of the decision problem, H is a parameter of the problem – it does not
form part of the problem instance. Sometimes we obtain sharper results by introducing an
additional parameter ∆, which is an upper bound on the degrees of the vertices of G. Thus
#List-H-Col(∆) is the special case of #List-H-Col in which the graph G has degree at
most ∆. Although #List-H-Col and #List-H-Col(∆) are the main objects of study in
this paper, we occasionally need to discuss the more basic versions of these problems without
lists.

Name #H-Col.
Instance A graph G.
Output The number of H-colourings of G.

Once again, #H-Col(∆) is the special case of #H-Col in which the degree of G is at most ∆.
To illustrate the definitions, let K ′2 be the first graph illustrated in Figure 1, consisting
of two connected vertices with a loop on vertex 2. #K ′2-Col is the problem of counting
independent sets in a graph since the vertices mapped to colour 1 by any homomorphism
form an independent set. Let K3 be the complete irreflexive graph on three vertices. Then
#K3-Col is the problem of counting the proper 3-colourings of a graph.

The computational complexity of computing exact solutions to #H-Col and #H-Col(∆)
was determined by Dyer and Greenhill [3]. Dyer and Greenhill showed that #H-Col is in
FP if H is a complete reflexive graph or a complete bipartite irreflexive graph, and #H-Col
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is #P-complete otherwise. Their dichotomy also extends to the bounded-degree setting. In
particular, they showed that if H is not a complete reflexive graph or a complete bipartite
irreflexive graph then there is an integer ∆H such that, for all ∆ ≥ ∆H , #H-Col(∆) is
#P-complete.

Since the polynomial-time cases in Dyer and Greenhill’s dichotomy clearly remain solvable
in polynomial-time in the presence of lists, their dichotomy for #H-Col carries over to
#List-H-Col without change. In other words, there is no difference between the complexity
of #H-Col and #List-H-Col as far as exact computation is concerned. However, this
situation changes if we consider approximate counting, and this is the phenomenon that we
explore in this paper.

With a view to reaching the statement of the main results as quickly as possible, we
defer precise definitions of the relevant concepts to Section 2, and provide only indications
here. From graph theory we import a couple of well studied hereditary graph classes, namely
bipartite permutation graphs and proper interval graphs. These classes each have several
equivalent characterisations, and we give two of these, namely, excluded subgraph and matrix
characterisations, in Section 2. It is sometimes useful to restrict the definition of proper
interval graphs to simple graphs. However, in this paper, as in [4], we consider reflexive
proper interval graphs.

From complexity theory we need the definitions of a Fully Polynomial Randomised
Approximation Scheme (FPRAS), of approximation-preserving (AP-) reducibility, and of the
counting problems #SAT and #BIS. An FPRAS is a randomised algorithm that produces
approximate solutions within specified relative error with high probability in polynomial time.
An AP-reduction from problem Π to problem Π′ is a randomised Turing reduction that yields
close approximations to Π when provided with close approximations to Π′. It meshes with
the definition of an FPRAS in the sense that the existence of an FPRAS for Π′ implies the
existence of an FPRAS for Π. The problem of counting satisfying assignments of a Boolean
formula is denoted by #SAT. Every counting problem in #P is AP-reducible to #SAT, so
#SAT is said to be complete for #P with respect to AP-reductions. It is known that there
is no FPRAS for #SAT unless RP = NP. The problem of counting independent sets in
a bipartite graph is denoted by #BIS. The problem #BIS appears to be of intermediate
complexity: there is no known FPRAS for #BIS (and it is generally believed that none
exists) but there is no known AP-reduction from #SAT to #BIS. Indeed, #BIS is complete
with respect to AP-reductions for a complexity class #RHΠ1 which is discussed further in
the full version.

We say that a problem Π is #SAT-hard if there is an AP-reduction from #SAT to Π, that
it is #SAT-easy if there is an AP-reduction from Π to #SAT, and that it is #SAT-equivalent
if both are true. Note that all of these labels are about the difficulty of approximately
solving Π, not about the difficulty of exactly solving it. Similarly, Π is said to be #BIS-hard
if there is an AP-reduction from #BIS to Π, #BIS-easy if there is an AP-reduction from Π
to #BIS, and #BIS-equivalent if there are both.

Our main result is a trichotomy for the complexity of approximating #List-H-Col.

I Theorem 1. Suppose that H is a connected undirected graph (possibly with loops).
(i) If H is an irreflexive complete bipartite graph or a reflexive complete graph then

#List-H-Col is in FP.
(ii) Otherwise, if H is an irreflexive bipartite permutation graph or a reflexive proper interval

graph then #List-H-Col is #BIS-equivalent.
(iii) Otherwise, #List-H-Col is #SAT-equivalent.

I Remarks. 1. The assumption that H is connected is made without loss of generality,
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Figure 1 K′2, 2-wrench and P ∗3 .

since the complexity of #List-H-Col is determined by the maximum complexity of
#List-H ′-Col over all connected components H ′ of H.

2. Part (ii) of Theorem 2 can be strengthened. For the graphs H covered by this part of the
theorem, #List-H-Col is actually complete for the complexity class #RHΠ1. See the
full version for a definition of #RHΠ1 and a proof of membership of #List-H-Col in
#RHΠ1.

Theorem 1 also extends to the bounded-degree case.

I Theorem 2. Suppose that H is a connected undirected graph (possibly with loops).
(i) If H is an irreflexive complete bipartite graph or a reflexive complete graph then, for all

∆, #List-H-Col(∆) is in FP.
(ii) Otherwise, if H is an irreflexive bipartite permutation graph or a reflexive proper interval

graph then, for all ∆ ≥ 6, #List-H-Col(∆) is #BIS-equivalent.
(iii) Otherwise, for all ∆ ≥ 6, #List-H-Col(∆) is #SAT-equivalent. Further, if H is

reflexive or irreflexive, #List-H-Col(∆) is #SAT-equivalent for ∆ ≥ 3.

I Remarks.
1. The condition ∆ ≥ 6 is necessary for any hardness result that holds for all graphs H. In

particular, there is a graph H that is not an irreflexive complete bipartite graph or a
reflexive complete graph but for which #List-H-Col(∆) has an FPTAS. An example is
the graph H = K ′2 for which Weitz’s self-avoiding walk algorithm [22] gives an FPTAS
for #List-H-Col(∆) for ∆ ≤ 5.

2. In general, the lowest value of the degree bound ∆ such that #List-H-Col(∆) is
computationally hard depends on the particular graph H.

Proof of Theorems 1 and 2. Part (i) is trivial. Part (ii) follows from Lemmas 13 and 14.
Part (iii) follows from Lemmas 7, 9, and 11. J

The most obvious issue raised by our theorems is the computational complexity of
approximately counting H-colourings (in the absence of lists). This question was extensively
studied by Kelk [14] and others, and appears much harder to resolve, even when there are no
degree bounds. It is known [7] that #H-Col is #BIS-hard for every connected undirected
graph H that is neither an irreflexive bipartite permutation graph nor a reflexive proper
interval graph. It is not known for which connected H the problem is #BIS-easy and for
which it is #SAT-equivalent, and whether one or the other always holds. In fact, there are
specific graphs H, two of them with as few as four vertices, for which the complexity of
#H-Col is unresolved. It is far from clear that a trichotomy should be expected, and in
fact there may exist an infinite sequences (Ht) of graphs for which #Ht-Col is reducible to
#Ht+1-Col but not vice versa. Some partial results and speculations can be found in [14].

As we noted, #H-Col and #List-H-Col have the same complexity as regards exact
computation. However, for approximate computation they are different, assuming (as is
widely believed) that there is no AP-reduction from #SAT to #BIS. An example is provided
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by the 2-wrench (see Figure 1). It is known [2, Theorem 21] that #2-wrench-Col is
#BIS-equivalent, but we know from Theorem 1 that the list version #List-2-wrench-Col
is #SAT-equivalent since the 2-wrench is neither irreflexive nor reflexive. One way to see
that #List-2-wrench-Col is #SAT-equivalent is to note that the 2-wrench contains K ′2
as an induced subgraph, and that this induced subgraph can be “extracted” using the list
constraints Sv = {1, 2}, for all v ∈ V (G). But #List-K ′2-Col is already known to be
#SAT-equivalent [2, Theorem 1]. Indeed, systematic techniques for extracting hard induced
subgraphs form the main theme of the paper. It is for this reason that the theory of hereditary
graph classes comes into play, just as in [6].

Another recent research direction, at least in the unbounded-degree case, is towards
weighted versions of list colouring. Here, the graph H is augmented by edge-weights,
specifying for each pair of colours i, j, the cost of assigning i and j to adjacent vertices in G.
The computational complexity of obtaining approximate solutions was studied by Chen, Dyer,
Goldberg, Jerrum, Lu, McQuillan and Richerby [1], and by Goldberg and Jerrum [11]. There
is a trichotomy for the case in which the input has no degree bound, but this is obtained
in a context where individual spins at vertices are weighted and not just the interactions
between pairs of adjacent spins. In this paper we have restricted the class of problems under
consideration to ones having 0,1-weights on interactions, but at the same time we have
restricted the problem instances to ones having 0,1-weights on individual spins. So we have
a different tradeoff and the results from the references that we have just discussed do not
carry across, even in the unbounded-degree setting. Indeed, towards the end of the paper,
in Section 5, we give an example to show that Theorem 1 is not simply the restriction of
earlier results to 0,1-interactions (not merely because the proofs differ, but, in a stronger
sense, because the results themselves are different).

Two things are appealing about our theorems. First, unlike the weighted classification
theorems [1], here the truth is pleasingly simple. The trichotomies for #List-H-Col and
#List-H-Col(∆) have a simple, natural formulation in terms of hereditary graph classes.
Second, the proofs of the theorems are largely self-contained. The proofs do not rely on earlier
works such as [1], which require multimorphisms and other deep results from universal algebra.
The proof of Theorem 1 is self-contained apart from some very elementary and well-known
starting points, which are collected together in Lemma 6. The proof of Theorem 2 is similarly
self-contained, though it additionally relies on recent results [18, 8] about approximating the
partition function of the anti-ferromagnetic Ising model on bounded degree graphs (these are
also contained in Lemma 6).

2 Complexity- and graph-theoretic preliminaries

As the complexity of computing exact solutions of #List-H-Col is well understood, we
focus on the complexity of computing approximations. The framework for this has already
been explained in many papers, so we provide an informal description only here and direct
the reader to Dyer, Goldberg, Greenhill and Jerrum [2] for precise definitions.

The standard notion of efficient approximation algorithm is that of a Fully Polynomial
Randomised Approximation Scheme (or FPRAS). This is a randomised algorithm that is
required to produce a solution within relative error specified by a tolerance ε > 0, in time
polynomial in the instance size and ε−1. Evidence for the non-existence of an FPRAS for a
problem Π can be obtained through Approximation-Preserving (or AP-) reductions. These
are randomised polynomial-time Turing reductions that preserve (closely enough) the error
tolerance. The set of problems that have an FPRAS is closed under AP-reducibility.
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Every problem in #P is AP-reducible to #SAT, so #SAT is complete for #P with respect
to AP-reductions. The same is true of the counting version of any NP-complete decision
problem. It is known that these problems do not have an FPRAS unless RP = NP. On the
other hand, using the bisection technique of Valiant and Vazirani [20, Corollary 3.6], we know
that #SAT can be approximated (in the FPRAS sense) by a polynomial-time probabilistic
Turing machine equipped with an oracle for the decision problem SAT.

In the statement and proofs of our theorems we refer to two hereditary graph classes.
A class of undirected graphs is said to be hereditary if it is closed under taking induced
subgraphs. The classes of bipartite permutation graphs and proper interval graphs have been
widely studied and many equivalent characterisations of them are known. We are concerned
with the excluded subgraph and matrix characterisations.

A graph is a bipartite permutation graph if and only if it contains none of the following
as an induced subgraph: X3, X2, T2 or a cycle C` of length ` not equal to four. (Refer to
Figure 2 for specifications of X3, X2 and T2.) This characterisation was noted by Köhler [15],
who observed that it follows from an excluded subgraph characterisation of Gallai [9, 10].
The argument is given by Hell and Huang [12], in the proof of their Theorem 3.4, in particular
parts (iv) and (vi).

A graph is a proper interval graph if and only if it contains none of the following as
an induced subgraph: the claw, the net, S3 or a cycle C` of length ` at least four. (Refer
to Figure 3 for specifications of the claw, the net and S3.) This characterisation is due
to Wegner [21] and Roberts [17], and is stated is by Jackowski [13] as his Theorem 1.4,
specifically the equivalence of (i) and (iii). In this context, note that a chordal graph is one
that contains no induced cycles of length other than three.

The two graph classes also have matrix characterisations. Say that a 0,1-matrix A =
(Ai,j : 1 ≤ i ≤ n, 1 ≤ j ≤ m) has staircase form if the 1s in each row are contiguous and the
following condition is satisfied: letting αi = min{j : Ai,j = 1} and βi = max{j : Ai,j = 1},
we require that the sequences (αi) and (βi) are non-decreasing. It is automatic that the
columns share the contiguity and monotonicity properties, so the property of having staircase
form is in fact invariant under matrix transposition.

A graph is a bipartite permutation graph if the rows and columns of its biadjacency matrix
can be (independently) permuted so that the resulting biadjacency matrix has staircase form.
This characterisation is presented by Spinrad, Brandstädt and Stewart [19], specifically the
equivalence of (i) and (ii) in their Theorem 1.

A graph is a proper interval graph if the rows and columns of its adjacency matrix can be
(simultaneously) permuted so that the resulting adjacency matrix has staircase form. This
fact comes directly from the characterisation of proper interval graphs that gives the class its
name, namely, that they are graphs which have an interval intersection model in which no
interval is a proper subset of another. The ordering of intervals by left endpoint (which is the
same as the ordering by right endpoint) gives the required permutation of rows and columns.

As we mentioned in Section 1, an appealing feature of our theorems is that our proofs are
largely self-contained. The only pre-requisites for the proof are complexity results classifying
some very well-known approximation problems. These are collected in Lemma 6, which
is proved in the full version. For this, we will use the graph K ′2 defined in Section 1 (see
Figure 1), the path P4 of length three (with four vertices) and the problem #1p1nSat of
counting the satisfying assignments of a CNF formula in which each clause has at most one
negated literal and at most one unnegated literal. We will also use the following definition.
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I Definition 4. Let 0 < λ < 1 be a rational number and let ∆ be a positive integer. Define
Name AntiFerroIsingλ(∆).
Instance A graph G of maximum degree at most ∆.
Output The partition function of the antiferromagnetic Ising model with parameter λ evalu-

ated on instance G, i.e., Zλ(G) =
∑
σ:V→{±1}

∏
{u,v}∈E(G) λ

δ(σ(u),σ(v)), where δ(i, j) is 1
if i = j and 0 otherwise.

I Lemma 6. The following problems are #SAT-equivalent: #K ′2-Col(∆) for any ∆ ≥ 6,
and AntiFerroIsingλ(∆) for any ∆ ≥ 3 and 0 < λ < (∆− 2)/∆. The following problems
are #BIS-equivalent: #P4-Col(∆) for ∆ ≥ 6 and #1p1nSat.

3 #SAT-equivalence

The aim of this section is to establish the #SAT-equivalence parts of Theorems 1 and 2.

I Lemma 7. Suppose that H is a connected undirected graph. If H is neither reflexive nor ir-
reflexive then, for all ∆ ≥ 6, #List-H-Col(∆) is #SAT-equivalent. Hence, #List-H-Col
is #SAT-equivalent.

Proof. Let ∆ ≥ 6. Since H is connected, it must contain K ′2 as an induced subgraph.
So #K ′2-Col(∆) is AP-reducible to #List-H-Col(∆). By Lemma 6, #K ′2-Col(∆) is
#SAT-equivalent. J

The gadgets that we use in our reductions in the upcoming lemmas are of a particularly
simple kind, namely paths.1 Let the vertex set of the L-vertex path be {1, 2, . . . , L}, where
the vertices are numbered according to their position on the path. The end vertices 1 and L
are terminals, which make connections with the rest of the construction. For each vertex
1 ≤ k ≤ L there is a set of allowed colours Sk. We can describe a gadget by specifying L and
specifying the sets (S1, S2, . . . , SL). In our application, each set Si has cardinality 2, and
S1 = SL.

Fix a connected graph H (note that H may have loops). Our strategy for proving that
#List-H-Col(∆) is #SAT-equivalent is to find a gadget ({i1, j1}, {i2, j2}, . . . , {iL, jL})
such that
(i) the sequence (i1, . . . , iL) is a path in H, and likewise (j1, . . . , jL);
(ii) it is never the case that both {ik, jk+1} ∈ E(H) and {jk, ik+1} ∈ E(H); and
(iii) i1 = jL and j1 = iL.
If we achieve these conditions then, as we shall see, the colours at the terminals will be negat-
ively correlated, and from there we will be able to encode instances of AntiFerroIsingλ(∆)
for some integer ∆ ≥ 3 and λ ∈ (0, ∆−2

∆ ), and this is #SAT-equivalent (Lemma 6). Note
that although the ordering of elements within the sets Si is irrelevant to the workings of the
gadget, we write the pairs in a specific order to bring out the path structure that we have
just described.

Fix H and let A = AH be the adjacency matrix of H. Denote by A(i,j),(i′,j′) the 2× 2
submatrix of A indexed by rows i and j and columns i′ and j′. We regard the indices in the
notation A(i,j),(i′,j′) as ordered; thus the first row of this 2× 2 matrix comes from row i of A
and the second from row j.

1 We were also able to make use of path gadgets in [11], though, as noted (see Section 1) the results
unfortunately do not carry over to our setting. Here the use of structural graph theory makes the
discovery of such gadgets pleasingly straightforward.
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Given a gadget, i.e., sequence ({i1, j1}, {i2, j2}, . . . , {iL, jL}), consider the product of
2× 2 submatrices of A:

D′ = A(i1,j1),(i2,j2)A(i2,j2),(i3,j3) · · ·A(iL−1,jL−1),(iL,jL). (1)

If conditions (i)–(iii) for gadget construction are satisfied then each of the 2× 2 matrices in
the product has 1s on the diagonal; also, all of them have at least one off-diagonal entry that
is 0. Thus, each matrix has determinant 1, from which it follows that detD′ = 1.

Now consider the matrix D that is obtained by swapping the two columns of D′. This
swap rectifies the “twist” that occurs in the passage from (i1, j1) to (iL, jL) = (j1, i1), but it
also flips the sign of the determinant, leaving detD = −1. Let r = i1 = jL and s = j1 = iL.
The matrix D can be interpreted as giving the number of list H-colourings of the gadget when
the k’th vertex of the gadget (for k ∈ {1, . . . , L} is assigned the list {ik, jk}, so the terminals
are restricted to colours in {r, s}. Thus the entry in the first row and column of D is the
number of colourings with both terminals receiving colour r, the entry in the first row and
second column is the number of colourings with terminal 1 receiving colour r and terminal L
receiving colour s, the entry in the second row and first column is the number of colourings
with terminal 1 receiving colour s and terminal L receiving colour r and finally the entry in
the second row and second column is the number of colourings with both terminals receiving
colour s. We call D = D(Γ) the interaction matrix associated with the gadget Γ. Since
detD < 0 the gadget provides a negative correlation between the colours at the terminals,
which, as we will see, will allow a reduction from AntiFerroIsingλ(∆).

In the full version, Lemma 8 first applies the technique to get the #SAT-equivalences
in the unbounded-degree case. For these arguments, we intentionally keep the construction
of the gadgets as simple as possible. While this would also lead to a value of ∆ such
that #List-H-Col(∆) is #SAT-equivalent, the value of ∆ would be much larger than 6.
Nevertheless, we are able to refine the constructions to obtain the bounded-degree results of
Theorem 2. Lemma 9 here combines Lemmas 8 and 9 of the full version and illustrates the
key ideas.

I Lemma 9. Suppose that H is a connected undirected graph. If H is irreflexive but it is not
a bipartite permutation graph, then for all ∆ ≥ 3, #List-H-Col(∆) is #SAT-equivalent
(so #List-H-Col is also #SAT-equivalent).

Proof (One Case). Graphs that are not bipartite permutation graphs contain one of the
following as an induced subgraph: X3, X2, T2, or a cycle of length other than 4. (Refer to
Figure 2.) Here we present the case X3. The remaining cases are similar and can be found
in the full version.

We first show that the unbounded problem #List-X3-Col is #SAT-equivalent. The
gadget in this case is Γ =

(
{1, 2}, {4, 7}, {3, 6}, {4, 5}, {2, 1}

)
. The conditions (i)–(iii) for
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gadget construction are easy to check. Explicit calculation using (1) yields

D′ = A(1,2),(4,7)A(4,7),(3,6)A(3,6),(4,5)A(4,5),(2,1) = ( 1 0
1 1 )( 1 1

0 1 )( 1 0
1 1 )( 1 1

0 1 ) = ( 2 3
3 5 ).

Swapping the columns of D′ yields the interaction matrix D = ( 3 2
5 3 ). As we explained

earlier, detD = −1. Obtaining a matrix D with negative determinant is moving in the
right direction, but in order to encode antiferromagnetic Ising we ideally want the matrix
D = (Di,j) to also satisfy D1,1 = D2,2 and D1,2 = D2,1. Observe that the graph X3 has an
automorphism of order two, π = (1, 2)(5, 7), that transposes vertices 1 and 2, which are the
terminals of the gadget Γ. Consider the gadget obtained from Γ by letting π act on the
colour sets, namely

Γπ =
(
{π(1), π(2)}, {π(4), π(7)}, {π(3), π(6)}, {π(4), π(5)}, {π(2), π(1)}

)
=
(
{2, 1}, {4, 5}, {3, 6}, {4, 7}, {1, 2}

)
,

The interaction matrix Dπ = ( 3 5
2 3 ) corresponding to Γπ is the same as D, except that the

rows and columns are swapped. Placing Γ and Γπ in parallel, identifying the terminals,
yields a composite gadget Γ∗ whose interaction matrix is D∗ =

(
D1,1D2,2 D1,2D2,1
D2,1D1,2 D2,2D1,1

)
= ( 9 10

10 9 ).
Note that the gadget Γ∗ has maximum degree 2 (this observation will be important for the
bounded-degree case). Also, detD∗ = D2

1,1D
2
2,2−D2

1,2D
2
2,1 = (D1,1D2,2+D1,2D2,1) detD < 0.

So we have an AP-reduction from AntiFerroIsingλ with λ = D1,1D2,2/(D1,2D2,1) to
#List-H-Col: given an instance G of AntiFerroIsingλ, simply replace each edge {u, v}
of G with a copy of the gadget Γ∗, identifying the two terminals of Γ∗ with the vertices
u and v, respectively. (Since Γ∗ is symmetric, it does not matter which is u and which
is v.) The problem AntiFerroIsingλ is #SAT-equivalent by Lemma 6. So for this case
(H = X3), we have λ = 9

10 .
We next show that, for ∆ ≥ 3, #List-X3-Col(∆) is #SAT-equivalent. The smallest

∆ such that AntiFerroIsing 9
10

(∆) is #SAT-equivalent is ∆ = 21, so the argument above
would only give that #List-X3-Col(∆) is #SAT-equivalent for ∆ ≥ 21 (in fact, ∆ ≥ 2 ·21 =
42, since the terminals of Γ∗ have degree 2). To improve this, we will implement thickenings
of the gadget Γ∗ using carefully chosen list colourings to keep the degree of the gadget small.
More precisely, for integer t ≥ 0, we will construct inductively gadgets Γ∗t such that:
(i) The allowed colours of the terminals of Γ∗t will be {1, 2} for odd t and {5, 7} for even t.
(ii) The two terminals of Γ∗t will each have degree 1, and all other vertices of Γ∗t will have

degree at most 3.
(iii) The interaction matrix of Γ∗t will be D∗t =

(
92t

102t

102t
92t

)
.

By taking t sufficiently large, the reduction above, using Γ∗t as gadget instead of Γ∗, yields
that #List-X3-Col(∆) is #SAT-equivalent for ∆ ≥ 3. It remains to build the gadgets Γ∗t .

Γ∗0 is obtained from Γ∗ by connecting each terminal of Γ∗ to a new vertex whose allowed
set of colours is {5, 7} (recall that the allowed colours of the terminals of Γ∗ are in {1, 2}).
The terminals of Γ∗0 are the two new vertices. Γ∗0 clearly satisfies properties (i) and (ii) for
t = 0. To find the interaction matrix of Γ∗0, note that colour 1 is adjacent to colour 5 in X3
but not to colour 7. Similarly, colour 2 is adjacent to colour 7 in X3 but not to colour 5.
Thus, D(Γ∗0) = ( 1 0

0 1 ) ( 9 10
10 9 ) ( 1 0

0 1 ) = D∗0 , proving that Γ∗0 satisfies all properties (i)–(iii), as
desired.

To construct Γ∗t+1 from Γ∗t , take two copies of Γ∗t , place them in parallel, identifying
their terminals in the natural way. Now, analogously to the construction of Γ∗0, connect
each (doubled-up) terminal of Γ∗t to a new vertex whose allowed set of colours is {1, 2} if
t is even and {5, 7} if t is odd. The final graph is the gadget Γ∗t+1 and the new vertices
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Figure 3 The claw, the net and S3.

introduced in the second step of the construction are its terminals. It is clear that Γ∗t+1
satisfies property (i) and, using the fact that Γ∗t satisfies property (ii), we have that Γ∗t+1
satisfies property (ii) as well. Arguing analogously as for Γ∗0, the interaction matrix of Γ∗t+1 is

given by D(Γ∗t+1) = ( 1 0
0 1 )

(
(92t

)2 (102t
)2

(102t
)2 (92t

)2

)
( 1 0

0 1 ) = D∗t+1, where the squared entries account

for the 2-thickening of the gadget Γ∗t . This proves that Γ∗t+1 has property (iii), concluding
the proof for H = X3. The other cases are similar, and are given in the full version (where
more of the general principles are explained). J

The remaining cases of parts (iii) of Theorems 1 and 2 are covered by Lemmas 10 and 11
of the full version, which we combine here.

I Lemma 11. Suppose that H is a connected undirected graph. If H is a reflexive graph
that is not a proper interval graph, then, for ∆ ≥ 3, #List-H-Col(∆) is #SAT-equivalent
(so #List-H-Col is #SAT-equivalent).

Proof Sketch. The line of argument is similar to those used in Lemma 9. Graphs that are
not proper interval graphs contain one of the following as an induced subgraph: the claw,
the net, S3, or a cycle of length at least four. (Refer to Figure 3 but note that loops are
omitted.) We show that #List-H-Col is #SAT-equivalent when H is any of these (and
the bounded-degree analogue). The details can be found in the full version. J

4 #BIS-equivalence

We now deal with the #BIS-equivalent cases in Theorems 1 and 2.

I Lemma 13. Suppose that H is a connected undirected graph. If H is not a reflexive complete
graph or an irreflexive complete bipartite graph then, for all ∆ ≥ 6, #List-H-Col(∆) is
#BIS-hard. Hence, #List-H-Col is #BIS-hard.

Proof Sketch. In the full version, we show that any graph covered by the lemma contains
one of the following as an induced subgraph: K ′2, P ∗3 , P4 or an odd cycle. These are (at
least) #BIS-hard: by Lemma 6 for K ′2 and P4, by Lemma 12 of the full version for P ∗3 , and
by Lemma 9 for an odd cycle. J

I Lemma 14. Suppose that H is a connected undirected graph. If H is an irreflexive bipartite
permutation graph or a reflexive proper interval graph, then #List-H-Col is #BIS-easy.

Proof Sketch. The reduction is done in a more general weighted setting by Chen, Dyer,
Goldberg, Jerrum, Lu, McQuillan and Richerby [1]: see the proofs of Lemmas 45 and 46
of that article. However, in the current context, we can simplify the reduction significantly
(eliminating the need for multimorphisms and other concepts from universal algebra), and
we can also extract (see the full paper) the slightly stronger statement that #List-H-Col
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is in #RHΠ1. The target problem for our reduction is #1p1nSat which is #BIS-equivalent
by Lemma 6.

We will treat the case where H is an irreflexive bipartite permutation graph. The other
case is similar (as explained in the full version). Without loss of generality, suppose that
H is connected and that its biadjacency matrix B has q1 rows and q2 columns and is in
staircase form. Let A be the adjacency matrix

(
B 0
0 BT

)
, which is formally defined as follows.

Ai,j =


Bi,j , if 1 ≤ i ≤ q1, 1 ≤ j ≤ q2

Bj−q2,i−q1 , if q1 + 1 ≤ i ≤ q1 + q2, q2 + 1 ≤ j ≤ q2 + q1

0, otherwise.

Let q = q1 + q2. For each i ∈ {1, . . . , q}, let αi = min{j : Ai,j = 1} and let βi = max{j :
Ai,j = 1}. Since B is in staircase form, so is A, so the sequences (αi) and (βi) are non-
decreasing. Let r1, . . . , rq be the colours associated with the rows of A and c1, . . . , cq be the
colours associated with the columns of A, in order. Note that {r1, . . . , rq} and {c1, . . . , cq}
are different permutations of the vertices of H,

Suppose that (G,S) is an instance of #List-H-Col. Assume without loss of generality
that G is bipartite. Otherwise, it has no H-colourings. Let V1(G) ∪ V2(G) be the bipartition
of V (G). We will construct an instance Ψ of #1p1nSat such that the number of satisfying
assignments to Ψ is equal to the number of list H-colourings of (G,S).

The variable set of Ψ is x = {xui : u ∈ V (G) and 0 ≤ i ≤ q}. For each vertex u ∈ V (G)
we introduce the clauses (xu0 ) and (¬xuq ). Also, for each j ∈ {1, . . . , q} we introduce the
clause IMP(xuj , xuj−1). Denote by ΨV (x) the formula obtained by taking the conjunction of
all these clauses.

We will interpret the assignment to the variables in x as an assignment σ of colours to
the vertices of G according to the following rule. If u ∈ V1(G) then xui = 1 if and only if
σ(u) = rj for some j > i. If u ∈ V2(G) then xui = 1 if and only if σ(u) = cj for some j > i.
Note that there is a one-to-one correspondence between assignments to x that satisfy the
clauses in ΨV (x) and assignments σ of colours to the vertices of G.

We now introduce further clauses to enforce the constraint on colours received by adjacent
vertices. For each edge {u, v} ∈ E(G) with u ∈ V1(G) and v ∈ V2(G), and for each
i ∈ {1, . . . , q}, we add the clauses IMP(xui−1, x

v
αi−1) and IMP(xvβi

, xui ). Denote by ΨE(x) the
formula obtained by taking the conjunction of all of these clauses.

We next argue that there is a bijection between H-colourings of G and satisfying assign-
ments to ΨV (x) ∧ΨE(x). In one direction, suppose σ is an H-colouring of G. We wish to
show that all clauses in ΨE(x) are satisfied. Consider an edge {u, v} ∈ E(G) with u ∈ V1(G)
and v ∈ V2(G) and the corresponding clause IMP(xui−1, x

v
αi−1). The clause is satisfied unless

xui−1 = 1, so suppose xui−1 = 1. Then by the interpretation of assignments, σ(u) = rj for
some j ≥ i. Since σ is an H-colouring, this implies that σ(v) = ck for some k ≥ αi. But by
the interpretation of assignments, this means that xvαi−1 = 1, so the clause is satisfied. The
argument for the other clause IMP(xvβi

, xui ) coresponding to the edge {u, v} is similar – see
the full version.

In the other direction, suppose ΨV (x)∧ΨE(x) is satisfied. Consider an edge {u, v} ∈ E(G)
with u ∈ V1(G) and v ∈ V2(G) and suppose that σ(u) = ri. In the corresponding assignment
xui−1 = 1 so by the clause IMP(xui−1, x

v
αi−1) we have xvαi−1 = 1 so σ(v) = ck for some k ≥ αi.

In the corresponding assignment xui = 0 so by the clause IMP(xvβi
, xui ), xvβi

= 0, so σ(v) = ck
for some k ≤ βi. We conclude that the colours σ(u) and σ(v) are adjacent in H. This holds
for every edge, so σ is an H-colouring of G.
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Finally, we add clauses to deal with lists. A colour assignment σ(u) = ri with u ∈ V1(G)
is uniquely characterised by xui−1 = 1 and xui = 0. So we can eliminate the possibility of
σ(u) = ri by introducing the clause IMP(xui−1, x

u
i ). A similar clause will forbid a vertex

v ∈ V2(G) to receive colour cj . Let ΨL(x) be the conjunction of all such clauses, arising from
the lists in S. Let Ψ(x) = ΨV (x) ∧ΨE(x) ∧ΨL(x). Then the list H-colourings of (G,S) are
in bijection with the satisfying assignments to Ψ(x), as required J

5 A counterexample

The situation that we have studied in this paper is characterised by having hard interactions
between pairs of adjacent spins (a pair is either allowed or it is disallowed) and hard constraints
on individual spins (again, a spin is either allowed at a particular vertex or it is disallowed).
Our results apply both in the degree-bounded case and in the unbounded-degree case. In the
unbounded case, earlier work treated the situation with weighted interactions and weighted
spins. The characterisations derived in these weighted scenarios (see, e.g. [11, Thm 1]) have
a similar feel to the trichotomy that we have presented in Theorem 1. We may wonder
whether, in the unbounded case, at least, there is a common generalisation. That is, in
the unbounded case, does the trichotomy of [11] survive if weights on spins are replaced by
lists? The answer is no. There are examples of weighted spin systems with just q = 2 spins
whose partition function is #SAT-hard to approximate with vertex weights but efficiently
approximable (in the sense that there is an FPRAS) with lists instead of weights.

Here is one such example. Following Li, Lu and Yin [16], define the interaction matrix
A = (aij : 0 ≤ i, j ≤ 1) by A = ( 0 1

1 2 ), and the partition function associated with an
instance G by ZA(G) =

∑
σ:V (G)→{0,1}

∏
{u,v}∈E(G) aσ(u),σ(v). This is the partition function

of a variant of the independent set model, which instead of defining the interaction between
spin 1 and itself (two vertices that are out of the independent set) to be 1, defines this
interaction weight to be 2.

Li, Lu and Yin [16, Theorem 21] show that Weitz’s self-avoiding walk algorithm [22] gives
an FPTAS for ZA(G). Also, Weitz’s correlation decay algorithm [22] can accommodate lists.
Indeed, the construction of the self-avoiding walk tree relies on being able to “pin” colours at
individual vertices. So the partition function remains easy to approximate (in the sense that
there is an FPTAS) even in the presence of lists. In contrast, the approximation problem
becomes #SAT-hard if arbitrary weights are allowed. Indeed, by weighting spin 0 at each
vertex u ∈ V (G) by 2d(u), where d(u) is the degree of u, we recover the usual independent
set partition function, which is #SAT-equivalent (Lemma 6). (The same fact can be read off
from general results in many papers, including [11, Thm 1].) Thus, even in the unbounded
case, the dichotomies presented in [11, Thm 1] and [1, Thm 6] do not hold with lists in place
of weights. So even in the unbounded-degree case, it was necessary to explicitly analyse
list homomorphisms in order to derive precise characterisations quantifying the problem of
approximately counting these.
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Abstract
Given an edge-weighted graph G, let PerfMatch(G) denote the weighted sum over all perfect
matchings M in G, weighting each matching M by the product of weights of edges in M. If G is
unweighted, this plainly counts the perfect matchings of G.

In this paper, we introduce parity separation, a new method for reducing PerfMatch to
unweighted instances: For graphs G with edge-weights 1 and −1, we construct two unweighted
graphs G1 and G2 such that PerfMatch(G) = PerfMatch(G1) − PerfMatch(G2). This yields a
novel weight removal technique for counting perfect matchings, in addition to those known from
classical #P-hardness proofs. Our technique is based upon the Holant framework and matchgates.
We derive the following applications:

Firstly, an alternative #P-completeness proof for counting unweighted perfect matchings.
Secondly, C=P-completeness for deciding whether two given unweighted graphs have the same

number of perfect matchings. To the best of our knowledge, this is the first C=P-completeness
result for the “equality-testing version” of any natural counting problem that is not already
#P-hard under parsimonious reductions.

Thirdly, an alternative tight lower bound for counting unweighted perfect matchings under
the counting exponential-time hypothesis #ETH.
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1 Introduction

The problem of counting perfect matchings has played a central role in counting complexity
since Valiant [27] introduced the class #P and established #P-completeness of counting
perfect matchings in unweighted bipartite graphs. This problem was previously already
considered in statistical physics [26, 21, 22] and Valiant’s computational hardness result
explains the lack of progress encountered in this area for finding efficient algorithms for
counting perfect matchings.

As complexity theorists, we can appreciate this seminal #P-completeness result from
another perspective: The problem of counting perfect matchings in unweighted graphs
presented the first example of a natural hard counting problem with an easy decision version,
since Edmond’s classical algorithm [14] allows to decide in polynomial time whether a graph
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contains at least one perfect matching. This showed exemplarily that the complexity-theoretic
study of counting problems amounts to more than merely checking whether NP-hardness
proofs for decision problems carry over to their counting versions.

For instance, a fundamental peculiarity of counting problems that is not shared by decision
problems are cancellations: In (weighted) counting problems, witness structures may cancel
each other out, and this can have strong effects on the complexity of the problem. The most
prominent example of this phenomenon might be the situation of the determinant and the
permanent, both summing over the same permutations, however with different weights. This
results in the permanent being #P-complete by Valiant’s result, whereas the determinant
can be computed in polynomial time. The accidental and holographic algorithms introduced
by Valiant [28, 29] provide examples for further and more unexpected cancellations that
render counting problems easy.

However, cancellations are also crucial for negative results: In many #P-hardness proofs,
such as [4, 2, 3], we first define an intermediate variant of the target problem on weights
±1. Examples for this strategy include the original reduction from #SAT to counting
unweighted perfect matchings [27]: In this setting, let G be a graph with edge-weights
w : E(G)→ {−1, 1}, let PM[G] denote its set of perfect matchings, and define

PerfMatch(G) :=
∑

M∈PM[G]

∏
e∈M

w(e). (1)

Given an instance to this weighted problem, that is, a graph G derived from a 3-
CNF formula, its space of witness structures PM[G] can then be partitioned into “good”
structures that correspond to satisfying assignments, and “bad” structures that could be
called combinatorial noise. By careful construction of such a graph G on edge-weights ±1,
we can ensure that bad structures come in pairs of weight +1 and −1, thus canceling out,
whereas good structures all have weight +1.

To conclude #P-completeness of counting unweighted perfect matchings, it remains to
simulate the weight −1 from the intermediate problem. This can be achieved by several
techniques, which we survey in the next part of the introduction. Let us however first point
out that the main contribution of this paper is a novel technique for precisely this part
of the reduction: Using a method we call parity separation, we reduce the computation of
PerfMatch(G) for a ±1-weighted graph G to the difference of PerfMatch for two unweighted
graphs, that is, to the difference of two numbers of perfect matchings.

I Lemma 1 (Parity Separation). Let G be a graph on n vertices and m edges that is weighted
by a function w : E(G)→ {−1, 1}. Then we can construct in time O(n+m) two unweighted
graphs G1 and G2, each on O(n+m) vertices and edges, such that

PerfMatch(G) = PerfMatch(G1)− PerfMatch(G2). (2)

Intuitively speaking, this allows us to “collect” positive and negative terms of PerfMatch(G)
for ±1-weighted graphs. This way, we can reduce the effect of cancellations incurred within
PerfMatch to a mere difference outside of PerfMatch.

In the remainder of this introduction, we present parity separation in more detail and
demonstrate three applications that can be derived from it: Firstly, and not surprisingly,
we obtain a new #P-completeness proof for counting perfect matchings. Secondly, we can
show C=P-completeness of deciding whether two graphs have the same number of perfect
matchings. Thirdly, we also obtain tight lower bounds under the exponential-time hypothesis.
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1.1 #P-completeness via parity separation
To put parity separation into context, we first recapitulate Valiant’s #P-hardness result
for counting perfect matchings in more detail. Let us denote the problem of evaluating
PerfMatch on graphs with edge-weights from A ⊆ Q by PerfMatchA. For consistency with
[13], we write PerfMatch0,1 for the problem of counting perfect matchings in unweighted
graphs. That is, we explicitly include 0 ∈ A for PerfMatchA, although zero-weight edges
could be simply deleted.

First step: From #SAT to PerfMatch−1,0,1

It is shown in [27, Lemma 3.1] that PerfMatchW is #P-hard for W := {−1, 0, 1, 2, 3}. More
precisely, from a 3-CNF formula ϕ, a number t(ϕ) ∈ N and a bipartite graph G = G(ϕ) on
weights W are constructed in polynomial time, such that

#SAT(ϕ) = PerfMatch(G)
4t(ϕ) , (3)

This however only yields hardness for a weighted generalization of counting perfect
matchings. To obtain a useful reduction source for further problems, it is crucial to re-
duce PerfMatchW to PerfMatch0,1, as reductions from PerfMatch to other problems would
otherwise need to take care of the weights in W , which is particularly problematic for the
edge-weight −1 in the case of unweighted reduction targets.

In fact, the weight −1 is the only problem we encounter: Edges e of positive integer
edge-weight w can be simulated easily by replacing e with w parallel edges of unit weight,
possibly subdividing edges twice to obtain simple graphs. This trick however clearly does
not apply for the weight −1, so we need a different strategy.

Second step: From PerfMatch−1,0,1 to PerfMatch0,1

By now, two different strategies are known for removing the weight −1, which we briefly
survey in the following. Let G be a graph with n vertices and m > 0 edges, all on weights
−1 and 1.

Modular arithmetic: Variations of the following approach were originally used by Valiant
[27] and later by Zanko [32] and Ben-Dor and Halevi [1]: Write M = 2m + 1 and observe
that PerfMatch(G) < M . We can hence replace the weight −1 by the positive integer
M − 1 to obtain a graph G′ satisfying PerfMatch(G) ≡ PerfMatch(G′) modulo M . The
weight M − 1 can be simulated by a gadget as in the previous paragraph, and using a
more involved construction [32], it can be seen that a gadget on O(m) vertices and edges
suffices, yielding a total number of O(nm) vertices and O(m2) edges in G′. Then we
compute PerfMatch(G′) modulo M and obtain PerfMatch(G), as we may assume from
(3) that PerfMatch(G) ≥ 0. In total, we obtain one reduction image for PerfMatch0,1 on
O(nm) vertices and O(m2) edges.
Polynomial interpolation: An alternative technique for removing the edge-weight −1
from G is to replace it by an indeterminate x. This gives rise to a graph Gx on edge-weights
{1, x} for which PerfMatch(Gx) is a polynomial p(x) ∈ Z[x] of degree at most n/2. We can
evaluate p(i) for i ∈ {0, . . . , n/2} by substituting x← i in Gx and simulating this positive
weight by a gadget as discussed before. This allows us to recover p(−1) = PerfMatch(G)
via Lagrangian interpolation. In total, using gadgets as in [32, 13], we obtain O(n)
reduction images for PerfMatch0,1 on O(m logn) vertices and O(m logn+m) edges each.
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Both weight removal techniques allow to reduce PerfMatch−1,0,1 to PerfMatch0,1 and
thus complete the #P-completeness proof of the latter problem. Note however that both
approaches map weighted graphs G with m edges to unweighted graphs with a super-linear
number of edges. Using parity separation, we obtain a third way of performing the weight
removal step, which differs substantially from both approaches mentioned before and features
only constant blowup:

Parity separation: Using Lemma 1, compute two unweighted graphs G1 and G2 from G

such that PerfMatch(G) is the mere difference of PerfMatch(G1) and PerfMatch(G2). In
total, we obtain 2 reduction images for PerfMatch0,1 on O(n+m) vertices and edges.

Together with the first step, this implies an alternative #P-completeness proof for the
problem PerfMatch0,1 of counting perfect matchings in unweighted graphs. For the sake of
completeness, we also include a self-contained reduction from #SAT to PerfMatch−1,0,1.

I Theorem 2. PerfMatch0,1 is #P-complete under polynomial-time Turing reductions.

1.2 C=P-completeness via parity separation
Apart from an alternative #P-completeness proof, Lemma 1 also yields implications for the
structural complexity of PerfMatch: We show that deciding whether two unweighted graphs
have the same number of perfect matchings is complete for the complexity class C=P, which
was introduced in [25, 31] and further elaborated in [16, 15].

To define C=P, let us associate the following language A= with each counting problem
A ∈ #P: The inputs to A= are pairs (x, y) of instances to A, and we are asked to determine
whether A(x) = A(y) holds. We can then define1 the class C=P := {A= | A ∈ #P}.

For instance, it is clear that #SAT=, the problem that asks whether two 3-CNF formulas
have the same number of satisfying assignments, is C=P-complete under polynomial-time
many-one reductions. In fact, C=P-completeness holds for every problem A= whose count-
ing version #A is #P-complete under parsimonious reductions. We recall the notion of
parsimonious (and other) reductions in Definition 5.

The relationship between C=P and other complexity classes has been studied in structural
complexity theory, and several results are surveyed in [15]. For instance, we clearly have
coNP ⊆ C=P, and using the witness isolation technique [30], we see that NP is contained in
C=P under randomized reductions. Let us also observe that NP#P ⊆ NPC=P: Whenever we
issue an oracle call to #P, we may instead guess the output number, and then check whether
we guessed correctly by using the C=P oracle.

To the best of the author’s knowledge, no natural C=P-complete problem A= is known
whose counting version A is not #P-complete under parsimonious reductions.2 It is clear that
the problem PerfMatch0,1 of counting unweighted perfect matchings cannot be #P-complete
under parsimonious reductions, unless P = NP. Therefore, the following completeness

1 We deviate here from the standard definition of C=P, according to which we have L ∈ C=P iff the
following holds: There is a polynomial-time nondeterministic Turing machine M such that x ∈ L iff the
numbers of accepting and rejecting computation paths of M(x) are equal. It can be verified easily that
this is equivalent to our definition.

2 Here, we stressed natural, because we can easily construct artificial C=P-complete problems A= whose
counting version #A admits no parsimonious reduction from #SAT: Consider as an example the
counting problem #SAT′ that asks to count satisfying assignments, incremented by 1. If #SAT′ had a
parsimonious reduction from #SAT, then every CNF-formula would be satisfiable. On the other hand,
the reduction from #SAT= to #SAT′

= is trivial.
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result for PerfMatch0,1
= seems relevant for structural complexity theory, as it establishes a

C=P-variant of Valiant’s result.

I Theorem 3. PerfMatch0,1
= (deciding whether two unweighted graphs have the same number

of perfect matchings) is C=P-complete under polynomial-time many-one reductions.

To prove this theorem, we first reduce instances (ϕ,ϕ′) for #SAT= to ±1-weighted graphs G
that satisfy PerfMatch(G) = 0 iff #SAT(ϕ) = #SAT(ϕ′). This requires a modification of the
first step in the #P-hardness reduction, which is however supported easily by our alternative
proof. Then we apply Lemma 1 on the graph G to obtain unweighted graphs G1 and G2
satisfying (2). In particular, their numbers of perfect matchings agree iff PerfMatch(G)
vanishes, that is, iff (ϕ,ϕ′) is a yes-instance for #SAT=.

To conclude this subsection, we note that the complexity of a similar problem was posed
as an open question in [8]: Given two directed acyclic graphs, decide whether their numbers
of topological orderings agree. It was shown in [5] that counting topological orderings is
#P-complete under Turing reductions, but the decision version is trivial for DAGs. Our result
for PerfMatch0,1

= might be useful to prove C=P-completeness for this and other problems.
For instance, a reduction was recently found [24] from PerfMatch0,1

= to deciding whether two
formulas in 2-CNF are satisfied by the same number of assignments.

1.3 Tight lower bounds via parity separation
We turn our attention to conditional quantitative lower bounds: A relatively new subfield in
computational complexity makes use of assumptions stronger than P 6= NP or FP 6= #P to
prove tight (exponential) lower bounds on the running times needed to solve computational
problems. A popular such assumption is the exponential-time hypothesis ETH, introduced
by Impagliazzo et al. [19, 20], which states that the satisfiability of n-variable formulas ϕ in
3-CNF cannot be decided in time 2o(n). For counting problems, an analogous variant #ETH
was introduced by Dell et al. [13], and it postulates the same for the problem of counting
satisfying assignments to ϕ.

Assuming ETH, it was shown for a vast body of popular decision problems that the
known exponential-time exact algorithms are somewhat optimal: For instance, there is a
trivial 2O(m) time algorithm for finding a Hamiltonian cycle (or various other structures) in
an m-edge graph, but 2o(m) time algorithms would refute ETH. See [23] for a nice survey.

Similar lower bounds were shown for counting problems under #ETH, see [17, 18, 13],
and a very recent paper [9] introduced block interpolation, an approach to make the technique
of polynomial interpolation (as seen in the second step of Section 1.1) compatible with tight
lower bounds under #ETH. For several problems, that of counting perfect matchings being
among them, block interpolation gave the first tight 2Ω(m) lower bounds under #ETH.

When applying this framework to PerfMatch0,1, we would first reduce #SAT on n-variable
3-CNFs ϕ to instances G = G(ϕ) for PerfMatch−1,0,1 with O(n) edges as in the first step
of the #P-hardness proof. Then we apply the block interpolation technique to reduce G to
2o(n) unweighted instances G′ for PerfMatch0,1 with O(n) edges. While this sub-exponential
number of instances is compatible with the goal of proving tight lower bounds, it leaves open
the natural question whether the same reduction could be achieved with only polynomially
many oracle calls on graphs with O(n) edges.

Using Lemma 1, we obtain a strong positive answer to this question: Replacing the
application of block interpolation by one of parity separation, we obtain a reduction to merely
two instances of PerfMatch0,1. And as a synthesis of structural and quantitative complexity,
we also obtain a tight lower bound for the equality-testing problem PerfMatch0,1

= .
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I Theorem 4. Unless #ETH fails, the problem PerfMatch0,1 admits no algorithm with
running time 2o(m) on simple graphs with m edges. Furthermore, the same applies to
PerfMatch0,1

= under the decision version ETH.

Organization of this paper
The remainder of this paper is structured as follows: In Section 2, we introduce the Holant
framework and matchgates, concepts that are crucial to our constructions. These are put to
use in Section 3, where we prove Lemma 1, our main result. Its applications, as discussed
above, are shown in Section 4.

2 Preliminaries

Graphs in this paper may be edge- or vertex-weighted. Given a graph G and v ∈ V (G),
denote the edges incident with v by I(v). If the context of an argument unambiguously
determines a graph G, we write n = |V (G)| and m = |E(G)|.

We denote the Hamming weight of strings x ∈ {0, 1}∗ by hw(x). Given a statement ϕ,
we let [ϕ] = 1 if ϕ is true, and [ϕ] = 0 otherwise. For convenience, we recall that several
reduction notions are distinguished in the study of counting complexity: The most restrictive
notion is that of parsimonious (many-one) reductions, which can be slightly relaxed to weakly
parsimonious reductions. The most permissive notion is that of Turing reductions.

I Definition 5. Let A and B be counting problems. Let f : {0, 1}∗ → {0, 1}∗ and g :
{0, 1}∗ → Q be polynomial-time computable functions. If A(x) = g(x) · B(f(x)) holds for
all x ∈ {0, 1}∗, then we call (f, g) a weakly parsimonious (polynomial-time) reduction from
A to B and write A ≤p B. If additionally g(x) = 1 holds for all x ∈ {0, 1}∗, then we call f
parsimonious and write A ≤pars

p B.
If T is a deterministic polynomial-time algorithm that solves A with an oracle for B, then

we call T a Turing reduction from A to B and write A ≤T
p B.

2.1 Weighted sums of (perfect) matchings
The quantity PerfMatch on edge-weighted graphs, as defined in (1) and [29], will be the
central object of investigation in this paper. For intermediate steps, we also consider the
quantity MatchSum introduced in [29].

I Definition 6. For vertex-weighted graphs G with w : V (G)→ Q, letM[G] denote the set
of (not necessarily perfect) matchings in G. Recall that PM[G] ⊆M[G] denotes the perfect
matchings in G. For M ∈ M[G], let usat(M) denote the set of unmatched vertices in M .
Then we define

MatchSum(G) =
∑

M∈M[G]

∏
v∈usat(M)

w(v).

Given W ⊆ Q, we write PerfMatchW for the problem of evaluating PerfMatch(G) on graphs
G with weights w : E(G) → W . Likewise, write MatchSumW on graphs with weights
w : V (G) → W . Please note that an edge of weight 0 in PerfMatch can be treated as if
it were not present, whereas weight 0 at a vertex v in MatchSum signifies that v must be
matched. We can easily reduce PerfMatchW for finite W ⊆ Q to PerfMatch−1,0,1:
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I Lemma 7 (folklore). Let G be edge-weighted by w : E(G)→ Q. Let q ∈ N denote the least
common denominator of the weights in G, and let T = maxe∈E(G) q · w(e). Then we can
compute a number B ∈ N and an edge-weighted graph G′ on O(n+ Tm) vertices and edges,
all of weight ±1, such that PerfMatch(G) = q−B · PerfMatch(G′).

2.2 Holant problems
We give an introduction to the Holant framework, summarizing ideas from [29, 6, 7]. A more
detailed introduction to our notation can be found in [11].

I Definition 8 (adapted from [29]). A signature graph is an edge-weighted graph Ω, which
may feature parallel edges, with a vertex function fv : {0, 1}I(v) → Q at each v ∈ V (Ω).

The Holant of Ω is a particular sum over edge assignments x ∈ {0, 1}E(Ω). We sometimes
identify x with the set x−1(1) of indices that have value 1 under x. Given S ⊆ E(Ω), we
write x|S for the restriction of x to S, which is the unique assignment in {0, 1}S that agrees
with x on S. Then we define

Holant(Ω) :=
∑

x∈{0,1}E(Ω)

(∏
e∈x

w(e)
) ∏

v∈V (Ω)

fv(x|I(v))

 . (4)

As a first example, we can reformulate PerfMatch(G) easily as the Holant of a signature
graph Ω = Ω(G) by declaring fv : {0, 1}I(v) → {0, 1} for v ∈ V (G) to be the vertex function
that maps x ∈ {0, 1}∗ to 1 iff hw(x) = 1 and to 0 else.

When considering signature graphs Ω in the following, we will always assume that I(v)
for each v ∈ V (Ω) is ordered in a fixed (usually implicit) way. This way, if v is a vertex
of degree d ∈ N, we can simply view fv as a function fv : {0, 1}d → Q, and we call this
representation a signature.

I Example 9. The following are signatures of arity k ∈ N on inputs x ∈ {0, 1}[k] with
x = (x1, . . . , xk).

EQ : x 7→ [x1 = . . . = xk]
HW=1 : x 7→ [hw(x) = 1]
HW≤1 : x 7→ [hw(x) ≤ 1]
ODD : x 7→ x1 ⊕ . . .⊕ xk

EVEN : x 7→ 1⊕ x1 ⊕ . . .⊕ xk.

We may write, say, EQ4 to denote the arity-4 signature EQ. Note that these signatures are
symmetric, as they depend only upon the Hamming weight on the input.

Similarly as for PerfMatch, we can also express MatchSum as a Holant problem.

I Lemma 10. Let G be a graph with vertex-weights w : V (G)→ Q. Then MatchSum(G) =
Holant(Ω) holds with the signature graph Ω that is derived from G by placing VTXw(v) at
v ∈ V (G) and assigning weight 1 to all edges. Here, VTXw for w ∈ Q is defined as

VTXw : x 7→


w if hw(x) = 0,
1 if hw(x) = 1,
0 otherwise.

We can easily reduce edge-weighted Holant problems to unweighted versions as follows.

ICALP 2016
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I Lemma 11. Let Ω′ be defined as follows from Ω: Subdivide each edge e ∈ E(Ω) into two
edges, assign weight 1 to the obtained subdivision edges, and equip the obtained subdivision
vertices with the signature EDGEw(e), where

EDGEw : x 7→


w if x = 11,
0 if x ∈ {01, 10},
1 if x = 00.

Then Ω′ features only the edge-weight 1, and we have Holant(Ω) = Holant(Ω′).

Finally, a signature is called even if its support contains only bitstrings of even Hamming
weight. The problem #SAT can be rephrased as a Holant problem with even signatures:

I Lemma 12. For n,m, d ∈ N, let ϕ be a d-CNF formula on variables x1, . . . , xn and clauses
c1, . . . , cm. We construct a signature graph Ω as follows:

For each i ∈ [n], let r(i) denote the number of occurrences of xi (as a positive or negative
literal) in ϕ. Create a variable vertex vi in Ω, with signature EQ2r(i).
For each j ∈ [m], let xi1 , . . . , xid be the variables that clause cj depends upon. We create
a clause vertex wj in Ω, and for κ ∈ [d], we add two parallel edges of weight 1 between
wj and viκ as the 2κ− 1-th and 2κ-th edges in the ordering of I(wj).
For each j ∈ [m], consider clause cj as a Boolean function on variables z1, . . . , zd, where zi

for i ∈ [d] represents the i-th variable in cj. Define a function c′j on variables y1, . . . , y2d

that outputs cj(y1, y3, . . . , y2d−1) if y2i = y2i−1 for all i ∈ [d]. On all other inputs, the
value of c′j is defined to be zero. Assign such a signature c′j to the vertex wj.

Then we have #SAT(ϕ) = Holant(Ω). Note that Ω is a signature graph with n + m

vertices and 2dm edges that features only even signatures and the edge-weight 1.

I Remark. The degree of clause vertices above is 2d rather than d to ensure that their
signatures are even. The need for this will become clear in the next subsection.

2.3 Gates and matchgates
Given a signature graph Ω, we can sometimes simulate vertex functions by gadgets or gates,
which are signature graphs with so-called dangling edges that feature only one endpoint.
These notions are borrowed from the F -gates in [7]. Matchgates were first considered in [29].

I Definition 13 (adapted from [7]). For disjoint sets A,B, and for assignments x ∈ {0, 1}A

and y ∈ {0, 1}B, we write xy ∈ {0, 1}A∪B for the assignment that agrees with x on A, and
with y on B. We also say that the assignment xy extends x. A gate is a signature graph Γ
containing a set D ⊆ E(Γ) of dangling edges, all of which have edge-weight 1. The signature
realized by Γ is the function Sig(Γ) : {0, 1}D → Q that maps x to

Sig(Γ, x) =
∑

y∈{0,1}E(Γ)\D

(∏
e∈xy

w(e)
) ∏

v∈V (Γ)

fv(xy|I(v))

 . (5)

A gate Γ is a matchgate if it features only the signature HW=1.

In the following, we consider the dangling edges D of gates Γ to be labelled as 1, . . . , |D|.
This way, we can view Sig(Γ) as a function of type {0, 1}|D| → Q instead of {0, 1}D → Q.
We will use gates to realize required signatures as “gadgets” consisting of other (usually
simpler) signatures. Consider the following example, which appeared in [29].
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I Example 14. It can be verified that EVEN3 and ODD3 are realized by the matchgates Γ0
and Γ1 below, where all vertices are assigned HW=1 and all edges have weight 1.

10

Using this, we can realize the signatures ODDk and EVENk for any arity k ≥ 3 as matchgates,
noted also in [29, Theorem 3.3]. This will be required in Section 3.

I Example 15. For all k ≥ 3, there exists a gate ΓEVEN with Sig(ΓEVEN) = EVENk. It consists
of vertices v1, . . . , vk−2 equipped with EVEN3, edges e1, . . . , ek−3 of weight 1, and dangling
edges [k].

We can likewise realize ODDk by a gate ΓODD that is constructed as above, but with ODD3
rather than EVEN3 at vk−2.

In the following, we formalize the operation of inserting a gate Γ into a signature graph so
as to simulate a desired signature. A more detailed version of this operation can be found in
Definition 2.10 and Lemma 2.11 of [11].

I Lemma 16. Let Ω be a signature graph, let v ∈ V (Ω) with D = I(v) and let Γ be a gate
with dangling edges D. We can insert Γ at v by deleting v and keeping D as dangling edges,
and then placing Γ into Ω and identifying each dangling edge e ∈ D across Γ and Ω. If Ω′ is
derived from Ω by inserting a gate Γ with Sig(Γ) = fv at v, then Holant(Ω) = Holant(Ω′).

By an argument presented in the author’s PhD thesis [11], also used in [12], we can realize
every even signature f by some matchgate Γ = Γ(f). If the image of f is W , then Γ contains
W ∪ {±1, 1/2} as edge-weights. For sake of completeness, we include a self-contained proof in
the full version.

I Lemma 17 ([11, 12]). Let Ω be a signature graph on n vertices and m edges, with even
vertex functions {fv}v∈V (Ω) that map into W ⊆ Q. Let s = maxv∈V (Ω) |supp(fv)|. Then
we can construct, in linear time, a graph G on O (n+ sm) vertices and edges such that
Holant(Ω) = PerfMatch(G). The edge-weights of G are W ∪ {±1, 1/2}.

3 The parity separation technique

We are ready to prove Lemma 1, our main result. The proof proceeds by establishing, with
several intermediate steps, the reduction chain

PerfMatch−1,0,1 ≤p MatchSum−1,0,1 ≤T
p PerfMatch0,1. (6)

For the first reduction in (6), we apply a gadget Γ realizing the signature EDGE−1 from
Lemma 11 to all edges of weight −1.

I Lemma 18. We have EDGE−1 = Sig(Γ), where Γ is the gate below. In Γ, each vertex
features the signature VTXw for the number w ∈ {−1, 0, 1} it is annotated with in the drawing.
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This allows us to transform an instance for PerfMatch−1,0,1 to one for MatchSum−1,0,1.

I Lemma 19. Let G be a graph with n vertices and m edges, all of weight ±1. Then we
can compute a graph G′ on O(n + m) edges, with vertices of weight {−1, 0, 1}, such that
PerfMatch(G) = MatchSum(G′).

Proof. We assume that |V (G)| is even, as otherwise PerfMatch(G) = 0. First, let Ω be the
signature graph constructed by assigning HW=1 to all vertices of G, and then applying the
signature EDGE−1 as in Lemma 11. We obtain PerfMatch(G) = Holant(Ω).

Then realize each occurrence of EDGE−1 by the gate Γ from Lemma 18. Note that
Γ features no edge-weights, and only VTXw for w ∈ {−1, 0, 1}. We obtain a signature
graph Ω′ whose signatures are all of the type VTXw for w ∈ {−1, 0, 1}, and which satisfies
Holant(Ω) = Holant(Ω′). Note that HW=1 = VTX0, so this indeed covers all vertices of Ω′.

By Lemma 10, we may equivalently consider Holant(Ω′) = MatchSum(G′), where G′ is a
vertex-weighted graph obtained from Ω′ as follows: Keep all vertices and edges of Ω′ intact,
and if v ∈ V (Ω′) features the signature VTXw, for w ∈ {−1, 0, 1}, then assign the vertex
weight w to v in G′. J

For the second reduction in (6), we perform the actual act of parity separation: We will split
the vertex-weighted graph G′ into an even part G0 and an odd part G1, both unweighted,
such that the perfect matchings of the even (resp. odd) part correspond bijectively to the
matchings of G′ with an even (resp. odd) number of unmatched vertices of weight −1.3 Since
(−1)even = 1 and (−1)odd = −1, this clearly implies that MatchSum(G) is the difference of
PerfMatch(G0) and PerfMatch(G1).

To proceed, we first use the signatures EVEN and ODD from Example 9 to obtain an
alternative reformulation of MatchSum−1,0,1 as the difference of two Holants.

I Lemma 20. Let G′ be a graph with vertex-weights {−1, 0, 1}. For a, b ∈ {0, 1}, let
Φab = Φab(G′) be the signature graph obtained as follows:
1. Assign the signature HW=1 to all vertices of G′.
2. For x ∈ {−1, 0, 1}, let Vx ⊆ V (G′) denote the set of vertices of weight x in G′. For

x ∈ {−1, 1}, add a vertex ux connected to Vx.
Assign to u−1 the signature EVEN if a = 0, and assign ODD if a = 1.
Assign to u1 the signature EVEN if b = 0, and assign ODD if b = 1.

Then we have MatchSum(G′) = Holant(Φ00)−Holant(Φ11).

The second reduction in (6) follows by realizing the signatures ODD and EVEN appearing in
Φ00 and Φ11 via matchgates that feature neither edge- nor vertex-weights. Note that the
only other appearing signature HW=1 is trivially realized by such a matchgate.

Proof of Lemma 1. Follows from Lemma 19 (to reduce PerfMatch−1,0,1 to MatchSum−1,0,1)
with Lemma 20 (to reformulate MatchSum−1,0,1 as a Holant problem) and Example 15 (to
realize the ODD and EVEN signatures in the Holant problem by unweighted matchgates). J

3 This step is inspired by a reduction [29, Theorem 3.3] from certain instances of MatchSum on planar
graphs to PerfMatch on planar graphs.
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4 Parity separation in action

In the final section of this paper, we cover the three applications of parity separation that we
discussed in the introduction.

4.1 Completeness for #P
We can easily show the #P-completeness of PerfMatch0,1 via parity separation. To this end,
we first express #SAT as a Holant problem on even signature graphs, as seen in Lemma 12.
Together with Lemma 17, this yields #SAT ≤p PerfMatchB with B = {−1, 0, 1/2, 1}. We
use Lemma 7 to remove the edge-weight 1/2, and finally remove the weight −1 by parity
separation as in Lemma 1. Altogether, we obtain the following lemma.

I Lemma 21. Let ϕ be a 3-CNF formula with n variables and m clauses. Then we can
compute a number T ∈ N and construct two unweighted graphs G1 and G2 on O(n+m) vertices
and edges, all in time O(n+m), such that 2T ·#SAT(ϕ) = PerfMatch(G1)−PerfMatch(G2).

This readily implies Theorem 2, the desired #P-completeness result.

4.2 Completeness for C=P
For our next application, we apply the parity separation technique to prove Theorem 3. That
is, we prove C=P-completeness of the problem PerfMatch0,1

= that asks, given two unweighted
graphs G1 and G2, whether their numbers of perfect matchings agree. We call graphs
satisfying this property equipollent graphs and will likewise speak of equipollent formulas if
their numbers of satisfying assignments agree.

Proof of Theorem 3. The problem PerfMatch0,1
= is clearly contained in C=P. For the hard-

ness part, we reduce from the C=P-complete problem #SAT= that asks, given 3-CNF formulas
ϕ and ϕ′, to determine whether they are equipollent. To this end, we construct unweighted
graphs G and G′ that are equipollent if and only if ϕ and ϕ′ are.

Assume that ϕ and ϕ′ are defined on the same set of variables x1, . . . , xn and feature
the same number m of clauses. This can be achieved by renaming variables, and by adding
dummy variables and clauses. If, say, ϕ has less variables than ϕ′, then we can add dummy
variables to ϕ′, together with clauses that ensure that every dummy variable has the same
assignment as x1. We can also duplicate clauses.

Let C1, . . . , Cm and C ′1, . . . , C ′m denote the clauses in ϕ and ϕ′, respectively. We introduce
a selector variable x∗ and define a formula ψ on the variable set X = {x∗, x1, . . . , xn}, which
has clauses D1, . . . , Dm and D′1, . . . , D′m, where Di := (x∗ ∨ Ci) and D′i := (¬x∗ ∨ C ′i) for
i ∈ [m]. If a(x∗) = 0 holds in an assignment a ∈ {0, 1}X , then all clauses D′1, . . . , D′m are
satisfied by ¬x∗, but in order for a to satisfy ψ, the clauses D1, . . . , Dm have to be satisfied
by x1, . . . , xn. In other words, if a satisfies ψ and a(x∗) = 0, then the restriction of a to
x1, . . . , xn satisfies ϕ. Likewise, if a satisfies ψ and a(x∗) = 1, then the restriction of a to
x1, . . . , xn satisfies ϕ′. Hence, we can define the following quantity

S :=
∑

a∈{0,1}X
(−1)a(x∗) · [ψ satisfied by a]

and we observe that S = #SAT(ϕ)−#SAT(ϕ′). It is clear that S = 0 if and only if ϕ and
ϕ′ are equipollent. As in Lemma 12, we then express S = Holant(Ω) for a signature graph
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Ω = Ω(ψ), with one modification: At the vertex v∗ corresponding to the variable x∗, we do
not use the signature EQ, but rather a modified signature

EQ− : y 7→


−1 if y = 1 . . . 1,
1 if y = 0 . . . 0,
0 otherwise.

We realize Ω via Lemma 17 to obtain a graph G on edge-weights 1/2,±1, simulate the
edge-weight 1/2 via Lemma 7, and obtain an edge-weighted graph H with weights ±1 together
with a number T ∈ N such that

S = Holant(Ω) = 2−T · PerfMatch(H). (7)

Using Lemma 1, we then obtain unweighted graphs G and G′ such that

PerfMatch(H) = PerfMatch(G)− PerfMatch(G′). (8)

Then G and G′ are equipollent iff S = 0, which in turn holds iff ϕ and ϕ′ are equipollent. J

4.3 Tight lower bounds under #ETH
By the exponential-time hypothesis #ETH, there is no 2o(n) time algorithm for counting
satisfying assignments to 3-CNF formulas ϕ with n variables. Applying the counting version
of the so-called sparsification lemma, shown in [13], we may additionally assume that ϕ
features m = O(n) clauses. Then Lemma 21 clearly implies the lower bound for PerfMatch0,1

claimed in Theorem 4.
Concerning PerfMatch0,1

= , it is even easier to prove lower bounds under ETH than to prove
its C=P-completeness, as we may (i) reduce from SAT rather than SAT=, and (ii) use the more
permissive notion of Turing (rather than many-one) reductions: With Lemma 21, we can
construct unweighted graphs G1 and G2 on O(m) vertices and edges that are equipollent iff ϕ
is unsatisfiable, thus a 2o(m) time algorithm would contradict ETH. This proves Theorem 4.

5 Conclusion and future work

We have added a new method to the known techniques (modular arithmetic and polynomial
interpolation) for removing the edge-weight −1 from PerfMatch−1,0,1. This method is based
on matchgates and the simple observation that (−1)even = 1 and (−1)odd = −1. We obtained
non-trivial applications that could not be obtained via the previously known techniques.

Our work leaves some interesting questions open for further investigations. For instance,
we could not find a way to show #P-completeness of PerfMatch0,1 on bipartite graphs by
parity separation. Is there a complexity-theoretic explanation for this? On another note, can
we prove C=P-completeness for other “equality-testing” versions of counting problems?

Acknowledgments. The author wishes to thank Markus Bläser, Mingji Xia, Meena Mahajan
and Jin-Yi Cai for interesting discussions. Furthermore, thanks to Patrick Scharpfenecker
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Abstract
Conditional lower bounds for dynamic graph problems has received a great deal of attention in
recent years. While many results are now known for the fully-dynamic case and such bounds often
imply worst-case bounds for the partially dynamic setting, it seems much more difficult to prove
amortized bounds for incremental and decremental algorithms. In this paper we consider partially
dynamic versions of three classic problems in graph theory. Based on popular conjectures we
show that:

No algorithm with amortized update time O(n1−ε) exists for incremental or decremental max-
imum cardinality bipartite matching. This significantly improves on the O(m1/2−ε) bound
for sparse graphs of Henzinger et al. [STOC’15] and O(n1/3−ε) bound of Kopelowitz, Pettie
and Porat1. Our linear bound also appears more natural. In addition, the result we present
separates the node-addition model from the edge insertion model, as an algorithm with total
update time O(m

√
n) exists for the former by Bosek et al. [FOCS’14].

No algorithm with amortized update time O(m1−ε) exists for incremental or decremental
maximum flow in directed and weighted sparse graphs. No such lower bound was known
for partially dynamic maximum flow previously. Furthermore no algorithm with amortized
update time O(n1−ε) exists for directed and unweighted graphs or undirected and weighted
graphs.
No algorithm with amortized update time O(n1/2−ε) exists for incremental or decremental
(4/3 − ε′)-approximating the diameter of an unweighted graph. We also show a slightly
stronger bound if node additions are allowed. The result is then extended to the static case,
where we show that no O((n

√
m)1−ε) algorithm exists. We also extend the result to the

case when an additive error is allowed in the approximation. While our bounds are weaker
than the already known bounds of Roditty and Vassilevska Williams [STOC’13], it is based
on a weaker conjecture of Abboud et al. [STOC’15] and is the first known reduction from
the 3SUM and APSP problems to diameter. Showing an equivalence between APSP and
diameter is a major open problem in this area (Abboud et al. [SODA’15]), and thus showing
even a weak connection in this direction is of interest.
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48:2 On the Hardness of Partially Dynamic Graph Problems and Connections to Diameter

1 Introduction

Arguably one of the most important goals of computer science is to understand the complexity
of natural computational problems. For many such problems we know of polynomial time
algorithms, but getting matching unconditional lower bounds seem far beyond the scope of our
current techniques. Therefore a recent and very active line of research at top-level conferences
concerns itself with hardness results in the class P [26, 6, 8, 17, 21, 3, 14, 4, 13, 12, 10, 2, 1].
Such results are obtained by reducing from classic problems like 3SUM, APSP and CNF-
SAT, for which there exist very popular conjectures about the running time. We call such
a hardness result a conditional lower bound (CLB) as it is based (conditioned) on the
truthfulness of some popular conjecture. The main goal of CLBs is to explain barriers in
algorithm development and provide “warning signs” that improving an algorithm for some
problem has major and surprising consequences for a classic problem like the ones mentioned
above, which researchers have worked on for decades, and trying to do so may be ill-advised.

One particular area that has received a lot of attention from this perspective is dynamic
graph problems [29, 26, 6, 8, 17, 21]. In dynamic graph problems we are asked to maintain
some property about a graph such as reachability or shortest paths distances as the graph
undergoes changes (typically edge insertions and deletions). One may also consider the
partially dynamic cases where only edge insertions are allowed (incremental) or edge deletions
(decremental) or cases where node insertion and deletion is allowed. Several conditional lower
bounds are known for both partially and fully dynamic problems such as shortest paths
[29, 17], maximum bipartite matching [6, 17, 21], maximum flow [8], reachability [26, 6, 17],
and many more.

1.1 Difficulties of partially dynamic
Most of the research on CLBs for dynamic graph problems has been focused on the fully
dynamic case, however such results do not translate well into CLBs for incremental or
decremental algorithms. A typical reduction works by 1) building a structured base graph,
2) for each element in some subset of the input perform a series of insertions and queries
to decide whether this element is in a possible solution, 3) perform a series of deletions
returning the graph to its base state. From a partially dynamic perspective we may use the
above procedure to get similar worst-case bounds, by keeping track of the data structure
state and simulating step 3 by rolling back the insertions, however this kills any hope of good
amortized bounds. As noted in [6, 17, 21] it seems more difficult to obtain good bounds in
this case, and specialized reductions are often needed.

1.2 Bounds under weaker assumptions
While proving higher lower bounds is the main goal of CLBs, a simultaneous goal is to prove
similar CLBs under weaker assumptions, thus lending more credibility to the belief that
a problem is difficult or even impossible. Several recent papers concerns themselves with
this be either replacing a conjecture with a weaker version as done by Abboud et al. in [4]
or by showing similar reductions under several conjectures [32, 5, 7, 8, 17]. As an example
Abboud, Vassilevska Williams, and Yu [8] showed that 3SUM, APSP and CNF-SAT can
all be reduced to the same problem of finding triangles in a node-colored graph and showed
several interesting results based on the following conjecture:

I Conjecture 1 ([8]). At least one of the following is true:
1. There is no algorithm for the 3-SUM problem running in O(n2−ε) for any ε > 0.
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2. There is no algorithm for the APSP problem on weighted graphs running in O(n3−ε) for
any ε > 0.

3. For every δ > 0 there is an integer k ≥ 3 such that k-SAT on n variables and O(n)
clauses cannot be solved in 2(1−δ)n poly(n) time.

The third item in Conjecture 1 is what is known as the strong exponential time hypothesis
(SETH) [18] and the O(n) bound on the number of clauses follows from the sparsification
lemma of Impagliazzo, Paturi, and Zane [19].

1.3 Our results
In this paper we consider three of the perhaps most classic problems in graph theory, namely
maximum flow, maximum bipartite matching and diameter in the partially dynamic setting.
For maximum flow and maximum bipartite matching we show new, stronger, and more
natural conditional lower bounds. For diameter we show a new reduction from Conjecture 1
to both the partially dynamic version of diameter and, perhaps more interestingly, the static
case. This is the first known connection from APSP and 3SUM to diameter in graphs and
addresses one of the main open problems in the area as stated in [3].

Maximum bipartite matching. In dynamic maximum cardinality bipartite matching we
wish to maintain the size of a maximum matching in a dynamic graph G. One can trivially
do this in O(m) time by finding an augmenting path. Sankowski [30] gave a fully dynamic
algorithm with update time O(n1.495) by using fast matrix multiplication. In the incremental
setting, one may consider a node-addition version in which the right-hand side of the bipartite
graph is given and the left-hand side arrives one node at a time with all its incident edges.
In this model Bosek et al. [11] gave an algorithm with total running time of O(m

√
n).

From a hardness perspective, Abboud and Vassilevska Williams [6] gave reductions from
3SUM, triangle detection and boolean matrix multiplication to fully-dynamic maximum
cardinality bipartite matching. In particular, they showed that a O(n2−ε) algorithm would
imply a faster combinatorial boolean matrix multiplication algorithm. Their reductions,
however, only imply worst-case bounds in the case of partially dynamic algorithms. This
was addressed by Kopelowitz, Pettie and Porat [21] who revisited Pǎtraşcu’s reductions
from [26] and showed that any O(n1/3−ε) algorithm for incremental MCM would imply a
truly subquadratic algorithm for 3SUM. They also showed the same result for O(n0.39−ε)
algorithms when node insertions are allowed. Subsequently, in an online version of [17], it
was shown how to obtain a CLB of O(m1/2−ε) in sparse graphs by reducing from the online
matrix-vector multiplication (OMv) problem.

In this paper we show the following theorem:

I Theorem 2. There is no algorithm for solving incremental (or decremental) maximum
cardinality bipartite matching with amortized time O(n1−ε) per insertion (or deletion) and
O(n2−ε) time per query unless the OMv conjecture of [17] is false.

One thing to note about Theorem 2 is that it separates the node-addition model from the
edge-insertion model as it implies a total running time of O(mn1−o(1)) in contrast to the
O(m

√
n) running time of the algorithm from [11]. Furthermore, the reduction used to prove

Theorem 2 also rules out any efficient incremental (or decremental) approximation algorithm
that works by ruling out the existence of short augmenting paths. Ruling out such paths is a
popular way of ensuring a good approximation ratio [25].

ICALP 2016
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Maximum flow. Single-source single-sink maximum flow (st Max-Flow) is one of the most
classic problems in graph theory. In recent years there have been several breakthrough results
for st maximum flow using the powerful tools of Laplacian system solvers and interior point
methods [24, 31, 20, 22]. These algorithms seem to take near-line time in practice, and the
limits of our current analysis might be the bottleneck in proving such upper bounds. Proving
super-linear conditional lower bounds for this problem may thus be difficult if not impossible.
Therefore, Abboud et al. [8] considered different variants of the problem such as single-source
maximum flow and ST maximum flow. They also showed that any algorithm solving the
fully-dynamic version of st maximum flow with amortized update and query time O(n1−ε)
for any ε > 0 would refute Conjecture 1. Finally, we note that it is possible to modify the
m1−o(1) CLB for fully dynamic #SSR of Abboud and Vassilevska Williams [6] to obtain a
m1−o(1) CLB for fully-dynamic st max-flow in sparse graphs.

In this paper we show that even in the incremental and decremental case st maximum
flow exhibit the same kind of CLB, but based solely on SETH. This is summarized in the
following theorem:

I Theorem 3. There is no algorithm for solving incremental (or decremental) max st flow
on a weighted and directed graph with n nodes and Õ(n) edges with amortized time O(m1−ε)
per operation for any ε > 0 unless SETH is false.

Our bound shows that we cannot hope to get incremental maximum flow in offline time as
is the case for other problems. We note that the above result only holds for directed and
weighted graphs. We show similar results for other types of graphs:

I Theorem 4. There is no algorithm for solving incremental (or decremental) max st flow
on unweighted directed graphs or weighted undirected graphs on n nodes with amortized time
O(n1−ε) per operation for any ε > 0 unless the OMv conjecture is false.

This result follows directly from Theorem 2 by using textbook reductions from maximum
bipartite matching to directed flow (see e.g. [15]) and from directed flow to undirected flow
(see e.g. [23]).

Diameter. The diameter problem asks us to compute the longest shortest-path distance
in a graph G. Efficiently computing or approximating the diameter is a basic problem
in graphs [3, 9, 14, 16, 28]. One can trivially compute the diameter in the same time as
computing APSP, however in general no better algorithm is known. It remains a major open
problem whether a reduction exists in the other direction [3] – that is, can we compute all
distances in the same time as the longest? One can, however, approximate the diameter
faster. Roditty and Vassilevska Williams [28] showed how to compute a 3/2-approximation in
time Õ(m

√
n) randomized, and Chechik et al. [14] showed how to obtain the same guarantee

deterministically in time Õ(min(m3/2,mn2/3)). More recently, it was shown by Cairo, Grossi
and Rizzi [13] how to obtain a (2− 1

2k )-approximation in time Õ(mn
1
k+1 ). From a hardness

perspective it is known that any algorithm able to distinguish between diameter 3 and 2 in
time O(m2−ε) for sparse graphs would refute SETH [28]. Chechik et al. [14] showed that
approximating within a 4/3− ε factor with additive error β = O(mδ) in time O(m2−2δ−ε′)
for sparse graphs would also refute SETH, and this bound was improved in [13] to rule
out any 3/2 − ε approximation with the same additive error and time bounds based on
SETH (also for sparse graphs). From the perspective of dynamic algorithms Abboud and
Vassilevska Williams [6] showed that any algorithm for 4/3− ε-approximating the diameter
in a fully dynamic graph with amortized update time O(m2−ε′) would refute SETH. We also
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note, that the above static reductions rules out any O(m1−ε′) amortized update time for
incremental algorithms.

We note that all the reductions mentioned above are based on SETH. Similar to the
work of [8, 4] we seek to replace this assumption by a weaker one. In this paper we show the
first reduction from 3SUM and APSP to the diameter problem. That is, we show that a
fast algorithm for approximating the diameter implies a faster algorithm for the APSP and
3SUM problems. The bounds we achieve are not as strong as the known bounds based on
SETH [28, 14, 13], however they are based on a weaker conjecture and hold even if SETH
turns out to be false, thus giving more credibility to the difficulty of the problem. For the
partially dynamic case we show the following theorem:

I Theorem 5. There exists no incremental (or decremental) algorithm that approximates
the diameter of an unweighted graph within a factor of 4/3− ε running in amortized time
O(n1/2−ε′) for any ε, ε′ > 0 unless Conjecture 1 is false. Furthermore, if we allow node
insertions in the incremental case the bound is O(n0.618−ε′).

In order to achieve the result for node insertions, we use the technique of Kopelowitz et
al. [21] leveraging rollback with our standard incremental bound. By doing this we obtain a
graph with fewer nodes and thus a better bound. More interestingly, we are able to generalize
our results from the incremental case to the following result for static graphs:

I Theorem 6. There exists no static 4/3− ε approximation to the diameter on unweighted
graphs running in O((n

√
m)1−ε′) time for any ε, ε′ > 0 and any number of edges m unless

Conjecture 1 is false.

As mentioned, this is the first known reduction from APSP to diameter and shows at least
some weak connection in this direction. An interesting property of Theorem 6 is that it
holds for any m as a function of n and thus an algorithm need not exist for all m. As a
corollary of Theorem 6 we see that no algorithm can (4/3− ε)-approximate the diameter of
static unweighted graph in time O(n2−ε′) for any ε, ε′ unless Conjecture 1 is false. This is
reminiscent of the bounds from [28, 14, 13], however not quite as strong as it does not hold
for sparse graphs, for which we get a bound of O(m3/2−ε′).

Similar to [14, 13] we also extend the above bound to the case of (4/3−ε)-approximations
with additive error O(mδ). We show the following

I Corollary 7. There exists no static 4/3 − ε approximation with additive error O(mδ)
with running time O(m 3

2 (1−δ)−ε′) or incremental/decremental algorithm with amortized time
O(m 1

2−
3δ
2 −ε

′) for any ε, ε′ > 0 unless Conjecture 1 is false.

1.4 A note on the decremental results and preprocessing

We will in general only describe the reductions in the incremental case and note that the
decremental results are obtained by removing the edges in the reverse order of insertions.
This requires an assumption on the beginning graph, and we will thus assume any suitable
graph on Õ(n) edges in the sparse case and the complete graph in the dense case.

Furthermore, we do not assume that any of the algorithms are allowed to preprocess the
graph. It is often an assumption in the design of amortized partially dynamic algorithms
that one starts with the empty (or complete) graph in order for the analysis to work. Thus,
our results hold for this case.

ICALP 2016
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2 Preliminaries

Notation. Throughout the paper we assume that matrices are boolean. Thus the output of
a vector-matrix-vector multiplication will always be a single bit. We use [n] to denote the
set {0, . . . , n− 1}.

Online vector-matrix-vector multiplication. We will consider the online vector-matrix-
vector multiplication problem of [17]:

IDefinition 8 (OuMv problem [17]). LetM be a binary n×nmatrix than can be preprocessed.
After preprocessing n vector pairs (u1, v1), . . . , (un, vn) arrive one at a time and the task is
to compute (ui)TMvi before being presented with the i+ 1th vector pair for every i.

In [17] they showed that the OMv problem can be reduced to the OuMv problem. They
also came up with the following conjecture:

I Conjecture 9 ([17]). There is no algorithm for the OMv problem (and thus the OuMv
problem) running in time O(n3−ε) for any ε > 0.

Triangle collection. We will also consider the triangle collection problem of [8]:

I Definition 10 (Triangle collection [8]). Given a node-colored graph G, is it true that for
every triplet of colors a, b, c there exists a triangle (u, v, w) in G where u has color a, v has
color b and w has color c?

In fact, we will consider the more structured triangle collection* (TC*) problem which
they also used in [8]

IDefinition 11 (Triangle collection* [8]). Let n,∆, p be parameters and letG be an undirected
node-colored tripartite graph with partitions A,B,C. Let G be any graph with the following
structure:

Each partition has its own n colors and we denote these by the numbers of [n] for each
partition.
A contains nodes of the form aij , where i ∈ [n] is the color of the node and j ∈ [∆].
B and C contains nodes of the form bij,x and cij,x where i ∈ [n] is the color of the node
and j ∈ [∆], x ∈ [p].

And the edges of G are as follows:
For each i, i′ ∈ [n] and j ∈ [∆] there is an edge from aij to bi

′

j,x for exactly one x. Similarly
there is an edge from aij to ci

′

j,y for exactly one y (note that y and x need not be the same
for the same j and i′).
There may be an edge between nodes bij,x and ci′j′,y only if j = j′.

We ask the following question: Does there exist a triple of colors (one color per partition)
such that G does not contain a triangle with these colors?

In [8] it was shown that this problem does not have a truly subcubic algorithm unless
Conjecture 1 is false.

It will be important that the reductions from these problems to TC* hold even when ∆
and p are bounded by polylog(n).
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Figure 1 Reduction to incremental maximum matching.

3 Incremental maximum matching

We will reduce from the OuMv problem of Definition 8. Observe that the OuMv problem is
equivalent to the following statement: For each vector pair ui, vi determine whether indices
j, k exist, such that uij = vik = Mjk = 1. In order to model this as an incremental maximum
matching problem we construct the following graph: Create 6 copies of 2n nodes and name
these S,A,B,C,D, T . Partition A into n pairs of nodes a`1, ar1, . . . , a`n, arn. Do the same for
S,B,C,D, T . Add the edges (a`i , ari ) for each i and do the same for B,C,D. Now for each i, j
add the edge (bri , c`j) if Mij = 1. Observe that this graph has a unique maximum matching
each (`, r) pair. Observe also that the graph is bipartite. Now we do the following n phases –
one for each ui, vi vector pair.
1. For each j such that uij = 1 add the edge (ari , b`j).
2. For each j such that vij = 1 add the edge (crj , d`i).
3. Add the edges (sri , a`i) and (dri , t`i).
4. Query the size of a maximum matching.
5. Add the edges (s`i , sri ) and (t`i , tri ).
This is illustrated in Figure 1.

I Lemma 12. Let the setting be as above and let the phases be numbered 0, 1, . . . , n − 1.
Then the size of the maximum matching during the ith phase is exactly 4n + 2i + 1 if the
resulting vector-matrix-vector product is 1 and 4n+ 2i otherwise.

Proof. Note that prior to any of the i phases the size of the maximum matching is exactly
4n + 2i, which is also a perfect matching of the graph induced by the edges. To see this
observe that each s`0, . . . , s`i−1 must be matched to its corresponding sr0, . . . , sri−1, and this is
the only edge incident to the `-nodes. As a consequence of this, each a`j must be matched
with arj , and so on.

Now consider the ith phase. Adding any edge (ari , b`j) or (crj , d`i) cannot increase the size
of the maximum matching, as the size of the subgraph induced by the edges of the graph
does not increase – i.e. all nodes with edges incident to them are already matched.

Assume that adding the edges (sri , a`i) and (t`i , dri ) increases the matching. The matching
can increase by at most 1, as only two more nodes can be matched. Furthermore the matching
must now contain edges as follows

(sri , a`i), (ari , b`j), (brj , c`k), (crk, d`x), (drx, t`y) .

Now observe that each t`y for y < i must be matched to try, as the right nodes have no other
incident edges and all nodes have to be matched for the size of the matching to increase.

ICALP 2016
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Thus we must have y = i in the list above, but this means that we have exactly found a pair
j, k such that uij = vik = Mjk = 1 and the vector-matrix-vector product is thus 1.

Conversely, assume that the vector-matrix-vector product is 1, then such an index pair
j, k must exist and we can find the following matching of size 4n+ 2i+ 1: Match the edges

(sri , a`i), (ari , b`j), (brj , c`k), (crk, d`i), (dri , t`i) .

For all x < i add the edges (s`x, srx) and (t`x, trx) to the matching. For all x 6= i add the edges
(a`x, arx) and (d`x, drx) to the matching. And for all x 6= j and y 6= k add the edges (b`x, brx) and
(c`y, cry) to the matching. This matches all nodes incident to an edge and has size 4n+ 2i+ 1.
This is also exactly the matching illustrated in Figure 1 for i = 1. J

It follows from Lemma 12 that we can solve the OuMv problem correctly via this reduction.
The reduction creates a graph with O(n) nodes and O(n2) edges. We perform O(n2) insertions
and O(n) queries giving the result in Theorem 2

4 Maximum flow

In order to show Theorem 3 we will use a similar graph construction as have been used
numerous times before [27, 28, 14, 6]: First partition the variables of the SAT problem into
two groups A and B of n/2 variables each. For each possible assignment to the variables
in A we create a node in our graph G (and likewise for B). Furthermore, for each clause
of the SAT formula, we create a node as well. We denote the corresponding sets of nodes
by A,B,C. Set N = 2n/2 = |A| = |B|. For each pair of nodes a ∈ A, c ∈ C we add the
directed edge (a, c) with capacity N if the partial assignment a does not satisfy the clause c.
Similarly, for each pair of nodes b ∈ B, c ∈ C we add the directed edge (c, b) with capacity 1
if b does not satisfy c. Finally we add two nodes s, t and add edges (b, t) with capacity 1 for
each b ∈ B.

We now continue in phases with a phase for each a ∈ A. Denote these nodes by
a1, a2, . . . , aN :
1. Add the edge (s, ai) with capacity N .
2. Query the maximum flow between s and t.
3. Add the edge (“shortcut”) (ai, t) with capacity N .

I Lemma 13. Let the setup be as described above. If the st flow returned during any of
the i phases is < i ·N , then the SAT formula is satisfiable. Otherwise the formula is not
satisfiable.

Proof. Observe, that prior to the ith phase, the flow is exactly (i− 1) ·N , as we can use the
paths (s, aj), (aj , t) for each j < i, which has capacity N and exactly (i− 1) ·N flow leaves s.

Now assume that the partial formula corresponding to ai can be completed to a satisfying
assignment. In this case, there must be some node b ∈ B, for which there is no path from ai
to b. This follows because such a path has to go through a node c ∈ C, but then both ai and
b do not satisfy the clause c, which is a contradiction. However, the only way to send flow
from ai to t is through the nodes b ∈ B and thus it is not possible to send all N units of flow
from ai to t.

Now assume that the flow is < i ·N , then there must be some b ∈ B such that there is
no path from ai to b. Otherwise, we could route N units of flow from ai to t via the nodes
of B and the remaining (i− 1) ·N units through the “shortcuts”. It now follows that ai and
b together satisfy all clauses (otherwise there would be a path) and thus the CNF formula is
satisfiable.

Since this is true for all of the i phases, the statement of the lemma follows. J
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As a consequence of Lemma 13 we may use the above procedure to solve the given SAT
problem. By the sparsification lemma of [19] it follows that we can assume the graph has
O(N) nodes and Õ(N) edges and we perform a total of Õ(N) insertions and queries. The
result of Theorem 3 thus follows directly.

5 Diameter

In this section we show how to obtain conditional lower bounds for the problem of approxim-
ating the diameter of an unweighted graph within a factor of 4/3− ε.

5.1 A graph construction

We will first describe the graph structure we use.

IDefinition 14. LetG be an instance of the TC* problem as defined above. We will define the
graph Hγ,k(G). The idea is that Hγ,k(G) “corresponds” to the colors {knγ , . . . , (k+1)nγ−1}
of A. Thus k is a number in [n1−γ ]. The nodes of this graph are as follows:

The nodes B and C of G.
For each color i ∈ {knγ , (k+1)nγ−1} of A we add the nodes ai0, . . . , ain−1 and ti0, . . . , tin−1.
We also add several special nodes: A “master node” u, nγ “skip nodes” vi and three
“connector nodes” w1, w2, w3.

For a color i ∈ {knγ , (k+ 1)nγ − 1} we denote the nodes ai0, . . . ain−1 by Ai and the collection
of all Ais by A. We do the same for Ti and T .

The edges of Hγ,k(G) are as follows:
Add the edges between B and C in G.
Connect the node w1 to each node of A and w2.
Connect w2 to each node of B and C as well as w3 and the master node u.
Connect w3 to each node of T .
Connect u to all nodes vi.
For each i ∈ {knγ , (k + 1)nγ − 1} do as follows:

Connect vi to all nodes of T \ Ti and to all nodes of Ai.
For each i′ ∈ [n] and each edge (aij , bi

′

j,x) ∈ G add the edge (aii′ , bi
′

j,x).
For each i′ ∈ [n] and each edge (aij , ci

′

j,x) ∈ G add the edge (ci′j,x, tii′).
An overview of the graph Hγ,k(G) is illustrated in Figure 2 and a more detailed view in
Figure 3.

The idea is that length three paths between Ai and Ti correspond to triangles in G

containing the color i of A. Each of the n nodes in Ai thus correspond to picking a color
from B and each of the n nodes in Ti correspond to picking a color from C. If two such
nodes don’t have a length three path there is no triangle in G of the corresponding triplet of
colors. In this case the connector nodes ensure that there is a length four path between the
nodes. The master and skip nodes ensure that all other nodes have distance at most 3. This
is captured by the following lemma:

I Lemma 15. Let G be an instance to the TC* problem and let Hγ,k(G) be as defined
above. Let i ∈ {knγ , (k + 1)nγ − 1} be a color of A and let α, β ∈ [n] be colors of B and
C respectively. Then the distance from aiα to tiβ in Hγ,k(G) is 3 if the colors i, α, β have a
triangle in G and 4 otherwise.

ICALP 2016



48:10 On the Hardness of Partially Dynamic Graph Problems and Connections to Diameter

B C

...

Anγ-1

A0

A1

...

Tnγ-1

T0

T1

w1 w2 w3

u

v0

v1

vnγ-1

Figure 2 Diameter structure.

Proof. Assume first that there is a triangle aij , bαj,x, c
β
j,y for some j in G (note that such a

triangle can only occur if j is the same for all the three nodes). In this case there is a path
aiα, b

α
j,x, c

β
j,y, t

i
β in Hγ,k(G) and thus the distance is at most 3. Observe also, that no node is

connected to both Ai and Ti and thus the distance is strictly greater than 2.
Now assume that the distance from aiα to tiβ is 3. Such a path has to go from Ai to B to

C to Ti as any node w`, v` or u either has distance 3 to one of aiα or tiβ or it has distance 2
to both of them. Now consider a shortest path aiα, b, c, tiβ , where b and c are the nodes of B
and C on this path. Clearly the node b must have color α in G as it would not have an edge
to aiα otherwise, and similarly c must have color β in G. Thus the path consists of nodes
aiα, b

α
j,x, c

β
j′,y, t

i
β . Since no edge in G goes between nodes with different j-values we must have

j′ = j. It is now clear that the edge (aiα, bαj,x) corresponds to the edge (aij , bαj,x) in G and
the edge (cβj,y, tiβ) corresponds to the edge (aij , c

β
j,y) in G. Thus, these three nodes form a

triangle of the correct color triple in G. J

Furthermore it is easy to see that the longest distance in Hγ,k(G) is at most 4, thus the
diameter is 4 exactly when one of the corresponding color triplets do not have a triangle in
G and 3 otherwise.

5.2 Dynamic
We will first consider the problem without node additions. For simplicity we only consider
the incremental case and note that the decremental case follows by deleting edges until we
obtain the same graph2.

2 Under the assumption that the algorithm starts with some suitable graph
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Given an instance to the TC* problem we create the graph H1,0(G) (that is, the graph
representing all colors of A). This graph is created by adding edges incrementally and has
Õ(n2) nodes and edges. It follows that an edge insertion must take n1/2−o(1) time unless
Conjecture 1 is false.

Next, we consider the problem with node additions. It was shown in [21] that if we
allow node additions in the problem of incremental maximum matching, it is possible to
show stronger lower bounds by leveraging the amortized running time with the widely used
rollback technique. We here apply the same argument to the problem of incremental diameter
approximation.

The goal is again to construct (a subgraph of) H1,0(G) but we do not start with all nodes
in the graph. We will assume that the amortized running time of an insert operation is nα
for some α. The goal is to get a bound on α by expressing the total running time in terms of
α and using the assumption on running time for TC*. We let n̂ denote the current number
of nodes in the graph G. We continue as follows:
1. Insert all nodes of B and C into the dynamic graph. Also insert the nodes w1, w2, w3

and u. We also insert all the edges induced by these nodes in H1,0(G) into the graph.
2. For each color i ∈ [n] of A we do a phase:

We insert the nodes of Ai, Ti, vi into the dynamic graph and all the edges induced by
these nodes and the current state of the dynamic graph in H1,0(G).
Query the diameter of the graph.
Assume we inserted k edges+nodes in this phase. If the total running time of all
these insertions was greater than 2kn̂α we keep the nodes in the graph. Otherwise we
rollback all operations of this phase.

We answer the question of the TC* problem according to whether the diameter was 3 all the
time or not similar to the proof of the case without node additions.

The goal is now to bound α by using the method of [21]. We will do this by carefully
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counting the number of “amortized credit units” the data structure has and using this to
bound the total number of nodes added to the graph (i.e. not rolled back).

Observe that after the first step, we have added Õ(n2) edges to the graph and Õ(n) nodes.
Thus the data structure has at most Õ(n2+α) credit at this point (this happens if almost
all operations were O(1)). Now consider the total time spent by the algorithm. This can
be bounded by Õ(n2 ·Nα) where N is the number of nodes at the end of all phases. This
is the case since N ≥ N0, where N0 = Õ(n) is the number of nodes after the first step and
there are at most Õ(n2) total operations. Note that this would not be the case if we did
not have a bound on the cost of the rolled back operations, but we only rollback the cheap
operations, so this is okay. We wish to express N in terms of n and α in order to express the
total running time in terms of these.

Observe, that every time we keep the added nodes in the graph, the data structure spent
at least twice the amortized cost. Since we started out with Õ(n2+α) credit it must be true
that

N∑
i=N0

iα ≤ cost of non-rollbacked operations = Õ(n2+α) .

The worst case is if N is polynomially larger than N0, and thus
∑N
i=N0

iα = Ω(N1+α).
It follows that N = Õ(n

2+α
1+α ). Thus the total running time is Õ(n2 · n

2+α
1+αα). Now, by

Conjecture 1 we must have 2+α
1+αα = 1− o(1). Solving this for α gives α =

√
5−1
2 < 0.618.

5.3 Static

Proof of Theorem 6. Let G be an instance of the TC* problem with parameters n,∆, p
with ∆ and p bounded by Õ(1) and m = Õ(n2) as in [8].

For a parameter 0 < γ ≤ 1 we create the graphs Hγ,0(G), . . . ,Hγ,n1−γ−1(G) and solve
the diameter problem on these graphs up to a 4/3− ε approximation. This is sufficient to
distinguish between diameters 4 and 3 in all of the graphs. Now, if the diameter is 4 in just
one of the graph we answer that there exists a triplet of colors such that there is no triangle
in G. This follows from Lemma 15.

We note that the graphs Hγ,k(G) each have N = Õ(n1+γ) nodes and M = Õ(n2) edges.
Assume now that that any algorithm approximating the diameter within a factor of 4/3− ε
in time O(N

√
M

1−ε′) = O(n2+γ−ε′) for any ε, ε′ > 0 exists. Since we create n1−γ instances
of the problem this would imply an O(n3−ε′′) algorithm for the TC* problem for some
ε′′ > 0. J

5.4 Additive error

To see Corollary 7 we fix mα and consider TC* on a graph G with N nodes and M = Õ(N2)
edges such that M = m1−α. We then create H1,0(G) and subdivide each edge into mα nodes.
This graph now has m nodes and edges and any algorithm solving 4/3− ε diameter with
additive error O(mα) in time M3/2−ε′ = m

3
2 (1−α)−ε′′ time thus violates Conjecture 1.
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Abstract
We present an algorithm that can update the 2-edge-connected blocks of a directed graph with n
vertices through a sequence of m edge insertions in a total of O(mn) time. After each insertion,
we can answer the following queries in asymptotically optimal time:

Test in constant time if two query vertices v and w are 2-edge-connected. Moreover, if v and
w are not 2-edge-connected, we can produce in constant time a “witness” of this property, by
exhibiting an edge that is contained in all paths from v to w or in all paths from w to v.
Report in O(n) time all the 2-edge-connected blocks of G.

This is the first dynamic algorithm for 2-connectivity problems on directed graphs, and it matches
the best known bounds for simpler problems, such as incremental transitive closure.

1998 ACM Subject Classification E.1 Graphs and networks – Trees, F.2.2 Computations on
discrete structures, G.2.2 Graph algorithms – Trees

Keywords and phrases 2-edge connectivity on directed graphs; dynamic graph algorithms; in-
cremental algorithms

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.49

1 Introduction

A dynamic graph algorithm aims at updating efficiently the solution of a problem after an
update, such as an edge insertion or an edge deletion, faster than recomputing it from scratch.
A problem is said to be fully dynamic if the update operations include both insertions and
deletions of edges, and it is said to be partially dynamic if only one type of update, either
insertions or deletions, is allowed. More specifically, a problem is said to be incremental
(resp., decremental) if only insertions (resp., deletions) are allowed. In this paper, we present
new incremental algorithms for 2-edge connectivity problems on directed graphs (digraphs).
Before defining the problem, we first review some definitions. Let G = (V,E) be a digraph.
G is strongly connected if there is a directed path from each vertex to every other vertex.
The strongly connected components (in short SCC’s) of G are its maximal strongly connected
subgraphs. Vertices u, v ∈ V are strongly connected if they are in the same SCC of G.
An edge of G is a strong bridge if its removal increases the number of SCC’s. Let G be
strongly connected: G is 2-edge-connected if it has no strong bridges. The 2-edge-connected
components of G are its maximal 2-edge-connected subgraphs. Vertices u, v ∈ V are said to
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Figure 1 The 2-edge-connected blocks of a digraph G. Strong bridges of G are shown red and
dashed. (Better viewed in color.)

be 2-edge-connected, denoted by u↔2e v, if there are two edge-disjoint directed paths from u

to v and two edge-disjoint directed paths from v to u. A 2-edge-connected block of a digraph
G = (V,E) is a maximal subset B ⊆ V such that u↔2e v for all u, v ∈ B (see Figure 1).

We remark that in digraphs 2-connectivity has a much richer and more complicated
structure than in undirected graphs. To see this, observe that, while in undirected graphs
blocks are exactly the same as components, in digraphs there is a substantial difference
between those two notions. In particular, two vertices that are 2-edge-connected (i.e., in the
same 2-edge-connected block) may lie in different 2-edge-connected components (e.g., vertices
i and j in Figure 1, each of them being in a 2-edge-connected component by itself). As a
result, 2-connectivity problems on digraphs appear to be much harder than on undirected
graphs. For undirected graphs it has been known for over 40 years how to compute 2-edge-
and 2-vertex- connected components in linear time [33]. For digraphs, however, only O(mn)
algorithms were known (see e.g., [25, 26, 28, 30]). It was shown only recently how to compute
the 2-edge- and 2-vertex- connected blocks in linear time [13, 14], and the best current bound
for computing the 2-edge- and the 2-vertex- connected components is O(n2) [18].

Our Results. We initiate the study of the dynamic maintenance of 2-edge-connectivity
relationships in directed graphs. We present an algorithm that can update the 2-edge-
connected blocks of a digraph G with n vertices through a sequence of m edge insertions
in a total of O(mn) time. After each insertion, we can answer the following queries in
asymptotically optimal time:

Test in constant time if two query vertices v and w are 2-edge-connected. Moreover, if
v and w are not 2-edge-connected, we can produce in constant time a “witness” of this
property, by exhibiting an edge that is contained in all paths from v to w or in all paths
from w to v.

Report in O(n) time all the 2-edge-connected blocks of G.
Ours is the first dynamic algorithm for 2-connectivity problems on digraphs, and it matches
the best known bounds for simpler problems, such as incremental transitive closure [23]. This
is a substantial improvement over the O(m2) simple-minded algorithm, which recomputes
the 2-edge-connected blocks from scratch after each edge insertion.



L. Georgiadis, G. F. Italiano, and N. Parotsidis 49:3

Related Work. Many efficient algorithms for several dynamic graph problems have been
proposed in the literature, including dynamic connectivity [20, 22, 31, 37], minimum spanning
trees [8, 11, 21, 22], edge/vertex connectivity [8, 22] on undirected graphs, and transitive
closure [7, 19, 27] and shortest paths [6, 27, 38] on digraphs. Once again, dynamic problems
on digraphs appear to be harder than on undirected graphs. Indeed, most of the dynamic
algorithms on undirected graphs have polylog update bounds, while dynamic algorithms on
digraphs have higher polynomial update bounds. The hardness of dynamic algorithms on
digraphs has been recently supported also by conditional lower bounds [1].

Our Techniques. Known algorithms for computing the 2-edge-connected blocks of a digraph
G [13, 16] hinge on properties that seem very difficult to dynamize. The algorithm in [13] uses
very complicated data structures based on 2-level auxiliary graphs. The loop nesting forests
used in [16] depends heavily on an underlying dfs tree of the digraph, and the incremental
maintenance of dfs trees on general digraphs is still an open problem (incremental algorithms
are known only for the special case of DAGs [10]). Despite those inherent difficulties, we find
a way to bypass loop nesting forests by suitably combining the approaches in [13, 16] in a
novel framework, which is amenable to dynamic implementations. Another complication is
that, although our problem is incremental, strong bridges may not only be deleted but also
added (when a new SCC is formed). As a result, our data structures undergo a fully dynamic
repertoire of updates, which is known to be harder. By organizing carefully those updates,
we are still able to obtain the desired bounds. For lack of space, some technical details and
proofs are omitted from this extended abstract and will be given in the full paper.

2 Dominator trees and 2-edge-connected blocks

Given a rooted tree, we denote by T (v) the subtree of T rooted at v (we also view T (v) as
the set of descendants of v). Given a digraph G = (V,E), and a set of vertices S ⊆ V , we
denote by G[S] the subgraph induced by S. We introduce next some of the building blocks
of our new incremental algorithm.

Flow graphs, dominators, and bridges. A flow graph is a digraph with a distinguished start
vertex s such that every vertex is reachable from s. Let G = (V,E) be a strongly connected
graph. The reverse digraph of G, denoted by GR = (V,ER), is obtained by reversing the
direction of all edges. Let s be a fixed but arbitrary start vertex of a strongly connected
digraph G. Since G is strongly connected, all vertices are reachable from s and reach s,
so we can view both G and GR as flow graphs with start vertex s. To avoid ambiguities,
throughout the paper we will denote those flow graphs respectively by Gs and GRs . Vertex u
is a dominator of vertex v (u dominates v) in Gs if every path from s to v in Gs contains u.
The dominator relation can be represented by a tree D rooted at s, the dominator tree of Gs:
u dominates v if and only if u is an ancestor of v in D. For any v 6= s, we denote by d(v) the
parent of v in D. Similarly, we can define the dominator relation in the flow graph GRs , and
let DR denote the dominator tree of GRs , and dR(v) the parent of v in DR. Dominators and
dominator trees can be computed in linear time [2, 5, 9, 12]. An edge (u, v) is a bridge of a
flow graph Gs if all paths from s to v include (u, v).1 Let s be an arbitrary start vertex of G.

1 Throughout the paper, to avoid confusion we use consistently the term bridge to refer to a bridge of a
flow graph and the term strong bridge to refer to a strong bridge in the original graph.
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Figure 2 The dominator trees of flow graphs Gs and GR
s . Strong bridges of G are shown red and

dashed. (Better viewed in color.)

As shown in [24], an edge e = (u, v) is strong bridge of G if and only if it is either a bridge of
Gs or a bridge of GRs .

As a consequence, all the strong bridges of G can be obtained from the bridges of the flow
graphs Gs and GRs , and thus there can be at most 2(n− 1) strong bridges overall. Figure 2
illustrates the dominator trees D and DR of the flow graphs Gs and GRs that correspond
to the strongly connected digraph G of Figure 1. After deleting from the dominator trees
D and DR respectively the bridges of Gs and GRs , we obtain the bridge decomposition of D
and DR into forests D and DR. Throughout the paper, we denote by Du (resp., DR

u ) the
tree in D (resp., DR) containing vertex u, and by ru (resp., rRu ) the root of Du (resp., DR

u ).
The following lemma from [13] holds for a flow graph Gs of a strongly connected digraph G
(and hence also for the flow graph GRs of GR).

I Lemma 1 ([13]). Let G be a strongly connected digraph and let (u, v) be a strong bridge of
G. Also, let D be the dominator tree of the flow graph Gs, for an arbitrary start vertex s.
Suppose u = d(v). Let w be any vertex that is not a descendant of v in D. Then there is
path from w to v in G that does not contain any proper descendant of v in D. Moreover, all
simple paths in G from w to any descendant of v in D must contain the edge (d(v), v).

Lemma 1 gives an initial partition of the vertices of G into subsets that contain the
2-edge-connected blocks of G. That is, for any two vertices u and v, we have u↔2e v only if
u and v are in the same trees in the forests D and DR (i.e., ru = rv and rRu = rRv ).

Loop nesting forests and bridge-dominated components. Let G be a digraph. A loop
nesting forest represents a hierarchy of strongly connected subgraphs of G [35], defined with
respect to a dfs tree T of G, as follows. For any vertex u, loop(u) is the set of all descendants
x of u in T such that there is a path from x to u in G containing only descendants of u
in T . Any two vertices in loop(u) reach each other. Therefore, loop(u) induces a strongly
connected subgraph of G; it is the unique maximal set of descendants of u in T (that includes
u) that does so. The loop(u) sets form a laminar family of subsets of V : for any two vertices
u and v, loop(u) and loop(v) are either disjoint or nested. The loop nesting forest H of
G, with respect to T , is the forest in which the parent of any vertex v, denoted by h(v),
is the nearest proper ancestor u of v in T such that v ∈ loop(u) if there is such a vertex
u, and null otherwise. Then loop(u) is the set of all descendants of vertex u in H, which
we will also denote as H(u) (the subtree of H rooted at vertex u). A loop nesting forest
can be computed in linear time [5, 35]. Since we deal with strongly connected digraphs,
each vertex is contained in a loop, so H is a tree. Therefore, we will refer to H as the loop
nesting tree of G. Let e = (u, v) be a bridge of the flow graph Gs, and let G[D(v)] denote the
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Figure 3 The bridge decomposition of the dominator tree D of Figure 2, the corresponding
auxiliary graphs Ĝr (the auxiliary edges are shown dashed) and their SCC’s shown encircled.

subgraph induced by the vertices in D(v). Let C be an SCC of G[D(v)]: we say that C is an
e-dominated component of G. We also say that C ⊆ V is a bridge-dominated component if
it is an e-dominated component for some bridge e: it can be shown that bridge-dominated
components form a laminar family. Let e = (u, v) be a bridge of Gs, and let w be a vertex in
D(v) such that h(w) 6∈ D(v). As shown in [16], H(w) induces an SCC in G[D(v)], and thus
it is an e-dominated component.

Bridge decomposition and auxiliary graphs. Now we define a notion of auxiliary graphs
that play a key role in our approach. Auxiliary graphs were defined in [13] to decompose the
input digraph G into smaller digraphs (not necessarily subgraphs of G) that maintain the
original 2-edge-connected blocks of G. Unfortunately, the auxiliary graphs of [13] are not
suitable for our purposes, and we need a slightly different definition. For each root r of a tree
in the bridge decomposition D we define the auxiliary graph Ĝr = (Vr, Er) of r as follows.
The vertex set Vr of Ĝr consists of all the vertices in Dr. The edge set Er contains all the
edges of G among the vertices of Vr, referred to as ordinary edges, and a set of auxiliary
edges, which are obtained by contracting vertices in V \ Vr, as follows. Let v be a vertex in
Vr that has a child w in V \ Vr. Note that (v, w) is a bridge and w is a root in the bridge
decomposition D of D. For each such child w of v, we contract w and all its descendants
in D into v. Figure 3 shows the bridge decomposition of the dominator tree D and the
corresponding auxiliary graphs. Differently from [13], our auxiliary graphs do not preserve
the 2-edge-connected blocks of G. Note that each vertex appears exactly in one auxiliary
graph. Furthermore, each original edge corresponds to at most one auxiliary edge. Therefore,
the total number of vertices in all auxiliary graphs is n, and the total number of edges is at
most m. We use the term auxiliary components to refer to the SCC’s of the auxiliary graphs.

I Lemma 2. All the auxiliary graphs of a flow graph Gs can be computed in linear time.

A new algorithm for 2-edge-connected blocks. We next sketch a new linear-time algorithm
to compute the 2-edge-connected blocks that combines ideas from [13] and [16] and that will
be useful for our incremental algorithm. We refer to this algorithm as the 2ECB labeling
algorithm. Similarly to [16], our algorithm assigns a label to each vertex, so that two vertices
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are 2-edge-connected if and only if they have the same label. The labels are defined by the
bridge decomposition of the dominator trees and by the auxiliary components, as follows.
Let Ĝr be an auxiliary graph of Gs. We pick a canonical vertex for each SCC C of Ĝr, and
denote by cx the canonical vertex of the SCC that contains x. We define cRx for the SCC’s of
the auxiliary graphs of GRs analogously. We define the label of x as label(x) = 〈rx, cx, rRx , cRx 〉.

I Lemma 3. Let x and y be any vertices of G. Then, x and y are 2-edge-connected if and
only if label(x) = label(y).

I Theorem 4. The 2ECB labeling algorithm computes the 2-edge-connected blocks of a strongly
connected digraph in linear time.

Incremental dominators and incremental SCC’s. We will use two other building blocks
for our new algorithm, namely incremental algorithms for maintaining dominator trees
and SCC’s. As shown in [15], the dominator tree of a flow graph with n vertices can be
maintained in O(mmin{n, k}+ kn) time during a sequence of k edge insertions, where m
is the total number of edges after all insertions. For maintaining the SCC’s of a digraph
incrementally, Bender et al. [4] presented an algorithm that can handle the insertion of m
edges in a digraph with n vertices in O(mmin{m1/2, n2/3}) time. Since we aim at an O(mn)
bound, we maintain the SCC’s with a simpler data structure based on topological sorting
[29], augmented so as to handle cycle contractions, as suggested by [17]. We refer to this data
structure as IncSCC, and we will use it both for maintaing the SCC’s of the input graph, and
the auxiliary components (i.e., the SCC’s of the auxiliary graphs). We maintain the SCC’s
and a topological order for them. Each SCC is represented by a canonical vertex, and the
partition of the vertices into SCC’s is maintained through a set union data structure [34, 36].
The data structure supports unite(p, q), which, given canonical vertices p and q, merges the
SCC’s containing p and q into one new SCC and makes p the canonical vertex of the new
SCC. It also supports find(v), which returns the canonical vertex of the SCC containing v.
Here we use the abbreviation f(v) to stand for find(v). The topological order is represented
by a simple numbering scheme, where each canonical vertex is numbered with an integer in
the range [1, n], so that if (u, v) is an edge of G, then either f(u) = f(v) (u and v are in the
same SCC) or f(u) is numbered less than f(v) (when u and v are in different SCC’s). With
each canonical vertex p we store a list out(p) of edges leaving vertices that are in the same
SCC as p, i.e., edges (u, v) with f(u) = p. Note that out(p) may contain multiple vertices in
the same SCC (i.e., vertices u and v with f(u) = f(v)), due to the SCC contractions (and
shortcut edges, in case of the auxiliary components) during edge insertions. Also, out(p) may
contain loops, that is, vertices v with f (v) = p. Each out list is stored as a doubly linked
circular list, so that we can merge two lists and delete a vertex from a list in O(1). When
the incremental SCC data structure detects that a new SCC is formed, it locates the SCC’s
that are merged and chooses a canonical vertex for the new SCC. The IncSCC data structure
can handle m edge insertions in a total of O(mn) time.

3 Incremental 2-edge-connectivity in strongly connected digraphs

To maintain the 2-edge-connected blocks of a strongly connected digraph during edge
insertions, we design an incremental version of the labeling algorithm of Section 2. In order
to respond to the insertion of an edge, we have to update the vertex labels, so we need to
update both the bridge decomposition of D and DR, and the strongly connected components
of the resulting auxiliary graphs. Note, in particular, that the second task involves moving
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Figure 4 The bridge decomposition of D before the insertion of a new edge (x, y).

and merging vertices from one auxiliary graph to another. If labels are maintained explicitly,
one can answer in O(1) time queries on whether two vertices are 2-edge-connected, and
report in O(n) time all the 2-edge-connected blocks. Let (x, y) be the edge to be inserted.
We say that vertex v is affected by the update if d(v) (its parent in D) changes. Let Dom(v)
denote the set of all vertices that dominate v: note that Dom(v) may change even if v is not
affected. Similarly, an auxiliary component (resp., auxiliary graph) is affected if it contains
an affected vertex.

We let nca(x, y) denote the nearest common ancestor of x and y in the dominator tree
D. We also denote by D[u, v] the path from u to v in D. If nca(x, y) and y are in different
subtrees in the bridge decomposition of D before the insertion of the edge (x, y), we let (p, q)
be the first bridge encountered on the path D[nca(x, y), y] (Figure 4). We denote by depth(v)
the depth of vertex v in D. Most of the proofs in this section will be given in the full paper.

Affected vertices and canceled bridges. There are affected vertices after the insertion of
(x, y) if and only if nca(x, y) is not a descendant of d(y) [32]. A characterization of the
affected vertices is provided by the following lemma, which is a refinement of a result in [3].

I Lemma 5. ([15]) A vertex v is affected after the insertion of edge (x, y) if and only if
depth(nca(x, y)) < depth(d(v)) and there is a path π in G from y to v such that depth(d(v)) <
depth(w) for all w ∈ π. If v is affected, then it becomes a child of nca(x, y) in D.

The algorithm in [15] applies Lemma 5 to identify affected vertices by starting a search
from y (if y is not affected, then no other vertex is). We assume that the outgoing and
incoming edges of each vertex are maintained as linked lists, so that a new edge can be
inserted in O(1), and that the dominator tree D is represented by the parent function d. We
also maintain the depth of vertices in D. We say that a vertex v is scanned, if the edges
leaving v are examined during the search for affected vertices, and that it is visited if there is
a scanned vertex u such that (u, v) is an edge in G. Every scanned vertex is either affected
or a descendant of an affected vertex in D. By Lemma 5, a visited vertex v is scanned if
depth(nca(x, y)) < depth(d(v)). Let (u, v) be a bridge of Gs. We say that (u, v) is canceled
by the insertion of edge (x, y) if it is no longer a bridge after the insertion. We say that (u, v)
is locally canceled if (u, v) is a canceled bridge and v is not affected. We need to treat the
case of locally canceled bridges separately because in such an event the bridge decomposition
of D changes, even if D remains the same. Note that if (u, v) is locally canceled, then
u = nca(x, y). In the next lemmata, we consider the effect of the insertion of edge (x, y) on
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the bridges of Gs, and relate the affected and scanned vertices with the auxiliary components.
Recall that (p, q) is the first bridge encountered on the path D[nca(x, y), y] (Figure 4), D(v)
denotes the descendants of v in D, and G[C] is the subgraph induced by the vertices in C.

I Lemma 6. Suppose that bridge (p, q) is not locally canceled after the insertion of (x, y).
Let z = nca(x, y) and let v be an affected vertex such that rv 6= rz. All vertices reachable
from v in G[D(q)] are either affected or scanned.

I Lemma 7. Let e = (u, v) be a bridge of Gs that is canceled by the insertion of edge (x, y).
Then (i) y is a descendant of v in D, and (ii) y is in the same e-dominated component as v.

I Corollary 8. A bridge e = (u, v) of Gs is canceled by the insertion of edge (x, y) if
and only if depth(nca(x, y)) ≤ depth(u) and there is a path π in G from y to v such that
depth(u) < depth(w) for all w ∈ π.

By Corollary 8, we can use the incremental algorithm of [15] to detect canceled bridges,
without affecting the O(mn) bound. Indeed, suppose e = (u, v) is a canceled bridge. By
Lemma 7, y is a descendant of v in D and in the same e-dominated component as v. Hence,
v will be visited by the search from y. If a bridge (u, v) is locally canceled, there can be
vertices in Dv that are not scanned, and that after the insertion will be located in Du,
without having their depth changed. This is a difficult case for our analysis: fortunately, the
following lemma shows that this case can happen only O(n) times overall.

I Lemma 9. Suppose (u, v) is a bridge of Gs that is locally canceled by the insertion of edge
(x, y). Then (u, v) is no longer a strong bridge in G after the insertion.

Note that a canceled bridge that is not locally canceled may still appear as a bridge in
GRs after the insertion of edge (x, y). The next lemmata allow us to identify the necessary
changes in the auxiliary components of the affected subgraphs and Ĝrz

. All lemmata assume
that bridge (p, q) is not locally canceled after the insertion of (x, y) and that z = nca(x, y).

I Lemma 10. Let C be an affected auxiliary component of an auxiliary graph Ĝr with r 6= rz.
Then C consists of a set of affected siblings in D and possibly some of their affected or
scanned descendants in D.

An auxiliary component is scanned if it contains a scanned vertex. As with vertices,
affected auxiliary components are also scanned (the converse is not necessarily true).

I Lemma 11. Let C be a scanned auxiliary component of an auxiliary graph Ĝr with r 6= rz.
Then all vertices in C are scanned.

We say that a vertex v is moved if it is located in an auxiliary graph Ĝr with r 6= rz
before the insertion of (x, y), and in Ĝrz

after the insertion. Lemmata 10 and 11 imply that
if an auxiliary component C contains a moved vertex, then all vertices in the component are
also moved. We call such an auxiliary component moved. Now we describe how to find the
moved auxiliary components that need to be merged. Let H be the subgraph of G induced
by the scanned vertices in D(q). We refer to H as the scanned subgraph.

I Lemma 12. Let ζ and ξ be two distinct roots in the bridge decomposition of D, such that
ζ, ξ 6= rz, and Dζ and Dξ are contained in D(q). Let Cζ and Cξ be scanned components in
Ĝζ and Ĝξ, respectively. Then Cζ and Cξ are strongly connected in G[D(q)] if and only if
they are strongly connected in H.
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Now we introduce a dummy root r∗ in H, together with an edge (v, r∗) for each scanned
vertex v that has a leaving edge (v, w) such that w ∈ Dz and w is in the auxiliary component
of p in Ĝrz

. We denote this graph by H∗.

I Lemma 13. A scanned vertex v 6∈ Dz is strongly connected in G[D(rz)] to a vertex w ∈ Dz

if and only if r∗ is reachable from v in H∗. In this case, v and p are also strongly connected
in G[D(rz)].

The Algorithm. We describe next our incremental algorithm for maintaining the 2-edge-
connected blocks of a strongly connected digraphG. We refer to this algorithm as SCInc2ECB(G).
We initialize the algorithm and the associated data structures by executing the labeling
algorithm of Section 2. Algorithm Initialize(G, s), shown below, computes the dominator
tree D, the set of bridges Br of flow graph Gs, the bridge decomposition D of D, and the
corresponding auxiliary graphs Ĝr. Finally, for each auxiliary graph Ĝr, it finds its auxiliary
components, computes the labels rw and cw for each vertex w ∈ Vr, and initializes an IncSCC
data structure. The execution of Initialize(GR, s) performs analogous steps in the reverse
flow graph GRs .

Algorithm 1: Initialize(G, s)
1 Set s to be the designated start vertex of G.
2 Compute the dominator tree D and the set of bridges Br of the corresponding flow

graph Gs.
3 Compute the bridge decomposition D of D.
4 foreach root r in D do
5 Compute the auxiliary graph Ĝr of r.
6 Compute the strongly connected components in Ĝr.
7 foreach strongly connected component C in Ĝr do
8 Choose a vertex v ∈ C as the canonical vertex of the auxiliary component C.
9 foreach vertex w ∈ C do

10 Set rw = r and cw = v.
11 end
12 end
13 Initialize a IncSCC data structure for Ĝr.
14 end

Algorithm 2: SCInsertEdge(G, e)
1 Let s be the designated start vertex of G, and let e = (x, y).
2 Compute the nearest common ancestor z and zR of x and y in D and DR respectively.
3 Update the dominator trees D and DR, and return the lists S and SR of the vertices

that were scanned in D and DR respectively.
4 if a bridge is locally canceled in Gs or in GRs then
5 Execute Initialize(G, s) and Initialize(GR, s).
6 else
7 Execute UpdateAC(D, z, x, y, S) and UpdateAC(DR, zR, y, x, SR).
8 end
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Algorithm 3: UpdateAC(D, z, x, y, L)
1 Let rz be root of the tree Dz in D that contains z.
2 Let cx′ be the canonical vertex of the nearest ancestor x′ of x in D such that x′ ∈ Dz.
3 Let (p, q) be the first bridge on the path D[z, y], and let cp be the canonical vertex of p.
4 Form the scanned graph H∗ that contains the scanned vertices S \Dz and the edges

among them.
5 Compute the strongly connected components C of H∗ \ r∗ and order them topologically.
6 Compute the components C∗ of C that reach r∗ in H∗.
7 foreach strongly connected component C in C∗ that is moved do
8 Merge C with the component of cp.
9 end

10 forall strongly connected components in C \ C∗ that are moved do
11 Insert the components in the topological order of Ĝrz

just after the component of
cp.

12 end
13 foreach vertex w ∈ S do
14 if w is moved to Ĝrz

then set rw = rz.
15 end
16 Update the lists of out edges in the IncSCC data structures of Ĝrz and of the affected

auxiliary graphs.
17 Insert edge (cx′ , y) in the list of outgoing edges of cx′ and update the IncSCC data

structure of Ĝrz .

When a new edge e = (x, y) is inserted, algorithm SCInc2ECB executes procedure
SCInsertEdge(G, e), which updates dominator trees D and DR, together with the correspond-
ing bridge decompositions. It also finds the set of scanned vertices in Gs and GRs . If a
bridge of D or DR is locally cancelled, then we restart the algorithm by executing Initialize.
Otherwise, we need to update the auxiliary components in Gs and GRs . These updates are
handled by procedure UpdateAC. Before describing UpdateAC, we provide some details on
the implementation of the IncSCC data structures, which maintain the auxiliary components
of each auxiliary graph Ĝr using the “one-way search” structure of [17, Sections 2 and 6].
Since we need to insert and delete canonical vertices, we augment this data structure as
follows. We maintain the canonical vertices of each auxiliary component in a linked list Lr,
arranged according to the given topological order of Ĝr. For each vertex v in Lr, we also
maintain a rank in Lr which is an integer in [1, n] such that for any two canonical vertices u
and v in Lr, rank(u) < rank(v) if and only if u precedes v in Lr. The ranks of all vertices
can be stored in a single array of size n. Also, with each canonical vertex w, we store a
pointer to the location of w in L. We represent Lr with a doubly linked list so that we can
insert and delete a canonical vertex in constant time. When we remove vertices from a list
Lr we do not need to update the ranks of the remaining vertices in Lr. The insertion of an
edge (x, y) may remove vertices from various lists Lr, but may insert vertices only in Lrz

.
After these insertions, we recompute the ranks of all vertices in Lrz

just by traversing the
list and assigning rank i to the i-th vertex in the list. We maintain links between an original
edge e, stored in the adjacency lists of G, and at most one copy of e in a out list of IncSCC.
This enables us to keep for each shortcut edge e′ = (v′, w) a one-to-one correspondence with
the original edge e = (v, w) that created e′. We do that because if an ancestor of v is moved
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to the auxiliary graph Ĝrz that contains v′ (v′ = p in Figure 5), then e may correspond to a
different shortcut edge or it may even become an ordinary edge of Ĝrz

. Using this mapping
we can update the out lists of IncSCC. To initialize the IncSCC structure of an auxiliary
graph, we compute a topological order of the auxiliary components in Ĝr, and create the list
of outgoing edges out(v) for each canonical vertex v.

If inserting edge (x, y) does not locally cancel a bridge in Gs and GRs , then we update the
auxiliary components of Gs using procedure UpdateAC(D, z, x, y, S), where D is the updated
bridge decomposition of D, z = nca(x, y), and S is a list of the vertices scanned during
the update of D. We do the same to update the auxiliary components of GRs . Procedure
UpdateAC first computes the auxiliary components that are moved to Ĝrz , possibly merging
some of them, and then inserts the edge (x, y) as an original or a shortcut edge of Ĝrz

,
depending on whether x ∈ Drz

or not. Note that the insertion of (x, y) may cause the
creation of a new auxiliary component in Ĝrz . Now we specify some further details in the
implementation of UpdateAC. The vertices that are moved to Ĝrz

are the scanned vertices
in S that are not descendants of a strong bridge. Hence, we can mark the vertices that are
moved to Ĝrz

during the search for affected vertices. The next task is to update the out lists
of the canonical vertices in Ĝrz and the affected auxiliary graphs. We process the list of
scanned vertices S as follows. Let v be such a vertex. If v is not marked, i.e., is not moved
to Ĝrz

, then we process the edges leaving v; otherwise, we process both the edges leaving
v and the edges entering v. Suppose v is marked. Let (v, w) be an edge leaving v in G. If
w is also in Ĝrz

after the insertion, then we add the edge (v, w) in out(f(v)). Moreover,
if w is not in S, then it was already located in Ĝrz before the insertion, so we delete the
shortcut edge stored in out(f(p)). If w is not in Ĝrz

after the insertion, then (v, w) is a
bridge in D and we do nothing. Now consider an edge (w, v) entering v in G. If w is scanned,
then we will process (w, v) while processing the edges leaving w. Otherwise, w remains a
descendant of p, so we insert the edge (w, v) in out(f(p)). Now we consider the unmarked
scanned vertices v. Let (v, w) an edge leaving v in G. If w ∈ Dz, we insert the edge (v, w)
into out(f(v′)), where v′ is the nearest marked ancestor of v in D. Otherwise, if w /∈ D(rz),
the edge (v′′, w), where v′′ is the nearest ancestor of v in Dw, already exists since v was a
descendant of v′′ before the insertion of (x, y). Next, we consider the updates in the Lr lists
and the vertex ranks. While we process S, if we encounter a moved canonical vertex v ∈ S
that was located in an auxiliary graph Ĝr with rz 6= r, then we delete v from Lr. Note that
we do not need to update the ranks of the remaining vertices in lists Lr with r 6= rz. To
update Lrz

, we insert the moved canonical vertices of the SCC’s in C \ C∗, in a topological
order of H = H∗ \ r∗, just after f(p). Then we traverse Lrz

and update the ranks of the
canonical vertices. The final step is to actually insert edge (x, y) in the IncSCC data structure
of Ĝrz

. We do that by adding (x, y) in out(f(x′)), where x′ is the nearest ancestor of x in
Dz. If rank(f(x′)) > rank(f(y)), then we execute the forward-search procedure of IncSCC.

The proof of correctness of Algorithm SCInc2ECB will be given in the full paper.

Running time of SCInc2ECB. We analyze the running time of Algorithm SCInc2ECB.
Recall that G is a strongly connected digraph with n vertices that undergoes a sequence of
edge insertions. We let m be the total number of edges in G after all insertions (m ≥ n).
First, we bound the time spent by Initialize. This procedure is called twice in the beginning
of the SCInc2ECB, and twice after each time a bridge in Gs or in GRs is locally canceled.
Then, Lemma 9 implies that such an event can happen at most 2(n− 1) times. Hence, there
are at most 4n calls to Initialize, and since each execution takes O(m) time, the total time
spent on Initialize is O(mn). Similarly, the dominator trees of Gs and GRs can be updated
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Figure 5 Before the insertion of (x, y), edge (v, w) corresponds to the shortcut edge (p, w) of
Ĝrz , and is stored in out(cp). An auxiliary component with canonical vertex c is affected by the
insertion of (x, y) and is merged into a component with canonical vertex c′ (c′ = c if the component
is moved without merging with another component). Now c′ becomes the canonical vertex of the
nearest ancestor of v in Dz, and edge (v, w) is stored as a shortcut edge in out(c′).

in total O(mn) time [15]. We next bound the total time required to update the auxiliary
components. Consider an execution of UpdateAC. Let ν and µ, respectively, be the number
of scanned vertices, after the insertion of edge (x, y), and their adjacent edges. The time
to compute the affected subgraph H∗, compute the SCC’s of H∗ \ r∗, and the vertices that
reach r∗ is O(ν + µ). In the same time, we can update the auxiliary components of Ĝrz

and
of the affected auxiliary graphs, their corresponding topological orders, and the out lists of
the corresponding IncSCC data structures. Since each scanned vertex w is a descendant of
an affected vertex, the depth of w decreases by at least one. Hence, the total time spent by
UpdateAC for all insertions, excluding the execution of line 17, is O(mn). It remains to bound
the time required by the IncSCC data structures to handle the edge insertions in line 17 of
UpdateAC. To do this, we extend the analysis from [17]. Note that we cannot immediately
apply the analysis in [17], since here we have the complication that vertices and edges can
be inserted to and removed from the IncSCC structures. We say that a vertex v and an edge
e are related if there is a path that contains both v and e (in any order). Then, there are
O(mn) pairs of vertices and edges that can be related in all IncSCC structures for every
auxiliary graph. We argue that each time the IncSCC structure traverses an edge (after the
insertion in line 17 of UpdateAC), the cost of this action can be charged to a newly-related
vertex-edge pair. Consider a vertex v and an edge e = (u,w). Call the pair 〈v, e〉 active if v
and e are in the same auxiliary graph Ĝr, and inactive otherwise. Note that since we identify
shortcut edges with their corresponding original edge, e may actually appear in Ĝr as an
edge (u′, w), where u′ is the nearest ancestor of u in Dr. This fact, however, does not affect
our analysis.

I Lemma 14. The total number of edge traversals made during the forward searches in all
IncSCC data structures is O(mn).

Proof. To prove the bound, it suffices to show that in all IncSCC data structures the total
number of unrelated 〈v, e〉 pairs that are ever created is O(mn). Consider an active pair
〈v, e〉 that becomes related in Ĝr. Then there is some path π in G[D(r)] that contains both
v and e. Suppose that the pair 〈v, e〉 later becomes active but unrelated in an auxiliary
graph Ĝr′ , where r′ may be vertex r. Then π does not exist in G[D(r′)], which implies
that some vertices of π are not descendants of r′. Then, by Lemma 1, π must contain the
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bridge (d(r′), r′). Since π exists in G[D(r)], the bridge (d(r′), r′) was a descendant of r before
some insertion, and then became an ancestor of v. But this is impossible, since after an
edge insertion, the new parent d′(v) of v is on the path D[s, d(v)]. Hence, once a 〈v, e〉 pair
becomes related, it can never become unrelated. The bound follows. J

I Lemma 15. The total time to update all the IncSCC data structures is O(mn).

Proof. Updating the lists of out edges in the IncSCC data structures, and inserting or deleting
canonical vertices can be charged to the cost of updating the dominator tree, and is thus
O(mn). By Lemma 14, all edge insertions that do not trigger merges of auxiliary components
can be handled in O(mn) time. The number of edge insertions that trigger merges of auxiliary
components is at most n − 1, and each such insertion can be handled in O(m + n) time,
excluding unite operations. Taking into account also the total time for all unite operations
yields the lemma. J

I Theorem 16. The total running time of Algorithm SCInc2ECB for a sequence of edge
insertions in a strongly connected digraph with n vertices is O(mn), where m is the total
number of edges in G after all insertions.

Extension to general digraphs. Our approach can be extended to general (not strongly
connected) digraphs, as shown in the following theorem. Details will be given in the full
paper.

I Theorem 17. We can maintain the 2-edge-connected blocks of a digraph with n vertices
through a sequence of edge insertions in O(mn) time, where m is the total number of edges
in G after all insertions.
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1 Introduction

A fractional covering problem, in its generic form, can be written as the following linear
program (LP): minx≥0{cTx : Ax ≥ b}, where c ∈ Rn≥0, b ∈ Rm≥0, and A ∈ Rm×n≥0 .

Without loss of generality, one can scale the coefficients, in which case one can write this
LP in the standard form:

min
x≥0
{~1Tx : Ax ≥ ~1}, where A ∈ Rm×n≥0 (1)

The fractional packing problem, which is the dual of fractional covering, can be written in
the standard form as:

max
y≥0
{~1T y : Ay ≤ ~1}, where A ∈ Rm

′×n′
≥0 (2)

We denote by OPT the optimal value of a LP. In this case, we say that x is a (1 + ε)-
approximation for the covering LP if Ax ≥ ~1 and ~1Tx ≤ (1 + ε) OPT, and we say that y is a
(1− ε)-approximation for the packing LP if Ay ≤ ~1 and ~1T y ≥ (1− ε) OPT.

Packing and covering problems are important classes of LPs with wide applications,
including most resource allocation problems, and they have long drawn interest in theoretical
computer science. Although one can use general LP solvers such as the interior point
method to solve packing and covering with convergence rate of log(1/ε), such algorithms
usually have very high per-iteration cost, as methods such as the computation of the Hessian
and matrix inversion are involved. In the setting of large-scale problems, low precision
iterative solvers are often more popular choices. Such solvers usually run in time with
a nearly-linear dependence on the problem size, and they have poly(1/ε) dependence on
the approximation parameter. Most such work falls into one of two categories. The first
category follows the approach of transforming LPs to convex optimization problems, then
applying efficient first-order optimization algorithms. Examples of work in this category
include [8, 3, 9, 12, 2, 1], and all except [2, 1] apply to more general classes of LPs. The
second category is based on the Lagrangian relaxation framework, and some examples of
work in this category include [11, 5, 7, 13, 14, 6, 4]. For a more detailed comparison of this
prior work, see Table 1 in [1]. Also, based on whether the running time depends on the width
ρ, a parameter which typically depends on the dimension and the largest entry of A, these
algorithms can also be divided into width-dependent solvers and width-independent solvers.
Width-dependent solvers are usually pseudo-polynomial, as the running time depends at least
linearly on ρOPT, which itself can be large, while width-independent solvers are independent
or logarithmically dependent on the width.

In this paper, we describe a solver for covering LPs of the form (1). The solver is
width-independent, and it is a first-order method with a linear rate of convergence. That
is, if we let N be the number of non-zeros in A, then the running time of our algorithm
is O

(
N log2(N/ε) log(1/ε)

ε

)
. To simplify the following discussion, we will follow the standard

practice of using Õ to hide poly-log factors, in which case the running time of our algorithm
for the covering problem is Õ (N/ε). Among other things, our result is an improvement over
the recent bound of Õ(N/ε1.5) provided by Allen-Zhu and Orecchia for the covering problem
in [1], and our result corresponds to the linear rate of convergence that accelerated gradient
methods are designed to achieve [9].

At least as interesting as the Õ(1/ε0.5) improvement for covering LPs, however, is the
context of this problem and the main technical contribution that we developed and exploited
to achieve our improvement.
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The context for our results has to do with the linear coupling method that was introduced
recently by Allen-Zhu and Orecchia [15]. This is a first order method for solving convex
optimization problems, and it provides a conceptually simple way to integrate a gradient
descent step and mirror descent step in each iteration. In the setting of standard smooth
convex optimization, the method achieves the same convergence rate as that of the
accelerated gradient descent method of Nesterov [9], and indeed the former can be viewed
as an insightful reinterpretation of the latter. The high-level view of the method as
a coupling of gradient descent steps and mirror descent steps offers more flexibility to
the framework, as the combination allows the two steps to complement each other in
ways beyond simply Nesterov-like acceleration. Indeed, it has shown initial promise by
providing improved algorithms for packing and covering LPs [2, 1]. The packing algorithm
of Allen-Zhu and Orecchia in [1] is particularly surprising, as it exploits the linear coupling
framework to achieve both width-independence and Nesterov-like acceleration, which is
widely believed to be very difficult, and is the first success in a long line of works in this
area.
The particular motivation for our work is a striking discrepancy between bounds provided
for packing and covering LPs in [1]. In particular, they provide a (1− ε)-approximation
solver for the packing problem in Õ(N/ε), but they are only able to obtain Õ(N/ε1.5) for
the covering problem. In the case of covering, they are unable to use the linear coupling
method to achieve Nesterov-like acceleration, and even to get width-independence the
authors need to integrate some ad-hoc and complicated techniques. This discrepancy
between results for packing and covering LPs is rare, due to the duality between them.
Filling this gap is of particular interests, as not being able to do so would suggest some
fundamental structural differences between the two problems.

Our main technical contribution is a novel diameter reduction method for fractional
covering LPs that helps resolve this discrepancy. Recall that the smoothness parameter,
e.g., Lipschitz constant, and the diameter of the feasible region are the two most natural
limiting factors for most gradient based optimization algorithms. Indeed, many applica-
tions of general first-order optimization techniques can be attributed to the existence of
norms or proximal setups for the specific problems that gives both good smoothness and
diameter properties. In the particular case of coordinate descent algorithms based on the
linear coupling idea, we additionally need good coordinate-wise diameter properties to
achieve accelerated convergence.
This is easy to accomplish for packing problems, but it is not easy to do for covering
problems, and this is the difference that leads to the Õ(1/ε0.5) discrepancy between
packing and covering algorithms in previous work [1]. Our diameter reduction method for
general covering problems is based on dimension lifting, which transforms the covering
problem space to a higher dimensional space, and the feasible region in the lifted space
has both good global diameter bounds with respect to the canonical norm for accelerated
stochastic coordinate descent (as is needed generally [10, 1]) as well as good coordinate-
wise diameter bounds (as is needed for linear coupling [1]). Thus, it is likely of interest
more generally for combinatorial optimization problems.

Once the diameter reduction is achieved, covering LP shares all the essential properties
necessary to achieve both width-independence and Nesterov-like acceleration as in the case of
packing problems, and fits elegantly into the scheme and analysis from [1] that was developed
for packing LPs. We obtain improved Õ (N/ε) results for covering LPs, and this provides
a unified acceleration method (unified in the sense that it is with the same algorithm and
almost identical analysis) for both packing and covering LPs.

ICALP 2016
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We will start in Section 2 with a discussion of some selected technical ideas and challenges
from previous work. Then, in Section 3 we will present our main technical contribution, a
novel diameter reduction method for any covering LP of the form given in (1). Finally, in
Section 4 we describe how to combine this with previous work to obtain a unified acceleration
method for packing and covering problems.

2 High-level Description of Challenges

At a high level, we (as well as Allen-Zhu and Orecchia [2, 1]) use the same two-step approach
of Nesterov [9]. The first step involves smoothing, which transforms the constrained problem
into a smooth objective function with trivial or no constraints. By smooth, we mean that
the gradient of the objective function has some property in the flavor of Lipschitz continuity.
Once smoothing is accomplished, the second step uses one of several first order methods for
convex optimization in order to obtain an approximate solution to the smoothed objective.
Standard applications of this approach usually lead to width-dependent algorithms, where
the width enters the performance analysis as the magnitude of the gradients.

The first width-independent result following the optimization approach in [2] achieves
width-independence by truncating the gradient, thus effectively reducing the width to 1.
The algorithm uses, in a white-box way, the coupling of mirror descent and gradient descent
from [15], where the progress from gradient descent covers the loss incurred by the truncation
of the gradient (see Eqn. (7) below for the precise formulation of this loss), thus achieving
width-independence. However, the role of gradient descent in the coupling is limited to
width-independence, but not acceleration.

To improve the sequential packing solver in [2] with convergence Õ(1/ε3) to Õ(1/ε), the
same authors in [1] apply a stochastic coordinate descent method based on the linear coupling
idea. Barring the difference between Lipschitz and local Lipschitz continuity, the results
in [1] can be viewed as a variant of accelerated coordinate descent method [10]. There are
two places where the algorithm achieves an improvement over prior packing-covering results.

One factor of improvement is due to the better coordinate-wise Lipschitz constant over
the full dimensional Lipschitz constant. Intuitively, in the case of packing or covering,
the gradient of variable xi depends on the penalties of constraints involving xi, which
further depend on all the variables in those constraints. As a result, if we move all the
variables simultaneously, we can only take a small step before changing the gradient of xi
drastically. Sometimes coordinate descent comes with a downside, since if we update one
variable each iteration, computing n partial derivatives in n iterations can be much more
expensive than computing all the n partial derivatives in the same iteration. However,
it can be shown in the case of packing and covering LPs, there is no such computation
overhead.
The other factor of improvement comes from Nesterov-like acceleration. In addition to
giving width-independence as in [2], the gradient descent also covers the regret term
incurred by the mirror descent step (see Eqn. (7) below for the precise formulation of
this regret), which is the key insight from the original linear coupling result [15] to
reproduce Nesterov’s accelerated convergence. It turns out that nice diameter properties
are necessary for the latter to be possible. On a high level, the regret incurred by
mirror descent is proportional to its step size, which has an upper-bound proportional
to the coordinate-wise diameter of the feasible region. On the other hand, the progress
made by the gradient descent step is also proportional to its step size, which is inversely
proportional to the Lipschitz parameter. For both packing and covering problems, the
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coordinate-wise Lipschitz parameter of xi is proportional to 1/‖A:i‖∞, as ‖A:i‖∞ captures
the impact of xi on the values of the constraints, which determine the gradient of xi. This
works out particularly well for packing problems, since the packing constraints Ax ≤ ~1
impose a natural coordinate-wise diameter of x∗i ≤ 1/‖A:i‖∞ on the feasible region, which
aligns the gradient descent step size and mirror descent step size, making the coupling
possible to accelerate. The same small coordinate-wise diameter is also crucial to get
good global diameter for the proximal setup used in mirror descent, which is necessary
for mirror descent to achieve good convergence.

The combination of gradient truncation, stochastic coordinate descent, and acceleration due
to the nice diameter properties lead to the Õ(N/ε) solver for the packing LP [1].

Shifting to solvers for the covering LP, one obvious obstacle to reproducing the packing
result is we no longer have the small diameters. Indeed, a naive coordinate-wise upper bound
from the covering constraints only gives x∗i ≤ 1/minj{Aji : Aji > 0}, which is far from
sufficient to give acceleration as the packing solver in [1]. The authors instead go back to the
setup in their earlier work [2], where linear coupling only gives width-independence. The
authors use a negative-width technique as in [3] (Theorem 3.3 with l =

√
ε), that leads to

the (improved, but still worse than for packing) Õ(1/ε1.5) convergence rate.
To get an Õ(1/ε) solver for the covering LP, it seems crucial to relate the gradient descent

step and mirror descent step the same way as in the packing solver in [1]. Thus, we will
work directly to reduce the coordinate-wise diameter. Our main result (presented next in
Section 3) is a general diameter reduction method to achieve the same diameter property as
in the packing solver, and this enables us (in Section 4) to extend all the crucial ideas of the
packing solver in [1], as outlined in this section, to get a covering solver with running time
Õ(N/ε).

3 Diameter Reduction Method for General Covering Problems

Given any covering LP of the form in (1), characterized by a matrix A, we formulate an
equivalent covering LP with good diameter properties. This will involve lifting the instance
to higher dimensional space by adding variables and redundant constraints. On a high level,
as we discussed in last section, the obstacle for covering problems lies in the discrepency
between the large coordinate-wise diameter of the feasible region and the small gradient
descent step size. Our answer is essentially for each variable to create multiple copies with
different resolutions. Certain copies will be in charge of searching over larger regions, but for
them we modify their coefficients in the lifted space to allow larger gradient descent steps.
We use i ∈ [n] to denote the indices of the variables (i.e., columns of A) and j ∈ [m] to
denote the indices of constraints (i.e., rows of A). For ease of comparison with [1], and since
our unified approach for both packing and covering uses their packing solver and a similar
analysis, we use the same notation whenever possible.

For any i ∈ [n], let

ri
def= maxj{Aji : Aji > 0}

minj{Aji : Aji > 0} ,

be the ratio between the largest non-zero coefficient and the smallest non-zero coefficient of
variable xi in all constraints, and let ni

def= dlog rie. We first duplicate each original variable
ni times to obtain x̄(i,l), i ∈ [n], l ∈ [ni] as the new variables. In terms of the coefficient

matrix, we now have a new matrix, call it Ā ∈ R
m×(

∑
i
ni)

≥0 , which contains ni copies of
the i-th column A:i. We denote a column of Ā by the tuple (i, l) with l ∈ [ni]. Obviously,

ICALP 2016
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the covering LP given by Ā is equivalent to the original covering LP given by A. Adding
additional copies of variables, however, will allow us to improve the diameter. To reduce the
diameter of this new covering LP, we further decrease some of the coefficients in Ā, and we
put upper bounds on the variables. In particular, for j, i, l, we have

Āj,(i,l) = min{Aj,i, 2l min
j
{Aji : Aji > 0}}, (3)

and for variable x̄(i,l), we add the constraint

x̄(i,l) ≤
2

2l minj{Aji : Aji > 0} . (4)

The next lemma shows that the covering LP given by Ā and the covering LP given by A
are equivalent.

I Lemma 1. The covering LP of A and the covering LP of Ā have the same optimal value
OPT. Furthermore, there exists an optimal solution of the covering LP of Ā inside the region
specified by (4).

Proof. Let OPT be the optimal of the LP given by the covering constraints of Ā and the
coordinate-wise upper-bounds in (4). We need to show OPT = OPT. Given any feasible
solution x̄, consider the solution x where xi =

∑ni

l=1 x̄(i,l). It is obvious ~1Tx = ~1T x̄, and
Ax ≥ ~1, as coefficients in Ā are no larger than coefficients in A. Thus OPT ≤ OPT.

For the other direction, consider any feasible x. For each i, we can assume without loss
of generality that

xi ≤
1

minj{Aji : Aji > 0} .

Let li be the largest index such that

xi ≤
2

2li minj{Aji : Aji > 0} ,

and then let

x̄(i,l) =
{
xi if l = li
0 if l 6= li

.

By construction, x̄ satisfies all the upper bounds described in (4). Furthermore, for
constraint j, we must have Āj:x̄ ≥ 1. Since for any i, Āj,(i,li) differs from Aji only when
Aji > 2li minj{Aji : Aji > 0}, and we must have li < ni in this case by definition of ni,
which gives x̄(i,li) = xi ≥ 1

2li minj{Aji:Aji>0} by our choice of li being the largest possible.
Then we know Āj,(i,li) = 2li minj{Aji : Aji > 0}, so the j-th constraint is satisfied. Thus
OPT ≥ OPT, and we can conclude OPT = OPT. J

Given the equivalence of the covering LP defined by Ā and that defined by A, we now
point out that the seemingly-redundant constraints of (4) turn out to be crucial. The reason
is that we can search over a feasible region with nice diameter properties necessary to tap
the full power of the linear coupling method. In particular, we can rewrite the constraints (4)
to be

x̄(i,l) ≤
2

‖Ā:(i,l)‖∞
.
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For any i, this is the same upper bound on x̄(i,l) for l < ni (consider the row j∗ =
argmaxj{Aji, Aji > 0}), and it is a relaxation on x̄(i,ni).

The price we pay for this diameter improvement is that the new LP defined by Ā is
larger than that defined by A. Two comments on this are in order. First, by Observation 3,
ri is bounded by n2m/ε2, and so the diameter reduction step only increases the problem
size by O(log(mn/ε)). Second, we have presented our diameter reduction as an explicit
pre-processing step so we can use one unified optimization algorithm (Algorithm 1 below)
for both packing and covering, but in practice the diameter reduction would not have to be
carried out explicitly. It can equivalently be implemented implicitly within the algorithm (a
trivially-modified version of Algorithm 1 below) by randomly choosing a scale after picking
the coordinate i and then computing Āj,(i,l) in (3) by shifting bits on the fly.

Given this reduction, in the rest of the paper, when we refer to the covering LP, we will
implicitly be referring to the diameter reduced version, and we have the additional guarantee
that there exists an optimal solution x∗ to (1) such that

0 ≤ x∗i ≤
2

‖A:i‖∞
∀i ∈ [n]. (5)

4 An Accelerated Solver for (Packing and) Covering LPs

In this section, we will show covering LPs fit neatly into the scheme and analysis developed for
packing LPs in [1], thus establishing a unified acceleration method for packing and covering
problems. To motivate this, recall that for packing problems of the form (2), bounds of the
form (5) automatically follow from the packing constraints Ax ≤ ~1. For readers familiar
with the packing LP solver in [1], it should be plausible that—once we have this diameter
property—the same stochastic coordinate descent optimization scheme will lead to a Õ(N/ε)
covering LP solver.

In Section 4.1, we’ll present some preliminaries and describe how we perform smoothing
on the original covering objective function; and then in Section 4.2, we’ll present the main
algorithm. This algorithm involves a mirror descent step, that will be described in Section 4.3,
a gradient descent step, that will be described in Section 4.4, and a careful coupling between
the two, that will be described in Section 4.5. Finally, in Section 4.6, we will describe how to
ensure we start at a good starting point. Some of the following results are technically-tedious
but conceptually-straightforward extensions of analogous results from [1], and some of the
results are restated from [1]; we defer most of the proofs to the full version.

4.1 Preliminaries and Smoothing the Objective
To start, let’s assume that minj∈[m] ‖Aj:‖∞ = 1. This assumption is without loss of generality:
since we can simply scale A for this to hold without sacrificing approximation quality. With
this assumption, the following lemma holds.

I Lemma 2. OPT ∈ [1,m] .

With OPT being at least 1, the error we introduce later in the smoothing step will be
small enough that the smoothing function approximates the covering LP well enough with
respect to ε around the optimum.

I Observation 3. It can be shown that to obtain a (1+O(ε))-approximation, we can eliminate
entries smaller than ε

mn and entries larger than n
ε from matrix A.
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50:8 Unified Acceleration Method for Packing and Covering Problems

We will turn the covering LP objective into a smoothed objective function fµ(x), as
used in [4, 2, 1], and we are going to find a (1 + ε)-approximation of the covering LP by
approximately minimizing fµ(x) over the region

∆ def= {x ∈ Rn : 0 ≤ xi ≤
3

‖A:i‖∞
}.

The function fµ(x) is

fµ(x) def= ~1Tx+ max
y≥0
{yT (~1−Ax) + µH(y)},

and it is a smoothed objective in the sense that it turns the covering constraints into soft
penalties, with H(y) being a regularization term. Here, we use the generalized entropy
H(y) = −

∑
j yj log yj + yj , where µ is the smoothing parameter balancing the penalty and

the regularization. It is straightforward to compute the optimal y, and write fµ(x) explicitly,
as stated in the following lemma.

I Lemma 4. fµ(x) = ~1Tx+ µ
∑m
j=1 pj(x), where pj(x) def= exp( 1

µ (1− (Ax)j)).

Optimizing fµ(x) over ∆ gives a good approximation to OPT, in the following sense. If we
let x∗ be an optimal solution satisfying (5), and u∗ def= (1 + ε/2)x∗ ∈ ∆, then we have the
properties in the following lemma.

I Lemma 5. Setting the smoothing parameter µ = ε
4 log(nm/ε) , we have

1. fµ(u∗) ≤ (1 + ε) OPT.
2. fµ(x) ≥ (1− ε) OPT for any x ≥ 0.
3. For any x ≥ 0 satisfying fµ(x) ≤ 2 OPT, we must have Ax ≥ (1− ε)~1.
4. If x ≥ 0 satisfies fµ(x) ≤ (1 + O(ε)) OPT, then 1

1−εx is a (1 + O(ε))-approximation to
the covering LP.

5. The gradient of fµ(x) is

∇fµ(x) = ~1−AT ~p(x) where pj(x) def= exp( 1
µ

(1− (Ax)j),

and ∇ifµ(x) = 1−
∑
j Ajipj(x) ∈ [−∞, 1].

Although fµ(x) gives a good approximation to the covering LP, fµ(x) doesn’t have the
necessary Lipschitz-smoothness property due to the fast changing nature of exponential
functions. However, fµ(x) is locally Lipschitz continuous, in a sense quantified by the following
lemma, and so we have a good improvement with a gradient step within certain range.

I Lemma 6. Let L def= 4
µ , for any x ∈ ∆, and i ∈ [n]

1. If ∇ifµ(x) ∈ (−1, 1), then for all |γ| ≤ 1
L‖A:i‖∞ , we have

|∇ifµ(x)−∇ifµ(x+ γ ei)| ≤ L‖A:i‖∞|γ|.

2. If ∇ifµ(x) ≤ −1, then for all γ ≤ 1
L‖A:i‖∞ , we have

∇ifµ(x+ γ ei) ≤ (1− L‖A:i‖∞
2 |γ|)∇ifµ(x).

We call L‖A:i‖∞ the coordinate-wise local Lipschitz constant. The significance of Lemma 6
is that for covering LPs the coordinate-wise local Lipschitz constant is inversely proportional
to the coordinate-wise diameter. (This fact has been established previously for the case of
packing LPs [1].)
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4.2 An Accelerated Coordinate Descent Algorithm

Algorithm 1 Accelerated stochastic coordinate descent for both packing and covering
Input: A ∈ Rm×n≥0 , xstart ∈ ∆, fµ, ε Output: yT ∈ ∆
1: µ← ε

4 log(nm/ε) , L←
4
µ , τ ←

1
8nL

2: T ← d8nL log(1/ε)e = Õ(nε )
3: x0, y0, z0 ← xstart, α0 ← 1

nL

4: for k = 1 to T do
5: αk ← 1

1−τ αk−1
6: xk ← τzk−1 + (1− τ)yk−1
7: Select i ∈ [n] uniformly at random.
. Gradient truncation:

8: Let (ξ(i)
k )i ←


− ei ∇ifµ(xk) < −1
∇ifµ(xk) · ei ∇ifµ(xk) ∈ [−1, 1]
ei ∇ifµ(xk) > 1

. Mirror descent step:
9: zk ← z

(i)
k

def= argminz∈∆{Vzk−1(z) + 〈z, nαkξ(i)
k 〉}.

. Gradient descent step:
10: yk ← y

(i)
k

def= xk + 1
nαkL

(z(i)
k − zk−1)

11: end for
12: return yT .

We will now show that the accelerated coordinate descent used in packing LP solver in [1]
also works as a covering LP solver, with appropriately-chosen starting points and smoothed
objective functions. Consider Algorithm 1, which is our main accelerated stochastic coordinate
descent for both packing and covering. Note for both packing and covering LPs, we give
∆ = {x ∈ Rn : 0 ≤ xi ≤ 3

‖A:i‖∞ } as the input feasible region. The correctness of this
algorithm and its running time guarantees for the packing problem have already been nicely
presented in [1], and so here we will focus on the covering problem.

Our main result is summarized in the following theorems.

I Theorem 7. With xstart computable in time Õ(N) to be specified later, Algorithm 1 outputs
yT satisfying E[fµ(yT )] ≤ (1 + 6ε) OPT, and the running time is Õ(N/ε).

A standard application of Markov bound gives the following corollary.

I Corollary 8. There is a algorithm that, with probability at least 9/10, computes a (1+O(ε))-
approximation to the fractional covering problem and has Õ(N/ε) expected running time.

Before proceeding with our proof of these theorems, we discuss briefly the optimization
scheme from [1] we will use. First, the A-norm is used as the proximal setup for mirror
descent, where

‖x‖A =
√∑

i

‖A:i‖∞x2
i , (6)

The corresponding distance generating function is w(x) = 1
2‖x‖

2
A, and the Bregman divergence

is Vx(y) = 1
2‖x− y‖

2
A.1

1 In particular, w is a 1-strongly convex function with respect to ‖ · ‖A, and Vx(y) def= w(y)− 〈∇w(x), y −
x〉 − w(x). See [15] for a detailed discussion of mirror descent as well as and several interpretations.
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Next, observe that Algorithm 1 works as follows. Each iteration integrates a mirror
descent step and a gradient descent step. The standard analysis of mirror descent gives a
convergence of 1

ε2 , and it depends on the width of the problem. Here is how the coupling
of gradient descent and mirror descent achieves both width-independence and linear-rate
acceleration.

To eliminate the width from the convergence rate, the gradient ∇ifµ(xk) is split into
the small component, ξ(i)

k = max{−1,∇ifµ(xk)} ei, and the large component, η(i)
k =

∇ifµ(xk) ei−ξ(i)
k . Only the small component ξ(i) is given to the mirror descent step,

and thus the width is effectively 1. However, the truncation incurs loss from the large
component, as the mirror descent only acts on the small component. The progress from
the gradient descent step is used to cover that loss.
In order to get to 1/ε convergence, recall that the 1/ε2 in the convergence of mirror
descent is largely due to the regret term accumulated along all iterations of mirror descent.
The progress from the gradient step also covers the regret from the mirror descent step
(see Eqn. (7) below for the precise formulation of this loss and regret). This enables the
coupling to get Nesterov-like acceleration using the same approach in [15].

Before we moving to formalize the above discussion, here are some lemmas about the
algorithm. The first lemma says that the gradient step we take is always valid (i.e., in ∆),
which is crucial in the sense that we need the step length to be at least 1

nαkL
of the mirror

descent step length for the coupling to work.

I Lemma 9. We have xk, yk, zk ∈ ∆ for all k = 0, 1, . . . , T .

The second lemma is clearly crucial to achieve the nearly linear time Õ(N/ε) algorithm.

I Lemma 10. Each iteration can be implemented in expected O(N/n) time.

4.3 Mirror Descent Step
We now analyze the mirror descent step of Algorithm 1:

zk ← z
(i)
k

def= argmin
z∈∆

{Vzk−1(z) + 〈z, nαkξ(i)
k 〉}.

I Lemma 11. 〈nαkξ(i)
k , zk−1 − u∗〉 ≤ n2α2

kL〈ξ
(i)
k , xk − y(i)

k 〉+ Vzk−1(u∗)− Vzk
(u∗) .

Also, we note that the mirror descent step, defined above in a variational way, can be
explicitly written as
1. z

(i)
k ← zk−1

2. z
(i)
k ← z

(i)
k − nαkξ

(i)
k /‖A:i‖∞

3. If z(i)
k,i < 0, z(i)

k,i ← 0; if z(i)
k,i > 3/‖A:i‖∞, z(i)

k,i ← 3/‖A:i‖∞.

4.4 Gradient Descent Step
We now analyze the gradient descent step of Algorithm 1. In particular, from the explicit
formulation of the mirror descent step, we have that |z(i)

k,i − zk−1,i| ≤
nαk|ξ(i)

k
|

‖A:i‖∞ , which gives

|y(i)
k,i − xk,i| =

1
nαkL

|z(i)
k,i − zk−1,i| ≤

|ξ(i)
k |

L‖A:i‖∞
.

The gradient step we take is within the local region, and so Lemma 6 applies. We bound the
progress from the gradient descent step in the following lemma.

I Lemma 12. fµ(xk)− fµ(y(i)
k ) ≥ 1

2 〈∇fµ(xk), xk − y(i)
k 〉 .
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4.5 Coupling of Gradient and Mirror Descent
Here, we will analyze the coupling between the gradient descent and mirror descent steps.
This and the next section will give a proof of Theorem 7.

As we take steps on random coordinates, we will write the full gradient as

∇fµ(xk) = Ei[n∇ifµ(xk)] = Ei[nη(i)
k + nξ

(i)
k ].

As discussed earlier, we have the small component ξ(i)
k ∈ (−1, 1) ei and the large component

η
(i)
k = ∇ifµ(xk)− ξ(i)

k ∈ (−∞, 0] ei. We put the gradient and mirror descent steps together,
and we bound the gap to optimality at iteration k:

αk(fµ(xk)− fµ(u∗)) ≤〈αk∇fµ(xk), xk − u∗〉
=〈αk∇fµ(xk), xk − zk−1〉+ 〈αk∇fµ(xk), zk−1 − u∗〉

=〈αk∇fµ(xk), xk − zk−1〉+ Ei[〈nαkη(i)
k , zk−1 − u∗〉]

+ Ei[〈nαkξ(i)
k , zk−1 − u∗〉]

=1− τ
τ

αk〈∇fµ(xk), yk−1 − xk〉+ Ei[〈nαkη(i)
k , zk−1 − u∗〉]

+ Ei[〈nαkξ(i)
k , zk−1 − u∗〉]

≤1− τ
τ

αk(fµ(yk−1)− fµ(xk)) + Ei[〈nαkη(i)
k , zk−1 − u∗〉]

+ Ei[n2α2
kL〈ξ

(i)
k , xk − y(i)

k 〉+ Vzk−1(u∗)− V
z

(i)
k

(u∗)].

The first line is due to convexity. The fourth line is due to xk = τzk−1 + (1 − τ)yk−1, so
τ(xk − zk−1) = (1− τ)(yk−1 − xk). The last line is by Lemma 11.

We need to use the progress from the gradient step given in Lemma 12 to cover the loss
from η

(i)
k , and the regret from the mirror descent step:

Ei[〈nαkη(i)
k , zk−1 − u∗〉]︸ ︷︷ ︸

loss from η
(i)
k

+Ei[n2α2
kL〈ξ

(i)
k , xk − y(i)

k 〉]︸ ︷︷ ︸
regret from mirror descent

, (7)

The following lemma crucially relies on the nice coordinate-wise diameters of the feasible
region ∆.

I Lemma 13. The (scaled) progress from the gradient step covers both the loss from gradient
truncation and the regret incurred by the mirror descent step

Ei[〈nαkη(i)
k , zk−1 − u∗〉] + Ei[n2α2

kL〈ξ
(i)
k , xk − y(i)

k 〉] ≤ Ei[8nαkL(fµ(xk)− fµ(y(i)
k ))].

Now we can show this gives Nesterov-like acceleration. We have

αk(fµ(xk)− fµ(u∗)) ≤1− τ
τ

αk(fµ(yk−1)− fµ(xk)) + Ei[8nαkL(fµ(xk)− fµ(y(i)
k )]

+ Ei[Vzk−1(u∗)− V
z

(i)
k

(u∗)].

With our choice of τ = 1
8nL , αk = 1

1−τ αk−1, we get

−αkfµ(u∗) ≤ 8nLαk−1fµ(yk−1)− Ei[8nLαkfµ(y(i)
k )] + Ei[Vzk−1(u∗)− V

z
(i)
k

(u∗)].
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Telescoping the above inequality 2 along k = 1, . . . , T , we get

E[8nLαT fµ(yT )] ≤
T∑
k=1

αkfµ(u∗) + 8nLα0fµ(y0) + Vz0(u∗),

and thus

E[fµ(yT )] ≤
∑T
k=1 αk

8nLαT
fµ(u∗) + α0

αT
fµ(y0) + 1

8nLαT
Vz0(u∗).

We have
∑T
k=1 αk = αT

∑T−1
k=0 (1− 1

8nL )k = 8nLαT (1− (1− 1
8nL )T ) ≤ 8nLαT , and by our

choice of T = d8nL log(1/ε)e, we also have

α0

αT
= (1− 1

8nL )T ≤ ε, 1
8nLαT

≤ ε

8nLα0
= ε

8 ,

and thus

Ei[fµ(yT )] ≤ fµ(u∗) + εfµ(y0) + ε

8Vz0(u∗). (8)

4.6 Finding a Good Starting Point

From (8), we see a good starting point y0 = xstart for Algorithm 1 is a point that is not too
far away from the optimal in terms of the function value (i.e small fµ(y0)), and not too far
away from u∗ in A-norm (i.e. small Vz0(u∗)). For packing problems, starting with the all-0’s
vector will work, but this will not work for covering problems. Instead, for covering problems,
we will show now a good enough xstart can be obtained in Õ(N).

To do so, recall that we can get a 2-approximation x# to the original covering LP in time
Õ(N) using various nearly linear time covering solvers, e.g., those of [7, 4, 6, 14]. Without
loss of generality, we can assume x#

i ∈ [0, 2
‖A:i‖∞ ], since we can use the diameter reduction

process as specified in Lemma 1 to get a equivalent solution satisfying the conditions. Then,
we have the following lemma.

I Lemma 14. Let xstart = (1 + ε/2)x#, we have xstart ∈ ∆, fµ(xstart) ≤ 4 OPT, and
Vxstart(u∗) ≤ 6 OPT

It is now clear from (8) that we have

Ei[fµ(yT )] ≤ fµ(u∗)+εfµ(y0)+ ε

8Vz0(u∗) ≤ (1+ε) OPT +4εOPT +εOPT = (1+6ε) OPT .

Thus, we have the approximation guarantee in Theorem 7. The running time follows directly
from Lemma 10 and T = Õ(n/ε).

2 More accurately, the telescoping works on

−αkfµ(u∗) ≤ 8nLαk−1EIk−1 [fµ(yk−1)]− EIk
[8nLαkfµ(y(i)

k )] + EIk−1 [Vzk−1 (u∗)]− EIk
[V
z

(i)
k

(u∗)].

where Ik is all the random coordinate choices made through the first iteration till k-th iteration. The
final expectation on fµ(yT ) is over all the T random choices.
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Abstract
Random-Edge and Random-Facet are two very natural randomized pivoting rules for the
simplex algorithm. The behavior of Random-Facet is fairly well understood. It performs an
expected sub-exponential number of pivoting steps on any linear program, or more generally, on
any Acyclic Unique Sink Orientation (AUSO) of an arbitrary polytope, making it the fastest
known pivoting rule for the simplex algorithm. The behavior of Random-Edge is much less
understood. We show that in the AUSO setting, Random-Edge is slower than Random-Facet.
To do that, we construct AUSOs of the n-dimensional hypercube on which Random-Edge
performs an expected number of 2Ω(

√
n logn) steps. This improves on a 2Ω( 3√n) lower bound of

Matoušek and Szabó. As Random-Facet performs an expected number of 2O(
√
n) steps on any

n-dimensional AUSO, this established our result. Improving our 2Ω(
√
n logn) lower bound seems

to require radically new techniques.

1998 ACM Subject Classification G.1.6 Optimization – Linear Programming, G.2.1 Combinat-
orics – Combinatorial Algorithms

Keywords and phrases Linear programming, the Simplex Algorithm, Pivoting rules, Acyclic
Unique Sink Orientations

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.51

1 Introduction

Linear programming and the simplex algorithm. Linear programs (LPs) [3, 4, 28, 32] are
among the most important mathematical optimization problems. The simplex algorithm
(Dantzig [4]) is one of the most widely used methods for solving linear programs. It starts at a
vertex of the polytope corresponding to the linear program. (We assume, for simplicity, that
the LP is feasible, bounded, non-degenerate, that no two vertices have the same objective
value, and that an initial vertex of the polytope is available.) If the current vertex is not
optimal, then at least one of the edges incident to it leads to a neighboring vertex with a
larger objective value. A pivoting rule determines which one of these vertices to move to.
The simplex algorithm, with any pivoting rule, is guaranteed to find an optimal solution of
an LP in a finite number of steps.

Unfortunately, with essentially all known deterministic pivoting rules, the simplex method
requires an exponential number of steps on some LPs (see Klee and Minty [24] and [1, 2, 7,
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15, 18]). While there are polynomial time algorithms for solving LP problems, most notably
the ellipsoid algorithm (Khachian [23]) and interior point methods (Karmarkar [22]), these
algorithms are not strongly polynomial, i.e., their running time, in the unit-cost model,
depends on the number of bits in the representation of the coefficients of the LP, and not
just on the combinatorial size of the problem, i.e., the number of variables and constraints.
The question whether there exists a strongly polynomial time algorithm for solving linear
programs is of great theoretical importance.

Randomized pivoting rules. Kalai [20] and Matoušek, Sharir and Welzl [29] devised a
randomized pivoting rule, Random-Facet, that performs a subexponential number of
pivoting steps, in expectation, on any LP. In particular, for an LP with n variables and
O(n) constraints, the expected number of pivoting steps performed by Random-Facet is at
most 2O(

√
n logn). A slightly improved version that performs an expected number of at most

2O(
√
n) pivoting steps on such LPs was recently obtained by the authors [17]. This improved

version is currently the fastest known pivoting rule for the simplex algorithm.
Perhaps the most natural randomized pivoting rule is Random-Edge. When there are

several improving edges from the current vertex, simply choose one of them uniformly at
random. The best upper bound for Random-Edge on general LPs is exponential (Gärtner
and Kaibel [13]). Whether this can be improved to a subexponential upper bound, similar
to the one available for Random-Facet, is an intriguing open problem.

Friedmann et al. [8, 9, 11], building on results of Friedmann [6] and Fearnley [5], obtained a
2Ω̃(n1/3) lower bound on the expected number of pivoting steps performed by Random-Facet
on LPs that correspond to shortest paths problems. 1 Friedmann et al. [9] also constructed
LPs on which Random-Edge performs an expected number of 2Ω̃(n1/4) pivoting steps. We
believe that this lower bound is not tight. However, as the 2Ω̃(n1/4) lower bound is already
quite complicated, improving it seems to be a hard task. As a step in this direction we
obtain a 2Ω(

√
n logn) lower bound for Random-Edge in the more general setting of Acyclic

Unique Sink Orientations (AUSOs). In particular, this shows that in the AUSO setting,
Random-Edge is slower than Random-Facet.

Acyclic Unique Sink Orientations (AUSOs). Each bounded LP has a polytope associated
with it. The geometric vertices and edges of this polytope define a combinatorial graph.
The objective function of the LP defines an orientation of the edges of this graph; An edge
connecting vertices u and v is directed from u to v if and only if v has a better objective value.
(We assume that no two vertices have the same objective value.) This orientation is clearly
acyclic. It follows easily from the properties of LPs that every subgraph corresponding to
a geometric face of the polytope has a unique sink, i.e., a unique vertex with no outgoing
edges. The unique sink of the whole graph is then the optimal vertex of the LP.

This naturally motivates the definition of Acyclic Unique Sink Orientations (AUSOs).
Let G(P ) be that graph that corresponds to a polytope P . An orientation of G(P ) is said to
be an AUSO if and only if it is acyclic and any subgraph that corresponds to a face of P has
a unique sink. The term AUSO was introduced by Szabó and Welzl [34]. The same notion
was considered before, however, under several different names. Williamson Hoke [36] refers to
them as Completely Unimodal Numberings, while Kalai [19, 20, 21] refers to them as Abstract

1 In [9] we obtained a 2Ω̃(
√

n) lower bound for a one-permutation variant of Random-Facet and erroneously
claimed that the expected number of steps performed by this variant is equal to the expected number
of steps performed by Random-Facet. Unfortunately, as we point out in [10], this is not the case.
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Objective Functions. AUSOs provide an appealing abstraction of LPs. The subexponential
upper bound on the behavior of Random-Facet only relies on the AUSOs properties and is
thus valid also in the AUSO setting.

Of special interest are AUSOs of the n-dimensional hypercube whose properties we review
in Section 2. In the sequel we restrict our attention to such AUSOs. Gärtner [12] proved a
2O(n1/2) upper bound on the complexity of Random-Facet on AUSOs, and Matoušek [27]
obtained an essentially tight 2Ω(n1/2) lower bound. (The improved version of Random-Facet
of [17], which is not specialized to cubes, essentially matches Gärtner’s bound. It is an
interesting open problem whether a similar lower bound can be obtained for this algorithm.)
Matoušek and Szabó [30, 31] obtained a lower bound of 2Ω(n1/3) on the complexity of
Random-Edge on AUSOs. We improve their lower bound to 2Ω(

√
n logn), thus showing that

Random-Edge is slower than Random-Facet on AUSOs. Hansen et al. [16] obtained a
1.8n upper bound for Random-Edge on AUSOs. There is a large gap between the available
upper and lower bounds. However, the 2Ω(

√
n logn) lower bound that we obtain is the best

lower bound that can be obtained using current techniques. Improving it would require the
use of non-layered AUSOs which are not yet known to exist.

Organization of paper. In the next section we review some basic properties of AUSOs of
the Boolean hypercube. In Section 3 we describe a randomized product construction of
AUSOs that plays a central role in the lower bound of Matoušek and Szabó [30, 31] as well
as in our improved lower bound of 2Ω(

√
n) which is described in Section 4. Section 5 contains

an analysis of a random walk with reshuffles on a simple path AUSO. This analysis is needed
to complete the proof of the lower bound presented in Section 4. In Section 6 we make the
final push and improve the lower bound from 2Ω(

√
n) to 2Ω(

√
n logn). In Section 7 we note

that the AUSOs used to prove all known lower bounds for Random-Edge are layered and
explain why it is unlikely that layered AUSOs could be used to obtain further improved
lower bounds. A similar observation was made independently by Gärtner and Thomas [14].
We end in Section 8 with some concluding remarks and open problems.

2 Acyclic Unique Sink Orientations of the Hypercube

In this section we review the definition of AUSOs and describe some of their basic properties.
We also introduce a simple path AUSO which plays a central role in our lower bound.

The n-cube is the undirected graph Cn = (Vn, En), where Vn = {0, 1}n and En =
{{x,y} | x,y ∈ Vn, dH(x,y) = 1}, where dH(x,y) is the Hamming distance between x
and y. Every string s ∈ {0, 1, ∗}n defines a subcube of Cn induced by the vertex set
Vs = {x ∈ {0, 1}n | xi = si or si = ∗}. The subcube defined by s is clearly isomorphic to a
cube whose dimension is the number of ∗’s in s.

An orientation of the n-cube is a directed graph obtained by orienting each edge {x,y} ∈
En either from x to y or from y to x. An orientation can be specified using a mapping
A : Vn → {0, 1}n that satisfies the condition A(x)i 6= A(x⊕ i)i, for every x ∈ Vn. 2 The i-th
edge of x, i.e., {x,x⊕ i} is directed away from x if and only if A(x)i = 1. (Some authors
refer to A as the out-map of the orientation. We consider it to be the orientation itself.)
An orientation of a cube clearly induces orientations on all its subcubes. An orientation is

2 Here, A(x)i denotes the i-th bit of A(x) ∈ {0, 1}n, and x ⊕ i is a shorthand for x ⊕ ei, where
ei = 0i−110n−i is the i-th unit vector.
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x1

x2

x3

Uniform Klee-Minty Path

Figure 1 The uniform, Klee-Minty and the path AUSOs in dimension 3.

acyclic if there are no directed cycles. A sink of an orientation A of Cn is a vertex x ∈ Vn
with no outgoing edges, i.e., A(x) = 0n. An acyclic orientation clearly has at least one sink,
but it may have several.

I Definition 1 (AUSOs). An orientation A of the n-cube is an n-AUSO if and only if it is
acyclic and if every subcube has a unique sink under A.

Perhaps the simplest AUSO is the uniform AUSO defined as follows U(x) = x. The sink
of this AUSO is clearly 0n. A more interesting and famous AUSO is the Klee-Minty cube [24]
defined as follows KM(x)i = xi ⊕ xi+1 ⊕ · · ·xn, for i = 1, 2, . . . , n, where x = x1x2 . . . xn.
The sink is again 0n. (It is an instructive exercise to verify that the Klee-Minty cube is indeed
an AUSO.) The Klee-Minty cube plays a prominent role in the lower bound of Matoušek and
Szabó [30, 31]. One of the major steps in obtaining our improved lower bound is replacing the
Klee-Minty cubes used in the lower bound of Matoušek and Szabó [30, 31] by the following
much simpler AUSO.

I Definition 2 (Path AUSO). The path n-AUSO is defined as follows

P (x)i = xi ⊕ (x1 ∧ x2 ∧ · · · ∧ xi−1) .

In other words, if x = x1x2 . . . xn ∈ {0, 1}n, then the i-th edge of x is directed away
from x if and only if x1x2 . . . xi = 1i−10 or xi = 1 but x1x2 . . . xi−1 6= 1i−1. (Informally,
a bit wants to become, or remain, a 1 if and only if all the bits preceding it are 1.) The
sink of the path AUSO is clearly at 1n. The uniform, Klee-Minty and the path AUSO for
n = 3 are shown in Figure 1. The path AUSO is also used in a building block in [9, 11]. A
realization of the path AUSO as a shortest paths problem in a weighted directed graph is
given in Figure 2. Each n-bit string x = x1x2 . . . xn corresponds to a tree of directed paths
directed towards the target vertex 0. If xi = 0, then (i, 0) is included in the tree, otherwise
(i, i− 1) is included in the tree. The i-th edge of x in the n-cube is directed away from x if
and only if switching the outgoing edge of i in the tree reduces the distance to the target of
at least one vertex. With this interpretation, it is clear that the path AUSO is an AUSO. (It
is of course also easy to prove it directly.)

I Lemma 3. The path AUSO is indeed an AUSO.

Schurr and Szabó [33] describe two useful methods of constructing new AUSOs from
existing ones. The first method takes an n-AUSO and expands each one of its 2n vertices into
an m-AUSO, resulting in an (n+m)-AUSO. (Each one of the 2n vertices may be expanded
into a different m-AUSO.) Schurr and Szabó [33] call it the blowup construction. We view it
as a product of AUSOs.
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n+ 1
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0 1 2 3 · · · n

Figure 2 A realization of the path AUSO as a shortest paths problem in a weighted directed
graph. Numbers attached to edges are edge weights.

I Definition 4 (Product of AUSOs [33]). Let A be an n-AUSO, and let m > 1. For every
x ∈ {0, 1}n, let Bx be an m-AUSO. Define an (n+m)-AUSO C = A× 〈Bx〉 as follows:

C(x,y) = (A(x), Bx(y)) , for x ∈ {0, 1}n,y ∈ {0, 1}m .

The proof that the product AUSO is indeed an AUSO is straightforward. (For the details,
see [33].) Before describing the second method we need another definition.

I Definition 5 (Hypersink [33]). A subcube of an AUSO is a hypersink if and only if all
edges between vertices of the subcube and vertices outside the subcube are directed towards
the subcube.

I Lemma 6 (Hypersink replacement [33]). Let A be an AUSO, let B be a subcube of A which
is a hypersink, and let B′ be an AUSO of the same dimension as B. Then, the AUSO A′

obtained by modifying the orientation of the edges within B so that the resulting orientation
is isomorphic to B′ is again an AUSO.

The proof of the lemma is again straightforward and can be found in [33]. Finally, the
following well-known lemma will be used in Section 6.

I Lemma 7 (Unique outmaps [34]). Let A be an n-AUSO. Then, for every x1 6= x2 ∈ {0, 1}n
we have A(x1) 6= A(x2). In particular, the number of vertices of A of out-degree k is

(
n
k

)
.

3 Random-Edge on Randomized Products

Matoušek and Szabó [30, 31] introduced the following simple and elegant randomized product
construction. Let A be an n-AUSO and let B be an m-AUSO. Assume, for simplicity, that
the sinks of A and B are at 1n and 1m, respectively. For every x ∈ {0, 1}n, let Bx be a
version of B in which the m coordinates are randomly permuted, each permutation being
equally likely. (Note that the sink of Bx is still at 1m.) Consider now the product A× 〈Bx〉.
It is easy to check that the copy of A corresponding to y = 1m is a hypersink of A× 〈Bx〉.
We replace this copy of A by a random translation A′ of A. A random translation of an
n-AUSO A is obtained by choosing a random vertex x0 ∈ {0, 1}n and making it the sink of
an AUSO A′ isomorphic to A. More precisely, we let A′(x) = A(x⊕ x0). A formal definition
of randomized products follows.

I Definition 8 (Randomized product [30, 31]). Let A be an n-AUSO and let B be anm-AUSO
whose sinks are at 1n and 1m, respectively. For every x ∈ {0, 1}n, let Bx be a randomly
permuted version of B, and let A′ be a random translation of A. Then, the randomized
product C = A×R B is a distribution over AUSOs defined as follows:

C(x,y) =
{

(A(x), Bx(y)) , if y 6= 1m ,

(A′(x), Bx(y)) , otherwise .
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As C = A×R B is obtained by performing a product of AUSOs followed by a hypersink
replacement, it is clearly an AUSO, or rather a probability distribution over AUSOs.

Consider now the behavior of Random-Edge on C = A×RB, starting from some vertex
(x,y), where x ∈ {0, 1}n, y ∈ {0, 1}m. Assume at first that x 6= 1n and y 6= 1m. Each
step of Random-Edge either changes a coordinate of x or of y. If we only consider the
steps in which x changes, and look only at x, then as long as y 6= 1m, we get a standard
Random-Edge walk on A.

The random walk on y induced by the Random-Edge walk on C = A ×R B is more
interesting. When x is fixed, y performs a standard Random-Edge walk on Bx. But, when
a step from x to x′ in A is made, the walk on y finds itself in a new AUSO Bx′ . Due to the
acyclicity of A, Bx′ was never visited before, and is thus completely random. The resulting
random walk on y is what Matoušek and Szabó [30, 31] call a random walk with reshuffles
on B. Such a random walk is likely to be much longer than a standard Random-Edge walk
on B as the random reshuffles tend to destroy progress made since the last reshuffle.

When the random walk with reshuffles on B reaches its sink y = 1m, the hypersink A′ is
entered, and y remains fixed. Note that y = 1m may be reached either before x reaches 1n,
or after it does. We prefer the second option, as then the Random-Edge walk on A ran
to completion. Our construction will ensure that this happens with very high probability.
As A′ is a random translation of A, the ensuing random walk on A′, even if it starts at
x = 1n, is equivalent to a Random-Edge walk starting at a random vertex of A. Thus,
under appropriate conditions, a Random-Edge walk on C = A×R B is expected to be at
least twice as long as a Random-Edge walk on A itself. This is the crux of the matter.

We next consider the probability of a reshuffle in a random walk with reshuffles on B. This
probability must be high to make the random walk long. If the current vertex in C = A×RB
is (x,y) and there are s and t outgoing edges from x in A and y in B, respectively, then
a reshuffle occurs with probability s/(s + t), as Random-Edge on C = A ×R B chooses
each outgoing edge with equal probability and each step in A causes a reshuffle of B. We let
Random-Reshufflek denote a random walk with reshuffles on B induced by a Random-
Edge walk on C = A ×R B, conditioned on all visited vertices of A having outdegree at
least k. The probability of a reshuffle when y has outdegree t in B is then at least k/(k + t).

To ensure that reshuffles occur with sufficiently high probability, we need a slight general-
ization of the randomized product construction.

I Definition 9 (k-fold randomized product [30, 31]). Let A be an n-AUSO and let B be an
m-AUSO whose sinks are at 1n and 1m, respectively, and let k ≥ 1. For every x ∈ {0, 1}n
and 1 ≤ i ≤ k, let Bx,i be a randomly permuted version of B, and let A′ be a random
translation of A. Then, the k-fold randomized product C = A×kR B is a distribution over
AUSOs defined as follows:

C(x,y1, . . . ,yk) =
{

(A(x), Bx,1(y1), . . . , Bx,k(yk)) , if y1 6= 1m ∧ · · · ∧ yk 6= 1m ,

(A′(x), Bx,1(y1), . . . , Bx,k(yk)) , otherwise .

It is not difficult to check that for every random choice C = A×kR B is indeed an AUSO.
Matoušek and Szabó [30, 31] need to apply the k-fold randomized product with k = n1/3.
We only need k = 2. As a result, the lower bound is improved from 2Ω( 3√n) to 2Ω(

√
n). Using

k = 1 is actually enough, but the probabilistic analysis is slightly more complicated. The
details will appear in the full version of the paper.

I Lemma 10 ([30, 31]). Let A be an n-AUSO, let B be an m-AUSO and let k > 1. Suppose
that the probability that the Random-Edge walk on A, starting at a random vertex, reaches
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a vertex with outdegree less than k in less than T steps is at most p. Suppose that the
probability that a Random-Reshufflek walk on B, starting at a random vertex, reaches
the sink in less than T steps is at most q. Then, the probability that the Random-Edge
walk on C = A×kR B, starting at a random vertex, reaches a vertex of outdegree less than k
in less than 2T steps is at most 2p+ kq.

Proof. Partition the Random-Edge walk on C = A×kRB, starting at a random vertex, into
two stages. The first stage ends when one of B1, . . . , Bk reaches its sink, i.e., when a state of
the form (x,y1, . . . ,yk), where yi = 1m, for some 1 ≤ i ≤ k, is reached. When the first stage
ends, the orientation on the first n-coordinates changes to A′, a random translation of A,
and the second stage begins. The second stage lasts until the sink of C = A×kR B is reached.

The probability that the first stage lasts less than T steps is at most p + kq. Indeed,
during the first T steps on C, at most T steps on A are performed. Thus, the probability
that the Random-Edge walk on A reaches a vertex of outdegree less than k is at most p.
As long as the walk on A visits vertices of outdegree at least k, the induced random walks
on B1, . . . , Bk are Random-Reshufflek walks. Thus, the probability that a specific Bi
reaches its sink during the first T steps on C is at most q, and the claim follows. During the
first phase, there is at least one improving switch in every Bi, thus the outgedree of each
visited vertex is at least k.

In the second stage, the orientation on the first n-coordinates changes to A′. As A′ is
a random translation of A, this is equivalent to starting a Random-Edge walk on A at a
random starting vertex. The probability that this random walk reaches a vertex of outdegree
less than k in less than T is steps is at most p.

Thus, the probability that the Random-Edge walk on C = A ×kR B, starting at a
random vertex, reaches a vertex of outdegree less than k in less than 2T steps is at most
(p+ kq) + p = 2p+ kq. J

4 The Lower Bound

A distribution of AUSOs on which Random-Edge makes 2Ω(
√
n) steps, with high probability,

is obtained by iterating the randomized product construction of the previous section. We
follow the footsteps of Matoušek and Szabó [30, 31] making one crucial change; We use
the path AUSO, defined in Section 2, instead of the Klee-Minty cube, as the main building
block. Using the path AUSO allows us to simplify the proof and improve the lower bound.
The following lemma, whose proof is given in the next section, is one of the main technical
contributions of this paper.

I Lemma 11. Let Pm be the path m-AUSO. There are constants α, β > 0 such that the
probability that Random-Reshuffle2 on Pm, starting from a random vertex, performs less
than 2αm steps before reaching the sink is at most 2−βm.

Let m be an integer, and let ` = γm, where γ < min{α, β}, where α, β are the constants
in Lemma 11. Let A0 be an arbitrary m-AUSO. For concreteness, we let A0 = Pm, the
path AUSO of Section 2. We construct a sequence of A0, A1, . . . , A` of AUSOs, where
Ai = Ai−1 ×2

R Pm is an (2i + 1)m-AUSO, for 0 ≤ i ≤ `. Note that A` is of dimension
(2`+ 1)m = O(m2). The following lemma, which easily implies a 2Ω(

√
n) lower bound, claims

that with high probability, Random-Edge performs at least 2Ω(m) steps when started at a
random vertex of A`. We give an improved version of the lemma in Section 6.

I Lemma 12. The probability that Random-Edge performs less than 2` steps when started
at a random vertex of A`, where ` < αm, is at most 4 · 2`−βm.
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Proof. Let pi be the probability that Random-Edge, started at a random vertex of Ai,
performs less than 2i steps before reaching a vertex of outdegree less than 2. Note that
p0 = (m+ 1)2−m is just the probability that the random starting vertex of A0 has outdegree
at most 1, which by Lemma 7 is exactly (m+ 1)2−m.

Let qi be the probability that the Random-Reshuffle2 walk on Pm, in which the
probability of reshuffle from a vertex of outdegree j is at least 2/(j + 2), reaches the sink in
less than 2i steps, when started at a random vertex. Clearly, for every 1 ≤ i ≤ ` we have
qi ≤ q`. As ` ≤ αm, Lemma 11 implies that q` ≤ 2−βm.

By Lemma 10, we have pi ≤ 2(pi−1 + qi−1). It follows easily by induction that pi ≤
2ip0 + 2(2i − 1)qi, for 1 ≤ i ≤ `. Thus, p` ≤ 2`(m+ 1)2−m + 2`+12−βm ≤ 4 · 2`−βm. J

As a corollary, we get:

I Theorem 13. There exist n-AUSOs and appropriate starting points from which Random-
Edge performs 2Ω(n1/2) steps with probability at least 1− 2−δ

√
n, for some δ > 0.

5 Random Walk with Reshuffles on the Path AUSO

In this section we provide a proof of Lemma 11, completing the proof of our first lower bound.
Let y ∈ {0, 1}m be a state of Random-Reshuffle2 on the path AUSO Pm. Let k be

the weight, i.e., the number of 1’s in y and let i be the number of leading 1’s in y. For
example, if m = 7 and y = 1100101, then k = 4 and i = 2. Also let j = k − i, the number
of non-leading 1’s. We say that y is of type (i, j). The outdegree of a state of type (i, j) is
clearly j + 1.

From a state y of type (i, j) of Random-Reshuffle2 on Pm, there is a reshuffle with a
probability of at least 2/(j + 3), as all states of type (i, j) are of outdegree j + 1. Several
reshuffles may occur in a row, but they have exactly the same effect as a single reshuffle.

If a state of weight k is reshuffled, the obtained state is of type (k− j, j), where 0 ≤ j ≤ k,
with probability ak,j =

(
m−(k−j+1)

j

)
/
(
m
k

)
. (Among the

(
m
k

)
binary strings of length m and

weight k, there are exactly
(
m−(k−j+1)

j

)
strings that start with 1k−j0.) Clearly

∑k
j=0 ak,j = 1.

When a reshuffle occurs, we initially consider only the type of the state obtained. We
delay the decision as to which state exactly we are in. (All states belonging to the type
are equally likely.) This simplifies the analysis, as we only need to consider O(m2) types
(
(
m+1

2
)

+ 1 to be exact) rather than 2m possible states.
Suppose that we are now in a state of type (i, j), where k = i+ j. One or more reshuffles

are performed with a probability of at least 2/(j+ 3), and then a standard move is performed.
Let (i′, j′), where k′ = i′ + j′, be the type of the new state obtained. Note that k′ = k− 1 or
k′ = k + 1, as a reshuffle does not change the weight and a single move either increases or
decreases the weight by 1. We show that the probability of a weight increase, i.e., k′ = k + 1
is bounded by some constant c < 1

2 . As the weight of a random starting vertex is close
to m/2 and as the weight of the sink is m, it would follow that an exponential number of
steps are needed, with high probability, to reach the sink.

Let p̄k be the probability of a weight increase from a state of weight k given that a
reshuffle occurs. We have p̄k =

∑k
j=0

ak,j
j+1 , as the reshuffle generates a state of type (k − j, j)

with probability ak,j and the probability of a weight increase from such a state is 1/(j + 1).
Let pk,j(s) be the probability of a weight increase from a state of type (k− j, j), when the

corresponding state in A has s outgoing edges. The probability of a reshuffle from a state of
type (k − j, j) is s

j+s+1 , and the probability of no reshuffle is j+1
j+s+1 . If there is no reshuffle,
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the probability of a weight increase is 1
j+1 . If there is a reshuffle, then the probability of a

weight increase is p̄k. Hence,

pk,j(s) = j + 1
j + s+ 1 ·

1
j + 1 + s

j + s+ 1 · p̄k = 1
j + s+ 1 + s

j + s+ 1 · p̄k .

We next upper bound p̄k, the probability of a weight increase following a reshuffle from a
state of weight k.

I Lemma 14. p̄k <
m− k

(k + 1)(m− k − 1) .

Proof. A simple manipulation of binomial coefficients yields:

ak,j
j + 1 =

(
m−k+j−1

j

)(
m
k

) 1
j + 1 =

(
m−k+j−1

j+1
)(

m
k

) 1
m− k − 1 = 1

m− k − 1

(
m
k+1
)(

m
k

) ak+1,j+1 .

Hence,

p̄k =
k∑
j=0

ak,j
j + 1 = 1

m− k − 1

(
m
k+1
)(

m
k

) k∑
j=0

ak+1,j+1 <
1

m− k − 1

(
m
k+1
)(

m
k

) = m− k
(k + 1)(m− k − 1) .

J

I Lemma 15. Let (i, j) be a type of Random-Reshuffle2 walk on the path AUSO Pm
of weight k = i + j satisfying 8 ≤ k ≤ m − 9. Then, the probability that the type obtained
after one step of a Random-Reshuffle2 walk, i.e., a reshuffle with a probability of at least
2/(j + 3) followed by a standard move, is of weight k + 1 is at most 5

12 .

Proof. We need to show that pk,j(s) ≤ 5
12 , for every 8 ≤ k ≤ m− 9, 0 ≤ j ≤ k, and s ≥ 2.

Recall that pk,j(s) = j+1
j+s+1 ·

1
j+1 + s

j+s+1 · p̄k. For 8 ≤ k ≤ m − 9 we have p̄k ≤ 1
8 , as

1
k+1 ≤

1
9 while m−k

m−k−1 ≤
9
8 . If j ≥ 2, then pk,j(s) ≤ 1

3 , for every s ≥ 1, as 1
j+1 ≤

1
3 and

p̄k ≤ 1
3 . If j = 1, then pk,1(s) ≤ 1

2 ·
1
2 + 1

2 ·
1
8 = 5

16 , again for every s ≥ 1. Finally, if j = 0,
then pk,0(s) ≤ 1

3 + 2
3 ·

1
8 = 5

12 , for every s ≥ 2. J

Lemma 15 does not hold for Random-Reshuffle1 as for j = 0 we relied on the
assumption s ≥ 2. This is why we need to use 2-fold randomized products. Alternatively, we
can look at two steps of Random-Reshuffle1 on Pm. This yields a negative drift from all
types, including (i, 0), but the proof is slightly more complicated. The details will appear in
the full version of the paper.

I Definition 16 (Biased random walk). Let 0 ≤ c < 1
2 . A random process on states

{0, 1, . . . , n} is c-bounded if and only if whenever the process is in state i, where i > 0, then
it moves to state i+ 1 with probability at most c, and to state i− 1 with the complementary
probability of at least 1− c. From state 0, the process moves to state 1 with probability 1.

In the above definition, the transition probabilities may depend on the history of the
random process, as well as on external factors. The following claim is well known. For
completeness, we include a proof that follows the presentation in Levin, Peres and Wilmer [25]
(Section 17.3.1).

I Lemma 17. Let 0 ≤ c < 1
2 . The probability that a c-bounded random process on {0, 1, . . . , n}

that starts at state 0 reaches state n in less than K steps is at most K
(

c
1−c
)n−1. In particular,

for any α < 1−c
c , the probability that the random walk reaches n in less than αn−1 steps is at

most
(
αc

1−c
)n−1.
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Proof. Let us assume that the probability of moving from i to i+ 1 is exactly c. It is not
difficult to show that this implies the more general claim.

Let Xt be a c-bounded random walk on the integers starting at 1, i.e., X0 = 1. Let
r = (1 − c)/c. It is easy to check that rXt is a martingale. Consider the stopping time τ
defined as the smallest t for which Xt = 0 or Xt = n. By the Optional Stopping Theorem we
get that E[rXτ ] = E[rX0 ] = r. Let a be the probability that the random walk reaches n before
it reaches 0. Then E[rXτ ] = arn + (1− a). Thus arn + (1− a) = r and a = r−1

rn−1 < (1/r)n−1.
Returning to the c-bounded walk on {0, 1, . . . , n} starting at 0, we note that the expected

number of times that this random walk returns to 0 before visiting n is a geometric random
variable with parameter a. Thus the probability that the random walk reaches n in less
than K steps, and in particular less than K returns to 0, is at most 1− (1− a)K < Ka <

K
(

c
1−c
)n−1. J

Putting everything together, we get a proof of Lemma 11.

Proof of Lemma 11. A Random-Reshuffle2 walk on the path AUSO Pm induces a ran-
dom walk on types (i, j). The random walk on types induces a random walk on weights.
Lemma 15 claims that when 8 ≤ k ≤ m− 9, the random walk on the weights is 5

12 -bounded.
The weight of a random starting point of Random-Reshuffle2 is binomially distributed.
By Chernoff bound, the probability that the starting state of the bounded walk on the
weights starts at a weight larger than ( 1

2 + δ)m, for some δ > 0, is exponentially small. By
Lemma 17 the probability that the random walk moves from the random starting point to
m− 9 in at most an exponential number of steps is exponentially small. The existence of
appropriate constants α, β follows easily. J

6 An Improved Lower Bound

The improved lower bound of 2Ω(
√
n logn) is obtained using essentially the same construction

but with a strengthened analysis. We again let A0 = Pm and Ai = Ai−1×2
RPm, for i = 1, ..., `,

but this time we choose ` = γm logm, for some γ > 0. We can still show that with high
probability Random-Edge performs at least 2` steps on A`. Thus A` is an n-AUSO, where
n = 2γm2 logm, on which Random-Edge performs with high probability at least 2` steps,
where ` = γm logm = Ω(

√
n logn). This establishes the following theorem, which is the

main result of this paper.

I Theorem 18. There exist n-AUSOs and appropriate starting points from which Random-
Edge performs 2Ω(

√
n logn) steps with probability at least 1− 2−δ

√
n, for some δ > 0.

To prove this result, we need a strengthened version Lemma 11. Lemma 11 states that
there are constants α, β > 0 such that the probability that Random-Reshuffle2 on Pm,
starting from a random vertex, performs less than 2αm steps before reaching the sink is
at most 2−βm. The proof of Lemma 11 relied on the fact that from a state of type (i, j),
the probability of a reshuffle is at least 2/(j + 3). If the reshuffle probabilities are always
2/(j + 3), then Lemma 11 is essentially tight. However, the reshuffle probability is 2/(j + 3)
only if the vertex x ∈ A has only two outgoing edges. By Lemma 7 this can happen at most(
n
2
)
times. More generally, let s =

√
n. The number of vertices in A of outdegree less than s

is at most
∑s
i=0
(
n
i

)
≤ ns.

I Definition 19 (Random-Reshuffle(N,s)
k ). A Random-Reshuffle(N,s)

k walk on an m-
AUSO B is a random walk with reshuffles on B in which the reshuffle probability from a
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vertex y ∈ {0, 1}m of outdegree t is at least s/(s+ t), except for at most N times in which
the reshuffle probability is only guaranteed to be at least k/(k + t).

By the above discussion, the random process on B induced by a Random-Edge walk
on A×2

R B is a Random-Reshuffle(N,s)
k process, with N ≤ ns. The following lemma is a

strengthening of Lemma 11. The proof will appear in the full version of the paper.

I Lemma 20. Let Pm be the path m-AUSO. There are constants α, β > 0 such that the
probability that Random-Reshuffle(N,s)

2 on Pm, where s = m1/2, N ≤ m3s, starting from
a random vertex, performs less than 2αm logm steps before reaching the sink is at most 2−βm.

We note that Lemma 20 is essentially best possible, which is one of the reasons we believe
that improving our 2Ω(

√
n logn) lower bound will require new techniques. (See also Section 7.)

I Lemma 21. Let B be any m-AUSO. Then, with high probability Random-Reshufflek
on B makes at most O((km)m) = 2O(m log(km)) steps before reaching its sink.

Proof. Each vertex of B is of distance at most m from the sink (see, e.g., [26, 16]). Thus, if
there are m consecutive steps with no reshuffles and the right edge in B is followed, then the
sink is reached. This happens with a probability of at least ((k + 1)m)−m. J

The proof of Lemma 20 relies on the following strengthening of Lemma 17. The proof
will appear in the full version of the paper.

I Lemma 22. Let 0 ≤ c1 < c2 <
1
2 . Consider a random walk on {0, 1, . . . , n} in which in

each step a controller is allowed to flip a coin with success probability at most c1, or a coin
with success probability at most c2. The controller is allowed to make the second choice at
most N times. According to the outcome of the coin, the process moves from i to either i− 1
or i+ 1. (From 0 the move is always to 1.) Then, the probability that the walk reaches n in
less than K steps is at most K

(
c1

1−c1

)n/2−1 +N
(

c2
1−c2

)n/2−1.

Relying on these strengthened lemmas, Theorem 18 follows using essentially the same
arguments used to prove Theorem 13.

7 Decomposable and Layered AUSOs

The AUSOs used above to obtain the 2Ω(
√
n logn) lower bound, as well as the AUSOs used

by Matoušek and Szabó [30, 31] and by Friedmann et al. [9] are decomposable.

I Definition 23 ((k, `)-decomposable AUSO). A (k`)-AUSO is said to be (k, `)-decomposable
if its coordinates can be partitioned into k blocks B1, . . . , Bk each of size ` such that if x is
the sink of A and y agrees with x in Bi, Bi+1, . . . , Bk, for some 1 ≤ i ≤ k, then all the edges
in these coordinates are directed towards y.

Decomposable AUSOs belong to a much wider class of layered AUSOs. A layered AUSO
is an AUSO whose vertices can be partitioned into a relatively small number of layers such
that from each non-sink vertex there is a relatively short directed path to a vertex of a lower
layer, and such that no directed path may lead from a vertex to a vertex of a higher layer.
More formally:

I Definition 24 ((k, `)-Layered AUSOs). An n-AUSO A is said to be (k, `)-layered if its
vertices can be partitioned into disjoint layers L0, L1, . . . , Lk such that: (i) L0 only contains
the sink. (ii) If x ∈ Li, where i > 0, then there is a directed path of length at most ` in A
from x to some vertex y ∈ Lj , for j < i. (iii) If x ∈ Li, then there is no directed path in A
from x to any vertex y ∈ Lj , for j > i.

ICALP 2016



51:12 Random-Edge Is Slower Than Random-Facet on Abstract Cubes

I Lemma 25. If A is a (k, `)-decomposable AUSO then it is also (k, `)-layered.

Proof. Let B1, B2, . . . , Bk be the partition of the coordinates of A and let x be the sink
of A. For i = 0, 1, . . . k, let Li be the set of vertices that agree with x in all the coordinates
of Bi+1, Bi+2, . . . , Bk and differ from x in some coordinate of Bi. It is easy to check that all
conditions are met by using the fact that every vertex in a subcube of dimension ` has a
path of length at most ` to the sink of that subcube (see, e.g., [26, 16]). J

We next show that Random-Edge is fairly quick on layered AUSOs.

I Lemma 26. The expected number of steps that Random-Edge performs on a (k, `)-layered
n-AUSO, from any starting vertex, is at most k`n`.

Proof. We show that the expected number of steps per layer is at most `n`, which proves
the lemma. From every vertex in the current layer there is at least one path of length ` to a
lower layer. Random-Edge follows this path with a probability of at least 1/n`. Therefore
the expected number of trials before successfully following such a path is at most n`, and
since each trial uses at most ` steps, the total expected number of steps is at most `n`. J

We note that the n-AUSOs used to obtain our 2Ω(
√
n logn) lower bound are (k, `)-layered

for k = O(
√
n logn) and ` = O(

√
n/ logn). Lemma 26 therefore shows that the expected

number of steps performed by Random-Edge on our AUSOs is at most 2O(
√
n logn), which

means that our analysis of these AUSOs is tight up to a constant factor in the exponent.
Moreover, to improve the lower bound it is necessary to construct n-AUSOs that are not
(2O(
√
n logn), O(

√
n/ logn))-layered, or, more generally, not (k, `)-layered for any choice of k

and ` such that k`n` = 2O(
√
n logn). No such AUSOs are currently known to exist. Similarly,

to improve on the 1.8n upper bound of Hansen et al. [16] it is enough to prove that every
n-AUSO is (2cn, dn/ logn)-layered, for c+ d < 0.847 < log2 1.8.

The lower bound of Friedmann et al. [9] uses AUSOs that simulate a binary counter.
A t-bit counter is simulated by (t, n/t)-decomposable n-AUSO. The lower bound obtained
using such AUSOs is roughly 2t. As (t, n/t)-decomposable n-AUSO are also (t, n/t)-layered,
we get using Lemma 26 that the best lower bound that can be obtained using such AUSOs
is min{2t, nn/t+1}, which attains a maximum value of about 2Θ(

√
n logn) when t =

√
n logn.

A notion of the niceness of AUSOs and USOs, which is related to the notions of de-
composable and layered AUSOs was defined by Welzl [35]. Gärtner and Thomas [14] have
independently observed that the AUSOs used to obtain our lower bound are

√
n logn-nice

and therefore cannot be used to obtain further improved lower bounds.

8 Concluding remarks and open problems

We proved a 2Ω(
√
n logn) lower bound on the number of steps performed by Random-Edge

on some AUSOs. The two obvious open problems are proving a 2o(n) upper bound and an
improved lower bound of 2ω(

√
n logn). We believe that radically new techniques would be

needed to prove a lower bound of 2ω(
√
n logn). Another interesting open problem is improving

the 2Ω(n1/4) lower bound of [9] for AUSOs that correspond to actual linear programs.
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Michael W. Mahoney1, Satish Rao2, Di Wang3, and Peng Zhang4

1 International Computer Science Institute and Department of Statistics, UC
Berkeley, Berkeley, USA
mmahoney@stat.berkeley.edu

2 Department of Electrical Engineering and Computer Sciences, UC Berkeley,
Berkeley, USA
satishr@berkeley.edu

3 Department of Electrical Engineering and Computer Sciences, UC Berkeley,
Berkeley, USA
wangd@eecs.berkeley.edu

4 Department of Computer Science, Georgia Tech, Atlanta, USA
pzhang60@gatech.edu

Abstract
We study the problem of approximately solving positive linear programs (LPs). This class of
LPs models a wide range of fundamental problems in combinatorial optimization and operations
research, such as many resource allocation problems, solving non-negative linear systems, com-
puting tomography, single/multi commodity flows on graphs, etc. For the special cases of pure
packing or pure covering LPs, recent result by Allen-Zhu and Orecchia [2] gives Õ( 1

ε3 )-time par-
allel algorithm, which breaks the longstanding Õ( 1

ε4 ) running time bound by the seminal work
of Luby and Nisan [10].

We present new parallel algorithm with running time Õ( 1
ε3 ) for the more general mixed

packing and covering LPs, which improves upon the Õ( 1
ε4 )-time algorithm of Young [18, 19].

Our work leverages the ideas from both the optimization oriented approach [2, 17], as well as
the more combinatorial approach with phases [18, 19]. In addition, our algorithm, when directly
applied to pure packing or pure covering LPs, gives a improved running time of Õ( 1

ε2 ).
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1 Introduction

Mixed packing and covering linear programs (LPs) are LPs formulated with non-negative
coefficients, non-negative constraints and non-negative variables. They model a wide range of
fundamental problems in combinatorial optimization and operations research, thus have long
drawn interest in theoretical computer science [10, 18, 2, 1]. Notable special cases include
pure packing LPs and pure covering LPs, which apply to most resource allocation problems,
and can be formulated respectively as maxx≥0{cTx : Ax ≤ b} and minx≥0{cTx : Ax ≥ b}
where c,A, b ≥ 0. More general than the pure packing and covering LPs, the mixed packing
and covering LPs further capture problems requiring both packing and covering constraints,
including solving non-negative linear systems, computing tomography, and single/multi
commodity flows on graphs.
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Formally, the mixed packing and covering LP is the optimization problem

min{λ : Px ≤ λp,Cx ≥ c,x ≥ 0} (1)

where P,C ,p, c all have non-negative entries. A (1 + ε)-approximation is a feasible solution
λ,x achieving λ ≤ (1 + ε)λOPT.

Although one can use general LP solvers such as interior point method to solve packing
and covering with convergence rate of log( 1

ε ) [8, 9, 5], such algorithms usually have very high
per-iteration cost, as methods such as the computation of the Hessian and matrix inversion
are involved. With the abundance of large-scale datasets, as well as the growing reliance
on multiprocessors and cloud computing, low precision iterative solvers that can be highly
parallelized are often more popular choices. Such parallel solvers compute approximate
solutions usually in time with a poly-log dependence on the problem size, and nearly-linear
total work, but they have poly( 1

ε ) dependence on the approximation parameter ε.
Based on whether the running time depends on the width ρ, a parameter which typically

depends on the dimension and the largest entry of A, these algorithms can be divided into
width-dependent solvers and width-independent solvers. Width-dependent solvers are usually
pseudo-polynomial, as the running time depends at least linearly on ρOPT, which itself can
be large, while width-independent solvers are more efficient in the sense that they provide
truly polynomial-time approximation solvers.

In this paper we focus on width-independent algorithms that produce 1+ε approximations
in poly(logn, 1

ε ) time and nearly-linear work. Time and work are standard notions from
parallel algorithms that correspond to the longest chain of dependent operations and the
total operations performed. In particular, time has a natural correspondence with iteration
count, and these two measures have been used to study the performance of packing/covering
LPs before [19]. Since the focus of this line of work is not on optimizing the log factors,
we will follow the standard practice of using Õ to hide poly-log factors (which are at most
log3 n) in our discussion1.

1.1 Previous work
Most of the works on mixed packing and covering LPs, as well as the works on the special cases
of pure packing and pure covering LPs, take one of the two approaches. The first approach is
based on turning the constrained LPs into convex and smooth objective functions with trivial
or no constraints. Approximately solving the LP is then reduced to approximately optimizing
the smoothed function (see [13]), and general-purpose optimization schemes are usually
applied directly. This approach traditionally gives algorithms that work in more general
settings, but are width-dependent in the case of packing and covering (e.g., [12, 3, 13, 16]).
Recent breakthroughs in [2, 1] leverage the insight from optimization ([21]) and the special
structure of packing and covering problems, and get the first width-independent algorithms
using first order optimization methods. In particular, [2] gives a parallel algorithm that
takes Õ( 1

ε3 ) time and Õ(Nε3 ) work. Here N is the size of the input, i.e., the total number
of non-zeros in the constraint matrices P and C . The result can be improved to run in
Õ( 1

ε2 ) time and Õ(Nε2 ) work with simple modifications [17]. As for sequential algorithms,
the remarkable result in [1] combines width-independence with Nesterov-like acceleration
([13, 14]), and gets a randomized algorithm with running time Õ(Nε ). However, both results

1 Õ(f(n)) is often used to denote O(f(n) logO(1)(f(n))), we modify it to include an additional factor of
logO(1) n.
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in [2, 1] are limited to pure packing and pure covering problems, and prior to our work no
methods are able to obtain a time of Õ( 1

ε3 ) or better for mixed covering and packing LPs [19].
The other approach is based on the Lagrangian-relaxation framework, where, similar

to the optimization approach, certain hard constraints are replaced by a soft scalar-value
penalty function, and the partial solution is iteratively updated to satisfy the remaining
constraints while minimizing the increase of the penalty function. The analysis of the
Lagrangian-relaxation algorithms have more of a combinatorial flavor compared to the
optimization schemes. Examples include the seminal work of Luby and Nisan [10], which
gives the first width-independent algorithm for packing and covering, as well as subsequent
works which improve the Luby and Nisan result in various ways [6, 18, 19, 7, 4, 11]. Among
them, only [18, 19, 11] work with mixed packing and covering LPs, while others only work in
the pure packing and pure covering setting. For algorithms working on mixed packing and
covering, the results in [18, 19] have the best theoretical guarantee on parallel running time,
with Õ( 1

ε4 ) running time and Õ(Nε2 ) total work. The result in [11] has worse bounds, but is
stateless, which is a computational model on distributed algorithms with more restrictions
on the processors (see [4]).

1.2 Our results

In this paper, we present a parallel algorithm that, given a mixed packing and covering LP
with m variables and n total constraints, in Õ( 1

ε3 ) iterations computes a (1 + ε)-approximate
solution, or correctly reports the original mixed packing and covering LP is infeasible. The
algorithm is deterministic and width-independent.

The bottleneck of each iteration is a matrix-vector multiplication, and can be implemented
in O(logN) depth, in which case the running time of our algorithm is Õ( 1

ε3 ). The total work
of the algorithm we present in the paper is Õ(Nε3 ). In particular, our result improves upon
the current fastest parallel algorithm of mixed packing and covering LPs in [18, 19], where
the running time is Õ( 1

ε4 ). The work of the parallel algorithm in [18, 19] is Õ(Nε2 ). We note
that using a simple lazy update modification on the algorithm, which is the same technique
used in [18, 19], we can reduce the work of our algorithm to Õ(Nε2 ). Same as in [18, 19], this
comes at the cost of requiring a centralized step in the parallel algorithm. Since the iteration
count is the more interesting side of this line of work, we will not incorporate the lazy update
in our algorithm for simplicity.

Furthermore, in the case of pure packing problem or pure covering problem, our algorithm
allows a similar but simplified analysis, and will converge in Õ( 1

ε2 ) iterations. This matches
the running time achieved by the line of work [2, 17], but has the advantage of being
deterministic and without centralized steps. We note that the technique we use in the
analysis of the potential function in this work can be applied in a straightforward way to
improve the result of [2] to have Õ( 1

ε2 ) running time.

2 Technical overview

To compute (1 + ε)-approximation of a mixed packing and covering LP in the optimization
form (1), via standard reduction and scaling (e.g., see [18]), it suffices to solve a (1 +O(ε))-
feasibility problem as specified in (3) and (4).

At a high level, our work follows the Lagrangian-relaxation approach as in [18, 19]. In
particular, we replace the hard packing and covering constraints with a scalar-valued potential
function, which is continuous and smooth. The potential function measures how far away
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the current solution is from satisfying all the captured constraints. As in [18], we use the
soft-max lmax(Px) and soft-min lmin(Cx) in our potential function

lmax(Px) = ln(
∑
j

exp(Px)j), and lmin(Cx) = − ln(
∑
j

exp(−Cx)j).

In particular, these functions give smooth approximation to maxj(Px)j and minj(Cx)j :

max
j

(Px)j ≤ lmax(Px) ≤ max
j

(Px)j + lnn

min
j

(Cx)j ≥ lmin(Cx) ≥ min
j

(Cx)j − lnn.
(2)

The potential function we use will be

f(x) = lmax(Px)− lmin(C (t)x),

which is approximately the difference between maxj(Px)j and minj(Cx)j .
The overall framework is to start with a x of very small values, and iteratively increase x

while keeping f(x) small. Roughly, when x is large enough so that

max{max
j

(Px)j ,min
j

(Cx)j} ≥
1
ε
f(x),

we know that maxj(Px)j ≤ (1 +O(ε)) minj(Cx)j .
Same as in [18, 19], each iteration a subset of the variables are picked based on the

gradients of the potential function, and are updated within a local smooth region so we can
bound the change of the potential function. In particular, for each variable xi we compute
the packing gradient ai = ∇i lmax(Px), and the covering gradient bi = ∇i lmin(Cx). We
want to update variables without increasing f(x), and since ∇if(x) = ai − bi, a variable
will be included in the update subset only when its covering gradient bi is larger than its
packing gradient ai.

However, unlike the parallel algorithm in [18, 19] that multiplicatively updates all variables
in the subset with a uniform step size, we further incorporate the gradients a and b into step
sizes of individual variables’ updates. This discriminative multiplicative step size allows more
aggressive updates on average, and is directly motivated by the line of works using gradient
based optimization methods [2, 1, 17]. However, we move away from the optimization
oriented view of these update steps in favor of more localized and adhoc analyses, which was
developed to analyze direct adaptations of Young’s algorithm for purely-packing SDPs [15],
leading to bounds similar to the optimization based approaches [20].

Similar to Young’s algorithm [18], the overall progress of the algorithm is captured by
how large the constraints become. A sufficient termination condition for the algorithm is
when a variable is increased by more than a certain amount, so we know maxj(Px)j and
minj(Cx)j are large enough. To bound the number of iterations before any variable gets too
large, we combine the notion of phases from [18] with the more refined analysis of gradient
updates from more recent works [17]. This is owing to the clearer combinatorial structure of
our interpretation of discriminative multiplicative steps.

On a high level, the analysis considers phases, where each phase is a consecutive sequence
of iterations. The definition of a phase captures a local window, where the algorithm only
makes limited global progress. The limited global progress ensures that inside a single phase
the landscape doesn’t change too much, which translate to certain monotonicity-like property
on the gradients within the interactions captured by a single phase. In [18], each phase
is defined to cover very little overall progress, which gives a very strong monotonicity-like
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property. In particular, any variable being increased at the last iteration of a phase must
have been increased in every iteration of the phase, which, coupled with a lower bound on
each increase, gives a bound of the number of iterations in a phase.

In our analysis, we significantly expand the phases to capture larger global progress,
leading to a smaller number of phases. The larger phases lead to a weaker monotonicity-like
property on the gradients within a phase, and we develop a new approach to bound the
number of iterations in our phase. We divide the iterations into two groups: some initial
warm-up bad iterations followed by subsequent good iterations containing more interesting
segments of the path to convergence (see Definition 7 for formal definitions). The bad
iterations are ones where packing gradients are much smaller than covering gradients. These
are the easy iterations to deal with, since a small ratio of the packing gradient over the
covering gradient is a clear signal to increase a variable by a lot. An analysis identical to
Young’s algorithm [18] shows that they must occur near the very start of a phase, and there
cannot be too many of them. In the subsequent good iterations, the packing gradients for
all variables are relatively large comparing to their covering counterparts. These iterations
capture the more difficult part of the path to convergence, since we only get weak signals as
to which variables to update, and we can only increase them by small steps. We can show
that as long as the problem is feasible, there cannot be too many good iterations in a phase.
Intuitively, if the primal LP is feasible, the dual solution certifies that there must be some
key variable(s) we increase during the phase to achieve the fixed global progress. Particularly,
we know that there is at least one variable that on average has smaller packing gradients
than covering gradients. Moreover, since in the good iterations, the packing gradients are all
at least on the same scale as the covering gradients, an argument in the spirit of Markov’s
inequality then implies that the corresponding variable was increased by a large amount,
which in turn leads to a bound on the number of iterations of a phase.

2.1 Remarks
We note that the phases in our result are virtual: we only need them in the analysis, but
not in the actual execution of the algorithm. In particular, this modification to Young’s
algorithm [18] removes the dependency of updates on the phase of the overall algorithm as
well as the current gradient. We believe this direct removal of phases also apply to other
variants of Young’s algorithm [19].

Furthermore, we believe that there is a more natural variant of the analysis that does
not rely on phases, and treats all the iterations in a completely symmetric manner. Such an
analysis is likely crucial for extending our results to the SDP setting, where the gradients
exhibit much weaker monotonicity behaviors [20]. We are optimistic that it will lead to
an Õ( 1

ε2 ) bound for the mixed packing-covering case, which we believe is the more likely
asymptotic behaviors of phase-less, gradient update variants of Young’s algorithm [18, 19].

3 Parallel Algorithm for Mixed Packing and Covering LPs

3.1 Preliminaries
To compute (1 + ε)-approximation of a mixed packing and covering LP in the optimization
form (1), via standard reduction and scaling (e.g., see [18]), it suffices to solve the following
(1 +O(ε))-feasibility problem, that is, either find x ≥ 0 such that

0 < max
j

(Px)j ≤ (1 + ε) min
j

(Cx)j . (3)
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or conclude the following LP is infeasible

Cx ≥ 1
Px ≤ (1− 10ε)1

x ≥ 0.
(4)

We present our parallel Õ(1/ε3) routine in Algorithm 1 for solving the (1 +O(ε))-feasibility
problem above, that is, either find x ≥ 0 satisfying (3), or certify the infeasibility of (4).
The input contains a packing constraint matrix P ∈ RnP×m≥0 , a covering constraint matrix
C ∈ RnC×m≥0 , and an error parameter ε > 0. That is, there are m variables, nP packing
constraints, and nC covering constraints. We also use n = nP + nC to denote the total
number of constraints.

To certify that (4) is infeasible, we rely on the dual LP of (4).

I Lemma 1. By duality, (4) is infeasible if there exists y, z ≥ 0 s.t.

(1− 10ε)CT z
1T z

<
PTy
1Ty

. (5)

Proof. Eqn. (5) is a direct reformulation of the dual LP of (4). Since we only need the
sufficient condition, the result is by weak duality. If there exists any x ≥ 0 satisfying (4), we
have

(1− 10ε)xTCT z
1T z

≥(1− 10ε)1T z
1T z

= 1− 10ε,

xTPTy
1Ty

≤(1− 10ε)1Ty
1Ty

= 1− 10ε.

Together they give 1 < 1, contradiction. J

3.2 Algorithm

We start with small x(0)
i = 1

m‖P:,i‖∞
,∀ i ∈ [m], and keep increasing x properly, until it reaches

the termination condition in line 4, that is, max{maxj(Px)j ,minj(Cx)j} ≥ K = 10 lnn
ε .

The reason of the chosen K value is stated in Lemma 5.
In each iteration of the while-loop, we first delete all covering constraints which have

already reached K. Since x never decreases, we know that once a row is deleted, we no longer
need to look at it. Note the covering matrix cannot be empty, since we enter the iteration
with minj(Cx)j < K. We compute the vectors y, z, which are exponentials of the values of
the packing and covering constraints respectively. We then compute a and b, which can be
considered as gradients of lmax(Px) and lmin(Cx) respectively, and use them to guide our
update on x. In particular, we update xi if ai ≤ (1− ε/50)bi (i.e., i ∈ B). Furthermore, we
update xi multiplicatively by a factor depends on the ratio of ai

bi , as specified in Eqn. (6) and
line 12. Note that the smallest update in our algorithm is by a factor of (1 + Ω( ε2

lnn )), which
is the same as the fixed update step size in [19], and in general our updates take larger steps.

Note that in our analysis, we equivalently view z as the full nC -dimensional vector, where
the coordinates corresponding to deleted constraints are filled by 0’s. In particular, the
matrix-vector product of the original C with the nC-dimensional z will be the same as the
product of the reduced covering matrix C (t) and reduced z.
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Algorithm 1 Parallel algorithm for mixed packing and covering LPs
Input: P,C , ε

Output: “infeasible" or x ≥ 0 s.t. maxj(Px)j ≤ (1 + ε) minj(Cx)j

1: Let K = 10 lnn
ε , α = 1

K , where n is the number of constraints.
2: Initialize x(0)

i = 1
m‖P:,i‖∞

,∀ i ∈ [m], where m is the number of variables.
3: Let t = 0.
4: while maxj(Px)j < K and minj(Cx)j < K do
5: Let C (t) be C with rows j such that

(
Cx(t))

j
≥ K deleted.

6: Let y(t) = exp
(
Px(t)) , z(t) = exp

(
−C (t)x(t)

)
.

7:
8: a(t) = PT y(t)

1T y(t) , b(t) = (C(t))T z(t)

1T z(t) .
9: Define B(t) = {i : a(t)

i ≤ (1− ε
50 )b(t)

i }.
10: If B(t) = ∅, then return “infeasible".
11: Let

∆(t)
i =

 1
2 (1− a(t)

i

b(t)
i

) ∈ [ε/100, 1
2 ] if i ∈ B(t)

0 if i 6∈ B(t)
(6)

12: x(t+1)
i ← x(t)

i (1 + α∆(t)
i ).

13: t← t+ 1.
14: end while
15: return x = x(t)

K .

3.3 Proof of Correctness
In this section we will show Algorithm 1 will terminate, and output the correct answer.

Lemma 2 shows that empty B certifies the infeasibility of the input instance (4), which
proves the correctness if we end up in the case of line 10.

I Lemma 2. If the problem instance (4) is feasible, then

∀ x ≥ 0, B = {i : ai ≤ (1− ε

50)bi} 6= ∅.

Proof. Assume by contradiction, ∃ x ≥ 0,∀ i ∈ [m],a(t)
i > (1 − ε

50 )b(t)
i . By definition of

a, b, it is equivalent to ∃ y, z ≥ 0 such that

(1− ε

50)CT z
1T z

<
PTy
1Ty

.

Then the result follows directly from Lemma 1. J

If Algorithm 1 does not terminate with line 10, it must increase at least one variable by at
least a factor of (1 + ε2

10 lnn ) each iteration, so the algorithm must reach the termination
condition of the while loop at some point, and we need to show the output x satisfies (3).
Recall that we use the potential function,

f(x(t)) = lmax(Px(t))− lmin(C (t)x(t)) = ln(1Ty(t)) + ln(1T z(t)).
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We first quantify the changes of lmax and lmin when we update the variables. This type of
smoothness analysis is standard in analyzing algorithms that make updates using gradient
information. Similar results are derived in other works on packing and covering (see [2, 18]).
The particular analysis we develop can deal with larger gradient steps. In particular, the
approach of our analysis allows updates that may move the gradients of some variables
out of their respective coordinate-wise smooth regions, as long as we can still bound the
combined impact on the potential function from updates of all variables. This approach
can extend straightforwardly to show larger updates also work in [2], and improve their
pure packing algorithm to run in Õ( 1

ε2 ) iterations. Since the proof is straightforward but
technically tedious, we omit it.

I Lemma 3. At each iteration t,

lmax(Px(t+1)) ≤ lmax(Px(t)) + α〈a(t), (1 + ∆(t)) ◦∆(t) ◦ x(t)〉

and

lmin(C (t+1)x(t+1)) ≥ lmin(C (t)x(t)) + α〈b(t), (1−∆(t)) ◦∆(t) ◦ x(t)〉,

where ∆ ◦ x is the entry-wise product vector, i.e., (∆ ◦ x)i = ∆ixi.

With the above bounds on the changes of the two components lmax(Px) and lmin(Cx), we
can show how our updates move the potential function f(x).

I Lemma 4. Given maxj(Px(t))j < 10 lnn
ε and minj(Cx(t))j < 10 lnn

ε , we always have
f(x(t)) ≤ 2 lnn during the execution of Algorithm 1.

Proof. Initially, x(0)
i = 1

m‖P:,i‖∞
, we have Px(0) ≤ 1 and Cx ≥ 0, thus f(x(0)) ≤ 2 lnn.

To show f(x) ≤ 2 lnn for all iterations t before terminate, it suffices to show that f(x) is
non-increasing during the process. From Lemma 3,

f(x(t+1))− f(x(t)) ≤ α〈a, (1 + ∆) ◦∆ ◦ x(t)〉 − α〈b, (1−∆) ◦∆ ◦ x(t)〉

=
∑
i

α∆ixi(ai(1 + ∆i)− bi(1−∆i)).

For each i ∈ [m], by our update rule (6), either ∆i, or ∆i = 1
2 (1− ai

bi ), in which case

ai(1 + ∆i)− bi(1−∆i) = 3aibi − a2
i

2bi
− ai + bi

2 = 2aibi − a2
i − b2

i

2bi
≤ 0,

so all the summands are non-positive, thus f(x) is non-increasing. J

The above lemma guarantees that the difference between lmax(Px) and lmin(Cx) is bounded
by 2 lnn, which by Eqn. (2) suggests maxj(Px)j ≤ minj(Cx)j +O(lnn). Then when the
two terms are large at termination, we are approximately feasible as the difference is a factor
of ε smaller.

I Lemma 5. If Algorithm 1 terminates with line 15, then it returns an x ≥ 0 with 0 <
maxj(Px)j ≤ (1 + ε) minj(Cx)j.

Proof. Suppose the algorithm terminates at iteration T , that is, maxj(Px(T ))j ≥ 10 lnn
ε or

minj(Cx(T ))j ≥ 10 lnn
ε . Consider iteration T−1, the covering matrix is not empty (otherwise,

the algorithm terminates before iteration T ). Since x(T ) = x(T−1) ◦ (1 + α∆(T−1)) ≤
(1 + 5ε

lnn )x(T−1), we have maxj(Px(T−1))j ≥ 5 lnn
ε or minj(Cx(T−1))j ≥ 5 lnn

ε .
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By Lemma 4,

max
j

(Px(T−1))j ≤ lmax(Px(T−1)) ≤ lmin(C (T−1)x(T−1)) + 2 lnn

≤min
j

(Cx(T−1))j + 2 lnn.

Since 2 lnn ≤ ε · 5 lnn
ε , we have

max
j

(Px(T−1))j ≤ (1 + ε) min
j

(Cx(T−1))j .

This also gives maxj(Px(T ))j ≤ (1 + ε) minj(Cx(T ))j , since xT is within in multiplicative
factor 1 + ε

10 lnn of xT−1. Since we start with x > 0, and only increase x, we also have
maxj(Px)j > 0. So the x we return at the end satisfies (3). J

3.4 Analysis of Convergence
So far we have proved that Algorithm 1 will terminate, and will either output x satisfying (3)
at the end, or terminate earlier and correctly certify (4) is infeasible. In this section we show
that if (4) is feasible, Algorithm 1 must finish with the first case in Õ( 1

ε3 ) iterations, so if
the algorithm takes more than 1000 lnn ln(mε )

ε3 iterations to complete, we can terminate it, and
correctly output that (4) is infeasible.

We adapt the concept phase from Young’s algorithm. Note phase is only used in our
analysis, and our algorithm does not contain phase. Formally, phase s contains the iterations
t such that

nP
nC
· 2s ≤ 1Ty(t)

1T z(t) <
nP
nC
· 2s+1

where nP is the number of packing constraints and nC is the number of covering constraints.
Since we only increase x, 1T y

1T z is monotonically increasing, so each phase covers a con-
secutive sequence of iterations. Furthermore, as ln( 1T y

1T z ) = lmax(Px) + lmin(Cx) measures
global progress towards termination, each phase captures a fixed amount of progress. From
our definition of phases, and the termination condition, we have the following lemma.

I Lemma 6. The total number of phases in Algorithm 1 is O( logn
ε ).

Proof. Since x is monotonically increasing, y = exp(Px) and z = exp(−Cx) are mono-
tonically increasing and decreasing respectively, which implies that the quantity 1T y

1T z is
monotonically increasing. Initially Px(0) ≥ 0,Cx(0) ≥ 0, we know 1T y(0)

1T z(0) ≥ nP
nC

. By the
termination condition in Algorithm 1, the ratio never goes beyond nP exp( 10 logn

ε ). Therefore,
the total number of phases is O( logn

ε ). J

We now bound the number of iterations in a single phase. The iterations of a phase are
divided into two groups, the bad iterations and the good iterations, formally defined as
follows.

I Definition 7. If in an iteration t, we have for all i

a(t)
i

b(t)
i

>
1
3 , (7)

then we call it a good iteration. Otherwise we call it a bad iteration.
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Note that it is also possible for a phase to contain only bad iterations or only good iterations.
We bound the total number of iterations in the two groups separately.

As discussed earlier, the bad iterations capture the initial warm-up iterations of a phase,
where in any bad iteration, we can identify some variable xi with a strong signal (i.e., ai

bi ≤
1
3 ),

so we can increase the variable by a lot. This restricts the warm-up sequence from getting
too long, and we formalize the intuition in the following lemma.

I Lemma 8. In a single phase, the number of bad iterations is at most O(lnn ln(mε )/ε).

Proof. We will prove the result by showing that there cannot be any bad iteration after the
initial 100 lnn ln(mε )/ε iterations of a phase. By contradiction, if for any variable i, after
Ω(lnn ln(mε )/ε) iterations of a phase, we have at iteration t such that for some i,

a(t)
i

b(t)
i

= (PTy(t))i
1Ty(t)

1T z(t)

(CT z(t))i
≤ 1

3 ,

then this ratio is at most 2
3 in all previous iterations of this phase, since (PT y)

i

(CT z)
i

is monotonically

increasing, and 2s ≤ 1T y
1T z < 2s+1 in this phase. Equivalently, this is saying ai ≤ 2

3 bi, so i ∈ B
in all previous Ω(lnn ln(mε )/ε) iterations of the phase, and ∆i ≥ 1

6 in all those iterations.
Each iteration the multiplicative update on xi is (1 +α∆i), which is (1 + Θ( ε

10 lnn )) since
∆i ≥ 1

6 . As xi starts with 1
m‖P:,i‖∞

, after 100 lnn ln(mε )/ε updates, we have xi � 10 lnn
ε‖P:,i‖∞

,
which gives maxj(Px)j � 10 lnn

ε , so the algorithm must have terminated. J

The above lemma guarantees that all iterations after the first 100 lnn ln(mε )/ε must be good
iterations, so we proceed to bound the number of these good iterations in a single phase.
Without loss of generality, we index these good iterations in a phase as 1, . . . , T by shifting t.

We first identify one variable that must be updated extensively in these iterations.

I Lemma 9. Suppose the instance (4) is feasible, then There exists i ∈ [m] such that

T∑
t=1

b(t)
i − a(t)

i ≥ 10ε
T∑
t=1

b(t)
i . (8)

Proof. Define y and z to be the sum of the normalized gradients of iterations 1, . . . , T , that
is,

y =
T∑
t=1

y(t)

1Ty(t) , z =
T∑
t=1

z(t)

1T z(t) .

Note 1Ty = 1T z = T . Recall a(t)
i and b(t)

i are respectively (PT y(t))i
1T y(t) and (CT z(t))i

1T z(t) , then

T∑
t=1

a(t)
i = T (PTy)i

1Ty
,

T∑
t=1

b(t)
i = T (CT z)i

1T z
.

Assume by contradiction, ∀ i ∈ [m],
∑T
t=1 a(t)

i > (1− 10ε)
∑T
t=1 b(t)

i , that is,

PTy
1Ty

> (1− 10ε)CT z
1T z

.

By Lemma 1, y, z certify infeasibility of the instance (4), which contradicts the assumption.
J
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The above claim gives us a variable that on average has smaller packing gradients than
covering gradients in this iteration. Together with the property we have on the good
iterations (7), we can bound the number of good iterations.

I Lemma 10. In a single phase, the number of good iterations is at most O(lnn ln(mε )/ε2).

Proof. Let xi be a variable satisfying Eqn. (8). We want to turn Eqn. (8) into some lower
bound on the total multiplicative update on xi through these iterations. Intuitively, a bad
case is that in some iteration t, a(t)

i , b(t)
i are much larger than the values in other iterations,

since they can dominate the terms from other iterations in Eqn. (8), but not much to the
total update of xi, since their ratio is what matters to the update. However, since we are
inside one single phase, and only looking at good iterations, we can show the bad scenario
will not show up.

Formally, let l = a(1)
i and u = b(1)

i . Since (PTy)i monotonically increases, and 1Ty will
increase but not by more than a factor of 2 in a phase, we have

a(t)
i = (PTy(t))i

1Ty(t) ≥ l/2 ∀t = 1, . . . , T. (9)

Similarly, we have

b(t)
i = (CT z(t))i

1T z(t) ≤ 2u ∀t = 1, . . . , T. (10)

Furthermore, since we are looking at the good iterations, we have

l ≥ 1
3u. (11)

The inequalities above allow us to turn the difference-based guarantee from Eqn. (8) into
lower bounds on ratios we need.

By the update (6), we have

∆(t)
i ≥

(1− ε
50 )b(t)

i − a(t)
i

2b(t)
i

.

So we can lower bound the total update on xi as follows

x(T )
i ≥x(1)

i exp
(
α
∑
t ∆(t)

i

2

)

=x(1)
i exp

(
α

4
∑
t

(1− ε
50 )b(t)

i − a(t)
i

b(t)
i

)

≥x(1)
i exp

(
α

4
∑
t

(
b(t)
i − a(t)

i

2u − ε

50

))
where we used (10) in the last line.

From Eqn. (8), we have∑
t

b(t)
i − a(t)

i ≥10ε
∑
i

b(t)
i

≥ 10ε
1− 10ε

∑
t

a(t)
i

≥ εuT

1− 10ε ≥ εuT.
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The first two lines both follow from Eqn. (8), the next line follows from a(t)
i ≥ l/2 ≥ u/6.

Thus

x(T )
i ≥ x(1)

i exp
(
εαT

8 − εαT

200

)
≥ 1
m ‖P:,i‖∞

exp
(
εαT

10

)
.

If T ≥ 100 lnn ln m
ε

ε2 ≥ 100 ln m
ε

εα , we have x(T )
i � 10 lnn

ε‖P:,i‖∞
. So the algorithm must have

terminated since maxj(Px)j � 10 lnn
ε . J

Lemma 8 and Lemma 10 bound the total number of iterations in a phase by Õ( 1
ε2 ), together

with the bound on the number of phases, which is Õ( 1
ε ), we guarantee the total number of

iterations in Algorithm 1 is Õ( 1
ε3 ) if the LP in (4) is feasible.

I Theorem 11. Algorithm 1 solves the (1+ ε)-feasibility problem correctly. It runs in parallel
time Õ(1/ε3) with the total work Õ(N/ε3), where N is the number of non-zero entries in the
constraint matrix.

Proof. The correctness and convergence follows from the lemmas in the prior sections. We
only need to look at the running time and total work.

At each iteration, we compute all updated values in O(logN) parallel time. Since the
total number of iterations is Õ( 1

ε3 ), the algorithm terminates in parallel time Õ( 1
ε3 ).

To see the total work, consider the following implementation. For each i ∈ [m], we
maintain Pjixi if Pij 6= 0; similarly we maintain C jixi if C ij 6= 0. Besides, we maintain
the values of y, z,PTy,CT z,1Ty and 1T z. When we update xi, we update these values
accordingly, with work proportional to the number of non-zero entries in the ith column
of the constraint matrix. For each fixed variable xi, the total time of updates is at most
Õ( 1

ε2 ). Thus, the work on this part is Õ(Nε2 ). Additionally, we need to compute the ai, bi for
all variables at the beginning of each iteration to determine which variables to update, this
takes Õ(N) work each iteration, so the total work is Õ(Nε3 ). J

I Remark. We see the majority of the work is actually on computing the gradients for the
variables we may not update. We point out that we can implement the same lazy update
as in [19], which on a high level is just that if a variable has a large ai

bi in an iteration, and
is not updated, we do not recompute its gradients, until 1T y

1T z grows by more than a factor
of 1 + ε. This can reduce the work to Õ(Nε2 ), but requires a centralized step to control the
phases. We omit the details as it is a straightforward adaptation.

4 Pure Packing and Pure Covering LPs

We point out that in the case of pure packing or pure covering LPs, Algorithm 1 converges in
Õ( 1

ε2 ) iterations. This improves upon the result of [17], since our algorithm is deterministic,
and does not need centralized steps.

The analysis follows the same approach as the mixed case, but the result of Lemma 10 can
be improved to bound the total number of good iterations over all phases by O(lnn ln(mε )/ε2),
since for pure packing (or pure covering) LPs, the ai’s (or the bi’s) are constants through
the algorithm. We omit the details as the proof is a straightforward adaptation.
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Abstract
We study two fundamental problems in computational geometry: finding the maximum inscribed
ball (MaxIB) inside a bounded polyhedron defined bym hyperplanes, and the minimum enclosing
ball (MinEB) of a set of n points, both in d-dimensional space. We improve the running time of
iterative algorithms on

MaxIB from Õ(mdα3/ε3) to Õ(md+m
√
dα/ε), a speed-up up to Õ(

√
dα2/ε2), and1

MinEB from Õ(nd/
√
ε) to Õ(nd+ n

√
d/
√
ε), a speed-up up to Õ(

√
d) .

Our improvements are based on a novel saddle-point optimization framework. We propose a
new algorithm L1L2SPSolver for solving a class of regularized saddle-point problems, and apply
a randomized Hadamard space rotation which is a technique borrowed from compressive sensing.
Interestingly, the motivation of using Hadamard rotation solely comes from our optimization view
but not the original geometry problem: indeed, it is not immediately clear why MaxIB or MinEB,
as a geometric problem, should be easier to solve if we rotate the space by a unitary matrix. We
hope that our optimization perspective sheds lights on solving other geometric problems as well.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity – geo-
metrical problems and computations

Keywords and phrases maximum inscribed balls, minimum enclosing balls, approximation algo-
rithms

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.53

1 Introduction

The goal of this paper is to bridge the fields of optimization and computational geometry
using a simple unified saddle-point framework. As two immediate products of this new
connection, we obtain faster iterative algorithms to approximately solve two fundamental
problems in computational geometry: the maximum inscribed ball problem (MaxIB) and the

∗ This is an abstract of our full paper at http://arxiv.org/abs/1412.1001 [3]. The first version of this
paper appeared in December 2014 but contains only the smooth convex optimization based algorithms.
The second version of this paper appeared in December 2015 and already contains all the technical
details of this present paper.

1 α ≥ 1 is the aspect ratio of the polyhedron. Throughout this paper we use the Õ notation to hide
logarithm factors such as logm, log d, logα, and log(1/ε).
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minimum enclosing ball problem (MinEB). Our methods are composed of simple updating
rules on vectors and therefore do not require geometric operations that are found in classical
algorithms. This is another example of surprisingly good results obtained using optimization
insights following the current trend of theoretical computer science.

In the rest of this introduction, we describe the definitions of the MaxIB and MinEB
problems and review prior work. In the next three sections, we describe our saddle-point
formulation and algorithms for MaxIB and MinEB.

Maximum Inscribed Ball (MaxIB). In the MaxIB problem, we are given a polyhedron P
in Rd defined by m halfspaces {H1, . . . ,Hm}. Each halfspace Hj is characterized by a linear
constraint 〈Aj , x〉+ bj ≥ 0. As in prior work [20], we assume that P is bounded (so m ≥ d)
and a common point is known to be contained in P – without loss of generality, let it be the
origin O. Let α ≥ 1 be an upper bound on the aspect ratio of P , i.e., the ratio between the
radii of the minimum enclosing ball and the maximum inscribed ball of P , and ε > 0 be a
desired error bound.

The goal of MaxIB is to find a point x ∈ P such that its minimum distance to all the
bounding hyperplanes Hj is at least (1 − ε)ropt, where ropt is the radius of a maximum
inscribed ball of P .

Besides the applications in computational geometry, MaxIB has also been used in the
column generation method [13] and the sphere method [14] for linear programming, and the
central cutting-plane method for convex programming [9].

When the dimension is a constant, the ε-kernel technique (see the survey [1]) yields a
linear-time approximation algorithm for MaxIB based on core-set construction. However, its
running time is proportional to ε−Ω(d). In high dimensions, finding the maximum inscribed
ball remains a challenging problem in theoretical computer science and operations research.
One can reduce this problem to a linear program [9] and rely on existing LP solvers, however,
the so-obtained algorithm can be too slow for practical purposes (although still in polynomial
time).

In an influential paper, Xie, Snoeyink, and Xu [20] obtained an approximation algorithm
for MaxIB with running time O(mdα3/ε3 +mdα logα) = Õ(mdα3/ε3). Their algorithm is
based on a number of interesting geometric observations, as well as a dual transformation
to reduce the MaxIB problem to a sequence of minimum enclosing ball (MinEB) instances,
which they solve by applying known core-set techniques [6, 12]. Unfortunately, their cubic
dependence on α and 1/ε undermines the practical applicability of their algorithm.

In Section 3, we use saddle-point optimization techniques to obtain an algorithm
MaxIBSPSolver with running time Õ

(
md + m

√
dα/ε

)
. In other words, we reduce the

dependence on both α and 1/ε from cubic to linear, and improve the running time by a
factor up to

√
dα2/ε2. We emphasize that our improvement could be significant in the views

of theoretical computer scientists, operations researchers, as well as experimentalists:
In theoretical computer science, one usually views α and ε as large constants so our
improvement can be seen as Ω̃(

√
d) if one ignores the input reading time O(md).

In operations research or statistics, one usually concentrate on the convergence rate which
is the ε dependence (recall that the seminal work of Nesterov is only to reduce 1/ε to
1/
√
ε [15]). Our improvement in this paper is from 1/ε3 to 1/ε.

In practice, if α is 10 for the polyhedron, ε is 10%, and the dimension d = 100, our
method could potentially be 105 times faster than that of [20]. We leave it a future work
to inspect the practical performance of our method on real-life datasets.

In the full version of this paper [3], we also apply convex (rather than saddle-point)
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optimization and obtain a parallel algorithm MaxIBConvexSolver with slightly slower total
running time Õ(mdα/ε). However, in terms of parallel running time (i.e., the number of par-
allelizable iterations, a classical benchmark used by iterative solvers [4]), MaxIBConvexSolver
improves the result of [20] by a factor Ω̃(α2/ε2).

Minimum Enclosing Ball (MinEB). In the MinEB problem, we are given a set {a1, a2,

. . . , an} ⊆ Rd of points in the d-dimensional space and are asked to find a point x ∈ Rd so
that its maximum distance to all the n points is at least (1 + ε)Ropt, where Ropt is the radius
of a minimum enclosing ball that contains all the points in this set.

As originally studied by Sylvester in [18], the problem of MinEB has found numerous
applications in fields such as data mining, learning, statistics, and computer graphics. In
particular, the relationship between MinEB and support vector machines (SVMs) has been
recently emphasized by [11, 10, 7, 17]. Efficient algorithms for this problem are both of
theoretical and practical importance.

If the dimension d is constant, the algorithm of Welzl [19] solves MinEB exactly in linear
time. Unfortunately, its dependency on d is exponential.

For large dimensions, a sequence of works based on the core-set technique [6, 12, 5, 21, 7]
has given algorithms whose best known running time is O(nd/ε). This running time is tight
for the core-set technique, as, in the worst-case, the size of a coreset of MinEB is at least
Ω(1/ε) [5]. Another type of algorithm due to Clarkson, Hazan, and Woodruff [8] achieves a
running time of Õ(n/ε2 + d/ε). This algorithm is fast for large values of ε, but may not be
suitable for very small ε. All these cited algorithms converge at best in O(1/ε) iterations.

Recently, Saha, Vishwanathan, and Zhang [17] designed two algorithms for MinEB
that successfully overcame this 1/ε barrier. Using our ε-notation for multiplicative er-
ror, they give one algorithm which works in the `2-norm and achieves a running time of
O(ndQ/

√
ε), and another algorithm which works in the `1-norm and achieves a running

time of O(nd
√

lognL/
√
ε). While the values of Q and L depend on the input structure,

we observe that Q can be as large as O(
√
n), while L is never larger than a constant. In

other words, their proposed algorithms have worst-case running times O(n1.5d/
√
ε) and

O(nd
√

logn/
√
ε). The key component behind the result of Saha, Vishwanathan, and Zhang

is the excessive gap framework of Nesterov [16], which is a primal-dual first-order approach
for structured non-smooth optimization problems.

In Section 4, we rewrite MinEB as a saddle-point optimization problem, and obtain an
algorithm MinEBSPSolver that runs in Õ(nd+ n

√
d/
√
ε). This is faster than the previous

algorithm [17] by a factor up to
√
d, and faster than the popular core-set algorithm by a

factor up to
√
d/
√
ε.

As an additional result, in the full version of this paper [3], we also observe that MinEB
can be directly formulated as a convex (rather than saddle-point) optimization problem,
and get an algorithm MinEBConvexSolver matching the running time of [17] but with much
simpler analysis.

Remark. For both MaxIB and MinEB, one can also use interior-point types of algorithms
to obtain a convergence rate of log(1/ε). However, this fast convergence rate comes at the
cost of having expensive iterations: each iteration typically requires solving a linear equation
system in the input size, making it impractical for very-large-scale inputs. Therefore, in this
paper, we choose to focus on iterative methods whose iterations run in nearly-linear time.
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1.1 Our Techniques

Our MaxIBSPSolver and MinEBSPSolver rely on (min-max) saddle-point optimization to
solve MaxIB and MinEB respectively. More specifically, we reduce MaxIB and MinEB to
solving the regularized saddle-point program:

max
x∈Rd

min
y∈∆m

1
d
yTAx+ 1

d
yT b+ λH(y)− γ

2 ‖x‖
2
2 ,

where H(·) is the entropy function over m-dimensional probabilities vectors, and λ, γ > 0
are fixed regularization parameters. We call this `1-`2 saddle-point optimization because,
borrowing language from optimization, this objective is strongly convex with respect to the
`1 norm on the y side and strongly concave with respect to the `2 norm on the x side.

To solve this saddle-point problem efficiently, we iteratively update x and y. In particular,
in each iteration we update x by a random coordinate, and update y fully using multiplicative
weight updates. Therefore, this method can be viewed as an accelerated, coordinate-based,
first-order method for saddle-point optimization. To the best of our knowledge, the only
previously known accelerated, coordinate-based method on saddle-point optimization was
SPDC [22], one of the state-of-the-art algorithms used for empirical risk minimizations in
machine learning. We call our algorithm L1L2SPSolver.

A Surprising Hadamard Rotation. Unfortunately, solely applying L1L2SPSolver does not
solve MinEB or MaxIB fast enough. In particular, the running time of L1L2SPSolver relies
on the largest absolute values of A’s entries. If the entries of A are very non-uniform – say,
with a few very large entries and mostly small ones – the performance could be somewhat
unsatisfactory. (In particular, we no longer have a

√
d factor speed-up.)

To overcome this difficulty, we apply a randomized Hadamard transformation on A to
uniformize its entries, so that all entries of A are relatively small. This transformation
is inspired by the fast Johnson-Lindenstrauss transform [2] proposed for numerical linear
algebra and compressive sensing purposes, and is another crucial ingredient behind our
running time improvements.

Surprisingly, this Hadamard rotation comes solely from our optimization view but not the
geometry. Indeed, it is not immediately clear why MaxIB or MinEB, as geometric problems,
should be easier to solve if we rotate the space by a unitary (Hadamard) matrix.

Our Contributions. We summarize the main contributions of this paper as follows:
We provide significantly faster algorithms on MaxIB and MinEB.
This is the first time coordinate-based saddle-point optimization algorithm is applied to
MaxIB, MinEB, or perhaps to any computational geometry problem.
Since the `1-`2 saddle-point problem seems very natural, our L1L2SPSolver method can
potentially lead to other applications in the future.
The speed-up we obtained from the Hadamard rotation is an algebraic technique but
applied to geometric problems. It sheds lights on solving perhaps more geometric problems
faster using optimization insights.

2 Main Body of This Paper

We defer all the mathematical details of this paper to http://arxiv.org/abs/1412.1001 [3].

http://arxiv.org/abs/1412.1001
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Abstract
We study weighted α-fair packing problems, that is, the problems of maximizing the objective
functions (i)

∑
j wjx

1−α
j /(1−α) when α > 0, α 6= 1 and (ii)

∑
j wj ln xj when α = 1, over linear

constraints Ax ≤ b, x ≥ 0, where wj are positive weights and A and b are non-negative. We con-
sider the distributed computation model that was used for packing linear programs and network
utility maximization problems. Under this model, we provide a distributed algorithm for general
α that converges to an ε−approximate solution in time (number of distributed iterations) that
has an inverse polynomial dependence on the approximation parameter ε and poly-logarithmic
dependence on the problem size. This is the first distributed algorithm for weighted α-fair packing
with poly-logarithmic convergence in the input size. The algorithm uses simple local update rules
and is stateless (namely, it allows asynchronous updates, is self-stabilizing, and allows incremen-
tal and local adjustments). We also obtain a number of structural results that characterize α-fair
allocations as the value of α is varied. These results deepen our understanding of fairness guaran-
tees in α-fair packing allocations, and also provide insight into the behavior of α-fair allocations
in the asymptotic cases α→ 0, α→ 1, and α→∞.
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1 Introduction

Over the past two decades, fair resource allocation problems have received considerable
attention in many application areas, including Internet congestion control [32], rate control in
software defined networks [36], scheduling in wireless networks [45], multi-resource allocation
and scheduling in datacenters [12, 20, 24, 21], and a variety of applications in operations
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In this paper, we focus on the problem of finding an α-fair vector on the set determined
by packing constraints Ax ≤ 1, x ≥ 0 where all Aij ≥ 0.1 We refer to this problem as α-fair
packing. For a vector of positive weights w and α ≥ 0, an allocation vector x∗ of size n is
weighted α-fair , if it maximizes pα(x) =

∑
j wjfα(xj) [38], where:

fα(xj) =

ln(xj), if α = 1
x1−α
j

1−α , if α 6= 1
. (1)

α-fairness provides a trade-off between efficiency (sum of allocated resources) and fairness
(minimum allocated resource) as a function of α: the higher the α, the higher the fairness and
the lower the efficiency [4, 11, 31]. Important special cases are max-min fairness (α→∞) and
proportional fairness (α = 1). When α = 0, we have the “unfair” case of linear optimization.

Distributed algorithms for α-fair packing are of particular interest, as many applications
are inherently distributed (e.g., network congestion control), while others require paralleliza-
tion due to the large problem size (e.g., resource allocation in datacenters). We adopt the
model of distributed computation commonly used in packing linear programming (LP) algo-
rithms [7, 3, 8, 29, 33, 41] and which generalizes the model from network congestion control
[26]. In this model, an agent j controls the variable xj and has information about: (i) the
jth column of the m×n constraint matrix A, (ii) the weight wj , (iii) upper bounds on global
problem parameters m,n,wmax, and Amax, where wmax = maxj wj , and Amax = maxij Aij ,
and (iv) in each round, the relative slack of each constraint i in which xj takes part.

Distributed algorithms for α-fair resource allocations have been most widely studied in the
network congestion control literature, using a control-theoretic approach [25, 26, 45, 38, 32].
Such an approach yields continuous-time algorithms that converge after “finite” time; however,
the convergence time of these algorithms as a function of the input size is poorly understood.
Some other distributed pseudo-polynomial-time approximation algorithms that can address
α-fair packing are described in Table 1. These algorithms all have convergence times that
are at least linear in the parameters describing the problem.

No previous work has given truly fast (poly-log iterations) distributed algorithms for
the general case of α-fair packing. Only for the unfair α = 0 case (packing LPs), are such
algorithms known [7, 33, 8, 46, 29, 3].

Our Results. We provide the first efficient, distributed, and stateless algorithm for weighted
α-fair packing, namely, for the problem max{pα(x) : Ax ≤ 1, x ≥ 0}, where distributed
agents update the values of xj ’s asynchronously and react only to the current state of the
constraints. We assume that all non-zero entries Aij of matrix A satisfy Aij ≥ 1. Considering
such a normalized form of the problem is without loss of generality (see Appendix A in [35]).

The approximation provided by the algorithm, to which we refer as the ε-approximation,
is (i) (1 + ε)-multiplicative for α 6= 1, and (ii) Wε-additive2 for α = 1, where W =

∑
j wj .

The main results are summarized in the following theorem, where, to unify the statement of
the results, we treat α as a constant that is either equal to 1 or bounded away from 0 and 1,
and we also loosen the bound in terms of ε−1, n,m,Rw = maxj,k wj/wk, and Amax. For a
more detailed statement, see Theorems 4.1–4.3.

1 Although in the network congestion control literature A is commonly assumed to be a 0-1 matrix
[25, 26, 45, 38, 32], important applications (such as, e.g., multi-resource allocation in datacenters) are
modeled by a more general constraint matrix A with arbitrary non-negative elements [12, 20, 24, 21].

2 Note that W cannot be avoided here, as additive approximation is not invariant to the objective scaling.
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I Theorem 1.1 (Main Result). Given a weighted α-fair packing problem max{
∑
j wjfα(xj) :

Ax ≤ 1, x ≥ 0}, there exists a stateless and distributed algorithm (α-FairPSolver) that
computes an ε-approximate solution in O(ε−5 ln4(RwnmAmaxε

−1)) rounds.

To the best of our knowledge, for any constant approximation parameter ε, our algorithm
is the first distributed algorithm for weighted α-fair packing problems with a poly-logarithmic
convergence time.3 The algorithm is stateless according to the definition given by Awerbuch
and Khandekar [7, 6]: it starts from any initial state, the agents update the variables xj in a
cooperative but uncoordinated manner, reacting only to the current state of the constraints
that they observe, and without access to a global clock. Statelessness implies various desirable
properties of a distributed algorithm, such as: asynchronous updates, self-stabilization, and
incremental and local adjustments [7, 6].

We also obtain the following structural results that characterize α-fair packing allocations
as a function of the value of α:

We derive a lower bound on the minimum coordinate of the α-fair packing allocation
as a function of α and the problem parameters (Lemma 4.12). This bound deepens our
understanding of how the fairness (a minimum allocated value) changes with α.
We prove that for α ≤ ε/4

ln(nAmax/ε) , α-fair packing can be O(ε)−approximated by any
ε−approximation packing LP solver (Lemma 4.13).
We show that for |α−1| = O(ε2/ln2(ε−1RwmnAmax)), α-fair allocation is ε−approximated
by a 1−fair allocation returned by our algorithm (Lemmas 4.14 and 4.15).
We show that for α ≥ ln(RwnAmax)/ε, the α-fair packing allocation x∗ and the max-min
fair allocation z∗ are ε-close to each other: (1− ε)z∗ ≤ x∗ ≤ (1 + ε)z∗ element-wise. This
result is especially interesting as (i) max-min fair packing is not a convex problem, but
rather a multi-objective problem (see, e.g., [27, 43]) and (ii) the result yields the first
convex relaxation of max-min fair allocation problems with a 1± ε gap.

We now overview some of the main technical details of α-FairPSolver. In doing so, we
point out connections to the two main bodies of previous work, from packing LPs[7] and
network congestion control [25]. We also outline the new algorithmic ideas and proofs.

The algorithm and KKT conditions. The algorithm maintains primal and dual feasible
solutions and updates each primal variable xj whenever a Karush-Kuhn-Tucker (KKT)
condition xj

α
∑
i yiAij = wj is not approximately satisfied. In previous work, relevant

update rules include: [25] (for α = 1), where the update of each variable xj is proportional
to the difference wj − xj

∑
i yiAij , and [7] (for α = 0), where each xj is updated by a

multiplicative factor 1± β, whenever
∑
i yiAij = wj is not approximately satisfied. For our

techniques (addressing a general α) such rules do not suffice and we introduce the following
modifications: (i) in the α < 1 case we use multiplicative updates by factors (1 + β1) and
(1− β2), where β1 6= β2 and (ii) we use additional threshold values δj to make sure that xj ’s
do not become too small. These thresholds guarantee that we maintain a feasible solution,
but they significantly complicate (compared to the linear case) the argument that each step
makes a significant progress.

3 The total amount of work per (distributed) round is linear in the number of non-zero entries of the
constraint matrix A, which matches the best bound achieved in previous work on distributed packing
LPs [7, 33, 8, 46, 29, 3] and distributed network utility maximization [9, 39].
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Table 1 Comparison among distributed algorithms for α-fair packing.

Paper Number of Distributed Iterations4 Statelessness Notes
[15] Ω(ε−1nAmax) Semi-stateless5 Only for α = 1
[9] Ω(ε−1mnAmax

2) Not stateless
[39] poly(ε−1,m, n,Amax) Semi-stateless

[this work] O(ε−5ln4(RwmnAmax/ε)) Stateless

Dual Variables. In α-FairPSolver, a dual variable yi is an exponential function of the ith

constraint’s relative slack: yi(x) = C · eκ(
∑

j
Aijxj−1), where C and κ are functions of global

input parameters α,wmax, n,m, and Amax. Packing LP algorithms [7, 3, 42, 8, 18, 17, 28]
use similar dual variables with C = 1. Our work requires choosing C to be a function of
α,wmax, n,m,Amax rather than a constant.

Convergence Argument. The convergence analysis of α-FairPSolver relies on the appro-
priately chosen concave potential function that is bounded below and above for xj ∈ [δj , 1],
∀j, and that increases with every primal update. The algorithm can also be interpreted
as a gradient ascent on a regularized objective function (the potential function), using a
generalized entropy regularizer (see [3, 1]). A similar potential function was used in many
works on packing and covering linear programs, such as, e.g., in [7] and (implicitly) in
[46]. The Lyapunov function from [25] is also equivalent to this potential function when
yi(x) = C · eκ(

∑
j
Aijxj−1), ∀i. As in these works, the main idea in the analysis is to show

that whenever a solution x is not “close” to the optimal one, the potential function increases
substantially. However, our work requires several new ideas in the convergence proofs, the
most notable being stationary rounds. A stationary round is roughly a time when the
variables xj do not change much and are close to the optimum. Poly-logarithmic convergence
time is then obtained by showing that: (i) there is at most a poly-logarithmic number of
non-stationary rounds where the potential function increases additively and the increase is
“large enough”, and (ii) in all the remaining non-stationary rounds, the potential function
increases multiplicatively. Our use of stationary rounds is new, as is the use of Lagrangian
duality and all the arguments that follow (see [35] for a detailed discussion).

Relationship to Previous Work. Very little progress has been made in the design of
efficient distributed algorithms for the general class of α-fair objectives. Classical work
on distributed rate control algorithms in the networking literature uses a control-theoretic
approach to optimize α-fair objectives. While such an approach has been extensively studied
[25, 26, 45, 38, 32], it has never been proven to lead to a polynomial convergence time.

Since α-fair objectives are concave, their optimization over a region determined by linear
constraints is solvable in polynomial time in a centralized setting through convex programming
(see, e.g., [13, 40]). Distributed gradient methods for network utility maximization problems,
such as e.g., [9, 39] summarized in Table 1, can be applied to α-fair packing. However, the
convergence times of these algorithms depend on the dual gradient’s Lipschitz constant to
produce good approximations. While [9, 39] provide a better dependence on the accuracy ε
than our work, the dependence on the dual gradient’s Lipschitz constant, in general, leads to
at least linear convergence time as a function of n, m, and Amax.

As mentioned before, some special cases have been addressed, particularly max-min
fairness (α → ∞) and packing LPs (α = 0). Relevant work on max-min fairness includes
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[10, 22, 30, 27, 37, 34, 14], but none of these works have poly-logarithmic convergence time.
There is a long history of interesting work on packing LPs in both centralized and distributed
settings, e.g., [1, 42, 28, 18, 7, 33, 8, 46, 29, 3, 19]. Only a few of these works are stateless,
including the packing LP algorithm of Awerbuch and Khandekar [7], flow control algorithm
of Garg and Young [19], and the algorithm of Awerbuch, Azar, and Khandekar [5] for the
special case of load balancing in bipartite graphs. Additionally, the packing LP algorithm of
Allen-Zhu and Orecchia [3] is “semi-stateless”; the lacking property to make it stateless is
that it requires synchronous updates. The α = 1 case of α-fair packing problems is equivalent
to the problem of finding an equilibrium allocation in Eisenberg-Gale markets with Leontief
utilities [15]. Similar to the aforementioned algorithms, the algorithm from [15] converges in
time linear in ε−1 but also (at least) linear in the input size (see Table 1).

2 Preliminaries

Weighted α-Fair Packing. Consider the following optimization problem with positive
linear (packing) constraints: (Qα) = max{pα(x) ≡

∑n
j=1 wjfα(xj) : Ax ≤ b, x ≥ 0}, where

fα(xj) is given by (1), x = (x1, . . . , xn) is the vector of variables, A is an m× n matrix with
non-negative elements, and b = (b1, . . . , bm) is a vector with strictly positive6 elements. We
refer to (Qα) as the weighted α-fair packing. The following definition and lemma introduced
by Mo and Walrand [38] characterize weighted α-fair allocations. In the rest of the paper,
we will use the terms weighted α-fair and α-fair interchangeably.

I Definition 2.1 ([38]). Let w be a vector with positive entries and α > 0. A vector x is
weighted α-fair, if it is feasible and for any other feasible vector x:

∑n
j=1 wj

xj−x∗j
x∗
j
α ≤ 0.

I Lemma 2.2 ([38]). A vector x∗ solves (Qα) if and only if it is weighted α-fair.

Notice in (Qα) that since bi > 0, ∀i, and the partial derivative of the objective with
respect to any of the variables xj goes to ∞ as xj → 0, the optimal solution must lie in
the positive orthant. Moreover, since the objective is strictly concave and maximized over
a convex region, the optimal solution is unique and (Qα) satisfies strong duality (see, e.g.,
[13]). The same observations are true for the scaled version of the problem denoted by (Pα)
and introduced in the following subsection.

Normalized Form. We consider weighted α-fair packing in the normalized form:

(Pα) = max
{
pα(x) : Ax ≤ 1, x ≥ 0

}
,

where pα(x) =
∑n
j=1 wjfα(xj), fα is defined by (1), w = (w1, . . . , wn) is a vector of positive

weights, x = (x1, . . . , xn) is the vector of variables, A is an m× n matrix with non-negative
entries, and 1 is a size-m vector of 1’s. We let Amax denote the maximum element of the
constraint matrix A, and assume that every entry Aij of A is non-negative, and moreover,
that Aij ≥ 1 whenever Aij 6= 0. The maximum weight is denoted by wmax and the minimum
weight is denoted by wmin. The sum of the weights is denoted byW and the ratio wmax

wmin
by Rw.

We remark that considering (Qα) in the normalized form (Pα) is without loss of generality:
any problem (Qα) can be scaled to this form by (i) dividing both sides of each inequality
i by bi and (ii) working with scaled variables c · xj , where c = min{1, min{i,j:Aij 6=0}

Aij
bi
}.

Moreover, such scaling preserves the approximation (see [35]).

6 If, for some i, bi = 0, then trivially xj = 0, for all j such that Aij 6= 0.

ICALP 2016
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Model of Distributed Computation. We adopt the same model of distributed computation
as [7, 3, 8, 29, 33, 41], described as follows. We assume that for each j ∈ {1, . . . , n}, there
is an agent controlling the variable xj . Agent j is assumed to have information about the
following problem parameters: (i) the jth column of A, (ii) the weight wj , and (iii) (an
upper bound on) m,n,wmax, and Amax. In each round, agent j collects the relative slack7
1−

∑n
j=1 Aijxj of all constraints i for which Aij 6= 0.

We remark that this model of distributed computation is a generalization of the model
considered in network congestion control problems [26] where a variable xj corresponds to the
rate of node j, A is a 0-1 routing matrix, such that Aij = 1 if and only if a node j sends flow
over link i, and b is the vector of link capacities. Under this model, the knowledge about the
relative slack of each constraint corresponds to each node collecting (a function of) congestion
on each link that it utilizes. Such a model was used in network utility maximization problems
with α-fair objectives [25] and general strongly-concave objectives [9].

KKT Conditions and Duality Gap. We will denote the Lagrange multipliers for (Pα) as
y = (y1, . . . , ym) and refer to them as “dual variables”. The KKT conditions for (Pα) are:

n∑
j=1

Aijxj ≤ 1, ∀i ∈ {1, . . . ,m}; xj ≥ 0, ∀j ∈ {1, . . . , n} (primal feasibility) (K1)

yi ≥ 0, ∀i ∈ {1, . . . ,m} (dual feasibility) (K2)

yi ·
( m∑
j=1

Aijxj − 1
)

= 0, ∀i ∈ {1, . . . ,m} (complementary slackness)

(K3)

xj
α
m∑
i=1

yiAij = wj , ∀j ∈ {1, . . . ,m} (gradient conditions) (K4)

The duality gap for α 6= 1 is (see Appendix B in [35]):

Gα(x, y) =
n∑
j=1

wj
xj

1−α

1− α
(
ξj

α−1
α − 1

)
+

m∑
i=1

yi −
n∑
j=1

wjx
1−α
j · ξj

α−1
α , (2)

where ξj = xj
α
∑m

i=1
yiAij

wj
, while for α = 1:

G1(x, y) = −
n∑
j=1

wj ln
(xj∑m

i=1yiAij
wj

)
+

m∑
i=1

yi −W. (3)

3 Algorithm

The pseudocode for the α-FairPSolver algorithm run at each node j is provided in Fig. 1.
The basic intuition is that the algorithm keeps KKT conditions (K1) and (K2) satisfied and
works towards (approximately) satisfying the remaining two KKT conditions (K3) and (K4)
to minimize the duality gap. The algorithm can run in the distributed setting described in
Section 2. In each round, an agent j updates the value of xj based on the relative slack of
all the constraints in which j takes part, as long as the KKT condition (K4) of agent j is
not approximately satisfied. The updates need not be synchronous: we will require that all
agents make updates at the same speed, but without access to a global clock.

7 The slack is “relative” because in a non-scaled version of the problem where one could have bi 6= 1,

agent j would need to have information about
bi−
∑n

j=1
Aijxj

bi
.
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α-FairPSolver(ε)
(Parameters δj , C, κ, γ, β1, and β2 are set as described in the text below the algorithm.)
In each round of the algorithm:

1: xj ← max{xj , δj}, xj = min{xj , 1}

2: Update the dual variables: yi = C · eκ
(∑n

j=1
Aijxj−1

)
∀i ∈ {1, . . . ,m}

3: if
xj
α·
∑m

i=1
yiAij

wj
≤ (1− γ) then

4: xj ← xj · (1 + β1)
5: else
6: if

xj
α·
∑m

i=1
yiAij

wj
≥ (1 + γ) then

7: xj ← max{xj · (1− β2), δj}

Figure 1 Pseudocode of α-FairPSolver algorithm.

To allow for self-stabilization and dynamic changes, the algorithm runs forever at all the
agents, which is a standard requirement for self-stabilizing algorithms (see, e.g., [16]). The
convergence of the algorithm is measured as the number of rounds between the round in
which the algorithm starts from some initial solution and the round in which it reaches an
ε−approximate solution, assuming that there are no hard reset events or node/constraint
insertions/deletions in between.

Without loss of generality, we assume that the input parameter ε that determines the
approximation quality satisfies ε ≤ min{ 1

6 ,
9

10α} for any α, and ε ≤ 1−α
α for α < 1. The

parameters δj , C, κ, γ, β1, and β2 are set as follows. For technical reasons (mainly due to
reinforcing dominant multiplicative updates of the variables xj), we set the values of the
lower thresholds δj below the actual lower bound of the optimal solution that we derive in
Lemma 4.12:

δj =
(

1
2 ·

wj
wmax

)1/α
·

{( 1
m·n2·Amax

)1/α
, if 0 < α ≤ 1

1
m·n2Amax2−1/α , if α > 1

.

We denote δmax ≡ maxj δj , δmin ≡ minj δj . The constant C that multiplies the exponent
in the dual variables yi is chosen as C = W∑n

j=1
δjα

. Because δj only depends on wj and on

global parameters, we also have C = wj
δjα

, ∀j. The parameter κ that appears in the exponent
of the yi’s is chosen as κ = 1

ε ln
(
CmAmax
εwmin

)
. The “absolute error” of (K4) γ is set to ε/4. For

α ≥ 1, we set β1 = β2 = β, where the choice of β is described below. For α < 1, we set
β1 = β, β2 = β2(ln( 1

δmin
))−1.

Similar to [7], we choose the value of β so that if we set β1 = β2 = β, in any round the
value of each xj

α
∑m

i=1
yi(x)Aij

wj
changes by a multiplicative factor of at most (1± γ/4). Since

the maximum increase over any xj in each iteration is by a factor 1 + β, and x is feasible in
each round (see Lemma 4.4), we have that

∑n
j=1 Aijxj ≤ 1, and therefore, the maximum

increase in each yi is by a factor of eκβ . A similar argument holds for the maximum decrease.
Hence, we choose β so that:

(1 + β)αeκβ ≤ 1 + γ/4 and (1− β)αe−κβ ≥ 1− γ/4,

and it suffices to set:

β =
{

γ
5(κ+1) , if α ≤ 1

γ
5(κ+α) , if α > 1

.
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I Remark. In the α < 1 cases, since β2 = β2(ln(1/δmin))−1, the maximum decrease in
xj
α
∑

i
yi(x)Aij
wj

is by a factor (1− (γ/4) · β(ln(1/δmin))−1), ∀j.

4 Convergence Analysis

In this section, we analyze the convergence time of α-FairPSolver. We first state our main
theorems and provide some general results that hold for all α > 0. We show that starting
from an arbitrary solution, the algorithm reaches a feasible solution within poly-logarithmic
(in the input size) number of rounds, and maintains a feasible solution forever after. Similar
to [7, 46, 25], we use a concave potential function that, for feasible x, is bounded below and
above and increases with any algorithm update. Then, we sketch the proof of Theorem 4.3
(α > 1), while we defer the full proofs of the three theorems to the full paper [35]. The
main proof idea in all the cases is as follows. With an appropriate definition of a stationary
round for each of the three cases α < 1, α = 1, and α > 1, we show that in every stationary
round, x approximates “well” the optimal solution by bounding the duality gap. On the
other hand, for any non-stationary round, we show that the potential increases substantially.
This large increase in the potential leads to the conclusion that there cannot be too many
non-stationary rounds, thus bounding the overall convergence time.

We make a few remarks here. First, we require that α be bounded away from zero. This
requirement is without loss of generality because we show that when α ≤ ε/4

ln(nAmax/ε) , any
ε−approximation LP provides a 3ε−approximate solution to (Pα) (Lemma 4.13). Thus,
when α ≤ ε/4

ln(nAmax/ε) we can switch to the algorithm of [7], and when α > ε/4
ln(nAmax/ε) , the

convergence time remains poly-logarithmic in the input size and polynomial in ε−1. Second,
the assumption that ε ≤ 1−α

α in the α < 1 case is also without loss of generality, because we
show that when α is close to 1 (roughly, 1−O(ε2/ ln2(RwmnAmax/ε))), we can approximate
(Pα) by switching to the α = 1 case of the algorithm (Lemma 4.14). Finally, when α > 1, the
algorithm achieves an ε−approximation in time O(α4ε−4 ln2(RwnmAmaxε

−1)). We believe
that a polynomial dependence on α is difficult to avoid in this setting, because by increasing
α, the gradient of the α-fair utilities fα blows up on the interval (0, 1): as α increases, fα(x)
quickly starts approaching a step function that is equal to −∞ on the interval (0, 1] and equal
to 0 on the interval (1,∞]. To characterize the behavior of α-fair allocations as α becomes
large, we show that when α ≥ ε−1ln(RwnAmax), all the coordinates of the α-fair vector are
within a 1 ± ε multiplicative factor of the corresponding coordinates of the max-min fair
vector (Lemma 4.17).

Main Results. Our main results are summarized in the following three theorems. The
objective is denoted by pα(x), xt denotes the solution at the beginning of round t, and x∗
denotes the optimal solution.

I Theorem 4.1 (Convergence for α < 1). α-FairPSolver solves (Pα) approximately for
α < 1 in time that is polynomial in ln(nmAmax)

αε . In particular, after at most

O
(
α−2ε−5 ln2 (RwmnAmax) ln2 (ε−1RwmnAmax

))
(4)

rounds, there exists at least one round t such that pα(x∗)− pα(xt) ≤ εpα(xt). Moreover, the
total number of rounds s in which pα(x∗)− pα(xs) > εpα(xs) is also bounded by (4).

I Theorem 4.2 (Convergence for α = 1). α-FairPSolver solves (P1) approximately in time
that is polynomial in ε−1 ln(RwnmAmax). In particular, after at most

O
(
ε−5 ln2 (RwnmAmax) ln2 (ε−1RwnmAmax

))
(5)



J. Marašević, C. Stein, and G. Zussman 54:9

rounds, there exists at least one round t such that p(x∗)− p(xt) ≤ εW . Moreover, the total
number of rounds s in which p(x∗)− p(xs) > εW is also bounded by (5).

I Theorem 4.3 (Convergence for α > 1). α-FairPSolver solves (Pα) approximately for
α > 1 in time that is polynomial in ε−1 ln(nmAmax). In particular, after at most:

O
(
α4ε−4 ln (RwnmAmax) ln

(
ε−1RwnmAmax

))
(6)

rounds, there exists at least one round t such that pα(x∗)− pα(xt) ≤ ε(−pα(xt)). Moreover,
the total number of rounds s in which pα(x∗)− pα(xs) > ε(−pα(xs)) is also bounded by (6).

Proofs of Theorem 4.1 and Theorem 4.2 are provided in the full paper [35]. We sketch
the proof of Theorem 4.3 in Section 4.1.

Feasibility and Approximate Complementary Slackness. The following three lemmas are
preliminaries for the convergence time analysis. Lemma 4.4 shows that starting from a
feasible solution, the algorithm always maintains a feasible solution. Lemma 4.5 shows that
any violated constraint becomes feasible within poly-logarithmic number of rounds, and
remains feasible forever after. Combined with Lemma 4.4, Lemma 4.5 allows us to focus
only on the rounds with feasible solutions x. Lemma 4.6 shows that after a poly-logarithmic
number of rounds, approximate complementary slackness (KKT condition (K3)) holds in an
aggregate sense:

∑m
i=1 yi(x)

(∑n
j=1 Aijxj − 1

)
≈ 0. Proofs are provided in [35].

I Lemma 4.4. If the algorithm starts from a feasible solution, then the algorithm maintains
a feasible solution x: xj ≥ 0, ∀j and

∑n
j=1 Aijxj ≤ 1, ∀i, in each round.

I Lemma 4.5. If for any i:
∑n
j=1 Aijxj > 1, then after at most τ1 = O( 1

β2
ln(nAmax))

rounds, it is always true that
∑n
j=1 Aijxj ≤ 1.

I Lemma 4.6. If the algorithm starts from a feasible solution, then after at most τ0 =
1
β ln

(
1

δmin

)
rounds, it is always true that:

1. At least one constraint is approximately tight: maxi
{∑n

j=1 Aijxj
}
≥ 1− (1 + 1/κ)ε,

2.
∑m
i=1 yi ≤ (1 + 3ε)

∑n
j=1 xj

∑m
i=1 yiAij, and

3. (1− 3ε)
∑m
i=1 yi ≤

∑n
j=1 xj

∑m
i=1 yiAij ≤

∑m
i=1 yi.

Lemmas analogous to 4.4 and 4.6 also appear in [7]. However, the proofs of Lemmas 4.4
and 4.6 require new ideas compared to the proofs of the corresponding lemmas in [7]. We
need to be much more careful in our choice of lower thresholds δj and constant C in the
dual variables, particularly by choosing C as a function of several variables, rather than as a
constant. The choice of δj ’s is also sensitive as smaller δj ’s would make the potential function
range too large, while larger δj ’s would cause more frequent decrease of “small” variables. In
either case, the convergence time would increase.

Decrease of Small Variables. The following lemma is also needed for the convergence
analysis. It shows that if some variable xj decreases by less than a multiplicative factor
(1−β2), i.e., xj < δj

1−β2
and xj decreases, then xj must be part of at least one approximately

tight constraint. This lemma will be used later to show that in any round the increase in
the potential due to the decrease of “small” variables is dominated by the decrease of “large”
variables (i.e., the variables that decrease by a multiplicative factor (1− β2)). The proof of
Lemma 4.7 is provided in [35].
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I Lemma 4.7. Consider the rounds that happen after the initial τ1 = O( 1
β2

ln(nAmax))
rounds. If in some round there is a variable xj < δj

1−β2
that decreases, then in the same

round for some i with Aij 6= 0 it holds that: yi(x) ≥
∑m

l=1
Aljyl(x)

mAmax
and

∑n
k=1 Aikxk > 1− ε

2 .

Potential. We use the following potential function to analyze the convergence time:

Φ(x) = pα(x)− 1
κ

m∑
i=1

yi(x),

where pα(x) =
∑n
j=1 wjfα(xj) and fα is defined by (1). The potential function is strictly

concave and its partial derivative with respect to any variable xj is:

∂Φ(x)
∂xj

= wj
xjα
−

m∑
i=1

yi(x)Aij = wj
xjα

(
1−

xj
α
∑m
i=1 yi(x)Aij
wj

)
. (7)

The following fact (given in a similar form in [7]), which follows directly from the Taylor
series representation of concave functions, will be useful for the potential increase analysis:

I Fact 4.8. For a differentiable concave function f : Rn → R and any two points x0, x1 ∈ Rn:
n∑
j=1

∂f(x0)
∂xj

(x1
j − x0

j ) ≥ f(x1)− f(x0) ≥
n∑
j=1

∂f(x1)
∂xj

(x1
j − x0

j ).

Using Fact 4.8 and (7), we show the following lemma:

I Lemma 4.9. Starting with a feasible solution and throughout the course of the algorithm,
the potential function Φ(x) never decreases. Letting x0 and x1 denote the values of x before
and after a round update, respectively, the potential function increase is lower-bounded as:

Φ(x1)− Φ(x0) ≥
n∑
j=1

wj

∣∣x1
j − x0

j

∣∣
(x1
j )α

∣∣∣1− (x1
j )α
∑m
i=1 yi(x1)Aij
wj

∣∣∣.
4.1 Proof Sketch of Theorem 4.3
In this section, we outline the main ideas of the proof of Theorem 4.3, while the technical
details are omitted and are instead provided in [35]. First, we show that in any round of
the algorithm the variables that decrease by a multiplicative factor (1− β2) dominate the
potential increase due to all the variables that decrease (see Lemma 4.21 in [35]). This result
is then used in Lemma 4.10 to show the following lower bound on the potential increase:

I Lemma 4.10. Let x0 and x1 denote the values of x before and after any fixed round,
respectively, and let S+ = {j : x1

j > x0
j}, S− = {j : x1

j < x0
j}. The potential increase in the

round is lower bounded as:
1. Φ(x1)− Φ(x0) ≥ Ω(βγ)

∑
j∈{S+∪S−} x

0
j

∑m
i=1 yi(x0)Aij;

2. Φ(x1)− Φ(x0) ≥ Ω
(

β
(1−β)α

)(∑n
j=1 x

0
j

∑m
i=1 yi(x0)− (1 + γ)

∑n
j=1 wj(x0

j )1−α
)
;

3. Φ(x1)− Φ(x0) ≥ Ω
(

β
(1+β)α

)(
(1− γ)

∑n
j=1 wj(x0

j )1−α −
∑n
j=1 x

0
j

∑m
i=1 yi(x0)

)
.

Observe that for α > 1 the objective function pα(x), and, consequently, the potential
function Φ(x), is negative for any feasible x. To yield a poly-logarithmic convergence time in
Rw,m, n, and Amax, the idea is to show that the negative potential −Φ(x) decreases by some
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multiplicative factor whenever x is not a “good” approximation to x∗ – the optimal solution
to (Pα). This idea, combined with the fact that the potential never decreases (and therefore
−Φ(x) never increases) and with upper and lower bounds on the potential then leads to the
desired convergence time. Consider the following definition of a stationary round:

I Definition 4.11 (Stationary round). A round is stationary, if both:
1.
∑
j∈{S+∪S−} x

0
j

∑m
i=1 yi(x)Aij < γ

∑n
j=1 wj(x0

j )
1−α, and

2. (1− 2γ)
∑n
j=1 wj(x0

j )
1−α ≤

∑n
j=1 x

0
j

∑m
i=1 yi(x0)Aij ,

where S+ = {j : x1
j > x0

j}, S− = {j : x1
j < x0

j}. Otherwise, the round is non-stationary.

Recall the expression for the negative potential: −Φ(x) = 1
α−1

∑
j wjxj

1−α + 1
κ

∑
i yi(x).

Then, using Lemma 4.10, it suffices to show that in a non-stationary round the decrease
in the negative potential −Φ(x) is a multiplicative factor of the larger of the two terms

1
α−1

∑
j wjxj

1−α and 1
κ

∑
i yi(x). The last part of the proof shows that the solution x that

corresponds to any stationary round is close to the optimal solution. This part is done by
appropriately upper-bounding the duality gap. Denoting by S+ ∪ S− the set of coordinates
j for which xj either increases or decreases in the observed stationary round and using
Definition 4.11, we show that the terms j ∈ {S+ ∪ S−} contribute to the duality gap by
no more than O(εα) · (−pα(x)). The terms corresponding to j /∈ {S+ ∪ S−} are bounded
recalling (from α-FairPSolver) that for such terms xαj

∑m

i=1
yi(x)Aij

wj
∈ (1− γ, 1 + γ).

4.2 Structural Properties
Lower Bound on the Minimum Allocated Value. Recall (from Section 2) that the optimal
solution x∗ to (Pα) must lie in the positive orthant. We show in Lemma 4.12 that not only
does x∗ lie in the positive orthant, but the minimum element of x∗ can be bounded below as
a function of the problem parameters. This lemma motivates the choice of parameters δj in
α-FairPSolver (Section 3). The proof is provided in [35].

I Lemma 4.12. Let x∗ = (x∗1, . . . , x∗n) be the optimal solution to (Pα). Then ∀j ∈ {1, . . . , n}:
x∗j ≥

( wj
wmaxM

mini:Aij 6=0
1

niAij

)1/α, if 0 < α ≤ 1,

x∗j ≥ Amax
(1−α)/α( wj

wmaxM

)1/α mini:Aij 6=0
1

niAij
, if α > 1,

where ni =
∑n
j=1 1{Aij 6=0}

8 is the number of non-zero elements in the ith row of the constraint
matrix A, and M = min{m,n}.

Asymptotics of α-Fair Allocations. The following lemma states that for sufficiently small
(but not too small) α, the values of the linear and the α-fair objectives at their respective
optimal solutions are approximately the same. This statement will then lead to a conclusion
that to ε−approximately solve an α-fair packing problem for a very small α, one can always
use an ε−approximation packing LP algorithm.

I Lemma 4.13. Let (Pα) be an α-fair packing problem with optimal solution x∗, and (P0)
be the LP with the same constraints and the same weights w as (Pα) and an optimal solution
z∗. Then if α ≤ ε/4

ln(nAmax/ε) , we have that
∑
j wjz

∗
j ≥ (1− 3ε)

∑
j

(x∗j )1−α

1−α , where ε ∈ (0, 1/6].

8 With the abuse of notation, 1{e} is the indicator function of the expression e, i.e., 1 if e holds, and 0
otherwise.
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Observing that for any α ∈ (0, 1), (z∗j )1−α

1−α ≥ z∗j (since, due to the scaling, z∗j ∈ [0, 1]), a simple
corollary of Lemma 4.13 is that an ε−approximation z to (P0) (

∑
j wjzj ≥ (1− ε)

∑
j wjz

∗
j )

is also an O(ε)−approximation to (Pα), for α ≤ ε/4
ln(nAmax/ε) . Thus, to find an ε−approximate

solution for α ≤ ε/4
ln(nAmax/ε) , the packing LP algorithm of [7] can be run, which means that

there is a stateless distributed algorithm that converges in poly(ln(ε−1RwmnAmax)/ε) time
for α arbitrarily close to zero.

The following two lemmas show that when α is sufficiently close to 1, (Pα) can be
ε−approximated by ε−approximately solving (P1) with the same constraints and weights.

I Lemma 4.14. Let x be an ε−approximate solution to a 1-fair packing problem (P1) returned
by α-FairPSolver. Then, for any α ∈ [1− 1/τ0, 1), where τ0 = 1

β ln( 1
δmin

), x is also a
2ε−approximate solution to (Pα), where the only difference between (P1) and (Pα) is in the
value of α in the objective.

I Lemma 4.15. Let x be an ε−approximate solution to a 1-fair packing problem (P1) returned
by α-FairPSolver. Then, for any α ∈ (1, 1 + 1/τ0], where τ0 = 1

β ln( 1
δmin

), x is also a
2ε−approximate solution to (Pα), where the only difference between (P1) and (Pα) is in the
value of α in the objective.

Finally, we consider the asymptotics of α-fair allocations, as α becomes large. This result
complements the result from [38] that states that α-fair allocations approach the max-min
fair one as α→∞ by showing how fast the max-min fair allocation is reached as a function
of α,Rw, n, and Amax. First, for completeness, we provide the definition of max-min fairness.

I Definition 4.16. (Max-min fairness [10].) Let R ⊂ Rn+ be a compact and convex set.
A vector x ∈ R is max-min fair on R if for any vector z ∈ R it holds that: if for some
j ∈ {1, . . . , n} zj > xj , then there exists k ∈ {1, . . . , n} such that zk < xk and xk ≤ xj .

On a compact and convex set R ⊂ Rn, the max-min fair vector is unique [44, 43]. The
following lemma shows that for α ≥ ε−1 ln(RwnAmax), the α-fair vector and the max-min
fair vector are ε−close to each other. Notice that because of a very large gradient of pα(x)
as α becomes large, the max-min fair solution gives only an O(εα)−approximation to (Pα).

I Lemma 4.17. Let x∗ be the optimal solution to (Pα) = max{pα(x) : Ax ≤ 1, x ≥ 0}, z∗
be the max-min fair solution for the convex and compact set determined by the constraints
from (Pα). Then if α ≥ ε−1 ln (RwnAmax), we have that:
1. pα(x∗) ≤ (1− ε(α− 1))pα(z∗), i.e., z∗ is an ε(α− 1)−approximate solution to (Pα), and
2. (1− ε)z∗j ≤ x∗j ≤ (1 + ε)z∗j , for all j ∈ {1, . . . , n}.

5 Conclusion

We presented an efficient stateless distributed algorithm for the class of α-fair packing
problems. To the best of our knowledge, this is the first algorithm with poly-logarithmic
convergence time in the input size. Additionally, we obtained results that characterize the
fairness and asymptotic behavior of allocations in weighted α-fair packing problems that
may be of independent interest. An interesting open problem is to determine the class of
objective functions for which the presented techniques yield fast and stateless distributed
algorithms, together with a unified convergence analysis. This problem is especially important
in light of the fact that α-fair objectives are not Lipschitz continuous, do not have a Lipschitz
gradient, and their dual gradient’s Lipschitz constant scales at least linearly with n and Amax.
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Therefore, the properties typically used in fast first-order methods are lacking [40, 2]. Finally,
for applications of α-fair packing that do not require stateless updates, it seems plausible
that the dependence on ε−1 in the convergence bound can be improved from ε−5 to ε−3 by
relaxing the requirement for asynchronous updates, similarly as was done in [3] over [7].
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Abstract
Given an undirected, unweighted graph G on n nodes, there is an O(n2poly logn)-time algo-
rithm that computes a data structure called distance oracle of size O(n5/3poly logn) answering
approximate distance queries in constant time. For nodes at distance d the distance estimate is
between d and 2d+ 1.

This new distance oracle improves upon the oracles of Pǎtraşcu and Roditty (FOCS 2010),
Abraham and Gavoille (DISC 2011), and Agarwal and Brighten Godfrey (PODC 2013) in terms
of preprocessing time, and upon the oracle of Baswana and Sen (SODA 2004) in terms of stretch.
The running time analysis is tight (up to logarithmic factors) due to a recent lower bound of
Abboud and Bodwin (STOC 2016).

Techniques include dominating sets, sampling, balls, and spanners, and the main contribution
lies in the way these techniques are combined. Perhaps the most interesting aspect from a
technical point of view is the application of a spanner without incurring its constant additive
stretch penalty.
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1 Introduction

Given a graph G = (V,E) on n := |V | vertices, the All-Pairs Shortest Path (APSP)
problem asks for pairwise distances d(u, v) among all pairs of nodes u, v ∈ V . The fastest
known algorithms to compute these

(
n
2
)
distance values (in this paper, we restrict ourselves

to undirected, unweighted graphs) use fast matrix multiplication [16, 18, 29, 34] or run in
roughly cubic time [12, 20, 33, 37]. Depending on the number of edges m := |E|, computing n
independent shortest-path trees (breadth-first search trees for unweighted graphs) in O(mn)
may be faster.

Algorithms for All-Pairs Approximate Shortest Paths (APASP) trade accuracy for speed.
Their worst-case approximation guarantee is called stretch. Stretch (α, β) means that for
any pair of nodes u, v ∈ V at distance d the algorithm’s estimate is between d and α · d+ β

(typically, when β > 0, graphs are assumed to be unweighted or β depends on the largest
edge weight).

Aingworth, Chekuri, Indyk, and Motwani [5] introduced a technique to handle high-degree
nodes using dominating sets. They apply their technique to derive a (1, 2)-stretch algorithm
that runs in time Õ(n5/2) (as usual, Õ(·) hides logarithmic factors). Their dominating-set
technique has been used in many subsequent algorithms. Dor, Halperin, and Zwick [17]
improved the running time to Õ(min

{
n3/2m1/2, n7/3}). Furthermore, they also gave a

reduction, proving that an APASP algorithm with multiplicative stretch strictly less than 2
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55:2 All-Pairs Approximate Shortest Paths and Distance Oracle Preprocessing

Table 1 A selection of related work on the all-pairs approximate shortest path problem and
constant-time approximate distance oracles for unweighted graphs. Some results hold for weighted
graphs as well, and some methods guarantee better bounds for sparse graphs. To simplify the
comparison for dense graphs, the bounds in this table are for m = n2 (except for the sub-quadratic
algorithm of [6]). Stretch (α, β) means that for pairs at distance d the distance estimate is between d
and αd+ β.

Stretch Time Õ(·) Space Õ(·) Reference
(1,2) n5/2 n2 [5]
(1,2) n7/3 n2 [17]
(3,0) n2 n2 [15]
(3,0) n5/2 n3/2 [31]
(3,0) n2 n3/2 [8, 9]
(3,10) n23/12 +m n3/2 [6]
(2,1) n2 n2 [10]
(2,1) n8/3 n5/3 [7] (space implicit)
(2,3) n2 n5/3 [7] (space implicit)
(2,1) poly n5/3 [21]
(2,1) n2 n5/3 Theorem 1

or constant additive stretch serves as an algorithm for boolean matrix multiplication. After
this reduction, most research efforts have been focused on stretch 2 or higher. Cohen and
Zwick [15] provided various tradeoffs such as an Õ(n2) algorithm with stretch α = 3. Berman
and Kasiviswanathan [10] further improved the stretch to (2, 1). See also the survey by
Zwick [38].

A distance oracle is a compact representation of the AP(A)SP matrix of a graphG = (V,E).
The main quantities of interest are the construction time (also called preprocessing time), the
space consumption, the query time, and the stretch. Thorup and Zwick [31] coined the term
distance oracle, and they also provided an oracle with constant query time, multiplicative
stretch α = 3, space O(n3/2), and preprocessing time Õ(mn1/2), as well as more general
tradeoffs for all odd integers α > 3, which are not discussed any further in this paper.1 For
α = 3, their space bound is asymptotically optimal due to the existence of dense graphs
with large girth [11, 24, 32]. The preprocessing time was subsequently improved in a line
of work: Baswana and Sen [9] improved the preprocessing time to O(n2) for unweighted
graphs, Baswana and Kavitha [8] obtained O(n2) preprocessing time for weighted graphs,
and Baswana, Gaur, Sen, and Upadhyay [6] gave a sub-quadratic preprocessing algorithm
for stretch (3, 10). See also the survey by Sen [26].2

Is stretch α = 3 the best we can expect of a distance oracle with sub-quadratic space?
Pǎtraşcu and Roditty [21]3 provide an oracle with constant query time, stretch (2, 1),
space O(n5/3), and polynomial preprocessing time. The tradeoff between stretch and space
is asymptotically optimal assuming the hardness of set intersection [21, 22]. Less well known,
the work of Baswana, Goyal, and Sen [7] contains a data structure that is remarkably similar

1 For larger stretch values, Wulff-Nilsen [36] provides the fastest preprocessing times and Chechik [13, 14]
provides the fastest query times; for a survey, see [27].

2 Again for larger stretch values, Wulff-Nilsen [36] further improved the preprocessing times.
3 See also Abraham and Gavoille [2] for a distributed distance oracle, also known as a distance labeling

scheme, as well as Agarwal and Brighten Godfrey [4].
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to the distance oracle in the result of Pǎtraşcu and Roditty [21], implicitly providing an
Õ(mn2/3) bound on the preprocessing time for (2, 1)-approximate distance oracles.4 They
also provide an Õ(n2)-time algorithm for a data structure with stretch (2, 3) instead of the
optimal (2, 1). Again, the space bound is not stated explicitly as a distance oracle result.
For an overview, see Table 1.

What is the fastest preprocessing time that can be achieved for distance oracles with
multiplicative stretch α < 3? We propose an algorithm that runs in quadratic time (up to
polylogarithmic factors) and computes a (2, 1)-approximate distance oracle. Analogous to
the distance oracles by Abraham and Gavoille [2], the distance oracle can also be distributed
as distance labels.

I Theorem 1. Given an undirected, unweighted graph G on n nodes, there is an Õ(n2)-time
algorithm that computes a (2, 1)-approximate distance oracle of size Õ(n5/3) with query time
O(1).

Previously known quadratic-time algorithms either produce data structures with quadratic
space ([10, 15, 17], see also Section 2.4) or with worst-case stretch (2, 3) (see [7]). Probably
the most interesting technical aspect of the result is the use of an additive spanner free
of charge, i.e., without incurring its typical stretch penalty (the query time has a linear
dependency on the additive stretch of the spanner). The argument works for any spanner
with constant additive stretch, and hence is tight due to a recent lower bound by Abboud
and Bodwin [1].

For general graphs, Theorem 1 seems hard to improve upon (modulo logarithmic factors)
for two reasons (beyond the obvious reason that the algorithm needs to read the graph
with potentially Ω(n2) edges): the space-stretch tradeoff is essentially tight due to a set
intersection lower bound [21, 22], and the preprocessing-stretch-query tradeoff is essentially
tight as for distance oracles with quadratic preprocessing time and Õ(1) query time (but
independent of the space), any improvement of the multiplicative stretch below 2 would
imply a (quasi-)quadratic algorithm for boolean matrix multiplication [3, 17] (the fastest
known combinatorial algorithm runs in roughly cubic time [37]).

For sparse graphs, I am not aware of any arguments against even faster preprocessing
time Õ(m + n5/3) (and no additive +1 stretch if m = Õ(n) [21]). As mentioned above,
Baswana, Goyal, and Sen [7] implicitly prove an Õ(mn2/3) bound on the preprocessing time
(Theorem 5), which for m = Õ(n) is asymptotically optimal. The optimal preprocessing time
for m between ω̃(n) and õ(n2) remains open.

The distance oracle of Theorem 1 roughly works as follows (the description omits Õ-
notation and assumes familiarity with the techniques described in the preliminaries (Sec-
tion 2)): short distances are exact by storing balls and their intersection (as in [2, 7, 21]);
long distances are triangulations via landmarks. However, we cannot afford to compute
exact distances for each node and all n2/3 landmarks. Instead, we group landmarks by
degree (using dominating sets), where paths from/to the 2i landmarks with degree n/2i are
computed in graphs with n2/2i edges plus the edges of an (1, 6)-spanner [35]. The spanner
ensures that distances do not deteriorate too much. For each node v, we compute a set of
portals by sparsifying its set of (up to logn) nearest landmarks to include a landmark with
degree n/2j if and only if it is closer to v than all landmarks with higher degree n/2i (i.e., for
all i < j). At query time, a constant number of landmarks per node is sufficient to guarantee

4 An important reference I unfortunately failed to include when writing [27].
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55:4 All-Pairs Approximate Shortest Paths and Distance Oracle Preprocessing

stretch (2, 1): the query algorithm triangulates via landmarks by increasing degree, and each
subsequent landmark implies that the target distance increases by at least 1.

The overall framework is described in Section 3. The main part of the argument is
formalized as a distance oracle for heavy paths, where a path is defined to be heavy if it
passes through two consecutive high-degree nodes, see Section 4.

2 Preliminaries

2.1 Spanners
Spanners [23] are relatively sparse subgraphs with additional properties such as stretch
bounds on shortest-path distances. A spanner is deemed to have stretch (α, β) if dH(u, v) 6
α · dG(u, v) + β. Note that, since H is a subgraph, dG(u, v) 6 dH(u, v). While there are no
known distance oracles or distance labeling schemes with constant additive stretch (and are
unlikely to exist [19, 21, 28]), such spanners can be computed efficiently. The preprocessing
algorithm in this paper invokes the following spanner construction as a subroutine.

I Theorem 2 (Woodruff [35]). Given an undirected, unweighted graph G on n nodes, there
is an Õ(n2)-time algorithm that computes a (1, 6)-spanner with Õ(n4/3) edges.

Recently, Abboud and Bodwin [1] proved that Theorem 2 is tight in a very strong way.
Any spanner with constant additive stretch must have essentially n4/3 edges. More precisely,
they prove the following.

I Theorem 3 (Abboud and Bodwin [1]). For all ε > 0 there exists a δ > 0 and an infinite
family of graphs G = (V,E) such that for any subgraph H = (V,E′) with |E′| = O(n4/3−ε),
there exist nodes u, v ∈ V with dH(u, v) = dG(u, v) + Ω(nδ).

Their result illustrates the limitations of the construction in this paper. There is no better
spanner than Woodruff’s for our purposes (as long as we are indifferent to log factors in the
Õ(·) notation).

2.2 Balls and Clusters
While long distances can be approximated well using triangulation via landmarks, many
distance oracles handle short-range distances using balls and clusters [2, 21, 22, 31].

I Definition 4 (Balls and Clusters). Given a graph G = (V,E) and a set of landmarks L ⊆ V ,
the ball of a node v with respect to L is BL(v) := {u : d(v, u) < d(v, L)}. The cluster of a
node u with respect to L is CL(u) := {v : d(v, u) < d(v, L)}.

Note that v ∈ CL(u) if and only if u ∈ BL(v).
For any 0 < ` < n, random sampling with probability `/n yields ` landmarks (in

expectation) and average ball and cluster sizes of O(n/`). A sampling algorithm of Thorup
and Zwick [30] computes a set of landmarks L such that no node cluster CL(u) is larger
than O(n/`) and |L| = O(` logn). The running time of their algorithm is bounded by
O((mn logn)/`). Abraham and Gavoille [2] extend the Thorup-Zwick sampling algorithm to
also guarantee worst-case bounds on balls |BL(v)| = O(n/`).

Roditty, Thorup, and Zwick [25] provide a deterministic algorithm (based on hitting sets)
to select landmarks. They also claim (without proof due to lack of space) that their algorithm
can be used to de-randomize the quadratic-time preprocessing algorithm of Baswana and
Sen [9].
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2.3 Stretch-2 Distance Oracles
In the following, we give a brief description of the distance oracles by [2, 4, 21] for unweighted
graphs. Similar arguments were also used in the analysis for all-pairs approximate shortest
path algorithms [7].

The preprocessing algorithm starts by selecting a set of landmarks L of size roughly
|L| = Õ(n2/3) such that |BL(u)| , |CL(u)| = Õ(n1/3) for all u ∈ V (see sampling algorithm
above). Long-range distances (global queries) are answered by triangulation using the
landmark closest to either of the query nodes. To prepare for those queries, the preprocessing
algorithm computes distances for all pairs of nodes in V × L. Short-range distances (local
queries) are answered using super balls SL(·). For each node u, the algorithm computes the
distance to all nodes in its ball BL(u) as well as all nodes v whose balls BL(v) intersect with
BL(u), i.e., SL(u) := BL(u) ∪

⋃
w∈BL(u) CL(w). Since the sizes of both BL(·) and CL(·) are

bounded by Õ(n1/3), super balls contain at most |SL(u)| = Õ(n2/3) nodes.
The query algorithm for source s and target t checks whether t ∈ SL(s) or s ∈

SL(t). If so, the exact distance has been pre-computed (a local query). Otherwise, let ls
and lt denote the landmarks closest to s and t, respectively. The long-range distance
min {d(s, ls) + d(ls, t), d(s, lt) + d(lt, t)} is returned.

For the stretch analysis, we need to bound the distance returned for global queries.
Without loss of generality, let us assume d(t, lt) 6 d(s, ls). Since BL(s) and BL(t) do not
intersect, d(s, t) + 1 > d(s, ls) + d(t, lt) > 2d(t, lt). By the triangle inequality, d(s, lt) 6
d(s, t) + d(t, lt), hence the distance estimate is at most d(s, t) + 2d(t, lt), which is bounded
by 2d(s, t) + 1.

Baswana, Goyal, and Sen [7, Theorem 5.1] provide a randomized preprocessing algorithm
with expected running time O(m2/3n logn+ n2). More generally, they prove the following.

I Theorem 5 (Baswana, Goyal, and Sen [7]). For any p ∈ (0, 1), an undirected unweighted
graph G = (V,E) can be preprocessed in expected O(m logn+ n2 + (n/p2) logn+mnp logn)
time to build a data structure that can report (2, 1)-approximate distances in constant time.

Instead of super balls, a so-called overlap matrix is pre-computed to decide whether two balls
intersect BL(u) ∩BL(v) ?= ∅. The landmark set L is computed using the sampling algorithm
of Thorup and Zwick [30] (see also Section 2.2) to ensure that balls and their intersections
are not too large.

2.4 High-Degree Dominating Sets
Recall that a dominating set of a graph G is a subset of nodes D ⊆ V (G) such that each
node is in D or has a neighbor in D. Aingworth, Chekuri, Indyk, and Motwani [5] prove
that for a set of high-degree nodes there is an algorithm that can find a small dominating set
(the algorithm is a greedy algorithm with logarithmic approximation ratio).

I Theorem 6 (Aingworth et al. [5]). Let G = (V,E) be an undirected graph with n := |V | and
m := |E|, and let Vδ := {v ∈ V : deg(v) > δ}. There is an algorithm that finds a dominating
set for Vδ with size O((n logn)/δ) in time O(m+ nδ).

Building on this theorem, they derive an Õ(n5/2)-time algorithm computing all-pairs ap-
proximate shortest paths with stretch (1, 2). The dominating-set technique has been used
extensively in algorithms for APASP (and related algorithms). Dor, Halperin, and Zwick [17,
Theorem 6.2] compute an (1, 2)-approximate spanner in time Õ(n2) as follows (Algorithm 1):
for decreasing node degrees (n/2i), split the nodes into high-degree and low-degree nodes,

ICALP 2016
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compute a dominating set for the high-degree nodes (as in Theorem 6), compute a BFS tree
from each node in the dominating set in the subgraph with edges adjacent to at least one
low-degree node, and return the union of all these BFS trees.

1: for i ∈ {0, 1, 2, 3, . . . , dlog2
√
ne} do

2: δi = n/2i
3: Vi = {v ∈ V : deg(v) > δi}, Ei = {uv ∈ E : deg(u) < 2δi or deg(v) < 2δi}
4: Di = dominate(Vi) (as in Theorem 6)
5: for p ∈ Di do
6: Ti(p) = bfs(V,Ei)(p) (where Ti denotes the edges of the breadth-first tree)
7: end for
8: end for
9: return

⋃
i,l∈Di

Ti(p)
Algorithm 1: Spanner construction by Dor, Halperin, and Zwick [17, Figure 7].

Cohen and Zwick [15] and Baswana and Kavitha [8] also provide algorithms similar to
Algorithm 1 with different parameters and analysis.

Yet another instantiation of the above algorithm and framework is due to Berman and
Kasiviswanathan [10]. Their all-pairs approximate shortest path algorithm computes (2, 1)-
approximate distances in time O(n2 log2 n). Their main loop is essentially as in Algorithm 1,
Lines 1–8 for i up to dlog2 ne. Each node v remembers its nearest landmark li(v) (for each
level i, and with arbitrary tie breaking). Distance estimates d̃(s, t) are computed as the
minimum over all i of the triangulation via the landmark of s or via the landmark of t. We
apply and extend their argument in Section 4.2.2.

3 Proof of Theorem 1

We split the problem into a dense case and a sparse case, where sparse means O(n4/3) edges.
The overall distance oracle simply returns the minimum from both data structures.

As in most shortest-path algorithms using dominating sets (see Section 2.4), edges uv are
classified by minimum degree of their adjacent vertices u and v:

I Definition 7 (Edge Degree). The degree of an edge uv ∈ E(G), denoted by deg(uv), is
defined as deg(uv) := minu,v {deg(u), deg(v)}.

Let Gδ denote the subgraph of G induced by all edges uv for which deg(uv) 6 δ. Note
that |E(Gδ)| = O(n · δ), since each edge contributes to the degree of two nodes. As degree
threshold in our proof, let ∆ be the smallest power of 2 greater than n1/3.

For the sparse case, we run the O(n2 +m2/3n logn)-time algorithm of Baswana, Goyal,
and Sen [7] (Theorem 5) on G∆. For m = O(n4/3), the running time is O(n2). As mentioned
in the introduction, their data structure is similar to the distance oracles by Pǎtraşcu and
Roditty [21] and Abraham and Gavoille [2]. See Section 2.3 for more details.

For the dense case, we compute a data structure for G called Heavy Path Oracle. It
is essentially an approximate distance oracle but limited in the following way: it can only
return heavy paths.

I Definition 8 (Heavy Paths). A path is called δ-heavy if and only if it contains an edge uv
with degree deg(uv) > δ.
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Quite naturally, and analogously to a shortest path, there is a shortest δ-heavy path between
any pair of nodes s, t ∈ V (G). Let the shortest δ-heavy distance between s and t be the
length of a shortest δ-heavy path between s and t.

The distance oracle for the dense case handles those pairs correctly for which any shortest
path is ∆-heavy. If no shortest path between s and t is ∆-heavy, any shortest path must be
in G∆, and hence the distance oracle for the sparse case provides an accurate estimate.

The remainder of this paper is devoted to the proof of the following lemma, which
concludes the proof of Theorem 1.

I Lemma 9 (Heavy Path Oracle). Given an undirected, unweighted graph G on n nodes,
let ∆ denote the smallest power of 2 greater than n1/3. There is an Õ(n2)-time algorithm
that computes a data structure of size Õ(n5/3) with query time O(1) that returns (2, 1)-
approximations for shortest ∆-heavy distances.

4 Heavy Path Oracle

We prove Lemma 9 by adapting the APASP algorithms of Dor, Halperin, and Zwick [17] and
Berman and Kasiviswanathan [10].

As typical in distance oracles, each node v ∈ V stores distances to a set of landmarks,
chosen as the union of hierarchical dominating sets (details below). Furthermore, each node
stores a constant-size subset of nearby landmarks called portals. At query time, triangulation
happens via portals.

4.1 Preprocessing Algorithm
For a pseudo-code description, see Algorithm 2. Given G = (V,E), the algorithm begins by
computing a sparse (1, 6)-spanner H = (V, S) as in Theorem 2. Recall that Gδ is defined to
be the subgraph of G induced by all edges uv for which deg(uv) 6 δ. In the remainder of the
preprocessing algorithm, each breadth-first search in a subgraph Gδ = (V,Eδ) of G = (V,E)
shall also consider the edges of the spanner, i.e., the breadth-first search is executed in
Gδ +H = (V,Eδ ∪ S).

Independent of the spanner, the edge set E is organized into dlogn2/3e hierarchical classes:
for δi = n/2i, let Vi := {v ∈ V : deg(v) > δi}. Class Ei consists of all edges uv for which u
or v has degree < 2δi. The algorithm then finds a dominating set for Vi, denoted by Li (the
union of all Li is the landmark set). For each node ` ∈ Li, the algorithm runs a breadth-first
search in (V,Ei∪S), computing and storing distances d(V,Ei∪S)(`, ·). Each node v remembers
its nearest landmark as a portal pi(v) if and only if it is closer than all portals pj(v) on
previous levels j < i. This selection of portals is essential for the query time and stretch
analysis. Let K > 12 (twice the additive stretch of the spanner). For each node v, let P (v)
denote the set that contains the K + 1 portals closest to v.

4.1.1 Space and Running Time Analysis
We have O(logn) distance tables Li × V . The dominating sets are small |Li| 6 Õ(n2/3),
hence the distance tables can be kept (and stored in a distributed way at the non-landmark
node to also enable distance labels).

For each level i, each node v stores distances to all nodes of the dominating set Li. This
dominating set Li has size O(2i logn) due to Theorem 6. The last level has the largest
dominating set of size O(n2/3 logn). The overall space consumption is thus bounded by
O(n5/3 log2 n).

ICALP 2016
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.
1: (V, S) = Spanner(V,E) (as in Theorem 2)
2: for i ∈

{
0, 1, 2, 3, . . . , dlog2 n

2/3e
}

do
3: δi = n/2i
4: Vi = {v ∈ V : deg(v) > δi}
5: Li = DominatingSet(Vi) (as in Theorem 6)
6: Ei = {uv ∈ E : deg(u) < 2δi or deg(v) < 2δi}
7: for ` ∈ Li do
8: BreadthFirstSearch(V,Ei∪S)(`)
9: for v ∈ V do

10: store distance d(V,Ei∪S)(v, `) to landmark
11: if d(V,Ei∪S)(v, `) < d(V,Ei∪S)(v, `i(v)) then
12: `i(v) = ` (remember nearest landmark per level)
13: end if
14: end for
15: end for
16: end for

Portal Selection
17: for v ∈ V do
18: for i ∈

{
0, 1, 2, 3, . . . , dlog2 n

2/3e
}

do
19: if d(V,Ei∪S)(v, `i(v)) < d(V,Ej∪S)(v, `j(v)) for all j < i then
20: store `i(v) as a candidate portal
21: end if
22: end for
23: let P (v) be the first K + 1 portals closest to v
24: end for

Algorithm 2: Preprocessing of graph G = (V,E)

For each level i, the dominating set is computed in time at most O(n2) by Theorem 6.
For each ` ∈ Li the algorithm computes a breadth-first search in a graph with at most
|Ei| = O(n2/2i) plus |S| = Õ(n4/3) edges (the latter are the edges of the (1, 6)-spanner).
Hence, the running time per level is at most O(n2 + |Li| · (|Ei|+ |S|)) = Õ(n2).

Summing up over all levels, the running time is Õ(n2) plus the time to compute the
spanner, which is Õ(n2) by Theorem 2, plus the time to select the portals per node, which is
at most O(n2 logn) (since they are already generated in sorted order).

4.2 Query Algorithm

Distance estimates d̃(s, t) are computed as the minimum over all the triangulations via
portals of s and t: minp∈P (s)∪P (t)

{
d̃(s, p) + d̃(p, t)

}
, where d̃(s, p) and d̃(p, t) denote the

distances stored at s and t, respectively, to/from landmark p.

4.2.1 Query Time

There are K + 1 portals per node, each triangulation requires two table lookups for landmark
distances (one for d̃(s, p) and the other one for d̃(p, t)), hence the query time is O(K) (using
perfect hashing). For the stretch analysis to work, we need K > 12 (twice the additive
stretch of the spanner), hence the query time is constant.
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s u v

`i(u) `i(v)

t
`i(s) uv6 d̃(s, `i(u))

Figure 1 Worst-case stretch when triangulating via landmark `i(s). Distances are in G =
(V,Ei ∪ S). Solid lines depict edges, dashed lines depict paths (which may have no, one, or multiple
edge(s)). Edge uv is an edge on the shortest path with highest degree deg(uv). In this illustration,
query node s is closer to uv than t. Since `i(s) is the nearest landmark for s, we have that
d̃(s, `i(s)) 6 d̃(s, `i(u)).

4.2.2 Stretch Analysis
The stretch bound for the distance estimate d̃(s, t) is derived as follows.

First, let us assume that, instead of triangulating via portals P (·) we were to triangulate
via all closest landmarks of s and t, respectively. For each level i we compute the triangulation
via the nearest landmark of s, i.e., d̃(s, `i(s)) + d̃(`i(s), t), and via the nearest landmark of t,
i.e., d̃(s, `i(t)) + d̃(`i(t), t) and return the minimum.

The following argument is illustrated in Figure 1. Let Ei be the set that contains all
the edges of the shortest s-t path and maximizes i. Let uv ∈ Ei be an edge on this shortest
path that is not in Ei+1 (an edge between two high-degree nodes). The shortest-path length
is d(s, u) + 1 + d(v, t). Suppose d(s, u) 6 d(v, t) (the other case is symmetric). Let us
consider s and its nearest landmark `i(s). Since u ∈ Vi, u or its neighbor is in Li, hence
d̃(s, `i(s)) = d(s, `i(s)) 6 d(s, u) + 1. Triangulating via `i(s) increases the path length by at
most 2d(s, u) + 2 6 d(s, u) + d(v, t) + 2, which yields stretch (2, 1). The same argument is
also used by Berman and Kasiviswanathan [10].

However, we cannot afford to try all landmarks `i(·) at query time since there may
be logarithmically many for each query node. Instead, the preprocessing algorithm filters
landmarks into a set of portals. For a node u, a landmark `i(u) is defined to dominate
landmark `j(u) if i < j and d̃(u, `i(u)) 6 d̃(u, `j(u)), which means that distances from `j(u)
were computed in a subgraph of the one for which distances from `i(u) were computed. Let
D(u, i) denote the set of all landmarks `j(u) that dominate `i(u).

Again, let Ei be the set that contains all the edges of the shortest s-t path and maximizes i.
We distinguish three cases. The first two cases are both fairly straightforward and could be
combined. The most difficult case is the third, where query nodes are far away from the
dense part of the graph, and hence also far away from the heavy edge uv.

`i(s) ∈ P (s) and `i(t) ∈ P (t). The argument above applies since the query algorithm
triangulates via both landmarks and computes a (2, 1)-approximation.
`i(s) ∈ P (s) or D(s, i) ∩ P (s) 6= ∅, and the same holds for t. Let `j(s) be the landmark
in P (s) that dominates `i(s). When triangulating via `j(s), the stretch cannot increase
since d(V,Ej∪S)(s, `j(s)) 6 d(V,Ei∪S)(s, `i(s)). In Figure 1, simply re-label `i(s) with `j(s).
Since Ei ⊆ Ej graph distances cannot increase. Analogous for t.
Neither the landmark nor a dominating landmark are in the portal set. Now the spanner
comes into play. At least one of the nodes must have had more thanK+1 candidate portals
(without loss of generality it is s), otherwise `i(s) or a landmark `j(s) dominating `i(s)
would have to be in P (s). The preprocessing algorithm truncated the portal list. Let
p(0)(s), p(1)(s), . . . p(K)(s) be the sequence of portals for s, ordered by increasing distance
from s, and let x := d(s, p(0)(s)). Each subsequent portal p(j)(s) increases the distance
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s u v

`i(u) `i(v)

t

p(0)(s). . .p(K)(s)
`i(s) uv

Figure 2 Worst-case stretch when triangulating via portal p0(s). There are K + 1 portals closer
than `i(s). When computing distances from/to these portals, the edges of the (1, 6)-spanner were
used, hence the distortion is bounded.

by at least 1, hence the last portal considered by the query algorithm is at distance at
least d(s, p(K)(s)) > d(s, p(0)(s)) + K. Note that the best landmark for triangulation,
`i(s), is even farther away, i.e., d(s, `i(s)) > d(s, p(K)(s)) > d(s, p(0)(s)) + K = x + K,
otherwise it would have dominated p(K)(s). The shortest-path distance d(s, t) is thus at
least x+K + y, where y := d(t, p(0)(t)). Without loss of generality, let us assume that s
has a portal no farther than t has, i.e., x 6 y. Since the distance is long, we can safely
triangulate using the first portal p(0)(s), which is relatively close to s. Due to always
including the edges S of the (1, 6)-spanner, the additive stretch when triangulating via
p(0)(s) is at most 2(x+ 6), hence the estimate will be at most (x+K + y) + 2(x+ 6).
Multiplicative stretch (2, 1) means the estimate can be 2(x+K + y) + 1. Since x 6 y,
the bound follows for K > 12. See Figure 2.

5 Conclusion

Distance oracles with stretch (2, 1) can be computed in quadratic time (modulo logarithmic
factors) even for dense graphs. The main technical contribution is the use of a spanner
without paying for its stretch penalty (the additive stretch of the spanner only affects the
query time of the distance oracle). Previous attempts using a spanner increased the stretch
to (2, 3), see [7].

The main difficulty lies in computing distances from/to landmarks. Since there are n2/3

landmarks, we cannot afford to compute exact distances to all of them. Our algorithm allows
constant additive distortion using a spanner. Other than pre-computing a spanner, the main
bottleneck of the preprocessing algorithm in this paper is computing distances from n2/3

nodes in a graph with n4/3 edges. If there were a way to compute a spanner with additive
stretch and fewer edges, there might be ways to push the preprocessing time below quadratic
(if the number of edges m is sub-quadratic of course). However, Abboud and Bodwin [1]
recently showed that Woodruff’s spanner [35] is essentially as good as it gets for constant
additive stretch. For stretch-3 distance oracles, there are sub-quadratic algorithms, increasing
the stretch by a small additive constant [6]. For stretch-2 distance oracles, it seems like any
further improvement to preprocessing times may have to find a way around landmarks or
additive spanners.

Another open question is whether the result can be generalized to weighted graphs. The
APASP algorithm of Berman and Kasiviswanathan [10] guarantees stretch (2, w), where w
denotes the largest edge length/weight on the shortest path. There are two main points
where the algorithm and its analysis do not generalize: a) the additive spanner is insensitive
to edge lengths, and b) each subsequent portal p(i)(·) increases the distance by 1, which
would not necessarily be true when edge lengths come into play.
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Total Space in Resolution Is at Least Width
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Abstract
Given an unsatisfiable k-CNF formula ϕ we consider two complexity measures in Resolution:
width and total space. The width is the minimalW such that there exists a Resolution refutation
of ϕ with clauses of at most W literals. The total space is the minimal size T of a memory used
to write down a Resolution refutation of ϕ, where the size of the memory is measured as the
total number of literals it can contain. We prove that T = Ω((W − k)2).
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1 Introduction

Resolution is a well known propositional proof system introduced by Blake in [16] and
proposed by Robinson in [38] for automated theorem proving. Since then this proof system
became the most studied proof system in the sub-area of complexity theory that is Proof
Complexity. Given a set of clauses ϕ, that is a set of disjunctions of literals or, equivalently,
given a formula in Conjunctive Normal Form, Resolution is a method to infer new clauses
according to the following inference rule:

C ∨ x D ∨ ¬x
C ∨D

, (1)

where C,D are clauses and x is a variable. Resolution is sound and complete, that is it is
possible to derive the empty clause ⊥ if and only if ϕ is unsatisfiable. A Resolution refutation
of ϕ is then just a sequence of clauses C1, . . . , C` with C` = ⊥ and each clause of the sequence
is either a clause from ϕ or it is inferred by previous clauses in the sequence according to the
inference rule in equation (1).

Nowadays, the main reason for the interest in Resolution comes from a practical per-
spective: it is at the core of most of the state-of-the-art SAT solvers since the introduction
of the DPLL algorithm [22, 23] and its improvements, the so called Conflict Driven Clause
Learning (CDCL) algorithms [4, 32, 40]. The track of the running of such algorithms on
unsatisfiable instances produces a (particular form of) Resolution proofs. Hence Resolution
is a valuable tool to study their performances and limitations. In this work we are interested
in more theoretical questions about the Resolution proof system and the reader interested
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in more details on the connections between Resolution and SAT solvers could look at the
recent survey [35].

Given an unsatisfiable ϕ we are interested in measuring how complex a Resolution proof of
ϕ must be. Certainly there are many ways of measuring the complexity of proofs and in this
work we are interested in connecting two of such measures. The main complexity measure we
can associate to ϕ in Resolution, and by far the most important, is the minimal length of a
Resolution refutation of ϕ. This measure is denoted with size(ϕ ` ⊥) and, since a long time
now, we know that there are certain formulas ϕn requiring exponentially long proofs, e.g.
the encodings of the Pigeonhole Principle [28] or Tseitin formulas [39, 42]. Another, easier to
study, complexity measure is the width. Suppose that we focus on Resolution refutations
of a formula ϕ with clauses up to a certain length w. The minimal w such that we have a
refutation of ϕ with clauses of length at most w is the width, width(ϕ ` ⊥). We have a trivial
upper bound connecting size and width, that is for every set of clauses ϕ in n variables

size(ϕ ` ⊥) 6 nO(width(ϕ`⊥)),

and indeed this trivial bound could be asymptotically tight, cf. [3]. Another, more useful,
connection between width and size is the following result from the seminal paper by Ben-
Sasson and Wigderson [12]:

log2 size(ϕ ` ⊥) > (width(ϕ ` ⊥)− k)2

16n , (2)

where ϕ is a collection of clauses over n variables and each of them has at most k literals. Hence,
if width(ϕ ` ⊥) = ω(

√
n logn) then, immediately by the previous inequality, size(ϕ ` ⊥) is

super-polynomial. Moreover this size-width inequality is essentially optimal [21].
Regarding the space complexity of proofs, its investigation was proposed in 1998 by

Armin Haken as a natural analogue of the space complexity in the context of Turing machines
and the first definitions of space measures in Resolution were given in [25, 1]. When talking
about space, Resolution proofs are seen as a sequence of memory configurations M0, . . . ,M`,
where each Mi is a set of clauses, ⊥ ∈M` and each Mi+1 derive from Mi in one of the two
following ways:
Axiom download: Mi+1 ⊆Mi ∪ {C}, where C ∈ ϕ;
Inference: Mi+1 = Mi ∪ {D ∨ E}, where both D ∨ x and E ∨ ¬x belong to Mi, for some

variable x.
We then have some notions of how “spacious” a memory configuration can be. The most
natural space measure for a memory configuration is of course the number of bits needed
to write down it. Unfortunately it turns out that this notion of space is quite hard to
study and hence some alternative notions of space were introduced [25, 1]. For example, the
clause space of a memory configuration is the number of distinct clauses it can contain. The
total space1 of a memory configuration instead is the total number of literals it can contain.
The minimal s such that we have a refutation of ϕ with memory configurations with total
space at most s is the Total Space (needed to refute ϕ), TSpace(ϕ ` ⊥). Similarly for the
clause space we obtain CSpace(ϕ ` ⊥). A more formal definition of TSpace(ϕ ` ⊥), to avoid
misunderstandings, is provided in Section 2.

1 In [1] this space complexity measure is called variable space, but we follow [10, 9, 33, 11, 34] in calling it
total space. This is due to distinguish it from a different space complexity measure in which different
occurrences of the same variable are not counted, the variable space, investigated for instance in [43].
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We now recall some known results about space complexity measures. Given any unsatis-
fiable set of clauses ϕ in n variables, in [25] it was proven that

CSpace(ϕ ` ⊥) 6 n+ 1,

and, as a trivial consequence, we have that

TSpace(ϕ ` ⊥) 6 n(n+ 1).

Both upper bounds are asymptotically tight, for example for random k-CNF formulas [8, 20].
Regarding lower bounds, in [2] it is proved that

CSpace(ϕ ` ⊥) > width(ϕ ` ⊥)− k + 1, (3)

where ϕ consists of clauses of at most k literals. Clearly TSpace(ϕ ` ⊥) > CSpace(ϕ ` ⊥)
and whenever TSpace(ϕ ` ⊥) = ω(CSpace(ϕ ` ⊥)) we say to have a non-trivial total space
lower bound.

The total space measure was introduced in [1] and there the first non-trivial lower
bounds were proven, for two particular class of formulas the Complete Tree formulas and
the Pigeonhole Principle formulas. After that, in [20] it was introduced a technique to prove
total space lower bounds in Resolution. That technique was sufficiently strong to prove
asymptotically optimal total space lower bounds for instance for random k-CNFs [20, 13]
but the proofs given there are quite long and involved. This paper, as a corollary, deeply
simplify such proofs. Space complexity measures are also studied concerning trade-offs with
other complexity measures, see for example [9, 36, 11, 34, 7, 5].

1.1 Contributions
This work is about proving an analogue of the inequality in (3) for the total space. This will
add a nice bit to our knowledge of the lattice of relations between complexity measures in
Resolution; it will simplify the proofs of existing total space lower bounds and it will imply
new non-trivial total space lower bounds.

I Theorem 1. Let ϕ be a k-CNF formula, then

TSpace(ϕ ` ⊥) > 1
16 (width(ϕ ` ⊥)− k − 4)2

.

The general idea of the proof is the following: given a Resolution refutation, we identify
a memory configuration where some small clause appear and then show that before that
moment there must have been some memory configuration with a lot of clauses (and hence
with large total space). This idea was originally used in [1] in some particular cases and in
more generality in [20]. Indeed the proof we show has some close structural similarities with
the total space lower bound from [20] and essentially it is a simplification of the proof of
Theorem 2.5 from the author’s PhD. Thesis [17]. The proof we give is not direct since it
involves another, less studied, complexity measure: the asymmetric width, awidth(ϕ ` ⊥),
and families of assignments closely related to it. The asymmetric width was introduced in
[29, 30] and the definition is quite technical so we defer it to Section 2 where we collect all
the preliminary definitions and notations. The proof of Theorem 1 is purely combinatorial
and implicitly uses some properties from a characterization of the asymmetric width from
[15], cf. Section 3 for more details, together with a result tightly connecting the width and
the asymmetric width, Theorem 2 (Lemma 8.5 from [29]).
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Although defined quite differently, asymmetric width and width indeed share many
properties. For instance, an analogue of the size-width inequality by Ben-Sasson and
Wigderson [12]: given an unsatisfiable CNF formula ϕ in n variables

ln (size(ϕ ` ⊥)) > awidth(ϕ ` ⊥)2

8n ,

cf. Theorem 6.12 of [31]. For more information and history on the asymmetric width we refer
to [15].

1.2 Examples of applications (and limitations) of Theorem 1
Since the seminal work of Ben-Sasson and Wigderson [12], the width measure has become
one of the main tool to study Resolution proofs and their complexity. Hence we already have
many relevant width lower bounds for many interesting class of formulas and then the range
of applications of Theorem 1 is quite large. Below we recall some relevant examples.

Tseitin formulas. Given a d-regular graph G over n vertices, the Tseitin formula over G,
Tseitin(G), is a CNF formula over dn/2 variables based on a propositional encoding of the
fact that the total degree in any graph is even, see for example [12] for a formal definition.
Such formulas were used by Tseitin to prove the first super-polynomial size lower bound
for Resolution size [41]. Since then, Tseitin formulas became one of the standard tools in
proof complexity to prove lower bounds and trade-offs, see for example [39, 43, 12, 25, 7]. In
particular given a connected 3-regular graph G over n vertices which is an expander, we have
that width(Tseitin(G) ` ⊥) > Ω(n), cf. [12]. Hence, by Theorem 1, we have an asymptotically
optimal total space lower bound: TSpace(Tseitin(G) ` ⊥) = Θ(n2). This answers the open
question 4 from [1] in the case of Resolution.

Random k-CNFs. A random k-CNF with n variables and clause density ∆ is a CNF formula
picked as follows: choose independently uniformly at random ∆n clauses from the set of all
possible clauses in the variables {x1, . . . . , xn} containing exactly k literals. If ∆ = o(n1/4),
Beame et al. [6] showed that random k-CNFs require exponential size Resolution proofs.
Such result was simplified in [12] by showing a lower bound on width: if ϕ is a random
k-CNF (k > 3) in n variables and ∆n clauses, and ∆ is a constant for simplicity, then
with high probability width(ϕ ` ⊥) > Ω(n). Hence, by Theorem 1, with high probability
TSpace(ϕ ` ⊥) > Ω(n2). That is, almost every k-CNF require asymptotically optimal total
space to be refuted in Resolution. This result was proven in [20] for k > 4 and for k = 3 in [13]
with some explicit but quite involved constructions. Instead, as we saw, an asymptotically
optimal total space lower bound for such formulas follows immediately from Theorem 1.

Formulas with short proofs. Bonet and Galesi [21] showed that the size-width inequality
by Ben-Sasson and Wigderson [12] is essentially optimal. That is they showed that there are
arbitrarily large 3-CNF formulas ϕn with Θ(n3) clauses, Θ(n2) variables and such that

width(ϕn ` ⊥) = Θ(n),
CSpace(ϕn ` ⊥) = Θ(n),

but ϕn has some Resolution proof of size O(n3), width O(n) and clause space O(n). Theorem 1
in this case tells us that TSpace(ϕn ` ⊥) = Ω(n2), which is just a linear lower bound in the
number of variables of ϕn. On the other hand this is a non-trivial total space lower bound
since TSpace(ϕn ` ⊥) = ω(CSpace(ϕn ` ⊥)).
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Regarding the limitations, Theorem 1 suffers from the same kind of limitations of size-
width inequality, equation (2), and the clause space-width inequality, equation (3). That
is it became trivially vacuous for CNF formulas in n variables with clauses with many
literals. For example we see such phenomenon when considering encodings of the negation
of the Pigeonhole Principle as CNFs having clauses of n literals, the PHPn+1

n formulas.
For such formulas width(PHPn+1

n ` ⊥) = Θ(n) and hence no size lower bound or clause
space lower bound could be implied directly from equations (2) - (3). The same applies
for Theorem 1. On the other hand, by different techniques, we still have size lower bounds
[42, 37], size(PHPn+1

n ` ⊥) > 2Ω(n), clause space lower bounds [1], CSpace(PHPn+1
n ` ⊥) > n,

and total space lower bounds [1, 20], TSpace(PHPn+1
n ` ⊥) > 1

4n
2.

1.3 Organization of the paper
Section 2 contains all the preliminary definitions and notations needed for the proof of
Theorem 1. In Section 3 we prove Theorem 1 and we give some more detailed comments on
the proof. Section 4 contains some open questions about total space.

2 Preliminaries

We consider fixed a set of variables X and, given a natural number n, we denote as [n] the
set {1, . . . , n}. Given a set A,

(
A
62
)
is the subset of the power set of A consisting of all the

subsets of size at most 2.

Partial assignments. Given a set of variables X, a partial (Boolean) assignment over X
is a function α : X → {0, 1} ∪ {?}. The domain of α is dom(α) = α−1({0, 1}) and we say
that α assigns a value to x if x ∈ dom(α). Given two partial assignments over X, α and β
we say that α extends β, β ⊆ α, if for all x ∈ X, β(x) ∈ {α(x), ?}. We denote by {x 7→ b}
the partial assignment with domain the variable x mapped to b ∈ {0, 1}. Given two partial
assignments α and β with disjoint domains, with α ∪ β we denote the partial assignment
with domain dom(α) ∪ dom(β) such that for each x ∈ dom(α) ∪ dom(β)

α ∪ β(x) =
{
α(x) if x ∈ dom(α),
β(x) if x ∈ dom(β).

CNF formulas. A literal is a variable in X or the negation of a variable in X. A clause
C is a formula of the form `1 ∨ · · · ∨ `k, where the `i are literals and m is the width of the
clause C, denoted as |C|. A formula in Conjunctive Normal Form (CNF) is a formula ϕ
with variables in X of the form C1 ∧ · · · ∧ Cm, where the Cjs are clauses. A k-CNF formula
is a CNF formula where each clause has at most k distinct literals. With var(ϕ) we denote
the set of variables occurring in the formula ϕ.

Given a CNF formula ϕ over a set of variables X and a partial assignment α over X, we
can apply α to ϕ, obtaining a new CNF formula, denoted as ϕ �α or α(ϕ), in the following
way: for each variable x ∈ dom(α) substitute each occurrence of x in ϕ with α(x). Then
simplify the resulting CNF according to the following rules: ¬0 ≡ 1, ¬1 ≡ 0, 0 ∨ A ≡ A,
1 ∨ A ≡ 1, 1 ∧ A ≡ A, 0 ∧ A ≡ 0. We say that α satisfies ϕ if α(ϕ) = 1 and we say that α
falsifies ϕ if α(ϕ) = 0. Similarly, we can apply a partial assignment α to set of formulas
A = {C1, . . . , C`} component-wise: A �α= {C1 �α, . . . , C1 �α}. Given a set of formulas F
and a partial assignment α we say that α satisfies F , α |= F , if and only if for every formula
ϕ ∈ F , α(ϕ) = 1.
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Resolution proofs. A Resolution derivation of a clause C from a CNF formula ϕ is a
sequence of clauses π = (C1, . . . , C`) such that C` = C and each Ci is either a clause from
ϕ or it is inferred from Cj , Ck with j, k < i and such that Cj Ck

Ci
is a valid instance of the

Resolution rule:

C ∨ x D ∨ ¬x
C ∨D

where C,D are clauses and x is a variable; or, Ci is inferred from a Cj with j < i and such
that Cj

Ci
is a valid instance of the weakening inference rule2

C

C ∨D

where C,D are clauses. A Resolution refutation of a CNF formula ϕ is a Resolution derivation
of the empty clause ⊥ from ϕ. Resolution is sound and complete, that is it is possible to
infer the empty clause ⊥ from ϕ if and only if ϕ is unsatisfiable.

Width. Given a sequence of clauses π = (C1, . . . , C`) we recall that

width(π) = max
Cj∈π

|Cj |

and the minimal width needed to refute ϕ in Resolution is

width(ϕ ` ⊥) = min
π

width(π),

where the min is taken over all refutations of ϕ in Resolution3.

Asymmetric width. The notion of asymmetric width was introduced in [30, 31]. Let ϕ
be a CNF formula and π = (C1, . . . , C`) be a Resolution derivation from ϕ. To define the
asymmetric width of π, awidth(π) we preliminary need the notion of witness function. A
witness function for π = (C1, . . . , C`) is a function σ : [`]→

( [`]
62
)
∪ {?} witnessing the fact

that π is a derivation from ϕ, that is such that
σ(i) = {j, k} implies that j, k < i and Cj Ck

Ci
is a valid instance of the inference rule of

Resolution and if j = k we require Cj

Ci
to be a valid instance of the weakening rule; and

σ(i) = ? implies that Ci is a clause from ϕ.

Given π = (C1, . . . , C`) a Resolution derivation from ϕ and a witness function σ for π,
the asymmetric width of Ci with respect to π and σ, awπ,σ(Ci), is defined as follows

awπ,σ(Ci) =
{

0 if σ(i) = ?, that is Ci ∈ ϕ,
minj∈σ(i) |Cj | otherwise.

Then awidth(π) is the minimum over all the possible functions σ witnessing the validity of π
of the maximum over i of awπ,σ(Ci), that is

awidth(π) = min
σ

max
Ci∈π

awπ,σ(Ci).

2 Notice that the weakening rule is not really needed but it will make simpler the exposition when dealing
with restrictions of Resolution proofs.

3 If ϕ is a satisfiable CNF formula then is customary to define width(ϕ ` ⊥) = ∞.
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Finally, the asymmetric width needed to refute ϕ, awidth(ϕ ` ⊥), is the minimum of awidth(π)
over all possible sequence of clauses π = (C1, . . . , C`) that are Resolution refutations of ϕ.

Clearly it holds that awidth(ϕ ` ⊥) 6 width(ϕ ` ⊥). Interestingly, the width cannot be
much bigger than the asymmetric width.

I Theorem 2 (Lemma 8.5 of [29]). Let ϕ be an unsatisfiable k-CNF formula, then

width(ϕ ` ⊥) 6 awidth(ϕ ` ⊥) + max{awidth(ϕ ` ⊥), k}.

A self-contained proof of this result, essentially based on [14], is proven in the full version of
this paper [18].

Total Space. As we saw in the introduction, a Resolution refutation of a CNF formula ϕ
can be seen as a sequence of memory configurations π = (M0, . . . ,M`), where each Mi is a
set of clauses, ⊥ ∈M` and each Mi+1 derive from Mi in one of the two following ways:
Axiom download: Mi+1 ⊆Mi ∪ {C}, where C ∈ ϕ;
Inference: Mi+1 = Mi ∪ {D ∨ E}, where both D ∨ x and E ∨ ¬x belong to Mi, for some

variable x.
Given π as above, the total space of π is

TSpace(π) = max
i∈[`]

∑
C∈Mi

|C|

and given an unsatisfiable CNF formula ϕ, the total space needed to refute ϕ in Resolution is

TSpace(ϕ ` ⊥) = min
π

TSpace(π),

where the min is taken over all the possible Resolution refutations of ϕ given as a sequence
of memory configurations4.

3 Proof of Theorem 1

First let’s prove the main result of this work, Theorem 1, for convenience of the reader
restated below. We postpone more detailed comments on the proof after the proof itself.

I Restated Theorem 1. Let ϕ be a k-CNF formula, then

TSpace(ϕ ` ⊥) > 1
16 (width(ϕ ` ⊥)− k − 4)2

.

Proof. Let awidth(ϕ ` ⊥) = r + 1. We prove that

TSpace(ϕ ` ⊥) > 1
4(r − 1)2,

or, more precisely, we prove that every Resolution refutation of ϕ must pass through a
memory configuration of at least (r − 1)/2 clauses each of width at least (r − 1)/2. Once we
prove this, the desired lower bound between total space and width follows:

TSpace(ϕ ` ⊥) > 1
4(r − 1)2 >

1
16 (width(ϕ ` ⊥)− k − 4)2

,

4 If ϕ is a satisfiable CNF formula then is customary to define TSpace(ϕ ` ⊥) = ∞.
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where the last inequality uses that width(ϕ ` ⊥) 6 2(r+ 1) + k, a consequence of Theorem 2.
Let Ξ and Ψ be two functions respectively mapping subsets of clauses into subsets of

partial assignments and viceversa. Given a set of clauses A,

Ξ(A) = {α partial assignment : ∀C ∈ A,α(C) 6= 0},

and given a set of partial assignments F ,

Ψ(F ) = {C clause : ∃α ∈ F, α(C) = 0}.

Notice that, by construction, for every set of clauses A, A ∩ Ψ ◦ Ξ(A) = ∅ and ⊥ ∈ Ψ(F )
whenever F is non-empty. We consider the following special set:

Wr = {C clause : awidth(ϕ ` C) 6 r},

and its images Ξ(Wr) and S = Ψ ◦Ξ(Wr). The main reason to consider the set Ξ(Wr) is the
following property:

I Claim 3 (Extension Property of Ξ(Wr)). Let α be a ⊆-maximal partial assignment in
Ξ(Wr) and x a variable not in dom(α), then for every β ⊆ α such that |dom(β)| < r both
β ∪ {x 7→ 0} and β ∪ {x 7→ 1} are in Ξ(Wr).

Proof. By contradiction let β ⊆ α such that |dom(β)| < r and b ∈ {0, 1} such that
βb = β ∪ {x 7→ b} 6∈ Ξ(Wr). Without loss of generality we can restrict to consider b = 0.
Since β0 6∈ Ξ(Wr) it means that there exists a clause D in Wr such that β0(D) = 0 but
α(D) 6= 0. This means that D = D′ ∨ x, |D| 6 r and β(D′) = α(D′) = 0. By maximality of
α then both α0 = α∪ {x 7→ 0} 6∈ Ξ(Wr) and α1 = α∪ {x 7→ 1} 6∈ Ξ(Wr). In particular there
exists a clause E ∈Wr such that α1(E) = 0, so, as before, we must have that E = E′ ∨ ¬x
and α(E′) = 0. But now

D′ ∨ x E′ ∨ ¬x
D′ ∨ E′

is a valid instance of the Resolution rule. Hence, by definition of asymmetric width,

awidth(ϕ ` D′ ∨ E′) 6 max{awidth(ϕ ` D), awidth(ϕ ` E), r} 6 r,

since both D and E belong to Wr and |D| 6 r. So D′ ∨E′ ∈Wr and α(D′ ∨E′) = 0 which
is a contradiction. J

Let π = (M0, . . . ,M`) be a Resolution refutation of ϕ given as a sequence of memory
configurations. By definition of Wr, ⊥ 6∈Wr and hence the empty partial assignment is in
Ξ(Wr), so, in particular ⊥ ∈ S. Hence the following set is non-empty:

A = {i ∈ [`] : ∃C ∈Mi ∩ S, |C| < (r − 1)/2}.

Let t = minA and let C ∈ Mt ∩ S be a clause of width less than (r − 1)/2. Since C ∈ S
there must exists a partial assignment α ∈ Ξ(Wr) that falsifies C and let αC be the minimal
partial assignment contained in α falsifying C. Notice that |dom(αC)| = |C| < (r − 1)/2.
Our goal now is to show that there exists some i < t such that |Mi ∩ S| > (r − 1)/2. Since
for every i < t every clause in Mi ∩ S has width at least (r − 1)/2, this will give the desired
result.

For sake of contradiction, suppose that for each i < t, |Mi∩S| < (r−1)/2. We inductively
construct a sequence of assignments β0, . . . , βt in Ξ(Wr) such that for each i 6 t we have
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that αC ⊆ βi and that βi |= Mi ∩ S. This immediately give a contradiction when we reach
βt, since αC falsifies the clause C ∈Mt ∩ S and βt ⊇ αC .

The first memory configuration M0 is empty, so we can put β0 = α. Supposing that
0 ≤ i < t and that we already have a suitable βi, we construct βi+1 distinguishing between
two cases.

Axiom download case. Mi+1 ⊆Mi ∪ {D}, where D is a clause from ϕ. Since each clause
D from ϕ belongs to Wr and we have that Wr ∩ S = ∅, then Mi ∩ S = Mi+1 ∩ S and hence
we can simply put βi+1 = βi.

Inference case. Mi+1 ⊆Mi∪{D∨E} where D∨E follows by Resolution on some variable
x from two clauses D ∨ x and E ∨ ¬x in Mi. Then, by the inductive hypothesis, there exists
βi ∈ Ξ(Wr) such that βi |= Mi ∩ S, let β̄i ∈ Ξ(Wr) be a ⊆-maximal partial assignment
containing βi and let β be an assignment contained in β̄i ⊆-minimal such that αC ⊆ β and
β |= Mi ∩ S. We have that

|dom(β)| 6 |dom(αC)|+ |Mi ∩ S| < (r − 1)/2 + (r − 1)/2 = r − 1,

where the first inequality follows easily from the fact that to satisfy a clause F ∈Mi ∩ S an
assignment just have to satisfy a single literal in F . Notice that since |dom(β)| 6 r − 2 the
extension property from Claim 3 can be applied twice and we will use this later. The main
property of β that we now use is the following:

I Claim 4. Let γ ∈ Ξ(Wr) and F be any clause in Mi, if var(F ) ⊆ dom(γ) and β ⊆ γ, then
γ |= F .

Proof. Since var(F ) ⊆ dom(γ), then γ(F ) ∈ {0, 1}. If by contradiction γ(F ) = 0, then,
by construction F ∈ S and, again by construction, β |= Mi ∩ S. So β |= F , which is is a
contradiction since β ⊆ γ. J

The remaining part of the proof is just case analysis. If there is some variable y in D ∨E
unassigned by β̄i then we can use the extension property (Claim 3) extending β to some
β′ ∈ Ξ(Wr) setting y and satisfying D ∨ E.

If var(D ∨ E) ⊆ dom(β) then we can extend β to some assignment β′ ∈ Ξ(Wr) setting x
to some value (either by choosing β̄i if x ∈ dom(β̄i) or otherwise by the extension property).
Then var(D ∨ x) ⊆ dom(β′), and, by the previous claim, β′ |= D ∨ x. The same happens for
E ∨ ¬x and hence β′ |= D ∨ E by the soundness of the Resolution rule.

The only remaining possibility is that var(D ∨E) 6⊆ dom(β) but var(D ∨E) ⊆ dom(β̄i),
and without loss of generality suppose that var(D) 6⊆ dom(β). If x ∈ dom(β̄i) then, by the
previous claim β̄i |= (D ∨ x) ∧ (E ∨ ¬x) so β̄i |= D ∨E. Suppose then that x 6∈ dom(β̄i). By
Claim 3 we have that β′ = β ∪ {x 7→ 0} ∈ Ξ(Wr). Take a ⊆-maximal assignment in Ξ(Wr)
containing β′, let β̄′ be such assignment. If var(D∨x) ⊆ dom(β̄′) then, by the previous claim,
β̄i |= D ∨ x, but β′(x) = 0 so β̄′ |= D and hence β̄′ |= D ∨ E. If var(D ∨ x) 6⊆ dom(β̄′) then
there is some variable y in D ∨ x not assigned by β̄′ and since |dom(β′)| = |dom(β)|+ 1 < r

we can apply the extension property to β′ extending it setting y and satisfying D. J

First of all notice that we proved something actually stronger, that is we proved that
given an unsatisfiable CNF formula ϕ, every Resolution refutation of ϕ must pass through
a memory configuration of at least 1

2 (awidth(ϕ ` ⊥) − 2) clauses each of width at least
1
2 (awidth(ϕ ` ⊥)− 2).
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A crucial point in the proof of Theorem 1 is Claim 3. It is related with the following
characterization of asymmetric width in Resolution by [15].

I Theorem 5 (Theorem 22 from [15]). Let ϕ be an unsatisfiable CNF formula, then the
followings are equivalent:
1. awidth(ϕ ` ⊥) > r.
2. There exists a non-empty set F of partial assignments such that:

Consistency: For every α ∈ F and every clause C of ϕ, α(C) 6= 0;
Extension: If α ∈ F and β ⊆ α is such that |dom(β)| < r, then for every variable
x /∈ dom(α) and for every ε ∈ {0, 1} there exist βε ∈ F with β ⊆ βε such that
βε(x) = ε.

Claim 3 is based on the proof of the implication from 1. to 2. in the previous theorem. The
other implication (easier to prove) is not needed for Theorem 1. Indeed it is easy to see that
given 1. the set of ⊆-maximal partial assignments in Ξ(Wr) satisfies the properties claimed
in 2., and the crucial extension property is essentially Claim 3.

4 Open questions

We conclude this work with some open questions about the behaviour of the total space
measure. Most of the questions are motivated by some analogy with the behaviour of the
clause space measure.

On super-linear lower bounds. Is there any family of k-CNF formulas ϕn in n variables
and nO(1) clauses such that size(ϕn ` ⊥) = nO(1) and TSpace(ϕn ` ⊥) = Θ(n2)?

For the formulas from [21] we saw in Section 1.2 we just have a linear total space lower
bound. If we could find some formulas ψn with polynomial size Resolution proofs5 but such
that width(ψn ` ⊥) = ω(

√
n) then, by Theorem 1, we would have that TSpace(ψn ` ⊥) =

ω(n). This is anyway quite far from the question we are asking here and it seems that a
positive answer should need some new techniques.

On simpler proofs for total space lower bounds. Is there a simpler more direct proof of a
total space-width lower bound?

The clause space inequality CSpace(ϕ ` ⊥) > width(ϕ ` ⊥)− k + 1, where ϕ is a k-CNF,
can be proven using some families of assignments and a characterization of Resolution width
[2] or it can be proven (with some small loss in an additive constant) via some operation on
Resolution proofs [26]. The proof we have of Theorem 1 is in a sense similar to the proof of
the clause-width lower bound in [2] although not quite simple as that since we pass trough
the asymmetric width and more complicated families of assignments.

Beyond Resolution. Space measures are defined in [1] also for proof systems stronger than
Resolution. For example for Polynomial Calculus, a proof system where instead of clauses
we infer polynomials, or Res(k), a (stronger) version of Resolution where instead of clauses
k-DNF can be inferred, or Frege systems. In all such systems very little is known about
space especially when it comes to total space. Regarding other space measures something is
known for example for Res(k) [10, 24] and for Polynomial Calculus [1, 19, 27]. In [1] it is

5 Equation 2 in this case implies that width(ψn ` ⊥) = O(
√
n logn).
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proven that in Frege system the total space is always at most linear and regarding Polynomial
Calculus, the only lower bounds known for total space are from [1] and those are for the
PHPn+1

n formulas and the Complete Tree formulas. Is there any family of k-CNF formulas in
n variables ϕn with nO(1) clauses requiring ω(n) total space to be refuted say in Polynomial
Calculus?

Acknowledgements. The main question about width and total space is the result of some
discussions had at the Dagstuhl seminar 15171: we want to thank Schloss Dagstuhl for the
inspiring environment and the kind hospitality. We want to thank Jakob Nordström and
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Abstract
We show that there are CNF formulas which can be refuted in resolution in both small space and
small width, but for which any small-width resolution proof must have space exceeding by far the
linear worst-case upper bound. This significantly strengthens the space-width trade-offs in [Ben-
Sasson 2009], and provides one more example of trade-offs in the “supercritical” regime above
worst case recently identified by [Razborov 2016]. We obtain our results by using Razborov’s new
hardness condensation technique and combining it with the space lower bounds in [Ben-Sasson
and Nordström 2008].
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1 Introduction

Propositional proof complexity studies the problem of how to provide concise, polynomial-
time checkable certificates that formulas in conjunctive normal form (CNF) are unsatisfiable.
Research in this area was initiated in [20] as a way of attacking the problem of showing
that NP 6= coNP, and hence P 6= NP, and it is therefore natural that the main focus has
been on proving upper and lower bounds on proof length/size. More recently, however, other
complexity measures have also been investigated, and this study has revealed a rich and
often surprising web of connections.

Resolution Length, Width, and Space. Arguably the most thoroughly studied proof
system in proof complexity is resolution, which appeared in [15] and began to be investigated
in connection with automated theorem proving in the 1960s [21, 22, 33]. Because of its
simplicity this proof system is well suited for proof search, and it lies at the heart of current
state-of-the-art SAT solvers based on so-called conflict-driven clause learning [4, 26, 27].
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57:2 Supercritical Space-Width Trade-Offs for Resolution

It is not hard to show that any unsatisfiable CNF formula over n variables can be proven
unsatisfiable, or refuted, by a resolution refutation containing exp(O(n)) clauses, and this
holds even in the restricted setting of tree-like resolution, where each intermediate clause in
the refutation has to be rederived from scratch every time it is used. In a breakthrough result,
Haken [24] obtained a length lower bound on the form exp

(
Ω
(
nδ
))

for general resolution
refutations of so-called pigeonhole principle formulas, and this paper was later followed by
truly exponential lower bounds exp(Ω(n)) for other formula families in, e.g., [6, 18, 35].

In a seminal paper [12], Ben-Sasson and Wigderson identified width, measured as the
largest size of any clause appearing in a refutation, as another interesting complexity measure
for resolution. Clearly, any unsatisfiable CNF formula over n variables can be refuted in
width at most n. Moreover, any refutation in width w need never be longer than nO(w), since
this is an upper bound on the number of distinct clauses of width w (and this naive counting
argument is essentially tight [3]). What Ben-Sasson and Wigderson showed is that strong
enough lower bounds on width also imply lower bounds on length; in particular that linear
Ω(n) width lower bounds imply exponential exp(Ω(n)) length lower bounds. This connection
can be used to rederive almost all currently known resolution length lower bounds.

Motivated by questions in SAT solving, where efficient memory management is a major
concern, a more recent line of research in proof complexity has examined a third complexity
measure on proofs, namely space. This study was initiated by Esteban and Torán [23], who
defined the (clause) space of a resolution proof as the maximal number of clauses needed to
be kept in memory during verification of the proof.1 It can be shown that a CNF formula
over n variables can always be refuted in space n + O(1) even in tree-like resolution [23],
although the refutation thus obtained might have exponential length. Linear space lower
bounds matching the worst-case upper bound up to constant factors were obtained for a
number of formula families in [1, 9, 23].

These space lower bounds also matched known lower bounds on width, and in a strikingly
simple and beautiful result Atserias and Dalmau [2] showed that in fact the resolution width
of refuting a k-CNF formula F provides a lower bound for the clause space required. 2 This
allows to recover the space lower bounds mentioned above as immediate consequences of
width lower bounds shown in [12]. Furthermore, it follows from [2] that for k = O(1) any
k-CNF formula that can be refuted by just keeping a constant number of clauses in memory
can also be refuted in polynomial length and constant width. In the sequence of papers
[28, 30, 10] it was shown, however, that there are formula families that have high space
complexity although they have refutations in linear length and constant width.

Resolution Trade-offs. As was discussed above, a resolution proof in sufficiently small width
will by necessity also be short, whereas the linear worst-case upper bound on space is achieved
by a proof in exponential length. It is natural to ask, therefore, given a formula F , whether
there exists a single refutation that can simultaneously optimize these different complexity
measures. This question was first raised by Ben-Sasson [8], who gave a strong negative answer
for space versus width. He showed that there are formulas which are refutable separately in
constant width and in constant space, but for which any resolution proof minimizing one of
the measures must exhibit almost worst-case linear behaviour with respect to the other.

1 For completeness, we want to mention that for resolution there is also a total space measure counting
the total number of literals in memory (with repetitions), which has been studied in [1, 13, 16, 17]. In
this paper, however, “space” will always mean “clause space” in the sense of [23] unless otherwise stated.

2 Note that this is a nontrivial connection since lower bound on width, i.e., the number of literals in a
clause, is shown to imply essentially the same lower bound on the number of clauses needed.
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A question that arises in the context of SAT solving is whether it is possible to simulta-
neously optimize size and space (corresponding to running time and memory usage). In [8]
Ben-Sasson also proved a size-space trade-off for tree-like resolution, and building on [8, 10]
it was shown in [11] that there are formulas which have refutations in linear length and also
in small space, but for which any space-efficient refutation must have superpolynomial or
even exponential length in general resolution. Beame et al. [5] and Beck et al. [7] exhibited
formulas over n variables refutable in length polynomial in n where bringing the space down
to linear, or even just shaving a constant factor of the polynomial space bound that follows
immediately from the length bound, incurs a superpolynomial penalty in proof length.

Regarding length versus width, what was shown in [12] is that a short refutation can be
converted to a refutation of small width, but this conversion blows up the length exponentially.
Thapen [34] proved that this is inherent by exhibiting formulas refutable in small width
and small length, but for which any small-width refutation has to have exponential length.
For the restricted case of tree-like resolution, Razborov [32] recently showed that there are
formulas refutable in small width for which any tree-like refutation even doing slightly better
than the trivial linear upper bound with respect to width must by necessity have doubly
exponential length.

We want to highlight an intriguing property of the trade-off results in [5, 7, 32] that sets
them apart from the other trade-offs surveyed above. Namely, for most trade-off results
between complexity measures it is the case that the trade-off plays out in the region between
the worst-case upper bounds for the measures, where as one measure decreases the other
measure has to approach its critical worst-case value. However, the short resolution proofs
in [5, 7] require space even polynomially larger than the worst-case upper bound, and the
small-width tree-like proofs in [32] require proofs of length exponential in the exponential
upper bound for tree-like length. To underscore the dramatic nature of such trade-off results,
Razborov refers to them as ultimate in the preliminary version [31] of [32], although in
this paper we will instead use the term supercritical trade-offs to indicate that one of the
complexity measures is pushed up into the supercritical regime above worst case when the
other measure is decreased.

Our Contribution. Answering Razborov’s call in [32] for more examples of the type of
trade-offs discussed above, we prove a supercritical trade-off between space and width in
resolution. As already observed, any refutation in width w of a CNF formula over n variables
in general resolution need not contain more than O(nw) clauses, which is also a trivial upper
bound on the space complexity of such a refutation. Our main result is that this bound is
essentially tight, and is also somewhat robust. Namely, we show that there are n-variable
formulas that can be refuted in width w, but for which any refutation in width even up to
almost a multiplicative logarithmic factor larger than this requires space nΩ(w).

I Theorem 1.1. For any constant ε > 0 and any non-decreasing function `(n), 6 ≤ `(n) ≤
n

1
2−ε, there is a family {Fn}n∈N of n-variable CNF formulas which can be refuted in resolution

width `(n) but for which any refutation in width o(`(n) logn) requires space nΩ(`(n)).

Techniques. In one sentence, we obtain our results by using Razborov’s hardness conden-
sation technique in [32] and combining it with the space lower bounds in [10].

In slightly more detail, our starting point are the so-called pebbling formulas defined
in [12]. These formulas are refutable in constant width, but it was observed in [8] that
space lower bounds for pebble games on directed acyclic graphs (DAGs) carry over to lower
bounds on the number of variables kept simultaneously in memory in resolution refutations

ICALP 2016
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of pebbling formulas defined over these DAGs. It was shown in [10] that substituting every
variable in such formulas by an exclusive or of two new variables and expanding out to CNF
produces a new family of formulas which are still refutable in constant width but for which
the variable space lower bounds have been amplified to clause space lower bounds.

The result in [10] is one of several examples of how XOR substitution, or XORification,
has been used to amplify weak proof complexity lower bounds to much stronger lower bounds.
In all of these applications distinct variables of the original formula are replaced by disjoint
sets of new variables. The wonderfully simple (with hindsight) but powerful new idea in [32]
is to instead do XOR substitution with overlapping sets of variables from a much smaller
variable pool (but with exclusive ors of higher arity).

This recycling of variables has the consequence that hardness amplification as in [10] no
longer works, since it crucially depends on the fact that all new substitution variables are
distinct. What Razborov showed in [32] was essentially that if the pattern of overlapping
variable substitutions is described by a strong enough bipartite expander, then locally there
are enough distinct new variables to make tree-like amplification lower bounds as in [8] go
through over a fairly wide range of the parameter space, yielding supercritical trade-offs
between width and tree-like length. Since in addition the number of variables in the formula
has decreased significantly, this can be viewed as a kind of hardness condensation.

We use Razborov’s idea of XORification with recycled variables, but since we want to
obtain results for general, DAG-like resolution the technical details of our proofs are somewhat
different. At a high level, we start with formulas over N variables that are refutable in
constant width but require space Ω(N/ logN), to which we apply w-wise XORification using
a much smaller set of n variables. We then show that from any refutation in width O(w)
of this new, XORified formula it is possible to recover a refutation of the original formula
with comparable space complexity. But this means that any small-width refutation of the
XORified formula must have space complexity roughly Ω(N/ logN). Choosing parameters
so that N ≈ nw yields the bound stated in Theorem 1.1.

We should point out that compared to [32] we get significantly less robust trade-offs,
which break down already for a multiplicative logarithmic increase in width. This is mainly
due to the fact that we deal not with tree-like resolution as in [32], but with general, DAG-like
resolution. We share with [32] the less desirable feature that although our formulas only have
n variables they contain on the order of nw clauses. Thus, measured in terms of formula
size our space-width trade-offs do not improve on [8], and the width of our formulas is not
constant but scales linearly with w. Still, since the number of variables provides a worst-case
upper bound on space (independently of formula size), measured in terms of variables it
seems fair to say that the trade-off result in Theorem 1.1 is fairly dramatic.

Organization of This Paper. We start by reviewing some preliminaries in Section 2. In
Section 3 we prove our main result assuming a hardness condensation lemma, and this lemma
is then established in Section 4. We conclude in Section 5 with a discussion of possible
directions for future research. Due to space constraints, we omit some of the proofs in this
extended abstract, referring the reader to the upcoming full-length version for the missing
details.

2 Preliminaries

A literal over a Boolean variable x is either the variable x itself (a positive literal) or its
negation x (a negative literal). We define x = x. A clause C = a1 ∨ · · · ∨ ak is a disjunction
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of literals over pairwise disjoint variables. A clause C ′ subsumes another clause C if every
literal from C ′ also appears in C. A k-clause is a clause that contains at most k literals. A
CNF formula F = C1 ∧ · · · ∧ Cm is a conjunction of clauses. A k-CNF formula is a CNF
formula consisting of k-clauses. We write Vars(F ) to denote the set of variables appearing
in a formula F . We think of clauses and CNF formulas as sets: the order of elements is
irrelevant and there are no repetitions.

A resolution refutation π : F `⊥ of an unsatisfiable CNF formula F , which can also be
referred to as a resolution proof for (the unsatisfiability of) F , is an ordered sequence of
clauses π = (D1, . . . , Dτ ) such that Dτ = ⊥ is the empty clause containing no literals, and
each clause Di, i ∈ [τ ] = {1, . . . , τ}, is either one of the clauses in F (an axiom) or is derived
from clauses Dj , Dk in π with j, k < i by the resolution rule

B ∨ x C ∨ x
B ∨ C

. (2.1)

For technical reasons, it will also be convenient to permit a weakening rule

B

B ∨ C
(2.2)

allowing to derive a strictly weaker clause from a clause already derived, although this rule
is not essential.

With every resolution proof π we can associate a DAG Gπ by having a sequence of
vertices vi on a line in order of increasing i, labelled by the clauses Di ∈ π, and with directed
edges (vj , vi) and (vk, vi) if the clause Di was derived by resolution from Dj and Dk or an
edge (vj , vi) if Di was derived from Dj by weakening. Note that there might be several
occurrences of a clause D in the proof π, and if so each occurrence gets its own vertex in Gπ.

The length L(π) of a resolution proof π is the number of clauses in it (counted with
repetitions). The width W(C) of a clause C is |C|, i.e., the number of literals, and W(π) is the
size of a largest clause in π. The (clause) space at step i is the number of clauses Cj , j < i, with
edges to clauses Ck, k ≥ i in Gπ plus 1 for the clause Ci derived at this step. Intuitively, space
measures the number of clauses we need to keep in memory at step i, since they were derived
before step i but are used to infer new clauses at or after step i. The space Sp(π) of a proof π
is the maximum space over all steps in π. Taking the minimum over all refutations, we define
the length, width, and space of refuting F , respectively, as L(F `⊥) = minπ:F `⊥{L(π)},
W(F `⊥) = minπ:F `⊥{W(π)}, and Sp(F `⊥) = minπ:F `⊥{Sp(π)}. We remark that any
applications of the weakening rule (2.2) can always be eliminated from a refutation without
increasing the length, width, or space.

When reasoning about space, it is sometimes convenient to use a slightly different, but
equivalent, description of resolution that makes explicit what clauses are in memory at
each point in time. We say that a configuration-style resolution refutation is a sequence
(D0, . . . ,Dτ ) of sets of clauses, or configurations, such that D0 = ∅, ⊥ ∈ Dτ , and for all t ∈ [τ ]
the configuration Dt is obtained from Dt−1 by one of the following derivation steps:
Axiom Download Dt = Dt−1 ∪ {C}, where C is a clause C ∈ F .
Inference Dt = Dt−1 ∪ {D} for a clause D derived by resolution or weakening from clauses

in Dt−1.
Erasure Dt = Dt−1 \ D′ for some D′ ⊆ Dt−1.
The length of a configuration-style refutation π = (D0, . . . ,Dτ ) is the number of axiom
downloads and inference steps, the width is the size of a largest clause, as before, and the space
is maxt∈[τ ]{|Dt|}. Given a refutation as an ordered sequence of clauses π = (D1, . . . , Dτ ),
we can construct a configuration-style refutation in the same length, width, and space by
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deriving each clause Di via an axiom download or inference step, and interleave with erasures
of clauses Cj , j < i, as soon as they have no edges to clauses Ck, k ≥ i in the associated
DAG Gπ. In the other direction, taking a configuration-style refutation and listing the
sequence of axiom download and inference steps yields a standard resolution refutation in
the same length, width and space (assuming that clauses are erased as soon as possible).
Thus, we can switch freely between these two ways of describing resolution refutations.

In fact, it will be convenient for us to limit our attention to a (slightly non-standard)
restricted form of resolution refutations as described next. Let us say that a homogeneous
resolution refutation is a refutation where every resolution rule application is of the form

C ∨ x C ∨ x
C

. (2.3)

The requirement of homogeneity is essentially without loss of generality, since we need to
insert at most two weakening steps before each application of the resolution rule, which
increases the width by at most 1, and the weakened clauses can then immediately be forgotten.
We state this observation formally for the record.

I Observation 2.1. If a CNF formula F has a standard resolution refutation without
weakening steps in length L, width w, and space s, then it has a homogeneous refutation in
length at most 3L, width at most w + 1, and space at most s+ 2.

As already mentioned, a useful trick to obtain hard CNF formulas for different proof
systems and complexity measures, which will play a key role also in this paper, is XOR-
ification, i.e., substituting variables by exclusive ors of new variables and expanding out in
the canonical way to obtain a new CNF formula. For example, the standard way to define
binary XOR substitution for a positive literal x is

x[⊕2] = (x1 ∨ x2) ∧ (x1 ∨ x2) , (2.4)

for a negative literal y we have

y[⊕2] = (y1 ∨ y2) ∧ (y1 ∨ y2) , (2.5)

and applying binary XOR substitution to the clause x ∨ y we obtain the CNF formula

(x ∨ y)[⊕2] = x[⊕2] ∨ y[⊕2] = (x1 ∨ x2 ∨ y1 ∨ y2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2)
∧ (x1 ∨ x2 ∨ y1 ∨ y2) ∧ (x1 ∨ x2 ∨ y1 ∨ y2) . (2.6)

The XORification of a CNF formula F is the conjunction of all the formulas corresponding to
the XORified clauses of F . We hope that the reader excuses our slightly informal definition
by example and has no problems generalizing it to substitutions with XOR of arbitrary arity
(but see, e.g., Definition 2.12 in [29] for a more rigorous treatment).

Usually, the way XORification is done is that any two variables in the original formula
are replaced by exclusive ors over disjoint sets of new variables. Razborov [32] observed that
it can sometimes be useful to allow XORification with overlapping sets of variables. Let us
define this concept more carefully.

I Definition 2.2 (XORification with recycling [32]). Let F be a CNF formula over the set
of variables u1, . . . , uN and let G = (U

.
∪ V,E) be a bipartite graph with left vertex set

U = {u1, . . . , uN} and right vertex set V = {v1, . . . , vn}. Then for the variables ui we define
the XORified literals ui[G] =

⊕
v∈N (ui) v and ui[G] = ¬

⊕
v∈N (ui) v (whereN (ui) denotes the

neighbours in V of ui), for clauses C ∈ F we define C[G] =
∨
a∈C a[G] expanded out to CNF

as in (2.6), and the XORification of F with respect to G is defined to be F [G] =
∧
C∈F C[G].
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Note that if F is an N -variable k-CNF with m clauses and G = ({u1, . . . , uN}
.
∪

{v1, . . . , vn}, E) is a bipartite graph of left degree d, then F [G] is an n-variable kd-CNF
formula with most 2d−1m clauses. We conclude this section with two simple observations
that will be useful in what follows.

I Observation 2.3. If F has a (homogeneous) resolution refutation in width w and G has
left degree bounded by d, then F [G] can be refuted in (homogeneous) resolution in width 2dw.

This is not hard to show, and follows, e.g., from Theorem 2 in [11] (strictly speaking, this
theorem is for XORification without recycling, but recycling can only decrease the width).

I Observation 2.4. If F has a (homogeneous) resolution refutation π such that the associated
DAG Gπ has depth (i.e., longest path) s, then π can be carried out (in homogeneous resolution)
in space s+ 2 (possibly by repeating and/or reordering clauses in π).

This second observation is essentially due to [23]. The proof DAG Gπ can be turned into
a binary tree of the same depth by repeating vertices/clauses, and it is then straightforward
to show that any tree-like proof DAG in depth s can be realized in space at most s+ 2.

3 Proof of Main Theorem

In this section we present a proof of Theorem 1.1. The proof makes use of the following
hardness condensation lemma, which will be established in the next section and is the main
technical contribution of the paper.

I Lemma 3.1 (Hardness condensation lemma). For all k ∈ N+ and ε > 0 there exist n0 ∈ N+

and δ > 0 such that the following holds. Let ` and n be integers satisfying n ≥ n0 and
k ≤ ` ≤ n

1
2−ε, and suppose that F is an unsatisfiable k-CNF formula over N = bnδ`c

variables which requires width W(F ` ⊥) = k and space Sp(F ` ⊥) = s to be refuted in
resolution.

Then there is a bipartite graph G = (U
.
∪ V,E) with |U | = N and |V | = n such that the

n-variable CNF formula F [G] has the following properties:
F [G] can be refuted in width `.
Any refutation π : F [G]`⊥ in width w ≤ `

4k logn requires space Sp(π) ≥ (s− w − 3)2−w.

We want to apply this lemma to formulas of low width complexity but high space
complexity as stated next.

I Theorem 3.2 ([10]). There is a family {FN}N∈N of N-variable 6-CNF formulas of
size Θ(N) which can be refuted in width 6 but require space Sp(FN `⊥) = Ω(N/ logN).

Combining Lemma 3.1 and Theorem 3.2, we can prove our main result.

Proof of Theorem 1.1. Recall that we want to prove that for any constant ε > 0 and any
non-decreasing function `(n) ≤ n 1

2−ε there is a family {Fn}n∈N of n-variable CNF formulas
which have a resolution refutation of width `(n) but for which any refutation of width
o(`(n) logn) requires clause space nΩ(`(n)).

From Theorem 3.2 we obtain constants ε′ > 0 and N0 ∈ N+ and a family of N -variable
6-CNF formulas FN that require clause space ε′N/ logN for all N ≥ N0. We want to apply
Lemma 3.1 to these formulas. Let ε > 0 be given in Theorem 1.1 and fix k = 6. Plugging
this into Lemma 3.1 yields δ > 0 and n0 ∈ N+, where in addition we choose n0 large enough
so that bnδ`(n0)

0 c ≥ N0 (this is always possible since δ`(n0) ≥ 6δ > 0).
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For any n ≥ n0, set N = bnδ`(n)c ≥ N0 and let G = (U
.
∪ V,E) with |U | = N and

|V | = n be the bipartite graph guaranteed by Lemma 3.1. Then the lemma says that FN [G]
is an n-variable formula which can be refuted in width `, but for for which every refutation
of width w ≤ `

4k logn requires clause space of (s− w − 3)2−w, where s ≥ ε′N/ logN =
ε′bnδ`(n)c/ logbnδ`(n)c is the space lower bound for FN . Choosing w ≤ min

( 1
4k ,

δ
2
)
· `(n) logn

(recall that w = o(`(n) logn) by assumption), the sequence of calculations

(s− w − 3)2−w ≥
(
ε′bnδ`(n)c/ logbnδ`(n)c − δ

2`(n) logn
)
2−

δ
2 `(n) logn ≥ Ω

(
n
δ
2 `(n)

)
(3.1)

yields the desired space lower bound. J

If one looks more closely at what is going on inside the proof of Theorem 1.1, where
Lemma 3.1 and Theorem 3.2 come together, one can make the following somewhat intriguing
observation. As discussed in the introduction, Theorem 3.2 is shown by using so-called
pebbling formulas. Given a DAG D with sources S and a unique sink z, and with all
non-sources having fan-in 2, we let every vertex in D correspond to a variable and define the
pebbling formula PebD to consist of the following clauses:

for all s ∈ S, a clause s,
For all non-source vertices v with predecessors u1, u2, the clause u1 ∨ u2 ∨ v,
for the sink z, the clause z.

Applying standard binary XOR substitution (without recycling) as in (2.6) to these formulas
amplifies weak lower bounds on the number of variables in memory VarSp(PebD `⊥) (which
follow from properties of the chosen DAG D) to stronger lower bounds on the number of
clauses Sp(PebD[⊕2] `⊥). In Lemma 3.1 we then do another round of XOR substitution,
this time with recycling, to decrease the number of variables while maintaining the space
lower bound for small-width refutations. It is not entirely clear why we would need two
separate rounds of XORification to achieve this result. In one sense, it would seem more
satisfying to get a clean one-shot argument that just takes pebbling formulas and yields the
supercritical trade-offs by only one round of XORification.

In fact, if we are willing to accept a slightly weaker bound, we could make such a one-shot
argument and apply substitution with recycling directly to the pebbling formulas. The reason
for this is that one can actually prove a somewhat stronger version of hardness condensation
than in Lemma 3.1, as we will see in Section 4. There is no need to require that the original
formula should have high space complexity unconditionally, but it suffices that the formula
exhibits a strong trade-off between width and clause space. Since the number of clauses times
the maximal width of any clause is an upper bound on the total number of distinct variables
in memory, for any resolution refutation π we have the inequality Sp(π) ·W(π) ≥ VarSp(π).
In [8] a variable space lower bound VarSp(PebD ` ⊥) = Ω(N/ logN) was presented (for
appropriately chosen DAGs D), implying that any width-w refutation requires clause space at
least Ω(N/(w logN)). Since our hardness condensation step incurs a loss of a factor 1/2w, by
starting with standard pebbling formulas and applying XORification with recycling directly
we could obtain asymptotically similar bounds in one shot.

However, one can also argue that by combining Lemma 3.1 and Theorem 3.2 in the way
done above one obtains a more modular proof, which shows that any formulas satisfying the
conditions in Theorem 3.2 can be used for hardness condensation in a black-box fashion.
This is why we chose to present the proof in this way.
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4 Hardness Condensation

Let us now prove the hardness condensation lemma. We prove a slightly stronger version of
the lemma below, which clearly subsumes Lemma 3.1.

I Lemma 4.1 (Hardness condensation lemma, strong version). For all k ∈ N+ and ε > 0 there
are n0 ∈ N+ and δ > 0 such that the following holds. Let ` and n be integers satisfying n ≥ n0
and k ≤ ` ≤ n

1
2−ε and suppose that F is an unsatisfiable k-CNF formula over N = bnδ`c

variables which requires width W(F `⊥) = k to be refuted in resolution.
Then there is a bipartite graph G = (U

.
∪ V,E) with |U | = N and |V | = n such that the

n-variable CNF formula F [G] has the following properties:
F [G] can be refuted in width `.
Any refutation π : F [G]`⊥ of the XORified formula F [G] in width w ≤ `

4k logn requires
space Sp(π) ≥ (s− w − 3)2−w, where s is the minimal space of any refutation π′ : F `⊥
of the original formula F in width at most w.

Clearly, the key to obtain Lemma 4.1 is to choose the right kind of graphs. As in [32],
we use boundary expander graphs where the right-hand side is significantly smaller than
the left-hand side. Let us start by giving a proper definition of these graphs and reviewing
the properties of them that we need. Most of our discussion of boundary expanders can
be recovered from [32], but since our setting of parameters is slightly different we give a
self-contained presentation below. We refer to the full-length version of this paper for any
missing proofs.

In what follows, we will let G = (U
.
∪ V,E) denote a bipartite graph with left vertices U

and right vertices V . We write N
(
U ′
)

=
{
v
∣∣{u, v} ∈ E(G), u ∈ U ′

}
to denote the set of

right neighbours of a left vertex subset U ′ ⊆ U (and vice versa for right vertex subsets).

I Definition 4.2 (Boundary expander). A bipartite graph G = (U
.
∪ V,E) is an N × n

(r, c)-boundary expander, or unique neighbour expander, if |U | = N , |V | = n, and for every set
U ′ ⊆ U , |U ′| ≤ r, it holds that |∂(U ′)| ≥ c|U ′|, where ∂(U ′) =

{
v ∈ N (U ′) : |N (v)∩U ′| = 1

}
is the boundary or the set of unique neighbours of U ′. An (r, d, c)-boundary expander is an
(r, c)-boundary expander where additionally |N (u)| ≤ d for all u ∈ U , i.e., the left degree is
bounded by d.

For a right vertex subset V ′ ⊆ V in G = (U
.
∪ V,E) we define the kernel Ker

(
V ′
)
⊆ U

of V ′ to be the set of all left vertices whose entire neighbourhood is contained in V ′, i.e.,
Ker

(
V ′
)

=
{
u ∈ U

∣∣N (u) ⊆ V ′
}
. We write G \ V ′ to denote the subgraph of G induced on(

U \Ker(V ′)
) .
∪
(
V \V ′

)
. That is, we obtain G \V ′ from G by first deleting V ′ and afterwards

all isolated vertices from U .
A key property of boundary expanders is that for any small enough right vertex set V ′ we

can always find a closure γ
(
V ′
)
⊇ V ′ with a small kernel on the left such that the subgraph

G \ γ(V ′) has good boundary expansion. This is very similar to an analogous lemma in [32].
We omit the proof due to space constraints.

I Lemma 4.3 ([32]). Let G be an (r, 2)-boundary expander. Then for every V ′ ⊆ V with
|V ′| ≤ r/2 there exists a subset γ(V ′) ⊇ V ′ such that

∣∣Ker
(
γ
(
V ′
))∣∣ ≤ |V ′| and the induced

subgraph G \ γ(V ′) is an (r/2, 1)-boundary expander.

The next lemma states that there exists N × n (r, d, 2)-boundary expanders where the
size n of the right-hand side is significantly smaller than the size N = nΘ(d) of the left-hand
side. This can be proven by a standard application of the probabilistic method.
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I Lemma 4.4. Fix constants ε, δ, d0 > 0 such that δ + 1
d0

< ε/2. Then there exists an
n0 ∈ N+ such that for all n, d, and r satisfying n ≥ n0, d0 ≤ d ≤ n

1
2−ε, and r ≤ d logn

there are bnδdc × n (r, d, 2)-boundary expanders.

After this review of boundary expanders and their properties we now come to the core
argument of the paper, namely that space lower bounds are preserved for small-width
proofs when we apply XORification as in Definition 2.2 with respect to an (r, 2)-boundary
expander. To get cleaner technical arguments in the proofs we will restrict our attention
to homogeneous resolution refutations as in (2.3), which for our purposes is without loss of
generality by Observation 2.1.

I Lemma 4.5. Let F be a CNF-formula and G an (r, 2)-boundary expander and suppose
that π : F [G]`⊥ is a homogeneous resolution refutation in width w ≤ r/2 of the XORified
formula F [G]. Then there is a homogeneous refutation π′ : F `⊥ of the original formula F
in width at most w and space Sp(π′) ≤ 2wSp(π) + w + 3.

Proof. Assume that π = (C0,C1, . . . ,Cτ ) is a configuration-style homogeneous resolution
refutation of F [G] in width W(π) = w ≤ r/2. We will show how to transform π into a
refutation π′ of the original formula F in width and space as claimed in the lemma. To help
the reader navigate the proof, we remark that in what follows we will use the notational
conventions that B and C denote clauses over Vars(F [G]), D denotes a clause over Vars(F ),
and A denotes an axiom clause from the original formula F before XORification.

Recall that for clauses C ∈ F [G] we have Vars(C) ⊆ V . For convenience, we will overload
notation and write Ker(C) = Ker(Vars(C)), which is a subset of the variables U of the
original formula F . Furthermore, for every clause C ∈ π we fix γ(C) := γ(Vars(C)) ⊆ V to
be a minimal closure with properties as guaranteed by Lemma 4.3 (such closures exist since
all clauses C ∈ π have width at most w). An important notion in what follows will be that of
simultaneous falsifiability, where we say that two CNF formulas F and G are simultaneously
falsifiable if there is a truth value assignment that at the same time falsifies both F and G.

To transform the resolution refutation π of F [G] into a refutation π′ of F we let Dt be
obtained from Ct by replacing every clause C ∈ Ct by the set of clauses

G−1(C) := {D |Vars(D) = Ker(γ(C)); D[G] and C are simultaneously falsifiable} (4.1)

and defining

Dt :=
⋃
C∈Ct G

−1(C) (4.2)

(where the notation G−1(C) is chosen to suggest that this is in some intuitive sense the
inverse operation of XORification with respect to G).

Every clause in D ∈ G−1(C) has width at most w, because |Vars(D)| = |Ker(γ(C))| ≤
W(C) ≤ w, where the first inequality is guaranteed by Lemma 4.3. Furthermore, we have
|G−1(C)| ≤ 2w, since all clauses in G−1(C) are over the same set of variables and each
variable appears positively or negatively in every clause, and hence

∣∣Dt∣∣ ≤ 2wSp(π). We want
to argue that the sequence D0,D1, . . . ,Dτ is the “backbone” of a resolution refutation π′

of F , by which we mean that for every t it holds that Dt+1 can be derived from Dt by a
sequence of intermediate steps without affecting any proof complexity measure too much.

To show that this is so, we first observe that for C0 = ∅ we obviously get D0 = ∅
by (4.2). Moreover, it holds that G−1(⊥) = {⊥} and hence ⊥ ∈ Dτ , since the unique
minimal closure of the empty set is the empty set itself. We want to show that for ev-
ery 0 ≤ t < τ the configuration Dt+1 can be obtained from Dt by a resolution derivation
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(Dt = D0
t ,D1

t , . . . ,D
jt
t = Dt+1) where the space of every intermediate configuration is bounded

by max{Sp(Dt),Sp(Dt+1) + w}.
If Ct+1 is obtained from Ct by erasing a clause C, then Dt+1 can be obtained from Dt by

erasing all clauses G−1(C) \Dt+1. Suppose that Ct+1 is obtained from Ct by downloading an
axiom C ∈ F [G]. We claim that every clause in G−1(C) is either an axiom or a weakening of
an axiom from F . By the definition of F [G], every axiom C ∈ F [G] is a clause in the CNF
formula A[G] for some original axiom A ∈ F . Fix any axiom A ∈ F such that C ∈ A[G].
Then for all D ∈ G−1(C) it holds by (4.1) that Vars(D) = Ker(γ(C)) ⊇ Ker(C) ⊇ Vars(A)
and that there is an assignment falsifying both D[G] and C. To see that this implies that A
subsumes D, suppose that there is a variable x appearing positively in A such that x ∈ D.
Any truth value assignment falsifying D[G] must falsify a[G] for all literals a ∈ D, and hence
in particular x[G]. But this means that x[G] is satisfied by the same assignment, and then so
is all of the formula A[G] including C. But this is a contradiction, and so not only does it hold
that Vars(A) ⊆ Vars(D) but A is in fact a subclause of D as claimed. From this we see that
we can add the clauses G−1(C) to Dt using axiom download and weakening. After applying a
weakening step we immediately delete the old clause. Hence, the additional weakening might
increase the space by at most one. It follows that the space of the intermediate configurations
need never exceed Sp(Dt+1) + 1.

It remains to check that Dt+1 can be derived from Dt when Ct+1 is obtained from Ct by
an inference step. This is stated in the following two claims regarding applications of the
resolution and weakening rules. Here graph expansion comes heavily into play, but due to
space constraints we have to defer the proofs to the full-length version of this paper.

I Claim 4.6. Every clause D ∈ G−1(C) can be derived from G−1(C ∨ x) ∪ G−1(C ∨ x) by a
homogeneous resolution derivation of width w and depth w + 1.

I Claim 4.7. For any two clauses B ⊆ C it holds that every clause D ∈ G−1(C) can be
derived from G−1(B) by a homogeneous derivation of width w and depth w + 1.

Because the depth of a refutation is an upper bound on the clause space by Observation 2.4,
it follows that in both cases we can derive all clauses in the clause set G−1(C) one by one by
using additional space w+3 to perform the derivations in depth w+1. It follows that F has a
homogeneous resolution refutation π′ of width w and clause space Sp(π′) ≤ 2wSp(π) +w+ 3.

This concludes the proof of Lemma 4.5. J

We can now combine the construction in Lemma 4.5 with the existence of good boundary
expanders in Lemma 4.4 to prove the hardness condensation in Lemma 4.1.

Proof of Lemma 4.1. Given ε > 0 and k ∈ N+ we choose δ := ε
10k . Suppose ` and n are

parameters such that k ≤ ` ≤ n
1
2−ε and let F be an unsatisfiable k-CNF formula over

N = bnδ`c variables that can be refuted in width k. To apply Lemma 4.4 we set d0 := 5
ε and

verify that δ + 1
d0

= ε
10k + ε

5 <
ε
2 . We choose the degree of the expander to be d := `

2k and
set the expansion guarantee to r := d logn. By the bound on ` we have d ≤ ` ≤ n 1

2−ε.
Now we have two cases. The first, and interesting, case is when d ≥ d0 holds. Then

Lemma 4.4 guarantees that there exists an N × n (r, d, 2)-boundary expander G. Applying
XORification with respect to G, we obtain an `-CNF formula F [G] with n variables. By
Observation 2.3 it holds that F [G] has a resolution refutation of width 2dk ≤ `. Now suppose
that π : F [G]`⊥ is a refutation of width w. Because w ≤ `

4k logn = r/2 the space lower
bound follows from Lemma 4.5.

The second case is when d < d0. Then we do not actually need any XORification but can
use the original formula. Formally, let G = (U

.
∪ (V ∪V ′), E) be a matching between two sets
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U and V of size |U | = |V | = N plus some isolated vertices V ′ on the right-hand side such
that |V ∪ V ′| = n. To check that this is well defined we have to verify that N ≤ n, which
follows from the calculations N = bnδ`c = bn ε

10k 2kdc ≤ bn ε
10k 2kd0c = bn ε

10k 2k 5
ε c = n. Thus,

we obtain F [G] = F (plus some left-over dummy variables) and we have W(F [G] `⊥) =
W(F `⊥) = k ≤ ` as well as Sp(π) ≥ s ≥ (s− w − 3)2−w. J

5 Concluding Remarks

In this paper we prove that there are CNF formulas over n variables exhibiting an nΩ(w) clause
space lower bound for resolution refutations in width w. This lower bound is optimal (up
to constants in the exponent) as every refutation in width w has length, and hence space,
at most nO(w). Our lower bounds do not only hold for the minimal refutation width w

but remain valid for any refutations in width o(w logn). Measured in terms of the number
of variables n, this is a major improvement over the previous space-width trade-off result
in [8], and provides another example of trade-offs in the supercritical regime above worst-case
recently identified in [32].

A first open problem is whether the range of applicability can be extended even further
so that the space lower bound holds true up to width o(n). It is clear that the lower bound
has to break down at some point, since if one is allowed maximal width n any formula can be
refuted in clause space n+ 2. A supercritical trade-off on resolution proof depth over width
ranging from w all the way up to n(1−ε)/w was shown in [32], suggesting that the above goal
might not be completely out of reach.

Another intriguing open problem from the complexity-theoretic point of view is to prove
space trade-offs that are superlinear not only in terms of the number of variables but measured
also in formula size. Such lower bounds cannot be obtained by the techniques used in this
paper, but they are likely to exist as the following argument shows (see [25] for a more
detailed discussion). Suppose that every refutation in width w(n) can be transformed into
a refutation that has width w(n) and clause space polynomial in the size of the formula.
Then we can find such a refutation non-deterministically in polynomial space by keeping
the current configuration in memory and guessing the inference steps. Thus, by Savitch’s
theorem, finding refutations of width w(n) would be in deterministic PSPACE. On the other
hand, it has been shown by the first author that the problem of finding resolution refutations
of bounded width is EXPTIME-complete [14]. Hence, unless EXPTIME = PSPACE there are
formulas where every refutation of minimal width needs clause space that is superpolynomial
in the size of the formula.

Finally, it would be interesting to study if the supercritical trade-offs between clause
space and width in resolution shown in this paper could be extended to similar trade-offs
between monomial space and degree for polynomial calculus or polynomial calculus resolution
as defined in [1, 19].

Acknowledgements. We wish to thank Alexander Razborov for patiently explaining the
hardness condensation technique in [32] during numerous and detailed discussions.
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Abstract
Given a set of numbers, the k-SUM problem asks for a subset of k numbers that sums to zero.
When the numbers are integers, the time and space complexity of k-SUM is generally studied in
the word-RAM model; when the numbers are reals, the complexity is studied in the real-RAM
model, and space is measured by the number of reals held in memory at any point.

We present a time and space efficient deterministic self-reduction for the k-SUM problem
which holds for both models, and has many interesting consequences. To illustrate:

3-SUM is in deterministic time O(n2 lg lg(n)/ lg(n)) and space O
(√

n lg(n)
lg lg(n)

)
. In general, any

polylogarithmic-time improvement over quadratic time for 3-SUM can be converted into an
algorithm with an identical time improvement but low space complexity as well.
3-SUM is in deterministic time O(n2) and space O(

√
n), derandomizing an algorithm of Wang.

A popular conjecture states that 3-SUM requires n2−o(1) time on the word-RAM. We show
that the 3-SUM Conjecture is in fact equivalent to the (seemingly weaker) conjecture that
every O(n.51)-space algorithm for 3-SUM requires at least n2−o(1) time on the word-RAM.
For k ≥ 4, k-SUM is in deterministic O(nk−2+2/k) time and O(

√
n) space.
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1 Introduction

We consider the k-SUM problem: given a list S of n values, determine whether there are
distinct a1, . . . , ak ∈ S such that

∑k
i=1 ai = 0. This classic problem is a parameterized

version of the Subset Sum problem, which is among Karp’s original NP-Complete problems.1
The brute-force algorithm for k-SUM runs in O(nk) time, and it is known [22] that an

no(k) time algorithm (where the little-o depends on k) would violate the Exponential Time
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Hypothesis [18]. A faster meet-in-the-middle algorithm reduces the k-SUM problem on n
numbers to 2-SUM on O(ndk/2e) numbers, which can then be solved by sorting and binary
search in O(ndk/2e logn) time. The belief that this meet-in-the-middle approach is essentially
time-optimal is at the heart of many conditional 3-SUM-hardness results in computational
geometry (e.g. [15]) and string matching (e.g. [5, 2]).

The space usage of the meet-in-the-middle approach is prohibitive: the O(n logn) time
solution for 2-SUM uses linear space, which causes the fast k-SUM algorithm to need Ω(ndk/2e)
space. However, the brute-force algorithm needs only O(k logn) space. This leads to the
natural question: how well can one trade off time and space in solving k-SUM?

Schroeppel and Shamir [23] first studied time-space trade-off algorithms for Subset Sum.
They showed how to reduce Subset Sum to an instance of k-SUM for any k ≥ 2: split the
elements into k sets of n/k elements each; for each set, compute 2n/k sums corresponding to
the subsets of the set; this forms a k-SUM instance of size 2n/k. Since the k-SUM instance
does not have to be explicitly stored, any time T (N), space S(N) algorithm for k−SUM
immediately implies a time T (2n/k), space S(2n/k) algorithm for Subset Sum. Furthermore,
Schroeppel and Shamir gave a deterministic Õ(n2) time, Õ(n) space algorithm for 4-SUM,
implying a O∗(2n/2) time, O∗(2n/4) space algorithm for Subset Sum.2 They also generalized
the algorithm to provide a smooth time-space trade-off curve, with extremal points at
O∗(2n/2) time, O∗(2n/4) space and O∗(2n) time, O∗(1) space.

A recent line of work leading up to Austrin et al. [6] has improved this long-standing
trade-off curve for Subset Sum via randomized algorithms, resulting in a more complex curve.
Wang [25] moved these gains to the k-SUM setting. In particular, for 3-SUM he obtains an
Õ(n2) time, Õ(

√
n) space Las Vegas algorithm.

Despite the recent progress on the problem, all of the improved algorithms for the general
case of k-SUM have heavily relied on randomization, either utilizing hashes or random prime
moduli. These improvements also all rely heavily on the values in the lists being integers. For
the general case of k-SUM, the previous best deterministic k-SUM results (even for integer
inputs) are the brute-force algorithm, the meet-in-the-middle algorithm, and the Schroeppel
and Shamir 4-SUM algorithm, and simple combinations thereof.

1.1 Our Results
We consider new ways of trading time and space in solving k-SUM, on both integer and real
inputs (on the word-RAM and real-RAM respectively), without the use of randomization.
Our improvements for k-SUM naturally extend to improvements to Subset Sum as well.

Our main result is a deterministic self-reduction for k-SUM. Informally, we show how
to deterministically decompose a list of n numbers into a small collection of shorter lists,
such that the k-SUM solution is preserved. This result is shown for k = 3 in Section 4. It is
shown for general k in Section 5.

I Theorem 1. Let g be any integer between 1 and n. k-SUM on n numbers can be reduced
to O(kgk−1) instances of k-SUM on n/g numbers. The reduction uses O(ngk−1) additional
time and O(n/g) additional words of space.

Theorem 1 has several interesting applications. First, it leads to more efficient k-SUM
algorithms. For example, Gold and Sharir, building on other recent advances, report a
deterministic algorithm for 3-SUM that works in both the word-RAM and real-RAM models

2 The notation Õ suppresses polylogarithmic factors in n, and O∗ suppresses polynomial factors in n.
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and which runs in time O(n2 lg lg(n)/ lg(n)) [16]. However, this algorithm uses a considerable
amount of space to store a table of permutations. Applying Theorem 1 in multiple ways and
calling their algorithm, we recover the same asymptotic running time but with drastically
better space usage:

I Theorem 2. There is an O(n2 lg lg(n)/ lg(n)) time deterministic algorithm for 3-SUM
that stores at O(

√
n lg(n)
lg lg(n) ) numbers in memory at point. (An analogous statement holds for

3-SUM over the integers.)

Theorem 1 also directly leads to a derandomization of Wang’s space-efficient algorithm
for 3-SUM:

I Theorem 3. For all s ∈ [0, 1/2] there is a deterministic time O(n3−2s), algorithm which
uses O(ns) words of space for 3-SUM.

From Theorem 1 we can also derive a more space-efficient algorithm for 4-SUM, and lift
it to a new algorithm for k-SUM:

I Theorem 4. For k ≥ 4, k-SUM is solvable in deterministic O(nk−2+2/(k−3)) time and
O(
√
n) space in terms of words.

A more plausible 3-SUM conjecture

A rather popular algorithmic conjecture is the 3-SUM Conjecture that 3-SUM on n integers
requires n2−o(1) time on a word-RAM with O(logn) bit words. This conjecture has been
used to derive conditional lower bounds for a variety of problems [15, 5, 2, 20, 3], and appears
to be central to our understanding of lower bounds in low-polynomial time. To refute the
conjecture, one could conceivably construct an algorithm that runs in O(n1.99) time, but
utilizes Ω(n1.99) space in some clever way. Here we consider a seemingly weaker (and thus
more plausible) conjecture:

I Conjecture 5 (The Small-Space 3-SUM Conjecture). On a word-RAM with O(logn)-bit
words, there exists an ε > 0 such that every algorithm that solves 3-SUM in O(n1/2+ε) space
must take at least n2−o(1) time.

This conjecture looks weaker than the original 3-SUM Conjecture, because we only have
to prove a quadratic-time lower bound for all algorithms that use slightly more than

√
n

space. Proving time lower bounds is generally much easier when space is severely restricted
(e.g. [9, 14, 12, 26, 8]).

Our self-reduction for 3-SUM yields the intriguing consequence that the original 3-SUM
Conjecture is equivalent to the Small-Space 3-SUM conjecture! That is, the non-existence
of a truly subquadratic-time 3-SUM algorithm is equivalent to the non-existence of a truly
subquadratic-time n0.51-space 3-SUM algorithm, even though the latter appears to be a more
plausible lower bound. We prove:

I Theorem 6. If 3-SUM is solvable in time O(n2−ε) time, then for every α > 0 there is a
δ > 0 such that 3-SUM is solvable in O(n2−δ) time and space O(n1/2+α) in terms of words.

Theorem 6 is interesting, regardless of the veracity of the 3-SUM conjecture. On the
one hand, the theorem reduces the difficulty of proving the 3-SUM Conjecture if it is
true, because we only have to rule out small-space sub-quadratic time algorithms. On the
other hand, the theorem means that refuting the 3-SUM conjecture immediately implies a
truly-subquadratic time algorithm for 3-SUM using small space as well, which would be an
algorithmic improvement.

ICALP 2016
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2 Preliminaries

2.1 k-SUM and Selection
We will use the following version of the k-SUM problem:

I Definition 7. In the k-SUM problem, we are given an unsorted list L of n values (over Z
or R) and want to determine if there are a1, . . . , ak ∈ L such that

∑k
i=1 ai = 0.

One fundamental case is the 3-SUM problem. Sometimes 3-SUM is presented with three
separate lists, which we denote as 3-SUM’, but the two are reducible to each other in linear
time, and with no impact on space usage.

I Definition 8. In the 3-SUM problem, we are given an unsorted list L of n values and want
to know if there are a, b, c ∈ L such that a+ b+ c = 0. In the 3-SUM’ problem, we are given
three unsorted lists A, B, and C of values, where |A| = |B| = |C| = n, and want to know if
there are a ∈ A, b ∈ B, c ∈ C such that a+ b+ c = 0.

As part of our k-SUM algorithms, the classical Selection Problem will also arise:

I Definition 9. In the s-Select problem, we are given an unsorted list L of n values and a
natural number s, and want to determine the sth smallest value in L.

2.2 Computational Model
As standard when discussing sub-linear space algorithms, the input is provided in read-only
memory, and the algorithm works with auxiliary read/write memory which counts towards
its space usage.

Computation on Integers. When the input values are integers, we work in the word-RAM
model of computation: the machine has a word size w, and we assume all input numbers can
be represented with w bits so that they fit in a word. Arithmetic operations (+,−, ∗) and
comparisons on two words are assumed to take O(1) time. Space is counted in terms of the
number of words used.

Computation on Reals. When the input values are real numbers, we work in a natural
real-RAM model of computation, which is often called the comparison-addition model (see,
for example, [21]). Here, the machine has access to registers that can store arbitrary real
numbers; addition of two numbers and comparisons on real numbers take O(1) time. Space
is measured in terms of the number of reals stored.

Time-Space Complexity Notation. We say that k-SUM is solvable in TISP(T (n), S(n)) if
k-SUM on lists of length n can be solved by a single algorithm running in deterministic
O(T (n)) time and O(S(n)) space simultaneously on the real-RAM (and if the lists contain
integers, on the word-RAM).

2.3 Other Prior Work
Baran, Demaine and Patrascu [7] obtained randomized slightly subquadratic time algorithms
for Integer 3-SUM in the word-RAM. Grønlund and Pettie [17] studied 3-SUM over the
reals, presenting an O(n2/(logn/ log logn)) time randomized algorithm, as well as a determ-
inistic algorithm running in O(n2/(logn/ log logn)2/3) time. Recently, Gold and Sharir [16]
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improved this deterministic running time to O(n2/(logn/ log logn)). Abboud, Lewi and
Williams [1] showed that Integer k-SUM is W[1]-complete under randomized FPT reduc-
tions (and under some plausible derandomization hypotheses, the reductions can be made
deterministic). In the linear decision tree model of computation, k-SUM over the reals is
known to require Ω(ndk/2e) depth k-linear decision trees [13, 4], but the problem can be
solved with O(nk/2√logn) depth (2k− 2)-linear decision trees [17]. The randomized decision
tree complexity was improved by Gold and Sharir [16] to O(nk/2).

3 Building Blocks

In this section, we describe two tools we use to obtain our main self-reduction lemma for
k-SUM and 3-SUM. The first tool helps us guarantee that we don’t have to generate too
many subproblems in our reduction; the second will allow us to find these subproblems in a
time and space efficient way.

3.1 Domination Lemma
Our deterministic self-reduction for k-SUM will split lists of size n into g sublists of size n/g,
then solve subproblems made up of k-tuples of these sublists. Naively, this would generate
gk subproblems to enumerate all k-tuples. In this section, we show that we only need to
consider O(kgk−1) subproblems.

First, we define a partial ordering on k-tuples on [n]k. For t, t′ ∈ [n]k, we say that t ≺ t′
if t[i] < t′[i] for all i = 1, . . . , k. (Geometrically, the terminology is that t′ dominates t.)

I Lemma 10 (Domination Lemma). Suppose all tuples in a subset S ⊆ [n]k are incomparable
with respect to ≺. Then |S| ≤ knk−1.

The Domination Lemma can be seen as an extension of a result in [24] (also used in [11]
in a different context) which covers the k = 3 case.

Proof. We will give a cover of all elements in [n]k with few chains under ≺. Then by
Dilworth’s theorem, any set of incomparable elements under ≺ can only have one element
from each chain.

Take any k-tuple t ∈ [n]k such that t[i] = 1 for some i = 1, . . . , k. Letting ` ∈ [n] be the
largest element in t, we define the chain C(t) = {t0, t1, . . . , tn−`}, where each tj is given by
tj [i] = t[i] + j for all i = 1, . . . , k. Clearly C(t) forms a chain in [n]k under ≺. Moreover
these chains cover all elements of [n]k: observe that the tuple t appears in the chain C(t′)
where t′[i] = t[i]−minj t[j] + 1 for all i = 1, . . . , k.

The number of chains is exactly the number of k-tuples with a 1 in at least one coordinate.
This number is less than k times the number of tuples that have a 1 in dimension i. The
number of tuples with a 1 in dimension i is nk−1. Thus, the total number of chains is
≤ knk−1. J

The Domination Lemma can be applied to show that in any list of numbers, not too
many k-SUM subproblems can have k-SUM solutions. In the following, let g divide n for
simplicity. Given a list L of n numbers divided into g groups of size n/g, a subproblem of L
is simply the union of a k-tuple of groups from L. Note that a subproblem contains at most
kn/g numbers.

I Corollary 11. Given a k-SUM instance L, suppose L is divided into g groups L1, . . . , Lg
where |Li| = n/g for all i, and for all a ∈ Li and b ∈ Li+1 we have a ≤ b. Then there are

ICALP 2016
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O(k · gk−1) subproblems L′ of L such that the smallest k-sum of L′ is less than zero and the
largest k-sum of L′ is greater than zero. Furthermore, if some subproblem of L has its largest
or smallest k-sum equal to 0, then the corresponding k-SUM solution can be found in O(gk)
time.

Proof. We associate each subproblem of L with a corresponding k-tuple (x1, . . . , xk) ∈ [g]k
corresponding to the k sublists (Lx1 , . . . , Lxk

) of L.
Let m[i] be the element in position i · (n/g) when L is in sorted order. Consider any

subproblem with
∑k
i=1 m[xi] > 0 (smallest k-sum greater than zero) or

∑k
i=1 m[xi + 1] < 0

(largest k-sum less than zero). We call such a subproblem trivial, since it cannot contain
k-SUM solutions.

In O(gk) time, we can determine whether any subproblem has
∑k
i=1 m[xi] = 0, and

return the corresponding k-SUM solution if this is the case. Otherwise, we can assume that
for each subproblem either it is trivial, or

∑k
i=1 m[xi] < 0 <

∑k
i=1 m[xi + 1].

Consider the set of non-trivial subproblems. Because for all a ∈ Li and b ∈ Li+1 we
have a ≤ b, if for two subproblem k-tuples we have t ≺ t′, then the smallest k-sum of the
subproblem t′ is at least the largest k-sum of the subproblem t. This implies that at least
one of the two subproblems must be trivial. In other words, the set of nontrivial problems
corresponds to a set of incomparable k-tuples in [g]k. Applying Lemma 10, the number of
nontrivial subproblems is O(kgk). J

3.2 Bucket Retrieval and Space-Efficient Selection
A randomized algorithm for k-SUM can partition a list of numbers by choosing a hash
function at random, then loop over the hash function range to partition a given list into
smaller buckets. Given a hash and a bucket number, it is easy to retrieve the contents of
that bucket by scanning the list.

To derandomize this process, we could try to create small “hash” buckets by grouping
the n/g smallest elements together, then the next n/g smallest elements, and so on, without
actually sorting the list. However, retrieving the contents of a bucket may now be difficult
to do with small space: we need to know the smallest and largest elements of a bucket to
retrieve its elements, and we may not be able to store all of these extrema. We require an
efficient algorithm to compute the largest element of a bucket, given the smallest element
and the bucket size.

This problem is equivalent to the selection problem, also known as s-Select, which asks
for the sth smallest element of a list, when we set s = n/g. To reduce from our problem to
s-Select, pretend that every entry less than our smallest element is ∞. (To reduce from
s-Select to our problem, we can pretend our smallest element is −∞.)

The classic median-of-median algorithm can solve s-Select in O(n) time and O(n)
space [10]. Since we care about space usage, we provide an algorithm below which has O(n)
running time, but uses much less space. This algorithm turns out to be optimal for our
purposes, since retrieving the bucket afterwards will already take O(n) time and O(s) space.

I Lemma 12. s-Select can be solved in O(n) time and O(s) space.

Proof. The plan is to scan through the elements of the list, inserting them to a data structure
D which will allow us to track the smallest s elements. We perform n insertions, then query
D to ask for the smallest s elements it contains. To get the claimed algorithm for selection,
we give a data structure can handle these operations in O(1) amortized update time and
O(s) query time, with a data structure using only O(s) space.
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One first attempt might be to build a heap of s + 1 elements, which throws away the
largest element whenever it gets full. Since heaps have logarithmic update time and linear
space usage, this results in O(log s) update time, O(s) query time, and O(s) space.

We can improve the update time by batching when we throw out large elements. Suppose
instead we keep an array which can hold up to 2s elements. When the array gets full, we
throw out the largest s elements. To do this, we first compute the (s+1)th smallest element in
the array. This can be done in O(s) time and O(s) space via the classical median-of-medians
algorithm. We then do a linear scan of the array, and write all elements strictly less than the
median to a new array. To handle ties, we write a copy of the median to the new array, until
it has s elements. When we are given our final query, we again throw out large elements so
that we only have s elements left, and then return those.

Updates now take amortized constant time: after s updates, we take O(s) time to clear
out the large elements. The final query takes O(s) time, since we again need to throw out
large elements. The space usage is O(s) since we store up to 2s elements, and running
median-of-medians takes O(s) space. This completes the proof. J

We will call the above algorithm NextGroup. NextGroup takes as input a value v, a
natural number s, and a list of numbers L, and outputs the next s elements of L in sorted
order after the value v.

4 Subquadratic 3-SUM implies Subquadratic small-space 3-SUM

We will begin by using our building blocks to prove a self reduction for 3-SUM. Then we will
show three intriguing consequences of this self reduction. First, the self reduction can be
used to show a general theorem that takes subquadratic algorithms for 3-SUM and produces
subquadratic time algorithms that run in nearly

√
n space. Second, we show that algorithms

for 3-SUM that are subquadratic by polylog factors can be used to obtain 3-SUM algorithms
with the same asymptotic running time and simultaneously small space. Finally, we will
prove that the Small-Space 3-SUM conjecture is equivalent to the 3-SUM conjecture.

4.1 3-SUM Self Reduction

We now proceed to solve 3-SUM using our bucket retrieval subroutine. We will use maxS
and minS to refer to the maximum and minimum elements of a list S, respectively.

As anticipated, we split the three arrays into groups of size n/g, and solve 3-SUM
on subproblems of this size. Naively there are O(g3) subproblems to solve, but we use
Corollary 11 to argue we only get O(g2) subproblems.

I Theorem 13 (3-SUM Self-Reduction Theorem). If 3-SUM is solvable in TISP(T (n), S(n))
then for any g, 3-SUM can be solved in TISP(g2(n+ T (n/g)), n/g + S(n/g)).

ICALP 2016
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Proof. Consider the following algorithm.
Algorithm 1: 3-SUM Algorithm
Set preva = −∞;
for i ∈ [0, g − 1] do

Set A′ = NextGroup(A, preva, n/g + 1);
Set prevb = −∞;
for j ∈ [0, g − 1] do

Set B′ = NextGroup(B, prevb, n/g + 1);
Set C ′ = NextGroup(C,−maxA′ −maxB′, n/g + 1);
while minC ′ ≤ −minA′ −minB′ do

if 3-SUM(A′, B′, C ′) returns true then
return true;

Set C ′ = NextGroup(C,maxC ′, n/g + 1);
Set prevb = maxB′;

Set preva = maxA′;
return false;

Algorithm 1 is correct because we consider all possible elements of C where the sum of
elements from A′ and B′ could land, and the choices of A′ and the choices of B′ cover all
of A and B, respectively. If there are multiple copies of a value in a list we will fail to list
all copies only if it already appeared in a previous sublist. This will not affect correctness
because the value will have already been analyzed.

It’s easy to see that the algorithm calls NextGroup O(g) times for A′, O(g2) times for
B′. We claim that we also only call it O(g2) times for C ′. To show this, we want to apply
Corollary 11. Unfortunately, the groups of C that we extract don’t always line up with our
ideal n/g division; since we start at −maxA′ −maxB′, we may not align at the endpoints
of blocks. Fortunately, we’ve only introduced an extra O(1) possibilities of C ′ for every
(A′, B′) pair, or O(g2) extras total. Hence we still only make O(g2) calls to NextGroup.
By Lemma 12, these calls will require O(ng2) time and O(n/g) space.

Our algorithm also calls the TISP(T (n), S(n)) algorithm for 3-SUM O(g2) times on
instances of size O(n/g), which requires O(g2T (n/g)) time and O(S(n/g)) space.

We have shown Algorithm 1 is correct and has the desired runtime and space usage, so
this completes the proof. J

4.2 General Theorem for Space Reduction

Our self-reduction for 3-SUM yields the following intriguing consequence: subquadratic-time
algorithms for 3-SUM imply subquadratic-time small-space algorithms for 3-SUM. Plug-
ging this connection into known 3-SUM algorithms, we can automatically obtain more
space-efficient 3-SUM algorithms for free. From a complexity-theoretic point of view, the
consequence is perhaps even more intriguing: it means that the 3-SUM Conjecture is equival-
ent to the statement that there is no subquadratic-time n0.51-space 3-SUM algorithm, even
though the latter appears to be a more plausible lower bound(!).

We begin by stating our generic space reduction theorem.

I Theorem 14 (3-SUM Space Reduction). Suppose 3-SUM is solvable in n2/f(n) time, where
1 ≤ f(n) ≤ n. Then 3-SUM is solvable by an algorithm running in O(n2/f(n/g)) time and
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O(n/h) space simultaneously, where g(n), h(n) ∈ [1, n] satisfy the relations

g(n) ≥ Ω
(√

n

f(n/g(n))

)
and h2 + n

f(n/(hg(n/h))) ≤ O
(

n

f(n/g(n))

)
.

Proof. We will apply our Self-Reduction Theorem for 3-SUM (Theorem 13) in two different
ways. First, we will use the self-reduction (and the constraint on g(n)) to convert our 3-SUM
algorithm into a linear-space algorithm, with a modest increase in running time (if at all).
Pushing the linear-space algorithm through the self-reduction once more will reduce the space
bound further, without increasing the running time asymptotically (using the constraint on
h(n)).

Let T (n) := n2/f(n). Set the parameter g(n) ≥ 1 to satisfy

T (n/g) = n2/g2

f(n/g) = O(n); or, equivalently g = Ω
(√

n

f(n/g)

)
. (1)

Assuming g satisfies (1), applying the 3-SUM Self-Reduction (Theorem 13) with T (n) = S(n)
and g, we can then solve 3-SUM in

TISP
(
g2(n+ T (n/g)), n/g + T (n/g)

)
= TISP

(
n2

f(n/g) , n
)
. (2)

Now, set new time and space bounds T (n) := n2/f(n/g(n)), S(n) = n from (2). Then,
applying the 3-SUM Self-Reduction (Theorem 13) with the new T (n), S(n) and some
parameter h, we can then solve 3-SUM in TISP(h2(n+ T (n/h)), n/h+ S(n/h)) =

TISP
(
h2
(
n+ n2/h2

f(n/(hg(n/h)))

)
, n/h

)
⊆ TISP

(
n2

f(n/g) , n/h
)
,

by our hypothesis on h. J

4.3 Space-Efficient Fast 3-SUM
When we apply Theorem 14 directly to known algorithms, we obtain immediate space
improvements with negligible loss in running time. Very recently, Gold and Sharir [16] have
given a faster 3-SUM algorithm in the real-RAM model, building on the work of Gronlund
and Pettie [17]:

I Theorem 15 (Gold and Sharir [16]). 3-SUM can be solved in O(n2 lg lg(n)/ lg(n)) time
over the reals and integers.

As discussed in the introduction, their novel approach uses quite a bit of space. Applying
Theorem 14, we can reduce the space usage to only O

(√
n lg(n)/ lg lg(n)

)
, with the same

asymptotic running time of Gold and Sharir.

I Corollary 16 (Space-Efficient 3-SUM Algorithm). 3-SUM is in TISP
(
n2 lg lg(n)

lg(n) ,
√

n lg(n)
lg lg(n)

)
.

Proof. We shall apply Theorem 14. First, set f(n) := lg(n)/ lg lg(n), so that 3-SUM is
solvable in O(n2/f(n)) time by Theorem 15.

Set g(n) :=
√

n lg lg(n)
lg(n) and h(n) :=

√
n lg lg(n)

lg(n) . By our choice of f(n) and basic properties
of logarithms, observe that

f(n/g) = f(Õ(
√
n)) = Θ(f(n)), (3)
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and furthermore

f(n/(hg(n/h))) = f
(
Õ(
√
n)/Õ(n1/4)

)
= Θ(f(n)). (4)

By (3), we have

g =

√
n lg lg(n)

lg(n) ≥ Ω
(√

n

f(n/g)

)
, so the first constraint of Theorem 14 is satisfied.

Moreover, by (4) we have

h2 + n

f(n/(hg(n/h))) = n lg lg(n)
lg(n) + n

Θ(f(n)) , which is O
(

n

f(n/g)

)
by (3).

Therefore the second constraint of Theorem 14 is also satisfied, and 3-SUM is solvable by an
algorithm running in O(n2/f(n)) time and O

(√
nf(n)

)
space simultaneously. J

In general, Theorem 14 provides a generic reduction from faster 3-SUM algorithms to
faster space-efficient 3-SUM algorithms. To illustrate:

I Corollary 17. If 3-SUM is solvable in O(n2/ lga(n)) time for some constant a > 0, then
3-SUM is in TISP(n2/ lga(n),

√
n lga/2(n)).

Proof. We apply Theorem 14. By assumption we have 3-SUM in O(n2/f(n)) time, where
f(n) = lga n. Set g(n) :=

√
n/ lga/2(n), and h(n) :=

√
n/ lga/2(n). Note that f(n/g(n)) =

Θ(lga(n)) and f(n/(h(n) · g(n/h(n)))) = Θ(lga(n)), similar to Corollary 16. Therefore

g(n) =
√
n/ lga/2(n) ≥ Ω

(√
n

f(n/g(n))

)
and

h2 + n

f(n/(hg(n/h))) ≤ O
(

n

lga n

)
≤ O

(
n

f(n/g(n))

)
.

Hence Theorem 14 applies to these settings of the parameters, and 3-SUM is inO(n2/f(n/g)) =
O(n2/ lga(n)) time and O(n/h) = O(

√
n lga/2(n)) space. J

4.4 The 3-SUM Conjecture and Small Space
Finally, we use the Space Reduction Theorem (Theorem 14) to show that the 3-SUM
conjecture is false, then it is also false with respect to small-space algorithms.

I Lemma 18. If 3-SUM is in O(n2−ε) time for some ε > 0, then for every α > 0, there is a
δ > 0 such that 3-SUM is solvable in O(n2−δ) time and O(n1/2+α) space, simultaneously.

Proof. The proof of Theorem 14 applies the 3-SUM Self Reduction (Theorem 13) twice. We
will basically perform the first part of the proof of Theorem 14, but instead of applying the
second part of the proof, we have to choose a different setting of parameters, focused on
minimizing the space usage instead of preserving running time.

Let T (n) := n2/f(n) with f(n) = nε. We first reduce the space usage of the algorithm
to linear. To this end, set g(n) := n(1−ε)/(2−ε). Then, applying the 3-SUM Self-Reduction
(Theorem 13) with T (n) = S(n) and g(n), we can then solve 3-SUM in

TISP(g2(n+ T (n/g)), n/g + T (n/g)) = TISP
(

n2

f(n/g) , n
)

= TISP
(

n2

nε/(2−ε) , n

)
.
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Now reset f(n) := nε/(2−ε), and reset g(n) := n1/2+α with α ∈ (0, 1/2). Applying the
3-SUM Self-Reduction (Theorem 13) with T (n) = n2/f(n), S(n) = n, and g(n) as above, we
find an algorithm for 3-SUM in

TISP
(
n2−2α + n2−(1/2−α)ε/(2−ε), n1/2+α

)
.

Note that for all ε > 0 and α ∈ (0, 1/2), the running time bound is truly subquadratic.
Further note that for any α ≥ 1/2, we only have more space to work with, so we clearly
obtain O(n2−δ) time and O(n1/2+α) space (for some δ > 0) in that case as well. J

This lemma can be applied to show that the 3-SUM Conjecture is equivalent to seemingly
much weaker statement:

The Small-Space 3-SUM Conjecture (Conjecture 5). On a word-RAM with O(logn)-bit
words, there exists an ε > 0 such that every algorithm that solves 3-SUM in O(n1/2+ε) space
must take at least n2−o(1) time.

I Theorem 19. The Small-Space 3-SUM Conjecture is equivalent to the 3-SUM Conjecture.

Proof. It suffices to show that the 3-SUM Conjecture if true implies the Small-Space 3-SUM
Conjecture and that the refutation of the 3-SUM Conjecture implies the Small-Space 3-SUM
Conjecture. First, we observe that the 3-SUM Conjecture trivially implies the Small-Space
3-SUM Conjecture.

Suppose the 3-SUM Conjecture is false. Then a O(n2−ε) time algorithm for 3-SUM exists,
and Lemma 18 implies that for every α > 0, there is a δ > 0 such that 3-SUM is solvable
in O(n2−δ) time and O(n1/2+α) space, simultaneously. But this means that for any choice
of ε′ > 0 for the Small-Space 3-SUM Conjecture, we can find a truly-subquadratic 3-SUM
algorithm that uses only O(n1/2+ε′/2) space. This would falsify the Small-Space 3-SUM
Conjecture. J

We conclude that, in order to prove the 3-SUM conjecture, it is sufficient to prove that
no algorithm can solve 3-SUM in TISP(n2−ε, n0.51) for some ε > 0.

5 k-SUM

5.1 k-SUM Self-Reduction
We now generalize from 3-SUM to k-SUM. Again, we plan to split the lists into g groups of
size O(n/g). By Corollary 11, we will have only O(gk−1) subproblems of size O(n/g). Unlike
3-SUM, where we just used the naive algorithm to solve subproblems, in this section we use
a general algorithm; we reduce from k-SUM to itself (albeit on smaller instances).

I Theorem 20. Suppose real k-SUM can be solved in TISP(T (n), S(n)). Then for any g, it
can also be solved in TISP(gk−1(n+ T (n/g)), n/g + S(n/g)).

Proof. This follows from a generalized analysis of the proof of Theorem 13. We brute force
over which groups the first k− 1 elements are in. We then extract groups where the negative
sum of elements from these first k − 1 groups could land. By Corollary 11 and similar
reasoning as before, there are only O(gk−1) tuples of blocks. For each tuple, we make a call
to NextGroup and to our input k-SUM algorithm on a subproblem of size O(n/g). This
gives the desired time and space, completing the proof. J

ICALP 2016
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5.2 Applying our k-SUM Self-Reduction

We want to apply the self-reduction on efficient deterministic algorithms. One of the
best starting points is the Schroeppel-Shamir 4-SUM algorithm, which we note is actually
deterministic and works on reals because it simply uses priority queues and reduces to the
classic 2-SUM algorithm, both of which only use comparisons.

I Lemma 21 (From [23]). Real 4-SUM is solvable in TISP(n2, n).

Another useful fact observed by Wang is that an algorithm for k-SUM can be transformed
into an algorithm for (k + 1)-SUM by brute-forcing one element:

I Lemma 22 (From [25]). If Real k-SUM is solvable in TISP(T (n), S(n)) then real k+1-SUM
is solvable in TISP(nT (n), S(n) + 1).

Suppose we want to use our results to derive a linear-space algorithm for k-SUM. We
will assume k is a multiple of 4, although Lemma 22 allows us to fill in for the other values
of k. By writing down sums of k/4 elements, we can transform k-SUM to 4-SUM, yielding
a TISP(nk/2, nk/4) algorithm. We can then apply Theorem 20 with g = n(k−4)/k to get a
TISP(nk−3+4/k, n) algorithm. Notice that this algorithm runs significantly faster than O(nk)
time; we get O(n11/2) for 8-SUM and O(n28/3) for 12-SUM. As a coarse upper bound, we
can apply Lemma 22 and round down our savings (to make things cleaner), compensating
for k which are not a multiple of 4, we get:

I Corollary 23. For k ≥ 4, k-SUM is solvable in TISP(nk−3+4/(k−3), n).

Suppose we wanted to use O(
√
n) space instead. We get smaller subproblems by making

more groups; choosing g = n(k−2)/k instead yields a TISP(nk−2+2/k,
√
n). Similarly applying

Lemma 22 and round down our savings to compensate for k which are not a multiple of 4,
we get another coarse upper bound:

I Corollary 24. For k ≥ 4, k-SUM is solvable in TISP(nk−2+2/k,
√
n).

6 Future Work

We would like to extend these results to derandomize other known randomized algorithms for
k-SUM. To do that, it seems we require a “deterministic simulation” of the hash functions
used in those results. Baran, Demaine, and Patrascu use hashing to get subquadratic
algorithms for 3-SUM [7]; Patrascu uses it to reduce 3-SUM to Convolution 3-SUM [20];
Wang uses it to produce a family of linear-space algorithms for k-SUM [25]. Which of these
results, if any, can be derandomized?

The hash families involved have three crucial properties: load-balancing (the hash buckets
are not “too large”), few subproblems (the number of k-tuples of hash buckets examined
is “small”), and few false positives (there are few non-k-SUM solutions mapped to k-tuples
of hash buckets examined). Our s-Select algorithm (Lemma 12) and Domination Lemma
(Lemma 10) are used to achieve the first two properties, without using randomization. Can
the last property also be simulated deterministically? (Note that it’s not entirely clear what
it would mean to simulate “few false positives” deterministically.) If so, it is likely that all
these results can be derandomized efficiently.
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Abstract
Considerable effort has been devoted to the development of streaming algorithms for analyzing
massive graphs. Unfortunately, many results have been negative, establishing that a wide variety
of problems require Ω(n2) space to solve. One of the few bright spots has been the development
of semi-streaming algorithms for a handful of graph problems – these algorithms use space O(n ·
polylog(n)).

In the annotated data streaming model of Chakrabarti et al. [7], a computationally limited
client wants to compute some property of a massive input, but lacks the resources to store even
a small fraction of the input, and hence cannot perform the desired computation locally. The
client therefore accesses a powerful but untrusted service provider, who not only performs the
requested computation, but also proves that the answer is correct.

We consider the notion of semi-streaming algorithms for annotated graph streams (semi-
streaming annotation schemes for short). These are protocols in which both the client’s space
usage and the length of the proof are O(n ·polylog(n)). We give evidence that semi-streaming an-
notation schemes represent a more robust solution concept than does the standard semi-streaming
model. On the positive side, we give semi-streaming annotation schemes for two dynamic graph
problems that are intractable in the standard model: (exactly) counting triangles, and (exactly)
computing maximum matchings. The former scheme answers a question of Cormode [22]. On
the negative side, we identify for the first time two natural graph problems (connectivity and
bipartiteness in a certain edge update model) that can be solved in the standard semi-streaming
model, but cannot be solved by annotation schemes of “sub-semi-streaming” cost. That is, these
problems are as hard in the annotations model as they are in the standard model.
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1 Introduction

The rise of cloud computing has motivated substantial interest in protocols for verifiable data
stream computation. These protocols allow a computationally weak client (or verifier), who
lacks the resources to locally store a massive input, to outsource the storage and processing of
that input to a powerful but untrusted service provider (or prover). Such protocols provide
a guarantee that the answer returned by the prover is correct, while allowing the verifier to
make only a single streaming pass over the input.
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Several recent works have introduced closely related models capturing the above scenario
[18, 7, 8, 19, 6, 20, 12, 13, 11]. Collectively, these works have begun to reveal a rich
theory, leveraging algebraic techniques developed in the classical theory of interactive proofs
[23, 29, 4, 16] to obtain efficient verification protocols for a variety of problems that require
linear space in the standard streaming model (sans prover).

The primary point of difference among the various models of verifiable stream computation
that have been proposed is the amount of interaction that is permitted between the verifier
and prover. The annotated data streaming model of Chakrabarti et al. [7] (subsequently
studied in [12, 19, 6, 11]) is non-interactive, requiring the correctness proof to consist of just a
single message from the prover to the verifier, while other models, such as the Arthur–Merlin
streaming protocols of Gur and Raz [18, 6] and the streaming interactive proofs of Cormode
et al. [13, 8] permit the prover and verifier to exchange two or more messages. Our focus in
this paper is on the annotated data streaming model of Chakrabarti et al. – owing to their
non-interactive nature, protocols in this model possess a number of desirable properties not
shared by their interactive counterparts, such as reusability (see Section 2 for details). We
are concerned with protocols for problems on graph streams, described below.

Graph Streams. The ubiquity of massive relational data sets (derived, e.g., from the Internet
and social networks) has led to detailed studies of data streaming algorithms for analyzing
graphs. In this setting, the data stream consists of a sequence of edges, defining a graph
G on n nodes, and the goal is to compute various properties of G (is G connected? How
many triangles does G contain?). Unfortunately, many results on graph streaming have been
negative: essentially any graph problem of the slightest practical interest requires Ω(n) space
to solve in the standard streaming model, and many require Ω(n2) space even to approximate.
Due to their prohibitive cost in the standard streaming model, many basic graph problems
are ripe for outsourcing.

One of the few success stories in the study of graph streams has been the identification of
the semi-streaming model as something of a “sweet spot” for streaming algorithms[26, 24].
The semi-streaming model is characterized by an O(n ·polylogn) space restriction, i.e., space
proportional to the number of nodes rather than the number of edges. For dense graphs
this represents considerably less space than that required to store the entire graph. It has
long been known that problems like connectivity and bipartiteness possess semi-streaming
algorithms when the stream consists only of edge insertions, with no deletions. Recently,
semi-streaming algorithms have been provided for these and other problems even for dynamic
graph streams, which contain edge deletions as well as insertions [1, 2, 14]. We direct the
interested reader toward the recent survey of McGregor [25] on graph stream algorithms.

In this work, we consider the notion of semi-streaming annotation schemes for graph
problems. Here, the term “scheme” refers to a protocol in the annotated data streaming
model. A scheme’s total cost is defined to be the sum of the verifier’s space usage (referred
to as the space cost of the scheme) and the length of the proof (referred to as the scheme’s
help cost). A scheme is said to be semi-streaming if its total cost is O(n · polylogn).

We give evidence that semi-streaming annotation schemes represent a substantially
more robust solution concept (i.e., a “sweeter spot”) for graph problems than does the
standard semi-streaming model. First, we give novel semi-streaming annotation schemes for
two challenging dynamic graph problems, counting triangles and maximum matching, that
require Ω(n2) space in the standard streaming model. The total cost of these schemes is
provably optimal up to a logarithmic factor. Second, we show that two canonical problems
that do possess semi-streaming algorithms in the standard streaming model (connectivity
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Table 1 Comparison of our new scheme for Triangles to prior work.

Reference Triangles Scheme Costs (help cost, space cost) Total Cost Achieved
[7] (n2 log n, log n) O(n2 log n)
[7] (x log n, y log n) for any x · y ≥ n3 O(n3/2 log n)

Theorem 1 (n log n, n log n) O(n log n)

and bipartiteness in a certain edge update model) are just as hard in the annotations model.
Formally, we show that any scheme for these problems with space cost O(n1−δ) requires
a proof of length Ω(n1+δ) for any δ > 0. Thus, for these problems, giving a streaming
algorithm access to an untrusted prover does not allow for a significant reduction in cost
relative to what is achievable without a prover. This gives further evidence for the robustness
of semi-streaming annotation schemes as a solution concept: while several fundamental
problems that cannot be solved by standard semi-streaming algorithms can be solved by
semi-streaming annotation schemes, there are problems that do have semi-streaming solutions
in the standard model that cannot be solved by schemes of sub-semi-streaming cost.

1.1 Summary of Contributions and Techniques
Throughout this informal overview, n will denote the number of nodes in the graph defined
by the data stream, and m the number of edges. To avoid boundary cases in the statement
of our lower bounds, we assume that the help cost of any scheme is always at least 1 bit.

1.1.1 New Semi-Streaming Annotation Schemes
Prior work has given semi-streaming annotation schemes for two graph problems that
require Ω(n2) space in the standard semi-streaming model: bipartite perfect matching
[7], and shortest s-t path in graphs of polylogarithmic diameter [12]. As discussed above,
we give semi-streaming schemes for two more challenging problems: maximum matching
(MaxMatching) and counting triangles (Triangles). Both schemes apply to dynamic
graph streams. We begin by describing our result for Triangles.

I Theorem 1 (Informal Version of Theorem 4). There is a scheme for Triangleswith total
cost O(n logn). Every scheme requires the product of the space and help costs to be Ω(n2),
and hence has total cost Ω(n).

Theorem 1 affirmatively answers a question of Cormode [22], resolves the Merlin-Arthur
communication complexity of the problem up to a logarithmic factor, and improves over the
best previous bound of O(n3/2 logn), due to [7] (see Table 1 for a comparison).

As is the case for essentially all non-trivial protocols for verifiable stream computation,
the scheme of Theorem 1 uses algebraic techniques related to the famous sum-check protocol
of Lund et al. [23] from the classical theory of interactive proofs. Yet, our scheme deviates
in a significant way from all earlier annotated data stream and interactive proof protocols
[15, 8, 7, 29]. Roughly speaking, in previous protocols, the verifier’s updates to her memory
state were commutative, in the sense that reordering the stream tokens would not change the
final state reached by the verifier. However, our new verifier is inherently non-commutative:
her update to her state at time i depends on her actual state at time i, and reordering the
stream tokens can change the final state reached by the verifier. The full version of the paper
contains further discussion of this point.
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Table 2 Comparison of our new scheme for MaxMatching to prior work.

Reference MaxMatching Scheme Costs (help cost, space cost) Total Cost Achieved
[12] (m log n, log n) O(m log n)

Theorem 5 (n log n, n log n) O(n log n)

I Theorem 2 (Informal Version of Theorem 5). There is a scheme for MaxMatching with
total cost O(n logn). Every scheme for MaxMatching requires the product of the space
and help costs to be Ω(n2), and hence has total cost Ω(n).

Our scheme combines the Tutte-Berge formula with algebraic techniques to allow the
prover to establish matching upper and lower bounds on the size of a maximum matching in
the input graph. Schemes for maximum matching had previously been studied by Cormode
et al. [12], but this prior work only gave schemes with help cost proportional to the number
of edges, which is Ω(n2) in dense graphs (like us, Cormode et al. exploited the Tutte-Berge
formula, but did not do so in a way that achieved help cost sublinear in the input size). Prior
work had also given a scheme achieving optimal tradeoffs between help and space costs for
bipartite perfect matching [7, Theorem 7.5] – our scheme for MaxMatching can be seen as
a broad generalization of [7, Theorem 7.5].

1.1.2 New Lower Bounds
On the other hand, we identify, for the first time, natural graph problems that possess
standard semi-streaming algorithms, but in a formal sense are just as hard in the annotations
model as they are in the standard streaming model. The problems that we consider are
connectivity and bipartiteness in a certain edge update model that we call the XOR update
model. In this update model, the stream 〈e1, . . . , em〉 is a sequence of edges from [n]× [n],
which define a graph G = (V,E) via: e ∈ E ⇐⇒ |{i : ei = e}| = 1 mod 2. Intuitively,
each stream update ei is interpreted as changing the status of edge ei: if it is currently
in the graph, then the update causes ei to be deleted; otherwise ei is inserted. Our lower
bound holds for schemes for connectivity and bipartiteness in the XOR update model, even
under the promise that e1, . . . , em−n are all unique (hence, all but the last n stream updates
correspond to edge insertions), and the last n updates are all incident to a single node.

I Theorem 3 (Informal Version of Corollary 7). Consider any scheme for Connectivity
or Bipartiteness in the XOR update model with help cost ca and and space cost cv. Then
(ca + n) · cv ≥ n2, even under the promise that the first m− n stream updates are all unique,
and the last n stream updates are all incident to a single node. In particular, the total cost
of any annotation scheme for these problems is Ω(n).

Both connectivity and bipartiteness in the XOR update model possess standard semi-
streaming algorithms [1].1 Hence, Theorem 3 implies that the total cost of any annotation
scheme is at most a polylogarithmic factor smaller than the problems’ space complexity in
the standard streaming model. Like all prior work establishing lower bounds on the cost of

1 The algorithms of [1] are described in the turnstile update model, in which each stream update explicitly
specifies whether to insert or delete a (copy of) an edge. However, these algorithms are easily modified
to apply to the XOR update model as well. In brief, these algorithms have L0-sampling algorithms at
their core. Existing L0-samplers are in turn built on top of sparse recovery algorithms (see, e.g., [10]),
and many sparse recovery algorithms can be implemented in the XOR update model directly (see, e.g.,
[17]).
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protocols for verifiable stream computation, our lower bounds are established using notions
of Merlin-Arthur communication complexity [7, 12, 19, 8, 18].

Prior to this work, only one other problem was known to be as hard (up to logarithmic
factors) in the annotations model as in the standard streaming model [6, Corollary 3.3]. The
problem considered in [6, Corollary 3.3] was an “exponentially sparse” variant of the classic
index problem, in which the data stream consists of a vector x ∈ {0, 1}n promised to have
Hamming weight O(logn), followed by an index i ∈ [n], and the goal is to output the value
xi. Connectivity and bipartiteness are arguably more natural problems, and are qualitatively
different, as we now explain.

On an informal level, the reason the exponentially sparse index problem is hard in the
annotations model is that any “useful” annotation must at least specify a single index into the
vector x, which requires logn bits of annotation. And since x is exponentially sparse, logn
is actually equal (up to a constant factor) to the space complexity of a standard streaming
algorithm for the problem. In our view, Bipartiteness and Connectivity are hard in
the annotations for a different reason – roughly speaking, any useful annotation for these
problems must at least specify, for each node u, the side of the bipartition or the connected
component in which u resides.

Overview of the Proof. Our proof of Theorem 3 works by specifying a reduction from the
index problem on inputs of length n2, for which a lower bound of Ω(n2) on the product of
the help and space costs of any annotation scheme was established in [7], to Connectivity
and Bipartiteness on graphs with n nodes and Θ(n2) edges.

Notice that in the standard (sans prover) streaming model, the index problem on n2

variables is strictly harder than connectivity and bipartiteness problems on graphs with
n nodes, as the former requires Ω(n2) space, while the latter two problems require only
O(n · polylog(n)) space. Yet Theorem 3 establishes that in the annotations model, all three
problems are of essentially equivalent difficulty (in particular, schemes of total cost Õ(n) are
necessary and sufficient to solve all three problems). To establish such a result, it is necessary
to use a reduction that is specifically tailored to the annotations model, in the sense that the
reduction must not apply in the standard streaming model (since index and Connectivity
are not of equivalent difficulty in the standard setting). Namely, in our reduction from index
to connectivity, the prover helps the verifier transform an instance of the index problem
into a Connectivity instance. This “help” consists of Θ(n) bits, and this is why our lower
bound is of the form (ca +n) · cv ≥ n2. This is in contrast to prior lower bounds, which, with
the exception of [6, Corollary 3.3], were of the form ca · cv = Ω(C) for some quantity C.

1.2 Other Related Work
As discussed above, several recent papers [11, 8, 13, 19, 20, 18, 6, 7, 12] have all studied
annotated data streams and closely related models for verifiable stream computation. Refine-
ments and implementations [11, 31] have demonstrated genuine practicality for many of the
protocols developed in this line of work. Protocols for verifiable stream computation have
also been studied in the cryptography community [9, 27]. These works only require security
against cheating provers that run in polynomial time, whereas we require security to hold even
against computationally unbounded provers. In exchange for the weaker security guarantee,
these protocols may achieve properties that are unattainable in our information-theoretic
setting. For example, some of these protocols achieve a stronger form of reusability than we
do (see Section 2 for our definition of reusability) – they remain secure for many uses even if
the prover learns all of the verifier’s accept/reject decisions. The work of Chung et al. [9]
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uses fully homomorphic encryption (FHE), which remains far from practical at this time.
Papamanthou et al. [27] avoid the use of FHE, but handle only much simpler queries (e.g.,
point queries and range search) than the graph problems we consider here.

2 Models of Streaming Computation

Our presentation of data streaming models closely follows Chakrabarti et al. [6]. Recall that
a (standard) data stream algorithm computes a function f of an input sequence x ∈ Um,
where m is the number of stream updates, and U is some data universe. The algorithm has
only sequential access to x, uses a limited amount of space, and has access to a random
string. The function f may or may not be Boolean. An annotated data stream algorithm, or
a scheme, is a pair A = (h, V ), consisting of a help function h : Um × {0, 1}∗ → {0, 1}∗ used
by a prover and a data stream algorithm run by a verifier, V . The prover provides h(x) as
annotation to be read by the verifier. We think of h as being decomposed into (h1, . . . , hm),
where the function hi : Um → {0, 1}∗ specifies the annotation supplied after the arrival of
the ith token xi. That is, h acts on x to create an annotated stream xh defined as follows:

xh := (x1, h1(x), x2, h2(x), . . . , xm, hm(x)) .

Note that this is a stream over U ∪ {0, 1}, of length m +
∑
i |hi(x)|. The streaming

verifier, who has access to a (private) random string r, then processes this annotated stream,
eventually giving an output outV (xh, r).

We say a scheme is online if each function hi depends only on (x1, . . . , xi). The scheme
A = (h, V ) is said to be δs-sound and δc-complete for the function F if the following hold:
1. For all x ∈ Um, we have Prr[outV (xh, r) 6= F (x)] ≤ δc.
2. For all x ∈ Um, h′ = (h′1, h′2, . . . , h′m) ∈ ({0, 1}∗)m, we have Prr[outV (xh′ , r) 6∈ {F (x)} ∪
{⊥}] ≤ δs.

An output of “⊥” indicates that the verifier rejects the prover’s claims in trying to convince
the verifier to output a particular value for F (x). We define err(A) to be the minimum value
of max{δs, δc} such that the above conditions are satisfied. We define the annotation length
hc(A) = maxx

∑
i |hi(x)|, the total size of the prover’s communications, and the verification

space cost vc(A) to be the space used by the verifier. We say that A is an online (ca, cv)
scheme if hc(A) = O(ca), vc(A) = O(cv), and err(A) ≤ 1

3 (the constant 1/3 is arbitrary and
chosen by convention).

Chakrabarti et al. [7] also define the notion of a prescient scheme, which is the same as
an online scheme, except the annotation at any time i is allowed to depend on data which
the verifier has not seen yet. Prescient schemes have the undesirable property that the prover
may need to “see into the future” to convince the verifier to produce the correct output.
Note that even though our Triangles and MaxMatching protocols are online, they are
optimal up to logarithmic factors even among prescient schemes (see Theorems 4 and 5).

While the annotated data streams model allows the prover to interleave the annotation
with the stream, in all of the schemes we present in this paper, all of the annotation comes at
the end of the stream. This property avoids any need for fine-grained coordination between
the annotation and the stream, and permits the prover to send the annotation as a single
email attachment, or post it to a website. We clarify that the lower bounds for Connectivity
and Bipartiteness that we establish in Section 4 apply to any online scheme, even those
which interleave the annotation with the stream.

The schemes we present in this work permit a natural form of reusability: if the verifier
wants to compute a function f on a given dataset x, the verifier can receive f(x) (with
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a correctness proof), and check the validity of the proof using a “secret state” that she
computed while observing the stream x. Further updates to the stream x can then occur,
yielding a (longer) stream x′, and the verifier can update her secret in a streaming fashion.
The verifier may then receive the answer f(x′) (with a correctness proof) on the updated
dataset, and check its correctness using the updated secret state. The probability that the
verifier gets fooled into outputting an incorrect answer on even a single query grows only
linearly with the number of times the prover sends the verifier an answer. Such reusability
is not possible with interactive solutions [13, 8, 20], which require the verifier to reveal
information about r over the course of the protocol.

3 Upper Bounds

Graph Streams in the Strict Turnstile Model. The annotation schemes of this section
apply to graph streams in the strict turnstile update model. In this model, a data
stream σ consists of a sequence of undirected edges, accompanied by (signed) multipli-
cities: 〈(e1,∆1), . . . , (em,∆m)〉. Each edge ei ∈ [n] × [n], and each ∆i ∈ Z. An update
(ei,∆i) with ∆i > 0 is interpreted as an insertion of ∆i copies of edge ei into graph G. If
∆i < 0, the update is interpreted as a deletion of ∆i copies of edge ei. It is assumed that at
the end of the stream, no edge has been deleted more times than it has been inserted (all of
our protocols work even if this property does not hold at intermediate time steps, as long as
the property holds after the final stream update has been processed).2 When analyzing the
time costs of our schemes, we assume that any addition or multiplication in a finite field of
size poly(n) takes one unit of time.

3.1 A Semi-Streaming Scheme for Counting Triangles
In the Trianglesproblem, the goal is to determine the number of unordered triples of
distinct vertices (u, v, z) such that edges (u, v), (v, z), and (z, u) all appear in G. More
generally, if these edges appear with respective multiplicities M1, M2, and M3, we view triple
(u, v, z) as contributing M1 ·M2 ·M3 triangles to the total count.3 Computing the number of
triangles is a well-studied problem [3] and there has been considerable interest in designing
algorithms in a variety of models including the data stream model [5, 28], MapReduce [30],
and the quantum query model [21]. One motivation is the study of social networks where
important statistics such as the clustering coefficient and transitivity coefficient are based
on the number of triangles. Understanding the complexity of counting triangles captures
the ability of a model to perform a non-trivial correlation within large graphs. Chakrabarti
et al. [7] gave two annotated data streaming protocols for this problem. The first protocol
had help cost O(n2 logn), and space cost O(logn). The second protocol achieved help cost
O(x logn) and space cost O(y logn) for any x, y such that x ·y ≥ n3. In particular, by setting
x = y = n3/2, the second protocol of Chakrabarti et al. ensured that both help cost and
space cost equaled O

(
n3/2 logn

)
. Cormode [22] asked whether it is possible to achieve an

annotated data streaming protocol in which both the help cost and space cost are Õ(n). We

2 We do not consider edges with negative weights at the end of the stream because it is unclear what is
the most meaningful way to define problems like Triangles and MaxMatching in this setting. See
Footnotes 3 and 4.

3 The Trianglesscheme of Theorem 3.1 gives meaningful results even if the Mi’s may be negative: a
triangle with an odd (even) number of edges of negative multiplicity contributes a negative (positive)
number to the total triangle count.
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answer this question in the affirmative.

I Theorem 4 (Formal Statement of Theorem 1). Assume there is an a priori upper bound
B ≤ poly(n) on the multiplicity of any edge in G. There is an online scheme for Triangles
with space and help costs O(n logn). Every scheme (online or prescient) requires the product
of the space and help costs to be Ω(n2), and hence total cost Ω(n), even for B = 1, and even
if G is promised to have exactly 0 or 1 triangles.

Discussion. Before proving Theorem 4, it is instructive to consider a simple interactive
streaming verification protocol for Triangles(described in detail in the full version of the
paper). At a high level, the interactive protocol applies the sum-check protocol of Lund
et al. [23] to a suitably defined multivariate polynomial h. The space and communication
costs of this protocol are comparable to that of Theorem 4; the advantage of Theorem 4 over
this simple interactive solution is that Theorem 4 gives a protocol that is non-interactive,
and comes with the associated reusability benefits described in Section 2. Theorem 4 below
effectively removes the interaction from the simple interactive protocol as follows. We identify
a univariate polynomial g(Z) of degree O(n) such that the number of triangles in G equals∑
z∈[n] g(Z). Moreover, we show that the verifier can evaluate g(r) for any point r ∈ F in

space O(n log |F|) with a single streaming pass over the input. It follows that applying the
sum-check protocol to g yields a scheme with costs claimed in Theorem 4. The polynomial g
that we identify is defined as a sum of m constituent polynomials, one per stream update.

Proof of Theorem 4. The lower bound was proved in [7, Theorem 7.1]. Details of the
upper bound follow. Let Gi denote the graph defined by the first i stream updates
〈(e1,∆1), . . . , (ei,∆i)〉, and let Ei : [n]× [n]→ Z denote the function that outputs the multi-
plicity of the edge (u, v) in graph Gi−1. On edge update ei = (ui, vi), notice that the number
of triangles that ei completes in Ei is precisely ∆i ·

∑
z∈[n] Ei(ui, z)Ei(vi, z). Thus, the total

number of triangles in the graph G = Gm is precisely
∑
i≤m ∆i

∑
z∈[n] Ei(ui, z)Ei(vi, z). Let

F denote a field of prime order 6(B ·n)3 ≤ |F| ≤ 12(B ·n)3, and let Ẽi(X,Y ) denote the unique
polynomial over F of degree at most n in each variable X,Y such that Ẽi(u, v) = Ei(u, v)
for all (u, v) ∈ [n]× [n]. Then the number of triangles in G equals∑
i≤m

∆i

∑
z∈[n]

Ei(ui, z)Ei(vi, z) =
∑
i≤m

∆i

∑
z∈[n]

Ẽi(ui, z)Ẽi(vi, z)=
∑
z∈[n]

∑
i≤m

∆i·Ẽi(ui, z)Ẽi(vi, z).

(1)

In turn, the right hand side of Equation (1) can be written as
∑
z∈[n] g(z), where g denotes

the univariate polynomial defined via: g(Z) =
∑
i≤m ∆i · Ẽi(ui, Z)Ẽi(vi, Z). Notice g(Z) is

a univariate polynomial of degree at most 2n. Our scheme proceeds as follows.

Prover’s computation. At the end of the stream, the prover sends a univariate polynomial
s(Z) of degree at most 2n, where s(Z) is claimed to equal g(Z). Notice that since s(Z) has
degree at most 2n, s(Z) can be specified by sending its values on all inputs in {0, . . . , 2n} –
this requires help cost O(n log |F|) = O(n logn).

Verifier’s computation. At the start of the stream, the verifier picks a random field element
r ∈ F, and keeps the value of r secret from the prover. We will show below that the verifier
can evaluate g(r) with a single streaming pass over the input, using space O(n logn). The
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verifier checks whether s(r) = g(r). If this check fails, the verifier halts and rejects. If the
check passes, the verifier outputs

∑
z∈[n] s(z) as the correct answer.

We now explain how the verifier can evaluate g(r) with a single streaming pass over the
input. The high-level idea is as follows. g(r) is defined as a sum of m terms, where the
ith term equals ∆i · Ẽi(ui, r)Ẽi(vi, r). For each u ∈ [n], we will show how the verifier can
incrementally maintain the quantity Ẽi(u, r) at all times i. The verifier will maintain all n
of these quantities, resulting in a total space cost of O(n log |F|) = O(n logn). With these
quantities in hand, it is straightforward for the verifier to incrementally maintain the sum∑
j≤i ∆j · Ẽj(uj , r)Ẽj(vj , r) at all times i: upon the ith stream update, the verifier simply

adds ∆i · Ẽi(ui, r) · Ẽi(vi, r) to the running sum.
To maintain the quantity Ẽi(u, r), we begin by writing the bivariate polynomial Ẽi(X,Y )

in a convenient form. Given a pair (u, v) ∈ [n]× [n], let δ̃(u,v) denote the following (Lagrange)

polynomial: δ̃(u,v)(X,Y ) =
(∏

1≤u′≤n:u′ 6=u
(X−u′)∏

1≤u′≤n:u′ 6=u
(u−u′)

)(∏
1≤v′≤n:v′ 6=v

(Y−v′)∏
1≤v′≤n:v′ 6=v

(v−v′)

)
. Notice that δ̃(u,v)

evaluates to 1 on input (u, v), and evaluates to 0 on all other inputs (x, y) ∈ [n]× [n]. Thus,
we may write Ẽi(X,Y ) =

∑
j≤i δ̃(uj ,vj)(X,Y ). In particular, for each node u ∈ [n],

Ẽi(u, r) = Ẽi−1(u, r) + δ̃(ui,vi)(u, r) + δ̃(vi,ui)(u, r).

Thus, the verifier can incrementally maintain the quantity Ẽi(u, r) in a streaming manner
using space O(log |F|): while processing the ith stream update, the verifier simply adds
δ̃(ui,vi)(u, r) + δ̃(vi,ui)(u, r) to the running sum tracking Ẽi(u, r).

Completeness. It is evident that if the prover sends the true polynomial g(Z), then the
verifier’s check will pass, and the verifier will output the correct number of triangles.

Soundness. If the prover sends a polynomial s(Z) 6= g(Z), then with probability at least
1−2n/|F| ≥ 1−1/(3n2) over the verifier’s random choice of r ∈ F, it will hold that s(r) 6= g(r).
Hence, with probability at least 1− 1/(3n2) ≥ 2/3, the verifier’s check will fail. J

Several remarks regarding Theorem 4 are in order.

Verifier Time. The verifier in the protocol of Theorem 4 can process each stream update
in constant time as follows. On stream update ei = (ui, vi), the verifier must add
δ̃(ui,vi)(u, r)+ δ̃(vi,ui)(u, r) to each of the Ẽi(u, r) values. However, it is straightforward to
check that δ̃(ui,vi)(u, r) = 0 for all u 6= ui, so the verifier need only update two quantities
at time i: Ẽi(ui, r) and Ẽi(vi, r). We explain how both of these updates can be computed

in constant time. It can be seen that δ̃(ui,vi)(ui, r) =
∏

1≤v′≤n:v′ 6=vi
(r−v′)∏

1≤v′≤n:v′ 6=vi
(vi−v′)

. The right

hand side of this equation can be computed in O(1) time if the verifier maintains a
pre-computed lookup table consisting of O(n) field elements. Specifically, for each v ∈ [n],
it suffices for the verifier to maintain the quantities q1(v) :=

∏
1≤v′≤n:v′ 6=v(r − v′) and

q2(v) =
(∏

1≤v′≤n:v′ 6=v(v − v′)
)−1

. All O(n) of these quantities can be computed in
pre-processing in total time O(n logn), where the logn term is due to the time required to
compute a multiplicative inverse in the field F. Indeed, q1(1) and q2(1) can be computed
naively in O(n) time, and then for any v > 1, q1(v) and q2(v) can be computed in O(logn)
time from q1(v−1) and q2(v−1) via the identities q1(v) = q1(v−1) · (r−v)−1 · (r−v+ 1)
and q2(v) = q2(v − 1) · (v − 1)−1 · (v − 1− n).
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Table 3 Statement of Time Costs For Our TrianglesScheme (Theorem 4).

Verifier Pre-Processing Verifier Time Per Verifier Time to Prover Total
Time Stream Update Process Proof Time

O(n log n) O(1) O(n) O(m · n)

Finally, the verifier can process the proof in time O(n). Recall that the proof consists of
the values s(x) for x ∈ {0, . . . , 2n}, and the verifier simply needs to compute

∑
1≤x≤n s(x)

as well as s(r). The first quantity can trivially be computed in time O(n), and the second
can be computed in time O(n) as well using standard techniques (see, e.g., [11]).
Prover Time. The honest prover in the protocol of Theorem 4 can be implemented to
run in time O(m · n). Indeed, the honest prover needs to evaluate g(x) for O(n) points
x ∈ F, and we have explained above how g(x) can be computed in O(m) time (in fact,
in O(1) time per stream update). This is comparable to the naive triangle counting
algorithm that, for each edge and node combination, tests whether the two edges incident
on the edge and node exist in the graph.
The time costs for both the prover and verifier are summarized in Table 3.
MA communication. Theorem 4 implies that the (online) MA communication complexity
of counting triangles is O(n logn) (see Section 4.1 for the definition of the (online) MA
communication model). This essentially matches an Ω(n) lower bound on the (even
non-online) MA communication complexity of the problem, proved by Chakrabarti et
al. [7] via a standard reduction to set-disjointness, and answers a question of Cormode
[22].
Extensions: Counting Structures Other Than Triangles. Let H be a graph on k vertices.
It is possible to extend the protocol of Theorem 4 to count the number of occurrences of
H as a subgraph of G. The protocol requires k − 2 rounds, and its help and space costs
are O(k3n logn) and O(kn logn). Details are deferred to the full version.

3.2 A Semi-Streaming Scheme for Maximum Matching
We give a semi-streaming scheme for the MaxMatching problem in general graphs.4 Due
to space constraints, the proof of Theorem 5 is deferred to the full version.

I Theorem 5 (Formal Version of Theorem 2). Assume there is an a priori upper bound B ≤
poly(n) on the multiplicity of any edge in G. There is an online scheme for MaxMatching
of total cost O(B · n logn). Every scheme for MaxMatching (online or prescient) requires
the product of the space and help costs to be Ω(n2), and hence total cost Ω(n), even for B = 1.

4 Lower Bounds for Connectivity and Bipartiteness

In this section, we establish our lower bounds on the cost of online schemes for Connectivity
and Bipartiteness in the XOR update models. Like almost all previous lower bounds for
data stream computations, our lower bounds use reductions from problems in communication
complexity. To model the prover in a scheme, the appropriate communication setting is
Merlin-Arthur communication, which we now introduce.

4 It is possible to modify our scheme to give meaningful answers on graphs with edges of negative
multiplicity. Specifically, the modified scheme can treat edges of negative multiplicity as having strictly
positive multiplicity. We omit the details for brevity.
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4.1 Merlin-Arthur Communication
Consider a communication game involving three parties, named Alice, Bob, and Merlin. Alice
holds an input x ∈ X , Bob and input y ∈ Y , and Merlin is omniscient (he sees both x and y)
but untrusted. Alice and Bob’s goal is to compute f(x, y) for some agreed upon function
f : X × Y → {0, 1}. In an MA communication protocol P , Merlin first broadcasts a message
mM to both Alice and Bob. Alice and Bob then engage in a randomized communication
protocol, before outputting a single bit. To clarify, Merlin does not learn the randomness
that Alice and Bob use until after sending the message mM (x, y). For each input (x, y), the
protocol P defines a game between Merlin, Alice, and Bob, in which Merlin’s goal is to make
Alice and Bob output 1. We define ValP(x, y) to be Merlin’s probability of winning with
optimal play. Given a Boolean function f , we say that P computes f if, for all (x, y) we have
(1) f(x, y)=0=⇒ValP(x, y)≤1/3, and (2) f(x, y) = 1=⇒ValP(x, y)≥2/3. We refer to the
Property (1) as soundness and Property (2) as completeness.

The help cost, or hc(P), of P is max(x,y) |mM (x, y)|, i.e., the maximum length of Merlin’s
message in bits. The verification cost, or vc(P), of P is the maximum number of bits that
Alice and Bob exchange, where the maximum is taken over all inputs (x, y), all possible
Merlin messages mM , and all choices of Alice and Bob’s randomness. The total cost of P is
the sum of the help and verification costs of P.

In an online MA (OMA) communication protocol, neither Merlin nor Bob can talk to
Alice. Given any online scheme for a function f , we naturally obtain an OMA protocol P for
the communication problem in which Alice holds a prefix of a stream, Bob holds a suffix,
and the goal is to evaluate f on the concatenated stream x ◦ y. Hence, if we establish lower
bounds on the help and verification costs of any OMA protocol for f , an equivalent lower
bound on the help and space costs of any online scheme for f follows.

In this section, we establish lower bounds on the help and verification costs of any
OMA protocol for the Disconnectivity and Bipartiteness problems in the XOR update
model. More precisely, we consider the communication problems Disconnectivitycc and
Bipartitenesscc in which Alice holds the first m− n tuples in a graph stream in the XOR
update model, Bob holds the length n tuples, and the output function evaluates to 1 if and
only if the resulting graph is disconnected or bipartite, respectively.5

4.2 The Lower Bound
I Theorem 6. Consider any OMA protocol P for Disconnectivityccor Bipartitenesscc.
Then it holds that (hc(P) + n) · vc(P) = Ω(n2). This holds even under the promise that the
first m− n stream updates (i.e., Alice’s input) are all unique, and the last n stream updates
(i.e., Bob’s input) are all incident to a single node. In particular, the total cost of P is Ω(n).

Proof. We prove the lower bound Disconnectivityccproblem. The proof for Bipartite-
nessccis similar, and is deferred to the full version of the paper. Let P denote any OMA
protocol for Disconnectivityccthat works on graphs with n+ 1 nodes, under the promise

5 The reason that we consider Disconnectivitycc rather than Connectivitycc is the asymmetric way
that inputs in F −1(0) and F −1(1) in the definition of OMA communication complexity. Recall that
the OMA communication problem for a decision problem F requires only that if F (x) = 1 then there
is some prover that will cause the verifier to accept with high probability, and if F (x) = 0 then there
is no such prover. (By contrast, our definition of a scheme for a function F requires there to be a
convincing proof of the value of F (x) for all values F (x).) Hence, the OMA communication complexities
of Disconnectivitycc and Connectivitycc may not be equal, and indeed our lower bound argument
applies only to Disconnectivitycc.

ICALP 2016
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described in the theorem hypothesis. As discussed in the outline of Section 1.1.2, our proof
will use a reduction from the index problem on

(
n
2
)
inputs. In this problem, Alice’s input

consists of a bitstring x of length
(
n
2
)
, Bob’s input is an index i∗ ∈ [

(
n
2
)
], and the goal is

to output xi∗ . It was established in [7] that any OMA protocol Q for index on
(
n
2
)
inputs

requires hc(Q) · vc(Q) = Ω(n2). We show how to use P to construct a protocol Q for index
on
(
n
2
)
inputs with hc(Q) = n+ hc(P) and vc(Q) = vc(P). It will then follow from the lower

bound for index that (hc(P) + n) · vc(P) ≥ n2.

Description of Q. In Q, Alice interprets her input x ∈ {0, 1}(
n
2) as an undirected graph G1

with n nodes as follows. She associates each index i ∈
(
n
2
)
with a unique edge (ui, vi) out of

the set of all
(
n
2
)
possible edges that could appear in G1. Alice also adds to G1 a special node

v∗, and connects v∗ to every other node in G1. Denote the resulting graph on n+ 1 nodes
by G2. Notice that G2 is always connected, as every node is connected to v∗ by design.

Likewise, Bob interprets his input i∗ ∈ [
(
n
2
)
] as an edge (ui∗ , vi∗). Clearly, determining

whether xi∗ = 1 is equivalent to determining whether edge (ui∗ , vi∗) appears in Alice’s graph
G2. Merlin sends Bob a list L claimed to equal all edges incident to node ui∗ in G2. This
requires only n bits of “help”, since there are only n nodes to which ui∗ might be adjacent.
Bob treats L as his input to the Disconnectivityccproblem.

Alice, Bob, and Merlin now run the Disconnectivitycc protocol P (with Alice’s input
equal to G2 and Bob’s input equal to L). Bob outputs 1 iff the protocol P outputs 1, and L
contains the edge (ui∗ , vi∗).

Costs of Q. The help cost of Q is equal to n+ hc(P), since the honest Merlin sends Bob
the list L, and then behaves as he would in the protocol P . The verification cost of Q is just
vc(Q), since the only message Alice sends to Bob is the message she would send in P.

Completeness and Soundness of Q. Let G3 denote the graph obtained from G2 by XORing
all the edges in the list L. Let I(ui∗) denote the set of edges incident to ui∗ in G3. We
claim that G3 is disconnected if and only if L is equal to I(ui∗). For the first direction,
suppose that L is equal to I(ui∗). Then by XORing the edges in G3 with the edges in L,
every edge incident to node ui∗ is deleted from the graph. Hence, ui∗ is an isolated vertex in
G3, implying that G3 is disconnected. For the second direction, suppose that L is not equal
to I(ui∗). Let (ui∗ , v) denote an edge in L \ I(ui∗). Then (ui∗ , v) is in G3. Moreover, v is
adjacent to node v∗, as are all nodes in G3 other than ui∗ . Hence G3 is connected.

To finish the proof of completeness of Q, note that if xi∗ = 1, then the edge (ui∗ , vi∗) is in
G3. If Merlin sends L = I(ui∗), then G3 will be disconnected, and by the the completeness
of P , Merlin can convince Bob that G3 is disconnected with probability at least 2/3. In this
event, Bob will output 1, because (ui∗ , vi∗) will be in the list L.

To finish the proof of soundness of Q, note that if xi∗ = 0, then the edge (ui∗ , vi∗) is
not in G3. Hence, if Merlin sends L = I(ui∗), then Bob will reject automatically, because
(ui∗ , vi∗) will not be in the list L. On the other hand, if Merlin sends a list L that is not
equal to I(ui∗), then G3 will be connected. By the the soundness of P, Merlin can convince
Bob that G3 is disconnected with probability at most 1/3. Hence, Bob will output 1 in Q
with probability at most 1/3, completing the proof for Disconnectivitycc. J

Because any online scheme for Connectivity or Bipartiteness can be simulated by an
OMA communication protocol, we obtain the following corollary.
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I Corollary 7 (Formal Version of Theorem 3). Consider any online scheme for Connectivity
or Bipartiteness in the XOR update model with help cost ca and and space cost cv. Then
(ca + n) · cv ≥ n2, even under the promise that the first m− n stream updates are all unique,
and the last n stream updates are all incident to a single node. In particular, the total cost
of any annotation scheme is Ω(n).

Acknowledgments. The author is grateful to Graham Cormode, Amit Chakrabarti, Andrew
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work.
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Abstract
We study the composition question for bounded-error randomized query complexity: Is R(f ◦g) =
Ω(R(f)R(g))? We show that inserting a simple function h, whose query complexity is only
Θ(logR(g)), in between f and g allows us to prove R(f ◦ h ◦ g) = Ω(R(f)R(h)R(g)).

We prove this using a new lower bound measure for randomized query complexity we call
randomized sabotage complexity, RS(f). Randomized sabotage complexity has several desirable
properties, such as a perfect composition theorem, RS(f ◦ g) ≥ RS(f) RS(g), and a composition
theorem with randomized query complexity, R(f ◦ g) = Ω(R(f) RS(g)). It is also a quadratically
tight lower bound for total functions and can be quadratically superior to the partition bound,
the best known general lower bound for randomized query complexity.

Using this technique we also show implications for lifting theorems in communication complex-
ity. We show that a general lifting theorem from zero-error randomized query to communication
complexity implies a similar result for bounded-error algorithms for all total functions.
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1 Introduction

1.1 Composition theorems
A basic structural question that can be asked in any model of computation is whether there
can be savings in complexity when computing the same function on several independent
inputs. We say a direct sum theorem holds in a model of computation if solving a problem
on n independent inputs requires roughly n times the resources needed to solve one instance.
A direct sum theorem is known to hold for deterministic and randomized query complexity
[9], and two-player refereed games [17], is known to fail for circuit size [16], and remains open
for deterministic communication complexity [11].

More generally, instead of merely outputting the n answers, we could compute another
function of these n answers. If f is an n-bit Boolean function and g is an m-bit Boolean
function, we define the composed function f ◦ g to be an nm-bit Boolean function such that
f ◦ g(x1, . . . , xn) = f(g(x1), . . . , g(xn)), where each xi is an m-bit string. The composition
question now asks if there can be significant savings in computing f ◦ g compared to simply
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running the best algorithm for f and using the best algorithm for g to evaluate the input
bits needed to compute f . If we let f be the identity function on n bits that just outputs all
its inputs, we recover the direct sum problem.

Composition theorems are harder to prove and are known for only a handful of models,
such as deterministic and quantum query complexity. Proving this for randomized query
complexity remains a major open problem. More precisely, if D(f), R(f), and Q(f) denote
the deterministic, randomized, and quantum query complexities of f , then we know for all
partial Boolean functions f and g, D(f ◦g) = D(f)D(g) [18, 15] and Q(f ◦g) = Θ(Q(f)Q(g))
[14, 12]. (Such theorems often fail for functions with non-Boolean output, and hence we only
consider functions with Boolean output in this paper.) In contrast, in the randomized setting
we have only the upper bound R(f ◦ g) = O(R(f)R(g) logR(f)).

I Open Problem 1. Does it hold that R(f ◦ g) = Ω(R(f)R(g)) for all Boolean f and g?

In this paper we prove something close to a composition theorem for randomized query
complexity. While we cannot rule out the possibility of synergistic savings in computing
f ◦ g, we show that a composition theorem does hold if we insert a small gadget in between
f and g to obfuscate the output of g. Our gadget is “small” in the sense that its randomized
(and even deterministic) query complexity is Θ(logR(g)). Specifically we choose the index
function, which on an input of size k+2k interprets the first k bits as an address into the next
2k bits and outputs the bit stored at that address. The index function’s query complexity is
k + 1 and we choose k = Θ(logR(g)) in our construction.

I Theorem 1. Let f and g be partial Boolean functions and let Ind be the index function with
R(Ind) = Θ(logR(g)). Then R(f ◦ Ind ◦ g) = Ω(R(f)R(Ind)R(g)) = Ω(R(f)R(g) logR(g)).

Theorem 1 can be used instead of a true composition theorem in many applications. For
example, recently a composition theorem for randomized query complexity was needed in
the special case when f is the And function [2, 5] or when g is the AND function [1]. Our
composition theorem would suffice for both applications.

We prove Theorem 1 by introducing a new lower bound technique for randomized query
complexity. This is not surprising since the composition theorems for deterministic and
quantum query complexities are also proved using powerful lower bound techniques for these
models, namely the adversary argument and the general adversary bound [7] respectively.

1.2 Sabotage complexity
To describe the new lower bound technique, consider the problem of computing a Boolean
function f on an input x ∈ {0, 1}n in the query model. In this model we have access to an
oracle, which when queried with an index i ∈ [n] responds with xi ∈ {0, 1}. Now imagine
a saboteur damages the oracle making some of the input bits unreadable; for these input
bits the oracle simply responds with a ∗. We can now view the oracle as storing a string
p ∈ {0, 1, ∗}n as opposed to a string x ∈ {0, 1}n. Although it is not possible to determine
the true input x from the oracle string p, it may still be possible to compute f(x) if all input
strings consistent with p evaluate to the same f value. On the other hand, it is not possible
to compute f(x) if p is consistent with a 0-input and a 1-input to f , and we call such a string
p ∈ {0, 1, ∗}n a sabotaged input. For example, let f be the Or function that computes the
logical Or of its bits. Then p = 00∗0 is a sabotaged input since it is consistent with the
0-input 0000 and the 1-input 0010. However, p = 01∗0 is not a sabotaged input since it is
only consistent with 1-inputs to f .
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Now consider a new problem in which the input is promised to be sabotaged (with respect
to a function f) and our job is to find the location of a ∗. Intuitively, any algorithm that
solves the original problem f when run on a sabotaged input must discover at least one ∗,
since otherwise it would answer the same on 0- and 1-inputs consistent with the sabotaged
input. This can be formalized and leads to a lower bound measure for several models of
computation, including deterministic, randomized, and quantum query complexity.

As it stands the problem of finding a ∗ in a sabotaged input has multiple valid outputs,
as the location of any star in the input is a valid output. For convenience we define a decision
version of this problem by imaging there are two saboteurs, one of whom has sabotaged our
input. The first saboteur, Asterix, replaces input bits with an asterisk (∗) and the second,
Obelix, uses an obelisk (†). Promised that the input has been sabotaged exclusively by one
of Asterix or Obelix, our job is to identify the saboteur. This is now a decision problem since
there are only two valid outputs. We call this decision problem fsab, the sabotage problem
associated with f .

We now define lower bound measures for various models using fsab. For example, we
can define the deterministic sabotage complexity of f as DS(f) := D(fsab) and in fact,
DS(f) = D(f) as we show in the full version of this paper. We could define the randomized
sabotage complexity of f as R(fsab), but instead we define it as RS(f) := R0(fsab), where R0
denotes zero-error randomized query complexity, since R(fsab) and R0(fsab) are equal up to
constant factors. Besides lower bounding R(f), RS(f) has the following desirable properties:
1. (Perfect composition) For all f and g, RS(f ◦ g) ≥ RS(f) RS(g) (Theorem 15)
2. (Composition with R) For all f and g, R(f ◦ g) = Ω(R(f) RS(g)) (Theorem 17)
3. (Quadratically tight) For all total f , R(f) = O(RS(f)2 log RS(f)) (Theorem 28)
4. (Superior to prt(f)) There exists a total f with RS(f) ≥ prt(f)2−o(1) (Theorem 26)
Here prt(f) denotes the partition bound [8, 10], which subsumes most other lower bound
techniques such as approximate polynomial degree and randomized certificate complexity. In
fact, we are unaware of any total function f for which RS(f) = o(R(f)), leaving open the
intriguing possibility that this lower bound technique is tight.

1.3 Lifting theorems
Using randomized sabotage complexity we are also able to show a relationship between
lifting theorems in communication complexity. A lifting theorem relates the query complexity
of a function f with the communication complexity of a related function created from f .
Recently, Göös, Pitassi, and Watson [6] showed that there is a communication problem G

with communication complexity Θ(logn) such that for any function f on n bits, Dcc(f ◦G) =
Ω(D(f) logn), where Dcc denotes deterministic communication complexity.

Analogous lifting theorems are known for some complexity measures, but no such theorem
is known for either zero-error randomized or bounded-error randomized query complexity.
Our second result shows that a lifting theorem for zero-error randomized query complexity
implies one for bounded-error randomized query complexity for total functions. We use Rcc

0
and Rcc to denote zero-error and bounded-error communication complexity respectively.

I Theorem 2. Let G be the communication gadget from [6] with Dcc(G) = Θ(logn). If it
holds that for all n-bit (possibly partial) functions f , Rcc

0 (f ◦G) = Ω(R0(f)/ polylogn), then
it holds that for all n-bit total Boolean functions f , Rcc(f ◦G) = Ω(R(f)/ polylogn).

Proving a lifting theorem for bounded-error randomized query complexity remains an
important open problem, and would imply super-quadratic separations between randomized
and quantum communication complexity [1], and a nearly quadratic separation between

ICALP 2016



60:4 Randomized Query Complexity of Sabotaged and Composed Functions

randomized communication complexity and partition number [2]. Our result shows that it is
sufficient to prove a lifting theorem for zero-error randomized protocols instead.

2 Preliminaries

We now define some basic notions in query complexity. Note that all the functions in this
paper have Boolean output. In the model of query complexity, we wish to compute an n-bit
Boolean function f on an input x given query access to the bits of x. The function f may
be total, i.e., f : {0, 1}n → {0, 1}, or partial, which means it is defined only on a subset of
{0, 1}n, which we denote by Dom(f). The goal is to output f(x) using as few queries to
the bits of x as possible. The number of queries used by the best possible deterministic
algorithm (over worst-case choice of x) is denoted D(f).

A randomized algorithm is a probability distribution over deterministic algorithms. The
worst-case cost of a randomized algorithm is the worst-case number of queries made by the
algorithm on any input x. The expected cost of the algorithm is the expected number of
queries made by the algorithm maximized over all inputs x. A randomized algorithm has
error at most ε if it outputs f(x) on every x with probability at least 1− ε.

We use Rε(f) to denote the worst-case cost of the best randomized algorithm that
computes f with error ε. Similarly, we use Rε to denote the expected cost of the best
randomized algorithm that computes f with error ε. When ε is unspecified it is taken to be
ε = 1/3. Thus R(f) denotes the bounded-error randomized query complexity of f . Finally,
we also define zero-error randomized query complexity, which is R0(f), which we also denote
by R0(f) to be consistent with the literature. For precise definitions of these measures as
well as the definition of quantum query complexity Q(f), see [3]. We also need two simple
properties of randomized algorithms, which we prove in the full version of this paper.

I Lemma 3. If A is a randomized algorithm that uses T expected queries and finds a
certificate with probability 1 − ε, then repeating A when it fails turns it into a zero-error
algorithm that uses at most T/(1− ε) expected queries.

I Lemma 4. Let f be a partial function and A be an ε-error randomized algorithm for f
that uses at most T expected queries. For x, y ∈ Dom(f) if f(x) 6= f(y) then when A is run
on x, it must query an entry on which x differs from y with probability at least 1− 2ε.

3 Sabotage complexity

Given a (partial or total) n-bit Boolean function f , let Pf ⊆ {0, 1, ∗}n be the set of all partial
assignments of f that are consistent with both a 0-input and a 1-input; that is, for each
p ∈ Pf , there exist x, y ∈ Dom(f) such that f(x) 6= f(y) and xi = yi = pi whenever pi 6= ∗.
Let P †f ⊆ {0, 1, †}n be the same as Pf , except using the symbol † instead of ∗. Observe that
Pf and P †f are disjoint. Let Qf = Pf ∪ P †f ⊆ {0, 1, ∗, †}n. We then define fsab as follows.

I Definition 5. Let f be an n-bit partial function. We define fsab : Qf → {0, 1} as
fsab(q) = 0 if q ∈ Pf and fsab(q) = 1 if q ∈ P †f .

See Section 1.2 for more discussion and motivation for this definition. Now that we have
defined fsab, we can define sabotage complexity for various models.

I Definition 6. Let f be a partial function. Then DS(f) := D(fsab) and RS(f) := R0(fsab).



S. Ben-David and R. Kothari 60:5

We will primarily focus on RS(f) in this work. To justify defining RS(f) as R0(fsab)
instead of R(fsab), we now show these definitions are equivalent up to constant factors.

I Theorem 7. Let f be a partial function. Then R0(fsab) ≥ Rε(fsab) ≥ (1− 2ε)R0(fsab).

Proof. The first inequality follows trivially. For the second, let x ∈ Qf be any valid input to
fsab. Let x′ be the input x with asterisks replaced with obelisks and vice versa. Then since
fsab(x) 6= fsab(x′), by Lemma 4 any ε-error randomized algorithm that solves fsab must find
a position on which x and x′ differ with probability at least 1− 2ε. The positions at which
they differ are either asterisks or obelisks. Since x was an arbitrary input, the algorithm must
always find an asterisk or obelisk with probability at least 1− 2ε. Since finding an asterisk
or obelisk is a certificate for fsab, by Lemma 3, we get a zero-error algorithm for fsab that
uses Rε(fsab)/(1− 2ε) expected queries. Thus R0(fsab) ≤ Rε(fsab)/(1− 2ε), as desired. J

Finally, we prove that RS(f) is indeed a lower bound on R(f), i.e., R(f) = Ω(RS(f)).

I Theorem 8. Let f be an n-bit partial function. Then Rε(f) ≥ Rε(f) ≥ (1− 2ε) RS(f).

Proof. Let A be a randomized algorithm for f that uses Rε(f) randomized queries and
outputs the correct answer on every input in Dom(f) with probability at least 1− ε. Now fix
a sabotaged input x, and let p be the probability that A finds a ∗ or † when run on x. Let q
be the probability that A outputs 0 if it doesn’t find a ∗ or † when run on x. Let x0 and x1
be inputs consistent with x such that f(x0) = 0 and f(x1) = 1. Then A outputs 0 on x1 with
probability at least q(1− p), and A outputs 1 on x0 with probability at least (1− q)(1− p).
These are both errors, so we have q(1− p) ≤ ε and (1− q)(1− p) ≤ ε. Summing them gives
1− p ≤ 2ε, or p ≥ 1− 2ε.

This means A finds a ∗ entry within Rε(f) expected queries with probability at least
1− 2ε. By Lemma 3, we get 1

1−2εRε(f) ≥ RS(f), or Rε(f) ≥ (1− 2ε) RS(f). J

We also define a variant of RS where the number of asterisks (or obelisks) is exactly one.
Specifically, let U ⊆ {0, 1, ∗, †}n be the set of all partial assignments with exactly one ∗ or †.

I Definition 9. Let f be a partial function. We define fusab as the restriction of fsab to U ,
the set of strings with only one asterisk or obelisk. I.e., fusab has domain Qf ∩ U , but is
equal to fsab on its domain. We then define RS1(f) := R0(fusab). If Qf ∩ U is empty, we
define RS1(f) := 0.

The measure RS1 will play a key role in our lifting result in Section 6. Since fusab is a
restriction of fsab to a promise, it is clear that its zero-error randomized query complexity is
smaller, so RS1(f) ≤ RS(f). Another interesting property is the following theorem, which
says RS1(f) equals RS(f) for total functions. In other words, when f is total, we may assume
without loss of generality that its sabotaged version has only one asterisk or obelisk.

I Theorem 10. If f is a total function, then RS1(f) = RS(f).

Proof. We showed that RS(f) ≥ RS1(f). To show RS1(f) ≥ RS(f), we argue that any
zero-error algorithm A for fusab also solves fsab. The main observation is that any input to
fsab can be completed to an input to fusab by replacing some asterisks or obelisks with 0s
and 1s. To see this, let x be an input to fsab. Without loss of generality, x ∈ Pf . Then there
are two strings y, z ∈ Dom(f) that are consistent with x, satisfying f(y) = 0 and f(z) = 1.

The strings y and z disagree on some set of bits B, and x has a ∗ or † on all of B.
Consider starting with y and flipping the bits of B one by one, until we reach the string z.
At the beginning, we have f(y) = 0, and at the end, we reach f(z) = 1. This means that at
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some point in the middle, we must have flipped a bit that flipped the string from a 0-input
to a 1-input. Let w0 and w1 be the inputs where this happens. They differ in only one bit.
If we replace that bit with ∗ or †, we get a partial assignment w consistent with both, so
w ∈ Pf . Moreover, w is consistent with x. This means we have completed an arbitrary input
to fsab to an input to fusab, as claimed.

Now, the algorithm A must find an asterisk or obelisk in any input to fusab. But
since each input to fsab can be viewed as an input to fusab with added asterisks and
obelisks, the algorithm A also finds an asterisk or obelisk in any input to fsab. Thus
RS(f) = R0(fsab) ≤ R0(fusab) = RS1(f). J

4 Direct Sum and Composition Theorems

In this section, we establish some composition theorems for RS. To do so, we first need to
establish direct sum theorems for the problem fsab. In fact, our direct sum theorems hold
more generally for zero-error randomized query complexity of partial functions (and even
relations). We will require Yao’s minimax theorem [19]:

I Theorem 11 (Yao). Let f be a partial function. There is a distribution µ over inputs in
Dom(f) such that all zero-error algorithms for f use at least R0(f) expected queries on µ.

4.1 Direct Sum Theorems
We start by defining the m-fold direct sum of a function f , which is simply the function that
accepts m inputs to f and outputs f evaluated on all of them.

I Definition 12. Let f : Dom(f) → Z, where Dom(f) ⊆ Xn be a partial function with
input and output alphabets X and Z. The m-fold direct sum of f is the partial function
f⊕m : Dom(f)m → Zm such that for all xi ∈ Dom(f),

f(x1, x2, . . . , xm) = (f(x1), f(x2), . . . , f(xm)). (1)

We can now prove a direct sum theorem for zero-error randomized query complexity. We
prove these results for partial functions, although they also hold for relations.

I Theorem 13 (Direct sum). For any n-bit partial function f and any positive integer m, we
have R0(f⊕m) = mR0(f). Moreover, if µ is the hard distribution for f given by Theorem 11,
then µ⊗m is a hard distribution for f⊕m.

Proof. The upper bound follows from running the R0(f) algorithm on each of the m inputs
to f . By linearity of expectation, this solves all m inputs after mR0(f) expected queries.

We now prove the lower bound. Let A be a zero-error randomized algorithm for f⊕m
that uses T expected queries when run on inputs from µ⊗m. We convert A into an algorithm
B for f that uses T/m expected queries when run on inputs from µ.

Given an input x ∼ µ, the algorithm B generates m− 1 additional “fake” inputs from
µ. B then shuffles these together with x, and runs A on the result. The input to A is then
distributed according to µ⊗m, so A uses T queries (in expectation) to solve all m inputs. B
then reads the solution to the true input x.

Note that most of the queries A makes are to fake inputs, so they don’t count as real
queries. The only real queries B has to make happen when A queries x. But since x is
shuffled with the other (indistinguishable) inputs, the expected number of queries A makes
to x is the same as the expected number of queries A makes to each fake input; this must
equal T/m. Thus B makes T/m queries to x (in expectation) before solving it.
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Since B is a zero-error randomized algorithm for f that uses T/m expected queries on
inputs from µ, we must have T/m ≥ R0(f) by Theorem 11. Thus T ≥ mR0(f). J

For our applications, however, we will need a strengthened version of this theorem, which
we call a threshold direct sum theorem for R0.

I Theorem 14 (Threshold direct sum). Given an input to f⊕m sampled from µ⊗m, we
consider solving only some of the m inputs to f . We say an input x to f is solved if a
z-certificate was queried that proves f(x) = z. Then any randomized algorithm that takes an
expected T queries and solves an expected k of the m inputs when run on inputs from µ⊗m

must satisfy T ≥ kR0(f).

Proof. Let A be such an algorithm. We convert A into an algorithm B for solving f on
inputs from µ. The algorithm B is very similar to the algorithm in the proof of Theorem 13:
on input x ∼ µ, it generates m− 1 additional inputs from µ, shuffles them, and feeds them
into A. The algorithm A uses an expected T queries, but since x is shuffled with the fake
inputs, it gets queried only T/m times in expectation. Moreover, the algorithm A solves an
expected k of the m inputs, so the expected number of times it solves x is k/m. This means
B solves x with probability k/m.

Moreover, when B solves x, it also finds a certificate. So by Lemma 3, we get a zero-
error algorithm with expected query complexity (T/m)/(k/m) = T/k. We conclude that
T/k ≥ R0(f), so T ≥ kR0(f), as desired. J

4.2 Composition Theorems
Using the direct sum and threshold direct sum theorems we have established, we can now
prove composition theorems for randomized sabotage complexity. We start with the behavior
of RS itself under composition.

I Theorem 15. Let f and g be partial functions. Then RS(f ◦ g) ≥ RS(f) RS(g).

Proof. Let A be any algorithm for (f ◦ g)sab, and let T be the expected query complexity of
A (maximized over all inputs). We turn A into an algorithm B for fsab.

B takes a sabotaged input x for f . It then runs A on a sabotaged input to f ◦g constructed
as follows. Each 0 bit of x is replaced with a 0-input to g, each 1 bit of x is replaced with a
1-input to g, and each ∗ or † of x is replaced with a sabotaged input to g. The sabotaged
inputs are generated from µ, the hard distribution for gsab obtained from Theorem 11. The
0-inputs are generated by first generating a sabotaged input, and then selecting a 0-input
consistent with that sabotaged input. The 1-inputs are generated analogously.

This is implemented in the following way. On input x, the algorithm B generates n
sabotaged inputs from µ (the hard distribution for gsab), where n is the length of the string x.
Call these inputs y1, y2, . . . , yn. B then runs the algorithm A on this collection of n strings,
pretending that it’s an input to f ◦ g, with the following caveat: whenever A tries to query
a ∗ or † in an input yi, B instead queries xi. If xi is 0, B selects an input from f−1(0)
consistent with yi, and replaces yi with this input. It then returns to A an answer consistent
with the new yi. If xi is 1, B selects a consistent input from f−1(1) instead. If xi is a ∗ or †,
B returns a ∗ or † respectively.

Now, by Theorem 14, if A makes T expected queries, the expected number of ∗ or †
entries it finds among y1, y2, . . . , yn is at most T/RS(g). It follows that the expected number
of queries B makes to x is at most T/RS(g). Thus we have RS(f) ≤ T/RS(g), which gives
T ≥ RS(f) RS(g). J
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Using this we can lower bound the randomized query complexity of composed functions.
We use fn to denote the function f composed with itself n times, i.e., f1 = f and f i+1 = f ◦f i.

I Corollary 16. Let f : {0, 1}n → {0, 1} be a partial function. Then R(fn) ≥ RS(f)n/3.

This follows straightforwardly from observing that R(fn) = R1/3(fn) ≥ (1− 2/3) RS(fn)
(using Theorem 8) and RS(fn) ≥ RS(f)n (using Theorem 15).

We can also prove a composition theorem for randomized query complexity in terms of
randomized sabotage complexity. In particular this yields a composition theorem for R(f ◦ g)
when R(g) = Θ(RS(g)).

I Theorem 17. Let f and g be partial functions. Then Rε(f ◦ g) ≥ Rε(f) RS(g).

Proof. The proof follows a similar argument to the proof of Theorem 15. Let A be a
randomized algorithm for f ◦ g that uses T expected queries and makes error ε. We turn
A into an algorithm B for f by having B generate inputs from µ, the hard distribution for
gsab, and feeding them to A, as before. The only difference is that this time, the input x to
B is not a sabotaged input. This means it has no ∗ or † entries, so all the sabotaged inputs
that B generates turn into 0- or 1-inputs if A tries to query a ∗ or † in them.

Since A uses T queries, by Theorem 14, it finds at most T/RS(g) asterisks or obelisks
(in expectation). Therefore, B makes at most T/RS(g) expected queries to x. Since B is
correct whenever A is correct, its error probability is at most ε. Thus Rε(f) ≤ T/RS(g), and
thus T ≥ Rε(f) RS(g). J

Setting ε to 0 yields the following corollary.

I Corollary 18. Let f and g be partial functions. Then R0(f ◦ g) ≥ R0(f) RS(g).

For the more commonly used R(f ◦ g), we obtain the following composition result.

I Corollary 19. Let f and g be partial functions. Then R(f ◦ g) ≥ R(f) RS(g)/10.

This follows from R(f ◦ g) ≥ R1/3(f ◦ g) ≥ R1/3(f) RS(g) ≥ R(f) RS(g)/10, where we
used R1/3(f) ≥ R(f)/10, which can be shown by error reduction and Markov’s inequality.

Finally, we can also show an upper bound composition result for randomized sabotage
complexity. We defer the proof to the full version of this paper.

I Theorem 20. Let f and g be partial functions. Then RS(f ◦ g) ≤ RS(f)R0(g). We also
have RS(f ◦ g) = O(RS(f)R(g) log RS(f)).

5 Composition with the index function

To prove the composition result, we require the strong direct product theorem for randomized
query complexity that was established by Drucker [4].

I Theorem 21 (Drucker). Let f be a partial Boolean function, and let k be a positive integer.
Then any randomized algorithm for f⊕k that uses at most γ3kR(f)/11 queries has success
probability at most (1/2 + γ)k, for any γ ∈ (0, 1/4).

The first step to proving the main result that R(f ◦ Ind ◦ g) = Ω(R(f)R(Ind)R(g)) is to
show that R(Ind ◦ g) equals RS(Ind ◦ g) up to constants if the index gadget is large enough.

I Theorem 22. Let f be a partial Boolean function, and let m = Ω(R(f)1.1). Then
RS(Indm ◦ f) = Ω(R(f) logm) = Ω(R(Indm)R(f)).

Moreover, if f⊕cind is the defined as the index function on c+ 2c bits composed with f in
only the first c bits, we have RS1(f⊕cind) = Ω(cR(f)) when c = 1.1 logR(f) + Ω(1).
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Proof. Consider what the inputs to (Indm ◦ f)sab look like. We can split an input to Indm
into a small index section and a large array section. To sabotage an input to Indm, it suffices
to sabotage the array element that the index points to (using only a single star). It follows
that to sabotage an input to Indm ◦ f , it suffices to sabotage the input to f at the array
element that the index points to. In other words, the only stars in the input will be in one
array cell, whose index is the output of the first logm copies of f .

We now convert an RS(Indm ◦ f) algorithm into a randomized algorithm for f logm. First,
using Markov’s inequality, we get a 2 RS(Indm ◦ f) query randomized algorithm that finds a
∗ or † with probability 1/2 if the input is sabotaged. Next, consider running this algorithm
on a non-sabotaged input. It makes 2 RS(Indm ◦ f) queries. With probability 1/2, one of
these queries will be in the array cell whose index is the true answer to f logm evaluated on
the first n logm bits. We can then consider a new algorithm A that runs the above algorithm
for 2 RS(Indm ◦ f) queries, then picks one of the 2 RS(Indm ◦ f) queries at random, and if
that query is in an array cell, it outputs the index of that cell. Then A uses 2 RS(Indm ◦ f)
queries and evaluates f logm with probability at least RS(Indm ◦ f)−1/4.

Next, Theorem 21 implies that for any γ ∈ (0, 1/4), either A’s success probability is
smaller than (1/2 + γ)logm, or else A uses at least γ3(logm)R(f)/11 queries. This means
either RS(Indm ◦ f)−1/4 ≤ (1/2 + γ)logm or 2 RS(Indm ◦ f) ≥ γ3(logm)R(f)/11, which
means

RS(Indm ◦ f) = Ω
(
γ3 min

{(
2

1 + 2γ

)logm
, R(f) logm

})
. (2)

Now, we have(
2

1 + 2γ

)logm
= mlog(2/(1+2γ)) = m1−log(1+2γ) ≥ m1−2(log e)γ ≥ m1−3γ . (3)

If m ≥ (R(f) logR(f))(1−3γ)−1 , the above is at least R(f) logR(f) = Ω(R(f) logm), which
means RS(Indm ◦ f) = Ω(γ3R(f) logm).

Note that (1− 3γ)−1 ≤ 1 + 12γ for all γ ≤ 1/4. Setting r = 13γ, we get

m = Ω(R(f)1+r)⇒ RS(Indm ◦ f) = Ω(r3R(f) logm) (4)

for all r satisfying r = O(1) and r = Ω(log logR(f)/ logR(f)). Setting r = 0.1 gives
the desired result. The lower bound on RS1(f⊕ind) follows similarly once we observe that
sabotaging the array cell indexed by the outputs to the c copies of f introduces only one
asterisk or obelisk, so the above argument lower bounds RS1 and not only RS. J

Finally, we can prove Theorem 1, more precisely stated as follows.

I Theorem 23. Let f and g be (possibly partial) functions, and let m = Ω(R(g)1.1). Then
R(f ◦ Indm ◦ g) = Ω(R(f)R(g) logm) = Ω(R(f)R(Indm)R(g)).

Proof. By Corollary 19, we have R(f ◦ Indm ◦ g) ≥ R(f) RS(Indm ◦ g)/10. Combining with
Theorem 22 gives R(f ◦ Indm ◦ g) = Ω(R(f)R(g) logm), as desired. J

6 Lifting theorem

To establish the connection between lifting theorems, we start with the following lemma,
which gives a sabotage lower bound in the communication complexity setting.
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I Lemma 24. Let f be a (possibly partial) Boolean function on n bits, and let Gb be the
index gadget on {0, 1}b × {0, 1}2b , with b = O(logn). Then

Rcc(f ◦Gb) = Ω
(
Rcc

0 (fusab ◦G′b)
logn log logn

)
, (5)

where G′b is the index gadget mapping {0, 1}b × {0, 1, ∗, †}2b to {0, 1, ∗, †}.

Proof. We’ll use a randomized protocol A for f ◦Gb to construct a zero-error protocol B for
fusab ◦G′b. Note the given input to fusab ◦G′b must have a unique copy of G′b that evaluates
to ∗ or †, with all other copies evaluating to 0 or 1. The goal of B is to find this copy and
determine if it evaluates to ∗ or †. This will evaluate fusab ◦G′b with zero error.

Note that if we replace all ∗ and † symbols in Bob’s input with 0 or 1, we’d get a valid
input to to f ◦Gb, which we can evaluate using A. Moreover, there is a single special ∗ or †
in Bob’s input that governs the value of this input to f ◦Gb. Without loss of generality, we
assume that if the special symbol is replaced by 0, the function f ◦Gb evaluates to 0, and if
it is replaced by 1, it evaluates to 1.

We can now binary search to find this special symbol. There are at most n2b asterisks and
obelisks in Bob’s input. We can set the left half to 0 and the right half to 1, and evaluate the
resulting input using A. If the answer is 0, the special symbol is on the left half; otherwise,
it is on the right half. We can proceed to binary search in this way, until we’ve zoomed in on
one gadget that must contain the special symbol. This requires narrowing down the search
space from n possible gadgets to 1, which requires logn rounds. Each round requires a call
to A, times a O(log logn) factor for amplification. We can therefore find the right gadget
with bounded error, using O(Rcc(f ◦Gb) logn log logn) bits of communication.

Once we’ve found the right gadget, we can certify its validity by having Alice send the
right index to Bob, using b bits of communication. Since we found a certificate with constant
probability, we can use Lemma 3 to turn this into a zero-error algorithm. Thus

Rcc
0 (fusab ◦G′b) = O(b+Rcc(f ◦Gb) logn log logn). (6)

Since b = O(logn), we get Rcc
0 (fusab ◦G′b) = O(Rcc(f ◦Gb) logn log logn). J

Equipped with this lemma we can prove the connection between lifting theorems (Theo-
rem 2), stated more precisely as follows.

I Theorem 25. Suppose that for all partial Boolean functions f on n bits, we have

Rcc
0 (f ◦Gb) = Ω̃(R0(f)) (7)

with b = O(logn). Then for all partial functions Boolean functions, we also have

Rcc(f ◦G2b) = Ω̃(R(f)). (8)

The loss in the Ω̃ for the R result is only logn log log2 n worse than the loss in the R0
hypothesis.

Proof. First, we note that for any function f and positive integer c,

Rcc(f ◦G2b) = Ω
(
Rcc(f⊕cind ◦G2b)

c log c

)
. (9)

To see this, note that we can solve f⊕cind ◦ G2b by solving the c copies of f ◦ G2b and then
examining the appropriate cell of the array. This uses cRcc(f ◦G2b) bits of communication,
times O(log c) since we must amplify the randomized protocol to an error of O(1/c).
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Figure 1 Lower bounds on R(f).

Next, we apply Lemma 24 on Rcc(f⊕cind ◦G2b) to get

Rcc(f ◦G2b) = Ω
(
Rcc(f⊕cind ◦G2b)

c log c

)
= Ω

(
Rcc

0 ((f⊕cind)usab ◦G′2b)
c log c logn log logn

)
. (10)

From here we want to use the assumed lifting theorem for R0. However, there is a technicality:
the gadget G′2b is not the standard index gadget, and the function (f⊕cind)usab does not have
Boolean alphabet. To remedy this, we use two bits to represent each of the symbols {0, 1, ∗, †}.
Using this representation, we define a new function (f⊕cind)bin

usab on twice as many bits.
We now compare (f⊕cind)bin

usab ◦Gb to (f⊕cind)usab ◦G′2b. Note that the former uses two pointers
of size b to index two bits, while the latter uses one pointer of size 2b to index one symbol in
{0, 1, ∗, †} (which is equivalent to two bits). It’s not hard to see that the former function
is equivalent to the latter function restricted to a promise. This means the communication
complexity of the former is smaller, so

Rcc(f ◦G2b) = Ω
(
Rcc

0 ((f⊕cind)usab ◦G′2b)
c log c logn log logn

)
= Ω

(
Rcc

0 ((f⊕cind)bin
usab ◦Gb)

c log c logn log logn

)
. (11)

We’re ready to use the assumed lifting theorem for R0. To be more precise, let’s suppose a
lifting result that states Rcc

0 (f ◦Gb) = Ω(bR0(f)/ logk n) for some integer k. Applying this
to the above gives

Rcc(f ◦G2b) = Ω
(
Rcc

0 ((f⊕cind)bin
usab ◦Gb)

c log c logn log logn

)
= Ω

(
bR0((f⊕cind)bin

usab)
c log c logk+1 n log logn

)
. (12)

We note that

R0((f⊕cind)bin
usab) = Ω(R0((f⊕cind)usab)) = Ω(RS1(f⊕cind)). (13)

Setting c = 1.1 logR(f) + Ω(1), we have RS1(f⊕cind) = Ω(cR(f)) by Theorem 22. Thus

Rcc(f ◦G2b) = Ω
(

bcR(f)
c log c logk+1 n log logn

)
= Ω

(
bR(f)

logk+1 n log log2 n

)
. (14)

This gives the desired lifting theorem for R, with parameters at most logn log log2 n worse
than the assumed R0 lifting theorem. J

7 Comparison with other lower bound methods

In this section we compare RS(f) with other lower bound techniques for bounded-error
randomized query complexity. Figure 1 shows the two most powerful lower bound techniques
for R(f), the partition bound (prt(f)) and quantum query complexity (Q(f)), which subsume
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all other general lower bound techniques. The partition bound and quantum query complexity
are incomparable, since there are functions for which the partition bound is larger, e.g.,
the Or function, and functions for which quantum query complexity is larger [2]. Another
common lower bound measure, approximate polynomial degree (d̃eg) is smaller than both.

Randomized sabotage complexity (RS) can be much larger than the partition bound
and quantum query complexity as we show in this section. We also show that randomized
sabotage complexity is always as large as randomized certificate complexity (RC), which
itself is larger than block sensitivity, another common lower bound technique. Lastly, we
also show that R0(f) = O(RS(f)2 log RS(f)), showing that RS is a quadratically tight lower
bound, even for zero-error randomized query complexity.

7.1 Partition bound and quantum query complexity
We start by showing the superiority of randomized sabotage complexity against the two best
lower bounds for R(f). Informally, what we show is that any separation between R(f) and a
lower bound measure like Q(f), prt(f), or d̃eg(f) readily gives a similar separation between
RS(f) and the same measure.

I Theorem 26. There exist total functions f and g such that RS(f) ≥ prt(f)2−o(1) and
RS(g) = Ω̃(Q(g)2.5). There also exists a total function h with RS(h) ≥ d̃eg(h)4−o(1).

Proof. These separations were shown with R(f) in place of RS(f) in [1] and [2]. To get a
lower bound on RS, we can simply compose Ind with these functions and apply Theorem 22.
This increases RS to be the same as R (up to logarithmic factors), but it does not increase
prt, d̃eg, or Q more than logarithmically, so the desired separations follow. J

As it turns out, we didn’t even need to compose Ind with these functions. It suffices
to observe that they all use the cheat sheet construction, and that an argument similar to
the proof of Theorem 22 implies that RS(fCS) = Ω̃(R(f)) for all f (where fCS denotes the
cheat sheet version of f , as defined in [1]). In particular, cheat sheets can never be used to
separate RS from R (by more than logarithmic factors).

7.2 Randomized certificate complexity
Randomized certificate complexity, RC(f), is a lower bound for R(f) first studied in [?]. We
can show that for any partial function f , randomized sabotage complexity upper bounds
randomized certificate complexity.

I Theorem 27. Let f be a partial function. Then RS(f) ≥ RC(f)/4.

We defer the definition of RC(f) and the proof of this theorem to the full version of the
paper.

7.3 Zero-error randomized query complexity
I Theorem 28. Let f be a total function. Then R0(f) = O(RS(f)2 log RS(f)) or alternately,
RS(f) = Ω(

√
R0(f)/ logR0(f)).

Proof. Let A be the RS(f) algorithm. The idea is to run A on an input to x for long enough
that we can ensure it queries a bit in every sensitive block of x; this will mean A found a
certificate for x. That will allow us to turn the algorithm into a zero-error algorithm for f .
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Let x be any input and let b be a block of x. If we replace the bits of x specified by b
with stars, then we can find a ∗ with probability 1/2 by running A for 2 RS(f) queries by
Markov’s inequality. This means that if we run A on x for 2 RS(f) queries, it has at least
1/2 probability of querying a bit in any given block of x. Repeating this k times, we get a
2kRS(f) query algorithm that queries a bit in any given block of x with probability at least
1− 2−k.

Now, by [13], the number of sensitive blocks in x is at most RC(f)bs(f) for a total function
f . Our probability of querying a bit in all of these blocks is at least 1− 2−k RC(f)bs(f) by
the union bound. When k ≥ 1 + bs(f) log2 RC(f), this is at least 1/2. Since a bit from
every block is a certificate, by Lemma 3, we can turn this into a zero-error randomized
algorithm with expected query complexity at most 4(1 + bs(f) log2 RC(f)) RS(f), which
gives R0(f) = O(RS(f) bs(f) log RC(f)). Since bs(f) ≤ RC(f) ≤ RS(f) by Theorem 27, we
have R0(f) = O(RS(f)2 log RS(f)), or RS(f) = Ω(

√
R0(f)/ logR0(f)). J
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Abstract
We consider the question of interactive communication, in which two remote parties perform
a computation while their communication channel is (adversarially) noisy. We extend here the
discussion into a more general and stronger class of noise, namely, we allow the channel to perform
insertions and deletions of symbols. These types of errors may bring the parties “out of sync”,
so that there is no consensus regarding the current round of the protocol.

In this more general noise model, we obtain the first interactive coding scheme that has a
constant rate and tolerates noise rates of up to 1/18−ε. To this end we develop a novel primitive
we name edit distance tree code. The edit distance tree code is designed to replace the Hamming
distance constraints in Schulman’s tree codes (STOC 93), with a stronger edit distance require-
ment. However, the straightforward generalization of tree codes to edit distance does not seem
to yield a primitive that suffices for communication in the presence of synchronization problems.
Giving the “right” definition of edit distance tree codes is a main conceptual contribution of this
work.
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1 Introduction

In the setting of interactive communication two remote parties, Alice and Bob, wish to run a
distributed protocol utilizing a noisy communication channel. The study of this problem
was initiated by the seminal work of Schulman [22, 23, 24] who showed a coding scheme
for interactive protocols in which the communication complexity of the resilient protocol is
larger than the communication of the input (noiseless) protocol by only a constant factor.
Schulman’s coding schemes tolerates random noise where each bit is flipped with a small
probability, as well as some adversarial noise where the only restriction on the noise is the
amount of bits being flipped by the adversary. Subsequently, many works considered the
question of interactive communication, obtaining coding schemes reaching optimality in terms
of their computational efficiency [13, 14, 2, 4, 3, 15], communication efficiency [19, 17, 12],
and noise resilience, both in the standard setting [7, 8, 6, 15], and in various other noise
models and settings [21, 10, 11, 16, 15, 1, 5, 9].

The recent successes in developing the theory of interactive error-correcting codes brought
the study of two-way interactive coding to nearly match what we know about good codes
against adversarial noise in the one-way setting.

So far, all works focused on either substitutions (where Eve can substitute a sent symbol
with a different symbol from the alphabet) or erasures (where Eve can substitute a sent symbol
with a ⊥). In this work we extend the question of coding for interactive communication
over noisy channels to a more general type of noise. Namely, we consider channels with
insertions and deletions (indels). In the one-way setting, this corresponds to the insertion
and deletion model, where Eve is allowed to completely remove transmitted symbols, or
inject new symbols. Note that this model is stronger than the substitution model, since a
substitution can always be implemented as a deletion followed by an insertion. Even in the
one-way regime, this model is more difficult to analyze than the model with substitution
errors. As an example, Schulman and Zuckerman [25] gave a polynomial-time encodable and
decodable codes for insertion/deletion errors. Their code can tolerate around 1

100 fraction
of insertion/deletion errors. This should be contrasted with efficient codes in the standard
noise setting, e.g., [18], tolerating about 1

4 fraction of bit flips.
The major additional challenge in dealing with indels in the interactive setting compared

to the non-interactive indel model and the interactive substitutions model, is that we can no
longer assume that Alice and Bob are synchronized: at a given time they may be at different
stages of their sides of the protocol! Indeed, if Eve deletes Alice’s transmission to Bob and
additionally injects a ‘spoofed’ reply from Bob back to Alice, then while Bob has received
no message and assumes the protocol hasn’t advanced yet, Alice has received a spoofed
reply, and proceeds to the next step of her protocol. From this point and on, unless the
insertion/deletion is detected, the parties are unsynchronized, as they run different steps of
the protocol. The challenge in dealing with this model is to design a protocol that manages
to succeed even without knowing whether the two parties are synchronized.

1.1 Modeling insertions and deletions

Some care is required when dealing with insertion and deletion noise patterns, as certain
choices make the model too strong or too weak. For example, consider the case where Alice
and Bob send each other symbols in an alternating way. Then, even if a single deletion of
a symbol is allowed the noise can cause the protocol to “hang”: Bob will be waiting for a
symbol from Alice, while Alice will be waiting for Bob’s response. Clearly, such a model is
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too strong for our purpose, and we should restrict the allowed noise patterns to preserve the
protocol’s liveliness.

There are two main paradigms for distributed protocol in which parties are not fully-
synchronized. The first is a message-driven paradigm, in which each party “sleeps” until
the arrival of a new message that triggers it into performing some computation and sending
a message to the other party. The second is clock-driven, where each party holds a clock:
each clock tick, the party wakes up, checks the incoming messages queue, performs some
computation, and sends a message to the other side. The issue here is that different parties
may have mismatching or skewed clocks. Then, instead of acting in an alternating manner,
one party may wake up several times while the other party is still asleep.

We emphasize that if the parties have matching clocks, then no insertions and deletions
are possible – channel corruption in this case has either the effect of changing one symbol to
another (as in a standard noisy channel), or causing a detectible corruption, i.e., an erasure.
Both these types of noise are substantially weaker than insertions and deletions, and were
already analyzed in previous work (e.g., [24, 8, 11, 9]).

Our noise model, which we describe shortly, makes sense for both the above paradigms:
it guarantees liveliness in a message-driven setting; for the clock-driven model, we can show
that any such settings reduces to our model, that is, any resilient protocol in our model
can be used to obtain a resilient protocol in the clock-driven setting. The skewness of the
clocks in that case, is related to the noise-resilience of the protocol in our model. See the full
version for the complete details.

In this work we assume a message-driven setting, where the parties normally speak in
alternating manner. Any corruption in our model must be a deletion which is followed by an
insertion. We name each such tampering as an edit corruption.

I Definition 1 (Edit Corruption). An edit-corruption is a single deletion followed by a single
insertion (whether the inserted symbol is aimed at the same or the opposite party as the
deleted message).

This gives rise to two types of attacks Eve can perform: (i) delete a symbol and replace
it with a different symbol (insert a symbol at the same direction as the deleted symbol; a
substitution attack); (ii) delete a symbol, and insert a spoofed reply from the other side
(insert a symbol at the opposite direction of the deleted symbol). The second type of
corruption has an effect of making the parties ‘out-of-sync’: one party advances one step in
the protocol, while the other does not; see Figure 1. Note that a substitution has a cost a
single corruption, i.e., it is counted as a single deletion followed by a single insertion. Also
note that although an outside viewer can split Eve’s attack into pairs of deletion-and-insertion,
the string that a certain party receives, from that party’s own view, suffers an arbitrary
pattern of insertions/deletions.

1.2 Our Results and Techniques
Tree codes with edit distance. When only a single message is to be transmitted (i.e., in
the one-way setting), codes that withstand insertions and deletions were first considered by
Levenshtein [20]. In such codes, each two codewords must be far away in their edit distance,
a notion of distance that captures the amount of insertions/deletions it takes to convert one
codeword to another. The edit distance replaces the Hamming distance, which essentially
counts the amount of bit flips required to turn one codeword to another.

A key ingredient in interactive-communication schemes is the tree code [24], a labeled
tree such that the labels on each descending path in the tree can be seen as a codeword. The
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Figure 1 An illustration of the two insertion/deletion attacks: (i) a deletion followed by an
insertion in the same direction (a substitution); (ii) a deletion followed by an insertion to the opposite
direction (an out-of-sync attack). The deleted transmission is marked with a cross, and the inserted
transmission is marked with a bold arrow. The dashed arrow denotes a possible (non-interrupted)
reply.

tree code is parametrized by a distance parameter α, and it holds that any two codewords
whose paths diverge from the same node, are at least α-apart in their Hamming distance.
Encoding a message via a tree code allows a party to eventually obtain the message sent by
the other side, as long as not too many errors have happened. This in turn allows the parties
to correct errors that previously occurred in the simulation, and revert the simulation back
into a correct state [24, 8]. In order to keep the communication overhead a constant factor
when tree code encoding is used in interactive schemes, it is required that each label of the
tree comes from an alphabet of constant size (that is, the size of the alphabet is independent
of the tree’s depth and thus independent of the length of protocol to simulate).

It is only natural to believe that we could obtain interactive-communication schemes
that withstand insertions/deletions by replacing tree codes with a stronger notion of codes,
namely, edit distance tree codes. In edit distance tree codes, each two codewords (possibly of
different lengths) which diverge at a certain point, are required to be far apart in their edit
distance rather than their Hamming distance. Yet, since the parties are not synchronized,
new difficulties arise. To give a simple example, assume Alice sends one of the two following
encodings s1 = ABCAAABBB and s2 = ABCABCAAA, and assume Bob has receives the
string ABCBBB. If Bob knew that Alice thinks she is in round 6 of the protocol, he would
decode to s2; if he knew that Alice thinks she is in round 9, he would decode to s1. Alas, he
does not know which is the case!

To mitigate situations in which not being synchronized may hurt us, we require an
even stronger property, namely, we wish that the suffixes (of arbitrary lengths) of any two
overlapping codewords will have appropriately large edit distance (see Definitions 14 and 15
for the precise condition). This stronger property guarantees that two “branches” in the tree
are far apart in their edit distance, even when they are shifted with respect to each other
due to lack of synchronization possibly caused by previous indels. We can then show that as
long as not too many indels occurred in the suffix of the received codeword, the tree-code
succeeds to recover the entire sent message. Crucial in this approach is a notion of distance
we call suffix distance (Definition 21), that measures the amount of noise in a codewords’
suffix. This generalizes a distance measure by Franklin et al. [10, 11] (see also Braverman
and Efremenko [6]) to the case where the received word may be misaligned with respect to
the sent word, due to indels.

Alas, while (Hamming distance) tree codes over a constant alphabet were shown to exist
by Schulman [24], it is not clear if such trees exist for edit distance, and if so, for which
distance parameter α, as Schulman’s proof doesn’t carry over to the edit distance case.
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Our first result (Section 3) shows the existence of edit distance tree codes, for any distance
parameter α,

I Theorem 2 (Informal). For any α < 1 and any d, n ∈ N there exists a d-ary edit distance
tree code of depth n over a constant-size alphabet.

As in the case of standard tree codes, finding an efficient construction for such trees
remains an important open question. Building on the techniques of Gelles, Moitra and
Sahai [13, 14] we give in the full version an efficient randomized construction of a relaxed
notion for edit-distance tree codes, we call a potent edit distance tree codes. These trees
satisfy the edit-distance guarantee almost everywhere, and are good enough to replace the
tree-code notion of Theorem 2 in most applications.

I Theorem 3 (Informal). For any α < 1 and any d, n ∈ N there exists a randomized
construction of a d-ary potent edit distance tree code of length n over a constant-size alphabet.
The construction is efficient and succeeds with overwhelming probability (in n).

While in the rest of the paper (namely, for our coding scheme) we assume the edit-distance
notion of Theorem 2, all our schemes work the same when the tree is replaced with a potent
one; see the full version for further details.

Interactive-communication schemes tolerating insertions/deletions. Equipped with edit
distance tree codes, we show a protocol that solves the pointer jumping problem over a
noisy channel with insertions and deletions and exhibits linear communication complexity in
the noiseless communication. Since the pointer jumping problem is complete for two-party
interactive communication, this implies a coding scheme that can simulate any protocol
over a channel that may introduce insertion/deletions. Specifically, in Sections 4 and 5 we
show that for any ε > 0 and any noiseless protocol π and inputs x, y, there is a scheme that
correctly simulates π (that is, produces the transcript π(x, y) at both parties), withstands
1/18− ε fraction of edit-corruptions, and has a linear communication complexity with respect
to the communication of the protocol π.

I Theorem 4. For any ε > 0, and for any binary (noiseless) protocol π with communication
CC(π), there exists a noise-resilient coding scheme with communication Oε(CC(π)) that
succeeds in simulating π as long as the adversarial edit-corruption rate is at most 1/18− ε.

Our coding scheme and analysis follows ideas by Braverman and Rao [8] and by Braverman
and Efremenko [6] – first focusing on channels with polynomial-size alphabet and then
generalizing to channels with constant-size alphabet – however, the analysis in the light of
insertions and deletions is more complicated and subtle. In particular, similar to [6], our
analysis uses the notion of suffix distance for relating the effect of the noise to the progress
of the simulation.

We note again that due to out-of-sync attacks, it is possible that the parties’ belief of the
“current” round of the protocol is different. In the worst case, while Alice reaches the end of
the coding protocol (say, round N), it is possible that Bob has only reached round (1− 2ρ)N ,
e.g., due to 2ρN deletions in his received communication (ρ is the fraction of edit-corruptions
in that instance). Therefore, if we wish to tolerate a ρ-fraction of edit-corruptions, it is
imperative that the parties output the correct answer already at round (1 − 2ρ)N . Our
coding scheme (Theorem 4) satisfies even this more strict requirement.

Finally, we show that for a family of rigid protocols, in which we require both parties
to output the correct value at round (1 − 2ρ)N , then ρ = 1/6 is an upper bound on the
admissible edit-corruption rate. Details can be found in the full version.
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I Theorem 5 (Informal). If both parties are required to give output at round (1− 2ρ)N , then
no coding scheme of length N can tolerate an edit-corruption rate of ρ = 1/6.

Closing the gap between the upper bound of 1/6, and the resilience 1/18 achieved by the
scheme of Theorem 4 is left for future work.

2 Preliminaries

For any finite set S, we denote by x←
U
S the case that x is uniformly distributed over S.

All logarithms are taken to base 2. We denote the set {1, 2, . . . , n} by [n]. For a set Σ we
denote Σ≤n = ∪0≤i≤nΣi, and Σ∗ = ∪i≥0Σi. Let s ∈ Σl be a string of length |s| = l. For
1 ≤ i ≤ j ≤ l, we use s[i] to denote the i-th symbol of s and s[i..j] to denote the string
s[i] ◦ s[i+ 1] ◦ · · · ◦ s[j].

I Definition 6 (Pointer Jumping Problem). Any communication protocol of T rounds where
the parties alternately exchange bits can be reduced to the following pointer jumping
problem PJP(T ): Let T be a binary tree of depth T . Alice’s input X is a set of consistent
edges leaving vertices at even depths. Bob’s input Y is a set of consistent edges leaving
odd-level vertices. A set of edges is consistent on a specified set of vertices, if it contains
exactly one edge leaving every vertex in that specified set. Due to being consistent on all
the nodes, X ∪ Y defines a unique root-to-leaf path. The parties’ goal is to output this
unique path. Note that T alternating rounds of communication suffice to compute this path,
assuming noiseless channels.

I Definition 7 (Protocols). An interactive protocol π for a function f(x, y) is a distributed
algorithm that dictates for each party, at every round, the next message (symbol) to send
given the party’s input and the messages received so far. Each transmitted symbol is assumed
to be out of a fixed alphabet Σ. The protocol runs for N rounds (also called the length of
the protocol), after which the parties give output. An instance of the protocol, on inputs
x, y is said to be correct if both parties output f(x, y) at the end of the protocol.

In this work we focus on alternating protocols, where as long as there is no noise, the
protocol runs for 2N rounds in which Alice and Bob send symbols alternately. In the presence
of ρ-fraction of edit corruptions (i.e., at most 2ρN insertion/deletion errors), it is possible
that some party receives only N(1− 2ρ) symbols throughout the protocol. We say that the
protocol is correct in presence of ρ-fraction of edit corruption if both parties output f(x, y)
by round N(1− 2ρ) (according to their own round counting, which may differ from the count
of the other party).

I Definition 8 (String Matching). We say that τ = (τ1, τ2) is a string matching between a sent
message sm and a received message rm (denoted τ : sm→ rm), if |τ1| = |τ2|, del(τ1) = sm,
del(τ2) = rm, and τ1[i] ≈ τ2[i] for all i = 1, . . . , |τ1|. Here del is a function that deletes all
the ∗’s in the string and two characters a and b satisfy a ≈ b if a = b or one of a and b is ∗.
We assume that ∗ is a special symbol that does not appear in sm and rm.

I Definition 9 (Edit Distance). The edit distance of between sm ∈ Σ∗ and rm ∈ Σ∗ is
defined as ED(sm, rm) = minτ :sm→rm sc(τ1) + sc(τ2). Here sc(τ1) is the number of ∗’s in τ1.

I Fact 10 (Triangle Inequality). For any three strings x, y, z, ED(x, y) ≤ ED(x, z)+ED(y, z).

I Fact 11. For any two strings x, y, ED(x, y) = |x|+ |y| − 2 · LCS(x, y). Here LCS(x, y)
is the longest common substring of x and y.
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Figure 2 An illustration of lambda structure.

I Lemma 12. Let x ∈ Σm be some given string, m ≥ n and |Σ| ≥ 4. For any constant
α ∈ [0, 1], Pry←

U
Σn [ED(x, y) ≤ α ·m] ≤ |Σ|−

(1−α)m
2 .

The proof of the above Lemma, along with other missing proofs, are deferred to the full
version of this work.

3 Edit-distance tree code

In this section we recall the notion of tree-codes [24] and provide a novel primitive, namely,
the edit-distance tree-code.

I Definition 13 (Prefix Code). A prefix code C : Σn
in → Σn

out is a code such that C(x)[i]
only depends on x[1..i]. C can be also considered as a |Σin|-ary tree of depth n with symbols
written on edges of the tree using an alphabet size |Σout |. On this tree, each tree path from
the root of length l corresponds to a string x ∈ Σlin and the symbol written on the deepest
edge of this path corresponds to C(x)[l].

I Definition 14 (α-bad Lambda). We say that a prefix code C contains an α-bad lambda
if when you consider this prefix code as a tree, there exist four tree nodes A,B,D,E such
that B 6= D, B 6= E, B is D and E’s common ancestor, A is B’s ancestor or B itself, and
ED(AD,BE) ≤ α ·max(|AD|, |BE|). Here AD and BE are strings of symbols along the
tree path from A to D and the tree path from B to E. See Figure 2.

I Definition 15 (Edit-distance Tree Code). We say that a prefix code C: Σn
in → Σn

out is a
α-edit-distance tree code if C does not contain an α-bad lambda.

Our main theorem in this section is the existence of edit-distance tree codes,

I Theorem 16. For any d ≥ 2, n > 0 and 0 < α < 1, there exists an α-edit-distance tree
code of depth n with alphabet size |Σin| = d and |Σout | = (176 · d)4/(1−α).

Proof. We prove this theorem by induction on n. To this end we define a slightly stronger
notion than α-bad lambda free, which we call “excellent". Intuitively, if a tree-code C is
excellent, then with a good probability, C will not cause a bad lambda in a tree-code that
contains C as a subtree. This would allow us to construct lambda-free trees of length n

building on lambda-free trees with a smaller depth as subtrees.

I Definition 17 (Potential Probability). For any prefix code C : Σnin → Σnout , and any i ≥ 0,
consider C as a tree and define a new (non-regular) tree C ′ by connecting a simple path of
length i to the root of C, making the other end of this path the root of C ′. Label each edge
along the new path with a symbol from Σout chosen uniformly and independently.

The potential probability Pi(C) is defined as the probability that the new tree C ′ has a
α-bad lambda with A = the root of C ′ and B = the root of C.
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I Definition 18 (Excellent). For a constant c1 > 1, which we will fix shortly, we say that a
prefix code C is excellent if ∀i ≥ 0, Pi(C) · (d · c1)i < 1 and C is α-bad-lambda-free.

In the proof, we are going to construct a set called Sn which would contain only excellent
d-ary prefix codes of depth n with alphabet size dOα(1). Since excellent is a stronger notion
than α-bad lambda-free, if we can construct Sn and show that for any n > 0 it is non-empty,
then we are done. In each Sn, all codes use the same Σin and Σout . We have |Σin| = d and
|Σout | = s where the conditions we put on s thorough the following proof are given by:

s = max
{

αd

(1− α) · (d · c1)
α

1−α + 1, d2, (4d
c2

)
4

1−α , (c1 · d · 4)
4

1−α

}
.

Here c1 = 44, and c2 = 1
11 . Therefore, taking s ≥ (176d)4/(1−α) satisfies all the above

conditions.

Let us now inductively construct Sn. For notation convenience, let S0 = {a single node}.
For n > 0, let

S̃n =

T =

T1 T2 Td

· · ·

σ1
σ2

σd
∣∣∣∣∣∣∣∣∣∣
T1, T2, ..., Td ∈ Sn−1 and
σ1, σ2, ..., σd ∈ Σout

 .

and define Sn = {C ∈ S̃n| C is excellet}. From this definition, we directly have that every
C ∈ Sn is excellent, and we are only left to show that Sn is non-empty. Actually, we are
going to prove the following claim by induction.

I Claim 19. For all n, |Sn||S̃n|
≥ c2 = 1

11 .

Base case (n = 1): Consider the following set.

S′1 = {C | C is a d-ary prefix code of depth 1 and d different codewords}

We want to show that S′1 ⊆ S1. For any C ∈ S′1, it is clear that C does not have any
α-bad lambda. Because in this depth 1 tree, one can only pick A = B to be the root,
and D,E to be some different leaves. Then ED(AD,BE) = 2 and |AD| = |BE| = 1. So
ED(AD,BE) > α ·max(|AD|, |BE|). Now let’s consider the potential probability Pi(C).
Suppose there exists an α-bad lambda in the tree after adding a path of length i. Then in
this α-bad lambda, B is the original root, AB is the path added to the root and D and E
are two different leaves of the tree. There are two cases to consider:
1. i = |AB| > α/(1−α): In this case, since |BE| = 1, (|AD|−|BE|)/|AD| = 1− 1

1+|AB| > α.
So it is not possible that ED(AD,BE) < α · |AD|. Thus Pi(C) = 0.

2. i = |AB| ≤ α/(1− α): In this case, let W be the event that one of the labels along the
path AB equals to one of the d codewords of C. Clearly, when W does not happen,
ED(AD,BE) = |AD| + |BE| > α · |AD|. It is also immediate that Pr[W ] ≤ i · ds .
We require s > αd

(1−α) · (d · c1)
α

1−α , and get that Pi(C) · (d · c1)i ≤ Pr[W ] · (d · c1)i ≤
αd

(1−α)s · (d · c1)
α

1−α < 1.
Therefore, we have proved that all the prefix codes in S′1 are excellent and therefore in S1.
Then because s ≥ d2, we get |S1|

|S̃1|
≥ |S

′
1|
|S̃1|

= s(s−1)×···×(s−d+1)
sd

≥ (1− 1/d)d > 1/11 = c2.
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Inductive step: Suppose we already know that for 1 ≤ i < n, |Si||S̃i| ≥ c2, and let us prove

that |Sn||S̃n|
≥ c2. We will use the following lemma, whose proof is quite straightforward.

I Lemma 20. If for all 1 ≤ i < n, |Si||S̃i| ≥ c2. Then for any x ∈ Σj
out where 0 < j ≤ n and

y ∈ Σnin, it holds that PrC←
U
S̃n

[C(y)[1..j] = x] ≤ c1−j2 s−j .

In order to show that |Sn||S̃n|
≥ c2, we can choose C randomly from S̃n, and show that

Pr[C is excellent] ≥ c2. To this end, consider the conditions of being excellent in turn:
1. Let’s first consider Pr[Pi(C) · (d · c1)i ≥ 1]. By Lemma 20 and Lemma 12, we get

EC←
U
S̃n

[Pi(C)]

≤
∑

1≤n1,n2≤n

∑
x∈Σn1

in ,y∈Σn2
in ,

x[1] 6=y[1]

Pr
z←
U

Σiout

C←
U
S̃n

[ED(z ◦ C(x), C(y)) ≤ α ·max(i+ n1, n2)]

≤
∑

1≤n1,n2≤n

dn1+n2 · c2−n1−n2
2 Pr

x←
U

Σn1
out , y←

U
Σn2

out , z←
U

Σiout

[ED(z ◦ x, y) ≤ α ·max(i+ n1, n2)]

≤
∑

1≤n1,n2≤n

(
d

c2

)n1+n2

s−
1−α

2 ·
n1+n2+i

2 ≤
∑

1≤n1,n2≤n

(
d

c2
· s−

1−α
4

)n1+n2

s−
(1−α)i

4

≤
∑

1≤n1,n2≤n

(
1
4

)n1+n2

(c1 · d · 4)−i ≤
∞∑
j=2

j

4j · (c1 · d · 4)−i = 7
36(c1 · d · 4)−i

By Markov’s inequality, Pr[Pi(C) · (d · c1)i ≥ 1] ≤ 7
36 ·

1
4i . Then

∑∞
i=0 Pr[Pi(C) · (d ·c1)i ≥

1] ≤ 7
36
∑∞
i=0

1
4i = 7

27 <
5
11 = 1−c2

2 .

2. Now let’s consider the event that C has an α-bad lambda with A = B = root. It is easy
to see that this event is equivalent to P0(C) ≥ 1. Therefore it is covered by the previous
case.

3. Now let’s consider the event that C has an α-bad lambda with A = root and B 6= root.
By Lemma 20 and Definition 18, we have

Pr[C has an α-bad lambda with A = root, B 6= root]

≤
∑
n1≤n

dn1 · c1−n1
2 · (d · c1)−n1 ≤

∞∑
n1=1

( 1
c1c2

)n1 =
∞∑

n1=1
(1
4)n1 = 1

3 <
5
11 = 1− c2

2 .

4. Finally let’s consider the case that C has an α-bad lambda with A 6= root. It is easy to
see that this event never happens because C’s subtrees rooted at depth 1 in C are all
excellent.

Therefore by union bound, Pr[C is excellent] is at least

≥1−
∞∑
i=0

Pr[Pi(C) · (d · c1)i ≥ 1]− Pr[C has an α-bad lambda with A = root, B 6= root]

≥1− 1− c2
2 − 1− c2

2 = c2. J

3.1 Decoding of edit-distance tree codes
The decoding of a codeword rm ∈ Σj

out via an edit-distance tree-code C amounts to
finding a message whose encoding minimizes the suffix distance to rm, i.e., DEC(rm) =
argmin

m∈Σ≤nin
SD(rm,C(m)), where the suffix distance SD(·, ·) is defined as follows.
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I Definition 21 (Suffix Distance). Given any two strings sm, rm ∈ Σ∗, the suffix distance
between sm and rm is SD(sm, rm) = minτ :sm→rm max|τ1|

i=1
sc(τ1[i..|τ1|])+sc(τ2[i..|τ2|])
|τ1|−i+1−sc(τ1[i..|τ1|]) .

The following lemma, which plays an important role in the analysis of the simulation
protocols that we present in the next sections, shows that if a message sm is encoded by
some α-edit-distance tree code and the received message rm satisfies SD(sm, rm) ≤ α

2 , then
the receiver can recover the entire sent message correctly.

I Lemma 22. Let C: Σn
in → Σn

out be an α-edit-distance tree code, and let rm ∈ Σm
out

(m can be different from n). There exists at most one sm ∈ ∪ni=1C(Σn
in)[1..i] such that

SD(sm, rm) ≤ α
2 .

4 A coding scheme with a polynomial alphabet size

In this section, we show a protocol π that solves PJP(T ) in O(T ) rounds over channels with
alphabet size poly(T ), and is resilient to (a constant fraction of) insertion/deletion errors.
Since the PJP(T ) is complete for interactive communication, this implies that any binary
protocol with T rounds can be simulated in O(T ) rounds over a channel with polynomially-
large alphabet that corrupts at most a fraction 1/18 − ε of the transmissions. While this
protocol does not exhibit a constant rate, it contains all the main ideas for the constant-rate
protocol of Theorem 4, and thus we focus on this simple variant first. Then, in Section 5 we
discuss how to reduce the alphabet size and achieve a protocol with O(T ) communication
complexity with the same resilience guarantees.

Assume π has 2N alternating rounds, that is, Alice and Bob send N symbols each, assum-
ing there are no errors. We would like the protocol to resist a fraction of ρ edit-corruptions,
that is, the protocol should succeed as long as there are at most 2ρN insertion/deletion
errors. Due our assumption that the adversary never causes the protocol to “get stuck”, this
amounts to at most 2ρN deletions, where each deletion is followed by an insertion.

We assume that Alice and Bob share some fixed α-edit-distance tree code C : ΣNin → ΣNout
given by Theorem 16. We will set the values of N , α, and Σin later. Currently we only need
to know N = poly(T ).

Let us begin with a high-level outline of the protocol π. The protocol basically progresses
by sending edges in the tree T of the underlying PJP(T ), interactively constructing the
joint path (similar to [8]). To communicate an edge e, the parties encode it as a pair of
numbers (n, s), where 0 ≤ n ≤ N and s ∈ {1, 2, 3, 4}. The value n indicates the number of
some previous round in which some edge e′ was sent, and the value s determines e as the
s-grandchild of e′. That is, we always send an edge e by linking it to an edge e′ that was
previously sent, such that e′ is located two levels above in unique path leading from the root
to e. If e does not have a grandparent (e.g., it is the at the first or second level in T ), we
will set n = 0. Sometimes the parties have no edge to send, in which case they set n = N

and say that e is an empty edge. We take Σin to be all the possible encodings (n, s). As
0 ≤ n ≤ N and 1 ≤ s ≤ 4, we have |Σin| = poly(N) = poly(T ). As |Σout | is polynomial in
|Σin| (Theorem 16), we also have |Σout | = poly(N) = poly(T ).

The protocol π is described in Protocol 1. The description is for Alice side; Bob’s part is
symmetric. Here we explain more than the pseudocode on how to get E(dA). Basically dA is
a string of symbols in Σin and those symbols are in the form (n, s). E(dA) will be the set of
edges these symbols in dA represent. To get the edge each symbol (n, s) represents, we will
first find the edge sent in n-th round and get its proper grandchild according to s. If n is not
in the correct range then we consider dA as not valid.
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Protocol 1 The protocol π
Let T be given by PJP(T ). Recall that Alice’s input is X. Assume the parties share some fixed
α-edit-distance tree code C : ΣN

in → ΣN
out .

Initially we set the counter i = 0. For any leaf node v in T we initialize a counter s(v) = 0. Run the
following for N times.
1. i← i+ 1.
2. Receive a symbol rA[i] from the other party. (For Alice, if i = 1, skip this step)
3. Find dA ∈ Σ∗in which minimizes SD(dA, rA[1 . . . i]).
4. If E(dA) ∪X has a unique path from the root in T , do the following. Here E(dA) is the set of

edges indicated by dA, if dA is not a valid string of symbols, E(dA) = ∅.
a. If this path reaches a leaf node v, then s(v)← s(v) + 1.
b. Let e be the deepest edge on the the unique path from root. If e ∈ X , and e is either an edge

in the first or second level of T or e’s grandparent has been sent, set sA[i] to be encoding
of e, otherwise set sA[i] to be encoding of an empty edge.

5. If E(dA) ∪X does not have a unique path from the root in T , set sA[i] to be encoding of an
empty edge.

6. If i = N(1− 2ρ), output the leaf node v with the largest s(v).
7. Send C(sA[1 . . . i])[i] to Bob.

We now analyze Protocol 1 and prove it resists up to (1/18−ε)-fraction of edit corruptions.
Let NA and NB be the counter i of Alice and Bob respectively, when one of them reaches
the end of the protocol π. Let τA = (τ1, τ2) be the string matching between sB [1..NB ] and
rA[1..NA] that is consistent with the protocol. Let τB = (τ3, τ4) be the string matching
between sA[1..NA] and rB[1..NB]. Recall that we use sc(τ) to denote the number of ∗’s in
the string. By definition, sc(τ1) + sc(τ3) ≤ 2ρN and sc(τ2) + sc(τ4) ≤ 2ρN .

In the analysis we count the number of rounds in which Alice correctly decodes the entire
(current) set of edges sent by Bob. We call each such round a good decoding.

I Definition 23 (Good Decoding). When a party decodes a message, we say it is a good
decoding if the decoded messages is exactly the one sent by the other side (i.e., dA = sB [1..i]
or dB = sA[1..i], assuming the other side is at round i), and the symbol just received is not
an adversarial insertion. If a decoding is not good, we call it a bad decoding.

In the following lemma show that as long as noise is small enough, there will be many rounds
with good decodings. The proof can be found in the full version.

I Lemma 24. Alice has at least NA + (1 − 2
α )sc(τ2) − (1 + 2

α )sc(τ1) good decodings. Bob
has at least NB + (1− 2

α )sc(τ4)− (1 + 2
α )sc(τ3) good decodings.

After we have established that Alice and Bob will have many good decodings, we show that
this implies they will have good progress in constructing their joint path in the underlying
PJP(T ). Consider the NA +NB decodings that happen during the protocol, and sort them
in a natural order; we say that these decodings occur at “times” t = 1, 2, . . . , NA +NB . Note
that the decodings need not be alternating – Eve’s insertions and deletions may cause one
party to perform several consecutive decodings while the other party does not receive any
symbol, and performs no decoding. We also assume that for each decoding, the sending of
the next symbol happens at the same “time” as the decoding. Let eA(t) be the set of edges
Alice has sent at time t and eB(t) be the set of edges Bob has sent at time t. Let P be the
correct path of length T of PJP(T ). Define l(t) to be the length of the longest path from
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the root using edges in P ∩ (eA(t) ∪ eB(t)). Basically l(t) measures how much progress Alice
and Bob have made. Let us also define m(i) to be the first time t such that l(t) ≥ i. For
notation convenience, let m(0) = 0.

The following lemma shows that if the parties do not make progress, many bad decodings
(and thus, many errors) must have occurred. The proof can be found in the full version.

I Lemma 25. For i = 0, . . . , T − 1, if m(i + 1) 6= m(i) + 1, then during times m(i) +
1, . . . ,m(i+ 1)− 1, the following is true.
1. If i is odd, then there are no good decodings of Bob. The number of good decodings of

Alice is at most the number of bad decodings of Bob.
2. If i is even, then there are no good decodings of Alice. The number of good decodings of

Bob is at most the number of bad decodings of Alice.

Combining the above lemmas, we get the main theorem for protocols with polynomial
size alphabet.

I Theorem 26. For any ε > 0, the protocol π of Protocol 1 with N = d T16εe, and a (1−ε)-edit
tree code, solves PJP(T ) and is resilient to a (1/18− ε)-fraction of edit corruptions.

Proof. Set ρ = 1
18 − ε and α = 1 − ε. Let gA be the number of good decodings of Alice,

bA = NA−gA be the number of bad decodings of Alice. Similarly, let gB be the number of good
decodings of Bob, and let bB = NB − gb. Recall that sc(τ1) + sc(τ3) = sc(τ2) + sc(τ4) ≤ 2ρN ,
then by Lemma 24, we have

bA + bB ≤
2
α

(sc(τ1) + sc(τ2)) + sc(τ1)− sc(τ2) + 2
α

(sc(τ3) + sc(τ4)) + sc(τ3)− sc(τ4),

thus bA + bB ≤ 8ρN/α. Then we have,

gA = NA − bA ≥ NA −
8ρN
α
≥ (NA −N(1− 2ρ)) +N(1− 2ρ)− 8ρN

α

≥ bA + bB −
8ρN
α
− (NA −N(1− 2ρ)) +N(1− 2ρ) + 8ρN

α

> bA + bB + (NA −N(1− 2ρ)) +N(1− (1− 18ε)(1 + 2ε))
≥ bA + bB + (NA −N(1− 2ρ)) + 16εN ≥ bA + bB + (NA −N(1− 2ρ)) + T.

Similarly we have gB > bA + bB + (NB −N(1− 2ρ)) + T .
Using Lemma 25 we deduce that by time m(T ) the number of good decodings Alice may

have is bounded by T + bB. From this point and on, every good decoding at Alice’s side
adds one vote for the correct leaf, making at least gA − (T + bB) > bA + (NA −N(1− 2ρ))
votes for that node by the end of the protocol, and at least bA + 1 votes until Alice reaches
round N(1− 2ρ) when she gives her output. On the other hand, any wrong output can get
at most bA votes, thus Alice outputs the correct leaf node at round N(1− 2ρ). By a similar
reasoning, Bob also outputs the correct leaf node when he reaches round N(1− 2ρ). J

5 A coding scheme with a constant alphabet size

Based on the protocol in Section 4, with some modifications, we obtain a protocol that has
a constant size alphabet and a constant rate. To this end, we show how to encode each
edge using varying-length encoding over a constant size alphabet. Although substantially
more technically involved, this protocol is quite a straightforward extension of the protocol
presented above. We thus defer the detailed analysis of this protocol to the full version.



M. Braverman, R. Gelles, J. Mao, and R. Ostrovsky 61:13

I Theorem 27. For any ε > 0, there exists a simulation protocol π′ with N = d Tε2 e, and a
(1− ε)-edit distance tree code, solves PJP(T ) and is resilient to a (1/18− ε)-fraction of edit
corruptions.

Since PJP(T ) is complete for interactive communication, the above theorem proves The-
orem 4.
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Abstract
The Moran process, as studied by Lieberman, Hauert and Nowak, is a randomised algorithm
modelling the spread of genetic mutations in populations. The algorithm runs on an underlying
graph where individuals correspond to vertices. Initially, one vertex (chosen uniformly at random)
possesses a mutation, with fitness r > 1. All other individuals have fitness 1. During each step
of the algorithm, an individual is chosen with probability proportional to its fitness, and its state
(mutant or non-mutant) is passed on to an out-neighbour which is chosen uniformly at random.
If the underlying graph is strongly connected then the algorithm will eventually reach fixation, in
which all individuals are mutants, or extinction, in which no individuals are mutants. An infinite
family of directed graphs is said to be strongly amplifying if, for every r > 1, the extinction prob-
ability tends to 0 as the number of vertices increases. Strong amplification is a rather surprising
property – it means that in such graphs, the fixation probability of a uniformly-placed initial
mutant tends to 1 even though the initial mutant only has a fixed selective advantage of r > 1
(independently of n). The name “strongly amplifying” comes from the fact that this selective
advantage is “amplified”. Strong amplifiers have received quite a bit of attention, and Lieberman
et al. proposed two potentially strongly-amplifying families – superstars and metafunnels. Heur-
istic arguments have been published, arguing that there are infinite families of superstars that are
strongly amplifying. The same has been claimed for metafunnels. We give the first rigorous proof
that there is an infinite family of directed graphs that is strongly amplifying. We call the graphs
in the family “megastars”. When the algorithm is run on an n-vertex graph in this family, starting
with a uniformly-chosen mutant, the extinction probability is roughly n−1/2 (up to logarithmic
factors). We prove that all infinite families of superstars and metafunnels have larger extinction
probabilities (as a function of n). Finally, we prove that our analysis of megastars is fairly tight –
there is no infinite family of megastars such that the Moran algorithm gives a smaller extinction
probability (up to logarithmic factors). Also, we provide a counter-example which clarifies the
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1 Introduction

This paper is about a randomised algorithm called the Moran process. This algorithm
was introduced in biology [20, 16] to model the spread of genetic mutations in populations.
Similar algorithms have been used to model the spread of epidemic diseases, the behaviour
of voters, the spread of ideas in social networks, strategic interaction in evolutionary game
theory, the emergence of monopolies, and cascading failures in power grids and transport
networks [2, 3, 12, 15, 17].

There has been past work about analysing the expected convergence time of the al-
gorithm [7, 8]. In fact, the fast-convergence result of [7] implies that when the algorithm
is run on an undirected graph, and the “fitness” of the initial mutation is some constant
r > 1, there is an FPRAS for the “fixation probability”, which is the probability that a
randomly-introduced initial mutation spreads throughout the whole graph.

This paper answers an even more basic question, originally raised in [16], about the
long-term behaviour of the algorithm when it is run on directed graphs. In particular, the
question is whether there even exists an infinite family of (directed) graphs such that, when
the algorithm is run on an n-vertex graph in this family, the fixation probability is 1− o(1),
as a function of n. A heuristic argument that this is the case was given in [16], but a
counter-example to the argument (and to the hypothesized bound on the fixation probability)
was given in [6]. A further heuristic argument (with a revised bound) was given in [14]. Here
we give the first rigorous proof that there is indeed a family of “amplifiers” with fixation
probability 1− o(1). Before describing this, and the other results of this paper, we describe
the model.

The Moran algorithm has a parameter r which is the fitness of “mutants”. All non-mutants
have fitness 1. The algorithm runs on a directed graph. In the initial state, one vertex is
chosen uniformly at random to become a mutant. After this, the algorithm runs in discrete
steps as follows. At each step, a vertex is selected at random, with probability proportional to
its fitness. Suppose that this is vertex v. Next, an out-neighbour w of v is selected uniformly
at random. Finally, the state of vertex v (mutant or non-mutant) is copied to vertex w.

If the graph is finite and strongly connected then with probability 1, the process will
either reach the state where there are only mutants (known as fixation) or it will reach
the state where there are only non-mutants (extinction). In this paper, we are interested
in the probability that fixation is reached, as a function of the mutant fitness r, given the
topology of the underlying graph. If r < 1 then the single initial mutant has lower fitness
than the non-mutants that occupy every other vertex in the initial configuration, so the
mutation is overwhelmingly likely to go extinct. If r = 1, an easy symmetry argument
shows that the fixation probability is 1

n in any strongly connected graph on n vertices [7,
Lemma 1].1 Because of this, we restrict attention to the case r > 1. Perhaps surprisingly, a
single advantageous mutant can have a very high probability of reaching fixation, despite
being heavily outnumbered in the initial configuration.

A directed graph is said to be regular if there is some positive integer d so that the
in-degree and out-degree of every vertex is d. In a strongly connected regular graph on
n vertices, the fixation probability of a mutant with fitness r > 1 when the Moran algorithm
is run is given by

ρreg(r, n) = (1− 1
r )/(1− 1

rn ), (1)

1 The result is stated in [7] for undirected graphs but the proof goes through unaltered for strongly
connected directed graphs.
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so the extinction probability of such a mutant is given by

ζreg(r, n) = ( 1
r −

1
rn )/(1− 1

rn ). (2)

Thus, in the limit, as n tends to ∞, the extinction probability tends to 1/r. To see why (1)
and (2) hold, note that, for every configuration of mutants, the number of edges from mutants
to non-mutants is the same as the number of edges from non-mutants to mutants. Suppose
that the sum of the individuals’ fitnesses is W and consider an edge (u, v). If u is a mutant
in the current state, it is selected to reproduce with probability r/W , and, if this happens,
the offspring is placed at v with probability 1/d. Similarly, if u is not a mutant, reproduction
happens along (u, v) with probability 1/(dW ). So, in any state, the number of mutants is
r times as likely to increase at the next step of the process as it is to decrease. If we observe
the number of mutants every time it changes, the resulting stochastic process is a random
walk on the integers, that starts at 1, absorbs at 0 and n, increases with probability r

r+1
and decreases with probability 1

r+1 . It is well known that this walk absorbs at n with
probability (1) and at 0 with probability (2). In particular, the undirected n-vertex complete
graph is regular. Thus, by (2), its extinction probability tends to 1/r.

When the Moran process is run on non-regular graphs the extinction probability may
be quite a bit lower than 1/r. Consider the undirected (n+ 1)-vertex “star” graph, which
consists of single centre vertex that is connected by edges to each of n leaves. In the limit as
n→∞, the n-leaf star has extinction probability 1

r2 [16, 5]. Informally, the reason that the
extinction probability is so small is that the initial mutant is likely to be placed in a leaf,
and, at each step, a mutation at a leaf is relatively unlikely to be overwritten.

Lieberman et al. [16] refer to graphs which have smaller extinction probability than (2)
(and therefore have larger fixation probability than (1)) as amplifiers. The terminology comes
from the fact that the selective advantage of the mutant is being “amplified” in such graphs.

The purpose of this paper is to explore the long-term behaviour of the Moran process
by quantifying how good amplifiers can be. For this, it helps to have some more formal
definitions.

I Definition 1. Consider a function ζ(r, n) : R>1 × Z≥1 → R≥0. An infinite family Υ of
directed graphs is said to be up-to-ζ fixating if, for every r > 1, there is an n0 (depending
on r) so that, for every graph G ∈ Υ with n ≥ n0 vertices, the following is true: When the
Moran process is run on G, starting from a uniformly-random initial mutant, the extinction
probability is at most ζ(r, n).

Equation (2) demonstrates that the infinite family of strongly-connected regular graphs
is up-to-ζreg fixating and since ζreg ≤ 1/r, this family is also up-to-1/r fixating. Informally,
an infinite family of graphs is said to be amplifying if it is up-to-ζ fixating for a function
ζ(r, n) which is “smaller” than ζreg(r, n). Here is the formal definition.

I Definition 2. An infinite family of directed graphs is amplifying if it is up-to-ζ fixating
for a function ζ(r, n) which, for every r > 1, satisfies limn→∞ ζ(r, n) < 1/r.

The infinite family of graphs containing all undirected stars (which can be viewed as
directed graphs with edges in both directions) is up-to-ζ(r, n) fixating for a function ζ(r, n)
satisfying limn→∞ ζ(r, n) = 1/r2, so this family of graphs is amplifying.

Lieberman et al. [16] were interested in infinite families of digraphs for which the extinction
probability tends to 0, prompting the following definition.

I Definition 3. An infinite family of directed graphs is strongly amplifying if it is up-to-ζ
fixating for a function ζ(r, n) which, for every r > 1, satisfies limn→∞ ζ(r, n) = 0.
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v∗

v∗

V3,2

V2,2

V1,2

V3,1

V2,1

V1,1

V3,3

V2,3

V1,3

V3,4

V2,4

V1,4

Figure 1 The metafunnel G3,4,2. All edges are directed downwards in the diagram and the
centre vertex v∗ is shown twice, once at the top and once at the bottom of the diagram. There
are ` = 4 copies of the basic unit, each of which consists of k = 3 levels V1,j , V2,j and V3,j , with
|Vi,j | = mi = 2i.

Note that the infinite family of undirected stars is not strongly amplifying since the
extinction probability of stars tends to 1/r2 rather than to 0.

Prior to this paper, there was no (rigorous) proof that a strongly amplifying family
of digraphs exists (though there were heuristic arguments, as we explain later). Proving
rigorously that there is an infinite family of directed graphs that is strongly amplifying for
the Moran algorithm is one of our main contributions.

Lieberman et al. [16] produced good intuition about strong amplification and defined
two infinite families of graphs – superstars and metafunnels – from which it turns out that
strongly amplifying families can be constructed. It is extremely difficult to analyse the Moran
process on these families, due mostly to the complexity of the graphs, and the difficulty of
dealing with issues of dependence and concentration. Thus, all previous arguments have
been heuristic. For completeness, we discuss these heuristic arguments in Section 6.

In this paper, we define a new family of digraphs called megastars. The definition of
megastars is heavily influenced by the superstars of Lieberman et al. Our main theorem is
the following.

I Theorem 4. There exists an infinite family of megastars that is strongly amplifying.

Megastars are not easier to analyse than superstars or metafunnels. The reason for our
focus on this class of graphs is that it turns out to be provably better amplifying than any of
the previously-proposed families. We will present several theorems along these lines. Before
doing so, we define the classes of graphs.

2 Metafunnels, superstars and megastars

2.1 Metafunnels

We start by defining the metafunnels of [16]. Let k, ` and m be positive integers. The
(k, `,m)-metafunnel is the directed graph Gk,`,m defined as follows. (See Figure 1.)

The vertex set V (Gk,`,m) is the union of k+ 1 disjoint sets V0, . . . , Vk. The set V0 contains
the single vertex v∗ which is called the centre vertex. For i ∈ [k], Vi is the union of ` disjoint
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v∗

v∗

R2
v2,1

v2,2

v2,3

v2,4

R1
v1,1

v1,2

v1,3

v1,4

R3
v3,1

v3,2

v3,3

v3,4

Figure 2 The superstar S4,3,5, with ` = 3 reservoirs R1, R2 and R3, each of size m = 5, connected
by a path with k = 4 vertices to v∗. The centre vertex v∗ is shown twice, at both the top and
bottom of the diagram.

sets Vi,1, . . . , Vi,`, each of which has size mi. The edge set of Gk,`,m is

(V0 × Vk) ∪ (V1 × V0) ∪
⋃

i∈[k−1]

⋃
j∈[`]

(Vi+1,j × Vi,j) .

Lieberman et al. refer to metafunnels with ` = 1 as “funnels”.

2.2 Superstars
We next define the superstars of [16]. Let k, ` and m be positive integers. The (k, `,m)-
superstar is the directed graph Sk,`,m defined as follows. (See Figure 2.) The vertex set
V (Sk,`,m) of Sk,`,m is the disjoint union of ` size-m sets R1, . . . , R` (called reservoirs) together
with k` vertices v1,1, v1,2, . . . , v`,k and a single centre vertex v∗. The edge set of Sk,`,m is
given by

E(Sk,`,m) =
⋃̀
i=1

(
({v∗}×Ri)∪ (Ri×{vi,1})∪{(vi,j , vi,j+1) | j ∈ [k− 1]}∪ {(vi,k, v∗)}}

)
.

2.3 Megastars
Finally, we define the new class of megastars, which turn out to be provably-better amplifiers
than either metafunnels or superstars. The intuition behind the design of this class of graphs
is that the path vi,1vi,2 . . . vi,k linking the i’th reservoir Ri of a superstar to the centre
vertex v∗ is good for amplifying but that a clique is even better.

Let k, ` and m be positive integers. The (k, `,m)-megastar is the directed graphMk,`,m

defined as follows. (See Figure 3.) The vertex set V (Mk,`,m) ofMk,`,m is the disjoint union
of ` sets R1, . . . , R` of size m, called reservoirs, ` sets K1, . . . ,K` of size k, called cliques, `
“feeder vertices” a1, . . . , a` and a single centre vertex v∗. The edge set ofMk,`,m consists of
the following edges:

an edge from v∗ to every vertex in R1 ∪ · · · ∪R`,
for each i ∈ [`], an edge from each vertex in Ri to ai,

ICALP 2016
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v∗

v∗

a1

R1

K1

a2

R2

K2

Figure 3 The megastar M3,2,4, with ` = 2 reservoirs R1 and R2, each of size m = 4. Each
reservoir Ri is attached, via the feeder vertex ai to a clique of size k = 3. The centre vertex v∗ is
shown twice, once at the top and once at the bottom of the diagram. The edges within the cliques
K1 and K2 are bidirectional.

for each i ∈ [`], an edge from ai to each vertex in Ki,
for each i ∈ [`], edges in both directions between every pair of distinct vertices in Ki,
an edge from every vertex in K1 ∪ · · · ∪K` to v∗.

3 Our results

Our main result is that there is an infinite family of megastars that is strongly amplifying, so
we start by defining this family. Although megastars are parameterised by three parameters,
k, ` and m, the megastars in the family that we consider have a single parameter `, so we
define k and m to be functions of `.

I Definition 5. Let m(`) = ` and k(`) = d(log `)23e. Let ΥM = {Mk(`),`,m(`) | ` ∈ Z, ` ≥ 2}.

Our main result can then be stated as follows.

I Theorem 6. Let ζM(r, n) = (logn)23n−1/2. The family ΥM is up-to-ζM fixating.

I Corollary 7. The family ΥM is strongly amplifying.

The proof of Theorem 6 requires a complicated analysis, accounting for dependencies and
concentration. The theorem, as stated here, follows directly from Theorem 75 of the full
version.

The reason that we studied megastars rather than the previously-introduced superstars
and metafunnels is that megastars turn out to be provably better amplifying than any of the
previously-proposed families. To demonstrate this, we prove the following theorem about
superstars.

I Theorem 8. Suppose that ζ(r, n) is any function such that, for any r > 1, we have
limn→∞ ζ(r, n)(n logn)1/3 = 0. Then there is no infinite family of superstars that is up-to-ζ
fixating.

The function ζM(r, n) from Theorem 6 certainly satisfies limn→∞ ζM(r, n)(n logn)1/3 = 0,
so Theorem 8 shows that there is no infinite family of superstars that is up-to-ζM fixating.
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More mundanely, it shows, for example, that if ζ(r, n) = n−1/3(logn)−1, then no infinite
family of superstars is up-to-ζ fixating. Theorem 8 is a direct consequence of Theorem 29 of
the full version.

Taken together, Theorems 6 and 8 show that superstars are worse amplifiers than
megastars. We next show that metafunnels are substantially worse. We start with the
following simple-to-state theorem.

I Theorem 9. Fix any δ > 0 and let ζ(r, n) = n−δ. Then there is no infinite family of
metafunnels that is up-to-ζ fixating.

In fact, Theorem 9 can be strengthened by an exponential amount.

I Theorem 10. Fix any ε < 1/2 and let ζ(r, n) = n−1/(logn)ε . Then there is no infinite
family of metafunnels that is up-to-ζ fixating.

Theorems 9 and 10 are a direct consequence of Theorem 47 in the full version. In fact,
Theorem 47 provides even tighter bounds, as we will see in Section 5, though these are more
difficult to state.

The theorems that we have already described (Theorem 6, Theorem 8 and Theorem 10) are
the main contributions of the paper. Together, they show that there is a family of megastars
that is strongly amplifying, and that there are no families of superstars or metafunnels
that amplify as well. For completeness, we present a theorem showing that the analysis of
Theorem 6 is fairly tight, in the sense that there are no infinite families of megastars that
amplify substantially better than ΥM – in particular, our bound on extinction probability
can only be improved by factors of log(n). It cannot be improved more substantially.

I Theorem 11. Let ζ(r, n) = n−1/2/(52r2). There is no infinite family of megastars that is
up-to-ζ fixating.

Theorem 11 follows from Theorem 119 in the full version, which is straightforward. We
conclude the paper with a digression which perhaps clarifies the literature. It is stated, and
seems to be commonly believed, that an evolutionary graph (a weighted version of the Moran
process – see Section 8 of the full version for details) is “isothermal” if and only if the fixation
probability of a mutant placed uniformly at random is ρreg(r, n). This belief seems to have
come from an informal statement of the “isothermal theorem” in the main body of [16] (the
formal statement in the supplementary material of [16] is correct, however) and it has spread,
for example, as Theorem 1 of [22]. We clear this up by proving the following proposition,
which says that there is a counter-example.

I Proposition 12. There is an evolutionary graph that is not isothermal, but has fixation
probability ρreg(r, n).

4 Proof techniques

As we have seen, it is easy to study the Moran process on a d-regular graph by considering
the transition matrix of the corresponding Markov chain (which looks like a one-dimensional
random walk). Highly symmetric graphs such as undirected stars can also be handled in a
straightforward matter, by directly analysing the transition matrix. Superstars, metafunnels
and megastars are more complicated, and the number of mutant-configurations is exponential,
so instead we resort to dividing the process into phases, as is typical in the study of randomised
algorithms and stochastic processes.
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An essential and common trick in the area of stochastic processes (for example, in work on
the voter model) is moving to continuous time. Instead of directly studying the discrete-time
Moran process, one could consider the following natural continuous-time model which was
studied in [8]: Given a set of mutants at time t, each vertex waits an amount of time
before reproducing. For each vertex, the period of time before the next reproduction is
chosen according to the exponential distribution with parameter equal to the vertex’s fitness,
independently of the other vertices. If the first vertex to reproduce is v at time t+ τ then,
as in the standard, discrete-time version of the process, one of its out-neighbours w is chosen
uniformly at random, the individual at w is replaced by a copy of the one at v, and the
time at which w will next reproduce is exponentially distributed with parameter given by its
new fitness. The discrete-time process is recovered by taking the sequence of configurations
each time a vertex reproduces. Thus, the fixation probability of the discrete-time process is
exactly the same as the fixation probability of the continuous-time process. So moving to
the continuous-time model causes no harm. As [8] explains, analysis can be easier in the
continuous-time model because certain natural stochastic domination techniques apply in
the continuous-time setting but not in the discrete-time setting.

It turns out that moving to the model of [8] does not suffice for our purposes. A major
problem in our proofs is dealing with dependencies. In order to make this feasible, we instead
study a continuous-time model (see “the clock process” in Section 3.1 of the full version)
in which every edge of the underlying graph G is equipped with two Poisson processes, one
of which is called a mutant clock and the other of which is called a non-mutant clock. The
clock process is a stochastic process in which all of these clocks run independently. The
continuous-time Moran process as defined in [8] can be recovered as a function of the times
at which these clocks trigger.

Having all of these clocks available still does not give us the flexibility that we need. We
say that a vertex u “spawns a mutant” in the Moran process if, at some point in time, u
is a mutant, and it is selected for reproduction. We wish to be able to discuss events such
as the event that the vertex u does not spawn a mutant until it has already been a mutant
for some particular amount of time. In order to express such events in a clean way, making
all conditioning explicit, we define additional stochastic processes called “star-clocks” (see
Section 3.3 of the full version). All of the star-clocks run independently in the star-clock
process.

In Section 3.4 of the full version we provide a coupling of the star-clock process with the
Moran process. The coupling is valid in the sense that the two projections are correct – the
projection onto the Moran process runs according to the correct distribution and so does
the projection onto the star-clock process. The point of the coupling is that the different
star-clocks can be viewed as having their own “local” times. In particular, there is a star-clock
M∗(u,v) which controls reproductions from vertex u onto vertex v during the time that u is a
mutant. Similarly, there is a star-clock N∗(u,v) which controls reproductions from vertex u
onto vertex v during the time that u is a non-mutant. The coupling enables us to focus on
relevant parts of the stochastic process, making all conditioning explicit.

The processes that we have described so far are all that we need to derive our upper
bound on the fixation probability of superstars (Section 4 of the full version). This is the
easiest of our main results.

Analysing the Moran process on metafunnels is more difficult. By design, the initial
mutant x0 is likely to be placed in the “top of a funnel” (in the set Vk). In the analysis, it is
useful to be able to create independence by considering a “strain” of mutants which contains
all of the descendants of a particular mutant spawned by x0. Like the Moran process itself,
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a strain can be viewed as a stochastic process depending on the triggering of the clocks. In
order to facilitate the proof, we define a general notion of “mutant process” (Section 3.2 of
the full version) – so the Moran process is one example of a mutant process, and a strain
is another. The analysis of the Moran process on metafunnels involves both of these and
also a third mutant process which is essentially the bottom level of a strain (called its head).
Strains and heads-of-strains share some common properties, and they are analysed together
as “colonies” in Section 5.4.1 of the full version. The analysis of the metafunnel is the
technically most difficult of our results so we discuss it further in the next section.

Fortunately, the analysis of the megastar in Section 6 of the full version does not require
three different types of mutant processes – it only requires one. The process that is considered
is not the Moran process itself. Instead, it is a modification of the Moran process called
the megastar process. The megastar process is similar to the Moran process except that
the feeder vertices are forced to be non-mutants, except when their corresponding cliques
are completely full or completely empty. It is easy to show (see the proof of Theorem 75 of
the full version) that the fixation probability of the Moran process is at least as high as the
fixation probability of the megastar process. However, the megastar process is somewhat
easier to analyse because the cliques evolve somewhat independently. The proof of the key
lemma (Lemma 77 of the full version) is fairly long but it is not conceptually difficult. The
point is to prove that, with high probability, the cliques fill up and cause fixation.

5 Sketch of the analysis of metafunnels

The proofs of this paper are fairly technical, so the full version is 98 pages. In order to give
a flavour, we give a brief sketch of the proof of Theorem 10 which is our most difficult result.
We use n = 1 + `

∑k
i=1 m

i to denote the number of vertices of a (k, `,m)-metafunnel. We use
Xt to denote the set of mutants at time t and x0 to denote the initial mutant so X0 = {x0}.
We prove the following theorem, which is slightly stronger than Theorem 10, and implies it.

I Theorem 47. Let r > 1. Then there is a constant cr > 0, depending on r, such that
the following holds for all k, `,m ∈ Z≥1 such that the (k, `,m)-metafunnel Gk,`,m has n ≥ 3
vertices. Suppose that the initial state X0 of the Moran process with fitness r is chosen
uniformly at random from all singleton subsets of V (Gk,`,m). The probability that the Moran
process goes extinct is at least e−

√
log r·logn(logn)−cr .

Here is the sketch of the proof of Theorem 47. If k = 1 then Gk,`,m is a star and has
extinction probability roughly 1/r2 so Theorem 47 follows easily. So for most of the proof
(and the rest of this sketch) we assume k ≥ 2. To prove the theorem, we divide the parameter
space into two regimes.

In the (straightforward) first regime, m ≤ r
√

logr n. Since m is small, Vk is not too large
compared to V0 ∪ · · · ∪ Vk−1. Thus, it is fairly likely that x0 is born outside Vk, and becomes
a non-mutant (“dies”) before it can spawn a single mutant.

Most of the proof focusses on the second regime, wherem ≥ r
√

logr n which, since n ≥ `mk,
implies k ≤

√
logr n. In this regime it is likely that a uniformly-chosen initial mutant x0 is

born in Vk (Lemma 49) so we assume that this is the case in most of the proof (and the rest
of this sketch). The key lemma is Lemma 74 which shows that, in this case, it is (sufficiently)
likely that x0 dies before v∗ spawns a mutant.

In more detail, we define a stopping time Tpa which is the first time t that one of the
following occurs.
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(A1) Xt = ∅, or
(A2) |Xt| exceeds a given threshold m∗ which is a polynomial in logn, or
(A3) By time t, v∗ has already become a mutant more than b∗ times, where b∗ is about half

as large as its number `m of in-neighbours, or
(A4) t exceeds some threshold tmax which is (very) exponentially large in n.
The subscript “pa” is for “pseudo-absorption time” because (A1) implies that the Moran
process absorbs by going extinct and (A2) is a prerequisite for absorbing by fixating. The
proof of Lemma 74 shows that, with sufficiently high probability, (A2)–(A4) do not hold,
and so the Moran process X must go extinct by time Tpa.

Conditioning makes it difficult to prove that (A2)–(A4) fail. To alleviate this, we divide
the mutants into groups called “strains” which are easier to analyse. In particular, a strain
contains all of the descendants of a particular mutant spawned by x0. Informally, Si is “born”
at the i’th time at which x0 spawns a mutant. It “dies” when all of the descendants of this
spawn have died. It is “dangerous” if one (or more) of these descendants spawns a mutant
onto v∗ before Tpa.

Lemma 53 defines eight events P1–P8. These are defined in such a way that we can show
(in the proof of Lemma 74) that if P1–P8 simultaneously occur, then (A2)–(A4) do not hold.
The definitions are engineered in such a way that we can also show that it is fairly likely
that they do hold simultaneously – this takes up most of the proof. Informally, the events
are defined as follows.
P1: No star-clock M∗(v∗,v) triggers in the time interval [0, 1].
P2: For some threshold tx0 < n, the star-clock N∗(v∗,x0) triggers in [0, tx0 − 2].
P3: v∗ is a mutant for at most one unit of time up to time Tpa.
P4: The Moran process absorbs (either fixates or goes extinct) by time tmax/2.
P5: Break [0, tx0 ] into intervals of length (logn)2. During each interval, x0 spawns at most

2r(logn)2 mutants.
P6: Define s to be around 3rtx0 . Each of the strains S1, . . . , Ss spawns at most logn

mutants before Tpa.
P7: Each of the strains S1, . . . , Ss dies within (logn)2 steps.
P8: At most b∗/ logn of S1, . . . , Ss are dangerous.

The rough sketch of Lemma 74 is as follows. P1 and P3 guarantee that v∗ does not spawn a
mutant until after Tpa. This together with P2 and P3 guarantees that the only mutants in
the process before time Tpa are part of strains that are born before tx0 . By P5, there are at
most s such strains. By P6, each of these strains only has about logn mutants. Together
with P7, this implies that (A2) does not hold at t = Tpa. P8 and P6 imply that (A3) does
not hold at t = Tpa. Finally, P4 implies that (A4) does not hold at t = Tpa.

The bulk of the proof involves showing (Lemma 53) that P1–P8 are sufficiently likely to
simultaneously occur. Of these, P3–P7 are all so likely to occur that the probability that they
do not occur can be subtracted off using a union bound (so conditioning on the other Pi’s is
not an issue). The majority of the failure probability comes from the probability that P2 does
not occur. This is handled in the straightforward Lemma 54 which gives a lower bound on
the probability that P1 and P2 both occur. The remaining event, P8, is sufficiently unlikely
to occur that careful conditioning is required. This is (eventually) handled in Lemma 73,
which shows that it is fairly likely to occur, conditioned on the fact that both P1 and P2
occur.

In order to get a good estimate on the probability that a strain is dangerous (in P8), we
need to consider the number of mutants spawned from the “layer” of the strain closest to the
centre vertex v∗. In order to do this, we define a new mutant process called the “head” of a
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strain. Strains and heads of strains share some common properties, and they are analysed
together as “colonies”. Informally a “colony” is a mutant process Z whose mutants are in
V1 ∪ · · · ∪ Vk−1 (and not in V0 or Vk). Once a colony becomes empty, it stays empty. Since a
colony is a mutant process but not necessarily a Moran process, vertices may enter and/or
leave whenever a clock triggers but we say that the colony is hit when a vertex leaves a
colony specifically because a non-mutant is spawned onto it in the underlying Moran process.
We define the “spawning chain” Y Z of a colony and show that it increases whenever the
colony spawns a mutant and that it only decreases when the colony is hit. By analysing the
jump chain of a spawning chain we are able to obtain the desired bounds on the probability
that P6, P7 and P8 fail to occur.

6 Comparison with previous work

The Moran process is similar to a discrete version of directed percolation known as the
contact process. There is a vast literature (e.g., [17, 10, 21, 9]) on the contact process and
other related infection processes such as the voter model and susceptible-infected-susceptible
(SIS) epidemic models. Often, the questions that are studied in these models are different
from the question that we study here. For example, in voter systems [9] the two states
(mutant/non-mutant) are often symmetric (similar to our r = 1 case) and the models are
often studied on infinite graphs where the question is whether the process absorbs or not
(both kinds of absorption, fixation and extinction, are therefore called “fixation” in some of
this work). The particular details of the Moran process are very important for us because
the details of the algorithm determine the long-term behaviour. For example, unlike the
Moran process, in the contact process [4], the rate at which a node becomes a non-mutant is
typically taken to be 1, whereas the rate at which a node becomes a mutant is proportional to
the number of mutant neighbours. In the discrete-time versions of many commonly-studied
models, a node is chosen randomly at each step for replacement, rather than (as in the
Moran process) for reproduction. In any case, the important point for us is that the details
of the algorithm are important – results do not carry over from one algorithm to the other.
Therefore, we concentrate in this section on previous work about calculating the fixation
probability of the Moran process itself.

Lieberman et al. [16] studied the fixation probability of the Moran process and introduced
superstars and metafunnels. Intuitively, a superstar is a good amplifier because (as long as
m is sufficiently large) the initial mutation is likely to be placed in a reservoir and (as long as
` is sufficiently large) this is unlikely to be killed quickly by the centre vertex. Moreover, the
paths of a superstar are good for amplifying the selective advantage of mutants because, after
the infection spreads from a reservoir vertex to the beginning of a path, it is likely to “pick
up momentum” as it travels down the path, arriving at the centre vertex as a chain of Θ(k)
mutants (which, taken together, are more likely to cause the centre to spread the infection
than a single mutant arriving at the centre would be). As we have seen (Theorems 6 and 8)
megastars are provably better for amplification than superstars. The reason for this is that a
clique is substantially better than a path at doing this “amplification”. Nevertheless, the
amplifying properties of superstars strongly influenced our decision to study megastars.

Lieberman et al. [16, Equation (2)] claimed2 that for sufficiently large n, the fixation
probability of a superstar with parameter k tends to 1− r−(k+2), and that “similar results

2 The reader who consults [16] might wonder why “k” as written in Equation (2) of [16] has become k + 2
here. The reason is just that we use a slightly different parameterisation from that of [16]. To allow
appropriate comparison, we describe all previous work using our parameterisation.
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hold for the funnel and metafunnel”. They provided a heuristic sketch-proof for the superstar,
but not for the funnel or metafunnel. Hauert [13, Equation (5)] claims specifically that
the fixation probability of funnels tends to 1 − r−(k+1). As far as we know, no heuristic
arguments have been given for funnels or metafunnels.

In any event, Díaz, Goldberg, Mertzios, Richerby, Serna and Spirakis [6] showed that
the 1− r−(k+2) claim for superstars is incorrect for the case k = 3. In particular, for this
case they showed that the fixation probability is at most 1− r+1

2r5+r+1 , which is less than the
originally claimed value of 1− r−5 for all r ≥ 1.42.

Subsequently, Jamieson-Lane and Hauert [14, Equation (5)] made a more detailed but still
heuristic3 analysis of the fixation probability of superstars. They claim that for superstars
with parameter k and with ` = m, the fixation probability ρk has the following bounds for
fixed r > 1,

1− 1/(r4(k − 1)(1− 1
r )2)− o(1) ≤ ρk ≤ 1− 1/(r4(k − 1)) + o(1), (3)

where the o(1) terms tend to 0 as ` → ∞. They claim that their bounds are a good
approximation as long as k � ` = m ∼

√
n. It is not clear exactly what “�” means in

this context. Certainly there are parameter regimes where k = o(`) and ` = m ∼
√
n

but nevertheless the extinction probability is much larger than the proposed upper bound
1/(r4(k − 1)(1− 1/r)2) from (3). For example, suppose that ` = m = k3/2. In this case
(see Lemma 30 of the full version), the extinction probability is at least k/(2r(m+ k)) =
1/(2r(k1/2 + 1)) which is larger than 1/(r4(k − 1)(1− 1/r)2) for all sufficiently large k.
Nevertheless, the bounds proposed by Jamieson-Lane and Hauert (3) seem to be close to the
truth when k is very small compared to ` and m.

Our Corollary 34 of the full version identifies a wide class of parameters for which the
extinction probability is provably at least 1/(1470r4k). This is weaker than the suggested
bound of Jamieson-Lane and Hauert by a factor of 1470. This constant factor is explained
by the fact that our rigorous proof needs to show concentration of all random variables. We
use lots of Chernoff bounds and other bounds on probabilities. In writing the proof, we
optimised readability rather than optimising our constants, so our constants can presumably
be improved.

There is recent work on other related aspects of the Moran process. For example, [18, 19]
give fixation probability bounds on connected undirected graphs. [1] studies amplification
with respect to adversarial or “temperature-based” placement of the initial mutation, in
which the “temperature” of a vertex is proportional to the sum of all incoming edge weights.
Also, [19] considers the extent to which the number of “good starts” for fixation can be
bounded.
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Abstract
In this paper we study the mixing time of evolutionary Markov chains over populations of a fixed
size (N) in which each individual can be one of m types. These Markov chains have the property
that they are guided by a dynamical system from the m-dimensional probability simplex to itself.
Roughly, given the current state of the Markov chain, which can be viewed as a probability
distribution over the m types, the next state is generated by applying this dynamical system to
this distribution, and then sampling from it N times. Many processes in nature, from biology to
sociology, are evolutionary and such chains can be used to model them. In this study, the mixing
time is of particular interest as it determines the speed of evolution and whether the statistics of
the steady state can be efficiently computed. In a recent result [Panageas, Srivastava, Vishnoi,
Soda, 2016], it was suggested that the mixing time of such Markov chains is connected to the
geometry of this guiding dynamical system. In particular, when the dynamical system has a fixed
point which is a global attractor, then the mixing is fast. The limit sets of dynamical systems,
however, can exhibit more complex behavior: they could have multiple fixed points that are not
necessarily stable, periodic orbits, or even chaos. Such behavior arises in important evolutionary
settings such as the dynamics of sexual evolution and that of grammar acquisition. In this paper
we prove that the geometry of the dynamical system can also give tight mixing time bounds when
the dynamical system has multiple fixed points and periodic orbits. We show that the mixing
time continues to remain small in the presence of several unstable fixed points and is exponential
in N when there are two or more stable fixed points. As a consequence of our results, we obtain a
phase transition result for the mixing time of the sexual/grammar model mentioned above. We
arrive at the conclusion that in the interesting parameter regime for these models, i.e., when there
are multiple stable fixed points, the mixing is slow. Our techniques strengthen the connections
between Markov chains and dynamical systems and we expect that the tools developed in this
paper should have a wider applicability.
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1 Introduction

Evolutionary Markov chains and mixing time

In this paper we study Markov chains that arise in the context of evolution and which have
also been used to model a wide variety of social, economical and cultural phenomena, see [18].
Typically, in such Markov chains, each state consists of a population of size N where each
individual is of one of m types. Thus, the state space Ω has size

(
N+m−1
m−1

)
. At a very high level,

in each iteration, the different types in the current generation reproduce according to their
fitnesses, the reproduction could be asexual or sexual and have mutations that transform
one type into another. This gives rise to an intermediate population that is subjected to the
force of selection; a sample of size N is selected giving us the new generation. The specific
way in which each of the reproduction, mutation and selection steps happen determine the
transition matrix of the corresponding Markov chain. The size of the population (N), the
number of types (m), the fitness of each type ({ai ≥ 0 : i ∈ [m]}), and the probabilities of
mutation of one type to another ({Qij ≥ 0 : i, j ∈ [m]}) are the parameters of the model.
If we make the natural assumption that all the fitnesses are strictly positive and there is a
non-zero probability of mutating from any type to the other, Qij > 0 for all i, j ∈ [m], then
the underlying chain is ergodic and has a unique steady state.

Most questions in evolution reduce to understanding the statistical properties of the steady
state of an evolutionary Markov chain and how it changes with its parameters. However, in
general, there seems to be no way to compute the desired statistical properties other than
to sample from (close to) the steady state distribution by running the Markov chain for
sufficiently long [5]. In the chains of interest, while there is an efficient way to sample the
next state given the current state, typically, the state space is huge1 This is captured by the
notion of its mixing time. The mixing time of a Markov chain, tmix, is defined to be the
smallest time t such that for all x ∈ Ω, the distribution of the Markov chain starting at x
after t-time steps is within an `1-distance of 1/4 of the steady state.2 Apart from dictating the
computational feasibility of sampling procedures, the mixing time also gives us the number
of generations required to reach a steady state; an important consideration for validating
evolutionary models [24, 5]. However, despite the importance of understanding when an
evolutionary Markov chain mixes fast (i.e., is significantly smaller than the size of the state
space), until recently, there has been a lack of rigorous mixing time bounds for the full range
of evolutionary parameters in even in the simplest of stochastic evolutionary models; see
[7, 9, 8] for results under restricted assumptions and [5, 25] for an extended discussion on
mixing time bounds in evolutionary Markov chains.

The expected motion of a Markov chain

In a recent result [20], a new approach for bounding the mixing time of such Markov chains
was suggested. Towards this, it is convenient to think of each state of an evolutionary
Markov chain as a vector which captures the fraction of each type in the current population.
Thus, each state is a point the m-dimensional probability simplex ∆m,

3 and we can think of
Ω ⊆ ∆m. If X(t) is the current state, then we define the expected motion of the chain at X(t)

1 For example, even when m = 40 and the population is of size 10, 000, the number of states is more than
2300, i.e., more than the number of atoms in the universe!

2 It is well-known that if one is willing to pay an additional factor of log 1/ε, one can bring down the error
from 1/4 to ε for any ε > 0; see [14].

3 The probability simplex ∆m is defined to be {p ∈ Rm : pi ≥ 0 ∀i,
∑

i
pi = 1}.
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to be the function

f(X(t)) ··= E
[
X(t+1)|X(t)

]
where the expectation is over one step of the chain. Notice that while the domain of f is Ω,
its range could be a larger subset of ∆m. What can the expected motion of a Markov chain
tell us about the mixing time of a Markov chain? Of course, without imposing additional
structure on the Markov chain, we do not expect a very interesting answer. However, [20]
suggested that, the expected motion can be helpful in establishing mixing time bounds, at
least in the context of evolutionary dynamics. The first observation is that, while in the case
of general Markov chains, the expected motion function is only defined at a subset of ∆m, in
the case of evolutionary Markov chains, the expected motion turns out to be a dynamical
system; defined on all points of ∆m. Further, the Markov chain can be recovered from the
dynamical system: it can be shown that given a state X(t) of the Markov chain, one can
generate X(t+1) equivalently by computing the probability distribution f(X(t)) and taking
N i.i.d. samples from it. Subsequently, their main result is to prove that if this dynamical
system has a unique stable fixed point and also all the trajectories converge to this point,
then the evolutionary Markov chain mixes rapidly. Roughly, this is achieved by using the
geometry of the dynamical system around this unique fixed point to construct a contractive
coupling. As an application, this enabled them to establish rapid mixing for evolutionary
Markov chains in which the reproduction is asexual.

What if the limit sets of the expected motion are complex: multiple fixed points – some
stable and some unstable, or even periodic orbits? Not only are these natural mathematical
questions given the previous work, such behavior arises in several important evolutionary
settings; e.g., in the case when the reproduction is sexual (see [3, 17] and Chapter 20 in [11])
and an equivalent model for how children acquire grammar [19, 12]. While we describe these
models later, we note that, as one changes the parameters of the model, the limit sets of
the expected motion can exhibit the kind of complex behavior mentioned above and a finer
understanding of how they influence the mixing time is desired.

Our contribution

In this paper we introduce prove that the geometry of the dynamical system can also give
tight mixing time bounds when the dynamical system has multiple fixed points and periodic
orbits. This completes the picture left open by the previous work. Recall that [20] proved
that when there is a unique stable fixed point, then the mixing time is about O(logN) when
N is large compared to the parameters of the model. We complement their result by proving
the following mixing time bounds which depend on the structure of the limit sets of the
expected motion:

One stable fixed point and multiple unstable fixed points – the mixing time is O(logN),
see Theorem 6.
Multiple stable fixed points – the mixing time is eΩ(N), see Theorem 7.
Periodic orbits – the mixing time is eΩ(N), see Theorem 8.

Thus, we can prove that despite the presence of unstable fixed points the mixing time
continues to remain small. On the other hand, if there are two or more stable fixed points,
the mixing time can undergo a phase transition and become exponential in N.

As an application, we characterize the mixing time of the dynamics of grammar acquisition
(or, as explained later, sexual evolution). This Markov chain attempts to model a fascinating
and important problem in linguistics; to understand the mechanism by which a child acquires
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the capacity to comprehend a language and effectively communicate [16, 10]. Here, a
parameter of interest is the mutation rate τ which is to be thought of as quantifying the error
of learning; see Section 2.1. Corresponding to this, the probabilities of mutation Qij = τ

for all i 6= j and Qii = 1− (m− 1)τ. We first prove that there is a critical value where the
expected motion dynamical system goes through a bifurcation from multiple stable fixed
points to one stable fixed point. Our main results then imply that for τ < τc the mixing time
is exponential in N and for τ > τc it is O(logN), see Theorem 9. Thus, we arrive at the
conclusion that, in the interesting parameter regime for an important and natural dynamics,
i.e., when there is a stable fixed point other than the uniform one, the mixing is very slow.

Technically, there have been several influential works in the probability literature that use
dynamical systems to analyze stochastic processes, see for example [22, 2, 26, 15]. While the
techniques used in these results bear some similarity to ours, to the best of our knowledge,
ours is the first paper which studies the question of how the mixing time of a Markov chain
behaves as a function of the guiding dynamical system formally.

Organization of the paper

The rest of the paper is organized as follows. In Section 2 we present the formal statement of
our main theorems and the model of grammar acquisition/sexual evolution. In Section 4, we
present an overview of the proofs of our main theorem. Due to space constraints, details of
the proofs have been omitted from this version and appear in the full version of this paper.

2 Formal statement of our results

In this section we present formal statements of our main results. We begin by introducing
the required notation and preliminaries.

Notation

We use boldface letters, e.g., x, to denote column vectors (points), and denote a vector’s ith
coordinate by xi. We use X and Y (often with time superscripts and coordinate subscripts
as appropriate) to denote random vectors. For a function f : ∆m → ∆m, by fn we denote
the composition of f with itself n times, namely f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸

n times

. We use Jf [x] to denote the

Jacobian matrix of f at the point x. When the function f is clear from the context, we omit
the subscript and simply denote it by J [x]. Similarly, we sometimes use Jn[x] to denote the
Jacobian of fn at x. We denote by sp (A) the spectral radius of a matrix A and by (Ax)i
the sum

∑
j Aijxj .

Dynamical Systems

Let x(t+1) = f(x(t)) be a discrete time dynamical system with update rule f : ∆m → ∆m.
The point z is called a fixed point of f if f(z) = z. We call a fixed point z stable if, for
the Jacobian J [z] of f , it holds that sp (J [z]) < ρ < 1. A sequence (f t(x(0)))t∈N is called a
trajectory of the dynamics with x(0) as starting point. A common technique to show that a
dynamical system converges to a fixed point is to construct a function P : ∆m → R such
that P (f(x)) > P (x) unless x is a fixed point. We call P a potential function. One of our
results deals with dynamical systems that have stable periodic orbits.
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I Definition 1. C = {x1, . . . ,xk} is called a periodic orbit of size k if xi+1 = f(xi) for
1 ≤ i ≤ k − 1 and f(xk) = x1. If sp

(
Jfk [x1]

)
< ρ < 1, we call C a stable periodic orbit (we

also use the terminology stable limit cycle).

I Remark. Since f : ∆m → ∆m and hence
∑
i fi(x) = 1 for all x ∈ ∆m, if we define

hi(x) = fi(x)∑
i
fi(x)

so that h(x) = f(x) for all x ∈ ∆m, we get that
∑
i
∂hi(x)
∂xj

= 0 for all
j ∈ [m]. This means without loss of generality we can assume that the Jacobian J [x] of f
has 1> (the all-ones vector) as a left eigenvector with eigenvalue 0.

The definition below quantifies the instability of a fixed point as is standard in the literature.
Essentially, an α unstable fixed point is repelling in any direction.

I Definition 2. Let z be a fixed point of a dynamical system f. The point z is called
α-unstable if |λmin(J [z])| > α > 1 where λmin corresponds to the minimum eigenvalue of the
Jacobian of f at the fixed point z, excluding the eigenvalue 0 that corresponds to the left
eigenvector 1>.

Stochastic Evolution

I Definition 3. Given an f : ∆m → ∆m which is smooth,4 and a population parameter
N , we define a Markov chain called the stochastic evolution guided by f as follows. The
state at time t is a probability vector X(t) ∈ ∆m. The state X(t+1) is then obtained in
the following manner. Define Y(t) = f(X(t)). Obtain N independent samples from the
probability distribution Y(t), and denote by Z(t) the resulting counting vector over [m]. Then

X(t+1) ··=
1
N

Z(t) and therefore E[X(t+1)|X(t)] = f(X(t)).

We call f the expected motion of the stochastic evolution.

I Definition 4 (Smooth contractive evolution). A function f : ∆m → ∆m is said to be a
smooth contractive evolution if it is smooth4, has a unique fixed point z in the interior of ∆m,
this unique point is stable, and, for every ε > 0, there exists an ` such that for any x ∈ ∆m,
it holds that

∥∥f `(x)− z
∥∥

1 < ε (i.e., f converges to the fixed point).

The main result in [20] was Theorem 5 below. This theorem gives a bound on the mixing
time of a stochastic evolution guided by a function f that satisfies Definition 4.

I Theorem 5 (Main theorem in [20]). Let f be a smooth contractive evolution, and letM be
the stochastic evolution guided by f on a population of size N . Then, the mixing time ofM
is O (logN).

Our Results

Given a dynamical system f , one of the main questions that one can ask is does it converge,
and if so, how fast. In general, if the behavior of a system is non-chaotic, we expect the
system to reach some steady state (e.g., a fixed point or periodic orbit). This steady state
might be some (local) optimum solution to a non-linear optimization problem. Therefore,
it is important to understand what traits make a dynamical system converge fast. The

4 For our purposes, we call a function f is smooth if it is twice differentiable in the relative interior of ∆m

with bounded second derivative.

ICALP 2016



63:6 Mixing Time of Markov Chains, Dynamical Systems and Evolution

existence of many fixed points which are unstable can slow down the speed of convergence
of a dynamical system. In the case of the stochastic evolution guided by f , one would
expect the existence of multiple unstable fixed points to similarly slow down the mixing time.
Nevertheless, our Theorem 6 shows rapid mixing in the presence of α-unstable fixed points.
Additionally, we change the assumption convergence to the fixed point in 5 to the assumption
that for all x ∈ ∆m the limit limt→∞ f t(x) exists and is equal to some fixed point z, i.e., as
in 5, there are no limit cycles.

I Theorem 6. Let f : ∆m → ∆m be twice differentiable in the interior of ∆m with bounded
second derivative. Assume that f(x) has a finite number of fixed points z0, . . . , zl in the
interior, where z0 is a stable fixed point, i.e., sp (J [z0]) < ρ < 1 and z1, . . . , zl are α-unstable
fixed points (α > 1). Furthermore, assume that limt→∞ f t(x) exists for all x ∈ ∆m. Then,
the stochastic evolution guided by f has mixing time O(logN).

In our second result, we allow f to have multiple stable fixed points (in addition to any
number of unstable fixed points). For this setting, we prove that the stochastic evolution
guided by f has mixing time eΩ(N). Our phase transition result on a linguistic/sexual
evolution model discussed in Section 2.1 relies crucially on Theorem 7.

I Theorem 7. Let f : ∆m → ∆m be continuously differentiable in the interior of ∆m. Assume
that f(x) has at least two stable fixed points in the interior z1, . . . , zl, i.e., sp (J [zi]) < ρi < 1
for i = 1, 2, . . . , l. Then, the stochastic evolution guided by f has mixing time eΩ(N).

Finally, we allow f to have a stable limit cycle. We prove that in this setting the stochastic
evolution guided by f has mixing time eΩ(N). This result seems important for evolutionary
dynamics as periodic orbits often appear [23, 21].

I Theorem 8. Let f : ∆m → ∆m be continuously differentiable in the interior of ∆m.
Assume that f(x) has a stable limit cycle with points w1, . . . ,ws of size s ≥ 2 in the sense
that sp (

∏s
i=1 J [ws−i+1]) < ρ < 1. Then the stochastic evolution guided by f has mixing time

eΩ(N).

2.1 Dynamics of grammar acquisition and sexual evolution
We begin by describing the evolutionary processes for grammar acquisition and sexual
evolution. As we will explain, the two turn out to be identical and hence we primarily focus
on the model for grammar acquisition in the remainder of the paper.

The starting point of the model is Chomsky’s Universal Grammar theory [4].5 In his
theory, language learning is facilitated by a predisposition that our brains have for certain
structures of language. This universal grammar (UG) is believed to be innate and embedded
in the neuronal circuitry. Based on this theory, an influential model for how children acquire
grammar was given by appealing to evolutionary dynamics for infinite and finite populations
respectively in [19] and [12]. We first describe the infinite population model, which is a
dynamical system that guides the stochastic, finite population model. Each individual speaks
exactly one of the m grammars from the set of inherited UGs {G1, . . . , Gm}; denote by xi
the fraction of the population using Gi. The model associates a fitness to every individual
on the basis of the grammar she and others use. Let Aij be the probability that a person
who speaks grammar j understands a randomly chosen sentence spoken by an individual

5 Like any important problem in the sciences, Chomsky’s theory is not uncontroversial; see [10] for an
in-depth discussion.
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using grammar i. This can be viewed as the fraction of sentences according to grammar i
that are also valid according to grammar j. Clearly, Aii = 1. The pairwise compatibility
between two individuals speaking grammars i and j is Bij ··= Aij+Aji

2 , and the fitness of an
individual using Gi is fi ··=

∑m
j=1 xjBij , i.e., the probability that such an individual is able

to meaningfully communicate with a randomly selected member of the population.
In the reproduction phase each individual produces a number of offsprings proportional

to her fitness. Each child speaks one grammar, but the exact learning model can vary and
allows for the child to incorrectly learn the grammar of her parent. We define the matrix Q
where the entry Qij denotes the probability that the child of an individual using grammar
i learns grammar j (i.e. Q is column stochastic matrix); once a child learns a grammar
it is fixed and she does not later use a different grammar. Thus, the frequency x′i of the
individuals that use grammar Gi in the next generation will be

x′i = gi(x) ··=
m∑
j=1

Qjixj(Bx)j
x>Bx

(with g : ∆m 7→ ∆m encoding the update rule). Nowak et al. [19] study the symmetric case,
i.e., Bij = b and Qij = τ ∈ (0, 1/m] for all i 6= j and observe a threshold: When τ, which can
be thought of as quantifying the error of learning or mutation, is above a critical value, the
only stable fixed point is the uniform distribution (all 1/m) and below it, there are multiple
stable fixed points.

Finite population models can be derived from the linguistic dynamics in a standard
way. We describe the Wright-Fisher finite population model for the linguistic dynamics.
The population size remains N at all times and the generations are non-overlapping. The
current state of the population is described by the frequency vector X(t) at time t which
is a random vector in ∆m and notice also that the population that uses Gi is NX(t)

i . How
does one generate X(t+1)? To do this, in the replication (R) stage, one first replaces the
individuals that speak grammar Gi in the current population by NX(t)

i (B(NX(t)))i and
the total population has size N2X(t)>BX(t).6 In the selection (S) stage, one selects N
individuals from this population by sampling independently with replacement. Since the
evolution is error prone, in the mutation (M) stage, the grammar of each individual in this
intermediate population is mutated independently at random according to the matrix Q to
obtain frequency vector X(t+1). Given these rules, note that

E[X(t+1)|X(t)] = g(X(t)).

In other words, in expectation, fixing X(t), the next generation’s frequency vector X(t+1) is
exactly g(X(t)), where g is the linguistic dynamics. Of course, this holds only for one step of
the process. This process is a Markov chain with state space {(y1, . . . , ym) : yi ∈ N,

∑
i yi =

N} of size
(
N+m−1
m−1

)
. If Q > 0 then it is ergodic (i.e., it is irreducible and aperiodic) and

thus has a unique stationary distribution. In our analysis, we consider the symmetric case as
in Nowak et al. [19], i.e., Bij = b and Qij = τ ∈ (0, 1/m] for all i 6= j.

Note that the linguistics model described above can also be seen as a (finite population)
sexual evolution model: Assume there are N individuals and m types. Let Y(t) be a vector
of frequencies at time t, where Y(t)

i denotes the fraction of individuals of type i. Let F be a
fitness matrix where Fij corresponds to the number of offspring of type i, if an individual of

6 Here we assume that Bij is an positive integer and thus N2X
(t)
i (BX(t))i is an integer since the

individuals are whole entities; this can be achieved by scaling and is without loss of generality.
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type i chooses to mate with an individual of type j (assume Fij ∈ N). At every generation,
each individual mates with every other individual. It is not hard to show that the number
of offspring after the matings will be N2(Y(t)>FY(t)) and there will be N2Y(t)

i (FY(t))i
individuals of type i. After the reproduction step, we select N individuals at random with
replacement, i.e., we sample an individual of type i with probability Y(t)

i
(FY(t))i

Y(t)>FY(t) . Finally in
the mutation step, every individual of type i mutates with probability τ (mutation parameter)
to some type j. Let Fii = A, Fij = B for all i 6= j with A > B (this is called homozygote
advantage) and set b = B

A < 1. It is self-evident that this sexual evolution model is identical
with the (finite population) linguistic model described above since both end up having the
same reproduction, selection and mutation rule. It holds that E[X(t+1)|X(t)] = g(Xt)7 with

gi(x) = (1− (m− 1)τ)N
2xi(Bx)i

N2(x>Bx) +
∑
j 6=i

τ
N2xj(Bx)j
N2(xTBx) = (1−mτ)xi(Bx)i

(x>Bx) + τ

where Bii = 1, Bij = b with i 6= j.8 For the Markov chains described above (symmetric case)
we can prove the following phase transition result.

I Theorem 9. There is a critical value τc of the error in learning/mutation parameter τ
such that the mixing time is: (i) exp(Ω(N)) for 0 < τ < τc and (ii) O(logN) for τ > τc
where N is the size of the population.

The theorem below will be used to prove the rapid mixing result for the finite linguistic model
when τ > τc. It is used to construct a potential function and show that the deterministic
dynamics g converges to fixed points.

I Theorem 10 (Baum and Eagon Inequality [1]). Let P (x) = P ({xij}) be a polynomial with
nonnegative coefficients homogeneous of degree d in its variables {xij}. Let x = {xij} be any
point of the domain D : xij ≥ 0,

∑qi

j=1 xij = 1, i = 1, . . . , p, j = 1, . . . , qi. For x = {xij} ∈ D,
let Ξ(x) = Ξ{xij} denote the point of D whose i, j-th coordinate is

Ξ(x)ij =
(
xij

∂P

∂xij

∣∣∣∣
(x)

)
·

 qi∑
j=1

xij
∂P

∂xij

∣∣∣∣
(x)

−1

.

Then P (Ξ(x)) > P (x) unless Ξ(x) = x.

3 Preliminaries

Couplings and Mixing Times

Let p,q ∈ ∆m be two probability distributions on m objects. A coupling C of p and q is a
distribution on ordered pairs in [m]× [m], such that its marginal distribution on the first
coordinate is equal to p and that on the second coordinate is equal to q. Couplings allow a
very useful dual characterization of the total variation distance, as stated in the following
well known lemma.

I Lemma 11 (Coupling lemma [14]). Let p,q ∈ ∆m be two probability distributions on m
objects. Then,

‖p− q‖TV = 1
2 ‖p− q‖1 = min

C
P(A,B)∼C [A 6= B] ,

where the minimum is taken over all valid couplings C of p and q.

7 We use same notation for the update rule as before, i.e. g because it turns out to be the same function.
8 Observe that this rule is invariant under scaling of fitness matrix B.
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I Definition 12 (Mixing time [14]). Let M be an ergodic Markov chain on a finite state
space Ω with stationary distribution π. Then, the mixing time tmix(ε) is defined as the
smallest time such that for any starting state X(0), the distribution of the state X(t) at time
t is within total variation distance ε of π. The term mixing time is also used for tmix(ε) for a
fixed values of ε < 1/2.

A well-known technique for obtaining upper bounds on mixing times is to use the Coupling
Lemma above. Suppose X(t) and Y(t) are two evolutions of an ergodic chainM such that
their evolutions are coupled according to some coupling C. Let T be the smallest time such
that X(T ) = Y(T ). If it can be shown that P [T > t] ≤ 1/4 for every pair of starting states
(X(0),Y(0)), then it follows that tmix ··= tmix(1/4) ≤ t.

Operators, Norms

The following theorem, stated here only in the special case of the 1→ 1 norm, relates the
spectral radius with other matrix norms.

I Theorem 13 (Gelfand’s formula, specialized to the 1→ 1 norm [13]). For any square matrix
A, we have

sp (A) = lim
`→∞

∥∥A`∥∥1/`
1→1 .

Taylor Theorem (First order Remainder)

I Theorem 14. Let f : Rm → R be differentiable and x,y ∈ Rm. Then there exists some ξ
in the line segment from x to y such that f(y) = f(x) +∇f(ξ)(y− x).

Concentration

We also mention some standard Chernoff-Hoeffding type bounds that will be used in our
later arguments.

I Theorem 15 (Chernoff-Hoeffding bounds [6]). Let Z1, Z2, . . . , ZN be i.i.d. Bernoulli random
variables with mean µ. We then have for all ε > 0,

P

[∣∣∣∣∣ 1
N

N∑
i=1

Zi − µ

∣∣∣∣∣ > ε

]
≤ 2 exp

(
−2Nε2) .

4 Overview of proofs

We begin by explaining the proof technique of Theorem 5 in [20]. In order to prove a bound
on the mixing time, the authors constructed a coupling that contracts the distance between
two chains. This contraction does not happen at every step, rather at every k steps where
k is some constant and depends on the function f . Essentially, it is shown that given two
chains X(t),Y(t) that are close to the unique fixed point z of f , it holds that∥∥∥X(t+1) −Y(t+1)

∥∥∥
1
≈
∥∥∥J [z](X(t) −Y(t))

∥∥∥
1
≤ ‖J [z]‖1

∥∥∥(X(t) −Y(t))
∥∥∥

1

with high probability due to Chernoff bounds. Thus, the `1 norm of the Jacobian captures
the contraction if it indeed exists. However it might be the case that ‖J [z]‖1 > 1. On the
positive side, using Gelfand’s Theorem they were able to show a k-step contraction, since∥∥Jk[z]

∥∥
1 ≈ (sp (J [z]))k < ρk < 1
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for some k ∈ N. Our proofs also use the idea of Gelfand’s formula to show contraction/ex-
pansion (in Theorems 7 and 6 respectively) and also make use of Theorem 5). Nevertheless,
there are important technical barriers that need to be crossed in order to prove our results
as explained below.

4.1 Overview of Theorem 6
The main difficulty to prove this theorem is the existence of multiple unstable fixed points in
the simplex from which the Markov chain should get away fast. As before, we study the time
T required for two stochastic evolutions with arbitrary initial states X(0) and Y(0), guided
by some function f , to collide. By the conditions of Theorem 6, function f has a unique
stable fixed point z0 with

sp (J [z0]) < ρ < 1.

Additionally, it has α-unstable fixed points. Moreover, for all starting points x0 ∈ ∆m,
the sequence (f t(x0))t∈N has a limit. We can show that there exists constant c0 such that
P [T > c0 logN ] ≤ 1

4 , from which it follows that tmix(1/4) ≤ c0 logN . In order to show
collision after O(logN) steps, it suffices first to run each chain independently for O(logN)
steps. We first show that with probability Θ(1), each chain will reach B(z0,

1
N1−ε ) after at

most O(logN) steps, for some ε > 0.9 As long as this is true, the coupling constructed in
[20] can be used to show collision (see Section 3 for the definition of a coupling). To explain
why our claim holds, we break the proof into three parts.

(a) First, it is shown that as long as the state of the Markov chain is within o
(

log2/3 N√
N

)
in `1 distance from some α-unstable fixed point w, then, with probability Θ(1), it reaches
distance Ω

(
log2/3 N√

N

)
after O(logN) steps. Step (a) has the technical difficulty that as long

as a chain starts from a o( 1√
N

) distance from an unstable fixed point, the variance of the
process dominates the expansion due to the fact the fixed point is unstable.

(b) Assuming (a), we show that with probability 1− 1
poly(N) the Markov chain reaches

distance Θ(1) from any unstable fixed point after O(logN) steps.

(c) Finally, if the Markov chain has Θ(1) distance from any unstable fixed point (the
fixed points have pairwise `1 distance independent of N , i.e., they are “well separated”),
it will reach some 1

N1−ε -neighborhood of the stable fixed point z0 exponentially fast (i.e.,
after O(logN) steps). For showing (a) and (b), we must prove an expansion argument for
‖f t(x)−w‖1 as t increases, where w is an α-unstable fixed point and also taking care of
the random perturbations due to the stochastic evolution. Ideally what we want (but is not
true) is the following to hold:∥∥f t+1(x)−w

∥∥
1 ≥ α

∥∥f t(x)−w
∥∥

1 ,

i.e., one step expansion. The first important fact is that f−1 is well-defined in a small
neighborhood of w due to the Inverse Function Theorem, and it also holds that∥∥f t(x)−w

∥∥
1 ≈

∥∥J−1[w](f t+1(x)−w)
∥∥

1 ≤
∥∥J−1[w]

∥∥
1

∥∥f t+1(x)−w
∥∥

1 ,

where x is in some neighborhood of w and J−1[w] is the pseudoinverse of J [w] (see the
remark in Section 2). However even if w is α-unstable and sp

(
J−1[w]

)
< 1

α , it can hold that

9 B(x, r) denotes the open ball with center x and radius r in `1, which we call an r-neighborhood of x.
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∥∥J−1[w]
∥∥

1 > 1. At this point, we use Gelfand’s formula (Theorem 13) as in the proof of [20].
Since limt→∞(‖At‖1)1/t → sp (A) , for all ε > 0, there exists a k0 such that for all k ≥ k0 we
have∣∣∥∥Ak∥∥1 − (sp (A))k

∣∣ < ε.

We use this important theorem to show that for small ε > 0, there exists a k such that∥∥f t(x)−w
∥∥

1 ≈
∥∥(J−1[w])k(f t+k(x)−w)

∥∥
1 ≤

1
αk
∥∥f t+k(x)−w

∥∥
1 ,

where we used the fact that∥∥(J−1[w])k
∥∥

1 < (sp
(
J−1[w]

)
)k − ε ≤ 1

αk
.

By taking advantage of the continuity of the J−1[x] around the unstable fixed point w,
we can show expansion for every k steps of the dynamical system. It remains to show for
(a) and (b) how one can handle the perturbations due to the randomness of the stochastic
evolution. In particular, if

∥∥X(0) −w
∥∥

1 is o
(

1√
N

)
, even with the expansion we have from

the deterministic dynamics (as discussed above), variance dominates. We examine case (b)
first, which is relatively easy (the drift dominates at this step). Due to Chernoff bounds, the

difference
∥∥X(t+k) −w

∥∥
1 −

∥∥fk(X(t))−w
∥∥

1 is O
(√

logN
N

)
(this captures the deviation on

running the stochastic evolution for k steps vs running the deterministic dynamics for k steps,
both starting from X(t)) with probability 1 − 1

poly(N) . Since
∥∥X(t) −w

∥∥
1 is Ω

(
log2/3 N√

N

)
,

then∥∥∥X(t+k) −w
∥∥∥

1
≥ (αk − oN (1))

∥∥∥X(t) −w
∥∥∥

1
.

For (a), first we show that with probability Θ(1), after one step the Markov chain has
distance Ω( 1√

N
) of w. This claim just uses properties of the multinomial distribution. After

reaching distance Ω
(

1√
N

)
, we can use again the idea of expansion and being careful with the

variance and we can show expansion with probability at least 1
2 , every k steps. Then we can

show that with probability at least 1
log2/3 N

, distance log2/3 N√
N

is reached after O(log logN)
steps and basically we finish with (b). For (c), we use a couple of technical lemmas from [20],
we explain in words below: Let ∆ be some compact subset of ∆m, where we have excluded
all the α-unstable fixed points along with some open ball around each unstable fixed point of
constant radius. We can show that given that the initial state of the Markov chain belongs to
∆, it reaches a B(z0,

1
N1−ε ) for some ε > 0 as long as the dynamical system converges for all

starting points in ∆ (and it should converge to the stable fixed point z0). We have roughly
that the dynamical system converges exponentially fast for every starting point in B to the
stable fixed point z0 and that with probability 1− 1

poly(n) two arbitrary chains independently
will reach a 1

Nε neighborhood of the stable fixed point z0. Therefore by (a), (b), (c) and the
coupling from [20], we conclude the proof of Theorem 6.

4.2 Overview of Theorems 7 and 8
To prove Theorem 8, we make use of Theorem 7, i.e., we reduce the case of the stable limit
cycle to the case of multiple stable fixed points. If s is the length of the limit cycle, roughly
the bound eΩ(N) on the mixing time loses a factor 1

s compared to the case of multiple stable
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fixed points. We now present the ideas behind the proof of Theorem 7. First as explained
above, we can show contraction after k steps (for some constant k) for the deterministic
dynamics around a stable fixed point z with sp(J[z]) < ρ < 1, i.e.,∥∥f t+k(x)− z

∥∥
1 ≈

∥∥Jk[z]
∥∥

1

∥∥f t(x)− z
∥∥

1 ≤ ρ
k
∥∥f t(x)− z

∥∥
1 .

To do that, we use Gelfand’s formula, Taylor’s theorem and continuity of J [x] where x lies
in a neighborhood of the fixed point z. Hence, due to the above contraction of the `1 norm
and the concentration of Chernoff bounds, it takes a long time for the chain X(t) to get
out of the region of attraction of the fixed point z. Technically, the error that aggregates
due to the randomness of the stochastic evolution guided by f does not become large due
to the convergence of the series

∑∞
i=0 ρ

i. Hence, we focus on the error probability, namely
the probability the stochastic evolution guided by f deviates a lot from the dynamical
system with rule f if both have same starting point after one step. Since this probability is
exponentially small, i.e., it holds that∥∥∥f(X(0))−X(1)

∥∥∥
1
> εm

with probability at most 2me−2ε2N , an exponential number of steps is required for the above
to be violated. Finally, as we have shown that it takes exponential time to get out of the
region of attraction of a stable fixed point z we do the following easy (common) trick. Since
the function has at least two fixed points, we start the Markov chain very close to the fixed
point that its neighborhood has mass at most 1/2 in the stationary distribution (this can
happen since we have at least 2 fixed points that are well separated). Then, after exponential
number of steps, it will follow that the total variation distance between the distribution of
the chain and the stationary will be at least 1/4.

4.3 Overview of Theorem 9
Below we give the necessary ingredients of the proof of Theorem 9. Our previous results,
along with some analysis on the fixed points of g (function of Linguistic Dynamics) suffice
to show the phase transition result. To prove Theorem 9, initially we show that the model
(finite population) is essentially a stochastic evolution (see Definition 3) guided by g as
defined in Section 2.1 and proceed as follows: We prove that in the interval 0 < τ < τc,
the function g has multiple fixed points whose Jacobian have spectral radius less than 1.
Therefore due to Theorem 7 discussed above, the mixing time will be exponential in N . For
τ = τc a bifurcation takes place which results in function g of linguistic dynamics having only
one fixed point inside simplex (specifically, the uniform point (1/m, . . . , 1/m)). In dynamical
systems, a local bifurcation occurs when a parameter (in particular the mutation parameter
τ) change causes two (or more) fixed points to collide or the stability of an equilibrium (or
fixed point) to change. To prove fast mixing in the case τc < τ ≤ 1/m, we make use of the
result in [20] (see Theorem 5). One of the assumptions is that the dynamical system with g
as update rule needs to converge to the unique fixed point for all initial points in simplex.
To prove convergence to the unique fixed point, we define a Lyapunov function P such that

P (g(x)) > P (x) unless x is a fixed point. (1)

As a consequence, the (infinite population) linguistic dynamics converge to the unique fixed
point (1/m, . . . , 1/m). To show Equation (1), we use an inequality that dates back in 1967
(see Theorem 10, [1]), which intuitively states the discrete analogue of proving that for a
gradient system dx

dt = ∇V (x) it is true that dV
dt ≥ 0.
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Abstract
In this paper, we study information cascades on graphs. In this setting, each node in the graph
represents a person. One after another, each person has to take a decision based on a private signal
as well as the decisions made by earlier neighboring nodes. Such information cascades commonly
occur in practice and have been studied in complete graphs where everyone can overhear the
decisions of every other player. It is known that information cascades can be fragile and based
on very little information, and that they have a high likelihood of being wrong.

Generalizing the problem to arbitrary graphs reveals interesting insights. In particular, we
show that in a random graph G(n, q), for the right value of q, the number of nodes making
a wrong decision is logarithmic in n. That is, in the limit for large n, the fraction of players
that make a wrong decision tends to zero. This is intriguing because it contrasts to the two
natural corner cases: empty graph (everyone decides independently based on his private signal)
and complete graph (all decisions are heard by all nodes). In both of these cases a constant
fraction of nodes make a wrong decision in expectation. Thus, our result shows that while both
too little and too much information sharing causes nodes to take wrong decisions, for exactly the
right amount of information sharing, asymptotically everyone can be right. We further show that
this result in random graphs is asymptotically optimal for any topology, even if nodes follow a
globally optimal algorithmic strategy. Based on the analysis of random graphs, we explore how
topology impacts global performance and construct an optimal deterministic topology among
layer graphs.
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1 Introduction

An Information Cascade occurs when a person observes the actions of others and then – in
spite of possible contradictions to his/her own private information – follows these same actions.
A cascade develops when people “abandon their own information in favor of inferences based
on earlier people’s actions”[12]. Information Cascades frequently occur in everyday life.
Commonly cited examples include the choice of restaurants when being in an unknown place
people choose the restaurant that already has many guests over a comparatively empty
restaurant, or hiring interview loops where interviewers follow earlier interviewer’s decisions
if they are not sure about the candidate. Notice that information cascades are not irrational
behavior; on the contrary, they occur precisely because people rationally decide based on
inferences derived from earlier people’s actions.

The simple herding experiment by Anderson and Holt illustrates Information Cascades
[3, 4](see also Chapter 16 in [12]). In this experiment, an urn contains three marbles, either
two red and one blue (majority red), or one red and two blue (majority blue). The players do
not know whether the urn is majority red or blue. One by one, the players privately pick one
marble from the urn, check its color, return it to the urn, and then publicly announce their
guess as to whether the urn is majority red or majority blue. The first and second player
will naturally base their guesses on the colors of the marble they picked, thus their guesses
reveals their private signals. For any subsequent player however, her rational guess may not
reflect her own signal. For example, suppose the first two players both guess red. In this
case, it is rational for the third player to also guess majority-red regardless of the color of the
marble she picked. Indeed, the third player makes her decision on a rational inference based
on the first two guesses. Since her guess does therefore not reveal any further information
about the urn to any subsequent player, every subsequent player will guess the urn to be
majority-red. The example shows that information cascades can be based on very little actual
information and thus fragile; and they can be wrong. Indeed, in the above example with
urns, it can be shown that with probability 1/5, a “wrong cascade” occurs, i.e., all players
(except from possibly a few at the beginning) will guess wrongly.

The standard model for information cascades studies the process in which players make
decisions sequentially based on their own private signals as well as the set of decisions made by
earlier players [6, 7, 23]. In this paper, we interpret and generalize the traditional information
cascade setting as a game in a graph. Each player is a node, and an edge between two
nodes v and w means that w can hear about v’s guess (assuming w is after v in the order of
decision-making). Thus the traditional information cascade model corresponds to a complete
graph (all players hear the decisions of all other players). At the other end of the spectrum,
the empty graph means that every player decides independently of all other players, purely
based on their own private signal. Casting the information cascade problem in this graph
setting allows us to study the range in between the two extreme points of complete and
empty graphs.

Studying this range in between reveals fascinating insights. Figure 1 shows the expected
number of wrong guesses in the above 3-marble-urn experiment in a random graph G(n, q)
topology, for different values of n and q. In the empty graph (q = 0), if all nodes take their
decisions independently, 1/3 of the players are wrong. In the complete graph (q = 1), 1/5 of
the players are wrong on average as discussed above. However, the interesting thing is that
for some values in between these two extremes, the number of wrong decisions is significantly
less. Indeed, it seems that for the right value of q and n→∞, the number of wrong decisions
tends to 0.
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These observations are intriguing: It looks like that if people share too much information,
a constant fraction of the population is wrong because of bad information cascades occurring.
If people share too little information, a larger constant fraction of the population is wrong
because the players take their decisions too independently, relying too much on their private
signal which has a constant probability of being wrong. But, if exactly the right amount of
information is shared, then it seems that in the limit, all players (at least asymptotically)
take the correct decision.

In this paper, we study this phenomenon. We prove that, indeed, in a random graph
the number of wrong nodes is at most O(logn) for the optimal value of q (Section 3). We
then study arbitrary graph topologies and show that O(logn) wrong nodes is optimal in a
strong sense (Section 4). Specifically, even in the best possible topology, there are at least
Ω(logn) wrong nodes. This result holds even if a global oracle tells each node whether it
should (a) base its decision solely on its private signal (thus revealing this signal as additional
information to all its neighbors) or (b) base its decision on the majority of private signal
and neighboring decisions as in the cascade model above. In other words, even if nodes can
“sacrifice” themselves to reveal additional information to their neighbors and even in the
best possible topology Ω(logn) wrong nodes is a lower bound. Finally, we derive an optimal
deterministic topology from among a family of layer graphs (Section 5). Detailed proofs and
analysis can be found in [22].

2 Related Work

Sequential decision-making has been studied in various areas including politics, economics
and computer science[21, 6, 7, 14, 12]. The primary concern on the Bayesian learning
model[7, 19, 6, 23, 20, 5, 1] is under what conditions asymptotically correct information
cascades occur. For specific graph topologies such as complete graphs and line graphs,
conditions on the private signals were addressed to guarantee the correctness of cascades[19, 9].
For arbitrary graph topologies, the approach of Acemoglu et al. [1] is intuitively quite
consistent to our k-layer topology(see Section 6) and can be used to explain why our
random network and selfishless decision-making algorithm achieve global optimality. While
their approach focuses on the asymptotic probability of correct cascades, our result can
quantitatively bound the expectation number of incorrect nodes.

There has been research on different sequential decision making models in graphs. For
example, Chierichetti et al. [10] study different algorithms for finding appropriate orderings
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to maximize the fraction making correct decisions and Hajiaghayi et al. [16] and Hajiaghayi
et al. [15] generalizes the model and improve related bounds. However, notice that the
threshold decision-making processes studied in these works fundamentally differ from the
information cascade setting we consider in this work. Indeed, the effect of too little/too much
information sharing being bad as shown in Figure 1 is not observed in such threshold models.

There also exists an impressive body of work on sequential and non-sequential decision
on arbitrary graphs that however do not capture information cascades as exemplified in
Anderson and Holt’s herding experiment. Typically, each node updates its opinion through
repeated averaging with neighbors. General conditions for convergence to consensus have
been developed[2, 11, 13]. Intrigued by the observation that consensus is usually not reached
in real world[18], Bindal et al. [8] use a game theoretic approach to study the equilibrium of
the dynamical process and measure the cost of disagreement via the Price of Anarchy[17].

3 Preliminaries

We introduce the formal definitions of our model. There are n nodes (numbered 1, 2, · · ·n)
whose neighboring relationship is depicted by a graph G = ([n], E). All nodes make decisions
sequentially according to their numbers in order to guess a global ground truth value b ∈ {0, 1}.
When making its decision, each node can only obtain a random partial information on b.
That is, when node i observes b, it can only get a private signal si which equals b with
probability p > 0.5 or equals 1− b with probability 1− p. The decision-making of a node not
only depends on its private signal observed from b, but also on the decisions made by its
previous neighbors. Note that the neighboring decisions may or may not be based on those
nodes’ private signals. More formally, let ci be the output decision or guess of node i and ci

be the decision vector (c1, c2, · · · , ci), if Li : {0, 1}i−1×{0, 1} → {0, 1} is the decision-making
algorithm for node i, we have in general ci = Li(ci−1, si).

Given the graph G and decision-making algorithms L1, L2, · · · , Ln, we use EG(L1, · · · , Ln)
to denote the expected number of nodes that output the wrong value 1− b. When it is clear
from the context, we may abbreviate this notation to EG, E(L1, · · · , Ln), or simply E . The
global objective of this sequentially decision-making process is to minimize EG(L1, · · · , Ln),
which is equivalent to maximizing the expected number of nodes who guess the ground truth
value correctly. We will show that such an optimization task can be achieved by adjusting
the graph topology or the decision-making algorithms.

Let Ei be the failure probability that node i outputs 1 − b. As a node often makes
inferences based on others’ decisions without knowing their private signals, it is intuitively
understandable that a node’s probability of correct decision-making can be quantified by the
number of private signals it can infer.

In reality, the Majority Algorithm is one of the most popular and practical algorithms for
decision-makings. This kind of “following the herd” algorithm can often achieve a locally
optimal effect. In this paper, we use Majk to denote the Majority Algorithm taking input
bits of length k. We just use Maj if k is clear from the context. In Chapter 16 of [12], Easley
and Kleinberg shows that the Majority Algorithm is optimal when a node observes multiple
independent signals.

I Claim 1. For any node i seeking to maximize Ei, when it observes multiple signals(including
its own private signal), its optimal algorithm is to output the majority of these observed
signals.

However, Anderson and Holt’s experiment shows that if all nodes apply the Majority
Algorithm, it is possible that essentially all of the nodes guess incorrectly, leading to an
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information cascade on the wrong side. In this paper, we address this problem and analyze
the impact of topology and algorithms on information cascades.

4 Random Graphs

In this section, we analyze the performance of the Majority Algorithm on random graphs.
Conventionally, G(n, q) denotes the random graph model that generates a random graph
with n nodes and each pair of nodes are connected by an edge with probability q. Different
connection probabilities induces completely different topologies, and thus dramatic changes
in EG(n,q). As introduced in Section 1, when q equals 0 or 1 corresponding to the empty or
complete topology, the expected number of wrong output decisions are both Θ(n).

In this section, we show that there exists a q such that the Majority Algorithm can
achieve only Θ(logn) expected wrong output decisions:

I Theorem 2. There exists a connection probability q = Θ(1/ logn) such that in G(n, q),
when all nodes apply the Majority Algorithm, we have EG(n,q) = Θ(logn).

We can also demonstrate the optimality of this connection probability by showing a lower
bound for the expected number of wrong decisions:

I Theorem 3. For any connection probability q, when all nodes apply the Majority Algorithm,
the expected number of wrong outputs in G(n, q) is lower bounded by Θ(logn), i.e. EG(n,q) =
Ω(logn).

A key ingredient to our proof is to bound the failure probability Ei for each node. Applying
the Chernoff Bound and the Union Bound, we can further bound the overall EG(n,q). The
following are two technical lemmas for bounding the failure probabilities:

I Lemma 4. If a constant fraction f > 0.5 of the first i nodes are correct (resp. wrong),
node i+ 1’s failure (resp. correct) probability Ei+1 is upper bounded by e−Θ(iq).

I Lemma 5. If a constant fraction f > 0.5 of the first i nodes are correct, s.t. f
1−f ≥

√
q

1−q ,

then node i+ 1’s failure probability is upper bounded by p.

4.1 Proof of Theorem 2
In this subsection, we provide a detailed proof of Theorem 2.

The reason why random graphs behave well for the right value of q is that randomness
defers the process of information cascades. The fewer neighbors, the more likely a not will
output its private signal, thereby 1) having a high probability of being wrong, but 2) revealing
important information to its neighbors. When q = Θ(1/ logn), with high probability each of
the first Θ(logn) nodes have at most one neighbor. By definition of Majority Algorithm, any
node with only one neighbor will be forced to output its own private signal.

Using Lemma 4, we can prove that an established cascade among the first logn/q nodes
decides the outputs of all later nodes with high probability:

I Lemma 6. If among the first logn/q nodes, only a small constant fraction f < 0.5 output
wrongly, then for the later n− (logn/q) nodes, the expected number of wrong outputs is at
most O(1).

Lemma 6 is insufficient to bound the Θ(logn) expected failure nodes as required by
Theorem 2, in that it only bounds the loss of later nodes in the sequence. It could be the
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case that the first logn/q = Θ(log2 n)) nodes all fail. To bound the overall E , it is essential
to analyze the performance of the first logn/q nodes. We can use an induction argument to
show that for the optimal q, the first logn/q nodes are majority-correct with high probability:

I Lemma 7. Let δ = 1
2 (p+

√
p

√
p+
√

1−p
). There exists connection probability qopt = Θ(1/ logn)

such that the first Θ(logn/q) nodes contains at least δ portion of correct outputs with
probability 1−O(n−1 logn).

Proof. We can prove Lemma 7 by induction. Consider dividing the first Θ(logn/q) nodes
into Θ(logn) segments, where each segment contains Θ(1/q) = Θ(logn) many nodes. We
analyze each segment independently and show that

There exists q1 = Θ(1/ logn), such that the first segment contains δ portion of correct
outputs with probability at least 1−O(n−1).
If the first i segments contain δ portion of correct outputs, then the (i+ 1)th segment
will also contain δ portion of correct outputs with probability 1−O(n−1).

By a single Union Bound, we can combine these two results and show that the first Θ(logn/q)
nodes contain δ portion of correct outputs with probability 1− logn ·O(n−1). J

Lemma 7 and 4 together imply a Θ(logn) upper bound for the expected number of wrong
outputs among the first Θ(logn/q) nodes:

I Lemma 8. If q = qopt, the first Θ(logn/q) nodes’ expect to have at most Θ(logn) many
wrong outputs.

Proof of Theorem 2. With Lemma 6, 7 and 8 proved, the expected number of wrong output
decisions under connection probability qopt is bounded by

EG(n,q) =
n∑

i=1
Ei =

log n/q∑
i=1

Ei +
n∑

i=log n/q+1

Ei

≤ Θ(logn) + (1−O(n−1 logn)) ·O(1) +O(n−1 logn) · n = Θ(logn).

(1)

which completes the proof. J

4.2 Proof of Theorem 3
In the previous section, we prove that for the optimal connection probability qopt = Θ(1/ logn),
the expected number of wrong outputs is reduced to Θ(logn). However, it remains a problem
whether we can move beyond Θ(logn). In this section, we prove Theorem 3 which states
that the bound in Theorem 2 is asymptotically optimal.

Proof of Theorem 3. We prove this theorem for two separate cases, namely when q =
O(1/ logn) and q = ω(1/ logn).

When q = O(1/ logn), the intuition is that we need at least Θ(1/q) nodes before
accumulating an actual influential cascade. For the ith nodes where i ≤ 1/q, its chance of
being isolated is (1 − q)i + iq(1 − q)i−1 ≥ (1 − q)1/q ∼ 1/e. Therefore the node’s failure
probability is at least Ei = (1− p) · Pr[isolated] = (1− p)/e. This lower bounds the expected
number of failure nodes by (1− p)/(eq) = Θ(1/q).

When q = ω(1/ logn), a wrong cascade occurs with high probability, thus resulting in a
significant number of failure nodes. With probability (1 − p)Θ(1/q), all of the first Θ(1/q)
nodes observe a wrong signal and output the wrong guesses. Using Lemma 4, we can show
that with high probability, the majority of later nodes follow this wrong cascade. Therefore,
the total number of failure nodes is at least (1− p)Θ(1/q) ·Θ(n) = n1−o(1) = Ω(logn). J
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5 General Lower Bound

In this section, we design a non-constructive scheme that finds the optimal decision-making
algorithms for general graphs. Given the graph G = ([n], E), our goal is to find the set of
algorithms {Li}n

i=1 such that (L1, · · · , Ln) = arg minL′1,··· ,L′n EG(L′1, · · · , L′n).
An important use of the non-constructive scheme is to provide a general lower bound

for arbitrary topology. For any set of decision-making algorithms in a topology G, we can
simulate it on a complete graph by considering only edges in G. Thus the minimal E for
complete graphs is a general lower bound for arbitrary topology:

I Theorem 9. The expected number of wrong nodes E under the optimal decision-making
algorithms of complete graphs lower bounds the E of any algorithms in any topology.

From our previous discussion on random graphs, we know that the expected number of
wrong guesses E highly depends on the number of nodes revealing their private signals. This
inspires us to make the following definitions:

I Definition 10. Node i reveals valid information under ci−1 if and only if node i outputs
its private signal under ci−1, i.e. ci = Li(ci−1, si) = si. Furthermore, we denote Valid(·) as a
function that extracts a vector of valid information out of a decision vector, i.e. cj is in the
vector Valid(ci) if and only if cj is valid.

I Definition 11. A node i’s reveal set RSi is the set of ci−1 which causes node i to reveal
valid information.

Note that any valid information is correct with probability p and is independent of other
nodes. Using the same Bayesian argument[12], we can prove a similar lemma as Claim 1 in
Section 3, which states that a node’s guess is beneficial for later nodes if and only if the
guess is valid:

I Lemma 12. For a node i seeking to minimize its failure probability Ei, the optimal
decision-making algorithm is to perform the Majority Algorithm on Valid(ci−1)

⋃
{si}, i.e.

ci = Maj(Valid(ci−1), si).

5.1 A non-constructive optimal algorithm scheme for general graphs

In this section, we provide a general scheme for finding the optimal decision-making algorithms
of all nodes in arbitrary topologies. Our scheme is non-constructive in that it neither explicitly
specifies what the optimal algorithms are, nor shows how to find them efficiently.

Given the underlying topology, all the nodes decide their algorithms sequentially in a
greedy way as follows. Node 1 publicly announces L1, based on its own rationality, then node
2 announces L2 with the knowledge of L1, etc(see Algorithm 1). Any node i will base its
knowledge on L1, · · · , Li−1 when deciding Li. Each node designs its own decision-making
algorithm in order to locally minimizes the failure probability. Denote this construction
scheme as GC(·), the abbreviation of “greedy construction”, then for node i, we have
Li = GC(L1, · · · , Li−1). We can prove by contradiction that such a locally optimal scheme
lead to an overall optimality:

I Theorem 13. L1, L2, . . . , Ln constructed as in Algorithm 1 minimizes the expected number
of wrong nodes, i.e. E(L1, L2, . . . , Ln).

ICALP 2016
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Algorithm 1 A non-constructive optimal algorithm scheme for general graphs
1: Given L1, · · · , Ln−1, node n constructs Ln that aims at minimizing its own failure

probability En.
2: Given L1, · · · , Ln−2, and also the fact that node n is greedy, node n− 1 constructs Ln−1

such that the overall loss of him and node n is minimized.
3: This process continues. Each Li greedily minimizes the expected number of wrong nodes

after among {i, · · · , n} given L1, · · · , Li−1.
4: Node 1 knows that all later nodes are “greedy”. Their algorithms L2, · · · , Ln can all be

written as a function of L1. It then constructs L1 such that E is minimized.
5: Knowing what L1 is, we can backtrack L2, and recursively all the output algorithms Li.

5.2 Optimal algorithms for complete graphs
In this section, we specify the optimal decision-making algorithms for complete graphs
and thus provide a general lower bound for our model(by Theorem 17). Several intrinsic
properties regarding information cascades in complete graph will also be presented.

We start with a lemma showing that optimal algorithm will either reveal valid information
or perform Majority Algorithm on all previous guesses.

I Lemma 14. In the optimal algorithm, a node either reveals valid information or apply
Majority Algorithm on all previous outputs, i.e.

Li =
{

si ci−1 ∈ RSi

Maj(ci−1) ci−1 6∈ RSi
.

It is worth pointing out several non-trivial points of Lemma 14 : (a) the Majority Algorithm
is performed on previous guesses only and ignores its own private signal; (b) the Majority
Algorithm is performed on all previous guesses, not only on the valid guesses. An established
result in the proof of Lemma 14 is that the Majority Algorithm will cascade on complete
graphs, i.e. if a node performs Majority Algorithm, all later nodes will also perform Majority
Algorithm. This implies the existence of a switching point, where all nodes prior to this point
reveal their private signals, and all later nodes perform Majority Algorithm based on former
nodes’ signals. If we can estimate the position of this switching point, then an estimation of
E is achieved.

Lemma 14 specifies a node’s action outside the reveal set. However, to get an explicit
representation of Li, an understanding of the reveal set itself is required. We introduce the
following lemma that fills this gap.

Denote diff(ci−1) = (# 1 in Valid(ci−1))− (# 0 in Valid(ci−1)), which serves as a criteria
to measure the strength of valid information in previous decision vector ci−1 = (c1, · · · , ci−1).

I Lemma 15. The reveal set of a node i can be explicitly expressed with respect to some
parameters δn(·), where RSi = {ci−1 : |diff(ci−1)| ≥ δn(i)}.

Proof. This lemma follows from the fact that a node outputs based on the Bayesian prob-
ability for the ground truth bit b, which depends solely upon diff(ci−1). Given ci−1, the
Bayesian probability for b is Pr[b = 0|ci−1] = 1

1+( p
1−p )diff(ci−1)

Pr[b = 1|ci−1] = 1
1+( 1−p

p )diff(ci−1)

. (2)
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Lemma 14 implies that for each node, (a) if the previous decision vector convinces it that b
equals Maj(ci−1) with high probability, it follows the majority of former output decisions; (b)
otherwise, it tries to provide more information by revealing its own private signal. As implied
by Equation (2), the larger |diff(ci−1)| is, the more likely b = Maj(Valid(ci−1)). This lead us
to conclude the existence of a threshold δn(i) such that Li applies Majority Algorithm if and
only if |diff(ci−1)| ≥ δn(i). J

Finally, given i and n as input, we show how to efficiently derive δn(i) in average O(logn)
time. Denote E(i, d) to be the expected number of wrong nodes given that |diff(ci−1)| = d.
The idea is to use recursion to derive E(i, d) for all i and d, in the process of which {δn(i)|i}
may be calculated. If a node k chooses to reveal its private signal, E(k, d) is updated as

E(k, d) = q1 · E(k + 1, d+ 1) + (1− q1) · E(k + 1, d− 1),

where q1 is the probability that node k’s private signal matches the majority of former guesses.
Similarly, if node k chooses to do Majority Algorithm, E(k, d) is updated as

E(k, d) = q2 ·
(
n− k + d

2

)
+ (1− q2) · k + d

2 ,

where q2 is the probability that the majority of former outputs is correct. Therefore, we can
calculate {E(i, d)} in time O(n2). A further improvement can be made by exploiting the
properties of δn(): δn(i+ 1)− 1 ≤ δn(i) ≤ δn(i+ 1) + 1, Thus to calculate {δn(i)}, it suffices
to calculate {E(i, d) | d < δn(i), i ≥ n}, which requires only n · maxi{δn(i)} = O(n logn)
time complexity.

I Lemma 16. Given n as input, we can calculate the set {δn(i)} in O(n logn) time.

5.3 General lower bound for our model

Finally we analyze the expected number of wrong nodes for the optimal algorithms in
complete graphs, and provide a general Θ(logn) lower bound for the model.

I Theorem 17. The expected number of wrong nodes E for any topology and any algorithm
is at least Θ(logn).

Proof. It suffices to prove that the E of the optimal algorithms in complete graph is bounded
by Θ(logn). In the proof of Lemma 14, we develop the concept of a “switching point”,
where all nodes prior to this point reveal valid information and all nodes afterwards perform
Majority Algorithm. Denote m as a random variable of the switching point’s position. We
prove that at least one of the following happens: (a) m ≥ (logp/(1−p) n)/2; or (b) E is greater
than

√
n/2.

If m < (logp/(1−p) n)/2, then from Equation (2), we know that the majority of revealed
signals are wrong with probability at least (1 + (p/(1− p))m)−1 > n−0.5/2. So the expected
number of wrong nodes is lower bounded by (n−m)/

√
n which is asymptotically greater

than
√
n/2. Therefore, for the optimal output algorithms in complete graph, E is at least

min
(

(1− p) logp/(1−p) n
/

2,
√
n
/

2
)

= Ω(logn). J
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...
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...

2nd Layer

...

...

...

k-th Layer

Figure 3 A k-layer graph.

6 Optimal K-Layer Topology

In section 3, we show that the optimal E for random graphs is Θ(logn), which is asymptotically
the same as the general lower bound in Theorem 17. Yet the question remains what is the
actual optimal topology for the Majority Algorithm.

In this section, we propose a family of layer graphs and search for the optimal topology
among this family. We claim, without proof, that the optimal topology of layer graphs is
actually the optimal topology for Majority Algorithm.

To find the optimal topology, it helps to first understand the hidden insights behind small
overall E . In the optimal algorithms for complete graphs, nodes first judge the strength of
the current cascade, and then decide whether to follow the cascade or reveal their own signals
to strengthen the cascade. Such a think-before-acting way of decision-making guarantees
the correctness probability of any established cascade, and thus results in good overall
performance. We hope to know whether such think-before-acting could make it possible for
Majority Algorithm to achieve optimality simply by adjusting the topology. This inspires us
the following definition of layer graphs.

I Definition 18 (Definition of layer graphs). A graph is said to have k layers if it can be
separated into k disjoint groups, S1, · · · , Sk, where any node in group Si is connected to and
only to all nodes in Si−1. See Figure 3 for an example.

I Algorithm 19. Given a k-layer graph G, we consider how nodes perform in G. First of
all, similar to the optimal algorithms in complete graph, we have |S1| many nodes revealing
valid information at the very front. If there exists a cascade in S1 (the number of one choices
outmatches another by at least two), then all later nodes follow this cascade. Otherwise, nodes
in S2 reveal their private signals. This process continues until a cascade happens in some
layer. In this sense, layer graphs do contains the think-before-acting way of decision-making.

In the following sections, we find the optimal topology among layer graphs, and show
that the expected number of wrong nodes E for such optimal topology is also Θ(logn). This
optimal E will be compared to previous bound and results, from which we will be able to
glimpse the limit of Majority Algorithm. Throughout this section, if not otherwise mentioned,
we will assume that the output algorithm is Majority Algorithm. We denote the expected
number of wrong nodes on a k-layer topology (S1, · · · , Sn) as E(|S1|, · · · , |Sn|).

6.1 Optimal topology for layer graphs
Remark 19 provides an intuitive way to calculate the E of any layer graph. Given i independent
signals, we denote pw(i) as the probability that these signals generate a wrong cascade,
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and pn(i) as the probability that these signals does not generate cascade in either side. A
recursion regarding E of any layer graph can be shown to be:

E(a1, · · · , ak) = (1− p) · a1 + pw(a1) · (n− a1) + pn(a1) · E(a2, · · · , ak), (3)

where (1− p)a1 is the expected number of wrong nodes among the first layer, n− a1 is the
expected number of wrong nodes among later layers under wrong cascade, and E(a2, · · · , ak)
is the expected number of wrong nodes of later layers under no cascade. By extending the
recursive term, we can simplify Equation (3) into

E(a1, · · · , ak) =
k∑

i=1

( i−1∏
j=1

pn(aj) ·
(

(1− p) · ai + pw(ai) · (n−
i−1∑
j=1

aj)
))
. (4)

I Algorithm 20. Our goal is to estimate E of the optimal layer graph to the Θ(logn) level.
Any approximation of E + o(logn) would be satisfying. This relaxation releases us from
getting an exact optimum and allows us to make proper adjustments that greatly reduce
the difficulty of the calculation. For example, in the derivation of Equation (3) and (4), we
assume without loss of generality that each layer has an even number of nodes. This will
result in O(1) changes in the optimal parameters, which is tolerable.

To find a set of parameters {k, a1, · · · , ak} such that E(a1, · · · , ak) is minimized, we need
the following basic steps:

We first show that in Equation (3), the contribution of pn(a1)E(a2, · · · , ak) is limited
and may be discarded without much change to the optimal parameters. Therefore, it
suffices to consider the optimization of a1 in the equation

arg min
a1

f(a1) = arg min
a1

(
(1− p) · a1 + pw(a1) · (n− a1)

)
. (5)

We then solve the equation f(x+ 1)− f(x) = 0, which has a unique solution. It can be
shown that f(a1) first decreases then increases with respect to a1. Thus the solution for
f(x+ 1)− f(x) = 0 offers an approximation to the optimal a1 with only O(1) error.
After solving the optimal size of the first layer, we can apply this method recursively to
calculate the optimal size of all layers.

The proof for the above three results are complex and brute-force. First, we present a
lemma that addresses result 2. It is worth pointing out that Equation 5 is the expected loss
when we have only two layers, with the first layer of size a1 and the second layer of size
n − a1. Therefore, result 2 is equivalent to finding an optimal topology among two layer
graphs. For convenience, we denote s = 1/(4p(1− p)).

I Lemma 21. For the optimal topology among two layer graphs, its first layer has size

logs n− logs(logs n)/2 +O(1).

I Theorem 22. The optimal layer topology has k = n/ logs n + o(n/ logs n) many layers.
The first layer has a1 = logs n many nodes. The size of layer i may be written as a recursion
of the size of layer i− 1,

ai ∼ logs(sai−1 − ai−1). (6)

In other words, the optimal topology satisfies the following structural properties:
The sizes of layers gradually decrease, and the number of layers with size logs n − i is
(s− 1)n/(si+1(logs n− i)).

ICALP 2016
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The first (s− 1)n/(s logs n) layers have size logs n.
The following (s− 1)n/(s2(logs n− 1)) layers have size logs n− 1, and so on.

We believe that the layer topology provided in Theorem 22 is actually the optimal
topology for Majority Algorithm. However, we have not yet come up with any rigorous proof
to verify our conjecture. We will leave this as an open problem for future work.

I Conjecture 23. The layer topology provided in Theorem 22 is the optimal topology for
Majority Algorithm.

6.2 Experiments on the optimal parameters
For layer graphs, Equation (6) can be used to calculate the optimal parameters with high
precision. Thus the results in Theorem 22 is a very tight approximation, which works
flawlessly if we only seek to analyze the complexity of E . However, in real life, users might
wish to achieve the exact optimal parameters. In this case, the constant error in our equations
can not be neglected. Here, we introduce an algorithm that searches for the exact optimal
topology in average O(1) run time.

Recall that layer graphs satisfy the following properties. For a k-layer structure (a1, · · · , ak),
if the first layer cascades, the rest of the nodes follow this cascaded result. Otherwise, the
rest of the nodes become equivalent to a (k − 1)-layer structure, with each layer’s size being
(a2, · · · , ak) (or (a2 + 1, · · · , ak) if a1 is odd). Therefore, for a fixed a1, the optimal k and
a2, · · · , ak should be chosen such that,

If a1 is even,

(k − 1, a2, · · · , ak) = arg max
k′,a′1,··· ,a′

k

E
(
a′1, · · · , a′k

∣∣∣ k′∑
i=1

a′i = n− a1

)
. (7)

If a1 is odd,

(k − 1, a2 + 1, · · · , ak) = arg max
k′,a′1,··· ,a′

k

E
(
a′1, · · · , a′k

∣∣∣ k′∑
i=1

a′i = n− a1 + 1
)
. (8)

This implies that given the optimal layer topologies for all n′ < n, calculating the optimal
layer topology for n should be easy. We can simplify the problem into an optimization over a1,
instead of the optimization over many parameters. A further analysis shows that the optimal
layer topology for n nodes and n + 1 nodes cannot differ by too much. More specifically,
denote the optimizing parameter for n nodes as (kn, a

n
1 , · · · , an

kn
), then |an

1 − an+1
1 | ≤ 1.

Using this, together with the recursive idea in Equation 7 and 8, we can design an algorithm
that runs in time O(n), and find the optimal layer topology for all n′ ≤ n. The amortized
running time of this algorithm is only O(1).

7 Conclusion

In this paper, we discussed information cascades on various network topologies. We provide a
non-constructive optimal algorithm scheme for general graphs, solve the scheme for complete
graph and achieve a general lower bound for our model. We also studied Majority Algorithm
in random graphs and layer graphs, the minimal E of which was shown to be asymptotically
the same with our general lower bound. From the experiment results, a gap between the
general lower bound and layer graphs can be observed. We believe this to be a result of
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the difference in the model setting, i.e. Majority Algorithm is weaker than optimal general
algorithms.

Future work in this area may include the study of the following scenarios.
The nodes’ order of decision-making is no longer fixed and given, but instead randomly
sampled from all permutations.
The topology is fixed and we are only able to add or remove a fixed portion of the edges.
The goal is to minimize E under this constraint.
Plant nodes in the network. These nodes could sacrifice themselves to reveal their true
private signal. How should a topology designer control and position these plant nodes in
the topology?
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Abstract
Let ~Φ be a uniformly distributed random k-SAT formula with n variables and m clauses. For
clauses/variables ratio m/n ≤ rk-SAT ∼ 2k ln 2 the formula ~Φ is satisfiable with high probability.
However, no efficient algorithm is known to provably find a satisfying assignment beyond m/n ∼
2k ln(k)/k with a non-vanishing probability. Non-rigorous statistical mechanics work on k-CNF
led to the development of a new efficient “message passing algorithm” called Survey Propagation
Guided Decimation [Mézard et al., Science 2002]. Experiments conducted for k = 3, 4, 5 suggest
that the algorithm finds satisfying assignments close to rk-SAT. However, in the present paper
we prove that the basic version of Survey Propagation Guided Decimation fails to solve random
k-SAT formulas efficiently already for m/n = 2k(1 + εk) ln(k)/k with limk→∞ εk = 0 almost a
factor k below rk-SAT.
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1 Introduction

Random k-SAT instances have been known as challenging benchmarks for decades [9, 28, 33].
The simplest and most intensely studied model goes as follows. Let k ≥ 3 be an integer, fix
a density parameter r > 0, let n be a (large) integer and let m = drne. Then Φ = Φk(n,m)
signifies a k-CNF chosen uniformly at random among all (2n)km possible formulas. With k, r
fixed the random formula is said to enjoy a property with high probability if the probability
that the property holds tends to 1 as n→∞.

The conventional wisdom about random k-SAT has been that the problem of finding
a satisfying assignment is computationally most challenging for r below but close to the
satisfiability threshold rk−SAT where the random formula ceases to be satisfiable w.h.p. [28].
Whilst the case k = 3 may be the most accessible from a practical (or experimental) viewpoint,
the picture becomes both clearer and more dramatic for larger values of k. Asymptotically
the k-SAT threshold reads rk−SAT = 2k ln 2− (1 + ln 2)/2 + εk, where εk → 0 in the limit of
large k [14]. However, the best current algorithms are known to find satisfying assignments
in polynomial time merely up to r ∼ 2k ln k/k [11]. In fact, standard heuristics such as Unit
Clause Propagation bite the dust for even smaller densities, namely r = c2k/k for a certain
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absolute constant c > 0 [17]. The same goes (provably) for various DPLL-based solvers
[1, 30]. Hence, there is a factor of about k/ ln k between the algorithmic threshold and the
actual satisfiability threshold.

In the early 2000s physicists put forward a sophisticated but non-rigorous approach
called the cavity method to tackle problems such as random k-SAT both analytically and
algorithmically. In particular, the cavity method yields a precise prediction as to the value
of rk−SAT for any k ≥ 3 [24, 26], which was recently verified rigorously for sufficiently large
values of k [14]. Additionally, the cavity method provided a heuristic explanation for the
demise of simple combinatorial or DPLL-based algorithms well below rk−SAT. Specifically,
the density 2k ln k/k marks the point where the geometry of the set of satisfying assignments
changes from (essentially) a single connected component to a collection of tiny well-separated
clusters [22]. In fact, a typical satisfying assignment belongs to a “frozen” cluster, i.e., there
are extensive long-range correlations between the variables. The cluster decomposition as
well as the freezing prediction have largely been verified rigorously [29, 3] and we begin to
understand the impact of this picture on the performance of algorithms [2].

But perhaps most remarkably, the physics work has led to the development of a new
efficient “message passing algorithm” called Survey Propagation Guided Decimation to
overcome this barrier [6, 21, 27, 31]. More precisely, the algorithm is based on a heuristic
that is designed to find whole frozen clusters not only single satisfying assignments by
identifying each cluster by the variables determined by long-range correlations and locally
“free” variables. Thus, by its very design Survey Propagation Guided Decimation is built to
work at densities where frozen clusters exist. Although the experimental performance for
small k is outstanding this yields no evidence of a relation between the occurrence of frozen
clusters and the success of the algorithm. Yet not even the physics methods lead to a precise
explanation of these empirical results or to a prediction as to the density up to which we
might expect SP to succeed for general values of k. In effect, analysing SP has become one
of the most important challenges in the context of random constraint satisfaction problems.

The present paper furnishes the first rigorous analysis of SPdec (the basic version of)
Survey Propagation Guided Decimation for random k-SAT. We give a precise definition and
detailed explanation below. Before we state the result let us point out that two levels of
randomness are involved: the choice of the random formula ~Φ, and the “coin tosses” of the
randomized algorithm SPdec. For a (fixed, non-random) k-CNF Φ let success(Φ) denote the
probability that SPdec(Φ) outputs a satisfying assignment. Here, of course, “probability”
refers to the coin tosses of the algorithm only. Then, if we apply SPdec to the random
k-CNF ~Φ, the success probability success(~Φ) becomes a random variable. Recall that ~Φ is
unsatisfiable for r > 2k ln 2 w.h.p..

I Theorem 1. There is a sequence (εk)k≥3 with limk→∞ εk = 0 such that for any k, r

satisfying 2k(1 + εk) ln(k)/k ≤ r ≤ 2k ln 2 we have success(~Φ) ≤ exp(−Ω(n)) w.h.p.

If the success probability is exponential small in n sequentially running SPdec a sub-
exponential number of times will not find a satisfying assignment w.h.p. rejecting the
hypotheses that SPdec solves random k-SAT formulas efficiently for considered clauses/vari-
ables ratio. Thus, Theorem 1 shows that SPdec does not outclass far simpler combinatorial
algorithms for general values of k. Even worse, in spite of being designed for this very purpose,
the SP algorithm does not overcome the barrier where the set of satisfying assignments
decomposes into tiny clusters asymptotically. This is even more astonishing since it is possible
to prove the existence of satisfying assignments up to the satisfiability threshold rigorously
based on the cavity method but algorithms designed by insights of this approach fail far
below that threshold. Nevertheless, let me note that the insights gained from Theorem 1
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is actually in line with some non-rigorous physics work on the SP algorithm. Still, there
is some arguing if there is any connection between the failure of algorithms and either the
clustering or the so called freezing phenomenon. Both, neither the connection to clustering
nor to freezing have been rigorously proven yet.

We are going to describe the SP algorithm in the following section. Let us stress
that Theorem 1 pertains to the “vanilla” version of the algorithm. Unsurprisingly, more
sophisticated variants with better empirical performance have been suggested, even ones
that involve backtracking [23]. Also the first version introduced by Mézard, Parisi and
Zecchina [27] contained a bias towards “frozen” variables for the choice of the variable at each
decimation step. However, the basic version of the SP algorithm analysed in the present paper
arguably (regarding the physicists picture of freezing, correlation decay, replica symmetry
assumption [26]) encompasses all the conceptually important features of the SP algorithm.

The only prior rigorous result on the Survey Propagation algorithm is the work of
Gamarnik and Sudan [19] on the k-NAESAT problem (where the goal is to find a satisfying
assignment whose complement is satisfying as well). However, Gamarnik and Sudan study
a “truncated” variant of the algorithm where only a bounded number of message passing
iterations is performed. The main result of [19] shows that this version of Survey Propagation
fails for densities about a factor of k/ ln2 k below the NAE-satisfiability threshold and about
a factor of ln k above the density where the set of NAE-satisfying assignments shatters into
tiny clusters. Though, experimental data and the conceptional design of the SP algorithm
suggest that it exploits its strength in particular by iterating the message passing iterations
a unbounded number of times that depends on n. In particular, to gather information from
the set of messages they have to converge to a fixed point which turns out to happen only
after a number of iterations of order ln(n).

An in-depth introduction to the cavity method and its impact on combinatorics, informa-
tion theory and computer science can be found in [25, 26].

2 The SPdec algorithm

The proof of Theorem 1 is by extension of the prior analysis [10] of the much simpler Belief
Propagation Guided Decimation algorithm. To outline the proof strategy and to explain the
key differences, we need to discuss the SP algorithm in detail. For a k-CNF Φ on the variables
V = {x1, . . . , xn} we generally represent truth assignments as maps σ : V → {−1, 1}, with
−1 representing “false” and 1 representing “true”. Survey Propagation is an efficient message
passing heuristic on the factor graph G(Φ). The factor graph of Φ is a bipartite graph
representation of Φ where each clause and each variable is represented by a vertex. Two
vertices are incident if the corresponding variable is contained in the corresponding clause
[26].

Before explaining the Survey Propagation heuristic, we explain the simpler Belief Propaga-
tion heuristic and emphasize the main extensions later on. To define the messages involved
we denote the ordered pair (x, a) with x→ a and similarly (a, x) with a→ x for each x ∈ V
and a ∈ N(x), where N(x) denotes the neighborhood in the factor graph G(Φ). The messages
are iteratively sent probability distributions (µx→a(ζ))x∈Vt,a∈N(x),ζ∈{−1,1} over {−1, 1}. In
each iteration messages are sent from variables to adjacent clauses and back. After setting
initial messages due to some initialization rule the messages sent are obtained by applying
a function to the set of incoming messages at each vertex. Both the initialization and the
particular update rules at the vertices are specifying the message passing algorithm. The
messages are updated ω(n) times which may or may not depend on n. A detailed explanation
of the Belief Propagation heuristic can be found in [8, p. 519].
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It is well known that the Belief Propagation messages on a tree converge after updating
the messages two times the depth of the tree to a fixed point. Moreover, in this case for
each variable the marginal distribution of the uniform distribution on the set of all satisfying
assignments can be computed by the set of the fixed point messages. Since G(Φ) for constant
clauses/variables ratio contains only a small number of short cycles one may expect that on
the base of the Belief Propagation messages a good estimate of the marginal distribution
of the uniform distribution on the set of all satisfying assignments of Φ could be obtained.
Besides the fact that it is not even clear that the messages converge to a fixed point on
arbitrary graphs this is of course only a weak heuristic explanation which is refuted by
[10]. However, at each decimation step using the Belief Propagation heuristic the Belief
Propagation guided decimation algorithm assigns one variable due to the estimated marginal
distribution to −1 or 1. Simplifying the formula and running Belief Propagation on the
simplified formula and repeating this procedure would lead to a satisfying assignment chosen
uniformly at random for sure if the marginals were correct at each decimation step.

Let us now introduce the Survey Propagation heuristic. As mentioned above the geometry
of the set of satisfying assignments comes as a collection of tiny well-separated clusters above
density 2k ln(k)/k. In that regime a typical solution belongs to a “frozen” cluster. That is all
satisfying assignments in such a frozen cluster agree on a linear number of frozen variables.
Thus, identifying these frozen variables gives a characterization of the whole cluster. Flipping
one of these variables leads to a set of unsatisfied clauses only containing additional frozen
variables. Satisfying one of these clauses leads to further unsatisfied clauses of this kind
ending up in an avalanche of necessary flippings to obtain a satisfying assignment. This ends
only after a linear number of flippings. Given a satisfying assignment with identified frozen
variables each satisfying assignment that disagrees on one of these frozen variables has linear
distance therefore belonging to a different cluster.

This picture inspires the definition of covers as generalized assignments σ ∈ {−1, 0, 1}n
such that

each clause either contains a true literal or two 0 literals and
for each variable x ∈ V that is assigned −1 or 1 exists a clause a ∈ N(x) such that for all
y ∈ N(a) \ {x} we have sign(y, a) · σ(y) = −1.

These two properties mirrors the situation in frozen clusters where assigning a variable to the
value 0 indicates that these variable supposes to be free in the corresponding cluster which is
obtained by only flipping 0 variables to one of the values −1 or 1. However, implementing
the concept of covers, Survey Propagation is a heuristic of computing the marginals over
the set of covers by using the Belief Propagation update rules on covers. This leads to the
equations given by Figure 1. For a more detailed explanation of the freezing phenomenon we
point the reader to [29]. For a deeper discussion on covers we refer to [12].

We are now ready to state the SPdec algorithm.

I Algorithm 2. SPdec(Φ)
Input: A k-CNF Φ on V = {x1, . . . , xn}. Output: An assignment σ : V → {−1, 1}.
0. Let Φ0 = Φ.
1. For t = 0, . . . , n− 1 do
2. Use SP to compute µ[ω]

xt+1 (Φt).
3. Assign

σ(xt+1) =

{
1 with probability µ[ω]

xt+1 (Φt)
−1 with probability 1 − µ

[ω]
xt+1 (Φt).

(7)

4. Obtain a formula Φt+1 from Φt by substituting the value σ(xt+1) for xt+1 and simplifying.
5. Return the assignment σ.
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For real numbers 0 ≤ x, y ≤ 1 such that max{x, y} > 0 we define

ψζ(x, y) =


xy ·Ψ(x, y) if ζ = 0
(1− x)y ·Ψ(x, y) if ζ = 1
(1− y)x ·Ψ(x, y) if ζ = −1

, Ψ(x, y) = (x+ y − xy)−1

If x = y = 0 set ψ0(0) = 0 and ψ±1(0) = 1
2 . Define for all x ∈ Vt, a, b ∈ N(x), ζ ∈ {−1, 0, 1}

and ` ≥ 0

µ[0]
x→a(±1) = 1

2 , µ[0]
x→a(0) = 0, µ

[`]
b→x(0) = 1−

∏
y∈N(b)\{x}

µ
[`]
y→b(−sign(y, b)) (1)

π[`+1]
x→a (±1) =

∏
b∈N(x,±1)\{a}

µ
[`]
b→x(0) (2)

µ[`+1]
x→a (ζ) = (SP (µ[`]))x→a(ζ) = ψζ(π[`]

x→a(1), π[`]
x→a(−1)). (3)

Let ω = ω(k, r, n) ≥ 0 be any integer-valued function. Define

π[ω+1]
x (Φt,±1) =

∏
b∈N(x,±1)

µ
[ω]
b→x(0) (4)

µ[ω]
x (Φt, ζ) = ψζ(π[ω+1]

x (Φt, 1) · π[ω+1]
x (Φt,−1)) (5)

µ[ω]
x (Φt) = µ

[ω]
x (Φt, 1)

µ
[ω]
x (Φt, 1) + µ

[ω]
x (Φt,−1)

= µ[ω]
x (Φt, 1) + 1

2µ
[ω]
x (Φt, 0). (6)

Figure 1 The Survey Propagation equations that are the Belief Propagation equations on covers.

Let us emphasize that the value µ[ω]
xt+1(Φt) in Step 2 of SPdec is the estimated marginal

probability over the set of covers of variable xt+1 in the simplified formula to take the value
1 plus one half the estimated marginal probability over the set of covers in the simplified
formula to take the value 0. This makes sense since by the heuristic explanation a variable
assigned to the value 0 is free to take either value 1 or −1. Thus, our task is to study the
SP operator on the decimated formula Φt.

3 Proof of Theorem 1

The probabilistic framework used in our analysis of SPdec was introduced in [10] for analysing
the Belief Propagation Guided Decimation algorithm. The most important technique in
analysing algorithms on the random formula ~Φ is the ”method of deferred decisions”, which
traces the dynamics of an algorithm by differential equations, martingales, or Markov chains.
It actually applies to algorithms that decide upon the value of a variable x on the basis of the
clauses or variables at small bounded distance from x in the factor graph [5]. Unfortunately,
the SPdec algorithm at step t explores clauses at distance 2ω from xt where ω = ω(n) may
tend to infinity with n. Therefore, the “defered decisions” method does not apply and to
prove Theorem 1 a fundamentally different approach is needed.

We will basically reduce the analysis of SPdec to the problem of analysing the SP operator
on the random formula ~Φt that is obtained from ~Φ by substituting “true” for the first t
variables x1, . . . , xt and simplifying (see Theorem 3 below). In the following sections we
will prove that this decimated formula has a number of simple to verify quasirandomness
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properties with very high probability. Finally, we will show that it is possible to trace the
Survey Propagation algorithm on a formula Φ enjoying this properties.

Applied to a fixed, non-random formula Φ on V = {x1, . . . , xn}, SPdec yields an assign-
ment σ : V → {−1, 1} that may or may not be satisfying. This assignment is random,
because SPdec itself is randomized. Hence, for any fixed Φ running SPdec(Φ) induces a
probability distribution βΦ on {−1, 1}V . With S(Φ) the set of all satisfying assignments of
Φ, the “success probability” of SPdec on Φ is just

success(Φ) = βΦ(S(Φ)). (8)

Thus, to establish Theorem 1 we need to show that in the random formula

success(~Φ) = β~Φ(s(~Φ)) = exp (−Ω(n)) (9)

is exponentially small w.h.p. To this end, we are going to prove that the measure β~Φ is
“rather close” to the uniform distribution on {−1, 1}V w.h.p., of which S(~Φ) constitutes only
an exponentially small fraction. However, to prove Theorem 1 we prove that the entropy of
the distribution β~Φ is large. Let us stress that this is not by Moser’s entropy compression
argument which works up to far smaller clauses/variables ratios [32].

3.1 Lower bounding the entropy
Throughout the paper we let ρk = (1 + εk) ln(k) where (εk)k≥3 is the sequence promised by
Theorem 1 and let r = 2kρ where ρ ≥ ρk.

For a number δ > 0 and an index i > t we say that xi is (δ, t)-biased if∣∣∣∣µ[ω]
xi

(Φt, 1)− 1
2

(
1− µ[ω]

xi
(Φt, 0)

)∣∣∣∣ > δ. (10)

Moreover Φ is (δ, t)-balanced if no more than δ(n− t) variables are (δ, t)-biased.
If ~Φ is (δ, t)-balanced, then by the basic symmetry properties of ~Φ the probability that

xt+1 is (δ, t)-biased is bounded by δ. Furthermore, given that xt+1 is not (δ, t)-biased, the
probability that SPdec will set it to “true” lies in the interval [ 1

2 − δ,
1
2 + δ]. Consequently,∣∣∣∣12 − P

[
σ(xt+1) = 1|~Φ is (δ, t)-balanced

]∣∣∣∣ ≤ 2δ. (11)

Thus, the smaller δ the closer σ(xt+1) comes to being uniformly distributed. Hence, if
(δ, t)-balancedness holds for all t with a “small” δ, then βΦ will be close to the uniform
distribution on {−1, 1}V .

To put this observation to work, let θ = 1− t/n be the fraction of unassigned variables
and define

δt = exp(−cθk), ∆t =
t∑

s=1
δt and t̂ =

(
1− ln(ρ)

c2k

)
n, (12)

where c > 0 is a small enough absolute constant.
The following result provides the key estimate by providing that at any time t up to t̂

with sufficiently high probability ~Φ is (δt, t)-balanced with a sufficiently small δt to finally
prove Theorem 1.

I Proposition 3. For any k, r satisfying 2kρk/k < r ≤ 2k ln 2 there is ξ = ξ(k, r) ∈ [0, 1
k ] so

that for n large enough the following holds. For any 0 ≤ t ≤ t̂ we have

Pr
[
~Φ is (δt, t)-balanced

]
≥ 1− exp [−3ξn− 10∆t] . (13)
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3.2 Tracing the Survey Propagation Operator
To establish Proposition 3 we have to prove that ~Φ is (δt, t)-balanced with probability very
close to one. Thus, our task is to study the SP operator defined in (1) to (3) on ~Φt. Roughly
speaking, Proposition 3 asserts that with probability very close to one, most of the messages
µ

[`]
x→a(±1) are close to 1

2 (1−µ[`]
x→a(0)). To obtain this bound, we are going to proceed in two

steps: we will exhibit a small number of quasirandomness properties and show that these
hold in ~Φt with the required probability. Then, we prove that deterministically any formula
that has these properties is (δt, t)-balanced.

3.2.1 The “typical” value of π[`]
x→a(ζ)

First of all recall that the messages sent from a variable x to a clause a ∈ N(x) are obtained
by

ψζ(π[`]
x→a(1), π[`]

x→a(−1)) for ζ ∈ {−1, 0, 1}. (14)

This in mind, we claim a strong statement that both π[`]
x→a(1) and π[`]

x→a(−1) are very close to
a “typical” value π[`] for most of the variables x ∈ Vt and clauses a ∈ N(x) at any iteration
step ` under the assumption that the set of biased variables is small at time `− 1. Assuming
that

π[`]
x→a(1) = π[`]

x→a(−1) = π[`]

we of course obtain unbiased messages by

µ[`]
x→a(±1) = ψ1(π[`]) = ψ−1(π[`]) = 1

2(1− µ[`]
x→a(0)).

The products π[`]
x→a(ζ) are nothing else but the product of the messages

µ
[`−1]
b→x (0) = 1−

∏
y∈N(b)\{x}

µ
[`−1]
y→b (−sign(y, b))

sent from all clauses b ∈ N(x, ζ) \ {a} to x. Therefore, we define inductively 0 ≤ π[`] ≤ 1 to
be the product of this kind over a “typical” neighborhood. The term “typical” refers to the
expected number of clauses of all lengths that contain at most one additional biased variable.
Focusing on those clauses will suffice to get the tightness result of the biases. Moreover, we
assume that all of the messages µ[`−1]

y→b (−sign(y, b)) sent from variables to clauses in such a
typical neighborhood are ψsign(y,b)(π[`− 1], π[`− 1]) which is claimed to be a good estimation
of most of the messages sent at time `− 1. Additionally, define τ [`] = (1− ψ0(π[`])) as the
estimate of the sum µ

[`]
x→a(1) + µ

[`]
x→a(−1). Let us emphasize that there is no “unique” π[`]

and the way it is obtained in the following is in some sense the canonical and convenient
choice to sufficiently bound the biases for most of the messages.

Generally, let T ⊂ Vt and x ∈ Vt. Then the expected number of clauses of length j that
contain x and at most one other variable from the set T is asymptotically

µj,≤1(T ) = 2jρ · Pr [Bin(k − 1, θ) = j − 1] · Pr
[
Bin

(
j − 1, |T |

θn

)
< 2
]
. (15)

Indeed, the expected number of clauses of ~Φ that x appears in equals km/n = kr = 2kρ.
Furthermore, each of these gives rise to a clause of length j in ~Φt iff exactly j − 1 among
the other k − 1 variables in the clauses are from Vt while the k − j remaining variables are
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in V \ Vt and occur with negative signs. (If one of them had a positive sign, the clause
would have been satisfied by setting the corresponding variable to true. It would thus not be
present in ~Φt anymore.) Moreover, at most one of the j − 1 remaining variables is allowed to
be from the set T . The fraction of variables in T in Vt equals |T |θn . Finally, since x appears
with a random sign in each of these clauses the expected number of clauses of length j that
contain x and at most one other variable from the set T is asymptotically µj,≤1(t)/2.

Additionally let 0 ≤ p ≤ 1 and define

τ(p) = 1− ψ0 (p) and π(T, p) =
10θk∏

j=0.1θk

(
1− (2/τ(p))−j+1

)µj,≤1(T )/2
. (16)

Moreover, let

Π(T, p) =
10θk∑

j=0.1θk

µj,≤1(T )
2 · (2/τ(p))−j+1

be the approximated absolute value of the logarithm of π(T, p).
For a fixed variable x ∈ Vt the expected number of clauses that contain more than one

additional variable from a “small” set T for a “typical” clause length 0.1θk ≤ j ≤ 10θk is
very close to the expected number of all clauses of that given length. Thus, the actual size of
T will influence π(T, p) but this impact is small if T is small and the following bounds on
π(T, p) can be achieved.

I Lemma 4. Let T ⊂ Vt of size |T | ≤ δθn and 0 ≤ p ≤ 2 exp(−ρ). Then exp (−2ρ) ≤
π(T, p) ≤ 2 exp (−ρ).

3.2.2 Bias
First of all let us define the bias not only for the 1 and −1 messages but also for the 0
messages. Hence, for ` ≥ 0, x ∈ Vt and a ∈ N(x) let

∆[`]
x→a = µ[`]

x→a(1)− 1
2

(
1− µ[`]

x→a(0)
)

and (17)

E[`]
x→a = 1

2

(
µ[`]
x→a(0)− ψ0(π[`])

)
. (18)

We say that x ∈ Vt is `-biased if

max
a∈N(x)

|∆[`]
x→a| > 0.1δ or max

a∈N(x)
|E[`]
x→a| > 0.1δπ[`] (19)

and `-weighted if

max
a∈N(x)

|E[`]
x→a| > 10π[`]. (20)

Let B[`] be the set of all `-biased variables and B′[`] be the set of all `-weighted variables.
Obviously, by definition, we have B′[`] ⊂ B′[`].

Writing µ[`]
x→a(sign(x, a)) in terms of the biases we obtain

µ[`]
x→a(sign(x, a)) = 1

2(1− ψ0(π[`]))−
(
E[`]
x→a + sign(x, a)∆[`]

x→a

)
= τ [`]/2−

(
E[`]
x→a + sign(x, a)∆[`]

x→a

)
(21)

We are going to prove that |∆[`]
x→a| and |E[`]

x→a| are small for most x and a ∈ N(x). That
is, given the ∆[`]

x→a and E
[`]
x→a we need to prove that the biases ∆[`+1]

x→a and E
[`+1]
x→a do not
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“blow up”. The proof is by induction where the hypothesis is that at most δtθn variables are
`-biased and at most δ2θn variables are `-weighted and our goal is to show that the same
holds true for `+ 1.

3.2.3 The quasirandomness property
We will now exhibit a few simple quasirandomness properties that ~Φt is very likely to possess.
Based only on these graph properties we identify potentially `-biased or `-weighted variables.
In turn, we prove that variables in the complement of these sets are surely not `-biased
resp. `-weighted. Moreover, we show that these sets are small enough with sufficiently high
probability.

To state the quasirandomness properties, fix a k-CNF Φ. Let Φt denote the CNF
obtained from Φ by substituting “true” for x1, . . . , xt and simplifying (1 ≤ t ≤ n). Let
Vt = {xt+1, . . . , xn} be the set of variables of Φt. Let δ = δt. With c > 0 we let k1 =

√
cθk.

For a variable x ∈ Vt, ζ ∈ {1,−1} and a set T ⊂ Vt let

N (x, ζ) = {b ∈ N(x, ζ) : 0.1θk ≤ |N(b)| ≤ 10θk} ,
N≤1(x, T, ζ) = {b ∈ N (x, ζ) : |N(b) ∩ T \ {x}| ≤ 1},
Ni(x, T, ζ) = {b ∈ N (x, ζ) : |N(b) ∩ T \ {x}| = i} for i ∈ {0, 1},
N1(x, T, ζ) = {b ∈ N(x, ζ) : |N(b) \ T | ≥ k1 ∧ |N(b) ∩ T \ {x}| = 1},
N>1(x, T, ζ) = {b ∈ N(x, ζ) : |N(b) \ T | ≥ k1 ∧ |N(b) ∩ T \ {x}| > 1}.

Thus, N≤1(x, T, ζ) is the set of all clauses a that contain x with sign(x, a) = ζ (which may
or may not be in T ) and at most one other variable from T . In addition, there is a condition
on the length |N(b)| of the clauses b in the decimated formula Φt. Having assigned the first t
variables, we should “expect” the average clause length to be θk. The sets Ni(x, T, ζ) are a
partition of N≤1(x, T, ζ) separating clauses that contain exactly one additional variable from
T \ {x} and clauses that contain none.

Q1. No more than 10δθn variables occur in clauses of length less than θk/10 or greater than
10θk in Φt. Moreover, there are at most 10−4δθn variables x ∈ VT such that

(θk)3δ ·
∑

b∈N(x,ζ)

2−|N(b)| > 1.

Q2. For any set T ⊂ Vt of size |T | ≤ sθn such that δ5 ≤ s ≤ 10δ and any p ∈ (0, 1] there are
at most 10−3δ2θn variables x such that for one ζ ∈ {−1, 1} either∣∣∣∣∣∣Π(T, p)−

∑
b∈N≤1(x,T,ζ)

(2/τ(p))1−|N(b)|

∣∣∣∣∣∣ > 2δ/1000 or

∑
b∈N1(x,T,ζ)

2−|N(b)| > 104ρθks or

∑
b∈N≤1(x,T,ζ)

2−|N(b)| > 104ρ.

Q3. If T ⊂ Vt has size |T | ≤ δθn, then there are no more than 10−4δθn variables x such
that at least for one ζ ∈ {−1, 1}∑

b∈N>1(x,T,ζ)

2|N(b)∩T\{x}|−|N(b)| > δ/(θk).

Q4. For any 0.01 ≤ z ≤ 1 and any set T ⊂ Vt of size |T | ≤ 100δθn we have∑
b:|N(b)∩T |≥z|N(b)|

|N(b)| ≤ 1.01
z
|T |+ 10−4δθn.
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Q5. For any set T ⊂ Vt of size |T | ≤ 10δθn, any p ∈ (0, 1] and any ζ ∈ {−1, 1} the linear
operator Λ(T, µ, ζ) : RVt → RVt ,

Γ = (Γy)y∈Vt
7→

 ∑
b∈N≤1(x,T,ζ)

∑
y∈N(b)\{x}

(2/τ(p))−|N(b)| sign(y, b)Γy


has norm ‖ Λ(T, µ, ζ) ‖�≤ δ4θn, where for a real b × a matrix Λ we let ‖Λ‖� =
maxζ∈Ra\{0}

‖Λζ‖1
‖ζ‖∞ .

I Definition 5. Let δ > 0. We say that Φ is (δ, t)-quasirandom if Q0-Q5 are satisfied.

Condition Q0 simply bounds the number of redundant clauses and the number of variables
of very high degree; it is well-known to hold for random k-CNFs w.h.p. Apart from a bound
on the number of very short/very long clauses, Q1 provides a bound on the “weight” of
clauses in which variables x ∈ Vt typically occur, where the weight of a clause b is 2−|N(b)|.
Moreover, Q2 and Q3 provide that there is no small set T for which the total weight of
the clauses touching that set is very big. In addition, Q2 (essentially) requires that for
most variables x the weights of the clauses where x occurs positively/negatively should
approximately cancel. Further, Q4 provides a bound on the lengths of clauses that contain
many variables from a small set T . Finally, the most important condition is Q5, providing a
bound on the cut norm of a signed, weighted matrix, representation of Φt.

I Proposition 6. There is a sequence (εk)k≥3 with limk→∞ εk = 0 such that for any k, r
satisfying 2k(1 + εk) ln(k)/k ≤ r ≤ 2k ln 2 there is ξ = ξ(k, r) ∈ [0, 1

k ] so that for n large and
δt, t̂ as in (12) for any 1 ≤ t ≤ t̂ we have

P [Φ is (δt, t)-quasirandom] ≥ 1− exp (−10(ξn+∆t))

I Theorem 7. There is a sequence (εk)k≥3 with limk→∞ εk = 0 such that for any k, r

satisfying 2k(1 + εk) ln(k)/k ≤ r ≤ 2k ln 2 and n sufficiently large the following is true.

Let Φ be a k-CNF with n variables and m clauses that is (δt, t)-quasirandom for some
1 ≤ t ≤ t̂. Then Φ is (δt, t)- balanced.

The proof of Proposition 6 is a necessary evil: it is long, complicated and based on
standard arguments. Theorem 7 together with Proposition 6 yields Proposition 3.

3.2.4 Setting up the induction
To prove Theorem 7 we proceed by induction over `. In particular we define sets T [`] and
T ′[`] that contain variables that are potentially `-biased or `-weighted only depending on
the graph structure and the size of the sets T [`− 1] and T ′[`− 1]. The exact definition of
the sets T [`] and T ′[`] which inspired the quasirandomness properties are omitted in this
extended abstract. It actually will turn out that T [`] ⊂ B` and T ′[`] ⊂ B′`. Since we are
going to trace the SP operator on Φt iterated from the initial set of messages µ[0]

x→a(±1) = 1
2

and µ[0]
x→a(0) = 0 for all x ∈ Vt and a ∈ N(x) we set T [`] = T ′[`] = ∅ and π[0] = 0 such that

τ [0] = 1. Now we define inductively

π[`+ 1] = π (T [`], π[`]) , Π[`+ 1] = Π (T [`], π[`]) and τ [`+ 1] = τ (π[`+ 1]) .

I Proposition 8. Assume that π[`] ≤ 2 exp (−ρ). We have B[`] ⊂ T [`] and B′[`] ⊂ T ′[`] for
all ` ≥ 0.
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Furthermore, we establish the following bounds on the size of T [`] and T ′[`]. Since the
sets are defined by graph properties independent from the actual state of the algorithm the
quasirandomness properties suffice to obtain

I Proposition 9. If Φ is (δt, t)-quasirandom, we have T [`] < δθn, T ′[`] < δ2θn and π[`] ≤
2 exp (−ρ) for all ` ≥ 0.

Finally, let us give an idea how this is actually proved. We aim to prove that for most
variables x ∈ Vt for all a ∈ N(x) simultaneously for both ζ ∈ {−1, 1} the values π[`]

x→a(ζ)
are close to a typical value which is estimated by π[`] for each iteration. Let us define for
x ∈ Vt, a ∈ N(x) and ζ ∈ {1,−1}

P
[`+1]
≤1 (x→ a, ζ) =

∏
b∈N≤1(x,T [`],ζ)\{a}

µ
[`]
b→x(0)

P
[`+1]
>1 (x→ a, ζ) =

∏
b∈N(x,ζ)\({a}∪N≤1(x,T [`],ζ))

µ
[`]
b→x(0).

We obtain

π[`]
x→a(ζ) = P

[`]
≤1(x→ a, ζ) · P [`]

>1(x→ a, ζ). (22)

We show that the first factor representing the product over messages sent by clauses of typical
length (regarding the decimation time t) and exposed to at most one additional variable from
T [`] is close to π[`+ 1] simultaneously for ζ ∈ {−1, 1} for all variables x ∈ V \ T ′[`+ 1] and
all a ∈ N(x). Additionally, we prove that the second factor representing the product over
messages sent by clauses of atypical length or exposed to at least two additional variables
from T [`] is close to one simultaneously for ζ ∈ {−1, 1} for all variables x ∈ V \ T [`+ 1] and
all a ∈ N(x).

Acknowledgements I thank my supervisor Amin Coja-Oghlan for supportive conversations
and helpful comments on the final version of this paper.
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Abstract
In the aversion k-clustering problem, given a metric space, we want to cluster the points into k
clusters. The cost incurred by each point is the distance to the furthest point in its cluster, and
the cost of the clustering is the sum of all these per-point-costs. This problem is motivated by
questions in generating automatic abstractions of extensive-form games.

We reduce this problem to a “local” k-median problem where each facility has a prescribed
radius and can only connect to clients within that radius. Our main results is a constant-factor
approximation algorithm for the aversion k-clustering problem via the local k-median problem.
We use a primal-dual approach; our technical contribution is a non-local rounding step which we
feel is of broader interest.
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1 Introduction

In this paper, we consider the following clustering problem: given a metric space (X,D) with
a set of clients, and a parameter k, the goal is to group the clients into k clusters. For each
client j, the cost incurred by j is its distance to the furthest client in its cluster. The cost of
the clustering is the sum over all clients, more precisely, of the cost incurred by the client.
We call this problem the aversion k-clustering problem.

This question is motivated by a problem in developing abstractions of extensive-form
games. Since finding equilibria in large extensive form games is computationally expensive,
one appealing approach if speeding things up is to develop an abstraction of this game. Since
the abstraction is typically much smaller, existing algorithms can be used to solve them to
find optimal strategies, which can be mapped back to the original game. However, there
is often some loss in going to the abstraction. Recent work of Kroer and Sandholm [19]
on automated abstraction algorithms proposed a following way to model this: since several
states of the original game may be collapsed into a single state in the abstraction, the loss
for each original state is its distance (in a suitably defined metric) to the furthest state that
is collapsed with it. The overall loss is the sum of per-state losses. This is precisely the
aversion k-clustering problem we study in this paper.
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To the best of our knowledge, no prior approximation algorithms were known for the
aversion k-clustering problem. Although it is related in spirit to several other clustering
problems, it has some interesting and unique features. Indeed, something that makes this
problem difficult is its high “sensitivity”. To explain this, observe that in problems like
k-median, if we re-assign a single client j to a new cluster C, loosely this changes the
cost by the distance of the client to the new cluster. However, in aversion k-clustering,
reassigning client j to a new cluster C may also significantly change the cost of all other
clients in C, since j may become their new furthest client. This creates problems for most
standard techniques used for facilty-location problems. Another facility-location problem
with a similar high-sensitivity property is the min-sum clustering problem, for which only
logarithmic approximations are known via HST embeddings and a non-trivial dynamic
program [4, 5]. Since our objective is not linear (due to each client paying the distance to its
furthest cluster-mate), we cannot even use tree embeddings.

The main result of the paper is the following:

I Theorem 1. There is a constant-factor algorithm for the aversion k-clustering problem.

1.1 Our Techniques
A few words about our techniques. To solve aversion k-clustering, we first move to a related
problem that is more convenient to deal with: in the local k-median problem, each potential
facility location in the metric space has a “range” Ri associated with it. Like in k-median,
we need to open k facilities, to minimize the sum of distances from clients to their assigned
facilities. However, we now additionally require that each client j is assigned to some facility
i at distance at most Ri. This problem is NP-hard to approximate, but for our purpose it is
sufficient to solve the relaxed version where clients can still connect at distance O(Ri).

The (relaxed) locality restriction causes many of the standard techniques for k-median,
like local-search and LP-rounding, not to extend to this problem. (In fact, we do not know
of a constact factor approximation algorithm for local k-median which only violates locaility
constraints by a constant factor). However, we are successful in extending a primal-dual
technique to the instances which arise from the aversion k-clustering problem. The following
theorem is our main technical result, from which Theorem 1 follows immediately.

I Theorem 2. There is an approximation algorithm for the local k-median problem that
achieves a constant-factor approximation for instances arising from the aversion k-clustering
problem. Its solutions violate the locality constraints by a constant factor.

We use the primal-dual framework of Jain and Vazirani: we find two solutions that open
k1 and k2 facilities (such that k1 < k < k2) such that the “average” of these two solutions
has low cost and opens k facilities. This part of the analysis is well-understood by now
and we omit details because of space limitations. We can view this average solution as a
“well-behaved” LP solution, which we now have to round to integrally open k facilities.

The main problem with this rounding is the locality constraint — typical algorithms tend
to round some fractional facility up to 1, round down close-by fractional facilities to zero to
maintain the total facility mass at k, and reroute clients to the newly opened facility without
increasing the cost by much. However, the locality constraint in our problem means that
such simple rounding approaches fail. For example, the facility that we open may have a
very small Ri value, and can only serve clients that are very close to it. However, the clients
who want to be rerouted may be too far from this facility to satisfy the locality constraint,
even if it is relaxed to γRi for some constant γ.
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Our main technical contribution, and the novel ingredient of our rounding algorithm is a
non-local rounding approach. We first transform the fractional solution so that its support is
a forest. Then we partition this forest into carefully chosen subtrees, so that all the clients in
each particular subtree can be reassigned simultaneously without violating the locality. Now
choosing the least expensive of these subtrees to reassign gives us a solution with k facilities
and a constant-factor approximation for instances arising from the aversion k-clustering
problem. We feel that this non-local rounding will be useful in other contexts, and hence be
of independent interest.

Related work. Approximation algorithms for facility location problems have been studied for
a long time. Indeed, many approximation techniques have been developed while investigating
these problems (see [22]). The problem closest to the local k-median problem is naturally the
metric k-median problem. The first constant-factor for this problem was due to Charikar et
al. [8] via rounding the LP; subsequently, primal-dual algorithms were given by Jain and
Vazirani [17] and Charikar and Guha [7], a local-search algorithm was given by Arya et
al. [2]. The recent approach of Li and Svensson [21] gave a 2.73 +ε-approximation, which was
improved to 2.675 + ε by Byrka et al. [6]. The current NP-hardness is a 1 + 2/e-factor due
to Jain, Mahdian, Saberi [16]. The related problem of uncapacitated metric facility location
has constant-factor approximations via most approximation techniques: see, e.g., the book
of [22]. The current best approximation factor is 1.488 due to Li [20], and the hardness is an
1.463-factor due to Guha and Khuller [13].

The k-median problem sums over each cluster, the sum of distances of clients to their
cluster center. Instead of taking the sum of distances within each cluster, we could take
the maximum distance within each cluster; this gives the sum of cluster diameters problem,
for which a O(1)-factor is due to Charikar and Panigrahy [9]. And instead of summing
diameters over the clusters, if we take the maximum diameter over all clusters, we get the
k-center problem, for which a 2-approximation is due to Gonzalez [12], and Hochbaum and
Shmoys [14], and a matching hardness is due to Hsu and Nemhauser [15].

Another related problem is the min-sum clustering problem, where we sum over the clusters
of the distances between all pairs within the cluster. Bartal et al. [4] give a O(ε−1 log1+ε n)-
approximation, which was recently improved to O(logn) by Behsaz [5]. There are easy
examples where these problems differ from aversion k-clustering by arbitrarily large factors.
Moreover, the non-linearity of our objective function means that we cannot use tree embedding
results to even get a logarithmic approximation.

Our algorithm takes a primal-dual approach pioneered by Jain and Vazirani [17]; while
solving the Lagrangian relaxation and getting a Lagrangian-multiplier preserving algorithm
follows relatively easily, the main contribution is in the non-local rounding algorithm. This
adds to the body of work exploring such primal-dual techniques, which include the work
of Charikar and Panigrahy [9] to give a O(1)-factor approximation for the sum of cluster
diameters, and Chuzhoy and Rabani [10] in their O(1)-factor bicriteria approximation for the
capacitated k-median problem. Non-local roundings of a different flavor were also recently
used for the capacitated k-center problem by Cygan et al. [11] and An et al. [1]. To the best
of our understanding, our rounding technique is different from these previous works.

2 Preliminaries

Let (X,D) be a metric space and let C ⊆ X be the set of clients and F ⊆ X be the set of
facilities. The aversion k-clustering problem is the task to partition C into a collection C of
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k disjoint subsets C1, . . . , Ck with C = ∪ki=1Ci such that

ca(C) :=
k∑
`=1

∑
j1∈C`

max
j2∈C`

D(j1, j2) (P1)

is minimized.
For the local k-median problem, we additionally get a radius (or range) Ri for every i ∈ F .

We seek a set F ⊆ F of k facilities that minimizes

cl(F) :=
∑
j∈C

min
i∈F,

D(i,j)≤Ri

D(i, j).

This differs from the classical k-median problem in that a client can only be assigned to a
facility if it lies within the facility’s radius. It is possible that there is no set of k facilities
which can service all clients. If this is the case, we define the minimum clustering cost as
infinity. In the following claim, we show that it is NP-hard to decide whether we are in this
case or not.

I Claim 1. Deciding feasibility of a local k-median instance is NP-hard.

Proof. We use a well-known reduction from set cover. Let S be a set of sets over a universe
U . We construct a metric space that contains a facility iS for every set S ∈ S and a client ju
for every element u ∈ U . The distance between ju and iS is one if u ∈ S and two otherwise.
Observe that this is a metric. We set the radius RiS of all facilities to one. Observe that
there is a feasible solution for this local k-median instance if and only if the set cover instance
has a solution with at most k sets. Since deciding whether a set cover instance has a solution
with at most k sets is NP-hard [18], it is also NP-hard to decide whether there is a feasible
solution for the local k-median problem. J

Any approximation algorithm has to decide whether there is a feasible solution or not.
Hence, we allow the locality constraint to be violated; i.e. a client may connect to a facility i
if it is within a radius of γRi for a constant γ. We say a solution is a (γ, ψ) bicriteria solution
if the solution violates the locality constraints by a factor of γ and has cost at most ψ times
the optimal (with respect to the original problem).

3 Solving the aversion k-clustering problem via the local k-median
problem

We show that the aversion k-clustering problem can be reduced to the local k-median
problem by sacrificing a constant factor. The idea is to identify a cluster C` with a pair of
points with largest distance and to use this information to represent clusters by an artificial
facility with appropriate radius. More precisely, we define the following metric space. Set
F := {pj1j2 | j1, j2 ∈ C} and refer to pj1j2 as the midpoint of clients j1 and j2. To extend D
from C to C ∪ F , we set

D(j1, pj1j2) := D(j2, pj1j2) = D(j1, j2)
2 and D(pj1j2 , pj1j2) := 0

for all j1, j2 ∈ C. So far, no metric property is violated. Now imagine the incompletely
defined metric as a weighted undirected graph G on the vertices C ∪F where some edges are
missing. Let D be defined as the shortest path metric in G. This is a metric by definition. It
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coincides with the previously defined distances since in a metric, the direct edge must be a
shortest path. For the missing edges, we get that

D(j, pj1j2) = D(pj1j2 , j) = min{D(j, j1), D(j, j2)}+ D(j1, j2)
2 (1)

for all j ∈ C: The point pj1j2 is only connected to j1 and j2, thus any path between j

and pj1j2 has to travel over one of them. Since the edge lengths form a metric, the direct
connection between j and j1 or j2 is shortest, so either (j, j1), (j1, pj1j2) or (j, j2), (j2, pj1j2)
is a shortest path. Analogously, we get that

D(pj1j2 , pj3j4) = D(j1, j2)/2 +D(j3, j4)/2 + min{D(j1, j3), D(j1, j4), D(j2, j3), D(j2, j4)}

for all j1, j2, j3, j4 ∈ C. Finally, we define

Rpj1j2
:= D(j1, j2)/2 (2)

for all pj1j2 ∈ F . Notice that our definition of F allows that j1 = j2. This ensures that
singleton clusters can be expressed. Furthermore, notice that Rpj1j1

= 0, so the facility pj1j1

can only serve j1 (or clients at the same location).
For any facility pj1,j2 , we will drop the reference to j1 and j2 when it is clear from the

context. Hence, p ∈ F refers to the midpoint of some two clients j1 and j2 and the radius of
the facility Rp simply refers to half the distance between these points. Intuitively, each new
“facility” corresponds to a midpoint of two clients in the original problem. These midpoints
allow us to cast the current problem as a k-median problem with the addition of locality
constraints placed on each facility.

We now show how solutions for the aversion k-clustering problem and (γ, α) bicriteria
solutions for the local k-median problem are related. For a client j, let F γj := {i ∈ F |
D(i, j) ≤ γRi} be the set of facilities that j is allowed to connect to. The following integer
linear program (ILP) which is a (natural) modification of the ILP proposed in [3] minimizes
over all feasible (γ, α) bicriteria solutions.

min
∑
j∈C

∑
i∈Fγ

j

D(i, j) · xi,j (ILPγ)

∑
i∈F

yi ≤ k∑
i∈Fγ

j

xi,j ≥ 1 ∀j ∈ C

yi − xi,j ≥ 0 ∀j ∈ C, i ∈ F γj
xi,j , yi ∈ {0, 1} ∀j ∈ C, i ∈ F γj

ILPγ has a variable yi for each i ∈ F that indicates whether the ‘facility’ i is opened, and
a variable xi,j for any combination of an original point j and a facility i ∈ F γj that says
whether j is connected to i.

Let (x, y) be any solution of ILPγ and let c(x, y) be the cost of the solution. We relate
the solutions of ILPγ to the problem (P1) by the following lemmas.

I Lemma 3. Given a solution (x, y) of ILPγ, there exists a solution C = {Cl}kl=1 to (P1)
which has cost no more than ca(C) ≤ (γ + 1)c(x, y).
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Proof. Since (x, y) is an integral solution, let {p1, . . . , pk} ⊆ F denote the facilities which
are opened. We define the cluster Ci to be the set of clients j such that xpi,j = 1. For
any client j ∈ Ci, let j′ ∈ Ci be the client which maximizes D(j, j′). Since D is a metric,
we know that D(j, j′) ≤ D(pi, j) + D(pi, j′). By the locality constraint, it holds that
D(pi, j′) ≤ γRpi . By definition of D and Rpi , we know D(pi, j) ≥ Rpi , which implies
D(pi, j′) ≤ γD(pi, j). Hence, D(j, j′) ≤ (γ + 1)D(pi, j). Summing this over all clients, we
conclude that ca(C) ≤ (γ + 1)c(x, y). J

I Lemma 4. Given a solution C to (P1), we can construct a solution (x, y) to ILPγ(where
γ ≥ 3) which has cost 1

2ca(C) ≤ c(x, y) ≤ 2ca(C).

Proof. Fix a cluster Ci, let j1, j2 ∈ Ci be two clients which maximize D(j1, j2). Open
facility pj1j2 and connect all clients in Ci to it. Notice that it holds D(j, pj1j2) = Rpj1j2

+
min{D(j, j1), D(j, j2)} ≤ 3Rpj1j2 because D(j1, j2) is the maximum distance between two
clients in Ci and because D(j1, j2) = 2Rpj1j2

. Thus, the solution is feasible for γ = 3.
For any client j ∈ Ci, let j′ ∈ Ci be the element which maximizes D(j, j′). For the first

inequality notice that each client j will pay at least D(j, pj1j2) ≥ 1
2D(j1, j2) ≥ 1

2D(j, j′).
Observe that D(j, j′) ≥ max{D(j, j1), D(j, j2)} ≥ (D(j, j1) + D(j, j2))/2 ≥ D(j1, j2)/2.
Combining this with the observation that D(j, j′) ≥ min{D(j, j1), D(j, j2)}, we get that

D(pj1j2 , j) = min{D(j, j1), D(j, j2)}+D(j1, j2)/2 ≤ 2 ·D(j, j′).

Summing over all clients gives the second inequality. J

Let optγilp be the optimal value for ILPγ and let opta be the value of an optimal solution
for (P1). Lemma 4 implies that opt3ilp ≤ 2 · opta. Assuming we compute an ψ-approximate
solution to the optimal ILP3 solution that violates the locality constraint by an additional
factor of %. Then this solution costs at most ψ · opt3ilp ≤ 2ψ · opta and violates the locality
constraints by 3%. By Lemma 3, we can then construct a feasible solution for (P1) that costs
at most (3%+ 1) · 2ψ · opta.

3.1 Good fractional solutions for the local k-median problem
Since problem ILPγ is NP-hard, we relax the integrality constraints to obtain a linear
program. The only difference between the standard k-median relaxation and LPγP is the
locality constraint, i.e., each client j can only connect to facilities in F γj .

min
∑
i,j

D(i, j)xi,j (LPγP)

s.t.
∑
i∈Fγ

j

xi,j ≥ 1 ∀j ∈ C

yi − xi,j ≥ 0 ∀j ∈ C, i ∈ F γj∑
i∈F
−yi ≥ −k

x, y ≥ 0.

max
∑
j

αj − kZ (LPγD)

s.t.
αj ≤ D(i, j) + βi,j ∀j ∈ C, i ∈ F γj∑
j:i∈Fj

βi,j ≤ Z ∀i ∈ F

α, β, Z ≥ 0.

The above LP is very similar to the LP for facility location and this fact was exploited by
Jain and Vazirani to show that primal-dual solutions to the facility location problem can be
transformed into the solutions for the k-median problem. Let LP-FγP be the facility location
variant of LPγP , and let LP-FγD be its dual:
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min
∑

i∈F,j∈C
D(i, j)xi,j +

∑
i∈F

fiyi (LP-FγP)

s.t.
∑
i∈Fγ

j

xi,j ≥ 1 ∀j ∈ C

yi − xi,j ≥ 0 ∀j ∈ C, i ∈ F γj
x, y ≥ 0.

max
∑
j

αj (LP-FγD)

s.t.
αj ≤ D(i, j) + βi,j ∀j ∈ C, i ∈ F γj∑
j:i∈Fγ

j

βi,j ≤ fi ∀i ∈ F

α, β ≥ 0.

Augmenting ideas introduced by Jain and Vazirani [17], we obtain integer solutions to LP-FγP .
This produces two solutions (x1, y1) and (x2, y2) that are nearly feasible for LP3γ

P , but∑
i y

1
i = k1 < k and

∑
i y

2
i = k2 > k. A suitable convex combination of the two is a feasible

solution for LP3γ
P and is a constant factor away from the optimal value of LPγP .

I Lemma 5. Given any ε > 0 and γ > 0, there exists a polynomial time algorithm which finds
two feasible integer solutions (x1, y1), (x2, y2) for LP-F3γ

P with the following properties:
1.
∑
i y

1
i = k1 and

∑
i y

2
i = k2 for two integers k1 < k < k2.

2. Set ρ = k2−k
k2−k1

. The solution (x̂, ŷ) = ρ(x1, y1) + (1− ρ)(x2, y2) is feasible for LP3γ
P with

cost at most (3 + ε) times the optimal solution to LPγP .

Since the essential ideas behind this lemma use standard techniques, we omit the full proof
because of space limitations. The main differences to the standard Jain-Vazirani primal-dual
process are as follows: When finding the initial set of open facilities, we restrict clients to
paying and connecting only to facilities whose radius they lie in. In the clean-up step, the
Jain-Vazirani algorithm selects the finally open facilities by finding an arbitrary independent
set of facilities in some graph. We use the freedom to choose any independent set and choose
a set that ensures that clients that have to be reassigned (because their original facility was
closed) can always be routed to an open facility with higher radius than their original facility.

3.2 Rounding
Given any two integer solutions (x1, y1) and (x2, y2) for LP-FγP , which open A,B ⊆ F

facilities, respectively, we define a weighted bipartite graph G(x1, y1, x2, y2) as follows. The
graph is defined on the vertex set with bipartitions A and B. We connect i ∈ A to i′ ∈ B if
there exists a client j such that x1

i,j = 1 and x2
i′,j = 1. The weight of an edge (i, i′) is the

number of clients j which satisfy the above requirement.

I Lemma 6. The following holds for local k-median instances that arise from the aversion
k-clustering problem. Given two integer solutions (x1, y1), (x2, y2) for LP-FγP which open
facilities A,B ⊆ F , respectively, we can construct solutions (x̃1, ỹ1), (x̃2, ỹ2) that satisfy:
1. (x̃1, ỹ1) opens facilities A and (x̃2, ỹ2) opens facilities B.
2. If (x1, y1), (x2, y2) are feasible for LP-FγP , then (x̃1, ỹ1), (x̃2, ỹ2) are feasible solutions to

LP-F3γ
P , and they satisfy c(x̃1, ỹ1) ≤ 3γc(x1, y1) and c(x̃2, ỹ2) ≤ 3γc(x2, y2).

3. The graph G(x̃1, ỹ1, x̃2, ỹ2) is a forest.

Proof. We will assume that all radii are distinct (we can ensure this, e.g., by adding
a tiny amount of noise to all the radii, or by breaking ties consistently). We say that
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↓R increases
i

i∗

i′

j∗

j
D(j, i∗) ≤ γ(Ri + Ri + Ri∗) ≤ 3γ · Ri∗

(violation of Ri∗ by factor 3γ)
also notice that 3 · Ri∗ ≤ 3 · Ri′

thus the cost can go up by a factor of 3γ

Figure 1 Removing all but one down edge for client i.

an edge {i, i′} in G(x1, y1, x2, y2) is a down edge for i if Ri′ > Ri. For i ∈ A ∪ B, let
D(i) := {i′ | {i, i′} is a down edge} be the set of facilities that are connected to i by down
edges. Furthermore, for every i ∈ A ∪B, let i∗ be a facility that minimizes {Ri | i ∈ D(i)},
i.e., i∗ is the endpoint of a ‘highest’ down edge. For each i ∈ A ∪B, we modify assignments
as follows. For all clients j ∈ C connected to i, and to some facility i′ ∈ D(i) in (x1, y1),
(x2, y2), we reassign them to now connect to i and i∗ in (x̃1, ỹ1), (x̃2, ỹ2). Thus, for all clients
j ∈ C originally connected to i and i∗, the assignment does not change.

Let us calculate the costs of the resulting assignment. Let i′ ∈ D(i) be a facility with
i′ 6= i∗ and let j be a client that is reconnected from i′ to i∗. Notice that D(i, i∗) ≤ γRi+γRi∗
since at least one client lies within the (γ-expanded) radius of i and i∗ simultaneously. We
observe that D(j, i∗) ≤ D(j, i) + D(i, i∗) ≤ γ(Ri + Ri + Ri∗) ≤ 3γ · Ri∗ by the triangle
inequality and by Ri∗ ≥ Ri. Thus, the new solution violates the locality constraint for j by a
factor of at most 3. Since Ri∗ is the smallest radius for all facilities in D(i), it holds that
Ri∗ ≤ Ri′ . Thus, we also have D(j, i∗) ≤ 3γRi′ . Moreover, since the instances arise from
local k-median, equations (1) and (2) imply that D(j, i′) ≥ Ri′ . (This is the only part of the
proof that relies on the local k-median instances arising from aversion k-clustering). Hence
we have D(j, i∗) ≤ 3γRi′ ≤ 3γD(j, i′). Thus the cost of each client j is increased by a factor
of at most 3γ, which immediately proves Property 2. (Figure 1 visualizes this calculation).

We do not open or close any facilities, thus Property 1 is true. To see Property 3 holds,
note that by the distinct radii assumption, any cycle would contain a facility with two down
edges, which is no longer possible after the reassignment. J

Lemma 6 transforms our solution such that it corresponds to a forest T on the vertices
A ∪ B. We first assume that T is a tree and later deal with each connected component
separately. We use the tree structure to define a depending rounding procedure to combine
A and B into an integral solution C with low cost. It will be crucial to look at the difference
between the number of vertices from B and A in subtrees of T .

I Definition 7. For any subtree of T ′ ⊆ T , we define the deficiency of T ′ to be df(T ′) =
|B(T ′)| − |A(T ′)| where B(T ′) (and A(T ′)) are the vertices from B (and A) in this subtree.

We start with C = B. Then we find a subtree T ′ with df(T ′) = 1, i.e., one node more
from B than from A. We want to close all facilities in B(T ′), open all facilities in A(T ′) and
reconnect the affected clients. We want that the reassignment follows the assignments in
(x̃1, x̃2), so all facilities in A that are adjacent to B(T ′) must be contained in A(T ′). We
then iterate this process with more subtrees until C has exactly k vertices. Since we gain
one for every subtree, we need t := k2 − k subtrees until |C| was reduced from k2 to k. The
subtrees must be disjoint on the B side, while the vertices from A can overlap. The following
lemma shows that we can find a large set of suitable subtrees from which we can choose the
cheapest t later. Figure 2 visualizes two examples.
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r r

Figure 2 Examples on finding subtrees of G(x1, y1, x2, y2) with df(Ti) = 1. The two left pictures
show a simple special case that also is a worst case for the number of subtrees: The deficiency of the
shown forest F is df(F ) = 2k = 10 and we get df(F )/2 = 5 subtrees by pairing the nodes from B.
The two right pictures show a connected tree T with df(T ) = 7 and 4 subtrees with df(Ti) = 1.

I Lemma 8. Given any tree T with ddf(T )/2e = l and root r ∈ A, we can find l subtrees
T1, . . . , Tl of T with
1. df(Ti) = 1
2. B(Ti) ∩B(Tj) = ∅
3. A(δ(B(Ti))) ⊆ A(Ti)
where we use δ(X) to denote the set of edges from X to X̄.

Proof. Let r be the root of T and c1, . . . , cν be the children of r. Our proof will proceed
with induction on the height of T . By removing a subtree T ′ we mean that we remove all
edges that are in T ′ from T and all vertices except the root of T ′.
Induction Hypothesis: There exist subtrees T1, . . . , Tz, z ∈ N0, of T that satisfy:
1. Each subtree Ti is rooted at a vertex in A and satisfies that df(Ti) = 1.
2. After removing T1, . . . , Tz from T , the following holds. If r ∈ B then df(T ) ≤ 1. If r ∈ A

then df(T ) ≤ 0.

Base Case: T has height 0 or 1, i.e., it is a star. If r ∈ B, then df(T ) ≤ 1 because there
is only one node from B. If r ∈ A, then we can remove the children in pairs until there
are no pairs left. This is because the subtree consisting of r and any two of its children
has deficiency 1. Therefore, each pair and the root will correspond to a subtree (one of Ti
mentioned in the IH) that we remove. After removing them, T consists of only r or r and
one node from B. In both cases, df(T ) ≤ 0.
Induction Step:
Case r ∈ B: By the induction hypothesis (IH), we can remove some subtrees to ensure

that each subtree rooted at c1 . . . cν will have deficiency at most 0. Since df(T ) =∑ν
i=1 df(Trooted at ci) + 1 ≤ 1, we can conclude that this satisfies the first property in the
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IH. Since we didn’t remove any additional subtrees, the second property is vacuously
satisfied.

Case r ∈ A: By the IH, we know that the subtree rooted at each child ci has deficiency
df(ci) ≤ 1. Without loss of generality, let c1, . . . , cp be the children which have deficiency
1 and cp+1 . . . cν have deficiency ≤ 0. If p ≤ 1, then df(T ) ≤ 0. If p ≥ 2, then we remove
pairs of children with positive deficiency. Observe that the subtree rooted at r containing
only the children c1 and c2 has deficiency exactly 1. Hence, these satisfy the second
property in the IH. We continue this process until there is at most 1 child which has
positive deficiency, at which point the the first property is satisfied. This ensures that
the induction step is satisfied.

Notice that each removed subtree has deficiency one. Since we keep the root, the deficiency
decreases by two for each removed subtree. When r ∈ A as assumed in the lemma, then
df(T ) is decreased to at most zero. Thus, at least ddf(T )/2e subtrees are removed. J

For a forest F consisting of trees F1, . . . , Fx, set df(F ) :=
∑x
j=1 df(Fj). We can find

ddf(Fj)/2e subtrees satisfying the properties of Lemma 8 for every every Fj . Thus, we get

x∑
j=1

⌈
df(Fi)

2

⌉
≥

1
2

x∑
j=1

df(Fi)

 = ddf(F )/2e

subtrees, giving the following corollary.

I Corollary 9. Given any forest F with ddf(F )/2e = l, we can find l subtrees T1, . . . , Tl of
F satisfying the properties from Lemma 8.

We now show Theorem 2. We are given an instance of the local k-median problem that
arises from the aversion k-clustering problem. We know that the solutions for the local
k-median problem that are induced by the aversion k-clustering instance are feasible for
LP-F3

P . Thus, we set γ := 3. Then we use Lemma 5 and Lemma 6 to get two solutions
(x1, y1) and (x2, y2) so that the graph G(x1, y1, x2, y2) is a forest, (x1, y1) opens k1 facilities
and (x2, y2) opens k2 ≥ k1 facilities. Both Lemma 5 and Lemma 6 induce a factor of 3
in the radius violation, so (x1, y1) and (x2, y2) are feasible for LP-F9γ

P . Furthermore, the
intermediate solutions (x̂1, ŷ1) and (x̂2, ŷ2) coming from Lemma 5 have the property that for
ρ = (k2 − k)/(k2 − k1), it holds that ρ · c(x̂1, ŷ1) + (1− ρ) · (x̂2, ŷ2) ≤ (3 + ε) · optγl . Applying
Lemma 6 increases the cost bound by a factor of 3γ. Thus, we know that

ρ · c(x1, y1) + (1− ρ) · c(x2, y2) ≤ (3 + ε) · 3γ · optγl := cmix

for ρ = (k2 − k)/(k2 − k1). If (x1, y1) or (x2, y2) opens exactly k facilities, we are done.
Otherwise, k1 < k < k2. If ρ ≥ 1/2, simply output (x1, y1) which then costs c(x1, y1) ≤
2ρ · c(x1, y1) ≤ 2cmix. We assume that this is not the case, i.e., ρ < 1/2.

We build a solution C and start with C = B. Using Corollary 9, we find 1
2 (k2 − k1)

subtrees T1, . . . , T` of G(x1, y1, x2, y2). For each subtree Ti, we can reassign the clients from
the facilities in B(Ti) to the facilities in A(Ti). We denote the connection cost for assigning
the clients to A(Ti) by c(Ti). Notice that c(x1, y1) ≥

∑`
s=1 c(Ti) because every edge of T

can only appear in one subtree (since the B(Ti) are pairwise disjoint). Thus, if we choose
the t = k2 − k subtrees Ti1 , . . . , Tit with the cheapest c(Ti), then

t∑
z=1

c(Tiz ) ≤
t

`

∑̀
s=1

c(Ti) ≤
t

`
c(x1, y1) = k2 − k

1
2 (k2 − k1)

c(x1, y1) = 2ρ · c(x1, y1).



A. Gupta, G. Guruganesh, and M. Schmidt 66:11

The cost of C starts at c(x2, y2) and is increased by at most 2ρ · c(x1, y1). Thus, the solution
costs at most 2ρ · c(x2, y2) + c(x2, y2) ≤ 2ρ · c(x2, y2) + 2(1− ρ) · c(x2, y2) ≤ 2 · cmix where
we recall that ρ < 1/2. Thus, we get an integer solution of cost 2 · (3 + ε) · 3γ · optγl that is
feasible for LP9γ

P . That induces a solution for the aversion k-clustering instance that is a
constant factor approximation as we described below Lemma 4.

3.3 Improving the Approximation Factor
To improve the final approximation ratio for the aversion k-clustering problem, we observe
that the dual variables computed by the primal-dual algorithm can be directly related to
the objective of the aversion k-clustering problem. We split each such dual: Let αO(j)
denote the amount that client j pays to open a facility (the subscript O stands for “open”).
Using the terminology of Jain and Vazirani, we say a client j is directly connected to facility
i if βi,j > 0 and facility i is open. In this case, αO(j) := βi,j . Otherwise, αO(j) = 0.
Define αC(j) := α(j)− αO(j) (intuitively, this is the connection cost—the subscript C is for
connection—that the client has paid for, but for indirectly connected clients we only know
that D(i, j) ≥ αC(j) ≥ (1/3)D(i, j) is true. For directly connected clients, αC(j) = D(i, j).).

I Lemma 10. At the end of the primal-dual algorithm, if client j connects to facility i, then
αC(j) ≥ Ri.

Proof. If j is directly connected to i, then it is immediate that αC(j) = D(i, j) ≥ Ri.
Suppose that j is indirectly connected to facility i′. In this case, let i be the facility that

j was first connected to. Since j is indirectly connected, there has to be a client j′ that has
special edges to both i and i′. We use t(i) and t(i′) to denote the times at which facilities i
and i′ were respectively opened. Notice that αC(j) = α(j) by definition of αC for indirectly
connected clients and that α(j) = t(i) because j was connected to i before.

Case t(i) ≥ t(i′): In this case we know that αC(j) = t(i) ≥ t(i′) ≥ D(i′, j′) ≥ Ri′ .
Case t(i) < t(i′): Since j′ has special edges to i and i′, it had tight edges to both before

either was opened, i.e., D(i′, j′) ≤ t(i). Thus we can say αC(j) = t(i) ≥ D(i′, j′) ≥
Ri′ . J

Once again, we may assume that the Jain-Vazirani algorithm returns two solutions
(x1, y1), (x2, y2) and their duals (α1, Z+) and (α2, Z−). It follows from Jain and Vazirani’s
analysis that the solutions have the following properties.
1.
∑
i y

1
i = k1 and

∑
i y

2
i = k2.

2.
∑
j α

1
C(j) =

∑
j α

1
j − k1 · Z+ and

∑
j α

2
C(j) =

∑
j α

2
j − k2 · Z−

3. x1
i,j = 1 or x2

i,j = 1 =⇒ D(i, j) ≤ 3γRi
4. |Z+ − Z−| ≤ ε
5. For ρ = k2−k

k2−k1
, ρ(α1, Z+) + (1− ρ)(α2, Z−) is feasible for LPγD.

For property 2, notice that α1
C(j) = α1

j for indirectly connected clients, that α1C(j) =
α1
j −βφ(j)j for directly connected clients (where φ(j) is the center j is connected to) and that

the sum of βφ(j)j over all directly connected clients is just k1Z
+. The same holds for the

second solution. Using property 5, we get that ρ(
∑
j α

1
j −k ·Z+)+(1−ρ)(

∑
j α

2
j −k2 ·Z−) is

a lower bound for the optimal value of LPγD and thus also for the optimal value of LPγP . Using
property 2 and 4, this implies that ρ(

∑
j α

1
C(j)) + (1− ρ)(

∑
j α

2
C(j)) ≤ opt(LPγP) + ε. We

apply Lemma 6 to replace x1 and x2 to ensure that the resulting graph G(x1, y1, x2, y2) is a
forest. Note that the procedure only reassigns the clients to facilities with smaller radius than
their currently connected facility. Hence, we can still assume that x1

i,j = 1 =⇒ α1
C(j) ≥ Ri
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(similarly x2
i,j = 1 =⇒ α2

C(j) ≥ Ri). However, we may now have solutions that violate the
locality constraints by a factor of 9γ.

Now we use the procedure described in Lemma 8 to partition the graph G(x1, y1, x2, y2)
into subtrees T1, . . . T` with df(Tp) = 1 for p ∈ {1, . . . , `} and ` = k2−k1

2 . Each tree has
the property that A(δ(B(Tp))) ⊆ A(Tp) for all p ∈ {1, . . . , `}. Since each edge in this tree
represents some set of clients, we use the notation j ∈ Tp to denote that j is associated with
an edge in Tp. Define the cost of the subtree Tp as

∑
j∈Tp α

1
C(j). We choose the k2 − k

cheapest such trees. Since choosing all ` subtrees will result in a cost of
∑
j α

1
C(j), we can

say that the cost of these chosen subtrees is at most 2(k2−k)
k2−k1

∑
j α

1
C(j) = 2ρ

∑
j α

1
C(j).

Our rounded solution (x̂, ŷ) opens all facilities from A that are part of the chosen subtrees
and all facilities from B that are not part of any chosen subtree. Notice that since we open
k2 − k subtrees and these satisfy df(Tp) = 1, ŷ opens exactly k facilities. The assignments of
clients to facilities follow x1 and x2, respectively.

Analogously to Lemma 3, we construct a solution to the aversion k-clustering problem
based on x̂, ŷ. In this solution, each client assigned to a facility pi ∈ A pays at most

D(j, j′) ≤ D(pi, j) +D(pj , j′) ≤ 9γRi + 9γRi ≤ (2 · 9γ)α1
C(j)

where j′ is the furthest away client among all that are assigned to pi. Thus, by our choice of
subtrees, all clients assigned to A pay at most (2 · 9γ)2ρ

∑
j α

1
C(j) in total. The remaining

clients pay at most (2 · 9γ)(
∑
j α

2
C(j)). As before, we can assume that ρ ≤ 1/2. We conclude

that the cost of (x̂, ŷ) is bounded by

(2 · 9γ)
(
2ρ
∑
j

α1
C(j) +

∑
j

α2
C(j)

)
≤ 2(2 · 9γ)(1 + ε)

(
ρ
∑
j

α1
C(j) + (1− ρ)

∑
j

α2
C(j)

)
≤ 2(2 · 9γ)(1 + ε)opt(LPγP)
≤ 2(2 · 9γ)2(1 + ε)opta

where opta is the optimal value for the aversion k-clustering instance and the last inequality
follows by Lemma 4. Since γ = 3, the approximation factor is bounded by 216 + ε.

4 Final Thoughts and Conclusions

This paper shows a (216 + ε)-approximation to the aversion k-clustering problem. Our results
rely on achieving a constant factor bicriteria approximation for local k-median instances
arising from aversion k-clustering problem. Lemma 6 is the only place in our proof where
we use that the local k-median instances are generated from aversion k-clustering instances.
It remains an open question if we can get a constant factor bicriteria approximation for
arbitrary instances of local k-median.
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Abstract
In this paper, we introduce and study the Non-Uniform k-Center (NUkC) problem. Given a finite
metric space (X, d) and a collection of balls of radii {r1 ≥ · · · ≥ rk}, the NUkC problem is to
find a placement of their centers on the metric space and find the minimum dilation α, such
that the union of balls of radius α · ri around the ith center covers all the points in X. This
problem naturally arises as a min-max vehicle routing problem with fleets of different speeds, or
as a wireless router placement problem with routers of different powers/ranges.

The NUkC problem generalizes the classic k-center problem when all the k radii are the
same (which can be assumed to be 1 after scaling). It also generalizes the k-center with outliers
(kCwO for short) problem when there are k balls of radius 1 and ` balls of radius 0. There
are 2-approximation and 3-approximation algorithms known for these problems respectively; the
former is best possible unless P=NP and the latter remains unimproved for 15 years.

We first observe that no O(1)-approximation is to the optimal dilation is possible unless
P=NP, implying that the NUkC problem is more non-trivial than the above two problems. Our
main algorithmic result is an (O(1), O(1))-bi-criteria approximation result: we give an O(1)-
approximation to the optimal dilation, however, we may open Θ(1) centers of each radii. Our
techniques also allow us to prove a simple (uni-criteria), optimal 2-approximation to the kCwO
problem improving upon the long-standing 3-factor. Our main technical contribution is a connec-
tion between the NUkC problem and the so-called firefighter problems on trees which have been
studied recently in the TCS community. We show NUkC is as hard as the firefighter problem.
While we don’t know if the converse is true, we are able to adapt ideas from recent works [4, 1]
in non-trivial ways to obtain our constant factor bi-criteria approximation.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Clustering, k-Center, Approximation Algorithms, Firefighter Problem
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1 Introduction

Source location and vehicle routing problems are extremely well studied [20, 24, 10] in
operations research. Consider the following location+routing problem: we are given a set of
k ambulances with speeds s1, s2, . . . , sk respectively, and we have to find the depot locations
for these vehicles in a metric space (X, d) such that any point in the space can be served
by some ambulance as fast as possible. If all speeds were the same, then we would place
the ambulances in locations S such that maxv∈X d(v, S) is minimized – this is the famous
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67:2 The Non-Uniform k-Center Problem

Figure 1 The left figure shows the dataset, the middle figure shows a traditional k-center
clustering, and the right figure depicts a non-uniform clustering

k-center problem. Differing speeds, however, leads to non-uniformity, thus motivating the
titular problem we consider.

I Definition 1 (The Non-Uniform k-Center Problem (NUkC)). The input to the problem is a
metric space (X, d) and a collection of k balls of radii {r1 ≥ r2 ≥ · · · ≥ rk}. The objective
is to find a placement C ⊆ X of the centers of these balls, so as to minimize the dilation
parameter α such that the union of balls of radius α · ri around the ith center covers all of
X. Equivalently, we need to find centers {c1, . . . , ck} to minimize maxv∈X minki=1

d(v,ci)
ri

.

As mentioned above, when all ri’s are the same (and equal to 1 by scaling), we get
the k-center problem. The k-center problem was originally studied by Gonzalez [11] and
Hochbaum and Shmoys [14] as a clustering problem of partitioning a metric space into
different clusters to minimize maximum intra-cluster distances. One issue (see Figure 1 for
an illustration and refer to [12] for a more detailed explanation) with k-center (and also
k-median/means) as an objective function for clustering is that it favors clusters of similar
sizes with respect to cluster radii. However, in presence of qualitative information on the
differing cluster sizes as is often the case in certain applications, the non-uniform versions of
the problem can arguably provide more nuanced solutions. One extreme special case was
considered as the “clustering with outliers” problem [8] where a fixed number/fraction of
points in the metric space need not be covered by the clusters. In particular, Charikar et
al [8] consider (among many problems) the k-center with outlier problem (kCwO, for short)
and show a 3-approximation for this problem. It is easy to see that kCwO is a special case of
NUkC when there are k balls of radius 1 and ` (the number of outliers) balls of radius 0.

Motivated by the aforementioned reasons (both from facility location as well as from
clustering settings) In this paper, we investigate the worst-case complexity of the NUkC
problem. Gonzalez [11] and Hochbaum and Shmoys [14] give 2-approximations for the
k-center problem, and also show that no better factor is possible unless P = NP. Charikar et
al [8] give a 3-approximation for the kCwO problem, and this has been the best factor known
for 15 years. Given these algorithms, it is natural to wonder if a simple O(1)-approximation
exists for the NUkC problem. In fact, our first result shows a qualitative distinction between
NUkC and these problems: constant-approximations are impossible for NUkC unless P=NP.

I Theorem 2. For any constant c ≥ 1, the NUkC problem does not admit a c-factor
approximation unless P = NP , even when the underlying metric is a tree metric.

The hardness result is by a reduction from the so-called resource minimization for fire
containment problem on trees (RMFC-T, in short), a variant of the firefighter problem. To
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circumvent the above hardness, we give the following bi-criteria approximation algorithm
which is the main result of the paper, and which further highlights the connections with
RMFC-T since our algorithms heavily rely on the recent algorithms for RMFC-T [4, 1]. An
(a, b)-factor bi-criteria algorithm for NUkC returns a solution which places at most a balls
of each type (thus in total it may use as many as a · k balls), and the dilation is at most b
times the optimum dilation for the instance which places exactly one ball of each type.

I Theorem 3. There is an (O(1), O(1))-factor bi-criteria algorithm for the NUkC problem.

Furthermore, as we elucidate below, our techniques also give uni-criteria results when the
number of distinct radii is 2. In particular, we get a 2-approximation for the kCwO problem
and a (1 +

√
5)-approximation when there are only two distinct types of radii.

I Theorem 4. There is a 2-approximation for the kCwO problem.

I Theorem 5. There is a (1 +
√

5)-approximation for the NUkC problem when the number
of distinct radii is at most 2.

1.1 Discussion on Techniques
Our proofs of Theorems 2 and 3 shows a strong connection between NUkC and the so-called
resource minimization for fire containment problem on trees (RMFC-T, in short). This
connection is one of the main findings of the paper, so we first formally define this problem.

I Definition 6 (Resource Minimization for Fire Containment on Trees (RMFC-T)). Given a
rooted tree T as input, the goal is to select a collection of non-root nodes N from T such that
(a) every root-leaf path has at least one vertex from N , and (b) maxt |N ∩ Lt| is minimized,
where Lt is the tth-layer of T , that is, the vertices of T at exactly distance t from the root.

To understand the reason behind the name, consider a fire starting at the root spreading to
neighboring vertices each day; the RMFC-T problem minimizes the number of firefighters
needed per day so as to prevent the fire spreading to the leaves of T .

It is NP-hard to decide if the optimum of RMFC-T is 1 or not [9, 18]. Given any RMFC-T
instance and any c > 1, we construct an NUkC instance on a tree metric such that in the
“yes” case there is always a placement with dilation = 1 which covers the metric, while in the
“no” case even a dilation of c doesn’t help. Upon understanding our hardness construction,
the inquisitive reader may wonder if the reduction also works in the other direction, i.e.,
whether we can solve NUkC using a reduction to RMFC-T problem. Unfortunately, we do not
know if this is true even for two types of radii. However, as we explain below we still can use
positive results for the RMFC-T problem to design good algorithms for the NUkC problem.

Indeed, we start off by considering the natural LP relaxation for the NUkC problem and
describe an LP-aware reduction of NUkC to RMFC-T. More precisely, given a feasible solution
to the LP-relaxation for the given NUkC instance I, we describe a procedure to obtain an
instance I ′ of RMFC-T, and also a feasible fractional solution for the natural LP relaxation
of the RMFC-T problem on I ′. Moreover, given any feasible integral solution to the I ′, we
can obtain a feasible solution to I which dilates the radii by a constant factor. An LP-based
ρ-approximation to RMFC-T would then imply (ρ,O(1))-bi-criteria approximation algorithms
for NUkC. Plugging in the result of Chalermsook and Chuzhoy [4], we directly obtain an
(O(log∗ n), O(1))-bi-criteria approximation for NUkC. We can also obtain Theorem 4 and
Theorem 5 since the corresponding RMFC-T instances have no integrality gap.

Here we reach a technical bottleneck: Chalermsook and Chuzhoy [4] also show that the
integrality gap of the natural LP relaxation for RMFC-T is Ω(log∗ n). When combined with
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our hardness reduction in Theorem 2 , this also implies a (Ω(log∗ n), c) integrality gap for any
constant c > 1 for the natural LP relaxation for NUkC. That is, even if we allow a violation of
c in the radius dilation, there is a Ω(log∗ n)-integrality gap in terms of the violation in number
of balls opened of each type. For RMFC-T though, Adjiashvili, Baggio and Zenklusen [1]
recently showed an improved O(1)-approximation bypassing the LP integrality gap. At a
very high level, the main technique in [1] is to carefully and efficiently “guess” a subset of the
optimum solution, such that the natural LP-relaxation for covering only the uncovered leaves
has O(1)-integrality gap. However, this guessing procedure crucially uses the tree structure
of the given RMFC-T instance. Unfortunately for us though, we get the RMFC-T tree only
after solving the LP for NUkC, which already has an Ω(log∗ n)-gap! Nevertheless, inspired
by the ideas in [1], we show that we can also efficiently “guess” the positions of a certain
number of balls in an optimum solution, such that the standard LP-relaxation for covering
the uncovered points has O(1)-gap. We can then invoke our reduction to RMFC-T to solve
our problem. This is quite delicate, and is the most technically involved part of the paper.

1.2 Related Work and Open Questions
The k-center problem [11, 14] and the k-center with outliers [8] probems are classic problems
in approximation algorithms and clustering. These problems have also been investigated
under various settings such as the incremental model [6, 23], streaming model [5, 23], and
more recently in the map-reduce model [15, 22]. Similarly, the k-median [7, 16, 21, 2] and k-
means [16, 17, 13, 19] problems are also classic problems studied extensively in approximation
algorithms and clustering. The generalization of k-median to a routing+location problem
was also studied recently [10]. It would be interesting to explore the complexity of the
non-uniform versions of these problems. Another direction would be to explore if the new
non-uniform model can be useful in solving clustering problems arising in practice.

2 Hardness Reduction

In this section, we prove Theorem 2 based on the following NP-hardness [18] for RMFC-T.

I Theorem 7 ([18]). Given a tree T whose leaves are at the same distance from the root, it
is NP-hard to distinguish between the following two cases.
YES: There is a solution to the RMFC-T instance of value 1.
NO: All solutions to the RMFC-T instance has value 2.

Given an RMFC-T instance defined by tree T , we now describe the construction of our
NUkC instance. Let h be the height of the tree, and let Lt denote the vertices of the tree
at distance exactly t from the root. So, the leaves constitute Lh since all leaves are at the
same distance from the root. The NUkC instance, I(T ), is defined by the metric space
(X, d), and a collection of balls. The points in our metric space will correspond to the leaves
of the tree, i.e., X = Lh. To define the metric, we assign a weight d(e) = (2c + 1)h−i+1

for each edge whose one endpoint is in Li and the other in Li−1; we then define d be the
shortest-path metric on X induced by this weighted tree. Finally, we set k = h, and define
the k radii r1 ≥ r2 ≥ . . . ≥ rk iteratively as follows: define rk := 0, and for k ≥ i > 1, set
ri−1 := (2c + 1) · ri + 2(2c + 1). This completes the NUkC instance. Before proceeding
we make the simple observation: for any two leaves u and u′ with lca v ∈ Lt, we have
d(u, u′) = 2(2c + 1 + (2c + 1)2 + · · · + (2c + 1)h−t) = rt. The following lemma proves
Theorem 2.
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I Lemma 8. If T is the YES case of Theorem 7, then I(T ) has optimum dilation = 2. If T
is the NO case of 7, then I(T ) has optimum dilation ≥ 2c.

Proof. Suppose T is in the YES case, and there is a solution to RMFC-T which selects at
most 1 node from each level Lt. If v ∈ Lt is selected, then select a center cv arbitrarily from
any leaf in the sub-tree rooted at v and open the ball of radius rt. We now need to show all
points in X = Lh are covered by these balls. Let u be any leaf; there must be a vertex v in
some level Lt in u’s path to the root such that a ball of radius rt is opened at cv. However,
d(u, cv) ≤ d(u, v) + d(v, cv) = 2rt and so the ball of radius 2rt around cv covers u.

Now suppose T is in the NO case, and the NUkC instance has a solution with optimum
dilation < 2c. We build a good solution for the RMFC-T instance N as follows: suppose
the NUkC solution opens the radius < 2c · rt ball around center u. Let v be the vertex on
the u-root path appearing in level Lt. We then pick this node in N . Observe two things:
first, this ball covers all the leaves in the sub-tree rooted at v since rt ≥ d(u, u′) for any
such u′. Furthermore, since the NUkC solution has only one ball of each radius, we get
that |N ∩ Lt| ≤ 1. Finally, since d(u,w) ≥ 2c · rt for all leaves w not in the sub-tree rooted
at v, the ball of radius rt around u doesn’t contain any leaves other than those rooted at
v. Contra-positively, since all leaves w are covered in some ball, every leaf must lie in the
sub-tree of some vertex picked in N . That is, N is a solution to RMFC-T with value = 1
contradicting the NO case. J

3 LP-aware reduction from NUkC to RMFC-T

For reasons which will be apparent soon, we consider instances I of NUkC counting mul-
tiplicites. That is, we consider an instance to be a collection of tuples (k1, r1), . . . , (kh, rh)
to indicate there are ki balls of radius ri. So we have r1 ≥ r2 . . . ≥ rh and

∑h
t=1 kt = k.

Intuitively, the reason we do this is that if two radii rt and rt+1 are “close-by” then it makes
sense to round up rt+1 to rt and increase kt, losing only a constant-factor loss in the dilation.

LP-relaxation for NUkC. We now state the natural LP relaxation for a given NUkC instance
I. For each p ∈ X and radius type ri, we have a variable xp,i ≥ 0 denoting the extent to
which we place a ball of radius ri centered at p. By doing a binary search on the optimal
dilation and scaling, we may assume that the optimum dilation is 1. Then, the following
linear program must be feasible. In what follows, define B(q, ri) = {p : d(p, q) ≤ ri}.

∀p ∈ X,
h∑
t=1

∑
q∈B(p,rt)

xq,t ≥ 1 (NUkC LP)

∀t ∈ 1, · · · , h
∑
p∈X

xp,t ≤ kt

LP-relaxation for RMFC-T. Since we reduce fractional NUkC to fractional RMFC-T, we
now state the natural LP relaxation for RMFC-T on a tree T of depth h+ 1. In fact, we will
work with the following budgeted-version of RMFC-T (which is equivalent to the original
RMFC-T problem — for a proof, see [1]): Instead of minimizing the maximum number of
“firefighters” at any level t (that is |N ∩ Lt| where N is the chosen solution), suppose we
specify a budget limit of kt on |N ∩ Lt|. The goal is the minimize the maximum dilation
of these budgets. Then the following is a natural LP relaxation for the budgeted RMFC-T
problem on trees. Here L = Lh is the set of leaves, and Lt are the layer t-nodes. For a leaf
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node v, we let Pv denote the vertex set of the unique leaf-root path excluding the root.

minα

∀v ∈ L,
∑
u∈Pv

yu ≥ 1 (RMFC-T LP)

∀t ∈ 1, · · · , h
∑
u∈Lt

yu ≤ α · kt

The LP-aware Reduction to Tree metrics. We now describe our main reduction algorithm,
which takes as input an NUkC instance I = {(X, d); (k1, r1), . . . , (kh, rh)} and a feasible
solution x to NUkC LP, and returns a budgeted RMFC-T instance IT defined by a tree T
along with budgets for each level, and a feasible solution y to RMFC-T LP with dilation 1.
The tree we construct will have height h+ 1 and the budgeted RMFC-T instance will have
budgets precisely kt at level 1 ≤ t ≤ h, and the budget for the leaf level is 0. For clarity,
throughout this section we use the word points to denote elements of the metric space in
I, and the word vertices/nodes to denote the tree nodes in the RMFC-T instance that we
construct. We build the tree T in a bottom-up manner, where in each round, we pick a set
of far-away representative points (the distance scale increases as we move up the tree) and
cluster all points to their nearest representative. This is similar to a so-called clustering step
in many known algorithms for facility location (see e.g., [7]), but whereas an arbitrary set
of far-away representatives would suffice in the facility location algorithms, we need to be
careful in how we choose this set to make the overall algorithm work.

Formally, each vertex of the tree T is mapped to some point in X, and we denote the
mapping of the vertices at level t by ψt : Lt → X. We will maintain that each ψt will be
injective, so ψt(u) 6= ψt(v) for u 6= v in Lt. So, ψ−1

t is well defined for the range of ψt.
The complete algorithm runs in rounds h+ 1 to 2 building the tree one level per round.

To begin with, the ψh+1 mapping is an arbitrary bijective mapping between L := Lh+1, the
set of leaves of the tree, and the points of X (so, in particular, |L| = |X|). We may assume it
to be the identity bijection. In each round t, the range of the mappings become progressively
smaller, that is1, ψt(Lt) ⊇ ψt−1(Lt−1). We call ψt(Lt) as the winners at level t. We now
describe round t. Let Covt(p) :=

∑
q∈B(p,rt) xq,t denote the fractional amount the point p is

covered by radius rt balls in the solution x. Also define Cov≥t(p) :=
∑
s≥t Covs(p) denoting

the fractional amount p is covered by radius rt or smaller balls. Let Covh+1(p) = 0 for all p.
Finally, we add a root vertex and connect it to all vertices in L1. This gives us the final tree
T and a solution y which assigns a value to all non-leaf, non-root vertices of the tree T . The
following claim asserts well-definedness of the algorithm.

I Lemma 9. The solution y is a feasible solution to RMFC-T LP on IT with dilation 1.

Proof. The proof is via two claims for the two different set of inequalities.

I Claim 1. For all 1 ≤ t ≤ h, we have
∑
w∈Lt

yw ≤ kt.

Proof. Fix t. Let Wt ⊆ X denote the winners at level t, that is, Wt = ψt(Lt). By definition
of the algorithm,

∑
w∈Lt

yw =
∑
p∈Wt

Covt(p). Now note that for any two points p, q ∈Wt,
we have B(p, rt) ∩ B(q, rt) = ∅. To see this, consider the first point which enters A in the
(t+ 1)th round when Lt was being formed. If this is p, then all points in the radius 2rt ball

1 We are using the notation ψ(X) :=
⋃

x∈X
ψ(x).
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Algorithm 1 Round t of the LP-aware Reduction.
Input: Level Lt, subtrees below Lt, the mappings ψs : Ls → X for all t ≤ s ≤ h.
Output: Level Lt−1, the connections between Lt−1 and Lt, and the mapping ψt−1.
Define A = ψt(Lt) the set of points who are winners at level t.
while A 6= ∅ do
(a) Choose the point p ∈ A with minimum coverage Cov≥t(p).
(b) Let N(p) := {q ∈ A : d(p, q) ≤ 2rt−1} be the set of all nearby points in A to p.
(c) Create a new tree vertex w ∈ Lt−1 corresponding to p and set ψt−1(w) := p. Call p
a winner at level t− 1, and each q ∈ N(p) ⊆ A a loser to p at this level.
(d) Create edge (w, v) for tree vertices v ∈ ψ−1

t (N(p)) associated with N(p) at level t.
(e) Set A← A \ (N(p)).
(f) Set yw = Covt−1(p).

end while

are deleted from A. Since the balls are disjoint, the second inequality of NUkC LP implies∑
p∈Wt

∑
q∈B(p,rt) xq,t ≤ kt. The second summand in the LHS is precisely Covt(p). J

I Claim 2. For any leaf node w ∈ L, we have
∑
v∈Pw

yv ≥ 1.

Proof. We start with an observation. Fix a level t and a winner point p ∈Wt. Let u ∈ Lt
such that ψt(u) = p. Since Wt ⊆Wt+1 ⊆ · · · ⊆Wh, there is a leaf v in the subtree rooted at
u corresponding to p. Moreover, by the way we formed our tree edges in step (d), we have
that ψs(w′) = p for all w′ in the (u, v)-path and hence

∑
w′∈[u,v]-path yw′ = Cov≥t(p).

Now, for contradiction, suppose there is some leaf corresponding to, say point p, such
that the root-leaf path has total y-assignment less than 1. Then, pick the point, among all
such unsatisfied points p, who appears in a winning set Wt with t as small as possible.

By the preceding observation, the total y-assignment p receives on its path from level h
to level t is exactly Cov≥t(p). Moreover, suppose p loses to q at level t− 1, i.e., ψ−1

t (p) is a
child of ψ−1

t−1(q). In particular, it means that q has also been a winner up to level t and so
the total y-assignment on q’s path upto level t is also precisely Cov≥t(q). Additionally, since
ψ−1
t−1(q) became the parent node for ψ−1

t (p), we know that Cov≥t(q) ≤ Cov≥t(p) due to the
way we choose winners in step (a) of the while loop. Finally, by our maximality assumption
on p, we know that q is fractionally satisfied by the y-solution. Therefore, there is fractional
assignment of at least (1−Cov≥t(q)) on q’s path from nodes in level t− 1 to level 1. Putting
these observations together, we get that the total fractional assignment on p’s root-leaf path
is at least Cov≥t(p) + (1− Cov≥t(q)) ≥ 1, which results in the desired contradiction. J

J

The following lemma shows that any good integral solution to the RMFC-T instance IT can
be converted to a good integral solution for the NUkC instance I.

I Lemma 10. Suppose there exists a feasible solution N to IT such that for all 1 ≤ t ≤ h,
|N ∩ Lt| ≤ αkt. Then there is a solution to the NUkC instance I that opens, for each
1 ≤ t ≤ h, at most αkt balls of radius ≤ 2r≥t, where r≥t := rt + rt+1 + · · ·+ rh.

Proof. Construct the NUkC solution as follows: for level 1 ≤ t ≤ h and every vertex
w ∈ N ∩ Lt, place the center at ψt(w) of radius 2r≥t. We claim that every point in X is
covered by some ball. Indeed, for any p ∈ X, look at the leaf v = ψh+1(p), and let w ∈ N be
a node in the root-leaf path. Let w ∈ Lt for some t. Now observe that d(p, ψt(w)) ≤ 2r≥t;
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this is because for any edge (u′, v′) in the tree where u′ is in Lt and is the parent of v′, we
have that d(ψt+1(v′), ψt+1(u′)) < 2rt. J

This completes the reduction, and we now prove a few results using this.

I Theorem 11. There is a polynomial time (O(log∗ n), 8)-bi-criteria algorithm for NUkC.

Proof. Given any instance I of NUkC, we first club the radii to the nearest power of 2 to get
an instance I ′ with radii (k1, r1), · · · , (kh, rh) such that an (a, b)-factor solution for I ′ is an
(a, 2b)-solution for I. Now, by scaling, we assume that the optimal dilation for I ′ is 1; we let
x be the feasible solution to the NUkC LP. Then, using Algorithm 1, we can construct the
tree I ′T and a feasible solution y to the RMFC-T LP. We can now use the following theorem of
Chalermsook and Chuzhoy [4]: given any feasible solution to the RMFC-T LP, we can obtain
a feasible set N covering all the leaves such that for all t, |N ∩ Lt| ≤ O(log∗ n)kt. Finally,
we can apply Lemma 10 to obtain a (O(log∗ n), 4) solution to I ′ (since r≥t ≤ 2rt). J

Proof of Theorem 4 and Theorem 5. We use the following claim regarding the integrality
gap of RMFC-T LP for depth 2 trees.

I Claim 3. When h = 2 and kt’s are integers, given any fractional solution to RMFC-T LP,
we can find a feasible integral solution as well.

Proof. Given a feasible solution y to RMFC-T LP, we need to find a set N such that
|N ∩ Lt| ≤ kt for t = 1, 2. There must exist at least one vertex w ∈ L1 such that yw ∈ (0, 1)
for otherwise the solution y is trivially integral. If only one vertex w ∈ L1 is fractional,
then since k1 is an integer, we can raise this yw to be an integer as well. So at least two
vertices w and w′ in L1 are fractional. Now, without loss of generality, let us assume that
|C(w)| ≥ |C(w′)|, where C(w) is the set of children of w. Now for some small constant
0 < ε < 1, we do the following: y′w := yw + ε, y′w′ := yw′ − ε, ∀c ∈ C(w), y′c := yc − ε, and
∀c ∈ C(w′), y′c := yc + ε. Note that y(L1) remains unchanged, y(L2) can only decrease, and
root-leaf paths still add to at least 1. We repeat this till we rule out all fractional values. J

To see the proof of Theorem 4, note that an instance of the k-center with outliers problem is
an NUkC instance with (k, 1), (`, 0), that is, r1 = 1 and r2 = 0. We solve the LP relaxation
and obtain the tree and an RMFC-T solution. The above claim implies a feasible integral
solution to RMFC-T since h = 2, and finally note that r≥1 = r1 for kCwO, implying we get a
2-factor approximation.

The proof of Theorem 5 is similar. If r1 < θr2 where θ = (
√

5 + 1)/2, then we simply run
k-center with k = k1 + k2. This gives a 2θ =

√
5 + 1-approximation. Otherwise, we apply

Lemma 10 to get a 2(1 + 1
θ ) =

√
5 + 1-approximation. J

We end this section with a general theorem, which is an improvement over Lemma 10 in
the case when many of the radius types are close to each other, in which case r≥t could be
much larger than rt. Indeed, the natural way to overcome this would be to group the radius
types into geometrically increasing values as we did in the proof of Theorem 11. However,
for some technical reasons we will not be able to bucket the radius types in the following
section, since we would instead be bucketing the number of balls of each radius type in a
geometric manner. Instead, we can easily modify Algorithm 1 to build the tree by focusing
only on radius types where the radii grow geometrically.

I Theorem 12. Given an NUkC instance I = {M = (X, d), (k1, r1), (k2, r2), . . . , (kh, rh)}
and an LP solution x for NUkC LP, there is an efficient reduction which generates an RMFC-T
instance IT and an LP solution y to RMFC-T LP, such that the following holds:
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(i) For any two tree vertices w ∈ Lt and v ∈ Lt′ where w is an ancestor of v (which means
t ≤ t′), suppose p and q are the corresponding points in the metric space, i.e., p = ψt(w)
and q = ψt′(v), then it holds that d(p, q) ≤ 8 · rt.

(ii) Suppose there exists a feasible solution N to IT such that for all 1 ≤ t ≤ h, |N∩Lt| ≤ αkt.
Then there is a solution to the NUkC instance I that opens, for each 1 ≤ t ≤ h, at most
αkt balls of radius at most 8 · rt.

4 Getting an (O(1), O(1))-approximation algorithm

In this section, we improve our approximation factor on the number of clusters from O(log∗ n)
to O(1), while maintaining a constant-approximation in the radius dilation. As mentioned in
the introduction, this requires more ideas since using NUkC LP one cannot get any factor
better than (O(log∗ n), O(1))-bi-criteria approximation since any integrality gap for RMFC-T
LP translates to a (Ω(log∗ n),Ω(1)) integrality gap for NUkC LP.

Our algorithm is heavily inspired by the recent paper of Adjiashvili et al [1] who give an
O(1)-approximation for the RMFC-T problem. In fact, the structure of our algorithms follows
the same three “steps” of their algorithm. Given an RMFC-T instance, in [1] the authors
first “compress” the input tree to get a new tree whose depth is only logarithmic; next, they
give a partial rounding result which saves “bottom heavy” leaves, that is, leaves which are
fractionally covered to at least a constant fraction by low level tree nodes; and finally, they
give a clever partial enumeration algorithm for guessing the nodes from the top levels chosen
by the optimum solution. We also proceed in these three steps with the first two being very
similar. However, the enumeration step requires new ideas for our problem. In particular, the
enumeration procedure in [1] crucially uses the tree structure of the firefighter instance, and
the way our reduction generates the tree for the RMFC-T instance is by using the optimal
LP solution for the NUkC instance, which in itself suffers from the Ω(log∗ n) integrality gap.
Therefore, we need to devise a more sophisticated enumeration scheme inspired by the one
in [1]. Throughout this section, we do not optimize for the constants.

4.1 Part I: Radii Reduction
In this part, we describe a preprocessing step which decreases the number of types of radii.
This is similar to Theorem 5 in [1].

I Theorem 13. Let I be an NUkC instance with radii {r1, r2, · · · , rk}. We can efficiently
compute instance Î with radii multiplicities (k0, r̂0), ..., (kL, r̂L) and L = Θ(log k) such
that:
(i) ki := 2i for all 0 ≤ i < L and kL ≤ 2L.
(ii) If the NUkC instance I has a feasible solution, then there exists a feasible solution for Î.
(iii) Given an (α, β)-bi-criteria solution to Î, we can efficiently obtain a (3α, β)-bi-criteria

solution to I.

Proof. For an instance I, we construct the compressed instance Î as follows. Partition the
radii into Θ(log k) classes by defining barriers at r̂i = r2i for 0 ≤ i ≤ blog kc. Now to create
instance Î, we simply round up all the radii rj for 2i ≤ j < 2i+1 to the value r̂i = r2i . Notice
that the multiplicity of r̂i is precisely 2i (except maybe for the last bucket, where there might
be fewer radii rounded up than the budget allowed).

Property (i) follows by construction. Property (ii) follows from the way we rounded up
the radii. Indeed, if the optimal solution for I opens a ball of radius rj around a point p,

ICALP 2016



67:10 The Non-Uniform k-Center Problem

then we can open a ball of radius r̂i around p, where i is such that 2i ≤ j < 2i+1. Clearly the
number of balls of radius r̂i is at most 2i since OPT uses at most one ball of each radius rj .

For property (iii), suppose we have a solution Ŝ for Î which opens α2i clusters of radius
βr̂i for all 0 ≤ i ≤ L. Construct a solution S for I as follows. For each 1 ≤ i ≤ L, let Ci
denote the set of centers where Ŝ opens balls of radius βr̂i. In the solution S, we also open
balls at precisely these centers with 2α balls of radius rj for every 2i−1 ≤ j < 2i. Since
|Ci| ≤ α · 2i, we can open a ball at every point in Ci; furthermore, since j < 2i, we have
rj ≥ r̂i and so we cover whatever the balls from Ŝ covered.

Finally, we also open the α clusters (corresponding to i = 0) of radius βr1 = βr̂0 at the
respective centers C0 where Ŝ opens centers of radius r̂0. Therefore, the total number of
clusters of radius type is at most 2α with the exception of r1, which may have 3α clusters. J

4.2 Part II: Satisfying Bottom Heavy Points
One main reason why the above height reduction step is useful, is the following theorem
from [1] for RMFC-T instances on trees; we provide a proof sketch for completeness.

I Theorem 14 ([1]). Given a tree T of height h and a feasible solution y to (RMFC-T
LP), we can find a feasible integral solution N to RMFC-T such that for all 1 ≤ t ≤ h,
|N ∩ Lt| ≤ kt + h.

Proof. Let y be a basic feasible solution of (RMFC-T LP). Call a vertex v of the tree loose
if yv > 0 and the sum of y-mass on the vertices from v to the root (inclusive of v) is < 1.
Let VL be the set of loose vertices of the tree, and let VI be the set of vertices with yv = 1.
Clearly N = VL ∪ VI is a feasible solution: every leaf-to-root path either contains an integral
vertex or at least two fractional vertices with the vertex closer to root being loose. Next we
claim that |VL| ≤ h; this proves the theorem since |N ∩ Lt| ≤ |VI ∩ Lt|+ |VL| ≤ kt + |VL|.

The full proof can be found in Lemma 6, [1] – here is a high level sketch. There are |L|+h

inequalities in (RMFC-T LP), and so the number of fractional variables is at most |L|+ h.
We may assume there are no yv = 1 vertices. Now, in every leaf-to-root path there must be
at least 2 fractional vertices, and the one closest to the leaf must be non-loose. If the closest
fractional vertex to each leaf was unique, then that would account for |L| fractional non-loose
vertices implying the number of loose vertices must be ≤ h. This may not be true; however,
if we look at linearly independent set of inequalities that are tight, we can argue uniqueness
as a clash can be used to exhibit linear dependence between the tight constraints. J

I Theorem 15. Suppose we are given an NUkC instance Î with radii multiplicities
(k0, r̂0), (k1, r̂1), . . . , (kL, r̂L) with budgets ki = 2i for radius type r̂i, and an LP solution x to
(NUkC LP) for Î. Let τ = log logL, and suppose X ′ ⊆ X be the points covered mostly by
small radii, that is, let Cov≥τ (p) ≥ 1

2 for every p ∈ X ′. Then, there is an efficient procedure
round which opens at most O(kt) balls of radius O(r̂t) for τ ≤ t ≤ L, and covers all of X ′.

Proof. The procedure round works as follows: we partition the points of X ′ into two sets,
one set XU in which the points receive at least 1

4 of the coverage by clusters of radius
r̂i where i ∈ {log logL, log logL + 1, . . . , logL}, and another set XB in which the points
receive 1

4 coverage from clusters of levels t ∈ {logL + 1, logL + 2, . . . , L}. More precisely,
XU := {p ∈ X ′ :

∑logL
t=τ Covt(p) ≥ 1/4}, and XB = X ′ \XB .

Now consider the following LP-solution to (NUkC LP) for Î restricted to XU : we scale x
by a factor 4 and zero-out x on radii type r̂i for i /∈ {log logL, . . . , logL}. By definition of
XU this is a feasible fractional solution; furthermore, the LP-reduction algorithm described
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in Section 3 will lead to a tree T of height ≤ logL and fractional solution y for (RMFC-T LP)
on T were each ki ≥ 2log logL = logL. Applying Theorem 14, we can find an integral solution
N with at most O(ki) vertices at levels i ∈ {log logL, . . . , logL}. We can then translate
this solution back using Theorem 12 to NUkC and find O(kt) clusters of radius O(r̂t) to
cover all the points XU . A similar argument, when applied to the smaller radius types r̂t for
t ∈ {logL, . . . , L} can cover the points in XB . J

We now show how we can immediately also get a (very weakly) quasi-polynomial time
O(1)-approximation for NUkC. Indeed, if we could enumerate the set of clusters of radii r̂t
for 0 ≤ t < log logL, we can then explicitly solve an LP where all the uncovered points need
to be fractionally covered by only clusters of radius type r̂t for t ≥ log logL. We can then
round this solution using Corollary 15 to obtain the desired O(1)-approximation for the
NUkC instance. Moreover, the time complexity of enumerating the optimal clusters of radii
r̂t for 0 ≤ t < log logL is nO(logL) = nO(log log k), since the number of clusters of radius at
least r̂log logL is at most O(2log logL) = O(logL). Finally, there was nothing special in the
proof of Corollary 15 about the choice of τ = log logL — we could set t = log(q) L to be
the qth iterated logarithm of L, and obtain an O(q)-approximation. As a result, we get the
following corollary. Note that this gives an alternate way to prove Theorem 11.

I Corollary 16. For any q ≥ 1, there exists an (O(q), O(1))-factor bi-criteria algorithm for
NUkC which runs in nO(log(q) k) time.

4.3 Part III: Clever Enumeration of Large Radii Clusters

In this section, we show how to obtain the (O(1), O(1))-factor bi-criteria algorithm. At
a high level, our algorithm tries to “guess” the centers2 A of large radius, that is r̂i for
i ≤ τ := log logL = log log log k, which the optimum solution uses. However, this guessing is
done in a cleverer way than in Corollary 16. In particular, given a guess which is consistent
with the optimum solution (the initial “null set” guess is trivially consistent), our enumeration
procedure generates a list of candidate additions to A of size at most 2τ ≈ poly log logk
(instead of n), one of which is a consistent enhancement of the guessed set A. This reduction
in number of candidates also requires us to maintain a guess D of points where the optimum
solution doesn’t open centers. Furthermore, we need to argue that the “depth of recursion”
is also bounded by poly log logk; this crucially uses the technology developed in Section 3.
Altogether, we get the total time is at most (poly log logk)poly log logk = o(k) for large k. In
this extended abstract with page limits, we omit all proofs in this subsection, and point the
reader to the full version of our paper [3].

We start with some definitions. Throughout, A and D represent sets of tuples of the
form (p, t) where p ∈ X and t ∈ {0, 1, . . . , τ}. Given such a set A, we associate a partial
solution SA which opens a ball of radius 22r̂t at the point p for all p s.t. (p, t) ∈ A. For the
sake of analysis, fix an optimum solution OPT. We say the set A is consistent with OPT if
for all (p, t) ∈ A, there exists a unique q ∈ X such that OPT opens a ball of radius r̂t at q
and d(p, q) ≤ 11r̂t. In particular, this implies that SA covers all points which this OPT-ball
covers. We say the set D is consistent with OPT if for all (q, t) ∈ D, OPT doesn’t open
a radius r̂t ball at q (it may open a different radius ball at q though). Given a pair of sets

2 Actually, we end up guessing centers “close” to the optimum centers, but for this introductory paragraph
this intuition is adequate.
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(A,D), we define the minLevel of each point p to be the type of largest radius consistent with
our guesses which can cover it, i.e.,

minLevelA,D(p) := 1 + arg max
t
{(q, t) ∈ D for all q ∈ B(p, r̂t)}

If (A,D) is a consistent pair and minLevelA,D(p) = t, then this implies in the OPT solution,
p is covered by a ball of radius r̂t or smaller.

Next, we describe a nuanced LP-relaxation for NUkC. Fix a pair of sets (A,D) as described
above. Let XG be the subset of points in X covered by the partial solution SA. Fix a subset
Y ⊆ X \XG of points. Define the following LP.

∀p ∈ Y,
L∑

t=minLevel(p)

∑
q∈B(p,̂rt)

xq,t ≥ 1 (LPNUkC(Y,A,D))

∀t ∈ 1, · · · , h
∑
q∈Y

xq,t ≤ kt

∀(p, t) ∈ A, xp,t = 1

The following claim encapsulates the utility of the above relaxation.

I Claim 4. If (A,D) is consistent with OPT, then LPNUkC(X \XG, A,D) is feasible.

Finally, for convenience, we define a forbidden set F := {(p, i) : p ∈ X, 1 ≤ i ≤ τ} which if
added to D disallows any large radii balls to be placed anywhere.

Now we are ready to describe the enumeration Algorithm 2. We start with A and D
being null, and thus vacuously consistent with OPT. The enumeration procedure ensures
that: given a consistent (A,D) tuple, either it finds a good solution using LP rounding (Step
10), or generates candidate additions (Steps 18–20) to A or D ensuring that one of them
leads to a larger consistent tuple.

Define γ0 := 4 log log k · log log log k. The algorithm is run with Enum(∅, ∅, γ0). The proof
that we get a polynomial time (O(1), O(1))-bi-criteria approximation algorithm follows from
three lemmas. Lemma 17 shows that if Step 10 is true with a consistent pair (A,D), then
the output in Step 13 is a (O(1), O(1))-approximation. Lemma 18 shows that indeed Step 10
is true for γ0 as set. Finally, Lemma 19 shows that the algorithm runs in polynomial time.

I Lemma 17. If (A,D) is a consistent pair such that Step 10 is true, then the solution
returned is an (O(1), O(1))-approximation algorithm.

I Lemma 18. Enum(∅, ∅, γ0) finds consistent (A,D) such that Step 10 is true.

I Lemma 19. Enum(∅, ∅, γ0) runs in polynomial time for large enough k.
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Algorithm 2 Enum(A,D, γ)
1: Let XG = {p : ∃ (q, i) ∈ A s.t d(p, q) ≤ 22r̂i} denote points covered by SA.
2: if there is no feasible solution to LPNUkC(X \XG, A,D) then
3: Abort. // Claim 4 implies (A,D) is not consistent.
4: else
5: Let x∗ be a feasible solution to LPNUkC(X \XG, A,D).
6: end if
7: Let XB = {u ∈ X \XG : Cov≥τ (u) ≥ 1

2} denote bottom-heavy points in x∗
8: Let SB be the solution implied by Corollary 15.

// This solution opens O(kt) balls of radius O(r̂t) for τ ≤ t ≤ L and covers all of XB.
9: Let XT = X \ (XG ∪XB) denote the top heavy points in x∗
10: if LPNUkC(XT , A, F ∪D) has a feasible solution xT then
11: By definition of F , in xT we have Cov≥τ (u) = 1 for all u ∈ XT .
12: Let ST be the solution implied by Corollary 15.

// This solution opens O(kt) balls of radius O(r̂t) for τ ≤ t ≤ L and covers all of XT .
13: Output (SA∪SB ∪ST ). //This is a (O(1), O(1))-approximation for the NUkC instance.
14: else
15: for every level 0 ≤ t ≤ τ do
16: Let Ct = {p ∈ XT s.t minLevelA,D(p) = t}, the set of points in XT with minLevel t.
17: Use the LP-aware reduction from Section 3 using x∗ and the set of points Ct to

create tree Tt.
18: for every winner p at level t in Tt do
19: Enum(A ∪ {(p, t)}, D, γ − 1)
20: Enum(A,D ∪

⋃
p′∈B(p,11r̂t){(p

′, t)}), γ − 1)
21: end for
22: end for
23: end if
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Abstract
The k-center problem is a canonical and long-studied facility location and clustering problem with
many applications in both its symmetric and asymmetric forms. Both versions of the problem
have tight approximation factors on worst case instances: a 2-approximation for symmetric k-
center and an O(log*(k))-approximation for the asymmetric version. Therefore to improve on
these ratios, one must go beyond the worst case.

In this work, we take this approach and provide strong positive results both for the asymmetric
and symmetric k-center problems under a very natural input stability (promise) condition called
alpha-perturbation resilience [Bilu Linial, 2012], which states that the optimal solution does not
change under any alpha-factor perturbation to the input distances. We show that by assuming
2-perturbation resilience, the exact solution for the asymmetric k-center problem can be found
in polynomial time. To our knowledge, this is the first problem that is hard to approximate
to any constant factor in the worst case, yet can be optimally solved in polynomial time under
perturbation resilience for a constant value of alpha. Furthermore, we prove our result is tight
by showing symmetric k-center under (2-epsilon)-perturbation resilience is hard unless NP=RP.
This is the first tight result for any problem under perturbation resilience, i.e., this is the first
time the exact value of alpha for which the problem switches from being NP-hard to efficiently
computable has been found.

Our results illustrate a surprising relationship between symmetric and asymmetric k-center
instances under perturbation resilience. Unlike approximation ratio, for which symmetric k-
center is easily solved to a factor of 2 but asymmetric k-center cannot be approximated to any
constant factor, both symmetric and asymmetric k-center can be solved optimally under resilience
to 2-perturbations.

1998 ACM Subject Classification I.5.3 Clustering

Keywords and phrases k-center, clustering, perturbation resilience

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.68

∗ Full version of the paper available at http://arxiv.org/abs/1505.03924.
† This work was supported in part by grants NSF-CCF 1535967, NSF CCF-1422910, NSF CCF-145117, a

Sloan Research Fellowship, a Microsoft Research Faculty Fellowship, a Google Research Award, an IBM
Ph.D. fellowship, and a National Defense Science & Engineering Graduate (NDSEG) fellowship.

EA
T

C
S

© Maria-Florina Balcan, Nika Haghtalab, and Colin White;
licensed under Creative Commons License CC-BY

43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016).
Editors: Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi;
Article No. 68; pp. 68:1–68:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.68
http://arxiv.org/abs/1505.03924
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


68:2 k-Center Clustering Under Perturbation Resilience

1 Introduction

Overview: Traditionally, the theory of algorithms has focused on the analysis of worst-
case instances. While this approach has led to many elegant algorithms and strong lower
bounds, it tends to be overly pessimistic of an algorithm’s performance on the most typical
instances of a problem. A recent line of work in the algorithms community, the so called
beyond worst case analysis of algorithms, considers the question of designing algorithms for
instances that satisfy some natural structural properties and has given rise to strong positive
results [4, 5, 6, 18, 20, 21, 24]. One of the most appealing properties that has been proposed
in this space is the stability of the solution to small changes in the input. Bilu and Linial [10]
formalized this property in the notion of α-perturbation resilience, which states that the
optimal solution does not change under any α-factor perturbation to the input distances.

A large body of work has sought to exploit the power of perturbation resilience in
problems such as center-based clustering [5, 8, 10, 22], finding Nash equilibria in game
theoretic problems [7], and the traveling salesman problem [23]. These works are focused
on providing positive results for exactly solving the corresponding optimization problem
under perturbation resilient instances, for example, 1 +

√
2-perturbation resilience for center

based clustering, and O(
√

logn log logn)-perturbation resilience for max-cut. In this paper
we continue this line of work and provide a tight result for the canonical and long-studied k-
center clustering problem, thereby completely quantifying the power of perturbation resilience
for this problem. We show that α = 2 is the moment where the problem switches from
NP-hard to efficiently computable – specifically, we show that by assuming 2-perturbation
resilience, the exact solution for the k-center problem can be found in polynomial time; we
also show that k-center under (2− ε)-perturbation resilience cannot be solved in polynomial
time unless NP = RP . Our results apply to both symmetric and asymmetric k-center,
illustrating a surprising relationship between symmetric and asymmetric k-center instances
under perturbation resilience. Unlike approximation ratio, for which symmetric k-center
is easily solved to a factor of 2 but asymmetric k-center cannot be approximated to any
constant factor, both symmetric and asymmetric k-center can be solved optimally under
resilience to 2-perturbations. Overall, this is the first tight result quantifying the power of
perturbation resilience for a canonical combinatorial optimization problem.

The k-center problem is a canonical and long-studied clustering problem with many
applications to facility location, data clustering, image classification, and information re-
trieval [11, 12, 13, 14, 16, 25]. For example, it can be used to solve the problem of placing
k fire stations spaced throughout a city to minimize the maximum time for a fire truck to
reach any location, given the pairwise travel times between important locations in the city.
In the symmetric k-center problem the distances are assumed to be symmetric, while in the
asymmetric k-center problem they are not; however in both cases they satisfy the triangle
inequality. Formally, given a set of n points S, a distance function d : S ×S → R+ satisfying
the triangle inequality (and symmetry in the symmetric case), and an integer k, our goal is
to find k centers {c1, . . . , ck} to minimize maxp∈S mini d(ci, p).

Both forms of k-center admit tight approximation bounds. For symmetric k-center,
several 2- approximation algorithms have been found starting in the mid 1980s (e.g., [16, 19]).
This is the best possible approximation factor by a simple reduction from set cover. On
the other hand, the asymmetric k-center problem is a prototypical problem where the best
known approximation is superconstant and is matched by a lower bound. For the asymmetric
k-center problem, an O(log∗(n))-approximation algorithm was found by Vishwanathan [25],
and later improved to O(log∗(k)) by Archer [1]. This approximation ratio was shown to be
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asymptotically tight by the work of Chuzhoy et al. [14], which built upon a sequence of papers
establishing the hardness of approximating d-uniform hypergraph covering (culminating in
[15]).

Perturbation resilience has a natural interpretation for both symmetirc and asymmetric
k-center: it can be viewed as a stability condition in the presence of uncertainties involved
in measurements. For example, small fluctuations in the travel time between a fire station
and locations in the city, which are caused by different levels of traffic at different times
of day, should not drastically affect the optimal placement of fire stations. Furthermore,
perturbation resilience can be viewed as a condition on an instance under which the optimal
solution satisfies a form of privacy. For instance, if the actions of no individuals (such as how
they drive to work, or the amount of network traffic they are using in a network application)
can affect the overall state of the problem drastically then the individual’s actions cannot be
detected by looking at the optimal solution.

There is a large body of work on instances satisfying perturbation resilience and other
natural notions of stability on problems ranging from clustering to data privacy to social
networks to topic modeling [2, 3, 17, 18, 20, 21, 24]. For discussion of related work, see the
full version of the paper.

Our Results: In this work we consider both symmetric and asymmetric k-center under
perturbation resilience and give tight results for both forms. In addition, we consider more
robust and weaker variants of perturbation resilience, and give strong results for these
problems as well. A summary of our results and techniques used to achieve them are as
follows:
1. Efficient algorithm for symmetric and asymmetric k-center under 2-perturbation resilience.

This directly improves over the result of Balcan and Liang [8] for symmetric k-center
under 1 +

√
2-perturbation resilience. We show that any α-approximation algorithm

returns the optimal solution for an α-perturbation resilient instance, thus showing there
exists an optimal algorithm for symmetric k-center under 2-perturbation resilience. For
the asymmetric result, we first construct a “symmetrized set” by only considering points
that demonstrate a rough symmetry. Then we prove strong structural results about the
symmetrized set which motivates a novel algorithm for detecting clusters locally.

2. Hardness of symmetric k-center under (2− ε)-perturbation resilience. This shows that
our perturbation-resilience results are tight for both symmetric and asymmetric k-center.
For this hardness result, we use a reduction from a variant of perfect dominating set. To
show that this variant is itself hard, we construct a chain of parsimonious reductions
(reductions which conserve the number of solutions) from 3-dimensional matching to
perfect dominating set.

3. Efficient algorithms for symmetric and asymmetric k-center under (3, ε)-perturbation
resilience. A clustering instance satisfies (α, ε)-perturbation resilience if ≤ εn points
switch clusters under any α-perturbation. We assume the optimal clusters are of size
> 2εn (the problem is NP-hard without this assumption). We show that if any single
point p is close to an optimal cluster other than its own, then k − 1 centers achieve the
optimal score under a carefully constructed 3-perturbation. Any other point we add to
the set of centers must create a clustering that is ε-close to OPT , and we show all of these
sets cannot simultaneously be consistent with one another, thus causing a contradiction.
A key concept in our analysis is defining the notion of a cluster-capturing center, which
allows us to reason about which points can capture a cluster when its center is removed.

4. Efficient algorithm for any center-based clustering objective under weak center proximity.
Weak center proximity asks that each point be closer to its own center than to any point
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from any other cluster, but note that it allows a cluster center to be closer to points from
different clusters than to its own. Thus it is not at all obvious whether efficient optimal
clustering is possible in such a setting. We present a novel linkage-based algorithm that
is able to do so. It works by iteratively running single linkage as a subroutine until all
clusters are balanced, and then removing all but the very last link.

The novelty of our results are manifold. First, our work is the first to provide a tight
perturbation resilience result, thereby painting the complete picture for k-center under
perturbation resilience. Second, this is the first result where a problem is not approximable
to any constant in the worst-case, but can be optimally solved under resilience to small
constant perturbations. Third, we are the first to consider an asymmetric problem under
stability. Our results here illustrate a stark contrast between worst-case analysis and analysis
of algorithms under stability. Unlike approximation ratio, for which symmetric k-center
is easily solved to a factor of 2 but asymmetric k-center cannot be approximated to any
constant factor, both symmetric and asymmetric k-center can be solved optimally under the
same constant level of resilience.

2 Preliminaries

We define a clustering instance as (S, d), where S is a set of n points and d : S × S →
R≥0 is a distance function. In the k-center problem, the goal is to find a set of points
~p = {p1, . . . , pk} ⊆ S called centers such that the maximum distance from any point to its
closest center is minimized. More formally, in the k-center problem, given a Voronoi partition
P = {P1, . . . , Pk} induced by a set of centers ~p = {p1, . . . , pk} (where for all 1 ≤ i ≤ k,
pi ∈ Pi), we refer to P as a clusering, and define its cost by Φ(P) = maxi∈[k] maxv∈Pi

d(pi, v).
We indicate by OPT the clustering {C1, . . . , Ck} with minimum cost, we denote the optimal
centers {c1, . . . , ck}, and we denote the optimal cost Φ(OPT ) by r∗, the maximum cluster
radius.

We study the k-center clustering of instance (S, d) under two types of distance functions,
symmetric and asymmetric. A symmetric distance function is a metric. An asymmetric
distance function satisfies all the properties of a metric space, except for symmetry. That is,
it may be the case that for some p, q ∈ S, d(p, q) 6= d(q, p). Note that the k-center objective
function for asymmetric instances is the same as the symmetric case, the maximum distance
from the center to the points, where the order now matters.

We consider perturbation resilience, a notion of stability introduced by Bilu & Linial [10].
Perturbation resilience implies that the optimal clustering does not change under small
perturbations of the distance measure. Formally, d′ is called an α-perturbation of distance
function d, if for all p, q ∈ S, d(p, q) ≤ d′(p, q) ≤ αd(p, q).1 Perturbation resilience is defined
formally as follows.

I Definition 1. A clustering instance (S, d) satisfies α-perturbation resilience for k-center, if
for any α-perturbation d′ of d, the optimal k-center clustering under d′ is unique and equal
to OPT .

Note that the optimal centers may change, but the Voronoi partition C1, . . . , Ck induced
by them must stay the same. We do not assume that d′ satisfies the triangle inequality.2 We

1 WLOG, we only consider perturbations in which the distances increases because we can scale the
distances to simulate decreasing distances.

2 This is well-justified, as the data may be gathered from heuristics or an average of measurements.
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also consider a more robust variant of α-perturbation resilience, called (α, ε)-perturbation
resilience, that allows a small change in the optimal clustering when distances are perturbed.
To this end, we say that two clusterings C and C′ are ε-close, if only an ε-fraction of the
input points are clustered differently in the two clusterings, i.e., minσ

∑k
i=1 |Ci \ C ′σ(i)| ≤ εn,

where σ is a permutation on [k]. Formally,

I Definition 2. A clustering instance (S, d) satisfies (α, ε)-perturbation resilience for k-center,
if for any α-perturbation d′ of d, any optimal k-center clustering C′ under d′ is ε-close to
OPT .

We use ε-far to denote two clusters which are not ε-close. We also discuss the strictly stronger
notion of approximation stability [6], which requires any α-approximation (not just a Voronoi
partition) to be ε-close to OPT . This is formally defined in Section 3.3. In Section 5, we
define center-based objectives [8], a more general class of clustering functions which includes
objective functions such as k-center, k-median, and k-means. Throughout this work, we use
Br(c) to denote a ball of radius r centered at point r. Also for a point p and a set D, d(p,D)
denotes the distance from p to the farthest point in D.

3 2-perturbation resilience

In this section, we provide efficient algorithms for finding OPT for symmetric and asymmetric
instances of k-center under 2-perturbation resilience. Our result directly improves on the
result of Balcan and Liang for symmetric k-center under (1 +

√
2)-perturbation resilience [8].

We also show that it is NP-hard to recover OPT even in the symmetric k-center instance
under (2− ε)-approximation stability. As an immediate consequence, our results are tight for
both perturbation resilience and approximation stability, for symmetric and asymmetric k-
center instances. This is the first problem for which the exact value of perturbation resilience
is found (α = 2), where the problem switches from efficiently computable to NP-hard.

In the remainder of this section, first we show that any α-approximation algorithm returns
the optimal solution for α-perturbation resilient instances. An immediate consequence is an
algorithm for symmetric k-center under 2-perturbation resilience. Then we provide a novel
algorithm for asymmetric k-center under 2-perturbation resilience.

3.1 Approximation algorithms under perturbation resilience
The following lemma allows us to reason about a specific type of α-perturbation we construct.
This lemma will be important throughout the analysis in this section and in Section 4.

I Lemma 3. For all α ≥ 1, given an α-perturbation d′ of d with the following property: for
all p, q, if d(p, q) ≥ r∗ then d′(p, q) ≥ αr∗. Then the optimal cost under d′ is αr∗.

Proof. Clearly the optimal cost under d′ cannot be greater than αr∗, since d′ is an α-
perturbation. Suppose there exists a set of centers c′1, . . . , c′k under d′ that achieves a cost
< αr∗. Then for all i and all p ∈ C ′i, d′(c′i, p) < αr∗. But then by assumption, d(c′i, p) < r∗.
This implies that c′1, . . . , c′k achieve an optimal cost < r∗ under d, which is a contradiction. J

The following theorem will imply that any α-approximation algorithm for k-center will
return the optimal solution on clustering instances that are α-perturbation resilient.

I Theorem 4. Given a clustering instance (S, d) satisfying α-perturbation resilience for
asymmetric k-center. Given a set C of k centers which is an α-approximation, i.e., ∀p ∈ S,
∃c ∈ C s.t. d(c, p) ≤ αr∗. Then the Voronoi partition induced by C is the optimal clustering.
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Proof. For a point p ∈ S, let c(p) := argminc∈Cd(c, p), the closest center in C to p. The
idea is to construct an α-perturbation in which C is the optimal solution by increasing all
distances except between p and c(p), for all p. Then the theorem will follow by using the
definition of perturbation resilience.

By assumption, ∀p ∈ S, d(c(p), p) ≤ αr∗. Create a perturbation d′ as follows. Increase
all distances by a factor of α, except for all p ∈ S, set d′(c(p), p) = min(αd(c(p), p), αr∗)
(recall in Definition 1, the perturbation need not satisfy the triangle inequality). Then no
distances were increased by more than a factor of α. And since we had that d(c(p), p) ≤ αr∗,
no distances decrease either. Therefore, d′ is an α-perturbation of d. By Lemma 3, the
optimal cost for d′ is αr∗. Also, C achieves cost ≤ αr∗ by construction, so C is an optimal
set of centers under d′. Then by α-perturbation resilience, the Voronoi partition induced by
C under d′ is the optimal clustering.

Finally, we show the Voronoi partition of C under d is the same as the Voronoi partition of
C under d′. Given p ∈ S whose closest point in C is c(p) under d, then under d′, all distances
from p to C \ {c(p)} increased by exactly α, and d(p, c(p)) increased by ≤ α. Therefore, the
closest point in C to p under d′ is still c(p). J

An immediate consequence is that we have exact algorithms for symmetric k-center under
2-perturbation resilience, and asymmetric k-center under O(log∗(k))-perturbation resilience.
Now we show it is possible to substantially improve the latter result.

3.2 Asymmetric k-center algorithm

One of the challenges involved in dealing with asymmetric k-center instances is the fact that
even though for all p ∈ Ci, d(ci, p) ≤ r∗, d(p, ci) might be arbitrarily large. Such points for
which d(p, ci)� r∗ pose a challenge to the structure of the clusters, as they can be very close
to points or even centers of other clusters. To deal with this challenge, we first define a set of
“good” points, A, such that A = {p | ∀q, d(q, p) ≤ r∗ =⇒ d(p, q) ≤ r∗}. Intuitively speaking,
these points behave similarly to a set of points with symmetric distances up to a distance r∗.
To explore this, we define a desirable property of A with respect to the optimal clustering.

I Definition 5. A is said to respect the structure of OPT if (1) ci ∈ A for all i ∈ [k], and
(2) for all p ∈ S \A, if A(p) := arg minq∈A d(q, p) ∈ Ci, then p ∈ Ci.

For all i, define C ′i = Ci ∩A (which is in fact the optimal clustering of A, although we
do not need to prove this). Satisfying Definition 5 implies that if we can optimally cluster
A, then we can optimally cluster the entire instance (formalized in Theorem 8). Thus our
goal is to show that A does indeed respect the structure of OPT , and to show how to return
C ′1, . . . , C

′
k.

Intuitively, A is similar to a symmetric 2-perturbation resilient clustering instance.
However, some structure is no longer there, for instance, a point p may be at distance ≤ 2r∗
from every point in a different cluster, which is not true for 2-perturbation resilient instances.
This implies we cannot simply run a 2-approximation algorithm on the set A, as we did in
the previous section. However, we show that the remaining structural properties are sufficient
to optimally cluster A. To this end, we define two properties and show how they lead to an
algorithm that returns C ′1, . . . , C ′k, and help us prove that A respects the structure of OPT .

The first of these properties requires each point to be closer to its center than any point
in another cluster. That is, Property (1): For all p ∈ C ′i and q ∈ C ′j , i 6= j, d(ci, p) < d(q, p).
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The second property requires that any point within distance r∗ of a cluster center belongs to
that cluster. That is, Property (2): For all i 6= j and q ∈ Cj, d(q, ci) > r∗.3

Let us illustrate how these properties allow us to optimally cluster A.4 Consider a ball of
radius r∗ around a center ci. By Property 2, such a ball exactly captures C ′i. Furthermore,
by Property 1, any point in this ball is closer to the center than to points outside of the
ball. Is this true for a ball of radius r∗ around a general point p? Not necessarily. If this
ball contains a point q ∈ C ′j from a different cluster, then q will be closer to a point outside
the ball than to p (namely, cj , which is guaranteed to be outside of the ball by Property 2).
This allows us to determine that the center of such a ball must not be an optimal center.

This structure motivates our Algorithm 1 for asymmetric k-center under 2-perturbation
resilience. At a high level, we start by constructing the set A (which can be done easily in
polynomial time). Then we create the set of all balls of radius r∗ around all points in A (if r∗
is not known, we can use a guess-and-check wrapper). Next, we prune this set by throwing
out any ball that contains a point farther from its center than to a point outside the ball.
We also throw out any ball that is a subset of another one. Our claim is that the remaining
balls are exactly C ′1, . . . , C ′k. Finally, we add the points in S \A to their closest point in A.

Algorithm 1 Asymmetric k-center algorithm under 2-PR
Input: Asymmetric k-center instance (S, d), distance r∗ (or try all possible candidates).
1. Build set A = {p | ∀q, d(q, p) ≤ r∗ =⇒ d(p, q) ≤ r∗}
2. ∀c ∈ A, construct Gc = Br∗(c) (the ball of radius r∗ around c).
3. ∀Gc, if ∃p ∈ Gc, q /∈ Gc s.t. d(q, p) < d(c, p), then throw out Gc.
4. ∀p, q s.t. Gp ⊆ Gq, throw out Gp.
5. ∀p /∈ A, add p to Gq, where q = arg mins∈A d(s, p).
Output: Output the sets G1, . . . , Gk.

I Lemma 6. Properties 1 & 2 hold for asymmetric k-center instances under 2-perturbation
resilience.

Proof sketch. For Property 2, assume that there exists ci and q ∈ Cj , i 6= j, such that
d(q, ci) ≤ r∗. We construct a 2-perturbation in which q becomes the center for Ci. Increase
all distances by a factor of 2, except for the distances from q to Ci, which we increase until
they reach 2r∗. By Lemma 3, this 2-perturbation achieves a cost of 2r∗. However, q is
distance 2r∗ to Ci, so it must replace ci as an optimal center. Then q and cj are no longer
in the same cluster, causing a contradiction.

The first property was shown to hold for symmetric instances by Awasthi et al. and the
same proof can be used for asymmetric instances. This proof appears in the full version. J

I Lemma 7. A respects the structure of OPT .

We defer this proof to the full version of the paper.

3 Property (1) first appeared in the work of Awasthi et al. [5], for symmetric clustering instances. A
weaker variation of Property (2) was introduced by Balcan and Liang [8], which showed that in 1 +

√
2-

perturbation resilient instances for any cluster Ci with radius ri, Bri (ci) = Ci. Our Property (2) shows
that this is true for a universal radius, r∗, even for 2-perturbation resilient instances, and even for
asymmetric instances.

4 Other algorithms work, such as single linkage with dynamic programming at the end to find the
minimum cost pruning of k clusters. However, our algorithm is able to recognize optimal clusters locally
(without a complete view of the point set).
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I Theorem 8. Algorithm 1 returns the exact solution for asymmetric k-center under 2-
perturbation resilience.

Proof. First we must show that after step 4, the remaining sets are exactly C ′1, . . . , C ′k =
C1 ∩A, . . . , Ck ∩A. We prove this in three steps: the sets Gci

correspond to C ′i, these sets
are not thrown out in steps 3 and 4, and all other sets are thrown out in steps 3 and 4.
Because of Lemma 6, we can use Properties 1 and 2.

For all i, Gci
= C ′i: From Lemma 7, all centers are in A, so Gci

will be created in step
2. For all p ∈ Ci, d(ci, p) ≤ r∗. For all q /∈ C ′i, then by Property 2, d(q, ci) > r∗ (and since
ci, q ∈ A, d(ci, q) > r∗ as well). For all i, Gci

is not thrown out in step 3: Given s ∈ Gci
and

t /∈ Gci . Then s ∈ C ′i and t ∈ C ′j for j 6= i. If d(t, s) < d(ci, s), then we get a contradiction
from Property 1. For all non-centers p, Gp is thrown out in step 3 or 4: From the previous
paragraph, Gci

= C ′i. If Gp ⊆ Gci
, then Gp will be thrown out in step 4 (if Gp = Gci

, it does
not matter which set we keep, so WLOG say that we keep Gci). Then if Gp is not thrown out
in step 4, ∃s ∈ Gp ∩ C ′j , j 6= i. If s = cj , then d(p, cj) ≤ r∗ and we get a contradiction from
Property 2. So, we can assume s is a non-center (and that cj /∈ Gp). But d(cj , s) < d(p, s)
from Property 1, and therefore Gp will be thrown out in step 3. Thus, the remaining sets
after step 4 are exactly C ′1, . . . , C ′k.

Finally, by Lemma 7, for each p ∈ Ci \A, A(p) ∈ Ci, so p will be added to Gci
. Therefore,

the final output is C1, . . . , Ck. J

3.3 Hardness for k-center under (2 − ε)-approximation stability
In this section, we consider approximation stability, introduced by Balcan et al. [6], which
is strictly stronger than perturbation resilience. We show that if symmetric k-center under
(2− ε)-approximation stability can be solved in polynomial time, then NP = RP , even under
the condition that the optimal clusters are all ≥ n

2k . Because approximation stability is
stronger than perturbation resilience, this result implies k-center under (2− ε)-perturbation
resilience is hard as well. Similarly, symmetric k-center is a special case of asymmetric
k-center, so we get the same hardness results for asymmetric k-center. This proves that
Theorem 8 is tight.

Approximation stability requires constant approximations to the optimal cost to differ
from OPT by at most an ε-fraction of the points.

I Definition 9. A clustering instance (S, d) satisfies (α, ε)-approximation stability for k-
center, if for any partition C′ with objective value r′ (not necessarily a Voronoi partition), if
r′ ≤ αr∗, then C′ is ε-close to OPT .

It is not hard to see that (α, ε)-approximation stability implies (α, ε)-perturbation resili-
ence, as the optimal clustering under any α-perturbation costs at most αr∗ under the original
distance function, d. So, a violating instance of (α, ε)-perturbation resilience induces a
partition which costs ≤ αr∗ and is ε-far from OPT , and therefore is not (α, ε)-approximation
stable.

I Theorem 10. There is no polytime algorithm for finding the optimal k-center clustering
under (2− ε)-approximation stability, even when assuming all optimal clusters are size ≥ n

2k ,
unless NP = RP .

We show a reduction from a special case of Dominating Set which we call Unambiguous-
Balanced-Perfect Dominating Set. A reduction from Perfect Dominating Set (Dominating Set
with the additional constraint that for all dominating sets of size ≤ k, each vertex is hit by
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exactly one dominator) to the problem of clustering under (2− ε)-center proximity was shown
in [9] (α-center proximity is the property that for all p ∈ Ci and j 6= i, αd(ci, p) < d(cj , p),
and it follows from α-perturbation resilience). Our contribution is to show that Perfect
Dominating Set remains hard under two additional conditions. First, in the case of a yes
instance, each dominator must hit at least n

2k vertices (which translates to clusters having
size at least n

2k as well). Second, we are promised that there is at most one dominating
set of size ≤ k (which is required for establishing approximation stability for the resulting
clustering instance).

4 Robust perturbation resilience

In this section, we consider (α, ε)-perturbation resilience. We show that under (3, ε)-
perturbation resilience, there is an algorithm that recovers OPT for symmetric k-center, and
an algorithm that returns a solution that is ε-close to OPT for asymmetric k-center. For
both of these results, we assume a lower bound on the size of the optimal clusters, |Ci| > 2εn
for all i ∈ [k]. We show the lower bound on cluster sizes is necessary; in its absence, the
problem becomes NP-hard for all values of α ≥ 1 and ε > 0. The theorems in this section
require a careful reasoning about sets of centers under different perturbations that cannot all
simultaneously be valid.

4.1 Symmetric k-center
We show that for any (3, ε)-perturbation resilient k-center instance such that |Ci| > 2εn for
all i ∈ [k], OPT can be found by simply thresholding the input graph using distance r∗ and
outputting the connected components. A nice feature of our result is that the Single Linkage
algorithm, a fast algorithm widely used in practice, is sufficient to optimally cluster these
instances.

I Theorem 11. Given a (3, ε)-perturbation resilient k-center instance (S, d) where all optimal
clusters are > max(2εn, 3). Then the optimal clusters in OPT are exactly the connected
components of the threshold graph Gr∗ of the input distances.

Proof idea. Since each optimal cluster center is distance r∗ from all points in its cluster, it
suffices to show that any two points in different clusters are at least r∗ apart from each other.
Assume on the contrary that there exist p ∈ Ci and q ∈ Cj , i 6= j, such that d(p, q) ≤ r∗.
First we find a set of k + 2 points and a 3-perturbation d′, such that every size k subset of
the points are optimal centers under d′. Then we show how this leads to a contradiction
under (3, ε)-perturbation resilience.

From our assumption, p is distance ≤ 3r∗ from every point in Ci ∪ Cj (by the triangle
inequality). Under a 3-perturbation in which all distances are blown up by a factor of 3
except d(p, Ci ∪Cj), then replacing ci and cj with p would still give us a set of k − 1 centers
that achieve the optimal score. But, would this contradict (3, ε)-perturbation resilience?
Indeed, not! Perturbation resilience requires exactly k distinct centers.5 The key challenge is
to pick a final “dummy” center to guarantee that the Voronoi partition is ε-far from OPT .
The dummy center might “accidentally” be the closest center for almost all points in Ci or
Cj . Even worse, it might be the case that the new center sets off a chain reaction in which it

5 This distinction is well-motivated; if for some application, the best k-center solution is to put two
centers at the same location, then we could achieve the exact same solution with k − 1 centers. That
implies we should have been running k′-center for k′ = k − 1 instead of k.
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becomes center to a cluster Cx, and cx becomes center to Cj , which would also result in a
partition that is not ε-far from OPT .

To deal with the chain reactions, we crucially introduce the notion of a cluster capturing
center (CCC). cx is a CCC for Cy, if for all but εn points p ∈ Cy, d(cx, p) ≤ r∗ and for all
i 6= x, y, d(cx, p) < d(ci, p). Intuitively, a CCC exists if and only if cx is a valid center for
Cy when cy is taken out of the set of optimal centers (i.e., a chain reaction will occur). We
argue that if a CCC does not exist then every dummy center we pick must be close to either
Ci or Cj , since there are no chain reactions. If there does exist a CCC cx for Cy, then we
cannot reason about what happens to the dummy centers under our d′. However, we can
define a new d′′ by increasing all distances except d(cx, Cy), which allows us to take cy out of
the set of optimal centers, and then any dummy center must be close to Cx or Cy. There are
no chain reactions because we already know cx is the best center for Cy among the original
optimal centers. Thus, whether or not there exists a CCC, we can find k + 2 points close to
the entire dataset by picking points from both Ci and Cj (resp. Cx and Cy).

Because of the assumption that all clusters are size > 2εn, for every 3-perturbation there
must be a bijection between clusters and centers, where the center is closest to the majority
of points in the corresponding cluster. We show that all size k subsets of the k + 2 points
cannot simultaneously admit bijections that are consistent with one another.

Note that Theorem 10 implies (2− δ, ε)- perturbation resilient k-center is hard for δ > 0,
even when the optimal clusters are large. Therefore, the value of α we achieve is within one
of optimal. J

4.2 Lower bound on cluster sizes
Before moving to the asymmetric case, we show that the lower bound on the cluster sizes in
Theorem 11 is necessary. Without this lower bound, clustering becomes hard, even assuming
(α, ε)-perturbation resilience for any α and ε. This reduction follows from k-center (the
details appear in the full version).

I Theorem 12. For all α ≥ 1 and ε > 0, finding the optimal solution for k-center under
(α, ε)-perturbation resilience is NP-hard.

4.3 Asymmetric k-center
In the asymmetric case, we consider the definition of the symmetric set A from Section 3,
A = {p | ∀q, d(q, p) ≤ r∗ =⇒ d(p, q) ≤ r∗}. We might first ask whether A respects the
structure of OPT , as it did under 2-perturbation resilience. Namely, whether Condition 1:
all centers are in A, and Condition 2: arg minq∈A d(q, p) ∈ Ci =⇒ p ∈ Ci hold. This is not
the case for either condition. We explore to what degree these conditions are violated.

We call a center ci “bad” if it is not in the set A, i.e., ∃q /∈ Ci and d(q, ci) ≤ r∗. When
a bad center ci exists, we can take it out of the set of optimal centers, and we can pick
an arbitrary dummy center which must be close to Ci or a CCC for Ci. In our symmetric
argument, we arrived at a contradiction by showing that two dummy centers which capture
the same cluster, must be close by the triangle inequality. This logic breaks down for
asymmetric distances. In the full version of the paper, we show an example of an instance
with a bad center that satisfies (α, ε)-perturbation resilience. However, it turns out that no
instance can have more than 6 bad centers under (3, ε)-perturbation resilience, assuming all
optimal clusters have size > 2εn. So Condition 1 is satisfied for all but a constant number of
centers. However, Condition 2 may not be satisfied for up to εn points. Therefore, even if
we fully cluster A, we will only get ε-close to OPT .
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Although up to 6 clusters may have no intersection with A, each point that does belong
to A is distance r∗ from its center and distance 2r∗ from its entire cluster. This motivates
the following algorithm. First, we run a symmetric k-center 2-approximation algorithm on
A, for k − 6 ≤ k′ ≤ k. For instance, iteratively pick an unmarked point, and mark all points
distance 2r∗ away from it [19]. This gives us a 2-approximation for the centers in A, and thus
a 3-approximation for S minus the clusters with no centers in A. Then we brute force search
for the remaining ≤ 6 centers to find a 3-approximation for S. Under (3, ε)-perturbation
resilience, this 3-approximation must be ε-close to OPT . We formally state the algorithm
and theorem below, and we defer the proof to the full version of this paper. The main
technical challenge is in proving that no instance can have more than 6 bad centers.

Algorithm 2 (3, ε)-Perturbation Resilient Asymmetric k-center
Input: Asymmetric k-center instance (S, d), r∗ (or try all possible candidates).
1. Build set A = {p | ∀q, d(q, p) ≤ r∗ =⇒ d(p, q) ≤ r∗}.
2. Create the threshold graph G with vertices A, and threshold distance r∗. Define a new

symmetric k-center instance with A, using the lengths of the paths in the threshold graph.
3. Run a symmetric k-center 2-approximation algorithm on the symmetrized instance. Start

with k′ = k − 6, and increase k′ by 1 until the algorithm returns a solution with radius
≤ 2r∗.

4. Brute force over all size k − x subsets of C and all size x subsets of S for x ≤ 6, to find a
set of size k which is 3r∗ from all points in S. Denote this set by C ′.

Output: Output the Voronoi tiling G1, . . . , Gk using C ′ as the centers.

I Theorem 13. Algorithm 2 runs in polytime and outputs a clustering that is ε-close to
OPT , for (3, ε)-perturbation resilient asymmetric k-center instances s.t. all optimal clusters
are size > 2εn.

5 Weak center proximity

In this section, we consider any center-based objective, not just k-center. A clustering
objective function is center-based if the solution can be defined by choosing a set of centers
{c1, c2, . . . , ck} ⊆ S, and partitioning S into k clusters OPT = {C1, C2, . . . , Ck} by assigning
each point to its closest center. Furthermore:
1. The objective value of a given clustering is a weighted sum or maximum of the individual

cluster scores.
2. Given a proposed single cluster, its score can be computed in polynomial time.
k-median, k-means, and k-center are all center-based objectives.

Here, we show a novel algorithm that finds the optimal clustering in instances that satisfy
two simple properties: each point is closer to its center than to any point in a different
cluster, and we can recognize optimal clusters as soon as they are formed. Formally, we
define these properties as:
1. Weak Center Proximity: For all p ∈ Ci and q ∈ Cj , d(ci, p) < d(p, q).
2. Cluster Verifiability: There exists a polytime computable function f : 2S → R that for

B ⊆ S, if there is i ∈ [k] such that B ⊂ Ci, then f(B) < 0, and if B ⊇ Ci, then f(B) ≥ 0.

Examples of cluster verifiable instances include any instance where all the optimal clusters
are the same size (f(B) = |B| − n

k ), or where all the optimal clusters have the same
k-median/k-means cost (f(B) = Φ(B)− Φ(OPT )).
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For any center-based objective, weak center proximity is a consequence of 2-perturbation
resilience (i.e., Lemma 6), so, our algorithm relies on a much weaker assumption than
α-perturbation resilience for α ≥ 2, when instances are cluster verifiable.

All existing algorithms and analysis for α-perturbation resilience require that for all
p ∈ Ci and q ∈ Cj , d(ci, p) < d(ci, q). It is not at all obvious how one can even proceed
without such a property, as in its absence, clusters can ‘overlap’. That is, for a cluster with
center ci and radius r, we can not assume that Br(ci) only includes points from Ci. Our
challenge is then in showing that even in absence of this property, there is still enough
structure imposed by the weak center proximity and cluster verifiability to find the optimal
clustering efficiently.

Our Algorithm 3 is a novel linkage based procedure. Given a clustering instance (S, d),
we will start with a graph G = (S,E) where E = ∅. In each round, we do single linkage
on the components in G, except we do not merge two components if both are supersets of
optimal clusters (indicated by f(B) ≥ 0). Put the single linkage edges from this round in a
set A. This will continue until every component is a superset of an optimal cluster. Then we
throw away the set A except for the very last edge that was added. We will prove this last
edge is never between two points from different clusters, so we add that single edge to E and
then recur. Here, we present a proof sketch of our main theorem. The details can be found
in the full version.

Algorithm 3 Clustering under weak center proximity and cluster verifiability
Input: Clustering instance (S, d), function f , and k ≤ |S|.
Set G = (S,E) and E = ∅. While there are more than k components in G, repeat (1) and
(2):
1. Set A = ∅. While there exists a component B in G′ = (S,E ∪ A) such that f(B) < 0,

add (p, q) to A, where d(p, q) is minimized such that p and q are in different components
in G′ and at least one of these components B has f(B) < 0.

2. Take the last edge e that was added to A, and put e ∈ E.
Output: Output the components of G.

I Theorem 14. Given a center-based clustering instance satisfying weak center proximity
and cluster verifiability, Algorithm 3 outputs OPT in polynomial time.

Proof Sketch. It suffices to show that step (b) never adds an edge between two points from
different clusters. We proceed by induction. Assume it is true up to iteration t of the first
while loop. Now assume towards contradiction that in round t, the last edge added to A is
between two points p ∈ Ci and q ∈ Cj , i 6= j. WLOG, for the component in G′ that includes
p, called P ′, we have f(P ′) < 0, otherwise the merge would not have happened. Furthermore,
ci ∈ P ′ by weak center proximity. Then f(P ′) < 0 implies that Ci \ P ′ is nonempty, so
call it P . The component(s) in G corresponding to P are strict subsets of Ci, therefore,
f(P ) < 0. So they must merge to another component, and by weak center proximity, the
closest component is P ′, but this contradicts our assumption that (p, q) was the last edge
added to A. J

6 Conclusions

Our work pushes the understanding of (promise) stability conditions farther in three ways.
We are the first to design computationally efficient algorithms to find the optimal clustering
under α-perturbation resilience with a constant value of α for a problem that is hard to
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approximate to any constant factor in the worst case, thereby demonstrating the power of
perturbation resilience. Furthermore, we demonstrate the limits of this power by showing the
first tight results in this space for both perturbation resilience and approximation stability.
Finally, we show a surprising relation between symmetric and asymmetric instances, in that
they are equivalent under resilience to 2-perturbations, which is in stark contrast to their
widely differing tight approximation factors.
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Abstract
We consider clustering problems with non-uniform lower bounds and outliers, and obtain the
first approximation guarantees for these problems. We have a set F of facilities with lower
bounds {Li}i∈F and a set D of clients located in a common metric space {c(i, j)}i,j∈F∪D, and
bounds k, m. A feasible solution is a pair

(
S ⊆ F , σ : D 7→ S ∪ {out}

)
, where σ specifies the

client assignments, such that |S| ≤ k, |σ−1(i)| ≥ Li for all i ∈ S, and |σ−1(out)| ≤ m. In the
lower-bounded min-sum-of-radii with outliers (LBkSRO) problem, the objective is to minimize∑

i∈S maxj∈σ−1(i) c(i, j), and in the lower-bounded k-supplier with outliers (LBkSupO) problem,
the objective is to minimize maxi∈S maxj∈σ−1(i) c(i, j).

We obtain an approximation factor of 12.365 for LBkSRO, which improves to 3.83 for the
non-outlier version (i.e., m = 0). These also constitute the first approximation bounds for the
min-sum-of-radii objective when we consider lower bounds and outliers separately. We apply
the primal-dual method to the relaxation where we Lagrangify the |S| ≤ k constraint. The
chief technical contribution and novelty of our algorithm is that, departing from the standard
paradigm used for such constrained problems, we obtain an O(1)-approximation despite the fact
that we do not obtain a Lagrangian-multiplier-preserving algorithm for the Lagrangian relaxation.
We believe that our ideas have broader applicability to other clustering problems with outliers
as well.

We obtain approximation factors of 5 and 3 respectively for LBkSupO and its non-outlier
version. These are the first approximation results for k-supplier with non-uniform lower bounds.
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Keywords and phrases Approximation algorithms, facililty-location problems, primal-dual method,
Lagrangian relaxation, k-center problems, minimizing sum of radii
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1 Introduction

Clustering is an ubiquitous problem arising in applications in various fields such as data
mining, machine learning, image processing, and bioinformatics. Many of these problems
involve finding a set S of at most k “cluster centers”, and an assignment σ mapping an
underlying set D of data points located in some metric space {c(i, j)} to S, to minimize
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some objective function; examples include the k-center (minimize maxj∈D c(σ(j), j)) [20,
21], k-median (minimize

∑
j∈D c(σ(j), j)) [9, 22, 25, 6], and min-sum-of-radii (minimize∑

i∈S maxj:σ(j)=i c(i, j)) [15, 11] problems. Viewed from this perspective, clustering problems
can often be viewed as facility-location problems, wherein an underlying set of clients that
require service need to be assigned to facilities that provide service in a cost-effective fashion.
Both clustering and facility-location problems have been extensively studied in the Computer
Science and Operations Research literature; see, e.g., [27, 29] in addition to the above
references.

We consider clustering problems with (non-uniform) lower-bound requirements on the
cluster sizes, and where a bounded number of points may be designated as outliers and
left unclustered. One motivation for considering lower bounds comes from an anonymity
consideration. In order to achieve data privacy, [28] proposed an anonymization problem
where we seek to perturb (in a specific way) some of (the attributes of) the data points and
then cluster them so that every cluster has at least L identical perturbed data points, thus
making it difficult to identify the original data from the clustering. As noted in [2, 1], this
anonymization problem can be abstracted as a lower-bounded clustering problem where the
clustering objective captures the cost of perturbing data. Another motivation comes from a
facility-location perspective, where (as in the case of lower-bounded facility location), the
lower bounds model that it is infeasible or unprofitable to use services unless they satisfy a
certain minimum demand (see, e.g., [26]). Allowing outliers enables one to handle a common
woe in clustering problems, namely that data points that are quite dissimilar from any
other data point can often disproportionately (and undesirably) degrade the quality of any
clustering of the entire data set; instead, the outlier-version allows one to designate such
data points as outliers and focus on the data points of interest.

Formally, adopting the facility-location terminology, our setup is as follows. We have a
set F of facilities with lower bounds {Li}i∈F and a set D of clients located in a common
metric space {c(i, j)}i,j∈F∪D, and bounds k, m. A feasible solution chooses a set S ⊆ F of at
most k facilities, and assigns each client j to a facility σ(j) ∈ S, or designates j as an outlier
by setting σ(j) = out so that |σ−1(i)| ≥ Li for all i ∈ S, and |σ−1(out)| ≤ m. We consider
two clustering objectives: minimize

∑
i∈S maxj:σ(j)=i c(i, j), which yields the lower-bounded

min-sum-of-radii with outliers (LBkSRO) problem, and minimize maxi∈S maxj:σ(j)=i c(i, j),
which yields the lower-bounded k-supplier with outliers (LBkSupO) problem. We refer to
the non-outlier versions of the above problems (i.e., where m = 0) as LBkSR and LBkSup
respectively.

Our contributions. We obtain the first results for clustering problems with non-uniform
lower bounds and outliers. We develop various techniques for tackling these problems using
which we obtain constant-factor approximation guarantees for LBkSRO and LBkSupO. Note
that we need to ensure that none of the hard constraints involved here – at most k clusters,
non-uniform lower bounds, and at most m outliers – are violated, which is somewhat
challenging.

We obtain an approximation factor of 12.365 for LBkSRO (Theorem 7, Section 2.2), which
improves to 3.83 for the non-outlier version LBkSR (Theorem 6, Section 2.1). These also
constitute the first approximation results for the min-sum-of-radii objective when we consider:
(a) lower bounds (even uniform bounds) but no outliers (LBkSR); and (b) outliers but no
lower bounds. Previously, an O(1)-approximation was known only in the setting where there
are no lower bounds and no outliers (i.e., Li = 0 for all i, m = 0) [11].

For the k-supplier objective (Section 3), we obtain an approximation factor of 5 for
LBkSupO (Theorem 16), and 3 for LBkSup (Theorem 15). These are the first approximation
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results for the k-supplier problem with non-uniform lower bounds. Previously, [1] obtained
approximation factors of 4 and 2 respectively for LBkSupO and LBkSup for the special case of
uniform lower bounds and when F = D (often called the k-center version). Complementing
our approximation bounds, we prove a factor-3 hardness of approximation for LBkSup
(Theorem 17), which shows that our approximation factor of 3 is optimal for LBkSup.

Our techniques. Our main technical contribution is an O(1)-approximation algorithm for
LBkSRO (Section 2.2). Whereas for the non-outlier version LBkSR (Section 2.1), one can
follow an approach similar to that in [11] for the min-sum-of-radii problem without lower
bounds or outliers, the presence of outliers creates substantial difficulties whose resolution
requires various novel ingredients. As in [11], we view LBkSRO as a k-ball-selection (k-BS)
problem of picking k suitable balls (see Section 2) and consider its LP-relaxation (P2). Let
OPT denote its optimal value. Following the Jain-Vazirani (JV) template for k-median [22],
we move to the version where we may pick any number of balls but incur a fixed cost of
z for each ball we pick. The dual LP (D2) has αj dual variables for the clients, which
“pay” for (i, r) pairs (where (i, r) denotes the ball {j ∈ D : c(i, j) ≤ r}). For LBkSR (where
m = 0), as observed in [11], it is easy to adapt the JV primal-dual algorithm for facility
location to handle this fixed-cost version of k-BS: we raise the αjs of uncovered clients
until all clients are covered by some fully-paid (i, r) pair (see PDAlg). This yields a so-
called Lagrangian-multiplier-preserving (LMP) 3-approximation algorithm: if F is the primal
solution constructed, then 3

∑
j αj can pay for cost(F ) + 3|F |z; hence, by varying z, one can

find two solutions F1, F2 for nearby values of z, and combine them to extract a low-cost
k-BS-solution.

The presence of outliers in LBkSRO significantly complicates things. The natural adapta-
tion of the primal-dual algorithm is to now stop when at least |D| −m clients are covered by
fully-paid (i, r) pairs. But now, the dual objective involves a −m ·γ term, where γ = maxj αj ,
which potentially cancels the dual contribution of (some) clients that pay for the last fully-
paid (i, r) pair, say f . Consequently, we do not obtain an LMP-approximation: if F is
the primal solution we construct, we can only say that (roughly) 3(

∑
j αj − m · γ) pays

for cost(F \ f) + 3|F \ f |z (see Theorem 8 (ii)). In particular, this means that even if the
primal-dual algorithm returns a solution with k pairs, its cost need not be bounded, an artifact
that never arises in LBkSR (or k-median). This in turn means that by combining the two
solutions F1, F2 found for z1, z2 ≈ z1, we only obtain a solution of cost O(OPT + z1) (see
Theorem 10).

Dealing with the case where z1 = Ω(OPT ) is technically the most involved portion of our
algorithm (Section 2.2.2). We argue that in this case the solutions F1, F2 (may be assumed
to) have a very specific structure: |F1| = k + 1, and every F2-ball intersects at most one
F1-ball, and vice versa. We utilize this structure to show that either we can find a good
solution in a suitable neighborhood of F1 and F2, or F2 itself must be a good solution.

We remark that the above difficulties (i.e., the inability to pay for the last “facility” and the
ensuing complications) also arise in the k-median problem with outliers. We believe that our
ideas also have implications for this problem and should yield a much-improved approximation
ratio for this problem. (The current guarantee is a large (unspecified) constant [12].)

For the k-supplier problem, LBkSupO, we leverage the notion of skeletons and pre-skeletons
defined by [14] in the context of capacitated k-supplier with outliers, wherein facilities have
capacities instead of lower bounds limiting the number of clients that can be assigned to
them. Roughly speaking, a skeleton F ⊆ F ensures there is a low-cost solution (F, σ). A
pre-skeleton satisfies some of the properties of a skeleton. We show that if F is a pre-skeleton,
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then either F is a skeleton or F ∪ {i} is a pre-skeleton for some facility i. This allows one to
find a sequence of facility-sets such that at least one of them is a skeleton. For a given set F ,
one can check if F admits a low-cost assignment σ, so this yields an O(1)-approximation
algorithm.

Related work. There is a vast literature on clustering and facility-location (FL) problems
(see, e.g., [27, 29]); we limit ourselves to work that is relevant to LBkSRO and LBkSupO.

The only prior work on clustering problems to incorporate both lower bounds and outliers
is by Aggarwal et al. [1]. They obtain approximation ratios of 4 and 2 respectively for
LBkSupO and LBkSup with uniform lower bounds, which they consider as a means of
achieving anonymity. They also consider an alternate cellular clustering (CellC) objective
and devise an O(1)-approximation algorithm for lower-bounded CellC with uniform lower
bounds, and mention that this can be extended to an O(1)-approximation for lower-bounded
CellC with outliers.

More work has been directed towards clustering problems involving outliers or lower
bounds (but not both). Charikar et al. [10] consider (among other problems) the outlier-
versions of the uncapacitated FL, k-supplier and k-median problems. They devise constant-
factor approximations for the first two problems, and a bicriteria approximation for the
k-median problem with outliers. They also proved a factor-3 approximation hardness result
for k-supplier with outliers. This nicely complements our factor-3 hardness result for k-
supplier with lower bounds but no outliers. Chen [12] obtained the first true approximation
for k-median with outliers via a sophisticated combination of the primal-dual algorithm
for k-median and local search that yields a large (unspecified) O(1)-approximation. Cygan
and Kociumaka [14] consider the capacitated k-supplier with outliers problem, and devise a
25-approximation algorithm. We leverage some of their ideas in developing our algorithm for
LBkSupO.

Lower-bounded clustering and FL problems remain largely unexplored and ill-understood.
Besides LBkSup (which has also been studied in Euclidean spaces [16]) another such FL
problem that has been studied is lower-bounded facility location (LBFL) [23, 19], wherein we
seek to open facilities (which have lower bounds) and assign each client j to an open facility
σ(j) so as to minimize

∑
j∈D c(σ(j), j). Svitkina [30] obtained the first true approximation

for LBFL, achieving an O(1)-approximation; the O(1)-factor was subsequently improved
by [3]. Both results apply to LBFL with uniform lower bounds, and can be adapted to yield
O(1)-approximations to the k-median variant (where we may open at most k facilities).

Doddi et al. [15] introduced the min-sum-of-diameters objective, which is closely related
to the min-sum-of-radii objective (the former is at most twice the latter). Charikar and
Panigrahi [11] devised the first (and current-best) O(1)-approximation algorithms for these
problems, obtaining approximation ratios of 3.53 and 7.06 for the radii and diameter problems
respectively. Various other results are known for specific metric spaces and when F = D,
such as Euclidean spaces [18, 7] and metrics with bounded aspect ratios [17, 5].

The k-supplier and k-center (i.e., k-supplier with F = D) objectives have a rich history
of study. Hochbaum and Shmoys [20, 21] obtained optimal approximation ratios of 3 and 2
for these problems respectively. Capacitated versions of k-center and k-supplier have also
been studied: [24] devised a 6-approximation for uniform capacities, [13] obtained the first
O(1)-approximation for non-uniform capacities, and this O(1)-factor was improved to 9 in [4].

Finally, our algorithm for LBkSRO leverages the template based on Lagrangian relaxation
and the primal-dual method to emerge from the work of [22, 8] for the k-median problem.
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2 Minimizing sum of radii with lower bounds and outliers

Recall that in the lower-bounded min-sum-of-radii with outliers (LBkSRO) problem, we have
a facility-set F and client-set D located in a metric space {c(i, j)}i,j∈F∪D, lower bounds
{Li}i∈F , and bounds k and m. A feasible solution is a pair

(
S ⊆ F , σ : D 7→ S ∪ {out}

)
,

where σ(j) ∈ S indicates that j is assigned to facility σ(j), and σ(j) = out designates j as
an outlier, such that |S| ≤ k, |σ−1(i)| ≥ Li for all i ∈ S, and |σ−1(out)| ≤ m. The cost
cost(S, σ) of such a solution is

∑
i∈S ri, where ri := maxj∈σ−1(i) c(i, j) denotes the radius

of facility i; the goal is to find a solution of minimum cost. We use LBkSR to denote the
non-outlier version where m = 0.

It will be convenient to consider a relaxation of LBkSRO that we call the k-ball-selection
(k-BS) problem, which focuses on selecting at most k balls centered at facilities of minimum
total radius. More precisely, let B(i, r) := {j ∈ D : c(i, j) ≤ r} denote the ball of clients
centered at i with radius r. Let cmax = maxi∈F,j∈D c(i, j). Let Li := {(i, r) : |B(i, r)| ≥
Li}, and L :=

⋃
i∈F Li. The goal in k-BS is to find a set F ⊆ L with |F | ≤ k and∣∣D \⋃(i,r)∈F B(i, r)
∣∣ ≤ m so that cost(F ) :=

∑
(i,r)∈F r is minimized. (When formulating

the LP-relaxation of the k-BS-problem, we equivalently view L as containing only pairs
of the form (i, c(i, j)) for some client j, which makes L finite.) It is easy to see that any
LBkSRO-solution yields a k-BS-solution of no greater cost. The key advantage of working
with k-BS is that we do not explicitly consider the lower bounds (they are folded into the Lis)
and we do not require the balls B(i, r) for (i, r) ∈ F to be disjoint. While a k-BS-solution
F need not directly translate to a feasible LBkSRO-solution, one can show that it does
yield a feasible LBkSRO-solution of cost at most 2 · cost(F ). We prove a stronger version
of this statement in Lemma 1. In the following two sections, we utilize this relaxation to
devise the first constant-factor approximation algorithms for for LBkSR and LBkSRO. To
our knowledge, our algorithm is also the first O(1)-approximation algorithm for the outlier
version of the min-sum-of-radii problem without lower bounds.

We consider an LP-relaxation for the k-BS-problem, and to round a fractional k-BS-
solution to a good integral solution, we need to preclude radii that are much larger than those
used by an optimal solution. We therefore “guess” the t facilities in the optimal solution
with the largest radii, and their radii, where t ≥ 1 is some constant. That is, we enumerate
over all O

(
(|F|+ |D|)2t) choices FO = {(i1, r1), . . . , (it, rt)} of t (i, r) pairs from L. For each

such selection, we set D′ = D \
⋃

(i,r)∈FO B(i, r), L′ = {(i, r) ∈ L : r ≤ minp=1,...,t rp} and
k′ = k− |FO|, and run our k-BS-algorithm on the modified k-BS-instance (F ,D′, c,L′, k′,m)
to obtain a k-BS-solution F . We translate F ∪ FO to an LBkSRO-solution, and return
the best of these solutions. The following lemma, and the procedure described therein, is
repeatedly used to bound the cost of translating F ∪ FO to a feasible LBkSRO-solution.
We call pairs (i, r), (i′, r′) ∈ F × R≥0 non-intersecting, if c(i, i′) > r + r′, and intersecting
otherwise. Note that B(i, r) ∩B(i′, r′) = ∅ if (i, r) and (i′, r′) are non-intersecting. For a set
P ⊆ F × R≥0 of pairs, define µ(P ) := {i ∈ F : ∃r s.t. (i, r) ∈ P}.

I Lemma 1. Let FO ⊆ L, and D′,L′, k′ be as defined above. Let F ⊆ L be a k-BS-solution
for the k-BS-instance (F ,D′, c,L′, k′,m). Suppose for each i ∈ µ(F ), we have a radius
r′i ≤ maxr:(i,r)∈F r such that the pairs in U :=

⋃
i∈µ(F )(i, r′i) are non-intersecting and U ⊆ L′.

Then there exists a feasible LBkSRO-solution (S, σ) with cost(S, σ) ≤ cost(F ) +
∑

(i,r)∈FO 2r.

2.1 Approximation algorithm for LBkSR
We now present our algorithm for the non-outlier version, LBkSR, which introduces many of
the ideas underlying our algorithm for LBkSRO (Section 2.2). Let O∗ be the cost of an optimal
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solution to the given LBkSR instance. For each selection (i1, r1), . . . , (it, rt) of t pairs, we do
the following. We set D′ = D \

⋃t
p=1 B(ip, rp), L′ = {(i, r) ∈ L : r ≤ R∗ := minp=1,...,t rp},

k′ = k − t, and consider the k-BS-problem of picking a min-cost set of at most k′ pairs from
L′ whose corresponding balls cover D′ (but our algorithm k-BSAlg will return pairs from L).
Consider the following natural LP-relaxation (P1) of this problem, and its dual (D1).

min
∑

(i,r)∈L′
r · yi,r (P1)

s.t.
∑

(i,r)∈L′:j∈B(i,r)

yi,r ≥ 1 ∀j ∈ D′

∑
(i,r)∈L′

yi,r ≤ k′ (1)

y ≥ 0.

max
∑
j∈D′

αj − k′ · z (D1)

s.t.
∑

j∈B(i,r)∩D′
αj − z ≤ r ∀(i, r) ∈ L′

(2)
α, z ≥ 0.

Let OPT denote the common optimal value of (P1) and (D1). As in the JV-algorithm for
k-median, we Lagrangify constraint (1) and consider the unconstrained problem where we do
not bound the number of pairs we may pick, but we incur a fixed cost z for each pair (i, r)
that we pick (in addition to r). It is easy to adapt the JV primal-dual algorithm for facility
location [22] to devise a simple Lagrangian-multiplier-preserving (LMP) 3-approximation
algorithm for this problem (see PDAlg and Theorem 3). We use this LMP algorithm within
a binary-search procedure for z to obtain two solutions F1 and F2 with |F2| ≤ k′ < |F1|,
and show that these can be “combined” to extract a k-BS-solution F of cost at most
3.83 ·OPT +O(R∗). This combination step is more involved than in k-median. The main
idea here is to use the F2 solution as a guide to merge some F1-pairs. We cluster the F1
pairs around the F2-pairs and setup a covering-knapsack problem whose solution determines
for each F2-pair (i, r), whether to “merge” the F1-pairs clustered around (i, r) or select all
these F1-pairs (see step B2). Finally, we add back the pairs (i1, r1), . . . (it, rt) selected earlier
and apply Lemma 1 to obtain an LBkSR-solution. As required by Lemma 1, to aid in this
translation, our k-BS-algorithm returns, along with F , a suitable radius rad(i) for every
facility i ∈ µ(F ). This yields a (3.83 + ε)-approximation algorithm (Theorem 6).

While our approach is similar to the one in [11] for the min-sum-of-radii problem without
lower bounds (although our combination step is notably simpler), an important distinction
that arises is the following. In the absence of lower bounds, the ball-selection problem k-BS
is equivalent to the min-sum-of-radii problem, but (as noted earlier) this is no longer the case
when we have lower bounds since in k-BS we do not insist that the balls we pick be disjoint.
Moving from overlapping balls in a k-BS-solution to an LBkSR-solution incurs, in general,
a factor-2 blowup in the cost, but we avoid this blowup by exploiting the structure of the
k-BS-solution obtained and carefully merging in the pairs (i1, r1), . . . , (it, rt) (see Lemma 1).
It is interesting that our approximation factor is quite close to the approximation factor (of
3.53) achieved in [11] for the min-sum-of-radii problem without lower bounds.

We now describe our algorithm in detail and analyze it. We describe a slightly simpler
(6.183 + ε)-approximation algorithm below (Theorem 2). We sketch the ideas behind the
improved approximation ratio at the end of this section and defer the details to the full
version.
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I Algorithm 1.
Input: An LBkSR-instance I =

(
F ,D, {Li}, {c(i, j)}, k

)
, parameter ε > 0.

Output: A feasible solution (S, σ).
A1. Let t = min

{
k,
⌈

1
ε

⌉}
. For each set FO ⊆ L with |FO| ≤ t, do the following.

A1.1. Set D′ = D\
⋃

(i,r)∈FO B(i, r), L′ = {(i′, r′) ∈ L : r ≤ R∗ = min(i,r)∈FO r}, k′ = k−|FO|.
A1.2. If (P1) is infeasible, then reject this guess and move to the next set FO. If D′ 6= ∅, run
k-BSAlg(D′,L′, k′, ε) to obtain

(
F, {rad(i)}i∈F

)
; else set (F, rad) = (∅, ∅).

A1.3. Apply the procedure in Lemma 1 taking r′i = rad(i) for all i ∈ µ(F ) to obtain (S, σ).

A1. Among all the solutions (S, σ) found in step A1, return the one with smallest cost.

I Algorithm k-BSAlg(D′,L′, k′, ε).
Output: F ⊆ L with |F | ≤ k′, a radius rad(i) for all i ∈ µ(F ).
B1. Binary search for z.

B1.1. Set z1 = 0 and z2 = 2k′cmax. For p = 1, 2, let (Fp, {radp(i)}, αp) ← PDAlg(D′,L′, zp),
and let kp = |Fp|. If k1 ≤ k′, stop and return

(
F1, {rad1(i)}

)
. We prove in Theorem 3 that

k2 ≤ k′; if k2 = k′, stop and return
(
F2, {rad2(i)}

)
.

B1.2. Repeat the following until z2 − z1 ≤ δz = εOPT
3n , where n = |F| + |D|. Set z = z1+z2

2 .
Let (F, {rad(i)}, α)← PDAlg(D′,L′, z). If |F | = k′, stop and return

(
F, {rad(i)}

)
; if |F | > k′,

update z1 ← z and (F1, rad1, α
1) ← (F, rad, α), else update z2 ← z and (F2, rad2, α

2) ←
(F, rad, α).

B2. Combining F1 and F2. Let π : F1 7→ F2 be any map such that (i′, r′) and π(i′, r′) intersect
∀(i′, r′) ∈ F1. (This exists since every j ∈ D′ is covered by B(i, r) for some (i, r) ∈ F2.) Define
star Si,r = π−1(i, r) for all (i, r) ∈ F2 (see Fig. 1). Solve the following covering-knapsack LP.

min
∑

(i,r)∈F2

(
xi,r(2r +

∑
(i′,r′)∈Si,r

2r′) + (1− xi,r)
∑

(i′,r′)∈Si,r
r′
)

(C-P)

s.t.
∑

(i,r)∈F2

(
xi,r + |Si,r|(1− xi,r)

)
≤ k′, 0 ≤ xi,r ≤ 1 ∀(i, r) ∈ F2.

Let x∗ be an extreme-point optimal solution to (C-P). The variable x(i,r) has the following
interpretation. If x∗i,r = 0, then we select all pairs in Si,r. Otherwise, if Si,r 6= ∅, we pick a pair
in (i′, r′) ∈ Si,r, and include (i′, 2r + r′ + max(i′′,r′′)∈Si,r\{(i′,r′)} 2r′′) in our solution. Notice
that by expanding the radius of i′ to 2r+ r′+ max(i′′,r′′)∈Si,r\{(i′,r′)} 2r′′, we cover all the clients
in
⋃

(i′′,r′′)∈Si,r
B(i′′, r′′). Let F ′ be the resulting set of pairs.

B3. If cost(F2) ≤ cost(F ), return (F2, rad2), else return
(
F ′, {rad1(i)}i∈µ(F ′)

)
.

I Algorithm PDAlg(D′,L′, z).
Output: F ⊆ L, radius rad(i) for all i ∈ µ(F ), dual solution α.
P1. Dual-ascent phase. Start with αj = 0 for all j ∈ D′, D′ as the set of active clients, and the

set T of tight pairs initialized to ∅. We repeat the following until all clients become inactive: we
raise the αjs of all active clients uniformly until constraint (2) becomes tight for some (i, r); we
add (i, r) to T and mark all active clients in B(i, r) as inactive.

P2. Pruning phase. Let TI be a maximal subset of non-intersecting pairs in T picked by a
greedy algorithm that scans pairs in T in non-increasing order of radius. Note that for each
i ∈ µ(TI), there is exactly one pair (i, r) ∈ TI . We set rad(i) = r, and ri = max {c(i, j) :
j ∈ B(i′, r′), (i′, r′) ∈ T, r′ ≤ r, (i′, r′) intersects (i, r) ((i′, r′) could be (i, r))}. Let F =
{(i, ri)}i∈µ(TI ). Return F , {rad(i)}i∈µ(TI ), and α.
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Figure 1 An example of stars formed by F1 and F2 where F1 = {u1, u2, . . . , u11} and F2 =
{v1, v2, . . . , v6} depicted by squares and circles, respectively.

Analysis. We prove the following result.

I Theorem 2. For any ε > 0, Algorithm 1 returns a feasible LBkSR-solution of cost at most(
6.1821 +O(ε)

)
O∗ in time nO(1/ε).

We first prove that PDAlg is an LMP 3-approximation algorithm, i.e., its output (F, α)
satisfies cost(F ) + 3|F |z ≤ 3

∑
j∈D′ αj . (Theorem 3). Utilizing this, we analyze k-BSAlg, in

particular, the output of the combination step B2, and argue that k-BSAlg returns a feasible
solution of cost at most

(
6.183 +O(ε)

)
·OPT +O(R∗) (Theorem 5). For the right choice of

FO, combining this with Lemma 1 yields Theorem 2.

I Theorem 3. Suppose PDAlg(D′,L′, z) returns (F, {rad(i)}, α). Then
(i) the balls corresponding to F cover D′;
(ii) cost(F ) + 3|F |z ≤ 3

∑
j∈D′ αj ≤ 3(OPT + k′z);

(iii)
{

(i, rad(i))
}
i∈µ(F ) ⊆ L

′, is a set of non-intersecting pairs, rad(i) ≤ ri ≤ 3R∗ ∀i ∈ µ(F );
(iv) if |F | ≥ k′ then cost(F ) ≤ 3 ·OPT ; if |F | > k′, then z ≤ OPT . (Hence, k2 ≤ k′ in step

B1.1.)

Let
(
F, {rad(i)}

)
= k-BSAlg(D′,L′, k′, ε). If k-BSAlg terminates in step B1, then cost(F ) ≤

3 · OPT due to part (ii) of Theorem 3, so assume otherwise. Let a, b ≥ 0 be such that
ak1 + bk2 = k′, a+ b = 1. Let C1 = cost(F1) and C2 = cost(F2). Recall that (F1, rad1, α

1)
and (F2, rad2, α

2) are the outputs of PDAlg for z1 and z2 respectively.

I Claim 4. We have aC1 + bC2 ≤ (3 + ε)OPT .

I Theorem 5. k-BSAlg(D′,L′, k′, ε) returns a feasible solution
(
F, {rad(i)}

)
with cost(F ) ≤(

6.183 + O(ε)
)
· OPT + O(R∗) where

{
(i, rad(i))}i∈µ(F ) ⊆ L′ is a set of non-intersecting

pairs.

Proof. The radii {rad(i)}i∈µ(F ) are simply radii obtained from some execution of PDAlg, so{
(i, rad(i))

}
i∈µ(F ) ⊆ L

′ and comprises non-intersecting pairs. If k-BSAlg terminates in step
B1, we have a better bound on cost(F ). If not, and we return F2, the cost incurred is C2.

Otherwise, we return the solution F ′ found in step B2. Since (C-P) has only one
constraint in addition to the bound constraints 0 ≤ xi,r ≤ 1, the extreme-point optimal
solution x∗ has at most one fractional component, and if it has a fractional component, then∑

(i,r)∈F2

(
x∗i,r + |Si,r|(1 − x∗i,r)

)
= k′. For any (i, r) ∈ F2 with x∗i,r ∈ {0, 1}, the number

of pairs we include is exactly x∗i,r + |Si,r|(1 − x∗i,r), and the total cost of these pairs is at
most the contribution to the objective function of (C-P) from the x∗i,r and (1− x∗i,r) terms.
If x∗ has a fractional component (i′, r′) ∈ F2, then x∗i′,r′ + |Si′,r′ |(1 − x∗i′,r′) is a positive
integer. Since we include at most one pair for (i′, r′), this implies that |F ′| ≤ k′. The cost
of the pair we include is at most 15R∗, since all (i, r) ∈ F1 ∪ F2 satisfy r ≤ 3R∗. Therefore,
cost(F ′) ≤ OPTC-P + 15R∗. Also, OPTC-P ≤ 2bC2 + (2b+ a)C1 = 2bC2 + (1 + b)C1, since
setting xi,r = b for all (i, r) ∈ F2 yields a feasible solution to (C-P) of this cost.
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So when we terminate in step B3, we return a solution F with cost(F ) ≤ min{C2, 2bC2 +
(1 + b)C1 + 15R∗}. We show that min{C2, 2bC2 + (1 + b)C1} ≤ 2.0607(aC1 + bC2) for all
a, b ≥ 0 with a+ b = 1. Combining this with Claim 4 yields the bound in the theorem. J

Proof. Proof of Theorem 2 It suffices to show that when the selection FO = {(i1, r1), . . . (it, rt)}
in step A1 corresponds to the t facilities in an optimal solution with largest radii, we
obtain the desired approximation bound. In this case, we have R∗ ≤ O∗

t ≤ εO∗ and
OPT ≤ O∗ −

∑t
p=1 rp. Combining Theorem 5 and Lemma 1 then yields the theorem. J

Improved approximation ratio. The improved approximation ratio comes from a better
way of combining F1 and F2 in step B2. We observe that the dual solutions α1 and α2 are
component-wise close to each other (we can control the closeness by controlling δz). Thus, we
may essentially assume that if T1,I , T2,I denote the tight pairs yielding F1, F2 respectively,
then every pair in T1,I intersects some pair in T2,I , because we can augment T2,I to include
non-intersecting pairs of T1,I . This yields dividends when we combine solutions as in step B2,
because we can now ensure that if π(i′, r′) = (i, r), then the pairs of T2,I and T1,I yielding
(i, r) and (i′, r′) respectively intersect, which yields an improved bound on ci,i′ . This yields an
improved approximation of 3.83 for the combination step, and hence for the entire algorithm.

I Theorem 6. For any ε > 0, our algorithm returns a feasible LBkSR-solution of cost at
most (3.83 +O(ε))O∗ in time nO(1/ε).

2.2 Approximation algorithm for LBkSRO
We now build upon the ideas in Section 2.1 to devise an O(1)-approximation algorithm for the
outlier version LBkSR. The high-level approach is similar to the one in Section 2.1. We again
“guess” the t (i, r) pairs FO corresponding to the facilities with largest radii in an optimal
solution, and consider the modified k-BS-instance (D′,L′, k′,m) (where D′,L′, k′ are defined
as before). If the LP-relaxation below, (P2), for the k-BS-problem is infeasible, we move on to
the next guess. Otherwise, we design a primal-dual algorithm for the Lagrangian relaxation
of the k-BS-problem where we are allowed to pick any number of pairs from L′ (leaving at
most m uncovered clients) incurring a fixed cost of z for each pair picked, utilize this to
obtain two solutions F1 and F2, and combine these to extract a low-cost solution. However,
the presence of outliers introduces various difficulties both in the primal-dual algorithm and
in the combination step. Consider the following LP-relaxation of the k-BS-problem and its
dual.

min
∑

(i,r)∈L′
r · yi,r (P2)

s.t.
∑

(i,r)∈L′:j∈B(i,r)

yi,r + wj ≥ 1 ∀j ∈ D′

∑
(i,r)∈L′

yi,r ≤ k′,
∑
j∈D′

wj ≤ m

y,w ≥ 0.

max
∑
j∈D′

αj − k′ · z −m · γ (D2)

s.t.
∑

j∈B(i,r)∩D′
αj − z ≤ r ∀(i, r) ∈ L′

(3)
αj ≤ γ ∀j ∈ D′

α, z, γ ≥ 0.

Let OPT denote the optimal value of (P2). The natural modification of the earlier primal-
dual algorithm PDAlg is to now stop the dual-ascent process when the number of active
clients is at most m and set γ = maxj∈D′ αj . This introduces the significant complication
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that one may not be able to pay for the r + z-cost of non-intersecting tight pairs selected in
the pruning phase by the dual objective value

∑
j∈D′ αj−m ·γ, since clients with αj = γ may

be needed to pay for the r + z-cost of the last tight pair f = (if , rf ) but their contribution
gets canceled by the −m · γ term. This issue affects us in various guises. First, we no longer
obtain an LMP-approximation for the unconstrained problem since we have to account for
the (r + z)-cost of f separately. Second, unlike Claim 4, given solutions F1 and F2 obtained
via binary search for z1, z2 ≈ z1 respectively with |F2| ≤ k′ ≤ |F1|, we now only obtain a
fractional k-BS-solution of cost O(OPT + z1). While one can modify the covering-knapsack-
LP based procedure in step B2 of k-BSAlg to combine F1, F2, this only yields a good solution
when z1 = O(OPT). The chief technical difficulty is that z1 may however be much larger
than OPT . Overcoming this obstacle requires various novel ideas and is the key technical
contribution of our algorithm. We design a second combination procedure that is guaranteed
to return a good solution when z1 = Ω(OPT ). This requires establishing certain structural
properties for F1 and F2, using which we argue that one can find a good solution in the
neighborhood of F1 and F2.

We now detail the changes to the primal-dual algorithm and k-BSAlg in Section 2.1, and
analyze them to prove the following theorem.

I Theorem 7. There exists a
(
12.365 + O(ε)

)
-approximation algorithm for LBkSRO that

runs in time nO(1/ε) for any ε > 0.

Modified primal-dual algorithm PDAlgo(D′,L′, z). This is quite similar to PDAlg (and we
again return pairs from L). We stop the dual-ascent process when there are at most m active
clients. We set γ = maxj∈D′ αj . Let f = (if , rf ) be the last tight pair added to the tight-pair
set T , and Bf = B(if , rf ). We sometimes abuse notation and use (i, r) to also denote the
singleton set {(i, r)}. For a set P of (i, r) pairs, define uncov(P ) := D′ \

⋃
(i,r)∈P B(i, r).

Note that |uncov(T \ f)| > m ≥ |uncov(T )|. Let Out be a set of m clients such that
uncov(T ) ⊆ Out ⊆ uncov(T \ f). Note that αj = γ for all j ∈ Out.

The pruning phase is similar to before, but we only use f if necessary. Let TI be a maximal
subset of non-intersecting pairs picked by greedily scanning pairs in T \ f in non-increasing
order of radius. For i ∈ µ(TI), set rad(i) to be the unique r such that (i, r) ∈ TI , and let
ri be the smallest radius ρ such that B(i, ρ) ⊇ B(i′, r′) for every (i′, r′) ∈ T \ f such that
r′ ≤ rad(i) and (i′, r′) intersects (i, rad(i)). Let F ′ = {(i, ri)}i∈µ(TI ). If uncov(F ′) ≤ m, set
F = F ′. If uncov(F ′) > m and ∃i ∈ µ(F ′) such that c(i, if ) ≤ 2R∗, then increase ri so that
B(i, ri) ⊇ Bf and let F be this updated F ′. Otherwise, set F = F ∪f and rif = rad(if ) = rf .
We return (F, f,Out, {rad(i)}i∈µ(F ), α, γ).

I Theorem 8. Let (F, f,Out, {rad(i)}, α, γ) = PDAlgo(D′,L′, z). Then:
(i) uncov(F ) ≤ m;
(ii) cost(F \ f) + 3|F \ f |z − 3R∗ ≤ 3(

∑
j∈D′ αj −mγ) ≤ 3(OPT + k′z);

(iii)
{

(i, rad(i))
}
i∈µ(F ) ⊆ L

′, is a set of non-intersecting pairs, rad(i) ≤ ri ≤ 3R∗ ∀i ∈ µ(F );
(iv) if |F \ f | ≥ k′ then cost(F ) ≤ 3 ·OPT + 4R∗, and if |F \ f | > k′ then z ≤ OPT .

Modified algorithm k-BSAlgo(D′,L′, k′, ε). We again use binary search to find solutions
F1, F2 and extract a low-cost solution from these. The only changes to step B1 are as follows.
We start with z1 = 0 and z2 = 2nk′cmax; for this z2, one can argue PDAlgo returns at most
k′ pairs. We stop when z2 − z1 ≤ δz := εOPT

3n2n . We do not stop even if PDAlgo returns a
solution (F, . . .) with |F | = k′ for some z = z1+z2

2 , since Theorem 8 is not strong enough to
bound cost(F ) even when this happens! If |F | > k′, we update z1 ← z and the F1-solution;
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otherwise, we update z2 ← z and the F2-solution. Thus, we maintain that k1 = |F1| > k′,
and k2 = |F2| ≤ k′.

The main change is in the way solutions F1, F2 are combined. We adapt step B2 to
handle outliers (procedure A in Section 2.2.1), but the key extra ingredient is that we
devise an alternate combination procedure B (Section 2.2.2) that returns a low-cost solution
when z1 = Ω(OPT). We return the better of the solutions output by the two procedures.
Combining Theorem 9 with Lemma 1 (for the right selection of t (i, r) pairs) yields Theorem 7.

I Theorem 9. k-BSAlgo(D′,L′, k′, ε) returns a solution (F, rad) with cost(F ) ≤
(
12.365 +

O(ε)
)
·OPT +O(R∗) where

{
(i, rad(i))

}
i∈µ(F ) ⊆ L

′ comprises non-intersecting pairs.

2.2.1 Combination subroutine A
(
(F1, rad1), (F2, rad2)

)
As in step B2, we cluster the F1-pairs around F2-pairs in stars. However, unlike before, some
(i′, r′) ∈ F1 may remain unclustered and and we may not pick (i′, r′) or some pair close to it.
Since we do not cover all clients covered by F1, we need to cover a suitable number of clients
from uncov(F1). We again setup an LP to obtain a suitable collection of pairs, which is now
a 2-dimensional covering knapsack LP, and use the structure of an extreme-point optimal
solution to extract from it a good collection of pairs.

I Theorem 10. We can obtain a solution
(
F, {rad(i)}i∈µ(F )

)
to the k-BS-problem with

cost(F ) ≤
(
6.1821 + O(ε)

)
(OPT + z1) + O(R∗) where

{
(i, rad(i))

}
i∈µ(F ) ⊆ L

′ is a set of
non-intersecting pairs.

2.2.2 Subroutine
B
(
(F1, f1,Out1, rad1, α

1, γ1), (F2, f2,Out2, rad2, α
2, γ2)

)
Subroutine A in the previous section yields a low-cost solution only if z1 = O(OPT). We
complement subroutine A by now describing a procedure that returns a good solution when
z1 is large. We assume in this section that z1 > (1 + ε)OPT . Then |F1 \ f1| ≤ k′ (otherwise
z ≤ OPT by part (iv) of Theorem 8), so |F1 \ f1| ≤ k′ < |F1|, which means that k1 = k′ + 1
and f1 ∈ F1. Hence, α1

j = γ1 for all j ∈ Bf1 ∩D′. We utilize the following continuity lemma,
which is essentially Lemma 6.6 in [11]; we include a proof in the full version of the paper.

I Lemma 11. Let (Fp, . . . , αp, γp) = PDAlgo(D′,L′, zp) for p = 1, 2, where 0 ≤ z2− z1 ≤ δz.
Then, ‖α1

j − α2
j‖∞ ≤ 2nδz and |γ1 − γ2| ≤ 2nδz. Thus, if (3) is tight for some (i, r) ∈ L′ in

one execution, then
∑
j∈B(i,r)∩D′ α

p
j ≥ r + z − 2nδz for p = 1, 2.

First, we take care of some simple cases. If there exists (i, r) ∈ F1 \ f1 such that∣∣uncov
(
F1 \ {f1, (i, r)} ∪ (i, r + 12R∗)

)∣∣ ≤ m, then set F = F1 \ {f1, (i, r)} ∪ (i, r + 12R∗).
We have cost(F ) = cost(F1 \ f1) + 12R∗ ≤ 3 ·OPT + 15R∗ (by part (ii) of Theorem 8). If
there exist pairs (i, r), (i′, r′) ∈ F1 such that c(i, i′) ≤ 12R∗, take r′′ to be the minimum
ρ ≥ r such that B(i′, r′) ⊆ B(i, ρ) and set F = F1 \ {(i, r), (i′, r′)} ∪ (i, r′′). We have
cost(F ) ≤ cost(F1\f1)+13R∗ ≤ 3·OPT +16R∗. In both cases, we return

(
F, {rad1(i)}i∈µ(F )

)
.

So we assume in the sequel that neither of the above apply. In particular, all pairs
in F1 are well-separated. Let AT = {(i, r) ∈ L′ :

∑
j∈B(i,r)∩D′ α

1
j ≥ r + z1 − 2nδz}

and AD = {j ∈ D′ : α1
j ≥ γ1 − 2nδz}. By Lemma 11, AT includes the tight pairs of

PDAlgo(D′,L′, zp) for both p = 1, 2, and Out1 ∪Out2 ⊆ AD. Since the tight pairs T2 used
for building solution F2 are almost tight in (α1, γ1, z1), we swap them in and swap out pairs
from F1 one by one while maintaining a feasible solution. Either at some point, we will
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be able to remove f , which will give us a solution of size k′, or we will obtain a bound
on cost(F2). The following lemma is our main tool for bounding the cost of the solution
returned.

I Lemma 12. Let F ⊆ L′, and TF =
{

(i, r′i)
}
i∈µ(F ) where r

′
i ≤ r for each (i, r) ∈ F . Suppose

TF ⊆ AT and consists of non-intersecting pairs. If |F | ≥ k′ and |AD \
⋃

(i,r)∈F B(i, r))| ≥ m
then cost(TF ) ≤ (1 + ε)OPT . Moreover, if |F | > k′ then z1 ≤ (1 + ε)OPT .

Define a mapping ψ : F2 → F1 \ f1 as follows. Note that any (i, r) ∈ F2 may intersect
with at most one F1-pair: if it intersects (i′, r′), (i′′, r′′) ∈ F1, then we have c(i′, i′′) ≤ 12R∗.
First, for each (i, r) ∈ F2 that intersects with some (i′, r′) ∈ F1, we set ψ(i, r) = (i′, r′). Let
M ⊆ F2 be the F2-pairs mapped by ψ this way. For every (i, r) ∈ F2 \M , we arbitrarily
match (i, r) with a distinct (i′, r′) ∈ F1 \ψ(M). We claim that ψ is in fact a one-one function.

I Lemma 13. Every (i, r) ∈ F1 \ f1 intersects with at most one F2-pair.

Let F ′2 be the pairs (i, r) ∈ F2 such that if (i′, r′) = ψ(i, r), then r′ < r. Let P = F ′2 ∩M
and Q = F ′2 \M . For every (i′, r′) ∈ ψ(Q) and j ∈ B(i′, r′), we have j ∈ uncov(F2) ⊆ AD
(else (i′, r′) would lie in ψ(M)). Starting with F = F1 \ f1, we iterate over (i, r) ∈ F ′2
and do the following. Let (i′, r′) = ψ(i, r). If (i, r) ∈ P , we update F ← F \ (i′, r′) ∪
(i, r + 2r′) (so B(i, r + 2r′) ⊇ B(i′, r′)), else we update F ← F \ (i′, r′) ∪ (i, r). Let
TF = {(i, rad1(i))}(i,r)∈F∩F1∪{(i, rad2(i))}(i,r)∈F\F1 . Note that |F | = k′ and uncov(F ) ⊆ AD
at all times. Also, since (i, r) intersects only (i′, r′), which we remove when (i, r) is added,
we maintain that TF is a collection of non-intersecting pairs and a subset of AT ⊆ L′. This
process continues until |uncov(F )| ≤ m, or when all pairs of F ′2 are swapped in. In the former
case, we argue that cost(F ) is small and return

(
F, {rad1(i)}(i,r)∈F∩F1 ∪ {rad2(i)}(i,r)∈F\F1

)
.

In the latter case, we show that cost(F ′2), and hence cost(F2) is small, and return (F2, rad2).

I Lemma 14.
(i) If the algorithm stops with |uncov(F )| ≤ m, cost(F ) ≤ (9 + 3ε)OPT + 18R∗.
(ii) If case (i) does not apply, then cost(F2) ≤ (3 + 3ε)OPT + 9R∗.
(iii) The pairs corresponding to the radii returned are non-intersecting, and a subset of L′.

3 Minimizing the maximum radius with lower bounds and outliers

The lower-bounded k-supplier with outliers (LBkSupO) problem is the min max-radius version
of LBkSRO. The input and the set of feasible solutions are the same as in LBkSRO: the input
is an instance I =

(
F ,D, {c(i, j)}, {Li}, k,m

)
, and a feasible solution is

(
S ⊆ F , σ : D 7→

S ∪ {out}
)
with |S| ≤ k, |σ−1(i)| ≥ Li for all i ∈ S, and |σ−1(out)| ≤ m. The cost of (S, σ)

is now maxi∈S maxj∈σ−1(i) c(i, j). The case m = 0 is called the lower-bounded k-supplier
(LBkSup) problem, and the setting where D = F is often called the k-center version.

Let τ∗ denote the optimal value; note that there are only polynomially many choices
for τ∗. As is common in the study of min-max problems, we reduce the problem to a
“graphical” instance, where given some value τ , we try to find a solution of cost O(τ) or
deduce that τ∗ > τ . We construct a bipartite unweighted graph Gτ =

(
Vτ = D ∪ Fτ , Eτ ),

where Fτ = {i ∈ F : |B(i, τ)| ≥ Li}, and Eτ = {ij : c(i, j) ≤ τ, i ∈ Fτ , j ∈ D}. Let distτ (i, j)
denote the shortest-path distance in Gτ between i and j, so c(i, j) ≤ distτ (i, j) · τ . We say
that an assignment σ : D 7→ Fτ ∪ {out} is a distance-α assignment if distτ (j, σ(j)) ≤ α

for every client j with σ(j) 6= out. We call such an assignment feasible, if it yields a
feasible LBkSupO-solution, and we say that Gτ is feasible if it admits a feasible distance-1
assignment. It is not hard to see that given F ⊆ Fτ , the problem of finding a feasible
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distance-α-assignment σ : D 7→ F ∪ {out} in Gτ (if one exists) can be solved by creating a
network-flow instance with lower bounds and capacities.

Observe that an optimal solution yields a feasible distance-1 assignment in Gτ∗ . We
devise an algorithm that for every τ , either finds a feasible distance-α assignment in Gτ
for some constant α, or detects that Gτ is not feasible. This yields an α-approximation
algorithm since the smallest τ for which the algorithm returns a feasible LBkSupO-solution
must be at most τ∗. We obtain Theorems 15 and 16 via this template, and complement
these via a hardness result (Theorem 17) showing that our approximation factor for LBkSup
is tight.

I Theorem 15. There is a 3-approximation algorithm for LBkSup.

I Theorem 16. There is a 5-approximation algorithm for LBkSupO.

I Theorem 17. It is NP-hard to approximate LBkSup within a factor better than 3.

Finding a distance-5 assignment for LBkSupO. The goal is to find a set F ⊆ Fτ of at most
k centers that are close to the centers in F ∗ ⊆ Fτ for some feasible distance-1 assignment
σ∗ : D 7→ F ∗ ∪ {out} in Gτ . If centers in F do not share a neighbor in Gτ , then clients in
N(i) can be assigned to i for each i ∈ F to satisfy the lower bounds.

I Definition 18 ([14]). Given the graph Gτ , a set F ⊆ F is called a skeleton if it satisfies
the following properties.
(a) (Separation property) For i, i′ ∈ F , i 6= i′, we have distτ (i, i′) ≥ 6;
(b) There exists a feasible distance-1 assignment σ∗ : D 7→ F ∗ ∪ {out} in Gτ such that

(Covering property) For all i∗ ∈ F ∗, distτ (i∗, F ) ≤ 4, where distτ (i∗, F ) =
mini∈F distτ (i∗, i).
(Injection property) There exists f : F 7→ F ∗ such that distτ (i, f(i)) ≤ 2 for all i ∈ F .

If F satisfies the separation and injection properties, it is called a pre-skeleton.

I Lemma 19. Let F be a pre-skeleton in Gτ . Define U = {i ∈ Fτ : distτ (i, F ) ≥ 6} and let
i = arg maxi′∈U |N(i′)|. Then, either F is a skeleton, or F ∪ {i} is a pre-skeleton.

Suppose F ⊆ Fτ is a skeleton and satisfies the properties with respect to a feasible
distance-1 assignment (F ∗, σ∗). The separation property ensures that the neighbor sets of
any two locations i, i′ ∈ F are disjoint. The covering property ensures that F ∗ is at distance
at most 4 from F , so there are at least |D| −m clients at distance at most 5 from F . Finally,
the injection and separation properties together ensure that |F | ≤ k. Thus, if F is a skeleton,
then we can obtain a feasible distance-5 assignment σ : D 7→ F ∪ {out}.

If Gτ is feasible, then ∅ is a pre-skeleton. A skeleton can have size at most k. So using
Lemma 19, we can find a sequence F ′ of at most k + 1 subsets of Fτ by starting with ∅ and
repeatedly applying Lemma 19 until we either have a set of size k or the set U in Lemma 19
is empty. By Lemma 19, if Gτ is feasible then one of these sets must be a skeleton. So for
each F ∈ F ′, we check if there exists a feasible distance-5 assignment σ : D 7→ F ∪ {out},
and if so, return (F, σ). Otherwise we return that Gτ is not feasible.
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Abstract
We give a 2-approximation algorithm for the Maximum Agreement Forest problem on two rooted
binary trees. This NP-hard problem has been studied extensively in the past two decades, since it
can be used to compute the Subtree Prune-and-Regraft (SPR) distance between two phylogenetic
trees. Our result improves on the very recent 2.5-approximation algorithm due to Shi, Feng, You
and Wang (2015). Our algorithm is the first approximation algorithm for this problem that uses
LP duality in its analysis.
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1 Introduction

Evolutionary relationships are often modeled by a rooted tree, where the leaves are a set of
species, and internal nodes are (putative) common ancestors of the leaves below the internal
node. Such phylogenetic trees date back to Darwin [5], who used them in his notebook to
elucidate his thoughts on evolution.

The topology of phylogenetic trees can be based on different sources of data, e.g., mor-
phological data, behavioral data, genetic data, etc., which can lead to different phylogenetic
trees on the same set of species. Different measures have been proposed to measure the
similarity of (or distance between) different phylogenetic trees on the same set of species
(or individuals). Using the size of a maximum subtree common to both input trees as a
similarity measure was proposed by Gordon [8]. The problem of finding such a subtree is
now known as the Maximum Agreement Subtree Problem, and has been studied extensively.
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Steel and Warnow [14] are the first to give a polynomial-time algorithm for this problem.
Their approach is refined to an O(n1.5 logn)-time algorithm by Farach and Thorup [6], who
subsequently show their algorithm is optimal, unless unweighted bipartite matching can be
solved in near linear time [7].

There exist non-tree-like evolutionary processes that preclude the existence of a phylogen-
etic tree, so-called reticulation events (such as hybridization, recombination and horizontal
gene transfer). In this context, a particularly meaningful measure of comparing phylogenetic
trees is the SPR-distance measure (where SPR is short for Subtree Prune-and-Regraft): this
measure provides a lower bound on a certain type of these non-tree evolutionary events.
The problem of finding the exact value of this measure for a set of species motivated the
formulation of the Maximum Agreement Forest Problem (MAF) by Hein, Jian, Wang and
Zhang [9]. Since the introduction by Hein et al., MAF has been extensively studied, including
several variants, such as the problem where the input consists of more than two trees, whether
the input trees are rooted or unrooted, binary or non-binary. In our paper, we concentrate
on MAF on two rooted binary trees.

For ease of defining the solutions to MAF on two rooted binary trees, we think of the
input trees as being directed, where all edges are directed away from the root. Given two
rooted binary trees on the same leaf set L, the MAF problem asks to find a minimum set of
edges to delete from the two trees, so that the directed trees in the resulting two forests can
be paired up into pairs of “isomorphic” trees. Two trees are isomorphic if they contain the
same nodes from L and recursively removing nodes of out-degree zero that are not in L and
contracting two arcs incident to a node of in-degree and out-degree one, results in the same
binary tree. An alternative (but equivalent) definition will be given in Section 2.

The problem of finding a MAF on two rooted binary trees has been extensively studied,
although unfortunately some of the published results later turned out to have subtle errors.
First of all, Allen and Steel [1] point out that the claim by Hein et al. that solving MAF
on two rooted directed trees computes the SPR-distance between the trees is incorrect.
Bordewich and Semple [4] show how to redefine MAF for rooted directed trees so that it is
indeed the case that the optimal objective value of MAF is equal to the SPR-distance. In
the paper in which they introduce MAF, Hein et al. [9] proved NP-hardness and they give
an approximation algorithm for the problem, the approximation guarantee of which turned
out to be slightly higher than what was claimed. Bordewich and Semple [4] show that, for
their corrected definition of MAF, NP-hardness continues to hold. Other approximation
algorithms followed [11, 2, 3]. The current best approximation ratio for MAF is 2.5, due to
Shi, Feng, You and Wang [13], and Rodrigues [10] has shown that MAF is MAXSNP-hard.
In addition, there is a body of work on other approaches, such as Fixed-Parameter Tractable
(FPT) algorithms (e.g., [16, 15]) and Integer Programming [17, 18].

In this paper we give an improved approximation algorithm for MAF with an analysis
based on linear programming duality. Our 2-approximation algorithm differs from previous
works in two aspects. First of all, in terms of bounding the optimal value, we construct a
feasible dual solution, rather than arguing more locally about the objective of the optimal
solution. Secondly, our algorithm itself also takes a more global approach, whereas the
algorithms in previous works mainly consider local substructures of at most four leaves. In
particular, we identify a minimal subtree1 of one of the two input trees for which the leaf set
is incompatible, i.e., when deleting all other leaves from both trees, the remaining two trees

1 By subtree of a rooted tree, we mean a tree containing the leaves that are descendents of some particular
node in the rooted tree (including this node itself), and all edges between them.
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are not isomorphic (such a minimal subtree can be found efficiently). We then use “local”
operations which repeatedly look at two “sibling” leaves in the minimal incompatible subtree,
and perform similar operations as those suggested by previous authors.

Preliminary tests were conducted using a proof-of-concept implementation of our algorithm
in Java. Our preliminary results indicate that our algorithm finds a dual solution that in
44% of the 1000 runs is equal to the optimal dual solution, and in 37% of the runs is 1 less
than the optimal solution. The observed average approximation ratio is about 1.92; following
our algorithm with a simple greedy search algorithm decreases this to less than 1.28.

The remainder of our paper is organized as follows. In Section 2, we formally define the
problem. In Section 3, we give a 3-approximation algorithm for MAF that introduces the
dual linear program that is used throughout the remainder of the paper and gives a flavor
of the arguments used to prove the approximation ratio of two. In Section 4, we give an
overview of the 2-approximation algorithm and the key ideas in its analysis. In Section 5 we
give more details on the randomly generated instances that we used to obtain our preliminary
experimental results, and we conclude in Section 6 with some directions for future research.

The full version of this paper [12] contains further details on the algorithm and a complete
analysis that shows that its approximation ratio is 2.

2 Preliminaries

The input to the Maximum Agreement Forest problem (MAF) consists of two rooted binary
trees T1 and T2, where the leaves in each tree are labeled with the same label set L. Each
leaf has exactly one label, and each label in L is assigned to exactly one leaf in T1, and one
leaf in T2. For ease of exposition, we sometimes think of the edges in the trees as being
directed, so that there is a directed path from the root to each of the leaves.

We call the non-leaf nodes the internal nodes of the trees, and we let V denote the set
of all nodes (internal nodes and leaves) in T1 ∪ T2. Given a tree containing u and v, we let
lca(u, v) denote the lowest (closest to the leaves, furthest from the root) common ancestor
of u and v. We let lca1(u, v) and lca2(u, v) denote lca(u, v) in tree T1, respectively, T2. We
extend this notation to lca(U) which will denote the lowest common ancestor of a set of
leaves U . For three leaves u, v, w and a rooted tree T , we use the notation uv|w in T to
denote that lca(u, v) is a descendent of lca({u, v, w}). A triplet {u, v, w} of labeled leaves is
consistent if uv|w in T1 ⇔ uv|w in T2. The triplet is called inconsistent otherwise. We call a
set of leaves L ⊆ L a compatible set, if it does not contain an inconsistent triplet.

For a compatible set L ⊆ L, define V [L] := {v ∈ V : there exists a pair of leaves
u, u′ in L so that v is on the path between u and u′ in T1 or T2}. Then, a partitioning
L1, L2, . . . , Lp of L corresponds to a feasible solution to MAF with objective value p− 1, if
the sets L1, L2, . . . , Lp are compatible, and the sets V [Lj ] for j = 1, . . . , p are node disjoint.
Using this definition, we can write the following Integer Linear Program2 for MAF: Let C be
the collection of all compatible sets of leaves, and introduce a binary variable xL for every
compatible set L ∈ C, where the variable takes value 1 if the optimal solution to MAF has
a tree with leaf set L. The constraints ensure that each leaf v ∈ L is in some tree in the
optimal forest, and each internal node v ∈ V \ L is in at most one tree in the optimal forest.
The objective encodes the fact that we need to delete

∑
L∈C xL − 1 edges from each of T1

2 This ILP was obtained in discussions with Neil Olver and Leen Stougie.
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and T2 to obtain forests with
∑

L∈C xL trees.

minimize
∑

L∈C xL − 1,
s.t.

∑
L:v∈L xL = 1 ∀v ∈ L,∑
L:v∈V [L] xL ≤ 1 ∀v ∈ V \ L,

xL ∈ {0, 1} ∀L ∈ C.

Remark

The definition of MAF we use is not the definition that is now standard in the literature, but
any (approximation) algorithm for our version can be used to get the same (approximation)
result for the standard formulation: The standard formulation was introduced by Bordewich
and Semple [4] in order to ensure that the objective value of MAF is equal to the rooted
SPR distance. They note that for this to hold, we need the additional requirement that
the two forests must also agree on the tree containing the original root; in other words, the
original roots of T1 and T2 should be contained in a tree with the same (compatible) subset
of leaves. An easy reduction shows that we can solve this problem using our definition of
MAF: given two rooted binary trees for which we want to compute the SPR distance, we can
simply add one new label ρ, and for each of the two input trees, we add a new root which
has an edge to the original root and an edge to a new node with label ρ.3 A solution to “our”
MAF problem on this modified input defines a solution to Bordewich and Semple’s problem
on the original input with the same objective value and vice versa.

3 Duality Based 3-Approximation Algorithm

3.1 Algorithm
The algorithm we describe in this section is a variant of the algorithm of Rodrigues et al. [11]
(see also Whidden and Zeh [16]). The algorithm maintains two forests, T ′

1 and T ′
2 on the

same leaf set L′, and iteratively deletes edges from these forests. At the start, T ′
1 is set equal

to T1, T ′
2 to T2 and L′ to L. The leaves in L′ are called the active leaves. The algorithm will

ensure that the leaves that are not active, will have been resolved in one of the two following
ways: (1) they are part of a tree that contains only inactive leaves in both T ′

1 and T ′
2; these

two trees then have the same leaf set, which is compatible, and they will be part of the final
solution; or (2) an inactive leaf is merged with another leaf which is active, and in the final
solution this inactive leaf will be in the same tree as the leaf it was merged with.

A tree is called active if it contains a leaf in L′, and the tree is called inactive otherwise.
An invariant of the algorithm is that there is a single active tree in T ′

1.
We define the parent of a set of active leaves W in a tree of a forest, denoted by p(W ),

as the lowest node in the tree that is a common ancestor of W and at least one other active
node. (That is, p(W ) is undefined if there are no other active leaves in the tree that contains
the leaves in W .) Note that the parent of a node is defined with respect to the current state
of the algorithm, and not with respect to the initial input tree. If W = {u} is a singleton,
we will also use the notation p(u) = p({u}). For a given tree or forest T ′

i , for i ∈ {1, 2}, we
use the notation pi(W ) to denote p(W ) in T ′

i .

3 This is essentially the formulation that is common in the literature, except that in order to ensure that
only leaves have labels, we give the label ρ to a new leaf that is an immediate descendent of the new
root in both trees, rather than to the new root itself.
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The operation in the algorithm that deletes edges from forest T ′
i is cut off a subset of

leaves W in T ′
i . The edge that is deleted by this operation is the edge directly below pi(W )

towards W (provided pi(W ) is defined). Note that this means that the algorithm maintains
the property that each internal node has a path to at least one leaf in L. This ensures that
the number of trees with leaves in L in T ′

i is equal to the number of edges cut in T ′
i plus 1.

It also ensures that the only leaves (nodes with outdegree 0) are the nodes in L.
We will call two leaves u and v a sibling pair or siblings in a forest, if they belong to the

same tree in the forest, and they are the only two leaves in the subtree rooted at the lowest
common ancestor lca(u, v). Similarly, u and v are an active sibling pair in a forest, if they
belong to the same tree in the forest, and are the only two active leaves in the subtree rooted
at the lowest common ancestor lca(u, v) (an equivalent definition is that p(u) = p(v) in the
forest).

If leaves u and v are an active sibling pair in both T ′
1 and T ′

2, we merge one of the leaves
(say u) with the other (v). This means that from that point on v represents the subtree
containing both u and v, instead of just the leaf v itself. This is accomplished by just making
u inactive. Note that this merge operation can be performed recursively, where one or both
of the leaves involved in the operation can already be leaves that represent subtrees. It is not
hard to see that the subtree that is represented by an active leaf v is one of the two subtrees
rooted at the child of p(v), namely the subtree that contains v.

If leaves u and v are not active siblings in T ′
2 (and they are active siblings in T ′

1), we can
choose to cut off an active subtree between leaves u and v. To describe this operation, let
W1,W2, . . . ,Wk be the active leaves of the active trees that would be created by deleting the
path between u and v (both the nodes and the edges) in T ′

2. Note that p2(W`) is on the path
between u and v for all ` ∈ {1, 2, . . . , k}, because u and v are not active siblings. Cutting off
an active subtree between leaves u and v now means cutting off any such a set W`.

The algorithm is given in Algorithm 1. The boxed expressions refer to updates of the
dual solution which will be discussed in Section 3.2.2. These expressions are only necessary
for the analysis of the algorithm.

I Theorem 1. Algorithm 1 is a 3-approximation algorithm for the Maximum Agreement
Forest problem.

The proof of this theorem is given in the next subsection. It is clear the algorithm can be
implemented to run in polynomial time. In Section 3.2.1, we show that the algorithm returns
an agreement forest and we show that the number of edges deleted from T2 by the algorithm
can be upper bounded by three times the objective value of a feasible solution to the dual of
a linear programming (LP) relaxation of MAF.

3.2 Analysis of the 3-Approximation Algorithm

3.2.1 Correctness
We need to show that the algorithm outputs an agreement forest. The trees of T ′

1 and T ′
2

each give a partitioning of L, and clearly any internal node v belongs to V [L] for at most one
set in the partitioning. It remains to show that the two forests give the same partitioning of
L and that each set in the partitioning is compatible.

The algorithm ends with all trees in T ′
1 and T ′

2 being inactive, and the algorithm maintains
that the set of leaves represented by an active leaf u (i.e., the leaves that were merged with
u (recursively), and u itself) form the leaf set of a subtree in both T ′

1 and T ′
2. To be precise,

it is the subtree rooted at one of the children of p(u), namely the subtree that contains u.
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1 yv ← 0 for all v ∈ V .
2 while there exist at least 2 active leaves do
3 Find an active sibling pair u, v in the active tree in T ′1.
4 if u or v is the only active leaf in its tree in T ′2 then
5 Cut off this node (say u) in T ′1 as well and make it inactive. yu ← 1.
6 else
7 if u and v are active siblings in T ′2 then
8 Merge u and v (i.e., make u inactive to “merge” it with v).
9 else

10 if u and v are in the same tree in T ′2, and this tree contains an active leaf w such
that uv|w in T2 then

11 Cut off an active subtree W between u and v in T ′2. Decrease yp2(W ) by 1.
12 end if
13 Cut off u and cut off v in T ′1 and T ′2 and make them inactive.

yu ← 1, yv ← 1, decrease ylca1(u,v) by 1.
14 end if
15 end if
16 end while
17 Make the remaining leaf (say v) inactive. yv ← 1.

Algorithm 1: A 3-Approximation for Maximum Agreement Forest. The boxed text
refers to updates of the dual solution as discussed in Section 3.2.2.

Furthermore note that this leaf set is compatible. This is easily verified by induction on the
number of merges.

When u is the only active leaf in its tree in both forests, then the trees containing u in
the two forests are thus guaranteed to have the same, compatible, set of leaves. Now, an
inactive tree is created exactly when both T ′

1 and T ′
2 have an active tree in which some u is

the only active leaf (lines 5, 13 and 17), and thus the two forests indeed induce the same
partition of L into compatible sets.

3.2.2 Approximation Ratio
In order to prove the claimed approximation ratio, we will construct a feasible dual solution
to the dual of the relaxation of the ILP given in Section 2. The dual LP is given in Figure 1(a).
The dual LP has an optimal solution in which 0 ≤ yv ≤ 1 for all v ∈ L. The fact that {v}
is a compatible set implies that yv ≤ 1 must hold for every v ∈ L. Furthermore, note that
changing the equality constraints of the primal LP to ≥-inequalities does not change the
optimal value, and hence we may assume yv ≥ 0 for v ∈ L.

It will be convenient for our analysis to rewrite this dual by introducing additional
variables for every (not necessarily compatible) set of labeled leaves. We will adopt the
convention to use the letter A to denote a set of leaves that is not necessarily compatible,
and the letter L to denote a set of leaves that is compatible (i.e., L ∈ C). The dual LP can
then be written as in Figure 1(b). Any solution to this new LP can be transformed into a
solution to the original dual LP by, for each A such that zA > 0, taking some leaf v ∈ A
and setting yv = yv + zA and zA = 0. This is feasible because the left-hand side of the first
family of inequalities will not increase for any compatible set L, and it will decrease for L
such that A ∩ L 6= ∅ and v 6∈ L. Conversely, a solution to the original dual LP is feasible for
this new LP by setting zA = 0, for every set of labeled leaves A.
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max
∑

v
yv − 1,

s.t.
∑

v∈V [L] yv ≤ 1 ∀L ∈ C,
yv ≤ 0 ∀v ∈ V \ L.

(a) Dual LP

max
∑

v
yv +

∑
A⊆L zA − 1,

s.t.
∑

v∈V [L] yv +
∑

A:A∩L 6=∅ zA ≤ 1 ∀L ∈ C,
yv ≤ 0 ∀v ∈ V \ L,
yv ≥ 0 ∀v ∈ L,
zA ≥ 0 ∀A ⊆ L.

(b) Reformulated dual LP

Figure 1 The dual of the LP relaxation for the ILP given in Section 2. The reformulated dual
LP will be referred to as (D).

We will refer to the left-hand side of the first family of constraints, i.e.,
∑

v∈V [L] yv +∑
A:A∩L 6=∅ zA, as the load on set L.

I Definition 2. The dual solution associated with a forest T ′
2, obtained from T2 by edge

deletions, active leaf set L′, and variables y = {yv}v∈V is defined as (y, z) where zA = 1
exactly when A is the active leaf set of a tree in T ′

2, and 0 otherwise.

We will sometimes use “the dual solution” to refer to the dual solution associated with T ′
2,L′

and y when the forest, active leaf set and y-values are clear from the context.

I Lemma 3. After every execution of the while-loop of Algorithm 1, the dual solution
associated with T ′

2, L′, and y is a feasible solution to (D) and the objective value of this
solution is at least 1

3 |E(T2) \ E(T ′
2)|.

Proof. We prove the lemma by induction on the number of iterations. Initially, zL = 1, and
all other variables are equal to 0. Clearly, this is a feasible solution with objective value 0.

Observe that the dual solution maintained by the algorithm satisfies that yu = 0 while u
is active. Therefore, if there is a single active leaf u in a tree in T ′

2, then making this leaf
u inactive and setting yu = 1 does not affect dual feasibility and the dual objective value,
since making u inactive decreases z{u} from 1 to 0. Also note that merging two active leaves
(and thus making one of the two leaves inactive), replaces the set of active leaves A in an
active tree in T ′

2 by a smaller set A′ ⊂ A, with A′ 6= ∅. Hence, the dual solution changes
from having zA = 1 to having zA′ = 1, which clearly does not affect dual feasibility or the
dual objective value. Hence, we only need to verify that the dual solution remains feasible
and its objective increases sufficiently for operations of the algorithm that cut edges from T ′

2,
i.e., lines 11 and 13.

In line 11, one edge is cut in T ′
2, yp2(W ) decreases by 1. Let A be the set of active leaves

in the tree containing W in T ′
2 before cutting off W . zA decreases by 1, zA\W increases by 1,

zW increases by 1. The only sets L for which the left-hand side potentially increases are sets
L so that W ∩ L 6= ∅ and (A \W ) ∩ L 6= ∅. However, p2(W ) ∈ V [L] for such sets L, and
since yp2(W ) is decreased by 1, the load is not increased for any compatible set L. The dual
objective is unchanged, but will change in line 13 of the algorithm, as we will show next.

In line 13, let Au be the set of active leaves in the tree in T ′
2 containing u at the start of

line 13 in the algorithm, and Av be the set of active leaves in the tree in T ′
2 containing v.

Note that Au \ {u, v} 6= ∅: if v 6∈ Au, then this holds because otherwise we would execute
line 5, and if v ∈ Au, then this holds because u, v are not active siblings at the start of
line 11, and if u, v became active siblings after executing line 11, then the condition for
line 11 implies that there exists w ∈ Au such that uv|w in T2.
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The fact that Au \ {u, v} 6= ∅ (and, by symmetry Av \ {u, v} 6= ∅) implies that the total
value of

∑
A zA + yu + yv increases by 2. Since we also decrease ylca1(u,v) by 1 the total

increase in the objective of the dual solution by line 13 is 1. Also, in lines 11 and 13, a total
of at most three edges are cut in T ′

2.
It remains to show that executing line 13 does not make the dual solution (y, z) infeasible.

Note that for each active set A′ with zA′ = 1 before cutting off u and v, there is exactly one
unique active subset A ⊆ A′ with zA = 1 after cutting off u and v. Therefore the total value
of

∑
A:A∩L 6=∅ zA does not increase after cutting off u and v for any L ⊆ L.

For any L that includes one of u, v, and at least one other active leaf, it must be the
case that lca1(u, v) ∈ V [L], because all active leaves are in one tree in T ′

1, and u and v were
active siblings in T ′

1 at the start. Hence the only compatible sets L for which the load on L
potentially increases by 1 because of an increase in

∑
x∈L yx are sets L that include both u

and v. We discern two cases.

Case 1: An active subtreeW was cut off in line 11. In this case, the load on L was decreased
by 1 in line 11, compensating for the increase in line 13: V [L] contains all nodes on the
path between u and v in T2, and hence also p2(W ). It cannot contain a leaf x ∈W , because
{u, v, x} form an inconsistent triplet (because uv|x in T1).

Case 2: No active subtree W was cut off in line 11. In this case, the value of
∑

A:A∩L 6=∅ zA

is decreased by at least 1: If u and v are in the same tree in T ′
2 before cutting off u and v,

then this tree contains no leaves x such that uv|x in T2 since otherwise an active subtree W
would have been cut off. Hence, L does not contain any active leaf x in the active tree that
remains after cutting off u and v in T ′

2, since any such leaf x does not have uv|x in T2 and
therefore forms an inconsistent triplet with u and v. Since L does contain active leaves in
the tree containing u and v in T ′

2 before cutting off u and v (namely, u and v themselves),
the value of

∑
A:A∩L 6=∅ zA indeed decreases by 1.

If u and v are not in the same tree in T ′
2 before cutting off u and v, then a similar

argument holds. Since T ′
2 is obtained from T2 by deleting edges, at least one of the two

active trees containing u and v contains no leaves x such that uv|x in T2. Without loss of
generality, suppose that this holds for the tree containing u. Then, L does not contain any
active leaves in the active tree remaining after u is cut off, and hence

∑
A:A∩L 6=∅ zA decreases

by at least 1. J

By weak duality, we have that the objective value of any feasible solution to (D) provides a
lower bound on the objective value of any feasible solution to the LP relaxation of our ILP
for MAF, and hence also on the optimal value of the ILP itself. Theorem 1 thus follows from
Lemma 3 and the correctness shown in Section 3.2.1.

4 Overview of the 2-Approximation Algorithm

In this section, we begin by giving an outline of the key ideas of our 2-approximation
algorithm. We then give an overview of the complete algorithm that we call the “Red-Blue
Algorithm”.

One of the main ideas behind our 2-approximation is the consideration of the following
two “essential” cases. The first “essential” case is the case where we have an active sibling
pair u, v in T ′

1 that are (i) active siblings in T ′
2, or (ii) in different trees in T ′

2, or (iii) the
tree in T ′

2 containing u, v does not contain an active leaf w such that uv|w in T2. Then, it is
easy to verify, using the arguments in the proof of Lemma 3, that Algorithm 1 “works”: it
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u v w

−1

(a) Subtree in T ′1

u w

v

+1 +1

−1

+1

(b) Case (I)(a): Subtree in T ′2

u vw

+1 +1 +1

−1

(c) Case (I)(b): Subtree in T ′2

Figure 2 Dealing with an inconsistent triplet: Circled values denote the y-variables that are set
by the algorithm, and bold diagonal lines denote edges that are cut (deleted from T ′2). Triangles
denote subtrees with active leaves (that may be empty). Note that there is a distinction between
edges that are incident to the root of a subtree represented by a triangle, and edges that are incident
to some internal node of the subtree. The latter edges are connected to a dot on the triangle.

increases the dual objective value by at least half of the increase in |E(T2) \ E(T ′
2)|. We will

say such a sibling pair u, v is a “success”.
The second “essential” case is the case where, in our current forest T ′

1, there is a subtree
containing exactly three active leaves, say u, v, w, where uv|w in T1, and {u, v, w} is an
inconsistent triplet; assume without loss of generality that uw|v in T2, and that the first
“essential” case does not apply; in particular, this implies that u, v are in the same tree in
T ′

2. It turns out that such an inconsistent triplet can be “processed” in a way that allows
us to increase the objective value of the dual solution in such a way that it “pays for” half
the increase in the number of edges cut from T ′

2. There are a number of different cases to
consider depending on whether all three leaves u, v, w are in the same tree in T ′

2 (case I) or
not (case II), and whether the tree in T ′

2 containing w has an active leaf x such that xw|u in
T ′

2 (case (a)) or not (case (b)).
Figure 2 gives an illustration of T ′

1 and some possible configurations for T ′
2. Consider for

example case (I)(b). Since {u, v, w} is an inconsistent triplet, it is not hard to see that any
solution to MAF either has v as a singleton component, or either u or w must be a singleton
component. Indeed, we can increase the dual objective by 1, by updating the y-values as
indicated by the circled values in Figure 2 (a) and (b). The bold diagonal lines denote two
edges that are cut (deleted from T ′

2). Similar arguments can be made for the other cases.
Unfortunately, neither of the essential cases may be present in the forests T ′

1, T
′
2, and

therefore the ideas given above may not be applicable. However, they do work if we generalize
our notions. First, we generalize the notion of “active sibling pair in T ′

1”.

I Definition 4. A set of active leaves U is an active sibling set in T ′
1 if the leaves in U are

the only active leaves in the subtree of T ′
1 rooted at lca1(U). U is a compatible active sibling

set in T ′
1 if U is an active sibling set in T ′

1 that contains no inconsistent triplets.

Note that we will only use the term compatible active sibling set for T ′
1, and never for T ′

2.
We will therefore sometimes omit the reference to T ′

1, and simply talk about a “compatible
active sibling set”.

We similarly generalize the notion of a subtree in T ′
1 containing exactly three active leaves

that form an inconsistent triplet.

I Definition 5. A set of active leaves R∪B is a minimal incompatible active sibling set in T ′
1

if R∪B is incompatible, R and B are compatible active sibling sets in T ′
1, and p1(R) = p1(B).
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The Red-Blue Algorithm now proceeds as follows: it begins by identifying a minimal
incompatible active sibling set R∪B in T ′

1. Such a set can be found by checking if the active
leaf sets of the left and right subtrees of the root are compatible sets. If yes, then either all
active leaves are compatible, or we have found a minimal incompatible active set. If not,
then the active leaf set of one of the subtrees is incompatible, and we recurse on this subtree
until we find a node in T ′

1 for which the active leaf sets of the left and right subtrees form a
minimal incompatible set R ∪B. Note that we can assume lca2(R) = lca2(R ∪B).

The algorithm will then “distill” R by repeatedly considering sibling pairs u, v in R,
and executing operations similar to those in Algorithm 1, except that only one of u and v
becomes inactive (and a bit more care has to be taken in certain cases). Procedure 1 gives
the procedure ResolvePair the algorithm uses for handling a sibling pair u, v.

1 if u and v are in different trees in T ′2 then
2 Relabel u and v if necessary so that lca2(u, v) is not in the tree containing u in T ′2.
3 if the tree containing u in T ′2 has other active leaves not in U then
4 FinalCut: Cut off u in T ′1 and T ′2 and make it inactive. yu ← 1.
5 else
6 Cut off u in T ′1 and make it inactive. yu ← 1.
7 end if
8 else
9 if u and v are active siblings in T ′2 then

10 Merge u and v (i.e., make u inactive to “merge” it with v).
11 else
12 Relabel u and v if necessary so that p2(u) 6= lca2(u, v).
13 Cut off an active subtree W between u and v by cutting the edge below p2(u) that is

not on the path from u to v. Decrease yp2(u) by 1.
14 if u and v are now active siblings in T ′2 then
15 Merge-After-Cut: Merge u and v (i.e., make u inactive to “merge” it with v).

yu ← 1.
16 else
17 Cut off u in T ′1 and T ′2 and make u inactive. yu ← 1.
18 end if
19 end if
20 end if

Procedure 1: ResolvePair(u, v)

Arguments similar to those in Section 3 show that ResolvePair maintains dual feasibility,
provided that we initially reduce ylca1(R) by 1. It is also not hard to verify that ResolvePair
increases the dual objective by at least half the increase in the primal objective, and the only
thing that is therefore needed to show that the algorithm is a 2-approximation is that we
can “make up for” the initial decrease of the dual objective caused by decreasing ylca1(R).
Let us define the operation of “distilling” R as starting by reducing ylca1(R) by 1, and then
repeatedly finding a pair of active leaves u, v in R which are siblings in T ′

1 and executing
ResolvePair(u, v) until only two active leaves û, v̂ in R remain. Since all other leaves in R
are inactive, û and v̂ form an active sibling pair in T ′

1.
If pair û, v̂ is a “success” or if line 4 or 15 was executed at least once during the distilling

of R, then there exists an operation that makes at least one of û, v̂ inactive and updates the
dual, so that the total increase in the primal objective is at most twice the total increase in
the dual objective caused by the processing of pairs in R. Procedure 2 gives the complete
description of the procedure that, if successful, “resolves” set R (and will return “Success”):
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I Lemma 6. If ResolveSet(R) returns Success then at least one leaf in R became inactive,
and the increase in the primal objective |E(T2) \E(T ′

2)| caused by the procedure is at most
twice the increase in the dual objective.

Lemma 12 of the full version [12] contains a more precise formulation of this lemma.

21 Decrease ylca1(R) by 1.
22 while there exist at least three active leaves in R do
23 Find u, v in R that form an active sibling pair in T ′1.
24 ResolvePair(u, v).
25 end while
26 Let û, v̂ be the remaining active leaves in R.
27 if û and v̂ are active siblings in T ′2 then
28 Merge û and v̂ (i.e., make û inactive to “merge” it with v̂). yû ← 1.
29 Return Success.
30 else if (û and v̂ are in different trees in T ′2) or (the tree containing û and v̂ does not contain

an active leaf w such that ûv̂|w in T2) then
31 Cut off û in T ′2 (if û’s tree contains at least one other active leaf) and in T ′1 and make û

inactive. yû ← 1.
32 Cut off v̂ in T ′2 (if v̂’s tree contains at least one other active leaf) and in T ′1 and make v̂

inactive. yv̂ ← 1.
33 Return Success.
34 else if (At least one FinalCut or Merge-After-Cut was executed in some call to ResolvePair

in the course of the current ResolveSet procedure) then
35 ResolvePair(û, v̂).
36 Cut off the last active leaf v̂ in U in T ′2 and in T ′1 and make v̂ inactive. yv̂ ← 1.
37 Return Success.
38 else
39 Return Fail.
40 end if

Procedure 2: ResolveSet(R)

If Lemma 6 applies, we have made progress (since we have made at least one leaf inactive),
and we will have paid for the increase in the primal objective |E(T2) \E(T ′

2)| caused by the
procedure by twice the increase in the dual objective.

Otherwise, the last active pair of leaves û, v̂ in R remain active, and we will have a “deficit”
in the sense that the increase in the dual objective is at most half the increase in the primal
objective plus 1. In this case, we similarly distill B by repeatedly calling ResolvePair(u, v)
for pairs u, v in B that are active siblings in T ′

1 until only a single active leaf in B remains.
However, we will show that in order to retain dual feasibility, we do not need to start the
distilling of B by decreasing ylca1(B) (which would give a total “deficit” of 2), but that we
can “move” the initial decrease of ylca1(R) to instead decrease ylca1(R∪B). Lemma 13 in the
full version [12] shows that this indeed preserves dual feasibility.

Once R and B have both been “distilled”, we are left with û, v̂, ŵ that are an inconsistent
triplet and form the active leaf set of a subtree in T ′

1. We show how to deal with the triplet
{û, v̂, ŵ} (in ways similar to those in Figure 2) and we prove that in the entire processing of
R ∪B, we have increased the dual objective by half of the number of edges we cut from T ′

2.
Algorithm 2 gives an overview of the “Red-Blue Algorithm”. It first calls a procedure

Preprocess, which executes simple operations that do not affect the primal or dual objective:
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merging two leaves if they are active siblings in both forests, and cutting off and deactivating
a leaf in T ′

1 if it is the only active leaf in its tree in T ′
2. At the end of an iteration, the

Red-Blue algorithm needs to consider different cases for the final triplet. The description of
these subroutines can be found in [12].

41 Set T ′1 ← T1, T ′2 ← T2, L′ ← L. yu ← 0 for all u ∈ L.
42 Preprocess.
43 while L′ 6= ∅ do
44 Find a minimal incompatible active sibling set R ∪B, with lca2(R) = lca2(R ∪B).
45 if ResolveSet(R) returns Fail then
46 Decrease ylca1(R∪B) by 1, and increase ylca1(R) by 1.
47 while there exist at least two active leaves in B do
48 Find u, v in B that form an active sibling pair in T ′1.
49 ResolvePair(u, v).
50 end while
51 Let r̂1, r̂2 ∈ R and b̂ ∈ B be the remaining active leaves.
52 Consider three different cases depending on whether r̂1, r̂2 and b̂ are in one, two or

three different trees in T ′2 (see Section 6.1 and 6.2 in [12] for details).
53 end if
54 Preprocess.
55 end while

Algorithm 2: Red-Blue Algorithm for Maximum Agreement Forest

I Theorem 7. The Red-Blue Algorithm is a 2-approximation algorithm for the Maximum
Agreement Forest problem.

5 Implementation Details

We implemented the Red-Blue approximation algorithm in Java, and tested it on instances
with |L| = 2000 leaves that were generated as follows: the number of leaves in the left subtree
is set equal to a number between 1 and |L| − 1 drawn uniformly at random, and a subset
of this size is chosen uniformly at random from the label set. Then this procedure recurses
until it arrives at a subtree with only 1 leaf – this will be the whole subtree.

After generating T1 as described above, the tree T2 was created by doing 50 random
Subtree Prune-and-Regraft operations (where random means that the root of the subtree that
is pruned was chosen uniformly at random, as well as the edge which is split into two edges,
so that the new node created can be the parent of the pruned subtree, under the conditions
that this is a valid SPR-operation). This construction allows us to deduce an upper bound of
50 on the optimal value. Our algorithm finds a dual solution that in 44% of the 1000 runs is
equal to the optimal dual solution, and in 37% of the runs is 1 less than the optimal solution.
The observed average approximation ratio is about 1.92. After running our algorithm, we
run a simple greedy search algorithm which repeatedly looks for two trees in the agreement
forest that can be merged (i.e., such that the resulting forest is still a feasible solution to
MAF). The solution obtained after executing the greedy algorithm decreases the observed
approximation ratio to less than 1.28. The code is available at http://frans.us/MAF.

http://frans.us/MAF
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6 Conclusion

Our algorithm and analysis raise a number of questions. First of all, although we believe
that, conceptually, our algorithm is quite natural, the actual algorithm is complicated, and
it would be interesting to find a simpler 2-approximation algorithm. Secondly, it is clear
that our algorithm can be implemented in polynomial time, but the exact order of the
running time is not clear. The bottleneck seems to be the finding of a minimal incompatible
active sibling set, although it may be possible to implement the algorithm in a way that
simultaneously processes sibling pairs as in ResolvePair, while it is looking for a minimal
incompatible active sibling set.

Acknowledgements. We thank Neil Olver and Leen Stougie for fruitful discussions.
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Abstract
Many real-life planning problems require making a priori decisions before all parameters of the
problem have been revealed. An important special case of such problem arises in scheduling and
transshipment problems, where a set of jobs needs to be assigned to the available set of machines
or personnel (resources), in a way that all jobs have assigned resources, and no two jobs share the
same resource. In its nominal form, the resulting computational problem becomes the assignment
problem.

This paper deals with the Robust Assignment Problem (RAP) which models situations in
which certain assignments are vulnerable and may become unavailable after the solution has
been chosen. The goal is to choose a minimum-cost collection of assignments (edges in the
corresponding bipartite graph) so that if any vulnerable edge becomes unavailable, the remaining
part of the solution contains an assignment of all jobs.

We develop algorithms and hardness results for RAP and establish several connections to
well-known concepts from matching theory, robust optimization, LP-based techniques and com-
binations thereof.
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Keywords and phrases robust optimization, matching theory, ear decomposition, randomized
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1 Introduction

The need for incorporating system reliability into decision making has sprung wide-spread
interest in optimization models which incorporate data uncertainty in the last decades. The
latter trend has lead to the development of several new theories including the popular field of
Robust Optimization. In robust optimization the nominal optimization problem is equipped
with a set of scenarios, representing various possible states of nature that may occur after
the solution to the problem is chosen. The goal is to determine a solution that will perform
well (in terms of feasibility, or cost) in the worst case realization of the state of nature.

The Assignment Problem is one of the most fundamental optimization problems arising
in many reliability-sensitive systems. In its nominal form, the input consists of a set of
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nT tasks, a set of nR resources (with nT ≤ nR), and assignment costs ci,j representing the
cost associated with assigning resource i to task j. The set of allowed assignments can be
represented by a bipartite graph G := (R ∪̇T,E) where each resource i corresponds to a node
ri ∈ R, each task j corresponds to a node tj ∈ T , and the edge {ri, tj} is present in E if the
j-th task can be assigned to resource i. The goal is to find a matching M ⊆ E of minimal
cost that covers all nodes in T , i.e. a set of non-adjacent edges that is incident to every node
in T . In the following, a subset M satisfying that property is called an assignment.

The Robust Assignment Problem (RAP) is the natural robust counterpart of the assign-
ment problem and defined as follows1. An instance of RAP consists of an instance of the
nominal assignment problem, i.e. of a bipartite graph G = (R ∪̇T,E) representing admissible
assignments and a non-negative cost vector c ∈ RE

≥0, as well as a collection F ⊆ E of
vulnerable edges. Each f ∈ F induces a failure scenario that leads to a deletion of f from
G. The goal is to find a subset X ⊆ E of minimal cost with the property that, for every
vulnerable edge f ∈ F , the set X \ {f} contains an assignment of G.

Intuitively, RAP asks to choose a redundant assignment, namely one that contains a feasible
assignment, even when an arbitrary single vulnerable edge becomes unavailable. Therefore,
the robustness paradigm considered in this paper falls into the topic of redundancy-based
robustness – a well-motivated and widely studied approach (see e.g. [5, 23] for an overview
of different robustness concepts). Some of the problems that fall into this category include
the minimum k-edge connected spanning subgraph problem [12, 18] and the robust facility
location problem [25, 31, 9]. More recently, Adjiashvili, Stiller and Zenklusen [2] introduced
a robustness model called bulk-robustness, which combines the standard redundancy based
robustness approach with a non-uniform failure model. In its general form, a bulk robust
counterpart of a combinatorial optimization problem consists of an instance of the nominal
problem, as well as a collection of scenarios, each comprising an arbitrary set of resources that
may fail simultaneously. The goal is, as usual, to choose a minimum-cost set of resources that
contains a feasible solution, even when the resources in any single failure scenario become
unavailable. In the language of bulk-robustness, RAP is the bulk-robust assignment problem
restricted to the case of where each scenario is composed of a single edge.

In the remainder of this section we provide a few motivating applications for RAP,
establish some connections to related notions in matching theory and discuss results and
technical contributions.

1.1 Motivation
The most natural applications of RAP, and redundancy-based robust optimization in general,
emerge in situations where resources can not be easily made available on demand. In such
applications, any resource that is intended for use at a certain point in time must be reserved
at an earlier stage, and thus made available for potential deployment. Examples of such
applications range from construction of robust power transmission networks [21] to supply
chain management [32].

In a nutshell, redundancy-based models deal with the problem of choosing the optimal
set of (potentially unreliable) resources to reserve, in order to guarantee that the available
set of resources at the time of solution implementation, i.e. the reserved resources that did
not fail, contains a feasible solution in every scenario. While we believe that RAP can be a

1 Several other robust counterparts of the assignment problem have been considered in the literature
under the same, or similar names. We review these models in Section 2.
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useful model to incorporate robustness in any assignment model with up-front decisions of
the latter type, we bring hereafter a few concrete applications.

Staff Training. Large companies often employ intensive training programs for their employ-
ees, designed to adapt the available pool of skills to their dynamic needs. For example, large
software firms starting a new project involving new technologies, might need to train some
employees to use these technologies. It is natural to incorporate the incurred training costs
into the task assignment problem. The cost of assigning an employee to perform a given task
in the project corresponds to the cost to train the employee to perform this task.

In a more realistic scenario, some employee to task assignments might become unavailable
even if the employee were trained to perform the task. This type of vulnerability is very
common, and can be caused, e.g. by employee dissatisfaction from his task assignment, or by
unexpected inability to perform the task (due to injury or unavailability of equipment, etc.).
RAP is a suitable model for deciding on robust training programs for the project, where skill
sets of the employees allow for reassignments even if any single employee to task assignment
becomes unavailable.

Continuity of Service. In industries such as health care and consulting it is often desirable
to maintain very stable client to service provider relationships [7]. It is hence natural for a
service provider to model the resulting resource allocation problem as an assignment problem,
where an available pool of trained employees (nurses, consultants etc.) is matched to the set
of customers. In the nominal variant, the company might want to minimize the cost incurred
by the assignment, where the cost is computed as the total cost incurred by establishing all
relationships in the assignment (establishing such relationships incurs significant costs).

It is however common that certain established relationships go off track in the course of
a long interaction (e.g. due to customer or employee dissatisfaction). These relationships
correspond to vulnerabilities of individual assignments. With RAP it is possible to account
for such vulnerabilities by establishing a cost-effective set of relationships that, even if any
nominal interaction becomes unavailable, the organization can quickly adjust the assignment
to satisfy all clients.

1.2 Overview of results and techniques
This paper addresses the computational complexity of RAP. In particular, we present
approximation algorithms and hardness of approximation results. We justify the study of
approximation algorithms by showing that RAP is NP-hard even in very restricted variants.
Due to space constraints we omit technical proofs as well as details on the complexity results.

The assignment problem has a well-known natural interpretation as a bipartite matching
problem in the graph G = (R ∪̇T,E). It is hence also natural to view RAP as a robust
version of the bipartite matching problem: find a minimum-cost set of edges in M ⊆ E

such that for every f ∈ F , the set M \ {f} contains a matching incident to all nodes in T .
Furthermore, if |R| = |T |, the problem becomes a robust variant of the perfect matching
problem. We henceforth adopt this point of view, as it facilitates a clearer exposition of our
results, and highlights an inherent connection between RAP and matching-covered graphs, a
notion that we repeatedly use in our approximation algorithms.

The next statement shows that it suffices to consider RAP on balanced bipartite graphs,
implying that we can state the feasibility condition for RAP using perfect matchings.

ICALP 2016
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I Proposition 1. Any RAP instance can be efficiently transformed to an equivalent weighted
RAP instance with a balanced bipartite graph such that any α-approximation for the new
instance can be used to efficiently construct an α-approximation of the original instance for
all α ≥ 1.

It is important to note that the transformation in Proposition 1 leads to an instance on a
balanced bipartite graph that is equipped with a weighted cost function. Interpreting the
resulting instance as an unweighted one may destroy the preservation of the transformation’s
approximation quality, thus Proposition 1 can not be used as a black box reduction for the
unweighted case.

In the following, RAP refers to general instances of the robust assignment problem
on balanced bipartite graphs with weighted cost function, while card-RAP is used for the
unweighted version of RAP. We denote n = nT + nR and m = |E|.

We remark that feasibility of a given RAP instance can be efficiently verified as one only
needs to check, for each f ∈ F , whether the graph contains a perfect matching not using f .
The latter can be done using any polynomial algorithms for finding maximum matchings in
bipartite graphs.

1.2.1 Matching-Covered Graphs and Ear Decompositions
Our algorithmic results rely on a tight connection between RAP and matching-covered graphs,
a well-known notion in matching theory. A graph G = (V,E) is matching-covered if every
edge e ∈ E appears in some perfect matching of G.2

It turns out that inclusion-wise minimal solutions of any RAP instance are matching-
covered as the following proposition states.

I Proposition 2. A set X ⊆ E is an inclusion-wise minimal feasible solution to RAP if and
only if (R ∪̇T,X) is an inclusion-wise minimal non-empty graph with the properties of being
matching-covered and that every isolated edge e ∈ X is not vulnerable, i.e. e 6∈ F .

Proposition 2 provides a very useful characterization of minimal solutions of RAP, as it allows
us to use various results on matching-covered graphs in our algorithms for RAP. In particular,
it allows us to identify feasible subgraphs and augment them to feasible solutions for the
entire instance by adding structures that maintain the property of being matching-covered.
One particularly useful tool is an ear decomposition of a bipartite matching-covered graph,
i.e. a certain decomposition of G into edge-disjoint paths of odd length. In the following,
we denote by V [G] and E[G] the set of nodes and edges of a graph G, respectively. For two
graphs G and H we denote by G+H their union (V [G] ∪ V [H], E[G] ∪ E[H]]).

I Definition 3 (Ear Decomposition of a Bipartite Graph). Let H be a bipartite graph, and let
H ′ be a subgraph of H. An odd ear of H with respect to H ′ is a path P in H with an odd
number of edges and such that P and H ′ have exactly two nodes in common. Those two
nodes form the end points of P , and belong to different parts of the bipartition.

A bipartite ear decomposition is a sequence P0, P1, . . . , Pq of paths in H, such that:
(i) P0 = ({v1, v2}, {{v1, v2}}) is a graph composed of a single edge; (ii) H = P0 + · · ·+Pq; and
(iii)µfor every j = 1, . . . , q, the path Pj is an odd ear with respect to Hj−1 := P0 + · · ·+Pj−1.

2 The notion of matching-covered graphs is originally introduced for connected graphs. In this paper we
use this term also for disconnected graphs. Furthermore, note that some authors use synonymously the
notion 1-extendable or in the bipartite case elementary (cf. [28]).
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We exploit the following well-known connection between matching-covered bipartite
graphs and bipartite ear decompositions.

I Theorem 4 ([28, Thm. 4.1.6]). A bipartite graph is matching-covered if and only if it has
a bipartite ear decomposition.

1.2.2 Results for card-RAP
Theorem 4 allows us to prove the following results for card-RAP. An instance of RAP is called
uniform if every edge is vulnerable, i.e. if F = E.

I Theorem 5. card-RAP admits a polynomial 1.5-approximation algorithm in the uniform
case, and a 3-approximation algorithm in the general case.

Our algorithm starts by producing an ear decomposition of the input graph. Then, it
iteratively selects a certain subset of the edges to be part of the solution, by processing the
ears in the decomposition in the order given by the decomposition, and omitting the edges
corresponding to ears of length one.

We complement the latter algorithmic result by showing that card-RAP is NP-hard to
approximate within some constant δ > 1 even in the restricted case of a uniform scenario set,
as stated in the following theorem.

I Theorem 6. There exists a constant δ > 1, such that there is no polynomial δ-approximation
algorithm for the uniform card-RAP, unless P=NP.

Theorems 5 and 6 imply that the true approximability thresholds for uniform card-RAP
and card-RAP lie in the intervals [δ, 1.5] and [δ, 3], respectively.

To complete the complexity landscape of card-RAP we also consider the case of only two
vulnerable edges. This special case comprises the simplest variant of card-RAP that is not
equivalent to a standard matching problem3. In the following theorem we prove that already
this special case is NP-hard, thus drawing a sharp threshold for polynomial solvability of
card-RAP.

I Theorem 7. card-RAP is NP-hard even when restricted to instances with two vulnerable
edges, i.e. with F = {f1, f2}.

To the best of our knowledge, this is the first example of an NP-hard robust counterpart
of a polynomial optimization problem, with a constant number of vulnerable resources.4 To
prove Theorem 7 we first show NP-hardness of a problem of partitioning a graph into a cycle
containing a given node and a matching whose union covers all nodes, so as to minimize the
length of the cycle, a problem that might be interesting in its own right.

1.2.3 Results for RAP
Our main algorithmic result for RAP is a randomized O(logn)-approximation for the general
case, as stated hereafter.

3 Observe that the case of a single vulnerable edge F = {f} is solvable by reporting any minimum-cost
perfect matching in the graph (R ∪̇ T, E \ {f}) as a solution.

4 There are many examples of optimization problems that become NP-hard when the robust counterpart
is allowed to contain a constant number of scenarios (see e.g. [26]). In all such examples, however, each
scenario affects a non-constant number of resources.
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I Theorem 8. RAP admits a randomized polynomial O(logn)-approximation algorithm.

Our approximation algorithm for RAP builds upon our simple approximation algorithm
for card-RAP in that it also iteratively constructs a solution maintaining the invariant that
at any point in the algorithm, the edges selected so far form a matching-covered graph. It is
however unclear how to arrive at the desired approximation for RAP relying only on properties
of matching-covered graphs. We therefore combine the latter techniques with additional
tools from linear programming (LP) theory and randomized rounding. Concretely, we start
by solving an LP relaxation of RAP, derived from a natural integer linear programming (ILP)
formulation of the problem. The obtained fractional solution is used to guide an iterative
randomized procedure. In each iteration a fractional bipartite matching corresponding to
part of the fractional solution is selected. A decomposition of this fractional matching into
a convex combination of integral matchings is then used to randomly pick one matching,
and a carefully selected subset of this matching is added to the current solution. To bound
the quality it does not suffice to bound the number of iterations, or the expected number of
times an edge is part of a candidate matching. Instead we use a discharging argument that
assigns costs to nodes depending on the graph selected so far.

We complement our algorithmic results for RAP with hardness of approximation result
with the same asymptotic bound, as stated hereafter.

I Theorem 9. Provided that NP 6⊆ DTIME(nlog logn), the uniform RAP admits no c logn-
approximation for any c < 1. RAP unless P=NP.

2 Related work

Redundancy-based robustness is a paradigm that motivates many well studied problems,
including the minimum k-connected subgraph problem [18, 12, 30], survivable and robust
network design problems [24, 10, 2, 1], robust clustering problems [25, 31], robust spanner
problems [8, 15] and many more. All of the latter models bare a close resemblance to RAP:
they assume resources to be vulnerable and ask to find a minimum-cost set of resources that
contains a desired structure even in case any vulnerable resource, or set of resources, fails.

A relatively new approach to redundancy based robustness is the incorporation of non-
uniform uncertainty sets [2, 1]. RAP is seen as a robust model of this type, as we allow both
vulnerable and invulnerable edges in the same instance.

The study of robustness with respect to cost uncertainty was initially studied by Kouvelis
and Yu [26], and Yu and Yang [33]. For a survey we refer to Aissi, Bazgan and Vander-
pooten [4]. A closely related class of multi-budgeted problems has received considerable
attention (see e.g. [19] and references therein). The latter works include variants of the
related multi-objective matching problem.

Various variants of robust matching problems have been considered in the literature.
Hassin and Rubinstein [22], and Fujita, Kobayashi and Makino [17] study the following
notion of an α-robust matching. A perfect matching M in a weighted graph is α-robust (for
α ∈ (0, 1]), if for every p ≤ |M |, the p heaviest edges of the matching have total weight at
least α times the weight of a maximum weight matching of size p. Deineko and Woeginger [14]
showed that the min-max-robust assignment problem with a fixed number of scenarios is
equivalent to the exact perfect matching problem, a famous problem with unknown complexity
status. In the case of a variable number of scenarios the min-max-robust problem is NP-hard,
as was proved by Aissi, Bazgan and Vanderpooten [3]. Additional work on robust variants of
the matching problem include models with recovery [16], models with node failures [27], and
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the closely related matching interdiction problem [34]. Plesník [29] provided conditions under
which an r-regular graph remains perfectly matchable after removing r− 1 arbitrarily chosen
edges. Brigham, Harary, Violin and Yellen [6] and Cheng, Lesniak, Lipman and Liptak [11]
studied the minimum number of edges to be removed from a graph to arrive at a graph
without a perfect matching.

3 Approximation Algorithms for RAP

3.1 O(1)-Approximation for card-RAP
Our algorithm relies on an ear decomposition of the underlying bipartite graph. Similar
ideas using ear decompositions were successfully used to approximate various combinatorial
optimization problems including, among others, the minimum edge connected subgraph
problem and the path traveling salesman problem [12, 30]. Recall, that a balanced bipartite
graph admits an ear decomposition (which is by no means unique) if and only if it is
matching-covered.

As an initial pre-processing step, a given card-RAP instance consisting of G = (R ∪̇T,E)
and F is transformed into a balanced instance. For this, we introduce a set D of nR − nT
dummy task nodes, and connect each such node to all nodes from R. Let ED denote the set
of newly introduced edges, and let Gb = (R ∪̇(T ∪D), E ∪ ED). In a second step we remove
from Gb all dispensable edges, i.e. all edges not appearing in any perfect matching of Gb. This
way, we obtain a graph, that is, by definition, matching-covered. Note that the second step
can be implemented in polynomial time using any efficient algorithm for finding bipartite
matchings. Moreover, we remark that omitting dispensable edges clearly does not change the
underlying card-RAP instance, since such edges can be removed from any feasible solution
without breaking feasibility. In the following, we allow some abuse of notation and call the
new graph Gb as well. Next, we assume that G (and equivalently Gb) is feasible, i.e. there do
not exist any isolated edges. If an isolated edge exists the algorithm terminates and reports
that the instance is infeasible. Now let Gb = P0 + · · ·+ Pq be any ear decomposition of Gb
with the initial edge P0 not covering a dummy node from D. We call an ear Pj trivial if it is
not P0 and if it consists of a single edge. The next lemma shows that a feasible solution to
card-RAP can be obtained from the ear decomposition of Gb by skipping trivial ears.

I Lemma 10. Let J = {j ∈ [q] | Pj is a trivial ear}. Define G′b = P0 +
∑
i∈[q]\J Pi,

and X := E[G′b] \ ED. Then, the set X is a feasible solution to the card-RAP instance.
Furthermore, |X| ≤ 3nT .

Lemma 10 allows us to arrive at an approximation algorithm, summarized as Algorithm 1.

Algorithm 1 : O(1)-Approximation for card-RAP

Require: G = (R ∪̇T,E) and F ⊆ E.
Ensure: a feasible solution X to card-RAP on G and F
1: X ← ∅
2: Transform G into a balanced graph Gb and remove all dispensable edges
3: Compute an ear decomposition Gb = P0 + . . .+ Pq
4: X ← P0 ∪

⋃
{E[Pj ] | Pj is not trivial, j = 1, . . . , q}

5: return X

Proof of Theorem 5. According to [13], an ear decomposition of a matching-covered graph
can be computed in polynomial time. Furthermore, all other computations can also be
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implemented efficiently, such that the running time of Algorithm 1 is polynomial. From
Lemma 10, it follows that the set X returned by Algorithm 1 is feasible. For F = E, any
feasible solution must have at least two edges incident to any node from the set T . Hence,
OPT ≥ 2nT . Since |X| ≤ 3nT , the approximation guarantee is indeed 1.5. If F ( E, then G
can contain a perfect matching not including any edge from F . Thus, we can use OPT ≥ nT
yielding an approximation factor of 3. J

3.2 O(log n)-Approximation for RAP
In this section we provide a polynomial O(logn)-approximation algorithm for RAP, thus
proving Theorem 8. Again, we assume that the RAP instance is feasible. For a clean
presentation, we first describe an algorithm for the uniform case F = E and then explain
how it can be extended to the non-uniform case.

Our algorithm is based on an LP-rounding procedure that works with a relaxation of
the integer linear formulation of RAP, that is defined as follows. Let G = (R ∪̇T,E) be
a balanced, bipartite graph and let c ∈ RE

≥0 be a non-negative cost vector. Moreover, let
PG ⊆ RE denote the perfect matching polytope associated with G (i. e. PG is the convex
hull of all incidence vectors of perfect matchings in G). A standard ILP formulation of
RAP contains the following variables: (i) x−f ∈ {0, 1}E representing a perfect matching in
G− f := (R ∪̇T,E \ {f}), for all f ∈ F , and (ii) y ∈ {0, 1}E encoding a feasible solution to
RAP. Then, RAP can be modeled as an ILP as follows.

min c>y

s. t. x−f ∈ PG ∩ {x ∈ RE | xf = 0}, for each f ∈ F,
y ≥ x−f , for each f ∈ F,

x−f ∈ {0, 1}E , for each f ∈ F,
y ∈ {0, 1}E

(ILP)

The LP-relaxation (LP) is obtained by relaxing all integrality constraints in (ILP). To keep
notation short, we let x ∈

(
RE
)E be the vector with parts x−f , f ∈ F . It is straightforward

to verify that integer solutions to (ILP) coincide with feasible solutions to the RAP instance.
In the following, we will denote, by χS ∈ {0, 1}E , the incidence vector of a subset S ⊆ E.

Now, let (x, y) be a fractional solution to (LP). We describe hereafter a rounding procedure
that yields an approximation for RAP. Consider some edge f ∈ F . Since x−f is contained
in PG ∩ {x ∈ RE | xf = 0}, there exist positive scalars λ−f1 , · · · , λ−fk with

∑
i∈[k] λ

−f
i = 1,

and perfect matchings M−f1 , · · · ,M−fk in G − f such that x−f =
∑
i∈[k] λ

−f
i χM

−f
i . By

Caratheodory’s theorem, there is a decomposition of the latter type with k bounded by
O (m) = O

(
n2). Furthermore given x−f , such a decomposition can be computed in polyno-

mial time using polyhedral techniques [20, Thm. 6.5.11].
Our algorithm performs several iterations of randomized rounding based on the latter

decomposition of fractional matchings. More precisely, at each iteration, an infeasible set
X ⊆ E of edges, that was chosen so far, is augmented with an additional set M of edges
chosen randomly as follows. First, an arbitrary edge f is chosen from E among all edges
not yet covered by X, i.e. among all e′ ∈ E such that the edge set X selected so far contain
no perfect matching that does not include e′. Next, a decomposition of the vector x−f as a
convex combination of perfect matchings is computed, as above. This decomposition is then
used to select a single perfect matching M̄ from {M−f1 , · · · ,M−fk } randomly, where M−fi is
chosen with probability λ−fi for all i ∈ [k]. Finally, the augmenting set M ⊆ M̄ is chosen
to contain all edges of M̄ connecting distinct connected components of X. The edges of M
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are added to X and the algorithm proceeds to the next iteration. The algorithm terminates
when X is a feasible solution. A summary of the algorithm is presented as Algorithm 2.

To prove the correctness of the algorithm we resort again to properties of matching-covered
graphs. Concretely, as a main ingredient of the proof of Lemma 12, which states a useful
structural property of intermediate solutions in the algorithm, we use the following classic
result.

Algorithm 2 : Randomized O(logn)-Approximation for RAP

Require: G = (R ∪̇T,E) with |R| = |T |, and c ∈ RE
≥0.

Ensure: A feasible solution X to RAP on G with F = E and cost vector c.
1: Solve (LP) to obtain an optimal solution (x, y)
2: X ← ∅
3: while X is infeasible do
4: Select an edge f ∈ F such that X \ {f} contains no perfect matching
5: Compute a decomposition of x−f as x−f =

∑k
i=1 λ

−f
i χM

−f
i and select one matching

M̄ ∈ {M−fi | i ∈ [k]} with Pr
[
M̄ = M−fi

]
= λ−fi for all i ∈ [k]

6: Add to X all edges from M̄ that connect distinct connected components in (R ∪̇T,X)
7: end while
8: return X

I Theorem 11 ([28, Thm. 4.1.1., p. 122]). A connected bipartite graph H = (U ∪̇W,E)
with |U ∪̇W | ≥ 4 is matching-covered if and only if for any u ∈ U and w ∈ W the graph
H − {u} − {w} has a perfect matching.

I Lemma 12. Let X be a non-empty set of edges already selected in an arbitrary iteration
of Algorithm 2. Then, the graph G[X] := (R ∪̇T,X) is matching-covered.

Proof. As X is assumed to be non-empty, X contains at least one perfect matching of G.
Thus, G[X] does not have isolated nodes.

Now, let S ⊆ R ∪̇T be the nodes of some connected component of G[X]. It suffices to
prove that the graph (S,X[S]), with X[S] := {e ∈ X | e = {s1, s2}, for some s1, s2 ∈ S}, is
matching-covered. For |S| = 2, X[S] contains exactly one edge that belongs to a perfect
matching in X. Thus, the claim is proved.

Next, assume that |S| > 2. To prove that (S,X[S]) is matching-covered, we proceed
by induction on the number of iterations in Algorithm 2. In the first iteration, a perfect
matching is added to X in Step 6, thus the claim holds in that case.

Now, let X ′ ⊆ X be the set of edges selected until the beginning of the iteration preceding
the current iteration. By the induction hypothesis, we can assume that every connected
component of (R ∪̇T,X ′) is matching-covered.

To prove the claim we need to show that every edge e ∈ X[S] is contained in some perfect
matching of S. If e ∈ X ′, this claim holds by the inductive hypothesis, and due to X ′ ⊆ X.
In case that e 6∈ X ′, we have that e ∈ M̄ , where M̄ is selected in Step 5 in the current
iteration. This means that e connects nodes from two distinct connected components of
(R ∪̇T,X ′).

Now, pick any cycle C ⊆ X in G[X] containing e with a minimum number of edges from
M̄ . Let D1, · · · , Dl ⊆ R ∪̇T be the components in (R ∪̇T,X ′) that have edges in C. From
minimality of |C ∩ M̄ | it follows that C is a simple cycle (i.e. each node is contained in at
most two of its edges) and that each component Dj , j = 1, · · · , l contains exactly two nodes
incident to the cycle. This cycle can now be used to demonstrate the existence of the desired
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perfect matching M ′ as follows. First, include in M ′ all edges in C ∩ M̄ . Then, in every
component Dj for j = 1, · · · , l pick a matching covering all nodes, except the two nodes
incident to the cycle C. Due to Theorem 11, such a matching exists since each component Dj

is matching-covered. The matching chosen so far covers exactly the nodes in D1 ∪ · · · ∪Dl.
Finally, pick any matching covering all other components of (R ∪̇T,X ′) that are not incident
to C. This matching exists, since again, (R ∪̇T,X ′) is matching-covered. The result is a
perfect matching in G[X] containing e, which completes the proof. J

Lemma 12 guarantees that at every stage in the algorithm, the only edges not yet covered
by the current solution X are the isolated edges of G[X]. Now, since at an iteration where
an uncovered edge f is chosen in Step 4, the set M must contain two edges distinct from f ,
that are incident to the endpoints of f , the edge f is guaranteed to be covered in the end
of this iteration. This immediately implies that the algorithm terminates with a feasible
solution after at most |E| iterations. It hence remains to bound the expected cost of the
solution returned by Algorithm 2.

I Theorem 13. The expected cost of the solution returned by Algorithm 2 is O(logn) ·OPT,
where OPT is the optimal solution value for the RAP instance.

Proof. The feasibility of the obtained solution and the bound on the running time are
guaranteed by Lemma 12.

For a set Q ⊆ E of edges we denote by cLP(Q) the contribution of the edges in Q to the
LP cost, i.e. cLP(Q) =

∑
e∈Q ceye. For a node v ∈ R ∪̇T , we denote by δ(v) ⊆ E the set of

edges incident to v. To bound the approximation guarantee we bound the expectation of
the ratio c(X)/cLP(E). Since the LP is a relaxation of the problem we have cLP(E) ≤ OPT.
Thus, this ratio is a valid bound on the approximation guarantee.

To obtain the bound we design a scheme that charges every selected edge in any stage of
the algorithm to one of its endpoints. We then show that the expected cost charged to any
node v ∈ V is bounded by O(logn) times the fractional cost cLP(δ(v)) associated with the
node. This then implies that the expected cost of all edges added by the algorithm is at most

O(logn) ·
∑

v∈R ∪̇T

cLP(δ(v)) ≤ O(logn) · OPT,

where the last inequality follows from linearity of expectation, cLP(E) ≤ OPT and cLP(E) =
1
2
∑
v∈R ∪̇T cLP(δ(v)).
We describe next how the costs of the selected edges are charged to the nodes of the

graph. Let X̄ ⊆ E be the set of edges returned by the algorithm. Formally, with each node
v ∈ R ∪̇T we associate a collection of edges Rv ⊆ X̄ such that

⋃
v∈R ∪̇T Rv = X̄ and such

that c(Rv) is bounded by O(logn) times the fractional load at v in expectation.
The sets Rv are constructed as follows. In the beginning Rv = ∅ for all v ∈ R ∪̇T . Let X

be the set of edges selected so far by the algorithm and let M ⊆ E \X be the set of edges
selected to be added to X in Step 6 of the current iteration. At this stage, the sets Rv might
already contain some edges. We describe how these sets change as a result of the selection
of M . Consider an edge f = {r, t} ∈ M . Recall that the algorithm only includes edges in
the solution if they connect different connected components in (R ∪̇T,X). Thus, r and t
lie in different connected components. Let Dr and Dt be the node sets of the connected
components to which r and t belong, respectively, and assume without loss of generality that
|Dr| ≤ |Dt|. Then, f is charged to r, i.e. f is included in Rr. In other words, an edge added
by the algorithm in any iteration is charged to the node contained in the smaller connected
component, with ties broken arbitrarily.
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It is obvious that the latter scheme charges all edges in X̄ to some nodes, such that⋃
v∈V Rv = X̄ holds in the end of the last iteration. It remains to analyze the quantity c(Rv)

for a single node v ∈ R ∪̇T . The bound on c(X̄) will then follow from linearity of expectation
and the previous discussion. To arrive at the desired bound it suffices to make the following
two observations.

First, at any time, if an edge is charged to v, its expected cost is at most cLP(δ(v)).
Indeed, recall that the edges in M come from a perfect matching chosen at random from the
decomposition of some fractional perfect matching x−f in the graph (this x−f corresponds
to the edge f chosen in Step 4 in the current iteration). Let this decomposition be

x−f =
∑
i∈[k]

λ−fi χM−f
i
.

The distribution over the integral matchings defining x−f induces a distribution over the
edges incident to v: each edge e ∈ δ(v) is contained in the perfect matching with a probability
pe ∈ [0, 1] given by

pe =
∑

i∈[k] : e∈M−f
i

λ−fi = x−fe .

Since x−fe ≤ ye for all e ∈ E we have that the expected cost of the edge charged to v is at
most

∑
e∈δ(v) cex

−f
e ≤ cLP(δ(v)), proving the first property.

The second observation concerns the number of times the node v is charged in the course
of the algorithm. Consider any iteration in which some edge was charged to v, and let Dv be
the nodes in the component of v in the beginning of the iteration. Since we always charge an
edge to the node in the smaller component, and since charged edges always merge connected
components, the size of the connected component containing v in the end of the iteration is
at least 2|Dv|. Since the graph only contains n nodes, this doubling can only happen at most
logn times.

We conclude that c(Rv) is, in expectation, indeed at most O(logn)cLP (δ(v)), which
concludes the proof of the theorem. J

Lemma 12 and Theorem 13 imply the correctness of Theorem 8 for the uniform case.
The generalization to the non-uniform case is explained in the proof of Theorem 8, which we
bring next.

Proof of Theorem 8. It remains to show how to treat the case F 6= E. For this, we provide
a transformation to reduce such an instance to a uniform instance by losing only a factor of
2 in the approximation guarantee.

The transformation first adds to the graph one parallel edge ē for every e 6∈ F . Let G′
be the obtained graph. The new set of vulnerable edges is set to F ′ = E[G′]. Solutions for
the two RAP instances are in obvious correspondence: A solution X ⊆ E[G] to the original
instance can be transformed to a solution for the new instance of at most double the cost by
taking X ′ = X ∪ {ē | e ∈ X \ F}. Conversely, a solution X ′ for the new instance can be
transformed to a solution for the new instance with the same, or better cost, by choosing
X = X ′ ∩ E[G].

Let OPT′ denote the optimal solution value of the transformed uniform instance. Our
O(logn)-approximation algorithm for the general case proceeds by first transforming the
instance to a uniform instance of RAP, as above, then invoking Algorithm 2 to obtain the
set X ′, having expected cost at most O(logn)OPT′ = O(logn)OPT and then returning
X = X ′ ∩ E[G]. J
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We conclude this section by arguing why simpler randomized rounding techniques, for
instance, ones that lead to logarithmic approximation to many covering problems, are unlikely
to lead to a similar result for RAP. The reason for this is that there does not seem to be
a simple way to obtain a compact set cover-type representation of RAP without losing a
super-logarithmic factor in the approximation guarantee. One natural attempt could be to
consider every vulnerable edge f ∈ F as an element that needs to be covered, and every
possible perfect matching M ⊆ E that does not contain f , a covering set that covers the
edge f (and all other edges in F \M). The cost of the covering set is simply the sum of the
costs of edges in the corresponding perfect matching. Unfortunately, it is easy to come up
with examples in which the optimal solution value in the latter set covering model has cost
Ω(n)OPT. Such instances can be constructed, for example by choosing an instance, such
that any feasible solution must have some nodes with very high degree, while an optimal
solution has cost O(n).

4 Conclusion and Future Work

This paper studies a novel practically relevant robust variant of the assignment problem
(RAP). We showed tight connections between RAP and classical notions in matching theory,
including matching-covered graphs and ear decompositions, and used these connections to
obtain asymptotically tight approximation results for RAP. In our approximation algorithm
for the general variant of RAP we combined classical results for matching-covered graphs
with LP randomized rounding techniques.

Some ongoing and future work includes the following lines of research. Study a version of
RAP with node failures, or with a combination of node and edge failures. This problem has
many potential applications beyond the ones listed here. Study the variant of RAP where
each scenario consists of at most k edges, for some input parameter k > 1. This paper treats
the case k = 1. Besides, it is interesting to study the complexity of RAP in general graphs.
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(RTG 1855).
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Abstract
Makespan scheduling on identical machines is one of the most basic and fundamental packing
problem studied in the discrete optimization literature. It asks for an assignment of n jobs
to a set of m identical machines that minimizes the makespan. The problem is strongly NP-
hard, and thus we do not expect a (1 + ε)-approximation algorithm with a running time that
depends polynomially on 1/ε. Furthermore, Chen et al. [3] recently showed that a running time
of 2(1/ε)1−δ + poly(n) for any δ > 0 would imply that the Exponential Time Hypothesis (ETH)
fails. A long sequence of algorithms have been developed that try to obtain low dependencies on
1/ε, the better of which achieves a running time of 2Õ(1/ε2) + O(n logn) [10]. In this paper we
obtain an algorithm with a running time of 2Õ(1/ε) +O(n logn), which is tight under ETH up to
logarithmic factors on the exponent.

Our main technical contribution is a new structural result on the configuration-IP. More
precisely, we show the existence of a highly symmetric and sparse optimal solution, in which
all but a constant number of machines are assigned a configuration with small support. This
structure can then be exploited by integer programming techniques and enumeration. We believe
that our structural result is of independent interest and should find applications to other settings.
In particular, we show how the structure can be applied to the minimum makespan problem on
related machines and to a larger class of objective functions on parallel machines. For all these
cases we obtain an efficient PTAS with running time 2Õ(1/ε) + poly(n).
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1 Introduction

Minimum makespan scheduling is one of the foundational problems in the literature on
approximation algorithms [6, 7]. In the identical machine setting the problem asks for an
assignment of a set of n jobs J to a set of m identical machines M. Each job j ∈ J is
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characterized by a non-negative processing time pj ∈ Z>0. The load of a machine is the total
processing time of jobs assigned to it, and our objective is to minimize the makespan, that
is, the maximum machine load. This problem is usually denoted P ||Cmax. It is well known
to admit a polynomial time approximation scheme (PTAS) [9], and there has been many
subsequent works improving the running time or deriving PTAS’s for more general settings.
The fastest PTAS for P ||Cmax achieves a running time of 2O(1/ε2) log3(1/ε)) +O(n logn) for
(1 + ε)-approximate solutions [10]. Very recently, Chen et al. [3] showed that, assuming
the exponential time hypothesis (ETH), there is no PTAS that yields (1 + ε)-approximate
solutions for ε > 0 with running time 2(1/ε)1−δ + poly(n) for any δ > 0 [3].

Given a guess T ∈ N on the optimal makespan, which can be found with binary search,
the problem reduces to deciding the existence of a packing of the jobs to m machines (or bins)
of capacity T . If we aim for a (1 + ε)-approximate solution, for some ε > 0, we can assume
that all processing times are integral and T is a constant number, namely T ∈ O(1/ε2).
This can be achieved with well known rounding and scaling techniques [1, 2, 8] which will
be specified later. Let π1 < π2 < . . . < πd be the job sizes appearing in the instance after
rounding, and let bk denote the number of jobs of size πk. The mentioned rounding procedure
implies that the number of different job sizes is d = O((1/ε) log(1/ε)). Hence, for large n we
obtain a highly symmetric problem where several jobs will have the same processing time.
Consider the knapsack polytope P = {c ∈ Rd

≥0 : π · c ≤ T}. A packing on one machine can
be expressed as a vector c ∈ Q = Zd ∩ P, where ck denotes the number of jobs of size πk

assigned to the machine. Elements in Q = Zd ∩ P are called configurations. Considering a
variable xc ∈ Z≥0 that decides the multiplicity of configuration c in the solution, our problem
reduces to solving the following linear integer program (ILP):

[conf-IP]
∑
c∈Q

c · xc = b, (1)

∑
c∈Q

xc = m, (2)

xc ∈ Z≥0 for all c ∈ Q. (3)

In this article we derive new insights on this ILP that help us to design faster algorithms
for P ||Cmax and other more general problems. These including makespan scheduling on
related machines Q||Cmax, and a more general class of objective functions on parallel machines.
We show that all these problems admit a PTAS with running time 2O((1/ε) log4(1/ε)) +poly(n).
Hence, our algorithm is best possible up to polylogarithmic factors in the exponent assuming
ETH [3].

1.1 Literature Review
There is an old chain of approximation algorithms for P ||Cmax, starting from the seminal
work by Graham [6, 7]. The first PTAS was given by Hochbaum and Shmoys [9] and had a
running time of (n/ε)O((1/ε)2) = nO((1/ε)2 log(1/ε)). This was improved to nO((1/ε) log2(1/ε)) by
Leung [14]. Subsequent articles improve further the running time. In particular Hochbaum
and Shmoys (see [8]) and Alon et al. [1, 2] obtain an efficient PTAS1 (EPTAS) with running
time 2(1/ε)poly(1/ε) +O(n logn). Alon et al. [1, 2] consider general techniques that work for

1 That is, a PTAS whose running time is f(1/ε)poly(|I|) where |I| is the encoding size of the input and f
is some function.
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several objective functions, including all Lp-norm of the loads and maximizing the minimum
machine load.

The previously fastest PTAS for P ||Cmax achieves a running time of 2O((1/ε)2 log3(1/ε)) +
O(n logn) [10]. More generally, this work gives an EPTAS for the case of related (uniform)
machines, where each machine i ∈ M has a speed si and assigning to i job j implies a
processing time of pj/si. For this more general case the running time is 2O((1/ε)2 log3(1/ε)) +
poly(n). For the simpler case of P ||Cmax, the ILP can be solved directly since the number of
variables is a constant. This can be done with Lentras’ algorithm [13], or even with Kannan’s
algorithm [12] that gives an improved running time. This technique yields a running time
that is doubly exponential in 1/ε. This was, in essence, the approach by Alon et al. [1, 2]
and Hochbaum and Shmoys [8]. To lower the dependency on 1/ε, Jansen [10] uses a result
by Eisenbrand and Shmonin [4] that implies the existence of a solution x with support of
size at most O(d log(dT )) = O((1/ε) log2(1/ε)). First guessing the support and then solving
the ILP with O((1/ε) log2(1/ε)) integer variables and using Kannan’s algorithm yields the
desired running time of 2O((1/ε)2 log3(1/ε)) +O(n logn).

The configuration ILP has recently been studied in the context of the (1-dimensional)
cutting stock problem. In this case, the dimension d is constant, T = 1, and π is a rational
vector. Moreover, π and b are part of the input. Goemans and Rothvoß [5] obtain an optimal
solution in time log(∆)2O(d) , where ∆ is the largest number appearing in the denominator of
πk or the multiplicities bk. This is achieved by first showing that there exists a pre-computable
set Q̃ ⊆ Q with polynomial many elements, such that there exists a solution x that gives all
but constant (depending only on d) amount of weight to Q̃. We remark that applying this
result to a rounded instance of P ||Cmax yields a running time that is doubly exponential
on 1/ε.

1.2 Our Contributions

Our main contribution is a new insight on the structure of the solutions of [conf-IP]. These
properties are specially tailored to problems in which T is bounded by a constant, which in
the case of P ||Cmax can be guaranteed by rounding and scaling. The same holds for Q||Cmax
with a more complex rounding and case analysis.

We first classify configurations by their support. We say that a configuration is simple
if its support is of size at most log(T + 1), otherwise it is complex. Our main structural
result2 states that there exists a solution x in which all but O(d log(dT )) weight is given to
simple configurations, the support is bounded by O(d log(dT )) (as implied by Eisenbrand
and Shmonin [4]) and no complex configuration has weight larger than 1.

I Theorem 1 (Thin solutions). Assume that [conf-IP] is feasible. Then there exists a feasible
solution x to [conf-IP] such that:
1. if xc > 1 then the configuration c is simple,
2. the support of x satisfies | supp(x)| ≤ 4(d+ 1) log(4(d+ 1)T ), and
3.
∑

c∈Qc
xc ≤ 2(d+ 1) log(4(d+ 1)T ), where Qc denotes the set of complex configurations.

2 We remark the resemblance of this structure to the result by Goemans and Rothvoß [5]. Indeed, similarly
to their result, we can precompute a subset of configurations such that all but a constant amount of
weight of the solution is given to such set. In their case the set is of cardinality polynomial on the input
and is constructed by covering the integral solutions of the knapsack polytope by parallelepipeds. In
our case, all but O(d log dT ) weight is given to simple configurations.
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We call a solution satisfying the properties of the theorem thin. The theorem can be
shown by iteratively applying a sparsification lemma that shows that if a solution gives a
weight of two or more to a complex configuration, then we can replace this partial solution
by two configurations with smaller support. The sparsification lemma is shown by a simple
application of the pigeonhole principle. The theorem can be shown by mixing this technique
with the theorem of Eisenbrand and Shmonin [4] and a potential function argument.

As an application to our main structural theorem, we derive a PTAS for P ||Cmax by first
guessing the jobs assigned to complex configurations. An optimal solution for this subinstance
can be derived by a dynamic program. For the remaining instance we know the existence of
a solution using only simple configurations. Then we can guess the support of such solution
and solve the corresponding [conf-IP] restricted to the guessed variables. The main use of
having simple configurations is that we can guess the support of the solution much faster,
as the number of simple configuration is (asymptotically) smaller than the total number of
configurations. The complete procedure takes time 2O((1/ε) log4(1/ε)) +O(n logn). Moreover,
using the rounding and case analysis of Jansen [10], we derive an mixed integer linear program
that can be suitably decomposed in order to apply our structural result iteratively. This
yields a PTAS with a running time of 2O((1/ε) log4(1/ε)) + poly(n) for Q||Cmax.

Similarly, we can extend our results to derive PTAS’s for a larger family of objective
functions as considered by Alon et al. [1, 2]. Let `i denote the load of machine i, that is, the
total processing time of jobs assigned to machine i for a given solution. Our techniques then
gives a PTAS with the same running time for the problem of minimizing the Lp-norms of
the loads (for fixed p), and maximizing mini∈M `i, among others. To solve this problem, we
can round the instance and state an IP analogous to [conf-IP] but considering an objective
function. However, the objective function prevents us to use the main theorem as it is stated.
To get over this issue, we study several ILPs. In each ILP we consider xc to be a variable
only if c has a given load, and fix the rest to be some optimal solution. Applying to each such
ILP Theorem 1, plus some extra ideas, yields an analogous structural theorem. Afterwards,
an algorithm similar to the one for makespan minimization yields the desired PTAS.

From an structural point of view, our sparsification lemma has other consequences on the
structure of the knapsack polytope and the LP-relaxation of the [conf-IP]. More precisely, we
can show that any vertex of the convex hull of Q must be simple. This, for example, helps
us to upper bound the number of vertices by 2O(log2(T )+log2(d)). Moreover, we can show that
the configuration-LP, obtained by replacing the integrality restriction in [conf-IP] by x ≥ 0,
if it is feasible then admits a solution whose support consist purely of simple configurations.
Due to space limitations we leave many details and proofs to the full version.

2 Preliminaries

We will use the following notation throughout the paper. By default log(·) = log2(·), unless
stated otherwise. Given two sets A, I, we will denote by AI the set of all vectors indexed
by I with entries in A, that is, AI = {(ai)i∈I : ai ∈ A for all i ∈ I}. Moreover, for A ⊆ R,
we denote the support of a vector a ∈ AI as supp(a) = {i ∈ I : ai 6= 0}.

We consider an arbitrary knapsack polytope P = {c ∈ Rd
≥0 : π · c ≤ T} where π ∈ Zd

>0 is
a non-negative integral (row) vector and T is a positive integer. We assume without loss
of generality that each coordinate πk of π is upper bounded by T (otherwise ck = 0 for all
c ∈ Zd∩P). We focus on the set of integral vectors in P which we denote by Q = Zd∩P . We
call an element c ∈ Q a configuration. Given b ∈ Rd, consider the problem of decomposing b
as a conic integral combination of m configurations. That is, our aim is to find a feasible
solution to [conf-IP], defined above.
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A crucial property of the [conf-IP] is that there is always a solution with a support of
small cardinality. This follows from a Caratheodory-type bound obtained by Eisenbrand and
Shmonin [4]. Since we will need the argument later, we state the result applied to our case
and revise its (very elegant) proof. We split the proof in two lemmas.

For a given subset A ⊆ Q, let us denote by xA the indicator vector of A, that is xA
c = 1

if c ∈ A, and 0 otherwise. Let us also denote by M the (d+ 1)× |Q| matrix that defines the
system of equalities (1) and (2).

I Lemma 2 (Eisenbrand and Shmonin [4]). Let x ∈ ZQ
≥0 be a vector such that | supp(x)| >

2(d + 1) log(4(d + 1)T ). Then there exist two disjoint sets A,B with ∅ 6= A,B ⊆ supp(x)
such that MxA = MxB.

I Lemma 3 (Eisenbrand and Shmonin [4]). If [conf-IP] is feasible, then there exists a feasible
solution x such that | supp(x)| ≤ 2(d+ 1) log(4(d+ 1)T ).

Proof. Let x be a solution to [conf-IP] that minimizes | supp(x)| = s. Assume by contradiction
that s > 2(d + 1) log(4(d + 1)T ). We show that we can find another solution x′ to [conf-
IP] with | supp(x′)| < | supp(x)|, contradicting the minimality of | supp(x)|. By Lemma 2,
there exist two disjoint subsets A,B ∈ supp(x) such that MxA = MxB. Moreover, let
λ = min{xc : c ∈ A}. Vector x′ := x− λxA + λxB is also a solution to [conf-IP] and has a
strictly smaller support since a configuration c∗ ∈ arg min{xc : c ∈ A} satisfies x′c∗ = 0. J

3 Structural Results

Recall that we call a configuration c simple if | supp(c)| ≤ log(T + 1) and complex otherwise.
An important observation to show Theorem 1 is that if c is a complex configuration, then 2c
can be written as the sum of two configurations of smaller support. This is shown by the
following Sparsification Lemma.

I Lemma 4 (Sparsification Lemma). Let c ∈ Q be a complex configuration. Then there exist
two configurations c1, c2 ∈ Q such that
1. π · c1 = π · c2 = π · c,
2. 2c = c1 + c2,
3. supp(c1) ( supp(c) and supp(c2) ( supp(c).

Proof. Consider for each subset S ⊆ supp(c), a configuration cS ∈ Q such that cS
i = ci if

i ∈ S and cS = 0 otherwise. As the number of subsets of supp(c) is 2| supp(c)|, and cR 6= cS

if and only if R 6= S, the collection of vectors V := {cS : S ⊆ supp(c)} has cardinality
|V | = 2| supp(c)|.

On the other hand, for any vector cS ∈ V it holds that π · cS ≤ π · c ≤ T . Hence,
π · cS ∈ {0, 1 . . . , T} can take only T + 1 different values. Using that c is a complex
configuration and hence 2| supp(c)| > 2log(T +1) = T + 1, the pigeonhole principle ensures
that there are two different non-empty configurations cS , cR ⊆ V with π · cS = π · cR. By
removing the intersection, we can assume w.l.o.g. that S and R have no intersection. We
define c1 = c− cS + cR and c2 = c− cR + cS , which satisfy the properties of the lemma as

π · c1 = π · c− π · cS + π · cR = π · c and
2c = c− cS + cR + c− cR + cS = c1 + c2.

Since supp(c1) ⊆ supp(c) \ S and supp(c2) ⊆ supp(c) \R, property 3 is satisfied. J
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With Lemma 4 we are ready to show Theorem 1. For the proof it is tempting to
apply the lemma iteratively, replacing any complex configuration that is used twice by
two configurations with smaller support. This can be repeated until there is no complex
configuration taken multiple times. Then we can apply the technique of Lemma 3 to the
obtained solution to bound the cardinality of the support. However, the last step might break
the structure obtained if the solution implied by Lemma 3 uses a complex configuration more
than once. In order to avoid this issue we consider a potential function. We show that a
vector minimizing the chosen potential uses each complex configuration at most once, and
that the number of complex configurations in the support is bounded. Finally, we apply the
techniques from Lemma 3 restricted to variables corresponding to simple configurations.

Proof of Theorem 1. Consider the following potential function of a solution x ∈ ZQ
≥0 of

[conf-IP],

Φ(x) =
∑

complex config. c

xc| supp(c)|.

Let x be a solution of [conf-IP] with minimum potential Φ(x), which is well defined since the
set of feasible solutions has finite cardinality. We show two properties of x.

P1: xc ≤ 1 for each complex configuration c ∈ Q.
Assume otherwise. Consider the two configurations c1 and c2 implied by the previous

lemma. We define a new solution x′e = xe for e 6∈ {c, c1, c2}, x′c1
= xc1 + 1, x′c2

= xc2 + 1
and x′c = xc − 2. Since | supp(c1)| < | supp(c)| and | supp(c2)| < | supp(c)|, we obtain that
Φ(x′) < Φ(x) which contradicts the minimality of Φ(x).

P2: The number of complex configurations in supp(x) is at most 2(d+ 1) log(4(d+ 1)T ).
Let x̃ be the vector defined as x̃c = xc if c ∈ Q is complex, and x̃ = 0 if c ∈ Q is simple.

Then Lemma 2 implies that there are exist two disjoint subsets A,B ⊆ supp(x̃) of complex
configurations such that MxA = MxB . Thus, the solution x′ = x−xA +xB and the solution
x′′ = x− xB + xA are feasible for [config-IP]. By linearity, the potential function on the new
solutions are Φ(x′) = Φ(x)−Φ(xA) + Φ(xB) or respectively Φ(x′′) = Φ(x)−Φ(xB) + Φ(xA).
If Φ(xA) > Φ(xB) or Φ(xB) > Φ(xA) then we have constructed a new solution with smaller
potential, contradicting our assumption on the minimality of Φ(x). We conclude that
Φ(xB) = Φ(xA) and thus Φ(x) = Φ(x′). By construction of x′, we obtain that x′c > xc ≥ 1
for any complex configuration c ∈ B. Having multiplicity ≥ 2 for a complex configuration c,
we can proceed as in Case 1 to find a new solution with decreased potential, which yields a
contradiction.

Given these two properties, to conclude the theorem it suffices to upper bound the number
of simple configurations by 2(d+ 1) log(4(d+ 1)T ). Suppose this property is violated, then we
find two sets A,B ⊆ supp(x) of simple configurations (see Lemma 2) with MxA = MxB and
proceed as in Lemma 3. Since Lemma 3 is only applied to simple configurations, properties
P1 and P2 continue to hold and the theorem follows. J

Our techniques, in particular our Sparsification Lemma, imply two corollaries on the
structure of the knapsack polytope and the LP-relaxation implied by the [conf-IP].

I Corollary 5. Every vertex of conv.hull(Q) is a simple configuration. Moreover, the total
number of simple configurations in Q is upper bounded by 2O(log2(T )+log2(d)) and thus the
same expression upper bounds the number of vertices of conv.hull(Q).
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The following corollary follows as each complex configuration can be represented by a
convex combination of simple configurations.

I Corollary 6. Let [conf-LP] be the LP relaxation of [conf-IP], obtained by changing each
constraint xc ∈ Z≥0 to xc ≥ 0 for all c ∈ Q. If the LP is feasible then there exists a solution
x such that each configuration c ∈ supp(x) is simple.

4 Applications to Scheduling on Parallel Machines

In what follows we show how to exploit the structural insights of the previous section to
derive faster algorithms for parallel machines scheduling problems. We start by considering
P ||Cmax, where we seek to assign a set of jobs J with processing times pj ∈ Z>0 to a setM
of m machines. For a given assignment a : J 7→ M, we define the load of a machine i as∑

j:a(j)=i pj and the makespan as the maximum load of jobs over all machines, which is the
minimum time needed to complete the execution of all jobs on the processors. The goal is to
find an assignment J 7→M that minimizes the makespan.

We first follow well known rounding techniques [1, 2, 9, 8]. Consider an error tolerance
0 < ε < 1/3 such that 1/ε2 is an integer. To get an estimation of the optimal makespan, we
follow the standard dual approximation approach. First, we can use, e.g., the 2-approximation
algorithm by Graham [6] to get an initial guess of the optimal makespan. Using binary
search, we can then estimate the optimal makespan within a factor of (1 + ε) in O(log(1/ε))
iterations. Therefore, it remains to give an algorithm that decides for a given makespan
T , if there exists an assignment with makespan (1 +O(ε))T or reports that there exists no
assignment with makespan ≤ T .

For a given makespan T we define the set of big jobs Jbig = {j ∈ J : pj ≥ εT} and
the set of small jobs Jsmall = J \ Jbig. The following lemma shows that small jobs can be
replaced from the instance by adding big jobs, each of size εT , as placeholders. Let S be the
sum of processing times of jobs in Jsmall and let S∗ denote the next value of S rounded up
to the next multiple of εT , that is, S∗ = εT · dS/(εT )e. We define a new instance containing
only big jobs by J ∗ = Jbig ∪ Jnew, where Jnew contains S∗/(εT ) ∈ N jobs of size εT . The
proof of the next lemma and the rest of the missing proofs of this section can be found in
the full version.

I Lemma 7. Given a feasible assignment a : J 7→ M of jobs with makespan T . Then
there exists a feasible assignment aB : J ∗ 7→ M of makespan T ∗ ≤ (1 + ε)T . Similarly,
an assignment of jobs in J ∗ of makespan T ∗ can be transformed to an assignment of J of
makespan at most (1 + ε)T ∗.

By scaling the processing times of jobs in J ∗, we can assume that the makespan T has
value 1/ε2. Also notice that we can assume that pj ≤ T for all j, otherwise we cannot
pack all jobs within makespan T . This implies that each job j ∈ J ∗ has a processing
time of 1/ε ≤ pj ≤ 1/ε2. In the following we give a transformation of big jobs in J ∗ by
rounding their processing times. We first round the jobs to the next power of 1 + ε as
p′j = (1 + ε)dlog(1+ε) pje, and thus all rounded processing times belong to Π′ = {(1 + ε)k :
1/ε ≤ (1 + ε)k ≤ (1 + ε)/ε2 and k ∈ N}. We further round processing times p′j to the next
integer p̄j = dp′je and define a new set Π = {dpe : p ∈ Π′}. Notice that Π only contains
integers and |Π| ≤ |Π′| ∈ O((1/ε) log(1/ε)).

I Lemma 8. If there is a feasible schedule of jobs J ∗ with processing times pj onto m

machines with makespan T ∗ ≤ (1 + ε)T , then there is also a feasible schedule of jobs J ∗ with
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rounded processing p̄j with a makespan of at most (1 + 5ε)T . Furthermore, the number of
different processing times is at most |Π| ∈ O((1/ε) log(1/ε)).

In what follows we give an algorithm that decides in polynomial time the existence
of a solution for instance J ∗ with processing times p̄j and makespan T̄ = b(1 + 5ε)T c.
We call numbers in Π by π1, . . . , πd and define the vector π = (π1, π2, . . . , πd) ∈ Nd of
rounded processing times. We consider configurations to be vectors in Q = P ∩ Zd, where
P = {c ∈ Rd

≥0 : π · c ≤ T̄} is a knapsack polytope (see Section 3). As before, we say that
a configuration is simple if | supp(c)| ≤ log(T̄ + 1), and complex otherwise. For a given
assignment of jobs to machines, we say that a machine follows a configuration c if ck is the
number of jobs of size πk assigned to the machine. We denote by Qc ⊆ Q the set of complex
configurations and by Qs ⊆ Q the set of simple configurations.

Let bk be the number of jobs of size πk in the instance J ∗ (with processing times p̄).
Consider an ILP with integer variables xc for each c ∈ Q, which denote the number of
machines that follow configuration c. With these parameters the problem of scheduling all
jobs in a solution of makespan T̄ is equivalent to finding a solution to [conf-IP]. To solve the
ILP we use, among other techniques, Kannan’s algorithm [12] which is an improvement on
the algorithm by Lenstra [13]. The algorithm has a running time of 2O(N log N)s where N
is the number of variables and s is number of bits used to encode the input of the ILP in
binary.

By Theorem 1, if [conf-IP] is feasible then there exists a thin solution. In particular if
one configuration c is used by more than one machine then c is simple, and the total number
of used configurations is 4(d + 1) log(4(d + 1)T̄ ) ∈ O((1/ε) log2(1/ε)). Additionally, the
number of machines following a complex configurations is at most 2(d+ 1) log(4(d+ 1)T̄ ) ∈
O((1/ε) log2(1/ε)). We consider the following strategy to decide the existence of a schedule
of makespan T̄ .

I Algorithm 9.
1. For each processing time πk, guess the number bc

k ≤ bk of jobs covered by complex
configurations.

2. Find a minimum number of machines mc to schedule jobs bc with makespan T̄ .
3. Guess the support of simple configurations Q̄s ⊆ Qs used by a thin solution, with
|Q̄s| ≤ 4(d+ 1) log(4(d+ 1)T̄ ) ∈ O((1/ε) log2(1/ε)).

4. Solve the ILP restricted to configurations in Q̄s:∑
c∈Q̄s

c · xc = b− bc,

∑
c∈Q̄s

xc = m−mc,

xc ∈ Z≥0 for all c ∈ Q̄s.

One of the key observations to prove the running time of the algorithm is that the number
of simple configurations |Qs| is bounded by a quasi polynomial term:

|Qs| ≤ 2O(log2(1/ε)).

This follows easily by Corollary 5, using that |T̄ | ∈ O(1/ε2) and d = |Π| ∈ O((1/ε) log(1/ε)).

I Lemma 10. Algorithm 9 can be implemented with a running time of 2O((1/ε) log4(1/ε)) log(n).
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Proof. In step 1, the algorithm guesses which jobs are processed on machines following
a complex configurations. Since each configuration contains at most O(1/ε) jobs, there
are at most O(mc/ε) = O((1/ε2) log2(1/ε)) jobs assigned to such machines. For each size
πk ∈ Π, we guess the number bc

k of jobs of size πk assigned to such machines. Hence, we can
enumerate all possibilities for jobs assigned to complex machines in time 2O((1/ε) log2(1/ε)).
After guessing the jobs, we can assign them to a minimum number of machines in step 2
(with makespan T̄ ) with a simple dynamic program that stores vectors (`, z1, . . . , zd) with
zk ≤ bc

k being the number of jobs of size πk used in the first ` ≤ mc processors [11]. The
size of the dynamic programming table is O(mc

∏d
k=1(bc

k + 1)). For any vector (`, z1, . . . , zd),
determining whether it corresponds to a feasible solution can be done by checking all
vectors of the type (` − 1, z′1, . . . , z′d) for z′k ≤ zk. Thus, the running time of the dynamic
program is O(mc[

∏d
k=1(bc

k + 1)]2). Since bc
k ∈ O((1/ε2) log2(1/ε)) for each k, recalling that

mc ∈ O((1/ε) log2(1/ε)), and that d = |Π| ∈ O((1/ε) log(1/ε)), we obtain that step 2 can be
implemented with 2O((1/ε) log2(1/ε)) running time.

In step 3, our algorithm guesses the support of a thin solution x. Recall that if x is thin
then | supp(x)| ≤ 4(d+1) log(4(d+1)T̄ ) = O((1/ε) log2(1/ε)). Let D = 4(d+1) log(4(d+1)T̄ ).
Then this guess can be done in time

D∑
i=0

(
|Qs|
i

)
≤ (D + 1)|Qs|D ≤ 2O((1/ε) log4(1/ε)).

We remark that for this step is that thin solutions are particularly useful. Indeed, guessing
the support on the original ILP takes time 2O((1/ε)2 log3(1/ε)).

In step 4, the restricted ILP with 4(d+ 1) log(4(d+ 1)T̄ ) = O((1/ε) log2(1/ε)) variables
is solved. Moreover, the size of the input can be bounded by O((1/ε2) log3(1/ε) log(n)).
Running Kannan’s algorithm [12] to solve the ILP takes time 2O((1/ε) log3(1/ε)) log(n). Hence,
the total running time of our algorithm can be bounded by 2O((1/ε) log4(1/ε)) log(n). J

Putting all pieces together, we conclude with the following theorem.

I Theorem 11. The minimum makespan problem on parallel machines P ||Cmax admits an
EPTAS with running time 2O((1/ε) log4(1/ε)) +O(n logn).

4.1 Extension to other objectives
We now consider a more general family of objective functions defined by Alon et al. [1, 2].
For a fixed function f : R≥0 → R≥0, we consider the following two objective functions:
(I) min

∑
i∈M f(`i), and (II) min maxi∈M f(`i), where `i denotes the load of machine i.

Analogously, we study maximization versions of the problems: (I’) max
∑

i∈M f(`i) and
(II’) max mini∈M f(`i).

For the minimization versions of the problem we assume that f is convex, while for (I’)
and (II’) we assume it is concave. Moreover, we will need that the function satisfies the
following sensitivity condition.

I Condition 12. For all ε > 0 there exists δ = δ(ε) > 0 such that for all x, y ∈ R≥0,

(1− δ)y ≤ x ≤ (1 + δ)y ⇒ (1− ε)f(y) ≤ f(x) ≤ (1 + ε)f(y).

Alon et al. showed that each problem in that family admits a PTAS with running time
h(ε)+O(n logn), where h(ε) is a constant term that depends only on ε. Moreover, if δ(ε) in the
condition further satisfies that 1/(δ(ε)) ∈ O(1/ε), the running time is 2(1/ε)poly(1/ε) +O(n logn).
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In what follows we show how to improve this dependency if we have the additional condition
that function f is non-decreasing, i.e., for all 0 ≤ x ≤ y we have that f(x) ≤ f(y). Since
1/(δ(ε)) ∈ O(1/ε), we know that, for small enough ε, there exists a constant γ (independent
of ε and δ) such that 1/δ ≤ γ/ε. Moreover, we can assume w.l.o.g. that δ ≤ ε, and thus
δ ≤ ε ≤ γδ.

It is worth noticing that many interesting functions belong to this family. In particular
(II) with f(x) = x corresponds to the minimum makespan problem, (I) with f(x) = xp,
for constant p, corresponds to a problem that is equivalent to minimizing the Lp-norm of
the vector of loads. Similarly, (II’) with f(x) = x corresponds to maximizing the minimum
machine load. Notice that for all those objectives we have that 1/δ = O(1/ε).

The techniques of Alon et al. are based on a rounding method and then solving an
ILP. We based our results in the same rounding techniques and extend them further. We
show that to obtain a PTAS in time 2O((1/ε) log4(1/ε)) + O(n logn) it suffices to obtain a
(1 + O(ε))-approximate solution to the rounded instance in the same running time. The
details of the rounding are given in the full version.

Let L =
∑

j pj/m be the average machine load (of the original instance). After our
rounding we obtain an instance I ′ with job set J ′ and processing times p̄j for j ∈ J ′.
Moreover, the p̄j are multiples of L/λ2, where λ ≥ 1/δ is an integer such that λ = O(1/δ),
and also p̄j ≥ L/λ. It holds that there exists an optimal solution of the rounded instance
with makespan at most 4L (see full version). Let Π = {π1, . . . , πd} be the distinct values that
the processing times p̄j can take. Our rounding guarantees that d = |Π| = O((1/δ) log(1/δ)).
We consider the knapsack polytope with capacity T̄ := 4L, that is P = {c ∈ Rd

≥0 : π · c ≤ T̄}.
Notice that π and T̄ are integer multiples of L/λ2, and that P can also be written as
{c ∈ Rd

≥0 : π/(L/λ2) · c ≤ T̄ /(L/λ2)}.
As before, we say that a configuration is simple if | supp(c)| ≤ log(T̄ + 1), and complex

otherwise. We denote by Qc ⊆ Q the set of complex configurations and by Qs ⊆ Q the set
of simple configurations. In what follows we focus on objective function (I).

We set an ILP for the problem as before. Notice that each configuration c incurs a cost
of fc := f(π · c). Moreover, we round and scale the values fc by defining f̄c = dfc/(εfmin)e,
where fmin = minc∈Q fc. It is not hard to see that solving a problem with those coefficients
yields a (1 + ε)-approximate solution to the optimal solution of I ′ with processing times p̄j .
Let also bk be the number of jobs j of processing time p̄j = πk in J ′. Consider the ILP
obtained by adding to [conf-IP] the objective function min

∑
c∈Q f̄c · xc. We call this ILP

[cost-conf-IP]. With our previous discussion, it suffices to solve this ILP optimally. To solve
this problem, we first notice that the largest coefficient in the objective can be bounded as
follows.

I Lemma 13. If f satisfies Condition 12 and it is non-decreasing, then the largest value
maxc∈Q f̄c is upper bounded by 1/δO(1).

As we now must consider the objective function, we cannot simply apply Theorem 1 to
[cost-conf-ILP]. However, we can prove a slightly weaker version by decomposing the ILP in
several smaller ones and applying the theorem to each of them.

I Theorem 14. If [cost-conf-IP] is feasible, then there exists an optimal solution x satisfy-
ing:
1.
∑

c∈Qc
xc ∈ O((1/δ3) log2(1/δ)), and

2. | supp(x) ∩Qs| ∈ O((1/δ) log2(1/δ)).

Proof. Notice that the load of each configuration π · c is a multiple of L/λ2, and thus
π · c ∈ {L/λ, L/λ+ L/(λ2), . . . , 4L}. We classify the configurations according to their loads,
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Q` := {c ∈ Q : π · c = L/λ + ` · L/(λ2)}, for ` ∈ {0, . . . , 4λ2 − λ}. Let x∗ be an optimal
solution of [cost-conf-IP]. Then we can considered an ILP for each load value `:

[conf-IP]`
∑

c∈Q`

c · xc =
∑

c∈Q`

c · x∗c , (4)

∑
c∈Q`

xc =
∑

c∈Q`

x∗c , (5)

xc ∈ Z≥0 for all c ∈ Q`. (6)

Scaling π by multiplying it by λ2/L we obtain an integral vector (since π is an integer
multiple of L/(λ2)), we can apply Theorem 1 to each ILP [conf-IP]`, which yields that
there exists a thin solution x`. In particular the number of complex configurations in x` is∑

c∈Qc∩Q` x
`
c ∈ O((1/δ) log2(1/δ)). Since f̄c depends only on the load of c, concatenating

these solutions yields a solution x′ := (x`)` that is optimal for [cost-conf-IP], such that∑
c∈Qc

x′c ∈ O((λ2) · (1/δ) log2(1/δ)) = O((1/δ3) log2(1/δ)). It remains to bound the number
of simple configurations in the support. To this end, we consider the ILP restricted to simple
configurations as follows:

[cost-conf-IP]s min
∑

c∈Qs

f̄c · xc∑
c∈Qs

c · xc = b−
∑

c∈Qc

c · x′c, (7)

∑
c∈Qs

xc = m−
∑

c∈Qc

x′c, (8)

xc ∈ Z≥0 for all c ∈ Qs. (9)

We apply the result of Eisenbrand and Shmonin [4] to this ILP. In its more general form,
this result ensures the existence of a solution x′′ with support of size O(N(log(N)+∆)), where
N is the number of restrictions and ∆ is the encoding size of the largest coefficient appearing
in the cost vector and restriction matrix. In our case N = d+ 1 = O((1/δ) log(1/δ)), and
∆ = O(log(max{1/δ,maxc∈Q f̄c)}) = O(log(1/δ)) (Lemma 13). Thus O(N(log(N) + ∆)) =
O((1/δ) log2(1/δ)). The theorem follows by concatenating (x′′c )c∈Qs with (x′c)c∈Qc . J

Finally, we use the structure given by the theorem to solve this ILP optimally. The idea
is similar to Algorithm 9 and thus we defer the details to the full version.

I Theorem 15. Consider the scheduling problem on parallel machines with objective functions
(I), (II) for f convex (respectively (I’) and (II’) for f concave). If f satisfies Condition 12
for 1/δ = O(1/ε) and it is non-decreasing, then the problem admits an EPTAS with running
time 2O((1/ε) log4(1/ε)) +O(n logn).

5 Minimum makespan scheduling on uniform machines

In this section we generalize our result for P ||Cmax to uniform machines. Consider a set of
jobs J with processing times pj and a set of m non-identical machinesM where machine
i ∈M runs at speed si. If job j is executed on machine i the machine needs pj/si time units
to complete the job. The problem is to find an assignment a : J →M for the jobs to the
machines that minimizes the makespan; maxi

∑
j:a(j)=i pj/si. The problem is denoted by

Q||Cmax. We suppose that s1 ≥ s2 ≥ . . . ≥ sm. Jansen [10] found an efficient polynomial
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time approximation scheme (EPTAS) for this scheduling problem which has a running time
of 2O(1/ε2 log3(1/ε)) + poly(n). Here we show how to improve the running time and prove the
main result of this section.

I Theorem 16. There is an EPTAS (a family of algorithms {Aε : ε > 0}) which, given
an instance I of Q||Cmax with n jobs and m machines and a positive number ε > 0,
produces a schedule of makespan Aε(I) ≤ (1 + ε)Opt(I). The running time of Aε is
2O(1/ε log4(1/ε)) + poly(n).

Let 0 < δ < ε. We follow the approach by Jansen [10], transforming the scheduling
problem into a bin packing problem with different bin capacities, rounding the processing
times and bin capacities, and dividing the bins into at most three groups B1,B2 and B3
depending on the bin capacities.

Here, we focus on a special case which contains the main difficulty of the problem. The full
exposition can be found in the full version. In group B2, the bins can have a capacity of value
c̄(1) > . . . > c̄(L) for some L ∈ O(1/δ log(1/δ)). We call B` the set of bins in B2 with capacity
c̄(`). Our rounded instance contains jobs of sizes π1, . . . , πd for d ∈ O(1/δ log(1/δ)). For each
B` we consider configurations C̄(`)

1 , . . . , C̄
(`)
h̄`

. The configurations are defined using job of size
at least δc̄(`) which are rounded up to multiples of δ2c̄(`). Thus, regarding these configurations
(and only these configurations), jobs have sizes of the form q(k, `)δ2c̄(`) with q(k, `) ∈ Z+

and k ∈ {1, . . . , d}. We denote by a(k, C̄(`)
i ) the multiplicity of jobs of size q(k, `)δ2c̄(`)

in configuration C̄
(`)
i . The rounding implies also that the rounded size size(C̄(`)

i ) of a
configuration is a multiple of δ2c̄(`). Each such configuration corresponds to an integral point
inside the knapsack polytope P` = {C = (a(k,C))k :

∑
k q(k, `)δ2c̄(`)a(k,C) ≤ (1 + δ)c̄(`)}.

Let m̄` = |B`| be the number of machines of capacity c̄(`). Consider a given solution
to our scheduling problem. For this case we say that a bin in B` follows a configuration
C̄

(`)
i if it has a(k, C̄(`)

i ) jobs whose size, rounded to the next multiple of δ2c̄(`), equals to
q(k, `)δ2c̄(`). Let x̄(`)

i be the number of bins in B` that follows configuration C̄(`)
i . Notice

that the configurations do not consider jobs of size smaller than δc̄(`) that might be assigned
to a bin in B`. Consider the following ILP, which we denote by [conf-IP]Q:∑

i

x
(`)
i = m̄` for ` = 1, . . . , L,∑

`,i

a(k, C̄(`)
i )x(`)

i =
∑
`,i

a(k, C̄(`)
i )x̄(`)

i for k = 1 . . . , d,

∑
i

size(C̄(`)
i )

δ2c̄(`) x
(`)
i =

∑
i

size(C̄(`)
i )

δ2c̄(`) x̄
(`)
i ,

x
(`)
i ≥ 0 integral for i = 1, . . . , h̄`, ` = 1, . . . , L.

The second equality of the ILP ensures that the solution constructed maintains the same
subset of jobs larger than δc̄(`) to bins in B` as solution x̄. The third equality ensures
that we are leaving enough space for jobs not covered by a configuration (i.e., a job that is
assigned within B` but whose size is less than δc̄(`)). As in previous sections, a configuration
C̄

(`)
i is called simple if | supp(C̄(`)

i )| ≤ log(c̄(`)(1 + δ)/(δ2c̄(`)) + 1) = log(1/δ2 + 1/δ + 1)
(here we are scaling the capacity of a configuration by δ2c̄(`), since all rounded job sizes
are multiples of δ2c̄(`)). Otherwise, we call a configuration C̄

(`)
i complex. Crucially, the

ILP above satisfies that all coefficients are at most poly(1/δ). This allows us to generalize
our result in Theorem 1 to our ILP above, with a similar proof technique as Theorem 14,
which yields the following lemma. Using this lemma, we can define an algorithm similar to
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the algorithm for the case of identical machines, to obtain an improved running time for
Q||Cmax and prove Theorem 16.

I Lemma 17. Assume that the ILP [conf-IP]Q is feasible and let S denote the set of all simple
configurations. Then there exists a feasible solution x′ such that: (1) If x′(`)

i > 1 then the
configuration C̄(`)

i is simple, (2) the support of x′ satisfies | supp(x′) ∩ S| ∈ O(1/δ log2(1/δ)),
and (3) the support of x′ satisfies | supp(x′) \ S| ∈ O(1/δ2 log3(1/δ)).
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Abstract
We study the Capacitated k-Median problem for which existing constant-factor approximation
algorithms are all pseudo-approximations that violate either the capacities or the upper bound k
on the number of open facilities. Using the natural LP relaxation for the problem, one can only
hope to get the violation factor down to 2. Li [SODA’16] introduced a novel LP to go beyond
the limit of 2 and gave a constant-factor approximation algorithm that opens (1 + ε)k facilities.

We use the configuration LP of Li [SODA’16] to give a constant-factor approximation for
the Capacitated k-Median problem in a seemingly harder configuration: we violate only the
capacities by 1 + ε. This result settles the problem as far as pseudo-approximation algorithms
are concerned.
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1 Introduction

In the capacitated k-median problem (CKM), we are given a set F of facilities together with
their capacities ui ∈ Z>0 for i ∈ F , a set C of clients, a metric d on F ∪ C, and a number k.
We are asked to open some of these facilities F ′ ⊆ F and give an assignment σ : C → F ′

connecting each client to one of the open facilities so that the number of open facilities is not
bigger than k, i.e. |F ′| ≤ k (cardinality constraint), and each facility i ∈ F ′ is connected to
at most ui clients, i.e.

∣∣σ−1(i)
∣∣ ≤ ui (capacity constraint). The goal is to minimize the sum

of the connection costs, i.e.
∑
j∈C d(σ(j), j).

Without the capacity constraint, i.e. ui =∞ for all i ∈ F , this is the famous k-median
problem (KM). The first constant-factor approximation algorithm for KM is given by Charikar
et al. [9], guaranteeing a solution within 6 2

3 times the cost of the optimal solution. Then the
approximation ratio has been improved by a series of papers [13, 8, 3, 12, 17, 5]. The current
best ratio for KM is 2.675 + ε due to Byrka et al. [5], which was obtained by improving a
part of the algorithm given by Li and Svensson [17].

On the other hand, we don’t have a true constant approximation for CKM. All known
constant-factor results are pseudo-approximations which violate either the cardinality or the

∗ A full version of the paper can be found at http://arxiv.org/abs/1603.02324.
† Supported in part by NSF grant CCF-1566356.
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capacity constraint. Aardal et al. [1] gave an algorithm which finds a (7 + ε)-approximate
solution to CKM by opening at most 2k facilities, i.e. violating the cardinality constraint
by a factor of 2. Guha [11] gave an algorithm with approximation ratio 16 for the more
relaxed uniform CKM, where all capacities are the same, by connecting at most 4u clients
to each facility, thus violating the capacity constraint by 4. Li [14] gave a constant-factor
algorithm for uniform CKM with capacity violation of only 2 + ε by improving the algorithm
in [9]. For non-uniform capacities, Chuzhoy and Rabani [10] gave a 40-approximation for
CKM by violating the capacities by a factor of 50 using a mixture of primal-dual schema
and lagrangian relaxations. Their algorithm is for a slightly relaxed version of the problem
called soft CKM where one is allowed to open multiple collocated copies of a facility in F .
The CKM definition we gave above is sometimes referred to as hard CKM as opposed to this
version. Recently, Byrka et al. [4] gave a constant-factor algorithm for hard CKM by keeping
capacity violation factor under 3 + ε.

All these algorithms for CKM use the basic LP relaxation for the problem which is known
to have an unbounded integrality gap even when we are allowed to violate either the capacity
or the cardinality constraint by 2− ε. In this sense, results of [1] and [14] can be considered
as reaching the limits of the basic LP relaxation in terms of restricting the violation factor.
In order to go beyond these limits, Li [15] introduced a novel LP called the rectangle LP
and presented a constant-factor approximation algorithm for soft uniform CKM by opening
(1 + ε)k facilities. This was later generalized by the same author to non-uniform CKM [16],
where he introduced an even stronger LP relaxation called the configuration LP. Very recently,
independently of the work in this paper, Byrka et al. [6] used this configuration LP to give a
similar algorithm for uniform CKM violating the capacities by 1 + ε.

1.1 Our Result
In this paper, we use the configuration LP of [16] to give an O(1/ε5)-approximation algorithm
for non-uniform hard CKM which respects the cardinality constraint and connects at most
(1 + ε)ui clients to any open facility i ∈ F . The running time of our algorithm is nO(1/ε).
Thus, with this result, we now have settled the CKM problem from the view of pseudo-
approximation algorithms: either (1 + ε)-cardinality violation or (1 + ε)-capacity violation is
sufficient for a constant approximation for CKM.

The known results for the CKM problem have suggested that designing algorithms with
capacity violation (satisfying the cardinality constraint) is harder than designing algorithms
with cardinality violation. Note, for example, that the best known cardinality violation
factor for non-uniform CKM among algorithms using only the basic LP relaxation (a factor
of 2 in [1]) matches the smallest possible cardinality violation factor dictated by the gap
instance. In contrast, the best capacity-violation factor is 3 + ε due to [4], but the gap
instance for the basic LP with the largest known gap eliminates only the algorithms with
capacity violation smaller than 2. Furthermore, we can argue that, for algorithms based
on the basic LP and the configuration LP, a β-capacity violation can be converted to a
β-cardinality violation, suggesting that allowing capacity violation is more restrictive than
allowing cardinality violation. We leave the detail to the full version of the paper.

Our Techniques. Our algorithm uses the configuration LP introduced in [16] and the
framework of [16] that creates a two-level clustering of facilities. [16] considered the (1 + ε)-
cardinality violation setting, which is more flexible in the sense that one has the much freedom
to distribute the εk extra facilities. In our (1 + ε)-capacity violation setting, each facility
i can provide an extra εui capacity; however, these extra capacities are restricted by the
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locations of the facilities. In particular, we need one more level of clustering to form so-called
“groups” so that each group contains Ω(1/ε) fractional open facility. Only with groups of
Ω(1/ε) facilities, we can benefit from the extra capacities given by the (1 + ε)-capacity scaling.
Our algorithm then constructs distributions of local solutions. Using a dependent rounding
procedure we can select a local solution from each distribution such that the solution formed
by the concatenation of local solutions has a small cost. This initial solution may contain
more than k facilities. We then remove some already-open facilities, and bound the cost
incurred due to the removal of open facilities. When we remove a facility, we are guaranteed
that there is a close group containing Ω(1/ε) open facilities and the extra capacities provided
by these facilities can compensate for the capacity of the removed facility.

Organization. The remaining part of the paper is organized as follows. In Sections 2 and 3,
we describe the configuration LP introduced in [16] and our three-level clustering procedure
respectively. In Section 4, we show how to construct the distributions of local solutions. Then
finally in Section 5, we show how to obtain our final solution by combining the distributions
we constructed. Due to the page limit, some proofs are omitted and they can be found in
the full version of the paper.

2 The Basic LP and the Configuration LP

In this section, we give the configuration LP of [16] for CKM. We start with the following
basic LP relaxation:

min
∑
i∈F,j∈C d(i, j)xi,j s.t. (Basic LP)∑

i∈F yi ≤ k; (1)∑
i∈F xi,j = 1, ∀j ∈ C; (2)

xi,j ≤ yi, ∀i ∈ F, j ∈ C; (3)∑
j∈C xi,j ≤ uiyi, ∀i ∈ F ; (4)

0 ≤ xi,j , yi ≤ 1, ∀i ∈ F, j ∈ C. (5)

In the LP, yi indicates whether a facility i ∈ F is open, and xi,j indicates whether client
j ∈ C is connected to facility i ∈ F . Constraint (1) is the cardinality constraint assuring
that the number of open facilities is no more than k. Constraint (2) says that every client
must be fully connected to facilities. Constraint (3) requires a facility to be open in order to
connect clients. Constraint (4) is the capacity constraint.

It is well known that the basic LP has unbounded integrality gap, even if we are allowed
to violate the cardinality constraint or the capacity constraint by a factor of 2 − ε. The
description of the instance can be found in the full version of the paper. In order to overcome
the gap in the cardinality-violation setting, Li [16] introduced a novel LP for CKM called
the configuration LP, which we formally state below. Let us fix a set B ⊆ F of facilities.
Let ` = Θ(1/ε) and `1 = Θ(`) be sufficiently large integers. Let S = {S ⊆ B : |S| ≤ `1} and
S̃ = S ∪ {⊥}, where ⊥ stands for “any subset of B with size more than `1”; for convenience,
we also treat ⊥ as a set such that i ∈ ⊥ holds for every i ∈ B. For S ∈ S, let zBS indicate
the event that the set of open facilities in B is exactly S and zB⊥ indicate the event that the
number of open facilities in B is more than `1.

For every S ∈ S̃ and i ∈ S, zBS,i indicates the event that zBS = 1 and i is open. (If i ∈ B
but i /∈ S, then the event will not happen.) Notice that when i ∈ S 6= ⊥, we always have

ICALP 2016
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zBS,i = zBS ; we keep both variables for notational purposes. For every S ∈ S̃, i ∈ S and client
j ∈ C, zBS,i,j indicates the event that zBS,i = 1 and j is connected to i. In an integral solution,
all the above variables are {0, 1} variables. The following constraints are valid. To help
understand the constraints, it is good to think of zBS,i as zBS · yi and zBS,i,j as zBS · xi,j .∑

S∈S̃

zBS = 1; (6)

∑
S∈S̃:i∈S

zBS,i = yi, ∀i ∈ B; (7)

∑
S∈S̃:i∈S

zBS,i,j = xi,j , ∀i ∈ B, j ∈ C; (8)

0 ≤ zBS,i,j ≤ zBS,i ≤ zBS , ∀S ∈ S̃, i ∈ S, j ∈ C; (9)
zBS,i = zBS , ∀S ∈ S, i ∈ S; (10)∑

i∈S
zBS,i,j ≤ zBS , ∀S ∈ S̃, j ∈ C; (11)∑

j∈C
zBS,i,j ≤ uizBS,i, ∀S ∈ S̃, i ∈ S; (12)

∑
i∈B

zB⊥,i ≥ `1zB⊥ . (13)

Constraint (6) says that zBS = 1 for exactly one S ∈ S̃. Constraint (7) says that if i is
open then there is exactly one S ∈ S̃ with zBS,i = 1. Constraint (8) says that if j is connected
to i then there is exactly one S ∈ S̃ such that zBS,i,j = 1. Constraint (9) is by the definition of
variables. Constraint (10) holds as we mentioned earlier. Constraint (11) says that if zBS = 1
then j can be connected to at most 1 facility in S. Constraint (12) is the capacity constraint.
Constraint (13) says that if zB⊥ = 1, there are at least `1 open facilities in B.

The configuration LP is obtained from the basic LP by adding the z variables and
Constraints (6) to (13) for every B ⊆ F . Since there are exponentially many subsets B ⊆ F ,
we don’t know how to solve this LP efficiently. However, note that there are only polynomially
many (nO(`1)) zB variables for a fixed B ⊆ F . Given a fractional solution (x, y) to the
basic LP relaxation, we can construct the values of zB variables and check their feasibility
for Constraints (6) to (13) in polynomial time as in [16]. Our rounding algorithm either
constructs an integral solution with the desired properties, or outputs a set B ⊆ F such
that Constraints (6) to (13) are infeasible. In the latter case, we can find a constraint in the
configuration LP that (x, y) does not satisfy. Then we can run the ellipsoid method and the
rounding algorithm in an iterative way (see, e.g., [7, 2]).

Notations. From now on, we fix a solution ({xi,j : i ∈ F, j ∈ C} , {yi : i ∈ F}) to the basic
LP. We define dav(j) :=

∑
i∈F xi,jd(i, j) to be the connection cost of j, for every j ∈ C. Let

Di :=
∑
j∈C xi,j (d(i, j) + dav(j)) for every i ∈ F , and DS :=

∑
i∈S Di for every S ⊆ F . We

denote the value of the solution (x, y) by LP :=
∑
i∈F,j∈C xi,jd(i, j) =

∑
j∈C dav(j). Note that

DF =
∑
i∈F,j∈C xi,j (d(i, j) + dav(j)) =

∑
i∈F,j∈C xi,jd(i, j) +

∑
j∈C dav(j)

∑
i∈F xi,j = 2LP.

For any set F ′ ⊆ F of facilities and C ′ ⊆ C of clients, we shall let xF ′,C′ :=
∑
i∈F ′,j∈C′ xi,j ;

we simply use xi,C′ for x{i},C′ and xF ′,j for xF ′,{j}. For any F ′ ⊆ F , let yF ′ :=
∑
i∈F ′ yi.

Let d(A,B) := mini∈A,j∈B d(i, j) denote the minimum distance between A and B, for any
A,B ⊆ F ∪ C; we simply use d(i, B) for d({i} , B).
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(a). bundles {Uv}v∈R (b). black components J

facilities representatives black components groups

and forest Υ∗J

(c). groups G and forest ΥG

Figure 1 The three-phase clustering procedure. In the first phase (Figure (a)), we partition F
into bundles, centered at the set R of representatives. In the second phase (Figure (b)), we partition
R into a family J of black components and construct a degree-2 rooted forest over J . In the third
phase (Figure(c)), we partition J into a family G of groups; ΥG is formed from Υ∗J by contracting
each group into a single node.

Moving of Demands. After the set of open facilities is decided, the optimum connection
assignment from clients to facilities can be computed by solving the minimum cost b-matching
problem. Due to the integrality of the matching polytope, we may allow the connections to
be fractional. That is, if there is a good fractional assignment, then there is a good integral
assignment. So we can use the following framework to design and analyze the rounding
algorithm. Initially there is one unit of demand at each client j ∈ C. During the course of
our algorithm, we move demands fractionally within F ∪ C; moving α units of demand from
i to j incurs a cost of αd(i, j). At the end, all the demands are moved to F and each facility
i ∈ F has at most (1 +O( 1

` ))ui units of demand. We open a facility if it has positive amount
of demand. Our goal is to bound the total moving cost by O(`5)LP and the number of open
facilities by k.

3 Representatives, Black Components, and Groups

Our algorithm starts with bundling facilities together with a three-phase process each of
which creates bigger and bigger clusters. At the end, we have a nicely formed network of
sufficiently big clusters of facilities. See Figure 1 for illustration of the three-phase clustering.

3.1 Representatives, Bundles and Initial Moving of Demands
In the first phase, we use a standard approach to facility location problems ([18, 19, 9, 16])
to partition the facilities into bundles {Uv}v∈R, where each bundle Uv is associated with a
center v ∈ C that is called a representative and R ⊆ C is the set of representatives. Each
bundle Uv has a total opening at least 1/2.

Let R = ∅ initially. Repeat the following process until C becomes empty: we select the
client v ∈ C with the smallest dav(v) and add it to R; then we remove all clients j such
that d(j, v) ≤ 4dav(j) from C (thus, v itself is removed). We use v and its variants to index
representatives, and j and its variants to index general clients. The family {Uv : v ∈ R} is
the Voronoi diagram of F with R being the centers: let Uv = ∅ for every v ∈ R initially; for
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73:6 Constant Approximation for Capacitated k-Median with (1 + ε)-Capacity Violation

each location i ∈ F , we add i to Uv for v ∈ R that is closest to i. For any subset V ⊆ R, we
use U(V ) :=

⋃
v∈V Uv to denote the union of Voronoi regions with centers V .

I Lemma 1. The following statements hold:
(1a) for all v, v′ ∈ R, v 6= v′, we have d(v, v′) > 4 max {dav(v), dav(v′)}
(1b) for all j ∈ C, there exists v ∈ R, such that dav(v) ≤ dav(j) and d(v, j) ≤ 4dav(j);
(1c) yUv

≥ 1/2 for every v ∈ R;
(1d) for any v ∈ R, i ∈ Uv, and j ∈ C, we have d(i, v) ≤ d(i, j) + 4dav(j).

The next lemma shows that moving demands from facilities to their corresponding
representative doesn’t cost much.

I Lemma 2. For every v ∈ R, we have
∑
i∈Uv

xi,Cd(i, v) ≤ O(1)DUv
.

Since {Uv : v ∈ R} forms a partition of F , we get the following corollary.

I Corollary 3.
∑
v∈R,i∈Uv

xi,Cd(i, v) ≤ O(1)LP.

Initial Moving of Demands. With this corollary, we now move all the demands from C to
V . First for every j ∈ C and i ∈ F , we move xi,j units of demand from j to i. The moving
cost of this step is exactly LP. After the step, all demands are at F and every i ∈ F has xi,C
units of demand. Then, for every v ∈ R and i ∈ Uv, we move the xi,C units of demand at i
to v. The moving cost for this step is O(1)LP. Thus, after the initial moving, all demands
are at the set R of representatives: a representative v has xUv,C units of demand.

3.2 Black Components
In the second phase, we employ the minimum-spanning-tree construction of [16] to partition
the set R of representatives into a family J of so-called black components. There is a degree-2
rooted forest Υ∗J over J with many good properties. For example, each non-root black
component is not far away from its parent, and each root black component of Υ∗J contains a
total opening of Ω(`). (For simplicity, we say the total opening at a representative v ∈ R is
yUv

, which is the total opening at the bundle Uv.) The forest in [16] can have a large degree,
while our algorithm requires the forest to have degree 2. This property is guaranteed by
using the left-child-right-sibling representation.

Due to the page limit, we leave the description of the framework of [16] to the full version
of the paper, and give its summary in the following lemma:

I Lemma 4. There is an efficient algorithm to partition R into a set J of black components
(or components, for simplicity) and construct a rooted forest Υ∗J over J , such that if we let
L(J) = d(J,R \ J) for every black component J ∈ J , then the following properties hold:
(4a) for every J ∈ J , there is a spanning tree over the representatives in J such that for

every edge (v, v′) in the spanning tree we have d(v, v′) ≤ L(J);
(4b) every root component J ∈ J of Υ∗J has yU(J) ≥ ` and every non-root component

J ∈ J has yU(J) < `;
(4c) every root component J ∈ J of Υ∗J has either yU(J) < 2` or |J | = 1;
(4d) for any non-root component J and its parent J ′, we have L(J) ≥ L(J ′);
(4e) for any non-root component J and its parent J ′, we have d(J, J ′) ≤ O(`)L(J);
(4f) every component J has at most two children.
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3.3 Groups
In the third phase, we apply a simple greedy algorithm to the forest Υ∗J to partition the set
J of black components into a family G of groups, where each group G ∈ G contains many
black components that are connected in Υ∗J . By contracting each group G ∈ G, the forest
Υ∗J over the set J of black components becomes a forest ΥG over the set G of groups. Each
group has a total opening of Ω(`), unless it is a leaf-group in ΥG .

We partition the set J into groups using a technique similar to [4, 6]. For each rooted
tree T = (JT , ET ) in Υ∗J , we construct a group G of black components as follows. Initially,
let G contain the root component of T . While

∑
J∈G yU(J) < ` and G 6= JT , repeat the

following procedure. Choose the component J ∈ JT \G that is adjacent to G in T , with the
smallest L-value, and add J to G.

Thus, by the construction G is connected in T . After we have constructed the group G,
we add G to G. We remove all black components in G from T . Then, each T is broken into
many rooted trees; we apply the above procedure recursively for each rooted tree.

So, we have constructed a partition G for the set J of components. If for every G ∈ G, we
contract all components in G into a single node, then the rooted forest Υ∗J over J becomes
a rooted forest ΥG over the set G of groups. ΥG naturally defines a parent-child relationship
over G. The following lemma uses Properties (4a) to (4f) of J and the way we construct G.

I Lemma 5. The following statements hold for the set G of groups and the rooted forest ΥG
over G:
(5a) any root group G ∈ G contains a single root component J ∈ J ;
(5b) if G ∈ G is not a root group, then

∑
J∈G yU(J) < 2`;

(5c) if G ∈ G is a non-leaf group, then
∑
J∈G yU(J) ≥ `;

(5d) let G ∈ G, G′ ∈ G be the parent of G, J ∈ G and v ∈ J , then the distance between v
and any representative in

⋃
J′∈G′ J

′ is at most O(`2)L(J);
(5e) any group G has at most O(`) children.

4 Constructing Local Solutions

In this section, we shall construct a local solution, or a distribution of local solutions, for
a given set V ⊆ R which is the union of some black components. A local solution for V
contains a pair (S ⊆ U(V ), β ∈ RU(V )

≥0 ), where S is the facilities we open in U(V ) and βi for
each i ∈ U(V ) is the amount of supply at i: the demand that can be satisfied by i. Thus
βi = 0 if i ∈ U(V ) \ S. We shall use the supplies at U(V ) to satisfy the xU(V ),C demands at
V after the initial moving of demands; thus, we require

∑
i∈U(V ) βi = xU(V ),C . There are

two other main properties we need the distribution to satisfy: (a) the expected size of S
from the distribution is not too big, and (b) the cost of matching the demands at V and the
supplies at U(V ) is small.

We distinguish between concentrated black components and non-concentrated black
components. Roughly speaking, a component J ∈ J is concentrated if in the fractional
solution (x, y), for most clients j ∈ C, j is either almost fully served by facilities in U(J),
or almost fully served by facilities in F \ U(J). We shall construct a distribution of local
solutions for each concentrated component J . We require Constraints (6) to (13) to be
satisfied for B = U(J) (if not, we return the set U(J) to the separation oracle) and let zB be
the vector satisfying the constraints. Roughly speaking, the zB-vector defines a distribution
of local solutions for V . A local solution (S, β) is good if S is not too big and the total
demand

∑
i∈S βi satisfied by S is not too small. Then, our algorithm randomly selects (S, β)
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from the distribution defined by zB , under the condition that (S, β) is good. The fact that
J is concentrated guarantees that the total mass of good local solutions in the distribution is
large; therefore the factors we lose due to the conditioning are small.

For non-concentrated components, we construct a single local solution (S, β), instead
of a distribution of local solutions. Moreover, the construction is for the union V of some
non-concentrated components, instead of an individual component. The components that
comprise V are close to each other; by the fact that they are non-concentrated, we can move
demands arbitrarily within V , without incurring too much cost. Thus we can essentially
treat the distances between representatives in V as 0. Then we are only concerned with two
parameters for each facility i ∈ U(V ): the distance from i to V and the capacity ui. Using a
simple argument, the optimum fractional local solution (that minimizes the cost of matching
the demands and supplies) is almost integral: it contains at most 2 fractionally open facilities.
By fully opening the two fractional facilities, we find an integral local solution with small
number of open facilities.

The remaining part of this section is organized as follows. We first formally define
concentrated black components, and explain the importance of the definition. We then define
the earth-mover-distance, which will be used to measure the cost of satisfying demands
using supplies. The construction of local solutions for concentrated components and non-
concentrated components will be stated in Theorem 9 and Lemma 10 respectively. Due to
the page limit, their proofs will only appear in the full version of the paper.

Concentrated Black Components. The definition of concentrated black component is the
same as that of [16], except that we choose the parameter `2 differently.

I Definition 6. Define πJ =
∑
j∈C xU(J),j(1−xU(J),j), for every black component J ∈ J . A

black component J ∈ J is said to be concentrated if πJ ≤ xU(J),C/`2, and non-concentrated
otherwise, where `2 = Θ(`3) is large enough.

We use J C to denote the set of concentrated components and J N to denote the set of
non-concentrated components. The next lemma from [16] shows the importance of πJ .

I Lemma 7. For any J ∈ J , we have L(J)πJ ≤ O(1)DU(J).

Recall that L(J) = d(J,R \ J) and xU(J),C is the total demand in J after the initial
moving. Thus, according to Lemma 7, if J is not concentrated, we can use DU(J) to charge the
cost for moving all the xU(J),C units of demand out of J , provided that the moving distance
is not too big compared to L(J). This gives us freedom for handling non-concentrated
components. If J is concentrated, the amount of demand that is moved out of J must be
comparable to πJ ; this will be guaranteed by the configuration LP.

Earth Mover Distance. In order to measure the moving cost of satisfying demands using
supplies, we define the earth mover distance:

I Definition 8 (Earth Mover Distance). Given a set V ⊆ R with B = U(V ), a demand vector
α ∈ RV≥0 and a supply vector β ∈ RB≥0 such that

∑
v∈V αv ≤

∑
i∈B βi, the earth mover

distance from α to β is defined as EMDV (α, β) := inff
∑
v∈V,i∈B f(v, i)d(v, i), where f is

over all functions from V ×B to R≥0 such that∑
i∈B f(v, i) = αv for every v ∈ V ;∑
v∈V f(v, i) ≤ βi for every i ∈ B.
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For some technical reason, we allow some fraction of a supply to be unmatched. From now
on, we shall use αv = xUv,C to denote the amount of demand at v after the initial moving.
For any set V ⊆ R of representatives, we use α|V to denote the vector α restricted to the
coordinates in V .

We now summarize our constructions of local solutions for concentrated and non-
concentrated black components, respectively.

I Theorem 9. Let J ∈ J C and let B = U(J). Assume Constraints (6) to (13) are satisfied
for B. Then, we can find a distribution (φS,β)S⊆B,β∈RB

≥0
of pairs (S, β), such that

(9a) sφ := E(S,β)∼φ |S| ∈ [yB , yB(1 + 2`πJ/xB,C)], and sφ = yB if yB > 2`,
and for every (S, β) in the support of φ, we have
(9b) |S| ∈ {bsφc , dsφe};
(9c) βi ≤ (1 +O(1/`))ui if i ∈ S and βi = 0 if i ∈ B \ S;
(9d)

∑
i∈S βi = xB,C =

∑
v∈J αv.

Moreover, the distribution φ satisfies
(9e) the support of φ has size at most nO(`);
(9f) E(S,β)∼φ EMDJ(α|J , β) ≤ O(`4)DB.

I Lemma 10. Let J ′ ⊆ J N be a set of non-concentrated black components, V =
⋃
J∈J ′ J

and B = U(V ). Assume there exists v∗ ∈ R such that d(v, v∗) ≤ O(`2)L(J) for every J ∈ J ′
and v ∈ J . Then, we can find a pair (S ⊆ B, β ⊆ RB≥0) such that
(10a) |S| ∈

{
dyBe , dyBe+ 1

}
;

(10b) βi ≤ ui if i ∈ S and βi = 0 if i ∈ B \ S;
(10c)

∑
i∈S βi = xB,C =

∑
v∈V αv;

(10d) EMDV (α|V , β) ≤ O(`2`2)DB.

5 Rounding Algorithm

In this section we describe our rounding algorithm. We start by giving the intuition behind
the algorithm. For each concentrated component J ∈ J , we construct a distribution of
local solutions using Theorem 9. We shall construct a partition VN of the representatives
in
⋃
J∈J N J so that each V ∈ VN is the union of some nearby components in J N. For each

set V ∈ VN, we apply Lemma 10 to construct a local solution. If we independently and
randomly choose a local solution from every distribution we constructed, then we can move
all the demands to the open facilities at a small cost, by Property (9f) and Property (10d).

However, we may open more than k facilities, even in expectation. Noticing that the
fractional solution opens yB facilities in a set B, the extra number of facilities come from
two places. In Property (9a) of Theorem 9, we may open in expectation yB · 2`πJ/xB,C
more facilities in B than yB. Then in Property (10a) of Lemma 10, we may open dyBe or
dyBe+ 1 facilities in B. To reduce the number of open facilities to k, we shall shut down (or
remove) some already-open facilities and move the demands satisfied by these facilities to
the survived open facilities: a concentrated component J ∈ J C is responsible for removing
yB · 2`πJ/xB,C < 1 facilities in expectation; a set V ∈ VN is responsible for removing up to
2 facilities. Lemma 7 allows us to bound the cost of moving demands caused by the removal,
provided that the moving distance is not too big. To respect the capacity constraint up to a
factor of 1 + ε, we are only allowed to scale the supplies of the survived open facilities by a
factor of 1 +O(1/`). Both requirements will be satisfied by the forest structure over groups
and the fact that each non-leaf group contains Ω(`) fractional opening (Property (5c)). Due
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non-concentrated components

concentrated components

groups

sets in VN

(a) (b)

Figure 2 Figure (a) gives the forest Υ∗J over J and the set G of groups (denoted by empty
polygons). Figure (b) gives VN: each set V ∈ VN is the union of components in a solid polygon.

to the forest structure and Property (5c), we always have enough open facilities locally that
can support the removing of facilities.

In order to guarantee that we always open k facilities, we need to use a dependent
rounding procedure for opening and removing facilities. As in many of previous algorithms,
we incorporate the randomized rounding procedure into random selections of vertex points of
polytopes respecting marginal probabilities. In many cases, a randomized selection procedure
can be derandomized since there is an explicit linear objective we shall optimize.

We now formally describe our rounding algorithm. For every group G ∈ G, we use ΛG
to denote the set of child-groups of G. We construct a partition JC of J C as follows. For
each root group G ∈ G, we add G ∩ J C to JC if it is not empty. For each non-leaf group
G ∈ G, we add

⋃
G′∈ΛG

(G′ ∩ J C) to JC, if it is not empty. We construct the partition JN for
J N in the same way, except that we consider components in J N. We also define a set VN as
follows: for every J ′ ∈ JN, we add

⋃
J∈J ′ J to VN; thus, VN forms a partition for

⋃
J∈J N J .

See Figure 2 for the definition of VN.
In Section 5.1, we describe the procedure for opening a set S∗ of facilities, whose cardinality

may be larger than k. Then in Section 5.2, we define the procedure remove, which removes
one open facility. We wrap up the algorithm in Section 5.3.

5.1 Constructing Initial Set S∗ of Open Facilities
In this section, we open a set S∗ of facilities, whose cardinality may be larger than k,
and construct a supply vector β∗ ∈ RF≥0 such that β∗i = 0 if i /∈ S∗. (S∗, β∗) will be the
concatenation of all local solutions we constructed.

It is easy to construct local solutions for non-concentrated components. For each set
J ′ ∈ JN of components and its correspondent V =

⋃
J∈J ′ J ∈ JN, we apply Lemma 10 to

obtain a local solution
(
S ⊆ U(V ), β ∈ RU(V )

≥0
)
. Then, we add S to S∗ and let β∗i = βi for

every i ∈ U(V ). Notice that J ′ either contains a single root black component J , or contains
all the non-concentrated black components in the child-groups of some group G. In the
former case, the diameter of J is at most O(`)L(J) by Property (4a); in the latter case, we let
v∗ be an arbitrary representative in

⋃
J′∈G J

′ and then any representative v ∈ J, J ∈ J ′ has
d(v, v∗) ≤ O(`2)L(J) by Property (5d). Thus, all the properties in Lemma 10 are satisfied.

For concentrated components, we only obtain distributions of local solutions by applying
Theorem 9. For every J ∈ J C, we check if Constraints (6) to (13) are satisfied for B = U(J).
If not, we return a separation plane for the fractional solution; otherwise we apply Theorem 9
to each component J to obtain a distribution

(
φJS,β

)
S⊆U(J),β∈RU(J)

≥0
. To produce local solutions

for concentrated components, we shall use a dependent rounding procedure that respects the
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marginal probabilities. As mentioned earlier, we shall define a polytope and the procedure
randomly selects a vertex point of the polytope.

We let sJ := sφJ
:= E(S,β)∼φJ |S| be the expectation of |S| according to distribution

φJ . For notational convenience, we shall use a ≈ b to denote a ∈
[
bbc , dbe

]
. Consider the

following polytope P defined by variables {ψJS,β}J∈J C,S,β and {qJ}J∈J C .1

ψJS,β , pJ ∈ [0, 1] ∀J ∈ J C, S, β; (14)∑
S,β

ψJS,β = 1, ∀J ∈ J C; (15)

∑
J∈J ′

qJ ≤ 1, ∀J ′ ∈ JC; (16)∑
S,β

ψJS,β |S| − qJ ≈ yU(J), ∀J ∈ J C; (17)

∑
J∈J ′

(∑
S,β

ψJS,β |S| − qJ
)
≈
∑
J∈J ′

yU(J), ∀J ′ ∈ JC; (18)

∑
J∈J C

(∑
S,β

ψJS,β |S| − qJ
)
≈
∑
J∈J C

yU(J). (19)

In the above LP, ψJ is the indicator vector for local solutions for J and qJ indicates
whether J is responsible for removing one facility; if qJ = 1, we shall call remove(J) later.
Up to changing of variables, any vertex point of P is defined by two laminar families of tight
constraints and thus P is integral:

I Lemma 11. P is integral.

We set ψ∗JS,β = φJS,β and q∗J = sJ − yU(J) for every J ∈ J C and (S, β). Then,

I Lemma 12. (ψ∗, q∗) is a point in polytope P.

We randomly select a vertex point (ψ, q) of P such that E[ψJS,β ] = ψ∗JS,β = φJS,β for every
J ∈ J C, (S, β), and E[qJ ] = q∗J = sJ − yU(J) for every J ∈ J C. Since ψ is integral, for every
J ∈ J , there is a unique local solution

(
S ⊆ U(J), β ∈ RU(J)

≥0
)
such that ψJS,β = 1; we add S

to S∗ and let β∗i = βi for every i ∈ U(J).
This finishes the definition of the initial S∗ and β∗. Let α∗ = α (recall that αv = xUv,C is

the demand at v after the initial moving, for every v ∈ R) be the initial demand vector. Later
we shall remove facilities from S∗ and update α∗ and β∗. S∗, α∗, β∗ satisfy the following
properties, which will be maintained as the rounding algorithm proceeds.

(13a)
∑
v∈V α

∗
v =

∑
v∈V β

∗
v for every V ∈ J C ∪ VN;

(13b)
∑
v∈R α

∗
v = |C|.

Property (13a) is due to Properties (9d) and (10c). Property (13b) holds since
∑
v∈R α

∗
v =∑

v∈R xUv,C = xF,C = |C|.

5.2 The remove procedure
In this section, we define the procedure remove that removes facilities from S∗ and updates
α∗ and β∗. The procedure takes a set V ∈ J C ∪VN as input. If V is a root black component,

1 For every J ∈ J C, we only consider the pairs (S, β) in the support of φJ ; thus the total number of
variables is nO(`).
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then we let G = {V } be the root group containing V ; if V is a non-root concentrated
component, let G be the parent group of the group containing V ; otherwise V is the union of
non-concentrated components in all child-groups of some group, and we let G be this group.
Let V ′ =

⋃
J′∈G J

′. Before calling remove(V ), we require the following properties to hold:
(14a) |S∗ ∩ U(V )| ≥ 1;
(14b)

∣∣S∗ ∩ U(V ′)
∣∣ ≥ `− 6.

While maintaining Properties (13a) and (13b), the procedure remove(V ) will
(15a) remove from S∗ exactly one open facility, which is in U(V ∪ V ′),
(15b) not change α∗|R\(V ∪V ′) and β∗|F\U(V ∪V ′),
(15c) increase α∗v by at most a factor of 1 +O(1/`) for every v ∈ V ∪ V ′ and increase β∗i

by at most a factor of 1 +O(1/`) for every i ∈ U(V ∪ V ′).
Moreover,
(15d) the moving cost for converting the old α∗ to the new α∗ is at most O(`2)β∗i∗L(J) for

some black component J ⊆ V and facility i∗ ∈ U(J);
(15e) for every V ′′ ∈ J C ∪ VN, EMDV ′′

(
α∗|V ′′ , β∗|U(V ′′)

)
will be increased by at most a

factor of 1 +O(1/`).
Due to the page limit, we only highlight the key ideas used to implement remove(V )

and leave the formal description to the full version of the paper. Assume V is not a root
component. We choose an arbitrary facility i ∈ S∗ ∩ U(V ). Notice that there are Ω(`)
facilities in S∗ ∩ U(V ′). If the β∗i ≤

∑
v′∈V ′ α

∗
v′/`, then we can shut down i and send the

demands that should be sent to i to V ′. We only need to increase the supplies in U(V ′) by a
factor of 1 + O(1/`). Otherwise, we shall shut down the facility i′ ∈ S∗ ∩ U(V ′) with the
smallest β∗i′ value. Since there are at least Ω(`) facilities in U(V ′), we can satisfy the β∗i′ units
of unsatisfied demands using other facilities in S∗ ∩U(V ′). For this i′, we have β∗i′ ≤ O(1)β∗i .
Thus, the total amount of demands that will be moved is comparable to β∗i . In either case,
the cost of redistributing the demands is not too big. When V is a root component, we shall
shut down the facility i′ ∈ S∗ ∩ U(V ) with the smallest β∗i′ value.

5.3 Obtaining the Final Solution
To obtain our final set S∗ of facilities, we call the remove procedures in some order. We
consider each group G using the top-to-bottom order. That is, before we consider a group G,
we have already considered its parent group. If G is a root group, then it contains a single
root component J . If J ∈ J N, repeat the the following procedure twice: if there is some
facility in S∗ ∩ U(J) then we call remove(J). If J ∈ J C and qJ = 1 then we call remove(J).
Now if G is a non-leaf group, then do the following. Let V =

⋃
G′∈ΛG,J∈G′∩J N J . Repeat

the following procedure twice: if there is some facility in S∗ ∩ U(V ) then we call remove(V ).
For every G′ ∈ ΛG and J ∈ G′ ∩ J C such that qJ = 1 we call remove(J).

I Lemma 16. After the above procedure, we have |S∗| ≤ yF ≤ k.

By Properties (15b) and (15c), and Constraint (16), our final β∗i is at most 1 +O(1/`)
times the initial β∗i for every i ∈ V . Finally we have β∗i ≤ (1 + O(1/`))ui for every i ∈ F .
Thus, the capacity constraint is violated by a factor of 1 + ε if we set ` to be large enough.

It remains to bound the expected cost of the solution S∗; this is done by bounding the
cost for transferring the original α∗ to the final α∗, as well as the cost for matching our final
α∗ and β∗.

We first focus on the transferring cost. By Property (15e), when we call remove(V ), the
transferring cost is at most O(`2)β∗i∗L(J) for some black component J ⊆ V and i∗. Notice that
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β∗i∗ is scaled by at most a factor of (1 +O(1/`)), we always have β∗i∗ ≤ (1 +O(1/`))αU(J),C .
So, the cost is at most O(`2)xU(J),CL(J). If V is the union of some non-concentrated
components, then this quantity is at most O(`2)`2πJL(J) ≤ O(`2`2)DU(J) ≤ O(`2`2)DU(V ).
We call remove(V ) at most twice, thus the contribution of V to the transferring cost is at
most O(`2`2)DU(V ). If V is a concentrated component J , then the quantity might be large.
However, the probability we call remove(J) is E[qJ ] = q∗J = sJ − yU(J) ≤ 2`yU(J)πJ/xU(J),C
if yU(J) ≤ 2` and it is 0 otherwise (by Property (9a)). So, the expected contribution
of this V to the transferring cost is at most O(`2)xU(J),CL(J) × 2`yU(J)πJ/xU(J),C ≤
O(`4)πJL(J) ≤ O(`4)DU(J) by Lemma 7. Thus, overall, the expected transferring cost is at
most O(`5)DF = O(`5)LP.

Then we consider the matching cost. Since we maintained Property (13a), the matching
cost is bounded by

∑
V ∈J C∪VN EMDV (α∗|V , β∗|U(V )). Due to Property (15e), this quantity

has only increased by a factor of 1 + O(1/`) during the course of removing facilities. For
the initial α∗ and β∗, the expectation of this quantity is at most

∑
J∈J C O(`4)DU(J) +∑

V ∈VN O(`2`2)DU(V ) due to Properties (9f) and (10d). This is at most O(`5)DF = O(`5)LP.
We have found a set S∗ of at most k facilities and a vector β∗ ∈ RF≥0 such that β∗i = 0

for every i /∈ S∗ and β∗i ≤ (1 + O(1/`))ui. If we set ` = Θ(1/ε) to be large enough,
then β∗i ≤ (1 + ε)ui. The cost for matching the α-demand vector and the β∗ vector is at
most O(`5)LP = O(1/ε5)LP. Thus, we obtained a O(1/ε5)-approximation for CKM with
(1 + ε)-capacity violation.
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Abstract
Directed Steiner problems are fundamental problems in Combinatorial Optimization and Theor-
etical Computer Science. An important problem in this genre is the k-edge connected directed
Steiner tree (k-DST) problem. In this problem, we are given a directed graph G on n vertices with
edge-costs, a root vertex r, a set of h terminals T and an integer k. The goal is to find a min-cost
subgraph H ⊆ G that connects r to each terminal t ∈ T by k edge-disjoint r, t-paths. This prob-
lem includes as special cases the well-known directed Steiner tree (DST) problem (the case k = 1)
and the group Steiner tree (GST) problem. Despite having been studied and mentioned many
times in literature, e.g., by Feldman et al. [SODA’09, JCSS’12], by Cheriyan et al. [SODA’12,
TALG’14], by Laekhanukit [SODA’14] and in a survey by Kortsarz and Nutov [Handbook of
Approximation Algorithms and Metaheuristics], there was no known non-trivial approximation
algorithm for k-DST for k ≥ 2 even in a special case that an input graph is directed acyclic and
has a constant number of layers. If an input graph is not acyclic, the complexity status of k-DST
is not known even for a very strict special case that k = 2 and h = 2.

In this paper, we make a progress toward developing a non-trivial approximation algorithm for
k-DST. We present an O(D ·kD−1 · logn)-approximation algorithm for k-DST on directed acyclic
graphs (DAGs) with D layers, which can be extended to a special case of k-DST on “general
graphs” when an instance has a D-shallow optimal solution, i.e., there exist k edge-disjoint
r, t-paths, each of length at most D, for every terminal t ∈ T . For the case k = 1 (DST), our
algorithm yields an approximation ratio of O(D log h), thus implying an O(log3 h)-approximation
algorithm for DST that runs in quasi-polynomial-time (due to the height-reduction of Zelikovsky
[Algorithmica’97]). Our algorithm is based on an LP-formulation that allows us to embed a
solution to a tree-instance of GST, which does not preserve connectivity. We show, however,
that one can randomly extract a solution of k-DST from the tree-instance of GST.

Our algorithm is almost tight when k and D are constants since the case that k = 1 and
D = 3 is NP-hard to approximate to within a factor of O(log h), and our algorithm archives
the same approximation ratio for this special case. We also remark that the k1/4−ε-hardness
instance of k-DST is a DAG with 6 layers, and our algorithm gives O(k5 logn)-approximation
for this special case. Consequently, as our algorithm works for general graphs, we obtain an
O(D · kD−1 · logn)-approximation algorithm for a D-shallow instance of the k edge-connected
directed Steiner subgraph problem, where we wish to connect every pair of terminals by k edge-
disjoint paths.
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1 Introduction

Network design is an important class of problems in Combinatorial Optimization and
Theoretical Computer Science as it formulates scenarios that appear in practical settings. In
particular, we might wish to design an overlay network that connects a server to clients, and
this can be formulated as the Steiner tree problem. In a more general setting, we might have
an additional constraint that the network must be able to function after link or node failures,
leading to the formulation of the survivable network design problem. These problems are
well-studied in symmetric case where a network can be represented by an undirected graph.
However, in many practical settings, links in networks are not symmetric. For example, we
might have different upload and download bandwidths in each connection, and sometimes,
transmissions are only allowed in one direction. This motivates the study of network design
problems in directed graphs, in particular, directed Steiner problems.

One of the most well-known directed network design problem is the directed Steiner tree
problem (DST), which asks to find a minimum-cost subgraph that connects a given root vertex
to each terminal. DST is a notorious problem as there is no known polynomial-time algorithm
that gives an approximation ratio better than polynomial. A polylogarithmic approximation
can be obtained only when an algorithm is allowed to run in quasi-polynomial-time [2, 13, 6].
A natural generalization of DST, namely, the k edge-connected directed Steiner tree (k-DST)
problem, where we wish to connect a root vertex to each terminal by k edge-disjoint paths,
is even more mysterious as there is no known non-trivial approximation algorithm, despite
having been studied and mentioned many times in literature, e.g., by Feldman et al. [5], by
Cheriyan et al. [3] and by Laekhanukit [10]. The problem is also mentioned in a survey by
Kortsarz and Nutov [9] and in a later update by Nutov [12].

The focus of this paper is in studying the approximability of k-DST. Let us formally
describe k-DST. In k-DST, we are given a directed graph G with edge-costs {ce}e∈E(G), a
root vertex r and a set of terminals T ⊆ V (G). The goal is to find a min-cost subgraph
H ⊆ G such that H has a k edge-disjoint directed r, t-paths from the root r to each terminal
t ∈ T . Thus, removing any k − 1 edges from H leaves at least one path from the root r to
each terminal t ∈ T , and DST is the case when k = 1 (i.e., we need only one path). The
complexity status of k-DST tends to be negative. It was shown by Cheriyan et al. [3] that
the problem is at least as hard as the label cover problem. Specifically, k-DST admits no
2log1−ε n-approximation, for any ε > 0, unless NP ⊆ DTIME(2polylog(n)). Laekhanukit [10],
subsequently, showed that k-DST admits no k1/4−ε-approximation unless NP = ZPP. The
integrality gap of a natural LP-relaxation for k-DST is Ω(k/ log k) which holds even for a
special case of connectivity-augmentation where we wish to increase a connectivity of a graph
by one. All the lower bound results are based on the same construction which are directed
acyclic graphs (DAGs) with diameter 5, i.e., any path in an input graph has length (number
of edges) at most 5 (we may also say that it has 6 layers). Even for a very simple variant of
k-DST, namely (1, 2)-DST, where we have two terminals, one terminal requires one path
from the root and another terminal requires 2 edge-disjoint paths, it was not known whether
the problem is NP-hard or polynomial-time solvable. To date, the only known positive result
for k-DST is an O(nkh)-time (exact) algorithm for k-DST on DAGs [3], which thus runs
in polynomial-time when kh is constant, and a folk-lore h-approximation algorithm, which
can be obtained by computing min-cost k-flow for h times, one from the root r to each
terminal t and then returning the union as a solution. We emphasize that there was no known
non-trivial approximation algorithm even when an input graph is “directed acyclic” and has
“constant number of layers”. Also, in contrast to DST in which an O(2hpoly(n))-time (exact)
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algorithm exists for general graphs, it is not known whether k-DST for k = 2 and h = 2 is
polynomial-time solvable if an input graph is not acyclic. This leaves challenging questions
whether ones can design a non-trivial approximation algorithm for k-DST on DAGs with at
most D layers, and whether ones can design a non-trivial approximation algorithm when an
input graph is not acyclic.

In this paper, we make a progress toward developing a non-trivial approximation algorithm
for k-DST. We present the first “non-trivial” approximation algorithm for k-DST on DAGs
with D layers that achieves an approximation ratio of O(D · kD−1 · logn). Our algorithm
can be extended to a special case of k-DST on “general graphs” where an instance has a
D-shallow optimal solution, i.e., there exist k edge-disjoint r, t-paths, each of length at most
D, for every terminal t ∈ T . Consequently, as our algorithm works for a general graph,
we obtain an O(D · kD−1 · logn)-approximation algorithm for a D-shallow instance of the
k edge-connected directed Steiner subgraph problem, where we wish to connect every pair
of terminals by k edge-disjoint paths, i.e., the set of terminals T is required to be k-edge
connected in the solution subgraph (there is no root vertex in this problem).

Our algorithm is almost tight when k and D are constants because the case that k = 1
and D = 3 is essentially the set cover problem, which is NP-hard to approximate to within a
factor of O(log h) [11, 4], and our algorithm achieves the same approximation ratio. We also
remark that the k1/4−ε-hardness instance of k-DST is a DAG with 6 layers, and our algorithm
gives O(k5 logn)-approximation for this special case. For k = 1, we obtain a slightly better
bound of O(D log h), thus giving an LP-based O(log3 h)-approximation algorithm for DST
as a by product.

The key idea of our algorithm is to formulate an LP-relaxation with a special property
that a fractional solution can be embedded into a tree instance of the group Steiner tree
problem (GST). Thus, we can apply the GKR Rounding algorithm in [7] for GST on trees
to round the fractional solution. However, embedding of an LP-solution to a tree instance of
GST does not preserve connectivity. Also, it does not lead to a reduction from k-DST to the
k edge-connected variant of GST, namely, k-GST. Hence, our algorithm is, although simple,
not straightforward.

1.1 Our Results
Our main result is an O(D · kD−1 · logn)-approximation algorithm for k-DST on a D-shallow
instance, which includes a special case that an input graph is directed acyclic and has at
most D layers.

I Theorem 1. Consider the k edge-connected directed Steiner tree problem. Suppose an
input instance has an optimal solution H∗ in which, for every terminal t ∈ T , H∗ has
k edge-disjoint r, t-paths such that each path has length at most D. Then there exists an
O(D · kD−1 · logn)-approximation algorithm. In particular, there is an O(D · kD−1 · logn)-
approximation algorithm for k-DST on a directed acyclic graph with D layers.

For the case k = 1, our algorithm yields a slightly better guarantee of O(D log h).
Thus, we have as by product an LP-based approximation algorithm for DST. Applying
Zelikovsky’s height-reduction theorem [14, 8], this implies an LP-based quasi-polynomial-time
O(log3 h)-approximation algorithm for DST. (The algorithm runs in time O(poly(nD) and
has approximation ratio O(h1/D ·D2 log h).)

Theorem 1 also implies an algorithm of the same (asymptotic) approximation ratio for a
D-shallow instance of the k edge-connected directed Steiner subgraph problem, where we
wish to find a subgraph H such that the set of terminals T is k-edge-connected in H. To
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see this, we invoke the algorithm in Theorem 1 as follows. Take any terminal t∗ ∈ T as a
root vertex of a k-DST instance. Then we apply the algorithm for k-DST to find a subgraph
Hout such that every terminal is k edge-connected from t∗. We apply the algorithm again
to find a subgraph Hin such that every terminal is k edge-connected to t∗. Then the set of
terminals T is k-edge connected in the graph Hout ∪Hin by transitivity of edge-connectivity.
The cost incurred by this algorithm is at most twice that of the algorithm in Theorem 1.
Thus, we have the following theorem as a corollary of Theorem 1

I Theorem 2. Consider the k edge-connected directed Steiner subgraph problem. Suppose
an input instance has an optimal solution H∗ in which, for every pair of terminals s, t ∈ T ,
H∗ has k edge-disjoint s, t-paths such that each path has length at most D. Then there exists
an O(D · kD−1 · logn)-approximation algorithm.

1.1.0.1 Overview of our algorithm

The key idea of our algorithm is to embed an LP solution for k-DST to a standard LP of
GST on a tree. (We emphasize that we embed the LP solution of k-DST to that of GST not
k-GST.) At first glance, a reduction from k-DST to GST on trees is unlikely to exist because
any such reduction would destroy all the connectivity information. We show, however, that
such tree-embedding exists, but we have to sacrifice running-time and cost to obtain such
embedding.

The reduction is indeed the same as a folk-lore reduction from DST to GST on trees.
That is, we list all rooted-paths (paths that start from the root vertex) of length at most
D in an input graph and form a suffix tree. In the case of DST, if there is an optimal
solution which is a tree of height D, then it gives an approximation preserving reduction
from GST to DST which blows up the size (and thus the running time) of the instance to
O(nD). Unfortunately, for the case of k-DST with k > 1, this reduction does not give an
equivalent reduction from k-DST to k-GST on trees. The reduction is valid in one direction,
i.e., any feasible solution to k-DST has a corresponding feasible solution to the tree-instance
of k-GST. However, the converse is not true as a feasible solution to the tree-instance of
k-GST might not give a feasible solution to k-DST. Thus, our reduction is indeed an “invalid”
reduction from k-DST to a tree instance of “GST” (the case k = 1).

To circumvent this problem, we formulate an LP that provides a connection between
an LP solution on an input k-DST instance and an LP solution of a tree-instance of GST.
Thus, we can embed an LP solution to an LP-solution of GST on a (very large) tree. We
then round the LP solution using the GKR Rounding algorithm for GST on trees [7]. This
algorithm, again, does not give a feasible solution to k-DST as each integral solution we
obtain only has “connectivity one” and thus is only feasible to DST. We cope with this
issue by using a technique developed by Chalermsook et al. in [1]. Specifically, we sample a
sufficiently large number of DST solutions and show that the union of all these solutions is
feasible to k-DST using cut-arguments.

Each step of our algorithm and the proofs are mostly standard, but ones need to be
careful in combining each step. Otherwise, the resulting graph would not be feasible to
k-DST.

Organization. We provide definitions and notations in Section 2. We start our discussion
by presenting a reduction from DST to GST in Section 3. Then we discuss properties of
minimal solutions for k-DST in Section 4. We present standard LPs for k-DST and GST in
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Section 5 and formulate a stronger LP-relaxation for k-DST in Section 6. Then we proceed
to present our algorithm in Section 7. Finally, we provide some discussions in Section 8.

2 Preliminaries

We use standard graph terminologies. We refer to a directed edge (u, v), shortly, by uv (i.e.,
u and v are head and tail of uv, respectively), and we refer to an undirected edge by {u, v}.
For a (directed or undirected) graph G, we denote by V (G) and E(G) the sets of vertices
and edges of G, respectively. If a graph G is associated with edge-costs {ce}e∈E(G), then
we denote the cost of any subgraph H ⊆ G by cost(H) =

∑
e∈E(H) ce. For any path P , we

use length to mean the number of edges in a path P and use cost to mean the total costs of
edges in P .

In the directed Steiner tree problem (DST), we are given a directed graph G with edge-
costs {ce}e∈E(G), a root vertex r and a set of terminals T ⊆ V (G). The goal is to find a
min-cost subgraph H ⊆ G such that H has a directed path from the root r to each terminal
t ∈ T . A generalization of DST is the k edge-connected directed Steiner tree problem (k-DST).
In k-DST, we are given the same input as in DST plus an integer k. The goal is to find a
min-cost subgraph H that has k edge-disjoint paths from the root r to each terminal t ∈ T .
The k edge-connected directed Steiner subgraph problem is a variant of k-DST, where there is
no root vertex, and the goal is to find a min-cost subgraph H such that the set of terminals
T is k edge-connected in H.

The problems on undirected graphs that are closely related to of DST and k-DST are
the group Steiner tree problem (GST) and the k edge-connected group Steiner tree problem
(k-GST). In GST, we are given an undirected graph G with edge-costs {ce}e∈E(G), a root
vertex r and a collection of subset of vertices {Ti}hi=1 called groups. The goal is to find a
a min-cost subgraph H that connects r to each group Ti. In k-GST, the input consists of
an additional integer k, and the goal is to find a min-cost subgraph H with k edge-disjoint
r, Ti-paths for every group Ti.

Consider an instance of DST (resp., k-DST). We denote by Q the set of all paths in
G that start from the root r. The set of paths in Q that end with a particular pattern,
say σ = (v1, . . . , vq), is denoted by Q(σ). This pattern σ can be a vertex v, an edge e
or a path σ = (v1, . . . , vq) in G. For example, Q(u, v, w) consists of paths P of the form
P = (r, . . . , u, v, w). We say that a path P ends in a vertex v (resp., an edge e) if v (resp., e)
is the last vertex (resp., edge) of P .

We may consider only paths with particular length, say D. We denote by QD the set of
paths that start at r and has length at most D. The notation for QD is analogous to Q, e.g.,
QD(uv) ⊆ QD is the set of paths in QD that end in an edge uv. A concatenation of a path
p with an edge e or a vertex v are denoted by p+ e and p+ v, respectively. For example,
(u1, . . . , u`) + vw = (u1, . . . , u`, v, w).

Given a subset of vertices S, the set of edges entering S is denoted by

δ−(S) = {uv ∈ E : u ∈ S, v 6∈ S}

The indegree of S is denoted by indeg(S) = |δ−(S)|. Analogously, we use δ+(S) and outdeg(S)
for the set of edges leaving S. For undirected graphs, we simply use the notations δ(S) and
deg(S).

We say that a feasible solution H to k-DST is D-shallow if, for every terminal t ∈ T ,
there exists a set of k edge-disjoint r, t-paths in H such that every path has length at most D.
An instance of k-DST that has an optimal D-shallow solution is called a D-shallow instance.
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We also use the term D-shallow analogously for k-GST and the k edge-connected Steiner
subgraph problem.

To distinguish between the input of k-DST (which is a directed graph) and k-GST (which
is an undirected graph), we use script fonts, e.g., G, to denote the input of k-GST. Also, we
use Q to denote the set of all paths from the root r to any vertex v in the graph G. The cost
of a set of edges F (or a graph) is defined by a function cost(F ) =

∑
e∈F ce. At each point,

we consider only one instance of k-DST (respectively, k-GST). So, we denote the cost of the
optimal solution to k-DST by optkDST (respectively, optkGST ).

3 Reduction from Directed Steiner Tree to Group Steiner Tree

In this section, we describe a reduction R from DST to GST. We recall that Q denotes all
the r, v-paths in a DST instance G. The reduction is by simply listing paths in the directed
graph G as vertices in a tree G = R(G) and joining each path p to p+ e if p+ e is a path in
G. In fact, R(G) is a suffix tree of paths in Q. To be precise,

V (G) = {p : p is an r, v-path in G}
E(G) = {{p, p+ e} : both p and p+ e are paths in G starting at r}

We set the cost of edges of G to be c{p,p+e} = ce. Since the root r has no incoming edges
in G, r maps to a unique vertex (r) ∈ G, and we define (r) as the root vertex of the GST
instance. We will abuse r to mean both the root of DST and its corresponding vertex of
GST. For each terminal ti ∈ T , define a group of the GST instance as

Ti := Q(ti) = {p ⊆ G : p is an r, ti-path in G}

It is easy to see that the reduction R produces a tree, and there is a one-to-one mapping
between a path in the tree G = R(G) and a path in the original graph G. Thus, any tree in
G corresponds to a subtree of R(G) (but not vice versa), which implies that the reduction
R is approximation-preserving (i.e., optDST = optGST ). Note, however, that the size of the
instance blows up from O(n+m) to O(nD), where D is the length of the longest path in
G. The reduction holds for general graphs, but it is approximation-preserving only if the
DST instance is D-shallow, i.e., it has an optimal solution H∗ such that any r, ti-path in H∗
has length at most D, for all terminals ti ∈ T . However, Zelikovsky [14, 8] showed that the
metric completion of G always contains a D-shallow solution with cost at most D|V (G)|1/D
of an optimal solution to DST. (This is now known as Zelikovsky’s height reduction theorem.)
Thus, we may list only paths of length at most D from the metric completion. We denote
the reduction that lists only paths of length at most D by RD.

4 Properties of Minimal Solutions to k-DST

In this section, we provide structural lemmas which are building blocks in formulating a
strong LP-relaxation for k-DST. These lemmas characterize properties of a minimal solution
to k-DST.

I Lemma 3. Let H be any minimal solution to k-DST. Then H has at most k edge-disjoint
r, v-paths, for any vertex v ∈ V (H).

Proof. Suppose to a contrary that H has k + 1 edge-disjoint r, v-paths, for some vertex
v ∈ V (H). Then v must have indegree at least k + 1 in H. We take one of the k − 1 edges
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entering v, namely, uv. By minimality of H, removing uv results in a graph H ′ = H−uv that
has less than k edge-disjoint r, ti-paths for some terminal ti ∈ T . Thus, by Menger’s theorem,
there must be a subset of vertices S ⊆ V such that ti ∈ S, r ∈ V −S and indegH′(S) ≤ k− 1.
Observe that we must have uv in δ−H(S) because H is a feasible solution to k-DST, which
means that v ∈ S. Since we remove only one edge uv from H, the graph H ′ must have k
edge-disjoint r, v-paths. But, this implies that indegH′(S) ≥ k, a contradiction. J

I Lemma 4. Let H be any minimal solution to k-DST. Any vertex v ∈ V (H) has indegree
exactly λ(v), where λ(v) is the maximum number of edge-disjoint r, v-paths in H.

Proof. The proof follows a standard uncrossing argument. Assume a contradiction that
v has indegree at least λ(v) + 1 in H. By Menger’s theorem, there is a subset of vertices
U ⊆ V such that indegH(U) = λ(v), v ∈ U and r 6∈ U that separates v from r. We assume
that U is a minimum such set. Since indegH(v) > λ(v), there is an edge uv ∈ E(H) that is
not contained in δ−H(U), i.e., u, v ∈ U .

By minimality of H, removing uv results in the graph H ′ = H − uv such that H ′ has
less than k edge-disjoint r, ti-paths for some terminal ti ∈ T . Thus, by Menger’s theorem,
there is a subset of vertices W such that ti ∈W , r 6∈W , uv ∈ δ−H(W ) and indegH(W ) = k.
(The latter is because H is a feasible solution to k-DST.)

Now we apply an uncrossing argument to U and W . By submodularity of indegH , we
have indegH(U) + indegH(W ) ≥ degH(U ∩W ) + degH(U ∪W ). Observe that v ∈ U ∩W ,
t ∈ U ∪W and r 6∈ S ∪ S′. So, by the edge-connectivity of v and t,

indegH(U ∩W ) ≥ λ(v) and indegH(U ∪W ) ≥ k (1)

The sum of the left-hand side of Eq (1) is indegH(U) + indegH(W ) = k + λ(v). So, we
conclude that indegH(U ∩W ) = λ(v) and indegH(U ∪W ) = k. Consequently, we have the
set U ′ = U ∩W such that indegH(U ′) = λ(v), v ∈ U ′ and r 6∈ U ′ that separates v from r.
Since u 6∈W , we know that U ′ is strictly smaller than U . This contradicts to the minimality
of U . J

The following is a corollary of Lemma 3 and Lemma 4

I Corollary 5. Let H be a minimal solution to k-DST. Then any vertex v ∈ V (H) has
indegree at most k.

The next lemma follows from Corollary 5.

I Lemma 6. Consider any minimal solution H to k-DST (which is a simple graph). For
any edge e ∈ E(H) and ` ≥ 2, there are at most k`−2 paths in H with length at most ` that
start at the root r and ends in e. That is, |QH` (e)| ≤ k`−2 for all e ∈ E(H), where QH` (e) is
the set of r, v-paths of length ` in H.

Proof. We prove by induction. The base case ` = 2 is trivial because any rooted path of
length at most 2 cannot have a common edge.

Assume, inductively, that |QH`−1(e)| ≤ k`−3 for some ` ≥ 3. Consider any edge vw ∈ E(H).
By Corollary 5, v has indegree at most k. Thus, there are at most k edges entering v, namely,
u1v, . . . , udv, where d = indeg(v). By the induction hypothesis, each edge is the last edge of
at most k`−3 paths in QH`−1. Thus, we have at most d · k`−3 ≤ k`−2 paths that end in uv.
That is,

|QH` (vw)| ≤
d∑
i=1
|QH`−1(udv)| ≤

d∑
i=1

k`−3 = d · k`−3 ≤ k`−2.

J
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5 Standard LPs for k-DST and GST

In this section, we describe standard LPs for k-DST and GST. Each LP consists of two sets
of variables, a variable xe on each edge e and a variable f ip on each path p and a terminal ti.
The variable xe indicates whether we choose an edge e in a solution. The variable f ip is a
flow-variable on each path and thus can be written in a compact form using a standard flow
formulation.

LP-k-DST



min
∑
e∈E(G) cexe

s.t.
∑
p∈Q(ti):e∈E(p) f

i
p ≤ xe ∀e ∈ E(G),∀ti ∈ T∑

p∈Q(ti) f
i
p ≥ k ∀ti ∈ T
xe ≤ 1 ∀e ∈ E(G)
xe ≥ 0 ∀e ∈ E(G)
f ip ≥ 0 ∀p ∈ Q(ti),∀ti ∈ T.

The standard LP for GST is similar to LP-k-DST.

LP-GST



min
∑
e∈E(G) cexe

s.t.
∑
v∈Ti

∑
p∈Q(v):e∈E(p) f

i
p ≤ xe ∀e ∈ E(G),∀i = 1, 2, . . . , h∑

v∈Ti
∑
p∈Q(v) f

i
p ≥ 1 ∀i = 1, 2, . . . , h
xe ≤ 1 ∀e ∈ E(G)
xe ≥ 0 ∀e ∈ E(G)
f ip ≥ 0 ∀p ∈ Q,∀i = 1, 2, . . . , h

6 A Strong LP-relaxation for for k-DST

In this section, we formulate a strong LP-relaxation for k-DST that allows us to embed a
fractional solution into an LP solution of LP-GST on a tree.

LP-k-DST*



min
∑
e∈E cexe

s.t.
∑
p∈Q(ti):e∈E(p) f

i
p ≤ xe ∀e ∈ E(G),∀ti ∈ T∑

p∈Q(ti) f
i
p ≥ k ∀ti ∈ T∑

p∈Q(ti):q⊆p f
i
p ≤ yq ∀q ∈ Q,∀ti ∈ T

(Subflow Capacity)∑
p∈Q`(e) yp ≤ max{1, k`−2} · xe ∀e ∈ E,∀` ≥ 1

(Aggregating k-Flow)
xe ≤ 1 ∀e ∈ E(G)
xe ≥ 0 ∀e ∈ E(G)
f ip ≥ 0 ∀p ∈ Q(ti),∀ti ∈ T
yp ≥ 0 ∀p ∈ Q

For D-shallow instances of k-DST, we replace Q by QD to restrict length of paths to be
at most D. The next lemma shows that LP-k-DST* is an LP-relaxation for k-DST.

I Lemma 7. LP-k-DST* is an LP-relaxation for k-DST. Moreover, replacing Q by QD gives
an LP-relaxation for k-DST on D-shallow instances.

Proof. LP-k-DST* is, in fact, obtained from LP-k-DST (which is a standard LP) by adding
a new variable yp and two constraints.
1. Subflow-Capacity:

∑
p∈Q(ti):q⊆p

f ip ≤ yq,∀q ∈ Q,∀ti ∈ T .
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2. Aggregating k-Flow:
∑

p∈Q`(e)

yp ≤ max{1, k`−2} · xe,∀e ∈ E,∀` ≥ 1.

To show that these two constraints are valid for k-DST, we take a minimal feasible
(D-shallow) solution H of k-DST. We define a solution (x, f, y) to LP-k-DST as below.

xe =
{

1 if e ∈ E(H)
0 otherwise yp =

{
1 if p ⊆ H ∧ p ∈ Q
0 otherwise

f ip =
{

1 if p ⊆ H ∧ p ∈ Q(ti)
0 otherwise

By construction, f ip = 1 implies that yp = 1. Thus, (x, f, y) satisfies the Subflow-Capacity
constraint. By minimality of H, Corollary 6 implies that even if we list all the paths of
length ` ≥ 2 in H, at most k`−2 of them end in the same edge, and we know that rooted
paths of length one share no edge (given that H is a simple graph). Thus, (x, f, y) satisfies
the Aggregating k-Flow constraint. Consequently, these two constraints are valid for k-DST.

On the other hand, any integral solution that is not feasible to k-DST could not satisfy the
constraints of LP-k-DST* simply because LP-k-DST* contains the constraints of LP-k-DST,
which is a standard LP for k-DST. Thus, LP-k-DST* is an LP-relaxation for k-DST.

The proof for the case of D-shallow instances is the same as above except that we take
H as a minimal D-shallow solution and replace Q by QD. J

7 An Approximation Algorithm for k-DST

In this section, we present an approximation algorithm for k-DST on a D-shallow instance.
Our algorithm is simple. We solve LP-k-DST* on an input graph G and then embed an
optimal fractional solution (x, f, y) to an LP-solution (x̂, f̂) of LP-GST on the tree R(G). We
lose a factor of O(kD−2) in this process. As we now have a tree-embedding of an LP-solution,
we can invoke the GKR Rounding algorithm [7] to round an LP-solution on the tree R(G).
Our embedding guarantees that any edge-set of size k− 1 in the original graph G never maps
to an edge-set in the tree G = R(G) that separates r and Ti = Q(ti) in G. So, the rounding
algorithm still outputs a feasible solution to GST with constant probability even if we remove
edges in the tree G that correspond to a subset of k − 1 edges in G. Consequently, we only
need to run the algorithm for O(D ·k · logn) times to boost the probability of success so that,
for any subset of k − 1 edges and any terminal ti ∈ T , we have at least one solution that
contains an r, ti-path using none of these k − 1 edges. In other words, the union of all the
solutions satisfies the connectivity requirement. Our algorithm is described in Algorithm 1.

Algorithm 1 Algorithm for k-DST
Solve LP-k-DST* and obtain an optimal solution (x, f, y).
Map (x, f, y) to a solution (x̂, f̂) to LP-GST on G = R(G).
for i = 1 to 2Dk log2 n do
Run GKR Rounding on (x̂, f̂) to get a solution Zi.
Map Zi back to a subgraph Zi of G.

end for
return H =

⋃
i Zi as a solution to k-DST.

We map a solution (x, f, y) of LP-k-DST* on G to a solution (x̂, f̂) of LP-GST on the
tree G = R(G) as below. Note that there is a one-to-one mapping between a path in G and
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a path in the tree G.

x̂{p,p+e} := yp+e for all p+ e ∈ Q
f̂ ip := f ip for all p ∈ Q and for all ti ∈ T

7.1 Cost Analysis
We show that cost(x̂, f̂) ≤ kD−2 · cost(x, f, y).

I Lemma 8. Consider a solution (x̂, f̂) to LP-GST, which is mapped from a solution (x, f)
of LP-k-DST* when an input k-DST instance is D-shallow, for D ≥ 2. The cost of (x̂, f̂) is
at most cost(x̂, f̂) ≤ kD−2 · cost(x, f).

Proof. By the constraint
∑
p∈Q`(e) fp ≤ max{1, k`−2} · xe, we have that

cost(x̂, f̂) =
∑
e′∈E(G) ce′ x̂e′ =

∑
e∈E(G)

∑
{p,p+e}∈E(G) cex̂{p,p+e}

=
∑
e∈E(G)

∑
p+e∈Q cefp+e =

∑
e∈E(G)

∑
p∈Q(e) cefp

=
∑
e∈E(G)

(
ce ·

∑
p∈Q(e) fp

)
≤
∑
e∈E(G) ce · kD−2 · xe

= kD−2 · cost(x, f).
J

It can be seen from Algorithm 1 and Lemma 8 that the algorithm outputs a solution H
with cost at most O(DkD−1 logn) · cost(x, f). Thus, H is an O(DkD−1 logn)-approximate
solution. It remains to show that H is feasible to k-DST.

7.2 Feasibility Analysis
Now we show that H is feasible to k-DST with high probability. To be formal, consider any
subset F ⊆ E(G) of k − 1 edges. We map F to their corresponding edges F in the tree G.
Thus, F := {{P, P + e} : P + e ∈ Q ∧ e ∈ F}.

Observe that no vertices in G − F correspond to paths that contain an edge in F . Thus,
we can define an LP solution (yF , zF ) for LP-GST on the graph G − F as follows.

yFe =
{
x̂e if e 6∈ F
0 otherwise zF,ip =

{
f̂ ip if E(p) ∩ F = ∅
0 otherwise

We show that (yF , zF ) is feasible to LP-GST on G − F .

I Lemma 9. For any subset of edges F ⊆ E(G), define (yF , zF ) from (x̂, f̂) as above. Then
(yF , zF ) is feasible to LP-GST on G − F .

Proof. First, observe that zF,ip > 0 only if a path p contains no edges in F . So, by construction,
(yF , zF ) satisfies zF,ip = f̂ ip ≤ x̂e = yFe for all e ∈ E(p). Hence, (yF , zF ) satisfies the capacity
constraint.

Next we show that (yF , zF ) satisfies the connectivity constraint. Consider the solution
(x, f, y) to LP-k-DST*. By the feasibility of (x, f, y) and the Max-Flow-Min-Cut theorem,
the graph G− F with capacities {xe}e∈G−F can support a flow of value one from r to any
terminal ti. This implies that

∑
p∈Q(ti):E(p)∩F=∅ f

i
p ≥ 1. Consequently, we have∑

p∈Q(ti):E(p)∩F=∅ f
i
p =

∑
p∈Ti:E(p)∩F=∅

∑
p′∈Q(v) f̂

i
p′

=
∑
v∈Ti

∑
p′∈Q(v):E(p′)∩F=∅ f̂

i
p′

=
∑
v∈Ti

∑
p′∈Q(v):E(p′)∩F=∅ z

F,i
p′

=
∑
v∈Ti

∑
p′∈Q(v) z

F,i
p′

≥ 1.
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All the other constraints are satisfied because (yF , zF ) is constructed from (x̂, f̂). Thus,
(yF , zF ) is feasible to LP-GST on G − F . J

Lemma 9 implies that we can run the GKR Rounding algorithm on (yF , zF ). The
following is the property of GKR Rounding.

I Lemma 10 ([7]). There exists a randomized algorithm such that, given a solution (x̂, f̂)
to LP-GST on a tree G with height D, the algorithm outputs a subgraph H ⊆ G so that the
probability that any subset of vertices U ⊆ V (G) is connected to the root is at least

Pr[H has an r, U -path.] ≥
∑
v∈U

∑
p∈Q(v) f̂

i
p

O(D)

Moreover, the probability that each edge is chosen is at most x̂e. That is, E[cost(H)] =
cost(x̂, f̂). The running time of the algorithm is O(|E(G)|+ |V (G)|).

Since (yF , zF ) ≤ (x̂, f̂) (coordinate-wise), we can show that running GKR Rounding on
(x̂, f̂) simulates the runs on (yF , zF ) for all F ⊆ E(G) with |F | ≤ k − 1, simultaneously.

I Lemma 11. Let H be a subgraph of G obtained by running GKR Rounding on (x̂, f̂), and
let H be a subgraph of G corresponding to H. Then, for any subset of edges F ⊆ E(G) with
|F | ≤ k − 1 and for any terminal ti ∈ T ,

Pr[H − F has an r, ti-path] ≥ 1
O(D) .

Proof. Let us briefly describe the work of GKR Rounding. The algorithm marks each edge
e in the tree with probability xe/x%(e), where %(e) is the parent of an edge e in G, which
is unique. Then the algorithm picks an edge e if all of its ancestors are marked. Clearly,
removing any set of edges F from G only affects paths that contain an edge in F .

Let (yF , zF ) be defined from (x̂, f̂) as above. This LP solution is defined on a graph
G − F . Thus, the probability of success is not affected by removing F from the graph. By
Lemma 9, we can run GKR Rounding on (yF , zF ) and obtain a subgraph HF of G − F .
Since zFp ≤ f̂p for all paths p ∈ Q and zFp = 0 for all p ∈ Q : E(p) ∩ F 6= ∅, we have from
Lemma 10 and Lemma 9 that

Pr[H − F has an r, ti-path] = Pr[H−F has an r, Ti-path]
≥ Pr[HF has an r, Ti-path]

≥
∑

v∈Ti

∑
p∈Q(v)

zFp

O(D)
≥ 1

O(D) .

J

Finally, we recall that Algorithm 1 employs GKR Rounding on (x̂, f̂) for 2Dk log2 n

times. So, for any subset of k − 1 edges F ⊆ E(G) and for any terminal ti ∈ T , there exists
one subgraph that has an r, ti-path that contains no edge in F with large probability. In
particular, the union is a feasible solution to k-DST with high probability.

I Lemma 12. Consider the run of Algorithm 1. The solution subgraph H =
⋃
i Zi is a

feasible solution to k-DST with probability at least 1/n.

Proof. For i = 1, 2, . . . , 2Dk log2 n, let Zi be a subgraph of G obtained by running GKR
Rounding on (x̂, f̂) and mapping the solution back to a subgraph of G as in Algorithm 1.
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By Lemma 11, Zi − F has an r, ti-path with probability Ω(1/D). Since each Zi is sampled
independently, we have

Pr[∀i Zi − F has no r, ti-path] ≤
(

1− 1
O(D)

)2Dk log2 n

≤
(

1
e

)2k log2 n

≤ n−2k.

We have at most |E(G)|k−1 ≤ n2(k−1) such sets F and at most h ≤ n terminals. So, there
are at most n2k−1 bad events where there exists an edge-set of size k − 1 that separates the
root r and some terminal ti ∈ T . Therefore, by union bound, H =

⋃
i Zi is a feasible solution

to k-DST with probability at least 1/n. J

This completes the proof of Theorem 1. Note that, for the case of DST (k = 1), we only
need to run GKR Rounding for O(D log h) times, thus implying an approximation ratio of
O(D log h).

8 Conclusion and Discussion

We presented the first non-trivial approximation algorithm for k-DST in a special case of
a D-shallow instance, which exploits the reduction from DST to GST. We hope that our
techniques will shed some light in designing an approximation algorithm for k-DST in general
case and perhaps lead to a bi-criteria approximation algorithm in the same manner as in [1].

One obstruction in designing an approximation algorithm in directed graphs is that there
is no “true” (perhaps, probabilistic) tree-embedding for directed graphs. Both devising a
tree-embedding for directed graphs and designing an approximation algorithm for k-DST
with k ≥ 2 are big open problems in the area. Another open problem, which is considered
as the most challenging one by many experts, is whether there exists a polynomial-time
algorithm for DST that yields a sub-polynomial approximation ratio.

Acknowledgements. Our work was inspired by the works of Rothvoß [13] and Frigg-
stad et al. [6] and by discussions with Joseph Cheriyan and Lap Chi Lau. We also thank
Zachary Friggstad for useful discussions and anonymous referees for valuable comments.
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Abstract
Budgeted Red-Blue Median is a generalization of classic k-Median in that there are two
sets of facilities, say R and B, that can be used to serve clients located in some metric space. The
goal is to open kr facilities in R and kb facilities in B for some given bounds kr, kb and connect
each client to their nearest open facility in a way that minimizes the total connection cost.

We extend work by Hajiaghayi, Khandekar, and Kortsarz [2012] and show that a multiple-
swap local search heuristic can be used to obtain a (5 + ε)-approximation for Budgeted Red-
Blue Median for any constant ε > 0. This is an improvement over their single swap analysis
and beats the previous best approximation guarantee of 8 by Swamy [2014].

We also present a matching lower bound showing that for every p ≥ 1, there are instances
of Budgeted Red-Blue Median with local optimum solutions for the p-swap heuristic whose
cost is 5 + Ω

(
1
p

)
times the optimum solution cost. Thus, our analysis is tight up to the lower

order terms. In particular, for any ε > 0 we show the single-swap heuristic admits local optima
whose cost can be as bad as 7− ε times the optimum solution cost.

1998 ACM Subject Classification F.2.2 Computations on Discrete Structures, G.2.1 Combina-
torial Algorithms, I.5.3 Clustering

Keywords and phrases Approximation Algorithms, Local search, Red-Blue Meidan

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.75

1 Introduction

Facility location problems crop up in many areas of computing science and operations research.
A typical problem involves a set of clients and possible facility locations located in a metric
space. The goal is to open some facilities and connect each client to some open facility as
cheaply as possible. These problems become difficult when there are costs associated with
opening facilities or additional constraints that ensure we cannot open too many facilities.

We study Budgeted Red-Blue Median, one particular instance of this type of problem.
Here we are given a set of clients C, a set of red facilities R, and a set of blue facilities
B. These are located in some metric space with metric distances d(i, j) ≥ 0 for any two
i, j ∈ C ∪R ∪ B. Additionally, we are given two integer bounds kr ≤ |R| and kb ≤ |B|. The
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goal is to select/open kr red facilities R and kb blue facilities B to minimize

cost(R ∪B) :=
∑
j∈C

min
i∈R∪B

d(i, j) .

The classic NP-hard k-Median problem appears as a special case when, say, R = ∅. Thus,
Budgeted Red-Blue Median is NP-hard. In this paper, we focus on approximation
algorithms for Budgeted Red-Blue Median, in particular on local search techniques.

1.1 Previous Work
The study of Budgeted Red-Blue Median from the perspective of approximation al-
gorithms was initiated by Hajiaghayi, Khandekar, and Kortsarz [9], where they obtain a
constant-factor approximation by a local search algorithm that iteratively tries to swap one
red and/or one blue facility in the given solution. The do not specify the constant in their
analysis, but it looks to be greater than 8. Citing [9] as inspiration, Krishnaswamy et al.
studied a generalization of Budgeted Red-Blue Median known as Matroid Median
[10]. Here, a matroid structure is given over the set of facilities and we can only open a set
of facilities if they form an independent set in the matroid. They obtain a constant-factor
approximation for Matroid Median through rounding an LP relaxation. This was later
refined to an 8-approximation by Swamy [15].

The special case of k-Median is a classic optimization problem and has received a lot
of attention from both theoretical and practical communities. The best approximation
guarantee known so far is 2.675 by Byrka et al. [5], who build heavily on the breakthrough
work of Li and Svensson for the problem [11].

While local search techniques have been used somewhat infrequently in the design of
approximation algorithms in general, it may be fair to say that they have seen the most
success in facility location problems. For almost 10 years, the best approximation for k-
Median was based on a local search algorithm. Arya et al. [3] show that a multiple-swap
heuristic leads to a (3 + ε)-approximation for k-Median for any constant ε > 0. This analysis
was simplified in [8], which inspires much of our analysis.

Another textbook application of local search is a (1 +
√

2)-approximation for Uncapac-
itated Facility Location [3, 6]. Local search has been very helpful in approximating
Capacitated Facility Location, the first constant-factor approximation was by Pál,
Tardos, and Wexler [13] and the current best approximation is a (5 + ε)-approximation by
Bansal, Garg, and Gupta [4]. In the special case when all capacities are uniform, Aggarwal
et al. [1] obtain a 3-approximation. Even more examples of local search applied to other
facility location variants can be found in [2, 7, 8, 12, 14].

1.2 Our Results and Techniques
We show that a multiswap generalization of the local search algorithm considered in [9] is a
(5 + ε)-approximation for Budgeted Red-Blue Median. That is, for a value p say the
p-swap heuristic is the algorithm that, upon given an initial feasible solution, tries to swap
up to p facilities of each colour. If no such swap produces a cheaper solution, it terminates.
Otherwise, it iterates with the now cheaper solution. Algorithm 1 in Section 2 gives the
formal description of our algorithm.

Say that a solution is locally optimum for the p-swap heuristic if no cheaper solution
can be found by swapping up to p facilities of each colour. Let OPT denote the cost of an
optimum solution. Our main result is the following.
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I Theorem 1. Any locally optimum solution for the p-swap heuristic has cost at most
(5 +O(1/√p)) ·OPT .

Using standard techniques (briefly mentioned in Section 2), this readily leads to a polynomoial-
time approximation algorithm. By choosing p = θ(1/ε2) we have the following.

I Theorem 2. For any constant ε > 0, Budgeted Red-Blue Median admits a polynomial-
time (5 + ε)-approximation.

This improves over the 8-approximation for Budgeted Red-Blue Median in [15].
We emphasize the approximation guarantee from Theorem 1 result is for Budgeted

Red-Blue Median only, the 8-approximation in [15] is still the best approximation for
the general Matroid Median problem. Indeed, [10] show that Matroid Median cannot
be approximated within any constant factor using any constant number of swaps even in
the generalization of Budgeted Red-Blue Median where there can be a super-constant
number facility colours.

We also present a lower bound that matches our analysis up the lower order terms.

I Theorem 3. For any integers p, ` with 1 ≤ p ≤ `/2, there is an instance of Budgeted
Red-Blue Median that has a locally-optimum solution for the p-swap heuristic with cost at
least

(
5 + 2

p −
10p
`+1

)
·OPT .

By letting `→∞ but keeping p fixed, we see that the p-swap heuristic cannot guarantee
a ratio better than 5 + 2

p . So, Theorem 1 is tight up to lower order terms. Also, for p = 1 we
see that the single-swap heuristic analyzed in [9] is not better than a 7-approximation.

Local search techniques are typically analyzed by constructing a set of candidate test
swaps where some facilities in the optimum solution are swapped in and some from the local
optimum are swapped out in order to generate a useful inequality. One of the main features
of the k-Median analysis in [3] and [8] is that such swaps can be considered that ensure each
facility in the global optimum is swapped in once and, by averaging some swaps, each facility
in the local optimum is swapped out to the extent of at most 1 + O(ε) times. Each time
a facility in the local optimum is swapped out, they pay an additional 2 times the global
optimum cost for some clients to reassign them.

We obtain only a 5 + ε approximation because we end up swapping out some facilities in
the local optimum solution to the extent of 2 +O(ε), thereby paying an additional 2 +O(ε)
more than in the k-Median analysis. Ultimately, this is because some of our initial swaps
generate inequalities that depend positively on client assignment costs in the local optimum.
So we consider additional swaps that do not introduce any more positive dependence on the
local optimum to cancel them out.

This issue was also encountered in the analysis in [9]. In some sense, we are showing
that this is the only added difficulty over the standard k-Median analysis. However, the
averaging arguments we use are a bit more sophisticated than the analysis for k-Median.

1.3 Organization
Section 2 presents the algorithm and describes some useful notation. In particular, it presents
a way to decompose the global and local optimum solution into structured groups that are
examined in the analysis. Section 3 analyzes the quality of locally optimum solutions to
prove Theorem 1. Section 4 proves Theorem 3 with an explicit construction of a bad example.
We conclude with some remarks in Section 5.

ICALP 2016
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2 Notation and Preliminaries

Say that a feasible solution is a pair (R,B) of subsets R ⊆ R and B ⊆ B with |R| = kr and
|B| = kb. Algorithm 1 describes the local search algorithm.

Algorithm 1 The p-Swap Heuristic for Budgeted Red-Blue Median
Let (R,B) be an arbitrary feasible solution.
while there is some feasible solution (R′, B′) with |R−R′| ≤ p

and |B −B′| ≤ p and cost(R′ ∪B′) < cost(R ∪B) do
(R,B)← (R′, B′)

end while
return (R,B)

While a single iteration of Algorithm 1 can be executed in nO(p) (where n is the total
number of locations in the problem), it may be that the number of iterations is not polynomi-
ally bounded. We can employ a well-known trick to ensure it does terminate in a polynomial
number of steps while losing only another ε in our analysis. The idea is to perform the update
only if cost(R′ ∪B′) ≤ (1− ε/∆) · cost(R ∪B) where ∆ is some quantity that is polynomial
in the input size. Our analysis is compatible with this approach; one can check that the
total weight of all inequalities we consider is polynomially bounded. For example, see [3] for
details. We do not focus any further on this issue, and instead work toward analyzing the
cost of the solutions produced by Algorithm 1 as it is stated.

From now on, let S = R ∪ B with R ⊆ R, B ⊆ B denote an arbitrary local optimum
solution. That is, there is no cheaper solution (R′, B′) with |R−R′| ≤ p and |B −B′| ≤ p.
Also fix a global optimum solution O = R∗ ∪ B∗ where R∗ ⊆ B and B∗ ⊆ B. We assume
that S ∩O = ∅. This is without loss of generality, as we can duplicate each facility location
in the input and say that S use the first copies and O use the second copies. It is easy to
verify that S is still a local optimum solution.

To help analyze the cost, we will introduce some notation. For any client j ∈ C, let sj ∈ S
denote the local optimum facility is closest to j and oj ∈ O denote the global optimum
facility that is closest to j, breaking ties arbitrarily. For brevity, let cj = d(j, sj) be the cost
of assigning j in the local optimum and c∗j = d(j, oj) the cost of assigning j in the global
optimum. Thus, cost(S) =

∑
j∈C cj and cost(O) =

∑
j∈C c

∗
j . For any facility i∗ ∈ O we let

N∗(i∗) = {j ∈ C : oj = i∗} and for any i ∈ S we let N(i) = {j ∈ C : sj = i}.
Let φ : O → S map each facility in O to its nearest facility in S, breaking ties arbitrarily.

For i ∈ S, let deg(i) = |φ−1(i)|. If deg(i) 6= 0, let cent(i) be the facility in φ−1(i) that is
closest to i, again breaking ties arbitrarily.

We also borrow some additional notation from [9].

I Definition 4 (very good, good, bad facility). A facility i ∈ S is very good if deg(i) = 0, good
if no i∗ ∈ φ−1(i) has the same colour as i, and bad otherwise.

The analysis in [9] divides S ∪O into blocks that satisfy certain properties. We require
slightly stronger properties than their blocks guarantee. We also use a slightly different notion
of what it means for some i ∈ S to be a leader. The required properties are summarized in
the following lemma, which also serves as our definition of a block. The proof can be found
in the full version of our work.

I Lemma 5. We can partition S ∪O into blocks T satisfying the following properties.
|T ∩R| = |T ∩R∗| and |T ∩B| = |T ∩B∗|.
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For every i ∈ S ∩ T , we also have φ−1(i) ⊆ T . For every i∗ ∈ O ∩ T , we have φ(i∗) ∈ T .
There is some facility î ∈ T ∩ S with deg(̂i) > 0 designated as the leader that has the
following properties. Every other i ∈ T ∩ S − {̂i} is either good or very good and all good
i ∈ T ∩ S − {̂i} have the same colour.

We will focus on analyzing one block at a time to prove the approximation guarantee.
This provides us with a cleaner way to describe the test swaps and the additional structure
will help handle the inevitable cases where we have to swap out some i ∈ S but cannot swap
in all of φ−1(i). For example, this can happen if all blue facilities i ∈ B have deg(i) being
very large (so all deg(i′) = 0 facilities are red). We will still need to close some of them in
order to open facilities in B∗ when generating bounds via test swaps.

Before delving into the analysis we note the following two bounds. The first has been
used extensively in local search analysis and was first proven in [3] and the second was proven
in [9].

I Lemma 6. For any j ∈ C, d(j, φ(oj))− cj ≤ 2c∗j .

I Lemma 7. For any j ∈ C, d(j, cent(φ(oj)))− cj ≤ 3c∗j + cj.

Finally, we often consider operations that add or remove a single item from a set (usually
to exclude the leader î of a block from some parts of the analysis). To keep the notation
cleaner we let A+ i and A− i refer to A ∪ {i} and A− {i}, respectively, for sets of facilities
A and a single facility i.

3 Multiswap Analysis

Recall that we are assuming S = R ∪ B is a locally optimum solution with respect to the
heuristic that swaps at most p facilities of each colour and that O = R∗ ∪B∗ is some globally
optimum solution. We assume p = t2 + 1 for some sufficiently large integer t.

Focus on a single block T . For brevity, let T ∗R = T ∩R∗ and T ∗B = T ∩B∗ denote the red
and blue facilities from the optimum solution in T . Similarly let TR = T ∩R and TB = T ∩B
denote the red and blue facilities from the local optimum solution in T . The main goal of
this section is to demonstrate the following inequality for group T .

I Theorem 8. For some absolute constant γ that is independent of t, we have

0 ≤
∑

j∈N∗(T∗
R
∪T∗

B
)

[(
1 + γ

t

)
c∗j − cj

]
+

∑
j∈N(TR∪TB)

[(
4 + γ

t

)
· c∗j + γ

t
· cj
]
.

Theorem 1 follows by summing over all associated inequalities for the various blocks.
The analysis breaks into a number of cases based on whether T ∗R and/or T ∗B are large. In

each of the cases, we use the following notation and assumptions. Let î denote the leader in
T . Without loss of generality, assume all other i ∈ TB ∪TR with deg(i) > 0 are blue facilities.
Let B = {i ∈ TB − î : deg(i) > 0}, so cent(B) denotes {i∗ ∈ T ∗B ∪ T ∗R : cent(φ(i∗)) = i∗}.
Figure 1 illustrates this notation.

The swaps we consider in these cases are quite varied, but we always ensure we swap in
cent(i) whenever some i ∈ S ∩ T with deg(i) > 0 is swapped out. This way, we can always
bound the reassignment cost of each client j by using either Lemma 6 or Lemma 7.
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î̂i

cent(̂i)cent(̂i)

i1i1 i2i2 i3i3 i4i4

cent(i1)cent(i1) cent(i2)cent(i2) cent(i3)cent(i3) cent(i4)cent(i4)

Figure 1 Illustration of a block T . The facilities on the top are in T ∩O and the facilities on the
bottom are in T ∩S. The directed edges depict φ, and the thick edges connect cent(i) to i. The facili-
ties coloured black lie in B, the facilities coloured white lie in R, and the facilities coloured grey could
either lie in B orR. Note that B = {i1, i2, i3, i4} and cent(B) = {cent(i1), cent(i2), cent(i3), cent(i4)}.
The layout of the figure is suggestive of how the block was constructed by adding “good” groups to
the initial bad group in the procedure of generating blocks. The details of this procedure can be
found in the full version of our work.

3.1 Case |T ∗R| ≤ t2, |T ∗B| ≤ t

In this case, we simply swap out all of TR ∪ TB and swap in all of T ∗R ∪ T ∗B . Because R ∪B
is a locally optimum solution and because this swaps at most t2 facilities of each colour, we
have:

0 ≤ cost(S ∪ (T ∗R ∪ T ∗B)− (TR ∪ TB))− cost(S) .

Of course, after the swap each client will move to its nearest open facility. As is typical in
local search analysis, we explicitly describe a (possibly suboptimal) reassignment of clients
to facilities to upper bound this cost change.

Each j ∈ N∗(T ∗R ∪ T ∗B) is moved from sj to oj which incurs an assignment cost change of
exactly c∗j − cj . Each j ∈ N(TR∪TB)−N∗(T ∗R∪T ∗B) is moved to φ(oj). Note that φ(oj) 6∈ T
so it remains open after the swap. By Lemma 6, the assignment cost change is bounded by
2c∗j . Every other client j that has not already been reassigned remains at sj and incurs no
assignment cost change. Thus,

0 ≤
∑

j∈N∗(T∗
R
∪T∗

B
)

(c∗j − cj) +
∑

j∈N(TR∪TB)

2c∗j

which is even better than what we are required to show for Theorem 8.
We note that the analysis Section 3.4 could be extended to subsume this analysis (with a

worse constant), but we have included it here anyway to provide a gentle introduction to
some of the simpler aspects of our approach.

3.2 Case |T ∗R| ≥ t2 + 1, |T ∗B| ≥ t + 1
We start by briefly discussing some challenges in this case. In the worst case, all of the
ib ∈ TB have deg(i) being very large. The issue here is that we need to swap in each i∗b ∈ T ∗B
in order to generate terms of the form c∗j − cj for j with oj = i∗b . But this requires us to swap
out some ib. Since we cannot swap in all of φ−1(ib), we resort to only swapping in cent(ib).

Any client j with sj being closed and oj ∈ φ−1(ib) − cent(ib) cannot be reassigned to
φ(oj), so we send it to cent(φ(oj)) and use Lemma 7 to bound the reassignment cost. This
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leaves a term of the form +cj , so we have to consider additional swaps involving −cj in
their bound to cancel this out. These additional swaps cause us to lose a factor of roughly 5
instead of 3.

Another smaller challenge is that we do not want to swap out the leader î ∈ T ∩ S for a
variety of technical reasons. However, since |T ∗R| and |T ∗B | are both big, this is not much of
a problem. When we swap in some i∗ ∈ T ∩ O, we will just swap out a randomly chosen
facility in T ∩ S − î of the same colour. The probability any particular facility is swapped in
this way is very small. Ultimately, each facility in T ∩ S − î will be swapped out at most
2 +O(1/t) times in expectation.

To be precise, we partition the set of clients in N(TR ∪ TB) into two groups:

Cbad := N(B) ∩N∗(T ∗R − cent(B)) and Cok := N(TR ∪ TB − î)− Cbad .

We have omitted N (̂i) from Cok because we will not close î.
The first group is dubbed bad because there may be a swap where both sj and φ(oj)

are closed yet oj is not opened so we can only use Lemma 7 to bound their reassignment
cost. In fact, some clients j ∈ Cgood may also be involved in such a swap, but we are able to
use an averaging argument for these clients to show that the resulting +sj term from using
Lemma 7 appears with negligible weight and does not need to be cancelled.

We consider the following two types of swaps to generate our initial inequality.
For each i∗b ∈ T ∗B, choose a random ib ∈ TB − î. If ib 6∈ B (i.e. deg(ib) = 0) then simply
swap out ib and swap in i∗b . If ib ∈ B then swap out ib and a random ir ∈ TR − î and
swap in i∗b and cent(ib).
For each i∗r ∈ T ∗R − cent(B), swap in i∗r and swap out a randomly chosen ir ∈ TR − î.

By choosing facilities at “random”, we mean uniformly at random from the given set and
this should be done independently for each invokation of the swap.

I Lemma 9.

0 ≤
∑

j∈N∗(T∗
B
∪T∗

R
)

(
t+ 1
t
· c∗j − cj

)
+
∑
j∈Cok

[(
2 + 5

t

)
c∗j + 1

t
cj

]
+ t+ 1

t

∑
j∈Cbad

(3c∗j + cj) .

Proof. For brevity, we will let βR = |TR|
|TR−î|

and βB = |TB |
|TB−î|

. Note that βR, βB ≤ t+1
t and

that either βR = 1 or βB = 1.
First consider a swap of the first type that swaps in {i∗b , cent(ib)} and swaps out {ib, ir}

for some ib with deg(ib) > 0. Because R ∪B is a local optimum the cost of the solution does
not decrease after performing this swap. We provide an upper bound on the reassignment
cost.

Each j ∈ N∗({i∗b , cent(ib)}) is reassigned from sj to oj and incurs an assignment cost
change of c∗j − cj . Every client j ∈ N({ib, ir}) that has not yet been reassigned is first moved
to φ(oj). If this φ(oj) remains open, assign j to it. By Lemma 6, the assignment cost for j
increases by at most 2c∗j . If φ(oj) is not open then φ(oj) = ib (because deg(ir) = 0) so we
instead move j to cent(φ(oj)) = cent(ib). Lemma 7 shows the assignment cost increases by
at most 3c∗j + cj . This can only happen if sj ∈ {ir, ib} and φ(oj) = ib.

Combining these observations and using slight overestimates, we see

0 ≤
∑

j∈N∗({i∗
b
,cent(ib)})

(c∗j − cj) +
∑

j∈N({ib,ir})
φ(oj)6=ib

2c∗j +
∑

j∈N({ib,ir})
φ(oj)=ib

(3c∗j + cj). (1)
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Now, if the random choice for ib in the swap has deg(ib) = 0, then swapping {ib} out and
{i∗b} in generates an even simpler inequality:

0 ≤
∑

j∈N∗(i∗
b

)

(c∗j − cj) +
∑

j∈N(ib)

2c∗j . (2)

To see this, just reassign each j ∈ N∗(i∗b) from sj to oj and reassign the remaining j ∈ N(ib)
from sj to φ(oj) (which remains open because deg(ib) = 0) and use Lemma 6.

Consider the expected inequality that is generated for this fixed i∗b . We start with some
useful facts that follow straight from the definitions and the swap we just performed.

Any j ∈ N∗(cent(B)) has oj being opened with probability 1
|TB−î|

.
Any j ∈ Cbad has sj being closed with probability 1

|TB−î|
.

Any j ∈ Cok −N(TR) has sj being closed with probability 1
|TB−î|

. When this happens, if
oj is not opened then φ(oj) must be open. That is, sj ∈ Cok means oj ∈ T ∗B ∪ cent(B).

Furthermore, if oj ∈ T ∗B then φ(oj) = î (by the structure of block T ) which remains open.
If oj ∈ cent(B) then either φ(oj) was not closed, or else cent(φ(oj)) = oj was opened.
Any j ∈ Cok ∩N(TR) has sj being closed with probability |B|

|TB−î|
· 1
|TR−î|

. If oj and φ(oj)
are closed, then we move j to cent(φ(oj)). However, this can only happen with probability

1
|TB−î|

· 1
|TR−î|

since it must be that φ(oj) is the blue facility that was randomly chosen
to be closed.

Averaging (1) over all random choices and using some slight overestimates we see

0 ≤
∑

j∈N∗(i∗
b

)

(c∗j − cj) + 1
|TB − î|

·
∑

j∈N∗(cent(B))

(c∗j − cj)

+ 1
|TB − î|

 ∑
j∈Cbad

(3c∗j + cj) +
∑

j∈Cok−N(TR)

2c∗j


+ 1
|TB − î|

· 1
|TR − î|

∑
j∈Cok∩N(TR)

(|B|2c∗j + 3c∗j + cj).

Summing over all i∗b ∈ T ∗B (i.e. over all swaps of the first type) shows

0 ≤
∑

j∈N∗(T∗
B

)

(c∗j − cj) + βB ·
∑

j∈N∗(cent(B))

(c∗j − cj) (3)

+βB ·

 ∑
j∈Cbad

(3c∗j + cj) +
∑

j∈Cok−N(TR)

2c∗j


+ βB

|TR − î|
·

∑
j∈Cok∩N(TR)

((2|B|+ 3)c∗j + cj).

Next, consider the second type of swap that swaps in some i∗r ∈ T ∗R − cent(B) and swaps
out some randomly chosen ir ∈ TR − î. Over all such swaps, the expected number of times
each ir ∈ TR − î is swapped out is |T

∗
R|−|B|
|TR−î|

= βR − |B|
|TR−î|

. In each such swap, we reassign
j ∈ N∗(i∗r) from sj to oj and every other j ∈ N(ir) from j to φ(oj) which is still open
because deg(ir) = 0. Thus,

0 ≤
∑

j∈N∗(T∗
R
−cent(B))

(c∗j − cj) +
(
βR −

|B|
|TR − î|

)
·

∑
j∈Cok∩N(TR)

2c∗j .
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Scaling this bound by βB , adding it to (3), and recalling |TR| ≥ t2 shows

0 ≤
∑

j∈N∗(T∗
B

)

(c∗j − cj) + βB ·
∑

j∈N∗(T∗
R

)

(c∗j − cj)

+βB ·

 ∑
j∈Cbad

(3c∗j + cj) +
∑

j∈Cok−N(TR)

2c∗j+


+βB ·

∑
j∈Cok∩N(TR)

[(
2βR + 3

t2

)
· c∗j + 1

t2
· cj
]
.

Recall that βB , βR ≤ t+1
t and also βB · βR ≤ t+1

t to complete the proof of Lemma 9. J

Our next step is to cancel terms of the form +cj in the bound from Lemma 9 for j ∈ Cbad .
To do this, we again perform the second type of swap for each i ∈ T ∗R − cent(B) but reassign
clients a bit differently in the analysis.

I Lemma 10.

0 ≤
∑
j∈Cbad

(c∗j − cj) + t+ 1
t
·

∑
j∈Cok∩N(TR)

2c∗j .

Proof. For each i∗r ∈ T ∗R−cent(B), swap i∗r in and a randomly chosen ir ∈ Tr− î. Rather than
reassigning all j ∈ N∗(i∗r) to i∗r , we only reassign those in Cbad ∩N∗(i∗r). Since deg(ir) = 0
then any other j ∈ N(ir) can be reassigned to φ(oj) and which increases the cost by at most
2c∗j .

Summing over all i∗r , observing that Cbad ⊆ T ∗R − cent(B), and also observing that each
j ∈ Cok has sj closed at most βR ≤ t+1

t times in expectation, we derive the inequality stated
in Lemma 10. J

Adding the bounds stated in Lemmas 9 and 10 shows that Theorem 8 holds in this case.

3.3 Case |T ∗R| ≥ t2 + 1, |T ∗B| ≤ t

In this case, we start by swapping in all of T ∗B and swapping out all of TB (including, perhaps,
î if it is blue). In the same swap, we also swap in cent(TB) and swap out a random subset of
the appropriate number of facilities in TR − î. This is possible as |TR − î| ≥ t ≥ |cent(TB)|.
By random subset, we mean among all subsets of Tr − î of the necessary size, choose one
uniformly at random.

As with Section 3.2, we begin with a definition of bad clients that is specific to this case:

Cbad := N(TB) ∩N∗(T ∗R − cent(TB)) .

Clients j ∈ Cbad have both sj and φ(oj) being closed yet oj is not opened and we cannot
make this negligible with an averaging argument.

I Lemma 11.

0 ≤
∑

j∈N∗(T∗
B
∪cent(TB))

(c∗j − cj) + 1
t

∑
j∈N(TR)

(3c∗j + cj) +
∑
j∈Cbad

(3c∗j + cj)
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Proof. After the swap, reassign every j ∈ N∗(T ∗B ∪ cent(TB)) from sj to oj , for a cost change
of c∗j − cj . Every other j that has sj being closed is first reassigned to φ(oj). If this is
not open, then further move j to cent(oj) which must be open because the only facilities
i ∈ TR ∪ TB with deg(i) > 0 that were closed lie in TB and we opened cent(TB).

If j ∈ N(TB)− Cbad then oj ∈ T ∗B ∪ cent(TB) and we have already assigned j to oj . If
j ∈ Cbad then we have moved j to cent(φ(oj)) and the cost change is 3c∗j + cj by Lemma 7.

Finally, if j ∈ N(TR) then we either move j to φ(oj) or to cent(φ(oj)) if φ(oj) is not open.
The worst-case bound on the reassignment cost is 3c∗j + cj by Lemmas 6 and 7. However,
note that sj ∈ TR is closed with probability at most 1/t because we closed a random subset
of Tr − î of size at most t and |Tr − î| ≥ t2. J

We still need to swap in T ∗R − cent(TB). For each such facility i∗r , swap in i∗r and swap
out a randomly chosen ir ∈ TR− î. The analysis of these swaps is nearly identical to analysis
of the second type of swaps in Section 3.2, so we omit it and merely summarize what we get
by combining the resulting inequalities with the inequality from Lemma 11.

I Lemma 12.

0 ≤
∑

j∈N∗(T∗
R
∪T∗

B
)

(c∗j − cj) +
∑

j∈N(TR)

(
t2 + 1
t2

· 2c∗j + 1
t
· (3c∗j + cj)

)
+
∑
j∈Cbad

(3c∗j + cj) .

We cancel the +cj terms for j ∈ Cbad with one further collection of swaps. For each
i∗r ∈ T ∗R − cent(TB) we swap in i∗r and a randomly chosen ir ∈ TR − î. The following lemma
summarizes a bound we can obtain from these swaps. It is proven in essentially the same
way as Lemma 10.

I Lemma 13.

0 ≤
∑
j∈Cbad

(c∗j − cj) + t2 + 1
t2

·
∑

j∈N(TR)

2c∗j .

Adding this to the bound from Lemma 12 and recalling Cbad ⊆ N(TB) shows

0 ≤
∑

j∈N∗(T∗
R
∪T∗

B
)

(c∗j − cj) +
∑

j∈N(TR∪TB)

(
t2 + 3t+ 1

t2
· 4c∗j + 1

t
· cj
)
.

3.4 Case |T ∗R| ≤ t2, |T ∗B| ≥ t + 1
Because φ−1(i) ⊆ T ∗R and deg(i) > 0 for each i ∈ B, then |B| ≤ t2 as well. We will swap all
of T ∗R for all of TR, but we will also swap some blue facilities at the same time. Let B′ = B

and let B′ be an arbitrary subset of T ∗B of size |B|.
If î 6∈ TR ∪ B′ then add î to B′. If cent(̂i) 6∈ T ∗R ∪ B

′ then add cent(̂i) to B′. At this
point,

∣∣∣|B′| − |B′|∣∣∣ ≤ 1 Add an arbitrary i∗b ∈ T ∗B −B
′ to B′ or ib ∈ TB −B′ to B′ to ensure

|B′| = |B′|.
We begin by swapping out TR∪B′ and swapping in T ∗R∪B

′. The following list summarizes
the important properties of this selection, the first point emphasizes that this swap will not
improve the objective function since S is a locally optimum solution for the p-swap heuristic
where p = t2 + 1.
|B′| = |B′| ≤ t2 + 1 and |T ∗R| ≤ t2.
T ∗R was swapped in and TR was swapped out.
For each i ∈ TR ∪ TB with deg(i) > 0, i was swapped out and cent(i) was swapped in.
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Figure 2 Illustration of the bad locality gap. Blue facilities are depicted with black and red
facilities are depicted with white. The top facilities are the global optimum and the bottom are
the local optimum (all of R and B is depicted in the picture). Each client is represented by a small
black dot. There are p2 · (` + 1) clients in the right group, one for each pair of local and global
optimum facilities in the group. The metric is the shortest path metric of the presented graph, if
two locations are not connected in the picture then their distance is a very large value. Every edge
in the right-most group with p2(`+ 1) clients has length 1. Recall β = 2p and α = (`− p)2p.

The following describes precisely the clients j that will be moved to cent(φ(oj)) in our
analysis.

Cbad := [N(TR ∪B′)−N∗(T ∗R ∪B
′)] ∩ {j : φ(oj) ∈ TR ∪B′} .

The following bound is generated from swapping out TR ∪B′ and swapping in T ∗R ∪B
′

and follows from the same arguments we have been using throughout the paper.

I Lemma 14.

0 ≤
∑

j∈N∗(T∗
R
∪B′)

(c∗j − cj) +
∑

j∈N(TR∪B′)−Cbad

2c∗j +
∑
j∈Cbad

(3c∗j + cj) .

Next, let κB : (T ∗B − B
′) → (TB − B′) be an arbitrary bijection of the remaining blue

facilities that were not swapped. For every i∗b ∈ T ∗B −B
′, consider the effect of swapping in i∗b

and swapping out κB(i∗b). Note that every facility ib swapped out in this way has deg(ib) = 0.
So we can derive two possible inequalities from such swaps.

0 ≤
∑

j∈N∗(i∗
b

)

(c∗j − cj)+
∑

j∈N(κB(i∗
b

))

2c∗j and 0 ≤
∑

j∈N∗(i∗b)∩Cbad

(c∗j −cj)+
∑

j∈N(κB(i∗b))

2c∗j . (4)

The second inequality follows from only reassigning clients j ∈ N∗(i∗b) ∩ Cbad from sj to oj .
Adding the bound in Lemma 14 to the sum of both inequalities over all i∗b ∈ T ∗B − B

′

and noting that κB(T ∗B −B) ∩ (TR ∪B′) = ∅, we see

0 ≤
∑

j∈N∗(T∗
R
∪T∗

B
)

(c∗j − cj) +
∑

j∈N(TR∪TB)

4c∗j .

4 Locality Gaps

Here we prove Theorem 3. Let p, ` be integers satisfying p ≥ 1 and ` ≥ 2p. Consider
the instance with kr = p + 1 and kb = p(` + 1) depicted in Figure 2. Here, β = 2p and
α = β · (`− p).
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The cost of the local optimum solution is α · (p+ 1) + β · p · `+ p2(`+ 1) and the cost of
the global optimum solution is simply p2(`+ 1). Through some careful simplification, we see
the local optimum solution has cost at least 5 + 2

p −
10p
`+1 times the global optimum solution.

To complete the proof of Theorem 3, we must verify that the presented local optimum
solution indeed cannot be improved by swapping up to p facilities of each colour. The
straightforward details appear in the full version of this paper.

5 Conclusion

We have demonstrated that a natural p-swap local search procedure for Budgeted Red-
Blue Median is a (5 +O(1/√p))-approximation. This guarantees a better approximation
ratio than the single-swap heuristic from [9], which we showed may find solutions whose cost
is (7− ε) ·OPT for arbitrarily small ε. Our analysis is essentially tight in that the p-swap
heuristic may find solutions whose cost is (5 + 2

p − ε) ·OPT .
More generally, one can ask about the p-swap heuristic for the generalization where there

are many different facility colours. If the number of colours is part of the input then any local
search procedure that swaps only a constant number of facilities in total cannot provide good
approximation guarantees [10]. However, if the number of different colours is bounded by a
constant, then perhaps one can get better approximations through multiple-swap heuristics.

However, generalizing the approaches taken with Budgeted Red-Blue Median to
this setting seems more difficult; one challenge is that it is not possible to get such nicely
structured blocks. It would also be interesting to see what other special cases of Matroid
Median admit good local-search based approximations. For example, the Mobile Facility
Location problem studied in [2] is another special case of Matroid Median that admits a
(3 + ε)-approximation through local search.

Finally, the locality gap of the p-swap heuristic for k-Median is known to be 3 + 2
p

[3] and we have just shown it is at least 5 + 2
p for Budgeted Red-Blue Median. Even

if the multiple-swap heuristic for the generalization to a constant number of colours can
provide a constant-factor approximation, this constant may be worse than the alternative
8-approximation obtained through Swamy’s general Matroid Median approximation [15].
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Abstract
We present a probabilistic polynomial-time reduction from the lattice Bounded Distance Decoding
(BDD) problem with parameter 1/(

√
2 · γ) to the unique Shortest Vector Problem (uSVP) with

parameter γ for any γ > 1 that is polynomial in the lattice dimension n. It improves the BDD
to uSVP reductions of [Lyubashevsky and Micciancio, CRYPTO, 2009] and [Liu, Wang, Xu
and Zheng, Inf. Process. Lett., 2014], which rely on Kannan’s embedding technique. The main
ingredient to the improvement is the use of Khot’s lattice sparsification [Khot, FOCS, 2003]
before resorting to Kannan’s embedding, in order to boost the uSVP parameter.
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Problem, Sparsification
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1 Introduction

A (full-rank) lattice L in dimension n is the set of all integer linear relations of n linearly
independent vectors b1, . . . ,bn ∈ Qn. The minimum λ1(L) quantifies the discreteness of L:
the smallest Euclidean distance between two distinct lattice vectors is λ1(L). A standard
computational problem on lattices is the so-called Bounded Distance Decoding problem
(BDDα): Given as inputs a basis B = (bi)i of a lattice L and a vector t ∈ Qn (called
target vector) within distance α · λ1(L) of L, the goal is to find a vector b ∈ L closest to t.
Here α > 0 is a problem parameter, which may be a function of the lattice dimension n. The
hardness of BDD was initially studied in the context of linear codes by Vardy in [22], and
later in the context of lattices by Liu et al. in [14].

In communications theory, BDD models the task of decoding in the context of continuous
channels with white Gaussian noise [6]. The information to be transmitted is stored in a
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lattice vector, and the receiver should recover this vector from a noisy version thereof. The
knowledge of the signal-to-noise ratio implies a bound on the distance from the noisy vector
to the lattice. Decoding a white Gaussian noise channel can be seen as a version of BDD in
which the distance to the lattice follows a prescribed distribution.

In cryptography, BDD is closely related to the Learning With Errors problem (LWE) [19],
which serves as a security foundation for numerous cryptographic primitives. When the
number of requested LWE samples is bounded (which is most often the case in cryptographic
constructions), LWE may be viewed as a variant of BDD in which the offset from t to L is
Gaussian (like in the decoding context), and L is randomly sampled.

A common approach to solve BDD is via Kannan’s embedding technique [9, Se. 6]. The
principle is to map the offset between t and a closest lattice vector to t, to a shortest
non-zero vector in an (n+ 1)-dimensional lattice. Lattice reduction [12, 20] and short lattice
vector enumeration [8, 7] may then be used to find shortest non-zero vectors in the (n+ 1)-
dimensional lattice. Formally, Kannan’s embedding technique is a reduction from BDD to a
variant of the Shortest Vector Problem (SVP) in which the pair of shortest non-zero vectors
in the lattice under scope are known to be much shorter than any other lattice vector not
parallel to them. For a lattice L, we define the second minimum λ2(L) as the minimal radius
of a zero-centered ball that contains two or more linearly independent vectors from L. The
unique Shortest Vector Problem (uSVPγ) of parameter γ ≥ 1 consists in finding a shortest
non-zero vector in a lattice L described by an input basis B = (bi)i, under the promise
that λ2(L) ≥ γ · λ1(L). This reduction was analyzed by Lyubashevsky and Micciancio
in [15], who showed that BDD1/(2γ) reduces to uSVPγ for any γ ≥ 1. Later, Liu et al. [13]
refined the analysis of Lyubashevsky and Micciancio and proved that BDD1/γ1 reduces
to uSVPγ with γ1 =

√
3/(4− γ2)γ + 1, for any γ ∈ (1, 1.9318). It is folklore [3, 17] that the

analysis can be tightened even more, resulting in a proof that BDD1/γ1 reduces to uSVPγ
with γ1 = (2γ2 + 2bγcbγ + 1c)/(2bγc+ 1), for any γ ≥ 1. For the sake of completeness, we
give a proof in Appendix A.1 of the full version. Note that in the case of γ = 1 (and in fact
all integral γ), all three results are identical: BDD1/2 reduces to uSVP1.

Our result. We give a probabilistic polynomial-time reduction from BDD1/(
√

2γ) to uSVPγ ,
for any γ ≥ 1 that is polynomially bounded as a function of n. As clearly visible in Figure 1,
this reduction supersedes all prior results with respect to the BDD problem parameter. In
particular, we reduce BDD1/

√
2 to uSVP1. Our improvement comes with two weaknesses: the

reduction is probabilistic and restricted to polynomially bounded γ. Like prior reductions, the
dimension of the uSVP instance is only one more than the dimension of the BDD instance.

Technical overview. We illustrate our improvement with the case of BDD1/2. Given the
BDD1/2 instance (B, t), Kannan’s embedding consists in constructing the following uSVP1
instance:

B′ =
(

B t
0 d

)
∈ Qn+1,

with d = dist(t,L) ≤ λ1(L)/2, where L is the lattice spanned by B (in fact, the reduction
does not know d, but this is a mere technical problem which can be handled easily, as
explained in Section 2). If c denotes a closest vector to t in L then it may be proved that
the vector s′ = ((c− t)T,−d)T is a shortest non-zero vector of lattice L′ of basis B′. Now,
let s denote a shortest non-zero vector in L and assume that t is exactly halfway between c
and c + s. Then both s′ and s′+ (sT, 0)T in L′ have norm

√
2 ·d but are linearly independent.
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Figure 1 Comparison between prior reductions from BDDα to uSVPγ , and ours.
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Figure 2 An example of sparsification for BDD1/2 (here w ∈ Lp,z/L).

This shows that we can have λ2(L′) = λ1(L′) and obtain a uSVPγ instance with γ = 1. This
is a limitation of Kannan’s embedding and hence of its analyzes.

We modify the reduction to increase the ratio λ2(L′)/λ1(L′). To achieve this, we use
lattice sparsification on L. It provides a full-rank sublattice Lsparse ⊆ L that still contains a
closest vector c ∈ L to t, but no other close-by vector. We consider the vectors of L whose
coordinates with respect to a basis B satisfy a linear equation modulo some prime integer p:
Lsparse = Lp,z = {b ∈ L : 〈z,B−1b〉 = 0 mod p}, for some vector z ∈ Znp . This technique was
first introduced by Khot in [10, 11]. To guarantee that vectors in L remain in the sparsified
set with probability close to 1/p, a uniform coset of Lp,z (modulo L) was considered in [4, 5].
Technically, we use the formulation from [21] of the latter variant.

The aim of sparsification in our context is to keep a closest vector c ∈ L to t, and remove
as many as nearby vectors of L as possible. After sparsification, vector c remains in the
sparse lattice (with non-negligible probability), and all other remaining vectors are much
further away from t. For BDD1/2, a simple example of sparsification is shown in Figure 2:
there are two points simultaneously closest to the target point; then sparsification is used to
remove one of the closest points (either is fine); in the sparse lattice, the closest vector is
much closer than any other lattice vector. In Figure 2, after sparsification, all the lattice
vectors labelled with filled dots are kept, e.g., vector c + w, and other vectors labelled with
hollow dots are removed, e.g., vector c + s + w.

The probability of keeping a vector of L in the sparsified set is essentially 1/p. As we want
the probability of keeping c to be non-negligible, we are hence restricted to taking p ≤ poly(n).
As a result, we cannot remove more than polynomially many close-by vectors, because each
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one individually is removed with probability ≈ 1 − 1/p (a precise statement is given in
Lemma 8). To assess the limitation of our reduction, we are hence interested in the largest
value of α such that for any lattice L and any vector t, there are at most poly(n) vectors
within distance α · λ1(L) from t. The quantity α · λ1(L) can be viewed as the worst-case
list-decoding radius. Interestingly, this problem was studied by Ajtai [1] and Micciancio [16]
in the context of proving hardness of SVP. Proofs of the following two statements may be
found in [18, Chap. 5]:

For any lattice L and vector t, there are ≤ 2n vectors of L within distance λ1(L)/
√

2
from t.
For any α > 1/

√
2, there exists ε > 0 such that for any sufficiently large n we can find

an n-dimensional lattice L and a vector t such that there are ≥ 2nε vectors of L within
distance α · λ1(L) from t.

The overall reduction consists in first sparsifying L to Lp,z and shifting t (as we use a coset
of Lp,z), and then resorting to Kannan’s embedding. To increase the ratio λ2(L′)/λ1(L′), we
decrease the bottom-right entry in B′ from d to k · d for some k < 1. Geometrically, this
has the effect of limiting the contribution of the extra dimension. This idea was already
used in [13], but we decrease k even further, to 1/poly(n). An additional difficulty, related
to this decrease of k, is that short vectors in L′ may be obtained by using multiples of t.
Let m ≥ 2 and d ∈ L closest to mt. Then, vector ((d−mt)T,mkd)T may be very short (if
very unlucky, it has norm mkd). We remove such annoying vectors with sparsification.

Open problems. In [15], Lyubashevsky and Micciancio considered the relative hardness
of BDD and uSVP. They obtained a reduction from BDD1/(2γ) to uSVPγ , and a reduction
from uSVPγ to BDD1/γ (for all γ ≥ 1). This led them to conjecture that it may be possibly
to show that (i)- uSVPγ/2 reduces to BDD1/γ , or (ii)- BDD1/γ reduces to uSVPγ , or (iii)-
uSVPγ reduces to BDD1/(

√
2γ) and BDD1/(

√
2γ) reduces to uSVPγ . By showing the second

half of (iii), (i) becomes very unlikely.
Independently, it would be interesting to make our reduction deterministic and let it work

even for parameters γ that are not ≤ poly(n).

Notation. For a lattice L, a point t, a radius r, we define B(t, r) = {x : ‖x− t‖ ≤ r}. We
let dist(t,L(B)) denote the distance between t and lattice L(B). We always represent the
basis of lattice in column form. If S is a finite set, we let #S denote its cardinality.

2 Reminders

In this section, we recall basic facts on lattices and lattice problems. We then consider lattice
sparsification and its use in the context of BDD instances.

2.1 Lattice problems
We refer the reader to [18] for an introduction to the computational aspects of lattices.

I Definition 1 (Lattice). An n-dimensional lattice L ⊆ Qm (m ≥ n) is a discrete additive
subgroup of Rm. The lattice L is the set of all integral linear combinations of n linearly
independent basis vectors B = {b1, · · · ,bn} ⊆ Qm. In other words, we have

L(B) =

∑
i∈[n]

uibi : u ∈ Zn
 .



S. Bai, D. Stehlé, and W. Wen 76:5

I Definition 2 (Successive minima). For any lattice L, the i-th minimum λi(L) is the radius
of the smallest ball with center 0 and containing i linearly independent lattice vectors:

λi(L) = inf{r : dim(span(L ∩ B(0, r))) ≥ i}.

In this work, we investigate the respective hardness of uSVPγ and BDDα defined below,
when the lattice dimension n goes to infinity. The problem parameters γ and α can be
functions of n.

I Definition 3 (Unique Shortest Vector Problem (uSVPγ)). Let γ ≥ 1. Given as input a
lattice basis B such that λ2(B) ≥ γ · λ1(B), the goal is to find a non-zero vector v ∈ L(B)
of norm λ1(L(B)). The Shortest Vector Problem (SVP) corresponds to γ = 1.

In the literature (in [15], for example), uSVP is sometimes be defined with a strict lower
bound on λ2(B). We allow equality (as in [13]), as it is more convenient in our proofs. Note
that Lemma 5 below implies that these two variants are equivalent.

I Definition 4 (Bounded Distance Decoding (BDDα)). Let α > 0. Given as inputs a lattice
basis B and a vector t such that dist(t,L(B)) ≤ α · λ1(B), the goal is to find a lattice vector
v ∈ L(B) closest to t.

Note that in some works, the range of α is restricted to (0, 1/2). This is to guarantee that
there is exactly one element of L in the ball of radius α · λ1(L) centered on t. The problem
is well-defined even for large α, and in this work we actually consider α ≥ 1/2.

In the next lemma, it is stated that BDDα is equivalently hard for any parameter α′ that
is within a factor (1− 1/n)c of α, for any constant c.

I Lemma 5 ([15, Cor. 2]). For any α > 0, any constant c > 0, there is a polynomial-time
reduction from BDDα to BDDα(1−1/n)c .

2.2 Approximation results
Given as input an n-dimensional lattice basis B ∈ Qn×n, it is possible to find a non-zero
vector that has norm at most 2n/2 · λ1(L(B)) in time polynomial in n and also the bit-sizes
of the entries of B, by using the LLL algorithm [12]. Further, by using the Babai round-off
algorithm [2] with inputs an n-dimensional lattice basis B ∈ Qn×n and a target vector t ∈ Qn,
one obtains an approximation of the distance between t and L(B) within a factor 2n/2 in
time polynomial in n and also the bit-sizes of the entries of B and t.

I Lemma 6 ([12, Prop. 1.6]). There exists a polynomial-time algorithm that, given as input
an n-dimensional lattice basis B ∈ Qn×n, outputs ` ∈ λ1(L) · [1, 2n/2).

I Lemma 7 ([2, Thm. 3.1]). There exists a polynomial-time algorithm that, given as input an
n-dimensional lattice basis B ∈ Qn×n and a target vector t ∈ Qn, outputs d ∈ dist(t,L(B)) ·
[1, 2n/2).

We will rely on much tighter approximations to λ1(L(B)) (resp. dist(t,L(B))) than
provided by Lemmata 6 and 7. We explain here why we may assume that we know ` ∈
λ1(L(B)) · [1, 1/(1− 1/n)) (resp. d ∈ dist(t,L(B)) ∈ [1, 1/(1− 1/n))).

Our reduction is from BDD, whose candidate solutions can be compared in polynomial
time. Assume the reduction finds the optimal solution in one case among polynomially many,
but that we do not know which one. Then we may call the reduction this polynomially many
times, and keep a best solution among the returned ones. Concretely, our reduction will be
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proved correct if we know a tight approximation to λ1(L(B)) and dist(t,L(B)), where (B, t)
is the BDD instance. We can assume without loss of generality that we have these tight
approximations, as the interval [1, 2n/2) may be covered by polynomially many intervals of
the form x · [1, 1/(1− 1/n)) for well-chosen rational x’s.

2.3 Lattice sparsification
Our techniques rely on lattice sparsification, and, more concretely, on the following lemma.

I Lemma 8 ([21, Cor. 2.16]). For any prime p, collection of vectors v1, · · · ,vN ∈ Znp \ {0},
and x /∈ {vi}i≤N , we have

1
p
− N

p2 −
N

pn−1 ≤ Pr
z,u←↩U(Znq )

[
∀i, 〈z,vi + u〉 6= 0 mod p

〈z,x + u〉 = 0 mod p

]
≤ 1

p
+ 1
pn
.

The upper bound in Lemma 8 is not used in this work, but we keep it to show that
the difference between the upper and lower bound is small, and thus that the lower bounds
is almost tight. Lemma 8 leads to the definition of a sublattice that will be used in our
reduction from BDD to uSVP. The lemma below explains that we can efficiently compute a
basis of the sublattice.

I Lemma 9. There exists a polynomial-time algorithm which, given as inputs a basis
B ∈ Qn×n of an n-dimensional lattice L, an integer p and a vector z ∈ Znp , outputs a basis
Bp,z of the lattice Lp,z = {x ∈ L | 〈z,B−1x〉 = 0 mod p}.

Proof. According to the definition of the lattice Lp,z, we have

〈z,y〉 = 0 mod p,

where y = B−1x and x ∈ Lp,z. We can obtain a basis S of the kernel y over Zn. We compute
the column Hermite normal form of

[
S pIn

]
∈ Zn×2n; and obtain the nonzero columns

S′ ∈ Zn×n. The columns of S′ generate the lattice orthogonal to z (mod p). In the end, we
compute Bp,z = BS′, which is a basis for the lattice Lp,z. J

Below, we state that for any two lattice vectors in L with distance smaller than p · λ1(L)
where p is an integer, the coordinates of these two lattice vectors differ modulo p.

I Lemma 10. For any basis B, any integer p and any pair of lattice vectors x 6= v with
‖x− v‖ < p · λ1(L(B)), we have that B−1x 6= B−1v mod p.

Proof. For all lattice vector a, we let ã denote its coordinate vector under the basis B.
Assume by contradiction that x̃ = ṽ mod p. Equivalently, we have x− v ∈ p · L(B).

Combined with x 6= v, we have ‖x − v‖ ≥ p · λ1(L), which is in contradiction with
‖x− v‖ < p · λ1(L). As a result, we have x̃ 6= ṽ mod p. J

The proof from [18] of the lemma below is by induction. It goes fast over a subtle counting
argument when reducing the problem in dimension n+ 1 to dimension n. We briefly recall
the proof and give more explanations on the counting argument in Appendix A.2 of the full
version.

I Lemma 11 ([18, Thm. 5.2]). For any n-dimensional lattice L and any vector t ∈ Qn, we
have #L ∩ B(t, λ1(L)/

√
2) ≤ 2n.
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We will use the above three lemmas in the following way to tackle BDD. Consider the
coordinate vectors (with respect to some arbitrary basis) of all lattice vectors in B(t, r)
with r = λ1(L)/

√
2 and some arbitrary target vector t. First, according to Lemma 10 with

p > 2
√

2, we can obtain that one of the coordinate vectors differs from all the others modulo p.
Further, by Lemma 8, a uniformly chosen vector z over Zp is orthogonal to exactly one of
the coordinate vectors (shifted by another uniformly chosen vector u) with non-negligible
probability. Assume that this orthogonal coordinates vector is the coordinates vector of a
closest lattice vector to t: this occurs with non-negligible probability as #L ∩ B(t, r) ≤ 2n.
We can consider the sublattice Lp,z, which contains just this BDD solution and none of the
other vectors of L ∩ B(t, r). This will help us ensuring a large gap between the first two
minima of the uSVP lattice in the BDD to uSVP reduction.

Note that u is necessary, as otherwise some superfluous vectors (including vector 0) could
be multiples of the solution vector and hence always stay in Lp,z if the solution vector does.

3 Reducing BDD1/(
√

2γ) to uSVPγ(1+ε)

In this section, we use a uSVPγ(1+ε) solver with ε = Ω(1/n) to solve BDD1/(
√

2γ).

I Theorem 12. Let γ(n) ≤ poly(n). There is a probabilistic polynomial-time reduction from
BDD1/(

√
2γ) to uSVPγ(1+ε), where ε = Ω(1/n).

Thanks to Lemma 5, it suffices to reduce BDD(1−1/n)/(
√

2γ) to uSVPγ(1+ε). Let us first
describe the reduction.

Algorithm 1. The BDD(1−1/n)/(
√

2γ) to uSVPγ(1+ε) reduction.

Input: a basis B = {bi}i∈[n] of an n-dimensional lattice L ⊆ Qn, and a target point
t ∈ Qn.

Output: a lattice point c such that ‖c− t‖ = dist(t,L).
0. Guess d0 ∈ [d, d/(1−1/n)) and `0 ∈ [`, `/(1−1/n)), where d = dist(t,L) and ` = λ1(L)

(see Section 2.2).
1. Compute p the smallest prime greater than 4γn2.

Sample z,u uniformly and independently in Znp .
Compute w = Bū ∈ L, such that ū = u mod p and ‖t + w‖ ≥ (n+ 1)`0/

√
2.

Use the algorithm of Lemma 9 to compute a basis Bp,z of Lp,z = {b ∈ L : 〈z,B−1b〉 =
0 mod p}.

2. Set k = 1/(n− 1). Define

B′ =
(

Bp,z t + w
0 kd0

)
.

3. Run the uSVPγ(1+ε) solver on input B′. Let s′ = ((s′1)T, s′2)T be its output. Output
s′1 + t.

It may be checked that the above algorithm runs in polynomial time. The rest of the
section is devoted to proving its correctness.

In this reduction, we are given a BDD(1−1/n)/(
√

2γ) instance (B, t). Let c ∈ L be a
closest vector to t. In order to construct a uSVP instance, our strategy is to use lattice
sparsification to keep only one closest vector c + w for some lattice shift w closest to t + w
(the shift vector w comes from Lemma 8). As the sparsification results in a lattice, we
not only keep c + w, but also the m · (c + w)’s for all m ≤ γn. Simultaneously, all other
vectors inside the balls with centers {m · (t + w)}m≤γn and radius λ1(L)/

√
2 are regarded
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as superfluous vectors and removed through sparsification. For the first γ balls, we have
m · (c + w) ∈ B(m · (t + w), λ1(L)/

√
2). We can keep exactly one vector inside every ball

with sparsification over these balls. However, for m > γ, all closest points to t may fall out
of the corresponding ball, but may end up in another relevant ball: vector i · (c + w) may
belong to B(j · (t + w), λ1(L)/

√
2) for some j 6= i. As a consequence, there can be more than

one lattice vector inside a ball, which may result in no gap between first two minima of the
uSVP oracle input lattice. In order to avoid this, we make every two balls far away from
each other by choosing w such that t + w is long.

I Lemma 13. Consider a basis B of an n-dimensional lattice L, a vector c ∈ L and a vector
t ∈ Rn such that ‖c− t‖ ≤ r = λ1(L)/(

√
2γ) for some γ > 0. Let p prime with p ≥ n+ 1.

For any z ∈ Znp , We have

Pr
u,z←↩U(Znp )

[
c + w ∈ Lp,z ∩ B(t + w, γ · r)

Z · (c + w) ⊇ Lp,z ∩ ∪
i≤γn
B(i · (t + w), γ · r)

]
≥ 1

p
− N

p2 −
N

pn−1 ,

where w is arbitrary such that B−1w = u mod p and N = #L ∩ ∪i≤γnB(i · (t + w), γ · r).
Further, if w is chosen such that ‖t + w‖ > γ(n+ 1)r, we have, for all i ∈ [γn],

i · (c + w) 6∈
⋃

j 6=i,j∈[γn]

B (j · (t + w), γ · r) .

Proof. For i ∈ [γn], we define Ni = #L ∩ B(i · t, γ · r) \ {i · c} and {vij}j∈[Ni] = (L ∩ B(i ·
t, γ · r)) \ {i · c}. For any v ∈ L, we use ṽ to denote the coordinate of v under the basis
B. We claim that, with probability ≥ 1/p − N/p2 − N/pn−1, the vector z is orthogonal
(modulo p) to c̃, and at the same time not orthogonal to any ṽij for i ∈ [γn] and j ∈ [Ni].

We have, for all i ∈ [γn] and j ∈ [Ni],

‖i · c− vij‖ ≤ i · ‖c− t‖+ ‖i · t− vij‖ ≤ (n+ 1)(γr) = n+ 1√
2
· λ1(L).

By choice of p, this is smaller than p ·λ1(L). Thanks to Lemma 10, we have i · c̃ 6= ṽij mod p.
Moreover, as p is prime and p ≥ γn+ 1 > i, we have c̃ 6= 1

i · ṽij mod p.
Now we apply Lemma 8 with c̃ and { 1

i · ṽij}i∈[γn],j∈[Ni]. We have

Pr
z,u←↩U(Znp )

[
∀i, j : 〈z, 1

i · ṽij + u〉 6= 0 mod p
〈z, c̃ + u〉 = 0 mod p

]
≥ 1

p
− N

p2 −
N

pn−1 .

As p is prime and sufficiently large, the inequality 〈z, 1
i · ṽij + u〉 6= 0 mod p is equivalent

to 〈z, ṽij + i · u〉 6= 0 mod p. Therefore

Pr
z,u←↩U(Znp )

[
∀i, j : 〈z, ṽij + i · u〉 6= 0 mod p

〈z, c̃ + u〉 = 0 mod p

]
≥ 1

p
− N

p2 −
N

pn−1 .

This proves the first claim of the lemma.
Let i 6= j ≤ γn. Then, by the triangle inequality and the assumption on w, we have:

‖i · (c + w)− j · (t + w)‖ ≥ |j − i| · ‖t + w‖ − i‖c− t‖ > γ(n+ 1)r − (γn)r = γr.

This completes the proof of the lemma. J
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t

λ1(L(B))/
√
2

c

w
c+w

t+w

2(c+w)

2(t+w)

t c

λ1(L(B))/
√
2

w
t+w

c+w

2(t+w)

2(c+w)

3(t+w)

3(c+w)

Figure 3 Sparsification for a BDD1/
√

2 instance (left) and for a BDD1/(2
√

2) instance (right).

As we have p > 4γn2 ≥ 2N (thanks to Lemma 11), with non-negligible probability, none
of the vectors of L belonging to the γn balls is in the sparser lattice Lp,z, except possibly
those in {i · (c + w)}i∈[γn]. In the rest of the reduction analysis, we assume that we are in
this situation and do not repeatedly state that this occurs with non-negligible probability.

As an illustration of Lemma 13, we include Figure 3. In the case of γ = 1 (left subfigure),
there are several plain balls with radius λ1(L), centered in t, t + w and 2(t + w). The dashed
balls illustrate the distance between i · (c + w) and i · (t + w) for all i ∈ [γn]. We can see that
c + w (within the dashed ball) is inside the plain ball, and 2 · (c + w) (within the dashed ball)
is outside of its corresponding plain ball. Similarly, in the case of γ = 2 (right subfigure),
vector i · (c + w) is outside of its corresponding plain ball only when i > 2. Note in particular
that in the case of γ = 2, vector 0 is not the closest point to the target vector, but belongs to
the plain ball with center t. Thus vector 0 should be removed via sparsification. As it is kept
in any sparsified lattice, this is impossible to achieve. This illustrates why center t is shifted
to a new point t + w (then the shift w of 0 may be removed via sparsification). In both
figures, the red crosses denote the points that are removed from the lattice via sparsification.

In Step 2 of the reduction, we construct a basis B′ of an (n+ 1)-dimensional lattice L′ by
using Kannan’s embedding technique. In Step 3, we call the uSVPγ(1+ε) oracle with input
basis B′. The correctness of the reduction is provided by Lemmata 14, 15 and 16.

Any vector in lattice L′ can be written as b′ = ((b+m(t+w))T,mkd0)T with b ∈ Lp,z and
m ∈ Z. We claim that the vector s′ = (((c + w)− (t + w))T,−kd0)T = ((c− t)T,−kd0)T is a
shortest non-zero vector in L′ and also that λ2(L′)/λ1(L′) = γ(1 + Ω(1/n)). Thus ±s′ will be
output by the uSVPγ(1+ε) oracle. We can then obtain the vector c = (c+w)−(t+w)+t ∈ L.
In the following, we give lower bounds for the norm of b′ = ((b + m(t + w))T,mkd0)T

not parallel to s′, which depend on the value of m. Without loss of generality, we restrict
ourselves to m ≥ 0.

The following lemma is analogous to the ‘m = 0 case’ of the Lyubashevsky-Micciancio
reduction [15]. Note that the lower bound in the statement is essentially 2γ2.

I Lemma 14. If m = 0 and b′ 6= 0, then ‖b′‖2/‖s′‖2 ≥ 2γ2/(1 + 1/(n− 1)2).

ICALP 2016
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Proof. As m = 0 and b′ 6= 0, we must have b 6= 0. As a result, we have

‖b′‖2 = ‖b‖2 ≥ λ2
1(L) ≥ 2γ2d2

(1− 1
n )2 ≥ 2γ2d2

0.

Thus, in this case, we have the gap

‖b′‖2

‖s′‖2 ≥
2γ2d2

0
d2 + d2

0k
2 ≥

2γ2

1 + k2 = 2γ2

1 + 1
(n−1)2

.

J

The second lemma bounds the gap for small m’s. It is where our improvement over prior
reductions stems from. Note that the lower bound in the statement is essentially γ2.

I Lemma 15. If m ≤ γn and b′ is linearly independent with s′, then ‖b′‖2/‖s′‖2 ≥
(γ2 + 1/n2)/((1− 1/n)2 + 1/(n− 1)2).

Proof. By Lemma 13, we have

c + w ∈ Lp,z
⋂ ⋃

i≤γn

B
(
i · (t + w), λ1(L)√

2

)
⊆ Z · (c + w).

Thus, as b 6∈ Z · (c + w) (by assumption), we have

‖b′‖2 = ‖b−m · (t + w)‖2 +m2d2
0k

2 ≥ λ2
1(L)
2 +m2d2

0k
2 ≥

(
dγ

1− 1
n

)2
+m2d2

0k
2.

Thus, in this case, we have the gap

‖b′‖2

‖s′‖2 ≥
( dγ

1− 1
n

)2 +m2d2
0k

2

d2 + d2
0k

2 ≥
( dγ

1− 1
n

)2 +m2d2k2

d2 + ( d
1− 1

n

)2k2 =
γ2 + m2

n2

(1− 1
n )2 + 1

(n−1)2

.

The gap is an increasing function in m and hence it suffices to consider m = 1. J

The third lemma bounds the gap for larger m’s. This corresponds to the ‘large m case’
of the Lyubashevsky-Micciancio reduction. As in the previous case, the lower bound in the
statement is essentially γ2.

I Lemma 16. If m > γn, then ‖b′‖2/‖s′‖2 ≥ γ2/((1− 1/n)2 + 1/(n− 1)2).

Proof. For any b ∈ L, we have ‖b′‖2 ≥ m2k2d2
0. Thus, in this case, we have the gap

‖b′‖2

‖s′‖2 ≥
m2k2d2

0
d2 + k2d2

0
≥ m2k2d2

d2 + ( d
1− 1

n

)2k2 = m2

(n− 1)2 + n
(n−1)2

.

The gap is an increasing function in m and hence it suffices to consider the m = γn. J

Now, we complete the proof of Theorem 12. According to Lemmata 14, 15 and 16, the
uSVP gap satisfies, for large enough n

λ2
2(L′)
λ2

1(L′) ≥ min
(

2γ2

1 + 1
(n−1)2

,
γ2 + 1

n2

(1− 1
n )2 + 1

(n−1)2

,
γ2

(1− 1
n )2 + 1

(n−1)2

)
≥ γ2

(
1 + Ω

(
1
n

))
.
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T
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a1

a2

x

y

z

Figure 4 Geometric illustration of the reduction.

We include Figure 4 to geometrically illustrate the overall reduction. For convenience,
we take k = −1/(n − 1) in the figure. We use filled dots to label points of 2-dimensional
lattice L, and hollow dots to label points of 3-dimensional lattice L′ that are not in L (recall
that L ⊆ L′). With Kannan’s embedding technique, the offset between the vectors of L (e.g.,
c + w) and the shifted target t + w are mapped to L′ (e.g., ((c− t)T,−kd0)T). Thanks to
sparsification, all the points of L′ belonging to the drawn cylinder (of height |2γnkd0|) are
multiples of the shortest non-zero vector s′ = ((c − t)T,−kd0)T, e.g., ±((c − t)T,−kd0)T

and ±(2(c− t)T,−2kd0)T. All other points in L′ that are linearly independent from s′ lie
outside of the cylinder, e.g., ((a1 − (t + w))T,−kd0)T and ((a2 − (t + w))T,−2kd0)T. This
cylinder forces the second minimum λ2(L′) to be large, and, more concretely, larger than
γλ1(L′). This corresponds to Lemma 15 (Lemma 14 handles the points of L and Lemma 16
handles the points of L′ whose z-component is large).

Acknowledgments. We thank Steven Galbraith, Daniele Micciancio and Jinming Wen for
helpful discussions.
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A Parallel Repetition Theorem for All Entangled
Games∗

Henry Yuen†
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Abstract
The behavior of games repeated in parallel, when played with quantumly entangled players, has
received much attention in recent years. Quantum analogues of Raz’s classical parallel repetition
theorem have been proved for many special classes of games. However, for general entangled
games no parallel repetition theorem was known.

We prove that the entangled value of a two-player game G repeated n times in parallel is at
most cGn−1/4 logn for a constant cG depending on G, provided that the entangled value of G is
less than 1. In particular, this gives the first proof that the entangled value of a parallel repeated
game must converge to 0 for all games whose entangled value is less than 1. Central to our proof
is a combination of both classical and quantum correlated sampling.

1998 ACM Subject Classification F.1.2. Modes of Computation

Keywords and phrases parallel repetition, direct product theorems, entangled games, quantum
games

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.77

1 Introduction

A two-player one-round game G is played between a referee and two isolated players (who we
will call Alice and Bob), who communicate only with the referee and not between themselves.
The referee first samples a question pair (x, y) from some distribution µ and sends x to Alice
and y to Bob. Alice and Bob respond with answers a and b respectively, and they win if
V (x, y, a, b) = 1 for some predicate V .

The maximum winning probability of Alice and Bob in a game G is a quantity that
depends on what resources they are allowed to use. If their answers are a deterministic
function of their received question (and perhaps some public random string), then we call
their maximum winning probability the classical value of G, denoted by val(G). However
quantum mechanics allows Alice and Bob to share a resource called entanglement, which
gives rise to correlations that cannot be reproduced with public randomness only. When
Alice and Bob make use of entanglement to play a game G, we call their maximum winning
probability the entangled value of G, denoted by val∗(G). For all games, the classical value
is at most the entangled value. Cast in the language of games, the famous Bell’s Theorem
states that there exist games G where those values are different: val∗(G) > val(G) [3].

The Parallel Repetition Question is the following natural and basic question: given a
game G with value less than 1, what is the value of the game Gn, wherein Alice and Bob
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play n independent instances of G played in parallel? More formally, in the game Gn,
the referee samples n independent question pairs (x1, y1), . . . , (xn, yn) from µ, and sends
(x1, . . . , xn) to Alice, and sends (y1, . . . , yn) to Bob. Alice responds with answer tuple
(a1, . . . , an), Bob responds with (b1, . . . , bn), and the players win if for all coordinates i ∈ [n],
V (xi, yi, ai, bi) = 1.

The difficulty in relating val(Gn) with val(G) and n is that even though each of the n
instances ofG inGn are independent, Alice and Bob need not play each instance independently.
For example, since Alice receives (x1, . . . , xn) all at once, she can use some question xj to
answer the i’th game, and Bob can do something similar. Because of such strategies, for
every k there are games G such that val(Gk) = val(G) < 1. This shows that the naive
expectation that val(Gn) = val(G)n is false.

The naive expectation is not too far from the truth, however: Raz’s Parallel Repetition
Theorem [19] states that

val(Gn) ≤ (1− (1− val(G))3)cGn,

where cG is a constant depending on G. In particular, as n goes to infinity, the classical
success probability goes to 0 exponentially fast in n (provided that val(G) < 1). The proof is
highly nontrivial, although it has been simplified and improved upon in recent years [12, 4].
Raz’s Parallel Repetition Theorem has heavily influenced complexity theory, most notably in
the areas of hardness of approximation [11] and communication complexity [13, 5].

One open question, which we call the Quantum Parallel Repetition Conjecture, asks
whether an analogue of Raz’s Parallel Repetition Theorem holds in the setting of entangled
players. The Quantum Parallel Repetition Conjecture has been resolved for many special
cases of games, including free games [6, 14, 7], projection games [9], XOR games [8], unique
games [15], anchored games [1], and fortified games [2]. However, the general case has
remained elusive. Not only do we not know of a quantum analogue of Raz’s Parallel
Repetition Theorem, it hasn’t even been shown that if val∗(G) < 1, then val∗(Gn) goes
to 0 as n goes to infinity! Could quantum entanglement allow players to counteract the
value-decreasing effect of parallel repetition?

In this paper we prove that for all nontrivial entangled games G (i.e. val∗(G) < 1), the
entangled value of Gn must converge to 0. This resolves a weaker version of the Quantum
Parallel Repetition Conjecture for general games. Quantitatively, our result is the following:

I Theorem 1 (Main Theorem). Let G be a game involving two entangled players with
val∗(G) = 1− ε. Then for all integer n > 0,

val∗(Gn) ≤ c · sG logn
ε17n1/4

where c is a universal constant and sG is the bit-length of the players’ answers in G.

This shows that the entangled value of Gn must decay at a polynomial rate with n. The full
Quantum Parallel Repetition Conjecture states that the rate of decay is in fact exponential,
and this remains an important open problem.

1.1 Previous work
There has been extensive work on the parallel repetition of entangled games. As stated
earlier, past results have applied to various special classes of games, but there was no result
that covered all games.
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The results coming closest to the Quantum Parallel Repetition Conjecture are the work of
Kempe and Vidick [16] and Bavarian, Vidick, and Yuen [1, 2]. Rather than proving parallel
repetition theorems for general games, these works prove general gap amplification theorems,
which are closely related. Instead of showing that for games G where val∗(G) < 1 that
val∗(Gn) goes to 0 with n, the game G is first converted to another game H where analyzing
val∗(Hn) is much more tractable. Gap amplification is a technique used in complexity theory
and cryptography to amplify the difference between two cases of a problem (usually called
the completeness and soundness cases).

Kempe and Vidick showed that given an arbitrary game G, one can efficiently transform
it to another game H with the following properties: if the classical value of G is 1 (meaning
that there is a perfect deterministic strategy), then val(Hn) = 1 (and thus val∗(Hn) = 1). If
the entangled value of G is less than 1, then the entangled value of Hn decays at a polynomial
rate n−Ω(1). In this tranformed game H, in addition to playing the game G, the referee
will randomly choose to ask “consistency” questions to check that the players give the same
answers on the same questions1. Thus [16] prove gap amplification for general games – with a
caveat. Because of the random consistency checks in the game H, the “quantum completeness”
is not preserved: even if val∗(G) = 1, it is not necessarily the case that val∗(H) = 1.

More recently, Bavarian, Vidick, and Yuen [1, 2] gave better gap amplification results
for entangled games2. They showed that for general games G, one can apply a simple
transformation to obtain another game H with the following properties:
1. If val∗(G) = 1, then val∗(Hn) = 1.
2. If val∗(G) < 1, then val∗(Hn) ≤ exp(−Ω(n)).

Note that the transformation from G to H preserves quantum completeness, and that
when val∗(G) < 1, the entangled value of the repeated game decays exponentially. Like [16],
the transformations of [1, 2] construct H by adding auxiliary questions to the game G.
The transformation given in [1] is called anchoring, and the trasformation in [2] is called
fortification. The latter transformation gives a quantum generalization of the fortification
technique of [17] for classical games. The quantitative aspects of repeated anchored games
are different from those of fortified games, but both yield general gap amplification theorems
for entangled games.

The results of Bavarian, Vidick and Yuen show that, while we do not know if the Quantum
Parallel Repetition Conjecture holds for all games G, we do know that it holds for a class of
games that effectively captures the general case, in fact with exponential decay similar to
Raz’s theorem. Since the main application of parallel repetition in complexity theory and
quantum information is gap amplification, the results of [1, 2] effectively settle the Quantum
Parallel Repetition Conjecture – as far as applications are concerned.

But as a scientific question, the original Quantum Parallel Repetition Conjecture is a
fundamental and basic problem about the power of entanglement in games. Prior to this
work, one might have wondered whether there exists a game G such that val∗(G) < 1, but
there is some constant δ such that for infinitely many n there is a nefarious entangled strategy
for Gn with success probability at least δ? Here we prove that this cannot happen.

1.2 Proof overview
Theorem 1 is proved via reduction: if val∗(Gn) is too large, then from an optimal entangled
strategy for Gn we can construct an entangled strategy for the single-shot game G that wins

1 This transformation is to due to Feige and Kilian [10], who proved a similar result for classical games.
2 They also obtain general gap amplification results for games with more than two players.
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with probability strictly greater than val∗(G), which would be a contradiction.
In more detail, suppose that val∗(G) = 1− ε. If the success probability of the players in

Gn is dramatically larger than our target bound (which in our case is ∼ n−O(1)), then we
can identify a set of coordinates C ⊆ [n] that is not too large, but has the property that for
a uniformly random coordinate i ∈ [n]− C,

Pr(Win game i |Win games in C) > 1− ε/2 (1)

where here the probability is both over the randomness of the questions in Gn, the randomness
of the players’ entangled strategy, and the randomly chosen index i. Thus it would be
advantageous if Alice and Bob could play the single-shot game G by “embedding” it in a
randomly chosen ith coordinate of Gn, and playing Gn conditioned on the event that the
games indexed by C have been won. If they could do this, then by (1), the probability they
win the ith coordinate of Gn, and hence the original game G, is at least 1− ε/2 > val∗(G),
which would be a contradiction.

If the players are classical (i.e. use deterministic strategies), this embedding is performed
in the following way. Alice and Bob are first given questions (Xi, Yi) for the i’th game. Based
on their received question, Alice and Bob jointly sample a dependency-breaking variable R.
The essential features of this dependency-breaking variable are:
1. Usefulness:3 PAiBi|RXiYiWC

= PAi|RXiWC
· PBi|RYiWC

2. Sampleability: PR|XiYiW ≈ PR|XiWC
≈ PR|YiWC

where “≈” means closeness in statistical distance. Here, WC denotes the event that the
players win all the games in C. PAiBi|RXiYiWC

denotes the probability distribution of Alice’s
and Bob’s answers in the ith coordinate when playing Gn, conditioned on the dependency-
breaking variable R, their received questions for the ith game (Xi, Yi), and the event WC .
The “Usefulness property” states that, the players’ answers in the ith round are independent
of each other, conditioned on R, their own questions, and WC . Thus, given R distributed
according to PR|XiYiWC

, Alice can sample Ai on her own, because she possesses R and Xi,
and similarly Bob can sample Bi on his own, because he possesses knowledge of R and
Yi. By (1), the probability that V (Xi, Yi, Ai, Bi) = 1 will be strictly greater than val∗(G),
wherein we would arrive at a contradiction.

As the name suggests, the “sampleability property” implies that Alice and Bob can
(approximately) jointly sample the variable R. Even though the distribution PR|XiYiWC

may
depend on both players’ questions, the sampleability property shows R, up to some error,
only depends on Xi or Yi, but not both. Using the correlated sampling procedure of [12],
Alice and Bob can jointly sample R from PR|XiYiW with high probability.

At a high level, the proof of our quantum parallel repetition theorem is similar. However
instead of sampling a dependency-breaking variable R, the players will need to sample a
dependency-breaking state. It is an entangled state |Ψxiyi

〉 that depends on both Alice’s and
Bob’s questions (xi, yi), and satisfies similar Usefulness and Sampleability properties:
1. Usefulness: The distribution of measurement outcomes by making local measurements

on |ΨXiYi
〉 is equal to PAiBi|XiYiWC

.
2. Sampleability: There exist states |ΦXi

〉 and |ΓYi
〉 such that |ΨXiYi

〉 ≈ |ΦXi
〉 ≈ |ΓYi

〉
where “≈” means closeness in `2 distance, and the statements hold on average over XiYi.

3 We will let P denote the probability distribution that describes the joint distribution of the ran-
dom variables relevant in an execution of the strategy for Gn, including the players’ questions
X1, . . . , Xn, Y1, . . . , Yn, the players’ answers A1, . . . , An, B1, . . . , Bn, and the dependency-breaking
variable R.
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The Usefulness property states that if on input (xi, yi), Alice and Bob were to share
the entangled state |Ψxiyi

〉, then they could make local measurements to obtain outcomes
distributed according to PAiBi|XiYiWC

, which would mean that their success probability
would be Pr(Win i |Win C), which is greater than val∗(G), an impossibility.

The Sampleability property implies that on input (xi, yi) Alice and Bob are actually
able to approximately prepare the state |Ψxiyi

〉. This is because of the quantum correlated
sampling procedure of Dinur, Steurer, and Vidick, who used it to prove a parallel repetition
theorem for entangled projection games [9]. It is entirely analogous to Holenstein’s correlated
sampling procedure: Alice has a description of a state |ΦXi

〉 that’s close to |ΨXiYi
〉, and Bob

has a description of a state |ΓYi〉 that is also close to |ΨXiYi〉. Via local transformations on
preshared quantum entanglement, Alice and Bob can generate an approximation of |ΨXiYi

〉.
Combined with the Usefulness property, Alice and Bob are then able to win the ith game
with too high probability.

It is not difficult to define states that satisfy the Usefulness property. Consider an execution
of the entangled strategy for Gn. In the beginning, the players share some entangled state
|ψ〉, and upon obtaining questions (x1, . . . , xn) and (y1, . . . , yn), the players apply local
measurements depending on these questions to |ψ〉 to obtain answer tuples (a1, . . . , an) and
(b1, . . . , bn). One can define an ensemble of states {|Ψxi,yi〉} that are, roughly speaking,
derived from the post-measurement state of the players conditioned on the players having
won all the games in C (that is, conditioned on the event WC), and having received a specific
question pair (xi, yi) in the i’th coordinate. Such an ensemble of states would satisfy the
Usefulness property.

However, the primary challenge is achieving Sampleability property, that is, to show the
states |Ψxi,yi

〉 only depend on one player’s question, but not both. One major obstacle to
proving the Sampleability property is the following: in the players’ strategy for Gn, Bob
(say) may elect to “print” his entire vector of questions (y1, . . . , yn) into the entangled state
|ψ〉. He can do this by applying a local unitary operation controlled on his questions on some
ancilla qubits in |ψ〉. We cannot say he does not do this, because the shared entangled state
|ψ〉 and the players’ measurements are completely arbitrary. But this implies that we cannot
hope to prove that the post-measurement state is independent of yi, conditioned on xi.

Despite such barriers, we are able to define the |Ψxi,yi〉 in such a way that removes
such adversarial dependencies on the players’ questions. Assuming (for contradiction) that
the players’ probability of success is at least n−O(1), then we are able to prove that these
states satisfy the Sampleability property. We build upon many previous works: we use the
information theoretic framework of [6, 14], carefully combined with the operator analysis
techniques from [9]. The definition of the dependency-breaking states |Ψxi,yi

〉 includes the
classical dependency-breaking variables of [12] used to prove Raz’s parallel repetition theorem.
Our final constructed strategy for the single-shot game G uses both classical and quantum
correlated sampling procedures.

2 Preliminaries

2.1 Probability distributions
We largely adopt the notational conventions from [12] for probability distributions. We let
capital letters denote random variables and lower case letters denote specific samples. We
will use subscripted sets to denote tuples, e.g., X[n] := (X1, . . . , Xn), x[n] = (x1, . . . , xn),
and if C ⊂ [n] is some subset then XC will denote the sub-tuple of X[n] indexed by C.
We use PX to denote the probability distribution of random variable X, and PX(x) to
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77:6 A Parallel Repetition Theorem for All Entangled Games

denote the probability that X = x for some value x. For multiple random variables, e.g.,
X,Y, Z, PXY Z(x, y, z) denotes their joint distribution with respect to some probability space
understood from context.

We use PY |X=x(y) to denote the conditional distribution PY X(y, x)/PX(x), which is
defined when PX(x) > 0. When conditioning on many variables, we usually use the shorthand
PX|y,z to denote the distribution PX|Y=y,Z=z. For example, we write PV |ω−i,xi,yi

to denote
PV |Ω−i=ω−i,Xi=xi,Yi=yi

. For an event W we let PXY |W denote the distribution conditioned
on W . We use the notation EX f(x) and EPX

f(x) to denote the expectation
∑
x PX(x)f(x).

Let PX0 be a distribution of X , and for every x in the support of PX0 , let PY |X1=x be a
conditional distribution defined over Y . We define the distribution PX0PY |X1 over X × Y as

(PX0PY |X1)(x, y) := PX0(x) · PY |X1=x(y).

Additionally, we write PX0ZPY |X1 to denote the distribution
(PX0ZPY |X1)(x, z, y) := PX0Z(x, z) · PY |X1=x(y).

For two random variables X0 and X1 over the same set X , we use

‖PX0 − PX1‖ := 1
2
∑
x∈X
|PX0(x)− PX1(x)|,

to denote the total variation distance between PX0 and PX1 .

2.2 Quantum information theory
For comprehensive references on quantum information we refer the reader to [18, 21].

For a vector |ψ〉, we use ‖|ψ〉‖ to denote its Euclidean length. For a matrix A, we will use
‖A‖1 to denote its trace norm Tr(

√
AA†), and ‖A‖F to denote its Frobenius norm

√
Tr(AA†).

A density matrix is a positive semidefinite matrix with trace 1. The fidelity between two
density matrices ρ and σ is defined as F (ρ, σ) = ‖√ρ

√
σ‖1. For Hermitian matrices A,B we

write A � B to indicate that A−B is positive semidefinite. We use I to denote the identity
matrix. A positive operator valued measurement (POVM) with outcome set A is a set of
positive semidefinite matrices {Ea} labeled by a ∈ A that sum to the identity.

We will use the convention that, when |ψ〉 is a pure state, ψ refers to the rank-1 density
matrix |ψ〉〈ψ|. We use subscripts to denote system labels; so ρAB will denote the density
matrix on the systems A and B. A classical-quantum state ρXE is classical on X and
quantum on E if it can be written as ρXE =

∑
x p(x)|x〉〈x|X ⊗ ρE|X=x for some probability

measure p(·). The state ρE|X=x is by definition the E part of the state ρXE , conditioned on
the classical register X = x. We write ρXE|X=x to denote the state |x〉〈x|X ⊗ ρE|X=x. We
often write expressions such as ρE|x as shorthand for ρE|X=x when it is clear from context
which registers are being conditioned on. This will be useful when there are many classical
variables to be conditioned on.

2.3 Classical and quantum correlated sampling
Correlated sampling is a key component of Holenstein’s proof of the classical parallel repetition
theorem.

I Lemma 2 (Classical correlated sampling [12]). Let P and Q be two probability distributions
over a universe U such that ‖P − Q‖1 ≤ ε < 1. Then there exists a zero communication
two-player protocol using shared randomness where the first player outputs an element p ∈ U
distributed according to P, the second player samples an element q ∈ U distributed according
to Q, and with probability at least 1−O(ε), the two elements are identical (i.e. p = q).
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We call the protocol in the Lemma above the classical correlated sampling procedure. The
next lemma is the quantum extension of the correlated sampling lemma, proved by [9] in
order to obtain a parallel repetition theorem for entangled projection games, a class of
two-player games. Their lemma is a robust version of the quantum state embezzlement
procedure of [20].

I Lemma 3 (Quantum correlated sampling [9]). Let d be an integer. Then there exists an
integer d′ and a collection of unitaries Vψ, Wψ acting on Cdd′ for every state |ψ〉 ∈ Cd ⊗Cd,
such that the following holds: for any two states |ϕ〉, |θ〉 ∈ Cd ⊗ Cd,

‖V ϕ ⊗Wθ|Edd′〉 − |ϕ〉|Ed′〉‖ ≤ O(‖ |ϕ〉 − |θ〉 ‖1/6)

where |Ed〉 ∝
∑d
j=1

1√
j
|j〉|j〉 is the d-dimensional embezzlement state.

We shall call the protocol in the Lemma above the quantum correlated sampling procedure.

3 Proof of the Main Theorem

Let G be a two-player one-round game with question distribution µ and referee predicate
V (x, y, a, b). Let A and B denote the alphabets of Alice’s and Bob’s answers, respectively.
Let val∗(G) = 1− ε.

Consider an optimal entangled strategy for Gn, which consists of a shared entangled
state |ψ〉EAEB ∈ Cd ⊗ Cd and measurement POVMs for Alice and Bob, {Aa[n]

x[n]} and {B
b[n]
y[n]}

respectively. We will assume that |ψ〉 is symmetric; i.e., |ψ〉 =
∑
i

√
λi|vi〉|vi〉 for some

orthonormal basis {|vi〉}. This is without loss of generality, as we can always rotate (say)
Bob’s basis vectors to match Alice’s basis vectors, and fold the unitary rotation into Bob’s
measurements. For i ∈ [n], let Wi denote the event that the players win coordinate i using
this optimal strategy. Let W = W1 ∧ · · · ∧Wn denote the event that the players win all
coordinates. For a set C ⊆ [n], let WC = ∧i∈CWi.

I Proposition 4. Suppose that log 1/Pr(W ) ≤ εn/16 − log 4/ε. Then there exists a set
C ⊆ [n] of size at most t = 8

ε (log 4/ε+ log 1/Pr(W )) such that

Pr
i/∈C

(Wi|WC) ≥ 1− ε/2.

where i is chosen uniformly from [n]− C.

Proof. Set δ = ε/8. Let W>1−δ denote the event that the players won more than (1− δ)n
rounds. To show existence of such a set C, we will show that EC Pr(¬Wi|WC) ≤ ε/2, where
C is a (multi)set of t independently chosen indices in [n]. This implies that there exists a
particular set C such that Pr(¬Wi|WC) ≤ ε/2, which concludes the claim.

First we write, for a fixed C, Pr(¬Wi|WC) = Pr(¬Wi|WC ,W>1−δ) Pr(W>1−δ|WC) +
Pr(¬Wi|WC ,¬W>1−δ) Pr(¬W>1−δ|WC). Observe that Pr(¬Wi|WC ∧W>1−δ) is the probab-
ility that, conditioned on winning all rounds in C, the randomly selected coordinate i ∈ [n]−C
happens to be one of the (at most) δn lost rounds. This is at most δn/(n− t) ≤ ε/4, where
we use our assumption on t from the Proposition statement. Now observe that

E
C

Pr(¬W>1−δ|WC) ≤ E
C

Pr(WC |¬W>1−δ)
Pr(WC) ≤ 1

Pr(W ) (1− δ)t ≤ ε/4

where in the second line we used the fact that Pr(WC) ≥ Pr(W ). J

For the rest of the proof we will fix a set C given by Proposition 4.
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3.1 Dependency-breaking variables
We introduce the random variables that play an important role in the proof of Theorem 1. Let
C ⊆ [n] be as given by Proposition 4. We fix C = {m+ 1,m+ 2, . . . , n}, where m = n− |C|,
as this will easily be seen to hold without loss of generality. Let (X[n], Y[n]) be distributed
according to µ[n] and (A[n], B[n]) be defined from X[n] and Y[n] as follows:

PA[n]B[n]|x[n],y[n](a[n], b[n]) = 〈ψ|Aa[n]
x[n] ⊗B

b[n]
y[n] |ψ〉.

Let (XC , YC) and Z = (AC , BC) be random variables that denote the players’ questions and
answers respectively associated with the coordinates indexed by C.

We use the random variables Ω and R that are crucially used in Holenstein’s proof of
Raz’s parallel repetition theorem. Let D1, . . . , Dm be independent and uniformly distributed
in {Alice,Bob}. Let M1, . . . ,Mm be independent random variables defined in the following
way: for each i ∈ [m],

Mi =
{
Xi if Di = Alice

Yi if Di = Bob

Now for i ∈ [m], we define Ωi := (Di,Mi). We say that Ωi fixes Alice’s input if Di =
Alice, and otherwise Ωi fixes Bob’s input. We write Ω to denote the random variable
(Ω1, . . . ,Ωm, XC , YC), where XCYC are Alice and Bob’s questions in the coordinates indexed
by C. For i ∈ [m] we write Ω−i to denote the random variable Ω with Ωi omitted.

I Proposition 5. Conditioned on Ω, X[n] and Y[n] are independent.

Finally, we will define a dependency-breaking variable R := (Ω, AC , BC), where AC and
BC are the players’ answers in the coordinates indexed by C. For i /∈ C, we let R−i :=
(Ω−i, AC , BC). Ri will refer to Ωi. We will use lowercase letters to denote instantiations of
these random variables: e.g., r−i, xi, and yi refer to specific values of R−i, Xi, and Yi.

Throughout our proofs, all expectations are implicitly over the measure defined by P.
For example, the expectation EΩ−iZ|xi,yi

indicates
∑
ω−i,aC ,bC

PΩ−iACBC |xi,yi
(ω−i, aC , bC).

Given an event such as W (winning all the coordinates) or WC (winning all the coordinates
in C), P(W ) and P(WC) will mean the probability of these events with respect to the
distribution P.

The following Lemma expresses the idea that, because WC is an event that occurs
with not-too-small probability, conditioning on it cannot skew the distribution of variables
corresponding to an average coordinate by too much. This Lemma follows in a straightforward
manner from the [12].

I Lemma 6. The following statements hold on, average over i chosen uniformly in [m]:
1. Ei ‖PRiXiYi|WC

− PRiXiYi
‖1 ≤ O(

√
δ)

2. Ei
∥∥PXiYiR−i|WC

− PXiYi · PR−i|XiWC

∥∥
1 ≤ O(

√
δ)

3. Ei
∥∥PXiYiR−i|WC

− PXiYi · PR−i|YiWC

∥∥
1 ≤ O(

√
δ)

where δ := 1
m (log 1/P(WC) + |C| log |A||B|).

3.2 Two key Lemmas, and proof of the Main Theorem
For every i ∈ [n]−C, we will construct a collection of bipartite states {|Ψr−i,xi,yi

〉} ⊆ Cd⊗Cd,
which we call dependency-breaking states, that are indexed by the dependency-breaking
variable r−i defined above, and questions (xi, yi). The following lemmas state the important
properties of this collection of states:
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I Lemma 7 (Usefulness Lemma). For all r−i, xi, yi, there exist POVMs {Âai
r−i,xi

} and
{B̂bi

r−i,yi
} acting on Cd such that

PAiBi|r−i,xi,yi
(ai, bi) = Tr

(
Âai
r−i,xi

⊗ B̂bi
r−i,yi

Ψr−i,xi,yi

)
.

I Lemma 8 (Sampleability Lemma). There exists an integer d′ ≥ d such that for every
i, r−i, xi, yi, there exist local unitaries Ur−i,xi

, Vr−i,yi
acting on Cd′ such that

E
i

E
XiYi

[
E

R−i|xi,yi,WC

∥∥Ur−i,xi ⊗ Vr−i,yi |Edd′〉 − |Ψr−i,xi,yi〉|Ed′〉
∥∥] ≤ O((δ1/4/P(WC))1/12)

where |Edd′〉 and |Ed′〉 are dd′ and d′-dimensional embezzlement states, respectively, and δ is
defined to be 1

m (log 1/P(WC) + |C| log |A||B|).

Lemma 7 shows that the states |Ψr−i,xi,yi
〉 are useful to have; they allow Alice and

Bob to produce answers in the i’th coordinate whose statistics are consistent with the
dependency-breaking variable r−i and their inputs (xi, yi). Lemma 8 shows that these states
are locally generatable by Alice and Bob, when given joint access to preshared entanglement,
the dependency-breaking variable r−i and their own inputs xi and yi respectively.

Using these two Lemmas we can prove the Main Theorem.

Proof of the Main Theorem. Consider the following strategy for the game G. Alice and
Bob share beforehand the embezzlement state |Edd′〉 of dimension dd′ given by Lemma 8,
and they also have access to shared randomness. Given inputs (xi, yi) distributed according
to PXiYi

= µ:
1. Alice and Bob jointly sample a uniformly random i ∈ [n]− C.
2. Alice and Bob jointly, approximately sample R−i from PR−i|xi,yi,WC

using the classical
correlated sampling procedure.

3. Alice applies Ur−i,xi to her side of |Edd′〉
4. Bob applies Vr−i,yi to his side of |Edd′〉
5. Alice measures her side of the entanglement using {Âai

r−i,xi
} and outputs the outcome ai

6. Bob measures his side of the entanglement using {B̂bi
r−i,yi

} and outputs the outcome bi

We now analyze the success probability of this strategy. We will use P̃ to denote
the distribution of variables in the probability space associated with an execution of this
strategy. For example, we will write P̃R−i|XiYi

to denote the distribution of R−i conditioned
on XiYi that is sampled in Step 1. From Lemma 6 we have that on average over i,
PXiYiR−i|WC

≈ PXiYi · PR−i|XiWC
≈ PXiYi · PR−i|YiWC

, where “≈” means closeness in
statistical distance. By invoking the classical correlated sampling procedure of Lemma 2, we
get

E
i
‖PXiYi

· P̃R−i|XiYi
− PXiYiR−i|WC

‖1 ≤ O(
√
δ).

After Step 3, Alice and Bob will possess a state |Λr−i,xi,yi〉 such that

E
i

E
XiYi

[
E

R−i|xi,yi,WC

‖Λr−i,xi,yi
−Ψr−i,xi,yi

‖1
]
≤ η

where η = O((δ1/4/P(WC))1/12). Consider the measurement process in Steps 4 and 5. Let
P̃AiBi|r−i,xi,yi

denote the distribution of measurement outcomes in this strategy, conditioned
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on their inputs and a sampled value of r−i. By Lemma 7 and the fact that the trace norm is
nonincreasing under quantum operations, we have that

E
i

E
XiYi

[
E

R−i|xi,yi,WC

‖P̃AiBi|xi,yi,r−i
− PAiBi|xi,yi,r−i

‖1
]
≤ η

or equivalently

E
i
‖PXiYi

· P̃R−i|XiYiWC
· P̃AiBi|xi,yi,r−i

− PXiYi
· PR−i|XiYiWC

· PAiBiR−i|XiYiWC
‖1 ≤ η.

By Lemma 6 we have Ei ‖PXiYi|WC
− PXiYi

‖ ≤
√
δ. By triangle inequality and that P̃XiYi

=
PXiYi , we have

E
i
‖P̃XiYiR−iAiBi

− PXiYiR−iAiBi|WC
‖1 ≤ O(η).

Note that P̃XiYiR−iAiBi
represents the probability distribution of all the variables present in

the strategy above. Let Wi denote the probability the players win the ith coordinate. Thus
we get

E
i
|P̃(Wi)− P(Wi|WC)| ≤ O(η). (2)

Assume that

P(W ) ≥ cs logn
ε17n1/4

where c > 0 is a universal constant, and s is the bit-length of the players’ answers. Since
P(WC) ≥ P(W ), and using our bound on |C| (from Proposition 4) and our bound on δ (from
Lemma 6), this implies that the right hand side of (2) is at most ε/4 (for an appropriate
choice of c). This implies that

E
i

P̃(Wi) ≥ E
i

P(Wi|WC)− ε/4 ≥ 1− ε/2− ε/4 > val∗(G)

where in the second line we used the bound from Proposition 4. However, this implies
that there exists an i such that P̃(Wi) > val∗(G), which is a contradiction. Therefore
P(W ) ≤ cs logn

ε17n1/4 . J

Now we turn to defining the states and operators promised in the two key lemmas above,
as well as giving an intuition for them.

3.3 Quantum states and operators
In this subsection we define the states |Ψr−i,xi,yi〉 and measurement operators {Âai

r−i,xi
}

and {B̂bi
r−i,yi

}. Recall that the dependency-breaking variable R consists of the set of fixed
questions Ω = (XC , YC ,Ω1, . . . ,Ωm) and fixed answers Z = (AC , BC) for the coordinates
in C.

Coarse-grained measurements. We first coarsen the measurement POVMs {Aa[n]
x[n]} and

{Bb[n]
y[n]} that constitute Alice and Bob’s strategy in Gn to construct a set of intermediate

measurements, which essentially produce answers for the games in set C, conditioned on a
setting of Ω.
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Fix i, ω, aC , bC , xi, yi. Define AaC
ω−i,xi

=
∑
a[n]|aC

EX[n]|ω−i,xi
A
a[n]
x[n] , and BbC

ω−i,yi
=∑

b[n]|bC
EY[n]|ω−i,yi

B
b[n]
y[n] where a[n]|aC (resp. b[n]|bC) indicates summing over all tuples a[n]

consistent with the suffix aC (resp. b[n] consistent with suffix bC) and recall that EX[n]|ω−i,xi

is shorthand for
∑
x[n]

PX[n]|Ω−i=ω−i,Xi=xi
(x[n]). We also define AaC

ω = EX[n]|ω A
aC
x[n]

and
BbC
ω = EY[n]|ω B

bC
y[n]

.
Let ρ denote the reduced density matrix of |ψ〉 on Alice’s side. Since we have assumed

that |ψ〉 is symmetric, ρ is also the reduced density matrix on Bob’s side. For all i, ω,
xi, yi, aC , bC , let Uω−i,xi,aC

, Uω,aC
, Vω−i,yi,bC

, and Vω,bC
be unitaries such that

Uω−i,xi,aC
(AaC

ω−i,xi
)1/2√ρ Vω−i,yi,bC

(BbC
ω−i,yi

)1/2√ρ

Uω,aC
(AaC

ω )1/2√ρ Vω,bC
(BbC

ω )1/2√ρ

are positive semidefinite. Such unitaries can be found via singular value decompositions. For
notational convenience, let

Sω−i,xi,aC
= Uω−i,xi,aC

(AaC
ω−i,xi

)1/2 Tω−i,yi,bC
= Vω−i,yi,bC

(BbC
ω−i,yi

)1/2

Sω,aC
= Uω,aC

(AaC
ω )1/2 Tω,bC

= Vω,bC
(BbC

ω )1/2

Fine-grained measurements. Now we can define the fine-grained measurements that Alice
and Bob can apply to obtain answers for the i’th game. Define

Âai
r−i,xi

= S−1
ω−i,xi,aC

AaC ,ai
ω−i,xi

S−1
ω−i,xi,aC

B̂bi
r−i,yi

= T−1
ω−i,yi,bC

BbC ,bi
ω−i,yi

T−1
ω−i,yi,bC

where

AaC ,ai
ω−i,xi

=
∑

a[n]|aC ,ai

E
X[n]|ω−i,xi

A
a[n]
x[n] BbC ,bi

ω−i,yi
=

∑
b[n]|bC ,bi

E
Y[n]|ω−i,yi

B
b[n]
y[n]

and a[n]|aC , ai (resp. b[n]|bC , bi) denotes summing over all a[n] consistent with aC and ai
(resp. all b[n] consistent with bC and bi). It is easy to verify that the sets {Âai

r−i,xi
}ai∈A

and {B̂bi
r−i,yi

}bi∈B form POVMs. Here, for a square matrix A, A−1 denotes its generalized
inverse.

States. Now we are ready to define the states. Fix i, r−i = (ω−i, aC , bC), and xi, yi. Then
let

|Ψr−i,xi,yi
〉 =

Sω−i,aC ,xi ⊗ Tω−i,bC ,yi |ψ〉∥∥Sω−i,aC ,xi
⊗ Tω−i,bC ,yi

|ψ〉
∥∥ .

Observe that the normalization
∥∥Sω−i,aC ,xi ⊗ Tω−i,bC ,yi |ψ〉

∥∥2 is equal to
PACBC |ω−i,xi,yi

(aC , bC).

ICALP 2016



77:12 A Parallel Repetition Theorem for All Entangled Games

3.4 Proof of Usefulness Lemma (Lemma 7)

This Lemma follows from a simple calculation: for every xi, yi, ai, bi, r−i:

Tr
(
Âai
r−i,xi

⊗ B̂bi
r−i,yi

Ψr−i,xi,yi

)
= 1∥∥Sω−i,aC ,xi

⊗ Tω−i,bC ,yi
|ψ〉
∥∥2Tr

(
AaC ,ai
ω−i,xi

⊗BbC ,bi
ω−i,yi

|ψ〉〈ψ|
)

= 1
PACBC |ω−i,xi,yi

(aC , bC)
∑

a[n]|aC ,ai

∑
b[n]|bC ,bi

E
X[n]Y[n]|ω−i,xi,yi

Tr
(
A
a[n]
x[n] ⊗B

b[n]
y[n] |ψ〉〈ψ|

)
=

PAiBiACBC |ω−i,xi,yi
(ai, bi, aC , bC)

PACBC |ω−i,xi,yi
(aC , bC)

= PAiBi|r−i,xi,yi
(ai, bi).

In the second equality we used that conditioned on Ω, X[n] and Y[n] are independent,
so therefore EX[n]|ω−i,xi

EY[n]|ω−i,yi
= EX[n]Y[n]|ω−i,xi,yi

. In the last equality we used that
r−i = (ω−i, aC , bC). This concludes the Usefulness Lemma.

3.5 Proof of the Sampleability Lemma (Lemma 8)

Overview. Here we give some intuition. We first analyze an ensemble of states {|Γxi,xC ,aC
〉}

(for now we omit mention of the dependency-breaking variable R for simplicity). These are
indexed by Alice’s questions in the i’th coordinate, her questions in the C coordinates, as
well as her answers in the C coordinates. The state |Γxi,xC ,aC

〉 roughly represents the state
of the players where only Alice has applied her measurements – Bob hasn’t done anything
yet.

Fix a yi, xC , aC . For average xi, x′i that are independently sampled from the marginal
distribution PXi|Yi=yi

, we will show that ‖|Γxi,xC ,aC
〉 − |Γx′

i
,xC ,aC

〉‖ ∼ 1
n . To handle issues

such as Alice “printing” her input onto the state |ψ〉 (as discussed in the introduction), the
definition of |Γxi,xC ,aC

〉 requires local unitaries that “undo” such overt actions of Alice and
Bob – this is accomplished by the unitaries U and V defined in Section 3.3.

Then, we consider what happens when we apply Bob’s measurement to both states
|Γxi,xC ,aC

〉 and |Γx′
i
,xC ,aC

〉, and condition on obtaining answers bC for the C coordinates.
His measurement will depend on the questions yi and yC . The post-measurement states
will be precisely |Ψxi,yi,xC ,yC ,aC ,bC

〉 and |Ψx′
i
,yi,xC ,yC ,aC ,bC

〉. The distance between these
states will be, roughly speaking, the distance between |Γxi,xC ,aC

〉 and |Γx′
i
,xC ,aC

〉 divided
by the probability of Bob obtaining outcome bC conditioned on Alice obtaining aC . If we
average this distance over all choices of xC , yC , aC , bC that imply the event WC , we get that
the average distance between |Ψxi,yi,xC ,yC ,aC ,bC

〉 and |Ψx′
i
,yi,xC ,yC ,aC ,bC

〉 is approximately
1

nP(WC) . If P(W ) is much greater than 1/n, then this distance is small. We then invoke
quantum correlated sampling (Lemma 3), and that proves the Sampleability Lemma.

Because of space constraints, we omit the proof and refer the reader to the full version at
http://arxiv.org/abs/1604.04340.
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Abstract
We give two results concerning the power of the Sum-Of-Squares(SoS)/Lasserre hierarchy. For
binary polynomial optimization problems of degree 2d and an odd number of variables n, we
prove that (n+ 2d− 1)/2 levels of the SoS/Lasserre hierarchy are necessary to provide the exact
optimal value. This matches the recent upper bound result by Sakaue, Takeda, Kim and Ito.

Additionally, we study a conjecture by Laurent, who considered the linear representation of
a set with no integral points. She showed that the Sherali-Adams hierarchy requires n levels to
detect the empty integer hull, and conjectured that the SoS/Lasserre rank for the same problem
is n− 1. We disprove this conjecture and derive lower and upper bounds for the rank.

1998 ACM Subject Classification Optimization, Convex programming, Integer programming

Keywords and phrases SoS/Lasserre hierarchy, lift and project methods, binary polynomial
optimization

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.78

1 Introduction

In this paper we are concerned with the unconstrained binary polynomial optimization
problems (BPOP):

min
x∈{0,1}n

f(x)

where f(x) is a multivariate polynomial. Many basic optimization problems are special cases
of this general problem. Prominent examples include the MaxCut problem and the boolean
Max k-csp. For these problems the polynomials have at most degree 2 and k, respectively.

The Sum-of-Squares (SoS)/Lasserre hierarchy of semidefinite (SDP) relaxations [14, 21]
is one of the most studied solution methods for general polynomial optimization problems
(POP) including BPOP. The hierarchy is parameterized by a parameter t called the relaxation
level and larger levels correspond to tighter relaxations. At level t, the relaxation consists of
nO(t) variables and constraints, and it is thus solvable in time nO(t) using for example the
ellipsoid method. At level n the SOS hierarchy finds the exact optimal value of an arbitrary
constrained BPOP (but not a general POP).
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For quadratic BPOP, Laurent [16] conjectured that at level dn2 e the relaxation provides
the exact optimal value. She also provided a matching lower bound showing that bn2 c levels
are not enough for finding the integer cut polytope of the complete graph with n nodes,
when n is odd (the result was preceded by a similar lower bound by Grigoriev [9] for the
Knapsack problem). The conjecture was proved by Fawzi, Saunderson and Parrilo [7] while
showing that dn2 e rounds are enough to exactly solve any unconstrained BPOP of degree 2.
Very recently, Sakaue, Takeda, Kim and Ito [22] extended the result of [7] and showed that
the SoS hierarchy requires at most d(n+ r − 1)/2e rounds to find the exact optimal value of
an unconstrained BPOP of degree r with n variables. Note that the two upper bounds [7, 22]
coincide when n is odd and r = 2, whereas for even n there is a difference of 1 (although [22]
show also that if the optimized polynomial consists of only even degree monomials, the bound
reduces to d(n+ r − 2)/2e, matching the bound of [7] for example for the MaxCut problem
for every n). Furthermore, Sakaue et al. [22] numerically confirmed that for some degrees
their bound is tight for certain instances of unconstrained BPOPs with 8 variables.

In a recent breakthrough Lee, Raghavendra and Steurer [17] proved that for the class
of Max-CSPs the SoS relaxation yields the “optimal” SDP approximation, meaning that
SDPs of polynomial-size are equivalent in power to those arising from O(1) rounds of the SoS
relaxations. This result implies that known lower bound for SoS SDP relaxations translates
to corresponding lower bounds on the size of any SDP formulations. With this aim, they
build on the work of Grigoriev/Laurent [9, 16] to show that, for odd n, any sum of squares
of degree bn/2c polynomials has `1-error at least 2n−2/

√
n in approximating the following

quadratic function

f(x) = (‖x‖1 − bn/2c)(‖x‖1 − bn/2c − 1) (1)

This result is shown to imply lower bounds on the semidefinite extension complexity of the
correlation polytope (which is isomorphic to the cut polytope and sometimes also called
boolean quadric polytope). By reduction, the latter in turn implies exponential lower bounds
for the integer cut, TSP and stable set polytopes. In [18] Lee, Prakash, de Wolf and Yuen
proved that these lower bounds cannot be improved by showing better `1-approximations of
f(x).

Our Results

In this paper we give two results concerning the power of the SoS hierarchy. Our first result
shows that the bound given by Sakaue et al. [22] is tight for polynomials with even degree and
an odd number of variables. More precisely, we consider BPOPs of the form minx∈{0,1}n fd(x)
where fd(x) is a degree 2d (for d ≥ 1) polynomial defined as follows:

fd(x) = (‖x‖1 − bn/2c+ d− 1)2d (2)

where kr = k(k−1) · · · (k−r+1) denotes the falling factorial. For d = 1 we have f1(x) = f(x),
where f(x) is the polynomial defined in (1) and considered in [17, 18]. We show that for
odd n = 2m + 1, the SoS relaxation allows negative values for polynomial fd(x) that is
non-negative over {0, 1}n, even at level dn+2d−1

2 e − 1 = m+ d− 1.
Our second result concerns comparing the SoS hierarchy to other lift and project methods.

A commonly used benchmark for comparing hierarchies is to find the smallest level at which
they find the convex hull of a given set of integral points P ,1 usually given as an intersection

1 The smallest such level is called the rank of P , and it is always smaller or equal to n for the usually
studied hierarchies.
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of the set {0, 1}n and a polytope. Examples of such results include [8, 9, 10, 11, 16, 19, 23].
In [15], Laurent shows that the Sherali-Adams hierarchy detects that the set

K = {0, 1}n ∩

x ∈ [0, 1]n |
∑
r∈R

xr +
∑

r∈R\N

(1− xr) ≥
1
2 for all R ⊆ N

 (3)

is empty only after n levels. She then conjectures the SoS rank of K is n− 1. The polytope
K has been used earlier to show that n iterations are needed also for the following procedures:
the Lovász-Schrijver N+ operator (with positive semidefiniteness) [8], the Lovász-Schrijver
N+ operator combined with taking Chvátal cuts [4], and the N+ operator combined with
taking Gomory mixed integer cuts (equivalent to disjunctive cuts) [5]. In this paper we
disprove Laurent’s conjecture, and show that indeed the SoS rank of K is bounded between
Ω(
√
n) and n− Ω(n1/3).
Interestingly, Au [1] and the authors of this paper [12] independently considered the

rank of a variation of the set K where on the right hand side of the inequalities there is an
exponentially small constant instead of 1

2 . Both works show that the rank of the modified K
is exactly n.

In our proofs we demonstrate the use of a recent theorem of the authors [13] that
simplifies the positive semidefiniteness (PSD) condition of the SoS hierarchy when the
problem formulation is highly symmetric (as noted in [18], Blekherman [3] has also obtained
a similar result that is still in preparation).

Our first result is obtained by showing that a certain conical combination of solutions
with non-integral relaxation value to the SoS relaxation for the function (1) gives a negative
SoS relaxation value for the polynomials (2) of degree 2d. Then, for the first and the second
result, we apply the theorem in [13] to reduce the PSDness condition into showing that a
particular inequality is satisfied for every polynomial with a certain form. Showing that the
inequality is satisfied (lower bounds) or cannot be satisfied (upper bounds) then boils down
to evaluating or approximating a certain combinatorial sum. Our results also answer the
question in [18] regarding the applications of the theorem of [3, 13].

2 The Sum-of-Squares hierarchy

In this paper we consider the SoS hierarchy when applied to (i) unconstrained 0/1 polynomial
optimization problems, and (ii) approximating the convex hull of the set

P = {x ∈ {0, 1}n | g`(x) ≥ 0,∀` ∈ [p]} (4)

where g`(x) are linear constraints and p a positive integer. The form of the SoS hierarchy we
use in this paper is equivalent to the one used in literature (see e.g. [2, 14, 15]) and follows
from applying a change of basis to the dual certificate of the refutation of the proof system
(see [13] for the details on the change of basis and [20] for discussion on the connection to
the proof system). We use this change of basis in order to obtain a useful decomposition of
the moment matrices as a sum of rank one matrices of special kind.

For any I ⊆ N = {1, . . . , n}, let xI denote the 0/1 solution obtained by setting xi = 1 for
i ∈ I, and xi = 0 for i ∈ N \ I. For a function f : {0, 1}n → R, we denote by f(xI) the value
of the function evaluated at xI . In the SoS hierarchy defined below there is a variable yNI
that can be interpreted as the “relaxed” indicator variable for the solution xI . We point out
that in this formulation of the hierarchy the number of variables {yNI : I ⊆ N} is exponential
in n, but this is not a problem in our context since we are interested in proving lower and
upper bounds rather than solving an optimization problem.

ICALP 2016
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Let Pt(N) be the collection of subsets of N of size at most t ∈ N. For every I ⊆ N , the
q-zeta vector ZI ∈ RPq(N) is a 0/1 vector with J-th entry (|J | ≤ q) equal to 1 if and only if
J ⊆ I.2 Note that ZIZ>I is a rank one matrix and the matrices considered in Definitions 1
and 2 are linear combinations of these rank one matrices.

To simplify the presentation we define the SoS hierarchy separately for polynomial
optimization problems and for the integer hull approximation.

I Definition 1. The t-th round SoS hierarchy relaxation of minx∈{0,1}n f(x), denoted by
SoSt(f), is the optimization problem with variables {yNI ∈ R : ∀I ⊆ N} of the form

min
yN∈R2n

∑
I⊆N

yNI f(xI) (5)

s.t.
∑
I⊆N

yNI = 1, (6)

∑
I⊆N

yNI ZIZ
>
I � 0, where ZI ∈ RPt(N) (7)

I Definition 2. The t-th round SoS hierarchy relaxation for the set P as given in (4), denoted
by SoSt(P ), is the set of variables {yNI ∈ R : ∀I ⊆ N} that satisfy∑

I⊆N

yNI = 1, (8)

∑
I⊆N

yNI ZIZ
>
I � 0, where ZI ∈ RPt+1(N) (9)

∑
I⊆N

g`(xI)yNI ZIZ>I � 0, ∀` ∈ [p], where ZI ∈ RPt(N) (10)

It is straightforward to see that the SoS hierarchy formulation given in Definition 2 is a
relaxation of the integral polytope. Indeed consider any feasible integral solution xI ∈ P and
set yNI = 1 and the other variables to zero. This solution clearly satisfies (8) and (9) because
the rank one matrix ZIZ>I is positive semidefinite (PSD), and (10) since xI ∈ P .

For a set Q ⊆ [0, 1]n, we define the projection from SoSt(Q) to Rn as xi =
∑
i∈I⊆N y

N
I

for each i ∈ {1, ..., n}. The SoS rank of Q, ρ(Q), is the smallest t such that SoSt(Q) projects
exactly to the convex hull of Q ∩ {0, 1}n.

2.1 Using symmetry to simplify the PSDness conditions

In this section we present a theorem given in [13] that can be used to simplify the PSDness
conditions (7), (9) and (10) when the problem formulation is very symmetric. More precisely,
the theorem can be applied whenever the solutions and constraints are symmetric in the
sense that wNI = wNJ whenever |I| = |J | where wNI is understood to denote either yNI or
g`(xI)yNI . In what follows we denote by R[x] the ring of polynomials with real coefficients
and by R[x]d the polynomials in R[x] with degree less or equal to d.

2 In order to keep the notation simple, we do not emphasize the parameter q as the dimension of the
vectors should be clear from the context.
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I Theorem 3 ([13]). For any t ∈ {1, . . . , n}, let St be the set of univariate polynomials
Gh(k) ∈ R[k], for h ∈ {0, . . . , t}, that satisfy the following conditions:

Gh(k) ∈ R[k]2t (11)
Gh(k) = 0 for k ∈ {0, . . . , h− 1} ∪ {n− h+ 1, . . . , n}, when h ≥ 1 (12)
Gh(k) ≥ 0 for k ∈ [h− 1, n− h+ 1] (13)

For any fixed set of values {wNk ∈ R : k = 0, . . . , n}, if the following holds

n−h∑
k=h

(
n

k

)
wNk Gh(k) ≥ 0 ∀Gh(k) ∈ St (14)

then
n∑
k=0

wNk
∑
I⊆N
|I|=k

ZIZ
>
I � 0

where ZI ∈ RPt(N).

Note that polynomial Gh(k) in (13) is nonnegative in a real interval, and in (12) it is zero
over a set of integers. Moreover, constraints (14) are trivially satisfied for h > bn/2c.

3 Tightness of the SoS upper bounds for unconstrained BPOPs

In [22] it is shown that the SoS hierarchy exactly solves any unconstrained BPOP of degree
r with n variables after dn+r−1

2 e levels. We show that this bound is tight for certain values
of n and r, by giving a polynomial of degree r = 2d for d ≥ 1 that is non-negative over the
hypercube, and show that when n = 2m+ 1, m ≥ d, the SoS relaxation of the corresponding
BPOP attains a negative value at level t = dn+2d−1

2 e − 1 = m+ d− 1.
More precisely, we consider the degree 2d polynomial

fd(x) = (‖x‖1 + d−m− 1)2d (15)

where kr = k(k − 1) · · · (k − r + 1) denotes the falling factorial and ‖x‖1 =
∑
i xi. For the

sake of convenience, we denote by fd(k) the univariate polynomial evaluated at any point x
with

∑
i xi = k. We obtain the following result

I Theorem 4. For odd n, the SoS relaxation of minimizing fd requires at least dn+2d−1
2 e

levels to find the exact optimum.

3.1 Proof of Theorem 4
The case d = 1

The polynomial f1(x) is connected to the MaxCut problem in the complete graph of
n = 2m+ 1 vertices in the following way: Let x ∈ {0, 1}n denote any partition of the vertices
into two sets in the natural way. Then, the maximal cut is achieved whenever

∑
i xi is either

m or m+ 1, and m(m+ 1)− f1(x) counts the edges in the cut. Therefore, the SoS hierarchy
is not able to exactly solve the MaxCut problem if it allows for solutions with negative
values of the objective function (5).

ICALP 2016
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It is shown in [13] that3

yNI [α] = (n+ 1)
(

α

n+ 1

)
(−1)n−|I|

α− |I|
∀I ⊆ N (16)

is a feasible solution to the SoS hierarchy (as given in Definition 1) at level bαc for any
non-integer 0 < α < n

2 . Since the value of the solution only depends on the size of the set I,
we denote by yNk [α] any yNI [α] with |I| = k. As a consequence of the proof in [13] it follows
that for any non-integer 0 < α ≤ n,

∑n
i=0
(
n
k

)
yNk [α] = 1. Furthermore, it is shown that the

objective function attains the value
∑n
k=0

(
n
k

)
yNk [α]f1(k) = f1(α) and that in particular for

α = n
2 , f1(α) = − 1

4 at level t = m. Next we generalize this approach to fd(x).

Polynomials of degree 2d

Consider the following solution

zNk = (2d− 2)!(n+ 1)
(n

2 − d+ 1
n+ 1

)
(−1)n−k

(n2 + d− 1− k)2d−1 ∀k ∈ {0, . . . , n} (17)

We show that for this solution, the SoS hierarchy objective (5) attains a negative value
(see Lemma 10) and (7) is satisfied. For convenience, we do not actually show that (6) is
satisfied and in fact it is not. We show, however, that

∑n
k=0

(
n
k

)
zk > 0, which implies that

with proper normalization also (6) can be satisfied (see Lemma 7).
First we prove that the solution zNk can be written as a conical combination of the solutions

yNk [·] in (16). We begin with the following lemma about partial fraction decompositions.

I Lemma 5. For any b ∈ N+ and a ∈ R the following identity holds

1
(x− a)b

=
b−1∑
i=0

(−1)b−1−i

i!(b− 1− i)!
1

(x− a− i) .

Proof. It is known that given two polynomials P (x) and Q(x) = (x−a1)(x−a2) · · · (x−an),
where the ai are distinct constants and deg P < n, the rational polynomial P (x)

Q(x) can be
decomposed into

P (x)
Q(x) =

n∑
i=1

P (ai)
Q′(ai)

1
(x− ai)

where Q′(x) is the derivative of Q(x). In our case, since P (x) = 1 and Q(x) =
∏b−1
i=0 (x−a−i),

we get

1
(x− a)b

=
b−1∑
i=0

1∏
j 6=i(a+ i− (a+ j))

1
(x− a− i) =

b−1∑
i=0

(−1)b−1−i

i!(b− 1− i)!
1

(x− a− i) . J

Now we can express the solution zNk as a conical combination of the solutions yNk [·].

3 The same solution was earlier considered in different basis by [10, 16] for the Knapsack and MaxCut
problems respectively to show that the SoS hierarchy does not exactly solve the aforementioned problems
at level b n

2 c.
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I Lemma 6. The solution (17) can be decomposed as a conical combination of yNk [·]:

zNk =
2d−2∑
j=0

ajy
N
k [n/2 + d− 1− j] ∀k ∈ {0, . . . , n}

for positive

aj =
(

2d− 2
j

) (n2 + d− 1)j

(n2 − d+ 1 + j)j
.

Proof. By Lemma 5 we get that

1
(n2 + d− 1− k)2d−1 =

2d−2∑
j=0

(−1)2d−2−j

j!(2d− 2− j)! ·
1

(n2 + d− 1− k − j)

and by writing(n
2 − d+ 1
n+ 1

)
=

(−n2 + d− 2− j)2d−2−j

(n2 + d− 1− j)2d−2−j

(n
2 + d− 1− j

n+ 1

)
and using raising factorial notation, (−b)a = (−1)aba, we get that

zNk =
2d−2∑
j=0

(2d− 2)!
j!(2d− 2− j)!

(−n2 + d− 2− j)2d−2−j

(n2 + d− 1− j)2d−2−j

· (n+ 1)
(n

2 + d− 1− j
n+ 1

)
(−1)2d−2−j+n−k

(n2 + d− 1− k − j)

=
2d−2∑
j=0

(
2d− 2
j

) (n2 − d+ 2 + j)2d−2−j

(n2 + d− 1− j)2d−2−j y
N
k

[n
2 + d− 1− j

]

=
2d−2∑
j=0

(
2d− 2
j

) (n2 + d− 1)j

(n2 − d+ 1 + j)j
yNk

[n
2 + d− 1− j

]
J

I Lemma 7. We have
∑n
k=0

(
n
k

)
zNk > 0 for every odd n, n = 2m+ 1, and d ∈ [m].

Proof. The proof follows by recalling that for every α ∈ [0, n] \ Z,
∑n
i=0
(
n
k

)
yNk [α] = 1 and

by the fact that all the coefficients in the decomposition in Lemma 6 are positive. J

Now we show that the solution (17) is a feasible solution for the SoS hierarchy at level
t = m+ d− 1. The solution (17) is symmetric, and so by Theorem 3 (see (14)) is enough to
prove that for t = m+ d− 1,

n∑
k=0

(
n

k

)
zNk Gh(k) ≥ 0 ∀Gh(k) ∈ St .

We first note that the solution (17) attains positive values for every integer k ∈ {m− d+
1, . . . ,m+ d}. Indeed, for k = m− d+ 1 + p for p = {0, . . . , 2d− 1}, since

(n
2 − d+ 1

)n+1
=
(n

2 − d+ 1
)m−d+2

(
1
2

)m+d
(−1)m+d

ICALP 2016
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and for 0 ≤ p ≤ 2d− 1(n
2 + d− 1− k

)2d−1
=
(

2d− 3
2 − p

)2d−1−p(1
2

)p
(−1)p

the only, not obviously, non-negative part of zNk is

(−1)m+d(−1)m+d−p

(−1)p

which is always positive. Thus the above (see (14)) is always satisfied whenever h ≥ m−d+ 1
by the definition of the polynomials Gh ∈ St.

It follows that it is enough to prove that the above is satisfied for h ≤ m − d which is
implied if the following is true

n∑
k=0

(
n

k

)
zNk P (k) ≥ 0

for every polynomial P (x) ∈ R[x]2t that is nonnegative in the interval [m− d+ 1,m+ d].

I Lemma 8. For any polynomial P (x) ∈ R[x]2(m+d−1) we have
n∑
k=0

(
n

k

)
zNk P (k) =

2d−2∑
j=0

ajP
(n

2 + d− 1− j
)
.

Proof. Let g(k) = (n2 + d− 1− k)2d−1 be the polynomial of degree 2d− 1 that corresponds
to the denominator in polynomial in zNk (see (17)). By the polynomial remainder theorem,
P (k) = g(k)Q(k) + R(k), where the Q(k) is the unique polynomial of degree at most
deg(P )− deg(g) ≤ n− 2, and for the remainder it holds R(r) = P (r) for all the roots r of
polynomial g(k). Then

n∑
k=0

(
n

k

)
zNk P (k) =

n∑
k=0

(
n

k

)
zNk g(k)Q(k) +

n∑
k=0

(
n

k

)
zNk R(k) .

Here
∑n
k=0

(
n
k

)
zNk g(k)Q(k) = 0, as

∑n
k=0(−1)k

(
n
k

)
kc = 0 for every c ≤ n − 1. We remark

here that if the level t is greater than m+ d− 1, then the polynomial Q can be of degree n
or more and this reasoning fails.

By Lemma 6 we can write the sum with the remainder polynomial R(k) as
2d−2∑
j=0

aj

n∑
k=0

(
n

k

)
yNk

[n
2 + d− 1− j

]
R(k)

and, again by the polynomial reminder theorem, for every j ∈ {0, . . . , 2d − 2}, R(k) =
(n2 + d− 1− j − k)Sj(k) +R(n2 + d− 1− j) and as before, since the degree of R is less or
equal to 2d− 2, we have

∑n
i=0(−1)k

(
n
k

)
Sj(k) = 0. Thus, since R(r) = P (r) for all the roots

r of the polynomial g(k), the above reduces to

2d−2∑
j=0

aj

R
(n

2 + d− 1− j
) n∑
k=0

(
n

k

)
yNk

[n
2 + d− 1− j

]
︸ ︷︷ ︸

=1


=

2d−2∑
j=0

ajP
(n

2 + d− 1− j
)

J
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By Lemma 8 we immediately obtain the following corollary.

I Corollary 9. For any polynomial P (x) ∈ R[x]2(m+d−1) such that P (x) ≥ 0 for x ∈
[m− d+ 1,m+ d] we have

n∑
k=0

(
n

k

)
zNk P (k) ≥ 0 .

Proof. By Lemma 8 we have that

n∑
k=0

(
n

k

)
zNk P (k) =

2d−2∑
j=0

akP
(n

2 + d− 1− j
)

which is positive since it is a conical combination of points at which polynomial P is
positive. J

It remains to show that the objective value of the SoS hierarchy (5) attains a negative
value.

I Lemma 10. The sum
∑n
k=0

(
n
k

)
zNk fd(k) is negative for every odd n = 2m + 1, for any

positive integer m and d ∈ {1, ...,m}.

Proof. By Lemma 8, the solution zNk is such that

n∑
k=0

(
n

k

)
zNk fd(k) =

2d−2∑
j=0

ajfd

(n
2 + d− 1− j

)
.

Then, the claim is proved by showing that the following function g(d, n) is negative for every
odd n = 2m+ 1, for any positive integer m and d ∈ [m]. Formally, that

g(d, n) =
2d−2∑
j=0

(
2d− 2
j

) (n2 + d− 1)j

(n2 − d+ 1 + j)j
(2d− 3/2− j)2d

< 0

More precisely we show that the following identity holds (where !! denotes the double
factorial).

g(d, n) = (2d− 3/2)2d · 4d−1(2d− 2)!(2d− 1)!!
(d− 1)!(4d− 3)!! · (2m− 2d+ 3)!!(m− 1)!

(m− d)!(2m+ 1)!! (18)

By simple inspection it is easy to see that (18) is negative and the claim follows.
We start by rewriting g(d, n) by using the following (easy to check) identities:

(
2d− 2
j

)(n
2 + d− 1

)j
=

(2− 2d)j
(
1− d− n

2
)j

j!(n
2 − d+ 1 + j

)j
=
(

2− d+ n

2

)j
(2d− 3/2− j)2d = (2d− 3/2)2d (3/2)j

(3/2− 2d)j

ICALP 2016
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By the above identities we have that

g(d, n) =
2d−2∑
j=0

(
2d− 2
j

) (n2 + d− 1)j

(n2 − d+ 1 + j)j
(2d− 3/2− j)2d

= (2d− 3/2)2d
2d−2∑
j=0

(2− 2d)j
(
1− d− n

2
)j(3/2)j(

2− d+ n
2
)j(3/2− 2d)j

· 1
j!

= (2d− 3/2)2d
∞∑
j=0

(2− 2d)j
(
1− d− n

2
)j(3/2)j(

2− d+ n
2
)j(3/2− 2d)j

· 1
j!

= (2d− 3/2)2d · 3F2

[
a b c

1 + a− b 1 + a− c
; 1
]

(19)

where 3F2

[
a b c

1+a−b 1+a−c ; 1
]

=
∑∞
j=0

(a)j(b)j(c)j

(1+a−b)j(1+a−c)j
· 1
j! is the generalized hypergeometric

series with a = 2− 2d, b = 1− d− n/2 and c = 3/2.
Note that 1 + a/2− b− c = n−1

2 > 0 and by using Dixon’s identity [6] for the generalized
hypergeometric series 3F2

[
a b c

1+a−b 1+a−c ; 1
]
(when <(1 + a/2− b− c) > 0) we have

3F2

[
a b c

1 + a− b 1 + a− c
; 1
]

=
Γ(1 + 1

2a)Γ(1 + a− b)Γ(1 + a− c)Γ(1 + 1
2a− b− c)

Γ(1 + a)Γ(1 + 1
2a− b)Γ(1 + 1

2a− c)Γ(1 + a− b− c)

= Γ(2− d)Γ(5/2− d+m)Γ(3/2− 2d)Γ(m)
Γ(3− 2d)Γ(3/2 +m)Γ(1/2− d)Γ(1− d+m)

Note that Γ(2− d) = (1− d)Γ(1− d) and Γ(3− 2d) = 2(1− d)(1− 2d)Γ(1− 2d). By using
the Euler’s reflection formula we have that sin (πd)

π = 1
Γ(1−d)Γ(d) and sin (π2d)

π = 1
Γ(1−2d)Γ(2d) ,

and by the integrality of d we have that

Γ(1− d)
Γ(1− 2d) = sin (π2d)(2d− 1)!

sin (πd)(d− 1)! = 2 cos (πd)(2d− 1)!
(d− 1)! = 2(−1)d(2d− 1)!

(d− 1)! .

Therefore
Γ(2− d)
Γ(3− 2d) = (−1)d+1 (2d− 2)!

(d− 1)! .

Recall that for nonnegative integer values of x we have Γ( 1
2 −x) = (−2)x

(2n−1)!!
√
π and Γ( 1

2 +x) =
(2x−1)!!

2x

√
π, and the following holds.

3F2

[
a b c

1 + a− b 1 + a− c
; 1
]

= (−1)d+1 (2d− 2)!
(d− 1)!

(m− 1)!
(m− d)! ·

Γ( 5
2 − d+m)Γ( 3

2 − 2d)
Γ( 3

2 +m)Γ( 1
2 − d)

= 4d−1(2d− 2)!(2d− 1)!!
(d− 1)!(4d− 3)!!

(2m− 2d+ 3)!!(m− 1)!
(m− d)!(2m+ 1)!!

By simple inspection we see that 3F2

[
a b c

1+a−b 1+a−c ; 1
]
is always positive and g(d, n), see (19),

is negative as claimed. J

4 Rank bounds for detecting a particular empty integral hull

In [15] Laurent considers the representation of the empty set as (3) and shows that the
Sherali-Adams procedure requires n levels to detect that K = ∅. She conjectures that the
SoS rank of K is n− 1. In this section we disprove this conjecture and derive a lower and
upper bound for the SoS rank of K.



A. Kurpisz, S. Leppänen, and M. Mastrolilli 78:11

I Theorem 11. The SoS rank of K in (3) can be bounded by Ω(
√
n) ≤ ρ(K) ≤ n− Ω(n 1

3 ).

Proof.
The upper bound

By symmetry, the solution yNI = 1
2n for each I ⊆ N is feasible to SoSt(K) unless SoSt(K) = ∅.

Let us assume that such a solution is feasible and consider the constraint of K corresponding
to R = N . Then, gR(xI) is negative only when I = ∅.

To analyse the PSDness, we apply Theorem 3. Notice that in this case we can assume
that P (k) is of the form G0(k), since if h > 0, the only negative term in the sum (14)
corresponding to k = 0 is canceled due to Gh(0) = 0, and the inequality holds trivially.
Therefore, the PSDness condition (10) reduces to

n∑
k=0

(
n

k

)
1
2n

(
k − 1

2

)
P 2(k) ≥ 0 (20)

for every polynomial P of degree t. Importantly, what is not mentioned in the statement of
Theorem 3, in this case the PSDness condition actually becomes an if and only if condition
(see Theorem 7 in [13]). Therefore, showing that (20) is not satisfied implies that the PSDness
condition (10) is not satisfied.

We now fix the polynomial as P (k) =
∏t
i=1(n− k− i+ 1), i.e., such that P has the roots

at n, n− 1, ..., n− t+ 1, and argue that such a polynomial can never satisfy (20) when t is
large. Indeed, rewriting the condition using this polynomial, removing the redundant factor
1

2n and moving the negative term to the right hand side, we have the necessary requirement
for the positive semidefiniteness that

n−t∑
k=1

(
n

k

)(
k − 1

2

) t∏
i=1

(n− k − i+ 1)2 ≥ 1
2

t∏
i=1

(n− i+ 1)2 .

Notice that now the sum goes up to n− t only, since all the terms k > n− t are 0 by our
choice of the polynomial. By dividing both sides by the positive term

∏t
i=1(n− i+ 1)2 and

observing that
∏t

i=1
(n−k−i+1)∏t

i=1
(n−i+1)

= (n−t)k

nk , the condition further simplifies to

n−t∑
k=1

(
n

k

)(
k − 1

2

)(
(n− t)k

nk

)2

≥ 1
2 (21)

Next we upper bound the sum on the left hand side of (21) by considering a generic element
for any 1 ≤ k ≤ n− t. Any element can be bounded by(

n

k

)(
k − 1

2

)(
(n− t)k

nk

)2

≤ nkek

kk
k

(n− t)2k

(n− k)2k ≤
ek

kk−1

(
n(n− t)2

(n− k)2

)k
.

Here we use ek

kk−1 < 3 for any k and 1
n−k ≤

1
t for k ≤ n − t. Then, for t ≥ n − o(

√
n), it

holds n(n−t)2

t2 < 1 so we can approximate

ek

kk−1

(
n(n− t)2

(n− k)2

)k
≤ 3n(n− t)2

t2
.

Now, the sum on the left hand side of (21) is upper bounded by 3(n− t)n(n−t)2

t2 and thus
the solution is never feasible to SoSt(K) if

3n(n− t)3

t2
<

1
2 .

Setting t = n− Cn 1
3 satisfies the inequality asymptotically for an appropriate constant C.

ICALP 2016
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The lower bound

We show that the symmetric solution yNI = 1
2n is feasible for SoSt(K) when t is Ω(

√
n).

Again, by symmetry it is enough to show that the moment matrix of one constraint is PSD,
and again we consider the constraint corresponding to R = N . Therefore, we need to show
that (20) is satisfied for any choice of the polynomial P with degree less or equal to t. Writing
the polynomial P in root form with roots ri, i = 1, ..., t, we get similarly as in (21) the
condition

n∑
k=1

(
n

k

)(
k − 1

2

) t∏
i=1

(
k − ri
ri

)2
≥ 1

2 (22)

Now, we seek for a lower bound for the sum on the left hand side and find the condition on t
such that the lower bound still exceeds 1

2 .
One can show (see [13]) that the roots ri can be assumed to be real and to be located in

the interval [0, n]. Furthermore, we can assume that the polynomial has degree of exactly t.
Then, we look for the worst-case assignment for the roots.

No matter how the roots are located, there exist at least one non-zero point k ∈ N such
that |k − ri| ≥ n

2(t+1) for every root ri and k ≥ b n
2(t+1)c. In the worst case the smallest of

such points is b n
2(t+1)c. Let u = b n

2(t+1)c be this point. Then, (22) is satisfied if we can show
that

(
n

u

)(
u− 1

2

) ( n
2(t+1)

)2t

∏t
i=1 r

2
i

≥ 1
2 .

Next, the worst case of the location for the roots in this formulation is ri = n for every
i = 1, ..., t, since all the roots can be assumed to be less or equal to n. We can also get rid of
the term u− 1

2 , since it is always greater than 1. We then obtain that (22) holds if

(
n

u

)( n
2(t+1)

)2t

n2t ≥ 1
2 .

Here we use the inequality
(
n
u

)
> nu

uu and the fact that 1
2(t+1) ≥

1
4t to get that if n

u

uu (4t)−2t ≥ 1
2

holds, then the solution is feasible for SoSt(K). We have that n ≥ tu, so the above is satisfied
if

(tu)u

uu
(4t)−2t ≥ 1

2 ⇔ tu(4t)−2t ≥ 1
2 .

We have that u ≥ n
4t , so it is enough to satisfy t

n
4t (4t)−2t ≥ 1

2 , which is equivalent to
4−2tt

n
4t−2t ≥ 1

2 . If here t =
√
n

4 we need to then satisfy 4−
√
n
√
n
√
n/2 ≥ 1

2 , which holds
asymptotically in n. J

Open question. We note that applying the theorem of [13], it is possible to perform
numerical experiments to test the SoS rank of the polytope K with large number of variables.
For a fixed number of variables, the upper bound can be experimented by fixing the polynomial
P in (20) in some systematic way and by finding the level t (i.e., the number of roots) for
which the expression is positive/negative for that polynomial. For the lower bound, the
polynomial in (20) can be expressed in the root form and the PSDness can be tested using a
numerical solver to minimize the resulting expression, where the roots are the variables to be
minimized.
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Based on such experiments, we conjecture that the SoS rank of K is “close” to n
2 and

suggest that our bounds in Theorem 11 are far from being tight. Therefore we leave it as an
open question to improve our bounds for the rank.

Acknowledgements. The authors would like to express their gratitude to Alessio Benavoli
for helpful discussions.
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Abstract
The algebraic dichotomy conjecture of Bulatov, Krokhin and Jeavons yields an elegant character-
ization of the complexity of constraint satisfaction problems. Roughly speaking, the characteri-
zation asserts that a CSP L is tractable if and only if there exist certain non-trivial operations
known as polymorphisms to combine solutions to L to create new ones.

In this work, we study the dynamical system associated with repeated applications of a
polymorphism to a distribution over assignments. Specifically, we exhibit a correlation decay
phenomenon that makes two variables or groups of variables that are not perfectly correlated
become independent after repeated applications of a polymorphism.

We show that this correlation decay phenomenon can be utilized in designing algorithms for
CSPs by exhibiting two applications:
1. A simple randomized algorithm to solve linear equations over a prime field, whose analysis

crucially relies on correlation decay.
2. A sufficient condition for the simple linear programming relaxation for a 2-CSP to be sound

(have no integrality gap) on a given instance.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Constraint Satisfaction, Polymorphisms, Linear Equations, Correlation
Decay

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.79

1 Introduction

A vast majority of natural computational problems have been classified to be either polynomial-
time solvable or NP-complete. While there is little progress in determining the exact time
complexity for fundamental problems like matrix multiplication, it can be argued that a
much coarser classification of P vs.~NP-complete has been achieved for a large variety of
problems. Notable problems that elude such a classification include factorization or graph
isomorphism.

A compelling research direction at this juncture is to understand what causes problems
to be easy (in P) or hard (NP-complete). More precisely, for specific classes of problems,
does there exist a unifying theory that explains and characterizes why some problems in the
class are in P while others are NP-complete? For the sake of concreteness, we will present a
few examples.

It is well-known that 2-Sat is polynomial-time solvable, while 3-Sat is NP-complete.
However, the traditional proofs of these statements are unrelated to each other and therefore
shed little light on what makes 2-Sat easy while 3-Sat NP-complete.
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79:2 Correlation Decay and Tractability of CSPs

Over the last decade, a theory of tractability has emerged for the class of constraint
satisfaction problems (CSP). While this candidate theory remains conjectural for now, it
successfully explains all the existing algorithms and hardness results for CSPs. To set the
stage for the results of this paper, we begin with a brief survey of the theory for CSPs.

A constraint satisfaction problem (CSP) Λ is specified by a family of predicates over a
finite domain [q] = {1, 2, . . . , q}. Every instance of the CSP Λ consists of a set of variables
V, along with a set of constraints C on them. Each constraint in C consists of a predicate
from the family Λ applied to a subset of variables. For a CSP Λ, the associated satisfiability
problem Λ-Sat is defined as follows.

I Problem 1 (Λ-Sat). Given an instance = of the CSP Λ, determine whether there is an
assignment satisfying all the constraints in =.

A classic theorem of Schaefer [11] asserts that among all satisfiability problems over the
boolean domain ({0, 1}), only Linear-Equations-Mod-2, 2-Sat, Horn-Sat, Dual-Horn
Sat and certain trivial CSPs are solvable in polynomial time. The rest of the boolean CSPs
are NP-complete. The dichotomy conjecture of Feder and Vardi [7] asserts that every Λ-Sat
is in P or NP-complete. The conjecture has been shown to hold for CSPs over domains of
size up to 3 [4].

In this context, it is natural to question as to what makes certain Λ-Sat problems
tractable while the others are NP-complete. Bulatov, Jeavons and Krokhin [6] conjectured a
beautiful characterization for tractable satisfiability problems. We will present an informal
description of this characterization known as the algebraic dichotomy conjecture. We refer
the reader to the work of Kun & Szegedy [8] for a more formal description.

To motivate this characterization, let us consider a CSP known as the XOR problem.
An instance of the XOR problem consists of a system of linear equations over Z2 = {0, 1}.
Fix an instance = of XOR over n variables. Given three solutions X(1), X(2), X(3) ∈ {0, 1}n
to =, one can create a new solution Y ∈ {0, 1}n:

Yi = X
(1)
i ⊕X

(2)
i ⊕X

(3)
i ∀i ∈ [n] .

It is easy to check that Y is also a feasible solution to the instance =. Thus the XOR :
{0, 1}3 → {0, 1} yields a way to combine three solutions in to a new solution to the same
instance. Note that the function XOR was applied to each bit of the solution individually. An
operation of this form that preserves the satisfiability of the CSP is known as a polymorphism.
Formally, a polymorphism of a CSP Λ-Sat is defined as follows:

I Definition 2 (Polymorphisms). A function p : [q]R → [q] is said to be a polymorphism for
the CSP Λ-Sat, if for every instance = of Λ, and R assignments X(1), X(2), . . . , X(R) ∈ [q]n
that satisfy all constraints in =, the vector Y ∈ [q]n defined below is also a feasible solution.

Yi = p(X(1)
i , X

(2)
i , X

(3)
i , . . . , X

(R)
i ) ∀i ∈ [n] .

Note that the dictator functions p(x(1), . . . , x(R)) = x(i) are polymorphisms for every
CSP Λ-Sat. These will be referred to as projections or trivial polymorphisms. All the
tractable cases of boolean CSPs in Schaefer’s theorem are characterized by existence of
non-trivial polymorphisms. Specifically, 2-SAT has the Majority function, Horn-SAT has
the OR function, and Dual Horn-SAT has the AND function as a polymorphism. Roughly
speaking, Bulatov et al. [6] conjectured that the existence of non-dictator polymorphisms
characterizes CSPs that are tractable. Their work showed that the set of polymorphisms
Poly(Λ) of a CSP Λ characterizes the complexity of Λ-Sat. There are many equivalent
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ways of formalizing what it means for an operation to be non-trivial or non-dictator. A
particularly simple way to formulate the algebraic dichotomy conjecture arises out of the
recent work of Barto and Kozik [2]. A polymorphism p : [q]k → [q] is called a cyclic term if

p(x1, . . . , xk) = p(x2, . . . , xk, x1) = . . . = p(xk, x1, . . . , xk−1) ∀x1, . . . , xk ∈ [q] .

Note that the above condition strictly precludes the operation p from being a dictator.

I Conjecture 3 ([6, 9, 2]). Λ-Sat is in P if Λ admits a cyclic term, otherwise Λ-Sat is
NP-complete.

Surprisingly, one of the implications of the conjecture has already been confirmed.

I Theorem 4 ([6, 9, 2]). Λ-Sat is NP-complete if Λ does not admit a cyclic term.

The algebraic approach to understanding the complexity of CSPs has received much
attention, and the algebraic dichotomy conjecture has been verified for several subclasses
of CSPs such as conservative CSPs [3], CSPs with no ability to count [1] and CSPs with
Maltsev operations [5]. Recently, Kun and Szegedy reformulated the algebraic dichotomy
conjecture using analytic notions similar to influences [8].

Despite considerable progress in recent years [2], the algebraic dichotomy conjecture still
remains open. Kun & Szegedy suggested the use of analytic techniques towards resolving
the conjecture [8], which forms the inspiration for this work. This work demonstrates a
phenomenon of correlation decay associated with iterated applications of polymorphisms and
then exploits this phenomenon towards designing algorithms for CSPs.

1.1 Correlation Decay
We associate a natural dynamical system with a polymorphism p : [q]k → [q] that corresponds
to iterated applications of the polymorphism. Towards a formal definition of the dynamical
system, let us fix a probability distribution µ over [q]n. It is useful to think of µ as a
distribution over assignments to a CSP instance on n variables.

For an operation p : [q]k → [q], the distribution p(µ) over [q]n is one that is sampled by
taking k independent samples from µ and applying the operation p to them. Define the
dynamical system {µt}t∈N with µ0 = µ,

µt
def= p(µt−1) ,∀t ∈ N.

Roughly speaking, the key technical insight of this work is that the correlations among
the coordinates decay as t→∞ for a non-dictator operation p. For the sake of simplicity, let
us restrict our attention to the case of a distribution µXY on [q]× [q] (see Section 4 for the
general theorem on distributions over [q]n). Let µ|X and µ|Y denote the marginals of µXY .
For any distribution Θ, let supp(Θ) denote its support. We are ready to state a version of
our correlation decay theorem.

I Theorem 5. Let µXY be a distribution over [q]× [q]. Let GµXY
denote the bipartite graph

on vertices supp(µ|X) ∪ supp(µ|Y ) whose edges are given by the support of µXY . For a
cyclic term p : [q]k → [q], consider the dynamical system {µt}t∈N defined as µ0 := µXY ,
µt := p(µt−1)∀t ∈ N. If GµXY

is a connected graph then

lim
t→∞
‖µt − µt|X × µt|Y ‖1 = 0 .

i.e., µt gets closer and closer to a product distribution as t→∞.
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79:4 Correlation Decay and Tractability of CSPs

Suppose p is a polymorphism of a CSP Λ and µXY is a distribution supported over
satisfying assignments to an instance of Λ, then for every t, µt is also supported over satisfying
assignments to Λ. Intuitively, this seems to be at odds with the correlation decay phenomenon:
cyclic polymorphisms make variables uncorrelated yet still preserve satisfying assignments.

To resolve this paradox, notice that Theorem 5 requires that the graph GµXY
be connected.

Connectivity of GµXY
corresponds to asserting that there are no perfect correlations between

X and Y . This lack of perfect correlation can be quantified using the spectrum of the
bipartite graph GµXY

. Specifically, one can associate a correlation parameter ρ(X,Y ) (see
Definition 18) such that ρ(X,Y ) < 1 if and only if GµXY

is connected. ρ(X,Y ) is closely
related to the second-eigenvalue of the adjacency matrix of the bipartite graph GµXY

.
If GµXY

is disconnected, every connected component of GµXY
corresponds to a perfect

correlation between X and Y . If the support of µ consists of all satisfying assignments to a
constraint, then the polymorphism p necessarily preserves these perfect correlations, i.e., for
all t ∈ N, (X,Y ) sampled from µt will be such that X and Y belong to the same connected
component of GµXY

. Summarizing, our result suggests that a cyclic polymorphism preserves
perfect correlations, while imperfect correlations decay.

Discussion. A brief overview of the correlation decay argument is presented in Section 4.
The details of the argument are fairly technical and draw upon various analytic tools such as
hypercontractivity, the Berry-Esseen theorem and Fourier analysis (see Section 4). A key
bottleneck in the analysis is that the individual marginals change with each iteration thereby
changing the fourier spectrum of the operations involved.

Theorem 5 can be thought of as an analytic analogue of a theorem on absorbing subalgebras
(Theorem 4.11 in [1]), which formed a key ingredient in the breakthrough work of Barto and
Kozik [1]. This work of Barto and Kozik showed that a major subclass of CSPs namely CSPs
with no ability to count can be solved using local consistency. Roughly speaking, CSPs with
no ability to count are precisely those that don’t contain linear equations within them, i.e.,
these CSPs don’t admit gadget reductions from linear equations over a finite field.

Interestingly, we will show that the same correlation decay phenomenon is useful in
solving linear equations over prime fields! We will also present an application of correlation
decay towards rounding linear programming relaxations for CSPs. We will outline these two
applications in the upcoming subsections.

1.2 Solving Linear Systems
The input to the algorithm consists of a linear system Ax = b where A ∈ Fm×nq and b ∈ Fnq .
Consider the following naive algorithm for solving the linear systems for some N ∈ N.

1. S0 ← N uniformly random assignments from Fnq .
2. for i = 1 to m do

Selection: Si ← Si−1 ∩ {x|〈Ai, x〉 = bi}
3. Output an assignment z ∈ Sm if Sm 6= ∅, else output Infeasible

Clearly, if the algorithm outputs an assignment z then Az = b. By definition, the ith
generation Si consists of uniformly random assignments that satisfy the first i equations
{〈Aj , x〉 = bj |j 6 i}. Therefore, the i+ 1st linear function 〈Ai+1, x〉 is either constant over
Si or takes every value in Fq with probability roughly 1/q.

If the linear system Ax = b is satisfiable and is linearly independent, then the expected
size of ith generation Si is given by E |Si| = 1

q E |Si−1|. Therefore the initial sample size
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Input: A ∈ Fm×nq , b ∈ Fmq
1. S0 ← N uniformly random assignments from Fnq .
2. for i = 1 to m do

Selection: Ti ← Si−1 ∩ {x|〈Ai, x〉 = bi}
Recombination: Generate Si by using the following sampling procedure N times
independently.

Sample y(1), y(2), y(3) i.i.d from Ti and compute p(y(1), y(2), y(3)) = y(1)−y(2)+y(3).
3. Output an assignment z ∈ Sm if Sm 6= ∅, else output Infeasible

Figure 1 Randomized algorithm for linear equations over Fq.

|S0| has to be at least qm to ensure the correctness of the algorithm, making the runtime
exponential.

A natural approach to fix the algorithm is as follows. After each selection step, use the
polymorphism associated with linear systems in order to create new assignments from the
existing sample. For the sake of concreteness, we fix the following polymorphism p : [q]3 → [q]
for linear systems.

p(y(1), y(2), y(3)) = y(1) − y(2) + y(3) .

The details of the algorithm are as shown in Figure 1.
Since p is a polymorphism, the recombination steps don’t affect the progress made in the

selection steps, i.e., Si satisfy the first i equations for each i. While the polymorphism p is
useful to maintain the sample size after each selection, the sample size alone is insufficient
to ensure the success of the algorithm. We require the sample Si to be somewhat similar a
uniformly random sample from the set of all solutions to the first i equations.

Here is an alternate take on the issue. A finite sized sample S of a distribution µ has
spurious correlations that are absent in µ. For example, in the initial sample S0, the first two
variables x1, x2 ∈ [q] will be close to independent, but there is bound to be some assignment
α, β ∈ [q]2 such that Px∈S0 [x1 = α∧x2 = β] > 1/q2 +Ω(1/

√
N) due to random deviation. At

the ith stage, the sample Si has a set of perfect correlations induced by the first i equations,
but there are additional spurious correlations between the variables owing to sample size
being bounded.

The magnitudes of spurious correlations in the sample need to be controlled. Otherwise,
a spurious correlation could result in 〈Ai, x〉 6= bi for all x ∈ Si−1 for some i, making Ti = ∅
even though the linear system is satisfiable. Each selection step reduces the sample size
thereby potentially amplifying the spurious correlations. However, the recombination step
exploits the correlation decay phenomena to decrease the spurious correlations. In Section 3,
we will show the following.

I Theorem 6. For all primes q, the randomized algorithm in Figure 1 with the choice
N = d

(
150q4 ln q

)
· ne satisfies these properties.

Completeness: If algorithm returns z ∈ Fnq , then z satisfies the linear system Az = b.
Soundness: If the system Ax = b is feasible, then with probability at least 1 − e−n the

algorithm will return a solution to the system.

The algorithm described above is somewhat similar to a deterministic algorithm of Bulatov
and Dalmau [5] for CSPs admitting Maltsev polymorphisms in that it maintains a basis
for the solution space and updates the basis by including one equation in to the system at
each step. We find the randomized algorithm interesting in that it admits a very generic
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79:6 Correlation Decay and Tractability of CSPs

description that uses little about the structure of the underlying CSP. Moreover, the analysis
of the algorithm crucially relies on correlation decay – a phenomenon that seems inherent to
all tractable CSPs.

1.3 Rounding Linear Programs via Correlation Decay
Correlation decay can also be used towards rounding linear programming relaxations. For
the sake of clarity, let us restrict our attention to 2-CSPs where every constraint has arity
two. These results can be generalized to k-CSPs. Further, every CSP can be reduced to a
2-CSP while preserving the existence of cyclic terms.

First, we introduce the BasicLP linear programming relaxation for CSPs of arity two.
Let Λ be a CSP of arity two over the alphabet [q], and I be an instance of Λ. For every
variable X in I, the LP associates a probability distribution µX over [q]. For every constraint
Ci(X,Y ) in I, the LP associates a probability distribution µXY over [q]× [q], supported on
satisfying assignments to the constraint Ci. The pairwise distributions µXY are constrained
to be consistent with the marginal distributions µX and µY . The BasicLP program for
2-CSPs is described in detail in Section 5.

I Definition 7. An LP relaxation L for a CSP is sound on an instance I if the feasibility of
the LP relaxation L on I implies satisfiability of the instance I.

Typically, one shows the soundness of an LP relaxation by a rounding scheme that extracts
an assignment to the CSP from the LP solution. We exhibit a sufficient condition for an LP
relaxation to be sound on an instance I. For a constraint Ci(X,Y ), let GµXY

denote the
bipartite graph whose edges are given by the support of the distribution µXY .

I Theorem 8. Let Λ be a 2-CSP that admits a cyclic polymorphism and let I be an instance
Λ. Suppose there exists a solution to the BasicLP relaxation for I such that all the associated
graphs GµXY

are connected, then the BasicLP relaxation is sound on the instance I, i.e., I
is satisfiable.

2 Background

We first introduce some basic notation. Let [q] denote the alphabet [q] = {1, . . . , q}. For
a probability distribution µ on the finite set [q] we will write µk to denote the product
distribution on [q]k given by drawing k independent samples from µ.

If µ is a joint probability distribution on [q]n we will write µ1, µ2, . . . µn for the n marginal
distributions of µ. Further we will use µ× to denote the product distribution with the same
marginals as µ. That is we define µ× def= µ1 × µ2 × · · · × µn .

An operation p of arity k is a map p : [q]k → [q]. For a set of k assignments x(1), . . . , x(k) ∈
[q]n, we will use p(x(1), . . . , x(k)) ∈ [q]n to be the assignment obtained by applying the
operation p on each coordinate of x(1), . . . , x(k) separately. More formally, let x(i)

j be the jth
coordinate of xi. We define

p(x(1) . . . x(k)) =
(
p(x(1)

1 . . . x
(k)
1 ), p(x(1)

2 . . . x
(k)
2 ), . . . , p(x(1)

n . . . x(k)
n )
)
.

I Definition 9. For two operations p1 : [q]k1 → [q] and p2 : [q]k2 → [q], define an operation
p1 ⊗ p2 : [q]k1×k2 → [q] as follows:

p1 ⊗ p2({xij}i∈[k1],j∈[k2]) = p1 (p2(x11, x12, . . . , x1k2), . . . , p2(xk11, xk12, . . . , xk1k2))

I Lemma 10 (Hoeffding bound). Suppose Z1, . . . , ZN are complex-valued random variables
such that |Zi| is always bounded by 1. If Z = 1

N

∑
i Zi then, P[|Z − E[Z]| > δ] 6 2e−δ2N/4.
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3 Solving Linear Systems via Correlation Decay

In this section, we will analyze the randomized algorithm for linear equations in Figure 1
and present a proof of Theorem 6. We begin with setting up some notation dealing with
affine subspaces of Fnq .

I Definition 11. For an affine subspace V ⊆ Fnq and b ∈ Fq, set V ⊥b
def= {w|∀x ∈ V, 〈x,w〉 =

b}, and let V ⊥ def= ∪b∈Fq
Vb.

In the setting of linear equations, correlations can be measured using Fourier analysis.
Therefore, we recall the definition of characters over Fnq .

I Definition 12. For every w ∈ Fnq , the corresponding character χw is a function χw : Fnq → C
given by χw(x) = ω〈w,x〉 , where ω is a primitive qth root of unity and 〈w, x〉 denotes the
inner product of w and x over Fq.

We will quantify the spurious correlations in our sample using the notion of bias as defined
below.

I Definition 13 (Bias). For a vector w ∈ Fnq and a multiset S ⊆ Fnq , define the bias of w
over S as,

biasw(S) = | E
x∈S

[χw(x)]| = 1
|S|
|
∑
x∈S

χw(x)| .

An ε-biased sample from an affine subspace V is one in which all the spurious correlations
are bounded by ε. Formally,

I Definition 14 (ε-biased sample). For ε ∈ [0, 1], a multiset of vectors S ∈ Fnq is a ε-biased
sample of an affine subspace V ⊆ Fnq if S ⊆ V and for all w /∈ V ⊥, |biasw(S)| 6 ε.

Effect of Selection on Bias

I Lemma 15. Let S be a ε-biased sample from an affine subspace V . For all w /∈ V ⊥ and
b ∈ Fq, the following holds:
1. Pz∈S [〈w, z〉 = b] ∈

[
1
q − ε,

1
q + ε

]
.

2. If T = S ∩ {z|〈w, z〉 = b} then T is a qε/(1−qε)-biased sample from the affine subspace
V ∩ {z ∈ Fnq |〈w, z〉 = b}.

Proof. Let I〈w,z〉=b be the indicator of the event that 〈w, z〉 = b. Using the identity
I〈w,z〉=b = 1

q

∑
α∈Fq

(χw(z)ω−b)α, we can write

P
z∈S

[〈w, z〉 = b] = E
z∈S

1
q

∑
α∈Fq

(χw(z)ω−b)α
 .

Simplifying the above expression using the identity χw(z)α = χαw(z) we get

P
z∈S

[〈w, z〉 = b] = 1
q

+ 1
q

∑
α∈Fq/{0}

ω−αb E
z∈S

[χαw(z)] .

Hence,∣∣∣∣ Pz∈S[〈w, z〉 = b]− 1
q

∣∣∣∣ 6 1
q

∑
α∈Fq/{0}

∣∣∣∣ Ez∈S [χαw(z)]
∣∣∣∣ 6 1

q

∑
α∈Fq/{0}

|biasαw(S)| 6 ε
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Let V ′ denote the affine subspace V ′ = V ∩ {z ∈ Fnq |〈w, z〉 = b}. Clearly, T is a subset of
V ′ if S is a subset of V . By definition, for every v ∈ Fnq the bias over T is given by

biasv(T ) = E
z∈T

[χv(z)] = E
z∈S

[χv(z)|〈w, z〉 = b] = 1
P[〈w, z〉 = b] E

z∈S

[
χv(z)I〈w,z〉=b

]
(3.1)

Evaluating the expectation inside,

E
z∈S

[
χv(z)I〈w,z〉=b

]
= 1
q

∑
α∈Fq

E
z∈S

[
χv(z)(χw(z)ω−b)α

]
= 1
q

∑
α∈Fq

ω−bαbiasv+αw(S) (3.2)

For a vector v /∈ (V ′)⊥, we claim that v + αw /∈ V ⊥ for any α ∈ Fq. Suppose not, then
v + αw ∈ V ⊥ which implies that for some b′ ∈ Fq, we have 〈v + αw, z〉 = b′ for all z ∈ V .
This implies that for all z ∈ V ′, 〈v, z〉 = 〈v + αw, z〉 − α〈w, z〉 = b′ − αb – a constant, a
contradiction to the fact that v /∈ (V ′)⊥.

Since S is an ε-biased sample from V and v+αw /∈ V ⊥, we have biasv+αw(S) 6 ε. Using
this bound in (3.2) we get Ez∈S

[
χv(z)I〈w,z〉=b

]
6 ε .Substituting in (3.1) and using the fact

that P[〈w, z〉 = b] > 1/q − ε, we conclude that biasv(T ) 6 ε
(1/q−ε) for any v ∈ V ⊥. J

Recombination Reduces Bias

I Lemma 16. For all i ∈ [m], if the sample Ti ∈ Fnq is a ε-biased sample of an affine
subspace V ⊆ Fnq , then for all δ > 0, then the sample Si generated by recombination is a
ε3 + δ-biased sample from V with probability at least 1− 2qne−δ2N/4 .

Proof. The multiset Si consists of N -i.i.d samples from a probability distribution. Fix any
w ∈ V ⊥. The expected value of the bias w over U is given by,

E [biasw(U)] = E

[
1
N

∑
z∈U

χw(z)
]

= 1
N

∑
z∈U

E [χw(z)]

For every sample z = p(y(1), y(2), y(3)) in Si, the expectation of the bias is given by

| E
y(j)∈Ti

[χw(y1 − y2 + y3)]| = | E
y(j)∈Ti

[χw(y(1))χw(y(2))χw(y(3))]| = |
3∏
j=1

E
y(j)∈Ti

[χw(y(j)]|

Therefore, the expected value of the bias of w over Si is, E [biasw(Si)] 6 bias3
w(Ti). Since Ti

is a ε-biased sample from V , for each w ∈ V ⊥ |biasw(Ti)| 6 ε. Therefore, we get that

P
[
|biasw(Si)| > ε3 + δ

]
6 P [|biasw(Si)− E[biasw(Si)]| > δ]

6 2e−δ
2N/4 (Lemma 10)

By a union bound over all qn characters w ∈ Fnq , we get the desired result. J

Analysis of the Algorithm

Proof of Theorem 6. Fix ε = 1
2q2 and δ = 1

6q . Let Vk denote the affine subspace consisting
of solutions to the first k equations {Aix = bi|1 6 i 6 k}. We will show the following claim
from which Theorem 6 follows immediately.

I Claim 17. If N = d(150q4 ln q) · ne, then with probability at least 1 − e−n the following
holds: for all 0 6 k 6 m, Sk is an ε-biased sample from Vk for ε = 1

4q .
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The argument is by induction on k. For k = 0, the set S0 consists of N random vectors
from Fnq and V0 = Fnq . By definition, V ⊥0 = Fnq − {0}. For every w ∈ Fnq − {0}, the bias of w
is given by, biasw(S0) = 1

N

∑N
i=1 χw(zi). In particular, it is easy to see that E[biasw(S0)] = 0.

By applying Lemma 10, we get that

P[|biasw(S0)| > ε] 6 2e−ε
2N/4 .

By a simple union bound, S0 is ε-biased sample with probability at least 1− qn2e−ε2N/4 =
1− qn2e−N/16q4 .

Let us suppose S` is a ε-biased sample from V`. By Lemma 15, we get that T`+1 is a
qε/(1− qε)-biased sample from V`+1. By Lemma 16, with probability at least 1−2qne−δ2N/4,
the bias of S`+1 obtained by recombination is at most,

bias(S`+1) 6 bias(T`+1)3 + δ 6 (qε/(1− qε))3 + δ = 1
q3 + δ < ε .

Applying a union bound over all ` ∈ {0, . . . ,m}, with probability at least 1− 2mqne−N/144q2 ,
S` is an ε-biased sample from V` for all ` ∈ {1, . . . ,m}. Setting N = d(150q4 ln q) · ne, the
claim follows. J

4 Correlation Decay

In this section we state our main theorem regarding the decay of correlation between random
variables under repeated applications of cyclic operations. Recall that Theorem 5 states the
theorem for two variables. Throughout this section we will use this two variable case as a
running example. We begin by defining a quantitative measure of correlation and using it to
bound the statistical distance to a product distribution.

4.1 Correlation and Statistical Distance
To gain intuition for our measure of correlation consider the example of two boolean random
variables X and Y with joint distribution µ. In this case we will measure correlation by
taking the supremum over appropriately normalized test functions f, g : {0, 1} → R and
computing E[f(X)g(Y )].

I Definition 18. Let X,Y be discrete-valued random variables with joint distribution µ.
Let Ω1 = ([q1], µ1) and Ω2 = ([q2], µ2) denote the probability spaces corresponding to X,Y
respectively. The correlation ρ(X,Y ) is given by

ρ(X,Y ) def= sup
f,g

E[f(X)g(Y )]

where the supremum runs over all f, g where E[f ] = E[g] = 0 and Var[f ] = Var[g] = 1. We
will interchangeably use the notation ρ(µ) or ρ(Ω1,Ω2) to denote the correlation.

To see that this notion of correlation makes intuitive sense, suppose X and Y are independent.
In this case correlation is zero because E[f(X)g(Y )] = E[f(X)]E[g(Y )] = 0. Next suppose
that X = Y = 1 with probability 1

2 and X = Y = 0 with probability 1
2 . In this case we can

set f(1) = g(1) = 1 and f(0) = g(0) = −1 to obtain E[f(X)g(Y )] = 1. This matches up
with the intuition that such an X and Y are perfectly correlated. We now give the general
definition for our measure of correlation. Next we show that, as the correlation for a pair of
random variables X and Y becomes small, the variables become nearly independent.
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I Lemma 19. Let X,Y be discrete-valued random variables with joint distribution µXY and
respective marginal distributions µX and µY . If X takes values in [q1] and Y takes values in
[q2], then ‖µXY − µX × µY ‖1 6 min(q1, q2)ρ(X,Y )

It turns out that there is also a simple combinatorial condition that is essentially equivalent
to a bound on the correlation. First we define a natural bipartite graph associated to a joint
distribution.

I Definition 20. Let X,Y be jointly distributed according to µ as in Definition 18. Define a
bipartite graph Gµ on vertex set ([q1], [q2]) by adding an edge (a, b) whenever Pµ[X = a, Y =
b] > 0.

Now the following lemma from [10] states that ρ(µ) < 1 whenever the graph Gµ is connected.

I Lemma 21 (Lemma 2.9 in [10]). Let µ be a joint distribution where the minimum non-zero
probability that µ assigns to any element is α. If Gµ is connected then ρ(µ) < 1− α2

2 .

In addition, if Gµ is disconnected, then ρ(µ) = 1. Therefore checking if ρ(µ) < 1 amounts to
checking connectivity of Gµ.

4.2 Proof Overview
To begin with, we explain why one should expect correlations to decay under repeated
applications of cyclic operations. Consider the simple example of two boolean random
variables X and Y with a joint distribution µ. Let the marginal distributions of X and Y be
uniform and let us suppose X = Y with probability 1

2 + γ and X 6= Y with the remaining
probability. Let p : {0, 1}k → {0, 1} be the majority operation on k bits.

Next suppose we draw k samples (Xi, Yi) from µ and evaluate p(X1 . . . Xk) and p(Y1 . . . Yk).
Since the marginal distributions of bothX and Y are uniform, the same is true for p(X1 . . . Xk)
and p(Y1 . . . Yk). However, the probability that p(X1 . . . Xk) = p(Y1 . . . Yk) is strictly less
than 1

2 + γ. To see why first let F : {−1, 1} → {−1, 1} be the majority function where 1
encodes boolean 0 and −1 encodes boolean 1. Note that the probability that F (X1 . . . Xk) =
F (Y1 . . . Yk) is given by 1

2 + 1
2 E[F (X1 . . . Xk)F (Y1 . . . Yk)].

Now if we write the Fourier expansion of F the above expectation is

∑
S,T

F̂SF̂T E

∏
i∈S

Xi

∏
j∈T

Yj

 =
∑
S

F̂ 2
S

∏
i∈S

E[XiYi] =
∑
S

F̂ 2
S(2γ)|S|

Suppose first that all the non-zero Fourier coefficients F̂S have |S| = 1. In this case the
probability that F (X1 . . . Xk) = F (Y1 . . . Yk) stays the same since 1

2 + 1
2 (2γ) = 1

2 +γ. However,
in the case of majority, it is well known that

∑
|S|=1 F̂

2
S < 1− c for a constant c > 0. Thus,

the expectation is in fact given by

E[F (X1 . . . Xk)F (Y1 . . . Yk)] 6 (1− c)(2γ) + c(2γ)2 < 2γ

Thus the probability that F (X1 . . . Xk) = F (Y1 . . . Yk) is strictly less than 1
2 + γ. Therefore,

if we repeatedly apply the majority operation, we should eventually have that X and Y

become very close to independent.
There are two major obstacles to generalizing the above observation to arbitrary cyclic

operations. First, for a general operation p, we will not be able to explicitly compute the
entire Fourier expansion. Instead, we will have to use the fact that p is cyclic to get a bound
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on the total Fourier mass on degree-one terms. Second, unlike in our example, the marginal
distributions of X and Y may change after every application of p. This means that the
correct Fourier basis to use also changes.

The fact that the marginal distributions change under p causes difficulties even for
the simple example of the boolean OR operation on two bits. Consider a highly biased
distribution over 0, 1 given by X = 1 with probability ε and X = 0 with probability 1− ε.
Now consider the function f(X) = 1

2 (X1 + X2). Note that this function agrees with OR
except when X1 6= X2. Thus, f(X) = OR(X) with probability 1− 2ε(1− ε) > 1− 2ε. This
means that as ε approaches zero, OR approaches a function f with

∑
|S|=1 f̂

2
S = 1.

Thus, there are distributions for which the correlation decay under the OR operation
approaches zero. This means that we cannot hope to prove a universal bound on correlation
decay for every marginal distribution, even in this very simple case. The problem for the
general case is that as we repeatedly apply some operation p it could be that the marginals
converge to some point where p does not result in correlation decay.

It is useful to note that for the OR operation, the probability that X = 1 increases under
every application. Thus, as long as the initial distribution has a non-negiligible probability
that X = 1, we will have that correlation does indeed decay in each step. Though this
particular observation applies only to the OR operation, our proof in the general case does
rely on the fact that, using only properties of the initial distribution of X we can get bounds
on correlation decay in every step. In summary, we are able to achieve correlation decay for
arbitrary cyclic operations. We now state our main theorem to this effect.

I Theorem 22 (Correlation Decay). Let µ be a distribution on [q]n. Let X1, . . . , Xn

be the jointly distributed [q]-valued random variables drawn from µ. Further, let ρ =
maxi ρ((X1;X2; . . . ;Xi−1), Xi) < 1 and λ be the minimum probability of an atom in the
marginal distributions {µi}i∈[n]. For any η > 0 and r > Ωq

(
logλ
log ρ log2

(
qn
η

))
, if p1, . . . , pr is

a sequence of operations each of which are cyclic terms then,

‖p1 ⊗ p2 ⊗ . . .⊗ pr(µ)− p1 ⊗ p2 ⊗ . . .⊗ pr(µ×)‖1 6 η .

We now give a brief outline of the main ideas of the proof. For a cyclic operation p, the
degree-one Fourier coefficients with respect to any distribution are all equal. Suppose that for
some probability distribution µ, the operation p has nearly all of its Fourier mass on degree
one coefficients. Then p(x) is close to a sum of independent random variables. Therefore, a
quantitative version of the Central Limit Theorem (in particular a variant of the Berry-Esseen
Theorem), implies that p(x) is close to a Gaussian random variable.

Next, since p(x) is an operation on [q] it only takes q different values. This should then
give us a contradiction: a random variable taking only q different values cannot be close
to a continuous random variable like a Gaussian. Unfortunately there is a problem with
this argument. The error term in the Berry-Esseen theorem depends on the L3-norm of the
independent random variables. Thus, we must control the L3-norms of the Fourier basis for
p under the distribution µ in order for the previous argument to work.

Now the problem is that, even in the case of the OR operation, the L3-norms of vectors
in the Fourier basis can become arbitrarily large as µ changes under repeated applications of
the operation. So, we are forced to prove that the elements of the Fourier basis that have
high L3-norm somehow have very small contribution to the correlation. The main idea here
is that the correlation of a joint distribution µ is determined by the singular values of a
certain linear operator Tµ known as the conditional expectation operator.

We establish a trade-off between the L3-norm of the singular vectors of Tµ and the
correlation contributed by their corresponding singular values. In particular we show that,
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for any singular vector v of Tµ with large L3-norm, the corresponding singular value must be
small. This in turn implies that we need only look at the elements of the Fourier basis with
small L3-norm, as all the other elements do not contribute to the correlation of µ.

Our proof relating L3-norms to singular values relies heavily on the fact that the operator
Tµ is hypercontractive. Briefly, hypercontractivity is a property that allows us to bound
‖Tµf‖3 6 ‖f‖2 under certain conditions on µ. If f is a singular vector of Tµ with singular
value σ and unit L2-norm, we then have σ‖f‖3 6 1. This is precisely the sort of trade-off
between the L3-norm of f and the corresponding singular value that we use in our proof.
We defer the details of the proof of the theorem to the full version.

5 Soundness of a LP relaxation

In this section, we use correlation decay to give a sufficient condition for when linear
programming can be used to solve a CSP with a cyclic polymorphism. For clarity we state
and prove everything in this section for CSPs where every constraint has arity two. First we
introduce the basic LP relaxation for CSPs of arity two.

Let Λ be a CSP of arity two over the alphabet [q], and I be an instance of Λ. For every
variable X in I and element a ∈ [q] we introduce an LP variable µX(a), which can be thought
of as the probability that X is assigned a. For every constraint Ci(X,Y ) in I and every pair
of elements a, b ∈ [q] we introduce an LP variable µXY (a, b), which can be thought of as the
probability that the pair of variables (X,Y ) are assigned the values (a, b). The basic LP
relaxation for instance I is then given by the following LP feasibility problem.

BasicLP Relaxation∑
a∈[q]

µX(a) = 1 ∀X (µX is a probability distribution)

∑
a,b∈[q]

µXY (a, b) = 1 ∀X,Y (µXY is a probability distribution)

∑
b∈[q]

µXY (a, b) = µX(a) ∀b, Ci(X,Y ) (local consistency for X)

∑
a∈[q]

µXY (a, b) = µY (b) ∀b, Ci(X,Y ) (local consistency for Y )

µXY (a, b) = 0 ∀Ci(X,Y ), a, b s.t. Ci(a, b) = 0 (µXY satisfies Ci(X,Y ))

Proof of Theorem 8. Let p be a cyclic polymorphism of Λ. For each constraint Ci(X,Y ),
since GµXY

is connected, Theorem 5 implies that as k →∞,

‖p⊗k(µXY )− p⊗k(µX)× p⊗k(µY )‖1 → 0

Now independently sample the value of every variable V from the distribution p⊗k(µV ).
The joint distribution of values for every pair (X,Y ) is precisely the product distribution
p⊗k(µX) × p⊗k(µY ). Thus, for every constraint Ci(X,Y ), the distribution of the values
for (X,Y ) can be made arbitrarily close to the distribution p⊗k(µXY ) by taking k large
enough. Since p is a polymorphism of Λ and µXY is a distribution on satisfying assignments
to Ci(X,Y ), we have that p⊗k(µXY ) is a distribution on satisfying assignments.

Therefore, for large enough k, there will be a non-zero probability that every constraint
Ci(X,Y ) is satisfied. In particular, this implies that the instance I is satisfiable. J
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Abstract
The edge-percolation and vertex-percolation random graph models start with an arbitrary graph
G, and randomly delete edges or vertices of G with some fixed probability. We study the compu-
tational hardness of problems whose inputs are obtained by applying percolation to worst-case
instances. Specifically, we show that a number of classical NP-hard graph problems remain essen-
tially as hard on percolated instances as they are in the worst-case (assuming NP * BPP). We
also prove hardness results for other NP-hard problems such as Constraint Satisfaction Problems,
where random deletions are applied to clauses or variables.

We focus on proving the hardness of the Maximum Independent Set problem and the Graph
Coloring problem on percolated instances. To show this we establish the robustness of the
corresponding parameters α(·) and χ(·) to percolation, which may be of independent interest.
Given a graph G, let G′ be the graph obtained by randomly deleting edges of G. We show that
if α(G) is small, then α(G′) remains small with probability at least 0.99. Similarly, we show that
if χ(G) is large, then χ(G′) remains large with probability at least 0.99.
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1 Introduction

The theory of NP-hardness suggests that we are unlikely to find optimal solutions to NP-
hard problems in polynomial time. This theory applies to the worst-case setting where one
considers the worst running-time over all inputs of a given length. It is less clear whether
these hardness results apply to “real-life” instances. One way to address this question is to
examine to what extent known NP-hardness results are stable under random perturbations,
as it seems reasonable to assume that a given instance of a problem may be subjected to
noise originating from multiple sources.

Recent work has studied the effect of random perturbations of the input on the runtime of
algorithms. In their seminal paper Spielman and Teng [28] introduced the idea of smoothed
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analysis to explain the superior performance of algorithms in practice compared with formal
worst-case bounds. Roughly speaking, smoothed analysis studies the running time of an
algorithm on a perturbed worst-case instance. In particular, they showed that subjecting
the weights of an arbitrary linear program to Gaussian noise yields instances on which
the simplex algorithm runs in expected polynomial time, despite the fact that there are
pathological linear programs for which the simplex algorithm requires exponential time. Since
then smoothed analysis has been applied to a number of other problems [10, 29].

In contrast to smoothed analysis, we study when worst-case instances of problems remain
hard under random perturbations. Specifically, we study to what extent NP-hardness results
are robust when instances are subjected to random deletions. Previous work is mainly
concerned with Gaussian perturbations of weighted instances. Less work has examined the
robustness of hardness results of unweighted instances with respect to discrete noise.

We focus on two forms of percolation on graphs. Given a graph G = (V,E) and a
parameter p ∈ (0, 1), we define Gp,e = (V,E′) as the probability space of graphs on the same
set of vertices, where each edge e ∈ E is contained in E′ independently with probability p.
We say that Gp,e is obtained from G by edge percolation. We define Gp,v = (V ′, E′) as the
probability space of graphs, in which every vertex v ∈ V is contained in V ′ independently
with probability p, and Gp,v is the subgraph of G induced by the vertices V ′. We say that
Gp,v is obtained from G by vertex percolation. We also study appropriately defined random
deletions applied to instances of other NP-hard problems, such as 3-SAT and Subset-Sum.

Throughout we refer to instances that are subjected to random deletions as percolated
instances. Our main question is whether such percolated instances remain hard to solve by
polynomial-time algorithms assuming NP * BPP .

1.1 A first example – 3-Coloring
Consider the 3-Coloring problem, where given a graph G = (V,E) we need to decide whether
G is 3-colorable. Suppose that given a graph G we sample a random subgraph G′ of G,
by deleting each edge of G independently with probability p = 1

2 , and ask whether the
resulting graph is 3-colorable. Is there a polynomial time algorithm that can decide with
high probability whether G′ is 3-colorable?

We demonstrate that a polynomial-time algorithm for deciding whether G′ is 3-colorable
is impossible assuming NP * BPP. We show this by considering the following polynomial
time reduction from the 3-Coloring problem to itself.

Given an n-vertex graph H the reduction outputs a graph G that is an R-blow-up of
H for R = C

√
log(n), where C > 0 is large enough. That is, replace each vertex of H by

a cloud of R vertices that form an independent set in G, and for each edge in H place a
complete R×R bipartite graph in G between the corresponding clouds in G. It is easy to
see that H is 3-colorable if and only if G is 3-colorable.

In fact, the foregoing reduction satisfies a stronger robustness property for random
subgraphs G′ of G. Namely, if H is 3-colorable, then G is 3-colorable, and hence G′ is also
3-colorable with probability 1. On the other hand, if H is not 3-colorable, then G is not
3-colorable, and with high probability G′ is not 3-colorable either.

Indeed, for any edge (v1, v2) in H let U1, U2 be two clouds in G corresponding to v1 and
v2. Fixing two arbitrary sets U ′1 ⊆ U1 and U ′2 ⊆ U2 each of size R/3, the probability that
there is no edge connecting a vertex from U1 to a vertex in U2 is 2−R2/9. By union bounding
over the |E| ·

(
R
R/3
)2 � 2R2/9 choices of U ′1, U ′2 we get that there is at least one edge between

U ′1 and U ′2 with high probability. When this holds we can decode any 3-coloring of G′ to a
3-coloring of H by coloring each vertex v of H with the color that appears the largest number
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of times in the coloring of the corresponding cloud in G′, breaking ties arbitrarily. Therefore
a polynomial time algorithm for deciding the 3-colorability of G implies a polynomial time
algorithm for determining the 3-colorability of H with high probability. It follows that unless
NP ⊆ coRP there is no polynomial time algorithm that given a 3-colorable graph G finds a
3-coloring of a random subgraph of G.1

Toward a stronger notion of robustness

The example above raises the question of whether the blow-up described above is really
necessary. Naïvely, one could hope for stronger hardness of the 3-Coloring problem, namely,
that for any graph H if H is not 3-colorable, then with high probability a random subgraph
H ′ of H is not 3-colorable either. However, this is not true in general, as H can be a 3-critical
graph, i.e., a 3-colorable graph such that deletion of any edge of H decreases its chromatic
number (consider for example the case of an odd cycle).

Nonetheless, if random deletions do not decrease the chromatic number of a graph by
much, then one could use hardness of approximation results for chromatic number to deduce
hardness results for coloring percolated graphs. In this paper we show that the chromatic
number of a graph is indeed robust to random deletions. We show that if we delete each
edge of a graph with probability 1

2 , then (with probability 0.99) the chromatic number does
not drop by much.

We also consider the question of robustness for other graph parameters. For independent
sets we demonstrate that if the independence number of G is small, then with high probability
the independence number of a random subgraph of G is small as well. Similarly, we show that
for a k-SAT formula that is sufficiently dense, randomly deleting its clauses does not change
the maximum possible fraction of clauses that can be satisfied simultaneously. In particular,
this implies that these problems remain essentially as hard on percolated instances as they
are on worst-case instances.

I Remark. It is worth noting that there are graph parameters for which percolated instances
differ significantly from the original instance. For example, standard results in random graph
theory imply that for every n-vertex graph G, with high probability the size of the largest
clique in the graph G′ obtained by edge percolation with p = 1

2 is O(logn). In particular, a
maximum clique in G′ can be found in time nO(logn), which is significantly faster than the
fastest known algorithm for finding a maximum clique in the worst-case.

1.2 Robustness of N P-hard problems under percolation
In proving hardness results for percolated instances we use the concept of robust reductions
which we explain below. It will be convenient to consider promise problems2. We start by
introducing the following definition.

I Definition 1. Let A = (AYES , ANO) and B = (BYES , BNO) be two promise problems. For
each y ∈ {0, 1}∗ (an instance of the problem B) let noise(y) be a distribution on {0, 1}∗, that
is samplable in time poly(|y|).

1 Note that in the foregoing example, if we start with a bounded degree graph H, we can reduce it to a
bounded degree graph G by using an R×R bipartite expander instead of the complete bipartite graph.

2 Recall, that a promise problem is a generalization of a decision problem, where for the problem L
there are two disjoint subsets LYES and LNO, such that an algorithm that solves L must accept all the
inputs in LYES and reject all inputs in LNO. If the input does not belong to LYES ∪ LNO, there is no
requirement on the output of the algorithm.
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A polynomial time reduction R from A to B is said to be noise-robust if
1. For all x ∈ AYES it holds that R(x) ∈ BYES , and Pr[noise(R(x)) ∈ BYES ] > 0.99.
2. For all x ∈ ANO it holds that R(x) ∈ BNO, and Pr[noise(R(x)) ∈ BNO] > 0.99.
If in the first item we have Pr[noise(R(x)) ∈ BYES ] = 1, then we say that R is a noise-robust
coRP-reduction. Similarly, if in the second item we have Pr[noise(R(x)) ∈ BNO] = 1,
then we say that R is a noise-robust RP-reduction.
The problem B = (BYES , BNO) is said to be NP-hard under a noise-robust reduction if
there exists a noise-robust reduction from an NP-hard problem to B.
We say that the problem A is strongly-noise-robust to B if
1. For all x ∈ AYES it holds that x ∈ BYES , and Pr[noise(x) ∈ BYES ] > 0.99.
2. For all x ∈ ANO it holds that x ∈ BNO, and Pr[noise(x) ∈ BNO] > 0.99.

Note that in the last item of Definition 1 there is no reduction involved. Instead, we think
of the problem A as a relaxation of B with AYES ⊆ BYES and ANO ⊆ BNO, and hence any
algorithm that solves B in particular solves A. However, it is a relaxed problem in a stronger
sense, namely, after applying noise to a YES-instance (resp. NO-instance) of A, it stays a
YES-instance (resp. NO-instance) of B with high probability.

We use the term noise-robust to avoid confusion with other notions of robust reductions
that have appeared in the literature. In order to ease readability, we will often write robust
reductions instead, always referring to noise-robust reductions as defined above.

I Proposition 2. Let L = (LYES , LNO) be a promise problem, and for each y instance of L,
let noise(y) be a distribution on instances of L that is samplable in time poly(|y|).

If L is NP-hard under a noise-robust reduction, then there is no polynomial time algorithm
that when given an input y decides with high probability whether noise(y) ∈ LYES or noise(y) ∈
LNO, unless NP ⊆ BPP.

Indeed, the example given in Section 1.1 gives a noise-robust reduction from the 3-
Coloring problem to itself, where noise refers to random deletions of the edges in a given
graph. Therefore, the 3-Coloring problem is NP-hard under a noise-robust reduction.

1.3 Our results
In this paper we show that a number of NP-hard problems remain hard to solve even
after random deletions, i.e., they are NP-hard under noise-robust reductions. Furthermore,
we show that some gap NP-hard problems are, in fact, strongly-noise-robust to the same
problems with a smaller gap. Specifically, we focus on showing these results for the gap
versions of the maximum independent set and chromatic number problems. As technical
tools, we prove a number of combinatorial results about the independence number and the
chromatic number of percolated graphs that might be of independent interest.

Maximum Independent Set and Percolation

I Theorem 3. Let G = (V,E) be an n-vertex graph. Then, with high probability α(Gp,e) ≤
O
(
α(G)
p log(np)

)
.

We observe that in general, the upper bound above cannot be improved, as it is well
known that the independence number of G(n, p) is Ω

(
log(np)

p

)
with high probability (see,

e.g., [4]).
In the Coloring-vs-MIS(q, a) problem, given an n-vertex graph G such that q · a ≥ n,

the goal is to distinguish between the YES-case where χ(G) ≤ q and the NO-case where
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α(G) ≤ a. By using Theorem 3 together with the inapproximability results of Feige and
Kilian [11] saying that for every ε > 0 it is NP-hard to decide whether a given n-vertex
graph G satisfies χ(G) ≤ nε or α(G) ≤ nε we obtain the following hardness result.

I Theorem 4. For any q, a the Coloring-vs-MIS(q, a) problem is strongly-noise-robust to
Coloring-vs-MIS(q,O

(
a
p log(np)

)
), where n denotes the number of vertices in the given graph,

and noise is the p-edge-percolation of this graph.
In particular, for any constant ε > 0, unless NP ⊆ BPP there is no polynomial time

algorithm that given an n-vertex graph G approximates either α(Gp,e) or χ(Gp,e) within a
1

pn1−2ε (resp. pn1−2ε) factor for any p > 1
n1−2ε .

We also prove analogous theorems for vertex percolation.

Graph Coloring and Percolation

Theorem 3 says that it is hard to approximate the chromatic number of a percolated graph
within a n1−ε factor, but says nothing about hardness of coloring percolated graphs with
small (constant) chromatic number. We address this question below by proving lower bounds3
on the chromatic number of percolated graphs. To do this we use results from additive
combinatorics and discrete Fourier analysis.

I Theorem 5. Let G = (V,E) be an n-vertex graph. Then, for every α ∈ (0, 1) it holds that
Pr[χ(G 1

2 ,v
) ≥ max{χ(G)/3−Oα(1), χ(G)/2−Oα(

√
n)}] > 1− α.

I Theorem 6. Let G = (V,E) be an n-vertex graph with m edges. Then, for every α ∈ (0, 1)
it holds that Pr[χ(G 1

2 ,e
) ≥ max{Ωα(χ(G)1/3),Ωα(χ(G)/m1/4)}] > 1− α.

For G 1
2 ,v

the χ(G)/2 − Oα(
√
n) lower bound is better when χ(G) = ω(

√
n), and the

χ(G)/3− Oα(1) lower bound is better when χ(G) = o(
√
n). For G 1

2 ,e
the Ωα(χ(G)/m1/4)

lower bound is better when χ(G) = ω(m3/8), and the Ωα(χ(G)1/3) lower bound is better
when χ(G) = o(m3/8).

Note that this result also gives lower bounds on the chromatic number of Gp,v, Gp,e where
p 6= 1

2 by composing the bounds in Theorems 5 and 6 dlog2(1/p)e times.
I Remark. Bukh [7] has considered coloring edge-percolated graphs, and states the question
of whether E[χ(G 1

2 ,e
)] = Ω(χ(G)/ log(χ(G))) as an “interesting problem.” Bukh observed

that the chromatic number of G 1
2 ,e

has the same distribution as the chromatic number of
the complement of G 1

2 ,e
, and therefore E[χ(G 1

2 ,e
)] ≥

√
χ(G). However, it is not clear how

to leverage the lower bound on the expectation to obtain a lower bound on χ(G 1
2 ,e

) with
high probability, which is required for our noise robust reductions. Moreover, for k �

√
n

standard martingale methods do not seem to work for showing high probability estimates.
In the Gap-Coloring(q,Q) problem we are given an n-vertex graph G and the goal is

to distinguish between the YES-case where G is q-colorable, and the NO-case where the
chromatic number of G is at least Q. There is a large body of work proving hardness results
for this problem [14, 20, 18] including stronger results assuming variants of the Unique Games
Conjecture [8, 9]. Using the NP-hardness of the Gap-Coloring(q, exp(Ω(q1/3))) problem of
Huang [18] we obtain an analogous hardness result under noise-robust reductions for this
problem.

3 The notation Oα(f(n)) means that O(f(n)) holds for fixed α.
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I Theorem 7. For all q < Q the Gap-Coloring(q,Q) problem is strongly-noise-robust to the
Gap-Coloring(q,Ω(Q1/3)) problem, where noise is 1

2 -edge-percolation applied to the graph.
In particular, for any sufficiently large constant q given a q-colorable graph G it is

NP-hard to find a 2Ω(q1/3)-coloring of G 1
2 ,e

.

Satisfiability and Other Problems

We also state a hardness result for approximating the value of a clause-percolated instance
of k-SAT. A k-SAT formula Φ is a collection of m clauses on n Boolean variables, where
each clause is an OR of k-literals. Given a formula Φ, and an assignment σ to its variables,
denote by valσ(Φ) the fraction of constraints of Φ satisfied by σ. The value of Φ is defined
as val(Φ) = maxσ valσ(Φ). If val(Φ) = 1 we say that Φ is satisfiable.

Given an instance Φ of k-SAT its clause percolation is a random formula Φcp over the same
set of variables, obtained from Φ by keeping each clause of Φ independently with probability
p.

I Theorem 8. Let ε, δ ∈ (0, 1) be fixed constants. Then, unless NP ⊆ coRP, there is no
polynomial time algorithm that when given a satisfiable instance Φ over n-variables of 3-SAT,
finds an assignment σ to Φcp such that valσ(Φcp) > 7/8 + ε for all p > 1

n2−δ .

One ingredient of the proof of Theorem 8, that may be of independent interest, is
establishing that k-SAT does not admit a non-trivial approximation on dense formulas that
contain nk−η clauses, where η > 0 is an arbitrary small positive constant.

We prove analogous theorems also for other CSP’s as well as other graph theoretic
problems such as Vertex Cover and Directed Hamiltonian Cycle. We also prove hardness
results for the percolated Subset Sum problem. The exact statements and complete proofs,
including of Theorem 8, appear in the full version of the paper.

1.4 Preliminaries
An independent set in a graph G = (V,E) is a set of vertices that spans no edges. The
independence number α(G) denotes the maximum size of an independent set in G. A legal
coloring of a graph G is an assignment of colors to vertices such that no two adjacent vertices
share the same color. The chromatic number χ(G) denotes the minimum number of colors
needed for a legal coloring of G. Note that in a legal coloring of G each color class forms an
independent set, and hence χ(G) · α(G) ≥ n.

We will always measure the running time of algorithms in terms of the size of the
percolated instance. Since G and Gp,e have the same number of vertices, this generally does
not affect the size of the instance by more than a polynomial factor. On the other hand,
Gp,v may be much smaller than G for very small values of p. However, in this work we will
be only dealing with the case where p = 1

n1−Ω(1) , hence with high probability the size of the
vertex percolated and original graphs are polynomially related as well.

We will use the following version of the Chernoff bound.

I Lemma 9 (Chernoff bound, Theorem 7.3.2 in [17]). Let x1, . . . , xn be independent Bernoulli
trials with Pr[xi = 1] = p, and let µ = E[

∑n
i=1 xi] = pn. Let r ≥ e2. Then

Pr[
∑n
i=1 xi > (1 + r)µ] < exp(−(µr/2) ln r).

1.5 Related Work
There is a wide body of work on random discrete structures that has produced a wide range
of mathematical tools [4, 13, 15, 23]. Randomly subsampling subgraphs by including each
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edge independently in the sample with probability p has been studied extensively in works
concerned with cuts and flows (e.g., [19]). More recently, sampling subgraphs has been used
to find independent sets [12]. The effect of subsampling variables in mathematical relaxations
of constraint satisfaction problems on the value of these relaxations was studied in [2].

Edge-percolated graphs have been also used to construct hard instances for specific
algorithms. For example, Kučera [21] proved that the well known greedy coloring algorithm
performs poorly on the complete r-partite graph in which every edge is removed independently
with probability 1/2 and r = nε for ε > 0. Namely, for this graph G, even if vertices are
considered in a random order by the greedy algorithm, with high probability Ω( n

logn ) colors
are used to color the percolated graph whereas χ(G) ≤ nε.

Misra [24] studies edge percolated instances of the Max-Cut problem. He proves that in
graphs of fixed maximal degree d it is impossible (assuming NP 6= BPP) to compute the
size of the maximum cut in Gp,e in polynomial time whenever p = 1+ε

d−1 . The techniques used
in [24] differ from ours and rely on the recent hardness result for counting independent sets
in sparse graphs [27].

The chromatic number of Erdős-Rényi random graphs G(n, p) has been studied extensively.
Grimmett and McDiarmid [16] showed that for a fixed p with high probability it holds that
χ(G(n, p)) = Θ(log(1/1− p) n

logn ). Bollobás [3] later determined the right constant, proving
that χ(G(n, p)) ∼ log(1/(1− p)) n

2 log(n) for every p ∈ (0, 1). Łuczak [22] further improved the
previous result by showing that it holds for subconstant values of p. In this paper we study
the independence number and chromatic number of general percolated graphs. A recent
paper by Bollobás et al. [5] studied a special case of this, namely the independence number
of edge percolated Kneser graphs.

2 Maximum Independent Set and Percolation

In this section we demonstrate the hardness of approximating α(G) and χ(G) in both edge
percolated and vertex percolated graphs. We base our results on a theorem of Feige and
Kilian, saying that for every fixed ε > 0 the problem Coloring-vs-MIS(nε, nε) is NP-hard.

I Theorem 10 ([11]). For every ε > 0 it is NP-hard to decide whether a given n-vertex
graph G satisfies χ(G) ≤ nε or α(G) ≤ nε.

Edge percolation

Below we prove Theorem 3. We will use the following lemma, due to Turan (see, e.g. [1]).

I Lemma 11. Every graph H with l vertices and e edges contains an independent set of size
at least l2

2e+l .

As a corollary we observe that if a graph contains no large independent sets, then it can
also cannot contain large subsets of the vertices that span a small number of edges.

I Corollary 12. Let G = (V,E) be an n-vertex graph satisfying α(G) < k. Then every set
of vertices of size l ≥ k spans at least l(l − k)/2k edges.

Proof. Let H be a subgraph of G induced by l vertices, and suppose that H spans e edges.
Then, by Lemma 11 we have α(H) ≥ l2

2e+l . On the other hand, α(H) ≤ α(G) ≤ k, and hence
l2

2e+l ≤ k, as required. J

We are now ready to prove Theorem 3 saying that for any n-vertex graph G = (V,E) it
holds that with high probability α(Gp,e) ≤ O

(
α(G)
p log(np)

)
.
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Proof of Theorem 3. For a given graph G, let k = α(G)+1 and let C > 0 be a large enough
constant. By Corollary 12, every subset of size l = C α(G)

p log(np) spans at least l(l−k)
2k edges

in G. Hence, by taking union bound over all subsets of size l, the probability there exists a
set of size l in Gp,e that spans no edge is at most(

n

l

)
· (1− p)

l(l−k)
2k <

(en
l

)l
· exp

(
−p · l(l − k)

2k

)
< (np)−Ω(l),

where the last inequality uses the choices of l and k, implying that
(
en
l

)l
< (np)l and

exp(−p l(l−k)
2k ) < exp(−Ω(l·log(np))) = (np)−Ω(l). Therefore, with high probability α(Gp,e) ≤

C α(G)
p log(np). J

Theorem 4 follows immediately from Theorem 3.

Proof of Theorem 4. Let G be an instance G of the Coloring-vs-MIS(q, a) problem. Note
that for the YES-case if χ(G) ≤ q, then clearly χ(Gp,e) < q. For the NO-case by Theorem 3
if α(G) ≤ a, then with high probability α(Gp,e) ≤ O

(
a
p log(np)

)
which implies the strongly-

noise-robust hardness.
The “in particular” part follows immediately from Theorem 10. J

I Remark. Note that for constant p > 0 (e.g., p = 1/2) this theorem establishes inapprox-
imability for the independence number of Gp,e that matches the inapproximability for the
worst case.
I Remark. Note also that for p > 1

n1−ε (in fact, for p > log(n)
n ) such random percolated

graphs have maximal degree at most O(pn) with high probability. Therefore, such graphs
Gp,e can be colored efficiently using O(pn) colors. In particular, with high probability Gp,e
contains an independent set of size Ω(1/p) and hence, the independence number can be
approximated within a factor of 1/pn on p-percolated instances.

Vertex percolation

Next we handle vertex percolation. We show that approximating α(G) and χ(G) on percolated
instances is essentially as hard as worst-case instances, where the vertices remain with
probability p > 1

n1−δ , where n is the number of vertices in the graph for any constant
δ ∈ (0, 1). We do it again by relying on the hardness of the gap problem Coloring-vs-MIS
for percolated instances.

Note that in the case of vertex percolation, the (in)approximability guarantee should
depend on the number of vertices in the percolated graph Gp,v, and not on the number in
the original graph.

I Theorem 13. The Coloring-vs-MIS(q, a) problem is strongly-noise-robust to itself, where
noise is the vertex percolation with parameter any p > 0.

In particular, for any δ, ε > 0 unless NP ⊆ BPP there is no polynomial time algorithm
that approximates either α(Gp,v) or χ(Gp,v) within a factor m1−ε for constant any ε > 0,
where m denotes the number of vertices in Gp,v, and any p > 1

n1−δ .

Proof. The strong robustness of Coloring-vs-MIS(q, a) is clear, since for any graph G if G′
is a vertex induced subgraph of G, then χ(G′) ≤ χ(G), and α(G′) ≤ α(G), which is, in
particular, true for G′ = Gp,v.

For the “in particular” part, for a given p > 1
n1−δ let c = log(pn)

log(n) ∈ (δ, 1) so that p = 1
n1−c ,

and let η = ε · c.
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Let G be an n-vertex graph, let Gp,v be it vertex-percolated subgraph, and let m be the
number of vertices in Gp,v. By the Chernoff bound in Lemma [17], with high probability we
have |m− pn| < 0.1pn, and so, we assume from now on that nη < 2mε.

By Theorem 10 it is NP-hard to decide whether a given n-vertex graph G satisfies
χ(G) ≤ nη or α(G) ≤ nη. By the choice of parameters, if χ(G) ≤ nη then χ(Gp,v) ≤ nη <

2mε, and similarly, if α(G) ≤ nη then α(Gp,v) < nη < 2mε. This completes the proof of the
theorem. J

3 Graph Coloring and Percolation

We present our results in terms of the maximum coverage problem [30], which is a variant of
the set cover problem, and show later how graph coloring is related to maximum coverage.

3.1 Maximum Coverage
In the maximum coverage problem we are given a family of sets F = {S1, . . . , Sm} with
Si ⊆ [n] and a number c. The goal is to find c sets in F such the cardinality of the union
of these c sets is as large as possible. We will make use of the representation of a set S in
terms of its incidence vector x(S) ∈ {0, 1}n. In this way, we can reformulate the maximum
coverage problem as follows. Given A ⊆ Fn2 , find elements y1, . . . , yc ∈ A that maximize
‖∨ci=1yi‖1, the Hamming weight of the bitwise-OR of the vectors.

We will prove two existential results saying that if A is of constant density α > 0, then
there exists a good cover using only 2 or 3 vectors.

I Lemma 14. Let A ⊆ Fn2 with |A| ≥ α2n. Then there exist y1, y2, y3 ∈ A such that
‖y1 ∨ y2 ∨ y3‖1 ≥ n− 4/α3.

I Lemma 15. Let A ⊆ Fn2 with |A| ≥ α2n. Then there exist y1, y2 ∈ A such that ‖y1∨y2‖1 ≥
n− (1 + r)

√
n, where r = max{e2, 2 ln 1/α}.

3.2 Proof of Lemma 14 using additive combinatorics
Lemma 14 follows almost immediately from a result about sumsets. Recall that the Minkowski
sum of two sets A,B is defined as A+B = {x+ y : x ∈ A, y ∈ B}.

I Lemma 16 (Corollary 3.5 in [26]). Let A ⊆ Fn2 with |A| ≥ α2n. Then A+A+A contains
an affine subspace of dimension at least n− 4/α3.

Because an affine subspace of dimension at least n− 4/α3 must contain an element of
Hamming weight at least n− 4/α3, Lemma 14 follows from Lemma 16 and the observation
that ‖

∑c
i=1 yi‖1 ≤ ‖

∨c
i=1 yi‖1.

3.3 Proof of Lemma 15 using Fourier analysis
We use an inequality from Fourier analysis to give a proof of Lemma 15 via the probabilistic
method.

I Definition 17. Given x ∈ Fn2 , define y ∼ Nρ(x) by letting each yi be equal to xi with
probability 1+ρ

2 , and be equal to 1− xi with probability 1−ρ
2 .

Let Uni(S) denote the uniform distribution on a set S, and let Un denote Uni(Fn2 ). The
following lemma is a corollary of the reverse Bonami-Beckner inequality.
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I Lemma 18 (Corollary 3.5 in [25]). Let A,B ⊆ Fn2 with |A| = |B| = α2n. Then

Pr
x←Uni(A)
y←Nρ(x)

[y ∈ B] ≥ α(1+ρ)/(1−ρ).

Proof of Lemma 15. Let A ⊆ Fn2 with |A| ≥ α2n, and let B = A + ~1 = {x+~1 : x ∈ A},
where ~1 is the n-dimensional all 1s vector. Note that to prove Lemma 15 it suffices to show
that there exist x ∈ A, y ∈ B such that ‖x+ y‖1 = (1 + r) ·

√
n, since then y + ~1 ∈ A and

‖x+ (y +~1)‖1 = n− (1 + r) ·
√
n.

Let ε = 1/
√
n and let ρ = 1− 2ε. By Lemma 18,

Pr
x←Un
y←Nρ(x)

[x ∈ A, y ∈ B] = Pr
x←Uni(A)
y←Nρ(x)

[y ∈ B] · Pr
x←Un

[x ∈ A] ≥ α2/(1−ρ) = α
√
n. (1)

Set r = max{e2, 2 ln(1/α)}. Note that by definition of y ∼ Nρ(x) we have that Pr[xi 6=
yi] = 1/

√
n for each i independently. Therefore, by the Chernoff bound in Lemma 9,

Pr
x←Un
y←Nρ(x)

[‖x+ y‖1 ≤ (1 + r)
√
n] ≥ 1− e−(r/2 ln r)

√
n ≥ 1− α2

√
n. (2)

Since the sum of the probabilities in Equations (1) and (2) is strictly greater than 1,
the corresponding events cannot be disjoint. Hence there exist x ∈ A, y ∈ B such that
‖x+ y‖1 ≤ (1 + r)

√
n. J

3.4 Coloring Using Subgraphs
We now show how to apply the results in the previous subsection to the graph coloring
problem. Throughout this section we let G = (V,E) with n = |V | ,m = |E|. We will identify
the elements of [n] with vertices V in the vertex percolation case and the elements of [m]
with edges E in the edge percolation case. Let G|U denote the subgraph of G induced by
U ⊆ V .

I Lemma 19. Let G = (V,E) and let V1, V2 ⊆ V with V1 ∪ V2 = V . If χ(G|V1) ≤ k1 and
χ(G|V2) ≤ k2 then χ(G) ≤ k1 + k2.

Proof. Assume that V1 ∩ V2 = ∅ (if not, replace V1 with V1 \ V2 in the following argument).
Color G|V1 with k1 colors and color G|V2 with k2 fresh colors. Because G|V1 and G|V2 are
colored with separate colors any edges between V1 and V2 have endpoints with distinct
colors. J

I Lemma 20. Let G = (V,E), let E1, E2 ⊆ E with E1∪E2 = E, and let G1 = (V,E1), G2 =
(V,E2). If χ(G1) ≤ k1 and χ(G2) ≤ k2 then χ(G) ≤ k1k2.

Proof. Let c1 be a coloring of G1 with k1 colors, and let c2 be the coloring of G2 with
k2 colors. We claim that the coloring as c(v) = (c1(v), c2(v)) is a legal coloring of G with
k1k2 colors. Consider an edge e = (u, v) ∈ E. If e ∈ E1 then c(u) differs from c(v) in
the fist coordinate. Otherwise e ∈ E2 in which case c(u) differs from c(v) in the second
coordinate. J

3.5 Lower Bounding the Chromatic Number
We now prove lower bounds on the chromatic number of percolated graphs. We will consider
both vertex and edge percolation with p = 1

2 . This choice of p is important because G 1
2 ,v

,
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G 1
2 ,e

become the distributions of graphs induced by uniformly random subsets of V and E,
respectively. However, we also obtain bounds for p < 1

2 by composing the bounds for p = 1
2 .

When stating bounds based on Lemma 15 we set r = max{e2, 2 ln(1/α)}.
The idea will be to argue that if many subgraphs of a graph G are k-colorable then G is

colorable with f(k) colors for relatively small f(k). To see how this idea works, consider the
following easy case. Suppose that Pr[χ(G 1

2 ,v
) ≤ k] > 1

2 . Then there exists V ′ ⊆ V such that
G|V ′ and G|V ′ are both k-colorable. It follows that G is 2k-colorable by Lemma 19. We now
consider the case where the density of k colorable subgraphs α is less than 1

2 .

Proof of Theorem 5

We now prove Theorem 5, saying that if G is an n-vertex graph, then for every α ∈ (0, 1)
it holds that Pr[χ(G 1

2 ,v
) ≥ max{χ(G)/3− Oα(1), χ(G)/2− Oα(

√
n)}] > 1− α. The proof

relies on the following two lemmas.

I Lemma 21. Pr[χ(G 1
2 ,v

) ≤ k] ≥ α⇒ χ(G) ≤ 3k + 4/α3.

Proof. Identify subsets of vertices V with vectors in Fn2 . Because Pr[χ(G 1
2 ,v

) ≤ k] ≥ α by
Lemma 14 there exist V1, V2, V3 ⊆ V such that each G|Vi is k-colorable and |V1 ∪ V2 ∪ V3| ≥
n − 4/α3. Using Lemma 19, we can then color G|V1∪V2∪V3 with 3k colors. Coloring the
remaining 4/α3 nodes each with a different, new color implies the lemma. J

I Lemma 22. Pr[χ(G 1
2 ,v

) ≤ k] ≥ α⇒ χ(G) ≤ 2k + (1 + r)
√
n.

Proof. Identify subsets of vertices V with vectors in Fn2 . Because Pr[χ(G 1
2 ,v

) ≤ k] ≥ α

by Lemma 15 there exist V1, V2 ⊆ V such that G|V1 , G|V2 are k-colorable and |V1 ∪ V2| ≥
n− (1 + r)

√
n. Using Lemma 19, we can then color G|V1∪V2 with 2k colors. Coloring the

remaining (1 + r)
√
n nodes each with a different, new color implies the lemma. J

Lemmas 21 and 22 imply Theorem 5. Taking the contrapositive of Lemma 21 we get

χ(G) > 3k + 4/α3 ⇒ Pr[χ(G 1
2 ,v

) > k] ≥ 1− α,

which is equivalent to

χ(G) > `⇒ Pr[χ(G 1
2 ,v

) > (`− 4/α3)/3] ≥ 1− α.

Similarly, taking the contrapositive of Lemma 22 we get the bound

χ(G) > `⇒ Pr[χ(G 1
2 ,v

) > `/2−Oα(
√
n)] ≥ 1− α.

Proof of Theorem 6

Next we prove Theorem 6, saying that if G is an n-vertex graph with m edges, then for
every α ∈ (0, 1) it holds that Pr[χ(G 1

2 ,e
) ≥ max{Ωα(χ(G)1/3),Ωα(χ(G)/m1/4)}] > 1 − α.

The techniques are similar to those used for proving Theorem 5, but with several additional
observations we push the techniques further.

I Lemma 23. Pr[χ(G 1
2 ,e

) ≤ k] ≥ α⇒ χ(G) ≤ k3 + 8/α3.

Proof. Identify subsets of edges E with vectors in Fm2 . Because Pr[χ(G 1
2 ,e

) ≤ k] ≥ α

by Lemma 14 there exist E1, E2, E3 ⊆ E such that each Gi = (V,Ei) is k-colorable and
|E1 ∪ E2 ∪ E3| ≥ m− 4/α3. Using Lemma 20, we can then color G(V,E1 ∪ E2 ∪ E3) with
k3 colors. Color the endpoints of the remaining E \ (E1 ∪ E2 ∪ E3) edges using 8/α3 new
colors to achieve a (k3 + 8/α3)-coloring of G. J
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The next lemma gives an unconditional upper bound on chromatic number.

I Lemma 24. Let G = (V,E) be a graph with |E| = m. Then χ(G) ≤ 3
√
m+ 1.

Proof. Partition V into sets V0 = {v ∈ V : deg(v) <
√
m} and V1 = {v ∈ V : deg(v) ≥

√
m}.

By Brooks’ Theorem [6], χ(G|V0) ≤ maxv∈V0 deg(v) + 1 ≤
√
m+ 1. Furthermore, because∑

v∈V1
deg(v) ≤ 2m, it follows that |V1| ≤ 2

√
m, and in particular χ(G|V1) ≤ 2

√
m. The

result follows by Lemma 19. J

We use a variant of the same partitioning trick in the following lemma.

I Lemma 25. Pr[χ(G 1
2 ,e

) ≤ k] ≥ α⇒ χ(G) ≤ (4 + 2r)km1/4.

Proof. Note first that if k ≥ m1/4, then the claimed bound holds by Lemma 24. So we
assume henceforth that k < m1/4.

Identify subsets of edges E with vectors in Fm2 . Because Pr[χ(G 1
2 ,e

) ≤ k] ≥ α by
Lemma 15 there exist E1, E2 ⊆ E such that G1 = (V,E1), G2 = (V,E2) are k-colorable and
|E1 ∪ E2| ≥ m− (1 + r)

√
m.

Let E3 = E \ (E1 ∪ E2) be the set of edges that are not in E1 ∪ E2, and define the
graph G3 = (V,E3). Define a partition U,U of V , where U = {v ∈ V : degG3(v) < m1/4/k}
and U = {v ∈ V : degG3(v) ≥ m1/4/k}. We claim (1) that χ(G|U ) ≤ 2km1/4 and (2)
that χ(G|U ) ≤ 2(1 + r)km1/4. By Lemma 19 we then get the upper bound χ(G) ≤
χ(G|U ) + χ(G|U ) ≤ (4 + 2r)km1/4.

To prove (1) note that by Brooks’ Theorem [6] we have χ((G3)|U ) ≤ 2m1/4/k, and
thus by Lemma 20 χ(G|U ) ≤ χ(G1) · χ(G2) · χ((G3)|U ) ≤ 2km1/4. For (2) note that∑
v∈U degG3(v) ≤ 2(1 + r)

√
m, and hence χ(G|U ) ≤

∣∣U ∣∣ ≤ 2(1 + r)km1/4, as required. J

Taking the contrapositive of Lemmas 23 and 25 implies Theorem 6.

Proof of Theorem 7

Finally, we use Theorem 6 to prove the strong robustness result for Gap-Coloring. Let G be
an instance of the Gap-Coloring(q,Q) problem. We claim the following:
YES-case: If χ(G) ≤ q, then χ(G 1

2 ,e
) < q.

NO-case: If χ(G) ≥ Q, then χ(G 1
2 ,e

) ≥ Ω(Q1/3) with probability at least 0.99.

The YES-case is clear, since removing edges cannot increase the chromatic number. The
NO-case follows from Theorem 6. Thus, the Gap-Coloring(q,Q) problem is strongly-noise-
robust to the Gap-Coloring(q,Ω(Q1/3)) problem. The “in particular” part of the theorem
follows from the result of Huang [18] showing that Gap-Coloring(q, 2Ω(q1/3)) is NP-hard.
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Abstract
Given n weighted points (positive or negative) in d dimensions, what is the axis-aligned box
which maximizes the total weight of the points it contains?

The best known algorithm for this problem is based on a reduction to a related problem, the
Weighted Depth problem [Chan, FOCS, 2013], and runs in time O(nd). It was conjectured
[Barbay et al., CCCG, 2013] that this runtime is tight up to subpolynomial factors. We answer
this conjecture affirmatively by providing a matching conditional lower bound. We also provide
conditional lower bounds for the special case when points are arranged in a grid (a well studied
problem known as Maximum Subarray problem) as well as for other related problems.

All our lower bounds are based on assumptions that the best known algorithms for the
All-Pairs Shortest Paths problem (APSP) and for the Max-Weight k-Clique problem in
edge-weighted graphs are essentially optimal.
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Keywords and phrases Maximum Rectangles, Hardness in P

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.81

1 Introduction

Consider a set of points in the plane. Each point is assigned a real weight that can be either
positive or negative. The Max-Weight Rectangle problem asks to find an axis parallel
rectangle that maximizes the total weight of the points it contains. This problem (and its
close variants) is one of the most basic problems in computational geometry and is used
as a subroutine in many applications [17, 20, 23, 7, 6]. Despite significant work over the
past two decades, the best known algorithm runs in time quadratic in the number of points
[16, 14, 9]. It has been conjectured that there is no strongly subquadratic time algorithm1

for this problem [9].
An important special case of the Max-Weight Rectangle problem is when the points

are arranged in a square grid. In this case the input is given as an n× n matrix filled with
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1 A strongly subquadratic algorithm runs in time O(N2−ε) for constant ε > 0.
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Table 1 Upper bounds and conditional lower bounds for the various problems studied. The
bounds shown ignore subpolynomial factors.

Problem In 2 dimensions In d dimensions
Max-Weight Rectangle O(N2) [9, 12] O(Nd) [9, 12]

on N weighted points Ω(N2) [this work] Ω(Nd) [this work]
Maximum Subarray O(n3) [32, 31] O(n2d−1) [Kadane’s algorithm]
on n × · · · × n arrays Ω(n3) [this work] Ω(n3d/2) [this work]

Maximum Square Subarray O(n3) [trivial] O(nd+1) [trivial]
on n × · · · × n arrays Ω(n3) [this work] Ω(nd+1) [this work]
Weighted Depth O(N) [12] O(Nd/2) [12]

on N weighted boxes Ω(N) [trivial] Ω(Nd/2) [this work]

real numbers and the objective is to compute a subarray that maximizes the sum of its entries
[27, 31, 30, 28, 13]. This problem, known as Maximum Subarray problem, has applications
in pattern matching [19], data mining and visualization [20] (see [31] for additional references).
The particular structure of the Maximum Subarray problem allows for algorithms that run
in O(n3), i.e. O(N3/2) with respect to the input size N = n2, as opposed to O(N2) which is
the best algorithm for the more general Max-Weight Rectangle problem.

One interesting question is if this discrepancy between the runtimes of these two very
related problems can be avoided. Is it possible to apply ideas from one to improve the
runtimes of the other? Despite considerable effort there has been no significant improvement
to their runtime other than by subpolynomial factors since they were originally studied.

In this work, we attempt to explain this apparent barrier for faster runtimes by giving
evidence of the inherent hardness of the problems. In particular, we show that a strongly
subquadratic algorithm for Max-Weight Rectangle would imply a breakthrough for
fundamental graph problems. We show similar consequences for O(N3/2−ε) algorithms for
the Maximum Subarray problem. Our lower bounds are based on standard hardness
assumptions for the All-Pairs Shortest Paths and the Max-Weight k-Clique problems
and generalize to the higher-dimensional versions of the problems.

1.1 Related work on the problems

In one dimension, the Max-Weight Rectangle problem and Maximum Subarray
problem are identical. The 1-D problem was first posed by Ulf Grenander for pattern
detection in images, and a linear time algorithm was found by Jay Kadane [10].

In two dimensions, Dobkin et al [16, 15, 24] studied the Max-Weight Rectangle
problem in the case where weights are +1 or −1 for its applications to computer graphics and
machine learning. They presented the first O(N2 log N) algorithm. More recently, Cortés et
al [14] studied the problem with arbitrary weights and they developed an algorithm with
the same runtime applicable to many variants of the problem. An even faster algorithm was
shown by Barbay et al. [9] that runs in O(N2) time.

For higher dimensions, Barbay et al [9] show a reduction to the related Weighted Depth
problem which allows them to achieve runtime O(Nd). Given N axis-parallel rectangular
weighted boxes, the Weighted Depth problem asks to find a point that maximizes the
total weight of all boxes that contain it. Compared to the Max-Weight Rectangle where
we are given points and we aim to find the best box, in this problem, we are given boxes and
the aim is to find the best point. The Weighted Depth problem is also related to Klee’s
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measure problem2 which has a long line of research. All known algorithms for one problem
can be adjusted to work for the other [12]. The Weighted Depth problem was first solved
in O(Nd/2 log n) by Overmars and Yap [26] and was improved to O(Nd/2) by Timothy M.
Chan [12] who gave a surprisingly simple divide and conquer algorithm.

A different line of work, studies the Maximum Subarray problem. Kadane’s algorithm
for the 1-dimensional problem can be generalized in higher dimensions for d-dimensional
n× · · · × n arrays giving O(n2d−1) which implies an O(n3) algorithm when the array is a
n× n matrix. Tamaki and Tokuyama [32] gave a reduction of the 2-dimensional version of
the problem to the distance product problem implying a O

(
n3

2Ω(
√

log n)

)
algorithm by using

the latest algorithm for distance product by Ryan Williams [34]. Tamaki and Tokuyama’s
reduction was further simplified by Tadao Takaoka [31] who also gave a more practical
algorithm whose expected time is close to quadratic for a wide range of random data.

1.2 Our results and techniques

Despite significant work on the Max-Weight Rectangle and Maximum Subarray
problems, it seems that there is a barrier in improving the best known algorithms for these
problems by polynomial factors. Our results indicate that this barrier is inherent by showing
connections to well-studied fundamental graph problems. In particular, our first result states
that there is no strongly subquadratic algorithm for the Max-Weight Rectangle problem
unless the Max-Weight k-Clique problem can be solved in O(nk−ε) time, i.e. substantially
faster than the currently best known algorithm. More precisely, we show the following:

I Theorem 1. For any constant ε > 0, an O(N2−ε) algorithm for the Max-Weight
Rectangle problem on N weighted points in the plane implies an O(nk−ε) algorithm for the
Max-Weight k-Clique problem on a weighted graph with n vertices where k = 4 · dε−1e.

Our conditional lower bound generalizes to higher dimensions. Namely, we show that
an O(Nd−ε) time algorithm for points in d-dimensions implies an O(nk−ε) time algorithm
for the Max-Weight k-Clique problem for k = d2dε−1e. This matches the best known
algorithm [9, 12] for any dimension up to subpolynomial factors. Therefore, because of our
reduction, significant improvements in the runtime of the known upper bounds would imply
a breakthrough algorithm for finding a k-clique of maximum weight in a graph.

To show this result, we embed an instance of the Max-Weight k-Clique problem to the
Max-Weight Rectangle problem, by treating coordinates of the optimal rectangular box
as base-n numbers where digits correspond to nodes in the maximum-weight k-clique. In the
construction, we place points with appropriate weights so that the weight of any rectangular
box corresponds to the weight of the clique it represents. We show that it is sufficient to use
only O(n k

d +1) points in d-dimensions to represent all weighted k-cliques which gives us the
required bound by choosing an appropriately large k.

We also study the special case of the Max-Weight Rectangle problem in the plane
where all points are arranged in a square grid, namely the Maximum Subarray problem.
Our second result states that for n× n matrices, there is no strongly subcubic algorithm for
the Maximum Subarray problem unless there exists a strongly subcubic algorithm for the
All-Pairs Shortest Paths problem. More precisely, we show that:

2 Klee’s measure problem asks for the total volume of the union of N axis-parallel boxes in d dimensions.
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I Theorem 2. For any constant ε > 0, an O(n3−ε) time algorithm for the Maximum
Subarray problem on n× n matrices implies an O(n3 − ε/10) time algorithm for the All-
Pairs Shortest Paths problem.

Combined with the fact that the Maximum Subarray problem reduces to the All-Pairs
Shortest Paths problem as shown in [32, 31], our result implies that the two problems are
equivalent, in the sense that any strongly subcubic algorithm for one would imply a strongly
subcubic algorithm for the other.

To extend our lower bound to higher dimensions, we need to make a stronger hardness
assumption based on the Max-Weight k-Clique problem. We show that an O(n3d/2 − ε)
time algorithm for the Maximum Subarray problem in d-dimensions implies an O(nk−ε)
time algorithm for the Max-Weight k-Clique problem. To prove this result, we introduce
the following intermediate problem: Given a graph G find a maximum weight subgraph H

that is isomorphic to a clique on 2d nodes without the edges of a matching (Max-Weight
Clique without Matching problem). This graph H contains a large clique of size 3d/2

as a minor and we show that this implies that no O(n3d/2 − ε) algorithms exist for the
Max-Weight Clique without Matching problem. We complete our proof by reducing
the Max-Weight Clique without Matching problem to the Maximum Subarray
problem in d dimensions.

We note that the best known algorithm for the Maximum Subarray problem runs in
O(n2d−1) time and is based on Kadane’s algorithm for the 1-dimensional problem. It remains
an interesting open question to close this gap. To improve either the lower or upper bound,
it is necessary to better understand the computational complexity of the Max-Weight
Clique without Matching problem.

Another related problem we consider is the Maximum Square Subarray problem:
Given an n× n matrix find a maximum subarray with sides of equal length. This problem
and its higher dimensional generalization can be trivially solved in O(nd+1) runtime by
enumerating over all possible combinations of the d + 1 parameters, i.e. the side-length and
the location of the hypercube. We give a matching lower bound based on hardness of the
Max-Weight k-Clique problem.

Finally, we adapt the reduction for Klee’s measure problem shown by Timothy M Chan [11]
to show a lower bound for the Weighted Depth problem.

Our results are summarized in Table 1, where we compare the current best upper bounds
with the conditional lower bounds that we show.

The conditional hardness results presented above are for the variants of the problems
where weights are arbitrary real numbers. We note that all these bounds can be adapted to
work for the case where weights are either +1 or −1. In this case, we reduce the (unweighted)
k-Clique-Detection problem3 to each of these problems. The k-Clique-Detection
problem can be solved in O(nωbk/3c+(k mod 3)) [25] using fast matrix multiplication, where
ω < 2.372864 [35, 22] is the fast matrix multiplication exponent.4 Without using fast matrix
multiplication, it is not known whether a purely combinatorial algorithm exists that runs
in O(nk−ε) time for any constant ε > 0 and it is a longstanding graph problem. Our lower
bounds can be adapted for the +1 / − 1 versions of the problems obtaining the same
runtime exponents for combinatorial algorithms as in Table 1. Achieving better exponents

3 Given a graph on n vertices, the k-Clique-Detection problem asks whether a k-clique exists in the
graph.

4 There is a slightly faster algorithm for the case when k is not divisible by 3 [18].
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for any of these problems would imply a breakthrough combinatorial algorithm for the
k-Clique-Detection problem.

There is a vast collection of problems in computation geometry for which conditional
lower bounds are based on the assumption of 3-SUM hardness, i.e. that the best known
algorithm for the 3-SUM problem5 can’t be solved in time O(n2−ε). This line of research was
initiated by [21] (see [33] for more references). Reducing 3-SUM problem to the problems
that we study seems hard if possible at all. Our work contributes to the list of interesting
geometry problems for which hardness is shown from different assumptions.

1.3 Hardness assumptions
There is a long list of works showing conditional hardness for various problems based on
the All-Pairs Shortest Paths problem hardness assumption [29, 36, 4, 2, 3]. Among
other results, [36] showed that deciding whether a weighted graph contains a triangle of
negative weight is equivalent to the All-Pairs Shortest Paths problem meaning that
a strongly subcubic algorithm for the Negative Triangle problem implies a strongly
subcubic algorithm for the All-Pairs Shortest Paths problem and the other way around.
It is easy to show that the problem of computing the maximum weight triangle in a graph
is equivalent to the Negative Triangle problem (by inverting edge-weights of the graph
and doing the binary search over the weight of the max-weight triangle). Computing a
max-weight triangle is a special case of the problem of computing a max-weight k-clique in a
graph for a fixed integer k. This is a very well studied computational problem and despite
serious efforts, the best known algorithm for this problem still runs in time O(nk−o(1)), which
matches the runtime of the trivial algorithm up to subpolynomial factors. The assumption
that there is no O(nk−ε) time algorithm for this problem, has served as a basis for showing
conditional hardness results for several problems on sequences [1, 5].

2 Preliminaries

2.1 Problems studied in this work
I Definition 3 (Max-Weight Rectangle problem). Given N weighted points (positive
or negative) in d ≥ 2 dimensions, what is the axis-aligned box which maximizes the total
weight of the points it contains?

I Definition 4 (Maximum Subarray problem). Given a d-dimensional array M with nd

real-valued entries, find the d-dimensional subarray of M which maximizes the sum of the
elements it contains.

I Definition 5 (Max-Weight Square problem). Given a d-dimensional array M with
nd real-valued entries, find the d-dimensional square (hypercube) subarray of M , i.e. a
rectangular box with all sides of equal length, which maximizes the sum of the elements it
contains.

I Definition 6 (Weighted Depth problem). Given a set of N weighted axis-parallel boxes
in d-dimensional space Rd, find a point p ∈ Rd that maximizes the sum of the weights of the
boxes containing p.

5 Given a set of integers, decide if there are 3 integers that sum up to 0.
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2.2 Hardness assumptions
We use the hardness assumptions of the following problems. Whenever we refer to a weighted
graph, we assume that the graph is edge-weighted (as opposed to node-weighted).

I Definition 7 (All-Pairs Shortest Paths problem). Given a weighted undirected graph
G = (V, E) such that |V | = n, find the shortest path between u and v for every u, v ∈ V .

I Definition 8 (Negative Triangle problem). Given a weighted undirected graph G =
(V, E) such that |V | = n, output yes if there exists a triangle in the graph with negative total
edge weight.

I Definition 9 (Max-Weight k-Clique problem). Given an integer k and a weighted
graph G = (V, E) with n vertices, output the maximum total edge-weight of a k-clique in
the graph. W.l.o.g. we assume that the graph is complete since otherwise we can set the
weight of non-existent edges to be equal to a negative integer with large absolute value.

For any fixed k, the best known algorithm for the Max-Weight k-Clique problem runs in
time O(nk−o(1)).

In Sections 3 and 5, we use the following variant of the Max-Weight k-Clique problem
which can be shown to be equivalent to Definition 9:

I Definition 10 (Max-Weight k-Clique problem for k-partite graphs). Given an integer k

and a weighted k-partite graph G = (V1 ∪ . . .∪Vk, E) with kn vertices such that |Vi| = n for
all i ∈ [k]. Choose k vertices vi ∈ Vi and consider total edge-weight of the k-clique induced
by these vertices. Output the maximum total-edge weight of a clique in the graph.

Notation

For any integer n, we denote the set {1, 2, . . . , n} by [n]. For a set S and an integer d, we
denote the set {(s1, . . . , sd) | si ∈ S} by Sd.

3 Hardness of the Max-Weight Rectangle problem

The goal of this section is to show a hardness result for the Max-Weight Rectangle
problem making the assumption of Max-Weight k-Clique hardness. We will show the
result directly for any constant number of dimensions.

I Theorem 11. For any constants ε > 0 and d, an O(Nd−ε) time algorithm for the Max-
Weight Rectangle problem on N weighted points in d-dimensions implies an O(nK−ε)
time algorithm for the Max-Weight K-Clique problem on a weighted graph with n vertices
for K = d2dε−1e.

We set k = d · dε−1e. To prove the theorem, we will construct an instance of the
Max-Weight Rectangle problem whose answer computes a max-weight dk-clique in a
(d × k)-partite weighted graph G with n nodes in each of its parts. The Max-Weight
dk-Clique problem on general graphs reduces to this case since we can create d× k copies
of the nodes and connect nodes among different parts with edge-weights as in the original
graph.

The instance of the Max-Weight Rectangle problem will consist of N = O(nk+1)
points with integer coordinates {−nk, ..., nk}d. For such an instance the required runtime
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for the Max-Weight Rectangle problem, from the theorem statement, would imply that
the maximum weight dk-clique can be computed in

O
(
Nd−ε

)
= O

(
n(k+1)(d−ε)

)
= O

(
ndk−ε+(d−kε)

)
= O

(
ndk−ε

)
where the last equality follows as k ≥ d

ε .
To perform the reduction we introduce the following intermediate problem:

I Definition 12 (Restricted Rectangle problem). Given N = Ω(nk) weighted points in
an {−nk, ..., nk}d-grid, compute a rectangular box of a restricted form that maximizes the
weight of its enclosed points. The rectangular box

∏d
i=1[−x′i, xi] must satisfy the following

conditions:
1. Both ~x, ~x′ ∈ {0, ..., nk − 1}d, and
2. Treating each coordinate xi as a k-digit integer (xi1xi2...xik)n in base n, i.e., xi =∑k

j=1 xijnk−j and xij ∈ {0, ..., n− 1}, we must have ~x′ = (xd, x1, x2, ..., xd−1), where for
an integer z = (z1z2...zk)n ∈ {0, ..., nk − 1}, we denote by z = (zk...z2z1)n the integer
that has all the digits reversed.

We show that the Restricted Rectangle problem reduces to the Max-Weight Rect-
angle problem.

3.1 Restricted Rectangle ⇒ Max-Weight Rectangle
Consider an instance of the Restricted Rectangle problem. We can convert it to an
instance of the Max-Weight Rectangle problem by introducing several additional points.
Let C be a number greater than twice the sum of absolute values of all weights of the given
points. We know that the solution to any rectangular box must have weight in (−C/2, C/2).

The conditions of the Restricted Rectangle require that the rectangular box must
contain the origin ~0. To satisfy that we introduce a point with weight C at the origin. This
forces the optimal rectangle to contain the origin since any rectangle that doesn’t include
this point gets weight strictly less than C.

The integrality constraint is satisfied since all points in the instance have integer coordin-
ates so without loss of generality the optimal rectangle in the Max-Weight Rectangle
problem will also have integer coordinates.

Finally, we can force x′2 = x1, by adding for each x1 ∈ {0, ..., nk − 1} the 4 points:
(x1,−x1, 0, 0, .., 0) with weight C

(x1 + 1,−x1, 0, 0, .., 0) with weight −C

(x1,−x1 − 1, 0, 0, .., 0) with weight −C

(x1 + 1,−x1 − 1, 0, 0, .., 0) with weight C

This creates 4nk points and adds weight C to any rectangle with x′2 = x1 without affecting
any of the others. Working similarly for x2..., xd we can force that the optimal solution
satisfies the constraint that ~x′ = (xd, x1, x2, ..., xd−1).

If x and x′ satisfy the conditions of the Restricted Rectangle problem, we collect
weight dC for satisfying the constraints on all coordinates and C from including the point
at the origin. So the total weight is at least (d + 1)C − C

2 = (d + 1
2 )C as every rectangle

has weight at least −C/2 with respect to the original points. On the other hand, if at least
one of the conditions is not satisfied, we receive weight strictly less than (d + 1

2 )C. Thus,
the optimal rectangular box for the Max-Weight Rectangle problem coincides with the
optimal rectangular box for the Restricted Rectangle problem. The total number of
points is still O(N) since N = Ω(nk) and we added O(nk) points.

ICALP 2016
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3.2 Max-Weight (d× k)-Partite Clique ⇒ Restricted Rectangle
Consider a (d× k)-partite weighted graph G. We label each of its parts as Pij for i ∈ [d] and
j ∈ [k]. We associate each dk-clique of the graph G with a corresponding rectangular box
in the Restricted Rectangle problem. In particular, for a rectangular box defined by a
point ~x ∈ {0, ..., nk − 1}d, each xij , i.e. the j-th most significant digit of xi in the base n

representation, corresponds to the index of the node in part Pij (0-indexed).
We now create an instance by adding points so that the total weight of every rectangular

box satisfying the conditions of the Restricted Rectangle problem is equal to the weight
of its corresponding dk clique. To do that we need to take into account the weights of all
the edges. We can easily take care of edges between parts P11, P12, ..., P1k of the graph by
adding the following points for each x1 ∈ {0, ..., nk − 1}.

(x1, 0, 0, 0, .., 0) with weight W (x1) equal to the weight of the k-clique x11, x12, ..., x1k in
parts P11, P12, ..., P1k

(x1 + 1, 0, 0, 0, .., 0) with weight −W (x1)
This creates 2nk points and adds weight W (x1) to any rectangle whose first coordinate
matches x1 without affecting any of the others. We work similarly for every coordinate i

from 2 through d accounting for the weight of all edges between parts Pia and Pib for all
i ∈ [d] and a 6= b ∈ [k]. To take into account the additional edges, we show how to add edges
between parts P1a and P2b. For all x1 ∈ nk−a{0, ..., na − 1} and x2 ∈ nk−b{0, ..., nb − 1} we
add the points:

(x1, x2, 0, 0, .., 0) with weight w equal to the weight of the edge between nodes x1a and
x2b in parts P1a and P2b.
(x1 + nk−a, x2, 0, 0, .., 0) with weight −w

(x1, x2 + nk−b, 0, 0, .., 0) with weight −w

(x1 + nk−a, x2 + nk−b, 0, 0, .., 0) with weight w

This adds weight equal to the weight of the edge between nodes x1a and x2b in parts P1a and
P2b for any rectangle with corner ~x. This creates O(na+b) points. This number becomes too
large if a + b > k + 1. However, if this is the case we can instead apply the same construction
in the part of the space where the numbers x1 and x2 appear reversed, i.e. by working with
x′2 = x1 and x′3 = x2. For all x′2 ∈ na−1{0, ..., nk+1−a − 1} and x′3 ∈ nb−1{0, ..., nk+1−b − 1}
we add the points:

(0,−x′2,−x′3, 0, 0, .., 0) with weight w equal to the weight of the edge between nodes
x′2(k+1−a) and x′3(k+1−b) in parts P1a and P2b.
(0,−x′2 − na−1,−x′3, 0, .., 0) with weight −w

(0,−x′2,−x′3 − nb−1, 0, .., 0) with weight −w

(0,−x′2 − na−1,−x′3 − nb−1, 0, .., 0) with weight w

This produces the identical effect as above creating O(n2k+2−a−b) rectangles. If a + b ≥ k + 1
this adds at most O(nk+1) points as desired. We add edges between any other 2 parts Pi,·
and Pi′,· by performing a similar construction as above.

The overall number of points in the instance is O(nk+1) and this completes the proof of
the theorem.

4 Hardness for Maximum Subarray in 2 dimensions

In this section our goal is to show that, if we can solve the Maximum Subarray problem on
a matrix of size n×n in time O(n3−ε), then we can solve the Negative Triangle problem
in time O(n3−ε) on n vertex graphs. It is known that a O(n3−ε) time algorithm for the
Negative Triangle implies a O(n3 − ε/10) time algorithm for the All-Pairs Shortest
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Paths problem [36]. Combining our reduction with the latter one, we obtain Theorem 2
from the introduction, which we restate here:

I Theorem 2. For any constant ε > 0, an O(n3−ε) time algorithm for the Maximum
Subarray problem on n× n matrices implies an O(n3 − ε/10) time algorithm for the All-
Pairs Shortest Paths problem.

The generalization of this statement can be found in Section 5. Here we prove 2-
dimensional case first because the argument is shorter.

Clearly, the Negative Triangle problem in equivalent to the Positive Triangle
problem. In the remainder of this section we therefore reduce the problem of detecting
whether a graph has a positive triangle to the Maximum Subarray problem.

We need the following intermediate problem:

I Definition 13 (Maximum 4-Combination). Given a matrix B ∈ Rm×m, output

max
i,i′,j,j′∈[m] : i≤i′ and j≤j′

B[i, j] + B[i′, j′]−B[i, j′]−B[i′, j].

Our reduction consists of two steps:
1. Reduce the Positive Triangle problem on n vertex graph to the Maximum 4-

Combination problem on 2n× 2n matrix.
2. Reduce the Maximum 4-Combination problem on n × n matrix to the Maximum

Subarray matrix of size n× n.

4.1 Positive Triangle ⇒ Maximum 4-Combination
Let A be the weighted adjacency matrix of size n× n of the graph and let M be the largest
absolute value of an entry in A. Let M ′ := 10M and M ′′ := 100M . We define matrix
D ∈ Rn×n :

Di,j =
{

M ′ + M ′′ if i = j;
M ′′ otherwise.

We define matrix B ∈ R2n×2n :

B :=
[

A −AT

−AT D

]
.

The reduction follows from the following lemma.

I Lemma 14. Let X be the weight of the max-weight triangle in the graph corresponding to
the adjacency matrix A. Let Y be the output of the Maximum 4-Combination algorithm
when run on matrix B. The following equality holds:

Y = X + M ′ + M ′′.

Proof. Consider integers i, j, i′, j′ that achieve a maximum in the Maximum 4-Combination
instance as per Definition 13. Our first claim is that i, j ≤ n and i′, j′ ≥ n + 1. If this
is not true, we do not collect the weight M ′′ and the largest output that we can get is
≤ 4M ′ ≤ 9M ′′/10. Note that we can easily achieve a larger output with i = j = 1 and
i′ = j′ = n + 1.

ICALP 2016
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Our second claim is that i′ = j′. If this is not so, we do not collect the weight M ′ and the
largest output that we can get is M ′′ + 4M ≤M ′′ + M ′/2. Note that we can easily achieve
a larger output with i = j = 1 and i′ = j′ = n + 1. Thus, we can denote i′ = j′ = k + n.

Now, by the construction of B, we have

B[i, j] + B[i′, j′]−B[i, j′]−B[i′, j] = A[i, j] + A[j, k] + A[k, i] + M ′ + M ′′.

We get the equality we need. J

4.2 Maximum 4-Combination ⇒ Maximum Subarray

Let A′ ∈ R(n+1)×(n+1) be a matrix defined by A′[i, j] = A[i − 1, j − 1] if i, j ≥ 2 and
A′[i, j] = 0 otherwise.

Let C ∈ Rn×n be a matrix defined by C[i, j] = A′[i, j] + A′[i + 1, j + 1]−A′[i, j + 1]−
A′[i + 1, j].

The reduction follows from the claim that the output of the Maximum Subarray on C

is equal to the output of the Maximum 4-Combination on A′. The claim follows from the
following equality:

i′′∑
i=i′

j′′∑
j=j′

C[i, j] = A′[i′′ + 1, j′′ + 1] + A′[i′, j′]−A′[i′′ + 1, j′]−A′[i′, j′′ + 1].

The proofs of the hardness results of the next 3 sections are presented in the Appendix of
this paper in the interest of space.

5 Hardness for Maximum Subarray for arbitrary number of
dimensions

We state the hardness result we prove for the Maximum Subarray problem on d dimensional
arrays.

I Theorem 15. For any constant ε > 0, an O
(
nd+bd/2c−ε

)
time algorithm for the Maximum

Subarray problem on d-dimensional array, implies an O
(
nd+bd/2c−ε

)
time algorithm for

the Max-Weight (d + bd/2c)-Clique problem.

The complete proof of Theorem 15 is given in the full version of the paper [8]. It
generalizes the constructions used in the hardness proof of Theorem 2.

6 Hardness for Maximum Square Subarray problem

We state the hardness result we prove for the Maximum Square Subarray problem on d

dimensional arrays.

I Theorem 16. For any constant ε > 0, an O
(
nd+1−ε

)
time algorithm for the Maximum

Square Subarray problem on a d-dimensional array implies an O
(
nd+1−ε

)
time algorithm

for the Max-Weight (d + 1)-Clique problem.

The proof of Theorem 16 is given in the full version of the paper [8].
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7 Hardness for Weighted Depth problem

We state the hardness result we prove for the Weighted Depth problem in d dimensional
space.

I Theorem 17. For any constant ε > 0, an O
(
nbd/2c−ε

)
time algorithm for the Weighted

Depth problem in d dimensional space implies an O
(
nd−2ε

)
time algorithm for the Max-

Weight (d)-Clique problem.

The proof of the above theorem is given in the full version of the paper [8].
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Abstract
For any n > 1, 0 < ε < 1/2, and N > nC for some constant C > 0, we show the existence
of an N -point subset X of `n2 such that any linear map from X to `m2 with distortion at most
1 + ε must have m = Ω(min{n, ε−2 lgN}). This improves a lower bound of Alon [Alon, Discre.
Mathem., 1999], in the linear setting, by a lg(1/ε) factor. Our lower bound matches the upper
bounds provided by the identity matrix and the Johnson-Lindenstrauss lemma [Johnson and
Lindenstrauss, Contem. Mathem., 1984].
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1 Introduction

The Johnson-Lindenstrauss lemma [15] states the following.

I Theorem 1 (JL lemma [15, Lemma 1]). For any N -point subset X of Euclidean space and
any 0 < ε < 1/2, there exists a map f : X → `m2 with m = O(ε−2 lgN) such that

∀x, y ∈ X, (1− ε)‖x− y‖22 ≤ ‖f(x)− f(y)‖22 ≤ (1 + ε)‖x− y‖22. (1)

We henceforth refer to f satisfying (1) as having the ε-JL guarantee for X (often we
drop mention of ε when understood from context). The JL lemma has found applications in
computer science, signal processing (e.g. compressed sensing), statistics, and mathematics.
The main idea in algorithmic applications is that one can transform a high-dimensional
problem into a low-dimensional one such that an optimal solution to the lower dimensional
problem can be lifted to a nearly optimal solution to the original problem. Due to the
decreased dimension, the lower dimensional problem requires fewer resources (time, memory,
etc.) to solve. We refer the reader to [12, 28, 21] for a list of further applications.

All known proofs of the JL lemma with target dimension as stated above in fact provide
such a map f which is linear. This linearity property is important in several applications.
For example in the turnstile model of streaming [22], a vector x ∈ Rn receives a stream
of coordinate-wise updates each of the form xi ← xi + ∆, where ∆ ∈ R. The goal is to
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process x using m� n memory. Thus if one wants to perform dimensionality reduction in
a stream, which occurs for example in streaming linear algebra applications [7], this can
be achieved with linear f since f(x + ∆ · ei) = f(x) + ∆ · f(ei). In compressed sensing,
another application where linearity of f is inherent, one wishes to (approximately) recover
(approximately) sparse signals using few linear measurements [8, 6]. The map f sending a
signal to the vector containing some fixed set of linear measurements of it is known to allow
for good signal recovery as long as f satisfies the JL guarantee for the set of all k-sparse
vectors [6]. Linear f is also inherent in model-based compressed sensing, which is similar but
where one assumes the sparsity pattern cannot be an arbitrary one of

(
n
k

)
sparsity patterns,

but rather comes from a smaller, structured set [5].
Given the widespread use of dimensionality reduction across several domains, it is a natural

and often-asked question whether the JL lemma is tight: does there exist some X of size N
such that any such map f must have m = Ω(min{n, ε−2 lgN})? The paper [15] introducing
the JL lemma provided the first lower bound of m = Ω(lgN) when ε is smaller than some
constant. This was improved by Alon [3], who showed that if X = {0, e1, . . . , en} ⊂ Rn is the
simplex (thus N = n+ 1) and 0 < ε < 1/2, then any JL map f must embed into dimension
m = Ω(min{n, ε−2 lgn/ lg(1/ε)}). Note the first term in the min is achieved by the identity
map. Furthermore, the lg(1/ε) term cannot be removed for this particular X since one can
use Reed-Solomon codes to obtain embeddings with m = O(1/ε2) (superior to the JL lemma)
once ε ≤ n−Ω(1) [3] (see [23] for details). Specifically, for this X it is possible to achieve
m = O(ε−2 min{lgN, ((lgN)/ lg(1/ε))2}). Note also for this choice of X we can assume that
any f is in fact linear. This is because first we can assume f(0) = 0 by translation. Then
we can form a matrix A ∈ Rm×n such that the ith column of A is f(ei). Then trivially
Aei = f(ei) and A0 = 0 = f(0).

The fact that the JL lemma is not optimal for the simplex for small ε begs the question:
is the JL lemma suboptimal for all point sets? This is a major open question in the area of
dimensionality reduction, and it has been open since the paper of Johnson and Lindenstrauss
30 years ago.

Our Main Contribution: For any n > 1, 0 < ε < 1/2, and N > nC for some constant
C > 0, there is an N -point subset X of `n2 such that any embedding f : X → `m2 providing
the JL guarantee, and where f is linear, must have m = Ω(min{n, ε−2 lgN}). In other
words, the JL lemma is optimal in the case where f must be linear.

Our lower bound is optimal: the identity map achieves the first term in the min, and the
JL lemma the second. It carries the restriction of only being against linear embeddings, but
we emphasize that since the original JL paper [15] 31 years ago, every known construction
achieving the JL guarantee has been linear. Thus, in light of our new contribution, the JL
lemma cannot be improved without developing ideas that are radically different from those
developed in the last three decades of research on the problem.

It is worth mentioning there have been important works on non-linear embeddings into
Euclidean space, such as Sammon’s mapping [14], Locally Linear Embeddings [26], ISOMAP
[27], and Hessian eigenmaps [9]. None of these methods, however, is relevant to the current
task. Sammon’s mapping minimizes the average squared relative error of the embedded
point distances, as opposed to the maximum relative error (see [14, Eqn. 1]). Locally linear
embeddings, ISOMAP, and Hessian eigenmaps all assume the data lies on a d-dimensional
manifold M in Rn, d � n, and try to recover the d-dimensional parametrization given a
few points sampled fromM. Furthermore, various other assumptions are made about the
input, e.g. the analysis of ISOMAP assumes that geodesic distance onM is isometrically
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embeddable into `d2. Also, the way error in these works is meausured is again via some form
of average squared error and not worst case relative error (e.g. [26, Eqn. 2]). The point in
all these works is then not to show the existence of a good embedding into low dimensional
Euclidean space (in fact these works study promise problems where one is promised to exist),
but rather to show that a good embedding can be recovered, in some squared loss sense, if the
input data is sampled sufficiently densely fromM. There has also been other work outside
the manifold setting on providing good worst case distortion via non-linear embeddings in
the TCS community [10], but this work (1) provides an embedding for the snowflake metric
`
1/2
2 and not `2, and (2) does not achieve 1 + ε distortion. Furthermore, differently from our
focus, [10] assumes the input has bounded doubling dimension D, and the goal is to achieve
target dimension and distortion being functions of D.
I Remark. It is worth noting that the JL lemma is different from the distributional JL (DJL)
lemma that often appears in the literature, sometimes with the same name (though the
lemmas are different!). In the DJL problem, one is given an integer n > 1 and 0 < ε, δ < 1/2,
and the goal is to provide a distribution F over maps f : `n2 → `m2 with m as small as possible
such that for any fixed x ∈ Rn

P
f←F

(‖f(x)‖2 /∈ [(1− ε)‖x‖2, (1 + ε)‖x‖2]) < δ.

The existence of such F with small m implies the JL lemma by taking δ < 1/
(
N
2
)
. Then

for any z ∈ X − X, a random f ← F fails to preserve the norm of z with probability δ.
Thus the probability that there exists z ∈ X −X which f fails to preserve the norm of is at
most δ ·

(
N
2
)
< 1, by a union bound. In other words, a random map provides the desired JL

guarantee with high probability (and in fact this map is chosen completely obliviously of the
input vectors).

The optimal m for the DJL lemma when using linear maps is understood. The original
paper [15] provided a linear solution to the DJL problem with m = O(min{n, ε−2 lg(1/δ)}),
and this was later shown to be optimal for the full range of ε, δ ∈ (0, 1/2) [13, 16]. Thus when
δ is set as above, one obtains the m = O(ε−2 lgN) guarantee of the JL lemma. However, this
does not imply that the JL lemma is tight. Indeed, it is sometimes possible to obtain smaller
m by avoiding the DJL lemma, such as the Reed-Solomon based embedding construction for
the simplex mentioned above (which involves zero randomness).

It is also worth remarking that DJL is desirable for one-pass streaming algorithms, since
no properties of X are known when the map f is chosen at the beginning of the stream, and
thus the DJL lower bounds of [13, 16] are relevant in this scenario. However when allowed
two passes or more, one could imagine estimating various properties of X in the first pass(es)
then choosing some f more efficiently based on these properties to perform dimensionality
reduction in the last pass. The approach of using the first pass(es) to estimate characteristics
of a stream to then more efficiently select a linear sketch to use in the last pass is in fact
a common technique in streaming algorithms. For example, [18] used such an approach to
design a nearly optimal two-pass algorithm for L0-estimation in turnstile streams, which
consumes nearly a logarithmic factor less memory than the one-pass lower bound for the
same problem. In fact all known turnstile streaming algorithms, even those using multiple
passes, maintain linear maps applied to the input stream (with linear maps in subsequent
passes being functions of data collected from applying linear maps in previous passes). It
is even reasonable to conjecture that the most space-efficient algorithm for any multi-pass
turnstile streaming problem for `2 dimensionality reduction must be of this form, since the
recent works [20, 2] give evidence in this direction: namely that if a multi-pass algorithm
is viewed as a sequence of finite automata (one for each pass), where the ith automaton is
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generated solely from the output of the (i− 1)st automaton, then it can be assumed that all
automata represent linear maps with at most a logarithmic factor loss in space. They give
examples where this logarithmic factor loss is necessary, but for many problems we know
that no loss is necessary when requiring linear maps [4, 17]. Our new lower bound thus gives
evidence that one cannot improve dimensionality reduction in the streaming setting even
when given multiple passes.

1.1 Proof overview
For any n > 1 and ε ∈ (0, 1/2) and N > poly(n), we prove the existence of X ⊂ Rn, |X| = N ,
s.t. if for A ∈ Rm×n

(1− ε)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + ε)‖x‖22 for all x ∈ X, (2)

then m = Ω(min{n, ε−2 lgN}). Providing the JL guarantee on X ∪ {0} implies satisfying
(2), and therefore also requires m = Ω(min{n, ε−2 lgN}). We show such X exists via the
probabilistic method, by letting X be the union of all n standard basis vectors together
with several independent gaussian vectors. Gaussian vectors were also the hard case in
the DJL lower bound proof of [16], though the details were different. Note we can assume
N < exp(Cε2n) for any C > 0 we choose, since for larger N the n in the minimum defining
m takes effect.

We now give the idea of the lower bound proof to achieve (2). First, we include in X the
vectors e1, . . . , en. Then if A ∈ Rm×n for m ≤ n satisfies (2), this forces every column of A
to have roughly unit norm. Then by standard results in covering and packing (see Eqn. (5.7)
of [25]), there exists some family of matrices F ⊂ ∪nt=1Rt×n, |F| = eO(n2 lgn), such that

inf
Â∈F∩Rm×n

‖A− Â‖F ≤
1
nC

(3)

for C > 0 a constant as large as we like, where ‖ · ‖F denotes Frobenius norm. Also, by a
theorem of Latała [19], for any Â ∈ F and for a random gaussian vector g,

P
g
(|‖Âg‖22 − tr(ÂT Â)| ≥ Ω(

√
lg(1/δ) · ‖ÂT Â‖F )) ≥ δ/2 (4)

for any 0 < δ < 1/2, where tr(·) is trace. This is a (weaker version of the) statement that for
gaussians, the Hanson-Wright inequality [11] not only provides an upper bound on the tail
of degree-two gaussian chaos, but also is a lower bound. (The strong form of the previous
sentence, without the parenthetical qualifier, was proven in [19], but we do not need this
stronger form for our proof – essentially the difference is that in stronger form, (4) is replaced
with a stronger inequality also involving the operator norm ‖ÂT Â‖.)

It also follows by standard results that a random gaussian vector g satisfies

P
g
(|‖g‖22 − n| > C

√
n lg(1/δ)) < δ/2 (5)

Thus by a union bound, the events of (4), (5) happen simultaneously with probability
Ω(δ). Thus if we take N random gaussian vectors, the probability that the events of (4), (5)
never happen simultaneously for any of the N gaussians is at most (1− Ω(δ))N = e−Ω(δN).
By picking N sufficiently large and δ = 1/poly(n), a union bound over F shows that for every
Â ∈ F , one of the N gaussians satisfies the events of (4) and (5) simultaneously. Specifically,
for N > n3 there exist N vectors {v1, . . . , vN} = V ⊂ Rn such that

Every v ∈ V has ‖v‖22 = n±O(
√
n lgN) = (1±O(ε))n.

For any Â ∈ F there exists some v ∈ V such that |‖Âv‖22−tr(ÂT Â)| = Ω(
√

lgN ·‖ÂT Â‖F ).
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Here ±B represents a value in [−B,B]. The final definition of X is {e1, . . . , en} ∪ V . Then,
using (2) and (3), we show that the second bullet implies

tr(ÂT Â) = n±O(εn), and |‖Av‖22 − n| = Ω(
√

lgN · ‖ÂT Â‖F )−O(εn). (6)

But then by the triangle inequality, the first bullet above, and (2),∣∣‖Av‖22 − n∣∣ ≤ ∣∣‖Av‖22 − ‖v‖22∣∣+
∣∣‖v|‖22 − n∣∣ = O(εn). (7)

Combining (6) and (7) implies

tr(ÂT Â) =
n∑
i=1

λ̂i ≥ (1−O(ε))n, and ‖ÂT Â‖2F =
n∑
i=1

λ̂2
i = O

(
ε2n2

lgN

)

where (λ̂i) are the eigenvalues of ÂT Â. With bounds on
∑
i λ̂i and

∑
i λ̂i

2
in hand, a lower

bound on rank(ÂT Â) ≤ m follows by Cauchy-Schwarz (this last step is also common to the
proof of [3]).
I Remark. It is not crucial in our proof thatN be at least n3. Our techniques straightforwardly
extend to show that N can be any value which is Ω(n2+γ) for any constant γ > 0, or even
Ω(n1+γ/ε2).

2 Preliminaries

Henceforth a standard gaussian random variable g ∈ R is a gaussian with mean 0 and
variance 1. If we say g ∈ Rn is standard gaussian, then we mean that g is a multivariate
gaussian with identity covariance matrix (i.e. its entries are independent standard gaussian).
Also, the notation ±B denotes a value in [−B,B]. For a real matrix A = (ai,j), ‖A‖ is the
`2 → `2 operator norm, and ‖A‖F = (

∑
i,j a

2
i,j)1/2 is Frobenius norm.

In our proof we depend on some previous work. The first theorem is due to Latała [19]
and says that, for gaussians, the Hanson-Wright inequality is not only an upper bound but
also a lower bound.

I Theorem 2 ([19, Corollary 2]). There exists universal c > 0 such that for g ∈ Rn standard
gaussian and A = (ai,j) an n× n real symmetric matrix with zero diagonal,

∀t ≥ 1, P
g

(
|gTAg| > c(

√
t · ‖A‖F + t · ‖A‖)

)
≥ min{c, e−t} .

Theorem 2 implies the following corollary.

I Corollary 3. Let g,A be as in Theorem 2, but where A is no longer restricted to have zero
diagonal. Then

∀t ≥ 1, P
g

(
|gTAg − tr(A)| > c(

√
t · ‖A‖F + t · ‖A‖)

)
≥ min{c, e−t} .

Proof. Let N be a positive integer. Define g̃ = (g̃1,1, g̃1,2, . . . , g̃1,N , . . . , g̃n,1, g̃n,2, . . . , g̃n,N )
a standard gaussian vector. Then gi is equal in distribution to N−1/2∑N

j=1 g̃i,j . Define ÃN
as the nN × nN matrix formed by converting each entry ai,j of A into an N ×N block with
each entry being ai,j/N . Then

gTAg−tr(A) =
n∑
i=1

n∑
j=1

ai,jgigj−tr(A) d=
n∑
i=1

n∑
j=1

N∑
r=1

N∑
s=1

ai,j
N

g̃i,r g̃j,s−tr(A)def= g̃T ÃN g̃−tr(ÃN )
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where d= denotes equality in distribution (note tr(A) = tr(ÃN )). By the weak law of large
numbers

∀λ > 0, lim
N→∞

P
(
|g̃T ÃN g̃ − tr(ÃN )| > λ

)
= lim
N→∞

P
(
|g̃T (ÃN − D̃N )g̃| > λ

)
(8)

where D̃N is diagonal containing the diagonal elements of ÃN . Note ‖ÃN‖ = ‖A‖. This
follows since if we have the singular value decomposition A =

∑
i σiuiv

T
i (where the {ui}

and {vi} are each orthonormal, σi > 0, and ‖A‖ is the largest of the σi), then ÃN =∑
i σiu

(N)
i (v(N)

i )T where u(N)
i is equal to ui but where every coordinate is replicated N times

and divided by
√
N . This implies |‖ÃN − D̃N‖ − ‖A‖| ≤ ‖D̃N‖ = maxi |ai,i|/N = oN (1) by

the triangle inequality. Therefore limN→∞ ‖ÃN−D̃N‖ = ‖A‖. Also limN→∞ ‖ÃN−D̃N‖F =
‖A‖F . Our corollary follows by applying Theorem 2 to the right side of (8). J

The next lemma follows from gaussian concentration of Lipschitz functions [24, Corollary
2.3]. It also follows from the Hanson-Wright inequality [11] (which is the statement of
Corollary 3, but with the inequality reversed). Ultimately we will apply it with t ∈ Θ(lgn),
in which case the e−t term will dominate.

I Lemma 4. For a universal c > 0, and g ∈ Rn standard gaussian, ∀t > 0 P(|‖g‖22 − n| >
c
√
nt) < e−t + e−

√
nt.

The following corollary summarizes the above in a form that will be useful later.

I Corollary 5. For A ∈ Rm×n let λ1 ≥ · · · ≥ λn ≥ 0 be the eigenvalues of ATA. Let
g(1), . . . , g(N) ∈ Rn be independent standard gaussian vectors. For some universal constants
c1, c2, δ0 > 0 and any 0 < δ < δ0

P

(
6 ∃j ∈ [N ] :

{∣∣∣∣∣‖Ag(j)‖22 −
n∑
i=1

λi

∣∣∣∣∣ ≥ c1√lg(1/δ)
(

n∑
i=1

λ2
i

)1/2}
∧{

|‖g(j)‖22 − n| ≤ c2
√
n lg(1/δ)

})
≤ e−Nδ. (9)

Proof. We will show that for any fixed j ∈ [N ] it holds that

P (
{∣∣∣∣∣‖Ag(j)‖22 −

n∑
i=1

λi

∣∣∣∣∣ ≥ c1√lg(1/δ)
(

n∑
i=1

λ2
i

)1/2}
∧{

‖g(j)‖22 ≤ n+ c2
√
n lg(1/δ)

})
> δ (10)

Then, since the gj are independent, the left side of (9) is at most (1− δ)N ≤ e−δN .
Now we must show (10). It suffices to show that

P
(
|‖g(j)‖22 − n| ≤ c2

√
n lg(1/δ)

)
> 1− δ/2 (11)

and

P

∣∣∣∣∣‖Ag(j)‖22 −
n∑
i=1

λi

∣∣∣∣∣ ≥ c1√lg(1/δ)
(

n∑
i=1

λ2
i

)1/2
 > δ/2 (12)

since (10) would then follow from a union bound. Eqn. (11) follows immediately from
Lemma 4 for c2 chosen sufficiently large. For Eqn. (12), note ‖Ag(j)‖22 = gTATAg. Then∑
i λi = tr(ATA) and (

∑
i λ

2
i )1/2 = ‖ATA‖F . Then (12) frollows from Corollary 3 for δ

smaller than some sufficiently small constant δ0. J
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We also need a standard estimate on entropy numbers (covering the unit `mn∞ ball by `mn2
balls).

I Lemma 6. For any parameter 0 < α < 1, there exists a family Fα ⊆
⋃n
m=1 Rm×n of

matrices with the following two properties:
1. For any matrix A ∈

⋃n
m=1 Rm×n having all entries bounded in absolute value by 2, there

is a matrix Â ∈ Fα such that A and Â have the same number of rows and B = A − Â
satisfies tr(BTB) ≤ α/100.

2. |Fα| = eO(n2 lg(n/α)).

Proof. We construct Fα as follows: For each integer 1 ≤ m ≤ n, add all m × n matrices
having entries of the form i

√
α

10n for integers i ∈ {−20n/
√
α, . . . , 20n/

√
α}. Then for any

matrix A ∈
⋃n
m=1 Rm×n there is a matrix Â ∈ Fα such that A and Â have the same number

of rows and every entry of B = A− Â is bounded in absolute value by
√
α

10n . This means that
every diagonal entry of BTB is bounded by nα/(100n2) and thus tr(BTB) ≤ α/100. The
size of Fα is bounded by n(40n/

√
α)n2 = eO(n2 lg(n/α)). J

3 Proof of main theorem

I Lemma 7. Let Fα be as in Lemma 6 with 1/ poly(n) ≤ α < 1. Then there for any N > n3

there exists a set of N vectors v1, . . . , vN in Rn such that for every matrix A ∈ Fα, there is
an index j ∈ [N ] such that
(i) |‖Avj‖22 −

∑
i λi| = Ω

(√
lgN

∑
i λ

2
i

)
.

(ii) |‖vj‖22 − n| = O(
√
n lgN).

Proof. Let g(1), . . . , g(N) ∈ Rn be independent standard gaussian. Let A ∈ Fα and apply
Corollary 5 with δ = N−1/12 ≤ n−1/4. With probability 1− e−Ω(n3−1/4), one of the g(j) for
j ∈ [N ] satisfies (i) and (ii) for A. Since |Fα| = eO(n2 lg(n/α)), the claim follows by a union
bound over all matrices in Fα. J

I Theorem 8. For any 0 < ε < 1/2, n > 1, and n′ > n3, there exists a set X ⊂ Rn,
|X| = N = n′ + n, such that if A is a matrix in Rm×n satisfying ‖Avi‖22 ∈ (1± ε)‖vi‖22 for
all vi ∈ X, then m = Ω(min{n, ε−2 lgN}).

Proof. We can assume ε > 1/
√
n since otherwise an m = Ω(n) lower bound already follows

from [3]. We also can assume N < exp(Cε2n), since otherwise min{n, ε−2 lgN} = n. To
construct X, we first invoke Lemma 7 with α = ε2/n2 to find n′ vectors w1, . . . , wn′ such
that for all matrices Ã ∈ Fε2/n2 , there exists an index j ∈ [n′] for which:

1. |‖Ãwj‖22 −
∑
i λ̃i| ≥ Ω

(√
(lgN)

∑
i λ̃

2
i

)
.

2. |‖wj‖22 − n| = O(
√
n lgN) = O(εn).

where λ̃1 ≥ · · · ≥ λ̃n ≥ 0 denote the eigenvalues of ÃT Ã. We letX = {e1, . . . , en, w1, . . . , wn′}
and claim this set of N = n′ + n vectors satisfies the theorem. Here ei denotes the i’th
standard unit vector.

To prove this, let A ∈ Rm×n be a matrix with m ≤ n satisfying ‖Av‖22 ∈ (1± ε)‖v‖22 for
all v ∈ X. Now observe that since e1, . . . , en ∈ X, A satisfies ‖Aei‖22 ∈ (1± ε)‖ei‖22 = (1± ε)
for all ei. Hence all entries ai,j of A must have a2

i,j ≤ (1 + ε) < 2 (and in fact, all columns of
A have `2 norm at most

√
2). This implies that there is an m× n matrix Â ∈ Fε2/n2 such

ICALP 2016



82:8 The Johnson-Lindenstrauss Lemma Is Optimal for Linear Dimensionality Reduction

that B = A− Â = (bi,j) satisfies tr(BTB) ≤ ε2/(100n2). Since tr(BTB) = ‖B‖2F , this also
implies ‖B‖F ≤ ε/(10n). Then by Cauchy-Schwarz,

n∑
i=1

λ̂i = tr(ÂT Â)

= tr((A−B)T (A−B))
= tr(ATA) + tr(BTB)− tr(ATB)− tr(BTA)

=
n∑
i=1
‖Aei‖22 + tr(BTB)− tr(ATB)− tr(BTA)

= n± (O(εn) + 2n ·max
j

(
∑
i

b2i,j)1/2 ·max
k

(
∑
i

a2
i,k)1/2)

= n± (O(εn) + 2n · ‖B‖F ·
√

2)
= n±O(εn).

Thus from our choice of X there exists a vector v∗ ∈ X such that
(i) |‖Âv∗‖22 − n| ≥ Ω

(√
(lgN)

∑
i λ̂

2
i

)
−O(εn).

(ii) |‖v∗‖22 − n| = O(
√
n lgN) = O(εn).

Note ‖B‖2 ≤ ‖B‖2F = tr(BTB) ≤ ε2/(100n2) and ‖Â‖2 ≤ ‖Â‖2F ≤ (‖A‖F +‖B‖F )2 = O(n2).
Then by (i)
(iii)

|‖Av∗‖22 − n| = |‖Âv∗‖22 + ‖Bv∗‖22 + 2〈Âv∗, Bv∗〉 − n|

≥ Ω

√(lgN)
∑
i

λ̂2
i

− ‖Bv∗‖22 − 2|〈Âv∗, Bv∗〉| −O(εn)

≥ Ω

√(lgN)
∑
i

λ̂2
i

− ‖B‖2 · ‖v∗‖22 − 2‖B‖ · ‖A‖ · ‖v∗‖22 −O(εn)

= Ω

√(lgN)
∑
i

λ̂2
i

−O(εn).

We assumed |‖Av∗‖22 − ‖v∗‖22| = O(ε‖v∗‖22) = O(εn). Therefore by (ii),∣∣‖Av∗‖22 − n∣∣ ≤ ∣∣‖Av∗‖22 − ‖v∗‖22∣∣+
∣∣‖v∗‖22 − n∣∣ = O(εn)

which when combined with (iii) implies
n∑
i=1

λ̂2
i = O

(
ε2n2

lgN

)
.

To complete the proof, by Cauchy-Schwarz since exactly rank(ÂT Â) of the λ̂i are non-zero,

n2

2 ≤
(

n∑
i=1

λ̂i

)2

≤ rank(ÂT Â) ·
(

n∑
i=1

λ̂i
2
)
≤ m ·O

(
ε2n2

lgN

)
.

Rearranging gives m = Ω(ε−2 lgN). Note we assumed N < exp(Cε2n). Thus considering N
larger, we obtain the lower bound m = Ω(min{n, ε−2 lgN}) as desired. J
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4 Discussion

One obvious future goal is to obtain an m = Ω(min{n, ε−2 lgN}) lower bound that also
applies to non-linear maps. Unfortunately, such a lower bound cannot be obtained by using
the hard set X from Theorem 8. If X is the union of {e1, . . . , en} with nO(1) independent
gaussian vectors normalized to each have squared unit norm in expectation, then it is not hard
to show (e.g. via a decoupled Hanson-Wright inequality) that X will be ε-incoherent with high
probability for any ε ∈ Ω(

√
lgn/n), where we say a set X is ε-incoherent if (1) for all x ∈ X,

‖x‖2 = 1± ε, and (2) for all x 6= y ∈ X, |〈x, y〉| ≤ ε. It is known that any ε-incoherent set of
N vectors can be non-linearly embedded into dimension O(ε−2(lgN/(lg lgN + lg(1/ε)))2)
by putting each vector in correspondence with a Reed-Solomon codeword (see [23] for
details). This upper bound is o(ε−2 lgN) for any ε ∈ 2−ω(

√
lgN). Thus, one cannot prove an

Ω(ε−2 lgN) lower bound against non-linear maps for our hard set X for the full range of
ε ∈ [

√
(lgn)/n, 1/2].

One potential avenue for generalizing our lower bound to the non-linear setting is to
shrink |X|. Our hard set X contains N = O(n3) points in Rn (though as remarked earlier,
our techniques easily imply N = O(n1+γ/ε2) points suffice). Any embedding f could be
assumed linear without loss of generality if the elements of X were linearly independent, at
which point one would only need to prove a lower bound against linear embeddings. However,
clearly X ⊂ Rn cannot be linearly independent if N > n, as is the case for our X. Thus a
first step toward a lower bound against non-linear embeddings is to obtain a hard X with N
as small as possible. Alternatively, one could hope to extend the aforementioned non-linear
embedding upper bound for incoherent sets of vectors to arbitrary sets of vectors, though
such a result if true seems to require ideas very different from all known constructions of JL
transforms to date.

Finally, we mention an alternative but similar proof strategy that leads to the same result
as proved above. In [16], the authors proved the following theorem (see their Theorem 9):

I Theorem 9 ([16]). If A : Rn → Rm is a linear transformation with n ≥ 2m and ε > 0
is sufficiently small, then for g a randomly chosen vector in Sn−1, P(|‖Ag‖22 − 1| > ε) ≥
exp(−O(mε2 + 1)).

With this theorem in mind, we can redo our proof steps, first showing that for a matrix
A ∈ Rm×n and N randomly chosen vectors g(1), . . . , g(N), at least one of them will have
|‖Ag(j)‖22 − 1| > ε with probability 1− exp(−N exp(O(mε2 + 1))). If m = o(ε−2 lgN), we
can prove an analog of our Lemma 7, showing that there exists a set X ⊂ Sn−1 of N > n3

vectors v1, . . . , vN , such that for every matrix A ∈ Fα, there is an index j ∈ [N ] with
|‖Avj‖22 − 1| > ε. Finally, we could redo the steps in the proof of Theorem 8, showing that
any JL-matrix for X ∪ {e1, . . . , en} must be sufficiently “close” to a matrix in Fα and hence
there is a vector vj in X whose norm is distorted by too much. In summary, their theorem
would replace our Corollary 3. The proof of their theorem is slightly more involved than the
proof of Corollary 3 (once one assumes Theorem 2), albeit not by much. We believe there
is value in knowing both proofs and we hope the underlying ideas may be useful in other
applications.

Acknowledgments. We thank Radosław Adamczak for pointing out how to derive Corol-
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Abstract
Transportation cost metrics, also known as the Wasserstein distances Wp, are a natural choice
for defining distances between two pointsets, or distributions, and have been applied in numer-
ous fields. From the computational perspective, there has been an intensive research effort for
understanding the Wp metrics over Rk, with work on the W1 metric (a.k.a earth mover distance)
being most successful in terms of theoretical guarantees. However, the W2 metric, also known
as the root-mean square (RMS) bipartite matching distance, is often a more suitable choice in
many application areas, e.g. in graphics. Yet, the geometry of this metric space is currently
poorly understood, and efficient algorithms have been elusive. For example, there are no known
non-trivial algorithms for nearest-neighbor search or sketching for this metric.

In this paper we take the first step towards explaining the lack of efficient algorithms for
the W2 metric, even over the three-dimensional Euclidean space R3. We prove that there are
no meaningful embeddings of W2 over R3 into a wide class of normed spaces, as well as that
there are no efficient sketching algorithms for W2 over R3 achieving constant approximation. For
example, our results imply that: 1) any embedding into L1 must incur a distortion of Ω(

√
logn)

for pointsets of size n equipped with the W2 metric; and 2) any sketching algorithm of size s
must incur Ω

(√
logn/

√
s
)
approximation. Our results follow from a more general statement,

asserting that W2 over R3 contains the 1/2-snowflake of all finite metric spaces with a uniformly
bounded distortion. These are the first non-embeddability/non-sketchability results for W2.
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1 Introduction

Transportation metrics provide a natural distance on sets of points, or probability measures
more generally, and as such have applications in numerous fields, such as computer science, as
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well as statistical physics, mathematical economics, automated control, shape optimization,
applied probability, partial differential equations, metric geometry and many more, see
[44, 39]. These metrics are also known as Wasserstein distance, Kantorovich-Rubinstein
distance, Prokhorov distance, or the earth mover distance. We now recall basic notation
and terminology from the theory of transportation cost metrics [57]. For a metric space
(X, dX) and p ∈ (0,∞), let Pp(X) denote the space of all (Borel) probability measures µ
on X satisfying

∫
X
dX(x, x0)pdµ(x) <∞ for some (hence all) x0 ∈ X. The Wasserstein-p

distance between µ, ν ∈ Pp(X) is then

Wp(µ, ν) def= inf
π∈Π(µ,ν)

(∫∫
X×X

dX(x, y)pdπ(x, y)
) 1

p

,

where Π(µ, ν) is the set of all couplings (matchings) π between (µ, ν) on X, i.e., probability
measures π on X ×X such that µ(A) = π(A×X) and ν(A) = π(X ×A) for every A ⊆ X.
Wp on Pp(X) is a metric whenever p > 1. Here we consider the classic setting of X being Rk,
for k > 2, endowed with the standard Euclidean distance.

In computer science, the transportation metrics on Rk play an important role in computer
vision [58, 46, 21, 22, 28, 42, 38, 33], machine learning [20], information retrieval [45], and
mechanism design [16], among others. For example, an image can be represented as a set
of pixels in a color space R3; the transportation cost between such sets yields an accurate
measure of dissimilarity between color characteristics of the images [47, 25].

These applications motivated a lot of research into the computational properties of
transportation metrics. In particular, typical problems are to develop efficient algorithms
for: computing the distance between two pointsets (finitely-supported measures), nearest
neighbor search under these metrics, as well as problems in the streaming and sketching
context.

So far, most of the rigorous algorithmic results have been developed for the W1 metric,
often refered to as the Earth Mover Distance (EMD). There is a long line of work on
approximation algorithms for computing EMD between two pointsets in Rk [55, 2, 56, 1,
24, 49], culminating in a near-linear time algorithm achieving a (1 + ε)-approximation
[50, 3, 7]. Nearest neighbor search algorithms all proceed via either embedding EMD into L1
or sketching. Understanding the embeddability of EMD over Rk into L1 is a well-known open
problem [30], and the best distortion is currently known [14, 25, 26, 37, 5] to be between
O(k logn) and Ω(k +

√
logn) for pointsets in [n]k = {1, 2, . . . n}k. Similarly, designing

sketching algorithms for EMD over Rk is also a well-known open problem [40, 41]. Some
of the sketching bounds for W1 follow from the aforementioned L1 embeddings, and some
others are proved directly [4, 6].

Yet, in a number of applications the Wasserstein-2 distance W2 is a more natural distance
than Wasserstein-1 (EMD), and indeed other communities have paid more attention to W2
[53]. Specifically, W2 (a.k.a., root-mean square bipartite matching distance) corresponds to
the “`2 error” between two pointsets, in contrast to the “`1 error” measured by W1; as such
they have better regularity properties and also have a differential interpretation [53]. See
[34, 18] for a further discussion of why using W2 gives results of a better quality than W1. W2
is used in graphics [51, 52, 54, 53], for shape interpolation [12], for barycenter computation
[15, 11], shape reconstruction [19], blue noise generation [18], triangulations [34], among
others.

Surprisingly, the algorithmic results for W2 have been much more elusive. The best
algorithms for computing W2 distance between two pointsets follow from [43, 3], who obtain
Õ(n2) time for exact and Õ(n3/2) for approximate computation (in contrast to the near-linear
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time algorithms for W1). Beyond these results, there are no known non-trivial algorithms
for embedding, nearest neighbor search, or sketching for W2! This discrepancy raises the
question of why there has been such a dire lack of progress on algorithms for W2.

Here we address this question by proving the first explicit lower bounds for W2 over R3,
establishing that it is a very rich space that cannot be represented faithfully even with weak
guarantees in a large class of normed spaces (that includes all Lq spaces for finite q, and
much more). In particular, focusing on W2 on measures over R3 supported on at most n
points, we show that Ω(

√
logn) distortion is required for either: 1) embedding of W2 into

L1, and 2) constant-size sketching. To contrast these results to those known for W1 over the
same set of measures, while W1 has a similar non-embeddability into L1 [37], it does not
translate into sketching lower bounds. In fact, it was only recently established [6] that the
approximation for sketching W1 must be super-constant (without giving an explicit bound).
Besides stronger sketching lower bounds, our results for W2 are stronger than any known
W1 non-embeddability results since they apply to a larger class of Banach space targets
(nontrivial type), and also rule out embeddings that are much weaker than bi-Lipschitz, like
coarse embeddings. Finally, our results also apply to Wp space for p ∈ (1, 2), yielding a
Ω((logn)1/p) distortion lower bound, which is asymptotically stronger than the distortion
lower bound known for embedding W1 into L1.

Our results apply to measures over R3 only, and the validity of analogous results for
measures over R2 remains an open question. The only progress has been obtained in the
forthcoming work [8], where the authors establish the first lower bound for embedding W2(R2)
into L1, showing that the distortion goes to infinity (without an explicit bound). However,
[8] does not yield the full strength of our results in terms of ruling out embeddings into
spaces with nontrivial type, as well as, say, coarse embeddings.

1.1 Main Results
We now present our results on non-existence of good embedding and sketching methods for
W2 over R3. We then show that these results follow from a more general principle: that W2
over R3 is snowflake-universal, and hence, say, we can embed the square-root of a shortest
path metric on an expander graph into it with distortion arbitrarily close to 1. Our results
apply to all Wp for p > 1, but not to W1.

Non-embeddability results. We now introduce the standard notion of embeddings.

I Definition 1. Fix two metric spaces (X, dX) and (Y, dY ), and D ∈ [1,∞]. A mapping
f : X → Y is an embedding with distortion at most D if there exists s ∈ (0,∞) such that
every x, y ∈ X satisfy s · dX(x, y) 6 dY (f(x), f(y)) 6 Ds · dX(x, y). The infimum over those
D ∈ [1,∞] for which this holds true is called the distortion of f and is denoted dist(f).
If there exists a mapping f : X → Y with distortion at most D then we say that (X, dX)
embeds with distortion D into (Y, dY ). The infimum of dist(f) over all f : X → Y is denoted
c(Y,dY )(X, dX), or cY (X) if the metrics are clear from the context.

We prove the following theorem.

I Theorem 2. For any fixed p ∈ (1,∞) and n ∈ N, consider the metric space X consisting
of all the measures on R3 that are supported on at most n points, equipped with the Wp

metric. Then any embedding of X into L1 must incur distortion Ω(((p− 1) logn)1/p).

Theorem 2 implies a Ω(
√

logn) approximation for any algorithmic approach proceeding
via embedding W2 over measures on R3 whose support is of size at most n into L1. While
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embedding into L1 is a common algorithmic technique for high-dimensional metric spaces, it
is not the only one. In particular, despite non-embeddability into L1, a metric could admit a
better embedding into, say, L1/2, which would imply efficient sketches and nearest neighbor
search algorithms. We rule out such weaker embeddings as well.

In fact, our work actually yields impossibility results that are much stronger than the
bi-Lipschitz nonembeddability statement that corresponds to Theorem 2. Our most general
results are contained in the full version of this paper, but here is one illustrative example.
Let X be either L1 or a Banach space of nontrivial type.1 Then for p ∈ (1,∞) there do not
exist any nondecreasing functions α, β : [0,∞) → [0,∞) with limt→∞ α(t) = ∞ for which
there is a mapping f : Pp(R3)→ X that satisfies

∀µ, ν ∈ Pp(R3), α(Wp(µ, ν)) 6 ‖f(µ)− f(ν)‖X 6 β(Wp(µ, ν)).

Theorem 2 corresponds to the special case when the function α, β are linear and X is L1. In
common metric geometry jargon, the above statement asserts that Pp(R3) fails to admit a
coarse embedding into any normed space of nontrivial type.

Sketching. We can also state our results using the language of the sketching algorithms.
The notion of sketching is defined as follows [48].

I Definition 3. Fix a metric (X, dX), and approximation D > 1. We say (X, dX) has
sketching complexity s > 1 if, for any threshold r > 0, there exists a distribution over sketching
maps sk : X → {0, 1}s and reconstruction algorithms R : {0, 1}s × {0, 1}s → {close, far},
satisfying the following. For any x, y ∈ X, with at least 2/3 probability of success:

if dX(x, y) 6 r, then R(sk(x), sk(y)) = close;
if dX(x, y) > Dr, then R(sk(x), sk(y)) = far.

We are now ready to state our sketching lower bound for Wp for p > 1.

I Theorem 4. Fix p ∈ (1,∞) and let n, s ∈ N. Consider the metric space X consisting of
all the measures on R3 that are supported on at most n points, equipped with the Wp metric.
Then any sketching algorithm for X with sketching complexity s must have an approximation

guarantee of D = Ω
((

(p−1) logn
s

)1/p
)
.

We note that, for comparison, standard `1, `2 metrics have constant sketching complexity
[27, 48, 9]. Also, for W1 over R3 (or R2), the only known lower bound is that Ds = ω(1),
shown recently in [6], based on [37].

Snowflake universality. Our results follow from a more general phenomenon, captured by
the following theorem.

I Theorem 5. If p ∈ (1,∞) then for every finite metric space (X, dX) we have

c(Pp(R3),Wp)

(
X, d

1
p

X

)
= 1.

1 The correct class of Banach spaces here could even be all those Banach spaces that do not contain
every finite metric space with distortion arbitrarily close to 1, but currently this stronger version of the
ensuing statement holds true conditionally on a well-known open question in metric geometry; see the
full version of this paper for more details.
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For a metric space (X, dX) and θ ∈ (0, 1], the metric space (X, dθX) is commonly called
the θ-snowflake of (X, dX); see e.g. [17]. Thus Theorem 5 asserts that the θ-snowflake of any
finite metric space (X, dX) embeds with distortion 1 + ε into Pp(R3) for every ε ∈ (0,∞) and
θ ∈ (0, 1/p].2 Our techniques fall short of proving a longstanding conjecture of Bourgain [13],
who asked whether (P1(R2),W1) is not universal (i.e., does not contain all finite metrics).3
Bourgain proved in [13] that (P1(`1),W1) is universal (despite the fact that `1 is not universal),
but it remains an intriguing open question to determine whether or not (P1(Rk),W1) is
universal for any finite k ∈ N, the case k = 2 being most challenging.

Theorem 6 below implies that Theorem 5 is sharp if p ∈ (1, 2], and yields a nontrivial,
though probably non-sharp, restriction on the embeddability of snowflakes into Pp(R3) also
for p ∈ (2,∞).

I Theorem 6. For arbitrarily large n ∈ N there exists an n-point metric space (Xn, dXn
)

such that for every α ∈ (0, 1] we have

c(Pp(R3),Wp)(Xn, d
α
Xn

) &
{

(logn)α−
1
p if p ∈ (1, 2],

(logn)α+ 1
p−1 if p ∈ (2,∞).

Here, and in what follows, we use standard asymptotic notation, i.e., for a, b ∈ [0,∞) the
notation a & b (respectively a . b) stands for a > cb (respectively a 6 cb) for some universal
constant c ∈ (0,∞). The notation a � b stands for (a . b) ∧ (b . a).

The rest of the paper is organized as follows. We give the proof of Theorem 5 in Section 2,
and its consequences, Theorem 2 and 4, in Section 2.1. We then present some future research
directions suggested by our results in Section 3. We defer the proof of Theorem 6 to the full
version.

2 Proof of Theorem 5

To establish the theorem, we will construct an explicit embedding of an n-point metric into
W2(R3). In what follows fix n ∈ N and an n-point metric space (X, dX).

We start by presenting the intuition behind the construction. In particular, let us demon-
strate a fundamental difference between W1 and Wp for p > 1 for a simple transportation
instance. We will exploit this construction in our embedding. Fix a positive integer k, and
consider the optimal transport between the sets A = {0, 1

k ,
2
k , . . . ,

k−1
k } and B = { 1

k ,
2
k , . . . , 1}.

While under the W1 metric the optimal cost is simply 1, under Wp the optimal transport would

send every x ∈ A to x + 1
k ∈ B, which incurs a cost of

(∑k
i=1
( 1
k

)p)1/p
= k1/p−1 −−−−→

k→∞
0.

Note that for any 0 6 ε < 1, we can increase the transport cost to ε by introducing
a “gap” of size εk. E.g., for some i, define A = {0, 1

k , . . . ,
i
k ,

i+εk
k , i+εk+1

k , . . . , k−1
k } and

B = Ar {0} ∪ {1}. Then the optimal transport cost under Wp would be((
εk

k

)p
+
k−εk∑
i=1

(
1
k

)p)1/p

−−−−→
k→∞

ε .

2 Formally, Theorem 5 makes this assertion when θ = 1/p, but for general θ ∈ (0, 1/p] one can then apply
Theorem 5 to the metric space (X, dθpX ) to deduce the seemingly more general statement.

3 Bourgain actually formulated this question as asking whether a certain Banach space (namely, the dual
of the Lipschitz functions on the square [0, 1]2) has finite Rademacher cotype, but this is equivalent to
the above formulation.
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We shall use the fact that any graph, in particular the complete graph, can be realized
in R3, so that if every edge is represented by a wire, there are no wire crossings (except at
vertices). Imagine that each wire is replaced by a set of points with distances 1/k between
neighboring points. We then introduce a gap of length proportional to dX(u, v)1/p on the
wire connecting u and v. The embedding of u ∈ X will be into a uniform measure over
the point realizing u, and all the points in all the wires. Then the transport from u to
v must move the mass at u to the mass of v. By the simple example above, this can be
done at cost proportional to dX(u, v)1/p, when k is sufficiently large. The trickier part is
showing no better transport exist. To this end, we require that all the wires are sufficiently
far apart, so any transport plan that does not move along the wires will have a huge cost.
Finally, the triangle inequality ensures that the cost of a plan using the wires between the
points u = u0, u1, . . . , uq = v is at least dX(u, v)1/p (this is the reason why we make the gaps
proportional to the p-th roots).

We now proceed with the formal proof of the theorem. Write X = {x1, . . . , xn} and fix
φ : {1, . . . , n} × {1, . . . , n} → {1, . . . , n2} to be an arbitrary bijection between {1, . . . , n} ×
{1, . . . , n} and {1, . . . , n2}. Below it will be convenient to use the following notation.

m
def= min

x,y∈X
x 6=y

dX(x, y)
1
p and M

def= max
x,y∈X

dX(x, y)
1
p . (1)

FixK ∈ N. Denoting the standard basis of R3 by e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1),
for every i, j ∈ {1, . . . , n} with i < j define five families of points in R3 by setting for
s ∈ {0, . . . ,K},

Q1
s(i, j)

def= Mi

m
e1 + Mφ(i, j)s

mK
e2, (2)

Q2
s(i, j)

def= Mi

m
e1 + Mφ(i, j)

m
e2 + Ms

mK
e3, (3)

Q3
s(i, j)

def= M(s(j − i) +Ki) + (K − s)dX(xi, xj)
1
p

mK
e1 + Mφ(i, j)

m
e2 + M

m
e3, (4)

Q4
s(i, j)

def= Mj

m
e1 + Mφ(i, j)

m
e2 + M(K − s)

mK
e3, (5)

Q5
s(i, j)

def= Mj

m
e1 + M(K − s)φ(i, j)

mK
e2. (6)

Then Q1
K(i, j) = Q2

0(i, j), Q3
K(i, j) = Q4

0(i, j) and Q4
K(i, j) = Q5

0(i, j), so the total number
of points thus obtained equals 5(K + 1)− 3 = 5K + 2.

Define B ⊆ R3 by setting

B
def=

⋃
i,j∈{1,...,n}

i<j

Bij , (7)

where for every i, j ∈ {1, . . . , n} with i < j we write

Bij
def=

K⋃
s=0

{
Q1
s(i, j), Q2

s(i, j), Q3
s(i, j), Q4

s(i, j), Q5
s(i, j)

}
. (8)

Hence |Bij | = 5K + 2. We also define C ⊆ R3 by

C
def= Br

{
Mi

m
e1 : i ∈ {1, . . . , n}

}
. (9)
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Figure 1 A schematic depiction of the embedding f : X → Pp(R3) for a four-point metric space
(X, dX) = ({x1, x2, x3, x4}, dX). Here the x-axis is the horizontal direction, the z-axis is the vertical
direction and the y-axis is perpendicular to the page plane. Recall that m and M are defined in (1).

Note that by (2) we have (Mi/m)e1 = Q1
0(i, j) if i, j ∈ {1, . . . , n} satisfy i < j, and by (6) we

have (Mi/m)e1 = Q5
K(`, i) if `, i ∈ {1, . . . , n} satisfy ` < i. Thus C corresponds to removing

from B those points that lie on the x-axis. In what follows, we denote N = |C|+ 1. Finally,
for every i ∈ {1, . . . , n} we define Ci ⊆ R3 by

Ci
def= C ∪

{
Mi

m
e1

}
. (10)

Hence |Ci| = N . Our embedding f : X → Pp(R3) will be given by

∀ j ∈ {1, . . . , n}, f(xj)
def= 1

N

∑
u∈Cj

δu, (11)

where, as usual, δu is the point mass at u. Thus f(xj) is the uniform probability measure
over Cj . A schematic depiction of the above construction appears in Figure 1 below.

Lemma 7 below estimates the distortion of f , proving Theorem 5.

I Lemma 7. Fix ε ∈ (0, 1) and p ∈ (1,∞). Let f : X → Pp(R3) be the mapping appearing
in (11), considered as a mapping from the snowflaked metric space (X, d1/p

X ) to the metric
space (Pp(R3),Wp). Then, recalling the definitions of m and M in (1), we have

K >

(
5Mpn2p

pmpε

) 1
p−1

=⇒ dist(f) 6 1 + ε. (12)

Proof. We shall show that under the assumption on K that appears in (12) we have

∀ i, j ∈ {1, . . . , n},
(
dX(xi, xj)
mpN

) 1
p

6 Wp(f(xi), f(xj)) 6 (1+ε)
(
dX(xi, xj)
mpN

) 1
p

, (13)

where we recall that we defined N to be equal to |C| + 1 for C given in (9). Clearly (13)
implies that dist(f) 6 1 + ε, as required.

To prove the right hand inequality in (13), suppose that i, j ∈ {1, . . . , n} satisfy i < j

and consider the coupling π ∈ Π(f(xi), f(xj)) given by

π
def= 1

N

( 5∑
t=1

K−1∑
s=0

δ(Qt
s(i,j),Qt

s+1(i,j)) + δ(Q2
K

(i,j),Q3
0(i,j)) +

∑
u∈CrBij

δ(u,u)

)
, (14)

ICALP 2016
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where for (14) recall (8) and (9). The meaning of (14) is simple: the supports of f(xi) and
f(xj) equal Ci and Cj , respectively, where we recall (10). Note that CirCj = {Q1

0(i, j)} and
Cj r Ci = {Q5

K(i, j)}, where we recall (2) and (6). So, the coupling π in (14) corresponds to
shifting the points in Bij from the support of f(xi) to the support of f(xj) while keeping
the points in CrBij unchanged.

Now, recalling the definitions (2), (3), (4), (5) and (6),

Wp(f(xi), f(xj))p 6
∫∫

R3×R3
‖x− y‖p2dπ(x, y)

= 1
N

5∑
t=1

K−1∑
s=0

∥∥Qts(i, j)−Qts+1(i, j)
∥∥p

2 + ‖Q
2
K(i, j)−Q3

0(i, j)‖p2
N

. (15)

Note that if s ∈ {0, . . . ,K − 1} then by (2), (3), (5), (6) we have

t ∈ {1, 5} =⇒
∥∥Qts(i, j)−Qts+1(i, j)

∥∥
2 = Mφ(i, j)

mK
6
Mn2

mK
,

t ∈ {2, 4} =⇒
∥∥Qts(i, j)−Qts+1(i, j)

∥∥
2 = M

mK
. (16)

Also, by (3) and (4) we have

∥∥Q2
K(i, j)−Q3

0(i, j)
∥∥

2 = dX(xi, xj)
1
p

m
. (17)

Finally, by (4) for every s ∈ {0, . . . ,K − 1} we have

∥∥Q3
s(i, j)−Q3

s+1(i, j)
∥∥

2 = M(j − i)
mK

− dX(xi, xj)
1
p

mK
6
Mn

mK
, (18)

where we used the fact that M(j − i)− dX(xi, xj)1/p > 0, which holds true by the definition
of M in (1) because j − i > 1. A substitution of (16), (17) and (18) into (15) yields the
estimate

Wp(f(xi), f(xj))p 6
dX(xi, xj)
mpN

+ 5K
N

(
Mn2

mK

)p
=
(

1 + 5Mpn2p

Kp−1dX(xi, xj)

)
dX(xi, xj)
mpN

6 (1 + pε)dX(xi, xj)
mpN

,

where we used the fact that by the definition of m in (1) we have mp 6 dX(xi, xj), and the
lower bound on K that is assumed in (12). This implies the right hand inequality in (13)
because 1 + pε 6 (1 + ε)p.

Passing now to the proof of the left hand inequality in (13), we need to prove that for
every i, j ∈ {1, . . . , n} with i < j we have

∀π ∈ Π(f(xi), f(xj)),
∫∫

R3×R3
‖x− y‖p2dπ(x, y) > dX(xi, xj)

mpN
. (19)

Note that we still did not use the triangle inequality for dX , but this will be used in the proof
of (19). Also, the reason why we are dealing with Pp(R3) rather than Pp(R2) will become
clear in the ensuing argument.

Recall that the measures f(xi) and f(xj) are uniformly distributed over sets of the same
size, and their supports Ci and Cj (respectively) satisfy Ci4Cj = {(Mi/m)e1, (Mj/m)e1}.
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Since the set of all doubly stochastic matrices is the convex hull of the permutation matrices,
and every permutation is a product of disjoint cycles, it follows that it suffices to establish the
validity of (19) when π = 1

N

∑L
`=1 δ(u`−1,u`) for some L ∈ {1, . . . , n} and u1, . . . uL−1 ∈ C,

where we set u0 = (Mi/m)e1 and uL = (Mj/m)e1. With this notation, our goal is to show
that

1
N

L∑
`=1
‖u` − u`−1‖p2 >

dX(xi, xj)
mpN

. (20)

For every a ∈ {1, . . . , n} define Sa ⊆ R3 by Sa
def= S1

a ∪ S2
a, where

S1
a

def=
n⋃

b=a+1

K⋃
s=0

{
Q1
s(a, b), Q2

s(a, b)
}
, (21)

and

S2
a

def=
a−1⋃
c=1

K⋃
s=0

{
Q3
s(c, a), Q4

s(c, a), Q5
s(c, a)

}
. (22)

Thus, recalling (7), the sets S1, . . . , Sn form a partition of B and a ∈ Sa for every a ∈
{1, . . . , n}. For every ` ∈ {0, . . . , L} let a(`) be the unique element of {1, . . . , n} for which
u` ∈ Sa(`). Then a(0) = i and a(L) = j. The left hand side of (20) can be bounded from
below as follows

1
N

L∑
`=1
‖u` − u`−1‖p2 >

1
N

L∑
`=1

min
u∈Sa(`−1)
v∈Sa(`)

‖u− v‖p2. (23)

We shall show that

∀ a, b ∈ {1, . . . , n}, ∀(u, v) ∈ Sa × Sb, ‖u− v‖p2 >
dX(xa, xb)

mp
. (24)

The validity of (24) implies the required estimate (20) because, by (23), it follows from (24)
and the triangle inequality for dX that

1
N

L∑
`=1
‖u` − u`−1‖p2 >

1
N

L∑
`=1

dX
(
xa(`−1), xa(`)

)
mp

>
dX(xi, xj)
mpN

.

It remains to justify (24). Suppose that a, b ∈ {1, . . . , n} satisfy a < b and (u, v) ∈ Sa×Sb.
Write u = Qts(c, d) and v = Qτσ(γ, δ) for some s, σ ∈ {0, . . . ,K}, t, τ ∈ {1, . . . , 5} and
c, d,γ, δ ∈ {1, . . . , n}.

We shall check below, via a direct case analysis, that the absolute value of one of the
three coordinates of u− v is either at least M/m or at least dX(xa, xb)1/p/m. Since by the
definition of M in (1) we have M > dX(xa, xb)1/p, this assertion will imply (24).

Suppose first that t, τ ∈ {1, 2, 4, 5}. By comparing (21), (22) with (2), (3), (4), (5)
we see that 〈u, e1〉 = Ma/m and 〈v, e1〉 = Mb/m. Since b − a > 1, this implies that
〈u− v, e1〉 >M/m, as required.

If t = τ = 3 then by (22) we necessarily have d = a and δ = b. Hence (c, d) 6= (γ, δ) and
therefore |φ(c, d) − φ(γ, δ)| > 1, since φ is a bijection between {1, . . . , n} × {1, . . . , n} and
{1, . . . , n2}. By (4) we therefore have |〈u− v, e2〉| >M/m, as required.

ICALP 2016
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It remains to treat the case t 6= τ and 3 ∈ {t, τ}. If {t, τ} ⊆ {1, 3, 5} then by contrasting (4)
with (2) and (6) we see that the third coordinate of one of the vectors u, v vanishes while the
third coordinate of the other vector equals M/m. Therefore |〈u− v, e3〉| >M/m, as required.
The only remaining case is {t, τ} ⊆ {2, 3, 4}. In this case |〈u−v, e2〉| = M |φ(c, d)−φ(γ, δ)|/m,
by (4), (3), (5). So, if (c, d) 6= (γ, δ) then |φ(c, d) − φ(γ, δ)| > 1, and we are done. We
may therefore assume that c = γ and d = δ. Observe that by (22) if {t, τ} = {3, 4} then
{d, δ} = {a, b}, which contradicts d = δ. So, we also necessarily have {t, τ} = {2, 3}, in which
case, since a < b, by (21) and (22) we see that c = γ = a and d = δ = b. By interchanging
the labels s and σ if necessary, we may assume that u = Q2

σ(a, b) and v = Q3
s(a, b). By (3)

and (4) we therefore have

〈v − u, e1〉 = M(s(b− a) +Ka)
mK

+ (K − s)dX(xa, xb)
1
p

mK
− Ma

m

= dX(xa, xb)
1
p

m
+ sM(b− a)− sdX(xa, xb)

1
p

mK
>
dX(xa, xb)

1
p

m
,

where we used the fact that by (1) we have M > dX(xa, xb)1/p, and that b − a > 1. This
concludes the verification of the remaining case of (24), and hence the proof of Lemma 7 is
complete. J

2.1 Implications: Theorems 2 and 4
Theorem 2 follows from the fact that the shortest path metric on an expander graph on N
nodes has Ω(logN) distortion lower bound for embedding it into L1 [29]. Note that in the

proof above we obtain measures supported on n points where n 6 NO(1) ·
(

5MpN2p

pmp

) 1
p−1 for

a 1 + ε = 2 approximation. Hence, any embedding of Wp on R3 pointsets of size n into L1
has a distortion lower bound of Ω((logN)1/p) = Ω(((p− 1) logn)1/p).

Similarly, Theorem 4 follows by considering X to be the N -point subset of
(P1({0, 1}O(logN)),W1) introduced in [26, Section 3]. Any sketching algorithm for this metric
X requires Ω( logN

s ) approximation for sketching complexity s [5, Theorem 4.1]. Since we can

embed X into the square of W2 with constant distortion, we obtain a Ω
((

(p−1) logn
s

)1/p
)

approximation lower bound for any Wp sketch with sketching complexity s.

3 Future Directions

As discussed in the Introduction, it seems plausible that Theorem 5 and Theorem 6 are not
sharp when p ∈ (2,∞). Specifically, we conjecture that there exist Dp ∈ [1,∞) such that for
every finite metric space (X, dX) we have

cPp(R3)

(
X,
√
dX

)
6 Dp. (25)

Perhaps (25) even holds true with Dp = 1. Since L2 admits an isometric embedding into Lp
(see e.g. [59]), the perceived analogy between Wasserstein p spaces and Lp spaces makes it
natural to ask whether or not (P2(R3),W2) admits a bi-Lipschitz embedding into (Pp(R3),Wp).
If the answer to this question were positive then (25) would hold true by virtue of the case
p = 2 of Theorem 5. We also conjecture that the lower bound of Theorem 6 could be
improved when p > 2 to state that for arbitrarily large n ∈ N there exists an n-point metric
space (Y, dY ) such that for every α ∈ (1/2, 1],

c(Pp(R3),Wp)(Y, dαY ) &p (logn)α− 1
2 . (26)
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It was shown in [36] that Lp has Markov type 2 for every p ∈ (2,∞). We therefore ask
whether or not (Pp(R3),Wp) has Markov type 2 for every p ∈ (2,∞). A positive answer to
this question would imply that the lower bound (26) is indeed achievable. For this purpose
it would also suffice to show that for every p ∈ (2,∞) and k ∈ N we have

Mp((Pp(R3),Wp); 2k) .p 2k(
1
2−

1
p ). (27)

Proving (27) may be easier than proving thatM2(Pp(R3),Wp) <∞, since the former involves
arguing about the pth powers of Wasserstein p distances while the latter involves arguing
about Wasserstein p distances squared. Note that Mp(Lp;m) .

√
pm1/2−1/p by [36] (see

also [35, Theorem 4.3]), so the Lp-version of (27) is indeed valid.
Another natural direction to pursue concerns with the distortion of embedding finite

metric spaces into Wasserstein spaces.

I Question 1. Is it true that for p ∈ (1, 2] and n ∈ N every n-point metric space (X, dX)
satisfies

cPp(R3)(X) .p (logn)1− 1
p ?

A positive answer to Question (1) would resolve the metric cotype dichotomy problem [31]
(see the full version for more details). We believe that Question 1 is an especially intriguing
challenge in embedding theory (for a concrete and natural target space) because a positive
answer would require an interesting new construction, and a negative answer would require
devising a new bi-Lipschitz invariant that would serve as an obstruction for embeddings into
Wasserstein spaces.

Focusing for concreteness on the case p = 2, Question 1 asks whether cP2(R3)(X) .
√

logn
for every n-point metric space (X, dX). Note that Theorem 5 implies that (X, dX) embeds
into P2(X) with distortion at most the square root of the aspect ratio of (X, dX), i.e.,

c(P2(R3),W2)(X, dX) 6
√√√√ diam(X, dX)

minx,y∈X
x 6=y

dX(x, y) , (28)

but we are asking here for the largest possible growth rate of the distortion of X into P2(X)
in terms of the cardinality of X. While for certain embedding results there are standard
methods (see e.g. [10, 23, 32]) for replacing the dependence on the aspect ratio of a finite
metric space by a dependence on its cardinality, these methods do not seem to apply to our
embedding in (28). See the full version for further discussion.
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Abstract
We prove an Ω(d/ log sw

nd ) lower bound for the average-case cell-probe complexity of deterministic
or Las Vegas randomized algorithms solving approximate near-neighbor (ANN) problem in d-
dimensional Hamming space in the cell-probe model with w-bit cells, using a table of size s. This
lower bound matches the highest known worst-case cell-probe lower bounds for any static data
structure problems.

This average-case cell-probe lower bound is proved in a general framework which relates the
cell-probe complexity of ANN to isoperimetric inequalities in the underlying metric space. A
tighter connection between ANN lower bounds and isoperimetric inequalities is established by a
stronger richness lemma proved by cell-sampling techniques.
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1 Introduction

The nearest neighbor search (NNS) problem is a fundamental problem in Computer Science.
In this problem, a database y = (y1, y2, . . . , yn) of n points from a metric space (X,dist) is
preprocessed to a data structure, and at the query time given a query point x from the same
metric space, we are asked to find the point yi in the database which is closest to x according
to the metric.

In this paper, we consider a decision and approximate version of NNS, the approximate
near-neighbor (ANN) problem, where the algorithm is asked to distinguish between the two
cases: (1) there is a point in the databases that is λ-close to the query point for some radius
λ, or (2) all points in the database are γλ-far away from the query point, where γ ≥ 1 is the
approximation ratio.

The complexity of nearest neighbor search has been extensively studied in the cell-probe
model, a classic model for data structures. In this model, the database is encoded to a table
consisting of memory cells. Upon each query, a cell-probing algorithm answers the query by
making adaptive cell-probes to the table. The complexity of the problem is measured by the
tradeoff between the time cost (in terms of number of cell-probes to answer a query) and the
space cost (in terms of sizes of the table and cells). There is a substantial body of work on the
cell-probe complexity of NNS for various metric space [6, 7, 5, 11, 8, 14, 3, 2, 16, 17, 12, 20].
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It is widely believed that NNS suffers from the “curse of dimensionality” [10]: The
problem may become intractable to solve when the dimension of the metric space becomes
very high. Consider the most important example, d-dimensional Hamming space {0, 1}d with
d ≥ C logn for a sufficiently large constant C. The conjecture is that NNS in this metric
remains hard to solve when either approximation or randomization is allowed individually.

In a series of pioneering works [6, 5, 11, 14, 3], by a rectangle-based technique of
asymmetric communication complexity known as the richness lemma [15], cell-probe lower
bounds in form of Ω(d/ log s), where s stands for the number of cells in the table, were
proved for deterministic approximate near-neighbor (due to Liu [14]) and randomized exact
near-neighbor (due to Barkol and Rabani [5]). Such lower bound is the highest possible
lower bound one can prove in the communication model. This fundamental barrier was
overcome by an elegant self-reduction technique introduced in the seminal work of Pǎtraşcu
and Thorup [18], in which the cell-probe lower bounds for deterministic ANN and randomized
exact near-neighbor were improved to Ω(d/ log sw

n ), where w represents the number of bits
in a cell. More recently, in a previous work of us [20], by applying the technique of Pǎtraşcu
and Thorup to the certificates in data structures, the lower bound for deterministic ANN
was further improved to Ω(d/ log sw

nd ). This last lower bound behaves differently for the
polynomial space where sw = poly(n), near-linear space where sw = n · polylog(n), and
linear space where sw = O(nd). In particular, the bound becomes Ω(d) when the space cost
is strictly linear in the entropy of the database, i.e. when sw = O(nd).

When both randomization and approximation are allowed, the complexity of NNS is
substantially reduced. With polynomial-size tables, a Θ(log log d/ log log log d) tight bound
was proved for randomized approximate NNS in d-dimensional Hamming space [7, 8]. If
we only consider the decision version, the randomized ANN can be solved with O(1) cell-
probes on a table of polynomial size [8]. For tables of near-linear size, a technique called
cell-sampling was introduced by Panigrahy et al. [16, 17] to prove Ω(logn/ log sw

n ) lower
bounds for randomized ANN. This was later extended to general asymmetric metrics [1].

Among these lower bounds, the randomized ANN lower bounds of Panigrahy et al. [16, 17]
were proved explicitly for average-case cell-probe complexity. The significance of average-case
complexity for NNS was discussed in their papers. A recent breakthrough in upper bounds [4]
also attributes to solving the problem on a random database. Retrospectively, the randomized
exact near-neighbor lower bounds due to the density version of richness lemma [6, 5, 11]
also hold for random inputs. All these average-case lower bounds hold for Monte Carlo
randomized algorithms with fixed worst-case cell-probe complexity. This leaves open an
important case: the average-case cell-probe complexity for the deterministic or Las Vegas
randomized algorithms for ANN, where the number of cell-probes may vary for different
inputs.

1.1 Our contributions
We study the average-case cell-probe complexity of deterministic or Las Vegas randomized
algorithms for the approximate near-neighbor (ANN) problem, where the number of cell-
probes to answer a query may vary for different query-database pairs and the average is
taken with respect to the distribution over input queries and databases.

For ANN in Hamming space {0, 1}n, the hard distribution over inputs is very natural:
Every point yi in the database y = (y1, y2, . . . , yn) is sampled uniformly and independently
from the Hamming space {0, 1}d, and the query point x is also a point sampled uniformly
and independently from {0, 1}d. According to earlier average-case lower bounds [16, 17] and
the recent data-dependent LSH algorthm [4], this input distribution seems to capture the
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hardest case for nearest neighbor search and is also a central obstacle to overcome for efficient
algorithms.

By a simple proof, we show the following lower bound for the average-case cell-probe
complexity of ANN in Hamming space with this very natural input distribution.

I Theorem 1. For d ≥ 32 logn and d < no(1), any deterministic or Las Vegas randomized
algorithm solving (γ, λ)-approximate near-neighbor problem in d-dimensional Hamming space
in the cell-probe model with w-bit cells for w < no(1), using a table of size s < 2d, must have

expected cell-probe complexity t = Ω
(

d

γ2 log swγ2
nd

)
, where the expectation is taken over both

the uniform and independent input database and query and the random bits of the algorithm.

This lower bound matches the highest known worst-case cell-probe lower bounds for any static
data structure problems. Such lower bound was only known for polynomial evaluation [19, 13]
and also worst-case deterministic ANN due to our previous work [20].

We also prove an average-case cell-probe lower bound for ANN under `∞-distance. The
lower bound matches the highest known worst-case lower bound for the problem [2].

In fact, we prove these lower bounds in a unified framework that relates the average-case
cell-probe complexity of ANN to isoperimetric inequalities regarding an expansion property
of the metric space.

Inspired by the notions of metric expansion defined in [17], we define the following notion
of expansion for metric space. Let (X,dist) be a metric space. The λ-neighborhood of a point
x ∈ X, denoted as Nλ(x) is the set of all points in X within distance λ from x. Consider
a distribution µ over X. We say the λ-neighborhoods are weakly independent under
distribution µ, if for any point x ∈ X, the measure of the λ-neighborhood µ(Nλ(x)) < β

n for
a constant β < 1. We say the λ-neighborhoods are (Φ,Ψ)-expanding under distribution
µ, if for any point set A ⊆ X with µ(A) ≥ 1

Φ , we have µ(Nλ(A)) ≥ 1 − 1
Ψ , where Nλ(A)

denotes the set of all points within distance λ from some point in A.
Consider the database y = (y1, y2, . . . , yn) ∈ Xn with every point yi sampled independ-

ently from µ, and the query x ∈ X sampled independently from µ. We denote this input
distribution as µ× µn. We prove the following lower bound.

I Theorem 2. For a metric space (X,dist), assume the followings:
the γλ-neighborhoods are weakly independent under distribution µ;
the λ-neighborhoods are (Φ,Ψ)-expanding under distribution µ.

Then any deterministic or Las Vegas randomized algorithm solving (γ, λ)-approximate near-
neighbor problem in (X,dist) in the cell-probe model with w-bit cells, using a table of size s,
must have expected cell-probe complexity

t = Ω
(

log Φ
log sw

n log Ψ

)
or t = Ω

(
n log Ψ
w + log s

)
under input distribution µ× µn.

The key step to prove such a theorem is a stronger version of the richness lemma that
we prove in Section 3. The proof of this stronger richness lemma uses an idea called “cell-
sampling” introduced by Panigrahy et al. [17] and later refined by Larsen [13]. This new
richness lemma as well as this connection between the rectangle-based techniques (such as
the richness lemma) and information-theory-based techniques (such as cell-sampling) are of
interests by themselves.

ICALP 2016
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2 Preliminary

Let (X,dist) be a metric space. Let γ ≥ 1 and λ ≥ 0. The (γ, λ)-approximate near-
neighbor problem (γ, λ)-ANNnX is defined as follows: A database y = (y1, y2, . . . , yn) ∈ Xn

of n points from X is preprocessed and stored as a data structure. Upon each query x ∈ X,
by accessing the data structure we want to distinguish between the following two cases:
(1) there is a point yi in the database such that dist(x, z) ≤ λ; (2) for all points yi in the
database we have dist(x, z) > γλ. For all other cases the answer can be arbitrary.

More abstractly, given a universe X of queries and a universe Y of all databases, a data
structure problem is a function f : X × Y → Z that maps every pair of query x ∈ X
and database y ∈ Y to an answer f(x, y) ∈ Z. In our example of (γ, λ)-ANNnX , the query
universe is the metric space X, the database universe is the set Y = Xn of all tuples of n
points from X, and f maps each query x ∈ X and database y ∈ Y to an Boolean answer:
f(x, y) = 0 if there is a λ-near neighbor of x in the database y; f(x, y) = 1 if no points in
the database y is a γλ-near neighbor of x; and f(x, y) can be arbitrary if otherwise. Note
that due to a technical reason, we usually use 1 to indicate the “no near-neighbor” case.

Given a data structure problem f : X × Y → Z, a code T : Y → Σs with alphabet
Σ = {0, 1}w encodes every database y ∈ Y to a table Ty of s cells with each cell storing
a word of w bits. We use [s] = {1, 2, . . . , s} to denote the set of indices of cells. For each
i ∈ [s], we use Ty[i] to denote the content of the i-th cell of table Ty; and for S ⊆ [s], we
write Ty[S] = (Ty[i])i∈S for the tuple of the contents of the cells in S. Upon each query
x ∈ X, a cell-probing algorithm adaptive retrieves the contents of the cells in the table Ty
(which is called cell-probes) and outputs the answer f(x, y) at last. Being adaptive means
that the cell-probing algorithm is actually a decision tree: In each round of cell-probing the
address of the cell to probe next is determined by the query x as well as the contents of
the cells probed in previous rounds. Together, this pair of code and decision tree is called a
cell-probing scheme.

For randomized cell-probing schemes, the cell-probing algorithm takes a sequence of
random bits as its internal random coin. In this paper we consider only deterministic or Las
Vegas randomized cell-probing algorithms, therefore the algorithm is guaranteed to output a
correct answer when it terminates.

When a cell-probing scheme is fixed, the size s of the table as well as the length w of each
cell are fixed. These two parameters together give the space complexity. And the number
of cell-probes may vary for each pair of inputs (x, y) or may be a random variable if the
algorithm is randomized. Given a distribution D over X × Y , the average-case cell-probe
complexity for the cell-probing scheme is given by the expected number of cell-probes to
answer f(x,y) for a (x,y) sampled from D, where the expectation is taken over both the
input distribution D and the internal random bits of the cell-probing algorithm.

3 A richness lemma for average-case cell-probe complexity

The richness lemma (or the rectangle method) introduced in [15] is a classic tool for proving
cell-probe lower bounds. A data structure problem f : X × Y → {0, 1} is a natural
communication problem, and a cell-probing scheme can be interpreted as a communication
protocol between the cell-probing algorithm and the table, with cell-probes as communications.

Given a distribution D over X × Y , a data structure problem f : X × Y → {0, 1} is
α-dense under distribution D if ED[f(x,y)] ≥ α. A combinatorial rectangle A × B for
A ⊆ X and B ⊆ Y is a monochromatic 1-rectangle in f if f(x, y) = 1 for all (x, y) ∈ A×B.
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The richness lemma states that if a problem f is dense enough (i.e. being rich in 1’s)
and is easy to solve by communication, then f contains large monochromatic 1-rectangles.
Specifically, if an α-dense problem f can be solved by Alice sending a bits and Bob sending b
bits in total, then f contains a monochromatic 1-rectangle of size α · 2−O(a) ×α · 2−O(a+b) in
the uniform measure. In the cell-probe model with w-bit cells, tables of size s and cell-probe
complexity t, it means the monochromatic 1-rectangle is of size α·2−O(t log s)×α·2−O(t log s+tw).
The cell-probe lower bounds can then be proved by refuting such large 1-rectangles for specific
data structure problems f .

We prove the following richness lemma for average-case cell-probe complexity.

I Lemma 3. Let µ, ν be distributions over X and Y respectively, and let f : X ×Y → {0, 1}
be α-dense under the product distribution µ× ν. If there is a deterministic or randomized
Las Vegas cell-probing scheme solving f on a table of s cells, each cell containing w bits,
with expected t cell-probes under input distribution µ× ν, then for any ∆ ∈

[
32t/α2, s

]
, there

is a monochromatic 1-rectangle A×B ⊆ X × Y in f such that µ(A) ≥ α ·
(∆
s

)O(t/α2) and
ν(B) ≥ α · 2−O(∆ ln s

∆ +∆w).

Compared to the classic richness lemma, this new lemma has the following advantages:
It holds for average-case cell-probe complexity.
It gives stronger result even restricted to worst-case complexity. The newly introduced
parameter ∆ should not be confused as an overhead caused by the average-case complexity
argument, rather, it strengthens the result even for the worst-case lower bounds. When
∆ = t it gives the bound in the classic richness lemma.
The lemma claims the existence of a family of rectangles parameterized by ∆, therefore
to prove a cell-probe lower bound it is enough to refute any one rectangle from this family.
As we will see, this gives us a power to prove the highest lower bounds (even for the worst
case) known to any static data structure problems.

The proof of this lemma uses an argument called “cell-sampling” introduced by Pan-
igrahy et al. [16, 17] for approximate nearest neighbor search and later refined by Larsen [13]
for polynomial evaluation. Our proof is greatly influenced by Larsen’s approach.

The rest of this section is dedicated to the proof of this lemma.

3.1 Proof of the average-case richness lemma (Lemma 3)
By fixing random bits, it is sufficient to consider only deterministic cell-probing algorithms.

The high level idea of the proof is simple. Fix a table Ty. A procedure called the
“cell-sampling procedure” chooses the subset Γ of ∆ many cells that resolve the maximum
amount of positive queries. This associates each database y to a string ω = (Γ, Ty[Γ]),
which we call a certificate, where Ty[Γ] = (Ty[i])i∈Γ represent the contents of the cells in
Γ. Due to the nature of the cell-probing algorithm, once the certificate is fixed, the set of
queries it can resolve is fixed. We also observe that if the density of 1’s in the problem
f is Ω(1), then there is a Ω(1)-fraction of good databases y such that amount of positive
queries resolved by the certificate ω constructed by the cell-sampling procedure is at least an
(∆
s )O(t)-fraction of all queries. On the other hand, since ω ∈

([s]
∆
)
×{0, 1}∆w there are at most(

s
∆
)
2∆w = 2O(∆ ln s

∆ +∆w) many certificates ω. Therefore, at least 2−O(∆ ln s
∆ +∆w)-fraction of

good databases (which is at least 2−O(∆ ln s
∆ +∆w)-fraction of all databases) are associated

with the same ω. Pick this popular certificate ω, the positive queries that ω resolves together
with the good databases that ω is associated with form the large monochromatic 1-rectangle.

ICALP 2016
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Now we proceed to the formal parts of the proof. Given a database y ∈ Y , let X+
y =

{x ∈ X | f(x, y) = 1} denote the set of positive queries on y. We use µ+
y = µX+

y
to denote

the distribution induced by µ on X+
y .

Let Pxy ⊆ [s] denote the set of cells probed by the algorithm to resolve query x on
database y. Fix a database y ∈ Y . Let Γ ⊆ [s] be a subset of cells. We say a query x ∈ X is
resolved by Γ if x can be resolved by probing only cells in Γ on the table storing database y,
i.e. if Pxy ⊆ Γ. We denote by

X+
y (Γ) = {x ∈ X+

y | Pxy ⊆ Γ}

the set of positive queries resolved by Γ on database y. Assume two databases y and y′ are
indistinguishable over Γ: meaning that for the tables Ty and Ty′ storing y and y′ respectively,
the cell contents Ty[i] = Ty′ [i] for all i ∈ Γ. Then due to the determinism of the cell-probing
algorithm, we have X+

y (Γ) = X+
y′(Γ), i.e. Γ resolve the same set of positive queries on both

databases.

The cell-sampling procedure

Fix a database y ∈ Y and any ∆ ∈
[
32t/α2, s

]
. Suppose we have a cell-sampling procedure

which does the following: The procedure deterministically1 chooses a unique Γ ⊆ [s] such
that |Γ| = ∆ and the measure µ(X+

y (Γ)) of positive queries resolved by Γ is maximized (and
if there are more than one such Γ, the procedure chooses an arbitrary one of them). We
use Γ∗y to denote this set of cells chosen by the cell-sampling procedure. We also denote by
X∗y = X+

y (Γ∗y) the set of positive queries resolved by this chosen set of cells.
On each database y, the cell-sampling procedure chooses for us the most informative

set Γ of cells of size |Γ| = ∆ that resolve the maximum amount of positive queries. We
use ωy = (Γ∗y, Ty[Γ∗y]) to denote the contents (along with addresses) of the cells chosen by
the cell-sampling procedure for database y. We call such ωy a certificate chosen by the
cell-sampling procedure for y.

Let y and y′ be two databases. A simple observation is that if two databases y and y′
have the same certificate ωy = ωy′ chosen by the cell-sampling procedure, then the respective
sets X∗y , X∗y′ of positive queries resolved on the certificate are going to be the same as well.

I Proposition 4. For any databases y, y′ ∈ Y , if ωy = ωy′ then X∗y = X∗y′ .

Let τ(x, y) = |P (x, y)| denote the number of cell-probes to resolve query x on database y.
By the assumption of the lemma, Eµ×ν [τ(x,y)] ≤ t for the inputs (x,y) sampled from the
product distribution µ× ν. We claim that there are many “good” columns (databases) with
high density of 1’s and low average cell-probe costs.

I Claim 5. There is a collection Ygood ⊆ Y of substantial amount of good databases, such
that ν(Ygood) ≥ α

4 and for every y ∈ Ygood, the followings are true:
the amount of positive queries is large: µ(X+

y ) ≥ α
2 ;

the average cell-probe complexity among positive queries is bounded:

Ex∼µ+
y

[τ(x, y)] ≤ 8t
α2 .

1 Being deterministic here means that the chosen set Γ∗
y is a function of y.



Y. Yin 84:7

Proof. The claim is proved by a series of averaging principles. First consider Ydense = {y ∈ Y |
µ(X+

y ) ≥ α
2 } the set of databases with at least α2 -density of positive queries. By the averaging

principle, we have ν(Ydense) ≥ α/2. Since E[τ(x,y)] ≥ ν(Ydense)E[τ(x,y) | y ∈ Ydense],
we have Eµ×νdense [τ(x,y)] ≤ 2t

α , where νdense = νYdense is the distribution induced by ν

on Ydense. We then construct Ygood ⊆ Ydense as the set of y ∈ Ydense with average cell-
probe complexity bounded as Ex∼µ[τ(x, y)] ≤ 4t

α . By Markov inequality νdense(Ygood) ≥ 1
2

and hence ν(Ygood) ≥ α
4 . Note that Ex∼µ[τ(x, y)] ≥ Ex∼µ+

y
[τ(x, y)]µ(X+

y ). We have
Ex∼µ+

y
[τ(x, y)] ≤ Ex∼µ[τ(x, y)]/µ(X+

y ) ≤ 8t
α2 for all y ∈ Ygood. J

For the rest, we consider only these good databases. Fix any ∆ ∈
[
32t/α2, s

]
. We claim

that for every good database y ∈ Ygood, the cell-sampling procedure always picks a subset
Γ∗y ⊆ [s] of ∆ many cells, which can resolve a substantial amount of positive queries:

I Claim 6. For every y ∈ Ygood, it holds that µ(X∗y ) ≥ α
4
(∆

2s
)8t/α2

.

Proof. Fix any good database y ∈ Ygood. We only need to prove there exists a Γ ⊆ [s]
with |Γ| = ∆ that resolve positive queries µ(X+

y (Γ)) ≥ α
4
(∆

2s
)8t/α2

. The claims follows
immediately.

We construct a hypergraph H ⊆ 2[s] with vertex set [s] as H = {Pxy | x ∈ X+
y }, so that

each positive queries x ∈ X+
y on database y is associated (many-to-one) to a hyperedge

e ∈ H such that e = Pxy is precisely the set of cells probed by the cell-probing algorithm to
resolve query x on database y.

We also define a measure µ̃ over hyperedges e ∈ H as the total measure (in µ+
y ) of the

positive queries x associated to e. Formally, for every e ∈ H,

µ̃(e) =
∑

x∈X+
y :Pxy=e

µ+
y (x).

Since
∑
e∈H µ̃(e) =

∑
x∈X+

y
µ+
y (x) = 1, this µ̃ is a well-defined probability distribution over

hyperedges in H. Moreover, recalling that τ(x, y) = |Pxy|, the the average size of hyperedges

Ee∼µ̃[|e|] = Ex∼µ+
y

[τ(x, y)] ≤ 8t
α2 .

By the probabilistic method (whose proof is in the full paper [21]), there must exist a Γ ⊆ [s]
of size |Γ| = ∆, such that the sub-hypergraph HΓ induced by Γ has

µ̃(HΓ) ≥ 1
2

(
∆
2s

)8t/α2

.

By our construction of H, the positive queries associated (many-to-one) to the hyperedges in
the induced sub-hypergraph HΓ = {Pxy | x ∈ X+

y ∧ Pxy ⊆ Γ} are precisely those positive
queries in X+

y (Γ) = {x ∈ X+
y | Pxy ⊆ Γ}. Therefore,

µ+
y (X+

y (Γ)) =
∑

x∈X+
y ,Pxy⊆Γ

µ+
y (x) = µ̃(HΓ) ≥ 1

2

(
∆
2s

)8t/α2

.

Recall that µ(X+
y ) ≥ α

2 for every y ∈ Ygood. And since X+
y (Γ) ⊆ X+

y , we have

µ(X+
y (Γ)) = µ+

y (X+
y (Γ))µ(X+

y ) ≥ α

4

(
∆
2s

)8t/α2

.

The claim is proved. J
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Recall that the certificate ωy = (Γ∗y, Ty[Γ∗y]) is constructed by the cell-sampling procedure
for database y. For every possible assignment ω ∈

([s]
∆
)
×{0, 1}∆w of certificate, let Yω denote

the set of good databases y ∈ Ygood with this certificate ωy = ω. Due to the determinism of
the cell-sampling procedure, this classifies the Ygood into at most

(
s
∆
)
2∆w many disjointed

subclasses Yω. Recall that ν(Ygood) ≥ α
4 . By the averaging principle, the following proposition

is natural.

I Proposition 7. There exists a certificate ω ∈
([s]

∆
)
× {0, 1}∆w, denoted as ω∗, such that

ν(Yω∗) ≥
α

4
(
s
∆
)
2∆w .

On the other hand, fixed any ω, since all databases y ∈ Yω have the same ω∗y , by
Proposition 4 they must have the same X∗y . We can abuse the notation and write Xω = X∗y
for all y ∈ Yω.

Now we let A = Xω∗ and B = Yω∗ , where ω∗ satisfies Proposition 7. Due to Claim 6 and
Proposition 7, we have

µ(A) ≥ α

4

(
∆
2s

)8t/α2

= α ·
(

∆
s

)O(t/α2)
and ν(B) ≥ α

4
(
s
∆
)
2∆w = α ·2−O(∆ ln s

∆ +∆w).

Note for every y ∈ B = Yω∗ , the A = Xω∗ = X+
y (Γ∗y) is a set of positive queries on database

y, thus A×B is a monochromatic 1-rectangle in f . This finishes the proof of Lemma 3.

4 Rectangles in conjunction problems

Many natural data structure problems can be expressed as a conjunction of point-wise
relations between the query point and database points. Consider data structure problem
f : X × Y → {0, 1}. Let Y = Yn, so that each database y ∈ Y is a tuple y = (y1, y2, . . . , yn)
of n points from Y . A point-wise function g : X×Y → {0, 1} is given. The data structure
problem f is defined as the conjunction of these subproblems:

∀x ∈ X,∀y = (y1, y2, . . . , yn) ∈ Y, f(x, y) =
n∧
i=1

g(x, yi) .

Many natural data structure problems can be defined in this way, for example:
Membership query: X = Y is a finite domain. The point-wise function g(·, ·) is 6= that
indicates whether the two points are unequal.
(γ, λ)-approximate near-neighbor (γ, λ)-ANNnX : X = Y is a metric space with distance
dist(·, ·). The point-wise function g is defined as: for x, z ∈ X, g(x, z) = 1 if dist(x, z) >
γλ, or g(x, z) = 0 if dist(x, z) ≤ λ. The function value can arbitrary for all other cases.
Partial match PMd,n

Σ : Σ is an alphabet, Y = Σd and X = (Σ ∪ {?})d. The point-wise
function g is defined as: for x ∈ X and z ∈ Y, g(x, z) = 1 if there is an i ∈ [d] such that
xi 6∈ {?, zi}, or g(x, z) = 0 if otherwise.

We show that refuting the large rectangles in the point-wise function g can give us lower
bounds for the conjunction problem f .

Let µ, ν be distributions over X and Y respectively, and let νn be the product distribution
on Y = Yn. Let g : X × Y → {0, 1} be a point-wise function and f : X × Y → {0, 1} a data
structure problem defined by the conjunction of g as above.
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I Lemma 8. For f, g, µ, ν defined as above, assume that there is a deterministic or randomized
Las Vegas cell-probing scheme solving f on a table of s cells, each cell containing w bits,
with expected t cell-probes under input distribution µ× νn. If the followings are true:

the density of 0’s in g is at most β
n under distribution µ× ν for some constant β < 1;

g does not contain monochromatic 1-rectangle of measure at least 1
Φ×

1
Ψ under distribution

µ× ν;
then(

sw

n log Ψ

)O(t)
≥ Φ or t = Ω

(
n log Ψ
w + log s

)
.

Proof. By union bound, the density of 0’s in f under distribution µ× νn is:

Pr
x∼µ

y=(y1,...,yn)∼νn

[
n∧
i=1

g(x, yi) = 0
]
≤ n · Pr

x∼µ
z∼ν

[g(x, z) = 0] ≤ n · β
n

= β.

By Lemma 3, the Ω(1)-density of 1’s in f and the assumption of existing a cell-probing
scheme with parameters s, w and t, altogether imply that for any 4t ≤ ∆ ≤ s, f has a
monochromatic 1-rectangle A×B such that

µ(A) ≥
(

∆
s

)c1t
and νn(B) ≥ 2−c2∆(ln s

∆ +w), (1)

for some constants c1, c2 > 0 depending only on β.
Let C ⊂ Y be the largest set of columns in g to form a 1-rectangle with A. Formally,

C = {z ∈ Y | ∀x ∈ A, g(x, z) = 1}.

Clearly, for any monochromatic 1-rectangle A×D in g, we must have D ⊆ C. By definition
of f as a conjunction of g, it must hold that for all y = (y1, y2, . . . , yn) ∈ B, none of yi ∈ y
has g(x, yi) = 0 for any x ∈ A, which means B ⊆ Cn, and hence

νn(B) ≤ νn(Cn) = ν(C)n.

Recall that A× C is monochromatic 1-rectangle in g. Due to the assumption of the lemma,
either µ(A) < 1

Φ or ν(C) < 1
Ψ . Therefore, either µ(A) < 1

Φ or νn(B) < 1
Ψn .

We can always choose a ∆ such that ∆ = O
(
n log Ψ
w

)
and ∆ = Ω

(
n log Ψ
w+log s

)
to satisfy

2−c2∆(ln s
∆ +w) >

1
Ψn

.

If such ∆ is less than 32t/(1− β)2, then we immediately have a lower bound

t = Ω
(
n log Ψ
w + log s

)
.

Otherwise, due to (1), A×B is monochromatic 1-rectangle in f with νn(B) > 1
Ψn , therefore

it must hold that µ(A) < 1
Φ , which by (1) gives us

1
Φ > µ(A) ≥

(
∆
s

)O(t)
=
(
n log Ψ
sw

)O(t)
,

which gives the lower bound(
sw

n log Ψ

)O(t)
≥ Φ. J
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5 Isoperimetry and ANN lower bounds

Given a metric space X with distance dist(·, ·) and λ ≥ 0, we say that two points x, x′ ∈ X
are λ-close if dist(x, x′) ≤ λ, and λ-far if otherwise. The λ-neighborhood of a point x ∈ X,
denoted by Nλ(x), is the set of all points from X which are λ-close to x. Given a point set
A ⊆ X, we define Nλ(A) =

⋃
x∈ANλ(x) to be the set of all points which are λ-close to some

point in A.
In [17], a natural notion of metric expansion was introduced.

I Definition 9 (metric expansion [17]). Let X be a metric space and µ a probability distri-
bution over X. Fix any radius λ > 0. Define

Φ(δ) , min
A⊂X,µ(A)≤δ

µ(Nλ(A))
µ(A) .

The expansion Φ of the λ-neighborhoods in X under distribution µ is defined as the largest
k such that for all δ ≤ 1

2k , Φ(δ) ≥ k.

We now introduce a more refined definition of metric expansion using two parameters Φ
and Ψ.

I Definition 10 ((Φ,Ψ)-expanding). Let X be a metric space and µ a probability distribution
over X. The λ-neighborhoods in X are (Φ,Ψ)-expanding under distributions µ if we have
µ(Nλ(A)) ≥ 1− 1/Ψ for any A ⊆ X that µ(A) ≥ 1/Φ.

The metric expansion defined in [17] is actually a special case of (Φ,Ψ)-expanding: The
expansion of λ-neighborhoods in a metric space X is Φ means the λ-neighborhoods are
(Φ, 2)-expanding. The notion of (Φ,Ψ)-expanding allows us to describe a more extremal
expanding situation in metric space: The expanding of λ-neighborhoods does not stop at
measure 1/2, rather, it can go all the way to be very close to measure 1. This generality may
support higher lower bounds for approximate near-neighbor.

Given a radius λ > 0 and an approximation ratio γ > 1, recall that the (γ, λ)-approximate
near neighbor problem (γ, λ)-ANNnX can be defined as a conjunction f(x, y) =

∧
i g(x, yi) of

point-wise function g : X ×X → {0, 1} where g(x, z) = 0 if x is λ-close to z; g(x, z) = 1 if
x is γλ-far from z; and g(x, z) is arbitrary for all other cases. Observe that g is actually
(γ, λ)-ANN1

X , the point-to-point version of the (γ, λ)-approximate near neighbor.
The following proposition gives an intrinsic connection between the expansion of metric

space and size of monochromatic rectangle in the point-wise near-neighbor relation.

I Proposition 11. If the λ-neighborhoods in X are (Φ,Ψ)-expanding under distribution µ,
then the function g defined as above does not contain a monochromatic 1-rectangle of measure
≥ 1

Φ ×
1.01
Ψ under distribution µ× µ.

Proof. Since the λ-neighborhoods in X are (Φ,Ψ)-expanding, for any A ⊆ X with µ(A) ≥ 1
Φ ,

we have µ(Nλ(A)) ≥ 1 − 1
Ψ . And by definition of g, for any monochromatic A × B, it

must hold that B ∩ Nλ(A) = ∅, i.e. B ⊆ X \ Nλ(A). Therefore, either µ(A) < 1
Φ , or

µ(B) = 1− µ(Nλ(A)) ≤ 1
Ψ < 1.01

Ψ . J

The above proposition together with Lemma 8 immediately gives us the following corollary
which reduces lower bounds for near-neighbor problems to the isoperimetric inequalities.

I Corollary 12. Let µ be a distribution over a metric space X. Let λ > 0 and γ ≥ 1.
Assume that there is a deterministic or randomized Las Vegas cell-probing scheme solving
(γ, λ)-ANNnX on a table of s cells, each cell containing w bits, with expected t cell-probes
under input distribution µ× µn. If the followings are true:



Y. Yin 84:11

Ex∼µ [µ(Nγλ(x))] ≤ β
n for a constant β < 1;

the λ-neighborhoods in X are (Φ,Ψ)-expanding under distribution µ;
then(

sw

n log Ψ

)O(t)
≥ Φ or t = Ω

(
n log Ψ
w + log s

)
.

I Remark. In [17], a lower bound for (γ, λ)-ANNnX was proved with the following form:(
swt

n

)t
≥ Φ.

In our Corollary 12, unless the cell-size w is unrealistically large to be comparable to n, the
corollary always gives the first lower bound(

sw

n log Ψ

)O(t)
≥ Φ.

This strictly improves the lower bound in [17]. For example, when the metric space is(
2Θ(d), 2Θ(d))-expanding, this would give us a lower bound t = Ω

(
d

log sw
nd

)
, which in particular,

when the space is linear (sw = O(nd)), becomes t = Ω(d).

5.1 Lower bound for ANN in Hamming space
Let X = {0, 1}d be the Hamming space with Hamming distance dist(·, ·). Recall that Nλ(x)
represents the λ-neighborhood around x, in this case, the Hamming ball of radius λ centered
at x; and for a set A ⊂ X, the Nλ(A) is the set of all points within distance λ to any point
in A. For any 0 ≤ r ≤ d B(r) = |Nr(0̄)| denote the volume of Hamming ball of radius r,
where 0̄ ∈ {0, 1}d is the zero vector. Obviously B(r) =

∑
k≤r

(
d
k

)
.

The following isoperimetric inequality of Harper is well known.

I Lemma 13 (Harper’s theorem [9]). Let X = {0, 1}d be the d-dimensional Hamming space.
For A ⊂ X, let r be such that |A| ≥ B(r). Then for every λ > 0, |Nλ(A)| ≥ B(r + λ).

In words, Hamming balls have the worst vertex expansion.
For 0 < r < d

2 , the following upper bound for the volume of Hamming ball is well known:

2(1−o(1))dH(r/d) ≤
(
d

r

)
≤ B(r) ≤ 2dH(r/d),

where H(x) = −x log2 x− (1− x) log2(1− x) is the Boolean entropy function.
Consider the Hamming (γ, λ)-approximate near-neighbor problem (γ, λ)-ANNnX . The

hard distribution for this problem is just the uniform and independent distribution: For the
database y = (y1, y2, . . . , yn) ∈ Xn, each database point yi is sampled uniformly and inde-
pendently from X = {0, 1}n; and the query point x is sampled uniformly and independently
from X.

I Theorem 14. Let d ≥ 32 logn. For any γ ≥ 1, there is a λ > 0 such that if (γ, λ)-ANNnX
can be solved by a deterministic or Las Vegas randomized cell-probing scheme on a table of
s cells, each cell containing w bits, with expected t cell-probes for uniform and independent

database and query, then t = Ω
(

d

γ2 log swγ2
nd

)
or t = Ω

(
nd

γ2(w+log s)

)
.
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Proof. Choose λ to satisfy γλ = d
2 −

√
2d ln(2n). Let µ be uniform distribution over X. We

are going to show:
Ex∼µ[µ(Nγλ(x))] ≤ 1

2n ;
the λ-neighborhoods inX are (Φ,Ψ)-expanding under distribution µ for some Φ = 2Ω(d/γ2)

and Ψ = 2Ω(d/γ2).
Then the cell-probe lower bounds follows directly from Corollary 12.

First, by the Chernoff bound, µ(Nγλ(x)) ≤ 1
2n for any point x ∈ X. Thus trivially

Ex∼µ[µ(Nγλ(x))] ≤ 1
2n .

On the other hand, for d ≥ 32 logn and n being sufficiently large, it holds that λ ≥ d
4γ .

Let r = d
2 −

d
8γ . And consider any A ⊆ X with µ(A) ≥ 2−(1−H(r/d))d. We have |A| ≥

2dH(r/d) ≥ B(r). Then by Harper’s theorem,

|Nλ(A)| ≥ B (r + λ) ≥ B
(
d
2 + d

8γ

)
≥ 2d −B

(
d
2 −

d
8γ

)
= 2d −B(r) ≥ 2d − 2dH(r/d),

which means µ(Nλ(A)) ≥ 1 − 2−(1−H(r/d))d. In other words, the λ-neighborhoods in X

are (Φ,Ψ)-expanding under distribution µ for Φ = Ψ = 2(1−H(r/d))d, where r/d = 1
2 −

1
8γ .

Apparently 1−H( 1
2 − x) = Θ(x2) for small enough x > 0. Hence, Φ = Ψ = 2Θ(d/γ2). J

5.2 Lower bound for ANN under L-infinity norm
Let Σ = {0, 1, . . . ,m} and the metric space is X = Σd with `∞ distance dist(x, y) = ‖x− y‖∞
for any x, y ∈ X.

Let µ be the distribution over X as defined in [2]: First define a distribution π over
Σ as p(i) = 2−(2ρ)i for all i > 0 and π(0) = 1 −

∑
i>0 π(i); and then µ is defined as

µ(x1, x2, . . . , xd) = π(x1)π(x2) . . . π(xd).
The following isoperimetric inequality is proved in [2].

I Lemma 15 (Lemma 9 of [2]). For any A ⊆ X, it holds that µ(N1(A)) ≥ (µ(A))1/ρ.
Consider the (γ, λ)-approximate near-neighbor problem (γ, λ)-ANNn`∞ defined in the

metric space X under `∞ distance. The hard distribution for this problem is µ× µn: For
the database y = (y1, y2, . . . , yn) ∈ Xn, each database point yi is sampled independently
according to µ; and the query point x is sampled independently from X according to µ. The
following lower bound has been proved in [2] and [12].

Fix any ε > 0 and 0 < δ < 1
2 . Assume Ω

(
log1+ε n

)
≤ d ≤ o(n). For 3 < c ≤ O(log log d),

define ρ = 1
2 ( ε4 log d)1/c > 10. Now we choose γ = logρ log d and λ = 1.

I Theorem 16. With d, γ, λ, ρ and the metric space X defined as above, if (γ, λ)-ANNn`∞
can be solved by a deterministic or Las Vegas randomized cell-probing scheme on a table
of s cells, each cell containing w ≤ n1−2δ bits, with expected t ≤ ρ cell-probes under input
distribution µ× µn, then sw = nΩ(ρ/t).
Proof. The followings are true

µ(Nγλ(x)) = e− log1+ε/3 n

n ≤ 1
2n for any x ∈ X (Claim 6 in [2]);

the λ-neighborhoods in X are (nδρ, nδ

nδ−1 )-expanding under distribution µ for Φ = nδρ

and Ψ = 2Ω(d/γ2).
To see the expansion is true, let Φ = nδρ and Ψ = nδ

nδ−1 . By Lemma 15, for any set A ⊂ X
with µ(A) ≥ Φ, we have µ(Nλ(A)) ≥ n−δ ≥ 1− 1

Ψ . This means λ-neighborhoods ofM are
(nδρ, nδ

nδ−1 )-expanding.
Due to Corollary 12, either

(
sw
n1−δ

)O(t) ≥ nδρ or = Ω
(

n1−δ

w+log s

)
. The second bound is

always higher with our ranges for w and t. The first bound gives sw = nΩ(ρ/t). J
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Abstract
We study generalizations of classical metric embedding results to the case of quasimetric spaces;
that is, spaces that do not necessarily satisfy symmetry. Quasimetric spaces arise naturally from
the shortest-path distances on directed graphs. Perhaps surprisingly, very little is known about
low-distortion embeddings for quasimetric spaces.

Random embeddings into ultrametric spaces are arguably one of the most successful geometric
tools in the context of algorithm design. We extend this to the quasimetric case as follows. We
show that any n-point quasimetric space supported on a graph of treewidth t admits a random
embedding into quasiultrametric spaces with distortion O(t log2 n), where quasiultrametrics are
a natural generalization of ultrametrics. This result allows us to obtain t logO(1) n-approximation
algorithms for the Directed Non-Bipartite Sparsest-Cut and the Directed Multicut problems on
n-vertex graphs of treewidth t, with running time polynomial in both n and t.

The above results are obtained by considering a generalization of random partitions to the
quasimetric case, which we refer to as random quasipartitions. Using this definition and a con-
struction of [Chuzhoy and Khanna 2009] we derive a polynomial lower bound on the distortion
of random embeddings of general quasimetric spaces into quasiultrametric spaces. Finally, we
establish a lower bound for embedding the shortest-path quasimetric of a graph G into graphs
that exclude G as a minor. This lower bound is used to show that several embedding results
from the metric case do not have natural analogues in the quasimetric setting.
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1 Introduction
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85:2 Quasimetric Embeddings and Their Applications

problems to the case of quasimetric spaces. Formally, a quasimetric space is a pair (X, d)
where X is the set of points and d : X×X → R+∪{+∞}, satisfying the following conditions:
(C1) For all x, y ∈ X, d(x, y) = 0 iff x = y.
(C2) For all x, y, z ∈ X, d(x, y) ≤ d(x, z) + d(z, y).

In other words, a quasimetric space satisfies all the conditions of a metric space, except
for the following symmetry condition:
(C3) For all x, y ∈ X, d(x, y) = d(y, x).

Finite quasimetric spaces are precisely the shortest-path distances of finite directed
graphs. Perhaps surprisingly, many basic questions regarding low-distortion embeddings
of quasimetric spaces are poorly understood. As we explain below, these problems are of
importance in algorithm design, and are intricately tied to the approximability of various cut
problems on directed edge-capacitated graphs.

1.1 Our contributions
We now outline our main results, and contrast with what was previously known for the case
of metric spaces. We consider quasimetric spaces that arise from the shortest-path distances
of directed graphs. For a family F of undirected graphs, we consider the directed graphs
arising from the graphs in F by replacing every undirected edge {u, v} by two edges (u, v)
and (v, u) with opposite directions, and by assigning arbitrary positive edge lengths to them.
When F is the family of all trees (resp. graphs of treewidth-t), we refer to the resulting
family of quasimetric spaces as tree quasimetric spaces (resp. treewidth-t quasimetric spaces).

Random embeddings

A very successful metric embedding tool in the context of algorithm design is random
embeddings. The high-level idea is that given some “complicated” space, we can find a
random embedding into some “simpler” space, preserving all distances in expectation.

Formally, let M = (X, d) be a quasimetric space. A random embedding of M is a
distribution F over pairs (f,M ′) where M ′ = (X ′, d′) is a quasimetric space and f : X → X ′,
such that for any x, y ∈ X

Pr[d′(f(x), f(y)) ≥ d(x, y)] = 1.

Let α ≥ 1. We say that the random embedding F has distortion α if for all x, y ∈ X

E [d′(f(x), f(y))] ≤ αd(x, y).

This definition is of algorithmic interest because for several optimization problems it
allows us to reduce instances on general graphs to instances on simpler graphs (see [4, 23]
for a more detailed exposition). It has been shown that any n-point metric space admits a
random embedding into ultrametric spaces with distortion O(logn) [10] (see also [4, 5, 1]).
Here, an ultrametric space is a metric space that satisfies the following stronger version of
the triangle inequality:
(C2*) For all x, y, z ∈ X, d(x, y) ≤ max{d(x, z), d(z, y)}.

It is easy to construct examples of quasimetric spaces that do not admit random em-
beddings into ultrametric spaces with bounded distortion. This motivates the study of
random embeddings of quasimetric spaces into quasiultrametric spaces; these are precisely
the quasimetric spaces that satisfy conditions (C1) & (C2*). We show that any n-point
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treewidth-t quasimetric space admits a random embedding into quasiultrametric spaces with
distortion O(t log2 n). In a similar fashion, we show that any treewidth-t quasiultrametric
admits an embedding into a convex combination of 0-1 quasimetric spaces with distortion
O(t log2 n); here, a 0-1 quasimetric space requires that all distances are either 0 or 1. As we
explain below, this result allows us to obtain new approximation algorithms for directed cut
problems on treewidth-t graphs.

Random quasipartitions

A fundamental primitive underlying many metric embedding results is random partitions [4].
This primitive has been successfully used in many diverse prolems [16, 18, 15, 19, 7, 20, 21]. It
is easy to construct examples of quasimetric spaces that do not admit good random partitions.
We overcome this technical obstacle by defining a quasipartition to be a transitive reflexive
relation. This is a generalization of a partition for the following reason: For a partition P
of some set X we can define the relation R on X where for all x, y ∈ X, we set (x, y) ∈ R
iff x and y are in the same cluster in P . It is easy to check that R is indeed transitive and
reflexive; however, there are transitive and reflexive relations that do not arise in this fashion.

Let r ≥ 0. We say that a quasipartition P of M is r-bounded if for any x, y ∈ X, if
(x, y) ∈ P , then d(x, y) ≤ r. Let D be a distribution over r-bounded quasipartitions of M .
We say that D is r-bounded. We also say that D is β-Lipschitz, for some β > 0, if for any
x, y ∈ X, we have that

Pr
P∼D

[(x, y) /∈ P ] ≤ β d(x, y)
r

.

Given a distribution D over quasipartitions we ocasionally refer to any quasipartition P

sampled from D as a random quasipartition (with distribution D).
We show that for all r > 0, any tree quasimetric space admits a O(1)-Lipschitz, r-bounded

random quasipartition. We remark that no such result is possible using random partitions.
We further show that for all r > 0, any treewidth-t quasimetric space admits a O(t logn)-
Lipschitz, r-bounded random quasipartition. This random quasipartition is at the heart of
the random embedding result outlined above.

Using a result of Chuzhoy and Khanna [9] we show that the polynomial dependence on
the treewidth is necessary. More precisely, there exist n-point quasimetric spaces that do
not admit o(n1/7/ log4/7 n)-Lipschitz quasipartitions. Using this lower bound we further
show that there exist n-point quasimetrics that do not admit random embeddings into
quasiultrametric spaces with distortion o(n1/7/ log4/7).

Applications to cut problems on directed graphs

Using the above result for embedding treewidth-t quasimetric spaces into a convex combination
of 0-1 quasimetric spaces, we show that the integrality gap of the Directed Non-Bipartite
Sparsest-Cut LP on graphs of treewidth t it O(t log2 n). This implies a O(t

√
log t log2 n)-

approximation algorithm for the Directed Sparsest-Cut problem with running time polynomial
in both n and t. We remark that dynamic-programming based techniques for graphs of
bounded treewidth can only yield algorithms with running time exponential in t, and are
thus practical only for very small values of t. Our result provides an interesting trade-
off between running time and approximation guarantee for graphs of moderately large
treewidth. For example, our result implies a polynomial time logO(1)-approximation for
Directed Non-Bipartite Sparsest-Cut on graphs of treewidth logO(1) n.

ICALP 2016
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Similarly, we obtain a O(t
√

log t log3 n)-approximation algorithm for the Directed Multicut
problem on graphs of treewidth t, with running time polynomial in both n and t.

Lower bound for random topological simplification

It has been show that for various classes of topologically restricted graphs, there exist
constant-distortion random embeddings into topologically simpler graphs. For example,
graphs of bounded genus admit constant-distortion random embeddings into planar graphs
[14, 6, 23], and similar results are known for more general classes of minor-free graphs [20].

We show that no such result is possible for the case of directed graphs. More precisely,
we show that for any directed acyclic graph G, there exists a subdivision G′ of G, such that
for any embedding of the shortest-path quasimetric of G′ into the shortest-path quasimetric
of some graph H with bounded distortion, we have that G is a minor of H. For example,
this implies that there is no bounded-distortion random embedding of toroidal (i.e. genus-1)
quasimetric spaces into planar quasimetric spaces.

2 Quasipartitions of tree quasimetrics

In this section we describe a method to construct an O(1)-Lipschitz distribution over r-
bounded quasipartitions of tree quasimetric spaces. More precisely, we prove the following
result.

I Theorem 1. Let M be a shortest path quasimetric space supported on some directed tree T
in which every edge has non-negative weights in both directions. For any r > 0, there exists
an O(1)-Lipschitz distribution over r-bounded quasipartitions of M .

First we describe an algorithm to construct a distribution over r-bounded quasipartitions
of M . We will then show that the distribution produced by the algorithm is O(1)-Lipschitz.

Algorithm 1 Random quasipartition of a tree quasimetric space
Input: A tree quasimetric space M = (V (T ), dM ) and r > 0.
Output: An r-bounded probabilistic quasipartition R.

Step 1. Set R = ∅. Add (u, v) to R for all (u, v) ∈ E(M).
Step 2. Pick a root vertex t in M arbitrarily.
Step 3. Pick z ∈ [0, r/2] uniformly at random.
Step 4. For all (u, v) ∈ E(M) remove (u, v) from R if at least one of the following holds:

(a) dM (u, t) > z + i r2 and dM (v, t) ≤ z + i r2 for any integer i > 0.
(b) dM (t, v) > z + i r2 and dM (t, u) ≤ z + i r2 for any integer i > 0.

Step 5. Enforce transitivity on R: For all u, v, w ∈ V (M), if (u, v) ∈ R and (v, w) ∈ R,
then add (u,w) to R.

We shall now prove some properties of the random quasipartition R in the following
Lemmas. We will use these to prove Theorem 1.

I Lemma 2. Let u, v ∈ V (T ). Let D be the path from u to v in T . Then either u is in the
path from t to v, or v is in the path from u to t, or there exists a vertex w on D such that w
lies on the path from u to t and w lies on the path from t to v.

Proof. Let w be the nearest common ancestor of u and v in T . If w = u, then u is in the
path from t to v; if w = v, then v is in the path from t to u; if w 6= u and w 6= v, then w is
in the path from t to u and in the path from t to v. J
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I Lemma 3. For any u, v ∈ V (T ) where u is in the path from t to v, let P = {a1 =
u, a2, . . . , am = v} be the path from u to v. If (ai, ai+1) ∈ R for all i ∈ {1, . . . ,m− 1} after
Step 4 then dM (u, v) ≤ r

2 .

Proof. Let j be the largest integer such that dM (t, a1) > z + j r2 . By the choice of j it must
be that z+ j r2 < dM (t, a1) ≤ z+ (j+ 1) r2 . Since (ai, ai+1) is not removed from R in Step 4 of
the algorithm it must be that z + j r2 < dM (t, ai) ≤ z + (j + 1) r2 for all i ∈ {1, . . . ,m}. This
implies that dM (t, v) ≤ z + (j + 1) r2 ≤ dM (t, u) + r

2 . Since dM (t, v) = dM (t, u) + dM (u, v),
we have that dM (u, v) ≤ r

2 , which concludes the proof. J

I Lemma 4. For any u, v ∈ V (M) where v is in the path from u to t, let P = {a1 =
u, a2, . . . , am = v} be the path from u to v. If (ai, ai+1) ∈ R for all i ∈ {1, . . . ,m− 1} after
Step 4 then dM (u, v) ≤ r/2.

Proof. The proof is similar to the proof of Lemma 3. J

I Lemma 5. If (u, v) ∈ R then dM (u, v) ≤ r.

Proof. The fact that (u, v) ∈ R implies that at the beginning of Step 4 there must have
been a path P = {a1 = u, a2, . . . , am = v} from u to v such that (ai, ai+1) ∈ R for all
i ∈ {1, . . . ,m−1}. Since M is a tree quasimetric space, the shortest path is the single unique
path from u to v for any u, v ∈ V (T ). From Lemma 2 we have that one of the following
three cases is true:
Case 1: u is in the shortest path from t to v. We have dM (u, v) ≤ r/2 from Lemma 3.
Case 2: v is in the shortest path from u to t. We have dM (u, v) ≤ r/2 from Lemma 4.
Case 3: There exists aj that lies on the shortest path from u to t and on the shortest path

from t to v. From Lemmas 3 and 4 we have that dM (u, aj) ≤ r/2 and dM (aj , v) ≤ r/2.
By the triangle inequality we get dM (u, v) ≤ r. J

I Lemma 6. Any (u, v) ∈ E(T ) is removed with probability at most 2dM (u, v)/r in Step 4
of the algorithm.

Proof. Since M is a tree quasimetric space there are exactly two cases:

Case 1: The edge (u, v) is in the direction away from t which implies that dM (t, u) ≤ dM (t, v).
Let i be the largest integer such that i · r/2 ≤ dM (t, u). The edge (u, v) is removed from
R if z is chosen between dM (t, u)− i · r/2 and dM (t, v)− i · r/2. The probability of that
event is bounded by

∫ dM (t,v)−i r2
dM (t,u)−i r2

p(z)dz = 2
r (dM (t, v) − dM (t, u)) ≤ 2dM (u, v)/r by the

triangle inequality.
Case 2: The edge (u, v) is in the direction toward t which implies that dM (v, t) ≤ dM (u, t).

Let i be the largest integer such that i · r/2 ≤ dM (v, t) . (u, v) is removed from R if z is
chosen between dM (v, t)− i · r/2 and dM (u, t)− i · r/2. The probability of that event is
bounded by

∫ dM (u,t)−i·r/2
dM (v,t)−i·r/2 p(z)dz = 2

r (dM (u, t)− dM (v, t)) ≤ 2dM (u, v)/r by the triangle
inequality. J

I Lemma 7. Pr[(u, v) 6∈ R] ≤ 2dM (u, v)/r for all u, v ∈ V (T ).

Proof. Let the unique path from u to v in M be p = {x1 = u, x2, . . . , xh = v}. Let Xp

be the event that path p contains at least one edge (xi, xi+1) such that (xi, xi+1) 6∈ R at
the beginning of Step 5. Let Y(a,b) be the event that (a, b) 6∈ R for (a, b) ∈ E(G). We have
Pr[Xp] = Pr[Y(x1,x2) ∨ . . . ∨ Y(xh−1,xh)]. From Lemma 6 and the union bound we have that
Pr[Y(x1,x2) ∨ . . . ∨ Y(xh−1,xh)] ≤ Pr[Y(x1,x2)] + . . . + Pr[Y(xh−1,xh)] ≤ 2dM (x1, x2)/r + . . . +
2dM (xh−1, xh)/r = 2dM (u, v)/r, concluding the proof. J

ICALP 2016
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We are now ready to prove the main result of this Section.

Proof of Theorem 1. It follows by Lemmas 5 and 7 that the algorithm outputs an O(1)-
Lipschitz distribution over r-bounded quasipartitions of M . J

3 Quasipartitions for graphs of small treewidth

In this section we prove the existence of a O(t logn)-Lipschitz distribution over r-bounded
quasipartitions for any quasimetric supported on a directed graph of treewidth t. The main
result is summarized in the following.

I Theorem 8. Let G be a n-vertex directed graph of treewidth t. Let M be the shortest-path
quasimetric space induced by G. Then for any r > 0, there exists an O(t logn)-Lipschitz
distribution over r-bounded quasipartitions of M .

In the proof of the above theorem we use the following proposition which is immediate
from the definition of treewidth.

I Proposition 9. Any graph G of treewidth t has a set of vertices K ⊆ V (G) where |K| ≤ t
such that removing K gives connected components each of which contains at most |V (G)|

2
vertices.

First we introduce an algorithm to construct the required distribution over r-bounded
quasipartitions of M . Steps 2 to 4 of the algorithm are recursive. At each recursive call the
algorithm works on an associated sub-graph G∗ and a global set R which is common to all
recursive calls.

Algorithm 2 Random quasipartition of a bounded treewidth graph
Input: A digraph G of treewidth t, and r > 0.
Output: A random r-bounded quasipartition R.
Initialization: Set G∗ = G and R = E(G). Perform the following recursive algorithm on
G∗.
Step 1. Pick z ∈ [0, r/2] uniformly at random.
Step 2. If |V (G∗)| ≤ 1, terminate the current recursive call. Otherwise pick a set of
vertices K ⊆ V (G∗) such that |K| ≤ t and removing K from G∗ gives connected
components C1, . . . , Cm, each containing at most |V (G∗)|

2 vertices. This is possible by
Proposition 9.

Step 3. For all (u, v) ∈ E(G∗) remove (u, v) from R if one of the following holds:
(a) dG(u, x) > z and dG(v, x) ≤ z for some vertex x ∈ K.
(b) dG(x, v) > z and dG(x, u) ≤ z for some vertex x ∈ K.

Step 4. Recursively call Steps 2-4 on the vertex-induced subgraphs G∗[C1], . . . , G∗[Cm].
Step 5. Once all branches of the recursion terminate enforce transitivity on R: For all
u, v, w ∈ V (G) if (u, v) ∈ R and (v, w) ∈ R add (u,w) to R.

Next we state some properties of the resulting random quasipartition R. We will use
these to prove the main theorem. The proofs of all these Lemmas are given in the full version
of the paper.

I Lemma 10. If (u, v) ∈ R then dG(u, v) ≤ r.

I Lemma 11. The depth of the recursion is O(logn).
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I Lemma 12. Any (u, v) ∈ E(G) is removed with probability at most 4td(u,v)
r in Step 4 of

the algorithm.

I Lemma 13. Pr[(u, v) 6∈ R] ≤ 4t logndG(u,v)
r for all u, v ∈ V (G).

With these Lemmas we can now prove the main result of this section.

Proof of Theorem 8. It follows by Lemmas 10 and 13 that the Algorithm outputs an
O(t logn)-Lipschitz distribution over r-bounded quasipartitions of M . J

The above algorithm can be implemented in polynomial time with an additional O(
√

log t)
loss on the quality of the partition. This is summarized in the following Theorem.

I Theorem 14. Let M be the shortest-path quasimetric space induced by a n-vertex directed
graph G of treewidth t. Then, there exists an algorithm with running time polynomial in n and
t that computes the set of all quasipartitions in the support of an O(t

√
log t logn)-Lipschitz

distribution over r-bounded quasipartitions of M , for any r > 0.

Proof. The randomized algorithm described in Theorem 8 can be derandomized to yield a
polynomial time algorithm. First we note that it is possible to find in polynomial time a
set K, with |K| = O(t

√
log t) such that removing K from G gives connected components

containing at most 2|V (G)|
3 vertices [11]. We can use this in Step 2 of the algorithm. The only

random decision in the algorithm is in Step 1 when z is chosen. Given r > 0, we can instead
select z exhaustively from all values in the set S = {d(u, v) : u, v ∈ V (G) and d(u, v) ≤ r

2}.
It can be observed from Step 3 of the algorithm that picking any other value of z does not
produce a new non-trivial r-bounded quasipartition. Since there are less than n2 elements in
S this derandomized version of the algorithm runs in polynomial time in n and the set of
quasipartitions returned has less than n2 elements. J

4 Embeddings into quasiultrametrics and into convex combinations
of 0-1 quasimetrics

In this Section we present our results on random embeddings into quasiultrametric spaces, and
deterministic embeddings into convex combinations of 0-1 quasimetric spaces (quasimetrics
where all distances are either 0 or 1).

4.1 Upper bounds
We begin by establishing a relationship between quasipartitions and embeddings of quasimetric
spaces into quasiultrametric spaces and 0-1 quasimetric spaces. We say that a distribution
over quasipartitions D is ε-forcing if whenever u, v ∈ X are such that d(u, v) ≤ εr then
PrP∼D[(u, v) /∈ P ] = 0. First we state a result, inspired by [4], that we use in subsequent
proofs. Its proof can be found in the full version of the paper.

I Lemma 15. Let G be a directed graph on n vertices. Let MW denote the shortest-path
quasimetric space induced by G where edge weights are specified by a functionW : E(G)→ R+.
Suppose that for all r > 0 there exists a β-Lipschitz distribution over r-bounded quasipartitions
of MW . Then for all r > 0 there exists a 2β-Lipschitz 1

2n -forcing distribution over r-bounded
quasipartitions of MW .

Now we present methods to use quasipartitions for constructing embeddings of quasimetric
spaces into quasiultrametric spaces and 0-1 quasimetric spaces. The proof resembles the
argument used in [4] for computing random embeddings of a metric space into a tree.

ICALP 2016
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I Theorem 16. Let M = (X, d) be an n-point quasimetric space and let β > 0. Suppose
that for any r > 0, there exists a β-Lipschitz distribution over r-bounded quasipartitions of
M . Then M admits a random embedding into quasiultrametrics with distortion O(β logn).

Proof. We may assume w.l.o.g. that the minimum distance in M is 1 and the diameter is ∆.
By Lemma 15 it follows that for any r > 0 there exists a 2β-Lipschitz 1

2n -forcing distribution
Dr over r-bounded quasipartitions of M . To get the required embedding we combine a
series of quasipartitions. Let S = {P0, P1, . . . , Pblog ∆c} where Pi ∈ D2i is a randomly chosen
2i-bounded quasipartition from D2i .

We combine the quasipartitions as follows to get a quasiultrametric M∗:
Step 1: Set dM∗(u, v) = 2blog ∆c+1 for all u, v ∈ V (M). Set i = blog ∆c.
Step 2: Set dM∗(u, v) = 2i for all (u, v) ∈ Pi if dM∗(u, v) = 2i+1. Decrease i by 1. Repeat

step 2 if i ≥ 0.
We first argue that M∗ is a quasiultrametric. To that end, consider any u, v ∈ X. Let j be
the maximum value of i such that (u, v) 6∈ Pi. This implies that d∗M (u, v) = 2i+1. Consider
any w ∈ X. It must be that either (u,w) 6∈ Pj or (w, v) 6∈ Pj because (u, v) 6∈ Pj . This
implies that either d∗M (u,w) = 2i+1 or d∗M (w, v) = 2i+1. So, for any u, v, w ∈ X it must be
that d∗M (u, v) ≤ max{d∗M (u,w), d∗M (w, v)}. This establishes that M∗ is a quasiultrametric.

Next we argue that M∗ is non-contracting. Let us suppose that the claim is false and
that M∗ is contracting. This means that for some u, v ∈ X we have dM∗(u, v) < dM (u, v).
This means that in some iteration of Step 2 we set dM∗(u, v) = 2i for some i < log dM (u, v).
This implies that (u, v) ∈ Pi even though dM (u, v) > 2i, which is a contradiction.

It remains to show that M∗ has expansion O(β logn). Let u, v ∈ X. We have

E
[
dM∗(u, v)
dM (u, v)

]
≤
blog ∆c∑
i=0

Pr[(u, v) 6∈ Pi]
2i+1

dM (u, v)

≤
blog dM (u,v)c∑

i=0

2i+1

dM (u, v) +
blog (2ndM (u,v))c∑
i=blog dM (u,v)c+1

2β dM (u, v)
2i

2i+1

dM (u, v)

+
blog ∆c]∑

i=blog (2ndM (u,v))c+1

0 · 2i+1

dM (u, v)

≤ 4dM (u, v)
dM (u, v) + 4β logn = O(β logn),

concluding the proof. J

I Theorem 17. Let M = (X, d) be an n-point quasimetric space and let β > 0. Suppose
that for any r > 0, there exists a β-Lipschitz distribution over r-bounded quasipartitions of
M . Then M admits an embedding into a convex combination of 0-1 quasimetric spaces with
distortion O(β logn).

Proof. We may assume w.l.o.g. that the minimum distance in M is 1 and the diameter
is ∆. By Lemma 15 it follows that for any r > 0 there exists Dr a β-Lipschitz 1

2n -forcing
distribution over r-bounded quasipartitions of M . Let S = {D0,D1, . . . ,Dblog ∆c}. Let
c =

∑
i∈[0,blog ∆c] 2i+1. Let H be a discrete distribution over S where the probability density

function F is given by F (Di) = 2i+1

c .
Let us define Y to be the event that a random quasipartition is selected from the

distribution Di where Di is randomly chosen from the distributionH. This gives a distribution
over a set of quasipartitions. We can replace every quasipartition P in this set by a 0-1
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quasimetric space Q = (X, dP ) where for all (u, v) ∈ P we have that dP (u, v) = 0 and for all
(u, v) /∈ P we have that dP (u, v) = 1. This gives a distribution over a set of 0-1 quasimetric
spaces which can be interpreted as a convex combination of 0-1 quasimetric spaces. Let the
quasimetric space given by this convex combination of 0-1 quasimetric spaces be φ = (X, dφ).
We will now show that the distortion is bounded for this embedding. First we claim that for
all u, v ∈ X, dφ(u, v) ≥ d(u,v)

c . This can be shown as follows. We have that

dφ(u, v) =
blog ∆c∑
i=0

2i+1

c
Pr

P∼Di
[(u, v) 6∈ P ] ≥

blog d(u,v)c∑
i=0

2i+1

c
≥ d(u, v)

c
,

which proves the claim. Next we show that for all x, y ∈ X, dφ(x, y) ≤ O(β logn)d(x,y)
c . We

have

dφ(u, v) =
blog ∆c∑
i=0

2i+1

c
Pr

P∼Di
[(u, v) 6∈ P ]

≤
blog d(u,v)c∑

i=0

2i+1

c
+
blog (2nd(u,v))c∑
i=blog d(u,v)c+1

β
d(u, v)

2i
2i+1

c
+

blog ∆c∑
i=blog (2nd(u,v))c+1

0 · 2i+1

c

≤ 4d(x, y)
c

+ 2β lognd(x, y)
c

≤ O(β logn)d(x, y)
c

.

From the above lower and upper bounds we get that φ is an embedding of M with
distortion O(β logn). This concludes the proof of the theorem. J

We get the following Corollaries by combining the above Theorems with the main result
of Section 3.

I Corollary 18. Let M = (X, d) be the shortest path quasimetric space induced by a directed
graph on n vertices having treewidth t. Then M admits a random embedding into a quasiul-
trametric space with distortion O(t log2 n). Moreover there exists an algorithm with running
time polynomial in n and t, that samples a random embedding into a quasiultrametric space
with distortion O(t

√
log t log2 n).

Proof. The existential part follows from Lemma 15 and Theorems 8 and 16. The computa-
tional part uses Theorem 14. J

I Corollary 19. Let M = (X, d) be the shortest path quasimetric space induced by a dir-
ected graph on n vertices having treewidth t. Then M admits an embedding into a convex
combination of 0-1 quasimetric spaces with distortion O(t log2(n)). Moreover, there exists
an algorithm with running time polynomial in n and t, that computes an embedding into a
convex combination of 0-1 quasimetric spaces with distortion O(t

√
log t log2 n).

Proof. This follows from Lemma 15 and Theorem 8 and 17. The computational part uses
Theorem 14. J

4.2 Lower bounds
We now obtain a lower bound on the distortion of random embeddings of general quasimetric
spaces into quasiultrametric spaces. To this end we show that if a quasimetric space admits
a random embedding into quasiultrametric spaces, then it is possible to construct a Lipschitz
distribution over r-bounded quasipartitions of the quasimetric space for any r > 0.
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We also show that subdivided directed acyclic graphs cannot embed into a graph with
bounded distortion unless there is a minor of the original graph present in the embedding.

I Theorem 20. Let M = (X, d) be a quasimetric space and let β > 0. Suppose that M
admits a random embedding into quasiultrametric spaces D∗ with distortion β. Then for any
r > 0, there exists an β-Lipschitz distribution over r-bounded quasipartitions of M .

Proof. We get a β-Lipschitz distribution D over r-bounded quasipartitions ofM by modifying
D∗. For every quasiultrametric M∗ ∈ D∗ we add the r-bounded quasipartition R(M∗) to D
where (u, v) ∈ R(M∗) iff dM∗(u, v) ≤ r. The probability of selecting any R(M∗) ∈ D is set
to be equal to that of selecting the corresponding M∗ ∈ D∗.

First we claim that R(M∗) is an r-bounded quasipartition of M . Consider any u, v, w ∈
V (M). Suppose we have that (u, v) ∈ R(M∗) and (v, w) ∈ R(M∗) then it must be
that dM∗(u, v) ≤ r and dM∗(v, w) ≤ r. Since M∗ is a quasiultrametric this implies that
dM∗(u,w) ≤ max{dM∗(u, v), dM∗(v, w)} ≤ r. This means that (u,w) ∈ R(M∗) which implies
that R(M∗) is transitive and is hence a quasipartition of M . Since we have (u, v) ∈ R(M∗)
iff dM∗(u, v) ≤ r and dM∗(u, v) ≥ dM (u, v) it follows that R(M∗) is an r-bounded quasipar-
titions of M .

Next we prove that D is β-Lipschitz. We have

β = E
[
dM∗(u, v)
dM (u, v)

]
≥
∫ ∞
dM (u,v)

(
z

dM (u, v)

)
Pr[dM∗(u, v) = z]dz

≥
(

r

dM (u, v)

)
Pr[dM∗(u, v) > r].

This implies that Pr[dM∗(u, v) > r] ≤ β · dM (u,v)
r . Since Pr[dM∗(u, v) > r] = Pr[(u, v) 6∈

R(M∗)], we have that D is β-Lipschitz and this concludes the proof of the theorem. J

The following Theorem follows directly from the work of Chuzhoy and Khanna [9] and a
result (Theorem 4.2) of Charikar, Makarychev and Makarychev [8].

I Theorem 21. There exists a quasimetric space M such that any embedding of M into a
convex combination of 0-1 quasimetric spaces has distortion Ω

(
n1/7

log4/7 n

)
.

A lower bound on the flow-cut gap of Directed Sparsest-Cut does not directly give the
same lower bound on the quality of Lipschitz quasipartitions of quasimetric spaces. The
following Theorem follows from the work of Chuzhoy and Khanna [9]. We present its proof
in the full version of the paper.

I Theorem 22. There exists a quasimetric spaceM and a positive r such that any distribution
over r-bounded quasipartitions of M is Ω

(
n1/7

log4/7 n

)
-Lipschitz.

Combining Theorems 20 and 22 gives the following Corollary.

I Corollary 23. There exists an n-point quasimetric space M = (X, d) such that any random
embedding of M into quasiultrametric spaces has distortion Ω

(
n1/7

logn4/7

)
.

The proof of the following theorem is given in the full version of the paper.

I Theorem 24. Let G = (E, V ) be a directed acyclic graph. Let G′ = (E′, V ′) be the graph
obtained by subdividing each directed edge of G into three edges in the same direction, i.e.,
for any directed edge (u, v) ∈ E, E′ contains the directed edges (u, xuv), (xuv, yuv), (yuv, v)
obtained by subdividing (u, v). Suppose that there exists an embedding of G′ into some graph
H with bounded distortion. Then H must contain G as a minor.
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5 Applications to directed cut problems

In this section we will use the results from the previous section, for embedding quasimetric
spaces into convex combinations of 0-1 quasimetric spaces, to get approximation algorithms
for some cut problems on directed graphs.

Directed Non-Bipartite Sparsest-Cut

Let G be a directed graph with non-negative capacities c(e) for all e ∈ E(G). Let T be a set
of terminal vertex pairs {(s1, t1), (s2, t2), . . . , (sk, tk)}. Let dem(i) be a non-negative demand
for the terminal pair (si, ti). A cut of G is a set of edges S ⊂ E(G). We define the capacity of
the cut S to be c(S) =

∑
e∈S c(e). Let IS be the set of all integers i ∈ {1, . . . , k} such that all

paths from si to ti have at least one edge in S. We define the demand separated by the cut
S to be dem(S) =

∑
i∈IS dem(i). The sparsity of a cut S is defined to be c(S)/dem(S). The

goal of the Directed Non-Bipartite Sparsest-Cut problem is to find the cut with minimum
sparsity.

For non-uniform demands, there exists a O(
√
n)-approximation by [12], which has been

improved to Õ(n11/23)-approximation [2]. There is also a 2Ω(log1−ε n)-hardness due to Chuzhoy
and Khanna [9].

Consider the following standard LP relaxation of the Directed Non-Bipartite Sparsest-Cut
Problem on G.

min
∑

e∈E(G)

c(e)x(e)

∑
(si,ti)∈T

dem(i)d(si, ti) ≥ 1

x(e) ≥ 0 ∀e ∈ E(G)
d(u, v) ≥ 0 ∀u, v ∈ V (G)

In the LP, the x(e) values can be treated as distance assignments for the edges. The
d(u, v) values are the shortest path distances from u to v in G for edge weights defined by the
distance assignments. Since d is the shortest path distance, it follows that for all (u, v) ∈ E
we have that d(u, v) ≤ x(e) where e = (u, v). Since replacing x(e) with d(u, v) only reduces
the objective function while preserving feasibility, we have that the optimal edge distance
assignment of the LP is given by a shortest path quasimetric space on G.

Charikar, Makarychev and Makarychev [8] showed that the integrality gap of this LP is
closely related to the minimum distortion achievable for embedding a quasimetric space into
a convex combination of 0-1 quasimetric spaces. Theorem A.1 from their paper implies that
the integrality gap of the LP for a graph G with edge capacities c(e) is equal to the minimum
distortion for embedding a shortest path quasimetric space supported on G into a convex
combination of 0-1 quasimetric spaces (referred to as 0-1 semimetrics in their paper). We
now describe how the minimum distortion embedding of a quasimetric space into a convex
combination of 0-1 quasimetric spaces can be used to upper bound the integrality gap of the
LP. First we observe that a 0-1 quasimetric space on V (G) corresponds to a cut of G. This
is because a 0-1 quasimetric space M = (V (G), d∗) can be used to describe a cut S ⊂ E(G)
where (u, v) ∈ S iff d∗(u, v) = 1 for all (u, v) ∈ E(G). Let the optimal Sparsest-Cut value
for the LP be LPOPT. Let the shortest path quasimetric space on G that gives the optimal
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solution for the LP be MOPT = (V (G), dOPT). We have that,∑
e=(u,v)∈E(G) c(e)dOPT(u, v)∑
i∈[0,k] dem(i)dOPT(si, ti)

= LPOPT.

Let φ =
∑
j∈[0,m] αjMj be an O(log2(n)) embedding of MOPT into a convex combination

of 0-1 quasimetric spaces, where Mj = (V (G), dj) is a 0-1 quasimetric space and αj is a
non-negative real number for any j ∈ [0,m]. We have that,

O(log2(n))LPOPT ≥
∑
e=(u,v)∈E(G) c(e)

∑
j∈[0,m] αjdj(u, v)∑

i∈[0,k] dem(i)
∑
j∈[0,m] αjdj(si, ti)

≥
∑
j∈[0,m] αj

∑
e=(u,v)∈E(G) c(e)dj(u, v)∑

j∈[0,m] αj
∑
i∈[0,k] dem(i)dj(si, ti)

≥ min
j∈[0,m]

∑
e=(u,v)∈E(G) c(e)dj(u, v)∑
i∈[0,k] dem(i)dj(si, ti)

.

Therefore the cut corresponding to the 0-1 quasimetric space in φ having minimum sparsity
gives an integral solution to the LP that is at most a O(log2(n)) factor larger than LPOPT.
Combined with Corollary 19 and Theorem 14 this implies the following corollary.

I Corollary 25. The integrality gap (which is also the flow-cut gap) of the Directed Non-
Bipartite Sparsest-Cut LP relaxation on graphs of n vertices and treewidth t is O(t log2 n).
Moreover there exists a polynomial-time O(t

√
log t log2 n)-approximation algorithm for the

Directed Non-Bipartite Sparsest-Cut problem on such graphs with running time linear in t
and polynomial in n. If a tree decomposition of width t is given as part of the input, then
there exists a polynomial-time O(t log2 n)-approximation algorithm.

Directed Multicut

Let G be a directed graph with non-negative capacities c(e) for all e ∈ E(G). Let T be a
set of terminal vertex pairs {(s1, t1), (s2, t2), . . . , (sk, tk)}. The goal of the Directed Multicut
problem is to find the minimum capacity cut that separates all terminal vertex pairs.

There is a Õ(n2/3/OPT1/3)-approximation by Kortsarts, Kortsarz and Nutov [17], and a
Õ(n11/23)-approximation by Agarwal, Alon and Charikar [2]. Finally, there is a 2Ω(log1−ε n)-
hardness due to Chuzhoy and Khanna [9]. It is known that for all β > 0, if there exists a
polynomial time β-approximation algorithm for Directed Non-Bipartite Sparsest-Cut then
there also exists a polynomial time O(β logn)-approximation for Directed Multicut. The
details are given in the full version of the paper.

I Corollary 26. There exist a O(t
√

log t log3 n)-approximation algorithm for the Directed
Multicut problem on n-vertex graphs of treewidth t, with running time polynomial in both
n and t. If a tree decomposition of width t is given as part of the input, then there exists a
polynomial-time O(t log3 n)-approximation algorithm.
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Abstract
We prove several results which, together with prior work, provide a nearly-complete picture of the
relationships among classical communication complexity classes between P and PSPACE, short of
proving lower bounds against classes for which no explicit lower bounds were already known. Our
article also serves as an up-to-date survey on the state of structural communication complexity.

Among our new results we show that MA 6⊆ ZPPNP[1], that is, Merlin–Arthur proof systems
cannot be simulated by zero-sided error randomized protocols with one NP query. Here the
class ZPPNP[1] has the property that generalizing it in the slightest ways would make it contain
AM ∩ coAM, for which it is notoriously open to prove any explicit lower bounds. We also prove
that US 6⊆ ZPPNP[1], where US is the class whose canonically complete problem is the variant of
set-disjointness where yes-instances are uniquely intersecting. We also prove that US 6⊆ coDP,
where DP is the class of differences of two NP sets. Finally, we explore an intriguing open issue:
are rank-1 matrices inherently more powerful than rectangles in communication complexity?
We prove a new separation concerning PP that sheds light on this issue and strengthens some
previously known separations.
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1 Introduction

Complexity classes form the infrastructure of classical complexity theory. They are used
to express the power of models of computation, characterize the complexities of important
computational problems, and catalyze proofs of other results. A central project is to ascertain
the full, intricate landscape of relationships among complexity classes.

Beginning with [3], there has been a lot of research on the analogues of classical (Turing
machine) complexity classes in two-party communication complexity. The analogue of
P (the class of decision problems solvable in polynomial time) is the class of functions
F : {0, 1}n×{0, 1}n → {0, 1} for which Alice and Bob, given x and y respectively, can evaluate
F (x, y) with a protocol that uses polylogarithmically many bits of communication. For other
classical complexity classes representing other models of computation, one can generally define,
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in a canonical way, associated communication complexity classes representing associated
models of communication. There are many motivations for studying the relationships
(inclusions and non-inclusions) between these communication complexity classes.

A holy grail of classical complexity is to prove separations of classes between P and PSPACE.
Separations relative to oracles can often be viewed as class separations in the restricted
setting of query complexity; see [52] for an excellent survey. Communication complexity
can be viewed as a restricted (but generally less restricted than query complexity) setting
for which lower bounds are more difficult to obtain. Such separations in restricted settings
are sometimes construed as evidence for the classical separations, or at least as barriers
to refuting the classical separations. A stronger form of relativization barriers is known
as algebrization [2], which directly employs communication complexity class separations.
Proving lower bounds against strong communication complexity classes has applications
to other areas of theoretical computer science. One of the most notorious open problems
in communication complexity is to prove lower bounds against the analogue of the
polynomial hierarchy (PH) for any explicit two-party function. Proving PH lower bounds
is a necessary step for obtaining strong rank rigidity lower bounds [44, 36, 37, 53] (as
well as margin complexity rigidity lower bounds [35]), which in turn are related to circuit
complexity [50]. Lower bounds against PH are also related to graph complexity [42, 25].
It even remains open to prove communication lower bounds against the subclass of PH
known as AM (Arthur–Merlin games) for any explicit function (which would be relevant
to streaming delegation [8, 31, 19, 7, 9, 32]).
Communication complexity has a menagerie of techniques for proving lower bounds
(among the oldest being discrepancy and corruption). These techniques often provide
lower bounds against powerful communication complexity classes, and in some cases turn
out to be equivalent to the communication measures corresponding to those classes (e.g.,
discrepancy is equivalent to PP communication [29], and corruption is equivalent to SBP
communication [18]). See [17] for more background on this. Thus, by studying complexity
classes, as a byproduct we study the relative strength of lower bound techniques.
The various models of communication corresponding to complexity classes are math-
ematically interesting because protocols in these models can be viewed as succinct
representations of boolean matrices. The study of classes exposes natural questions about
the combinatorial power of such succinct representations.

We contribute to the exploration of the communication complexity landscape by filling in
many of the remaining gaps in the known relationships among classes, and discovering new
techniques and insights along the way. In Section 2 we state our results more precisely and
provide some intuition for the proofs. In the full version, we summarize the state of affairs
(including our new results) by showing a map of known inclusions and non-inclusions between
pairs of traditional communication classes, and we provide a comprehensive survey of these
results. This updates previous surveys by Babai, Frankl, and Simon [3] and Halstenberg and
Reischuk [21].

We refer to [33, 26] for background on communication complexity. In the full version
we provide a catalog of communication complexity class definitions; throughout the text,
we provide definitions on a “need-to-know” basis. If C is the name of a model (e.g., P for
deterministic or NP for nondeterministic), we follow the convention of using C to denote both
a complexity class and the corresponding complexity measure: C(F ) denotes the minimum
cost of a correct protocol for the (possibly partial) two-party function F in model C, and C
denotes the class of all (families of) partial functions F with C(F ) ≤ poly(logn).
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2 Our Contributions

Several of our results concern two-party composed functions, so we introduce some general
notation for this. A composed function is of the form f ◦ gm where f : {0, 1}m → {0, 1} is
a (possibly partial) outer function and g : {0, 1}b × {0, 1}b → {0, 1} is an inner function
also called a gadget. We write F := f ◦ gm : {0, 1}n × {0, 1}n → {0, 1} where n := m · b.
We view the inputs to Alice and Bob as x, y ∈ ({0, 1}b)m, which are partitioned into blocks
xi, yi ∈ {0, 1}b for i ∈ [m]. The goal is to compute F (x, y) := f(g(x1, y1), . . . , g(xm, ym)).

2.1 MA 6⊆ ZPPNP[1]

A Merlin–Arthur (MA) communication protocol is a proof system in which a nondeterministic
party called Merlin sends a proof string (depending on the input) to Alice and Bob (collectively
constituting Arthur), who then execute a randomized protocol to verify the proof. Merlin–
Arthur communication protocols have been studied many times [28, 43, 2, 16, 30, 19,
20], starting with the work of Klauck [28], who gave a Ω(

√
n) lower bound on the MA

communication complexity of set-disjointness. In contrast, for the related (and stronger)
model of Arthur–Merlin (AM) communication protocols, in which Merlin’s proof string may
depend on Alice’s and Bob’s randomness, no nontrivial lower bound is known for any explicit
function, and such lower bounds have become very sought-after in the recent literature
[35, 40, 32, 9].

Our first result concerns the relationship between MA and another class, ZPPNP[1], which
is a slightly obscure but intriguing character with many curious properties. A ZPP-type
protocol is randomized and may output the correct answer or ⊥ (representing “don’t know”),
and must output the correct answer with high probability on every input; granting the
protocol access to one query to an NP oracle yields ZPPNP[1]. It is not a priori clear that
the model is robust with respect to the choice of threshold for the success probability,
since standard amplification by repetition would increase the number of NP oracle queries.
However, it was shown in [11] that ZPPNP[1] does indeed admit efficient amplification as
long as the success probability is > 1/2 (the proof for time-bounded complexity also works
for communication complexity); hence we define the model with success probability some
constant > 1/2, say 3/4.

If we allowed ZPPNP[1] to have success probability< 1/2, the class would change drastically:
it would contain AM ∩ coAM (see the full version), and hence proving explicit lower bounds
for the communication version would yield breakthrough AM communication lower bounds.
Granting the model access to two nonadaptive NP queries (and requiring success probability
> 1/2) would also encompass AM ∩ coAM. Thus, in a sense, ZPPNP[1] represents a boundary
beyond which AM lower bounds would be the next step. The class ZPPNP[1] is also sandwiched
between BPP and S2P [6]; S2P is a subclass of the polynomial hierarchy that has not been
studied before in communication complexity (the definition appears in the full version), and
no nontrivial lower bounds against it are known for any explicit function. This is another
sense in which ZPPNP[1] constitutes a new frontier toward the elusive goal of proving explicit
PH communication lower bounds. We also mention that ZPPNP[1] shows up frequently in the
literature on the “two queries problem” (e.g., if PNP[2]

‖ ⊆ ZPPNP[1] then PH = S2P [49]).
We prove that MA 6⊆ ZPPNP[1] in the setting of communication complexity. This can be

interpreted as saying that one-round non-interactive1 proof systems cannot be made to have

1 Here, the term non-interactive means that Alice and Bob cannot interact with Merlin other than
receiving the proof string.
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zero-sided error, even if the proof is generalized to an NP oracle query that depends on the
randomness.

Before officially stating the theorem, we give the relevant formal definitions. An MA
communication protocol computing F : {0, 1}n × {0, 1}n → {0, 1} consists of a randomized
two-party protocol which takes as input, in addition to the usual inputs x and y, a proof string
(witness) w ∈ {0, 1}k that is visible to both Alice and Bob. The completeness criterion is that
for every (x, y) ∈ F−1(1) there exists a w such that the protocol accepts with probability
at least 3/4, and the soundness criterion is that for every (x, y) ∈ F−1(0) and every w, the
protocol rejects with probability at least 3/4. The cost is the witness length k plus the length
of the subsequent transcript between Alice and Bob.

A ZPPNP[1] protocol Π computing F is a distribution over PNP[1]-type protocols, each
of which is of the following form: There is a deterministic protocol where for each leaf v
having associated rectangle Rv, there is also an associated collection of “witness rectangles”{
Sv,w ⊆ Rv : w ∈ {0, 1}k

}
and an associated “output function” ov : {0, 1} → {0, 1,⊥}. The

output of the PNP[1]-type protocol on input (x, y) is obtained by running the deterministic
part to reach a leaf v, then applying ov to the indicator of whether (x, y) ∈

⋃
w Sv,w.

The correctness criterion is that for every (x, y) ∈ F−1, P
[
Π(x, y) ∈ {F (x, y),⊥}

]
= 1

and P
[
Π(x, y) = F (x, y)

]
≥ 3/4. The cost is the witness length k plus the maximum

communication cost of the deterministic part of any of the constituent PNP[1]-type protocols.
The result of [11] shows that changing the success probability from 3/4 to any other constant
strictly between 1/2 and 1 would only change the measure ZPPNP[1](F ) by a constant factor.

We prove a lower bound for the block-equality function Block-Eq, defined as follows:2
Given

√
n instances of the equality function Eq of length

√
n, is at least one of them a

yes-instance? More formally, we have Block-Eq := Or ◦ Eqm where the input to Or is
m :=

√
n bits, and each input to Eq is b :=

√
n bits. In other words, writing x := x1 · · ·x√n ∈

({0, 1}
√
n)
√
n and y := y1 · · · y√n ∈ ({0, 1}

√
n)
√
n, we have Block-Eq(x, y) = 1 iff xi = yi for

some i. Note that Block-Eq ∈ MA since i can be nondeterministically guessed by Merlin,
and then xi = yi can be verified using a randomized protocol for Eq. (It was first noticed in
[34] that Block-Eq ∈ Σ2P ∩ Π2P, which is a superset of MA.)

I Theorem 1. ZPPNP[1](Block-Eq) = Θ(
√
n), and hence MA 6⊆ ZPPNP[1].

To prove Theorem 1 (Section 3), we apply a new lower bound technique that combines
the corruption bound with the 1-monochromatic rectangle size bound and asserts that they
hold simultaneously (under the same distribution over inputs). We prove that, perhaps
surprisingly, this combined technique gives a lower bound for ZPPNP[1] (though neither of
the individual bounds suffices).

To apply our technique to Block-Eq, we first note that it is straightforward to achieve
the two bounds separately: the 1-monochromatic rectangle size bound follows by simple
counting, and the corruption bound follows by using Razborov’s corruption lemma for the set-
intersection function Inter [45] together with a simple reduction from Inter to Block-Eq.
However, the latter does not result in a distribution satisfying the 1-monochromatic rectangle
size bound for Block-Eq. To fix this problem, we argue that if we average Razborov’s
distribution over all ways of implementing the reduction (of which there are many), then the
corruption bound is still satisfied, and now the 1-monochromatic rectangle size bound is also
satisfied.

2 The complement of block-equality is often known as list-non-equality.
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2.2 US 6⊆ ZPPNP[1]

For the set-intersection function Inter, Alice and Bob are each given a subset of [n] (and
we identify the subset with its characteristic vector, a length-n bit string), and the goal is to
output 1 when the sets are intersecting and 0 when they are disjoint.3 Phrased as a composed
function, Inter := Or ◦ Andn (for single-bit And). This is the canonical NP-complete
problem in communication complexity, holding a comparable status to satisfiability, the
canonical NP-complete problem in time-bounded complexity.

In the literature, “unique-set-intersection” commonly refers to the partial function version
of Inter where the intersection is promised to have size 0 or 1. We propose a change in
terminology, in order to be consistent with the following corresponding terminology from
time-bounded complexity (see, e.g., [4, 51, 10]): Unique-satisfiability is the problem of
determining whether the number of satisfying assignments of a formula is exactly 1, and is
complete for the complexity class called US. Unambiguous-satisfiability is the problem of
determining whether the number of satisfying assignments of a formula is 0 or 1 under the
promise that one of these cases holds, and is complete for the complexity class called UP.

Therefore, we make the following declarations: Unique-set-intersection is the total func-
tion Unique-Inter : {0, 1}n × {0, 1}n → {0, 1} that maps (x, y) to 1 iff |x ∩ y| = 1, i.e.,
Unique-Inter := Unique-Or ◦Andn where Unique-Or(z) = 1 iff the Hamming weight
of z is 1. Unambiguous-set-intersection is the partial function Unambig-Inter : {0, 1}n ×
{0, 1}n → {0, 1} that maps (x, y) to |x ∩ y| if the latter is in {0, 1}, i.e., Unambig-Inter :=
Unambig-Or ◦Andn where Unambig-Or(z) equals the Hamming weight of z if the latter
is in {0, 1}.

Note that Unique-Inter is US-complete, where a cost-k US communication protocol is
defined as a collection of rectangles

{
Rw ⊆ {0, 1}n × {0, 1}n : w ∈ {0, 1}k

}
, where on input

(x, y) the output of the protocol is 1 iff (x, y) is in Rw for exactly one w.

I Theorem 2. ZPPNP[1](Unique-Inter) = Θ(n), and hence US 6⊆ ZPPNP[1].

We give two proofs of Theorem 2. Both proofs show that Theorem 2 holds even under
the promise that the input sets intersect in at most two coordinates. Also, in both proofs,
handling ZPPNP[1] instead of PNP[1] incurs almost no extra complication.

The first proof (Section 3) employs the same lower bound technique as in Theorem 1,
but where we use Razborov’s corruption lemma [45] directly (and we must do a little
analysis to verify the 1-monochromatic rectangle size bound). The optional second proof
(relegated to the full version) uses information complexity tools (including an adaptation of
the “partial information cost” approach from [24]) and, although longer to write, has some
minor advantages over the first proof: It is more self-contained, as it does not rely on the
corruption lemma (only on some basic facts that are standard in information complexity).
Also, it directly handles success probability 1/2 + ε (for any constant ε > 0) without relying
on the amplification result of [11] (whereas the first proof assumes success probability 0.999).

2.3 US 6⊆ coDP
The class DP was introduced in [39] to capture the complexity of certain exact versions of
optimization problems. A set (of all 1-inputs of a function) is in DP iff it is the difference
between two NP sets. The classes P, NP, and DP are the 0th, 1st, and 2nd (respectively)
levels of the so-called boolean hierarchy.

3 We let “set-disjointness” refer to the complementary function where 1-inputs are disjoint.
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We have US ⊆ DP since to check that there is exactly one witness, we can use an NP
computation to check that there is at least one witness, and another to check that there are at
least two witnesses, and require that the first computation returns 1 and the second returns
0. However, it is unlikely that US ⊆ coDP: [10] showed that this inclusion cannot hold in the
classical time-bounded setting unless the polynomial hierarchy collapses. This result does
not yield a communication separation, since it is unknown whether the polynomial hierarchy
collapses in the communication setting. Nevertheless, we show that indeed US 6⊆ coDP in
communication complexity.

Formally, a cost-k coDP communication protocol is defined as a pair of collections of
rectangles,

{
Sw ⊆ {0, 1}n × {0, 1}n : w ∈ {0, 1}k

}
and

{
Tw ⊆ {0, 1}n × {0, 1}n : w ∈

{0, 1}k
}
, where on input (x, y) the output is 0 iff (x, y) ∈

⋃
w Sw r

⋃
w Tw.

I Theorem 3. coDP(Unique-Inter) = Θ(n), and hence US 6⊆ coDP.

To prove Theorem 3 (Section 3), we show that the same lower bound technique we
introduced for ZPPNP[1] (the combination of the corruption bound and the 1-monochromatic
rectangle size bound) also lower bounds coDP complexity. Thus we can simply reuse the
application of the technique to Unique-Inter from Theorem 2. (Reusing the application to
Block-Eq from Theorem 1 would show that Block-Eq 6∈ coDP, but in fact Block-Eq 6∈
PNP ⊇ coDP was already known [23].)

2.4 ZPPNP[1] ⊆ PostBPP
Consider bounded-error randomized computations (like in BPP) but with postselection: the
output may come from {0, 1,⊥} and must be correct with high probability conditioned on
not outputting ⊥ (and the probability of this conditioning event must be positive). The
complexity class corresponding to this model was originally called BPPpath [22], but the name
PostBPP (inspired by [1]) has gained popularity in the recent literature ([17] is one example)
and seems more appropriate, so we use it instead.

According to modern conventions, the standard way to define the cost of a PostBPP
communication protocol for F would be as the communication cost plus log(1/α), where
α is the minimum over all (x, y) ∈ F−1 of the probability of not outputting ⊥. (Allowing
public randomness and not charging for α would enable PostBPP protocols to compute every
function with constant cost.) Similarly, the cost of a PP (i.e., unbounded-error randomized)
protocol would be the communication cost plus log(1/ε) where 1/2 + ε is the minimum over
all (x, y) ∈ F−1 of the probability of outputting the correct answer.

However, for reasons that will become clear in Section 2.5, we choose to revert to the
original convention of [3] and define PostBPP and PP in a slightly different but equivalent
way: we do not charge for α or ε but we require the public randomness to be uniformly
distributed over {0, 1}k and we charge for k. For both PostBPP and PP, this cost measure is
equivalent to the above “modern” definition within a constant factor and additive O(logn)
term, by standard sparsification of the public randomness [38].

Formally, we define a PostBPP communication protocol Π for F in the following succinct
way: For each outcome of the public randomness (which is uniformly distributed over {0, 1}k)
there is a deterministic protocol outputting values in {0, 1,⊥}. For each (x, y) ∈ F−1 we
must have P

[
Π(x, y) = F (x, y)

]
> 2 · P

[
Π(x, y) = 1− F (x, y)

]
. The cost is the randomness

length k plus the maximum communication cost of any of the constituent deterministic
protocols.

A priori it is not clear that any explicit lower bounds for ZPPNP[1] follow from prior
work. The following result shows that in fact they do, since many explicit lower bounds for
PostBPP were known.
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I Theorem 4. PostBPP(F ) ≤ O
(
ZPPNP[1](F ) + logn

)
for all F , and hence ZPPNP[1] ⊆

PostBPP.

It turns out that Theorem 4 can be derived from the lower bound technique we develop
for ZPPNP[1] in Section 3; however, that approach is more complicated than necessary and,
more importantly, is specific to communication complexity. We give a proof of Theorem 4 (in
the full version) using a black-box simulation that also works for time-bounded complexity,
without exploiting any special properties of communication.

Intuitively, the worst case for simulating a ZPPNP[1] protocol is the following situation:
Whenever the NP oracle responds “0” the protocol outputs the right answer, and whenever
the NP oracle responds “1” the protocol outputs ⊥ but would have output the wrong answer
if the response were “0”. In this situation, pretending the oracle always responds “0” would
yield a BPP protocol (this is where we crucially need the success probability to be > 1/2).
To handle more general situations, we must also randomly guess and verify a witness for the
NP query, outputting ⊥ if the witness is invalid.

2.5 Open issue: Rank-1 vs. rectangles
The classes PostBPP and PP can be further generalized by allowing the use of private ran-
domness, which does not count toward the cost. This gives rise to the so-called “unrestricted
probabilities” classes UPostBPP (which was defined, but not extensively studied, in [17]) and
UPP (which is well-studied [41, 13, 48, 46]). In UPostBPP and UPP we can dispense with
public randomness altogether as the public coins could be tossed privately by Alice and then
sent to Bob.

Combinatorially, PostBPP and PP protocols of cost c induce a distribution over 2c labeled
rectangles (rank-1 matrices with 0-1 entries) each occurring with a “restricted” probability
of at least 2−c (see the full version). In the case of UPostBPP and UPP there is a similar
characterization with rectangles replaced by nonnegative rank-1 matrices (see the full version).
A natural question arises:

Informal question: Are rank-1 matrices inherently more powerful than rectangles in
communication complexity?

While it has been shown that, e.g., PP 6= UPP [5, 47], the known examples of functions F ∈
UPPrPP can actually be computed without exploiting the full power of private randomness
(their rank-1 property): we can use a UPP protocol whose associated rank-1 matrices are
still rectangles, but occurring with unrestricted, possibly tiny, probability. We conclude that
“PP vs. UPP” is not the right way to formalize our informal question (and the existing proofs
for PP 6= UPP do not incidentally answer our question), since UPP protocols can be more
powerful than PP protocols for reasons unrelated to their rank-1 property.4

A better formalization is as follows. We define new communication classes, UPostBPP� ⊆
UPostBPP and UPP� ⊆ UPP, in the same way as PostBPP and PP, except allowing the
public randomness to be arbitrarily distributed over {0, 1}k (still charging for k and not for
α or ε). Combinatorially, we have a distribution over 2k labeled rectangles, but with no
restrictions on their probabilities. Our informal question can now be formalized as follows:

4 The Log Rank Conjecture (and its variants) also do not adequately formalize our question, since the
definition of a protocol imposes constraints on how its rectangles interrelate, whereas there are no
analogous constraints on the rank-1 matrices making up a low-rank decomposition. A fairer formalization
along these lines would be to compare the power (in representing boolean matrices) of sums of rank-1
matrices vs. linear combinations of rectangles; nothing seems to be known about this question.
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Formal question: Do we have UPostBPP = UPostBPP�? How about UPP = UPP�?

The seemingly minor syntactic generalization introduced in the definitions of the �-classes
makes a huge difference: We observe (in the full version) that PNP ⊆ UPostBPP�,5 whereas
it is known that PostBPP and PNP are incomparable. Hence UPostBPP� is a strict superset
of both PostBPP and PNP. This leaves us with no known examples of functions to witness a
separation for our “rank-1 vs. rectangle” question; currently the best gap is UPostBPP(F ) ≤
O(1) vs. UPostBPP�(F ) ≥ Ω(logn) where F is the usual Greater-Than function defined
by F (x, y) = 1 iff x > y when x, y ∈ [2n] are viewed as numbers. There is also no clear
analogue of the “rank-1 vs. rectangle” distinction in query complexity, so a separation of the
two notions in communication complexity might require interesting techniques. In fact, in
the context of SBP (subclass of PostBPP), it can be shown that rank-1 matrices do not add
any power over mere rectangles [17].

2.6 PP 6⊆ UPostBPP�
Our final result is to develop and apply a useful lower bound method for the class UPostBPP�

introduced above. PostBPP already has a tight rectangle-based lower bound technique,
which was dubbed “extended discrepancy” in [15] but was used earlier in [28] to show that
PP 6⊆ PostBPP. We strengthen the latter result to show that PP 6⊆ UPostBPP�. (Showing
PP 6⊆ UPostBPP remains open.) In our proof, we make use of the main theorem from [17],
which applies to composed functions where the gadget is as follows.

I Definition 5. The confounding gadget g is defined by g(xi, yi) := 〈xi, yi〉 mod 2, where
xi, yi ∈ {0, 1}b and the block length b is b(m) := 100 logm.

We introduce the confounded-majority function, defined as Conf-Maj := f ◦ gm where
f is the majority function and g is the confounding gadget. Note that Conf-Maj has input
length n := m · b = m · 100 logm and is in PP since Alice and Bob can pick i ∈ [m] uniformly
at random and then exchange b+ 1 ≤ O(logn) bits to evaluate g(xi, yi).

I Theorem 6. UPostBPP�(Conf-Maj) = Θ(n), and hence PP 6⊆ UPostBPP�.

To prove Theorem 6 (in the full version) we introduce a lower bound technique for
UPostBPP� that strengthens the extended discrepancy bound (for PostBPP) by requiring it
to hold under a product distribution over inputs (analogously to how [40] showed that the
“monochromatic rectangle size bound under product distributions” gives a lower bound for
PNP). However, only a Ω(

√
n logn) lower bound for Conf-Maj follows using this technique,

so to get the Ω(n) lower bound in Theorem 6, we generalize the technique further by allowing
a rectangle’s size to be measured with respect to some product distribution while its error is
measured with respect to some other (arbitrary) distribution. (This is very analogous to
the idea of relative discrepancy [14, 12].) To apply our general lower bound technique to
Conf-Maj, we employ the communication-to-query machinery from [17] in a new, somewhat
indirect way.

Finally, we mention another intriguing property of UPostBPP�: By our lower bound
technique and the results of [15] it follows immediately that to prove the Log Rank Conjecture,

5 This inclusion also holds for time-bounded complexity. In defining the time-bounded version of
UPostBPP�, we would allow the distribution of the random string to depend nonuniformly on the input
length n, though for the inclusion of PNP, the distribution is computable in exponential time given the
string 1n.
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i.e., that P(F ) ≤ poly(log rank(F )) for all total boolean matrices F , it suffices to prove the
same with UPostBPP� instead of P. See the full version for more details.

3 Lower Bounds for Block-Equality and Unique-Set-Intersection

We now describe a technique for lower bounding both ZPPNP[1] and coDP communication.

I Lemma 7. Suppose µ0 is a distribution over F−1(0), µ1 is a distribution over F−1(1), and
C is a constant such that for every rectangle R ⊆ {0, 1}n × {0, 1}n, µ0(R) ≤ C · µ1(R) + δ,
and if R is 1-monochromatic (i.e., contains no 0-inputs) then µ1(R) ≤ δ. Then
(i) ZPPNP[1](F ) ≥ Ω(log(1/δ)),
(ii) coDP(F ) ≥ Ω(log(1/δ)).

The first half of the technique (µ0(R) ≤ C · µ1(R) + δ) is the corruption bound (which
is a tight lower bound technique for so-called coSBP [18]), and the other half is the 1-
monochromatic rectangle size bound (which is a tight lower bound technique for NP [33,
§2.4]). The combined technique gives a lower bound for both ZPPNP[1] and coDP, even
though neither of these classes appears to be a “combination” of coSBP and NP.

We prove parts (i) and (ii) of Lemma 7 in Section 3.1 and Section 3.2. Then we apply
the technique to Block-Eq in Section 3.3 (thus proving Theorem 1), and finally we apply
the technique to Unique-Inter in Section 3.4 (thus proving Theorem 2 and Theorem 3).

3.1 Proof of Lemma 7(i)
Suppose for contradiction there is a cost-o(log(1/δ)) ZPPNP[1] protocol Π computing F .
Then in particular we have δ ≤ o(1). By the amplification result of [11], we may assume
P
[
Π(x, y) = ⊥

]
≤ 1/10C for all (x, y) ∈ F−1. By Markov’s inequality and a union bound, we

may fix a PNP[1]-type protocol Π∗ in the support of Π such that P(x,y)∼µ0

[
Π∗(x, y) = ⊥

]
≤

1/5C and P(x,y)∼µ1

[
Π∗(x, y) = ⊥

]
≤ 1/5C. Let the notation k,Rv, Sv,w, ov be with respect

to Π∗ (see the definition of ZPPNP[1] in Section 2.1), and note that without loss of generality,
each ov is non-constant (otherwise we could redefine Sv,w = ∅ for all w and redefine ov(1)
arbitrarily).

For b ∈ {0, 1,⊥}, define Wb :=
⋃
v,w : ov(1)=b Sv,w as the set of “witnessed” inputs (the NP

oracle responds “1”) on which Π∗ outputs b, and define Nb :=
⋃
v : ov(0)=b

(
Rv r

⋃
w Sv,w

)
as the set of “non-witnessed” inputs (the NP oracle responds “0”) on which Π∗ outputs b.
Note that {W0, N0,W1, N1,W⊥, N⊥} partitions {0, 1}n × {0, 1}n. By assumption, µ0(W⊥ ∪
N⊥) ≤ 1/5C and µ1(W⊥ ∪ N⊥) ≤ 1/5C. By the correctness of Π, for b ∈ {0, 1} we have
(Wb ∪Nb) ∩ F−1(1− b) = ∅.

I Claim 8. µ0(W0) ≤ 1/4.

I Claim 9. µ0(N0) ≤ 1/4.

This provides the contradiction since then µ0
(
{0, 1}n × {0, 1}n

)
= µ0(W0) + µ0(N0) +

µ0(W1 ∪N1) + µ0(W⊥ ∪N⊥) ≤ 1/4 + 1/4 + 0 + 1/5C < 1.

Proof of Claim 8. For each v, w such that ov(1) = 0, we have µ1(Sv,w) = 0 and hence
µ0(Sv,w) ≤ δ. Thus by a union bound, µ0(W0) ≤

∑
v,w : ov(1)=0 µ0(Sv,w) ≤ 2o(log(1/δ)) · δ ≤

δ1−o(1) ≤ 1/4. J
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Proof of Claim 9. If v is such that ov(0) = 0, then we have

µ0
(
Rv r

⋃
w Sv,w

)
≤ µ0(Rv) ≤ C · µ1(Rv) + δ = C · µ1

(⋃
w Sv,w

)
+ δ

by the fact that
(
Rv r

⋃
w Sv,w

)
∩ F−1(1) = ∅. Also, since each ov is non-constant, we have∑

v : ov(0)=0 µ1
(⋃

w Sv,w
)

=
∑
v : ov(0)=0, ov(1)=⊥ µ1

(⋃
w Sv,w

)
+
∑
v : ov(0)=0, ov(1)=1 µ1

(⋃
w Sv,w

)
≤ µ1(W⊥) +

∑
v,w : ov(1)=1 µ1(Sv,w)

≤ µ1(W⊥ ∪N⊥) + 2o(log(1/δ)) · δ
≤ 1/5C + δ1−o(1)

where the third line follows since Sv,w is 1-monochromatic if ov(1) = 1. Combining these, we
have

µ0(N0) =
∑
v : ov(0)=0 µ0

(
Rv r

⋃
w Sv,w

)
≤
∑
v : ov(0)=0

(
C · µ1

(⋃
w Sv,w

)
+ δ
)

≤ C ·
(∑

v : ov(0)=0 µ1
(⋃

w Sv,w
))

+ 2o(log(1/δ)) · δ

≤ C ·
(
1/5C + δ1−o(1))+ δ1−o(1)

≤ 1/4. J

3.2 Proof of Lemma 7(ii)
Suppose for contradiction there is a cost-k coDP protocol Π computing F where k ≤
o(log(1/δ)). Then in particular we have δ ≤ o(1). We have a pair of collections of rectangles,{
Sw : w ∈ {0, 1}k

}
and

{
Tw : w ∈ {0, 1}k

}
, such that if F (x, y) = 0 then (x, y) ∈⋃

w Sw and (x, y) 6∈
⋃
w Tw, and if F (x, y) = 1 then (x, y) 6∈

⋃
w Sw or (x, y) ∈

⋃
w Tw.

Since µ0
(⋃

w Sw
)

= 1, there exists a w∗ such that µ0(Sw∗) ≥ 2−k ≥ δ1/3 and hence
µ1(Sw∗) ≥ 1

C · (δ
1/3 − δ) ≥ δ1/2. Since Sw∗ ∩ F−1(1) ⊆

⋃
w Tw, there exists a w′ such that

µ1(Tw′) ≥ µ1
(
Sw∗ ∩ F−1(1)

)
· 2−k > δ1/2 · δ1/2 = δ. But Tw′ is 1-monochromatic since

F−1(0) ∩
⋃
w Tw = ∅, so this is a contradiction.

3.3 Proof of Theorem 1
Let µ0 be the uniform distribution over Block-Eq−1(0), and let µ1 be the uniform distri-
bution over the subset of Block-Eq−1(1) consisting of all (x, y) for which xi = yi for a
unique i.

I Lemma 10. µ0(R) ≤ 45 · µ1(R) + 2−Ω(
√
n) holds for every rectangle R ⊆ {0, 1}n ×{0, 1}n.

I Lemma 11. µ1(R) ≤ 2−Ω(
√
n) holds for every 1-monochromatic rectangle R of Block-Eq.

Together, Lemma 10 and Lemma 11 show that the hypothesis of Lemma 7 holds with
F := Block-Eq, C := 45, and δ := 2−Ω(

√
n). The lower bound in Theorem 1 follows. For

the upper bound, in fact ZPP(Block-Eq) ≤ O(
√
n) holds [33, §4.1.1] (though it is slightly

quicker to see that NP(Block-Eq) ≤ O(
√
n) holds by guessing i and deterministically

verifying that xi = yi).
For the proofs of the lemmas, we define m :=

√
n and b :=

√
n (as in the notation for the

decomposition Block-Eq := Or ◦Eqm where Eq takes b-bit inputs).
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Proof of Lemma 10. For x0, x1, y0, y1 ∈ {0, 1}b, we say the tuple (x0, x1, y0, y1) is valid iff
x0 6= y0, x0 6= y1, x1 6= y0, and x1 = y1. We say Ξ :=

(
(x0

1, x
1
1, y

0
1 , y

1
1), . . . , (x0

m, x
1
m, y

0
m, y

1
m)
)

is valid iff it is a tuple of valid tuples. If Ξ is valid then the injection ΦΞ : {0, 1}m ×
{0, 1}m → {0, 1}n × {0, 1}n defined by ΦΞ(u, v) :=

(
xu1

1 · · ·xum
m , yv1

1 · · · yvm
m

)
is a reduction

from Inter := Or ◦Andm (for single-bit And) to Block-Eq:

Inter(u, v) = Block-Eq
(
ΦΞ(u, v)

)
.

(In other words, the image of ΦΞ, as a submatrix of the Block-Eq matrix, is a copy of the
Inter matrix.)

Define Unambig-Inter := Unambig-Or◦Andm where the partial function Unambig-Or
is Or restricted to the domain of strings of Hamming weight 0 or 1; i.e., Unambig-Inter−1(0)
consists of all pairs of disjoint sets, and Unambig-Inter−1(1) consists of all pairs of uniquely
intersecting sets.

I Lemma 12 ([45]). There exists a distribution ν0 over Unambig-Inter−1(0) and a distri-
bution ν1 over Unambig-Inter−1(1) such that ν0(R) ≤ 45 · ν1(R) + 2−Ω(m) holds for every
rectangle R ⊆ {0, 1}m × {0, 1}m. Moreover, the uniquely intersecting coordinate in ν1 is
uniformly distributed.

We claim that for a ∈ {0, 1} we have µa = EΞ ΦΞ(νa) where a valid Ξ is chosen uniformly
at random independently of νa. In other words, µa equals the distribution obtained by
choosing Ξ, then independently taking a sample from νa, then applying ΦΞ to the sample
(i.e., the uniform mixture of the distributions ΦΞ(νa)). We only argue that µ1 = EΞ ΦΞ(ν1)
(the argument for µ0 = EΞ ΦΞ(ν0) is essentially the same). In fact, we make the stronger
claim that for every (u, v) ∈ Unambig-Inter−1(1), say with ui = vi = 1, the distribution
EΞ ΦΞ(u, v) is uniform over the subset of Block-Eq−1(1) consisting of all (x, y) for which
xi = yi and xj 6= yj for all j 6= i. The original claim follows from this since the uniquely
intersecting coordinate i is uniformly distributed. The stronger claim follows immediately
from the facts that the coordinates of Ξ are independent, that (x1

i , y
1
i ) is uniformly distributed

over Eq−1(1), and that for j 6= i, (x0
j , y

0
j ), (x0

j , y
1
j ), and (x1

j , y
0
j ) are all marginally uniformly

distributed over Eq−1(0). The claim is established.
Now for every rectangle R ⊆ {0, 1}n × {0, 1}n, if we let Φ−1

Ξ (R) denote the rectangle of
all points in {0, 1}m × {0, 1}m that map into R under ΦΞ, then we have

µ0(R) = EΞ
(
ΦΞ(ν0)(R)

)
= EΞ ν0

(
Φ−1

Ξ (R)
)

≤ EΞ

(
45 · ν1

(
Φ−1

Ξ (R)
)

+ 2−Ω(m)
)

= 45 · EΞ ν1
(
Φ−1

Ξ (R)
)

+ 2−Ω(m)

= 45 · EΞ
(
ΦΞ(ν1)(R)

)
+ 2−Ω(m)

= 45 · µ1(R) + 2−Ω(
√
n). J

Proof of Lemma 11. Note that µ1 is uniform over a set of size

m · 2b · (22b − 2b)m−1 = m · 2b · 22b(m−1) · (1− 2−b)m−1 ≥ Ω(m · 2b · 22b(m−1)).

If R := A×B is 1-monochromatic then |A| ≤ m · 2b(m−1) (since for any y ∈ B there are at
most m · (2b)m−1 many x’s for which Block-Eq(x, y) = 1), and similarly |B| ≤ m · 2b(m−1),
and hence |R| ≤ m2 · 22b(m−1). It follows that

µ1(R) ≤ m2 · 22b(m−1)

Ω(m · 2b · 22b(m−1))
≤ O(m · 2−b) ≤ 2−Ω(

√
n). J
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3.4 Proof of Theorem 2 and Theorem 3
We again use the corruption lemma from [45], but now we need to take a closer look at the
distribution over 1-inputs. Let n = 4`−1. Let µ0 be the distribution over Unique-Inter−1(0)
that samples uniformly random disjoint sets of size `, and let µ1 be the distribution over
Unique-Inter−1(1) that samples uniformly random uniquely intersecting sets of size `.

I Lemma 13 ([45]). µ0(R) ≤ 45 · µ1(R) + 2−Ω(n) holds for every rectangle R ⊆ {0, 1}n ×
{0, 1}n.

I Lemma 14. µ1(R) ≤ 2−Ω(n) holds for every 1-monochromatic rectangle R of Unique-Inter.

Together, Lemma 13 and Lemma 14 show that the hypothesis of Lemma 7 holds with
F := Unique-Inter, C := 45, and δ := 2−Ω(n). Theorem 2 and Theorem 3 follow.

Proof of Lemma 14. For each i ∈ [n] let us define the rectangle Ri :=
{

(x, y) ∈ R : xi =
yi = 1

}
, and note that the Ri’s partition R. For each i we have |Ri| ≤ 2n−1 since every

(x, y) ∈ Ri is disjoint on the coordinates [n] r {i}.6 Hence |R| ≤ n2n−1 ≤ 2(1+o(1))n.
Note that µ1 can be sampled by the following process.

1. Pick a uniformly random i ∈ [n].
2. Pick a uniformly random H ⊆ [n] r {i} of size 2` − 2. There are

(
n−1
2`−2

)
= Θ(2n/

√
n)

choices.
3. Pick a uniformly random partition H = H1 ∪ H2 into sets of size ` − 1. There are(2`−2

`−1
)

= Θ(20.5n/
√
n) choices.

4. Let x := {i} ∪H1 and y := {i} ∪H2.

Hence µ1 is uniform over its support of size n ·Θ(2n/
√
n) ·Θ(20.5n/

√
n) = Θ(21.5n) ≥

2(1.5−o(1))n. It follows that µ1(R) ≤ 2(1+o(1))n/2(1.5−o(1))n ≤ 2−Ω(n). J
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Abstract
The information complexity of a function f is the minimum amount of information Alice and
Bob need to exchange to compute the function f . In this paper we provide an algorithm for
approximating the information complexity of an arbitrary function f to within any additive
error ε > 0, thus resolving an open question as to whether information complexity is computable.

In the process, we give the first explicit upper bound on the rate of convergence of the
information complexity of f when restricted to b-bit protocols to the (unrestricted) information
complexity of f .

1998 ACM Subject Classification E.4 Coding and Information Theory

Keywords and phrases Communication complexity, convergence rate, information complexity

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.87

1 Introduction

In 1948, Shannon introduced the field of information theory as a set of tools for understanding
the limits of one-way communication [15]. One of these tools, the information entropy function
H(X), measures the amount of information contained in a random source X.

The analogue of information entropy in communication complexity is information com-
plexity. The information complexity of a function f is the least amount of information
Alice and Bob need to exchange about their inputs to compute a function f . Just as
the information entropy of a random source X provides a lower bound on the amount of
communication required to transmit X, the information complexity of a function f provides
a lower bound on the communication complexity of f [3]. Moreover, just as Shannon’s
source coding theorem establishes H(X) as the asymptotic communication-per-message
required to send multiple independent copies of X, the information complexity of f is the
asymptotic communication-per-copy required to compute multiple copies of f in parallel on
independently distributed inputs [7, 5].

These properties make information complexity a valuable tool for proving results in
communication complexity. Communication complexity lower bounds themselves have a
wide variety of applications to other areas of computer science; for example, results in
circuit complexity such as Karchmer-Wigderson games and ACC lower bounds rely on
communication complexity lower bounds [12, 4]. In addition, techniques from information
complexity have been applied to prove various direct sum results in communication complexity
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[8, 2, 11], including the only known direct sum results for general randomized communication
complexity [3]. Information complexity has also been applied to prove a tight asymptotic
bound on the communication complexity of the set disjointness function [6].

Despite this, many fundamental properties of information complexity remain unknown [6].
It is unknown how the information complexity of a function changes asymptotically as we
allow the protocol to fail with probability ε. It is unknown how the information complexity
of a function grows if we restrict our attention to protocols of bounded depth. Perhaps
most surprisingly, it is even unknown if, given the truth table of a function f , whether it is
possible to even compute (to within some additive factor of ε) the information complexity of
f , ICµ(f). (Contrast this with the case of the information entropy H(X), which is easily
computed given the distribution of X).

In this paper, we resolve the last of these questions; we prove that the information
complexity of f is indeed computable. Our main technical result is an explicit bound on the
convergence rate of b-bit information complexity (information complexity when restricted
to protocols that have total communication at most b bits) to unrestricted information
complexity. More specifically, we show how to convert an arbitrary protocol π into a protocol
π′ that leaks at most ε more information than π, but has communication cost at most
(Nε−1)O(N) bits, where N is the size of the truth table of f (Theorem 12). Equivalently,
we show that the b-bit information complexity of f is at most b−O(N−1) larger than the
information complexity of f . By then enumerating over all protocols with this communication
cost, we obtain an algorithm that computes the information complexity of f to within an
additive factor of ε in time 2exp((Nε−1)O(N)) (here N is the size of the truth table of f).

1.1 Prior Work

In [13, 14], Ma and Ishwar present a method to compute tight bounds on the information
complexity of functions for protocols restricted to r rounds of computation. By examining
the limit as r tends to infinity, this method allows them to numerically compute the
information complexity of several functions (such as the 2-bit AND function). To make
these computations provably correct, one would need effective (computable) estimates on the
rate of convergence of r-round information complexity to the true information complexity.
Such estimates were unknown prior to the present paper.

Plenty of unsolved problems of this flavor – where the computability of some limiting
value is unknown despite it being straightforward to compute individual terms of this limit –
occur in information theoretic contexts. One famous problem is the problem of computing
the Shannon capacity of a graph, the amortized independence number of the kth power of a
graph (this limiting quantity also has an interpretation as the zero-error channel capacity
of a certain channel defined by this graph). While computing the independence number
of any given graph is possible (albeit NP-hard), the rate at which this limit converges
is unknown. Indeed, Alon and Lubetzky have shown that the limiting behavior of this
quantity can be quite complex; no fixed number of terms of this limit is guaranteed to give
a subpolynomial approximation to the Shannon capacity [1]. Another example, from the
realm of quantum information theory, occurs in computing the quantum value of games [9].
Here it is straightforward to compute the quantum value of a game when limited to n bits
of entanglement, but no explicit bounds are known for how many bits of entanglement are
required to achieve within ε of optimal performance.
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1.2 Outline of Proof

The main result of our paper is that zero-error information complexity is computable.
Formally, we prove the following theorem.

I Theorem 1. There exists an algorithm which, given a function f : A×B → {0, 1}, initial
distribution µ ∈ ∆(A× B), and a real number ε > 0, returns a value C between ICµ(f)− ε
and ICµ(f) + ε. This can be performed in time 2exp((Nε−1)O(N)), where N = |A × B|.

Throughout this paper, we will take the perspective of an outside observer watching in
as Alice and Bob execute some protocol. This observer starts with some probabilistic belief
about the inputs of Alice and Bob (initially this is just µ, the distribution of inputs to Alice
and Bob). As Alice and Bob execute the protocol, they send each other signals – Bernoulli
random variables that contain information about their inputs – which cause the observer to
update his belief. The total amount of information leaked by the protocol to the participants
can then be represented directly in terms of the final belief and initial belief. These notions
are defined in more detail in Section 2.

The strategy of the proof is as follows. We start with a general protocol π for solving f ,
and whose information cost is very close to the information complexity of f . Unfortunately,
we do not know anything about π besides the fact that it’s a finite, discrete protocol that
computes f without error. Note that if we could restrict π to a finite family of protocols
(e.g. protocols that sent at most b bits, for an explicit bound b = b(ε,N)), then we could
just brute force over all such π’s and compute the approximate information complexity of f .
The proof shows that, indeed, there is always a protocol π′ that can be derived from π, and
which belongs to such an explicit family. The proof proceeds in several steps. In each step,
more structure is added to π (structure that is then exploited by the following steps). The
difficulty is, of course, ensuring at each step that π can be replaced with a more structured
protocol π′ while increasing its information cost by only, say, ε/10. Ultimately, we manage
to turn π into a protocol with r back-and-forth rounds, where r is an explicit function of N
and ε. Finally, it is shown that an r-rounds of interaction protocol can be replaced with a
b-bit protocol where b = b(ε,N, r) = b(ε,N) is an explicit function, while only increasing its
information cost by a controlled amount, completing the proof.

The full proof of Theorem 1 is roughly structured into three parts. In the first part,
we begin by showing that we can ‘discretize’ any protocol π; that is, we can simulate any
protocol π with a protocol π′ that only uses a bounded number of different types of signals,
but that only reveals a marginal amount of additional information. We accomplish this by
building a ‘mesh’ of signals and rounding each signal in π to one of the signals in this mesh.
This is described in Section 3.1.

In the second part, we show in Section 3.2 that we can transform any suitably discrete
protocol π (i.e. one that uses an explicitly bounded number of distinct signals) into a protocol
that uses few rounds. We achieve this via a bundling scheme; the main idea is that, where
Alice would ordinarily send Bob one instance of a signal, she instead sends Bob several
instances of this signal. Then, the next several times Alice would send that signal to Bob,
Bob simply refers to the next unused copy sent by Alice, thus decreasing the number of
rounds in the protocol.

In the third part, we show in Section 3.3 that it is never advantageous to send more than
logN bits in any round of a protocol, thus providing an explicit bound on the communication
complexity of the protocol. We accomplish this by showing that if it is ever the case that
Alice sends one of M > N different messages in a round, Alice can use public randomness
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to sample a subset of N of these M messages and use logN bits to send one of these N
messages instead.

Combining the above steps allows us to prove the following bound on the convergence
rate of b-bit information complexity.

I Theorem 12 (restated). Let π be a communication protocol with information cost C that
successfully computes function f over inputs drawn from distribution µ over A× B. Then
there exists a protocol π′ with information cost at most C + ε that also successfully computes
f over inputs drawn from µ, but has communication cost at most b(f, ε) where

b(f, ε) = (Nε−1)O(N) (1)

and N = |A × B|.

Finally, by reapplying the discretization procedure of Section 3.1, we show that it suffices
to consider protocols whose signals all belong to an explicit finite set. By enumerating
over all protocols of this depth that use signals from this set and computing the minimum
information cost of any such protocol, we can therefore approximate ICµ(f) to within ε, thus
completing the proof.

The proof we provide below shows that zero-error internal and external information
complexity are computable. We believe similar techniques can be used to show that ε-error
information complexity is computable, but do not include such a proof in this paper.

1.3 Open Problems
Naturally, the most immediate open problem arising from our work is understanding whether
(and how much) the rate of convergence in Theorem 12 can be improved:

I Open Problem 2. What is the (worst case) rate of convergence of the b-bit (or r-round)
information complexity of f to ICµ(f)? In other words, for a given ε > 0 and truth table
size N = |A × B|, how large does b(N, ε) need to be to ensure that the b-bit information
complexity ICb,µ(f) satisfies

ICb,µ(f) > ICµ(f)− ε?

In this paper we prove that b(N, ε) ≤ (Nε−1)O(N). On the other hand, [6] shows that
when f is the two-bit AND (and thus N = 4 is a constant), the tight estimate for b is
b = Θ(ε−1/2). Therefore, the polynomial dependence on ε, even when N is a constant, is
necessary. On the other hand, we do not have any interesting lower bounds on b in terms
of N . In particular, it is not known whether the exponential dependence on N is necessary
here.

The second open problem is in a similar vein, asking whether Theorem 1 can be improved.

I Open Problem 3. What is the computational complexity of computing the (zero-error
internal) information complexity of a function f within error ε given its truth table? By how
much can the bound of 2exp((Nε−1)O(N)) be improved?

By the analysis in Section 3.4, any progress on Problem 2 will translate into progress on
Problem 3. For comparison, it is not hard to see that the trivial algorithm for computing the
average-case communication complexity of a function f : [n]× [n]→ {0, 1} (so that N = n2)
within an additive error ε runs in time 2n·NN/ε = 2exp((Nε−1)O(1)) (it suffices to look at all
protocols of depth at most N logN

ε , of which there are at most 2n·NN/ε). In other words,
there is an exponential gap between the trivial communication complexity upper bound and
the bound we obtain in Theorem 1.
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2 Preliminaries

2.1 Information Theory
For an introduction to the information theoretic notions used throughout this paper, we refer
the reader to [10] (A brief introduction can also be found in the full version of this paper).

2.2 Protocols and Information Complexity
In the two-party communication setting, Alice is given an element a from a finite set A, while
Bob is given an element b from a finite set B, where (a, b) is drawn from some distribution µ
over A× B. Their goal is to compute f(a, b), where f : A× B → {0, 1} is a function known
to both parties. They would like to accomplish this while revealing as little information as
possible; either to each other (in the case of information cost) or to an outside observer (in
the case of external information cost). To do this, they execute a communication protocol,
which we view as being built out of signals.

I Definition 4. A signal σ over a set S is an assignment of a probability σs ∈ [0, 1] to each
element s in S. For a given element s of S, we define σ(s) to be the Bernoulli random
variable that equals 1 with probability σs.

I Definition 5. A communication protocol π is a finite rooted binary tree, where each
non-leaf node is labeled by either a signal over A (corresponding to Alice’s move) or a signal
over B (corresponding to Bob’s move), and each edge is labeled either 0 or 1. Alice and Bob
can execute this protocol by starting at the root and repeatedly performing the following
procedure; if the signal σ at the current node is a signal over A, Alice sends Bob an instance
of σ(a), and they both move down the corresponding edge; likewise, if the signal is a signal
over B, Bob performs the analogous procedure.

Each leaf node is labeled with a value 0 or 1. We say the communication protocol
successfully computes f with zero error if the value of the leaf node Alice and Bob finish
the protocol on is always equal to f(a, b) for all (a, b) ∈ A × B (in particular, even (a, b)
where µ(a, b) = 0). The communication cost CC(π) of protocol π is equal to the depth of
the deepest leaf in π.

This agrees with the usual definition of a private coins protocol (indeed, any bit Alice
can ever send in any protocol must be a signal over A, and likewise for Bob). A public coins
protocol is simply a distribution over private coins protocols. For our purposes, it suffices to
solely examine private coins protocols, since the information cost of a public coins protocol
is simply the expected information cost of the corresponding private coins protocols.

As is standard, we will let A and B be random variables representing Alice’s input
and Bob’s input respectively, and let Π be the random variable representing the protocol’s
transcript. We can then define the information cost of a protocol and the information
complexity of a function as follows.

I Definition 6. The information cost of a protocol π is given by

ICµ(π) = I(A; Π|B) + I(B; Π|A) .

The external information cost of a protocol π is given by

ICextµ (π) = I(AB; Π) .
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I Definition 7. The information complexity of a function f is given by

ICµ(f) = inf
π
ICµ(π)

where the infimum is over all protocols π that successfully compute f . Likewise, the external
information complexity of a function f is given by

ICextµ (f) = inf
π
ICextµ (π) .

where again, the infimum is over all protocols π that successfully compute f .

Throughout the remainder of this paper, it will be useful to think of signals as operating
on the space ∆(A×B) of probability distributions over A×B, which we term beliefs. At the
beginning of a protocol, an outside observer’s belief is simply given by µ, the distribution
(a, b) was drawn from. As this observer observes new signals, his belief evolves according to
Bayes’ rule; for example, if he observes the signal σ(a) sent by Alice, his belief changes from
the prior belief p to the posterior belief

p0(a, b) = (1− σa)p(a, b)∑
i,j(1− σi)p(i, j)

(2)

if σ(a) = 0 (which occurs with probability P0 =
∑
i,j(1 − σi)p(i, j)) and to the posterior

belief

p1(a, b) = σap(a, b)∑
i,j σip(i, j)

(3)

if σ(a) = 1 (which occurs with probability P1 =
∑
i,j σip(i, j)). As shorthand, we will

say that σ shifts belief p to (p0, p1). Note that the probabilities P0 and P1 are uniquely
recoverable given p0 and p1 (in particular, treating beliefs as vectors in R|A×B|, it must be
the case that P0p0 + P1p1 = p and that P0 + P1 = 1).

Throughout the remainder of the paper, we will let N = |A × B| = |A| · |B|. Note that
N is the size of the truth table of f and is thus (in some sense) the size of the input to the
problem of computing the information complexity of f . All logarithms are to base 2 unless
otherwise specified.

3 Computability of Information Complexity

3.1 Discretizing signals
In the first part of the proof, we show that we can convert any protocol for f into a protocol
that uses a bounded number of types of signals. In particular, we prove the following theorem.

I Theorem 8. Let π be a communication protocol with information cost C. Then, for any
ε > 0, there exists a communication protocol π′ that computes the same function as π with
information cost at most C + ε but that only uses Q = (Nε−1)O(N) different types of signals.

Proof Sketch. Recall that signals are simply vectors in RN . Our general approach will
therefore be to build a ‘mesh’ of signals in RN and round each signal in our protocol to
one of the nearby signals in the mesh. We can show this rounding procedure preserves the
correctness of the protocol but possibly leaks some additional information.

Via the concavity of mutual information, it happens that if we take the width of this mesh
to be poly(ε/N), then this rounding procedure leaks at most ε additional information. Such
a mesh in N dimensions contains at most (1/poly(ε/N))N = (Nε−1)O(N) different signals,
as desired. J
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The above sketch suppresses a number of technical difficulties in proving the above
theorem. In particular, in the full paper, we demonstrate how to deal with:
1. Initial distributions µ that lack full support (Section 3.1 in full paper).
2. Signals sent near the boundary of ∆(A× B) (Section 3.2 in full paper).
3. Signals with widely differing magnitudes (Section 3.3 in full paper).

3.2 Bounding the number of alternations
We next show that we can convert a protocol for f that uses a bounded number of distinct
signals (yet arbitrarily many of them) into a protocol for f that, while leaking at most ε
extra information, uses a bounded number of alternations (steps in the protocol where Alice
stops talking and Bob starts talking, or vice versa).

We achieve this by ‘bundling’ signals of the same type together; that is, at a point in the
protocol where Alice would send Bob a certain signal, she may instead send him a bundle of
t signals. Then, the next t− 1 times Alice would send Bob this signal, Bob instead refers
to the next unused signal in the bundle. If there are unused signals in a bundle, this may
increase the information cost of the protocol; however, by choosing the size of the bundle
cleverly, we can bound the size of this increase.

I Definition 9. Let π be a communication protocol and let v1, v2, . . . , vk be one possible
computation path for π. An alternation in this computation path is an index i where the
signals at vi and vi+1 are sent by different players. The number of alternations in π is the
maximum number of alternations over all computation paths of π.

I Theorem 10. Let π be a communication protocol with information cost C that only uses Q
distinct signals. Then, for any ε > 0, there exists a communication protocol π′ that computes
the same function as π with information cost at most C + 2ε but that uses at most

W =
(

2Q logN
ε

+Q

)
logN
ε

alternations.

Proof Sketch. Label our Q different signals σ(1) through σ(Q). We will reduce the number
of alternations in π by bundling signals of the same type in large groups. That is, if Alice (at
a specific point in the protocol) would send Bob signal σ(i), she instead sends Bob t copies of
signal i (for an appropriately chosen t). Then, the next t− 1 times in the protocol that Alice
would send Bob signal σ(i), Bob instead refers to one of the unused t copies Alice originally
sent. Once these t copies are depleted and protocol calls for a (t + 1)st copy, the process
repeats and Alice sends a new bundle to Bob (possibly with a different value for t).

We choose t as follows. Without loss of generality, assume Alice is sending a bundle
of signals σ to Bob. Let Πpre be the transcript of the protocol thus far. Let Xt =
(X1, X2, . . . , Xt) be a random variable corresponding to t independently generated outputs
of σ. We consider three cases:
Case 1: It is the case that I(A;X1|ΠpreB) ≥ ε

Q . In this case we set t = 1 (note that this is
equivalent to simply following the original protocol).

Case 2: There exists a positive t0 such that ε
2Q ≤ I(A;Xt0 |ΠpreB) ≤ ε

Q . In this case, we
set t = t0.

Case 3: For all positive t, I(A;Xt|ΠpreB) ≤ ε
2Q . In this case, we set t to be the maximum

number of times signal σ is ever sent in protocol π.
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The remainder of this proof is divided into three parts. In the first part, we argue that
the three cases above are comprehensive. In the second part, we argue that the information
cost of this new protocol is at most C + ε. Finally, in the third part we argue that this
bundling process decreases the total number of alternations to at most W . We briefly sketch
these arguments here (see the full paper for detailed proofs).

Cases are comprehensive

It is not immediately clear that one of the three above cases must occur; it could be the case
that I(A;Xt|ΠpreB) ‘jumps’ from below ε/2Q to above ε/Q as t increases by one step. To
show this cannot happen, we prove a ‘diminishing returns’ theorem for information revealed
by additional copies of X (in particular, we show I(A;Xt+1|ΠpreB) − I(A;Xt|ΠpreB) is
decreasing in t).

Information leakage is small

When not all the signals in a bundle are used, this new protocol leaks some additional
information over our original protocol. However, by the selection of t, each bundle is either
a Case 1 bundle (which is immediately used up) or leaks at most ε/Q information. Since
there are at most Q unused bundles (one for each signal type), we leak at most ε additional
information.

Number of alternations is small

The number of alternations is at most the number of bundles sent. With the exception
of Case 3 bundles (of which we send at most one of each type, for a total of Q), each
bundle increases the expected information revealed by at least ε/2Q. Since the amount of
information revealed by the protocol is bounded above by logN , in expectation we send at
most Q+ 2Q logN

ε bundles. To translate this to a worst case result, we simply terminate the
protocol after sending at most W bundles; it then follows from Markov’s inequality that we
leak at most ε additional information by doing this. J

3.3 Bounding the number of bits
We finally show that each alternation in any protocol can be executed in a way that requires
the exchange of at most logN bits without any loss in information cost; it follows that a
protocol with at most W alternations can be converted into an equivalent protocol with
communication complexity at most W logN .

I Theorem 11. Let π be a communication protocol with information cost C that has W
alternations. Then there exists a communication protocol π′ with information cost C that
computes the same function as π but that sends a total of at most W logN bits.

Proof. We will show how to execute each alternation of a protocol in at most logN bits.
For simplicity, we will assume Alice and Bob have access to public randomness; this can later
be converted into a protocol with only private randomness via the observation that some
fixed choice of public randomness minimizes the information cost of the protocol.

Assume that Alice is speaking during some alternation of π, and let there be M possible
strings she may send to Bob. If p is the belief at the beginning of the alternation, then at
the end of the alternation we will have shifted to one of M possible beliefs, p1, p2, . . . , pM .
Let αi equal the probability we end up at belief pi. We can therefore write p =

∑M
i=1 αipi.
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In particular, note that p is contained in the convex hull of the pi. Since the beliefs pi lie
in a space of dimension N − 1, by Caratheodory’s theorem, it follows that there exists some
set T ⊂ [M ] such that |T | ≤ N and p is a convex combination of {pi|i ∈ T}. Fix such a T .
We can then write p =

∑
i∈T βipi.

Let γ = mini∈T αi
βi
. Alice and Bob now use public randomness to flip a weighted coin

that comes up heads with probability γ. If this coin comes up heads, then Alice samples an
element of T according to the distribution induced by the βi and sends this element to Bob
using at most log |T | ≤ logN bits (by say, specifying its location in T ).

If this coin comes up tails, they construct a new probability distribution α′ over [M ]
given by setting α′i = αi − γβi for all i ∈ [M ] (where βi = 0 if i 6∈ T ) and renormalizing.
Note that by our choice of γ, it will be the case that α′i ≥ 0 for all i; moreover, for at least
one i, α′i = 0. They now repeat this process for this new distribution α′.

Note that throughout this modified round, Alice sends in total at most logN bits to
Bob. Moreover, each time they use public randomness, the round either terminates (Alice
sends a message to Bob) or the size of the support of α shrinks by one, guaranteeing that
the round eventually terminates. Finally, at the end of this process, the probability Bob
receives message i ∈ [M ] from Alice is equal to αi, hence making this modified round
information-theoretically equivalent to the original round.

Applying this to every alternation in a protocol π with W rounds results in a protocol π′
with communication complexity of at most W logN , as desired. J

3.4 Computing Information Complexity
Combining the results of Theorems 8, 10 and 11, we obtain the following result.

I Theorem 12. Let π be a communication protocol with information cost C that successfully
computes function f over inputs drawn from distribution µ over A× B. Then there exists a
protocol π′ with information cost at most C + ε that also successfully computes f over inputs
drawn from µ, but has communication cost at most b(f, ε) where

b(f, ε) = (Nε−1)O(N)

and N = |A × B|.

By a similar rounding technique to that in Section 3.1, we can further ensure each signal
in π belongs to a set S of size (Nε−1)O(N2) (see Section 3.7 of the full paper for details). We
can now proceed to prove our main theorem.

Proof of Theorem 1. Fix an ε > 0; we will show how to approximate the information
complexity of f to within an additive factor of ε.

By Theorem 12, there exists some protocol with information cost at most ICµ(f) + ε

with communication complexity at most B(f, ε) and that only uses signals in the set S. The
number of such protocols is finite; in particular each such protocol has at most 2B(f,ε) nodes,
each of which is labelled by one of |S| signals. Since |S| = (Nε−1)O(N2), it follows that the
total number of protocols is at most

|S|2
B(f,ε)

= (Nε−1)O(N2)2(Nε−1)O(N)

= 2exp((Nε−1)O(N))

The information cost of a protocol with depth B (and thus at most 2B nodes) can be
computed in time 2O(B). It follows that computing the minimum information cost of the
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above protocols can be done in time 2exp((Nε−1)O(N)), and hence one can approximate ICµ(f)
to within an additive factor ε in time 2exp((Nε−1)O(N)), as desired. J
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Abstract
In this work we introduce a new information-theoretic complexity measure for 2-party functions,
called Rényi information complexity. It is a lower-bound on communication complexity, and has
the two leading lower-bounds on communication complexity as its natural relaxations: (external)
information complexity and logarithm of partition complexity. These two lower-bounds had so far
appeared conceptually quite different from each other, but we show that they are both obtained
from Rényi information complexity using two different, but natural relaxations:
1. The relaxation of Rényi information complexity that yields information complexity is to

change the order of Rényi mutual information used in its definition from infinity to 1.
2. The relaxation that connects Rényi information complexity with partition complexity is to

replace protocol transcripts used in the definition of Rényi information complexity with what
we term “pseudotranscripts,” which omits the interactive nature of a protocol, but only re-
quires that the probability of any transcript given inputs x and y to the two parties, factorizes
into two terms which depend on x and y separately. While this relaxation yields an appar-
ently different definition than (log of) partition function, we show that the two are in fact
identical. This gives us a surprising characterization of the partition bound in terms of an
information-theoretic quantity.

We also show that if both the above relaxations are simultaneously applied to Rényi informa-
tion complexity, we obtain a complexity measure that is lower-bounded by the (log of) relaxed
partition complexity, a complexity measure introduced by Kerenidis et al. (FOCS 2012). We
obtain a sharper connection between (external) information complexity and relaxed partition
complexity than Kerenidis et al., using an arguably more direct proof.

Further understanding Rényi information complexity (of various orders) might have con-
sequences for important direct-sum problems in communication complexity, as it lies between
communication complexity and information complexity.
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Figure 1 New complexity measures (shaded) and their relation to existing ones. Existing ones
shown include the (public-coin) worst-case communication complexity (R), external and internal
information complexity (IC and IC int), partition complexity (prt) and relaxed partition complexity
(prt). An arrow from one measure to another shows that the latter is a lower-bound for the former.
(The dashed lines indicate that the lower bound holds up to constant factors and shifts in error
bounds.) pIC∞ is exactly equal to log prt.

1 Introduction

Communication complexity, since the seminal work of Yao [26], has been a central question in
theoretical computer science. Many of the recent advances in this area have centered around
the notion of information complexity, which measures the amount of information about the
inputs – rather than the number of bits – that should be present in a protocol’s transcript,
if it should compute a function (somewhat) correctly. The more traditional approach for
lower bounding communication complexity relied on combinatorial complexity measures of
functions. The goal of this work is to relate these two lines of studying communication
complexity with each other.

Currently, the two leading lower bounds for communication complexity in the literature
come from these two lines: (external) information complexity IC [8, 2] and partition
complexity prt [14]. Either of these two lower bounds upper-bounds (and hence gives an
equally good or better lower bound than) all the other bounds used in the literature. An
intriguing problem in this area has been to understand if one of these two bounds is a better
lower-bound than the other. An important motivation behind this problem is the possibility
of separating IC from communication complexity via an intermediate combinatorial lower
bound, which will have consequences for direct-sum results in communication complexity
(since IC is known to be equal to amortized communication complexity [5, 4]).

Kerenidis et al. [18] showed that information complexity “subsumes” (the logarithm of) a
relaxed variant of partition complexity, prt, in the sense that any lower bound on log prt in
fact yields a lower bound on information complexity. Thus bounding log prt cannot yield
stronger lower bounds than bounding information complexity. In turn, all the combinatorial
bounds in the literature – other than log prt – are subsumed by log prt. On the other hand,
in recent breakthrough results, Ganor, Kol and Raz [10, 11] showed that for a certain range
of parameters, combinatorial lower bounds can be significantly stronger than information
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complexity lower bounds.1 It remains open if such separations are possible for a less restrictive
range of parameters (e.g., with communication complexity that is say, super-logarithmic in
the input size). In the absence of a result analogous to that of [18] for prt itself, prt remains
a candidate for showing such separations.

In this work, we do not pursue the question of whether log prt could be larger than IC or
vice versa. Instead, we develop a new information-theoretic complexity measure, IC∞ which
is as large or larger than both IC and log prt (see Figure 1), and has natural relaxations
that yield IC∞ and log prt respectively. IC∞ is thus a candidate for separating IC and
communication complexity for a larger range of parameters than currently known to be possible.
Further, the relaxation of IC∞ to log prt reveals a surprising information-theoretic definition
for prt. Since this new definition of (log of) prt has a markedly different form, we give it a
different name, pIC∞.

We also consider applying both the relaxations mentioned above simultaneously to IC∞.
This yields a new complexity measure pIC. We then show that pIC is essentially lower
bounded by log prt, the relaxed partition complexity. This recovers a result similar to that
of [18], but with sharper parameters and an arguably more direct proof.2

The relation between the new and old complexity measures are shown in Figure 1. (Also
see Figure 3 for further extensions.) The new complexity measures are informally described
below.

Rényi Information Complexity. (External) Information complexity of a function is defined
as the mutual information between the transcript and the inputs, and is a lower bound on
the communication complexity of the function. The notion of mutual information in this
definition is due to Shannon. Rényi mutual information Iα(A;B), parametrized by α ≥ 0, is
a generalization of Shannon’s mutual information (see [25] for a recent treatment), with the
latter corresponding to α→ 1. We observe that information complexity continues to be a
lower bound on communication complexity for all values of α. In particular, we may consider
I∞ instead of I1 to define information complexity. The resulting notion of information
complexity will be called IC∞.

Pseudotranscript Complexity. Communication complexity, as well as information com-
plexity, is defined in terms of a protocol. In contrast, the more traditional combinatorial
lower bounds on communication complexity are defined in terms of simpler combinatorial
properties of the function’s truth table. We propose complexity measures based on one such
property (which has been widely used in the analysis of protocols, but to the best of our
knowledge, has never been isolated to define a complexity measure of functions).

Consider a function (generalized later to relations) f : X × Y → Z. We define a
random variable Q over a space Q to be a pseudotranscript for f if there exist two functions
α : Q×X → R+ and β : Q× Y → R+, such that Pr[Q = q|X = x, Y = y] = α(q, x)β(q, y),
for all q ∈ Q, x ∈ X , y ∈ Y . This definition is motivated by the fact that the transcripts in a
protocol do satisfy it (see Footnote 7). However, a pseudotranscript need not correspond to
a protocol (indeed, any “tiling” of a function’s table yields a pseudotranscript, but it need

1 These results use combinatorial lower bounds to establish that communication complexity could be
exponentially larger than information complexity. The communication complexity in these examples is
(sub-)logarithmic in the size of the input itself.

2 Our result does not subsume the result of Kerenidis et al. [18], as they deal with internal information
complexity, while it is more natural for us to work with external information complexity. Conversely,
the result of [18] does not yield our result for external information complexity (due to the parameters),
nor the relation with the intermediate complexity measure pIC.
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not correspond to a valid protocol). We also associate a value zq with a pseudotranscript q;
the error errf,Q is defined in terms of the probability of this value matching the function’s
output. We do not include any other properties of a protocol in defining a pseudotranscript.

We can define complexity measures pIC and pIC∞ as relaxations of IC and IC∞, simply
by replacing protocols in their definitions with pseudotranscripts.

Relations Among the Complexities. The main results in this work, apart from introducing
the new complexity measures, are connections between pIC∞ and prt and between pIC and
prt.

Firstly, we show that pIC∞ = log prt. pIC∞ and prt are defined very differently. prt is
concerned with tiling the function table with weighted tiles: a tile t is a rectangle in the
input domain along with an output value zt. prt is the minimum total weight of tiles
needed such that for each input (x, y), the weight of the tiles covering it adds up to 1,
and the weight of the tiles with zt 6= f(x, y) is below the error threshold E(x, y).3 On the
other hand, pIC∞ relates to pseudotranscripts q, which are similar to tiles in that they
define a value zq and a rectangle of all (x, y) such that p(q|x, y) > 0, but are more general
in that there is no single “weight” on such a rectangle. Given our definitions, it is not
hard to see that log prt is as large or larger than pIC∞, as any tiling can be naturally
interpreted as a pseudotranscript Q with the same error, and in that case, the log of
the value of the tiling indeed equals I∞(X,Y ;Q). What is more surprising is that any
pseudotranscript Q can be converted to a tiling of the appropriate value (and same error).
This conversion “slices” an uneven weight function p(q|x, y) over a rectangle into weights
ωq,t over tiles t inside the rectangle; the weight of a tile t is the sum of the contributions
to its weight from all the different values of q: w(t) =

∑
q ωq,t. Then it turns out that

the value of the tiling so obtained will be equal to I∞(X,Y ;Q).
This equivalence gives a new perspective on the partition complexity. Firstly, it shows
that partition complexity exploits exactly the properties of a pseudotranscript, which
is not apparent from its original definition. Secondly, it gives an information theoretic
interpretation of a complexity measure defined in a traditional combinatorial manner.
This is the first instance of the two lines of lower-bounding techniques for communication
complexity – information theoretic and combinatorial – converging.
Our second main result is that lower bounds on log prt are in fact lower bounds on
pIC. More precisely, we show that pIC(f, ε) ≥ δ log prt(f, ε+ δ)− (δ log log |X ||Y|+ 3).
This is along the same lines as the result of [18], with improved parameters (in [18], the
multiplicative overhead in the leading term is δ2 instead of δ).
The proof of this result is technically more involved, but is closely based on the simple
slicing construction from the above result. The high-level idea is to first slice p(q|x, y)
into weights ωq,t for each tile t, and then discard the contributions to w(t) from those
ωq,t which are too large. One needs to ensure that the weight of the tiles discarded in
this fashion is small (as it contributes to the error), while the weight of the remaining
tiles is also small (as it contributes to the value of the tiling). For the first part, we
show how (Shannon’s) mutual information I(X,Y ;Q) can be approximated by a convex
combination of non-negative values, and then apply Markov’s inequality. For the second
part, we rely on a geometric argument to derive a bound on the weight of the remaining
tiles.

3 For prt, as well as pIC∞ and IC∞, we use a very general notion of error, in which the error is specified
as a function E : X × Y → [0, 1].
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1.1 Related Work

Many of the recent advances in the field of communication complexity [26] have followed from
using various notions of information complexity. Earlier notions of information complexity
appeared implicitly in several works [1, 20, 23], and was first explicitly defined in [8] and
further developed in [2]. Information complexity has been extensively used or studied in the
recent communication complexity literature (e.g., [5, 4, 6, 7, 18, 3, 10, 9, 11]). The notion
was also adapted to specialized models or tasks [17, 15, 16, 12].

The partition bound was developed in [14], and has subsumed a long line of combinatorial
bounds [19] (see e.g., [14, 9]). The relaxed partition bound put forth in [18], similarly
subsumes several combinatorial bounds, with the exception of the partition bound itself.

In 1960, generalizing Shannon’s entropy, Rényi proposed new measures of entropy and
divergence [22], now known after him. Subsequently, several authors developed different
notions of mutual information based on these measures. One such definition attributed to
Sibson [24] has recently come to be regarded as the most standard choice [25], and this is
the basis for our definition of I∞(A : B). Properties of Iα for various parameters α have
been studied in [13, 25]. In information theory literature, the use of generalized notions of
mutual information to obtain strong lower bounds for “one-shot” versions of communication
problems (rather than amortized/direct-sum versions where Shannon’s mutual information
is often appropriate) has a long history starting with the work of Ziv and Zakai [28, 27]. In
the communication complexity literature, Rényi divergence was used as a technical tool in
deriving one of the results in [2].

Recently, the authors of this work proposed a distributional complexity measure, Wyner
tension (or more generally, tension gap) which is a lower bound for information complexity
[21]. We leave it for future work to explore the exact connections between these bounds and
the ones in the current work. We mention that for the case when the inputs are independent,
Wyner tension is identical to pIC int (defined in Section 6), and a result in [21] is subsumed
by the results in this work.

2 Preliminaries

Let f : X ×Y → 2Z be a relation. Alice who has input x ∈ X and Bob who has input y ∈ Y
want to output any z ∈ f(x, y). We consider public-coin protocols, in which Alice and Bob
have access to a common random string independent of the inputs; they may also use private
local randomness. For such a protocol π, we say that the probability of error, which we view
as a function of (x, y) ∈ X × Y, is

errf,π(x, y) = Pr[π(x, y) /∈ f(x, y)],

where π(x, y) is the output of the protocol and the probability is over the randomness in the
protocol execution.4 An error function E that is of particular interest is the constant (or
worst-case) error function: E(x, y) = ε for some constant ε, for all (x, y) ∈ X × Y.

For a protocol π, let #bits(π, x, y) denote the maximum number of bits exchanged in
an execution of π with inputs (x, y), in the worst case (i.e., over all choices of randomness).
Note that this measure excludes the number of bits in the public randomness. The (worst

4 For a protocol to be considered valid, we will insist that the two parties output the same value with
probability 1; hence the output of a protocol is well-defined.
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case) communication complexity R(f,E) of f , for an error function E, is defined as

R(f,E) = inf
protocol π:
errf,π≤E

max
x,y

#bits(π, x, y).

To define information complexities, we will need to consider the distribution pX,Y on the
inputs X,Y . Let Π be the random variable that denotes the communication transcript
and the public-coins of the protocol π. Then, the external information cost of the protocol
π under the input distribution pX,Y is I(X,Y ; Π), i.e., the amount of information about
the inputs X,Y contained in Π. The (non-distributional) external information complexity
IC(f,E) is defined as

IC(f,E) = inf
protocol π:
errf,π≤E

max
pX,Y

I(X,Y ; Π).

Similarly, internal information complexity is defined as

IC int(f,E) = inf
protocol π:
errf,π≤E

max
pX,Y

I(X; Π|Y ) + I(Y ; Π|X).

Here the internal information cost, I(X; Π|Y ) + I(Y ; Π|X), of the protocol π under input
distribution pX,Y is the sum of the information learned by the parties about each other’s
input from Π. The following relationship between these quantities is well-known.

IC int(f,E) ≤ IC(f,E) ≤ R(f,E).

A tile for (X ,Y,Z) is a pair (rX × rY , z), where rX ⊆ X , rY ⊆ Y and z ∈ Z. If
t = (rX × rY , z), then we let Xt,Yt, and zt denote rX , rY and z respectively. We say
(x, y) ∈ t if and only if x ∈ Xt and y ∈ Yt. The set of all tiles for (X ,Y,Z) is denoted by
T (X ,Y,Z) or simply T (if X ,Y,Z are clear from the context).

For a relation f : X × Y → 2Z and probability of error E : X × Y → [0, 1], the partition
complexity [14] is defined as follows:5

prt(f,E) = min
w:T→[0,1]

∑
t∈T

w(t) subject to∑
t∈T :(x,y)∈t

w(t) = 1, ∀(x, y) ∈ X × Y (1)

∑
t∈T :(x,y)∈t,
zt∈f(x,y)

w(t) ≥ 1− E(x, y), ∀(x, y) ∈ X × Y. (2)

For a weight function w as above, we define the error function as

errf,w(x, y) =
∑

t∈T :(x,y)∈t,
zt /∈f(x,y)

w(t);

then the condition (2) can be written as a condition on this error function: errf,w ≤ E.

5 The definition presented in [14] is slightly more restrictive in the kind of relations and error functions
considered.
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The relaxed partition complexity [18] relaxes the equality constraint in (1) to an inequality.
Further, the error function is restricted to be a constant function given by E(x, y) = ε.
Specifically, for a relation f and a constant 0 ≤ ε ≤ 1,

prt(f, ε) = min
w:T→[0,1]

∑
t∈T

w(t) subject to∑
t∈T :(x,y)∈t

w(t) ≤ 1, ∀(x, y) ∈ X × Y (3)

∑
t∈T :(x,y)∈t,
zt∈f(x,y)

w(t) ≥ 1− ε, ∀(x, y) ∈ X × Y. (4)

The distributional form of relaxed partition complexity is defined for a distribution µ and
ε ∈ [0, 1] as follows:

prtµ(f, ε) = min
w:T→[0,1]

∑
t∈T

w(t) subject to

∀(x, y) ∈ X × Y
∑

t∈T :(x,y)∈t

w(t) ≤ 1,

∑
x,y

µ(x, y)
∑

t∈T :(x,y)∈t,
zt∈f(x,y)

w(t) ≥ 1− ε.

For a weight function w as above and a distribution µ over X × Y, we write errµf,w for
1−

∑
x,y µ(x, y)

∑
t∈T :(x,y)∈t,
zt∈f(x,y)

w(t); so the second condition can be written as errµf,w ≤ ε. As

shown in [18], prt(f, ε) = maxµ prtµ(f, ε).

3 Rényi Information Complexity and Pseudotranscripts

In this section we define our new complexity measures.

Rényi information complexity. For a pair of random variables (A,B) over A× B, Rényi
mutual information of order ∞ is defined as (see, e.g., [25])

I∞(A;B) = log
(∑
b∈B

max
a∈A:pA(a)>0

pB|A(b|a)
)
.

For a protocol π and an input distribution pX,Y , we will call I∞(X,Y ; Π) the Rényi
information cost. Rényi information complexity IC∞(f,E) is defined as the smallest worst-
case (over input distributions) Rényi information cost of any protocol which has a probability
of error at most E(x, y), x ∈ X , y ∈ Y.

IC∞(f,E) = inf
protocol π:
errf,π≤E

max
pX,Y

I∞(X,Y ; Π).

Note the above definition is identical to the definition of IC(f,E) except that I∞ is used
in place of mutual information I. It is easy to see that the inner maximization above is
obtained by any input distribution pX,Y with full support. Hence, we may equivalently write

IC∞(f,E) = inf
protocol π:
errf,π≤E

I∞(X,Y : Π),
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where we define I∞(A : B) which is a function only of pB|A as

I∞(A : B) = log
(∑
b∈B

max
a∈A

pB|A(b|a)
)
.

I Theorem 1. IC(f,E) ≤ IC∞(f,E) ≤ R(f,E).

Proof. The inequality IC(f,E) ≤ IC∞(f,E) follows from I(X,Y ; Π) ≤ I∞(X,Y ; Π), which
in turn follows from the monotonicity of α-mutual information [13, Theorem 4(b)] (see the
full version for a self-contained proof).

The proof of IC∞(f,E) ≤ R(f,E) is simple. Consider any public-coin protocol π. Let
Π = (Φ,Ψ) where Φ represents the public-coins and Ψ the transcript of π. W.l.o.g., Ψ
can be considered to be a deterministic function of Φ and the inputs X,Y .6 We write
Ψ(x, y;φ) to denote the transcript of π on inputs (x, y) and public coins φ. Note that
#bits(π, x, y) = maxφ |Ψ(x, y;φ)| (where | · | denotes the length of a bit string). We shall
show that I∞(X,Y : Π) ≤ maxx,y,φ |Ψ(x, y;φ)|. This suffices since

IC∞(f,E) = inf
protocol π:
errf,π≤E

I∞(X,Y : Π). R(f,E) = inf
protocol π:
errf,π≤E

max
x,y,φ

|Ψ(x, y;φ)|.

Note that pΦΨ|XY (φ, ψ|x, y) = pΦ(φ)pΨ|ΦXY (ψ|φ, x, y). Then,

I∞(X,Y : Φ,Ψ) = log
∑
φ

pΦ(φ)
∑
ψ

max
x,y

pΨ|ΦXY (ψ|φ, x, y)

≤ log max
φ

∑
ψ

max
x,y

pΨ|ΦXY (ψ|φ, x, y)

= max
φ

log |{ψ : ∃(x, y) s.t. ψ = Ψ(x, y;φ)}| ≤ max
x,y,φ

|Ψ(x, y;φ)|. J

Pseudotranscript and pseudo-information complexities. A random variable Q defined on
an alphabet Q and jointly distributed with the inputs X,Y is said to be a pseudotranscript
if pQ|X,Y satisfies the following factorization condition:

pQ|X,Y (q|x, y) = α(q, x)β(q, y), ∀q ∈ Q, x ∈ X , y ∈ Y,

for some pair of functions α : Q×X → R+ and β : Q×Y → R+. In addition, we will require
that Q defines an output, i.e., for each q there is an associated zq ∈ Z.

For any protocol π, clearly, Π, which is composed of the public-coins and the transcript, is
a pseudotranscript.7 For a pseudotranscript Q, the probability of error is defined analogously
to that for a protocol as

errf,Q(x, y) = Pr[zQ /∈ f(x, y)|(X,Y ) = (x, y)].

6 Any protocol using private randomness can be transformed to one with only public randomness, by
including the private coins as part of the public-coins, without changing the number of bits communicated.
Further, this can only increase the quantity I∞(X,Y ; Π). Hence, it is enough to prove the inequality
after carrying out this transformation.

7 Q = Π satisfies the factorization condition, as in that case, for q = (φ,m1, · · · ,mt), Pr[q|x, y] = α(q, x) ·
β(q, y), where say, α(q, x) = Pr[φ] · Πoddi Pr[mi | φ,m1, · · · ,mi−1, x], and β(q, y) = Πeveni Pr[mi |
φ,m1, · · · ,mi−1, y]. Also, we can associate the output of the protocol, which we insisted must be the
same for both parties for a valid protocol, as the corresponding output zQ. Though the output of the
parties could in principle depend on the local input and local randomness, the factorization condition
and the requirement that the outputs agree together imply that the output can be unambiguously
determined from the transcript together with the public-coins.



M.M. Prabhakaran and V.M. Prabhakaran 88:9

We define the following “pseudo-quantities” corresponding to IC∞ and IC where Π is
replaced by pseudotranscripts:

pIC∞(f,E) = inf
pseudotranscript Q:

errf,Q≤E

max
pX,Y

I∞(X,Y ;Q) = inf
pseudotranscript Q:

errf,Q≤E

I∞(X,Y : Q)

pIC(f,E) = inf
pseudotranscript Q:

errf,Q≤E

max
pX,Y

I(X,Y ;Q).

I Observation 2. Since, for any protocol, its transcript is a pseudotranscript as well, we have
pIC∞(f,E) ≤ IC∞(f,E) and pIC(f,E) ≤ IC(f,E). Furthermore, since I(A;B) ≤ I∞(A;B),
we also have pIC(f,E) ≤ pIC∞(f,E).

4 pIC∞ Equals the Partition Bound

I Theorem 3. For any relation f : X × Y → 2Z and error function E, pIC∞(f,E) =
log prt(f,E).

We prove pIC∞(f,E) ≤ log prt(f,E) and pIC∞(f,E) ≥ log prt(f,E) separately. The first
direction is easy and, as shown in the full version, follows by considering the tiles in a given
partition as the pseudo transcripts. Below, we turn to the other direction.

I Lemma 4. pIC∞(f,E) ≥ log prt(f,E).

Proof sketch. A detailed proof appears in the full version. Below we sketch the analysis,
including details which will be useful as a starting point in proving the result in Section 5.

Suppose pQ|X,Y satisfies the factorization and output consistency conditions, errf,Q ≤ E

and pIC∞(f,E) = I∞(X,Y : Q). Let T be the set of all tiles. To define the partition
w : T → [0, 1], we shall (in (8)) define quantities ωq,t (for (q, t) ∈ Q × T ) and probability
distribution pT |Q,X,Y , where T is a random variable over T , such that the following conditions
hold.

ωq,t = 0 ∀(q, t) ∈ Q× T s.t. zt 6= zq (5)

p(q, t|x, y) =
{
ωq,t if (x, y) ∈ t
0 otherwise

∀(q, t) ∈ Q× T , (x, y) ∈ X × Y (6)

log
∑

q∈Q,t∈T
ωq,t = I∞(X,Y : Q) (7)

Now, if we let w : T → [0, 1] be defined by w(t) =
∑
q∈Q ωq,t, then it is easy to verify that

(1) and (2) hold, and further log prt(f,E) ≤ log
∑
t∈T w(t) = I∞(X,Y : Q) = pIC∞(f,E).

Thus, to complete the proof, it suffices to define pT |Q,X,Y and ωq,t so that the above
conditions (5)-(7) are satisfied. Recall that, since Q is a pseudotranscript, pQ|X,Y satisfies
the factorization condition; i.e., we can write

pQ|X,Y (q|x, y) = α(q, x)β(q, y), ∀q ∈ Q, x ∈ X , y ∈ Y,

for some pair of functions α : Q×X → R+ and β : Q× Y → R+. For q ∈ Q and t ∈ T , let

σq,t = min
x∈Xt

α(q, x)− max
x′ 6∈Xt

α(q, x′) and τq,t = min
y∈Yt

β(q, y)− max
y′ 6∈Yt

β(q, y′).
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Above, in defining maxx′ 6∈Xt , if no such x′ exists – i.e., Xt = X – we take the maximum to
be 0 (and similarly for maxy′ 6∈Yt). Now, let

Tq = {t ∈ T | σq,t > 0, τq,t > 0, and zq = zt}

ωq,t =
{
σq,t · τq,t if t ∈ Tq
0 if t 6∈ Tq.

p(t|x, y, q) =
{
σq,t · τq,t · 1

p(q|x,y) if (x, y) ∈ t, t ∈ Tq
0 otherwise.

(8)

The fact that pT |X,Y,Q is a valid probability distribution and that conditions (5)-(7) are
satisfied are proven in the full version, using Claim 5 below. This completes the proof of
Lemma 4. J

I Claim 5. For any q ∈ Q and (x, y) ∈ X × Y,
∑
t∈Tq :(x,y)∈t σq,t · τq,t = p(q|x, y).

Proof. Fix q ∈ Q. Let X = {x1, · · · , xM}, such that α(q, xi) ≥ α(q, xi−1) for all i ∈ [1,M ];
for notational convenience, we also define a dummy x0 with α(q, x0) = 0. Define y0, y1, · · · , yN
similarly for β, where N = |Y|. Let tij = (Xi × Yj , zq) for (i, j) ∈ [M ] × [N ], where
Xi = {xi, · · · , xM}, Yj = {yj , · · · , yN}. Then,

Tq = {tij | (i, j) ∈ [M ]× [N ], α(q, xi) > α(q, xi−1), β(q, yj) > β(q, yj−1)}.

Consider an arbitrary (x, y) ∈ X × Y. Let (i∗, j∗) be indices such that (x, y) = (xi∗ , yj∗)
in the above ordering. Note that (xi∗ , yj∗) ∈ tij if and only if 1 ≤ i ≤ i∗ and 1 ≤ j ≤ j∗.
Also notice that for all (i, j) ∈ [M ]× [N ], if tij 6∈ Tq, then σq,tij , τq,tij = 0.

∑
t∈Tq :(xi∗ ,yi∗ )∈t

σq,t · τq,t =
i∗∑
i=1

j∗∑
j=1

σq,tij · τq,tij

=
i∗∑
i=1

(α(q, xi)− α(q, xi−1)) ·
j∗∑
j=1

(β(q, yj)− β(q, yj−1))

= α(q, xi∗) · β(q, yj∗) = p(q|xi∗ , yj∗)

as was required to prove. J

5 pIC Subsumes Relaxed Partition Bound

I Theorem 6. For any relation f : X × Y → 2Z and constants ε, δ ∈ [0, 1],

pIC(f, ε) ≥ δ log prt(f, ε+ δ)− (δ log log(|X ||Y|) + 3).

We prove this theorem in the full version. Below we summarize the main ideas.

Proof sketch. It is enough to show that, given a distribution pXY = µ over X × Y, and
pseudotranscript Q such that errf,Q ≤ ε, there is a partition which demonstrates that
log prtµ(f, ε+ δ) . I(X,Y ;Q)/δ.

The proof uses the construction from the proof of Lemma 4, and modifies it carefully.
Specifically, we define pT |Q,X,Y and ωq,t as in Equation 8. Recall that we originally defined
w as w(t) =

∑
q∈Q ωq,t. Our plan now is to remove some of the weight on the tiles so that

the log of the sum can be bounded by (roughly) I(X,Y ;Q)/δ as opposed to I∞(X,Y : Q).
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Towards this, we shall define a set B of “bad” pairs (q, t) ∈ Q× T whose weights ωq,t will
not be counted towards our new weight function w′(t):

w′(t) =
∑

(q,t)∈(Q×T )\B

ωq,t, ∀t ∈ T .

The crux of the proof is to define the set B such that the weight removed
∑

(q,t)∈B p(q, t) is
below δ (it manifests as the increase in error), while keeping

∑
(q,t)/∈B ωq,t (approximately)

below I(X,Y ;Q)/δ. We show that the following choice of B has both these properties:

B = {(q, t) ∈ Q× T | α̂(q, t) · β̂(q, t) ≥ θq, }

where α̂(q, t) = min(x,y)∈t α(q, x) and β̂(q, t) = min(x,y)∈t β(q, y) and θq is an appropriately
defined threshold for each q ∈ Q (specifically, θq = p(q)2∆, where ∆ ≈ I(XY ;Q)/δ).

To upper bound the mass removed, we first write I(XY ;Q) =
∑
q∈Q,t∈T p(q, t)ϕ(q, t),

where ϕ(q, t) is a quantity that is lower bounded by ∆ for all (q, t) ∈ B. This suggests the
possibility of using the Markov inequality to upper bound

∑
(q,t)∈B p(q, t). However, ϕ(q, t)

could be negative, and we cannot directly use the above expression for I(X,Y ;Q) in a Markov
inequality. However, we show that removing the negative terms from

∑
q,t p(q, t)ϕ(q, t) does

not increase the sum significantly, which will let us still apply the Markov inequality.
To upper bound

∑
(q,t)/∈B ωq,t, we use a geometric interpretation of ωq,t and the set B.

Fix a q ∈ Q. Then, using the notation in the proof of Claim 5, for each (i, j) ∈ [M ]× [N ], the
tile tij will be represented by an axis-parallel rectangle on the real plane, Rij , as follows. Rij
is defined by its diagonally opposite vertices (α(q, xi−1), β(q, yj−1)) and (α(q, xi), β(q, yj)).
(See Figure 2.) Rij could have zero area. These rectangles tile a rectangular region, without
overlapping with each other. Further the area of the rectangle Rij is the same as ωq,tij . Thus∑
t:(q,t)/∈B ωq,t is given by the sum of the areas of the rectangles Rij for which (q, tij) /∈ B.

The rectangles Rij that correspond to (q, tij) /∈ B are those which have their top-right vertex
(i.e., (α(q, xi), β(q, yj))) fall “below” the hyperbola defined by the equation xy = θq. Thus if
(q, tij) /∈ B, then the entire rectangle Rij is below the hyperbola xy = θq. Hence the sum of
their areas is upper-bounded by the area within R that is under this hyperbola, where R is
the rectangle with diagonally opposite vertices (0, 0) and (maxx∈X α(q, x),maxy∈Y β(q, y)).
A calculation yields the required bound. J

6 Extensions

We may define internal information complexity associated with pseudotranscripts as

pIC int(f,E) = inf
pseudotranscript Q:

errf,Q≤E

max
pX,Y

I(X;Q|Y ) + I(Y ;Q|X).

It is easy to show that for the usual notion of information complexity (defined with respect to
protocols), IC int(f,E) ≤ IC(f,E). The proof hinges on the fact that for any protocol π and
distribution pX,Y on the inputs, the resulting Π satisfies the condition I(X;Y ) ≥ I(X;Y |Π).
However, it is unclear whether pIC int(f,E) is necessarily upper bounded by pIC(f,E). Below
we define a slightly refined notion of pseudotranscripts so that information complexities
defined with respect to that maintain the above inequality.
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Figure 2 Illustration of the geometric interpretation of B used in the proof of Theorem 6. The
left figure shows the domain X ×Y and plots α(q, x) and β(q, y) against x and y, which are sorted in
the order of increasing α(q, x) and β(q, y), respectively (for some fixed q). It also shows a tile t = t3,2

in Tq, and indicates the values σq,t and τq,t. The right figure shows the alternate representation
of the tile t3,2 using the rectangular region R3,2. The area of R3,2 equals ωq,t3,2 = σq,t3,2 · τq,t3,2 .
A hyperbola corresponding to a threshold θq is also shown. Since the upper-right vertex of R3,2,
namely the point (α(q, x3), β(q, y2)) is above the hyperbola, (q, t3,2) ∈ B. The area within the dotted
rectangle that is under the hyperbola gives an upper-bound on the sum of areas of all rectangles
under the hyperbola.

pIC∞pIC

log prtlog prt

p̂IC∞p̂IC

R

IC∞IC

p̂ICint

ICint

pICint

Kerenidis et al. [18]

Figure 3 An extended version of the map in Figure 1, including the complexity measures in
Section 6.
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Refined pseudotranscripts and corresponding information complexities. A pseudotran-
script Q given by pQ|X,Y is called a refined pseudotranscript if, for any distribution pX,Y on
the inputs, it holds that I(X;Y ) ≥ I(X;Y |Q). It is easy to show that for any protocol π
and distribution pX,Y on the inputs, the resulting Π satisfies the above condition and, hence,
Π is a refined pseudotranscript.

Analogous to our definition of pseudo-information complexities, we define information
complexities with respect to refined pseudotranscripts

p̂IC∞(f,E) = inf
refined pseudotranscript Q:

errf,Q≤E

I∞(X,Y : Q)

p̂IC(f,E) = inf
refined pseudotranscript Q:

errf,Q≤E

max
pX,Y

I(X,Y ;Q)

p̂IC int(f,E) = inf
refined pseudotranscript Q:

errf,Q≤E

max
pX,Y

I(X;Q|Y ) + I(Y ;Q|X).

Figure 3 shows the relationship between the different complexities we consider. Since, for
any protocol, its transcript is a refined pseudotranscript and refined pseudotranscripts are also
pseudotranscripts, we have pX(f,E) ≤ p̂X(f,E) ≤ X(f,E), where X can be IC∞, IC or IC int.
Furthermore, analogous to IC int(f,E) ≤ IC(f,E) ≤ IC∞(f,E), we have p̂IC int(f,E) ≤
p̂IC(f,E) ≤ p̂IC∞(f,E). Finally, in deriving a lower bound for IC int(f, ε) in terms of
prt(f, ε) [18] only relies on the fact that the transcript (along with the public-coins) Π
satisfies the factorization condition. Hence, the lower bound of [18] holds with IC int replaced
by pIC int.
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Abstract
The isoperimetric profile of a graph is a function that measures, for an integer k, the size of
the smallest edge boundary over all sets of vertices of size k. We observe a connection between
isoperimetric profiles and computational complexity. We illustrate this connection by an example
from communication complexity, but our main result is in algebraic complexity.

We prove a sharp super-polynomial separation between monotone arithmetic circuits and
monotone arithmetic branching programs. This shows that the classical simulation of arithmetic
circuits by arithmetic branching programs by Valiant, Skyum, Berkowitz, and Rackoff (1983)
cannot be improved, as long as it preserves monotonicity.

A key ingredient in the proof is an accurate analysis of the isoperimetric profile of finite full
binary trees. We show that the isoperimetric profile of a full binary tree constantly fluctuates
between one and almost the depth of the tree.
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1 Introduction

Computational complexity theory is about understanding the amount of resources required
to compute a given function. One general framework for analyzing the limitations of a
given computational device is to partition it to two or more parts and study the interactions
between them (see [12, 2] and references trerein). This framework is directly related to
communication complexity [24, 15], and appears in the study of branching programs (e.g.
[4]), in algebraic complexity theory (e.g. [17, 10]), and more.

In this work, we observe the following phenomenon: the exact sizes of the parts in the
partition matter. Some functions are “easy” to compute when the sizes can be chosen
flexibly, but are “difficult” to compute when the sizes are chosen adversarially. The simplest
illustration of this phenomenon comes from communication complexity, and is discussed
below. Our most convincing application, however, comes from arithmetic circuit complexity,
and forms the bulk of this paper.
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1.1 Isoperimetric profile of graphs
The aforementioned phenomenon is related to expansion properties of graphs. For a graph
G = (V (G), E(G)) and A ⊆ V (G), the size of the edge boundary of A is

eG(A) =
∣∣{{a, b} ∈ E(G) : a ∈ A, b ∈ B}

∣∣,
where B = V (G) \A. The edge isoperimetric profile of G is the function

eipG(k) = min{eG(A) : A ⊆ V (G), |A| = k}.

For example, G is connected if and only if eip(k) ≥ 1 for every non trivial k. Analyzing
the isoperimetric profile of a graph is not a simple task. In fact, even understanding simple
properties of the isoperimetric profile in manifolds is difficult (see [16] and references therein).

The high-level connection is as follows. Consider functions defined over some graph G.
The vertices are labelled by variables, and the edges represent interactions between them. A
partitioning of the variables into two parts yields a partition of the vertices of G. Intuitively,
the size of the edge boundary represents the amount of interaction between the parts, and so
a large boundary implies high complexity.

1.2 Communication complexity
Communication complexity studies the amount of communication two or more parties need
to exchange in order to achieve a common goal. It was initiated by Yao in [24] in the context
of distributed computing. For simplicity of the presentation, here we focus on the best-case
deterministic two player model that was introduced by Papadimitriou and Sipser [18], and
applied to study of very-large-scale integration (for more background and details, see the
textbook [15]).

The deterministic communication complexity D(f) of a boolean function f : {0, 1}A ×
{0, 1}B → {0, 1} is the minimum number of bits two players need to exchange in order
to determine the value of f(x, y), where one player sees x ∈ {0, 1}A and the other sees
y ∈ {0, 1}B. Let F : {0, 1}V → {0, 1}. Given a partition of V to two sets A,B, we can
define a function FA,B : {0, 1}A × {0, 1}B → {0, 1} by FA,B(x, y) = F (z) where z|A = x and
z|B = y. The best-case deterministic communication complexity with partition-size k of F ,
denoted Dbest

k (F ), is the minimum of D(FA,B) over all partitions of V to two sets A,B with
|A| = k.

We observe the following connection between the best-case communication complexity and
the edge isoperimetric profile for certain functions. Let G = (V,E) be an undirected graph
with n vertices and maximum degree ∆. Consider, e.g., the function F : {0, 1}V → {0, 1}
defined via G as1

F (z) =
⊕

{u,v}∈E

zu ∧ zv,

where ⊕ is addition modulo two. Then, for every 1 ≤ k ≤ n, it holds that2

Ω(eipG(k)/∆2) ≤ Dbest
k (F ) ≤ O(eipG(k)).

1 The definition of F is inspired by a private communication with Avi Wigderson following [19].
2 In this text, big O and Ω notation means “up to a constant multiplicative factor”.
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The upper bound is obtained by partitioning the variables according to the minimizer of
the edge boundary, noting that the players need only to exchange inputs that appear on
edges of the boundary. The lower bound holds for the following reason. For every partition
A,B of the inputs with |A| = k, the edge boundary of A contains an induced matching
of size m ≥ Ω(eipG(k)/∆2). Setting the variables not participating in the matching to
zero, the lower bound follows from standard lower bounds on the inner product function,⊕

i∈[m] xi ∧ yi.
In other words, the best-case communication complexity of F is determined by the

isoperimetric profile of G, as long as G has constant degree. So, if the isoperimetric profile of
G changes dramatically with k, then so does Dbest

k (F ). For example, there are functions F
so that Dbest

n/2 (F ) = O(1) whereas Dbest
n/3 (F ) = Ω(n).

1.3 Algebraic complexity
Algebraic complexity theory studies the complexity of computing polynomials over a field.
For more background and details, see [7, 5, 21] and references within. We start by outlining
definitions of the models we consider.

The most general model of computation in this area is that of arithmetic circuit. An
arithmetic circuit is a directed acyclic graph with fan-in either zero or two. Vertices of fan-in
zero are labelled by a field element or a variable. Vertices of fan-in two are labelled by either
+ or ×. Every vertex in an arithmetic circuit computes a polynomial in the obvious way.
A weaker model is an arithmetic formula: it is a circuit whose underlying graph is a tree.
Another model is the algebraic branching program, ABP. An ABP is a directed acyclic graph
with two special vertices vstart, vend. Each edge e in it is labelled by L(e) which is a variable
times a field element. The program computes f , which is the following sum over all directed
paths γ from vstart to vend:

f =
∑

γ:vstart→vend

∏
e∈γ

L(e).

The computation performed by ABPs corresponds to the iterated multiplication of matrices.
The size parameter in each of the three models is the number of edges in the underlying
graph.

We now discuss reductions between these models. Formulas can be losslessly simulated
by an ABP, which in turn can be losslessly simulated by a circuit. In the opposite direction,
Hyafil [11] showed that every circuit of size s computing a polynomial of degree r can be
simulated by a formula of size 2O(log(s) log(r)). Valiant, Skyum, Berkowitz and Rackoff [23]
significantly strengthened this result. In their seminal work, they showed that an arithmetic
circuit of size s computing a polynomial of degree r can be simulated by a circuit of size
poly(r, s) and depth O(log(r) log(s)). This result was later used in a sequence of works –
Agrawal and Vinay [1], Koiran [13], and Tavenas [22] – to prove non-trivial simulations of
circuits by circuits of depth four (and unbounded fan-in). This depth reductions sprung
a long sequence of works on lower bounds for constant depth circuits (see [9, 14, 6] are
references within).

An intriguing question is whether the simulations discussed above are sharp. It is possible
they can be significantly improved. However, since we do not have strong enough methods
for proving lower bounds for these models of computation, proving that the reductions are
sharp is currently beyond us.

We therefore address this question in the restricted setting of monotone computations. A
monotone arithmetic computation is a computation over the real numbers that uses only
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non-negative numbers. The aforementioned reductions of Hyafil and Valiant et al. transform
a monotone device to a monotone device. We call such reductions monotone.

Since we know how to prove lower bounds for monotone computation, we can in fact show
that in the category of monotone reductions the reductions above are indeed sharp. Indeed,
the reduction between ABPs and formulas is sharp since Shamir and Snir [20] proved that in
order to multiply d matrices of size n× n, we need a monotone formula of size nΩ(log d), but
on the other hand this can be done via a monotone ABP of size poly(n, d). The reduction
from circuits to ABPs was not previously studied. In this paper, we prove:

I Theorem 1. There is a multilinear n-variate polynomial f with zero-one coefficients so
that the following hold:
1. The polynomial f can be computed by a monotone arithmetic circuit of size poly(n).
2. Every monotone ABP computing f has size at least 2Ω(log2(n)).

The simulation of [23] shows that the lower bound in the theorem is tight, up to a constant
in the exponent. Stated differently, the theorem shows that any monotone reduction from
circuits to ABPs must incur a super-polynomial blowup. To the best of our knowledge, this
is the first separation between algebraic branching programs and circuits. Prior to this work,
it was conceivable that the monotone construction of [23] or other monotone variants of it
can simulate a circuit by an ABP with only a polynomial increase in size.

It is worth mentioning that Gupta, Kamath, Kayal and Saptharishi [8] showed how to
simulate a circuit of size s and degree r over n variables by a depth three circuit of size
exp(O(

√
d log(d) log(n) log(s))), over fields of characteristic 0. Their simulation uses the

reductions to depth four from [1, 13, 22] mentioned above, together with two other reductions.
Most relevant to our work is that their simulation is not monotone. In fact, as they mention,
a simulation to depth three achieving the same parameters can not be monotone.

We now briefly discuss the proof. All lower bounds we know of for monotone algebraic
computation are based on combinatorial problems that are related to counting monomials.
The lower bounds for circuits use the following structure, which is standard by now (see e.g.
[20, 21, 10]). We denote by deg(f) the total degree of f .

I Lemma 2. If f is a homogeneous polynomial of degree r that can be computed by a
monotone circuit of size s, then for every integer 2 ≤ k ≤ r, we can write

f =
s∑
i=1

higi (1)

where for each i, both hi, gi are homogeneous, monotone, and of degrees k/3 ≤ deg(hi) < 2k/3
and deg(gi) = r − deg(hi).

A typical monotone lower bound proceeds by showing that the number of monomials in
each higi is small and so s must be large. To separate monotone circuits from ABPs, we
must find a polynomial that has a small circuit and use some other property of ABPs. We
use the following.

I Lemma 3. If f is a homogeneous polynomial of degree r that can be computed by a
monotone ABP of size s, then for every integer 0 ≤ k ≤ r, we can write

f =
s∑
i=1

higi (2)

where for each i, both hi, gi are homogeneous, monotone, and of degrees deg(hi) = k and
deg(gi) = r − k.
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Notice the similarities between the two lemmas. The only difference between circuits and
ABPs is that circuits are slightly more flexible about the degrees of hi, gi in (1), whereas
ABPs are not. We exploit this weakness to prove the separation. Motivated by Section 1.2,
the polynomial f in Theorem 1 will be defined over an underlying graph G. The setting
will be such that for each k, large eipG(k) implies a super-polynomial lower bound on s in
(2), and hence gives a lower bound on the ABP-size. On the other hand, the graph must be
chosen so that f is easy to compute via a monotone circuit. If G is too complex, such as
an expander graph, then we do not expect to prove meaningful upper bounds. In fact, in
order to circumvent the lower bound implied by (1), the value of eipG(k) must be small for
many integers k. It turns out that the right graph to choose is the full binary tree, which we
discuss next.

1.4 Full binary trees
We analyze the isoperimetric profile of full finite binary trees. The case of the infinite binary
tree was previously studied by Bharadwaj, Chandran and Das in [3], where it was shown to
be related to meta-Fibonacci sequences and signed almost binary partitions.

For an integer d ≥ 0, denote by Td the full binary tree of depth d. It has precisely 2d
leaves and 2d+1 − 1 vertices. It is clear that there are many values k ≤ |V (Td)| for which
eipTd

(k) = 1. It is more surprising that for some k, the value of eipTd
(k) can be fairly large,

almost as large as the depth of Td. This is the content of the first theorem:

I Theorem 4. Let mip(Td) be the maximum of eipTd
(k) over all 0 ≤ k ≤ |V (Td)|. Then

d

2 −O(log d) ≤ mip(Td) ≤
d

2 +O(1) .

In order to analyze the isoperimetric profile of Td, we relate it to the binary representation
of k. For an integer k ≥ 0, denote the binary representation of k by

B(k) = (B0(k), B1(k), B2(k), . . .) ∈ {0, 1}N.

I.e., k =
∑∞
i=0Bi(k)2i. Denote by drops(k) the number of drops in B(k):

drops(k) = |{i ≥ 0 : Bi(k) > Bi+1(k)}|.

The number of drops is a quantity that is relatively easy to understand, and as the following
theorem shows, it captures the isoperimetric profile of binary trees.

I Theorem 5. For every d ≥ 0 and 0 ≤ k < |V (Td)|,

drops(k)
2 ≤ eipTd

(k) ≤ 2drops(k) .

Moreover, the lower bound can be improved to drops(k)−O(log(drops(k))).

The theorem provides an almost optimal description of the isoperimetric profile eipTd
(k)

of Td. It implies that although eipTd
(k) = 1 for many values of k, for most values of k we

have eipTd
(k) ≥ Ω(d).

We get an explicit choice of k for which eip(k) is large. For even d ≥ 0, define

σd = 1 + 4 + 16 + . . .+ 2d ≈ 2
32d+1, (3)

and for odd d define σd = σd−1. The number of drops in B(σd) is at least d/2. The number
σd can be thought of as the truncation of the binary expansion of 2/3.

I Corollary 6. For every d ≥ 0, we have eipTd
(σd) ≥ d/2−O(log d) ≥ d/4.
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1.5 Organization
Section 3 contains the proof of the separation between monotone circuits and ABPs. Section 2
contains the proofs concerning the isoperimetric profile of the full binary tree that are needed
in Section 3 (due to space limitations, some of the proofs that are not used in Section 3 will
appear in the full version of the text).

2 Binary trees

In order to prove the lower bounds in Theorems 4 and Theorem 5, we will introduce the
quantity sbl(k) which, roughly speaking, measures how far k is from powers of 2. We then
relate eipTd

(k) and sbl(k),
We say that k is a signed power of two if it is of the form ±2j for some integer j ≥ 0. For

k ∈ Z, the signed binary length of k, denoted sbl(k), is the minimum b so that there exist b
signed powers of two k1, . . . , kb so that k =

∑b
i=1 ki, where repetitions are a priori allowed.

For example, sbl(0) = 0 and if d ≥ 1 then

sbl(1 + 2 + 4 + . . .+ 2d) = sbl(2d+1 − 1) = 2.

The following lemma gives a lower bound on eipTd
(k) in terms of sbl(k).

I Lemma 7. For every d ≥ 0 and 0 < k ≤ |V (Td)|,

eipTd
(k) ≥ sbl(k)−O(log(sbl(k))) .

In addition, if k < |V (Td)| then eipTd
(k) ≥ sbl(k)/2.

Proof. For an integer k, let st(k) denote the smallest b such that there exist non-negative
integers j1, . . . , jb and ε1, . . . , εb ∈ {−1, 1} with3

k =
b∑
j=1

εj · (2j − 1) . (4)

Recall that if j > 0, then 2j−1 is the number of vertices in Tj−1. We will prove the following:

I Claim 8. For every U ⊆ V (Td) not containing the root of Td, we have st(|U |) ≤ eTd
(U).

Claim 8 implies that for every U ⊆ V (Td),

st(|U |) ≤ eTd
(U) + 1 . (5)

Indeed, if U contains the root of Td, then apply Claim 8 to the complement Ū = V (Td) \ U .
Then Ū does not contain the root of Td and eTd

(U) = eTd
(Ū) ≥ st(|Ū |). But |U | =

|V (Td)| − |Ū | gives st(|U |) ≤ st(|Ū |) + 1.

Proof of Claim 8. The proof is by induction on d. The claim holds for d = 0 as st(0) = 0.
Assume d > 0. Let vd be the root of Td and for a node v, let T (v) be the full subtree of Td
with root v. Let U ⊆ V (Td) be so that vd 6∈ U . Let M be the subset of maximal vertices in

3 This quantity previously appeared in [3].
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U . That is, a vertex v is in M if v ∈ U and the shortest path from v to vd does not contain
a vertex from U . For v ∈M , let U(v) = U ∩ V (T (v)). Hence,

eTd
(U) = |M |+

∑
v∈M

eT (v)(U(v)).

Since |U | =
∑
v∈M |U(v)|,

st(|U |) ≤
∑
v∈M

st(|U(v)|).

For every v ∈M , the inductive assumption and (5) show that

st(|U(v)|) ≤ eT (v)(U(v)) + 1.

Overall,

st(|U |) ≤
∑
v∈M

(1 + eT (v)(U(v))) = |M |+
∑
v∈M

eT (v)(U(v)) = eTd
(U). J

To prove the lemma, it remains to estimate sbl(k) in terms of st(k). If k is written as
in (4) with b = st(k), we have

sbl(k) ≤ sbl(
b∑
j=1

εj2j) + sbl(
b∑
j=1

εj) ≤ st(k) + log2(st(k) + 1).

This gives st(k) ≥ sbl(k)−O(log(sbl(k))) and so (5) gives

eipTd
(k) ≥ sbl(k)−O(log(sbl(k))) ,

as required.
Finally, assume that U 6= V (Td). If U does not contain the root, apply Claim 8 and the

estimate sbl(k) ≤ 2st(k), to obtain eTd
(U) ≥ sbl(|U |)/2. If U does contain the root, apply

Claim 8 to Ū = V (Td) \ U and note that sbl(|U |) ≤ 2st(|Ū |) whenever Ū 6= ∅. J

The next lemma shows that, up to a constant factor, sbl(k) and drops(k) are the same.

I Lemma 9. For every k ≥ 0, we have drops(k) ≤ sbl(k) ≤ 2drops(k).

Proof. We start by showing that sbl(k) ≤ 2drops(k). First, note that k can be written as

k =
t∑
i=1

∑
ri≤j≤`i

2j , (6)

where t ≤ drops(k) and r1 ≤ `1 < r2 ≤ `2 < · · · < rt ≤ `t are non-negative integers. Second,
note that each sum

∑
ri≤j≤`i

2j can be expressed in terms of at most two signed powers of 2.
In order to prove the other inequality, we first note that for every k, j ≥ 0

|drops(k + 2j)− drops(k)| ≤ 1 . (7)

To see (7), assume first that Bj(k) = 0. Then adding 2j can introduce one drop if Bj+1(k) = 0
and delete one drop if j > 0 and Bj−1(k) = 1. If Bj(k) = 1, let ` be the smallest integer
with B`(k) = 0 and ` > j. The binary representations of k and k + 2j are the same, except
that B`(k + 2j) = 1 and Bi(k + 2j) = 0 for every j ≤ i < `. The number of drops in k + 2j
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can increase only if Bj−1(k) = 1 and j > 0, and increases at most by one. It can decrease
only if B`+1(k) = 1, and again at most by one.

By induction on sbl(k), we now prove that for every k ≥ 0, drops(k) ≤ sbl(k). If
sbl(k) = 0, the statement holds. Otherwise, let k1, . . . , kb, with b = sbl(k), be signed powers
of two that sum to k. Choose ki so that k − ki is non-negative. Hence, (7) shows that
drops(k − ki) ≥ drops(k) − 1. Furthermore, we have sbl(k − ki) = sbl(k) − 1. By the
inductive assumption, sbl(k − ki) ≥ drops(k − ki). Altogether, sbl(k) = sbl(k − ki) + 1 ≥
(drops(k)− 1) + 1 = drops(k), completing the proof. J

Proof of Theorems 4 and 5. The lower bounds in both theorems follow from Lemmas 7
and 9, since drops(σd) = d/2 for σd as defined in (3). The proof of the upper bounds is by
induction and is not presented due to space considerations. J

Remarks

First, none of the bounds in Theorem 5 is tight for all k. For example, the 2drops(k) upper
bound exceeds the upper bound from Theorem 4 for k = σd from (3). Furthermore, we do
not know which of the bounds in Theorem 4 is more accurate.

Second, we have eipTd
(σd) ≤ d/2 − Ω(log d). Hence, the lower bound of drops(k) −

O(log(drops(k)) from Theorem 5 cannot be improved as a function of drops(k). A similar
statement holds for Lemma 7 and sbl(k).

Third, the quantity st(k) from Claim 8 characterizes eip almost exactly: st(k) − 1 ≤
eipTd

(k) ≤ st(k). This can be deduced from Claim 8 and Theorem 2.3 from [3]. It also
implies |eipTd

(k)− sbl(k)| ≤ O(log k).
Fourth, we do not know of a simple procedure to compute eipTd

(k), or to find a subset of
size k that minimizes the boundary-size. The quantity sbl(k), however, can be computed
exactly and quite easily, in time polynomial in log k, which allows to efficiently approximate
eipTd

(k) more accurately.

3 Algebraic complexity

In this section, we prove the separation between monotone circuits and ABPs stated in
Theorem 1, and the structure of ABPs stated in Lemma 3.

3.1 The tree function
We first describe a boolean function Td,m which is later used to prove our separation. Recall
that Td is the full binary tree of depth d, and let V be the set of its vertices. For an integer
m > 1, let Zm be the additive group of integers modulo m, and let ZVm be the set of functions
γ : V → Zm.

A function γ ∈ ZVm will be called legal, if for every vertex v which is not a leaf and its
two children v1, v2, we have

γ(v) = γ(v1) + γ(v2) .

The tree function Td,m : ZVm → {0, 1} takes γ ∈ ZVm and accepts if γ is legal.
For a node v ∈ V , let T (v) be the full subtree of Td rooted at v and let `(T (v)) be the

set of its leaves. Then γ is legal iff

γ(v) =
∑

u∈`(T (v))

γ(u) (8)

holds for every vertex v in T .
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The following lemma depicts the key property of Td,m that we later use. For two functions
f, g over the same domain, write f ≤ g if f(x) ≤ g(x) for all x. Denote by sup(f) the set of
inputs x so that f(x) = 1.

I Lemma 10. Let V0, V1 be a partition of V where |V0| = σd, as defined in (3). If

h0 : ZV0
m → {0, 1}, h1 : ZV1

m → {0, 1}, h0 ∧ h1 ≤ Td,m,

then | sup(h0 ∧ h1)| ≤ m−d/16| sup(Td,m)|.

Proof. View Td as directed from leaves to root. A directed path v1, . . . , vk in Td from
v1 ∈ `(T (vk)) to vk will be called pure if v1 6= vk and there exists i ∈ {0, 1} so that
{v1, . . . , vk} ∩ Vi = {vk}. A node will be called pure if it is the last node of some pure path.
Let P ⊂ V be the set of pure nodes. Let E be the edge boundary of V0.

To prove the lemma, we use the following two claims.

I Claim 11. |P | ≥ |E|/4.

Proof of Claim 11. Let S be the set of nodes v ∈ V so that the parent of v in Td is pure.
Since |S| ≤ 2|P |, it is enough to show that |S| ≥ |E|/2. Let T ′ be the minor of Td obtained
by contracting all the edges of Td not in E. The tree T ′ is a (not necessarily binary) tree
with |E| edges. For x ∈ V (T ′), let [x] ⊆ V be the set of vertices that have been contracted
to x. The root of T ′ is the vertex x so that the root of Td is in [x]. View T ′ as directed from
leaves to the root. For x ∈ V (T ′), let v(x) ∈ V be the vertex in [x] that is closest to the root
of Td. This is well defined, since the set [x] is connected in Td. For every leaf x ∈ V (T ′),
we have v(x) ∈ S. For every x ∈ V (T ′) with in-degree one which is not the root of T ′, the
vertex v(x) is also in S. Recall that T ′ can have at most |E|/2 vertices of in-degree at least
two. Hence, |S| ≥ (|E|+ 1)− (|E|/2 + 1), as required. J

For every pure node v, fix a leaf ṽ such that the path from ṽ to v is pure. Let P̃ = {ṽ :
v ∈ P}. The sizes of P̃ and P are the same.

I Claim 12. Assume sup(h0) 6= ∅. Then every β ∈ sup(h1) is uniquely determined by its
values on (`(Td) ∩ V1) \ P̃ .

Proof of Claim 12. Fix α ∈ sup(h0). For the sake of contradiction, assume that there are
two distinct β1, β2 ∈ sup(h1) which agree on (`(Td) ∩ V1) \ P̃ . Since h0 ∧ h1 ≤ Td,m, both
α ∪ β1 and α ∪ β2 are legal maps satisfying (8). Hence, β1 and β2 differ on some leaf in
V1. They agree on leaves outside of P̃ and so there exists a pure node v ∈ V0 such that
β1(ṽ) 6= β2(ṽ). We can assume that v is minimal in that for every pure node u ∈ T (v) ∩ V0
with u 6= v, we have β1(ũ) = β2(ũ). Since every pure path that starts in `(T (v)) ∩ V1 must
also end in T (v), we obtain that β1(u) = β2(u) for every leaf in T (v) ∩ V1 with the sole
exception of ṽ. But this is impossible since (8) implies that for every i ∈ {1, 2},

α(v)−
∑

u∈`(T (v))∩V0

α(u) = βi(ṽ) +
∑

u∈(`(T (v))∩V1)\{ṽ}

βi(u) ,

which gives β1(ṽ) = β2(ṽ). J

To conclude the lemma, assume that sup(h0 ∧ h1) 6= ∅, otherwise we are done. Claim 12
shows that

| sup(h0)| ≤ m|(`(Td)∩V0)\P̃ | , | sup(h1)| ≤ m|(`(Td)∩V1)\P̃ | .
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Since | sup(Td,m)| = m|`(Td)|,

| sup(h0)| · | sup(h1)| ≤ m|`(Td)|−|P̃ | = m−|P̃ || sup(Td,m)| .

Finally, Claim 11 and Corollary 6 give |P̃ | = |P | ≥ |E|/4 ≥ eTd
(V0)/4 ≥ d/16. J

3.2 The tree polynomial
We now describe the polynomial that separates monotone circuits from ABPs. Recall that
Td is the full binary tree of depth d and Td,m : ZVm → {0, 1} is the tree function, where
V = V (Td). For every v ∈ Td and z ∈ Zm, introduce the variable xv,z. For a partial function
γ : V → Zm, define the monomial xγ =

∏
v∈dom(γ) xv,γ(v). Define the tree polynomial as

Pd,m =
∑

γ∈ZV
m:Td,m(γ)=1

xγ .

It is homogeneous of degree |V | = 2d+1 − 1 and it has m|V | variables.
We now prove a generalization of Theorem 1.

I Proposition 13. The polynomial Pd,m can be computed by a monotone arithmetic circuit
of size O(m22d). However, every monotone ABP computing Pd,m has size at least mΩ(d).

Theorem 1 follows from Proposition 13 by setting m = 2d.

Proof of Proposition 13. We first prove the lower bound. Assume that Pd,m has a monotone
ABP of size s. Let σd be as defined in (3). By Lemma 3, we can write

Pd,m =
s∑
i=1

higi ,

where hi, gi are homogeneous and monotone, hi has degree σd and gi has degree deg(Pd,m)−σd.
We can assume higi 6= 0 for every i. For a polynomial f , let mon(f) be the set of γ’s such that
xγ has a non-zero coefficient in f , and let f? be the boolean function with sup(f?) = mon(f).
Monotonicity guarantees that for every i ∈ [s], there exists Vi ⊆ V with |Vi| = σd such
mon(hi) ⊆ ZVi

m and mon(gi) ⊆ ZV \Vi
m . Therefore,

P?d,m =
s∨
i=1

h?i ∧ g?i .

Since P?d,m = Td,m, Lemma 10 gives s ≥ md/16.
For the upper bound, fix m and proceed by induction on d. For a ∈ Zm, let Fa,d be the

polynomial defined as Pd,m, except γ range over legal maps with γ(vd) = a, where vd is the
root. Hence, Td,m =

∑
a∈Zm

Fa,d.
We will show that Fd,a, for all a ∈ Zm, can be simultaneously computed by a circuit

of size s(d) = O(m32d). For d = 0, we have s(d) = O(m). Assume that d > 0. Let T` be
the left subtree of Td of depth d − 1, and let Tr be the right subtree of depth d − 1. Let
C`, Cr be the two circuits guaranteed by induction on T`, Tr. For a ∈ Zm, denote by f`,a the
polynomial computed in C` so that the root of T` is mapped to a, and similarly define fr,a.
To define the circuit for Fd,a, use the following:

Fd,a =
∑

a`,ar∈Zm:a=a`+ar

f`,a`
fr,ar

xvd,a,
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Overall, we get the recursion

s(d) ≤ O(m2) + 2 · S(d− 1),

showing that s(d) = O(m22d). J

3.3 The structure of ABPs
We end this section by proving Lemma 3.

Proof of Lemma 3. Let P be an ABP computing a homogeneous polynomial f of degree r.
For a vertex v in P , denote by hv the polynomial

hv =
∑

γ:vstart→v

∏
e∈γ

LP (e)

and denote by gv the polynomial

gv =
∑

γ:v→vend

∏
e∈γ

LP (e).

Since the computation is monotone and f homogeneous, both hv, gv are homogeneous and
the sum of their degrees is r. Denote by U the set of vertices v in P so that the degree of hv
is k. Every directed path from vstart to vend in P passes through U exactly once. It follows
that

f =
∑
v∈U

hvgv,

as needed. J
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Abstract
We initiate a systematic study of tolerant testers of image properties or, equivalently, algorithms
that approximate the distance from a given image to the desired property (that is, the smallest
fraction of pixels that need to change in the image to ensure that the image satisfies the desired
property). Image processing is a particularly compelling area of applications for sublinear-time
algorithms and, specifically, property testing. However, for testing algorithms to reach their full
potential in image processing, they have to be tolerant, which allows them to be resilient to noise.
Prior to this work, only one tolerant testing algorithm for an image property (image partitioning)
has been published.

We design efficient approximation algorithms for the following fundamental questions: What
fraction of pixels have to be changed in an image so that it becomes a half-plane? a representa-
tion of a convex object? a representation of a connected object? More precisely, our algorithms
approximate the distance to three basic properties (being a half-plane, convexity, and connec-
tedness) within a small additive error ε, after reading a number of pixels polynomial in 1/ε and
independent of the size of the image. The running time of the testers for half-plane and convexity
is also polynomial in 1/ε. Tolerant testers for these three properties were not investigated previ-
ously. For convexity and connectedness, even the existence of distance approximation algorithms
with query complexity independent of the input size is not implied by previous work. (It does
not follow from the VC-dimension bounds, since VC dimension of convexity and connectedness,
even in two dimensions, depends on the input size. It also does not follow from the existence of
non-tolerant testers.)

Our algorithms require very simple access to the input: uniform random samples for the
half-plane property and convexity, and samples from uniformly random blocks for connectedness.
However, the analysis of the algorithms, especially for convexity, requires many geometric and
combinatorial insights. For example, in the analysis of the algorithm for convexity, we define a
set of reference polygons Pε such that (1) every convex image has a nearby polygon in Pε and
(2) one can use dynamic programming to quickly compute the smallest empirical distance to a
polygon in Pε. This construction might be of independent interest.
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90:2 Tolerant Testers of Image Properties

1 Introduction

Image processing is a particularly compelling area of applications for sublinear-time algorithms
and, specifically, property testing. Images are huge objects, and our visual system manages
to process them very quickly without examining every part of the image. Moreover, many
applications in image analysis have to process a large number of images online, looking for
an image that satisfies a certain property among images that are generally very far from
satisfying it. Or, alternatively, they look for a subimage satisfying a certain property in a
large image (e.g., a face in an image where most regions are part of the background.) There
is a growing number of proposed rejection-based algorithms that employ a quick test that is
likely to reject a large number of unsuitable images (see, e.g., citations in [15]).

Property testing [21, 10] is a formal study of fast algorithms that accept objects with a
given property and reject objects that are far. Testing image properties in this framework was
first considered in [19]. Ron and Tsur [20] initiated property testing of images with a different
input representation, suitable for testing properties of sparse images. Since these models
were proposed, several sublinear-time algorithms for visual properties were implemented and
used: namely, those by Kleiner et al. and Korman et al. [15, 16, 17].

However, for sublinear-time algorithms to reach their full potential in image processing,
they have to be resilient to noise: images are often noisy, and it is undesirable to reject
images that differ only on a small fraction of pixels from an image satisfying the desired
property. Tolerant testing was introduced by Parnas, Ron and Rubinfeld [18] exactly with
this goal in mind—to deal with noisy objects. It builds on the property testing model and
calls for algorithms that accept objects that are close to having a desired property and reject
objects that are far. Another related task is approximating distance of a given object to a
nearest object with the property within additive error ε. (Distance approximation algorithms
imply tolerant testers in a straightforward way.) The only image problem for which tolerant
testers were studied is the image partitioning problem investigated by Kleiner et al. [15].

Our results. We design efficient approximation algorithms for the following fundamental
questions: What fraction of pixels have to be changed in an image so that it becomes a
half-plane? a representation of a convex object? a representation of a connected object?
In other words, we design algorithms that approximate the distance to being a half-plane,
convexity and connectedness within a small additive error or, equivalently, tolerant testers
for these properties. These problems were not investigated previously in the tolerant testing
framework. For all three properties, we give ε-additive distance approximation algorithms
that run in constant time (i.e., dependent only on ε, but not the image size). We remark
that even though it was known that these properties can be tested in constant time [19], this
fact does not necessarily imply constant-query tolerant testers for these properties. E.g.,
Fischer and Fortnow [9] exhibit a property (of objects representable with strings of length
n) which is testable with a constant number of queries, but for which every tolerant tester
requires nΩ(1) queries. For convexity and connectedness, even the existence of distance
approximation algorithms with query (or time) complexity independent of the input size
does not follow from previous work. It does not follow from the VC-dimension bounds, since
VC dimension of convexity and connectedness, even in two dimensions, depends on the input
size1. Implications of the VC dimension bound on convexity are further discussed below.

1 For n× n images, the VC dimension of convexity is Θ(n2/3) (this is the maximum number of vertices of
a convex lattice polygon in an n× n lattice [1]); for connectedness, it is Θ(n).
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Table 1 Our results on distance approximation. To get complexity of (ε1, ε2)-tolerant testing,
substitute ε = (ε2 − ε1)/2.

Property Sample Complexity Run Time Access to Input

Half-plane O
(

1
ε2 log 1

ε

)
O
(

1
ε3 log 1

ε

)
uniformly random pixels

Convexity O
(

1
ε2 log 1

ε

)
O
(

1
ε8

)
uniformly random pixels

Connectedness O
(

1
ε4

)
exp
(
O
(

1
ε

))
uniformly random blocks of pixels

Our results on distance approximation are summarized in Table 1. Our algorithm for
convexity is the most important and technically difficult of our results, requiring a large
number of new ideas to get running time polynomial in 1/ε. To achieve this, we define a set
of reference polygons Pε such that (1) every convex image has a nearby polygon in Pε and
(2) one can use dynamic programming to quickly compute the smallest empirical distance to
a polygon in Pε. It turns out that the empirical error of our algorithm is proportional to the
sum of the square roots of the areas of the regions it considers in the dynamic program. To
guarantee (2) and keep our empirical error small, our construction ensures that the sum of
the square roots of the areas of the considered regions is small. This construction might be
of independent interest.

Our algorithms do not need sophisticated access to the input image: uniformly randomly
sampled pixels suffice for our algorithms for the half-plane property and convexity. For
connectedness, we allow our algorithms to query pixels from a uniformly random block. (See
the end of Section 2 for a formal specification of the input access.)

Our algorithms for convexity and half-plane work by first implicitly learning the object2.
PAC learning was defined by Valiant [23], and agnostic learning, by Kearns et al. [14] and
Haussler [12]. As a corollary of our analysis, we obtain fast proper agnostic PAC learners of
half-planes and of convex sets in two dimensions that work under the uniform distribution.
The sample and time complexity3 of the PAC learners is as indicated in Table 1 for distance
approximation algorithms for corresponding properties.

While the sample complexity of our agnostic half-plane learner (and hence our distance
approximation algorithm for half-planes) follows from the VC dimension bounds, its running
time does not. Agnostically learning half-spaces under the uniform distribution has been
studied by [13], but only for the hypercube {−1, 1}d domains, not the plane. Our PAC learner
of convex sets, in contrast to our half-plane learner, dimension lower bounds on sample
complexity. (The sample complexity of a PAC learner for a class is at least proportional to
the VC dimension of that class [8].) Since VC dimension of convexity of n × n images is
Θ(n2/3), proper PAC learners of convex sets in two dimensions (that work under arbitrary

2 There is a known implication from learning to testing. As proved in [10], a proper PAC learning
algorithm for property P with sampling complexity q(ε) implies a 2-sided error (uniform) property
tester for P that takes q(ε/2) +O(1/ε) samples. There is an analogous implication from proper agnostic
PAC learning to distance approximation with an overhead of O(1/ε2) instead of O(1/ε). We choose to
present our testers first and get learners as corollary because our focus is on testing and because we
want additional features for our testers, such as 1-sided error, that do not automatically follow from the
generic relationship.

3 All our results are stated for error probability δ = 1/3. To get results for general δ, by standard
arguments, it is enough to multiply the complexity of an algorithm by log 1/δ.
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distributions) must have sample complexity Ω(n2/3). However, one can do much better with
respect to the uniform distribution. Schmeltz [22] showed that a non-agnostic learner for
that task needs Θ(ε−3/2) samples. Surprisingly, it appears that this question has not been
studied at all for agnostic learners. Our agnostic learner for convex sets in 2D under the
uniform distribution needs O

( 1
ε2 log 1

ε

)
samples and runs in time O

( 1
ε8

)
.

Finally, we note that for connectedness, we take a different approach. Our algorithms
do not try to learn the object first; instead they rely on a combinatorial characterization of
distance to connectedness. We show that distance to connectedness can be represented as an
average of distances of sub-images to a related property.

Comparison to other related work. Property testing has rich literature on graphs and
functions, however, properties of images have been investigated very little. Even though
superficially the inputs to various types of testing tasks might look similar, the problems
that arise are different. In the line of work on testing dense graphs, started by Goldreich et
al. [10], the input is also an n× n binary matrix, but it represents an adjacency matrix of
the dense input graph. So, the problems considered are different than in this work. In the
line of work on testing geometric properties, started by Czumaj, Sohler, and Ziegler [7] and
Czumaj and Sohler [6], the input is a set of points represented by their coordinates. The
allowed queries and the distance measure on the input space are different from ours.

A line of work potentially relevant for understanding connectedness of images is on
connectedness of bounded-degree graphs. Goldreich and Ron [11] gave a tester for this
property, subsequently improved by Berman et al. [3]. Campagna et al. [5] gave a tolerant
tester for this problem. Even though we view our image as a graph in order to define
connectedness of images, there is a significant difference in how distances between instances
are measured (see [19] for details). We also note, that unlike in [5], our tolerant tester for
connectedness is fully tolerant, i.e., it works for all settings of parameters.

The only previously known tolerant tester for image properties was given by Kleiner et
al. [15]. They consider the following class of image partitioning problems, each specified by
a k × k binary template matrix T for a small constant k. The image satisfies the property
corresponding to T if it can be partitioned by k − 1 horizontal and k − 1 vertical lines into
blocks, where each block has the same color as the corresponding entry of T . Kleiner et al.
prove that O(1/ε2) samples suffice for tolerant testing of image partitioning properties. Note
that VC dimension of such a property is O(1), so by Footnote 2, we can get a O(1/ε2 log 1/ε)
bound. Our algorithms required numerous new ideas to significantly beat VC dimension
bounds (for convexity and connectedness) and to get low running time.

For the properties we study, distance approximation algorithms and tolerant testers
were not investigated previously. In the standard property testing model, the half-plane
property can be tested in O(ε−1) time [19], convexity can be tested in O(ε−4/3) time [2],
and connectedness can be tested in O(ε−2 log ε−1) time [19, 3]. As we explained, property
testers with running time independent of ε do not necessarily imply tolerant testers with
that feature. Many new ideas are needed to obtain our tolerant testers. In particular, the
standard testers for half-plane and connectedness are adaptive while the testers here need
only random samples from the image, so the techniques used for analyzing them are different.
The tester for convexity in [2] uses only random samples, but it is not based on dynamic
programming.

Open questions. In this paper we give tolerant testers for several important problems
on images. It is open whether these testers are optimal. No nontrivial lower bounds are
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known for these problems. (For any non-trivial property, an easy lower bound on the query
complexity of a distance approximation algorithm is Ω(1/ε2). This follows from the fact that
Ω(1/ε2) coin flips are needed to distinguish between a fair coin and a coin that lands heads
with probability 1/2 + ε.) Thus, our testers for half-plane and convexity are nearly optimal
in terms of query complexity (up to a logorithmic factor in 1/ε). But it is open whether their
running time can be improved.

Organization. We give formal definitions and notation in Section 2, deferring some standard
definitions to the full version of this article. Algorithms for being a half-plane, convexity,
and connectedness are given in Sections 3, 4, and 5, respectively. We view our half-plane
result as a good preparation for our distance approximation algorithm for convexity, the
most technically difficult result in the paper. Corollaries about PAC learners as well as all
omitted proofs and numerous figures can be found in the full version of this article.

2 Definitions and Notation

We use [0..n) to denote the set of integers {0, 1, . . . , n− 1} and [n] to denote {1, 2, . . . , n}.

Image representation. We focus on black and white images. For simplicity, we only consider
square images, but everything in this paper can be easily generalized to rectangular images.
We represent an image by an n× n binary matrix M of pixel values, where 0 denotes white
and 1 denotes black. We index the matrix by [0..n)2. The object is a subset of [0..n)2

corresponding to black pixels; namely, {(i, j) |M [i, j] = 1}.
The absolute distance, Dist(M1,M2), between matrices M1 and M2 is the number of

the entries on which they differ. The relative distance between them is dist(M1,M2) =
Dist(M1,M2)/n2. A property P is a subset of binary matrices.

Access to the input. A query-based algorithm accesses its n × n input matrix M by
specifying a query pixel (i, j) and obtaining M [i, j]. A uniform algorithm accesses its n× n
input matrix by drawing independent samples (i, j) from the uniform distribution over the
domain (i.e., [0..n)2) and obtainingM [i, j]. A block-uniform algorithm accesses its n×n input
matrix by specifying a block length r ∈ [n]. For a block length r of its choice, the algorithm
draws x, y ∈ [dn/re] uniformly at random and obtains set {(i, j) | bi/rc = x and bj/rc = y}
and M [i, j] for all (i, j) in this set. The sample complexity of a uniform or a block-uniform
algorithm is the number of pixels of the image it examines.
I Remark 2.1. Uniform algorithms have access to independent (labeled) samples from the
uniform distribution over the domain. Bernoulli algorithms only have access to (labeled)
Bernoulli samples from the image: namely, each pixel appears in the sample with probability
s/n2, where s is the sample parameter that controls the expected sample complexity. By
standard arguments, a Bernoulli algorithm with the sample parameter s can be used to
obtain a uniform algorithm that takes O(s) samples and has the same guarantees as the
original algorithm (and vice versa).

3 Distance Approximation to the Nearest Half-Plane

An image is a half-plane if there exist an angle ϕ ∈ [0, 2π) and a real number c such that
M [x, y] = 1 (i.e., pixel (x, y) is black) iff x cosϕ+ y sinϕ ≥ c. In other words, an image is a
half-plane if there is a line, called a separating line, that separates black and white pixels of
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the image. For all ϕ and c, let Mϕ
c denote the half-plane that satisfies the above inequality

with parameters ϕ and c, and let Lϕc be the segment of the separating line that belongs
to the image. We call ϕ the direction of Mϕ

c (and Lϕc ). Note that ϕ is the oriented angle
between the x-axis and a line perpendicular to Lϕc .

I Theorem 3.1. There is a uniform ε-additive distance approximation algorithm for the
half-plane property with sample complexity O( 1

ε2 log 1
ε ) and time complexity O( 1

ε3 log 1
ε ).

Proof. At a high level, our algorithm (Algorithm 1) constructs a small set Hε of reference
half-planes. It samples pixels uniformly at random and outputs the empirical distance to the
closest reference half-plane. The core property of Hε is that the smallest empirical distance
to a half-plane in Hε can be computed quickly.

I Definition 3.2 (Reference directions and half-planes). Given ε ∈ (0, 1
4 ), let a = εn/

√
2.

Let Dε be the set of directions of the form iε for i ∈ [0..d2π/εe), called reference directions.
The set of reference half-planes, denoted Hε, consists of half-planes of the form Mϕ

c , where
ϕ ∈ Dε, the reference line intersects [0, n− 1]2, and c is an integer multiple of a.

In other words, for every reference direction, we space reference half-planes distance a apart.
By definition, there are at most

√
2n/a = 2/ε reference half-planes for each direction in Dε

and, consequently, |Hε| ≤ 2π/ε · (2/ε) < 13/ε2.

Algorithm 1: Distance approximation to being a half-plane.
Input : parameters n ∈ N, ε ∈ (0, 1/4); Bernoulli access to an n× n binary matrix M .

1 Sample a set S of s = 4
ε2 ln 9

ε pixels uniformly at random with replacement.
2 Let Dε and Hε be the sets of reference directions and half-planes, respectively (see

Definition 3.2) and let a = εn/
√

2.
// Compute d̂ = min

M ′∈Hε
d̂(M ′), where d̂(M ′) = 1

s · |{p ∈ S : M [p] 6= M ′[p]}|:

3 foreach ϕ ∈ Dε do
// Lines with direction ϕ partition the image. Bucket sort samples by

position in the partition:
4 Assign each sample (x, y) ∈ S to bucket j = b(x cosϕ+ y sinϕ)/ac.
5 For each bucket j, compute wj and bj , the number of white and black pixels it has.
6 For each j, where Mϕ

ja ∈ Hε, compute d̂(Mϕ
ja) = 1

s

∑
k<j bk + 1

s

∑
k≥j wk.

7 Output d̂, the minimum of the values computed in Step 6.

I Lemma 3.3. For every half-plane matrixM , there isM ′ ∈ Hε such that dist(M,M ′) ≤ ε/2.

Proof. Consider a half-plane Mϕ
c . Let ϕ′ be a reference direction closest to ϕ. Then

|ϕ− ϕ′| ≤ ε/2. We consider two cases. See Figures 1 and 2.

Case 1: Suppose that there is a reference half-plane Mϕ′

c′ such that the separating line
segments Lϕc and Lϕ

′

c′ intersect. Note that the length of every line segment that belongs to
the image is at most

√
2n. The symmetric difference of Mϕ

c and Mϕ′

c′ is contained in two
regions formed by line segments Lϕc and Lϕ

′

c′ . Each of these regions is either a triangle or (if
it contains a corner of the image) a quadrilateral. First, suppose both regions are triangles.
The sum of lengths of their bases, that lie on the same line, is at most

√
2n, whereas the
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𝜀/2

Figure 1 Proof of Lemma 3.3: triangular
regions.

𝜑1 𝜑2

Figure 2 Proof of Lemma 3.3: triangular
and quadrilateral regions.

sum of their heights is at most sin(ε/2)×
√

2n ≤ εn/
√

2. Hence, the sum of their areas4 is
at most εn2/2.

If exactly one of the regions is a quadrilateral, we add a line through the corner of
the image contained in the quadrilateral and the intersection point of Lϕc and Lϕ

′

c′ . It
partitions the symmetric difference of Mϕ

c and Mϕ′

c′ into two pairs of triangular regions. Let
ϕ1 (respectively, ϕ2) be the angle between the new line and Lϕc (respectively, Lϕ

′

c′ ). Then
ϕ1 + ϕ2 ≤ ε/2. Applying the same reasoning as before to each pair of regions, we get that
the sum of their areas is at most ϕ1n

2 + ϕ2n
2 ≤ εn2/2. If both regions are quadrilaterals,

we add a line as before for each of them and apply the same reasoning as before to the three
resulting pairs of regions. Again, the area of the symmetric difference of Mϕ

c and Mϕ′

c′ is at
most εn2/2. Thus4, Mϕ′

c′ is the required M ′.

Case 2: There exist reference half-planes with separating line segments L = Lϕ
′

c′ and
L′ = Lϕ

′

c′+a such that the line segment Lϕc is between L and L′. The region between L and
L′ has length at most

√
2n and width a. Thus, its area is at most εn2. Partition it into two

regions: between L and Lϕc and between L′ and Lϕc . One of the two regions has area at most
εn2/2. Thus, Mϕ′

c′ or Mϕ′

c′+a is the required M ′. J

Analysis of Algorithm 1. Let dM be the distance of M to being a half-plane. Then there
exists a half-plane matrixM∗ such that dist(M,M∗) = dM . By a uniform convergence bound
(see, e.g., [4]), since s ≥ (2/ε2)(ln |Hε|+ln 6) for all ε ∈ (0, 1/4), we get that with probability at
least 2/3, |dist(M,M ′)− d̂(M ′)| ≤ ε/2 for all M ′ ∈ Hε. Suppose this event happened. Then
d̂ ≥ dM − ε/2 because dist(M,M ′) ≥ dM for all half-planes M ′. Moreover, by Lemma 3.3,
there is a matrix M̂ ∈ Hε such that dist(M,M̂) ≤ dist(M,M∗) + dist(M∗, M̂) ≤ dM + ε/2.
For this matrix, d̂(M̂) ≤ dist(M,M̂) + ε/2 ≤ dM + ε. Thus, dM − ε/2 ≤ d̂ ≤ dM + ε. That
is, |dM − d̂| ≤ ε with probability 2/3, as required.

Sample and time complexity. The number of samples, s, is O(1/ε2 log 1/ε). To analyze
the running time, recall that |Dε| = O(1/ε). For each direction in Dε, we bucket sort

4 For simplicity of presentation, we equate the area of a convex region and the number of pixels in it,
thus ignoring additional small-order terms. By Pick’s theorem, the number of pixels could be at most
the area plus 2n. It does not affect the asymptotic analysis of our algorithms.
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𝜑 ∈ 𝐷𝜀𝜑

Θ(𝜀𝑛)

Figure 3 An illustration of reference lines
and reference points.

𝑏0

𝑏1

𝑏2

𝑏3

ℓ0

ℓ1 ℓ3

ℓ2

Figure 4 An illustration of a reference
box and triangles of T0.

all samples in expected O(s) time. The remaining steps in the foreach loop of Step 3
can be implemented to run in O(s) time. The expected run time of Algorithm 1 is thus
O(1/ε · s) = O(1/ε3 log 1/ε). Remark 2.1 implies a tester with the same worst case run
time. J

4 Distance Approximation to the Nearest Convex Image

An image is convex if the convex hull of all black pixels contains only black pixels.

I Theorem 4.1. There is a uniform ε-additive distance approximation algorithm for convexity
with sample complexity O( 1

ε2 log 1
ε ) and running time O( 1

ε8 ).

Proof. The starting point for our algorithm for approximating the distance to convexity
(Algorithm 2) is similar to that of Algorithm 1 that approximates the distance to a nearest
half-plane. We define a small set Pε of reference polygons. Algorithm 2 implicitly learns a
nearby reference polygon and outputs the empirical distance from the image to that polygon.
The key features of Pε is that (1) every convex image has a nearby polygon in Pε, and (2)
one can use dynamic programming (DP) to quickly compute the smallest empirical distance
to a polygon in Pε.

We start by defining reference directions, lines, points, and line-point pairs that are
later used to specify our DP instances. Reference directions are almost the same as in
Definition 3.2.

I Definition 4.2 (Reference lines, line-point pairs). Fix ε0 = ε/144. The set of reference
directions isDε = {π/2}∪{iε0 : i ∈ [0, d2π/ε0e)}. For every ϕ ∈ Dε, define the set of reference
lines Lϕ = {` : ` passes through the image and satisfies the equation x cosϕ + y sinϕ = c,

where c is an integer multiple of ε0n}. For each reference line, the set of reference points
on ` contains points w.r.t. `, which are inside [0, n− 1]2, spaced exactly ε0n apart (it does
not matter how the initial point is picked). A line-point pair is a pair (`, b), where ` is a
reference line and b is a reference point w.r.t. `. (Note that there could be reference points
on ` that were defined w.r.t. some other reference line. This is why we say “a reference point
w.r.t. `”, and not “a reference point on `”.)

Roughly speaking, a reference polygon is a polygon whose vertices are defined by line-point
pairs. There are additional restrictions that stem from the fact that we need to be able to
efficiently find a nearby reference polygon for an input image. The actual definition specifies
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which actions we can take while constructing a reference polygon. Reference polygons are
built starting from reference boxes, which are defined next.

I Definition 4.3 (Reference box). A reference box is a set of four line-point pairs (`i, bi) for
i = 0, 1, 2, 3, where `0, `2 are distinct horizontal lines, such that `0 is above `2, and (`1, `3)
are distinct vertical lines, such that `1 is to the left of `3. The reference box defines a vertex
set B0 = {b0, b1, b2, b3} and a triangle set T0, formed by removing the quadrilateral b0b1b2b3
from the rectangle delineated by the lines `0, `1, `2, `3.

Intuitively, by picking a reference box, we decide to keep the area inside the quadrilateral
b0b1b2b3 black, the area outside the rectangle formed by `0, `1, `2, `3 white, and the triangles
in T0 gray, i.e., undecided for now.

I Definition 4.4. For points x, y, let `(x, y) denote the line that passes through x and y.
Let xy denote the line segment between x and y.

Reference polygons are defined next. Intuitively, to obtain a reference polygon, we keep
subdividing “gray” triangles in T0 into smaller triangles and deciding to color the smaller
triangles black or white or keep them gray (i.e., undecided for now). We also allow “cutting
off” a quadrilateral that is adjacent to black and coloring it black (a.k.a. “the base change
operation”). Even though the definition of reference polygons is somewhat technical, the
readers can check their understanding of this concept by following Algorithm 2, as it chooses
the best reference polygon to approximate the input image.

I Definition 4.5 (Reference polygon). A reference polygon is an image of a polygon Hull(B),
where the set B can be obtained from a reference box with a vertex set B0 and a triangle set
T0 by the following recursive process. Initially, Tend = ∅ and B = B0. While T0 6= ∅, move
a triangle T from T0 to Tend and perform the following steps:
1. (Base Change). Let T = 4b′b′′v, where b′, b′′ ∈ B. Select reference point b′0 on b′v w.r.t.

line `(b′, v), and reference point b′′0 on b′′v w.r.t. line `(b′′, v). Add b′0, b
′′
0 to B. (This

corresponds to coloring the quadrilateral b′b′0b′′0b′′ black.) Let h be the height of 4b′0b′′0v
w.r.t. the base b′0b′′0 .

2. (Subdivision Step) If h > 6ε0n, choose whether to proceed with this step or go to Step 3
(both choices correspond to a legal reference polygon); otherwise, go to Step 3. Let ϕ
be the angle between `(b′0, b′′0) and the x-axis, and ϕ̂ ∈ Dε be such that |ϕ̂− ϕ| ≤ ε0/2.
Select a reference line-point pair (`, b), where the line ` ∈ Lϕ̂ crosses b′0v and b′′0v, whereas
b is in the triangle 4b′0b′′0v. Let v′ (resp., v′′) be the point of intersection of ` and b′0v
(resp., ` and b′′0v). Let T ′ = 4b′0bv′, T ′′ = 4b′′0bv′′. Add b to B and triangles T ′, T ′′ to
T0. (This represents coloring 4b′0b′′0b black and keeping T ′ and T ′′ gray.)

3. (End of Processing) Do nothing. (This represents coloring 4b′0b′′0v white).

By Remark 2.1, to prove Theorem 4.1, it suffices to design a Bernoulli tester that takes
s = O( 1

ε2 log 1
ε ) samples in expectation and runs in time O( 1

ε8 ). Our Bernoulli tester is
Algorithm 2. In Algorithm 2, we use the following notation for the (relative) empirical error
with respect to an input image M , a set of sampled pixels S, and the size parameter s. For
an image M ′, let d̂(M ′) = 1

s · |{u ∈ S : M [u] 6= M ′[u]}|. For every region R ⊆ [0..n)2, we let
d̂+(R) = 1

s · |{u ∈ S ∩ R : M [u] = 0}|, and d̂−(R) = 1
s · |{u ∈ S ∩ R : M [u] = 1}|, i.e., the

empirical error if we make R black/white, respectively.
Subroutine Best chooses the option with the smallest empirical relative error among those

given in Definition 4.5, items 1-3. Its pseudocode is in the full version of this article.
Our set of reference polygons has two critical features. First, for each convex image there

is a nearby reference polygon. It turns out that the empirical error for a region is proportional
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Figure 5 An illustration to Definition 4.5: Triangle 4b′b′′v.

Algorithm 2: Bernoulli approximation algorithm for distance to convexity.
Input : parameters n ∈ N, ε ∈ (0, 1/4); Bernoulli access to an n× n binary matrix M .

1 Set s = Θ( 1
ε2 log 1

ε ). Include each image pixel in the sample S w.p. p = s/n2.
// Run the algorithm to find d̂, the smallest fraction of samples

misclassified by a reference polygon in Pε. A dynamic programming
implementation of the algorithm is given in the full version.

2 Let W`0 (resp., W`2) be the set of pixels of the image M that lie either above `0 or to
the left of b0 on `0 (resp., either below `2 or to the left of b2 on `2). Let W`1 (resp.,
W`3) be the set of pixels of M −W`0 −W`2 to the left of `1 (resp., to the right of `3).

3 Set d̂ = 1.
4 forall line-point pairs (`0, b0), (`2, b2), where `0, `2 are horizontal lines do
5 Set d̂left = 1.

// The best error for the region to the left of b0b2, between `0 and `2.
6 foreach line-point pair (`1, b1), where `1 is a vertical line do
7 Let v0 (resp., v2) be the point where `1 intersects `0 (resp., `1 intersects `2).
8 d̂left = min(d̂left, d̂−(W`1) + d̂+(4b0b1b2) + Best(4b0b1v0) + Best(4b1b2v2))
9 Similarly to Steps 5–8, compute d̂right.

// The best error for the region to the right of b0b2, between `0 and `2.
10 Compute d̂ = min(d̂, d̂−(W`0 ∪W`2) + d̂left + d̂right).
11 return d̂.

to the square root of its area. The second key feature of our reference polygons is that, for
each of them, the set of considered triangles, Tend, has small

∑
T∈Tend

√
A(T ), where A(T )

denotes the area of triangle T . The proofs of both features, as well as the analysis of the
empirical error, are quite technical and appear in the full version of this article. J

Here, we state and partially prove a lemma that puts together different parts of the
analysis. It makes it clear why the empirical error of each region is proportional to the square
root of its area which is, as explained in Footnote 4, a proxy for the number of pixels in it.

I Lemma 4.6. With probability at least 2/3 over the choice of the samples taken by Al-
gorithm 2, |d̂(M ′)− dist(M,M ′)| ≤ 5ε/6 for all reference polygons M ′.

Proof. Consider a region R = (R+, R−), partitioned into two regions R+ and R−, such that
in some step, the algorithm checks the assumption that R+ is black and R− is white, i.e.,
evaluates d̂+(R+) + d̂−(R−). Let R be the set of all such regions R. We show that with
probability at least 2/3, the estimates d̂+(R+) + d̂−(R−) are accurate on all regions in R.
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Fix R = (R+, R−) ∈ R. Let Γ be the set of misclassified pixels in R, i.e., pixels in R+
which are white inM and pixels in R− which are black inM . Define γ = |Γ|/n2. Algorithm 2
approximates γ by d̂+(R+) + d̂−(R−) = 1

s |Γ ∩ S|. Equivalently, it uses the estimate 1
p |Γ ∩ S|

for |Γ| (recall that p = s/n2). The error of the estimate is errS(R) = 1
p |Γ ∩ S| − |Γ|.

I Claim 4.7. Pr[|errS(R)| > √γ · cεn2] ≤ 2 exp(− 3
8c

2ε2s), where c = 1/21.

Proof. For each pixel u, define random variables χu and Xu, where χu is the indicator for the
event u ∈ S (i.e., a Bernoulli variable with the probability parameter p), whereas Xu = χu

p −1.
Then our estimate of |Γ| is 1

p |Γ ∩ S| = 1
p

∑
u∈Γ χu, whereas errS(R) =

∑
u∈ΓXu. We use

Bernstein inequality to bound Pr[
∑
u∈ΓXu >

√
γ · cεn2]. The variables Xu are identically

distributed. The maximum value of |Xu| is a = 1−p
p . Note that E[X2

u] = 1
p2 E[(χu − p)2] =

1
p2 Var[χu] = 1−p

p = a. Assume w.l.o.g. that z < |Γ|. (If z ≥ |Γ| then
∑
u∈ΓXu cannot exceed

z, and the probability we are bounding is 0.) By Bernstein inequality,

Pr
[∑
u∈Γ

Xu > z

]
≤ exp

(
−z2/2

a|Γ|+ a · z/3

)
< exp

(
− 3

8 ·
z2 · p
|Γ|

)
= exp

(
− 3

8
γc2ε2n4

γn2
s

n2

)
= exp(−3

8c
2ε2s).

The second inequality holds because a < 1/p and z < |Γ|. The equalities are obtained by
substituting the expressions for z, |Γ|, and p, and simplifying. By symmetry, Pr[|errS(R)| ≥
z] ≤ 2 exp(− 3

8c
2ε2s). J

The rest of the proof appears in the full version of this article. J

5 Distance Approximation to the Nearest Connected Image

To define connectedness, we consider the image graph GM of an image M . The vertices of
GM are {(i, j) |M [i, j] = 1}, and two vertices (i, j) and (i′, j′) are connected by an edge if
|i− i′|+ |j − j′| = 1. In other words, the image graph consists of black pixels connected by
the grid lines. The image is connected if its image graph is connected.

I Theorem 5.1. There is a block-uniform ε-additive distance approximation algorithm for
connectedness with sample complexity O( 1

ε4 ) and running time exp
(
O
( 1
ε

))
.

The first idea in our algorithms for connectedness is that we can modify an image
by superimposing a grid on it, and as a result obtain a nearby image whose distance to
connectedness is determined by the properties of individual squares into which the grid lines
partition the image. The squares and the relevant property of the squares are defined next.

For a set S ⊂ [0..n)2 and (i, j) ∈ [0..n)2, we define S+ (i, j) = {(x+ i, y+ j) : (x, y) ∈ S}.

I Definition 5.2 (Squares and grid pixels). Fix a side length n ≡ 1 (mod r). For all integers
i, j ∈ [0..n− r), where i and j are divisible by r, the (r − 1)× (r − 1) image that consists
of all pixels in [r − 1]2 + (i, j) is called an r-square of M . The set of all r-squares of M is
denoted Sr.

The pixels that do not lie in any squares of Sr, i.e., pixels (i, j) where i or j is divisible
by r, are called grid pixels. The set of all grid pixels is denoted by GPr.

I Claim 5.3. |GPr| ≤ 2n2/r.
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Note that a square consists of pixels of an r-block, with the pixels of the first row and column
removed. Therefore, a block-uniform algorithm can obtain a uniformly random r-square.

Recall the definition of the border of an image from Section 2.

I Definition 5.4 (Border connectedness). A (sub)image S is border-connected if for every
black pixel (i, j) of S, the image graph GS contains a path from (i, j) to a pixel on the border.
The property border connectedness, denoted C′, is the set of all border-connected images.

The main idea behind Algorithm 3, used to prove Theorem 5.1, is to relate the distance
to connectedness to the distance to another property, which we call grid connectedness.
The latter distance is the average over squares of the distances of these squares to border
connectedness. The average can be easily estimated by looking at a sample of the squares.

W.l.o.g. assume that n ≡ 1 (mod 4/ε). (Otherwise, we can pad the image with white
pixels without changing whether it is connected and adjust the accuracy parameter.)

Algorithm 3: Distance approximation to connectedness.
Input :n ∈ N and ε ∈ (0, 1/4); block-sample access to an n× n binary matrix M .

1 Sample s = 4/ε2 squares uniformly and independently from S4/ε (see Definition 5.2).
// Tho do this draw random blocks from the 4/ε-partition of [0..n)2.

2 For each such square S, compute dist(S, C′), where C′ is border connectedness (see
Definition 5.4). Let d̂squares be the average of computed distances dist(S, C′).

3 return d̂ =
(
(1− ε

4 )(1− 1
n )
)2 · d̂squares.

I Definition 5.5. Fix ε ∈ (0, 1/4). Let image Mε be a gridded image obtained from image
M as follows:

Mε[i, j] =
{

1 if (i, j) is a grid pixel from GP4/ε;
M [i, j] otherwise.

Let C be the set of all connected images. For ε ∈ (0, 1/4), define grid connectedness
Cε = {M |M ∈ C, and M [i, j] = 1 for all (i, j) ∈ GP4/ε}.

I Lemma 5.6. Let dM = dist(M, C) and dε = dist(Mε, Cε). Then dM − ε
2 ≤ dε ≤ dM .

Moreover,

dε =
((

1− ε

4
)(

1− 1
n

))2
· 1
|S4/ε|

∑
S∈S4/ε

dist(S, C′).

Proof. First, we prove that dε ≤ dM . Let M ′ be a connected image such that dist(M,M ′) =
dM . Then M ′ε, the gridded image obtained from M ′, satisfies Cε. Since dist(Mε,M

′
ε) ≤ dM ,

it follows that dε ≤ dM . Now we show that dM − ε
2 ≤ dε. Let M ′′ε ∈ Cε be such that

dist(Mε,M
′′
ε ) = dε. Then M ′′ε ∈ C and, by Claim 5.3, dist(M,M ′′ε ) ≤ |GP4/ε|/n2 + dε ≤

ε/2 + dε, implying dM ≤ ε/2 + dε, as required.
Finally, observe that to make Mε satisfy Cε, it is necessary and sufficient to ensure that

each square satisfies C′. In other words,

dεn
2 =

∑
S∈S4/ε

Dist(S, C′) = (4/ε− 1)2
∑

S∈S4/ε

dist(S, C′).

Since |S4/ε| = (n−1
4/ε )2, the desired expression for dε follows. J

The rest of the analysis is completed in the full version of this article.
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Abstract
Property testers form an important class of sublinear algorithms. In the standard property
testing model, an algorithm accesses the input function f : D 7→ R via an oracle. With very few
exceptions, all property testers studied in this model rely on the oracle to provide function values
at all queried domain points. However, in many realistic situations, the oracle may be unable
to reveal the function values at some domain points due to privacy concerns, or when some of
the values get erased by mistake or by an adversary. The testers do not learn anything useful
about the property by querying those erased points. Moreover, the knowledge of a tester may
enable an adversary to erase some of the values so as to increase the query complexity of the
tester arbitrarily or, in some cases, make the tester entirely useless.

In this work, we initiate a study of property testers that are resilient to the presence of
adversarially erased function values. An α-erasure-resilient ε-tester is given parameters α, ε ∈
(0, 1), along with oracle access to a function f such that at most an α fraction of function
values have been erased. The tester does not know whether a value is erased until it queries the
corresponding domain point. The tester has to accept with high probability if there is a way to
assign values to the erased points such that the resulting function satisfies the desired property
P. It has to reject with high probability if, for every assignment of values to the erased points,
the resulting function has to be changed in at least an ε-fraction of the non-erased domain points
to satisfy P.

We design erasure-resilient property testers for a large class of properties. For some properties,
it is possible to obtain erasure-resilient testers by simply using standard testers as a black box.
However, there are more challenging properties for which all known testers rely on querying a
specific point. If this point is erased, all these testers break. We give efficient erasure-resilient
testers for several important classes of such properties of functions including monotonicity, the
Lipschitz property, and convexity. Finally, we show a separation between the standard testing
and erasure-resilient testing. Specifically, we describe a property that can be ε-tested with O( 1

ε )
queries in the standard model, whereas testing it in the erasure-resilient model requires number
of queries polynomial in the input size.
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1 Introduction

In this paper, we revisit the question of how sublinear-time algorithms access their input. With
very few exceptions, all algorithms studied in the literature on sublinear-time algorithms have
oracle access to their input1. However, in many applications, this assumption is unrealistic.
The oracle may be unable to reveal parts of the data due to privacy concerns, or when some
of the values get erased by mistake or by an adversary. Motivated by these scenarios, we
propose to study sublinear algorithms that work with partially erased data.

Formally, we view a dataset as a function over some discrete domain D, such as [n] =
{1, . . . , n} or [n]d. For example, the classical problem of testing whether a list of n numbers
is sorted in nondecreasing order can be viewed as a problem of testing whether a function
f : [n] → R is monotone (nondecreasing). Given a parameter α ∈ (0, 1), we say that a
function is α-erased if at most an α fraction of its domain points are marked as “erased” or
protected (that is, an algorithm is denied access to these values). An algorithm that takes
an α-erased function as its input does not know which values are erased until it queries the
corresponding domain points. For each queried point x, the algorithm either learns f(x) or,
if x is an erased point, gets back a special symbol ⊥. We study algorithms that work in the
presence of adversarial erasures. In other words, the query complexity of an algorithm is the
number of queries it makes in the worst case over all α-erased input functions.

In this work, we initiate a systematic study of property testers that are resilient to
the presence of adversarial erasures. An α-erasure-resilient ε-tester is given parameters
α, ε ∈ (0, 1), along with oracle access to an α-erased function f . The tester has to accept
with high probability if f can be restored to a function on the whole domain that satisfies
the desired property P and reject with high probability if every restoration of f is ε-far from
P on the nonerased part of the domain.

Generic transformations. Our first goal is to understand which existing algorithms in
the standard property testing model [35, 24] can be easily made erasure-resilient. We
show (in Section 2) how to obtain erasure-resilient testers for some properties by using
standard testers for these properties as black box. Our transformations apply to testers that
query uniformly and independently sampled points, with some additional restrictions. More
specifically, our transformations work for uniform proximity oblivious testers (POTs) [25, 27]
and uniform testers for extendable properties. As a result, we are able to obtain erasure-
resilient testers for being a low-degree polynomial [35], monotonicity over general poset
domains [22], convexity of black and white images [7], and having k runs of 0s and 1s.

Erasure-resilient testers for more challenging properties. One challenge in designing
erasure-resilient testers by using existing algorithms in the standard model as a starting

1 Sublinear-time algorithms with various distributional assumptions on the positions of the input the
algorithms access have been investigated, for example, in [24, 4, 26]. There is also a line of work,
initiated by [6], that studies sublinear algorithms that access distributions, as opposed to fixed datasets.
In this work, we focus on fixed datasets.

http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.91
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point is that many existing algorithms are more likely to query certain points in the domain.
Therefore, if these points are erased, the algorithms break. Specifically, the optimal algorithms
for testing whether a list of numbers is sorted (and there are at least three different algorithms
for this problem [17, 8, 13]) have this feature. Moreover, it is known that an algorithm that
makes uniformly random queries is far from optimal: it needs Θ(

√
n) queries instead of

Θ(logn) for n-element lists [17, 20].
There is a number of well studied properties for which all known optimal algorithms heavily

rely on querying specific points. Most prominent examples include monotonicity, the Lipschitz
properties and, more generally, bounded-derivative properties of real-valued functions on
[n] and [n]d, as well as convexity of real-valued functions on [n]. It is especially challenging
to deal with real-valued functions in our model, because there are many possibilities for
erased values. We give efficient erasure-resilient testers for all aforementioned properties of
real-valued functions in Sections 3–5.

Relationships with other models. In the full version of our paper, we provide a separation
between our erasure-resilient model and the standard model. Specifically, we prove the
existence of a property that can be tested with O(1/ε) queries in the standard model, but
requires polynomially many queries in the length of the input in the erasure-resilient model.
This result builds on the ideas of Fischer and Fortnow [21] that separate tolerant testing,
defined by Parnas et al. [32], from standard testing.

A tolerant tester for a property P , given two parameters ε1, ε2 ∈ (0, 1), where ε1 < ε2, is
required to, with probability at least 2/3, accept inputs that are ε1-close to P and reject
inputs that are ε2-far from P. Intuitively, the relationship of our erasure-resilient model to
tolerant testing is akin to the relationship between error-correcting codes that withstand
erasures and error-correcting codes that withstand general errors. In the full version, we prove
that the existence of tolerant testers implies the existence of erasure-resilient testers with
related parameters. Using this implication and existing tolerant testers for sortedness [36],
monotonicity [19], and convexity [18], we get erasure-resilient testers for these properties
as corollaries. However, we obtain erasure-resilient testers for these properties with much
better parameters in the technical sections of this article. We conjecture that erasure-resilient
testing can be separated from tolerant testing in the same strong sense as in our separation
of standard testing from erasure-resilient testing.

1.1 The Erasure-Resilient Testing Model
We formalize our erasure-resilient model for the case of property testing. Erasure-resilient
versions of other computational models, such as tolerant testing, can be defined analogously.

I Definition 1.1 (α-erased function). Let D be a domain, R be a range, and α ∈ (0, 1). A
function2 f : D 7→ R ∪ {⊥} is α-erased if f evaluates to ⊥ on at most an α fraction of
domain points. The points on which f evaluates to ⊥ are called erased. The set of remaining
(nonerased) points is denoted by N .

A function f is ε-far from a property (set) P if it needs to be changed on at least an ε

fraction of domain points to obtain a function in P . A function f ′ : D → R that differs from
a function f only on points erased in f is called a restoration of f .

2 Any object can be viewed as a function. E.g., an n-element array of real numbers can be viewed as a
function f : [n] → R, an image—as a map from the plane to the set of colors, and a graph—as a map
from the set of vertex pairs to {0, 1}.
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I Definition 1.2 (Erasure-resilient tester). An α-erasure-resilient ε-tester of property P gets
input parameters α, ε ∈ (0, 1) and oracle access to an α-erased function f : D → R∪ {⊥}. It
outputs, with probability3 at least 2/3,

accept if there is a restoration f ′ : D → R of f that satisfies P;
reject if every restoration f ′ : D → R of f needs to be changed on at least an ε fraction
of N , the nonerased portion of f ’s domain, to satisfy P (that is, f ′ is ε · |N ||D| -far from P).

The tester has 1-sided error if the first item holds with probability 1.

Let f|N denote the function f restricted to the set N of nonerased points. In the full
version, we show that if property P is extendable, we can define a property PN such that the
erasure-resilient tester is simply required to distinguish the case that f|N satisfies PN from
the case that it is ε-far from satisfying it. For example, if P is monotonicity of functions
on a partially-ordered domain D then PN is monotonicity of functions on N . (Most of
the properties we consider in this article, including monotonicity, Lipschitz properties and
convexity, are extendable properties.) Note that, even for the case of extendable properties,
our problem is different from the standard property testing problem because the tester does
not know in advance which points are erased.

1.2 Properties We Consider
Next we define properties of real-valued functions considered in this article and summarize
previous work on testing them. Most properties of real-valued functions studied in the
property testing framework are for functions over the line domain [n] and, more generally,
the hypergrid domain [n]d.

I Definition 1.3 (Hypergrid, line). Given n, d ∈ N, the hypergrid of size n and dimension
d is the set [n]d associated with an order relation �, such that x � y for all x, y ∈ [n]d iff
xi ≤ yi for all i ∈ [d], where xi (respectively yi) denotes the ith coordinate of x (respectively,
y). The special case [n] is called a line.

We consider domains that are subsets of [n]d to be able to handle arbitrary erasures on [n]d.

Monotonicity. Monotonicity of functions, first studied in the context of property testing
in [23], is one of the most widely investigated properties in this model [17, 16, 31, 22, 1, 20,
28, 5, 32, 2, 8, 11, 9, 13, 14, 10, 12]. A function f : D 7→ R, defined on a partially ordered
domain D with order �, is monotone if x � y implies f(x) ≤ f(y) for all x, y ∈ D. The
query complexity of testing monotonicity of functions f : [n] 7→ R is Θ(logn/ε) [17, 20]; for
functions f : [n]d 7→ R, it is Θ(d logn/ε) [13, 14], and for functions over arbitrary partially
ordered domains D, it is O

(√
|D|/ε

)
[22].

Lipschitz properties. Lipschitz continuity is defined for functions between arbitrary metric
spaces, but was specifically studied for real-valued functions on hypergrid domains [29, 3, 13,
15, 10, 12] because of applications to privacy [29, 15]. For D ⊆ [n]d and c ∈ R, a function
f : D 7→ R is c-Lipschitz if |f(x) − f(y)| ≤ c · ||x − y||1 for all x, y ∈ D, where ||x − y||1 is
the L1 distance between x and y. More generally, f is (α, β)-Lipschitz, where α < β, if

3 In general, the error probability can be any δ ∈ (0, 1). For simplicity, we formulate our model and the
results with δ = 1/3. To get results for general δ, by standard arguments, it is enough to multiply the
complexity of an algorithm by log 1/δ.
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α · ||x− y||1 ≤ |f(x)− f(y)| ≤ β · ||x− y||1 for all x, y ∈ [n]d. All (α, β)-Lipschitz properties
can be tested with O(d logn/ε) queries [13].

Bounded derivative properties. The class of bounded derivative properties (BDPs), defined
by Chakrabarty et al. [12], is a natural generalization of monotonicity and the (α, β)-Lipschitz
properties. An ordered set B of 2d functions l1, u1, l2, u2, . . . , ld, ud : [n − 1] 7→ R ∪ {±∞}
is a bounding family if for all r ∈ [d] and y ∈ [n− 1], lr(y) < ur(y). Let B be a bounding
family of functions and let er be the unit vector along dimension r. The property P(B)
of being B-derivative bounded is the set of functions f : [n]d 7→ R such that lr(xr) ≤
f(x + er) − f(x) ≤ ur(xr) for all r ∈ [d] and x ∈ [n]d with xr 6= n, where xr is the rth
coordinate of x. Chakrabarty et al. [12] showed that the complexity of testing BDPs of
functions f : [n]d 7→ R is Θ(d logn/ε).

Convexity of functions. A function f : D 7→ R is convex if f(tx + (1− t)y) ≤ tf(x) + (1−
t)f(y) for all x,y ∈ D and t ∈ [0, 1]. If D ⊆ [n], equivalently, f is convex if f(y)−f(x)

y−x ≤
f(z)−f(y)

z−y for all x < y < z. Parnas et al. [33] gave a convexity tester for functions f : [n] 7→ R
with query complexity O(logn/ε). Blais et al. [10] gave an Ω(logn) bound for nonadaptive
testers for this problem.

1.3 Our Results
We give efficient erasure-resilient testers for all properties discussed in Section 1.2. All our
testers have optimal complexity for the case with no erasures and have an additional benefit
of not relying too heavily on the value of the input function at any specific point.

Monotonicity on the line. We start by giving (in Section 3) an erasure-resilient monotonicity
tester on [n].

I Theorem 1.4 (Monotonicity tester on the line). There exists a one-sided error α-erasure-
resilient ε-tester for monotonicity of real-valued functions on the line [n] that works for all
α, ε ∈ (0, 1), with query complexity O

(
logn
ε(1−α)

)
.

Without erasure resilience, the complexity of testing monotonicity of functions f : [n] 7→ R is
Θ(logn/ε) [17, 20]. Thus, the query complexity of our erasure-resilient tester has optimal
dependence on the domain size and on ε.

The starting point of our algorithm is the tester for sortedness from [17]. This tester picks
a random element of the input array and performs a binary search for that element. It rejects
if the binary search does not lead to the right position. The first challenge is that the tester
always queries the middle element of the array and is very likely to query other elements
that are close to the root in the binary search tree. So, it will break if these elements are
erased. To make it resilient to erasures, we randomize the binary tree with respect to which
it performs the binary search. The second challenge is that the tester does not know which
points are erased. To counteract that, our tester samples points from appropriate intervals
until it encounters a nonerased point.

To analyze the tester, we bound the expected number of queries required to traverse a
uniformly random search path in an arbitrary binary search tree built over the nonerased
points in an α-erased n-element array (Claim 3.2). This expectation depends only on the
depth of the tree and α. This is the most interesting part of our analysis and captures the
intuition that a randomized binary search for a uniformly random search point is biased
towards visiting intervals containing a larger fraction of nonerased points.
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BDPs on the hypergrid. In Section 4, we generalize our monotonicity tester in two ways:
(1) to work over general hypergrid domains, and (2) to apply to all BDPs. We achieve it
by giving (1) a reduction from testing BDPs on the line to testing monotonicity on the line
that applies to erasure-resilient testers and (2) an erasure-resilient version of the dimension
reduction from [12]. We obtain the following result.

I Theorem 1.5 (BDP tester on the hypergrid). For every BDP P, there exists a one-sided
error α-erasure-resilient ε-tester for P of real-valued functions on the hypergrid [n]d that
works for all α, ε ∈ (0, 1), where α ≤ ε/970d, with query complexity O

(
d logn
ε(1−α)

)
.

Every known tester of a BDP for real-valued functions over general hypergrid domains
work by sampling an axis-parallel line uniformly at random and checking for violations on the
sampled line. Our erasure-resilient testers also follow this paradigm. To check for violations
on the sampled line, we use one iteration of our BDP tester for the line. In the full version,
we show the existence of α-erased functions f : {0, 1}d 7→ R that are ε-far from monotone
for α = Θ(ε/

√
d) but do not have violations to monotonicity along any of the axis parallel

lines (which are the edges of the hypercube, in this case). It implies that every tester for
monotonicity that follows the paradigm above will fail when α = Ω(ε/

√
d). Thus, some

restriction on α in terms of d and ε is necessary for such testers.

Convexity on the line. Finally, in Section 5, we develop additional techniques to design a
tester for convexity (which is not a BDP) on the line. The query complexity of our tester
has the same dependence on n and ε as in the standard convexity tester of Parnas et al. [33].
The dependence on n is known to be optimal for nonadaptive testers [10], and the tester
from [33] is conjectured to be optimal in the standard model.

I Theorem 1.6 (Convexity tester on the line). There exists a one-sided error α-erasure-
resilient ε-tester for convexity of real-valued functions on the line [n] that works for all
α, ε ∈ (0, 1), with query complexity O

(
logn
ε(1−α)

)
.

Our algorithm for testing convexity combines ideas on testing convexity from [33], testing
sortedness from [17], and our idea of randomizing the search. The tester of [33] traverses a
uniformly random path in a binary tree on the array [n] by selecting one of the half-intervals
of an interval uniformly at random at each step. Instead of doing this, our tester samples a
uniformly random nonerased search point and traverses the path to that point in a uniformly
random binary search tree just as in our modification of the tester of [17]. This is done
to bias our algorithm to traverse paths containing intervals that have a larger fraction of
nonerased points. However, instead of checking whether the selected point can be found,
as in our monotonicity tester, the convexity tester checks a more complicated “goodness
condition” in each visited interval of the binary search tree. It boils down to checking that
the slope of the functions between pairs of carefully selected points satisfies the convexity
condition. In addition to spending queries on erased points due to sampling, like in the
monotonicity tester, our tester also performs “walking queries” to find the nearest nonerased
points for the pivots in our random binary search tree. We show that the overhead in the
query complexity due to querying erased points is at most a factor of O(1/(1− α)).

2 Generic transformations

In this section, we state our transformation theorems that can be applied to some classes of
testers that use only uniform samples. We show how to make two classes of testers erasure-
resilient: (1) uniform proximity oblivious testers (POTs) defined in [25, 27] (Theorem 2.2),
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and (2) uniform testers for extendable properties (Theorem 2.4). All omitted details appear
in the full version. We first define POTs.

I Definition 2.1 (POT [25, 27]). Let P be a property of functions of the form f : D 7→ R.
Let ρ : (0, 1] 7→ (0, 1] be a monotone function and c ∈ (0, 1] be a constant. A tester T is a
(ρ, c)-POT for P if it decides to accept or reject based only on the answers to the queries
that it makes, such that

for every function f ∈ P, the probability that T accepts is at least c, and
for every function f /∈ P, the probability that T accepts is at most c− ρ(εf ), where εf
denotes the relative Hamming distance of f from P.

A POT that queries points sampled uniformly and independently at random from D is called
a uniform POT. Next, we state our first generic transformation.

I Theorem 2.2. If T is a uniform (ρ,c)-POT for a property P of functions of the form
f : D 7→ R making q queries, then there exists a uniform α-erasure-resilient (ρ′,c)-POT T ′

for P that makes q queries for all α < ρ(εf · (1− α))/q, where ρ′(x) = ρ(x · (1− α))− α · q
for x ∈ (0, 1].

In the full version, we apply Theorem 2.2 to a tester for the property of being a polynomial
of degree at most d due to Rubinfeld and Sudan [35] and get an erasure-resilient tester.

Next, we define extendable properties and state our second transformation. Given S ⊆ T ,
the extension of a function f : S 7→ R to T is a function g : T 7→ R that agrees with f on
every point in S.

I Definition 2.3 (Extendable properties). For a domain D and all S ⊆ D, let PS denote a
property of functions f : S 7→ R. The class of properties {PS : S ⊆ D} is extendable if, for
all S, T : S ⊆ T ⊆ D,

for every function f : S 7→ R satisfying PS , there is an extension f ′ : T 7→ R satisfying
PT , and
for every function f : S 7→ R that is ε-far from PS , every function f ′ : T 7→ R satisfying
PT differs from f on at least an ε fraction of points in S.

I Theorem 2.4. Let q(·, ·) be a function that is monotone non-decreasing in the first
argument and monotone non-increasing in the second argument. Let {PS : S ⊆ D} be a
class of extendable properties, where PS is a property of functions of the form f : S 7→ R.
Suppose TS is a uniform one-sided error ε-tester of PS that makes q(|S|, ε) queries from S,
for every S ⊆ D. Assume also that for each S ⊆ D, the probability that TS tests correctly
does not decrease when it makes more queries. Then, there exists a uniform one-sided
error α-erasure-resilient ε-tester T ′ of PD that makes O (q(|D|, ε)/(1− α)) queries for all
α ∈ [0, 1).

Using Theorem 2.4, we can make the uniform tester for convexity of black and white
images [7] and the uniform tester for monotonicity of real-valued functions over arbitrary
partially ordered domains [22] erasure-resilient.

We also develop a uniform tester for the property of being a k-run Boolean function and
make it erasure-resilient by applying Theorem 2.4. A function f : [n] 7→ {0, 1} has k runs if
the list f(1), f(2), . . . , f(n) has at most k − 1 alternations of values. The problem at hand is
to test whether a given function f : [n] 7→ {0, 1} has k runs or is ε-far from this property.
Kearns and Ron [30] studied a relaxation of this problem. Specifically, they showed that
O(1/ε2) queries suffice to test whether a Boolean function has k runs or is ε-far from being a
k/ε-run function. They also developed a uniform O(

√
k/ε2.5)-query tester for this relaxation
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and proved that every uniform ε-tester for the k-run property requires Ω(
√
k) queries. Balcan

et al. [4] obtained a O(1/ε4)-query tester for this property in the active testing model. They
also developed a uniform O(

√
k/ε5)-query tester. We prove the following theorem.

I Theorem 2.5. There is an ε-tester for the property of having k runs for functions of the
form f : [n] 7→ {0, 1} that makes O

(
k log k
ε

)
uniform independent queries, where ε > k2/n.

3 Erasure-Resilient Monotonicity Tester for the Line

In this section, we prove Theorem 1.4. Recall that, for a function f : [n] 7→ R ∪ {⊥}, the set
of nonerased points (the ones that map to R) is denoted by N . The function f is monotone
if x < y implies f(x) ≤ f(y) for all x, y ∈ N . The tester does not know N in advance.

We present our tester in Algorithm 1. It has oracle access to f and takes α and ε as inputs.
In each iteration, it performs a randomized binary search for a nonerased index sampled
uniformly at random (u.a.r.) from N and rejects if it finds violations to monotonicity. In the
description of our tester, we use I[i, j] to denote the set of natural numbers from i until and
including j. We alternatively refer to it as the interval from i to j.

Algorithm 1 Erasure-Resilient Monotonicity Tester for the Line

1: Set Q =
⌈

60 logn
ε(1−α)

⌉
.

2: Accept at any point if the number of queries exceeds Q.
3: loop 2/ε times:
4: Sample points u.a.r. from I[1, n] and query them until we get a point s ∈ N .
5: Set `← 1, r ← n.
6: while ` ≤ r do
7: Sample points u.a.r. from I[`, r] and query them until we get a point m ∈ N .
8: if s < m then set r ← m− 1 and Reject if f(s) ≥ f(m).
9: if s > m then set `← m+ 1 and Reject if f(s) ≤ f(m).
10: if s = m then Go to Step 3. . Search completed.
11: Accept.

Every iteration of Algorithm 1 can be viewed as a traversal of a uniformly random search
path in a uniformly random binary search tree defined on the set N of nonerased points.
Given a binary search tree T over N , we associate every node of T with a unique sub-interval
I of I[1, n] as follows. The root of T is associated with I[1, n]. Suppose the interval associated
with a node Γ in T that contains s ∈ N is I[i, j]. Then the interval associated with the left
child of Γ is I[i, s− 1] and the interval associated with the right child of Γ is I[s+ 1, j]. A
search path is a path from the root to some node Γ of T .

If f is ε-far from monotone, we prove that, with high probability, the tester finds a
violation. It is easy to prove this, using a generalization of an argument from [17], for the
case when Algorithm 1 manages to complete all iterations of Step 3 before it runs out of
queries. The challenge is that the algorithm might get stuck pursuing long paths in a random
search tree and waste many queries on erased points. To resolve the issue of many possible
queries to erased points, we prove an upper bound on the expected number of queries made
while traversing a uniformly random search path in a binary search tree on N . We combine
this with the fact that the expected depth of a random binary search tree is O(logn) to
obtain the final bound on the probability that the algorithm exceeds its query budget.
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3.1 Analysis

We analyze the tester in this section. The query complexity of the tester is clear from its
description. The main statement of Theorem 1.4 follows from Lemma 3.1, proved next.

I Lemma 3.1. Algorithm 1 accepts if f is monotone, and rejects with probability at least
2/3 if f is ε-far from monotone.

Proof. The tester accepts whenever f is monotone. To prove the other part of the lemma,
assume that f is ε-far from monotone. Let A be the event that the tester accepts f . Let q
denote the total number of queries made. We prove that Pr[A] ≤ 1/3. The event A occurs if
either q > Q or the tester does not find a violation in any of the 2/ε iterations of Step 3.
Thus, Pr [A] ≤ Pr [A|q ≤ Q] + Pr [q > Q] .

First we bound the probability that the tester does not find a violation in one iteration
of Step 3, conditioned on the event that q ≤ Q. Consider an arbitrary binary search tree T
defined over points in N . A point s ∈ N is called searchable with respect to T if Algorithm 1
does not detect a violation to monotonicity while traversing the search path to s in T .
Consider two indices i, j ∈ N , where i < j, both searchable with respect to T . Let a ∈ N
be the pivot corresponding to the lowest common ancestor of the leaves containing i and
j. Since i and j are both searchable, it must be the case that f(i) < f(a) and f(a) < f(j)
and hence, f(i) < f(j). Thus, for every tree T , the function restricted to the domain points
that are searchable with respect to T is monotone. Therefore, if f is ε-far from monotone,
for every binary search tree T , at least an ε-fraction of the points in N are not searchable.
Thus, the tester detects a violation with probability ε in each iteration. Consequently,
Pr [A|q ≤ Q] ≤ (1− ε) 2

ε < 1/4.
In the rest of the proof, we will bound Pr[q > Q]. We will first state and prove a claim

that bounds the expected number of queries to traverse a search path, for every binary search
tree. Recall that a search path in a search tree T is a path from the root to some node in T .
Let I be an interval associated with a node v of T and let αI denote the fraction of erased
points in I. The number of queries to be made to sample a nonerased point from I with
uniform sampling is a geometric random variable with expectation 1/(1−αI). We define the
query-weight of node v to be this expectation. The query-weight of a search path is the sum
of query-weights of the nodes on the path (which is the expected number of queries that the
algorithm makes while traversing that path).

I Claim 3.2. Consider an arbitrary binary search tree T on N of height h. The expected
query-weight of a uniformly random search path in T is at most h/(1− α).

Proof. There are exactly |N | search paths in T . Let S denote the sum of query-weights of
all the search paths. The expected query-weight is equal to S/|N |.

Consider a node v in T associated with an interval I. There are |I|(1− αI) nonerased
points in I. The search paths from the root of T to all these nonerased points pass through
v, and hence, the query-weight of v gets added to the query-weights of all of those paths.
Therefore, the total contribution of v towards S is |I|, since the query-weight of v is 1/(1−αI).
Note that the intervals associated with nodes at the same level of T are disjoint from each
other. Therefore, the total contribution to S from all nodes on the same level of T is at
most n. Hence the value of S is at most n · h. Observe that this quantity is independent of
the fraction of erasures α. Therefore, the expected query-weight of a search path is at most
n · h/|N |, which is at most h/(1− α), since |N | ≥ n · (1− α). J
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We will next see a fact on the expected depth of a uniformly random binary search tree and
combine it with the above claim to prove the required bound on the expected query-weight
of a uniformly random search path in a uniformly random binary search tree.

I Claim 3.3 ([34]). If Hn is the random variable denoting the height of a random binary
search tree on n nodes, then E[Hn] ≤ 5 logn.

I Corollary 3.4. The expected number of queries made by Algorithm 1 to traverse a uniformly
random search path in a uniformly random binary search tree on N is at most 5 logn/(1−α).

By linearity of expectation, the expected number of queries made by the tester over all its
iterations is at most 10 logn/(ε · (1− α)). Applying Markov’s inequality to q, we can then
see that Pr[q > Q] ≤ 1/6. Therefore, the probability of the tester not finding a violation is
at most 1/3. This completes the proof of the lemma. J

4 Erasure-Resilient Monotonicity Testers for the Hypergrid

In this section, we present our erasure-resilient tester for monotonicity over hypergrid domains
and prove the following theorem, which is a special case of Theorem 1.5. We defer the
discussion of erasure-resilient testers for all BDPs to the full version.

I Theorem 4.1. There exists a one-sided error α-erasure-resilient ε-tester for monotonicity
of real-valued functions on the hypergrid [n]d that works for all α, ε ∈ (0, 1), where α ≤ ε/250d,
with query complexity O( d logn

ε(1−α) ).

Let L denote the set of all axis-parallel lines in the hypergrid. Our monotonicity tester,
which is described in Algorithm 2, samples an axis-parallel line uniformly at random in each
iteration and does a randomized binary search for a uniformly randomly sampled nonerased
point on that line. It rejects if and only if a violation to monotonicity is found within its query
budget. To analyze the tester, we first state two important properties of a uniformly random
axis-parallel line in Lemma 4.2 and Lemma 4.3, which we jointly call the erasure-resilient
dimension reduction. The statements and proofs of more general versions of these lemmas,
applicable to all BDPs, are given in the full version.

I Lemma 4.2 (Dimension reduction: distance). Let εf be the relative Hamming distance of
an α-erased function f : [n]d 7→ R ∪ {⊥} from monotonicity. Given an axis-parallel line
` ∈ L, let f` : [n] 7→ R ∪ {⊥} denote the restriction of f to ` and let ε` denote the relative
Hamming distance of f` from monotonicity. Then E`∼L[ε`] ≥ (((1− α) · εf )/4d)− α.

I Lemma 4.3 (Dimension reduction: fraction of erasures). Consider an α-erased function
f : [n]d 7→ R ∪ {⊥}. Given ` ∈ L, let α` denote the fraction of erased points in `. Then, for
every η ∈ (0, 1), we have, Pr`∼L[α` > α/η] ≤ η.

The query complexity of the tester is evident from its description. We will now prove its
correctness in the following lemma, which will then imply Theorem 4.1.

I Lemma 4.4. Algorithm 2 accepts if f is monotone, and rejects with probability at least
2/3 if f is ε-far from monotone.

Proof. The tester accepts if f is monotone. So, assume f is ε-far from being monotone. Let A
denote the event that no iteration of the tester finds a violation to monotonicity. If q denotes
the total number of queries made by the tester, we have, Pr[A] ≤ Pr[A|q ≤ Q] + Pr[q > Q].
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Algorithm 2 Erasure-Resilient Monotonicity Tester for [n]d

Require: parameters ε ∈ (0, 1), α ∈ [0, ε/250d]; oracle access to f : [n]d → R
1: Set Q = d 1200d·logn

ε(1−α) e.
2: loop 12d

ε(1−α)−4dα times:
3: Sample a line ` ∈ L uniformly at random.
4: Sample and query points u.a.r. from ` and query them until we get a point s ∈ N .
5: Perform a randomized binary search for s on ` as in Algorithm 1.
6: Reject if any violation to monotonicity is found.
7: Accept at any point if the number of queries exceed Q.

Let t denote the number of iterations of the tester. Let Ai denote the event that the
tester does not find a violation in its i-th iteration. For ` ∈ L, let f` denote f restricted to
the line `. Let ε` denote the relative Hamming distance of f` from monotonicity. We have,
Pr[Ai|q ≤ Q] =

∑
`∈L(1− ε`) Pr[`] = 1− E`∼L[ε`]. By Lemma 4.2 and the fact that εf ≥ ε,

we have, E`∼L[ε`] ≥ (1−α)·εf

4d − α ≥ (1−α)·ε
4d − α. Therefore,

Pr[A|q ≤ Q] =
t∏
i=1

Pr[Ai|q ≤ Q] ≤
(

1− (1− α) · ε− 4dα
4d

)t
<

1
10 .

It remains to bound Pr[q > Q]. Let η = 1/10t. Let αi be the fraction of erasures in
the line sampled during iteration i and let qi be the number of queries the tester makes in
iteration i. Let G be the (good) event that αi ≤ α/η for all iterations i ∈ [t]. By Corollary 3.4,
E[qi|G] ≤ 5η · logn/(η − α). By the linearity of expectation, E[q|G] ≤ logn/(2(η − α)) ≤
120d logn/(ε(1−α)), where the last inequality follows from our assumption that α ≤ ε/250d.
Using Markov’s inequality, Pr[q > Q|G] ≤ 1/10. Also, by combining Lemma 4.3 with a union
bound, we can see that Pr[G] ≤ 1/10. Therefore, Pr[q > Q] ≤ Pr[q > Q|G]+Pr[G] ≤ 1/5. J

5 Erasure-Resilient Convexity Tester for the Line

In this section, we prove Theorem 1.6. Given an α-erased function f : [n] 7→ R ∪ {⊥}, let νi
be the i-th nonerased domain point in [n]. The derivative of f at a point νi ∈ N , denoted by
∆f(νi), is f(νi+1)−f(νi)

νi+1−νi
, whenever νi+1 ≤ n. The function f is convex iff ∆f(νi) ≤ ∆f(νi+1)

for all i ∈ [|N | − 2]. Our tester builds upon the ideas in the convexity tester from [33].
A high level idea of the tester is as follows. Our tester (Algorithm 3) has several iterations.

Every iteration of the tester can be thought of as a traversal of a uniformly random search
path of a uniformly random binary search tree on N , just as Algorithm 1. For each interval
on such a path, we check a set of conditions computed based on the values at some nonerased
points in the interval, called anchor points, and two real numbers, called the left and right
slopes. More specifically, we verify that the function restricted to the sampled nonerased
points in the interval is convex, by comparing the slopes across consecutive points. The
algorithm accepts if all the intervals it sees pass these checks.

The main steps in the analysis of the tester follows that of the analysis of Algorithm 1.
To prove that, with high probability, the algorithm does not run out of its budget of queries
Q, we classify the queries that the tester makes into two kinds and analyze them separately.
The queries where the tester repeatedly samples and queries from an interval until it finds
a nonerased domain point are called sampling queries. The queries where the tester keeps
querying consecutive points, starting from a nonerased point, until it gets the next nonerased

ICALP 2016
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Algorithm 3 Erasure-Resilient Convexity Tester
Require: parameters ε, α ∈ (0, 1); oracle access to f : [n] 7→ R ∪ {⊥}.
1: Set Q = d 180 logn

ε(1−α) e.
2: Accept at any point if the number of queries exceeds Q.
3: loop 2/ε times
4: Sample points in I[1, n] u.a.r and query them until we get a point s ∈ N .
5: Test-Interval(I[1, n], ∅,−∞,+∞, s) and Reject if it rejects.
6: Accept.

point are called walking queries. We show that the expected number of walking queries is at
most twice the number of the expected number of the sampling queries and use Corollary 3.4
to bound the expected number of sampling queries. We then prove that, conditioned on
the tester not running out of its queries, in every iteration, with probability ε, the tester
will detect a violation while testing for a function that is ε-far from being convex. This part
draws ideas from the proof of correctness of the tester in [33]. The analysis of the tester is
deferred to the full version.

Procedure 4 Test-Interval(I[i, j],A = {a1, a2, . . . , ak},m`,mr, s)
Require: interval I[i, j]; a set of nonerased points A; left slope m` ∈ R; right slope mr ∈ R;

search point s ∈ N .
1: Sample points u.a.r. from I[i, j] and query them until we get a point x ∈ N .
2: Sequentially query points x+ 1, x+ 2 . . . until we get a nonerased point y.
3: Sequentially query points x− 1, x− 2 . . . until we get the nonerased point z.
4: Let (a1, a2, . . . , ak) denote the sorted list of points in the set A ∪ {x, y, z}.
5: Let mi = (f(ai+1)− f(ai))/(ai+1 − ai) for all i ∈ [k − 1].
6: Reject if m` ≤ m1 ≤ m2 ≤ · · · ≤ mk−1 ≤ mr is not true.
7: Let A′` and A′r be the sets of points in A that are smaller and larger than x, respectively.
8: if s < x then
9: Reject if Test-Interval(I[i, z],A′`,m`,∆f(z), s) rejects.
10: if s > x then
11: Reject if Test-Interval(I[y, j],A′r,∆f(x),mr, s) rejects.
12: Accept.

6 Conclusions and Open Problems

In this paper, we initiate a study of property testing in the presence of adversarial erasures. We
design efficient erasure-resilient testers for several important properties such as monotonicity,
the Lipschitz properties and convexity over different domains. All our testers for properties of
functions on the line domain work for an arbitrary fraction of erasures. All our testers have
only a small additional overhead of O(1/(1− α)) in their query complexity in comparison to
the query complexity of the currently best, and, in some cases, optimal, standard testers for
the same properties. We also show that not all properties are easy to test in the erasure-
resilient testing model by proving the existence of a property that is easy to test in the
standard model but hard to test in the erasure-resilient model even for a small fraction of
erasures. We now list some open problems.

We show that tolerant testing is at least as hard as erasure-resilient testing. Determining
if tolerant testing is strictly harder than erasure-resilient testing is an interesting direction.
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The fraction of erasures that our monotonicity tester for hypergrid domains ([n]d) can
tolerate decreases inversely with d. We also show that an inverse dependence on

√
d

is necessary for testers that work by sampling axis-parallel lines uniformly at random
and then test for the property on them. It is an interesting combinatorial question to
determine the exact tradeoff between the fraction of erasures and the fraction of axis
parallel lines that are far from monotone.
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Abstract
In the orthogonal range reporting problem, we are to preprocess a set of n points with integer
coordinates on a U ×U grid. The goal is to support reporting all k points inside an axis-aligned
query rectangle. This is one of the most fundamental data structure problems in databases
and computational geometry. Despite the importance of the problem its complexity remains
unresolved in the word-RAM.

On the upper bound side, three best tradeoffs exist, all derived by reducing range reporting to
a ball-inheritance problem. Ball-inheritance is a problem that essentially encapsulates all previous
attempts at solving range reporting in the word-RAM. In this paper we make progress towards
closing the gap between the upper and lower bounds for range reporting by proving cell probe
lower bounds for ball-inheritance. Our lower bounds are tight for a large range of parameters,
excluding any further progress for range reporting using the ball-inheritance reduction.
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1 Introduction

In the orthogonal range reporting problem, we are to preprocess a set of n points with
integer coordinates on a U × U grid. The goal is to support reporting all k points inside an
axis-aligned query rectangle. This is one of the most fundamental data structure problems
in databases and computational geometry. Given the importance of the problem, it has been
extensively studied in all the relevant models of computation including e.g. the word-RAM,
pointer machine and external memory model. In the latter two models, we typically work
under an assumption of indivisibility, meaning that input points have to be stored as they
are, i.e. compression techniques such as rank-space reduction and word-packing cannot be
used to reduce the space consumption of data structures. The indivisibility assumption
greatly alleviates the task of proving lower bounds, which has resulted in a completely tight
characterisation of the complexity of orthogonal range reporting in these two models. More
specifically, Chazelle [7] presented a pointer machine data structure answering queries in
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optimal O(lgn+k) time using O(n lgn/ lg lgn) space and later proved that this space bound
is optimal for any query time of the form O(lgc n+k), where c ≥ 1 is an arbitrary constant [8].
In the external memory model, Arge et al. [2] presented a data structure answering queries in
optimal O(lgB n+ k/B) I/Os with O(n lgn/ lg lgB n) space and also proved the space bound
to be optimal for any query time of the form O(lgcB n+k/B), where c ≥ 1 is a constant. Here
B is the disk block size. Thus the orthogonal range reporting problem has been completely
closed for at least 15 years in both these models of computation. If we instead abandon
the indivisibility assumption and consider orthogonal range reporting in the arguably more
realistic model of computation, the word-RAM, our understanding of the problem is much
more disappointing. Assuming the coordinates are polynomial in n (U = nO(1)), the current
best word-RAM data structures, by Chan et al. [5], achieve the following tradeoffs:
1. Optimal query time O(lg lgn+ k) with O(n lgε n) words of space for any constant ε > 0.
2. Query time O((1 + k) lg lgn) with O(n lg lgn) words of space.
3. Query time O((1 + k) lgε n) with optimal O(n) words of space.
Thus we can achieve linear space by paying a lgε n penalty per point reported. And even if
we insist on an optimal O(lg lgn+ k) query time, it is possible to improve over the optimal
space bound in the pointer machine and external memory model by almost a lgn factor.
Naturally the improvements rely heavily on points not being indivisible.

On the lower bounds side, Pǎtraşcu and Thorup [12, 14] proved that the query time must
be Ω(lg lgn+ k) for space n lgO(1) n. This lower bound was obtained by reduction from the
predecessor search problem. For predecessor search, the query time of lg lgn is known to
be achievable with linear space. Thus the reduction is incapable of distinguishing the three
space regimes of the current best data structures for range reporting. Perhaps it might just
be possible to construct a linear space data structure with O(lg lgn+ k) query time. This
would have a huge impact in practice, since the non-linear space solutions are most often
abandoned for the kd-trees [3], using linear space and answering queries in O(

√
n+ k) time.

This is simply because more than a constant factor above linear space is prohibitive for most
applications. Thus ruling out the existence of fast linear space data structures would be a
major contribution. The focus of this paper is on understanding this gap and the complexity
of orthogonal range reporting in the word-RAM. This boils down to understanding how
much compression and word-packing techniques can help us in the regime between linear
space and O(n lgε n) space. Since our results concern definitions made by Chan et al. [5], we
first give a more formal definition of the word-RAM and briefly review the technique of rank
space reduction and the main ideas in [5].

1.1 Range Reporting in the word-RAM
The word-RAM model was designed to mimic what is possible in modern imperative program-
ming languages such as C. In the word-RAM, the memory is divided into words of Θ(lgn)
bits. The words have integer addresses and we allow random access to any word in constant
time. We also assume all standard word operations from modern programming languages
takes constant time. This includes e.g. integer addition, subtraction, multiplication, division,
bit-wise AND, OR, XOR, SHIFT etc. Having Θ(lgn) bit words is a reasonable assumption
since machine words on standard computers have enough bits to address the input and to
store pointers into a data structure.

Rank Space Reduction. Most of the previous range reporting data structures for the
word-RAM have used rank space reduction (or variants thereof) to save space, see e.g. [1, 11].
Rank space reduction is the following: Given a set P of n points on a U × U grid, compute
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for each point (x, y) ∈ P the rank rx(x) of x amongst the x-coordinates of points in P .
Similarly compute the rank ry(x) of y amongst the y-coordinates of points in P . Construct
a new point set P ∗ with each point (x, y) ∈ P replaced by (rx(x), ry(y)). The point set P ∗
is said to be in rank space. A point (x, y) ∈ P lies inside a query range q = [x0;x1]× [y0; y1]
precisely if (rx(x), ry(y)) lies inside the range q∗ = [rx(x0); rx(x1)]× [ry(y0); ry(y1)]. Thus
if we store a data structure for mapping q to q∗ and a table mapping points in P ∗ back to
points in P , the output of a query q can be computed from the output of the query q∗ on
P ∗. Since the coordinates of a point in P ∗ can be represented using lgn bits, this gives a
saving in space if lgn� lgU .

In previous range reporting data structures, rank space reductions are often used recurs-
ively on smaller and smaller point sets Pt ⊂ Pt−1 ⊂ · · · ⊂ P1 ⊂ P . Applying t rounds of
rank space reduction however results in a query time of O(f(n) + tk) since each reported
point has to be decompressed through t rank space reduction tables.

The Ball-Inheritance Problem. In the following, we present the main ideas of the current
best data structures, due to Chan et al. [5]. Their solution is based on an elegant way of
combining rank space reductions over all levels of a range tree:

Construct a complete binary tree with the points of P stored in the leaves ordered from
left to right by their x-coordinate. Every internal node v is associated with the subset of
points Pv stored in the leaves of the subtree rooted at v. For every internal node v, map
the points Pv to rank space and denote the resulting set of points P ∗v . Store in v a data
structure for answering 3-sided range queries on P ∗v . Here a 3-sided query is either of the form
[x0;∞)× [y0; y1] or (−∞, x1]× [y0; y1]. If we require that only the rank space y-coordinate
of a point is reported (and not the rank space x-coordinate), these 3-sided data structures
can be implemented in O(n) bits and with O(k) query time using succinct data structures
for range minimum queries, see e.g. [9]. For each leaf, we simply store the associated point.
The total space usage is O(n lgn+ n lgU) bits, which is O(n) words.

To answer a query q = [x0;x1]× [y0; y1], find the lowest common ancestor, w, of the leaves
storing the successor of x0 and the predecessor of x1 respectively. Let w` be the left child of
w and wr the right child. The points inside q are precisely the points Pw` ∩ [x0;∞)× [y0; y1]
plus Pwr ∩ (−∞, x1]× [y0; y1]. The data structures of Chan et al. now proceeds by mapping
these two 3-sided queries to rank space amongst points in P ∗w` and P ∗wr respectively and
answering the two queries using the 3-sided data structures stored at w` and wr. This
reports, for every point (x, y) ∈ Pw` ∩ q (and (x, y) ∈ Pwr ∩ q), the rank of y amongst the
y-coordinates of all points in Pw` (Pwr ). Assuming one can build an S word auxiliary data
structure that supports mapping these rank space y-coordinates back to the original points
in t time per point (i.e. through t rank space decompressions), this gives a data structure for
orthogonal range reporting that answers queries in O(lg lgn+ t(1 + k)) time using S +O(n)
space, see [5] for full details. Chan et al. named this abstract decompression problem the
ball-inheritance problem and defined it as follows:

I Definition 1 (Chan et al. [5]). In the ball-inheritance problem, the input is a complete
binary tree with n leaves. In the root node, there is an ordered list of n balls. Each ball is
associated with a unique leaf of the tree and we say the ball reaches that leaf. Every internal
node v also has an associated list of balls, containing those balls reaching a leaf in the subtree
rooted at v. The ordering of the balls in v’s list is the same as their ordering in the root’s
list. We think of each ball in v’s list as being inherited from v’s parent.

A query is specified by a pair (v, i) where v is a node in the tree and i is an index into
v’s list of balls. The goal is to return the index of the leaf reached by the i’th ball in v’s list
of balls.

ICALP 2016
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It is not hard to see that a solution to the ball-inheritance problem is precisely what is
needed in Chan et al.’s data structures: We have one ball per point. The ball corresponding to
a point (x, y) reaches the rx(x)’th leaf, where rx(x) is the rank of x amongst all x-coordinates.
The ordering of the balls inside the lists is just the ordering on the y-coordinates of the
corresponding points. Thus answering a ball-inheritance query (v, i) corresponds exactly to
determining the leaf storing the point from Pv having a rank space y-coordinate of i. Since
Chan et al. stored the points in the leaves, this also recovers the original point.

All three tradeoffs by Chan et al. come from solving the ball-inheritance problem with
the following bounds:

I Theorem 2 (Chan et al. [5]). For any 2 ≤ B ≤ lgε n, we can solve the ball-inheritance
problem with: (1) space O(nB lg lgn) and query time O(lgB lgn); or (2) space O(n lgB lgn)
and query time O(B lg lgn).

While not all previous range reporting data structures directly solve the ball-inheritance
problem, they are all based on rank space reductions and decompression of one point at a
time, just in less efficient ways. Thus the ball-inheritance problem in some sense captures
the essence of all previous approaches to solving range reporting and the bounds obtained
for the ball-inheritance problem also sets the current limits for orthogonal range reporting.

We remark that the ball-inheritance problem also has been used to improve the upper
bounds for various other problems with a range reporting flavor to them, see e.g. [6, 4]. Thus
in light of the lack of progress in proving tight lower bounds for range reporting, it seems
like a natural goal to understand the complexity of the ball-inheritance problem.

1.2 Our Results
In this paper, we prove a lower bound for the ball-inheritance problem. Our lower bound is
tight for a large range of parameters and is as follows:

I Theorem 3. Any word-RAM data structure for the ball-inheritance problem which uses S
words of space, must have query time t satisfying:

t = Ω
(

lg lgn
lg(S/n) + lg lg lgn

)
.

Comparing to the ball-inheritance upper bounds of Chan et al. (Theorem 2), we see that
this essentially matches their first tradeoff and is tight for any S = Ω(n lg1+ε lgn) where
ε > 0 is an arbitrarily small constant. Most importantly, it implies that for constant query
time, one needs space n lgε n words. Thus any range reporting data structure based on the
ball-inheritance problem cannot improve over the bounds of Chan et al. in the regime of
space S = Ω(n lg1+ε lgn) words. We believe this holds true for any data structure that is
based on decompressing one point at a time from some subproblem in rank space. Since
decompressing from a subproblem in rank space is hard to formalize exactly, we leave it at
this.

One can view our lower bound in two ways: Either as a strong indicator that the data
structure of Chan et al. is optimal, or as a suggestion for how to find better upper bounds.
The lower bound above shows that if we want to develop faster data structures, we have
to find a technique that in some sense allows us to decompress ω(1) points in one batch,
faster than decompressing each point in turn. This is not necessarily impossible given the
large success of batched evaluations in other problems such as matrix multiplication and
multipoint evaluation of polynomials.
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We also want to make a remark regarding the gap between the second tradeoff of Chan
et al. and our lower bound. We conjecture that the upper bound of Chan et al. is tight, but
note that current lower bound techniques (in the cell probe model) are incapable of proving
any lower bounds exceeding the one we obtain in Theorem 3: The ball-inheritance problem
has only n lgn queries and the strongest lower bound for any data structure problem with
m queries (for any m) is t = Ω(lg(m/n)/ lg(S/n)) [10], thus apart from our lg lg lgn “dirt
factor”, our lower bound is as strong as it possibly can be with current techniques. Note that
previous papers have stated their lower bounds with a lgm rather than lg(m/n) since the
data structure problems considered there have m polynomially larger than n. It is however
not too difficult to see that previous techniques really are limited to lg(m/n). For the cell
sampling technique [10], one needs to have n/ poly(lgn) queries surviving the cell sampling,
hence queries have to survive the sampling with probability at least (n/(mpoly(lgn))), thus
requiring an m/n term. For the communication game by Pǎtraşcu and Thorup [13], the
player holding queries has n/poly(lgn) queries, thus she can specify her set of queries with
lg

(
m

n/ poly(lgn)
)
bits of communication. This again results in a lg(m/n) term rather than

lgm.

Technical Contributions. As a side remark, we believe our lower bound proof has interest
from a purely technical point of view. In the lower bound proof, we carefully exploit that
a data structure is not non-deterministic. While this might sound odd at first, Wang and
Yin [15] recently showed that, with only few exceptions (e.g. the predecessor lower bounds),
all previous lower bound techniques yield lower bounds that hold non-deterministically. Thus
having a new proof outside this category is an important contribution and may hopefully
help in closing fundamental problems where avoiding non-determinism in proofs is crucial.
This is e.g. the case for the deterministic dictionaries problem, which is amongst the most
fundamental open problems in the field of data structures. This problem is trivially solved
with constant update time and query time non-deterministically (just maintain a sorted
linked list) and hence lower bound proofs must use ideas similar to those we present in this
paper to prove super constant lower bounds for this important problem.

2 Lower Bound Proof

We prove our lower bound in the cell probe model [16], where the complexity of a data
structure is the number of cells it reads/probes. More specifically, a data structure with
query time t and space S consists of memory of S cells with consecutive integer addresses
0, . . . , S − 1. Each cell stores w bits and we assume w = Ω(lgn). When answering a query,
the data structure may probe up to t cells and must announce the answer to the query
solely based on the contents of the probed cells. The cell to probe in each step may depend
arbitrarily on the query and the contents of previously probed cells. Thus computation is
free of charge in the cell probe model and lower bounds proved in this model clearly applies
to word-RAM data structures.

2.1 Main Ideas
In the following, we sketch the overall approach in our proof. Assume we have a data
structure for the ball-inheritance problem, having space S cells of w bits and with query time
t. Assume furthermore that the data structure performs very poorly in the following sense:
For every input I to the ball-inheritance problem and every leaf index b ∈ [n] = {0, . . . , n−1},
let Q(b, I) be the set of queries that have b as its answer. Each such query probes at most t
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cells of the data structure on input I. Assume these sets of cells are disjoint, i.e. information
about the leaf b is stored in |Q(b, I)| = lgn disjoint t-sized locations in the memory.

Now pick a uniform random set C of lg(n!)/(4w) memory cells. For a query q, we say
that q survives if all its t probes lie in C. Then by the disjointness of the probed cells,
there will be a surviving query in Q(b, I) with probability roughly 1 − (1 − (|C|/S)t)lgn.
If t = o(lg lgn/ lg(S/|C|)), this is about 1 − exp(lgn · (|C|/S)t) = 1 − exp(lg1−o(1) n),
i.e. each leaf index is almost certainly the answer to a surviving query. Thus C must
basically store the entire input. But |C| is too small for this and we get a contradiction, i.e.
t = Ω(lg lgn/ lg(Sw/(n lgn))), which roughly equals the lower bound we claim. There are
obviously a few more details to it, but this is the main idea.

Of course any realistic attempt at designing a data structure for the ball-inheritance
problem would try to make the queries in Q(b, I) probe the same cells (which is exactly what
Chan et al.’s solution does [5]). In our actual proof, we get around this using the following
observation: Consider two queries q1, q2 to the ball-inheritance problem, where q2 is asked in
a node d levels below the node of q1. The probability q1 and q2 return the same leaf index is
exponentially decreasing in d for a uniform random input. In particular this means that for
the very first probe, the queries in Q(b, I) will almost certainly read different cells, which is
precisely the property we exploited above. If we pick a random sample of cells, there will be
many queries in Q(b, I) that have their first probe in the sample. To handle the remaining
t − 1 probes, we follow [12] and extend the cell probe model with the concepts published
bits and accepted queries. A data structure is allowed to publish bits at preprocessing time
that the query algorithm may read free of charge. After inspecting a given query and the
published bits, a data structure can choose to reject the query and not return an answer.
Otherwise, the query is accepted and the algorithm must output the correct answer. Note
that it is only allowed to reject queries before performing any probes.

The crucial idea is now the following: If the data structure has few published bits, then
for most leaves b ∈ [n], the published bits simply contains too little information to make the
queries in Q(b, I) probe the same cells. Thus for t rounds, we can pick a random sample
of cells and publish their contents. For every accepted query, we check if its first probe is
amongst the published cells. If so, we continue to accept it and may skip the first probe since
we know the contents of the requested cell. Otherwise we simply reject it. If the published
cell sets are small enough, there continues to be too little information in the published bits
to make the queries in Q(b, I) meet. Since this holds for all t probes, the argument above for
the poorly performing data structures carry through and we get our lower bound.

2.2 Deriving the Lower Bound
With the ideas from Section 2.1 in mind, we present our technical lemma that allows us to
publish bits for t rounds to eliminate probes while ensuring that most leaves are still the
answer to many accepted queries. Before we present the lemma, consider partitioning the
ball-inheritance tree into into lgn/Y disjoint layers of Y consecutive tree levels and group
the accepted queries by these layers. Think of Y as looking at the queries at a given zoom
level. To measure how much information we have left about the different leaves, we count
for each leaf b ∈ [n] how many layers that have at least one accepted query with b as its
answer. If this count is large, then intuitively the answers to all accepted queries carry much
information.

Formally, given a data structure for the ball-inheritance problem, define for every 1 ≤
Y ≤ lgn and index i ∈ [lgn/Y ] the query-support set of a leaf b ∈ [n] on an input I as the
set QYi (b, I) of accepted queries in the tree levels {iY, . . . , (i + 1)Y − 1} that has b as its
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answer. Observe that |QYi (b, I)| ∈ {0, . . . , Y } since there is precisely one query in each tree
level that has b as its answer (it may be less than Y since some queries might be rejected).
Define also the Y -level-support of an input I, denoted LY (I), as the the number of pairs
(b, i) such that QYi (b, I) is non-empty.

With this notation in hand we are ready to state our main Probe Elimination Lemma.

I Lemma 4. Let I be a set of inputs to the ball-inheritance problem where |I| ≥ n!/2n.
Assume a ball-inheritance data structure uses S cells of w bits, answers queries in t probes,
has p < n lgn/ lg9 lgn published bits and satisfies LY (I) ≥ (1−1/Z)n lgn/Y for all I ∈ I for
some parameters Z ≥ 2 and 64 lgw ≤ Y ≤ lgn/α, where α = (Sw lg18 lgn)/(n lgn). Then
there exists a subset of inputs I∗ ⊆ I, with |I∗| ≥ |I|/2, and another ball-inheritance data
structure using S cells of w bits, answering queries in t− 1 probes with p+O(n lgn/ lg10 lgn)
published bits, and satisfying LαY (I) ≥ (1− 1/Z − 1/ lg lg3 n)n lgn/(αY ) for all I ∈ I∗.

In laymans terms, the lemma states that we can decrease the number of probes of a data
structure by one, while only increasing the published bits with a lower order term. When
we do this, we maintain the essential property that the leaves still have high support, just
on a coarser zoom level. The Z factor is basically just a dirt factor. The proof of Lemma 4
can be found in the full version of the paper. In the following we use Lemma 4 to prove our
main result, Theorem 3.

Assume for contradiction that a ball-inheritance data structure exists satisfying t =
o(lg lgw n/ lgα), where α = (Sw lg18 lgn)/(n lgn). We proceed by repeatedly applying
Lemma 4 to eliminate all t probes of the data structure. In order to guarantee we can apply
Lemma 4 t times, we check the conditions for applying it. The conditions involve the number
of published bits p, the parameters Z and Y and |I|. The values of these parameters will
change for each application, thus we use p(i), Z(i), Y (i) and |I(i)| to denote these parameters
just before the i’th invocation of the lemma. For the first round, we have p(1) = 0 and
|I(1)| = n!. Note also that LY (I) = n lgn/Y for any Y before the first round. Thus we
choose Y (1) = 64 lgw to satisfy the conditions 64 lgw ≤ Y (1) ≤ lgn/α. This also means that
we are free to choose Z(1) ≥ 2 as we wish. We simply let Z(1) = lg3 lgn. Examining the
lemma, we conclude that our parameters evolve in the following way (assuming we do not
violate any of the conditions):

p(1+i) = O(i(n lgn/ lg10 lgn)), |I(1+i)| ≥ n!/2i, Y (1+i) = 64 lgw ·αi, Z(i) ≥ lg3 lgn/i.

Since we assumed t = o(lg lgw n/ lgα), this means that

p(1+t) = o(n lgn/ lg9 lgn), |I(1+t)| ≥ n!/ lgn, Y (1+t) = o(lgn), Z(1+t) ≥ lg2 lgn.

We conclude that we can apply our lemma for t rounds under the contradictory assumption.
Furthermore, the data structure we are left with answers queries in 0 probes on a subset
I∗ = I(1+t) of inputs, where |I∗| ≥ n!/ lgn. It has o(n lgn/ lg9 lgn) published bits and there
is some Y ∗ = o(lgn) such that LY ∗(I) ≥ (1− 1/ lg2 lgn)n lgn/Y ∗ for all I ∈ I∗. That this
is contradictory should not come as a surprise: our 0-probe data structure is capable of
answering queries about almost all leaves using only the o(n lgn/ lg9 lgn)� lg |I∗| published
bits. The formal argument we use to reach the contradiction is as follows: we show that the
0-probe data structure can be used to uniquely encode every input I ∈ I∗ into a bit string
of length less than lg(|I∗|) = lg(n!)− lg lgn bits. This gives the contradiction since there are
fewer such bit strings than inputs. We present the encoding and decoding algorithms in the
following:
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Encoding. Let I ∈ I∗ be an input to encode. Observe that if we manage to encode the leaf
index reached by each ball in the root node’s list of balls, then that information completely
specifies I. With this in mind, we implement the 0-probe data structure above on I and
proceed as follows:
1. First we write down the published bits on input I. This cost o(n lgn/ lg9 lgn) bits.
2. For i = 1, . . . , n consider the i’th ball in the root node’s list of balls. Let bi denote the

index of the leaf reached by that ball. We write down lgn/2 bits for each such ball in
turn, specifying the subtree at depth lgn/2 that contains the leaf bi. This costs n lgn/2
bits.

3. Finally, we go through all leaf nodes from left to right. For a leaf b, we check if there is
an accepted query returning b as its answer amongst all queries in all nodes of depth at
most lgn/2. If so, we continue to the next leaf. Otherwise we write lgn bits denoting the
rank of the ball reaching b amongst balls the root node’s list of balls. If X is the number
of leaves with no accepted query reporting it in tree levels {0, . . . , lgn/2}, this step costs
X lgn bits.

Decoding. To recover I from the above encoding, we do as follows.
1. We first go through all nodes v of depth d for d = 0, . . . , lgn/2. For each such node, let

qv1 , . . . , q
v
n/2d denote the queries we can ask at node v, i.e. qvi asks for the leaf reached by

the i’th ball in v’s list of balls. We run the query algorithm for each such query in turn
using the published bits written in step 1. of the encoding procedure. Since our data
structure makes 0 probes, this returns the answer to each such accepted query, i.e. we
have collected a set Q of pairs (qvi , b) such that b is the index of the leaf reached by the
i’th ball in v’s list of balls.

2. We now partition Q into one set Qb for each leaf index b. The set Qb contains all pairs
(qvi , b′) ∈ Q such that b′ = b. There are precisely X empty such sets.

3. For each empty set Qb in turn (ordered based on b), we use the bits written in step 3. of
the encoding procedure to recover the rank of the ball reaching b amongst all balls in the
root node’s list of balls.

4. For every non-empty set Qb, pick an arbitrary pair (qvi , b) ∈ Qb. From this pair alone, we
know that the ball reaching b has rank i amongst all balls ending in a leaf of the subtree
rooted at v. Now initialize a counter ∆ to 0. Using the bits written in step 2. of the
encoding procedure, we now go through all balls in the root node’s list of balls in turn.
For the r’th ball, r = 1, . . . , n, we check the lgn/2 bits written for it and from this we
determine if the ball reaches a leaf in v’s subtree (possible since v can only be in the first
lgn/2 levels by construction). If so, we increment ∆ by 1. If this causes ∆ to reach i, we
conclude that the ball ending in b has rank r in the root node’s list of balls.

5. From the above steps, we have for every leaf b determined the rank of the ball reaching it
amongst all balls in the root node’s list of balls. This information completely specifies I.

Analysis. The encoding above costs

o(n lgn/ lg9 lgn) + n lgn/2 +X lgn

bits. Now observe that if Qb is empty for a leaf index b, this means QY ∗

i (b, I) is empty for
every i ∈ {0, . . . , lgn/(2Y ∗)− 1}. This gives LY ∗(I) ≤ n lgn/Y ∗ −X(lgn/(2Y ∗)). But we
know LY

∗(I) ≥ (1− 1/ lg2 lgn)n lgn/Y ∗ and we conclude

X ≤ 2n/ lg2 lgn.
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The encoding thus costs

n lgn/2 +O(n lgn/ lg2 lgn).

Since lg(n!) = n lgn−O(n), we conclude that our encoding uses no more than

lg(|I∗|)− n lgn/2 +O(n lgn/ lg2 lgn) = lg(|I∗|)− Ω(n lgn)

bits, which completes the proof.
We have thus shown t = Ω(lg lgw n/ lgα) where α = (Sw lg18 lgn)/(n lgn). In the

word-RAM, we assume w = Θ(lgn) and the lower bound becomes the claimed t =
Ω(lg lgn/(lg(S/n) + lg lg lgn)).

2.3 Eliminating Probes
In this section we prove Lemma 4. Recalling the intuition presented in Section 2.1, we want
to show that for a data structure with few published bits, the different accepted queries
reporting a fixed leaf index b ∈ [n] have to probe distinct cells in their first probe. If we can
establish this, we can pick a small random sample of memory cells and there are many of the
accepted queries that make their first probe in the sample.

To formalize the above, we define a memory cell c to be k-popular on input I, if at least k
accepted queries make their first probe in c on I. Define for every query-support set QYi (b, I)
the cell-support set CYi (b, I) as the set of memory cells that are read in the first probe of
a query in QYi (b, I) on input I. We measure to what extend the queries in QYi (b, I) probe
distinct cells using the following definitions.

I Definition 5. For an input I and value Y ∈ {1, . . . , lgn}, we say that a pair (b, i), where
b ∈ [n] and i ∈ {0, . . . , lgn/Y − 1}, is Y -scattered on input I if one of the following three
holds:
1. QYi (b, I) contains a query making 0 probes.
2. CYi (b, I) contains a w3-popular cell.
3. |CYi (b, I)| ≥ α/ lg6 lgn.
We define the Y -scatter-number of I, denoted ΓY (I), as the number of pairs (b, i) that are
Y -scattered on I.

If a query makes zero probes, all the information needed to answer it is contained in the
already published bits. There are very few w3-popular cells, so publishing all of them costs
few bits. Most interestingly, if the queries in each support QYi (b, I) set probe many distinct
cells in their first probe (case 3.), then a random sample of cells will contain at least one of
these cells with good probability.

We need the following lemma that captures the correspondence between large support
on zoom level Y , the properties maintained by our Probe Elimination Lemma, and large
scattering on a higher zoom level αY .

I Lemma 6. Let I be a set of inputs to the ball-inheritance problem where |I| ≥ n!/2n.
Assume a ball-inheritance data structure uses S cells of w bits, has p < n lgn/ lg9 lgn
published bits and satisfies LY (I) ≥ (1 − 1/Z)n lgn/Y for all I ∈ I for some parameters
Z ≥ 2 and 64 lgw ≤ Y ≤ lgn/α, where α = (Sw lg18 lgn)/(n lgn). Then there exists a
subset I∗ ⊆ I of inputs such that |I∗| ≥ |I|/2 and

ΓαY (I) ≥
(

1− 1
lg3 lgn

)
·
(

1− 1
Z

)
· n lgn
αY

.

for all I ∈ I∗.
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We refer to the full version for the proof of Lemma 6, and use it to Prove Lemma 4 instead.
Let I be a set of at least n!/2n inputs to the ball inheritance problem. Assume furthermore
we are given a ball inheritance data structure that uses S cells of w bits, answers queries in t
probes, has p < n lgn/ lg9 lgn published bits, and satisfies LY (I) ≥ (1− 1/Z)n lgn/Y for all
I ∈ I for some parameters Z ≥ 2 and 64 lgw ≤ Y ≤ lgn/α where α = (Sw lg18 lgn)/(n lgn)
(as in the assumptions of Lemma 4 and Lemma 6). Let I∗ ⊆ I be the subset of I promised
by Lemma 6. Our goal is to construct a new ball inheritance data structure answering queries
in t− 1 probes for the inputs I∗ while publishing few bits and keeping LαY (I) fairly large
for all I ∈ I∗. Given an input I ∈ I∗, we keep the (old) p published bits and publish some
additional bits from our data structure as follows:
1. First we publish all memory cells that are w3-popular on input I. Since there are no

more than n lgn accepted queries, there are no more than n lgn/w3 popular cells. The
addresses and contents of all such cells can be described using O(n lgn/w2) = O(n/ lgn)
bits.

2. Next we collect all αY -scattered pairs (b, i) for input I. We remove those pairs for which
QαYi (b, I) contains a query making 0 probes, or CαYi (b, I) contains a w3-popular cell. By
definition, the remaining αY -scattered pairs (b, i) must satisfy |CαYi (b, I)| ≥ α/ lg6 lgn.
We now consider all subsets of n lgn/(w lg10 lgn) memory cells and publish the subset
P ∗ ⊆ [S] for which most remaining pairs (b, i) satisfies CαYi (b, I) ∩ P ∗ 6= ∅. Specifying
the addresses and contents of cells in P ∗ costs O(n lgn/ lg10 lgn) bits.

The query algorithm of our modified data structure is simple: We start running the old
query algorithm with the p “old” published bits and stop once one of the following happens:
1. If the old query algorithm rejects the query, we also reject it.
2. If the old query algorithm answers the query without any probes, we know the answer to

the query and return it.
3. Otherwise the old query algorithm makes at least one memory probe. The (address of

the) first cell probed, denoted c, can be determined solely from the old published bits.
Before making the actual probe, we check the newly published cells to see if c is amongst
them. If so, we have the contents of c in the published bits and therefore skip the probe.
We then continue executing the old query algorithm and have successfully reduced the
number of probes by one. If c was not published, we simply reject the query.

Clearly our new data structure answers queries in t−1 probes and has p+O(n lgn/ lg10 lgn)
published bits. What remains is to argue that LαY (I) is high for all I ∈ I∗ for this new data
structure. To distinguish the new data structure and the old, we use L̄, Q̄ and Γ̄ in place
of L,Q and Γ when referring to the new data structure. L,Q and Γ refers to the old data
structure.

So fix an I ∈ I∗. By our choice of I∗, we have

ΓαY (I) ≥
(

1− 1
lg3 lgn

)
·
(

1− 1
Z

)
· n lgn
αY

.

i.e. the old data structure has many pairs (b, i) that are αY -scattered on input I. By definition
of L̄αY (I), we need to lower bound the number of such pairs (b, i) that have Q̄αYi (b, I) non-
empty, i.e. at least one query reporting b in tree-levels {iαY, . . . , (i+ 1)αY − 1} is accepted
by our new query algorithm. For this, let (b, i) be a pair that was αY -scattered for I in
the old data structure. By definition of αY -scattered we know that QαYi (b, I) is non-empty.
Now observe that if QαYi (b, I) contains a query that made 0 probes, then that query is also
in Q̄αY (b, I). Similarly if QαYi (b, I) contains a query making its first probe in a w3-popular
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cell, then that query is also in Q̄αYi (b, I) since we publish all w3-popular cells. Hence
Q̄αYi (b, I) can be empty only if QαYi (b, I) contains no queries making 0 probes and no queries
probing a w3-popular cell. Since (b, i) was αY -scattered, this implies |CαYi (b, I)| ≥ α/ lg6 lgn.
Furthermore, we get that Q̄αYi (b, I) becomes empty only if none of these cells are in P ∗.

Letting µ = n lgn/(w lg10 lgn), we get that CαYi (b, I) has a non-zero intersection with
the following fraction of µ-sized cell sets:

1−
(
S−|CαYi (b,I)|

µ

)(
S
µ

) ≥ 1− (S − α/ lg6 lgn)!(S − µ)!µ!
S!(S − α/ lg6 lgn− µ)!µ!

≥ 1− (S − µ)α/ lg6 lgn

(S − α/ lg6 lgn)α/ lg6 lgn
=

1−
(
S − α/ lg6 lgn+ α/ lg6 lgn− µ

S − α/ lg6 lgn

)α/ lg6 lgn

= 1−
(

1− µ− α/ lg6 lgn
S − α/ lg6 lgn

)α/ lg6 lgn

.

Since α = (Sw lg18 lgn)/(n lgn) = S lg8 lgn/µ� µ/2, this is at least a

1−
(

1− µ

2S

)α/ lg6 lgn
≥ 1− exp

(
−αµ/(2S lg6 lgn)

)
≥ 1− 1/ lgn

fraction. Since we chose P ∗ to maximize the number sets CαYi (b, I) having a non-empty
intersection, we conclude that at least(

1− 1
lgn

)
·
(

1− 1
lg3 lgn

)
·
(

1− 1
Z

)
· n lgn
αY

≥
(

1− 1
Z
− 2
Z lg3 lgn

)
n lgn
αY

sets Q̄αYi (b, I) must be non-empty. Since Z ≥ 2, we finally conclude

L̄αY (I) ≥
(

1− 1
Z
− 1

lg3 lgn

)
n lgn
αY

.
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Abstract
We study data structure problems related to document indexing and pattern matching queries
and our main contribution is to show that the pointer machine model of computation can be
extremely useful in proving high and unconditional lower bounds that cannot be obtained in any
other known model of computation with the current techniques. Often our lower bounds match
the known space-query time trade-off curve and in fact for all the problems considered, there is
a very good and reasonable match between our lower bounds and the known upper bounds, at
least for some choice of input parameters.

The problems that we consider are set intersection queries (both the reporting variant and the
semi-group counting variant), indexing a set of documents for two-pattern queries, or forbidden-
pattern queries, or queries with wild-cards, and indexing an input set of gapped-patterns (or
two-patterns) to find those matching a document given at the query time.
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1 Introduction

In this paper we study a number of data structure problems related to document indexing
and prove space and query time lower bounds that in most cases are almost tight. Unlike
many of the previous lower bounds, we disallow random accesses by working in the pointer
machine model of computation, however, we obtain high and unconditional space and query
time lower bounds that almost match the best known data structures for all the problems
considered; at the moment, obtaining such unconditional and tight lower bounds in other
models of computation is a hopelessly difficult problem. Furthermore, compared to the
previous lower bounds in the area, our lower bounds probe deeper and thus are much more
informative. Consequently, these results show the usefulness of the pointer machine model.

Document indexing is an important problem in the field of information retrieval. Generally,
the input is a collection of documents D = {d1, d2, . . . dD} with a total length of n characters

∗ A full version of this paper is available, see [5].
† Research funded by MADALGO, Center for Massive Data Algorithmics, a Center of the Danish National

Research Foundation, grant DNRF84
‡ Research funded by MADALGO, Center for Massive Data Algorithmics, a Center of the Danish National

Research Foundation, grant DNRF84

EA
T

C
S

© Peyman Afshani and Jesper Sindahl Nielsen;
licensed under Creative Commons License CC-BY

43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016).
Editors: Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi;
Article No. 93; pp. 93:1–93:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.93
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


93:2 Data Structure Lower Bounds for Document Indexing Problems

Table 1 At every row, the 3rd cell presents our space lower bound for data structures that have
a query time bounded by the 2nd cell. PM stands for the pointer machine model. n is the input size
and t is the output size.

Problem Query Bound Space Lower Bound Assumptions
2P, FP, SI, 2FP

(counting) Q(n) Ω(n2−o(1)/Q2(n)) Semi-group

2P, FP, SI, 2FP
(reporting) Q(n) +O(t) Ω(n2−o(1)/Q(n)) PM

2P, FP, SI, 2FP
(reporting) O((nt) 1

2 −α + t) Ω
(
n

1+6α
1+2α−o(1)

)
PM, α > 0 a parameter

WCI (reporting) Q(n, κ) +O(t) Ω
(
n
κ

Θ
(

logn
κ logQ(n,κ)

)κ−1
)

PM, κ wild-cards,
κ ≤ logQ(n,κ) n

WCI (reporting) O(2κ/2 + t) Ω
(
n1+Θ(1/ log k)) PM, κ wild-cards,

3
√

logn ≤ κ = o( logn
log logn )

κ-GPI o
(

Dγκ

(2+2 logD)κ+1

)
nΩ(log1/(2κ) n) PM, αi = 0, βi = γ

κ = o( log logn
log log logn )

and usually the goal is to index them such that given a query, all the documents matching
the query can be either found efficiently (the reporting variant) or counted efficiently (the
searching variant). When the query is just one text pattern, the problem is classical and well-
studied and there are linear space solutions with optimal query time [33]. Not surprisingly,
there have been various natural extensions of this problem. We summarize the problems we
study and our results below.

1.1 New and Previous Results

1.1.1 Two-pattern and the Related Queries
The two-pattern query problem (abbreviated as the 2P problem) was introduced in 2001 by
Ferragina et al. [22] and since then it has attracted lots of attention. In the 2P problem,
each query is composed of two patterns and a document matches the query if both patterns
occur in the document. One can also define the Forbidden Pattern (FP) problem [23] where
a document matches the query if it contains one pattern but not the other. For symmetry,
we also introduce and consider the Two Forbidden Patterns (2FP) problem where none of
the patterns are allowed to match the document.

Previous Results. Ferragina et al. [22] presented a number of solutions for the 2P problem
with space and query times that depend on the “average size” of each document but the
worst case query time and space is O(P1 + P2 + nα + t) and O(n2−α logO(1) n), for any
0 < α < 1, respectively. Here P1 and P2 are the sizes of the query patterns and t is the
output size (see also [33]). Cohen and Porat [18] offered a solution that uses O(n logn) space
with O(P1 + P2 +

√
nt log2.5 n) query time. The space was improved to O(n) and the query

time to O(P1 + P2 +
√
nt log1.5 n) by Hon et al. [24]. The query time was reduced by a

O(
√

logn) in [29] factor and finally the query time O(P1 + P2 +
√
nt) was achieved in [10].

The FP problem was introduced by Fischer et al. [23] and they presented a data structure
that stores O(n3/2) bits and answers queries in O(P1 + P2 +

√
n + t) time. Another

solution was given by Hon et al. [25] that uses O(n) space but has O(P1 + P2 +
√
nt log2.5 n)

query time. For the searching variant (unweighted) their solution can answer queries in
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O(P1 + P2 +
√
n log logn) time. As Larsen et al. [29] remark, the log logn factor can be

removed by using range emptiness data structures and that the same data structure can be
used to count the number of matching documents for the two pattern problem.

The difficulty of obtaining fast data structures using (near) linear space has led many to
believe that very efficient solutions are impossible to obtain. Larsen et al. [29] specifically
focus on proving such impossibility claims and they show that the 2P and FP problems
are at least as hard as Boolean Matrix Multiplication, meaning, with current techniques,
P (n) + nQ(n) = Ω(nω/2) where P (n) and Q(n) are the preprocessing and the query times
of the data structure, respectively and ω is the exponent of the best matrix multiplication
algorithm (currently ω = 2.3728639). If one assumes that there is no “combinatorial” matrix
multiplication algorithm with better running time than O(n3−o(1)), then the lower bound
becomes P (n) + nQ(n) = Ω(n1.5−o(1)). Other conditional lower bounds for the 2P and FP
problems but from the integer 3SUM conjecture were obtained by Kopelowitz, et al. [27, 28].

The above results are conditional. Furthermore, they tell us nothing about the complexity
of the space usage, S(n), versus the query time which is what we are truly interested in for
data structure problems. Furthermore, even under the relatively generous assumption1 that
P (n) = O(S(n)no(1)), the space and query lower bounds obtained from the above results
have polynomial gaps compared with the current best data structures.

We need to remark that the only unconditional space lower bound is a pointer ma-
chine lower bound that shows with query time of O(poly(logn) + k) the space must be
Ω(n(logn/ log logn)3) [23]. However this bound is very far away from the upper bounds
(and also much lower than our lower bounds).

Our Results. We show that all the known data structures for 2P and FP problems are
optimal within no(1) factors, at least in the pointer machine model of computation: Consider
a pointer machine data structure that uses S(n) space and can report all the t documents
that match a given 2P query (or FP query, or 2FP query) in Q(n) +O(P1 + P2 + t) time.
We prove that we must have S(n)Q(n) = Ω

(
n2−o(1)). As a corollary of our lower bound

construction, we also obtain that any data structure that can answer 2P query (or FP query,
or 2FP query) in O((nt)1/2−ε + t) time, for any fixed constant ε > 0 must use super-linear
space. As a side result, we show that surprisingly, the counting variant of the problem is in
fact easier: in the semi-group model of computation (see [15] or the full version of this paper
[5] for a description of the semi-group model), we prove that we must have

S(n)Q2(n) = Ω(n2/ log4 n) .

1.1.2 Set Intersection Queries
The interest in set intersection problems has grown considerably in recent years and variants
of the set intersection problem have appeared in many different contexts. Here, we work
with the following variants of the problem. The input is m sets, S1, · · · , Sm of total size n,
from a universe U and a query is a pair of indices i and j. The decision variant asks whether
Si ∩ Sj = ∅. The reporting variant asks for all the elements in Si ∩ Sj . In the counting
variant, the result should be |Si ∩ Sj |. In the searching variant, the input also includes a
weight function w : U → G where G is a semi-group. The query asks for

∑
x∈Si∩Sj w(x).

1 There are problems, such as jumbled indexing [13], where the preprocessing time is a polynomial factor
larger than the space complexity.
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Previous Results. The set intersection queries have appeared in many different formulations
and variants (e.g., see [19, 37, 36, 1, 27, 18]). The most prominent conjecture is that answering
the decision variant with constant query time requires Ω(n2−o(1)) space (see [37] for more
details). For the reporting variant, Cohen and Porat [18] presented a data structure that
uses linear space and answers queries in O(

√
nt) time, where t is the output size. They also

presented a linear-space data structure for the searching variant that answers queries in
O(
√
n) time. In [26] the authors study set intersection queries because of connections to

dynamic graph connectivity problems. They offer very similar bounds to those offered by
Cohen and Porat (with a

√
logn factor worse space and query times) but they allow updates

in O(
√
n logn) time. It is commonly believed that all set intersection queries are hard.

Explicitly stated conjectures on set intersection problems are used to obtain conditional lower
bounds for problems such as distance oracles [37, 36, 19] while other well-known conjectures,
such as the 3SUM conjecture, can be used to show conditional lower bounds for variants of
set intersection problems [27, 1]. For other variants see [9, 34, 21].

Dietz et al. [21] considered set intersection queries in the semi-group model (a.k.a the
arithmetic model) and they presented near optimal dynamic and offline lower bounds. They
proved that given a sequence of n updates and q queries one must spend Ω(q + n

√
q) time

(ignoring polylog factors); in the offline version a sequence of n insertions and q queries are
used but in the dynamic version, the lower bound applies to a dynamic data structure that
allows insertion and deletion of points, as well as set intersection queries.

Our Results. Our lower bounds for the 2P problem easily extend to the SI problem. Perhaps
the most interesting revelation here is that the searching variant is much easier than the
reporting variant (S(n)Q(n) = Ω(n2−o(1)) for reporting versus S(n)Q(n)2 = Ω(n2−o(1)) for
searching)2. Based on this, we make another conjecture that even in the RAM model,
reporting the elements in Si ∩ Sj for two given query indices i and j, in O(n1−ε + |Si ∩ Sj |)
time, for any fixed constant ε > 0, requires ω(n) space. Such a separation between counting
and reporting is a rare phenomenon with often counting being the difficult variant.

Observe that conditional lower bounds based on the Boolean Matrix Multiplication or
the integer 3SUM conjectures have limitations in distinguishing between the counting and
the reporting variants: For example, consider the framework of Larsen et al. [29] and for
the best outcome, assume P (n) = S(n)no(1) and also that boolean matrix multiplication
requires Ω(n3−o(1)) time; then their framework yields that S(n) + nQ(n) = Ω(n3/2−o(1)).
When Q(n) = Θ(n2/3) this does not rule out the possibility of having S(n) = O(n) (in fact
the counting variant can be solved with linear space). However, our lower bound shows that
even with Q(n) = Θ(n2/3) the reporting variant requires Ω(n4/3−o(1)) space.

1.1.3 Wild Card Indexing
We study the document indexing problem of matching with “don’t cares”, also known as
wild card matching or indexing (WCI). The setup is the same as for the 2P problem, except
a query is a single pattern but it also contains wild cards denoted by a special character “∗”.
A “∗” matches any one character. The task is to report all documents matched by the query.
This is a well-studied problem from the upper bound perspective and there are generally two
variations: either the maximum number of wild cards is bounded or it supports any number

2 While we believe our lower bounds are certainly interesting (particularly since they separate counting
and reporting variants), they do not make any progress towards resolving the status of the decision
version which is considered a major open problem.
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of wild cards. We consider the bounded version where patterns contain up to κ wild cards
and κ is known in advance by the data structure.

Previous Results. Cole et al. [20] presented a data structure that uses O(n logκ n
κ! ) words of

space and answers queries in O(P + 2κ log logn+ t), where t is the number of occurrences
and P is the length of the query pattern. The space has been improved to O(n logκ+ε n)
bits while keeping the same query time [30]. Another improvement came as a trade-off that
increased query time to O(P + βj log logn+ t) and reduced space usage O(n logn logκ−1

β n)
for any 2 ≤ β ≤ σ where σ is the alphabet size and j ≤ κ is the number of wild cards
in the query [8]. In the same paper an alternate solution with O(P + t) query time and
O(nσκ2 logκ n logn) space usage was also presented. Other results have focused on reducing
space while increasing the query time but their query time now depends on the alphabet
size, e.g., in [31] the authors provide a data structure with O(n logε n log σ) space but with
the query time of O(m+ σκ

√
log log logn+ t).

From these bounds we note three things, first that all solutions have some exponential
dependency on κ and second the alternate solution by Bille et al. [8] has an odd σκ2 factor,
which is exponential on a quadratic function of κ as opposed to being exponential on a
linear function of κ (such as 2κ, σκ, or logκ n). Third, when the query time is forced to be
independent of σ, there is a discrepancy between query and space when varying κ: Increasing
κ (when it is small) by one increases the space by approximately a logn factor, while to
increase the query time by a logn factor, κ needs to be increased by log logn. Based on the
third point, it is quite likely that unlike SI or 2P problems, WCI does not have a simple
trade-off curve.

Other results that are not directly comparable to ours include the following: One is an
O(n) space index with O(P + α) query time [38] where α is the number of occurrences of all
the subpatterns separated by wild card characters. Note that α could be much larger than
t and in fact, this can result in a worst case linear query time, even with small values of t.
Nonetheless, it could perform reasonably well in practice. Two, there are lower bounds for
the partial match problem, which is a related problem (see [35] for more details).

Our Results. For WCI with κ wild cards, we prove two results, both in the pointer machine
model. In summary, we show that the exponential dependency of space complexity or query
time on κ generally cannot be avoided.

As our first result and for a binary alphabet (σ = 2), we prove that for 3
√

logn ≤ κ =
o( logn

log logn ), any data structure that answers queries in O(2κ/2 + P + t) time must consume
n1+Θ(1/ logκ) space. This result rules out the possibility of lowering the σκ2 factor in the
alternate solution offered by Bille et al. [8], over all values of κ, to σκ2−ε for any constant
ε > 0: by setting κ = 3

√
logn (and σ = 2), such a bound will be much smaller than our

space lower bound (essentially involves comparing 2O(log1−ε/2 n) factor to a 2Ω(logn/ log logn)

factor). While this does not rule out improving the space bound for small values of κ, it
shows that the exponential dependency on κ2 is almost tight at least in a particular point in
the range of parameters.

As our second result, we prove that answering WCI queries in Q(n, κ) +O(P + t) time
requires Ω(nκΘ

(
logQ(n,κ) n

κ

)κ−1
) space, as long as κ < logQ(n,κ) n. Note that this query

time is assumed to be independent of σ. This result also has a number of consequences.
One, it shows that any data structure with query time of O(logO(1) n + P + t) requires
Ω(nκ

(
logn

κ log logn

)κ−1
) space. Note that this is rather close to the space complexity of the
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data structure of Cole et al. [20] (2O(κ)(log logn)κ factor away). In other words, the data
structure of Cole et al. cannot be significantly improved both in space complexity and
query time; e.g., it is impossible to answer WCI queries in O(logO(1) n+ P + t) time using

O
(
n
(

logn
κ

)κ(1−ε)
)

space, for any constant ε > 0.

Two, κ = 2 is the smallest value where linear space becomes impossible with polyloga-
rithmic query time. This is very nice since κ = 1 can be solved with almost linear space [30].
Furthermore this shows that the increase by a logn factor in the space complexity for every
increase of κ is necessary (for small values of κ).

Three, we can combine our second result with our first result when κ = 3
√

logn. As
discussed before, our first result rules out fast queries (e.g., when Q(n) ≤ 2κ/2), unless
the data structure uses large amounts of space, so consider the case when Q(n) = O(2κ).
In this case, we can rule out lowering the space usage of the data structure of Cole et al.

to Ω
(
n
(

logn
κ

)κ1−ε)
for any constant ε > 0: apply our second lower bound with fewer

wild cards, specifically, with κ′ = κ1−δ wild cards, for a small enough constant δ > 0 that
depends on ε. Observe that κ′ < logQ(n) n, so the second result lower bounds the space by

Ω
(
n
κ′Θ

(
log

δ
2κ

1−δ
n
))

, which for a sufficiently small δ is greater than Ω
(
n
(

logn
κ

)κ1−ε)
.

As mentioned in the beginning, our results show that the exponential dependency of
space or query time on κ cannot be improved in general. Furthermore, at a particular point
in the range of parameters (when κ = 3

√
logn), all the known exponential dependencies on

κ are almost tight and cannot be lowered to an exponential dependency on κ1−ε (or on κ2−ε

for the alternate solution) for any constant ε > 0. Nonetheless, there are still gaps between
our lower bounds and the known data structures. We believe it is quite likely both our lower
bounds and the existing data structures can be improved to narrow the gap.

1.1.4 Gapped Pattern Indexing
A κ-gapped pattern is a pattern p1{α1, β1}p2{α2, β2}, · · · , pκ{ακ, βκ}pκ+1 where αi and βi,
1 ≤ i ≤ κ are integers, and each pi, 1 ≤ i ≤ κ+ 1, is a string over an alphabet of size σ. Such
a κ-gapped pattern matches a documents in which one can find one occurrence of every pi
such that there are at least αi and at most βi characters between the occurrence of pi and
the occurrence of pi+1, 1 ≤ i ≤ κ.

Previous Results. The gapped pattern indexing is often considered both in the online and
the offline version (e.g., see [7, 40]). However, the result most relevant to us is [6], where they
consider the following data structure problem: given a set of 1-gapped patterns of total size n,
where all the patterns are in the form of p1{α, β}p2, store them in a data structure such that
given a document of length D at the query time, one can find all the gapped patterns that
match the query document (in general we call this the κ-gapped pattern indexing (κ-GPI)
problem). In [6], the authors give a number of upper bounds and conditional lower bounds
for the problem. Among a number of results, they can build a data structure of linear size
that can answer queries in Õ(D(β − α) + t) where Õ notation hides polylogarithmic factors
and t is the output size. For the lower bound and among a number of results, they can show
that with linear space Ω(D(β − α)1−o(1) + t) query time is needed.

Our Results. We consider the general κ-GPI problem where βi − αi = γ for all 1 ≤ i ≤ κ,
and a prove lower bound that is surprisingly very high: any pointer machine data structure
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that can answer queries in o(Dγκ/(2 logD)κ+1) time must use super polynomial space of
nΩ(log1/(κ+1) n). By construction, this result also holds if the input is a set of κ+ 1 patterns
where they all need to match the query document (regardless of their order and size of
the gaps). In this case, answering queries in o(Dκ+1/(2 logD)κ+1) requires the same super-
polynomial space. Note that in this case κ = 1 is the “dual” of the 2P problem: store a
set of two-patterns in data structure such that given a query document, we can output the
subset of two-patterns that match the document.

1.2 Technical Preliminaries
The Pointer Machine Model [39]. This models data structures that solely use pointers
to access memory locations (e.g., any tree-based data structure)3. We focus on a variant
that is the popular choice when proving lower bounds [14]. Consider an abstract “reporting”
problem where the input includes a universe set U where each query q reports a subset, qU ,
of U . The data structure is modelled as a directed graph G with outdegree two (and a root
node r(G)) where each vertex represents one memory cell and each memory cell can store one
element of U ; edges between vertices represent pointers between the memory cells. All other
information can be stored and accessed for free by the data structure. The only requirement
is that given the query q, the data structure must start at r(G) and explore a connected
subgraph of G and find its way to vertices of G that store the elements of qU . The size of
the subgraph explored is a lower bound on the query time and the size of G is a lower bound
on the space.

An important remark. The pointer-machine can be used to prove lower bounds for data
structures with query time Q(n) + O(t) where t is the output size and Q(n) is “search
overhead”. Since we can simulate any RAM algorithm on a pointer-machine with logn factor
slow down, we cannot hope to get high unconditional lower bounds if we assume the query
time is Q(n) +O(t logn), since that would automatically imply RAM lower bounds for data
structures with Q(n)/ logn+O(t) query time, something that is hopelessly impossible with
current techniques. However, when restricted to query time of Q(n) + O(t), the pointer-
machine model is an attractive choice and it has an impressive track record of proving lower
bounds that match the best known data structures up to very small factors, even when
compared to RAM data structures; we mention two prominent examples here. For the
fundamental simplex range reporting problem, all known solutions are pointer-machine data
structures [32, 11, 17] and the known pointer machine lower bounds match these up to an
no(1) factor [2, 16]. One can argue that it is difficult to use the power of RAM for simplex
range reporting problem. However, for the other fundamental orthogonal range reporting,
where it is easy to do various RAM tricks, the best RAM data structures save at most a
logn factor compared to the best known pointer machine solutions (e.g., see [3, 4, 12]). Also,
where cell-probe lower bounds cannot break the logn query barrier, very high lower bounds
are known for the orthogonal range reporting problem in the pointer machine model [3, 4, 14].

Known Frameworks. The fundamental limitation in the pointer machine model is that
starting from a memory cell v, one can visit at most 2` other memory cells using ` pointer

3 Many of the known solutions for various indexing problems use tree structures, such as suffix trees or
wavelet trees. While sometimes trees are can be encoded using bit-vectors with rank/select structures
on top, these tricks can only save polylogarithmic factors in space and query times.
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navigations. There are two known methods that exploit this limitation and build two different
frameworks for proving lower bounds.

The first lower bound framework was given by Bernard Chazelle [14, 16]. However, we
will need a slightly improved version of his framework that is presented in the following
lemma; essentially, we need a slightly tighter analysis on a parameter that was originally
intended as a large constant. Due to lack of space, the proof is only available in the full
version [5].

I Theorem 1. Let U be a set of n input elements and Q a set of queries where each query
outputs a subset of U . Assume there exists a data structure that uses S(n) space and answers
each query in Q(n) + αk time, where k is the output size. Assume (i) the output size of any
query q ∈ Q, denoted by |U ∩ q|, is at least t, for a parameter t ≥ Q(n) and (ii) for integers
` and β, and indices, i1, · · · , i`, |U ∩ qi1 ∩ · · · ∩ qi` | < β. Then, S(n) = Ω

(
|Q|t

`·2O(αβ)

)
.

The second framework is due to Afshani [2] and it is designed for “geometric stabbing
problems”: given an input set of n geometric regions, the goal is store them in a data
structure such that given a query point q, one can output the subset of regions that contain
q. The framework is summarized below.

I Theorem 2 ([2]). Assume one can construct a set of n geometric regions inside the d-
dimensional unit cube such that (i) every point of the unit cube is contained in at least t
regions 4, and (ii) the volume of the intersection of every β regions is at most v, for some
parameters β, t, and v. Then, for any pointer-machine data structure that uses S(n) space
and can answer geometric stabbing queries on the above input in time g(n) +O(k), where k is
the output size and g(·) is some increasing function, if g(n) ≤ t then S(n) = Ω(tv−12−O(β)).

These two frameworks are not easily comparable. In fact, for many constructions, often
only one of them gives a non-trivial lower bound. Furthermore, as remarked by Afshani [2],
Theorem 2 does not need to be operated in the d-dimensional unit cube and in fact any
measure could be substituted instead of the d-dimensional Lebesgue measure.

Our Techniques. Our first technical contribution is to use Theorem 2 in a non-geometric
setting by representing queries as abstract points under a discrete measure and each input
object as a range that contains all the matching query points. Our lower bound for the κ-GPI
problem and one of our WCI lower bounds are proved in this way. The second technical
contribution is actually building and analyzing proper input and query sets to be used in
the lower bound frameworks. In general, this is not easy and in fact for some problems it is
highly challenging5. Also see Section 5 (Conclusions) for a list of open problems.

In the rest of this article, we present the technical details behind our κ-GPI lower bound
and most of the details of our first WCI lower bound. Due to lack of space, the rest of the
technical details can be found in the full version [5].

We begin with the κ-GPI problem since it turns out for this particular problem we can
get away with a simple deterministic construction. For WCI, we need a more complicated
randomized construction to get the best result and thus it is presented next.

4 In [2] this is stated as “exactly t ranges” but the proof works with only a lower bound on t.
5 A good example is the classical halfspace range reporting problem where constructing proper input and

query sets has been a longstanding open problem; the current best lower bound uses a highly inefficient
reduction from the simple range reporting problem [2].
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2 Gapped Pattern Lower Bound

In this section we deal with the data structure version of the gapped pattern problem. The
input is a collection of κ-gapped patterns (typically called a dictionary), with total length n
(in characters). The goal is to store the input in a data structure such that given a document
of size D, one can report all the input gapped patterns that match the query. We focus on
special κ-gapped patterns that we call standard: a standard κ-gapped pattern in the form of
p1 {0, γ} p2 {0, γ} . . . {0, γ} pκ+1 where each pi is a string (which we call a subpattern) and γ
is an integer.

I Theorem 3. For κ = o( log logn
log log logn ) and in the pointer machine model, answering κ-GPI

queries in o
(

Dγκ

(2+2 logD)κ+1

)
+O(t) time requires nΩ(log1/(2κ) n) space.

To prove this theorem, we build a particular input set of standard κ-gapped patterns. We
pick the alphabet Σ = {0, 1,#}, and the gapped patterns only use {0, 1}. Each subpattern
in the input is a binary string of length p. The subpatterns in any gapped pattern are
in lexicographic order, and a subpattern occurs at most once in a pattern (i.e., no two
subpatterns in a pattern are identical). The input set, S, contains all possible gapped
patterns obeying these conditions. Thus, |S| =

( 2p
κ+1
)
. Each query is a text composed of

concatenation of D/(p + 1) substrings (for simplicity, we assume D/(p + 1) is an integer)
and each substring is in the form ’#{0, 1}p’. We restrict the query substrings to be in
lexicographic order and without repetitions (no two substrings in a query are identical). The
set of all query texts satisfying these constraints is denoted by Q. Thus, |Q| =

( 2p
D/(p+1)

)
.

I Lemma 4. For D ≥ 2κγ, any text T ∈ Q matches Θ
(

Dγκ

(p+1)κ+1

)
gapped patterns in S.

Proof. Consider a text T ∈ Q. To count the number of gapped patterns that can match
it, we count the different ways of selecting κ+ 1 positions that correspond to the starting
positions of a matching subpattern. Each position starts immediately after ’#’, with at
most γ characters between consecutive positions. Since D ≥ 2κγ, we have Θ(D/p) choices
for picking the first position, i.e., the starting position of a gapped pattern matching T .
After fixing the first match, there are at most γ/(p+ 1) choices for the position of the next
match between a subpattern and substring. However, if the first match happens in the first
half of text T , there are always γ/(p+ 1) choices for the position of each subpattern match
(since D ≥ 2κγ). Thus, we have Θ

(
Dγk/(p+ 1)κ+1) choices. As input subpatterns are in

lexicographically increasing order, different choices result in distinct gapped patterns that
match the query. J

To apply Theorem 2, we consider each query text T in Q as a “discrete” point with
measure 1/|Q|. Thus, the total measure of Q (i.e., the query space) is one and Q functions as
the “unit cube” within the framework of Theorem 2. We consider an input gapped pattern
P in S as a range that contains all the points of Q that match P . Thus, to apply Theorem 2,
we need to find a lower bound on the output size of every query (condition (i)) and an
upper bound on v, the measure of the intersection of β inputs (condition (ii)). By the
above lemma, meeting the first condition is quite easy: we pick t = Θ

(
Dγκ

(p+1)κ+1

)
(with the

right hidden constant). Later we shall see that p = 1 + 2 logD so this can be written as
t = Θ

(
Dγκ

(2+2 logD)κ+1

)
Thus, we only need to upper bound v which we do below.

I Lemma 5. Consider β patterns P1, · · · , Pβ ∈ S. At most
( 2p−β1/(κ+1)

D/(p+1)−β1/(κ+1)

)
texts in Q

can match all patterns P1, · · · , Pβ.
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Proof. Collectively, P1, · · · , Pβ must contain at least r = β1/(κ+1) distinct subpatterns:
otherwise, we can form at most

(
r

κ+1
)
< β different gapped patterns, a contradiction. This in

turn implies that any text T matching P1, · · · , Pβ must contain all these at least r distinct
subpatterns. Clearly, the number of such texts is at most

( 2p−β1/(κ+1)

D/(p+1)−β1/(κ+1)

)
. J

As the measure of each query in Q is 1/|Q|, by the above theorem, we have v ≤( 2p−β1/(κ+1)

D/(p+1)−β1/(κ+1)

)
/|Q|. We now can apply Theorem 2. Each pattern in the input has Θ(pκ)

characters and thus the total input size, n, is Θ(pκ|S|) = Θ(pκ
( 2p
κ+1
)
). By the framework,

and Lemmata 5 and 4, we know that the space usage of the data structure is at least

Ω

 Dγκ

(p+1)κ+1 ·

( 2p
D/(p+1)

)( 2p−β1/(κ+1)

D/(p+1)−β1/(κ+1)

) · 2−O(β)

 = Ω

1 ·
(

(p+ 1)2(p−1)

D

)β1/(κ+1)

· 2−O(β)


where to obtain the rightmost equation we expand the binomials, simplify, and constrain
β1/(κ+1) < 2p/2 to lower bound 2p − β1/(κ+1) with 2p−1. Now we work out the parameters.
We know that n = Θ(pκ

( 2p
κ+1
)
) = 2Θ(p(κ+1)); this is satisfied by setting p = cp(logn)/(κ+ 1)

for some constant cp. Observe that there is an implicit constraint on D and p: there
should be sufficient bits in the subpatterns to fill out a query with distinct subpatterns, i.e.
2p > D/(p+ 1); we pick D = ncD1/(κ+1) for some other constant cD such that D = 2p/2−1

and thus (p+ 1)2p−1/D = 2p/2. Using these values, the space lower bound is simplified to

Ω
(

2β
1/(κ+1) cp

2
logn
κ+1 · 2−cββ

)
where cβ is another constant. We now optimize the lower bound by picking β such that
cββ = 1

2β
1/(κ+1) cp

2
logn
κ+1 which solves to β = Θ(( logn

κ+1 )1+1/κ). Thus, for constant c, the space
complexity of the data structure is

Ω
(

2c(
logn
κ+1 )1+ 1

κ

)
= Ω

(
2logn·c log

1
κ n( 1

κ+1 )1+ 1
κ

)
= n

Ω
(

log
1
κ n( 1

κ+1 )1+ 1
κ

)
= n

Ω
(

log
1

2κ n

)
where the last part follows from κ = o(log logn/ log log logn).

3 Wild Card Indexing

In this section we consider the wild card indexing (WCI) problem and prove both space and
query lower bounds in the pointer machine model of computation. Note that our query lower
bound applies to an alphabet size of two (i.e., binary strings).

3.1 The Query Lower Bound
Assume for any input set of documents of total size n, we can build a data structure such
that given a WCI query of length m containing κ wild cards, we can find all the documents
that match the query in Q(n, κ) +O(m+ t) time, where t is the output size. Furthermore,
assume κ is a fixed parameter known by the data structure and that the data structure
consumes S(n, κ) space. Our main result here is the following.

I Theorem 6. If 3
√

logn ≤ κ = o(logn) and Q(n, κ) = O(2κ2 ), then S(n, κ) ≥ n1+Θ( 1
logκ ).

To prove the lower bound, we build a particular set of documents and patterns and prove
that if the data structure can answer the queries fast, then it must consume lots of space, for
this particular input, meaning, we get lower bounds for the function S(·). We now present
the details. We assume Q(n, κ) ≤ 2κ/2, as otherwise the theorem is trivial.
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Documents and patterns. We build the set of documents in two stages. Consider the set of
all bit strings of length m with exactly ` = κ/2 “1”s. In the first stage, we sample each such
string independently with probability r−1 where r = 2κ/3. Let D be the set of sampled strings.
In the second stage, for every set of ` + `′ indices, 1 ≤ i1 < i2 < · · · < i`+`′ ≤ m, where
`′ = (log` r)/2 = Θ(κ/ log κ), we perform the following operation, given another parameter
β: if there are more than β strings in D that have “1”s only among positions i1, · · · , i`+`′ ,
then we remove all such strings from D. Consequently, among the remaining strings in D,
“1”s in every subset of β strings will be spread over at least `+ `′ + 1 positions. The set of
remaining strings D will form our input set of documents. Now we consider the set P of all
the patterns of length m that have exactly κ wild cards and m− κ “0”s. We remove from P
any pattern that matches fewer than

(
κ
`

)
/(2r) documents from D. The remaining patterns

in P will form our query set of patterns. In the full version [5], we prove the following.

I Lemma 7. With positive probability, we get a set D of Θ(
(
m
`

)
/r) documents and a set P

of Θ(
(
m
κ

)
) patterns such that (i) each pattern matches Θ(

(
κ
`

)
/r) documents, and (ii) there

are no β = Θ(logκm) documents whose “1”s are contained in a set of `+ `′ indices.

To prove the lower bound, we use Theorem 2. We use a discrete measure here: each
pattern is modelled as a “discrete” point with measure 1

|P| , meaning, the space of all patterns
has measure one. Each document forms a range: a document di contains all the patterns
(discrete points) that match di. Thus, the measure of every document di ∈ D is ti/|P|, where
ti is the number of patterns that match di. We consider the measure of the intersection
of β documents (regions) d1, . . . , dβ . By Lemma 7, there are ` + `′ indices where one of
these documents has a “1”; any pattern that matches all of these documents must have a
wild card in all of those positions. This means, there are at most

(
m−`−`′
κ−`−`′

)
patterns that

could match documents d1, . . . , dβ . This means, when we consider documents as ranges,
the intersection of every β documents has measure at most

(
m−`−`′
κ−`−`′

)
/|P| which is an upper

bound for parameter v in Theorem 2. For the two other parameters t and g(n) in the
theorem we have, t = Θ(

(
κ
`

)
/r) (by Lemma 7) and g(n) = Q(n, κ) + O(m). To obtain a

space lower bound from Theorem 2, we must check if g(n) ≤ t = Θ(
(
κ
`

)
/r). Observe that(

κ
`

)
=
(
κ
κ/2
)
≥ 2κ/κ since the binomials

(
κ
i

)
sum to 2κ for 0 ≤ i ≤ κ and

(
κ
κ/2
)
is the largest

one. As r = 2−κ/3, we have t = Ω(2κ2−κ/3/κ) = ω(2κ/2) = ω(Q(n, k)). However, g(n) also
involves an additive O(m) term. Thus, we must also have t = ω(m) which will hold for our
choice of parameters but we will verify it later.

By guaranteeing that g(n) ≤ t, Theorem 2 gives a space lower bound of Ω(tv−12−O(β)).
However, we would like to create an input of size Θ(n) which means the number of sampled
documents must be Θ(n/m) and thus we must have

(
m
`

)
/r = Θ(n/m). As m = ω(κ), it

follows that
(
m
`

)
= (Θ(1)m/`)`. Thus, (Θ(1)m/`)` = Θ(rn/m). Thus, we have that

v−1 ≥ |P |(
m−`−`′
κ−`−`′

) ≥ Θ
((
m
κ

))(
m−`−`′
κ−`−`′

) = Θ(1) ·
m!

κ!(m−κ)!
(m−`−`′)!

(κ−`−`′)!(m−κ)!

≥ Θ(1) · m
`+`′

(2κ)`+`′ = Θ(1) · n
mΘ(1)κ ·

(m
2κ

)`′
where the last step follows from (Θ(1)m/`)` = Θ(rn/m), r = 2κ/3 and ` = κ/2.

Now we bound m in terms of n. From (m/(2κ))` = n
mcκ we obtain that m = κ`/(`+1) ·

n1/(`+1)/Θ(1)κ = n2/(κ+2)/Θ(1)κ. Remember that `′ = Θ(κ/ log κ). Based on this, we
get that v−1 = n · nΘ(1/ logκ)/Θ(1)κ and since κ = o(logn/ log logn) the Θ(1)κ term is
dominated and we have v−1 = n · nΘ(1/ logκ). It remains to handle the extra 2−O(β) factor
in the space lower bound. From Lemma 7, we know that β = c logκm. Based on the value
of m, this means β = Θ(logn/(κ log κ)) which means 2−O(β) is also absorbed in nΘ(1/ logκ)
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factor. It remains to verify one last thing: previously, we claimed that we would verify that
t = ω(m). Using the bound t = ω(2κ/2) this can be written as 2κ/2 = ω(m) which translates
to κ/2 = (2 logn)/(κ+ 2) + ω(1) which clearly holds if κ ≥ 3

√
logn.

3.2 The Space Lower Bound
The details of our space lower can be found in the full version [5], where we prove the
following.

I Theorem 8. labelthm:wcis Any pointer-machine data structure that answers WCI
queries with κ wild cards in time Q(n) + O(m + t) over an input of size n must use

Ω
(
n
κΘ
(

logQ(n) n

κ

)κ−1
)

space, as long as κ < logQ(n) n, where t is the output size, and

m is the pattern length.

Refer to the introduction for a discussion of the consequences of these lower bounds.

4 Two Pattern Document Indexing and Related Problems

Due to lack of space we only state the primary results for 2P, FP, 2FP, and SI. The proofs
for Theorems 9 and 10 can be found in the full version [5].

I Theorem 9. Any data structure on the Pointer Machine for the 2P, FP, 2FP, and SI
problems with query time Q(n) and space usage S(n) must obey S(n)Q(n) = Ω

(
n2−o(1)).

Also, if Q(n, k) = O((nk)1/2−α + k) for a constant 0 < α < 1/2, then S(n) =
Ω
(
n

1+6α
1+2α−o(1)

)
.

The above theorem is proved using Theorem 1 which necessitates a randomized construc-
tion involving various high probability bounds. Unlike our lower bound for κ-GPI we were
unable to find a deterministic construction that uses Theorem 2.

We also prove the following lower bound in the semi-group model which addresses the
difficulty of the counting variants of 2P and the related problems.

I Theorem 10. Answering 2P, FP, 2FP, and SI queries in the semi-group model requires
S(n)Q2(n) = Ω(n2/ log4 n).

5 Conclusions

In this paper we proved unconditional and high space and query lower bounds for a number
of problems in string indexing. Our main message is that the pointer machine model remains
an extremely useful tool for proving lower bounds, that are close to the true complexity
of many problems. We have successfully demonstrated this fact in the area of string and
document indexing. Within the landscape of lower bound techniques, the pointer machine
model, fortunately or unfortunately, is the only model where we can achieve unconditional,
versatile, and high lower bounds and we believe more problems from the area of string and
document indexing deserve to be considered in this model. To this end, we outline a number
of open problems connected to our results.
1. Is it possible to generalize the lower bound for 2P to the case where the two patterns are

required to match within distance γ? This is essentially a "dual" of the 1-GPI problem.
2. Recall that our space lower bound for the WCI problem (Subsection 3.2) assumes that

the query time is independent of the alphabet size σ. What if the query is allowed to
increase with σ?
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3. Our query lower bound for the WCI (Subsection 3.1) is proved for a binary alphabet.
Is it possible to prove lower bounds that take σ into account? Intuitively the problem
should become more difficult as σ increases, but we were unable to obtain such bounds.

4. We require certain bounds on κ for the WCI problem. Is it possible to remove or at least
loosen them? Or perhaps, can the upper bounds be substantially improved?

5. What is the difficulty of the κ-GPI problem when κ is large?
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on the RAM, revisited. In Symposium on Computational Geometry (SoCG), pages 1–10,
2011.

ICALP 2016

http://dx.doi.org/10.1145/2261250.2261299
http://arxiv.org/abs/1604.06264
http://arxiv.org/abs/1604.06264
http://arxiv.org/abs/1503.07563
http://arxiv.org/abs/1503.07563


93:14 Data Structure Lower Bounds for Document Indexing Problems

13 Timothy M. Chan and Moshe Lewenstein. Clustered integer 3SUM via additive combina-
torics. In Proceedings of ACM Symposium on Theory of Computing (STOC), pages 31–40,
2015.

14 Bernard Chazelle. Lower Bounds for Orthogonal Range Searching: I. The Reporting Case.
J. ACM, 37(2):200–212, 1990.

15 Bernard Chazelle. Lower Bounds for Orthogonal Range Searching II. The Arithmetic Model.
J. ACM, 37(3):439–463, 1990.

16 Bernard Chazelle and Burton Rosenberg. Simplex Range Reporting on a Pointer Machine.
Comput. Geom., 5:237–247, 1995.

17 Bernard Chazelle, Micha Sharir, and Emo Welzl. Quasi-optimal upper bounds for simplex
range searching and new zone theorems. Algorithmica, 8:407–429, December 1992.

18 Hagai Cohen and Ely Porat. Fast set intersection and two-patterns matching. Theor.
Comput. Sci., 411(40-42):3795–3800, 2010.

19 Hagai Cohen and Ely Porat. On the hardness of distance oracle for sparse graph.
http://arxiv.org/abs/1006.1117, 2010.

20 Richard Cole, Lee-Ad Gottlieb, and Moshe Lewenstein. Dictionary matching and indexing
with errors and don’t cares. In Proceedings of ACM Symposium on Theory of Computing
(STOC), pages 91–100, 2004.

21 Paul F. Dietz, Kurt Mehlhorn, Rajeev Raman, and Christian Uhrig. Lower bounds for set
intersection queries. Algorithmica, 14(2):154–168, 1995.

22 Paolo Ferragina, Nick Koudas, S. Muthukrishnan, and Divesh Srivastava. Two-dimensional
substring indexing. Journal of Computer and System Sciences, 66(4):763–774, 2003. Special
Issue on PODS 2001.

23 Johannes Fischer, Travis Gagie, Tsvi Kopelowitz, Moshe Lewenstein, Veli Mäkinen, Leena
Salmela, and Niko Välimäki. Forbidden patterns. In LATIN 2012: Theoretical Informatics
– 10th Latin American Symposium, Arequipa, Peru, April 16-20, 2012. Proceedings, pages
327–337, 2012.

24 Wing-Kai Hon, Rahul Shah, Sharma V. Thankachan, and Jeffrey Scott Vitter. String Re-
trieval for Multi-pattern Queries. In String Processing and Information Retrieval – 17th
International Symposium, SPIRE 2010, Los Cabos, Mexico, October 11-13, 2010. Proceed-
ings, pages 55–66, 2010.

25 Wing-Kai Hon, Rahul Shah, Sharma V. Thankachan, and Jeffrey Scott Vitter. Document
Listing for Queries with Excluded Pattern. In Combinatorial Pattern Matching – 23rd
Annual Symposium, CPM 2012, Helsinki, Finland, July 3-5, 2012. Proceedings, pages 185–
195, 2012.

26 Casper Kejlberg-Rasmussen, Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Word-packing
algorithms for dynamic connectivity and dynamic sets. http://arxiv.org/abs/1407.6755,
2014.

27 Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Higher lower bounds from the 3SUM conjec-
ture. http://arxiv.org/abs/1407.6756, 2016.

28 Tsvi Kopelowitz, Seth Pettie, and Ely Porat. Higher lower bounds from the 3SUM conjec-
ture. In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 1272–1287, 2016.

29 Kasper Green Larsen, J. Ian Munro, Jesper Sindahl Nielsen, and Sharma V. Thankachan.
On Hardness of Several String Indexing Problems. In Combinatorial Pattern Matching
– 25th Annual Symposium, CPM 2014, Moscow, Russia, June 16-18, 2014. Proceedings,
pages 242–251, 2014.

30 Moshe Lewenstein, J. Ian Munro, Venkatesh Raman, and Sharma V. Thankachan. Less
space: Indexing for queries with wildcards. Theoretical Computer Science, 557:120–127,
2014.



P. Afshani and J. S. Nielsen 93:15

31 Moshe Lewenstein, Yakov Nekrich, and Jeffrey Scott Vitter. Space-efficient string indexing
for wildcard pattern matching. CoRR, abs/1401.0625, 2014. URL: http://arxiv.org/
abs/1401.0625.

32 Jiří Matoušek. Range searching with efficient hierarchical cuttings. Discrete & Computa-
tional Geometry, 10(2):157–182, 1993.

33 S. Muthukrishnan. Efficient algorithms for document retrieval problems. In Proceedings of
the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 657–666, 2002.
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35 Mihai Pǎtraşcu. Unifying the landscape of cell-probe lower bounds. SIAM Journal of
Computing, 40(3):827–847, 2011.
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Abstract
We present and study a framework in which one can present alternation-based lower bounds on
proof length in proof systems for quantified Boolean formulas. A key notion in this framework
is that of proof system ensemble, which is (essentially) a sequence of proof systems where, for
each, proof checking can be performed in the polynomial hierarchy. We introduce a proof system
ensemble called relaxing QU-res which is based on the established proof system QU-resolution.
Our main results include an exponential separation of the tree-like and general versions of relaxing
QU-res, and an exponential lower bound for relaxing QU-res; these are analogs of classical results
in propositional proof complexity.

1998 ACM Subject Classification F.1.3 [Computation by Abstract Devices] Complexity meas-
ures and classes

Keywords and phrases proof complexity, polynomial hierarchy, quantified propositional logic

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.94

1 Introduction

Background. Traditionally, the area of propositional proof complexity studies proof length
in propositional proof systems for certifying the unsatisfiability of instances of the SAT
problem, which instances are quantifier-free propositional formulas [16, 5, 26]. This line of
study is supported by multiple motivations; let us highlight a few. First, while satisfiable
formulas can be easily certified by a satisfying assignment, it is also natural to desire efficiently
verifiable proofs for unsatisfiable formulas (for instance, to check that a SAT algorithm judged
unsatisfiability correctly); understanding whether and when proof systems have succinct
proofs is a prime concern of this area. Relatedly, SAT algorithms for deciding the SAT
problem can be typically shown to implicitly generate proofs in a proof system, and thus
insight into proof length in the resulting proof system can be used to gain insight into the
running-time behavior of SAT algorithms (see for example the discussions in [4, 1]). In
addition, the question of whether or not there are proof systems admitting polynomially
bounded proofs is (when formalized) equivalent to the question of whether or not NP is equal
to coNP [16], and one can thus suggest that studying proof length in propositional proof
systems sheds light on the relationship between these two complexity classes.

Over recent years, researchers have devoted increasing attention to methods for solving
the QBF problem, a generalization of the SAT problem and a canonical PSPACE-complete
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94:2 Proof Complexity Modulo the Polynomial Hierarchy

problem; an instance of this problem is a propositional formula where each variable is either
existentially or universally quantified. (QBF is short for quantified Boolean formula.) It is
often suggested that the move to studying this more general problem is based on advances in
the efficacy of SAT algorithms (see for example [27]). As reinforces this suggestion, let us
point out that one can find QBF solution techniques which use SAT algorithms as black-box,
primitive components, and hence which arguably conceive of and treat the SAT problem
as feasibly solvable. For instance, sKizzo, a QBF solver dating back to 2005, would convert
the QBF being processed to a SAT instance and then call a SAT solver, whenever this was
affordable [8]. As another example, a different QBF solver which extensively calls a SAT
solver during a backtrack-style search was developed and studied [25].

The rise in the study of the QBF problem has resulted in the identification of a number
of core algorithmic techniques and corresponding proof systems that aim to capture these
(see for example [13, 18, 17, 23, 3, 21, 9, 10] and the references therein). We refer to these
proof systems as QBF proof systems; they can be used as a basis for certifying a decision for
a QBF instance. One can motivate the study of QBF proof systems in much the same way
that the study of propositional proof systems has been motivated; hence, these QBF proof
systems would seem to suggest a new chapter in the study of proof complexity, and a new
domain for the existing lines of inquiry thereof.

However, one is immediately confronted with a dilemma upon inspecting the very basic
question of whether or not a typical QBF proof system requires long (exponentially sized)
proofs – again, a primary type of question in traditional proof complexity. As an example,
let us discuss Q-resolution [13], a QBF proof system which is heavily studied and used,
in both theory and practice (see for example [2, 19, 18, 22, 23, 3, 9] and the references
therein). When applied to SAT instances (viewed as instances of QBF where all variables
are existentially quantified), Q-resolution behaves identically to resolution (a heavily studied
propositional proof system), and hence the known exponential lower bounds on resolution
proof length [20, 7] transfer immediately to Q-resolution. This observation leaves one with a
lingering sentiment – which is often expressed by members of the community – that there
is something left to be said. After all, Q-resolution is defined on QBF instances, which are
substantially more general than SAT instances; the observation does not yield any information
about how Q-resolution handles this extra generality, that is, how it copes with alternation
of quantifiers. Indeed, there is a sharp disconnect between observing a lower bound for a
QBF proof system via a set of SAT instances, and the mentioned treatment of the SAT
problem, by QBF algorithms, as a feasibly solvable primitive. These considerations naturally
lead to the question of whether or not one can formulate and prove a lower bound which
arises from alternation.

Contributions. In this article, we present and study a framework in which it is possible to
present such alternation-based lower bounds on proof length in QBF proof systems.

We define a proof system ensemble to be an infinite collection of proof systems, where in
each proof system, whether or not a given string π constitutes a proof of a given formula
Φ can be checked in the polynomial hierarchy (Definition 2). A proof system ensemble is
considered to have polynomially bounded proofs (for a language) if it contains a proof system
which has polynomially bounded proofs in the usual sense (Definition 4). As a result, it is
straightforward to define proof system ensembles that have succinct proofs for any set of QBFs
with bounded alternation, such as a set of SAT instances (and the proof system ensembles
studied herein all have this property); this in turn forces proof length lower bounds, by
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nature, to arise from a proof system’s inability to cope with quantifier alternation.1 In terms
of complexity classes, the question of whether or not there exists a polynomially bounded
proof system ensemble for the QBF problem (or any other PSPACE-complete problem) is
equivalent to the question of whether or not PSPACE is contained in PH, the polynomial
hierarchy (Proposition 5). Indeed, the relationship that traditional proof complexity bears to
the NP equals coNP question is analogous to the relationship between the present framework
and the PSPACE equals PH question. (Let us point out that no direct implication is known
between these two open questions, and so, in a certain sense, progress in one framework may
proceed orthogonally to progress in the other!)

One of our main motivations in pursuing this work was to gain further insight into
Q-resolution; here, we focus on a slight extension, QU-resolution [18], where from existing
clauses one can derive new clauses in two ways: by a rule for eliminating literals on universally
quantified variables and by resolving two clauses on any variable (in Q-resolution, one can
only resolve on existentially quantified variables). Q-resolution, QU-resolution, and their
relatives are typically defined only for clausal QBFs – QBFs that consist of a quantifier prefix
followed by a conjunction of clauses. We show how to parameterize and lift QU-resolution to
obtain a proof system ensemble which we call relaxing QU-res which is in fact defined on
arbitrary QBFs (indeed, it is defined on what we call quantified Boolean circuits), and not
just those in clausal form; relaxing QU-res is the main proof system ensemble that we study.
Let us overview how we define it.

We define an axiom of a QBF to be a clause which is, in a certain precise sense, entailed
by the QBF (see Section 4.1).
We then show that, given a QBF Φ and a partial assignment a to some of its variables,
one can define a QBF Φras derived naturally from Φ, where the variables on which a is
defined have been instantiated (in a certain precise sense; see Section 4.2). This QBF
Φras has the key property that if it is false, then the clause corresponding to a is an
axiom of the QBF Φ (see Proposition 8 for a precise statement). We view the notion
of inferring clauses from the falsity of QBFs whose variables are partially instantiated
as highly natural; indeed, in the case of SAT, performing such inferences is a basis of
modern backtracking SAT solvers that perform clause learning.
Recall that each proof system in our proof system ensemble may use, as an oracle, a level
of the PH; in particular, the QBF problem restricted to a constant number of alternations
may be used as an oracle. In order to infer clauses from a QBF Φ using the method
just described, we need a way of detecting falsity of QBFs having the form Φras. But in
general, this is difficult; such a QBF Φras may have a high number of alternations, and
thus might not be immediately decidable using an oracle of the described form. To the
end of permitting the falsity detection of QBFs Φras using such oracles, we define the
notion of a relaxation of a QBF. A relaxation of a QBF Φ is obtained from Φ by changing
the order of the quantifier/variable pairs in the quantifier prefix; roughly speaking, such
a pair Qv may be moved to the left if Q is the universal quantifier (@), and may be
moved to the right if Q is the existential quantifier (D). (See Section 4.2 for the precise
definition.) A key property of this notion is that if a relaxation of a QBF Φ is false, then
the QBF Φ is false (Proposition 9).

1 Note that there is, a priori, a difference between allowing proof systems oracle access to the SAT problem
– which would be natural for modelling QBF solvers that treat the SAT problem as feasibly solvable
– and allowing oracle access to arbitrary levels of the PH. We focus on the latter for various reasons:
the proof length lower bounds will arise from alternation; we believe that this results in a more robust
model; and, this focus causes the proof length lower bounds, which are here of primary interest, to be
stronger.
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94:4 Proof Complexity Modulo the Polynomial Hierarchy

With this notion of relaxation in hand, we define, for each k ě 2, the set HpΦ,Πkq to
contain the axioms that arise from QBFs Φras having Πk-relaxations (relaxations with a
Πk prefix) that are false. That is, in this set we collect the axioms obtainable by detecting
falsity of QBFs Φras via the consideration of Πk-relaxations. (Hence, the detection is
sound in that it is always correct, but it is not complete). Note that it holds that

HpΦ,Π2q Ď HpΦ,Π3q Ď HpΦ,Π4q Ď ¨ ¨ ¨ .

This gives us a sequence of versions of QU-resolution: for each k, we obtain a version by
defining a proof to be a sequence of clauses derived from the axioms HpΦ,Πkq and the
two aforementioned rules of QU-resolution. This sequence is the proof system ensemble
relaxing QU-res. Let us remark that each of these versions is sound and complete, in a
precise sense (see Definition 2 and Proposition 12).

A couple of remarks are in order. First, note that the empty clause is an axiom in
HpΦ,Πkq whenever Φ is a false QBF whose quantifier prefix is Πk. Consequently, relaxing
QU-res is polynomially bounded on any set of false QBFs having bounded alternation. Let
us also note that although here we explicitly lift QU-resolution to a proof system ensemble,
the approach that we take here can be applied to analogously lift any proof system which is
based on deriving clauses from a set of axiom clauses.

Apart from the formulation of the framework, our main results are as follows. We prove
an exponential separation between the tree-like and general versions of relaxing QU-res
(Section 6), by exhibiting a set of formulas which have polynomial size QU-resolution proofs,
but which require exponential size proofs in tree-like relaxing QU-res; this gives an alternation-
based analog of the known separation between tree-like and general resolution [12, 6]. Tree-
like QU-resolution proofs can be viewed as the traces of a natural backtrack-style QBF
decision procedure (this is evident from the viewpoint in Section 4.3, and is also developed
explicitly in [14, Section 4.3]), and so this separation formally differentiates the power
of such backtracking and general QU-resolution. The lower bound of this separation is
based on a prover-delayer game for tree-like QU-resolution proofs (Section 5), which can
be viewed as a generalization of a known prover-delayer game for tree-like resolution [24];
note that independently of our work [15], a game similar to ours was presented for tree-like
Q-resolution [11]. We also prove an exponential lower bound for relaxing QU-res (Section 7).

All in all, the ideas and techniques developed in this work draw upon and interface
concepts from two-player game interaction, proof complexity, and quantified propositional
logic. We believe that further progress could benefit from creative input from each of these
areas, and certainly look forward to future research on the presented framework.

2 Preliminaries

For each integer k, we use rks to denote the set that is equal to t1, . . . , ku when k ě 1, and
that is equal to the empty set H when k ă 1. We use N to denote the natural numbers
t0, 1, 2, . . .u.

We use dompfq to indicate the domain of a function. A function f is a restriction of a
function g if dompfq Ď dompgq and, for each a P dompfq, it holds that gpaq “ fpaq; when
this holds, we also say that g is an extension of f . When f is a function, we use f raÑ bs to
denote the function on domain dompfq Y tau that maps a to b, and otherwise behaves like
f . We write f æ S to denote the restriction of a function f to the set S. We say that two
functions f and g agree if for each element a P dompfq X dompgq, it holds that fpaq “ gpaq.

When A and B are sets, we use rAÑ Bs to denote the set of functions from A to B.
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Clauses. In this article, we employ the following terminology to discuss clauses. A literal
is a propositional variable v or the negation v thereof. Two literals are complementary if
one is a variable v and the other is v; each is said to be the complement of the other. A
clause is a disjunction of literals that contains, for each variable, at most one literal on
the variable. A clause is sometimes viewed as the set of the literals that it contains; two
clauses are considered equal if they are equal as sets. A clause is empty if it does not contain
any literals. The variables of a clause are simply the variables that underlie the clause’s
literals, and the set of variables of a clause α is denoted by varspαq. When α is a clause,
we use assignpαq to denote the unique propositional assignment f with dompfq “ varspαq
such that α evaluates to false under f . In the other direction, when f is a propositional
assignment, we use clausepfq to denote the unique clause α with varspαq “ dompfq that
evaluates to false under f . We will freely and tacitly interchange between a clause α and its
corresponding assignment assignpαq. A clause γ is a resolvent of two propositional clauses
α and β on variable v if there exists a literal L P α such that its complement M is in β,
γ “ pαztLuq Y pβztMuq, and v is the variable underlying L and M .

Quantified Boolean circuits and formulas. We assume basic familiarity with quantified
propositional logic. A QBC (short for quantified Boolean circuit) consists of a quantifier
prefix ~P “ Q1v1 . . . Qnvn, where each Qi is a quantifier in t@, Du and each vi is a propositional
variable; and, a Boolean circuit φ built from the constants 0 and 1, propositional variables
among tv1, . . . , vnu, and the gates AND (^), OR (_), and NOT ( ). We refer to the
computational problem of deciding whether or not a QBC is false as the QBC problem. For
brevity, we sometimes refer to existentially quantified variables as D-variables, and universally
quantified variables as @-variables. While it is typical to notate a QBC by simply specifying
the prefix ~P immediately followed by the circuit φ, we will typically separate these two
parts by a colon for the sake of readability, using for example ~P : φ. We assume that each
quantifier prefix does not contain repeated variables. When Φ “ ~P : φ is a QBC, by a partial
assignment of Φ, we refer to a propositional assignment f : S Ñ t0, 1u defined on a subset S
of the variables appearing in ~P . A QBF is a QBC ~P : φ where φ is a Boolean formula. A
clausal QBF is a QBF ~P : φ where φ is the conjunction of clauses.

Quantifier prefixes. Let i ě 1. A quantifier prefix ~P “ Q1v1 . . . Qnvn is Πi if Q1 . . . Qn,
viewed as a string over the alphabet t@, Du, is contained in the language denoted by the
regular expression @˚D˚@˚D˚ . . ., which contains i starred quantifiers, beginning with @˚ and
alternating; Σi is defined similarly, but with respect to the regular expression D˚@˚D˚@˚ . . ..

The following notation is relative to a quantifier prefix ~P “ Q1v1 . . . Qnvn; when we
use it, the prefix will be clear from context. We write vi ĺ vj if i ď j or if j ă i and
Qj “ Qj`1 “ ¨ ¨ ¨ “ Qi. We extend this binary relation (and others) to sets in the following
natural way: when U and V are sets of variables, we write U ĺ V if for each u P U and
each v P V , it holds that u ĺ v. We also write, for example, that U ĺ v for a single variable
v when U ĺ tvu. We write vi ” vj if vi ĺ vj and vj ĺ vi. It is straightforward to verify
that ” is an equivalence relation; we refer to each equivalence class of ” as a quantifier
block. We write vi ň vj if vi ĺ vj and vi ı vj . When S is a set of variables, we use lastpSq
to denote the variable of S appearing last in the quantifier prefix, that is, the variable vm,
where m “ maxti | vi P Su. Typically, when we use the function lastpSq, it is in conjunction
with the just-defined binary relations, and hence what is most relevant will be the relative
location of the quantifier block of lastpSq.
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Strategies. Let Φ “ ~P : φ be a QBC; let X denote the D-variables of Φ, and let Y denote
the @-variables of Φ. When x P X, define Yăx to be the set of variables ty P Y | y ň xu;
dually, when y P Y , define Xăy to be the set of variables tx P X | x ň yu.

An D-strategy is a sequence of mappings σ “ pσxqxPX where each σx is a mapping from
rYăx Ñ t0, 1us to t0, 1u. When τ : Y Ñ t0, 1u is an assignment to the universally quantified
variables, we use xσ, τy to denote the assignment f defined by fpyq “ τpyq for each y P Y
and fpxq “ σxpτ æ Yăxq for each x P X. We say that pσxqxPX is a winning D-strategy if for
every assignment τ : Y Ñ t0, 1u, it holds that the assignment xσ, τy satisfies φ. A model of
Φ is defined to be a winning D-strategy of Φ.

Dually, we define a @-strategy to be a sequence of mappings τ “ pτyqyPY where each
τy is a mapping from rXăy Ñ t0, 1us to t0, 1u. When σ : X Ñ t0, 1u is an assignment to
the existentially quantified variables, we use xτ, σy to denote the assignment f defined by
fpxq “ σpxq for each x P X and fpyq “ τypσ æ Xăyq for each y P Y . We say that pσyqyPY
is a winning @-strategy if for every assignment σ : X Ñ t0, 1u, it holds that the assignment
xτ, σy falsifies φ.

The following are well-known facts that we will treat as basic.

I Proposition 1. Let Φ be a QBC.
There exists a winning D-strategy for Φ (that is, a model of Φ) if and only if Φ is true.
There exists a winning @-strategy for Φ if and only if Φ is false.

3 Proof system ensembles

In this section, we formalize the notion of proof system ensemble and present some basic
associated notions.

For each m ě 1, fix Spmq to be the QBC problem restricted to QBCs having a Σm prefix,
which is a Σp

m-complete problem; for m “ 0, fix Spmq to be a polynomial-time decidable
problem.

Let O be a language; when discussing an algorithm A that makes oracle calls, we use AO
to denote the instantiation of A where oracle calls are answered according to O.

I Definition 2. A proof system ensemble pA, rq for a language L consists of an algorithm A

which may make oracle calls and receives inputs of the form pk, px, πqq where k P N and x
and π are strings; and, a computable function r : NÑ N such that:

For each k P N, there exists a polynomial pk such that (for each pair px, πq) the algorithm
ASprpkqq halts on an input pk, px, πqq within time pkp|px, πq|q.
For each k P N, when Lk is set to tpx, πq | pk, px, πqq is accepted by ASprpkqqu, it holds
that the language tx | Dπ such that px, πq P Lku is equal to L.

Let us provide an intuitive explanation of Definition 2. For each fixed value of k, the
algorithm A provides a proof system for the language L; on inputs of the form pk, px, πqq,
the algorithm is provided oracle access to Sprpkqq, and needs to accept or reject within
polynomial time (in |px, πq|). Acceptance indicates that π is judged to be a proof that x P L.
The second condition in the definition states that each such proof system is sound and
complete, that is, for each fixed k, an arbitrary string x is in L iff there exists a string π
such that pk, px, πqq is accepted by A.

We use the following terminology to present lower bounds on proof size in proof system
ensembles.
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I Definition 3. Let Z be a set of functions from N to N. A proof system ensemble pA, rq
requires proofs of size Z on a sequence tΦ1,Φ2, . . .u of instances if for each k, there exists
z P Z where (for all n ě 1 and all strings π) it holds that pΦn, πq P Lk implies |π| ě zpnq.
Here, |π| denotes the size of π. We also apply this terminology to other measures defined on
proofs.

We say that a function f mapping strings to strings is a polynomial-length function if
there exists a polynomial q such that, for each string x, it holds that |fpxq| ď qp|x|q.

I Definition 4. A proof system ensemble pA, rq is polynomially bounded on a language L
if there exists k P N and there exists a polynomial-length function f (mapping strings to
strings) such that the following holds: if x P L, then it holds that px, fpxqq P Lk, where Lk is
defined as in Definition 2.

I Proposition 5. There exists a polynomially bounded proof system ensemble for a language
L if and only if L is in the polynomial hierarchy.

4 Relaxing QU-resolution

4.1 QU-resolution

Let Φ “ ~P : φ be a QBC. We define an axiom set of Φ to be a set H of clauses on variables
of ~P such that, for each C P H, C is an axiom of Φ in the following sense: each model of
~P : φ is a model of ~P : C. Let us give examples. First, if the QBC Φ is false, then the empty
clause is an axiom of Φ. Second, if C is any clause which is entailed by φ, then C is an axiom
of Φ. A case of this is when a is an assignment to all variables of Φ that falsifies φ; then,
clausepaq is entailed by φ and is an axiom of Φ.

Relative to a QBC Φ “ ~P : φ, we say that a clause C is obtainable from a second clause
D by @-elimination if there exists a literal L P D such that C “ DztLu and the variable y
underlying L is a @-variable and has varspCq ĺ y.

With these notions, we define QU-resolution for quantified Boolean circuits in the following
way.

I Definition 6. A QU-resolution proof of a QBC Φ “ ~P : φ from an axiom set H (of Φ) is
a finite sequence of clauses where each clause is either in H, is obtainable from a previous
clause by @-elimination, or is obtainable from two previous clauses as a resolvent; in the last
two cases, we assume that the clause is annotated with the previous clause(s) from which it
is derived (this is to provide a clean correspondence between proofs and certain graphs to be
defined, see Section 4.3). The size of such a proof is defined as the number of clauses. Such
a proof is said to be a falsity proof if it ends with the empty clause.

It is a folklore and readily verified fact that when one has a clausal QBF Φ “ ~P : φ with
clause set H, and C appears in a QU-resolution proof of Φ from H, then any model of Φ is a
model of ~P : C. From this fact and the definition of axiom set, we immediately obtain the
following proposition.

I Proposition 7. Let C be a clause appearing in a QU-resolution proof of a QBC Φ “ ~P : φ
from axiom set H. Each model of ~P : φ is a model of ~P : C. Consequently, if C is the empty
clause, then the QBC Φ is false.
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4.2 Relaxing
In order to define a proof system ensemble based on QU-resolution proofs, we now describe
how to obtain a sequence of axiom sets for a given QBC. We start by exhibiting a way to
infer that a partial assignment is an axiom of a QBC.

Let a be a partial assignment of a QBC Φ “ ~P : φ. Define ~P ras to be the quantifier prefix
which is equal to ~P but where the variables in dompaq and their corresponding quantifiers are
removed, and where each quantifier of a variable v with v ň lastpaq is changed (if necessary)
to an existential quantifier. Define φras to be the circuit obtained from φ by replacing each
variable v P dompaq with the constant apvq. Define Φras to be ~P ras : φras.

I Proposition 8. Assume that a is a partial assignment of a QBC Φ “ ~P : φ such that
Φras is false. Then clausepaq is an axiom of Φ, that is, each model of ~P : φ is a model of
~P : clausepaq.

We believe that Proposition 8 provides a natural way to derive axioms from a QBC.
Consider the case where Φ is a SAT instance, that is, ~P is purely existential. In this case, if
a is a partial assignment such that Φras is false, then clausepaq is an axiom of Φ. Indeed, in
this case Φras is simply the QBC instance obtained by instantiating variables according to a,
and then removing the instantiated variables from the quantifier prefix. Note that, in the
context of backtrack search for SAT, it is typical that, when some variables have been set
according to a partial assignment a, a solver attempts to detect falsity of Φras by heuristics
such as unit propagation and generalizations thereof.

In the case of general QBCs, it is natural to ask, when one has a partial assignment a
and then instantiates its variables in φ to obtain φras, under what conditions clausepaq can
be inferred as an axiom. Proposition 8 provides an answer to this question; let us explain
intuitively why the quantifier prefix is adjusted to ~P ras. Consider the case where the first
quantifier block of ~P is existential and a is a partial assignment to variables from this first
block; then ~P ras is simply ~P but with the variables of a removed, and so this case of the
proposition generalizes the purely existential case just discussed. In the case where a is
arbitrary, ~P ras can be viewed as the prefix where the lowest number of quantifiers have been
changed from universal to existential such that the first quantifier block is existential, and
all variables of a fall into this first block.

Prima facie, Proposition 8 may appear to be of limited utility; even if one has oracle
access to a level of the polynomial hierarchy, it may be that many partial assignments a
give rise to a quantifier prefix ~P ras which has too many alternations to be resolved by the
oracle. In order to expand the class of axioms derivable by this proposition (relative to such
an oracle), we introduce now the notion of a relaxation of a QBC.

A relaxation of a quantifier prefix ~P “ Q1v1 . . . Qnvn is a quantifier prefix which has the
form ~P 1 “ Qπp1qvπp1q . . . Qπpnqvπpnq where π : rns Ñ rns is a permutation and where, for each
@-variable y and for each D-variable x, it holds that y ĺ x implies y ĺ1 x; here, ĺ and ĺ1

denote the binary relations of ~P and ~P 1, respectively. As an example, consider the quantifier
prefix ~P “ Dx1Dx2@y@y

1Dx3; relaxations thereof include @y@y1Dx1Dx2Dx3, Dx1@y
1Dx2@yDx3,

and @y1Dx2@yDx1Dx3. A relaxation of a QBC ~P : φ is a QBC of the form ~P 1 : φ where ~P 1 is
a relaxation of ~P ; such a QBC is said to be a Πi-relaxation if ~P 1 is Πi.

The following is straightforward to verify.

I Proposition 9. If a relaxation of a QBC Φ is false, then the QBC Φ is false.

Note that for any quantifier prefix, a relaxation may be obtained by simply placing the
universal quantifiers and their variables first, followed by the existential quantifiers and their
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variables. Hence, in this sense, each QBC has a canonical Π2-relaxation, and in the sequel,
we focus the discussion on relaxations that are Πk-relaxations for values of k greater than or
equal to 2.

Let Φ be a QBC; for k ě 2, we define HpΦ,Πkq to be the set that contains a clause
C if there exists a Πk-relaxation of ΦrassignpCqs that is false. The following fact follows
immediately from Propositions 8 and 9.

I Proposition 10. When Φ is a QBC and k ě 2, it holds that HpΦ,Πkq is an axiom set of
Φ.

I Definition 11. Relaxing QU-res is defined as the pair pA, rq where r is defined by rpkq “
k ` 3 and A is an algorithm defined to accept an input pk, pΦ, πqq if Φ is a QBC and π is a
QU-resolution falsity proof of Φ from axioms in HpΦ,Πk`2q. In particular, the algorithm
A examines each clause in π in order; when a clause C is not derived from previous ones
by resolution or by @-elimination, membership of C in HpΦ,Πk`2q is checked by the Σk`3
oracle. (Such an oracle can nondeterministically guess a Πk`2-relaxation and then check this
relaxation for falsity.)

I Proposition 12. Relaxing QU-res is a proof system ensemble for the language of false
QBCs.

Let us now introduce some notions which will be used in our study of tree-like relaxing
QU-res (defined below). Let f and g be partial assignments of a QBC Φ. We say that g
is a semicompletion of f if g is an extension of f such that for each universally quantified
variable y with dompfq ĺ y and y R dompfq, it holds that dompgq ĺ y and y R dompgq. A
set H of partial assignments of Φ is semicompletion-closed if, whenever f P H and g is a
semicompletion of f , it holds that g P H.

4.3 A graph-based view
When π “ C1, . . . , Cn is a QU-resolution proof of a QBC ~P : φ from axioms H, define Gpπq
to be the directed acyclic graph where there is a vertex for each clause occurrence Ci, which
vertex has label assignpCiq; and, where (for all pairs of clauses Ci, Cj) there is a directed
edge from the vertex of Cj to the vertex of Ci if Cj is derived from Ci.

I Proposition 13. Let π be a QU-resolution proof of a QBC ~P : φ from axioms H. The
directed acyclic graph Gpπq has the following properties:
pαq If a node with label a has no out-edges, then clausepaq is an element of H.
pβq If a node with label a has 1 out-edge to a node with label a1, then a1 is an extension of a

with dompa1q “ dompaqYtyu where y is a universally quantified variable with dompaq ĺ y.
pγq If a node with label a has 2 out-edges to nodes with labels a1 and a2, then there exists

a variable v such that a1 and a2 are defined on v and a1pvq ‰ a2pvq; pdompa1q Y

dompa2qqztvu “ dompaq; a and a1 are equal on the variables where they are both defined;
and, a and a2 are equal on the variables where they are both defined.

Moreover, a labelled graph with these three properties naturally induces a QU-resolution
proof: for each node, let a be its label, and associate to it clausepaq. l

I Definition 14. We say that a QU-resolution proof π is tree-like if the graph Gpπq is a
tree. We define tree-like relaxing QU-res to be the proof system ensemble pA1, rq described
as follows. Let pA, rq denote relaxing QU-res. Then, the algorithm A1 accepts an input
pk, px, πqq if A accepts it and π is tree-like.
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5 A prover-delayer game for tree-like relaxing QU-res

In this section, we present a game that can be used to exhibit lower bounds on the size of
tree-like QU-resolution proofs; this game can be viewed as a generalization of a game for
studying tree-like resolution, which game was presented by Pudlák and Impagliazzo [24].

We first give an intuitive description of the game. Note, however, that this description is
meant only to be suggestive. For a precise description, we urge the reader to consult the
formal definition, which follows (Definition 15).

Relative to a QBC Φ and a set H of axioms, the game is played between two players,
Prover and Delayer, which maintain a partial assignment. Prover’s goal is to reach a
partial assignment in H, while Delayer tries to slow down Prover, scoring points in the
process. Prover starts by announcing the empty assignment, and Delayer responds with a
semicompletion thereof. After this, the play proceeds in a sequence of rounds. In each round,
Prover may perform one of three actions to the current assignment f : select a restriction
of f ; assign a value to a @-variable y R dompfq having dompfq ĺ y; or, select a variable
v R dompfq. In the first two cases, Delayer responds with a semicompletion of the resulting
assignment. In the third case, Delayer may give a choice to the Prover. When a choice
is given, the Prover sets the value of v, and Delayer may elect to claim a point which is
then associated with v. When no choice is given, Delayer sets the value of v. After v is set,
Delayer responds (as in the first two cases) with a semicompletion of the resulting assignment.
Delayer is said to have a p-point strategy if, he has a strategy where, by the time that Prover
achieves her goal, there are p variables on which the final assignment is defined such that
Delayer has claimed points on these variables. In what follows, we assume p ě 1.

I Definition 15. Let Φ be a QBC. Relative to a set H of axioms, a p-point delayer strategy
consists of a set F of partial assignments of Φ and a function s : F Ñ N called the score
function such that the following properties hold:

(semicompletion-of-empty) There exists a semicompletion g P F of the empty assignment
such that spgq “ 0.
(all-points) If f P F XH, then spfq ě p.
(monotonicity) If g P F , then each restriction of g has a semicompletion f P F such that
spfq ď spgq.
(@-branching) If f P F and y R dompfq is a universally quantified variable with dompfq ĺ

y, then, for each b P t0, 1u, the assignment f ry Ñ bs has a semicompletion g P F with
spgq “ spfq.
(double-branching) If f P F and v R dompfq, there exists a value b P t0, 1u such that
f rv Ñ bs has a semicompletion g P F where (1) spgq ď spfq` 1 and (2) if spgq “ spfq` 1,
the assignment f rv Ñ  bs has a semicompletion g1 P F with spg1q ď spfq ` 1.

I Theorem 16. Assume that there exists a p-point delayer strategy for a QBC Φ with respect
to a semicompletion-closed axiom set H, and that π is a tree-like QU-resolution proof ending
with the empty clause, from axioms H. Then, the tree Gpπq has at least 2p leaves.

6 Separation of the tree-like and general versions of relaxing QU-res

The family of sentences to be studied in this section is defined as follows. For each i P

t0u Y rns, define Xi to be the variable set txi,j,k | j, k P t0, 1uu, and for each i P rns, define
X 1i analogously to be the variable set tx1i,j,k | j, k P t0, 1uu. Define ~Pn to be the prefix
DX0DX

1
1@y1DX1DX

1
2@y2DX2 . . . DX

1
n@ynDXn. Note that, for a set of variables X, we use the
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notation DX to represent the existential quantification of the variables in X, in any order
(our discussion will always be independent of any particular order chosen). For i P rns, we
refer to the variables in X 1i Y tyiu YXi as the level i variables.

Define B “ t x0,j,k | j, k P t0, 1uu Y txn,j,0 _ xn,j,1 | j P t0, 1uu.
For each i P rns and each j P t0, 1u defineHi,j “ t x

1
i,0,k_ x

1
i,1,l_xi´1,j,0_xi´1,j,1 | k, l P

t0, 1uu.
Observe that the clause  x1i,0,k _  x1i,1,l _ xi´1,j,0 _ xi´1,j,1 is logically equivalent to
px1i,0,k ^ x

1
i,1,lq Ñ pxi´1,j,0 _ xi´1,j,1q.

For each i P rns, define Ti “ t xi,0,k_yi_x1i,0,k | k P t0, 1uuYt xi,1,k_ yi_x1i,1,k | k P
t0, 1uu.

Define φn to be the conjunction of the clauses contained in the just-defined sets. Define
Φn as ~Pn : φn. This definition of this family of sentences was inspired partially by the
separating formulas of [12, 6].

Let us explain intuitively what the clauses mandate and why the sentences Φn are false.
By the clauses in B, all of the variables x0,j,k must be set to 0. By the clauses in the sets
H1,j , either both variables x11,0,k or both variables x11,1,k must be set to 0. Once this occurs,
the universal player can set the variable y1 to 0 or 1 to force either both variables x1,0,k or
both variables x1,1,k to 0 (respectively), via the clauses in T1. This reasoning can then be
repeated; for instance, at the next level, either both variables x12,0,k or both variables x12,1,k
must be set to 0, and then after universal player assigning y2 appropriately, either both
variables x2,0,k or both variables x2,1,k are forced to 0. In the end, the existential player
must violate one of the two clauses in B concerning level n.

I Proposition 17. The sentences tΦnuně1 have QU-resolution proofs of size linear in n.

Let n ě 1; we will use the following terminology to discuss Φn.
We say that r is a normal realization of level i P rns if it is an assignment defined on the

level i variables such that, when b is set to rpyiq, the following hold:
0 “ rpxi,b,0q “ rpx1i,b,0q “ rpxi,b,1q “ rpx1i,b,1q

rpxi, b,0q “ rpx1i, b,0q ‰ rpxi, b,1q “ rpx1i, b,1q

We say that r is a funny realization of level i P rns if it is an assignment defined on the
level i variables such that, when b is set to rpyiq, the following hold:

rpxi,b,0q “ rpx1i,b,0q ‰ rpxi,b,1q “ rpx1i,b,1q

0 “ rpx1i, b,0q “ rpx1i, b,1q

rpxi, b,0q ‰ rpxi, b,1q

We state two key and straightforwardly verified properties of realizations in the following
proposition.

I Proposition 18. No assignment defined on the level i variables is both a normal realization
and a funny realization. Also, each normal realization and each funny realization (of level i)
satisfies all clauses in Ti.

We define the set of assignments Fn to be the set containing all normal assignments and
all funny assignments, which we now turn to define. Let f be a partial assignment of Φn.
Let ` ě 0 denote the maximum level ` such that f is defined on an D-variable in level `.

We say that f is a normal assignment if the following hold:
f is defined on the variables in tx0,j,k | j, k P t0, 1uu and equal to 0 on them.
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For each i P r`´ 1s, the restriction of f to the level i variables is a normal realization of
level i.
If ` ě 1, either the restriction of f to the level ` variables is a normal realization of level
`; or, f is half-defined on level `, by which is meant that f is not defined on any variables
in tx`,j,k | j, k P t0, 1uu, but is defined on all variables in tx1`,j,k | j, k P t0, 1uu and has
ř

j,kPt0,1u x
1
`,j,k “ 1.

For each normal assignment f , we define snpfq “ `.
We say that f is a funny assignment if there exists m P r`s such that the following hold:
f is defined on the variables in tx0,j,k | j, k P t0, 1uu and equal to 0 on them.
For each i P rm´ 1s, the restriction of f to the level i variables is a normal realization of
level i.
The restriction of f to the level m variables is a funny realization of level m.
For each i with m ă i ď ` and for each j P t0, 1u, if f is defined on one of the four
variables in txi,j,k, x1i,j,k | k P t0, 1uu, then it is defined on all of them and fpxi,j,0q “

fpx1i,j,0q ‰ fpxi,j,1q “ fpx1i,j,1q.

The following result is obtained by applying the main theorem of the previous section to
the strategies pFn, snq.

I Theorem 19. Tree-like relaxing QU-res requires proofs of size Ωp2nq on the sentences
tΦnuně1.

7 Lower bound for relaxing QU-res

We define a family of QBCs, to be studied in this section, as follows. Let n ě 1. Define
~Pn to be the quantifier prefix Dx1@y1 . . . Dxn@yn. Define φn,j to be true if and only if
j `

řn
i“1pxi ` yiq ı n pmod 3q. Define Φn to be the sentence ~Pn : φn,0; these are the

sentences that will be used to prove the lower bound. It is straightforward to verify that
φn can be represented as a circuit of size polynomial in n, and we assume that φn is so
represented.

I Proposition 20. For each n ě 1, the sentence Φn is false.

To obtain the lower bound, we show that for any proof π, the graph Gpπq must have
exponentially many sinks. We begin by showing that any assignment to an initial segment of
the D-variables can be mapped naturally to a sink.

I Lemma 21. Let π be a relaxing QU-res proof of Φn from an axiom set, and suppose t ě 1.
Let f : tx1, . . . , xn´rt{2su Ñ t0, 1u be an assignment. There exists a sink of Gpπq whose label
agrees with f .

We next show that each sink must be defined on a variable that occurs towards the end
of the quantifier prefix, made precise as follows.

I Lemma 22. Let π be a relaxing QU-res proof of Φn from axiom set HpΦ,Πtq, where
t ě 2 and n ě rt{2s. Each sink of Gpπq has a label a that is defined on one of the following
variables:

xn´prt{2s´1q, yn´prt{2s´1q, . . . , xn´1, yn´1, xn, yn .

When f is a partial assignment of Φn, we refer to the elements of tv | v ĺ lastpfquzdompfq
as holes.
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I Lemma 23. Let π be a relaxing QU-res proof of Φn from an axiom set of the form
HpΦn,Πtq. Each sink of Gpπq has a label f having at most one hole.

I Theorem 24. Suppose that t ě 2 and that n ě rt{2s. Let π be a QU resolution proof of
Φn from the axiom set HpΦn,Πtq. The graph Gpπq has at least 2n´rt{2s´1 sinks.

From the previous theorem, we immediately obtain the following.

I Theorem 25. Relaxing QU-res requires proofs of size Ωp2nq on the sentences tΦnuně1.

Acknowledgements. The author thanks Stefan Mengel and Moritz Müller for useful com-
ments on a draft of this article.
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Abstract
I was supposed to deliver one of the speeches at Wolfgang Thomas’s retirement ceremony.
Wolfgang had called me on the phone earlier and posed some questions about temporal logic,
but I hadn’t had good answers at the time. What I decided to do at the ceremony was to take
up the conversation again and show how it could have evolved if only I had put more effort into
answering his questions. Here is the imaginary conversation with Wolfgang.

The contributions are (1) the first direct translation from counter-free ω-automata into future
temporal formulas, (2) a definition of bimachines for ω-words, (3) a translation from arbitrary
temporal formulas (including both, future and past operators) into counter-free ω-bimachines,
and (4) an automata-based proof of separation: every arbitrary temporal formula is equivalent
to a boolean combination of pure future, present, and pure past formulas when interpreted in
ω-words.
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1 Act I

Wolfgang is sitting at his desk. Thomas is standing in his office, looking over the bay. They
are talking to each other on the phone.

Wolfgang. I am teaching a course on applied automata theory this semester, and I
would like to explain to my students how one can translate a counter-free ω-automaton into
a temporal formula. I took a look at your STACS paper from 1999 [17], but the translation
you give there is only for finite words. How does the whole story go for infinite words?

Thomas. I don’t know of any published translation which comes close to what I present
in the STACS paper. There is Volker and Paul’s comprehensive contribution to the volume
that celebrated your 60th birthday [4], but the construction presented therein is probably
not what you are looking for, given its algebraic nature.

Wolfgang. I know what Volker and Paul did. Indeed, I am looking for something
which is more automata-theoretic.

Thomas. I may have a suggestion for you.
Wolfgang. So?
Thomas. First of all, we need to choose the right ω-automaton model. Imagine you

wanted to translate a future temporal formula over finite words into a finite-state automaton.
Which model of automaton would you use?

Wolfgang. When I use ordinary automata, which read a word from left to right, I end
up with a nondeterministic automaton, because the automaton can only guess what will
happen in the future. When I use backward automata, which read a word from right to left,
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I end up with a deterministic automaton right away, simply because what happens in the
future can easily be determined when coming back from it.

Thomas. That’s the point. When translating counter-free ω-automata into temporal
formulas, we start out best from backward deterministic ω-automata, the model introduced
by Olivier and Max Michel in their 1999 paper [3]. Do you recall how these automata are
defined?

Wolfgang. Sure, I do. I think Jean-Éric and Dominique call them “prophetic” automata
in their book [11], but backward deterministic ω-automata is also a good term. Anyway, such
an automaton is given by a finite state set Q, an initial recurrence condition I, a backward
transition function ρ : Σ×Q → Q, and a set F ⊆ Q of final states. It is required that for
every ω-word over Σ there is exactly one initial run.

Thomas. Which recurrence conditions do you have in mind?
Wolfgang. Nothing in particular. How about you?
Thomas. Generalized transition Büchi conditions will come in handy. With such a

condition, I is a set of sets T ⊆ Σ×Q, each of them referred to as a transition recurrence
set. A run q0q1q2 . . . on a word w ∈ Σω needs to satisfy qi = ρ(w(i), qi+1) for every i < ω.
For such a run to be initial it is required that for every transition recurrence set T ∈ I there
are infinitely many i with 〈w(i), qi+1〉 ∈ T . It is final if q0 ∈ F , and it is accepting if it is
initial and final, just as usual, only that we are going the other direction.

Wolfgang. OK. So we agree on the automaton model to be used.
Thomas. The next thing we need to agree on is what “counter freeness” should mean

for such automata.
Wolfgang. To me, there seems to be a straightforward definition. For every finite

word w ∈ Σ∗ we consider the function ρw : Q→ Q induced by w on the state space. This
is defined as usual, that is, ρw(q) = ∗ρ(w, q) for every q ∈ Q, where ∗ρ is the backward
transition function extended from Σ to Σ∗. We say the automaton has a counter if there
exists some word w ∈ Σ+ and some nonempty subset Q′ ⊆ Q such that ρw operates as a
non-trivial permutation on Q′. More precisely, ρw|Q′ is a bijection and ρw|Q′ 6= idQ′ . If
there is no counter, the automaton is counter-free.

Thomas. You are perfectly right. There is no difference to what we know from finite
words, and the definition coincides with Volker and Paul’s definition for Büchi automata in
general.

Wolfgang. What I don’t see right away is that the definition really captures the essence
of counter freeness in general. I would like to understand this, but, maybe, it is better to
return to this later.

Thomas. Promised. – Let’s start to work on a translation from counter-free backward
deterministic ω-automata to future temporal formulas. I suggest we work with the usual
vocabulary for temporal logic. For every symbol a in the alphabet, we have an atomic
formula a, which is true in a word if the word starts with a. We may use the temporal
operator “next”, which we write as X, and the stutter-free “until”, which we write as U.
We may also use derived operators such as “eventually” and “always”, which we write as F
and G, respectively. Finally, boolean constants and operators are allowed as well.

Wolfgang. I recall that your translation from counter-free automata to temporal logic
is defined by induction, on the number of states of the given automaton in the first place
and the size of the alphabet in the second place. Do we proceed in the same fashion for
ω-words?

Thomas. Yes, exactly. Recall that for every ω-word there is exactly one initial run of
a given backward deterministic ω-automaton on this word. Let’s call the first state of this
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run the halting state of the word. The inductive claim is that for every q ∈ Q, there exists
a temporal formula defining the set of words with halting state q. – Wolfgang, things are
getting more technical now. Let’s use a desktop sharing software.

Thomas walks to his laptop. Wolfgang, already sitting in front of his screen, initiates a
session between the two of them.

Thomas. I was saying that for every q ∈ Q, we construct a temporal formula α[q, ρ, I],
which defines the set of ω-words with halting state q. For convenience, let’s write Lω(q, ρ, I)
for this language.

Wolfgang. I also recall you proceed by a simple case distinction. The almost trivial
case is that all symbols induce the identity, which would mean ρa = idQ for every a ∈ Σ.

Thomas. We proceed by the same case distinction here. If all symbols induce the identity
function, the translation is simple and does not need the inductive assumption, but it is
slightly more complicated than for finite words, because we are using generalized transition
Büchi conditions.

Wolfgang. What exactly do you mean?
Thomas. When every symbol induces the identity, then every run is of the form qω for

some q ∈ Q. Whether or not such a run is initial for a given word depends on the symbols
occurring infinitely often in the word.

Wolfgang. That’s funny. My first thought was that this case is really trivial.
Thomas. It is almost trivial, because for every set Σ′ ⊆ Σ the formula∧
a∈Σ′

GFa ∧
∧

a∈Σ\Σ′

FG¬a

specifies exactly the ω-words where Σ′ is the set of symbols occurring infinitely often.
Wolfgang. That’s indeed almost trivial. (Smiling.) Let me understand what is going

on in the more complicated case, when there is some symbol c ∈ Σ such that ρc is not the
identity, that is, the image of ρc is a strict subset of Q.

Thomas. Let’s say this image is Q′, and let’s refer to Σ \ {c} by Γ.
Wolfgang. In the proof for finite words, you split up each word in the positions where c

occurs. If we do this here as well, there are three cases to distinguish: i. words which belong
to Γω, ii. words which belong to Σ∗cΓω, and iii. words which belong to (Γ∗c)ω.

Thomas. That’s exactly right. We can deal with these three cases separately, because if
we have a formula for each of these cases, their disjunction is the formula we are looking for.
Case i is almost straightforward. We restrict the given backward transition function ρ to the
smaller alphabet Γ, say the result is ρ′, and the induction hypothesis applies right away. We
obtain a formula α[q, ρ′, I] for Lω(q, ρ′, I), and we can set

α[q, ρ, I] = G¬c ∧ α[q, ρ′, I] .

In other words, we take what we get from the induction hypothesis and rule out the symbol c.
Wolfgang. Why do we need to rule out c?
Thomas. Here is a simple example. Assume our alphabet was {a, b, c} and the formula

we obtained by induction was the formula a. Then acω would be a model of the formula a,
but this word does not belong to Γω.

Wolfgang. Interesting, but I also have another question. Isn’t it true that when we
restrict ρ to ρ′ as above we also need to restrict I appropriately, because in I there might
be sets T with elements 〈c, q〉, but c does not belong to the underlying alphabet?
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Thomas. Strictly speaking, you are right. That’s why we should agree, once and for all,
that we implicitly restrict recurrence conditions to the symbols occurring in the respective
transition function.

Wolfgang. OK. – I think I know how to proceed in Case ii. Every word in Σ∗cΓω can
be broken up in a unique fashion. It can be written as ucv where v ∈ Γω. For the first part,
u, we use what we know from finite words, and for the second part, v, we use the induction
hypothesis.

Thomas. That’s exactly right, but let’s make it more precise. Let’s write L∗(q, ρ, q′)
for the language recognized by the backward deterministic automaton on finite words with
initial state q′, backward transition function ρ, and final state q. Then the language we are
interested in, Lω(q, ρ, I) ∩ Σ∗cΓω, is the finite union of all languages

L∗(q, ρ, ρ(c, q′)) cLω(q′, ρ′, I) , (1)

for q′ ranging over Q.
Wolfgang. Because of what we know about finite words, we have a temporal for-

mula β[q, ρ, q′] for each language L∗(q, ρ, q′). And because of the induction hypothesis, we
have a temporal formulas α[q′, ρ′, I] for each language Lω(q′, ρ′, I).

Thomas. Right! – A formula for a language as above, as given in (1), is therefore given
by

xt(β[q, ρ, ρ(c, q′)]) ∧ F(c ∧XG¬c ∧Xα[q′, ρ′, I]) ,

where xt(β) extends β to ω-words.
Wolfgang. I think I know what you mean by “extending” β to ω-words. You mean

that for each u ∈ Σ∗ and v ∈ Γω, the word ucv is a model of xt(β) if, and only if, u is a
model of β.

Thomas. You are perfectly right. – It is easy to obtain xt(β) from β by an inductive
construction. The only interesting parts are the base case for a symbol and the induction
steps involving temporal operators, because then the formula may “look” beyond the last
occurrence of c, what is to be avoided:

xt(a) = a ∧XFc ,
xt(Xψ) = X(xt(ψ) ∧ Fc) ,

xt(ψ0Uψ1) = xt(ψ0)U(xt(ψ1) ∧ Fc) .

Wolfgang. So the really interesting case is the last one, Case iii, when we consider
words which belong to (Γ∗c)ω. Do you use an encoding trick like the one you use for finite
words?

Thomas. Yes, the construction is very similar to the one in the finite-word setting, but
considerably trickier. Let w be any word in (Γ∗c)ω. We can write w as v0cv1cv2c . . . where
vi ∈ Γ∗ for every i < ω. There is exactly one initial run for w, say q0q1q2 . . . . Consider the
subsequence qi0qi1qi2 . . . which collects the states the automaton assumes just left of any c.

Wolfgang. Because we assume the image of ρc is Q′, these states are special in the
sense that each of them belongs to Q′. So in some sense, each of the cvi’s transforms some
state from Q′ to some state from Q′.

Thomas. That’s it! – Basically, we classify each word in cΓ∗ according to how it operates
on Q′, more precisely, to every such word w we assign the function w̃ : Q′ → Q′ defined by
w̃(q) = ∗ρ(w, q) for every q ∈ Q′.
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Wolfgang. I understand that, but what I am concerned about is that we lose information
about the recurrence condition!

Thomas. That’s why I said “basically”. We do a little bit more. We not only assign w̃
to w but also ẇ, a function Q′ → 2I , which collects the information about the recurrence
condition we need.

Wolfgang. I can guess how ẇ is defined. For every state q ∈ Q′ we consider the
backward run of A – viewed as a backward automaton on finite words – on w starting in q
and collect in ẇ(q) all transition recurrence sets it passes through.

Thomas. Exactly, that’s how we do it. – The code alphabet, let’s call it ∆, is large. For
each finite word w ∈ cΓ∗ it contains the symbol 〈w̃, ẇ〉.

Wolfgang. How do we construct the backward deterministic ω-automaton, let’s call
it C, which uses this alphabet?

Thomas. Its state space is Q′, which is smaller than the state space of A. Its backward
transition function – let’s denote it τ – is defined by τ(〈f, g〉, q′) = f(q′) for every q′ ∈ Q′. For
each transition Büchi set T ∈ I, the transition Büchi set J of C has a Büchi set T ′, which
is given by T ′ = {〈〈f, g〉, q′〉 | T ∈ g(q′)}. Most importantly, C is a counter-free backward
deterministic ω-automaton as defined above.

Wolfgang. I immediately see how C mimics A. Let’s define a function h0 : cΓ∗ → ∆ by
h0(w) = 〈w̃, ẇ〉 and use this to define a function h : (cΓ∗)ω → ∆ω by setting h(cw0cw1 . . . ) =
h0(cw0)h0(cw1) . . . for any choice of wi ∈ Γ∗. Then, for every word w ∈ (cΓ∗)ω, the image
h(w) has halting state q′ in C if, and only if, w has halting state q′ in A. Or, formally,
Lω(q, ρ, I) ∩ (Γ∗c)ω is the finite union of all languages

L∗(q, ρ′, q′)h−1(Lω(q′, τ,J )) , (2)

where q′ ranges over all states in Q′.
Thomas. That’s right! – Did you observe where the generalized transition Büchi

condition came in handy?
Wolfgang. Yes, I did. If we had used some other condition, transferring it from A to C

could have easily blown up the state space of C.
Thomas. So you see how we can use the induction hypothesis!?
Wolfgang. Sure. We can apply it to C, because C has a smaller state space than A,

and obtain, for every q′ ∈ Q′, a temporal formula α[q′, τ,J ] for Lω(q′, τ,J ), the alphabet
being ∆.

Thomas. And do you see where the results from the finite-word setting come into the
picture?

Wolfgang. Sure. They are used in two different places. First, for every q ∈ Q and
every q′ ∈ Q′ there is a temporal formula β[q, ρ, q′] that defines L∗(q, ρ′, q′). Second, for
every symbol 〈f, g〉 ∈ ∆ there is a temporal formula χf,g such that a word w ∈ Γ∗ is a model
of χf,g if, and only if, h0(cw) = 〈f, g〉.

Thomas. Precisely! – What is left to be done is to assemble all these formulas in the
right fashion.

Wolfgang. I can take over the first programming task. We need to transform every
formula ϕ over Γ into a formula xt′(ϕ) over Σ such that for all u ∈ Γ∗ and v ∈ Σω, the
formula ϕ is a model of u if, and only if, the formula xt′(ϕ) is a model of ucv. The crucial
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definitions are:

xt′(a) = a ,

xt′(Xψ) = ¬c ∧X xt′(ψ) ,

xt′(ψ0Uψ1) = (xt′(ϕ) ∧ ¬c)U xt′(ψ) .

Thomas. Second, we need to transform every formula ϕ over ∆ into a corresponding
formula lft(ϕ), which “lifts” the formula from the alphabet ∆ to the alphabet Σ, more
precisely, for each u ∈ (cΣ∗)ω, the word u is a model of lft(ϕ) if, and only if, h(u) is a model
of ϕ. Here, we can set:

lft(〈f, g〉) = xt′(χf,g) ,

lft(Xϕ) = X(¬cU(c ∧X lft(ϕ))) ,

lft(ϕUψ) = (c→ X lft(ϕ))U(c ∧X lft(ψ)) .

Wolfgang. We are done. The overall formula for a language as in (2) is

GFc ∧ xt′(β[q, ρ′, q′]) ∧ ¬cU(c ∧ lft(α)[q′, τ,J ]) .

Thomas, I need to run. There’s a meeting I have to attend . . .

Wolfgang grabs a pile of documents from a bookshelf and leaves his room in a hurry.

2 Act II

Wolfgang, wearing a headset, and Thomas are sitting at their desks. On Thomas’s screen,
a notification from the desktop sharing software pops up. Wolfgang is trying to connect.
Thomas puts on his headset.

Thomas. Wolfgang?
Wolfgang. Thomas! Can I come back to the discussion on temporal logic and counter-

free automata we has the other day?
Thomas. Sure. What is it that you would like to talk about?
Wolfgang. You said that your definition of “counter-free ω-automaton” is a good one;

you even said it would be the right one. Can you explain that to me?
Thomas. From finite words we know that there are many equivalent definitions of what

it means for a formal language to be star-free: recognizable by a counter-free automaton [13],
definable in first-order logic [10], definable in temporal logic (with future and past operat-
ors) [8], definable in future temporal logic [7], . . . . For ω-words, the same equivalences hold,
in particular, first-order logic, the two variants of temporal logic, and star-free expressions
are equally expressive [9, 15, 8, 7]. Do you recall this? (Smiling.) Anyway, any notion of
“counter freeness” that is equivalent to one of these formalisms should be ok.

Wolfgang. I agree! – What we already know is that every counter-free automaton
according to your definition is equivalent to a future temporal logic formula. So if you can
also prove the converse to me, I will be happy.

Thomas. To tell you the truth, parts of this were already proved a long time ago, but
went unnoticed. What I mean is that the straightforward translation of a future temporal
formula into a generalized Büchi automaton yields a counter-free backward deterministic
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ω-automaton. In fact, for all I know, this observation was the motivation for defining
backward deterministic ω-automata [1] and you can find the translation, for instance, in a
paper by Olivier [2]. – The problem is to show that this translation yields a counter-free
automaton.

Wolfgang. (Indignant, but smiling.) Thomas! – That we obtain backward deterministic
Büchi automata when translating future temporal formulas into automata is something I
have known for years, in fact, I explained this to one of the anonymous referees of this paper
already 15 years ago. But I didn’t look at counter freeness at the time I have to admit.
So let’s see what happens when we follow a construction like the one Pierre and Moshe
suggested [16]?

Thomas. A typical automaton for a temporal formula guesses, for each point in time,
which subformulas are true at that point and which are not.

Wolfgang. So we model a state as a function f : sbf(ϕ)→ {0, 1}, where sbf(ϕ) stands
for the set of subformulas of ϕ. The functions considered are required to satisfy the following
straightforward conditions: f(>) = 1; f(¬ψ) = 1 if, and only if, f(ψ) = 0; f(ψ0 ∨ ψ1) = 1 if,
and only if, f(ψ0) = 1 or f(ψ1) = 1. Here, ψ and ψ0 ∨ ψ1 stand for elements of sbf(ϕ). The
transition relation, let’s denote it by ∆, is defined according to the semantics of temporal
logic, more precisely, (f, a, g) ∈ ∆ if, and only if, the following conditions are satisfied:

f(a) = 1,
f(b) = 0 for every symbol b ∈ Σ with b 6= a,
f(Xψ) = g(ψ),
f(ψ0Uψ1) = 1 if, and only if, f(ψ1) = 1 or, f(ψ0) = 1 and g(ψ0Uψ1) = 1.

Just as above, Xψ and ψ0Uψ1 stand for elements of sbf(ϕ). And, of course, the transition
relation ∆ is backward deterministic, that is, ρ(a, g) = f for (f, a, g) ∈ ∆ is well-defined.

Thomas. What about the recurrence condition?
Wolfgang. We need to make sure that when a U-formula is guessed to be true it

becomes true eventually. To this end, we use a generalized state Büchi recurrence condition,
which can easily be transformed into a generalized transition Büchi condition. For every
U-subformula, say ψ0Uψ1, we have the set

{f | f(ψ0Uψ1) = 0 or f(ψ1) = 1}

as an element of the recurrence condition. – So how do we know this automaton is counter-
free?

Thomas. This needs a proof indeed. – Suppose Q′ ⊆ Q is a nonempty subset of the
state space and ρw restricted to Q′ is a permutation for some word w ∈ Σ+. We want to
show ρw(f) = f for every state f ∈ Q′. One way to do this is to fix an element f0 ∈ Q′ and
consider the orbit of f0.

Wolfgang. What do you mean by “orbit”?
Thomas. Define fi+1 by fi+1 = ρw(fi) for i < ω. Then, because we assume ρw restricted

to Q′ is a permutation, fm = f0 for some m > 0. The set {fm | i < m} is what we call the
orbit of f0.

Wolfgang. I see. If we can prove f1 = f0, or, equivalently, fi = fi′ for all i, i′ < m, we
are done, because this means ρw(f0) = f0.

Thomas. Exactly. By induction, we show fi(ψ) = fi′(ψ) for every ψ ∈ sbf(ϕ) and all
i, i′ < m, which is sufficient. In fact, we prove something stronger.

Wolfgang. I have no idea what that could be.
Thomas. We refine the picture in an adequate fashion by introducing more states and

making it cyclic. Let n = |w|. First, we extend w in both directions by repeating it, that is,
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we consider the sequence (ai)i∈Z defined by ai+kn = w(i) for all i < n and k ∈ Z with k 6= 0.
Second, we define, for every i ∈ Z, a state gi by

g0 = f0 ,

gi = ρai(gi+1) for i with −mn < i < 0 ,

gi+kmn = gi for i with −mn < i ≤ 0 and k 6= 0 .

Then g−ni = fi for every i ∈ N and gi = ρai(gi+1) for all i ∈ Z. Furthermore, gi(ψ) = gi′(ψ)
for all i, i′ ∈ N with i ≡ i′ (mn) and ψ ∈ sbf(ϕ). I write i ≡ i′ (l) to denote the fact that i
and i′ are identical after reduction modulo l. The stronger claim is that gi(ψ) = gi′(ψ) holds
for all i, i′ ∈ Z with i ≡ i′ (n) and ψ ∈ sbf(ϕ).

Wolfgang. I see, this contains the original claim as a special case. – I am curious to
see how the inductive proof goes.

Thomas. For ψ = >, the claim is trivial. For the other base case, assume a ∈ Σ and
ψ = a. We have gi(a) = 1 if, and only if, a = ai, which proves the claim, because if i ≡ i′ (n),
then ai = ai′ , by definition of (ai)i∈Z.

Wolfgang. Now it’s my turn. First, the claim is trivial for the boolean connectives
¬ and ∨. Assume Xψ ∈ sbf(ϕ). Then gi(Xψ) = gi+1(ψ) for every i ∈ Z, because of the
definition of ∆. By induction hypothesis, we have gi+1(ψ) = gi′+1(ψ) for all i and i′ with
i ≡ i′ (n), which then implies the claim.

Thomas. Let me conclude the proof by looking at the case where ψ0Uψ1 ∈ sbf(ϕ). It is
good to proceed by a case distinction.

Wolfgang. I can imagine what the cases are.
Thomas. The first case is when gi(ψ0) = 1 holds for all i ∈ Z. If gi0(ψ0Uψ1) = 1 for

some i0, then, by definition of ∆, gi(ψ0Uψ1) = 1 for all i ≤ i0. Since gi0(ψ0Uψ1) = 1 means
gi0+kmn(ψ0Uψ1) = 1 for all k ∈ N, we even have gi(ψ0Uψ1) = 1 for all i ∈ Z.

The second case is when gi0(ψ0) = 0 holds for some i0 ∈ Z. In this case, gi0+kmn(ψ0) = 0
for all k ∈ Z. So if gi(ψ0Uψ1) = 1 for some i ∈ Z, then, because of the definition of ∆, there
exists some l ∈ N with gi+l(ψ1) = 1 and gi+k(ψ0) = 1 for all k with k < l – a simple proof
by induction shows that. Let i′ be such that i ≡ i′ (n). Then i + j ≡ i′ + j (n) for every
j ∈ Z. So from the induction hypothesis, we can conclude gi′+l(ψ1) = 1 and gi′+k(ψ0) = 1
for all k with k < l. Hence, gi′(ψ0Uψ1) = 1.

Wolfgang. We are done. Perfect!
Thomas. Wolfgang, my theory lecture starts in a few minutes. I hope you don’t mind

me hanging up now. I am calling back later.
Wolfgang. I am sorry. Please, go ahead.

Thomas grabs his tablet, a copy of Sipser’s book [14], and leaves his room; Wolfgang takes
a notebook and starts scribbling.

3 Act III

Wolfgang is still sitting at his desk, contemplating. Thomas just entered his office, carrying
his tablet and Sipser’s book, and went straight to his laptop. He is initiating another session
with Wolfgang.

Wolfgang. Thomas, thanks for calling back. I hope your lecture went well. Here is
what I thought about in the meantime. Now that we know how to deal with counter-free
ω-automata and future temporal logic, can we also say something about temporal logic in
general? When future and past operators are allowed?
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Thomas. Why are you asking? – We somehow know what happens because of the result
by Gabbay, Pnueli, Shelah, and Stavi [7].

Wolfgang. I know this result settles the question in the sense that every arbitrary
temporal formula is equivalent to a future temporal formula when interpreted in the first
position of ω-words. I also know that by a result by Gabbay [6] every arbitrary temporal
formula is equivalent to a boolean combination of pure past, present, and pure future formulas.
But proofs of these results are technically involved and I am missing automata theory in this
picture!

Thomas. Oh, that’s an interesting thought.

Thomas thinking . . .

Thomas. I think we can say something really nice here. Again, we need to agree on the
right automaton model.

Wolfgang. What are you thinking of?
Thomas. Well, arbitrary temporal logic formulas are interpreted in some position in

an ω-word. In some sense, the semantics of such a formula is a function JϕK which maps
ω-words over Σ to ω-words over {0, 1}, where the bit at position i of the image of a given
word is the truth value of the formula when interpreted at position i in the given word. So
what I think we should do is to come up with a slick automaton model for describing such
functions.

Wolfgang. There are many ways to define functions from ω-words to ω-words and even
more ways to define functions from finite words to finite words. A very general notion is that
of a rational function and it has been studied in detail. For instance, there is a result by
Elgot and Mezei which states that a rational function of finite words is the composition of a
left-sequential and a right-sequential function [5], and I believe I have come across a similar
result for ω-words.

Thomas. That is true. Elgot and Mezei’s result was generalized to ω-words by Olivier [2].
I am thinking of extending Schützenberger’s bimachines [12] to ω-words in a way adequate
for dealing with temporal logic.

Wolfgang. I remember Schützenberger’s bimachines. How do we extend them to
ω-words?

Thomas. Suppose we want to realize a function ν : Σω → Γω. Suppose we are given a
word w ∈ Σω. And suppose we want to know the symbol at position i in ν(w), that is, we
want to know ν(w)(i). What we could do first is to split w at position i, that is, write w
as uav where the length of u is i. Then we could run a forward deterministic automaton
on u, a backward deterministic ω-automaton on v, and output ν(w)(i) depending on the two
halting states and the symbol a. – Here is a picture. (Drawing on the screen.)

u va

aqI q s I︸ ︷︷ ︸
o

0/1

Wolfgang. That is very close to what Schützenberger suggested for finite words, only
that he allowed an arbitrary word to be output, rather than a single symbol. – Let me try to
make your picture formal and define what we may call ω-bimachines. Such a machine, let’s
call it A, consists of
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a forward deterministic automaton without final condition, say with finite state set Q,
initial state qI , and transition function δ : Q× Σ→ Q,
a backward deterministic ω-automaton without final condition, say with finite state set S,
initial recurrence condition I, and a backward transition function ρ : Σ× S → S, and
an output function o : Q× Σ× S → Γ.

Thomas. That’s it. The semantics is a function Σω → Γω, which we denote by ν.
Assume w ∈ Σω and we want to define ν(w)(i) for some i ∈ ω. We take the halting state
of the forward automaton for the word w(0) . . . w(i− 1), say this is q. We take the halting
state of the backward automaton for the word w(i + 1)w(i + 2) . . . , say this is s. Then
ν(w)(i) = o(q, w(i), s).

Wolfgang. That is indeed a very simple and intuitive definition. It also connects
nicely with rational functions, because from Olivier’s results it should follow that the class of
functions computed by ω-bimachines is the same as the class of total letter-to-letter rational
functions. – What we want to do is to transform every temporal formula into an equivalent
ω-bimachine.

Thomas. We should even strive for a counter-free ω-bimachine, where this simply means
that the forward and the backward automaton are counter-free. Because if we manage to
achieve that, we also have a proof of the result by Gabbay, saying that every arbitrary
temporal formula is equivalent to a boolean combination of pure future, present, and pure
past formulas – completely in automata-theoretic terms.

Wolfgang. That sounds like an interesting plan and I would like to give it a shot. In
the future-only setting, it was easy to describe the state space in one go – it was a function
sbf(ϕ) → {0, 1}. I believe it is going to be more complicated here, which is the reason I
suggest we try an inductive definition.

Thomas. I will be happy with an inductive definition!
Wolfgang. There are two base cases: ψ = > and ψ = a for some a ∈ Σ. In both

cases, we can choose the forward and the backward automaton to be a 1-state automaton.
In the first case, we can set o(q, a, s) = 1 for every a ∈ Σ; in the second case, we can set
o(q, a, s) = 1 and o(q, b, s) = 0 for all b ∈ Σ \ {a}. – Easy!

Thomas. Clearly, these automata are counter-free.
Wolfgang. In the inductive step, we have to take care of boolean operators and

temporal operators.
Thomas. Boolean operators can be dealt with easily, only the temporal operators are

interesting.
Wolfgang. We have four temporal operators when we admit future as well as past

operators and follow standard syntax and semantics: X – next, P – previously, U – until,
and S – since. I suggest we consider “previously” and “until”, the two other can be dealt
with in a similar fashion.

Thomas. What we need for each of the two operators are two things. First, we need a
construction. Second, we need a proof that it preserves counter freeness.

Wolfgang. So let’s turn to “previously” and assume we are given a counter-free
ω-bimachine which computes a function µ : Σω → {0, 1}ω. We want to construct a new
counter-free ω-bimachine which computes the function ν defined by ν(w)(i+1) = µ(w)(i) and
ν(w)(0) = 0 for every i < ω. Apparently, we don’t have to change the backward automaton;
we only need to adapt the forward automaton and the output function.

Thomas. I agree. This seems to be a simple construction.
Wolfgang. We make the forward automaton lag behind in the sense that it keeps track

of its previous state and the symbol just read. In the beginning, we start from a new state. So
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the state space is Q×Σ∪{⊥} and the transition function is given by δ′(〈q, a〉, b) = 〈δ(q, a), b〉
and δ′(⊥, a) = 〈qI , a〉. The output function, o′, is given by o′(〈q, a〉, b, s) = o(q, a, ρ(b, s)) and
o′(⊥, a, s) = 0.

Thomas. This is quite convincing. In fact, the construction does not only seem to be
correct to me. It also preserves counter freeness, as far as I can see.

Wolfgang. So let’s turn to “until”.
Thomas. We assume we are given two counter-free ω-bimachines computing functions

µ0 : Σω → {0, 1}ω and µ1 : Σω → {0, 1}ω, respectively, and we want to construct a counter-
free ω-bimachine computing the function ν : Σω → {0, 1}ω given by ν(w)(i) = 1 if, and only
if, there exists some k ≥ i such that µ1(w)(k) = 1 and µ0(w)(j) = 1 for all j with i ≤ j < k.
– By taking a product of the two forward automata and the two backward automata, we can
simplify the situation in the sense that we can think of only one counter-free ω-bimachine
but with two output functions, o0 and o1, where the first one is for µ0 and the second one is
for µ1. – Do you see what we need to do?

Wolfgang. Yes, right away. Let’s call the given automaton A and the one to be
constructed A′. It is important that the backward automaton of A′ knows, at any point,
those states from the forward automaton of A from which the U-formula can be satisfied. –
I am aware of the fact that this is a vague description, but it should become clear when we
work out the details.

Thomas. Let me see if I understand what you mean. The state space of the backward
automaton of A′ is S × 2Q. Its backward transition function is defined by

ρ′(a, 〈s, P 〉) = 〈ρ(a, s), P ′〉 ,

where P stands for a subset of Q and P ′ is defined by

P ′ = {q ∈ Q | o1(q, a, s) = 1} ∪ {q ∈ Q | δ(q, a) ∈ P and o0(q, a, s) = 1} .

The forward automaton of A′ is the same as the one of A. The output function of A′, let’s
denote it o′, is given by o′(q, a, 〈s, P 〉) = 1 if, and only if, o1(q, a, s) = 1, or o0(q, a, s) = 1
and δ(q, a) ∈ P .

Wolfgang. This is what I was thinking of. The transition function ρ′ reflects the
semantics of the until operator in a particular sense, which I would like to make precise. For
every state q ∈ Q, let Aq denote the ω-bimachine which is obtained from A by changing the
initial state of the forward automaton to q. Further, let νq0 and νq1 denote the corresponding
functions. Now suppose w ∈ Σω and 〈s0, P0〉〈s1, P1〉 . . . is a run of the backward automaton
of A′ on w such that s0s1 . . . is an initial run of the backward automaton of A and write P
for P0. Then the following is true for every state q ∈ Q and can be proved by a straightforward
induction:
1. If there is some j such that νq1(j) = 1 and νq0(i) = 1 for every i < j, then q ∈ P .
2. If q ∈ P , then either

a. there is some j such that νq1(j) = 1 and νq0(i) = 1 for every i < j, or
b. νq0(i) = 1 for all i < ω.

The problem I see is that we really want 2.a for each q ∈ P . For a U-formula to be true, it is
not enough to have 2.b only.

Thomas. Your concern is completely valid. Without any further measure, the construc-
tion may “overapproximate”. The problem is similar to the fairness problem we had when
we looked at the backward deterministic ω-automaton for a given future temporal formula
and introduced a recurrence set for every U-subformula.

Wolfgang. What do you suggest? Are we going to do the same here?
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Thomas. The situation is more complicated. Here is the basic idea. For every q satisfying
2.a there is a smallest j with the specified property. Let’s denote this by jq. We assign a
natural number p(q) to every state q ∈ P such that p(q) reflects the order of the jq’s, that is,
p(q) < p(q′) if, and only if, jq < jq′ . We then make sure by appropriate recurrence conditions
that the numbers that are assigned to the successors of q decrease over time until jq is finally
reached.

Wolfgang. That sounds interesting. Can you make this precise?
Thomas. Letm = |Q| and setM = {0, . . . ,m−1,∞}. A state of the backward automaton

of A′ is then a pair 〈s, p : Q→M〉 where P from above is now given by {q ∈ Q | p(q) 6=∞}.
Wolfgang. Given this, I think I can describe how the correct backward deterministic

transition function works. In a first step, we set
p0(q) = −1 for every q with o1(q, a, s) = 1,
p0(q) = p(δ(q, a)) for every q with o0(q, a, s) = 1 and o1(q, a, s) = 0, and
p0(q) =∞ for all other q ∈ Q.

This is consistent with the definition of P ′ from above in the sense that P ′ = {q ∈ Q |
p(q) 6=∞}, but there are values out of range – we may have −1 as a value. We adjust p0
to obtain p′ by increasing some of its values as follows, where t is defined by t = min{j ∈
{−1, . . . ,m− 1} | p−1

0 (j) = ∅}.
p′(q) = p0(q) + 1 for all q with p(q) < t.
p′(q) = p0(q) for all other q ∈ Q.

In some sense, we are adjusting as little as is necessary.
Thomas. This is absolutely correct. What we still have to define is an appropriate

recurrence condition. This will be the union of two recurrence sets I0 and I1, where
I0 simply extends I to the new state space in a straightforward way. More precisely,
I0 = {S′ ×MQ | S′ ∈ I}.

The set I1 contains a transition recurrence set Ti for every i ∈ {0, . . . ,m − 1}. This
set contains a pair 〈a, 〈s, p〉〉 if, and only if, t = i for the value t as defined above or
p′(q) ∈ {0, . . . , i− 1,∞} for every q ∈ Q and p′ as defined above.

Wolfgang. Thomas, I understand what you are saying, but I think a rigorous correctness
proof is needed here.

Thomas. I agree. As the construction is inspired by Oliver and Max Michel’s work, we
can also borrow some of their ideas for the correctness proof.

Wolfgang. Anyway, we also need to prove that our construction really yields a counter-
free automaton.

Thomas. I agree again. The proof of this is tedious, but doable. One can use what
we know from the proof that the backward deterministic ω-automaton for a given future
temporal formula is counter-free.

Wolfgang. OK. There is still some work to be done before I can present the material
to the students. I am calling it a day. Thanks a lot, and see you soon, Thomas!

Thomas. Bye, bye. And, please, say “hello” to Renate.

Wolfgang and Thomas close their desktop sharing applications.
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4 Epilogue

A few weeks later, Thomas receives the following email.

Hi, Thomas!

You probably want to know how it went with my lectures. First of all, it didn’t take me
much time to work out all the details of what we talked about. Then everything went fine,
only the students came up with a fair number of questions I couldn’t answer right away.
Here are the most interesting ones, maybe:

What is the complexity of the translation from counter-free backward deterministic
ω-automata to future temporal formulas?
What is the complexity of the translation from arbitrary temporal formulas to
ω-bimachines? Non-elementary?
Say “prop” is some interesting class of deterministic automata. What happens when we
consider “prop” ω-bimachines instead of counter-free ω-bimachines?

Any ideas?

All the best, Wolfgang
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Abstract
This paper is about a variant of mso on infinite trees where:

there is a quantifier “zero probability of choosing a path π ∈ 2ω which makes ϕ(π) true”;
the monadic quantifiers range over sets with countable topological closure.

We introduce an automaton model, and show that it captures the logic.
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1 Introduction

The ambient topic of this paper is mso on infinite binary trees, extended by a quantifier
zeroπ ϕ(π) which says that there is zero probability of choosing a path π in the tree so that
ϕ(π) is true. Here we assume that each bit (i.e. turn) in the path is chosen independently at
random. This logic was introduced by Michalewski and Mio in [10], where the decidability of
satisfiability was left open.

That satisfiability question is not solved here, but we make a small step in its direction.
We consider a fragment of the logic, called tmso+zero, standing for thin mso+zero. In this
fragment, the monadic set quantifiers are restricted to sets which are thin in the following
sense: a set of nodes is thin if there are countably many paths which visit it infinitely often.
For example, every path (when seen as a set of nodes) is thin, and every finite set is thin. In
the logic tmso+zero, one has existential and universal quantification over nodes and thin
sets of nodes, as well as the probabilistic path quantifier zero. Being thin is definable in mso,
and therefore without the zero quantifier, the logic would be a special case of mso, and with
the zero quantifier it is a special case of the logic from [10].

The contribution of this paper is the definition of an automaton model, called zero
automata, and a proof that every formula of tmso+zero can be effectively translated to an
equivalent zero automaton.

Motivation

The first source of motivation for this paper is the study of probabilistic temporal logics [1,
8, 13, 4]. An important example is the logic pctl. It is an open problem whether this logic
has decidable satisfiability. Much of the difficulty stems from the ability of talking about
probabilities like 1/2 or 1/3. If one can only compare probabilities to 0 or 1, which is in
the spirit of our logic tmso+zero, then we get qualitative pctl, whose satisfiability was
shown decidable by Brázdil, Forejt, Kretínský and Kucera in [4]. Actually, the qualitative
fragment of pctl, as well as stronger qualitative logics like pctl*, can be straightforwardly
formalised in tmso+zero, and therefore, by the main result of this paper, translated into zero
automata. Another example that we discuss later in the paper is the probabilistic version
of tree automata by Carayol, Haddad and Serre [6]; these are also a special case of zero
automata.
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The second source of motivation is trying to find a robust classes of languages of infinite
words or trees which remains decidable (e.g. with respect to satisfiability). The point of
departure is mso, with its famous decidability results by Büchi [5] and Rabin [11]. One way
of departing from that point is to add unary predicates, e.g. extending mso over ω-words
by a predicate “x is a position of the form n!”, see [12] for a survey. Another way is to add
new quantifiers. Due to the strength of mso, it is not so easy to come up with a quantifier
extending mso that is not obviously undecidable, and yet not already definable in mso. For
example, a nice quantifier is “there exist uncountably many sets with a given property” –
but as shown in [2], this quantifier does not add to the expressive power of mso. A logic
that does properly extend mso is mso+u, which is an extension of mso by a quantifier which
can say that a given property is true for finite sets of unbounded size. The logic is itself
undecidable, but has many decidable fragments, typically variants of weak mso. See [3] for a
survey of mso+u and related logics, including the cost logics of Colcombet [7]. The logic
studied in this paper, tmso+zero, is another example of a logic that is not contained in mso
(and even contains mso, if the logic is extended by allowing an outermost layer of non-weak
existential set quantifiers, which does not affect decidability of satisfiability).

2 The logic and the automaton

This section describes the two main models used in the paper: the logic tmso+zero and zero
automata. The following sections discuss how the logic is translated into the automaton.

Tree notation

The logics and automata of this paper describe properties of possibly infinite binary labelled
trees. We treat a node in a tree as a sequence in 2∗, with 2 denoting the set of directions
{0, 1}. Define a tree over an alphabet Σ to be a partial function t : 2∗ → Σ whose domain is
closed under prefixes. The special case when function is total is called a complete tree, but
we do allow incomplete trees, e.g. trees with finite domains. We use standard terminology for
trees: node, root, left child, right child, leaf, ancestor and descendant. In our definition, a
node might have a right child but not a left child. We write treesΣ for the set of trees over Σ.

Probability measure over paths

A path is defined to be a sequence in 2ω, which is viewed as an infinite sequence of left or
right turns. An equivalent definition is that a path is an ancestor-closed set of nodes that is
totally ordered by the ancestor relation. When saying that a path is contained in a set of
nodes, or contains a node, the second definition is used. When talking about the probability
of a subset of 2ω we use the coin-flipping measure, i.e. we assume that each bit is chosen
independently at random, with 0 and 1 having equal probability. The probability is defined
at least for all Borel subsets of 2ω.

I Definition 1. We say a set Π ⊆ 2ω has zero probability if it is contained in a Borel set
with coin-flipping measure zero.

The sets of paths that will appear in the logic tmso+zero will always be Borel, so the closure
under subsets in the above definition will not play much of a role.

2.1 The logic
Before defining the logic tmso+zero, we discuss the probability-free fragment tmso.
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Thin MSO without the zero quantifier

A set of nodes X ⊆ 2∗ is called thin if its closure defined by

X̄
def= {π ∈ 2ω : π passes through infinitely many nodes from X}

is countable. For example, every finite set is thin, because it has empty closure, and every
path is thin, when viewed as a set of nodes, because its closure has one path. Thin sets
are closed under arbitrary intersections and finite unions, but not under countable unions,
because the countable set of all nodes has all paths in its closure, and is therefore not thin.

The logic thin mso, denoted by tmso, is the variant of mso as in Rabin’s theorem, except
that set quantifiers range only over thin sets. The syntax of the logic is the same as for mso
from Rabin’s theorem: there are two types of variable in the logic: node variables, which
range over nodes in the domain of the input tree, and (thin) set variables, which range over
thin subsets of the domain of the input tree. There are binary predicates for the left and
right child relations, and there is a unary predicate for every label in the input alphabet.
By the Cantor-Bendixson theorem, a set of nodes X is thin if and only if one cannot find a
subset Y ⊆ X such that Y , when ordered by the descendant relation, is a complete binary
tree. Since this alternative characterisation can be formalised in mso, it follows that tmso
is a fragment of mso in terms of expressive power. On the other hand, tmso is at least as
expressive as wmso with path quantifiers.

As far as the author knows, the logic tmso was not considered explicitly in the literature
so far, and it might be interesting to examine its expressive power, e.g. prove that it is strictly
weaker than mso and maybe, in the long run, find an algorithm which inputs a formula of
mso and decides if the formula is equivalent to some formula in tmso. This investigation,
however, is not the topic of the present paper. The present paper is about extending tmso
with a quantifier for zero probability.

Thin MSO with the zero quantifier

We now define the main topic of this paper, i.e. the logic tmso+zero. First we explain why
our point of departure for adding the zero quantifier is tmso and not some other fragment
of mso. The reason is that tmso is the strongest logic we could find such that the set
quantifiers commute with the probabilistic quantifier in a way which will be made more
precise in Section 6. The key observation reason is this: if the domain of the input tree is
thin, then it has countably many paths, and therefore the zero quantifier can be eliminated
because it always says “yes”.

A parameter in the definition of tmso+zero is a family zero of subsets of 2ω. The example
we have in mind is that zero is the sets with zero probability according to Definition 1, but
the results will also work for other choices of zero. The logic tmso+zero is the extension
of the logic tmso defined above, by adding a quantifier, called zero, which binds a thin set
variable π, and such that

zeroπ ϕ(π)

is true if zero contains the set of paths π which are contained in the domain of the input tree
and make ϕ(π) true, assuming that a path is treated as a set of nodes. (Formally speaking,
the path π is seen as a set of nodes when evaluating ϕ(π), and as an element of 2ω when
measuring how many paths π make ϕ(π) true.)
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I Example 2. Consider an alphabet {a, b}. The following formula says that zero contains
the set of paths that visit at least one a:

zeroπ ∃x (x ∈ π ∧ a(x)).

If the parameter zero is prefix independent (see Definition 7 for a more precise treatment)
and does not contain the set 2ω of all paths, then the above formula is equivalent to ∀x ¬a(x),
and therefore the zero quantifier can be avoided.

I Example 3. Consider an alphabet {a, b}. The following formula says that zero contains
the set of paths which visit b finitely often:

zeroπ ∃x
(
x ∈ π ∧ ∀y (y ≥ x ∧ y ∈ π ⇒ b(x))

)
If zero is our guiding example of zero probability, the negation of the above formula says
that the Büchi condition is satisfied with probability one. As shown in [6], Theorem 21, the
property above is not definable in mso.

I Example 4. The reduction from qualitative pctl* in Theorem 5 from [10] produces
formulas where set quantification is only used for paths. Therefore, qualitative pctl* is a
special case of tmso+zero.

Beyond Thin MSO with the zero quantifier

In the logic tmso+zero, the set variables are restricted to thin sets. The obvious question
is about the more general case, where set variables range over arbitrary sets of nodes,
not necessarily thin ones. As mentioned in the introduction, the more general logic was
introduced in [10], under the name mso+∀=1

π , and the authors asked about decidability of its
satisfiability problem. A long term project for this research is to find out if the satisfiability
problem for the more general logic is decidable – or not. In this paper we only begin the
project, by studying the thin variant. One scenario is that the thin variant is decidable, but
the non-thin variant is undecidable, which would be similar to the situation for mso+u,
where weak variants are decidable, but the full logic is undecidable. However, one should
not take the analogy with mso+u too far: e.g. the thin variant of mso+u would already be
undecidable, because mso+u is undecidable already for ω-words.

Another natural version of mso with probability would be to choose a subset of 2∗
at random, with each node chosen independently, and then have a quantifier that says
there is zero probability of finding a subset with a given property. This logic was proved
undecidable in [10], already for ω-words (which can be seen as a special case of tmso), and
the undecidability proof works also for formulas of the form

there is zero probability of choosing a set X ⊆ N which makes ϕ(X) true,

where ϕ(X) is a formula of first-order logic that defines a set of ω-words over alphabet 2.
Therefore, it seems that this kind of probabilistic quantifier is doomed to undecidability.

2.2 The automaton
Having defined the logic tmso+zero, we define our main automaton model, which is called a
zero automaton. Like in the logic tmso+zero, a parameter of the semantics for the automaton
is a family zero of subsets of 2ω. The idea is that the automaton extends a nondeterministic
parity automaton with the ability to say that the set of paths satisfying the parity condition
belongs, or does not belong, to zero.
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I Definition 5. The syntax of a zero automaton is a tuple

Q︸︷︷︸
states

Σ︸︷︷︸
input alphabet

I ⊆ Q︸ ︷︷ ︸
initial states

⋃
C⊆2

δC ⊆ Q× Σ×Q|C|︸ ︷︷ ︸
transitions

,

with all components finite, together with a total order on Q and four subsets

Qall, Qzero, Qnonzero, Qseed ⊆ Q.

The idea behind the transitions is that δ{0,1} is used for those nodes which have both children
defined, but e.g. δ{1} is used for nodes where only the right child is defined, and δ∅ is used
for leaves.

The semantics are defined as follows. The automaton is run on a tree over the input
alphabet, which might not necessarily be complete. A run of the automaton is a tree labelled
by states with the same domain as the input tree, which is consistent with the transition
relation in the following sense: if a node x is in the domain, and we define

C
def= {i ∈ 2 : xi is in the domain}

then there must be a transition in δC which relates the state in x, the label of x in the input
tree, and the states in the children of x that are in the domain. A tree is accepted if it
admits a run which has the initial state in the root and is accepting in the following sense.
Define the maxinf state on a path in a run to be the maximal state that appears infinitely
often on the path. When talking about a maximal state, we refer to the total order on states
that is given in the syntax of the automaton. A run ρ is accepting if all of the following
conditions hold, assuming that paths ρ ⊆ 2ω denotes the set of paths contained in ρ:
1. all paths acceptance condition: every path from paths ρ has maxinf in Qall; and
2. zero acceptance condition: zero contains the set of paths from pathsρ which have maxinf

state in Qzero; and
3. nonzero acceptance condition: for every node x in the run with state q ∈ Qseed:

zero 63 {π ∈ paths ρ :


π passes through x, and
π sees only states < q after x, and
π has maxinf state in Qnonzero

}

An automaton is called zeroless if Qzero is empty (which makes the zero condition
vacuously true) and seedless if there are no seed states, i.e. Qseed is empty (which makes the
nonzero condition vacuously true). In particular, a zeroless and seedless automaton is the
same thing as a parity automaton, which proves the zero automata are at least as powerful
as mso.

I Example 6. Assume that zero is probability zero as in Definition 1. Consider the special
case of a zero automaton where Qall is all states and Qseed is empty. A run is accepting if and
only if there is zero probability of having maxinf state in Qzero. Equivalently, the probability
of having maxinf state outside Qzero is one. Languages recognised by such automata are the
qualitative tree languages from [6]. The class of positive tree languages from [6] is obtained
when Qall and Qzero are empty, and the initial state is used only once in the root, is maximal
in the total order, and is the unique seed state.
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3 Fat Cantor

In this section, we illustrate the logic and automaton with an extended example. Let us fix
zero to be probability zero according to Definition 1. Define the fat Cantor language to be
the set of complete trees over the alphabet {a, b} which satisfy the following property:

¬zeroπ
(
∀x x ∈ π ∧ b(x)

)︸ ︷︷ ︸
nonzero probability of avoiding a

∧ ∀x∃y y ≥ x ∧ a(y)︸ ︷︷ ︸
a’s are dense

Note that “avoiding a” is a Borel property of paths, and therefore “nonzero probability of
avoiding a” means that the sets of paths avoiding a have defined positive probability. This
argument will be true in general for our logic – for every fixed input tree, any property of
paths definable in the logic will be Borel, and therefore not belonging to zero will mean that
it there is defined and positive probability.

The fat Cantor language is nonempty. To construct a tree in the fat Cantor language,
choose a fast growing sequence of natural numbers

n1 < n2 < n3 < · · ·

and then choose a tree (which is unique up to reordering siblings) where a labels are found
only at depths from the sequence above, and every node at depth ni has a unique descendant
at depth ni+1 with label a. If the sequence (ni) grows fast enough, then there is nonzero
probability of avoiding a. Let us now argue that the fat Cantor language contains no regular
tree, i.e. no tree with finitely many nonisomorphic subtrees. Suppose then that t is a regular
tree, with n distinct subtrees. If a’s are dense in this tree, it follows from regularity that
every node has a descendant at distance at most n that has label a. This means there is some
constant ε > 0 such that for every interval I ⊆ N of n consecutive positions, the probability
of a path visiting a at depth from I is at least ε. These events are independent for disjoint
intervals, and therefore the probability of seeing a at least once, and even infinitely often, is
1. Summing up: the fat Cantor language is nonempty but contains no regular trees.

Fat Cantor automaton

We now show a zero automaton which recognises the fat Cantor language described above.
To simplify notation, we define an automaton which works only on complete trees, i.e. it
recognises the intersection of the fat Cantor language with the set of complete trees. In
particular, when talking about transitions, we only consider transitions δC for C = {0, 1}.

The input alphabet is {a, b}. The automaton has four states, totally ordered as follows:

qa︸︷︷︸
already saw a

< q1︸︷︷︸
searching for a

< q2︸︷︷︸
not searching for a

< q0︸︷︷︸
initial state

The automaton begins in state q0 in the root, this state will not be visited again during the
run. When the automaton is in state qi with i ∈ {0, 1, 2} and it reads a node with label
b, then it sends q1 to some child and q2 to the other child, as witnessed by the following
transitions:

(qi, b, qj , qk) for i ∈ {0, 1, 2} and {j, k} = {1, 2}.

Choosing which child gets q1 and which child gets q2 is the only source of nondeterminism in
this automaton. When the automaton sees letter a, it sends qa to both children regardless of



M. Bojanczyk 96:7

its current state, and qa is a sink state that cannot be left, as witnessed by the following
transitions:

(q, a, qa, qa) for all q ∈ Q (qa, a, qa, qa) (qa, b, qa, qa)

Since q0 is used only once in the root, and qa is a sink state, it follows that on every path
either qa is seen from some point on, or qa is never seen and the maxinf state is one of q1, q2.
The acceptance condition is defined by the following sets:

Qall = {qa, q2} Qzero = ∅ Qnonzero = {q1, q2} Qseed = {q0}

Because Qzero is empty, every run satisfies the zero acceptance condition. The state q0
appears only once in the root, and therefore it is never used as a maxinf state. By choice of
Qall, the state q1 is forbidden as a maxinf state, which means that in an accepting run, every
path eventually stabilises on either qa or q2. Since the only way of leaving q1 is by seeing an
a letter, it follows that a’s must be dense. The only seed state is the initial state, which is
used only once in the root, and is also the most important state. Therefore, a run satisfies
the nonzero acceptance condition if and only if its there is nonzero probability of having
maxinf state in {q1, q2}, which means there is nonzero probability of avoiding a.

4 From logic to automata

The main technical result of this paper is that every formula of tmso+zero can be effectively
translated to an equivalent zero automaton. The result works not just for zero probability,
but for other choices of zero, as described in the following definition.

I Definition 7. For a family zero of subsets of 2ω, consider the following properties:
1. σ-ideal: zero is closed under subsets and countable union;
2. atomless: zero contains all singletons;
3. prefix independence: every set Π ⊆ 2ω satisfies

Π ∈ zero⇔ iΠ ∈ zero for every i ∈ 2

4. recurrent nonzero: there is a zero automaton which recognises the language

{t ∈ trees{1, 2, 3} : for every subtree, the set of paths with maxinf 2 is 6∈ zero}

In the recurrent nonzero condition, it is important that the trees are not necessarily complete.
For such a tree, a subtree is obtained by shifting the root to some node in the domain. In
particular, if a tree belongs to the language from the recurrent nonzero condition, then it
cannot have any leaves.

Here is the main result of this paper.

I Theorem 8. Let zero be a family of subsets of 2ω satisfying conditions 1-4 in Definition 7.
Then for every formula of tmso+zero one can compute an equivalent zero automaton.

The proof has three steps. In Section 5, we show closure properties of languages recognised
by zero automata, of which the most interesting is closure under intersection. In Section 6,
we show that the logic tmso+zero has the same expressive power as a certain transducer
model. In Section 7, we complete the proof of the theorem, by translating transducers into
zero automata. The results in Section 5 and 6 only use properties 1-3 in Definition 7, while
Section 7 uses also property 4.

The following corollary shows the main application of Theorem 8.
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I Corollary 9. Let zero be the subsets of 2ω that have zero probability in the sense of
Definition 1. Then for every formula of tmso+zero one can compute an equivalent zero
automaton.

Other examples of zero which can be shown to satisfy the assumptions of Theorem 8 include
“countable sets of paths [2]” and “meagre sets of paths [9]”. These other examples are less
interesting because they can already be formalised in mso alone, i.e. parity automata are
sufficient. Theorem 8 can be seen as an alternative way of recovering the results from [2, 9]:
one only needs to check that the assumptions of Theorem 8 are satisfied for a particular
choice of zero, and that zero automata can be captured by mso. In view of the results from
[2, 9], we have only one example of zero that satisfies the assumptions of Theorem 8, and
which strictly extends mso, namely probability zero.

5 Closure properties of zero automata

This section is about closure properties of the class of languages recognised by zero automata.
We show that this class is closed under positive Boolean operations – with intersection being
by far the more interesting case. We do not know if languages recognised by zero automata
are closed under complementation. If they would be, then zero automata would have exactly
the same expressive power as full mso+zero.

Define a Mealy machine to be a deterministic finite automaton on words over some input
alphabet Σ, where every transition is labelled by a letter from some output alphabet Γ. Such
a machine can be run on a finite word, yielding a length preserving function Σ∗ → Γ∗, it can
also be run on an ω-word, yielding a function Σω → Γω, or finally it can be run on all paths
in a tree, yielding a function treesΣ→ treesΓ which does not change the domain of the tree.
The last case will be called a tree transducer recognised by a Mealy machine.

I Lemma 10. Languages recognised by zero automata are closed under union, as well as
images and inverse images under tree transducers recognised by Mealy machines.

Proof sketch. The lemma does not require any closure properties from the set zero. For
union, we use disjoint union of automata (and gluing the initial state). For images use
nondeterminism, and for both images and inverse images use a Cartesian product construction
to simulate the Mealy machine in the state space of the zero automaton. Note that state
spaces in zero automata are ordered. Therefore we impose some random total order on a
Mealy machine, and in the Cartesian product we use a lexicographic ordering, with the order
on the original zero automaton being more important. J

We now show another closure property, which is closure under factorisations, as described
below. Define a factor to be a set of nodes that is connected with respect to the child relation.
In particular, a factor has a unique root, i.e. a unique node which is least with respect to the
descendant ordering. If X is a factor, then define the restriction to X of a tree t to be the
tree obtained from t by keeping only the nodes from X. We now show that if L is a language
recognised by a zero automaton, then there is a zero automaton which inputs a tree together
with a decomposition into disjoint factors, and checks that L contains every tree obtained by
restricting the input tree to one of the factors in the partition.

We begin by describing how a decomposition into factors is given on the input. If X is a
set of nodes, then define an X-factor to be a set of nodes obtained by taking some x ∈ X
and adding all descendants y such that (x..y] is disjoint with X, where (x..y] denotes proper
descendants of x that are (not necessarily proper) ancestors of y. By abuse of notation, we
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define an X-factor of a tree t to be any tree obtained from t by restricting it to some X-factor.
Finally, if X is a set of nodes in a tree t ∈ treesΣ, then define t⊗X ∈ trees(Σ× 2) to be the
tree obtained from t by extending the label of each node by a bit indicating membership in
X.

I Lemma 11 (Factorisation Lemma). Assume that zero satisfies conditions 1–3 in Definition 7.
If L ⊆ treesΣ is recognised by a zero automaton, then so is

{t⊗X : t ∈ treesΣ and X is a set of nodes in t such that L contains every X-factor of t} .

The main idea in the proof is that to use the “nested” character of the nonzero acceptance
condition; here by nesting we mean that the paths contributing to the nonzero condition are
cut off whenever a more important state is seen.

We finish this section by stating the most challenging result, which is closure under
intersection, as stated in the following lemma.

I Lemma 12 (Intersection Lemma). Assume that zero satisfies conditions 1-3 in Definition 7.
Then languages recognised by zero automata are closed under intersection.

The proof has several steps. One of these steps, namely the first step, is showing that
languages recognised by zero automata are closed under intersection with languages recognised
by zero automata which do not use the nonzero acceptance condition. The first step uses
McNaughton’s Latest Appearance Record construction.

6 Transducers

To prove Theorem 8, we use a transducer characterisation of the logic tmso+zero. The
transducer characterisation is an “if and only if” characterisation, unlike the translation in
the main Theorem 8.

Transducers

Define a tree transducer to be any function treesΣ→ treesΓ which does not change the domain
of the input tree. Our goal is to show each language definable mso+zero can be described by
composing transducers of certain basic types. To model a language as a transducer, we use
the following definition.

I Definition 13. For a tree language L ⊆ treesΣ, define

transL : treesΣ→ trees2,

called the characteristic transducer of L, to be the transducer which labels each node of the
input tree by a bit saying whether or not the subtree rooted in that node belongs to L.

We define the combination t0 ⊗ t1 of two trees t0, t1 over possibly different alphabets
Σ0,Σ1 but with equal domains, to be the unique tree over Σ0 × Σ1 which projects to each ti
on the i-th coordinate. In the following theorem, composition of transducers is defined as for
functions, while the combination of two transducers f1, f2 with the same input alphabet but
possibly different output alphabets is the transducer t 7→ f1(t)⊗ f2(t).

I Theorem 14. Assume that zero has the closure properties 1-3 from Theorem 8. Then a
tree language is definable in tmso+zero if and only if its characteristic transducer belongs to
the smallest class of transducers which is closed under composition and combination, and
which contains the following transducers:
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1. Zero base. The characteristic transducers of all languages of the form:

Zn
def= {t ∈ trees{1, . . . , n,⊥} : zero 3 {π ∈ paths t :

{
π does not visit ⊥, and
π has even maxinf

}}

2. Zeroless base. The characteristic transducers of all languages definable in tmso.
3. Child number transducer. Transducers of the form treesΣ→ trees2 which map each node

to its child number, with the convention that the root gets label 0.
4. Mealy machine on trees. Transducers recognised by Mealy machines.

The difficult implication is from logic to transducers; here we use the composition method.
Intuitively speaking, the above theorem shows that formula of tmso+zero can be decomposed
into parts that do not talk about zero at all, and into the very basic property Zn.

7 From transducers to zero automata

In this section we complete the proof of Theorem 8, by showing that the transducers from
the previous section can be compiled into zero automata. We say that a tree transducer f
is recognised by a zero automaton if there is a zero automaton recognising the set of trees
t⊗ f(t) where t ranges over all input trees for the tree transducer.

I Lemma 15. Transducers recognised by zero automata are closed under composition, com-
bination and include the child number transducers, transducers induced by Mealy machines,
and the characteristic transducers of all languages definable in tmso.

Proof sketch. For composition, the automaton guesses the intermediate result, and checks
both underlying transducers in parallel, using the Intersection Lemma. Combination also
uses intersection. For the child-number transducers, Mealy machines and characteristic
transducers of languages definable in tmso, one observes that their corresponding languages
are definable in mso, and zero automata generalise nondeterministic parity tree automata. J

By Theorem 14 and the above lemma, in order to prove Theorem 8 it suffices to show
that zero automata recognise the characteristic transducers of the languages of the form Zn
as used in Theorem 14. By unraveling the definitions, we need to show the following lemma.

I Lemma 16. For every n ∈ N there is a zero automaton recognising the set of trees

t⊗ s with t ∈ trees{1, . . . , n,⊥}, s ∈ trees2

such that for every node x, its label in s is 1 iff Zn contains the subtree of t rooted in x.

Proof. Let L be the language in the statement of the lemma. For a tree t ⊗ s, define a
⊥-factor to be a maximal factor contained in the domain of the tree that does not use label
⊥ in t. It is not difficult to see that t⊗ s belongs to L if and only if: (a) every node with
label ⊥ in t has label 1 in s; and (b) every ⊥-factor belongs to L. Condition (a) can be easily
checked by a parity automaton, so thanks to the Intersection Lemma it suffices to produce
a zero automaton which checks (b). By the Factorisation Lemma, it suffices to find a zero
automaton which tests memberhip in L for individual ⊥-factors.

Summing up, we can assume without loss of generality that t does not use label ⊥ at all.
Therefore, in the rest of the proof, we show a zero automaton which recognises the language
L restricted to the case where t ∈ {1, . . . , n}.
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For i ∈ {1, . . . , n}, consider the function

fi : trees{1, . . . , n} → trees{1, 2, 3} label of x in fi(t) =


1 if label of x in t is < i

2 if label of x in t is = i

3 if label of x in t is > i

.

We will only use this function for even i. For t ∈ trees{1, . . . , n}, define nonzero(t) to be the
set of nodes in t whose subtree does not belong to Zn. In terms of this definition, a tree
t⊗ s belongs to L if and only if nonzero(t) is exactly the nodes that have label 0 in s. Also,
condition 4 from Definition 7 says that there is a zero automaton recognising the language

N def= {t ∈ trees{1, 2, 3} : nonzero(t) is all nodes of t}

I Claim 17. Let t ∈ trees{1, . . . , n} and s ∈ trees2 be trees with the same domain. Then
t⊗ s ∈ L if and only if one can find an ancestor closed set of nodes {Xi}i, with i ranging
over even numbers in {1, . . . , n}, such that the following conditions hold:
1. a node has label 0 in s if and only if it belongs to some Xi;
2. for every even i ∈ {1, . . . , n}, restricting fi(t) to the nodes from Xi yields a tree in N;
3. zero 3 {π ∈ paths t : π has even t-maxinf and sees 0 finitely often in s}

Before proving the claim, let us observe how it implies the lemma. Since a zero automaton
can nondeterministically guess the sets Xi, it suffices to show that there is a zero automaton
which checks conditions 1, 2, 3 in the claim. By the Intersection Lemma, it suffices to check
each condition individually. Condition 1 is definable in mso. Condition 2, for any fixed i,
follows from the assumption that N is recognised by a zero automaton and the Factorisation
Lemma. For condition 3, it is straightforward to construct a zero automaton – it essentially
copies the labels from t into its states, except that nodes with label 0 in s trigger a state
which is maximal in the total order. It remains to prove the claim.

Proof. We begin with the following observation, which follows from the assumption that
zero satisfies conditions 1-3 in Definition 7. For every t ∈ trees{1, . . . , n}, the set nonzero(t)
is closed under ancestors and a node x belongs to nonzero(t) if and only if

zero 63 {π ∈ paths t :


π is contained in nonzero(t), and
π passes through x, and
π has even t-maxinf

} (1)

By definition of the tree transducers fi, a path has even t-maxinf if and only if it has even
fi(t)-maxinf for some even i. Therefore, by closure of zero under countable – and therefore
also finite – unions, we see that

nonzero(t) =
⋃
i

nonzero(fi(t)), (2)

where i ranges over even numbers in {1, . . . , n}.
Let us now prove the claim.
Let us begin with the bottom-up implication. From condition 2 it follows that every node

in Xi belongs to nonzero(t). From condition 1 it follows that all nodes with label 0 are in
nonzero(t). From condition 1, it follows that the set of nodes with label 0 in s is closed under
ancestors. Therefore, condition 3 implies that for every node with label 1 in s is outside
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nonzero(t). Thus nonzero(t) is exactly the nodes which have label 0 in s, which means that
t⊗ s ∈ L.

Consider the top-down implication. Our assumption is that nonzero(t) is exactly the
nodes which have label 0 in s. Define Xi to be nonzero(fi(t)). By (2), we see that condition
1 in the statement of the claim holds. From (1) applied to the trees fi(t), we get condition 2.
To prove condition 3, by definition of nonzero(t) and prefix independence of zero, we know
that every node x 6∈ nonzero(t) satisfies

zero 3 {π ∈ paths t : π passes through x and has even t-maxinf}

Since nonzero(t) is ancestor closed, it follows that a path passes through some x 6∈ nonzero(t)
if and only if it sees 0 in s finitely often. Therefore, by closure of zero under countable unions,
we get condition 3 in the statement of the claim. J

J

8 Conclusion

We have proved that, under certain conditions on zero, every formula of the logic tmso+zero
is recognised by a zero automaton. Therefore, in order to decide satisfiability of tmso+zero,
it suffices to decide emptiness for zero automata. Unlike the logic, zero automata involve no
nesting, which makes the emptiness check easier. A planned followup paper will show that
emptiness is indeed decidable for zero automata, assuming that zero is the sets of probability
zero.

Apart from the emptiness question for zero automata, the main open problem is decidab-
ility for the full logic mso+zero, and not just the thin variant considered in this paper. It
is not at all clear if zero automata are closed under complement, and therefore it is quite
possible that zero automata are not the right model for mso+zero. There is another logic,
which sits between tmso+zero and mso+zero, and which might still admit a translation to
zero automata. In this intermediate logic, the condition on sets X ⊆ 2∗ is relaxed: instead of
thin sets, we consider sets which satisfy X̄ ∈ zero. We leave open the question whether this
intermediate logic admits a translation to zero automata.
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Abstract
The piecewise testable separability problem asks, given two input languages, whether there exists
a piecewise testable language that contains the first input language and is disjoint from the second.
We prove a general characterisation of piecewise testable separability on languages in a well-quasi-
order, in terms of ideals of the ordering. This subsumes the known characterisations in the case
of finite words. In the case of finite ranked trees ordered by homeomorphic embedding, we show
using effective representations for tree ideals that it entails the decidability of piecewise testable
separability when the input languages are regular. A final byproduct is a new proof of the
decidability of whether an input regular language of ranked trees is piecewise testable, which was
first shown in the unranked case by Bojańczyk, Segoufin, and Straubing [Log. Meth. in Comput.
Sci., 8(3:26), 2012].
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1 Introduction

The separability problem for a class C of input languages and a class S of separators, asks
given two input languages L and L′ from C whether there exists a language S from S such
that L ⊆ S and S∩L′ = ∅. This classical problem has been studied in formal language theory
since the 70’s [27], but has sparked renewed interest due in particular to its connection with
the definability problem: given L from C, does L belong to S? When C is effectively closed
under complement, this last question reduces to the separability of L and of its complement.
Separability thus generalises definability, and has been instrumental in the recent advances
on the definability problem for the alternation hierarchy over finite words [25].

We focus in this paper on the class of piecewise testable languages as class S of separat-
ors. Over finite words, this coincides with the languages defined by BΣ1(<), the Boolean
combinations of existential first-order sentences with order, and is one of the oldest and best-
known classes of languages with decidable definability: Simon [26] showed that a language
is piecewise-testable if and only if its syntactic monoid is J -trivial. Lately, this has been
extended in two different directions:

Over finite unranked ordered trees, Bojańczyk, Segoufin, and Straubing [6] generalise
Simon’s algebraic approach and characterise the syntactic forest algebræ of piecewise
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testable tree languages defined by the most common signatures. This yields the decidability
of the piecewise testable definability problem for regular unranked tree languages.
Over finite words, Almeida and Zeitoun [2, 3] first proved the decidability of the PTL
separability problem for regular input languages, based on a topological characterisation
of separability. This abstract characterisation has been turned into a much more efficient
characterisation in terms of patterns found simultaneously in L and L′ [24, 11], which
culminated in the work of Czerwiński, Martens, van Rooijen, Zeitoun, and Zetzsche [12]
with a proof of the decidability of piecewise separability for many classes C of input
languages, which even includes higher-order languages [17, 8, 4]. The crux of this proof
is a reduction to the computation of representations for downward-closures [30] ordered
by scattered subword embedding.

Separability for Tree Languages. Considering these two lines of research side by side begs
the question whether piecewise testable separability might be decidable over richer structures
than words, and in particular over trees. In this paper, we answer positively by proving:

I Theorem 1. Piecewise testable separability is decidable for regular languages of ranked
trees ordered by homeomorphic embedding.

Since the class of regular tree languages is effectively closed under complement, Theorem 1
entails as a sub-problem the decidability of the corresponding definability problem:

I Corollary 2. Piecewise testable definability is decidable for regular languages of ranked
trees ordered by homeomorphic embedding.

Thus, apart from the restriction to ranked trees, Theorem 1 also yields as a byproduct a new
proof of decidability for the piecewise testable definability problem studied by Bojańczyk et
al. [6], in the most challenging case of homeomorphic embeddings.

Order-Theoretic Framework. We employ vastly different techniques from Bojańczyk et
al.’s, and Theorem 1 should be thought of as a proof of concept for our main contribution,
which is a very general order-theoretic framework for piecewise testable separability:

We characterise in Section 3 separability by piecewise testable languages over any com-
binatorial well-quasi-order ; this encompasses for instance words ordered by scattered
subword embedding and trees ordered by homeomorphic embedding or minor ordering.
Our characterisation proceeds similarly to the topological characterisation of Almeida [2]
by comparing the closures of L and L′, but is stated in purely order-theoretic terms and
compares the ideals – i.e. the irreducible downwards-closed sets – adherent to L and L′.
The advantage of this approach is that it scales to more complex structures than words –
we have a toolkit of effective ideal representations at our disposal [13, 15] – and leads
to a very simple and general proof, that delegates syntactic manipulations to the ideal
representation. Our techniques encompass the word case: e.g. the patterns derived by
Czerwiński et al. [12] turn out to be representations for word ideals [19, 1], and we eschew
the technical work on patterns that absorbed a large part of Czerwiński et al.’s proof.
We then show in Section 4 how to turn our characterisation into a generic decision
procedure, by reduction to the adherence membership problem for the class C. Provided
we have effective representations for ideals, this yields directly the decidability for regular
tree languages. We also derive the reduction of Czerwiński et al. to the computation of
downward-closures in full generality.
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In order to instantiate this framework for tree languages, we provide in Section 5 our last
ingredient: an effective representation for ideals of ranked trees ordered by homeomorphic
embedding. This is a contribution of independent interest, which fixes an issue with the
representation proposed in [13].

We start in Section 2 by defining piecewise testable languages in the general setting of
combinatorial quasi-orders, and by recalling their logical characterisation. We assume the
reader is already familiar with tree languages; see [9] for a general reference.

2 Piecewise Testable Languages

We work in the first part of this paper with combinatorial classes X of elements, where X is
a countable set equipped with a size function |.|:X → N such that X≤n

def= {x ∈ X | |x| ≤ n}
is finite for every n. As soon as we equip X with a quasi-ordering ≤, we can define a notion
of piecewise-testable languages (see Section 2.1). The usual setting for piecewise testable
languages is however that of classes of finite structures along with the embedding relation, in
which case those sets also enjoy a logical characterisation (see Section 2.2).

2.1 Pieces
Two elements x and y are n-piecewise equivalent, noted x ≡n y, if for every z ∈ X≤n, z ≤ x
if and only if z ≤ y. A subset S of X is called n-piecewise testable (an n-PTL) over (X,≤)
if S is a union of n-piecewise equivalence classes. A subset S of X is piecewise testable (a
PTL) if it is an n-PTL for some n ≥ 0. This is well-known to be equivalent to the following
formulation:

I Fact 3. S is an n-PTL over (X,≤) if and only if S is a finite Boolean combination of
principal filters ↑x def= {x′ ∈ X | x ≤ x′} where x ∈ X≤n.

2.2 Logical Characterisation
Although the choice of the particular quasi-order (X,≤) is irrelevant to Fact 3 and the
treatment in Section 3, one normally chooses X to be a class K of finite structures over some
signature σ and ≤ to be the induced substructure ordering, which we denote by ‘v’. When
(K,v) is a well-quasi-order, this leads to a well-known logical characterisation in terms of the
Boolean closure of existential first-order formulæ– one of the chief motivations for studying
piecewise testable languages. Other orderings may lead to different logical characterisations,
or have no logical characterisation.

2.2.1 Finite Structures
We consider finite relational structures M = 〈M, (Ri)i∈I〉 over a finite signature σ = (Ri)i∈I

(we conflate the names of relations in σ with their interpretations in M). The finite set M
is the (potentially empty) domain of M and each relation Ri ⊆Mri has a prescribed arity
ri > 0. The size |M| of M is the cardinality of its domain. A class K of structures is a set of
such finite structures sharing the same signature σ and closed under isomorphism.

I Example 4 (Finite Words). Let Σ be a finite alphabet; we write Σ∗ for the set of finite
words over Σ. Such a word w can be seen as a relational structure over σs

def= ((Pa)a∈Σ, <)
with its set of positions {1, . . . , |w|} as domain (where |w| denotes the length of w, and thus
coincides with its size), and Pa(x) for x ∈ {1, . . . , |w|} holds if and only if the xth symbol of
w is a ∈ Σ, while x < y has the obvious interpretation.
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I Example 5 (Ranked Trees). Fix a finite ranked alphabet F , where each symbol f is mapped
to a single rank r(f) ≥ 0, and write Fr for the subset of F with rank r. A (finite, ranked,
ordered) tree is defined inductively as a term f(t1, . . . , tr) where f ∈ Fr and t1, . . . , tr are
trees (see e.g. [9]). The notions of node, child, parent, descendant, and ancestor relations
between nodes of a tree are defined as usual. We denote by T (F) the set of trees over F .

A tree can be seen as a structure with its set of nodes as domain – note that this domain
is never empty by definition –; several signatures are then pertinent (see [6] and the full
paper). We shall focus on the signature σT

def= ((Pf )f∈F , <,<dfs,u) where, for all nodes x, y,
Pf (x) holds whenever x is labelled by f ,
x < y whenever x is an ancestor of y,
x <dfs y whenever x is visited before y in a depth-first, left-first traversal of the tree –
this is known as the document order –, and
z = x u y whenever z is the least common ancestor of x and y, i.e. z is the unique
descendant of all the nodes which are ancestors of both x and y.

Embeddings. Recall that A v B holds between two structures A and B if and only if
there exists an embedding from A to B, i.e. an injective mapping e from A to B that
preserves the relations: for all i ∈ I and a1, . . . , ari

∈ A, (a1, . . . , ari
) ∈ Ri in A if and only if

(e(a1), . . . , e(ari
)) ∈ Ri in B. As v is transitive and reflexive, (K,v) is a quasi-order (a qo).

Well-Quasi-Orders. Given a qo (X,≤) and a subset S ⊆ X, the downward-closure of S
is ↓S def= {x ∈ X | ∃s ∈ S . x ≤ s}. A subset D ⊆ X is downwards-closed if D = ↓D;
when D is a singleton {x} we write more succinctly ↓x. The notions of upward-closure and
upwards-closed subsets are defined similarly.

A qo (X,≤) is a well-quasi-order (wqo) if in every infinite sequence x0, x1, . . . of elements of
X, one can find an infinite sequence of indices i0 < i1 < · · · such that xi0 ≤ xi1 ≤ · · · [18, 20].
Equivalently, (X,≤) is well-founded (there are no infinite descending sequences x0 > x1 > · · · )
and satisfies the finite antichain condition (FAC), i.e. all its antichains are finite. Still
equivalently, (X,≤) has the descending chain condition: there are no infinite descending
sequences D0 ) D1 ) · · · of downwards-closed subsets Di ⊆ X. For instance, any finite set
ordered by equality is a wqo by the Pigeonhole Principle. As another example, if (X,≤X)
and (Y,≤Y ) are two wqos, then by Dickson’s Lemma, their Cartesian product X × Y is
well-quasi-ordered by the product ordering defined by (x, y) ≤ (x′, y′) if and only if x ≤X x′

and y ≤Y y′.

I Example 6 (Scattered Subword Embedding). The signature σs of Example 4 for finite words
in Σ∗ gives rise to an embedding relation vs known as the (scattered) subword embedding:
u vs v if and only if u = a1 · · · am and v = v0a1v1 · · · vm−1amvm for some a1, . . . , am ∈ Σ
and v0, . . . , vm ∈ Σ∗.

By Higman’s Lemma [18], the subword embedding relation vs well-quasi-orders Σ∗.

I Example 7 (Homeomorphic Tree Embedding). Using the signature σT of Example 5 for
trees in T (F), the ordering t vT t′ is better known as the homeomorphic tree embedding
relation, and holds for t = f(t1, . . . , tr) and t′ = g(t′1, . . . , t′s) if and only if

there exists 1 ≤ i ≤ s such that t vT t′i, or
f = g (and thus r = s) and for every 1 ≤ i ≤ r, ti vT t′i;

see the full paper for a proof of this folklore result. Note that (Σ∗,vs) is isomorphic to
(T (FΣ),vT ) where FΣ

def= Σ]{$} assigns rank 1 to letters in Σ and rank 0 to $, so our results
on ranked trees properly generalise the case of finite words.
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As first shown by Higman [18], the homeomorphic tree embedding relation vT similarly
well-quasi-orders T (F), and Kruskal’s Tree Theorem [20] shows that this generalises to
unranked trees.

Existential First-Order Logic. Consider first-order logic over the signature σ, and a class
of structures K over σ. Given a sentence ϕ, the set of structures M ∈ K such that M |= ϕ is
called the (first-order) language of ϕ. It is well-known that existential sentences in Σ1(σ)
define upwards-closed first-order languages S with respect to embeddings, i.e. such that
S = ↑S def= {M′ ∈ K | ∃M ∈ S .M vM′}; however the converse does not necessarily hold [28].

We are interested here in the Boolean closure BΣ1(σ) of Σ1(σ):

I Fact 8. If a set S is an n-PTL over (K,v), then it is definable by a sentence in BΣ1(σ)
with at most n variables. Conversely, assuming additionally that (K,v) is a wqo, if S is
definable by a sentence in BΣ1(σ), then it is a PTL over (K,v).

3 Ideal Characterisation of PTL Separability

A set S ⊆ X separates L ⊆ X from L′ ⊆ X if L ⊆ S and S ∩L′ = ∅. This can be turned into
a decision problem when restricting L and L′ to a class C ⊆ 2X of finitely representable sets:

I Problem (PTL separability for C over (X,≤)).
Input: Representations of L and L′ from C
Question: Are L and L′ PTL separable, i.e. does there exist S a PTL over (X,≤) that

separates L from L′?

Throughout this section, we assume that (X,≤) is a well-quasi-order. Under this assump-
tion, we establish in Section 3.2 a characterisation of PTL separability in terms of ideals of
(X,≤) (whose definition we recall in Section 3.1). This yields a generic framework in which
the decidability of PTL separability can be tackled, which we present in Sections 4 and 5 and
instantiate for the case of (T (F),vT ) the set of ranked trees together with homeomorphic
embeddings against the class C = Reg(T (F)) of regular tree languages.

3.1 Ideals
An ideal of a qo (X,≤) is a downwards-closed and (up-)directed subset I ⊆ X, where this
last condition ensures that I is non-empty and that, given any x ∈ I and y ∈ I, there exists
z ∈ I with x ≤ z and y ≤ z. A related notion is the following. A downwards-closed subset
D of (X,≤) is irreducible if and only if it is non-empty, and for any two downwards-closed
subsets D1, D2 such that D ⊆ D1 ∪D2, D is contained in D1 or in D2 already; equivalently,
D is non-empty and cannot be written as the union of two proper, downwards-closed subsets.

I Fact 9 (cf. Lemma 1 in [7]). The following are equivalent for a downwards-closed subset D
of a quasi-ordered set: (a) D is an ideal; (b) D is directed; (c) D is irreducible.

We write Idl(X) for the set of ideals of X. Ideals are especially useful when (X,≤) is a
wqo: for one thing, when X is countable, Idl(X) is then also countable [7, Theorem 1], and
furthermore any downwards-closed subset has a decomposition as a finite union of ideals:

I Fact 10 (cf. Lemma 2 in [7]). A qo is FAC if and only if every downwards-closed subset is
a finite union of ideals.
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3.2 Characterising Separability
Over any qo (X,≤), the case where L and L′ are not PTL separable has a well-known
characterisation in terms of sequences of indistinguishable witnesses, which is a straightforward
consequence of the definitions:

I Lemma 11. L and L′ are not PTL separable over a qo (X,≤) if and only if there exist
two sequences of elements (xn)n∈N in L and (x′n)n∈N in L′ such that for every n, xn ≡n x

′
n.

Proof Idea. It suffices to observe that L and L′ are not n-PTL separable if and only if there
exist xn ∈ L and x′n ∈ L′ such that xn ≡n x

′
n. See the full paper for a detailed proof. J

When (X,≤) is a wqo, we have another characterisation in terms of directed subsets
of L and L′ defining the same ideal. The fact that (X,≤) is wqo is needed in order for
Lemma 12 to hold: otherwise, the full paper presents a counter-example for the subtree
ordering over T (F).

I Lemma 12 (Key Lemma). L and L′ are not PTL separable over a wqo (X,≤) if and only
if there exist two directed sets ∆ ⊆ L and ∆′ ⊆ L′ such that ↓∆ = ↓∆′.

Proof of ‘if’. Let ∆ ⊆ L and ∆′ ⊆ L′ be two directed sets with ↓∆ = ↓∆′. Let us show that
for every n ∈ N, there exist xn ∈ L and x′n ∈ L′ such that xn ≡n x

′
n, from which Lemma 11

yields the result. Write I for the ideal ↓∆ = ↓∆′. Observe that, for every n ∈ N, I ∩X≤n is
finite since X is a combinatorial class. Furthermore, for every z ∈ I ∩X≤n, by definition of
I there exist xz ∈ ∆ with z ≤ xz and x′z ∈ ∆′ with z ≤ x′z. Since ∆ and ∆′ are directed, we
can find xn ∈ ∆ and x′n ∈ ∆′ greater or equal to all those finitely many xz and x′z when z
ranges over I ∩X≤n (if I ∩X≤n = ∅ then any xn ∈ ∆ and x′n ∈ ∆′ fit). Then xn ≡n x′n,
since for any z ∈ X≤n, either z ∈ I and then both z ≤ xz ≤ xn and z ≤ x′z ≤ x′n, or z 6∈ I
and then both z 6≤ xn and z 6≤ x′n since I is downwards-closed. J

Proof of ‘only if’. Assume L and L′ are not PTL separable, hence by Lemma 11 there exist
two infinite sequences (xn)n in L and (x′n)n in L′ with xn ≡n x

′
n for every n.

Let us consider the infinite sequence of pairs (xn, x
′
n)n∈N. By Dickson’s Lemma, X×X is

a wqo for the product ordering, hence there exists an infinite sequence of indices i0 < i1 < · · ·
such that xij

≤ xij+1 and x′ij
≤ x′ij+1

for every j ∈ N. Define ∆ def= {xij
| j ∈ N}

and ∆′ def= {x′ij
| j ∈ N}. These two sets are directed; they are actually infinite chains

xi0 ≤ xi1 ≤ · · · and x′i0
≤ x′i1

≤ · · · .
It remains to show that ↓∆ = ↓∆′. By symmetry, it suffices to show ∆ ⊆ ↓∆′. Consider

some xij ∈ ∆; then there exists some index ik > max(ij , |xij |). Hence xij ≤ xik
, and since

xik
≡ik

x′ik
, xij

≤ x′ik
and thus xij

∈ ↓∆′. J

Related Work over Finite Words. Let S be a subset of X. We define the adherence of S
as the set of ideals defined by the directed subsets of S:

Adh(S) def= {↓∆ ∈ Idl(X) | ∆ ⊆ S is directed } . (1)

Lemma 12 can be restated as saying that L and L′ are PTL separable if and only if their
adherences are disjoint, i.e. Adh(L) ∩Adh(L′) = ∅. This makes Lemma 12 quite reminiscent
of several results on separability for word languages over Σ∗. Almeida [2] showed that two
regular languages over Σ are PTL separable over (Σ∗,vs) if and only if their topological
closures inside a specific profinite semigroup do not intersect. This lead to a first decision
procedure [3] by explicitly constructing representations for these topological closures and
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testing their intersection for emptiness – the counterpart in terms of Lemma 12 would be to
compute the adherences of L and L′.

Major improvements were brought by Place et al. [24] and Czerwiński et al. [11] and
culminate in Theorem 2.1 of [12], by reducing this non-empty intersection check to identifying
a common pattern ‘densely’ matched by both L and L′. It turns out that these patterns are
essentially finite representations for ideals of (Σ∗,vs), so Lemma 12 subsumes Theorem 2.1
of Czerwiński et al. [12] – and has a considerably simpler proof.

4 Deciding PTL Separability

While Lemma 12 provides a general characterisation for PTL separability, turning it into a
decision procedure requires finite representations and effectiveness assumptions on its various
ingredients. We define a set of such assumptions in Section 4.1, which is sufficient to derive
a generic algorithm. We describe the latter in two steps: we first show in Section 4.2 a
reduction to the adherence membership problem. The final step in Section 4.3 is to show that
this last problem is decidable for the set of regular tree languages over (T (F),vT ).

4.1 Effectiveness Assumptions
In order to put Lemma 12 into practice, we need to consider in more details how we are
going to represent PTLs over (X,≤), ideals in Idl(X), and languages in C.

PTLs. Fact 3 provides a natural representation for PTLs as finite Boolean combinations of
principal filters, i.e. more concretely as terms of the free Boolean algebra with elements
of X as atoms.

Ideals. Recall that over a countable wqo (X,≤), Idl(X) is also countable [7]. In Section 4.2,
we only need to have explicit ideal representations as a means of enumerating ideals, while
Corollary 15 further needs a means of computing representations as regular tree languages.
Section 5 fulfils both requirements by providing ideal representations for (T (F),vT ) as
regular tree expressions.

Languages. Our last effectiveness assumptions regard the class of languages C. We call C
PTL-effective over a qo (X,≤) if C has decidable emptiness: given a representation for
L ∈ C, there is an algorithm that decides whether L = ∅, and if C is effectively closed
under intersection with PTLs: given a representation for L ∈ C and one for S a PTL over
(X,≤), there is an algorithm that constructs a representation for L ∩ S in C.

For instance, both over (Σ∗,vs) and over (T (F),vT ), a principal filter ↑x is a regular
language, and since regular languages are closed under Boolean operations by Fact 3 any
PTL is regular. Thus, PTL-effective classes of word and tree languages abound, starting
with regular languages themselves, but also context-free, etc.

4.2 Reducing to Adherence Membership
We describe our decision procedure in two steps. The first one reduces the PTL separability
problem for a PTL-effective class C to the following problem:

I Problem (Adherence Membership for C over (X,≤)).
Input: A representation for L ∈ C and one for I ∈ Idl(X).
Question: Is I ∈ Adh(L)?
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I Proposition 13. Let (X,≤) be a wqo with ideal representations and C ⊆ 2X be PTL-
effective over (X,≤). Then there is a Turing reduction from the PTL separability problem to
the adherence membership problem.

Proof. Given an oracle for the adherence membership problem for C over (X,≤), our
algorithm consists of two semi-decision procedures that take representations for L ∈ C and
L′ ∈ C as input. The first attempts to show that L and L′ are PTL separable, and enumerates
representations of PTLs S until L ∩ (X \ S) = ∅ and L′ ∩ S = ∅. This is possible because
C is PTL-effective and complementing a PTL representation is trivial. The second relies
on Lemma 12 and attempts to show that L and L′ are not PTL separable by enumerating
representations of ideals I until I ∈ Adh(L) and I ∈ Adh(L′), using the oracle for adherence
membership for the tests. J

4.3 Deciding Adherence Membership
Regular Languages. In the case of regular tree languages over T (F), the adherence mem-
bership problem is decidable thanks to the following lemma:

I Lemma 14. Let (X,≤) be a qo and L ⊆ X. Then I ∈ Adh(L) if and only if I ⊆ ↓(I ∩L).

Proof. The ‘only if’ part is immediate or the ‘if’ part we show that I ∩ L is directed. Since
I is non-empty and included in ↓(I ∩ L), I ∩ L is also non-empty. Furthermore, if x, y are
in I ∩ L, then since I is directed there exists z ∈ I such that x ≤ z and y ≤ z, and since
I ⊆ ↓(I ∩ L) there exists z′ ∈ I ∩ L such that z ≤ z′. J

Now, if L is a regular tree language, I is also effectively regular using the ideal represent-
ations from Section 5, and so are I ∩ L and ↓(I ∩ L), hence I ⊆ ↓(I ∩ L) is decidable since
inclusion of regular tree languages is decidable, proving Theorem 1:

I Corollary 15. Adherence membership is decidable for regular tree languages over (T (F),vT ).

Generic Approach. Let us finally generalise the previous idea. Our issue is that, for instance
when C is the class of context-free languages over Σ∗, while I is a regular language and
↓(I ∩L) is a computable context-free language, the inclusion test between a regular language
and a context-free one is in general undecidable. Thankfully, ↓(I ∩L) is regular for arbitrary
languages L by Fact 10, since it is a finite union of ideals and ideals are regular. However,
the issue is then to compute a representation of ↓(I ∩ L) as a regular language, or more
generally to solve the following problem:

I Problem (Ideal Decomposition for C over (X,≤)).
Input: A representation for L ∈ C
Output: ↓L as a finite union of representations of ideals in Idl(X).

The following result requires effective operations on ideal representations. We refer the
reader to [13, 15] for a systematic study of algorithms on finite ideal representations for wqos;
here we use the notion of effective ideal representations as defined by Goubault-Larrecq et
al. [15] to prove (see the full paper):

I Proposition 16. Let (X,≤) be a wqo with effective ideal representations and C ⊆ 2X be
PTL-effective over (X,≤). Then the adherence membership problem and the ideal decomposi-
tion problem are Turing-equivalent.
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The seemingly innocuous hypothesis that C is PTL-effective is actually crucial: The-
orem V.2 and Theorem VIII.1 in [22] provide an instance of undecidable adherence member-
ship but computable ideal decompositions over a wqo with effective ideal representations; in
these results, C is the set of run structures between two configurations of a vector addition
system, and has decidable emptiness but lacks effective closure under intersection with PTLs.

Related Work over Finite Words. Propositions 13 and 16 together show that PTL separab-
ility reduces to the computation of ideal decompositions for downward-closures over any wqo
with effective ideal representations. This includes as a special case (Σ∗,vs) using the repres-
entations in [19, 1], and since ideal decompositions of downward-closures are computable for
many classes of PTL-effective word languages [30] – including context-free languages [29, 10],
reachability languages of vector addition systems [16], matrix languages [30], and higher-order
languages [17, 8, 4] –, PTL separability is decidable for them.

In fact, propositions 13 and 16 subsume most of Theorem 2.5 of Czerwiński et al. [12],
which is stated for full trios C over Σ∗, i.e. classes of languages closed under rational
transductions – which are thus effectively closed under intersection with PTLs. There
is a small price to pay for our level of generality, which is that their Theorem 2.5 also
shows a converse reduction over (Σ∗,vs) from the ideal decomposition problem back to
the PTL separability problem. In our general setting, the best we know is that L def= I and
L′

def= X \ ↓(I ∩ S) are PTL-separable if and only if I ∈ Adh(S) by Lemma 14, but this
either uses the closure of C under complementation and downward-closure, or already uses
computable ideal decompositions. The former however holds for regular languages:

I Proposition 17. There is a many-one reduction from the adherence membership problem
to the PTL separability problem for regular tree languages over (T (F),vT ).

5 Ideals for Ranked Trees with Homeomorphic Embedding

In this section, we provide finite representations for ideals of ranked trees ordered by
homeomorphic embedding. These representations are expressed as tree regular expressions [9,
Section 2.2]. We show in Section 5.1 that any downwards-closed subset of T (F) can be
represented as a simple tree regular expression (STRE), which we construct from its tree
automaton. In Section 5.2, we then characterise ideals in this syntax as tree products, obtained
as the summands of the normal form according to a rewrite system. Thanks to this particular
proof strategy, the entire construction also solves the ideal decomposition problem: given a
regular tree language, first build the STRE for its downward-closure, then normalise this
STRE into a union of tree products representing its ideals.

Note that a concrete syntax for ranked tree ideals was proposed in [13]. However, no proof
was given, and indeed the proposed tree regular expressions failed to be downwards-closed.

5.1 Simple Tree Regular Expressions
Let L ⊆ T (F) be a downwards-closed language. Its complement is upwards-closed and has
finitely many minimal elements, i.e. T (F) \ L = ↑{t1, . . . , tn} =

⋃
1≤i≤n ↑ ti, hence this is a

regular tree language and L is also regular. Thus L is recognised by a finite (bottom-up)
tree automaton A, or equivalently by a tree regular expression [9, Section 2.2].

We shall see that A is equivalent to an expression of a specific shape, called a simple tree
regular expression (STRE). We describe next a general procedure that converts any (ε-free)
finite tree automaton A to an STRE S whose language is the downward-closure ↓L(A) of the
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(a) Initial tree automaton.
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(b) ε-strongly connected components.

Figure 1 Converting tree automata to STREs.

language recognised by A. This procedure is best explained on an example: see Figure 1a,
where there is one 0-ary transition a (from no state) to state q1, one binary transition f
from the pair of states q1, q2 to q3, and so on. In textual form, we write these transitions as
rewrite rules [9]: a→ q1, f(q1, q2)→ q3, h(q3, q3)→ q2, c→ q3, g(q4)→ q4, b→ q4.

We first extend our automaton with ε-transitions. An ε-transition from s to s′ will be
drawn as a dashed arrow (see Figure 1b), and is just a rewrite rule of the new form s→ s′.
This implies that every tree recognised at s is also recognised at s′. For each transition, say
f(s1, s2, · · · , sn) → s, of A, we add n ε-transitions s1 → s, s2 → s, . . . , sn → s. Call the
resulting automaton ↓A. It is an easy exercise to show that L(↓A) = ↓L(A).

There is a graph underlying ↓A, whose vertices are the states of ↓A, and whose edges
are the ε-transitions. Consider its strongly connected components, shown against a grey
background in Figure 1b. Any two states in the same strongly connected component C
recognise exactly the same trees, so it makes sense to talk of the language LC(↓A) of those
trees recognised at any state of C. Let C → C ′ if and only if s→ s′ for some s ∈ C, s′ ∈ C ′.
The strict ordering ≺ def= →+ is well-founded, and we shall build an expression SC whose
language is LC(↓A) by induction along ≺.

Trivial Components. If C is a trivial strongly connected component (one state s, no self-
edge), then enumerate its incoming non-ε transitions fi(si1, si2, · · · , sini

) → s, 1 ≤ i ≤ m.
Let Sij be an expression whose language is the set of trees recognised at sij , which is given
by induction hypothesis. Then SC

def= P1 + · · ·+ Pm with Pi
def= f?

i (Si1, Si2, · · · , Sini
) is our

desired expression. For instance, the set of trees recognised at the leftmost state q1 of
Figure 1b is the language of S1

def= a?.
Here, a tree t is in the language of an expression P = f?(S1, . . . , Sn) (written ‘t ∈ P ’)

for f ∈ Fn and expressions S1, . . . , Sn if and only if either t is of the form f(t1, · · · , tn) with
ti ∈ Si for every i, 1 ≤ i ≤ n, or if t ∈

⋃n
i=1 Si; as the notation suggests, for S = P1+· · ·+Pm,

t ∈ S if and only if t ∈ Pj for some j, 1 ≤ j ≤ m.

Iterators. If C is a non-trivial strongly connected component, then enumerate the non-ε
transitions fi(si1, si2, · · · , sini)→ si, 1 ≤ i ≤ m, whose end state si is in C. For each pair
i, j, if sij is in C, then S�ij

def= � is a placeholder; otherwise, let S�ij be an expression whose
language is the set of trees recognised at sij , which we obtain by induction hypothesis. Then
SC

def= (A1 + · · · + Am)∗.0 for Ai
def= fi(S�i1, S�i2, · · · , S�ini

) is a suitable expression. For
example, the rightmost strongly connected component {q4} of Figure 1b yields the expression
S4

def= (b + g(�))∗.0. One might have expected an expression of the more intuitive form
(g(�))∗.b?, however, as we are going to see, they define exactly the same language.
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Here, 0 denotes the empty sum with empty language, and intuitively the language of
an iterator C∗.S for C = A1 + · · ·+Am should consist of all trees obtained by repeatedly
applying contexts from A1, . . . , Am – i.e. trees over the extended alphabet F ∪ {�} where
� has arity 0 –, until one reaches a tree in S. More precisely, the language of an atom
A = f(S�1, · · · , S�n) consists of those contexts in T (F ∪ {�}) of the form f(c1, · · · , cn)
where ci ∈ S�i for every i. In turn, c ∈ S� if and only if either S� = � and c is the trivial
context �, or S� is an expression S, c is a tree t in T (F), and t ∈ S. The language of
C = A1 + · · ·+Am is the union of the languages of Aj , 1 ≤ j ≤ m. For example, (f(�))∗.a?

will recognise all trees of the form fn(a), n ∈ N. There are however two catches:
1. The first one has to do with atoms A where the placeholder � occurs more than once: as

usual with tree regular expressions, when replacing � by a tree from S, several occurrences
of � can be replaced by different trees from S. Hence (f(�,�))∗.(a? + b?) consists of all
binary-branching trees with inner nodes labelled f and leaves labelled a or b, including
f(f(a, a), a) and f(f(b, b), b) but also f(f(a, b), a)) or f(f(b, b), a) among others. For a
context c, and a set of trees S, we shall write c[S] for the set of trees obtained from c by
replacing each occurrence of � by a (possibly different) tree in S.

2. The second catch has to do with downward-closure. It is tempting to define the trees
of C∗.S as those in c1[· · · [ck[S]] · · · ], for some k ∈ N and some c1, · · · , ck ∈ C. However,
there are cases where that language would fail to be downwards-closed, e.g., (f(a?,�))∗.b?
would contain f(a, b) but not a, according to that semantics.
We repair that as follows. For A = f(S�1, · · · , S�n), define suppA as follows: if those S�i,
1 ≤ i ≤ n, that are different from � define non-empty languages, then suppA is the union
of those languages; if some S�i 6= � has an empty language, then suppA = ∅. Hence,
for example, supp f(�,�) = ∅, supp f(a?,�) = a? = {a}, and supp f ′(a?,�, 0) = ∅. For
C = A1 + · · ·+Am, let suppC =

⋃m
j=1 suppAj .

We are now ready to define the language of C∗.S, as the language of trees in c1[· · · [ck[S ∪
suppC]] · · · ], for some k ∈ N and some c1, · · · , ck ∈ C.

Finally, ↓L(A) is the union of the languages of the strongly connected components
containing a final state of A; in our example the strongly connected component in the middle
yields the final expression (d+ f(S1,�) + h(�, S4))∗.0.

General Syntax. Summing up, we define simple tree regular expressions (STREs) by the
following abstract syntax:

S ::= P1 + · · ·+ Pm P ::= f?(S, · · · , S) | C∗.S
C ::= A+ · · ·+A A ::= f(S�, · · · , S�) S� ::= S | �

where f ∈ Fr in f?(S1, · · · , Sr) and in f(S�1, · · · , S�r), the sum operation + is associative
and commutative (we shall sometimes write

∑m
i=1 Pi for P1 + · · ·+ Pm) with 0 denoting the

empty sum, and � 6∈ F is a placeholder. Note that � is not meant to denote a family of
placeholders, rather a single one. The STREs of the form P are called tree pre-products.
Among them, the tree products will be our notations for ideals, see Section 5.2.

I Proposition 18. Every STRE defines a downwards-closed language of (T (F),vT ). Every
downwards-closed language of (T (F),vT ) is the language of some STRE.

Proof. The first part can be shown by structural induction on STREs; see the full paper for
details. The second part was sketched above. J

ICALP 2016
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P + P ′ →1 P ′ if P ⊆ P ′ A+A′ →1 A′ if A ⊆ A′
0 + P →1 P 0 +A →1 A

0∗.S →1 S (C + f(S1, · · · , Sn))∗.S →1 C∗.(S + f?(S1, · · · , Sn))
f?(~S1, 0, ~S2) →1 0 f?(~S1, S + S′, ~S2) →1 f?(~S1, S, ~S2) + f?(~S1, S

′, ~S2)
f(~S�1, 0, ~S2) →1 0 f(~S�1, S� + S′�,

~S�2) →1 f(~S�1, S�, ~S�2) + f(~S�1, S
′
�,
~S�2)

C∗.0 →1 0 if C =
∑m

i=1 fi(�, · · · ,�) and no fi is 0-ary
C∗.(S + S′) →1 C∗.S + C∗.S′ if C is �-linear

Figure 2 The rewrite relation →1.

5.2 Tree Products
We now characterise the STREs that define ideals of (T (F),vT ). We define a rewrite relation
→1 on STREs that moves all + signs to the outside: for a→1-normal STRE S = P1+· · ·+Pm,
each Pi will be irreducible, hence S will be an ideal if and only if m = 1 by Fact 9.

The rewrite relation →1 is defined in Figure 2. Recall that + is understood modulo
associativity and commutativity. Letters matter, too: S, S′, S1, . . . , Sn are STREs, while P ,
P ′ are those special STREs of the form f?(S1, · · · , Sn) or C∗.S, etc. In particular, the third
rule of the second column applies provided the pattern f(S1, · · · , Sn) does not contain � at
all. In the first rules, note that inclusion of STREs is decidable. For the two bottom rules,
we need some auxiliary definitions. Say that a pattern A = f(S�1, · · · , S�n) is �-linear if
and only if at most one S�i is the placeholder �. Writing C as A1 + · · ·+Am, we say that C
is �-linear if and only if every non-empty Ai is �-linear. The �-linearity restriction imposed
on the last two rules is needed for the following to hold.

I Fact 19. If S →∗1 S′ then S and S′ define the same language.

I Lemma 20. Every STRE S has a normal form with respect to →1.

Proof. Using Bachmair and Plaisted’s associative path ordering >apo [5] on a precedence
where + is minimal, f > f? for each symbol f , and the (_)∗._ operator has lexicographic
status, we see that →1 is even a terminating relation. J

I Definition 21. A tree product is any →1-normal tree pre-product P .

I Lemma 22. Every ideal of T (F) is the language of some tree product.

Proof. By Proposition 18, an ideal I is the language of some STRE S, which has a→1-normal
form by Lemma 20; write it P1 + · · · + Pm. Since I is non-empty, m ≥ 1, and since I is
irreducible (Fact 9), it is included in, hence equal to, the language of some Pi. J

Conversely, the language of any tree product is directed (see the full paper for a proof), thus:

I Theorem 23. The ideals of T (F) are exactly the languages of tree products.

6 Concluding Remarks

We have presented a general order-theoretic characterisation of PTL separability, and shown
that it could be applied to decide PTL separability of languages beyond finite words, namely
of ranked regular tree languages ordered by homeomorphic embedding. Our work further adds
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to the growing body of algorithmic applications of downwards-closed sets and ideals of well-
quasi-orders in logic and verification, e.g. in forward analysis [13, 14], backward analysis [21],
inference of inductive invariants [23], and reachability in vector addition systems [22].

We are confident our techniques apply to unranked trees, by defining suitable ideal
representations. In the same vein, it would be interesting to develop ideal representations for
the tree minor ordering, and to try to decide PTL separability for context-free tree languages.

An open-ended question is how to finely relate our order-theoretic characterisation with
the algebraic and topological characterisations typically employed for the definability and
separability problems. For instance, can one derive the characteristic equations of Bojańczyk
et al. [6] for piecewise-testable tree languages from Lemma 12?

Acknowledgements. The authors thank Wojciech Czerwiński, Luc Segoufin, and Georg
Zetzsche for their insightful comments, and an anonymous reviewer for correcting Fact 8.
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Computation Tree Logic for Synchronization
Properties∗†

Krishnendu Chatterjee1 and Laurent Doyen2

1 IST Austria, Wien, Austria
2 LSV, ENS Cachan & CNRS, Paris, France

Abstract
We present a logic that extends CTL (Computation Tree Logic) with operators that express
synchronization properties. A property is synchronized in a system if it holds in all paths of
a certain length. The new logic is obtained by using the same path quantifiers and temporal
operators as in CTL, but allowing a different order of the quantifiers. This small syntactic
variation induces a logic that can express non-regular properties for which known extensions of
MSO with equality of path length are undecidable. We show that our variant of CTL is decidable
and that the model-checking problem is in ∆P

3 = PNPNP
, and is hard for the class of problems

solvable in polynomial time using a parallel access to an NP oracle. We analogously consider
quantifier exchange in extensions of CTL, and we present operators defined using basic operators
of CTL* that express the occurrence of infinitely many synchronization points. We show that
the model-checking problem remains in ∆P

3 . The distinguishing power of CTL and of our new
logic coincide if the Next operator is allowed in the logics, thus the classical bisimulation quotient
can be used for state-space reduction before model checking.
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1 Introduction

In computer science, it is natural to view computations as a tree, where each branch represents
an execution trace, and all possible execution traces are arranged in a tree. To reason about
computations, the logical frameworks that express properties of trees have been widely
studied [10, 20, 24], such as CTL, CTL*, µ-calculus, MSO, etc. These logics can express
ω-regular properties about trees.

A key advantage of logics is to provide concise and formal semantics, and a rigorous
language to express properties of a system. For example, the logic CTL is widely used in
verification tools such as NuSMV [9], and hyperproperties, i.e. tree-based properties that
cannot be defined over individual traces, are relevant in security [11, 12].

One key property that has been studied in different contexts is the property of synchron-
ization, which intuitively requires that no matter how the system behaves it synchronizes to
a common good point. Note that the synchronization property is inherently a tree-based
property, and is not relevant for traces. Synchronization has been studied for automata [25, 8],
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probabilistic models such as Markov decision processes [15, 16], as well as partial-information,
weighted, and timed models [19, 17, 14], and has a rich collection of results as well as open
problems, e.g., Černý’s conjecture about the length of synchronizing words in automata is
one of the long-standing and well-studied problems in automata theory [5, 25]. A natural
question is how can synchronization be expressed in a logical framework.

First, we show that synchronization is a property that is not ω-regular. Hence it cannot
be expressed in existing tree-based logics, such as MSO, CTL*, etc. A natural candidate to
express synchronization in a logical framework is to consider MSO with quantification over
path length. Unfortunately the quantification over path length in MSO leads to a logic for
which the model-checking problem is undecidable [23, Theorem 11.6]. Thus an interesting
question is how to express synchronization in a logical framework where the model-checking
problem is decidable.

Contributions. In this work we introduce an elegant logic, obtained by a natural variation
of CTL. The logic allows to exchange the temporal and path quantifiers in classical CTL
formulas. For example, consider the CTL formula ∀Fq expressing the property that in all
paths there exists a position where q holds (quantification pattern ∀paths · ∃position). In
our logic, the formula F∀q with quantifiers exchanged expresses that there exists a position
k such that for all paths, q holds at position k (quantification pattern ∃position · ∀paths),
see Figure 1a. Thus q eventually holds in all paths at the same position, expressing that the
paths are eventually synchronized.

We show that the model-checking problem is decidable for our logic, which we show is in
∆P

3 = PNPNP
(in the third level of the polynomial hierarchy) and is hard for the class PNP

‖ of
problems solvable in polynomial time using a parallel access to an NP oracle (Theorem 1).
The problems in PNPNP

can be solved by a polynomial-time algorithm that uses an oracle
for a problem in NPNP, and the problems in NPNP can be solved by a non-deterministic
polynomial-time algorithm that uses an oracle for an NP-complete problem; the problems in
PNP
‖ can be solved by a polynomial-time algorithm that works in two phases, where in the

first phase a list of queries is constructed, and in the second phase the queries are answered
by an NP oracle (giving a list of yes/no answers) and the algorithm proceeds without further
calling the oracle [26, 21].

We present an extension of our logic that can express the occurrence of infinitely many
synchronization points (instead of one as in eventually sychronizing), and the absence of
synchronization from some point on, with the same complexity status (Section 3). These
properties are the analogue of the classical liveness and co-liveness properties in the setting
of synchronization. We show that such properties cannot be expressed in the basic logic
(Section 4). In Section 6, we consider the possibility to further extend our logic with
synchronization to CTL*, and show that the exchange of quantifiers in CTL* formulas would
lead to either a counter-intuitive semantics, or an artificial logic that would be inelegant.

We study the distinguishing power of the logics in Section 5, that is the ability of the
logics, given two models, to provide a formula that holds in one model, and not in the other.
The distinguishing power is different from the expressive power of a logic, as two logics with
the same expressive power have the same distinguishing power but not vice versa. The
distinguishing power can be used for state-space reduction before running a model-checking
algorithm, in order to obtain a smaller equivalent model, that the logic cannot distinguish
from the original model, and thus for which the answer of the model-checking algorithm is
the same. We show that if the Next operator is allowed in the logic, then the distinguishing
power coincides with that of CTL (two models are indistinguishable if and only if they
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are bisimilar), and if the Next operator is not allowed, then the distinguishing power lies
between bisimulation and stuttering bisimulation, and is NP-hard to decide. In particular,
it follows that with or without the Next operator the state-space reduction with respect to
bisimulation, which is computable in polynomial time, is sound for model-checking. Detailed
proofs are available in [6].

2 CTL + Synchronization

We introduce the logic CTL+Sync after presenting basic definitions related to Kripke
structures. A Kripke structure is a tuple K = 〈T,Π, π,R〉 where T is a finite set of states, Π
is a finite set of atomic propositions, π : T → 2Π is a labeling function that maps each state t
to the set π(t) of propositions that are true at t, and R ⊆ T × T is a transition relation. We
denote by R(t) = {t′ | (t, t′) ∈ R} the set of successors of a state t according to R, and given
a set s ⊆ T of states, let R(s) =

⋃
t∈sR(t). A Kripke structure is deterministic if R(t) is

a singleton for all states t ∈ T . A path in K is an infinite sequence ρ = t0t1 . . . such that
(ti, ti+1) ∈ R for all i ≥ 0. For n ∈ N, we denote by ρ+ n the suffix tntn+1 . . . .

2.1 Syntax and semantics
In the CTL operators, a path quantifier always precedes the temporal quantifiers (e.g., ∃U
or ∀U). We obtain the logic CTL+Sync from traditional CTL by allowing to switch the
order of the temporal and path quantifiers. For example, the CTL formula p ∀U q holds in a
state t if for all paths (∀) from t, there is a position where q holds, and such that p holds in
all positions before (U). In the CTL+Sync formula pU∀ q, the quantifiers are exchanged,
and the formula holds in t if there exists a position k, such that for all positions j < k before
(U), in all paths (∀) from t, we have that q holds at position k and p holds at position j
(see Figure 1d). Thus the formula pU∀ q requires that q holds synchronously after the same
number of steps in all paths, while the formula p ∀U q does not require such synchronicity
across several paths.

The syntax of the formulas in CTL+Sync is as follows:

ϕ ::= p | ¬ϕ1 | ϕ1 ∨ ϕ2 | QX ϕ1 | ϕ1QU ϕ2 | ϕ1 UQϕ2

where p ∈ Π and Q ∈ {∃,∀}. We define true and additional Boolean connectives as usual,
and let
∃Fϕ ≡ true∃U ϕ, and F∃ϕ ≡ trueU∃ϕ, etc.
∃Gϕ ≡ ¬∀F¬ϕ, etc.

Note that the Next operators QX has only one quantifier, and thus there is no point in
switching quantifiers or defining an operator XQ.

Given a Kripke structure K = 〈T,Π, π,R〉, and a state t ∈ T , we define the satisfaction
relation |= as follows. The first cases are standard and exist already in CTL:

K, t |= p if p ∈ π(t).
K, t |= ¬ϕ1 if K, t 6|= ϕ1.
K, t |= ϕ1 ∨ ϕ2 if K, t |= ϕ1 or K, t |= ϕ2.
K, t |= ∃X ϕ1 if K, t′ |= ϕ1 for some t′ ∈ R(t).
K, t |= ∀X ϕ1 if K, t′ |= ϕ1 for all t′ ∈ R(t).

The interesting new cases are built using the until operator of CTL:
K, t |= ϕ1 ∃U ϕ2 if there exists a path t0t1 . . . in K with t0 = t and there exists k ≥ 0
such that: K, tk |= ϕ2, and K, tj |= ϕ1 for all 0 ≤ j < k.
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F∀q

(a) Eventually synchronizing.

G∃p

(b) Not eventually synchroniz-
ing.

∀G(F∀q)

(c) Every subtree is eventually
synchronizing.

pU∀ q

(d) Until universal.

pU∃ q

(e) Until existential.

p holds

q holds

neither p nor q holds

Figure 1 Formulas of CTL+Sync.

K, t |= ϕ1 U∃ϕ2 if there exists k ≥ 0 such that for all 0 ≤ j < k, there exists a path
t0t1 . . . in K with t0 = t such that K, tj |= ϕ1 and K, tk |= ϕ2.
K, t |= ϕ1 ∀U ϕ2 if for all paths t0t1 . . . in K with t0 = t, there exists k ≥ 0 such that:
K, tk |= ϕ2, and K, tj |= ϕ1 for all 0 ≤ j < k.
K, t |= ϕ1 U∀ϕ2 if there exists k ≥ 0 such that for all 0 ≤ j < k and for all paths t0t1 . . .
in K with t0 = t, we have K, tj |= ϕ1 and K, tk |= ϕ2.

We often write t |= ϕ when the Kripke structure K is clear from the context.
Examples of formulas are given in Figure 1. The examples show the first steps of the

unravelling of Kripke structures defined over atomic propositions {p, q}. The formula F∀q
expresses that q eventually holds synchronously on all paths, after the same number of steps
(Figure 1a). This is different from the CTL formula ∀Fq, which expresses that all paths
eventually visit a state where q holds, but not necessarily after the same number of steps in
all paths. The dual formula G∃p requires that at every depth (i.e., for all positions k), there
exists a path where p holds at depth k (Figure 1b). On the other hand note that F∃q ≡ ∃Fq
and dually G∀p ≡ ∀Gp. Another example is the formula ∀G(F∀q) expressing that every
subtree is eventually synchronizing (Figure 1c). The until universal formula pU∀ q holds
if q holds at a certain position in every path (like for the formula F∀q), and p holds in all
positions before (Figure 1d). The until existential formula pU∃ q says that it is possible to
find path(s) where q holds at the same position, and such that for all smaller positions there
is one of those paths where p holds at that position (Figure 1e).
I Remark. The definition of CTL+Sync, although very similar to the definition of CTL,
interestingly allows to define non-regular properties, thus not expressible in CTL (or even
in MSO over trees). It is easy to show using a pumping argument that the property
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F∀q of eventually sychronizing is not regular (Figure 1a). This property of eventually
sychronizing can be expressed in MSO extended with a length predicate, by a formula such
as ∃ρ ∈ T ∗ · ∀ρ′ ∈ T ∗ : |ρ| = |ρ′| =⇒ q(ρ′) where T = {0, 1} and q(·) is a monadic predicate
for the proposition q over the binary tree T ∗, where q(ρ) means that q holds in the last state
of ρ. However, model-checking for the logic MSO extended with the “equal-length” predicate
p defined by p(ρ, ρ′) ≡ |ρ| = |ρ′| is undecidable [23, Theorem 11.6]. In contrast, we show in
Theorem 1 that the logic CTL+Sync is decidable.

2.2 Model-checking
Given a CTL+Sync formula ϕ, a Kripke structure K, and a state t, the model-checking
problem for CTL+Sync is to decide whether K, t |= ϕ holds.

Model-checking of CTL+Sync can be decided by considering a powerset construction
for the Kripke structure, and evaluating a CTL formula on it. For example, to evaluate a
formula ϕ1 U∀ϕ2 from state tI in a Kripke structure K, it suffices to consider the sequence
s1s2 . . . defined by s1 = {tI} and si+1 = R(si) for all i ≥ 1, where a set s is labeled by ϕ1
if K, t |= ϕ1 for all t ∈ s (and analogously for ϕ2). The formula ϕ1 U∀ϕ2 holds in tI if and
only if the formula ϕ1 U ϕ2 holds in the sequence s1s2 . . . (note that on a single sequence
the operators ∀U and ∃U are equivalent, thus we simply write U).

For the formula ϕ1 U∃ϕ2, intuitively it holds in tI if there exists a set P of finite paths
ρ1, ρ2, . . . , ρn from tI in K, all of the same length k, such that ϕ2 holds in the last state
of ρi for all 1 ≤ i ≤ n, and for every 1 ≤ j < k there is a path ρij such that ϕ1 holds
in the jth state of ρij . To evaluate ϕ1 U∃ϕ2 from tI , we construct the Kripke structure
2K = 〈2T , {ϕ1, ϕ2}, π, R̂〉 where (s, s′) ∈ R̂ if for all t ∈ s there exists t′ ∈ s′ such that
(t, t′) ∈ R, thus we have to choose (nondeterministically) at least one successor from each
state in s, that is for every set P of paths ρ1, ρ2, . . . , ρn as above, there is a path s1, s2, . . . , sk
(with s1 = {tI}) in 2K where the sets si are obtained by following simultaneously the finite
paths ρ1, . . . , ρn, thus such that si is the set of states at position i of the paths in P . The
path s1, s2, . . . , sk in 2K corresponds to a set P of finite paths in K that show that ϕ1 U∃ϕ2
holds if (1) ϕ2 holds in all states of sk, and (2) ϕ1 holds in some state of si (i = 1, . . . , k− 1).
Hence we define the labeling function π in 2K as follows: for all s ∈ 2T let ϕ2 ∈ π(s) if
K, t |= ϕ2 for all t ∈ s, and let ϕ1 ∈ π(s) if K, t |= ϕ1 for some t ∈ s. Finally it suffices to
check whether the CTL formula ϕ1 ∃U ϕ2 holds in 2K from {tI}.

This approach gives an exponential algorithm, and even a PSPACE algorithm by exploring
the powerset construction on the fly. However, we show that the complexity of the model-
checking problem is much below PSPACE. For example our model-checking algorithm for the
formula F∀q relies on guessing a position k ∈ N (in binary) and checking that q holds on all
paths at position k. To compute the states reachable after exactly k steps, we compute the
kth power of the transition matrix M ∈ {0, 1}T×T where M(t, t′) = 1 if there is a transition
from state t to state t′. The power Mk can be computed in polynomial time by successive
squaring of M . For this formula, we obtain an NP algorithm. For the whole logic, combining
the guessing and squaring technique with a dynamic programming algorithm that evaluates
all subformlas, we obtain an algorithm in PNPNP

for the model-checking problem [6]. We
present a hardness result for the class PNP

‖ of problems solvable in polynomial time using a
parallel access to an NP oracle [26, 21].

I Theorem 1. The model-checking problem for CTL+Sync lies in PNPNP
and is PNP

‖ -hard.

The complexity lower bounds for the model-checking problem in Theorem 1 are based on
Lemma 2 where we establish complexity bounds for fixed formulas.
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I Lemma 2. Let p, q ∈ Π be two atomic propositions. The model-checking problem is:
NP-complete for the formulas pU∀ q and F∀q,
DP-hard for the formula pU∃ q, and
coNP-complete for the formula G∃q.

Proof. We prove the hardness results (complexity lower bounds), since the complexity upper
bounds follow from the proof of Theorem 1.

The proof technique is analogous to the NP-hardness proof of [22, Theorem 6.1], and
based on the following. Given a Boolean propositional formula ψ over variables x1, . . . , xn,
consider the first n prime numbers p1, . . . , pn. For a number z ∈ N, if z mod pi ∈ {0, 1} for
all 1 ≤ i ≤ n, then the binary vector (z mod p1, . . . , z mod pn) defines an assignment to the
variables of the formula. Note that conversely, every such binary vector can be defined by
some number z ∈ N (by the Chinese remainder theorem).

NP-hardness of F ∀q (and thus of p U∀ q). The proof is by a reduction from the Boolean
satisfiability problem 3SAT which is NP-complete [13]. Given a Boolean propositional formula
ψ in CNF, with set C of (disjunctive) clauses over variables x1, . . . , xn (where each clause
contains three variables), we construct a Kripke structure Kψ as follows: for each clause
c ∈ C, we construct a cycle t0, t1, . . . , tr−1 of length r = pu · pv · pw where the three variables
in the clause are xu, xv, and xw. We call t0 the origin of the cycle, and we assign to every
state ti the label q if the number i defines an assignment that satisfies the clause c. The
Kripke structure Kψ is the disjoint union of the cycles corresponding to each clause, and
an initial state tI with transitions from tI to the origin of each cycle. Note that the Kripke
structure Kψ can be constructed in polynomial time, as the sum of the first n prime numbers
is bounded by a polynomial in n:

∑n
i=1 pi ∈ O(n2 logn) [2].

It follows that a number z defines an assignment that satisfies the formula ψ (i.e., satisfies
all clauses of ψ) if and only if every path of length z+ 1 from tI reaches a state labelled by q.
Therefore the formula ψ is satisfiable if and only if Kψ, tI |= F∀q, and it follows that the
model-checking problem is NP-hard for the formulas F∀q and for pU∀ q (let p hold in every
state of Kψ).

NP-hardness of p U∃ q. The proof is by a reduction from 3SAT [13]. The reduction is
illustrated in Figure 2. Given a Boolean propositional formula ψ in CNF, with set C of
(disjunctive) clauses over variables x1, . . . , xn (where each clause contains three variables),
we construct a Kripke structure K as follows: let m = |C| be the number of clauses in ψ,
and construct m disjoint simple paths πi from tI of length m+ 1 (of the form tI , t1, . . . , tm),
where the last state of each path πi has a transition to the origin of a cycle corresponding to
the ith clause (the cycles and their labeling are as defined in the NP-hardness proof of F∀q).
The state tI and all states of the cycles are also labelled by p, and in the ith path from tI ,
the ith state after tI is labelled by p. The construction can be obtained in polynomial time.

We show that ψ is satisfiable if and only if the formula pU∃ q holds from tI in K. Recall
that pU∃ q holds if there exists k ≥ 0 such that for all 0 ≤ j < k, there exists a path t0t1 . . .
in K with t0 = tI and K, tj |= p and K, tk |= q.

For the first direction of the proof, if ψ is satisfiable, then let z ∈ N define a satisfying
assignment, and let k = m + 2 + z. Then all paths of length k from tI in K end up in a
state labelled by q. Now we consider an arbitrary j < k and show that there exists a path of
length k from tI that ends up in a state labelled by q, and with the jth state labelled by
p. For j = 0 and for j > m, the conditions are satisfied by all paths, and for j ≤ m, the
conditions are satisfied by the jth path from tI .
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. . .c1 c2 c3 cm

p holds
at ith state
of ith path.

p holds
everywhere
in the cycles.

p tI
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p
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q q qq

q

q
q

q

ψ = c1 ∧ c2 ∧ · · · ∧ cm

c1 = x1 ∨ x2 ∨ ¬x3 : cycle of length r = p1 · p2 · p3 = 2 · 3 · 5 = 30
satisfying assignments for c1 : 0 (000), 1 (111), 10 (010), . . . , 25 (110).

Figure 2 Reduction to show NP-hardness of pU∃ q in Lemma 2.

For the second direction of the proof, let k be a position such that for all 0 ≤ j < k,
there exists a path t0t1 . . . in K with t0 = tI and K, tj |= p and K, tk |= q. Then k ≥ m+ 2
since only the states in the cycles are labelled by q. Consider the set P containing, for each
j = 1, 2, . . . ,m, a path tIt1 . . . in K with K, tj |= p and K, tk |= q. It is easy to see by the
construction of K that P contains all the paths of length k in K. Therefore, all paths of
length z = k− (m+ 2) from the origin of each cycle end up in a state labelled by q. It follows
that z defines an assignment that satisfies all clauses in ψ, thus ψ is satisfiable.

DP-hardness of p U∃ q. The DP-hardness proof of pU∃ q uses a reduction of the same
flavor as in the NP-hardness of F∀q [6].

coNP-hardness of G∃q. The result follows from the NP-hardness of F∀q since G∃q is
equivalent to ¬F∀¬q. J

The complexity result of Theorem 1 is not tight, with a PNPNP
upper bound and hardness

for PNP
‖ . Even for the fixed formula pU∃ q, the gap between the NPNP upper bound and the

DP-hardness result provides an interesting open question for future work.

3 Extension of CTL+Sync with Always and Eventually

We consider an extension of CTL+Sync with formulas of the form T Qϕ where T ∈ {F,G}+
is a sequence of unary temporal operators Eventually (F) and Always (G). For example,
the formula FG∀p expresses strong synchronization, namely that from some point on, all
positions on every path satisfy p; the formula GF∀p expresses weak synchronization, namely
that there are infinitely many positions such that, on every path at those positions p holds.
In fact only the combination of operators FG and GF need to be considered, as the other
combinations of operators reduce to either FG or GF using the LTL identities FGFϕ ≡ GFϕ
and GFGϕ ≡ FGϕ. Formally, define:
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K, t |= GF∀ϕ1 if for all k ≥ 0, there exists j ≥ k such that for all paths t0t1 . . . in K
with t0 = t, we have K, tj |= ϕ1.
K, t |= GF∃ϕ1 if for all k ≥ 0, there exists j ≥ k and there exists a path t0t1 . . . in K
with t0 = t such that K, tj |= ϕ1.
K, t |= FG∀ϕ1 if K, t 6|= GF∃¬ϕ1.
K, t |= FG∃ϕ1 if K, t 6|= GF∀¬ϕ1.

The model-checking problem for the formula GF∀ϕ1 is NP-complete: guess positions
n, k ≤ 2|T | (represented in binary) and check in polynomial time that the states reachable by
all paths of length n satisfy ϕ1, and that set of the states reachable after n+ k steps is the
same as the set of states reachable after n steps, where k > 0. This corresponds to finding a
lasso in the subset construction for the Kripke structure K. A matching NP lower bound
follows from the reduction in the NP-hardness proof of F∀q (Lemma 2).

The model-checking problem for the formula GF∃ϕ1 can be solved in polynomial time, as
this formula is equivalent to saying that there exists a state labeled by ϕ1 that is reachable
from a reachable non-trivial strongly connected component (SCC) — an SCC is trivial if it
consists of a single state without self-loop. To prove this, note that if a state t∗ labeled by
ϕ1 is reachable from a reachable non-trivial SCC, then t∗ can be reached by an arbitrarily
long path, thus the formula GF∃ϕ1 holds. For the other direction, if no state labeled by ϕ1
is reachable from a reachable non-trivial SCC, then every path to a state labeled by ϕ1 is
acyclic (otherwise, the path would contain a cycle, belonging to an SCC). Since acyclic paths
have length at most |T |, it follows that the formula GF∃ϕ1 does not hold, which concludes
the proof.

From the above arguments, it follows that the complexity status of the model-checking
problem for this extension of CTL+Sync is the same as the complexity of CTL+Sync
model-checking in Theorem 1.

I Theorem 3. The model-checking problem for CTL+Sync extended with sequences of unary
temporal operators lies in PNPNP

and is PNP
‖ -hard.

4 Expressive Power

The expressive power of CTL+Sync (even extended with Always and Eventually) is in-
comparable with the expressive power of MSO. By the remark at the end of Section 2.1,
CTL+Sync can express non-regular properties, and thus is not subsumed by MSO, and
standard argument based on counting properties [27] showing that CTL is less expressive
than MSO apply straightforwardly to show that formulas of MSO are not expressible in
CTL+Sync [10].

We show that the formulas GF∀p and FG∀p for weak and strong synchronization cannot
be expressed in the logic CTL+Sync, thus CTL+Sync extended with sequences of unary
temporal operators is strictly more expressive than CTL+Sync. The result holds if the Next
operator is not allowed, and also if the Next operator is allowed.

I Theorem 4. The logic CTL+Sync (even without the Next operator) extended with sequences
of unary temporal operators is strictly more expressive than CTL+Sync (even using the Next
operator).

Proof. We show that the formula GF∀p cannot be expressed in CTL+Sync, even using the
Next operator. To prove this, given an arbitrary CTL+Sync formula ϕ, we construct two
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t1 t2 t3
. . .

u1
u2

u3

u4

u5

. . .

. . . p

¬p

Figure 3 States t1 and u1 are indistinguishable by formulas of CTL+Sync.

Kripke structures such that ϕ holds in both Kripke structures, but the formula GF∀p holds
in one and not in the other. It follows that ϕ is not equivalent to GF∀p.

Given the formula ϕ, we construct the two Kripke structures as follows. Consider two
Kripke structures whose unravelling is shown in Figure 3 where the states reachable from t1
are satisfying alternately p and ¬p, and the states reachable from u2 and u5 are satisfying
alternately ¬p and p. Call black states the states where p holds, and white states the states
where ¬p holds. If n is the maximum number of nested Next operators in ϕ, then we
construct the n-stuttering of the two Kripke structures in Figure 3, where the n-stuttering of
a Kripke structure K = 〈T,Π, π,R〉 is the Kripke structure Kn = 〈T ×{1, . . . , n},Π, πn, Rn〉
where πn(t, i) = πn(t) for all 1 ≤ i ≤ n, and the transition relation Rn contains all pairs
((t, i), (t, i+ 1)) for all t ∈ T and 1 ≤ i < n, and all pairs ((t, n), (t′, 1)) for all (t, t′) ∈ R.

We claim that the formula ϕ holds either in both (t1, 1) and (u1, 1), or in none of (t1, 1)
and (u1, 1), while the formula GF∀p holds in (t1, 1) and not in (u1, 1). We show by induction
on the nesting depth of CTL+Sync formulas ϕ (that have at most n nested Next operators)
that (t1, i) and (u1, i) are equivalent for ϕ (for all 1 ≤ i ≤ n), and that for all black states
t, u, the copies (t, 1) and (u, 1) are equivalent for ϕ, and analogously for all pairs of white
states.

The result holds trivially for formulas of nesting depth 0, that is atomic propositions. For
the induction step, assume the claim holds for formulas of nesting depth k, and consider a
formula ϕ of nesting depth k + 1. If the outermost operator of ϕ is a Boolean operator, or a
CTL operator (QX or QU), then the result follows from the induction hypothesis and the
result of [18, Theorem 2] showing two paths that differ only in the number of consecutive
repetitions of a state, as long as the number of repetitions is at least n, are equivalent for
the formulas with at most n nested Next operators. If the outermost operator of ϕ is either
U∃ or U∀, that is ϕ ≡ ϕ1 U∃ϕ2 or ϕ ≡ ϕ1 U∀ϕ2, then consider a state where ϕ holds: either
ϕ2 holds in that state, and by the induction hypothesis, ϕ2 also holds in the corresponding
state (that we claimed to be equivalent), or ϕ2 holds in the states of the other color than
the current state, and ϕ1 holds on the path(s) at all positions before. By the induction
hypothesis, at the same distance from the claimed equivalent states, we can find a state
where ϕ2 holds in all paths, and ϕ1 holds on all positions before, which concludes the proof
for the induction step. J

5 Distinguishing Power

Two states of a Kripke structure can be distinguished by a logic if there exists a formula in the
logic that holds in one state but not in the other. Each logic induces an indistinguishability
relation (which is an equivalence) on Kripke structures that characterizes the distinguishing
power of the logic. Two states t and t′ of a Kripke structure K are indistinguishable by a logic
L if they satisfy the same formulas of L, that is {ϕ ∈ L | K, t |= ϕ} = {ϕ ∈ L | K, t′ |= ϕ}.
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u1

t1

(a) The states t1 and u1 are stuttering
bisimilar (they satisfy the same CTL
formulas without the Next operator),
but they can be distinguished by the
CTL+Sync formula pU∀ ¬p which holds
in t1 but not in u1.

u1

t1

(b) The states t1 and u1 are indistin-
guishable by CTL+Sync formulas, but
they are not bisimilar, i.e. they can
be distinguished by CTL formulas with
the Next operator, for example ∀X ∀X p

which holds in t1 but not in u1.

p

¬p

Figure 4 The distinguishing power of CTL+Sync lies strictly between bisimulation and stuttering
bisimulation.

For CTL (with the Next operator), the distinguishing power is standard bisimulation, and
for CTL without the Next operator, the distinguishing power is stuttering bisimulation [4].
Stuttering bisimulation is a variant of bisimulation where intuitively several transitions can be
used to simulate a single transition, as long as the intermediate states of the transitions are all
equivalent (for stuttering bisimulation). We omit the definition of bisimulation and stuttering
bisimulation [4], and in this paper we consider that they are defined as the distinguishing
power of respectively CTL and CTL without the Next operator.

It is easy to show by induction on the nesting depth of formulas that the distinguishing
power of CTL+Sync is the same as for CTL, since (i) CTL+Sync contains CTL, and (ii) if
two states t and t′ are bisimilar, there is a correspondence between the paths starting from
t and the paths starting from t′ (for every path from t, there is a path from t′ such that
their states at position i are bisimilar, for all i ∈ N, and analogously for every path of t′ [4,
Lemma 3.1]), which implies the satisfaction of the same formulas in CTL+Sync. The same
argument holds for CTL+Sync extended with unary temporal operators (Section 3).

I Theorem 5. Two states t and t′ of a Kripke structure K are indistinguishable by CTL+Sync
formulas (even extended with unary temporal operators) if and only if t and t′ are bisimilar.

Without the Next operator, the logic CTL+Sync has a distinguishing power that lies
strictly between bisimulation and stuttering bisimulation, as shown by the examples in
Figure 4a and Figure 4b. Indistinguishability by CTL+Sync formulas without the Next
operator implies indistinguishability by standard CTL without the Next operator, and thus
stuttering bisimilarity. We obtain the following result.

I Theorem 6. The following implications hold for all states t, t′ of a Kripke structure K:
if t and t′ are bisimilar, then t and t′ are indistinguishable by CTL+Sync formulas without
the Next operator (even extended with unary temporal operators);
if t and t′ are indistinguishable by CTL+Sync formulas without the Next operator (even
extended with unary temporal operators), then t and t′ are stuttering bisimilar.

It follows from the first part of Theorem 6 that the state-space reduction techniques
based on computing a bisimulation quotient before evaluating a CTL formula will work for
CTL+Sync. Although the exact indistinguishability relation for CTL+Sync is coarser than
bisimulation, we show that deciding this relation is NP-hard, and thus it may not be relevant
to compute it for quotienting before model-checking, but rather use the polynomial-time
computable bisimulation.



K. Chatterjee and L. Doyen 98:11

¬q
uI

¬q
u1

q
u2

q

v1

q

v2

¬q
v3

Figure 5 The Kripke structure K in the proof of Theorem 7.

I Theorem 7. Deciding whether two states of a Kripke structure are indistinguishable by
CTL+Sync formulas without the Next operator is NP-hard.

Proof. The proof is by a reduction from the Boolean satisfiability problem 3SAT which
is NP-complete [13]. Given a Boolean propositional formula ψ in CNF, we construct two
Kripke structures K and Kψ that are indistinguishable (from their initial state) if and only
if ψ is satisfiable, where:

K is the Kripke structure shown in Figure 5, and
Kψ is the Kripke structure constructed in the NP-hardness proof of F∀q (Lemma 2).

We know from the proof of Lemma 2 that Kψ, tI |= F∀q if and only if ψ is satisfiable.
Hence, it suffices to show that K and Kψ are indistinguishable if and only if the formula
F∀q holds in tI . Since the formula F∀q holds in uI , we only need to show that if F∀q holds
in tI , then K and Kψ are indistinguishable. To do this, we assume that F∀q holds in tI , and
we show that for all CTL+Sync formulas ϕ without the Next operator, tI |= ϕ if and only if
uI |= ϕ. The proof proceeds by induction on the nesting depth of ϕ and simple combinatorial
arguments [6]. J

6 CTL* + Synchronization

CTL* is a branching-time extension of LTL (and of CTL) where several nested temporal
operators and Boolean connectives can be used under the scope of a single path quantifier.
For example the CTL* formula ∃(Gϕ→ Gψ) says that there exists a path in which either ϕ
does not hold in every position, or ψ holds at every position. Note that ϕ and ψ may also
contain path quantifiers.

Extending CTL+Sync with formula quantification analogous to CTL* presents some
difficulties. Even considering only Boolean connectives and {F,G} operators leads to a logic
that is hard to define. For example, one may consider a formula like (Fp∨Fq)∀ which could
be naturally interpreted as there exist two positions m,n ≥ 0 such that on all paths ρ, either
p holds at position m in ρ, or q holds at position n in ρ. In this definition the ∨ operator
would not be idempotent, that is ψ1 = (Fp ∨ Fp)∀ is not equivalent to ψ2 = (Fp)∀, where
ψ1 means that the set of all paths can be partitioned into two sets of paths where p holds
synchronously at some position, but not necessarily the same position in both sets, while ψ2
expresses the property that p holds synchronously at some position in all paths.

Another difficulty with binary operators is the semantics induced by the order of the
operands. For instance, the formula (Fp ∨ Gq)∀ can be interpreted as (i) there exists a
position m ≥ 0 such that for all positions n ≥ 0, on all paths ρ, either ρ+m |= p or ρ+n |= q;
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or it can be interpreted as (ii) for all n ≥ 0, there exists m ≥ 0 such that on all paths ρ,
either ρ+m |= p or ρ+ n |= q. These two interpretations differ on the Kripke structure that
produces exactly two paths ρ1 and ρ2 such that p and q hold at the following positions (p
holds nowhere except at position 1 in ρ1 and position 3 in ρ2, and q holds everywhere except
position 2 in ρ1 and position 4 in ρ2):

in ρ1: {p̄, q} {p, q} {p̄, q̄} {p̄, q} {p̄, q} {p̄, q} . . .
in ρ2: {p̄, q} {p̄, q} {p̄, q} {p, q} {p̄, q̄} {p̄, q} . . .

0 1 2 3 4 5

Note that the two paths agree on their initial position, and we can construct a Kripke
structure that produces exactly those two paths. It is easy to see that the formula (Fp∨Gq)∀
does not hold according to the first interpretation (indeed, for m = 1 we can take n = 4 and
consider the path ρ2 where p does not hold at position 1 and q does not hold at position 4,
and for all other values of m, take n = 2 and consider the path ρ1 where p does not hold
at position m and q does not hold at position 2), but it does hold according to the second
interpretation (for n = 2 take m = 1, for n = 4 take m = 3, and for all other values of n take
arbitrary value of m, for example m = n). The trouble is that the order of the existential
quantifier (associated to the left operand Fp) and the universal quantifier (associated to the
right operand Gq) actually matters in the semantics of the formula, leading to an annoying
situation that (Fp ∨Gq)∀ is not equivalent to (Gq ∨ Fp)∀ in any of the interpretations. One
way could be to use the branching Henkin quantifiers, like

(∃m
∀n
)
where the existential choice

of m does not depend on the universal choice of m. This interpretation suffers from lack of
symmetry, as the negation of such a branching Henkin quantifier is in general not expressible
as a branching Henkin quantifier [3].

7 Conclusion

The logic CTL+Sync and its extensions presented in this paper provide an elegant framework
to express non-regular properties of synchronization. It is intriguing that the exact optimal
complexity of the model-checking problem remains open, specially even for the fixed formula
pU∃ q (which we show is in NPNP, and DP-hard). Extending CTL+Sync to an elegant
logic à la CTL* seems challenging. One may want to express natural properties with the
flavor of synchronization, such as the existence of a fixed number of synchronization points,
or the property that all paths synchronize in either of a finite set of positions, etc. (see
also Section 6). Another direction is to consider alternating-time temporal logics (ATL [1])
with synchronization. ATL is a game-based extension of CTL for which the model-checking
problem remains in polynomial time. For instance, ATL can express the existence of a winning
strategy in a two-player reachability game. For the synchronized version of reachability
games (where the objective for a player is to reach a target state after a number of steps that
can be fixed by this player, independently of the strategy of the other player), it is known
that deciding the winner is PSPACE-complete [15]. Studying general game-based logics such
as ATL or strategy logic [7] combined with quantifier exchange is an interesting direction for
future work.
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Abstract
We study the topological complexity of languages of Büchi automata on infinite binary trees.
We show that such a language is either Borel and WMSO-definable, or Σ1

1-complete and not
WMSO-definable; moreover it can be algorithmically decided which of the two cases holds. The
proof relies on a direct reduction to deciding the winner in a finite game with a regular winning
condition.
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1 Introduction

The class of regular languages of infinite trees is one of the most important classes of properties
of infinite computations. Similarly to the arithmetic hierarchy, the class is structured into
the so called Mostowski–Rabin index hierarchy. This hierarchy reflects the complexity of
a language in terms of an alternation of fix-points needed to express it, or equivalently, in
terms of the minimal complexity of the acceptance condition of an automaton accepting the
language. While we know for about two decades that the hierarchy is infinite [5], we are
still very far from understanding it. One important objective in this area is to effectively
characterise every level of the hierarchy: for a given regular language of infinite trees calculate
its level in the hierarchy.

The difficulty in understanding the Mostowski–Rabin index hierarchy of tree languages is
linked to the lack of deterministic acceptors for such languages. Thus, on a smaller scale, we
face here the same problem as in the complexity theory, namely the problem of understanding
the structure of non-deterministic computations. When restricted to deterministic acceptors,
the Mostowski–Rabin hierarchy is by now well-understood. For every level we know a
pattern such that the pattern appears in a deterministic tree automaton if and only if the
language recognised by this automaton is hard for this level [21, 18, 19]. The pattern method
has been extended to the so called game automata [12], but there is no hope to use it for
non-deterministic automata.

Apart from decidability questions, a promising way to understand the Mostowski–Rabin
hierarchy is to relate it to the topological hierarchy. (For an introduction to the classes
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of topological complexity see for instance [15].) Topological properties of sets defined by
automata are discussed in [24]. It is well-known that all regular languages of infinite trees
are contained in the ∆1

2 level of the projective hierarchy. The languages of Büchi automata,
or equivalently those definable in existential mso logic, are contained in the Σ1

1 level. The
languages of weak-alternating automata, or equivalently definable in weak mso (wmso),
are Borel; moreover for every finite level of the Borel hierarchy there is a complete weakly
definable language [23]. In [23], Skurczyński asks if every regular language that is Borel is
necessarily weakly definable. In this paper we answer this question for languages recognised
by Büchi automata, as expressed by the main theorem.

I Theorem 1. If B is a non-deterministic Büchi tree automaton then one of the following
possibilities holds and it is possible to effectively decide which one it is:
1. L(B) is Borel and wmso-definable,
2. L(B) is Σ1

1-complete and not wmso-definable.

The theorem is proved through a game construction. Given a Büchi automaton B we construct
a finite game F(∞) such that if ∃∃∃ wins in this game then the language of B is Σ1

1-complete;
but if ∀∀∀ wins then the language of B can be accepted by a weak alternating automaton
constructed from B. A similar technique of relying on the finite memory determinacy of
regular games was used in [1].

Related work. Colcombet, Kuperberg, Löding, and Vanden Boom [16, 8] have proved the
algorithmic part of the above theorem; using some decidability result in the theory of cost
functions and a reduction of Colcombet and Löding [9] they have shown how to decide if
the language of a Büchi automaton is weakly definable. The topological counterpart of
Theorem 1 seems not to follow from their construction. Our proof relies only on standard
facts from automata theory, and may be simpler, at least for those who are not familiar with
the theory of cost functions.

Finding effective characterisations of various classes of infinite tree languages is an
important topic of language theory. As we noted above, for languages of deterministic tree
automata the situation is quite well-understood; but for the case of all regular tree languages
for some time it was only known how to decide if a given regular language can be accepted by
an automaton with a trivial acceptance condition [17, 25]. The theory of cost functions allows
to decide if a given language can be accepted by a non-deterministic co-Büchi automaton [8].
Bojańczyk and Idziaszek [2] have recently shown decidability of definability in a temporal
logic ef. Bojańczyk and Place [4] show how to decide if a given language is a Boolean
combination of open sets.

The study of topological properties of regular languages of trees has seen important
advances too [10, 13, 6, 18, 19, 3, 11]. Over a decade ago an interesting gap property has been
observed [20] for languages of deterministic tree automata: a language is either Π1

1-complete,
or contained in the Π0

3 level of the Borel hierarchy. A similar gap property has been recently
shown for languages of thin trees [14]: a regular language of thin trees, treated as a subset of
all trees, is either definable in weak mso logic or Π1

1-complete. Our theorem shows a gap
property for languages of non-deterministic Büchi automata.

2 Preliminaries and an outline of the construction

We write ω for the natural numbers, and ω for the extension of ω with a greatest element ∞.
So n <∞ for all n ∈ ω, and∞−1 =∞. We assume standard definitions of non-deterministic
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and alternating automata on infinite binary trees. All trees we consider are binary, the two
directions are L and R. The root of a tree is ε. By � we denote the prefix order on the nodes
of a tree. In this paper we will use perfect information two player games of infinite duration.
The players are denoted ∃∃∃ (Eve) and ∀∀∀ (Adam).

A non-deterministic Büchi automaton is a tuple B = 〈Q,A, qI ∈ Q, δ ⊆ Q×A×Q×Q,F ⊆
Q〉. We will use the standard notion of a run ρ over a tree t. A run of B is accepting if on
every branch some state from F appears infinitely often. A weak alternating automaton
is very similar but for a total quasi-order on states, and the transition relation that now
sends a non-empty set of states in every direction δ ⊆ Q×A× P+(Q)× P+(Q) (by P+(X)
we denote the set of non-empty subsets of X). The transition relation should respect the
order on the states in a sense that if (q, a, SL, SR) ∈ δ then all the states in SL ∪ SR should
not be bigger than q, and if q ∈ F is accepting then all not accepting states in SL ∪SR should
be strictly smaller than q in this order. A weak alternating automaton A induces a game
on every tree t: the positions of this game are (u, q) with u ∈ {L, R}∗ and q ∈ Q; the initial
position is (ε, qI); from a position (u, q) first ∃∃∃ chooses a transition (q, t(u), SL, SR), then ∀∀∀
chooses a direction d and a state q′ ∈ Sd, the successive position is (ud, q′). A play is won by
∃∃∃ if it contains infinitely many accepting states. Without loss of generality we assume that
all the considered automata are complete: for every state q ∈ Q and every letter a ∈ A there
is at least one transition from q over a. For an automaton A, by L(A) we denote the set of
trees accepted by A.

Our proof of Theorem 1 will use two games, or rather game families constructed from
B. The first game, G(t), will be played on a tree t. The game will encode in a compact way
not only the acceptance of t by B, but also possible approximations of B by weak automata.
It is motivated by the technical core of the construction in [22]. More precisely, for every
K ∈ ω we will have a variant G(t,K) of the game. Each game defines a language of trees

L(G,K) = {t | ∃∃∃ wins G(t,K)}. (1)

The game G(t,∞) will encode the acceptance of t by B, i.e., L(G,∞) = L(B). For every
K ∈ ω, the game G(t,K) will encode the acceptance of t by some specific weak alternating
automaton obtained from B; in particular L(G,K) will be wmso-definable. The parameter
K will control the quality of the approximation of B, in a sense that

L(G, 0) ⊇ L(G, 1) ⊇ · · · ⊇ L(B) .

We will show that L(B) is wmso-definable if and only if L(B) = L(G,K) for some finite
bound K ∈ ω. Moreover, we will show that a candidate K0 for this bound can be computed
from B. These results will be obtained from the analysis of another game that we call F .

The game F , and its variants F(K) for all K ∈ ω, will be central for our arguments. For
every K ∈ ω, the game F(K) will be finite in a sense that there will be a finite number of
positions reachable from the initial position. The game F(K) will in some sense simulate
G(t,K) for an unknown t. We will show that when K ∈ ω is too small for B, i.e. when
L(G,K) ) L(B), then ∃∃∃ has a winning strategy in F(K). Next, we examine F(∞) and show
that the winner in this game determines if L(B) is wmso-definable. If ∃∃∃ does not win in
F(∞) then she does not win in F(K0) for some K0 computable from B (Proposition 10).
Thus L(B) = L(G,K0) is wmso-definable. The most difficult part of the proof is to show that
if ∃∃∃ wins in F(∞) then L(B) is Σ1

1-complete and thus not wmso-definable (Proposition 11).
The way in which the game F is obtained from G is motivated by the concept of history

determinism and in particular by the combinatorial structure of domination games, see [7].
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3 The game G(t)

Let us start with the game G(t). The positions of G(t) are of the form (q, u,K, z) where
q ∈ QB is a state, u ∈ {L, R}∗ is a node of t, K ∈ ω is a counter value, and z is one of the three
special symbols: choice, safe, or reach. The z component determines the possible choices
from a position (q, u,K, z):
z = choice: In this case ∀∀∀ chooses z′ ∈ {safe, reach}. If he chooses z′ = safe then K ′ = K,

if he chooses z′ = reach then K ′ = K − 1; in particular if K = 0 then ∀∀∀ has to choose
z′ = safe. The game proceeds to the position (q, u,K ′, z′).

z = safe: First ∃∃∃ proposes a transition of B of the form (q, t(u), qL, qR) and then ∀∀∀ chooses
a direction d ∈ {L, R}. The game proceeds to the position (qd, ud,K, choice).

z = reach: First ∃∃∃ proposes a transition of B of the form (q, t(u), qL, qR) and then ∀∀∀ chooses
a direction d ∈ {L, R}. If qd is an accepting state then the game proceeds to the position
(qd, ud,K, choice), otherwise it proceeds to the position (qd, ud,K, reach).

Every play of G(t) is infinite. Such a play is won by ∀∀∀ if z = reach from some point on. In
the opposite case (i.e. if z = choice infinitely many times) ∃∃∃ wins.

As we can see from the definition, the game proceeds in phases. It is ∀∀∀ who chooses if the
game should be in a safe phase or in a reach phase. In the safe phase players just construct
a path from a run of B ignoring the acceptance condition. In the reach phase ∃∃∃ needs to
provide a finite part of a run until the next accepting states. The counter K gives a bound
on the number of reach phases: each time ∀∀∀ chooses reach, K is decreased. Notice that if K
is ∞ then it stays ∞ during the whole play, so there can be infinitely many reach phases.

For K ∈ ω we denote by G(t,K) the game G(t) with the initial position (qBI , ε,K, choice).

I Example 2. For our running example we consider trees over the alphabet {a, b} and a
Büchi automaton B accepting the trees with a branch having infinitely many occurrences of
a. This automaton has three states qa, qb,>, with both qa, and > accepting. For a state qx

the transition relation δB on a letter y contains the transitions (qx, y, qy,>) and (qx, y,>, qy);
for x, y ∈ {a, b}. From > the automaton stays in > on every letter and in every direction.

Using the notation from (1) we can see that for K = 0 the language L(G,K) is simply
the language of all trees. For K > 0, it is the language of trees having a path such that
every node on this path has a descendant whose label is a and the subtree rooted in this
descendant is in L(G,K − 1).

The next three lemmas give connections between the game G(t) and the automaton B.
They refer to the languages L(G,K) of the game as defined in (1).

I Lemma 3. L(B) = L(G,∞).

I Lemma 4. If ∃∃∃ wins G(t) from a position (q, u,K, z) and K ′ ≤ K ∈ ω then ∃∃∃ wins G(t)
from the position (q, u,K ′, z). In other words L(G,K ′) ⊇ L(G,K) ⊇ L(G,∞).

I Lemma 5. For every K ∈ ω the set of trees L(G,K) can be recognised by a weak alternating
automaton (or equivalently, it is wmso-definable).

4 The game F

We proceed to a definition of the game F , and its variants F(K), for K ∈ ω. For all K ∈ ω,
the game F(K) will simulate G(t,K) with an unknown t generated on-the-fly.

Let us fix a non-deterministic parity tree automaton A recognising the complement of
L(B) (A may not be equivalent to a Büchi automaton). We will construct F from A and B.
Intuitively, in F we ask the players to proceed as follows:
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∃∃∃ should successively construct a tree t and a run ρA of A on t;
at the same time ∀∀∀ should select directions in this tree constructing an infinite branch α
of t, aiming to show that the run ρA proposed by ∃∃∃ is not accepting;
moreover ∃∃∃ would aim at showing that the tree t she constructs is difficult in a sense
that she can win G(t,K) for all finite K. ∀∀∀ will aim to refute this claim, by showing that
he can win with some finite K. It is crucial for our argument that ∀∀∀ can do this in a
history-deterministic way in the sense of [7].

4.1 Positions and multi-transitions
The positions of F are of the form (S, p, κ, r) where:

S ∈ P(QB × {safe, reach}) is a set of active states,
p ∈ QA is a state of the automaton A,
κ : S → ω assigns to the active states their counter values,
r ∈ {0, 1, 2} is a sub-round number.

Using the first and the third component ∃∃∃ will try to prove that she wins in all the games
G(t,K). In the second component she will construct a run of A. The fourth component
makes the definition of the game more modular.

Similarly as before, for K ∈ ω by F(K) we denote the game F with the initial position
({(qBI , safe)}, qAI , κ, 0) where κ(qBI , safe) = K.

We say that an active state (q, z) is in the safe phase if z = safe; and in the reach phase
if z = reach. A pair (s, s′) changes phases if s and s′ are in different phases. So (s, s′) can
change phases from safe to reach, or change phases from reach to safe.

The edges of F will have an additional structure (i.e. an edge will be more than just
a pair of positions of the game). This richer structure will be used to define the winning
condition of F that will refer to a sequence of edges. From our definition it will be easy to
see how to transform such a game into a standard two player game. To underline that edges
have additional structure we refer to them as multi-transitions.

A multi-transition µ from a position (S, p, κ, r) to a position (S′, p′, κ′, r′) contains:
the pre-state (S, p, κ, r),
the post-state (S′, p′, κ′, r′) with r′ = r + 1 mod 3,
a set e ⊆ S × S′ of edges from the active states in S to the active states in S′,
a set ē ⊆ e of boldfaced edges, with exactly one boldfaced edge leading to every s′ ∈ S′:

∀s′∈S′
∣∣{s : (s, s′) ∈ ē}

∣∣ = 1 (2)

We additionally require the following condition on κ, called boldface-decreasing. Assume
that (s, s′) ∈ ē. If (s, s′) changes phases from safe to reach then1 κ′(s′) = max(κ(s)−1, 0).
Otherwise κ′(s′) = κ(s).

An example multi-transition is depicted in Figure 1. The role of e is to trace the origins
of each active state in a similar way as for determinisation of Büchi automata. With the
boldfaced edges ∀∀∀ will indicate which of the possible origins of an active state he finds the
most promising for him. The boldface-decreasing condition says that on boldfaced traces the
counter should behave in the same way as in a game G(t,K) for the tree t being constructed.
The exact rules how the multi-transitions are selected by the players are given in Section 4.2.

1 By the rules of the game, we shall never have κ(s) < 1 in this case.
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p ∈ QAS – the safe phase S – the reach phase κ r

κ′ r′p′ ∈ QAS′ – the safe phase S′ – the reach phase

Figure 1 An example multi-transition µ. The big dots correspond to the active states and the
state of A. The convention is that all the active states from the safe phase are drawn on the left,
all the active states from the reach phase are drawn in the middle, then comes the state of A, and
finally the counter values κ and the sub-round number r are drawn on the right. For the purpose
of the layout, we additionally draw an edge between the states p and p′ of A (this edge does not
belong to e). The dotted line separates the safe phase from the reach phase. Boldfaced edges are
boldfaced. Every active state in S′ has one incoming boldfaced edge as required by (2).

Notice that for a fixed K ∈ ω the game F(K) has only finitely many reachable positions
and finitely many multi-transitions – if K =∞ then all the counter values κ are equal ∞,
otherwise the counter values in the reachable positions are at most K.

4.2 Rules of the game F
In this section we describe the rules of the game F . From a position (S, p, κ, r) the players
interact constructing a new position (S′, p′, κ′, r′) and a multi-transition between the two
positions. For this they select a set of edges e ⊆ S× (QB×{safe, reach}) and a state p′ ∈ QA
according to the rules given below. Then ∀∀∀ chooses an arbitrary multi-transition µ that
respects (S, p, κ, r), e, and p′ in the following sense:

the pre-state of µ is (S, p, κ, r),
the post-state of µ is (S′, p′, κ′, r′); where S′ = {s′ : (s, s′) ∈ e} consists of the targets of
the edges e, κ′ is determined by the boldface-decreasing condition, and r′ = r+ 1 mod 3,
the edges of µ are e,
the boldfaced edges ē of µ can be chosen arbitrarily by ∀∀∀ subject to condition (2).

Observe that a multi-transition µ that respects (S, p, κ, r), e, and p′ is unique but for the
choice of the boldfaced edges ē.

Assume that the current position in F is (S, p, κ, r) and consider the following cases
depending on the number of the sub-round r. In all the cases the players construct a
multi-transition µ that leads to a post-state (S′, p′, κ′, r′):
(R0) r = 0: There are two cases. If the reach phase is not empty i.e. S∩(QB×{reach}) 6= ∅,

then e contains all the pairs (s, s) for s ∈ S. The second case is when there are no states
in the reach phase. We call this situation a flush. In that case ∀∀∀ can choose2 any set
C ⊆ QB of states q such that

(q, safe) ∈ S and κ(q, safe) > 0 . (3)

The chosen active states get copied to the reach phase thanks to the edge relation defined
as: e = {(s, s) | s ∈ S} ∪

{(
(q, safe), (q, reach)

)
| q ∈ C

}
. In both cases the state p′ = p

of A is not changed and ∀∀∀ chooses µ that respects (S, p, κ, r), e, and p′.

2 Even if ∀∀∀ declares C = ∅, the fact that the reach phase was empty implies that we have a flush.



M. Skrzypczak and I. Walukiewicz 99:7

(R1) r = 1: ∃∃∃ declares: (i) a letter a ∈ A; (ii) a transition δs = (q, a, qs
L , q

s
R) of B, for every

s = (q, z) ∈ S; (iii) a transition δ = (p, a, p′L, p′R) of A. Then ∀∀∀ responds by selecting a
direction d ∈ {L, R}. We put p′ = p′d, and e contains all the pairs of the form ((q, z), (qs

d, z))
for s = (q, z) ∈ S. ∀∀∀ chooses µ that respects (S, p, κ, r), e, and p′.

(R2) r = 2: Deterministically, every active state (q, reach) in the reach phase with q accept-
ing (i.e. q ∈ F ) is moved to the safe phase. Formally, for each (q, z) ∈ S, the relation e
contains pairs ((q, z), (q, z′)) such that either: (i) z = z′ = safe; or (ii) z = z′ = reach
and q /∈ F ; or (iii) z = reach, z′ = safe, and q ∈ F . The state p′ = p of A is not changed.
∀∀∀ chooses µ that respects (S, p, κ, r), e, and p′.

If (s, s′) ∈ e we say that s′ is a µ-successor of s. By the definition of the sub-rounds of
the game, we obtain the following fact.

I Fact 6. Every active state has between one and two µ-successors. The only case when an
active state (q, z) can have two µ-successors is when r = 0, z = safe, and we have a flush.

4.3 The winning condition of F
Now we will define the winning condition for ∃∃∃ in F . It will depend on the sequence of
multi-transitions π = µ0µ1 . . . that were played in F . We will refer to the pre-state of µn

as (Sn, pn, κn, rn). Analogously, we will use (S′n, p′n, κ′n, r′n) for the post-state, en for the
edges, and ēn for the boldfaced edges of µn, respectively. Since π is a play, (S′n, p′n, κ′n, r′n) =
(Sn+1, pn+1, κn+1, rn+1) and rn ≡ n mod 3.

A trace in π is a sequence α = s0, s1, . . . such that (si, si+1) ∈ ei of all i. A trace is
boldfaced if (si, si+1) ∈ ēi for all i. For every s ∈ S′n there is a boldfaced trace ending in s,
and it is unique due to condition (2); we call it the boldfaced history of s in π.

The winning condition will be a boolean combination of three properties of plays. We list
them separately as they will be of independent interest in the proof.
W1. Infinitely many times there is a flush in the sub-round (R0).
W2. Some boldfaced trace changes phases infinitely many times.
W3. The sequence of states p0, p1, . . . of the automaton A is accepting.
Now we declare a play to be winning for ∃∃∃ if it satisfies

W1 ∧ (W2 ∨W3). (4)

Note that Condition W2 implies Condition W1 – if some trace in a play changes phases
infinitely often then the play must have infinitely many times a flush.

Intuitively, Condition W1 expresses that ∃∃∃ has not stayed forever in the reach phase –
she has reached an accepting state of B whenever ∀∀∀ asked for it.

Condition W2 says that ∀∀∀ has not succeeded to bound the number of changes of phases;
so he has failed to prove that on the constructed tree t he can win in G(t,K) for some finite
K. Condition W3 takes care of the situation when the constructed tree is not in L(B). One
can think of it as an escape option for ∃∃∃. She uses it when ∀∀∀ plays very cautiously and gives
∃∃∃ no chance to construct a trace satisfying Condition W2; an extreme example is when ∀∀∀
never chooses to move some active states to the reach phase.

I Example 7. Let B be the Büchi automaton from the example on page 4. Consider an
automaton A accepting the complement of L(B), namely the set of trees with only finitely
many a’s on every branch. This automaton is a deterministic co-Büchi automaton having
two states: pa and pb, with pa being a rejecting state. So a run of A will be accepting if on
every branch the state pa appears only finitely often. For a state px the transition relation
δA on a letter y ∈ {a, b} contains the transition (px, y, py, py).
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Figure 2 A symbolic representation of a strategy σ∃∃∃ of ∃∃∃. The subscript x in qs
x or qr

x stands for
a or b. The superscript indicates if a state is in the safe phase or in the reach phase. Only branches
not evidently losing for the player ∀∀∀ are presented.

We claim that ∃∃∃ has a winning strategy in F(∞) constructed from B and A. This strategy
is schematically presented in Figure 2. For compactness of the notation we omit the third
component of the position that is always ∞ and omit active states of the form (>, z) – it is
trivial for ∃∃∃ to play from them.

The root position is a flush, so ∀∀∀ can choose whether to copy the unique active state to
the reach phase. If he does not (i.e. he goes up in the picture) then ∃∃∃ chooses b and plays
the transition (qx, b, qb,>). Then it is clear that it is better for ∀∀∀ to move to the left. The
game gets to a similar position as in the root. If ∀∀∀ constantly chooses to play like this then
he will lose as the play will have infinitely many times a flush and only states pb, thus it will
satisfy Conditions W1 and W3.

If ∀∀∀ decides to copy the active state during a flush then ∃∃∃ still chooses b but plays different
transitions for the two copies: for the active state in the safe phase she chooses (qx, b, qb,>),
for the active state in the reach phase she chooses (qx, b,>, qb). If ∀∀∀ chooses the left direction
then the play gets to a similar position as in the root. Since there is a flush, and ∀∀∀ does not
manage to see a new pa state, the result is the same as in the case when ∀∀∀ has not copied the
active state. If ∀∀∀ chooses the right direction then the play reaches a position where the only
interesting active state is in the reach phase. Then ∃∃∃ chooses the letter a and the transition
(qb, a, qa,>). It is then more interesting for ∀∀∀ to move to the left. The play reaches a position
of the same form as the one in the root. The interesting thing that happens on this path
is that the unique boldfaced trace changes phases. So, if ∀∀∀ chooses infinitely often to copy
an active state and then go to the right then the play will satisfy Conditions W1 and W2.
Otherwise there will be only finitely many occurrences of the state pa and ∀∀∀ will lose since
there still will be infinitely many times a flush.

We have already noticed that for every K ∈ ω, the game F(K) is finite. By the definition
of Conditions W1, W2, and W3, the winning condition of F(K) is a regular property of
sequences of multi-transitions. By adding multi-transitions of F(K) to the positions, one
can obtain an equivalent game with the winning condition on sequences of positions. So up
to presentation, F(K) is essentially a finite game with a regular winning condition, and we
can solve it effectively.

I Fact 8. For a fixed K ∈ ω, the winner of F(K) can be effectively found and he/she can
win using a finite memory winning strategy. Let m∀∀∀ be the bound on the size of the memory
of ∀∀∀ needed to win the game F(∞).
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5 Characterisation

We show that F(∞) characterises when L(B) is wmso-definable. This is formulated in the
following two propositions that complete the proof of Theorem 1. They rely on the following
standard fact, see for instance [24].

I Fact 9. If L is a language of a Büchi tree automaton then L ∈ Σ1
1. If L is a wmso-definable

tree language then L is Borel.

I Proposition 10. If ∀∀∀ wins F(∞) then L(B) is wmso-definable.

I Proposition 11. If ∃∃∃ wins F(∞) then L(B) is Σ1
1-complete and not wmso-definable.

In the rest of the section we will outline the proof of Proposition 11. Suppose that ∃∃∃ wins
in F(∞). Let us fix a winning strategy σ∃∃∃ for ∃∃∃ in F(∞).

We need to prove that L(B) is Σ1
1-hard, so we will construct an appropriate continuous

reduction. Let ωTr denote the space of partial ω-branching trees. Such a tree τ is a non-
empty, prefix-closed subset of ω∗. We say that an ω-branching tree τ is ill-founded if it
contains an infinite branch, i.e. there exists α ∈ ωω such that for every x ≺ α we have x ∈ τ .
We use IF to denote the set of all ill-founded ω-branching trees. If an ω-branching tree is
not ill-founded then it is well-founded.

I Fact 12. IF is Σ1
1-complete.

Therefore, it is enough to construct a continuous reduction from IF to L(B). Our aim is
to construct a tree t(τ) such that t(τ) ∈ L(B) if and only if τ is ill-founded. The tree t(τ)
will be obtained by evaluating the strategy σ∃∃∃ against a certain family of strategies of ∀∀∀,
called τ -genuine strategies.

Let us explain this point in more detail. A strategy for ∃∃∃ in F(∞) can be seen as a
strategy tree where branching represents the choices of ∀∀∀ (see Figure 2). Recall from the
definition of the game that ∀∀∀ not only chooses directions (in the sub-round (R1)), but also
copies active states to the reach phase (during a flush in the sub-round (R0)), and selects
boldfaced edges (in all the sub-rounds). We want to extract from the strategy tree σ∃∃∃ a tree
where we leave only branching corresponding to the choice of directions. To this end we
define τ -genuine strategies of ∀∀∀, where his choices to copy and to select boldfaced edges are
determined by the history of the play so far. This means that a strategy tree for ∃∃∃ against all
τ -genuine strategies of ∀∀∀ will be a tree with branching corresponding only to the choices of
directions by ∀∀∀. Then we show that we have not restricted the power of ∀∀∀ too much, namely
from this strategy tree for ∃∃∃ we can read out the required tree t(τ).

To properly define τ -genuine strategies of ∀∀∀ we will use the Kleene-Brouwer ordering,
see [15, Section 2.G]. For x, y ∈ ω∗, we say that x ≤KB y if either: (i) x � y, or (ii) for some
n < m < ω and v, x′, y′ ∈ ω∗ we have x = vnx′ and y = vmy′. Intuitively, x ≤KB y if x is
below or to the left of y. ε is the ≤KB-maximal element of ω∗. There is no ≤KB-minimal
element in ω∗, e.g. for every x ∈ ω∗ and its 0-successor x · 0 we have x · 0 <KB x.

I Fact 13 (See [15, Proposition 2.12]). An ω-branching tree τ is well-founded if and only if
≤KB is a well-order on the vertices of τ .

For certain technical reasons it will be useful to have the following construction.

I Definition 14. First, assume that list : ω → ω∗ has the property that for each x ∈ ω∗,
the pre-image list−1({x}) is infinite (i.e. every vertex appears infinitely many times in this
enumeration). Now, given x ∈ ω∗ let down(x, n) be either list(n) if list(n) <KB x or x · 0
otherwise.
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I Fact 15. The following conditions are satisfied for every x ∈ ω∗:
∀n∈ω down(x, n) <KB x,
for every y <KB x there are infinitely many n such that down(x, n) = y.

Now we can proceed with the definition of τ -genuine strategies. Our aim is to make
sure that for every sequence of successive directions d0, d1, . . . played in the sub-rounds (R1),
there is a unique τ -genuine strategy of ∀∀∀. A τ -genuine strategy will depend on certain
additional information accumulated during a play, and this information will be related to
the ω-branching tree τ . Therefore, ∀∀∀ will keep track of an extended position – a position
(S, p, κ, r) of F together with a mapping ν : S → τ and a counter c ∈ ω. The function ν will
measure the progress of every active state with respect to the ≤KB order over τ . The counter
c will count the number of times when a flush happened in the play.

The initial extended position of the game is the initial position of F(∞) together with ν
assigning to (qBI , safe) the root ε of τ ; and the counter c = 0.

A strategy σ∀∀∀ of ∀∀∀ is called τ -genuine if it satisfies the three conditions defined below:
genuine-copying, flush-counting, and KB-tracking.

A strategy σ∀∀∀ satisfies genuine-copying if during a flush in the sub-round (R0) it copies
an active state s from the safe phase to the reach phase if and only if down(ν(s), c) ∈ τ .

The condition of flush-counting says that ∀∀∀ increments c by 1 exactly when there is a
flush in the sub-round (R0); otherwise he keeps the value c unchanged.

The last condition KB-tracking determines how the set of boldfaced edges ē should
be chosen and how to update ν. We say that a multi-transition µ from (S, p, κ, r, ν, c) to
(S′, p′, κ′, r′, ν′, c′) with edges e and boldfaced edges ē satisfies the KB-tracking condition
when:

If µ is not a flush then for every s′ ∈ S′:

ν′(s′) = max
≤KB
{ν(s) : (s, s′) ∈ e} .

Moreover, the unique boldfaced edge to s′ should come from s0 realising the maximum
above, i.e., ν′(s′) = ν(s0) (if there is more than one such s0 then we choose the smallest
one according to some fixed ordering on active states).
If µ is a flush then for every s′ ∈ S′ from the safe phase, the vertex ν′(s′) of τ and the
boldfaced edges are determined as above. For every s′ ∈ S′ in the reach phase there is a
unique s ∈ S with (s, s′) ∈ e. This edge needs to be boldfaced and we set

ν′(s′) = down(ν(s), c) .

Notice that in this last case the node down(ν(s), c) is in τ thanks to the genuine-copying
condition.

I Fact 16. Using the above notions, the following inequalities hold:
if (s, s′) ∈ ē then ν(s) ≥KB ν′(s′),
if (s, s′) ∈ e and (s, s′) changes phases from safe to reach then ν(s) >KB ν′(s′),
if (s, s′) ∈ e and (s, s′) does not change phases from safe to reach then ν(s) ≤KB ν′(s′).

I Corollary 17. Suppose τ is well-founded. If π is an infinite play of F(∞) consistent with
a τ -genuine strategy of ∀∀∀ then π does not satisfy W2 (no boldfaced trace changes phases
infinitely many times).

I Remark. Observe that all the choices of ∀∀∀ except the directions d are uniquely determined
in a τ -genuine strategy. Therefore, to define a τ -genuine strategy it is enough to say what
will be the directions proposed by ∀∀∀ in the sub-rounds (R1). For the next definition it is also
useful to note that all the maximal plays in F(∞) are infinite.
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I Definition 18. For every α ∈ {L, R}ω by σ∀∀∀(τ, α) we denote the unique τ -genuine strategy
of ∀∀∀ that for every n ∈ ω plays d = α(n) in the n-th sub-round (R1). Let π(τ, α) be the
infinite play of F(∞) obtained when ∃∃∃ is playing σ∃∃∃ and ∀∀∀ is playing σ∀∀∀(τ, α).

For every finite prefix u ≺ α we denote by π(τ, u) the corresponding prefix of π(τ, α). This
play is defined until ∀∀∀ is asked to determine the (n+1)-th direction in the sub-round (R1).
Let (Su, pu, κu, ru, νu, cu) be the extended position of this play at the beginning of the last
round (i.e. when ru = 0).

We can finally define the tree t(τ).

I Definition 19. We define the tree t(τ) together with a run ρA(τ) of A. For a vertex
u ∈ {L, R}∗, let t(τ)(u) and ρA(τ)(u) be the letter a and the state p of A played by ∃∃∃ in the
sub-round (R1) of the last round of the play π(τ, u).

Observe that by the construction, ρA(τ) is a run of A over t(τ). Notice also that since the
strategy σ∀∀∀(τ, u) queries whether v ∈ τ for finitely many v at a time, the function mapping
τ to t(τ) is continuous. We show that indeed the mapping is the required reduction from IF
as expressed by the following two lemmas.

I Lemma 20. If τ is well-founded then ρA(τ) is accepting and thus t(τ) /∈ L(B).

I Lemma 21. If τ is ill-founded then t(τ) ∈ L(B).

Lemma 20 follows from Corollary 17. Consider any infinite branch α of t(τ) and the
corresponding play π(τ, α) of σ∃∃∃ against σ∀∀∀(τ, α). Since σ∃∃∃ is winning we know that it satisfies
the disjunction W2 ∨W3. By Corollary 17 we know that no play consistent with σ∀∀∀(τ, α)
can satisfy Condition W2. Therefore, Condition W3 needs to be satisfied and therefore, the
run ρA(τ) is accepting on α.

To prove Lemma 21 we fix an ω-branching ill-founded tree τ ∈ IF. We then extract an
accepting run ρB of B on t(τ) from the strategy σ∃∃∃ in F(∞). The crucial point is to make
sure that ∀∀∀ will copy infinitely often the active states of the constructed run to the reach
phase. For this we need to rely on the condition of genuine-copying. Let us now describe
how this construction works on our running example.

I Example 22. Recall the example from page 4 and the winning strategy for ∃∃∃ from the
example on page 7 (see Figure 2). In this strategy ∀∀∀ has a choice of whether to copy or not
the active state qs

x; this corresponds to going down or up from the root, respectively. Next,
∀∀∀ chooses a direction. In a τ -genuine strategy a state qs

x is assigned a node ν(qs
x) of τ and c

counts the number of flushes. The condition of genuine-copying requires ∀∀∀ to copy the state
qs

x to the reach phase if down(ν(qs
x), c) ∈ τ . Since all loops of σ∃∃∃ contain a flush, the value c

counts the number of times either of the loops has been taken.
According to the definition of a τ -genuine strategy, the only moment when the value

ν(qs
x) may change is when ∀∀∀ copies (i.e. takes the down successor of the root at Figure 2) and

in that case the value ν(qr
x) becomes down(ν(qs

x), c) according to the KB-tracking condition.
This becomes the new value of ν(qs

x) if and only if the play then follows the direction R.
If τ is well-founded then there is no infinite ≤KB-descending chain in τ and therefore, for

every branch α ∈ {L, R}ω, the play π(τ, α) follows only finitely many times the down path of
σ∃∃∃. Therefore, the produced tree t(τ) contains only finitely many letters a on every branch
and t(τ) /∈ L(B).

Now assume that τ is ill-founded and v0 >KB v1 >KB . . . is an infinite ≤KB-descending
chain of nodes of τ . We will use this sequence to find a branch of t(τ) that contains infinitely
many a’s. We start in the root of t(τ) and keep track of the current vertex ν(qs

x) of τ . We will
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preserve an invariant that when being in a node u ∈ {L, R}∗ with n the number of occurrences
of a on u in t(τ) then ν(qs

x) = vn – the vertex of τ pointed to by ν is the n-th vertex in our
≤KB-descending chain. Consider the following two cases:
1. If down(ν(qs

x), c) = vn+1 then ∀∀∀ chooses to copy, i.e., go down from the root. We follow
the R-successor in t(τ). Then t(τ)(uR) = a and the game gets to the node uRL. The number
of times we have seen an a is incremented (i.e. n′ = n+ 1), and the invariant is preserved
since after this loop we have ν(qs

x) = vn+1.
2. Otherwise either (i) down(ν(qs

x), c) 6∈ τ so ∀∀∀ does not copy, or (ii) down(ν(qs
x), c) ∈ τ so

∀∀∀ copies, but we choose the direction L. In both cases we end up in the left successor of
our current node (i.e. in uL). The new value ν(qs

x) does not change, neither does n.
Therefore, in both cases the invariant ν(qs

x) = vn is preserved. Since the value of c tends to
infinity, Fact 15 tells us that down(ν(qs

x), c) = vn+1 will eventually hold, and we will see an
a. In the limit, the branch of t(τ) we follow will have infinitely many letters a.

6 Conclusions

While regular languages of infinite trees are widely used nowadays, their structure is still very
poorly understood. The main reason for this is probably the lack of deterministic acceptors
for such languages. This paper exhibits a gap property for languages of non-deterministic
Büchi tree automata: such a language is either weakly definable, or Σ1

1-complete. Our proof
uses a reduction to a finite game. Given a Büchi automaton B, we construct a game F(∞)
of exponential size w.r.t. B, and with a parity condition of size proportional to the size of
B. Thus our reduction gives an EXPTime decision algorithm. This matches a known lower
bound [25].
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Abstract
The Continuous Skolem Problem asks whether a real-valued function satisfying a linear differen-
tial equation has a zero in a given interval of real numbers. This is a fundamental reachability
problem for continuous linear dynamical systems, such as linear hybrid automata and continuous-
time Markov chains. Decidability of the problem is currently open – indeed decidability is open
even for the sub-problem in which a zero is sought in a bounded interval. In this paper we show
decidability of the bounded problem subject to Schanuel’s Conjecture, a unifying conjecture in
transcendental number theory. We furthermore analyse the unbounded problem in terms of the
frequencies of the differential equation, that is, the imaginary parts of the characteristic roots.
We show that the unbounded problem can be reduced to the bounded problem if there is at most
one rationally linearly independent frequency, or if there are two rationally linearly independent
frequencies and all characteristic roots are simple. We complete the picture by showing that de-
cidability of the unbounded problem in the case of two (or more) rationally linearly independent
frequencies would entail a major new effectiveness result in Diophantine approximation, namely
computability of the Diophantine-approximation types of all real algebraic numbers.
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1 Introduction

The Continuous Skolem Problem is a fundamental decision problem concerning reachability in
continuous-time linear dynamical systems. The problem asks whether a real-valued function
satisfying an ordinary linear differential equation has a zero in a given interval of real numbers.
More precisely, an instance of the problem comprises an interval I ⊆ R≥0 with rational
endpoints, an ordinary differential equation

f (n) + an−1f
(n−1) + . . .+ a0f = 0 (1)

whose coefficients are real algebraic, together with initial conditions f(0), . . . , f (n−1)(0)
that are also real algebraic numbers. Writing f : R≥0 → R for the unique solution of the
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100:2 On the Skolem Problem for Continuous Linear Dynamical Systems

differential equation subject to the initial conditions, the question is whether there exists
t ∈ I such that f(t) = 0. Decidability of this problem is currently open. Decidability of
the sub-problem in which the interval I is bounded, called the Bounded Continuous Skolem
Problem, is also open [4, Open Problem 17].

The nomenclature Continuous Skolem Problem is based on an analogy with the Skolem
Problem for linear recurrence sequences, which asks whether a given linear recurrence
sequence has a zero term [12]. Whether the latter problem is decidable is an outstanding
question in number theory and theoretical computer science; see, e.g., the exposition of
Tao [20, Section 3.9].

The continuous dynamics of linear hybrid automata and the evolution of continuous-
time Markov chains, amongst many other examples, are determined by linear differential
equations of the form x′(t) = Ax(t), where x(t) ∈ Rn and A is an n × n matrix of real
numbers [1]. A basic reachability question in this context is whether, starting from an initial
state x(0), the system reaches a given hyperplane {y ∈ Rn : uTy = 0} with normal vector
u ∈ Rn. For example, one can ask whether the continuous flow of a hybrid automaton
leads to a particular transition guard being satisfied or an invariant being violated. Now
the function f(t) = uTx(t) satisfies a linear differential equation of the form (1), and it
turns out that the hyperplane reachability problem is inter-reducible with the Continuous
Skolem Problem (see [4, Theorem 6] for further details). Moreover, under this reduction
the Bounded Continuous Skolem Problem corresponds to a time-bounded version of the
hyperplane reachability problem.

The characteristic polynomial of the differential equation (1) is

χ(x) := xn + an−1x
n−1 + . . .+ a0 .

Let λ1, . . . , λm be the distinct roots of χ. Any solution of (1) has the form f(t) =∑m
j=1 Pj(t)eλjt, where the Pj are polynomials with algebraic coefficients that are determined

by the initial conditions of the differential equation. We call a function f in this form an
exponential polynomial. If the roots of χ are all simple then f can be written as an exponential
polynomial in which the polynomials Pj are all constant.

The Continuous Skolem Problem can equivalently be formulated in terms of whether an
exponential polynomial has a zero in a given interval of reals. If the characteristic roots
have the form λj = rj + iωj , where rj , ωj ∈ R, then we can also write f(t) in the form
f(t) =

∑m
j=1 e

rjt(Q1,j(t) sin(ωjt) +Q2,j(t) cos(ωjt)), where the polynomials Q1,j , Q2,j have
real algebraic coefficients. We call ω1, . . . , ωm the frequencies of f .

Our first result is to show decidability of the Bounded Continuous Skolem Problem
subject to Schanuel’s Conjecture, a unifying conjecture in transcendental number theory that
plays a key role in the study of the exponential function over both the real and complex
numbers [21, 22]. Intuitively, decidability of the Bounded Continuous Skolem Problem
is non-trivial because an exponential polynomial can approach 0 tangentially. Assuming
Schanuel’s Conjecture, we show that any exponential polynomial admits a factorisation such
that the zeros of each factor can be detected using finite-precision numerical computations.
Our method, however, does not bound the precision required to find zeros, so we do not
obtain a complexity bound for the procedure.

A celebrated paper of Macintyre and Wilkie [18] obtains decidability of the first-order the-
ory of Rexp = (R, 0, 1, <, · ,+, exp) assuming Schanuel’s Conjecture over R. The proof of [17,
Theorem 3.1] mentions an unpublished result of Macintyre and Wilkie that generalises [18]
to obtain decidability when Rexp is augmented with the restricted functions sin�[0,2π] and
cos�[0,2π], this time assuming Schanuel’s Conjecture over C. This result immediately implies
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(conditional) decidability of the Bounded Continuous Skolem Problem. However, decidability
of the latter problem is simpler and, as we show below, can be established more directly.

In the unbounded case, we analyse exponential polynomials in terms of the number of
rationally linearly independent frequencies. We show that the unbounded problem can be
reduced to the bounded problem if there is at most one rationally linearly independent
frequency, or if there are two rationally linearly independent frequencies and all characteristic
roots are simple. These two reductions are unconditional and rely on the cell decomposition
theorem for semi-algebraic sets [3] and Baker’s Theorem on linear forms in logarithms of
algebraic numbers [2].

In the full version on this paper [7] we complete the picture by showing that decidability
of the unbounded problem in the case of two (or more) rationally linearly independent
frequencies would entail a major new effectiveness result in Diophantine approximation –
namely computability of the Diophantine-approximation types of all real algebraic numbers.
As we discuss in [7], currently essentially nothing is known about Diophantine-approximation
types of algebraic numbers of degree three or higher, and they are the subject of several
longstanding open problems.

The question of deciding whether an exponential polynomial f has infinitely many zeros
is investigated in [8]. There the problem is shown to be decidable if f satisfies a differential
equation of order at most 7. This result does not rely on Schanuel’s Conjecture. It is also
shown in [8] that, as with the Continuous Skolem Problem, decidability of the Infinite Zeros
Problem in the general case would entail significant new effectiveness results in Diophantine
approximation.

2 Mathematical Background

2.1 Zero Finding

Let f : [a, b]→ R be a function defined on a closed interval of reals with endpoints a, b ∈ Q.
Suppose the following two conditions hold: (i) there exists M > 0 such that f is M -Lipschitz,
i.e., |f(s) − f(t)| ≤ M |s − t| for all s, t ∈ [a, b]; (ii) given t ∈ [a, b] ∩ Q and positive error
bound ε ∈ Q, we can compute q ∈ Q such that |f(t) − q| < ε. Then given a positive
rational number δ we can compute piecewise linear functions f+

δ , f
−
δ : [a, b]→ R such that

f−δ (t) ≤ f(t) ≤ f+
δ (t) and f+

δ (t)− f−δ (t) ≤ δ for all t ∈ [a, b]. We do this as follows:

1. Pick N ∈ N such that 1
N < δ

4(b−a)M and consider sample points sj := a + (b−a)j
N ,

j = 0, . . . , N , dividing the interval [a, b] into N sub-intervals, each of length at most δ
4M .

2. For each sample point sj compute qj ∈ Q such that |qj−f(sj)| < δ
4 , define f

−
δ (sj) = qj− δ

2 ,
f+
δ (sj) = qj + δ

2 , and extend f−δ and f+
δ linearly between sample points.

Note that the Lipschitz condition on f ensures that f−δ ≤ f ≤ f
+
δ .

Now suppose that f satisfies the following additional conditions: (iii) f(a) 6= 0, f(b) 6= 0;
(iv) for any t ∈ (a, b) such that f(t) = 0, f ′(t) exists and is non-zero, i.e., f has no tangential
zeros. Then we can decide the existence of a zero of f by computing upper and lower
approximations f+

δ and f−δ for successively smaller values of δ. If f+
δ (t) < 0 for all t or

f−δ (t) > 0 for all t then we conclude that f has no zero on [a, b]; if f+
δ (s) < 0 and f−δ (t) > 0

for some s, t then we conclude that f has a zero; otherwise we proceed to a smaller value
of δ. This procedure terminates since by (iii) and (iv) either f has a zero in [a, b] or it is
bounded away from zero.
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2.2 Number-Theoretic Algorithms
For the purposes of establishing decidability, we can assume that an instance of the Continuous
Skolem Problem is a real-valued exponential polynomial f(t) =

∑m
j=1 Pj(t)eλjt, where

λ1, . . . , λm and the coefficients of the polynomials P1, . . . , Pm are algebraic, see [4, Theorem
6].

For computational purposes we represent an algebraic number α by a polynomial P with
rational coefficients such that P (α) = 0, together with a numerical approximation p + qi,
where p, q ∈ Q, of sufficient accuracy to distinguish α from the other roots of P [9, Section
4.2.1]. Given this representation we can obtain numerical approximations of α with arbitrary
precision [19]

Let K be the extension field of Q generated by λ1, . . . , λm and the coefficients of the
polynomials P1, . . . , Pm. Note that K is closed under complex conjugation. We can compute
a primitive element of K, that is, an algebraic number θ such that K = Q(θ), together with
a representation of each characteristic root λj as a polynomial in θ with rational coefficients
(see [9, Section 4.5]). From the representation of λ1, . . . , λm as elements of Q(θ), it is
straightforward to determine maximalQ-linearly independent subsets of {Re(λj) : 1 ≤ j ≤ m}
and {Im(λj) : 1 ≤ j ≤ m} (see [14, Section 1]).

Let log denote the branch of the complex logarithm defined by log(reiθ) = log(r) + iθ

for a positive real number r and 0 ≤ θ < 2π. Recall that one can compute log z and ez to
within arbitrarily small additive error given a sufficiently precise approximation of z [6].

2.3 Laurent Polynomials
Let K be a sub-field of C that has finite dimension over Q and is closed under complex
conjugation. Fix non-negative integers r and s, and consider a single variable x and tuples
of variables y = 〈y1, . . . , yr〉 and z = 〈z1, . . . , zs〉. Consider the ring of Laurent polynomials

R := K[x, y1, y
−1
1 , . . . , yr, y

−1
r , z1, z

−1
1 , . . . , zs, z

−1
s ] ,

which can be seen as a localisation1 of the polynomial ring A := K[x, y1, . . . , yr, z1, . . . , zs]
in the multiplicative set generated by the set of variables {y1, . . . , yr} ∪ {z1, . . . , zs}. The
multiplicative units of R are the non-zero monomials in variables y1, . . . , yr and z1, . . . , zs. As
the localisation of a unique factorisation domain, R is itself a unique factorisation domain [10,
Theorem 10.3.7]. From the proof of this fact it moreover easily follows that R inherits from
A computability of factorisation into irreducibles (e.g., using the algorithm of [16]).

We extend the operation of complex conjugation to a ring automorphism of R as follows.
Given a polynomial

P =
n∑
j=1

ajx
ujy1

vj1 . . . yr
vjrz1

wj1 . . . zs
wjs ,

where a1, . . . , an ∈ K, define its conjugate to be

P :=
n∑
j=1

ajx
ujy1

vj1 . . . yr
vjrz1

−wj1 . . . zs
−wjs .

1 Recall that the localisation of a commutative ring U in a multiplicatively closed subset S such that
0U 6∈ S is the ring of formal fractions US = {a/s : a ∈ U , s ∈ S}, with addition and multiplication
defined as usual.
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This definition is motivated by thinking of the variables x and y1, . . . , yr as real-valued and
the variables z1, . . . , zs as taking values in the unit circle in the complex plane.

We will need the following proposition characterising those polynomials in P ∈ R such
that P and P are associates, i.e., such that P is equal to the product of P by a monomial.
Here we use pointwise notation for exponentiation: given a tuple of integers u = 〈u1, . . . , us〉,
we write zu for the monomial zu1

1 . . . zus
s . The proof of the proposition can be found in the

full version [7].

I Proposition 1. Let P ∈ R be such that P = zuP for u ∈ Zs. Then either (i) P has
the form P = zuQ for some Q ∈ R with Q = Q, or (ii) there exists Q ∈ R such that
P = Q+ zuQ and P does not divide Q in R.

2.4 Transcendence Theory
We will use transcendence theory in our analysis of both the bounded and unbounded variants
of the Continuous Skolem Problem. In the unbounded case we will use the following classical
result.

I Theorem 2 (Gelfond-Schneider). Let a, b be algebraic numbers not equal to 0 or 1. Then
for any branch of the logarithm function, log(b)

log(a) is either rational or transcendental.

In fact we will make use of the following corollary, which is obtained by applying Theorem 2
to the algebraic numbers a = ei(α2−α1) and b = ei(β2−β1).

I Corollary 3. Let α1 6= β1, α2 6= β2 all lie in [0, π] and suppose that cos(α1), cos(α2), cos(β1)
and cos(β2) are algebraic. Then β2−α2

β1−α1
is either rational or transcendental.

Our results in the bounded case depend on Schanuel’s conjecture, a unifying conjecture
in transcendental number theory [15], which, if true, greatly generalises many of the cent-
ral results in the field (including the Gelfond-Schneider Theorem, above). Recall that a
transcendence basis of a field extension L/K is a subset S ⊆ L such that S is algebraically
independent over K and L is algebraic over K(S). All transcendence bases of L/K have the
same cardinality, which is called the transcendence degree of the extension.

I Conjecture 4 (Schanuel’s Conjecture [15]). Let a1, . . . , an be complex numbers that are
linearly independent over Q. Then the field Q(a1, . . . , an, e

a1 , . . . , ean) has transcendence
degree at least n over Q.

A special case of Schanuel’s conjecture, that is known to hold unconditionally, is the
Lindemann-Weierstrass Theorem [15]: if a1, . . . , an are algebraic numbers that are linearly
independent over Q, then ea1 , . . . , ean are algebraically independent.

We apply Schanuel’s conjecture via the following proposition.

I Proposition 5. Given non-negative integers r and s, let {a1, . . . , ar} and {b1, . . . , bs} be
Q-linearly independent sets of real algebraic numbers. Furthermore, let P,Q ∈ R be two
polynomials that have algebraic coefficients and are coprime in R. Then the equations

P (t, ea1t, . . . , eart, eib1t, . . . , eibst) = 0 (2)
Q(t, ea1t, . . . , eart, eib1t, . . . , eibst) = 0 (3)

have no non-zero common solution t ∈ R.
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Proof. Consider a solution t 6= 0 of Equations (2) and (3). By passing to suitable associates,
we may assume without loss of generality that P and Q lie in A, i.e., that all variables in P
and Q appear with non-negative exponent. Moreover, since P and Q are coprime in R, their
greatest common divisor R in A is a monomial. In particular,

R(t, ea1t, . . . , eart, eib1t, . . . , eibst) 6= 0 .

Thus, dividing P and Q by R, we may assume that P and Q are coprime in A and that
Equations (2) and (3) still hold.

Since coprime univariate polynomials cannot have a common root, we may assume without
loss of generality that r + s ≥ 1. By Schanuel’s conjecture, the extension

Q(a1t, . . . , art, ib1t, . . . , ibst, e
a1t, . . . , eart, eib1t, . . . , eibst)/Q

has transcendence degree at least r + s. Since a1, . . . , ar and b1, . . . , bs are algebraic over Q,
writing

S := 〈t, ea1t, . . . , eart, eib1t, . . . , eibst〉 ,

it follows that the extension Q(S)/Q also has transcendence degree at least r + s.
From Equations (2) and (3) we can regard S as specifying a common root of P and Q.

Pick some variable σ ∈ {x, yj , zj : 1 ≤ i ≤ r, 1 ≤ j ≤ s} that has positive degree in P . Then
the component of S corresponding to σ is algebraic over the remaining components of S. We
claim that the remaining components of S are algebraically dependent and thus S comprises
at most r + s− 1 algebraically independent elements, contradicting Schanuel’s conjecture.
The claim clearly holds if σ does not appear in Q. On the other hand, if σ has positive
degree in Q then, since P and Q are coprime in A, the multivariate resultant Resσ(P,Q) is
a non-zero polynomial in the set of variables {x, yj , zj : 1 ≤ i ≤ r, 1 ≤ j ≤ s} \ {σ} which
has a root at S (see, e.g., [11, Page 163]). Thus the claim also holds in this case. In either
case we obtain a contradiction to Schanuel’s conjecture and we conclude that Equations (2)
and (3) have no non-zero solution t ∈ R. J

3 Decidability of the Bounded Continuous Skolem Problem

Given non-negative integers r and s, suppose that {a1, . . . , ar} and {ib1, . . . , ibs} are Q-
linearly independent sets of real and imaginary numbers respectively. Let the ring of Laurent
polynomials R be as in Section 2.3 and consider the exponential polynomial

f(t) = P (t, ea1t, . . . , eart, eib1t, . . . , eibst) , (4)

where P ∈ R is irreducible. We say that f is a type-1 exponential polynomial if P and P
are not associates in R, we say that f is type-2 if P = αP for some α ∈ K, and we say that
f is type-3 if P = UP for some non-constant unit U ∈ R.

I Example 6. The simplest example of a type-3 exponential polynomial is g(t) = 1 + eit.
Here g(t) = P (eit), where P (z) = 1 + z is an irreducible polynomial that is associated with
its conjugate P (z) = 1 + z−1. Note that the exponential polynomial f(t) = 2 + 2 cos(t),
which has infinitely many tangential zeros, factors as the product of two type-3 exponential
polynomials f(t) = g(t)g(t).

In the case of a type-2 exponential polynomial P = αP it is clear that we must have
|α| = 1. Moreover, by replacing P by βP , where β2 = α, we may assume without loss of
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generality that P = P . Similarly, in the case of a type-3 exponential polynomial, we can
assume without loss of generality that P = zuP for some non-zero vector u ∈ Zs.

Now consider an arbitrary exponential polynomial f(t) :=
∑m
j=1 Pj(t)eλjt. Assume that

the coefficient field K of R contains the coefficients of P1, . . . , Pm. Let {a1, . . . , ar} be a
basis of the Q-vector space spanned by {Re(λj) : 1 ≤ j ≤ m} and let {b1, . . . , bs} be a basis
of the the Q-vector space spanned by {Im(λj) : 1 ≤ j ≤ m}. Without loss of generality we
may assume that each characteristic root λ is an integer linear combination of a1, . . . , ar
and ib1, . . . , ibs. Then eλt is a product of positive and negative powers of ea1t, . . . , eart and
eib1t, . . . , eibst, and hence there is a Laurent polynomial P ∈ R such that

f(t) = P (t, ea1t, . . . , eart, eib1t, . . . , eibst) . (5)

Since P can be written as a product of irreducible factors in R, it follows that f can be
written as product of type-1, type-2, and type-3 exponential polynomials, and moreover this
factorisation can be computed from f . Thus it suffices to show how to decide the existence
of zeros of these three special forms of exponential polynomial. We will handle all three cases
using Schanuel’s conjecture.

Writing the exponential polynomial f(t) in (5) in the form f(t) =
∑m
j=1 Qj(t)eλjt, it

follows from the irreducibility of P that the polynomials Q1, . . . , Qm have no common root.
But then by the Lindemann-Weierstrass Theorem any zero of f must be transcendental
(see [4, Theorem 8]).

I Theorem 7. The Bounded Continuous Skolem Problem is decidable subject to Schanuel’s
conjecture.

Proof. Consider an exponential polynomial

f(t) = P (t, ea1t, . . . , eart, eib1t, . . . , eibst) , (6)

where P ∈ R is irreducible. Suppose that {a1, . . . , ar} and {ib1, . . . , ibs} are Q-linearly
independent sets of, respectively, real and imaginary numbers lying in the coefficient field
K of R. We show how to decide whether f has a zero in a bounded interval I ⊆ R≥0,
considering separately the case of type-1, type-2, and type-3 exponential polynomials.

Case (i): f is a type-1 exponential polynomial

Note that P and P are coprime in R since, by assumption, they are both irreducible and
are not associates. We claim that in this case the equation f(t) = 0 has no solution t ∈ R.
Indeed f(t) = 0 implies

P (t, ea1t, . . . , eart, eib1t, . . . , eibst) = 0
P (t, ea1t, . . . , eart, eib1t, . . . , eibst) = 0 ,

and the non-existence of a zero of f follows immediately from Proposition 5.

Case (ii): f is a type-2 exponential polynomial

In this case we have P = P and so f is real-valued. Our aim is to use the procedure of
Section 2.1 to determine whether or not f has a zero in [c, d], where c, d ∈ Q. To this
end, notice first that f(c), f(d) 6= 0 since any root of f must be transcendental. Moreover,
since f ′ is bounded on [c, d], f is Lipschitz on [c, d]. It remains to verify that the equations
f(t) = 0, f ′(t) = 0 have no common solution t ∈ [c, d].
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We can write f ′(t) in the form

f ′(t) = Q(t, ea1t, . . . , eart, eib1t, . . . , eibst) ,

where Q is the polynomial

Q = ∂P

∂x
+

r∑
j=1

ajyj
∂P

∂yj
+

s∑
j=1

ibjzj
∂P

∂zj
.

We claim that P and Q are coprime in R. Indeed, since P is irreducible, P and Q can only
fail to be coprime if P divides Q.

If P has strictly positive degree k in x then Q has degree k − 1 in x and thus P cannot
divide Q. (Recall that all polynomials in R have non-negative degree in the variable x.)
On the other hand, if P has degree 0 in x then Q is obtained from P by multiplying each
monomial yuzv appearing in P by the complex-number constant

∑r
j=1 ajuj + i

∑s
j=1 bjvj .

Moreover, by the assumption of linear independence of {a1, . . . , ar} and {b1, . . . , bs}, each
monomial in P is multiplied by a different constant. Since P is not a unit, it has at least two
different monomials and so P is not a constant multiple of Q. Furthermore, for each variable
σ ∈ {yj , y−1

j : 1 ≤ j ≤ r} ∪ {zj , z−1
j : 1 ≤ j ≤ s}, its degree in P is equal to its degree in Q.

Thus P cannot be a multiple of Q by a non-constant polynomial either.
We conclude that P does not divide Q and hence P and Q are coprime. It now follows

from Proposition 5 that the equations f(t) = f ′(t) = 0 have no solution t ∈ R.

Case (iii): f is a type-3 exponential polynomial

Suppose that f is a type-3 exponential polynomial. Then in (6) we have that P = zuP

for some non-zero vector u ∈ Zs. By Proposition 1 we can write P = Q + zuQ for some
polynomial Q ∈ R that is coprime with P .

Now define

g1(t) := Q(t, ea1t, . . . , eart, eib1t, . . . , eibst)

and g2(t) := eib1u1 · · · eibsusg1(t), so that f(t) = g1(t) + g2(t) for all t.
We show that g2(t) 6= 0 for all t ∈ R. Indeed if g2(t) = 0 for some t then we also have

g1(t) = 0 and hence f(t) = 0. For such a t it follows that

P (t, ea1t, . . . , eart, eib1t, . . . , eibst) = 0
Q(t, ea1t, . . . , eart, eib1t, . . . , eibst) = 0 .

But P and Q are coprime and so these two equations cannot both hold by Proposition 5. Not
only do we have g2(t) 6= 0 for all t ∈ R, but, applying the sampling procedure in Section 2.1
we can compute a strictly positive lower bound on |g2(t)| over the interval [c, d].

Since g2(t) 6= 0 for all t ∈ R we may define the function h : [c, d]→ R by

h(t) := π + i log
(
g1(t)
g2(t)

)
.

Notice that h(t) = 0 if and only if f(t) = 0. Our aim is to use the procedure of Section 2.1
to decide the existence of a zero of h in the interval [c, d], and thus decide whether f has a
zero in [c, d].
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Let t ∈ (c, d) be such that h(t) = 0. Then g1(t) = −g2(t) and so g1(t)
g2(t) = −1 does not lie

on the branch cut of the logarithm function. It follows that h is differentiable at t and

h′(t) = 0 iff g2(t)
g1(t)

g′1(t)g2(t)− g′2(t)g1(t)
g2(t)2 = 0

iff g′1(t)g2(t)− g′2(t)g1(t) = 0 (since |g1(t)| = |g2(t)| 6= 0)

iff g′1(t)g2(t) + g′2(t)g2(t) = 0 (since g1(t) = −g2(t))

iff g′1(t) + g′2(t) = 0

iff f ′(t) = 0 .

Thus h(t) = h′(t) = 0 implies f(t) = f ′(t) = 0. But the proof in Case (ii) shows that
f(t) = f ′(t) = 0 is impossible. (Nothing in that argument hinges on f being real-valued.)
Thus h has no tangential zeros in (c, d).

We cannot directly use the procedure in Section 2.1 to decide whether h has a zero in
[c, d] since h is not necessarily continuous: its value can jump from −π to π (or vice versa)
due to the branch cut of the logarithm along the positive real axis. However, due to the
strictly positive lower bound on |g2(t)|, the function |h| is Lipschitz on [c, d]. Thus, applying
the sampling procedure in Section 2.1 for computing lower and upper bounds of Lipschitz
functions we can compute a set E ⊆ [c, d] such that E is a finite union of intervals with
rational endpoints, |f(t)| ≤ 2π

3 for t ∈ E, and |f(t)| ≥ π
3 for t 6∈ E. In particular, E contains

all zeros of f in [c, d] and f is Lipschitz on E. Thus we can apply the zero-finding procedure
from Section 2.1 to the restriction h� E and thereby decide whether h has a zero on [c, d]. J

4 The Unbounded Case

In this section we consider the unbounded case of the Continuous Skolem Problem. For our
analysis it is convenient to present exponential polynomials in the form

f(t) =
n∑
j=1

erjt (P1,j(t) cos(ωjt) + P2,j(t) sin(ωjt)) , (7)

where rj , ωj are real algebraic numbers and P1,j , P2,j are polynomials with real algebraic
coefficients for j = 1, . . . , n. Our aim is to classify the difficulty of the problem in terms of
the number of rationally linear independent frequencies ω1, . . . , ωn.

Recall that in Section 3 we have shown the bounded problem to be decidable subject
to Schanuel’s Conjecture. In the full version of this paper [7] we give a reduction of the
unbounded problem to the bounded problem in case the set of frequencies spans a one-
dimensional vector space over Q. In the present section we give a reduction of the unbounded
problem to the bounded problem in case the set of frequencies spans a two-dimensional
vector space over Q and the polynomials P1,j and P2,j are all constant. (This last condition
is equivalent to the assumption that f(t) is simple.) The argument in the two-dimensional
case is a more sophisticated version of that in the one-dimensional case, although the result
is not more general due the assumption of simplicity.

In the full version [7] we present a family of instances showing that obtaining decidability
of the unbounded problem in the two-dimensional case without the assumption of simplicity
would require much finer Diophantine-approximation bounds than are currently known.
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4.1 Background on Semi-Algebraic Sets
A subset of Rn is semi-algebraic if it is defined by a Boolean combination of constraints
of the form P (x1, . . . , xn) > 0, where P is a polynomial with real algebraic coefficients. A
partial function f : Rn → R is semi-algebraic if its graph is a semi-algebraic subset of Rn+1.
The Tarski-Seidenberg Theorem [5, Section 1] states that the semi-algebraic sets are closed
under projection and are therefore precisely the first-order definable sets over the structure
(R, <,+, ·, 0, 1).

Let (i1, . . . , in) be a sequence of zeros and ones of length n ≥ 1. An (i1, . . . , in)-cell is a
subset of Rn, defined by induction on n as follows:
(i) A (0)-cell is a singleton subset of R and a (1)-cell is an open interval (a, b) ⊆ R.
(ii) Let X ⊆ Rn be a (i1, . . . , in)-cell and f : X → R a continuous semi-algebraic function.

Then {(x, f(x)) ∈ Rn+1 : x ∈ X} is a (i1, . . . , in, 0)-cell, while {(x, y) ∈ Rn+1 : x ∈
X ∧ y < f(x)} and {(x, y) ∈ Rn+1 : x ∈ X ∧ y > f(x)} are both (i1, . . . , in, 1)-cells.

(iii) Let X ⊆ Rn be a (i1, . . . , in)-cell and f, g : X → R continuous semi-algebraic functions
such that f(x) < g(x) for all x ∈ X. Then {(x, y) ∈ Rn+1 : f(x) < y < g(x)} is a
(i1, . . . , in, 1)-cell.

A cell in Rn is a (i1, . . . , in)-cell for some (necessarily unique) sequence (i1, . . . , in).
A fundamental result about semi-algebraic sets, that we will use below, is the Cell-

Decomposition Theorem [3]: given a semi-algebraic set E ⊆ Rn one can compute a partition
of E as a disjoint union of cells E = C1 ∪ . . . ∪ Cm.

We will also need the following result, proved in [7].

I Lemma 8. Let D ⊆ Rn be a semi-algebraic set, g : D → R a bounded semi-algebraic
function, and r1, . . . , rn real algebraic numbers. Define S = {t ∈ R≥0 : (er1t, . . . , ernt) ∈ D}.
Then
1. It is decidable whether or not S is bounded. If S is bounded then we can compute T0 ∈ N

such that S ⊆ [0, T0] and if S is unbounded then we can compute T0 ∈ N such that
(T0,∞) ⊆ S.

2. If S is unbounded then the limit g∗ = limt→∞ g(er1t, . . . , ernt) exists, is an algebraic
number, and there are effective constants T1, ε > 0 such that |g(er1t, . . . , ernt)−g∗| < e−εt

for all t > T1.

4.2 Two Linearly Independent Frequencies
The following lemma, which is a reformulation of [4, Lemma 13], plays an instrumental role
in this section. The lemma itself relies on a powerful quantitative result in transcendence
theory – Baker’s Theorem on linear forms in logarithms of algebraic numbers [2].

I Lemma 9. Let b1, b2 be real algebraic numbers, linearly independent over Q. Furthermore,
let ϕ1, ϕ2 be real numbers such that eiϕ1 and eiϕ2 are algebraic. Then there exist effectively
computable constants N,T > 0 such that for all t ≥ T and all k1, k2 ∈ Z, at least one of
|b1t− ϕ1 − 2k1π| > 1/tN and |b2t− ϕ2 − 2k2π| > 1/tN holds.

The main result of the section is the following.

I Theorem 10. Let f(t) =
∑n
j=1 e

rjt (a1,j cos(ωjt) + a2,j sin(ωjt)) be an exponential poly-
nomial where rj , a1,j , a2,j , ωj are real algebraic numbers and the Q-span of {ω1, . . . , ωn} has
dimension two as a Q-vector space. Then we can decide whether or not {t ∈ R≥0 : f(t) = 0} is
bounded and, if bounded, we can compute an integer T such that {t ∈ R≥0 : f(t) = 0} ⊆ [0, T ].
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Proof. Let b1, b2 be real algebraic numbers, linearly independent over Q, such that ωj is
an integer linear combination of b1 and b2 for j = 1, . . . , n. For each n ∈ Z, sin(nb1t) and
cos(nb1t) can be written as polynomials in sin(b1t) and cos(b1t) with integer coefficients, and
similarly for b2. It follows that we can write f in the form

f(t) = Q(er1t, . . . , ernt, cos(b1t), sin(b1t), cos(b2t), sin(b2t))

for some polynomial Q with real algebraic coefficients that is computable from f .
Write R++ = {t ≥ 0 : sin(b1t) ≥ 0∧sin(b2t) ≥ 0}, R+− = {t ≥ 0 : sin(b1t) ≥ 0∧sin(b2t) ≤

0}, and likewise define R−+, R−− for the two remaining sign conditions on sin(b1t) and
sin(b2t). We show how to decide boundedness of {t ∈ R++ : f(t) = 0}. (The cases for
R+−, R−+, and R−− follow mutatis mutandis.) The idea is to compute a partition of
{t ∈ R++ : f(t) = 0} into components Z1, . . . , Zm and to separately decide boundedness of
each component Zj .

Define a semi-algebraic set

E =
{

(u, x1, x2) ∈ Rn+2 : ∃y1, y2 ≥ 0
(
x2

1 + y2
1 = x2

2 + y2
2 = 1 ∧Q(u, x1, y1, x2, y2) = 0

) }
.

Then for t ∈ R++ we have f(t) = 0 if and only if (ert, cos(b1t), cos(b2t)) ∈ E, where r =
(r1, . . . , rn). Now consider a cell decomposition E = C1∪. . .∪Cm for cells C1, . . . , Cm ⊆ Rn+2,
and define

Zj = {t ∈ R++ : (ert, cos(b1t), cos(b2t)) ∈ Cj} , j = 1, . . . ,m, (8)

Then {t ∈ R++ : f(t) = 0} = Z1 ∪ . . . ∪ Zm.
Now fix j ∈ {1, . . . ,m}. We show how to decide boundedness of Zj . To this end, write

Dj ⊆ Rn for the projection of the corresponding cell Cj ⊆ Rn+2 on the first n coordinates.
First suppose that {t ∈ R : ert ∈ Dj} is bounded. Then by Lemma 8 we can compute an

upper bound T of this set. But Zj ⊆ {t ∈ R≥0 : ert ∈ Dj} and so Zj ⊆ [0, T ].
On the other hand, suppose that {t ∈ R : ert ∈ Dj} is unbounded. Then, by Lemma 8,

this set contains an unbounded interval (T,∞) for some T ∈ N. Write I = [−1, 1] and define
functions g1, g2, h1, h2 : Dj → R by

g1(u) = inf{x ∈ I : ∃y (u, x, y) ∈ Cj} g2(u) = inf{y ∈ I : ∃x (u, x, y) ∈ Cj} (9)
h1(u) = sup{x ∈ I : ∃y (u, x, y) ∈ Cj} h2(u) = sup{y ∈ I : ∃x (u, x, y) ∈ Cj} (10)

These functions are all semi-algebraic by quantifier elimination. Hence by Lemma 8 the
limits g∗i = limt→∞ gi(ert) and h∗i = limt→∞ hi(ert) exist for i = 1, 2 and are algebraic
numbers. Clearly we have g∗1 ≤ h∗1 and g∗2 ≤ h∗2. We now consider three cases according to
the strictness of these inequalities.

Case I: g∗
1 = h∗

1 and g∗
2 = h∗

2

We show that Zj is bounded and that we can compute T2 such that Zj ⊆ [0, T2].
By Lemma 8 there exist T1, ε > 0 such that for all t > T1 and i = 1, 2,

|gi(ert)− g∗i | < e−εt and |hi(ert)− h∗i | < e−εt . (11)

Then for t ∈ R++ such that t > T1 we have

t ∈ Zj ⇐⇒
(
ert, cos(b1t), cos(b2t)

)
∈ Cj (by (8))

=⇒ g1(ert) ≤ cos(b1t) ≤ h1(ert) and g2(ert) ≤ cos(b2t) ≤ h2(ert) (by (9)(10))
=⇒ |cos(b1t)− g∗1 | < e−εt and |cos(b2t)− g∗2 | < e−εt (by (11)) (12)
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Write g∗1 = cos(ϕ1) and g∗2 = cos(ϕ2) for some ϕ1, ϕ2 ∈ [0, π]. Since | cos(ϕ1 + x) −
cos(ϕ1)| ≥ x3/3 for all x sufficiently small (by a Taylor expansion), the inequality (12) implies
that for some k1, k2 ∈ Z,

|b1t− ϕ1 − 2k1π| < 3e−εt/3 and |b2t− ϕ2 − 2k2π| < 3e−εt/3 . (13)

Combining the upper bounds in (13) with the polynomial lower bounds |b1t− ϕ1 − 2k1π| >
1/tN and |b2t−ϕ2 − 2k2π| > 1/tN from Lemma 9 we obtain an effective bound T2 for which
t ∈ Zj implies t < T2.

Case II: g∗
1 < h∗

1

In this case we show that Zj is unbounded. The geometric intuition is as follows. We imagine
a particle in the plane whose position at time t is (cos(b1t), cos(b2t)), together with a “moving
target” whose extent at time t is Γt = {(x, y) : (ert, x, y) ∈ Cj}. Below we essentially argue
that such a particle is bound to hit Γt at some time t since its orbit is dense in [−1,+1]2
and Γt has positive dimension in the limit.

Proceeding formally, first notice that Cj cannot be a (. . . , 0, 1)-cell or a (. . . , 0, 0)-cell,
for then we would have g1(u) = h1(u) for all u ∈ Dj and hence g∗1 = h∗1. Thus Cj must
either be a (. . . , 1, 0)-cell or a (. . . , 1, 1)-cell. In either case, Cj includes a cell of the form
{(u, x, ξ(u, x)) : u ∈ D, g1(u) < x < h1(u)} for some semi-algebraic function ξ.

Let c, d be real algebraic numbers such that g∗1 < c < d < h∗1. Write c = cos(ψ′) and
d = cos(ψ) for 0 ≤ ψ < ψ′ ≤ π. By Lemma 8 the limits limt→∞ ξ(ert, c) and limt→∞ ξ(ert, d)
exist and are algebraic numbers in the interval [−1, 1]. Let θ, θ′ ∈ [0, π] be such that
cos(θ) = limt→∞ ξ(ert, d) and cos(θ′) = limt→∞ ξ(ert, c).

By Corollary 3 we know that θ′−θ
ψ′−ψ is either rational or transcendental. In particular

we know that it is not equal to b2
b1
, which is algebraic and irrational. Let us suppose that

θ′−θ
ψ′−ψ > b2

b1
(the converse case is almost identical). Then there exists θ′′ with θ < θ′′ < θ′,

such that

θ < θ′′ + b2

b1
(ψ′ − ψ) < θ′ . (14)

Since 2π, b1, b2 are linearly independent over Q it follows from Kronecker’s approximation
theorem that {(b1t, b2t) mod 2π : t ∈ R≥0} is dense in [0, 2π)2 (see [13, Chapter 23]). Thus
there is an increasing sequence t1 < t2 < . . ., with b1tn ≡ ψ mod 2π for all n, such that
b2tn mod 2π converges to θ′′. Then, defining s1 < s2 < . . . by sn = tn + ψ′−ψ

b1
, we have

b1sn ≡ ψ′ mod 2π for all n and, by (14),

lim
n→∞

b2sn = lim
n→∞

b2tn + b2

b1
(ψ′ − ψ) = θ′′ + b2

b1
(ψ′ − ψ) < θ′ (mod 2π) .

Let η(t) = ξ(ert, cos(b1t)) − cos(b2t). Then for t ∈ R++ such that g(ert) < cos(b1t) <
h(ert),

η(t) = 0 =⇒ cos(b2t) = ξ(ert, cos(b1t))
=⇒ (ert, cos(b1t), cos(b2t)) ∈ Cj
=⇒ t ∈ Zj (by (8)) .

Now limn→∞ η(tn) = cos(θ) − cos(θ′′) > 0 and limn→∞ η(sn) < cos(θ′) − cos(θ′) = 0.
Moreover for n sufficiently large we have [tn, sn] ⊆ R++. It follows that η(t) has a zero in
every interval [tn, sn] for n large enough. We conclude that Zj is unbounded.



V. Chonev, J. Ouaknine, and J. Worrell 100:13

Case III: g∗
2 < h∗

2

This case is symmetric to Case II and we omit details. J
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Abstract
In 2007, Abdulla et al. introduced the elegant concept of decisive Markov chain. Intuitively, de-
cisiveness allows one to lift the good properties of finite Markov chains to infinite Markov chains.
For instance, the approximate quantitative reachability problem can be solved for decisive Markov
chains (enjoying reasonable effectiveness assumptions) including probabilistic lossy channel sys-
tems and probabilistic vector addition systems with states. In this paper, we extend the concept
of decisiveness to more general stochastic processes. This extension is non trivial as we consider
stochastic processes with a potentially continuous set of states and uncountable branching (com-
mon features of real-time stochastic processes). This allows us to obtain decidability results for
both qualitative and quantitative verification problems on some classes of real-time stochastic
processes, including generalized semi-Markov processes and stochastic timed automata.
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1 Introduction

Given its success for finite-state systems, the model checking approach to verification has
been extended to various models based on automata, and including features such as time,
probability and infinite data structures. Such models allow one to represent software systems
more faithfully, and at the same time, they offer the possibility to consider quantitative
verification questions. Such problems become particularly hard to solve for infinite-state
systems, often requiring the development of dedicated techniques for each class of systems.

A decade ago, Abdulla et al. introduced the concept of decisiveness for denumerable
Markov chains [2]. A Markov chain is decisive w.r.t. a set of states F if runs almost-surely
reach F or a state from which F can no longer be reached. The concept of decisiveness rules
out some weird behaviours in denumerable Markov chains, and lifts most good properties
of finite Markov chains to infinite Markov chains. In particular, it enables the quantitative
model checking of (repeated) reachability properties, by providing an approximation scheme,
which is guaranteed to terminate for decisive Markov chains. Decisiveness also elegantly
subsumes other concepts such as the existence of finite attractors, or coarseness [2].
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Dense time required for representing real-time systems, is a potential source of infinity.
However, stochastic real-time systems cannot be handled by the theory of decisive Markov
chains, as both the state space and the branching are in general non-denumerable. The
general philosophy for models with dense time is to design an abstraction that preserves some
properties of the original model, and is amenable to efficient model checking techniques. A
prominent example of such abstractions is the region graph for timed automata [4]. However,
abstractions often do not preserve quantitative properties, and they may be too coarse
already for the evaluation of the probability of properties as simple as reachability properties.

In this paper, we generalize the concept of decisiveness to arbitrary stochastic systems,
thus including the ones generated by real-time stochastic systems. While stochastic systems
are often viewed operational in the model checking community (that is, one considers
executions of a system), we take here a more abstract point-of-view, and consider the general
mathematical model of stochastic processes.

Our first contribution is to define a notion of decisiveness for stochastic processes,
generalizing the concept introduced by Abdulla et al. for denumerable Markov chains. This
generalization is non trivial as we consider stochastic processes with a potentially continuous
state space and uncountable branching, both being common features for modelling real-time
stochastic processes. Moreover, in order to discriminate which verification techniques are
sound, we refine the notion of decisiveness in three variants.

Our second contribution concerns the qualitative model checking of reachability and
repeated reachability properties. We show that, under some decisiveness assumption, the
almost-sure model checking of (repeated) reachability properties reduces to a simpler problem,
namely to a reachability problem with probability 0. We advocate that this reduction
simplifies the problem: in countable models, the 0-reachability amounts to the non existence
of a path, in the underlying non-probabilistic system; beyond countable models, checking
that a reachability property is satisfied with 0 probability amounts to exhibiting a somehow
regular set of executions with positive measure.

A third contribution concerns quantitative model checking, here again for (repeated)
reachability properties. Under some further decisiveness assumption, we prove that an
approximation scheme, inspired from the path enumeration algorithm [17], is guaranteed to
terminate. One can thus approximate, up to a desired precision, the probability of (repeated)
reachability properties.

We then realize that non-Zeno real-time stochastic processes have good decisiveness prop-
erties when focusing on time-bounded reachability properties, which enables the evaluation
of such properties within arbitrary precision.

Last, but not least, we introduce a generic notion of abstraction and explain how to
derive decisiveness of the concrete model, using similar properties on the abstraction. We
instantiate our framework with generalized semi-Markov processes (GSMP) and stochastic
timed automata (STA), two models combining dense-time and probabilities. While the
decidability of the qualitative model-checking was already known for STA [9], the current
approach yields general approximation results for the quantitative model-checking, which
were not known before.

2 Preliminaries

2.1 Stochastic processes
Let (Ω,Σ,P) be a probabilistic space, that is, Ω is a set called the universe, Σ is a σ-algebra,
and P is a probability measure over (Ω,Σ). Let (S,Σ′) be a measurable space. A stochastic
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process over (Ω,Σ,P) and (S,Σ′) is a sequence X = (Xi)i≥0 of random variables, where
Xi : Ω→ S is a measurable function. Note that we do not assume stochastic processes are
homogeneous or discrete.

Let X = (Xi)i≥0 be a stochastic process. Given B a measurable set of S (that is, B ∈ Σ′),
we will abuse notation and write B for the uniform sequence (Bi)i∈N such that Bi = B for
every i ≥ 0. Given B a measurable set of S, we will sometimes write Xi ∈ B for the event
X−1
i (B), and when B is a singleton {q}, we might even write Xi = q.
We fix for the rest of the paper a universe (Ω,Σ,P), and a measurable space (S,Σ′).

I Example 1. Let us give an example of a discrete stochastic process representing a random
walk over the state space S = {qn | n ∈ {−1} ∪ N}. The stochastic process X is defined by

P(X−1
0 (q0)) = 1; ∀i ≥ 0 P(X−1

i+1(q−1) | X−1
i (q−1)) = 1;

∀i ≥ 0, ∀n ∈ N P(X−1
i+1(qn+1) | X−1

i (qn))) = 3
4 and P(X−1

i+1(qn−1) | X−1
i (qn))) = 1

4 .
It should be noted that we do not mention the universe Ω. It is always possible to construct
a universe that has such a probability measure P, so that it is irrelevant to introduce it
(see [14]). This remark holds true in each example of the paper.

I Example 2. Another example, is the following non-Markovian stochastic process X over
the state space S = {q0, q

′
0, q1, q

′
1}:

P(X0 = q0) = P(X0 = q′0) = 1
2 ; ∀i ≥ 1, P(Xi = q′1 | X0 = q′0) = 1;

P(X1 = q1 | X0 = q0) = λ1 and P(X1 = q′1 | X0 = q0) = 1− λ1;
∀i ≥ 1, P(Xi+1 = q1 | Xi = q1, X0 = q0) = P(Xi+1 = q1 | Xi = q′1, X0 = q0) = λi;
∀i ≥ 1, P(Xi+1 = q′1 | Xi = q1, X0 = q0) = P(Xi+1 = q′1 | Xi = q′1, X0 = q0) = 1− λi;

where (λi)i∈N is a sequence of reals in [0, 1]. Note that X could be made Markovian by
changing the state space, with one bit of memory to remember the initial state.

Real-time stochastic processes. A particular class of stochastic processes will be of interest
to us, namely real-time stochastic processes, in which the time evolution is important. We
define (St,Σt) as the measurable space defined by St = S×R+, and where Σt is the σ-algebra
generated by Σ′ and the Borel sets of R+ (denoted B(R+)). A real-time stochastic process
over (S,Σ) is a stochastic process Z = (Zi)i≥0 over (St,Σt) such that:

for every i ≥ 0, Zi = (Xi, τi), where Xi : Ω→ S and τi : Ω→ R+ are random variables;
for each i ≥ 0, P

(
{ω ∈ Ω | τi(ω) < τi+1(ω)}

)
= 1.

The process X = (Xi)i≥0 somehow represents the spatial behaviour of the system, while the
process τ = (τi)i≥0 gives the time evolution of the system. The second condition ensures
that time almost-surely progresses. We will say that Z is almost-surely non-Zeno whenever

P
(
{ω ∈ Ω | (τi(ω))i≥0 is bounded}

)
= 0.

In Section 5.3, we will see two classes of models that naturally fit into the framework of
real-time stochastic processes. We can already mention here continuous-time Markov chains
(we can find many examples of applications in [15]), or queuing systems (see below).

I Example 3. We consider a G/G/1-queue (of infinite capacity). A state of such a queue
consists in the number of tasks waiting in the queue, the time delay since the last arrival
in the queue (ta) and the time delay since the last execution (te). Task arrivals follow a
probability measure Fa, and task services are performed according to probability measure
Fe. If at some point, the process is in state (n, ta, te), the next arrival time in the queue is
chosen according to Fa|ta and the next execution time is chosen according to Fe|te where
Fa|ta (resp. Fe|te) corresponds to the probability Fa (resp. Fe) given that at least ta (resp.

ICALP 2016



101:4 Analysing Decisive Stochastic Processes

te) has elapsed. This induces a stochastic process X = (Xi)i∈N where Xi is the state of the
queue after i steps. To turn it into a real-time stochastic process, one simply adds global
time τ giving at step i the amount of time spent since the beginning.

I Remark. Real-time stochastic processes as defined above are discrete-time stochastic
processes (if we follow standard vocabulary), since the random variables are indexed by
N. However they abstract real-time continuous behaviours by giving relevant snapshots of
the system (at all times given by the τi’s). Such abstractions are used for instance in [18,
Theorem 1] for abstracting continuous-space pure jump Markov processes while keeping
relevant information on the process. We will see in Section 5.3 that these processes capture
behaviours of intrinsically time continuous systems.

Events. A stochastic process X over (Ω,Σ,P) and (S,Σ′) allows one to define various events
expressed using LTL-like notations. Let LS,Σ′ be the set of formulas defined by the grammar:
ϕ ::= BU./nB

′ | G FB | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ¬ϕ, where B = (Bi)i≥0 and B′ = (B′i)i≥0 are
sequences of measurable subsets of S, ./ ∈ {≥,≤,=} is a comparison operator and n ∈ N is
an integer. The semantics of formulas in LS,Σ′ in terms of events is defined inductively:

EvX(BU ./nB
′) =

⋃
i./n

(
X−1
i (B′i) ∩

⋂
0≤j<i

X−1
j (Bj)

)
; EvX(G FB) =

⋂
i≥0

⋃
j≥i

X−1
j (Bj) ;

EvX(ϕ1 ∨ ϕ2) = EvX(ϕ1) ∪ EvX(ϕ2) ; EvX(ϕ1 ∧ ϕ2) = EvX(ϕ1) ∩ EvX(ϕ2) ;
EvX(¬ϕ) = Ω \ EvX(ϕ).

Note that all these events are measurable in Ω. Following the intuition behind the LTL
notations, event EvX(BU ./nB

′) means that the stochastic process X will eventually satisfy
B′ (within step constraint ./ n), and only visit B beforehand. Also, the intuition of G FB

is that B should be visited infinitely often. We use classical shorthands: > = (S)i≥0;
⊥ = (∅)i≥0; BUB′ = BU ≥0B

′; FB = >UB; F ./nB = >U ./nB; GB = ¬F (¬B),
where ¬B = (S \Bi)i≥0.

2.2 Decisiveness
Abdulla et al. originally defined a denumerable Markov chain to be decisive w.r.t. a set
of states F if its runs almost-surely reach F or a state from which F can no longer be
reached [2]. In order to extend the concept of decisiveness to general stochastic processes,
we first provide an analogue to the set of states from which F is not reachable.

I Definition 4. Let B,B′ be sequences of measurable sets of S. B′ is a B-avoidance sequence
for the stochastic process X if it satisfies

∀n ≥ 0, P
(
EvX(F=nB

′ ∧ F≥nB)
)

= 0. (1)

Intuitively, B′ corresponds to ‘states’ from which B is almost-surely avoided (due to non-
homogeneity of X, it needs to be defined as a sequence by slices).
I Remark. For every sequence B, (∅)i≥0 is a B-avoidance sequence for X. One can also
check that B-avoidance sequences are closed under denumerable unions and intersections.

I Example 5. Let us illustrate the notion of avoidance sequences on the stochastic processes
from Examples 1 and 2. In Example 1, we consider the uniform sequence B = {q5}. It
can be shown that the set of B-avoidance sequences corresponds to all sequences B′ with
B′i ⊆ {q−1}. In Example 2, the following sequence defines a B-avoidance set for B = {q1}:
B′0 = {q′0} and for every n ≥ 1, B′n = ∅.
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For the rest of the section, we fix a stochastic process X = (Xi)i≥0 with Xi : Ω → S.
Several notions of decisiveness were proposed for discrete-time and implicitly denumerable
Markov chains [2]. In this paper, we define three notions of decisiveness, adapting and
refining the ones of [2] to general stochastic processes.

I Definition 6. Let B be a sequence of measurable sets in S and let B′ be a B-avoidance
sequence for X. We say that the stochastic process X is

initially decisive (ID) w.r.t. B with witness B′ if P(EvX(FB ∨ FB′)) = 1
initially strongly decisive (ISD) w.r.t. B with witness B′ if P(EvX(G FB ∨ FB′)) = 1
persistently decisive (PD) w.r.t.B with witness B′ if ∀n ≥ 0, P

(
EvX(F≥nB∨F≥nB′)

)
= 1.

We will then say that X is ID (resp. ISD, PD) w.r.t. B whenever there is some B-avoidance
sequence B′ such that X is ID (resp. ISD, PD) w.r.t. B with witness B′.

I Remark. Note that X might be ID (resp. ISD, PD) w.r.t. B for some witness B′, but not
for some other B-avoidance sequence B′′. However if B′ ⊆ B′′ and X is ID (resp. ISD, PD)
w.r.t. B with witness B′, then it is also decisive w.r.t. B with witness B′′: the larger (for the
inclusion) is the B-avoidance sequence, the better it is for decisiveness properties.

We can establish a relationship between the three decisiveness notions.

I Lemma 7. Let B be a sequence of measurable sets in S and let B′ be a B-avoidance
sequence for X. X is PD w.r.t. B with witness B′ implies that X is ISD w.r.t. B with witness
B′, which, in turns, implies that X is ID w.r.t. B with witness B′. Moreover, the converse
implications do not hold.

Example 1 shows that initial decisiveness and initial strong decisiveness are not equivalent
(take B = {q5}), and Example 2 shows the non-equivalence of initial strong decisiveness and
persistent decisiveness (take λi = 1

2 for every i ∈ N, and B = {q1}).
In the sequel, we will write B′ for an arbitrary B-avoidance sequence for X. However,

whenever X is ID (resp. ISD, PD) w.r.t. B with some witness B′, we will choose an arbitrary
witness and write it Avdec(B) (resp. Avstr(B), Av(B)). When they exist, it is then possible
to recursively define B′- (resp. Avdec(B)-, Avstr(B)- and Av(B)-)avoidance sequences for X:
those are then order-two avoidance sequences for B, which record states from which one
avoids states, from which states in B are avoided! The previous notations extend in the same
way for these order-two avoidance sequences.

I Example 8. Back to Example 2, for B = {q1}, we saw that B′ defined by B′0 = {q′0} and
B′i = ∅ for each i ≥ 1, is a B-avoidance sequence for X. Then, we can define a B′-avoidance
sequence for X as follows: B′′0 = {q0, q1, q

′
1} and for each i ≥ 1, B′′i = {q0, q1, q

′
0, q
′
1}. In fact,

we can show that all B′-avoidance sequences are the sequences included in B′′.

3 Analysis of decisive stochastic processes

In this section we show how decisiveness properties can help analysing stochastic processes.
In the first part, we focus on qualitative (that is, probability 0 or 1) reachability and repeated
reachability properties, and we reduce all the corresponding model-checking questions to
checking that some reachability property has probability 0. While this could be reduced
to graph properties in [2], this is not the case here, since our models might have infinite
non-denumerable branching. When we will apply these results in Subsection 5.3, models will
have good properties allowing to solve the 0-probability properties of reachability properties.
In the two next parts, we will use decisiveness properties to draw general procedures for
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computing (arbitrary) approximations of the probability of a (repeated) reachability property.
Effectiveness of these procedures will of course rely on good effectiveness properties of the
models that we want to analyze.

3.1 Qualitative reachability and repeated reachability
We aim at describing a procedure for checking the almost-sure satisfiability of a reachability
(resp. a repeated reachability) property, that is, an event of the form FB (resp. G FB),
where B is a sequence of measurable sets. We fix B′ a B-avoidance sequence, and we recall
the notations Avdec(B), Avstr(B) and Av(B) for such sequences when X is ID, resp. ISD, resp.
PD w.r.t. B.

I Proposition 9.
If P(EvX(FB)) = 1, then P(EvX(¬BUB′)) = 0.
If X is ID w.r.t. B and P(EvX(¬BU Avdec(B))) = 0, then P(EvX(FB)) = 1.

Under an initial decisiveness assumption, this reduces the almost-sure model-checking of
reachability properties to checking that some kind of (constrained) reachability property is
satisfied with probability 0. Note that, contrary to the case of discrete-time denumerable
Markov chains, we cannot reduce to graph properties, yet we advocate that for reachability
properties, checking whether the probability is 0, is simpler than checking whether it is 1.
We will see in Subsection 5.3 how this can be exploited on specific examples.

Turning to almost-sure repeated reachability, one can show the following proposition:

I Proposition 10.
If P(EvX(G FB)) = 1, then P(EvX(FB′)) = 0;
If X is ISD w.r.t. B and P(EvX(F Avstr(B))) = 0, then P(EvX(G FB)) = 1.

Under an initial strong decisiveness assumption, this reduces the almost-sure model-
checking of a repeated reachability property to the 0-model-checking of some reachability
property.

Concerning the positive model-checking of repeated reachability properties, one can show:

I Proposition 11.
If X is PD w.r.t. B and ID w.r.t. Av(B), and if P

(
EvX(G FB)

)
> 0, then

P
(
EvX(F Avdec(Av(B)))

)
> 0;

If X is PD w.r.t B and P
(
EvX(F Av(B)′)

)
> 0, then P

(
EvX(G FB)

)
> 0.

Note that the existence of a witness B′ such that X is PD w.r.t. B does not imply the
existence of a witness such that X is ID w.r.t. B′.

3.2 Quantitative reachability
We assume B is a sequence of measurable sets of S and B′ is a B-avoidance sequence. We
define the two following sequences (n ∈ N):{

pYes
n = P

(
EvX(F≤nB)

)
pNo
n = P

(
EvX(¬BU≤nB′)

)
The next proposition gives straightforward properties of these two sequences.

I Proposition 12. The sequences (pYes
n )n≥0 and (pNo

n )n≥0 are non-decreasing and converge
respectively to P(EvX(FB)) and P(EvX(¬BUB′)).
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I Corollary 13. If X is ID w.r.t. B and B′ = Avdec(B), then limn→∞ pYes
n + pNo

n = 1.

Corollary 13 can be used to derive an approximation scheme to evaluate the probability
of reachability properties in ID stochastic processes. Indeed, given a fixed error bound ε > 0,
in order to compute P(EvX(FB)) up to ε, one only needs to iteratively compute the values
pYes
n and pNo

n until 1 − pYes
n − pNo

n ≤ ε to deduce that P(EvX(FB)) − pYes
n ≤ ε. In case pYes

n

and pNo
n cannot be computed exactly, but can only be approximated up to any desired error

bound, this scheme can be refined to obtain a 2ε-approximation for P(EvX(FB)).
I Remark. Note that the quality of the above approximation scheme depends on the choice
of the sequence Avdec(B): the larger Avdec(B), the faster convergence. Intuitively, Avdec(B)
permits to stop the exploration when the reachability goal can no longer be satisfied, hence
the sooner the better.

3.3 Quantitative repeated reachability
We assume B is a sequence of measurable sets of S, B′ is a B-avoidance sequence, and B′′ is
a B′-avoidance sequence. We define the two following sequences (n ∈ N):{

qYes
n = P

(
EvX(¬B′U≤nB′′)

)
qNo
n = P

(
EvX(¬B′′U≤nB′)

)
I Proposition 14. The sequences (qYes

n )n≥0 and (qNo
n )n≥0 are non-decreasing and converge

respectively to P
(
EvX(¬B′UB′′)

)
and P

(
EvX(¬B′′UB′)

)
.

I Proposition 15. If X is PD w.r.t. B (with witness B′ = Av(B)) and ID w.r.t. Av(B) (with
witness B′′ = Avdec(Av(B))), then the two sequences (qYes

n )n≥0 and (1− qNo
n )n≥0 are adjacent

and converge to P(EvX(G FB)).

Here again, the convergence of the two adjacent sequences can be used to derive an
approximation scheme for P(EvX(G FB)) in PD stochastic processes.

Note that the persistent decisiveness property is required for the approximation scheme to
be correct: consider again Example 2 and assume the sequence (λi)i∈N satisfies

∏
i∈N(1−λi) >

0. Under that hypothesis, one can show that P(EvX(G FB)) < 1
2 . On the other hand,

whatever the choice of the avoidance sequences, we never get that the two sequences (qYes
n )n≥0

and (1− qNo
n )n≥0 converge to that value.

4 Time-bounded reachability in real-time stochastic processes

In this section, we explain how to use decisiveness towards the quantitative analysis of
time-bounded reachability (or safety) properties for real-time stochastic processes.

We fix (St,Σt) the measurable space for real-time stochastic processes we will consider.
For ∆ ∈ R+ a time bound and B a sequence of measurable sets of St, we define the sequence
B ∩ (t ≤ ∆) by: (B ∩ (t ≤ ∆))i = {(s, τ) ∈ Bi | τ ≤ ∆}. B ∩ (t ≤ ∆) is thus the restriction
of B in which the time component is bounded by ∆.

First, decisiveness w.r.t. a sequence B propagates to its time-bounded restriction:

I Proposition 16. Let Z = (Xi, τi)i≥0 be a real-time stochastic process, B be a sequence of
measurable sets of St, and ∆ be a time bound. If Z is ID, resp. ISD, resp. PD w.r.t. B, then
Z is ID, resp. ISD, resp. PD w.r.t. B ∩ (t ≤ ∆).

More importantly, non-Zeno real-time stochastic processes are PD w.r.t. time-bounded
sequences:
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I Theorem 17. Let Z = (Xi, τi)i≥0 be a real-time stochastic process, let B be a sequence of
measurable sets, and let ∆ ∈ R+ be a time bound. If Z is almost-surely non-Zeno, then Z is
PD w.r.t. any time-bounded sequence B ∩ (t ≤ ∆).

The main argument to establish this theorem is that, assuming almost-sure non-Zenoness,
the sequence defined by t > ∆ is a (B ∩ (t ≤ ∆))-avoidance sequence for every B.

The almost-sure non-Zenoness hypothesis is standard and a desirable property of a
system, and it expresses that the system should not have infinitely many discrete changes in a
bounded amount of time. This assumption is satisfied by continuous-time Markov chains [6],
and is easily enforced in many other models, such as continuous-time Markov processes with
bounded transition rates [12], or continuous-space pure jump Markov processes (cPJMPs)
assuming a non-explosive property [18].

This result then implies that for all these systems, if B is simple enough (like a uniform
sequence of sets), provided one can compute (or approximate) the probability in n steps to
reach some set of states, one can approximate the probability of satisfying a time-bounded
reachability or safety property. This allows us to partly recover the result for cPJMPs [18,
Theorem 3] which was established in a more analytical way.

In its generality, our approximation scheme does not provide any convergence rate, but for
stochastic processes for which we can have an upper bound on the probability of completing
at least n discrete changes within ∆ time units, we will be able to compute a convergence
rate for the various schemes. For instance for continuous-time (denumerable) Markov chains
whose transition rates are upper-bounded by Λ, that probability can be bounded using a
Poisson process of rate Λ.

5 Effectivity through abstraction

Proving decisiveness of general stochastic processes can be a hard task, in particular when
their state-space is continuous. Decidability results in this context are often obtained through
discrete abstractions. Therefore, in order to analyze the decisiveness of such stochastic
processes, we propose to rely on an abstraction. More precisely, we give in this section
sufficient conditions on an abstraction to ensure decisiveness of the original stochastic process.
The qualitative verification algorithms and quantitative approximation schemes can then
be applied to the concrete model. Note that, in general, the abstractions we propose only
preserve qualitative properties, so that approximation schemes should be applied to the
concrete model, not to the abstraction.

We then explain how this methodology can be applied to two classes of real-time stochastic
processes, namely the ones generated by generalized semi-Markov processes and by stochastic
timed automata. These models can be abstracted into discrete-time Markov chains while
preserving the almost-sure satisfaction of reachability properties; this allows us to derive
good decisiveness properties of the original models, and thus to infer approximation schemes.

5.1 Decisiveness for homogeneous denumerable Markov chains
Let us recall some basics of Markov chains. A denumerable Markov chain (MC, for short)
is a stochastic process Y = (Yi)i≥0 with a denumerable state space T and which has the
Markov property: for every n ≥ 0, for all t, t0, t1, . . . , tn ∈ T , as soon as P(

∧n
i=0 Yi = ti) > 0,

then P(Yn+1 = t |
∧n
i=0 Yi = ti) = P(Yn+1 = t | Yn = tn). The MC is homogeneous if

for every n and for all t, t′ ∈ T , P(Yn+1 = t′ | Yn = t) = P(Yn = t′ | Yn−1 = t). In that
case, the Markov chain is generated by a transition matrix pY : T × T → [0, 1] such that
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for every t ∈ T ,
∑
t′∈T pY (t, t′) = 1 and for every n ≥ 0, pY (t, t′) = P(Yn+1 = t′ | Yn = t).

Under the condition that Y is homogeneous, one can simply define runs generated by Y .
Precisely, a sequence t0, t1, · · · , tn is a run, denoted t0 → t1 · · · → tn if pY (ti, ti+1) > 0 for
every 0 ≤ i < n; n is then the length of the run, and we write t→∗ S as soon as there exists
a state t′ ∈ S ⊆ T and a run t = t0 → t1 · · · → tk = t′.

Let us first explain how to characterize our various notions of decisiveness in the case
of homogeneous MCs, and how they compare to the decisiveness of [2]. For every subset of
states C ⊆ T , borrowing notations from [2], we let C̃ = {t ∈ T | t 6→∗ C}. State t0 ∈ T is an
initial state of Y if PY (Y0 = t0) > 0, and Y is said initialized at t0 whenever t0 is the unique
initial state, that is PY (Y0 = t0) = 1. If Y is a homogeneous MC, we write Y [t] for the MC
initialized at t, with transition matrix pY .

I Lemma 18. Let Y be a homogeneous MC. For every C, C̃ is a C-avoidance uniform
sequence for Y . Moreover, it is maximal for the inclusion.

The maximality property stated above allows to check decisiveness properties only with the
witness C̃: if Y is decisive with witness B′, since B′ ⊆ C̃, it will also be decisive with witness
C̃. Recovering partly the original definitions of [2], we obtain the following characterization
of our three notions of decisiveness:

I Corollary 19. Let Y be a homogeneous MC, and C a set of states. Then:
1. Y is ID w.r.t. C iff PY

(
EvY (F C ∨ F C̃)

)
= 1;

2. Y is ISD w.r.t. C iff PY
(
EvY (G F C ∨ F C̃)

)
= 1;

3. Y is PD w.r.t. C iff for every p ≥ 0, PY
(
EvY (F≥p C ∨ F≥p C̃)

)
= 1 iff for every state t

reachable from an initial state, Y [t] is ID w.r.t. C.

The third characterization implies that the decisiveness notion of [2] corresponds to our
persistent decisiveness notion, in the case of homogeneous MCs.

Contrary to the case of general stochastic processes, initial strong decisiveness and
persistent decisiveness coincide for homogeneous MCs (we recover here [2, Lemma 3.2]).

I Lemma 20. Let Y be a homogeneous MC, and C a set of states. Then, Y ISD w.r.t. C
iff Y is PD w.r.t. C.

Note though that, even in this restricted context, initial decisiveness is not equivalent to
initial strong decisiveness (recall Example 5). Finally, as already noticed in [2]:

I Lemma 21. Let Y be a finite homogeneous MC, and C a set of states. Then, Y is PD
w.r.t. C.

5.2 Sound abstraction for decisiveness
Let us define a suitable notion of abstraction relating an arbitrary stochastic process X and
a homogeneous MC Y such that decisiveness of Y implies decisiveness for X.

I Definition 22. Let X = (Xi)i≥0 be a stochastic process, Y = (Yi)i≥0 be a homogeneous
MC with denumerable state-space T equipped with the discrete σ-algebra Θ = 2T , and
α : (S,Σ′)→ (T,Θ) be a mapping such that α and α−1 are measurable. The MC Y is an
α-abstraction of X if for every sequence A = (An)n≥0 of sets in Θ and for every n ≥ 0

PY
(
Y −1
n (An) |

⋂
i<n

Y −1
i (Ai)

)
> 0 ⇐⇒ P

(
X−1
n (α−1(An)) |

⋂
i<n

X−1
i (α−1(Ai))

)
> 0 .
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Intuitively, Y is an α-abstraction of X if through the mapping α it preserves the events that
may happen with positive probability.

In order to lift avoidance sequence from the abstraction to the concrete stochastic process,
we rely on α-closed sets. A set B ∈ Σ′ is α-closed if b ∈ B and α(b) = α(b′) implies b′ ∈ B.
Given B ∈ Σ′, by Lemma 18, α̃(B) is an α(B)-avoidance sequence for Y . Assuming B is
α-closed, we obtain a B-avoidance sequence for X.

I Lemma 23. Let Y be an α-abstraction of X and B ∈ Σ′ be an α-closed set. Then
(α−1(α̃(B))) is a B-avoidance sequence for X.

However, α-abstractions do not necessarily preserve decisiveness properties, yet these can be
ensured thanks to the following soundness notions.

I Definition 24. Let Y be an α-abstraction of X.
Y is sound if for every α-closed set B, PY (EvY (F α(B))) = 1 implies P(EvX(FB)) = 1.
Y is persistently sound if for every α-closed set B and every p ≥ 0, PY (EvY (F≥p α(B))) =
1 implies P(EvX(F≥pB)) = 1.

Roughly said, sound abstractions preserve almost-sure satisfaction of reachability properties.
Moreover, they allow to transfer decisiveness properties to the original stochastic process.

I Proposition 25. Let Y be an α-abstraction of X and B an α-closed set.
If Y is sound and ID w.r.t. α(B), then X is ID w.r.t. B with witness (α−1(α̃(B))).
If Y is persistently sound and PD w.r.t. α(B), then X is PD w.r.t. B with witness
(α−1(α̃(B))).

I Example 26. Back to the queue of Example 3, we assume it is M/M/1, that is, Fa and Fe
are exponential distributions of parameters λ and µ, respectively. Assuming λ < µ, we can
exhibit a persistently sound abstraction. Indeed, consider the random walk over N defined
by p(0, 1) = 1, and if i ≥ 1, p(i, i+ 1) = λ

λ+µ and p(i, i− 1) = µ
λ+µ . Since λ < µ, this MC is

PD w.r.t. each set of states and thus, the queue is PD w.r.t. each set of states that is closed
under the abstraction.

5.3 Applications
We apply the previous study to two classes of systems.

5.3.1 Generalized semi-Markov processes
A generalized semi-Markov process [10, 13] is a stochastic process built on a finite set of
events. Each event is equipped with a random variable representing its duration: either a
variable-delay defined by a density function or a fixed-delay modelled by a Dirac distribution.
A transition is characterized by a set of events which expire, and schedules a set of new
events. This model is known to generalize continuous-time Markov chains.

The semantics of a GSMPM is given as a general state-space Markov chain (GSSMC),
defined by a set of configurations and a transition kernel. Configurations of a GSMP are
pairs consisting of a state and a valuation assigning a time value to each scheduled event.
Such a value represents the time elapsed since the event was scheduled. Transitions between
configurations combine a time-elapse and the occurrence of some scheduled events and/or
the scheduling of new events. The set of configurations can be equipped with a natural
σ-algebra G, and the transition system induced byM is equipped with a transition kernel:
for a configuration γ and a set A ∈ G, PM(γ,A) is the probability to move in one step from
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configuration γ to some configuration in A. This probability expresses a race between all
enabled events, taking into account their residual density functions. The set of runs, i.e.
infinite sequences of configurations, can then be equipped with a probability measure PM.
The GSSMC associated with a GSMP M can thus naturally be viewed as a (real-time)
stochastic process XM.

Decisiveness. In general, GSMPs do not enjoy any decisiveness property. Indeed, [10,
Section 3] presents an example that is not ID w.r.t. any region-closed set. Still, Brázdil et
al. identified a sufficient condition, that ensures some kind of fairness: GSMP should be
single-ticking (GSMP with some restriction on fixed-delay events, see [10] for the definition
of this condition). Under that condition and using results of [10], one can show that the
standard region abstraction for GSMPs is a persistently sound abstraction. More precisely,
we consider as an abstraction the (finite-state) Markov chain YM, whose states are regions,
and such that there is a transition between region r and region r′ as soon as there is a
configuration γ ∈ r from which the probability to reach r′ in one step in XM is positive.
Probabilities are assumed to be uniform in YM.

I Theorem 27. Let M be a single-ticking GSMP with stochastic process XM. Then the
region Markov chain YM is an persistently sound abstraction of XM.

Proposition 25 then suffices to derive the decisiveness of the original stochastic process XM:

I Corollary 28. Let M be a single-ticking GSMP with stochastic process XM. Then for
every region-closed set B, the stochastic process XM is PD w.r.t. B.

As a consequence, we can apply all results of Section 3 to single-ticking GSMPs. We
remark here that checking whether a reachability property has probability 0 can easily
be done using the region graph abstraction: it amounts to checking in the (finite) region
abstraction that there is no path from the initial state to the target [10]. Hence all qualitative
questions related to region-based (repeated) reachability properties can be solved. For what
concerns quantitative verification, assuming the distributions equipping the GSMPs can
be handled numerically, this allows one to approximate the probability of reachability or
repeated reachability properties, as well as all time-bounded reachability properties. We
believe our approach gives new hints into the approximate model-checking problem for
GSMPs, for which, up to our knowledge, only few results are known. For instance in [3, 7],
the authors approximate the probability of until formulas of the form “the system reaches a
target before time T within k discrete events, while staying within a set of safe states” (resp.
“the system reaches a target while staying within a set of safe states”) for GSMPs (resp. a
restricted class of GSMPs which can be proved to be PD), and study numerical aspects.
Our result permits to do the same with any reachability (resp. time-bounded reachability)
property on the whole class of single-ticking GSMPs (resp. which are a.s. non-Zeno). The
numerical aspects in our computations can be dealt with as in [3, 7].

5.3.2 Stochastic timed automata

Stochastic timed automata [9] are stochastic processes derived from timed automata [4] by
randomizing both the delays and the edge choices. One can naturally associate a (real-time)
stochastic process XA with an STA A.
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Decisiveness. Similarly to GSMP, STA are not decisive in general. Adapting an example
from [9], one can indeed exhibit an STA which is not ID w.r.t. a given region-closed set. Still,
under some fairness property, one can build an abstraction of the STA, that is sound for the
almost-sure model checking of LTL properties and the-like [9]. It turns out that this fairness
assumption ensures that the same abstraction is also sound for decisiveness. As for GSMPs,
we consider the natural region abstraction, and we define a finite-state Markov chain Y A, in
which the states are regions, and there is a transition from one region r to another r′ as soon
as there exists a configuration γ in r from which the probability to reach r′ in one step in XA
is positive. As mentioned earlier, as such, the abstraction Y A is not sound in general. Yet, it
preserves almost-sure satisfaction of LTL properties when the stochastic timed automaton
is almost-surely fair [9]. Here fairness refers as the following property, which depends on
Y A: every edge of Y A which is enabled infinitely often along a run should be taken infinitely
often. Denoting fair this property, the assumption P(EvXA(fair)) = 1 suffices to prove that
Y A is a sound abstraction for the almost-sure model checking for LTL properties [9].

I Theorem 29. Let A be an STA with associated stochastic process XA, and let Y A be its
region abstraction. If P(EvXA(fair)) = 1 then Y A is a persistently sound abstraction for XA.

As a consequence of Proposition 25 and Theorem 29, we derive the decisiveness of the
original stochastic process XA:

I Corollary 30. Let A be an STA with stochastic process XA and Y A its region abstraction.
If P(EvXA(fair)) = 1 then for every region-closed set B, XA is PD w.r.t. B.

As a consequence, we can apply all results of Section 3 to almost-surely fair stochastic
timed automata. While the decidability of qualitative model-checking questions that we can
infer from Section 3.1 were already known [9] and can be solved on the region abstraction,
the approximation schemes that we can derive from Sections 3.2 and 3.3 are new. Obtaining
decidability results even for the qualitative model-checking of large classes of STA required
quite some effort (now combined in [9]). Here, we show that our earlier approach importantly
implied decisiveness properties for STA. Moreover, the approximation schemes of Sections 3.2
and 3.3 can now be effectively applied to STA, as soon as distributions in the model have
good numerical properties. Notice that a first decidability result was obtained in [8] for
the quantitative model-checking of a restricted class of single-clock STA: while the current
approximation schemes apply to all single-clock STA, the closed-form expression obtained
in [8], although more precise requires a condition on the cycles of the automaton.

6 Conclusion and future work

In this paper, we introduced and studied decisiveness for general stochastic processes,
setting sufficient conditions for the decidability of qualitative model-checking of (repeated)
reachability properties, and more importantly for the approximability of the quantitative
evaluation of such properties. We then showed that non-Zeno real-time stochastic processes
have good decisiveness properties, allowing one to approximate the probability of all time-
bounded properties. Finally we described a framework to obtain decisiveness properties
through abstractions, and demonstrated its applicability to generalized semi-Markov processes
and stochastic timed automata, thus yielding new approximability results for the quantitative
model-checking of stochastic timed automata.

As further work, we would like to extend the applicability of our approach to other classes
of stochastic timed systems, like probabilistic extensions of timed lossy channel systems [1]
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or communicating timed systems [11]. Also, the approximation scheme for reachability
properties can be adapted to evaluate an expected accumulated reward, provided the reward
evolves linearly in the model, as in Markov reward models [5, 16]. Finally, extending
the approximation schemes to Muller conditions would enable the quantitative analysis of
properties given as LTL formulas.
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Abstract
Conventional approaches for parallel composition of stochastic systems relate probability mea-
sures of the individual components in terms of product measures. Such approaches rely on the
assumption that components interact stochastically independent, which might be too rigid for
modeling real world systems. In this paper, we introduce a parallel-composition operator for
stochastic transition systems that is based on couplings of probability measures and does not im-
pose any stochastic assumptions. When composing systems within our framework, the intended
dependencies between components can be determined by providing so-called spans and span cou-
plings. We present a congruence result for our operator with respect to a standard notion of
bisimilarity and develop a general theory for spans, exploiting deep results from descriptive set
theory. As an application of our general approach, we propose a model for stochastic hybrid
systems called stochastic hybrid motion automata.
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1 Introduction

When modeling complex systems, compositional approaches enjoy many favorable properties
compared to their monolithic counterparts. They allow for a systematic system design,
facilitate the interchangeability and reusability of components, and thus also ease the
maintainability. A major objective in defining compositional frameworks is to separate
concerns into components – specifying the operational behavior – and composition operators
– addressing the communication and interaction of the components. Within conventional
approaches for stochastic systems, the composition operator relates probability distributions
of the individual components in terms of product distributions. Therefore, such operators
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are based on the assumption that the components interact stochastically independent, which
is often not adequate. For instance, let us regard a systems composed of a device Dev and
two batteries Bat1 and Bat2 providing the energy for Dev as detailed below:

v1 = 0

v1 = 1/3

Bat1:
α

1/2

1/2

v2 = 0

v2 = 1/3

Bat2:
α

1/2

1/2

v1 = 0, v2 = 1/3

v1 = 1/3, v2 = 0

Dev:
α

1/2

1/2

In this example, the device provides the environmental context in which Bat1 and Bat2 are
operating. Hence, Dev may, e.g., be the reason for common cause failures arising in the
system. Let the variables v1 and v2 capture the amount of energy stored within Bat1 and
Bat2, respectively. The action label α stands for the occurrence of a failure after which all
the components will crash. As a consequence, the level of the stored energy of the batteries
instantaneously drops to either 0 or 1/3 with probability 1/2, respectively. When considering
the batteries in isolation, Bat1 and Bat2 appear stochastically independent in the first place
and thus, product distributions in the parallel composition Bat1 ‖ Bat2 seem to be adequate.
However, additional dependencies can be imposed by Dev, influencing the interplay between
the batteries. The assumption that Bat1 and Bat2 are stochastically independent is hence
not adequate. Assume, e.g., that Dev uses Bat1 as the default power supply and Bat2 as a
backup. Then, within a failure situation, Bat1 is more likely to be affected than Bat2. The
most likely case is that Bat1 drops to 0 whereas Bat2 drops to 1/3. Hence, v1 and v2 might
be not independent in the composite system (Bat1 ‖ Bat2) ‖ Dev.

Motivated by this example, we consider hybrid systems that combine discrete behaviors
and continuous dynamics. In this setting, the most prominent modeling formalism are
hybrid automata, which comprise a control graph with discrete jumps between (control)
locations and flows that model the evolution of continuous variables over time. When time
passes in a hybrid system, a flow starting from the current variable evaluation is selected
non-deterministically and then the variables evolve according to the chosen flow. Besides the
stochastic independence, additional aspects are relevant for the composition of hybrid systems.
Let us assume that α1 is a (local) action of Bat1 which cannot be observed by Bat2 or Dev.
Particularly, α1 does not affect the value of variable v2. The hybrid automaton Bat1 ‖ Bat2
has states of the form 〈s1, s2〉. Suppose 〈s1

1, s
2
1〉 →t1 〈s1

2, s
2
2〉 →α1 〈s1

3, s
2
3〉 →t2 〈s1

4, s
2
4〉 is a

finite path in Bat1 ‖ Bat2, comprising two timed transitions with time passages t1 and t2
and one jump transition involving action α1. As α1 cannot be observed by Bat2, we expect
s2

1 →t1+t2 s2
4 in Bat2. In particular, a faithful model for the composite system would allow

for selecting a flow for v1 within time passage t1, which is continued within the subsequent
time passage. Thus, the adaption of the flow for variable v2 should only be possible when
executing an action involving Bat2 or Dev. This aspect is also crucial in the context of
modeling controller strategies for hybrid systems. Typically, control decisions are made
at distinct points and fixed until a next control decision is enabled. For instance, when
considering a traffic alert and collision avoidance systems on aircraft, the advise of a corrective
maneuver is determined when a critical situation occurs and fixed until sensor values exceed
a threshold that indicates changes of the situation. A crucial point is to identify exactly those
situations where adaptation of flows is allowed and required, as from a practical point of view
it is important to minimize costs of adaptation and to keep the complexity of controllers
manageable.

Contribution. We introduce a generic composition operator for stochastic transition systems
(STSs) [16] based on spans and span couplings. Our operator does not rely on the assumption
that the STSs to be composed are stochastically independent and covers standard composition
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operators by dealing with specific spans. Spans provide a formal approach for introducing a
universal notion of coupling probability measures. We develop an extensive theory for spans
exploiting profound results known from descriptive set theory [34]. Based on a standard
notion of bisimulation, we provide a congruence result with respect to our span composition.
In the second part of the paper, we instantiate our general approach and introduce stochastic
hybrid motion automata (SHMA) in which the progressing flow is recorded within states.
We present a compositional framework for SHMA including an STS-semantics, a composition
operator that does not rely on the assumption of stochastic independence, and where the
adjustment of flows is always accompanied with an action. We show that the congruence
result for STSs transfers to our SHMA framework.

Additional material and detailed proofs can be found in the technical report [25].

Related Work. We are not aware of a compositional modeling approach of stochastic
systems which does not rely on the assumption that the components to be composed are
stochastically independent. Our work thus addresses a fundamental challenge in the context
of probabilistic operational models. The recent work [28] gives a comprehensive overview on
compositional probabilistic modeling formalisms regarding expressive power and available
analysis techniques. The concept of compositionality has its roots in the theory of process
calculi [37, 32] and there are many fundamental contributions in the field of stochastic
extensions of process calculi and probabilistic automata [39, 1, 2, 18, 13, 19]. Results on
discrete systems have been extended to formalisms with continuous state spaces [16, 35]. The
theory on non-deterministic labeled Markov processes (NLMPs) provide elegant notions and
results on bisimulation and its logical characterization [21, 22, 17, 20, 6, 31]. Unfortunately,
NLMPs are a priori not appropriate for our purposes as the class of NLMPs is not closed
under the composition of stochastic transition systems [25]: Given two NLMPs, the transition
function of their composition does not need to be measurable. When considering real-time
systems, an important distinguishing aspect is the notion of residence time, which is the
time spend in a state before moving to a successor state. In prominent compositional
frameworks, timing behavior is modeled by clocks (timed automata) [4, 9, 38, 11] or one
has exponential-distributed holding times (Markov automata and interactive Markov chains)
[30, 23]. A general theory on compositionality and behavioral equivalences has been also
achieved for probabilistic real-time systems modeled by interactive generalized semi-Markov
processes [14, 12]. When adding flows to specify the evolution of continuous variables
between jumps, one enters the field of hybrid systems [3, 29, 10]. The spirit of our work
concerning hybrid systems is closest to the compositional frameworks developed for hybrid
extensions of I/O-automata [36] and reactive modules [5] in the non-stochastic case. [36]
studies parallel composition, simulation relations, and the receptiveness property and deals
with prefix-, suffix- and concatenation-closed sets of flows on a syntactic level to obtain
time-transitivity. Probabilistic hybrid automata [40, 26] extend classical hybrid automata by
discrete probabilistic updates for the jumps. In [24, 27, 26], stochastic hybrid automata are
considered where variables can be updated according to continuous distributions. Different
from these hybrid automata, the change of flows in SHMA is only possible when some action
is executed. Stochastic flows, i.e., where stochastic choices can be made continuously over
time, are considered in [15, 33]. Our framework does not incorporate this kind of flows so far.

2 Preliminaries

We suppose the reader is familiar with standard concepts from measure and probability
theory [8]. We briefly summarize our notations used throughout this paper.
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Couplings. Within our work we understand couplings as a “modeling tool”. Intuitively,
couplings relate given measures in a product space by a measure with corresponding marginals.
Prob(X) denotes the set of all probability measures on the measurable space X. Let X1
and X2 be measurable spaces. Given µ1 ∈ Prob(X1) and µ2 ∈ Prob(X2), µ ∈ Prob(X1 ×X2)
is called a coupling of (µ1, µ2) if µ(M1 ×X2) = µ1(M1) and µ(X1 ×M2) = µ2(M2) for all
measurable M1 ⊆ X1 and M2 ⊆ X2. The independent coupling of (µ1, µ2) is the product
measure of µ1 and µ2 denoted by µ1 ⊗ µ2. If µ1 = Dirac[x1] for some x1 ∈ X1, then there is
exactly one coupling of (µ1, µ2), namely the independent one. Here, Dirac[x1] denotes the
probability measure where for all measurable M1 ⊆ X1, Dirac[x1](M1) = 1 iff x1 ∈M1.

Polish spaces. A separable and completely metrizable topological space is called a Polish
space [34]. If X is a Polish space, then Prob(X) is well equipped with the topology induced
by the weak convergence of probability measures. To obtain a measurable space, Polish
spaces are equipped with the Borel sigma algebra, i.e., the coarsest sigma-algebra where all
open sets are measurable. We call a measurable space X standard Borel if there exists a
Polish topology on X where the induced Borel sigma-algebra coincides with the given one.
The Polish topology is in general not uniquely determined. We refer to measurable subsets
of standard Borel spaces as Borel sets. Of course, every Polish space is standard Borel.

Functions for probability measures. Given a measurable function f : X1 → X2 between
measurable spaces X1 and X2, the pushforward of f is defined by f] : Prob(X1)→ Prob(X2),
f](µ)(M2) = µ(f−1(M1)). Assuming Polish spaces X1 and X2, a Markov kernel is a Borel
function k : X1 → Prob(X2). Here, for every µ1 ∈ Prob(X1) we define semi-product measure
µ1 o k ∈ Prob(X1 ×X2), µ1 o k(M1 ×M2) =

∫
M1

k(x1)(M2) dµ1(x1).

Relations. Let R ⊆ X1×X2 be a binary relation over some setsX1 andX2. We usually write
x1 Rx2 instead of 〈x1, x2〉 ∈ R. Then, R is called lr-total in X1 ×X2 if for all x1 ∈ X1 there
exists x2 ∈ X2 such that x1 Rx2 and vice versa, i.e., also for all x2 ∈ X2 there exists x1 ∈ X1
where x1 Rx2. Assume X1 and X2 constitute measurable spaces and let µ1 ∈ Prob(X1)
and µ2 ∈ Prob(X2). A weight function for (µ1, R, µ2) is a coupling W of (µ1, µ2) such that
x1 Rx2 for W -almost all 〈x1, x2〉 ∈ X1 × X2. We write µ1 R

w µ2 if there exists a weight
function for (µ1, R, µ2). Notice, Rw constitutes a relation in Prob(X1)× Prob(X2). Notice,
weight functions are also well-established in the discrete setting [39].

Variables. Let Var denote a countable set of variables and V ⊆ Var. We denote by Ev(V )
the set of all variable evaluations for V , i.e., functions from V to R. As the countable
product of Polish spaces equipped with the product topology again yields a Polish space,
Ev(V ) constitutes a Polish space. Let e ∈ Ev(Var) and η ∈ Prob(Ev(Var)). The projection
e|V ∈ Ev(V ) is given by e|V (v) = e(v) for all v ∈ V . As f : Ev(Var) → Ev(V ), f(e) = e|V
is measurable, we can safely define η|V = f](η). Cond(Var) denotes the set of all Boolean
conditions over Var and we write e |= c if the variable evaluation e satisfies condition c. For
instance, e |= (v ≤ 3.14159) ∧ (v ≥ 2.71828) iff e(v) ≤ 3.14159 and e(v) ≥ 2.71828.

Stochastic transition systems. An STS is a triple T = (S,Γ,→) comprising a measurable
space S of states, a set Γ of labels, and a relation → ⊆ S×Γ×Prob(S) of transitions. If
S is a standard Borel space, then T is called standard Borel. Let Ta = (Sa,Γ,→a) and
Tb = (Sb,Γ,→b) be STSs with the same sets of labels. A relation R ⊆ Sa × Sb is a
bisimulation for (Ta, Tb) if R is lr-total in Sa × Sb and for all saRsb and γ ∈ Γ it holds:
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Given µa ∈ Prob(Sa) where sa →γ
a µa, then there exists µb ∈ Prob(Sb) such that sb →γ

b µb
and µaRw µb. Vice versa, given µb ∈ Prob(Sb) with sb →γ

b µb, then there is µa ∈ Prob(Sa)
where sa →γ

a µa and µaR
w µb. We emphasize that a bisimulation is not required to be

measurable. In the context of bisimulation an important question is how to lift a relation
R ⊆ Sa × Sb to probability measures. However, there are other approaches using R-stable
pairs instead [22], closely related to the weight lifting [41, 39]. Given STSs T1 = (S1,Γ1,→1)
and T2 = (S2,Γ2,→2) and a set of synchronization labels Sync ⊆ Γ1 ∩ Γ2, their composition
is the STS T1 ‖⊗Sync T2 = (S1×S2,Γ1 ∪Γ2,→) with 〈s1, s2〉 →γ µ1⊗µ2 iff the following holds
[16]: If γ ∈ Γ1 \Sync, then s1 →γ µ1 and µ2 = Dirac[s2]. If γ ∈ Γ2 \Sync, then µ1 = Dirac[s1]
and s2 →γ µ2. If γ ∈ Sync, then s1 →γ µ1 and s2 →γ µ2.

Flows. By T = R≥0 we denote the time axis. A flow is a function ϑ : T → Ev(Var) that
has the càdlàg property, i.e., ϑ is right continuous and has left limits everywhere. Flow(Var)
denotes the set of all flows. Let ϑ⊕T (t) = ϑ(T+t) denote the shift of ϑ at time T ∈ T by time
t ∈ T. A subset F of Flow(Var) is shift invariant if ϑ⊕ T ∈ F for every ϑ ∈ F and T ∈ T. In
the theory of stochastic processes, the càdlàg property is well established as, amongst others,
there is a topology on Flow(Var) such that Flow(Var) becomes a Polish space [7]. The exact
definition of this topology is not relevant for our purposes. If V ⊆ Var and ϑ ∈ Flow(Var),
then ϑ|V ∈ Flow(V ) is given by ϑ|V (t) = ϑ(t)|V for all t ∈ T. Given V1, V2 ⊆ Var where
V1 ∩ V2 = ∅ and ϑ1 ∈ Flow(V1) and ϑ2 ∈ Flow(Var2), then ϑ1 ] ϑ2 ∈ Flow(V1 ∪ V2) is the
flow obtained by merging ϑ1 and ϑ2.

3 Composition of stochastic transition systems

We develop our approach towards the composition of STSs. As a preparation, we introduce
spans first and give some insights on our mathematical theory for those. After that, we
present the main contribution of the paper, namely our composition operator for STSs. We
then give a congruence theorem having a quite challenging proof. Section 4 presents an
application of our framework in the context of stochastic hybrid systems.

3.1 Spans
We will formalize dependencies for the composition of STSs using spans and span couplings,
which is a generic and flexible formalism our framework benefits from in many occasions. The
idea is to allow for arbitrary Polish spaces together with continuous functions that specify
the relationships between the components. Various properties of spans then transfer to their
probabilistic version, e.g., properness or the existence of inverses. This is an essential point
in the context of stochastic models and hence also for STSs. We will then use spans within
the definition of our composition in STS and later on also in the context of stochastic hybrid
systems as a mathematical tool for our argumentation.

I Definition 1. A span is a tuple X = (X,X1, X2, ι1, ι2) consisting of Polish spaces X,
X1, and X2 and continuous functions ι1 : X → X1 and ι2 : X → X2. We call X proper, if
ι−1
1 (K1) ∩ ι−1

2 (K2) is compact in X for all compact sets K1 ⊆ X1 and K2 ⊆ X2.

Intuitively, X denotes the joint state space of X1 and X2, where ι1 and ι2 are projective
functions from X to X1 and X2, respectively. Properness connects topological aspects of the
involved spaces. The following examples are natural instances of proper spans:
X is a Cartesian span if X = X1 ×X2 and ι1 and ι2 are the natural projections.
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X is a variable span if X1 = Ev(Var1), X2 = Ev(Var2), and X = Ev(Var1 ∪Var2) for some
sets of variables Var1 and Var2, and ι1 and ι2 are the natural projections.
X is a identity span if X = X1 = X2 and ι1(x) = x and ι2(x) = x for all x ∈ X.

Span couplings are a crucial notion for our approach towards a composition operator
in the next section. Given µ1 ∈ Prob(X1) and µ2 ∈ Prob(X2), we call µ ∈ Prob(X) a
X -coupling of (µ1, µ2) if (ι1)](µ) = µ1 and (ι2)](µ) = µ2. Recall that (ι1)] and (ι2)] denote
the pushforwards of ι1 and ι2, respectively. A span coupling places two probability measures
in the same probabilistic space specified by the span by exhibiting an adequate witness
measure over pairs. Thus, the ordinary notion for couplings is generalized. For all x and
µ we use x|1, x|2, µ|1, and µ|2 as shorthand notations for ι1(x), ι2(x), (ι1)](µ), and (ι2)](µ)
respectively. Given x1 ∈ X1 and x2 ∈ X2, we then write x1 X x2 if there exists x ∈ X where
x|1 = x1 and x|2 = x2. Similarly, we write µ1 X c µ2 if there is a X -coupling of (µ1, µ2). We
sometimes drop the projection functions from the tuple and refer to (X,X1, X2) as a span.

Probabilistic version. There are various operations for spans that yield complex spans
out of some given basic spans. The question whether the operation preserves properness
is important for practical purposes. For instance, using Tychonoff’s theorem, a countable
product of proper spans yields a proper span again. Within stochastic models, the following
operation is important: For a span X = (X,X1, X2, ι1, ι2) its probabilistic version is given by
the tuple Prob(X ) = (Prob(X),Prob(X1),Prob(X2), (ι1)], (ι2)]). Notice, Prob(X ) involves
all X -couplings and µ1 X c µ2 iff µ1 Prob(X )µ2 for all µ1 ∈ Prob(X1) and µ2 ∈ Prob(X2).

I Proposition 2. The probabilistic version of a span is a span. Moreover, the probabilistic
version of a proper span is proper as well.

The claim regarding properness follows from Prokhorov’s theorem [7], which characterizes
relatively compact subsets of Prob(X): If P ⊆ Prob(X) is a set of probability measures, then
P is relatively compact in Prob(X) iff P is tight in Prob(X), i.e., for every ε ∈ R>0 there is
a compact set K ⊆ X where µ(K) > 1− ε for all µ ∈ P .

Span inverse. In a compositional setting, the states of the components determine the states
of the composed system. Within our approach, a state as an element of X in the composed
system is not required to be uniquely determined: Given a span X = (X,X1, X2), x1 ∈ X1,
and x2 ∈ X2, every x ∈ X where x|1 = x1 and x|2 = x2 stands for a state in the composed
system resulting from the states x1 and x2 of the components. However, in applications later
it is important to have a mapping with additional properties: Given a span X = (X,X1, X2),
a Borel function f : X1 ×X2 → X is called an X -inverse, if for all x1 ∈ X1 and x2 ∈ X2, if
x1 X x2, then f(x1, x2)|1 = x1 and f(x1, x2)|2 = x2.

I Theorem 3. Every proper span X has an X -inverse.

It follows µ1 X c µ2 iff µ1 Rel(X )w µ2 for all µ1 ∈ Prob(X1) and µ2 ∈ Prob(X2), where
Rel(X ) = {〈x|1, x|2〉 ; x ∈ X}. Our proof of Theorem 3 is an application of a measurable
selection theorem [8]: Take some x̂ ∈ X and define Φ: X1 × X2 → 2X , Φ(x1, x2) =
{x ∈ X ; x|1 = x1 and x|2 = x2}, if the set on the right-hand side is non-empty, and
Φ(x1, x2) = {x̂}, otherwise. It suffices to argue that Φ admits a measurable selection, i.e.,
there is a measurable function f : X1 ×X2 → X where f(x1, x2) ∈ Φ(x1, x2) for all x1 ∈ X1
and x2 ∈ X2. To do so, we rely on results from descriptive set theory. Notice, together with
Proposition 2, Theorem 3 yields an Prob(X )-inverse if X is proper, which is an important
observation for our discussions later. This is not obvious even for simple spans considering



D. Gburek, C. Baier, and S. Klüppelholz 102:7

for instance the probabilistic version of a variable span. We remark that there are spans X
that have no X -inverses and thus, the properness assumption is important [25].

3.2 Composition
A major objective in defining compositional frameworks is to separate the concerns of
components specifying the operational behavior and composition operators addressing their
interaction or coordination. We start with two STSs T1 = (S1,Γ1,→1) and T2 = (S2,Γ2,→2),
where we assume S1 and S2 are Polish spaces. To declare the interactions between T1 and
T2, we specify a set of synchronization labels Sync ⊆ Γ1 ∩ Γ2, a span S = (S, S1, S2) to
characterizes the state space of the composition, and an so-called agreement G = (LC 1,LC 2)
between T1 and T2. Here, LC 1 and LC 2 are so-called local constraints and for the moment,
to present the central definition of this paper, it suffices to require LC 1,LC 2 ⊆ S × Prob(S).
Intuitively, we use local constraints to specify the behavior of local variables within local
transitions (see below).

I Definition 4. We define the STS T1 ‖S,G,Sync T2 = (S,Γ1 ∪ Γ2,→), where for all s ∈ S,
γ ∈ Γ, and µ ∈ Prob(S) it holds s→γ µ iff one of the following three conditions hold:

γ ∈ Γ1 \ Sync and s|1 →γ
1 µ|1 and sLC 2 µ.

γ ∈ Γ2 \ Sync and sLC 1 µ and s|2 →γ
2 µ|2.

γ ∈ Sync and s|1 →γ
1 µ|1 and s|2 →γ

2 µ|2.

To illustrate the crux of our composition operator, we regard the case where S is a Cartesian
span, i.e., S = S1×S2. Former approaches [39, 16] assume that T1 and T2 behave stochastically
independent in a synchronizing step, i.e., if s|1 →γ

1 µ1 and s|2 →γ
2 µ2, then s ↪→γ µ1 ⊗ µ2 in

T1 ‖⊗H T2. Our operator does not rely on any stochastic assumptions: Instead of considering
only the independent coupling we take all the couplings into account, i.e., if s|1 →γ

1 µ1 and
s|2 →γ

2 µ2, then s→γ µ for all couplings µ of (µ1, µ2). During a discussion about the example
from the introduction and SHMAs, we will see how additional stochastic information between
the components can be incorporated within our general framework.

Local constraints. Our composition operator is indexed by a span, which determines the
dependencies between the states of T1 and T2. For instance, one can specify shared and
local variables using the variable span. When composing STSs, one has to ensure that local
transitions and variables of the components behave in a compatible way. Let us illustrate this
and regard again the case where S is a Cartesian span. If T1 performs a local transition, i.e., a
transition that is labeled by some γ ∈ Γ1 \Sync, then the current state of T2 must not change.
The properties of a local constraint should hence guarantee sLC 2 µ iff µ|2 = Dirac[s|2]. It
then follows that 〈s1, s2〉 →γ µ1 ⊗Dirac[s2] for all s2 ∈ S2 and s1 →γ

1 µ1 where γ ∈ Γ1\Sync.
Of course, the same discussion applies for T1 and the local constraint LC 1. This leads to the
following requirements for a local constraint LC 2 ⊆ S × Prob(S):

For all s ∈ S and µ ∈ Prob(S), if µ|2 = Dirac[s|2], then sLC 2 µ.
For all sLC 2 µ and µ′ ∈ Prob(S), if µ|1 = µ′|1 and µ|2 = µ′|2, then sLC 2 µ

′.
For all sLC 2 µ, if µ|1 Sc Dirac[s|2], then µ is a S-coupling of (µ|1,Dirac[s|2]).

The requirements for LC 1 are similar. Intuitively, the first requirement for LC 2 ensures that
the STS T2 cannot block a local transition of T1 which is not critical from the view of T2, i.e.,
variables of T2 are not affected within the transition of T1. Thus, such local transition of T1
are independent of T2 and can happen autonomously. Different couplings of given probability
measures cannot be distinguished within local constraints imposed by the second property.
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The third requirement intuitively demands that whenever T1 performs a local transition
where no local variables of T2 are modified, the state of T2 must not change. In case of a
Cartesian span the above requirements yield

LC 2 = {〈〈s1, s2〉, µ1 ⊗ Dirac[s2]〉 ; s1 ∈ S1 and s2 ∈ S2 and µ1 ∈ Prob(S1)} and
LC 1 = {〈〈s1, s2〉,Dirac[s1]⊗ µ2〉 ; s1 ∈ S1 and s2 ∈ S2 and µ2 ∈ Prob(S2)}.

Hence, the agreement G is uniquely determined by STSs T1 and T2. We thus simply write
T1 ‖×,Sync T2 instead of T1 ‖S,G,Sync T2. Observe that T1 ‖×,Sync T2 and T1 ‖⊗Sync T2 are
not bisimilar in general. This is due to the fact that our composition operator does not
incorporate any stochastic assumptions concerning the interaction of T1 and T2. In case
where S is a variable span, i.e., S1 = Ev(Var1), S2 = Ev(Var2), and S = Ev(Var1 ∪ Var2) for
some sets of variables Var1 and Var2, there are more possible local constraints:

LC ′2 = {〈e, η〉 ∈ S × Prob(S) ; η|Var1 = Dirac[e|Var1 ] implies η = Dirac[e]},
LC ′′2 = {〈e, η〉 ∈ S × Prob(S) ; η|Var2\Var1 = Dirac[e|Var2\Var1 ]}, and
LC ′′′2 = {〈e, η〉 ∈ S × Prob(S) ; η|Var2 = Dirac[e|Var2 ]}

all enjoy the requirements for a local constraint where LC ′2 ⊇ LC ′′2 ⊇ LC ′′′2 . Considering for
instance LC ′′2 , all the variables in Var2 \ Var1 cannot be modified within a local transition
of T1. Constraint LC ′′′2 is more restrictive: Here, all the variables in Var2 are controlled by
T2 and cannot be modified in a local transition of T1, i.e., variables in Var1 ∩ Var2 can be
observed by T1 only. It turns out LC ′2 ⊇ LC 2 for every local constraint LC 2. Every local
constraint hence enjoys the property that variables in Var2 \Var1 must not be adapted within
a local transition of T1 if the evaluations of the variables in Var1 remain the same.

Example from the introduction. We return to the introductory stochastic systems illus-
trated in Section 1. Of course, Bat1, Bat2, and Dev can be seen as STSs with sets of states
Ev({v1}), Ev({v2}), and Ev({v1, v2}), respectively. When composing them, we need not to
worry about local constraints as there is only one synchronization action α. In what follows,
we rely on the obvious variable spans. The composition of Bat1 and Bat2 yields the STS
Bat12 depicted below.

v1 = 0, v2 = 0

v1 = 0, v2 = 1/3

v1 = 1/3, v2 = 0

v1 = 1/3, v2 = 1/3

Bat12:

α

r1
r2

r3
r4

There are infinitely many transitions: Every solution of the linear equation system r1 + r2 =
r1 + r3 = r2 + r4 = r3 + r4 = 1/2 where r1, r2, r3, r4 ∈ [0, 1] represents a coupling of the
involved measures. When composing Bat12 and Dev, the set of all couplings is refined.
We are moreover able to handle more complex stochastic information that depend on the
operational behavior of the components. To illustrate this, assume systems which result
from Bat1 and Bat2 such that α can be executed repeatedly (e.g., add some local transitions
back to the blank state). An additional component might encode that, if the system has
crashed repeatedly in the past, the event that the stored energy drops to 0 in both batteries
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at the same time becomes more likely within an execution of α. We emphasize that the
ordinary composition of STSs can be expressed within our framework using an additional
component [25].

3.3 Congruence
In the context of process calculi, an important issue of bisimulation is the compatibility
with syntactic operators in the process calculus, such as parallel composition. We show
that bisimulation is a congruence for our composition operator under reasonable side-
constraints, i.e., our composition operator enjoys the substitution property with respect to
bisimulation. Suppose STSs Ta1 = (Sa1,Γ1,→a1), Ta2 = (Sa2,Γ2,→a2), Tb1 = (Sb1,Γ1,→b1),
and Tb2 = (Sb2,Γ2,→b2) such that Ta1 ∼ Tb1 and Ta2 ∼ Tb2. Define

Ta = Ta1 ‖Sa,Ga,Sync Ta2 and Tb = Tb1 ‖Sb,Gb,Sync Tb2,

where Sync ⊆ Γ1 ∩ Γ2, Sa = (Sa, Sa1, Sa2) and Sb = (Sb, Sb1, Sb2) are proper spans, and
Ga = (LCa1,LCa2) and Gb = (LC b1,LC b2) are agreements. Assume R1 is a bisimulation for
(Ta1, Tb1) and R2 is a bisimulation for (Ta2, Tb2) and define

R1 ∧R2 = {〈sa, sb〉 ∈ Sa × Sb ; sa|1 R1 sb|1 and sa|2 R2 sb|2}.

We aim to show that R1 ∧R2 is a bisimulation for (Ta, Tb) and hence Ta ∼ Tb. However, we
cannot expect this result without any compatibility requirements for the involved spans and
agreements, since important relationships concerning the communication of the components
are determined within our composition operator. This motivates the following notions: We
refer to the tuple C = (Sa,Sb, R1, R2) as span connection and call C adequate if for all
µa1 R

w
1 µb1 and µa2 R

w
2 µb2 it holds µa1 Sc

a µa2 iff µb1 Sc
b µb2. Intuitively, adequacy requires

that the existence of span couplings is preserved by the relations R1 and R2. Observe, if
Sa and Sb are Cartesian spans, then C is always adequate. The local constraints LCa2 and
LC b2 are called C-bisimilar if for all sa (R1 ∧R2) sb holds:

For all µa ∈ Prob(Sa) and µb1 ∈ Prob(Sb1), if sa LCa2 µa and µa|1 Rw
1 µb1, then there is

µb ∈ Prob(Sb) where sb LC b2 µb, µb|1 = µb1, and µa|2 Rw
2 µb|2.

For all µb ∈ Prob(Sb) and µa1 ∈ Prob(Sa1), if sb LC b2 µb and µa1 R
w
1 µb|1, then there is

µa ∈ Prob(Sa) where sa LCa2 µa, µa|1 = µa1, and µa|2 Rw
2 µb|2.

LCa1 and LC b1 are called C-bisimilar if analogous properties are fulfilled. Observe that
the stated requirement is motivated by the definition of bisimulation in the sense that each
element of a local constraint LCa2 can be mimicked by LC b2 regarding the relations R1 and
R2. If LCa2 and LC b2 as well as LCa1 and LC b1 are C-bisimilar, respectively, then we refer
to Ga and Gb as C-bisimilar.

I Theorem 5. If the span connection C is adequate and the agreements Ga and Gb are
C-bisimilar, then R1 ∧R2 is a bisimulation for (Ta, Tb).

The challenging part of the proof can be summarized by the following claim [25]: Let
µa ∈ Prob(Sa), µb1 ∈ Prob(Sb1), and µb2 ∈ Prob(Sb2) where µa|1 Rw

1 µb1 and µa|2 R
w
2 µb2.

Then there is an Sb-coupling µb of (µb1, µb2) such that µa (R1∧R2)w µb. Our proof of this claim
proceeds as follows. Assume W1 is a weight function for (µa|1, R1, µb1) and W2 is a weight
function for (µa|2, R2, µb2). Using disintegration of measures [34], there are Markov kernels
k1 : Sa1 → Prob(Sa2) and k2 : Sb1 → Prob(Sb2) such that W1 = µa|1 ok1 and W2 = µa|2 ok2.
The crucial point is now to argue that there is a Markov kernel k : Sa → Prob(Sb) where k(sa)
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is an Sb-coupling of (k1(sa|1), k2(sa|2)) for µa-almost all sa ∈ Sa. Here, we make use of an
Sb-inverse (cf. Theorem 3). With this Markov kernel at hand, we define W ∈ Prob(Sa × Sb)
by W = µ o k and µb ∈ Prob(Sb) by µb(Mb) = W (Sa ×Mb). It turns out that µb is an
appropriate Sb-coupling. To summarize, we defined a potential weight function W out of the
weight functions W1 and W2 and then introduced the measure µb via W .

Path measures. When resolving the non-determinism in STSs using schedulers, one obtains
a probability measure – the path measure – on the set of all infinite paths of the STS
[16]. Besides our congruence result, we expect compatibility of path measures induced by
schedulers in our compositional framework. To provide an intuition, assume STSs T1 and
T2 and let T be an STSs obtained by a composition involving T1 and T2. Assume that S1
and S2 are schedulers for T1 and T2, respectively, and S is a scheduler for T . If S satisfies
certain compatibility requirements regarding S1 and S2, one can show that the induced
path measure for T is a coupling of the corresponding path measures for T1 and T2. Here,
we consider a natural span that connects the sets of all infinite paths of T1, T2, and T .

4 Stochastic hybrid motion automata

We apply our general results of the preceding sections and develop a compositional modeling
framework for stochastic hybrid systems. The formal definition of our model relies on a
standard schema of hybrid automata [3, 29, 26], i.e., there are a discrete control structure
consisting of locations and jumps in-between, and continuous variables whose values evolve
according to a flow formalized by a motion function. Within a jump, the variables can be
updated instantaneously. The novelty of our approach is that every jump is indexed by a set
of those variables that are not affected in the corresponding discrete step. As a consequence,
the adjustment of flows is always accompanied by a specific command.

Syntax. Every jump in our hybrid-automaton model is labeled by a command: Given a set
Var of variables and a set Act of actions, a command on (Var,Act) is a tuple 〈c, α, V, upd〉
consisting of a guard c ∈ Cond(Var), an action α ∈ Act, a set of disabled variables V ⊆ Var,
and an (non-deterministic) update upd : Ev(Var)→ 2Prob(Ev(Var)) where η|V = Dirac[e|V ] for
all η ∈ upd(e) and e ∈ Ev(Var). Cmd(Var,Act) denotes the set of all commands on (Var,Act).
Intuitively, a jump is enabled if the current variable evaluation satisfies the guard. The action
name indicates whether the jump is an internal location switch or subject to an interaction
with another component. The set of disabled variables specifies those variables which are not
affected within the jump. This also clarifies the additional requirement for updates.

I Definition 6. An SHMA is a tuple (Loc,Var,Act, Inv,Mot,�) where Loc is a finite set
of locations, Var is a set of variables, Act is a set of actions, Inv : Loc → Cond(Var) is an
invariant function, Mot : Loc→ 2Flow(Var) is a motion function which assigns a shift-invariant
set of flows to every location, and � ⊆ Loc× Cmd(Var,Act)× Prob(Loc) is a jump relation.

We write l−[cmd ]�λ instead of 〈l, cmd, λ〉 ∈�. The behavior in a location l depends on the
current variable evaluation e. In a discrete step, a jump l −[ c, α, V, upd ]� λ where e |= c is
chosen non-deterministically. Then, action α is executed and a successor location is sampled
according to λ. The evaluation of the variables changes according to a non-deterministically
chosen probability measure contained in upd(e). Entering a location l′, a flow in Mot(l′) is
also chosen non-deterministically and the variables then evolve according to this flow.
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Semantics. Every SHMA H = (Loc,Var,Act, Inv,Mot,�) can be interpreted as an STS
resulting from unfolding. In what follows, S = Loc × Flow(Var) denotes the set of states.
Notice, S constitutes a Polish space as Flow(Var) is known to be a Polish space [7]. Intuitively,
a state 〈l, ϑ〉 represents the actual location l and the current active flow ϑ, i.e., ϑ corresponds
to the flow chosen in the preceding jump. Moreover, ϑ(0) stands for the present variable
evaluation. We call 〈l, ϑ〉 well-formed if ϑ ∈ Mot(l) and ϑ(0) |= Inv(l).

There are two kinds of transitions within our STS for H, namely transitions where time
passes and transitions corresponding to a jump. Time can pass in a location l as long as the
flow does not violate the invariant Inv(l). Transitions for jumps are more intricate. Assume
l −[ c, α, V, upd ]� λ is enabled in state 〈l, ϑ〉, i.e., e |= c where e = ϑ(0). Basically, jumps
in SHMAs proceed in two phases: First, a successor location and a variable evaluation are
sampled according to λ and some η ∈ upd(e), respectively. In the second phase, a flow is
chosen non-deterministically for those variables which are not disabled, i.e., the variables
in Var \ V . This is formalized as follows: A flow adapter for (ϑ, V ) is a Borel function
χ : Loc× Ev(Var)→ Flow(Var) such that for all l′ ∈ Loc and e′, ẽ′ ∈ Ev(Var):

χ(l′, e′)|V = ϑ|V and e′|Var\V = ẽ′|Var\V implies χ(l′, e′)|Var\V = χ(l′, ẽ′)|Var\V .

Intuitively, if state 〈l′, e′〉 is sampled within the first phase of a jump, then χ(l′, e′) represents
the new flow, i.e., the flow which determines the evolution of variables in a subsequent time
passage. The first condition for a flow adapter requires that the flow for disabled variables is
not allowed to change. The required implication ensures that a flow is chosen independently
of the disabled variables. This is important for our compositional approach, as we want to
make sure that the choice of a new flow in an SHMA obtained by composition does not
depend on the local variables of the respective communication partners. If χ is a flow adapter,
then we define the auxiliary function χ̂ : Loc× Ev(Var)→ S, χ̂(l, e) = 〈l, χ(l, e)〉.

I Definition 7. The semantics of H is given by the STS JHK = (S,T ∪ Act,→), where → is
the smallest relation satisfying the following requirements for all well-formed states s = 〈l, ϑ〉:

For all T ∈ T, if ϑ(t) |= Inv(l) for every t ∈ [0, T ], then s→t Dirac[〈l, ϑ⊕ T 〉].
For all l−[ c, α, V, upd ]�λ, η ∈ upd(e), couplings ν of (λ, η), and flow adapter χ for (ϑ, V ),
if e |= c and for ν-almost all 〈l′, e′〉 ∈ Loc× Ev(Var) the state χ̂(l′, e′) is well-formed, then
s→α χ̂](ν). Here, we abbreviate e = ϑ(0).

An SHMA almost surely enters a well-formed state, i.e., if s→γ µ where γ ∈ T ∪ Act, then
s′ is well-formed for µ-almost all s′ ∈ S. We emphasize that for our approach concerning the
adaption of flows it is crucial that the current flow is part of a state. Otherwise, it would be
not possible to ensure that the flow for disabled variables is not allowed to change.

Composition. We now introduce a composition operator for SHMAs. For i ∈ {1, 2} let
Hi = (Loci,Vari,Acti, Invi,Moti,�i) be SHMAs. When running H1 and H2 in parallel, H1
and H2 synchronize on all actions contained in Act1 ∩ Act2 and the variables in Var1 ∩ Var2
are shared, i.e., Var1 \Var2 and Var2 \Var1 represent the sets of the respective local variables.
Abbreviate Loc = Loc1× Loc2, Var = Var1 ∪Var2, and Act = Act1 ∪Act2. Let upd1 and upd2
be updates for Var1 and Var2, respectively. The Var-lifting of (upd1, upd2) is the update upd
for Var such that for all e ∈ Ev(Var), upd(e) consists of all η ∈ Prob(Ev(Var)) where η|Var1 = η1
and η|Var2 = η2 for some η1 ∈ upd(e|Var1) and η2 ∈ upd(e|Var2). We define Var-liftings with
respect to an update accordingly, i.e., upd is a Var-lifting of upd1 if for all e ∈ Ev(Var),
upd(e) consists of all η ∈ Prob(Ev(Var)) where η|Var1 = η1 for some η1 ∈ upd(e|Var1) and
η|Var\Var1 = Dirac[e|Var\Var1 ]. Notice, the definition of Var-liftings involves couplings concerning
a variable span, which provides a connection to the preceding sections.
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I Definition 8. H1 ‖ H2 = (Loc,Var,Act, Inv,Mot,�) is the SHMA with Inv(l1, l2) =
Inv(l1) ∧ Inv(l2) and Mot(l1, l2) = {ϑ ∈ Flow(Var) ; ϑ|Var1 ∈ Mot1(l1) and ϑ|Var2 ∈ Mot2(l2)}
for all 〈l1, l2〉 ∈ Loc and � is the smallest relation such that 〈l1, l2〉 −[ c, α, V, upd ]� λ, if λ is
a coupling of λ1 ∈ Prob(Loc1) and λ2 ∈ Prob(Loc2) and one of the following holds:

α ∈ Act1 \ Act2, λ2 = Dirac[l2], and there is l1 −[ c1, α, V1, upd1 ]�1 λ1 such that c = c1,
V = V1 ∪ (Var2 \ Var1), and upd is the Var-lifting of upd1.
α ∈ Act2 \ Act1, λ1 = Dirac[l1], and there is l2 −[ c2, α, V2, upd2 ]�2 λ2 such that c = c2,
V = V2 ∪ (Var1 \ Var2), and upd is the Var-lifting of upd2.
α ∈ Act1 ∩ Act2 and there are l1 −[ c1, α, V1, upd1 ]�1 λ1 and l2 −[ c2, α, V2, upd2 ]�2 λ2
where c = c1 ∧ c2, V = V1 ∪ V2, and upd is the Var-lifting of (upd1, upd2).

When composing SHMAs, local variables of participating SHMAs become disabled for
corresponding internal jumps. Within our semantics, flow adapters thus ensure that the
adaption of flows in internal jumps in H1 ‖ H2 are independent of the local variables of
the respective communication partners. Moreover, flows for local variables of H2 cannot be
adapted within an internal jump of H1 and vice versa. It is easy to see that the composition
operator for SHMAs is commutative and associative.

Congruence. We aim for a congruence theorem for SHMAs relying on Theorem 5. For this,
we relate the composition of SHMAs with our general approach towards a composition of
STSs, i.e., we represent the STS JH1 ‖ H1K as a composition involving the components JH1K
and JH2K. Notice that sampling a successor location in H1 ‖ H2 happens according to a
coupling measure. This observation also applies when combining measures for locations and
variable evaluations within our semantics of SHMAs. To this end, it is easy to define the
corresponding span S and agreement G such that

JH1 ‖ H2K = JH1K ‖S,G,Act1∩Act2 JH2K.

More precisely, S is a span arising from a Cartesian span for the locations and a span for the
sets of flows. For the agreement G, we regard local constraints where the shared variables can
be modified by both involved systems H1 and H2. The obtained representation of JH1 ‖ H2K
underpins again the flexibility of our composition operator for STS.

We rephrase Theorem 5 in the context SHMAs. Two SHMAs are bisimilar if their
semantics in terms of STSs are bisimilar. Let Ha1 and Hb1 be SHMAs with the same sets of
variables Var1 and actions Act1 and similar, let Ha2 and Hb2 be SHMAs with variables Var2
and actions Act2. Abbreviate LVar1 = Var1\Var2, LVar2 = Var2\Var1, and SVar = Var1∩Var2.

I Theorem 9. Let R1 and R2 be bisimulations for (Ha1,Hb1) and (Ha2,Hb2), respectively.
Ha1 ‖ Ha2 and Hb1 ‖ Hb2 are bisimilar if R1 and R2 do not involve shared variables, i.e.,

R1 = {〈〈la1, ϑa1|LVar1 ] ϑ
S〉, 〈lb1, ϑb1|LVar1 ] ϑ

S〉〉 ;
〈la1, ϑa1〉R1 〈lb1, ϑb1〉 and ϑS ∈ Flow(SVar)},

R2 = {〈〈la2, ϑa2|LVar2 ] ϑ
S〉, 〈lb2, ϑb2|LVar2 ] ϑ

S〉〉 ;
〈la2, ϑa2〉R2 〈lb2, ϑb2〉 and ϑS ∈ Flow(SVar)}.

Our requirement that R1 and R2 do not distinguish between shared variables yields the
compatibility assumption required for Theorem 5. Our proof then simply exploits the
representation of JHa1 ‖ Ha2K and JHb1 ‖ Hb2K in terms of a composition of STSs.
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5 Concluding remarks

In this paper, we introduced a generic parallel-composition operator for STSs and SHMAs.
The essential new feature that distinguishes the novel composition from previous ones is that
it uses the mathematical concepts of spans and couplings to model the effect of composing
(potentially dependent) stochastic behaviors. The latter is crucial for systems where the
components communicate via shared variables. A further feature of the novel stochastic-
hybrid-system model (SHMA) is that the adaption of flows depends on commands rather
happening on arbitrary occasions. We proved important algebraic properties in the context
of composition, e.g., congruence with respect to bisimulation. This shows that even within
our generic operator one does not have to forgo desired properties of compositional systems.
There is plenty room for further elaborations. Firstly, we are going to develop a mathematical
theory for SHMA that also involves stochastic flows. Furthermore, we will work on a modeling
language for couplings and spans in order to obtain a theoretical basis for practical tools. Also
other kinds of models, where spans yield a powerful approach for compositional modeling,
could be investigated. Moreover, our approach concerning couplings as a modeling formalism
enables many new verification questions, e.g., for directly reasoning about the coordination
between components.
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Abstract
Nonnegative matrix factorization (NMF) is the problem of decomposing a given nonnegative
n × m matrix M into a product of a nonnegative n × d matrix W and a nonnegative d × m
matrix H. Restricted NMF requires in addition that the column spaces of M and W coincide.
Finding the minimal inner dimension d is known to be NP-hard, both for NMF and restricted
NMF. We show that restricted NMF is closely related to a question about the nature of minimal
probabilistic automata, posed by Paz in his seminal 1971 textbook. We use this connection to
answer Paz’s question negatively, thus falsifying a positive answer claimed in 1974.

Furthermore, we investigate whether a rational matrix M always has a restricted NMF of
minimal inner dimension whose factors W and H are also rational. We show that this holds
for matrices M of rank at most 3 and we exhibit a rank-4 matrix for which W and H require
irrational entries.
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1 Introduction

Nonnegative matrix factorization (NMF) is the task of factoring a matrix of nonnegative real
numbers M (henceforth a nonnegative matrix) as a product M = W ·H such that matrices
W and H are also nonnegative. The smallest inner dimension of any such factorization is
called the nonnegative rank of M , written rank+(M).
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In machine learning, NMF was popularized by the seminal work of Lee and Seung [14] as
a tool for finding features in facial-image databases. Since then, NMF has found a broad
range of applications – including document clustering, topic modelling, computer vision,
recommender systems, bioinformatics, and acoustic signal processing [5, 4, 7, 19, 21, 22].
In applications, matrix M can typically be seen as a matrix of data points: each column
of M corresponds to a data point and each row to a feature. Then, computing a nonnegative
factorization M = W ·H corresponds to expressing the data points (columns of M) as convex
combinations of latent factors (columns of W ), i.e., as linear combinations of latent factors
with nonnegative coefficients (columns of H).

From a computational perspective, perhaps the most basic problem concerning NMF
is whether a given nonnegative matrix of rational numbers M admits an NMF with inner
dimension at most a given number k. Formally, the NMF problem asks whether rank+(M) ≤ k.
In practical applications, various heuristics and local-search algorithms are used to compute
an approximate nonnegative factorization, but little is known in terms of their theoretical
guarantees. The NMF problem under the separability assumption of Donoho and Stodden [9]
is tractable: an NMF M = W ·H is called separable if every column of W is also a column
of M . In 2012, Arora et al. [2] showed that it is decidable in polynomial time whether a
given matrix admits a separable NMF with a given inner dimension. Further progress was
made recently, with several efficient algorithms for computing near-separable NMFs [13, 12].

Vavasis [20] showed that the problem of deciding whether the rank of a nonnegative
matrix is equal to its nonnegative rank is NP-hard. This result implies that generalizations
of this problem, such as the aforementioned NMF problem, the problem of computing the
factors W,H (in both exact and approximate versions), and nonnegative rank determination,
are also NP-hard. It is not known whether any of these problems are in NP.

Vavasis [20] notes that the difficulty in proving membership in NP lies in the fact
that a certificate for a positive answer to the NMF problem seems to require the sought
factors: a pair of nonnegative matrices W,H such that M = W ·H. Related to this, Cohen
and Rothblum [8] posed the question of whether, given a nonnegative matrix of rational
numbers M , there always exists an NMF M = W ·H of inner dimension equal to rank+(M)
such that both W and H are also matrices of rational numbers. A natural route to proving
membership of the NMF problem in NP would be to give a positive answer to the question
of Cohen and Rothblum (as well as a polynomial bound on the bit-length of the factors
W and H). However, the question remains open. Currently the best complexity bound
for the NMF problem is membership in PSPACE, which is obtained by translation into
the existential theory of real-closed fields [2]. Such a translation shows that one can always
choose the entries of W and H to be algebraic numbers.

In this work, we focus on the so-called restricted NMF (RNMF) problem, introduced
by Gillis and Glineur [11]. The RNMF problem is defined as the NMF problem, except
that the column spaces of M and W are required to coincide. (Note that for any NMF, the
column space of M is a subspace of the column space of W .) This problem has a natural
geometric interpretation as the nested polytope problem (NPP): the problem of finding a
minimum-vertex polytope nested between two given convex polytopes. In more detail, for a
rank-r matrix M , finding an RNMF with inner dimension d is known to correspond exactly
to finding a nested polytope with d vertices in an (r − 1)-dimensional NPP.

Our contributions are as follows.
1. We establish a tight connection between NMF and the coverability relation in labelled

Markov chains (LMCs). The latter notion was introduced by Paz [15]. Loosely speaking,
an LMCM′ covers an LMCM if for any initial distribution over the states ofM there is
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an initial distribution over the states ofM′ such thatM andM′ are equivalent. In 1971,
Paz [15] asked a question about the nature of minimal covering LMCs. The question
was supposedly answered positively in 1974 [3]. However, we show that the correct
answer is negative, thus falsifying the claim in [3]. Instrumental to our counterexample is
the observation that restricted nonnegative rank and nonnegative rank can be different.
(Indeed, the wrong claims in [3] seem to implicitly rely on the opposite assumption,
although the notions of NMF and RNMF had not yet been developed.)

2. We show that the RNMF problem for matrices M of rank 3 or less can be solved in
polynomial time. In fact, we show that there is always a rational NMF of M with inner
dimension rank+(M), and that it can be computed in polynomial time in the Turing
model of computation. This improves a result in [11] where the RNMF problem is shown
to be solvable in polynomial time assuming a RAM model with unit-cost arithmetic.
Both our algorithm and the one in [11] exploit the connection to the 2-dimensional NPP,
allowing us to take advantage of a geometric algorithm by Aggarwal et al. [1]. We need
to adapt the algorithm in [1] to ensure that the occurring numbers are rational and can
be computed in polynomial time in the Turing model of computation.

3. We exhibit a rank-4 matrix that has an RNMF with inner dimension 5 but no rational
RNMF with inner dimension 5. We construct this matrix via a particular instance of the
3-dimensional NPP, again taking advantage of the geometric interpretation of RNMF.
Our result answers the RNMF variant of Cohen and Rothblum’s question in [8] negatively.
The original (NMF) variant remains open.

Detailed proofs of all results can be found in the full version of this paper.

2 Nonnegative Matrix Factorization

Let N and N0 denote the set of all positive and nonnegative integers, respectively. For
every n ∈ N, we write [n] for the set {1, 2, . . . , n} and write In for the identity matrix of
order n. For any ordered field F, we denote by F+ the set of all its nonnegative elements.
For any vector v, we write vi for its ith entry. A vector v is called stochastic if its entries
are nonnegative real numbers that sum up to one. For every i ∈ [n], we write ei for the ith
coordinate vector in Rn. We write 1(n) for the n-dimensional column vector with all ones.
We omit the superscript if it is understood from the context.

For any matrix M , we write Mi for its ith row, M j for its jth column, and Mi,j for its
(i, j)th entry. The column space (resp., row space) of M , written Col(M) (resp., Row(M)), is
the vector space spanned by the columns (resp., rows) of M . A matrix is called nonnegative
(resp., zero or rational) if so are all its entries. A nonnegative matrix is column-stochastic
(resp., row-stochastic) if the element sum of each of its columns (resp., rows) is one.

2.1 Nonnegative Rank

Let F be an ordered field, such as the reals R or the rationals Q. Given a nonnegative matrix
M ∈ Fn×m+ , a nonnegative matrix factorization (NMF) over F of M is any representation of
the form M = W ·H where W ∈ Fn×d+ and H ∈ Fd×m+ are nonnegative matrices. Note that
Col(M) ⊆ Col(W ). We refer to d as the inner dimension of the NMF, and hence refer to
NMF M = W ·H as being d-dimensional. The nonnegative rank over F of M is the smallest
number d ∈ N0 such that there exists a d-dimensional NMF over F of M . An equivalent
characterization [8] of the nonnegative rank over F of M is as the smallest number of rank-1
matrices in Fn×m+ such that M is equal to their sum. The nonnegative rank over R will
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henceforth simply be called nonnegative rank, and will be denoted by rank+(M). For any
nonnegative matrix M ∈ Rn×m+ , it is easy to see that rank(M) ≤ rank+(M) ≤ min{n,m}.

Given a nonzero matrixM ∈ Fn×m+ , by removing the zero columns ofM and dividing each
remaining column by the sum of its elements, we obtain a column-stochastic matrix M ′ with
equal nonnegative rank. Similarly, if M = W ·H then after removing zero columns in W and
multiplying with a suitable diagonal matrixD, we getM = W ·H = WD·D−1H whereWD is
column-stochastic. IfM is column-stochastic then 1> = 1>M = 1>WD ·D−1H = 1>D−1H,
hence D−1H is column-stochastic as well. Thus, without loss of generality one can consider
NMFs of column-stochastic matrices into column-stochastic matrices [8, Theorem 3.2].

NMF problem: Given a matrix M ∈ Qn×m+ and k ∈ N, is rank+(M) ≤ k?

The NMF problem is NP-hard, even for k = rank(M) (see [20]). On the other hand, it is
reducible to the existential theory of the reals, hence by [6, 16] it is in PSPACE.

For a matrixM ∈ Qn×m+ , its nonnegative rank over Q is clearly at least rank+(M). While
those ranks are equal if rank(M) ≤ 2, a longstanding open question by Cohen and Rothblum
asks whether they are always equal [8]. In other words, it is conceivable that there exists
a rational matrix M ∈ Qn×m+ with rank+(M) = d that has no rational NMF with inner
dimension d. Recently, Shitov [17] exhibited a nonnegative matrix (with irrational entries)
whose nonnegative rank over a subfield of R is different from its nonnegative rank over R.

2.2 Restricted Nonnegative Rank
For all matrices M ∈ Fn×m+ , an NMF M = W ·H is called restricted NMF (RNMF) [11]
if rank(M) = rank(W ). As we know Col(M) ⊆ Col(W ) holds for all NMF instances, the
condition rank(M) = rank(W ) is then equivalent to Col(M) = Col(W ). The restricted
nonnegative rank over F of M is the smallest number d ∈ N0 such that there exists a
d-dimensional restricted nonnegative factorization over F of M . Unless indicated otherwise,
henceforth we will assume F = R when speaking of the restricted nonnegative rank of M ,
and denote it by rrank+(M).

RNMF problem: Given a matrix M ∈ Qn×m+ and k ∈ N, is rrank+(M) ≤ k?

We have the following basic properties.

I Lemma 1 ([11]). Let M ∈ Rn×m+ . Then rank(M) ≤ rank+(M) ≤ rrank+(M) ≤ m.
Moreover, if rank(M) = rank+(M) then rank(M) = rrank+(M).

Thus, with the above-mentioned NP-hardness result, it follows that the RNMF problem is
also NP-hard and in PSPACE.

For a matrix M ∈ Qn×m+ , its restricted nonnegative rank over Q is clearly at least
rrank+(M). As with nonnegative rank, in general it is not known whether the restricted
nonnegative ranks of M over R and over Q are equal. By [8, Theorem 4.1] and Lemma 1,
this is true when rank(M) ≤ 2.

RNMF has the following geometric interpretation. For a dimension ` ∈ N, the convex
combination of a set {v1, . . . , vm} ⊂ R` is a point λ1v1 + · · ·+ λmvm where (λ1, . . . , λm) is a
stochastic vector. The convex hull of {v1, . . . , vm}, written as conv{v1, . . . , vm}, is the set
of all convex combinations of {v1, . . . , vm}. We call conv{v1, . . . , vm} a polytope spanned by
v1, . . . , vm. A polyhedron is a set {x ∈ R` | Ax+ b ≥ 0 } with A ∈ Rn×` and b ∈ Rn. A set
is a polytope if and only if it is a bounded polyhedron. A polytope is full-dimensional (i.e.,
has volume) if the matrix (A b) ∈ Rn×(`+1) has rank `+ 1.
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Nested polytope problem (NPP): Given r, n ∈ N, let A ∈ Qn×(r−1) and b ∈ Qn be
such that P = {x ∈ Rr−1 | Ax+ b ≥ 0 } is a full-dimensional polytope. Let S ⊆ P be
a full-dimensional polytope described by spanning points. The nested polytope problem
(NPP) asks, given A, b, S and a number k ∈ N, whether there exist k points that span
a polytope Q with S ⊆ Q ⊆ P . Such a polytope Q is called nested between P and S.

The following proposition appears as Theorem 1 in [11].

I Proposition 2. The RNMF problem and the NPP are interreducible in polynomial time.

More specifically, the reductions are as follows.
1. Given a nonnegative matrix M ∈ Qn×m+ of rank r, one can compute in polynomial time

A ∈ Qn×(r−1) and b ∈ Qn such that P = {x ∈ Rr−1 | Ax+ b ≥ 0 } is a full-dimensional
polytope, andm rational points that span a full-dimensional polytope S ⊆ P such that
(a) any d-dimensional RNMF (rational or irrational) of M determines d points that span

a polytope Q with S ⊆ Q ⊆ P , and
(b) any d points (rational or irrational) that span a polytope Q with S ⊆ Q ⊆ P

determine a d-dimensional RNMF of M .
2. Let A ∈ Qn×(r−1) and b ∈ Qn such that P = {x ∈ Rr−1 | Ax+b ≥ 0 } is a full-dimensional

polytope. Let S ⊆ P be a full-dimensional polytope spanned by s1, . . . , sm ∈ Qr−1. Then
matrix M ∈ Qn×m with M i = Asi + b for i ∈ [m] satisfies (a) and (b).

Importantly, the correspondences (a) and (b) preserve rationality. In the full version we
detail the reduction from point 2 above, thereby filling in a small gap in the proof of [11].

I Example 3 ([11, Example 1]). Using the geometric interpretation of restricted nonnegative
rank it follows easily that, in general, we may have rank(M) < rank+(M) < rrank+(M).
Let 3D-cube NPP be the NPP instance where the inner and outer polytope are the standard
3D cube, i.e., P = S = {x ∈ R3 | xi ∈ [0, 1], 1 ≤ i ≤ 3 }. The only nested polytope is Q = P .
The corresponding restricted NMF problem consists of the following matrix M ∈ R6×8

+ :

M =

 0 0 0 0 1 1 1 1
1 1 1 1 0 0 0 0
0 0 1 1 0 0 1 1
1 1 0 0 1 1 0 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0

 .

We have rrank+(M) = 8 and rank(M) = 4. Since rank+(M) is bounded above by the
number of rows in M , we have rank+(M) ≤ 6. It is shown in [11] that rank+(M) = 6.

3 Coverability of Labelled Markov Chains

In this section, we establish a connection between RNMF and the coverability relation for
labelled Markov chains. We thereby answer an open question posed in 1971 by Paz [15]
about the nature of minimal covering labelled Markov chains.

A labelled Markov chain (LMC ) is a tupleM = (n,Σ, µ) where n ∈ N is the number of
states, Σ is a finite alphabet of labels, and function µ : Σ→ [0, 1]n×n specifies the transition
matrices and is such that

∑
σ∈Σ µ(σ) is a row-stochastic matrix. The intuitive behaviour of

the LMCM is as follows: WhenM is in state i ∈ [n], it emits label σ and moves to state j,
with probability µ(σ)i,j .

We extend the function µ to words by defining µ(ε) := In and µ(σ1 . . . σk) := µ(σ1) · · ·µ(σk)
for all k ∈ N, and all σ1, . . . , σk ∈ Σ. Observe that µ(xy) = µ(x) ·µ(y) for all words x, y ∈ Σ∗.
We view µ(w) for a word w ∈ Σ∗ as follows: ifM is in state i ∈ [n], it emits w and moves to
state j in |w| steps, with probability µ(w)i,j .
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For i ∈ [n] and w ∈ Σ∗, we write prMi (w) := e>i · µ(w) · 1(n) for the probability that,
starting in state i, M emits word w. For example, in Figure 1 we have prM0 (a1b1) = 1

12 .
More generally, for a given initial distribution π on the set of states [n] (viewed as a stochastic
row vector), we write prMπ (w) := π · µ(w) · 1(n) for the probability thatM emits word w
starting from state distribution π.

We say that an LMCM is covered by an LMCM′, written asM′ ≥M, if for every initial
distribution π forM there exists a distribution π′ forM′ such that prMπ (w) = prM′π′ (w) for
all words w ∈ Σ∗.

The backward matrix ofM is a matrix BackM∈ R[n]×Σ∗
+ where (BackM)i,w = prMi (w)

for every i ∈ [n] and w ∈ Σ∗. The rank of M is defined by rank(M) = rank(BackM).
(Matrix BackM is infinite, but since it has n rows, its rank is at most n.) It follows easily
from the definition (see also [15, Theorem 3.1]) thatM′ ≥M if and only if there exists a
row-stochastic matrix A such that A · BackM′ = BackM.

LMCs can be seen as a special case of stochastic sequential machines, a class of probabilistic
automata introduced and studied by Paz [15]. More specifically, they are stochastic sequential
machines with a singleton input alphabet and Σ as output alphabet. In his seminal 1971
textbook on probabilistic automata [15], Paz asks the following question:

I Question 4 (Paz [15], p. 38). If an n-state LMC M is covered by an n′-state LMC M′
where n′ < n, isM necessarily covered by some n∗-state LMCM∗, where n∗ < n, such that
M∗ andM have the same rank?

In 1974, a positive answer to this question was claimed [3, Theorem 13]. In fact, the author
of [3] makes a stronger claim, namely that the answer to Question 4 is yes, even if the
inequality n∗ < n in Question 4 is replaced by n∗ ≤ n′. To the contrary, we show:

I Theorem 5. The answer to Question 4 is negative.

Theorem 5 falsifies the claim in [3]. In the full version we discuss in detail the mistake in [3].
To prove Theorem 5 we establish a tight connection between NMF and LMC coverability:

I Proposition 6. Given a nonnegative matrix M ∈ Qn×m+ of rank r, one can compute in
polynomial time an LMCM = (m+ 2,Σ, µ) of rank r + 2 such that for all d ∈ N:
(a) any d-dimensional NMF M = W · H determines an LMC M′ = (d + 2,Σ, µ′) with
M′ ≥M and rank(M′) = rank(W ) + 2, and

(b) any LMCM′ = (d+2,Σ, µ′) withM′ ≥M determines a d-dimensional NMFM = W ·H
with rank(M′) = rank(W ) + 2.

In particular, for all d ∈ N the inequality rrank+(M) ≤ d holds if and only ifM is covered
by some (d+ 2)-state LMCM′ such thatM′ andM have the same rank.

Assuming Proposition 6 we can prove Theorem 5:

Proof of Theorem 5. Let M ∈ {0, 1}6×8 be the matrix from Example 3. LetM = (10,Σ, µ)
be the associated LMC from Proposition 6. Since M = I6 · M is an NMF with inner
dimension 6, by Proposition 6 (a) there is an LMCM′ = (8,Σ, µ′) withM′ ≥M. Towards
a contradiction, suppose the answer to Question 4 were yes. Then M is also covered by
some n∗-state LMC M∗, where n∗ ≤ 9, such that M∗ and M have the same rank. The
last sentence of Proposition 6 then implies that rrank+(M) ≤ 7. But this contradicts the
equality rrank+(M) = 8 from Example 3. Hence, the answer to Question 4 is no. J

To prove Proposition 6 we adapt a reduction from NMF to the trace-refinement problem
in Markov decision processes [10].
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Figure 1 LMCM is constructed from matrix M =
( 1/4 1/2 3/4

3/4 1/2 1/4

)
whereas LMCM′ is obtained

by NMF M = I2 ·M .

Proof sketch of Proposition 6. Let M ∈ Qn×m+ be a nonnegative matrix of rank r. As
argued in Section 2.1, without loss of generality we may assume that M is column-stochastic
and consider factorizations of M into column-stochastic matrices only.

We define an LMC M = (m + 2,Σ, µ) with m + 2 states {0, 1, . . . ,m,m + 1}. The
alphabet is Σ = {a1, . . . , am} ∪ {b1, . . . , bn} ∪ {X} and the function µ, for all i ∈ [m] and all
j ∈ [n], is defined by:

µ(ai)0,i = 1
m , µ(bj)i,m+1 = (M>)i,j = Mj,i, µ(X)m+1,m+1 = 1,

and all other entries of µ(ai), µ(bj), and µ(X) are 0. See Figure 1 for an example. We have:

BackM =



ε b1 ··· bn X ai aibj b1X ··· bnX X2 ···

1 0 · · · 0 0 1
m

1
mMj,i 0 · · · 0 0 · · ·

1 M1,1 · · · Mn,1 0 0 0 M1,1 · · · Mn,1 0 · · ·
...

...
. . .

...
...

...
...

...
. . .

...
... · · ·

1 M1,m · · · Mn,m 0 0 0 M1,m · · · Mn,m 0 · · ·
1 0 · · · 0 1 0 0 0 · · · 0 1 · · ·

.

Thus rank(M) = rank(BackM) ≥ rank(M) + 2. The first n + 2 columns (indexed by
ε, b1, . . . , bn,X) in BackM span Col(BackM). Therefore, rank(M) = rank(M) + 2 = r + 2.

For d ∈ N, letM = W ·H for some column-stochastic matricesW ∈ Rn×d+ and H ∈ Rd×m+ .
Define an LMCM′ = (d+ 2,Σ, µ′) where the states are {0, 1, . . . , d, d+ 1}. The function µ′,
for all i ∈ [m], j ∈ [n], and l ∈ [d], is defined by:

µ′(ai)0,l = 1
mHl,i, µ′(bj)l,d+1 = Wj,l, µ′(X)d+1,d+1 = 1,

and all other entries of µ′(ai), µ′(bj), and µ′(X) are 0. From the NMF M = W ·H it follows
that we can factor BackM as follows:


1 0 · · · 0 0
0 H1,1 · · · Hd,1 0
...

...
. . .

...
...

0 H1,m · · · Hd,m 0
0 0 · · · 0 1

·


ε b1 ··· bn X ai aibj bjX X2 ···

1 0 · · · 0 0 1
m

1
mMj,i 0 0 · · ·

1 W1,1 · · · Wn,1 0 0 0 Wj,1 0 · · ·
...

...
. . .

...
...

...
...

...
... · · ·

1 W1,d · · · Wn,d 0 0 0 Wj,d 0 · · ·
1 0 · · · 0 1 0 0 0 1 · · ·


where the left factor is row-stochastic (as H is column-stochastic), and the right factor equals
BackM′. It follows thatM′ ≥M. J
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4 Restricted NMF of Rank-3 Matrices

In this section we consider rational matrices of rank at most 3. We show that for such matrices
the restricted nonnegative ranks over R and Q are equal and we give a polynomial-time
algorithm that computes a minimal-dimension RNMF over Q.

I Theorem 7. Given a matrix M ∈ Qn×m+ where rank(M) ≤ 3, there is a rational RNMF
of M with inner dimension rrank+(M) and it can be computed in polynomial time in the
Turing model of computation.

Using reduction 1 of Proposition 2, we can reduce in polynomial time the RNMF problem
for rank-3 matrices to the 2-dimensional NPP, i.e., the nested polygon problem in the plane.
As noted in Section 2.2, the correspondence between restricted nonnegative factorizations
and nested polygons preserves rationality. Thus to prove Theorem 7 it suffices to prove:

I Theorem 8. Given polygons S ⊆ P ⊆ R2 with rational vertices, there exists a minimum-
vertex polygon Q nested between P and S that also has rational vertices. Moreover there is
an algorithm that, given P and S, computes such a polygon in polynomial time in the Turing
machine model.

In fact, Aggarwal et al. [1] give an algorithm for the 2-dimensional NPP and prove that
it runs in polynomial time in the RAM model with unit-cost arithmetic. However, they
freely use trigonometric functions and do not address the rationality of the output of the
algorithm nor its complexity in the Turing model. To prove Theorem 8 we show that, by
adopting a suitable representation of the vertices of a nested polygon, the algorithm in [1]
can be adapted so that it runs in polynomial time in the Turing model. We furthermore
use this representation to prove that the minimum-vertex nested polygon identified by the
resulting algorithm has rational vertices.

The remainder of the section is devoted to the proof of Theorem 8. We first recall some
terminology from [1] and describe their algorithm.

A supporting line segment is a directed line segment, with its initial and final points on
the boundary of the outer polygon P , that touches the inner polygon S on its left. A nested
polygon with vertices on the boundary of P is said to be supporting if all but at most one of
its edges are supporting line segments. A polygon nested between P and S is called minimal
if it has the minimum number of vertices among all polygons nested between P and S. It is
shown in [1, Lemma 4] that there is always a supporting polygon that is also minimal, and
the algorithm given therein outputs such a polygon.

Let k be the number of vertices of a minimal nested polygon. Given a vertex v on the
boundary of P , there is a uniquely defined supporting polygon Qv with at most k+ 1 vertices.
To determine Qv one computes the supporting line segments v1v2, . . . , vkvk+1, where v1 = v;
see Figure 2. Then Qv is either the polygon with vertices v1, . . . , vk or the polygon with
vertices v1, . . . , vk+1. In the first case, Qv is minimal. The idea behind the algorithm of [1]
is to search along the boundary of P for an initial vertex v such that Qv is minimal.

As a central ingredient for our proof of Theorem 8, we choose a convenient representation
of the vertices of supporting polygons. To this end, we assume that the edges of P are
oriented counter-clockwise, and we represent a vertex v on an edge pq of P by the unique
λ ∈ [0, 1] such that v = (1− λ)p+ λq. We call this the convex representation of v.

Similar to [1], we associate with each supporting line segment uv a ray function r, such
that if λ is the convex representation of u then r(λ) is the convex representation of v. The
same ray function applies for supporting line segments u′v′ with u′ in a small enough interval
containing u.
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p1 = p′3
p′1 = p2

p′2

p3

s1

s2

s3

v1

v2
v3

v4

λ1

λ4 = r3(λ3)

λ2 = r1(λ1)

λ3 = r2(λ2)

Figure 2 Supporting polygon Qv1 . For every i ∈ [3], vertex vi lies on edge pip′i of P , and si is
the point where the supporting line segment vivi+1 touches the inner polygon S on its left.

In the following, when we say polynomial time, we mean polynomial time in the Turing
model. To obtain a polynomial time bound, the key lemma is as follows:

I Lemma 9. Consider bounded polygons S ⊆ P ⊆ R2 whose vertices are rational and of
bit-length L. Then the ray function associated with a supporting line segment uv has the
form r(λ) = aλ+b

cλ+d , where coefficients a, b, c, d are rational numbers with bit-length O(L) that
can be computed in polynomial time.

Suppose that v1v2, . . . , vkvk+1 is a sequence of k supporting line segments, with corres-
ponding ray functions r1, . . . , rk. Then v1, . . . , vk are the vertices of a minimal supporting
polygon if and only if (rk ◦ . . . ◦ r1)(λ) ≥ λ, where λ is the convex representation of v1.

It follows from [1] that, for each edge of P , one can compute in polynomial time a
partition I of [0, 1] into intervals with rational endpoints such that if λ1, λ2 are in the
same interval I ∈ I then the points with convex representation λ1 and λ2 are associated
with the same sequence of ray functions r1, . . . , rk. Using Lemma 9 we can, for each
interval I ∈ I, compute these ray functions in polynomial time. Define the slack function
s(λ) = (rk ◦ . . . ◦ r1)(λ)− λ. In fact, this function has the form s(λ) = aλ+b

cλ+d − λ for rational
numbers a, b, c, d that are also computable in polynomial time. Then it is straightforward to
check whether s(λ) ≥ 0 has a solution λ ∈ I.

Next we show that if such a solution exists, then there exists a rational solution, which,
moreover, can be computed in polynomial time. To this end, let λ∗ ∈ I be such that
s(λ∗) ≥ 0. If λ∗ is on the boundary of I, then λ∗ ∈ Q. If λ∗ is not on the boundary and is
not an isolated solution, then there exists a rational solution in its neighbourhood. Lastly,
let λ∗ be an isolated solution not on the boundary. Then, λ∗ is a root of both s and its
derivative s′. For every λ ∈ I, we have

(cλ+ d) · s(λ) = aλ+ b− λ · (cλ+ d).

Taking the derivative of the above equation with respect to λ, we get

c · s(λ) + (cλ+ d) · s′(λ) = a− d− 2cλ. (1)

Since s(λ∗) = s′(λ∗) = 0, from (1) we get 0 = a− d− 2cλ∗. Note that c 6= 0 since otherwise
s ≡ 0. Therefore, λ∗ = a−d

2c ∈ Q.
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It follows that the vertex v represented by λ∗ has rational coordinates computable in
polynomial time. By computing (ri ◦ . . . ◦ r1)(λ∗) for i ∈ [k], we can compute in polynomial
time the convex representation of all vertices of the supporting polygon Qv. Observe, in
particular, that all vertices are rational. Hence we have proved Theorem 8.

5 Restricted NMF Requires Irrationality

Here we show that the restricted nonnegative ranks over R and Q are, in general, different.

I Theorem 10. Let

M =



1/8 1/2 17/22 0 0 0
0 0 0 1/2 3/4 7/12

3/4 3/4 3/11 2 1/2 1/6
1/4 1/4 8/11 1/4 19/8 55/24
1/2 1/8 1/11 1/8 15/16 17/16

11/16 5/16 7/44 1/16 7/32 43/96


∈ Q6×6

+ .

The restricted nonnegative rank of M over R is 5. The restricted nonnegative rank of M
over Q is 6.

Proof. Matrix M has an NMF M = W ·H with inner dimension 5 with W,H as follows:

W =



0 3+
√

2
14

11+
√

2
14 0 0

0 0 0 12−2
√

2
17

5
7 +

√
2

14
2−
√

2 1 3−
√

2
7

26+7
√

2
17 0

−1 +
√

2 0 4+
√

2
7

21−12
√

2
17

39
14 + 5

√
2

28√
2

2
2
7 −

√
2

14 0 7−4
√

2
17

33
28 +

√
2

56
1
2 +

√
2

4
15
28 −

√
2

14
3−
√

2
28 0 3

8 −
√

2
16


,

H =



1+
√

2
4 0

√
2

11
1
4 −

√
2

8 0 1
6 +

√
2

12
3−
√

2
4

1
2 +

√
2

8 0 0 0 0
0 1

2 −
√

2
8 1−

√
2

11 0 0 0
0 0 0 3

4 +
√

2
8

13
34 −

7
√

2
68 0

0 0 0 0 21
34 + 7

√
2

68
5
6 −

√
2

12

 .

Since rank(M) = rank(W ) = 4, the NMF M = W ·H is restricted. This RNMF has been
obtained by reducing, according to Proposition 2, an NPP instance, which we now describe.

Figure 3 shows the outer 3-dimensional polytope P with 6 faces. The polytope P
is the intersection of the following half-spaces: y ≥ 0 (blue), z ≥ 0 (brown), x ≥ 0
(pink), −x + 5

2z + 1 ≥ 0 (yellow), − 1
2x − y + 1

4z + 1 ≥ 0 (green), − 1
4x − y −

7
8z + 1 ≥ 0

(transparent front). The figure also indicates an interior polytope S spanned by 6 points (black
dots): s1 = ( 3

4 ,
1
8 , 0)>, s2 = ( 3

4 ,
1
2 , 0)>, s3 = ( 3

11 ,
17
22 , 0)>, s4 = (2, 0, 1

2 )>, s5 = ( 1
2 , 0,

3
4 )>,

s6 = ( 1
6 , 0,

7
12 )>. In the following we discuss possible locations of 5 points q1, q2, q3, q4, q5

that span a nested polytope Q. Since s1, s2, s3 all lie on the (brown) face on the xy-plane,
but not on a common line, at least 3 of the qi must lie on the xy-plane. A similar statement
holds for s4, s5, s6 and the xz-plane. So at least one qi, say q1, must lie on the x-axis.

Suppose another qi, say q2, lies on the x-axis. Without loss of generality we can take
q1 = (0, 0, 0)> and q2 = (1, 0, 0)>, as all points in P on the x-axis are enclosed by these q1,
q2.
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Figure 3 Instance of the nested polytope problem. The two images show orthogonal projections
of a 3-dimensional outer polytope P . The black dots indicate 6 inner points (3 on the brown xy-face,
and 3 on the blue xz-face) that span the interior polytope S. The two triangles on the xy-face and
on the xz-face indicate the (unique) location of 5 points that span the nested polytope Q. The two
slightly different projections are designed to create a 3-dimensional impression using stereoscopy.
The “parallel-eye” technique should be used, see, e.g., [18]. See the full version for a “cross-eyed”
variant.

Figure 4 provides a detailed view of the xy-plane. To enclose s2, some q ∈ {q3, q4, q5}
must also lie on the xy-plane and to the right of the line that connects q2 = (1, 0, 0)> and s2.
To enclose s3, some q′ ∈ {q3, q4, q5} must also lie on the xy-plane and to the left of the line
that connects q1 = (0, 0, 0)> and s3. If q and q′ were identical then they would lie outside P
– a contradiction. Hence 4 points (namely, q1, q2, q, q

′) are on the xy-plane. This leaves only
one point, say q′′, that is not on the xy-plane. To enclose s4 (see the corresponding figure in
the full version), point q′′ must lie on the xz-plane and must lie to the right of the line that
connects q2 = (1, 0, 0)> and s4. To enclose s6, point q′′ must lie to the left of the line that
connects q1 = (0, 0, 0)> and s6. Hence q′′ lies outside P – a contradiction.

Hence we have shown that only one point, say q1, lies on the x-axis, and two points
besides q1, say q2, q3, lie on the xy-plane, and two points besides q1, say q4, q5, lie on the
xz-plane. Figure 4 indicates a possible location (q∗1 , q∗2 , q∗3) of q1, q2, q3. The figure illustrates
that the x-coordinate of q∗1 must be at least 2−

√
2.

Figure 5 illustrates how to prove the same fact more formally, using the concept of a
slack function (see Section 4): The slack function s(λ) for the interval containing 2 −

√
2

has a zero at λ = 2 −
√

2, with a sign change from negative to positive. An inspection of
the intervals (of the partition I from Section 4) to the “left” of 2 −

√
2 reveals that none

of the corresponding slack functions s̃ satisfies s̃(λ) ≥ 0 for λ < 2 −
√

2. Similarly, the
x-coordinate of q∗1 must be at most 2 −

√
2, see corresponding figures in the full version.

Hence q∗1 = (2−
√

2, 0, 0)> is necessary. This uniquely (up to permutations) determines q∗2 , q∗3
and similarly the locations q∗4 , q∗5 of q4, q5. With the reduction from Proposition 2 this NPP
solution determines the RNMF of M mentioned at the beginning of the proof. Since there
is no 4-point solution of the NPP instance, we have rrank+(M) = 5. (Since rank(M) = 4,
Lemma 1 implies rank+(M) = 5.) Since there is no 5-point rational solution of the NPP
instance, the restricted nonnegative rank of M over Q is 6. J

6 Conclusion and Future Work

We have shown that an optimal restricted nonnegative factorization of a rational matrix may
require factors that have irrational entries. An outstanding open problem is whether the
same holds for general nonnegative factorizations. An answer to this question will likely shed
light on the issue of whether the nonnegative rank can be computed in NP.
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Figure 4 Detailed view of the xy-plane. The outer quadrilateral is one of 6 faces of P , the brown

face in Figure 3. The points s1, s2, s3 are among the 6 points that span the inner polytope S. The
points q∗1 , q∗2 , q∗3 are among the 5 points that span the nested polytope Q. The area around q∗1 is
zoomed in on the right-hand side. The picture illustrates that q∗1 cannot be moved left on the
x-axis without increasing the number of vertices of the nested polytope: A dotted ray from a point
slightly to the left of q∗1 is drawn through s1. Its intersection with the line x = 1 is slightly below q∗2 .
Following the algorithm of [1], the dotted ray is continued in a similar fashion, “wrapping around”
s2 and s3, and ending on the x-axis at around x ≈ 0.2, far left of the starting point. On the other
hand, the dashed line illustrates that q∗1 could be moved right (considering only this face).
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is no nested triangle with vertex (λ, 0, 0).
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Another contribution of the paper has been to develop connections between nonnegative
matrix factorization and probabilistic automata, thereby answering an old question concerning
the latter. Pursuing this connection, and closely related to the above-mentioned open problem,
one can ask whether, given a probabilistic automaton with rational transition probabilities,
one can always find a minimal equivalent probabilistic automaton that also has rational
transition probabilities.

Acknowledgements. The authors would like to thank Michael Benedikt for stimulating
discussions, and anonymous referees for their helpful suggestions.
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Abstract
Herman’s self-stabilization algorithm, introduced 25 years ago, is a well-studied synchronous
randomized protocol for enabling a ring of N processes collectively holding any odd number
of tokens to reach a stable state in which a single token remains. Determining the worst-case
expected time to stabilization is the central outstanding open problem about this protocol. It is
known that there is a constant h such that any initial configuration has expected stabilization
time at most hN2. Ten years ago, McIver and Morgan established a lower bound of 4/27 ≈ 0.148
for h, achieved with three equally-spaced tokens, and conjectured this to be the optimal value
of h. A series of papers over the last decade gradually reduced the upper bound on h, with
the present record (achieved in 2014) standing at approximately 0.156. In this paper, we prove
McIver and Morgan’s conjecture and establish that h = 4/27 is indeed optimal.
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1 Introduction

The notion of self-stabilization was introduced in a seminal paper of Dijkstra [11], and rose to
prominence a decade later, following (among others) an invited talk of Lamport during which
he pointed out that “self-stabilization [is] a very important concept in fault tolerance” [22].
Both self-stabilization and fault tolerance have since become central themes in distributed
computing (see, e.g., [12]), as recently witnessed by the award of the 2015 Edsger W. Dijkstra
Prize in Distributed Computing to Michael Ben-Or and Michael Rabin for “starting the field
of fault-tolerant randomized distributed algorithms” in the early 1980s.

In this paper, we examine an early self-stabilization algorithm known as Herman’s
Protocol [19], whose exact mathematical analysis has proven remarkably challenging over the
two-and-a-half decades since its inception. This algorithm considers a ring of N processes
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104:2 Proving the Herman-Protocol Conjecture

(or nodes), where each process either holds or doesn’t hold a token. Starting from any initial
configuration of K tokens, where K is required to be odd, Herman’s algorithm proceeds
as follows: at each time step, every process that holds a token either keeps it or passes it
to its clockwise neighbor with probability 1/2. All updates happen synchronously, and if a
process finds itself with two tokens (having simultaneously kept one and received one from
its counterclockwise neighbor) then both tokens are annihilated. It is straightforward to see
that, starting from an odd number of tokens and following this procedure, almost surely only
one token eventually remains, at which point the ring is said to have stabilized.

Herman’s original paper [19] presents the algorithm in a form amenable to implementation.
Each process possesses a bit, which the process can read and write. Each process can also
read the bit of its counterclockwise neighbor. In this representation, having the same bit
as one’s counterclockwise neighbor is interpreted as having a token. At each time step,
each process compares its bit with the bit of its counterclockwise neighbor; if the bits differ,
the process keeps its bit, whereas if the bits are the same, the process flips its bit with
probability 1/2 and keeps it with probability 1/2. It is straightforward to verify that the
bit-flipping version is an implementation of the token-passing version: in particular, a process
flipping its bit corresponds to passing its token to its clockwise neighbor. If the number of
processes is odd, by construction this bit representation forces the number of tokens to be
odd as well, which justifies the assumption that K, the number of tokens, is always odd.
In this paper we make no assumption about the parity of the number of processes, as we
abstract from the bit implementation, and simply assume that the number of tokens is odd
throughout.

Herman’s original paper [19] showed that the expected time (number of synchronous steps)
to stabilization is O(N2 logN). The same paper also mentions an improved upper bound
of O(N2) due to Dolev, Israeli, and Moran, without giving a proof or a further reference.
In 2004, Fribourg et al. [16] established an upper bound of 2N2, and the following year
Nakata [24] gave a tighter upper bound of 0.936N2 and exhibited an initial configuration
with expected stablization time Ω(N2). At the same time and independently, McIver and
Morgan showed in [23] that the initial configuration consisting of three equally-spaced tokens
has an expected stabilization time of exactly 4

27N
2, and conjectured that this value is an

upper bound on the expected time to stabilization starting from any initial configuration
with any (odd) number of tokens. The conjecture is intriguing since increasing the initial
number of tokens might be thought to lengthen the expected time to stabilization, due to
the larger number of collisions required to achieve stabilization.

Nevertheless, McIver and Morgan’s Herman-Protocol Conjecture is supported by consid-
erable amount of experimental evidence [5], and in the intervening years a series of papers
have gradually reduced the upper bound on the constant h such that stabilization from any
initial configuration takes expected time at most hN2: upper bounds of approximately 0.64,
0.521, 0.167, and 0.156 are given respectively in [21, 13, 14, 18], the last one provided last
year by Haslegrave, and coming relatively close to McIver and Morgan’s lower bound of
4/27 ≈ 0.148.

In this paper, we prove McIver and Morgan’s conjecture and establish that h = 4/27 is
indeed optimal. Writing Tz for the stabilization time starting from an initial configuration z,
we seek to prove that ETz ≤ 4

27N
2. To this end, one of the key ideas is to work with

a Lyapunov function V (z) in lieu of the (more complicated) function ETz. The domain
of the function V is continuous: a domain element describes a configuration in terms of
the distances between adjacent tokens. Combinatorial arguments exploiting the highly
symmetrical structure of V (z) enable us to establish that, for an arbitrary configuration z,
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we have ETz ≤ V (z), with equality holding for all three-token configurations. Finally, in
what constitutes the most technically challenging part of this paper, we combine induction
on the number of tokens with analytical techniques to show that V is bounded by 4

27N
2.

Taken together, we obtain ETz ≤ 4
27N

2, entailing the Herman-Protocol Conjecture.
The case of there being an even numberK of tokens is equally natural from a mathematical

point of view, although it does not correspond to a concrete bit-flipping protocol. It was
established in [14] that the worst-case configuration in this variant is the equidistant two-token
configuration, with an expected stabilization time of 1

2N
2; the analysis underlying that result

is considerably simpler than what is required in case the number of tokens is odd, as in the
present paper.

Herman’s protocol is also related to the notion of coalescing random walks [2, 8, 1]. There,
one considers multiple independent random walks on Zd (or on the vertices of a connected
graph). When two walks meet, they coalesce into a new random walk. A protocol for
self-stabilizing mutual exclusion based on such random walks was proposed in [20]. The
expected coalescence time was studied in [7, 25, 6].

It is interesting to note that Herman’s ring is closely related to widely-studied models
of random walks and Brownian motion in statistical physics. Observe that by a simple
modification of the formalism, one may equivalently view Herman’s model as a ring in which
tokens randomly move in discrete step in any direction, with pairwise collisions leading to
annihilation; this precisely corresponds to Fisher’s vicious drunks model [15] (with periodic
boundary conditions). Similar models have been studied in chemical physics [10, 3, 28] and
statistical mechanics [17, 26, 27], among others.

The rest of the paper is organized as follows. In Section 2 we review previous results in
the literature that are relevant to our proof. In Section 3 we outline the structure of our
proof, identifying two key lemmas, Lemma 8 and Lemma 9. Those are proved in [4] and
Section 4, respectively.

Another solution of the conjecture, using different techniques, is independently shown
in [9].

2 Relevant Previous Results

For the rest of the paper we fix the number N of processes. We assume that the number K
of tokens is odd, and both N and K are at least 3.

Processes are numbered from 1 to N , clockwise, according to their position in the ring.
A configuration with K tokens is formalized as a function z : {1, . . . ,K} → {1, . . . , N} with
z(1) < · · · < z(K), where the ith token (i ∈ {1, . . . ,K}) is held by the processor with the
number z(i). We write ZK for the set of configurations with K tokens, and Z for the set of
all possible configurations, that is, Z = Z1 ∪ Z3 ∪ Z5 ∪ . . .

For a fixed initial configuration z = z0 we write (zt)t≥0 for the stochastic process of
configurations emanating from z. The stabilization time Tz is the smallest t ≥ 0 such
that zt ∈ Z1, i.e., the time until only one token is left. In this paper we focus on the
expectation ETz. It is shown in [23] that if N is odd and a multiple of 3, then there is a
configuration z ∈ Z3 (with the 3 tokens maximally separated in an equilateral triangle) such
that ETz = 4

27N
2.

In this paper we show:

I Theorem 1. We have ETz ≤ 4
27N

2 for all z ∈ Z.

Equivalently, the Herman conjecture states that for all odd K ≥ 3 and all z ∈ ZK we have
ETz ≤ 4

27N
2. Only the case K = 3 was previously known [23].

ICALP 2016



104:4 Proving the Herman-Protocol Conjecture

The following proposition has been used in a similar form in various papers on Herman’s
protocol, for instance in [23, Lemma 5]. It bounds the stabilization time by a Lyapunov
function V .

I Proposition 2 (Bound by a Lyapunov function). Given z ∈ Z, denote by z′ ∈ Z the random
successor configuration of z. Let V : Z → R be a function with

E(V (z′) | z) ≤ V (z)− 1 for all z ∈ Z \ Z1, and (1)
0 ≤ V (z) for all z ∈ Z1. (2)

Then ETz ≤ V (z) for all z ∈ Z. In particular, V (z) ≥ 0 for all z ∈ Z.

Although this result is not new, we give a short proof based on a martingale argument. The
proof is inspired by [18], and may provide some intuition.

Proof. Let z ∈ Z. Consider the stochastic process (zt)t≥0 of configurations emanating
from z = z0. Define Wt := V (zt) + t. By (1) the process (Wt)t≥0 is a supermartingale. The
stabilization time Tz = Tz0 is a stopping time with finite expectation, and the differences
|Wt+1 −Wt| are bounded as the Markov chain reachable from z has finitely many states.
Hence, the optional stopping theorem applies, yielding EWTz ≤ EW0 = V (z). By definition
of Wt we have EWTz

= EV (zTz
) + ETz. Since zTz

∈ Z1, we have ETz ≤ EWTz
by (2). By

combining the previous two inequalities, we obtain ETz ≤ V (z). J

Following [14, 18] we associate with a configuration z ∈ ZK the gap vector g(z) =
(g0, . . . , gK−1) ∈ NK by setting g0 := N + z(1) − z(K), and gi := z(i + 1) − z(i) for
i ∈ {1, . . . ,K − 1}. Then g(z)/N lives in the so-called standard (K − 1)-simplex D(K),
defined by

D(K) :=
{

x = (x0, . . . , xK−1) ∈ [0, 1]K | x0 + · · ·+ xK−1 = 1
}
.

Towards a suitable Lyapunov function V we define the cubic polynomial f (K)
3 : D(K) → [0,∞)

by

f
(K)
3 (x) :=

∑
0≤i0<i1<i2<K

i2 − i1, i1 − i0 odd

xi0xi1xi2 .

For instance, we have f (5)
3 (x) = x0x1x2 + x0x1x4 + x0x3x4 + x1x2x3 + x2x3x4.

The following lemma was implicitly proved in previous works:

I Lemma 3 (Lyapunov function V3 [14, Page 240, Proof of Theorem 1] and [18, Theorem 4]).
Let V3 : Z → [0,∞) be defined by V3(z) := 4N2f

(K)
3 (g(z)/N) for z ∈ ZK . Denote by

z′ ∈ Z1 ∪ Z3 ∪ . . . ∪ ZK the random successor configuration of z ∈ ZK . Then E(V3(z′) | z) =
V3(z)− K−1

2 for all z ∈ ZK . Hence, by Proposition 2, ETz ≤ 4N2f
(K)
3 (g(z)/N).

For K = 3 Lemma 3 gives ETz ≤ 4N2f
(K)
3 (g(z)/N) = 4

N g0g1g2. In fact, for K = 3 it was
shown before in [23] that ETz is identically equal to 4

N g0g1g2, providing an exact formula
for the expected stabilization time of configurations with three tokens. Lemma 3 suggests
analyzing f3:

I Lemma 4 (Maximum of f3 [14, Proof of Theorem 2], [18, Theorem 3]). For all K ≥ 3 odd
we have

max
x∈D

f
(K)
3 (x) = f

(K)
3

(
1
K
, . . . ,

1
K

)
= 1

24

(
1− 1

K2

)
.

By combining Lemmas 3 and 4 one obtains ETz ≤ N2

6 (1− 1
K2 ), which is the bound obtained

in [14]. A slightly better bound is given in [18].
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3 Proof of the Herman Conjecture

The function V3 from Lemma 3 leaves room for improvement since E(V3(z′) | z) = V3(z)−K−1
2 ,

which is strictly less than V3(z) − 1 for K > 3. The idea for obtaining an optimal bound
is to decrease the gap between K−1

2 and 1, by decreasing the Lyapunov function V . One
could think that the scaled function 2

K−1V3 is also a Lyapunov function satisfying (1), but
this is not true; in particular, note that the number of tokens K might be different for a
configuration z and its successor z′. Since scaling does not work, we decrease the Lyapunov
function by subtracting a quintic polynomial, as follows. Define a quintic polynomial
f

(K)
5 : D(K) → [0,∞), similar to f (K)

3 :

f
(K)
5 (x) =

∑
0≤i0<i1<···<i4<K

i4 − i3, . . . , i1 − i0 odd

xi0xi1xi2xi3xi4

For instance, f (3)
5 (x) = 0, f (5)

5 (x) = x0x1x2x3x4, and f (7)
5 (x) = x0x1x2x3x4 + x0x1x2x3x6 +

x0x1x2x5x6 + x0x1x4x5x6 + x0x3x4x5x6 + x1x2x3x4x5 + x2x3x4x5x6. We also define a
polynomial f (K) : D(K) → [0,∞):

f (K)(x) := f
(K)
3 (x)− αf (K)

5 (x) with α := 24 (3)

For example, f (5)(x) = x0x1x2 + x0x1x4 + x0x3x4 + x1x2x3 + x2x3x4 − αx0x1x2x3x4.
Throughout the paper we use α in the expression of f (K) for notational convenience. From
now onwards we may drop the superscript K from the domain D(K) of the functions f (K)

3 ,
f

(K)
5 and f (K) to avoid notational clutter when K is understood.

The following properties of f are fundamental:

I Lemma 5 (Symmetry and continuity properties). The function f has the following proper-
ties.
(a) It is symmetric with respect to rotation:

f(x0, . . . , xK−1) = f(x1, . . . , xK−1, x0)

(b) It is continuous: For K ≥ 5 we have

f (K)(x0, 0, x2, x3, . . . , xK−1) = f (K−2)(x0 + x2, x3, . . . , xK−1).

Analogous properties were shown for f3 in [14]. Their proof carries over to f5 and hence to f .
The following lemma uses f to define a tighter Lyapunov function.

I Lemma 6 (Lyapunov function V ). Define V : Z → [0,∞) by V (z) := 4N2f(g(z)/N). Let
z ∈ Z and denote by z′ the random successor configuration of z. Then E(V (z′) | z) ≤ V (z)−1.
Hence, by Proposition 2, ETz ≤ 4N2f(g(z)/N).

We remark that a similar Lyapunov function has been investigated in [14, Equation (15)],
but did not lead to a proof of the Herman conjecture. It seems that V (z) needs to be chosen
with great care, since even slight variations do not work.

Lemma 6 suggests analyzing f :

I Lemma 7 (Maximum of f). For all K ≥ 3 odd we have

max
x∈D

f (K)(x) = 1
27 .

With this in hand our main result follows:

Proof of Theorem 1. Immediate by combining Lemmas 6 and 7. J

It remains to prove Lemmas 6 and 7.

ICALP 2016



104:6 Proving the Herman-Protocol Conjecture

3.1 Proof of Lemma 6
Towards Lemma 6 we show:

I Lemma 8 (Lyapunov function V5). Define V5 : Z → [0,∞) by V5(z) := 4N2f5(g(z)/N).
Let K ≥ 5 and z ∈ Z and denote by z′ the random successor configuration of z. Then

E(V5(z′) | z) = V5(z) + 1
32

(K − 1)(K − 3)
N2 − 1

2(K − 3)f3

(
g(z)
N

)
.

The proof in [4] requires an analysis of correlations among the changes in gaps between
tokens in each step of the protocol. Using Lemma 8 one can readily prove Lemma 6:

Proof of Lemma 6. For K = 3 the statement follows from Lemma 3. For K ≥ 5 we have:

E(V (z′) | z) = E((V3(z′)− 24V5(z′)) | z) by the definitions
= E(V3(z′) | z)− 24E(V5(z′) | z) linearity of expectation

= V3(z)− K − 1
2 − 24V5(z)− 3

4
(K − 1)(K − 3)

N2

+ 12(K − 3)f3

(
g(z)
N

)
Lemmas 3 and 8

≤ V (z)− K − 1
2 + 12(K − 3)f3

(
g(z)
N

)
since K ≥ 3

≤ V (z)− K − 1
2 + K − 3

2 Lemma 4

= V (z)− 1

J

3.2 Proof of Lemma 7
Towards Lemma 7 we show:

I Lemma 9 (Local maxima of f). Let K ≥ 5 and odd. There is no v ∈ D(K) in the interior
of D(K) such that v is a local maximum and f (K)(v) > 1

27 .

The proof in Section 4 involves a combinatorial analysis of inequalities arising from conditions
on the derivatives of f (K). Using Lemma 9 one can readily prove Lemma 7:

Proof of Lemma 7. We proceed by induction on K. For the induction base we have K =
3. It is straightforward to check that the maximum of f (3)(x) = f

(3)
3 (x) = x0x1x2 is

f (3)( 1
3 ,

1
3 ,

1
3 ) = 1

27 .
For the induction step we have K ≥ 5. Let v ∈ D(K) with f (K)(v) = maxx∈D(K) f (K)(x).

If v is in the interior of D(K), then by Lemma 9 we have f (K)(v) ≤ 1
27 . If v is at the

boundary of D(K), then vi = 0 for some i. By Lemma 5(a) we can assume that v1 = 0.
Using Lemma 5(b) the statement follows from the induction hypothesis. J

4 Proof of Lemma 9

In this section we prove Lemma 9. In Section 4.1 we state several properties that an interior
local maximum of f (K) would have to satisfy. In Section 4.2 we prove Lemma 9 for K = 5
for a first taste of the general argument. In Section 4.3 we prove Lemma 9 for K = 7 to
illustrate some fine points that occur only for larger values of K. In Section 4.4 we state some
combinatorial facts needed for the general case. Finally, in Section 4.5 we prove Lemma 9.
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4.1 Properties of an Interior Local Maximum

The following lemma is obtained by considering first and second derivatives of f evaluated
at an interior local maximum.

I Lemma 10. Let v be a local maximum of f (K) in the interior of D(K) and define c ∈ R by

c =
∑

1<i2<K
i2 even

vi2 − α
∑

1<i2<i3<i4<K
i2, i4 even

i3 odd

vi2vi3vi4 . (4)

This expression holds for the same value of c if the indices are rotated by an arbitrary k: for
all j the index ij becomes (ij + k) mod K. Further, we have

∑
3≤i3<i4<K

i3 odd
i4 even

vi3vi4 ≤
1
α
. (5)

Again, this inequality also holds when indices are rotated.

For example, for K = 7 we have c = v2 + v4 + v6 − α(v2v3v4 + v2v3v6 + v2v5v6 + v4v5v6) =
v1 + v3 + v5 − α(v1v2v3 + v1v2v5 + v1v4v5 + v3v4v5).

Proof of Lemma 10. The idea of the proof is as follows. We pick a particular direction in
D(K), namely d = (−1, 0, 1, 0, 0, . . . , 0), and consider the function f(v + εd) as a univariate
function of ε. Since v is a local maximum, the first derivative must be zero and the second
derivative must be nonpositive. Exploiting the fact that vi > 0 for all i holds in the interior,
we obtain (4) and (5), respectively. See [4] for the detailed proof. J

Let S(K)
j (x) denote the scalar product of x with a copy of itself rotated j times:

S
(K)
j (x) :=

K−1∑
i=0

xixi+j

In all formulas it will be the case that the subscript of S is odd. Also, the superscript will be
omitted when unimportant or understood from context.

I Corollary 11. Let v be a local maximum of f (K) in the interior of D(K). Then the following
inequality holds:∑

1≤i<K−2
i odd

K − i− 2
2 Si(v) ≤ K

α
.

For example, for K = 11 we have 4S1(v) + 3S3(v) + 2S5(v) + S7(v) ≤ 11/α.

I Lemma 12 (Bound for f5). Suppose that v ∈ D(K) satisfies f (K)(v) > 1
27 . Then αf5(v) <

1
216 .

Proof. By Lemma 4 we have f3(v) ≤ 1
24 and hence αf5(v) = f3(v) − f(v) < 1

24 −
1

27 =
1

216 . J
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4.2 Proof of Lemma 9 for K = 5
Let K = 5. Then

f(x) = f3(x)− αf5(x)
= x0x1x2 + x0x1x4 + x0x3x4 + x1x2x3 + x2x3x4 − αx0x1x2x3x4

Towards a contradiction, suppose that there is a local maximum v with f(v) > 1
27 in the

interior of D. By (4), the value

c = v2 + v4 − αv2v3v4 (6)

is invariant under rotations. Indeed, v2+k + v4+k − αv2+kv3+kv4+k ≡ c for all k, but we
shall avoid explicitly mentioning rotations, for notational simplicity. Summing (6) over all
K rotations we obtain:

5c = 2− αf3(v) (7)

By (6) we have v0v1c = v0v1v2 + v0v1v4 − αf5(v) and, summing over all K rotations,

cS1(v) = 2f(v)− 3αf5(v) (8)

Moreover,

cS1(v)
Cor. 11
≤ 5c

α

(7)= 2
α
− f3(v) = 2

α
− f(v)− αf5(v).

Combining this with (8) gives:

2
α

≥ 3f(v)− 2αf5(v)
Lemma 12
≥ 3

27 − 2 · 1
216

This implies α ≤ 216/11 ≈ 19.6, which is a contradiction as required (since α = 24). J

4.3 Proof of Lemma 9 for K = 7
Let K = 7. Towards a contradiction, we suppose again that there is a local maximum v
with f(v) > 1

27 in the interior of D. By (4), all K rotations of the following hold with the
same c ∈ R:

c = v2 + v4 + v6 − α(v2v3v4 + v2v3v6 + v2v5v6 + v4v5v6) (9)

Summing (9) over K rotations we obtain:

7c = 3− 2αf3(v) (10)

By (9) we have

v0v1c = v0v1v2+v0v1v4+v0v1v6−α(v0v1v2v3v4+v0v1v2v3v6+v0v1v2v5v6+v0v1v4v5v6) (11)

and

v0v3c = v0v3v4 + v0v3v6 − αv0v3v4v5v6 + v0v2v3(1− α(v3v4 + v3v6 + v5v6))
≥ v0v3v4 + v0v3v6 − αv0v3v4v5v6

(12)
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where the last inequality is by (5). Summing (11) and (12) over K rotations we obtain:

c
(
2S1(v) + S3(v)

)
≥ 4f3(v)− 9αf5(v) = 4f(v)− 5αf5(v) (13)

Further we have:

c
(
2S1(v) + S3(v)

) Cor. 11
≤ 7c

α

(10)= 3
α
− 2f3(v) = 3

α
− 2f(v)− 2αf5(v)

Combining this with (13) gives:

3
α

≥ 6f(v)− 3αf5(v)
Lemma 12
≥ 6

27 − 3 · 1
216

This leads to α ≤ 14.4, which is a contradiction as desired. J

4.4 Combinatorial Lemmas
In order to generalize the proofs from Sections 4.2 and 4.3 to any odd K, we state some
combinatorial lemmas in this subsection. They are proved in [4].

In order to generalize (7) and (10) we show the following lemma:

I Lemma 13. We have:
K−1∑
k=0

∑
1<i′0<i′1<i′2<K

i′0, i′2 even
i′1 odd

xi′0+kxi′1+kxi′2+k = K − 3
2

∑
0≤i0<i1<i2<K

i2 − i1, i1 − i0 odd

xi0xi1xi2 = K − 3
2 f

(K)
3 (x) .

For example, if K = 5, then we obtain that summing the 5 rotations of x2x3x4 gives
f

(5)
3 (x). As another example, if K = 7, then we obtain that summing the 7 rotations of
x2x3x4 + x2x3x6 + x2x5x6 + x4x5x6 gives 2f (7)

3 (x). These two instances of Lemma 13 help
establish (7) and (10).

In order to generalize the inequality in (12) we need the following lemma:

I Lemma 14. Let v be a local maximum of f (K) in the interior of D(K). If i1 is odd and
0 < i1 < K, then the following inequality holds:

v0vi1

( ∑
1<i2<K
i2 even

vi2 −
∑

1<i2<i3<i4<K
i2, i4 even

i3 odd

αvi2vi3vi4

)
≥ v0vi1

( ∑
i1<i2<K
i2 even

vi2 −
∑

i1<i2<i3<i4<K
i2, i4 even

i3 odd

αvi2vi3vi4

)
.

The inequality says that if we drop those terms that do not occur in f (K)
3 or f (K)

5 , then we
obtain a lower bound. The proof groups those terms that are not in either of f (K)

3 or f (K)
5 ,

and then invokes (5) to show that their sum is nonnegative.
In order to generalize (8) and (13) we need Corollary 16 below, which is a consequence of

the following lemma:

I Lemma 15. Let l be an odd, positive integer. Then:

K−1∑
k=0

∑
1≤i′1<K−2

i′1 odd

K − i′1 − 2
2

∑
i′1<i′2<···<i′l−1<K

∀j, i′j≡j (mod 2)

xkxi′1+k

∏
1<j<l

xi′
j
+k =

=
( l − 1

2 K − l
) ∑

0≤i0<···<il−1<K
ij − ij−1 odd for 0 < j < l

l−1∏
j=0

xij
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For example, if K = 5 and l = 3, then we have that summing 5 rotations of x0x1x2 + x0x1x4
gives 2f (5)

3 (x). As another example, if K = 9 and l = 3, then summing 9 rotations of
3x0x1(x2 + x4 + x6 + x8) + 2x0x3(x4 + x6 + x8) + x0x5(x6 + x8) gives 6f (9)

3 (x).

I Corollary 16. We have:

K−1∑
k=0

∑
1≤i1<K−2

i1 odd

K − i1 − 2
2

∑
i1<i2<K
i2 even

x0+kxi1+kxi2+k = (K − 3)f (K)
3 (x)

and also
K−1∑
k=0

∑
1≤i1<K−2

i1 odd

K − i1 − 2
2

∑
i1<i2<i3<i4<K

i2, i4 even
i3 odd

x0+kxi1+kxi2+kxi3+kxi4+k = (2K − 5)f (K)
5 (x) .

Proof. Instantiate Lemma 15 with l = 3 and, respectively, l = 5. J

4.5 Proof of Lemma 9
Towards a contradiction, suppose that there is a local maximum v with f(v) > 1

27 in the
interior of D, i.e., vi > 0 for all i ∈ {0, . . . ,K − 1}. Summing up the K rotations of (4) and
using Lemma 13, we obtain:

Kc = K − 1
2 − K − 3

2 αf3(v) (14)

Multiplying (4) on both sides by
∑

1≤i1<K−2
i1 odd

K−i1−2
2 v0vi1 we obtain:

c
∑

1≤i1<K−2
i1 odd

K − i1 − 2
2 v0vi1 =

∑
1≤i1<K−2

i1 odd

K − i1 − 2
2 v0vi1

( ∑
1<i2<K
i2 even

vi2 −
∑

1<i2<i3<i4<K
i2, i4 even

i3 odd

αvi2vi3vi4

)

≥
∑

1≤i1<K−2
i1 odd

K − i1 − 2
2 v0vi1

( ∑
i1<i2<K

i2 even

vi2 −
∑

i1<i2<i3<i4<K
i2, i4 even

i3 odd

αvi2vi3vi4

)

using Lemma 14. Summing K rotations of this inequality yields:

c
∑

1≤i1<K−2
i1 odd

K − i1 − 2
2 Si1(v) ≥ (K − 3)f3(v)− (2K − 5)αf5(v)

= (K − 3)f(v)− (K − 2)αf5(v) (15)

using Corollary 16. Further we have:

c
∑

1≤i1<K−2
i1 odd

K − i1 − 2
2 Si1(v)

Cor. 11
≤ Kc

α

(14)= K − 1
2α − K − 3

2 f3(v) .

Combining this with (15) gives:

K − 1
2α ≥ 3K − 9

2 f(v)− K − 1
2 αf5(v)

Lemma 12
≥ K − 3

2 · 1
9 −

K − 1
2 · 1

216 .
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This implies

α ≤ 216(K − 1)
23K − 71 < 19.7 .

Since α = 24, this leads to a contradiction as desired. J

5 Conclusions

In this paper we have proved the Herman-Protocol Conjecture formulated by McIver and
Morgan in [23] a decade ago, which says that the worst-case initial configuration consists of
three maximally-separated tokens, for N multiple of 3. This follows from our result that the
worst-case self-stabilization time is at most 4

27N
2, for any number of processes N and any

odd number of tokens K.
The proof uses a Lyapunov function approach. To do so, we first find a suitable Lyapunov

function and then show that its maximum is 4
27N

2. Then we show that this function gives
an upper bound for the self-stabilization time for each possible configuration in Herman’s
algorithm.
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Abstract
Branching VASS (BVASS) generalise vector addition systems with states by allowing for special
branching transitions that can non-deterministically distribute a counter value between two con-
trol states. A run of a BVASS consequently becomes a tree, and reachability is to decide whether
a given configuration is the root of a reachability tree. This paper shows P-completeness of
reachability in BVASS in dimension one, the first decidability result for reachability in a subclass
of BVASS known so far. Moreover, we show that coverability and boundedness in BVASS in
dimension one are P-complete as well.
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1 Introduction

Vector addition systems with states (VASS), equivalently known as Petri nets, are a funda-
mental model of computation which comprise a finite-state controller with a finite number
of counters ranging over the naturals. The number of counters is usually refereed to as the
dimension of the VASS. A configuration q(n) of a VASS in dimension d consists of a control
state q and a valuation n ∈ Nd of the counters. A transition of a VASS can increment and
decrement counters and is enabled in a configuration whenever the resulting counter values
are all non-negative, otherwise the transition is disabled. Consequently, VASS induce an
infinite transition system. Three of the most fundamental decision problems for VASS are
reachability, coverability and boundedness. Given a target configuration q(n) and some
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initial configuration, reachability is to decide whether starting in the initial configuration
there exists a path ending in q(n) in the induced infinite transition system. Coverability
asks whether some configuration q(n′) can be reached for some n′ ≥ n, where ≥ is defined
component-wise. Boundedness is the problem to decide whether there are infinitely many
different configurations reachable from a given starting configuration. Those decision prob-
lems find a plethora of applications, for instance in the verification of concurrent programs.
Coverability can, for example, be used in order to validate mutual exclusion properties of
shared-memory concurrent programs [6]; reachability is a key underlying decision problem
in the verification of liveness properties of finite-data asynchronous programs [5]. Even
though the complexity of coverability and boundedness are well-understood and known to be
EXPSPACE-complete [12, 14], the precise complexity of reachability remains a major unsolved
problem; a non-primitive recursive upper bound (Fω3) has only recently been established [11]
and the best known lower bound is EXPSPACE [12].

The situation is even more dissatisfying when considering branching extensions of VASS.
Such branching VASS (BVASS) are additionally equipped with special branching transitions
of the form (q, p, p′). When in a configuration q(n), a BVASS can simultaneously non-
deterministically branch into configurations p(m) and p′(m′) such that n = m + m′.
Reachability of a configuration q(n) then is to decide whether there exists a proof tree
whose root is labelled with q(n) and whose leaves are all labelled with designated target
control states in which all counters have value zero; coverability and boundedness are defined
analogously as above. While coverability and boundedness are known to be 2-EXPTIME-
complete [3], reachability in BVASS is not known to be decidable, not even in any fixed
dimension. Recently, non-elementary lower bounds for reachability in BVASS have been
obtained [10]. Reachability in BVASS is closely related and in fact equivalent to decidability
of the multiplicative-exponential fragment of linear logic [2], and also an underlying decision
problem in various other applications for instance in computational linguistics, cryptographic
protocol verification, data logics and concurrent program verification; see [10] for more
details.

The primary contribution of this paper is to provide a polynomial-time algorithm for
reachability in BVASS in dimension one (BVASS1) and to show that reachability is in fact
P-complete. To the best of our knowledge, we give the first decidability result for reachability
in a fragment of BVASS. Let us remark that a decidability result, in particular with such
low complexity is actually quite surprising. On the one hand, due to the infinite state space
of BVASS1 it is not immediate that reachability is decidable. In particular, the emptiness
problem for conjunctive grammars over a unary alphabet, which can be seen as a slight
generalisation of BVASS1 with special alternating transitions that can simultaneously branch
into two control states while retaining the same counter value (known as ABVASS1), is
undecidable [9]. On the other hand, if we disallow branching rules in ABVASS1 and thus
obtain AVASS1 then reachability is PSPACE-complete [15, 8].

Due to the presence of only one single counter, it is possible to establish a small-model
property and to show that if a configuration is reachable in a BVASS1 then there exists a
so-called reachability tree of exponential size. What causes a main challenge when establishing
a polynomial-time algorithm is that this bound is optimal in the sense that, as we show in
Section 3, there exist families of BVASS1 whose reachability trees are inherently of exponential
size, and which also contain an exponential number of different counter values. Consequently,
reachability cannot be witnessed in polynomial time by explicitly constructing a witnessing
reachability tree. Instead, in Section 4 we show that polynomial-time computable certificates
for the reachability of a configuration suffice. These certificates have two parts: the first is
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a table that, for certain d > 0 contains those pairs of control states q and residue classes
r modulo d such that q(n) is reachable for some sufficiently large n with n ≡ r mod d.
This is called residue reachability and described in Section 4.1. The second part, described
in Section 4.2, is a compressed collection of incomplete small reachability trees, so-called
expandable partial reachability trees, whose leaves are either accepting configurations or
have some ancestor node with the same control state and a strictly smaller counter. In
the latter case, the corresponding subtree can be repeated arbitrarily often, which leaves
some configuration with an arbitrarily large counter value in a certain residue class. This
eventually enables us to witness the existence of a reachability tree via residue reachability.

In Section 5, we show that coverability and boundedness are P-complete for BVASS1. For
coverability, the upper bound follows easily via a reduction to reachability. For boundedness,
this is not the case and we require a specifically tailored argument.

Due to space constraints, the proofs of some statements can be found in the technical
report accompanying this article [7].

2 Preliminaries

We write Z and N for the sets of integers and non-negative integers, respectively, and define
[i, j] def= {i, i + 1, . . . , j − 1, j}, for given integers i < j. For d ≥ 1 we define Zd

def= [0, d− 1].
The set of finite words over alphabet A is denoted by A∗ and the length of a word w ∈ A∗

is written as |w|. For two words u, v ∈ A∗, we say u is a prefix of v (written as u � v) if
v = uw for some w ∈ A∗. It is a strict prefix (u ≺ v) if u � v and u 6= v. We say u and v are
incomparable if neither u � v nor v � u. A set U ⊆ A∗ is prefix-closed if for all u ∈ U and
all v ∈ A∗ we have that v � u implies v ∈ U .

Let Σ be a set. A Σ-labelled (finite) tree is a mapping T : U → Σ where U ⊆ A∗ is a
non-empty finite prefix-closed set of nodes for some finite set A. For V ⊆ U , we define
T (V ) def= {T (v) | v ∈ V }. A leaf of T is a node u ∈ U such that there is no v ∈ U with
u ≺ v; every node of T that is not a leaf is called inner node. A node u is an ancestor
(resp. descendant) of a node v if u � v (resp. v � u) and a strict ancestor (resp. strict
descendant) if u ≺ v (resp. v ≺ u). For any node u we define the subtree of T rooted at u as
T ↓u : u−1U → Σ, where u−1U

def= {x ∈ A∗ | ux ∈ U} and T ↓u(x) def= T (ux). Note that u−1U

is a prefix-closed subset of A. We define h(u) def= max{|x| | x ∈ u−1U} to be the height of
the subtree rooted at u and and define h(T ) def= h(ε). Note that h(u) = 0 if, and only if, u is
a leaf. We say T is binary if U ⊆ {0, 1}∗; in this case if for some node u ∈ U we have that
u0 ∈ U , then u0 the left child of u and if u1 ∈ U we say that u1 is the right child of u.

2.1 Branching Vector Addition Systems
In the following, n and z will denote elements from Nk and Zk, respectively; addition on Zk

is defined component-wise.

I Definition 1. Let k ≥ 1. A k-dimensional branching vector addition system with states
(BVASSk) is a tuple B = (Q, ∆, F ) where Q is a finite set of control states, ∆ ⊆ Q3 ∪ (Q×
{−1, 0, 1}k ×Q) is a finite set of transitions, and F ⊆ Q is a set of final states. The size |B|
of a BVASS is defined as |B| def= |Q|+ k · |∆|.

The semantics of BVASS is given in terms of reachability trees. A partial reachability
tree of a BVASSk B is a Q×Nk-labelled binary tree T : U → Q×Nk, where each inner node
u ∈ U with T (u) = (q, n) satisfies exactly one of the following conditions:
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Figure 1 Illustration of the BVASS1 Bn. The reachability set of the control state qn is the
singleton set {2n}, and a reachability tree for q(0) contains all counter values between 0 and 2n.

u0, u1 ∈ U , and if T (u0) = (p, n0) and T (u1) = (p′, n1), then n = n0 + n1 and
(q, p, p′) ∈ ∆; or
u0 ∈ U, u1 6∈ U , and if T (u0) = (p, n0), then n0 = n + z and (q, z, p) ∈ ∆.

Note that in the second condition, counter values can be seen as being propagated top down.
A reachability tree is a partial reachability tree T where T (u) ∈ F ×{0}k for all leaves u of T .
We call these nodes accepting nodes. For each j ∈ N we say that a partial reachability tree
T is j-bounded if T (u) ∈ Q× [0, j]k for all u ∈ U . We call Q× Nk the set of configurations
of B and for the sake of readability often write its elements (q, n) as q(n). We say that a
configuration q(n) is reachable if there exists a reachability tree T with T (ε) = q(n). Note
that in particular every configuration in F × {0}k is reachable. The reachability set reach(q)
of a control state q is defined as reach(q) def= {n ∈ N | q(n) is reachable}. The decision
problem that we mainly focus on in this paper is reachability, defined as follows:

Reachability in BVASSk

INPUT: A BVASSk B = (Q, ∆, F ), a control state q and n ∈ Nk encoded in unary.
QUESTION: Is q(n) reachable?

Our main result is that reachability is P-complete in dimension one.

I Theorem 2. Reachability in BVASS1 is P-complete.

3 Lower Bounds

As a warm-up exercise and in order to familiarise ourselves with BVASS1, we begin with
proving a couple of lower bounds for the reachability problem. First, it is not difficult to
see that the reachability problem is P-hard via a reduction from the monotone circuit value
problem (MCVP) [13]. By simulating ∨-gates of a Boolean by non-deterministic branching
and ∧-gates by splitting transitions, the following statement can easily be obtained.

I Proposition 3. Let C be a Boolean circuit. There exists a logspace computable BVASS1 B
with a control state q such that q(0) is reachable if, and only if, C evaluates to true.

A challenging aspect when providing a polynomial-time upper bound for reachability in
BVASS1 is that reachability trees may be of exponential size and may contain an exponential
number of nodes labelled with distinct counter values. To see this, consider the family
(Bn)n≥0 of BVASS1, where Bn

def= (Qn, ∆n, F ) and where Qn
def= {q, qf} ∪ {q0, . . . , qn},

∆n
def= {(q, +1, q), (q, 0, qn)} ∪ {(qi, qi−1, qi−1) | 0 < i ≤ n} ∪ {(q0,−1, qf )} and F

def= {qf}.
The construction is illustrated in Figure 1. It is easily seen that qi(N) is reachable if, and
only if, N = 2i. Observe that reach(q) = {0, . . . , 2n} is finite and that the reachability tree
of q(0) contains all counter values between 0 and 2n. In particular, this allows us to obtain
the following hardness result in which the updates of the BVASS1 are from {−1, 0, +1} (i.e.
encoded in unary), but the initial configuration is given in binary, via a straight-forward
reduction from the NP-complete Subset Sum problem [13].
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I Proposition 4. Reachability in BVASS1 is NP-hard if the initial configuration q(n) is given
in binary.

It is worth mentioning that the previous lemma enables us to derive as a corollary an
NP-lower bound for reachability in BVASS2. This is in contrast to VASS where there is no
difference between the NL-completeness of reachability in dimensions one and two [16, 4].

I Corollary 5. Reachability in BVASS2 is NP-hard.

4 Reachability in BVASS1

Here, we show that reachability in BVASS1 is decidable in polynomial time, thereby estab-
lishing the P upper bound claimed in Theorem 2. In the first part, we consider a variation
of the reachability problem in which we are only interested in reaching configurations that
are sufficiently large and lie in a certain residue class. Subsequently, we will apply this
intermediate result for showing that reachability can be witnessed by small partial reachability
trees. Finally, we put everything together in order to obtain a polynomial-time algorithm.

4.1 The Residue Reachability Problem
A cornerstone of our algorithm for reachability in BVASS1 is the polynomial-time decidability
of the following variant of the reachability problem for BVASS1:

Residue Reachability for BVASS1

INPUT: A BVASS1 B = (Q, ∆, F ), a configuration q0(n0) and d ≥ 1, where n0 and d

are given in unary.
QUESTION: Does there exist some n ≥ n0 such that q0(n) is reachable and n ≡ n0 mod d?

The main result of this section is that residue reachability for BVASS1 is decidable in
polynomial time. Notice that setting d = 1 allows for checking whether there exists some
n ≥ n0 such that q(n) is reachable. We first introduce some auxiliary definitions that allow
us to abstract away concrete counter values of reachability trees. A partial d-residue tree
is a binary tree T : U → Q× Zd, where each inner node u ∈ U with T (u) = (q, n) satisfies
precisely one of the following conditions:
(i) u0, u1 ∈ U , and if T (u0) = (p, m0) and T (u1) = (p′, m1) then n ≡ m0 + m1 mod d and

(q, p, p′) ∈ ∆;
(ii) u0 ∈ U, u1 6∈ U , and if T (u0) = (p, m) then m = n + z mod d and (q, z, p) ∈ ∆.

We call a configuration from Q×Zd a residue configuration. Given a set of configurations
S, its residue is S/Zd

def= {(q, n mod d) ∈ Q × Zd | q(n) ∈ S}. Likewise, given a partial
reachability tree T : U → Q × N, the residue T/Zd of T is T/Zd : U → Q × Zd, where
T/Zd(u) def= T (u)/Zd for all u ∈ U . Clearly, T/Zd is a partial residue tree.

For the remainder of this section, fix some BVASS1 B = (Q, ∆, F ), some configuration
q0(n0) and some d ≥ 1, where n0 and d are given in unary. In order to decide residue
reachability, one might be tempted to start with an initial configuration and then to repeatedly
apply transitions of B modulo d until the desired residue configuration is discovered. Such
an approach would, however, not be sound as it may lead to residue configurations that,
informally speaking, can only be obtained by forcing the counter to drop below zero. Also,
the simple alternative of constructing a sufficiently large reachability tree is futile as it may
be of exponential size, cf. Section 3. In order to balance between those two extremes, we
introduce reachability trees in which all nodes except of the root are required to be bounded
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by some value j ∈ N: a partial reachability tree T : U → Q × N is almost j-bounded if
T (u) ∈ Q× [0, j] for all u ∈ U \ {ε}. Note that every j-bounded partial reachability tree is
almost j-bounded. The following constant will be particularly useful:

N
def= |Q| · d.

Moreover, by S we denote the set of configurations for which there exists an (n0 +N)-bounded
reachability tree and define for i < j:

S
def= {(q, m) ∈ Q× N | q(m) has an (n0 + N)-bounded reachability tree}

S[i, j] def= S ∩Q× [i, j].

I Lemma 6. The set S is computable in polynomial time.

For any set of residue configurations (modulo d) V, W ⊆ Q× Zd, we define the following
sets that contain the result of an application of a transition of B modulo d:

∆(V ) def= {(q, r − z mod d) | (q, z, p) ∈ ∆, (p, r) ∈ V }

∆(V, W ) def= {(q, r0 + r1 mod d) | (q, p0, p1) ∈ ∆, (p0, r0) ∈ V, (p1, r1) ∈W}.

Next, we inductively define a sequence of sets Ri ⊆ Q×Zd for i ≥ 0 whose fixed point will
allow for deciding residue reachability. The set R0 consists of those pairs of control states and
residue classes that can be witnessed by a reachability tree that is almost (n0 + N)-bounded
and whose root has a counter value at least n0 + N , and the Ri for i > 0 are obtained by
application of ∆ :

R0
def= {(q, n mod d) ∈ Q× Zd |

n ≥ n0 + N, q(n) has an almost (n0 + N)-bounded reachability tree}

Ri+1
def= Ri ∪∆(Ri) ∪∆(Ri, S/Zd) ∪∆(S/Zd, Ri) ∪∆(Ri, Ri).

Since the cardinality of each Ri is at most N , it is easily seen that the sequence (Ri)i≥0
reaches a fixed point which can be computed in polynomial time.

I Lemma 7. The fixed point R
def=
⋃

i≥0 Ri equals RN and is computable in polynomial time.

In particular, R together with S yields the whole residue reachability set.

I Lemma 8. The set X
def= R∪S[n0, n0 +N ]/Zd is computable in polynomial time. Moreover,

X = {(q, n mod d) | q ∈ Q, n ∈ reach(q), n ≥ n0}.

Proof (sketch). Polynomial-time computability of X follows immediately from Lemmas 6
and 7. The proof of the stated equality is quite technical though not too difficult and can be
found in the technical report [7]. The crucial part for the inclusion “⊆” is to show that for
every i ∈ [0, N ] and each (q, r) ∈ Ri there exists some n ∈ reach(q) with n ≥ n0 + N − i and
n ≡ r mod d by induction on i. For the converse inclusion the only interesting case is when
a potential reachability tree T is not (n0 + N)-bounded. One first shows that all ≺-maximal
nodes u in T with T (u) 6∈ S satisfy T (u)/Zd ∈ R0 and uses the fact that ∆(R, R) ⊆ R and
∆(R) ⊆ R to conclude T (ε)/Zd ∈ R. J

The main result of this section now follows directly from Lemma 8.

I Theorem 9. Residue reachability for BVASS1 is decidable in polynomial time.



S. Göller, C. Haase, R. Lazić, and P. Totzke 105:7

4.2 Expandable Partial Reachability Trees
We now employ our result on residue reachability to show that small partial reachability
trees suffice in order to witness reachability. The key idea is to identify branches of partial
reachability trees that end in a leaf and which could, informally speaking, be copied or
pumped an arbitrary number of times, thus achieving a counter value in the leaf that is
large enough and lies in a certain residue class of some modulus. Residue reachability then
witnesses that such a leaf could be completed in order to yield a reachability tree. For the
remainder of this section, fix some BVASS1 B = (Q, ∆, F ).

Let us first introduce a couple of auxiliary definitions. Given a partial reachability tree
T : U → Q× N and v, w ∈ U , the lowest common ancestor of v, w ∈ U is defined as

lca(v, w) def= max{u ∈ U | u � v and u � w},

where the maximum is taken with respect to �. Let T (u) = q(n), we define functions
state(u) def= q and counter(u) def= n that allow us to access the control state and the counter
value at u, respectively.

I Definition 10. A node v ∈ U is increasing if there is a proper ancestor u ≺ v such that
state(u) = state(v) and counter(u) < counter(v); the maximal such u is called the anchor of
v. We say that T is exclusive if the least common ancestor of any two distinct increasing
leaves is a proper ancestor of at least one of their anchors. Finally, we call T expandable if

T is exclusive,
every leaf v of T is either accepting or an increasing leaf,
every increasing leaf v with anchor u such that T (v) = q(n) and T (u) = q(m) induces a
valid instance of the residue reachability problem, i.e., q(l) is reachable for some l ≥ n

and l ≡ n mod (n−m).
A node u is said to be exclusive resp. expandable if T ↓u is.

Observe that nodes cannot be both accepting and increasing because increasing nodes have
strictly positive counter values and accepting nodes must have counter value zero. Exclusive
and non-exclusive partial reachability trees are illustrated in Figure 2(a).

The next lemma states a useful fact that directly follows from the pigeon-hole principle:
whenever the counter increases on a branch by a certain amount then the branch contains
an increasing node and its anchor.

I Lemma 11. Let u and v be nodes of a partial reachability tree such that u ≺ v and
counter(u) + |Q| ≤ counter(v). Then there exists an increasing node v′ with anchor u′ such
that u � u′ ≺ v′ � v.

The following lemma shows that every reachability tree gives rise to an expandable
reachability tree whose nodes have counter values bounded polynomially in |B|.

I Lemma 12. Suppose q(n) is reachable and let B
def= 2 · |Q| + n. Then there exists an

expandable B-bounded partial reachability tree with root q(n).

Proof. Let T be a reachability tree with T (ε) = q(n). We call a node w of T large if
counter(w) = B. We obtain a partial reachability tree T ′ from T as follows. By Lemma 11,
every large node w gives rise to at least one pair of nodes (u, v) such that u ≺ v � w and v

is an increasing node with anchor u. For every large node w that is minimal with respect
to �, we assign the maximal such pair pair(w) def= (u, v) with respect to the lexicographical
ordering on nodes (more precisely, (u, v) � (u′, v′) if either, u ≺ u′, or u = u′ and v � v′).
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Figure 2 (a) Illustration an exclusive (top) and a non-exclusive (bottom) partial reachability
tree. Here, v and w are pumping nodes and anchor relationships are depicted as dashed arrows. (b)
Illustration of the pumping argument in Lemma 14.

Let T ′ : U ′ → Q× N denote the tree that one obtains from T by replacing all subtrees of T

that are rooted at some node v such that pair(w) = (u, v) for some minimal (with respect to
�) large node w in T by {v} itself, i.e. such nodes v become leaves. We now prove that T ′ is
B-bounded and exclusive:

T ′ is B-bounded since the w above are chosen minimal with respect to � and hence
counter(u) ≤ B for all nodes u ∈ U ′.
T ′ is exclusive, which can be seen as follows. Striving for a contradiction, suppose that
T ′ is not exclusive. Then there are distinct increasing nodes v, v′ with anchors u, u′ such
that u, u′ � w

def= lca(v, v′). Since counter(w) = counter(w0) + counter(w1) ≤ B, we
have counter(w0) ≤ B/2 or counter(w1) ≤ B/2, and assume without loss of generality
that counter(w0) ≤ B/2. Since B −B/2 ≥ |Q|, by Lemma 11 there is another increasing
node v′′ with anchor u′′ such that w0 � u′′ ≺ v′′, contradicting the assumed maximality
of (u, v).
Every leaf is accepting or increasing, by definition of T ′.
Finally, every increasing leaf u in T ′ induces a positive residue-reachability instance.
Since T is a reachability tree, we have that T (u) is reachable and thus T ′(u) is reachable.
So in particular, it is reachable modulo d = 1, i.e. if T ′(u) = q(n), then we can choose
(q(n), 1) as the required valid instance of residue reachability. J

We now turn towards the converse direction and show that every expandable tree
witnesses reachability. We first state an auxiliary lemma about structural properties of nodes
in exclusive trees whose proof can be found in the technical report [7].

I Lemma 13. For every node u of an expandable partial reachability tree the following
hold:
(i) If u is the anchor of an increasing leaf v then u is expandable and all nodes w such that

u ≺ w � v are not expandable.
(ii) u has at most one child that is not expandable.

The previous lemma enables us to show that an expandable partial reachability tree
implies the existence of a reachability tree.
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I Lemma 14. Let T : U → Q× N be an expandable partial reachability tree. Then for all
u ∈ U , T (u) is reachable or u is not expandable.

Proof. We prove the lemma by induction on h(u). For the induction base, assume h(u) = 0,
hence u is a leaf. Then u is either accepting and thus T (u) is reachable, or u is not accepting
and therefore an increasing leaf and so T ↓u is not expandable by Lemma 13(i).

For the induction step, suppose u is expandable. We distinguish two cases:
All children of u are expandable. We only treat the case when u has two children, the
case when u has one child follows as a special case. Since the children u0 and u1 of u are
expandable, by the induction hypothesis there are reachability trees T0 : U0 → Q×N and
T1 : U1 → Q × N with T0(ε) = T (u0) and T1(ε) = T (u1). We define the following tree
Tu : V → Q×N, where V

def= {0}U0 ∪ {1}U1 ∪ {ε}, Tu(ε) def= T (u) and Tu(iv) def= Ti(v) for
all i ∈ {0, 1}. Now Tu is a reachability tree, hence Tu(ε) = T (u) is reachable.
Some child of u is not expandable. For simplicity of presentation, let u = ε, the cases
when u 6= ε can be proven analogously. Moreover, let us assume that T (u) = q(n).
By Lemma 13(ii) there is at most one such child, without loss of generality let u0 = 0
be this child. Moreover, since u is expandable and u0 is not expandable it must hold
that u is the anchor of some unique increasing leaf v, we may assume without loss of
generality v = u0` for some ` ≥ 1. We must have T (v) = q(n + d) for some d ≥ 1. Let
W = {0i | i ∈ [0, `− 1]} be the set all nodes in T “on the path from u to v” without v.
Let X

def= {0i1 ∈ U | i ∈ [0, `− 1]} be the set of all right children of nodes in W .
By Lemma 13(i), all nodes in {0i | i ∈ [1, `]} are not expandable and consequently,
Lemma 13(ii) implies that all nodes in X are expandable. Hence by induction hypothesis,
for every x ∈ X there is a reachability tree Tx : Ux → Q× N such that Tx(ε) = T (x).
It remains to show that T (u) = q(n) is reachable. Since T is expandable there exists some
m ≥ n + d such that q(m) is reachable and m ≡ n mod d. Let us assume m = n + d + k ·d
for some k ≥ 0 and let T̂ : Z → Q× N be a reachability tree for q(m).
We construct the following reachability tree T ′ (formal definition below) for q(n) as
the tree one obtains from T by replacing the leaf v by the tree T repeatedly exactly k

times and by adding to the counter values of the resulting nodes from 0∗ in the i-th
copy the counter value i · d. This procedure is illustrated in Figure 2(b). Note that
this process yields a partial reachability tree in which every leaf is accepting except
for the leaf 0(k+1)·`; therefore we replace this leaf by the tree T̂ : Z → Q × N. Recall
that Tx : Ux → Q × N is a reachability tree for T (x) = Tx(ε). Formally, we define
T ′ :

(
0(k+1)·`Z ∪

⋃k
i=0 0i·`(W ∪

⋃
{xUx | x ∈ X})

)
→ Q× N, where

T ′(0(k+1)·`z) def= T̂ (z) for all z ∈ Z,
and for all i ∈ [0, k] we put

T ′(0i·`w) def= i · d + T (w) for all w ∈W , and
T ′(0i·`xy) def= Tx(y) for all x ∈ X and all y ∈ Ux.

It easily checked that the result is a reachability tree for T ′(ε) = q(n). J

A consequence of the previous lemma is that in particular T (ε) is reachable for every
expandable partial reachability tree T . By combining Lemmas 12 and 14, we obtain the
following characterisation of reachability in BVASS1.

I Proposition 15. A node q(n) is reachable if, and only if, there exists an expandable
B-bounded partial reachability tree T with T (ε) = q(n), where B

def= 2 · |Q|+ n.
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Algorithm 1 An alternating logspace procedure for reachability in BVASS1.
1: procedure Reach(q(n))
2: if n 6∈ [0, B] then return false
3: if q(n) ∈ F × {0} then return true
4: else non-deterministically guess t ∈ ∆ ∩ ({q} ×Q×Q ∪ {q} × {−1, 0, 1} ×Q)
5: if t = (q, p1, p2) ∈ Q3 then
6: non-deterministically guess m1, m2 ∈ [0, B] s.t. n = m1 + m2
7: return (Reach(p1(m1)) and Reach(p2(m2)))
8: or (AnchorReach(q(n), p1(m1)) and Reach(p2(m2)))
9: or (AnchorReach(q(n), p2(m2)) and Reach(p1(m1)))

10: else let t = (q, z, p) ∈ Q× {−1, 0, 1} ×Q
11: return Reach(p(n + z)) or AnchorReach(q(n), p(n + z))

12: procedure AnchorReach(q(n), p(m))
13: if {n, m} 6⊆ [0, B] then return false
14: if p = q and m > n and ResidueReach(q(n), m− n) then return true
15: else non-deterministically guess t ∈ ∆ ∩ ({p} ×Q×Q ∪ {p} × {−1, 0, 1} ×Q)
16: if t = (p, p1, p2) ∈ Q3 then
17: non-deterministically guess m1, m2 ∈ [0, B] s.t. m = m1 + m2
18: return AnchorReach(q(n), p1(m1)) and Reach(p2(m2))
19: or AnchorReach(q(n), p2(m2)) and Reach(p1(m1))
20: else let t = (p, z, p′) ∈ Q× {−1, 0, 1} ×Q
21: return AnchorReach(q(n), p′(m + z))

4.3 The Algorithm

In this section, we provide an alternating logspace procedure for reachability in BVASS1.
This shows that reachability in BVASS1 is decidable in deterministic polynomial time since
alternating logspace equals deterministic polynomial time [1]. We employ the character-
isation of reachability in BVASS1 in terms of expandable B-bounded partial reachability
of Proposition 15. First, by Theorem 9 we may assume the existence of an alternating
logspace procedure for residue reachability in BVASS1, i.e., an alternating logspace procedure
ResidueReach(q(n0), d) that has an accepting computation if, and only if, q(n) is reachable
for some n ≥ n0 and n ≡ n0 mod d. By application of this procedure, we show that one can
construct an alternating logspace procedure Reach(q(n)) that takes a configuration q(n)
as input and that has an accepting computation if, and only if, there exists an expandable
B-bounded partial reachability tree T with T (ε) = q(n).

The idea is to simply to guess an expandable B-bounded partial reachability tree T

in a top-down manner. The procedure Reach is defined above in Algorithm 1. First in
Line 2, Reach rejects whenever the counter value n is not in [0, B] and accepts if q(n) is
an accepting configuration (Line 3). Thus, subsequently we may assume that n ∈ [0, B].
In Line 4, we non-deterministically choose a transition t ∈ ∆. If t = (q, p1, p2) ∈ Q3 is a
branching rule, we non-deterministically guess how n can be decomposed as n = m1 + m2.
Moreover, we non-deterministically guess whether the currently processed inner node of T

labelled by q(n) will be an anchor of some pumping leaf “below.” If not then we simply
recursively call Reach(p1(m1)) and Reach(p2(m2)) (Line 7). Otherwise, q(n) will be the
anchor of some pumping leaf that is either in the subtree “rooted at” p1(m1) (Line 8) or in the
subtree “rooted at” p2(m2) (Line 9). Speaking in terms of Lemma 13, either the inner node
corresponding to configuration p1(m1) is not exclusive or the one for p2(m2) is not exclusive.
Suppose p1(m1) is not exclusive, we then call a procedure AnchorReach(q(n), p(m1)) that
takes two configurations as arguments and tacitly assumes the first argument q(n) is the
anchor and the second argument p1(m1) corresponds to some inner node that lies between
the anchor and the pumping leaf it will eventually correspond to.
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In more detail, analogously to Reach the procedure AnchorReach first checks whether
the counter values of its inputs both lie in [0, B] (Line 13). If so it checks whether p(m)
corresponds to a valid pumping leaf of q(n), i.e., it induces a positive instance of the residue
reachability problem by invoking ResidueReach(q(n), m − n) (Line 14). If not then a
rule t ∈ ∆ is non-deterministically chosen (Line 15), and in case t is a branching rule, it is
non-deterministically chosen which “child” of p(m) is not exclusive, the other child is simply
checked for reachability by invoking procedure Reach (Lines 18 and 19).

Obviously, Reach and AnchorReach can be implemented in alternating logspace since
the involved counter values lie in the interval [−1, B + 1] and can hence be stored using a
logarithmic number of bits.

5 Coverability and Boundedness

In this section, we show that the coverability and boundedness problem for BVASS1 are also
P-complete. The two problems are defined as follows:

Coverability and Boundedness in BVASS1

INPUT: A BVASS1 B = (Q, ∆, F ), a control state q and n ∈ N encoded in unary.
QUESTION: Coverability: Is there m ≥ n such that q(m) is reachable?

Boundedness: Is reach(q) finite?

If q(n) is a positive instance of coverability then we call the configuration q(n) coverable.
A state q is unbounded whenever reach(q) is unbounded (i.e. infinite).

Hardness for P is in both cases easily seen and similar to the P-hardness reduction from
MCVP in Proposition 3.

Moreover, the P upper bound for coverability follows easily from the P upper bound
for residue reachability since q(n) is coverable if, and only if, the pair (q(n), 1) is a positive
instance of the residue reachability problem.

I Theorem 16. Coverability in BVASS1 is P-complete.

The P upper bound for boundedness, however, cannot be derived immediately. In
particular, as discussed in Section 3, there exists a family of BVASS1 (Bn)n≥0 with some
control state q such that reach(q) is finite but of cardinality 2n.

For the remainder of this section, fix some BVASS1 B = (Q, ∆, F ). We first provide
sufficient and necessary criteria that witness that a control state is unbounded. Call a node
v in a reachability tree decreasing if there is an ancestor u ≺ v with state(u) = state(v) and
counter(u) > counter(v). The following lemma, whose proof can be found in the technical
report [7], shows that a reachability tree that contains some decreasing node witnesses that
the control state at its root is unbounded.

I Lemma 17. If a reachability tree T with T (ε) = q(n) contains a decreasing node then q is
unbounded.

Conversely, the next lemma shows that a reachability tree whose root is labelled with a
configuration with a sufficiently large counter value gives rise to a reachability tree which
contains a decreasing node, informally speaking, shortly below its root.

I Lemma 18. Suppose n > 2|Q| with n ∈ reach(q). There exists a reachability tree T : U →
Q× N for q(n′) where n′ ≥ n, and which contains a decreasing node v with |v| ≤ |Q|.
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A consequence of the two previous lemmas is that q is unbounded if, and only if, reach(q)
contains some n > 2|Q|. Even though the reachability trees in Lemma 18 are sufficient
witnesses for unboundedness, they still contain much more information than necessary and
are potentially of exponential size. In order to verify the existence of such a tree, exact
counter values and in fact the subtrees rooted in v as well as all incomparable nodes can be
abstracted away, as shown in the lemma below.

Let us write src(t) def= q, trg(t) def= {p, p′} and eff(t) def= 0, for the source and target states and
the effect of a branching transition t = (q, p, p′) ∈ Q3, respectively. Similarly, for t = (q, z, p)
define src(t) def= q, trg(t) def= {p} and eff(t) def= z.

I Lemma 19. A control state p0 is unbounded if, and only if, there is a sequence of control
states and transitions p0t1p1t2 · · · tkpk with k ≤ |Q| and some index j < k such that
(i) pi−1 = src(ti) and pi ∈ trg(ti) for all 1 ≤ i ≤ k;
(ii) pk = pj and pi 6= pj for all 0 ≤ i < j;
(iii) p(0) is coverable for every p ∈

⋃k
i=1 trg(ti); and

(iv) for every j < i ≤ k, there exists ni ≤ |Q|+ 1 such that
1. if ti = (pi−1, pi, p′i) ∈ Q3 or ti = (pi−1, p′i, pi) ∈ Q3 then p′i(ni) is coverable, else

ni = 0,
2.
∑k

i=j+1 ni >
∑k

i=j+1 eff(ti).

The last condition (iv) expresses that the cyclic suffix is consistent with the transition
relation and guarantees a decreasing node.

Proof. If p0 is unbounded, then by Lemma 18 we can take a reachability tree T containing
a short decreasing node v, i.e., with |v| ≤ |Q|. This decreasing node provides the claimed
sequence: Conditions (i) and (ii) are immediate; for condition (iii) notice that for each
mentioned state p some configuration p(n) is reachable, as guaranteed by the respective
subtree of T . This means in particular that p(0) is coverable.

For (iv), first notice that the combined effect
∑k

i=j+1 eff(ti) of those transitions used
between v (where state(v) = pk) and its anchor (with state pj = pk) is bounded by
|v| = k ≤ |Q|. Secondly, as for condition (iii), we can assume that for all p′i such that
either ti = (pi−1, p′i, pi) ∈ Q3 or ti = (pi−1, pi, p′i) ∈ Q3, some configuration p′i(mi) is
reachable. For those i ≤ k where ti /∈ Q3, let mi

def= 0. Now, for all j < i ≤ k, define
ni

def= min{|Q|+ 1, mi}.
Case (iv)(a) holds immediately by definition of the ni. To show Case (iv)(b) we distinguish

two cases. In case mi ≥ |Q| + 1 for some such i it follows that ni = |Q| + 1 and hence∑k
i=j+1 ni ≥ |Q|+ 1 >

∑k
i=j+1 eff(ti). Otherwise, if all mi < |Q|+ 1 then for all i it holds

that ni = mi and so
∑k

i=j+1 mi ≤
∑k

i=j+1 eff(ti) contradicts that v is a decreasing node.
For the converse direction, assume a sequence as claimed above. Conditions (i)-(iii) imply

the existence of a reachability tree for some p0(n). Condition (iv) ensures that there is such
a tree with a decreasing node. We conclude by Lemma 17. J

Lemma 19 provides a characterisation of unbounded states that directly translates into
an alternating logspace algorithm for the boundedness problem, similar to Algorithm 1,
which yields the P upper bound. In particular, observe that a witnessing sequence satisfying
Conditions (i) and (ii), as well as the numbers ni ≤ |Q|+1 can be guessed non-deterministically
in logarithmic space. Moreover, Conditions (iii) and (iv) are decidable in polynomial time by
Theorem 16.

I Theorem 20. Boundedness in BVASS1 is P-complete.



S. Göller, C. Haase, R. Lazić, and P. Totzke 105:13

References
1 A.K. Chandra, D. Kozen, and L.J. Stockmeyer. Alternation. J. ACM, 28(1):114–133, 1981.

doi:10.1145/322234.322243.
2 Ph. de Groote, B. Guillaume, and S. Salvati. Vector addition tree automata. In Logic in

Computer Science, LICS, pages 64–73. IEEE Computer Society, 2004. doi:10.1109/LICS.
2004.1319601.

3 S. Demri, M. Jurdziński, O. Lachish, and R. Lazić. The covering and boundedness problems
for branching vector addition systems. J. Comput. Syst. Sci., 79(1):23–38, 2013. doi:
10.1016/j.jcss.2012.04.002.

4 M. Englert, R. Lazić, and P. Totzke. Reachability in two-dimensional unary vector addition
systems with states is NL-complete. In Logic in Computer Science, LICS, 2016. To appear.

5 P. Ganty and R. Majumdar. Algorithmic verification of asynchronous programs. ACM
Trans. Program. Lang. Syst., 34(1):6, 2012. doi:10.1145/2160910.2160915.

6 S.M. German and A.P. Sistla. Reasoning about systems with many processes. J. ACM,
39(3):675–735, 1992. doi:10.1145/146637.146681.

7 S. Göller, C. Haase, R. Lazić, and P. Totzke. A polynomial-time algorithm for reachability
in branching VASS in dimension one. CoRR, abs/1602.05547, 2016. URL: http://arxiv.
org/abs/1602.05547.

8 P. Jančar and Z. Sawa. A note on emptiness for alternating finite automata with a one-letter
alphabet. Inf. Process. Lett., 104(5):164–167, 2007. doi:10.1016/j.ipl.2007.06.006.

9 A. Jez and A. Okhotin. Conjunctive grammars over a unary alphabet: Undecidabil-
ity and unbounded growth. Theory Comput. Syst., 46(1):27–58, 2010. doi:10.1007/
s00224-008-9139-5.

10 R. Lazić and S. Schmitz. Nonelementary complexities for branching VASS, MELL, and
Extensions. ACM Trans. Comput. Log., 16(3):20, 2015. doi:10.1145/2733375.

11 J. Leroux and S. Schmitz. Demystifying reachability in vector addition systems. In Logic
in Computer Science, LICS, pages 56–67. IEEE, 2015. doi:10.1109/LICS.2015.16.

12 R.J. Lipton. The reachability problem requires exponential space. Yale University, Tech-
nical Report 62, 1976.

13 C.H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
14 C. Rackoff. The covering and boundedness problems for vector addition systems. Theor.

Comput. Sci., 6:223–231, 1978. doi:10.1016/0304-3975(78)90036-1.
15 O. Serre. Parity games played on transition graphs of one-counter processes. In Foundations

of Software Science and Computation Structures, FoSSaCS, pages 337–351, 2006. doi:
10.1007/11690634_23.

16 L.G. Valiant and M. Paterson. Deterministic one-counter automata. J. Comput. Syst. Sci.,
10(3):340–350, 1975. doi:10.1016/S0022-0000(75)80005-5.

ICALP 2016

http://dx.doi.org/10.1145/322234.322243
http://dx.doi.org/10.1109/LICS.2004.1319601
http://dx.doi.org/10.1109/LICS.2004.1319601
http://dx.doi.org/10.1016/j.jcss.2012.04.002
http://dx.doi.org/10.1016/j.jcss.2012.04.002
http://dx.doi.org/10.1145/2160910.2160915
http://dx.doi.org/10.1145/146637.146681
http://arxiv.org/abs/1602.05547
http://arxiv.org/abs/1602.05547
http://dx.doi.org/10.1016/j.ipl.2007.06.006
http://dx.doi.org/10.1007/s00224-008-9139-5
http://dx.doi.org/10.1007/s00224-008-9139-5
http://dx.doi.org/10.1145/2733375
http://dx.doi.org/10.1109/LICS.2015.16
http://dx.doi.org/10.1016/0304-3975(78)90036-1
http://dx.doi.org/10.1007/11690634_23
http://dx.doi.org/10.1007/11690634_23
http://dx.doi.org/10.1016/S0022-0000(75)80005-5




Reachability in Networks of Register Protocols
under Stochastic Schedulers∗†

Patricia Bouyer1, Nicolas Markey2, Mickael Randour‡3,
Arnaud Sangnier4, and Daniel Stan5

1 LSV, CNRS & ENS de Cachan, Cachan Cedex, France, and
University Paris-Saclay, Paris, France

2 LSV, CNRS & ENS de Cachan, Cachan Cedex, France, and
University Paris-Saclay, Paris, France

3 Computer Science Department, Université Libre de Bruxelles, Brussels,
Belgium

4 IRIF, University Paris Diderot & CNRS, Paris, France
5 LSV, CNRS & ENS de Cachan, Cachan Cedex, France, and

University Paris-Saclay, Paris, France

Abstract
We study the almost-sure reachability problem in a distributed system obtained as the asyn-
chronous composition of N copies (called processes) of the same automaton (called protocol),
that can communicate via a shared register with finite domain. The automaton has two types of
transitions: write-transitions update the value of the register, while read-transitions move to a
new state depending on the content of the register. Non-determinism is resolved by a stochastic
scheduler. Given a protocol, we focus on almost-sure reachability of a target state by one of the
processes. The answer to this problem naturally depends on the number N of processes. How-
ever, we prove that our setting has a cut-off property: the answer to the almost-sure reachability
problem is constant when N is large enough; we then develop an EXPSPACE algorithm deciding
whether this constant answer is positive or negative.
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1 Introduction

Verification of systems with many identical processes. It is a classical pattern in dis-
tributed systems to have a large number of identical components running concurrently
(a.k.a. networks of processes). In order to verify the correctness of such systems, a naive
option consists in fixing an upper bound on the number of processes, and applying clas-
sical verification techniques on the resulting system. This has several drawbacks, and in
particular it gives no information whatsoever about larger systems. Another option is to
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use parameterized-verification techniques, taking as a parameter the number of copies of the
protocol in the system being considered. In such a setting, the natural question is to find
and characterize the set of parameter values for which the system is correct. Not only the
latter approach is more general, but it might also turn out to be easier and more efficient,
since it involves orthogonal techniques.

Different means of communication lead to different models. A seminal paper on para-
meterized verification of such distributed systems is the work of German and Sistla [17].
In this work, the authors consider networks of processes all following the same finite-state
automaton; the communication between processes is performed thanks to rendez-vous com-
munication. Various related settings have been proposed and studied since then, which
mainly differ by the way the processes communicate. Among those, let us mention broadcast
communication [15, 10], token-passing [8, 2], message passing [6], shared register with ring
topologies [1], or shared memory [16]. In his nice survey on such parameterized models [14],
Esparza shows that minor changes in the setting, such as the presence of a controller in the
system, might drastically change the complexity of the verification problems. The relative
expressiveness of some of those models has been studied recently in [3], yielding several
reductions of the verification problems for some of those classes of models.

Asynchronous shared-memory systems. We consider a communication model where the
processes asynchronously access a shared register, and where read and write operations on this
register are performed non-atomically. A similar model has been proposed by Hague in [18],
where the behavior of processes is defined by a pushdown automaton. The complexity of some
reachability and liveness problems for shared-memory models have then been established
in [16] and [11], respectively. These works consider networks in which a specific process, called
the leader, runs a different program, and address the problem whether, for some number
of processes, the leader can satisfy a given reachability or liveness property. In the case
where there is no leader, and where processes are finite-state, the parameterized control-state
reachability problem (asking whether one of the processes can reach a given control state) can
be solved in polynomial time, by adapting the approach of [9] for lossy broadcast protocols.

Fairness and cut-off properties. In this work, we further insert fairness assumptions in the
model of parameterized networks with asynchronous shared memory, and consider reachability
problems in this setting. There are different ways to include fairness in parameterized models.
One approach is to enforce fairness expressed as a temporal-logic properties on the executions
(e.g., any action that is available infinitely often must be performed infinitely often); this is
the option chosen for parameterized networks with rendez-vous [17] and for systems with
disjunctive guards (where processes can query the states of other processes) in [4]. We follow
another choice, by equipping our networks with a stochastic scheduler that, at each step of the
execution, assigns the same probability to the available actions of all the processes. From a
high-level perspective, both forms of fairness are similar. However, expressing fairness via
temporal logic allows for very regular patterns (e.g., round-robin execution of the processes),
whereas the stochastic approach leads to consider all possible interleavings with probability 1.
Under this stochastic scheduler assumption, we focus on almost-sure reachability of a given
control state by any of the processes of the system. More specifically, as in [4], we are
interested in determining the existence of a cut-off, i.e., an integer k such that networks
with more than k processes almost-surely reach the target state. Deciding the existence
and computing such cut-offs is important for at least two aspects: first, it ensures that the
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system is correct for arbitrarily large networks; second, if we are able to derive a bound on
the cut-off, then using classical verification techniques we can find the exact value of the
cut-off and exactly characterize the sizes of the networks for which the behavior is correct.

Our contributions. We prove that for finite-state asynchronous shared-memory protocols
with a stochastic scheduler, and for almost-sure reachability of some control state by some
process of the network, there always exists a positive or negative cut-off; positive cut-offs are
those above which the target state is reached with probability 1, while negative cut-offs are
those above which the target state is reached with probability strictly less than 1. Notice
that both cut-offs are not complement of one another, so that our result is not trivial.

We then prove that the “sign” (positive or negative) of a cut-off can be decided in
EXPSPACE, and that this problem is PSPACE-hard. Finally, we provide lower and upper
bounds on the values of the cut-offs, exhibiting in particular protocols with exponential
(negative) cut-off. Notice how these results contrast with classical results in related areas: in
the absence of fairness, reachability can be decided in polynomial time, and in most settings,
when cut-offs exist, they generally have polynomial size [4, 13, 12].

2 Presentation of the model and of the considered problem

2.1 Preliminaries
Let S be a finite set. A multiset over S is a mapping µ : S → N. The cardinality of a
multiset µ is |µ| =

∑
s∈S µ(s). The support µ of µ is the subset ν ⊆ S s.t. for all s ∈ S,

it holds s ∈ ν if, and only if, µ(s) > 0. For k ∈ N, we write NSk for the set of multisets of
cardinality k over S, and NS for the set of all multisets over S. For any s ∈ S and k ∈ N,
we write sk for the multiset where sk(s) = k and sk(s′) = 0 for all s′ 6= s. We may write s
instead of s1 when no ambiguity may arise. A multiset µ is included in a multiset µ′, written
µ v µ′, if µ(s) ≤ µ′(s) for all s ∈ S. Given two multisets µ and µ′, their union µ ⊕ µ′ is
still a multiset s.t. (µ⊕ µ′)(s) = µ(s) + µ′(s) for all s ∈ S. Assuming µ v µ′, the difference
µ′ 	 µ is still a multiset s.t. (µ′ 	 µ)(s) = µ′(s)− µ(s).

A quasi-order 〈A,�〉 is a well quasi-order (wqo for short) if for every infinite sequence
of elements a1, a2, . . . in A, there exist two indices i < j such that ai � aj . For instance,
for n > 0, 〈Nn,≤〉 (with lexicographic order) is a wqo. Given a set A with an ordering �
and a subset B ⊆ A, the set B is said to be upward closed in A if for all a1 ∈ B and
a2 ∈ A, in case a1 � a2, then a2 ∈ B. The upward-closure of a set B (for the ordering �),
denoted by ↑�(B) (or sometimes ↑(B) when the ordering is clear from the context), is the
set {a ∈ A | ∃b ∈ B s.t. b � a}. If 〈A,�〉 is a wqo and B is an upward closed set in A, there
exists a finite set of minimal elements {b1, . . . , bk} such that B = ↑{b1, . . . , bk}.

2.2 Register protocols and associated distributed system
We focus on systems that are defined as the (asynchronous) product of several copies of the
same protocol. Each copy communicates with the others through a single register that can
store values from a finite alphabet.

I Definition 1. A register protocol is given by P = 〈Q,D, q0, T 〉, where Q is a finite set of
control locations, D is a finite alphabet of data for the shared register, q0 ∈ Q is an initial
location, T ⊆ Q× {R,W} ×D ×Q is the set of transitions of the protocol. Here R means
read the content of the shared register, while W means write in the register.
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q0 q1 q2 qf
R(0)

W (1)

R(1)

W (2)

R(2)

W (2)

Figure 1 Example of a register protocol with D = {0, 1, 2}.

In order to avoid deadlocks, it is required that each location has at least one outgoing
transition. We also require that whenever some R-transition (q,R, d′, q′) appears in T , then
for all d ∈ D, there exists at least one qd ∈ Q such that (q,R, d, qd) ∈ T . The size of the
protocol P is given by |Q|+ |T |.

I Example 1.a. Figure 1 displays a small register protocol with four locations, over an
alphabet of data D = {0, 1, 2}. In this figure (and in the sequel), omitted R-transitions
(e.g., transitions R(1) and R(2) from q0) are assumed to be self-loops. When the register
contains 0, this protocol may move from initial location q0 to location q1. From there it can
write 1 in the register, and then move to q2. From q2, as long as the register contains 1, the
process can either stay in q2 (with the omitted self-loop R(1)), or write 2 in the register and
jump back to q1. It is easily seen that if this process executes alone, it cannot reach state qf .

We now present the semantics of distributed systems associated with our register protocols.
We consider the asynchronous composition of several copies of the protocol (the number
of copies is not fixed a priori and can be seen as a parameter). We are interested in the
behavior of such a composition under a fair scheduler. Such distributed systems involve two
sources of non-determinism: first, register protocols may be non-deterministic; second, in
any configuration, all protocols have at least one available transition, and non-determinism
arises from the asynchronous semantics. In the semantics associated with a register protocol,
non-determinism will be solved by a randomized scheduler, whose role is to select at each
step which process will perform a transition, and which transition it will perform among the
available ones. Because we will consider qualitative objectives (almost-sure reachability),
the exact probability distributions will not really matter, and we will pick the uniform one
(arbitrary choice). Note that we assume non-atomic read/write operations on the register, as
in [18, 16, 11]. More precisely, when one process performs a transition, then all the processes
that are in the same state are allowed to also perform the same transition just after, in fact
write are always possible, and if a process performs a read of a specific value, since this read
does not alter the value of the register, all processes in the same state can perform the same
read (until one process performs a write). We will see later that dropping this hypothesis
has a consequence on our results. We now give the formal definition of such a system.

The configurations of the distributed system built on register protocol P = 〈Q,D,
q0, T 〉 belong to the set Γ = NQ ×D. The first component of a configuration is a multiset
characterizing the number of processes in each state of Q, whereas the second component
provides the content of the register. For a configuration γ = 〈µ, d〉, we denote by st(γ) the
multiset µ in NQ and by data(γ) the data d in D. We overload the operators defined over
multisets; in particular, for a multiset δ over Q, we write γ⊕ δ for the configuration 〈µ⊕ δ, d〉.
Similarly, we write γ for the support of st(γ).

A configuration γ′ = 〈µ′, d′〉 is a successor of a configuration γ = 〈µ, d〉 if, and only if,
there is a transition (q, op, d′′, q′) ∈ T such that µ(q) > 0, µ′ = µ	 q ⊕ q′ and either op = R

and d = d′ = d′′, or op = W and d′ = d′′. In that case, we write γ → γ′. Note that since
µ(q) > 0 and µ′ = µ 	 q ⊕ q′, we have necessarily |µ| = |µ′|. In our system, we assume
that there is no creation or deletion of processes during an execution, hence the size of
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configurations (i.e., |st(γ)|) remains constant along transitions. We write Γk for the set of
configurations of size k. For any configuration γ ∈ Γk, we denote by Post(γ) ⊆ Γk the set of
successors of γ, and point out that such a set is finite and non-empty.

Now, the distributed system SP associated with a register protocol P is a discrete-time
Markov chain 〈Γ,Pr〉 where Pr : Γ× Γ→ [0, 1] is the transition probability matrix defined
as follows: for all γ and γ′ ∈ Γ, we have Pr(γ, γ′) = 1

|Post(γ)| if γ → γ′, and Pr(γ, γ′) = 0
otherwise. Note that Pr is well defined: by the restriction imposed on the transition
relation T of the protocol, we have 0 < |Post(γ)| <∞ for all configuration γ, and hence we
also get Σγ′∈ΓPr(γ, γ′) = 1. For a fixed integer k, we define the distributed system of size k
associated with P as the finite-state discrete-time Markov chain SkP = 〈Γk,Prk〉, where Prk
is the restriction of Pr to Γk × Γk.

We are interested in analyzing the behavior of the distributed system for a large number of
participants. More precisely, we are interested in determining whether almost-sure reachability
of a specific control state holds when the number of processes involved is large. We are
therefore seeking a cut-off property, which we formalize in the following.

A finite path in the system SP is a finite sequence of configurations γ0 → γ1 . . . → γk.
In such a case, we say that the path starts in γ0 and ends in γk. We furthermore write
γ →∗ γ′ if, and only if, there exists a path that starts in γ and ends in γ′. Given a location qf ,
we denote by J♦qf K the set of paths of the form γ0 → γ1 . . .→ γk for which there is i ∈ [0; k]
such that st(γi)(qf ) > 0. Given a configuration γ, we denote by P(γ, J♦qf K) the probability
that some paths starting in γ belong to J♦qf K in SP . This probability is well-defined since
the set of such paths is measurable (see e.g., [5]). Given a register protocol P = 〈Q,D,
q0, T 〉, an initial register value d0, and a target location qf ∈ Q, we say that qf is almost-surely
reachable for k processes if P(〈qk0 , d0〉, J♦qf K) = 1.

I Example 1.b. Consider again the protocol depicted in Fig. 1, with initial register content 0.
As we explained already, for k = 1, the final state is not reachable at all, for any scheduler
(here as k = 1, the scheduler only has to solve non-determinism in the protocol).

When k = 2, one easily sees that the final state is reachable: it suffices that both processes
go to q2 together, from where one process may write value 2 in the register, which the
other process can read and go to qf . Notice that this does not ensure that qf is reachable
almost-surely for this k (and actually, it is not; see Example 1.c).

We aim here at finding cut-offs for almost-sure reachability, i.e., we seek the existence of
a threshold such that almost-sure reachability (or its negation) holds for all larger values.

I Definition 2. Fix a protocol P = 〈Q,D, q0, T 〉, d0 ∈ D, and qf ∈ Q. An integer k ∈ N is a
cut-off for almost-sure reachability (shortly a cut-off ) for P , d0 and qf if one of the following
two properties holds:

for all h ≥ k, we have P(〈qh0 , d0〉, J♦qf K) = 1. In this case k is a positive cut-off;
for all h ≥ k, we have P(〈qh0 , d0〉, J♦qf K) < 1. Then k is a negative cut-off.

An integer k is a tight cut-off if it is a cut-off and k − 1 is not.

Notice that from the definition, cut-offs need not exist for a given distributed system.
Our main result precisely states that cut-offs always exist, and that we can decide their
nature.

I Theorem 3. For any protocol P, any initial register value d0 and any target location qf ,
there always exists a cut-off for almost-sure reachability, whose value is at most doubly-
exponential in the size of P. Whether it is a positive or a negative cut-off can be decided in
EXPSPACE, and is PSPACE-hard.
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q0

q1

q2

qf

R(0)
W (1)

R(1)
W (0)

R(1)
W (2)

R(2)
W (0)

R(0)

Figure 2 Example of a register
protocol with atomic read/write
operations.

s0 s1 s2 . . . sn−1 sn

W (0)

R(0)

W (1)

R(1)

W (2)

R(2) R(n−2) R(n−1)

W (n−1)

Figure 3 A “filter” protocol Fn for n > 0.

I Remark. When dropping the condition on non-atomic read/write operations, and allowing
transitions with atomic read/write operations (i.e., one process is ensured to perform a read
and a write operation without to be interrupted by another process), the existence of a
cut-off (Theorem 3) is not ensured. This is demonstrated with the protocol of Fig. 2: one
easily checks (e.g., inductively on the number of processes, since processes that end up in q2
play no role anymore) that state qf is reached with probability 1 if, and only if, the number
of processes is odd.

3 Properties of register protocols

3.1 Example of a register protocol
We illustrate our model with a family of register protocols (Fn)n>0, depicted in Fig. 3. For a
fixed n, protocol Fn has n + 1 states and n different data; intuitively, in order to move
from si to si+1, two processes are needed: one writes i in the register and goes back to s0,
and the second process can proceed to si+1 by reading i. Since backward transitions to s0 are
always possible and since states can always exit s0 by writing a 0 and reading it afterwards,
no deadlock can ever occur so the main question remains to determine if sn is reachable by
one of the processes as we increase the number of initial processes. As shown in Lemma 4,
the answer is positive: Fn has a tight linear positive cut-off; it actually behaves like a “filter”,
that can test if at least n processes are running together. We exploit this property later in
Section 4.4.

I Lemma 4. Fix n ∈ N. The “filter” protocol Fn, depicted in Fig. 3, with initial register
value 0 and target location sn, has a tight positive cut-off equal to n.

3.2 Basic results
In this section, we consider a register protocol P = 〈Q,D, q0, T 〉, its associated distributed
system SP = 〈Γ,Pr〉, an initial register value d0 ∈ D and a target state qf ∈ Q. We define a
partial order � over the set Γ of configurations as follows: 〈µ, d〉 � 〈µ′, d′〉 if, and only if,
d = d′ and µ = µ′ and µ v µ′. Note that with respect to the classical order over multisets,
we require here that the supports of µ and µ′ be the same (we add in fact a finite information
to hold for the comparison). We know from Dickson’s lemma that 〈NQ,v〉 is a wqo and since
Q, D and the supports of multisets in NQ are finite, we can deduce the following lemma.

I Lemma 5. 〈Γ,�〉 is a wqo.

We will give some properties of register protocols, but first we introduce some further
notations. Given a set of configuration ∆ ⊆ Γ, we define Pre∗(∆) and Post∗(∆) as follows:

Pre∗(∆) = {γ ∈ Γ | ∃γ′ ∈ ∆.γ →∗ γ′} Post∗(∆) = {γ′ ∈ Γ | ∃γ ∈ ∆.γ →∗ γ′}
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We also define the set Jqf K of configurations we aim to reach as {γ ∈ Γ | st(γ)(qf ) > 0}.
It holds that γ ∈ Pre∗(Jqf K) if, and only if, there exists a path in J♦qf K starting in γ.

As already mentioned, when 〈µ, d〉 → 〈µ′, d′〉 in SP , the multisets µ and µ′ have the same
cardinality. This implies that given k > 0, the set Post∗({〈qk0 , d0〉}) is finite (remember that
Q and D are finite). As a consequence, for a fixed k, checking whether P(〈qk0 , d0〉, J♦qf K) = 1
can be easily achieved by analyzing the finite-state discrete-time Markov chain SkP [5].

I Lemma 6. Let k ≥ 1. Then P(〈qk0 , d0〉, J♦qf K) = 1 if, and only if, Post∗({〈qk0 , d0〉}) ⊆
Pre∗(Jqf K).

The difficulty here precisely lies in finding such a k and in proving that, once we
have found one correct value for k, all larger values are correct as well (to get the cut-off
property). Characteristics of register protocols provide us with some tools to solve this
problem. We base our analysis on reasoning on the set of configurations reachable from initial
configurations in ↑{〈q0, d0〉} (the upward closure of {〈q0, d0〉} w.r.t. �), remember that since
the order 〈Γ,�〉 requires equality of support for elements to be comparable, we have that
↑{〈q0, d0〉} =

⋃
k≥1{〈qk0 , d0〉}. We begin by showing that this set of reachable configurations

and the set of configurations from which Jqf K is reachable are both upward-closed. Thanks
to Lemma 5, they can be represented as upward closures of finite sets. To show that
Post∗(↑{〈q0, d0〉}) is upward-closed, we prove that register protocols enjoy the following
monotonicity property. A similar property is given in [11] and derives from the non-atomicity
of operations.

I Lemma 7. Let γ1, γ2, and γ′2 be configurations in Γ. If γ1 →∗ γ2 and γ2 � γ′2, then there
exists γ′1 ∈ Γ such that γ′1 →∗ γ′2 and γ1 � γ′1.

Pre∗(Jqf K) is also upward-closed, since if Jqf K can be reached from some configuration γ,
it can also be reached by a larger configuration by keeping the extra copies idle. Thus:

I Lemma 8. Post∗(↑{〈q0, d0〉}) and Pre∗(Jqf K) are upward-closed sets in 〈Γ,�〉.

3.3 Existence of a cut-off
From Lemma 8, and from the fact that 〈Γ,�〉 is a wqo, there must exist two finite sequences
of configurations (θi)1≤i≤n and (ηi)1≤i≤m such that Post∗(↑{〈q0, d0〉}) = ↑{θ1, . . . , θn} and
Pre∗(Jqf K) = ↑{η1, . . . , ηm}. By analyzing these two sequences, we now prove that any
register protocol has a cut-off (for any initial register value and any target location).

We let ∆,∆′ ⊆ Γ be two upward-closed sets (for �). We say that ∆ is included in ∆′
modulo single-state incrementation whenever for every γ ∈ ∆, for every q ∈ γ, there is some
k ∈ N such that γ⊕ qk ∈ ∆′. Note that this condition can be checked using only comparisons
between minimal elements of ∆ and ∆′. In particular, we have the following lemma.

I Lemma 9. Post∗(↑{〈q0, d0〉}) is included in Pre∗(Jqf K) modulo single-state incrementation
if, and only if, for all i ∈ [1;n], and for all q ∈ θi, there exists j ∈ [1;m] such that
data(θi) = data(ηj) and θi = ηj and st(ηj)(q′) ≤ st(θi)(q′) for all q′ ∈ Q \ {q}.

Using the previous characterization of inclusion modulo single-state incrementation for
Post∗(↑{〈q0, d0〉}) and Pre∗(Jqf K) together with the result of Lemma 6, we are able to provide
a first characterization of the existence of a negative cut-off.

I Lemma 10. If Post∗(↑{〈q0, d0〉}) is not included in Pre∗(Jqf K) modulo single-state incre-
mentation, then max1≤i≤n(|st(θi)|) is a negative cut-off.
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We now prove that if the condition of Lemma 10 fails to hold, then there is a positive
cut-off.In order to make our claim precise, for every i ∈ [1;n] and for any q ∈ θi, we let
di,q = max{(|st(ηj)(q)− st(θi)(q)|) | 1 ≤ j ≤ m and θi = ηj}.

I Lemma 11. If Post∗(↑{〈q0, d0〉}) is included in Pre∗(Jqf K) modulo single-state increment-
ation, then max1≤i≤n(|st(θi)|+

∑
q∈θi

di,q) is a positive cut-off.

The last two lemmas entail our first result:

I Theorem 12. Any register protocol admits a cut-off (for any given initial register value
and target state).

4 Detecting negative cut-offs

We develop an algorithm for deciding whether a distributed system associated with a register
protocol has a negative cut-off. Thanks to Theorem 12, this can also be used to detect
the existence of a positive cut-off. Our algorithm relies on the construction and study of
a symbolic graph, as we define below: for any given protocol P, the symbolic graph has
bounded size, but can be used to reason about arbitrarily large distributed systems built
from P. It will store sufficient information to decide the existence of a negative cut-off.

4.1 k-bounded symbolic graph
In this section, we consider a register protocol P = 〈Q,D, q0, T 〉, its associated distributed
system SP = 〈Γ,Pr〉, an initial register value d0 ∈ D, and a target location qf ∈ Q of P.
With P , we associate a finite-state graph, called symbolic graph of index k, which for k large
enough contains enough information to decide the existence of a negative cut-off.

I Definition 13. Let k be an integer. The symbolic graph of index k associated with P
and d0 is the transition system G = 〈V, v0, E〉 where

V = NQk × 2Q ×D contains triples made of a multiset of states of Q of size k, a subset
of Q, and the content of the register; the multiset (called concrete part) is used to exactly
keep track of a fixed set of k processes, while the subset of Q (the abstract part) encodes
the support of the arbitrarily many remaining processes;
v0 = 〈qk0 , {q0}, {d0}〉;
transitions are of two types, depending whether they involve a process in the concrete part
or a process in the abstract part. Formally, there is a transition 〈µ, S, d〉 → 〈µ′, S′, d′〉
whenever there is a transition (q,O, d′′, q′) ∈ T such that d = d′ = d′′ if O = R and
d′ = d′′ if O = W , and one of the following two conditions holds:

either S′ = S and q v µ (that is, µ(q) > 0) and µ′ = µ	 q ⊕ q′;
or µ = µ′ and q ∈ S and S′ ∈ {S \ {q} ∪ {q′}, S ∪ {q′}}.

The symbolic graph of index k can be used as an abstraction of distributed systems made
of at least k + 1 copies of P: it keeps full information of the states of k processes, and only
gives the support of the states of the other processes. In particular, the symbolic graph of
index 0 provides only the states appearing in each configuration of the system.

I Example 1.c. Consider the protocol depicted in Fig. 1. Its symbolic graph of index 0 is
depicted in Fig. 4. Notice that the final state (representing all configurations containing qf )
is reachable from any state of this symbolic graph. However, our original protocol P of
Fig. 1 does not have a positive cut-off (assuming initial register value 0): indeed, with
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{q0}, 0
{q1}, 1

{q1}, 0

{q1}, 2{q2}, 1

{q0, q1}, 0

{q0, q1}, 1

{q0, q1}, 2{q0, q2}, 1

{q0, q1, q2}, 1 {q0, q1, q2}, 2

{q1, q2}, 1 {q1, q2}, 2

all sets
containing

qf

Figure 4 Symbolic graph (of index 0) of the protocol of Fig. 1 (self-loops omitted).

positive probability, a single process will go to q1 and immediately write 1 in the register, thus
preventing any other process to leave q0; then one may check that the process in q1 alone
cannot reach qf , so that the probability of reaching qf from qk0 is strictly less than 1, for
any k > 0. This livelock is not taken into account in the symbolic graph of index 0, because
from any configuration with support {q0, q1} and register data equal to 1, the symbolic graph
has a transition to the configuration with support {q0, q1, q2}, which only exists in the concrete
system when there are at least two processes in q1. As we prove in the following, analyzing
the symbolic graph for a sufficiently large index guarantees to detect such a situation.

For any index k, the symbolic graph achieves the following correspondence:

I Lemma 14. Given two states 〈µ, S, d〉 and 〈µ′, S′, d′〉, there is a transition from 〈µ, S, d〉
to 〈µ′, S′, d′〉 in the symbolic graph G of index k if, and only if, there exist multisets δ and δ′
with respective supports S and S′, and such that 〈µ⊕ δ, d〉 → 〈µ′ ⊕ δ′, d′〉 in SP .

4.2 Deciding the existence of a negative cut-off
We now explain how the symbolic graph can be used to decide the existence of a negative
cut-off. Since Pre∗(Jqf K) is upward-closed in 〈Γ,�〉, there is a finite set of configurations
{ηi = 〈µi, di〉 | 1 ≤ i ≤ m} such that Pre∗(Jqf K) = ↑{ηi | 1 ≤ i ≤ m}. We let K =
max{st(ηi)(q) | q ∈ Q, 1 ≤ i ≤ m}, and show that for our purpose, it is enough to consider
the symbolic graph of index K · |Q|; we provide a bound on K in the next section.

I Lemma 15. There is a negative cut-off for P, d0 and qf if, and only if, there is a node in
the symbolic graph of index K · |Q| that is reachable from 〈qK·|Q|0 , {q0}, d0〉 but from which
no configuration involving qf is reachable.

Proof. We begin with the converse implication, assuming that there is a state 〈µ, S, d〉 in the
symbolic graph of index K · |Q| that is reachable from (qK·|Q|0 , {q0}, d0) and from which no
configuration in Jqf K is reachable. Applying Lemma 14, there exist multisets δ0 = qN0 and δ,
with respective supports {q0} and S, such that 〈µ⊕ δ, d〉 is reachable from 〈qK·|Q|0 ⊕ δ0, d0〉.
If location qf was reachable from 〈µ⊕ δ, d〉 in the distributed system, then there would exist
a path from 〈µ, S, d〉 to a state involving qf in the symbolic graph, which contradicts our
hypothesis. By Lemma 7, it follows that such a configuration 〈µ ⊕ δ′, d〉—which cannot
reach qf —can be reached from 〈qK·|Q|0 ⊕ qN ′0 , d0〉 for any N ′ ≥ N : hence it cannot be the
case that qf is reachable almost-surely for any N ′ ≥ N . Therefore there cannot be a positive
cut-off, which implies that there is a negative one (from Theorem 12).

Conversely, if there is a negative cut-off, then for some N > K · |Q|, the distributed
system SNP with N processes has probability less than 1 of reaching Jqf K from qN0 . This system
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being finite, there must exist a reachable configuration 〈µ, d〉 from which qf is not reachable [5].
Hence 〈µ, d〉 /∈ Pre∗(Jqf K), and for all i ≤ m, there is a location qi such that µ(qi) < µi(qi) ≤
K. Then there must exist a reachable state 〈κ, S, d〉 of the symbolic graph of index K · |Q|
for which κ(qi) = µ(qi) and qi /∈ S, for all 1 ≤ i ≤ m: it indeed suffices to follow the path
from 〈qN0 , d0〉 to 〈µ, d〉 while keeping track of the processes that end up in some qi in the
concrete part; this is possible because the concrete part has size at least K · |Q|.

It remains to be proved that no state involving qf is reachable from 〈κ, S, d〉 in the symbolic
graph. If it were the case, then by Lemma 14, there would exist δ with support S such that
Jqf K is reachable from 〈κ ⊕ δ, d〉 in the distributed system. Then 〈κ ⊕ δ, d〉 ∈ Pre∗(Jqf K),
so that for some 1 ≤ i ≤ m, (κ⊕ δ)(qi) ≥ µi(qi), which is not possible as κ(qi) < µi(qi) and
qi is not in the support S of δ. This contradiction concludes the proof. J

I Remark. Besides the existence of a negative cut-off, this proof also provides us with an
upper bound on the tight cut-off, as we shall see in Section 5.

4.3 Complexity of the algorithm
We now consider the complexity of the algorithm that can be deduced from Lemma 15.
Using results by Rackoff on the coverability problem in Vector Addition Systems [19],
we can bound K – and consequently the size of the needed symbolic graph – by a double-
exponential in the size of the protocol. Therefore, it suffices to solve a reachability problem
in NLOGSPACE [20] on this doubly-exponential graph: this boils down to NEXPSPACE with
regard to the protocol’s size, hence EXPSPACE by Savitch’s theorem [20].

I Theorem 16. Deciding the existence of a negative cut-off is in EXPSPACE.

4.4 PSPACE-hardness for deciding cut-offs
I Theorem 17. Deciding the existence of a negative cut-off is PSPACE-hard.

Our proof is based on the encoding of a linear-bounded Turing machine [20]: we build a
register protocol for which there is a negative cut-off if, and only if, the machine reaches its
final state qhalt with the tape head reading the last cell of the tape. Write n for the size of
the tape of the Turing machine. We assume (without loss of generality) that the machine
is deterministic, and that it accepts only if it ends in its halting state qhalt while reading
the last cell of the tape. Our reduction works as follows: some processes of our network
will first be assigned an index i in [1;n] indicating the cell of the tape they shall encode
during the simulation. The other processes are stuck in the initial location, and will play
no role. The state q and position j of the head of the Turing machine are stored in the
register. During the simulation phase, when a process is scheduled to play, it checks in the
register whether the tape head is on the cell it encodes, and in that case it performs the
transition of the Turing machine. If the tape head is not on the cell it encodes, the process
moves to the target location (which we consider as the target for the almost-sure reachability
problem). Finally, upon seeing (qhalt, n) in the register, all processes move to a (n+ 1)-filter
protocol Fn+1 (similar to that of Fig. 3) whose last location sn+1 is the aforementioned
target location.

If the Turing machine halts, then the corresponding run can be mimicked with exactly one
process per cell, thus giving rise to a finite run of the distributed system where n processes
end up in the (n+ 1)-filter (and the other processes are stuck in the initial location); from
there sn+1 cannot be reached. If the Turing machine does not halt, then assume that there is
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Figure 5 Simulating an exponential counter: grey boxes contain the nodes used to encode the
bits of the counter; yellow nodes at the bottom correspond to the filter module from Fig. 3; purple
nodes tok, sent and sink correspond to the second part of the protocol, and are used to produce
tokens. Missing read edges are assumed to be self-loops.

an infinite run of the distributed system never reaching the target location. This run cannot
get stuck in the simulation phase forever, because it would end up in a strongly connected
component from which the target location is reachable. Thus this run eventually reaches
the (n+ 1)-filter, which requires that at least n+ 1 processes participate in the simulation
(because with n processes it would simulate the exact run of the machine, and would not
reach qhalt, while with fewer processes the tape head could not go over cells that are not
handled by a process). Thus at least n+ 1 processes would end up in the (n+ 1)-filter, and
with probability 1 the target location should be reached.

5 Bounds on cut-offs

5.1 Existence of exponential tight negative cut-offs
We exhibit a family of register protocols that admits negative cut-off exponential in the
size of the protocol. The construction reuses ideas from the PSPACE-hardness proof. Our
register protocol has two parts: one part simulates a counter over n bits, and requires a token
(a special value in the register) to perform each step of the simulation. The second part is
used to generate the tokens (i.e., writing 1 in the register). Figure 5 depicts our construction.
We claim that this protocol, with # as initial register value and qf as target location, admits
a negative tight cut-off larger than 2n: in other terms, there exists N > 2n such that the
final state will be reached with probability strictly less than 1 in the distributed system made
of at least N processes (starting with # in the register), while the distributed system with
2n processes will reach the final state almost-surely. In order to justify this claim, we explain
now the intuition behind this protocol.

We first focus on the first part of the protocol, containing nodes named ai, bi, ci, di
and si. This part can be divided into three phases: the initialization phase lasts as long as
the register contains #; the counting phase starts when the register contains halt for the first
time; the simulation phase is the intermediate phase.
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During the initialization phase, processes move to locations ai and tok, until some process
in tok writes 1 in the register (or until some process reaches qf , using a transition from ai
to qf while reading #). Write γ0 for the configuration reached when entering the simulation
phase (i.e., when 1 is written in the register for the first time). We assume that st(γ0)(ai) > 0
for some i, as otherwise all the processes are in tok, and they all will eventually reach qf .
Now, we notice that if st(γ0)(ai) = 0 for some i, then location dn cannot be reached, so
that no process can reach the counting phase. In that case, some process (and actually all
of them) will eventually reach qf . We now consider the case where st(γ0)(ai) ≥ 1 for all i.
One can prove (inductively) that di is reachable when st(γ0)(tok) ≥ 2i. Hence dn, and thus
also s0, can be reached when st(γ0)(tok) ≥ 2n. Assuming qf is not reached, the counting
phase must never contain more than n processes, hence we actually have that st(γ0)(ai) = 1.
With this new condition, s0 is reached if, and only if, st(γ0)(tok) ≥ 2n. When the latter
condition is not true, qf will be reached almost-surely, which proves the second part of our
claim: the final location is reached almost-surely in systems with strictly less than n+ 2n
copies of the protocol.

We now consider the case of systems with at least n+ 2n processes. We exhibit a finite
execution of those systems from which no continuation can reach qf , thus proving that qf is
reached with probability strictly less than 1 in those systems. The execution is as follows:
during initialization, for each i, one process enters ai; all other processes move to tok, and
one of them write 1 in the register. The n processes in the simulation phase then simulate
the consecutive incrementations of the counter, consuming one token at each step, until
reaching dn. At that time, all the processes in tok move to sent, and the process in dn
writes halt in the register and enters s0. The processes in the simulation phase can then
enter s0, and those in sent can move to sink. We now have n processes in s0, and the other
ones in sink. According to Lemma 4, location qf cannot be reached from this configuration,
which concludes our proof.

I Theorem 18. There exists a family of register protocols which, equipped with an initial
register value and a target location, admit negative tight cut-offs whose size are exponential
in the size of the protocol.

I Remark. The question whether there exists protocols with exponential positive cut-offs
remains open. The family of filter protocols described at Section 3.1 is an example of
protocols with a linear positive cut-off.

5.2 Upper bounds on tight cut-offs
The results (and proofs) of Section 4 can be used to derive upper bounds on tight cut-offs.
We make this explicit in the following theorem.

I Theorem 19. For a protocol P = 〈Q,D, q0, T 〉 equipped with an initial register value d0 ∈ D
and a target location qf ∈ Q, the tight cut-off is at most doubly-exponential in |P|.

6 Conclusions and future works

We have shown that in networks of identical finite-state automata communicating (non-
atomically) through a single register and equipped with a fair stochastic scheduler, there
always exists a cut-off on the number of processes which either witnesses almost-sure
reachability of a specific control-state (positive cut-off) or its negation (negative cut-off).
This cut-off determinacy essentially relies on the monotonicity induced by our model, which
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allows to use well-quasi order techniques. By analyzing a well-chosen symbolic graph, one can
decide in EXPSPACE whether that cut-off is positive, or negative, and we proved this decision
problem to be PSPACE-hard. This approach allows us to deduce some doubly-exponential
bounds on the value of the cut-offs. Finally, we gave an example of a network in which
there is a negative cut-off, which is exponential in the size of the underlying protocol. Note
however that no such lower-bound is known yet for positive cut-offs.

We have several further directions of research. First, it would be nice to fill the gap
between the PSPACE lower bound and the EXPSPACE upper bound for deciding the nature
of the cut-off. We would like also to investigate further atomic read/write operations, which
generate non-monotonic transition systems, but for which we would like to decide whether
there is a cut-off or not. Finally, we believe that our techniques could be extended to more
general classes of properties, for instance, universal reachability (all processes should enter a
distinguished state), or liveness properties.
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Abstract
We propose a probabilistic Hoare logic aHL based on the union bound, a tool from basic prob-
ability theory. While the union bound is simple, it is an extremely common tool for analyzing
randomized algorithms. In formal verification terms, the union bound allows flexible and compos-
itional reasoning over possible ways an algorithm may go wrong. It also enables a clean separation
between reasoning about probabilities and reasoning about events, which are expressed as stand-
ard first-order formulas in our logic. Notably, assertions in our logic are non-probabilistic, even
though we can conclude probabilistic facts from the judgments.

Our logic can also prove accuracy properties for interactive programs, where the program
must produce intermediate outputs as soon as pieces of the input arrive, rather than accessing
the entire input at once. This setting also enables adaptivity, where later inputs may depend
on earlier intermediate outputs. We show how to prove accuracy for several examples from the
differential privacy literature, both interactive and non-interactive.
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1 Introduction

Probabilistic computations arise naturally in many areas of computer science. For instance,
they are widely used in cryptography, privacy, and security for achieving goals that lie beyond
the reach of deterministic programs. However, the correctness of probabilistic programs can
be quite subtle, often relying on complex reasoning about probabilistic events.

Accordingly, probabilistic computations present an attractive target for formal verification.
A long line of research, spanning more than four decades, has focused on expressive formalisms
for reasoning about general probabilistic properties both for purely probabilistic programs and
for programs that combine probabilistic and non-deterministic choice (see, e.g., [35, 29, 34]).

More recent research investigates specialized formalisms that work with more restricted
assertions and proof techniques, aiming to simplify formal verification. As perhaps the
purest examples of this approach, some program logics prove probabilistic properties by
working purely with non-probabilistic assertions; we call such systems lightweight logics.
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Examples include probabilistic relational Hoare logic [7] for proving the reductionist security
of cryptographic constructions, and the related approximate probabilistic relational Hoare
logic [8] for reasoning about differential privacy. These logics rely on the powerful abstraction
of probabilistic couplings to derive probabilistic facts from non-probabilistic assertions [4].

Lightweight logics are appealing because they can leverage ideas for verifying deterministic
programs, a rich and well-studied area of formal verification. However, existing lightweight
logics apply only to relational verification: properties about the relation between two programs.
In this paper, we propose a non-relational, lightweight logic based on the union bound, a
simple tool from probability theory. For arbitrary properties E1, . . . , En, the union bound
states that

Pr [∪ni=1Ei] ≤
n∑
i=1

Pr[Ei] .

Typically, we think of the events Ei as bad events, describing different ways that the
program may fail to satisfy some target property. Bad events can be viewed as propositions
on single program states, so they can be represented as non-probabilistic assertions. For
example, the formula x > 10 defines a bad event for x a program variable. If x stores the
result from a random sample, this bad event models when the sample is bigger than 10. The
union bound states that no bad events happen, except with probability at most the sum of
the probabilities of each bad event.

The union bound is a ubiquitous tool in pen-and-paper proofs due to its flexible and
compositional nature: to bound the probability of a collection of failures, consider each
failure in isolation. This compositional style is also a natural fit for formal verification. To
demonstrate this, we formalize a Hoare logic aHL based on the union bound for a probabilistic
imperative language. The assertions in our logic are non-probabilistic, but judgments carry
a numeric index for tracking the failure probability. Concretely, the aHL judgment

`β c : Φ =⇒ Ψ

states that every execution of a program c starting from an initial state satisfying Φ yields a
distribution in which Ψ holds except with probability at most β. We define a proof system
for the logic and show its soundness. We also define a sound embedding of aHL into standard
Hoare logic, by instrumenting the program with ghost code that tracks the index β in a
special program variable. This is a useful reduction that also applies to other lightweight
logics [5].

Moreover, our logic applies both to standard algorithms and to interactive algorithms,
a richer class of algorithms that is commonly studied in contexts such as online learning
(algorithms which make predictions about the future input) and streaming (algorithms
which operate on datasets that are too large to fit into memory by processing the input in
linear passes). Informally, interactive algorithms receive their input in a sequence of chunks,
and must produce intermediate outputs as soon as each chunk arrives. In some cases the
input can be adaptive: later inputs may depend on earlier outputs. Besides enabling new
classes of algorithms, interactivity allows more modularity. We can decompose programs
into interacting parts, analyze each part in isolation, and reuse the components.

We demonstrate aHL on several algorithms satisfying differential privacy [14], a statistical
notion of privacy which trades off between the privacy of inputs and the accuracy of outputs.
Prior work on verifying private algorithms focuses on the privacy property for non-interactive
algorithms (see, e.g. [37, 18, 8]). We provide the first verification of accuracy for both
non-interactive and interactive algorithms. We note however that aHL, like the union bound,
can be applied to a wide range of probabilistic programs beyond differential privacy.
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2 A union bound logic

Before introducing the program logic, we will begin by reviewing a largely standard, probab-
ilistic imperative language. We state the soundness of the logic and describe the embedding
into Hoare logic. The semantics of the language and the proof of soundness are deferred to
the appendix.

2.1 Language
We will work with a core imperative language with a command for random sampling from
distributions, and procedure calls. The set of commands is defined as follows:

C ::= skip noop
| X ← E deterministic assignment
| X $← D(E) probabilistic assignment
| C; C sequencing
| if E then C else C conditional
| while E do C while loop
| X ← F(E) procedure call
| X ← A(E) external call

Here, X is a set of variables, E is a set of expressions, and D is a set of distribution
constructors, which can be parameterized by standard expressions. Variables and expressions
are typed, ranging over booleans, integers, lists, etc. The expression grammar is entirely
standard, and we omit it.

We distinguish two kinds of procedure calls: A is a set of external procedure names,
and F is a set of internal procedure names. We assume we have access to the code of
internal procedures, but not the code of external procedures. We think of external procedures
as controlled by some external adversary, who can select the next input in an interactive
algorithm. Accordingly, external procedures run in an external memory separate from the
main program memory, which is shared by all internal procedures.

For simplicity, procedures take a single argument, do not have local variables, and are
not mutually recursive. A program consists of a sequence of procedures definitions, each of
the following form:

proc f(argf ){c; return r; } .

Here, f is a procedure name, argf ∈ Vars is the formal argument of f , c is the function
body and r is its return value. We assume that distinct procedure definitions do not bind the
same procedure name and that the program variable argf can only appear in the body of f .

Before we define the program semantics, we first need to introduce a few definitions from
probability theory.

I Definition 1. A discrete sub-distribution over a set A is defined by a mass function
µ : A→ [0, 1] such that:

the support supp(µ) of µ – defined as {x ∈ A | µ(x) 6= 0} – is countable; and
the weight wt(µ) of µ – defined as

∑
x∈A µ(x) – satisfies wt(µ) ≤ 1.

A distribution is a sub-distribution with weight 1. The probability of an event P w.r.t. µ,
written Prµ[P ] (or Pr[P ] when µ is clear from the context), is defined as

∑
x∈A|P (x) µ(x).

When Φ is an assertion (assuming that A ≡ State), we write Prµ[Φ] for Prµ[λm.m |= Φ].
Likewise, when v ∈ A, we write Prµ[v] for Prµ[λx. x = v].

ICALP 2016
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Commands are interpreted as a function from memories to sub-distributions over memories,
where memories are finite maps from program and external variables to values. More formally,
if State is the set of memories then the interpretation of c, written JcK, is a function from
State to Distr(State), where Distr(T) denotes the set of discrete sub-distributions over
T. The definition of JcK enforces the separation between the internal and external states –
only commands performing external procedure calls can act on the external memory. The
interpretation of external procedure calls is parameterized by functions – one for each external
procedure – of type State|A → Distr(State|A), where State|A is the set of memories restricted
to the external variables. Thus, external procedures can only access the external memory.

2.2 Logic
Now that we have seen the programs, let us turn to the program logic. Our judgments are
similar to standard Hoare logic with an additional numeric index representing the probability
of failure. Concretely, the judgments are of the following form:

`β c : Φ =⇒ Ψ

where Φ and Ψ are first-order formulas over the program variables representing the pre- and
post-condition, respectively. We stress that Φ and Ψ are non-probabilistic assertions: they
do not mention the probabilities of specific events, and will be interpreted as properties of
individual memories rather than distributions over memories. This is reflected by the validity
relation for assertions: m |= Φ states that Φ is valid in the single memory m, rather than in
a distribution over memories. Similarly, |= Φ states that Φ is valid in all (single) memories.
By separating the assertions from the probabilistic features of our language, the assertions
are simpler and easier to manipulate. The index β is a non-negative real number (typically,
from the unit interval [0, 1]).

Now, we can define semantic validity for our judgments. In short, the index β will be
an upper bound on the probability that the postcondition Ψ does not hold on the output
distribution, assuming the precondition Φ holds on the initial memory.

I Definition 2 (Validity). A judgment `β c : Φ =⇒ Ψ is valid if for every memory m such
that m |= Φ, we have:

Pr
JcK(m)

[¬Ψ] ≤ β .

We present the main proof rules of our logic in Figure 1. The rule for random sampling
[Rand] allows us to assume a proposition Ψ about the random sample provided that Ψ fails
with probability at most β. This is a semantic condition which we introduce as an axiom for
each primitive distribution.

The remaining rules are similar to the standard Hoare logic rules, with special handling for
the index. The sequence rule [Seq] states that the failure probabilities of the two commands
add together; this is simply the union bound internalized in our logic. The conditional rule
[If] assumes that the indices for the two branch judgments are equal – which can always be
achieved via weakening – keeping the same index for the conditional. Roughly, this is because
only one branch of the conditional is executed. The loop rule [While] simply accumulates
the failure probability β throughout the iterations; the side conditions ensure that the loop
terminates in at most k iterations except with probability k · β. To reason about procedure
calls, standard (internal) procedure calls use the rule [Call], which substitutes the argument
and return variables in the pre- and post-condition, respectively. External procedure calls
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`0 skip : Φ =⇒ Φ
[Skip]

`0 x← e : Φ[e/x] =⇒ Φ
[Assn]

∀m.m |= Φ =⇒ PrJx $←d(e)K(m)[¬Ψ] ≤ β
`β x $← d(e) : Φ =⇒ Ψ

[Rand]

`β c : Φ =⇒ Φ′
`β′ c′ : Φ′ =⇒ Φ′′

`β+β′ c; c′ : Φ =⇒ Φ′′
[Seq]

`β c : Φ ∧ e =⇒ Ψ
`β c′ : Φ ∧ ¬e =⇒ Ψ

`β if e then c else c′ : Φ =⇒ Ψ
[If]

ev : N |= Φ ∧ ev ≤ 0→ ¬e
`β c : Φ =⇒ Φ ∀η > 0. `0 c : Φ ∧ e ∧ ev = η =⇒ ev < η

`k·β while e do c : Φ ∧ ev ≤ k =⇒ Φ ∧ ¬e
[While]

proc f(argf ){c; return r; }
`β c : Φ =⇒ Ψ[r/resf ]

`β x← f(e) : Φ[e/argf ] =⇒ Ψ[x/resf ]
[Call]

`0 x← f(e) : ∀v. Ψ[v/x] =⇒ Ψ
[Ext]

|= Φ′ → Φ |= Ψ→ Ψ′ β ≤ β′

`β c : Φ =⇒ Ψ
`β′ c : Φ′ =⇒ Ψ′

[Weak]
c does not modify variables in Φ

`0 c : Φ =⇒ Φ
[Frame]

`β c : Φ =⇒ Ψ
`β′ c : Φ =⇒ Ψ′

`β+β′ c : Φ =⇒ Ψ ∧Ψ′
[And]

`β c : Φ =⇒ Ψ
`β c : Φ′ =⇒ Ψ
`β c : Φ ∨ Φ′ =⇒ Ψ

[Or]
`1 c : Φ =⇒ ⊥

[False]

Figure 1 Selected proof rules.

use the rule [Ext]. We do not have access to the implementation of the procedure; we know
just the type of the return value.

The structural rules are also similar to the typical Hoare logic rules. The weakening rule
[Weak] allows strengthening the precondition and weakening the postcondition as usual, but
also allows increasing the index – this corresponds to allowing a possibly higher probability of
failure. The frame rule [Frame] preserves assertions that do not mention variables modified
by the command. The conjunction rule [And] is another instance of the union bound,
allowing us to combine two postconditions while adding up the failure probabilities. The
case rule [Or] is the dual of [And] and takes the maximum failure probability among two
post-conditions when taking their disjunction. Finally, the rule [False] allows us to conclude
false with failure probability 1: With probability at most 0, false holds in the final memory.

We can show that our proof system is sound with respect to the semantics; the proof is
deferred to the appendix.

I Theorem 3 (Soundness). All derivable judgments `β c : Φ =⇒ Ψ are valid.

In addition, we can define a sound embedding into Hoare logic in the style of Barthe et
al. [5]. Assuming a fresh program variable xβ of type R, we can transform a command c

ICALP 2016
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such that `β c : Φ =⇒ Ψ to a new command dce and a proof of the standard Hoare logic
judgment

` dce : Φ ∧ xβ = 0 =⇒ Ψ ∧ xβ ≤ β .

The command dce is obtained from c by replacing all probabilistic sampling x $← d(e) with a
call to an abstract, non-probabilistic procedure call x← Sample� (d(e)), whose specification
models the postcondition of [Rand]:

∀m.m |= Φ =⇒ Pr
Jx $←d(e)K(m)

[¬Ψ] ≤ ι

` x← Sample� (d(e)) : Φ ∧ xβ ≤ ν =⇒ Ψ ∧ xβ ≤ ν + ι
.

3 Accuracy for differentially private programs

Now that we have presented our logic aHL, we will follow by verifying several examples.
Though our system applies to programs from many domains, we will focus on programs
satisfying differential privacy, a statistical notion of privacy proposed by Dwork et al. [14]. At
a very high level, these programs take private data as input and add random noise to protect
privacy. (Interested readers should consult a textbook [15] for a more detailed presentation.)
In contrast to existing formal verification work, which verifies the privacy property, we will
verify accuracy. This is just as important as privacy: the constant function is perfectly
private but not very useful.

All of our example programs take samples from the Laplace distribution.

I Definition 4. The (discrete) Laplace distribution Lε(e) is parameterized by a scale para-
meter ε > 0 and a mean e. The distribution ranges over the real numbers {ν = k + e} for k
an integer, releasing ν with probability proportional to:

Pr
Lε(e)

[ν] ∝ exp (−ε · |ν − e|) .

This distribution satisfies a basic accuracy property.

I Lemma 5. Let β ∈ (0, 1), and let ν be a sample from the distribution Lε(e). Then,

Pr
Lε(e)

[
|ν − e| > 1

ε
log 1

β

]
< β .

Thus, the following sampling rule is sound for our system for every β ∈ (0, 1):

`β x $← Lε(e) : > =⇒ |x− e| ≤ 1
ε

log 1
β

[LapAcc]

.

Before presenting the examples, we will set some common notations and terminology.
First, we consider a set db of databases,1 a set query of queries, and primitive functions

evalQ : query→ db→ R

invQ : query→ query
negQ : query→ query

size : db→ N

error : query→ db→ query

1 The general setting of differential privacy is that the database contains private information that must
be protected. However, this fact will not be important for proving accuracy.



G. Barthe, M. Gaboardi, B. Grégoire, J. Hsu, and P.-Y. Strub 107:7

satisfying

evalQ(invQ(q), d) = −evalQ(q, d)
evalQ(negQ(q), d) = size(d)− evalQ(q, d)

evalQ(error(q, d1), d2) = evalQ(q, d1)− evalQ(q, d2)

Concretely, one can identify query with the functions db→ R and obtain an easy realization
of the above functions and axioms.

In some situations, we may need additional structure on the queries to prove the accuracy
guarantees. In particular, a query q is linear if

for every two databases d, d′, we have q(d + d′) = q(d) + q(d′) for a commutative and
associative operator + on databases; and
for the database d0 that is the identity of +, we have q(d0) = 0.

Concretely, we can identify db with the set of multisets, + with multiset union, and d0 with
the empty multiset.

3.1 Report-noisy-max
Our first example is the Report-noisy-max algorithm (see, e.g., Dwork and Roth [15]). Report-
noisy-max is a variant of the exponential mechanism [32], which provides the standard way
to achieve differential privacy for computations whose outputs lie in a finite (perhaps non-
numeric) set R. Both algorithms perform the same computations, except that the exponential
mechanism adds one-sided Laplace noise whereas Report-noisy-max adds regular Laplace
noise. Thus, accuracy for both algorithms is verified in essentially the same way. We focus
on Report-noisy-max to avoid defining one-sided Laplace.

Report-noisy-max finds an element of a finite set R that approximately maximizes some
quality score function qscore, which takes as input an element r ∈ R and a database d.
Operationally, Report-noisy-max computes the quality score for each element of R, adds
Laplace noise, and returns the element with the highest (noisy) value. We can implement
this algorithm with the following code, using syntactic sugar for arrays:

proc RNM(R, d) :
flag ← 1; best ← 0;
while R 6= ∅ do
r ← pick(R); noisy[r] $← Lε/2(qscore(r, d));
if (noisy[r] > best ∨ flag = 1) then

flag ← 0; r∗ ← r; best ← noisy[r];
R ← R \ {r};

return r∗;

The scale ε/2 of the Laplace distribution ensures an appropriate level of differential privacy
under certain assumptions; we will not discuss privacy in the remainder.

I Theorem 6. Let β ∈ (0, 1), and let res ∈ R be the output of Report-noisy-max on input d
and quality score qscore. Then, we have the following judgment:

`β RNM : > =⇒ ∀r ∈ R. qscore(res, d) > qscore(r, d)− 4
ε

log |R|
β
.

where |R| denotes the size of R. This corresponds to the existing accuracy guarantee for
Report-noisy-max (see, e.g., Dwork and Roth [15]).

ICALP 2016
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Roughly, this theorem states that while the result res may not be the element with the
absolute highest quality score, its quality score is not far below the quality score of any other
element. For a brief sanity check, note that the guarantee weakens as we increase the range
R, or decrease the failure probability β.

The proof of accuracy is based on an instantiation of the rule [LapAcc] with e set to
qscore(r, d), β set to β/|R|, and ε set to ε/2. First, we can show

`β/|R| c : > =⇒ |noisy[r]− qscore(r, d)| < 2
ε

log |R|
β
.

where c is the loop body. Since the loop runs for |R| iterations, we also have

`β RNM : > =⇒ ∀r ∈ R. |noisy[r]− qscore(r, d)| < 2
ε

log |R|
β
.

In order to prove this judgment, the loop invariant quantifies over all previously seen r ∈ R.
Combined with a straightforward invariant showing that r∗ stores the index of the current
maximum (noisy) score, the above judgment suffices to prove the accuracy guarantee for
Report-noisy-max (Theorem 6).

3.2 Sparse Vector algorithm
Our second example is the Sparse Vector algorithm, which indicates which numeric queries
take value (approximately) above some threshold value (see, e.g., Dwork and Roth [15]).
Simpler approaches can accomplish this task by releasing the noisy answer to all queries and
then comparing with the threshold, but the resulting error then grows linearly with the total
number of queries. Sparse Vector does not release the noisy answers, but the resulting error
grows only logarithmically with the total number of queries – a substantial improvement.
The differential privacy property of Sparse Vector was recently formally verified [6]; here, we
consider the accuracy property.

In the non-interactive setting, the algorithm takes as input a list of queries q1, q2, . . . , a
database d, and a numeric threshold t ∈ R.2 First, we add Laplace noise to the threshold t
to calculate the noisy threshold T . Then, we evaluate each query qi on d, add Laplace noise,
and check if the noisy value exceeds T . If so, we output >; if not, we output ⊥.

Sparse Vector also works in the interactive setting. Here, the algorithm is fed one query
at a time, and must process this query (producing ⊥ or >) before seeing the next query. The
input may be adaptive – future queries may depend on the answers to earlier queries.

We focus on the interactive version; the non-interactive version can be handled similar to
Report-noisy-max. We break the code into two pieces. The first piece initializes variables
and computes the noisy threshold, while the second piece accepts a single new query and
returns the answer.

proc SV.Init(Tin, εin) :
ε← εin;
T $← Lε/2(Tin);

proc SV.Step(q) :
a $← Lε/4(evalQ(q, d));
if (a < T ) then {z ← ⊥; } else {z ← >; }

return z;

2 In some presentations, the algorithm is also parameterized by the maximum number k of queries to
answer. This feature is important for privacy but not accuracy, so we omit it. It is not difficult to
extend the accuracy proof for answering at most k queries.
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The main procedure performs initialization, and then enters into an interactive loop between
the external procedure A – which supplies the queries – and the Sparse Vector procedure
SV.Step:

proc SV.main(Q,T, ε) :
SV.Init(T, ε);
u← 0; ans[u]← ⊥;
while (u < Q) do
u← u+ 1;
q[u]← A(ans[u− 1]);
ans[u]← SV.Step(q[u]);

return ans;

Sparse Vector satisfies the following accuracy guarantee.

I Theorem 7. Let β ∈ (0, 1). We have

`β SV.main(Q,T ) : > =⇒ ∀j ∈ {1, . . . , Q}. Φ(q[j], d), where

Φ(q, d) ,
(

res = > → evalQ(q, d) > t− 6
ε

log Q+ 1
β

)
∧
(

res = ⊥ → evalQ(q, d) < t+ 6
ε

log Q+ 1
β

)
.

This judgment corresponds to the accuracy guarantee for Sparse Vector from (see, e.g., Dwork
and Roth [15]). Note that the error term depends logarithmically on the total number of
queries Q, a key feature of Sparse Vector.

To prove this theorem, we first specify the procedures SV.Init and SV.Step. For
initialization, we have

`β/(Q+1) SV.Init(T, ε) : > =⇒ Φt where Φt , |t− T | <
2
ε

log Q+ 1
β
∧ ε = εin .

For the interactive step, we have

`β/(Q+1) SV.Step(q) : Φt =⇒ Φt ∧ Φ(q, d) .

Combining these two judgments, we can prove accuracy for SV.main (Theorem 7).

3.3 Online Multiplicative Weights
Our final example demonstrates how we can use the union bound to analyze a complex
combination of several interactive algorithms, yielding sophisticated accuracy proofs. We
will verify the Online Multiplicative Weights (OMW) algorithm first proposed by Hardt and
Rothblum [21] and later refined by Gupta et al. [20]. Like Sparse Vector, this interactive
algorithm can handle adaptive queries while guaranteeing error logarithmic in the number of
queries. Unlike Sparse Vector, OMW produces approximate answers to the queries instead
of just a bit representing above or below threshold.

At a high level, OMW iteratively constructs a synthetic version of the true database. The
user can present various linear queries to the algorithm, which applies the Sparse Vector
algorithm to check whether the error of the synthetic database on this query is smaller than
some threshold. If so, the algorithm simply returns the approximate answer. Otherwise, it
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updates the synthetic database using the multiplicative weights update rule to better model
the true database, and answers the query by adding Laplace noise to the true answer. An
inductive argument shows that after enough updates, the synthetic database must be similar
to the true database on all queries. At this point, we can answer all subsequent queries using
the synthetic database alone.

In code, the following procedure implements the Online Multiplicative Weights algorithm.

proc MW-SV.main(d, α, ε,Q,X, n) :
η ← α/2n;T ← 2α; c← 4n2 ln(X)/α2; set parameters
u← 0; k ← 0; ans[k]← ⊥; initialize variables
mwdb ←MW.Init(η,X, n); SV.Init(T, ε/4c); initialize MW and SV
while (k < Q) do main loop
k ← k + 1; increment count of queries
q[k]← A(ans[k − 1],mwdb); get next query
approx ← evalQ(q[k],mwdb); calculate approx answer
exact ← evalQ(q[k], d); calculate exact answer
if (k ≥ c) then ans[k]← approx; enough updates, use approx answer
else

err> ← error(q[k],mwdb); at ← SV.Step(err>); check if approx answer is high
err< ← invQ(error(q[k],mwdb)); bt ← SV.Step(err<); check if approx answer is low
if (at 6= ⊥ ∨ bt 6= ⊥) then large error
u← u+ 1; increment count of updates
if at 6= ⊥ then up ← q[k]; approx answer too high
else up ← negQ(q[k]); approx answer too low
mwdb ←MW.Step(mwdb, up); update synthetic db
ans[k] $← Lε/2c(exact); estimate true answer

else small error, do not update
ans[k]← approx; answer using approx answer

return ans;

Online multiplicative weights satisfies the following accuracy guarantee.

I Theorem 8. Let β ∈ (0, 1). Then,

`β MW-SV.main(d, α, ε,Q,X, n) : α ≥ max(αsv, αlap) =⇒
∀j. j ∈ {1, . . . , Q} → |res[j]− evalQ(q[j], d)| ≤ α,

where γ , 4n2 ln(X)/α2, αsv ,
24γ
ε log 2(Q+1)

β , and αlap ,
4γ
ε log 2γ

β .

In words, the answers to all the supplied queries are within α of the true answer if α is
sufficiently large. The above judgment reflects the accuracy guarantee first proved by Hardt
and Rothblum [21] and later generalized by Gupta et al. [20].

The main routine depends on the multiplicative weights subroutine (MW), which maintains
and updates the synthetic database. Roughly, MW takes as input the current synthetic
database and a query where the synthetic database gives an answer that is far from the
true answer. Then, MW improves the synthetic database to better model the true database.
Our implementation of MW consists of two subroutines: MW.init initializes the synthetic
database, and MW.step updates the current database with a query that has high error.
The code for these subroutines is somewhat technical, and we will not present it here.

Instead, we will present their specifications, which are given in terms of an expression
Ψ(x, d) where x is the current synthetic database and d is the true database. We omit the
definition of Ψ and focus on its three key properties:
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Ψ(x, d) ≥ 0;
Ψ(x, d) is initially bounded for the initial synthetic database; and
Ψ(x, d) decreases each time we update the synthetic database.

Functions satisfying these properties are often called potential functions.
The first property follows from the definition of Ψ, while the second and third properties

are reflected by the specifications of the MW procedures. Concretely, we can bound the
initial value of Ψ with the following specification for MW.init:

`0 MW.init(η,X, n) : > =⇒ Ψ(res, d) ≤ lnX .

We can also show that Ψ decreases with the following specification for MW.step:

`0 MW.step(x, q) : > =⇒ Ψ(x, d)−Ψ(res, d) ≥ η(evalQ(q, x)− evalQ(q, d))/n− η2 .

We make two remarks. First, these specifications crucially rely on the fact that q is a linear
query. Second, both procedures are deterministic. For such procedures, the fragment of aHL
with index β = 0 corresponds precisely to standard Hoare logic.

Now, let us briefly consider the key points in proving the main specification (Theorem 8).
First, the key part of the invariant for the main loop is Ψ(mwdb, d) ≤ logX − u · α2/4n2.
Roughly, Ψ is initially at most logX by the specification for MW.init, and every time we
call MW.step we decrease Ψ by at least α2/4n2 if the update query up has error at least
α. Since Ψ is always non-negative, we can find at most c queries with high error – after c
updates, the synthetic database mwdb must give accurate answers on all queries.

Prior to making c updates, there are two cases for each query. If at least one of the
Sparse Vector calls returns above threshold, we set the update query up to be q[u] if the
approximate answer is too high, otherwise we set up to be the negated query neqQ(q[u]) if
the approximate answer is too low. With this choice of update query, we can show that

evalQ(up,mwdb)− evalQ(up, d) ≥ α

so Ψ decreases by at least α2/4n2. Then, we answer the original query q[u] by adding Laplace
noise, so our answer is also within α of the true answer. Otherwise, if both Sparse Vector
calls return below threshold, then the query q[u] is answered well by our approximation
mwdb and there is no need to update mwdb or access the real database d.

The above reasoning assumes that Sparse Vector and the Laplace mechanisms are
sufficiently accurate. To guarantee the former, notice that the Sparse Vector subroutine will
process at most 2Q queries, so we assume that α is larger than the error αsv guaranteed
by Theorem 7 for 2Q queries and failure probability β/2. To guarantee the latter, notice
that we sample Laplace noise at most c times – once for each update step – so we assume
that α is larger than the error αlap guaranteed by [LapAcc] for failure probability β/2c;
by a union bound, all Laplace noises are accurate except with probability β/2. Taking
α ≥ max(αsv, αlap), both accuracy guarantees hold except with probability at most β, and
we have the desired proof of accuracy for OMW (Theorem 8).

4 Related work

The semantics of probabilistic programming languages has been studied extensively since the
late 70s. Kozen’s seminal paper [28] studies two semantics for a core probabilistic imperative
language. Other important work investigates using monads to structure the semantics of
probabilistic languages; e.g. Jones and Plotkin [24]. More recent works study the semantics of
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probabilistic programs for applications like statistical computations [9], probabilistic inference
for machine learning [10], probabilistic modeling for software defined networks [17], and more.

Likewise, deductive techniques for verifying probabilistic programs have a long history.
Ramshaw [35] proposes a program logic with basic assertions of the form Pr[E] = p. Hart
el al. [22], Sharir et al. [39] propose a method using intermediate assertions and invariants
for proving general properties of probabilistic programs. Kozen [29] introduces PPDL, a
logic that can reason about expected values of general measurable functions. Morgan et
al. [34] (see McIver and Morgan [31] for an extended account) propose a verification method
based on computing greatest pre-expectations, a probabilistic analogue of Dijkstra’s weakest
pre-conditions. Hurd et al. [23] formalize their approach using the HOL theorem prover.
Other approaches based on interactive theorem provers include the work of Audebaud and
Paulin-Mohring [1], who axiomatize (discrete) probability theory and verify some examples
of randomized algorithms using the Coq proof assistant. Gretz et al. [19] extend the work
of Morgan et al. [34] with a formal treatment of conditioning. More recently, Rand and
Zdancewic [36] formalize another Hoare logic for probabilistic programs using the Coq proof
assistant. Barthe et al. [3] implement a general-purpose logic in the EasyCrypt framework,
and verify a representative set of randomized algorithms. Kaminski et al. [25] develop a
weakest precondition logic to reason about expected run-time of probabilistic programs.

Most of these works support general probabilistic reasoning and additional features like
non-determinism, so they most likely could formalize the examples that we consider. However,
our logic aHL aims at a sweet spot in the design space, combining expressivity with simplicity
of the assertion language. The design of aHL is inspired by existing relational program
logics, such as pRHL [7] and apRHL [8]. These logics support rich proofs about probabilistic
properties with purely non-probabilistic assertions, using a powerful coupling abstraction
from probability theory [4] rather than the union bound.

Finally, there are many algorithmic techniques for verifying probabilistic programs.
Probabilistic model-checking is a successful line of research that has delivered mature and
practical tools and addressed a broad range of case studies; Baier and Katoen [2], Katoen [26],
Kwiatkowska et al. [30] cover some of the most interesting developments in the field. Abstract
interpretation of probabilistic programs is another rich source of techniques; see e.g. Cousot
and Monerau [13], Monniaux [33]. Katoen et al. [27] infer linear invariants for the pGCL
language of Morgan et al. [34]. There are several approaches based on martingales for
reasoning about probabilistic loops; Chakarov and Sankaranarayanan [11, 12] use martingales
for inferring expectation invariants, while Ferrer Fioriti and Hermanns [16] use martingales
for analyzing probabilistic termination. Sampson et al. [38] use a mix of static and dynamic
analyses to check probabilistic assertions for probabilistic programs.

5 Conclusion and perspective

We propose aHL, a lightweight probabilistic Hoare logic based on the union bound. Our logic
can prove properties about bad events in cryptography and accuracy of differentially private
mechanisms. Of course, there are examples that we cannot verify. For instance, reasoning
involving independence of random variables, a common tool when analyzing randomized
algorithms, is not supported. Accordingly, a natural next step is to explore logical methods
for reasoning about independence, or to embed aHL into a more general system like pGCL.
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Abstract
What can be decided or semidecided about a primitive recursive function, given a definition
of that function by primitive recursion? What about subrecursive classes other than primitive
recursive functions? We provide a complete and explicit characterization of the decidable and
semidecidable properties. This characterization uses a variant of Kolmogorov complexity where
only programs in a subrecursive programming language are allowed. More precisely, we prove that
all the decidable and semidecidable properties can be obtained as combinations of two classes of
basic decidable properties: (i) the function takes some particular values on a finite set of inputs,
and (ii) every finite part of the function can be compressed to some extent.
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1 Introduction

What can be decided about a function f : N→ N if f is represented by a program computing
it? What can be semidecided?

In the 50’s, many computability theory results have been proved in order to answer these
questions. The answers depend on the class of functions considered.

Partial computable functions.

For the class of partial computable functions, Rice [11] proved that no non-trivial property is
decidable, and Shapiro [12] refined it by characterizing the semidecidable properties. These
results show that having a program computing f does not give more information than having
an oracle giving the values of f , in the sense that the two presentations induce the same
classes of decidable and semidecidable properties. In other words, the only way of exploiting
a program computing f is to execute it on any input to obtains the values of f . Hence the
code of the program contains no more information than a black-box containing the program.

Total computable functions

For the class of total computable functions, Kreisel, Lacombe, Shœnfield [8] and independently
Ceitin [2] characterized the decidable properties. Again they are the same whether the function
is presented by a program or by an oracle.

However, Friedberg [4] showed that the semidecidable properties of total computable
functions do not admit such a characterization. In that case, having a program computing
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f gives more information than having the values of f . In [6] we proved that the extra
information is simply the size of the program. A remaining open problem is to obtain a nice
characterization of the semidecidable properties of total computable functions, when they
are presented by programs.

Subrecursive classes

In this paper we investigate the case of a subrecursive class, i.e. a class of total computable
functions that can be effectively enumerated. Examples of such classes are the primitive
recursive functions, complexity classes such as FPTIME, or the class of provably total
functions in Peano Arithmetic. Here the function in the class is presented by a program in a
restricted programming language. As for the whole class of total computable functions, the
semidecidable properties are not the same if the function is presented by an oracle. However
we obtain a characterization of the semidecidable properties, when the function is presented
by a subrecursive program. This characterization uses a version of Kolmogorov complexity
restricted to a subrecursive programming language. This is the main result of the paper.

We also prove that the semidecidable properties of total computable functions do not
admit an analogous characterization.

We also discuss the difference between having an oracle giving the values of a function,
and a black-box containing a program computing that function. The difference is that
no assumption is made on the time it takes for the oracle to answer, while a program in
a black-box has particular halting times. We show that in general it does not make any
difference, but we also show a situation where the halting times of the black-box can be
exploited.

1.1 Notations
Let N∗ be the set of finite sequences of natural numbers and NN the Baire space of functions
from N to N. Given f ∈ NN and n ∈ N, f�n denotes the finite sequence (f(0), . . . , f(n−1)) ∈
N∗. We say that f ∈ NN extends v = (v0, . . . , vn−1) ∈ N∗ if f(0) = v0, . . . , f(n− 1) = vn−1,
i.e. if f�n = v. We denote by [v] ⊆ NN the set of all extensions of v and call it a cylinder.
The Baire space is endowed with the topology whose open sets are unions of cylinders. An
effective open set is the union of a computable sequence of cylinders.

2 Decidable and semidecidable properties

In this paper, a subrecursive class of functions is simply a class C of total computable
functions that can be computably enumerated: there is a numbering C = {fi : i ∈ N} such
that fi is computable uniformly in i, i.e. the mapping (i, n) 7→ fi(n) is computable. If f ∈ C

then a C -index of f is any i such that f = fi (a function may have several indices). There
are usually many ways of indexing such a class, and they may induce different decidable
properties. A thorough investigation about indexings of subrecursive classes can be found
in [7].

Examples of subrecursive classes are: the primitive recursive functions, the class FPTIME
of polynomial-time computable functions, the class of provably total computable functions in
Peano arithmetic. A numbering of a class can be obtained from a numbering of the programs
in a subrecursive programming language, or a restricted model of computation. Hence having
an index of a function is usually equivalent to having a program for that function, in the
restricted language. Famous examples of restricted programming language are: definitions



M.Hoyrup 108:3

by primitive recursion, LOOP programming language [10], polynomially clocked Turing
machines, proofs of totality in Peano Arithmetic.

Observe that two programming languages admitting computable translation procedures in
both directions induce the same decidable and semidecidable properties. This is for instance
the case of definitions by primitive recursion and LOOP programs.

Let A ⊆ C . First observe that the property f ∈ A is semidecidable given f by an oracle
exactly when A is the intersection of an effective open subset of the Baire space with C .
Indeed, when the machine semideciding f ∈ A accepts f in finite time so it has only read a
finite segment of f hence it will accept all functions in some cylinder [f�n]. The property
f ∈ A is decidable given f by an oracle exactly when both A and C \A are the intersections
of effective open sets with C .

The goal of this paper is to obtain a similar understanding of the decidable and semide-
cidable sets A ⊆ C , when f ∈ C is presented by a C -index rather than an oracle.

In order to investigate this problem we introduce a notion of Kolmogorov complexity
adapted to the class C .

I Definition 1. The C -complexity of f : N→ N is

KC (f) =
{

min{i : fi = f} if f ∈ C ,
+∞ otherwise.

If v = (v0, . . . , vn) is a finite sequence of natural numbers then its C -complexity is

KC (v) = min{i : fi extends v} = min{KC (f) : f ∈ [v]}.

If no fi extends v then KC (v) = +∞. Observe that for f : N→ N, KC (f�n) is nondecreasing
and converges to KC (f) (which may be infinite). By the assumptions on C , the quantity
KC (v) is computable from v (when it is finite – in, general, the predicate KC (v) = i is
decidable), contrary to usual Kolmogorov complexity which is upper semicomputable only.
However KC usually does not belong to the class C (modulo encoding of N∗ in N).

It may seem more consistent with usual notions of Kolmogorov complexity (see e.g. [9])
to take for instance log(i) instead of i in the definition, or to use a machine that is universal
for the class C and define KC in terms of the size of its inputs. All these choices are equally
acceptable and lead exactly to the same result. The important point is that for each such
notion of complexity K ′, an upper bound on KC (f) can be uniformly computed from any
upper bound on K ′(f) and vice-versa. Here we take the simplest definition of complexity
following directly from the enumeration of C , to avoid technicality.

2.1 An index gives more information than an oracle
Kreisel-Lacombe-Shœnfield/Ceitin’s theorem implies that the properties of total computable
functions that are decidable from indices are also decidable from oracles. In essence, Rice’s
theorem states the same for the class of partial computable functions. In general the situation
is different when restricting to some subrecursive class: there exist properties that are
decidable from indices but not from oracles.

Let us first give a concrete class of such properties. A computable order is a non-decreasing
unbounded computable function h : N→ N, such as blog(n)c, n2 or 2n for instance.

I Definition 2. Let C be a subrecursive class of functions and h a computable order. We
define the set AC ,h of (C , h)-anticomplex functions as

AC ,h = {f : N→ N : ∀n,KC (f�n) ≤ h(n)}.
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We borrow the terminology from [3], where the notion of anti-complex set is defined
in terms of usual Kolmogorov complexity, and is studied from a computability-theoretic
perspective.

I Proposition 3. For f ∈ C , the property f ∈ AC ,h is decidable given any C -index of f .

Proof. Given an index i for f , one has KC (f�n) ≤ KC (f) ≤ i for all n, so f belongs to
AC ,h if and only if KC (f�n) ≤ h(n) for all n such that h(n) < i. This property is decidable
as KC (f�n) is computable from i and n and only a finite number of values of n has to be
checked. J

Note that it is important that h be unbounded. One can easily show that if for each g ∈ C

the set {j ∈ N : fj = g} is not decidable (usual subrecursive classes satisfy this condition),
then when h is bounded the property f ∈ AC ,h is not decidable given any C -index of f .

In general AC ,h is no more decidable if instead of an index of f one is only given f as
oracle.

I Proposition 4. If C is dense in NN then AC ,h has empty interior in C (i.e. does not
contain the intersection of a cylinder with C ), therefore AC ,h is not semidecidable when the
input function is given as oracle.

Proof. For each u = (u0, . . . , un−1) ∈ N∗, there exist only finitely many i ∈ N such that
KC (u0, . . . , un−1, i) ≤ h(n+1). Take any i outside this finite set: the cylinder [u0, . . . , un−1, i]
is disjoint from AC ,h but intersects C , so [u] ∩ C is not contained in AC ,h. J

All the usual subrecursive classes are dense in NN. Observe that in computational
complexity theory, one is more often interested in classes of problems rather than functions.
Hence C could be the class of characteristic functions of subsets of N in some complexity
class, such as P. In that case, C is not dense in NN, however it is dense in {0, 1}N and a
similar result holds.

I Proposition 5. The same result holds if C is dense in {0, 1}N and h is sufficiently small.

Proof. Let g be a computable order such that the number of finite sequences v such that
KC (v) ≤ k is bounded by g(k). If KC is the notion of complexity from Definition 1 then one
can take g(k) = k + 1. For other notions of complexity based on length of binary programs,
one could take g(k) = 2k+1 instead.

Let h be a computable order such that g ◦ h(n) = o(2n) (take for instance h(n) = n in
our case). Given u ∈ {0, 1}∗, there exists n ≥ |u| such that g ◦ h(n) < 2n−|u|. By definition
of g there are at most g(h(n)) < 2n−|u| finite sequences v such that KC (v) ≤ h(n). As there
exist 2n−|u| binary extensions of u of length n, at least one of them satisfies KC (v) > h(n).
Hence [v] ∩ C is disjoint from AC ,h and non-empty, so AC ,h does not contain [u] ∩ C . J

The result does not hold for any class C : if C is the class of constant functions, numbered
in the obvious way, then having an oracle for f ∈ C is equivalent to having a C -index of
f . This class has the particular property that all the functions in C are isolated from each
other and as we now show this is the only obstruction to generalizing Propositions 4 and 5.
We recall that a function f is not isolated in C if for each p ∈ N there exists some g 6= f in
C such that g�p = f�p.

I Proposition 6. If C contains a function f that is not isolated in C then there is a
computable order h such that f belongs to AC ,h but not to its interior, therefore AC ,h is not
semidecidable when the input function is given as oracle.
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Hence having an index for f ∈ C usually gives more information than having an access
to f via an oracle, as it enables to decide more properties of f . What is the additional
information? Having an index for f obviously bounds KC (f), and we now show that in a
sense this is the only additional information.

First observe that the proof of Proposition 3 actually shows that AC ,h remains decidable
if one is given f via an oracle together with an upper bound on KC (f). This is the case of
every decidable, and even semidecidable property.

I Proposition 7. Let A ⊆ C be such that the problem f ∈ A is semidecidable given a
C -index of f . Then the problem f ∈ A is semidecidable given an access to f as oracle
together with any upper bound on KC (f).

Proof. Given f and k ≥ KC (f), one can progressively reject all numbers i ≤ k such that
fi 6= f . In parallel one can progressively accept all numbers i ≤ k that are accepted by the
semidecision procedure for A. Wait for a stage when every number i ≤ k is accepted or
rejected. If this happens then accept f . J

If one defines Ck = {f : KC (f) ≤ k} = {fi : i ≤ k} then Proposition 7 implies the existence
of uniformly effective open sets Uk ⊆ NN such that A ∩ Ck = Uk ∩ Ck for all k ∈ N. Indeed,
Uk is defined as the union of finite prefixes of oracles f read and accepted by the machine
semideciding A, given k as upper bound on KC (f).

It was proved in [6] that such a result also holds for the class of total computable functions
and much more general classes of computable objects. The proof given here in the case of a
subrecursive class C is much easier because we only deal with total programs (every fi is
total, so one can always recognize whether fi 6= f).

2.2 The main result
We can now state our main result: the cylinders and the sets of anticomplex functions are
the basic decidable properties, from which all decidable and semidecidable properties can be
obtained.

I Theorem 8. Let C be a subrecursive class and A ⊆ C . The following conditions are
equivalent:
1. The property f ∈ A is semidecidable given a C -index of f ,
2. A is an effective union of sets of the form [v] ∩AC ,h, i.e.

A = C ∩
⋃
n

([vi] ∩AC ,hi
)

for some computable sequences of finite words vi ∈ N∗ and orders hi : N→ N.

Proof. We prove that 1. implies 2., the other direction being a direct consequence of
Proposition 3. We slightly reformulate the property AC ,h, using the following sets. Recall
the sets Ck = {fi : i ≤ k} defined after Proposition 7. For k, n ∈ N let

C n
k =

⋃
u∈Nn:KC (u)≤k

[u] =
⋃

f∈Ck

[f�n] =
⋃
i≤k

[fi�n].

Observe that f ∈ AC ,h if and only if f ∈ C n
h(n) for all n.

Assume that condition 1. in the statement of the theorem holds. By Proposition 7 there
exist uniformly effective open sets Uk ⊆ NN such that A ∩ Ck = Uk ∩ Ck. One can take
Uk+1 ⊆ Uk, replacing Uk with Uk ∪ Uk+1 ∪ . . . if necessary. It follows that A = C ∩

⋂
k Uk.
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Given k ∈ N and v ∈ N∗ such that [v] ⊆ Uk+1, we now build a computable order h such
that [v]∩Ck+1 ⊆ [v]∩AC ,h ∩C ⊆ A. In order to obtain the announced families vi and hi to
cover the whole set A, we will simply start from all possible k ∈ N and all v in the effective
enumeration of Uk+1.

We now define h, by first constructing a kind of inverse of h. More precisely we define a
computable increasing sequence ni such that for all i,

[v] ∩ C n1
k+1 ∩ . . . ∩ C ni

k+i ⊆ Uk+i+1.

The base case i = 0 is satisfied as [v] ⊆ Uk+1. Once n1, . . . , ni have been defined,

[v] ∩ C n1
k+1 ∩ . . . ∩ C ni

k+i ∩ Ck+i+1 ⊆ Uk+i+1 ∩ Ck+i+1

⊆ A
⊆ Uk+i+2.

The left-hand side is a finite set. For each f in that set, there is n ∈ N such that
[f�n] ⊆ Uk+i+2. As the set is finite there is a single n that works for each f in the finite set.
As this finite set is computable, such a n can be computed. We then define ni+1 > ni such
that

[v] ∩ C n1
k+1 ∩ . . . ∩ C ni

k+i ∩ C
ni+1
k+i+1 ⊆ Uk+i+2.

We then have

[v] ∩ Ck+1 ⊆ [v] ∩
⋂
i≥1

C ni

k+i ∩ C ⊆
⋂
n

Un ∩ C = A. (1)

Let h be the computable order defined by h(n) = k + min{i ≥ 1 : n ≤ ni}. We claim, as
announced, that

[v] ∩ Ck+1 ⊆ [v] ∩AC ,h ∩ C ⊆ A.

The first inequality is straightforward: h(n) ≥ k + 1 for all n, so Ck+1 ⊆ AC ,h.
To prove the second inequality, observe that if g ∈ AC ,h then for all i, KC (g�ni

) ≤
h(ni) = k + i, i.e. g ∈

⋂
i≥1 C ni

k+i, and then use (1). J

A set A ⊆ C is then decidable from C -indices if and only if both A and C \ A can be
expressed as effective unions of sets [v] ∩AC ,h.

A further question

Each effective numbering of a class C induces particular classes of decidable and semidecidable
properties. What can be said about the properties that are decidable or semidecidable for
every effective numbering of C ? The least we can say is that any property of total functions
that is Markov decidable, i.e. decidable given an arbitrary index of the total function, is also
decidable for every effective numbering of C (see next section for more information about
Markov computability), and similarly for semidecidable properties. Does the converse also
holds? In a sequel to this paper we will show that it does not: in reasonable subrecursive
classes, there exists a property that cannot be semidecided from arbitrary indices, but is
semidecidable in any effective total numbering of the class.
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2.3 The whole class of total computable functions
By the Kreisel-Lacombe-Shœnfield/Ceitin theorem, the properties of total computable
functions that are Markov decidable, i.e., decidable from indices coincide with the ones that
are decidable from oracles, hence are generated by cylinders. However Friedberg showed that
is it not the case for Markov semidecidable properties. Can we obtain a characterization of
these properties as in the case of subrecursive classes?

We leave this problem open, but we show that the analog of Theorem 8 does not hold.
We first introduce the analog of Definition 2. Here, ϕi is some Gödel numbering of the partial
computable functions.

I Definition 9. If v = (v0, . . . , vn) ∈ N∗ then its complexity is

K(v) = min{i : ϕi extends v}.

Let h be a computable order. We define the set Ah of h-anticomplex functions as

Ah = {f : N→ N : ∀n,K(f�n) ≤ h(n)}.

Again, the property f ∈ Ah is semi-decidable (but this time not decidable) from any
index of the total computable function f , but it is not semidecidable if f is given by an
oracle. Observe that in the definition of K(v), one considers all partial computable functions
extending v. A direct analog of Definition 1 would be to consider total functions only.
However the resulting anticomplexity property would not be semidecidable.

We now prove that the sets of anticomplex functions do not generate all the semidecidable
properties.

I Theorem 10. There is a semidecidable property of total computable functions that does
not contain any non-empty set [v] ∩Ah.

Proof. Let t(j, i) be a partial computable function such that if ϕj is total then t(j, i) is
defined for all i. Define the set

B =
⋂

i

Bi where Bi =
⋃
j≤i

[ϕj�t(j,i)]

where [ϕj�t(j,i)] is empty if t(j, i) is not defined or ϕj is not defined on the first t(j, i)
inputs. The property f ∈ B is semidecidable from indices of f . Indeed, if ϕi is total then
ϕi ∈ B ⇐⇒ ϕi ∈ B0 ∩ . . . ∩Bi−1, which is semidecidable.

We now take t(j, i) to be the halting time of ϕj(i) plus i + 1. We prove that the
corresponding set B does not contain any non-empty set [v]∩Ah. Let h be some computable
order. We want to build a function f in Ah \B, i.e. in Ah \Bb for some b ∈ N.

I Lemma 11. Given a, b ∈ N one can compute m = m(a, b) such that if [ϕa�m] \ Bb is
non-empty then it contains some f such that K(f) ≤ h(m).

Proof. The idea is simply that for a, b,m ∈ N, if [ϕa�m] \Bb is non-empty then it contains
a function whose complexity can be controlled. Indeed, while such a function cannot be
effectively found as the set Bb is only enumerable, it becomes possible if some extra bits of
information about Bb are provided.

Consider an algorithm that on inputs a, b,M and p ≤ b+1 tries to find a set L ⊆ {0, . . . , b}
of p elements such that for all j ∈ L, ϕj�t(j,b) is defined, tests whether [ϕa�M ]\

⋃
j∈L[ϕj�t(j,b)]

is non-empty and if it is so computes some total function f in that set (p is a guess about
the number of cylinders in Bb).
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The complexity of the output of the algorithm can be bounded in terms of the complexity
of its inputs: there is a total computable function m0(a, b, e) such that if M := ϕe(a, b) is
defined and p ≤ b+ 1 and the algorithm finds a function f , then K(f) ≤ m0(a, b, e).

Now by the Recursion Theorem, there is e such that ϕe(a, b) = min{m : h(m) ≥
m0(a, b, e)}. Let m(a, b) = ϕe(a, b).

Applying the algorithm on inputs a, b,m(a, b), p where p is the number of values of j ≤ b+1
such that ϕj�t(j,b) is defined (p is the “right guess”) gives a function f ∈ [ϕa�m(a,b)] \Bb such
that K(f) ≤ m0(a, b, e) ≤ h(m(a, b)). J

We can make sure that m(a, b) > b (in the proof above, take instead ϕe(a, b) = min{m > b :
h(m) ≥ m0(a, b, e)}).

I Lemma 12. Let a, b ∈ N and m = m(a, b). If ϕa ∈ Ah and [ϕa�m] \Bb is non-empty then
[ϕa�m] ∩Ah \B is non-empty.

Proof. By Lemma 11 there exits f ∈ [ϕa�m] \Bb such that K(f) ≤ h(m). Of course, f /∈ B
and we show that f ∈ Ah i.e. that K(f�i) ≤ h(n) for all n.

For n ≤ m, K(f�n) = K(ϕa�n) ≤ h(n) as ϕa ∈ Ah.
For n ≥ m, K(f�n) ≤ K(f) ≤ h(m) ≤ h(n). J

I Lemma 13. Let v ∈ N∗ be such that [v] ∩ Ah 6= ∅. There exist a, b such that ϕa ∈ Ah,
[ϕa�m(a,b)] \Bb is non-empty and [ϕa�m(a,b)] ⊆ [v].

Proof. Define the computable function b(a) = min{b ≥ |v| : h(b) ≥ a}. We now define a and
will take b := b(a).

Let g ∈ [v] ∩Ah. By the Recursion theorem, there is a such that
For i 6= b(a), ϕa(i) = g(i),
For i = b(a), ϕa(i) differs from each ϕj(i) such that j ≤ b(a) and ϕj(i) halts in at most
m(a, b(a)) steps.

Let then b = b(a).

I Claim 14. ϕa ∈ Ah, i.e. K(ϕa�n) ≤ h(n) for all n.

Indeed, for n ≤ b one has K(ϕa�n) = K(g�n) ≤ h(n) as g ∈ Ah. For n > b, K(ϕa�n) ≤ a ≤
h(b) ≤ h(n).

I Claim 15. Let m = m(a, b). The set [ϕa�m] is not contained in Bb = ∪j≤b[ϕj�t(j,b)].

Indeed for each j ≤ b:
If ϕj(b) halts in at most m steps then ϕa(b) 6= ϕj(b) so [ϕa�m] is disjoint from [ϕj�t(j,b)]
as both m and t(j, b) are larger than b.
If ϕj(b) does not halt in at most m steps then t(j, b) is either undefined or larger than m,
so ϕa�m does not contain [ϕj�t(j,b)].

Finally, [ϕa�m(a,b)] ⊆ [v] as m(a, b) > b ≥ |v| and ϕa�|v| = g�|v| = v. J

We can now conclude. If [v] ∩ Ah 6= ∅ then applying Lemma 12 to a, b provided by
Lemma 13 directly gives that [v] ∩Ah \B is non-empty, as it contains [ϕa�m(a,b)] ∩Ah \B
which is non-empty. J
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In other words, the complement of B is “so big” that its intersection with each Ah is dense
in Ah.

We conjecture than there is no way of describing the semidecidable properties of total
computable functions, using a parametrization by total computable functions. We say
that a set W is extensional if when ϕi = ϕj is total and i ∈ W , one has j ∈ W . An
extensional c.e. set W represents the semidecidable property {ϕi : i ∈ W and ϕi is total}.
Let Tot = {i : ϕi is total}.

I Conjecture. There is no computable function h : Tot→ N such that
For all i ∈ Tot, Wh(i) is extensional,
Every semidecidable property is represented by some Wh(i) with i ∈ Tot.

3 Black-box or oracle?

In computer science one often makes the distinction between accessing a program via its
code, or as a black-box. For instance, this distinction appears naturally when validating or
evaluating the correctness of a program, either by proving that its code is correct, or testing
its outputs on a bunch of inputs, without looking at its code.

As for programs of every day life, looking at the code usually gives much more information
than looking at its outputs. What about the general case of arbitrary programs, where
information can be obfuscated? What is the difference between reading the code of a program
and running it as a black-box? Does one obtain the same information about the function it
computes? What additional information does the code of a program contains, compared to a
black-box containing the program?

The results presented here (e.g., Proposition 7) and in [6] may be seen as answers to
these questions. However, strictly speaking our results involve oracles more than black-boxes,
the difference being that a black-box hides an actual program while no assumption is put
on an arbitrary oracle. Does it make a difference? Does a black-box containing a program
computing a function f give more information about f than an arbitrary oracle for f? For
instance, could the particular halting times of the program (measurable from outside the
black-box) be exploited in some way?

In this section we present a few results that are partial answers to these questions.
We first prove a result suggesting that a black-box does not give more information than

an arbitrary oracle.

3.1 Observing a Turing machine
Here we prove that if the program is a Turing machine and that we can observe its execution,
without knowing the complete transition table, we do not have more information than from
an oracle giving the outputs of the machine.

Observing the execution of the machine means that at each step one can see the config-
uration of the machine, i.e. the contents of the tapes, the positions of the heads and the
internal state. However, one may never know the complete transition table and the number
of states. Equivalently, the observer progressively obtains the content of the transition table
(at least its reachable part), but if the table is incomplete he may never know it entirely.

More formally, let us assume that the set Q of states of a Turing machine is a subset of
N, but is not known by the observer. Σ is some known finite alphabet. Instead of having
access to the transition table δ as a finite function from Q× Σ to Q× Σ× {←, ↓,→}, the
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observer has access to δ as a partial function from N× Σ→ N× Σ× {←, ↓,→}, defined on
Q× Σ only. In particular no upper bound on the elements of Q is known.

I Theorem 16. Let A be a set of total computable functions. The following are equival-
ent:
1. The problem f ∈ A is semidecidable given an enumeration of a transition table of a

Turing machine computing f ,
2. The problem f ∈ A is semidecidable given an oracle for f .

Proof. The intuition is as follows. Assume that 1. holds. Given a total computable function
f , there is a machine that outputs the same values as f on inputs 0, . . . , n for some n, such
that its transition table is accepted by the semidecision procedure and can be extended to
the transition table of a machine computing g, for any g that coincides with f on 0, . . . , n.
As a result, the cylinder [f�n] is contained in A, which is open (and even effectively open).

Let E ⊆ N be a noncomputable c.e. set. The following claim is obvious.

I Claim 17. Given i, one can effectively build a machine Mi such that on input n, Mi(n)
halts on the same configuration as the initial one (in particular its input tape contains n),
except that its state is q1 if i is enumerated in E by stage n, q0 otherwise. q0 and q1 are
never reached before and there is no transition from these states.

Let N be a Turing machine with initial state q0, all the other states being fresh (no
common state with the machines Mi). Think of N as computing a total function f , but we
do not need to assume that N is total.

I Claim 18. For each i one can effectively build a Turing machine, denoted N ◦Mi, such
that N ◦Mi(n) reaches q1 if and only if i is enumerated in E by stage n, and N ◦Mi computes
the same function as N if i /∈ E.

Proof. Given i, taking the union of the transition tables of N and Mi, with the initial state
of Mi as initial state, one gets a Turing machine N ◦Mi which first behaves as Mi, and then
if i /∈ E behaves as N . J

We now prove that A is the intersection of an effective open set U with the class of
total computable functions, which is equivalent to 2. in the statement of Theorem 16. For
each machine N , look for i ∈ E such that an enumeration of N ◦Mi is accepted by the
semidecision procedure. Compute n0 such that i is enumerated in E at stage n0. If N is
defined on inputs 0, . . . , n0− 1, with output values v0, . . . , vn0−1 respectively then enumerate
the cylinder [v0, . . . , vn0−1] in U .

I Claim 19. A is contained in U .

Proof. Let f ∈ A and N be a machine computing f . When i /∈ E, N ◦Mi computes f so
any enumeration of its transition table is accepted by the semidecision procedure. As E is
not computable, there must exist i ∈ E such that an enumeration of the table of N ◦Mi is
also accepted. Let n0 be such that i is enumerated in E at stage n0. N(n) is defined for
every n < n0 and outputs f(n), so the cylinder enumerated in U is [f�n0 ]. J

I Claim 20. Conversely, every computable function in U belongs to A.
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Proof. Let [v0, . . . , vn0−1] be a cylinder enumerated in U . On inputs n < n0, N ◦Mi(n)
outputs vn, never reaching state q1. On inputs n ≥ n0, N ◦Mi ends in state q1.

Let g ∈ [v0, . . . , vn0−1] and Mg be a machine computing g with initial state q1, all the
other states being fresh. Taking the union of the transition tables of N ◦Mi and Mg, with
the initial state of Mi as initial state, one gets a machine M ′g computing g. The enumeration
of the table of N ◦Mi, accepted by the semidecision procedure, can be extended to an
enumeration of the table of M ′g, which is then also accepted (the semidecision procedure
halts before being able to distinguish between N ◦Mi and M ′g). As a result, g ∈ A. J

The proof is complete: given f by an oracle, evaluate it successively on all inputs and look
for a cylinder of U containing f . J

3.2 A difference between a black-box and an oracle
We now exhibit a difference between having a program in a black-box and an oracle.

Instead of deciding or semi-deciding properties, a usual task it to compute a function. In
[6] it is proved that

I Theorem 21 ([6]). Let F : Xc → Y where X,Y are effective topological spaces and Xc is
the set of computable elements of X. The following statements are equivalent:

There is a Turing machine that computes F (x) given any index of x as input,
There is a Turing machine that computes F (x) given any name for x and any k ≥ K(x)
as input.

We do not insist on the notion of effective topological space, which is essentially a topological
space with a countable basis. The classes of partial computable functions or total computable
functions are examples of effective topological spaces. A name for an element x is an infinite
binary string encoding x in some canonical way, which we do not describe here (the interested
reader may consult [13]).

The assumption about effective topological spaces is essential as there is a non-effective
topological space Y for which the result fails, which is the class O(NN) of open subsets of NN

(which is not countably-based for the appropriate topology). Here we take for X the class P
of partial computable functions.

I Theorem 22 ([6]). There is a functional F : P → O(NN) such that:
There is a Turing machine that computes F (ϕ) given any index of ϕ as input,
There is no Turing machine that computes F (ϕ) given any name for ϕ and any k ≥ K(ϕ)
as input.

Computing an element of O(NN), i.e. and open set U ⊆ NN, consists in enumerating a list
of finite words vi ∈ N∗ such that U is the corresponding union of cylinders

⋃
i[vi]. A name

for a partial function ϕ is an infinite binary sequence such that ϕ(m) = n if and only if the
block 01〈n,m〉0 appears in the sequence (〈., .〉 is a computable bijection between N2 and N).

Contrasting with Theorem 22 we now show that

I Theorem 23. Let F : P → O(NN). The following statements are equivalent:
There is a Turing machine that computes F (ϕ) given any index of ϕ as input,
There is a Turing machine that computes F (ϕ) given an access to a black-box containing
a program computing ϕ, and any upper bound onthe size of the program.

The difference with the previous theorem is that:
Contrary to an oracle producing a name, a black-box contains an actual program, with
its particular halting times,

ICALP 2016
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For a particular program p computing a function ϕ, an upper bound on the size of p is
always an upper bound on K(ϕ) (the size of the shortest program computing ϕ), but not
the converse. In particular the theorem fails if an upper bound on K(ϕ) rather than the
size of |p| is provided.

Proof idea. The argument is essentially the same as in the proof of Proposition 7. The idea
is that the observation of the black-box can be seen as a total computable function that,
given an input and a time, tells whether the program on that input halts in that time.

Assume that F is computable from indices. Let ϕ be given by a black-box and k an
upper bound on the size of the program in the black-box.

At each stage we will have a finite list L of programs, such that the program in the
black-box belongs to this list. At the beginning, L is the set of programs whose size is
bounded by k. We enumerate the intersection of the open sets F (ϕi) for all i ∈ L. From time
to time we may remove an element of L that we know is not the program in the black-box.
Each time we change L, we restart the enumeration of the intersection of the open sets F (ϕi)
for all i in the new list L (a larger open set). Eventually the list L will contain only programs
computing the actual function ϕ, so we will enumerate the right open set.

We now explain how we progressively remove programs from L. For each program (in
the list or in the black-box), each input n and each number t, we can decide whether the
program halts in t steps on input n. If for some n and t a program is inconsistent with
the black-box (one halts in t steps on input n but not the other), then the program can
be rejected. If for some n the program and the black-box both halt on n giving different
outputs, we can also reject the program.

Observe that we do not really need to have a precise measure of the halting time of the
black-box: if we know that the actual halting time t of a program and the measured halting
time t̃ are related by |t− t̃| ≤ 10, or t/2 ≤ t̃ ≤ 2t for instance, then we only rejects programs
that do not respect this gap w.r.t. the black-box. J

4 Two remarks on The Intensional Content of Rice’s Theorem

In this paper we have investigated the properties of functions that are semidecidable, when
the function is presented as a program computing it. Such a property can be alternatively
seen as a c.e. set of programs that is extensional, in the sense that two equivalent programs –
two programs computing the same function – are both in the set or both outside the set.

Asperti [1] investigates the case when extensionality is understood in a weaker sense, i.e.
for a stronger notion of equivalence: two programs are equivalent if they compute the same
function and have similar complexities (running time, or space, more generally any measure
of complexity in Blum’s sense). Such classes of programs are called Complexity Cliques.

It is proved in [1] that under certain assumptions on the measure of complexity (which
should “behave well” w.r.t. the s-m-n function, composition and parallel computation),

I Theorem 24 (Asperti [1]). No Complexity Clique of total functions and containing programs
with non constant complexity can be c.e.

It is asked in [1] whether the assumption about non-constant complexity is needed.
We make the simple observation that it is indeed necessary, because the set of Turing

machines with constant time complexity is a c.e. Complexity Clique. Indeed, given c ∈ N, it
is decidable whether a given Turing machine always halts in c steps, because one only has to
evaluate it on inputs of size at most c+ 1, during c steps. Hence it is semidecidable whether
a Turing machine has constant time complexity, by trying every possible c.
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We also observe that the assumptions about the measure of complexity cannot be dropped
either, as the class of one-tape Turing machines that run in linear time is a c.e. Complexity
Clique. Indeed, it was recently proved by Gajser [5] that for each c ∈ N, whether a one-tape
Turing machine halts in time cn on inputs of size n is decidable (his result is more general
as it applies to a larger class of time bounds in o(n logn)). It gives an indirect proof that
one-tape Turing machines and their running time do not satisfy the assumptions of [1].

Acknowledgements. We thank the anonymous referees for their useful comments that
helped improving this article, and for suggesting the question at the end of Section 2.2.
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Abstract
The outcomes of this paper are twofold.

Implicit complexity. We provide an implicit characterization of polynomial time computation
in terms of ordinary differential equations: we characterize the class P of languages computable
in polynomial time in terms of differential equations with polynomial right-hand side.

This result gives a purely continuous (time and space) elegant and simple characterization of
P. We believe it is the first time such classes are characterized using only ordinary differential
equations. Our characterization extends to functions computable in polynomial time over the
reals in the sense of computable analysis.

Our results may provide a new perspective on classical complexity, by giving a way to define
complexity classes, like P, in a very simple way, without any reference to a notion of (discrete)
machine. This may also provide ways to state classical questions about computational complexity
via ordinary differential equations.

Continuous-Time Models of Computation. Our results can also be interpreted in terms
of analog computers or analog model of computation: As a side effect, we get that the 1941
General Purpose Analog Computer (GPAC) of Claude Shannon is provably equivalent to Turing
machines both at the computability and complexity level, a fact that has never been established
before. This result provides arguments in favour of a generalised form of the Church-Turing
Hypothesis, which states that any physically realistic (macroscopic) computer is equivalent to
Turing machines both at a computability and at a computational complexity level.
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1 Introduction

The outcomes of this paper are twofold, and are concerning a priori not closely related topics.

Implicit Complexity: Since the introduction of the P and NP complexity classes, much work
has been done to build a well-developed complexity theory based on Turing Machines. In
particular, classical computational complexity theory is based on limiting resources used by
Turing machines, like time and space. Another approach is implicit computational complexity.
The term “implicit” in “implicit computational complexity” can sometimes be understood in
various ways, but a common point of these characterizations is that they provide (Turing or
equivalent) machine-independent alternative definitions of classical complexity.

Implicit characterization theory has gained enormous interest in the last decade. This
has led to many alternative characterizations of complexity classes using recursive functions,
function algebras, rewriting systems, neural networks, lambda calculus and so on.

However, most of – if not all – these models or characterizations are essentially discrete:
in particular they are based on underlying discrete time models working on objects which
are essentially discrete such as words, terms, etc. that can be considered as being defined in
a discrete space.

Models of computation working on a continuous space have also been considered: they
include Blum Shub Smale machines [4], and in some sense Computable Analysis [40], or
quantum computers [17] which usually feature discrete-time and continuous-space. Machine-
independent characterizations of the corresponding complexity classes have also been devised:
see e.g. [10, 24]. However, the resulting characterizations are still essentially discrete, since
time is still considered to be discrete.

In this paper, we provide a purely analog machine-independent characterization of the P
class. Our characterization relies only on a simple and natural class of ordinary differential
equations: P is characterized using ordinary differential equations (ODEs) with polynomial
right-hand side. This shows first that (classical) complexity theory can be presented in terms
of ordinary differential equations problems. This opens the way to state classical questions,
such as P vs NP, as questions about ordinary differential equations.

Analog Computers: Our results can also be interpreted in the context of analog models of
computation and actually originate as a side effect from an attempt to understand continuous-
time analog models of computation, and if they could solve some problem more efficiently
than classical models. Refer to [39] for a very instructive historical account of the history of
Analog computers. See also [29, 9] for other discussions.

Indeed, in 1941, Claude Shannon introduced in [38] the General Purpose Analog Computer
(GPAC) model as a model for the Differential Analyzer [11], a mechanical programmable
machine, on which he worked as an operator. The GPAC model was later refined in [35],
[23]. Originally it was presented as a model based on circuits (see Figure 1), where several
units performing basic operations (e.g. sums, integration) are interconnected (see Figure 2).

However, Shannon himself realized that functions computed by a GPAC are nothing more
than solutions of a special class of polynomial differential equations. In particular it can be
shown that a function is computed by Shannon’s model if and only if it is a (component of
the) solution of an ordinary differential equations (ODEs) with polynomial right-hand side
[38], [23]. In this paper, we consider the refined version presented in [23].

We note that the original model of the GPAC presented in [38], [23] is not equivalent to
Turing machine based models. However, the original GPAC model performs computations
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Figure 1 Circuit presentation of the GPAC: a circuit built from basic units.

−1 ×
∫ ∫

sin(t)


y′(t)= z(t)
z′(t)= −y(t)
y(0)= 0
z(0)= 1

⇒
{
y(t)= sin(t)
z(t)= cos(t)

t

Figure 2 Example of GPAC circuit: computing sine and cosine with two variables.

in real-time: at time t the output is f(t), which different from the notion used by Turing
machines. In [19] a new notion of computation for the GPAC, which uses “converging
computations” as done by Turing machines was introduced and it was shown in [5],[6] that
using this new notion of computation, the GPAC and computable analysis are two equivalent
models of computation at a computability level.

In that sense, our paper extends this latter result and proves that the GPAC and
computable analysis are two equivalent models of computation, both at the computability
and at the complexity level. We also provide as a side effect a robust way to measure time in
the GPAC, or more generally in computations performed by ordinary differential equations:
basically, by considering the length of the curve.

This paper is organized as follows. Section 2 gives our main definitions and results.
Section 3 discusses the related work and consequences of our results. Section 4 gives a very
high-level overview of the proof. It also contains more definitions and results so that the
reader can understand the big steps of the proof.

2 Our Results

We consider the following class of differential equations:

y(0) = y0 y′(t) = p(y(t)) (1)

where y : I → Rd for some interval I ⊂ R and where p is a vector of polynomials. Such
systems are sometimes called PIVP, for polynomial initial value problems [21]. Observe that
there is always a unique solution to the PIVP, which is analytic, defined on a maximum
interval of life I containing y0, which we refer to as “the solution”.

Our crucial and key idea is that, when using PIVPs to compute a function f , the
complexity should be measured as the length of the solution curve of the PIVP computing
the function f . We recall that the length of a curve y ∈ C1(I,Rn) defined over some interval
I = [a, b] is given by leny(a, b) =

∫
I
‖y′(t)‖ dt, where ‖y‖ refers to the infinite norm of y.

ICALP 2016
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We assume the reader familiar with the notion of polynomial time computable function
f : [a, b]→ R (see [40] for an introduction to computable analysis). We take R+ = [0,+∞[
and denote by RP the set of polynomial time computable reals. For any vector y, yi...j refers
to the vector (yi, yi+1, . . . , yj). For any sets X and Z, f :⊆ X → Z refers to any function
f : Y → Z where Y ⊆ X and dom f refers to the domain of definition of f .

I Remark (The space K of the coefficients). In this paper, the coefficients of all considered
polynomials will belong to K. Formally, K needs to a be generable field, as introduced in
[33]. However, without a significant loss of generality, the reader can consider that K = RP
which is the set of polynomial time computable real numbers. All the reader needs to know
about K is that it is a field and it is stable by generable functions (introduced in Section 4.2),
meaning that if α ∈ K and f is generable then f(α) ∈ K. It is shown in [33] that there
exists a small generable field RG lying somewhere between Q and RP , with expected strict
inequality on both sides.

Our main results (the class AP is defined in Definition 3, and the notion of language
recognized by a continuous system is given in Definition 4) are the following. Let us recall
that P(R) is the class of polynomial time computable real functions, as defined in [27].

I Theorem 1 (An implicit characterization of P(R)). Let a, b ∈ RP . A function f : [a, b]→ R
is computable in polynomial time iff its belongs to the class AP.

I Theorem 2 (An implicit characterization of P). A decision problem (language) L belongs to
class P if and only if it is analog-recognizable.

I Definition 3 (Complexity Class AP). We say that f :⊆ Rn → Rm is in AP if and only if
there exists a vector p of polynomials with d > m variables and a vector q of polynomials
with n variables, both with coefficients in K, and a bivariate polynomial Ω such that for any
x ∈ dom f , there exists (a unique) y : R+ → Rd satisfying for all t ∈ R+:

y(0) = q(x) and y′(t) = p(y(t)) I y satisfies a PIVP
for all µ ∈ R+, if leny(0, t) > Ω(‖x‖ , µ) then ‖y1..m(t)− f(x)‖ 6 e−µ I y1..m converges

to f(x)
leny(0, t) > t I technical condition: the length grows at least linearly with time1

Intuitively, a function f belongs to AP if there is a PIVP that approximates f with a
polynomial length to reach a given level of approximation.

In definition 3, the PIVP was given its input x as part of the initial condition: this is
very natural because x was a real number. In the following, we will characterize languages
with differential equations. Since a language is made up of words, we need to discuss how to
represent (encode) a word with a real number. We fix a finite alphabet Γ = {0, .., k − 2} and
define the encoding2 ψ(w) =

(∑|w|
i=1 wik

−i, |w|
)
for a word w = w1w2 . . . w|w|.

I Definition 4 (Analog recognizability). A language L ⊆ Γ∗ is called analog-recognizable if
there exists a vector q of bivariate polynomials and a vector p of polynomials with d variables,

1 This is a technical condition required for the proof. This can be weakened, for example to
∥∥y′(t)

∥∥ =
‖p(y(t))‖ > 1

poly(t) . The technical issue is that if the speed of the system becomes extremely small, it
might take an exponential time to reach a polynomial length, and we want to avoid such “unatural”
cases. This is satisfied by all examples of computations we know [39].

2 Other encodings may be used, however, two crucial properties are necessary: (i) ψ(w) must provide a
way to recover the length of the word, (ii) ‖ψ(w)‖ ≈ poly(|w|) in other words, the norm of the encoding
is roughly the size of the word.
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both with coefficients in K, and a polynomial Ω : R+ → R+, such that for all w ∈ Γ∗ there is
a (unique) y : R+ → Rd such that for all t ∈ R+:

y(0) = q(ψ(w)) and y′(t) = p(y(t)) I y satisfies a differential equation
if |y1(t)| > 1 then |y1(u)| > 1 for all u > t I the decision is stable
if w ∈ L (resp. /∈ L) and leny(0, t) > Ω(|w|) then y1(t) > 1 (resp. 6 −1) I decision
leny(0, t) > t I technical condition

Intuitively this definition says that a language is analog-recognizable if there is a PIVP
such that, if the initial condition is set to be (the encoding of) some word w ∈ Γ∗, then by
using a portion of polynomial length of the curve, we are able to tell if this word should be
accepted or rejected, by watching to which region of the space the trajectory will go: the
value of y1 determines if the word has been accepted or not, or if the computation is still in
progress.

3 Discussion

Extensions. Our characterizations of the polynomial time can easily be extended to char-
acterizations of deterministic complexity classes above polynomial time. For example,
EXPTIME can be shown to correspond to the case where polynomial Ω is replaced by some
exponential function.

I Theorem 5. Let a and b in RP . A function f : [a, b] → R is computable in exponential
time iff its belongs to the class f ∈ AEXP.

I Definition 6 (Definition of the complexity class AEXP for continuous systems). We say that
f :⊆ Rn → Rm is in AEXP if and only if there exists a vector p of polynomial functions
with d variables, a vector q of polynomial with n variables, both with coefficients in K, an
exponential function Ω : R2

+ → R+ such that for any x ∈ dom f , there exists (a unique)
y : R+ → Rd satisfying for all t ∈ R+:

y(0) = q(x) and y′(t) = p(y(t)) for all t > 0 I y satisfies a PIVP
for any µ ∈ R+, if leny(0, t) > Ω(‖x‖ , µ) then ‖y1..m(t)− f(x)‖ 6 e−µI y1..m converges
‖y′(t)‖ > 1 I technical condition: The length grows at least linearly with time3

Applications to computational complexity. We believe these characterizations to really
open a new perspective on classical complexity, as we indeed provide a natural definition
(through previous definitions) of P for decision problems and of polynomial time for functions
over the reals using analysis only i.e. ordinary differential equations and polynomials, no
need to talk about any (discrete) machinery like Turing machines. This may open ways to
characterize other complexity classes like NP or PSPACE. In the current settings of course
NP can be viewed as an existential quantification over our definition, but we are obviously
talking about “natural” characterizations, not involving unnatural quantifiers (for e.g. a
concept of analysis like ordinary differential inclusions).

As a side effect, we also establish that solving ordinary differential equations with
polynomial right-hand side leads to P- (or EXPTIME-)complete problems, when the length
of the solution curve is taken into account. In an less formal way, this is stating that ordinary

3 This is a technical condition required for the proof. This can be weakened, for example to ‖p(y(t))‖ >
1

poly(t) . The technical issue is that the speed of the system becomes extremely small, it might take an
exponential time to reach a polynomial length, and we want to avoid such “unatural” cases.
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differential equations can be solved by following the solution curve (as most numerical analysis
method do), but that for general (and even right-hand side polynomial) ODEs, no better
method can work, unless some famous complexity questions do not hold. Note that our
results only deal with ODEs with a polynomial right-hand side and that we do not know
what happens for ODEs with analytic right-hand sides over unbounded domains. There are
some results (see e.g. [31]) which show that ODEs with analytic right-hand sides can be
computed locally in polynomial time. However these results do not apply to our setting since
we need to compute the solution of ODEs over arbitrary large domains, and not only locally.

Applications to continuous-time analog models. PIVPs are known to correspond to
functions that can be generated by the GPAC of Claude Shannon [38].

Defining a robust (time) complexity notion for continuous time systems is a well known
open problem [9] with no generic solution provided to this day. In short, the difficulty is
that the naive idea of using the time variable of the ODE as measure of “time complexity”
is problematic, since time can be arbitrarily contracted in a continuous system due to the
“Zeno phenomena” (e.g. by using functions like arctan which contract the whole real line
into a bounded set). It follows that all computable languages can then be computed by a
continuous system in time O(1) (see e.g. [36], [37], [30], [7], [8], [1], [12], [15], [13], [14]).

With that respect, we solve this open problem by stating that the “time complexity”
should be measured by the length of the solution curve of the ODE. Doing so, we get a
robust notion of time complexity for PIVP systems. Indeed, the length is a geometric
property of the curve and is thus “invariant” by rescaling. Notice that this is not sufficient
to get robustness: the fact that we restrict to PIVP systems is crucial because more general
ODEs are usually hard to simulate (e.g. see [26]). This explains why all previous attempts
of a general complexity for general sytems failed in some sense [9]. Super-Turing “Zeno
phenomena” can still happen with general ODEs, but not with PIVPs.

Applications to algorithms. We also believe that transferring the notion of time complexity
to a simple consideration about length of curves allows for very elegant and nice proofs
of polynomiality of many methods for solving continuous but also discrete problems. For
example, the zero of a function f can easily be computed by considering the solution of
y′ = −f(y) under reasonable hypotheses on f . More interestingly, this may also covers many
interior-point methods or barrier methods where the problem can be transformed into the
optimization of some continuous function (see e.g. [25, 16, 3, 28]).

Related work. We believe no purely continuous-time definition of P has ever been stated
before. One direction of our characterization is based on a polynomial time algorithm (in the
length of the curve) to solve PIVPs over unbounded time domains, such a result strengthens
all existings results on the complexity of solving ODEs over unbounded time domains. In the
converse direction, our proof requires a way to simulate a Turing machine using PIVP systems
with a polynomial length, a task whose difficulty is discussed below, and still something that
has never been done up to date.

Attempts to derive a complexity theory for continous-time systems include [18]. However,
the theory developped there is not intended to cover generic dynamical systems but only
specific systems that are related to Lyapunov theory for dynamical systems. The global
minimizers of particular energy functions are supposed to give solutions of the problem. The
structure of such energy functions leads to the introduction of problem classes U and NU ,
with the existence of complete problems for theses classes.
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Another attempt is [2], also focussed on a very specific type of systems: dissipative flow
models. The proposed theory is nice but non-generic. This theory has been used in several
papers from the same authors to study a particular class of flow dynamics [3] for solving
linear programming problems.

Both approaches are not at all intended to cover generic ODEs, and none of them is able
to relate the obtained classes to classical classes from computational complexity.

Up to our knowledge, the most up to date survey about continuous time computation are
[9, 29].

Relating computational complexity problems (like the P vs NP question) to problems of
analysis has already been the motivation of series of works. In particular, Félix Costa and
Jerzy Mycka have a series of work (see e.g. [32]) relating the P vs NP question to questions
in the context of real and complex analysis. Their approach is very different: they do so
at the price of a whole hierarchy of functions and operators over functions. In particular,
they can use multiple times an operator which solves ordinary differential equations before
defining an element of DAnalog e NAnalog (the counterparts of P and NP introduced in
their paper), while in our case we do not need the multiple application of this kind of operator:
we only need to use one application of such operator (i.e. we only need to solve one ordinary
differential equations with polynomial right-hand side).

We also mention that Friedman and Ko (see [27]) proved that polynomial time computable
functions are closed under maximization and integration if and only if some open problems of
computational complexity (like P = NP for the maximization case) hold. The complexity of
solving Lipschitz continuous ordinary differential equation has been proved to be polynomial-
space complete by Kawamura [26].

All the results of this paper are fully developped in the PhD thesis of Amaury Pouly [33].

4 Overview of the proof

To show our main results (Theorem 1 and Theorem 2), we need to show two implications:
(i) if a function f : [a, b]→ R (resp. a language L) is polynomial time computable, then it
belongs to AP (resp. it is analog-recognizable) and (ii) if a function f : [a, b]→ R belongs to
AP (resp. a language L is analog-recognizable) then it is polynomial time computable (resp.
belongs to P).

The second implication (ii) is proved by computing the solution of a PIVP system using
some numerical algorithm. If a function f : [a, b]→ R in AP can be computed (up to some
given accuracy) by following the solution curve of its associated ODE up to a reasonable
(polynomial) amount of the length of the curve, the numerical simulation of its associated
ODE will use a reasonable (polynomial) amount of resources to simulate this bounded portion
of the solution curve. Hence the function f will be computed (up to some given accuracy, as
usual in Computable Analysis) by a Turing machine in polynomial time. A similar idea can
be used for showing the implication (ii) for P and analog-recognizable languages.

The idea sketched above gives the intuition of the proof but the usual ODE solving
algorithms cannot be used here since (1) they are only guaranteed to compute the solution of
an ODE with a given accuracy over a bounded time domain, but here we need to compute
this solution over an unbounded time domain4 which introduce further complications and (2)

4 Note that while f has domain of definition [a, b], from Definition 3 f is approximated by a PIVP whose
solution is defined over the unbounded time domain R
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we need polynomial complexity in the length of the curve, which is not a classical measure of
complexity.

The first implication (i) is proved by simulating Turing machines with PIVPs and by
showing that these simulations can be performed by using a reasonable (polynomial) amount
of resources (length of the solution curve) if the Turing machine runs in polynomial time.

Some simulation of Turing machines with PIVPs was already performed e.g. in [6], [22].
Basically one has to simulate the behavior of a Turing machine with a continuous system.
This is problematic since Turing machines behave discretely (e.g. “if x happens then do
A, otherwise do B”) and one only has access to continuous (analytic) functions. This can
be solved by approximating discontinuous functions with continuous functions to obtain an
approximation of the transition function of the Turing machine. Then, by using special
techniques, one can iterate the new (now continuous) transition function to simulate the step-
by-step evolution of the Turing machine. Here we have one new difficult problem to tackle
(not covered in previous papers like [6] and [22]) because we must ensure that everything can
be done using only a reasonable (polynomial) amount of the length of the solution curve of
the PIVP. In particular, this constraint rules out particularly simple techniques like integer
encodings of the tape and error correction, as used in the previously mentioned papers.

At a high level, our proof relies on considerations about (polynomial length) ODE
programming: we prove that it is possible to “program” with polynomial length ODE systems
that keep some variable fixed, do assignement, iterate some functions, compute limits, etc.
We use those basic operations and basic functions with PIVPs (e.g. min,max, continuous
approximation of rounding, etc.) to create more complex functions and operations that
simulate the transition function of a given Turing machine and its iterations. To be sure that
the more complex functions still satisfy all the properties we want (e.g. that they belong to
AP), we prove several closure properties: in particular, we prove very strong and elegant
equivalent definitions of class AP.

For reasons of lack of space, we do not detail all these operators and functions, but
we sketch the proof of a few properties and some key ideas of our techniques. We use the
following notation: when p is a polynomial, Σp is the sum of the absolute values of its
coefficients and deg(p) its degree. If p is a vector of polynomials, we extend those notions by
taking the maximum for each component.

4.1 Polytime analog computability implies polytime computability
We start by sketching the proof of the “only if” direction of Theorem 2, and then of Theorem 1.
Recall that a real function is polynomial time computable if given arbitrary approximations
of the input, we can produce arbitrary approximations of the output in polynomial time. As
it is customary, we proceed in two steps. We first show that the function has a polynomial
modulus of continuity. This allows us to restrict the problem to rational inputs of controlled
size.

I Theorem 7 (Modulus of continuity). If f ∈ AP, then f admits a polynomial modulus
of continuity: there exists a polynomial f : R2

+ → R+ such that for all x, y ∈ dom f and
µ ∈ R+:

‖x− y‖ 6 e−f(‖x‖,µ) ⇒ ‖f(x)− f(y)‖ 6 e−µ.

We then show that the solution of a such a PIVP can be approximated in polynomial
time. For this, will need the following theorem to get the complexity of numerically solving
this PIVP. The idea of the proof is detailled below.
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I Theorem 8 (Complexity of Solving PIVP[34]). If 5 y : R→ Rd satisfies for all t > 0.

y(0) = y0 y′(t) = p(y(t)). (2)

Then y(t) can be computed with precision 2−µ in time bounded by

poly(deg(p), leny(0, t), log ‖y0‖ , log Σp, µ)d. (3)

More precisely, there exists a Turing machineM such that for any oracle O representing6
(y0, p, t) and any µ ∈ N,

∥∥MO(µ)− PIVP(y0, p, t)
∥∥ 6 2−µ if y(t) exists, and the number of

steps of the machine is bounded by (3) for all such oracles.

General Idea. Assume that L is analog-recognizable in the sense of Definition 4, using
corresponding notations d, q, p,Ω. Let w ∈ Γ∗ and consider the following system: y(0) =
q(ψ(w)), y′(t) = p(y(t)). We show that we can decide in time polynomial in |w| whether
w ∈ L or not. Theorem 8 can be used to conclude that we can compute y(t)± e−µ in time
polynomial in log ‖q(ψ(w))‖ , µ and leny(0, t). Recall that ‖ψ(w)‖ = |w| and that the system
is guaranteed to give an answer as soon as leny(0, t) > Ω(|w|). This means that it is enough
to compute y(t∗), where t∗ satisfies leny(0, t∗) > Ω(|w|), with precision 1/2 to distinguish
between y1(t) > 1 and y1(t) 6 −1. Since leny(0, t) > t, thanks to the technical condition of
the definition, we know that we can find a t∗ 6 Ω(|w|). Note that leny(0,Ω(|w|)) might not
be polynomial in |w| so we cannot simply compute y(Ω(|w|)).

Fortunately, the proof of Theorem 8 provides us with an algorithm that solves the PIVP
by making small time steps, and at each step the length cannot increase by more than a
constant. This means that we can run algorithm to compute y(Ω(|w|)) and stop it as soon as
the length is greater than Ω(|w|). Let t∗ be the time at which the algorithm stops. Then the
running time of the algorithm will be polynomial in t∗, µ and leny(0, t∗) 6 Ω(|w|) +O (1).
Finally, thanks to the technical condition, t∗ 6 leny(0, t∗), this algorithm has running time
polynomial in |w|.

The proof of Theorem 1 is established using the same principle based on Theorem 8,
observing in addition that functions in AP can easily be approximated by considering only
their value on rationals, since they have a polynomial modulus of continuity, as shown by
the following theorem.

It thus appears that the true remaining difficulty lies in proving Theorem 8. An important
point is that none of the classical methods for solving ordinary differential equations are
polynomial time over unbounded time domains. Indeed, no method of fixed order r is
polynomial in variable t over the whole domain R.7 For more information, we refer the reader
to [34].
I Remark. Observe that the solution of the following PIVP y′1 = y1, y

′
2 = y1y2, y

′
3 =

y2y3, . . . , y
′
n = yn−1yn is a tower of n exponentials. Its solution can be computed in

polynomial time over any fixed compact [a, b] [31]. However, the solution cannot be computed
in polynomial time over R, as just writing this value in binary cannot ever been done in
polynomial time. Hence, the solution of a PIVP cannot be computed in polynomial time,
over R, in the general case. A key feature of our method is that we are searching methods
polynomial in the length of the curve, which is not a classical framework.

5 The existence of a solution y up to a given time is undecidable [20] so we have to assume existence.
6 See [27] for more details. In short, the machine can ask arbitrary approximation of y0, p and t to the
oracle. The polynomial is represented by the finite list of coefficients.

7 This is why most studies restricts to a compact domain.

ICALP 2016



109:10 Polynomial Time Corresponds to Solutions of Polynomial ODEs of Polynomial Length

4.2 Polytime computability implies polytime analog computability
The idea of the proof of the “if” directions is to simulate a Turing machine using a PIVP.
But this is far from trivial since we need to do it with a polynomial length.

About generable functions. The following concept can be attributed to [38]: a function
f : R → R is said to be a PIVP function if there exists a system of the form (1) with
f(t) = y1(t) for all t, where y1 denotes first component of the vector y defined in Rd. We
need in our proof to extend the concept to talk about (i) multivariable functions and (ii)
the growth of these functions. The following class and closure properties can be seen as
extensions of results from [21].

I Definition 9 (Polynomially bounded generable function). Let d, e ∈ N, I be an open and
connected subset of Rd and f : I → Re. We say that f ∈ GPVAL if and only if there exists a
polynomial sp : R→ R+, n > e, a n× d matrix p consisting of polynomials with coefficients
in K , x0 ∈ Kd, y0 ∈ Kn and y : I → Rn satisfying for all x ∈ I:

y(x0) = y0 and Jy(x) = p(y(x)) I y satisfies a differential equation8

f(x) = y1..e(x) I f is a component of y
‖y(x)‖ 6 sp(‖x‖) I y is polynomially bounded

I Lemma 10 (Closure properties of GPVAL). Let f :⊆ Rd → Rn ∈ GPVAL and g :⊆ Re →
Rm ∈ GPVAL. Then f + g, f − g, fg and f ◦ g are in GPVAL.

I Lemma 11 (Generable functions are closed under ODE). Let d ∈ N, J ⊆ R an interval,
f :⊆ Rd → Rd in GPVAL, t0 ∈ K ∩ J and y0 ∈ Kd ∩ dom f . Assume there exists y : J →
dom f , and a polynomial sp : R+ → R+ satisfying for all t ∈ J :

y(t0) = y0 y′(t) = f(y(t)) ‖y(t)‖ 6 sp(t)

Then y ∈ GPVAL and it is unique.

It follows that many polynomially bounded usual analytic9 functions are in the class
GPVAL. The inclusion GPVAL ⊂ AP holds for functions whose domain is simple enough.
However, the inclusion GPVAL ⊂ AP is strict10, since functions like the inverse of the
Gamma function Γ(x) =

∫∞
0 tx−1e−tdt or Riemann’s Zeta function ζ(x) =

∑∞
k=0

1
kx are not

differentially algebraic [38] but belong to AP.

Robustness of AP. A very strong key argument of our proof is that the notion of comput-
ability given by Definition 3 is actually very robust and can be stated in many equivalent
ways. A key point is that the definition can be weakened and strengthened. The following
theorem shows that we weaken the definition without changing the class. Since it might not
be obvious to the reader, we emphasize that this notion is a priori weaker (thus AP is a
priori larger than AWP). Indeed, (i) the system accepts errors in the input (ii) the system
does not even converge, but merely approximates the output, doing the best it can given the
input error.

8 Jy denotes the Jacobian matrix of y.
9 Functions from GPVAL are necessarily analytic, as solutions of an analytic ODE are analytic.
10Even with functions with star domains with a vantage point.
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I Theorem 12 (Weak Computability). AP = AWP where AWP corresponds to the class
of functions f :⊆ Rn → Rm such that there are some polynomials Ω : R2

+ → R+ and
Υ : R3

+ → R+, d ∈ N, p, q ∈ GPVAL, such that for any x ∈ dom f and µ ∈ R+, there exists
(a unique) y : R+ → Rd satisfying for all t ∈ R+:

y(0) = q(x, µ) and y′(t) = p(y(t)) I y satisfies a PIVP
if t > Ω(‖x‖ , µ) then ‖y1..m(t)− f(x)‖ 6 e−µ I y1..m approximates f(x) within e−µ
‖y(t)‖ 6 Υ(‖x‖ , µ, t) I y(t) is polynomially bounded

The proof of Theorem 12, however, is quite involved: first p and q can be equivalently
assumed to be polynomials instead of functions in GPVAL above, from Lemma 11. Then
AP ⊂ AWP, follows from the fact that this is possible to rescale the system using the length
of the curve as a new variable to make sure it does not grow faster than a polynomial time,
we get what is needed. The other direction (AWP ⊂ AP) is really harder: the first step
is to transform a computation into a computation that tolerates small perturbations of
the dynamics (AWP ⊂ ARP). The second problem is to avoid that the system explodes
for inputs not in the domain of the function, or for too big perturbation of the dynamics
perturbations on inputs (ARP ⊂ ASP). As a third step, we allow the system to have its
inputs (input and precision) changed during the computation and the system has a maximum
delay to react to these changes (ASP ⊂ AXP). Finally, as a fourth step, we add a mechanism
that feeds the system with the input and some precision. By continuously increasing the
precision with time, we ensure that the system will converge when the input is stable. The
result of these 4 steps is the following lemma, yielding a nice notion of online-computation
(AXP ⊂ AOP). Equality AP = AWP = AOP follows because time and length are related
for polynomially bounded systems. The notion of online computability is an example of a
priori strengthening of our notion of computation; yet it still corresponds to the same class of
function. Intuitively, a function is online computable if, on any (long enough) time interval
where the input is almost constant, the system converges (after some delay) the output of
the function. Of course, the output will have some error that is related to the input error
(due to the input not being exactly constant).

I Lemma 13 (Online computability). AWP ⊂ AOP, where AOP corresponds to the class of
functions f :⊆ Rn → Rm such that for polynomials Υ,Ω,Λ : R2

+ → R+, there exists δ > 0,
d ∈ N and p ∈ Kd[Rd × Rn] and y0 ∈ Kd such that for any x ∈ C0(R+,Rn), there exists (a
unique) y : R+ → Rd satisfying for all t ∈ R+:

y(0) = y0 and y′(t) = p(y(t), x(t))
‖y(t)‖ 6 Υ

(
supu∈[t−δ,t] ‖x(u)‖ , t

)
For any I = [a, b], if there exists x̄ ∈ dom f and µ̄ > 0 such that for all t ∈ I, ‖x(t)− x̄‖ 6
e−Λ(‖x̄‖,µ̄) then ‖y1..m(u)− f(x̄)‖ 6 e−µ̄ whenever a+ Ω(‖x̄‖ , µ̄) 6 u 6 b.

ODE Programming. With the closure properties of AP, programming with (polynomial
length) ODE becomes a rather pleasant exercise, once the logic is understood. For ex-
ample, simulating the assignement y := g∞ corresponds to dynamics y(0) = y0, y′(t) =
reach(φ(t), y(t), g(t)) + E(t), for a fixed function reach ∈ GPVAL, tolerating bounded error
E(t) on dynamics, and g fluctuating around g∞. Other example: from a AP system comput-
ing f , just adding the corresponding AOP-equations for g, yields a PIVP computing g ◦ f ,
by feeding output of the system computing f to the (online) input of g.

Turing machines. Consider a Turing machineM = (Q,Σ, b, δ, q0, q∞). A (instantaneous)
configuration of M can be seen as a tuple c = (x, σ, y, q) where x ∈ Σ∗ is the part of the
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tape at left of the head, y ∈ Σ∗ is the part at the right, σ ∈ Σ is the symbol under the head
and q ∈ Q the current state. Let CM be the set of configurations ofM, andM denotes the
function mapping a configuration to its next configuration. In order to simulate a machine,
we encode configurations with real numbers as follows. Recall that Γ = {0, 1, . . . , k − 2} and
let 〈c〉 = (0.x, σ, 0.y, q) ∈ Q× Σ×Q×Q where 0.x = x1k

−1 + x2k
−2 + · · ·+ x|x|k

−|x| ∈ Q
with x = x1x2 . . . x|x|.

I Theorem 14 (Robust Real Step). For any machine M, there is some function 〈M〉 ∈
AP such that for all c ∈ CM, µ ∈ R+ and c̄ ∈ R4, if ‖〈c〉 − c̄‖ 6 1

2k2 − e−µ then
‖〈M〉 (c̄, µ)− 〈M(c)〉‖ 6 k ‖〈c〉 − c̄‖.

The difficulty of the proof is that one step of Turing machine with our encoding naturally
involves computing the integer and fractional parts of a number. These operations are
discontinuous and thus cannot be done in AP in full generality. This is solved by proving
that a continuous and good enough “fractional part” like-function is in AP (and avoids
constructions from [21]).

Iterating Functions. A key point for proving the main result is to show that it is possible
to iterate a function using a PIVP under some specific hypotheses. The proof consists in
building by ODE programming an ordinary differential equation using three variables y, z
and w updating in a cycle to be repeated n times. At all time, y is an online component of
the system computing f(w). During the first stage of the cycle, w stays still and y converges
to f(w). During the second stage of the cycle, z copies y while w stays still. During the
last stage, w copies z thus effectively computing one iterate. This computes all the iterates
f(x), f [2](x), . . .. The crucial point of this process is the error estimation, to guarantee that
the system does not diverge, while keeping polynomial length. One of the key assumption
to ensure this is for f to admit a specific kind of modulus of continuity. The other key
assumption is an effective “openness” of the iteration domain.

I Theorem 15 (Closure by iteration). Let I ⊆ Rm, (f : I → Rm) ∈ AP, η ∈ [0, 1/2[
and assume that there exists a family of subsets In ⊆ I, for all n ∈ N and polynomials
f : R+ → R+ and Π : R2

+ → R+ such that:
for all n ∈ N, In+1 ⊆ In and f(In+1) ⊆ In
for all x ∈ In,

∥∥f [n](x)
∥∥ 6 Π(‖x‖ , n)

for all x ∈ In, y ∈ Rm, µ ∈ R+, if ‖x− y‖ 6 e−f(‖x‖)−µ then y ∈ I and ‖f(x)− f(y)‖ 6
e−µ.

Define f∗η (x, u) = f [n](x) for x ∈ In, u ∈ [n− η, n+ η] and n ∈ N. Then f∗η ∈ AP.

The iteration of the (transition) functions given by Theorem 14 leads to a way to emulate
any function computable in polynomial time.

At a high level, the “if” direction of Theorem 2 then follows. Indeed, decidability can be
seen as the computability of some particular function with boolean output.

For the “if” direction of Theorem 1, there are further nontrivial obstacles to overcome.
Given x ∈ [a, b] and µ ∈ N, we want to compute an approximation of f(x)±2−µ and take the
limit when µ→∞. To compute f , we will use a polynomial time computable function g that
computes f over rationals, and m a modulus of continuity. All we have to do is simulate g
with input x̃ and µ, where x̃ = x± 2−m(µ) because we can only feed the machine with a finite
input of course. The remaining nontrivial part of the proof is how to obtain the encoding of
x̃ from x and µ. Indeed, the encoding is a discrete quantity whereas x is real number, so
by a simple continuity argument, one can see that no such function can exist. The trick is
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the following: from x and µ, we can compute two encodings ψ1 and ψ2 such that at least
one of them is valid, and we know which one it is. So we are going to simulate g on both
inputs and then select the result. Again, the select operation cannot be done continuously
unless we agree to “mix” both results, i.e. we will compute αg(ψ1) + (1− α)g(ψ2). The trick
is to ensure that α = 1 or 0 when only one encoding is valid, α ∈]0, 1[ when both are valid
(by “when” we mean with respect to x). This way, a mixing of both will ensure continuity
but in fact when both encodings are valid, the outputs are nearly the same so we are still
computing f . Obtaining such encodings ψ1 and ψ2 is also nontrivial and requires more uses
of the closure by iteration property.
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Abstract
Realization of d-dimensional effective subshifts as projective sub-actions of d + d′-dimensional
sofic subshifts for d′ ≥ 1 is now well known [6, 4, 2]. In this paper we are interested in qualitative
aspects of this realization. We introduce a new topological conjugacy invariant for effective
subshifts, the speed of convergence, in view to exhibit algorithmic properties of these subshifts
in contrast to the usual framework that focuses on undecidable properties.
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Introduction

A d-dimensional subshift is a set of colorings of Zd by a finite set of colors in which a
set of forbidden patterns never appear. The simplest class, called subshifts of finite type,
corresponds at finite sets of forbidden patterns. In dimension 2, they are equivalent to the
usual notion of tilings introduced by Wang [16]. Applying a block map on a subshift of finite
type, one obtains a sofic subshift which can be characterized, in dimension 1, by a set of
forbidden patterns accepted by a finite automaton [17].

For multidimensional subshifts, we can consider their stability according to another
dynamical operation: projective subaction which consists of restricting the configurations
of a subshift to a sublattice of Zd. The smallest class stable under this operation which
contains the class of sofic shifts is the set of effective subshifts defined by a set of forbidden
patterns enumerated by a Turing machine. A consequence of the main result of [6] states
that every d-dimensional effective subshift can be obtained via projective subaction of a
d+ 2-dimensional sofic. This result was improved in [4, 2] to hold for d+ 1-dimensional sofics.

These three classes evoked are stable by conjugacy and underline links between dynamical
characterization and computability property of their set of forbidden patterns. Other classes
are exhibited in [1], using forbidden patterns recursively enumerated by Turing machine with
oracle. In this article, we introduce new conjugacy invariant classes which subdivide the
class of effective subshift based on the speed of convergence of the realization via projective
subaction. In contrast to the usual framework that focuses on undecidable properties and their
position relatively to some hierarchies [7, 15, 9, 10], the approach proposed here emphasizes
the algorithmic properties of subshifts using time and space complexity.
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In [14], the authors characterize one-dimensional sofic subshifts obtained by a projective
subaction of subshift of finite type. It appears a difference between certain types of sofic
subshifts, according to whether their realization can be stable or unstable that is to say if
a bounded strip around the central one is necessary to obtain the desired sofic subshift or
whether there is no bounds which guarantee to the central row to be in the subshift. This
approach is inspired by the notion of stable and unstable limit-set for cellular automata [12].

In this article, we would like to go beyond the dichotomy stable vs unstable realization
and try to quantify this notion. We introduce the notion of speed of convergence of the
realization of an effective subshift by projective subaction of a sofic. This is defined as the
function which, for a given integer k, returns the width of the strip necessary to obtain the
language of the effective subshift up to a word of size k in the central rows.

Given an effective subshift, we study the set of speeds of convergence which realizes it as
projective subaction. Modulo an equivalence relation this set is invariant under conjugacy
(Sections 1.3). In Section 2 we compare the general constructions of realization of an effective
subshift given in [6, 2] and we propose a quicker construction if the effective subshift has
a periodic point. Moreover we show that when the dimension of the sofic increase the
convergence is quicker. These results give upper bounds for realization by sofic, but is also
possible to obtain lower bounds (see Section 3). In Section 4 we present some examples of
different classes which exhibit the optimality of the different previous results.

1 Definitions and first properties

1.1 Classes of subshifts
Subshifts. Let A be a finite alphabet, a configuration x is an element of AZd . Let U be a
finite subset of Zd, denote xU the restriction of x to U. A d-dimensional pattern of support
U is an element p ∈ AU. Denote by A∗ the set of d-dimensional patterns and p ∈ AUappears
in a configuration x, denoted by p @ x, if there exists i ∈ Zd such that p = xi+U.

For the product topology, AZd is a compact metric space on which Zd acts by translation
via the shift map σ defined for all i ∈ Zd by σi(x)j = xi+j for all x ∈ AZ

d and j ∈ Zd. The
Z
d-dynamical system (AZd

, σ) is called the fullshift and a subshift is a σ-invariant closed
subset of AZd . Let T ⊂ AZd be a subshift, define L(T) = {p ∈ A∗ : ∃x ∈ T such that p @ x}
the language of T and Ln(T) = {p ∈ A[0,n−1]d : p ∈ L(T)} the square language of size n.

Finite type condition. Let F be a set of patterns, define the subshift of forbidden patterns
F by TF =

¶
x ∈ AZd : ∀p ∈ F, p 6@ x

©
. Every subshift can be defined in this way and this

allows to define classes of subshifts according to the complexity of F . Let T be a subshift,
T is a subshift of finite type if there exists a finite set of patterns F such that T = TF ;
T is an effective subshift if there exists a recursively enumerable set of patterns F (that
is to say enumerated by a Turing machine) such that T = TF .

Factor. A block map is a continuous function π : AZd → BZd such that π ◦ σi = σi ◦ π for
all i ∈ Zd. Equivalently, there exists a local function π : AU −→ B where U ⊂ Zd is a finite
set called neighborhood such that π(x)i = π(xi+U) for all x ∈ AZd and i ∈ Zd.

Let T ⊂ AZd be a subshift and π : AZd → BZd a block map, then π(T) ⊂ BZd is a
subshift called factor subshift of T by π which is called the factor map. A subshift T is called
sofic if there exists a subshift of finite type TF and a factor map π such that T = π(TF ).
The factor map π can be considered letter to letter.
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Two subshifts T and T′ are conjugate if there exists a bijective factor map ψ : T −→ T′.
The different classes of subshifts defined here (finite type, sofic and effective subshifts) are
stable under conjugacy.

Projective subactions. Let T ⊆ AZd be a subshift and d′ < d, the projective subdynamics
of T of dimension d′ is the subshift SAd′ (T) where SAd′ : AZd −→ AZd′ is defined by
SAd′ (x) = x

Zd′×{0} for all x ∈ AZ
d .

I Theorem 1. [6, 2, 4] Let Σ ⊂ AZd be an effective subshift, then the d + 1-dimensional
subshift Σ̃ = {x ∈ AZd+1 : ∃y ∈ Σ such that xZd×{i} = y for all i ∈ Z} is sofic.

In particular there exists a subshift of finite type T ⊂ BZd+1 and a factor map π : BZd+1 →
AZd+1 , which can be considered letter to letter, such that SAd (π(T)) = Σ.

1.2 Speed of convergence
Approximation row. Let F be a finite set of d-dimensional forbidden patterns on B and
d′ < d. Define Bn = {kd′+1ed′+1, . . . , kded : (kd′+1, . . . , kd) ∈ [−n, n]d−d′} where e1, . . . , ed
are the canonical vectors of Zd and denote Proji : BBn −→ B the projection according to
the coordinates i ∈ Bn.

One considers the n-approximation row of TF ⊂ (BBn)Zd′ the d′-dimensional subshift
of finite type defined by the finite condition where no patterns of F appears in the row of
width n. Formally, it is defined by:

Tn,d→d′
F =

ß
x ∈

(
BBn

)Zd′

: ∀p ∈ F, p 6@ (Projj(xi))(i,j)∈Zd′×Bn

™
.

Let π : BZd → AZd be a factor map. One has SAd′ (π(TF )) =
⋂
n∈N SAd′

Ä
π
Ä
Tn,d→d′
F

ää
where for n sufficiently large SAd′

Ä
π
Ä
Tn,d→d′
F

ää
denote the central row of π

Ä
Tn,d→d′
F

ä
.

Speed of convergence. By definition of Tn,d→d′
F , if u ∈ L (SAd′ (π(TF ))), then u ∈

L
Ä
SAd′

Ä
π
Ä
Tn,d→d′
F

äää
. We want to quantify the reciprocal, that is to say given a k, find

the smallest n such that u /∈ Lk(SAd′ (π(TF ))) =⇒ u /∈ Lk
Ä
SAd′

Ä
π(Tn,d→d′

F )
ää

. This
allows to quantify when a word is forbidden by the local rules F in the approximation row.
The speed of convergence as sofic of the cover TF with the factor π is the following function:

ϕF,π,d→d′ : N −→ N

k 7−→ min {n ∈ N : u /∈ Lk(SAd′ (π(TF )))
=⇒ u /∈ Lk

Ä
SAd′

Ä
π(Tn,d→d′

F )
ää©

.

ϕF,π,d→d′(k) corresponds to the minimum size of the row to detect a forbidden pattern in
the effective subshift realized as projective subaction of π(TF ).

I Example 2. Consider the following set of 2-dimensional forbidden patterns

F =


β a
α

, a a
β , a $ ,

b γ
α

, b b
γ

, $ b

such that
α ∈ { a , b } ,
β ∈ { $ , b } ,
γ ∈ { $ , a } .

 .

SA1 (TF ) is the subshift where {$anbm$, $anbma, banbm$, banbma : m 6= n} are the for-
bidden patterns. The idea is that in a configuration of TF , if a line contains $anbm$ with
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F
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(
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Figure 1 Application of SA1 under a configuration of TF and T3,2→1
F .

n 6= m then the next line in the direction e2 contains $an−1bm−1$ and recursively. Thus the
pattern a$ or $b appear and the configuration considered is excluded (see Figure 1).

In Tn,2→1
F there is only n lines to detect a forbidden pattern so SA1

Ä
Tn,2→1
F

ä
is

the subshift where the forbidden patterns are {$apbm$, $apbma, bapbm$, bapbma : m 6=
p and max(p,m) ≤ n}. We deduce that ϕF,Id,2→1(n) = bn2 c. In Section 4 we will see that it
is possible to obtain SA1 (TF ) thanks to another sofic but with a better speed.

1.3 Subshift (ϕ, d)-realizable by sofic

A speed of convergence is in F , the set of non-decreasing functions from N to N. Denote

FSoficΣ,d→d′ =
ß
ϕ ∈ F : ∃F ⊂

finite
B∗ and π : B → A with ϕ = ϕF,π,d→d′ and SAd′ (π(TF )) = Σ

™
.

By Theorem 1, FSoficΣ,d→d′ 6= ∅ if and only if Σ is effective. Using the fact that a sofic subshift
can superpose different layers and delete them with the factor, it is easy to verify that
FSoficΣ,d→d′ is stable by min, max, multiplication by an integer, division by an integer, addition
and multiplication. Moreover FSoficΣ,d→d′ ⊂ F

Sofic
Σ,d+1→d′ .

Invariance of (ϕ, d)-realizable subshift under conjugacy. We need to introduce a preorder
relation on F . We say that ϕ ≺ ϕ′ if there exists r,M ∈ N such that ϕ(k) ≤Mϕ′(k + r) for
all k ∈ N. We say that ϕ ∼ ϕ′ if ϕ ≺ ϕ′ and ϕ′ ≺ ϕ. Multiplication by M comes from the
fact that a given speed can be improved by division by an integer and addition by r allows
stability by conjugacy.

A d′-dimensional subshift Σ is (ϕ, d)-realizable by projective subaction of sofic if there exist
a finite set of d-dimensional forbidden patterns F and a factor π such that SAd′ (π(TF )) = Σ
and ϕF,π,d→d′ ≺ ϕ. The subshift Σ is sharp (ϕ, d)-realizable if moreover ϕ ≺ ϕ′ for all
ϕ′ ∈ FSoficΣ,d→d′ .

I Proposition 3. Let Σ and Σ′ be two conjugated d′-dimensional subshfits. The subshift Σ
is (ϕ, d)-realizable by projective subaction of a sofic if and only if it is the same for Σ′.

Proof. Let ψ : Σ −→ Σ′ be the conjugation map of neighborhood U = [−r, r]d′ . The local
function can be extended in a function ψ : AZd −→ BZd of neighborhood U = [−r, r]d′ ×{0}.

Let TF be a subshift of finite type and π be a factor such that SAd′ (π(TF )) = Σ, one
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has SAd′ (ψ ◦ π(TF )) = Σ′. Let u ∈ B[0,k−1]d
′

and ϕ = ϕF,π,d→d′ , one has

u /∈ L(Σ′) =⇒
{
v ∈ A[−r,k+r−1]d

′

: ψ(v) = u
}
6⊂ L(Σ)

=⇒
{
v ∈ A[−r,k+r−1]d

′

: ψ(v) = u
}
6⊂ L
Ä
SAd′

Ä
π
Ä
Tϕ(k+2r),d→d′
F

äää
=⇒ u /∈ L

Ä
SAd′

Ä
ψ ◦ π

Ä
Tϕ(k+2r),d→d′
F

äää
Thus ϕF,ψ◦π,d→d′(k) ≤ ϕF,π,d→d′(k + 2r), the reciprocal is obtained using ψ−1. J

2 Speed of convergence in general constructions

2.1 Notion of Turing machines
A k-tapes Turing machine M = (k,Q,Γ,#, q0, δ, QF ) is defined by:

Γ a finite alphabet, with a blank symbol # ∈ Γ. Initially, k infinite memory tapes
represented as an element of (Γk)Z, are filled with #, except for a finite prefix on the
first tape (the input), and a computing head is located on the first letter of the tape;
Q the finite set of states of the head and q0 ∈ Q is the initial state;
δ : Q× Γk → Q× Γk × {←, · ,→}k the transition function. Given the state of the head
and the letter associated, it reads on the tape, depending on its position, the head can
change state, replace the letter and move by one cell at most.
QF ⊂ Q the set of final states, when a final state is reached, the computation stops and
the output is the value currently written on the tape.

Turing machines are a very robust model of computation, there exist several variants
in the literature which are equivalent from a decidability point of view. Nevertheless these
modifications on the definition are not without effects on the time and space complexities
(time unit is one application of the transition function, space unit is one cell of the tape). To
detect forbidden patterns in the projective subaction, one of the fundamental construction is
the use of laical rules to encode Turing machine computations. In this article we choose to
use the basic version ofM but the reader should have in mind that it is possible to improve
time and space complexities, using by instance these non-exhaustive acceleration techniques:

Compare-Copy: compare or copy instantaneously a word between two markers between
two tapes;
Transfer head: transfer instantaneously the head to another cell of the tape marked by
a special symbol;
Fill: fill instantaneously a part of a tape with a periodic pattern.

Let F be a recursively enumerable set of forbidden patterns, then the complementary
of L(TF ) in A∗, denoted L(TF )c is also recursively enumerable. ConsiderML(TF )c be a
Turing machine which enumerates L(TF )c, denote

DtimeML(TF )c (k) the maximal time needed by the Turing machineML(TF )c to know if
a pattern of size k is not in the language of TF ;
DspaceML(TF )c (k) the maximal space needed by the Turing machineML(TF )c to know
if a pattern of size k is not in the language of TF (only the space necessary for the
computation is taken in consideration and the input is considered in an auxiliary tape).

I Remark. DtimeML(TF )c and DspaceML(TF )c are not computable if L(TF )c is not recursive.

ICALP 2016
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Let F be a set of patterns andMF a Turing machine, called enumerative Turing machine
of F , with the following behavior: it starts on the empty tape and successively writes the
patterns of F on its tape. A set of finite patterns F forbids the pattern w if w /∈ L(TF ).
LetMF be an enumerative Turing machine of F , denote DtimeenuMF

(k) (resp. DspaceenuMF
(k))

the smallest time (resp. the smallest space) taken by the Turing machine MF such that
the subset FDtimeenu

MF
(k) of F (resp. FDspaceenu

MF
(k) ⊂ F ) generated at this time (resp. at this

space) forbid all the words of Lk(TF )c.

2.2 Speed of convergence for previous constructions
In this section, we give some elements to determine the speed of convergence given by the
construction of [6] and [2]. The idea is to “program” a d-dimensional subshift of finite type,
denoted TFinal whose projective subaction is a given effective subshift Σ ⊂ AZ where d = 3
in [6] and d = 2 in [2]. In the two constructions, TFinal is constituted by three layers:

the first one is AZd and contains different copies of the same configuration y ∈ AZ
superposed on additional directions, the additional finite type conditions check if y ∈ Σ;
the second is TGrid ⊂ AZ

d

Grid and constructs a grid which allows to implement well
initialized Turing machine in all configurations with different sizes for time and space;
the third is TM ⊂ AZ

d

M and checks if no forbidden pattern appears: the purpose is to
implement a Turing machineMF which enumerates forbidden patterns which define Σ
and an additional procedureMSearch which checks if the patterns produced appear in
the configuration of the first layer (if it is the case, the Turing machine enters in a special
state which is forbidden by TFinal).

Thus x ∈ TFinal ⊂ AZ
d×TGrid×TM if and only if there exists y ∈ Σ such that y = π(x)i+Ze1

for all i ∈ 〈e2, . . . , ed〉Z where π is the factor on the first layer which deletes computation
states. In particular Σ = SA1 (π(TFinal)) but moreover Σ is conjugate to a sub-action of
π(TFinal). This result is stronger that just realization by projective subaction and allows to
construct local rules for exotic tilings [3, 5].

In the two articles, TGrid is defined by a substitution. Mozes’ result [13] gives local
rules which force a cell to be in a super tile of order n well formed without considering
the whole configuration. To determine ϕFFinal,π,d→1, it is sufficient to analyze the size in
TGrid necessary for thatMF enumerates patterns of size k and all zones are checked by the
additional procedureMSearch. This depends of DtimeenuMF

(k) and DspaceenuMF
(k).

Speed of convergence in the construction of [6]. As it is described in Section 4 of [6],
TGrid gives a rectangular partition of Z3 generated by Ŵ3 × Ŵ5 where Ŵ3 and Ŵ5 are
obtained by a substitution. Thus for s, t ∈ N there exists M ⊂ Z such that for all i ∈ M,
the slice {i} × Z2 is partitioned into rectangles of size 3s × 5t which delimits computation
zones. Moreover M does not have gap bigger than 3s5t. To copy the initial configuration
onto the first layer, we need an approximation row of width O(3s5t) to detect a forbidden
word enumerated in space less than 3s and in time less than 5t. One deduces that

(k 7−→ ϕFFinal,π,3→1) ∼
(
k 7−→ DspaceenuMF

(k)DtimeenuMF
(k)
)
.

Speed of convergence in the construction of [2]. As it is described in Section 2, Fact
2.4, of [2], TGrid defines fractured zone of computation to implement the Turing machine of
size 2n × 22n , the first coordinate according to e1 corresponds to the space and the second
according to e2 corresponds to the time. By the substitution rules and the clock rules,
this fractured zone of computation is included in a pattern of TGrid of size 4n × (2n+2n)
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and every row T2n+2n
,2→1

Final contains such computation zone every 4n cells. Since the time
to cheek if a forbidden pattern of size k appears in the responsibility zone (n22n steep
in direction e2 by Fact 3.4 of [2]) is negligible according to the time given to the Turing
machine to compute forbidden patterns (2n+2n steep in direction e2), one deduces that
(k 7→ ϕFFinal,π,2→1(k)) ∼

Ä
k 7→ 2n(k)+2n(k)ä where n(k) = min{n : DspaceenuMF

(k) < 2n}. So

(k 7−→ ϕFFinal,π,2→1) ∼
Ä
k 7−→ DspaceenuMF

(k)2Dspaceenu
MF

(k)
ä
.

2.3 A more efficient construction
In the particular case where Σ is an effective subshift with a periodic configuration, the
construction can be highly simplified and the speed of convergence is improved. In a few
words, the same type of construction with different layers is built, however the computation
checks if no forbidden patterns appear only in one line, the other lines are mapped into the
periodic configuration by the factor map. Thus the computation zones do not need to be
fractionated and simplified layer TGrid allows a computation in real time.

I Theorem 4. Let Σ ⊂ AZd be an effective subshift of dimension d with a periodic point
(∞w∞ ∈ Σ) defined by a set F of forbidden patterns enumerated by a Turing machineMF .
Then there exists a subshift of finite type TFFinal of dimension d+ 1 and a factor map π such
that SAd (π(TFFinal)) = Σ and ϕFFinal,π,d+1→d ∼ Dtimeenu

MF
.

Proof. Assume thatMF enumerates patterns of F on the first tape separated by the symbol
$ and that the tapes ofM are onesided. The different layers of TFFinal are:

Layer 1: The first layer is TLine ⊂ ((A× { , }) ∪ { })Z
2
the subshift of finite

type such that for x ∈ TLine there is at most one i ∈ Z such that SA1
(
σie2(x)

)
=∞ ∞

and for all j 6= i one has SA1
(
σje2(x)

)
∈ {σk(∞w∞) : k ∈ Z} × { , }Z.

Layer 2: The second layer is the subshift TConfig = {x ∈ AZ2 : σe1−e2(x) = x}, the
configuration is shifted in view to scan two adjacent areas (and their frontier) during the
comparison.
Layer 3: The third layer is the subshift of finite type TGrid ⊂ { , ∗ , , ∗ }Z

2
such

that on each line of x ∈ TGrid, the two colors alternates and this alternation is repeated
above until it crosses a line which contains the symbol ∗. In this case the transitions
red/blue become monochromatic and the transitions blue/red force the alternation.
Thus the sequences of monochromatic colors become larger. We remark that if a line
contains the periodic configuration ∞ ( )∞, then all lines below contain this periodic
configuration and above, if we have crossed n times a line with the symbol ∗, we obtain a
line with the periodic configuration ∞( 2n 2n

)∞ (see Figure 2).
Layer 4: Denote AM = ((Q× Γ) ∪ Γ)k where k is the number of tapes, the fourth layer
is a subshift of finite type TM ⊂ AZ

2

M where the local rules are given by the transition
rules δ ofMF .
Layer 5: The fifth layer is the full-shift TCompar = { }Z2 .

To obtain the subshift of finite type TFinal ⊂ TLine ×TConfig ×TGrid ×TM ×TCompar we
add a finite set of forbidden patterns FSynchroLine ∪ FInit ∪ FExtend ∪ FCompar which codes the
interaction between the different layers. These local rules are:

Rules FSynchroLine: These rules imply that if a line ∞ ∞ appears in the layer TLine of
a configuration, then it is synchronized with a periodic point ∞ ∞ or ∞ ∗ ∗ ∞ in
the layer TGrid.
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x =

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

y =

∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗∗ ∗ ∗∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗ ∗ ∗ ∗ ∗

Figure 2 x and y are two examples of configurations of TGrid and y contains ∞ ( )∞.

Rules FInit: They imply that the initialization state q0
]

appears in the layer TM on
each cell in correspondence to the line ∞ ∞ in the layer TLine.
Rules FExtend: They imply that if a computation needs more space, the symbol ∗ appears
in the layer TGrid (thus the computation zones is doubled) and the tape in the layer TM
corresponding to the old red zone is erased (to have only one computation by computation
zone). Thus the space allowed by a Turing machine is doubled if the head was in a blue
zone.
Rules FCompar: They imply that if a forbidden pattern appears in the enumeration obtained
in TM then it is compared with the corresponding pattern which appears in TConfig. If
the two patterns coincide then the configuration is forbidden in TFinal.

Define the factor map πFinal : TFinal → AZ
2 such that for x ∈ TFinal and i ∈ Z2, π(x)i is

the cell of the layer TConfig if we are in the line ∞ ∞ in TConfig and the cell corresponding
to the periodic orbit of TLine if not.

For x ∈ Σ it is easy to construct y ∈ TFinal such that SA1 (πFinal(y)) = x. Recip-
rocally, consider y ∈ TFinal. If πLine(y)(0,0) 6= then SA1 (πFinal(y)) =∞ w∞ ∈ Σ. If
πLine(y)(0,0) = , we consider u a sub-pattern of x = SA1 (πFinal(y)) of size n. Assume
that u /∈ L(Σ), so there exists a word w @ x enumerated byM in time tF (n) = DtimeenuM (n)
and space sF (n) = DspaceenuM (n) such that w @ u. By construction of TFinal, one has
SA1

(
πGrid(σtF (n)(y))

)
=∞ ( 2k 2k

)∞ where k = min{k′ : sF (n) < 2k′}. Since the
configuration is shifted on TConfig and compared instantaneously thanks to TCompar, we
conclude there exists k′ such that tF (n) ≤ k′ ≤ tF (n) + 21+min{k:sF (n)<2k} where the word
w is detected in the line yZ,k′ . By the condition FCompar this is impossible.

Thus SAe1Z

(
πFinal(TFinal)

)
= Σ and ϕF,π,2→1(k) = tF (k) + 21+min{n:sF (k)<2n} for all

k ∈ N. In particular ϕF,π,2→1 ∼ max(DtimeenuMF
,DspaceenuMF

) = DtimeenuMF
. J

2.4 Increase the dimension to increase the speed
Generally, properties studied on subshifts of finite type exhibit a gap between dimension
one and dimension two. The most famous is the undecidability of the domino problem in
dimension d ≥ 2. In this section we exhibit a gap which appears in an algorithmic point of
view.

I Theorem 5. Let Σ ⊂ AZd be a subshift which is (ϕ, d+d′)-realizable by projective subaction
of a sofic then it is (ϕ d′

d′′ , d+ d′′)-realizable by projective subaction of a sofic for d′′ ≥ d′.

Proof. Let Σ ⊂ AZ be an effective subshift. Consider TF ⊂ BZ
2 a subshift of finite type such

that SA1 (π(TF )) = Σ. Denote ϕ = ϕF,π,2→1. One constructs TF ′ ⊂ B′Z
3 a subshift of finite
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type and π′ : B′ → A a factor map such that SA1 (π′(TF ′)) = Σ and ϕF ′,π′,3→1 ∈ Θ(√ϕ).
This prove the Theorem for d = 1, d′ = 1 and d′′ = 2.

Construction of a tangled grid. Consider the alphabet C formed by , , , their
rotations and their symmetrized about to the axis, thus card(C) = 3× 4× 2 = 24 and define
the following substitution on C (modulo rotations and symmetries):

s:

By iterating substitution s on a letter a ∈ C, we construct for every n ∈ N the pattern
sn(a) called the super-tile of order n and type a. The substitutive subshift defined by

Ts =
¶
x ∈ CZ

2
: u @ x if there exists n ∈ N and a ∈ C which verifies u @ sn(a)

©
,

is sofic according to Mozes’ result [13]. Thus there exists a finite set of forbidden patterns Fs
and a factor map πs : Cs → C such that πs(TFs

) = Ts. In the Mozes’ construction the local
rules Fs force every super tile of order n to be assembled in a super tile of order n+ 1. Thus
if p ∈ C[−k,k]2

s does not contain patterns of Fs, then the center letter p0 is in a super-tile of
order n such that 2n ≤ k < 2n+1. In this super tile, the arrows form a connected tangled
segment of size 2n2 .

Construction of a three-dimensional sofic subshift which realizes Σ. Consider the subshift
of finite type TF ′ ⊂ B′Z

3 where B′ = B × Cs such that
for all i ∈ Z the Z2-configuration πCs

(x)ie1+Z2 is an element of Ts;
the 2-dimensional forbidden patterns of F are transfered in 3-dimensional forbidden
patterns where the second coordinate is wrapped following the tangled grid (see Figure 3).

Let π′ be the application of π following the tangled grid, we obtain SA1 (π′(TF ′)) = Σ.

π′(TF ′) has the expected speed of convergence. By definition of the speed of convergence,
for any u ∈ Ak, if u /∈ Σ then u /∈ L

Ä
π
Ä
SA1

Ä
Tϕ(k),2→1
F

äää
.

Let z ∈ T
2
⌈√

ϕ(k)
⌉
,3→1

F ′ . The condition Fs verified on z
{0}×

[
−2
⌈√

ϕ(k)
⌉
,2
⌈√

ϕ(k)
⌉]2 im-

plies that z0 is included in a super-tile of order n =
ö
log2

Ä†√
ϕ(k)
£äù

. One deduces
that z0 is in the center of a segment constituted following the arrows of C of amplitudeÅ

2
⌊

log2

(⌈√
ϕ(k)

⌉)⌋ã2
. Like the local transitions F are transfered, there exists y ∈

SA1
Ä
Tϕ(k),2→1
F

ä
which correspond to z in the wrapped zone. Thus u /∈ L

Å
T

2
⌈√

ϕ(k)
⌉
,3→1

F ′

ã
that is to say ϕF ′,π′,3→1 ≺

√
ϕ. In the same way the reverse holds and so ϕF ′,π′,3→1 �√

ϕ. J

I Remark. Exemples of Section 4 show that this theorem is optimal.
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Σ Pattern of TF ′Pattern of TF

Figure 3 Pattern of TF wrapped following the tangled grid in a pattern of TF ′ . The subshift Σ
is obtained taking factor π or π′ and projective subaction following e1.

3 Lower bounds for the speed of convergence of a subshift

3.1 Combinatorial lower bounds

Let Σ be a one dimensional subshift and let u ∈ A∗, the follower set of word of size k of
u is FolkΣ(u) = {v ∈ Lk(Σ) : uv ∈ L(Σ)}. If u /∈ L(Σ) then FolkΣ(u) = ∅. Moreover one has
card({Folk2

Σ (u) : u ∈ Ak1}) ≤ card(A)k1 .

I Theorem 6. Let Σ ⊂ AZ be an one dimensional effective subshift and ϕ ∈ FSoficΣ,d with
d ≥ 2. Then there exists a constant M such that for all k1, k2 ∈ N one has:

MϕF,π,d→1(k1 + k2) ≥
Ä
log(card({Folk2

Σ (u) : u ∈ Ak1}))
ä 1

d−1
.

Proof. Assume that Σ = SA1 (π(TF )) and ϕ = ϕF,π,d→1. For u ∈ Lk1(Σ), one has

Folk2
Σ (u) =

¶
SA1 (π(x))[0,k2−1] ∈ A

k2 :

x ∈ Tϕ(k1+k2),d→1
F such that SA1 (π(x))[−k1,−1] = u

©
.

Let r such that the support of every pattern of F is included in [0, r − 1]d. For x ∈
Tϕ(k1+k2),d→1
F ⊂ BZd such that SA1 (π(x))[−k1,−1] = u ∈ Ak1 , the knowledge of

x[−r,−1]×[−ϕ(k1+k2),ϕ(k1+k2)]d−1 is sufficient to determine which set of {Folk2
Σ (u′) : u′ ∈ Ak1}

is allowed to complete u ∈ Ak1 by a word v ∈ Ak2 such that

uv ∈ Lk1+k2(SA1
Ä
π(Tϕ(k1+k2),d→1

F

ä
) = Lk1+k2(Σ) .

Thus card({Folk2
Σ (u) : u ∈ Ak1})) ≤ Br(2ϕ(k1+k2)+1)d−1 .
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ϕ(k1 + k2)

r

k1 k2 Σ

J

3.2 Computational lower bounds
I Theorem 7. Let Σ ⊂ AZ be an one dimensional effective subshift and ϕ ∈ FSoficΣ,d . There
exists a Turing machineM whose the domaine is L(Σ)c such that

max(log, (ϕF,π,d→1)d−1) � log ◦DtimeM;
(ϕF,π,d→1)d−1 � DspaceM.

Since L(Σ)c is not necessarily recursive, DtimeM and DspaceM are not necessarily comput-
able.

Proof. Let F be a finite set of forbidden patterns of maximal size r such that Σ =
SA1 (π(TF )) and ϕ = ϕF,π,d→1. Denote Bn = {k2e2 +· · ·+kded : (k2, . . . , kd) ∈ [−n, n]d−1}
and Tm = Tm,d→1

F . One has Lk
(
SA1

(
π(Tϕ(k))

))
= Lk(Σ) and Tϕ(k) ⊂

(
BBϕ(k)

)Z is a
one-dimensional subshift of finite type of order r. This subshift can be represented by
a graph where the vertices are

(
BBϕ(k)

)r ∩ L(Tϕ(k)) and there is an edge from u to v if
the two words coincide except for the extremal letters (see [11]). Thus this graph has at
most card(B)r(2ϕ(k))d−1 vertices and can be viewed as an automaton which accepts words of
L(π(Tϕ(k))), this takes a linear time in the size of the graph.

To determine if u /∈ L(Σ), it is sufficient that u /∈ L(SA1 (π(Tm))) for some m ∈ N. We
implement an algorithm which explores the graph generated by Tm for each m ∈ N and
search if u is accepted with the corresponding automaton. One knows if u ∈ L(SA1 (π(Tm)))
in time O(k card(A)r(2m)d−1). This algorithm halts on u /∈ L(Σ) in time

DtimeM(k) ≤M k

ϕ(k)∑
m=1

card(A)r(2m)d−1
≤M kϕ(k)card(A)r(2ϕ(k))d−1

Since ϕ(k) ≤ ϕd−1(k), it follows that max(log, ϕd−1) � log ◦DtimeM.We deduce the first
point of the theorem.

To prove the second point, the naive procedure to find a configuration of SA1 (π(Tm))
which contains u in the center is to start from an element of

(
BBn

)r ∩L(Tm) and complete it
respecting the condition F until it finds again a one-sided periodic orbit. To be sure to explore
all the orbits it is possible to order them lexicographically. Thus, the algorithm just needs to
know the last orbit checked, this needs r(2m)d−1 space to know if u ∈ L(SA1 (π(Tm))). If
u /∈ L(Σ), the algorithm halts when it explores

(
BBn

)r ∩ L(Tϕ(k)). So there exists M > 0
such that M(ϕ(k))d−1 ≥ DspaceM(k). We recall that the word u is written on an annex
tape which is only used for the reading and which is not counted in DspaceM. J

I Remark. These theorems do not generalize to dimension 2: Theorem 6 uses a characteriza-
tion of one dimensional sofic subshifts with follower sets and Theorem 7 is blocked by the
undecidability of emptiness of two-dimensional subshifts of finite type.

ICALP 2016



110:12 Algorithmic Complexity for the Realization of an Effective Subshift By a Sofic

A configuration of TFlog
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Figure 4 A configuration of TFlog .

4 Some classes of speed of convergence and perspectives

In this section we give the sharp realization of some one-dimensional subshifts.
I Sofic subshift. A subshift is constant-realizable by sofic if and only if it is sofic (see [14]).
I Gap under constant-realizable. If a subshift Σ ⊂ AZ is (ϕ, 2)-realizable by sofic with
ϕ ∈ o(log(log(n))) then this subshift is sofic. Indeed, by Theorem 7, L(Σ)c can be recognized
in space o(log(log(n))), thus L(Σ)c is rational (see [8]), that is to say Σ is sofic.

Let L ⊂ A∗ be a language and $ /∈ A. Define the subshift T (L) = TFL ⊂ A′Z where
A′ = A ∪ {$} and F = {$u$ : u /∈ L}. If L is effective then T (L) is an effective subshift.
I log-realizable. Consider L= = {anbn : n ∈ N}. The subshift T (L=) ⊂ {a, b, $}Z is
sharp ((log)

1
d−1 , d)-realizable by sofic for d ≥ 2. Theorem 6 gives the lower bound since

card({FolnΣ(u) : u ∈ An}) ≥ card({FolkΣ($ak) : k ∈ [0, n− 1]}) = n.

For d = 2, the upper bound is obtained considering the subshift of finite type TFlog ⊂
{a, b, $, 0a, 1a, ∅a, 0b, 1b, ∅b}Z

2 where Flog are the forbidden patterns of shape U = which
do not appear in the configuration represented in Figure 4. The factor π maps $ on $,
{0a, 1a, ∅a} on a and {0b, 1b, ∅b} on b. The idea is to implement counters which grow when
going from $’s region and compare them at the frontier. The upper bound for d ≥ 3 is
obtained using Theorem 5.

In the same way the subshift T (Lsquare) defined with the langage Lsquare = {anbn2 : n ∈
N} is sharp ((log)

1
d−1 , d)-realizable by sofic.

I Linear-realizable. For u ∈ {0, 1}∗, define u the miror of u. Consider Lpalin = {uu : u ∈
{0, 1}∗}, the subshift T (Lpalin) ⊂ {0, 1, $}Z is sharp ((Id)

1
d−1 , d)-realizable by projective

subaction of sofic for d ≥ 2 where Id : k 7→ k. Theorem 6 gives the lower bound.
For d = 2, the upper bound is obtained considering the subshift TFlin ⊂ {$, 0l, 1l, 0r, 1r}Z

2

where Flin are the patterns of shape U = or which do not appear in the configuration
represented in Figure 5. The factor π maps $ on $, {0l, 0r} on 0 and {1l, 1r} on 1. The
principle is to compare vertically the two words of {0, 1}∗. The upper bound for d ≥ 3 is
obtained using Theorem 5.
I DspaceM realizable. Let L be a computable language in space DspaceM and # /∈ L.
Consider L′ = {u#DtimeM(|u|)}, then T (L′) is sharp (DspaceM, 2)-realizable (the time of
the Turing machine is coded following e1 in the sofic which realizes T (L′)).
I Substitutive subshift. Let s be a one-dimensional substitution, Ts ∪ {∞a∞} is sharp
(log, 2)-realisable. The lower bound is given by Theorem 6 and the upper bound follows from
the sofic subshift where elements of Ts are in at most in one row. If it appears, this row is
de-substituted in the next row in direction e2.
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A configuration of TFlin
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Figure 5 A configuration of TFlin .

I No-computable realization. Consider the recursively enumerable set F = {01n0 :
n such that the Turing machine of number n halts}. Then ϕ ∈ FSoficΣ,2 is larger than any
recursive function, otherwise it is possible to decide if the Turing machine of number n halts.
I Perspectives. This article highlights the importance of algorithmic properties and
optimality in the realization of effective subshifts by sofic. Particularly, the last section
exhibits the existence of different subclasses of effective subshift but does not present
systematic study: characterization of classes of subshifts with the same speed of convergence,
links between dynamical properties and speed of convergence, sharp realization for effective
subshift without periodic point (as the substitutive subshift Ts)...

Acknowledgements. The authors want to thank the anonymous referees for their detailed
reviews which helped us to clarify the paper.
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Abstract
Higher-order grammars are an extension of regular and context-free grammars, where non-
terminals may take parameters. They have been extensively studied in 1980’s, and restudied
recently in the context of model checking and program verification. We show that the class of
unsafe order-(n+1) word languages coincides with the class of frontier languages of unsafe order-n
tree languages. We use intersection types for transforming an order-(n+1) word grammar to a
corresponding order-n tree grammar. The result has been proved for safe languages by Damm
in 1982, but it has been open for unsafe languages, to our knowledge. Various known results on
higher-order grammars can be obtained as almost immediate corollaries of our result.
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1 Introduction

Higher-order grammars are an extension of regular and context-free grammars, where non-
terminals may take trees or (higher-order) functions on trees as parameters. They were
extensively studied in the 1980’s [6, 7, 8], and recently reinvestigated in the context of model
checking [10, 17] and applied to program verification [11].

The present paper shows that the class of unsafe order-(n+ 1) word languages coincides
with the class of “frontier languages” of unsafe order-n tree languages. Here, the frontier
of a tree is the sequence of symbols that occur in the leaves of the tree from left to right,
and the frontier language of a tree language consists of the frontiers of elements of the tree
language. The special case where n = 0 corresponds to the well-known fact that the frontier
language of a regular tree language is a context-free language. The result has been proved
by Damm [6] for grammars with the safety restriction (see [16] for a nice historical account
of the safety restriction), but it has been open for unsafe grammars, to our knowledge.1

Damm’s proof relied on the safety restriction (in particular, the fact that variable renaming
is not required for safe grammars [3]) and does not apply (at least directly) to the case of
unsafe grammars. We instead use intersection types to transform an order-(n + 1) word
grammar G to an order-n tree grammar G′ such that the frontier language of G′ coincides

∗ A full version [2] of the paper is available at http://arxiv.org/abs/1604.01595.
† This work was supported by JSPS Kakenhi 23220001 and 15H05706.
1 Kobayashi et al. [13] mentioned the result, referring to the paper under preparation: “On Unsafe Tree

and Leaf Languages,” which is actually the present paper.

EA
T

C
S

© Kazuyuki Asada and Naoki Kobayashi;
licensed under Creative Commons License CC-BY

43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016).
Editors: Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi;
Article No. 111; pp. 111:1–111:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.111
http://arxiv.org/abs/1604.01595
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de
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with the language generated by G. Intersection types have been used for recent other studies
of higher-order grammars and model checking [11, 13, 12, 15, 19, 18, 14, 20]; our proof in
the present paper provides even more evidence that intersection types are a versatile tool
for studies of higher-order grammars. Compared with the previous work on intersection
types for higher-order grammars, the technical novelties include: (i) our intersection types
(used in Section 3) are mixtures of non-linear and linear intersection types and (ii) our
type-based transformation involves global restructuring of terms. These points have made
the correctness of the transformations non-trivial and delicate.

As stressed by Damm [6] at the beginning of his paper, the result will be useful for
analyzing properties of higher-order languages by induction on the order of grammars. Our
result allows properties on (unsafe) order-n languages to be reduced to those on order-(n− 1)
tree languages, and then the latter may be studied by investigating those on the path
languages of order-(n− 1) tree languages, which are order-(n− 1) word languages.

The rest of this paper is structured as follows. Section 2 reviews the definition of higher-
order grammars, and states the main result. Sections 3 and 4 prove the result by providing
the (two-step) transformations from order-(n+ 1) word grammars to order-n tree grammars.
Section 5 discusses applications of the result. Section 6 discusses related work and Section 7
concludes the paper. For the space restriction, we omit some details and proofs, which are
found in the full version [2].

2 Preliminaries

This section defines higher-order grammars and the languages generated by them, and then
explains the main result. Most of the following definitions follow those in [13].

A higher-order grammar consists of non-deterministic rewriting rules of the form A→ t,
where A is a non-terminal and t is a simply-typed λ-term that may contain non-terminals
and terminals (tree constructors).

I Definition 1 (types and terms). The set of simple types,2 ranged over by κ, is given by:
κ ::= o | κ1 → κ2. The order and arity of a simple type κ, written order(κ) and ar(κ), are
defined respectively by:

order(o) = 0 order(κ1 → κ2) = max(order(κ1) + 1, order(κ2))
ar(o) = 0 ar(κ1 → κ2) = 1 + ar(κ2)

The type o describes trees, and κ1 → κ2 describes functions from κ1 to κ2. The set of
λ-terms, ranged over by t, is defined by: t ::= x | A | a | t1 t2 | λx : κ.t. Here, x ranges over
variables, A over symbols called non-terminals, and a over symbols called terminals. We
assume that each terminal a has a fixed arity; we write Σ for the map from terminals to
their arities. A term t is called an applicative term (or simply a term) if it does not contain
λ-abstractions. A (simple) type environment K is a sequence of type bindings of the form
x : κ such that if K contains x : κ and x′ : κ′ in different positions then x 6= x′. In type
environments, non-terminals are also treated as variables. A λ-term t has type κ under K if
K `ST t : κ is derivable from the following typing rules.

K, x : κ, K′ `ST x : κ K `ST a : o→ · · · → o︸ ︷︷ ︸
Σ(a)

→ o

2 We sometimes call simple types sorts in this paper, to avoid confusion with intersection types introduced
later for grammar transformations.
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K `ST t1 : κ2 → κ K `ST t2 : κ2

K `ST t1 t2 : κ
K, x : κ1 `ST t : κ2

K `ST λx : κ1.t : κ1 → κ2
We call t a (finite, Σ-ranked) tree if t is an applicative term consisting of only terminals, and
`ST t : o holds. We write TreeΣ for the set of Σ-ranked trees, and use the meta-variable π
for a tree.

We often omit type annotations and just write λx.t for λx : κ.t. We consider below only
well-typed λ-terms of the form λx1. · · ·λxk.t, where t is an applicative term. We are now
ready to define higher-order grammars.

I Definition 2 (higher-order grammar). A higher-order grammar is a quadruple (Σ,N ,R, S),
where (i) Σ is a ranked alphabet; (ii) N is a map from a finite set of non-terminals to
their types; (iii) R is a finite set of rewriting rules of the form A → λx1. · · ·λx`.t, where
N (A) = κ1 → · · · → κ` → o, t is an applicative term, and N , x1 :κ1, . . . , x` :κ` `ST t : o holds
for some κ1, . . . , κ`. (iv) S is a non-terminal called the start symbol, and N (S) = o. The
order of a grammar G, written order(G), is the largest order of the types of non-terminals.
We sometimes write ΣG ,NG ,RG , SG for the four components of G.

For a grammar G = (Σ,N ,R, S), the rewriting relation −→G is defined by:
(A→ λx1. · · ·λxk.t) ∈ R

A t1 · · · tk −→G [t1/x1, . . . , tk/xk]t
ti −→G t′i i ∈ {1, . . . , k} Σ(a) = k

a t1 · · · tk −→G a t1 · · · ti−1 t
′
i ti+1 · · · tk

Here, [t1/x1, . . . , tk/xk]t is the term obtained by substituting ti for the free occurrences of
xi in t. We write −→∗G for the reflexive transitive closure of −→G .

The tree language generated by G, written L(G), is the set {π ∈ TreeΣG | S −→∗G π}.
We call a grammar G a word grammar if all the terminal symbols have arity 1 except the
special terminal e, whose arity is 0. The word language generated by a word grammar
G, written Lw(G), is {a1 · · · an | a1(· · · (an e) · · · ) ∈ L(G)}. The frontier word of a tree π,
written leaves(π), is the sequence of symbols in the leaves of π. It is defined inductively
by: leaves(a) = a when Σ(a) = 0, and leaves(a π1 · · · πk) = leaves(π1) · · · leaves(πk)
when Σ(a) = k > 0. The frontier language generated by G, written Lleaf(G), is the set:
{leaves(π) | S −→∗G π ∈ TreeΣG}. In our main theorem, we assume that there is a special
nullary symbol e and consider e ∈ Lleaf(G) as the empty word ε; i.e., we consider Lεleaf(G)
defined by:

Lεleaf(G) := (Lleaf(G) \ {e}) ∪ {ε | e ∈ Lleaf(G)}.

We note that the classes of order-0 and order-1 word languages coincide with those of
regular and context-free languages respectively. We often write Ax1 · · · xk → t for the rule
A→ λx1. · · ·λxk.t. When considering the frontier language of a tree grammar, we assume,
without loss of generality, that the ranked alphabet Σ has a unique binary symbol br, and
that all the other terminals have arity 0.

I Example 3. Consider the order-2 (word) grammar G1 = ({a : 1, b : 1, e : 0}, {S : o, F : (o→
o)→ o, A : (o→ o)→ (o→ o), B : (o→ o)→ (o→ o)},R1, S), where R1 consists of:

S → F a S → F b Af x→ a(f x) B f x→ b(f x),
F f → f(f e) F f → F (Af) F f → F (B f).

S is reduced, for example, as follows.

S −→ F b −→ F (A b) −→ (A b)(A b e) −→ a (b (A b e)) −→ a(b (a(b e))).

ICALP 2016
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The word language Lw(G1) is {ww | w ∈ {a, b}+}.
Consider the order-1 (tree) grammar G2 = ({br :2, a :0, b :0, e :0}, {S :o, F :o→ o},R2, S),

where R2 consists of:

S → F a S → F b F f → br f f F f → F (br a f) F f → F (br b f).

The frontier language Lεleaf(G2) coincides with Lw(G1) above.

The following is the main theorem we shall prove in this paper.

I Theorem 4. For any order-(n+ 1) word grammar G (n ≥ 0), there exists an order-n tree
grammar G′ such that Lw(G) = Lεleaf(G′).

The converse of the above theorem also holds:

I Theorem 5. For any order-n tree grammar G′ such that no word in Lεleaf(G′) contains e,
there exists a word grammar G of order at most n+ 1 such that Lw(G) = Lεleaf(G′).

Since the construction of G is easy, we sketch it here; For n ≥ 1, the grammar G is obtained by
(i) changing the arity of each nullary terminal a ( 6= e) to one, i.e., ΣG(a) := 1, (ii) replacing the
terminal e with a new non-terminal E of type o→ o, defined by E x→ x, and also the unique
binary terminal br with a new non-terminal Br of type (o → o) → (o → o) → (o → o),
defined by Br f g x → f(g x), (iii) applying η-expansion to the right hand side of each
(original) rule to add an order-0 argument, and (iv) adding new start symbol S′ with rule
S′ → Se. For example, given the grammar G2 above, the following grammar is obtained:

S′ → S e S x→ F ax S x→ F bx
F f x→ Br f f x F f x→ F (Br a f)x F f x→ F (Br b f)x
E x→ x Br f g x→ f(g x).

Theorem 4 is proved by two-step grammar transformations, both of which are based on
intersection types. In the first step, we transform an order-(n+ 1) word grammar G to an
order-n tree grammar G′′ such that Lw(G) = Lleaf(G′′)↑e, where L↑e is the word language
obtained from L by removing all the occurrences of the special terminal e; that is, the frontier
language of G′′ is almost the same as Lw(G), except that the former may contain multiple
occurrences of the special, dummy symbol e. In the second step, we clean up the grammar
to eliminate e (except that a singleton tree e may be generated when ε ∈ Lw(G)). The first
and second steps shall be formalized in Sections 3 and 4 respectively.

For the target of the transformations, we use the following extended terms, in which a
set of terms may occur in an argument position:

u (extended terms) ::= x | A | a | u0U | λx.u
U ::= {u1, . . . , uk} (k ≥ 1).

Here, u0 u1 is interpreted as just a shorthand for u0{u1}. Intuitively, {u1, . . . , uk} is considered
a non-deterministic choice u1 + · · ·+ uk, which (lazily) reduces to ui non-deterministically.
The typing rules are extended accordingly by:

K `ST u0 : κ1 → κ K `ST U : κ1

K `ST u0 U : κ
K `ST ui : κ for each i ∈ {1, . . . , k}

K `ST {u1, . . . , uk} : κ
An extended higher-order grammar is the same as a higher-order grammar, except that

each rewriting rule in R may be of the form λx1 · · ·λx`.u, where u may be an applicative
extended term. The reduction rule for non-terminals is replaced by:
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(A→ λx1 · · · λxk.u) ∈ R u′ ∈ [U1/x1, . . . , Uk/xk]u
AU1 · · · Uk −→G u′

where the substitution θu is defined by:

θa = {a} θx =
{
θ(x) (if x ∈ dom(θ))
{x} (otherwise)

θ(u0U) = {v(θU) | v ∈ θu0} θ{u1, . . . , uk} = θu1 ∪ · · · ∪ θuk .

Also, the other reduction rule is replaced by the following two rules:

u −→G u′ i ∈ {1, . . . , k} Σ(a) = k

aU1 · · · Ui−1 {u}Ui+1 · · · Uk −→G aU1 · · · Ui−1 {u′}Ui+1 · · · Uk

u ∈ Ui Ui is not a singleton i ∈ {1, . . . , k} Σ(a) = k

aU1 · · · Uk −→G aU1 · · · Ui−1 {u}Ui+1 · · · Uk

Note that unlike in the extended grammar introduced in [13], there is no requirement
that each ui in {u1, . . . , uk} is used at least once. Thus, the extended syntax does not change
the expressive power of grammars. A term set {u1, . . . , uk} can be replaced by Ax1 · · · x`
with the rewriting rules Ax1 · · · x` → ui, where {x1, . . . , x`} is the set of variables occurring
in some of u1, . . . , uk. In other words, for any order-n extended grammar G, there is an
(ordinary) order-n grammar G′ such that L(G) = L(G′).

3 Step 1: from order-(n + 1) grammars to order-n tree grammars

In this section, we show that for any order-(n + 1) grammar G = (Σ,N ,R, S) such that
Σ(e) = 0 and Σ(a) = 1 for every a ∈ dom(Σ) \ {e}, there exists an order-n grammar G′ such
that ΣG′ = {br 7→ 2, e 7→ 0} ∪ {a 7→ 0 | Σ(a) = 1} and Lw(G) = Lleaf(G′)↑e.

For technical convenience, we assume below that, for every type κ occurring in NG(A)
for some A, if κ is of the form o → κ′, then order(κ′) ≤ 1. This does not lose generality,
since any function λx : o.t of type o→ κ′ with order(κ′) > 1 can be replaced by the term
λx′ : o→ o.[x′e/x]t of type (o→ o)→ κ′ (without changing the order of the term), and any
term t of type o can be replaced by the term K t of type o→ o, where K is a non-terminal
of type o→ o→ o, with rule K xy → x. See [2] for the details of this transformation.

The basic idea of the transformation is to remove all the order-0 arguments (i.e., arguments
of tree type o). This reduces the order of each term by 1; for example, terms of types o→ o
and (o→ o)→ o will respectively be transformed to those of types o and o→ o. Order-0
arguments can indeed be removed as follows. Suppose we have a term t1 t2 where t1 : o→ o.
If t1 does not use the order-0 argument t2, then we can simply replace t1 t2 with t#1 (where
t#1 is the result of recursively applying the transformation to t1). If t1 uses the argument
t2, the word generated by t1 t2 must be of the form w1w2, where w2 is generated by t2; in
other words, t1 can only append a word to the word generated by t2. Thus, t1 t2 can be
transformed to br t#1 t#2 , which can generate a tree whose frontier coincides with w1w2 (if
e is ignored). As a special case, a constant word a e can be transformed to br a e. As a
little more complex example, consider the term A (b e), where A is defined by Ax → ax.
Since A uses the argument, the term A (b e) is transformed to br A (br b e). Since A no
longer takes an argument, we substitute e for x in the body of the rule for A (and apply
the transformation recursively to a e). The resulting rule for A is: A→ br a e. Thus, the
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term after the transformation generates the tree br (br a e) (br b e). Its frontier word is aebe,
which is equivalent to the word ab generated by the original term, up to removals of e; recall
that redundant occurrences of e will be removed by the second transformation. Note that
the transformation sketched above depends on whether each order-0 argument is actually
used or not. Thus, we introduce intersection types to express such information, and define
the transformation as a type-directed one.

Simple types are refined to the following intersection types.

δ ::= o | σ → δ σ ::= δ1 ∧ · · · ∧ δk (k ≥ 0)

We write > for δ1 ∧ · · · ∧ δk when k = 0. We assume some total order < on intersection
types, and require that δ1 < · · · < δk whenever δ1 ∧ · · · ∧ δk occurs in an intersection type.
Intuitively, (δ1 ∧ · · · ∧ δk)→ δ describes a function that uses an argument according to types
δ1, . . . , δk, and the returns a value of type δ. As a special case, the type > → o describes a
function that ignores an argument, and returns a tree. Thus, according to the idea of the
transformation sketched above, if x has type > → o, x t would be transformed to x; if x
has type o→ o, x t would be transformed to br x t#. In the last example above, the type
o→ o should be interpreted as a function that uses the argument just once; otherwise the
transformation to br x t# would be incorrect. Thus, the type o should be treated as a linear
type, for which weakening and dereliction are disallowed. In contrast, we need not enforce,
for example, that a value of the intersection type o→ o should be used just once. Therefore,
we classify intersection types into two kinds; one called balanced, which may be treated as
non-linear types, and the other called unbalanced, which must be treated as linear types. For
that purpose, we introduce two refinement relations δ ::b κ and δ ::u κ; the former means that
δ is a balanced intersection type of sort κ, and the latter means that δ is an unbalanced in-
tersection type of sort κ. The relations are defined as follows, by mutual induction; k may be 0.

δj ::u κ j ∈ {1, . . . , k}
δi ::b κ (for each i ∈ {1, . . . , k} \ {j})

δ1 ∧ · · · ∧ δk ::u κ

δi ::b κ (for each i ∈ {1, . . . , k})
δ1 ∧ · · · ∧ δk ::b κ

o ::u o
σ ::b κ δ ::u κ′

σ → δ ::u κ→ κ′
σ ::u κ δ ::u κ′

σ → δ ::b κ→ κ′
σ ::b κ δ ::b κ′

σ → δ ::b κ→ κ′

A type δ is called balanced if δ ::b κ for some κ, and called unbalanced if δ ::u κ for some
κ. Intuitively, unbalanced types describe trees or closures that contain the end of a word
(i.e., symbol e). Intersection types that are neither balanced nor unbalanced are considered
ill-formed, and excluded out. For example, the type o→ o→ o (as an intersection type) is
ill-formed; since o is unbalanced, o→ o must also be unbalanced according to the rules for
arrow types, but it is actually balanced. Note that, in fact, no term can have the intersection
type o→ o→ o in a word grammar. We write δ :: κ if δ ::b κ or δ ::u κ.

We introduce a type-directed transformation relation Γ ` t : δ ⇒ u for terms, where Γ is
a set of type bindings of the form x : δ, called a type environment, t is a source term, and u
is the image of the transformation, which may be an extended term. We write Γ1 ∪ Γ2 for
the union of Γ1 and Γ2; it is defined only if, whenever x : δ ∈ Γ1 ∩ Γ2, δ is balanced. In other
words, unbalanced types are treated as linear types, whereas balanced ones as non-linear (or
idempotent) types. We write bal(Γ) if δ is balanced for every x : δ ∈ Γ.

The relation Γ ` t : δ ⇒ u is defined inductively by the following rules.

bal(Γ)
Γ, x : δ ` x : δ ⇒ xδ

(Tr1-Var)
A ::N (A) bal(Γ)

Γ ` A : δ ⇒ Aδ
(Tr1-NT)
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bal(Γ)
Γ ` e : o⇒ e

(Tr1-Const0)
Σ(a) = 1 bal(Γ)
Γ ` a : o→ o⇒ a

(Tr1-Const1)

Γ0 ` s : δ1 ∧ · · · ∧ δk → δ ⇒ v

Γi ` t : δi ⇒ Ui and δi 6= o (for each i ∈ {1, . . . , k})
Γ0 ∪ Γ1 ∪ · · · ∪ Γk ` st : δ ⇒ vU1 · · ·Uk

(Tr1-App1)

Γ0 ` s : o→ δ ⇒ V Γ1 ` t : o⇒ U

Γ0 ∪ Γ1 ` st : δ ⇒ brV U
(Tr1-App2)

Γ ` t : δ ⇒ ui (for each i ∈ {1, . . . , k}) k ≥ 1
Γ ` t : δ ⇒ {u1, . . . , uk}

(Tr1-Set)

Γ, x : δ1, . . . , x : δk ` t : δ ⇒ u x /∈ dom(Γ)
δi 6= o for each i ∈ {1, . . . , k}

Γ ` λx.t : δ1 ∧ · · · ∧ δk → δ ⇒ λxδ1 · · ·λxδk .u
(Tr1-Abs1)

Γ, x : o ` t : δ ⇒ u

Γ ` λx.t : o→ δ ⇒ [e/xo]u
(Tr1-Abs2)

In rule (Tr1-Var), a variable is replicated for each type. This is because the image of
the transformation of a term substituted for x is different depending on the type of the term;
accordingly, in rule (Tr1-Abs1), bound variables are also replicated, and in rule (Tr1-App1),
arguments are replicated. In rule (Tr1-NT), a non-terminal is also replicated for each type.
In rules (Tr1-Const0) and (Tr1-Const1), constants are mapped to themselves; however,
the arities of all the constants become 0. In these rules, Γ may contain only bindings on
balanced types.

In rule (Tr1-App1), the first premise indicates that the function s uses the argument t
according to types δ1, . . . , δk. Since the image of the transformation of t depends on its type,
we replicate the argument to U1, . . . , Uk. For each type δi, the result of the transformation is
not unique (but finite); thus, we represent the image of the transformation as a set Ui of
terms. (Recall the remark at the end of Section 2 that a set of terms can be replaced by
an ordinary term by introducing auxiliary non-terminals.) For example, consider a term
A(x y). It can be transformed to Aδ1→δ{xδ0→δ1yδ0 , xδ′

0→δ1yδ′
0
} under the type environment

{x :δ0 → δ1, x :δ′0 → δ1, y :δ0, y :δ′0}. Note that k in rule (Tr1-App1) (and also (Tr1-Abs1))
may be 0, in which case the argument disappears in the image of the transformation.

In rule (Tr1-App2), as explained at the beginning of this section, the argument t of type
o is removed from s and instead attached as a sibling node of the tree generated by (the
transformation image of) s. Accordingly, in rule (Tr1-Abs2), the binder for x is removed
and x in the body of the abstraction is replaced with the empty tree e. In rule (Tr1-Set),
type environments are shared. This is because {u1, . . . , uk} represents the choice u1 + · · ·+uk;
unbalanced (i.e. linear) values should be used in the same manner in u1, . . . , uk.

The transformation rules for rewriting rules and grammars are given by:

∅ ` λx1. · · ·λxk.t : δ ⇒ λx′1. · · ·λx′`.u δ ::N (A)
(Ax1 · · · xk → t)⇒ (Aδ x′1 · · · x′` → u)

(Tr1-Rule)
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Σ′ = {br 7→ 2, e 7→ 0} ∪ {a 7→ 0 | Σ(a) = 1}
N ′ = {Aδ : [[δ :: κ]] | N (A) = κ ∧ δ :: κ} R′ = {r′ | ∃r ∈ R.r ⇒ r′}

(Σ,N ,R, S)⇒ (Σ′,N ′,R′, So)
(Tr1-Gram)

Here, [[δ :: κ]] is defined by:

[[δ :: κ]] = o (if order(κ) ≤ 1)
[[(δ1 ∧ · · · ∧ δk → δ) :: (κ0 → κ)]] = [[δ1 :: κ0]]→ . . .→ [[δk :: κ0]]→ [[δ :: κ]]

(if order(κ0 → κ) > 1)

I Example 6. Recall the grammar G1 in Example 3. For the term λf.λx.a(f x) of the rule
for A, we have the following derivation:

∅ ` a : o→ o⇒ a
Const1

f : o→ o ` f : o→ o⇒ fo→o
Var

x : o ` x : o⇒ xo
Var

f : o→ o, x : o ` f x : o⇒ br fo→o xo
App2

f : o→ o, x : o ` a(f x) : o⇒ br a (br fo→o xo) App2

f : o→ o ` λx.a(f x) : o→ o⇒ br a (br fo→o e) Abs2

∅ ` λf.λx.a(f x) : (o→ o)→ o→ o⇒ λfo→o.br a (br fo→o e) Abs1

Notice that the argument x has been removed, and the result of the transformation has type
o→ o. The whole grammar is transformed to the grammar consisting of the following rules.

So → F(o→o)→o a So → F(o→o)→o b
A(o→o)→o→o fo→o → br a (br fo→o e) B(o→o)→o→o fo→o → br b (br fo→o e)
F(o→o)→o fo→o → br fo→o (br fo→o e) F(o→o)→o fo→o → F(o→o)→o(A(o→o)→o→o fo→o)
F(o→o)→o fo→o → F(o→o)→o(B(o→o)→o→o fo→o).

Here, we have omitted rules that are unreachable from So. For example, the rule

F(>→o)∧(o→o)→o f>→o fo→o → br fo→o f>→o

may be obtained from the following derivation, but it is unreachable from So, since F is
never called with an argument of type (> → o) ∧ (o→ o).

f : o→ o ` f ⇒ fo→o
Var

f :> → o ` f : > → o⇒ f>→o
Var

f :> → o ` f e : o⇒ f>→o
App1

f :> → o, f : o→ o ` f(f e) : o⇒ br fo→o f>→o
App2

∅ ` λf.f(f e) : (> → o) ∧ (o→ o)→ o⇒ λf>→o.λfo→o.br fo→o f>→o
Abs1

The following theorem states the correctness of the first transformation.

I Theorem 7. Let G be an order-(n+1) word grammar. If G ⇒ G′′, then G′′ is an (extended)
grammar of order at most n. Furthermore, Lw(G) = Lleaf(G′′)↑e.

4 Step 2: removing dummy symbols

We now describe the second step for eliminating redundant symbols e, which have been
introduced by (Tr1-Abs2). By the remark at the end of Section 2, we assume that the result
of the first transformation is an ordinary grammar, not containing extended terms. We also
assume that br occurs only in the fully applied form. This does not lose generality, because
otherwise we can replace br by a new non-terminal Br and add the rule Br x y → brx y.
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The idea of the transformation is to use intersection types to distinguish between terms
that generate trees consisting of only br and e, and those that generate trees containing
other arity-0 terminals. We assign the type oε to the former terms, and o+ to the latter. A
term br t0 t1 is transformed to (i) br t#0 t#1 if both t0 and t1 have type o+ (where t#i is the
image of the transformation of ti), (ii) t#i if ti has type o+ and t1−i has type oε, and (iii) e
if both t0 and t1 have type oε. As in the transformation of the previous section, we replicate
each non-terminal and variable for each intersection type. For example, the nonterminal
A : o→ o defined by Ax→ x would be replicated to Ao+→o+ and Aoε→oε .

We first define the set of intersection types by:

ξ ::= oε | o+ | ξ1 ∧ · · · ∧ ξk → ξ

We assume some total order < on intersection types, and require that whenever we write
ξ1 ∧ · · · ∧ ξk, ξ1 < · · · < ξk holds. We define the refinement relation ξ :: κ inductively by:
(i) oε :: o, (ii) o+ :: o, and (iii) (ξ1 ∧ · · · ∧ ξk → ξ) :: (κ1 → κ2) if ξ :: κ2 and ξi :: κ1 for every
i ∈ {1, . . . , k}. We consider only types ξ such that ξ :: κ for some κ. For example, we forbid
an ill-formed type like o+ ∧ (o+ → o+)→ o+.

We introduce a type-based transformation relation Ξ ` t : ξ ⇒ u, where Ξ is a type
environment (i.e., a set of bindings of the form x : ξ), t is a source term, ξ is the type of t,
and u is the result of transformation. The relation is defined inductively by the rules below.

Ξ, x : ξ ` x : ξ ⇒ xξ
(Tr2-Var)

Ξ ` e : oε ⇒ e
(Tr2-Const0)

Σ(a) = 0 a 6= e

Ξ ` a : o+ ⇒ a
(Tr2-Const1)

Ξ ` t0 : ξ0 ⇒ u0 Ξ ` t1 : ξ1 ⇒ u1

(u, ξ) =


(bru0 u1, o+) if ξ0 = ξ1 = o+
(ui, o+) if ξi = o+ and ξ1−i = oε
(e, oε) if ξ0 = ξ1 = oε

Ξ ` br t0 t1 : ξ ⇒ u
(Tr2-Const2)

ξ ::N (F ) Ax1 · · · xk → t ∈ R ∅ ` λx1. · · ·λxk.t : ξ ⇒ λy1. · · ·λy`.u
Ξ ` A : ξ ⇒ Aξ

(Tr2-NT)

Ξ ` s : ξ1 ∧ · · · ∧ ξk → ξ ⇒ v Ξ ` t : ξi ⇒ Ui (for each i ∈ {1, . . . , k})
Ξ ` st : ξ ⇒ vU1 · · ·Uk

(Tr2-App)

Ξ ` t : ξ ⇒ ui (for each i ∈ {1, . . . , k}) k ≥ 1
Ξ ` t : ξ ⇒ {u1, . . . , uk}

(Tr2-Set)

Ξ, x : ξ1, . . . , x : ξk ` t : ξ ⇒ u

Ξ ` λx.t : ξ1 ∧ · · · ∧ ξk → ξ ⇒ λxξ1 · · ·λxξk .u
(Tr2-Abs)

The transformation of rewriting rules and grammars is defined by:

∅ ` λx1. · · ·λxk.t : ξ ⇒ λx′1. · · ·λx′`.t′ ξ ::N (A)
(A→ λx1. · · ·λxk.t)⇒ (Aξ → λx′1. · · ·λx′`.t′)

(Tr2-Rule)

N ′ = {Aξ : [[ξ]] | N (A) = κ ∧ ξ :: κ}
R′ = {r′ | ∃r ∈ R.r ⇒ r′} ∪ {S′ → Soε , S

′ → So+}
(Σ,N ,R, S)⇒ (Σ,N ′,R′, S′)

(Tr2-Gram)
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Here, [[ξ]] is defined by:

[[oε]] = [[o+]] = o [[ ξ1 ∧ · · · ∧ ξk → ξ]] = [[ξ1]]→ · · · → [[ξk]]→ [[ξ]]

We explain some key rules. In (Tr2-Var) we replicate a variable for each type, as in the
first transformation. The rules (Tr2-Const0) and (Tr2-Const1) are for nullary constants,
which are mapped to themselves. We assign type oε to e and o+ to the other constants. The
rule (Tr2-Const2) is for the binary tree constructor br. As explained above, we eliminate
terms that generate empty trees (those consisting of only br and e). For example, if ξ0 = oε
and ξ1 = o+, then t0 may generate an empty tree; thus, the whole term is transformed to u1.

The rule (Tr2-NT) replicates a terminal for each type, as in the case of variables. The
middle and rightmost premises require that there is some body t of A that can indeed be
transformed according to type ξ. Without this condition, for example, A defined by the rule
A → A would be transformed to Aoε by ∅ ` A : oε ⇒ Aoε , but Aoε diverges and does not
produce an empty tree. That would make the rule (Tr2-Const2) unsound: when a source
term is brA a, it would be transformed to a, but while the original term does not generate a
tree, the result of the transformation does. In short, the two premises are required to ensure
that whenever ∅ ` t : oε ⇒ u holds, t can indeed generate an empty tree. In (Tr2-App), the
argument is replicated for each type. Unlike in the transformation in the previous section,
type environments can be shared among the premises, since linearity does not matter here.
The other rules for terms are analogous to those in the first transformation.

In rule (Tr2-Gram) for grammars, we prepare a start symbol S′ and add the rules
S′ → Soε , S

′ → So+ . We remark that the rewriting rule for Soε (resp. So+) is generated only
if the original grammar generates an empty (resp. non-empty) tree. For example, in the
extreme case where R = {S → S}, we have R′ = {S′ → Soε , S

′ → So+}, without any rules
to rewrite Soε or So+ .

I Example 8. Let us consider the grammar G3 = (Σ,N ,R, S) where N = {S : o, A : o →
o, B : o→ o, F : o→ o}, and R consists of:

S → F a S → F b Af → br a (br f e) B f → br b (br f e)
F f → br f (br f e) F f → F (Af) F f → F (B f)

It is the same as the grammar obtained in Example 6, except that redundant subscripts on
non-terminals and variables have been removed. The body of the rule for A is transformed
as follows.

f : o+ ` a : o+ ⇒ a Const1
f : o+ ` f : o+ ⇒ fo+

Var
f : o+ ` e : oε ⇒ e Const0

f : o+ ` br f e : o+ ⇒ fo+
Const2

f : o+ ` br a (br f e) : o+ ⇒ br a fo+
Const2

∅ ` λf.br a (br f e) : o+ → o+ ⇒ λfo+ .br a fo+
Abs

The whole rules are transformed to:
S′ → So+ S′ → Soε So+ → Fo+→o+ a So+ → Fo+→o+ b
Ao+→o+ fo+ → br a fo+ Bo+→o+ fo+ → br b fo+ Fo+→o+ fo+ → br fo+ fo+

Fo+→o+ fo+ → Fo+→o+(Ao+→o+ fo+) Fo+→o+ fo+ → Fo+→o+(Bo+→o+ fo+)

Here, we have omitted rules on non-terminals unreachable from S′.

The following theorem claims the correctness of the transformation. The proof is given
in [2]. The main theorem (Theorem 4) follows from Theorems 7, 9, and the fact that any
order-m grammar with m < n can be converted to an order-n grammar by adding a dummy
non-terminal of order n.
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I Theorem 9. Let G = (Σ,N ,R, S) be an order-n tree grammar. If G ⇒ G′, then G′ is a
tree grammar of order at most n, and Lleaf(G)↑e = Lεleaf(G′).

5 Applications

5.1 Unsafe order-2 word languages = safe order-2 word languages
As mentioned in Section 1, many of the earlier results on higher-order grammars [6, 10]
were for the subclass called safe higher-order grammars. In safe grammars, the (simple)
types of terms are restricted to homogeneous types [6] of the form κ1 → · · · → κk → o,
where order(κ1) ≥ · · · ≥ order(κk), and arguments of the same order must be supplied
simultaneously. For example, if A has type (o→ o)→ (o→ o)→ o, then the term f (Af f)
where f : o→ o is valid, but g (Af) where g : ((o→ o)→ o)→ o, f : o→ o is not: the partial
application Af is disallowed, since A expects another order-1 argument. Unsafe grammars
(which are just called higher-order grammars in the present paper) are higher-order grammars
without the safety restriction.

For order-2 word languages, Aehlig et al. [1] have shown that safety is not a genuine
restriction. Our result in the present paper provides an alternative, short proof. Given
an unsafe order-2 word grammar G, we can obtain an equivalent order-1 grammar G′ such
that Lw(G) = Lεleaf(G′). Note that G′ is necessarily safe, since it is order-1 and hence
there are no partial applications. Now, apply the backward transformation sketched in
Section 2 to obtain an order-2 word grammar G′′ such that Lw(G′′) = Lεleaf(G′). By the
construction of the backward transformation, G′′ is clearly a safe grammar: Since the type
of each term occurring in G′ is o → · · · → o → o, the type of the corresponding term of
G′′ is (o → o) → · · · → (o → o) → (o → o). Since all the arguments of type o are applied
simultaneously in G′, all the arguments of type o→ o are also applied simultaneously in G′′.
Thus, for any unsafe order-2 word grammar, there exists an equivalent safe order-2 word
grammar.

5.2 Diagonal problem
The diagonal problem [5] asks, given a (word or tree) language L and a set S of symbols,
whether for all n, there exists wn ∈ L such that ∀a ∈ S. |wn|a ≥ n. Here, |w|a denotes the
number of occurrences of a in w. A decision algorithm for the diagonal problem can be
used for computing downward closures [21], which in turn have applications to program
verification. Hague et al. [9] recently showed that the diagonal problem is decidable for safe
higher-order word languages, and Clemente et al. [4] extended the result for unsafe tree
languages. For the single letter case of the diagonal problem (where |S| = 1), we can obtain
an alternative proof as follows. First, following the approach of Hague et al. [9], we can
use logical reflection to reduce the single letter diagonal problem for an unsafe order-n tree
language to that for the path language of an unsafe order-n tree language. We can then use
our transformation to reduce the latter to the single letter diagonal problem for an unsafe
order-(n− 1) tree language.

5.3 Context-sensitivity of order-3 word languages
By using the result of this paper and the context-sensitivity of order-2 tree languages [13], we
can prove that any order-3 word language is context-sensitive, i.e., the membership problem
for an order-3 word language can be decided in non-deterministic linear space. Given an
order-3 word grammar G, we first construct a corresponding order-2 tree grammar G′ in
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advance. Given a word w, we can construct a tree π whose frontier word is w one by one,
and check whether π ∈ L(G′). Since the size of π is linearly bounded by the length |w| of
w, π

?
∈ L(G′) can be checked in space linear with respect to |w|. Thus, w ∈ Lw(G) can be

decided in non-deterministic linear space (with respect to the size of w).

6 Related Work

As already mentioned in Section 1, higher-order grammars have been extensively studied
in 1980’s [6, 7, 8], but most of those results have been for safe grammars. In particular,
Damm [6] has shown an analogous result for safe grammars, but his proof does not extend
to the unsafe case.

As also mentioned in Section 1, intersection types have been used in recent studies of
(unsafe) higher-order grammars. In particular, type-based transformations of grammars and
λ-terms have been studied in [14, 13, 4]. Clement et al. [4], independently from ours, gave
a transformation from an order-(n + 1) “narrow” tree language (which subsumes a word
language as a special case) to an order-n tree language; this transformation preserves the
number of occurrences of each symbol in each tree. When restricted to word languages,
our result is stronger in that our transformation is guaranteed to preserve the order of
symbols as well, and does not add any additional leaf symbols (though they are introduced
in the intermediate step); consequently, our proofs are more involved. They use different
intersection types, but the overall effect of their transformation seems similar to that of
our first transformation. Thus, it may actually be the case that their transformation also
preserves the order of symbols, although they have not proved so.

7 Conclusion

We have shown that for any unsafe order-(n+ 1) word grammar G, there exists an unsafe
order-n tree grammar G′ whose frontier language coincides with the word language Lw(G).
The proof is constructive in that we provided (two-step) transformations that indeed construct
G′ from G. The transformations are based on a combination of linear/non-linear intersection
types, which may be interesting in its own right. As Damm [6] suggested, we expect the
result to be useful for further studies of higher-order languages; in fact, we have discussed a
few applications of the result.
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Abstract
Starting from Boolean algebras of languages closed under quotients and using duality theoretic
insights, we derive the notion of Boolean spaces with internal monoids as recognisers for arbitrary
formal languages of finite words over finite alphabets. This leads to recognisers and syntactic
spaces in a setting that is well-suited for applying tools from Stone duality as applied in semantics.

The main focus of the paper is the development of topo-algebraic constructions pertinent to
the treatment of languages given by logic formulas. In particular, using the standard semantic
view of quantification as projection, we derive a notion of Schützenberger product for Boolean
spaces with internal monoids. This makes heavy use of the Vietoris construction – and its dual
functor – which is central to the coalgebraic treatment of classical modal logic.

We show that the unary Schützenberger product for spaces yields a recogniser for the language
of all models of the formula ∃x.Φ(x), when applied to a recogniser for the language of all models
of Φ(x). Further, we generalise global and local versions of the theorems of Schützenberger and
Reutenauer characterising the languages recognised by the binary Schützenberger product.

Finally, we provide an equational characterisation of Boolean algebras obtained by local
Schützenberger product with the one element space based on an Egli-Milner type condition on
generalised factorisations of ultrafilters on words.
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1 Introduction

This contribution lies at the interface of two distinct areas: one in semantics concerned with
modelling binding of variables, and the other in the theory of formal languages and the
search for separation results for complexity classes based on a generalisation of the algebraic
theory of regular languages [22, 12]. In semantics of propositional and modal logics, Stone
duality and coalgebraic logic have had great success, but in the presence of quantifiers more
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general categorical semantics is required. Quantifiers change the set of free variables in a
formula, leading to a notion of indexing formulas by their contexts of free variables. In the
theory of regular languages, classes of models indexed by finite alphabets have long been
studied in the form of varieties of languages [5]. There, one considers Boolean algebras of
languages closed under quotients over a category of finite alphabets with monoid morphisms
between the corresponding finitely generated monoids. This paper is intended as a first step
towards establishing a connection between categorical semantics of logics and fibrational
approaches in language theory.

We follow the line set by [7, 8] and [9], which exploits the connection between the algebraic
theory of formal languages and Stone duality, see also [2, 1]. In this paper we are interested
in the effect that first-order quantifiers have at the level of the algebraic recognisers. This
is well understood in the regular case, where a plethora of powerful tools, in the form
of Schützenberger, Maltsev, and block products of finite (and profinite) monoids, is used.
Beyond the regular setting, we take as a departure point classes of languages equipped with
actions of the free monoid over a finite set and the standard view of existential quantification
as projection, and we derive – via Stone duality – our notion of recognisers and of unary
Schützenberger product. Our analysis arrives at an extension of the Schützenberger product,
which was originally introduced in [19] as a means of studying the concatenation product of
regular languages and was further extended in [21] and [16] to arbitrary arity and to ordered
monoids, respectively. Reutenauer [18], and Pin [15] in the ordered setting, have provided
exact characterisations of the regular languages accepted by the Schützenberger product.

In the setting of regular languages, equations have played an essential rôle in providing
decidability results for varieties of languages and various generalisations thereof. For classes
of arbitrary languages decidability is not to be expected and separation of classes is the
main focus. For this reason soundness becomes more important than completeness per se.
However, complete axiomatisations are useful for obtaining decidability results for the class
of regular languages within a fragment. See [9] for an example and for further motivation
relative to the study of circuit complexity classes.

Contributions and Structure. After some preliminaries on Stone duality and actions by
monoids, Section 3 introduces our notion of recognisers and main objects of study, the Boolean
spaces with internal monoids. In Section 4 we analyse the relation between recognisers for
a language LΦ, corresponding to a formula Φ with one free first-order variable x, and
recognisers for the existentially quantified language L∃x.Φ. To this end, in Section 4.1 we
introduce a unary version of the Schützenberger product, ♦M , for a discrete monoid M

and prove that if M recognises LΦ, then ♦M recognises L∃x.Φ. In Section 4.2 we extend
the unary Schützenberger product, and the results in Section 4.1, to Boolean spaces with
internal monoids (noting this can be done for semigroups as well). We end the section with a
characterisation of the languages recognised by the unary Schützenberger product (♦X,♦S)
of a Boolean space with an internal semigroup (X,S) (see Theorem 14). In Section 5
we introduce the binary Schützenberger product of Boolean spaces with internal monoids.
Theorems 16 and 18 extend results of Reutenauer in the regular setting and establish the
connection with concatenation product for arbitrary languages. Finally, in Section 6 we
provide a completeness result for the Boolean algebra recognised by the local version of the
Schützenberger product of a space with the one element space.
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2 Preliminaries

2.1 Stone duality for Boolean algebras
Let (B,∧,∨,¬, 0, 1) be a Boolean algebra. Recall that a subset µ ⊆ B is a filter of B if it
satisfies the following conditions:

non-emptiness: 1 ∈ µ,
upward closure: if L ∈ µ and N ∈ B satisfies L ≤ N , then N ∈ µ,
closure under finite meets: if L,N ∈ µ, then L ∧N ∈ µ.

A filter µ ⊆ B is proper if µ 6= B. Ultrafilters are those for which L ∈ µ or ¬L ∈ µ for each
L ∈ B. In the Boolean algebra P(S), an example of an ultrafilter is given, for each s ∈ S, by
the principal ultrafilter associated with the element s, namely

↑ s := {b ∈ P(S) | s ∈ b}. (1)

Let XB be the collection of all the ultrafilters of B. The fundamental insight of Stone is that,
equipped with an appropriate topology, one may recover B from XB. For L ∈ B set

L̂ := {µ ∈ XB | L ∈ µ}. (2)

Then the family {L̂ | L ∈ B} forms a basis of open sets for a topology σ on XB, and the
topological space (XB, σ) is called the dual space of the Boolean algebra B. The topology σ
is compact, Hausdorff, and admits a basis of clopen sets (i.e. sets that are both open and
closed) since the complement of L̂ is ¬̂L. Compact Hausdorff spaces that admit a basis of
clopen sets are known as Boolean (or Stone) spaces. The collection of clopens of a Boolean
space X (equipped with set-theoretic operations) constitutes a Boolean algebra, known as
the dual algebra of X. These processes are, up to natural equivalence, inverse to each other.
Given a morphism of Boolean algebras h : A → B, the inverse image map on their power
sets h−1 : P(B) → P(A) sends ultrafilters to ultrafilters and provides the continuous map
from the dual space of B to the dual space of A. Similarly, the inverse image map of a
continuous map f : X → Y provides the morphism from the dual algebra of Y to that of X.
In this correspondence, quotient algebras correspond to embeddings as (closed) subspaces,
and inclusions as subalgebras correspond to quotient spaces. In category-theoretic terms,
this establishes a contravariant equivalence between the category of Boolean spaces and
continuous maps, and the category of Boolean algebras and their morphisms. This is the
content of the celebrated Stone duality for Boolean algebras [20, Theorems 67 and 68].

We end this section with an example of a Boolean algebra and its dual space which will
play a key rôle in the sequel. Let S be a set. Then P(S) is a Boolean algebra and its dual
space, denoted by β(S), is known as the Stone-Čech compactification of the set S. We remark
that the map ι : S → β(S), mapping an element s to the principal ultrafilter ↑ s of (1), is
injective and embeds S, with the discrete topology, as a dense subspace of β(S). Henceforth,
we will consider S as a subspace of β(S), identifying s ∈ S with ↑ s, thus suppressing the
embedding ι. The space β(S) is characterised by the following universal property: if X is a
compact Hausdorff space and f : S → X is any function, then there is a (unique) continuous
function g : β(S)→ X such that the following diagram commutes.

S β(S)

X

f
g (3)
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Consequently, if T is a discrete space, any function f : S → T can be extended to a continuous
map β(f) : β(S)→ β(T ). Explicitly, the latter is given, for each µ ∈ β(S) and L ∈ P(T ), by

L ∈ β(f)(µ) if, and only if, f−1(L) ∈ µ.

2.2 Monoid actions
Let (M, ·, 1) be a monoid, and X be a set. A function λ : M ×X → X is called a left action
of M on X provided

for all x ∈ X, λ(1, x) = x,
for all m,m′ ∈M and x ∈ X, λ(m ·m′, x) = λ(m,λ(m′, x)).

Similarly, one can define a right action ρ : X ×M → X of M on X. For each m ∈ M , we
refer to the function λm : X → X given by λm(x) := λ(m,x) (respectively to the function
ρm : X → X given by ρm(x) := ρ(x,m)) as the component of the action λ at m (respectively,
of the action ρ at m). A pair consisting of left and right actions λ, ρ of M on X is said to
be compatible if, for all m,m′ ∈M , λm ◦ ρm′ = ρm′ ◦ λm. We call such a pair of compatible
actions a biaction of M on X (or an M -biaction on X).

I Example 1. Any monoid M can be seen as acting on itself on the left and on the right.
The component of the left action at m ∈M is the multiplication on the left by m, and the
component of the right action is the multiplication on the right by m. The compatibility of
the two actions amounts precisely to the associativity of the monoid operation.

I Example 2. Consider N, the free monoid on one generator. As observed in Example 1,
for each n ∈ N we have components λn, ρn : N→ N of compatible left and right actions of
N on itself. By the universal property (3) of the Stone-Čech compactification, we obtain
continuous components β(λn), β(ρn) : β(N)→ β(N) of a biaction of N on β(N). However the
set β(N) is not equipped with a continuous monoid operation, see [11, Chapter 4].

3 Recognition by spaces with dense monoids

We start by showing how our main objects of study (see Definition 3 below) arise naturally
by considering duals of Boolean algebras of languages closed under certain operations known
as quotients by words. Let Σ be a finite alphabet. Instantiating the monoid in Example 1
with the free monoid Σ∗ on Σ, we obtain a biaction of Σ∗ on itself. The components of the
left and right actions are given by concatenation, and they will be denoted by

λw : Σ∗ → Σ∗, u 7→ wu and ρw : Σ∗ → Σ∗, u 7→ uw.

By discrete duality, i.e. by applying the contravariant power set functor, we obtain right and
left Σ∗-actions on P(Σ∗) given by λ−1

w : P(Σ∗)→ P(Σ∗), and respectively, by ρ−1
w : P(Σ∗)→

P(Σ∗). These are the well-known left quotients and right quotients of language theory given,
respectively, by

L 7→ {u | wu ∈ L} =: w−1L and L 7→ {u | uw ∈ L} =: Lw−1.

It is immediate that the λ−1
w and ρ−1

w are homomorphisms and compatible Σ∗-actions.
Dualising again, we see that the space β(Σ∗) is equipped with (compatible and continuous)

left and right Σ∗-actions given, for all w ∈ Σ∗, by β(λw) and β(ρw), respectively. By abuse
of notation and for ease of readability, we will denote these actions again by λw, respectively
ρw. We notice that the pair (β(Σ∗),Σ∗) exhibits the following structure:
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a Boolean space β(Σ∗),
a dense subspace Σ∗ equipped with a monoid structure,
a biaction of Σ∗ on β(Σ∗) with continuous components extending that of Σ∗ on itself.

Now, consider a Boolean subalgebra B of P(Σ∗) closed under left and right quotients by
words. Then the maps λ−1

w and ρ−1
w restrict to Boolean algebra morphisms on B, yielding

the following commutative diagrams.

P(Σ∗) P(Σ∗) P(Σ∗) P(Σ∗)

B B B B

λ−1
w ρ−1

w

λ−1
w ρ−1

w

(4)

Let XB denote the dual space of the Boolean algebra B. The embedding B ↪→ P(Σ∗)
dually corresponds to a quotient τ : β(Σ∗)� XB. The space XB also admits left and right
Σ∗-actions induced by the duals of the maps λ−1

w , respectively ρ−1
w , from (4). We thus obtain

β(Σ∗) β(Σ∗) β(Σ∗) β(Σ∗)

XB XB XB XB

λw

τ τ

ρw

τ τ

λw ρw

(5)

Then M := τ [Σ∗] is a dense subspace of XB, and we have the following commutative diagram.

β(Σ∗) XB

Σ∗ M

τ

τ

(6)

We observe that the pair (XB,M) exhibits the same kind of structure as (β(Σ∗),Σ∗):
a Boolean space XB,
a dense subspace M equipped with a monoid structure,
a biaction of M on XB with continuous components extending the biaction of M on itself.

Indeed, recall that XB is equipped with left and right Σ∗-actions which are preserved by the
map τ by commutativity of (5). The Σ∗-actions on XB restrict to Σ∗-actions on M , which
are preserved by the restriction of τ . The monoid structure on M is then defined as follows.
For any m ∈M pick wm ∈ Σ∗ satisfying τ(wm) = m. Such an element exists because M is
the image of Σ∗ by τ . For m,m′ ∈M , set m ·m′ := λwm

(m′). It is easily seen that the latter
operation is well-defined and provides a monoid structure on M which makes the restriction
of τ a monoid morphism.

As first introduced in [8], we will be using dual spaces equipped with actions as recognisers.
The examples above motivate the following definition.

I Definition 3. A Boolean space with an internal monoid is a pair (X,M) consisting of
a Boolean space X,
a dense subspace M equipped with a monoid structure,
a biaction of M on X with continuous components extending the biaction of M on itself.

I Remark. The recognisers introduced in [8] are monoids equipped with a uniform space
structure, namely the Pervin uniformity given by a Boolean algebra of subsets of the monoid,

ICALP 2016
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so that the biaction of the monoid on itself has uniformly continuous components. Such an
object was called a semiuniform monoid. One may show that the completion of a semiuniform
monoid is a Boolean space with an internal monoid. Conversely, given a Boolean space
with an internal monoid (X,M), the Pervin uniformity on M induced by the dual of X is a
semiuniform monoid, and these two constructions are inverse to each other.
We are interested in maps between pairs (X,M) and (Y,N), i.e. continuous maps X → Y

which preserve the additional structure.

I Definition 4. A morphism between two Boolean spaces with internal monoids (X,M) and
(Y,N) is a continuous map f : X → Y such that f restricts to a monoid morphism M → N .

Morphisms, as just defined, are in fact also biaction-preserving maps.

I Lemma 5. Let f : (X,M) → (Y,N) be a morphism of Boolean spaces with internal
monoids. Then f preserves the actions, i.e. for every m ∈M

f ◦ λm = λf(m) ◦ f and f ◦ ρm = ρf(m) ◦ f.

I Example 6. The map τ : (β(Σ∗),Σ∗)→ (XB,M) of (6) is a morphism of Boolean spaces
with internal monoids.

I Remark. The map L 7→ L̂ of (2) establishes a one-to-one correspondence between the
elements of P(Σ∗) and the clopens of β(Σ∗). Thus, we will sometimes blur the distinction
between recognition of a language L and recognition of the corresponding clopen L̂.

I Definition 7. Let Σ be a finite alphabet, and let L ⊆ Σ∗ be a language. We say that L
(or L̂) is recognised by the morphism f : (β(Σ∗),Σ∗) → (X,M) if there is a clopen C ⊆ X

such that L̂ = f−1(C). Moreover, the language L is recognised by the space (X,M) if there
is a morphism (β(Σ∗),Σ∗)→ (X,M) recognising L. Similarly, we say that a morphism (or a
space) recognises a Boolean algebra if it recognises all its elements.

I Remark. In general, a morphism (β(Σ∗),Σ∗)→ (X,M) with infinite M , recognises (in the
sense of Definition 7) far less languages than the induced monoid morphism Σ∗ →M . On
the other hand, a finite monoid M may be seen as a space with an internal monoid, in which
the space component is the monoid itself, equipped with the discrete topology. A morphism
(β(Σ∗),Σ∗) → (M,M) yields in particular a monoid morphism Σ∗ → M . Conversely, a
monoid morphism h : Σ∗ →M extends uniquely to a continuous map βh : β(Σ∗)→M whose
restriction to Σ∗ is a monoid morphism. Thus the notion of recognition introduced here
extends the usual notion for regular languages, but is finer-grained in the non-regular setting.

4 A unary variant of the Schützenberger product

4.1 Logical motivation: existentially quantified languages
Consider the free monoid Σ∗ over a finite alphabet Σ. A word w ∈ Σ∗ may be seen as a
structure based on the set {0, . . . , |w| − 1},1 equipped minimally with a unary predicate
for each letter a ∈ Σ, which holds at i if and only if wi = a. Now given a formula Φ (in a
language interpretable over words as structures), assumed for simplicity to have only one free
first-order variable x, we will see the set LΦ of all words satisfying Φ as a language in the

1 Here, as usual, |w| ∈ N denotes the length of the word w = w0 · · ·w|w|−1 ∈ Σ∗.
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extended alphabet Σ× 2. In the terminology of [22], LΦ consists of {x}-structures, which
correspond to words in the subset (Σ×{0})∗(Σ×{1})(Σ×{0})∗ of the free monoid (Σ× 2)∗.
An {x}-structure satisfies Φ provided the underlying word in the alphabet Σ satisfies Φ under
the interpretation in which x points to the unique position marked with a 1. Notice that
(Σ×{0})∗(Σ×{1})(Σ×{0})∗ is isomorphic to the set Σ∗ ⊗N of words in Σ∗ with a marked
spot defined by

Σ∗ ⊗ N := {(w, i) ∈ Σ∗ × N | i < |w|}.

Throughout this section we will make use of the following three maps

γ0 : Σ∗ → (Σ× 2)∗, γ1 : Σ∗ ⊗ N→ (Σ× 2)∗, π : Σ∗ ⊗ N→ Σ∗.

The map γ0 : Σ∗ → (Σ× 2)∗ is the embedding given by w 7→ w0, where w0 has the same
length as w and

(w0)j := (wj , 0) for each j < |w|.

The map γ1 : Σ∗ ⊗N→ (Σ× 2)∗ is the embedding given by (w, i) 7→ w(i), where w(i) has
the same length as w and

(w(i))j :=
{

(wj , 0) if i 6= j < |w|
(wi, 1) if i = j.

The map π : Σ∗ ⊗ N→ Σ∗ is the projection on the first coordinate.

I Remark. The language L∃x.Φ is obtained as π[γ−1
1 (LΦ)]. More generally, given a language

L ⊆ (Σ× 2)∗, we shall denote π[γ−1
1 (L)] ⊆ Σ∗ by L∃.

I Remark. Notice that, unlike γ0, the maps γ1 and π are not monoid morphisms. Indeed,
Σ∗ ⊗N does not have a suitable monoid structure. However, Σ∗ ⊗N does have a Σ∗-biaction
structure. For v ∈ Σ∗, the components of the left and right actions are given by

λv(w, i) := (vw, i+ |v|),
ρv(w, i) := (wv, i).

It is clear that both γ1 and π preserve the Σ∗-actions.

Assume that the language LΦ is recognised by a monoid morphism τ : (Σ × 2)∗ → M .
We have the following pair of functions2 with domain Σ∗ ⊗ N

Σ∗ ⊗ N

Σ∗ (Σ× 2)∗

M

π γ1

τ

which gives rise to a relation R : Σ∗ 9M given by

(w,m) ∈ R if, and only if, ∃(w, i) ∈ π−1(w). (τ ◦ γ1)(w, i) = m.

2 Notice that this is not a relational morphism in the sense of Tilson’s definition given in [5], since the
domain Σ∗ ⊗ N does not have a compatible monoid structure.

ICALP 2016
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Though π is not injective, it does have finite preimages. As will be crucial in what follows,
this allows us to represent R as a function (which, in general, is not a monoid morphism)

ξ1 : Σ∗ → Pfin(M), w 7→ {τ(w(i)) | 0 ≤ i < |w|} (7)

where Pfin(M) denotes the set of finite subsets of M . Consider the monoid structure on
Pfin(M) with union as the multiplication, and the empty set as unit. Notice that the
monoid M acts on Pfin(M) both to the left and to the right, and the two actions are
compatible. The left action M × Pfin(M)→ Pfin(M) is given, for m ∈M and S ∈ Pfin(M),
by m · S := {m · s | s ∈ S}. Similarly, the right action is given by S ·m := {s ·m | s ∈ S}.

I Definition 8. We define the unary Schützenberger product ♦M of M as the bilateral
semidirect product Pfin(M) ∗M of the monoids (Pfin(M),∪) and (M, ·). Explicitly, the
underlying set of this monoid is the Cartesian product Pfin(M)×M , and the multiplication
∗ on Pfin(M) ∗M is given by

(S,m) ∗ (T, n) := (S · n ∪m · T,m · n).

Note that the projection onto the second coordinate, π2 : ♦M →M , is a monoid morphism.

I Proposition 9. If τ : (Σ × 2)∗ → M is a monoid morphism recognising LΦ, then there
exists a monoid morphism

ξ : Σ∗ → ♦M

that recognises the language L∃x.Φ and makes the following diagram commute.

Σ∗ ♦M

(Σ× 2)∗ M

ξ

γ0 π2

τ

Proof idea. The map ξ is obtained by pairing ξ1 : Σ∗ → Pfin(M) of (7) and τ ◦ γ0 : Σ∗ →M .
Explicitly,

w 7→ ({τ(w(i)) | 0 ≤ i < |w|}, τ(w0)).

One may show that the map ξ is a monoid morphism with respect to the concatenation
on Σ∗ and the multiplication ∗ on the semidirect product Pfin(M) ∗M . Now let V be
a subset of M such that LΦ = τ−1(V ), and consider the set �V ⊆ Pfin(M) defined as
{S ∈ Pfin(M) | S ∩ V 6= ∅}. Then ξ−1(�V ×M) is precisely L∃x.Φ. J

I Remark. In [21] Straubing generalised the Schützenberger product for any finite number
of monoids. Using his construction, the unary Schützenberger product of M is simply M ,
and hence is different from ♦M introduced above. For the connection between closure under
concatenation product and first-order quantification in the regular setting, see [14].

I Remark. For lack of space, we have chosen to just ‘pull Definition 8 (and consequently also
the upcoming Definition 11) out of a hat’. However, by a careful analysis of how quotients in
P(Σ∗) of languages L∃ are calculated, relative to corresponding calculations in P((Σ× 2)∗),
one may simply derive by duality that the operation given here is the right one.
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4.2 The Schützenberger product for one space ♦X

In this section we assume that the language LΦ ⊆ (Σ× 2)∗ is recognised by a morphism of
Boolean spaces with internal monoids τ : (β(Σ × 2)∗, (Σ × 2)∗) → (X,M). Notice that in
this case we have a pair of continuous maps

β(Σ∗ ⊗ N)

β(Σ∗) β(Σ× 2)∗

X

βπ βγ1

τ

(8)

which, as before, yields a relation β(Σ∗) 9 X. We would like to describe this relation as a
continuous map on β(Σ∗). To this end, we need an analogue for spaces of the finite power
set construction. This is provided by the Vietoris space construction (see [10, Section B.1]
for further details).

I Definition 10. Let X be a Boolean space. The Vietoris space V(X) is the Boolean space
with underlying set {K ⊆ X | K is closed in X}, and topology generated by the subbasis
consisting of the sets, for V clopen in X, of the form

�V := {K ∈ V(X) | K ⊆ V } and �V := {K ∈ V(X) | K ∩ V 6= ∅}.

Just as in the monoid case, diagram (8) yields a map

ξ1 : β(Σ∗)→ V(X)

defined as the composition τ ◦βγ1◦(βπ)−1, or equivalently as the unique continuous extension
of the map ξ1 : Σ∗ → Pfin(M) defined in (7).

I Definition 11. We define the unary Schützenberger product of a Boolean space with an
internal monoid (X,M) as the pair (♦X,♦M), where ♦X is the space V(X)×X equipped
with the product topology and ♦M is as in Definition 8.

I Lemma 12. The unary Schützenberger product (♦X,♦M) of (X,M) is a Boolean space
with an internal monoid.

Proof Idea. Recall that M is a dense subspace of X. It follows by [13, Theorem 4, p. 163]
that Pfin(M) is a dense subspace of V(X). Thus the monoid ♦M is a dense subspace of ♦X.
Next we define the actions of ♦M on ♦X as follows:

l(S,m)(T, x) := ({λs(x) | s ∈ S} ∪ λm[T ], λm(x)),
r(S,m)(T, x) := ({ρs(x) | s ∈ S} ∪ ρm[T ], ρm(x)).

It is not difficult to see that the above maps are the unique continuous extensions to ♦X of
the multiplication by (S,m), to the left and to the right, on ♦M . J

The projection π2 : ♦X → X is a morphism of Boolean spaces with internal monoids.

I Proposition 13. If τ : (β(Σ× 2)∗, (Σ× 2)∗)→ (X,M) is a morphism of Boolean spaces
with internal monoids recognising LΦ, then there is a morphism ξ : (β(Σ∗),Σ∗)→ (♦X,♦M)
recognising L∃x.Φ and such that the following diagram commutes.

β(Σ∗) ♦X

β(Σ× 2)∗ X

ξ

βγ0 π2

τ

ICALP 2016



112:10 The Schützenberger Product for Syntactic Spaces

All the constructions introduced so far can be carried out for semigroups. In particular, we
can consider Boolean spaces with internal semigroups as recognisers of languages in P(Σ+).
Along the lines of Definition 8, we introduce the unary Schützenberger product ♦S of a
semigroup S as the bilateral semidirect product of the semigroups (P+

fin(S),∪) and (S, ·),
where P+

fin(S) denotes the family of finite non-empty subsets of S. Similarly, at the level of
spaces, in the Vietoris construction we will consider only non-empty closed subsets.

Now, write B(X,Σ) for the Boolean algebra of languages in P(Σ+) recognised by the
Boolean space with an internal semigroup (X,S), and note that the latter Boolean algebra
is always closed under quotients. Moreover, given a language L ⊆ (Σ× 2)+, recall that L∃
denotes the language π[γ−1

1 (L)].

I Theorem 14. Let (X,S) be a Boolean space with an internal semigroup, and let B(X,Σ×2)∃
denote the Boolean subalgebra closed under quotients of P(Σ+) generated by the family
{L∃ | L ∈ B(X,Σ× 2)}. Then B(♦X,Σ) coincides with the Boolean algebra generated by the
union of B(X,Σ) and B(X,Σ× 2)∃.

The proof of this theorem hinges on the fact that the first components of the recognising
morphisms evaluate to non-empty subsets. An analogous statement can be formulated for
monoids, but we would have to restrict the recognising morphisms when defining B(♦X,Σ).

5 A variant of the Schützenberger product for two spaces

Given two monoids (M, ·), (N, ·), the Schützenberger product ♦(M,N) can be defined as the
monoid Pfin(M ×N)×M ×N whose operation is given by

(S,m1, n1) · (T,m2, n2) := (m1 · T ∪ S · n2,m1 ·m2, n1 · n2).

Now, consider two Boolean spaces with internal monoids (X,M) and (Y,N). We define the
space ♦(X,Y ) as the product V(X × Y )×X × Y . It is clear that the monoid ♦(M,N) is
dense in ♦(X,Y ). Moreover, the left action of ♦(M,N) on itself can be extended to ♦(X,Y )
by setting, for any (S,m1, n1) ∈ ♦(M,N),

λ(S,m1,n1) : ♦(X,Y )→ ♦(X,Y ), (Z, x, y) 7→ (m1Z ∪ Sy, λm1(x), λn1(y)), (9)

where

m1Z := {(λm1(x), y) ∈ X × Y | (x, y) ∈ Z} and Sy := {(m,λn(y)) ∈ X × Y | (m,n) ∈ S}.

Similarly, the right action can be defined by

ρ(S,m1,n1) : ♦(X,Y )→ ♦(X,Y ), (Z, x, y) 7→ (Zn1 ∪ xS, ρm1(x), ρn1(y)), (10)

where

Zn1 := {(x, ρn1(y)) ∈ X × Y | (x, y) ∈ Z} and xS := {(ρm(x), n) ∈ X × Y | (m,n) ∈ S}.

It is easy to see that we obtain a biaction of ♦(M,N) on ♦(X,Y ). Furthermore,

I Lemma 15. The biaction of ♦(M,N) on ♦(X,Y ) defined in (9) and (10) has continuous
components. Thus (♦(X,Y ),♦(M,N)) is a Boolean space with an internal monoid.

The next three results establish the connection between concatenation of possibly non-regular
languages and the Schützenberger product of Boolean spaces with internal monoids. We
thus extend the theorems of Schützenberger [19] and Reutenauer [18].
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I Theorem 16 (Reutenauer’s theorem, global version). Consider Boolean spaces with internal
monoids (X,M) and (Y,N). Let L be the Boolean algebra generated by all the Σ∗-languages
of the form L1, L2 and L1aL2, where L1 (respectively L2) is recognised by X (respectively Y )
and a ∈ Σ. Then a Σ∗-language is recognised by X♦Y if, and only if, it belongs to L.

Proof Idea. Suppose the languages L1, L2 are recognised by morphisms φ1 : (β(Σ∗),Σ∗)→
(X,M) and φ2 : (β(Σ∗),Σ∗)→ (Y,N), respectively, and fix a ∈ Σ. By abuse of notation, call
φ1 × φ2 : β(Σ∗ × {a} × Σ∗)→ X × Y the unique continuous extension of the product map
Σ∗ × {a} × Σ∗ → X × Y whose components are (w, a,w′) 7→ φ1(w) and (w, a,w′) 7→ φ2(w′).
Let ζa : β(Σ∗)→ V(X × Y ) be the continuous function induced by the diagram

β(Σ∗ × {a} × Σ∗)

β(Σ∗) X × Y
βc φ1×φ2 (11)

just as for diagram (8), where c : Σ∗ × {a} ×Σ∗ → Σ∗ is the concatenation map (w, a,w′) 7→
waw′. One can prove that the map ζa is a morphism recognising L1, L2 and L1aL2.

Conversely, for any morphism 〈ζ, φ1, φ2〉 : (β(Σ∗),Σ∗) → (X♦Y,M♦N) and clopens
C1 ⊆ X, C2 ⊆ Y , we must prove that ζ−1(�(C1 × C2)) ∩ Σ∗ ∈ L. One observes that each

LC1×C2,a := {w ∈ Σ∗ | ∃u, v ∈ Σ∗ s.t. w = uav and φ1(u)ζ(a)φ2(v) ∈ �(C1 × C2)}

is in the Boolean algebra L. Then ζ−1(�(C1 × C2)) ∩ Σ∗ =
⋃
a∈Σ LC1×C2,a. J

The next corollary follows at once by Theorem 16, by noting that L1L2 =
⋃
a∈Σ L1a(a−1L2)

whenever L2 does not contain the empty word and L1L2 =
⋃
a∈Σ L1a(a−1L2)∪L1 otherwise.

I Corollary 17. The Boolean space with an internal monoid (♦(X,Y ),♦(M,N)) recognises
the concatention L1L2 of languages L1, L2 recognised by (X,M) and (Y,N), respectively.

Finally, the following local statement is a direct consequence of the proof of Theorem 16.

I Theorem 18 (Reutenauer’s theorem, local version). Consider morphisms φ1 : (β(Σ∗),Σ∗)→
(X,M) and φ2 : (β(Σ∗),Σ∗) → (Y,N). Let L be the Boolean algebra generated by all the
Σ∗-languages of the form L1, L2 and L1aL2, where L1 (respectively L2) is recognised by φ1
(respectively φ2) and a ∈ Σ. Then a Σ∗-language is recognised by the morphism

〈〈ζa〉a∈Σ, φ1, φ2〉 : β(Σ∗)→ V(X × Y )Σ ×X × Y

where ζa : β(Σ∗)→ V(X × Y ) is induced by diagram (11) if, and only if, it belongs to L.

6 Ultrafilter equations

Identifying simple equational bases for the Boolean algebras of languages recognised by
Schützenberger products, in terms of the equational theories of the input Boolean algebras,
is an important step in studying classes built up by repeated application of quantification or
language concatenation. See e.g. [17, 3] for examples of such work in the regular setting.

As a proof-of-concept and first step, we provide a fairly easy completeness result for the
Boolean algebra recognised by the local version of a Schützenberger product of a space with
the one element space. First we introduce notation for the dual construction, see Theorem 18.

ICALP 2016
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I Definition 19. Let B1 and B2 be Boolean algebras of Σ∗-languages closed under quotients.
We define the binary Schützenberger sum of B1 and B2 to be the Boolean algebra of languages

B1♦+B2 := 〈B1 ∪ B2 ∪ {L1aL2 | L1 ∈ B1, L2 ∈ B2, a ∈ Σ}〉.

Note that this Boolean algebra is also closed under quotients.

Let B ⊆ P(Σ∗) be a Boolean algebra closed under quotients. We give equations for B♦+2.
Recall that an equation for a Boolean subalgebra of P(Σ∗) is a pair µ ≈ ν, where µ, ν ∈ β(Σ∗),
and that L ∈ P(Σ∗) satisfies the ultrafilter equation µ ≈ ν provided

L ∈ µ if, and only if, L ∈ ν.

A Boolean subalgebra of P(Σ∗) satisfies an ultrafilter equation provided each of its elements
satisfies it. For background and more details on equations see e.g. [7, 9, 6]. Now, set

fa : Σ∗ ⊗ N→ Σ∗, (w, i) 7→ w(a@i) and fr : Σ∗ ⊗ N→ Σ∗, (w, i) 7→ w|i = w0 · · ·wi−1

where a ∈ Σ and w(a@i) denotes the word obtained by replacing the ith letter of the word
w = w0 · · ·w|w|−1 by an a.

The intuition is that the extension βfa will allow us to factor an ultrafilter at an occurrence
of the letter a, whereas the extension βfr gives us access to the prefix of this factorisation.

I Definition 20. Let E(B♦+2) denote the set of all equations µ ≈ ν so that
µ ≈ ν holds in B;
for each γ ∈ β(Σ∗ ⊗ N) so that µ = βfa(γ), there exists δ ∈ β(Σ∗ ⊗ N) such that
ν = βfa(δ) and the equation βfr(γ) ≈ βfr(δ) holds in B;
for each δ ∈ β(Σ∗⊗N) so that ν = βfa(δ), there exists γ ∈ β(Σ∗⊗N) such that µ = βfa(γ)
and the equation βfr(γ) ≈ βfr(δ) holds in B.

I Theorem 21. The ultrafilter equations in E(B♦+2) characterise the Boolean algebra B♦+2.

The proof of Theorem 21 relies on the following two lemmas.

I Lemma 22. Let γ ∈ β(Σ∗ ⊗ N). If µ = βfa(γ) and L ∈ βfr(γ), then LaΣ∗ ∈ µ.

I Lemma 23. Let F ⊆ P(Σ∗) be a proper filter, µ ∈ β(Σ∗) and a ∈ Σ. If LaΣ∗ ∈ µ for all
L ∈ F , then there exists γ ∈ β(Σ∗ ⊗ N) such that µ = βfa(γ) and F ⊆ βfr(γ).

Proof Idea for Theorem 21. Soundness follows easily from the lemmas. For completeness
notice that, by repeated use of compactness, K ∈ P(Σ∗) belongs to B♦+2 if and only if for
each µ ∈ K̂, the clopen K̂ extends the set

Cµ :=
⋂
{L̂ | L ∈ B, L ∈ µ} ∩

⋂
{L̂aΣ∗ | a ∈ Σ, L ∈ B, LaΣ∗ ∈ µ}

∩
⋂
{(L̂aΣ∗)c | a ∈ Σ, L ∈ B, LaΣ∗ /∈ µ}.

Finally one shows, again using the lemmas, that µ ≈ ν ∈ E(B♦+2) for any ν ∈ Cµ. J

7 Conclusion

The concepts of recognition and of syntactic monoid, stemming from the algebraic theory
of regular languages, inherently arise in the setting of Stone/Priestley duality for Boolean
algebras and lattices with additional operations, see [7]. Reasoning by analogy, this led in
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[8] to generalisations of recognition and syntactic objects for arbitrary languages of finite
words. In loc. cit. this was achieved in the setting of monoids equipped with uniform space
structures, the so called semiuniform monoids. In this paper we naturally arrive at an
isomorphic notion of recogniser – Boolean spaces with internal monoids – which is however
more amenable to existing tools from duality theory.

Our first contribution is setting up the right framework that allows us to extend to the
non-regular setting algebraic constructions whose logical counterpart is adding a layer of
quantifier depth. We should mention that both the Schützenberger and the block product
are algebraic constructions that can be used for this purpose in the regular case. However,
for technical reasons, extending the former to Boolean spaces with internal monoids is more
natural. The unary Schützenberger product that we introduce (which actually does not
appear in the (pro)finite monoid literature to the best of our knowledge) arises naturally via
duality for the Boolean algebra with quotients generated by the languages L∃, for L coming
from some Boolean algebra B. Moreover, our framework can be easily extended to the case
of bounded distributive lattices, one would just need to use the Vietoris functor on spectral
spaces instead. A comparison between our unary Schützenberger product and the block
product introduced in [12] for finitely typed monoids remains a topic for future investigation.

Furthermore, Theorem 14 of Section 4.2 and Theorem 16 of Section 5, provide charac-
terisations of the languages accepted by our unary and binary Schützenberger products of
Boolean spaces. Finally, in Section 6 we derive a preliminary result on equations. Theorem 21
on equational completeness is by no means the final word, but rather a first stepping stone
in this direction. In the regular setting, as well as in the special cases treated in [9] and [4],
much smaller subsets of E(B♦+2) have been shown to provide complete axiomatisations. We
expect that a notion akin to the derived categories of profinite monoid theory [23] have to be
developed, and we expect the remainder of the Stone-Čech compactification to play a key
rôle in this.

Acknowledgements. We are grateful to Olivier Carton, Thomas Colcombet, Andreas Krebs
and Jean-Éric Pin for helpful discussions on the block and Schützenberger products, and to
Jean-Éric Pin for sharing an unpublished note on profinite equations and one-step products.
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Abstract
Contextuality in quantum physics provides a key resource for quantum information and computa-
tion. The topological approach in [Abramsky and Brandenburger, New J. Phys., 2011, Abramsky
et al., CSL 2015, 2015] characterizes contextuality as “global inconsistency” coupled with “local
consistency”, revealing it to be a phenomenon also found in many other fields. This has yielded a
logical method of detecting and proving the “global inconsistency” part of contextuality. Our goal
is to capture the other, “local consistency” part, which requires a novel approach to logic that is
sensitive to the topology of contexts. To achieve this, we formulate a logic of local inference by
using context-sensitive theories and models in regular categories. This provides a uniform frame-
work for local consistency, and lays a foundation for high-level methods of detecting, proving,
and moreover using contextuality as computational resource.
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1 Introduction

Quantum physics provides quantum computing with immense advantage over classical
computing. Among its non-classical properties, non-locality is known to be a basis for
quantum communication (see [19]). It is in fact a special case of a property called contextuality,
which recent studies [22, 10] suggest is an essential source of the computational power of
quantum computers. This motivates the search for structural, higher-level expressions of
contextuality that are independent of the formalism of quantum mechanics.

The conception of contextuality that originated in [11] exploits the structure of presheaf :
As was shown in [11], a certain type of contextuality of a quantum system amounts to the
absence of global sections from presheaves modelling the behaviors of the system. The recent,
“sheaf-theoretic” approach [3] expands this insight by viewing contextuality in more general
terms, as a matter of topology in data of measurements and outcomes: A wider range of
contextuality is then characterized as the “global inconsistency” of the “locally consistent”.
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This has on the one hand shown that contextual phenomena can be found in various other
fields such as relational database theory (see [1]), and on the other hand made it possible to
apply various tools – sheaf theory, cohomology, linear algebra, for instance – to contextuality.
One idea that has emerged is to formulate contextuality argument in logical terms [2]: One
describes a presheaf model using logical formulas, and proves its contextuality by deriving
contradiction from the formulas.

This method, however, only shows the global inconsistency of a given set of formulas; we
know them to be locally consistent only because they describe a locally consistent model
that is given. Nonetheless, when designing ways of exploiting contextuality, we may well
first obtain a set of formulas or a specification, and then check if there is a model satisfying
it. This requires a logic in which consistency means local consistency. The chief goal of
this paper is to deliver such a new logic of local inference. The two logics – one for global
inconsistency and the other for local consistency – together lay a foundation for high-level
logical methods of not only showing but also using contextuality as resource.

Section 2 reviews the sheaf approach to contextuality, which takes presheaves valued in
Sets. Then section 3 defines what we call “inchworm logic”, a novel logic of local inference
for contextual models. We formulate this on the basis of regular logic, since its vocabulary
captures the essence of local inference. Semantics is provided for this logic in section 4, where
we generalize Sets-valued presheaf models to ones valued in any regular category S. This
encompasses cases that prove useful and powerful in applications: E.g., presheaves of abelian
groups, R-modules, etc. serve the purpose of cohomology; indeed, Čech cohomology is used
to detect the contextuality of Sets-valued presheaves [2]. This paper gives a uniform way of
using S-valued presheaves directly as models of contextual logic.

2 Contextual Models

We first review the idea behind the formalism of [2], stressing that it applies to more settings
than just quantum ones. The idea captures contextuality as a matter of topological nature,
which we illustrate with a simplicial formulation equivalent to the presheaf formulation of [2].
We also present a modification of the latter that can readily be generalized in section 4.

2.1 Topological Models for Contextuality
The formalism of [3] concerns variables and values in general. Their bare-bones structure
consists of a set X of variables and, for each x ∈ X, a set Ax of possible values of x. So we
have an X-indexed family of sets Ax. This can model various settings in which we make
queries against a system and it answers, as observed in [1, 2]; e.g.,

We measure properties x ∈ X of a physical system and it gives back outcomes a ∈ Ax.
A relational database has attributes x ∈ X, and a ∈ Ax are possible data values for x.
x ∈ X are sentences of propositional logic and a set of models assign to them boolean
values a ∈ Ax = 2. Or x ∈ X may simply be boolean variables.

We often make a query regarding several variables in combination; a set U ⊆ X of variables
the query concerns forms a context in which the system gives back a result. Contexts play
essential rôles in the following two kinds of constraints, (a) on answers and (b) on queries.

(a) When we make a query in a context U , the system returns (one or a set of) tuples
s ∈

∏
x∈U Ax of values. It then has the subset AU ⊆

∏
x∈U Ax of “admissible” tuples that

can be part of query results, and it is often the information on AU that we want. E.g.,
From a relational database we retrieve data with an attribute list U , and the database
returns the relation AU on sets Ax (x ∈ U) as a table.
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Given a set of models and a set U of sentences, AU is the set of combinations of values
that U can take; e.g., a pair ϕ,¬ϕ ∈ U only take values (1, 0) or (0, 1).
We may measure a physical system in various states and find that some set U of quantities
always satisfy a certain equation that characterizes AU .

(A tuple s ∈
∏
x∈U Ax is a dependent function, so it is formally a set of the form { (x, s(x)) |

x ∈ U and s(x) ∈ Ax }; but we may refer to it as “(s(x), s(y), . . . ) over (x, y, . . . )”.)
(b) We have the family C ⊆ PX of contexts in which queries can be made and answered.

We may not be able to make a query in a context V ⊆ X (i.e. V /∈ C) for reasons such as:
V may have too many variables to deal with feasibly.
A database schema may have no table encompassing all the attributes in V .
Quantum mechanics may deem it impossible to measure all the properties in V at once.

In these examples, if queries can be made in a context U , they can be in any V ⊆ U ; we
also assume that queries can be made in {x} for any x ∈ X, but only in finite U . So C is
an (abstract) simplicial complex on X, i.e. a ⊆-downward closed subfamily of PfinX with⋃
U∈C U = X. Also, if a tuple s of values is admissible, so is any t ⊆ s. Hence, whenever

V ⊆ U ∈ C, the projection of tuples −|V :
∏
x∈U Ax →

∏
x∈V Ax :: s 7→ s|V restricts to

AV⊆U : AU → AV . Thus A : Cop → Sets forms a presheaf on the poset C.
In fact, A is a separated presheaf. Generally, for any subfamily C of PX closed under

binary intersection, whenever
⋃
i Ui = U ∈ C for Ui ∈ C, a presheaf P on C has the map

〈PUi⊆U 〉i : PU →
∏
i PUi

:: s 7→ (s|Ui
)i land in the set of matching families for (Ui)i,

Match(Ui)i,P = { (ti)i ∈
∏
i PUi

| tj |Uj∩Uk
= tk|Uj∩Uk

for every pair j, k }.

Then P is called separated if each of these 〈PUi⊆U 〉i is injective, and a sheaf if each of
those 〈PUi⊆U 〉i : PU → Match(Ui)i,P is bijective (see [17]). Yet, on a simplicial complex C,
separated presheaves and sheaves have simpler descriptions:

I Fact 1. A presheaf P on a simplicial complex C is a sheaf iff PU =
∏
x∈U Px for all U ∈ C.

And P is separated iff it is a subpresheaf of a sheaf, i.e. iff PU ⊆
∏
x∈U Px for all U ∈ C.

This shows that our A above is a separated presheaf, but not generally a sheaf. So let us
write sPsh(C) for the full subcategory of SetsC

op
of separated presheaves. Note that every

sheaf F has F∅ = 1, a singleton. A separated presheaf P has P∅ = 1, too, unless it is the
empty presheaf U 7→ ∅, i.e. the model is inconsistent in every context (hence modelling, e.g.,
a physical system that never produces outcomes in any context of measurements).

2.2 Presheaves and Bundles
The constraints (a) and (b) above are, indeed, matters of topology; this idea will be useful in
subsection 2.3. Given a separated presheaf A as in subsection 2.1, its underlying family of
X-indexed sets (Ax)x∈X is equivalent to a set over X, viz. π :

∑
x∈X Ax → X :: (x, a) 7→ x,

by SetsX ' Sets/X. The base X comes with a simplicial complex C, but so does
∑
x∈X Ax,

taking tuples s ∈ AU as simplices, i.e. A =
⋃
U∈C AU . And π is a simplicial map, or a bundle

of simplicial complexes, since s ∈ AU ⊆ A implies π[s] = U ∈ C. On the other hand, any
given bundle π : A → C has a family of AU = { s ∈ A | π[s] = U } and AV⊆U : s 7→ s|V .

A simplicial map π : A → C is called non-degenerate if π|s is injective for every s ∈ A.
Our π above is non-degenerate, because every s ∈ AU is a local section of the bundle π,
meaning s : U →

∑
x∈X Ax such that π ◦ s = 1U . Let us write Simp and ndSimp for the

categories of simplicial maps and of non-degenerate ones, respectively. It is easy to check
that for every simplicial complex C, the slice category ndSimp/C is a full subcategory of
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Figure 1 Bundles for (c) the Hardy model and (d) the PR-box

Simp/C; i.e., it is the category of non-degenerate bundles and simplicial maps over C. Then,
extending SetsX ' Sets/X, the correspondence described above gives

I Fact 2. sPsh(C) ' ndSimp/C for any simplicial complex C.

So here is a topological reading of (a) and (b). Each U ∈ C is a local, small enough region
of the space X of variables. The topology on the space A of values then distinguishes those
tuples s ∈

∏
x∈U Ax in AU from the others and deems the former to be continuous sections.

We refer to objects of sPsh(C) and ndSimp/C interchangeably as topological models.

2.3 Contextuality in Physics, Databases, and More
Given a non-degenerate bundle π : A → C over a simplicial complex C on X, consider a
global section of it, i.e. g ∈

∏
x∈X Ax such that g|U ∈ AU for all U ∈ C. It is an assignment

of values to all the variables that satisfies every constraint on combinations of values. E.g.,
in classical logic, the models are exactly the global sections; so the consistency of a sentence
x means that (x, 1) is part of a global section. Then, in the physical setting, it may seem
natural to similarly think of global sections g as states of the system, assigning values to
all the quantities – so, although we can only make a query locally in a context U ∈ C, the
system in a state g actually has a value g(x) assigned to every quantity x, and the answer we
receive in the context U is simply g|U . This assumption, that any section we observe is part
of a context-independent global section, holds not just in classical logic but also in classical
physics – but breaks down in quantum physics, precisely when contextuality arises.

Figure 1 shows “Bell-type” scenarios in which Alice and Bob measure properties of a
system, perhaps a quantum one. The base C expresses constraints of type (b) above: Alice
can make at most one of two measurements a1 and a2 at a time, so she chooses one; similarly
Bob chooses from b1 and b2 – so there are four possible combinations of measurements,
indicated by the four edges of C. Alice and Bob repeat measurements in different contexts,
and learn that each x ∈ X = {a1, a2, b1, b2} has two possible outcomes 0 and 1, but that
some combinations of outcomes are never obtained. A expresses these constraints, of type
(a), with edges indicating possible combinations. E.g., A of (c) deems every joint outcome of
(a1, b1) possible, with A{a1,b1} = 2× 2; but (0, 0) is not a possible joint outcome of (a2, b2).

The models in Figure 1 all violate the classical assumption above, and are examples of

I Definition 3 ([2]). A topological model is said to be logically contextual if not all of its
local sections extend to global ones, and strongly contextual if it has no global section at all.

(c) of Figure 1 represents an example of logical contextuality due to [9] that is realizable
in quantum physics. It has several global sections, e.g. the one marked in green; call it g. So,
when Alice and Bob measure (a1, b1) and observe (0, 0), the classical explanation is possible
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that the system was in the state g and had outcomes g(x) assigned to all the measurements
x ∈ X, and that Alice and Bob have simply retrieved that information on U . On the other
hand, the local section in red, (1, 1) over (a1, b1), does not extend to any global section. This
means that the classical explanation is simply impossible for this joint outcome. Furthermore,
the classical explanation is never possible in the strongly contextual (d). This model, called
the PR box [21], is not quantum-realizable (though it plays an important rôle in the quantum
information literature), but quantum physics exhibits many instances of strong contextuality.

The upshot is that contextuality consists in global inconsistency coupled with local consist-
ency: A section s ∈ AU is consistent locally, in the sense of satisfying the constraint on query
results in the context U , but it may be inconsistent globally, in the sense of contradicting all
the other constraints and thereby failing to extend to a global section.

The general definition of contextuality in terms of global sections can also be applied to
relational databases: Contextuality then corresponds exactly to the absence of a universal
relation [1]. In fact, the natural join ./U∈C AU = { g ∈

∏
x∈X Ax | g|U ∈ AU for all U ∈ C }

of relations AU (which is the largest of universal relations if there are any) is, simply by
definition, the set of global sections.

2.4 No-Signalling Principle
Not just there being local sections, local consistency involves more – viz. a constraint that is
called the no-signalling principle in the physical setting [7]. For a topological model A, it
amounts to the condition that every AU⊆V : AV → AU :: s 7→ s|U is a surjection.

An example violating no-signalling is (e) of Figure 1: A{b1}⊆{a2,b1} : A{a2,b1} → A{b1} is
not surjective. Suppose Alice and Bob make measurements, Bob chooses b1, and he observes
1, which is not in the image of A{b1}⊆{a2,b1}. This means that Bob has received the signal
from Alice (no matter how far away she may be!) that she has chosen a1 and not a2.

To see why no-signalling should be part of local consistency, regard A in (e) as representing
a relational database. It has tables A{a1,b1} and A{a2,b1}; but, when queried about the
attribute b1, they yield different results of projection, differing in whether 1 is in or not.
Thus, no-signalling means the consistency of projections (see [1]). Indeed, as we will see in
subsection 4.3, no-signalling means a sort of coherence of A as a semantic model of logic.

I Definition 4. We say that a separated presheaf A : Cop → Sets is no-signalling if it satisfies
(1), and that a non-degenerate bundle π : A → C is no-signalling if it satisfies (2):
(1) Every AU⊆V : AV → AU is a surjection.
(2) If π[s] ⊆ U for s ∈ A and U ∈ C, then there is some t ∈ A such that s ⊆ t and π[t] = U .

Clearly, (1) and (2) coincide via sPsh(C) ' ndSimp/C. Hence their full subcategories
of no-signalling models are equivalent. Note that (1) or (2) implies AU 6= ∅ for all U ∈ C, if
A∅ 6= ∅. So, while the empty model is no-signalling, all the other, nonempty no-signalling
models (which are, essentially, the “empirical models” of [2]) are locally consistent.

3 Contextual Logics

3.1 Contextuality Argument: Logic of Global Inconsistency
Viewing AU as representing a constraint on assignments of values to variables x ∈ U , we
can describe a topological model A using formulas in contexts U ∈ C of variables. E.g., the
assignments of (0, 0) and (1, 1) to (x, y) satisfy the equation x⊕ y = 0, where ⊕ is for XOR,
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i.e. addition modulo 2; the assignments (0, 1) and (1, 0) satisfy x⊕ y = 1. Therefore the PR
box, (d) of Figure 1, satisfies the following set of equations:

a1 ⊕ b1 = 0, a1 ⊕ b2 = 0, a2 ⊕ b1 = 0, a2 ⊕ b2 = 1 (3)

These are in fact inconsistent: Their right-hand sides sum to 1, but the left to 0 regardless
of the values of variables (since each variable occurs twice). This is to say that no global
assignment of values satisfies all the constraints of AU , i.e., that A is strongly contextual.

A family of arguments of this sort, using XOR (or parity) equations, has been given to
show the strong contextuality of a range of quantum examples; the first instance in literature
was in [18] for the GHZ state [8]. This sort of so-called “all-vs-nothing argument” was
formalized and generalized in [2]. On the other hand, one may also adopt more expressive
languages, such as Boolean formulas, to express a wider range of constraints.

Formulas can also be used to show logical (and not strong) contextuality. E.g., the Hardy
model, (c) of Figure 1, satisfies the antecedents of

¬a1 ∨ ¬b2, ¬a2 ∨ ¬b1, a2 ∨ b2 ` ¬a1 ∨ ¬b1 (4)

but not the consequent, due to the contextual section (1, 1) over (a1, b1). This shows that
this local section can be part of no global assignment satisfying all the constraints.

Yet this kind of contextuality argument needs some reflection. The inconsistency of a
set Γ of formulas, Γ ` ⊥, does not mean that Γ has no model; in fact, the PR box, (d) of
Figure 1, satisfies all the equations in (3). In the same vein, the derivability Γ ` ϕ does not
mean that every model of Γ satisfies ϕ; the Hardy model (c) satisfies Γ but not ϕ of (4). So
the logic of ` here is not sound with respect to contextual models – indeed, that is the whole
point of the argument. Invalidating ` precisely means contextuality: Γ ` ⊥ really means that
no global section satisfies Γ; it is why any model of Γ has no global section. Γ ` ϕ means
that every global section satisfying Γ satisfies ϕ; it is why any model satisfying Γ but not ϕ
must have local sections (viz. ones not satisfying ϕ) that fail to extend to global sections.

In this sense, the logic of ` here is a “global logic” of global sections. We should then
note that this logic, by itself, says very little about local consistency. To see this, consider:

a1 ⊕ b1 = 0, a1 ⊕ b1 = 1 (5)

This set of equations is, like (3), inconsistent. It is, however, inconsistent not just globally
but also locally: Not only does no global section satisfy both equations, no local section over
the context {a1, b1} does; a model A satisfies (5) only if A{a1,b1} = ∅ (the physical system
can give no outcomes to the measurements a1, b1). Yet the global logic does not tell us
why (3) is locally consistent whereas (5) is not. Thus the kind of argument above is really a
“global-inconsistency argument”: It shows contextuality only because we already know the
formulas to be locally consistent, having obtained them as descriptions of some model.

3.2 “Inchworm Logic” of Local Inference
Γ ` ⊥ of (5) means local inconsistency over {a1, b1} since both equations in Γ are in the
context {a1, b1}. Turning Γ, ϕ ` ⊥ into the form of inference, if Γ, ϕ are in the context U ,
Γ ` ¬ϕ gives local entailment over U . E.g., the antecedents of a1 = 0, b1 = 0 ` a1 ⊕ b1 = 0
rule out all the sections over (a1, b1) except (0, 0), which satisfies the consequent.

Indeed, local inference can be carried out across different contexts, validly in no-signalling
models, subject to one constraint. To see this, expand the base C in Figure 1 from (f) of
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Figure 2 to (g), where the four triangles are in C – so a new experimenter, Charlie, can make
his measurement c along with Alice and Bob.

Now rewrite the locally consistent (3) in the inference form (6) (we replace x ⊕ y = 0
with simpler x = y) and compare it to (7):

a1 = b1, a1 = b2, a2 = b1 ` a2 = b2 (6)
a1 = b1, a1 = c, a2 = b1 ` a2 = c (7)

(7) is valid in no-signalling models, whereas (6) is not (the PR box is a countermodel, as it is
a model for (3)). The only difference is c replacing b2 – this tiny difference, however, enables
us to obtain (7) in the following two steps:

a1 = b1 a1 = c
U

b1 = c a2 = b1
Va2 = c

(8)

The first step is within the context U = {a1, b1, c}, hence valid locally: Every section over U
satisfying the antecedents satisfies the consequent. Similarly, the second step is valid within
V = {a2, b1, c}. The key aspect is that the formula in the middle, b1 = c, can be in the
context U ∩ V and so in U or in V . The upshot is that information gets passed on from a
larger context U to a smaller U ∩ V and then to another larger V – just like the locomotion
of an inchworm, if (h) of Figure 2 helps to visualize it. Crucially, the no-signalling property
is essential when the inchworm moves from a larger context to a smaller: E.g., the first step
of (8) concludes that every section over {a1, b1, c} satisfies b1 = c; but then, in the absence
of no-signalling, there may be a section over {b1, c} violating b1 = c without extending to
{a1, b1, c}. We will discuss the semantic rôle of no-signalling further in subsection 4.3.

3.3 Formalizing the Inchworm
We formalize and generalize the idea of “inchworm inference”. As in the example in subsec-
tion 3.2, an inchworm logic is obtained by constraining a global logic. We assume this logic
to be (at least) regular, i.e. to have >, ∧, and ∃, for the reasons explained shortly.

I Definition 5. Let L be a language of regular logic (or richer) whose variables include X.
For each x ∈ X, write Tx for the type of x, and then, for each x̄ ⊆ X, write Φx̄ for the set of
formulas in the context x̄ : Tx̄. Given a simplicial complex C on X, the C-contextual fragment
of L is ΦC =

⋃
U∈C ΦU . By a C-contextual language LC, we simply mean a pair of such L

and ΦC . Now let T be a regular theory in L given by an entailment relation ` (which is not
required to be binary). Then the inchworm fragment of ` in LC is the entailment relation
`C on ΦC defined inductively by the following. We write ΓU = Γ ∩ ΦU .
(9) Γ `C ϕ if there is U ∈ C such that ϕ ∈ ΦU and ΓU ` ϕ.

(10) If Γ `C ϕ and ∆, ϕ `C ψ then Γ,∆ `C ψ.
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(9) expresses the idea that ` within a single context is valid locally as well. In (10), note
that the first two instances of `C may be witnessed by different contexts. Observe also that
Γ `C ϕ entails Γ ` ϕ; thus `C is a fragment of `.

I Example 6. Let L have T as a basic type; 0, 1 be constants of type T ; and ⊕ be a function
symbol of type ⊕ : T × T → T . Let Tx = T for all x ∈ X. So, e.g., x : T, y : T | x⊕ y = 1
makes sense, and is in Φ{x,y}. This gives equations of the kind relevant to the examples in
subsection 3.1. Note that ΦC is a union. E.g., for (f) of Figure 2, ai = 0 is in Φ{ai} ⊆ ΦC for
both i = 1, 2, but a1 = 0 ∧ a2 = 0 is not in ΦC since {a1, a2} /∈ C.

We assume L to have > and ∧, so that pieces of information can be combined within
the same context. The inchworm moves from a smaller context U to a larger V via the
order embedding i : (ΦU ,`U ) ↪→ (ΦV ,`V ), and from V to U via the left adjoint ∃V \U of i.
Then ∃V \U a i means that, for any ϕ ∈ ΦV , ∃V \U . ϕ ∈ ΦU encapsulates all and only the
information that ϕ entails on U . We also have ∃V \U ◦ i ∼= 1, so a piece of information that
can be both about U and about V undergoes no change when carried across U and V .

4 Contextual Semantics in Regular Categories

Our definition of model using a sheaf generalizes by replacing Sets with any category S with
finite limits, since the base C is a simplicial complex. Yet, for the sake of no-signalling, we
moreover need S to be regular. References on regular categories and their categorical logic
include [20, 5, 12]. We then lay out how to model the inchworm logic in S.

4.1 Topological Models in Regular Categories
Let C be a simplicial complex on a set X, and S be a category with finite limits. By a
presheaf on C valued in S, we mean any contravariant functor P : Cop → S. Then the
definitions of separated presheaf and sheaf generalize straightforwardly to

I Definition 7. We say that an S-valued presheaf P on C is separated if the arrow 〈PUi⊆U 〉i :
PU →

∏
i PUi is monic whenever

⋃
i Ui = U , and a sheaf if, whenever

⋃
i Ui = U , 〈PUi⊆U 〉i is

an equalizer as follows, where pj :
∏
i PUi

→ PUj
and pk :

∏
i PUi

→ PUk
are the projections.

PU
∏
i PUi

∏
j,k PUj∩Uk

〈PUi⊆U 〉i 〈PUj∩Uk⊆Uj ◦ pj〉j,k

〈PUj∩Uk⊆Uk
◦ pk〉j,k

Again, every sheaf F has F∅ = 1, the terminal object of S, and every separated presheaf
P has P∅� 1. Also, for simpler descriptions, Fact 1 generalizes to

I Fact 8. An S-valued presheaf P on a simplicial complex C is a sheaf iff PU =
∏
x∈U Px

for all U ∈ C. And P is separated iff it is a subpresheaf of a sheaf, i.e. iff each 〈P{x}⊆U 〉x∈U :
PU →

∏
x∈U Px is monic, i.e. iff each PU is a relation in S on (Px)x∈U .

Next we define the no-signalling property for S-valued separated presheaves. In doing so,
we need to choose from several generalizations of the notion of surjection in (1) of Definition 4;
the one that serves our purpose is the one that provides semantics for ∃ : ΦV � ΦU : i in
the inchworm logic. This is the principal reason we need S to be regular; then, in S, every
arrow f : C → D gives rise to the adjoint pair ∃f a f−1, ∃f : SubS(C) � SubS(D) : f−1

(e.g. [5, Lemma 2.5]), and moreover ∃f ◦ f−1 = 1Sub(D) (and so f−1 is an order embedding)
if f is a regular epi (essentially, [12, Corollary D1.2.8]). Therefore the right generalization of
Definition 4 is the following Definition 9, with an alternative description in Fact 10.
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I Definition 9. A separated presheaf A on a simplicial complex C valued in a regular category
S is said to be no-signalling if every AU⊆V : AV → AU is a regular epi.

I Fact 10. Let F be a sheaf on a simplicial complex C. Then a family (iU : AU � FU )U∈C of
subobjects forms a subpresheaf of F , and hence a separated presheaf, iff AV 6 FU⊆V −1(AU ),
or equivalently ∃FU⊆V

(AV ) 6 AU , whenever U ⊆ V ∈ C. Moreover, a separated presheaf
i : A� F is no-signalling iff ∃FU⊆V

(AV ) = AU whenever U ⊆ V ∈ C.

4.2 Global Inconsistency in Regular Categories
Definition 3 of contextuality for Sets-valued presheaves can now extend to ones valued in
any regular category S. Let A be an S-valued separated presheaf on a simplicial complex C
on X. It is a subpresheaf of a sheaf F on C. In fact, let us assume, just in this subsection,
that X is finite (or that S is complete); then, by Fact 8 (or a straightforward generalization),
F extends uniquely to a sheaf on PX, viz. F : U 7→

∏
x∈U Fx. Then the set of global sections

of A – i.e. the natural join ./A of the relations AU ⊆ FU – generalizes to the S-valued case:

I Fact 11. Given any S-valued separated presheaf A, let F be a sheaf such that i : A� F

and, using AU as predicates in the internal language of S, define

./A = J x̄ : FX |
∧
U∈C AU (FU⊆X x̄) K =

∧
U∈C FU⊆X

−1(AU )� FX .

Then ./A is the limit of A as a diagram in S.

For each U ∈ C, write ρU : ./A→ AU for the restriction of FU⊆X to ./A; it generalizes
the restriction of global sections to local sections over U . Definition 3 then extends to

I Definition 12. An S-valued separated presheaf A is said to be logically contextual if not
every ρU : ./A→ AU is a regular epi. A is moreover said to be strongly contextual if ./A is
not well-supported, i.e. if the unique arrow !./A : ./A→ 1 is not a regular epi.

Rewriting this in the internal language of S, the strong contextuality of A means that
S fails ∃x̄ : FX . ./A(x̄), i.e., that no global section x̄ satisfies all the constraints AU . The
logical contextuality means that x̄ : FV | AV (x̄) ` ∃ȳ : FX\V . ./A(〈x̄, ȳ〉) fails in S for some
V ∈ C, i.e., that not every local section x̄ over V satisfying AV extends to a global section
〈x̄, ȳ〉 satisfying all AU .

4.3 Contextual Interpretation
In Definition 5 we defined a contextual language LC and logic `C simply as a global language
L and logic ` paired with their contextual fragments. Our definition of an interpretation of
them in regular categories goes in parallel.

I Definition 13. Given a contextual language LC = (L,ΦC), an interpretation of it in a
regular category S is simply an interpretation J−K of L in S. The images of Tx and ΦU then
play special rôles: For each x̄ ∈ C, we have

JTx̄K =
∏
x∈x̄JTxK; therefore JT−K : Cop → S forms a sheaf by Fact 8.

Moreover, J x̄ : Tx̄ | ϕ K� JTx̄K for each ϕ ∈ Φx̄.
So we may write (J−K, F ) for the interpretation J−K, where F is the sheaf F : x̄ 7→ JTx̄K. We
may also write JϕKx̄� Fx̄ for J x̄ : Tx̄ | ϕ K.

I Example 14. Expanding Example 6, take J−K in Sets with JT K = 2 and the obvious J0K,
J1K, and J⊕K. Then we have a sheaf JT−K : U 7→ 2U and, e.g., Jx : T, y : T | x⊕ y = 0 K�
JT{x,y}K = 2× 2 is an equalizer of J⊕K, J0K ◦ ! : 2× 2→ 2.
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An interpretation J−K of L is said to model a sequent Γ ` ϕ if some finite ∆ ⊆ Γ has∧
ψ∈∆JψKU 6 JϕKU . This makes sense whether U ∈ C or not. Nevertheless, if U /∈ C, then∧
ψ∈∆JψKU 6 JϕKU only means the global entailment and not the local one. Take, e.g.,

I Example 15. Expanding Example 14, the model A of the PR box, (d) of Figure 1, is a
subpresheaf of JT−K described by (3): E.g. A{ai,b1} = J a1 ⊕ b1 = 0 K{a1,b1} � 2× 2. Then
the global inconsistency, and strong contextuality in particular, of the equations Γ in (3)
means ./A =

⋂
ϕ∈ΓJϕKX ⊆ J⊥KX = ∅. Yet Γ is locally consistent, modelled by the PR box.

This is why, to model the inchworm logic of local inference, we need a presheaf on different
contexts U ∈ C, as opposed to an intersection in a single context V /∈ C, to the left of 6.

I Definition 16. Suppose (J−K, F ) is an interpretation of a contextual language LC . Then
let us say that a subpresheaf A� F is a pre-model in (J−K, F ) of a formula ϕ ∈ ΦU in a
context U ∈ C, and write A �U ϕ, to mean that AU 6 JϕKU .

I Fact 17. If A 6 B for subpresheaves A and B of F , then B �U ϕ implies A �U ϕ.

Note, however, that this notion of pre-model is context-dependent and concerns formulas
in contexts as opposed to formulas per se. When U ⊆ V ∈ C and ϕ ∈ ΦU , Fact 10 yields
(11) A �U ϕ entailsA �V ϕ (because ∃FU⊆V

(AV ) 6 AU 6 JϕKU entailsAV 6 FU⊆V −1JϕKU =
JϕKV ).

(12) Suppose A is no-signalling. Then A �V ϕ entails A �U ϕ. (This is because AV 6
JϕKV = FU⊆V

−1JϕKU implies AU = ∃FU⊆V
(AV ) 6 JϕKU .)

If A is not no-signalling, (12) may fail, and then inchworm inference fails. E.g., in (8), the
first step purports to show that, if A �U a1 = b1 and A �U a1 = c, then A �U b1 = c and so
A �U∩V b1 = c; but the “and so” step here requires (12). In this sense, no-signalling means
the context-independent coherence of a presheaf as a model of formulas. Therefore

I Definition 18. A pre-model A is called a (no-signalling) model if it is no-signalling. Then
we say that A is a model of a formula ϕ ∈ ΦC , and write A � ϕ, to mean that A is a pre-model
of ϕ in any suitable context, i.e., that AU 6 JϕKU for every U ∈ C such that ϕ ∈ ΦU .

I Theorem 19. Let J−K be an interpretation of LC that models a theory ` in L. Then the
inchworm logic `C of ` is sound with respect to the no-signalling models in J−K: If Γ `C ϕ,
then A � ϕ for every no-signalling model A of Γ in J−K.

4.4 The Inchworm and No-Signalling
Subsection 4.3 primarily concerned how given presheaves modelled formulas. We showed in
particular that no-signalling validated inchworm inference. Let us discuss, on the other hand,
how the description by given formulas yields a model. This shows the other direction of the
connection between no-signalling and the inchworm, from the latter to the former.

We say a set Γ ⊆ ΦC of formulas of LC is C-finite if ΓU is finite for each U ∈ C.

I Definition 20. Let (J−K, F ) be an interpretation of LC . Given any C-finite Γ ⊆ ΦC , define
MF (Γ) as a family (MF (Γ)U =

∧
ϕ∈ΓU

JϕKU � FU )U∈C of subobjects of FU .

I Fact 21. MF (Γ) is the largest subpresheaf A of F such that A �U ΓU for each U ∈ C.

MF (Γ) generally fails to be no-signalling (take the first step of (8) as an example again).
Yet the description by Γ sometimes manages to give a no-signalling MF (Γ).
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I Fact 22. Let (J−K, F ) be an interpretation of LC that models a theory ` in L. We say
Γ ⊆ ΦC is inchworm-saturated if ΓV ` ϕ implies ΓU ` ∃V \U . ϕ whenever U ⊆ V ∈ C and
ϕ ∈ ΦV . Now, if a C-finite Γ is inchworm-saturated, then MF (Γ) is no-signalling.

When Γ is inchworm-saturated, it may not be deductively closed, but the inchworm
cannot bring a new piece of information ψ to a context U from another V , since ψ follows
from the information ΓU that U already has. Fact 22 means that, if Γ is inchworm-saturated
and if each ΓU finite and consistent (and has MF (Γ)U nonempty or well-supported), then Γ is
locally consistent, modelled by a no-signalling model MF (Γ). E.g., (3) is inchworm-saturated,
with each context consistent, so it gives the PR box, (d) of Figure 1, as MF (Γ).

On the other hand, even when a description Γ is not inchworm-saturated and MF (Γ)
fails to be no-signalling, the inchworm can carve out the “no-signalling interior” of MF (Γ), if
Γ can be saturated in finite (or C-finite) steps.

I Theorem 23. Let (J−K, F ) be an interpretation of LC that models a theory ` in L. Given
Γ ⊆ ΦC, suppose there is a C-finite and inchworm-saturated ∆ ⊆ ΦC such that Γ ⊆ ∆ and
Γ `C ϕ for all ϕ ∈ ∆. Then MF (∆) is the largest no-signalling subpresheaf of MF (Γ).

E.g., A in (e) of Figure 1 is MF (Γ) given by Γ = {ϕ} for ϕ = (a2 ∧ ¬b1) ∨ (¬a2 ∧ ¬b1);
since ϕ cannot be in the context {b1}, Γ{b1} = ∅ and A{b1} = 2. Yet ϕ ` ¬b1, so Γ `C ¬b1,
and ∆ = Γ ∪ {¬b1} is inchworm-saturated, with ¬b1 ∈ ∆{b1}. Hence, by Theorem 23, the
inchworm carves out a no-signalling MF (∆) by removing the red sections from (e). Indeed,
in many applications (e.g. all the examples in sections 2 and 3), the theory ` satisfies
(13) Given any Γ ⊆ ΦC (that may not be C-finite), for each U ∈ C there is a finite ∆U ⊆ ΓU

such that ∆U ` ϕ for all ϕ ∈ ΓU .
This guarantees the supposition of Theorem 23: Given any C-finite Γ ⊆ ΦC, take its `C-
deductive closure Γ∗ = {ϕ | Γ `C ϕ } as Γ in (13) and obtain ∆U ; then ∆ = Γ ∪

⋃
U∈C ∆U is

such as in Theorem 23. Therefore Theorem 23 applies and leads to a family of completeness
results organized by Lemma 24, which transfers a completeness theorem of a global theory
to its inchworm fragment. It yields, e.g., Theorem 25, since any (global) regular theory has a
“conservative model” in a “classifying category” (e.g. [5, Proposition 6.4]).

I Lemma 24. Suppose that a theory ` in L satisfies (13), and that J−K is a conservative
model of `, meaning that, for any Γ ⊆ ΦC,

∧
ψ∈∆JψKU 6 JϕKU for some ∆ ⊆ Γ if but also

only if Γ ` ϕ. Then Γ `C ϕ iff A � ϕ for every no-signalling model A of Γ in J−K.

I Theorem 25. Let ` be a regular theory satisfying (13). Then, for any Γ ⊆ ΦC, Γ `C ϕ iff
A � ϕ for every no-signalling model A of Γ in every model J−K of ` in any regular category.

4.5 Completion for Completeness
Generally, (13) may fail and the inchworm saturation may not be attained in finite steps.

I Example 26. In Figure 1, replace each Ax = 2 with Z, and let Γ = { a1 = b2, b1 = a1, a2 =
b1, b2 = a2 + 1, b2 > 0 } in the obvious L and `. Then Γ `C a1 > 0, b1 > 0, a2 > 0, b2 >
1, . . . , x > n for every x ∈ X and n ∈ N, whereas Γ 0C ⊥ (although the empty presheaf is
the only no-signalling model of Γ). So there cannot be any such ∆ as in Theorem 23. (Note
that the topology of C is essential: E.g., if we take C = PX instead, then Γ `C ⊥ by Γ ` ⊥.)

Thus, even if Γ is finite, the set { JϕKU | ϕ ∈ Γ∗U } may have no minimum (though it is
lowerbounded by ∃FU⊆X

(
∧
ψ∈ΓJψKX) if X is finite); then, in a regular category in general,∧

ϕ∈Γ∗
U
JϕKU may not exist. So, instead of the semilattice SubS(FU ) of subobjects, let us
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use a completion of it, viz. the semilattice Filt(SubS(FU )) of filters in SubS(FU ), and assign
a filter of subobjects, instead of a subobject, to each U ∈ C.

I Definition 27. Suppose (J−K, F ) is an interpretation of a contextual language LC . Then,
by a filter model in (J−K, F ), we mean a presheaf G : Cop → Sets such that

GU ∈ Filt(SubS(FU )) for every U ∈ C.
For U ⊆ V ∈ C, GU = {S � FU | FU⊆V −1(S) ∈ GV } = { ∃FU⊆V

(S)� FU | S ∈ GV },
so GU⊆V : GV → GU :: S 7→ ∃FU⊆V

(S) is a surjection.
We say G models ϕ, and write G � ϕ, to mean that JϕKU ∈ GU whenever ϕ ∈ ΦU .

Then we have the filter versions of Theorem 19, Fact 22, and completeness results
organized by Lemma 24. Observe that every (no-signalling) model A is a “principal” filter
model, U 7→ ↑AU = {S � F | AU 6 S }; so Theorem 28 is stronger than Theorem 19.

I Theorem 28. Let J−K be a model of a theory ` in L. Then the inchworm logic `C of ` is
sound with respect to the filter models in J−K: If Γ `C ϕ, then G � ϕ for every filter model G
of Γ in J−K.

I Fact 29. Let (J−K, F ) be a model of a theory ` in L. Given any Γ ⊆ ΦC, the family
FMF (Γ) = ({S � FU | JϕKU 6 S for some ϕ ∈ Γ∗U })U∈C is a filter model of Γ in (J−K, F ).
Moreover, for any filter model G of Γ in (J−K, F ), FMF (Γ)U ⊆ GU for each U ∈ C.

I Lemma 30. Suppose J−K is a conservative model of a theory ` in L. Then Γ `C ϕ iff
G � ϕ for every filter model G of Γ in J−K.

5 Conclusion

Let us conclude the paper by discussing connections and applications between the framework
of this paper and other approaches or other fields as future work. First of all, categorical logic
has a long tradition (since [16]) of viewing local truth as a modal operator. Indeed, the logic
of local information in this paper is closely related to the dynamic-logical characterization of
contextuality in [13]. There is also a connection to model theory. For instance, the similarity
between inchworm inference and Craig interpolation should be obvious; indeed, by defining
ΦU more generally as a “language in the vocabulary U”, we can prove a stronger version
of Robinson’s joint consistency theorem (see [6, subsection 4.1.1]) that is sensitive to the
topology of C.

As explained in section 2, presheaf models can model Boolean valuations. This enables
us to transfer and apply techniques from satisfiability problems to quantum contextuality as
computational resource. Another connection is to the structure of valuation algebra, which
is used for local computation [14]. In fact, our presheaf models can also be formulated in
terms of valuation algebras, as a C-indexed family of valuations satisfying certain conditions.
We can expect these connections to help extend local computation to situations in classical
computing where contextual phenomena arise.

The generality of taking presheaves in regular categories is also expected to facilitate
applications. In cohomology, it is typical to use presheaves valued in regular categories, such
as presheaves of abelian groups, R-modules, etc. Therefore the framework of this paper
applies to the logic of local inference within such presheaves. One can also take regular
categories of structures that are used for other purposes such as modelling processes in
quantum physics. In addition, the connection to logical paradoxes [2] is also relevant. As
shown in [15, 4], regular categories provide background for self-referential and other fixpoint
paradoxes; so our formalism will unify the two perspectives on paradoxes.
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Abstract
We consider minimization problems for natural parameters of word transducers: the number
of passes performed by two-way transducers and the number of registers used by streaming
transducers. We show how to compute in ExpSpace the minimum number of passes needed to
implement a transduction given as sweeping transducer, and we provide effective constructions
of transducers of (worst-case optimal) doubly exponential size. We then consider streaming
transducers where concatenations of registers are forbidden in the register updates. Based on a
correspondence between the number of passes of sweeping transducers and the number of registers
of equivalent concatenation-free streaming transducers, we derive a minimization procedure for
the number of registers of concatenation-free streaming transducers.
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1 Introduction

Regular word functions extend the robust family of regular languages, preserving many of its
characterizations and algorithmic properties. A word function maps words over a finite input
alphabet to words over a finite output alphabet. Regular word functions have been studied
in the early seventies, in the form of (deterministic) two-way finite state automata with
output [1]. Engelfriet and Hoogeboom [8] later showed that monadic second-order definable
graph transductions, restricted to words, are an equivalent model – this justifies the notation
“regular” word functions, in the spirit of classical results in automata theory and logic by
Büchi, Elgot, Rabin and others. Recently, Alur and Cerný [2] proposed an enhanced version
of one-way transducers called streaming transducers, and showed that they equivalent to the
two previous models. A streaming transducer processes the input word from left to right, and
stores (partial) output words in finitely many, write-only registers. A variant of streaming
transducers extended by stacks has been introduced in [3] and shown to capture precisely
the monadic-second order definable tree transductions.
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Two-way and streaming transducers raise new and challenging questions about storage
requirements. The classical storage measure for automata is state complexity. State space
minimization of two-way transducers is however poorly understood, even in the simpler setting
of automata (cf. related work). But there are more meaningful parameters for transducer
minimization. One such parameter for streaming transducers is the number of registers, and
for two-way transducers it is the number of times the transducer needs to re-process the
input word. These parameters measure the required storage capacity in a more realistic way
than the number of control states. For example, a two-way transducer that needs to process
a very large input with several passes has much larger memory requirements in practice than
the memory needed for storing the states. Ideally, the input is processed one-way, hence in
one pass only, as in the streaming setting. But not every transduction can be implemented
by a one-way, finite state transducer without additional memory.

The register minimization problem has been considered by Alur and Raghothaman in [4],
for a special family of deterministic streaming transducers: the output alphabet is unary, and
the updates are additions/subtractions of registers by constants. For two-way transducers,
Filiot et al. showed how to decide whether a transducer is equivalent to some one-way
transducer [10]. The decision procedure of [10] is non-elementary, and we provided in [5] an
elementary decision procedure and construction of equivalent one-way transducers in the
special case of sweeping transducers: head reversals are only allowed at the extremities of the
input. Sweeping transducers are strictly less expressive than two-way transducers, as shown
e.g. by the transduction mapping inputs of the form u1#u2# · · ·#un, where the words ui

contain no occurrence of #, to un · · ·u2u1.
In this paper we extend our results from [5] by showing how to compute in ExpSpace

the minimal number of passes needed by a non-deterministic, functional sweeping transducer.
It turns out that sweeping transducers have the same expressive power as bounded-reversal
two-way transducers, and as concatenation-free streaming transducers – transducers where
concatenation of registers is not allowed in the updates. Since the transformations between the
sweeping and streaming models preserve the relationship between the number of passes and
the number of registers, we reduce the minimization problem for registers of concatenation-free
streaming transducers to the minimization of the number of passes of sweeping transducers,
and thus solve the former problem.

Related work. As already mentioned, succinctness questions about two-way automata
are still challenging. A longstanding open problem is whether non-deterministic two-way
automata are exponentially more succinct than deterministic two-way automata. It is only
known that this is the case for deterministic sweeping automata [13].

Regular transductions behave also nicely in terms of expressiveness: first-order definable
transductions are known to be equivalent to transductions defined by aperiodic streaming
transducers [11] and by aperiodic two-way transducers [6].

Besides [4], the closest work to ours is [7], that shows how to compute the minimal
number of registers of deterministic streaming transducers with register updates of the form
x := y · v, where v is a word and x, y are registers. These transducers are as expressive
as one-way transducers. However, the focus of [7] is different from ours, since the outputs
can be formed over any infinitary group. Moreover, the works [4, 7] consider deterministic
transducers, which require in general more registers than non-deterministic functional ones.
The proof techniques are based on variants of a property that has been studied for one-way
transducers (the twinning property), and are quite different from ours.
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Overview. After introducing two-way and streaming transducers in Section 2, and showing
some basic properties, we recall in Section 3 the key characterization of one-way definability
from [5]. Section 4 presents the main result on minimization of sweeping transducers. Finally,
Section 5 concludes with a logical characterization for sweeping transducers. A longer version
of the paper is available at https://hal.archives-ouvertes.fr/hal-01274992.

2 Preliminaries

Here we introduce the transducers we are interested in: two-way and streaming transducers.

Two-way transducers. A two-way transducer is a tuple T = (Q,Σ,∆, I, E, F ), where Q is
a finite set of states, Σ (resp. ∆) is a finite input (resp. output) alphabet, I (resp. F ) is a
subset of Q representing the initial (resp. final) states, and E ⊆ Q×Σ×∆?×Q×{left, right}
is a finite set of transition rules describing, for each state and input symbol, the possible
output string, target state, and direction of movement. To enable distinguished transitions
at the extremities of the input word, we use two special symbols B and C and assume that
the input of a two-way transducer is of the form u = a1 . . . an, with n ≥ 2, a1 = B, an = C,
and ai 6= B,C for all i = 2, . . . , n− 1.

Given an input word u, we call positions the places between the symbols of u, where the
head of a transducer can lie. We can identify the positions of u = a1 . . . an with the numbers
1, . . . , n− 1, where each number x is seen as the position between ax and ax+1. Since here
we deal with two-way devices, a position can be visited several times along a run. Formally,
we associate the states of the transducer with locations, namely, with pairs (x, y), where x
is a position and y is a non-negative integer, called level. For convenience, we assume that,
from a location at even level, the transducer can either move to the next position to the
right, without changing the level, or perform a reversal, that is, increment the level by 1 and
keep the same position; symmetrically, from a location at odd level, the transducer can either
move leftward, without changing the level, or perform a reversal. Locations are ordered
according to the following order: ` ≤ `′ if ` = (x, y), `′ = (x′, y′) and one of the following
holds: (1) y < y′, or (2) y = y′ even and x ≤ x′, or (3) y = y′ odd and x ≥ x′.

Formally, we define a run on u = a1 . . . an as a sequence of locations, labeled by states
and connected by edges, hereafter called transitions. The state at a location ` = (x, y) of a
run ρ is denoted ρ(`). The transitions must connect pairs of locations ` ≤ `′ that are either
at adjacent positions and on the same level, or at the same position and on adjacent levels.
Each transition is labeled with a pair a/v consisting of an input symbol a and a word v

produced as output. There are four types of transitions:

(x, 2y + 1) (x+ 1, 2y + 1) (x, 2y) (x+ 1, 2y)

(x+ 1, 2y + 1)
(x+ 1, 2y + 2)

(x, 2y)
(x, 2y + 1)

ax+1/vax+1/v

ax+1/vax+1/v

The upper left (resp. upper right) transition can occur in a run ρ of T on u provided that(
ρ(x+1, 2y+1), ax+1, v, ρ(x, 2y+1), left

)
(resp.

(
ρ(x, 2y), ax+1, v, ρ(x+1, 2y), right

)
) is a valid

transition rule of T and ax+1 is the (x+ 1)-th symbol of u (assuming that first symbol is B).
Similarly, the lower left (resp. lower right) transition are called reversals, and can occur in a run
ρ if

(
ρ(x+ 1, 2y+ 1), ax+1, v, ρ(x+ 1, 2y+ 2), right

)
(resp.

(
ρ(x, 2y), ax+1, v, ρ(x, 2y+ 1), left

)
)

is a valid transition rule of T and ax+1 is the (x+ 1)-th symbol of u.
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We say that a run on u = a1 . . . an is successful if it starts with an initial state, either at
location (1, 0) or at location (n− 1, 1), and ends in a final state, at some location of the form
(1, ymax) or (n− 1, ymax). The output produced by a run ρ is the concatenation of the words
produced by its transitions, and it is denoted by out(ρ).

Crossing sequences. An important notion associated with runs of two-way automata is
that of crossing sequence. Intuitively, this is a tuple of states that label those locations of a
run that visit the same position. Formally, given a successful run ρ of a two-way transducer
on input u = a1 . . . an, the crossing sequence of ρ at a position x ∈ {1, . . . , n − 1} is the
tuple ρ|x =

(
ρ(x, y0), . . . , ρ(x, yh)

)
, where y0 < . . . < yh are all and only the levels of the

locations of ρ at position x. The classical transformation of two-way finite state automata
into equivalent one-way automata [12] uses crossing sequences.

Properties of two-way transducers. We say that a two-way transducer is
sweeping if every run performs the reversals only at the extremities of the input word,
i.e. when reading the symbols B or C;
L-sweeping if it is sweeping and all successful runs start at the leftmost location (1, 0);
R-sweeping if it is sweeping and all successful runs start at the rightmost location (n−1, 1);
k-pass if every successful run visits every position of the input at most k times;
k-reversal if every successful run performs at most k reversals;
one-way if it is 1-pass, L-sweeping.

A transducer is functional if it produces at most one output on each input. It is called
unambiguous if it admits at most one successful run on each input. These notions will have
the same meaning for streaming transducers, defined later. Clearly, every unambiguous
transducer is functional. The converse is not true in general, but we will see later that we can
transform the functional transducers considered in this paper so as to enforce unambiguity.

It is easy to see that every unambiguous transducer with n states is 2n-pass. For functional
transducers we can restrict ourselves to considering only normalized runs, namely, runs that
never visit the same position twice with the same state and the same direction. The reason
is that functionality guarantees that every factor of a successful run that starts and ends at
the same position and with the same state produces the empty output.

Hereafter, we silently assume that all transducers are functional and all successful runs
are normalized. As a consequence the length of the crossing sequences of the successful runs
of a transducer can be bounded by 2n, where n is the number of states of the transducer.

For streaming transducers, we can observe the following. Every k-pass R-sweeping
transducer can be transformed into an equivalent (k + 1)-pass L-sweeping transducer. It
is also easy to disambiguate functional sweeping transducers, that is, transform them into
equivalent unambiguous sweeping transducers, without increasing the number of passes. For
this it suffices to fix a total order on the successful runs, e.g. the lexicographic order, and
restrict to runs that are minimal among those over the same input.

The following proposition shows an interesting correspondence between the number of
passes of sweeping transducers and the number of reversals of two-way transducers.

I Proposition 1. Every k-pass sweeping transducer is also (k − 1)-reversal. Conversely,
every (k−1)-reversal two-way transducer can be transformed in 2ExpTime into an equivalent
unambiguous k-pass sweeping transducer. The transformation can be performed in ExpTime
if the (k − 1)-reversal transducer is unambiguous.
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Streaming transducers. Streaming transducers can implement the same transductions as
two-way transducers [2, 8], but they do so using a single left-to-right pass and a fixed set of
registers that can store words over the output alphabet.

Formally, a streaming transducer is a tuple T = (Q,Σ,∆, R, U, I, E, F ), where Q is a
finite set of states, Σ (resp. ∆) is a finite input (resp. output) alphabet, R is a finite set of
registers disjoint from ∆, U is a finite set of updates for the registers, namely, functions from
R to (R ]∆)?, I is a subset of Q representing the initial states, E ⊆ Q× Σ× U ×Q is a
finite set of transition rules, describing, for each state and input symbol, the possible updates
and target states, and F : Q ⇀ (R ]∆)? is a partial output function.

A well-behaved class of streaming transducers [2] is obtained by restricting the allowed
types of updates and partial output functions to be copyless. A streaming transducer
T = (Q,Σ,∆, R, U, I, E, F ) is copyless if (1) for every update f ∈ U , every register z ∈ R
appears at most once in f(z1) · . . . · f(zk), where R = {z1, . . . , zk}, and (2) for every state
q ∈ Q, every register z ∈ R appears at most once in F (q). Hereafter we assume that all
streaming transducers are copyless.

To define the semantics of a streaming transducer T = (Q,Σ,∆, R, U, I, E, F ), we
introduce valuations of registers in R. These are functions of the form g : R → ∆?.
Valuations can be homomorphically extended to words over R∪∆ and to updates, as follows.
For every valuation g : R → ∆? and every word w ∈ (R ∪∆)?, we let g(w) be the word
over ∆ obtained from w by replacing every occurrence of a register z with its valuation g(z).
Similarly, for every valuation g : R→ ∆? and every update f : R→ (R ∪∆)?, we denote by
g ◦ f the valuation that maps each register z to the word g(f(z)).

A configuration of T is a pair state-valuation (q, g). This configuration is said to be initial
if q ∈ I and g(z) = ε for all registers z ∈ R. When reading a symbol a, the transducer can
move from a configuration (q, g) to a configuration (q′, g′) if there exists a transition rule
(q, a, f, q′) ∈ E such that g′ = g ◦ f . We denote this by (q, g) a−−−→

T
(q′, g′).

A run of T on u = a1 . . . an is a sequence of configurations and transitions of the form
σ = (q0, g0) a1−−−→

T
(q1, g1) a2−−−→

T
. . . an−−−→

T
(qn, gn). The run ρ is successful if the partial

output function F is defined on the last state qn. In this case, the output of T on u is
gn(F (qn)).

Properties and relationships with sweeping transducers. Functional and unambiguous
streaming transducers are defined as in the two-way case. A streaming transducer is k-register
if it uses at most k registers. As we did for two-way transducers, we assume that all streaming
transducers are functional.

It is known that (functional) streaming transducers capture precisely the transductions
definable by deterministic two-way transducers or, equally, by monadic second-order logic
(so-called MSO transductions) [2, 8]. Moreover, differently from two-way transducers, non-
deterministic streaming transducers can be determinized. This happens at the cost of
increasing the number of registers.

I Definition 2. A streaming transducer T = (Q,Σ,∆, R, U, I, E, F ) is concatenation-free if
f(z) ∈ ∆? · (R ∪ {ε}) ·∆?, for all registers z ∈ R and all updates f ∈ U .

Intuitively, a concatenation-free streaming transducer forbids register updates with two or
more registers inside a right-hand side. We note that concatenation-free streaming transducers
can also be determinized effectively. Moreover, it is easy to see that allowing boundedly
many updates with concatenations does not change the expressiveness of the model, as one
can remove any occurrence of an update with concatenations by introducing new registers.
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The following proposition shows a tight correspondence between the number of registers
of the concatenation-free streaming transducers and the number of passes of the sweeping
transducers. Note that the proposition considers sweeping transducers that start from the
rightmost position. A slightly weaker correspondence holds for L-sweeping transducers,
since any sweeping transducer can be made L-sweeping (resp. R-sweeping) by increasing the
number of passes by 1.

I Proposition 3. Every concatenation-free streaming transducer with k registers can be
transformed in ExpTime into an equivalent unambiguous 2k-pass R-sweeping transducer.
The transformation is in Ptime if the streaming transducer is unambiguous.

Conversely, every k-pass R-sweeping transducer can be transformed in 2ExpTime into
an equivalent unambiguous concatenation-free streaming transducer with dk

2 e registers. The
transformation is in ExpTime if the sweeping transducer is unambiguous.

Based on the above proposition, the problem of minimizing the number of registers in a
concatenation-free streaming transducer reduces to the problem of minimizing the number
of passes performed by a sweeping transducer. We will thus focus on the latter problem:
in Section 4, we consider the decidability and complexity of the following problem, called
k-pass sweeping definability problem: given a functional sweeping transducer S and a number
k ∈ N, decide whether S has an equivalent k-pass sweeping transducer.

3 One-way definability

In [5] we gave an effective characterization of sweeping transducers that are one-way definable,
i.e., equivalent to some one-way transducer. This can be seen as a special case of the problem
that we are considering here, and some of the technical tools developed in [5] will be used
later. We briefly recall some definitions and results related to this characterization. Hereafter
we assume that S is an L-sweeping transducer and ρ a successful run of S.

Intercepted factors. An interval of positions of the run ρ has the form I = [x1, x2], with
x1 < x2. We say that an interval I = [x1, x2] contains (resp., strongly contains) another
interval I ′ = [x′1, x′2] if x1 ≤ x′1 ≤ x′2 ≤ x2 (resp., x1 < x′1 ≤ x′2 < x2). We say that a factor
of ρ is intercepted by an interval I = [x1, x2] if it is maximal among the factors of ρ that
visit only positions in I and that never make a reversal (recall that reversals in sweeping
transducers can only occur at the extremities of the input word).

Pumping loops. A loop of a run ρ is an interval L = [x1, x2] of positions such that the
crossing sequences ρ|x1 and ρ|x2 are equal. If L is a loop of ρ, we can obtain new runs by
replicating any number of times the factors of ρ intercepted by L and, simultaneously, the
factor of the input word u between positions x1 and x2. This operation is called pumping and
is formally defined as follows. Let L = [x1, x2] be a loop of a run ρ on u. The run obtained
by pumping n times the loop L is the sequence pumpn

L(ρ) = α1 β
n
1β
n
1β
n
1 γ1︸ ︷︷ ︸

1st pass

α2 β
n
2β
n
2β
n
2 γ2︸ ︷︷ ︸

2nd pass

· · · αk β
n
kβ
n
kβ
n
k γh︸ ︷︷ ︸

k-th pass
where k is the number of passes performed by ρ, βi is the factor intercepted by L at the i-th
level, αi is the factor intercepted either by [1, x1] or by [x2 +1, |u|] at the i-th level, depending
on whether this level is even or odd, and, symmetrically, γi is the factor intercepted either by
[x2 + 1, |u|] or by [1, x1] at the i-th level, depending on whether this level is even or odd. We
also define pumpn

L(u) = u[1, x1] ·
(
u[x1 + 1, x2]

)n(
u[x1 + 1, x2]

)n(
u[x1 + 1, x2]

)n ·u[x2 + 1, |u|] and we observe that pumpn
L(ρ)

is a valid run on pumpn
L(u).



F. Baschenis, O. Gauwin, A. Muscholl, and G. Puppis 114:7

It is convenient to introduce some notation for pumping runs on multiple loops. If the
loops are pairwise non-overlapping this can be done by simply pumping each loop separately,
since the order in which we pump the loops does not really matter. The situation is a bit
more complicated when some loops overlap. In particular, when pumping a loop L of ρ,
several copies of the original locations of ρ are introduced, and with this several copies of
other loops may appear (think, for example, of a loop L′ that is contained in L). We say that
a location ˜̀ in pumpn

L(ρ) corresponds to ` in ρ if ˜̀ is one of the copies of ` that is introduced
when pumping ρ on L. We extend this correspondence to sets of locations and loops. With a
slight abuse of notation, we denote by pumpn2

L2
(pumpn1

L1
(ρ)) the run obtained by first pumping

n1 times the loop L1 in ρ, and then pumping n2 times every loop that corresponds to
L2 in pumpn1

L1
(ρ) (note that the copies of L2 in pumpn1

L1
(ρ) are pairwise non-overlapping).

It is routine to check that the two runs pumpn2
L2

(pumpn1
L1

(ρ)) and pumpn1
L1

(pumpn2
L2

(ρ)) are
isomorphic. This allows us to use the shorthand pumpn

L
(ρ) to denote runs obtained from ρ

by pumping the loops L = L1, . . . , Lm with the numbers n = n1, . . . , nm, respectively.

Inversions. The notion of inversion is crucial for characterizing one-way definability [5]. Let
L be a loop of ρ. A location `1 is called an entry point of L if it is the first location of a
factor intercepted by L. Similarly, a location `2 is called an exit point of L if it is the last
location of a factor intercepted by L. Note that every entry/exit point of L = [x1, x2] occurs
either at position x1 or at position x2.

I Definition 4. An inversion of a run ρ is a pair of locations `1 and `2 for which there exist
two loops L1 = [x1, x

′
1] and L2 = [x2, x

′
2] such that (also refer to the figure on the right):

`1 is an entry point of L1 and `2 is an exit point of L2,
`1 < `2 and x2 ≤ x′1,
for both i = 1 and i = 2, the factor intercepted by Li

and visiting `i has non-empty output, and no other loop
strongly contained in Li has the same property as Li

w.r.t. this factor. L2 L1

`1

`2

We say that the loops L1 and L2 are the witnessing loops of the inversion (`1, `2).

Periodic words. A word w is said to have period p if w ∈ u∗ v for some word u of length p
and some prefix v of u. For example, w = abc abc ab has period p = 3.

We are interested into factors of the outputs of S that are periodic, with uniformly
bounded periods. To do this, we fix the constant eS = cS · |Q|2|Q|, where cS is the maximum
number of symbols output by a single transition of S and Q is the state space of S. The
crux in [5] is the following property:

I Proposition 5 (Prop. 7 in [5]). If S is a one-way definable L-sweeping transducer and
(`1, `2) is an inversion of a successful run ρ of S, then out(ρ[`1, `2]) has period at most eS.

The above result justifies the following definition: let LS ⊆ dom(S) be the language of
those words u that induce a successful run ρ of S such that, for all inversions (`1, `2) of
ρ, out(ρ[`1, `2]) is periodic with period at most eS . We denote by S|LS

the transducer S
restricted to inputs from LS . One-way definability is characterized as follows:

I Theorem 6 (Th. 1 in [5]). An L-sweeping transducer S is one-way definable if and only if
LS = dom(S). Moreover, given an L-sweeping transducer S, one can construct in doubly
exponential time a one-way transducer T that is equivalent to S|LS

.
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4 k-pass sweeping definability

We begin by defining the objects that need to be considered for characterizing k-pass
definability, i.e., whether a sweeping transducer is equivalent to some k-pass sweeping
transducer. Let S be an L-sweeping transducer. The idea is to consider factors of runs of
S that can be simulated alternatively from left to right and from right to left. We begin
by introducing a notion of inversion that looks symmetric to Definition 4: a co-inversion
is defined as above, with x1 ≤ x′2 replacing x2 ≤ x′1. In other words, for an inversion we
exclude the case where L2 is after L1, whereas for a co-inversion we exclude that L2 is before
L1. We then combine inversions and co-inversions, as follows:

I Definition 7. A k-inversion of ρ is a sequence ` = (`1, `2), . . . , (`2k−1, `2k) such that:
`1 < `2 < . . . < `2k−1 < `2k are distinct locations in ρ,
for all even i ∈ {0, . . . , k − 1}, (`2i+1, `2i+2) is an inversion of ρ,
for all odd i ∈ {0, . . . , k − 1}, (`2i+1, `2i+2) is a co-inversion of ρ.

An example of a 3-inversion is depicted to the right.
We say that ` is safe if out(ρ[`2i+1, ρ2i+2]) has period
at most eS , for some i ∈ {0, . . . , k − 1}. We denote by
L

(k)
S the language of words u ∈ dom(S) such that all

k-inversions of all successful runs of S on u are safe.
`1

`2 `3
`4

`5

`6

I Example 8. Consider the 3-pass transducer that on input
u#v, with u, v ∈ {a, b}∗, outputs (ab)|uvv|(ba)|uuv|. This
transduction can also be realized in 2 passes. This means
that every 2-inversion is safe. For example, the 2-inversion
depicted to the right is safe, as the output ρ[`3, `4] is periodic.

`1

`2

`3 `4

u # v

Note that the definition of 1-inversion is the same as Definition 4, and hence L(1)
S = LS .

In particular, by Theorem 6, we know that S is one-way definable iff L(1)
S = dom(S). The

generalization of this result is provided in Theorem 9 below: k-pass definability is equivalent
to k-inversions being all safe, in the same way as one-way definability is equivalent to all
inversions having periodic output.

I Theorem 9. A sweeping transducer S is k-pass L-sweeping definable iff L
(k)
S = dom(S),

and this can be decided in ExpSpace. Moreover, given a sweeping transducer S, one can
construct in 2ExpTime an unambiguous k-pass L-sweeping transducer T equivalent to S|

L
(k)
S

.

An analogous result for deciding k-pass R-sweeping definability can be derived by symme-
try, by mirroring the input and reversing the computation. We also observe that, for k = 1,
the above theorem improves the previous 2ExpSpace upper bound from [5] for deciding
one-way definability of a sweeping transducer S. Concerning the doubly exponential size of
an equivalent k-pass L-sweeping transducer, we observe that this is optimal, as in [5] we have
shown that there are sweeping transducers S such that any equivalent one-way transducer
has size at least doubly exponential in S.

Before turning to the proof of Theorem 9, we list some simple consequences of this
theorem and of Propositions 1 and 3.

I Corollary 10.
One can compute in ExpSpace the minimum number of passes needed to implement a
transduction given as a sweeping transducer.
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One can compute in 3ExpSpace the minimum number of reversals needed to imple-
ment a transduction given as a bounded-reversal two-way transducer. The complexity is
2ExpSpace if the given two-way transducer is unambiguous.
One can compute in 2ExpSpace the minimum number of registers needed to implement
a transduction given as a concatenation-free streaming transducer. The complexity is
ExpSpace if the given streaming transducer is unambiguous.

The proof of Theorem 9 is split into two parts. The first part, called “soundness”, deals
with the construction of the k-pass L-sweeping transducer T of the second claim. Since
L

(k)
S = dom(S) implies that T is equivalent to S, this construction also proves the right-to-left

direction of the first claim. Moreover, as a side result, we prove that whether L(k)
S = dom(S)

holds is decidable in ExpSpace. The second part, called “completeness”, deals with the
left-to-right direction of the first claim.

Soundness. We show how to construct from S a k-pass L-sweeping transducer T equivalent
to S|

L
(k)
S

. The idea is to consider a successful run ρ of S on a word u ∈ L(k)
S , and divide it

into k factors. We then simulate each factor of the run in a single pass, alternatively from
left to right and from right to left, using [5]. First we need the notion of k-factorizations:

I Definition 11. A k-factorization of a successful run ρ of S is any sequence of locations
` = `0, `1, . . . , `k of ρ such that:

`0 ≤ `1 ≤ . . . ≤ `k, `0 is the first location of ρ, and `k is the last location of ρ,
for all even indexes i, with 0 ≤ i < k, and all inversions (`, `′) of ρ, with `i ≤ ` ≤ `′ ≤ `i+1,
the word out(ρ[`, `′]) has period at most eS ,
for all odd indexes i, with 1 ≤ i < k, and all co-inversions (`, `′) of ρ, with `i ≤ ` ≤ `′ ≤
`i+1, the word out(ρ[`, `′]) has period at most eS .

I Example 12. We consider the transducer of Example 8 and
we depict a 2-factorization of a run of it (gray nodes). All the
inversions between `0 and `1, and all the co-inversions between
`1 and `2, must be periodic. Note that the run does contain
non-periodic inversions (e.g. those crossing `1), and hence it
does not admit a 1-factorization.

`0

`1

`2

u # v

The following lemma shows that we can reason equally in terms of safe k-inversions
(Definition 7) and in terms of k-factorizations.

I Lemma 13. For every word u ∈ dom(S), we have that u ∈ L(k)
S if and only if all successful

runs of S on u admit k-factorizations.

Next we show that being a k-factorization is a regular property. To formalize this,
we need to explain how to encode runs and sequences of locations as annotations of the
underlying input. Formally, given a word u ∈ dom(S), a successful run ρ of S on u,
and a tuple of locations ` = `1, . . . , `m in ρ, we denote by 〈u, ρ, `〉 the word obtained by
annotating each position 1 ≤ x < |u| of u with the crossing sequence ρ|x and with the
m-tuple y = (y1(x), . . . , ym(x)), where each yi(x) is either the level of `i or ⊥, depending on
whether `i is at position x or not. Based on this encoding, we can define the language F (k)

S

of all words of the form 〈u, ρ, `〉, where ρ is a successful run of S on u and ` = `0, . . . , `k is a
k-factorization of ρ. Lemma 14 below proves that this language is regular. In fact, in order
to better handle the complexity of our characterization, the lemma shows that both F (k)

S

and its complement F (k)
S are recognized by automata of doubly exponential size.
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I Lemma 14. The language F (k)
S and its complement F (k)

S are recognized by non-deterministic
finite state automata of size double exponential w.r.t. S.

Using the above encodings, we can also relativize the outputs produced by the transducer
S to factors of successful runs. More precisely, we denote by Sfactors the transducer that
reads words of the form 〈u, ρ, `1, `2〉 and outputs words of the form out(ρ[`1, `2]), provided
that ρ is a successful run of S on u and `1, `2 are two locations in it. Note that Sfactors does
not check that the input is well-formed, in particular, that ρ is a successful run of S on u.
Because of this, the number of states of Sfactors is polynomial in the number of states of S,
and a succinct representation of Sfactors can be produced in polynomial time.

Now, it is easy to construct a k-pass L-sweeping transducer T equivalent to S|
L

(k)
S

, as
claimed in Theorem 9. The idea is that, on reading the input u, the transducer T guesses
a successful run ρ on u and a k-factorization ` = `0, . . . , `k of ρ – this can be done using
the encoding 〈u, ρ, `〉 and Lemma 14. While guessing these objects, T performs k passes
and outputs T0(〈u, ρ, `0, `1〉) · T1(〈u, ρ, `1, `2〉) · . . . · Tk−1(〈u, ρ, `k−1, `k〉), where each Ti is
the 1-pass sweeping transducer obtained by applying Theorem 6 to Sfactor (as usual, some
mirroring is required for dealing with the odd indexes i). The only technical detail, here, is
that different objects ρ, ` may be guessed along the different passes of T . If this happens, the
output produced by T might not be equal to that of S. We can overcome this problem by
exploiting disambiguation, namely, by guessing canonical encodings 〈u, ρ, `〉 in the language
F

(k)
S . For example, we can fix a lexicographic ordering on these encodings and commit to

always guessing the least encoding among those that agree on the input word u. This requires
reasoning with both the language F (k)

S and its complement F (k)
S . By Lemma 14, the two

languages are recognized by automata of doubly exponential size in S, and hence T can be
constructed in doubly exponential time from S. As a matter of fact, the transducer T that
we just constructed is also unambiguous.

We conclude this part by showing how to decide in exponential space if L(k)
S = dom(S).

In fact, as we already know that L(k)
S ⊆ dom(S), it suffices to decide only the containment

L
(k)
S ⊇ dom(S). We know from Lemma 13 that the language L(k)

S coincides with the
projection of F (k)

S on the underlying words u. Thus, we have L(k)
S ⊇ dom(S) if and only if

F
(k)
S ∩D = ∅, where D = {〈u, ρ, `〉 : u ∈ dom(S)}. A close inspection of the construction of

the automaton for F (k)
S shows that the emptiness of F (k)

S ∩D can be decided in ExpSpace.

Completeness. Here we prove the left-to-right direction of the first claim of Theorem 9.
We suppose that S is an L-sweeping transducer and T is an equivalent k-pass L-sweeping
transducer. We fix, once and for all, a successful run ρ of S on u and a k-inversion
` = (`1, `2), . . . , (`2k−1, `2k) of ρ.

The goal is to prove that ` is safe, namely, that the factor of the output produced between
the locations of some (co-)inversion (`2i+1, `2i+2) of ` is periodic, with uniformly bounded
period. The main idea is to try to find a factor out(ρ[`2i+1, `2i+2]) that is entirely covered
by the output produced along a single pass of the equivalent transducer T , and apply a
suitable generalization of Proposition 5. Informally, this works by pumping the output
out(ρ[`2i+1, `2i+2]) through repeating the witnessing loops of (`2i+1, `2i+2). In a similar way,
we pump the output produced along a single pass of T . Then, by analyzing how the former
outputs are covered by the latter outputs, we deduce the periodicity of out(ρ[`2i+1, `2i+2]).

The main difficulty in formalizing the above idea lies in the fact that the k passes of the
supposed transducer T cannot be identified directly on the run ρ of S. Therefore we need
to reason in a proper way about families of factors associated with (co-)inversions inside
pumped runs. Below, we introduce some terminology and notation to ease this task.
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Recall that ` = (`1, `2), . . . , (`2k−1, `2k) is a k-inversion of the run ρ. For all i = 0, . . . , k−1,
let L2i+1 and L2i+2 be the witnessing loops of (`2i+1, `2i+2). For a given tuple of numbers n =
(n1, . . . , n2k) ∈ N2k, we define ρn = pumpn

L
(ρ), where L = L1, . . . , L2k and n = n1, . . . , n2k

(recall that this is the run obtained by pumping the loops L1, . . . , L2k respectively n1, . . . , n2k

times, as described in Section 3). Similarly, we denote by un the word parsed by the pumped
run ρn.

We would like to map the inversions and co-inversions of ` on the pumped runs ρn.
Consider an inversion (`2i+1, `2i+2), for some i ∈ {1, . . . , 2k} (the case of a co-inversion is
similar). Recall that when pumping loops in ρ, several copies of the original locations may
be introduced. In particular, among the copies of the inversion (`2i+1, `2i+2) that appear
in the pumped run ρn, we will consider the maximal one, which is identified by taking the
first copy ˜̀2i+1 of `2i+1 and the last copy ˜̀2i+2 of `2i+2. For the sake of brevity, we say that
(˜̀2i+1, ˜̀2i+2) is the inversion of ρn that corresponds to (`2i+1, `2i+2).

We can now define the key objects for our reasoning, that is, the factors of the output of
a pumped run ρn that correspond in the original run ρ to the factors produced between the
locations of the (co-)inversions of `. Formally, for every 2k-tuple n of natural numbers and
every index i = 0, . . . , k − 1, we define

vn(i) = out
(
ρn[˜̀2i+1, ˜̀2i+2]

)
where (˜̀2i+1, ˜̀2i+2) is the (co-)inversion of ρn that corresponds to (`2i+1, `2i+2). Below we
highlight the relevant factors inside the output produced by S on un:

S(un) = out
(
ρn[˜̀0, ˜̀1]

)
·vn(0)vn(0)vn(0) ·out

(
ρn[˜̀2, ˜̀3]

)
·vn(1)vn(1)vn(1) · . . . ·vn(k − 1)vn(k − 1)vn(k − 1) ·out

(
ρn[˜̀2k, ˜̀2k+1]

)
(1)

where ˜̀0 is the first location of ρn, ˜̀2k+1 is the last location of ρn.
In a similar way, we can factorize the output produced by the k-pass L-sweeping transducer

T when reading the input un. However, the focus here is on the factors of the output produced
along each pass. Formally, given n ∈ N2k, we let σn be some successful run of T on un. For
every j = 0, . . . , k − 1, we let `′j be the first location of σn at level j. We further let `′k be
the last location of σn, which is at level k − 1. We then define

wn(j) = out
(
σn[`′j , `′j+1]

)
and factorize the output of T on un as follows:

T (un) = wn(0)wn(0)wn(0) ·wn(1)wn(1)wn(1) · . . . ·wn(k − 1)wn(k − 1)wn(k − 1). (2)

The next step is to exploit the hypothesis that S and T are equivalent. This means that
Equations (1) and (2) represent the same word. From this we derive that, for any given
n ∈ N2k, at least one of the words vn(i) highlighted in Equation (1) is a factor of the word
wn(i) highlighted in Equation (2). However, what is the index i for which this coverability
relation holds depends on the parameter n. In order to enable a reasoning similar to that of
Proposition 5, we need to find a single index i such that, for “sufficiently many” parameters
n, vn(i) is a factor of wn(i). The definition below, formalizes what we mean precisely by
“sufficiently many” n – intuitively, we require that specific coordinates of n are unbounded,
as well the differences between these coordinates.

I Definition 15. Let P(n) denote an arbitrary property of tuples n ∈ N2k. Further let
h, h′ be two distinct coordinates in {1, . . . , 2k}. We say that P(n) holds unboundedly on the
coordinates h, h′ of n if, for all numbers n0 ∈ N, there exist n1, n2 ∈ N2k such that:

ICALP 2016
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P(n1) and P(n2) hold,
n1[h] ≥ n0 and n1[h′]− n1[h] ≥ n0,
n2[h′] ≥ n0 and n2[h]− n2[h′] ≥ n0.

We recall that each factor vn(i) is associated with the (co-)inversion (`2i+1, `2i+2), and
that the corresponding components n[2i+ 1] and n[2i+ 2] of the parameter n denote the
number of times the witnessing loops L2i+1 and L2i+2 are pumped in ρn. The specific
properties we are interested in are the following ones, for i = 0, . . . , k − 1:

Pi(n) = “ vn(i) is a factor of wn(i)” .

It is not difficult to see that for every tuple n ∈ N2k, Pi(n) holds for some i ∈ {0, . . . , k − 1}.
From this, using a suitable counting argument, we can prove the crucial lemma below.

I Lemma 16. There exists an index i ∈ {0, . . . , k − 1} such that the property Pi(n) =
“ vn(i) is a factor of wn(i)” holds unboundedly on the coordinates 2i+ 1 and 2i+ 2 of n.

The last piece of the puzzle consists of generalizing the statement of Proposition 5.
The idea is that we can replace the hypothesis that S is one-way definable by the weaker
assumption of Lemma 16. That is, if Pi(n) holds unboundedly on the coordinates 2i + 1
and 2i + 2 of n, we can still use the same arguments based on pumping and Fine-Wilf’s
Theorem as in Proposition 5, in order to deduce that the output out(ρ[`2i+1, `2i+2]) between
the locations of the (co-)inversion is periodic:

I Proposition 17. If the property Pi(n) = “ vn(i) is a factor of wn(i) ” holds unboundedly
on the coordinates 2i+ 1 and 2i+ 2 of n, then the output out(ρ[`2i+1, `2i+2]) produced between
the locations of the (co-)inversion (`2i+1, `2i+2) is periodic, with period eS. In particular, the
k-inversion ` = (`1, `2), . . . , (`2k−1, `2k) is safe.

To conclude, we assumed that the L-sweeping transducer S is equivalent to a k-pass
L-sweeping transducer T . We considered a successful run ρ of S and an arbitrary k-inversion
` of it. By Lemma 16, we know that there is an index i ∈ {0, . . . , k − 1} for which the
property Pi(n) = “ vn(i) is a factor of wn(i) ” holds unboundedly on the coordinates 2i+ 1
and 2i+ 2 of n. From this, by applying Proposition 17, we derive that the k-inversion ` is
safe. This proves the left-to-right direction of the first claim of Theorem 9. J

5 Sweeping transducers and MSO

We provide a logical characterization of sweeping transducers. For this we will consider
restricted forms of transductions definable in monadic-second order logic (MSO) [8].

MSO transductions are described by specifying the output (seen as a relational structure)
from a fixed number of copies of the input. Formally, an MSO transduction with m copies
consists of an MSO sentence Φdom, some unary MSO formulas Φi

a(x), one for each i ∈
{1, . . . ,m} and a ∈ ∆, and some binary MSO formulas Φi,j

≤ (x, y), one for each i, j ∈
{1, . . . ,m}. Intuitively, the sentence Φdom tells whether the transduction is defined on some
input u. The unary formula Φi

a(x) tells whether the element x of the i-th copy of the input
belongs to the output and is labeled with the letter a. The formula Φi,j

≤ (x, y) tells whether,
in the produced output, the element x of the i-th copy of the input precedes the element y of
the j-th copy of the input. Note that the sentence Φdom can easily guarantee that, whenever
the output is defined, it is well-formed, namely, it is a word. For the sake of simplicity, we
assume that Φi

a(x) entails Φdom, namely, for all words u and all positions x, u |= Φi
a(x)

implies u |= Φdom. Similarly, we assume that Φi,j
≤ (x, y) entails Φi(x) and Φj(y).
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I Definition 18. Let T be an MSO transduction with m copies. We say that T is
order-preserving if each formula Φi,j

≤ (x, y) entails x ≤ y;
order-inversing if each formula Φi,j

≤ (x, y) entails x ≥ y;
k-phase if there is a partition I0, I1, . . . , Ik−1 of the set of indexes {1, . . . ,m} such that
I0 < I1 < . . . < Ik−1, namely, i < j for all 0 ≤ h < h′ < k, i ∈ Ih, and j ∈ Ih′ , and each
formula Φi,j

≤ (x, y) entails x ≤ y if h is even, or x ≥ y otherwise.

We know from [9] that order-preserving MSO transductions capture precisely the one-way
definable transductions. We obtain:

I Theorem 19. k-phase MSO transductions have the same expressive power as functional,
k-pass L-sweeping transducers.

6 Conclusions

We showed that sweeping transducers, bounded-reversal transducers, and concatenation-free
streaming transducers define the same subclass of regular word transductions. Our main
result is an effective characterization of transductions definable by sweeping transducers with
a fixed number of passes. As a consequence we obtained a procedure that minimizes the
number of registers in a concatenation-free sweeping transducer.

We believe that similar results can be proven for two-way (non-sweeping) transducers,
using a refined version of the constructions presented here. In this respect, an interesting
open problem is to characterize the two-way transducers that are equivalent to sweeping
transducers, but with an arbitrary (unspecified) number of passes.

References
1 A. V. Aho and J. D. Ullman. A characterization of two-way deterministic classes of lan-

guages. J. Comput. Syst. Sci., 4(6):523–538, 1970.
2 R. Alur and P. Cerný. Expressiveness of streaming string transducers. In FSTTCS, volume 8

of LIPIcs, pages 1–12. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2010. doi:
10.4230/LIPIcs.FSTTCS.2010.1.

3 R. Alur and L. D’Antoni. Streaming tree transducers. In ICALP, volume 7392 of LNCS,
pages 42–53. Springer, 2012.

4 R. Alur and M. Raghothaman. Decision problems for additive regular functions. In ICALP,
volume 7966 of LNCS, pages 37–48. Springer, 2013.

5 F. Baschenis, O. Gauwin, A. Muscholl, and G. Puppis. One-way definability of sweeping
transducers. In FSTTCS, volume 45 of LIPIcs, pages 178–191. Schloss Dagstuhl – Leibniz-
Zentrum fuer Informatik, 2015. doi:10.4230/LIPIcs.FSTTCS.2015.178.

6 O. Carton and L. Dartois. Aperiodic two-way transducers and FO-transductions. In CSL,
LIPIcs, pages 160–174. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2015. doi:
10.4230/LIPIcs.CSL.2015.160.

7 L. Daviaud, P.-A. Reynier, and J.-M. Talbot. A generalised twinning property for minimi-
sation of cost register automata. In LICS. IEEE Computer Society, 2016.

8 J. Engelfriet and H. J. Hoogeboom. MSO definable string transductions and two-way
finite-state transducers. ACM Trans. Comput. Logic, 2:216–254, 2001.

9 E. Filiot. Logic-automata connections for transformations. In ICLA, pages 30–57, 2015.
10 E. Filiot, O. Gauwin, P.-A. Reynier, and F. Servais. From two-way to one-way finite state

transducers. In LICS, pages 468–477. IEEE Computer Society, 2013.

ICALP 2016

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.1
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2010.1
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2015.178
http://dx.doi.org/10.4230/LIPIcs.CSL.2015.160
http://dx.doi.org/10.4230/LIPIcs.CSL.2015.160


114:14 Minimizing Resources of Sweeping and Streaming String Transducers

11 E. Filiot, S. N. Krishna, and A. Trivedi. First-order definable string transformations. In
FSTTCS, volume 29 of LIPIcs, pages 147–159. Schloss Dagstuhl – Leibniz-Zentrum fuer
Informatik, 2014. doi:10.4230/LIPIcs.FSTTCS.2014.147.

12 J. C. Shepherdson. The reduction of two-way automata to one-way automata. IBM Journal
of Research and Development, 3(2):198–200, 1959.

13 M. Sipser. Lower bounds on the size of sweeping automata. In STOC, pages 360–364. ACM,
1979.

http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2014.147


A Linear Acceleration Theorem for 2D Cellular
Automata on All Complete Neighborhoods
Anaël Grandjean1 and Victor Poupet2

1 LIRMM, Université Montpellier, Montpellier, France
anael.grandjean@lirmm.fr

2 LIRMM, Université Montpellier, Montpellier, France
victor.poupet@lirmm.fr

Abstract
Linear acceleration theorems are known for most computational models. Although such results
have been proved for two-dimensional cellular automata working on specific neighborhoods, no
general construction was known. We present here a technique of linear acceleration for all two-
dimensional languages recognized by cellular automata working on complete neighborhoods.
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1 Introduction

Cellular automata (CA) were initially introduced by S. Ulam and J. von Neumann [14] in the
1960s to study self-reproduction in discrete dynamical systems. They are massively parallel
systems consisting of an infinite array of cells. Cells evolve synchronously depending on
the states of their neighbors according to a uniform deterministic rule. Although initially
considered in two dimensions, the definition can be adapted to any dimensional cellular space
and even more general uniform graphs [8].

Soon after their introduction, they were shown to be computationally universal [9, 1].
As a computation model, they have been extensively studied as one-dimensional language
recognizers [11, 3] but are also very well suited to the study of two-dimensional “picture
languages” [10, 12, 13].

The neighborhood of a cellular automaton defines the underlying communications graph
of the cells. Although most of the existing work on two-dimensional cellular automata focuses
on the von Neumann (4 closest neighbors) and Moore (8 closest neighbors) neighborhoods,
understanding how the choice of the neighborhood affects the algorithmic capabilities of the
model is a key to understanding parallel computation.

Linear acceleration theorems are well known for most of the commonly considered
computation models. It was first proved for one-dimensional cellular automata working
on the standard neighborhood and two-dimensional cellular automata on von Neumann’s
neighborhood by W.T. Beyer [2], inspired by similar constructions for sequential input
cellular automata [3, 5, 6]. The one-dimensional case was later generalized by J. Mazoyer and
N. Reimen for arbitrary neighborhoods [7]. As for two-dimensional neighborhoods, V. Terrier
extended the construction to the Moore neighborhood [12] and then to the slightly more
general class of neighborhoods whose convex hull has at most one vertex in the positive
quarter plane [13].
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In this paper, we prove a general linear acceleration result for all complete neighborhoods
on two-dimensional cellular automata.

The main theorem is stated in Section 3 and proved in Sections 4 to 7. Sections 4 and 6
describe the two main elements of the construction (compression of the input and accelerated
simulation of the original automaton respectively). Section 5 presents a technique to perform
a sequence of tasks on a cellular automaton without the need for synchronization at the start
of each new task, used in the proof of the theorem to combine sections 4 and 6. Although
this technique is elementary and has been used in previous publications (a special case was
used by W. T. Beyer in 1969 [2]), reviews of previous articles seem to indicate that it is not
common knowledge. It is therefore presented here in a separate section and stated generally
in the hopes that it can be easily reused in future publications.

The construction presented in this article is similar in several ways to previously published
constructions, most notably those of V. Terrier in [13]. Significant improvements include
compression of the input in almost optimal time (Section 4, specifically Subsection 4.2) and
a more general simulation technique (Section 6).

2 Definitions

2.1 Cellular Automata
I Definition 1 (Cellular Automaton). A cellular automaton (CA) is a quadruple A =
(d,Q,N , δ) where

d ∈ N is the dimension of the automaton ;
Q is a finite set whose elements are called states ;
N is a finite subset of Zd called neighborhood of the automaton ;
δ : QN → Q is the local transition function of the automaton.

I Definition 2 (Configuration). A d-dimensional configuration C over the set of states Q is
a mapping from Zd to Q. The elements of Zd will be referred to as cells.

Given a CA A = (d,Q,N , δ), a configuration C ∈ QZd and a cell c ∈ Zd, we denote by
NC(c) the neighborhood of c in C :

NC(c) :
{
N → Q
n 7→ C(c+ n)

From the local transition function δ of a CA A = (d,Q,N , δ), we can define the global
transition function of the automaton ∆ : QZd → QZd obtained by applying the local rule on
all cells :

∆(C) =
{

Zd → Q
c 7→ δ(NC(c))

The action of the global transition rule makes A a dynamical system over the set QZd .
Because of this dynamic, in the following we will identify the CA A with its global rule so
that A(C) is the image of a configuration C by the action of the CA A, and more generally
At(C) is the configuration resulting from applying t times the global rule of the automaton
from the initial configuration C.

I Definition 3 (Quiescent and Permanent States). For a given CA A, we say that a state
q is quiescent if a cell in state q remains in this state if all its neighbors are also in q. We
say that q is permanent if a cell in state q remains in that state regardless of the state of its
neighbors.
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In this article we will only consider 2-dimensional cellular automata (2DCA). From now
on the set of cells will always be Z2.

2.2 Neighborhoods
Throughout the article, we use the additive notation for vector sums, the power notation for
neighborhood composition and the product notation for scalar product:

I Definition 4 (Vector Sum). Given two neighborhoods N1 and N2 and a cell c ∈ Z2, we
define the vector sums N1 +N2 = {x+ y | x ∈ N1, y ∈ N2} and c+N1 = {c+ x | x ∈ N1}.

I Definition 5 (Neighborhood Powers). Given a neighborhood N , we define

N 0 = {0} (1)
∀k ∈ N, N k+1 = N +N k (2)

I Definition 6 (Scalar product). Given a neighborhood N and an integer k ∈ Z, we define
the scalar product kN = {kx | x ∈ N}.

I Definition 7 (Complete Neighborhood). A neighborhood N is said to be complete if⋃
k∈N
N k = Z2

I Definition 8 (Convex Hull and Convex Neighborhood). The convex hull of a neighborhood
N is the smallest convex polygon CH(N ) ⊂ R2 such that N ⊆ CH(N ). Moreover a
neighborhood N is said to be convex if it contains all points of integer coordinates in its
convex hull: N = CH(N ) ∩ Z2.

I Remark. If N is a convex neighborhood, N p is also convex for any p ∈ N.

2.3 Two-Dimensional Language Recognition
I Definition 9 (Picture). For n,m ∈ N and Σ a finite alphabet, an (n,m)-picture (picture
of width n and height m) over Σ is a mapping

p : J0, n− 1K× J0,m− 1K→ Σ

Σn,m denotes the set of all (n,m)-pictures over Σ and Σ∗,∗ =
⋃
n,m∈N Σn,m the set of all

pictures over Σ. A picture language over Σ is a set of pictures over Σ.

I Definition 10 (Picture Configuration). Given an (n,m)-picture p over Σ, we define the
picture configuration associated to p with quiescent state q0 /∈ Σ as

Cp,q0 :


Z2 → Σ ∪ {q0}

x, y 7→
{
p(x, y) if (x, y) ∈ J0, n− 1K× J0,m− 1K

q0 otherwise

I Definition 11 (Picture Recognizer). Given a picture language L over an alphabet Σ, we say
that a 2DCA A = (2,Q,N , δ) such that Σ ⊆ Q recognizes L with quiescent state q0 ∈ Q \Σ,
accepting state qa ∈ Q and rejecting state qr ∈ Q in time τ : N2 → N if qa and qr are
permanent states and for any picture p (of size n×m), starting from the picture configuration
Cp,q0 at time 0, the origin cell of the automaton at time τ(n,m) is in state qa if p ∈ L and
state qr if p /∈ L.

I Definition 12 (Real Time). Given a complete neighborhood N , the real time function
RTN : N2 → N associated to N is defined as

RTN (n,m) = min{t | J0, n− 1K× J0,m− 1K ⊆ N t}

ICALP 2016
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3 The Main Theorem

Most of the article will be dedicated to the proof of the following theorem

I Theorem 13 (Linear Acceleration). For any complete neighborhood N , any real number
ε > 0, any finite alphabet Σ and any language L ⊆ Σ∗,∗, if L is recognized by a 2DCA working
on N in time

(n,m) 7→ RTN (n,m) + f(n,m)

for some function f : N2 → N then L can be recognized in time

(n,m) 7→ d(1 + ε) RTN (n,m) + εf(n,m)e

by a 2DCA with neighborhood N .

I Corollary 14. For any complete neighborhood N , any language recognized in time (n,m) 7→
kRTN (n,m) for some k > 1 can be recognized in time (n,m) 7→ (1 + ε) RTN (n,m) for any
real number ε > 0.

To prove Theorem 13, we consider a 2DCA A working on a complete neighborhood N and
describe the construction of a 2DCA A′ working on the same neighborhood that simulates
the behavior of A in a way that enables it to recognize the same language as A in a linearly
shorter time.

3.1 Preliminary Remarks
The following observations will greatly simplify the proof of Theorem 13.

I Claim 15. It is sufficient to prove Theorem 13 up to an additive constant, meaning that
we only need to prove that L can be recognized in time

(n,m) 7→ (1 + ε) RTN (n,m) + εf(n,m) +O(1)

Proof. Consider that we have this weaker result. To get rid of the O(1) term simply choose
ε′ < ε. For any C > 0, for (n,m) large enough we have

(1 + ε) RTN (n,m) + εf(n,m) > (1 + ε′) RTN (n,m) + ε′f(n,m) + C

The automaton can handle all the finitely many inputs of small size in real time. J

I Claim 16. It is sufficient to prove Theorem 13 for all complete convex neighborhoods.

Proof. Consider a complete neighborhood N and let N ′ be the convex neighborhood having
same convex hull as N . The real time functions RTN and RTN ′ differ by at most a constant.
Moreover a CA on N can simulate the behavior of a CA on N ′ with a loss of at most a
constant number of steps and conversely (see [4] for more details).

The property from the theorem therefore translates directly from one neighborhood to
the other with at most a constant difference that can be ignored according to Claim 15. J

From now on we will consider that N is a convex neighborhood.
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Figure 1 Rules for the compression by a factor 3 of inputs of ratio n
m

= 2 with the neighborhood
represented in the top left. The information that the cell takes as its new state is represented in
grey. Information travels towards the bottom left. By looking down and left a cell determines if the
information from the top right should simply pass through (first case) or if some of its neighbors are
already full in which case it should start packing information. Left column shows simplified rules
for which the cell has already packed information in one of the directions and therefore only the
neighbors in the remaining direction are significant.

4 Compression of the Input

The first phase of the construction is to compress the input by a factor k > 1
ε . We want to

move the states of the initial configuration towards the origin, packing them in groups of
k × k as illustrated by Figure 2.

Although such compressions are relatively simple to perform on the von Neumann and
Moore neighborhoods, on a more general neighborhood it is not possible to know in which
direction the information should travel to move towards the origin at optimal speed. In
general, the optimal travel direction depends on the proportion n

m of the input.
We first show that if the proportion of the input is fixed, compression can be done

in optimal time on any complete neighborhood. Then, by performing a finite number of
compressions in parallel, each assuming a different proportion, we show that any input is
close enough to one of these assumed proportions to be compressed in “nearly optimal” time,
which will be sufficient for the proof of Theorem 13.

4.1 Compression of an Input of Constrained Proportion
If the size of the input is known to be of proportion n

m = α for some fixed rational α, we
can perform a compression by a factor k with a neighborhood such as the one illustrated
on the top left of Figure 1 with x

y = α. On such a neighborhood, compressing the input is
simply a matter of transferring the states from the top right to the bottom left, packing
them in groups of (1× k), (k× 1) or (k× k) when they cannot go any further in one or both
directions (see Figures 1 and 2). The compression is completed in time dk−1

k RTe.
Note that in order to compress by a factor k, the cell must be able to see 1

k−1 times as far
towards the left and bottom as it sees towards the right and top in order to properly determine
when it should start packing states. Because the convex hull of a complete neighborhood
N contains an open set around the origin (otherwise (N p)p∈N would not expand in all
directions), it contains its homothetic image of ratio − 1

k0−1 for some k0 (see Figure 3). On
such a neighborhood compression by any factor k ≥ k0 is possible.
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Figure 2 Compression of an input of size (14× 7) with the neighborhood and rules from Figure 1.

Figure 3 An example neighborhood on which
a compression by a factor k = 4 is possible.

Figure 4 The area of the neighborhood that
will be used for the compression of inputs of
proportion n

m
= 2 by a factor k = 4.

To compress inputs of proportion n
m = α on some complete neighborhood N , we consider

the largest rectangle [0, x]× [0, y] with x, y ∈ Q and x
y = α included in the convex hull of N

(see Figure 4). For all k ≥ k0, the rectangle [− x
k−1 , 0]× [− y

k−1 , 0] is also in the convex hull
of N .

These rectangles have rational but not necessarily integer dimensions. If we consider
the neighborhood N p for some large p, all is scaled up by a factor p and the corresponding
rectangles can be made of integer dimensions. The real time function on inputs of proportion
α for N p is equal to the real time function of the neighborhood containing only the two
rectangles (of integer coordinates). The compression algorithm described by Figures 1 and 2
therefore finishes in time k−1

k RTNp +O(1) on N p. An automaton working on N can simulate
one step of an automaton working on N p in p time steps, and since RTNp = d 1

p RTN e, the
compression can be completed on N in time k−1

k RTN +O(1).

4.2 Compression of General Input
Let us now consider inputs of arbitrary proportions. As discussed in the previous subsection,
for inputs of proportion α the optimal direction in which the information should travel for
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Figure 5 Choosing the set S of proportions
that will be used by A′ for compressions. The
thick line is the set of corners of maximal rect-
angles for all possible proportions. Along this
line, we pick a finite set of points at intervals of
at most εη.

Figure 6 Compression of an input of arbi-
trary proportion. The optimal direction for the
compression is represented by a dashed line. The
closest chosen direction is represented by a solid
line inside the neighborhood. It is at a distance
at most εη of the optimal vector. The travel path
of the farthest cell of the input is represented
as a solid black line, made of an initial segment
along the almost-optimal direction and an extra
segment to compensate for the deviation.

a compression is defined by the diagonal of the largest rectangle [0, x]× [0, y] with x
y = α

included in the convex hull of N . The first thing to note is that since N is complete, there
exists η > 0 such that [0, η]× [0, η] ⊆ CH(N ) and hence all maximal rectangles in CH(N )
have at least one dimension greater than η. The corners (x, y) of such maximal rectangles
all lie on a line. Let us pick a finite set S of rational points on this line from one extremity
to the other with distance at most εη between two consecutive points (see Figure 5).

For each proportion α = x
y with (x, y) ∈ S, A′ performs a compression of the input as

described in the previous subsection. All compressions take place at the same time in parallel.
Note that even if the proportion of the input is not exactly that for which the compression is
optimized, the input is still compressed properly although not as quickly.

Let us prove that one of the compressions that are run by the automaton compresses the
input in time at most (k−1

k + ε) RT. A compression along the vector corresponding exactly
to the proportion of the input would take a time k−1

k RT. A compression along one of the
vectors in S that is closest to the optimal vector (at distance at most εη) puts all states from
the input within a distance at most εηRT from their destination in time k−1

k RT +O(1). By
choosing the closest vector properly amongst the two choices, the remaining distance can be
travelled in time at most εRT +O(1) as illustrated by Figure 6 (information travels at speed
at least η in one of the dimensions).

For any possible input, at least one of the compressions completes in time at most
(k−1
k + ε) RT +O(1).

5 Transition

After the input has been compressed, the automaton A′ should immediately start simulating
the behavior of A, k steps at a time. However the cells of A′ receive the compressed input at
different times. If we wanted all the cells to start the next phase at the same time, we would
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require some synchronization scheme such as a firing-squad synchronization algorithm but
this would take a linear time. Instead, we show that synchronization is not required to start
the accelerated simulation as each cell of the automaton proceeds with the next phase as
soon as the relevant information is available.

This technique is very general and can be used in numerous situations where a cellular
automaton performs a computation by executing a series of separate tasks one after the
other without having to spend time synchronizing all cells. In its general form, it can be
stated in the following way:

I Proposition 17 (Passive Synchronization). Given a CA A of any dimension working on a
complete neighborhood N , there exists a CA A′ working on the same neighborhood N that
can simulate the behavior of A on any input even if the configuration is given asynchronously
in such a way that each cell of A′ computes states of the simulated automaton at least as fast
as if the computation had started synchronously when the last cell receives its input.

Formally, if we denote by Q the states of A, A′ has states {⊥} ∪ (Q × Q′) where ⊥
is a permanent state (cannot be changed by the transition rule of the automaton) and Q′
is a set of extra working states containing a default state ν. The cells of A′ are initially
in state ⊥ and considered inactive. Before each transition of the automaton, any number
of inactive cells of A′ might be activated by some external action over which A′ has no
control. Activating a cell c changes its state to (C(c), ν) where C is the input of the simulated
automaton A.

If there exists a time t0 at which all cells have been activated then for any cell c the
projection on Q of the state of c in A′ at time (t0 + t) is the state of c in the evolution of A
from the configuration C at time t′ for some t′ ≥ t.

Proof. The idea is to make all cells of A′ compute one step of A whenever they have enough
information to do so, while remembering their past states that other cells might need at a
later time.

When a cell c is activated, it receives the initial state C(c) and we say that its simulated
time is 0. From that point on, it looks at its neighbors and waits for all of them to be
activated. When this happens, it sees all initial states in its neighborhood and can compute
the next state in the evolution of A, increasing its simulated time to 1. As time passes it
keeps watching its neighbors until all of them are also at a simulated time at least equal to
its own, which means that it has all the information necessary to compute the next step and
increase its simulated time further.

Let us prove that this process can be carried out with finitely many states. First, notice
that since N is complete, there exists τ ∈ N such that −N ⊆ N τ . In order to compute
its state for a simulated time (τ + t) a cell c needs to have had access to the state at the
simulated time t of all cells in (c +N τ ) which includes the set (c − N ) of cells that have
c in their neighborhood. This means that a cell cannot be more than τ steps ahead in its
simulation than the cells that have it in their neighborhood, which implies that the difference
of simulated times between two neighbor cells is at most τ . If each cell stores the value of
its simulated time modulo (2τ + 1), it is possible for a cell to know the relative difference
in simulated time with all cells in its neighborhood. Furthermore, it is sufficient that a cell
remembers its last τ simulated states to be sure that when a cell c at simulated time t looks
at its neighbors that are more advanced in the simulation it can see their simulated state at
time t.

Finally, we prove by induction that at time (t0 + t) all cells have a simulated time at least
t. This is obviously true at time t0 since all cells have been activated. By induction, at time
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Figure 7 Compression of factor k = 2 with
the von Neumann neighborhood. The thick line
represents ρ(c+N ), the states that are visible to
the central cell in one step. The circles represent
ρ(c) +N k, the states that should be known to
compute two steps of the original automaton on
the states that the central cell holds.

Figure 8 The thick line represents ρ(c+N ).
The circles represent the cells in (c′ + kN ) for
some c′ in ρ(c) (the one in the top left).

(t0 + t) for any cell at simulated time t all its neighbors are at least at simulated time t so it
can compute a new step of the simulation, which proves that at time (t0 + t+ 1) all cells
have a simulated time of at least (t+ 1).

Note that this process is such that the cells who are behind in their simulation can
compute new states without delay, whereas the ones ahead wait for their neighbors to catch
up. J

In the following section we describe how A′ can simulate k steps of A at a time starting
from a compressed input. We assume that all cells complete the compression and start
the simulation synchronously when the last cell receives its compressed information. Using
Proposition 17, we can connect the two constructions (cells are activated for the simulation
when they receive their compressed input) and ensure that the origin is always at least as
advanced in its computation as if the simulation had started synchronously.

6 Simulation on a Compressed Input

Let us denote by ρ the function that maps a cell of A′ to the set of cells of A whose states it
receives after the compression of a factor k :

∀c ∈ Z2, ρ(c) = {kc+ (x, y) | x, y ∈ J0, k − 1K}

and extend the notation to sets of cells by ρ(S) =
⋃
c∈S

ρ(c).

The states of A that are held in the neighborhood of a cell c in A′ are the ones correspond-
ing to the cells of A in ρ(c+N ). To be able to compute k steps of the original automaton,
the cell c in A′ needs to be able to see in its neighborhood the states corresponding to the
cells (ρ(c) +N k) of A. Although this is the case for simple rectangular neighborhoods, it is
not true for some neighborhoods (see Figure 7).

What is true however is that ρ(c) + kN ⊆ ρ(c+N ) since for any v ∈ N if the state of
a cell c′ in A is held by a cell c in A′ after compression of the input, the cell (c+ v) in A′
holds the state of (c′ + kv) in A (see Figure 8).

I Lemma 18. ∀k ∈ N,∃α ∈ N, Nα + kN = Nα +N k

Proof. The inclusion Nα +kN ⊆ Nα +N k is obvious for any α. As for the converse, choose
α such that α + k > |N |(k − 1). Any x ∈ Nα +N k can be written as the sum of (α + k)
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elements of N and therefore at least one of these elements appears at least k times, which
proves that x ∈ Nα + kN . J

By Lemma 18, we can choose α such that Nα + kN = Nα + N k. We now modify
the behavior of A′ so that during the first α steps of the computation, before starting the
compression, all cells gather the initial states contained in their Nα neighborhood. From
here onwards, each cell performs all of the computation as described earlier on all the states
it holds : a cell c holds at time (α+ t) the states that would have been on all the cells in
(c+Nα) at time t on the automaton A′ as described until now. At time (α+ t) the cells in
(c+N ) as a whole hold all the states that would have been on the cells in (c+Nα+1) at
time t, which is exactly what is needed to compute the states of all cells in (c+Nα) at time
(t+ 1). This extra step adds a constant time α to the computation of the automaton1.

After the initial gathering and compression of the input, the cell c in A′ holds the initial
states in A for the cells in (ρ(c) +Nα). Let us show by induction that this is enough to
simulate the behavior of A′ with a linear speed-up of factor k. Assume that at time (t0 + t),
any cell c of A′ holds the states at time t for the cells of A in (ρ(c) +Nα).

This means that the cells in the neighborhood (c+N ) of c in A′ at time (t0 + t) hold
the states at time t in A of the cells in ρ(c+N ) +Nα. By Lemma 18, we have

ρ(c+N ) +Nα ⊇ ρ(c) + kN +Nα ⊇ ρ(c) +Nα+k

which shows that cell c in A′ at time (t0 + t) sees enough information to compute the states
in A for the cells in (ρ(c) +Nα) at time (t+ k).

7 Total time

We have completed the description of the behavior of the automaton A′. Let us now evaluate
the total time taken to recognize the language L recognized by A in time RTN +f .

The compression of the input takes a time (k−1
k + ε) RTN +O(1). The simulation of

A from a fully compressed input takes a time 1
k (RTN +f) + O(1) for some k ≥ 1

ε , and
Proposition 17 shows that no time is lost by completing the compression asynchronously
(the time of the compression is the time at which the last cell is correctly compressed).

The total time for the simulation of A is therefore

(k − 1
k

+ ε) RTN + 1
k

(RTN +f) +O(1) ≤ (1 + ε) RTN +εf +O(1)

By Claim 15, the O(1) term can be eliminated, which concludes the proof of Theorem 13.

8 Conclusion

The linear acceleration presented in this article is slightly weaker than the previously
known results on a limited class of neighborhoods (which contains the von Neumann and
Moore neighborhoods). On these neighborhoods, as well as all one-dimensional complete
neighborhoods, any language that can be recognized in time (RT +f) can be recognized in
time (RT +εf) for any ε > 0.

1 The constant time α is actually not lost since the origin holds the states that would be on the cells in
Nα, which enables it to compute its own state α time steps ahead. However, for the purpose of proving
Theorem 13, adding a constant time to the computation is irrelevant.
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Although the difference is only significant if f = o(RT), it would be interesting to
know whether this stronger statement can be proved for general two-dimensional complete
neighborhoods. This would either require an optimal-time compression of the input or a
completely different construction skipping the compression altogether.

As we currently understand it, optimal-time compression seems unlikely on general
neighborhoods. The problem is that states from the initial configuration should move
towards the origin in the optimal direction permitted by the neighborhood. Before receiving
any information from the axes, a cell has no way of knowing the precise direction to the
origin. If the neighborhood’s convex hull has more than one vertex in the positive quarter
of the plane, moving along any of the directions permitted by the neighborhood might be
sub-optimal, as oppposed to the case of the Moore neighborhood in which going diagonally
at first is never sub-optimal and by the time it is necessary to change direction to go either
horizontally or vertically information is received from the axes.

If only one cell needs to send its information towards the origin, the problem can be
solved by spreading the information in all directions and spreading symmetric signals from
the origin. It is however not possible to implement this for all cells at the same time with
finitely many states.

Acknowledgments. The authors would like to thank Jacques Mazoyer for his helpful
conversations and inspiring ideas at the start of the work that led to this article.
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Abstract
We present a reinterpretation of the Kameda-Weiner method of finding a minimal nondetermin-
istic finite automaton (NFA) of a language, in terms of atoms of the language. We introduce a
method to generate NFAs from a set of languages, and show that the Kameda-Weiner method
is a special case of it. Our method provides a unified view of the construction of several known
NFAs, including the canonical residual finite state automaton and the atomaton of the language.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases Nondeterministic finite automata, NFA minimization, Kameda-Weiner
method, atoms of regular languages

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.116

1 Introduction

Nondeterministic finite automata (NFAs), introduced by Rabin and Scott [11] in 1959, have
played a major role in the theory and applications of finite automata. In particular, the
problem of finding NFAs with the minimal number of states has received much attention.
Different approaches have been used over the years when trying to solve this problem, of
which the work done by Kameda and Weiner [10] in 1970 seems to be among the most
classical ones. Kameda and Weiner studied the problem of NFA minimization using a matrix
based on the states of the minimal deterministic finite automata (DFAs) for a given language
and its reverse. They suggested a method of finding a minimal NFA using grids of this
matrix.

We present a reinterpretation of the Kameda-Weiner method, using the recently introduced
atoms of regular languages [3, 5], and continuing the work started by Brzozowski and Tamm
in [4], where the Kameda-Weiner method was formulated in terms of quotients and atoms
of a language. We show that the matrix used by Kameda and Weiner can be viewed as
the quotient-atom matrix of the language, and that any maximal grid of this matrix can be
seen as the set of atoms that the grid involves. We also show that, instead of applying the
rather complicated intersection rule of the Kameda-Weiner method, to construct an NFA
corresponding to a cover of the matrix, consisting of maximal grids, one can use sets of atoms
associated with grids, and form an NFA based on these sets. We note that essentially the
same approach to the Kameda-Weiner method, which uses projections of grids (corresponding
to sets of atoms), has been presented by Champarnaud and Coulon [6].

Furthermore, we generalize the idea of constructing an NFA using sets of atoms. Namely,
we introduce a method to generate NFAs from a set of languages, and show that the
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Kameda-Weiner method of constructing a minimal NFA is a special case of this method.
The introduced method provides a unified view of the construction of several known NFAs
including, for example, the canonical residual finite state automaton and the átomaton of
the language.

The structure of the rest of the paper is as follows. In Section 2, we provide definitions
for automata, quotients, and atoms of a regular language, and recall some results related
to atoms. Section 3 describes the Kameda-Weiner method of finding a minimal NFA of
a language and shows how the Kameda-Weiner construction of an NFA can be expressed
in terms of atoms. In Section 4, we introduce a method to generate NFAs from a set of
languages and present a few examples of known NFAs that can be constructed using this
method. In Section 5, we show that the NFA minimization method presented by Kameda
and Weiner is a special case of generating an NFA by our method. Section 6 concludes the
paper.

2 Automata, Quotients, and Atoms of Regular Languages

A nondeterministic finite automaton (NFA) is a quintuple N = (Q,Σ, δ, I, F ), where Q is
a finite, non-empty set of states, Σ is a finite non-empty alphabet, δ : Q × Σ → 2Q is the
transition function, I ⊆ Q is the set of initial states, and F ⊆ Q is the set of final states. We
extend the transition function to functions δ′ : Q×Σ∗ → 2Q and δ′′ : 2Q ×Σ∗ → 2Q, using δ
for all these functions. An NFA N ′ = (Q′,Σ′, δ′, I ′, F ′) is a subautomaton of N if Q′ ⊆ Q,
Σ′ ⊆ Σ, I ′ ⊆ I, F ′ ⊆ F , and q ∈ δ′(p, a) implies q ∈ δ(p, a) for every p, q ∈ Q′ and a ∈ Σ′.

The language accepted by an NFA N is L(N ) = {w ∈ Σ∗ | δ(I, w) ∩ F 6= ∅}. The right
language of a state q of N is Lq,F (N ) = {w ∈ Σ∗ | δ(q, w) ∩ F 6= ∅}. A state is empty if its
right language is empty. The left language of a state q of N is LI,q = {w ∈ Σ∗ | q ∈ δ(I, w)}.
A state is unreachable if its left language is empty. An NFA is trim if it has no empty or
unreachable states. If N1 = (Q1,Σ, δ1, I1, F1) and N2 = (Q2,Σ, δ2, I2, F2) are NFAs, then a
map ϕ from Q1 into Q2 is a morphism from N1 into N2 if and only if ϕ(I1) ⊆ I2, ϕ(F1) ⊆ F2,
and q ∈ δ1(p, a) implies ϕ(q) ∈ δ2(ϕ(p), a).

A deterministic finite automaton (DFA) is a quintuple D = (Q,Σ, δ, q0, F ), where Q, Σ,
and F are as in an NFA, δ : Q× Σ→ Q is the transition function, and q0 is the initial state.

The following three operations on automata are commonly used: the determinization
operation D applied to an NFA N , yielding a DFA ND, obtained by the well-known subset
construction, the reversal operation R which, when applied to an NFA N , yields an NFA
NR, where the sets of the initial and the final states of N are interchanged and all transitions
are reversed, and the trimming operation T which, when applied to an NFA N , results in an
NFA N T where all unreachable and empty states are removed.

The left quotient, or simply quotient, of a language L by a word w ∈ Σ∗ is the language
w−1L = {x ∈ Σ∗ | wx ∈ L}. There is one initial quotient, ε−1L = L. A quotient is final if it
contains ε. It is well known that there is a one-to-one correspondence between the set of
states Q = {q0, . . . , qn−1} of the minimal DFA D = (Q,Σ, δ, q0, F ) accepting L and the set
of quotients {K0, . . . ,Kn−1} of L, such that Lqi,F (D) = Ki for i = 0, . . . , n− 1.

An atom of a regular language L with quotients K0, . . . ,Kn−1 is any non-empty language
of the form K̃0 ∩ · · · ∩ K̃n−1, where K̃i is either Ki or Ki, and Ki is the complement of Ki

with respect to Σ∗. Thus atoms of L are regular languages uniquely determined by L and
they define a partition of Σ∗. They are pairwise disjoint and every quotient of L (including
L itself) is a union of atoms. Also, every quotient of an atom of L is a union of atoms. It
has been noticed that atoms are exactly the classes of the left congruence of L [9] defined as
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follows: for x, y ∈ Σ∗, x is equivalent to y if for every u ∈ Σ∗, ux ∈ L if and only if uy ∈ L.
This idea was used in [2], where this equivalence is called the atom congruence.

A regular language L with n quotients has at most 2n atoms. An atom is initial if it has L
(rather than L) as a term; it is final if it contains ε. There is exactly one final atom, the atom
K̂0∩ · · · ∩ K̂n−1, where K̂i = Ki if ε ∈ Ki, and K̂i = Ki otherwise. Let A = {A0, . . . , Am−1}
be the set of atoms of L, let IA be the set of initial atoms, and let Am−1 be the final atom.
If K0 ∩ · · · ∩Kn−1 is an atom, then it is called the negative atom, all the other atoms are
positive.

We use a one-to-one correspondence Ai ↔ Ai between atoms Ai of a language L and the
states Ai of the NFA A defined as follows [5]:

I Definition 1. The átomaton of L is the NFA A = (A,Σ, α, IA, {Am−1}), where A =
{Ai | Ai ∈ A}, IA = {Ai | Ai ∈ IA}, and Aj ∈ α(Ai, a) if and only if Aj ⊆ a−1Ai, for all
Ai,Aj ∈ A and a ∈ Σ.

The right language of any state Ai of the átomaton is the atom Ai [5].
The next theorem is a slightly modified version of the result by Brzozowski [1]:

I Theorem 2. If an NFA N has no empty states and NR is deterministic, then ND is
minimal.

Since it was shown in [5] that AR is a minimal DFA for the reverse language of L, we
know by Theorem 2 that AR is isomorphic to DRD, where D is the minimal DFA of L. Thus,
A is isomorphic to DRDR.

A new class of NFA’s was defined in [5] as follows: an NFA N = (Q,Σ, δ, I, F ) is atomic
if for every q ∈ Q, the right language Lq,F (N ) of q is a union of atoms of L(N ). Also, it was
shown that for any NFA N , ND is a minimal DFA if and only if NR is atomic.

3 NFA Minimization by Kameda and Weiner

Kameda and Weiner [10] have developed a theory of NFA minimization. They used minimal
DFAs for a language L and its reverse LR to form a matrix, and based on the grids in this
matrix, a minimal NFA was found. We note that the biclique edge cover technique presented
by Gruber and Holzer [8] as a lower bound method for the size of a minimal NFA, uses
another representation of the same matrix.

We present main principles of the Kameda-Weiner method, using mostly our terminology
and notation. Kameda and Weiner [10] consider a trim minimal DFA D = (Q,Σ, δ, q0, F )
with Q of cardinality p, and its reversed determinized and trim version DRDT ; the set of
states of DRDT is a subset S of cardinality r of 2Q \ ∅. They then form an p × r matrix
T where the rows correspond to non-empty states qi ∈ Q of D, which is the trim minimal
DFA of a language L, and columns, to states Sj ∈ S of DRDT , which is the trim minimal
DFA of the language LR by Theorem 2. The entry ti,j of the matrix T is 1 if qi ∈ Sj , and 0
otherwise.

We use DRDRT , the trim átomaton, instead of DRDT , since the state sets of these two
automata are identical. Interpret the rows of the matrix as non-empty quotients of L and
columns, as positive atoms of L. Then ti,j = 1 if and only if quotient Ki contains atom Aj
as a subset, and it is clear that every regular language defines a unique such matrix, which
we will call the quotient-atom matrix.

The ordered pair (Ki, Aj) is a point of T if ti,j = 1. A grid g of T is the direct product
g = P × R of a set P of quotients with a set R of atoms, such that every atom in R is a
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subset of every quotient in P . If g = P ×R and g′ = P ′ ×R′ are two grids of T , then g ⊆ g′
if and only if P ⊆ P ′ and R ⊆ R′. Thus ⊆ is a partial order on the set of all grids of T , and
a grid is maximal if it is not contained in any other grid. We say that a grid g = P ×R is
horizontally maximal if for any grid g′ = P × R′, R′ ⊆ R. Similarly, a grid g = P × R is
vertically maximal if for any grid g′ = P ′ ×R, P ′ ⊆ P . Clearly, any maximal grid is both
horizontally and vertically maximal.

A cover G of T is a set G = {g0, . . . , gk−1} of grids, such that every point (Ki, Aj) belongs
to some grid gi in G. A minimal cover has the minimal number of grids.

Let fG be the function that assigns to every non-empty quotient Ki the subset of a
cover G, consisting of grids g = P × R such that Ki ∈ P . The NFA constructed by the
Kameda-Weiner method is NG = (G,Σ, ηG, IG, FG), where G is a cover consisting of maximal
grids, IG = fG(K0) is the set of grids corresponding to the initial quotient K0, and FG is
defined by g ∈ FG if and only if g ∈ fG(Ki) implies that Ki is a final quotient. For every grid
g = P ×R and a ∈ Σ, we can compute ηG(g, a) by the formula ηG(g, a) =

⋂
Ki∈P fG(a−1Ki).

It is said that the NFA NG is obtained from D by the intersection rule, using the (grid)
cover G.

It may be the case that NG does not accept the language L. A cover G is called legal if
L(NG) = L. To find a minimal NFA of a language L, the method in [10] tests the covers of
the quotient-atom matrix of L in the order of increasing size to see if they are legal. The
first legal NFA is a minimal one.

Next, we will interpret the Kameda-Weiner method in terms of atoms. For this, we first
show the relationship between maximal grids and certain sets of atoms. Let us start with
the following definition:

IDefinition 3. Let R be a set of atoms and let U(R) =
⋃
Aj∈RAj be the union of these atoms.

We define the maximized version of U(R) to be the language max(U(R)) =
⋂
U(R)⊆Ki

Ki.
We say that the set R is maximal if max(U(R)) = U(R).

The following proposition is an easy observation:

I Proposition 4. Let R be a set of atoms. Then
1. U(R) ⊆ max(U(R)),
2. max(max(U(R))) = max(U(R)).

I Proposition 5. Let Ri and Rj be sets of atoms. The following properties hold:
1. If U(Ri) ⊆ U(Rj), then max(U(Ri)) ⊆ max(U(Rj)).
2. For every a ∈ Σ, max(a−1U(Ri)) ⊆ a−1max(U(Ri)).

Proof. To prove the first claim, let U(Ri) ⊆ U(Rj). Then it is easy to see that the
inclusion {Kh | U(Ri) ⊆ Kh} ⊇ {Kk | U(Rj) ⊆ Kk} holds, implying that also the inclusion⋂
U(Ri)⊆Kh

Kh ⊆
⋂
U(Rj)⊆Kk

Kk holds. Thus, max(U(Ri)) ⊆ max(U(Rj)).
To prove the second property, consider the set of quotients Kh such that U(Ri) ⊆ Kh.

Since U(Ri) ⊆ Kh implies that a−1U(Ri) ⊆ a−1Kh holds, it is clear that the inclu-
sion {a−1Kh | U(Ri) ⊆ Kh} ⊆ {Kk | a−1U(Ri) ⊆ Kk} holds. This implies that also
the inclusion

⋂
a−1U(Ri)⊆Kk

Kk ⊆
⋂
U(Ri)⊆Kh

a−1Kh holds. Since
⋂
U(Ri)⊆Kh

a−1Kh =
a−1 ⋂

U(Ri)⊆Kh
Kh, we get that max(a−1U(Ri)) ⊆ a−1max(U(Ri)). J

Next, we will see that any maximal grid can be considered as a maximal set of atoms it
involves.

I Proposition 6. For any grid g = P ×R, U(R) ⊆
⋂
Ki∈P Ki holds.
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Proof. For any grid g = P × R, it holds that for every Ki ∈ P and Aj ∈ R, Aj ⊆ Ki,
implying that U(R) ⊆

⋂
Ki∈P Ki. J

I Proposition 7. A grid g = P × R is horizontally maximal if and only if the equality⋂
Ki∈P Ki = U(R) holds.

Proof. For any grid g = P × R, the inclusion U(R) ⊆
⋂
Ki∈P Ki holds by Proposition 6.

Let g be a horizontally maximal grid. Then there is no grid g′ = P ×R′, such that R ⊂ R′.
That is, there is no Al ∈ {A0, . . . , Am−1} \R, such that U(R) ∪Al ⊆

⋂
Ki∈P Ki would hold.

Since every quotient is a disjoint union of atoms, every intersection of quotients is also a
union of atoms. Therefore, the equality

⋂
Ki∈P Ki = U(R) holds.

Conversely, if
⋂
Ki∈P Ki = U(R), then for every grid g′ = P ×R′, the inclusion R′ ⊆ R

holds. Thus, the grid g = P ×R is horizontally maximal. J

I Corollary 8. A grid g = P ×R is horizontally maximal if and only if the set R is maximal.

Proof. Let g = P ×R be a horizontally maximal grid. By Proposition 7, this means that
the equality

⋂
Ki∈P Ki = U(R) holds. Since max(U(R)) =

⋂
U(R)⊆Ki

Ki, it is clear that
max(U(R)) = U(R). Thus, R is maximal. J

I Corollary 9. A grid g = P ×R is maximal if and only if P is a maximal set of quotients
such that the equality

⋂
Ki∈P Ki = U(R) holds.

According to Corollaries 8 and 9, any maximal grid involves a maximal set of atoms and
the set of quotients, such that the intersection of these quotients is the union of the atoms
involved.

As the main result of this section, we will prove the following theorem which shows how
the construction of the NFA NG can be expressed in terms of atoms:

I Theorem 10. Let G = {g0, . . . , gk−1} be a cover consisting of maximal grids gi = Pi ×Ri,
i = 0, . . . , k − 1, and let NG = (G,Σ, ηG, IG, FG) be the corresponding NFA, obtained by the
intersection method. It holds that gi ∈ IG if and only if U(Ri) ⊆ L, and gi ∈ FG if and
only if ε ∈ U(Ri). For any gi, gj ∈ G and a ∈ Σ, gj ∈ ηG(gi, a) if and only if the inclusion
U(Rj) ⊆ a−1U(Ri) holds.

Proof. The set IG of initial states of NG consists of those grids that intersect the initial
quotient K0 = L. That is, for every grid gi ∈ G, gi ∈ IG if and only if U(Ri) ⊆ L holds.

The set FG of final states of NG is the set of grids that intersect only the final quotients.
Equivalently, for any gi ∈ G, it holds that gi ∈ FG if and only if U(Ri) includes the final
atom. The latter is equivalent to having ε ∈ U(Ri).

Next, let gj ∈ ηG(gi, a) for some gi, gj ∈ G and a ∈ Σ. By the intersection rule, it holds
that ηG(gi, a) =

⋂
Kh∈Pi

f(a−1Kh). That is, gj ∈ ηG(gi, a) if and only if gj ∈ f(a−1Kh) for
every Kh ∈ Pi. This implies that gj ∈ ηG(gi, a) if and only if a−1Kh ∈ Pj holds for every
Kh ∈ Pi.

It is clear that if a−1Kh ∈ Pj holds for every Kh ∈ Pi, then the inclusion
⋂
Kk∈Pj

Kk ⊆⋂
Kh∈Pi

a−1Kh holds. And conversely, if
⋂
Kk∈Pj

Kk ⊆
⋂
Kh∈Pi

a−1Kh, then since by Corol-
lary 9, Pj is a maximal set of quotients such that the equality

⋂
Kk∈Pj

Kk = U(Rj) holds,
it must be that a−1Kh ∈ Pj for Kh ∈ Pi. Thus, a−1Kh ∈ Pj for Kh ∈ Pi if and only if
the inclusion

⋂
Kk∈Pj

Kk ⊆
⋂
Kh∈Pi

a−1Kh holds. Because of the equality
⋂
Kh∈Pi

a−1Kh =
a−1 ⋂

Kh∈Pi
Kh, we get the equivalent condition

⋂
Kk∈Pj

Kk ⊆ a−1 ⋂
Kh∈Pi

Kh. Using Corol-
lary 9, we get the inclusion U(Rj) ⊆ a−1U(Ri). J
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Theorem 10 provides another way of constructing the NFA NG from a given set of
maximal grids covering the quotient-atom matrix: instead of applying the intersection rule
to get transitions of NG, one can use the sets of atoms corresponding to the grids, and apply
quotients of unions of the atoms involved. This can be done using the transition function of
the átomaton.

We mention that basically the same approach to the Kameda-Weiner method has been
presented by Champarnaud and Coulon [6]. They used projections of grids, consisting of
subsets of the state set of the DFA DRDT , to construct an NFA similarly as in Theorem 10.

In the next section, we will generalize this idea of using sets of atoms (or unions of atoms)
of a language L, to construct NFAs for L.

4 Generating Automata by a Set of Languages

In this section, we introduce a method to generate NFAs from a set of languages.
Let L be a regular language, and let K = {K0, . . . ,Kn−1} be the set of quotients of L.

A set {L0, . . . , Lk−1} of languages is a cover of the quotients of L, or simply, a cover for L,
if every quotient Kj of L is a union of some Li’s. We note that since L is the quotient of
itself by the empty word ε, L is a union of some Li’s.

We define the NFA based on a cover {L0, . . . , Lk−1} as follows:

I Definition 11. The NFA generated by a cover {L0, . . . , Lk−1} for L is defined by G =
(Q,Σ, δ, I, F ), where Q = {q0, . . . , qk−1}, I = {qi | Li ⊆ L}, F = {qi | ε ∈ Li}, and
qj ∈ δ(qi, a) if and only if Lj ⊆ a−1Li for all qi, qj ∈ Q and a ∈ Σ.

I Lemma 12. For all states qi, qj of NFA G and for any word w ∈ Σ+, qj ∈ δ(qi, w) if and
only if Lj ⊆ w−1Li.

Proof. We prove the statement by induction on the length of w. If w = a for some a ∈ Σ,
then the lemma holds by Definition 11.

Now, let w = ua, where u ∈ Σ+ and a ∈ Σ, and assume that the lemma holds for u,
that is, for all states qi, qj of G, qj ∈ δ(qi, u) if and only if Lj ⊆ u−1Li. Consider a state
qi, and let qk ∈ δ(qi, ua). Then there is a state qj , such that qj ∈ δ(qi, u) and qk ∈ δ(qj , a).
Equivalently, by the induction assumption and Definition 11, respectively, the inclusions
Lj ⊆ u−1Li and Lk ⊆ a−1Lj hold. Hence Lk ⊆ a−1Lj ⊆ a−1(u−1Li) = (ua)−1Li. Thus,
qk ∈ δ(qi, ua) if and only if Lk ⊆ (ua)−1Li. J

I Proposition 13. The following properties hold for NFA G:
1. Lqi,F (G) ⊆ Li for every qi ∈ Q.
2. L(G) ⊆ L.

Proof. 1. Consider a state qi of G. Let w ∈ Lqi,F (G). If w = ε, then qi ∈ F , and ε ∈ Li
by Definition 11. If w ∈ Σ+, then there is some qj such that qj ∈ F and qj ∈ δ(qi, w). By
Lemma 12, Lj ⊆ w−1Li and ε ∈ Lj implying that w ∈ Li.

2. Since L(G) is the union of right languages of the initial states of G, the claim follows
from Definition 11 and Part 1. J

I Lemma 14. If a−1Li is a union of Lj’s for every Li and a ∈ Σ, then w−1Li is a union
of Lj’s for every Li and w ∈ Σ+.
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Proof. Let a−1Li be a union of Lj ’s for every Li and a ∈ Σ, that is, a−1Li =
⋃
j∈Ji,a

Lj
for some Ji,a ⊆ {0, . . . , k − 1}. We prove the statement by induction on the length of w. If
w = a for some a ∈ Σ, then the lemma trivially holds.

Now, let w = ua, where u ∈ Σ+ and a ∈ Σ, and assume that the lemma holds for u,
that is, u−1Li =

⋃
j∈Ji,u

Lj for some Ji,u ⊆ {0, . . . , k − 1}. Then (ua)−1Li = a−1(u−1Li) =
a−1(

⋃
j∈Ji,u

Lj) =
⋃
j∈Ji,u

a−1Lj =
⋃
j∈Ji,u

⋃
h∈Jj,a

Lh. Thus, (ua)−1Li is a union of Lh’s.
J

I Proposition 15. Let G = (Q,Σ, δ, I, F ) be the NFA generated by a cover {L0, . . . , Lk−1}
for L. The equality Lqi,F (G) = Li holds for every qi ∈ Q if and only if a−1Li is a union of
Lj’s for every Li and a ∈ Σ.

Proof. First, let the equality Lqi,F (G) = Li hold for every qi ∈ Q. Let us consider any Li
and a ∈ Σ. Then it holds that a−1Li = a−1Lqi,F (G) =

⋃
qj∈δ(qi,a) Lqj ,F (G) =

⋃
Lj⊆a−1Li

Lj .
Conversely, assume that a−1Li is a union of Lj ’s for every Li and a ∈ Σ. Let us consider

any state qi of G. By Proposition 13, the inclusion Lqi,F (G) ⊆ Li holds, so we only have
to show that Li ⊆ Lqi,F (G). Let w be any word in Li. If w = ε, then qi ∈ F , and so
w ∈ Lqi,F (G). If w ∈ Σ+, then by Lemma 14, w−1Li is a union of Lj ’s. Since w ∈ Li, there
must be some Lj such that Lj ⊆ w−1Li and ε ∈ Lj . By Lemma 12, there is some qj ∈ F
such that qj ∈ δ(qi, w). Therefore w ∈ Lqi,F (G), and we conclude that Lqi,F (G) = Li. J

I Proposition 16. Let G = (Q,Σ, δ, I, F ) be the NFA generated by a cover {L0, . . . , Lk−1}
for L. If a−1Li is a union of Lj’s for every Li and a ∈ Σ, then G accepts L.

Proof. If a−1Li is a union of Lj ’s for every Li and a ∈ Σ, then by Proposition 15, Lqi,F (G) =
Li holds for every qi ∈ Q. Since L(G) =

⋃
qi∈I Lqi,F (G) =

⋃
Li⊆L Li = L, the equality

L(G) = L holds. J

We present four examples of covers for the language L and the corresponding NFAs
generated by these covers, where the condition of Proposition 16 holds, ensuring that the
generated NFA accepts L:

I Example 17. Consider the set K = {K0, . . . ,Kn−1} of quotients of L as a cover for L.
Let GK be the NFA generated by the set K. Since for every quotient Ki and a ∈ Σ there
exists some quotient Kj such that a−1Ki = Kj , we know by Proposition 16 that GK accepts
L. It is well known that the states of the minimal DFA correspond to the quotients of L.
However, the NFA GK is isomorphic to the saturated version [7] of the minimal DFA of L.

I Example 18. Consider the set K ′ ⊆ K of prime quotients of L, that is, those non-empty
quotients of L which are not unions of other quotients, as a cover for L. Let GK′ be the NFA
generated by the set K ′. Since every quotient of L is a union of some prime quotients of L,
it is clear that for every prime quotient K ′i and a ∈ Σ, a−1K ′i is a union of prime quotients.
Thus, GK′ accepts L by Proposition 16. The NFA GK′ is known as the canonical residual
finite state automaton (canonical RFSA) [7] of L.

I Example 19. Consider the set A = {A0, . . . , Am−1} of atoms of L. The set of atoms is a
cover for L, because every quotient of L is a union of atoms [5]. The NFA GA, generated by
the set A, is the átomaton of L (cf. Definition 1). It is known that for every atom Ai and
a ∈ Σ, a−1Ai is a union of atoms [5]. Thus, the condition of Proposition 16 holds, and GA
accepts L.
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I Example 20. Let A0, . . . , Am−1 be the atoms of L. Consider the setM = {M0, . . . ,Mm−1}
of the maximized versions of atoms, that is, Mi = max(Ai) for i = 0, . . . ,m− 1. Clearly, if
Ai ⊆ Kj for some atom Ai and quotient Kj , then the inclusionMi ⊆ Kj holds by Definiton 3.
Thus, the set M is a cover for L. The NFA GM , generated by the set M , is the maximized
átomaton [13] of L. Since for any Mi ∈M and a ∈ Σ, a−1Mi =

⋃
Aj⊆Mi

a−1Aj , and because
a−1Aj is a union of atoms [5], we get that a−1Mi is a union of atoms. By [13, Proposition 2,
Part 4], the inclusion Aj ⊆ a−1Mi holds if and only if Mj ⊆ a−1Mi holds. We conclude that
a−1Mi is a union of Mj ’s, and by Proposition 16, GM accepts L.

However, we note that the condition of Proposition 16 is not necessary for the generated
NFA to accept L.

I Proposition 21. If N is a trim NFA accepting L, with the set {L0, . . . , Lk−1} of the right
languages of its states, then this set is a cover for L.

Proof. By determinizing N , the quotients of L are formed as unions of some Li’s. J

I Proposition 22. Let N = (Q,Σ, δ, I, F ) be a trim NFA of L, with the set {L0, . . . , Lk−1}
of the right languages of its states, and let G = (Q′,Σ, δ′, I ′, F ′) be the NFA generated by
the set {L0, . . . , Lk−1}. Let ϕ : Q→ Q′ be the mapping assigning to every state q of N , the
state q′i of G, such that Li = Lq,F (N ). Then ϕ is a morphism from N into G.

Proof. Let N = (Q,Σ, δ, I, F ) be a trim NFA accepting L, with the set {L0, . . . , Lk−1}
of the right languages of its states. By Proposition 21, the set {L0, . . . , Lk−1} is a cover
for L. Let G = (Q′,Σ, δ′, I ′, F ′) be the NFA generated by the set {L0, . . . , Lk−1}, with
Q′ = {q′0, . . . , q′k−1}. Let ϕ : Q → Q′ be the mapping assigning to every state q of N , the
state q′i of G, such that Li = Lq,F (N ). We note that there may be some states p and q of N ,
such that p 6= q and Lp,F (N ) = Lq,F (N ), so ϕ is a many-to-one correspondence. We show
that ϕ is a morphism from N into G.

First, if q ∈ I is an initial state of N , then there is some Li, such that Li = Lq,F (N ) and
Li ⊆ L, which implies that the corresponding state q′i of G is also initial, that is, ϕ(q) ∈ I ′.

Similarly, if q ∈ F , then there is some Li, such that Li = Lq,F (N ) and ε ∈ Li, implying
that q′i ∈ F ′, that is, ϕ(q) ∈ F ′.

If q ∈ δ(p, a) holds for some states p, q ∈ Q and a ∈ Σ, then there are some Li and Lj ,
such that Li = Lp,F (N ), Lj = Lq,F (N ), and Lj ⊆ a−1Li. It is implied that q′j ∈ δ′(q′i, a),
that is, ϕ(q) ∈ δ′(ϕ(p), a). We conclude that ϕ is a morphism from N into G. J

I Theorem 23. If there is a trim NFA accepting L, with the set {L0, . . . , Lk−1} of the right
languages of its states, then the NFA generated by the cover {L0, . . . , Lk−1} for L is such an
NFA.

Proof. Let N = (Q,Σ, δ, I, F ) be a trim NFA accepting L, with the set {L0, . . . , Lk−1}
of the right languages of its states. By Proposition 21, the set {L0, . . . , Lk−1} is a cover
for L. Let G = (Q′,Σ, δ′, I ′, F ′) be the NFA generated by the set {L0, . . . , Lk−1}, with
Q′ = {q′0, . . . , q′k−1}. By Proposition 22, there is a morphism ϕ : Q → Q′ from N into G,
such that ϕ(q) = q′i for some q ∈ Q and q′i ∈ Q′ if and only if Lq,F (N ) = Li.

The morphism ϕ implies that for every state q ∈ Q, with its right language Lq,F (N ) = Li
for some Li, the inclusion Lq,F (N ) ⊆ Lq′

i
,F ′(G), that is, Li ⊆ Lq′

i
,F ′(G) holds. Since by

Proposition 13, Part 1, the inclusion Lq′
i
,F ′(G) ⊆ Li holds, the equality Lq′

i
,F ′(G) = Li

must hold. Also, the morphism ϕ implies that the inclusion L(N ) ⊆ L(G) holds. Since by
Proposition 13, Part 2, L(G) ⊆ L, and we assumed that L(N ) = L, we conclude that G
accepts L. J
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Theorem 23 shows that our method to generate NFAs from a set of languages is indeed
general. That is, if one is interested in finding an NFA for a given language, such that the
states of that NFA correspond to certain languages, this method can be used to generate
such an NFA if it exists. If the generated NFA is not such an NFA, then it does not exist.

To conclude this section, we point out three cases which can occur if a cover {L0, . . . , Lk−1}
for L is used to generate an NFA G:

First, the NFA G accepts L, and the right language of every state qi of G is Li. This case
is described by Propositions 15 and 16.

In the second case, the NFA G accepts L, but the right language of some state qi of G is
not Li. The third case is when G does not accept L. Characterization of the last two cases is
an interesting problem for further study.

5 Generating Automata by Atomic Languages

Let L be a regular language, with its quotients K0, . . . ,Kn−1 and atoms A0, . . . , Am−1.

I Definition 24. A language Li is atomic with regard to L if Li is a union of atoms of L.

Let N = (Q,Σ, δ, I, F ) be a trim NFA accepting L, with Q = {q0, . . . , qk−1}. For every
state qi of N , we define an atomic language Bi =

⋃
Lqi,F (N )∩Ah 6=∅Ah as the union of all

atoms of L which intersect with the right language of qi. In other words, Bi is the smallest
atomic language that contains the right language of state qi. Clearly, if Lqi,F (N ) ⊆ Kj holds
for some quotient Kj of L, then, because every quotient is a union of atoms, Bi ⊆ Kj holds
as well. Since by Proposition 21, the set of right languages of the states of N forms a cover
for L, the set of Bi’s has the same property. We note that there may be some states qi and
qj of N , such that qi 6= qj , but Bi = Bj . Let the set of distinct Bi’s be B.

Let GB = (QB ,Σ, δB , IB , FB) be the NFA generated by the cover B for the language L.
We note that |QB | 6 |Q|. Let ϕatom : Q→ QB be the mapping assigning to state qi of N ,
the state qBi

of GB , such that Bi =
⋃
Lqi,F (N )∩Ah 6=∅Ah.

I Proposition 25. The mapping ϕatom is a morphism from N into GB.

Proof. First, if qi ∈ I is initial, then Lqi,F (N ) ⊆ L, and since L is a union of (initial) atoms,
the inclusion Bi ⊆ L holds, implying that qBi is also initial, that is, ϕatom(qi) ∈ IB .

Similarly, if qi ∈ F , then ε ∈ Lqi,F (N ), implying that ε ∈ Bi, and thus qBi
∈ FB , that is,

ϕatom(qi) ∈ FB .
It remains to be shown that for all states qi, qj ∈ Q and a ∈ Σ, if qj ∈ δ(qi, a) holds, then

ϕatom(qj) ∈ δB(ϕatom(qi), a) holds as well. Let qj ∈ δ(qi, a) for some qi, qj ∈ Q and a ∈ Σ.
Then the inclusion Lqj ,F (N ) ⊆ a−1Lqi,F (N ) holds. Because of Lqi,F (N ) ⊆ Bi, the inclusion
Lqj ,F (N ) ⊆ a−1Bi holds. Since it is known that any quotient of a union of atoms is some
union of atoms, a−1Bi is a union of atoms. Consequently, Lqj ,F (N ) ⊆ Bj ⊆ a−1Bi holds,
implying that qBj

∈ δB(qBi
, a), that is, ϕatom(qj) ∈ δB(ϕatom(qi), a).

We conclude that ϕatom is a morphism from N into GB . J

I Corollary 26. For every state qi of N , the inclusion Lqi,F (N ) ⊆ LqBi
,FB

(GB) holds. Also,
L(GB) = L.

Proof. The morphism ϕatom : Q → QB implies that for every qi ∈ Q, the inclusion
Lqi,F (N ) ⊆ LqBi

,FB
(GB) holds, and also that L(N ) ⊆ L(GB) holds.

Since L(N ) = L, and we know by Proposition 13 that L(GB) ⊆ L, we conclude that
L(GB) = L. J

ICALP 2016



116:10 New Interpretation and Generalization of the Kameda-Weiner Method

I Corollary 27. If there is a one-to-one correspondence between the sets Q and B, then the
NFA N is isomorphic to a subautomaton of GB.

Next, for every atomic language Bi we consider its maximized version, the language
Ci = max(Bi) =

⋂
Bi⊆Kj

Kj . Clearly, Ci is also atomic, and Bi ⊆ Ci. If the inclusion
Bi ⊆ Kj holds for some quotient Kj , then by the definition of Ci, Ci ⊆ Kj holds as well.
Since the set of Bi’s forms a cover for L, so does the set of corresponding Ci’s. We note that
there may be some Bi and Bj , such that Bi 6= Bj , but Ci = Cj . Let the set of distinct Ci’s
be C.

Let GC = (QC ,Σ, δC , IC , FC) be the NFA generated by the cover C for the language L.
We note that |QC | 6 |QB |. Let ϕmax : QB → QC be the mapping assigning to state qBi

of
GB , the state qCi of GC .

I Proposition 28. The mapping ϕmax is a morphism from GB into GC .

Proof. First, if qBi ∈ IB, then Bi ⊆ L. Since Ci is a subset of the same quotients as Bi,
Ci ⊆ L, implying that qCi

∈ IC . If qBi
∈ FB, then ε ∈ Bi, and since Bi ⊆ Ci, it holds that

ε ∈ Ci, so we get qCi ∈ FC .
We also have to show that if qBj

∈ δB(qBi
, a) holds for some states qBi

and qBj
of

GB and a ∈ Σ, then qCj
∈ δC(qCi

, a) for the corresponding states qCi
and qCj

of GC .
Indeed, if qBj

∈ δB(qBi
, a), then Bj ⊆ a−1Bi. By Proposition 5, Part 1, we know that

max(Bj) ⊆ max(a−1Bi), and by Part 2, the inclusion max(a−1Bi) ⊆ a−1max(Bi) holds.
Since Ci = max(Bi) and Cj = max(Bj), we get that Cj ⊆ a−1Ci holds. Thus, qCj ∈
δC(qCi

, a).
We conclude that ϕmax is a morphism from GB into GC . J

I Corollary 29. For every state qBi
of GB, the inclusion LqBi

,FB
(GB) ⊆ LqCi

,FC
(GC) holds.

Also, L(GC) = L.

Proof. The morphism ϕmax : QB → QC implies that for every qBi ∈ QB, the inclusion
LqBi

,FB
(GB) ⊆ LqCi

,FC
(GC) holds, and also that L(GB) ⊆ L(GC) holds.

Since L(GB) = L by Corollary 26, and L(GC) ⊆ L by Proposition 13, we conclude that
L(GC) = L. J

I Corollary 30. If there is a one-to-one correspondence between the sets B and C, then the
NFA GB is isomorphic to a subautomaton of GC .

Based on the results above, we can state the following theorem:

I Theorem 31. There is a morphism ϕmax ◦ ϕatom from a trim NFA N into the NFA GC ,
generated by the set C of languages Ci = max(

⋃
Lqi,F (N )∩Ah 6=∅Ah), where qi is a state of N ,

with L(GC) = L(N ). Moreover, if there is a one-to-one correspondence between the states of
N and GC , then N is isomorphic to a subautomaton of GC .

The following theorem shows that the NFA minimization method presented by Kameda
and Weiner is a special case of generating an NFA:

I Theorem 32. Let G = {g0, . . . , gk−1} be a set of maximal grids, with gi = Pi×Ri, forming
a cover of the quotient-atom matrix of L. The NFA NG, obtained by the Kameda-Weiner
method using G, is isomorphic to the NFA GC , generated by the set C = {C0, . . . , Ck−1} of
languages Ci = U(Ri), i = 0, . . . , k − 1.
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Proof. Let G = {g0, . . . , gk−1} be a set of maximal grids gi = Pi × Ri, forming a cover of
the quotient-atom matrix of L. Let NG = (G,Σ, ηG, IG, FG) be the NFA obtained by the
intersection method using G, and let GC = (QC ,Σ, δC , IC , FC) be the NFA generated by
the set C = {C0, . . . , Ck−1}, where Ci = U(Ri) for i = 0, . . . , k − 1. We show that NG is
isomorphic to GC by applying Theorem 10.

First, by Theorem 10, for every grid gi ∈ G, it holds that gi ∈ IG if and only if the
inclusion U(Ri) ⊆ L holds, that is, Ci ⊆ L. Since this is equivalent to the condition qCi

∈ IC ,
there is a one-to-one correspondence between the sets IG and IC .

Also, it holds that gi ∈ FG if and only if ε ∈ U(Ri), that is, ε ∈ Ci. This is equivalent to
the condition qCi

∈ FC . Thus, there is a one-to-one correspondence between the sets FG and
FC .

It remains to show that gj ∈ ηG(gi, a) if and only if qCj
∈ δC(qCi

, a) for all gi, gj ∈ G
and a ∈ Σ. Indeed, by Theorem 10, gj ∈ ηG(gi, a) holds if and only if the inclusion
U(Rj) ⊆ a−1U(Ri) holds, that is, Cj ⊆ a−1Ci. On the other hand, by Definition 11,
qCj ∈ δC(qCi , a) if and only if Cj ⊆ a−1Ci, where qCi , qCj ∈ QC and a ∈ Σ. Therefore,
gj ∈ ηG(gi, a) holds if and only if qCj

∈ δC(qCi
, a) holds for all gi, gj ∈ G and a ∈ Σ. J

I Corollary 33. There exists an atomic NFA with the right languages C0, . . . , Ck−1, such
that the set of atoms contained in every Ci is maximal, if and only if the Kameda-Weiner
method finds it.

Proof. Follows from Theorem 23 and Theorem 32. J

I Corollary 34. There is a morphism from any trim NFA N into the NFA NG obtained by
the Kameda-Weiner method using the set G of maximal grids, corresponding to the maximal
sets of atoms associated to the right languages of N .

Proof. Follows from Theorem 31 and Theorem 32. J

As a special case, if N is a minimal NFA, then by Theorem 31, N is isomorphic to a
subautomaton of the NFA GC generated by the set C of the maximized atomic languages of
the right languages of N , or equivalently, as by Theorem 32, of the NFA NG obtained by the
Kameda-Weiner method, using the corresponding maximal grids.

This indeed ensures that if one considers covers of the quotient-atom matrix, starting
from the smallest cover, and produces NFAs according to the Kameda-Weiner method, or
equivalently, generates NFAs, using unions of atoms corresponding to the grids in the cover,
the first obtained NFA which accepts the given language, is a minimal NFA.

As we mentioned earlier, Champarnaud and Coulon [6] have presented an approach to
the Kameda-Weiner method which, similarly to our method, finds NFAs corresponding to
grid covers, using projections of grids (corresponding to sets of atoms). We note that they
also used grid extensions and automaton morphisms, similarly to our theory. However, we
point out that our theory explicitly shows that atoms of regular languages have an important
role in the Kameda-Weiner method.

We also mention that Sengoku’s method [12] of constructing NFAs is related to atoms; it
yields atomic NFAs. However, we note that by a result proved in [5], not every language has
an atomic minimal NFA.
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6 Conclusions

We presented a reinterpretation of the Kameda-Weiner method for NFA minimization, and
generalized it by introducing a method to generate NFAs by certain sets of languages.
We hope that our contributions provide a useful insight into the difficult problem of NFA
minimization, to obtain a better understanding of this problem.

We also think that the introduced method of generating NFAs is of interest on its own as
exemplified in Section 4. This method provides a unified view of the construction of several
known NFAs, including the canonical RFSA and the átomaton of the language.

Acknowledgements. The author is grateful to Janusz Brzozowski for discussions and
collaboration during the early stages of this work. The author also thanks Wolfgang Jeltsch
for discussions.

References
1 J. Brzozowski. Canonical regular expressions and minimal state graphs for definite events.

In Proceedings of the Symposium on Mathematical Theory of Automata, volume 12 of MRI
Symposia Series, pages 529–561. Polytechnic Press, Polytechnic Institute of Brooklyn, N.Y.,
1963.

2 J. Brzozowski and S. Davies. Quotient complexities of atoms in regular ideal languages.
Acta Cybernetica, 22(2):293–311, 2015.

3 J. Brzozowski and H. Tamm. Theory of átomata. In G. Mauri and A. Leporati, editors,
Proceedings of the 15th International Conference on Developments in Language Theory
(DLT ), volume 6795 of Lecture Notes in Computer Science, pages 105–116. Springer, 2011.

4 J. Brzozowski and H. Tamm. Minimal nondeterministic finite automata and atoms of
regular languages, 2013. URL: http://arxiv.org/abs/1301.5585.

5 J. Brzozowski and H. Tamm. Theory of átomata. Theor. Comput. Sci., 539:13–27, 2014.
6 J.-M. Champarnaud and F. Coulon. Enumerating nondeterministic automata for a given

language without constructing the canonical automaton. Int. J. Found. Comput. Sci.,
16:1253–1266, 2005.

7 F. Denis, A. Lemay, and A. Terlutte. Residual finite state automata. Fund. Inform.,
51:339–368, 2002.

8 H. Gruber and M. Holzer. Finding lower bounds for nondeterministic state complexity is
hard. In Proc. of DLT 2006, volume 4036 of Lecture Notes in Computer Science, pages
363–374. Springer, 2006.

9 S. Iván. Complexity of atoms, combinatorially. Information Processing Letters, 116:356–
360, 2016.

10 T. Kameda and P. Weiner. On the state minimization of nondeterministic finite automata.
IEEE Trans. Comput., C-19(7):617–627, 1970.

11 M. Rabin and D. Scott. Finite automata and their decision problems. IBM J. Res. and
Dev., 3:114–129, 1959.

12 H. Sengoku. Minimization of nondeterministic finite automata. Master’s thesis, Kyoto
University, Department of Information Science, Kyoto University, Kyoto, Japan, 1992.

13 H. Tamm. Generalization of the double-reversal method of finding a canonical residual
finite state automaton. In Proceedings of DCFS 2015, volume 9118 of LNCS, pages 268–
279. Springer, 2015.

http://arxiv.org/abs/1301.5585


Nesting Depth of Operators in Graph Database
Queries: Expressiveness vs. Evaluation
Complexity∗†

M. Praveen1 and B. Srivathsan2

1 Chennai Mathematical Institute, Chennai, India
2 Chennai Mathematical Institute, Chennai, India

Abstract
Designing query languages for graph structured data is an active field of research, where ex-
pressiveness and efficient algorithms for query evaluation are conflicting goals. To better handle
dynamically changing data, recent work has been done on designing query languages that can
compare values stored in the graph database, without hard coding the values in the query. The
main idea is to allow variables in the query and bind the variables to values when evaluating
the query. For query languages that bind variables only once, query evaluation is usually NP-
complete. There are query languages that allow binding inside the scope of Kleene star operators,
which can themselves be in the scope of bindings and so on. Uncontrolled nesting of binding and
iteration within one another results in query evaluation being PSPACE-complete.

We define a way to syntactically control the nesting depth of iterated bindings, and study how
this affects expressiveness and efficiency of query evaluation. The result is an infinite, syntactically
defined hierarchy of expressions. We prove that the corresponding language hierarchy is strict.
Given an expression in the hierarchy, we prove that it is undecidable to check if there is a language
equivalent expression at lower levels. We prove that evaluating a query based on an expression at
level i can be done in level i of the polynomial time hierarchy. Satisfiability of quantified Boolean
formulas can be reduced to query evaluation; we study the relationship between alternations in
Boolean quantifiers and the depth of nesting of iterated bindings.
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1 Introduction

Graph structures representing data have found many applications like semantic web [11],
social networks [19] and biological networks [13]. Theoretical models of such data typically
have a graph with nodes representing entities and edges representing relations among them.
One reason for the popularity of these models is their flexibility in handling semi-structured
data. While traditional relational databases impose rigid structures on the relations between
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data elements, graph databases are better equipped to handle data in which relations are
not precisely known and/or developing dynamically.

A fundamental query language for such models is Regular Path Queries (RPQs), which
is now part of the W3C recommendation [18]. An RPQ consists of a regular expression.
Suppose a communication network is modeled by a graph, where nodes represent servers and
edges labeled ` represent links between them. Evaluating the RPQ `˚ on this graph results in
the set of pairs of nodes between which there exists a route. Suppose each link has a priority
and we need pairs of connected nodes where all intermediate links have the same priority.
We can hard code the set of priorities in the query. If the set of priorities is not static, a
querying mechanism which avoids hard coding is better. Every edge can be labeled by a
supplementary data value (priority of the link, in this example) and we want query languages
that can compare data values without hard coding them in the syntax. Nodes can also carry
data values. In generic frameworks, there is no a priori bound on the number of possible
data values and they are considered to be elements of an infinite domain. Graph databases
with data values are often called data graphs in theory and property graphs in practice.

One way to design querying languages for data graphs is to extend RPQs using frame-
works that handle words on infinite alphabets [16, 15, 12, 23]. Expressiveness and efficient
algorithms for query evaluation are conflicting goals for designing such languages. We study
a feature common to many of these languages, and quantify how it affects the trade-off
between expressiveness and complexity of query evaluation. Variable finite automata [10]
and parameterized regular expressions [2] are conservative extensions of classical automata
and regular expressions. They have variables, which can be bound to letters of the alphabet
at the beginning of query evaluation. The query evaluation problem is NP-complete for these
languages. Regular expressions with binding (REWBs) [15] is an extended formalism where
binding of variables to values can happen inside a Kleene star, which can itself be in the
scope of another binding operator and so on. Allowing binding and iteration to occur inside
each other’s scope freely results in the query evaluation problem being Pspace-complete.
Here we study how the expressiveness and complexity of query evaluation vary when we
syntactically control the depth of nesting of iterated bindings.

Contributions
1. We syntactically classify REWBs according to the depth of nesting of iterated bindings.
2. The resulting hierarchy of data languages is strict, and so is the expressiveness of queries.
3. It is undecidable to check if a given REWB has a language equivalent one at lower levels.
4. An REWB query in level i can be evaluated in Σi in the polynomial time hierarchy.
5. For lower bounds, we consider quantified Boolean formulas with some restrictions on

quantifications and reduce their satisfiability to query evaluation, with some restrictions
on the queries.

For proving strictness of the language hierarchy, we build upon ideas from the classic star
height hierarchy [9]. Universality of REWBs is known to be undecidable [17, 12]. We combine
techniques from this proof with tools developed for the language hierarchy to prove the
third result above. The Σi upper bound for query evaluation involves complexity theoretic
arguments based on the same tools. In the reductions from satisfiability of quantified Boolean
formulas to the query evaluation problem, the relation between the number of alternations
(in the Boolean quantifiers) and the depth of nesting (of iterated bindings in REWBs) is
not straight forward. We examine this relation closely in the framework of parameterized
complexity theory, which is suitable for studying the effect of varying the structure of input
instances on the complexity.
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Related work: The quest for efficient evaluation algorithms and expressive languages to
query graph databases, including those with data values, is an active area of research; [1] is
a recent comprehensive survey. Numerous formalisms based on logics and automata exist for
handling languages over infinite alphabets [20]. In [16], the suitability of these formalisms
as query languages has been studied, zeroing in on register automata mainly for reasons of
efficient evaluation. The same paper introduced regular expressions with memory and proved
that they are equivalent to register automata. REWBs [15] have slightly less expressive power
but have better scoping structure for the binding operator. Properties of these expressions
have been further studied in [12]. In [14], XPath has been adapted to query data graphs.
Pebble automata have been adapted to work with infinite alphabets in [17]. A strict language
hierarchy based on the number of pebbles allowed in pebble automata has been developed
in [22]. Many questions about comparative expressiveness of register and pebble automata
are open [17]. Fixed-point logics can be used to define languages over infinite alphabets [4].
These logics can use the class successor relation, which relates two positions with the same
data value if no intermediate position carries the same value. Expressiveness of these logics
increase [6, 5], when the number of alternations between standard successor relation and
class successor relation increase.

2 Preliminaries

2.1 Data Languages and Querying Data Graphs

We follow the notation of [15]. Let Σ be a finite alphabet and D a countably infinite set.
The elements of D are called data values. A data word is a finite string over the alphabet
ΣˆD. We will write a data word as

`

a1
d1

˘`

a2
d2

˘

. . .
`

an

dn

˘

, where each ai P Σ and di P D. A set
of data words is called a data language.

An extension of standard regular expressions, called regular expressions with binding
(REWB), has been defined in [15]. Here, data values are compared using variables. For a set
tx1, x2, . . . , xku of variables, the set of conditions Ck is the set of Boolean combinations of x“i
and x‰i for i P t1, . . . , ku. A data value d P D and a partial valuation ν : tx1, . . . , xku Ñ D
satisfies the condition x“i (written as d, ν |ù x“i ) if νpxiq “ d. The satisfaction for other
Boolean operators are standard.

I Definition 2.1 (Regular expressions with binding (REWB) [15]). Let Σ be a finite alphabet
and tx1, . . . , xku a set of variables. Regular expressions with binding over Σrx1, . . . , xks are
defined inductively as: r :“ ε | a | arcs | r` r | r ¨ r | r˚ | a Óx prq where a P Σ is a letter
in the alphabet, c P Ck is a condition on the variables and x P tx1, . . . , xku is a variable.

We call Óx the binding operator. In the expression a Óx prq, the expression r is said to
be the scope of the binding Óx. A variable x in an expression is bound if it occurs in the
scope of a binding Óx. Otherwise it is free. We write fvprq to denote the set of free variables
in r and rpx̄q to denote that x̄ is the sequence of all free variables. The semantics of an
REWB rpx̄q over the variables tx1, . . . , xku is defined with respect to a partial valuation
ν : tx1, . . . , xku Ñ D of the variables. A valuation ν is compatible with rpx̄q if νpx̄q is defined.

I Definition 2.2 (Semantics of REWB). Let rpx̄q be an REWB over Σrx1, . . . , xks and let
ν : tx1, . . . , xku Ñ D be a valuation of variables compatible with rpx̄q. The language of data
words Lpr, νq defined by rpx̄q with respect to ν is given as follows:
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r Lpr, νq r Lpr, νq r Lpr.νq

ε tεu a t
`

a
d

˘

| d P Du arcs t
`

a
d

˘

| d, ν |ù cu

r1 ` r2 Lpr1, νq Y Lpr2, νq r1 ¨ r2 Lpr1, νq ¨ Lpr2, νq r˚1 pLpr1, νqq
˚

a Óxi pr1q
Ť

dPDt
`

a
d

˘

u ¨ Lpr1, νrxi Ñ dsq

where νrxi Ñ ds denotes the valuation which is the same as ν except for xi which is mapped
to d. An REWB r defines the data language Lprq “

Ť

ν compatible with r Lpr, νq.

For example, the REWB a Óx pbrx
“s˚q defines the set of data words of the form ab˚ with

all positions having the same data value. The REWB pa Óx pbrx“sqq˚ defines the set of data
words of the form

`

a
d1

˘`

b
d1

˘`

a
d2

˘`

b
d2

˘

¨ ¨ ¨
`

a
dn

˘`

b
dn

˘

.

I Definition 2.3 (Data graphs). A data graph G over a finite alphabet Σ and an infinite set
of data values D is a pair pV,Eq where V is a finite set of vertices, and E Ď V ˆ ΣˆD ˆ V
is a set of edges which carry labels from ΣˆD.

We do not have data values on vertices, but they can be introduced without affecting the
results. A regular data path query is of the form Q “ x

r
ÝÑ y where r is an REWB. Evaluating

Q on a data graph G results in the set QpGq of pairs of nodes xu, vy such that there exists a
data path from u to v and the sequence of labels along the data path forms a data word in
Lprq. Evaluating a regular data path query on a data graph is known to be Pspace-complete
in general and Nlogspace-complete when the query is of constant size [15]. We sometimes
identify the query Q with the expression r and write rpGq for QpGq. A query r1 is said to be
contained in another query r2 if for every data graph G, r1pGq Ď r2pGq. It is known from [12,
Proposition 3.5] that a query r1 is contained in the query r2 iff Lpr1q Ď Lpr2q. Hence, if a
class E2 of REWBs is more expressive than the class E1 in terms of defining data languages,
E2 can also express more queries than E1.

2.2 Parameterized Complexity
The size of queries are typically small compared to the size of databases. To analyze the
efficiency of query evaluation algorithms, the size of the input can be naturally split into the
size of the query and the size of the database. Parameterized complexity theory is a formal
framework for dealing with such problems. An instance of a parameterized problem is a pair
px, kq, where x is an encoding of the input structure on which the problem has to be solved
(e.g., a data graph and a query), and k is a parameter associated with the input (e.g., the size
of the query). A parameterized problem is said to be in the parameterized complexity class
Fixed Parameter Tractable (FPT) if there is a computable function f : NÑ N, a constant
c P N and an algorithm to solve the problem in time fpkq|x|c.

We will see later that the query evaluation problem is unlikely to be in FPT, when
parameterized by the size of the regular data path query. There are many parameterized
complexity classes that are unlikely to be in FPT, like W[SAT], W[P], AW[SAT] and
AW[P]. To place parameterized problems in these classes, we use FPT-reductions.

I Definition 2.4 (FPT reductions). A FPT reduction from a parameterized problem Q to
another parameterized problem Q1 is a mapping R such that:
1. For all instances px, kq of parameterized problems, px, kq P Q iff Rpx, kq P Q1.
2. There exists a computable function g : NÑ N such that for all px, kq, say with Rpx, kq “

px1, k1q, we have k1 ď gpkq.
3. There exist a computable function f : N Ñ N and a constant c P N such that R is

computable in time fpkq|x|c.



M. Praveen and B. Srivathsan 117:5

3 Nesting Depth of Iterated Bindings and Expressive Power

A binding Óx along with a condition rx“s or rx‰s is used to constrain the possible data values
that can occur at certain positions in a data word. A binding inside a star — an iterated
binding — imposes the constraint arbitrarily many times. For instance, the expression
r1 :“ pa1 Óx1 pb1rx

“
1 sqq

˚ defines data words in pa1b1q
˚ where every a1 has the same data

value as the next b1. We now define a syntactic mechanism for controlling the nesting depth
of iterated bindings. The restrictions result in an infinite hierarchy of expressions. The
expressions at level i are generated by Fi in the grammar below, defined by induction on i.

F0 ::“ ε | a | arcs | F0 ` F0 | F0 ¨ F0 | F
˚
0

Ei ::“ Fi´1 | Ei ` Ei | Ei ¨ Ei | a Óxj
pEiq

Fi ::“ Ei | Fi ` Fi | Fi ¨ Fi | F
˚
i

where i ě 1, a P Σ, c is a condition in Ck and xj P tx1, . . . , xku. Intuitively, Ei can add
bindings over iterations (occurring in Fi´1) and Fi can add iterations over bindings (occurring
in Ei). The nesting depth of iterated bindings in an expression in Fi is therefore i. The union
of all expressions at all levels equals the set of REWBs. In this paper, we use subscripts to
denote the levels of expressions and superscripts to denote different expressions in a level: so
e1

5 is some expression in E5, f2
3 is some expression in F3.

We now give a sequence of expressions triuiě1 such that each ri is in Fi but no language
equivalent expression exists in Fi´1. For technical convenience, we use an unbounded number
of letters from the finite alphabet and an unbounded set of variables. The results can be
obtained with a constant number of letters and variables.

I Definition 3.1. Let ta1, b1, a2, b2, . . . u be an alphabet and tx1, x2, . . . u a set of variables.
We define r1 to be pa1 Óx1 pb1rx

“
1 sqq

˚. For i ě 2, define ri :“ pai Óxi
pri´1birx

“
i sqq

˚.

From the syntax, it can be seen that each ri is in Fi. To show that Lpriq cannot be
defined by any expression in Fi´1, we will use an “automaton view” of the expression, as
this makes pigeon-hole arguments simpler. No automata characterizations are known for
REWBs in general; the restrictions on the binding and star operators in the expressions of a
given level help us build specific automata in stages.

Standard finite state automata can be converted to regular expressions by considering
generalized non-deterministic finite automata, where transitions are labeled with regular
expressions instead of a single letter (see e.g., [21, Lemma 1.32]). The language of an
expression f1

i can be accepted by such an automaton, where transitions are labeled with
expressions in Ei. We will denote this automaton by Apf1

i q. Similarly, the language of an
expression e1

i can be accepted by an automaton whose transitions are labeled with expressions
in Fi´1 or with a Óx. We will denote this automaton by Ape1

i q. There are no cycles in Ape1
i q,

since e1
i can not use the Kleene ˚ operator except inside expressions in Fi´1. The runs of

Ape1
i q are sequences of pairs of a state and a valuation for variables. The valuations are

updated after every transition with a label of the form a Óx. Formal semantics are given in
Appendix A of the full version of this paper, which also contains all the proofs in detail.

We will prove that Lpriq cannot be defined by any expression in Ei (and hence not by any
expression in Fi´1). We first define the following sequence of words, which will be used in
the proof. Let tdrj1, j2s P D | j1, j2 P Nu be a set of data values such that drj1, j2s ‰ drj11, j

1
2s
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if xj1, j2y ‰ xj
1
1, j

1
2y. For every n ě 1, define the words:

u1,n :“
ˆ

a1

dr1, 1s

˙ˆ

b1

dr1, 1s

˙ˆ

a1

dr1, 2s

˙ˆ

b1

dr1, 2s

˙

¨ ¨ ¨

ˆ

a1

dr1, n2s

˙ˆ

b1

dr1, n2s

˙

ui,n :“
ˆ

ai
dri, 1s

˙

ui´1,n

ˆ

bi
dri, 1s

˙ˆ

ai
dri, 2s

˙

ui´1,n

ˆ

bi
dri, 2s

˙

¨ ¨ ¨

ˆ

ai
dri, n2s

˙

ui´1,n

ˆ

bi
dri, n2s

˙

for all i ě 2

In order to prove that Lpriq cannot be defined by any expression in Ei, we will show the
following property: if ui,n occurs as a sub-word of a word w in the language of a “sufficiently
small” expression e1

i , then the same expression accepts a word where some aj and a matching
bj have different data values. Let Mismatchi,n be the set of all data words obtained from
ui,n by modifying the data values so that there exist two positions p, p1 with p ă p1 and a
j ď i such that: p contains

`

aj

d

˘

and p1 contains
`

bj

d1

˘

with d ‰ d1; moreover between positions
p and p1, bj does not occur in the word. We consider expressions in which no two occurrences
of the binding operator use the same variable. For an expression e, let |Apeq| denote the
number of states in the automaton Apeq and |varpeq| denote the number of variables in e.

I Lemma 3.2. Let e1
i be an expression and let n P N be greater than p|Apeq| ` 1q and

p|varpeq| ` 1q for every sub-expression e of e1
i . Let ν be a valuation of fvpe1

i q and let x, z be
data words. Then: xui,nz P Lpe1

i , νq ùñ xūi,nz P Lpe
1
i , νq for some ūi,n P Mismatchi,n.

Proof idea. By induction on i. Suppose xui,nz P Lpe1
i , νq. The run of Ape1

i q on xui,nz

consists of at most n transitions, since the automaton is acyclic and has at most n states.
Each of the (at most) n transitions reads some sub-word in the language of some sub-
expression f1

i´1, while the whole word consists of n2 occurrences of aiui´1,nbi. Hence, at least
one sub word consists of n occurrences of aiui´1,nbi. A run of Apf1

i´1q on such a sub-word is
shown below.

x1 z1ai ui´1,n bi ai ui´1,n bi ai ui´1,n bi ai ui´1,n bi ai ui´1,n bi ai ui´1,n bi

q10 q11 q12 q1s´3 q1s´2 q1s´1 q1s

e1
i´1 e2

i´1 es´2
i´1 es´1

i´1 es
i´1¨ ¨ ¨

Every transition of this run reads sub-words in the language of some sub-expression eji´1. If
some transition of this run reads an entire sub-word ui´1,n (as in transition q11 ÝÑ q12), then
we can create a mismatch inside this ui´1,n by induction hypothesis. Otherwise, none of the
transitions read an ai and the corresponding bi together (as in q1s´2 ÝÑ q1s´1 in the figure).
None of the bis is compared with the corresponding ai, so the data value of one of the bis
can be changed to create a mismatch. The resulting data word will be accepted provided the
change does not result in a violation of some condition. Since the range of the valuation has
at most pn´ 1q distinct values, one of the n bis is safe for changing the data value. J

I Theorem 3.3. For any i, the language Lpriq cannot be defined by any expression in Ei.

Proof. Suppose ri is equivalent to an expression e1
i . Pick an n bigger than |Apeq| and

|fvpeq| for every sub-expression e of e1
i . The word ui,n belongs to Lpriq and hence Lpe1

i q.
By Lemma 3.2, we know that if this is the case, then ūi,n P Lpriq for some word ūi,n P

Mismatchi,n. But Lpriq cannot contain words with a mismatch. A contradiction. J

Given an expression at some level, it is possible that its language is defined by an
expression at lower levels. Next we show that it is undecidable to check this.
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I Theorem 3.4. Given an expression in Fi`1, checking if there exists a language equivalent
expression in Fi is undecidable.

Proof idea. By reduction from Post’s Correspondence Problem (PCP). The basic idea is
from the proof of undecidability of universality of REWBs and related formalisms [17, 15].
For an instance tpu1, v1q, . . . , pun, vnqu of PCP, a solution (if it exists) can be encoded by a
data word of the form w1#ri#w2, where w1 is made up of ui’s, w2 is made up of vi’s and ri
is from Definition 3.1. To ensure that such a data word indeed represents a solution, we need
to match up the ui’s in w1 with the vi’s in w2, which can be done through matching data
values. Consider the language of data words of the form w11#ri#w12 that are not solutions of
the given PCP instance. This language can be defined by an expression ∆ in Ei`1, which
compares data values in the left of #ri# with those on the right side, to catch mismatches.
We can prove that no equivalent expression exists in lower levels, using techniques used in
Lemma 3.2. On the other hand, if the given PCP instance does not have a solution, no data
word encodes a solution, so the given language is defined by Σ˚riΣ˚, which is in Fi. J

4 Complexity of Query Evaluation

In this section, we will study how the depth of nesting of iterated bindings affects the
complexity of evaluating queries. An instance of the query evaluation problem consists of a
data graph G, an REWB e, a valuation ν for fvpeq and a pair xu, vy of nodes in G. The goal
is to check if u is connected to v by a data path in Lpe, νq.

4.1 Upper Bounds

An expression in Fi can be thought of as a standard regular expression (without data values)
over the alphabet of its sub-expressions. This is the main idea behind our upper bound
results. The main result proves that evaluating queries in Ei can be done in Σi in the
polynomial time hierarchy.

I Lemma 4.1. With an oracle for evaluating Ei queries, Fi queries can be evaluated in
polynomial time.

Proof idea. Suppose the query f1
i is to be evaluated on the data graph G and f1

i consists
of the sub-expressions e1

i , . . . , e
m
i in Ei. For every j, add an edge labeled eji between those

pairs xv1, v2y of nodes of G for which xv1, v2y is in the evaluation of eji on G. Evaluating the
sub-expressions can be done with the oracle. Now f1

i can be treated as a standard regular
expression over the finite alphabet te1

i , . . . , e
m
i u, and can be evaluated in polynomial time

using standard automata theoretic techniques. J

I Theorem 4.2. For queries in Ei, the evaluation problem belongs to Σi.

Proof idea. Since bindings in Ei are not iterated, each binding is performed at most once.
The data value for each variable is guessed non-deterministically. The expression can be
treated as a standard regular expression over its sub-expressions and the guessed data values.
The sub-expressions are in Fi´1, which can be evaluated in polynomial time (Lemma 4.1)
with an oracle for evaluating queries in Ei´1. This argument will not work in general for
arbitrary REWBs — bindings that are nested deeply inside iterations and other bindings
may occur more than polynomially many times in a single path. J
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Next we consider the query evaluation problem with the size of the query as the parameter.
An instance of the parameterized weighted circuit satisfiability problem consists of a Boolean
circuit and the parameter k P N. The goal is to check if the circuit can be satisfied by a
truth assignment of weight k (i.e., one that sets exactly k propositional atoms to true). The
class W[P] is the set of all parameterized problems which are FPT-reducible to the weighted
circuit satisfiability problem.

I Theorem 4.3. Evaluating REWB queries in E1, parameterized by the size of the query is
in W[P].

Proof idea. It is proved in [3, Lemma 7, Theorem 8] that a parameterized problem is in
W[P] iff there is a non-deterministic Turing machine that takes an instance px, kq and decides
the answer within fpkq|x|c steps, of which at most fpkq log |x| are non-deterministic (for
some computable function f and a constant c). Such a Turing machine exists for evaluating
REWB queries in E1, using the steps outlined in the proof idea of Theorem 4.2. J

Thus, the number of non-deterministic steps needed to evaluate an E1 query depends only
logarithmically on the size of the data graph. It is also known that W[P] is contained in
the class para-NP — the class of parameterized problems for which there are deterministic
algorithms taking instances px, kq and computing an equivalent instance of the Boolean
satisfiability problem in time fpkq|x|c. Hence, we can get an efficient reduction to the
satisfiability problem, on which state of the art sat solvers can be run. Many hard problems
in planning fall into this category [7].

We next consider the parameterized complexity of evaluating queries at higher levels.
The parameterized class uniform-XNL is the class of parameterized problems Q for which
there exists a computable function f : NÑ N and a non-deterministic algorithm that, given
a pair px, kq, decides if px, kq P Q in space at most fpkq log |x| [3, Proposition 18].

I Theorem 4.4. Evaluating REWB queries, with size of the query as parameter, is in
uniform-XNL.

Proof idea. Let k be the size of the query e1
i to be evaluated, on a data graph with n nodes.

Suppose a pair of nodes is connected by a data path w in Lpe1
i q. Iterations in e1

i can only
occur inside its Fi´1 sub-expressions. Hence w consists of at most k sub-paths, each sub-path
wj in the language of some sub-expression f ji´1. When f ji´1 is considered as a standard
regular expression over its sub-expressions (in Ei´1), there are no bindings. By a standard
pigeon hole principle argument, we can infer that wj consists of at most kn sub-paths, each
one in the language of some sub-expression e1

i´1. This argument can be continued to prove
that w is of length at most pk2nqi. The existence of such a path can be guessed and verified
by a non-deterministic Turing machine in space Opik2 lognq. J

4.2 Lower Bounds
We obtain our lower bounds by reducing various versions of the Boolean formula satisfiability
problem to query evaluation. We begin by describing a schema for reducing the problem
of evaluating a Boolean formula on a given truth assignment to the problem of evaluating
a query on a data graph. The basic ideas for the gadgets we construct below are from [15,
proofs of Proposition 2, Theorem 5]. We will need to build on these ideas to address finer
questions about the complexity of query evaluation.

Suppose the propositional atoms used in the Boolean formula are among tpr1, . . . , prnu.
We use pr1, . . . , prn also as data values. An edge labeled

` pa
prj

˘

indicates the propositional
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atom prj occurring in a sub-formula. The data values po and ne appear on edges labeled
with the letter pn?, to indicate if a propositional atom appears positively or negatively.
The symbol ˚ denotes an arbitrary data value different from all others. We will assume
that the Boolean formula is in negation normal form, i.e., negation only appears in front of
propositional atoms. This restriction does not result in loss of generality, since any Boolean
formula can be converted into an equi-satisfiable one in negation normal form with at most
linear blowup in the size. The data graph is a series parallel digraph with a source and a
sink, defined as follows by induction on the structure of the Boolean formula.

Positively occurring propositional atom prj : ¨
pb
˚q
ÝÝÑ ¨

ppn?
po q

ÝÝÝÑ ¨
p pa

prj
q

ÝÝÝÑ ¨
pe
˚q
ÝÝÑ ¨.

Negatively occurring propositional atom prj : ¨
pb
˚q
ÝÝÑ ¨

ppn?
ne q

ÝÝÝÑ ¨
p pa

prj
q

ÝÝÝÑ ¨
pe
˚q
ÝÝÑ ¨.

φ1^ ¨ ¨ ¨^φr: inductively construct the data graphs for the conjuncts, then do a standard
serial composition, by fusing the sink of one graph with the source of the next one.
φ1 _ ¨ ¨ ¨ _ φr: inductively construct the data graphs for the disjuncts, then do a standard
parallel composition, by fusing all the sources into one node and all the sinks into another
node.
After the whole formula is handled, the source of the resulting graph is fused with the

sink of the following graph: ¨
pa

poq
ÝÝÑ ¨

pa
neq
ÝÝÑ ¨.

Let Gφ denote the data graph constructed above for formula φ. The data graph Gφ is shown
below for φ “ ppr1 _ pr2q ^ pppr2 ^ pr3q _ p pr1 ^ pr4qq.

`

a
po
˘

`

a
ne
˘

`pn?
po
˘

` pa
pr1

˘
`pn?

po
˘

` pa
pr2

˘

`

e
˚

˘ `

b
˚

˘

`pn?
po
˘

` pa
pr3

˘

`

b
˚

˘

`pn?
ne

˘

` pa
pr2

˘

`

e
˚

˘
`

b
˚

˘

`pn?
ne

˘

` pa
pr1

˘

`

e
˚

˘ `

b
˚

˘

`pn?
po
˘

` pa
pr4

˘

`

e
˚

˘

The query uses x1, . . . , xk to remember the propositional atoms that are set to true.

eevalrks :“ a Óxpo pa Óxne p (1)
pbppn?rx“pos ¨ parx“1 _ ¨ ¨ ¨ _ x“k s ` pn?rx“nes ¨ parx‰1 ^ ¨ ¨ ¨ ^ x‰k sqeq

˚ qq .

I Lemma 4.5. Let φ be a Boolean formula over the propositional atoms pr1, . . . , prn and
ν : tx1, . . . , xku Ñ tpr1, . . . , prn, ˚u be a valuation. The source of Gφ is connected to its sink
by a data path in Lpeevalrks, νq iff φ is satisfied by the truth assignment that sets exactly the
propositions in tpr1, . . . , prnu X Rangepνq to true.

Proof idea. The two bindings in the beginning of eevalrks forces xpo, xne to contain po,ne
respectively. A positively occurring propositional atom generates a data path of the form

¨
pb
˚q
ÝÝÑ ¨

ppn?
po q

ÝÝÝÑ ¨
p pa

prj
q

ÝÝÝÑ ¨
pe
˚q
ÝÝÑ ¨, which can only be in the language of the expression b ¨pn?rx“pos ¨

parx“1 _ ¨ ¨ ¨ _ x“k se. This forces prj to be contained in one of x1, . . . , xk. Similar arguments
works for negatively occurring atoms. Rest of the proof is by induction on the structure of
the formula. J

I Theorem 4.6. For queries in E1, the evaluation problem is NP-hard.

Proof idea. To check if a Boolean formula φ is satisfiable, evaluate the query a Óx1 a Óx2

¨ ¨ ¨ a Óxn eevalrns on the data graph ¨
p a

pr1{˚q
ÝÝÝÝÑ ¨

p a
pr2{˚q
ÝÝÝÝÑ ¨ ¨ ¨

p a
prn{˚

q
ÝÝÝÝÝÑ ¨ ´Gφ Ñ ¨. Here,

p a
prj {˚

q
ÝÝÝÝÑ

denotes two edges in parallel, one labeled with
`

a
prj

˘

and another with
`

a
˚

˘

. J
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Evaluating queries in E1 is NP-complete, evaluating REWB queries in general is Pspace-
complete and evaluating queries in Ei is in Σi. To prove a corresponding Σi lower bound,
one would need to simulate Σi computations using queries with bounded depth of nesting of
iterated bindings. However, this does not seem to be possible. We take a closer look at this
in the rest of the paper. Finding the exact complexity of evaluating queries in Ei remains
open.

We now extend our satisfiability-to-query evaluation schema to handle Boolean quantifiers.
Let PR “ tpr1, . . . , prnu be a set of propositional atoms. To handle existential Boolean
quantifiers, we build a new graph and a query. These gadgets build on earlier ideas to
bring out the difference in the role played by the data graph and the query while reducing

satisfiability to query evaluation. The new graph GrDk{PRs ˝G, is as follows: ¨
pa1

pr1q
ÝÝÝÑ ¨

pa1
pr2q
ÝÝÝÑ

¨ ¨ ¨
p a1

prn
q

ÝÝÝÑ ¨ ´GÑ ¨. We assume that the letter a1 is not used inside G, which is equal to Gφ
for some Boolean formula φ. The new query erDks ˝ e is defined as follows:

erDks ˝ e :“ a˚1a1 Óx1 a
˚
1a1 Óx2 a

˚
1 ¨ ¨ ¨ a

˚
1a1 Óxk

a˚1e (2)

where e “ eevalrks for some k P N.
We now give a parameterized lower bound for evaluating E1 queries. An instance of the

weighted satisfiability problem consists of a Boolean formula (not necessarily in Conjunctive
Normal Form) and a parameter k P N. The goal is to check if the formula is satisfied by a
truth assignment of weight k. The class W[SAT] is the set of all parameterized problems
that are FPT-reducible to the weighted satisfiability problem (see [8, Chapter 25]).

I Lemma 4.7. Let φ be a Boolean formula over the set PR of propositions and k P N. We
can construct in polynomial time a data graph G and an REWB e1

1 satisfying the following
conditions.
1. The source of G is connected to its sink by a data path in Lpe1

1q iff φ has a satisfying
assignment of weight k.

2. The size of e1
1 depends only on k.

Proof idea. The required data graph is GrDk{PRs ˝Gφ and e1
1 is erDks ˝ eevalrks. The data

path ¨
pa1

pr1q
ÝÝÝÑ ¨

pa1
pr2q
ÝÝÝÑ ¨ ¨ ¨

p a1
prn
q

ÝÝÝÑ ¨ in the graph GrDk{PRs ˝ Gφ has to be in the language of
a˚1a1 Óx1 a

˚
1a1 Óx2 a

˚
1 ¨ ¨ ¨ a

˚
1a1 Óxk

a˚1 . This induces a valuation ν1 which maps tx1, . . . , xku

injectively into PR, denoting the k propositions that are set to true. With this the data path
continues from the source of Gφ to its sink. Rest of the proof follows from Lemma 4.5. J

I Theorem 4.8. Evaluating REWB queries in E1, parameterized by the size of the query is
hard for W[SAT] under FPT reductions.

Proof. The reduction given in Lemma 4.7 is a FPT reduction from the weighted satisfiability
problem to the problem of evaluating E1 queries , parameterized by the size of the query. J

Finally we extend our gadgets to handle universal Boolean quantifiers. These gadgets
build upon the previous ideas and bring out the role of nested iterated bindings when
satisfiability is reduced to query evaluation. We would first like to check if the source of
some graph G is connected to its sink by a data path in the language of some REWB e,
for every possible injective valuation ν : tx1, . . . , xku Ñ PR. We will now design some data
graphs and expressions to achieve this. Let skip be a letter not used in G. The data graphs
G0, . . . , Gk are as shown in Figure 1.
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source

sink

G
`skip

pr1

˘`skip
prn

˘

Gi´1

source sink

`

ai

pr1

˘ `

ai

pr2

˘ `

ai

prn

˘ `

ai

prn

˘
`

ai

prn´1

˘
`

ai

pr1

˘

bi
cici

ci

Figure 1 Data graphs G0 (left) and Gi (right).

The expressions e0, . . . , ek are as follows.

e0 :“ e`
ă

1ďiăjďk
skiprx“i ^ x“j s ei :“ bipai Óxi pe

i´1airx
“
i sqciq

˚ (3)

The graph G0 and the expression e0 are designed to ensure that the source of G is connected
to its sink by a path in Lpe, νq, unless ν is not injective, in which case G can be bypassed by
one of the edges labeled

`skip
prj

˘

introduced in G0. The graph Gi and the expression ei are
designed to ensure that any path from the source of Gi to its sink has to go through Gi´1
multiple times, once for each prj stored in the variable xi. The nesting depth of iterated
bindings in the expression ei is one more than that of ei´1.

Suppose ν is a partial valuation of some variables, whose domain does not intersect with
tx1, . . . , xku. We denote by νrtx1, . . . , xku Ñ PRs the set of valuations ν1 that extend ν such
that domainpν1q “ domainpνqYtx1, . . . , xku and tν1px1q, . . . , ν

1pxkqu Ď PR. We additionally
require that ν1 is injective on tx1, . . . , xku when we write νrtx1, . . . , xku

1:1
ÝÝÑ PRs.

I Lemma 4.9. Let i P t1, . . . , ku and νi be a valuation for fvpeiqztx1, . . . , xiu. The source of
Gi is connected to its sink by a data path in Lpei, νiq iff for every ν P νirtx1, . . . , xiu Ñ PRs,
there is a data path in Lpe0, νq connecting the source of G0 to its sink.

Proof idea. The data path has to begin with bi
`

ai

pr1

˘

in the language of biai Óxi
, forcing xi

to store pr1. Then the path has to traverse Gi´1 using ei´1. At the sink of Gi´1, the path
is forced to take

`

ai

pr1

˘

ci to satisfy the condition in airx“i sci. This forces the path to start
again in

`

ai

pr2

˘

and so on. J

We write Gr@k{PRs ˝G and er@ks ˝ e to denote the graph Gk and REWB ek constructed
above. We implicitly assume that the variables x1, . . . , xk are not bound inside e. We can
always rename variables to ensure this. If e is in Ei, then er@ks ˝ e is in Fi`k´1.

I Lemma 4.10. Let ν be a valuation for fvpeqztx1, . . . , xku for some REWB e. The source
of Gr@k{PRs ˝ G is connected to its sink by a data path in Lper@ks ˝ e, νq iff for all ν1 P
νrtx1, . . . , xku

1:1
ÝÝÑ PRs, the source of G is connected to its sink by a data path in Lpe, ν1q.

Proof idea. Lemma 4.9 ensures that there is a path wν1 in Lpe0, ν1q connecting the source of
G0 to its sink for every valuation ν1 P νrtx1, . . . , xku Ñ PRs. From Figure 1, wν1 can either
be a skip edge, or a path through G. By definition, e0 allows a skip edge to be taken only
when two variables among x1, . . . , xk have the same data value. Hence for valuations ν1 that
are injective on tx1, . . . , xku, wν1 is in Lpe, ν1q. J
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If φ is a partially quantified Boolean formula with the propositional atoms in PR occurring
freely, we write DkPR φ to denote that atoms in PR are existentially quantified with the
constraint that exactly k of them should be set to true. We write @kPR φ to denote that
atoms in PR are universally quantified and that only those assignments that set exactly k of
the atoms to true are to be considered. An instance of the weighted quantified satisfiability
problem consists of a Boolean formula φ over the set PR of propositional atoms, a partition
PR1, . . . ,PR` of PR and numbers k1, . . . , k`. The goal is to check if pDk1PR1@

k2PR2 ¨ ¨ ¨φq is
true.

I Lemma 4.11. Given an instance of the weighted quantified satisfiability problem, We
can construct in polynomial time a data graph G and an REWB e1

1`k2`k4`¨¨¨
satisfying the

following conditions.
1. The source of G is connected to its sink by a data path in Lpe1

1`k2`k4`¨¨¨
q iff the given

instance of the weighted quantified satisfiability problem is a yes instance.
2. The size of e1

1`k2`k4`¨¨¨
depends only on k1, . . . , k`.

Proof idea. The required data graph G is GrDk1{PR1s ˝ Gr@k2{PR2s ˝ ¨ ¨ ¨ ˝ Gφ and the
required REWB e1

1`k2`k4`¨¨¨
is erDk1s ˝ er@k2s ˝ ¨ ¨ ¨ ˝ eevalrk1 ` ¨ ¨ ¨ ` k`s. We assume that

˝ associates to the right, so G1 ˝G2 ˝G3 is G1 ˝ pG2 ˝G3q and e1 ˝ e2 ˝ e3 is e1 ˝ pe2 ˝ e3q.
Correctness follows from Lemma 4.10 and Lemma 4.5. J

The weighted quantified satisfiability problem is parameterized by `` k1 ` ¨ ¨ ¨ ` k`. The
class AW[SAT] is the set of parameterized problems that are FPT-reducible to the weighted
quantified satisfiability problem (see [8, Chapter 26]).

I Theorem 4.12. Evaluating REWB queries, parameterized by the size of the query is hard
for AW[SAT] under FPT reductions.

Proof. The reduction given in Lemma 4.11 is a FPT reduction from the weighted quantified
satisfiability problem to the problem of evaluating REWB queries, with query size as the
parameter. J

5 Summary and Open Problems

We have proved that increasing the depth of nesting of iterated bindings in REWBs increase
expressiveness. Given an REWB, it is undecidable to check if its language can be defined
with another REWB with smaller depth of nesting of iterated bindings. The complexity
of query evaluation problems are summarized in the following table, followed by a list of
technical challenges to be overcome for closing the gaps.

Query level Evaluation Parameterized complexity, query size is parameter

E1 NP-complete (?2)W[SAT] lower bound, W[P] upper bound
Ei, i ą 1 (?1), Σi upper bound (?3)
Unbounded Pspace-complete [15] (?4)AW[SAT] lower bound, uniform-XNL upper bound

1. Suppose we want to check the satisfiability of a Σ2 Boolean formula over pne ` nuq

propositional atoms of which the first ne atoms are existentially quantified and the last
nu are universally quantified. With currently known techniques, reducing this to query
evaluation results in an REWB in Epnu`1q. Hence, with bounded nesting depth, we
cannot even prove a Σ2 lower bound.
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2. Weighted formula satisfiability, complete for W[SAT], can be simulated with series-
parallel graphs. Queries in E1 do not seem to be powerful enough for weighted circuits.

3. Without parameterization, the Σi upper bound is obtained by an oracle hierarchy of
NP machines. With parameterization, an oracle hierarchy of W[P] machines does not
correspond to any parameterized complexity class. See [3, Section 4] for discussions on
subtle points which make classical complexity results fail in parameterized complexity.

4. As in point 2, here one might hope for a AW[P] lower bound, which is quantified
weighted circuit satisfiability (stronger than AW[SAT], which is quantified weighted
formula satisfiability). Even if this improvement can be made, there is another classical
complexity result not having analogous result in parameterized complexity: not much is
known about the relation between parameterized alternating time bounded class (AW[P])
and parameterized space bounded class (uniform-XNL).

Acknowledgements. The authors thank Partha Mukhopadhyay and Geevarghese Philip for
helpful discussions about polynomial time hierarchy and parameterized complexity theory.
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Abstract
We extend the notion of distributed decision in the framework of distributed network computing,
inspired by recent results on so-called distributed graph automata. We show that, by using
distributed decision mechanisms based on the interaction between a prover and a disprover, the
size of the certificates distributed to the nodes for certifying a given network property can be
drastically reduced. For instance, we prove that minimum spanning tree can be certified with
O(logn)-bit certificates in n-node graphs, with just one interaction between the prover and the
disprover, while it is known that certifying MST requires Ω(log2 n)-bit certificates if only the
prover can act. The improvement can even be exponential for some simple graph properties.
For instance, it is known that certifying the existence of a nontrivial automorphism requires
Ω(n2) bits if only the prover can act. We show that there is a protocol with two interactions
between the prover and the disprover enabling to certify nontrivial automorphism with O(logn)-
bit certificates. These results are achieved by defining and analysing a local hierarchy of decision
which generalizes the classical notions of proof-labelling schemes and locally checkable proofs.

1998 ACM Subject Classification D.1.3 Concurrent Programming (Distributed programming),
F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Distributed Network Computing, Distributed Algorithm, Distributed
Decision, Locality

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.118

1 Introduction

This paper is tackling the long-standing issue of characterizing the power of local computation
in the framework of distributed network computing [27]. Our concern is the ability to design
local algorithms, defined as distributed algorithms in which every node of a network (i.e.,
every computing entity in the system) can compute its output after having consulted only
nodes in its vicinity. That is, communications proceed along the links of the network, and, in
a local algorithm, every node must output after having exchanged information with nodes at
constant distance only. A construction task consists, for the nodes of a network G = (V,E)
where each node u is given an input x(u), to collectively and concurrently compute a collection
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y(u), u ∈ V , of individual outputs, such that (G, x, y) satisfies some property characterizing
the task to be solved. For instance, the minimum-weight spanning tree (MST) task consists,
given the weights x(u) of all the incident edges of every node u, in computing a subset y(u)
of edges incident to u such that the set {y(u), u ∈ V } forms a MST in G. Similarly, the
maximal independent set (MIS) task consists of computing y(u) ∈ {0, 1}, u ∈ V , such that
the set {u ∈ V : y(u) = 1} forms an MIS. It is an easy observation that the MST task cannot
be solved locally as the weights of far-away edges may impact the output of a node. In a
seminal result Linial showed that the same is true for MIS [24]: there is no local algorithm
for constructing an MIS, even on an n-node ring. Nevertheless, there are many construction
tasks that can be solved locally, such as approximate solutions of NP-hard graph problems
(see, e.g., [8, 21, 22, 23]). In general it is Turing-undecidable whether or not a construction
task can be solved locally [26].

Interestingly, the Turing-undecidability result of Naor and Stockmeyer [26] concerning the
locality of construction tasks holds even if one restricts the question to properties that can
be locally decided. A distributed decision task [1, 13] consists, given an input x(u) to every
node in a network G, in deciding whether (G, x) satisfies some given property. An instance is
accepted by a distributed algorithm if and only if every node individually accepts (i.e., every
node u outputs y(u) = true). For instance, proper colouring can easily be decided locally
by having each node merely comparing its colour with the ones of its neighbours. On the
contrary, deciding whether a collection of edges defined by {x(u), u ∈ V } forms a MST is not
possible locally (in fact, even separating paths from cycles is not possible locally). Similarly
to the sequential computing setting, there are strong connections between the construction
variant of a task and the ability to locally decide the legality of a given candidate solution
for the same task, as illustrated by, e.g., the derandomization results in [6, 26], and the
approximation algorithms in [29]. These connections have motivated work focusing on the
basic question: what can be decided locally? This paper is aiming at pushing further our
current knowledge on this question.

Two specific lines of work have motivated our approach of local decision in this paper. The
first line of research is related to the notion of proof-labelling schemes introduced by Korman
et al. [20], who showed that while not all graph properties can be decided locally, they can
all be verified locally, with the help of local certificates provided by a prover. Unfortunately,
there are natural graph properties (e.g., the existence of a non-trivial automorphism) which
require Ω(n2)-bit certificates to be verified by any local distributed algorithm [16]. Göös
and Suomela introduced the more practical class LogLCP of all graph properties that can be
verified using certificates of size O(logn) bits [16], i.e., merely the size required to store the
identities of the nodes. The class LogLCP contains non locally decidable properties such as
hamiltonicity and non-bipartiteness. LogLCP even contains graph properties that are not in
NP. Also, all existential-MSO graph properties are shown to be in LogLCP.

The second line of research which motivated our approach is the study of distributed
graph automata. In particular, [28] recently proved that an analogue of the polynomial
hierarchy, where sequential polynomial-time computation is replaced by distributed local
computation, turns out to coincide with MSO. However, while this result is important for
our understanding of the computational power of finite automata, the model does not quite
fit with the standard model of distributed computing aiming at capturing the power of
large-scale computer networks (see, e.g., [27]). Indeed, on the one hand, the model in [28] is
somewhat weaker than desired, by assuming a finite-state automaton at each node instead of
a Turing machine, and by assuming anonymous computation instead of the presence of unique
node identities. On the other hand, the very same model is also stronger than the standard
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model, by assuming a decision-making mechanism based on an arbitrary mapping from
the collection of all node states to {true, false}. Instead, the classical distributed decision
mechanism is based on the logical conjunction of the individual decisions. This is crucial
as this latter decision mechanism provides the ability for every node rejecting the current
instance to raise an alarm, and/or to launch a recovery procedure, without having to collect
all of the individual decisions.

In this paper, our objective is to push further the study initiated in [16] on the LogLCP
class, by adopting the approach of [28]. Indeed, LogLCP can be seen as the first level Σ1 of a
local hierarchy (Σk,Πk)k≥0, where Σ0 = Π0 = LD, the class of properties that can be locally
decided [13], and, for k ≥ 1, Σk is the class of graph properties for which there exists a local
algorithm A such that, for every instance (G, x),

(G, x) is legal ⇐⇒ ∃`1∀`2∃`3 . . . Q`k : A(G, x, `1, `2, . . . , `k) accepts

with k alternations of quantifiers, and where Q is the universal quantifier if k is even, and the
existential quantifier otherwise. (Πk is defined similarly as Σk, but starting with a universal
quantifier). The `i’s are called labelling functions, assigning a label `i(v) ∈ {0, 1}∗ to every
node v, such that, for every node v, |`i(v)| = O(logn) in n-node networks. Our aim is to
analyze the local hierarchy in the general context of distributed network computing [27], where
each node has an identity which is unique in the network, every node has the computational
power of a Turing machine, and where the acceptance of an instance by an algorithm is
defined as the logical conjunction of the individual decisions of the nodes.

1.1 Our Results
We study a hierarchy (Σk,Πk)k≥0 of local decision which represents a natural extension of
proof-labelling scheme, as well as of locally checkable proof, with succinct certificates (i.e., of
size O(logn) bits). In addition to its conceptual interest, this hierarchy might have some
practical impact. Indeed, any level k of the hierarchy can be viewed as a game between a
prover and a disprover, who play in turn by alternating k times. Roughly, on legal instances,
the prover aims at assigning distributed certificates responding to any attempt of the disprover
to demonstrate that the instance is illegal, and vice-versa on illegal instances. The referee
judging the correctness of the collection of certificates produced by the players is a local
distributed algorithm. For instance, the extensively studied class Σ1 includes problems whose
solutions are such that their legality can be certified by a prover using distributed certificates.
Instead, the class Π2 includes problems whose solutions are such that their legality can be
certified by a prover against any other candidate solution provided by a disprover, both using
distributed certificates.

We show that many problems have succinct proofs in the hierarchy. Actually, climbing up
the hierarchy enables to reduce drastically the size of the certificates. For instance, we show
a quadratic improvement for MST, which requires locally checkable proofs of Ω(log2 n) bits,
while MST stands at the second level of our hierarchy. That is, there is a Π2-protocol for
MST using distributed certificates of O(logn) bits. For graph properties such as nontrivial
automorphism, the improvement can even be exponential in term of certificate size, by
relaxing the verification from locally checkable proofs with Ω(n2) bits proofs to Σ3 (with
O(logn) bits proofs). More generally, many natural optimization problems are on the second
level of our hierarchy. On the other hand, we also show that there are simple (Turing-
computable) languages outside the local hierarchy. This latter property illustrates the impact
of insisting on compact O(logn)-bits certificates: there are graph properties that cannot be
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locally certified via a finite number of interactions between a prover and a disprover using
succinct certificates.

In addition, we prove several results regarding the structure of the hierarchy. In particular,
we show that if the hierarchy collapses partially at any level, then it collapses all the way
down to that level. On the other hand, we prove that the hierarchy does not collapse to
the first level (i.e., the first and second levels are distinct). Distributed decision is naturally
asymmetric, that is, reversing the individual decision of the algorithm at each node does not
correctly reverse the global decision of the algorithm. As a consequence, it is not necessarily
the case that co-Σk = Πk, and vice-versa. However, we show that one additional level of
quantifiers is always sufficient to reverse a decision (i.e., to decide the complement of a
language). Finally, we show that, for every graph property at the intersection of a level-k
class and the complement of this class, there is a protocol deciding that property at level k
with unanimous decision, for both legal and illegal instances.

All our positive results hold in the classical CONGEST model (in which every edge can
transmit at most O(logn) bits at each round), while all our negative results hold in the more
liberal LOCAL model (in which there are no constraints on the amount of bits that can be
sent through an edge at each round).

All proofs missing from this extended abstract can be found in [7].

1.2 Related Work
Several forms of “local hierarchies” have been investigated in the literature, with the objective
of understanding the power of local computation, or for the purpose of designing verification
mechanisms for fault-tolerant computing. In particular, as we already mentioned, [28]
has investigated the case of distributed graph automata, where nodes are anonymous finite
automata, and where the decision function is a global interpretation of all the individual
outputs of the nodes. In this context, it was proved that the local hierarchy is exactly
captured by the MSO formulas on graphs.

The picture is radically different in the framework in which the computing entities are
Turing machines with pairwise distinct identities, and where the decision function is the
logical conjunction of all the individual boolean outputs. In [13], the authors investigated
the local hierarchy in which the certificates must not depend on the identity-assignment
to the nodes. Under such identity-oblivious certificates, there are distributed languages
outside Σ1. However, all languages are in the probabilistic version of Σ1, that is, in Σ1 where
the correctness of the verification is only stochastically guaranteed with constant probability.
In [11], it is proved that Σ1 is exactly captured by the set of distributed languages that are
closed under lift. (A configuration (G′, x′) is a t-lift of a configuration (G, x) if there is an
input-preserving mapping from V (G′) to V (G) which preserves the t-neighbourhood of the
nodes in these graphs). Interestingly, in the same framework as [13] but where the decision
function is a global interpretation of the all the individual outputs, instead of the logical
conjunction of individual boolean outputs, [3, 4] proved that the local hierarchy collapses
to Σ1. Also, in the same framework as [13], but where the certificates may depend on the
identity assignment, all distributed languages are in Σ1 (see [20]).

In [16], the authors proved that, to be placed in the first level Σ1 of the local hierarchy,
there are distributed languages on graphs (e.g., the existence of a nontrivial automorphism)
which require to exchange certificates of size Ω(n2) bits among neighbours, which is enough to
trivially decide any problem. Similarly, [18, 20] has proved that certifying Minimum-weight
Spanning Tree (MST) requires to exchange certificates on Θ(log2 n) bits, which can be costly
in networks with limited bandwidth, i.e., under the CONGEST model [27]. In [19], it is
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proved that the size of the certificates for MST can be decreased to O(logn) bits, but to the
expense of O(logn) rounds of communication. Recently, [25] has proved that the amount of
communication between nodes (but not necessarily the size of the certificates) for verifying
general network configurations can be exponentially decreased if using randomization, and [9]
analyzed in depth the certificate size for s-t connectivity and acyclicity.

It is also worth mentioning the role of the node identities in distributed decision. For
instance, after noticing that the identities are leaking information to the nodes about the size
of the network (e.g., at least one node has an ID at least n− 1 in n-node network), it was
recently proved that restricting the algorithms to be identity-oblivious reduces the ability to
decide languages locally in Σ0 (see [10]), while this is not the case for Σ1 (see [11]). Recently,
[12] characterized the “power of the IDs” in local distributed decision. In [5], the authors
discussed what can be computed in an anonymous networks, and showed that the answer to
this question varies a lot depending on the commitment of the nodes to their first computed
output value, i.e., whether it is revocable or not. In the context of local decision, the output
is assumed to be irrevocable.

In general, we refer to [32] for a recent survey on local distributed computing, and we
refer to [14, 15] for distributed decision in the context of asynchronous crash-prone systems
with applications to runtime verification, and to [2] for distributed decision in contexts where
nodes have the ability to share non classical resources (e.g., intricate quantum bits).

2 Local Decision

Let G = (V,E) denote an undirected graph, where V is the set of nodes, and E is the
set of edges. The subgraph induced by nodes at distance (i.e., number of hops) at most
t from a node v is denoted by BG(v, t). All graphs considered in this paper are assumed
to be connected (for non connected graphs, our results apply separately to each connected
components). The number of nodes in the graph is denoted by n. In every graph G = (V,E),
each node v ∈ V is assumed to have a name from the set {1, . . . , N}, denoted by id(v), where
N is polynomial in n. In other words, all identities are stored on O(logn) bits. In a fixed
graph, all names are supposed to be pairwise distinct.

Distributed languages. A distributed language L is a set of pairs (G, x), where G is a graph
and x is a function that assigns some local input x(v) to each node v. We assume that
all inputs x(v) are polynomial in n, and thus can be stored locally on O(logn) bits. The
following are typical examples of distributed languages:

3-colouring: (G, x) such that x encodes a proper 3-colouring of G;
3-colourability: graphs that can be properly 3-coloured;
nta: graphs with a nontrivial automorphism;
planarity: planar graphs.

The complement L̄ of a distributed language L is defined as the set L̄ = {(G, x) : (G, x) /∈ L}.
For instance, the complement of 3-colouring is non-3-colouring, consisting of all pairs
(G, x) such that x is not a proper 3-colouring of G.

Labellings. A labelling ` is a function ` : V (G)→ {0, 1}∗, assigning a bit string to each node.
If, for every graph G and every node v ∈ V (G), `(v) ∈ {0, 1}k, we say that the labelling `
is of size k. In this paper, we are mostly interested in labellings of logarithmic size in the
number of nodes in the input graph.
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Local algorithms. We use the standard LOCAL model of distributed computing [27, 24]. In
this model each node v ∈ V (G) is a computational entity that has direct communication links
to other nodes, represented by the edges of G. Every node runs the same algorithm. In this
paper, all algorithms are deterministic. Nodes communicate with each other in synchronous
communication rounds. During each round, every node is allowed to (1) send a message to
each of its neighbours, (2) receive a message from each of its neighbours, and (3) perform
individual computation. At some point every node has to halt and produce a local output.
The number of rounds until all nodes have halted is the running time of an algorithm.

A local algorithm is a distributed algorithm A for which there exists a constant t such
that, for every instance (G, x), the running time of A in (G, x) is at most t. Since the most
a node can do in t communication rounds is to gather all the information available in its
local neighbourhood BG(v, t), a local algorithm A can be defined as a (computable) function
from all possible labelled local neighbourhoods to some output set. Given an ordered set
¯̀= (`1, `2, . . . , `k) of labellings, for some k ≥ 0, and given an instance (G, x), we denote by
A(G, v, x, ¯̀) the output of v in algorithm A running in G with input x and labelling ¯̀.

Local decision. In distributed decision, the output of each node v corresponds to its own
individual decision. That is, each node either accepts or rejects. Globally, the instance
(G, x) is accepted if and only if every node accepts individually. In other words, the global
acceptance is subject to the logical conjunction of all the individual acceptances. For the
sake of simplifying the presentation, A(G, v, x, ¯̀) = 1 (resp., A(G, v, x, ¯̀) = 0) denotes the
fact that v accepts (resp., rejects) in an execution of algorithm A on (G, x) labelled with ¯̀.
We say that A accepts if A(G, v, x, ¯̀) = 1 for every node v ∈ V (G), and rejects otherwise.
We will use the shorthand A(G, x, ¯̀) = 1 to denote that ∀v ∈ V (G), A(G, v, x, ¯̀) = 1, and
A(G, x, ¯̀) = 0 to denote that ∃v ∈ V (G), A(G, v, x, ¯̀) = 0.

The first class in the local hierarchy considered in this paper is local decision, denoted by
LD. A language L is in LD if there exists a local algorithm A, such that for all graphs G,
and all possible inputs x on G, we have that (G, x) ∈ L ⇐⇒ A(G, x) accepts.

As an example, deciding whether x is a 3-colouring of G is in LD, but deciding whether
G is 3-colourable is not. Note that LD does not refer to any labellings. The algorithm A

runs solely on graphs G with possible inputs to the nodes.

Example: certifying spanning trees. In a graph G, a spanning tree can be encoded as a
distributed data-structure x such that, for every v ∈ V (G), x(v) encodes the identity of one
of v’s neighbours (its parent in the tree), but one node r for which x(r) = ⊥ (this node is
the root of the tree). Deciding whether x is a spanning tree of G is not in LD. However, a
spanning tree can be certified locally as follows (see [1, 17]). Given a spanning tree x of G
rooted at node r, a prover assigns label `(v) = (id(r), d(v)) to each node v, where d(v) is
the distance of v to the root r in the spanning tree x. Such a label is on O(logn) bits. The
verification algorithm A at node v checks that v agrees on id(r) with all its neighbours, and
that d(x(v)) = d(v) − 1. If both tests are passed, then v accepts, otherwise it rejects. It
follows that Algorithm A accepts if and only if x is a spanning tree of G. Now we can also
accumulate counters, such as the number of nodes in the graph, toward the root. This ability
to certify spanning trees and to use them to carry information is a simple but powerful tool
that will be used throughout the paper.
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3 The Local Hierarchy

We generalize the various classes of distributed decision from previous work into a hierarchy
of distributed decision classes, in a way analogous to the polynomial hierarchy (in particular,
our class ΣLD

1 is equal to1 the class logLCP introduced by Göös and Suomela [16]).

3.1 Definition
We first define an infinite hierarchy {(ΣLD

k )k≥0, (ΠLD
k )k≥0} of classes. For the sake of simpli-

fying the notation, each of these classes is now abbreviated in Σk or Πk. Informally, each
class can be defined by a game between two players, called the prover and the disprover,
who can assign labels to the nodes. The nodes take these labels as additional inputs when
running their local algorithm A. Both players are given the language L, the instance (G, x),
and the algorithm A. The goal of the prover is to make the nodes accept the instance,
whereas the disprover wants it to be rejected. In Σk (resp., Πk), with k > 0, the prover
(resp., disprover) goes first, and assigns an O(logn)-bit label to each node. Then, the players
alternate, assigning O(logn)-bit labels to each node in turn, until k labels `1, `2, . . . , `k are
assigned. A language L is in the corresponding class if there exists a local algorithm A such
that, for all instances (G, x), the prover has a winning strategy if and only if (G, x) ∈ L. In
other words, the algorithm is such that if (G, x) ∈ L, no matter how the disprover assigns its
own labels, the prover can make A accept. Conversely, if (G, x) /∈ L, then the disprover has
a winning strategy and thus it can force A to reject. Such a combination local algorithm
A and prover-disprover pair is called a decision protocol for L in the corresponding class.
Equivalently, we define LD = Σ0 = Π0, and, for k > 0, Σk is defined as the set of languages
L for which there exists c ≥ 0, and a local algorithm A such that

(G, x) ∈ L ⇐⇒ ∃`1 ∀`2 . . .Q `k, A(G, x, `1, `2, . . . , `k) = 1,

where Q is the existential (resp., universal) quantifier if k is odd (resp., even), and every
label `i is of size at most c logn. The class Πk is defined similarly, except that the acceptance
condition is: (G, x) ∈ L ⇐⇒ ∀`1 ∃`2 . . .Q `k, A(G, x, `1, `2, . . . , `k) = 1.
I Remark. For both Σk and Πk, the equivalence should hold for every identity-assignment
to the nodes with identities in [1, N ], where N is a fixed function polynomial in n. Indeed,
the membership of an instance (G, x) to a language is independent of the identities given to
the nodes. On the other hand, the labels given by the prover and the disprover may well
depend on the actual identities of the nodes in the graph where the decision algorithm A is
run. This is for instance the case of the protocol for certifying spanning trees described in
the previous section, establishing that spanning-tree ∈ Σ1.

3.2 The odd-even collapsing and the Λk-hierarchy
Interestingly, the ending universal quantifier in both Σ2k and Π2k+1 does not help. The class
Π1 turns out to be just slightly stronger than LD. Specifically, we prove the following result.

I Theorem 1. For every k ≥ 1, Σ2k = Σ2k−1 and Π2k+1 = Π2k. Moreover, LD ⊆ Π1 ⊆
LD#node, that is, local decision with access to an oracle providing each node with the number
of nodes in the graph.

1 If fact, ΣLD
1 is equal to LogLCP as defined by Göös and Suomela [16] when one restricts computation to

be performed by Turing Machines ([16] makes no assumption on the computational power of the nodes).
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Proof. The result follows from the fact that an existential quantification on labels of size
O(logn) bit is sufficient to provide the nodes with the exact size of the graph. This can be
certified by accumulating subtree counters along a spanning tree (see Section 2 [16]).

I Claim 1. Let L = {(G, x) : for every v ∈ V (G), x(v) = |V (G)|}. We have that L ∈ Σ1.

We show how to use this mechanism in the case of Σ2k, for k > 0. Let L ∈ Σ2k, and let
A be a t-round local algorithm such that:

(G, x) ∈ L ⇐⇒ ∃`1 ∀`2 . . . ∃`2k−1 ∀`2k, A(G, x, `1, `2, . . . , `2k) = 1.

Recall that all labellings `i, i = 1, . . . , 2k, are of size at most c logn for some c ≥ 0. We
construct an algorithm A′ that simulates A for a protocol that does not need the last
universal quantifier on `2k. The first labelling `′1 consists of some correct `1 for A, with the
aforementioned additional label that encodes a spanning tree x′ (rooted at an arbitrary node)
and the value of the number of nodes in G. Regarding the remaining labellings, for each `2i−1
assigned by the disprover, the prover assigns `2i as in the protocol for A, ignoring the bits
padded to `1 for creating `′1. After the labellings have been assigned, each node v gathers its
radius-t neighbourhood. Then, it virtually assigns every possible combination of (c logn)-bit
labellings `2k(u) to each node u ∈ BG(v, t), and simulates A at v to check whether it accepts
or rejects with this labelling. If every simulation accepts, then A′ accepts at v, else it rejects.
Since every node generates all possible `2k labellings in its neighbourhood, we get that

(G, x) ∈ L ⇐⇒ ∃`′1 ∀`2 . . . ∃`2k−1, A
′(G, `1, `2, . . . , `2k−1) accepts ,

which places L in Σ2k−1. The proof of Π2k+1 = Π2k is similar by using the first existential
quantifier (which appears in second position) to certify the number of nodes in the graph.
For the case of Π1, the nodes use the number of nodes provided by the oracle. J

A consequence of Theorem 1 is that only of the classes Σk for odd k, and Πk for even k,
are worth investigating.

I Definition 2. We define the classes (Λk)k≥0 as follows: Λk =
{

Σk if k is odd;
Πk otherwise.

In particular, Λ0 = Π0 = LD. By definition, we get Λk ⊆ Λk+1 for every k ≥ 0, as the
distributed algorithm can simply ignore the first label.

I Definition 3. The local hierarchy is defined as LH = ∪k≥0Λk.

3.3 Complementary classes
We define the complement classes co-Λk, for k ≥ 0, as co-Λk = {L : L̄ ∈ Λk}. Note that, due
to the asymmetric nature of distributed decision (unanimous acceptance, but not rejection),
simply reversing the individual decision of an algorithm deciding L is generally not appropriate
to decide L̄. Nevertheless, we show that an additional existential quantifier is sufficient to
reverse any decision, implying the following theorem.

I Theorem 4. For every k ≥ 0, co-Λk ⊆ Λk+1.

Proof. The proof uses a spanning tree certificate to reverse the decision, in a way similar
to the proof that the complement of LD is contained in logLCP (i.e., according to our
terminology, co-Λ0 ⊆ Λ1) due to Göös and Suomela [16]. Let L ∈ Λk, and let A be a
t-round local algorithm deciding L ∈ Λk using labels on at most c logn bits. We construct
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an algorithm A′ which simulates A, but uses an additional label `k+1 to reverse the decisions
made by A. Let us assume that k is even (as it will appear clear later, the proof is essentially
the same for k odd). We have that

(G, x) ∈ L ⇐⇒ ∀`1 ∃`2 . . . ∃`k, A(G, x, `1, `2, . . . , `k) = 1,

with all labels `i’s of size at most c logn for some constant c ≥ 0. In Algorithm A′, the
prover and the disprover essentially switch their roles. From the above, we have

(G, x) /∈ L ⇐⇒ ∃`1 ∀`2 . . . ∀`k ∃v ∈ G,A(G, v, x, `1, `2, . . . , `k) = 0.

The prover for A′ always follows the disprover for A, and can always pick labellings
`1, `3, . . . , `k−1 such that there is a rejecting node if and only if (G, x) /∈ L. In the protocol
for A′, the prover sets `k+1 to be a spanning tree rooted at one such rejecting node v. Every
other node u 6= v simply checks that `k+1 constitutes a proper encoding of a spanning tree,
and rejects if not. If all nodes u 6= v accept, then `k+1 is indeed a proper spanning tree, and
it only remains to check that v rejects in A. To this end, the node v designated as the root of
the spanning tree encoded by `k+1 gathers all labellings in its radius-t neighbourhood, and
computes A(G, x, v, `1, `2, . . . , `k). If A rejects at v, we set A′ to accept at v, and, otherwise,
we set A′ to reject at v.

As discussed in Section 2, the spanning tree can be encoded using O(logn) bits. All
labellings `1, `2, . . . , `k have size at most c logn, therefore all labels of A′ are of size at most
c′ logn for some c′ ≥ c. The protocol is correct, as a rejecting node exists in A if and only if
(G, x) /∈ L, and A′ correctly accepts in this case. If (G, x) ∈ L, then we have that, for every
choice the prover can make, the disprover can always choose its labellings so that A accepts.
Thus, if the spanning tree `k+1 is correct, the root of that tree will indeed detect that it is
an accepting node in A, and so reject in A′. J

I Corollary 5. For every k ≥ 0, co-Λk ⊆ co-Λk+1, and Λk ⊆ co-Λk+1.

Proof. If L ∈ co-Λk, then, by definition, L̄ ∈ Λk, and thus also L̄ ∈ Λk+1, which implies that
L ∈ co-Λk+1. If L ∈ Λk, then L̄ ∈ co-Λk, and thus, by Theorem 4, we get that L̄ ∈ Λk+1,
which implies that L ∈ co-Λk+1. J

The following theorem shows that, for every k ≥ 0, and every language L in Λk ∩ co-Λk,
there is an algorithm deciding L such that an instance (G, x) ∈ L is accepted at all nodes,
and an (G, x) /∈ L is rejected at all nodes.

I Theorem 6. Let k ≥ 1, and let L ∈ Λk ∩ co-Λk. Then there exists a local algorithm A

such that, for every instance (G, x), and for every v ∈ V (G),

(G, x) ∈ L ⇐⇒
{
∀`1 ∃`2 ∀`3 . . . ∃`k, A(G, v, x, `1, . . . , `k) = 1 if k is even
∃`1 ∀`2 . . . ∃`k, A(G, v, x, `1, . . . , `k) = 1 otherwise

In Theorem 9 in the next section, we shall see several example of languages in Λ1 ∩ co-Λ1,
in relation with classical optimization problems on graphs. By Theorem 6, all of these
languages can be decided unanimously.

3.4 Separation results
From the previous results in this section, we get that the local hierarchy LH = ∪k≥0Λk has a
typical “crossing ladder” as depicted on Figure 1.
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⇤1 ⇤2LD

co-LD co-⇤1 co-⇤2 co-⇤3

⇤3

ALL \ LH

Figure 1 Structure of the local hierarchy. Arrows indicate inclusions, while hollow-headed arrows
indicate strict inclusions.

In addition, we can show that some of the inclusions are strict. Indeed, it is known
for long that LD is strictly included in Λ1 (for instance, 2-colourability ∈ Λ1 \ LD).
Also, Λ0 ∪ co-Λ0 is strictly included in co-Λ1. Indeed, for instance, non-3-colourability
∈ co-Λ1 \(Λ0 ∪ co-Λ0). Therefore, all inclusions between LD and co-LD and the classes at the
first level are strict. Moreover, it is known [16] that non-3-colourability /∈ Λ1, implying
that 3-colourability /∈ co-Λ1. On the other hand, both languages are in Λ2, by application
of Theorem 4. As a consequence, both are also in co-Λ2. Therefore, all inclusions between
the classes at the first and second levels are strict.

For k ≥ 2, separating the classes at the kth level from the classes at the next level appears
to be not straightforward. In particular, all classical counting arguments used to separate the
three first levels (i.e., levels 0, 1, and 2) fail. On the other hand, we show that if Λk = Λk+1
for some k, then LH collapses to the kth level.

I Theorem 7. If there exists k ≥ 0 such that Λk = Λk+1, then Λi = Λk for all i > k, that
is, LH collapses at the kth level.

Finally, we show that there are languages outside LH. In fact, this result holds, even if
we restrict ourselves to languages with inputs 0 or 1 on oriented paths, i.e., with identity-
assignment where nodes are given consecutive ID from 1 to n. The result follows from the
fact that there are “only” 22O(log n) different local algorithms for such n-node instances at
any fixed level of LH, while there are 22n different languages on such instances.

I Theorem 8. There exists a Turing-computable language on 0/1-labelled oriented paths
that is outside LH.

4 Positive results

In this section, we precisely identify the position of some relevant problems for distributed
computing in the local hierarchy.

Optimization problems. Given an optimization problem π on graphs (e.g., finding a min-
imum dominating set), one defines two distinct distributed languages: the language optπ
(resp., admπ) is composed of all configurations (G, x) such that x encodes an optimal (resp.,
admissible) solution for π in graph G. Informally, in the context of optimization problems,
the disprover aims at demonstrating that the current solution is not optimal or not admissible.
Typically, the disprover does so by exhibiting a better solution or a proof of non-admissibility.

The minimum-weight spanning tree (MST) problem, which is one of the most studied
problem in the context of network computing [18, 19, 20], is a typical example of optimization
problems that we aim at considering in this section, but many other problems such as
maximum independent set, max-cut, etc., are also of our interest. We show that, for any
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optimization problem π, if deciding whether a candidate solution for π is admissible is “easy”,
and if the objective function for π has an additive form, then optπ ∈ co-Λ1, and optπ ∈ Λ2.

I Theorem 9. Let π be an optimization problem on graphs. If the following two properties
are satisfied: (a) admπ ∈ Λ1 ∩ co-Λ1, and (b) the value to the objective function for π is the
sum, over all nodes, of an individual value at each node which can be computed locally and
encoded on O(logn) bits, then optπ ∈ co-Λ1.

Let us give concrete examples of problems satisfying hypotheses (a) and (b). In fact, most
classical optimization problems are satisfying these hypotheses, and all the ones typically
investigated in the framework of local computing (cf. the survey [32]) do satisfy (a) and (b).

I Corollary 10. Let π be one of the following optimization problems: maximum independent
set, minimum dominating set, maximum matching, max-cut, or min-cut. Then optπ ∈ co-Λ1.

The following corollary of Theorem 9 deals with two specific optimization problems,
namely travelling salesman and MST. The former illustrates a significant difference between
the local hierarchy defined from distributed graph automata in [28], and the one in this
paper. Indeed, we show that travelling salesman is at the second level of our hierarchy, while
it does not even belong to the graph automata hierarchy (as Hamiltonian cycle is not in
MSO). Let travelling salesman be the distributed language formed of all configurations
(G, x) where G is a weighted graph, and x is an Hamiltonian cycle C in G of minimum
weight (i.e., at node u, x(u) is the pair of edges incident to u in C). Similarly, let mst be the
distributed language formed of all configurations (G, x) where G is a weighted graph, and x
is a MST T in G (i.e., at node u, x(u) is the parent of u in T ). Note that the case of MST is
also particularly interesting. Indeed, mst is known to be in LCP(log2(n)) [18], but not in
Λ1 = LCP(log(n)) [19]. Note also that, for mst, it is possible to trade locality for the size
of the certificates, as it was established in [19] that one can use logarithmic certificates to
certify mst in a logarithmic number of rounds. A consequence of Theorem 9 is the following.

I Corollary 11. mst ∈ co-Λ1 and travelling salesman ∈ co-Λ1 for weighted graphs with
weights bounded by a polynomial in n.

Non-trivial automorphism. The graph automorphism problem is the problem of testing
whether a given graph has a nontrivial automorphism (i.e., an automorphism2 different from
the identity). Let nontrivial automorphism be the distributed language composed of
the (connected) graphs that admit such an automorphism. It is known that this language is
maximally hard for locally checkable proofs, in the sense that it requires proofs with size
Ω(n2) bits [16]. Nevertheless, we prove that this language is low in the local hierarchy.

I Theorem 12. nontrivial automorphism ∈ Λ3.

Proof. The first label `1 at node u is an integer that is supposed to be the identity of
the image of u by a nontrivial automorphism. Let us denote by φ : V (G) → V (G) the
mapping induced by `1. We are left with proving that deciding whether a given φ is a
nontrivial automorphism of G is in Λ2. Thanks to Theorem 4, it is sufficient to prove that
this decision can be made in co-Λ1. Thus let us prove that checking that (G,φ) is not a
nontrivial automorphism is in Λ1. If φ is the identity, then the certificate can just encode this

2 Recall that φ : V (G) → V (G) is an automorphism of G if and only if φ is a bijection, and, for every two
nodes u and v, we have: {u, v} ∈ E(G) ⇐⇒ {φ(u), φ(v)} ∈ E(G).
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information, and each node u checks that φ(u) is equal to its own ID. So assume now that φ
is distinct from the identity, but is not an automorphism. To certify this, the prover assigns
to each node a set of at most four spanning tree certificates, that “broadcast” to all nodes
the identity of at most four nodes witnessing that φ is not an automorphism. Specifically, if
φ(u) = φ(v) with u 6= v, then the certificates are for three spanning trees, respectively rooted
at u, v, and φ(u), and if {u, v} ∈ E(G) is mapped to {φ(u), φ(v)} /∈ E(G), or {u, v} /∈ E(G) is
mapped to {φ(u), φ(v)} ∈ E(G), then the certificates are for four spanning trees, respectively
rooted at u, v, φ(u), and φ(v). Checking such certificates can be done locally, and thus
checking that (G,φ) is not a nontrivial automorphism is in Λ1, and the claim follows. J

Problems from the polynomial hierarchy. As the local hierarchy LH is inspired by the
polynomial hierarchy, it is natural to ask how their respective levels are connected. In this
section, we show that some connections can indeed be established, for central problems in
the polynomial hierarchy. For instance, let k ≥ 0, and let us consider all (connected) graphs
G = (V,E) such that there exists X ⊆ V , |X| ≥ k, such that, for every S ⊆ X, there is a
cycle C in G containing all vertices in S, but none in X \ S. Such graphs have Cycle-VC-
dimension, VCcycle(G), at least k. Deciding whether, given G and k, we have VCcycle(G) ≥ k
is ΣP3 -complete [30, 31]. Let cycle-vc-dimension be the distributed language composed of
all configurations (G, k) such that all nodes of G have the same input k, and VCcycle(G) ≥ k.

I Theorem 13. cycle-vc-dimension ∈ Λ3.

Proof. The existence of the set X can be certified setting a flag at each node in X, together
with a tree TX spanning X for proving that |X| ≥ k. Given S ⊆ X, the cycle C can be
certified in the same way as the Hamiltonian cycle in the proof of Corollary 11. J

We also show that the natural graph version qbf-satk of QBF-k-SAT is in Λk. Also,
as a direct consequence of the fact that any language at level k of the distributed graph
automata hierarchy [28] is at level at most k + 1 of LH, we get:

I Theorem 14. All graph properties expressible in MSO are in LH.

5 Conclusion

In this paper, we have defined and analyzed a local hierarchy LH of decision generalizing
proof-labelling schemes and locally checkable proofs. Using this hierarchy, we have defined
interactive local decision protocols enabling to decrease the size of the distributed certificates.
We have defined the hierarchy for O(logn)-bit size labels, mostly because this extends the
class LogLCP in [16], and because this is consistent with the classical CONGEST model for
distributed computation [27]. However, most of our results can be extended to labels on
O(B(n)) bits, for B(n) larger than logn. In particular, it is worth noticing that the existence
of a language L outside LH holds as long as B = o(n).

The main open problem is whether LH has infinitely many levels, or whether it collapses
at some level Λk. We know that the latter can only happen for k ≥ 2, and thus it would be
quite interesting to know whether Λ3 6= Λ2. In particular, all the typical counting arguments
used to separate Λ2 from Λ1, or, more generally, to give lower bounds on the label size in
proof-labelling schemes or locally checkable proofs appear to be too weak for separating
Λ3 from Λ2. A separation result for Λ3 6= Λ2 would thus probably provide new tools and
concepts for the design of space lower bounds in the framework of distributed computing.
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Abstract
For n ≥ 3, let (Hn, E) denote the n-th Henson graph, i.e., the unique countable homogeneous
graph with exactly those finite graphs as induced subgraphs that do not embed the complete
graph on n vertices. We show that for all structures Γ with domain Hn whose relations are
first-order definable in (Hn, E) the constraint satisfaction problem for Γ is either in P or is
NP-complete.

We moreover show a similar complexity dichotomy for all structures whose relations are
first-order definable in a homogeneous graph whose reflexive closure is an equivalence relation.

Together with earlier results, in particular for the random graph, this completes the complex-
ity classification of constraint satisfaction problems of structures first-order definable in countably
infinite homogeneous graphs: all such problems are either in P or NP-complete.
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1 Introduction

1.1 Constraint satisfaction problems
A constraint satisfaction problem (CSP) is a computational problem in which the input
consists of a finite set of variables and a finite set of constraints, and where the question is
whether there exists a mapping from the variables to some fixed domain such that all the
constraints are satisfied. We can thus see the possible constraints as relations on the domain,
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119:2 Constraint Satisfaction Problems for Reducts of Homogeneous Graphs

and in an instance of the CSP, we are asked to assign domain values to the variables such
that certain specified tuples of variables become elements of certain specified relations.

When the domain is finite, and arbitrary constraints are permitted, then the CSP is
NP-complete. However, when only constraints from a restricted set of relations on the domain
are allowed in the input, there might be a polynomial-time algorithm for the CSP. The set of
relations that is allowed to formulate the constraints in the input is often called the constraint
language. The question which constraint languages give rise to polynomial-time solvable CSPs
has been the topic of intensive research over the past years. It has been conjectured by Feder
and Vardi [19] that CSPs for constraint languages over finite domains have a complexity
dichotomy: they are either in P or NP-complete. This conjecture remains unsettled, although
dichotomy is now known on substantial classes (for example when the domain has at most
three elements [26, 17] or when the constraint language contains a single binary relation
without sources and sinks [21, 1]). Various methods, combinatorial (graph-theoretic), logical,
and universal-algebraic have been brought to bear on this classification project, with many
remarkable consequences. A conjectured delineation for the dichotomy was given in the
algebraic language in [18].

When the domain is infinite, the complexity of the CSP can be outside NP, and even
undecidable [10]. But for natural classes of such CSPs there is often the potential for
structured classifications, and this has proved to be the case for structures first-order
definable over the order (Q, <) of the rationals [7] or over the integers with successor [8].
Another classification of this type has been obtained for CSPs where the constraint language
is first-order definable over the random (Rado) graph [13], making use of structural Ramsey
theory. This paper was titled ‘Schaefer’s theorem for graphs’ and it can be seen as lifting the
famous classification of Schaefer [26] from Boolean logic to logic over finite graphs, since the
random graph is universal for the class of finite graphs.

1.2 Homogeneous graphs and their reducts
The notion of homogeneity from model theory plays an important role when applying
techniques from finite-domain constraint satisfaction to constraint satisfaction over infinite
domains. A relational structure is homogeneous if every isomorphism between finite induced
substructures can be extended to an automorphism of the entire structure. Homogeneous
structures are uniquely (up to isomorphism) given by the class of finite structures that embed
into them. The structure (Q, <) and the random graph are among the most prominent
examples of homogeneous structures. The class of structures that are definable over a
homogeneous structure with finite relational signature is a very large generalisation of the
class of all finite structures, and CSPs for those structures have been studied independently in
many different areas of theoretical computer science, e.g. in temporal and spatial reasoning,
phylogenetic analysis, computational linguistics, scheduling, graph homomorphisms, and
many more; see [4] for references.

While homogeneous relational structures are abundant, there are remarkably few countably
infinite homogeneous (undirected, irreflexive) graphs; they have been classified by Lachlan
and Woodrow [23]. Besides the random graph mentioned earlier, an example of such a graph
is the countable homogeneous universal triangle-free graph, one of the fundamental structures
that appears in most textbooks in model theory. This graph is the up to isomorphism unique
countable triangle-free graph (H3, E) with the property that for every finite independent set
X ⊆ H3 and for every finite set Y ⊆ H3 there exists a vertex x ∈ H3 \ (X ∪ Y ) such that x
is adjacent to every vertex in X and to no vertex in Y .

Further examples of homogeneous graphs are the graphs (H3, E), (H4, E), (H5, E), . . . ,
called the Henson graphs, and their complements. Here, (Hn, E) for n > 3 is the generalisation
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of the graph (H3, E) above from triangles to cliques of size n. Finally, the list of Lachlan
and Woodrow contains only one more family of infinite graphs, namely the graphs (Cs

n, E)
whose reflexive closure Eq is an equivalence relation with n classes of equal size s, where
1 ≤ n, s ≤ ω and either n or s equals ω, as well as their complements. We remark that
(Cs

n, Eq) is itself homogeneous and first-order interdefinable with (Cs
n, E), and so we shall

sometimes refer to the homogeneous equivalence relations.
All countable homogeneous graphs, and even all structures which are first-order definable

over homogeneous graphs, are ω-categorical, that is, all countable models of their first-order
theory are isomorphic. Moreover, all countably infinite homogeneous graphs Γ are finitely
bounded in the sense that the age of Γ, i.e., the class of finite structures that embed into Γ,
can be described by finitely many forbidden substructures. Finitely bounded homogeneous
structures also share with finite structures the property of having a finite description: up to
isomorphism, they are uniquely given by the finite list of forbidden structures that describes
their age. Recent work indicates the importance of finite boundedness for complexity
classification [2, 9], and it has been conjectured that all structures with a first-order definition
in a finitely bounded homogeneous structure enjoy a complexity dichotomy, i.e., their CSP is
either in P or NP-complete (cf. [15, 2]). The structures first-order definable in homogeneous
graphs therefore provide the most natural class on which to test further the methods developed
in [13] specifically for the random graph.

In this article we obtain a complete classification of the computational complexity of CSPs
where all constraints have a first-order definition in one of the Henson graphs. We moreover
obtain such a classification for CSPs where all constraints have a first-order definition in
a countably infinite homogeneous graph whose reflexive closure is an equivalence relation,
expanding earlier results for the special cases of one single equivalence class (so-called equality
constraints [6]) and infinitely many infinite classes [16]. Together with the above-mentioned
result on the random graph, this completes the classification of CSPs for constraints with a
first-order definition in any countably infinite homogeneous graph, by Lachlan and Woodrow’s
classification.

Following an established convention [28, 11], we call a structure with a first-order definition
in another structure ∆ a reduct of ∆. That is, for us a reduct of ∆ is as the classical definition
of a reduct with the difference that we first allow a first-order expansion of ∆. With this
terminology, the present article provides a complexity classification of the CSPs for all reducts
of countably infinite homogeneous graphs. In other words, for every such reduct we determine
the complexity of deciding its primitive positive theory, which consists of all sentences which
are existentially quantified conjunctions of atomic formulas and which hold in the reduct. We
remark that all reducts of such graphs can be defined by quantifier-free first-order formulas,
by homogeneity and ω-categoricity.

For reducts of (Hn, E), the CSPs express computational problems where the task is to
decide whether there exists a finite graph without any clique of size n that meets certain
constraints. An example of a reduct whose CSP can be solved in polynomial time is
(Hn, 6=,{(x, y, u, v) : E(x, y)⇒ E(u, v)}), where n ≥ 3 is arbitrary. As it turns out, for every
CSP of a reduct of a Henson graph which is solvable in polynomial time, the corresponding
reduct over the Rado graph, i.e., the reduct whose relations are defined by the same quantifier-
free formulas, is also polynomial-time solvable. On the other hand, the CSP of the reduct
(Hn, {(x, y, u, v) : E(x, y) ∨ E(u, v)}) is NP-complete for all n ≥ 3, but the corresponding
reduct over the random graph can be decided in polynomial time.

Similarly, for reducts of the graph (Cs
n, E) whose reflexive closure is an equivalence relation

with n classes of size s, where 1 ≤ n, s ≤ ω, the computational problem is to decide whether
there exists an equivalence relation with n classes of size s that meets certain constraints.
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1.3 Results
Our first result is the complexity classification of the CSPs of all reducts of Henson graphs,
showing in particular that a uniform approach to infinitely many “base structures” (namely,
the n-th Henson graph for each n ≥ 3) is possible.

I Theorem 1. Let n ≥ 3, and let Γ be a finite signature reduct of the n-th Henson graph
(Hn, E). Then CSP(Γ) is either in P or NP-complete.

We then obtain a similar complexity dichotomy for reducts of homogeneous equivalence
relations, expanding earlier results for special cases [16, 6].

I Theorem 2. Let (Cs
n, E) be an infinite graph whose reflexive closure Eq is an equivalence

relation with n classes of size s, where 1 ≤ n, s ≤ ω. Then for any finite signature reduct Γ
of (Cs

n, E), the problem CSP(Γ) is either in P or NP-complete.

Together with the classification of countable homogeneous graphs, and the fact that
the complexity of the CSPs of the reducts of the Rado graph have been classified [13], this
completes the CSP classification of reducts of all countably infinite homogeneous graphs,
confirming further instances of the open conjecture that CSPs of reducts of finitely bounded
homogeneous structures are either in P or NP-complete [15, 2].

I Corollary 3. Let Γ be a finite signature reduct of a countably infinite homogeneous graph.
Then CSP(Γ) is either in P or NP-complete.

1.4 The strategy
The method we employ follows to a large extent the method invented in [13] for the
corresponding classification problem where the ‘base structure’ is the random graph. The
key component of this method is the usage of Ramsey theory (in our case, a result of Nešetřil
and Rödl [24]) and the concept of canonical functions introduced in [12]. There are, however,
some interesting differences and novelties that appear in the present proof, as we now shortly
outline.

1.4.1 Henson graphs
When studying the proofs in [13], one might get the impression that the complexity of the
method grows with the model-theoretic complexity of the base structure, and that for the
random graph we have really reached the limits of bearableness for applying the Ramsey
method.

However, quite surprisingly, when we step from the random graph to the graphs (Hn, E),
which are in a sense more complicated structures from a model-theoretic point of view1, the
classification and its proof become easier again. It is one of the contributions of the present
article to explain the reasons behind this effect. Essentially, certain behaviours of canonical
functions existing on the random graph can not be realised in (Hn, E). For example the
canonical polymorphisms of behaviour “max” (cf. preliminaries) play no role for the present
classification, but account over the random graph for the tractability of, inter alia, the 4-ary
relation defined by the formula E(x, y) ∨ E(u, v).

1 For example, the random graph has a simple theory [27], whereas the Henson graphs are the most basic
examples of structures whose theory is not simple.
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Interestingly, we are able to reuse results about canonical functions over the random
graph, since the calculus for composing behaviours of canonical functions is the same for
any other structure with the same type space, and in particular the Henson graphs. Via this
meta-argument we can, on numerous occasions, make statements about canonical functions
over the Henson graphs which were proven earlier for the Rado graph, ignoring completely
the actual underlying structure; even more comfortably, we can a posteriori rule out some
possibilities in those statements because of the Kn-freeness of the Henson graphs. Examples
of this phenomenon appear in Lemmas 14 and 15.

On the other hand, along with these simplifications, there are also new additional
difficulties that appear when investigating reducts of (Hn, E) and that were not present in
the classification of reducts of the random graph, which basically stem from the lower degree
of symmetry of (Hn, E) compared to the Rado graph. For example, in expansions of Henson
graphs by finitely many constants, not all orbits induce copies of Henson graphs; the fact
that the analogous statement does hold for the Rado graph was used extensively in [13].

1.4.2 Equivalence relations
Similarly to the situation for the equivalence relation with infinitely many infinite classes
studied in [16], there are two interesting sources of NP-hardness for the reducts Γ of other
homogeneous equivalence relations: namely, if the equivalence relation is invariant under the
polymorphisms of Γ, then the structure obtained from Γ by factoring by the equivalence
relation might have a NP-hard CSP, implying NP-hardness for the CSP of Γ itself; or, roughly,
for a fixed equivalence class the restriction of Γ to that class might have a NP-hard CSP,
again implying NP-hardness of the CSP of Γ (assuming that Γ is a model-complete core, see
Sections 3 and 6). But whereas for the equivalence relation with infinitely many infinite
classes both the factor structure and the restriction to a class are again infinite structures,
for the other homogeneous equivalence relations one of the two is a finite structure, obliging
us to combine results about CSPs of finite structures with those of infinite structures. As it
turns out, the two-element case is, not surprisingly, different from the other finite cases and,
quite surprisingly, significantly more involved than the other cases.

2 Preliminaries

The following lemma has been first stated in [22] for finite domain structures Γ only, but the
proof there also works for arbitrary infinite structures.

I Lemma 4. Let Γ = (D,R1, . . . , R`) be a relational structure, and let R be a relation
that has a primitive positive definition in Γ. Then CSP(Γ) and CSP(D,R, R1, . . . , R`) are
polynomial-time equivalent.

I Theorem 5 (from [10]). Let Γ be a countable ω-categorical structure. Then the relations
preserved by the polymorphisms of Γ are precisely those having a primitive positive definition
in Γ.

These facts make it possible to apply a universal algebraic approach, and classify the
complexity of reducts of an ω-categorical structure through understanding the polymorphism
clones of these reducts. In fact, we can state our results in terms of the polymorphism clones,
see Theorems 22 and 38. Roughly speaking, we will conclude that if Γ is a reduct of a
homogeneous graph with a finite relational language, then CSP(Γ) is NP-complete iff for
some finite tuple c in Γ, the clone Pol(Γ, c) maps to the clone of projections via a continuous
homomorphism.

ICALP 2016
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If such a polymorphism does not exist, it indicates the existence of certain kind of
functions in Pol(Γ), which satisfy an equation that prevents them from being mapped to
projections with a homomorphism. The idea is to find patterns in the behaviour of these
interesting functions, and show that they must generate one out of a given finite number
of well-behaved functions; those appearing in Theorems 22 and 38, and whose incidence in
Pol(Γ) automatically make CSP(Γ) be solvable in polynomial time. In order to find these
well-behaved functions in Pol(Γ), we apply the method mentioned in Section 1.4 by using
canonical functions.

I Definition 6. Let ∆ be a structure. The type tp(a) of an n-tuple a in ∆ is the set
of first-order formulas with free variables x1, . . . , xn that hold for a in ∆. For structures
∆1, . . . ,∆k and tuples a1, . . . , an ∈ ∆1 × · · · ×∆k, the type tp(a1, . . . , an) of (a1, . . . , an) in
∆1 × · · · ×∆k is the k-tuple containing the types of (a1

i , . . . , a
n
i ) in ∆i for each 1 ≤ i ≤ k.

It is well-known that in homogeneous structures such as (Hn, E) and (Ck
n, E), two n-tuples

have the same type if and only if they are in the same orbit of the automorphism group.

I Definition 7. Let ∆1, . . . ,∆k and Λ be structures. A behaviour B between ∆1, . . . ,∆k and
Λ is a partial function from the types over ∆1, . . . ,∆k to the types over Λ. Pairs (s, t) with
B(s) = t are also called type conditions. We say that a function f : ∆1×· · ·×∆k → Λ satisfies
the behaviour B if whenever B(s) = t and (a1, . . . , an) has type s in ∆1, . . . ,∆k, then the
n-tuple (f(a1

1, . . . , a
1
k), . . . , f(an

1 , . . . , a
n
k )) has type t in Λ. A function f : ∆1 × · · · ×∆k → Λ

is canonical if it satisfies a behaviour which is a total function from the types over ∆1, . . . ,∆k

to the types over Λ.

To provide immediate examples for these notions, we now define some behaviours that
will appear in our proof as well as in the precise CSP classification. For m-ary relations
R1, . . . , Rk over a set D, we will in the following write R1 · · ·Rk for the m-ary relation on
Dk that holds between k-tuples x1, . . . , xm ∈ Dk iff Ri(x1

i , . . . , x
m
i ) holds for all 1 ≤ i ≤ k.

I Definition 8. Given a homogeneous graph G we say that a binary injective operation
f : G2 → G is

balanced in the first argument if for all u, v ∈ G2 we have that E=(u, v) implies
E(f(u), f(v)) and N=(u, v) implies N(f(u), f(v));
E-dominated (N -dominated) in the first argument if for all u, v ∈ G2 with 6==(u, v) we
have that E(f(u), f(v)) (N(f(u), f(v)));
balanced/E-dominated/N -dominated in the second argument if (x, y) 7→ f(y, x) is balanced/E-
dominated/N -dominated in the first argument;
balanced/E-dominated/N -dominated if f is balanced/E-dominated/N -dominated in both
arguments, and unbalanced if f is not balanced;
of behaviour p1 if for all u, v ∈ G2 with 6= 6=(u, v) we have E(f(u), f(v)) iff E(u1, v1);
of behaviour p2 if (x, y) 7→ f(y, x) is of behaviour p1;
of behaviour projection if it is of behaviour p1 or p2;
of behaviour min if for all u, v ∈ G2 with 6= 6=(u, v) we have E(f(u), f(v)) iff EE(u, v).

A ternary canonical injection f : G3 → G is
hyperplanely of behaviour projection iff the functions (u, v) 7→ f(c, u, v), (u, v) 7→ f(u, c, v),
and (u, v) 7→ f(u, v, c) are of behaviour projection for all c ∈ G. Similarly other hyperplane
behaviours, such as hyperplanely E-dominated, are defined.
of behaviour minority if for all u, v ∈ G3 with 6= 6= 6=(u, v) we have E(f(u), f(v)) if and
only if EEE(u, v), NNE(u, v), NEN(u, v), or ENN(u, v).
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2.1 Overview
This article is organised as follows. Basic notions and definitions, as well as the fundamental
facts of the method we are going to use, are deferred for reasons of space to the appendix.
Our notation and definitions may also be found in [13] unless they were already represented
in the introduction.

Sections 3 to 5 deal with the Henson graphs: Section 3 is complexity-free and investigates
the structure of reducts of Henson graphs via polymorphisms and Ramsey theory. In
Section 4, we provide hardness results for different classes of reducts. In Section 5 we
rephrase Theorem 1, and we discuss the complexity classification in more detail, formulating
in particular a tractability criterion for CSPs of reducts of Henson graphs.

Section 6 investigates the structure of reducts of homogeneous equivalence relations via
polymorphisms and Ramsey theory and describes the polynomial-time cases.

3 Polymorphisms over Henson graphs

We investigate polymorphisms of reducts of (Hn, E). We start with unary polymorphisms in
Section 3.1, obtaining that we can assume that the relations E and N are pp-definable in
our reducts. We then turn to binary polymorphisms in Section 3.2, obtaining Proposition 16
telling us that we may further assume the existence of a binary injective polymorphism.
Building on the results of those sections, we show in Section 3.3 via an analysis of ternary
polymorphisms that for any reduct which pp-defines the relations E and N , either the
polymorphisms preserve a certain relation H, or there is a polymorphism of behaviour min
(Proposition 18).

3.1 The unary case: model-complete cores
A countable ω-categorical structure ∆ is called a model-complete core if Aut(∆) is dense
in End(∆), or equivalently, every endomorphism of ∆ is an elementary self-embedding,
i.e., preserves all first-order formulas over ∆. Every countable ω-categorical structure Γ is
homomorphically equivalent to an up to isomorphism unique ω-categorical model-complete
core ∆, that is, there exists homomorphisms from Γ into ∆ and vice-versa [3]. Since the CSPs
of homomorphically equivalent structures are equal, it has proven fruitful in classification
projects to always work with model-complete cores. The following proposition essentially
calculates the model-complete cores of the reducts of Henson graphs.

I Proposition 9. Let Γ be a reduct of (Hn, E). Then either End(Γ) contains a function
whose image induces an independent set, or End(Γ) = Aut(Γ) = Aut(Hn, E).

In the first case of Proposition 9, the model-complete core of the reduct is in fact a reduct
of equality. Since the CSPs of reducts of equality have been classified [6], we do not have to
consider any further reducts with an endomorphism whose image induces an independent set.

I Lemma 10. Let Γ be a reduct of (Hn, E), and assume that End(Γ) contains a function
whose image is an independent set. Then Γ is homomorphically equivalent to a reduct of
(Hn,=).

In the second case of Proposition 9, it turns out that all polymorphisms preserve the
relations E, N , and 6=, by the following lemma and Theorem 5.

I Lemma 11. Let Γ be such that End(Γ) = Aut(Hn, E). Then E, N , and 6= have primitive
positive definitions in Γ.

ICALP 2016
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Before moving on to binary polymorphisms, we observe the following corollary of Propos-
ition 9, first mentioned in [28].

I Corollary 12. For every n ≥ 3, the permutation group Aut(Hn, E) is a maximal closed
subgroup of the full symmetric group on Hn, i.e., every closed subgroup of the full symmetric
group containing Aut(Hn, E) either equals Aut(Hn, E) or the full symmetric group.

3.2 Binary polymorphisms
We investigate binary functions preserving E, N , and 6=. A finitary operation f(x1, . . . , xn)
on a set is essential if it does not depend on only one of its arguments xi.

I Lemma 13. Every essential function f : Hk
n → Hn that preserves E, N , and 6= generates

a binary injection.

I Lemma 14. Let f : H2
n → Hn be a function of behaviour min that preserves E and N .

Then f generates a binary function of behaviour min that is N -dominated.

By Proposition 9, Lemma 11 and Lemma 13, we may assume that Pol(Γ) contains a
binary injection f , as otherwise the complexity of CSP(Γ) is known: see the explanation in
the end of this subsection. After an analysis of the possible behaviours of f , we can make
further assumptions on the binary injection in Pol(Γ).

I Lemma 15. Let f : Hk
n → Hn be an essential function that preserves E, N , and 6=. Then f

generates one of the following binary canonical injections: of behaviour min and N -dominated;
or of behaviour p1, balanced in the first, and N -dominated in the second argument.

We conclude this section by summarising the results we have so far.

I Proposition 16. Let Γ be a reduct of (Hn, E), where n ≥ 3. Then either
(1) Γ is homomorphically equivalent to a reduct of (Hn,=), or
(2) Γ pp-defines E, N , and 6=.

In the latter case we have that either
(2a) every function in Pol(Γ) is essentially unary, or
(2b) Pol(Γ) contains one of the two binary canonical injections of Lemma 15.

Note that if item (1) holds then CSP(Γ) is either in P or NP-complete [6], and if item (2a)
holds then CSP(Γ) is NP-complete (Theorem 10 in [5]). In case (2b), when Pol(Γ) contains
a binary canonical injection of behaviour min which is N -dominated then CSP(Γ) is in P, as
we will discuss later. It thus remains to further consider the second case of Lemma 15, which
we do in the next subsection.

3.3 The relation H

We investigate Case (2b) of Proposition 16. The following relation characterises the NP-
complete cases in this situation.

I Definition 17. We define a 6-ary relation H(x1, y1, x2, y2, x3, y3) on Hn by∧
i,j∈{1,2,3},i6=j,u∈{xi,yi},v∈{xj ,yj}

N(u, v)

∧
(
(E(x1, y1) ∧N(x2, y2) ∧N(x3, y3))
∨ (N(x1, y1) ∧ E(x2, y2) ∧N(x3, y3))
∨ (N(x1, y1) ∧N(x2, y2) ∧ E(x3, y3))

)
.
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The importance of the relation H is reflected in the following proposition, which states
that if Γ is a reduct of (Hn, E) with E and N primitive positive definable in Γ, then either H
has a primitive positive definition in Γ, in which case CSP(Γ) is NP-complete, or Pol(Γ) has
a certain canonical polymorphism which will imply tractability of the CSP. NP-completeness
and tractability for those cases will be discussed in Sections 4 and 5.

I Proposition 18. Let Γ be a reduct of (Hn, E) with E and N primitive positive definable
in Γ. Then at least one of the following holds:
(a) There is a primitive positive definition of H in Γ.
(b) Pol(Γ) contains a canonical binary injection of behaviour min.

4 CSPs over Henson graphs

We now explain why any reduct of (Hn, E) which has H among its relations, and hence by
Lemma 4 every reduct which pp-defines H, has an NP-hard CSP. While it would be possible
to show NP-hardness of CSP(Hn, H) directly by reduction of, say, the NP-hard problem
positive 1-in-3-SAT, we will use results from [14], and in fact a recent strengthening thereof
from [2], to prove hardness more elegantly via a structural property of Pol(Hn, H).

I Definition 19. Let Γ be a structure. A projective clone homomorphism of Γ is a mapping
from Pol(Γ) onto its projections which: preserves arities; fixes each projection; and preserves
composition.

A projective strong h1 clone homomorphism of Γ is a mapping as above, where the third
condition is weakened to preservation of composition with projections.

I Theorem 20 (from [2]). Let Γ be a countable ω-categorical structure in a finite relational
language which has a uniformly continuous strong h1 clone homomorphism. Then CSP(Γ) is
NP-hard.

I Proposition 21. The structure (Hn, H) has a uniformly continuous strong h1 clone
homomorphism. Consequently, CSP(Hn, H) is NP-hard.

5 Summary for the Henson graphs

We can restate Theorem 1 in a more detailed fashion as follows.

I Theorem 22. Let Γ be a reduct of a Henson graph (Hn, E). Then one of the following
holds.
(1) Γ has an endomorphism whose image induces an independent set, and is homomorphically

equivalent to a reduct of (Hn,=).
(2) Pol(Γ) has a uniformly continuous projective clone homomorphism.
(3) Pol(Γ) contains a binary canonical injection which is of behaviour min and N -dominated.
Items (2) and (3) cannot simultaneously hold, and when Γ has a finite relational signature,
then (2) implies NP-completeness and (3) implies tractability of its CSP.

The first statement follows directly from the proof of Theorem 1, with the additional
observation that the strong h1 clone homomorphism defined in Proposition 21 is in fact a
clone homomorphism. When (3) holds for a reduct, then (2) cannot hold, because (3) implies
the existence of f(x, y) ∈ Pol(Γ) and α ∈ Aut(Γ) such that f(x, y) = αf(y, x) holds, and
equation impossible to satisfy by projections. In fact, by further analysing case (1), one can
easily show that it also implies either (2) or (3), so that we have the following.
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I Corollary 23. For every reduct Γ of a Henson graph (Hn, E), precisely one of the following
holds: Pol(Γ) has a uniformly continuous projective clone homomorphism; or Pol(Γ) contains
f(x, y) ∈ Pol(Γ) and α ∈ Aut(Γ) such that f(x, y) = αf(y, x).

When Γ has a finite relational signature, then the first case possesses NP-completeness
and the second case the tractability of its CSP.

6 Reducts of homogeneous equivalence relations

We now investigate polymorphisms of reducts of the graphs (Cs
n, E), for 2 ≤ n, s ≤ ω, with

precisely one of n, s equal to ω. Recall from the preliminaries that we write Eq for the
reflexive closure of E.

Similarly to the case of the Henson graphs, we start with unary polymorphisms in
Section 6.1, reducing the problem to model-complete cores.

We then turn to higher-arity polymorphisms; here, the organisation somewhat differs
from the case of the Henson graphs. The role of the NP-hard relation H from the Henson
graphs is now taken by the two sources of NP-hardness mentioned in the introduction: the
first source being that factoring by the equivalence relation Eq yields a structure with an
NP-hard problem, and the second source being that restriction to some equivalence class
yields a structure with an NP-hard problem. In Section 6.2, we show that in fact, one of
the two sources always applies for model-complete cores when 2 < n < ω or 2 < s < ω.
Consequently, only the higher-arity polymorphisms of the reducts of (Cω

2 , E) and (C2
ω, E)

require deeper investigation using Ramsey theory; this will be dealt with in Sections 6.3
and 6.4, respectively.

6.1 The unary case: model-complete cores
I Proposition 24. Let Γ be a reduct of (Cs

n, E), where 1 ≤ n, s ≤ ω, and at least one of n, s
equals ω. Then End(Γ) = Aut(Γ) = Aut(Cs

n, E), or End(Γ) contains an endomorphism onto
a clique or an independent set.

In the following sections, we investigate essential polymorphisms of reducts Γ of (Cs
n, E)

which are model-complete cores, i.e., End(Γ) = Aut(Cs
n, E). The following proposition

implies that in that situation, the equivalence relation Eq is invariant under Pol(Γ).

I Proposition 25. Let Γ be a reduct of (Cs
n, E), where 1 ≤ n, s ≤ ω. If End(Γ) = Aut(Cs

n, E),
then E, N and Eq are preserved by the polymorphisms of Γ.

Therefore, in the above situation Eq is an equivalence relation which is invariant under
Pol(Γ), and so Pol(Γ) acts naturally on the equivalence classes of Eq. Moreover, if we fix
any c ∈ Cs

n and expand the structure Γ by the constant c, then the equivalence class C
of c has a primitive positive definition in that expansion (Γ, c), since Eq and c do. Hence,
C is invariant under Pol(Γ, c), and so Pol(Γ, c) acts naturally on C via restriction. In the
following sections, we analyse these actions.

6.2 The case 2 < n < ω or 2 < s < ω

It turns out that in these cases, one of the sources of hardness always applies. We will use
the following fact about function clones on a finite domain.

I Proposition 26 (from [20]). Every function clone on a finite domain of at least three
elements which contains all permutations as well as an essential function contains a unary
constant function.



M. Bodirsky, B. Martin, M. Pinsker, and A. Pongrácz 119:11

I Proposition 27. Let Γ be a reduct of (Cω
n , E), where 2 < n < ω, such that End(Γ) =

Aut(Cω
n , E). Then the action of Pol(Γ) on the equivalence classes of Eq has no essential

and no constant operation.

I Proposition 28. Let Γ be a reduct of (Cs
ω, E), where 2 < s < ω, such that End(Γ) =

Aut(Cs
ω, E). Then for any c ∈ Cs

ω, the action of Pol(Γ, c) on the equivalence class of c has
no essential and no constant operation.

6.3 The case of two infinite classes: n = 2 and s = ω

The following proposition states that either one of the two sources of hardness applies, or
Pol(Γ) contains a ternary canonical function with a certain behaviour.

I Proposition 29. Let Γ be a reduct of (Cω
2 , E) such that End(Γ) = Aut(Cω

2 , E). Then one
of the following holds:

the action of Pol(Γ) on the classes of Eq has no essential function;
the action of Pol(Γ, c) on the equivalence class of c has no essential function, for some
c ∈ Cω

2 ;
Pol(Γ) contains a canonical ternary injection of behaviour minority which is hyperplanely
of behaviour E-dominated projection.

To prove the proposition, we need to recall a special case of Post’s classical result about
function clones acting on a two-element set, as well as a result on function clones on a
countable set which contain all permutations. Comparing this statement with Proposition 26
sheds light on why the case of this section is more involved than the cases of the preceding
section.

I Proposition 30 (Post [25]). Every function clone with domain {0, 1} containing both
permutations of {0, 1} as well as an essential function contains a unary constant operation
or the ternary addition modulo 2.

I Proposition 31 (from [6]). Every closed function clone on a countably infinite set which
contains all permutations as well as an essential operation contains a binary injection.

I Proposition 32. Let Γ be preserved by a ternary injection h of behaviour minority which
is hyperplanely an E-dominated projection. Then CSP(Γ) can be solved in polynomial time.

6.4 The case of infinitely many classes of size two: n = ω and s = 2
As in the preceding section, we show that either one of the two sources of hardness applies,
or Pol(Γ) contains a ternary canonical function of a certain behaviour.

I Proposition 33. Let Γ be a reduct of (C2
ω, E) such that End(Γ) = Aut(C2

ω, E). Then one
of the following holds:

the action of Pol(Γ) on the classes of Eq has no essential function;
the action of Pol(Γ, c) on the equivalence class of c has no essential function, for some
c ∈ C2

ω;
Pol(Γ) contains a ternary canonical function h with h(N, ·, ·) = h(·, N, ·) = h(·, ·, N) = N

and which behaves like a minority on {E,=}.

To prove the proposition, we are again going to make use of Propositions 30 and 31, and
the following lemma.

ICALP 2016



119:12 Constraint Satisfaction Problems for Reducts of Homogeneous Graphs

I Lemma 34. Let Γ be a reduct of (C2
ω, E) such that End(Γ) = Aut(C2

ω, E). If Pol(Γ)
contains a ternary function which behaves like x+ y + z modulo 2 on some equivalence class,
then it contains a ternary function which behaves like x+ y + z modulo 2 on all equivalence
classes.

Let Γ be a reduct of (C2
ω, Eq) where Eq is an equivalence relation with infinitely many

classes of size two such that Pol(Γ) contains a ternary canonical function h as in item 3 of
Proposition 33.

I Proposition 35. A relation with a first-order definition in (C2
ω, Eq) is preserved by h if

and only if it can be defined by a conjunction of formulas of the form

N(x1, y1) ∨ · · · ∨N(xk, yk) ∨ Eq(z1, z2) (1)

for k ≥ 0, or of the form

N(x1, y1) ∨ · · · ∨N(xk, yk)∨ (|{i ∈ S : xi 6= yi}| ≡2 p) (2)

where p ∈ {0, 1} and S ⊆ {1, . . . , k}.

I Proposition 36. There is a polynomial-time algorithm that decides whether a given set Φ
of formulas as in the statement of Proposition 35 is satisfiable.

I Corollary 37. Let Γ be a reduct of (C2
ω, Eq) with finite signature and such that Pol(Γ)

contains the operation h. Then CSP(Γ) is in P.

We close the section with a more detailed variant of Theorem 2.

I Theorem 38. Let (Cs
n, E) be an infinite graph whose reflexive closure Eq is an equivalence

relation with n classes of size s, where 1 ≤ n, s ≤ ω. Let Γ be a reduct of (Cs
n, E). Then one

of the following holds.
(1) Γ has an endomorphism whose image induces a clique or an independent set, and is

homomorphically equivalent to a reduct of (Cs
n,=).

(2) Γ is a model complete core and Pol(Γ, c) has a uniformly continuous projective clone
homomorphism for some c ∈ (Cs

n, E).
(3) n = 2, s = ω, Γ is a model complete core, and Pol(Γ) contains a canonical ternary

injection of behaviour minority which is hyperplanely of behaviour E-dominated projection.
(4) n = ω, s = 2, Γ is a model complete core, and Pol(Γ) contains a ternary canonical

function h with h(N, ·, ·) = h(·, N, ·) = h(·, ·, N) = N and which behaves like a minority
on {E,=}.

Neither items (2) and (3), nor items (2) and (4) can simultaneously hold, and when Γ has
a finite relational signature, then (2) implies NP-completeness and both (3) and (4) imply
tractability of its CSP.

7 Outlook

We have classified the computational complexity of CSPs for reducts of the infinite homo-
geneous graphs. Our proof shows that the scope of the classification method from [13] is
much larger than one might expect at first sight. The general research goal here is to identify
larger and larger classes of infinite-domain CSPs where systematic complexity classification
is possible; a general dichotomy conjecture is open for CSPs of reducts of finitely bounded
homogeneous structures [15, 2]. The next step in this direction might be to show a general
complexity dichotomy for reducts of homogeneous structures whose age is finitely bounded
and has the free amalgamation property (the Henson graphs provide natural examples for
such structures). The present paper indicates that this problem might be within reach.



M. Bodirsky, B. Martin, M. Pinsker, and A. Pongrácz 119:13

References

1 Libor Barto, Marcin Kozik, and Todd Niven. The CSP dichotomy holds for digraphs with
no sources and no sinks (a positive answer to a conjecture of Bang-Jensen and Hell). SIAM
Journal on Computing, 38(5), 2009.

2 Libor Barto, Jakub Opršal, and Michael Pinsker. The wonderland of reflections. Preprint
arXiv:1510.04521, 2015.

3 Manuel Bodirsky. Cores of countably categorical structures. Logical Methods in Computer
Science, 3(1):1–16, 2007.

4 Manuel Bodirsky. Complexity classification in infinite-domain constraint satisfaction. Mé-
moire d’habilitation à diriger des recherches, Université Diderot – Paris 7. Available at
arXiv:1201.0856, 2012.

5 Manuel Bodirsky, Hubie Chen, Jan Kára, and Timo von Oertzen. Maximal infinite-valued
constraint languages. Theoretical Computer Science (TCS), 410:1684–1693, 2009. A pre-
liminary version appeared at ICALP’07.

6 Manuel Bodirsky and Jan Kára. The complexity of equality constraint languages. Theory of
Computing Systems, 3(2):136–158, 2008. A conference version appeared in the proceedings
of Computer Science Russia (CSR’06).

7 Manuel Bodirsky and Jan Kára. The complexity of temporal constraint satisfaction prob-
lems. Journal of the ACM, 57(2):1–41, 2009. An extended abstract appeared in the Pro-
ceedings of the Symposium on Theory of Computing (STOC’08).

8 Manuel Bodirsky, Barnaby Martin, and Antoine Mottet. Constraint satisfaction problems
over the integers with successor. In Automata, Languages, and Programming – 42nd In-
ternational Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part I,
pages 256–267, 2015.

9 Manuel Bodirsky and Antoine Mottet. Reducts of finitely bounded homogeneous structures,
and lifting tractability from finite-domain constraint satisfaction. Submitted. Preprint avail-
able under ArXiv:1601.04520, 2016.

10 Manuel Bodirsky and Jaroslav Nešetřil. Constraint satisfaction with countable homogen-
eous templates. Journal of Logic and Computation, 16(3):359–373, 2006.

11 Manuel Bodirsky and Michael Pinsker. Reducts of Ramsey structures. AMS Contemporary
Mathematics, vol. 558 (Model Theoretic Methods in Finite Combinatorics), pages 489–519,
2011.

12 Manuel Bodirsky and Michael Pinsker. Minimal functions on the random graph. Israel
Journal of Mathematics, 200(1):251–296, 2014.

13 Manuel Bodirsky and Michael Pinsker. Schaefer’s theorem for graphs. Journal of the ACM,
62(3):Article no. 19, 1–52, 2015. A conference version appeared in the Proceedings of STOC
2011, pages 655–664.

14 Manuel Bodirsky and Michael Pinsker. Topological Birkhoff. Transactions of the American
Mathematical Society, 367:2527–2549, 2015.

15 Manuel Bodirsky, Michael Pinsker, and András Pongrácz. Projective clone homomorphisms.
Preprint arXiv:1409.4601, 2014.

16 Manuel Bodirsky and Michał Wrona. Equivalence constraint satisfaction problems. In
Proceedings of Computer Science Logic, volume 16 of LIPICS, pages 122–136. Dagstuhl
Publishing, September 2012.

17 Andrei A. Bulatov. A dichotomy theorem for constraint satisfaction problems on a 3-
element set. Journal of the ACM, 53(1):66–120, 2006.

18 Andrei A. Bulatov, Andrei A. Krokhin, and Peter G. Jeavons. Classifying the complexity
of constraints using finite algebras. SIAM Journal on Computing, 34:720–742, 2005.

ICALP 2016



119:14 Constraint Satisfaction Problems for Reducts of Homogeneous Graphs

19 Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic SNP
and constraint satisfaction: a study through Datalog and group theory. SIAM Journal on
Computing, 28:57–104, 1999.

20 L. Haddad and Ivo G. Rosenberg. Finite clones containing all permutations. Canadian
Journal of Mathematics, 46(5):951–970, 1994.

21 Pavol Hell and Jaroslav Nešetřil. On the complexity of H-coloring. Journal of Combinatorial
Theory, Series B, 48:92–110, 1990.

22 Peter Jeavons, David Cohen, and Marc Gyssens. Closure properties of constraints. Journal
of the ACM, 44(4):527–548, 1997.

23 Alistair H. Lachlan and Robert E. Woodrow. Countable ultrahomogeneous undirected
graphs. Transactions of the AMS, 262(1):51–94, 1980.

24 Jaroslav Nešetřil and Vojtěch Rödl. The partite construction and Ramsey set systems.
Discrete Mathematics, 75(1-3):327–334, 1989.

25 Emil L. Post. The two-valued iterative systems of mathematical logic. Annals of Mathem-
atics Studies, 5, 1941.

26 Thomas J. Schaefer. The complexity of satisfiability problems. In Proceedings of the
Symposium on Theory of Computing (STOC), pages 216–226, 1978.

27 Katrin Tent and Martin Ziegler. A course in model theory. Lecture Notes in Logic. Cam-
bridge University Press, 2012.

28 Simon Thomas. Reducts of the random graph. Journal of Symbolic Logic, 56(1):176–181,
1991.



Sensitivity of Counting Queries
Myrto Arapinis1, Diego Figueira2, and Marco Gaboardi∗3

1 University of Edinburgh, Edinburgh, United Kingdom
marapini@inf.ed.ac.uk

2 CNRS, LaBRI, Talence, France
dfigueir@labri.fr

3 University at Buffalo, SUNY, Buffalo, USA
gaboardi@buffalo.edu

Abstract
In the context of statistical databases, the release of accurate statistical information about the
collected data often puts at risk the privacy of the individual contributors. The goal of differential
privacy is to maximise the utility of a query while protecting the individual records in the database.
A natural way to achieve differential privacy is to add statistical noise to the result of the query.
In this context, a mechanism for releasing statistical information is thus a trade-off between
utility and privacy. In order to balance these two “conflicting” requirements, privacy preserving
mechanisms calibrate the added noise to the so-called sensitivity of the query, and thus a precise
estimate of the sensitivity of the query is necessary to determine the amplitude of the noise to
be added.

In this paper, we initiate a systematic study of sensitivity of counting queries over relational
databases. We first observe that the sensitivity of a Relational Algebra query with counting is
not computable in general, and that while the sensitivity of Conjunctive Queries with counting
is computable, it becomes unbounded as soon as the query includes a join. We then consider
restricted classes of databases (databases with constraints), and study the problem of computing
the sensitivity of a query given such constraints. We are able to establish bounds on the sensitivity
of counting conjunctive queries over constrained databases. The kind of constraints studied here
are: functional dependencies and cardinality dependencies. The latter is a natural generalisation
of functional dependencies that allows us to provide tight bounds on the sensitivity of counting
conjunctive queries.
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1 Introduction

With the emergence of new systems and services such as eHealth, electronic tickets (e.g.,
London Oyster card), mobile phones, or social networks, important amounts of information
concerning our everyday activities are collected in various databases. Statistical analysis of
such datasets could be very useful for improving services, or enabling research and market
studies for example. But at the same time, the collection and storage of all this data puts at
risk our individual privacy. A solution to address this problem is not to release the exact
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result of any query on a sensitive dataset, but rather to perturb the released results by adding
some noise. Differential privacy [3, 6] precisely characterises the level of privacy provided by
such randomized mechanisms. It offers a worst-case statistical guarantee on the increase in
harm that an individual can be exposed to, if deciding to contribute her data to the dataset.

The concept of differential privacy is rooted in the notion of neighboring databases, that
is, databases that differ in the presence or not of the information regarding one participant.
More precisely, a mechanismM is ε-differentially private, for ε ≥ 0 if for any two neighboring
databases D and D′ and for any subset S ⊆ R of possible outputs we have:

Pr[M(D) ∈ S] ≤ eε · Pr[M(D′) ∈ S].

That is, the probability thatM releases an element of S on D is almost the same as the
probability thatM releases an element of S on D′. In the definition of differential privacy
the parameter ε plays a central role. It gives the concrete bound on the increase in harm
that an individual I can be exposed to, by contributing her data to the database.

Several mechanisms have been proposed to turn a deterministic query into a differentially
private one, like the Laplace mechanism, the exponential mechanism, the Gaussian mechanism,
etc. An extended introduction to these and other mechanisms (and more generally to
differential privacy) is the recent monograph by Dwork and Roth [7]. In order to provide a
good balance between privacy and utility, such ε-differential private mechanisms calibrate the
added noise to the so-called sensitivity of the query. The sensitivity of a query Q captures
the influence that an individual’s data can have on the output of the query. More precisely,
let us denote by D ∼ D′ the fact that two databases D and D′ are neighbors. The sensitivity
of a numeric query Q is then

max
D∼D′

|Q(D)−Q(D′)|.

This measure is generally referred to as the global sensitivity of the query to distinguish it
from other notions of local or smooth sensitivity [13].

To avoid adding too much noise and thus sacrificing too much utility to achieve the
intended level of differential privacy, the sensitivity of the query needs to be computed as
accurately as possible. However, this problem is undecidable in general as we shall see. In
this paper we propose algorithms for computing upper bounds on the sensitivity of queries.
Our results hold in a rather general setting: we consider counting conjunctive queries over
multi-table databases. Further, our results are not tied to any particular neighboring relation,
but hold for any relation of bounded order. This work is a first step towards understanding
the class of queries and neighboring relations that are amenable to differential privacy.

Relational databases. Most of the works on differential privacy assume the simplified
situation where the database is a monolithic table [7]. However, real life databases consist
of not one, but many tables containing the information scattered. Of course, one could
build a unique table from all these tables, by simply producing the cartesian product of
all the tables in the database. Nevertheless, this immediately raises two problems. First,
materialising the cartesian product of many—possibly big—tables is impractical, and often
plain impossible due to space and time requirements. Second, the notion of neighboring
databases now becomes unbounded which makes queries have unbounded sensitivity, and
thus not amenable to differential privacy mechanisms. For example, given two tables (T1, T2)
and a neighbor T ′1 = T1 \ {t̄} of T1 for some record t̄ ∈ T1, we have that, whereas (T ′1, T2) is
the neighbor of (T1, T2) resulting from removing one record, T1 × T2 differs from T ′1 × T2 in
a number of records equal to |T2|. This in general makes it impossible for non-trivial queries
to have bounded sensitivity, unless further restrictions on the databases are assumed.



M. Arapinis, D. Figueira, and M. Gaboardi 120:3

Neighboring relation. Most works on differential privacy define neighboring databases as
those that differ in exactly one record. This corresponds to assuming that each individual
contributes at most one record in the database. However, as pointed out in [10] this
assumption does not hold for many applications such as social networks or tabular data.
So the definition of neighboring databases needs to be tailored to the application at hand
with privacy in mind. Indeed, neighboring databases should, strictly speaking, differ in the
complete set of information pertaining to one individual, which could mean more than one
record. Alternative definitions of neighboring have been proposed [10, 5]. In particular, our
results are not tied to any particular definition of the neighboring relation.

SQL. SQL is arguably the prevalent query language for relational databases. It is equivalent
to first order logic (FO) over relational structures and to Relational Algebra (RA). Here,
we focus on SQL with aggregation, and study the static analysis problem of computing the
sensitivity of SQL queries. As a first step in the larger programme of studying aggregate
queries, we study the counting operator. We concentrate our investigation on one of the most
prominent fragments of SQL, namely the Conjunctive Queries, corresponding to positive
“select-from-where” queries [1].

Contributions. We first establish, in Section 2, that finding the sensitivity of a SQL query
with counting is not computable in general. In the remaining sections we restrict our study
to counting Conjunctive Queries. Section 3 shows that the sensitivity for this fragment is
computable, although the characterisation shows that sensitivity becomes unbounded as
soon as we have a ‘non-trivial’ join.

Now, in most scenarios the class of databases of interest for the application at hand
are restricted (or constrained), and oftentimes the sensitivity of a query Q restricted to a
constrained class of databases can become bounded. Following this idea, we then study the
problem of computing global sensitivity restricted to databases from a constrained class. In
Section 4, we focus on Functional Dependencies (FD), that allow constraining databases by
rules of the form “in the table T , the i-th column determines the j-th column”, in other
words, “there are no 2 rows of T with the same datum in the i-th column but distinct data
in their j-th columns”. Further, in Section 5 we study Cardinality Dependencies, which are a
generalisation of FDs, with rules of the form “there are no more than k rows of T with the
same datum in the i-th column but pairwise distinct data in their j-th columns”. Finally,
Section 6 concludes and discusses future work.

Related work. Several works have studied methods for computing the sensitivity of a given
query or program. The work most related to ours is the one of Palamidessi and Stronati [14].
They study the problem of computing the sensitivity of queries in relational algebra. Their
approach is based on the use of constraints on attributes: every attribute comes with a
bounded range, e.g. 0 ≤ age ≤ 100. They are able to provide tight bounds on the sensitivity
of the query Q. This approach can be applied to general SQL queries but it has the drawback
that it requires to constrain the ranges for all the attributes. In this paper, instead, we focus
on counting queries and on more lax semantic restrictions, namely functional dependencies
and cardinality dependencies.

Pierce and Reed [15] and Gaboardi et al. [8] use relational algebra operations with a
fixed, predetermined sensitivity, and a linear type system to track the use of the data in
programs. This combination permits to have sensitivity analyses that extend, beyond SQL,
to a full functional programming language. Their approach can provide “bad” estimates on
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the sensitivity of given queries due to the use of fixed sensitivity for relational operations.
Our approach could provide a kernel query language providing more precise estimates that
could be then combined with their type systems.

Chaudhuri et al. in [4] study automatic program analyses that provide bounds on the
sensitivity of numerical imperative programs. Their approach is not directly related to
specific query languages but our work could, in principle, be combined with their techniques
to design a general purpose programming language for differential privacy.

Several works have pointed out and studied the problem of providing a bound to the
sensitivity of queries in disconnected structures. McSherry [12], in the setting of tabular data,
considers a restricted form of join where the data of the two tables are grouped by their join
keys, and then groups are joined using their group keys. The same solution has been used also
in [15, 8]. A similar approach, with different restrictions, has also been used by Palamidessi
and Stronati in [14]. This approach limits the situations where differential privacy can be
used with a good utility. To overcome this problem, several approaches considered alternative
notions of sensitivity such as local sensitivity [13] or empirical sensitivity [5].

2 Preliminaries

Let N = {0, 1, 2, . . . } and let n = {1, . . . n} for every n ∈ N. We write ā to denote a vector
of elements, whose i-th element is denoted by ā[i]. We write A∗ [resp. A+, An] for the set of
strings [resp. non-empty strings, length-n strings] over A, and ε for the empty string.

2.1 Relational structures
A relational vocabulary σ = (K,R) consists of a collection K of constants (usually
denoted by c1, c2, . . . ), and a collection R of relation symbols, each with a specified arity.
By σn we denote a vocabulary σn = (K,R) where K = {c1, . . . , cn}. For a relation R we write
arity(R) ∈ N to denote its arity; and we sometimes write R(r) to specify that R has arity r.
A σ-structure A consists of a universe A containing K, or domain, and an interpretation
which associates to each relation symbol R ∈ R, a relation RA ⊆ Aarity(R), and for each
constant c ∈ K, cA = c. An isolated element of A is an element a ∈ A which does not
appear in any interpretation. Let STR be the set of all finite structures (we write STR[σ]
to make explicit the vocabulary). We use A,B,C,A′,B′, . . . to denote relational structures
from STR, and A,B,C,A′, B′, . . . to denote their respective domains.

I Example 1. As our running example, we will consider a database of patients, doctors and
hospitals, with tables

Hos(id, loc), containing the hospitals with their location,
Pat(id, sex, hos), listing the patients with an identifier, gender and the hospital where
they are being treated,
Doc(id, specialty, hos), listing the doctors with their identifier, their specialty and the
hospital where they practice,
PatDoc(pat, doc), containing the patients and their current attending doctor.

Such a database can be described over the vocabulary σ = (K,R) containing relations
R = {Hos(2),Pat(3),Doc(3),PatDoc(2)} and some constants such as K = {cF, cO}.

A graph is a structure G = (V,E), where E is a binary relation that is symmetric
and irreflexive. Thus, our graphs are undirected, loopless, and without parallel edges. The
Gaifman graph of a σ-structure A, denoted by G(A), is the (undirected) graph whose set
of nodes is the universe of A, and whose set of edges consists of all pairs (a, a′) of distinct
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elements of A such that a and a′ appear together in some tuple of a relation in A. Recall that
the distance between two vertices u, v of a graph is the length of the shortest path from u

to v. We define the distance between two elements a, b of a structure A as their distance in
G(A), which we denote by distA(a, b). We write A tB for the disjoint union of A and B.

A homomorphism from a (K,R)-structure A to a (K′,R′)-structure B such that K ⊆ K′
and R ⊆ R′ is a mapping h : A→ B so that for each relation symbol R ∈ R, if (a1, . . . , ar) ∈
RA, then (h(a1), . . . , h(ar)) ∈ RB, and for every constant c ∈ K, h(c) = c. We will sometimes
write h(a1, . . . , ar) as short for (h(a1), . . . , h(ar)). We write A→ B to denote that there is a
homomorphism from A to B, and we write h : A→ B to denote that h is a homomorphism
from A to B. If A → B and B → A we say that A and B are hom-equivalent. We use
∼= for the isomorphism relation. Given a σ-structure A and a set B ⊆ A there is (up to
isomorphism) a unique structure A′ so that

it is hom-equivalent to A, that is, there are h : A→ A′ and h′ : A′ → A,
h(a) = h′(a) = a for all a ∈ B,
it has the minimal number of elements.

Such a structure A′ is called the core preserving B (or simply core if B = ∅). We write
core(A, B) [resp. core(A)] to denote the core of A preserving B [resp. the core of A].

2.2 Logic
Let V be a collection of first-order variables equipped with a linear order <. Let σ be a
relational vocabulary. A term is either a first order variable x ∈ V or a constant from σ. The
atomic formulas of σ are those of the form R(t1, . . . , tn), where R ∈ σ is a relation symbol
of arity r, and t1, . . . , tr are terms. Formulas of the form t = t′ are also atomic formulas, and
we refer to them as equalities. The collection of first-order formulas (FO formulas) is
obtained by closing the atomic formulas under negation, conjunction, disjunction, universal
and existential first-order quantification. The semantics of first-order logic is standard. The
set of variables of ϕ is denoted by var(ϕ), and the set of free variables by free(ϕ). We
often write ϕ(x1, . . . , xn) where {x1, . . . , xn} = free(ϕ) and x1 < · · · < xn, to stress the free
variables. If A is a σ-structure and ϕ(x̄) is a first-order formula, we use the notation A |= ϕ[ā]
to denote the fact that ϕ is true in A when its free variables x̄ are interpreted by the tuple
of elements ā. When ϕ contains no free variables, we say that it is a sentence, and in this
case we simply write A |= ϕ. For any formula ϕ(x1, . . . , xn) and structure A, we write ϕ(A)
to denote {(a1, . . . , an) ∈ An | A |= ϕ[a1, . . . , an]}. We use ‘()’ to denote the 0-ary tuple of
elements. Hence, if ϕ has no free variables we interpret ϕ(A) as {()} if A |= ϕ or ∅ otherwise.
Note that, in this case, |ϕ(A)| = 1 iff A |= ϕ. We use ≡ for the logical equivalence relation
and ≡C for the equivalence relation restricted to a class of structures C.

Given a class of FO formulas L, by L# we denote the class of counting queries
{#ϕ | ϕ ∈ L}. The evaluation of #ϕ in A, denoted #ϕ(A), is defined as |ϕ(A)|, that is, as
the number of distinct tuples making ϕ true in A.

I Example 2. Continuing our running example, we consider the query that counts the
number of oncology doctors that are treating female patients in the same hospital as they
practice:

SELECT count distinct Doc.id
FROM Pat, Doc, PatDoc
WHERE Doc.specialty = ’O’ and

Pat.sex = ’F’ and
Pat.hos = Doc.hos and
PatDoc.pat = Pat.id and
PatDoc.doc = Doc.id
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This can be equivalently expressed with the formula #ϕ, where

ϕ(xdoc) =∃xpat, xhos . Doc(xdoc, cO, xhos) ∧ Pat(xpat, cF, xhos) ∧ PatDoc(xpat, xdoc) .

2.3 Global sensitivity
In its standard formulation, Differential Privacy requires the privacy bound to be valid
for every pair of structures that differ in one record. However, it is possible that an
individual contributes more than a single record to the database. Further it may be that
the database contains tables with public information. For this reason we do not set for our
study a particular neighboring relation. Our results hold for any neighboring relation
N ⊆ STR[σ]× STR[σ].

Having said that, a specific neighboring relation, called 1-neighboring, will be partic-
ularly useful for our proofs. Given two σ-structures A,B with σ = (K,R), we say that A
is a substructure of B (noted A ⊆ B) if A ⊆ B, and RA ⊆ RB for all R ∈ σ. We write
A ≺ A′ if A ( A′ and there is no B so that A ( B ( A′. We say that A,B are 1-neighboring
structures, noted A ∼1 B, if A ≺ B or B ≺ A. In other words, A ∼1 B if A can be obtained
from B (and B from A) by removing/adding a tuple or an isolated node.

We say that the neighboring relation N is of order k ∈ N, if any two neighboring
relational structures differ in at most k elements. More formally, N is of order k if for any
(A,B) ∈ N , there exist A0, . . . ,A` such that ` ≤ k, A = A0, B = A` and Ai−1 ∼1 Ai for all
i ∈ `. We say that the neighboring relation is unbounded if no such k exists.

The global sensitivity of a function f : STR→ N over a class of models C ⊆ STR with
respect to a neighboring relation N ⊆ C × C is:

GSNC (f) def= max
(A,A′)∈N

|f(A)− f(A′)|.

I Example 3. Suppose now that we want to find out the number of oncological patients in
the state of New York with the query

ϕ(xpat) = ∃xhos, xdoc, xsex .

Doc(xdoc, cO, xhos) ∧ Pat(xpat, xsex, xhos) ∧ PatDoc(xpat, xdoc) ∧Hos(xhos, xloc)

It is not hard to see that this query has unbounded global sensitivity when all relations are
considered sensitive, and thus all databases that differ in any one element are neighbors.
Indeed changing the location of a hospital from Indiana to New-York can increase the number
of ontological patients in the state of New York by any number.

I Observation 1. For any neighboring relation N of order k and any class of databases C,
the global sensitivity of a query Q is bounded with respect to N over C iff it is bounded with
respect to ∼1 over C. Further, the global sensitivity with respect to N and relative to the class
C is bounded by k ·GS∼1

C (Q). So in the remaining of the paper we focus on 1-neighboring.

We will study the following problem, given a query language L, and a class of relational
structures C

Problem: GlobalSensitivity(L, C)
Input: Q ∈ L

Output: GS∼1
C (Q)

Unfortunately, this problem is undecidable already for counting first-order logic (and
therefore for counting Relational Algebra [1]).
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I Theorem 4. GlobalSensitivity(FO#, STR) is non-computable.

The fact that the global sensitivity problem for FO is undecidable is not really surprising
since most static analysis problems for FO on unrestricted structures are undecidable. This
is why in the next sections we will focus on Conjunctive Queries.

3 Conjunctive queries

One of the most studied fragments of FO in relation to database queries is the fragment
of Conjunctive Queries (CQ). We now, and for the rest of the paper, restrict our study to
counting conjunctive queries, and show that sensitivity for this fragment is computable.

The class of Conjunctive Queries (also known as Primitive Positive Logic, or Existential
Positive FO) is the fragment of FO corresponding to positive ‘select-project-join’ queries of
the Relational Algebra or to positive ‘select-from-where’ queries of SQL, where by ‘positive’
we mean that there are no inequalities in the select [resp. where] conditions (we refer the
reader to [1, §4] for more details). These are formulae of the form

ϕ(x1, . . . , xn) = ∃y1, . . . , ym θ, (†)

where θ is a conjunction of atomic formulae. Since we deal with constants, and, in future
sections, with constrained databases, a conjunctive query can also be false (noted ⊥).
However, all the results that we show will assume that the input formula is not equivalent to
⊥ (i.e., that it is satisfiable, which can be checked in polynomial time)—for the particular
case where formulae are unsatisfiable all the results are trivial, and this will avoid lengthy
statements. For simplicity, we assume that the formulae do not contain equalities.

Every conjunctive query of the form (†) over a relational vocabulary σk gives rise to
a canonical structure (sometimes called tableau) Cϕ with n + m + k elements, where
the elements of Cϕ are the variables x1, . . . , xn, y1, . . . , ym plus the constants c1, . . . , ck,
the relations of Cϕ consist of the tuples of terms in the conjuncts of θ. Given a CQ ϕ,
we write Cϕ for the canonical structure of ϕ, and Cϕ for its domain (i.e., the variables
x1, . . . , xn, y1, . . . , ym and constants c1, . . . , ck). We also define C−ϕ as the result of removing
all isolated constants from Cϕ (note that C−ϕ may not necessarily be a structure over the
same vocabulary of ϕ due to the absence of some constants). Likewise, any σk-structure
A with domain A = {x1, . . . , xn} ∪ {c1, . . . , ck} gives rise to a canonical CQ ϕ(x1, . . . , xn)
where var(ϕ) = free(ϕ) = {x1, . . . , xn}, and ϕ has a conjunct R(t̄) iff t̄ ∈ RA. Note that for
every σk-structure A there is A′ ∼= A and ϕ so that ϕ is the canonical query of A′.

A CQ ϕ is acyclic if G(Cϕ) is acyclic. We say that a CQ ϕ is connected if G(C−ϕ ) is
connected, otherwise it is disconnected. Note that every disconnected CQ ϕ so that G(Cϕ)
has n connected components can be equivalently written in the form ϕ =

∧
i∈n ψi(x̄i) so

that ψi(x̄i) is a connected CQ for every i, and for all i 6= j, x̄i and x̄j have no variables in
common. We say that ψi is a connected conjunct of ϕ, and we say that ψi is a sentential
connected conjunct if it is a sentence (i.e., x̄i = ()). Given ϕ =

∧
i∈n ψi(x̄i) a disconnected

CQ with each ψi being a connected conjunct, we further define ϕj as the conjunction of all
the ψs’s but ψj .

I Example 5 (Cont. from Ex. 2). The canonical σ-structure Cϕ has universe {xpat, xhos, xdoc,

cO, cF} and relations (shown in Figure 1):

DocCϕ = {(xdoc, cO, xhos)}, PatCϕ = {(xpat, cF, xhos)}, PatDocCϕ = {(xpat, xdoc)}.
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xdoc cO xhos

xpat cF

xdoc cO xhos

xpat cF

Figure 1 Depiction of the canonical structure of ϕ as defined in Example 2 as well as its Gaifman
graph. Square vertices denote free variables and triangle vertices denote constants.
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Figure 2 Core of CQ’s.

Core of CQ’s. For a CQ query ϕ(x̄) = ∃ȳ.θ over σk we define core(ϕ) as the CQ query
ϕ′(x̄) = ∃ȳ′.θ′ where θ′ is the canonical query of core(Cϕ, x̄) and ȳ′ is the set of all non-
constant elements of core(Cϕ, x̄) that are not in x̄. Note that Ccore(ϕ) ∼= core(Cϕ, x̄). We
say that ϕ(x̄) is a core-CQ if Ccore(ϕ) ∼= core(Cϕ), and we write CQcore for the class of all
core-CQ’s. We define core(#ϕ) as #core(ϕ) for every CQ ϕ.

I Example 6. Given ϕ(x1, x2) = ∃y1, y2.S(x1, x1)∧ S(x1, y2) ∧R(x1, y1) ∧R(x2, y1), whose
canonical structure is depicted in Figure 2, we have that core(ϕ) ≡ ∃y1.S(x1, x1)∧R(x1, y1)∧
R(x2, y1), and that ϕ is not a core-CQ since core(Cϕ, {x1, x2}) is not isomorphic to core(Cϕ),
as shown in Figure 2.

Given a connected CQ ϕ, let us define

∆STR(#ϕ) =
{
∞ if ∃x ∈ free(ϕ). ∃R ∈ R. ∃ā ∈ Rcore(ϕ). x 6∈ ā
1 otherwise

I Proposition 7. For every connected CQ# Q, we have GS∼1
STR(Q) = ∆STR(Q).

I Example 8 (Cont. from Ex. 5). Note that we have ∆STR(#ϕ) =∞ since core(ϕ) = ϕ and
xdoc is not in the tuple (xpat, cF, xhos) of the relation PatCϕ , and thus that GS∼1

STR(Q) =∞.

We extend the definition of ∆STR to disconnected CQ# as follows. For any ϕ =
∧

i∈n ϕi

disconnected CQ so that each ϕi is a connected conjunct, we define

∆STR(#ϕ) =
{

∆STR(#ϕk) if ∃k ∈ n. free(ϕ) = free(ϕk) ∧ Cϕk → Cϕk

∞ otherwise

I Theorem 9. For every CQ# Q, we have GS∼1
STR(Q) = ∆STR(Q).

The above characterization shows that, even when we deal with connected CQ’s (arguably
the most common), we obtain unbounded sensitivity very easily. Indeed, as soon as one
has a ‘join’ with a free variable which is not the joining attribute, such as #ϕ(x) =
# ∃y, z . R(x, y) ∧ S(y, z) the global sensitivity is unbounded. Although this means that for
every N ∈ N there are structures A ∼1 A′ so that #ϕ(A) −#ϕ(A′) > N , it may be that
A,A′ do not correspond to databases that could arise in the domain of application at hand.
However, when restricting the set of considered structures to ones satisfying some constraints,
it may well be that the sensitivity becomes bounded. The next two sections will focus on
evaluating sensitivity of queries over constrained structures.
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4 Functional Dependencies

In this section we show bounds for the sensitivity of queries in the presence of what are
called functional dependencies. In databases, it is often the case that a set of attributes
determines another attribute. Such constraints are called functional dependencies. In this
section functional dependencies where one attribute determine another are considered.

I Example 10 (Cont. from Ex. 2). Note that, the global sensitivity of #ϕ is unbounded.
Indeed, this is a consequence of the possibility of having patients with unbounded number
of attending doctors and doctors working in any number of hospitals. However, this does
not correspond to databases that could occur in practice, since patients have normally one
attending doctor and doctors work in at most one hospital. This is why the use of database
constraints becomes useful, to restrict the collection of databases we are interested in, and
thus to improve the bounds of the sensitivity of queries.

We write R[i→ j] to denote a functional dependency of a relation R of arity n

between components i ∈ n and j ∈ n. A structure A satisfies a functional dependency
(henceforth “FD”) R[i→ j] if maxa∈A(|{b̄[j] | b̄ ∈ RA, b̄[i] = a}|) ≤ 1. We use the symbol Σ
to denote a set of FDs, and we write #ΣR[i→ j] to denote 1 if R[i→ j] ∈ Σ, or ∞ otherwise.
We write CΣ for the class of all relational structures satisfying all FDs in Σ.

Given a CQ query ϕ and a set of FDs Σ we define the Σ-chase [11, 2] of ϕ, noted
chaseΣ(ϕ), as the closure of the application of the following rule:

For every R[i→ j] ∈ Σ and every pair of conjuncts R(t̄) and R(s̄) of ϕ so that t̄[i] = s̄[i]
and t̄[j] 6= s̄[j],

if s̄[j] is a variable, replace every occurrence of s̄[j] with t̄[j];
if s̄[j] and t̄[j] are constants, output ⊥.

It can be seen that the application of these rules is terminating and Church-Rosser confluent,
up to renaming of variables [1].

The following result shows that, as soon as we have a disconnected query, the sensitivity
is likely to be unbounded.

I Proposition 11. For every disconnected CQ query ϕ containing a conjunct without con-
stants and at least one free variable, and for every set Σ of FD’s, we have GS∼1

CΣ (#ϕ) =∞.

Paths. A path of a (K,R)-structure A between an element a ∈ A and b ∈ A, is a string

p = (R1, i1, a1, j1, b1) · · · (Rn, in, an, jn, bn) ∈ (R×N×A×N×A)∗ (?)

so that either p = ε and a = b (i.e., the empty path); or a1 = a, bn = b, ai = bi−1 for all
1 < i ≤ n, and for every ` ∈ n we have i`, j` ∈ arity(Ri) and there is ā ∈ RA

` so that ā[i`] = a`

and ā[j`] = b`. A path of the form (?) is simple if ai 6= bi 6= bj for all 1 ≤ i < j ≤ n. Note
that in particular the empty path ε is simple. We write p : A1  A A2 to denote that p is a
simple path of A from an element of A1 ⊆ A to an element of A2 ⊆ A. We write a  A b,
A1  A b, a A A2 as short for {a} A {b}, A1  A {b}, {a} A A2 respectively.

I Example 12. For a structure A with relations RA = {(a1, a2, a3), (a1, a4, a6)}, SA =
{(a5, a6)}, and TA = {(a3, a5, a4)}, we have that p : a1  A a4 for p = (R, 1, a1, 3, a3)
(T, 1, a3, 2, a5) (S, 1, a5, 2, a6) (R, 3, a6, 2, a4), as depicted in Figure 3
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Figure 3 A path in a structure.
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Figure 4 Structures of Example 14. Square vertices denote free variables.

Given a vocabulary σ = (K,R) and a path p of the form (?), let m ∈ n be the greatest
index m so that bm ∈ K, or 0 otherwise. We define the cardinality of path p as

#Σ(p) def=
∏

m<`≤n

#ΣR`[i` → j`] (1)

where as usual the product of the empty sequence is 1, and ∞ is absorbing wrt the product
(∞ ·N = N · ∞ =∞). Note that #Σ(ε) = 1. The intuition is that #Σ(p) gives a bound on
how many different elements b can be reached from a through p on any structure A ∈ CΣ
(i.e., so that p : a A b).

Let Q = #ψ(x1, . . . , xn) be a connected CQ# over a vocabulary σ = (K,R), and let
ϕ = core(chaseΣ(ψ)). We define

∆+
Σ(Q) def= max

R∈R

∑
ā∈RCϕ

max
i∈n

(
min

pi:ā Cϕ xi

#Σ(pi)
)

∆−Σ(Q) def= max
R∈R

max
ā∈RCϕ

max
i∈n

(
min

pi:ā Cϕ xi

#Σ(pi)
)
.

I Observation 2. Note that ∆−Σ(Q) is either 1 or ∞ and that ∆−Σ(Q) =∞ iff ∆+
Σ(Q) =∞.

Further, observe that ∆+
Σ(Q) − ∆−Σ(Q) ≤ nQ − 1, where nQ is the maximum number of

elements in a relation of the canonical structure of core(chaseΣ(ψ)), assuming Q = #ψ.

I Theorem 13. Given a set Σ of functional dependencies and a connected CQ# query Q,
we have that GS∼1

CΣ (Q) ≤ ∆+
Σ(Q). Further, if Q ∈ CQ#

core, we have GS∼1
CΣ (Q) ≥ ∆−Σ(Q).

I Observation 3. When computing lower and upper bounds for global sensitivity of query
Q = #ψ(x1, . . . , xn) in the presence of functional dependencies, we consider core(chaseΣ(ψ))
(rather than core(ψ)) as it gives a corresponding canonical minimal query. This allows us to
obtain tighter bounds than if we hadn’t taken the chase of ψ.

I Example 14. Take for instance the CQ with one free variable of Figure 4. Observe that,
for Σ = {R[1→ 2], R[2→ 1]}, we have that GS∼1

CΣ (#ϕ) ≤ ∆+
Σ(#ϕ) = 4, which is tight since

#ϕ(A) = 4, and #ϕ(A′) = 0. Further, this example can be easily generalized, obtaining that
for every n ∈ N there is a CQ Q so that GS∼1

CΣ (Q) = n = ∆+
Σ(Q).

I Example 15 (Cont. from Ex. 2). As noted in Example 10, #ϕ has unbounded global
sensitivity. However, if every patient has no more than one attending doctor, the sensitivity



M. Arapinis, D. Figueira, and M. Gaboardi 120:11

of #ϕ becomes bounded. Indeed, if Σ = {PatDoc[1→ 2]}, then

∆−Σ(#ϕ) ≤ GS∼1
CΣ (#ϕ) ≤ ∆+

Σ(#ϕ)

by Theorem 13—observe that ϕ ∈ CQcore since it is unary. Since ∆−Σ(#ϕ) = ∆+
Σ(#ϕ) = 1,

it thus follows that GS∼1
CΣ (#ϕ) = 1.

As we have shown, adding functional dependencies immediately improves the global
sensitivity of queries. However, functional dependencies are often very restrictive, and it may
not always be possible to impose such restrictions. This leads to a more general notion of
dependencies, that we call cardinality dependencies. These dependencies bound the number
of elements associated with component i of a relation R for each fixed element of a component
j. This will be the object of study of our next section.

5 Cardinality Dependencies

While functionality constraints are a very natural restriction of databases, there are many
scenarios in which, although we don’t have an attribute i functionally determining an attribute
j in a relation, we have a cardinality dependency nonetheless. This is a dependency
of the form “there are at most n different attributes j sharing the same attribute i in the
relation R”—functional dependencies being the special case when n = 1.

These dependencies arise naturally when modelling relations between entities (such as
in ER modelling [9]). For example, the business rules underlying a company database may
allow that an employee has more than one manager, but no more than 2. Another example
is for bounded domain attributes: whereas the name of a person does not determine the
gender, there cannot be more than two possibilities of gender for any given name. As we
will see next, cardinality dependencies provide further means to give tighter bounds for the
global sensitivity of CQ’s.

I Example 16 (Cont. from Ex. 15). We already noticed that constraining each patient to
have at most one attending doctor, brings the sensitivity of #ϕ down to 1. However, it
may be that a patient can have more than one attending doctor, although it can’t have an
unbounded number of attending doctors. For example, a scenario in which a patient has at
most 3 attending doctors.

More formally, we write R[i k−→ j] to denote a k-cardinality dependency of a relation
R of arity n between components i ∈ n and j ∈ n. A structure A satisfies a cardinality
dependency (henceforth “CD”) R[i k−→ j] if maxa∈A(|{b̄[j] | b̄ ∈ RA, b̄[i] = a}|) ≤ k. For the
particular case where k = 1, note that R[i k−→ j] is a functional dependency. We use the
symbol Σ to denote a set of CD’s, and we write #ΣR[i→ j] to denote the minimum k so that
R[i k−→ j] ∈ Σ, or ∞ otherwise. As before, we write CΣ for the class of all relational structures
satisfying all CDs in Σ. We define the cardinality of a path #Σ(p) as in (1), where now Σ is
a set of CD’s, and in the definition #ΣR[i→ j] is interpreted as defined above, over CD’s.

Upper bound. Given a connected CQ# query Q over a vocabulary σ = (R,K) so that
core(Q) = #ϕ(x1, . . . , xn), let us define

∆+
Σ(Q) def= max

R∈R

 ∑
ā∈RCϕ

 min
p1,...,pn s.t.

pi:ā Cϕ xi for i ∈ n

(∏
i

#Σ(pi)
) .
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I Observation 4. Note that in the presence of cardinality dependencies, when comput-
ing upper bounds for global sensitivity of a query Q = #ψ(x1, . . . , xn), we now consider
core(ψ) (rather than core(chaseΣ(ψ))). This is because core(chaseΣ(ψ)) is not necessarily a
conjunctive query, but rather a union of conjunctive queries which we do not handle.

I Theorem 17. Given a set of cardinality dependencies Σ, for all connected CQ# queries Q
we have GS∼1

CΣ (Q) ≤ ∆+
Σ(Q).

I Example 18 (Cont. from Ex. 16). If every patient has at most 3 attending doctors, the
sensitivity of #ϕ becomes bounded. Indeed, if Σ = {PatDoc[1 3−→ 2]}, then GSRCΣ(#ϕ) ≤
∆+
R,Σ(#ϕ) = 3 by Theorem 17.

6 Conclusion

We have given bounds for the global sensitivity of counting Conjunctive Queries under the
functionality or cardinality constraints. These bounds can be used to turn those queries in
differentially private ones by using mechanisms like the Laplacian or the Gaussian mechanisms
without adding too much noise. The proposed algorithms for computing these bounds have
exponential complexity, but since effectively many interesting queries are often small, our
results are still practical.

There are several interesting directions that we will pursue in future work. We will
study other aggregation operations already present in SQL such as average or sum. We will
also investigate sensitivity of queries with negation, where one can ask for example for the
number of patients that are not treated by a given doctor. Further, we have focused here
on global sensitivity but there are other notions of sensitivity that have been proposed. In
particular, the so-called local sensitivity is studied in [13]. The local sensitivity is defined by
quantifying not over all possible databases but only over the ones in the neighborhood of
the particular database under analysis. The local sensitivity is often lower than the global
sensitivity, but adding noise proportional to the local sensitivity does not ensure differential
privacy. Nevertheless, adding the noise proportional to a smooth approximation of the local
sensitivity permits to recover differential privacy.
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Abstract
We study the computational complexity of the cooperative and non-cooperative rational synthesis
problems, as introduced by Kupferman, Vardi and co-authors. We provide tight results for most
of the classical omega-regular objectives, and show how to solve those problems optimally.
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1 Introduction

Rational synthesis [14, 19] asks to synthesize a system that is executed in an environment
made of several components that are assumed to be rational, and not fully antagonistic as
in the classical two player zero-sum setting [23]. Rationality of the environment is modeled
by assuming that the components behave according to a Nash equilibrium (NE). Rational
synthesis has been introduced in [14, 19] in two different settings.

In the first setting, called cooperative rational synthesis [14], the environment cooperates
with the system: components of the environment agree to play a NE that is winning for
Player 0 (if it exists). In the second setting, called non-cooperative rational synthesis [19],
the components of the environment may follow any strategy, provided that it is a NE. In this
setting, one has to output (if it exists) a strategy σ0 for the system which has to be winning
against all the possible strategy profiles that include σ0 for Player 0 and which are NE.

The main contribution of the original papers is to propose and to motivate the definitions
above. The only computational complexity results given in those papers are as follows: the
cooperative and non-cooperative rational synthesis problems are 2ExpTime-c for specific-
ations expressed in linear temporal logic (LTL), thus matching exactly the complexity of
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121:2 The Complexity of Rational Synthesis

Table 1 Complexity of rational synthesis for k players. Full proofs can be found in [12].

Cooperative Non-Cooperative
Unfixed k Fixed k Unfixed k Fixed k

Safety NP-c PTime-c PSpace-c PTime-c
Reachability NP-c PTime-c PSpace-c PTime-c

Büchi PTime-c[25] PTime-c[25] PSpace-c PTime-c
coBüchi NP-c[25] PTime-c PSpace-c PTime-c
Parity NP-c[25] UP X co´ UP , parity-h ExpTime, PSpace-h PSpace, NP-h, coNP-h
Streett NP-c [25] NP [25], NP-hard ExpTime,PSpace-h PSpace-c
Rabin PNP , NP-h, coNP-h PNP , coNP-h ExpTime, PSpace-h PSpace-c
Muller PSpace-c PSpace-c ExpTime, PSpace-h PSpace-c
LTL 2ExpTime-c[14] 2ExpTime-c[14] 2ExpTime-c[19] 2ExpTime-c[19]

classical zero-sum two-player LTL synthesis [21]. The upper bound is obtained by reductions
to the satisfiability problem of formulas in Strategy Logic (SL) [20]. The reduction to SL
and the use of LTL specifications does not allow one to understand finely the computational
complexity aspects of solving the underlying n player non-zero sum games.

Contributions. To better understand the computational complexity of the rational synthesis
problems and how to solve their underlying games algorithmically, we consider variants of
those problems for games played on turn-based graph structures for reachability, safety,
Büchi, coBüchi, parity, Rabin, Streett and Muller objectives for unfixed and fixed number
of players. The fixed number of players case is interesting as the number of components
forming the environment may be limited to a few in practical applications. Our results are
summarized in Table 1.

On the positive side, our results show that for a fixed number of players, and for objectives
that admit a polynomial time solution in the two-player zero-sum case (reachability, safety,
Büchi and coBüchi), cooperative and non-cooperative rational synthesis can be solved in
PTime. On the negative side, for rich omega regular objectives defined by parity, Rabin,
or Streett objective, the complexity increases. First, games with parity objectives cannot
be solved in polynomial time unless PTime equals NP while it is conjectured that this
result does not hold for two-player zero sum parity games. Second, games with Rabin or
Streett objectives are PSpace-c for the non-cooperative setting while they have solution
in nondeterministic polynomial time for their zero-sum two player versions. When the
number of players is not fixed, the complexity is usually substantially higher than for the
two-player zero-sum case. For example, non-cooperative rational synthesis is PSpace-H for
all objectives, so even for safety objectives.

Cooperative rational synthesis is a special case of constrained NE (Player 0 has to be
winning). The complexity of constrained NE has been studied in [25] for some classes of
objectives: this gives us upper-bounds for cooperative synthesis and Büchi, coBüchi, parity
and Streett objectives. For the other objectives, we show how to extend the approach
proposed in [25]. Solutions to the non-cooperative case are much more involved and based on
a fine tuned application of tree automata techniques. This is a central contribution of our
paper. In particular, our tree automata have exponential size but we show how to test their
emptiness in PSpace to obtain optimal algorithms for Streett, Rabin and Muller objectives
and fixed number of players.

The tree automata that we construct not only allow us to test the existence of solution
to the non-cooperative rational synthesis problem but also to symbolically represent all the
strategies for the system that are solutions. This set is thus regular and can be manipulated
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with automata-based techniques. Also, it should be clear that our algorithms are amenable
to symbolic implementations when the game structure is given with binary decision diagrams.
This is important as it shows that our techniques pave the way to implementations that have
proven useful and efficient by the CAV community (see e.g. tools like nuSMV [11]).

To obtain lower-bounds, we design original and informative reductions.

Related work. Non-zero sum games for synthesis are gaining attention recently, see e.g. [4]
for a survey. Secure equilibria were introduced in [9] and their potential for synthesis was
demonstrated in [8]. Secure equilibria is a refinement of NE [24]. Doomsday equilibria
extend secure equilibria to the n player case [7]. Subgame perfect equilibria, that also refines
NE, were first studied in [24, 25]. To model rationality of players, the notion of admissible
strategy is used in [3, 13] instead of the notion of NE, and computational aspects are studied
in [6], potential for synthesis is studied in [5]. All those works consider games played on
a game structure with classical ω-regular objectives and provide tight complexity results
for almost all the relevant synthesis problems. This is not the case for cooperative and
non-cooperative rational synthesis for which only the complexity for specifications given
in LTL was known [14, 19]. This paper provides algorithms and precise computational
complexity results.

Structure of the paper. In Sect. 2, we recall the definition of the cooperative and non-
cooperative synthesis problem as introduced in [14, 19], together with the game structure
variant and objectives that we study here. Sect. 3 provides lower and upper complexity
bounds for the cooperative rational synthesis problem. Sect. 4 provides results for the
non-cooperative variant. Sect. 5 summarizes complexity results when the number of players
is fixed. Due to the lack of space, we provide sketches of proof of our results in this paper
and all the detailed proofs can be downloaded at the following address: [12].

2 Multiplayer Games and Rational Synthesis

Multiplayer Games. Let k P N. A multiplayer arena (k ` 1)-players arena is a tuple
A “ xΩ, V, pViqiPΩ, E, v0y, where Ω “ t0, 1, ..., ku is a finite set of players, pV,Eq is a finite
directed graph whose vertices are called states, v0 P V is the initial state and pViqiPΩ is a
partition of V where Vi is the set of states controlled by Player i P Ω. A play in A starts in
the initial state v0 and proceeds in rounds. At each round, the player controlling the current
state chooses the next position according to E Ď

Ť

iPΩ Vi ˆ Vi`1 mod k.1. Formally, a play
π “ v0v1 . . . is an infinite path in V ω such that v0 is the initial state and pvi, vi`1q P E for
each i ě 0. The prefix (or history) of π up to vn is written πr:ns and its last state πpnq. We
denote by Ă the prefix relation, by PlayspAq the set of plays, and by PrefspAq for its set of
finite prefixes. For πPV ω, infpπq is the set of states occurring infinitely many times in π.

A strategy of Player i P Ω in A is a total function σi : V ˚Vi ÞÑ V s.t. for all x P V ˚, for all
v P Vi, pv, σipxvqq P E. Note that as rounds are ordered, σi has type V ˚Vi ÞÑ Vi`1 mod k. A
play π is consistent with σi if πpn` 1q “ σipπr:nsq for all n ě 0 s.t. πpnq P Vi. The outcome
of σi is the set of plays outpσiq Ď PlayspAq that are consistent with σi. Given h P V ˚, we
define σi|h as σi|hph1q “ σiphh

1q for all h1 P V ˚Vi. A winning objective (or just objective) is

1 Wlog. we assume that each vertex has a successor by E and that player’s rounds are ordered according
to their index. Otherwise we just add a polynomial number of extra intermediate states and the winning
objectives considered in this paper can be modified accordingly.
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121:4 The Complexity of Rational Synthesis

a set O Ď V ω. It is tail if it is closed under removing prefixes. A Player i’s strategy σi is
winning2 for O if outpσiqĎO. We consider the classical classes of objectives [17]:

Safety/Reachability: Given a set S Ď V of safe states, SafepSq “ tπ P V ω |@n ě 0 : πpnq P
Su and given a set T of target states, ReachpT q “ tπ P V ω | Dn ě 0 : πpnq P T u “ SafepT q.
Büchi/coBüchi: Given a set F Ď V , BuchipF q “ tπ P V ω | infpπq X F ‰ ∅u and
coBuchipF q “ tπ P V ω | infpπq X F “ ∅u “ BuchipF q.
Streett/Rabin: Given a set Ψ Ď 2V ˆ 2V , StreettpΨq “

Ş

pL,RqPΨpcoBuchipLq Y BuchipRqq
and RabinpΨq “

Ť

pL,RqPΨpBuchipLq X coBuchipRqq “ StreettpΨq.
Parity: For a priority mapping p:VÑN, Parityppq“tπPV ω | mintppvq|v P infpπqu is evenu.
Muller : Given a Boolean formula µ over V , Mullerpµq “ tπ P V ω | infpπq |ù µu.

A multiplayer game is a pair G “ xA, pOiqiPΩy where pOiqiPΩ is the tuple of objectives
for each Player i P Ω. For all class of objectives X, we say that G is a multiplayer X-game
if all objectives Oi are in X. The notations Plays and Prefs carries over naturally to G by
considering its underlying arena. For v P V , one denotes by Grvs the game G whose initial
state is replaced by v (winning objectives are unchanged). A state v P V is winning for
Player i if he has a winning strategy in Grvs, and one denotes by WG

i (or just Wi) the set of
winning states of Player i, also called the winning set of Player i.

Nash Equilibria. A strategy profile σ̄ in a multiplayer game G “ xA, pOiqiPΩy is a tuple
σ̄ “ pσiqiPΩ of strategies, one for each player. The outcome outpσ̄q of σ̄ is the only play
consistent with all strategies σi (it always exists and is unique). Given a strategy τ for
Player i, we write pσ̄´i, τq for the strategy profile obtained by replacing σi with τ in σ̄. For
winning objectives pOiqiPΩ for each player, the payoff of a strategy profile σ̄ is the vector
paypσ̄q P t0, 1utk`1u defined by paypσ̄qris “ 1 iff outpσ̄q P Oi. We write payipσ̄q for Player i’s
payoff in paypσ̄q. Payoffs are compared by the pairwise natural order on their bits, denoted
by ď, i.e. paypσ̄q ď paypβ̄q if payipσ̄q ď payipβ̄q for all i P Ω.

A strategy profile σ̄ “ pσiqiPΩ is called a Nash equilibrium (NE) if no player can improve
his payoff by (unilaterally) switching to a different strategy, i.e. for all players i P Ω and all
strategies τ of Player i, paypσ̄´i, τq ď paypσ̄q. We say that σ̄ is a 0-fixed Nash equilibrium
(0NE) if paypσ̄´i, τq ď paypσ̄q for all players i P Ωzt0u and all strategies τ of i. In other
words, it is a Nash equilibrium in which Player 0 is not allowed to deviate. Any NE is 0-fixed,
but the converse may not hold.

Cooperative and non-cooperative rational synthesis. Rational synthesis aims at finding
a winning strategy for the system (Player 0) against an environment composed of several
components (Players 1 to k) that are assumed to play rationally. Rationality of the envir-
onment is modeled by NE, and following [14, 19], we consider two settings, depending on
whether the environment cooperates or not: The cooperative and non-cooperative rational
synthesis problems (CRSP and NCRSP resp.) ask, given as input a pk ` 1q-player game G
with winning objectives pOiqiPΩ, the following questions according to the two settings:
cooperative: Is there a 0-fixed Nash equilibrium σ̄ such that pay0pσ̄q “ 1 ?
non-cooperative: Is there a strategy σ0 for Player 0 such that for every 0-fixed Nash

equilibrium σ̄ “ xσ0, . . . , σky, we have pay0pσ̄q “ 1 ?

2 Here we implicitly consider a two-player zero-sum game in which Player i has objective O and plays
against all the other players in Ωztiu who have objective O.
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1start 2 3

Figure 1 Example for rational synthesis.

I Example 1. Consider Figure 1 in which Player 0 owns round states and Player 1 square
states, with the reachability objectives R0 “ t2u and R1 “ t3u. Consider the Player 0’s
strategies σ0 which loops forever in state 2, and σ10 which eventually moves to state 3.

Let Player 1 cooperate with σ1 that moves to state 2 (making Player 0 win). Both
strategy profiles xσ0, σ1y and xσ10, σ1y are solutions to the cooperative setting: for the first
strategy profile Player 1 loses but cannot get better payoff by deviating, and for the later
one Player 1 wins. Strategy σ0 is not a solution to the non-cooperative setting: Player 1
could stay forever in state 1 (according to a strategy σ11). The profile xσ0, σ

1
1y is a 0-fixed

NE because even by deviating and going to state 2 Player 1 would still lose, and it is losing
for Player 0. However, σ10 is a solution to the non-cooperative setting: The only 0-fixed NE
in that case are when Player 1 eventually move to state 2, making him and Player 0 win.

In [14, 19], both CRSP and NCRSP are shown 2Exptime-complete when the winning
objectives are defined by LTL formulas, through a reduction to strategy logic. In this paper,
we refine this complexity result for particular kinds of winning objectives. In general, the
synthesis problem also asks to synthesise (i.e. construct) a solution when it exists: Our
algorithms also solve the synthesis problem.

3 Cooperative Rational Synthesis Problem (CRSP)

We establish here complexity bounds for CRSP for unfixed number of players. First, some
results are obtained as special cases of constrained NE problems [25]. The constrained NE
problem asks to decide, given a k ` 1-player game G “ xA, pOiqiPΩy, and for each player i, a
lower bound li P t0, 1u and an upper bound ui P t0, 1u such that li ď ui, whether there exists
a NE σ s.t. li ď payipσq ď ui for all i P Ω. CSRP is a special case of this problem, by setting
l0 “ u0 “ 1, li “ 0 and ui “ 1 for all i P Ωzt0u. The constrained NE problem is known to be
in PTime for Büchi objectives, and in NP for co-Büchi, Streett and parity objectives [25].
So one immediately gets the upper bounds of Table 1 for these measures (and unfixed k).

To establish the remaining upper bounds, we characterize NE by means of LTL formulas.
We extend the technique used in [25] for tail objectives to safety and reachability.

Generic solution to cooperative rational synthesis. Syntax and semantics of LTL can be
found in [2]. Let V be the set of vertices of G. We use LTL formulas to express properties
of infinite paths of G, where we take V as set of atomic propositions. In particular, s P V
is true in s, and false otherwise. For S Ď V , the formula S is a shortcut for

Ž

sPS s, and
LTLpGq denotes the set of LTL formulas over V . Let pWG

i q0ďiďk be the winning sets of each
player and b P t0, 1u. We define an LTLrGs-formula φG

bNash that will characterize NE (b “ 1)
and 0-NE (b “ 0):

φG
bNash “

$

’

’

’

&

’

’

’

%

Źk
i“1´bpp W

G
i U  Siq _lSiq if Oi are safety objectives of the form

Oi “ SafepSiq for Si Ď V
Źk
i“1´b ϕi Ñ l WG

i if Oi are either all reachability or all tail
objectives definable by a LTLrGs formula ϕi
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121:6 The Complexity of Rational Synthesis

Assume that b “ 1, and consider the formula for safety objectives. Intuitively, it says that for
all players i P t0, . . . , ku, either Player i always stays safe, or if eventually he visits an unsafe
position, then he should never visit a winning position until he meets an unsafe position for
the first time. This is because otherwise he could apply a winning strategy and satisfy his
own objective, and therefore has some incentive to deviate. As announced:

I Proposition 2 (Characterization of 0-fixed NE and NE ([25] for tail objectives)). Let G be
a multiplayer game with either all safety, all reachability, or all tail objectives, definable in
LTLrGs. Then, the following hold:
1. For all π P PlayspGq, if π |ù φG

0Nash (resp. π |ù φG
1Nash), then there exists a 0-fixed NE

(resp. NE) σ̄ in G such that outpσ̄q “ π,
2. For all 0-fixed NE (resp. NE) σ̄ in G, outpσ̄q |ù φG

0Nash (resp. outpσ̄q |ù φG
1Nash).

Based on the latter proposition, it is not difficult to design a procedure to decide CRSP:
first, compute the winning sets Wi, and then check whether the game G contains a path
which satisfies the formula φG

0Nash ^ φ0, where φ0 is the objective of Player 0, expressed
in LTLrGs. To establish precise upper bounds, one needs to consider the complexity of
computing the winning sets, and then the complexity of model-checking these particular LTL
formulas. Due to lack of space, we cannot cover all the cases, but let us briefly expose the
case of safety conditions. For safety, it is well-known that computing the sets Wi can be done
in PTime. Then, we prove a short witness property: if there exists a path satisfying the
formula φG

0Nash ^ φ0, then there exists a lasso path uvω such that u and v have polynomial
length. Therefore, it suffices to guess such a lasso path, and to check that it satisfies the
formula φG

0Nash ^ φ0, which again can be done in PTime. This yields an NP algorithm for
safety CRSP. Similar arguments apply for reachability.

Lower bounds. In [25] was shown the NP-hardness of the threshold NE problem for coBüchi
objectives and thresholds l0 “ u0 “ 1, li “ 0 and ui “ 1, @i P t1, . . . , ku. Therefore, one
immediately gets the NP lower bounds of Table 1 for coBüchi objectives, Streett, Rabin and
parity objectives, which can (polynomially) express coBüchi objectives. For the other cases,
we provide lower bounds with genuine reductions. For Muller objectives, we show that it is
already PSpace-hard even for two players and the precise complexity results for a fixed
number of players are discussed in the last section of the paper. We finish the section by
showing the NP-hardness proof for the safety case (which was not considered in [25]).

I Lemma 3. CRSP for multiplayer safety objectives is NP-hard.

Proof. By reduction from 3SAT . Given a set of clauses S “ tC1, . . . , Cku, one constructs
the pk ` 1q-player safety game of Fig. 2. Up to vertex C1, the previous states are controlled
by Player 0, and each state Ci is controlled by Player i. All states but Us are safe for Player
0. For all i P t1, . . . , ku, Ue is unsafe for Player i, as well as the state 0x if  x appears in
Cj , and the state 1x if x appears in Cj . If S is satisfiable by some valuation ν, then Player
0 chooses, in state x, the successor νpxqx. That way, Player 1 to k have visited an unsafe
state before reaching C1, and have no incentive to deviate if their strategy is to go to Ue.
Conversely, if there is a solution to CRSP, necessarily the game end up in Ue, as Player 0
must be winning. It means that before reaching the states Ci all safety conditions for Players
1 to k have been violated, otherwise going to Us could be a profitable deviation. In other
words, for all clauses i, there exists a literal ` in Ci such that 1x (resp. 0x) has been visited
if ` “ x (resp. if ` “  x). So the truth values chosen by Player 0 satisfies S.

J
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Figure 2 Cooperative Safety: Reduction from 3-SAT.

4 Non-Cooperative Rational Synthesis Problem (NCRSP)

We study here the complexity of NCRSP for unfixed number of players. In this setting,
cooperation of the environment is not assumed, and so the system has to win against all
0-fixed NE. In Prop. 2, we have characterised 0-fixed NE by means of an LTL formula φG

0Nash.
This allowed us to solve CRSP via a reduction to model-checking. It is tempting to think
that NCRSP reduces to a two-player zero-sum game between Player 0, whose objective is
φG

0Nash Ñ ϕ0, and the coalition of the other players. However, Example 1 shows that this is
not true in general. Indeed, in this example there is a solution to NCRSP, but no solution
to the two-player game with objective plR̄1 Ñ lW̄1q Ñ ♦R0. Since W1 “ t3u, whatever
the strategy of Player 0 is, if Player 1 stays in state 1 forever, the path π “ p1qω satisfies
plR̄1 Ñ lW̄1q but not ♦R0 and therefore Player 0 loses. The intrinsic reason why the
reduction to two-player games is incorrect lies in the definition of NCRSP: once a Player 0’s
strategy σ0 is fixed, only 0-fixed NE with respect to σ0 are considered, while the formula
φ0Nash can be satisfied by paths which are outcomes of other 0-fixed NE, i.e. for a different
strategy of Player 0.

The non-cooperative case is more involved and requires tree automata based techniques:
we see strategies σ0 as trees tσ0 , and use tree automata to define the set of solutions to
NCRSP. Testing existence of a solution then reduces to tree automata non-emptiness.

Strategy trees and good deviations. Let Λ be a finite set of directions and Σ be an alphabet.
A Σ-labeled Λ-tree is a mapping t : Λ˚ Ñ Σ. Its set of nodes is Λ˚. Let A be a k ` 1-player
arena with set of states V , and let σ0 : V ˚V0 Ñ V be a strategy of Player 0 in A. We explain
how σ0 is encoded as a tree. The labels are in the set Σ “ V Y t˚i | 1 ď i ď ku Y t#u, and
the set of directions is Λ “ V . Therefore, any node of the tree is a history h. Then, if h “ ε

(root node), we set its label to #. Otherwise, it is of the form h “ h1v, then there are two
cases: piq if v P V0, then tσ0phq “ σ0phq, piiq if v P Vi for i ‰ 0, then tσ0phq “ ˚i (only the
turn i is encoded). We denote by T0 the set of strategy trees tσ0 . Note that each Σ-labeled
V -tree represents a partial function from V ˚ to Σ, which may not be a strategy, because
it is not total and may not be consistent with the edge relation E of the arena. A branch
in tσ0 is an infinite sequence of directions π P V ω. It is compatible with σ0 if for all finite
prefixes h of π whose last state is in V0, h.tσ0phq is a prefix of π.

We now want to characterize the strategy trees tσ0 s.t. σ0 is a solution to NCRSP in a
game G “ xA, pOiqiPΩy with either all safety, all reachability, or all tail objectives. Consider
a branch π of tσ0 compatible with σ0: It is not the outcome of a σ0-fixed NE iff some
player loses (π R Oi for some i ‰ 0) and there is a prefix h from which Player i has a
winning strategy against all other players (and the strategy σ0). We call the history h a good
deviation point. Formally, h is a good deviation point if there exists i P t1, . . . , ku “ Ωzt0u
s.t. π R Oi and there is a strategy σi for Player i s.t. for all strategies pσjqiPt1,...,kuztiu,
h.outpσ0|h, ..., σi´1|h, σi|h, σi`1|h, ..., σk|hq P Oi. A branch π P V ω has a good deviation if
some of its prefix h is a good deviation point. Let us denote by NCRSPpGq the set of strategy
trees tσ0 such that σ0 is a solution to the NCRSP in G. Then:
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I Lemma 4. For all strategies σ0 of Player 0, tσ0 P NCRSPpGq iff for all branches π of tσ0

compatible with σ0, either π P O0 or π has a good deviation.

Reduction to tree-automata emptiness. Based on Lemma 4, we construct a non-deterministic
automaton defining NCRSPpGq. A non-deterministic tree automaton T over Σ-labeled Λ-trees
is a tuple pQ,Q0, δq where Q is a finite set of states, Q0 Ď Q is a finite set of initial states,
and δ is a transition relation of the form δ : Qˆ Σ Ñ 2ΛÑQ, i.e., it maps any pair of states
and labels to a set of mappings from directions to states (states sent the children of the
current node). A run of T on a tree t is Q-labeled Λ-tree r : Λ˚ Ñ Q such that rpεq P Q0
and for all h P Λ˚, all d P Λ, the mapping d P Λ ÞÑ rphdq P Q is in δprphq, tphqq. The image
of a branch π “ λ1λ2 ¨ ¨ ¨ P Λω by r is the word in Qω defined by rpεqrpλ1qrpλ1λ2q . . . . With
respect to an accepting condition α Ď Qω, r is accepting if the images of all its branches are
in α, and the language of T is the set LαpT q of trees for which there exists an accepting run.

I Lemma 5. Let G “ xA,O “ pOiqiPΩy be a pk ` 1q-player game with n vertices. One
can construct a non-deterministic tree automaton TA (with an exponential number of states
in k, and polynomial in |V |) with an accepting condition αApOq such that LαApOqpTAq “

NCRSPpGq. Moreover, for all runs r of TA, for all branches π of r, the number of states
appearing in π is polynomial in |V | and k.

Proof. We sketch the construction of TA and the definition of αApOq. First, it is not difficult
to make sure that TA only accepts trees that are strategy trees: It has to remember the last
direction v taken and make sure that if v P V0, the current node is labeled by some v1 P V
s.t. pv, v1q P E, and otherwise by the symbol ˚i if v P Vi. This requires only a polynomial
number of states. Therefore in the following, we assume that TA only runs on proper tree
encodings tσ0 of strategies σ0.

The construction of TA is based on Lemma 4: For each branch of tσ0 , it will check that
either it is not compatible with σ0, or it belongs to O0, or it will guess a prefix and check it is
a good deviation. To guess good deviations, TA has to guess subtrees in which players have a
winning strategy. This information is stored in a set W Ď Ω, with the following semantics: if
TA is in some state with set W at some node h P V ˚ and i PW , then Player i has a winning
strategy from h against σ0 and any strategy of the players in Ωzt0, iu for objective Oi. The
set of players for which a good deviation has been guessed is stored in a set D Ď Ω, with
the following semantics: if TA is in some state with set D and i P D, at some node h P V ˚,
then some prefix of h is a good deviation. The information on W is maintained as follows:
at some node hv P V ˚, if i PW and v P Vi, then TA non-deterministically send W to one of
the successor of v (and W ztiu in the other ones) and if v R Vi, TA sends W in all successors
of v. The information D is monotonic: either the current node h (owned by Player i) is not
guessed to be a good deviation for any player and D is sent to all successors, or it is guessed
to be a good deviation for Player i, i R D, and then DY tiu (and W ) is sent to all successors
but one in which is sent D and W Y tiu. This monotonic behavior is crucial for obtaining
algorithms with optimal worst-case complexities.

Formally, TA “ pQ, tq0u, δq with Q “ tq0,Ju Y p2Ω ˆ 2Ω ˆ V q. Then, we have δpq0,#q “
tρ0u where ρ0pv0q “ pH,H, v0q and ρ0pvq “K for all v ‰ v0. For all q “ pW,D, vq P Q such
that v P V0 and all v1 P V , δpq, v1q “ tρv1u where ρv1pv1q “ pW,D, v1q and ρv1pv2q “K for
all v2 ‰ v1 (the latter case correspond to directions v2 which are not compatible with the
strategy). For all v ‰ #, δpJ, vq “ tρJu where ρJpv1q “ J for all v1 P V . Then, for a state
q “ pW,D, vq and a label ˚i (i ‰ 0), we consider four cases:
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1. i P D XW : Such a state will never be reachable by construction.
2. i P D XW : In this case, we just propagate the information D and W . I.e. δpq, ˚iq “ tρu

s.t. ρpv1q “ pW,D, v1q for all pv, v1q P E.
3. i PW XD: In this case, one has to check that Player i has a winning strategy in some

successor of v1, which is guessed non-deterministically, and to which the W information
is sent. I.e. δpq, ˚iq “ tρv1 | pv, v1q P Eu where ρv1pv1q “ pW,D, v1q and ρv1pv2q “

pW ztiu, D Y tiu, v1q for all v2 ‰ v1.
4. i PW XD: In this case, either we do not guess anything, or we guess that Player i has

a good deviation, and update the sets W and D accordingly. I.e. δpq, ˚iq “ tρu Y tγv1 |

pv, v1q P Eu where γv1pv1q “ pW Ytiu, D, v1q and γv1pv2q “ pW,DYtiu, v1q for all v2 ‰ v1.

Along a path of a run of TA, there are monotonicity properties for the W and D-
components of the states. Indeed, by construction, TA never removes a player from D. For
W , a player i can be removed (case 3) but then it is added to D and, once a player belongs
to D, it can never be added to W again. It is correct since for a history h, if one guesses
that Player i has a winning strategy from history hv, then i is added to D for all successors
hv1 (v1 ‰ v) and there is no need to guess again later on a good deviation for Player i in the
subtrees rooted at the nodes hv1, and therefore no need to add i in W again. Therefore along
a path η of a run, there is only a polynomial number of different components D and W , and
they necessarily stabilize eventually, to a set that we denote by limDpηq and limW pηq.

Finally, the accepting condition αApOq asks that on each path of the accepting run, either
it is of the form Q˚tKuω, or Player 0 wins, or there is a player that loses but belongs to
some D eventually. For safety objectives, we also have to add the constraint that the losing
player belongs to D before visiting an unsafe state. Additionally, the accepting condition
also expresses constraints on the W components: each player i P limW pηq wins. Formally,
if we denote by IRunspTAq the set of images of branches of runs of TA, and by η|V the
V -projection of any η P pQztKuqω, we have:
αApOq “ Q˚tJuωYptη P IRunspTAqXpQztJuq

ω | η|V P O0_
k
ł

i“1

`

η|V R Oi^ϕDdevpi, ηq
˘

uX

X tη P IRunspTAq X pQztJuq
ω |

ľ

iPlimW pηq

η|V P Oiuq

where the formula ϕDdevpi, ηq says that there is a good deviation for Player i. That is, if
D0D1 . . . is the sequence of D-components in η, then ϕDdevpi, ηq “ i P limDpηq for tail or
reachability objectives, and ϕDdevpi, ηq “ Dp ě 0, i P Dp ^ @p

1 ď p, η|V rps P Si for safety
conditions SafepSiq. Details can be found in the technical report. J

Tree automata emptiness. We now study the complexity of testing non-emptiness of the
languages LαApOqpTAq for the objectives O of this paper. Classically, non-deterministic tree
automata emptiness is reduced to solving a two-player zero sum game between Eve, who
constructs a tree and a run on this tree, and Adam, whose goal is to prove that the run is
non-accepting, by choosing directions in the tree and falsifying the acceptance condition.
Formally, remind that the alphabet is Σ “ V Y t˚i | 1 ď i ď ku Y tKu and for a function
f : V Ñ Q, we denote by Rangepfq its range. We construct a zero-sum two-player game
G1 “ xVE , VA, E1, q0y where VE “ Q, VA “ tRangepfq | Dq P Q,α P Σ, f P δpq, αqu. Then,
the transition relations is defined for all q P Q, all P P VA, by pq, P q P E1 if there exists
α P Σ and f P δpq, αq s.t. P “ Rangepfq, and pP, qq P E1 if q P P . That is, to go from q to
P , Eve chooses a symbol α and a function f : V Ñ Q in δpq, αq. Then, Adam chooses a
direction in V , but since he wants to construct a sequence of states not in αApOq, one only
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needs to remember Rangepfq. Adam then picks a state in that set. Eve’s objective is the
set tq1w1q2w2 ¨ ¨ ¨ P pVEVAq

ω | q1q2 ¨ ¨ ¨ P αApOqu. It can be shown that Eve has a winning
strategy in G1 iff LαApOqpTAq ‰ H. By a fine analysis of solving this game, we obtain:

I Proposition 6. Let G “ xA,O “ pOiqiPΩy be a multiplayer game. Non-emptiness of
LαApOqpTAq can be checked in PSpace for O P tSafety,Reachability,Büchi, coBüchiu, and in
ExpTime for O P tParity,Streett,Rabin,Mulleru.

Proof. It amounts to study the complexity of solving G1 for the objectives of this paper.
Note that the arena of G1 has linear size in the size of TA. For safety, reachability, Büchi
and coBüchi winning objectives, we reduce the problem of solving G1 to a finite duration
reachability tree game of exponential size, whose duration is polynomial (in the size of the
original arena of G). This reduction exploits the monotonicity of the sets W and D, and the
fact that the game can be stopped once a cycle has been formed. It is similar in spirit to
the technique of first-cycle game from [1] but the winning condition of G1 do not fall in the
general hypothesis of [1] under which infinite duration games reduce to first-cycle games.
Our finite duration tree game, though of exponential size, is not constructed explicitly but
solved on-the-fly by a PTime alternating algorithm. This gives a PSpace upper-bound for
NCRSP.

We now study the complexity of solving G1 when the original game G has Muller conditions
Mullerpµiq for the k ` 1 players. We transform G1 into a two-player zero-sum parity game
with an exponential number of states but a polynomial number of priorities, which can be
solved in ExpTime (in the size of G). This reduction is based on the Last Appearance Record
(LAR) [15, 26], which allows us to identify states in V appearing infinitely often. Formally, V
is assumed to be linearly ordered, i.e. V “ tv1, . . . , vnu. We let P pV q the set of permutations
of V , which we represent by words of length n over V with pairwise different letters. We
define a deterministic finite automaton LARV “ pP pV q ˆ t0, . . . , |V | ´ 1u, pm0, h0q,Ñq,
m0 “ v1 . . . vn and h0 “ 1, and pm,hq v

ÝÑ px1x2v, |x1|q where m “ x1vx2 P P pV q for some
x1, x2 P V

˚ and v P V . Positions h are called hits. LARV has the following property: take
a sequence π P V ω and the associated sequence of LARV ’s states ` “ pm0, h0qpm1, h1q . . . ,
let hπmin be the smallest hit appearing infinitely often in `, then the sequence of subsets
ptmirrs | r ě hπminuqiě0 eventually equals infpπq.

Remind that Q “ tq0,JuYp2Ωˆ2ΩˆV q, therefore each sequence of states not in Q˚tJuω
also gives the sequence of visited vertices of G. We take the product of G1 with LARV to
add LAR information to the game G1, and transform Eve’s winning condition in G1 into a
parity condition pr in this product as follows: one uses 2|V | ` 2 priorities and, for product
states with q0 or J as first component, the priority is 0, otherwise for states of the form
ppW,D, vq, pm,hqq, we let:

prppW,D, vq, pm,hqq “

$

’

’

&

’

’

%

2h if @i PW, tmrrs | r ě hu |ù µi and
ptmrrs | r ě hu |ù µ0 or Di P D s.t. tmrrs | r ě hu |ù  µiq

2h` 1 otherwise

For states whose first component belongs to Adam, we just put priority 2|V | ` 2, so that
they have no influence. That way we obtain a parity game Gpar with an exponential number
of states (in G) but a polynomial number of priorities, in which Eve has a winning strategy
iff she has a winning strategy in G1. Finally, parity games can be solved in PTime in the
number of states and exponential in the number of priorities [18, 22]. J
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Figure 3 The arena Aψ used to show that NCRSP is PSPACE-h.

I Theorem 7. For multiplayer games, NCRSP is in ExpTime for objectives of type X P

tParity, Streett,Rabin,Mulleru and in PSpace if X P tSafety,Reachability,Büchi, coBüchiu. It
is PSpace-hard for all objectives.

Proof. The upper-bounds are consequence of Lemma 4, Lemma 5, and Proposition 6.
Let us establish the lower bounds. Our proof is a reduction from QBF which uniformly
works for all the types of objective. Let ψ “ Dx1@x2...Dxmγpx1, x2, ..., xmq be a QBF in
3CNF with k clauses C1, C2, ..., Ck. We build a 2m ` 2 players game Gψ, with players
Ω “ tA,B, P10, P11, P20, P21, . . . , Pm0, Pm1u, the system being played by player A, such that
ψ is true if and only if Gψ admits a solution to the NCRSP. The arena Aψ of the game is
depicted in Figure 3.

For each existential (resp. universal) variable xi in ψ, the arena Aψ contains a rounded
(resp. diamond) state xi controlled by Player A (resp. player B). For each node xi, 1 ď i ă m,
Aψ contains the edges pxi, 0xi

q, pxi, 1xi
q, as well as the edges p0xi

, xi`1q, p1xi
, xi`1q, choices

of edges in those states naturally encode valuations of the variables of the QBF formula.
For each 1 ď i ď m, the rectangle state 1xi (resp. 0xi) is controlled by player Pi1 (resp.

Pi0) and has an additional edge leading to the self-loop over the state v2i´1 (resp. v2i). The
value nodes 1xm , 0xm (for the last variable xm) are then connected to a vertex z controlled by
Player B. From there Player B can choose a clause, i.e. an edge pz, Ciq, 1 ď i ď k. Finally,
each state associated to a clause Ci is controlled by Player A and has three outgoing edges
toward the terminal nodes (with self-loops) li1, li2, li3, one for each literal in Ci.

Given the arena described above for the X-game Gψ, it is easy to phrase with the different
types of objectives, the following winning conditions:
1. All paths that end in a state labeled with vi (1 ď i ď 2m) are winning for all the players.
2. All paths that end in a state labeled with lij (1 ď i ď k, 1 ď i ď 3) are winning for all the

players but Player A and Player Phb such that plij “ xh ^ b “ 1q _ plij “  xh ^ b “ 0q.

Let us establish the correctness of our reduction. Assume that ψ is true. Then, the
existential player has a winning strategy in the QBF game associated to ψ, i.e. he can choose
the value of existentially quantified variables xi as a function of the values given by the
universal player to the universally quantified variables xj , with j ď i, so that ψ evaluates to
true. We claim that, if Player A plays in the game arena according to such a winning strategy
of the existential player, then Player A wins his objective whenever the other players play a
NE. Indeed, there are two possibilities: either the game ends in a looping state labeled with
vi, and all players win (including Player A) or the game reaches z where Player B chooses
a clause. As the strategy played by Player B encodes a winning strategy of the existential
player in the QBF game, we know that each clause is satisfied, so Player A can choose a
literal that evaluates to true in the clause. With such a choice, he makes sure that the player
associated to this literal is losing while the play has visited a state in which this player has
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121:12 The Complexity of Rational Synthesis

decided to continue the game instead of going to a looping state labeled with vi. This means
that this player has a profitable deviation in the profile associated to the outcome of the
game and so this outcome of the game is not a NE.

Otherwise, ψ is false. Then the universal player has a winning strategy in the QBF game
associated to ψ. Consider a strategy profile where Player B plays according to this strategy
and each Player Pib, 1 ď i ď m, b P t0, 1u, plays to continue the game and avoid looping
states labelled by vi. Then the game reaches state z, and Player B can choose a clause
Ci that is false according to the instantiation of variables along the path followed so far.
Therefore, for any choice of Player A from Ci, the play will be winning for all the players
with the exception of Player A, and the player associated to the literal that has been chosen
by Player A in the clause. This outcome is part of a NE as the later player cannot improve
on his payoff by deviating as in the current profile, the play does not visit the rectangle
state associated to the literal that evaluates to false, and so he has no available deviation at
all. J

5 Fixed number of players

Several instances of the rational synthesis problems become tractable for fixed number of
players. The number of players is a natural parameter to study: in practical applications,
the number of components composing the environment may be limited to a few.

Cooperative Setting. We provide a generic reduction for the lower bounds of Table 1.

I Lemma 8. Let X P tSafety,Reachability,Büchi, coBüchi,Parity,Streett,Rabin,Mulleru.
Given a two-player zero-sum game between players A and B with an objective of type
X for Player A, we can construct a multiplayer game with objective of type X with two
players Ω “ t0, 1u such that Player A does not have a winning strategy in the zero-sum game
if and only if the multiplayer game is a positive instance of the CRSP problem.

Proof. Let G be a two-players zero-sum game where the protagonist (player A) has the
objective ψ, and so Player B has objective  ψ. We construct the two-players CRSP G1 by
considering a copy of G and two fresh states v and w. The state v is the initial state of G1
and has a transition to the initial state of G and a transition to w, which is equipped with a
self-loop. The environment (Player 1) controls v, w and the states belonging to Player A
in G, while the system (Player 0) controls the states belonging to Player B in G. For the
winning conditions, Player 0 wins only if the play gets into w (and stays there forever), while
the objective of the environment is ψ ( i.e. the objective of Player A in G).

G1 is a positive instance of the CRSP problem iff Player 1 playing edge v Ñ w is a NE.
But clearly Player 1 does not have an incentive to deviate iff Player A does not have a
winning strategy in G for forcing ψ. J

As an example, we get NP-hardness for the CRSP problem with Streett objectives because
two-player zero-sum Streett games are coNP-hard.

The upper bounds on k-fixed CRSP for X P tReach,Safe,Büchi, coBüchi,Parity,Rabinu
listed in Table 1 can be obtained with the following procedure. First, compute the winning
sets Wi for each of the k ` 1 players using the classical algorithms to solve two-player
zero-sum games (w.r.t. the corresponding objective) and label the arena with the information
pWiqiPΩ (seen as atomic propositions). Then, check whether there is a path π such that
π |ù ϕ0 ^ φG

0Nash (witnessing a solution to CRSP, by Proposition 2). The first step can
be done in polynomial time for X P tReach,Safe,Büchi, coBüchiu, in UPXcoUP for parity
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conditions and in PNP for Rabin conditions (as checking whether a state belongs to Wi is in
NP). Due to the assumption that k is a fixed constant, the second step can be done in PTime
for X P tReach,Safe,Büchi, coBüchi,Parityu and in NP for Rabin conditions. For Streett
k-fixed CRSP, an NP upper bound was given in [25]. For Muller objectives, by Lemma 8,
the problem is PSpace-hard and the PSpace upper bound follows from the unfixed case.

Non-Cooperative Setting. Results are summarized in the last column of Table 1. We start
by the justification of the lower bounds. First, it should be clear that deciding the winner
in a zero-sum two-player game with objective of type X is a special case of the NCRSP
problem. Indeed, assume Player A has objective ψ in a game G. Then, if we give objective ψ
to Player 0 on the same game arena and declare all plays winning for Player 1, it is easy to
see that this is a positive instance to the NCRSP problem iff Player A has a winning strategy
in G for ψ. So this explains all the lower bounds but for X P tParity,Streett,Rabinu. In the
long version of this work [12], we provide a Pspace lower bound also to Streett and Rabin
k-fixed NCRSP. This is done in two steps: first a reduction from QBF to zero-sum two-player
Muller games is provided, similar to the one given in [16]. Then, the latter is reduced to a
Street (resp. Rabin) NCRSP with two players. Finally, the lower bounds for parity k-fixed
NCRSP reported in Table 1 have been obtained by reduction from the generalized parity
games considered in [10], where the objective is a disjunction (dually, a conjunction) of parity
conditions. In particular, we have proven that NCRSP on 3-players (resp. 4-players) parity
game is NP (resp. coNP)-hard.

For XPtSafety,Reachability,Büchi, coBüchiu, if the number of players in the given NCRSP
is a fixed constant k, then the two-player game construction to test tree automata emptiness
in Section 4 yields a polynomial size two-player zero-sum game G1, where the formula
characterizing the winning condition has constant size. The latter can be converted into an
equivalent deterministic Büchi tree automaton of polynomial size, whose product with G1
gives a Büchi game, solvable in PTime. Finally, if X P tParity,Streett,Rabin,Mulleru, the
corresponding k-fixed NCRSP can be reduced to a polynomial-size two-player game, with a 0-
sum Muller acceptance condition defined by a boolean formula of polynomial size. Hence, the
PSpace upper bound listed in Table 1 applies to k-fixed NCRSP with the above objectives.
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Abstract
It is shown that the shortest-grammar problem remains NP-complete if the alphabet is fixed and
has a size of at least 24 (which settles an open question). On the other hand, this problem can be
solved in polynomial-time, if the number of nonterminals is bounded, which is shown by encoding
the problem as a problem on graphs with interval structure. Furthermore, we present an O(3n)
exact exponential-time algorithm, based on dynamic programming. Similar results are also given
for 1-level grammars, i. e., grammars for which only the start rule contains nonterminals on the
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the compressed data without prior decompression forms a vibrant research area, usually
subsumed under the term algorithmics on compressed strings.

Compressing a word by a context-free grammar, so-called grammar-based compression,
is particularly well suited for this purpose.1 Nevill-Manning and Witten [17, 16], and
Kieffer et al. [10, 9, 23] are stated as the origins of this concept, but a closer look into
the older literature reveals that the external pointer macro (without overlapping and with
pointer size 1) defined by Storer and Szymanski [22, 21] is also equivalent to grammar-based
compression.

The success of grammars with respect to algorithmics on compressed strings is due to
the fact that they cover many compression schemes from practice (most notably, the family
of Lempel-Ziv encodings) and that they are mathematically easy to handle (see Lohrey [11]
for a survey on the role of grammar-based compression for algorithmics on compressed
strings). Many basic problems on strings, e. g., comparison, pattern matching, membership
in a regular language, retrieving subwords, etc. can all be solved in polynomial-time directly
on the grammars [11]. In addition, grammar-based compression has been successfully applied
in combinatorial group theory and to prove problems in computational topology to be
polynomial-time solvable [11]. Grammars as compressions have also been extended to more
complicated objects, e. g., trees (see [1, 12, 13, 14]) and two-dimensional words (see [3]).

On the other hand, work on the shortest-grammar problem, i. e., computing a minimal
grammar for a given word w, is somewhat scarce; its NP-completeness, the major downside
of grammar-based compression, has been used as a justification to focus on approximation
algorithms. In this regard, the best achieved approximation ratio is O(log( |w|m∗ )) (see [18, 4]),
where m∗ is the size of a smallest grammar, and an approximation ratio better than
8569
8568 ≈ 1.0001 is not possible (see [4]), assuming P 6= NP (the research seems to have
stagnated at this gap between lower and upper bound). However, the existing hardness
reductions (also for the inapproximability result) have a serious deficiency: they assume the
terminal alphabet to be unbounded. In [2], it is claimed that the hardness for alphabets of
size 3 follows from [21], but a closer look into [21] does not confirm this. For string problems,
where we typically deal with not only constant, but also very small alphabets, e. g., of size 2
or 4, this is rather unsatisfying. Another neglected aspect is the parameterised point of view,
i. e., can minimal grammars be efficiently computed, if certain parameters (e. g., alphabet
size, levels of the derivation tree, number of rules) are bounded? Furthermore, the fact that
for grammar compressions basic problems can be solved without decompression motivates
scenarios, where an extensive running time is invested only once, in order to obtain an
optimal compression, which is then stored and worked with. This assumption naturally leads
to exact exponential-time algorithms, which are not yet considered in the literature.

We investigate these aspects of the shortest-grammar problem. First, we close the gap
with respect to fixed alphabets left open in the literature, by showing the NP-completeness for
alphabets of size 24 in Section 3, which provides a more solid foundation for approximations
(or heuristics), but leaves the cases of small alphabets open.2 After this negative result, in
Section 4, we show that minimal grammars can be computed in polynomial-time, provided
that the size of the nonterminal alphabet is bounded. This is achieved by a reduction to
a graph problem, which, since the graphs are structurally simple, can be efficiently solved
(note that especially for string problems successful applications of this common algorithmic
technique are rare). Additionally, we show that an FPT-algorithm with respect to this

1 Such context-free grammars are also called straight-line programs in the literature.
2 Note that this negative result also transfers to the shortest-grammar problem for trees.
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parameter is unlikely (under complexity theoretical assumptions). Finally, we turn our
attention to exact exponential-time algorithms in Section 5 and first observe that brute-force
algorithms with running time O(c|w|), for a constant c, can be easily found, but we also
present an O(3|w|) dynamic programming algorithm.

Moreover, these questions are also investigated for 1-level grammars, i. e., only the start
rule contains nonterminals; thus, measuring the impact of the “hierarchical depth” of the
grammars. Considering that the exploitation of hierarchical structure is one of the main
features of grammars (allowing exponential compression rates, in contrast to 1-level grammars,
where quadratic is the best), it is surprising that our results suggest that computing general
grammars is, if at all, only insignificantly more difficult than computing 1-level grammars.

Due to space restriction, we only give proof sketches for the main results.

2 Preliminaries

Let N = {1, 2, 3, . . .}. By |A|, we denote the cardinality of a set A. Let Σ be a finite alphabet
of symbols. A word or string (over Σ) is a sequence of symbols from Σ. For any word w over
Σ, |w| denotes the length of w and ε denotes the empty word, i. e., |ε| = 0. The symbol Σ+

denotes the set of all non-empty words over Σ and Σ∗ = Σ+ ∪ {ε}. For the concatenation
of two words w1, w2 we write w1 · w2 or simply w1w2. For every symbol a ∈ Σ, by |w|a we
denote the number of occurrences of symbol a in w. We say that a word v ∈ Σ∗ is a factor
of a word w ∈ Σ∗ if there are u1, u2 ∈ Σ∗ such that w = u1vu2. If u1 = ε or u2 = ε, then v
is a prefix (or a suffix, respectively) of w. Furthermore, F(w) = {u : u is a factor of w} and
F≥2(w) = {u : u ∈ F(w), |u| ≥ 2}. For a position j, 1 ≤ j ≤ |w|, we refer to the symbol at
position j of w by the expression w[j] and w[j..j′] = w[j]w[j + 1] . . . w[j′], j ≤ j′ ≤ |w|. By
wR, we denote the reversal of w, i. e., wR = w[n]w[n− 1] . . . w[1], where |w| = n.

A factorisation of a word w is a tuple (u1, u2, . . . , uk) with ui 6= ε, 1 ≤ i ≤ k such
that w = u1u2 . . . uk. A factorisation p = (u1, u2, . . . , uk) is a refinement of a factorisation
q = (v1, v2, . . . , vm), denoted by p � q, if (uji−1+1, uji−1+2, . . . , uji

) is a factorisation of vi,
1 ≤ i ≤ m for some {ji}0≤i≤m, with 0 = j0 < j1 < . . . < jm = k.

Grammars: A context-free grammar is a tuple G = (N,Σ, R, S), where N is the set of
nonterminals, Σ is the terminal alphabet, S ∈ N is the start symbol and R ⊆ N × (N ∪ Σ)+

is the set of rules (as a convention, we write rules (A,w) ∈ R also in the form A → w).
A context-free grammar G = (N,Σ, R, S) is a singleton grammar if R is a total function
N → (N ∪ Σ)+ and the relation {(A,B) : (A,w) ∈ R, |α|B ≥ 1} is acyclic.

For a singleton grammar G = (N,Σ, R, S), let DG : (N ∪ Σ) → (N ∪ Σ)+ be defined
by DG(A) = R(A), A ∈ N , and DG(a) = a, a ∈ Σ. We extend DG to a morphism
(N ∪ Σ)+ → (N ∪ Σ)+ by setting DG(α1α2 . . . αn) = DG(α1) DG(α2) . . .DG(αn), for αi ∈
(N ∪ Σ), 1 ≤ i ≤ n. Furthermore, for every α ∈ (N ∪ Σ)+, we set D1

G(α) = DG(α),
Dk

G(α) = D(Dk−1
G (α)), for every k ≥ 2, and DG(α) = limk→∞Dk

G(α) is the derivative of α.
By definition, DG(α) exists for every α ∈ (N ∪ Σ)+ and is an element from Σ+. The size
of the singleton grammar G is defined by |G| =

∑
A∈N |DG(A)| and its number of levels is

min{k : Dk
G(S) = DG(S)}. In particular, a grammar with d levels is a d-level grammar.

From now on, we simply use the term grammar instead of singleton grammar and if the
grammar under consideration is clear from the context, we also drop the subscript G. We
set D(G) = D(S) and say that G is a grammar for D(G). In the tuple (N,Σ, R, S), we
sometimes replace S directly by D(S), which we then call the compressed string (of G) and
which we denote by cs.
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Let G = (N,Σ, R, cs) be a 1-level grammar. The profit of a rule (A,α) ∈ R is defined by
p(A) = |cs|A(|α| − 1)− |α|. Intuitively speaking, if all occurrences of A in cs are replaced by
α and the rule A → α is deleted, then the size of the grammar increases by exactly p(A).
Consequently, |G| = |D(G)| −

∑
A∈N p(A).

A grammar G is minimal if |G| = min{|G′| : G′ is a grammar for D(G)} and the problem
of computing small grammars is defined as follows:
Shortest Grammar Problem (SGP)
Instance: A word w and a k ∈ N.
Question: Does there exist a grammar G with D(G) = w and |G| ≤ k?
The Shortest 1-Level Grammar Problem (1-SGP) is defined analogously, with the
only difference that we ask for a 1-level grammar of size at most k.

Examples: Even for small – say binary – alphabets and a fixed word with a simple structure,
finding minimal grammars can be surprisingly difficult. In order to substantiate this claim,
let w =

∏n
i=1 10i be a word over Σ = {0, 1}, where n = 2k, k ∈ N. One way of compressing

w that comes to mind is by the use of rules A1 → 10, Ai → Ai−10, 2 ≤ i ≤ n − 1, and a
compressed string A1A2 . . . An−1An−10, which leads to a grammar G1 of size 3n−1. However,
it is also possible to construct the factors 0i, 1 ≤ i ≤ n, “from the middle” by rules A1 → 010,
Ai → 0Ai−10, 2 ≤ i ≤ n

2 − 1, and a compressed string 1(A1)2(A2)2 . . .. By using these ideas,
we can construct a smaller grammar G2 of size 5n

2 + 2k− 3. Both of these grammars achieve
a compression rate of order O(

√
|w|), but, generally, grammars are capable of exponential

compression rates (see [4]). Aiming for such exponential compression, it seems worthwhile to
represent every unary factor 02` , 1 ≤ ` ≤ k, by a nonterminal B` (obviously, this requires
only k rules of size 2) and then represent all unary factors by sums of these powers (e. g., 074

is compressed by B1B3B6). However, this yields a grammar G3 of size k(n+3)
2 − 2, which, if

k is sufficiently large, is worse than the previous grammars.
A smaller grammar can be obtained by combining the idea of G2 with that of representing

factors 02` by nonterminals B`. More precisely, for every `, 1 ≤ i ≤ k − 2, we represent 02`

by an individual nonterminal B` and, in addition, we use rules A1 → 010, Ai → 0Ai−10,
2 ≤ i ≤ n

4 . Then the left and right half of w can be compressed in the way of G2, with the only
difference that in the right part, for every unary factor, we also need an occurrence of Bk−1,
i. e., the compressed string is 1(A1)2 . . . (An

4
)2Bk−2(A1Bk−1)2 . . . (An

4−1Bk−1)2An
4
(Bk−2)3.

The size of this grammar G4 is only 9n
4 + 2k − 2.

3 NP-Hardness of Computing Minimal Grammars for Fixed
Alphabets

In [4], Charikar et al. prove the shortest-grammar problem to be NP-complete by a reduction
from the vertex cover problem (which is based on ideas used by Storer and Szymanski in
[22]). A simple modification of this reduction yields the following.

I Theorem 1. 1-SGP is NP-complete.

In these reductions, we encode the different vertices of a graph by single symbols and
also use individual separator symbols (i. e., symbols with only one occurrence in the word
to be compressed). This makes it particularly easy to devise suitable gadgets, but, on the
other hand, it assumes that we have an arbitrarily large alphabet at our disposal, which,
for practical situations, is not justified. In the remainder of this section, we shall extend
these hardness results to the more realistic case of fixed alphabets. The general structure of
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our reductions is similar to the ones of [4, 21], but, due to the constraint of having a fixed
alphabet, they substantially differ on a more detailed level.

Since fixed alphabets make it impossible to use single symbols (or even words of constant
size) as separators or as representing vertices, we need to use special encodings for which we
are able to determine how a smallest grammar will compress them (in this regard, recall our
examples from page 4 demonstrating how difficult it can be to determine a smallest grammar
even for a single simply structured word). This constitutes a substantial technical challenge,
which complicates our reductions considerably.

3.1 The 1-Level Case
As a tool for proving the hardness of 1-SGP, but also as a result in its own right, we first
show that the compression of any 1-level grammar is at best quadratic (in contrast to general
grammars, which can achieve exponential compression (see [4]).3

I Lemma 2. Let G be a 1-level grammar. Then |G| ≥ 2
⌊√
|D(G)|

⌋
.

In order to prove the NP-hardness of 1-SGP for constant alphabets, we devise a reduction
from the vertex cover problem. To this end, let G = (V,E) be a graph with V = {v1, . . . , vn}
and E = {(vj2i−1 , vj2i) : 1 ≤ i ≤ m}. Without loss of generality, we assume n ≥ 40. We
define Σ = {a, b, �, ?,#} and [�] = �n3 . For each i, 1 ≤ i ≤ n, we encode vi by a word
vi ∈ {a, b}dlog(n)e such that vi 6= vj if and only if i 6= j (e. g., by taking vi to be the binary
representation of i over symbols a and b with dlog(n)e many digits). We now define the
following word over Σ:

w =
n∏

i=1
(#vi[�]vi#[�])2dlog(n)e+3

n∏
i=1

(#vi#[�])dlog(n)e+1
m∏

i=1
(#vj2i−1#vj2i

#[�])2 ? [�]n
3
.

I Theorem 3. 1-SGP is NP-hard, even for |Σ| = 5.

Proof Sketch. A smallest grammar for w produces the two parts to the left and right of ?
independently, since |w|? = 1. According to Lemma 2, the right side [�]n3 is best compressed
by n3 occurrences of a nonterminal D with derivative [�] and, by a slightly more involved
argument, it can be shown that also for the whole word w, it is still best to compress all
occurrences of [�] by D. Having established this basic property, it is then possible to show
that the remaining rules have derivative #vi, vi# or #vj#. The grammar is smallest, if
every edge #vj2i−1#vj2i

# is compressed by using a rule of the last type; thus, those rules
translate into a vertex cover. Analogously, a vertex cover translates into a grammar. J

3.2 The Multi-Level Case
In the above reduction, the main difficulty is the use of unary factors as separators. However,
once those separators are in place, we know the factors of w that are produced by nonterminals
and, for a minimal 1-level grammar, this already fully determines the compressed string and,
thus, the grammar itself. For the multi-level case, the situation is much more complicated.
Even if we manage to force the compressed string to factorise w into parts that are either
separators or codewords of vertices, this only determines the top-most level of the grammar
and we do not necessarily know how these single factors are further hierarchically compressed

3 The bound of Lemma 2 is tight, e. g., consider an2
and a grammar with rules S → An and A→ an.
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and, more importantly, the dependencies between these compressions (i. e., how they share
the same rules).

To deal with these issues, we rely on a larger alphabet Σ and we use palindromic codewords
u ? uR, where ? ∈ Σ and u is a word over an alphabet of size 7 representing a 7-ary number.
The purpose of the palindromic structure is twofold. Firstly, it implies that codewords always
start and end with the same symbol, which, in the construction of w, makes it easier to avoid
the situation that an overlapping between neighbouring codewords is repeated elsewhere
in w (see Lemma 4). Secondly, if all codewords are produced by individual nonterminals,
then we can show that they are produced best “from the middle”, similar as the rules of the
example grammar G2 from page 4. In addition to this, we also need a vertex colouring and
an edge colouring of certain variants of the graph to be encoded.

In order to formally define the reduction, we first give some preparatory definitions. Let
Σ = {x1, . . . , x7, d1, . . . , d7, ?,#, ¢1, ¢2, $1, . . . , $6} be an alphabet of size 24. The function
M : N×N→ N is defined by M(q, k) := min{r > 0: ∃t ∈ N : q = tk + r}.4 Let the functions
f : N → {x1, . . . , x7}+ and g : N → {d1, . . . , d7}+ be defined by f(q) := xa0xa1 . . . xak

and
g(q) := da0da1 . . . dak

, for every q ∈ N, where k ∈ N ∪ {0} and ai ∈ {1, 2, . . . , 7}, 0 ≤ i ≤ k,
are such that q =

∑k
i=0 ai7i is satisfied.5 For every i ∈ N, let 〈i〉v := f(i) ? f(i)R and

〈i〉� := g(i) ? g(i)R. The factors 〈i〉v and 〈i〉� are called codewords; 〈i〉v represents a vertex
vi, while the 〈i〉� are used as separators. The functions f and g are bijections and they are
7-ary representations of the integers n > 0 (least significant digit first). Thus, for every
n, n′ ∈ N with M(n, 7) 6= M(n′, 7), the words 〈n〉v and 〈n′〉v do not share any prefixes or
suffixes (and the same holds for the words 〈n〉�).

Let G = (V,E) be a subcubic graph (i. e., a graph with maximum degree 3) with
V = {v1, . . . , vn} and E = {{vj2i−1 , vj2i

} : 1 ≤ i ≤ m} (note that the vertex cover prob-
lem remains NP-hard if restricted to subcubic graphs (see [7])). Let G′ = (V,E′) be the
multi-graph defined by E′ :=

{
{vj2i

, vj2i+1} : 1 ≤ i ≤ m− 1
}
. By [19], it is possible to

compute in polynomial-time a proper edge-colouring (meaning a colouring such that no
two edges which share one or two vertices have the same colour) for a multi-graph with
at most b 3

2mc colours, where m is the maximum degree of the multi-graph. Since G is
subcubic, the maximum degree of G′ is three and we can compute a proper edge-colouring
Ce : E′ → {1, 2, 3, 4} for G′ with colours {1,2,3,4}. Let G2 = (V,E′′) be the graph defined
by E′′ = {{u, v} : {u,w}, {w, v} ∈ E for some w ∈ V \{u, v}, u 6= v}. Since G is subcubic,
G2 has maximum degree at most six. Let Cv : {1, . . . , n} → {1, 2, 3, 4, 5, 6, 7} be a proper
vertex-colouring (defined over the vertex-indices of V = {v1, . . . , vn}) for G2 with colours
{1, 2, 3, 4, 5, 6, 7}. Such a colouring can be computed by an algorithmic version of Brook’s
theorem [20].

Let wG = uvw be the word representing G, where u, v, w ∈ Σ+ are defined as follows.6

u =
6∏

j=0

(14n∏
i=1

(〈i〉� 〈M(i+ j, 14n)〉v)
)

$1

v =
n∏

i=1
(# 〈7i+ Cv(i)〉v ¢1 〈7i− 1〉�) $2

n∏
i=1

(# 〈7i+ Cv(i)〉v ¢2 〈7i− 2〉�) $3

4 M is the positive modulo-function, i. e., M(q, k) = q%k, if q%k 6= 0 and M(q, k) = k, otherwise.
5 Since, for every q ∈ N, there are unique k ∈ N and ai ∈ {1, 2, . . . , 7}, 1 ≤ i ≤ k, such that q =

∑k

i≥0 ai7i,
the functions f and g are well-defined.

6 Note that m ≤ 3n
2 , so 7m < 14n in the word w.
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n∏
i=1

(〈7i+ Cv(i)〉v # 〈7i− 2〉� ¢1) $4

n∏
i=1

(〈7i+ Cv(i)〉v # 〈7i− 1〉� ¢2) $5

n∏
i=1

(# 〈7i+ Cv(i)〉v # 〈7i〉�) $6

w =
m−1∏
i=1

(# 〈7j2i−1 + Cv(j2i−1)〉v # 〈7j2i + Cv(j2i)〉v # 〈7i+ Ce(vj2i , vj2i+1)〉�)

# 〈7j2m−1 + Cv(j2m−1)〉v # 〈7j2m + Cv(j2m)〉v #

The next lemma states that any factor of wG is not repeated, if it spans over the ? of
some codeword 〈i〉v or 〈i〉� and also reaches over the boundaries of this codeword into
some other factor. This property, which can be proven by a straightforward, but rather
cumbersome analysis, is crucial for the correctness of the reduction and also responsible for
the complicated structure of wG . Here, we only wish to point out that it follows from the fact
that all occurrences of the same codeword are delimited by distinct symbols. This is ensured
by the symbols #, ¢1, ¢2, $1, . . . , $6, by the fact that codewords 〈i〉v and 〈i〉� start and end
with xM(i,7) and dM(i,7), respectively, and, for the part w, by the colourings Ce and Cv.

I Lemma 4. There is a minimal grammar G = (N,Σ, R, S) for wG such that, for every
A ∈ N , |D(A)|? ≥ 1 implies that D(A) is a factor of some # 〈7i+ Cv(i)〉v #, 1 ≤ i ≤ n, or
a factor of some 〈j〉�, 1 ≤ j ≤ 14n.

I Lemma 5. There is a minimal grammar G for wG such that, for every i, 1 ≤ i ≤ 14n,
there is a nonterminal with derivative 〈i〉� and a nonterminal with derivative 〈i〉v, and, for
every i, 1 ≤ i ≤ n, there is a nonterminal with derivative # 〈7i+ Cv(i)〉v and a nonterminal
with derivative 〈7i+ Cv(i)〉v#.

Proof Sketch. Let G be a minimal grammar. Since |u|? = 196n, Lemma 4 implies that
|β| ≥ 196n, where β is the prefix of the compressed string producing u. Also by Lemma 4,
every 〈i〉� or 〈i〉v that is not a derivative of some rule, is produced by at least two nonterminals
(we assume that there are k many such bad codewords). This implies that β contains at least
7dk

2 e additional nonterminals (each codeword has 7 occurrences in u and the nonterminal
not producing ? can be used in the production of at most 2 bad codewords). Hence,
|β| ≥ 196n+ 7dk

2 e. For every bad codeword x ∈ {〈i〉�, 〈i〉v}, we can add a new rule Ax → αx

with |αx| = 3 and D(Ax) = x (this can be done by right sides of the form djAdj , where A
derives another codeword). This increases the size of the grammar by 3k, but we can now
produce every codeword of u by one nonterminal, which shortens β by 7dk

2 e > 3k.
We now add rules

←
Vi → #V7i+Cv(i),

→
Vi → V7i+Cv(i)#, where D(V7i+Cv(i)) = 〈7i+Cv(i)〉v,

and use them, in addition to the rules for the codewords 〈i〉�, to obtain a new compressed
string from wG (where also every factor #〈7i+ Cv(i)〉v# that has been produced before by
a single nonterminal is compressed by a rule

↔
Vi →

←
Vi#). Then, we erase all old rules with

derivatives #f(7i+Cv(i)) ? ri, ri ? f(7i+Cv(i))R#. The deletion of these rules and the size
of the new compressed string compensates the size increase of adding the new rules. J

I Lemma 6. There is a minimal grammar G for wG with the rules {r�,i, rv,i : 1 ≤ i ≤ 14n},
where r�,i = Di → di ? di and rv,i = Vi → xi ? xi, 1 ≤ i ≤ 7, r�,i = Di → g(i)[1]Dh(i)g(i)[1]
and rv,i = Vi → f(i)[1]Vh(i)f(i)[1], 8 ≤ i ≤ 14n with h(i) = 1

7 (i−M(i, 7)),
{
←
Vi → #V7i+Cv(i),

→
Vi → V7i+Cv(i)#: 1 ≤ i ≤ n}, {

↔
Vi → #

→
Vi : i ∈ I}, for an I ⊆ {1, . . . , n},

and with the compressed string
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∏6
j=0

(∏14n
i=1 (Di VM(i+j,14n))

)∏n
i=1

(←
Vi ¢1 D7i−1

)∏n
i=1

(←
Vi ¢2 D7i−2

)∏n
i=1

(→
Vi D7i−2 ¢1

)
∏n

i=1

(→
Vi D7i−1 ¢2

)∏n
i=1 (yi D7i)

∏m−1
i=1 (ziD7i+Ce(vj2i

,vj2i+1 ))zm,

where for every i, 1 ≤ i ≤ n, yi =
↔
Vi, if i ∈ I and yi =

←
Vi#, otherwise, and, for every k, 1 ≤

k ≤ m, zk ∈ {
↔
V j2k−1

→
V j2k

,
←
V j2k−1

↔
V j2k
} if {j2k−1, j2k}∩I 6= ∅, zk =

←
V j2k−1

←
V j2k

#, otherwise.

Proof Sketch. Lemma 5 ensures nonterminals Vi → αi with D(αi) = 〈i〉v. We now replace
it by a rule Vi → xi ? xi or Vi → f(i)[1]Vh(i)f(i)[1], as described in the statement of the
lemma. If |αi| ≥ 3, this is fine, but if |αi| = 2, we have to argue more carefully: we remove
Vi → AB for which i is maximal and observe that this implies that either A or B cannot
occur on any right side of a rule; thus, can be removed. Repeating this argument turns all
rules with derivative 〈i〉v in the right form and a similar argument applies to the rules with
derivatives 〈i〉�. Now it only remains to prove that the compressed string can be assumed to
have the desired form. If we replace all 〈i〉v, 〈i〉�, #〈i〉v and 〈i〉v# in wG by the respective
nonterminals, then this produces a compressed string whose size may increase compared to
the original one, but only by the number of factors #〈i〉v# that have been compressed by a
single nonterminal and are now compressed by

←
Vi#. This can be repaired by simply adding

a rule
↔
Vi → #

→
Vi, resulting in the set I mentioned in the statement of the lemma. J

Lemma 6 allows us to argue similarly as for the reduction from [4]: Γ = {vi : i ∈ I} is a
vertex cover (if {vi, vj} ∈ E is not covered, then adding

↔
Vi → #

→
Vi does not increase the size

of the grammar) and |G| = f(m,n) + |Γ|, where f is a polynomial. Furthermore, a vertex
cover Γ translates into a grammar of size f(m,n) + |Γ|, by setting I = {i : vi ∈ Γ}. Thus, G
has a vertex cover Γ iff there is a grammar G for wG with |G| ≤ f(m,n) + |Γ|.

I Theorem 7. SGP is NP-complete, even for alphabets of size 24.

4 Minimal Grammars with a Bounded Number of Nonterminals

A natural follow-up question to the hardness for fixed alphabets is whether polynomial-time
solvability is possible if instead the cardinality of the nonterminal alphabet N is bounded.
In this section, we answer this question in the affirmative by representing words w ∈ Σ∗ as
graphs Φm(w) and Φ1(w), such that smallest independent dominating sets of these graphs
correspond to a smallest grammar and a smallest 1-level grammar, respectively, for w.

We first define Φ1(w) and then derive Φm(w) from Φ1(w). Let Φ1(w) = (V,E) be defined
by V = V1 ∪ V2 ∪ V3 and E = E1 ∪ E2 ∪ E3, where

V1 = {(i, j) : 1 ≤ i ≤ j ≤ |w|} , E1 = {{(i1, j1), (i2, j2)} : i1 ≤ i2 ≤ j1} ,
V2 = F≥2(w) , E2 = {{w[i..j], (i, j)} : 1 ≤ i < j ≤ |w|} ,
V3 = {(u, i) : u ∈ V2, 0 ≤ i ≤ |u|} , E3 = {{u, (u, i)} : u ∈ V2, 0 ≤ i ≤ |u|} .

Intuitively speaking, the vertices of V1 represent every factor by its start and end position,
whereas V2 contains exactly one vertex per factor of length at least 2. Every u ∈ V2 is
connected to (i, j), if and only if w[i..j] = u. Vertices (i, j), (i′, j′) are connected if they refer
to overlapping factors. For every u ∈ V2, there are |u|+ 1 special vertices in V3 that are only
connected with u. Consequently, Φ1(w) consists of |w| layers, where the ith layer contains
the vertices (j, j + (i− 1)) ∈ V1, 1 ≤ j ≤ |w| − (i− 1), the vertices {u ∈ V2 : |u| = i} and the
vertices {(u, j) ∈ V3 : |u| = i, 0 ≤ j ≤ |u|} (see Figure 1 for an illustration).

I Lemma 8. Let w ∈ Σ∗, k ≥ 1. There is an independent dominating set D of cardinality k
for Φ1(w) if and only if there is a 1-level grammar G for w with |G| = k − |F≥2(w)|.
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(1, 3) (2, 4) (3, 5) (4, 6) (5, 7) (6, 8) (7, 9)

abb bba bab aba

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Figure 1 The third layer of Φ1(abbababab) (edges E1 omitted).

Proof Sketch. For an independent dominating set D of Φ1(w), V1∩D induces a factorisation
of w. For every (i, j) ∈ D, w[i..j] /∈ D, which implies that all |w[i..j]|+1 many V3-neighbours
of w[i..j] are in D. Now a 1-level grammar can be obtained by constructing rules for all
V2 \D. Analogously, a 1-level grammar translates into an independent dominating set. J

In order to extend this idea to the multi-level case, what comes to mind is to somehow
represent the vertices u ∈ V2 again by graph structures of the type Φ1(u) and repeating this
step, which considerably increases the size of the graph. Fortunately, it turns out that a
surprisingly simple modification of Φ1(w) is sufficient. For a word w ∈ Σ∗, let Φm(w) = (V,E)
be defined as follows. Let V = V1 ∪ V2 ∪ V3 ∪ V4, where V1 and V2 are defined as for Φ1(w),
V3 = {(u, 0) : u ∈ V2} and V4 =

⋃
u∈V2

V4,u with V4,u = {(u, i, j) : 1 ≤ i ≤ j ≤ |u|, u[i..j] 6= u}
for every u ∈ V2. Moreover, E = E1 ∪E2 ∪E3 ∪E4 ∪E5, where E1 and E2 are defined as for
Φ1(w), E3 = {{u, (u, 0)} : u ∈ V2} ∪ {{u, (u, i, j)} : u ∈ V2, (u, i, j) ∈ V4,u}, E4 =

⋃
u∈V2

E4,u,
where, for every u ∈ V2, E4,u = {{(u, i1, j1), (u, i2, j2)} ⊆ V4,u : i1 ≤ i2 ≤ j1} and E5 =
{{u, (v, i, j)} : u, v ∈ V2, v[i..j] = u, u 6= v}.

Intuitively speaking, Φm(w) differs from Φ1(w) in the following way. We add to every
vertex u ∈ V2 a subgraph (V4,u, E4,u), which is completely connected to u and which
represents u in the same way as the subgraph (V1, E1) of Φ1(w) represents w, i. e., factors
u[i..j] are represented by (u, i, j) and edges represent overlappings. Moreover, if a u ∈ V2 is
a factor of some v ∈ V2, then there is an edge from u to all the vertices (v, i, j) ∈ V4,v that
satisfy v[i..j] = u. Finally, every u ∈ V2 is also connected with an otherwise isolated vertex
(u, 0) ∈ V3. See Figure 2 for a partial illustration of a Φm(w).

I Lemma 9. Let w ∈ Σ∗, k ≥ 1. There is an independent dominating set D of cardinality k
for Φm(w) if and only if there is a grammar G for w with |G| = k − |F≥2(w)|.

Proof Sketch. The correspondence of independent dominating sets D for Φm(w) and gram-
mars for w is similar as in the 1-level case. Again, D ∩ V1 induces a factorisation of w, and,
in the same way, for every u ∈ V2 \D (i. e., the factors for which rules will be constructed),
D ∩ V4,u induces a factorisation of u. Each (v, i, j) ∈ D ∩ V4,u with |v| ≥ 2 is connected to
v ∈ V2, which implies that v /∈ D; thus, v will also be represented by a rule and so on. J

The proofs of Lemmas 8 and 9 also show how an independent dominating set D of
Φ(w) ∈ {Φ1(w),Φm(w)} translates into a grammar for w, which, in the following, we will
denote by G(D). Consequently, we can solve the smallest grammar problem by computing
minimal independent dominating sets. Unfortunately, this is a hard problem, even for quite
restricted graph classes [15, Theorem 13]. However, Φ(w) may have structural features that
could be exploited in this regard, e. g., it is a 2-interval graph (see [8]).

Our algorithmic application is based on the following observation. If we are looking for a
grammar G = (N,Σ, R, cs) with {D(A) : A ∈ N} = F , for some set F ⊆ F≥2(w), then we
need an independent dominating set D with (F≥2(w) \ F ) ⊆ D and F ∩D = ∅. Obviously,
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abbaaa (ab,0)(ba,0)(aa,0)

(ab,1,1) (ab,2,2)(ba,1,1) (ba,2,2)(aa,1,1) (aa,2,2)

ababaaaab (aba, 0)(baa, 0)(aab, 0)

(aba, 1,1) (aba, 2,2) (aba, 3,3)(baa, 1,1) (baa, 2,2) (baa, 3,3)(aab, 1,1) (aab, 2,2) (aab, 3,3)

(aba, 1,2) (aba, 2,3)(baa, 1,2) (baa, 2,3)(aab, 1,2) (aab, 2,3)

Figure 2 Second and third layer of Φm(abaabaa) (vertices V1 and edges E1 ∪ E2 omitted).

D is the disjoint union of (F≥2(w) \ F ) and an independent dominating set D′ for the graph
H = Φ(w) \ (N [F≥2(w) \ F ] ∪ F ),7 which is necessarily an interval graph; thus, a smallest
independent dominating set for it can be efficiently computed (see [6]). For a word w and
a set F ⊆ F≥2(w), we define MinIDS(w,F ) = DH ∪ (F≥2(w)\F ), where DH is a smallest
independent dominating set for H = Φm(w) \ (N [F≥2(w) \ F ] ∪ F ), and 1L-MinIDS(w,F ) is
defined analogously by using Φ1(w) instead of Φm(w). In this way, for any set F ⊆ F≥2, we
can compute a grammar that is minimal among all grammars that have rules for exactly the
factors in F (this is also an interesting problem in its own right, e. g., if a compressed word
is extended by a new part that should be compressed by already existing rules).

I Lemma 10. Let w ∈ Σ+ and F ⊆ F≥2(w). MinIDS(w,F ) and 1L-MinIDS(w,F ) can be
computed in time O(|w|6) and O(|w|4), respectively. Furthermore, G(MinIDS(w,F )) is a
minimal grammar for w and G(1L-MinIDS(w,F )) is a minimal 1-level grammar for w.

If instead of a set F of factors, we are only given an upper bound k on |N |, then we can
compute a minimal grammar by enumerating all F ⊆ F≥2(w) with |F | ≤ k and computing
G(MinIDS(w,F )). This shows that minimal grammars can be computed in polynomial time
if the number of nonterminals is bounded.

I Theorem 11. Let w ∈ Σ∗ and k ∈ N. A grammar (1-level grammar, resp.) for w with at
most k rules that is minimal among all grammars (1-level grammars, resp.) for w with at
most k rules can be computed in time O(|w|2k+6) (O(|w|2k+4), resp.).

The next question is whether these problems are also fixed-parameter tractable with
respect to the number of nonterminals.8 Unfortunately, this seems unlikely, since, as stated
by the next result, these parameterisations of 1-SGP and SGP are W[1]-hard.

I Theorem 12. 1-SGP and SGP parameterised by |N | are W[1]-hard.

7 N [v] is the closed neighbourhood of vertex v and for C ⊆ V , N [C] =
⋃

v∈C
N [v].

8 For unexplained concepts of parameterised complexity, we refer to Downey and Fellows [5].
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This can be proven by reducing from independent set, i. e., a graph G = ({v1, v2, . . . , vn}, E)
and k ∈ N is transformed into the word w =

∏
{vi,vj}∈E(#vi#vj#�)

∏n
i=1(#vi#�)n−|N(vi)|,

where N(vi) is the neighbourhood of vi and every occurrence of � stands for a distinct symbol.
To see the the correctness of this reduction, it is sufficient to observe that the vertices vi of
an independent set for G correspond to the rules of a grammar of form Ai → #vi#.

5 Exact Exponential Time Algorithms

Computing G(MinIDS(w,F )), for all F ⊆ F≥2(w), yields a simple brute-force algorithm with
a running time in O(2|w|2). Another obvious approach is to enumerate all ordered trees
with |w| leaves (for each such tree T , an optimal grammar whose derivation tree has the
structure T can be easily computed), which can be done in time O(8|w|).9 In the following,
we shall give more sophisticated exact exponential-time algorithms with running times in
O∗(1.8392|w|), for the 1-level case, and O∗(3|w|), for the multi-level case.

Let G = (N,Σ, R, cs) be a grammar for w and let α = A1 . . . Ak, Ai ∈ (Σ∪N), 1 ≤ i ≤ k.
The factorisation of D(α) induced by α is the tuple (DG(A1), . . . ,DG(Ak)). Furthermore,
the factorisation of w induced by cs is called the factorisation of w induced by G.

5.1 The 1-Level Case
Let q = (u1, u2, . . . , uk) be a factorisation for a word w and let Γq = {ui : 1 ≤ i ≤ k, |ui| ≥ 2}
and let the 1-level grammar Gq = (Nq,Σ, Rq, csq) be defined by Rq = {(Au, u) : u ∈ Γq},
Nq = {Au : u ∈ Γq} and csq = B1 . . . Bk with Bj = Auj , if uj ∈ Γq and Bj = uj , otherwise.

I Lemma 13. For any factorisation q = (u1, u2, . . . , uk) for w, Gq is minimal among all
1-level grammars for w that induce the factorisation q.

Choosing the smallest among all grammars {Gq : q is a factorisation of w} yields an
O∗(2n) algorithm for 1-SGP. However, it is not necessary to enumerate factorisations that
contain at least two consecutive factors of length 1, which improves this result as follows.

I Theorem 14. 1-SGP can be solved exactly in polynomial space and in time O∗(1.8392|w|).

5.2 The Multi-Level Case
The obvious idea for a dynamic programming algorithm is to extend a smallest i-level grammar
by a new level in order to obtain a smallest (i+ 1)-level grammar. However, this approach
does not seem to work if we take the levels of a grammar to be cs,D(cs),D(D(cs)), . . . , w
(note that these are also the levels of the derivation tree). Intuitively speaking, the problem
is that if we try to either add a new level on top (i. e., a new compressed string) of the
grammar or at the bottom (by further compressing the terminal right sides of the last rules
applied), then this decision is not local, since it is possible that rules to be added are already
used somewhere else in the grammar. So we need to define levels in such a way that all
occurrences of a nonterminal are on the same level.

For a d-level grammar G = (N,Σ, R, cs), let N1, . . . , Nd be the partition of N into
Ni = {A ∈ N : (Di

G(A) ∈ Σ+) ∧ (Di−1
G (A) /∈ Σ+)} and let Li : (N ∪ Σ)∗ → (N ∪ Σ)∗,

1 ≤ i ≤ d, be component-wise defined by Li(x) = D(x), if x ∈ Ni and Li(x) = x, otherwise.

9 There are C|w|−1 ≤ 4|w|−1 ordered binary trees with |w| leaves, where C|w|−1 is the (|w| − 1)th Catalan
number, and every ordered tree can be obtained from a binary one by contracting some of its edges.
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Taking the strings (Li+1 ◦ Li+2 ◦ · · · ◦ Ld)(cs), which contain all occurrences of nonterminals
Ni, as the levels of the grammar, we are able to define a dynamic programming algorithm.10

I Theorem 15. SGP can be solved exactly in time and space O∗(3|w|).

Proof Sketch. With the help of the mappings Li, we can define the term profit for rules from
a d-level grammar G = (N,Σ, R, cs) as follows. The profit for a rule A→ α with A ∈ Nd can
be defined like in the 1-level case, i. e., p(A) = |cs|A(|α| − 1)− |α|, considering that removing
this rule and replacing each occurrence of A in cs by α increases the size of the grammar by
|cs|A(|α| − 1)− |α|. Inductive use of this argument allows us to define the profit of any rule
A→ α with A ∈ Ni by p(A) := |(Li+1 ◦ Li+2 ◦ · · · ◦ Ld)(cs)|A(|α| − 1)− |α|. This allows us
to compute the size of a G by |w| −

∑
A∈N p(A). The dynamic programming algorithm runs

trough steps i = 1, 2, . . . , w
2 and in step i, it considers all possibilities for two factorisations

qi−1 and qi of w induced by (Li ◦ Li+1 ◦ · · · ◦ Ld(cs) and (Li+1 ◦ · · · ◦ Ld)(cs), respectively
(note that this implies qi−1 � qi). The differences between qi−1 and qi implicitly define Ni.
Let qi = (v1, v2, . . . , vk) and let qi−1 = (u1, u2, . . . , u`), i. e., for some ji, 0 ≤ i ≤ k, with
1 = j0 < j1 < . . . < jk = `+ 1, (uji−1 , uji−1+1, . . . , uji−1) is a factorisation of vi, 1 ≤ i ≤ k.
If js − js−1 > 1 for some 1 ≤ s ≤ k, Ni contains a nonterminal A with |D(A)| = js − js−1
and D(A) = vs. The term | Li ◦ Li+1 ◦ · · · ◦ Ld)(cs)|A is also implicitly given by counting how
often the sequence of factors (ujs−1+1, . . . , ujs) independently occurs in qi−1 and is combined
into one single factor in qi, i.e.: |{t : (ujt−1+1, . . . , ujt

) = (ujs−1+1, . . . , ujs
)}|. This allows

to calculate the profit of the rule for A without knowing the exact structure of the rules
for nonterminals in Nj with j 6= i. By Lemma 13, this choice of nonterminals for Ni is
optimal for the fixed induced factorisations, which means that a search among all choices
for qi−1 and qi yields a minimal i-level grammar for w. The running time of this algorithm
is dominated by enumerating all pairs qi−1 and qi of factorisations of w. However, due to
qi−1 � qi, these pairs can be compressed as vectors {0, 1, 2}|w|−1 (the entries denote whether
the corresponding position in w is factorised by both, only one or none of the factorisations).
Hence, enumerating these pairs of vectors can be done in time O(3|w|). J

6 Conclusions

We conclude this work by deriving some parameterised complexity results.11 The shortest-
grammar problem (1-level and multi-level) is Para-NP-hard with respect to |Σ|, it is in XP
with respect to |N |, but also W[1]-hard, so most likely not in FPT. Furthermore, the hardness
of 1-SGP shows that bounding or parameterising by the number of levels does not help
either. However, if we parameterise by both |Σ| and ` = max{|D(A)| : A ∈ N}, then it is
sufficient to compute G(MinIDS(w,F )) for every set F ⊆ {u : u ∈ Σ+, |u| ≤ `}, which, since
the number of such sets is bounded by the parameters, yields an fpt-algorithm. A probably
more interesting combination of parameters, for which the existence of an fpt-algorithm is
still open, would be |Σ| and |N |.

The most interesting question (also from a practical point of view) left open is whether it is
possible to compute minimal grammars for small (especially binary) alphabets in polynomial-
time. The substantial effort that was necessary to prove Theorem 7 suggests that answering
this question in the negative might be difficult. On the other hand, it is not apparent
how a small alphabet could help in order to efficiently compute smallest grammars and, if

10The composition (f ◦ g) of mapping f : A→ A, g : A→ A is defined by (f ◦ g)(a) = f(g(a)).
11For unexplained concepts of parameterised complexity, we refer to Downey and Fellows [5].
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this is possible, it seems that deeper combinatorial insights with respect to grammar-based
compression are necessary.
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Abstract
The downward closure of a language is the set of all (not necessarily contiguous) subwords of its
members. It is well-known that the downward closure of every language is regular. Moreover,
recent results show that downward closures are computable for quite powerful system models.

One advantage of abstracting a language by its downward closure is that then equivalence and
inclusion become decidable. In this work, we study the complexity of these two problems. More
precisely, we consider the following decision problems: Given languages K and L from classes C
and D, respectively, does the downward closure of K include (equal) that of L?

These problems are investigated for finite automata, one-counter automata, context-free gram-
mars, and reversal-bounded counter automata. For each combination, we prove a completeness
result either for fixed or for arbitrary alphabets. Moreover, for Petri net languages, we show
that both problems are Ackermann-hard and for higher-order pushdown automata of order k, we
prove hardness for complements of nondeterministic k-fold exponential time.
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1 Introduction

The downward closure of a language is the set of (not necessarily contiguous) subwords of
its members. It is a well-known result of Haines [17] that the downward closure of every
language is regular. Of course, it is not always possible to compute the downward closure of
a given language, but oftentimes it is. For example, it has been shown to be computable for
such powerful models as Petri net languages by Habermehl, Meyer, and Wimmel [14] and
higher-order pushdown automata by Hague, Kochems, and Ong [15]. A sufficient condition
for computability can be found in [34].

Moreover, not only are downward closures often computable, they are also a meaningful
abstraction of infinite-state systems. In a complex system, one can abstract a component
by the downward closure of the messages it sends to its environment. This corresponds to
the assumption that messages can be dropped on the way. Furthermore, recent work of
La Torre, Muscholl, and Walukiewicz [32] shows that among other mild conditions, computing
downward closures is sufficient for verifying safety conditions of parametrized asynchronous
shared-memory systems.

The advantage of having an abstraction of an infinite-state systems as regular languages is
that the latter offer an abundance of methods for analysis. An important example is deciding
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behavioral equivalence or inclusion. This is notoriously hard to do and for nondeterministic
infinite-state systems, language equivalence and inclusion are usually undecidable. Using
downward closures, such behavioral comparisons can be made in an approximative manner.

Despite these facts, results about the complexity of deciding whether the downward
closure of one language includes or equals that of another mainly considered regular lan-
guages. Bachmeier, Luttenberger, and Schlund [4] have shown that the equivalence problem
for downward closures of two given NFAs is coNP-complete. Karandikar, Niewerth, and
Schnoebelen [22] strengthened coNP-hardness to the case of DFAs over binary alphabets and
proved coNP-completeness for the inclusion variant. They also obtained NL-completeness
of inclusion in the case of NFAs over a unary alphabet. Together with exponential-time
downward closure constructions [4, 7, 11, 33, 27], these results imply that equivalence and
inclusion are in coNEXP for context-free grammars. Rampersad, Shallit, and Xu [31] proved
that one can decide in linear time whether the downward closure of a given NFA contains all
words. Subsequently, Karandikar, Niewerth, and Schnoebelen [22] showed that this problem
is NL-complete. Similar questions have been studied for upward closures [4, 22].

Previous work on downward closures of infinite-state systems has mainly focused on mere
computability [1, 2, 7, 14, 15, 33, 34, 35] or on descriptional complexity [3, 10, 11, 27, 22]. This
work studies the complexity of the inclusion and the equivalence problem of downward closures
between some prominent types of system models—finite automata, one-counter automata,
reversal-bounded counter automata [19], and context-free grammars. More precisely, we are
interested in the following questions: For two system modelsM and N and languages L and
K generated by some device inM and N , respectively, what is the complexity of (i) deciding
whether K↓ ⊆ L↓ (downward closure inclusion problem) or (ii) deciding whether K↓ = L↓
(downward closure equivalence problem)?

Contribution. We determine the complexity of the downward closure inclusion problem and
the downward closure equivalence problem among finite automata, one-counter automata,
reversal-bounded counter automata (either with a fixed number of counters and reversals or
without), and context-free grammars.

For the inclusion problem, we prove completeness results in all cases except for two. The
complexities range from coNP over ΠP

2 to coNEXP (see Table 1). The two cases for which we
provide no completeness compare context-free grammars or general reversal-bounded counter
automata on the one side with reversal-bounded counter automata with a fixed number of
counters and reversals on the other side. However, we prove that both of these problems
are coNP-complete for each fixed input alphabet. For the equivalence problem, the situation
is similar. We prove completeness for each of the cases except for the combination above.
Again, fixing the alphabet leads to coNP-completeness.

The tools developed to achieve these results fall into three categories. First, there are
several generic results guaranteeing small witnesses to yield upper bounds. Second, we prove
model-specific results about downward closures that yield the upper bounds in each case.
Third, we have a general method to prove lower bounds for downward closure comparisons.
In fact, it applies to more models than the above: We prove that for Petri net languages,
the two comparison problems are Ackermann-hard. For higher-order pushdown automata of
order k, we show co-k-NEXP-hardness.

Related work. Another abstraction of formal languages is the well-known Parikh image [28].
The Parikh image of a language L ⊆ X∗ contains for each word w ∈ L a vector in N|X| that
counts the number of occurrences of each letter. For some language classes, it is known that
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Table 1 Complexity of the inclusion problem. The entry in row M and column N is the
complexity ofM ⊆↓ N . Except in the case Ideal ⊆↓ Ideal, all entries indicate completeness. A †
means that the entry refers to the fixed alphabet case (for at least two letters).

Ideal NFA OCA RBCk,r CFG RBC
Ideal ∈ L NL NL NL P NP
NFA NL coNP [4, 22] coNP [3, 4, 22] coNP coNP ΠP

2

OCA NL coNP [3, 4, 22] coNP [3, 4, 22] coNP coNP ΠP
2

RBCk,r NL coNP coNP coNP coNP ΠP
2

CFG P coNP coNP coNP† coNEXP coNEXP
RBC coNP coNP coNP coNP† coNEXP coNEXP

their Parikh image is effectively semilinear, which implies decidability of the inclusion and
equivalence problem for Parikh images. The investigation of these problems’ complexity
has been initiated by Huynh [18] in 1985, who showed that this problem is ΠP

2 -hard and
in coNEXP for regular and context-free languages. Kopczyński and To [23, 24] have then
shown that these problems are ΠP

2 -complete for fixed alphabets. Only very recently, Haase
and Hofman [13] have shown that the case of general alphabets is coNEXP-complete.

Due to space restrictions, most proofs can only be found in the full version of this
work [36].

2 Concepts and Results

If X is an alphabet, X∗ (X≤n) denotes the set of all words (of length ≤ n) over X. The
empty word is denoted by ε ∈ X∗. For words u, v ∈ X∗, we write u � v if u = u1 · · ·un and
v = v0u1v1 · · ·unvn for some u1, . . . , un, v0, . . . , vn ∈ X∗. It is well-known that � is a well-
quasi-order on X∗ and that therefore the downward closure L↓ = {u ∈ X∗ | ∃v ∈ L : u � v}
is regular for every L ⊆ X∗ [17]. An ideal is a set of the form Y ∗0 {x1, ε}Y ∗1 · · · {xn, ε}Y ∗n ,
where Y0, . . . , Yn are alphabets and x1, . . . , xn are letters. We will make heavy use of the
fact that every downward closed language can be written as a finite union of ideals, which
was first discovered by Jullien [21]. By P(S), we denote the powerset of the set S.

A finite automaton is a tuple A = (Q,X,∆, q0, Qf ), where Q is a finite set of states, X
is its input alphabet, ∆ ⊆ Q × X∗ × Q is a finite set of edges, q0 ∈ Q is its initial state,
and Qf ⊆ Q is the set of its final states. The language accepted by A is denoted L(A).
Sometimes, we write |A| for the number of states of A.

A context-free grammar is a tuple G = (N,T, P, S) where N and T are pairwise disjoint
alphabets, whose members are called the nonterminals and terminals, respectively. S ∈ N is
the start symbol and P is the finite set of productions of the form A→ w with A ∈ N and
w ∈ T ∗. The language generated by G is defined as usual.

One-counter Automata. A one-counter automaton (OCA) is a nondeterministic finite
automaton that has access to one counter that assumes natural numbers as values. The
possible operations are increment, decrement, and test for zero. We will not require a formal
definition, since in fact, all we need is the well-known fact that membership and emptiness
are NL-complete and the recent result that given an OCA A, one can compute in polynomial
time an NFA B with L(B) = L(A)↓ [3].
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Reversal-bounded counter automata. Intuitively, an r-reversal-bounded k-counter automa-
ton [19] (short (k, r)-RBCA) is a nondeterministic finite automaton with k counters that can
store natural numbers. For each counter, it has operations increment, decrement, and zero
test. Moreover, a computation is only valid if each counter reverses at most r times. Here, a
computation reverses a counter c if on c, it first executes a sequence of increments and then
a decrement command or vice versa. See [19] for details.

Instead of working directly with RBCA, we will work here with the model of blind counter
automata [9]. It is not as well-known as RBCA, but simpler and directly amenable to linear
algebraic methods. A blind k-counter automaton is a tuple A = (Q,X, q0,∆, Qf ), where Q,
X, q0, and Qf are defined as in NFAs, but ∆ is a finite subset of Q×(X∪{ε})×{−1, 0, 1}k×Q.
A walk is a word δ1 · · · δm ∈ ∆∗ where δi = (pi, xi, di, p

′
i) for i ∈ [1,m] and p′j = pj+1 for

j ∈ [1,m− 1]. The effect of the walk is d1 + · · ·+ dm. Its input is x1 · · ·xm ∈ X∗. If the walk
has effect 0 and p0 = q0 and pm ∈ Qf , then the walk is accepting. The language accepted by
A is the set of all inputs of accepting walks.

Using blind counter automata is justified because to each (k, r)-RBCA, one can construct
in logarithmic space a language-equivalent (kr, 1)-RBCA [5], which is essentially a blind
kr-counter automaton. On the other hand, every blind k-counter automaton can be turned in
logarithmic space into a (k + 1, 1)-RBCA [20]. Hence, decision problems about (k, r)-RBCA
for fixed k and r correspond to problems about blind k-counter automata for fixed k.

In the following, by a model, we mean a way of specifying a language. In order to succinctly
refer to the different decision problems, we use symbols for the models above. By Ideal, NFA,
OCA, RBCk,r, RBC, CFG, we mean ideals, finite automata, OCA, RBCA with a fixed number
of counters and reversals, general RBCA, and context-free grammars, respectively. Then,
for M,N ∈ {Ideal,NFA,OCA,RBCk,r,RBC,CFG}, we consider the following problems. In
the downward closure inclusion problem M⊆↓ N , we are given a language K inM and a
language L in N and are asked whether K↓ ⊆ L↓. For the downward closure equivalence
problem M =↓ N , the input is the same, but we are asked whether K↓ = L↓.

Results. The complexity results for the inclusion problem are summarized in Table 1. For
the equivalence problem, we will see that every hardness result for M ⊆↓ N also holds
for M =↓ N . Since for non-ideal models, the appearing complexity classes are pairwise
comparable, this implies that the complexity for M =↓ N is then the harder of the two
classes forM⊆↓ N and N ⊆↓M. For example, the problem NFA =↓ RBC is ΠP

2 -complete
and for fixed alphabets, RBCk,r =↓ CFG is coNP-complete.

3 Ideals and Witnesses

Our algorithms for inclusion use three types of witnesses. The first type is a slight variation
of a result of [4]. The latter authors were interested in equivalence problems, which caused
their bound to depend on both input languages. The proof is essentially the same.

I Proposition 1 (Short witness). If A is an NFA and K↓ 6⊆ L(A)↓, then there exists a
w ∈ K↓ \ L(A)↓ with |w| ≤ |A|+ 1.

The other types of witnesses strongly rely on ideals, which requires some notation. An
ideal is a product I = Y ∗0 {x1, ε}Y ∗1 · · · {xn, ε}Y ∗n where the Yi are alphabets and the xi are
letters. Its length |I|I is the smallest n such that I can be written in this form. Since every
downward closed language can be written as a finite union of ideals, we can extend this
definition to languages: |L|I is the smallest n such that L↓ is a union of ideals of length ≤ n.
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Sometimes, it will be convenient to work with a different length measure of ideals. An
ideal expression (of length n) is a product L1 · · ·Ln, where each Li is of the form Y ∗ or
{x, ε}, where Y is an alphabet and x is a letter. Note that Y ∗ = Y ∗{x, ε} if x ∈ Y and
{x, ε} = ∅∗{x, ε}. Therefore, an ideal expression of length n defines an ideal of length
≤ n. In analogy to | · |I, for a language L, we define its expression length |L|E to be the
smallest n such that L↓ can be written as a finite union of ideal expressions of length ≤ n.
The expression length has the advantage of being subadditive: For languages K,L we have
|KL|E ≤ |K|E + |L|E. Moreover, we have |L|I ≤ |L|E ≤ 2|L|I + 1.

The measure | · |I turns out to be instrumental for the inclusion problem. Note that
K↓ 6⊆ L↓ if and only if there is an ideal I ⊆ K↓ of length ≤ |K|I with I 6⊆ L↓. We can
therefore guess ideals and check inclusion for them. From now on, we assume alphabets to
come linearly ordered. This means for every alphabet Y , there is a canonical word wY in
which every letter from Y occurs exactly once.

I Proposition 2 (Ideal witness). Let I = Y ∗0 {x1, ε}Y ∗1 · · · {xn, ε}Y ∗n . Then the follow-
ing are equivalent: (i) I ⊆ L↓. (ii) wm

Y0
x1w

m
Y1
· · ·xnw

m
Yn
∈ L↓ for every m ≥ |L|I + 1.

(iii) wm
Y0
x1w

m
Y1
· · ·xnw

m
Yn
∈ L↓ for some m ≥ |L|I + 1.

A word of the form wm
Y0
x1w

m
Y1
· · ·xnw

m
Yn
∈ L↓ with m ≥ |L|I + 1 is therefore called an ideal

witness for I and L. The proof of Proposition 2 is a simple pumping argument based on
the fact that an ideal of length ≤ m admits an NFA with ≤ m+ 1 states. Ideal witnesses
are useful when we have a small bound on |K|I and |L|I but only a large bound on the NFA
size of L↓. Observe that putting a bound on |L|I amounts to proving a pumping lemma: We
have |L|I ≤ n if and only if for every w ∈ L, there is an ideal I with |I|I ≤ n and x ∈ I ⊆ L↓.

However even if, say, |K|I is polynomial and |L|I is exponential, ideal witnesses can be
stored succinctly in polynomial space, by keeping a binary representation of the power m.
For instance, this will be used in the case NFA ⊆↓ RBC.

Sometimes, we have a small bound on |L|I, but |K|I may be large. Then, ideal witnesses
are too large to achieve an optimal algorithm. In these situations, we can guarantee smaller
witnesses if we fix the alphabet.

I Proposition 3 (Small alphabet witness). Let K,L ⊆ X∗. If K↓ 6⊆ L↓, then there exists a
w ∈ K↓ \ L↓ with |w| ≤ |X| · (|L|I + 1)|X|.

The proof of Proposition 3 is more involved than Propositions 2 and 1. Note that a naive
bound can be obtained by intersecting exponentially (in |L|I) many automata for the ideals
of L↓ and complementing the result. This would yield a doubly exponential (in |L|I) bound,
even considering the fact that ideals have linear-size DFAs. We can, however, use the latter
fact in a different way.

A DFA is ordered if its states can be partially ordered so that for every transition p x−→ q,
we have p ≤ q. In other words, the automaton is acyclic except for loop transitions. The
following lemma is easy to see: In order to check membership in an ideal, one just has to
keep a pointer into the expression that never moves left.

I Lemma 4. Given an ideal representation of length n, one can construct in logarithmic
space an equivalent ordered DFA with n+ 2 states.

An ordered DFA cycles at a position of an input word if that position is read using a
loop. The following lemma is the key idea behind Proposition 3. Together with Lemma 4, it
clearly implies Proposition 3. For unary alphabets, it is easy to see. We use induction on
|X| and show, roughly speaking, that without such a position, no strict subalphabet can be
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used for too long. Then, all letters have to appear often, meaning a state has to repeat after
seeing the whole alphabet. Hence, the automaton stays in this state until the end.

I Lemma 5. If w ∈ X∗ with |w| > |X| · (n − 1)|X|, then w has a position at which every
ordered n-state DFA cycles.

4 Insertion trees

In Section 5, we will show upper bounds for the size of downward closure NFAs and for ideal
lengths for counter automata. These results employ certain decompositions of NFA runs into
trees, which we discuss here. Let A = (Q,X,∆, q0, Qf ) be a finite automaton. A walk is a
word w = δ1 · · · δm ∈ ∆∗ where δi = (pi, xi, p

′
i) for i ∈ [1,m] and p′j = pj+1 for j ∈ [1,m− 1].

The walk is a (p1-)cycle if p1 = p′m. In this case, we define σ(w) := p1. A cycle is prime if
pi = p1 implies i = 1. A cycle is simple if pi = pj implies i = j. A state q occurs on the cycle
if pi = q for some i. If i 6= 1, then q occurs properly.

A common operation in automata theory is to take a run and delete cycles until the run
has length at most |Q|. The idea behind an insertion tree is to record where we deleted
which cycles. This naturally leads to a tree.

For our purposes, trees are finite, unranked and ordered. An insertion tree is a tree
t = (V,E) together with a map γ : V → ∆∗ that assigns to each vertex v ∈ V a simple cycle
γ(v) such that if u is the parent of v, then σ(γ(v)) properly occurs in γ(u). Note that we
allow multiple children for a state that occurs in γ(u).

Since t is ordered and in every simple cycle there is at most one proper occurrence of
each state, an insertion tree defines a unique (typically not simple) cycle α(t). Formally, if t
is a single vertex v, then α(t) := γ(v). If t consists of a root r and subtrees t1, . . . , ts, then
α(t) is obtained by inserting each α(ti) in γ(r) at the (unique) occurrence of σ(α(ti)). The
height of an insertion tree is the height of its tree.

I Lemma 6. Every prime cycle of A admits an insertion tree of height at most |Q|.

The idea is to pick a cycle c strictly contained in the prime cycle, but of maximal length.
Then, after removing c, no state occurs both before and after the old position of c. This
forces any insertion tree t of the remainder to place this position in the root. We then apply
induction to the subtrees of t and to c. The resulting trees can then all be attached to the
root, increasing the height by at most one.

One application of Lemma 6 is to construct short ideals in a pumping lemma for counter
automata. Part of this construction is independent from counters, so we stay with NFAs
for a moment. Suppose we have an insertion tree t = (V,E) with map γ : V → ∆∗ and a
subset F ⊆ V , whose members we call fixed vertices or fixed cycles. Those in V \F are called
pumpable vertices/cycles.

We use fixed and pumpable vertices to guide a pumping process as follows. A sequence
s = t1 · · · tm of insertion trees is called compatible if σ(α(t1)) = · · · = σ(α(tm)). We assume
that we have a global set F of vertices that designates the fixed vertices for all these trees.
Suppose v is a pumpable vertex. We obtain new compatible sequences in two ways:

Let v1, . . . , v` be the children of v. We choose i ∈ [0, `] and split up v at i, meaning that
we create a new vertex v′ with γ(v′) = γ(v) to the right of v and move vi+1, . . . , v` (and,
of course, their subtrees) to v′.
If the whole subtree under v is pumpable (we call such subtrees pumpable), then we can
duplicate this subtree and attach its root somewhere as a sibling of v.
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If v is a root, these operations mean that we introduce a new tree in the sequence. If a
compatible sequence s′ is obtained from s by repeatedly performing these operations, we say
that s′ is obtained by pumping s. This allows us to define the following language:

P (t1 · · · tm, F ) = {ι(α(t′1) · · ·α(t′k)) | t′1 · · · t′k results from pumping t1 · · · tm}.

Here, for a walk w, ι(w) denotes the input word read by w. The following lemma will yield
the desired short ideals.

I Lemma 7. Let s = t1 · · · tm be a compatible sequence of insertion trees of height ≤ h

and let F be a set of fixed vertices. Then, the language P (s, F )↓ is an ideal that satisfies
|P (s, F )↓|E ≤ h|F |(2|Q|+ |F |)2.

Roughly speaking, the pumping process is designed so that pumpable subtrees only cause
alphabets Y in factors Y ∗ of the ideal to grow and thus do not affect the ideal length. Hence,
the only vertices that contribute to the length are those that are ancestors of vertices in F .
Since the trees have height ≤ h, there are at most h|F | such ancestors.

5 Counter Automata

In this section, we construct downward closure NFAs for counter automata and prove upper
bounds for ideal lengths. Mere computability of downward closures of blind counter automata
can be deduced from computability for Petri net languages [14]. However, that necessarily
results in non-primitive recursive automata (see Section 8). As a special case of stacked
counter automata, blind counter automata were provided with a new construction method
in [35]. That algorithm, however, yields automata of non-elementary size. Here, we prove an
exponential bound.

I Theorem 8. For each n-state blind k-counter automaton A, there is an NFA B with
L(B) = L(A)↓ and |B| ≤ (3n)5nk+7k3 . Moreover, B can be computed in exponential time.

Linear Diophantine equations. In order to show correctness of our construction, we employ
a result of Pottier [29], which bounds the norm of minimal non-negative solutions to a
linear Diophantine equation. Let A ∈ Zk×m be an integer matrix. We write ‖A‖1,∞ for
supi∈[1,k](

∑
j∈[1,m] |aij |), where aij is the entry of A at row i and column j. A solution

x ∈ Nm to the equation Ax = 0 is minimal if there is no y ∈ Nm with Ay = 0 and y ≤ x,
y 6= x. The set of all solutions clearly forms a submonoid of Nm, which is denoted M . The
set of minimal solutions is denoted H(M) and called the Hilbert basis of M . Let r be the
rank of A. Pottier showed the following.

I Theorem 9 (Pottier [29]). For each x ∈ H(M), ‖x‖1 ≤ (1 + ‖A‖1,∞)r.

By applying Theorem 9 to the matrix (A| − b), it is easy to deduce that for each x ∈ Nm

with Ax = b, there is a y ∈ Nm with Ay = b, y ≤ x, and ‖y‖1 ≤ (1 + ‖(A| − b)‖1,∞)r+1.

Automata for the downward closure. Let A be a blind k-counter automaton with n states.
The idea of the construction of B is to traverse insertion trees of prime cycles of A. Although
insertion trees were introduced for finite automata, they also apply to blind counter automata
if we regard the counter updates as input symbols. B keeps track of where it is in the tree
using a stack of bounded height. The stack alphabet will be Γ = Q× [−n, n]k. We define
B = n+ n · (3n)(k+1)2 . The state set of our automaton B1 is the following:

Q1 = Q× Γ≤n × [−B,B]k × P([−n, n]k)× P([−n, n]k).
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Here, the number of states is clearly doubly exponential, but we shall make the automaton
smaller in two later steps. The idea behind B1 is that counter values in the interval [−B,B]
are simulated precisely (in the factor [−B,B]k). Roughly speaking, whenever we encounter
a cycle, we can decide whether to (i) add its effect to this precise counter or to (ii) remember
the effect as “must be added at least once”. We call the former precise cycles; the latter are
dubbed obligation cycles and are stored in the first factor P([−n, n]k). In either case, the
effect of a cycle is kept as “repeatable” in the second factor P([−n, n]k).

In order to be able to guess for each cycle whether it should be a precise cycle or an
obligation cycle, we traverse an insertion tree of (the prime cycles on) a walk of A. On
the stack (the factor Γ≤n), we keep the cycles that we have started to traverse. Suppose
we are executing a cycle in a vertex v and the path from the root to v consists of the
vertices v1, . . . , vm. Let γ(vi) be a qi-cycle for i ∈ [1,m]. Then, the stack content is
(q1, u1) · · · (qm, um), where ui is the effect of the part of γ(vi) that has already been traversed.

In the end, we verify that (i) the precise counter is zero and (ii) one can add up obligation
cycles (each of them at least once) and repeatable cycles to zero. The latter condition
is captured in the following notion. Let S, T ⊆ Zk be finite sets with S = {u1, . . . , us},
T = {v1, . . . , vt}. We call the pair (S, T ) cancellable if there are x1, . . . , xs ∈ N \ {0} and
y1, . . . , yt ∈ N with

∑s
i=1 xiui +

∑t
i=1 yivi = 0. In particular, (∅, T ) is cancellable for any

finite T ⊆ Zk. Together, (i) and (ii) guarantee that the accepted word is in the downward
closure: They imply that we could have executed all of the obligation cycles and some others
(again) to fulfill our obligation. Hence, there is a run of A accepting a superword.

The number of cycles we can use as precise cycles is limited by the capacity B of our
precise counter. We shall apply Theorem 9 to show that there is always a choice of cycles to
use as precise cycles so as to reach zero in the end and not exceed the capacity.

The first type of transition in B1 is the following. For each transition (p, a, d, q) ∈ ∆ and
state (p, ε, v, S, T ) ∈ Q1 such that v + d ∈ [−B,B]k, we have a transition

(p, ε, v, S, T ) a−→ (q, ε, v + d, S, T ). (1)

These allow us to simulate transitions in a walk of A that are not part of a cycle. We can
guess that a cycle is starting. If we are in state p, then we push (p, 0) onto the stack:

(p, w, v, S, T ) ε−→ (p, w(p, 0), v, S, T ). (2)

While we are traversing a cycle, new counter effects are stored in the topmost stack entry.
For each (p, a, d, q) ∈ ∆ and (p, w(r, u), v, S, T ) ∈ Q1 with u+ d ∈ [−n, n]k, we have:

(p, w(r, u), v, S, T ) a−→ (q, w(r, u+ d), v, S, T ). (3)

When we are at the end of a cycle, we have to decide whether it should be a precise cycle or
an obligation cycle. The following transition means it should be precise: The counter effect
u of the cycle is added to the counter v, the stack is popped, and u is added to the set of
repeatable effects T . For each (p, w(p, u), v, S, T ) ∈ Q1 with v + u ∈ [−B,B]k, we have:

(p, w(p, u), v, S, T ) ε−→ (p, w, v + u, S, T ∪ {u}). (4)

In order to designate the cycle as an obligation cycle, we have the following transition: The
stack is popped and u is added to both S and T . For each state (p, w(p, u), v, S, T ) ∈ Q1, we
include the transition

(p, w(p, u), v, S, T ) ε−→ (p, w, v, S ∪ {u}, T ∪ {u}) (5)
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The initial state is (q0, ε, 0, ∅, ∅) and the final states are all those of the form (q, ε, 0, S, T )
where q is final in A and (S, T ) is cancellable. Employing Lemma 6 and Theorem 9, one can
now show that L(A) ⊆ L(B1) ⊆ L(A)↓.

State space reduction I. We have thus shown that L(B1)↓ = L(A)↓. However, B1 has a
doubly exponential number of states. Therefore, we now reduce the number of states in
two steps. First, instead of remembering the set S of obligation effects, we only maintain
a linearly independent set of vectors generating the same vector space. For a set R ⊆ Qk,
let span(R) denote the Q-vector space generated by R. Moreover, I(R) denotes the set of
linearly independent subsets of R. Our new automaton B2 has states

Q2 = Q× Γ≤n × [−B,B]k × I([−n, n]k)× P([−n, n]k)

and a state in B2 is final if it is final in B1. B2 has the same transitions as B1, except that
aside from those of type (5), it has

(p, w(p, u), v, S, T ) ε−→ (p, w, v, S′, T ∪ {u}) (6)

for each linearly independent subset S′ ⊆ S ∪ {u} such that span(S′) = span(S ∪ {u}). Of
course, such an S′ exists for any S and u. This means, by induction on the length, for any
walk of B1 from (p, w, v, S, T ) to (q, w′, v′, S′, T ′), we can find a walk with the same input
in B2 from (p, w, v, S, T ) to (q, w′, v′, S′′, T ′) with S′′ ⊆ S′ and span(S′′) = span(S′). Since
(S′, T ′) is cancellable and S′ ⊆ T ′, the pair (S′′, T ′) is cancellable as well. This means, our
walk in B2 is accepting and hence L(B1) ⊆ L(B2). It remains to verify that L(B2) ⊆ L(B1).

Observe that for any walk arriving in (q, w, v, S, T ) in B2, there is a corresponding walk
in B1 arriving in (q, w, v, S′, T ) for some S′ ⊇ S with span(S′) = span(S). The next lemma
tells us that if (q, w, v, S, T ) is a final state in B2, then (q, w, v, S′, T ) is final in B1. This
implies that L(B2) ⊆ L(B1) and hence L(B2) = L(B1).

I Lemma 10. Let T ⊆ Zk and S1 ⊆ S2 ⊆ Zk such that span(S1) = span(S2). If (S1, T ) is
cancellable, then so is (S2, T ).

State space reduction II. We apply a similar transformation to the last factor of the state
space. In B3, we have the state space

Q3 = Q× Γ≤n × [−B,B]k × I([−n, n]k)× I([−n, n]k).

and a state is final in B3 if and only if it is final in B2. Analogous to B2, we change the
transitions so that instead of adding u ∈ [−n, n]k to T , we store an arbitrary T ′ ∈ I(T ∪{u}).

This time, it is clear that L(B3) ⊆ L(B2): For every walk in B3 arriving at (q, w, v, S, T ),
there is a corresponding walk in B2 arriving at (q, w, v, S, T ′) such that T ⊆ T ′. Clearly,
if (S, T ) is cancellable, then (S, T ′) must be cancellable as well. The following lemma
implies L(B2) ⊆ L(B3): It says that for each walk in B2 arriving at (q, w, v, S, T ), there is a
corresponding walk in B3 arriving at (q, w, v, S, T ′) for some linearly independent T ′ ⊆ T

such that (S, T ′) is cancellable and hence (q, w, v, S, T ′) is final.

I Lemma 11. Let S, T ⊆ Zk such that (S, T ) is cancellable. Then there is a linearly
independent subset T ′ ⊆ T such that (S, T ′) is cancellable.

We have thus shown that L(B3)↓ = L(A)↓. An estimation of the size of Q3 now completes
the proof of Theorem 8. We apply Theorem 8 to derive an algorithm for Ideal ⊆↓ RBC.
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I Corollary 12. The problem Ideal ⊆↓ RBC is in NP.

Since Theorem 8 provides an exponential bound on |L(A)|I, we can use an ideal witness
w = wm

Y0
x1w

m
Y1
· · ·x`w

m
Y`

(Proposition 2) for which we have to check membership in L(A).
Since ` is polynomial and m exponential, we can compute a compressed representation of w
in form of a straight-line program, a context-free grammar that generates one word [25]. It
follows easily from work of Hague and Lin [16] that membership of such compressed words
in languages of blind (or reversal-bounded) counter automata is decidable in NP.

Fixed number of counters. Unfortunately, the size bound for the NFAs provided by
Theorem 8 has the number of states in the exponent, meaning that if we fix the number
k of counters, we still have an exponential bound. In fact, we leave open whether one can
construct polynomial-size NFAs for fixed k. However, in many cases it suffices to have a
polynomial bound on the length of ideals.

I Theorem 13. If A is an n-state blind k-counter automaton, then |L(A)|I ≤ (5n)7(k+1)2 .

Recall that an upper bound on |L|I is essentially a pumping lemma (see Section 3). Here, the
idea is to take a walk of A and delete cycles until the remaining walk u is at most n steps.
For the deleted cycles, we take an insertion tree of height at most n (Lemma 6). Then, using
Theorem 9, we pick a subset F (whose size is polynomial when fixing k) of cycles that can
balance out the effect of u. We then employ Lemma 7 to the insertion trees to construct an
ideal whose length is polynomial in |F |.

6 Context-Free Grammars

We turn to context-free grammars. First, we mention that given a context-free grammar G, one
can construct in exponential time an (exponential-size) NFA accepting L(A)↓ [4, 7, 11, 33, 27].
Second, we provide an algorithm for the problem Ideal ⊆↓ CFG.

I Theorem 14. The problem Ideal ⊆↓ CFG is in P.

In [34], this problem has been reduced to the simultaneous unboundedness problem (SUP)
for context-free languages. The latter asks, given a language L ⊆ a∗1 · · · a∗n, whether we
have L↓ = a∗1 · · · a∗n. Moreover, this reduction is clearly polynomial. Hence, we assume
that L(G) ⊆ a∗1 · · · a∗n and that the grammar G = (N,T, P, S) is productive and in Chomsky
normal form, meaning that productions are of the form A → BC, A → ai, or A → ε for
A,B,C ∈ N . First, we add productions A→ ε for all A ∈ N , so that the resulting grammar
G′ satisfies L(G′) = L(G)↓. For each A ∈ N , we can in polynomial time construct a CFG
for {w ∈ (N ∪ T )∗ | A⇒∗G′ w}, so we can compute the sets Li = {A ∈ N | A⇒∗G′ aiA} and
Ri = {A ∈ N | A⇒∗G′ Aai} using membership queries. We can thus compute the grammar
Gω, which results from G′ by (i) removing all productions A → ai, (ii) adding A → aω

i A

for each A ∈ Li and (iii) adding A → Aaω
i for each A ∈ Ri. Clearly, an occurrence of aω

i

certifies the ability to generate an unbounded number of ai’s. Thus, if aω
1 · · · aω

n ∈ L(Gω),
then a∗1 · · · a∗n ⊆ L(G′) = L(G)↓. It is not hard to see that the converse is true as well. We
have thus reduced the SUP to the membership problem.

7 Algorithms

Algorithms forM⊆↓ Ideal. SupposeM = Ideal and we want to decide whether I ⊆ J for
ideals I, J ⊆ X∗. In logspace, we construct an ideal witness w for I and J (Proposition 2)
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and a DFA A for X∗ \ J (Proposition 4) and check whether w ∈ L(A). In all other cases, to
decide L↓ ⊆ I, we construct a DFA A for X∗ \ I and check whether L↓ ∩ L(A) = ∅.

Algorithms forM⊆↓ NFA. SupposeM = Ideal and we want to decide whether I ⊆ L(A)↓
for an NFA A. Since |L(A)|I ≤ |A|, we can construct in logspace an ideal witness w for I and
L(A)↓ and verify w ∈ L(A)↓. In all other cases, we use a short witness for coNP-membership.

Algorithms forM⊆↓ OCA. SupposeM = Ideal and we want to decide whether I ⊆ L(A)↓
for an OCA A. We have a polynomial bound on |L(A)|I (see Section 2). Hence, we construct
in logspace an ideal witness w for I and L(A)↓. We can also construct in logspace an OCA
A′ with L(A′) = L(A)↓. Membership for OCA is in NL = coNL, so we can verify w ∈ I and
w /∈ L(A′) = L(A)↓. In all other cases, we convert the OCA to an NFA (see Section 2).

Algorithms forM⊆↓ RBCk,r. Let A be drawn from RBCk,r. First, supposeM = Ideal
and we want to decide whether I ⊆ L(A). By Theorem 13, we have a polynomial bound
on |L(A)|I and can construct in logspace an ideal witness w for I and L(A). We can also
construct in logspace an RBCA A′ with L(A′) = L(A)↓. Since membership for RBCk,r is
in NL [12], we can check whether w ∈ L(A′). Now let M ∈ {NFA,OCA,RBCk,r} and we
are given L inM and an automaton A from RBCk,r. For NFA, OCA, and RBCk,r, we have
a polynomial bound on |L|I (see Section 2 and Theorem 13). Thus, we guess an ideal I
of polynomial length and then verify that I ⊆ L↓ but I 6⊆ L(A)↓. Since Ideal ⊆↓ M and
Ideal ⊆↓ RBCk,r are in NL, the verification is done in NL. Hence, non-inclusion is in NP. For
M ∈ {CFG,RBC}, we assume a fixed alphabet. Let L be in M. Then Proposition 3 and
Theorem 13 provide us with a witness of polynomial length. Since (non-)membership in L↓
and in L(A)↓ can be decided in NP, non-inclusion is in NP.

Algorithms for M ⊆↓ CFG. The case Ideal ⊆↓ CFG is shown in Theorem 14. Suppose
M ∈ {NFA,OCA,RBCk,r} and we are given L inM and a CFG G. We have a polynomial
bound on |L|I (see Section 2 and Theorem 13), so that we can guess a polynomial-length
ideal I. Since Ideal ⊆↓ M is in NL in every case and Ideal ⊆↓ CFG is in P, we can verify
in polynomial time that I ⊆ L↓ and I 6⊆ L(G)↓. Thus, non-inclusion is in NP. In the case
M∈ {RBC,CFG}, we construct exponential-size downward closure NFAs and check inclusion
for them (and the latter problem is in coNP). This yields a coNEXP algorithm.

Algorithms forM⊆↓ RBC. Let A be from RBC. The ideal case is treated in Corollary 12.
When given L inM∈ {NFA,OCA,RBCk,r}, we guess a polynomial length ideal I and verify
that I ⊆ L↓ in NL. Since Ideal ⊆↓ RBC is in NP, we can also check in coNP that I 6⊆ L(A)↓.
Hence, non-inclusion is in ΣP

2 . ForM∈ {CFG,RBC}, we proceed as forM⊆↓ CFG.

8 Hardness

In this section, we prove hardness results. Most of them are deduced from a generic hardness
theorem that, under mild assumptions, derives hardness from the ability to generate finite
sets with long words. We will work with bounds that exhibit the following useful property.
A monotone function f : N→ N will be called amplifying if f(n) ≥ n for n ≥ 0 and there is
a polynomial p such that f(p(n)) ≥ f(n)2 for large enough n ∈ N. We say that a model has
property ∆(f) (or short: is ∆(f)) if for each given n ∈ N, one can construct in polynomial
time a description of a finite language whose longest word has length f(n). For the sake
of simplicity, we will abuse notation slightly and write ∆(f(n)) instead of ∆(f). For a
function t : N→ N, we use coNTIME(t) to denote the complements of languages accepted by
nondeterministic Turing machines that are time bounded by O(t(nc)) for some constant c.
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We also need two mild language theoretic properties. A transducer is a finite automaton
where every edge reads input and produces output. For a transducer T and a language L,
the language T L consists of all words output by the transducer while reading a word from L.
We call a modelM a full trio model if given a transducer T and a language L described
withM, one can compute in polynomial time a description of T L. A substitution is a map
σ : X → P(Y ∗) that replaces each letter by a language. For languages L, we define σ(L)
in the obvious way. We call σ simple if X ⊆ Y and there is some x ∈ X such that for all
x′ ∈ X \ {x}, we have σ(x′) = {x′} and x occurs in each word from L at most once. We say
thatM has closure under simple substitutions if given a description of L and of σ(x) inM,
we can compute in polynomial time a description of σ(L).

I Theorem 15. Let t : N→ N be amplifying and letM and N be full trio models that are
∆(t) and have closure under simple substitutions. Then both M ⊆↓ N and M =↓ N are
hard for coNTIME(t). Moreover, this hardness already holds for binary alphabets.

Since NFAs are ∆(n), Theorem 15 yields coNP-hardness for inclusion and equivalence.
In [4], hardness of equivalence was shown directly. RBCA and CFG clearly exhibit closure
under simple substitutions and can generate exponentially long words. This yields:

I Corollary 16. ForM,N ∈ {CFG,RBC},M⊆↓ N andM =↓ N are coNEXP-hard.

From Theorem 15, we can also deduce hardness for other models. It was shown by
Habermehl, Meyer, and Wimmel [14] that downward closures or Petri net languages are
computable, which implies decidability of our problems. We use Theorem 15 to prove an
Ackermann lower bound. Let An : N → N be defined as A0(x) = x + 1, An+1(0) = An(1),
and An+1(x+ 1) = An(An+1(x)). Then, the function A : N→ N with A(n) = An(n) is the
Ackermann function. Of course, for large enough n, we have An(x) ≥ x2. For such n, we
have A(n+ 1) = An(An+1(n)) ≥ An+1(n)2 ≥ A(n)2, so A is amplifying. A result of Mayr
and Meyer [26] (see also [30]) states that given n ∈ N, one can construct in polynomial time
a Petri net that, from its initial marking, can produce up to A(n) tokens in an output place.
Hence, Petri nets are ∆(A) and they clearly satisfy the language-theoretic conditions.

I Corollary 17. For Petri net languages, inclusion and equivalence of downward closures is
Ackermann-hard.

Building on the sufficient condition of [34], Hague, Kochems, and Ong [15] have shown
that downward closures are computable for higher-order pushdown automata. However, the
method of [34] does not yield any information about the complexity of this computation.
For k ∈ N, we denote by expk the function with exp0(n) = n and expk+1(n) = 2expk(n). It
is easy to see that order-k pushdown automata are ∆(expk) (for instance, one can adapt
Example 2.5 of [8]). By co-k-NEXP, we denote the complements of languages accepted by
nondeterministic Turing machines in time O(expk(nc)) for some constant c.

I Corollary 18. For higher-order pushdown automata of order k, inclusion and equivalence
of downward closures is hard for co-k-NEXP.

Our last hardness result could also be shown using the method of Theorem 15. However,
it is simpler to reduce a variant of the subset sum problem [6].

I Proposition 19. NFA ⊆↓ RBC and NFA =↓ RBC are ΠP
2 -hard, even for binary alphabets.

We have thus shown hardness for all inclusion problems that do not involve ideals.
The remaining cases inherit hardness from the emptiness problem (forM⊆↓ Ideal) or the
non-emptiness problem (Ideal ⊆↓M).
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Abstract
In combinatorics of words, a concatenation of k consecutive equal blocks is called a power of
order k. In this paper we take a different point of view and define an anti-power of order k
as a concatenation of k consecutive pairwise distinct blocks of the same length. As a main
result, we show that every infinite word contains powers of any order or anti-powers of any order.
That is, the existence of powers or anti-powers is an unavoidable regularity. Indeed, we prove a
stronger result, which relates the density of anti-powers to the existence of a factor that occurs
with arbitrary exponent. From these results, we derive that at every position of an aperiodic
uniformly recurrent word start anti-powers of any order. We further show that any infinite
word avoiding anti-powers of order 3 is ultimately periodic, and that there exist aperiodic words
avoiding anti-powers of order 4. We also show that there exist aperiodic recurrent words avoiding
anti-powers of order 6, and leave open the question whether there exist aperiodic recurrent words
avoiding anti-powers of order k for k = 4, 5.
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1 Introduction

Suppose you are in a room with a hundred people and somebody tells you that by an
incredible coincidence the people in the room have all different birthdays. Of course this is
much less surprising than if all the people had the same birthday; still you remember from
your first course in combinatorics (or even before) that already in a class of fifty people the
probability that no two people have the same birthday is less than 3%. So actually you are
in a very special situation!1

For a number of instances of objects taken from a fixed class using some rule, being all
distinct can be viewed as a kind of regularity. This has been already considered extensively

1 To be more precise, the probability that at least two people have the same birthday in a room of 100
people is about 0.9999996928.
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in computer science. For example, the probability of collisions must be properly quantified
when designing hashing functions. In the context of string processing, one usually deals with
factors (substrings) of a word, and it is sometimes useful to factorize a word in blocks that
are all distinct — a widely known example is the Lempel-Ziv factorization, at the basis of
the eponymous compression algorithm. The problem of factoring a string in blocks that are
all distinct (sometimes called equality-free factorization [7]) has practical applications also
in bio-informatics, since it appears to be connected with gene synthesis [2]. Equality-free
factorizations have been further considered by Fernau et al. [4], motivated by injective pattern
matching with variables, which is identical to the special case of solving word equations
where the left side of the equation does not contain variables, and different variables must be
replaced by different words. In particular, in [4] it is proved that given a finite word w and a
number k, the problem whether it is possible to factorize w into at least k distinct factors is
NP-complete.

In the context of infinite words, the complexity of sequences is often described by means
of parameters that capture some kind of repetitiveness. To this end, one often considers as a
degree of repetitiveness the maximal number of consecutive all-equal blocks occurring in the
sequence, regardless of the length of the single blocks. A concatenation of k consecutive equal
blocks is called a power of order k, or simply a k-power. E.g., aabaabaabaab is a 4-power.
A first classification of infinite words consists in identifying those that are k-power-free for
some k ≥ 2, meaning that they do not contain any factor that is a k-power. Words avoiding
k-powers have been the object of study of combinatorics on words since the very beginning
of the theory [8] (cf. also [5]).

In this paper we adopt a different point of view based on the difference rather than on
the equality. We consider the problem of finding in infinite words consecutive blocks of
the same length that are all distinct. Of course, in the context of infinite words it is the
requirement that the blocks all have the same length that makes the problem non-trivial,
since otherwise one can always take arbitrarily long concatenations of blocks of increasing
length to guarantee that they are all distinct.

We define an anti-power of order k, or simply a k-anti-power, as a concatenation of k
consecutive pairwise distinct blocks of the same length. E.g., aabaaabbbaba is a 4-anti-power.
A simple computation shows that there are in general much more anti-powers than powers
for a fixed length and a fixed order; yet there are much less anti-powers than possible factors
of the same given length.

Let us focus on an example. The Thue-Morse word

t = 0110100110010110100101100110100110010110011010 · · ·

is perhaps the most prominent example in combinatorics of words [1]. It is defined as the
word whose n-th digit is the parity of the number of 1s in the binary expansion of n− 1 (so
the first digit is the parity of 1s in 0, the second digit is the parity of 1s in 1, the third digit
is the parity of 1s in 10, etc.). The Thue-Morse word does not contain overlaps, i.e., factors
of the form awawa for a letter a and a word w. In particular, the Thue-Morse word does
not contain 3-powers (note that, on the other hand, every infinite binary word must contain
2-powers).

The shortest prefix of the Thue-Morse word that is a 2-antipower is 01. The shortest
prefix that is a 3-anti-power is 01101 · 00110 · 01011, of length 15. One can verify that the
shortest 4-anti-power prefix has length 20. The first few lengths of the shortest prefixes of t
that are k-anti-powers for different values of k are displayed in Table 1. A natural question
is therefore the following: Given an integer k > 1, is it always possible to find a prefix of t
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Table 1 The first few values of the sequence of lengths of the shortest prefixes of the Thue-Morse
word that are k-anti-powers.

k 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 30 50 100

length 15 20 25 30 77 88 99 110 121 132 143 154 195 208 221 234 247 260 870 2450 9700

ratio 5 5 5 5 11 11 11 11 11 11 11 11 13 13 13 13 13 13 29 49 97

that is a k-anti-power? In this paper we answer this question in the affirmative. Actually, we
prove a much stronger result. Indeed, we prove that the existence of powers of any order or
anti-powers of any order is an unavoidable regularity:

I Theorem 1. Every infinite word contains powers of any order or anti-powers of any order.

Formally, an unavoidable regularity is a property P such that it is not possible to construct
arbitrarily long words not satisfying P (cf. [3]). Some important theorems in combinatorics on
words concern unavoidable regularities. Most of them follow from results originally stated in
other areas of combinatorics, e.g., the Ramsey’s, van der Waerden’s and Shirshov’s theorems
(see [3, 5, 6] for further details).

Actually, we prove a stronger result, from which Theorem 1 follows. Given an infinite
word x, we prove that if for some integer k the lower density of the set of lengths n for
which the prefix of x of length kn is a k-anti-power is smaller than one, then there exists a
word (whose length depends on k) that occurs in x with arbitrary exponent (Theorem 4).
This implies that if an infinite word x has the property that each of its factors appears
with bounded exponent (in the terminology of combinatorics on words we say that x is
ω-power-free), then in x must start anti-powers of any order at every position. In particular,
since a uniformly recurrent word is either purely periodic or ω-power-free, this property holds
for every aperiodic uniformly recurrent word, as for example the Thue-Morse word or any
Sturmian word2.

In the second part of the paper, we focus on the avoidability of anti-powers. We show
that any infinite word avoiding 3-anti-powers is ultimately periodic, and that there exist
aperiodic words avoiding 4-anti-powers. We also show that there exist aperiodic recurrent
words avoiding 6-anti-powers. We leave it as an open question to determine whether there
exist aperiodic recurrent words avoiding 4-anti-powers or 5-anti-powers.

We conclude with final considerations and discuss open problems and further possible
directions of investigation.

2 Preliminaries

Let N = {1, 2, 3, . . .}. Let A be a (possibly infinite) non-empty set, called the alphabet, whose
elements are called letters. A word over A is a finite or infinite sequence of letters from A.
The length |u| of a finite word u is the number of its letters. We let A+ denote the set of all
finite words of positive length over A, and AN the set of all infinite words over A, that is, the

2 Sturmian words are aperiodic words of minimal factor complexity. They are very well studied objects in
combinatorics on words (see for instance [6]).

ICALP 2016



124:4 Anti-Powers in Infinite Words

set of all maps from N to A. Given a finite word u, we write uω the infinite word uuu · · ·
obtained by concatenating an infinite number of copies of u.

Given a finite or infinite word x, we say that a word u is a factor of x if x = vuy for some
words v and y. We say that u is a prefix (resp. suffix) of x if x = uy (resp. x = yu) for some
word y. We say that a word u 6= x is a border of x if u is both a prefix and a suffix of x.

An infinite word x is purely periodic if there exists a positive integer p such that the
letters occurring at positions i and j coincide whenever i = j mod p. Equivalently, x is
purely periodic if and only if x = uω for some word u of length p. An infinite word x is
ultimately periodic if x = uy for a finite word u and a purely periodic word y. An infinite
word is aperiodic if it is not ultimately periodic.

An infinite word x is said to be recurrent if every finite factor of x occurs in x infinitely
often. Equivalently, x is recurrent if and only if every finite prefix of x has a second occurrence
as a factor. An infinite word x is said to be uniformly recurrent if every finite factor of x
occurs syndetically (that is, it occurs infinitely often and with bounded gaps). Equivalently,
x is uniformly recurrent if and only if for every finite factor u of x there exits an integer m
such that u occurs in every factor of x of length m.

An infinite word x is said to be k-power-free for some integer k > 1 if for every finite factor
u of x, one has that uk is not a factor of x. An infinite word x is said to be ω-power-free if
for every finite factor u of x there exists a positive integer l such that ul is not a factor of
x. Of course, if a word is k-power-free for some integer k, then it is ω-power-free, but the
converse is not always true.

An important relationship between uniformly recurrent and ω-power-free words is the
following (see for instance [3]):

I Theorem 2. Every uniformly recurrent word is either purely periodic or ω-power-free.

3 Unavoidability of powers or anti-powers

In order to state our main result, we need to introduce some definitions.
Let x be an infinite word and k ∈ N. We set

P (x, k) = {m ∈ N | the prefix of x of length km is a k-power} .

Analogously, we set

AP (x, k) = {m ∈ N | the prefix of x of length km is a k-anti-power} .

Note that P (x, 1) = AP (x, 1) = N and that P (x, k) ∩AP (x, k) = ∅ for every k ≥ 2. For
example, if x = 01ω, we have P (x, k) = AP (x, k) = ∅ for every k ≥ 3.

Recall that for any subset X ⊆ N, the lower density of X is defined by

d (X) = lim inf
n→∞

|X ∩ {1, 2, . . . , n}|
n

.

Note that if X is finite, then d (X) = 0. Moreover, if d (X) =< 1/t for some integer t > 0,
then that there exist infinitely many integers m such that {m,m+ 1, . . . ,m+ t− 1} ⊂ N \X.

We are now going to prove our main result (Theorem 4). We premise a technical lemma.

I Lemma 3. Let v be a border of a word w and u the word such that w = uv. If l is an
integer such that |w| > l|u|, then ul is a prefix of w.
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i(s � r) j(s � r)

Ui,r Uj,r

Uj,sUi,s

| {z }
w

| {z }
v

Figure 1 The proof of Theorem 4.

Proof. By induction on l. For l = 1 the statement trivially holds. Suppose l > 1. Since u
is shorter than v and both are prefixes of w, we have that u is a prefix of v. Let us write
v = uv′. Then w = uuv′ and v′ is a border of v. Since |v| = |w| − |u| > (l − 1)|u|, we can
apply the induction hypothesis and derive that ul−1 is a prefix of v, whence ul is a prefix of
w. J

I Theorem 4. Let x be an infinite word. Suppose that

d (AP (x, k)) <
(

1 +
(
k

2

))−1
= 2

2 + k(k − 1)

for some k ∈ N. Then there exists u ∈ A+ with |u| ≤ (k − 1)
(

k
2
)
such that ul is a factor of x

for every l ≥ 1.

Proof. Fix k such that d (AP (x, k)) < (1+
(

k
2
)
)−1. Since AP (x, 1) = N, and the lower density

of N is 1, we have k ≥ 2. We set M = (k − 1)
(

k
2
)
. We have to show there exists u ∈ A+ with

|u| ≤M such that ul is a factor of x for every l ≥ 1. By the pigeonhole principle, it suffices
to show that for every l ∈ N there exists u ∈ A+ with |u| ≤M such that ul is a factor of x.

So, let us fix l ∈ N, and set N = (l + 1)M. Since d (AP (x, k)) < (1 +
(

k
2
)
)−1, there exists

an integer m > N such that {m,m+ 1, . . . ,m+
(

k
2
)
} ⊂ N \AP (x, k).

For every j and r such that 0 ≤ j ≤ k − 1 and m ≤ r ≤ m+
(

k
2
)
, set

Uj,r = xjr+1xjr+2 · · ·x(j+1)r,

so that |Uj,r| = r and U0,r, U1,r, . . . , Uk−1,r are the first k consecutive blocks of x of length
r. Thus for each m ≤ r ≤ m +

(
k
2
)
there exist i and j, with 0 ≤ i < j ≤ k − 1, such that

Ui,r = Uj,r. By the pigeonhole principle, there exist r and s, with m ≤ r < s ≤ m+
(

k
2
)
, and

i and j, with 0 ≤ i < j ≤ k − 1, such that Ui,r = Uj,r and Ui,s = Uj,s.
Notice that (i+ 1)r > is+ 1 and (j + 1)r > js+ 1.
Let us now set w = xis+1xis+2 · · ·x(i+1)r and v = xjs+1xjs+2 · · ·x(j+1)r (see Figure 1).

We have

|v| = (j + 1)r − js < (i+ 1)r − is = |w|,

whence v is a border of w. Writing w = uv, we have

1 ≤ |u| = |w| − |v| = (j − i)(s− r) ≤ (k − 1)
(
k

2

)
= M,
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and

|w| > |v| = r − j(s− r) ≥ m− (k − 1)
(
k

2

)
= m−M > N −M = lM.

Thus, |w| > l|u| and, by Lemma 3, ul is a prefix of w, and therefore ul is a factor of x. J

A more precise consequence of Theorem 4 is the following.

I Corollary 5. Let x be a uniformly recurrent word. Then either

d (AP (x, k)) ≥ 2
2 + k(k − 1) (1)

for every k ∈ N or there exists r > 0, such that

d (P (x, k)) ≥ r (2)

for every k ∈ N.

Proof. According to Theorem 4, if (1) does not hold for some k′ ∈ N, then x = uω for some
u with 1 ≤ |u| ≤ (k′ − 1)

(
k′

2
)
. Whence n|u| ∈ P (x, k) for each n, k ∈ N. The result now

follows by setting r = 1/|u|. J

Note that the d (P (x, k)) ≥ r for every k is stronger than just d (P (x, k)) > 0. Conversely,
if d (P (x, k)) > 0 for some k ≥ 2, then d (P (x, 2)) > 0, and from this it is immediate to see
that x is periodic. In fact, something stronger is true: following the notation in the proof of
Theorem 4, if there exists j ≥ 1 such that d {r | U0,r = Uj,r} > 0, then x is periodic. And
d (P (x, 2)) > 0 is a special case of this assumption (when j = 1).

I Corollary 6. Let x be a uniformly recurrent word. If

d (AP (x, k)) < 2
2 + k(k − 1)

for some k ∈ N, then x is purely periodic.

Another direct consequence of Theorem 4 is the following.

I Theorem 7. Let x be an infinite word. If x is ω-power-free, then at every position of x
start anti-powers of any order.

Proof. Suppose that there exists a positive integer k and a suffix x′ of x such that no prefix
of x′ is a k-anti-power. Then AP (x′, k) = ∅, whence d (AP (x′, k)) = 0. By Theorem 4,
there exists a factor u of x′ such that ul is a factor of x′ for every l ≥ 1, hence x is not
ω-power-free. J

From Theorems 2 and 7, we derive the following corollary.

I Corollary 8. Let x be a uniformly recurrent aperiodic word. Then at every position of x
start anti-powers of any order.
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4 Avoiding anti-powers

In this section we deal with avoidability of anti-powers.

I Definition 9. Given k > 1, we say that an infinite word x avoids k-anti-powers if no factor
of x is a k-anti-power. That is, among any k consecutive blocks of the same length in x, at
least two of them are equal. We say that an infinite word x avoids anti-powers if x avoids
k-anti-powers for some k.

Periodic words avoid anti-powers, the period length being an upper bound for the maximal
number of distinct consecutive blocks of the same length. In the following, we discuss the
avoidability of anti-powers for aperiodic words. By Corollary 8, if an aperiodic word avoids
anti-powers, then it cannot be uniformly recurrent.

Of course, any word containing at least two different letters cannot avoid 2-anti-powers.
For 3-anti-powers, we have the following result.

I Lemma 10. Let x be an infinite word. If x avoids 3-anti-powers, then x is a binary word.

Proof. Suppose x avoids 3-anti-powers and contains three different letters. Then there is
a factor of x of the form u = abnc with n ≥ 1 and a, b, c distinct letters. We will extend
this factor to the right and force a 3-anti-power for every n. For n = 1, the word abc is
already an anti-power. Take now n = 2. To avoid 3-anti-powers, abbc can only be extended
to abbcb. In the next step, the only option is abbcbc, and after that abbcbcb. But now, the
word abbcbcbyy′ contains a 3-anti-power for every letters y, y′. Suppose now u = abnc with
n ≥ 3. If n is odd, let m = (n− 1)/2 and note that u can be factored as abm · bm+1 · c, so
that u will be extended to the right to a 3-anti-power of length 3(m + 1). If n is even, u
can be factored as u = abm · bm+1 · bc, so that again u will be extended to the right to a
3-anti-power of length 3(m+ 1). J

Hence, in what follows we will suppose that x is an infinite word over the binary alphabet
A = {0, 1}.

I Proposition 11. Let x be an infinite word. If x avoids 3-anti-powers, then it cannot
contain a factor of the form 10n1 or 01n0 with n > 1.

Proof. Suppose that x contains a factor of the form u = 10n1 with n > 1 (the other situation
is symmetric). The cases n = 2, 3, 4, 5 can be checked by computer, so let us suppose n ≥ 6.

Suppose first n even, and write n = 2m. Since u = 10m−1 · 0m · 01, any extension of u to
the right will produce a 3-anti-power of length 3m. If n is odd, n = 2m+ 1, then we can
write u = 10m−1 · 0m · 001, so that any extension of u to the right will produce a 3-anti-power
of length 3m. J

I Corollary 12. Let x be an infinite word avoiding 3-anti-powers. Then x is ultimately
periodic.

Actually, from Proposition 11, we have that an infinite word avoiding 3-anti-powers can
only be of the form x = (01)ω, x = 01ω, or x = 0n10ω for some n > 0, up to exchanging
letters.

I Proposition 13. There exist aperiodic words avoiding 4-anti-powers.

Proof. We exhibit an example of an aperiodic word avoiding 4-anti-powers. Let (αi)i≥1 be
an increasing sequence of positive integers with αi+1 ≥ 5αi for each i ≥ 1. Let x ∈ {0, 1}N

ICALP 2016
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be defined by xn = 1 if n = αi for some i ≥ 1, and xn = 0 otherwise. Clearly x is aperiodic.
Moreover, given m ≥ 0 and n ∈ N, if |xm+1xm+2 · · ·xm+n|1 ≥ 2, then for some i ≥ 1

m+ 1 ≤ αi < 5αi ≤ αi+1 ≤ m+ n

and hence n > 4αi ≥ 4(m+ 1) whence m+ 1 < n/4. We claim that x avoids 4-anti-powers.
In fact, suppose to the contrary that for some m ≥ 0 and n ∈ N we have xm+1 · · ·xm+n,

xm+n+1 · · ·xm+2n, xm+2n+1 · · ·xm+3n, and xm+3n+1 · · ·xm+4n are pairwise distinct. Then at
least three of the four blocks must contain an occurrence of 1. Thus |xm+n+1 · · ·xm+4n|1 ≥ 2
from which it follows that m+ n+ 1 < 3n/4 and hence m+ 1 < 0, a contradiction. J

The word in the previous proposition is not recurrent. It is natural to ask whether there
exist recurrent words avoiding 4-anti-powers. We do not know the answer. However, we can
state the following result.

I Proposition 14. There exist aperiodic recurrent words avoiding 6-anti-powers.

Proof. We exhibit an example of an aperiodic recurrent word avoiding 6-anti-powers. Let
w0 = 0 and wn = wn−113|wn−1|wn−1 for every n > 0. Let w be the infinite word obtained
as the limit of the sequence of words (wn)n≥1. Then clearly w is recurrent. Without loss
of generality, we can assume that each occurrence of wn in w is preceded and followed by
13|wn|, since w avoids 6-anti-powers if 1∞w does.

Let v = v1v2 · · · v6 be a non-empty factor of w of length 6k. Let n be the largest integer
such that |wn| = 5n < 2k. By the hypothesis on n, no vi can intersect two occurrences of wn.

Suppose first that for some i, vi is contained as a factor in wn. By the hypothesis on n,
neither vi−1vi nor vivi+1 is contained in wn. Since wn is preceded and followed by 13|wn|,
either vi−3 and vi−2 (if i ≥ 4) or vi+2 and vi+3 (if i < 4) are both equal to 1k, so that v
cannot be an anti-power.

If instead no vi is contained as a factor in wn, then one of the following cases must
hold:
(i) There is an occurrence of wn intersecting vi and the next occurrence of wn intersects

vi+1. In this case, either vi−3 and vi−2 or vi+3 and vi+4 are both equal to 1k.
(ii) There is an occurrence of wn intersecting vi and the next occurrence of wn intersects

vi+2, so that vi+1 = 1k. In this case, either vi−2 or vi+4 must be equal to 1k.
(iii) There are two consecutive blocks vi, vi+1 both equal to 1k.
In all cases, v cannot be an anti-power. J

5 Conclusions and open problems

We proved that every infinite word contains powers of any order or anti-powers of any order,
that is, the existence of powers or anti-powers is an unavoidable regularity. This result can
also be stated in the following finite version.

I Theorem 15. For every integers k > 1 and r > 1 there exists N = N(k, r) such that every
word of length N contains a k-power or an r-anti-power. Furthermore, for k > 2, one has
k2 − 2 ≤ N(k, k) ≤ k5 + k3.

The upper bound follows from the proof of Theorem 4. For the lower bound, it is easy
to prove that the word (0k−11)k−20k−210k−2 of length k2 − 3 avoids both k-powers and
k-anti-powers, for any k > 2.

In the case of binary alphabet, it can be verified that N(2, 2) = 2, N(3, 2) = 3, N(2, 3) = 4,
N(3, 3) = 9, N(4, 3) = 12, N(3, 4) > 16, N(4, 4) > 16. We do not know how these numbers
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grow. Moreover, the bounds on N(k, r) given in Theorem 15 can probably be improved by a
deeper analysis of the function N(k, r).

Concerning the avoidability of anti-powers, we proved that there exist words avoiding 4
anti-powers and that there exist recurrent words avoiding 6-anti-powers. A natural problem
is therefore that of determining what is the least k such that there exists a recurrent word
avoiding k-anti-powers.

Another possible direction of investigation is related to the possible lengths of anti-
powers appearing in a word. For an aperiodic uniformly recurrent word x, define ap(x, k) =
min(AP (x, k)), i.e., the minimum length m for which the prefix of x of length km is a
k-anti-power. The first values of this function for the Thue-Morse word are displayed in
Table 1 (where the value of ap(x, k) is the ratio between the length of the k-anti-power prefix
and the order k). We wonder whether it is possible to link the behavior of the function
ap(x, k) to the combinatorics of the word x, at least for special classes of words. For example,
the values reported in Table 1 suggest that for the Thue-Morse word the function ap(x, k)
grows linearly in k.

Acknowledgements. We thank the anonymous referees for their careful reading of the
paper and Filippo Mignosi for useful discussions.
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Abstract
Transductions are binary relations of finite words. For rational transductions, i.e., transductions
defined by finite transducers, the inclusion, equivalence and sequential uniformisation problems
are known to be undecidable. In this paper, we investigate stronger variants of inclusion, equi-
valence and sequential uniformisation, based on a general notion of transducer resynchronisation,
and show their decidability. We also investigate the classes of finite-valued rational transduc-
tions and deterministic rational transductions, which are known to have a decidable equivalence
problem. We show that sequential uniformisation is also decidable for them.
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1 Introduction

Transductions generalise finite word languages to binary relations of finite words. The notion
of rationality for languages, and its correspondence with finite automata, has been extended
to transductions and finite automata over pairs of words, called finite transducers [2]. In this
paper, we study decision problems for finite transducers and prove new decidability results.

Finite transducers. (Finite) transducers are nondeterministic finite automata whose trans-
itions are labelled by pairs of words. The (rational) transduction RT defined by a transducer
T consists of all the pairs of words (u, v) obtained by concatenating the pairs occurring
on transitions of its successful computations. In this paper, we follow a dynamic vision
of transducers, as a machine that processes input words u and produces output words v.
Therefore, we may speak of the domain of a transduction, as the language of input words
that admit at least one output word.

Equivalence problem. Unlike finite automata, finite transducers have undecidable inclusion
and equivalence problems [17, 14], even when restricted to unary alphabets [19]. The largest
known classes with decidable equivalence problem are those of finite-valued transducers and
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deterministic transducers. A transducer is finite-valued if it produces at most k outputs
per input, for a bound k that only depends on the transducer. It is decidable whether a
transducer is k-valued for a given k [18], and whether there exists k such that it is k-valued
[33]. Any finite-valued transducer is known to be (effectively) equivalent to a finite union
of unambiguous transducers [32], and thus to a finitely ambiguous transducer. Equivalence
of k-ambiguous transducers was shown to be decidable in [18], and equivalence of k-valued
transducers was first shown to be decidable in [20, 32]. Other algorithms with better
complexities appeared later, and the best known algorithm runs in exponential time, for a
fixed k [8].

A transducer is deterministic if the transitions are deterministic in the classical sense,
and furthermore each state processes either only input symbols or only output symbols.
The class of deterministic rational transductions is also referred to as DRat, and it strictly
extends the class of synchronous rational transductions (also called automatic relations), see
e.g. [7] for an overview of these sub-classes of rational transductions. As opposed to the
class of finite-valued transducers, it is undecidable whether a transduction is equivalent to a
deterministic transduction [14]. However, the equivalence problem for DRat is known to be
decidable [3], even in polynomial time [15]. This makes this class an interesting candidate
for further investigations of decision problems.

Uniformisation problem. Two classes of interest are the rational and sequential functions,
which are respectively defined by 1-valued transducers and sequential transducers. The latter
read input words in a deterministic manner, and therefore produce a unique output word for
each input. There are rational functions that are not sequential, but it is decidable in PTime
whether a transducer defines a sequential function [34]. Since rational transductions do not
define, in general, functions, an interesting question is whether a unique output word can be
picked for each input word of a rational transduction R, in a regular way, thus defining a
function f ⊆ R with the same domain as R. Such a function f is called a uniformiser of
R. It is known that any rational transduction admits a rational uniformiser [23, 10] and,
in the case of DRat, even a lexicographic uniformiser that picks the smallest output words
according to a lexicographic order, making the uniformiser only depend on the transduction
[21, 27]. In this paper, we are interested in sequential uniformisers. Even rational functions
do not admit sequential uniformisers in general, and therefore this gives rise to a decision
problem: Given a finite transducer, does it admit a sequential uniformiser? It is worth noting
that even if any rational transduction R can be uniformised by a rational uniformiser U , the
sequential uniformisability of R does not imply, in general, that any of the uniformisers U is
equivalent to a sequential transducer. As a matter of fact, it is known that the sequential
uniformisation problem is undecidable for rational transductions [6].

The sequential uniformisation problem echoes a similar problem introduced by Church,
the synthesis problem, which currently receives a lot of attention from the computer-aided
verification community in the context of open reactive systems (see [24, 13, 4] for some work
on this subject from the last decade). This problem asks whether given a logical specification
of a system, there exists an implementation that satisfies it. In this context, reactive systems
are non-terminating systems that react to some unpredictable environment stimuli in a
synchronised fashion: for each environment input, they produce an output in a deterministic
manner, such that the specification is met in the limit. Their executions are modelled by
infinite words over a product alphabet, and the interaction with the environment makes game
theory a powerful tool in this context. A seminal result due to Büchi and Landweber shows
that the synthesis problem is decidable for MSO specifications [22] (see [31] for a modern
presentation and an overview).
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Restricted to finite words, the sequential uniformisation problem extends Church’s problem
to more general (asynchronous) classes of specifications and implementations, where the
transduction R is the specification and the sequential uniformiser f the implementation.

Resynchronisers. One of the main difficulty of transducers is that two equivalent transducers
may produce their outputs very differently: One transducer may go fast and be ahead of
the other. By tagging symbols with two colours (for input and output), transductions can
be seen as languages, called synchronisation languages. It is known by Nivat’s theorem
that rational transductions are synchronised by regular languages [26], and any transducer
defines a regular synchronisation language. Other correspondences between classes of
synchronisation languages and classes of rational transductions have been established in [11].
However in general, there is an infinite number of synchronisation languages for a single
transduction, making problems such as equivalence and sequential uniformisation undecidable.
To overcome this difficulty, Bojanczyk has introduced transductions with origin information,
which amounts to adding the synchronisation information into the semantics of transducers,
via an origin function mapping output positions to their originating input positions [5]. The
main result of [5] is a machine-independent characterisation of transductions (with origin
information) defined by two-way transducers. With respect to the equivalence problem,
considering the origin information makes the problem easy: two transducers define the same
transduction with same origin mappings if they have the same synchronisation language. In
this paper, we generalise this idea and propose decision problems modulo resynchronisation.
A resynchroniser S is a transduction, mapping a synchronisation language to another one.
Then, we consider related equivalence and sequential uniformiser problems: for instance,
given two transducers, are their synchronisation languages equal modulo S? For the identity
resynchroniser, it is the same as origin-equivalence.

Contributions. As a first contribution, we show that inclusion, equivalence and sequential
uniformisation are decidable modulo rational resynchronisers. For equivalence, it easily
reduces to an automata equivalence problem. For sequential uniformisation, it boils down to
solving a two-player safety game. We then consider a particular class of resynchronisers, the
k-delay resynchronisers, that can apply a fixed delay k to a synchronisation language, where
the delay is a measure of how ahead an output word is from another one [1]. The k-delay
resynchroniser is rational for each k, which implies the decidability of the corresponding
decision problem. Interestingly, we show that for the class of real-time transducers (reading
at least one input symbol in each transition), k-delay resynchronisers encompass all the
power of rational synchronisers with respect to the decision problems we consider.

Our second main contribution is to show that equivalence and sequential uniformisation
modulo k-delay resynchronisers are complete for finite-valued transducers. Given two finite-
valued transducers, if they are equivalent, then some k can be computed such that they are
k-delay equivalent. This yields another, delay-based, proof of the decidability of finite-valued
transducer equivalence. We show a similar result for sequential uniformisation, by a pumping
argument based on an analysis of the idempotent elements in the transition monoid of
finitely-ambiguous transducers. This implies the following new result:

I Theorem 16. The sequential uniformisation problem for finite-valued transducers is
decidable.

Finally, we consider deterministic rational transductions, i.e. transductions defined by
deterministic transducers. A deterministic transducer is a deterministic automaton whose

ICALP 2016
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states are partitioned into input and output states. They process pairs of words (u, v) as
follows: two reading heads placed on u and v respectively process sequentially symbols from
u and v. Whenever the current state is an input state, a symbol from u is read and the
(input) head moves one step forward, and symmetrically on v when the current state is
an output state. The equivalence problem for deterministic transducers is decidable [3],
unlike the inclusion problem [14]. Our third main contribution is a decidability proof for
the sequential uniformisation problem for deterministic rational transductions, extending a
corresponding result for automatic relations from [6].

I Theorem 18. The sequential uniformisation problem for deterministic transducers is
decidable.

Structure of the paper. In Section 2, we introduce automata, transducers and decision
problems for them. In Section 3, we define the notion of resynchronisers for transductions
and study their associated decision problems. We also introduce the particular class of
bounded delay resynchronisers. In Section 4, we study the class of finite-valued rational
transductions and prove decidability of their sequential uniformisation. Finally in Section 5,
we prove decidability of sequential uniformisation for deterministic rational transductions.

2 Automata and Transducers

Let N denote the set of non-negative integers {0, 1, . . . }, and for every n ∈ N, let [n] denote
the set {1, . . . , n}. Given a finite set A, let |A| denote its cardinality.

Languages and Transductions of Words. An alphabet Σ is a finite set of symbols. The
elements of the free monoid Σ∗ are called words over Σ. The length of a word w is the
number of its symbols. It is written |w|. The empty word (of length 0) is denoted by ε, and
Σ+ = Σ∗ \ {ε}. The set Σ∗ can be partially ordered by the word prefix relation �.

We denote by Σ−1 the set of symbols σ−1 for all σ ∈ Σ. Any word u ∈ (Σ ∪ Σ−1)∗
can be reduced into a unique irreducible word u by the equations σσ−1 = σ−1σ = ε for all
σ ∈ Σ. Let GΣ be the set of irreducible words over Σ ∪ Σ−1. The set GΣ equipped with
concatenation u.v = uv is a group, called the free group over Σ. We denote by u−1 the
inverse of u. E.g. (a−1bc)−1 = c−1b−1a. For u ∈ GΣ, we denote by |u| its number of symbols.
E.g., |a−1b−1| = 2, |a−1bc−1| = 3.

A language L over Σ is a subset of Σ∗. A transduction R over Σ is a subset of Σ∗ × Σ∗.
The domain of R is the set dom(R) = {u | ∃v ∈ Σ∗ · (u, v) ∈ R}. For a word u ∈ Σ∗,
we denote by R(u) the set {v | (u, v) ∈ R}, and extend this notation to languages L by
R(L) =

⋃
u∈LR(u). When R is a function, we simply write R(u) = v instead of R(u) = {v}.

Finally, we denote by idΣ∗ the identity relation on Σ∗.

Automata. A (finite state) automaton over an alphabet Σ is a tuple A = (Q, I, F,∆), where
Q is the finite set of states, I ⊆ Q is the set of initial states, F ⊆ Q is the set of final states,
and ∆ ⊆ Q× Σ∗ ×Q is the finite transition relation. Given a transition (q, w, q′) ∈ ∆, q is
called its source, q′ its target, and w its label. An automaton is called deterministic if each
of its transition is labelled by a single letter, and it admits no pair of transitions that have
same source, same label, and different targets.

A run of A on a word u ∈ Σ∗ from state q to state p is either a single state q ∈ Q if
u = ε and q = p, or a word r = (q1, u1, p1)(q2, u2, p2) . . . (qn, un, pn) ∈ ∆+ if u ∈ Σ+, where
u = u1 . . . un, q1 = q and pn = p, and for all i ∈ {1, . . . , n−1}, pi = qi+1. We write q1

u−→A pn
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Figure 1 Transducers such that T1 ≡ T2 and T is seq-uniformisable by U .

(or simply q1
u−→ pn) if such a run exists. A run r from a state q to a state p is accepting

if q is initial and p is final. The language recognised by A, written LA, is the set of words
w ∈ Σ∗ such that there exists an accepting run of A on w. If B is an automaton, we write
A ⊆ B (resp. A ≡ B) whenever LA ⊆ LB (resp. LA = LB).

Transducers. A (finite state) transducer over an alphabet Σ is a tuple T = (Q, I, F,∆, f),
where Q is the finite set of states, I ⊆ Q the set of initial states, F ⊆ Q the set of final states,
∆ ⊆ Q× Σ∗ × Σ∗ ×Q the transition relation, and f : F→Σ∗ the final output function1

As for automata, a run of a transducer is either a single state or a sequence of transitions.
The input (resp. output) of a run r = (q1, u1, v1, p1) . . . (qn, un, vn, pn) ∈ ∆∗ is in(r) =
u1 . . . un (resp. out(r) = v1 . . . vn). If r is reduced to a single state, its input and output are
both ε. We say that r is a run of T on u1 . . . un. We write q u|v−−→ p to mean that there exists a
run on input u ∈ Σ∗ whose output is v ∈ Σ∗. In particular, q ε|ε−→ q for all q ∈ Q. The notion
of accepting run of automata carries over to transducers. The transduction recognised by T ,
written RT is the set of pairs (u, vf(p)) ∈ Σ∗ ×Σ∗ such that there exists an accepting run of
T on u from a state q to a state p whose output is v. We define dom(T ) as dom(RT ). The
class of rational transductions is the class of relations definable by finite state transducers.

The input automaton of T is the automaton A = (Q, I, F,∆′) over the alphabet Σ, where
∆′ = {(q, u, q′)|(q, u, v, q′) ∈ ∆}. A transducer is called real time if each of its transition is
labelled by a pair (a, v), where a ∈ Σ and v ∈ Σ∗. A transducer is called sequential if its
input automaton is deterministic2. Sequential transducers define sequential transductions.
A transducer is trim if all its accessible states are co-accessible, i.e. for all q ∈ Q, q0 ∈ I,
u, v ∈ Σ∗, if q0

u|v−−→ q, then there exist u′, v′ ∈ Σ∗ and qf ∈ F such that q u′|v′−−−→ qf .

Decision Problems for Transducers. Let T1, T2 be two transducers over an alphabet Σ.
We write T1 ⊆ T2 whenever RT1 ⊆ RT2 . The inclusion problem asks, given T1, T2, whether
T1 ⊆ T2. Similarly, we define the equivalence problem by asking whether RT1 = RT2 , denoted
T1 ≡ T2. Let T be a transducer over an alphabet Σ. A uniformiser of T is a transducer U
such that U ⊆ T and dom(U) = dom(T ). We sometimes write seq-uniformiser for sequential
uniformiser. The sequential uniformisation problem (seq-uniformisation problem) asks, given
a transducer T over Σ, whether T admits a seq-uniformiser.

1 Allowing final output functions does not increase the expressiveness of the general model, but is required
to define the notion of sequentiality

2 The term subsequential was originally used in the literature. We follow the terminology of [25].
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I Example 1. The transducers T1 and T2 of Fig. 1 both define the transduction {(an, a2i) |
n ≥ 1, 0 ≤ i ≤ n−1}, thus are equivalent. The transducer T is over the alphabet {a,A,B}
and defines the transduction {(anA, an) | n ≥ 0} ∪ {(anB, ai) | n ≥ 1, 0 ≤ i ≤ 2n−1}. It is
uniformisable by the sequential transducer U with RU = {(anα, an) | n ≥ 0, α ∈ {A,B}}.

I Theorem 2 ([17, 6]). The inclusion, equivalence and sequential uniformisation problems
for rational transductions are undecidable.

3 Decision Problems Modulo Resynchronisers

A pair (u, v) ∈ Σ∗ × Σ∗ can be represented by a coloured word over Σ× {i, o}, where the
colours indicate whether a symbol in Σ is an input or an output symbol. Such a coloured word
is called a synchronisation of (u, v). More generally, any language over the alphabet Σ×{i, o}
represents a transduction R ⊆ Σ∗ ×Σ∗, and is called a synchronisation language for R. This
way of representing transductions is analysed in [11]. What we call a resynchroniser below,
is a transduction of synchronisations, that is, over words in (Σ× {i, o})∗, that preserves the
represented pairs. In this section, we study stronger notion of inclusion, equivalence and
sequential uniformisation, parametrised by such a resynchroniser. We show their decidability
for rational resynchronisers and introduce the class of bounded delay resynchronisers, and
show that it has appealing properties.

Synchronisations and resynchronisers. Given an alphabet Σ, we let Σio = Σ × {i, o},
Σi = Σ × {i} and Σo = Σ × {o}. For c ∈ {i, o}, we write σc instead of (σ, c). The
colouring c can be seen as a morphism .c : Σ∗ → Σ∗c and we write uc its application
on a word u ∈ Σ∗. Conversely, for c ∈ {i, o}, we define two morphisms πc : Σ∗

io
→ Σ

that extract the input and output words, by πc(σc) = σ and πc(σd) = ε, for all σ ∈ Σ,
and d 6= c. Two words u, v ∈ (Σio)∗ are said to be equivalent, denoted by u ∼io v, if
πc(u) = πc(v) for all c ∈ {i, o}. For example, aibiao and aiaobi are equivalent, and both
are synchronisations of (ab, a). Any language L ⊆ Σ∗

io
defines a transduction over Σ defined

by RL = {(πi(w), πo(w)) ∈ Σ∗ × Σ∗ | w ∈ L}, and L is called a synchronisation of a
transduction R ⊆ Σ∗ × Σ∗ if RL = R. We also say that L synchronises R. Note that two
different languages may synchronise the same transduction.

Mapping a synchronisation to another one is done through the notion of resynchroniser.
A resynchroniser is a transduction S ⊆ Σ∗

io
× Σ∗

io
, such that (i) idΣ∗

io
⊆ S and (ii) for all

(w,w′) ∈ S, it holds w ∼io w
′. For instance, the identity relation id(Σio)∗ is a resynchroniser

that we shall denote by I, as well as the relation UΣio
= {(w,w′) ∈ Σ∗

io
× Σ∗

io
| w ∼io w

′},
called the universal resynchroniser over Σio. We write U instead of UΣio

when it is clear from
the context. Note that for any resynchroniser S, we have idΣ∗

io
⊆ S ⊆ U. The properties (i)

and (ii) of resynchronisers are chosen such that they preserve the represented transductions,
as stated in the proposition below.

I Proposition 3. For all L ⊆ Σ∗
io

and all resynchronisers S ⊆ Σ∗
io
× Σ∗

io
, RL = RS(L).

Classes of synchronisation languages and their correspondence with the classes of rational
relations they synchronise have been studied in [11]. We can formulate in this framework a
result known as Nivat’s theorem [26] as follows.

I Theorem 4. [26] A transduction R is rational iff it is synchronised by a regular language.

A regular language synchronising a rational transduction can be obtained as follows. Any
transducer T = (Q, I, F,∆, f) naturally defines a regular synchronisation for RT by its
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underlying automaton, which is the automaton obtained by concatenating the pairs of
input and output words on the transitions and marking them with the respective symbol
from {i, o}. Formally, it is the automaton A = (Q ∪ {qa}, I, {qa},∆′) over Σio, where
∆′ = {(q, viwo, q′)|(q, v, w, q′) ∈ ∆} ∪ {(q, f(q)o, qa)|q ∈ F}. The language recognised by
T is the language recognised by its underlying automaton, denoted by LT , i.e. LT = LA.
Obviously, LT is a synchronisation for the relation RT (proving one direction of Thm 4).

Decision problems for transducers modulo resynchronisers. Let Σ be an alphabet, S be a
resynchroniser over (Σio)∗, and T1, T2 be two transducers over Σ. We say that T1 is included
in T2 modulo S (or S-included), denoted by T1 ⊆S T2, if LT1 ⊆ S(LT2). We say that T1 is
equivalent to T2 modulo S (or S-equivalent), denoted by T1 ≡S T2, if T1 ⊆S T2 and T2 ⊆S T1.
For a fixed synchroniser S, the S-inclusion (resp. S-equivalence) problem asks, given two
transducers T1, T2 over Σ, whether T1 ⊆S T2 (resp. T1 ≡S T2). We say that T1 is sequentially
S-uniformisable if it admits a sequential uniformiser U such that U ⊆S T1, and in that case
U is called a sequential S-uniformiser of T1 (seq-S-uniformiser for short). The sequential
S-uniformisation problem asks whether a given transducer is seq-S-uniformisable.

It should be clear from the definition that I-inclusion implies S-inclusion for any resyn-
chroniser S, which in turn implies U-inclusion. As a matter of fact, it is easy to see that
U-inclusion is equivalent to classical inclusion. The same remarks can be made for equivalence
and sequential uniformisation, and as a consequence of Theorem 2, we get:

I Theorem 5. The U-inclusion, U-equivalence, sequential U-uniformisation problems for
rational transductions are undecidable.

Decision problems for transducers modulo rational resynchronisers. The U-decision prob-
lems are undecidable, this raises the question whether there is an interesting class of re-
synchronisers for which we can recover decidability. It turns out that U is not rational. In
contrast, we show that, as long as S is rational, the S-decision problems are reducible to
the I-decision problems, which in turn can be solved by reduction to decidable problems of
automata and two-player games.

I Proposition 6. The I-inclusion and I-equivalence problems are PSpace-complete. The
sequential I-uniformisation problem is ExpTime-complete.

Proof. First, note that T1 ⊆I T2 iff LT1 ⊆ LT2 iff A1 ⊆ A2, where A1, A2 are the underlying
automata of T1, T2 respectively. Automata inclusion and equivalence problems are PSpace-
complete, and they easily reduce (by putting ε outputs) to I-inclusion and I-equivalence.

To get ExpTime membership of seq-I-uniformisation, for a transducer T , we construct a
two-player safety game GT = (V = VIn ] VOut, v0, E) between an adversary (Player In) who
picks input symbols and controls positions in VIn, and a protagonist (Player Out) who picks
sequences of output symbols and controls positions in VOut. Wlog we assume that T has no
final output function, by adding an endmarker a to words of its domain. Let A = (Q, q0, F, δ)
be a complete DFA equivalent to the the underlying automaton of T (whose size is at most
exponential in the size of T ). Player positions have three components: a residual language3
of dom(T ) controlling the possible continuations of the input word chosen so far by Player
In, a state of A and a round r ∈ {In,Out}. Let D = {u−1dom(T ) | u ∈ Σ∗} be the set of
residuals of dom(T ) (represented by the states of the minimal DFA for dom(T ), computed in

3 A residual of a language L over some alphabet Σ is a language u−1L = {v | uv ∈ L} for u ∈ Σ∗.
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exponential time in the size of T ). Then, VIn = D×Q×{In} and VOut = D×Q×{Out}. The
initial position is v0 = (dom(T ), q0, In) and the edge relation E as follows: from a position
(D, q, In), there are outgoing edges to all states (σ−1D, δ(q, σi),Out) for all σ ∈ Σ. From a
position (D, q,Out), Player Out can pick any state q′ ∈ Q such that there exists a sequence
v ∈ Σ∗

o
such that q v−→A q′, and in that case an outgoing edge to (D, q′, In) is added to E.

The unsafe positions for Player Out are all positions (D, q, In) such that ε ∈ D and q 6∈ F :
at such positions, Player In could choose to terminate the sequence of input symbols (while
staying in dom(T ) since ε ∈ D) and the sequence of output symbols chosen by Player Out,
mixed with the input symbols chosen by Player In, does not belong to L(A) (since q 6∈ F ).

It can be shown that Player Out has a strategy to avoid the unsafe positions in GT
iff there exists a seq-I-uniformiser of T . We briefly explain how to extract a uniformiser
from a memoryless winning strategy. A memoryless winning strategy of Player Out can be
represented by a function λ : VOut → VIn. The uniformiser Uλ has VIn as state set. Let v
be a state of Uλ where v = (D, q, In) ∈ VIn and σ ∈ Σ. Let v′ = (σ−1D, δ(q, σi),Out) and
v′′ = λ(v′). By definition of GT , v′′ = (σ−1D, q′, In) such that δ(q, σi) w−→A q

′ for some word
w ∈ Σ∗. We then add the transition (v, σ, w, v′′) to Uλ. The word w can be uniquely chosen
by taking the minimal word for some lexicographic order, making Uλ sequential. Accepting
states are states v = (D, q, In) with ε ∈ D, thus ensuring dom(Uλ) = dom(T ). Since λ is
winning, we then necessarily have q ∈ F , ensuring that the sequence of input and output
symbols read and produced by Uλ belongs to LA, making Uλ an I-uniformiser.

Since safety games can be solved in polynomial time and GT has exponential size, we get
the result. The results on safety games that we use here can be found, e.g., in [16].

For the ExpTime lower bound, we note that in our formalism we can model the syn-
chronous uniformisation (or synthesis) problem, as considered in [28] for infinite words, by
taking synchronisations that strictly alternate between input and output. It seems to be
common knowledge in the synthesis community that the synchronous uniformisation problem
is ExpTime-complete if the relation is given by a nondeterministic automaton. However,
we were not able to find a reference for this result. We thus give a reduction from the
acceptance problem for alternating Pspace Turing machines in a long version. J

For all transducers T and resynchronisers S, S(LT ) is a regular synchronisation language
and by Nivat’s theorem (Theorem 4), there exists a transducer T S such that LT S = S(LT ). It
implies that the seq-S-uniformisation of T reduces to the seq-I-uniformisation of T S. Similar
arguments apply for inclusion and equivalence and from Proposition 6 we obtain:

I Theorem 7. Let S be a rational resynchroniser, given as a transducer. The S-inclusion and
S-equivalence problems are PSpace-complete. The sequential S-uniformisation problem is
ExpTime-complete.

Bounded delay resynchronisers. The notion of delay between outputs of transducers is a
powerful way of comparing transducers, which has been used, for instance, to characterise
sequential functions [2]. Intuitively, the delay between two runs on the same input is a
parameter that measures how a run is ahead of the other, and the lag is the maximal delay
over prefixes of the two runs. We adapt the notion of delay and lag to coloured words and
define delay resynchronisers as resynchronisers that apply a fixed delay to words in Σ∗

io
(our

notion of lag is not related to the one from [11]). Our results show that delay resynchronisers
form a fundamental class of resynchronisers.

The delay between two words u and v over an alphabet Σ is the element from the free group
GΣ defined by delay(u, v) = u−1v. E.g., delay(ab, acd) = b−1cd. Note that delay(u, v) ∈ Σ∗ iff
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u � v, and delay(u, v) ∈ (Σ−1)∗ iff v � u. The lag mapping lag : (Σio)∗×(Σio)∗ → N∪{+∞}
gives the maximal length of the delay between the output part of two words in (Σio)∗ that
have the same input. It is the metric defined by lag(u, v) = +∞ if πi(u) 6= πi(v). If
πi(u) = πi(v), then u and v can be decomposed into u = u0a1u1 . . . un−1anun and v =
v0a1v1 . . . an−1bnvn, such that a1, . . . , an ∈ Σi, u0, v0, . . . , un, vn ∈ (Σo)∗. Then lag(u, v) =
max0≤i≤n |delay(u0 . . . ui, v0 . . . vi)|. As an example, for n ≥ 1, take un = aiao(ai)n and
vn = (ai)naiao. Then for all n ≥ 1, lag(un, vn)=1. Note that the occurrence of ao in un is
arbitrary far from that of ao in vn.

We now define the k-delay resynchroniser Dk. Intuitively, it can shift output symbols
of a word u to the left or to the right, as long as the lag between u and the new word
obtained this way is bounded by k. Formally, the k-delay resynchroniser is defined by
Dk = {(u, v) ∈ (Σio)2 | u ∼io v ∧ lag(u, v) ≤ k}. We define the k-inclusion, k-equivalence
and sequential k-uniformisation problems as the corresponding Dk-decision problems, and
write ⊆k and ≡k instead of ⊆Dk

and ≡Dk
respectively. We also say that a transduction is

seq-k-uniformisable if it is seq-Dk-uniformisable. An important property of Dk is:

I Proposition 8. For all k ≥ 0, Dk is rational.

As a direct consequence of the latter proposition and Theorem 7, the k-delay decision
problems are all decidable. We can be more precise:

I Theorem 9. For all k ≥ 0, the k-inclusion, k-equivalence and sequential k-uniformisation
problems are decidable and ExpSpace-hard if k is part of the input. If k is fixed, then
the k-inclusion and k-equivalence problems are PSpace-complete, and the sequential
k-uniformisation problem is ExpTime-complete.

Even if inclusion is undecidable while k-inclusion is decidable, it could be the case that
inclusion reduces to k-inclusion, for some k that cannot be computed. We show that that it
is not the case, by using the transducers of Fig. 1.

I Proposition 10. There exist transducers T1, T2, T such that T1 ≡ T2, T1 ⊆ T2 and T is
seq-uniformisable, but for all k ≥ 0, T1 6≡k T2, T1 6⊆k T2, and T is not seq-k-uniformisable.

Proof. Consider T1, T2 of Fig.1 and pairs of the form (an+1, a2n) ∈ RT1 = RT2 . They both
accept these pairs but T2 will be arbitrarily late compared to T1. Consider now the transducer
T and its sequential uniformiser U . On inputs anB, U will be arbitrarily ahead of T , and
one can show that is the case for any seq-uniformiser of T . J

Finally, we show that for real-time transductions, k-delay resynchronisers subsume any
rational resynchroniser S, in the sense that S-inclusion implies k-inclusion, for some k that
depends on S. Similar results hold for equivalence and sequential uniformisation. The idea is
that a rational synchroniser cannot advance or delay the production of outputs arbitrarily
far away with a finite set of states.

I Theorem 11. Let S be a rational synchroniser (given by a transducer). Let T1, T2, T be
real-time transducers. There exists a computable integer k ∈ N such that: (i) if T1 ⊆S T2,
then T1 ⊆k T2, (ii) if T1 ≡S T2, then T1 ≡k T2, and (iii) if T is seq-S-uniformisable, then T
is seq-k-uniformisable.

One cannot drop the real-time assumption in the latter theorem. Indeed consider the following
transducers T1, T2,S, for which T1≡ST2 but T1, T2 are not k-equivalent for any k:

T1 :
a | ε

ε | b

T2 :
a | ε

ε | b

S :
ai | ε

bo | bo

ε | ai
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4 Finite-valued transducers

Let m ∈ N. We remind the reader that a transducer T is called m-valued if each input
has at most m outputs, i.e. for all w ∈ dom(T ), |RT (w)| ≤ m. It is finite-valued if it is
m-valued for some m. Finite-valuedness is decidable [33]. We prove that for the class of
finite-valued transducers, k-inclusion and sequential k-uniformisation are complete. This
yields, for finite-valued transducers, an alternative proof of the decidability of the inclusion
problem, and a new result: The decidability of sequential uniformisation.

Let m be a natural number. An automaton A (resp. transducer T ) is called m-ambiguous
if it is real-time4, and for any word w ∈ LA (resp. w ∈ dom(T )), there exist at most m
accepting runs of A (resp. T ) on w. An automaton (transducer) is called finitely ambiguous
if there exists m ∈ N such that it is m-ambiguous, and unambiguous if it is 1-ambiguous.
Our proofs uses the following known decomposition initially due to Weber:

I Theorem 12. [32, 30] Any finite-valued transducer T is (effectively) equivalent to a union
of unambiguous transducers.

We first prove that, for the class of finitely ambiguous transducers, inclusion and equival-
ence reduces to k-inclusion and k-equivalence for some computable k. We state this result
for inclusion, which immediately implies it for equivalence. The proof is based on similar
pumping techniques than Lemma 2 in [9].

I Theorem 13. Let T1 and T2 be two real-time transducers such that T2 is m-ambiguous.
Then there exists a computable integer k such that T1 ⊆ T2 =⇒ T1 ⊆k T2. Moreover, k can
be chosen to be exponential in the size of T2 and linear in the size of T1.

Since k-inclusion is decidable by Theorem 7, Theorem 13 implies that the inclusion
and equivalence problems are decidable for finitely ambiguous transducers. From the
decomposition of Theorem 12, we obtain an alternative proof of the decidability of equivalence
of finite-valued transducers, which was proved in [20, 32].

I Corollary 14 ([20, 32] Alternative proof). The inclusion and equivalence problems for
finite-valued transducers are decidable.

We now prove the two corresponding results for the sequential uniformisation problem.

I Theorem 15. Let T be a real-time trim transducer given as a finite union of unambiguous
transducers. Then there exists a computable integer NT such that if T is sequentially
uniformisable, then it is sequentially NT -uniformisable.

Sketch of proof. If T is seq-uniformisable, then there exists a sequential uniformiser U of T
such that dom(U) = dom(T ) and U ⊆ T . The latter inclusion implies, by Theorem 13, that
there exists an integer k such that U ⊆k T , and so U is a seq-k-uniformiser of T . However,
k depends on the number of states of the hypothetical uniformiser U . We show how to
construct, by simulating the behaviour of U , another seq-NT -uniformiser U ′, where NT only
depends on T and can be computed.

More precisely, we define a function ρ : Σ∗ → Σ∗ and define U ′ such that on any input
w, it simulates U on input ρ(w). The function ρ iterates some well-chosen subwords of w
to blow up the delay between the outputs of the runs of T on ρ(w). On input ρ(w), any

4 For simplicity reasons, we put real-timeness in the definition, but it is known to be wlog.
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a | ε
b | ε

# | ε # | ε

a | ε

b | ε

a | ε
b | ε

a | ε

ε | a
ε | b

ε | a

ε | a

ε | b

Figure 2 A deterministic transducer with endmarker for R1 from Ex. 17.

seq-k-uniformiser of T , and U in particular, is forced to make choices between possible
outputs of T on ρ(w), in order to decrease the delay. The main idea is that if, by making
some good choice of output, U is able to react to a threat of exceeding delay k on ρ(w), then
by doing the same choice on w, U ′ can also react to a threat of exceeding delay NT .

We identify several key properties that ρ must satisfy, in order to be able to construct U ′.
For instance, we require that ρ(w) is a prefix of ρ(wa) for all w ∈ Σ∗, a ∈ Σ, but also some
property relating the delays between U and T on input w and on input ρ(w).

The challenging part of the proof is to prove the existence of NT and ρ. It is based on a
study of the structural properties of the transition monoid of finitely ambiguous transducers
(a monoid that captures the state behaviour of automata and transducers), and the effect
of its elements on the delays. In particular, subwords of w that are iterated to define ρ(w)
correspond to idempotent elements in the transition monoid of T , and the bound NT is
obtained by an application of Ramsey’s theorem. J

Since by Theorem 7 every finite-valued transducer is effectively equivalent to a finitely
ambiguous transducer, the sequential uniformisation problem for finite-valued transducers
reduces to sequential N -uniformisation, for computable integers N . Hence by Theorem 7
and the fact that any transducer can be trimmed in polynomial time, we get decidability of
sequential uniformisation of finite-valued transducers, one of the main results of this paper.

I Theorem 16. The sequential uniformisation problem for finite-valued transducers is
decidable.

5 Deterministic Rational Transductions

In this section we consider another subclass of rational transductions, namely the deterministic
rational transductions, denoted by DRat. This class is defined in terms of specific deterministic
transducers and some problems that are undecidable for general rational transductions are
decidable in the case of DRat. For example, the equivalence problem is decidable [3] (while
inclusion is easily seen to be undecidable [14]), and whether a given relation in DRat is
recognisable [7] is also decidable. We obtain here another decidability result, namely that
the sequential uniformisation problem is decidable for deterministic transducers.

For the definition of deterministic rational transducers, we work with endmarkers (this is
the common way of doing it, see also [29]). The determinism includes the standard definition
of unique successor states for each symbol and additionally a deterministic choice between
input and output. This is enforced by a partition of the state space into states processing
input symbols and states processing output symbols.
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I Example 17. The transduction R1 = {(u#v#w, vx) | u, v, w, x ∈ {a, b}∗} is in DRat
since it is recognised by the deterministic transducer depicted in Fig. 2 over the alphabet
{a, b,#} with endmarker a. Note that for each state the outgoing transitions either all have
ε as output component, or all have ε as input component. In the formal definition, this is
captured by partitioning the states into input and output states.

Let Σ be an alphabet and a a fresh symbol used as endmarker. We let Σa := Σ ∪ {a}.
A deterministic transducer over the alphabet Σ with endmarker a is of the form T =
(Qi, Qo, F, q0, δ) with a set Qi of input states, a set Qo of output states (we write Q for the
union of these two sets), a unique initial state q0, a transition function δ : Q× Σa → Q, and
a set F ⊆ Q of accepting states. In the presence of endmarkers, the final output function is
not required anymore.

For defining the semantics of such a deterministic transducer, one can transform it into a
standard transducer. However, this transformation needs to take care of the endmarker only
being allowed at the end of the word, which is not enforced in the definition of deterministic
transducers. To avoid this, we rather define the semantics by extending the transition
function to pairs of words (input and output word). For (u, v) ∈ Σ∗a × Σ∗a and q ∈ Q, we
define δ∗ : Q× Σ∗a × Σ∗a → Q× Σ∗a × Σ∗a inductively as follows:

If q ∈ Qi, then δ∗(q, ε, v) = (q, ε, v) and δ∗(q, au, v) = δ∗(δ(q, a), u, v).
If q ∈ Qo, then δ∗(q, u, ε) = (q, u, ε) and δ∗(q, u, av) = δ∗(δ(q, a), u, v).

So δ∗ applies δ to the next input letter from states in Qi and to the next output letter from
states in Qo as long as possible. The transduction RT defined by T is

RT = {(u, v) ∈ Σ∗ × Σ∗ | δ∗(q0, u a, v a) = (q, ε, ε) with q ∈ F}.

Recall from Section 4 that k-delay inclusion and equivalence are complete for finite-valued
transducers, as stated in Theorem 13. We note that this is not the case for DRat.

I Remark. There are deterministic transducers T1 and T2 such that T1 ≡ T2 but there is no
k such that T1 ≡k T2.

Proof. Consider the complete relation Σ∗ × Σ∗, and let T1 be the deterministic transducer
that first reads all input symbols (up to the endmarker a), and then reads all output symbols.
Let T2 be the deterministic transducer that first reads all output symbols and then the input
symbols. Obviously, RT1 = RT2 = Σ∗ ×Σ∗. However, the lag for the two runs of T1, T2 on a
pair (u, v) is |v| and thus not bounded. J

Our main result for DRat is the following, which extends the corresponding result for
automatic relations from [6].

I Theorem 18. The sequential uniformisation problem for deterministic transducers is
decidable.

The proof uses the game-theoretic approach, building a game between players Input and
Output. A winning strategy for player Output then corresponds to a sequential uniformiser.
The moves of the game simulate the deterministic transducer T on the pairs of input and
output word played by the two players in order to check whether the output indeed matches
the input. However, Output might need to delay the moves to gain some lookahead on the
input for making the next decisions. The main challenge in the proof is to find a way to keep
the lookahead information bounded without losing too much information. It is not sufficient
to simply store words of bounded length as lookahead. The information in the lookahead
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rather provides information on the behaviour that the lookahead word induces in T . Player
Output can delete parts of this information to reduce the size of the lookahead.

The sequential uniformiser that is constructed from the game in the decidability proof can
be shown to have bounded delay. So we obtain the following result, showing that sequential
k-uniformisation is complete for deterministic transducers.

I Theorem 19. Any sequentially uniformisable deterministic transducer is sequentially
k-uniformisable for some k ∈ N that can be computed from the given transducer.

6 Conclusion

We have introduced the notion of resynchronisers, which are transformations for synchron-
isations of transductions. The decision problems of inclusion, equivalence, and sequential
uniformisation, which are undecidable for general rational transductions, become decidable
modulo rational resynchronisers. Furthermore, we have shown that it is sufficient to consider
k-delay resynchronisers in the context of these decision problems. We have analysed two
subclasses of transducers, finite-valued transducers and deterministic transducers. For both
classes, sequential uniformisation is decidable, and the existence of a sequential uniformiser
implies the existence of a sequential k-uniformiser. Additionally, for finite-valued transducers
k-inclusion is shown to be complete. One interesting open question is the problem of deciding
for a transducer whether it admits a sequential k-uniformiser for some k.
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Abstract
In this paper, we exhibit a one-to-one correspondence between ω-regular languages and a sub-
class of regular cost functions over finite words, called ω-regular like cost functions. This bridge
between the two models allows one to readily import classical results such as the last appear-
ance record or the McNaughton-Safra constructions to the realm of regular cost functions. In
combination with game theoretic techniques, this also yields a simple description of an optimal
procedure of history-determinisation for cost automata, a central result in the theory of regular
cost functions.
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1 Introduction

The theory of regular cost functions [4] aims at offering a uniform framework dealing with
boundedness questions in automata theory. It provides a toolbox of concepts and results for
solving questions involving resource constraints, such as the star height problem over finite
words [10, 12] and finite trees [7], the finite power property [14], the boundedness of fixpoints
for monadic second-order logic [2] or over guarded logic [1], or for attacking the Mostowski
index problem [7]. The strength of regular cost functions is that it is a quantitative setting
where many of the crucial results of regular languages generalise, including the cornerstone
effective equivalence between logic, automata, algebra and expressions.

For regular languages, determinising plays a central role, as for instance for complementing
automata over infinite trees, or for solving games. The situation is different for cost functions,
even over finite words: it is impossible to determinise cost automata, deterministic cost
automata being strictly less expressive. The notion of history-deterministic automata
overcomes this shortcoming. These are non-deterministic cost automata that have the
semantical property that an oracle resolves the non-determinism in an optimal way. The
non-determinisability issue is resolved by establishing that cost automata can be effectively
transformed into history-deterministic ones [4]. This is crucially used for instance when
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developing the theory of regular cost functions over finite trees [7]. However, the proof of
this result is so far very complicated. The original version [4] was going through algebra
(stabilisation monoids), incurring a double exponential blowup. An optimal version inspired
by the construction of Safra is known [5], but its description and correctness proof are
extremely complicated.

One aim of the present work is to give a simple description and correctness proof of
the construction from [5] which, given a cost-automaton as input, produces an equivalent
history-deterministic automaton. The key advantage of the novel presentation in this work is
that it uses the determinisation of ω-regular languages as a black box. In particular, it does
not depend at all on the details of the (relatively complicated) Safra construction. This also
makes both the construction and the proof much simpler. Further, it is optimal, meaning
that it yields an automaton of exponential size, matching known lower bound for the case of
ω-regular languages [8].

In order to obtain this completely new presentation, we describe a one-to-one correspond-
ence between the theory of ω-regular languages and a subclass of regular cost functions, called
the ω-regular like cost functions. This correspondence allows us to readily import from ω-
regular languages constructions such as the last appearance record or determinisation results
to regular cost functions. In other words, ω-regular like cost functions are determinisable.

In a second step, combining game theoretic techniques with an idea of Bojańczyk [3], we
obtain a simple, direct and optimal construction of history-deterministic cost automata.

Structure of the document

We define the class of ω-regular like cost functions in Section 3, and study its properties.
We give in Section 4 the history-determinisation procedure, relying on the results about
ω-regular like cost functions combined with game theoretic techniques.

2 Definitions

Let A and B be alphabets. An initial automaton structure is denoted A = (Q, A, B, I,∆), where
A is the input alphabet, B is the output alphabet, Q is a finite set of states, I ⊆ Q is the set of
initial states and ∆ ⊆ Q× A× B×Q is the transition relation. An element (p, a, b, q) ∈ ∆ is
called a transition. An automaton structure A = (Q, A, B, I,∆, F ) is an initial automaton
structure enriched with a set F ⊆ Q of accepting states.

A run (which can be finite or infinite) is a sequence of transitions of the form

(p0, a1, b1, p1)(p1, a2, b2, p2) · · ·

such that p0 is initial. We denote by ρ|A its projection to the alphabet A, and by ρ|B its
projection to the alphabet B. For w a finite or infinite word over A, we say that a run ρ is
a run of w if ρ|A = w and a prefix run of w if ρ|A is a prefix of w. When dealing with an
automaton structure, we further require that a run of a finite word ends in an accepting
state.

ω-automata

An ω-automaton is denotedA = (Q, A, B, I,∆,W ), where (Q, A, B, I,∆) is an initial automaton
structure, and W ⊆ Bω is called the accepting condition. The ω-language recognised by the
ω-automaton is the set

{w ∈ Aω | there exists a run ρ over w such that ρ|B ∈W} .
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We define some of the classical ω-accepting conditions.

Büchi = {w ∈ {0, 1}ω | w contains infinitely many 0′s}

coBüchi = {w ∈ {1, 2}ω | w contains finitely many 1′s}

Rabin1 =
{
w ∈ {I,R, ε}ω

∣∣∣∣ w contains infinitely many I ′s
and finitely many R′s

}

Rabink =

w ∈ ({I,R, ε}k)ω
∣∣∣∣∣∣

for some ` ∈ {1, . . . , k} ,
w contains infinitely many I ′`s
and finitely many R′`s


Parityk =

{
w ∈ {1, . . . , k}ω

∣∣∣∣ the smallest colour appearing
infinitely often in w is even

}
A Rabin automaton is an ω-automaton with a Rabin condition, and similarly for the other
conditions. It is known that Büchi, parity and Rabin automata recognise the same ω-
languages, that are called the ω-regular languages.

Regular cost functions

We consider functions from A∗ to N ∪ {∞}. Let f be such a function, and X ⊆ A∗, we say
that f |X is bounded if there exists n ∈ N such that f(u) ≤ n for all u ∈ X.

Let f, g be two such functions, then g dominates f , denoted f 4 g, if for all X ⊆ A∗, if
g|X is bounded then f |X is bounded. We say that f and g are equivalent, denoted f ≈ g,
if f 4 g and g 4 f . The following lemma is central, see [6] for more considerations on this
equivalence relation.

I Lemma 1. f 4 g if, and only if, f ≤ α ◦ g for some function α : N → N such that
limα =∞, extended with α(∞) =∞.

A cost function is an equivalence class for the relation ≈.
Many equivalent formalisms can be used in order to define regular cost functions; this

paper studies automata.

I Definition 2. A min-cost-automaton is denoted A = (Q, A, B, I,∆, F, f), given by an
automaton structure (Q, A, B, I,∆, F ) together with an accepting map f : B∗ → N ∪ {∞}. It
recognises the cost function induced by the map

[[A]]min : A∗ → N ∪ {∞}
w 7→ inf {f(ρ|B) | ρ run over w} .

A max-cost-automaton is defined similarly, recognising the cost function induced by the map

[[A]]max : A∗ → N ∪ {∞}
w 7→ sup {f(ρ|B) | ρ run over w} .

We define some of the classical accepting maps for regular cost functions.
We first define the costB map for one counter. The value of the counter is initialised

by 0. The letter i is an increment, it adds 1 to the value of the counter, the letter r is a
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reset, it resets the value of the counter to 0, and the letter ε does nothing. Formally, the
costB map for one counter is defined by

costB : {i, r, ε}∗ → N ∪ {∞}
w 7→ max{n ∈ N | w ∈ {i, r, ε}∗ (ε∗i)n {i, r, ε}∗} .

The restrictions over {ε, i}∗ and over {r, i}∗ are called distance and desert, respectively
denoted distB and desertB.

The costB map for k counters is defined similarly as for one counter, over the alphabet
{ε, i, r}k, by taking the maximum over all counters.

The costhB map for k hierarchical counters is the restriction of costB over the alphabet
{I1, R1, . . . , Ik, Rk}, where I` increments the `th counter and resets all counters of smaller
index, and R` resets all counters of index smaller than or equal to `.

A B-automaton is a min-cost-automaton equipped with a costB map. Similarly, a
hB-automaton is equipped with a costhB map. The class of cost functions recognised by
B-automata (or equivalently, hB-automata) is called regular cost functions.

We will make use of the following special case of max-cost-automata.

I Definition 3. A prefix-max-cost-automaton is denoted A = (Q, A, B, I,∆, f), given by an
initial automaton structure (Q, A, B, I,∆) together with an accepting map f : B∗ → N ∪ {∞}.
It recognises the cost function induced by the map

[[A]]pmax : A∗ → N ∪ {∞}
w 7→ sup {f(ρ|B) | ρ prefix run over w} .

3 Omega Regular like Cost Functions

In this section we introduce the subclass of regular cost functions called ω-regular like cost
functions, that we show are in one-to-one correspondence with ω-regular languages.

In Subsection 3.1 we define an operator defining the class and fleshing out the correspond-
ence. We then explain how to construct ω-regular like cost functions with different models:
in Subsection 3.2 using automata, and in Subsection 3.3 using algebra.

This strong correspondence allows us to transfer results from ω-regular languages to
ω-regular like cost functions; in Subsection 3.4 we show how to transfer the latest appearence
record and the Safra constructions.

Finally, we show the interplay between ω-regular like cost functions and games in
Subsection 3.5.

3.1 Bijection with Omega-Regular Languages
The following is the main definition of this paper.

I Definition 4. Given a language L over infinite words, Lol is defined by

Lol : A∗ → N ∪ {∞}
w 7→ sup {n | w = uv1 · · · vnu′, v1, . . . , vn 6= ε, u · {v1, . . . , vn}ω ⊆ L} .

A cost function is ω-regular like if it contains a map Lol for some ω-regular language L.

Note that we will mostly be interested in using the definition of ·ol with ω-regular
languages.
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I Example 5.
Büchiol = distB: it is the function counting the number of 1’s, i.e. the distance map
where 1 is ε and 0 is i.
coBüchiol = desertB: it is the function counting the size of the largest block of 2’s, i.e.
the desert map where 1 is r and 2 is i.
Rabin1

ol = costB: it is the function counting the number of I’s in a block containing no
R’s, i.e. the costB map for one counter where I is i and R is r.
Rabinkol ≈ costB: it is the costB map for k counters where I` is increment for the `th
counter and R` is reset for the `th counter. Note that here the functions are not equal,
one can see that costB ≤ Rabinkol ≤ k · costB.
Parity2k

ol ≈ costhB: it is the costhB map for k counters, where I` is the colour 2(k − `)
and R` is 2(k − `)− 1.

The following lemma is central, it shows the interplay between the above definition and
ultimately periodic words.

I Lemma 6. Let L be a language over infinite words, and u, v two finite words with v

non-empty. The following statements are equivalent:
1. uvω ∈ L,
2. (Lol(uvn))n∈N tends to infinity.

Note that this lemma does not make any assumption on the regularity of L; in the rest
of the paper, we shall always look at Lol for L an ω-regular language.

Proof. One direction is clear: if uvω ∈ L, then (Lol(uvn))n∈N tends to infinity.
We prove the converse implication. Assume that (Lol(uvn))n∈N tends to infinity, and let

n be larger than |uv|. There exists k such that uvk can be factorised u′v1 · · · vnu′′ such that
u′ · {v1, . . . , vn}ω ⊆ L.

Consider the lengths |u′v1 · · · v`| for ` ∈ {|u|, . . . , n}: two of them have the same value
modulo |v|, denote the corresponding words u′v1 · · · vi and u′v1 · · · vj , with i < j. Note that
since ` ≥ |u| and v1, . . . , v` are not empty, the word u is a strict prefix of u′v1 · · · vi. It follows
that we have u′v1 · · · vi = uvpx for some p and v = xy, and vi+1 · · · vj = yvqx for some q.

Consider the infinite word

u′v1 · · · vi(vi+1 · · · vj)ω = uvpx(yvqx)ω ,

by assumption it belongs to L. Thanks to the equality s(ts)ω = (st)ω, the word above is
equal to uvp(xyvq)ω = uvp(vq+1)ω = uvω. Thus, uvω ∈ L. J

I Theorem 7. The map ·ol is a bijection between ω-regular languages and ω-regular like
cost functions.

In particular, two ω-regular like cost functions Lol, L′
ol are equal if, and only if, L = L′.

Proof. The map is surjective by definition of ω-regular like cost functions.
We show that it is injective: consider L,L′ two ω-regular languages such that Lol ≈ L′ol.

It follows from Lemma 6 that L and L′ coincide on ultimately periodic words; being ω-regular,
this implies that they are equal. J
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0, 1 0

0 1

1

0

0, 1

Figure 1 The Büchi automaton for Example 9.

3.2 Automata Constructions
The following theorem shows how to construct automata recognising ω-regular like cost
functions. The construction is very simple, as it amounts to consider an ω-automaton and to
see it as a prefix-max-cost-automaton, without any further changes. The correctness proof
however is bit more involved.

I Theorem 8. Let W be an ω-regular condition.
Consider a W -automaton A, and denote by L the language it recognises. The prefix-max-

cost-automaton induced by A with the map W ol recognises the cost function Lol.

Before proving this theorem, we give an example.

I Example 9. Consider the Büchi automaton represented in Figure 1. The alphabet is
A = {0, 1}, the Büchi transitions are represented by a boldface loop. The top part checks
whether the word contains infinitely many 1’s, and the bottom part checks whether the word
contains finitely many 1’s. It follows that this automaton recognises all ω-words, i.e. L = Aω,
so

Lol : A∗ → N ∪ {∞}
w 7→ length of w

The induced prefix-max-cost-automaton recognises the following cost function:

[[A]]pmax : A∗ → N ∪ {∞}
w 7→ max {number of 1′s in w, size of the largest block of 0′s in w} .

These two functions are indeed equivalent: [[A]]pmax ≤ Lol ≤ [[A]]2pmax.

In the proof of Theorem 8, we will make use of Simon’s theorem [13]. We state here the
corollary that we use. Recall that a semigroup is a set equipped with an associative binary
product, and that an idempotent in a semigroup is an element e such that e · e = e.

For every morphism ϕ : A+ → M where M is a finite semigroup, there exists a
function α : N→ N such that limα =∞ and for all words w of length n, there exists
a factorisation w = uv1 · · · vα(n)u

′ where the words v1, . . . , vα(n) are non-empty and
such that

ϕ(v1) = ϕ(v2) = · · · = ϕ(vα(n))

is an idempotent.
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Proof. For the sake of simplicity, we will assume that A is a parity automaton, i.e. W is the
parity language. The proof generalises to the case of an ω-regular language W by considering
a deterministic parity automaton recognising W .

We denote Aol the prefix-max-cost-automaton induced by A with the accepting map
Parityol. By definition:

[[Aol]]pmax(w) is defined by

sup
{

Parityol(ρ|B) | ρ prefix run over w
}
.

Lol(w) is defined by

sup {n | w = uv1 · · · vnu′, v1, . . . , vn 6= ε, u · {v1, . . . , vn}ω ⊆ L} .

We will apply Simon’s theorem twice, once for each direction. To this end, we construct
a morphism ϕ : A→M , where M is the transition semigroup of A. A transition profile is a
tuple (p, c, q) where p and q are states and c is a colour. The product of transition profiles is
(partially) defined by

(p, c, q) · (r, c′, s) =
{

(p,min(c, c′), s) if q = r

undefined otherwise.

An element of M is a set of transition profiles. The product is inherited by the product for
transition profiles. The morphism ϕ associates to a letter a the set of transitions over the
letter a in the automaton A.

Assume [[Aol]]pmax(w) ≥ n: there exists a prefix run ρ over w such that Parityol(ρ|B) ≥ n.
It follows that ρ factorises ρρ1 · · · ρnρ′, where in each ρi the smallest colour appearing is even.
We apply Simon’s theorem to the word ρ1 · · · ρn, seen as a word of length n, i.e. where we
interpret each ρi as a single letter. Denote m = α(n). There exists a factorisation which we
denote τ̃ τ̃1 · · · τ̃mτ̃ ′ such that ϕ(τ̃1) = · · · = ϕ(τ̃m) is idempotent, denoted S. This implies
the existence of (q, c, q) in S, where c is even. Denote w = uv1 · · · vmu′ the factorisation of w
it induces. Observe that u · {v1, . . . , vm}ω ⊆ L, as for each such word one can construct a
ultimately periodic run ρ in A whose smallest colour appearing infinitely often is c, hence
such that ρ|B ∈ Parity. So W ol(ρ) ≥ α(n).

It follows that [[Aol]]pmax 4 Lol.

Conversely, assume Lol(w) ≥ n: there exists a factorisation of w in uv1 · · · vnu′ as in the
definition of Lol(w). We apply Simon’s theorem to the word v1 · · · vn, seen as a word of
length n, i.e. where we interpret each vi as a single letter. Denote m = α(n). There exists
a factorisation which we denote ũṽ1 · · · ṽmũ′ such that ϕ(ṽ1) = · · · = ϕ(ṽm) is idempotent,
denoted S. Note that each ṽ` and ũ is an infix vi · · · vj ; denote w̃ the infix corresponding
to ṽ1 · · · ṽm. The element ϕ(w̃) is idempotent equal to S. Since u · {v1, . . . , vn}ω ⊆ L, in
particular uũ · w̃ω ∈ L. Because A recognises L, there exists an accepting run of uũ · w̃ω.
Now, ϕ(w̃) being idempotent, this implies that there exist:

a transition profile in ϕ(u · ũ) of the form (p,_, q) where p is initial, and
a transition profile in ϕ(w̃) of the form (q, c, q) where c is even.

Recall that each ϕ(ṽ`) is equal to S = ϕ(w̃), so it contains (q, c, q). Thus, we obtain a run
ρ = ρ

uũ
ρ
ṽ1
· · · ρ

ṽm
over uũṽ1 · · · ṽm such that ρ

uũ

{
ρ
ṽ1
, . . . , ρ

ṽm

}ω
⊆ W . This implies that

[[Aol]]pmax(w) ≥ α(n).
It follows that Lol 4 [[Aol]]pmax.

We conclude that Lol and [[Aol]]pmax are equivalent. J
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Recall that if W is the Büchi language, then W ol is the distance map. Similarly, the
Rabin condition induces the costB map and the parity condition the costhB map.

In particular, Theorem 8 implies that if L is recognised by a Büchi automaton (resp.
Rabin automaton, parity automaton), then Lol is recognised by a prefix-max-cost-automaton
with the distance map (resp. costB map, costhB map).

3.3 Syntactical Constructions
The above subsection shows how to construct ω-regular like cost functions using automata.

3.4 Transferring Results
We show in this subsection how to use the above correspondence to transfer two automata
theoretic constructions.

The first construction is the latest appearance record construction, which allows to
transform a Rabin condition into a parity condition, as stated in the following theorem.

I Theorem 10. For every k, there exists a deterministic parity automaton with k! states
and k colours recognising the language Rabink.

This yields the following corollary.

I Corollary 11. For every k, there exists a hierarchical B-automaton (hB-automaton) with
k! states and k counters recognising the cost function costB.

Consequently, for every regular cost function, one can effectively construct an hB-
automaton recognising it.

The first part is obtained by applying Theorem 8 to the automaton constructed by
Theorem 10. For the second part, it amounts to compose the B-automaton with the
automaton constructed by the first item to obtain an hB-automaton.

The second construction is the determinisation of Büchi automata.

I Corollary 12. For every ω-regular like cost function, one can effectively construct a
deterministic B-automaton recognising it.

Proof. Consider an ω-regular language L given by a non-deterministic Büchi automaton,
inducing the ω-regular like cost function Lol.

The McNaughton-Safra construction yields an equivalent deterministic Rabin automaton,
denoted A. Thanks to Theorem 8, this implies a prefix-max-cost-automaton equipped with
the Rabinol condition recognising Lol. Since A is deterministic and Rabinol is the costB

map, A is in fact a deterministic B-automaton recognising Lol. J

3.5 Games with Omega-Regular like Cost Functions
In this subsection, we show how to solve games with ω-regular like cost functions.

We refer to [9] for materials about games; here we only give the basic definitions.
A game is denoted G = (V, A, VE , VA, E), where V is a set of vertices, A is the output

alphabet, VE is the set of vertices controlled by the first player Eve, VA is the set of vertices
controlled by the opponent Adam with V = VE ] VA and E ⊆ V × A× V is the set of edges.
A game is said finite if V is finite.

A token is initially placed on a given initial vertex v0, and the player who controls this
vertex pushes the token along an edge, reaching a new vertex; the player who controls this
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new vertex takes over, and this interaction goes on forever, describing an infinite path called
a play. A winning condition is a language L ⊆ Aω: a play is won by Eve if its projection on A
belongs to L. A strategy for Eve is a map σ : E∗VE → E. A memory structure is denoted
M = (M,m0, µ), where M is the (finite) set of memory states, m0 ∈M is the initial memory
state and µ : M ×E →M is the (deterministic) update function. A finite-memory strategy
is given by a memory structureM and a next-move function σ : M × VE → E.

I Theorem 13. Consider a finite game G and L an ω-regular language. The following are
equivalent:
1. There exists n, there exists a strategy for Eve, such that for all plays, the value for Lol is

less than n,
2. Eve wins for the winning condition L{.

Proof. Since L is ω-regular, it is recognised by a deterministic Rabin automaton. By
considering the product of the game with this automaton, we can assume without loss of
generality that L = Rabin, so Lol = costB.

The top to bottom direction is clear: indeed, for a play π, if costB(π) ≤ n, then
π ∈ Rabin{.

To prove the converse implication, we rely on the fact that since L{ is an ω-regular
condition, Eve has a finite-memory winning strategy. By considering the product of the
game with the memory structure, we observe that in each cycle, for each counter, either it is
not incremented or it is both incremented and reset. It follows that this strategy ensures
that the values for costB is bounded over all plays by twice the size of the graph times the
size of the memory. J

We can strengthen this theorem:

I Theorem 14. Consider a finite game G and L,L′ two ω-regular languages. The following
are equivalent:
1. For all n, there exists n′, there exists a strategy for Eve, such that for all plays:

if the value for Lol is less than n then the value for L′ol is less than n′,
2. Eve wins for the condition L ∪ L′{.

Proof. Since L and L′ are ω-regular, they are each recognised by a deterministic Rabin
automaton. By considering the product of the game with the two automata, we can assume
without loss of generality that the alphabet is {ε, i, r}k × {ε, i, r}k

′
with L = Rabin1 and

L′ = Rabin2. Thus Lol = cost1
B and L′ol = cost2

B.
Assume that Eve wins for the condition L ∪ L′{: since it is ω-regular, Eve has a finite-

memory winning strategy. By considering the product of the game with the memory structure,
we observe that for each cycle,

if for each counter in {ε, i, r}k, it is either reset or not incremented,
then for each counter in {ε, i, r}k

′
, it is either reset or not incremented.

Let n be twice the size of the graph times the size of the memory. It follows that this strategy
ensures that for all plays, if the value for cost1

B is less than n then the value for cost2
B is less

than n.
To prove the converse, we proceed by contrapositive. Assume that Eve does not win

for the condition L ∪ L′{, since the game is determined this implies that Adam wins, and
again because the winning condition is ω-regular Adam has a finite-memory winning strategy.
The same reasoning as before concludes that each cycle satisfies the negation of the above

ICALP 2016
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property, which implies for the same value of n that this strategy ensures the following: for
all n′, there exists a play such that the value for cost1

B is less than n and the value for cost2
B

is greater than n′. J

4 History-Determinisation of Cost Automata

In this section we give a simple and direct procedure for history-determinisation of B-
automata: given a B-automaton, construct an equivalent history-deterministic B-automaton.
Note that for the sake of simplicity we consider here hierarchical B-automata. Our contruction
relies on the properties we obtained for ω-regular like cost functions in the above section
together with game theoretic techniques inspired by Bojańczyk [3].

An automaton is history-deterministic if it is non-deterministic but its non-determinism
can be resolved by a function considering only the input read so far. This notion has been
introduced for studying ω-automata in [11]. We specialise it here to the case of cost functions,
involving a relaxation on the values allowing for a good interplay with the definition of
equivalence for cost functions.

A B-automaton B is history-deterministic if there exists a function α : N→ N such that
limα =∞ and for every n, there exists a strategy σ : A∗ → ∆ such that for all words w, we
have

[[B]]min(w) ≤ n =⇒ [[Bσ]]min(w) ≤ α(n).

The automaton Bσ is infinite but deterministic, as for each situation the strategy σ chooses
the transition to follow.

I Theorem 15. For every hB-automaton, one can effectively construct an equivalent history-
deterministic hB-automaton.

Let A = (Q, A, {I1, R1, . . . , Ik, Rk} , I,∆, F, costhB) be a hB-automaton. We first sketch
the construction, which involves two automata:

a deterministic hB-automaton C recognising an ω-regular like cost function denoted Lol,
a history-deterministic min-cost-automaton B equipped with the map Lol.

Recall that for a word w, the value of [[A]]min(w) is the minimum value for the costhB

map over all runs of w.
The automaton B simulates A and is in charge of guessing an optimal run, i.e. having

minimal value for the costhB map. However, we want B to be history-deterministic; to
achieve this, B will do something easier than guessing one run, it will guess for each transition
whether it belongs to some optimal run. In other words, B guesses a run tree (see Figure 2
for the representation of a run tree). As we shall see, thanks to the positionality of hB-games,
B can guess a set of near optimal runs in a history-deterministic fashion. In effect, B inputs
a word and outputs a run tree.

The automaton C recognises the cost function which given a run tree computes the
maximum value for the costhB map over all paths in the run tree. The crucial point is
that this cost function is ω-regular like, so one can effectively construct a deterministic
hB-automaton recognising it.

The composition of the automata B and C yields a history-deterministic hB-automaton
equivalent to A. The correctness of this construction relies on the following two properties:

[[A]]min and [[B]]min are equivalent,
B is history-deterministic.
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Figure 2 A run tree. Each state has at most one ingoing transition.

We proceed with the formal construction.
We define the alphabet B, which is the output alphabet of B and the input alphabet of C.

A transition profile is a triple (p, act, q) where p and q are states and act is an action on the
k counters, i.e. act ∈ {I1, R1, . . . , Ik, Rk}. An element of B is a set of transition profiles T
such that for every state q, there exists at most one p such that (p, act, q) ∈ T for some act.
Equivalently, it is a partial function T : Q→ {I1, R1, . . . , Ik, Rk} ×Q; this backward point
of view will be useful in proving that B is history-deterministic. A word over this alphabet is
called a run tree; see Figure 2 for the representation of a run tree.

Construction of C. The automaton C recognises an ω-regular like cost function; to construct
it we define a parity automaton and turn it into a prefix-max-cost automaton relying on
Theorem 8. Denote

L =

t ∈ Bω

∣∣∣∣∣∣∣∣
there exists an infinite path in t such that,

the minimal action performed infinitely often
for the ordering I1 < R1 < · · · < Ik < Rk

is R` for some `

 .

The language L is recognised by a non-deterministic parity automaton of linear size which
guesses the witnessing path. Formally, the parity automaton is

(Q, B, {I1, R1, . . . , Ik, Rk} , I,∆C , Parity)

The transition relation is ∆C = {(p, T, act, q) | (p, act, q) ∈ T}. The parity condition is
obtained by seeing R` as the colour 2` and I` as the colour 2`− 1.

Theorem 8 implies that

Lol ≈
{

B∗ → N ∪ {∞}
t 7→ max {costhB(π) | π prefix path in t}

Following Corollary 12, we can effectively construct a deterministic hB-automaton C
recognising Lol.

Construction of B. The automaton B is a min-cost-automaton equipped with the map Lol,
in charge of guessing a run tree and deterministically checking whether it contains a run.

Formally, B = (P(Q), A, B,P(I),∆B, FB, Lol). The transition relation ∆B is defined by

{(S, a, T, S′) | S′ is the set of states reached from S using the transitions in T} .

The set of final states FB is {S ⊆ Q | S ∩ F 6= ∅}.

I Lemma 16. [[A]]min and [[B]]min are equivalent.
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Proof. By definition
[[A]]min(w) is the minimum value for the costhB map over all runs of w.
[[B]]min(w) is the minimum value for the Lol map over all runs of w. By construction of
B, the runs of w are the run trees of w that contain a run of w over A.
Thanks to the equivalence above about Lol, this implies that

[[B]]min ≈


A∗ → N ∪ {∞}

w 7→ min
{

costhB(t)
∣∣∣∣ t run tree of w which
contains a run of w over A

}
,

where costhB(t) = max {costhB(π) | π prefix path in t}.

Let [[A]]min(w) ≤ n: there exists a run ρ of w such that costhB(ρ) ≤ n. Consider the run
tree t consisting of exactly ρ, it satisfies costhB(t) ≤ n. It follows that [[B]]min 4 [[A]]min.

Conversely, let [[B]]min(w) ≤ n: there exists a run tree t of w such that costhB(t) ≤ n.
Because it is a run of B, there exists a run ρ in t, and costhB(t) ≤ n implies that costhB(ρ) ≤ n.
It follows that [[A]]min 4 [[B]]min.

We conclude that [[A]]min and [[B]]min are equivalent. J

I Lemma 17. B is history-deterministic.

This relies on the following positionality result, which is proved in [7]. It is also in essence
in the proof of Bojańczyk [3].

I Theorem 18 ([7]). Eve has positional uniform strategies in hB-games.

We now prove Lemma 17.

Proof. To prove that B is history-deterministic, we show that there exists a function
α : N→ N such that limα =∞ and for every n, there exists a strategy σ : A∗ → ∆B such
that for all words w, if [[B]]min(w) ≤ n then [[Bσ]]min(w) ≤ α(n).

Observe that σ : A∗ → ∆B can equivalently defined as a partial function σ : Q× A∗ →
{I1, R1, . . . , Ik, Rk} ×Q; what B guesses is for each state q, at most one transition leading
to q.

We define an hB-game. The set of vertices is Q× A∗. The edges are

{((wa, q), act, (w, p)) | (p, a, act, q) ∈ ∆} .

By definition, for all words w such that [[B]]min(w) ≤ n, there exists q ∈ F such that Eve
has a strategy ensuring costhB(n) ∩ Safe(ε,Q \ I). It follows from Theorem 18 that there
exists a uniform positional strategy, i.e. σ : Q× A∗ → ∆. By definition, for this strategy we
have [[Bσ]]min(w) ≤ n. It follows that B is history-deterministic. J

Composing the two automata yields a history-deterministic automaton equivalent to A.
Denote n the number of states of A, the constructed automaton has 2n × Safra(n) states,
where Safra(n) is the number of states obtained by applying the Safra determinisation on
an ω-automaton with n states. Since Safra(n) = 2O(n log(n)), the constructed automaton
also has 2O(n log(n)) states.

Acknowledgements. We thank the anonymous reviewers for their constructive comments
and suggestions.
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Abstract
We give NSPACE(n logn) algorithms solving the following decision problems. Satisfiability: Is the
given equation over a free partially commutative monoid with involution (resp. a free partially
commutative group) solvable? Finiteness: Are there only finitely many solutions of such an
equation? PSPACE algorithms with worse complexities for the first problem are known, but
so far, a PSPACE algorithm for the second problem was out of reach. Our results are much
stronger: Given such an equation, its solutions form an EDT0L language effectively representable
in NSPACE(n logn). In particular, we give an effective description of the set of all solutions for
equations with constraints in free partially commutative monoids and groups.
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1 Introduction

Free partially commutative monoids (a.k.a. trace monoids) and groups (a.k.a. RAAGs:
right-angled Artin groups) are well-studied objects, both in computer science (latest since
[18]) and in mathematics (with increasing impact since [24]). For years, decidability of
the satisfiability problem (i.e., the problem whether a given equation is solvable) over these
structures was open. A positive solution for trace monoids was obtained by Matiyasevich
[17] and for RAAGs by Diekert and Muscholl [8]. The known techniques did not cope with
the finiteness problem (i.e., the problem whether a given equation has only finitely many
solutions). Decidability of finiteness for trace monoids was wide open, whereas for RAAGs a
sophisticated generalization of Razborov-Makanin diagrams and geometric methods, available
for groups, yielded decidability [3], but without any complexity estimation.

We give a simple and effective description of the set of all solutions for equations with
constraints in free partially commutative monoids and groups; the correctness proof is
mathematically challenging. Once the correctness is established, the simplicity is also
reflected in a surprisingly low complexity. We give an NSPACE(n logn) upper bound for both
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satisfiability and finiteness—each problem for trace monoids as well as for RAAGs. Even for
satisfiability this complexity improves the previously known upper bounds. On the other
hand these problems are NP-hard. It remains open whether NSPACE(n logn) is optimal.

To obtain these results we apply a recent recompression technique [12], which was used as
a simple method to solve word equations. It uses simple compression operations: compress
ab into a letter c; and modify the equation so that such operations are sound. An algebraic
setting of the current paper enables a shift of perspective: the inverse operation, replacing
c by ab, is an endomorphism. Thus, the set of all solutions of an equation (solvable or
not) can be represented as a graph, whose nodes are labeled with equations and edges by
endomorphisms of free monoids. This graph can also be seen as a nondeterministic finite
automaton (NFA) that accepts a rational set of endomorphisms over a free monoid. (Recall
that a subset in a monoid M is rational if it is accepted by some NFA whose transitions
have labels from M .) It is known that applying a rational set of endomorphisms to a letter
yields an EDT0L language [1], and our construction guarantees that the obtained EDT0L
language describes exactly the set of all solution of the given equation. Moreover, as usual in
automata theory, the structure of the NFA reflects whether the solution set is finite. Last not
least, our method is conceptually simpler than all previously known approaches to solving
equations over free partially commutative structures.

Studying word equations is part of combinatorics on words for more than half a century
[2]. From the very beginning, motivation came partly from group theory: the goal was to
understand and parametrize solutions for equations in free groups. For example, Lyndon
and Schützenberger needed sophisticated combinatorial arguments to give a parametrized
solution to the equation am = bncp in a free group [14]. On the other hand, it is known that a
parametric description of the solution set is not always possible [10]. The satisfiability of word
equations in free monoids and free groups became a main open problem due to its connection
with Hilbert’s tenth problem. The problem was solved affirmative by Makanin in his seminal
papers [15, 16]. His algorithms became famous also due to the difficulty of the termination
proof and the extremely high complexity. A breakthrough to lower the complexity was
initiated by Plandowski and Rytter [21], who were the first to apply compression techniques
on word equations. Compression was also essential in showing that the satisfiability of
word equations is in PSPACE [19]. This approach was further developed [12] using the
“recompression technique”, which simplified all existing proofs for solving word equations; in
particular, it provided an effective description of all solutions; a similar representation was
given earlier by Plandowski [20]. In free groups, an algorithmic description of all solutions
was known much earlier due to Razborov [22]. His description became known as a Makanin-
Razborov diagram, a major tool in the positive solution of Tarski’s conjectures about the
elementary theory in free groups [13, 23]. None of these results provided a structural result
on the set of all solutions; interest in such results was explicitly expressed [11] by asking
whether it is an “indexed language”. Apparently, this question was posed without too much
hope that a positive answer is within reach. However, the answer was positive for quadratic
equations [9] (which is a severe restriction); the general case was established in [4]. Actually,
a stronger result holds: the set of all solutions for equations in free monoids (as well as in
free groups) is an EDT0L language, which is a proper subclass of indexed languages. The
closest results on word equations with partial commutation are in [8], but techniques used
there do not apply here as they boil down to a purely combinatorial construction of a normal
form and ignore the algebraic structure as well as the set of all solutions.
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2 Main result

Given a finite alphabet Γ, the free monoid Γ∗ is the set of all finite words over Γ with
concatenation. The empty word is denoted by 1. The length of a word w is denoted by |w|;
by |w|a we count how often the letter a appears in w. A resource function ρ : Γ→ 2R maps
elements of Γ to subsets of a finite set of resources R. We assume that R is of constant size.
The pair (Γ, ρ) is called a resource alphabet. If ρ(a) = S, then a is called an S-constant; a
nonempty sequence of S-constants is an S-run.

A resource monoid M(Γ, ρ) is the quotient of all finite words Γ∗ by a partial commutation:
M(Γ, ρ) = Γ∗/ {ab = ba | ρ(a) ∩ ρ(b) = ∅}, i.e., letters a 6= b commute if and only if they do
not share a resource. Resource monoids can equivalently be seen as free partially commutative
monoids or trace monoids. We choose the resource-based approach as it best suits our
purposes. Elements of a resource monoid are called traces. The natural projection π maps
elements of the free monoid Γ∗ to traces in M(Γ, ρ); this is not a bijection and we view
w ∈ Γ∗ as a word representation of the trace π(w). In a monoid, an element v is a factor of w
if w = pvq for some p, q. We assume that the monoid M(Γ, ρ) is equipped with an involution,
that is, a bijection x 7→ x on M(Γ, ρ) such that x = x, xy = y x for all x, y ∈ M(Γ, ρ). To
make the definition well defined, we require that ρ(x) = ρ(x) for x ∈ Γ. In the following, a
trace monoid means a resource monoid with involution. A morphism ϕ : M →M ′ between
monoids with involution is a homomorphism additionally respecting the involution. If ∆ is a
subset of M , then we often denote the restriction of ϕ to ∆ by ϕ. If ϕ(d) = d for all d ∈ ∆,
then ϕ is a ∆-morphism.

If there is no letter a ∈ Γ with a = a, then, by adding defining relations aa = 1 for all
a ∈ Γ, we obtain the free partially commutative group G(Γ, ρ). Free partially commutative
groups are also known as right-angled Artin groups or RAAGs for short. As a set, we can
identify a RAAG G(Γ, ρ) with the subset traces of the trace monoid M(Γ, ρ) without factors
aa. Such traces are called reduced. We take inversion on groups as involution; the canonical
projection of the monoid M(Γ, ρ) onto the group G(Γ, ρ) respects the involution.

Let (Γ, ρ) be a resource alphabet. An equation is a pair of words (U, V ) over an alphabet
Γ = A ∪ X has a partition into constants A and variables X , both sets are closed under
involution. A constraint is a morphism µ : M(Γ, ρ)→ N , where N is a finite monoid with
involution. For our purposes, it is enough to consider constraints such that the elements
of N can be represented by O(log |Γ|) bits, and that all necessary computations in N

(multiplication, involution, etc.) can be performed in space O(log |Γ|) and the specification
of these operations requires O(|Γ| log |Γ|) space. If (U, V ) is an equation over (Γ, ρ), then we
define the input size of an equation with constraints as n = |UV |+ |Γ|.

We write (U, V, µ) for an equation (U, V ) with constraints µ. A solution of (U, V, µ)
over M(A, ρ) is an A-morphism σ : M(A ∪ X , ρ) → M(A, ρ) such that σ(U) = σ(V ) and
µσ(X) = µ(X) for all X ∈ X . If the equation is over G(A, ρ), then instead of σ(U) = σ(V )
we require πσ(U) = πσ(V ) for the canonical projection π : M(A, ρ)→ G(A, ρ). We also say
that σ solves (U, V, µ) in M(A, ρ) (resp. in G(A, ρ)). For equations over G(A, ρ) we only
allow solutions where the trace σ(X) is reduced for all X ∈ X . The main result of this paper
is that the set of all solutions of a trace equation (resp. an equation in a RAAG) with rational
constraints is an effectively computable EDT0L language, and the underlying automaton
reflects whether there are infinitely many solutions.

I Theorem 1.
[Monoid version] There is an NSPACE(n logn) algorithm for the following task. The input
is a resource alphabet (A∪X , ρ) with involution and a trace equation (U, V, µ) with constraints
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µ in constants A and variables X = {X1, . . . , Xk}. The algorithm computes an alphabet
C ⊇ A of size O(n), constants c1, . . . , ck ∈ C, and an NFA A accepting a rational set R
of A-endomorphisms on C∗ such that: h(C∗) ⊆ A∗ for all h ∈ R and under the canonical
projection π : A∗ →M(A, ρ) we have

{(πh(c1), . . . , πh(ck)) | h ∈ R} = {(σ(X1), . . . , σ(Xk)) | σ solves (U, V, µ) in M(A, ρ)} .

Thus, the set of all solutions is an effectively computable EDT0L language. Furthermore,
(U, V, µ) has a solution if and only if A accepts a nonempty set; (U, V, µ) has infinitely
many solutions if and only if A has a directed cycle. These conditions can be tested in
NSPACE(n logn).

[Group version] The same, but solutions σ satisfy σ(U) = σ(V ) in the RAAG G(A, ρ) and
for a variable X the solution σ(X) is restricted to be a reduced trace.

Theorem 1 generalizes to systems of equations. Another generalization are finitely
generated graph products with involution over free monoids, free groups, and finite groups.
See [7] for a definition and the known results concerning solvability of equations in graph
products. This generalization is rather technical but does not reveal new ideas; it is done
elsewhere.

3 Basic concepts

Equations in RAAGs can be reduced to equations in resource monoids [8], such an approach
is standard since its introduction for free groups [5], which are reduced to free monoids. In
essence, the reduction simulates the inverse operation by involution and it enforces that the
solution in the monoids is in the reduced form by (additional) constraints. We employ a
similar approach; thus, our presentation focuses on the equations over resource monoids.

Using a standard technique one can ensure that there are no self-involuting constants in
the initial equation [8]. This step is not needed for RAAGs as a = a = a−1 implies a2 = 1 in
groups, but RAAGs are torsion-free. For technical reasons we introduce a new special symbol
#, which serves as a marker and becomes the only self-involuting constant; set ρ(#) = R

and ∅ 6= ρ(a)  R for all other constants. We let

Winit = #X1# · · ·Xk#U#V#U#V#Xk# · · ·X1#.

During the process, the #’s will not be touched, so we keep control over the prefix corre-
sponding to #X1# · · ·#Xk# which encodes the tuples (σ(X1), . . . , σ(Xk)). Moreover, we
have σ(U) = σ(V ) if and only if σ(W ) = σ(W ). Thus, we can treat a single trace as an
equation. Solutions become A-morphisms σ satisfying σ(W ) = σ(W ).

The equations that we consider are over a more general structure than a trace monoid.
To simplify the notion, we denote the equation and a monoid over which it is by a tuple
(W,B,X , ρ, θ, µ), where W ∈ (B ∪ X )∗ is the “equation” with constants B and variables
X , the mapping ρ : B ∪ X → 2R is the resource function, and µ : M(B ∪ X , ρ) → N

represents the constraints (given by the mapping µ : B∪X → N). Since 2R is a commutative
monoid, we shall view ρ as a morphism from M(B ∪ X , ρ) to 2R, too. The symbol θ
refers to a “type” which adds partial commutation. A type is given by a list of certain
pairs (x, y) ∈ (B ∪ X )+ ×B+; and each such pair yields a defining equation xy = yx. For
example, we typically have (X, y) ∈ θ when considering a solution σ with σ(X) ∈ y+. Then
ρ(X) = ρ(y), but we wish to use the fact that σ(X)y = yσ(X). This is the purpose of a
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type. We only use types in the subprocedures of block and quasi-block compression, see
Section 4.3.1. Such a monoid is denoted as M(B ∪ X , ρ, θ, µ). In most cases, θ is empty.
Then we use (W,B,X , ρ, µ) as an abbreviation of (W,B,X , ρ, ∅, µ) and M(B ∪ X , ρ, θ, µ) as
an abbreviation of M(B ∪ X , ρ, µ).

A B-solution of (W,B,X , ρ, µ) is a B-morphism σ : M(B ∪ X , ρ, µ)→M(B, ρ, µ) such
that σ(W ) = σ(W ) (i.e., it solves the equation) and µ(σ(X)) = µ(X) (i.e., it satisfies the
constraints).

During the algorithm we “increase the resources” of constants. It is useful to assume
that for every constant a ∈ A and every set of resources S with ρ(a)  S the alphabet A
has a corresponding constant with set of resources S. We denote such a constant by (a, S),
the involution on it is defined by (a, S) = (a, S). We naturally identify a with (a, ρ(a)). We
assume that the initial alphabet A is closed under taking such constants, i.e., if a ∈ A and
ρ(a) ⊆ S, then (a, S) ∈ A.

In some cases, when we “increase the resources”, we prefer to use a fresh constant of
appropriate resources: For a constant a with ρ(a)  S, by [a, S] we denote a “fresh” S-
constant outside A such that ρ([a, S]) = S, µ([a, S]) = µ(a) and [a, S] = [a, S]; replacing a
with [a, S] is called lifting.

During the algorithm we perform various operations on variables and constants. As a rule,
whenever we perform such an operation, we perform a symmetric action on the involuted
constants/variables. That is, whenever we replace X by aX, we replace X by X a; and when
we replace ab by c, then we also replace b a by c. This simplifies the description, as actions
performed on “the right side” of X are actions performed on “the left side” of X.

Whenever we perform operations on variables/constants, we want the constraints and
resources to remain unaffected (except for lifting, in which case we explicitly change the set
of resources); if we replace a trace W by a trace W ′, then (if not explicitly stated otherwise)
we ensure that ρ(W ) = ρ(W ′) and µ(W ) = µ(W ′). For instance, when replacing X by aX ′,
we set µ(X ′) so that µ(aX ′) = µ(X). The same applies to ρ. Similarly, when replacing ab by
c, we set ρ(c) = ρ(ab) and µ(c) = µ(ab). In particular, we do not mention in the description
of the procedures that we perform such operations.

A trace a1a2 · · · an has many word representations and we would like to formalize a notion
that some constants occur before others (in all word representations). To this end consider a
set of positions {1, 2, . . . , n} and the smallest partial order � such that i � j if both i ≤ j
and ρ(ai) ∩ ρ(aj) 6= ∅. A Hasse diagram H(W ) of a trace W = a1a2 · · · an is a graph with a
set of nodes {1, 2, . . . , n}, labeled with a1, a2, . . . , an. It contains (directed) edges between
immediate successors, i.e., (i, j) is an edge if i ≺ j and i � k � j implies k ∈ {i, j}. By
a standard result in trace theory [18], we have W = W ′ in M(Γ, ρ) if and only if H(W )
and H(W ′) are isomorphic as abstract node-labeled directed graphs. When considering
traces we usually work with their Hasse diagrams. If this causes no confusion, we identify
W = a1 · · · an with H(W ) and refer to labels a1, a2, . . . rather than to node names.

A constant a ∈ A is minimal in a trace W if it is minimal in its Hasse diagram, which
means that W = aY for some trace Y . We denote the set of minimal elements of W by
min(W ). Maximal elements are left-right dual; they are denoted by max(W ).

An arc a → b is an S-arc if S ∈ {ρ(a), ρ(b)}; it is balanced if ρ(a) = ρ(b), unbalanced
otherwise.
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4 NFA recognising the set of all solutions

In this section we define the NFA A that recognises the set of all solutions of a trace equation,
treated as a set of endomorphisms End(C∗) over an alphabet C ⊇ A.

4.1 The automaton
We first fix an alphabet of constants C ⊇ A of size κn, where κ is a suitable constant (which
depends on the number of resources |R|, viewed as O(1)) and a set of variables Ω with
|Ω| ≤ |C|. Henceforth, we assume A ⊆ B ⊆ C and X ⊆ Ω.

The states of the automaton A are equations of the form (W,B,X , ρ, θ, µ). Each state
V = (W,B,X , ρ, θ, µ) has a weight ‖V ‖ which is a 5-tuple of natural numbers:

‖V ‖ = (|W | , ω, ω′, |θ| , |B|) ∈ N5

with ω =
∑
a∈B(|R| − |ρ(a)|) · |W |a and ω′ = |W | − |{a ∈ B | |W |a ≥ 1}|. We order

tuples in N5 lexicographically. The NFA contains only states V whose max-norm ‖V ‖∞ =
max {|W | , ω, ω′, |θ| , |B|} ∈ N is at most κ′n for a suitable constant κ′.

The initial state is (Winit, Ainit,Xinit, ρinit, µinit), it corresponds to the input equation.
A state (W,B, ∅, ρ, µ) without variables is final if W = W has the prefix #c1# · · ·#ck#,
where c1, . . . , ck are the distinguished constants. We require that the initial state has no
incoming and the final states no outgoing transitions.

The transitions, say between V = (W,B,X , ρ, θ, µ) and V ′ = (W ′, B′,X ′, ρ′, θ′, µ′),
are labeled by A-morphisms and they either affect the variables (substitution transitions),
or the monoid (compression transitions). The former is formalized using a B-morphism
τ : M(B ∪ X , ρ, θ, µ) → M(B′ ∪ X ′, ρ′, θ′, µ′). In this case we put several requirements on
the equations: the new equation should be obtained by substitution τ(X) for each X, there
are no new constants, resources and constraints of X and τ(X) should be the same; this is
formalized as

W ′ = τ(W ), B′ = B, ρ = ρ′τ, µ = µ′τ. (1)

Moreover, τ(X) is either the empty word (it removes X from W ) or τ(X) ∈ X ∗B+X ∗
(at least one constant pops up in the substituted variable). Note that the requirement
W ′ = τ(W ) implicitly upper-bounds the size ‖τ‖, defined as

∑
a∈B∪X |τ(a)|, to be linear.

Furthermore, as B′ = B we have a natural identity morphism from M(B′, ρ′, θ′, µ′) to
M(B, ρ, θ, µ), call it the associated morphism and denote it by ε. This morphism labels the
transition, its direction is opposite of the transition and τ ; we denote the transitions from V

to V ′ with a corresponding morphism h by V h−→ V ′.
A compression transition leaves the variables invariant and so it is defined by an (A∪X )-

morphism h : M(B′ ∪ X , θ′, ρ′)→ M(B ∪ X , θ, ρ), note that it could be that θ 6= θ′ which
corresponds to a type introduction or removal; this is the associated morphism in this case.
A morphism h defined by, say h(c) = ab, represents a compression of a factor ab into a
single letter c. For its properties, W is obtained by decompression of new constants, and the
resources and constraints are preserved:

W = h(W ′), ρ′ = ρh, µ′ = µh. (2)

As in the case of substitutions, the assumption that W = h(W ′) implicitly upper-bounds
‖h‖ to linear values.
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The transition in the NFA is in the direction of the compression which is opposite to
direction of the morphism h. Note that W = h(W ′) implies ‖V ′‖ < ‖V ‖. For technical
reasons we do not allow compression transitions which introduce self-involuting letters
(such as c 7→ aa); we never compress the marker symbol #. Moreover, following the last
compression transition to final states, the restriction ‖V ′‖ < ‖V ′‖ is not applied.

So far the defined NFA can have many useless states, so as a last step we trim the
automaton, i.e., we remove all vertices not appearing on some accepting path.

The algorithmic part is finished: A can be constructed using standard arguments in
NSPACE(n logn).

By the usual definition, the recognized language R consists of all A-morphisms h1 · · ·hk,
where h1, . . . , hk are consecutive labels on an accepting path. We claim that the set of all
solutions is exactly {(πh(c1), . . . , πh(ck)) | h ∈ R} where π : A∗ → M(A, ρ) is the natural
projection.

The correctness proof boils down to show that we can calculate the exact constants
κ, κ′ (depending on R but not on n) and to prove soundness and completeness, i.e., that
h ∈ R yields a solution and that every solution can be obtained in this way. Out of those,
soundness is relatively easy to show, see Section 4.2, the completeness argument spans over
Sections 4.3–4.4. Those arguments also show the other claims on the automaton (conditions
for emptiness and acyclicity).

4.2 Soundness
As the final states have only one solution (identity), using an induction on the following
Lemma, any accepting path labeled with h1, . . . , hk yields a solution πh1 · · ·hk, which shows
soundness.

I Lemma 2. Given two states V = (W,B,X , ρ, θ, µ) and V ′ = (W ′, B′,X ′, ρ′, θ′, µ′), if
V

h−→ V ′ and V ′ has a B′-solution σ′ then V has a B-solution σ = hσ′.

The proof follows by a mechanical application of (1) or (2).

4.3 On-the-fly construction of the NFA
While we described the NFA recognizing all solutions, we did not discuss how to find the
appropriate constants κ, κ′ nor how to show completeness. For this it is easier to first describe
the construction as an “on-the-fly” algorithm, that is, given an equation (W,B,X , ρ, θ, µ)
(= current state V of the NFA) and its B-solution σ we will transform it into a different
equation (W ′, B′,X ′, ρ′, θ′, µ′) (= next state V ′ of the NFA) and a corresponding B′-solution
σ′, where V h−→ V ′ and σ = hσ′. Thus we moved from one state of the NFA to the other,
without the knowledge of the full NFA. Note that the solutions are not given explicitly, but
they are “used” in the nondeterministic choices of the algorithm.

For a fixed set of resources S traces consisting only of S-constants and variables behave
as words and we apply to them the known recompression approach: we iteratively apply
compression operations to S-runs (so we replace S-runs by new single S-constants). Those
operations are applied on constants in the equation, but conceptually we apply them to
a solution of the trace equation. To make this approach sound, we also modify the variables,
by popping S-constants from them. We apply these operations until each S-run (in the
solution) is reduced to a single S-constant; when the compressions and popping operations
are applied in appropriate order, the size of the trace equation remains linear.
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Compression of S-runs alone is not enough, as there are constants of different resources in
the solution of the trace equation. To remedy this, we gradually linearize the solution. This
is done by increasing the set of resources of particular constants: when we compressed each
S-run to a single constant, we lift all S-constants, so that all S-constants and S-variables
are eliminated from the equation. To make the whole approach work, we define an order ≤
on sets of resources: it is any linear order that extends the partial ordering by the size, i.e.,
|S| ≤ |T | implies S ≤ T . A set of resources S is called minimal (for a solution σ), if it is
minimal according to ≤ in the set {T | there is a T -constant in σ(W )}. We process the sets
of resources according to ≤, each time treating a minimal sets of resources.

4.3.1 Fixed resources
We define the actions of the algorithm eliminating the S-constants for a fixed minimal set of
resources S. To thi end, we need some notions of “easy” and “difficult” factors of σ(W ).

I Definition 3. Let (W,B,X , ρ, µ) be a state and σ its B-solution. A factor v of σ(W ) is
visible if for some occurrence at least one of its positions is obtained form a position labeled
by a constant in W ; a factor is invisible if it is not visible. A trace v is crossing if for some
occurrence of v in σ(W ) some but not all positions belong to the substitution of a variable X
by σ(X); and this occurrence is visibly crossing. A trace is noncrossing if it is not crossing.

The factors that we typically consider are pairs, i.e., ab where a 6= b 6= a, a-blocks, i.e.,
a maximal factor of the form a` (this occurrence of a` if not part of a factor a`+1), and
a-quasi-blocks, i.e., (aa)` that is not part of a factor (aa)`+1. In the latter case, aa is called
a quasi-letter. The intuitive meaning of a quasi-letter is that we cannot compress aa into
a single constant as it is would be self-involuting, hence we treat those two letters as if they
were a single constant.

Given a subalphabet S±, we consider an involuting partition (S+, S−) that satisfies the
conditions S+ = S−, S+ ∩ S− = ∅ and S+ ∪ S− = S±. Such a partition is crossing if at
least one pair ab ∈ S+S− is; it has crossing quasi-blocks if there is a ∈ S+ that has crossing
quasi-blocks. Lastly, S± has crossing blocks if there is a ∈ S± that has crossing blocks.

Pair compression is implemented essentially in the same way as in the case of word
equations. Given a pair ab with a 6= b 6= a we want to replace each factor ab in σ(W ) with a
fresh constant c. This is easy, when ab is noncrossing: it is enough to perform this operation on
W and each σ(X), the latter is done implicitly and we obtain a different solution σ′ in this way.
We also set ρ and µ for c appropriately: ρ(c) = ρ(ab) and µ(c) = µ(ab). Performing several
such compressions is possible for ab ∈ S+S−, where (S+, S−) is a noncrossing involuting
partition, as for each constant in σ(W ) we can uniquely determine to which replaced pair it
belongs (if any). We do not compress pairs aa, though, as this would create a self-involuting
letter.

We need to ensure that indeed (S+, S−) is noncrossing. A pair ab ∈ S+S− is crossing
if aX is a factor of W and b ∈ min(σ(X)). The other option is that Xb is a factor and
a ∈ max(σ(X)); it is taken care by considering bX and the pair ba. Then we replace X with
bX. After doing this, for all variables, the partition (S+, S−) is noncrossing and so we can
compress pairs in this partition.

Pair compression cannot be applied to aa, as it makes the compression of longer blocks
ambiguous. However, when a has no crossing block, (in several steps) we replace each a-block
aλ by cλ. Similarly as in the case of pair compression, we can compress blocks of several
letters in parallel, as blocks of different letters do not overlap.
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Again, to apply this subprocedure we need to ensure that each a ∈ S± has no crossing
blocks. Given a visibly crossing block a`, popping one node may be not enough as this
block may still be crossing. Thus for each variable X we pop its whole a-prefix whenever
a ∈ min(X) ∩ S, where a` is the a-prefix of a trace V when ` is maximal with V = a`V ′.

We do not apply the pair compression to aa as this introduces self-involuting letters.
Instead, we perform a variant of block compression on them: the quasi-block compression.
We replace each a-quasi-block (aa)λ with cλcλ; note that we treat a and a asymmetrically.
We again perform this operation in parallel (in several steps), for all a ∈ S+, where (S+, S−)
is an involuting partition.

For uncrossing of quasi-blocks we act the same as for uncrossing of blocks, but we pop the
whole (aa)-prefix when a ∈ S+; the aa prefix of V is the longest factor V ′ ∈ a(aa)∗ ∪ (aa)∗
such that V = V ′V ′′.

Using those operations we can process a minimal set of resources S: We iterate the
following operations as long as something changes in the equation. For each variable we
guess whether it has a minimal S-letter and if so we pop this letter. Then we compute the
set S± of visible S-constants. We uncross blocks from S± and then compress blocks of S±.
We then arbitrarily partition S± into an involuting partition (S+, S−). Then we uncross
quasi-blocks for S+ and then compress quasi-blocks from S+. We again partition S± into
an involuting partition (S+, S−); the partition is chosen so that there are many occurrences
of pairs in S+S− in the equation, see the appendix. Finally, we uncross (S+, S−) for pair
compression and perform the pair compression for (S+, S−).

Using similar arguments as in the case of word equations, one can show that the procedure
FixedResources(S) for a fixed set of resources uses linear space. Concerning the S-runs after
FixedResources(S), ideally all S-runs are of length 1 and are either visible or invisible. This
is not entirely true, as aa cannot be compressed, but those are the longest visible S-runs
that can prevail.

I Lemma 4. Let S be minimal. The length of the equation during FixedResources(S) is
linear. After FixedResources(S) there are no crossing S-runs, no S-variables. Furthermore,
visible S-runs have length at most 2.

4.3.2 Lifting arcs
Compression of S-runs alone is not enough, as there are runs for different sets of resources.
To remedy this we linearize the trace, for technical reasons it is easier to lift whole Hasse
arcs rather than individual nodes.

To lift a Hasse arc e = (a → b) we want to relabel its ends by [a, ρ(a) ∪ ρ(b)] and
[b, ρ(a) ∪ ρ(b)], i.e., by fresh (ρ(a) ∪ ρ(b))-constants. For correctness reasons we need to also
lift the edges that “correspond” to e; moreover, as in the case of compression, lifting may be
difficult when an arc connects constants in the equation with constants in the substitution
for a variable. Those notions are formalized below.

I Definition 5. Let (W,B,X , ρ, µ) be a state and σ its B-solution. A Hasse-arc a → b in
σ(W ) is visible (invisible, visibly crossing) if the corresponding factor ab in σ(W ) has this
property. Let ∼ be the smallest equivalence relation which satisfies the following conditions:

If e = (a→ b) in σ(W ) and f = (b→ a) is the corresponding arc in σ(W ), then e ∼ f .
If e is invisible and inside some σ(X) where X ∈ X and f is a corresponding arc in some
different σ(X), then e ∼ f .

We say that e is crossing if there is exists a visibly crossing f with f ∼ e; e is free otherwise.
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Note that for arcs the notion of crossing/free is finer than for traces: since it is possible
that e 6∼ e′ while both are of the form (a→ b), in particular e could be free and e′ crossing.

When e = (a→ b) is a free unbalanced arc, the promised linearization of traces is done
through lifting: let S = ρ(a) ∪ ρ(b), then for f ∼ e we change the label on each of its ends
from c ∈ {a, b, a, b} to [c, S]. Note that this balances f . To make this operation well defined,
we partially linearizes a trace: each position that was before (after) any of relabeled a, b is
now before (after) both of [a, S], [b, S] (the same is done for arc b→ a).

We can lift free arcs “for free”, but some S-arcs may be crossing. Freeing them is similar
to uncrossing factors, but we need to take into the account that ρ(a) 6= ρ(b). Thus ab could be
a crossing arc in aX and b is not a minimal element of σ(X), so it cannot be popped. Freeing
is done in two stages: first we deal with the case when b is an S-letter. Then for σ(X) = PbQ,
such that S 6= ρ(P )  ρ(X) we pop the whole P , which is done by introducing a fresh
variable, i.e., we substitute X 7→ X ′bX. The new solution is σ′(X ′) = P and σ′(X) = Q.
Then we deal with the case when a is an S-letter (and b not). Thus for σ(X) = PbQ, where
ρ(a) ∩ ρ(P ) = ∅, we substitute X 7→ X ′bX. The new solution is σ′(X ′) = P and σ′(X) = Q.
Those operations are called splitting of variables. Observe that the first splitting can be done
for any set of S-constants and all variables in parallel, while the second can be performed in
parallel for all variables and any set of constants that is a subset of {b | ρ(b) ∩ S 6= ∅}.

We want to lift all unbalanced S arcs, but this is not possible for all such arcs in parallel
due to involution: for an S-letter a and a trace bac we have to choose which arc, b→ a or
a→ c, we lift. But it can be done in stages: let (S+, S−) and (T+, T−) be involuting partitions
of all S-constants and all constants having a common resource with S, i.e., {a | ρ(a) ∩ S 6= ∅}.
Then we process all S arcs in four groups S+T+, S−T+, S+T− and S−T−; processing of each
one is similar, we describe processing of one — S+T+. We first split the variables for S+ and
then for T+, as described above. Then each arc (a → b) with ab ∈ S+T+ is free, thus we
lift those arcs. We continue with groups S−T+, S+T− and S−T−. Note that the processing
may introduce new crossing arcs, but it can be shown that they are always in next groups.
Afterwards, there are no S arcs.

Let Remove(S) be the above procedure for lifting the S-letters. It is easy to show that
after Remove(S) all S-constants and S-variables are eliminated.

I Lemma 6. After Remove(S) there are neither S-constants nor S-variables in σ(X).

4.3.3 The algorithm
TrEqSat considers possible sets of resources S in order ≤ on them. For a fixed S it first runs
FixedResources(S) and then Remove(S).

4.4 Analysis
We begin with estimating the space usage. Firstly we upper-bound the number of introduced
variables: they are introduced only during splitting of variables, which happens O(1) times
per resource set, and each variable introduces O(1) variables, which have less resources; this
yields that the number of occurrences of variables is linear in the size of the input equation.

We then estimate the length of the equation, which is also linear in the size of the input
equation: Here the estimations are similar as in the case of word equations. For a fixed
resource set S we claim that the number of S-constants in the equation stays linear and that
processing S introduces in total O(1) constants per variable. Together with the estimation
on the number of variables this yields a bound on the size of the equation.
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This guarantees that our algorithm does not exceed a space limit, but may loop forever.
Thus we want to show that solutions in consecutive steps get “smaller”. Unfortunately,
the length of σ(W ) is not good enough for our purposes, but we can define the weight of
the solutions (for an equation) and indeed show that our subprocedures decrease it. This
guarantees termination.

We then move to the correctness of the algorithm, i.e., we show how the algorithm
transforms the solutions between different equations obtained on the way. In a first step
we equip each solution with a function that tells us, what solution of the input equation it
represents. Then we show that if subprocedure transforms one equation into the other, then
the morphism associated with this transition transforms the solution of the latter equation to
a solution of the former, so that they they represent the same solution of the input equation.

4.4.1 Space usage
The below estimations of space usage do not depend on the nondeterministic choices, they
apply to all executions of the algorithm.

Comparing to the algorithms in the free monoid case, the main difference is that our
algorithm introduces new variables to the equation. This is potentially a problem, as the
whole recompression is based on the assumption that the number of constants is not altered.
However, we can still bound the number of introduced variables.

I Lemma 7. During TrEqSat there are O(n) occurrences of variables in the trace equation.

Fix a variable X for which initially T = ρ(X). Observe that ρ(X) cannot increase, though
it can decrease: resources increase by lifting arcs and we only lift free arcs, thus, each resource
of the new constant was present on one of the ends of the arc. On the other hand, popping
constants as well as splitting may decrease the resources of a variable.

We say that X directly created an occurrence of X ′ when X ′ was created in Split when it
considered X; X created X ′ when there is a sequence X = X1, X2, . . . , Xk = X ′ such that
Xi directly created Xi+1. Consider a variable X, it can be split at most eight times during
lifting of crossing arcs when we consider T ′ ⊆ R. This gives all variables that are directly
created by X. Note, that each of the directly generated variable has less resources than X:
when we replace X with X ′bX, then we require that ρ(X ′)  ρ(X ′bX).

Let f(k) be the maximal number of occurrences of variables that can be created by
a variable with at most k resources. Using the above analysis we can write a recursive
formula for f ; as the number of resources is a constant, this yields the bound.

We show that during TrEqSat the length of the trace equation is linear in the size of
the variables, this is similar as in the case of word equations and in fact the proof proceeds
using similar steps. First, we focus on FixedResources and its processing of a fixed set of
resources S. In each application of the while loop we introduce O(1) S-constants per variable
(in case of block and quasi-block compression we may introduce long blocks but they are
replaced with O(1) constants afterwards). On the other hand, using standard expected value
argument we can show that compression of a randomly chosen partition results in removal of
a constant fraction of S-constants from the equation.

Comparing the number of constants in the equation before and after processing S, it
increases only by the S-factors that were popped from variables. There are O(1) such factors
for a variable and each is of length at most 2. Thus for a fixed set of resources the size of the
equation increases by O(n). Summing over possible sets of resources (which is of constant
size) yields the claim.

I Lemma 8. During TrEqSat the length of the trace equation is O(n).
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4.4.2 Weight of solutions
To guarantee the termination, we show that all subprocedures decrease the (appropriately
defined) weight of a solution. This weight is in fact defined with respect to the original
solution: The B-solution σ corresponds to some solution of the input equation, as letters of
B correspond to some traces in the original equation. To keep track of those traces we use an
A-morphism α : M(B, ρ, θ, µ)→M(A, ρ0, µ0); the idea is that c ∈ B represents a trace α(c)
in M(A, ρ0, µ0). Conceptually, α(σ(W )) is the corresponding solution of the input equation.
We call a pair (σ, α) a solution at (W,B,X , ρ, µ), where σ is a B-solution. Note that this
morphism is a tool of analysis and proof, it is neither computed nor stored anywhere by the
algorithm.

Using the morphism we define the weight of a solution (α, σ) as ‖α, σ‖ =
∑
X∈X |ασ(X)|.

All subprocedures performed by our algorithm do not increase the weight. In order to ensure
that they all decrease some “weight”, we take into the account also the weight of the equations
and define a weight of a solution (α, σ) at a state V as (‖α, σ‖ , ‖V ‖) which is evaluated in
lexicographic order. All subprocedures decrease such defined weight. Thus, the path in NFA
for a fixed solution is finite and terminates in a final state.

4.4.3 Internal operations
So far all the described operations were performed on the equation and had some influence
also on the solutions. However, there are also operations that are needed for the proof but
are performed either on the monoid or on the solutions alone, hence they do not affect the
equation at all. For this reason we call them internal. In essence, we apply them to the
equation whenever this is possible.

A constant a ∈ B \A is useless if it does not occur in σ(W ); it is useful otherwise; useless
constants are invisible. A variable is useless if it does not occur in W . We remove from the
monoid all useless constants and variables.

Due to compression we can be left with invisible but useful constants, i.e., such that they
occur in σ(W ) but not in W .

We cannot remove such constants from B, as we deal with all solutions. However, we can
replace them with corresponding traces over M(A, ρ0, µ0). The idea is that we replaced α(c)
with c too eagerly. We revert this compression. We do not revert the linearization of the
trace, though. Thus we lift each letter in α(c) so that it has the same resources as c: we
replace every invisible letter c with (a1, ρ(c))(a2, ρ(c)) · · · (a`, ρ(c)), where α(c) = a1a2 · · · a`,
i.e., with a chain of letters corresponding to the trace compressed into c but lifted into current
resources of c. Note that we use letters from A ⊆ B, so the procedure is not applicable to
letters that it just introduced.

4.4.4 Completeness
The last step to show completeness is an observation that each given subprocedure corresponds
to a composition of finitely many substitution and compression transitions: indeed, this is
done by mechanical verification.

The completeness, formulated below, easily follows: given an equation with a solution
(α, σ) we apply the subprocedures that lead to a final state. By observation above each
subprocedure corresponds to a short path in the NFA. The guarantee on the size of the states
follows from Lemma 8. Finally, we cannot iterate forever, as each subprocedure decreases
the weight of the solution at a state.
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I Lemma 9. There is constant κ′′ ≥ 1 (depending on R but independent of n) such that for
all states V , if ‖V ‖ ≤ κ′′ · n and V has a solution (α, σ), then there exists a path to final
state labeled with h1, h2, . . . , hk such that

σ = h1h2 · · ·hk.
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Abstract
Semi-linear sets, which are rational subsets of the monoid (Zd,+), have numerous applications in
theoretical computer science. Although semi-linear sets are usually given implicitly, by formulas
in Presburger arithmetic or by other means, the effect of Boolean operations on semi-linear sets
in terms of the size of description has primarily been studied for explicit representations. In this
paper, we develop a framework suitable for implicitly presented semi-linear sets, in which the
size of a semi-linear set is characterized by its norm – the maximal magnitude of a generator.

We put together a toolbox of operations and decompositions for semi-linear sets which gives
bounds in terms of the norm (as opposed to just the bit-size of the description), a unified presen-
tation, and simplified proofs. This toolbox, in particular, provides exponentially better bounds
for the complement and set-theoretic difference. We also obtain bounds on unambiguous decom-
positions and, as an application of the toolbox, settle the complexity of the equivalence problem
for exponent-sensitive commutative grammars.
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1 Introduction

Semi-linear sets [20] are a generalisation of ultimately periodic sets of natural numbers to
any dimension d. By a classic result due to Ginsburg and Spanier [6], they coincide with
the sets of integers1 definable in Presburger arithmetic (the first-order theory of the integers
with addition and order), and hence enjoy closure under all Boolean operations. Their nice
properties make them a versatile tool in many application domains such as formal language
theory, automata theory, and database theory.

More formally, semi-linear sets are finitely represented finite and infinite subsets of Zd.
For d ≥ 1, a semi-linear set M in dimension d is a finite union of linear sets. The latter are
presented as a base vector b ∈ Zd and a finite set of period vectors P = {p1, . . . ,pn} ⊆ Zd
and have the form

L(b, P ) := b+ {λ1 · p1 + · · ·+ λn · pn : λ1, . . . , λn ∈ N}. (1)
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1 In the literature, semi-linear sets are often defined as subsets of Nd instead of Zd as in this paper. All of

our results do, however, carry over if one wishes to restrict semi-linear sets to Nd.
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Such representations are, in fact, only rarely encountered in applications, because in many
contexts semi-linear sets are defined implicitly. A semi-linear set can, for instance, be
succinctly encoded by a formula in Presburger arithmetic; or a set can be just proved to
be semi-linear with an estimation of its norm, ‖M‖. The norm is the absolute value of
the largest number occurring in the smallest description of M as a union of sets of the
form (1). Examples of implicitly presented semi-linear sets include languages of various
types of commutative grammars [10, 18] and reachability sets of reversal-bounded counter
automata [13, 9].

The effect of Boolean operations is, however, not easy to track in terms of the size of
vectors b and pi if semi-linear sets are only presented implicitly. As an example, consider the
set of non-negative integer solutions to a system of linear inequalities S : A · x ≤ c, which
is a semi-linear set S ⊆ Nd encoded by S with exponential succinctness. Huynh [12, 11]
shows that for a given semi-linear set M , in general, whenever the complement M := Nd \M
of M (with respect to Nd; the same holds for Zd) is non-empty, then there is some u ∈M
whose entries are bounded by an exponential in the explicit representation of M – which
amounts to doubly exponential in the size of description of S. This upper bound is far
from optimal: by Farkas’ lemma, M contains an element u whose magnitude ‖u‖ is at most
singly-exponential in the size of description of S.

Somewhat surprisingly, to the best of the authors’ knowledge, there has been no unified
framework for deriving bounds of this kind for implicitly presented semi-linear sets. Even if
we take an explicitly given linear set as in (1) and describe it by an existential formula Ψ(x)
in Presburger arithmetic, the representation of the complement with a universally quantified
formula ¬Ψ(x) provides poor estimates on the magnitude of small elements: although upper
bounds can be derived from an analysis of quantifier-elimination procedures, these bounds
are only doubly exponential (see, e.g., [25]) and hence far from being optimal.

Our contribution

In this paper, we develop a framework suitable for implicitly presented semi-linear sets
(explicitly presented sets are, of course, included as the simplest special case). In this
framework the size of a semi-linear set M ⊆ Zd is characterised by its norm, ‖M‖, rather
than the full bit-size of the description of M . We prove novel upper bounds in which, as
a rule of thumb, the norm of the result of an operation is upper-bounded by ‖M‖E where
the exponent E behaves in a “controlled” way (say, E = poly(d)), thus taming the effect of
Boolean operations and decompositions. In more detail, our contributions are as follows:

We put together a “toolbox” of operations and decompositions for semi-linear sets, with
tame bounds, unified presentation, and simplified proofs. This toolbox includes improved
bounds on the norm of the complement and, as a corollary, improved bounds on the norm
of the set-theoretic difference. These bounds can give an exponential advantage over
previously known techniques that upper-bound the bit-size of the result by nE where n
is the bit-size of the description of M – because n can be exponential in ‖M‖.
We derive from our toolbox an alternative proof of the ΠP

2 upper bound for deciding
semi-linear set inclusion, shown originally by Huynh [12, 11]. As a further application,
we settle the complexity of the equivalence problem for exponent-sensitive commutative
grammars, which have recently been introduced by Mayr and Weihmann [18].
We give a new proof of and provide an explicit upper bound on unambiguous decomposition
of semi-linear sets. It was first asked by Ginsburg [5] whether any semi-linear set is
equivalent to a semi-linear set in which every element is generated in a unique way by
exactly one linear set. This question was independently positively answered by Eilenberg
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and Schützenberger [3] and by Ito [14]. However, to the best of our knowledge, no bounds
on this decomposition have been established so far.

We now give a brief guide to the developed techniques and to the remainder of the paper.
Our starting point is the fact that the set of non-negative solutions of a system of inequalities
S can be obtained as L(B,P ) :=

⋃
b∈B L(b, P ) for some finite sets B,P ⊆ Nd. We call

semi-linear sets of the form L(B,P ) hybrid linear sets and use them, instead of linear sets,
as basic building blocks for general semi-linear sets. A hybrid linear set preserves more
structural information about the “infinitary behaviour” of the linear sets it contains; it is, in
fact, a discrete analogue of the Minkowski–Weyl representation of a convex polyhedron as
the sum of a polytope and a convex cone.

Since the effect of operations on linear sets is primarily dominated by the magnitude and
number of period vectors, reasoning in terms of hybrid linear sets lets us treat a potentially
exponential number of linear sets in a uniform way. This, in turn, enables us, for instance,
to obtain bounds on the representation of the intersection of two hybrid linear sets of the
form L(B,P ) where, as one would indeed expect, the magnitude of the generators of the
result does not depend on the cardinality of B (Subsection 2.3).

Our further path to the results on the complement and set-theoretic difference of semi-
linear sets (Section 4) goes through another development, a proper disjoint decomposition
theorem. It splits a hybrid linear set into a union

⋃
i∈I L(Bi, Pi) where each Pi is proper

(i.e., consists of linearly independent vectors) and the convex hulls of L(Bi, Pi) are disjoint
(Section 3). For this result, we use the concept of a generalised simplex in order to construct
triangulations of infinite polyhedra in Qd, and use the technique of half-open decompositions
to ensure the disjointness of the aforementioned convex hulls.

Decomposing Qd into convex polyhedra is by no means a new technique in the study of
semi-linear sets. In particular, such decompositions were used by Huynh [12, 11] and recently
by Kopczyński [15] in the context of semi-linear set inclusion. However, our decomposition
theorem is different from theirs and gives stronger corollaries, in that we obtain a full
semi-linear representation of the complement and, through intersection, of the set-theoretic
difference. While the window theorem of Kopczyński in [15] gives an upper bound on the
magnitude of the smallest vector in the set difference, our results upper-bound the magnitude
of the largest generator.

2 Preliminaries

2.1 Basic definitions
Let Z, N, Q, and Q≥0 denote the set of integers, non-negative integers, rationals, and
non-negative rationals, respectively. For x ∈ Q, bxc is the largest integer that does not
exceed x. For subsets of numbers or vectors A and B, we use the Minkowski sum notation:
A+B := {a+ b : a ∈ A, b ∈ B}. In this and other contexts, we often omit the curly braces
when referring to singletons. For sets of vectors P = {p1, . . . ,pn}, Q ⊆ Zm, we may assume
some fixed ordering on their elements, e.g., a lexicographic ordering, and thus sometimes
treat P as a matrix whose column vectors are p1, . . . ,pn. This leads to the notation P · λ
and P ·Q, for products of P with a vector λ and a matrix Q, respectively.

Linear, hybrid linear, and semi-linear sets

Suppose a natural d ≥ 1 is fixed; we will call this d the dimension. A set L ⊆ Zd is called
linear if it is of the form

L = L(b, P ) := {b+ λ1p1 + · · ·+ λkpk : λ1, . . . , λk ∈ N,p1, . . . ,pk ∈ P} (2)
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where b ∈ Zd and P ⊆ Zd is a finite set. We call the vector b the base vector and vectors
p ∈ P the period vectors (or simply base and periods) of L. A set S ⊆ Zd is called semi-linear
if it is a finite union of linear sets. Semi-linear sets can be represented as

S =
⋃
i∈I

L(Bi, Pi) where (3)

L(Bi, Pi) :=
⋃

bi∈Bi

L(bi, Pi) (4)

and L(bi, Pi) is as in (2); we call sets L(Bi, Pi) in (4) hybrid linear sets. Every linear set is
also a hybrid linear set, and every hybrid linear set is semi-linear, but the converse statements
are not true in general.

A hybrid linear set L(Bi, Pi) is proper if the vectors Pi are linearly independent. Moreover,
a hybrid linear set L(Bi, Pi), #Pi = r, is called unambiguous if for every x ∈ L(Bi, Pi)
there exist a unique b ∈ Bi and a unique λ ∈ Nr such that x = b + Pi · λ. A representa-
tion

⋃
i∈I L(Bi, Pi) is an unambiguous decomposition if each hybrid linear set L(Bi, Pi) is

unambiguous and the union is disjoint.
From the computational perspective, it is standard to represent semi-linear sets of the

form (3) by listing all vectors in the sets Bi, Pi for all i ∈ I; components of the vectors are
written in binary. We use the following notation to refer to various size measures for this
representation. For any set A, the number of elements of A is #A. For any v = (v1, . . . , vd) ∈
Zd, ‖v‖ := max1≤i≤d |vi|; similarly, for any A ⊆ Zd we denote ‖A‖ := maxv∈A ‖v‖; observe
that #A ≤ (2 ‖A‖+ 1)d. Finally, for the representation (3) of a semi-linear set S we write
‖S‖ := max(maxi∈I ‖Bi‖ ,maxi∈I ‖Pi‖ , 2), #b S := maxi∈I #Bi, and #p S := maxi∈I #Pi.

Convex polyhedra

We now introduce some terminology and notation from convex geometry (see, e.g., [22, 4,
19, 23]). For a system of vectors v1, . . . ,vk ∈ Qd, a linear combination λ1v1 + . . . + λkvk
with λ1, . . . , λk ∈ Q is called: non-negative, or conical, if all λi ≥ 0; affine if

∑k
i=1 λi = 1;

and convex if it is non-negative and affine. For a possibly infinite set of vectors A ⊆ Qd,
by coneA, aff A, and convA we denote the (rational) cone generated by A, the affine hull
of A, and the convex hull of A, respectively: they are the sets of all non-negative, affine,
and convex combinations of finite subsets of A, respectively. We use the convention that
0 ∈ coneA for any A; in particular, cone ∅ = {0}. However, conv ∅ = ∅. Sets of the form
b+ coneA, for b ∈ Qd, are shifted cones; we often refer to them simply as cones.

For any non-empty set X ⊆ Qd its affine hull satisfies aff X = X0 + v for some vector
v ∈ Qd and a uniquely determined linear subspace of Qd denoted X0. The dimension of X,
written as dimX, is the dimension of the subspace X0.

A (rational) convex polyhedron in Qd is a set of the form {x ∈ Qd : A · x ≤ c} where
A ∈ Zm×d, c ∈ Zm for some m, and ≤ is interpreted compontent-wise. A face of a convex
polyhedron W ⊆ Qd is a set of points where some linear function η : Qd → Q achieves its
maximum η∗ over W ; if η is non-constant, the hyperplane h = {x ∈ Qd : η(x) = η∗} is a
supporting hyperplane of W . A face of a convex polyhedron is always a convex polyhedron
itself. Faces of dimension 0, 1, and dimW − 1 are vertices, edges, and facets respectively. All
faces of W form a partial order with respect to set inclusion, the largest element being the
set W itself (it is always a face).

For a hybrid linear set L(B,P ), we denote K(B,P ) := convL(B,P ) = convB + coneP .
Note that if B is a singleton, i.e., if L(B,P ) is a linear set, then K(B,P ) is a rational cone;
in general, though, K(B,P ) is a convex polyhedron.
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Given a set S, we call its representation (3) a proper disjoint decomposition if each hybrid
linear set L(Bi, Pi) is proper and K(Bi, Pi) ∩K(Bj , Pj) = ∅ for i 6= j.

2.2 Auxiliary tools: Systems of linear inequalities
Let A ∈ Zm×n be an integer m× n matrix and c ∈ Zm. We call S : A · x ≤ c a system of
linear inequalities and T : A ·x = c a system of linear equations. By JSK, JTK ⊆ Zn we denote
the solution set of S and T, i.e, the set of all v ∈ Zn such that A · v ≤ c and A · v = c,
respectively. We use JTK≥0 as a shorthand for JTK∩Nn, and write LSM for the set of rational
solutions from Qn of S. Moreover, we define ‖S‖, ‖T‖ := max{‖A‖, ‖c‖}.

The following two propositions connect two representations of polyhedra in Qd.

I Proposition 1 ([23]). Let S : A · x ≤ c be a convex polyhedron in Qd. Then there are
B ⊆ Qd and P ⊆ Zd such that LSM = convB + coneP , ‖P‖ ≤ 2O(d log d) · ‖S‖d, and all
numerators and denominators in B are bounded by 2O(d log d) · ‖S‖d.

Proof. By the Minkowski–Weyl theorem, there exist C,Q ⊆ Qd such that LSM = convC +
coneQ. In fact, it is possible (cf. [23, Theorem 10.2]) to find C and Q in which all vectors have
numerators and denominators of all entries bounded by d!·‖S‖d: they can essentially be chosen
as solutions to linear systems defined by square submatrices of the matrix

[
A c

]
. J

I Proposition 2 ([23]). Let M = L(b, P ) ⊆ Zd be a proper linear set with r = #P . Then
there exists a system of linear inequalities S : A · x ≤ c such that

A is a (2d− r)× d matrix that does not depend on b;
‖A‖ ≤ 2O(r log r) ·max(‖P‖, 1)r; ‖c‖ ≤ d · ‖A‖ · ‖b‖; and
convL(b, P ) = LSM.

Proof (sketch). Since M is proper, convL(b, P ) has exactly r facets; r inequalities in S

define them, with another 2(d− r) for aff M . It can be shown (cf. [23, Theorem 10.2]) that
there exists an appropriate A such that LA · x ≤ 0 M = convL(0, P ); and then c = A · b. J

We will also need a result of von zur Gathen and Sieveking on the sets of all integer
solutions of systems of linear inequalities [24].

I Proposition 3. Let S : A · x ≤ c be a system of inequalities such that A ∈ Zm×n. Then
JSK =

⋃
i∈I L(Bi, Pi) such that

K(Bi, Pi) ∩K(Bj , Pj) = ∅ for all i 6= j,
maxi∈I‖Bi‖,maxi∈I‖Pi‖ ≤ 2O(n logn) · ‖A‖n−1 · ‖S‖, and
#I ≤ 2n.

Next, we additionally recall a result on the sets of integer solutions of linear equalities
that follows from results of Pottier [21].

I Proposition 4. Let S0 : A · x = 0 and S : A · x = c be systems of linear Diophantine
equations, where A ∈ Zm×n. Then JS0K≥0 = L(0, P ) and JSK≥0 = L(B,P ) such that
‖B‖ ≤ ((n+ 1) · ‖A‖+ ‖c‖+ 1)m, ‖P‖ ≤ (n · ‖A‖+ 1)m.

Finally, we will need a discrete version of Carathéodory’s theorem:

I Proposition 5. Let M = L(C,Q) ⊆ Zd be a hybrid linear set. Then M =
⋃
i∈I L(Bi, Pi)

such that
maxi∈I‖Bi‖ ≤ ‖C‖+ (#Q · ‖Q‖)O(d),
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maxi∈I #Pi ≤ d, Pi ⊆ Q and each Pi is linearly independent, and
#I ≤ (#Q)d.

The statement of Proposition 5 can essentially be shown by a combination of Lemmas 2.7
and 2.8 in [10], which, however, do not establish any concrete bounds. In our proof, we use
the result on the intersection of hybrid linear sets from the following subsection 2.3.

2.3 Intersection of semi-linear sets
I Theorem 6. Let M and N be semi-linear sets with representations M =

⋃
j∈J L(Cj , Qj),

N =
⋃
k∈K L(Dk, Rk). Then the set L := M ∩ N is a semi-linear set with representation

L =
⋃
i∈I L(Bi, Pi) such that I = J ×K,

maxi∈I ‖Bi‖ ,maxi∈I ‖Pi‖ ≤ ((#pM + #pN) ·max(‖M‖, ‖N‖))O(d), and
#I ≤ #J ·#K.

Moreover, if Qj ⊆ Rk and i = (j, k) then Pi = Qj.

Proof (sketch). We haveM∩N =
⋃
j∈J L(Cj , Qj)∩

⋃
k∈K L(Dk, Rk) =

⋃
j∈J,k∈K L(Cj , Qj)∩

L(Dk, Rk). Hence it suffices to show that every L(Cj , Qj) ∩ L(Dk, Rk) is some L(Bj,k, Pj,k)
with the desired properties. To this end, one can obtain the set of elements in the intersection
as the set of solutions to a suitable system of linear equations and then apply the bounds from
Proposition 4. Finally, the fact that if Qj ⊆ Rk then Pi = Qj follows from Theorem 5.6.1
in [5, p. 180]. J

3 Hybrid linear sets

In the sequel, we develop a close connection between hybrid linear sets and convex polyhedra
viewed as generalized convex hulls. Convex polyhedra in Qd are sets of the form convC +
coneQ for C,Q ⊆ Qd; they can be viewed as a convex hulls of a set of points C and directions
Q. Suppose C = {b1, . . . , br} and Q = {p1, . . . ,pm}. The connection builds upon on the
similarity of the following sets:

convC + coneQ =


r∑
i=1

λibi +
m∑
j=1

µjpj : λi ∈ Q≥0,

r∑
i=1

λi = 1, µj ∈ Q≥0

 and

L(C,Q) =


r∑
i=1

λibi +
m∑
j=1

µjpj : λi ∈ N,
r∑
i=1

λi = 1, µj ∈ N

 .

As mentioned above, convL(C,Q) = K(C,Q) = convC + coneQ.

3.1 Proper disjoint decompositions (PDD)
Recall that S =

⋃
i∈I L(Bi, Pi) is a proper disjoint decomposition if vectors in each Pi are

linearly independent and the convex hulls K(Bi, Pi) = convL(Bi, Pi) are pairwise disjoint.

I Theorem 7 (PDD for hybrid linear sets). Every hybrid linear set M = L(C,Q) has a
proper disjoint decomposition

⋃
i∈I L(Bi, Pi) where each Pi is a subset of Q and the following

inequalities hold:
‖Bi‖ ≤ (#Q+ ‖C‖+ ‖Q‖+ d)O(d) ≤ ‖M‖O(d2) and
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#I ≤ (#Q)d+1.

The idea of the proof of Theorem 7 is to rely on the connection between hybrid linear sets
and convex polyhedra. We will use the observation that each set of the form convC + coneQ
has a triangulation. While this term usually refers to the basic construction that splits
a convex polygon in a plane into a number of non-overlapping triangles, we will use a
construction that extends this concept in two ways: first, instead of Q2 the sets are in Qd, so
triangles become simplices; second, the sets can be infinite, i.e., with Q 6= ∅.

The strategy of the proof of Theorem 7 is depicted in the following diagram:

L(C,Q) 3−−−−→ Π, a proper disjoint decomposition of L(C,Q)y1
x3

K(C,Q) 2−−−−→ T , a triangulation of K(C,Q)

Step 1 is taking the convex hull, step 2 is triangulation in Qd, and step 3 constructs a proper
disjoint decomposition given the original set L(C,Q) and the triangulation of K(C,Q).

A generalized δ-dimensional simplex T is a set of the form T = convV + coneD ⊆ Qd
where #V + #D = δ + 1, V 6= ∅, and the dimension of the affine hull of T is exactly δ
(cf. [22, pp. 153f]). Elements of V are ordinary vertices of T , and elements of D are vertices
at infinity and can be understood as directions. (The set D is, in fact, the set of extreme
directions of the set T ; see [22, p. 162].) Faces of generalized simplices conv V + coneD are
also generalized simplices and have the form conv V ′ + coneD′ where V ′ ⊆ V and D′ ⊆ D.

A triangulation of a set W ⊆ Qd is a collection T of generalized simplices that satisfies
the following properties:
1.
⋃
F∈T F = W .

2. For every F ∈ T and every face F ′ of F , it holds that F ′ ∈ T .
3. The intersection of any two F1, F2 ∈ T is either empty or is a face of both F1 and F2.
4. All (generalized) simplices in the set of maxima of T , denoted Max T := {F ′ ∈ T : @F ∈
T . F ′ is a face of F and F 6= F ′}, have the same dimension δ, denoted dim T .

In other words, a triangulation of W is a pure polyhedral complex (see, e.g., [4, Chapter 6])
that consists of generalized simplices and covers exactly W .

To simplify notation, we write T = (T1, . . . , Tm) whenever Max T = {T1, . . . , Tm}; of
course, the set {T1, . . . , Tm} is a subset of the set T . It is straightforward that W =
T1 ∪ . . . ∪ Tm if T = (T1, . . . , Tm) is a triangulation of W . Conversely, if T1, . . . , Tm are
(generalized) simplices of equal dimension such that the collection T of all their faces satisfies
Condition 3 in the definition of triangulation, then this collection T is a triangulation of
T1 ∪ . . . ∪ Tm. Lemma 8 triangulates possibly unbounded convex polyhedra (for non-empty
Q, it treats its elements as vertices at infinity) without introducing new vertices or directions.

I Lemma 8. Every polyhedron of the form W = convC + coneQ ⊆ Qd has a triangulation
T = (T1, . . . , Tm) where m ≤ (#C + #Q)d+1 and Ti = convCi + coneQi with Ci ⊆ C and
Qi ⊆ Q for all i.

Note that adjacent simplices Ti and Tj in a triangulation can share points in common
lower-dimensional faces. However, for our purposes they should be made disjoint. Suppose U
is a polyhedron of the form X = {x ∈ Qd : ai · x ≤ ci, 1 ≤ i ≤ m} where ai ∈ Zd and ci ∈ Z
for all i. For any A ⊆ {1, . . . ,m}, we call the set

XA = {x ∈ Qd : ai · x < ci, i ∈ A, and ai · x ≤ ci, i ∈ {1, . . . ,m} \A}

a half-opening of U obtained by cutting off the hyperplanes ai · x = ci, i ∈ A.
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I Lemma 9. Let W be a δ-dimensional polyhedron in Qd. For each triangulation T =
(T1, . . . , Tm) of W there exists a collection of sets T 0 = (T 0

1 , . . . , T
0
m) ⊆ Qd that satisfies the

following conditions:
1. T 0

1 ∪ . . . ∪ T 0
m = W .

2. For every i, T 0
i is a half-opening of Ti.

3. Ti and Tj are disjoint for i 6= j.

Lemma 9 is the half-open decomposition, originally from [1] and [16]. Our formulation is
a direct corollary of Theorem 3 in the latter paper; see also [8, Section 3.2].

I Lemma 10. Suppose T = conv V + coneD is a generalized δ-dimensional simplex in Qd
where V,D ⊆ Zd and #V + #D = δ + 1. Then for any half-opening T 0 of T it holds that
T 0 ∩ Zd = L(E,D) where ‖E‖ ≤ ‖V ‖+ (d+ 1) · ‖D‖.

Lemma 10 makes it possible to use half-open decomposition in the proof of Theorem 7.

Proof of Theorem 7 (sketch). Take a triangulation of W = K(C,Q) = convC + coneQ,
which exists by Lemma 8, and apply Lemma 9 to this triangulation. The result is a
collection T 0 = (T 0

1 , . . . , T
0
m) where each T 0

i is a half-opening of some generalized simplex
convCi + coneQi such that Ci ⊆ C and Qi ⊆ Q. By Lemma 10, T 0

i ∩ Zd = L(Di, Qi). We
now apply Theorem 6: since Qi ⊆ Q, we have L(Di, Qi)∩L(C,Q) = L(Bi, Pi) where Pi = Qi.
Vectors in each set Pi = Qi are, in fact, linearly independent, because convCi + coneQi is a
generalized simplex. Moreover, K(Bi, Pi) ⊆ convL(Di, Qi) ⊆ T 0

i for each i; since the sets
T 0

1 , . . . , T
0
m are pairwise disjoint, so are the sets K(Bi, Pi). Finally,

m⋃
i=1

L(Bi, Pi) =
m⋃
i=1

T 0
i ∩ Zd ∩ L(C,Q) = L(C,Q) ∩

m⋃
i=1

T 0
i

= L(C,Q) ∩W = L(C,Q) ∩ convL(C,Q) = L(C,Q). J

3.2 Unambiguous decompositions (UD)
The main results of this subsection are the following theorems:

I Theorem 11 (UD for proper hybrid linear sets). Every proper hybrid linear set M = L(C,Q)
has an unambiguous decomposition

⋃
i∈I L(Bi, Pi) where each Pi is a subset of Q and the

following conditions are satisfied:
‖Bi‖ ≤ ‖C‖ and
#I ≤ (2 ·#C)#Q.

I Theorem 12 (UD for hybrid linear sets). Every hybrid linear set M = L(C,Q) has an
unambiguous decomposition

⋃
i∈I L(Bi, Pi) where each Pi is a subset of Q and the following

inequalities hold:
‖Bi‖ ≤ (#Q+ ‖C‖+ ‖Q‖+ d)O(d) ≤ ‖M‖O(d2) and
#I ≤ ((‖C‖+ ‖Q‖+ d)O(d) + #C)d · (d+ #Q)O(d2) ≤ ‖M‖O(d3).

We now show how to prove Theorem 11. The idea is to reduce the disambiguation of a
proper hybrid linear set to disambiguation of an ideal in a finitely generated commutative
monoid, captured by the following lemma. Here and below, by e1, . . . , er we denote coordinate
vectors in Nr.

I Lemma 13. Every set of the form U = L(F, {e1, . . . , er}) = F + Nr with a finite F ⊆ Nr
has a representation U =

⋃
k∈K L(Gk, Ek) such that the following conditions are satisfied:
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each set L(Gk, Ek) is unambiguous,
the polyhedra convL(Gk, Ek) and convL(Gk′ , Ek′) are disjoint for k 6= k′,
‖Gk‖ ≤ ‖F‖,
Ek ⊆ {e1, . . . , er}, and
#K ≤ (#F + 1)r.

Proof (sketch). The condition that a vector x belongs to F + Nr can be specified by a
logical formula Φ over predicates of the form xj ≥ c. These predicates break up Nr into
at most (#F + 1)r disjoint regions, and each region is described by a unambiguous hybrid
linear set in a straightforward way. J

Proof of Theorem 11 (sketch). Take M = L(C,Q) ⊆ Zd where Q = {q1, . . . , qr} ⊆ Zd
and vectors in Q are linearly independent, r ≤ d. Consider the point lattice L = Q · Zr =
{Q · λ : λ ∈ Zr}; see, e.g., [17, Chapter 2]. Vectors x,y ∈ Zr are congruent modulo L,
written x ≡ y (mod L), if and only if x− y ∈ L. This congruence splits the set C into a
disjoint union C = C1 ∪ . . . ∪Cs where x ∈ Ci and y ∈ Cj are congruent if and only if i = j.
It is easy to see that M =

⋃
1≤j≤s L(Cj , Q) is a disjoint union, and disambiguating each

L(Cj , Q) separately will disambiguate M .
Suppose C1 = {x1, . . . ,xm} ⊆ x1 + L. Since the vectors in Q = {q1, . . . , qr} are

linearly independent, each vector from the set x1 + L has a unique expansion of the form
x1 +

∑r
j=1 ajqj . Consider the mapping ψ : x1 + L → Zr taking each vector x1 +

∑r
j=1 ajqj

to the vector (a1, . . . , ar) ∈ Zr. For each j, let a0
j be the smallest of the numbers ψ(xt)[j]

over 1 ≤ t ≤ m; here [j] refers to the jth component of an r-dimensional vector. Denote
a0 = (a0

1, . . . , a
0
r) and let ψ′ : x1 +L → Zr be given by ψ′(x) = ψ(x)− a0. Observe that the

mapping ψ′ is injective and maps C1 to some finite set F ⊆ Nr; in fact, ψ′(L(C1, Q1)) = F+Nr.
After this, it remains to apply Lemma 13. J

4 Semi-linear sets

In this section, we derive our main results on the complement, set-theoretic difference, and
decompositions of semi-linear sets. We will rely on Theorems 7 and 11 from Section 3.

4.1 Geometric ingredients: Splitting into atomic polyhedra
Consider a semi-linear set given by M =

⋃
j∈J L(Cj , Qj). Take the proper disjoint decompo-

sition of each L(Cj , Qj) according to Theorem 7; this decomposes M as

M =
⋃
j∈J

⋃
t∈Tj

L(Cjt, Qjt) (5)

where hybrid linear sets L(Cjt, Qjt) are proper, Qjt ⊆ Qj , and, moreover, for any fixed j the
polyhedra K(Cjt, Qjt) are pairwise disjoint.

Denote by H the collection of principal supporting hyperplanes for shifted cones K(b, Qjt),
b ∈ Cjt, t ∈ Tj , and j ∈ J : for each cone, take its d principal supporting hyperplanes, i.e.,
the hyperplanes obtained in Proposition 2, each of the form h : a · x = c (with fixed a ∈ Zd
and c ∈ Z), and put them into H. Note that each hyperplane h′ is associated with half-spaces
h− : a ·x ≤ c and h+ : a ·x ≥ c+1; moreover, we can pick the signs so that K(b, Qjt) ⊆ Lh−M.
An atomic polyhedron with respect to H is a non-empty set of the form

A(H) =
⋂
h∈H

Lh−M ∩
⋂

h∈H\H

Lh+M,

where H ⊆ H. Clearly, Zd ⊆
⋃
H⊆HA(H), and A(H) ∩A(H ′) = ∅ whenever H 6= H ′.
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I Lemma 14. For every L(b, Qjt) with b ∈ Cjt and every A = A(H), either A ⊆
convL(b, Qjt) or A ∩ convL(b, Qjt) = ∅.

Take a hybrid linear set L(Cjt, Qjt) and let b ∈ Cjt. We say that the linear set L(b, Qjt)
shares an atomic polyhedron A iff A ⊆ convL(b, Qjt); otherwise we say that it avoids A.

I Lemma 15. Every atomic polyhedron A(H) is the set of rational solutions to a system of
at most O(d ·

∑
j∈J(#Qj)d+1) linear inequalities with entries bounded by ‖M‖O(d2).

I Lemma 16. The number of atomic polyhedra is at most
(
d ·
∑
j∈J #Cj · (#Qj)d+1)d+1.

Consider an atomic polyhedron A; we will assume in the remainder of this subsection
that A is shared by at least one linear set of the form L(b, Qjt). Even though the total
number of linear sets of this form that share A can be large, the following property holds.

I Lemma 17. If linear sets L(b, Qjt) and L(b′, Qjt′) share A, then t = t′. In particular, the
number of pairs (j, t) such that some linear set L(b, Qjt) shares A does not exceed #J .

I Lemma 18. For every A there exist finite sets E ⊆ Qd and G ⊆ Zd that satisfy the
following conditions:
1. A = convE + coneG.
2. For every linear set L(b, Qjt) that shares A, the set G is a subset of L(0, Qjt).
3. Numerators and denominators of all entries in all e ∈ E are bounded by ‖M‖O(d3).
4. ‖G‖ ≤ ‖M‖#J·O(d4).
5. #G ≤ ‖M‖O(d4).

The proof of Lemma 18 first applies Proposition 1 to the representation of A from
Lemma 15. The upper bound on ‖G‖ then relies on the fact that, for every j ∈ J , our
decomposition (5) ensures disjointness of K(Cjt, Qjt) among t ∈ Tj ; the proof uses this
property via Lemma 17.

4.2 Decompositions, complement, and difference
We first state the results on decompositions of semi-linear sets and on the semi-linear
representation of the complement.

I Theorem 19 (PDD for semi-linear sets). Every semi-linear set M =
⋃
j∈J L(Cj , Qj) has a

proper disjoint decomposition
⋃
i∈I L(Bi, Pi) where

‖Bi‖ ≤ ‖M‖#J·O(d6),
‖Pi‖ ≤ ‖M‖#J·O(d4), and
#I ≤ ‖M‖O(d5).

I Corollary 20 (UD for semi-linear sets). Every semi-linear set M =
⋃
j∈J L(Cj , Qj) has an

unambiguous decomposition
⋃
i∈I L(Bi, Pi) where

‖Bi‖ ≤ ‖M‖#J·O(d6) and
‖Pi‖ ≤ ‖M‖#J·O(d4).

I Theorem 21 (complement of semi-linear sets). The complement of every semi-linear set
M =

⋃
j∈J L(Cj , Qj) has a representation of the form

⋃
i∈I L(Bi, Pi) where

‖Bi‖ ≤ ‖M‖#J·O(d4) and
‖Pi‖ ≤ ‖M‖#J·O(d4).
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We will state the results on set difference at the end of this subsection, and now we focus
our attention on Theorems 19 and 21. Corollary 20 follows from Theorems 19 and 11.

Recall that in Subsection 4.1 we decomposed the space into disjoint atomic polyhedra
A. Each A = convE + coneG by Lemma 18, with E ⊆ Qd and G ⊆ Zd. By Carathéodory’s
theorem, for every vector x ∈ A there are νe ∈ N, e ∈ E, and µg ∈ N, g ∈ G, such that x
has an expansion of the form

x =
∑
e∈E

νe · e+
∑

g∈G′

µg · g = τ(x) + π(x), (6)

where τ(x) =
∑

e∈E νe · e +
∑

g∈G′(µg − bµgc) · g denotes the truncation of x, π(x) =∑
g∈G′bµgc · g denotes the periodic part of x, and G′ ⊆ G is some subset of linearly

independent vectors in G. We will consider sets X = A∩Zd\M and Y = A∩Zd∩M = A∩M .
It is not difficult to show that ‖τ(X)‖ and ‖τ(Y )‖ are bounded from above by ‖M‖#J·poly(d);

these estimations are relevant, as we prove that the equalities X = L(τ(X), G) and
Y = L(τ(Y ), G) hold. While the latter equality requires no sophisticated arguments, a
proof of the former turns out to be somewhat delicate. As an auxiliary statement, we show
that τ(X) ⊆ X; with this fact at hand, the proof of the inclusion L(τ(X), G) ⊆ X goes as
follows. Suppose, for the sake of contradiction, that there exists a vector z ∈ L(τ(X), G)∩M ,
say with z ∈ L(b, Qjt) such that L(b, Qjt) shares A. This implies the existence of another
vector x ∈ X with τ(x) ∈ b + Qjt · Zδ where δ is the cardinality of Qjt. At the same
time, this τ(x) also belongs to X and thus to A and to the cone K(b, Qjt) = b+Qjt ·Qδ≥0.
Since the vectors in Qjt are linearly independent (recall that sets Qjt come from a proper
disjoint decomposition of L(Cj , Qj)), it follows that τ(x) ∈ b+Qjt · Nδ = L(b, Qjt), which
contradicts the fact that τ(X) ⊆ X, because X excludes M .

As seen from this sketch, our ability to construct the hybrid linear representation of X
(which corresponds to the complement of M) relies on the fact that our decomposition of M
in (5) uses linear sets with linearly independent periods only.

Proofs of Theorems 19 and 21 (sketch). Use equalities

M =
⋃
H⊆H

A(H) ∩M and Zd \M =
⋃
H⊆H

A(H) ∩ Zd \M

where it suffices to consider only (non-empty) atomic polyhedra A = A(H). Whenever all
linear sets L(b, Qjt), b ∈ Cjt (see (5)) avoid a polyhedron A, we have Y = A ∩M = ∅ and
X = A ∩ Zd \M = A ∩ Zd. Here the case of Y is trivial, and the case of X sends us to
Proposition 3. Otherwise, if at least one linear set shares A, we use the representations
X = L(τ(X), G) and Y = L(τ(Y ), G) as discussed above. For the purposes of proper disjoint
decomposition (Theorem 19), we need to invoke Theorem 7 on L(τ(Y ), G). Upper bounds
on ‖Bi‖, ‖Pi‖, and #I follow from Lemmas 18 and 16 and from Theorem 7. J

I Corollary 22 (difference of semi-linear sets). The set-theoretic difference M \N of semi-
linear sets M =

⋃
j∈J L(Cj , Qj) and N =

⋃
k∈K L(Dk, Rk) has a representation of the form

L =
⋃
i∈I L(Bi, Pi), where

maxi∈I‖Bi‖,maxi∈I‖Pi‖ ≤
(
#pM + ‖M‖+ ‖N‖#K·d5)O(d).

The following result combines Corollary 22 with Proposition 5.

I Corollary 23 (small vector in set difference). Let M,N be semi-linear sets such that
‖M‖, ‖N‖ ≤ m and M \N 6= ∅. Then there is v ∈M \N such that ‖v‖ ≤ 2mO(d2) .
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5 An application: Exponent-sensitive commutative grammars

In this section, we show that our bounds on the difference of semi-linear sets yield a novel
and tight upper bound for the equivalence problem for a class of commutative grammars.

Let Σ = {a1, . . . , am} be a finite alphabet. The free commutative monoid generated
by Σ is denoted by Σ�, and we treat elements of Σ� as vectors in Nd where d = |Σ|. By
Σ⊕ := Σ� \ {0} we denote the free commutative semi-group generated by Σ. An exponent-
sensitive commutative grammar (ESCG) is a tuple G = (N,Σ, S,Π), where N is a finite set of
non-terminal symbols; Σ is a finite alphabet, the set of terminal symbols such that N ∩Σ = ∅;
S ∈ N is the axiom; and Π ⊆ (

⋃
U∈N {U}

⊕)× (N ∪ Σ)� is a finite set of productions.
ESCG are essentially equivalent to a generalisation of communication-free Petri nets

in which incoming arcs may have multiplicity greater than one [18]. The size |G| of G is
the number of symbols required write it down; in particular we assume that commutative
words from Σ� are encoded in binary. Subsequently, we write V →W whenever (V,W ) ∈ Π.
Let D,E ∈ (N ∪ Σ)�, we say D directly generates E, written D ⇒G E, iff there are
F ∈ (N ∪ Σ)� and π ∈ Π such that π = V → W , D = V + F and E = F +W . We write
U ⇒∗G W for the reflexive transitive closure of ⇒G and say that U generates W in this case.
If G is clear from the context, we omit the subscript G. The language L(G) generated by G
is defined as

L(G) := {W ∈ Σ� : S ⇒∗ W}.

Given ESCG G,H and w ∈ Σ�, the word problem is to decide whether w ∈ L(G), and
equivalence is to decide whether L(G) = L(H). The word problem is PSPACE-complete;
the equivalence problem was shown PSPACE-hard and decidable in 2-EXPSPACE by Mayr
and Weihmann [18]. The latter result has recently been improved to coNEXP-hardness and
membership in co-2NEXP in [7]. An application of Corollary 23 enables us to settle the
complexity of the equivalence problem for ESCG.

I Theorem 24. Equivalence for ESCG is coNEXP-complete.

Proof (sketch). Let G,H be ESCG such that L(G) 6= L(H), and with no loss of generality
assume that there is some w ∈ L(G)\L(H). It is shown in [18] thatM = L(G) and N = L(H)
are semi-linear with ‖M‖, ‖N‖ ≤ 2p(|G|+|H|) for some fixed polynomial p. Consequently,
by Corollary 23 we may assume that ‖w‖ ≤ 22q(|G|+|H|) for some fixed polynomial q, and
hence the representation size n of w is upper-bounded by 2q(|G|+|H|). Thus, for the coNEXP
upper bound it only remains to show that w ∈ L(G) and w 6∈ L(H) can be checked in time
polynomial in the n. This is not completely obvious since the word problem for ESCG
is PSPACE-complete. In the full version of this paper, we show how this obstacle can be
avoided, bringing in a strategy that was used by Huynh [10] in order to show a coNEXP
upper bound for the equivalence problem for context-free commutative grammars. J
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Abstract
In this paper we continue a classical work of Schützenberger on codes with bounded synchron-
ization delay. He was interested in characterizing those regular languages where the groups in
the syntactic monoid belong to a variety H. He allowed operations on the language side which
are union, intersection, concatenation and modified Kleene-star involving a mapping of a prefix
code of bounded synchronization delay to a group G ∈ H, but no complementation. In our
notation this leads to the language classes SDG(A∞) and SDH(A∞). Our main result shows that
SDH(A∞) always corresponds to the languages having syntactic monoids where all subgroups
are in H. Schützenberger showed this for a variety H if H contains Abelian groups, only. Our
method shows the general result for all H directly on finite and infinite words. Furthermore, we
introduce the notion of local Rees extensions which refers to a simple type of classical Rees ex-
tensions. We give a decomposition of a monoid in terms of its groups and local Rees extensions.
This gives a somewhat similar, but simpler decomposition than in Rhodes’ synthesis theorem.
Moreover, we need a singly exponential number of operations, only. Finally, our decomposition
yields an answer to a question in a recent paper of Almeida and Klíma about varieties that are
closed under Rees extensions.
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1 Introduction

A fundamental result of Schützenberger characterizes the class of star-free languages SF as
exactly those languages which are group-free, that is, aperiodic [15]. One usually abbreviates
this result by SF = AP. Schützenberger also found another, but less prominent charac-
terization of SF: the star-free languages are exactly the class of languages which can be
defined inductively by finite languages and closure under finite union, concatenation, and
the Kleene-star restricted to prefix codes of bounded synchronization delay [17]. This result
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is abbreviated by AP = SD. It is actually stronger than the famous SF = AP because
SD ⊆ SF ⊆ AP is relatively easy, see [11, Chapter VIII], so SF = AP follows from AP ⊆ SD.
The extension SF = AP to infinite words is due to Perrin [10]. The result AP = SD for
infinite words was obtained much later in [5]. It became possible thanks to a “local divisor
approach”, which also is a main tool in this paper.

Schützenberger did not stop by showing AP = SD. In retrospective he started a program:
in [16] he was able to prove an analogue of AP = SD for languages where syntactic monoids
have Abelian subgroups, only. In our notation AP = SD means 1(A∞) = SD1(A∞); and
the main result in [16] is “essentially” equivalent to Ab(A∗) = SDAb(A∗). (We write
“essentially” because using the structure theory of Abelian groups, a sharper version than
Ab(A∗) = SDAb(A∗) is possible.) The proofs [16] use deep results in semigroup theory; and
no such result beyond Abelian groups was known so far. Our result generalizes Ab(A∞) =
SDAb(A∞) to every variety H of finite groups: we show H(A∞) = SDH(A∞). We were able
to prove it with much less technical machinery compared to [16]. For example, no knowledge
in Krohn-Rhodes theory is required.

Actually, our result is a generalization of Ab(A∗) = SDAb(A∗) [16] and also of AP(A∞) =
SD(A∞) [5]. More precisely, we give a characterization of languages which are recognized by
monoids where all subgroups belong to H. The characterization uses an inductive scheme
starting with all finite subsets of finite words, allows concatenation, finite union, no (!)
complementation, but a restricted use of a group-controlled star (resp. group-controlled
ω-power). Let us explain the group-controlled star in our context. Instead of putting the
star above a single language, consider first a disjoint union K =

⋃
{Kg | g ∈ G} where G is

a finite group and each Kg is regular in A∗. The “group-controlled star”, more precisely the
“G-controlled star”, associates with such a disjoint union the following language:

{ug1 · · ·ugk
∈ K∗ | ugi

∈ Kgi
∧ g1 · · · gk = 1 ∈ G} .

Clearly, we obtain a regular language, but without any restriction, allowing such a “group
star” yields all regular languages, even in the case of the trivial group. So, the construction is
of no interest without a simultaneous restriction. The restriction considered in [16] yields an
inductive scheme to define a class C. The restriction says that such a group-controlled star is
allowed only over a disjoint union K =

⋃
{Kg | g ∈ G} where each Kg already belongs to C

and where K is, in addition, a prefix code of bounded synchronization delay. The initials
in “synchronization delay” led to the notation SD; and an indexed version SDG (resp. SDH)
refers to synchronization delay over G (resp. over a finite group in H). Since we also deal
with infinite words we apply the same restriction to ω-powers.

Our results give also a new characterization for various other classes. For example, by a
result of Straubing, Thérien and Thomas [20], the class of languages, having syntactic monoids
where all subgroups are solvable, coincides with (FO + MOD)[<]. Here, (FO + MOD)[<]
means the class of languages defined by the logic (FO + MOD)[<]. Thus, we are able to give
a new language characterization: (FO + MOD)[<](A∞) = SDSol(A∞).

Moreover, as a sort of byproduct of H = SDH, we obtain a simple and purely algebraic
characterization of the monoids in H. Every monoid in H can be decomposed in at most
exponentially many iterated Rees extensions of groups in H. The iteration uses only a very
restricted version of Rees extensions: local Rees extensions. This means we obtain every finite
monoid which is not a group as a divisor of a Rees extension between two proper divisors of
M , one of them a proper submonoid, the other one a “local divisor”.

Our decomposition result is similar to the synthesis theory of Rhodes and Allen [13].
Moreover, it yields a singly exponential bound on the number of operations whereas no such
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bound was known by [13]. Finally, using this decomposition, we answer a recent question of
Almeida and Klíma [1] concerning varieties which are closed under Rees extensions.

2 Preliminaries

Throughout, A denotes a finite alphabet and A∗ is the free monoid over A. It consists of
all finite words. The empty word is denoted by 1 as the neutral elements in other monoids
or groups. The set of non-empty finite words is A+; it is the free semigroup over A. By
Aω we denote the set of all infinite words with letters in A. For a set K ⊆ A∗, we let
Kω = {u1u2 · · · | ui ∈ K,ui non-empty, i ∈ N} ⊆ Aω. In particular, Kω = (K \{1})ω. Since
our results concern finite and infinite words, it is convenient to treat finite and infinite words
simultaneously. We define A∞ = A∗∪Aω to be the set of finite or infinite words. Accordingly,
a language L is a subset of A∞. We say that L is regular, if first, L ∩ A∗ is regular and
second, L ∩Aω is ω-regular in the standard meaning of formal language theory. In order to
study regular languages algebraically, one considers finite monoids. A divisor of a monoid
M is a monoid N which is a homomorphic image of a subsemigroup of M . In this case we
write N �M . A subsemigroup S of M is in our setting a divisor if and only if S is a monoid
(but not necessarily a submonoid of M). A variety of finite monoids – hence, in Birkhoff’s
setting: a pseudovariety – is a class of finite monoids V which is closed under finite direct
products and under division:

If I is a finite index set and Mi ∈ V for each i ∈ I, then
∏
i∈IMi ∈ V. In particular, the

trivial group {1} belongs to V.
If M ∈ V and N �M , then N ∈ V.

Classical formal language theory states “regular” is the same as “recognizable”. This
means: L ⊆ A∗ is regular if and only if its syntactic monoid is finite; L ⊆ Aω is regular if and
only if its syntactic monoid in the sense of Arnold [2] is finite and, in addition, L is saturated
by the syntactic congruence, see eg. [11, 21]. Here we use a notion of recognizability which
applies to languages L ⊆ A∞. Let ϕ : A∗ →M be a homomorphism to a finite monoid M .
First, we define a relation ∼ϕ as follows. If u ∈ A∗ is a finite word, then we write u ∼ϕ v if v
is finite and ϕ(u) = ϕ(v). If u ∈ Aω is an infinite word, then we write u ∼ϕ v if v is infinite
and if there are factorizations u = u1u2 · · · and v = v1v2 · · · into finite nonempty words such
that ϕ(ui) = ϕ(vi) for all i ≥ 1. It is easy to see that ∼ϕ is not transitive on infinite words,
in general. Therefore, we consider its transitive closure ≈ϕ. If u, v ∈ A∗, then we have

u ∼ϕ v ⇐⇒ u ≈ϕ v ⇐⇒ ϕ(u) = ϕ(v).

If α, β ∈ Aω, then we have α ≈ϕ β if and only if there is sequence of infinite words α0, . . . αk
such that

α = α0 ∼ϕ · · · ∼ϕ αk = β.

We say that L ⊆ A∞ is recognizable by M if there exists a homomorphism ϕ : A∗ → M

such that u ∈ L and u ∼ϕ v implies v ∈ L. We also say that M or ϕ recognizes L in this
case. The connection to the classical notation is as follows. A regular language L ⊆ A∞ is
recognizable (in our sense) by ϕ if and only if the syntactic monoids of L ∩A∗ and L ∩Aω
are divisors of M . Another equivalent definition can be given in terms of Wilke algebras [22].

Every variety V defines a family of regular languages V(A∞) as follows: we let L ∈
V(A∞) if there exists a monoid M ∈ V which recognizes L. Further, we define V(A∗) =
{L ⊆ A∗ | L ∈ V(A∞)} and V(Aω) = {L ⊆ Aω | L ∈ V(A∞)} . A variety of finite groups is
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129:4 Characterizing Regular Languages Using Prefix Codes

a variety of finite monoids which contains only groups. Throughout H denotes a variety of
finite groups. Special cases are the varieties

1: the trivial group {1}, only.
Ab: all finite Abelian groups.
Sol: all finite solvable groups.
Solq: all finite solvable groups where the order is divisible by some power of q.
G: all finite groups.

According to standard notation H denotes the variety of finite monoids where all subgroups
belong to H. It is not completely obvious, but a classical fact [9], that H is indeed a variety.
In fact, it is the maximal variety V such that V ∩G = H.

Clearly, G is the class of all finite monoids. The most prominent subclass is 1: it is
the variety of aperiodic monoids AP. The class AP(A∞) = 1(A∞) admits various other
characterizations as subsets of A∞. For example, it is the class of star-free languages SF(A∞),
it is the class of first-order definable languages, and it is the class of definable languages in
linear temporal logic over finite or infinite words: LTL(A∞) .

Local divisors. Let M be a finite monoid and c ∈ M . Consider the set cM ∩Mc with a
new multiplication ◦ which is defined as follows:

mc ◦ cn = mcn.

A straightforward calculation shows that cM ∩Mc becomes a monoid with this operation
where the neutral element of Mc is c. Thus, the structure Mc = (cM ∩Mc, ◦, c) defines a
monoid. We say that Mc is the local divisor of M at c. If c is a unit, then Mc is isomorphic
to M . If c = c2, then Mc is the standard “local monoid” at the idempotent c.

The important fact is that Mc is always a divisor of M and that |Mc| < |M | as soon as c
is not a unit of M . Indeed, the mapping λc : {x ∈M | cx ∈Mc} →Mc given by λc(x) = cx

is a surjective homomorphism. Moreover, if c is not a unit, then 1 /∈ cM ∩Mc, hence
|Mc| < |M |. Thus, if M belongs to some variety V, then Mc belongs to the same variety.
If M is not a group, then we find some nonunit c ∈M and the local divisor Mc is smaller
than M . This makes the construction useful for induction. For a survey on the local divisor
technique we refer to [6].

Rees extensions. Let N,L be monoids and ρ : N → L be any mapping. The Rees extension
Rees(N,L, ρ) is a classical construction for monoids [12, 14], frequently described in terms of
matrices. Here, we use an equivalent definition as in [7]. As a set we define

Rees(N,L, ρ) = N ∪ (N × L×N) .

The multiplication · on Rees(N,L, ρ) is given by

n · n′ = nn′ for n, n′ ∈ N,
n · (n1,m, n2) · n′ = (nn1,m, n2n

′) for n, n′, n1, n2 ∈ N,m ∈ L,
(n1,m, n2) · (n′1,m′, n′2) = (n1,mρ(n2n

′
1)m′, n′2) for n1, n

′
1, n2, n

′
2 ∈ N,m,m′ ∈ L.

The neutral element of Rees(N,L, ρ) is 1 ∈ N and N ⊆ Rees(N,L, ρ) is an embedding of
monoids. In general, L is not a divisor of Rees(N,L, ρ). The following property holds.

I Lemma 1. Let N � N ′ and L � L′. Given ρ : N → L, there exists a mapping ρ′ : N ′ → L′

such that Rees(N,L, ρ) is a divisor of Rees(N′,L′, ρ′).
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Proof. First, assume that N (resp. L) is submonoid in N ′ (resp. L′). Let ρ′ : N ′ → L′ be
any function such that ρ′|N = ρ. The mapping π : Rees(N,L, ρ)→ Rees(N′,L′, ρ′) given by
π(n) = n and π(n1, `, n2) = (n1, `, n2) is an injective homomorphism.

Second, let ϕ : N ′ → N and ψ : L′ → L be surjective homomorphisms. Let ρ′ : N ′ → L′

be a function such that ρ′(n) ∈ ψ−1(ρ(ϕ(n))). Let π : Rees(N′,L′, ρ′)→ Rees(N,L, ρ) be the
mapping defined by π(n) = ϕ(n) and π(n1, `, n2) = (ϕ(n1), ψ(`), ϕ(n2)). It is clear that π is
surjective. It is a homomorphism since

π((n1, `, n2) · (n′1, `′, n′2)) = π(n1, `ρ
′(n2n

′
1)`′, n′2) = (ϕ(n1), ψ(`)ψ(ρ′(n2n

′
1))︸ ︷︷ ︸

=ρ(ϕ(n2n′1))

ψ(`′), ϕ(n′2))

= (ϕ(n1), ψ(`), ϕ(n2)) · (ϕ(n′1), ψ(`′), ϕ(n′2)) = π(n1, `, n2) · π(n′1, `′, n′2). J

We are mainly interested in the case where N and L are proper divisors of a given finite
monoid M . This leads to the notion of local Rees monoids. More precisely, let M be a
finite monoid, N be a proper submonoid of M and Mc be a local divisor of M at c where
c is not a unit. The local Rees extension LocRees(N,Mc) is defined as the Rees extension
Rees(N,Mc, ρc) where ρc denotes the mapping ρc : N →Mc;x 7→ cxc.

For a variety V we define Rees(V) to be the least variety which contains V and is closed
under taking Rees extensions and LocRees(V) to be the least variety which contains V and
is closed under local Rees extensions.

2.1 Schützenberger’s SD classes
Schützenberger gave a language theoretical characterization of the class of star-free languages
SF(A∗) avoiding complementation, but allowing the star-operation to prefix codes of bounded
synchronization delay [17].

A language K ⊆ A+ is called prefix code if it is prefix-free. That is: u, uv ∈ K implies
u = uv. A prefix-free language K is a code since every word u ∈ K∗ admits a unique
factorization u = u1 · · ·uk with k ≥ 0 and ui ∈ K. Note that the empty set ∅ is considered
to be a prefix code. More generally, if L ⊆ A+ is any subset, then K = L \ LA+ is a prefix
code. A prefix code K has bounded synchronization delay if for some d ∈ N and for all
u, v, w ∈ A∗ we have: if uvw ∈ K∗ and v ∈ Kd, then uv ∈ K∗. Note that the condition
implies that for all uvw ∈ K∗ with v ∈ Kd, we have w ∈ K∗, too. If d is given explicitly,
K is said to have synchronization delay d. Every subset B ⊆ A (including the empty set)
yields a prefix code with synchronization delay 0. If we have c ∈ A \ B, then B∗c is a
prefix code with synchronization delay 1. If K is any prefix code with (or without) bounded
synchronization delay, then Km is a prefix code for all m ∈ N, but for m ≥ 2 it is never of
bounded synchronization delay.

Consider a disjoint union K =
⋃
{Kg | g ∈ G} of a prefix code K with bounded syn-

chronization delay where G is a finite group and each Kg is regular in A∗. The G-controlled
star associates with such a disjoint union the following language:

{ug1 · · ·ugk
∈ K∗ | ugi ∈ Kgi ∧ g1 · · · gk = 1 ∈ G} .

Another view of the G-controlled star of K is the following: Let γK : K → G be a mapping
such that Kg = γ−1

K (g) and let γ : K∗ → G denote the canonical extension of γK to a
homomorphism from the free submonoid K∗ ⊆ A∗ to G, then the G-controlled star of K is
exactly the set γ−1(1). The generalization to infinite words γ−1(1)ω is called the G-controlled
ω-power. Let C be a class of languages. We say that C is closed under G-controlled star
(ω-power) if K is a prefix code with bounded synchronization delay, Kg ∈ C for all g ∈ G,
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129:6 Characterizing Regular Languages Using Prefix Codes

then the G-controlled star γ−1(1) (ω-power γ−1(1)ω) is in C. For a variety of groups H we
say that C is closed under H-controlled star (ω-power) if C is closed under G-controlled star
(ω-power) for every group G ∈ H. By SDG(A∞) we denote the smallest class of regular
languages such that ∅ ∈ SDG(A∞), {a} ∈ SDG(A∞) for all letters a ∈ A, SDG(A∞) is closed
under finite union and concatenation, i.e., L,K ∈ SDG(A∞) implies L ∪K and (L ∩A∗) ·K
are both in SDG(A∞), and SDG(A∞) is closed under G-controlled star and G-controlled
ω-power. We also define

SDG(A∗) = {L ⊆ A∗ | L ∈ SDG(A∞)} and SDG(Aω) = {L ⊆ Aω | L ∈ SDG(A∞)} .

Note that for every homomorphism γ : A∗ → G we have γ−1(1) ∈ SDG(A∗) and γ−1(1)ω ∈
SDG(Aω). This follows because first, A is a prefix code of bounded synchronization delay
and second, all finite subsets of A are in SDG(A∗).

Unlike the case of star-free sets, the definition of SDG(A∞) does not use any comple-
mentation. By induction: for L ⊆ A∞ we have L ∈ SDG(A∞) if and only if we can write
L = L1 ∪ L2 with L1 ∈ SDG(A∗) and L2 ∈ SDG(Aω). In the special case where G = {1}
is the trivial group, we also simply write SD instead of SD{1}. In this case closure under
{1}-controlled stars (ω-powers) can be rephrased in simpler terms as follows: If K ∈ SD(A∗)
is a prefix code of bounded synchronization delay, then K∗ ∈ SD(A∗) and Kω ∈ SD(Aω).

In [16] Schützenberger showed (using a different notation) SDH(A∗) ⊆ H(A∗), but the
converse only for H ⊆ Ab, see Proposition 6 for the first inclusion. Our aim is to show
H(A∞) ⊆ SDH(A∞) for all H, cf. Theorem 4. We begin with a technical lemma.

I Lemma 2. Let K ⊆ A+ be a prefix code of bounded synchronization delay and let
γ : K∗ → G be a homomorphism such that γ−1(g) ∩K ∈ SDG(A∗) for all g ∈ G, then we
have γ−1(g) ∈ SDG(A∗) for all g ∈ G.

Proof. For a word w = u1 · · ·uk ∈ K∗ we define P (w) = {γ(u1 · · ·ui) | 1 ≤ i ≤ k} ⊆ G

to be the set of prefixes of w in G. By an induction on |P (w)| we construct languages
L(w) ∈ SDG(A∗) such that w ∈ L(w) ⊆ γ−1(γ(w)) and the number |{L(w) | w ∈ K∗}|
of such languages is finite. The base case |P (w)| = 0 implies g = 1. We may choose
L(w) = γ−1(1) and we are done, since γ−1(1) ∈ SDG(A∗) by definition. Hence, we may
assume |P (w)| ≥ 1. Let g1 = γ(u1) and choose i maximal such that g1 = γ(u1 · · ·ui). Then
we have u1 · · ·ui ∈ (K ∩ γ−1(g1)) · γ−1(1). Note that P (w′) = g−1

1 · {γ(u1 · · ·uj) | i < j ≤ k}
for w′ = ui+1 · · ·uk. By choice of i we have g1 /∈ {γ(u1 · · ·uj) | i < j ≤ k} and therefore
|P (w′)| = |{γ(u1 · · ·uj) | i < j ≤ k}| < |P (w)|. By induction there exists L(w′) and we
let L(w) = (K ∩ γ−1(g1)) · γ−1(1) · L(w′). The number of |{L(w) | w ∈ K∗}| is therefore
bounded by

∑|G|
i=0 |G|

i which is less than |G||G|+1. The result follows because we can write
γ−1(g) =

⋃{
L(w)

∣∣ w ∈ γ−1(g)
}
and this is a finite union. J

Clearly, we have for all G: if K ∈ SDG(A∗) is a prefix code of bounded synchronization
delay, then K∗ and Kω are both in SDG(A∞). As a special case, using the prefix code
K = ∅, it holds K∗ = {1} ∈ SDG(A∞). More generally, every finite language is in
SDG(A∞). Note also that for G′ ≤ G we have SDG′(A∞) ⊆ SDG(A∞). In particular,⋃
{SDGi(A∞) | i ∈ I} ⊆ SD∏

i∈I
Gi

(A∞) for every finite index set I. This inclusion holds
for every divisor of G as observed by the next lemma which can be proved by induction.

I Lemma 3. SDH(A∞) ⊆ SDG(A∞) holds for H � G.

We will formulate our some of results on the language classes SDG(A∞) to obtain finer
results. However, our main result concerns the language class

SDH(A∞) =
⋃
{SDG(A∞) | G ∈ H}.
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I Theorem 4. Let H be a variety of finite groups. Then H(A∞) is the smallest class of
languages C closed under finite union, concatenation, H-controlled star and H-controlled
ω-power such that C contains all finite languages over A∗. In other words, it holds H(A∞) =
SDH(A∞).

I Corollary 5. SDH(A∞) is closed under complementation and intersection for every variety
H of finite groups.

An algebraic characterization of H in terms of Rees extensions will be given in Theorem 15.
The proof of Theorem 4 covers the next two sections.

3 Closure properties of SDH

In this section we prove SDH(A∞) ⊆ H(A∞). Therefore one has to study the closure
properties under the operations given in the definition of SDH(A∞), that is, one has to show
that those operations do not introduce new groups.

The next proposition shows that the H-controlled star does not introduce new groups.

I Proposition 6 ([16]). Let K =
⋃
{Kg | g ∈ G} ⊆ A+ be a prefix code of bounded syn-

chronization delay where each Kg is regular. Then all subgroups in the syntactic monoid of
the G-controlled star are divisors either of G or of the direct product

∏
g∈G Synt(Kg).

We will prove the same for γ−1(1)ω, relying on Proposition 6 as a blackbox. The concept used
for transfering the properties to infinite words are Birget-Rhodes expansions [3, 4]. The Birget-
Rhodes expansion of a monoid M is the monoid Exp(M) = {(X,m) | 1,m ∈ X ⊆M} . The
multiplication on Exp(M) is given as a semi-direct product: (X,m) ·(Y, n) = (X∪m ·Y,m ·n).
Note that M is isomorphic to the submonoid {(M,m) | m ∈M} of Exp(M), that is, M is a
divisor of Exp(M). Moreover, the following lemma shows that the Birget-Rhodes expansion
has the same groups as M .

I Lemma 7. Every subgroup of Exp(M) is isomorphic to some group in M .

Proof. Let G ⊆ Exp(M) be a group contained in Exp(M) and let (X, e) ∈ G be the unit in
G. For every element (Y,m) ∈ G we have (X, e)(Y,m) = (X ∪ eY, em) = (Y,m) and hence,
X ⊆ Y . Furthermore, (Y,m)|G| = (Y ∪ · · · ,m|G|) = (X, e) and we conclude X = Y . Thus,
(X,m) 7→ m is an injective embedding of G into M . J

The idea behind the Birget-Rhodes expansion is that it stores the seen prefixes in a set.

I Lemma 8. Let ϕ : A∗ → M be a homomorphism and ψ : A∗ → Exp(M) be the homo-
morphism given by ψ(a) = ({1, ϕ(a)} , ϕ(a)). Let u ∈ A∗ and ψ(u) = (X,ϕ(u)). For every
m ∈ X there exists a prefix v of u such that ϕ(v) = m.

Proof. We will prove this inductively. The statement is true if u is the empty word. Thus,
consider u = va for some letter a ∈ A. Let ψ(v) = (Y, ϕ(v)), then

ψ(u) = ψ(v) · ({1, ϕ(a)} , ϕ(a)) = (Y ∪ {ϕ(v), ϕ(v)ϕ(a)} , ϕ(u)).

Inductively, we obtain prefixes of v, and therefore also prefixes of u, for all elements of Y .
The only (potentially) new element in X is ϕ(u). This proves the claim. J

A special kind of ω-regular languages are arrow languages. Let L ⊆ A∗ be a language.
We define −→L = {α ∈ Aω | infinitely many prefixes of α are in L} to be the arrow language
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of L. The set of arrow languages is exactly the set of deterministic languages [21]. The
Birget-Rhodes expansion can be used to obtain a recognizing monoid for −→L , given a monoid
for L. For a related result see [10].

I Proposition 9. Let L ⊆ A∗ be some regular language and ϕ : A∗ →M be a homomorphism
which recognizes L, then −→L is recognized by Exp(M).

Proof. Let ψ : A∗ → Exp(M) be the homomorphism given by ψ(a) = ({1, ϕ(a)} , ϕ(a)).
Let α ∈ −→L and α ∼ψ β. We show that β ∈ −→L . Let α = u1u2 · · · and β = v1v2 · · · be
factorizations such that ψ(ui) = ψ(vi). Since α ∈ −→L , we may assume that for every i

there exists a decomposition ui = u′iu
′′
i such that u1 · · ·ui−1u

′
i ∈ L. By ψ(ui) = ψ(vi)

and Lemma 8, there exists a decomposition vi = v′iv
′′
i such that ϕ(u′i) = ϕ(v′i). Thus,

u1 · · ·ui−1u
′
i ∼ϕ v1 · · · vi−1v

′
i and therefore v1 · · · vi−1v

′
i ∈ L. This implies β ∈ −→L . J

I Proposition 10. If L ∈ SDG(A∞), then all subgroups in Synt(L) are a divisor of a direct
product of copies of G.

Proof. We will prove this inductively on the definition of SDG(A∞). The cases ∅ ∈ SDG(A∞)
and {a} ∈ SDG(A∞) for all letters a ∈ A are straightforward, as they are recognized by
aperiodic monoids. Let L,K be languages, such that their syntactic monoids contain only
groups which are divisors of a direct product of G. The language L ∪K is recognized by
the direct product of their syntactic monoids which implies the statement. (L ∩A∗) ·K is
recognized by the Schützenberger product of their syntactic homomorphisms [10] and [8,
Proposition 11.7.10]. The Schützenberger product does not introduce new groups [15].

Let K ⊆ A+ be a prefix code of bounded synchronization delay and γ : K∗ → G be a
homomorphism of the free monoid K∗ to the group G such that for all g ∈ G every subgroup
of Synt(K ∩ γ−1(g)) is a divisor of a direct product of copies of G. Proposition 6 implies
that every subgroup of Synt(γ−1(1)) is a divisor of a direct product of copies of G. Note
that γ−1(1)ω =

−−−−→
γ−1(1) and therefore Proposition 9 and Lemma 7 imply that every subgroup

of Synt(γ−1(1)ω) is a divisor of a direct product of copies of G. J

4 The inclusion H(A∞) ⊆ SDH(A∞)

We prove that if every subgroup ofM is a divisor of G, then every language recognized byM is
contained in SDG(A∞). This result is again finer than just the inequality H(A∞) ⊆ SDH(A∞).
The proof works by induction on |M | and on the alphabet and decomposes every ≈ϕ-class
into several sets in SDG(A∞). As a byproduct we obtain a normal form for the languages in
SDG(A∞).

I Proposition 11. Let L ⊆ A∞ be recognized by ϕ : A∗ →M and let G be a group such that
every subgroup of M is a divisor of G, then L ∈ SDG(A∞). Moreover, L can be written as
finite union

L = L0 ∪
m⋃
i=1

Li · γ−1
i (1)ω

for Li ∈ SDG(A∗) and γi : K∗i → G for prefix codes Ki ∈ SDG(A∗) of bounded synchroniza-
tion delay with γ−1

i (g) ∩Ki ∈ SDG(A∗) for all g ∈ G. All products in the expressions of Li
are unambiguous.
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Proof. Let JwKϕ = {v ∈ A∞ | w ≈ϕ v} be the equivalence class of w. Since L is recognized
by ϕ, it holds L = ∪w∈L JwKϕ. Our goal is to construct languages L(w) ∈ SDG(A∞) such
that

w ∈ L(w) ⊆ JwKϕ.
the number of such languages is finite.
every word in L(w) starts with the same letter.

In particular, we want to saturate JwKϕ by sets in SDG(A∞). The construction of the set
L(w) is by induction on (|M | , |A|) with lexicographic order.

If w = 1, then we set L(w) = {1}. This concludes the induction base |A| = 0. Let us
consider the case that ϕ(A∗) is a group, that is, a divisor of G. Let K = A. The set K
is a prefix code of synchronization delay 0 and we may choose the homomorphism γ = ϕ.
Note that every subset of A is in SDG(A∗). In particular, Kg = K ∩ γ−1(g) ∈ SDG(A∗) for
all g ∈ ϕ(A∗). This shows γ−1(g) = ϕ−1(g) ∈ SDG(A∗) for all g ∈ ϕ(A∗) by Lemma 2 and
Lemma 3. In order to satisfy the third condition let w = av ∈ aA∗ for some a ∈ A and set
L(w) = aϕ−1(ϕ(v)). It is clear that w ∈ L(w) ⊆ JwKϕ and L(w) ∈ SDG(A∗) by the above.
If w ∈ aAω, then we obtain w ∈ aϕ−1(g)ϕ−1(1)ω for some g ∈ ϕ(A∗) by the pigeonhole
principle. Thus, we may set L(w) = aϕ−1(g)ϕ−1(1)ω. Note that by the definition of ∼ϕ, the
inclusion L(w) ⊆ JwKϕ holds. In particular, these cases include the induction base |M | = 1.

In the following we assume that ϕ(A∗) is not a group and therefore there exists a letter
c ∈ A such that ϕ(c) is not a unit. Fix this letter c ∈ A and set B = A \ {c}. If w ∈ B∞, the
set L(w) exists by induction. Let w = uv with u ∈ B∗ and v ∈ cA∞. By induction we obtain
L(u) ∈ SDG(B∞) ⊆ SDG(A∞) and it remains to show L(v) ∈ SDG(A∞). Note that the
product L(w) = L(u) · L(v) is unambiguous. From now on we may assume w ∈ cA∞. Let us
first consider the case w = uv with u ∈ c(B∗c)∗ and v ∈ B∞, i.e., there are only finitely many
occurrences of the letter c in w. By induction, there exists L(v) ∈ SDG(B∞) ⊆ SDG(A∞)
and by setting L(w) = L(u) · L(v) it remains to construct L(u).

Consider the alphabet T = ϕ(B∗) = {ϕ(u) | u ∈ B∗}. Let Mc be the local divisor of M
at ϕ(c). Since Mc is a divisor of M , every subgroup of Mc is a divisor of G. Consider the
homomorphism ψ : T ∗ →Mc given by ψ(ϕ(u)) = ϕ(cuc) and the substitution σ : (B∗c)∞ →
T∞ with σ(u1cu2c . . .) = ϕ(u1)ϕ(u2) · · · . Note that

ψ(σ(u1cu2c . . . unc)) = ψ(ϕ(u1)ϕ(u2) · · ·ϕ(un)) = ϕ(cu1c) ◦ ϕ(cu2c) ◦ · · · ◦ ϕ(cunc)
= ϕ(cu1cu2c . . . cunc)

and thus ϕ−1(m) ∩ c(B∗c)∗ = cσ−1(ψ−1(m)). Since |Mc| < |M |, we can apply induction on
the monoid size and there exists a language L(σ(u′)) ∈ SDG(T∞) for all u′ ∈ (B∗c)∗. We
set L(u) = cσ−1(L(σ(u′))) for u = cu′. In order to complete the case of finitely many c’s, it
suffices to show the following claim:

I Claim. It is σ−1(K) ∈ SDG(A∞) for all K ∈ SDG(T∞).

Proof of the Claim: We prove the claim inductively on the definition of SDG. For K = ∅,
we obtain σ−1(K) = ∅ ∈ SDG(A∞). Furthermore,

σ−1(t) =
⋃

v∈B∗,t=ϕ(v)

L(v)c ∈ SDG(A∞).

Let L,K ∈ SDG(T∞). A basic result from set theory yields σ−1(L ∪ K) = σ−1(L) ∪
σ−1(K). Let σ(v) = w1w2 for some v ∈ (B∗c)∗. Since B∗c is a prefix code, there exists a
unique factorization v = v1v2 with v1, v2 ∈ (B∗c)∗ such that σ(v1) = w1 and σ(v2) = w2.
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Thus, we conclude σ−1(K · L) = σ−1(K) · σ−1(L). Let now K ∈ SDG(T∞) be a prefix
code of synchronization delay d. We first show that σ−1(K) is a prefix code of bounded
synchronization delay. Let u, uv ∈ σ−1(K), then σ(u), σ(uv) = σ(u)σ(v) ∈ K and therefore
σ(v) = 1. This implies v = 1 and σ−1(K) is a prefix code. We prove that σ−1(K)
has synchronization delay d + 1. The incrementation of the synchronization delay by
one comes from the fact that B∗c is not a suffix code, and thus we need another word
in B∗c to pose as a left marker. Consider uvw ∈ σ−1(K)∗ with v ∈ σ−1(K)d+1 and
factorize v = v1cv2 with v2 ∈ σ−1(K)d = σ−1(Kd). Then σ(uvw) = σ(uv1c)σ(v2)σ(w),
and by σ(v2) ∈ Kd this implies σ(uv) = σ(uv1c)σ(v2) ∈ K∗. Thus, uv ∈ σ−1(K)∗. Let
γ : K∗ → G be some homomorphism and Kg = K ∩ γ−1(g) ∈ SDG(T∞) for all g ∈ G.
Inductively, σ−1(Kg) ∈ SDG(A∞) and σ−1(K) =

⋃
σ−1(Kg). Let γ′ : σ−1(K)∗ → G be

induced by γ′(u) = γ(σ(u)). By definition of SDG(A∞) we obtain γ′−1(1) ∈ SDG(A∞).
However, u1 · · ·un ∈ σ−1(γ−1(1)) if and only if γ(σ(u1 · · ·un)) = 1. Furthermore, note
that γ(σ(u1 · · ·un)) = γ(σ(u1)) · · · γ(σ(un)) = γ′(u1) · · · γ′(un) = γ′(u1 · · ·un). Thus, we
obtain σ−1(γ−1(1)) = γ′−1(1) ∈ SDG(A∞) and σ−1(γ−1(1)ω) = γ′−1(1)ω ∈ SDG(A∞). This
concludes the proof of the claim. J

At this point we showed the proposition for languages L ⊆ A∗.
The last case of the proof is that w contains infinitely many c’s, that is, w = cv

with v ∈ (B∗c)ω. By induction, we know that σ(v) ∈ LT · γ−1
T (1)ω ⊆ Jσ(v)Kψ for some

LT ∈ SDG(T ∗) and γT : K∗T → G for some prefix code KT ∈ SDG(T ∗) of bounded
synchronization delay with γ−1

T (g) ∩KT ∈ SDG(T ∗). By the calculation above, there exists
a γ : K∗ → G with the usual properties such that γ−1(1) = σ−1(γ−1

T (1)). Let L = σ−1(LT )
and set L(w) = cLγ−1(1)ω. It remains to show that cLγ−1(1)ω ⊆ JwKϕ. Let cu ∈ cLγ−1(1)ω,
then σ(u) ∈ Jσ(v)Kψ, that is σ(u) ≈ψ σ(v). Since ≈ψ is the transitive closure of ∼ψ, we show
that σ(u) ∼ψ σ(v) implies cu ≈ϕ cv for all u, v ∈ (B∗c)ω which concludes the proof. Now,
let σ(u) = σ(u1c)σ(u2c) · · · and σ(v) = σ(v1c)σ(v2c) · · · such that ψ(σ(uic)) = ψ(σ(vic)).
As observed above, this implies ϕ(cuic) = ϕ(cvic). Thus,

cu = (cu1c)u2(cu3c)u4(c · · · ∼ϕ (cv1c)u2(cv3c)u4(c · · ·
= cv1(cu2c)v3(cu4c) · · · ∼ϕ cv1(cv2c)v3(cv4c) · · ·
= cv.

This implies the existence of finitely many sets L(w) ∈ SDG(A∞) with w ∈ L(w) ⊆ JwKϕ in
the case of infinitely many c’s. J

5 Rees extension monoids

We need the fact that every group contained in Rees(N,M, ρ) is contained in N or in M .

I Lemma 12 ([1]). Let G be a subgroup of Rees(N,M, ρ), then there exists an embedding of
G into N or into M .

Thus, Lemma 12 implies LocRees(H) ⊆ Rees(H) ⊆ Rees(H) ⊆ H for any group variety H.
We want to prove equality, that is, every monoid which contains only groups in H is a divisor
of an iterated Rees extension of groups in H. However, we are able to prove a stronger
statement using only local Rees extensions.

I Lemma 13. Let M be a monoid, N be a submonoid of M and c ∈M . If N and c generate
M , then M is a homomorphic image of the local Rees extension LocRees(N,Mc).
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Proof. Let ϕ : LocRees(N,Mc) → M be the mapping given by ϕ(n) = n for n ∈ N and
ϕ(u, x, v) = uxv for (u, x, v) ∈ N ×Mc ×N . Since

ϕ((u, x, v)(s, y, t)) = ϕ(u, x ◦ cvsc ◦ y, t) = ϕ(u, xvsy, t)
= (uxv)(syt) = ϕ(u, x, v)ϕ(s, y, t),

ϕ is a homomorphism. Obviously, M = N ∪NMcN and thus ϕ is surjective. J

A Rees decomposition of a monoid M is a sequence of monoids M1, . . . ,Mk = M such that
for each 1 ≤ j ≤ k we have for Mj one of the following:

Mj is a group which is a divisor of M .
Mj is a divisor of a local Rees extension of a submonoid Mi of Mj and a local divisor M`

of Mj with i, ` < j.

I Proposition 14. A finite monoid M has a Rees decomposition of length at most 2|M | − 1.

Proof. We prove the statement with induction on |M |. If M is a group, we set M1 = M .
This includes the base case |M | = 1. IfM is not a group, we may choose a minimal generating
set ofM . Let c be a nonunit of this generating set, then there exists a proper submonoid N of
M such that N and c generate M . Since c is not a unit, the local divisor Mc is smaller than
M , that is, |Mc| < |M |. By induction, there exist Rees decompositions M ′1, . . . ,M ′k′ = N

and M ′′1 , . . . ,M ′′k′′ = Mc with k′, k′′ ≤ 2|M |−1 − 1. Note that every group, which is a divisor
of N or Mc also is a divisor of M . Furthermore, M is a divisor of the local Rees extension of
Mk′ = N and Mk′+k′′ = Mc by Lemma 13. Therefore, choosing

Mi = M ′i for 1 ≤ i ≤ k′
Mi+k′ = M ′′i for 1 ≤ i ≤ k′′
Mk′+k′′+1 = M

leads to such a sequence for M . Since k′ + k′′ + 1 ≤ 2 · (2|M |−1 − 1) + 1 = 2|M | − 1, the
bound on k holds. J

The inclusion H ⊆ LocRees(H) is immediate from Proposition 14. This yields

I Theorem 15. Let H be a variety of finite groups. Then H = LocRees(H) = Rees(H).

In particular, every monoid in H is a divisor of an iterated Rees extension of groups in H by
Lemma 1. We can draw the decomposition as a tree based on the decomposition of M in
submonoids and local divisors. We do not describe this formally but content ourselves to
give an example.

I Example 16. Let M be the monoid generated by {a, b, δ, σ} with the relations a2 = b2 =
ab = ba = 0, aδ = a, δσ = σδ2, δ3 = 1, σ2 = 1 and dδ = δd, dσ = σd with d ∈ {a, b}. The
subgroup generated by δ and σ is the symmetric group S3; it is solvable but not abelian.
The monoid M is syntactic for the language L which is a union of La and Lb. The language
La is the set of all words uav with uv ∈ {δ, σ}∗ and the sign of the permutation uv evaluates
to −1. The language Lb is the set of all words ubv with uv ∈ {δ, σ}∗ and uv evaluates in S3
to δ. The decomposition in local Rees extensions from Proposition 14 is depicted in Figure 1.
Here M [a, σ, δ] denotes the submonoid generated by {a, σ, δ}. In particular, this yields

M � Rees(Rees(S3,Rees(Z/2Z, {1} , ρ1), ρ2),Rees(S3, {1} , ρ3), ρ4)

for some ρ1, ρ2, ρ3, ρ4 by Lemma 1.
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M

M [a, σ, δ]

S3 M [a, σ, δ]a ' Z/2Z ∪ {0}

Z/2Z (M [a, σ, δ]a)0 ' {1}

Mb ' S3 ∪ {0}

S3 (Mb)0 ' {1}

Figure 1 Decomposition tree of the monoid in Example 16.

6 Applications

An application of Proposition 14 is the solution to an open problem of Almeida and Klíma.
Let U and V be varieties. Let Rees(U,V) be the variety generated by Rees(N,M, ρ) for
N ∈ U and M ∈ V. Note that in general Rees(V) 6= Rees(V,V). However Rees(V) can be
defined as the limit of this operation. Let Vi = Rees(Vi−1,Vi−1) and V0 = V, then

Rees(V) =
⋃
i∈N

Vi.

The variety Rees(U,V) has recently been introduced by Almeida and Klíma under the name
of bullet operation [1]. They defined a variety V to be bullet idempotent if V = Rees(V,V)
and they asked whether there are varieties apart from H which are bullet idempotent. Using
our decomposition above, we prove that the answer to this question is “No”.

I Theorem 17. Let V be a bullet idempotent variety and let H = V ∩G, then V = H.

Proof. Since H is the maximal variety with H ∩G = H, we have V ⊆ H. Let M ∈ H.
Inductively, we may assume that every proper divisor of M is in V. If M is a group, then
M ∈ H and thus M ∈ V. Thus, there exists an nonunit element c ∈ M and a proper
submonoid N of M such that N and c generate M . By Lemma 13, M is a divisor of
LocRees(N,Mc), and since N,Mc ∈ V and V = Rees(V,V) we obtain M ∈ V. J

Let (FO + MODq)[<] be the fragment of first-order sentences which only use first-order
quantifiers, modular quantifiers of modulus q and the predicate <. Then the following
theorem holds.

I Corollary 18. (FO + MODq)[<](A∞) = SDSolq (A∞)

Proof. By [20], see also [19] for a complete treatise, (FO + MODq)[<] describes the family
of all regular languages such that every group in the syntactic monoid is a solvable group of
cardinality dividing a power of q, that is the languages in Solq. Theorem 4 then implies the
stated equality. J

The same language class has been described by Straubing with another operation, counting
how many prefixes are in a given language, which resembles more closely the counting
modulo q [18].

7 Summary

Our main theorem Theorem 4 states H(A∞) = SDH(A∞). An overview over the contributions
for H is given in Table 1.
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Table 1 Overview of existing and new language characterizations of H.

1 Ab Sol Solq H
finite words [17] [16] [18],new [18],new new, unless H ⊆ Ab
ω-words [5] new new new new, unless H = 1

As a byproduct we were able to give a simple decomposition of the monoids in H as local
Rees extensions and groups in H, using only exponentially many operations.
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Abstract
Let G = (V,E) be an n-vertices m-edges directed graph. Let s ∈ V be any designated source
vertex. We address the problem of reporting the reachability information from s under two vertex
failures. We show that it is possible to compute in polynomial time an O(n) size data structure
that for any query vertex v, and any pair of failed vertices f1, f2, answers in O(1) time whether
or not there exists a path from s to v in G \ {f1, f2}.

For the simpler case of single vertex failure such a data structure can be obtained using
the dominator-tree from the celebrated work of Lengauer and Tarjan [TOPLAS 1979, Vol. 1].
However, no efficient data structure was known in the past for handling more than one failures.
We, in addition, also present a labeling scheme with O(log3 n)-bit size labels such that for any
f1, f2, v ∈ V , it is possible to determine in poly-logarithmic time if v is reachable from s in
G \ {f1, f2} using only the labels of f1, f2 and v.

Our data structure can also be seen as an efficient mechanism for verifying double-dominators.
For any given x, y, v ∈ V we can determine in O(1) time if the pair (x, y) is a double-dominator
of v. Earlier the best known method for this problem was using dominator chain from which
verification of double-dominators of only a single vertex was possible.
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1 Introduction

Networks in most real life applications are prone to failures. These failures, though unpre-
dictable, are transient due to some simultaneous repair process that is undertaken in the
application. This motivates the research on designing fault tolerant structures for various
graph problems. In the past few years, a lot of work has been done in designing fault tolerant
structures for various fundamental graph problems, see [7, 9, 14].

We address the problem of building a compact data structure for answering reachability
queries from a designated source on vertex failures. The only previous known result for this
problem was for single failure. The single fault tolerant reachability is closely related to the
notion of dominators as follows. Given a directed graph G and a source vertex s, we say
that a vertex x dominates a vertex v if every path from s to v contains x. Lengauer and
Tarjan [12] introduced a data structure called dominator tree which is a tree rooted at s such
that for any v in G, the set of ancestors of v in the tree is precisely the set of dominators of v.
Thus, for any two vertices x and v in G, v becomes unreachable from s on failure of x if and
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only if x is ancestor of v in the dominator tree. A lot of work has been done on computing
dominators in optimal and near-optimal time, see [3, 10, 11, 12].

In this work, we focus on building efficient data structures for answering reachability
queries upon two vertex failures. One simple solution to this problem is an O(n) space
and O(n) query time data structure using the work of Baswana et. al [1] on fault tolerant
reachability subgraphs (FTRS). They show that for every k > 1, we can compute in
polynomial time a subgraph H of G with at most 2kn edges that preserves the reachability
information from s even after k edge/vertex failures. Such a subgraph is referred as a k-FTRS
for G. Thus in this case a 2-FTRS serves as our data structure for answering reachability
queries. To answer a reachability query after two vertex failures, we can run any standard
graph traversal algorithm (BFS/DFS) from s in the 2-FTRS avoiding the failed vertices.

Another extreme solution to this problem is an O(n2) space data structure with O(1)
query time. This is possible by building n dominator trees, one for each graph G \ {y}, where
y ∈ V . Now on failure of vertices x, y, a vertex v will be reachable from s if and only if x is
not ancestor of v in the dominator tree of G \ {y}. To the best of our knowledge, these are
the only known solutions for the dual failure case.

This brings us to the following central question of our work - Is it possible to achieve the
best of the above two results? In other words, can we have an oracle of O(n) space that still
answers reachability queries in O(1) time? We give an affirmative answer to this question.
We also present a labeling scheme for this problem. Our results are summarized as follows:

Oracle: There exists a data structure of O(n) size that given any two failing vertices f1, f2
and a query vertex v, takes O(1) time to determine if v is reachable from s in G \ {f1, f2}.

Labeling Scheme: There exists a compact labeling scheme for answering reachability queries
under two failures. Each vertex stores a label of O(log3 n) bits such that for any two
failing vertices f1, f2 and any destination vertex v, it is possible to determine whether v is
reachable from s in G\{f1, f2} by processing the labels associated with f1, f2 and v only.

Our result also implies a data structure for the closely related problem of double dominator
verification. A pair of vertices (x, y) is said to be double-dominator of a vertex v if each
path from s to v contains either x or y, but none of x and y are dominators of v. Using
our data structure together with the dominator-tree of Lengauer and Tarjan [12], one can
obtain an O(n) space data structure that for any given triplet x, y, v ∈ V verifies in O(1)
time if (x, y) is double-dominator of v. The best previously known result for this could verify
double-dominators only for a fixed s, v pair in O(1) time using an O(n) space data structure
called dominator chain [16].

1.1 Related work
Demetrescu et al. [7] showed that any oracle for reporting distances from a single source,
rather than just the reachability information upon vertex failures in a directed weighted
graph must require Ω(m) space. Nonetheless, for the problem of reporting distances between
an arbitrary pair of vertices, they give a construction of O(n2 logn) size data structure that
for any u, v, x ∈ V reports the length of the shortest path from u to v avoiding x in constant
time. Duan and Pettie [9] extended this result to dual failures by designing a data structure
of O(n2 log3 n) space which could answer distance queries after any two vertex failures in an
O(logn) time.

Parter and Peleg [14] addressed the problem of computing a sparse subgraph that preserves
the distances from source s on failure of a single vertex. In particular, they show that for
any given unweighted graph G we can compute a subgraph H with O(n3/2) edges such that



K. Choudhary 130:3

for any two vertices v, x, the distance of v from s in the graph H \ {x} is the same as that in
G \ {x}. They also show that this bound is tight. Parter [13] extended this result to dual
failure in undirected graphs by showing an upper bound of O(n5/3), and also showed that
this bound is tight. Baswana and Khanna [2] showed that for the undirected and single
failure case if one is willing to settle for an approximation then there is a subgraph with
O(n logn) edges that preserves the distances up to a multiplicative error of 3. Parter and
Peleg [15] improved this result and obtained a subgraph with at most 3n edges.

Another closely related problem is the replacement paths problem. In this problem we
are given a source s and a target t and for each edge e on the shortest path from s to t the
algorithm computes the shortest path from s to t avoiding e. Many variants of this problem
were studied along the years. For a recent overview see [17] and references therein.

The questions of finding graph spanners, approximate distance oracles and compact
routing schemes that are resilient to f vertex or edge failures in undirected graphs were
studied in [8, 5, 4].

1.2 Our Techniques

Consider a reachability tree T rooted at source s. Let v be any vertex in T , and P be the
path from s to v in T . Let us first consider the simple case when only a single vertex, say x,
fails in G. If x lies on P and v is still reachable from s, then we can find an alternate path
consisting of - a prefix of P , followed by a “detour”, say D, avoiding P (and x), followed by
a suffix of P . This simple decomposition can be used to easily handle reachability queries for
one vertex failure. However, in the case of the dual failure, non trivialities arise when the
second failing vertex lies on detour D. A natural direction to proceed from here is to define
secondary detours which are disjoint from both P as well as D, but handling secondary
detours is quite complicated.

So we take an alternative approach in which instead of initially starting with a single
tree we begin with two independent trees - T1 and T2, defined by Georgiadis and Tarjan [11].
They satisfy the condition that for any v, the path from s to v in two trees intersect only
at the dominators of v. This allows us to reduce the problem to the case when exactly one
failure is an ancestor of v in T1, and the other failure is ancestor of v in T2. Now let P1, P2
be the paths from s to v in T1, T2, and let f1, f2 be the failed vertices lying respectively on
P1, P2. Then, the structure of an alternate path to v gets simplified as follows: It consists of
a prefix of either P1 or P2 up to a vertex a (lying respectively before f1 or f2) followed by a
detour which is disjoint from P1, P2 (and f1, f2), and followed again by a suffix of P1 or P2.
Note that the starting and terminating vertices of detour need not lie on the same tree-path.

So, we get a very clean and simple representation of detours. The main challenge lies in
how to efficiently search for an appropriate detour avoiding f1, f2. The problems arising and
how they are tackled is discussed in detail in Section 4.

1.3 Organization of the paper

We describe notations and terminologies in Section 2. In Section 3, we briefly sketch the
solution for the single failure case using detours. The overview of the paper is presented in
Section 4. In Section 5, we present the reachability oracle for a simpler class of graphs that
are 2-vertex strongly connected. In Section 6, we present the oracle for general graphs. The
construction of the labeling scheme can be found in the full version of the paper.

ICALP 2016
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2 Preliminaries

Given a directed graph G = (V,E) on n = |V | vertices and m = |E| edges, and a source
vertex s ∈ V , the following notations will be used throughout the paper.

f1, f2: A given pair of failed vertices.
parT (x): The parent of vertex x in tree T .
depthT (x): The depth of vertex x in tree T .
PathT (x, y): The path from vertex x to vertex y in tree T .
PathT (x̄, y): PathT (x, y) \ {x}
PathT (x, ȳ): PathT (x, y) \ {y}
PathT (x̄, ȳ): PathT (x, y) \ {x, y}
idom(x): The immediate dominator of vertex x. (See Definition 1).
T1, T2: A pair of independent trees for G rooted at s. (See Definition 2).
P [x, y]: The subpath of path P lying between vertices x, y, assuming x precedes y on P .
P ::Q : The path formed by concatenating paths P and Q in G. Here it is assumed that
the last vertex of P is the same as the first vertex of Q.

We now define immediate dominators and independent spanning trees which are crucial
to our fault tolerant reachability oracle.

I Definition 1 ([12]). A vertex w is said to be the immediate dominator of v if (i) w is a
dominator of v, and (ii) every dominator of v (other than v itself) is also a dominator of w.

I Definition 2 (Georgiadis and Tarjan [11]). Given a directed graph G and a designated
source s, a pair of trees T1, T2 rooted at s are said to be independent spanning trees if for
each v 6= s the paths from s to v in T1 and T2 intersect only at the dominators of v. (It was
shown by Georgiadis and Tarjan [11] that such a pair of trees can be computed in an O(m)
time).

Below we state a few basic properties of dominators in a directed graph.

I Property 1. Let T be a reachability tree rooted at s, and y0, y1 be vertices such that
y0 = idom(y1). Then for any z ∈ PathT (ȳ0, y1), idom(z) belongs to PathT (y0, y1).

I Property 2. Let T be a reachability tree rooted at s, and y1, y2 be vertices such that y1 is
ancestor of y2, and idom(y1) = idom(y2). Then for any z ∈ PathT (y1, y2) either y1 is a
dominator of z or idom(z) = idom(y1).

For efficient implementation of our oracle, we use the following optimal result by Demaine
et. al [6] for answering the range minima queries on tree paths.

I Theorem 3 (Demaine et al. [6]). A tree T on n vertices and edge weights in the range
[0, n3] can be preprocessed in O(n logn) time to build a data structure of O(n) size so that
given any u, v ∈ T , the edge of smallest weight on the tree path from u to v can be reported
in O(1) time.

The following corollary is immediate from Theorem 3.

I Corollary 4. Given a tree, say T , on n vertices, with each vertex assigned an integral
weight in range [0, n3], we can obtain in polynomial time an O(n) size data structure that for
any two vertices x, y, outputs in O(1) time the vertex with minimum weight on PathT (x̄, y).
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(i)                                                                (ii)                                                              (iii)

Figure 1 (i) Representation of a path bypassing f in the single vertex failure case; (ii) Represent-
ation of sets SA(v) and SB(v) when condition C is satisfied for vertex v; (ii) A path from a ∈ SA(v)
to b ∈ SB(v) when v is reachable from s in G \ {f1, f2}.

3 Review of reachability oracle for single failure

In order to understand the dual fault tolerant reachability oracle we first briefly discuss the
case of single failure. We here describe an alternative reachability oracle using detours instead
of dominator tree. Let T be any reachability tree of G rooted at s, and f, v be respectively
the failed and the query vertex. Also assume f is an ancestor of v in T . Notice that if
v is reachable from s in G \ {f}, then there must exist a path starting from PathT (s, f̄)
and terminating at PathT (f̄ , v) which, except for its endpoints, does not pass through any
ancestor of v in T . (See Figure 1(i)). So for each w ∈ V , we can define a detour D(w) to be
a path starting from the highest possible ancestor of w in T and terminating at w such that
none of the internal vertices of the path pass through an ancestor of w. Now on failure of f
it suffices to search whether there exists a vertex lying in PathT (f̄ , v) whose detour starts
from an ancestor of f . This can be achieved by assigning to each vertex w a weight equal to
the depth of the first vertex on D(w). By doing this the problem of reachability under one
vertex failure reduces to the problem of solving range minima on weighted trees, for which
already an optimal solution exists. (See Corollary 4).

4 Overview

Let us consider the failure of a pair of vertices f1, f2 in G, and let v be the query vertex. Note
that if any of the tree paths - PathT1(s, v) or PathT2(s, v) is intact, then v will be reachable
from s. Also, if both PathT1(s, v) or PathT2(s, v) contains a common failed vertex, say f1,
then v will not be reachable from s. This is because then f1 would be a dominator of v.
Thus the non-trivial case is when PathT1(s, v) contains only f1 and PathT2(s, v) contains
only f2, or the vice-versa. So whenever a query vertex v is given to us, we may assume that
the following condition is satisfied.

C : f1 lies on PathT1(s, v) \PathT2(s, v), and f2 lies on PathT2(s, v) \PathT1(s, v).

Now consider the sets SA(v) and SB(v) as defined below. (For a better understanding of
these sets see Figure 1(ii)).

SA(v): Set of vertices lying either above f1 on PathT1(s, v) or above f2 on PathT2(s, v).
SB(v): Set of vertices lying either below f1 on PathT1(s, v) or below f2 on PathT2(s, v).

ICALP 2016
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(i)                                                             (ii)                                                           (iii)

Figure 2 (i) A graph G with in-degree of each vertex bounded by two; (ii) A pair of independent
spanning trees T1 and T2 for G; (iii) A path P from a ∈ SA(v) to b ∈ SB(v) in G \ {f1, f2}.

It turns out that if v is reachable from s in G \ {f1, f2}, then there must exists a path
from set SA(v) to SB(v) avoiding the vertices of both PathT1(s, v) and PathT2(s, v). This
fact is formally stated in the following lemma (refer to the full version of the paper for its
proof).

I Lemma 5. Given a pair of failed vertices f1, f2, a vertex v is reachable from s if and only
if G contains a path P satisfying the following conditions. (See Figure 1(iii)).
C1. The first and last vertices of P lies respectively in sets SA(v) and SB(v).
C2. None of the internal vertices of P lies on PathT1(s, v) or PathT2(s, v).

For simplicity we refer to a path satisfying the conditions C1 and C2 stated in the above
lemma as an SA,B(v) path. In order to efficiently compute such a path we define a pair of
detours D1(w) and D2(w) for each vertex w ∈ V as follows.

Di(w): a path starting from the highest possible ancestor of w in Ti and terminating at
w such that none of the internal vertices of the path are ancestor of w in T1 or T2.

Note that the detours D1(w) and D2(w) can be seen as a simple generalization of the
detour D(w) which was defined for the single failure case in Section 3. However, we show
that this simple generalization is not sufficient to answer the reachability queries in dual
failure. To understand this subtle point consider an SA,B(v) path with a, b as its endpoints.
If the endpoint b is equal to v, then P could be simply either D1(v) or D2(v). The problem
arises when b 6= v. This is because if b is an ancestor of v in T1, then P might contain vertices
from PathT2(s, b). (Recall that the internal vertices of P are disjoint from PathT2(s, v),
but not necessarily disjoint from PathT2(s, b)). So in this case P can neither be D1(b) nor
be D2(b). For a more clear insight into this consider the graph and its two independent
spanning trees in Figure 2. Since in-degree of each vertex in the graph is at most two, Di(w)
for each w ∈ V is simply the incoming edge from pari(w) to w. Thus the path P connecting
SA(v) to SB(v) is a concatenation of as many detours as there are number of edges in P .
Determining whether a concatenation of all these single-edge detours can give us an SA,B(v)
path is difficult to achieve in O(1) time.

This shows that a simple generalization of detours from a single tree to two trees is not
sufficient. To tackle the problem we extend the notion of detours to ‘Parent Detours’ and
‘Ancestor Detours’. These detours unlike the normal detour terminates at an appropriate
ancestor of w in T1 or T2. We formally define the parent-detours and ancestor-detours in
the following sections, and show how they can be used to solve the problem of dual fault
tolerant reachability.
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!!! !

(i)                                                         (ii)                                                           (iii)

!!

Figure 3 (i) Possibilities for path P when b ∈ PathT1 (f̄1, v̄); (ii) Representation of PathT2 (s, c)
and z = LCA(c, v) in T2; (iii) Violation of assumption 2 if P ∩ PathT2 (z, c) is non-empty.

5 Reachability oracle for 2-vertex strongly connected graphs

In this section we describe an O(n) space and O(1) time reachability oracle for 2-vertex
strongly connected graphs. By 2-vertex strongly connectedness we have that on removal of
any vertex f (f 6= s), all the vertices in G \ {f} are still reachable from s. Thus each vertex
is dominated only by source s and by itself. This implies that for any vertex w, PathT1(s, w)
and PathT2(s, w) intersects only at the endpoints s, w.

Consider a query vertex v which is reachable from s in G \ {f1, f2}. Let us assume that
condition C is satisfied for v. Let P be any SA,B(v) path, and a, b be respectively the first
and last vertices on P . Without loss of generality we can assume that b lies on PathT1(s, v).
See Figure 3(i). We make the following additional assumptions.
1. None of the SA,B(v) paths terminates at v (i.e. b cannot be v).
2. b is the lowest vertex on PathT1(s, v) at which an SA,B(v) path terminates.

I Remark. The assumption 1 is justified since if b = v, then v will be reachable from s using
the detours D1(v) or D2(v).

We now state a lemma which provides the motivation for defining the parent detours.

I Lemma 6. Let a, b, P be as described above, and c be the child of b on PathT1(s, v).
Then,
(i) Vertex f2 is an ancestor of c in T2.
(ii) None of the internal vertices of P lie on PathT1(s, c) or PathT2(s, c).

Proof. Let z denote the LCA of vertices c and v in tree T2. (See Figure 3(ii)). Consider
the path Q = PathT2(z, c). It is easy to see that none of the internal vertices of Q lies on
PathT2(s, v). Also, the internal vertices of Q appearing on PathT1(s, v) must lie below c on
PathT1(s, v). This is because, by definition of independent spanning trees, PathT1(s, c) and
Q can intersect only at the vertices s and c.

We now prove claim 1. Let d be the first point of intersection of Q with PathT1(c, v).
(See Figure 3(ii)). Then the internal vertices of Q[z, d] are disjoint from both PathT1(s, v)
and PathT2(s, v). Now if z is an ancestor of f2 in T2, then Q[z, d] forms an SA,B(v) path,
terminating at descendant of b in T1, thereby violating assumption 2. Hence f2 must be
either same as z or an ancestor of z. This shows that f2 is an ancestor of c in T2.

In order to prove claim 2, we first show that P is disjoint from Q. Let us suppose on
the contrary, that there exists a vertex, say z′, belonging to P ∩Q. Also let d′ be the first
vertex of Q[z′, c] lying on PathT1(c, v). (See Figure 3(iii)). Then P [a, z′]::Q[z′, d′] forms an
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SA,B(v) path terminating at a descendant of b in T1. This again violates assumption 2. Thus
P ∩Q = ∅. Now since the internal vertices of P are disjoint from PathT1(s, v),PathT2(s, v),
they must be disjoint from PathT1(s, c) and PathT2(s, z)::Q = PathT2(s, c), as well. J

The above lemma implies that f1 is an ancestor of c in T1, and f2 is an ancestor of c in
T2. Thus SA(v) = SA(c). Hence we have the following corollary.

I Corollary 7. P is an SA,B(c) path terminating at parT1(c).

In order to capture the above fact we define parent-detours for each w ∈ V which instead
of terminating at w terminates at either parT1(w) or parT2(w).

PDi
j(w): a path starting from the highest possible ancestor of w in Ti and terminating at

parTj
(w) s.t. none of the internal vertices of the path lie on PathT1(s, w) or PathT2(s, w).

By above definition of parent-detour it follows that P can be replaced by either PD1
1(c)

or PD2
1(c) depending upon whether it starts from an ancestor of c in T1 or T2. Now let x1

denote the child of f1 in T1 lying on PathT1(s, v), and x2 denote the child of f2 in T2 lying on
PathT2(s, v). Then the parent-detours of vertices x1, x2 may not be of any help, since they
would terminate at f1 and f2. However, the parent-detours of vertices in SB(v) \ {x1, x2}
will suffice to determine whether v is reachable from s or not.

Notice that in above discussion, we observed that P is an SA,B(c) path terminating at
b = parT1(c). This shows that for vertices lying on PathT1(x̄1, v), we only need to worry
about parent-detours terminating at parT1(·), i.e. PD1

1(·) and PD2
1(·). Whereas, for vertices

on PathT2(x̄2, v), we need to worry about parent-detours terminating at parT2(·), i.e. PD1
2(·)

and PD2
2(·). We thus have the following lemma.

I Lemma 8. Let x1 and x2 be as defined above. A vertex v is reachable from s in G\{f1, f2}
if and only if at least one of the following vertices lie in SA(v).
(i) The first vertex of D1(v) or D2(v).
(ii) The first vertex of either PD1

1(w) or PD2
1(w) for some w ∈ PathT1(x̄1, v).

(iii) The first vertex of either PD1
2(w) or PD2

2(w) for some w ∈ PathT2(x̄2, v).

5.1 Implementation of the oracle
We first introduce the following notations for detours and parent detours.

βi(v): depthTi
(first vertex on Di(v)).

γi
j(v): depthTi

(first vertex on PDi
j(v)).

Now let f1, f2 be a given pair of failed vertices and v be a given query vertex. Our
first step is to check if condition C is satisfied. Recall that this requires only verifying the
ancestor-descendant relationship in trees T1 and T2. One simple method to achieve this for
any given tree T is to perform the pre-order and the post-order traversal of T , and store
the vertices in the order they are visited. Now x will be ancestor of y in T if and only if x
appears before y in the pre-order traversal, and after y in the post-order traversal.

Algorithm 1 presents the pseudo-code for answering reachability query for a vertex v
assuming condition C is satisfied. This can be explained in words as follows. For i = 1, 2, we
first check if Di(v) starts from an ancestor of fi in Ti or not. This is done by comparing the
value of βi(v) with the depth of fi in Ti. Next we compute the vertices x1, x2. Finally for
i, j ∈ {1, 2}, we compute a vertex w ∈ PathTj

(x̄j , v) for which γi
j(·) is minimum. If γi

j(w) is
less than the depth of fi in Ti, then it implies that PDi

j(w) starts from an ancestor of fi in
Ti, so we return True. If we reach to the end of code, that means we have not been able to
find any path for v, so we return False.
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Algorithm 1: Oracle for reachability to v in 2-vertex strongly connected graphs.

1 if β1(v) < depthT1(f1) or β2(v) < depthT2(f2) then Return True;
2 ;
3 x1 ← the vertex with minimum depth on PathT1(f̄1, v);
4 x2 ← the vertex with minimum depth on PathT2(f̄2, v);
5 foreach i, j ∈ {1, 2} do
6 w ← a vertex on PathTj (x̄j , v) for which γi

j(·) is minimum;
7 if γi

j(w) < depthTi
(fi) then Return True;

8 ;
9 end

10 Return False;

The above oracle can be easily implemented in O(1) time, by having a total of six weight
functions – one each for storing the depth of a vertex in trees T1, T2, and the other four for
storing the values γi

j(·), for i, j ∈ {1, 2}. By doing this the vertices x1, x2 can be computed
in constant time since they are respectively the vertices with minimum depth on the paths
PathT1(f̄1, v) and PathT1(f̄1, v). Also Step 4 can be carried out in an O(1) time. We can
thus state the following theorem.

I Theorem 9. A 2-vertex strongly connected graph on n vertices can be preprocessed in
polynomial time for a given source vertex s to build a data structure of O(n) size such that
for any query vertex v, and pair of failures f1, f2, it takes O(1) time to determine if there
exists any path from s to v in G \ {f1, f2}.

6 Reachability oracle for general graphs

In this section we explain the reachability oracle for general graphs. Consider a query vertex
u in G. Let u0, u1, ..., uk be the dominators of u with u0 = s and uk = u. Thus PathT1(s, u)
and PathT2(s, u) intersect only at ui’s. (See Figure 4(i)). As in Section 5, we assume that
condition C holds for u, so none of the ui’s can be equal to f1 or f2. Now let i, j ∈ [1, k] be
such that f1 ∈ PathT1(ūi−1, ūi) and f2 ∈ PathT2(ūj−1, ūj). It is easy to see that if i 6= j,
then u is reachable from s by the path PathT1(s, ui−1)::PathT2(ui−1, ui)::PathT1(ui, u).
(See Figure 4(ii)). Thus we consider the case when i = j 1. For simplicity, we use symbols, v
and idom(v) to respectively denote the vertices ui and ui−1. Notice that in order to check
reachability of u from s, it suffices to check if v is reachable from s in G \ {f1, f2}.

We now divide our analysis into various different cases as follows:

Case 1. There exists an SA,B(v) path terminating at vertex v.
In this case v will be reachable from s using either of the detours D1(v) or D2(v).

Case 2. There exists a vertex w ∈ SB(v) for which idom(w) ∈ SA(v) \ {idom(v)}.
In this case also we can show that v is reachable from s by the following argument. Without
loss of generality let us assume that w is an ancestor of v in T1. Since idom(w) is an

1 One can verify in O(1) time whether ui−1 = uj−1 (i.e. if i = j) since vertex ui−1 = LCA(f1, v) and
vertex uj−1 = LCA(f2, v) in the dominator tree of G.
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(i)                                             (ii)                                               (iii)

Figure 4 (i) Representation of dominators of u; (ii) A path from s to u (highlighted in yellow)
when f1 lies on PathT1 (ū1, ū2) and f2 lies on PathT2 (ū2, ū3); (iii) A path from s to u (highlighted
in yellow) when there exists a vertex w ∈ SB(v) for which idom(w) lies in the set SA(v) \ {idom(v)}.

ancestor of w in T1, it must lie on PathT1(idom(v), f̄1). (See Figure 4(iii)). Consider the
path Q = PathT2(idom(w), w). Note that f2 cannot lie on Q. This is because otherwise
PathT1(idom(v), w) and PathT2(idom(v), f2)::Q[f2, w] will form two vertex disjoint paths
from idom(v) to w, which would violate the fact that idom(w) 6= idom(v). Also f1 cannot
lie on Q, as Q is disjoint from PathT1(idom(w), w̄). Thus v is reachable from s by the path
PathT1(s, idom(w))::Q::PathT1(w, v).

Case 3. None of the SA,B(v) path terminates at v, and there does not exist a vertex in
SB(v) whose immediate dominator lies in SA(v) \ {idom(v)}.
This is the most non-trivial case of dual fault tolerant reachability oracle. We now provide
analysis for this case.

Let us suppose v is reachable from s in G \ {f1, f2}. Then without loss of generality we
can assume that there exists an SA,B(v) path (say P ) terminating at an ancestor of v in T1.
In case there are multiple SA,B(v) paths, then we take P to be that path which terminates
at lowest vertex on PathT1(f̄1, v̄). Let a, b be respectively the first and last vertices on P .
By Property 1, we know that idom(b) cannot be an ancestor of idom(v) in T1. Therefore,
idom(b) must be equal to idom(v). This is because idom(b) cannot lie in SA(v) \ {idom(v)},
and if idom(b) lies in SB(v) then P ∩ SB(v) will contain both b and idom(b), which would
violate the definition of an SA,B(v) path.

Now consider the vertex c which is child of b on PathT1(s, v). It turns out that in a
general graph the parent-detours of c may not be of any help. This is because the analysis for
2-vertex strongly connected graphs crucially exploited the fact that idom(b) = idom(c) = s.
But in general graphs, if idom(b) is not equal to idom(c), then it can be shown that Lemma 6
no longer holds. To be more precise, we can show that the internal vertices of P might not
be disjoint from PathT2(s, c).

However, the problem can be resolved if we take c to be the first descendant of b on
PathT1(s, v) whose immediate dominator is the same as that of b. This motivates us to
define the notion of pseudo-child (and pseudo-parent) as follows.

I Definition 10. Given a reachability tree T rooted at s, a vertex x is said to be pseudo-
parent of y in T (and y is said to be pseudo-child of x) if x is the nearest ancestor of y in T
whose immediate dominator is the same as that of y.
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Note that in a 2-vertex strongly connected graph, the definition of pseudo-parent and
pseudo-child degenerates to normal notion of parent and child. This is because, immediate
dominator of all the vertices (other than s) in such graph is equal to s.

We now state a lemma which is an analogue of Lemma 6 for general graphs.

I Lemma 11. Let a, b, P be as described above, and c be the pseudo-child of b on PathT1(s, v).
Then,
(i) Vertex f2 is an ancestor of c in T2.
(ii) None of the internal vertices of P lie on PathT1(s, c) or PathT2(s, c).

As a corollary of the above lemma we get that P is an SA,B(c) path terminating at
pseudo-parent of c in T1. We thus define ancestor-detours which are a generalization of
parent-detours as follows.

ADi
j(w): a path starting from the highest possible ancestor of w in Ti and terminating

at pseudo-parent of w in tree Tj such that none of the internal vertices of the path lie on
PathT1(s, w) or PathT2(s, w).

Now let x1 be the first descendant of f1 on PathT1(s, v) whose immediate dominator
is equal to idom(v). Similarly, let x2 be the first descendant of f2 on PathT1(s, v) whose
immediate dominator is equal to idom(v). Then the ancestor-detours of x1, x2 will not be of
any help as they would terminate at either f1, f2 or their ancestors. Now as in Section 5,
we can argue that ancestor-detours of vertices on PathT1(x̄1, v) ∪ PathT2(x̄2, v) suffice to
answer the reachability query for vertex v. This completes the analysis of the third case.

We thus have the following lemma.

I Lemma 12. Let v be a vertex satisfying condition C such that f1 ∈ PathT1(idom(v), v)
and f2 ∈ PathT1(idom(v), v). Also let x1 and x2 be as defined above. Then v is reachable
from s in G \ {f1, f2} if and only if either of the following statements holds true.
(i) [Case 1] The first vertex of D1(v) or D2(v) lies in SA(v).
(ii) [Case 2] There exists a vertex w ∈ SB(v) for which idom(w) ∈ SA(v) \ {idom(v)}.
(iii) [Case 3] There exists a vertex w ∈ PathT1(x̄1, v) such that idom(w) = idom(v) and the

first vertex of either AD1
1(w) or AD2

1(w) lies in SA(v).
(iv) [Case 3] There exists a vertex w ∈ PathT2(x̄2, v) such that idom(w) = idom(v) and the

first vertex of either AD1
2(w) or AD2

2(w) lies in SA(v).

6.1 Implementation of the oracle
We now explain the implementation of reachability oracle for general graphs. As in Section 5,
we define the following notations.

αi(v): depthTi(idom(v)).
βi(v): depthTi

(first vertex on Di(v)).
γi

j(v): depthTi(first vertex on ADi
j(v)).

Let f1, f2 be a given pair of failed vertices and v be a given query step. We assume
that condition C is satisfied, and failures f1, f2 lies respectively on PathT1(idom(v), v) and
PathT2(idom(v), v). We first check for i = 1, 2, if Di(v) starts from an ancestor of fi in Ti

or not. This is done by comparing the value of βi(v) with the depth of fi in Ti.
Next we compute the vertices x1, x2 as follows. Recall that x1 is the highest ancestor

of v in PathT1(f̄1, v) whose immediate dominator is equal to idom(v). So to obtain x1, we
call the range minima query for vertices on PathT1(f̄1, v) with 〈α1(·), depthT1(·)〉 as the
weight function. By comparing the value of α1(·), it is able to filter out those vertices in
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PathT1(f̄1, v) whose immediate dominator is at minimum depth in T1, i.e. it is equal to
idom(v). After this it assigns x1 to be that vertex which has minimum depth in T1. Vertex
x2 is computed in a similar manner.

Now notice that to find whether there exists a vertex in SB(v) whose immediate dominator
lies in SA(v) \ {idom(v)}, we only need to restrict ourself to paths PathT1(f̄1, x̄1) and
PathT1(f̄1, x̄1). This is because Property 2 implies that immediate dominator of vertices
in PathT1(x1, v) is either equal to idom(v) or lies in PathT1(x1, v) itself. Similarly, for
PathT2(x2, v). So for i = 1, 2, we perform the range minima query to find a vertex, say w,
on PathTi

(f̄i, x̄i) for which αi(w) is minimum. If αi(w) is less than the depth of fi in Ti,
then we report that v is reachable from s.

Finally for i, j ∈ {1, 2}, we compute a vertex w ∈ PathTj
(x̄j , v) for which 〈αi(·), γi

j(·)〉 is
minimum. The term αi(·) is added in front so that we are able to filter out those vertices
whose immediate dominator is equal to idom(v). Now if γi

j(w) is less than the depth of fi in
Ti, then it implies that ADi

j(w) starts from an ancestor of fi in Ti, so we return True.
If we reach to the end of code, that means we have not been able to find any path for v,

so we return False.

Algorithm 2: Oracle for reachability to v in general graphs.

1 if β1(v) < depthT1(f1) or β2(v) < depthT2(f2) then Return True;
2 ;
3 x1 ← a vertex on PathT1(f̄1, v) for which 〈α1(·), depthT1(·)〉 is minimum;
4 x2 ← a vertex on PathT2(f̄2, v) for which 〈α2(·), depthT2(·)〉 is minimum;
5 foreach i ∈ {1, 2} do
6 w ← a vertex on PathTi

(f̄i, x̄i) for which αi(·) is minimum;
7 if αi(w) < depthTi

(fi) then Return True;
8 ;
9 end

10 foreach i, j ∈ {1, 2} do
11 w ← a vertex on PathTj

(x̄j , v) for which 〈αi(·), γi
j(·)〉 is minimum;

12 if γi
j(w) < depthTi(fi) then Return True;

13 ;
14 end
15 Return False;

As in Algorithm 1, we can argue that the Steps 2, 3, 5 and 9, can be implemented in
O(1) time. Thus Algorithm 2 takes constant time to answer reachability queries. We thus
conclude with the following theorem.

I Theorem 13. A directed graph G = (V,E) on n vertices can be preprocessed in polynomial
time for a given source vertex s ∈ V to build a data structure of O(n) size such that for any
f1, f2, v ∈ V , it takes O(1) time to determine if there exists a path from s to v in G\{f1, f2}.
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Abstract
Given a graph where vertices are partitioned into k terminals and non-terminals, the goal is
to compress the graph (i.e., reduce the number of non-terminals) using minor operations while
preserving terminal distances approximately. The distortion of a compressed graph is the max-
imum multiplicative blow-up of distances between all pairs of terminals. We study the trade-off
between the number of non-terminals and the distortion. This problem generalizes the Steiner
Point Removal (SPR) problem, in which all non-terminals must be removed.

We introduce a novel black-box reduction to convert any lower bound on distortion for the
SPR problem into a super-linear lower bound on the number of non-terminals, with the same
distortion, for our problem. This allows us to show that there exist graphs such that every
minor with distortion less than 2 / 2.5 / 3 must have Ω(k2) / Ω(k5/4) / Ω(k6/5) non-terminals,
plus more trade-offs in between. The black-box reduction has an interesting consequence: if the
tight lower bound on distortion for the SPR problem is super-constant, then allowing any O(k)
non-terminals will not help improving the lower bound to a constant.

We also build on the existing results on spanners, distance oracles and connected 0-extensions
to show a number of upper bounds for general graphs, planar graphs, graphs that exclude a fixed
minor and bounded treewidth graphs. Among others, we show that any graph admits a minor
with O(log k) distortion and O(k2) non-terminals, and any planar graph admits a minor with
1 + ε distortion and Õ((k/ε)2) non-terminals.
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tex Sparsification, Metric Embedding
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1 Introduction

Graph compression generally describes a transformation of a large graph G into a smaller
graph G′ that preserves, either exactly or approximately, certain features (e.g., distance, cut,
flow) of G. Its algorithmic value is apparent, since the compressed graph can be computed in
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a preprocessing step of an algorithm, so as to reduce subsequent running time and memory.
Some notable examples are graph spanners, distance oracles and cut/flow sparsifiers.

In this paper, we study compression using minor operations, which has attracted in-
creasing attention in recent years. Minor operations include vertex/edge deletions and edge
contractions. It is naturally motivated since it preserves certain structural properties of the
original graph, e.g., any minor of a planar graph remains planar, while reducing the size of
the graph. We are interested in vertex sparsification, where G has a designated subset T of k
vertices called the terminals, and the goal is to reduce the number of non-terminals in G′ while
preserving some feature among the terminals. Recent work in this field studied preserving
cuts and flows. Our focus here is on preserving terminal distances approximately in a multi-
plicative sense, i.e., we want that for any terminals t, t′, dG(t, t′) ≤ dG′(t, t′) ≤ α · dG(t, t′),
for a small distortion α. This problem, called Approximate Terminal Distance Preservation
(ATDP) problem, has natural applications in multicast routing [6] and network traffic optim-
ization [22]. It was also suggested in [15] that to solve the subset travelling salesman problem,
one can compute a compressed minor with a small distortion as a preprocessing step for
algorithms that solve the travelling salesman problem for planar graphs.

ATDP was initiated by Gupta [11], who introduced the related Steiner Point Removal
(SPR) problem: Given a tree G with both terminals and non-terminals, output a weighted
tree G′ with terminals only which minimizes the distortion. Gupta gave an algorithm that
achieves a distortion of 8. Chan et al. [4] observed that Gupta’s algorithm returned always a
minor of G. For general graphs, Kamma et al. [13] gave an algorithm to construct a minor
with distortion O(log5 k). Krauthgamer et al. [15] studied ATDP and showed that every
graph has a minor with O(k4) non-terminals and distortion 1. It is then natural to ask,
for different classes of graphs, what the trade-off between the distortion and the number of
non-terminals is. In this paper, for different classes of graphs, and w.r.t. different allowed
distortions, we provide lower and upper bounds on the number of non-terminals needed.
Further Related Work. Basu and Gupta [3] showed that for outer-planar graphs, SPR can
be solved with distortion O(1). When randomization is allowed, Englert et al. [9] showed
that for graphs that exclude a fixed minor, one can construct a randomized minor for SPR
with O(1) expected distortion. Krauthgamer et al. [15] proved that solving ATDP with
distortion 1 for planar graphs needs Ω(k2) non-terminals.

Recently, there has been a growing interest on cut/flow vertex sparsifiers [19, 16, 5, 18, 9,
7, 2, 21]; given a capacitated graph G with terminals T ⊂ V , the goal is to find a sparsifier
H with V (H) = T preserving all terminal cuts up to a factor q ≥ 1, i.e. for all S ⊂ T ,
mincutG(S, T \ S) ≤ mincutH(S, T \ S) ≤ q ·mincutG(S, T \ S). In this setting, there is an
equivalence between the construction of vertex cut/flow and distance sparsifiers [20, 9].

A related graph compression is spanners, where the objective is to reduce the number of
edges by edge deletions only. We will use a spanner algorithm (e.g., [1]) to derive our upper
bound results for general graphs. Although spanner operation enjoys much less freedom than
minor operation, proving a lower bound result for it is notably difficult. Assuming the Erdös
girth conjecture [10], there are lower bounds that match the best known upper bounds, but
the conjecture seems far from being settled [25]. Woodruff [27] showed a lower bound result
bypassing the conjecture, but only for additive spanners.

Graph Upper Bound Lower Bound
General ∀q ∈ N (2q − 1,O(k2+2/q)) (2− ε,Ω(k2))
General − (2.5− ε,Ω(k5/4)), (3− ε,Ω(k6/5))
Bounded-treewidth p ∀q ∈ N (2q − 1,O(p1+2/qk)) (1,Ω(pk)) †
Excluded-Fixed-Minor (O(1), Õ(k2) −
Planar (3, Õ(k2)), (1 + ε, Õ((k/ε)2) (1 + o(1),Ω(k2)) †
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Our Contributions. For various classes of graphs, we show lower and upper bounds on the
number of non-terminals needed in the minor for low distortion. The table above summarizes
our results (results with † are from [15]); see the full version for more details.

For our lower bound results, we use a novel black-box reduction to convert any lower
bound on distortion for the SPR problem into a super-linear lower bound on the number of
non-terminals for ATDP with the same distortion. Precisely, we show that given any graph
G∗ such that solving its SPR problem leads to a minimum distortion of α, we use G∗ to
construct a new graph G such that every minor of G with distortion less than α must have
at least Ω(k1+δ(G∗)) non-terminals, for some constant δ(G∗) > 0. The lower bound results in
the above table are obtained by using for G∗ a complete ternary tree of height 2, which was
shown that solving its SPR problem leads to minimum distortion 3 [11]. More trade-offs are
shown by using for G∗ a complete ternary tree of larger heights.

The black-box reduction has an interesting consequence. For the SPR problem on general
graphs, there is a huge gap between the best known lower and upper bounds, which are
8 [4] and O(log5 k) [13]; it is unclear what the asymptotically tight bound would be. Our
black-box reduction allows us to prove the following result concerning the tight bound: for
general graphs, if the tight bound on distortion for the SPR problem is super-constant, then
for any constant C > 0, even if Ck non-terminals are allowed in the minor, the lower bound
will remain super-constant. See Theorem 15 for a formal statement of this result.

We also build on the existing results on spanners, distance oracles and connected 0-
extensions to show a number of upper bound results for general graphs, planar graphs
and graphs that exclude a fixed minor. Our techniques, combined with an algorithm in
Krauthgamer et al. [15], yield an upper bound result for graphs with bounded treewidth.
In particular, our upper bound on planar graphs implies that allowing quadratic number of
non-terminals, we can construct a deterministic minor with arbitrarily small distortion.

2 Preliminaries

Let G = (V,E, `) denote an undirected graph with terminal set T ⊂ V of cardinality k,
where ` : E → R+ is the length function over edges E. A graph H is a minor of G if H can
be obtained from G by performing a sequence of vertex/edge deletions and edge contractions,
but no terminal can be deleted, and no two terminals can be contracted together. In other
words, all terminals in G must be preserved in H.

Besides the above standard description of minor operations, there is another equivalent
way to construct a minor H from G [13], which will be more convenient for presenting some
of our results. A partial partition of V (G) is a collection of pairwise disjoint subsets of V (G)
(but their union can be a proper subset of V (G)). Let S1, · · · , Sm be a partial partition of
V (G) such that (1) each induced graph G[Si] is connected, (2) each terminal belongs to
exactly one of these partial partitions, and (3) no two terminals belong to the same partial
partition. Contract the vertices in each Si into one single “super-node” in H. For any
vertex u ∈ V (G), let S(u) denote the partial partition that contains u; for any super-node
u ∈ V (H), let S(u) denote the partial partition that is contracted into u. In H, super-nodes
u1, u2 are adjacent only if there exists an edge in G with one of its endpoints in S(u1) and
the other in S(u2). We denote the super-node that contains terminal t by t as well.

I Definition 1. The graph H = (V ′, E′, `′) is an α-distance approximating minor (abbr. α-
DAM) of G = (V,E, `) if H is a minor of G and for any t, t′ ∈ T , dG(t, t′) ≤ dH(t, t′) ≤
α · dG(t, t′). H is an (α, y)-DAM of G if H is an α-DAM of G with at most y non-terminals.
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We note that the SPR problem is equivalent to finding an (α, 0)-DAM. One can also
define a randomized version of distance approximating minor:

I Definition 2. Let π be a probability distribution over minors of G = (V,E, `). We call π
an α-randomized distance approximating minor (abbr. α-rDAM) of G if for any t, t′ ∈ T ,
EH∼π [dH(t, t′)] ≤ α ·dG(t, t′), and for every minor H in the support of π, dH(t, t′) ≥ dG(t, t′).
Furthermore, we call π an (α, y)-rDAM if π is an α-rDAM of G, and every minor in the
support of π has at most y non-terminals.

3 Deterministic and Randomized Lower Bounds

For all the lower bound results, we use a tool in combinatorial design called Steiner system
(or alternatively, balanced incomplete block design). Let [k] denote the set {1, 2, · · · , k}.

I Definition 3. Given a ground set T = [k], an (s, 2)-Steiner system (abbr. (s, 2)-SS) of T
is a collection of s-subsets of T , denoted by T = {T1, · · · , Tr}, where r =

(
k
2
) /(

s
2
)
, such that

every 2-subset of T is contained in exactly one of the s-subsets.

I Lemma 4 ([26]). For any integer s ≥ 2, there exists an integer Ms such that for every
q ∈ N, the set [Ms + qs(s− 1)] admits an (s, 2)-SS.

Our general strategy is to use the following black-box reduction, which proceeds by taking
a small connected graph G∗ as input, and it outputs a large graph G which contains many
disjoint embeddings of G∗. Here is how it exactly proceeds:

Let G∗ be a graph with s ≥ 2 terminals and q ≥ 1 non-terminals. Let k be an integer, as
given in Lemma 4, such that the terminal set T = [k] admits an (s, 2)-SS T .
We construct T ′ ⊆ T that satisfies certain property depending on the specific problem.
For each s-set in T ′, we add q non-terminals to the s-set, which altogether form a group.
The union of vertices in all groups is the vertex set of our graph G. We note that each
terminal may appear in many groups, but each non-terminal appears in one group only.
Within each of the groups, we embed G∗ in the natural way.

The following two lemmas describe some basic properties of all minors of G output by
the black-box above. Their proofs are deferred to the full version.

I Lemma 5. Let H be a minor of G. Then for each edge (u1, u2) in H, there exists exactly
one group R in G such that S(u1) ∩R and S(u2) ∩R are both non-empty.

The above lemma permits us to legitimately define the notion R-edge: an edge (u1, u2)
in H is an R-edge if R is the unique group that intersects both S(u1) and S(u2).

I Lemma 6. Suppose that in a minor H of G, (u1, u2) is a R1-edge and (u2, u3) is R2-edge,
where R1 6= R2. Then R1 and R2 intersect, and S(u2) contains the terminal in R1 ∩R2.

We will show that for any minor H with low distortion, at least one of the non-terminals
in each group must be retained, and thus H must have at least |T ′| non-terminals. We
first present some of our main theorems on lower bounds and then prove them; two more
theorems are given in Section 3.3.

I Theorem 7. For infinitely many k ∈ N, there exists a bipartite graph with k terminals
which does not have a (2− ε, k2/7)-DAM, for all ε > 0.
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I Theorem 8. There exists a constant c1 > 0, such that for infinitely many k ∈ N, there
exists a quasi-bipartite graph with k terminals which does not have an (α− ε, c1kγ)-DAM,
for all ε > 0, where α, γ are given in the table below.

α 2.5 3 10/3 11/3 4 4.2 4.4
γ 5/4 6/5 10/9 11/10 12/11 21/20 22/21

I Theorem 9. For infinitely many k ∈ N, there exists a bipartite graph with k terminals
which does not have a

(
2− ε, ε3k2/150

)
-rDAM, for any 1 ≥ ε > 0.

3.1 Proof of Theorem 7
We start by reviewing the lower bound for SPR problem on stars due to Gupta [11].

I Lemma 10. Let G∗ = (T ∪ {v}, E) be an unweighted star with k ≥ 3 terminals, in which
v is the center of the star. Then, every edge-weighted graph only on the terminals T with
fewer than

(
k
2
)
edges has distortion at least 2.

We construct G using the black-box reduction above. Let k ∈ N be such that the terminals
T = [k] admits a (3, 2)-SS, denoted by T . Here, we set T ′ = T and G∗ to be the star with 3
terminals, as described in Lemma 10.

By the definition of Steiner system, the shortest path between every pair of terminal t, t′
in G is unique, which is the 2-hop path within the group that contains both terminals, i.e.,
dG(t, t′) = 2 for all t, t′ ∈ T . Every other simple path between t, t′ must pass through an
extra terminal, so the length of such simple path is at least 4.

Let H be a minor of G. Suppose that the number of non-terminals in H is less than r,
then there exists a group R in which its non-terminal is not retained (which means that it is
either deleted, or contracted into a terminal in that group). By Lemma 10, there exists a
pair of terminals in that group such that every simple path within R (which means a path
comprising of R-edges only) between the two terminals has length at least 4. And every
other simple path must pass through an extra terminal (just as in G), so again it has length
at least 4. Thus, the distortion of the two terminals is at least 2.

Therefore, every (2− ε)-DAM of G must have r > k2/7 non-terminals.

3.2 Proof of Theorem 8
We will give the proof for the case α = 2.5 here, and discuss how to generalize this proof for
other distortions. We will first define the notions of detouring graph and detouring cycle,
and then use them to construct the graph G that allows us to show the lower bound.

Detouring Graph and Detouring Cycle. For any s ≥ 3, let k ∈ N be such that the terminal
set T = [k] admits an (s, 2)-SS. Let T = {T1, · · · , Tr} be such an (s, 2)-SS. A detouring graph
has the vertex set T . By the definition of Steiner system, |Ti ∩ Tj | is either zero or one. In
the detouring graph, Ti is adjacent to Tj if and only if |Ti ∩ Tj | = 1. Thus, in the detouring
graph, it is legitimate to give each edge (Ti, Tj) a terminal label, which is the terminal in
Ti ∩ Tj . A detouring cycle is a cycle in the detouring graph such that no two neighbouring
edges of the cycle have the same terminal label.

Suppose that two edges in the detouring graph have a common vertex, and their terminal
labels are different, denoted by t, t′. Then the common vertex must be an s-set in T containing
both t, t′. By the definition of Steiner system, the s-set is uniquely determined.

I Claim 11. In the detouring graph, number of detouring cycles of size ` ≥ 3 is at most k`.
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Our key lemma is: for any L ≥ 3, we can retain Ωs(kL/(L−1)) vertices in the detouring
graph, such that the induced graph on these vertices has no detouring cycle of size L or less.

I Lemma 12. For any integer L ≥ 3, given a detouring graph with vertex set T =
{T1, T2, · · · , Tr}, there exists a subset T ′ ⊂ T of cardinality Ωs(kL/(L−1)) such that the
induced graph on T ′ has no detouring cycle of size L or less.

Proof. We choose the subset T ′ by the following randomized algorithm:
1. Each vertex is picked into T ′ with probability δk−(L−2)/(L−1), where δ = δ(s) < 1 is a

positive constant which we will derive explicitly later.
2. While (there is a detouring cycle of size L or less in the induced graph of T ′)

Remove a vertex in the detouring cycle from T ′

After Step 1, E [|T ′|] = r · δk−(L−2)/(L−1) ≥ δ
2s(s−1)k

L/(L−1). Using Claim 11, the
expected number of detouring cycles of size L or less is at most

∑L
`=3 k

` · (δk−(L−2)/(L−1))` ≤
2δ3kL/(L−1). Thus, the expected number of vertices removed in Step 2 is at most 2δ3kL/(L−1).
Now, choose δ = 1/

√
8s(s− 1). By the end of the algorithm,

E [|T ′|] ≥ δ

2s(s− 1)k
L/(L−1) − 2δ3kL/(L−1) = Ω(kL/(L−1)). J

Construction of G and the Proof. Recall the black-box reduction. Let k be an integer
such that T = [k] admits a (9, 2)-SS T . By Lemma 12, we choose T ′ to be a subset of T
with |T ′| = Ω(k5/4), such that the induced graph on T ′ has no detouring cycle of size 5 or
less. We choose G∗ to be a complete ternary tree of height 2, in which the 9 leaves are the
terminals. For each Ti ∈ T ′, we add four non-terminals to Ti, altogether forming a group.

The following lemma is a direct consequence that the induced graph on T ′ has no
detouring cycle of size 5 or less.

I Lemma 13. For any two terminals t, t′ in the same group, let R denote the group. Then,
in any minor H of G, every simple path from t to t′ either comprises of R-edges only, or it
comprises of edges from at least 5 groups other than R.

Proof. Proof of Theorem 8 Let H be a (2.5− ε)-DAM of G, for some ε > 0. Suppose that
there exists a group such that all its non-terminals are not retained in H. By [11], there
exists a pair of terminals t, t′ in that group such that every simple path between t and t′,
which comprises of edges of that group only, has length at least 3 · dG(t, t′).

By Lemma 13 and Lemma 6, any other simple path P between t and u passes through at
least 4 other terminals, say they are ta, tb, tc, td in the order of the direction from t to t′. We
denote this path by P := t→ ta → tb → tc → td → t′, by ignoring the non-terminals along
the path. Between every pair of consecutive terminals in P , the length is at least 2. Thus,
the length of P is at least 10. Since dG(t, t′) ≤ 4, the length of P is at least 2.5 · dG(t, t′).

Thus, the length of every simple path from t to t′ in H is at least 2.5 · dG(t, t′), a
contradiction. Therefore, at least one non-terminal in each group is retained in H. As there
are Ω(k5/4) groups, we are done. J

For the other results in Theorem 8, we follow the above proof almost exactly, with the
following modifications. Set s = 3h for some h ≥ 2, and set G∗ to be a complete ternary tree
with height h, in which the leaves are the terminals. Let αh be a lower bound on the distortion
for the SPR problem on G∗. Apply Lemma 12 with some integer h < L ≤ dαhhe. Following
the above proof, attaining a distortion of min

{
L
h , αh

}
− ε needs Ω(kL/(L−1)) non-terminals.
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The last puzzle we need is the values of αh. Chan et al. [4] proved that for complete binary
trees of height h, limh→+∞ αh = 8, but they did not give explicit values of αh. We apply
their ideas to complete ternary tree of height h, to obtain explicit values for h ≤ 5, which
are used to prove all the results in Theorem 8. The explicit values are α2 = 3, α3 = α4 = 4
and α5 = 4.4. We discuss the details for computing these values in the full version.

3.3 Full Generalization of Theorem 8, and its Interesting Consequence
Indeed, we can set G∗ as any graph. In our above proofs we used a tree for G∗ because
the only known lower bounds on distortion for the SPR problem are for trees. If one can
find a graph G∗ (either by a mathematical proof, or by computer searches) such that its
distortion for the SPR problem is at least α, applying the black-box reduction with this G∗,
and reusing the above proof show that there exists a graph G with k terminals such that
attaining a distortion of α− ε needs Ω(k1+δ(G∗)) non-terminals, for some δ(G∗) > 0.

I Theorem 14. Let G∗ be a graph with s terminals, and the distance between any two
terminals is between 1 and β. Suppose the distortion for the SPR problem on G∗ is at
least α. Then, for any positive integer max{2, dβe} ≤ L ≤ dαβe, there exists a constant
c4 := c4(s) > 0, such that for infinitely many k ∈ N, there exists a graph with k terminals
which does not have a

(
min {L/β, α} − ε, c4kL/(L−1))-DAM, for all ε > 0.

The above theorem has an interesting consequence. For the SPR problem on general
graphs, the best known lower bound is 8, while the best known upper bound is O(log5 k)
[13]. There is a huge gap between the two bounds, and it is not clear where the tight
bound locates in between. Suppose that the tight lower bound on SPR is super-constant.
Then for any positive constant α, there exists a graph G∗α with s(α) terminals and some
non-terminals, such that the distortion is larger than α. By Theorem 14, G∗α can be used to
construct a family of graphs with k terminals, such that to attain distortion α, the number
of non-terminals needed is super-linear in k. Recall that in SPR, no non-terminal can be
retained. In other words, Theorem 14 implies that: if retaining no non-terminal will lead to
a super-constant lower bound on distortion, then having the power of retaining any linear
number of non-terminals will not improve the lower bound to a constant.

Formally, we define the following generalization of SPR problem. Let LSPRy denote the
problem that for an input graph with k terminals, find a DAM with at most yk non-terminals
so as to minimize the distortion; the SPR problem is equivalent to LSPR0.

I Theorem 15. For general graphs, SPR has super-constant lower bound on distortion if
and only if for any constant y ≥ 0, LSPRy has super-constant lower bound on distortion.

3.4 Proof of Theorem 9
In this subsection we give a lower bound for rDAM. The strategy we follow will be very
similar to that of Theorem 7. In fact, one can view it as a randomized version of that proof.
We start with the following lemma, which generalizes the deterministic SPR lower bound of
Gupta in Lemma 10 to randomized minors.

I Lemma 16. Let G∗ = (T ∪ {v}, E) be an unweighted star with k ≥ 3 terminals, in which
v is the center of the star. Then, for every probability distribution over minors of G∗ with
vertex set T , there exists a terminal pair with distortion at least 2(1− 1/k).

We now continue with the construction of our input graph. For some constant s ≥
3 and some integer k, we construct a (s, 2)-SS of the terminal set T and denote it by
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T = {T1, . . . , Tr}, where r =
(
k
2
)
/
(
s
2
)
≥ 2

(
k
2
)
/s2. Similarly to the proof of Theorem 7, we

apply the black-box reduction with T ′ = T , and set G∗ as a star with c1 terminals, to
generate a bipartite graph G. For any constant c1 > 0, we define the family of minors
L := {H : H is a minor of G and |V (H)| <

(
k
2
)
/c1}.

I Claim 17. Let π be any probability distribution over L. There exists a non-terminal of G
that is involved in an edge contraction with probability at least 1− s2/2c1 under π.

Proof. Proof of Theorem 9 Let v be the non-terminal from Claim 17 and let Ti be its
corresponding set of size c1. Invoking Lemma 16 and using conditional expectations, we get
that there exists a terminal pair (t, t′) ∈ Ti such that

Eπ[dH(t, t′)]
dG(t, t′) ≥ Eπ [dH(t, t′) | v is contracted] · Pπ [v is contracted]

dG(t, t′)

≥ 2
(

1− 1
s

)(
1− s2

2c1

)
≥ 2−

(
2
s

+ s2

c1

)
,

which can be made arbitrarily close to 2 by setting s and c1 sufficiently large. To be precise,
given any ε > 0, by setting s = 5/ε and c1 = 2s2/ε, the distortion is at least 2− ε. J

4 Minor Construction for General Graphs

In this section we give minor constructions that present numerous trade-offs between the
distortion and size of DAMs. Our results are obtained by combining the work of Coppersmith
and Elkin [8] on sourcewise distance preservers with the well-known notion of spanners.

Given an undirected graph G = (V,E, `) with terminals T , we let Πu,v denote the shortest
path between u and v in G. Without loss of generality, we assume that for any pair of
vertices (u, v), the shortest path connecting u and v is unique. This can be achieved by
slightly perturbing the original edge lengths of G (see [8]).

For a graph G, let NG(u) denote the vertices incident to u in G. We say that two paths
Π and Π′ branch at a vertex u ∈ V (Π) ∩ V (Π′) iff |NΠ∪Π′(u)| > 2. We call such a vertex u
a branching vertex. Let P denote the set of shortest paths corresponding to every pair of
vertices in G. We review the following result proved in [8, Lemma 7.5].

I Lemma 18. Any pair of shortest paths Π,Π′ ∈ P has at most two branching vertices.

I Definition 19 (Terminal Path Cover). Given G = (V,E, `) with terminals T , a set of
shortest paths P ′ ⊂ P is an (α, f(k))-terminal path cover (abbr. (α, f(k))-TPc) of G if
1. P ′ covers the terminals, i.e. T ⊆ V (H), where H =

⋃
Π∈P′ E(Π),

2. |P ′| ≤ f(k) and ∀t, t′ ∈ T , dG(t, t′) ≤ dH(t, t′) ≤ α · dG(t, t′).

We remark that the endpoints of the shortest paths in P ′ are not necessarily terminals.
Now we give a simple algorithm generalizing the one presented by Krauthgamer et al. [15].

Algorithm 1 MinorSparsifier (graph G, terminals T , (α, f(k))-TPc P ′ of G)
1: Set H = ∅. Then add all shortest paths from the path cover P ′ to H.
2: while there exists a degree two non-terminal v incident to edges (v, u) and (v, w) do
3: Contract the edge (u, v), then set the length of edge (u,w) to dH(u,w).
4: return H

I Lemma 20. For a given graph G = (V,E, `) with terminals T ⊂ V and an (α, f(k))-TPc
P ′ of G, MinorSparsifier(G,T ,P ′) outputs an (α, f(k)2)-DAM of G.
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A trivial exact terminal path cover for any k-terminal graph is to take the union of all
terminal shortest paths, which we refer to as the (1,O(k2))-TPc P ′ of G. Krauthgamer
et al. [15] used this (1,O(k2))-TPc to construct an (1,O(k4))-DAM. Here, we study the
question of whether increasing the distortion slightly allows us to obtain a cover of size o(k2).
We answer this question positively, by reducing it to the well-known spanner problem. Let
q ≥ 1 be an integer and let G = (V,E, `) be an undirected graph. A q-spanner of G is a
subgraph S = (V,ES , `) such that ∀u, v ∈ V, dG(u, v) ≤ dS(u, v) ≤ q · dG(u, v) . We refer to
q and |ES | as the stretch and size of spanner S, respectively.

I Lemma 21 ([1]). Let q ≥ 1 be an integer. Any graph G = (V,E, `) admits a (2q−1)-spanner
S of size O(|V |1+1/q).

Given a graph G = (V,E, `) with terminals T , we compute the complete graph QT =
(T,
(
T
2
)
, dG|T ), where dG|T denotes the distance metric of G restricted to the point set T (In

other words, for any pair of terminals t, t′ ∈ T , the weight of the edge connecting them in
QT is given by wQT

(t, t′) = dG(t, t′)). Recall that all shortest paths in G are unique.
Using Lemma 21, we construct a (2q − 1)-spanner S of size O(k1+1/q) for QT . Observe

that each edge of S corresponds to an unique (terminal) shortest path in G since S is
a subgraph of QT . Thus, the set of shortest paths corresponding to edges of S form a
(2q − 1,O(k1+1/q))-TPc P ′ of G. Using P ′ with Lemma 20 gives the following theorem.

I Theorem 22. Let q ≥ 1 an integer. Any graph G = (V,E, `) with T ⊂ V admits a
(2q − 1,O(k2+2/q))-DAM.

We mention two trade-offs from the above theorem. When q = 2, we get an (3,O(k3))-DAM.
When q = log k, we get an (O(log k),O(k2))-DAM. These are new distortion-size trade-offs.

The above method allows us to have improved guarantees for bounded treewidth graphs.

I Theorem 23. Let q ≥ 1 be an integer. Any graph G = (V,E, `) with treewidth at most p,
T ⊂ V and k ≥ p admits a (2q − 1,O(p1+2/qk))-DAM.

5 Minor Construction for Graphs that Exclude a Fixed Minor

In this section we give improved guarantees for distance approximating minors for special
families of graphs. Specifically, we show that graphs that exclude a fixed minor admit an
(O(1), Õ(k2))-DAM. This family of graphs includes, among others, the planar graphs.

The reduction to spanner in Section 4 does not consider the structure of QT , which is
inherited from the input graph. We exploit this structure, together with the use of the
randomized Steiner Point Removal Problem, which is equivalent to finding an (α, 0)-rDAM.

We will make use the following theorem due to Englert et al. [9, Theorem 14].

I Theorem 24 ([9]). Let α = O(1). Given a graph that excludes a fixed minor G = (V,E, `)
with T ⊂ V , there is a probability distribution π over its minors H = (T,E′, `′), such that
∀ t, t′ ∈ T, EH∼π[dH(t, t′)] ≤ α · dG(t, t′) and for all H in support of π, dH(t, t′) ≥ dG(t, t′).

Given a graph G that excludes a fixed minor, any minor H of G only on the terminals
also excludes the fixed minor. Thus H has O(k) edges [23]. This leads to the corollary below.

I Corollary 25. Let α = O(1). Given a graph that excludes a fixed minor G = (V,E, `)
with T ⊂ V and QT as defined in Section 4, there exists a probability distribution π over
subgraphs H = (T,E′, `′) of QT , each having at most O(k) edges, such that for all t, t′ ∈
T, EH∼π[dH(t, t′)] ≤ α · dQT

(t, t′).
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Proof. Let π be the distribution over minors of G from Theorem 24, then every minor in its
support is clearly a subgraph of QT with O(k) edges. Since during the construction of these
minors we may assume that ∀(t, t′) ∈ E′, `′(t, t′) = dG(t, t′), the corollary follows. J

I Lemma 26. Given a graph that excludes a fixed minor G = (V,E, `G) with T ⊂ V , and
QT as defined in Section 4, there exists an O(1)-spanner S of size O(k log k) for QT .

Proof. Let π be the probability distribution over subgraphs H from Corollary 25. Set
S = ∅. First, we sample independently q = 3 log k subgraphs H1, . . . ,Hq from π. We
then add the edges from all these subgraphs to the graph S, i.e., ES =

⋃q
i=1EHi

. Fix
an edge (t, t′) from QT and a subgraph Hi. By Corollary 25 and the Markov inequality,
P[dHi

(t, t′) ≥ 2α · dQT
(t, t′)] ≤ 2−1, and hence

P[dS(t, t′) ≥ 2α · dQT
(t, t′)] =

q∏
i=1

P[dHi
(t, t′) ≥ 2α · dQT

(t, t′)] ≤ 2−q = k−3.

Applying union bound overall all edges from QT yields

P[there exists an edge (t, t′) ∈ QT s.t. dS(t, t′) ≥ 2α · dQT
(t, t′)] ≤ k2 · k−3 = k−1.

Hence, for all edges (t, t′) from QT , with probability at least 1−1/k, we preserve the shortest
path distance between t and t′ up to a factor of 2α = O(1) in S. Since S is a subgraph of
QT , this implies that there exists a O(1)-spanner S of size O(k log k) for QT . J

Similar to the last section, the set of shortest paths corresponding to edges of S is an
(O(1),O(k log k))-TPc P ′ of G. Using P ′ with Lemma 20 gives the following theorem.

I Theorem 27. Any graph that excludes a fixed minor G = (V,E, `) with T ⊂ V admits an
(O(1), Õ(k2))-DAM.

6 Minor Construction for Planar Graphs

In this section, we show that for planar graphs, we can improve the constant guarantee
bound on the distortion to 3 and 1 + ε, respectively, without affecting the size of the minor.
Our work builds on existing techniques used in the context of approximate distance oracles,
thereby bypassing our previous spanner reduction. Both results use essentially the same ideas
and rely heavily on the fact that planar graphs admit separators with special properties.

We say that a graph G = (V,E, `) admits a λ-separator if there exists a set R ⊆ V whose
removal partitions G into connected components, each of size at most λn, where 1/2 ≤ λ < 1.
Lipton and Tarjan [17] showed that every planar graph has a 2/3-separator R of size O(

√
n).

Later on, Gupta et al. [12] and Thorup [24] independently observed that one can modify
their construction to obtain a 2/3-separator R, with the additional property that R consists
of vertices belonging to shortest paths from G (note that this R is not guaranteed to be
small). We briefly review the construction of such shortest path separators.

Let G = (V,E, `) be a triangulated planar graph (the triangulation is guaranteed by
adding infinity edge lengths among the missing edges). Further, let us fix an arbitrary
shortest path tree A rooted at some vertex r. Then, it can be inferred from the work of
Lipton and Tarjan [17] that there always exists a non-tree edge e = {u, v} of A such that
the fundamental cycle C in A ∪ {e}, formed by adding the non-tree edge e to A, gives a
2/3-separator for G. Because A is a tree, the separator will consist of two paths from the
lca(u, v) to u and v. We denote such paths by P1 and P2, respectively. Both paths are
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shortest paths as they belong to A. We will show how to use such separators to obtain
terminal path covers. Before proceeding, we give the following preprocessing step.

Given a planar graph G = (V,E, `) with T ⊂ V , the algorithm MinorSparsifier(G,
T , P ′) with P ′ being the (1,O(k2))-TPc of G, produces an (1,O(k4))-DAM for G. Thus,
without loss of generality, we may assume that G has at most O(k4) vertices.

Stretch-3 Guarantee. When solving a graph problem, it is often that the problem can be
more easily solved for simpler graph instances, e.g., trees. Driven by this, it is desirable to
reduce the problem from arbitrary graphs to one or several tree instances, possibly allowing
a small loss in the quality of the solution. Along the lines of such an approach, Gupta et
al. [12] gave the following definition in the context of shortest path distances.

I Definition 28 (Forest Cover). Given a graph G = (V,E, `), a forest cover (with stretch α)
of G is a family F of subforests {F1, F2, . . . , Fk} of G such that for every u, v ∈ V , there is a
forest Fi ∈ F such that dG(u, v) ≤ dFi(u, v) ≤ α · dG(u, v).

If we restrict our attention to planar graphs, Gupta et al. [12] used shortest path separators
(as described above) to give a divide-and-conquer algorithm for constructing forest covers
with small guarantees on the stretch and size. Here, we slightly modify their construction for
our purpose. Before proceeding to the algorithm, we give the following useful definition.

I Definition 29. Let t be a terminal and let P be a shortest path in G. Then tPmin denotes
the vertex of P that minimizes dG(t, p), for all p ∈ P , breaking ties lexicographically.

Algorithm 2 ForestCover (planar graph G, terminals T )
1: if |V (G)| ≤ 1 then return V (G)
2: Compute a 2/3-separator C consisting of shortest paths P1 and P2 for G.
3: for i = 1, 2 do
4: Contract Pi to a single vertex pi and compute a shortest path tree Li from pi.
5: Expand back the contracted edges in Li to get the tree L′i.
6: for every terminal t ∈ T do
7: Add tPi

min as a terminal in the tree L′i.
8: Let (G1, T1) and (G2, T2) be the resulting connected graphs from G \ C,

where T1 and T2 are disjoint subsets of the terminals T induced by C.
// Note that all distances involving terminals from C are taken care of.

9: return
⋃2
i=1 L

′
i ∪
⋃2
i=1 ForestCover(Gi, Ti).

Algorithm 3 PlanarTPc-1 (planar graph G, terminals T )
1: Set P ′ = ∅. Set F = ForestCover(G,T ).
2: for every forest Fi ∈ F do
3: Let Ri be the terminal set of Fi and let P ′i be the (trivial) (1,O(k2))-TPc of Fi;
4: Compute F ′i = MinorSparsifier(Fi, Ri, P ′i).
5: Add the shortest paths corresponding to the edges of F ′i to P ′.
6: return P ′

I Theorem 30 ([12], Theorem 5.1). Given a planar graph G = (V,E, `) with T ⊂ V ,
ForsetCover(G,T ) produces a stretch-3 forest cover with O(log |V |) forests.

ICALP 2016



131:12 Graph Minors for Preserving Terminal Distances Approximately

We note that the original construction does not consider terminal vertices, but this does
not worsen neither the stretch nor the size of the cover. The only difference here is that
we need to add at most k new terminals to each forest compared to the original number of
terminals in the input graph. This modification affects our bounds only by a constant factor.

I Lemma 31. Given a planar graph G = (V,E, `) with T ⊂ V , PlanarTPc-1(G,T )
produces an (3,O(k log k))-TPc P ′ for G.

Proof. We first review the following simple fact, whose proof can be found in [15].

I Fact 32. Given a forest F = (V,E, `) with terminals T ⊂ V and P ′ being the (trivial)
(1,O(k2))-TPc of F , the procedure MinorSparsifier(F, T,P ′) outputs an (1, k)-DAM.

Let us proceed with the analysis. Observe that from the Preprocessing Step our input
graph G has at most O(k4) vertices. Thus, applying Theorem 30 on G gives a stretch-3
forest cover F of size O(log k). In addition, recall that all shortest paths are unique in G.

Next, let Fi by any forest from F . By construction, we note that each tree belonging
to Fi has the nice property of being a concatenation of a given shortest path with another
shortest path tree. We will exploit this in order to show that every edge of the minor F ′i for
Fi corresponds to the (unique) shortest path between its endpoints in G.

To this end, let e′ = (u, v) be an edge of F ′i that does not exist in Fi. Since F ′i is a
minor of Fi, we can map back e′ to the path Πu,v connecting u and v in Fi. Because of
the additional terminals uPi

min added to Fi, we claim that Πu,v is entirely contained either
in some shortest path tree Lj or some shortest path separator Pj . Using the fact that
subpaths of shortest paths are shortest paths, we conclude that the length of the path Πu,v

(or equivalently, the length of edge e′) corresponds to the unique shortest path connecting u
and v in G. The same argument is repeatedly applied to every such edge of F ′i .

By construction we know that Fi has at most 2k terminals. Using Fact 32 we get that F ′i
contains at most 4k edges. Since there are O(log k) forests, we conclude that the terminal
path cover P ′ consists of O(k log k) shortest paths. The stretch guarantee follows directly
from that of cover F , since F ′i exactly preserves all distances between terminals in Fi. J

I Theorem 33. Any planar graph G = (V,E, `) with T ⊂ V admits a (3, Õ(k2))-DAM.

Indeed, there is another distance oracle that yields better distortion (1 + ε) (see [24, 14]).
Similar to the above, we prove the following theorem; its proof is deferred to the full version.

I Theorem 34. Any planar graph G = (V,E, `) with T ⊂ V admits an (1 + ε, Õ((k/ε)2)-
DAM.

7 Discussion and Open Problems

We note that there remain gaps between some of the best upper and lower bounds, e.g., for
general graphs and distortion 3− ε, the lower bound is Ω(k6/5), while for distortion 3, our
upper bound is O(k3). Improving the bounds is an interesting open problem.

Our techniques for showing upper bounds rely heavily on the spanner reduction. For
planar graphs, Krauthgamer et al. [15] showed that to achieve distortion 1 + o(1), Ω(k2)
non-terminals are needed; we bypass the spanner reduction to construct an (1 + ε, Õ(k/ε)2)-
DAM, which is tight up to a poly-logarithmic factor. It is an interesting open question on
whether similar guarantees can be achieved for general graphs.
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Abstract
We consider distance labeling schemes for trees: given a tree with n nodes, label the nodes with
binary strings such that, given the labels of any two nodes, one can determine, by looking only
at the labels, the distance in the tree between the two nodes.

A lower bound by Gavoille et al. [Gavoille et al., J. Alg., 2004] and an upper bound by Peleg
[Peleg, J. Graph Theory, 2000] establish that labels must use Θ(log2 n) bits1. Gavoille et al. [Ga-
voille et al., ESA, 2001] show that for very small approximate stretch, labels use Θ(logn log logn)
bits. Several other papers investigate various variants such as, for example, small distances in
trees [Alstrup et al., SODA, 2003].

We improve the known upper and lower bounds of exact distance labeling by showing that
1
4 log2 n bits are needed and that 1

2 log2 n bits are sufficient. We also give (1 + ε)-stretch labeling
schemes using Θ(logn) bits for constant ε > 0. (1 + ε)-stretch labeling schemes with polylog-
arithmic label size have previously been established for doubling dimension graphs by Talwar
[Talwar, STOC, 2004].

In addition, we present matching upper and lower bounds for distance labeling for caterpillars,
showing that labels must have size 2 logn−Θ(log logn). For simple paths with k nodes and edge
weights in [1, n], we show that labels must have size (k − 1)/k logn+ Θ(log k).

1998 ACM Subject Classification E.1 Distributed data structures, E.1 Graphs and networks,
G.2.2 Graph Theory

Keywords and phrases Distributed computing, Distance labeling, Graph theory, Routing, Trees

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.132

1 Introduction

A distance labeling scheme for a given family of graphs assigns labels to the nodes of each
graph in the family such that, given the labels of two nodes in the graph and no other
information, it is possible to determine the shortest distance between the two nodes. The
labels are assumed to be composed of bits, and the goal is to make the worst-case label size as
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Structures.

† Research partly supported by the Danish Research Council (DFF 1323-00178) and the Danish Research
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1 Throughout this paper we use log for log2.
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Table 1 Results presented in this paper. ε > 0 is a constant.

Problem Lower bound Upper bound
Exact, general trees 1

4 log2 n 1
2 log2 n

(1 + ε)-stretch, general trees Θ(log n)
Caterpillars 2 log n − Θ(log log n)

Weighted paths, k nodes, weights in [1, n] k−1
k

log n + Θ(log k)

small as possible. Labeling schemes are also called implicit representation of graphs [64, 71].
The problem of finding implicit representations with small labels for specific families of graphs
was introduced in the 1960s [16, 17], and efficient labeling schemes were introduced in [44, 57].
Distance labeling for general graphs has been considered since the 1970/80s [40, 72], and
later for various restricted classes of graphs and/or approximate distances, often tightly
related to distance oracle and routing problems, see e.g. [7]. This paper focuses on distance
labels for the well studied case of trees.

Exact distances. In [61] Peleg presented an O(log2 n) bits distance labeling scheme for
general unweighted trees. In [39] Gavoille et al. proved that distance labels for unweighted
binary trees require 1

8 log2 n−O(logn) bits and presented a scheme with 1/(log 3−1) logn ≈
1.7 logn bits. This paper presents a scheme of size 1

2 log2 n+ O(logn) and further reduces
the gap by showing that 1

4 log2 n−O(logn) bits are needed. Our upper bound is a somewhat
straightforward application of a labeling scheme for nearest common ancestors [8, 9].

Approximate distances. Let distT (x, y) denote the shortest distance between nodes x, y in
a tree T . An r-additive approximation scheme returns a value dist′T (x, y), where distT (x, y) ≤
dist′T (x, y) ≤ distT (x, y)+r. An s-stretched approximation scheme returns a value dist′T (x, y),
where distT (x, y) ≤ dist′T (x, y) ≤ distT (x, y) · s. For trees of height h Gavoille et al. [32,
theorem 4] gave a 1-additive O(logn log h) bit labeling scheme. However, using an extra bit
in the label for the node depth modulo 2, it is easy to see that any 1-additive scheme can
be made exact. Gavoille et al. [32] also gave upper and lower bounds of Θ(log logn logn)
bits for (1 + 1/ logn)-stretched distance. This paper presents a scheme of size Θ(logn) for
(1 + ε)-stretch for constant ε > 0. Labeling schemes for (1 + ε)-stretch with polylogarithmic
size label have previously been given for graphs of doubling dimension [65] and planar
graphs [67].

Distances in caterpillars and paths. Labeling schemes for caterpillars have been studied
for various queries, e.g., adjacency [15]. Here we present upper and lower bounds showing
that distance labeling caterpillars requires 2 logn−Θ(log logn) bits. The upper bound is
constructed by reduction to the case of weighted paths with k > 1 nodes and positive integer
edge weights in [1, n], for which we give upper and lower bounds showing that labels must
have size k−1

k logn+ Θ(log k).

1.1 Related work

Distances in trees with small height. It is known that, for unweighted trees with bounded
height h, labels must have size Θ(logn log h). The upper bound follows from [32, Theorem 2]
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and the lower bound from [39, Section 3]2. In [45] distance labeling for various restricted
class of trees, including trees with bounded height, is considered, and in [66] another distance
labeling scheme for unweighted trees using O(logn log h) bits is given.

Small distances in trees. Distances in a tree between nodes at distance at most k can be
computed with labels of size logn + O(k

√
logn) [46]. In [5] it is shown that size logn +

Θ(log logn) are needed for labeling schemes supporting both parent and sibling queries.
More generally, [5] shows that, using labels of size logn+ O(log logn), the distance between
two nodes can be determined if it is at most k for some constant k, which is optimal for
k > 1. In [33, 34] further improvements are given for small distances in trees. For k = 1,
corresponding to adjacency testing, there is a sequence of papers that improve the second
order term, recently ending with [6] which establishes that logn+ Θ(1) bits are sufficient.

Various other cases for trees. Distance labeling schemes for various other cases have been
considered, e.g., for weighted trees [32, 39, 61], dynamic trees [52], and a labeling scheme
variation with extra free lookup [50, 51].

Exact and approximate distances in graphs. Distance labeling schemes for general graphs [7,
39, 40, 64, 70, 72] and various restricted graphs exist, e.g., for bounded tree-width, planar and
bounded degree [39], distance-hereditary [36], bounded clique-width [22], some non-positively
curved plane [19], interval [37] and permutation graphs [14]. Approximate distance labeling
schemes, both additive and stretched, are also well studied; see e.g., [18, 26, 32, 35, 39, 41,
42, 53, 61, 69]. An overview of distance labeling schemes can be found in [7].

1.2 Second order terms for labeling schemes are theoretically well
studied

Chung’s solution in [20] gives labels of size logn + O(log logn) for adjacency labeling in
trees, which was improved to logn+O(log∗ n) in FOCS’02 [13] and in [15, 20, 29, 30, 47] to
logn+ Θ(1) for various special cases. Finally it was improved to logn+ Θ(1) for general
trees in FOCS’15 [6].

A recent STOC’15 paper [11] improves label size for adjacency in general graphs from
n/2 +O(logn) [44, 56] to n/2 +O(1) almost matching an (n− 1)/2 lower bound [44, 56].

Likewise, the second order term for ancestor relationship is improved in a sequence of
STOC/SODA papers [2, 4, 12, 30, 31] (and [1, 47]) to Θ(log logn), giving labels of size
logn+ Θ(log logn).

Somewhat related, succinct data structures (see, e.g., [24, 27, 28, 58, 59]) focus on the
space used in addition to the information theoretic lower bound, which is often a lower order
term with respect to the overall space used.

1.3 Labeling schemes in various settings and applications
Using labeling schemes to compute locally and distributed, it is possible to avoid costly access
to large global tables. Such properties are used, e.g., in XML search engines [2], network
routing and distributed algorithms [23, 25, 68, 69], dynamic and parallel settings [21, 52],
graph representations [44], and other applications [48, 49, 60, 61, 62].

2 We thank Gavoille for pointing this out.
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Trees have always been a subject of special interest in the routing literature (see e.g.
[3, 10, 55, 73]). As pointed out by Leighton [54], many networks are simply trees, and,
moreover, routing in general graphs may be done using only the edges of a spanning tree of
the graph. In [68] a O(logn) labeling routing scheme for tree is given. This e.g. combined
with one of the results in this paper makes it possible using labels of size O(logn) not only
to route packets in trees, but also estimate the distance to its destination.

Various computability requirements are sometimes imposed on labeling schemes [2, 44, 48].
This paper assumes the RAM model.

2 Preliminaries

Trees. Given nodes u, v in a rooted tree T , u is an ancestor of v and v is a descendant of u,
if u is on the unique path from v to the root. For a node u of T , denote by Tu be the subtree
of T consisting of all the descendants of u (including itself). The depth of u is the number
of edges on the unique simple path from u to the root of T . The nearest common ancestor
(NCA) of two nodes is the unique common ancestor with largest depth. Let T [u, v] denote
the nodes on the simple path from u to v in T . The variants T (u, v] and T [u, v) denote the
same path without the first and last node, respectively. The distance between u and v is
the number dist(u, v) = |T (u, v]|. We set distroot(v) = dist(v, r), where r is the root of T .
A caterpillar is a tree whose non-leaf nodes form a path, called the spine.

Heavy-light decomposition (From [63]). Let T be a rooted tree. The nodes of T are
classified as either heavy or light as follows. The root r of T is light. For each non-leaf node
v, pick one child w where |Tw| is maximal among the children of v and classify it as heavy;
classify the other children of v as light. The apex of a node v is the nearest light ancestor of v.
By removing the edges between light nodes and their parents, T is divided into a collection
of heavy paths. Any given node v has at most logn light ancestors (see [63]), so the path
from the root to v goes through at most logn heavy paths.

Bit strings. A bit string s is a member of the set {0, 1}∗. We denote the length of a bit
string s by |s|, the ith bit of s by si, and the concatenation of two bit strings s, s′ by s ◦ s′.
We say that s1 is the most significant bit of s and s|s| is the least significant bit.

Labeling schemes. An distance labeling scheme for trees of size n consists of an encoder
e and a decoder d. Given a tree T , the encoder computes a mapping eT : V (T ) → {0, 1}∗

assigning a label to each node u ∈ V (T ). The decoder is a mapping d : {0, 1}∗×{0, 1}∗ → Z+,
where Z+ denotes the positive integers, such that, given any tree T and any pair of nodes
u, v ∈ V (T ), d(e(u), e(v)) = dist(u, v). Note that the decoder does not know T . The size of
a labeling scheme is defined as the maximum label size |eT (u)| over all trees T and all nodes
u ∈ V (T ). If, for all trees T , the mapping eT is injective we say that the labeling scheme
assigns unique labels.

3 Distances on weighted paths

In this section we study the case of paths with k nodes and integral edge weights in [1, n].
The solution to this problem will later be used to establish the upper bound for caterpillars.
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3.1 Upper Bound

I Theorem 1. There exist a distance labeling scheme for paths with k nodes and positive
integral edge weights in [1, n] with labels of size k−1

k logn+O(log k).

Proof. We begin by considering the family of paths with k nodes, integral edge weights and
diameter < n. We shall prove that there exists a distance labeling scheme for this family
with labels of size k−1

k logn+ log k + O(log log k).
So consider such a path, and root it in one of its end nodes, denoted v0. Denote the

nodes on the path v0, . . . , vk−1 in order. Let di = distroot(vi) and note that, by assumption,
di < n for all i. We will let the label for vi store the number di + x for some x < n that
allows us to represent di + x compactly. Since we use the same x for all nodes, we can easily
compute the distance between any pair of nodes vi, vj as |(di + x)− (dj + x)|.

Since we choose x < n, the largest number stored in a label will be dk + x < 2n, which
can be represented with exactly L = dlog(2n)e bits. Divide those L bits to k + 1 segments,
whereof k have ` = bL/kc bits and the last segment contains the remaining bits. The first
segment, segment 0, will contain the ` least significant bits, segment 1 the following ` bits
and so on. We will choose x such that the representation of di + x has 0s in all the bits
in the i’th segment. If we manage to do so, we will be able to encode each di + x with
L − ` + dlog ke bits. Indeed, we can use exactly dlog ke bits to represent i, and the next
L− ` bits to represent di + x where we skip the i’th segment. Prefixing with a string in the
form 0dlogdlog kee1, we get a string from which we can determine the number of bits needed
to write dlog ke and therefrom the numbers i and di + x. We use this string as the label for
vi. The label length is L− `+ dlog ke+ dlog dlog kee+ 1 = k−1

k logn+ log k +O(log log k).
It remains to show that there exist a number x < n as described. In the following we shall,

as in the above, represent numbers < 2n with L bits that are divided into k + 1 segments
whereof the first k have size `. For i < k and y < 2n, let a(i, y) be a function which returns
a number z with the following properties:
(i) In z, all bits outside segment i are 0.
(ii) z + y has only 0s in segment i.
This function is constructed as follows. If y only has 0s in segment i, let a(i, y) = 0. Otherwise
take the representation of y, zero out all bits outside segment i, reverse the bits in segment i
and add v to the resulting number, where v has a 1 in the least significant bit of segment i
and 0s in all other positions.

Note that from (i) it follows that adding z to any number will not change bits in less
significant positions than segment i. We can now scan through the nodes v0, . . . vk−1,
increasing x by adding bits to x in more and more significant positions (in non-overlapping
segments), as follows:

Set x = 0.

For i = 1 . . . , k − 1, set x = x+ a(i, x+ di).
After iteration i we have that x+ di in segment i only has 0s, and in the following iterations,
1s are only added to x in more significant bit positions, meaning that di + x continues to
have only 0s in segment i. Since the segments are non-overlapping, we end up with x < n.

For the more general family of paths with k nodes and edge weights in [1, n], we simply
note that the diameter of any path in this family is at most kn. Using the above result thus
immediately gives us a labeling scheme with labels of size k−1

k logn+O(log k). J
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3.2 Lower bound
I Theorem 2. Labeling scheme for distances on weighted paths with k nodes and edge weights
[1, n] require k−1

k logn+ Ω(log k) bits.

Proof. Let F denote the family of paths with k nodes and integral edge weights in [1, n].
We can construct all the members of F by selecting (k − 1) different edge weights in the
range [1, n], skipping the paths which have already been constructed by the reverse sequence
of edge weights. With this construction we will at most skip half of the paths, and hence
|F| ≥ 1

2n
k−1. Let the worst-case label size of an optimal distance labeling scheme for such

paths have length L. The number of different labels with length at most L is N = 2L+1 − 1.
We can uniquely represent each of the paths in F with the collection of their labels, and hence
|F| ≤

(
N
k

)
. Thus, we have found that 1

2n
k−1 ≤

(
N
k

)
. Since

(
N
k

)
≤ (Ne/k)k, it follows that

k−1
k logn ≤ logN − log k+O(1) and hence that L ≥ k−1

k logn+ log k−O(1) as desired. J

Combining Theorem 2 with Theorem 1 we see that distance labels for paths of k nodes with
integral weights in [1, n] must have length k−1

k logn+ Θ(log k).

4 Distances in caterpillars

4.1 Upper bound
I Theorem 3. There exist a distance labeling scheme for caterpillars with worst-case label
size 2 logn− log logn+O(log log logn).

Proof. We will start by giving a simple 2 logn bits scheme and then improve it. The simple
solution assigns two numbers to each node. The nodes on the spine save distroot and the
number 0. The nodes not on the spine save their parent’s distroot and a number that is
unique among their siblings. The second number is required to distinguish siblings, and
hence determine if the distance between two nodes is 0 or 2. The worst-case label size for
this solution is 2 logn+O(1).

To improve the solution, we split up the nodes on the spine into two groups: (1) nodes
with > n

k leaves and (2) nodes with ≤ n
k leaves, for some parameter k to be chosen later. We

add the root to the first group no matter what. Note that the first group can contain at
most k nodes.

As before, all nodes save two numbers: distroot and the number 0 for spine nodes or a
number to distinguish siblings. The idea is to reduce label size with log k bits by using fewer
bits for the first number for nodes in the first group and for the second number for nodes in
the second group.

The nodes in the first group form a path with at most k nodes and edge weights in [1, n]
(where each weight corresponds to the distance between the nodes in the original graph).
The algorithm from Theorem 1 will add a number x, which is less than the diameter, which
again is less than n, to the numbers representing the root distances of the nodes. Using this
technique, we can, as seen in the proof of Theorem 1, encode the (modified) distroots of the
nodes in the first group with only k−1

k logn+ log k +O(log log k) bits. This gives labels of
size 2k−1

k logn+ log k+O(log log k) for non-spine nodes whose parents are in the first group.
We will also add x to the distroots of nodes in the second group, but since x < n this

will not change the label size by more than a single bit. For non-spine nodes whose parents
are in the second group, we need at most logn− log k +O(1) bits for the second number,
giving a total label size of 2 logn− log k +O(1).
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Finally, since the two numbers that form a label now have different lengths, we need an
additional O(log log k) bits to determine when one number ends and the next begins. Indeed,
it wil be possible to split up labels into their components if we know the number of bits used
to write dlog ke, and we represent this number with O(log log k) bits.

Setting k = logn
2 log logn , we now see that our worst-case label size is the maximum of

2 logn− log k +O(log log k) = 2 logn− log logn+O(log log logn)

and
2k − 1
k

logn+ log k +O(log log k) = 2 logn− 2 log logn+ log logn+O(log log logn)

= 2 logn− log logn+O(log log logn).

This proves the theorem. J

It is worth noting that the ability to distinguish nodes plays a significant part in the
label size. Indeed, if the two nodes given as input to the decoder could always be assumed
to be distinct, then a distance labeling scheme for caterpillars with worst-case label size
logn+O(1) would be possible.

4.2 Lower bound
We present a technique that counts tuples of labels that are known to be distinct and
compares the result to the number of tuples one can obtain with labels of size L. The
technique may have applications to distance labeling for other families of graphs.

I Theorem 4. For any n ≥ 4, any distance labeling scheme for the family of caterpillars
with at most n nodes has a worst-case label size of at least 2blognc − blogblogncc − 4.

Proof. Set k = blognc and m = 2k. Let (i1, . . . , ik) be a sequence of k numbers from the
set {1, . . . ,m/2} with the only requirement being that i1 = 1. Now consider, for each such
sequence, the caterpillar whose main path has length m/2 and where, for t = 1, . . . , k, the
node in position it has bm/2kc leaf children (not on the main path). We shall refer to these
children as the t’th group. Note that two disjoint groups of children may be children of the
same node if it = is for some s, t. Each of these caterpillars has m/2 + kbm/2kc ≤ m ≤ n
nodes.

Suppose that σ is a distance labeling scheme for the family of caterpillars, and consider
one of the caterpillars defined above. Given distinct nodes u, v not on the main path, their
distance will be dist(u, v) = |is − it| + 2, where is and it are the positions on the main
path of the parents of u and v, respectively. In particular, if s = 1, so that is = 1, then
dist(u, v) = it + 1. Thus, if σ has been used to label the nodes of the caterpillar, the number
it for a child in the t’th group can be uniquely determined from its label together with
the label of any of the children from the first group. It follows that any k-tuple of labels
(l1, . . . , lk) where lt is a label of a child in the t’th group uniquely determines the sequence
(i1, . . . , ik). In particular, k-tuples of labels from distinct caterpillars must be distinct. Of
course, k-tuples of labels from the same caterpillar must also be distinct, since labels are
unique in a distance labeling scheme.

Now, there are (m/2)k−1 choices for the sequence (i1, . . . , ik), and hence there are
(m/2)k−1 different caterpillars in this form. For each of these, there are bm/2kck different
choices of k-tuples of labels. Altogether, we therefore have (m/2)k−1bm/2kck distinct k-
tuples of labels. If the worst-case label size of σ is L, then we can create at most (2L+1 − 1)k
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distinct k-tuples of labels, so we must have (m/2)k−1bm/2kck ≤ (2L+1 − 1)k. From this it
follows that

L ≥ bk − 1
k

(logm− 1) + logbm/2kcc

≥ b (k − 1)2

k
+ k − log kc − 2

≥ 2k − blog kc − 4
= 2blognc − blogblogncc − 4. J

5 Exact distances in trees

5.1 Upper bound
Let u, v be nodes in a tree T and let w be their nearest common ancestor. We then have

dist(u, v) = distroot(u)− distroot(v) + 2 dist(w, v) . (1)

If w = u so that u is an ancestor of v, then the above equation is just a difference of distroots,
which can be stored for each node with logn bits. The same observation clearly holds if
w = v.

Assume now that w /∈ {u, v} so that u and v are not ancestors of each other. Consider
the heavy-light decomposition [63] described in the preliminaries. At least one of the nodes
u and v must have an ancestor which is a light child of w. Assume that it is v. Now, v has
at most logn light ancestors. Saving the distance to all of them together with distroot gives
us sufficient information to compute the distance between u and v using equation (1). This
is the idea behind Theorem 6 below.

By examining the NCA labeling scheme from [8, 9], we see that it can easily be extended
as follows.

I Lemma 5 ([8, 9]). There exists an NCA labeling scheme of size O(logn). For any two
nodes u, v the scheme returns the label of w = nca(u, v) as well as:

which of u and v (if any) have a light ancestor that is a child of w; and
the number of light nodes on the path from the root to w and from w to u and v,
respectively.

I Theorem 6. There exists a distance labeling scheme for trees with worst-case label size
1
2 log2 n+O(logn).

Proof. We use O(logn) bits for the extended NCA labeling in Lemma 5 and for distroot.
Using (1) it now only remains to efficiently represent, for each node, the distance to all its
light ancestors.

We consider the light ancestors of a node v encountered on the path from the root to
v. The distance from v to the root is at most n − 1 and can therefore be encoded with
exactly dlogne bits (by adding leading zeros if needed). By construction of the heavy-light
decomposition, the next light node on the path to v will be the root of a subtree of size
at most n/2, meaning that the distance from v to that ancestor is at most n/2 − 1 and
can be encoded with exactly dlogne − 1 bits. Continuing this way, we encode the i’th light
ancestor on the path from the root to v with exactly dlogne − i bits. When we run out of
light ancestors, we concatenate all the encoded distances, resulting in a string of length at
most

dlogne+ (dlogne − 1) + · · ·+ 2 + 1 = 1
2 dlogne2 + 1

2 dlogne .
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z4 z4

W
a2 − z4

z3 z3

W
a2 − z3

y2 y2

W
a − y2

z2 z2

W
a2 − z2

z1 z1

W
a2 − z1

y1 y1

W
a − y1

x x

W − x

Figure 1 An (h, W, a)-tree, where h = 3. We require that x < W , y1, y2 < W/a and z1, . . . , z4 <

W/a2.

We can use O(logn) extra bits to encode n and to separate all sublabels from each other.
The decoder can now determine dlogne and split up the entries in the list of distances. When
applying formula (1), it can then determine the distance between v and w by adding together
the relevant distances in the list of light ancestors, using the fact from Lemma 5 that it
knows the number of light ancestors from v to w. J

5.2 Lower bound

In the case of general trees, Gavoille et al [39] establish a lower bound of 1
8 log2 n−O(logn)

using an ingenious technique where they apply a distance labeling scheme to a special class
of trees called (h,M)-trees3. The following uses a generalization of (h,M)-trees to improve
their ideas and leads to a lower bound of 1

4 log2 n−O(logn).

(h, W, a)-trees. We begin with some definitions. For integers h,W ≥ 0 and a number
a ≥ 1 such that W/ai is integral for all i = 0, . . . , h, an (h,W, a)-tree is a rooted binary tree
T with edge weights in [0,W ] that is constructed recursively as follows. For h = 0, T is just a
single node. For h = 1, T is a claw (i.e. a star with three edges) with edge weights x, x,W −x
for some 0 ≤ x < W rooted at the leaf node of the edge with weight W − x. For h > 1, T
consists of an (1,W, a)-tree whose two leaves are the roots of two (h− 1,W/a, a)-trees T0, T1.
We shall denote an (h,W, a)-tree constructed in this way by T = 〈T0, T1, x〉 An example
for h = 3 can be seen in Figure 1. Note that the case a = 1 simply corresponds to the
(h,W )-trees defined in [39].

It is easy to see that an (h,W, a)-tree has 2h leaves and 3 · 2h − 2 nodes. Further, it is
straightforward to see that, if u, v are leaves in an (h,W, a)-tree T = 〈T0, T1, x〉, then

distT (u, v) =
{

2W a−1−a−h

1−a−1 + 2x, if u ∈ T0 and v ∈ T1, or vice versa,
distTi

(u, v), if u, v ∈ Ti for some i = 0, 1.
(2)

3 Note that their exposition has some minor errors as pointed out (and corrected) in [43].
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Leaf distance labeling schemes. In the following we shall consider leaf distance labeling
schemes for the family of (h,W, a)-trees: that is, distance labeling schemes where only the
leaves in a tree need to be labeled, and where only leaf labels can be given as input to the
decoder. Since an ordinary distance labeling scheme obviously can be used only for leaves,
any lower bound on worst-case label sizes for a leaf distance labeling scheme is also a lower
bound for an ordinary distance labeling scheme. We denote by g(h,W, a) the smallest number
of labels needed by an optimal leaf distance labeling scheme to label all (h,W, a)-trees.

I Lemma 7. For all h ≥ 1 and W ≥ 2, g(h,W, a)2 ≥Wg(h− 1,W 2/a2, a2).

Proof. Fix an optimal leaf distance labeling scheme σ which produces exactly g(h,W, a)
distinct labels for the family of (h,W, a)-trees. For leaves u and v in an (h,W, a)-tree, denote
by l(u) and l(v), respectively, the labels assigned by σ. For x = 0, . . . ,W − 1, let S(x) be the
set consisting of pairs of labels (l(u), l(v)) for all leaves u ∈ T0 and v ∈ T1 in all (h,W, a)-trees
T = 〈T0, T1, x〉.

The sets S(x) and S(x′) are disjoint for x 6= x′, since every pair of labels in S(x) uniquely
determines x due to (2). Letting S =

⋃W−1
x=0 S(x), we therefore have |S| =

∑W−1
x=0 |S(x)|.

Since S contains pairs of labels produced by σ from leaves in (h,W, a)-trees , we clearly also
have |S| ≤ g(h,W, a)2, and hence it only remains to prove that |S| ≥Wg(h− 1,W 2/a2, a2),
which we shall do by showing that |S(x)| ≥ g(h− 1,W 2/a2, a2) for all x.

The goal for the rest of the proof is therefore to create a leaf distance labeling scheme for
(h−1,W 2/a2, a2)-trees using only labels from the set S(x) for some fixed x. So let x be given
and consider an (h− 1,W 2/a2, a2)-tree T ′. Let V = W/a. From T ′ we shall construct an
(h−1, V, a)-tree φi(T ′) for i = 0, 1 such that every leaf node v in T ′ corresponds to nodes φi(v)
in φi(T ′) for i = 0, 1. The trees φi(T ′) are defined as follows. If h = 1, so that T ′ consists of
a single node, then φi(T ′) = T ′ for i = 0, 1. If h > 1, then T ′ is in the form T ′ = 〈T ′0, T ′1, y〉
for some 0 ≤ y < V 2. We can write y in the form y = y0 + y1V for uniquely determined
y0, y1 with 0 ≤ y0, y1 < V . For i = 0, 1, we recursively define φi(T ′) = 〈φi(T ′0), φi(T ′1), yi〉.
Thus, φi(T ′) is an (h− 1, V, a)-tree that is similar to T ′ but where we replace the top edge
weight y by edge weights yi and, recursively, do the same for all (h− 2, V 2/a2, a2)-subtrees.
Note also that the corresponding edge weight V 2 − y in T ′ automatically is replaced by the
edge weight V − yi in φi(T ′) in order for φi(T ′) to be an (h− 1, V, a)-tree.

Denote by φi(v) the leaf in φi(T ′) corresponding to the leaf v in T ′.
Consider now the (h,W, a)-tree T = 〈φ0(T ′), φ1(T ′), x〉. Every leaf v in T ′ corresponds

to the leaves φ0(v), φ1(v) in T where φi(v) ∈ φi(T ′) for i = 0, 1. Using formula (2) for the
distances in T ′, it is straightforward to see that

distT ′(u, v) =
(
distφ0(T ′)(φ0(u), φ0(v)) mod (2V )

)
+ V distφ1(T ′)(φ1(u), φ1(v)). (3)

We can now apply the leaf distance labeling scheme σ to T and obtain a label for each
leaf node in T . In particular, the pair of leaves (φ0(v), φ1(v)) corresponding to a node v in
T ′ will receive a pair of labels. We use this pair to label v in T ′, whereby we have obtained a
labeling of the leaves in T ′ with labels from S(x). Using the formula in (3) we can construct
a decoder that can compute the distance between two nodes in T ′ using these labels alone,
and hence we have obtained a leaf distance labeling scheme for (h− 1, V 2, a2)-trees using
only labels from S(x) as desired. J

I Lemma 8. For all h ≥ 1 and W ≥ 2, g(h,W, a) ≥ Wh/2

ah(h−1)/4 .

Proof. The proof is by induction on h. For h = 1 we note that an (0,W, a)-tree has only one
node, so that g(0,W 2/a2, a2) = 1. Lemma 7 therefore yields g(1,W, a)2 ≥ W from which
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it follows that g(1,W, a) ≥
√
W . The lemma therefore holds for h = 1. Now let h > 1 and

assume that the lemma holds for h− 1. Lemma 7 and the induction hypothesis now yield

g(h,W, a)2 ≥ Wg(h− 1,W 2/a2, a2) ≥ W
(W 2/a2)(h−1)/2

a2(h−1)(h−2)/4 = Wh

ah(h−1)/2

from which it follows that g(h,W, a) ≥ Wh/2

ah(h−1)/4 as desired. J

The previous lemma implies that any (leaf and hence also ordinary) distance labeling
scheme for (h,W, a)-trees must have labels with worst-case length at least h

2 (logW −
h−1

2 log a) = 1
2h logW − 1

4h
2 log a + 1

4h log a. Since the number of nodes in such a tree
is n = 3 · 2h − 2, it follows that h = log(n+ 2)− log 3, and hence that logn− 2 ≤ h ≤ logn
for sufficiently large n. From this we see that the worst case label length is at least

1
2 logn logW − 1

4 logn(logn− 1) log a− logW − 1
2 log a.

In the case where a = 1, we retrieve the bound of 1
2 logn logW − logW obtained in [38]. It

seems that larger values of a only makes the above result weaker, but the the real strength
of the above becomes apparent when we switch to the unweighted version of (h,W, a)-trees,
in which we replace weighted edges by paths of similar lengths. Note that a distance
labeling scheme for the family of unweighted (h,W, a)-trees can be used as a distance labeling
scheme for the weighted (h,W, a)-trees, and hence any lower bound in the weighted version
automatcially becomes a lower bound in the unweighted version.

The number of nodes n in an unweighted (h,W, a)-tree is upper bounded by

n ≤ 2W + 2 · 2W/a+ 22 · 2W/a2 + · · ·+ 2h−1 · 2W/ah−1 + 1

In the case a = 2, we get n ≤ 2Wh+ 1.

I Theorem 9. Any distance labeling scheme for unweighted (h,W, 2)-trees, and hence also
for general trees, has a worst-case label size of at least 1

4 log2 n−O(logn).

Proof. Choose the largest integer h with 2 · 2hh + 1 ≤ n, and note that we must have
h ≥ logn−O(log logn). Set W = 2h and consider the family of (h,W, 2)-trees, which is a
subfamily of the family of trees with n nodes. From Lemma 8 it therefore follows that the
worst-case label length is

1
2h logW − 1

4h
2 + 1

4h = 1
4h

2 + 1
4h = 1

4 log2 n+ 1
4 logn−O(log logn). J

6 Approximate distances in trees

In this section we present a (1 + ε)-stretch distance labeling schemes with labels of size
O(logn).

I Theorem 10. For constant ε > 0, (1 + ε) stretch distance labeling schemes for trees use
Θ(logn) bits.

Proof. As in the case of exact distances, we will create labels of size O(logn) bits that
contain the extended NCA labels from Lemma 5 as well as distroot. We will also be using the
formula in (1). However we can not afford to store exact distance to each apex ancestor. Even
directly storing an 2-approximate distance to each apex ancestor would require logn log logn
bits. Instead we show how to compactly represent all the (1 + ε)-approximate distances to
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light ancestors for a node using a total of O(logn) bits, and show how to use this to obtain a
(1 + 2ε)-approximation.

Let w = nca(u, v) and assume w 6∈ {u, v}, since otherwise we can compute the exact
distance using only distroot. Suppose we know a (1 + ε)-approximation α of dist(w, v) for
some ε ≥ 0. That is,

dist(w, v) ≤ α ≤ (1 + ε) dist(w, v). (4)

Define d̃ = distroot(u)− distroot(v) + 2α. First we show that d̃ is a (1 + 2ε)-approximation
of dist(u, v). Next we show how to represent all the (1 + ε)-approximate distances to light
ancestors for a node using a total of O(logn) bits. Together with formula (1), these two
facts prove that we can compute (1 + 2ε)-stretch distances between any pair of nodes with
labels of size O(logn). To prove the theorem, we can then simple replace ε by 1

2ε.
To see that d̃ is a (1 + 2ε)-approximation of dist(u, v), first note that

d̃ = distroot(u)− distroot(v) + 2α ≥ distroot(u)− distroot(v) + 2 dist(w, v) = dist(u, v).

For the other inequality, note that

d̃ = distroot(u)− distroot(v) + 2α
≤ distroot(u)− distroot(v) + 2(1 + ε) dist(w, v)
= distroot(u)− (distroot(v)− dist(w, v)) + (1 + 2ε) dist(w, v)
= distroot(u)− distroot(w) + (1 + 2ε) dist(w, v)
= dist(u,w) + (1 + 2ε) dist(w, v)
≤ (1 + 2ε) (dist(u,w) + dist(w, v))
= (1 + 2ε) dist(u, v) .

It now only remains to show that we can compactly store all the approximate distances
α to light ancestors using O(logn) bits space.

We use a heavy light path decomposition of the tree. For each node v we can save a 2
approximate distance to all its k proper light ancestors as follows. Let S be a binary string
initially with k zeros. Before each 0 we now insert 1s such that, if we have j 1s in total
from the beginning of S and to the i’th 0, then the distance to the ith light ancestor a of v
satisfies that 2j−1 ≤ dist(v, a) ≤ 2j . This is the same as traversing the tree bottom-up from
v and, for each light node encountered on the way, adding a 0 and each time the distance
doubles adding a 1. The number of 0s equal the number of light nodes which is at most
logn, and the number of 1s is also limited by logn since n is the maximum distance in the
tree. In total the length of S is at most 2 logn.

Using the O(logn) bits label from Lemma 5 we can tell if one node is an ancestor of
another, and if not which one has a light ancestor a that is a child of their nearest common
ancestor w. In addition, we can determine the total number i of light ancestors up to a. This
means that we can compute j, and hence the 2-approximation j − 1, as the number of 1’s in
S until the i’th 0.

We have now obtained a 2-approximation with labels of size O(logn). We can improve
this to a (1 + ε)-approximation by setting a 1 in S each time the distance increases with
1 + ε rather than 2. This will increase the label size with a constant factor 1

log(1+ε) .
This proves that there is a (1 + ε)-stretch distance labeling scheme with O(logn) bit

label length. To complete the proof of the theorem, we note that, given any (1 + ε)-stretch
distance scheme, we can always distinguish nodes (since identical nodes have distance 0),
which means that we always need at least n different labels, and hence labels of size at least
logn bits. J
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Abstract
An adjacency labeling scheme labels the n nodes of a graph with bit strings in a way that allows,
given the labels of two nodes, to determine adjacency based only on those bit strings. Though
many graph families have been meticulously studied for this problem, a non-trivial labeling
scheme for the important family of power-law graphs has yet to be obtained. This family is
particularly useful for social and web networks as their underlying graphs are typically modelled
as power-law graphs. Using simple strategies and a careful selection of a parameter, we show
upper bounds for such labeling schemes of Õ( α

√
n) for power law graphs with coefficient α, as

well as nearly matching lower bounds. We also show two relaxations that allow for a label of
logarithmic size, and extend the upper-bound technique to produce an improved distance labeling
scheme for power-law graphs.
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1 Introduction

A body of work on large, real-world networks deals with the difficulties of storing them and
effectively resolving queries on them; examples of techniques are compression [14, 13] and
dissemination of the underlying graphs of these networks over several machines [35, 52, 54].
A different approach to storing information about the graph is to disseminate the structural
information of the graph to its vertices and store it locally. This peer-to-peer strategy allows
inferring the graph’s local topology using only local information stored in each vertex without
using costly access to large, global data structures. In particular, it can be useful to address
privacy concerns and ensure a high survivability rate [18].

We posit that a useful tool for such a peer-to-peer strategy is the notion of a labeling
scheme: an algorithm that assigns a bit string–a label–to each vertex so that a query between
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any two vertices can be deduced solely from their respective labels. Labeling schemes are
extremely well-studied in the algorithmic literature [8, 17, 20, 27, 32, 30, 37, 38, 40, 41, 49];
the main objective is to minimize the maximum label size: the maximum number of bits used
in a label of any vertex. Among their applications are XML search engines [25], mapping
services [1], and internet routing [43].

One class of graphs extensively used for modelling real-world networks is power-law graphs:
roughly, n-vertex graphs where the number of vertices of degree k is proportional to n/kα for
some positive α. Power-law graphs (also called scale-free graphs in the literature) have been
used to model the Internet AS-level graph [50, 4], and many other types of network (see, e.g.,
[24, 47] for overviews). The adequacy of fit of power-law graph models to actual data, as well
as the empirical correctness of the conjectured mechanisms giving rise to power-law behaviour,
have been subject to criticism (see, e.g., [2, 24]). In spite of such criticism, and because their
degree distribution affords a reasonable approximation of the degree distribution of many
networks, the class of power-law graphs remains a popular tool in network modelling. In this
paper, we perform the first theoretical and practical study of adjacency labeling schemes
for classes of graphs whose statistical properties–in particular their degree distribution–more
closely resemble that of real-world networks.

1.1 Our contributions
Our contributions are:

A discrete and simple characterisation of power-law graphs

An n-vertex graph is power-law if the number of its vertices of degree k is proportional to
n/kα for some positive α. To solidify this somewhat vague definition, numerous probabilistic
and deterministic definitions of power-law graphs are given in the literature. In Sec. 3, we
define and prove useful properties for two simple families of graphs, Ph and Pl, where Ph
contains and Pl is contained by the standard definitions of power-law graphs in the literature,
including recent ones [16]. We use Ph and Pl to study upper and lower bounds respectively.

An O( α
√

n(log n)1−1/α) adjacency labeling scheme

In Sec. 4, we describe our labeling scheme, which is based on two ideas: (i) a labeling strategy
that partitions the vertices of G into high (“fat”) and low degree (“thin”) vertices based on a
threshold degree, and (ii) a threshold prediction that depends only on the coefficient α of a
power-law curve fitted to the degree distribution of G. These ideas are illustrated in Figure 1.
Using the same ideas, we get an asymptotically near-tight O(

√
n logn) adjacency labeling

scheme for sparse graphs. As real-world power-law graphs have 2 ≤ α ≤ 3 and rarely exceed
1010 vertices, this implies labels of the order of 104− 105 bits. That, and the simplicity of our
labeling scheme suggests that our labeling schemes may be appealing in practice. To stress
this point, we offer an experimental evaluation of our labeling scheme in the full version of
the paper.

A lower bound of Ω( α
√

n) for any adjacency labeling scheme

In Sec. 5, We use our restrictive subclass of power-law graphs and show that it requires label
size Ω( α

√
n) for n-vertex graphs. This lower bound shows that our upper bound above is

asymptotically optimal, bar a (logn)1−1/α factor. By the connections between adjacency
labeling schemes and universal graphs, we also obtain upper and lower bounds for induced
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FatThin

Number 
of 

vertices

DegreeThreshold

(a) demonstrates the threshold assignment

FatThin

Number 
of 

vertices

DegreeThreshold
(b) demonstrates the label assignment, in
which fat (black) nodes do not store adjacency
to thin (white) nodes

Figure 1 Two illustrations of the main idea.

universal graphs for power-law graphs. We also show, in Sec. 6, two scenarios in which this
lower bound can be bypassed.

A o(n) distance labeling scheme

In Sec. 7, we demonstrate the usefulness of our strategy to arrive at a o(n) distance labeling
scheme for power-law graphs. Our labeling scheme is designed to outperform competing
labeling schemes for small distances, in accordance with Chung and Lu’s findings [22] on the
small expected diameter of power-law graphs.

1.2 Related work
Adjacency labeling schemes for key graph families are by now well understood. General
graphs require a label size of n/2 + O(1) [48, 8], while trees, planar graphs, and bounded
degree graphs enjoy labels of logarithmic size [9, 30, 3]. Adjacency labeling schemes are also
tightly coupled with the graph-theoretic concept of induced universal graphs, in which one
aims to find the smallest N where there exist a graph of N vertices which contains all graphs
of a particular graph family Fn of n vertices as induced subgraphs. It was shown [36] that
an f(n) logn adjacency labeling scheme for Fn constructs an induced universal graph for
this family of 2f(n) vertices. In the context of sparse graphs, a body of work on universal
graphs1 for this family was investigated both by Babai et al. [11] and by Alon and Asodi [5].

Routing labeling schemes for power-law graphs have been investigated by Brady and
Cowen [17], and by Chen et al. [21]. Labeling schemes for properties other than adjacency
have been investigated for various classes of graphs, e.g., distance [32], and flow [37]. Dynamic
labeling schemes were studied by Korman and Peleg [38, 40, 41] and recently by Dahlgaard et.
al [27]. Experimental evaluations for some labeling schemes for various properties on general
graphs have been performed by Caminiti et. al [20], Fischer [29] and Rotbart et. al [49].

In the context of distributed graph computing systems, a somewhat related paradigm
of computation is the vertex centric computing model “think like a vertex”. In this model
each vertex exchanges messages only with nearby vertices, to improve locality and simplify
the design and implementation of such systems. Among the numerous systems proposed are
Pregel [45], Power-Graph [35] and GraphLab [44]. For a recent survey on the topic see [46].

1 A graph that contains each graph from the graph family as a subgraph, not necessarily induced.
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2 Preliminaries

Throughout the paper we consider n-vertex, undirected graphs. For a real c > 0, a graph
is c-sparse if it has at most cn edges and sparse if it is c-sparse for some constant c. For
0 < c ≤ n − 1, the set of c-sparse graphs with n vertices is denoted by Sc,n. If F is a set
of graphs, Fn denotes the subset of graphs in F having exactly n vertices. The degree of a
vertex v in a graph is denoted by ∆(v), and for non-negative integers k, the set of vertices in
a graph G of degree k is denoted by Vk. The length of a binary string x ∈ {0, 1}∗ is denoted
by |x|.

Let F be a set of graphs. An adjacency labeling scheme (from hereon just labeling scheme)
for F is a pair consisting of an encoder and a decoder. The encoder is an algorithm that
receives G ∈ F as input and outputs a bit string L(v) ∈ {0, 1}∗, called the label of v, for
each vertex v in G. The decoder is an algorithm that receives any two labels L(v),L(u)
as input and outputs true if u and v are adjacent in G and false otherwise. Note that
the graph G is not an input to the decoder. The size of a labeling scheme is the map
size : N −→ N such that size(n) is the maximum length of any label assigned by the encoder
to any vertex in any graph G ∈ Fn. The degree distribution of a graph G = (V,E) is the
mapping ddistG(k) : N0 −→ Q defined by ddistG(k) := |Vk|

n .

3 Defining Power-Law Graphs

In the literature power-law graphs are usually defined as the class of n vertex graphs G such
that ddistG(k) is proportional to k−α for some real number α > 1. Ideally, and ignoring
rounding, ddistG(k) = Ck−α for all k for constant C. As the degree distribution of a
graph must be a probability distribution, we have

∑∞
k=1 Ck

−α = C
∑∞
k=1 k

−α = 1, hence
C = 1/ζ(α) where ζ is the Riemann zeta function. However, in the literature, concessions
are usually made that relax the restrictions on ddistG(k), for example that the power-law
property need only hold for high-degree vertices (“above a cutoff”), or that ddistG(k) is only
approximately equal to Ck−α, with some approximation error that falls off with n. To ensure
that our results hold for all these variations of power-law graphs, we define two families of
graphs Ph and Pl with Pl ( Ph. Family Ph is rich enough to contain the graphs whose
degree distribution is approximately, or perfectly, power-law distributed, and our upper
bound on the label size for our labeling scheme holds for any graph in Ph. Family Pl is used
to show our lower bound and is restrictive enough that most definitions of power-law graph
occurring in the literature will contain it.

In the following, let i1 = Θ( α
√
n) be the smallest integer such that bCn/iα1 c ≤ 1, and let

C ′ ≥ ( C
α−1 + i1

α
√
n

+ 5)α + C
α−1 be a constant; we shall use C ′ in the remainder of the paper.

I Definition 1. Let α > 1 be a real number and let χ : N→ N be a function. Ph,χ,α is the
family of graphs G such that if n = |V (G)| then for all integers k between χ(n) and n− 1,∑n−1
i=k |Vi| ≤ C ′(

n
kα−1 ). We shall usually suppress χ and α, writing merely Ph.

The function χ captures the notion of a cutoff as defined in [24, Sec. 3.1]; the intuition is
that for an n-vertex graph the power-law distribution need only apply for nodes of degree
higher than χ(n), rather than for all degrees. Setting χ(n) = 1 corresponds to the case where
the entire range of degrees follows a power-law distribution, hence even for small values of
χ(n), Ph morally contains all graphs with power-law degree distribution. We will later prove
upper bounds that hold for all χ bounded from above by some function; in particular for the
upper bound for adjacency labeling schemes, the bound holds for χ(n) as high as α

√
n/ logn.
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The class Pl contains graphs where the number of vertices of degree k must be C n
kα

rounded either up or down and the number of vertices of degree k is non-increasing with k.
Note that the function k 7→ C 1

kα is strictly decreasing.

I Definition 2. Let α > 1 be a real number and let C = 1/ζ(α) where ζ is the Riemann
zeta function. Pl,α is the set of graphs G = (V,E) such that
1. bCnc − i1 − 1 ≤ |V1| ≤ dCne,
2. bC n

2α c ≤ |V2| ≤ dC n
2α e+ 1,

3. for every i with 3 ≤ i ≤ n: |Vi| ∈ {bC n
iα c, dC

n
iα e}, and

4. for every i with 2 ≤ i ≤ n− 1: |Vi| ≥ |Vi+1|.
We usually suppress α, writing just Pl.

Note that we allow slightly more noise in the sizes of V1 and V2 than in the remaining sets;
without it, it seems tricky to prove a better lower bound than Ω( α+1

√
n) on label sizes.

We show the following properties of Pl.

I Proposition 1. The maximum degree in an n-vertex graph in Pl is at most
(

C
α−1 + 2

)
α
√
n+

i1 + 3 = Θ( α
√
n).

Proof. Let n > 0 be an integer and let k′ = b α
√
nc. Furthermore, let Sk′ =

∑k′

i=1 |Vi|, that is
Sk′ is the number of vertices of degree at most k′. Let S−k′ = (

∑k′

i=1bCni−αc)− i1 − 1. Then
Sk′ ≥ S−k′ . We now bound S−k′ from below. For every i with 1 ≤ i ≤ k′,

S−k′ + k′ = −i1 − 1 +
k′∑
i=1

(⌊
Cni−α

⌋
+ 1
)
≥ −i1 − 1 +

k′∑
i=1

Cni−α = −i1 − 1 + Cn

k′∑
i=1

i−α

≥ n

(
1− C

∞∑
i=k′+1

i−α

)
− i1 − 1 ≥ n

(
1− C

∫ ∞
k′

x−αdx

)
− i1 − 1

= n

(
1− C

[
1

α− 1x
−α+1

]k′
∞

)
− i1 − 1 = n

(
1− C

α− 1
(
d α
√
ne
)−α+1

)
− i1 − 1

≥ n
(

1− C

α− 1
(
α
√
n
)−α+1

)
− i1 − 1 = n− Cn

α− 1n
−1+ 1

α − i1 − 1

= n− C

α− 1
α
√
n− i1 − 1,

giving Sk′ ≥ S−k′ ≥ n−
C
α−1

α
√
n−d α

√
ne−i1−1. There are thus at most C

α−1
α
√
n+b α

√
nc+i1+1

vertices of degree strictly more than k′ = d α
√
ne. Since for every 1 ≤ i ≤ n− 1: |Vi| ≥ |Vi+1|,

it follows that the maximum degree of any graph in Pl is at most
(

C
α−1 + 2

)
α
√
n+ i1 + 3. J

I Proposition 2. For α > 2, all graphs in Pl are sparse.

Proof. By Proposition 1, the maximum degree of an n-vertex graph in Pl graph is at most
k′ ,

(
C
α−1 + 2

)
α
√
n+ i1 + 3, whence the total number of edges is at most 1

2
∑k′

k=1 k|Vk|. By
definition, |Vk| ≤ dCnkα e ≤

Cn
kα + 1 for k 6= 2 and |V2| ≤ dCn2α e+ 1, and thus

1
2

k′∑
k=1

k|Vk| ≤ 1 + 1
2

k′∑
k=1

k

(
Cn

kα
+ 1
)
≤ 1 + k′(k′ + 1)

4 + Cn

∞∑
k=1

k−α+1

= O(n2/α) + Cnζ(α− 1) = O(n). J
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I Proposition 3. For any χ and α > 1, Pl,α ⊆ Ph,χ,α.

Proof. Let d = b( C
α−1 + 2) α

√
n+ i1 + 3c. For any graph in Pl with n vertices and for any k,

|Vk| ≤ Ck−αn+ 1 and by Proposition 1, |Vk| = 0 when k > d.
Let k be an arbitrary integer between χ(n) and n− 1. We need to show that

∑n−1
i=k |Vi| ≤

C ′( n
kα−1 ). It suffices to show this for k ≤ d. We have:

n−1∑
i=k
|Vi| ≤

d∑
i=k

(Ci−αn+ 1) = d− k + 1 + Cn

d∑
i=k

i−α

≤
(

C

α− 1 + i1
α
√
n

+ 5
)

α
√
n+ Cn

∫ d

k

x−αdx

≤
(

C

α− 1 + i1
α
√
n

+ 5
)

α
√
n+ Cn

[
1

α− 1x
−α+1

]k
∞

≤
((

C

α− 1 + i1
α
√
n

+ 5
)(

α
√
ndα−1

n

)
+ C

α− 1

)
nk−α+1

≤
(

C

α− 1 + i1
α
√
n

+ 5
)(

C

α− 1 + i1
α
√
n

+ 5
)α−1

nk−α+1 +
(

C

α− 1

)
nk−α+1

≤ C ′nk−α+1,

as desired. J

3.1 Comparison to other deterministic models
Numerous probabilistic and deterministic definitions of power-law graphs are given in the
literature. A recent deterministic model, called shifted power-law distribution [28] has recently
proven to capture a vast number of such definitions, both in theory and experimentally in
[16]. We show that our definition of Ph contains graphs that adhere to the model, which is
defined as follows. Let c1 > 0 be a constant. A graph G is power-law bounded for parameters
α > 1 and t ≥ 0 if for every integer d ≥ 0, the number of vertices of G of degree in [2d, 2d+1)
is at most

c1n(t+ 1)α−1
2d+1−1∑
i=2d

(i+ t)−α.

As experimentally verified in [16], the value of t is typically very small. If t = O(1), the
bound above becomes O(n

∑2d+1−1
i=2d i−α). In this case, our family Ph(χ, α) is rich enough to

contain these power-law bounded graphs for sufficiently large C ′ and any choice of χ and
α. This follows since for any power-law bounded graph with n vertices and any integer k
between 1 and n− 1,

∑n−1
i=k |Vi| = O(

∑dlg(n−1)e
d=blg kc n

∑2d+1−1
i=2d i−α) = O( n

kα−1 ). Thus our upper
bound also applies to power-law bounded graphs. It is possible to extend our upper bound to
super-constant t where the bound is stronger the smaller t is; we omit the details. Conversely,
our family Pl is restrictive enough that Pl is contained in the family of power-law bounded
graphs when t = O(1), and the lower bound we derive thus also holds in that setting.

4 The Labeling Schemes

We now construct algorithms for labeling schemes for c-sparse graphs and for the family Ph.
Both labeling schemes partition vertices into thin vertices which are of low degree and fat
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vertices of high degree. The degree threshold for the scheme is the lowest possible degree of a
fat vertex. We start with c-sparse graphs.

I Theorem 3. There is a
√

2cn logn+ 2 logn+ 1 labeling scheme for Sc,n.

Proof. Let G = (V,E) be an n-vertex c-sparse graph. Let τ(n) be the degree threshold for
n-vertex graphs; we choose τ(n) below. Let k denote the number of fat vertices of G, and
assign each fat vertex a unique identifier between 1 and k. Each thin vertex is given a unique
identifier between k + 1 and n.

For a v ∈ V , the first part of the label L(v) is a single bit indicating whether v is thin or
fat followed by a string of logn bits representing its identifier. If v is thin, the last part of
L(v) is the concatenation of the identifiers of the neighbors of v. If v is fat, the last part of
L(v) is a fat bit string of length k where the ith bit is 1 iff v is incident to the (fat) vertex
with identifier i.

Decoding a pair (L(u),L(v)) is straightforward: if one of the vertices, say u, is thin, u
and v are adjacent iff the identifier of v is part of the label of u. If both u and v are fat then
they are adjacent iff the ith bit of the fat bit string of L(u) is 1 where i is the identifier of v.
Both decoding processes can be computed in O(logn) time using standard assumptions.

Since |E| ≤ cn, we have k ≤ 2cn/τ(n). A fat vertex thus has label size 1 + logn+ k ≤
1+logn+2cn/τ(n) and a thin vertex has label size at most 1+logn+τ(n) logn. To minimize
the maximum possible label size, we solve 2cn/x = x logn. Solving this gives x =

√
2cn/ logn

and setting τ(n) = dxe gives a label size of at most 1 + logn + (
√

2cn/ logn + 1) logn ≤
1 + 2 logn+

√
2cn logn. J

By Proposition 2, graphs in Pl are sparse for α > 2. This gives a label size of O(
√
n logn)

with the labeling scheme in Theorem 3. We now show that this label can be significantly
improved, by constructing a labeling scheme for Ph which contains Pl.

I Theorem 4. There is a α
√
C ′n(logn)1−1/α + 2 logn+ 1 labeling scheme for Ph.

Proof. The proof is very similar to that of Theorem 3. We let τ(n) denote the degree threshold.
If we pick τ(n) ≥ α

√
n/ logn then by Definition 1 there are at most C ′n/τ(n)α−1 fat vertices.

Defining labels in the same way as in Theorem 3 gives a label size for thin vertices of at most
1 + logn+ τ(n) logn and a label size for fat vertices of at most 1 + logn+C ′n/τ(n)α−1. We
minimize by solving x logn = C ′n/xα−1, giving x = α

√
C ′n/ logn. Setting τ(n) = dxe gives

a label size of at most α
√
C ′n(logn)1−1/α + 2 logn+ 1. J

4.1 A labeling scheme for random graphs
There are schemes using randomness to “grow” graphs that, with high probability, have an
approximate power-law degree distribution for a range of degrees (see e.g. [23]). For graphs
obtained from such models, their degree sequences are instead probability distributions. We
now show that applying our labeling scheme for Ph to random graphs with the power-law
distribution results in a small expected worst-case label size.

Using the definition of Mitzenmacher [47], a random variable X is said to have the
power-law distribution (w.r.t. α > 1) if

Pr[X ≥ x] ∼ cx−α+1,

for a constant c > 0, i.e., limx→∞ Pr[X ≥ x]/cx−α+1 = 1.
Let ε > 0 be fixed. Consider a graph G picked from a family F of random graphs

whose degree sequences have the power-law distribution. Order the vertices of G arbitrarily

ICALP 2016



133:8 Near Optimal Adjacency Labeling Schemes for Power-Law Graphs

as v1, . . . , vn. For i = 1, . . . , n, let indicator variable Xi be 1 iff vi has degree at least
d = α

√
n/ logn. There is a constant N0 ∈ N (depending on ε) such that if n ≥ N0 then for

all i,

E[Xi] = Pr[Xi = 1] ≤ (1 + ε)cd−α+1.

With the same labeling scheme as for Ph with degree threshold τ(n) = d, denote by En
the expected label size of an n-vertex graph from F . Then for all n ≥ N0,

En =
n∑
x=0

Pr
[

n∑
i=1

Xi = x

]
O((x+ d logn)) = O

(
d logn+ E

[
n∑
i=1

Xi

])

= O

(
d logn+

n∑
i=1

E[Xi]
)

= O
(
d logn+ nd−α+1) = O

(
α
√
n(logn)1−1/α

)
.

Thus, we have:

I Theorem 5. Let F be a family of graphs with degree sequences having the power-law
distribution w.r.t. α > 1. Then there is a labeling scheme for F such that the expected
worst-case label size of any graph G ∈ F is O( α

√
n(logn)1−1/α) where n is the number of

vertices of G.

5 Lower Bounds

We now derive lower bounds for the label size of any labeling schemes for both Sc,n and Pl.
Our proofs rely on Moon’s [48] lower bound of bn/2c bits for labeling scheme for general
graphs. We first show that the upper bound achieved for sparse graphs is close to the best
possible. The following proposition is essentially a more precise version of the lower bound
suggested by Spinrad [51].

I Proposition 4. Any labeling scheme for Sc,n requires labels of size at least
⌊√

cn
2

⌋
bits.

Proof. Assume for contradiction that there exists a labeling scheme assigning labels of size
strictly less than b

√
cn
2 c. Let G be an n-vertex graph. Let G′ be the graph resulting by

adding
⌊
n2

c

⌋
− n isolated vertices to G, and note that now G′ is c-sparse. The graph G is an

induced subgraph of G′. It now follows that the vertices of G have labels of size strictly less

than
⌊√

cbn2/cc
2

⌋
≤ n/2 bits. As G was arbitrary, we obtain a contradiction. J

In the remainder of this section we are assuming that α > 2 and prove the following:

I Theorem 6. For any n, any labeling scheme for n-vertex graphs of Ph,χ,α requires label
size Ω( α

√
n).

More precisely, we present a lower bound for Pl which is contained in Ph. Let n ∈ N be
given and let H = (V (H), E(H)) be an arbitrary graph with i1 vertices where i1 = Θ( α

√
n) is

defined as in Section 3. We show how to construct a graph G = (V,E) in Pl with n vertices
that contains H as an induced subgraph. Observe that a labeling of G induces a labeling
of H. As H was chosen arbitrarily and as any labeling scheme for k-vertex graphs requires
bi1/2c label size in the worst case, Theorem 6 follows if we can show the existence of G.

We construct G incrementally where initially E = ∅. Partition V into subsets V1, . . . , Vn
as follows. The set V1 has size bCnc − i1. For i = 2, . . . , i1 − 1, Vi has size bCn/iαc. Letting
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n′ =
∑i1−1
i=1 |Vi|, we set the size of Vi to 1 for i = i1, . . . , i1 +n−n′− 1 and the size of Vi to 0

for i = i1 +n−n′, . . . , n, thereby ensuring that the sum of sizes of all sets is n. Observe that∑i1
i=1bCn/iαc ≤ n so that n′ ≤ n− i1, implying that n− n′ ≥ i1. Hence we have at least i1

size 1 subsets Vi1 , . . . , Vi1+n−n′−1 in each of which the vertex degree allowed by Definition 2
is at least i1.

Let v1, . . . , vi1 be an ordering of V (H), form a set VH ⊆ V of i1 arbitrary vertices from the
sets Vi1 , . . . , Vi1+n−n′−1, and choose an ordering v′1, . . . , v′i1 of VH . For all i, j ∈ {1, . . . , i1},
add edge (v′i, v′j) to E iff (vi, vj) ∈ E(H). Now, H is an induced subgraph of G and since
the maximum degree of H is i1 − 1, no vertex of Vi exceeds the degree bound allowed by
Definition 2 for i = 1, . . . , n.

We next add additional edges to G in three phases to ensure that it is an element of Pl
while maintaining the property that H is an induced subgraph of G. For i = 1, . . . , n, during
the construction of G we say that a vertex v ∈ Vi is unprocessed if its degree in the current
graph G is strictly less than i. If the degree of v is exactly i, v is processed.

Phase 1

Let V ′ = V \ (V1 ∪ VH). Phase 1 is as follows: while there exists a pair of unprocessed
vertices (u, v) ∈ V ′ × VH , add (u, v) to E.

When Phase 1 terminates, H is clearly still an induced subgraph of G. Furthermore, all
vertices of VH are processed. To see this, note that the sum of degrees of vertices of VH when
they are all processed is O(i21) = O(n2/α) which is o(n) since α > 2. Furthermore, prior
to Phase 1, each of the Θ(n) vertices of V ′ have degree 0 and can thus have their degrees
increased by at least 1 before being processed.

Phase 2

While there exists a pair of unprocessed vertices (u, v) ∈ V ′ × V ′, add (u, v) to E. At
termination, at most one vertex of V ′ remains unprocessed. If such a vertex exists we process
it by connecting it to O( α

√
n) vertices of V1; as |V1| = Θ(n) there are enough vertices of V1

to accomodate this. Furthermore, prior to adding these edges, all vertices of V1 have degree
0, and hence the bound allowed for vertices of this set is not exceeded.

Phase 3

We add edges between pairs of unprocessed vertices of V1 until no such pair exists. If no
unprocessed vertices remain we have the desired graph G. Otherwise, let w ∈ V1 be the
unprocessed vertex of degree 0. We add a single edge from w to another vertex w′ of V1,
thereby processing w and moving w′ from V1 to V2. Note that the sizes of V1 and V2 are kept
in their allowed ranges due to the first two conditions in Definition 2. This proves Theorem 6.

6 O(log n) adjacency labeling schemes for some power-law graphs

The lower bound presented can be avoided in two interesting cases. The first, for random
graphs generated by a popular model, and the second using an extension of the concept of
labeling schemes from the literature.
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BA model

As discussed in Sec. 4.1, generative models play an important role in the study of power-law
graphs. Perhaps the most well-known generative model is the Barabási-Albert (BA) which,
roughly, grows a graph in a sequence of time steps by inserting a single vertex at each step
and attaching it to m existing vertices with probability weighted by the degree of each
existing vertex [12]. The BA model generates graphs that asymptotically have a power-law
degree distribution (α = 3) for low-degree nodes [15]. However, graphs created by the BA
model have low arboricity 2 [34]. We use this fact to devise the following highly efficient
labeling scheme for such graphs.

I Proposition 5. The family of graphs generated by the BA model has an O(m logn)
adjacency labeling scheme.

Proof. Let G = (V,E) be an n-vertex graph resulting by the construction by the BA model
with some parameter m (starting from some graph G0 = (V0, E0) with |V0| � n). While it
is not known how to compute the arboricity of a graph efficiently, it is possible in near-linear
time to compute a partition of G with at most twice3 the number of forests in comparison to
the optimal [10]. We can thus decompose the graph to 2m forests in near linear time and
label each forest using the recent logn+O(1) labeling scheme for trees [6], and achieve a
2m(logn+O(1)) labeling scheme for G. J

If the encoder operates at the same time as the creation of the graph, Proposition 5 can
be tightened to yield a m logn labeling scheme, by storing the identifiers of the vertices to
the node introduced. Theorem 6 and Proposition 5 strongly suggest that local properties of
power-law graphs are very different from those of a randomly generated graph using the BA
model. In contrast, other generative models such as Waxman’s [53], N-level Hierarchical [19].
and Chung and Liu’s [23] (Chapter 3) do not seem to have an obvious smaller label size than
the one in Proposition 4.

Labeling schemes with a query

The concept of labeling scheme limits the number of nodes participating in a query severely.
A relaxed variant thereof, called 1-query labeling scheme [39], assumes that the decoder
receives both labels queried, and may access the label of a third node in order to answer the
query. If this is allowed, we can construct an O(logn) 1-query adjacency labeling scheme for
sparse (and power-law) graphs as follows: We assign each node v with an identifier ID(v),
then produce a classic [26] chaining perfect hash-function4 from {1 . . . cn} to {1 . . . n}, with
the guarantee that the worst case number of collisions is constant. We then compute the
hash function for all edges (u, v) and store the tuple 〈ID(v), ID(u)〉 in the label of the
corresponding vertex. The decoder first computes the hash value resulting from ID(v) and
ID(u) and proceed to examine if on the label corresponding to the result of the function the
tuple appears. The decoder needs only to know the primary and secondary hash functions
used, description thereof amount to logarithmic number of bits, which can be concatenated
to each label.

2 the arboricity of a graph is the minimum number of spanning forests needed to cover its edges.
3 More precisely, for any ε ∈ (0, 1) there exist an O(|E(G)|/ε) algorithm [42] that computes such partition

using at most (1 + ε) times more forests than the optimal one.
4 To this end, we may for example first partition the domain into c parts.
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7 A distance labeling scheme

In this section we extend the usefulness of our strategy by showing a labeling scheme for
small distances in power-law graphs.

For sparse graphs, Alstrup et al. [7] obtain a distance labeling scheme with maximum label
size O( nD log2 D) where D = (logn)/(log m+n

n ) and m is the number of edges in the graph.
Gawrychowski et al. obtain an upper bond of [33] O( nD logD) with sub-linear decoding time.
Few general results on lower bounds exist. The lower bound of Ω(

√
n) for adjacency given in

the present paper is trivially also a lower bound for distance; for total label size, the best
known lower bound remains Ω(n3/2) as proved by Gavoille et al. [31].

I Lemma 7. For any computable f : N −→ N such that f(n) ≤ n− 1 for all n, and for any
χ(n) ≥ n1/(alpha−1+f(n)) there is an f(n)-distance labeling scheme for Ph,χ,α that assigns
labels of length at most O(nf(n)/(f(n)+1) log f(n)).

Proof. Let G be a graph in Ph,χ,α. A node of G is fat if it has degree at least n1/(α−1+f(n))

and thin otherwise. The label of each node v contains (i) a table of distances to all fat nodes
(if the distance is more than f(n), it is simply ignored), (ii) a table of distances to all thin
nodes w that are at most distance f(n) away from v where the shortest path between v and
w does not pass through any fat node, and (iii) a single bit signifiying whether the node is
fat or thin. Clearly, as f(n) is computable and distances in G are computable, there is a
computable encoder assigning labels. A decoder can now compute the distance between any
two nodes u, v as follows: If both u or v are fat, the distance can be directly read off part (i)
of the label of any node. If at least one of u and v is fat, the distance can be read off part (i)
of the label of the thin node. If both nodes are thin, the decoder can check if the distance is
in part (ii) of the label of either node; if the distance is not present, either the distance is
strictly greater than f(n), or the shortest path between u and v passes through a fat node;
in this case, the decoder may brute-force check the distances from u and v to each fat node,
and output the smallest sum of these two distances.

Furthermore, as all nodes of G are either thin or fat, it is clearly possible for an encoder
to compute all distances less than or equal to f(n) between any pair of nodes. Note that as
all distances we care for are bounded above by f(n), each such distance can be stored using
at most log f(n) bits.

As G = G(V,E) is in Ph,χ,α, we have

n−1∑
i=χ(n)

|Vi| ≤
n−1∑

i=n
1

α−1+f(n)

|Vi| ≤ C ′

 n(
n

1
α−1+f(n)

)α−1


≤ C ′n1−(α−1)/α−1+f(n) = C ′nf(n)/(α−1+f(n))

Thus, a table of distances to all fat nodes takes up at most O
(
n

f(n)
α−1+f(n) log f(n)

)
bits.

Similarly, for each node v there are at most
(
n1/(α−1+f(n)))f(n)

= nf(n)/(α−1+f(n)) nodes at distance at most f(n) away from v where the shortest path
consists only of thin nodes. Hence, the associated table of distances takes up at most
O(nf(n)/(α−1+f(n)) logn) bits.

In total, each label thus has size at most O(nf(n)/(f(n)+1) logn) bits. J

For f(n) = logn, Lemma 7 yields labels of size O
(
n(logn)/(α−1+logn) log logn

)
. Unsur-

prisingly, as we are only considering distances up to f(n), this label size is asymptotically
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smaller than for the labeling schemes working for all distances in sparse graphs, e.g. the
largest label sizes of [33] for sparse graphs is O(n log logn

logn ). For power-law random graphs,
Chung and Lu show in [22] that, subject to mild conditions, the diameter of power-law graphs
with α > 2 is almost surely Θ(logn). We thus expect our labeling scheme to have superior
performance for such graphs.

8 Conclusion and Future Work

We have devised adjacency and distance labeling schemes for sparse graphs and graphs whose
degree distribution approximately follows a power-law distribution. We have proven lower
bounds for the class of power-law graphs showing that our strategy for adjacency labeling
scheme is almost optimal, and showed two relaxations that allow for logarithmic size labels.
In the full version of the paper we also validate experimentally that the labeling scheme for
power-law graphs obtains results in practice requiring little space, and that the theoretical
threshold we use in our strategy is reasonably close to the optimum threshold.

8.1 Future work
We propose the following directions:

Our labeling schemes are designed for static networks, and while it seems not difficult
to extend our idea to dynamic networks, an analysis is required to account for the
communication and number of re-labels incurred by such an extension.
Labeling schemes for power-law graphs can likely be devised for the realistic case where
the scheme only has incomplete knowledge of the graph, for example when the expected
frequency of vertices of each degree is known, but not the exact frequency of each vertex.
Closing the gap of the multiplicative logarithmic factor may be of interest to the theory
community. A more interesting gap exists for distance labeling schemes. As we have
seen, there is a large gap between labeling schemes for short distance and adjacency
for power-law (and sparse) graphs. This gap effectively deemed the distance labels
uninteresting for practical applications.
Finally, while power-law distributions may model the degree distribution of real-world
networks, other distributions may fit better (see, e.g., [24]); it is interesting to see whether
refinements of our labeling scheme that utilize knowledge about such distributions would
result in superior labeling schemes for real-world data.
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Abstract
We study the Static-Routing-Resiliency problem, motivated by routing on the Internet: Given
a graph G = (V, E), a unique destination vertex d, and an integer constant c > 0, does there
exist a static and destination-based routing scheme such that the correct delivery of packets from
any source s to the destination d is guaranteed so long as (1) no more than c edges fail and (2)
there exists a physical path from s to d? We embark upon a study of this problem by relating
the edge-connectivity of a graph, i.e., the minimum number of edges whose deletion partitions
G, to its resiliency. Following the success of randomized routing algorithms in dealing with a
variety of problems (e.g., Valiant load balancing in the network design problem), we embark
upon a study of randomized routing algorithms for the Static-Routing-Resiliency problem. For
any k-connected graph, we show a surprisingly simple randomized algorithm that has expected
number of hops O(|V|k) if at most k-1 edges fail, which reduces to O(|V|) if only a fraction t
of the links fail (where t < 1 is a constant). Furthermore, our algorithm is deterministic if the
routing does not encounter any failed link.
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1 Introduction

Routing on the Internet (both within an organizational network and between such networks)
typically involves computing a set of destination-based routing tables (i.e., tables that map
the destination IP address of a packet to an outgoing link). Whenever a link or node fails,
routing tables are recomputed by invoking the routing protocol to run again (or having it
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run periodically, independent of failures). This produces well-formed routing tables, but
results in relatively long outages after failures as the protocol is recomputing routes.

As critical applications began to rely on the Internet, such outages became unacceptable.
As a result, “fast failover” techniques have been employed to facilitate immediate recovery
from failures. The most well-known of these is Fast Reroute in MPLS where, upon a link
failure, packets are sent along a precomputed alternate path without waiting for the global
recomputation of routes [23]. This, and other similar forms of fast failover thus enable rapid
response to failures but are limited to the set of precomputed alternate paths. Most of
existing approaches protect only from a single failure, however in many scenarios (e.g. overlay
networks [11], highly-connected large datacenter networks [15]) multiple failures at the same
time may be a common occurrence.

The goal of this paper is to perform a theoretical study of failover routing. The funda-
mental question is, how resilient can failover routing be? That is, how many link failures can
failover routing schemes tolerate before connectivity is interrupted (i.e., packets are trapped
in a forwarding loop, or hit a dead end)? The answer to this question depends on both the
structural properties of the graph, and the limitations imposed on the routing scheme.

Clearly, if it is possible to store arbitrary amount of information in the packet header,
perfect resiliency can be achieved by collecting information about every failed link that is hit
by a packet [19, 26]. Such approaches are not feasibly deployable in modern-day networks
as the header of a packet may be too large for today’s routing tables. Our focus is thus
on failover routing schemes that do not involve any change in the packet headers. Another
traditional approach to achieving high resiliency is implementing stateful routing, i.e., storing
information at a node every time a packet is seen being received from a different incoming
link (see, e.g., link reversal [14] and other approaches [20, 21]). As current routing protocols
do not allow network operators to implement such stateful failover routing, our goal is to
design protocols that correspond to a stateless, or static, failover routing.

Specifically, we consider a particularly simple and practical form of static failover routing:
for each incoming link, a router maintains a destination-based routing table that maps the
destination address of a packet and the set of non-failed (“active”) links, to an output link.
The router can locally detect which outgoing links are down and forwards packets accordingly.
One should note that maintaining such per-incoming-link destination-based routing tables is
necessary; not only is destination-based routing unable to achieve robustness against even a
single link failure [18], but it is even computationally hard to devise failover routing schemes
that maximize the number of nodes that are protected [2, 5, 18, 24]. We only consider link
failures, not router failures (which are not always detectable by neighboring routers, and so
such fast failover techniques may not apply).

A failover routing algorithm is responsible for computing, for each node (vertex) of a
network (graph), a routing function that matches an incoming packet to an outgoing edge.
A set of such routing functions for each vertex guarantees reachability between a pair of
vertices, u and v, for which there exists a connecting path in the graph, if any packet directed
to node v originated at node u is correctly routed from u to v.

We are interested in routing functions that rely solely on information that is locally
available at a node (e.g., the set of non-failed edges, the incoming link along which the packet
arrived, and any information stored in the header of the packet).

While it is known that every k-connected network cannot be partitioned by deleting at
most k−1 links, it is not known whether any static “deterministic” routing (i.e., the outgoing
port of each packet is always uniquely determined at a vertex v by its incoming link and the
failed edges incident at v) achieves such resiliency.
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On the other hand, routing based on random walks, i.e., choosing the outgoing link at
random, achieves the best possible resilience as they will eventually deliver a packet to the
destination as long as the network is connected. But, it comes with a huge cost. Namely, a
random walk might traverse the whole network even when there is no single failed link. In
fact, the expected delivery time of a packet would be as large as Θ(|V |3) in some network
topologies [6]. Furthermore, a random walk almost never reaches the destination following
the shortest path. So, although extremely robust, when it comes to the time needed to
deliver a packet to the destination, the behaviour of random walks is undesirable.

1.1 Our Results

In this paper, we show how randomness can be used to achieve k − 1 resilient routing in
k-connected networks while significantly outperforming random walks in terms of number
of traversed nodes. Namely, we introduce Randomized failover routing (RND) in which
outgoing edge is chosen for packets in a probabilistic manner based on the destination label,
the incoming edge, and the set of non-failed edges. The randomized protocol that we present
provides bound on the expected delivery time that gracefully grows with the number of
actual link failures.

Our randomized routing functions provide delivery in case of any k−1 link failures for any
k-connected graph. We achieve that by leveraging the standard decomposition of k-connected
graphs into k arc-disjoint spanning arborescences T [10]. We also provide a bound on the
expected number of hops that our algorithm performs, which is O(Hk) for any k − 1 failures
and O(H) for αk failures, where H is the length of the longest branch of any arborescence of
T and α < 1 is a constant. Furthermore, our routing functions are deterministic as long as
the routing does not encounter any failure. Hence, packets belonging to the same logical
connection are routed along the same path, minimizing reordering complexity at the receiver
side.

Motivated by the fact that one can protect against k − 1 failures in k-connected graphs
using randomness, we make the following general conjecture, whose proof eludes us despite
much effort.

Conjecture: For any k-connected graph, one can find deterministic failover routing
functions that are robust to any k − 1 failures.

1.2 Organization

The rest of the paper is organized as follows. Section 2 provides background on existing
works. In Section 3, we introduce our routing model and formally state the Static-Routing-
Resiliency problem. The summary of our routing techniques that are leveraged throughout
the whole paper are presented in Section 4. In Section 5, we focus on studying the relation
between arborescences our input graph decomposes into and failed links. Section 6 builds
on Section 5 and is devoted to designing an algorithm that, for any k-connected graph,
computes randomized routing functions that are robust to k − 1 edge failures and have
bounded expected delivery time.

2 Related Work

Past work [1, 29] (1) designed such routing functions with guaranteed robustness against
only a single link/node failure [12, 13, 22, 28, 30, 32], (2) achieved robustness against bk2 − 1c
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edge failures for k-connected graphs [11], and (3) proved that it is impossible to be robust
against any set of edge failures that does not partition the network [13].

Thanks to its flexibility and oblivious behavior, another line of study was motivated by
randomization. Namely, some of the previous work developed randomized routing schemes,
usually to directly or indirectly achieve low congestion and/or balance the network load. In
particular, Busch et al. [7] use randomization to adjust packet priorities, which in turn allows
them to control deflection of packets.

Valiant [27] proposed a randomized routing algorithm with the goal to balance the load
of the underlying network. Since then, that scheme is called Valiant Load-Balancing (VLB),
whose one of the main ingredients is randomization. VLB was extensively used in designing
networks. Zhang-Shen et al. [31] employed VLB to design fault-tolerant networks with
guaranteed no congestion under few router or link failures. Greenberg et al. [16] adopt VLB
to reduce volatility of traffic and failure pattern of their data centers. In [25], Shepherd et al.
extend VLB in order to build cost-effective networks robust to changes in demand patterns.

Beraldi [3] presents a search protocol for mobile networks that is based on modified
random walks, i.e. based on biased random walks with look-ahead. Motivated by the success
of ant-colonies in their search for food, Günes et al.[17] studied ant algorithms, which in
their heart rely on randomization, as an approach to designing on-demand ad-hoc routing
algorithms.

Chiesa et al. [8] studied resilience under link failures in k-connected networks. They devise
static routing schemes that are resilient under k − 1 failures in the following regimes: (1) if
the routers are allowed to use three bits in the packet header for read/write operation, or (2)
if the network supports broadcasting. A building block of those schemes is the result that
every k-connected graph contains k arc-disjoint arborescences rooted at the same vertex [10].

3 Model

We represent our network as an undirected multigraph G = (V (G), E(G)), where each router
in the network is modeled by a vertex in V (G) and each link between two routers is modeled
by an undirected edge in the multiset E(G). When it is clear from the context, we simply
write V and E instead of V (G) and E(G). We denote an (undirected) edge between x and y
by {x, y}. A graph is k-edge-connected if there exist k edge-disjoint paths between any pair
of vertices of G.

Each vertex v routes packets according to a routing function that matches an incoming
packet to a sequence of forwarding actions. Packet matching is performed according to the
set of active (non-failed) edges incident at v, the incoming edge, and any information stored
in the packet header (e.g., destination label, extra bits), which all are locally available at a
vertex.

Since our focus is on per-destination routing functions, we assume that there exists a
unique destination d ∈ V to which every other vertex wishes to send packets and, therefore,
that the destination label is not included in the header of a packet. Forwarding actions
consist of routing packets through an outgoing edge, rewriting some bits in the packet header,
and creating duplicates of a packet.

In this paper we consider randomized routing functions, in which a vertex forwards a
packet through an outgoing edge with a probability based only on the incoming port and the
set of active outgoing edges. We present the formal definitions of the randomized routing
model in Section 6.
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graph with 3 arc-disjoint ar-
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and green.
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Figure 2 Graph used in the proof of Theorem 7 for k = 2.

The Static-Routing-Resiliency (Srr) problem. Given a graph G, a routing function f is
k-resilient if, for each vertex v ∈ V , a packet originated at v and routed according to f
reaches its destination d as long as at most k edges fail and there still exists a path between
v and d. The input of the Srr problem is a graph G, a destination d ∈ V (G), and an integer
k > 0, and the goal is to compute a set of resilient routing functions that is k-resilient.

4 General Routing Techniques and Randomized Algorithm

Definition and notation. We denote a directed arc from x to y by (x, y) and by ~G the
directed copy of G, i.e. a directed graph such that V (~G) = V and {x, y} ∈ E if and only if
(x, y), (y, x) ∈ E(~G).

A subgraph T of ~G is an r-rooted arborescence of ~G if (i) r ∈ V , (ii) V (T ) ⊆ V , (iii)
r is the only vertex without outgoing arcs and (iv), for each v ∈ V (T ) \ {r}, there exists
a single directed path from v to r that only traverses vertices in V (T ). If V (T ) = V , we
say that T is a r-rooted spanning arborescence of ~G. When it is clear from the context,
we use the word “arborescence” to refer to a d-rooted spanning arborescence, where d
is the destination vertex. We say that two arborescences T1 and T2 are arc-disjoint if
(x, y) ∈ E(T1) =⇒ (x, y) /∈ E(T2). A set of l arborescences {T1, . . . , Tl} is arc-disjoint if the
arborescences are pairwise arc-disjoint. We say that two arc-disjoint arborescences T1 and
T2 do not share an edge {x, y} ∈ E if (x, y) ∈ E(T1) =⇒ (y, x) /∈ E(T2).

For example, consider Fig. 1, in which each pair of nodes is connected by an edge (ignore
the red crosses) and three arc-disjoint (d-rooted spanning) arborescences Red, Green, and
Blue are depicted by colored arrows.

Arborescence-based routing. Throughout the paper, unless specified otherwise, we let
T = {T1, . . . , Tk} denote a set of k d-rooted arc-disjoint spanning arborescences of ~G. All our
routing techniques are based on a decomposition of ~G into T . The existence of k arc-disjoint
arborescences in any k-connected graph was proven in [10], while fast algorithms to compute
such arborescences can be found in [4]. We say that a packet is routed in canonical mode
along an arborescence T if a packet is routed through the unique directed path of T towards
the destination. If the packet hits a failed edge at vertex v along T , it is processed by
v (e.g., duplication, header-rewriting) according to the capabilities of a specific routing
function and it is rerouted along a different arborescence. We call such routing technique
arborescence-based routing. One crucial decision that must be taken is the next arborescence
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to be used after a packet hits a failed edge. In this paper, we propose two natural choices
that represent the building blocks of all our routing functions. When a packet is routed along
Ti and it hits a failed arc (v, u), we consider the following two possible actions:

Reroute along some available arborescence, e.g., reroute along T ′, where T ′ is chosen
randomly from distribution that we define in the sequel. Observe that, if the outgoing
arc belonging to T ′ failed, we randomly pick another arborescence T ′′, and so on.
Bounce on the reversed arborescence, i.e., we reroute along the arborescence Tnext that
contains arc (u, v).

To grasp how bouncing enters in our picture for obtaining k − 1 resiliency, consider the
following case. Assume that in the network there are k/2 failed links, such that every single
out of k arborescences contains one of the links. (As a reminder, arborescences that we
construct might share links, but not arcs.) So, this example might suggest that there are
scenarios in which already k/2 failed links make all the arborescences not very useful, and
that no algorithm can cope with that. But, there is a twist. Let k = 2, and Ti and Tj be
the two arborescences and let them share the same failed edge a. Furthermore, let a be the
only failed edge Ti and Tj contain. If a packet hits a while routed along Ti or Tj , then after
bouncing on a the packet will reach d without any further interruption! So, we have just
found a way to resolve a case in which every arborescence contains one failed link, and that
is not an isolated scenario, as we discuss in the sequel.

From a different point of view, bouncing is a way of recycling arborescences that contain
one failed link. This observation is crucial to obtain an efficient and a simple randomized
(k − 1)-resilient routing scheme, which we are now ready to present. The algorithm is
parametrized by q that we define later.

Algorithm 1 Definition of Rand-Bouncing-Algo.
Rand-Bouncing-Algo: Given T = {T1, . . . , Tk}
1. T := an arborescence from T sampled uniformly at random (u.a.r.)
2. While d is not reached

a. Route along T (canonical mode)
b. If a failed edge is hit then

i. With probability q, replace T by an arborescence from T sampled u.a.r.
ii. Otherwise, bounce the failed edge and update T correspondingly

In the following sections, we first study the connection between arborescences of T and
failed links, and show how a part of their intricate interaction can be represented in a simple
and an elegant way via, so-called, meta-graph. Afterwards, we show the Rand-Bouncing-
Algo is (k − 1)-resilient and we analyze its efficiency.

5 Meta-graph, Good Arcs, and Good Arborescences

The goal of this section is to provide an understanding of the structural relation between
the arborescences of T when the underlying k-connected network has at most k − 1 failed
edges. The perspective that we are building here drives the construction of our randomized
algorithm.

We start by introducing the notion of a meta-graph. To that end, we fix an arbitrary set
of failed edges F . Throughout the section, we assume |F | < k, and define f := |F |. Then,
we define a meta-graph HF = (VF , EF ) as follows:
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VF = {1, . . . , k}, where vertex i is a representative of arborescence Ti.
For each failed edge e ∈ E belonging to at least one arborescences of T we define the
corresponding edge eF in HF in the following way:
eF := {i, j}, if e belongs to two different arborescences Ti and Tj ;
eF := {i, i}, i.e. eF is a self-loop, if e belongs to a single arborescence Ti only.

Note that in our construction HF might contain parallel edges. Intuitively, the meta-graph
represents a relation between arborescences of T for a fixed set of failed edges. We provide
the following lemma as the first step towards understanding the structure of HF .

I Lemma 1. The set of connected components of HF contains at least k − f trees.

Proof. We give a proof by contradiction. To that end, assume that the set of connected
components of HF , denoted by C, contains at most k − f − 1 trees. Now, if C ∈ C is a tree,
we have |E(C)| = |V (C)| − 1, and |E(C)| ≥ |V (C)| otherwise. We also have∑

C∈C
|E(C)| =

∑
C∈C is not a tree

|E(C)|+
∑

C∈C is a tree
|E(C)|

≥
∑

C∈C is not a tree
|V (C)|+

∑
C∈C is a tree

(|V (C)| − 1). (1)

Next, following our assumption that C contains at most k − f − 1 trees, from (1) we obtain∑
C∈C
|E(C)| ≥

∑
C∈C
|V (C)| − (k − f − 1). (2)

Furthermore, as by the construction we have
∑
C∈C |V (C)| = |VF | = k, (2) implies∑

C∈C
|E(C)| ≥ |VF | − (k − f − 1) = f + 1. (3)

On the other hand, from the construction of HF we have∑
C∈C
|E(C)| = f,

which leads to a contradiction with (3). J

Lemma 1 implies that the fewer failed edges there are, the larger fraction of connected
components of the meta-graph HF are trees. Note that an isolated vertex is a tree as well.

In the sequel, we show that each tree-component of HF contains at least one vertex
corresponding to an arborescence from which any bounce on a failed edge leads to the
destination d without hitting any new failed edge. To that end, we introduce the notion of
good arcs and good arborescences. We say that an arc (u, v) is a good arc of an arborescence
T if on the (unique) v-d path in T there is no failed edge. Let a = (i, j), for i 6= j, be an arc
of ~HF , {u, v} be the edge that corresponds to a, and w.l.o.g. assume (u, v) is an arc of Tj .
Then, we say a is a well-bouncing arc if (u, v) is a good arc of Tj . Intuitively, a well-bouncing
arc (i, j) of ~HF means that by bouncing from Ti to Tj on the failed edge {v, u} the packet
will reach d via routing along Tj without any further interruption. Finally, we say that an
arborescence Ti is a good arborescence if every outgoing arc of vertex i ∈ VF is well-bouncing.

I Lemma 2. Let T be a tree-component of HF s.t. |V (T )| > 1. Then, ~T contains at least
|V (T )| well-bouncing arcs.
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Proof. Let Ti be an arborescence of T such that i ∈ V (T ). Then, by the construction of HF

we have that Ti contains a failed link. Next, a failed link closest to the root of Ti is a good
arc of Ti. Therefore, for every i ∈ V (T ), we have that Ti contains an arc which is both good
and failed. Furthermore, by the construction of HF and the definition of well-bouncing arcs,
we have that for every good, failed link of Ti there is the corresponding well-bouncing arc of
~T . Also, observe that the construction of HF implies that a well-bouncing arc corresponds
to exactly one good-arc.

Now, putting all the observations together, we have that each Ti, for every i ∈ V (T ),
has a good failed link which further corresponds to a well-bouncing arc of ~T . As all the
arborescences are arc-disjoint, and there are |V (T )| many of them represented by the vertices
of T , we have that ~T contains at least |V (T )| well-bouncing arcs. J

Now, building on Lemma 2, we prove the following.

I Lemma 3. Let T be a tree-component of HF . Then, there is an arborescence Ti such that
i ∈ V (T ) and Ti is good.

Proof. Consider two cases: |V (T )| = 1, and |V (T )| > 1. In the case |V (T )| = 1, T is an
isolated vertex which implies that it has no outgoing arcs. Therefore, T represents a good
arborescence.

If |V (T )| > 1, then from Lemma 2 we have that ~T contains at most 2(|V (T )|−1)−|V (T )| <
|V (T )| arcs which are not well-bouncing. This implies that there is at least one vertex in T
from which every outgoing arc is well-bouncing. J

Let us understand what this implies. Consider an arborescence Ti, and a routing of a
packet along it. In addition, assume that the routing hits a failed edge e, such that e is shared
with some other arborescence Tj . Now, if e corresponds to a well-bouncing arc of ~HF , then
by bouncing on e and routing solely along Tj , the packet will reach d without any further
interruption. Lemma 3 claims that for each tree-component T of HF there always exists an
arborescence Ti, with i ∈ V (T ), which is good, i.e. every failed edge of Ti corresponds to a
well-bouncing arc of ~HF .

We can now state the main lemma of this section.

I Lemma 4. If G contains at most k − 1 failed edges, then T contains at least one good
arborescence.

Proof. We prove that there exists an arborescence Ti such that if a packet bounces on any
failed edge of Ti it will reach d without any further interruption. Let F be the set of failed
edges, at most k−1 of them. Then, by Lemma 1 we have that HF contains at least k−f ≥ 1
tree-components. Let T be one such component.

By Lemma 3, we have that there exists at least an arborescence Ti such that every
outgoing arc from i is well-bouncing. Therefore, bouncing on any failed arc of Ti the packet
will reach d without any further interruption. J

6 Randomized Routing via Good Arborescences

In this section, we show that a set of routing functions for G obtained by Rand-Bouncing-
Algo is (k − 1)-resilient. Note that our routing function (RND) maps an incoming edge and
the set of active edges incident at v to a set of pairs (e, q), where e is an outgoing edge and q
is the probability of forwarding a packet through e. A packet is forwarded through a unique
outgoing edge.
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The section is structured as follows. As a prelude, we show a simple, yet inefficient,
randomized routing algorithm, called Rand-Algo, that although is (k − 1)-resilient, fails to
achieve low expected number of hops in case of k− 1 failed edges. We then apply our results
from Section 5 to show that Rand-Bouncing-Algo is both (k − 1)-resilient and requires
up to an order fewer number of hops, compared to Rand-Algo, to reach the destination.

6.1 A Simple (Inefficient) Randomized Routing
Consider the following naive randomized algorithm Rand-Algo for routing along arbores-
cences. A packet is routed along the same arborescence until it either reaches its destination
or hits a failed edge. In the latter case, it is rerouted along another arborescences chosen
uniformly at random. We show that there exists a k-connected graph and a set of failed
edges such that the expected number of tree switches that Rand-Algo makes is Ω(k2). This
further implies that the expected number of hops is Ω(Hk2) in the worst case, where H is
the length of a longest path in any arborescence and assuming that longest path in all the
arborescences are up to a constant factor the same.

To prove the promised bound, we start by defining a 2k edge connected graph G = (V,E)
and its set of 2k arc disjoint spanning trees T0, . . . , T2k−1 as follows.

Set V consists of a destination vertex d and 4k additional vertices arranged into two
equal-sized layers L1 = {v1

0 , . . . , v
1
2k−1} and L2 = {v2

0 , . . . , v
2
2k−1}.

Set E is defined by the following four subgraphs: (1) L2 is a clique of size 2k; (2) (L1, L2)
is a complete bipartite graph; (3) for each k = 0, . . . , k − 1, there is an edge (v1

2i, v
1
2i+1)

and (4) vertex d is connected to each vertex of L1. There is no other edge included in G.
Next, we construct 2k arc-disjoint spanning trees T0, . . . , T2k−1 (see Fig. 2 for an example
with k = 2). We use [t]0 to denote set {0, 1, 2, . . . , t− 1}.

For each i ∈ [k]0, add the following arcs:
(v2

2i+1, v
2
2i), (v2

2i, v
1
2i), (v1

2i, v
1
2i+1), and (v1

2i+1, d) into T2i+1;
arcs (v2

2i, v
2
2i+1), (v2

2i+1, v
1
2i+1), (v1

2i+1, v
1
2i), and (v1

2i, d) into T2i.
For each i ∈ [k]0, and for each j ∈ [2k]0 \ {2i, 2i+ 1}, add the following arcs:

(v2
j , v

2
2i), and (v1

j , v
2
2i) into T2i;

(v2
j , v

2
2i+1), and (v1

j , v
2
2i+1) into T2i+1.

Finally, consider a scenario in which edges (v2
0 , v

2
1), (v2

2 , v
2
3), . . . , (v2

2k−4, v
2
2k−3) and (v1

0 , v
1
1),

(v1
2 , v

1
3), . . . , (v1

2k−4, v
1
2k−3), (v1

2k−2, v
1
2k−1) failed.

We say that a packet is routed downwards (upwards) if it is routed from a vertex in
L2 (L1) to a vertex in L1 (L2). Let Ed be the expected number, minimized over all the
vertices, of tree switches of a packet that is routed downwards, Eu be the expected number
of tree switches of a packet that is routed along Ti and is currently located at v2

i , for some
i ∈ [2k − 2]0, and E2 be the expected number of tree switches of a packet that is originated
by a vertex in L2. Then, we can show.

I Lemma 5. It holds Eu ≥ 3
2k−1Ed + 2k−4

2k−1Eu + 1 .

Proof. Let p be routed along Th and located at v2
h, for some h ∈ [2k − 2]0. W.l.o.g, let h = 0.

By the construction of T0, from v1
0 packet p should be forwarded to v2

1 but (v2
0 , v

2
1) has failed.

So, from v2
0 , p is forwarded downwards along T1, T2k−2 or T2k−1 with probability 3

2k−1 and
routed along any other tree Tj to a vertex v2

j in L2 with probability at least 2k−4
2k−1 . Hence,

the lemma follows. J

I Lemma 6. We have Ed ∈ Ω(k2).
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Proof. By the construction, a packet routed downwards traverses arc (v2
i , v

1
i ) of Ti. W.l.o.g,

let p be routed along (v2
2i, v

1
2i) of T2i. As (v1

2i, v
1
2i+1), which belongs to T2i, has failed, p is

rerouted along Tj for some j ∈ [2k]0 \ {2i}. Among them, only T2i+1 has a path from v1
2i to

d that does not contain any failed link. T2i+1 is chosen with probability 1
2k−1 .

If any other tree Tj is chosen except T2k−2 and T2k−1, which happens with probability
2k−4
2k−1 , then p is rerouted through Tj from v1

2i to a vertex v2
j in L2, and hence

Ed ≥
2k − 4
2k − 1Eu + 1. (4)

Putting together with (4) and Lemma 5 we obtain Ed ∈ Ω(k2). J

We finally observe that any packet originated at a vertex of L2 is routed downwards at
least once before reaching the destination vertex, i.e., E2 ≥ Ed = Ω(k2), which proves the
following theorem.

I Theorem 7. For any k > 0, there exists a 2k edge-connected graph, a set of 2k arc-disjoint
spanning trees, and a set of 2k− 1 failed edges, such that the expected number of tree switches
with Rand-Algo is Ω(k2).1

6.2 Correctness of Randomized-Bouncing Routing

In this section we prove that Rand-Bouncing-Algo eventually delivers a packet to d, i.e.
it avoids loops, and in the next section we analyze its efficiency.

Assume that we, magically, know whether the arborescence we are routing along is a
good one or not. Then, on a failed edge we could bounce if the arborescence is good, or
switch to the next arborescence otherwise. And, we would not even need any randomness.
However, we do not really know whether an arborescence is good or not since we do not know
which edges will fail. To alleviate this lack of information we use a random guess. So, each
time we hit a failed edge we take a guess that the arborescence is good, where the parameter
q estimates this likelihood. Notice that Rand-Bouncing-Algo implements exactly this
approach. As an example, consider Fig. 1. If a packet originated at a is first routed through
Red and the corresponding outgoing edge {a, c} is failed, then the packet is forwarded with
probability q to Blue or Green chosen u.a.r., and with probability 1 − q it is bounced to
Green, which shares the outgoing failed edge {a, c} with Red. By the following lemma we
show that this approach leads to (k − 1)-resilient routing.

I Lemma 8. Rand-Bouncing-Algo produces a set of (k − 1)-resilient routing functions.

Proof. By Lemma 4 we have that there exists at least one arborescence Ti of T such that
bouncing on any failed edge of Ti the packet will reach d without any further interruption.
Now, as on a failed edge algorithm Rand-Bouncing-Algo will switch to Ti with positive
probability, and on a failed edge of Ti the algorithm will bounce with positive probability,
we have that the algorithm will eventually reach d. J

1 In the extended version of this paper [9], we show a more involved example for which Rand-Algo
makes Ω(|V |k2) hops, in expectation, to deliver a packet to d.
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6.3 Number of Switches of Rand-Bouncing-Algo
In this subsection we analyze the expected number of times I the packet is rerouted from one
arborescence to another one in Rand-Bouncing-Algo. As we are interested in providing
an upper bound on I, we make the following assumptions. First, we assume that bouncing
from an arborescence which is not good the routing always bounces to an arborescence which
is not good as well. Second, we assume that only by bouncing from a good arborescence the
routing will reach d without switching to any other arborescence. Third, we assume that
there are exactly k − f good arborescences, which is the lower bound provided by Lemma 1
and Lemma 3. Clearly, these assumptions can only lead to an increased number of iterations
compared to the real case. Finally, for the sake of brevity we define t := f

k .
Now, we are ready to start with the analysis. As the first step we define a random variable,

where in the definitions T is the arborescence variable from algorithm Rand-Bouncing-
Algo,

X := number of times a failed edge is hit before reaching d if routing on T .

Let Tinit be the first arborescence that we consider in Rand-Bouncing-Algo. Then, E [I]
is upper-bounded by

E [I] ≤Pr [Tinit is not good]E [X|Tinit is not good] +
Pr [Tinit is good]E [X|Tinit is good] , (5)

where from our assumptions we have

Pr [Tinit is not good] = t, and Pr [Tinit is good] = 1− t.

To simplify calculations, let XP and YP be pessimistic upper bound on conditional expec-
ted values. That is, letXP be the same as E [X|Tinit is not good] and YP as E [X|Tinit is good]
under assumption that: the packet always hits a failed edge unless it bounces on a good
arborescence; and, whenever packet bounces on a non-good arborescence it switches to a
non-good one.

Now, let us express XP and YP as functions in XP , YP , q, and t, while following our
assumptions. If T is not a good arborescence, then a routing along T will hit a failed edge.
If it hits a failed edge, with probability 1− q the routing will bounce and switch to a non
good arborescence. With probability qt the routing scheme will set T to be a non good
arborescence, and with probability q(1− t) it will set T to be a good arborescence. Formally,
we have

XP = 1 + qtXP + q(1− t)YP + (1− q)XP . (6)

Applying an analogous reasoning about YP , we obtain

YP = 1 + qtXP + q(1− t)YP . (7)

Observe that the equations describing XP and YP differ only in the term (1− q)XP . This
comes from the fact that bouncing on a good arborescences the packet will reach d without
hitting any other failed edge.

By some simple calculations (see [9]), we obtain

E [I] ≤ U(q) := t

(1− q)q(1− t) + 1
1− q . (8)

Now we can prove the following lemma.
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I Lemma 9. We have that

E [I] ≤ 2 + 4 t

1− t = 2 + 4 f

k − f
.

Proof. From (8) we have E [I] ≤ U(q). Setting q = 1/2 we obtain

U(1/2) ≤ 2 + 4 t

1− t ,

and by plugging t = f/k the lemma follows. J

Note that if we know f in advance, or have some guarantee in terms of an upper bound
on f , we can derive parameter q that improves the running time of Rand-Bouncing-Algo,
as provided by the following lemma.

I Lemma 10. U(q) is minimized for q = q∗ := 1− (1 +
√
t)−1, and equal to

U(q∗) = 1 +
√
t

1−
√
t
. (9)

Proof. Consider U(q)′, which is

U(q)′ = t(1− q)2 − q2

(1− q)2q2(t− 1) .

In order to find the value of q that minimizes U(q), denote it by q∗, we find the roots of
U(q)′ = 0 with respect to q. There is only one positive solution of equation U(q)′ = 0, which
is also the minimizer q∗, and is equal to q∗ = 1− 1

1+
√
t
, as desired.

Finally, substituting q∗ into (8) and simplifying the expression we obtain (9). J

Observe that

U(q∗) ≤ 4
1− f

k

.

Therefore, if f = αk, i.e., only a fraction of the edges fail, we obtain U(q∗) ≤ 4
1−α . This

means that the expected number of arborescence switches does not depend on the number
of failed edges but on the ratio between this number and the connectivity of the graph.
Otherwise, if f = k − 1, we have that the expected number of arborescence switches is
bounded by 4k, which is linear w.r.t. to the connectivity of the graph. Combining these
conclusions with Lemma 8, we obtain the following.

I Theorem 11. Given a k-connected graph G, destination d and a decomposition of G into k
arc-disjoint arborescences T rooted at d, there exists a (k− 1)-resilient algorithm that delivers
a packet to d after O

(
k

k−fH
)

hops in expectation, where H is the length of a longest path of
any arborescence of T and f the number of failed edges. The algorithm uses randomization
only when encounters a failed edge. In particular, if f = 0, the algorithm is deterministic.

6.4 An Extension: Rerouting in a Non-uniform Manner
In this section we briefly study non-uniform choice of arborescence used for rerouting in
algorithm Rand-Bouncing-Algo. To motivate that discussion, consider a scenario in which
a packet hits a failed edge u, v while routed along arborescence T . Wlog, assume T = Tk.
Furthermore, assume that path v-d along every other arborescence does not contain any
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failed link. Therefore, switching from Tk to any other arborescence the packet will reach
d without any further interruption. If the packet is rerouted at step 2.2.(a) of algorithm
Rand-Bouncing-Algo but not bounced, then the rerouting tree is chosen uniformly at
random. It further means that the expected number of edges the packet will traverse before
reaching d from v is

EU =
k−1∑
i=1

distTi(v)
k − 1 =

∑k−1
i=1 distTi

(v)
k − 1 ,

where distTi
(a) is the number of the edges on the unique path from a to d along arborescence

Ti.2 However, the distances from v to d along different arborescences might significantly
differ. This naturally suggests us to consider a non-uniform distribution of arborescences
chosen at step 2.2.(a) of Rand-Bouncing-Algo, as we do in the rest of this section.

For each vertex v 6= d and each arborescence Ti define probability piv as

piv :=
1

distTi
(v)∑k−1

j=1
1

distTj
(v)

.

The expected number of the edges the packet will traverse if each arborescence is chosen
with respect to the distribution given by pv is

ENU =
k−1∑
i=1

pivdistTi
(v) =

k−1∑
i=1

1∑k−1
j=1

1
distTj

(v)

= k − 1∑k−1
i=1

1
distTi

(v)

.

Now we would like to show that indeed EU
?
≥ ENU . But, it is the same as showing that

(k − 1)2 ?
≤
k−1∑
i=1

distTi
(v)

k−1∑
i=1

1
distTi

(v) .

However, the latter follows from Cauchy–Schwarz inequality as

(k − 1)2 =
(
k−1∑
i=1

√
distTi

(v)

√
1

distTi
(v)

)2

≤
k−1∑
i=1

distTi
(v)

k−1∑
i=1

1
distTi

(v) .

Hence, EU ≥ ENU , as advertised.
We note that this example is a potential scenario that might occur. However, and

unfortunately, in case of failures we are unable to detect whether the described situation
has occurred or not. Nevertheless, we believe that in practical applications the non-uniform
choice of arborescences used for rerouting, as described above, would result in a more efficient
routing than its uniform counterpart.
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Abstract
Let f : {0, 1}n × {0, 1}n → {0, 1} be a 2-party function. For every product distribution µ on
{0, 1}n × {0, 1}n, we show that

CCµ0.49(f) = O
((

log prt1/8(f) · log log prt1/8(f)
)2)

,

where CCµε (f) is the distributional communication complexity of f with error at most ε under
the distribution µ and prt1/8(f) is the partition bound of f , as defined by Jain and Klauck [Proc.
25th CCC, 2010]. We also prove a similar bound in terms of IC1/8(f), the information complexity
of f , namely,

CCµ0.49(f) = O
((

IC1/8(f) · log IC1/8(f)
)2)

.

The latter bound was recently and independently established by Kol [Proc. 48th STOC, 2016]
using a different technique.

We show a similar result for query complexity under product distributions. Let g : {0, 1}n →
{0, 1} be a function. For every bit-wise product distribution µ on {0, 1}n, we show that

QCµ0.49(g) = O
((

log qprt1/8(g) · log log qprt1/8(g)
)2)

,

where QCµε (g) is the distributional query complexity of f with error at most ε under the distri-
bution µ and qprt1/8(g)) is the query partition bound of the function g.

Partition bounds were introduced (in both communication complexity and query complexity
models) to provide LP-based lower bounds for randomized communication complexity and ran-
domized query complexity. Our results demonstrate that these lower bounds are polynomially
tight for product distributions.
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1 Introduction

Over the last decade, several lower bound techniques using linear programming formulations
and information complexity methods have been developed for problems in communication
complexity and query complexity. One of the central questions in communication complexity
is to understand the tightness of these lower bound techniques. For instance, over the last few
years, considerable effort has gone into understanding the information complexity measure.
Informally speaking, (internal) information complexity is the amount of information the
two parties reveal to each other about their respective inputs while computing the joint
function. It is known that for product distributions, the internal information complexity not
only lower bounds but also upper bounds the distributional communication complexity (up
to logarithmic multiplicative factors in the communication complexity) [1]. On the other
hand, recent works due to Ganor, Kol and Raz [3, 4, 5] show that there exist non-product
distributions which exhibit exponential separation between internal information complexity
and distributional communication complexity1. However, it is still open if internal information
complexity (or a polynomial of it) upper bounds the public-coin randomized communication
complexity (up to logarithmic multiplicative factors in the input size) [2].

Jain and Klauck [9], using tools from linear programming, gave a uniform treatment
of several of the existing lower bound techniques and proposed the partition bound. This
leads to following related (but incomparable) conjecture: does a polynomial of the partition
bound yield an upper bound on the communication complexity? We are not aware of any
counterexample to this conjecture2.

We consider these questions when the inputs to Alice and Bob are drawn from a product
distribution and show the following.

I Theorem 1. Let f : {0, 1}n×{0, 1}n → {0, 1}, and let ICε(f) and prtε(f) be the information
complexity and partition bound respectively of f with error at most ε. For a product distribution
µ on {0, 1}n × {0, 1}n, the distributional communication complexity of f under distribution
µ with error at most 0.49, denoted by CCµ0.49(f), can be bounded above as follows:

CCµ0.49(f) = O
((

IC1/8(f) · log IC1/8(f)
)2)

, (1.1)

CCµ0.49(f) = O

((
log prt1/8(f) · log log prt1/8(f)

)2
)
. (1.2)

Our technique yields bounds more general than those stated above (see discussion after
Proposition 7 for this generalization). We remark that recently (and independently of this
work) Kol [11] obtained the bound (1.1) using very different techniques. Kol’s result is
stronger in the sense that her bound is in terms of the information complexity ICµ(f) for the
product distribution µ, while our result is in terms of the worst case information complexity
IC(f) (note, ICε(f) = maxµ ICµε (f)). In fact, Kol showed that

CCµδ+ε(f) = O
(
ICµδ (f)2 · poly log ICµδ (f)/ε5) , (1.3)

and concluded that

CCµ0.49(f) = O
(
IC1/8(f)2 · poly log IC1/8(f)

)
. (1.4)

1 The third result of Ganor, Kol and Raz [5] actually demonstrates an exponential separation between
external information and communication complexity, albeit not for computing a Boolean function.

2 The recent work of Göös et al. [6] demonstrates the existence of a total function for which the partition
bound is strictly sublinear in the randomized communication complexity. This still does not rule out
communication complexity being bound by a polynomial of the partition bound.
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Kol’s result (1.3) is incomparable to our second result in terms of partition bound (1.2).
We consider a similar question in query complexity and show the following.

I Theorem 2. Let g : {0, 1}n → {0, 1} be a function and µ be a bit-wise product distri-
bution on {0, 1}n. Let qprtε(g) be the query partition bound for g with error ε. Then, the
distributional query complexity with error at most 0.49 under the distribution µ, denoted by
QCµ0.49(f), can be bounded above as follows:

QCµ0.49(g) = O

((
log qprt1/8(g) · log log qprt1/8(g)

)2
)
.

A similar quadratic upper bound for query complexity for product distributions in terms
of approximate certificate complexity was obtained by Smyth [14]. His proof uses Reimer’s
inequality while our proof technique is based on Nisan and Wigderson’s [13] more elementary
approach.

Organization. The communication complexity result is proven in §2 while the query com-
plexity result is deferred to the full version [8] for lack of space.

2 Communication Complexity

2.1 Preliminaries
We work in Yao’s two-party communication model [15] (see Kushilevitz and Nisan [12] for
an excellent introduction to the area). Let X , Y and Z be finite non-empty sets, and let
f : X × Y → Z be a function. A two-party protocol for computing f consists of two parties,
Alice and Bob, who get inputs x ∈ X and y ∈ Y respectively, and exchange messages in order
to compute f(x, y) ∈ Z (using shared randomness).

For a distribution µ on X × Y, let the ε-error distributional communication complexity
of f under µ (denoted by CCµε (f)), be the number of bits communicated (for the worst-case
input) by the best deterministic protocol for f with average error at most ε under µ. Let
CCpub

ε (f), the public-coin randomized communication complexity of f with worst case error
ε, be the number of bits communicated (for the worst-case input) by the best public-coin
randomized protocol that for each input (x, y) computes f(x, y) correctly with probability at
least 1− ε. Randomized and distributional complexity are related by the following special
case of von Neumann’s minmax principle.

I Theorem 3 (Yao’s minmax principle [16]). CCpub
ε (f) = maxµ CCµε (f).

We will prove Theorem 1 by first showing an upper bound on communication complexity in
terms of the smooth rectangle bound and then observing that the smooth rectangle bound is
bounded above by the partition bound.

Smooth rectangle bound

The smooth rectangle bound was introduced by Jain and Klauck [9] as a generalization of the
rectangle bound. Just like the rectangle bound, the smooth rectangle bound also provides a
lower bound for randomized communication complexity. Informally, the smooth rectangle
bound for a function f under a distribution µ, is the maximum over all functions g , which
are close to f under the distribution µ, of the rectangle bound of g. However, it will be
more convenient for us to work with the following linear programming formulation. (See [9,

ICALP 2016



135:4 Partition Bound Is Quadratically Tight for Product Distributions

Lemma 2] and [10, Lemma 6] for the relations between the LP formulation and the more
“natural” formulation in terms of rectangle bound.) It is evident from the LP formulation
that the smooth rectangle bound is a further relaxation of the partition bound (defined
in the appendix). We will formulate our results in terms of a distributional version of the
above smooth rectangle bound. For µ : X × Y → R and any z ∈ Z and rectangle R, let
µz(R) := µ(R ∩ f−1(z)) and µz̄(R) := µ(R)− µz(R). Furthermore, let µz := µz(X ×Y) and
µz̄ := µz̄(X × Y). The smooth rectangle and its distributional version are defined below.

I Definition 4 (Smooth rectangle bound).
For a function f : X × Y → Z and ε ∈ (0, 1), the (ε, δ)-smooth rectangle bound of f
denoted srecε,δ(f) is defined to be max{sreczε,δ(f) : z ∈ Z}, where sreczε,δ(f) is the optimal
value of the following linear program.
For a distribution µ on X × Y and function f : X × Y → Z, the (ε, δ)-smooth rectangle
bound of f with respect to µ denoted srecµε,δ(f) is defined to be max{srecz,µε,δ (f) : z ∈ Z},
where srecz,µε,δ (f) is the optimal value of the following linear program.

sreczε,δ(f)

min
∑
R

wR∑
R3(x,y)

wR ≥ 1− ε, ∀(x, y) ∈ f−1(z)

∑
R3(x,y)

wR ≤ δ, ∀(x, y) 6∈ f−1(z)

∑
R3(x,y)

wR ≤ 1, ∀(x, y)

wR ≥ 0, ∀R .

srecz,µε,δ (f)

min
∑
R

wR∑
(x,y)∈f−1(z)

µx,y
∑

R3(x,y)

wR ≥ (1− ε) · µz (2.1)

∑
R3(x,y)

wR ≤ δ, ∀(x, y) 6∈ f−1(z)

(2.2)∑
R3(x,y)

wR ≤ 1, ∀(x, y) (2.3)

wR ≥ 0, ∀R .

We will refer to the constraint in (2.1) as the covering constraint and the ones in (2.2) as
the packing constraints. Note that while there is a single covering constraint (averaged over
all the inputs (x, y) that satisfy f(x, y) = z) there are packing constraints corresponding to
each (x, y) /∈ f−1(z).

Similar to Yao’s minmax principle Theorem 3, we have the following proposition relating the
distributional version of the smooth rectangle bound to the smooth rectangle bound.

I Proposition 5. srecε,δ(f) = maxµ srecµε,δ(f).

The main result of this section is the following

I Theorem 6. For any Boolean function f : {0, 1}n × {0, 1}n → {0, 1} and any product
distribution µ on {0, 1}n × {0, 1}n, we have the following.
1. CCµ0.49(f) = O

(
(log srecµ1/n2,1/n2(f))2 · logn

)
.

2. Furthermore, if there exists k ≥ 20 such that

d100 log srecµδ,δ(f)e ≤ k,

for δ ≤ 1/(30 · 100(k + 1)4), then

CCµ0.49(f) = O(k2).
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The above theorem is useful only when we have a upper bound on the smooth rectangle
bound for very small δ. The following proposition shows that such upper bounds for smooth
rectangle bound for such small δ can be obtained in terms of either the information complexity
or the partition bound.

I Proposition 7. For any Boolean function f : {0, 1}n×{0, 1}n → {0, 1} and any δ ∈ (0, 1),
we have the following bounds on srecδ,δ(f):

log srecδ,δ(f) ≤ O
(

log 1
δ

)
· IC1/8(f),

log srecδ,δ(f) ≤ O
(

log 1
δ

)
· log prt1/8(f).

(This proposition depends on the error-reduction properties of information complexity and
partition bound; a proof appears in the full version [8].) Using this proposition, we can

reduce the error (i.e., δ) to 1/n2 and show that CCµ0.49(f) = O

((
log prt1/8(f)

)2
· (logn)3

)
.

However, we can also reduce the error to 1/poly(log prt1/8(f)) and show that there exists
a k = O

(
log prt1/8(f) · log log prt1/8(f)

)
that satisfies the hypothesis for the second part of

Theorem 6. The bound (1.2) in Theorem 1 now follows by combining Propositions 7 and 5
and Theorem 6. A similar argument yields the bound (1.1).

In particular, the above discussion shows that our techniques apply to any complexity
measure (not necessarily partition bound and information complexity) which can be used to
bound the smooth rectangle bound for very small δ. An interesting question that arises in
this context is if we could bound smooth rectangle bound for small δ in terms of smooth
rectangle bound for large δ, say δ = 1/3 (i.e., is error-reduction for srec feasible?). This
question was answered in the negative for partial functions by Göös et al. [7] who show that
there exists a partial function f that has srec1/3(f) = O(logn) and yet srec1/4(f) = Ω(n).

2.2 Proof of Theorem 6
In this section, we construct a communication protocol tree with a small number of leaves
from the optimal solutions to the LPs corresponding to srec0,µ

ε,δ and srec1,µ
ε,δ . The construction

of the protocol tree with a small number of leaves is inspired by a construction due to
Nisan and Wigderson, in the context of log-rank conjecture [13, Theorem 2] (see also [12,
Combinatorial proof of Theorem 2.11]). Unlike the earlier constructions, our protocol works
for a distribution and allows for error. As a result, the decomposition into sub-problems
needs to be performed more carefully. This step critically uses the product nature of the
distribution µ.

The decomposition is accomplished using an inductive argument. We will work with
the quantity srec0 + srec1. That is, we will show that if this sum is small, then there is a
protocol with few leaves. Suppose srec0 ≤ srec1. Since srec0 is small, we will conclude that
there is a large rectangle biased towards 0 (see Lemma 8). Based on this large rectangle, the
entire communication matrix is partitioned into three parts: (1) the large biased rectangle
itself, (2) a rectangle whose corresponding sub-problem admits an LP solution leading to a
smaller srec1 value (the underlying product nature of the distribution µ is used here) and (3)
a rectangle where the total measure with respect to µ drops significantly (see Lemma 9).

We say that a rectangle R is (1− α)-biased towards to 0 if µ1(R) ≤ αµ0(R).

ICALP 2016
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I Lemma 8 (large biased rectangle). Let µ be a product distribution. If srec0,µ
ε,δ (f) ≤ D, then

for every ρ ∈ (0, 1) there exists a rectangle S such that S is (1− ρ)-biased towards 0 and

µ(S) ≥ µ0(S) ≥ 1
D
·
(

(1− ε) · µ0 −
(
δ

ρ

)
· µ1

)
.

(The proof appears in §2.3.) We will apply the above lemma with ρ =
√
δ and conclude that

there exists a large rectangle S = X0×Y0 that is (1−
√
δ)-biased towards 0. Let X1 = X \X0

and Y1 = Y \ Y0. For i, j ∈ {0, 1}, define rectangles R(ij) := Xi × Yj , R(1∗) := X1 × Y, and
R(∗1) := X × Y1. (Note, S = R(00).) For i, j ∈ {0, 1, ∗}, let µ(ij) be the restriction of µ
to the rectangle R(ij). We show in the lemma below that the function f when restricted
to either R(10) or R(01) has the property that the corresponding srec1 drops by a constant
factor. Define

ε(f) := 1−

(∑
(x,y)∈f−1(1) µx,y

∑
R:(x,y)∈R wR

)
µ1

,

ε(ij)(f) := 1−

(∑
(x,y)∈f−1(1)∩R(ij) µx,y

∑
R:(x,y)∈R wR

)
µ1(R(ij))

; for i, j ∈ {0, 1}.

It follows from the covering constraint that ε(f) ≤ ε. Furthermore, ε(f) is an average of the
ε(ij)’s in the sense that ε(f) =

(∑
i,j∈{0,1} µ1(R(ij))ε(ij)

)
/µ1.

I Lemma 9. Suppose the product distribution µ and rectangles R(ij) are as above; in
particular, R(00) is (1−

√
δ)-biased towards 0. There exists an (ij) ∈ {(01), (10)} such that one

of the following holds: (a) 2µ(ij)(f−1(1)) ≤ µ(ij)(f−1(0)) or (b) srec1,µ(ij)

ε(ij)+30 4√
δ,δ

(f) ≤ 0.9D
where ε(ij) is as defined above.

We will prove this lemma in §2.3. Let us assume the above lemmas and obtain the low cost
communication protocol claimed in Theorem 6.

Suppose µ(01) satisfies srec1,µ(01)

ε(01)+30 4√
δ,δ

(f) ≤ 0.9D as given by the above lemma. Consider
the decomposition of the space X ×Y given by (R(00), R(01), R(1∗) = R(10) ∪R(11)). We note
that R(00) is a large biased rectangle, R(01) has lower srec1 value while R(1∗) has lower µ
value (since R(00) is large) and its srec values are no larger than that of the entire space. In
the case when µ(10) satisfies srec1,µ(10)

ε(10)+30 4√
δ,δ

(f) ≤ 0.9D, we similarly have the decomposition
(R(00), R(10), R(∗1) = R(01) ∪R(11)).

This suggests a natural inductive protocol Π for f that we formalize in the lemma below.
For our induction it will be convenient to work with µ that are not necessarily nor-

malized. So, we will only assume µ : X × Y → [0, 1] but not that |µ| := µ(X × Y) =∑
(x,y)∈X×Y µ(x, y) = 1. For a protocol Π, let the advantage of Π be defined by

advµ(Π) =
∑

(x,y):f(x,y)=Π(x,y)

µ(x, y)−
∑

(x,y):f(x,y)6=Π(x,y)

µ(x, y).

Let L(Π) be the number of leaves in Π.
We now formulate the induction hypothesis as follows.

I Lemma 10. Fix a function f : X ×Y → {0, 1} and a product distribution (not necessarily
normalized) µ : X ×Y → [0, 1] such that |µ| ≥ 0. Let ε, δ ∈ (0, 1) and ∆ ∈ (0, |µ|). Let s, t be
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non-negative integers such that

s ≥ s(µ, ε, δ) :=
⌈
100 · log 2(srec0,µ

ε,δ (f) + srec1,µ
ε,δ (f))

⌉
;

t ≥ t(µ, ε, δ) := d100 · 2s log(|µ|/∆)e .

Then, there is a protocol Π such that

L(Π) ≤ 4
(
s+ t

t

)
− 1; (2.4)

advµ(Π) ≥
(

1
10 − ε− 30(s+ 1) 4

√
δ

)
|µ| −∆ · L(Π). (2.5)

I Remark. Since ε ≤ 1
2 , our definitions imply that srec1,µ

ε,δ (f) + srec1,µ
ε,δ (f)) ≥ 1

2 ; thus s ≥ 0.
Similarly, since ∆ ≤ |µ|, we have t ≥ 0.

Proof. First, we observe that if max{µ0, µ1} ≥ 2 min{µ0, µ1}, then the protocol Π consisting
of just one leaf, with the most popular value as label, meets the requirements: for, advµ(Π) ≥
1
3 |µ| and L(Π) = 1, and our claim holds. Also, we may assume that ε− 30(s+ 1) 4

√
δ < 1

10 ,
for otherwise the claim is trivially true.

We now proceed by induction on s + t, assuming that µ is balanced: max{µ0, µ1} ≤
2 min{µ0, µ1}.

Base case (s = 0)

Since s = 0, we have log srec1,µ
ε,δ (f) ≤ 1

100 . We will show a protocol Π where Alice sends one bit
after which Bob announces the answer. Consider the optimal solution 〈wR : R a rectangle〉
to the LP corresponding to srec1,µ

ε,δ (f); thus, OPT :=
∑
R wR = srec1,µ

ε,δ (f) ≤ 21/100 ≤ 2. Let
R = RX × RY be a random rectangle picked with probability proportional to wR (using
public coins). In the protocol Π, Alice tells Bob if x ∈ RX , and Bob returns the answer 1
if (x, y) ∈ RY and returns 0 otherwise. Let pxy := PrR[(x, y) ∈ R]. Then, by (2.1) we have∑

(x,y)∈f−1(1) µ(x, y)pxy ≥ (1− ε)µ1/OPT, and by (2.2), we have
∑

(x,y)∈f−1(0) µ(x, y)pxy ≤
δµ0/OPT. Thus,

ER

 ∑
(x,y):Π(x,y)6=f(x,y)

µ(x, y)

 =
∑

(x,y)∈f−1(1)

µ(x, y)(1− pxy) +
∑

(x,y)∈f−1(0)

µ(x, y)px,y

≤ µ1 − (1− ε)µ1/OPT + δµ0/OPT
≤ µ1 − ((1− ε)µ1 − δµ0)/OPT

≤ 1
2(µ1 + εµ1 + δµ0) (since OPT ≤ 2). (2.6)

Fix a choice R for which the quantity under the expectation is at most 1
2 (µ1 + εµ1 + δµ0).

Then,

adv(Π) = |µ| − 2
∑

(x,y):Π(x,y)6=f(x,y)

µ(x, y)

≥ |µ| − (µ1 + εµ1 + δµ0)

≥
(

1
3 − ε− δ

)
|µ| (since µ1 ≤ 2µ0).
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Base case (t = 0)

In this case, |µ| = ∆, and the protocol Π with a single leaf that gives the most probable
answer achieves adv(Π) ≥ 0 ≥ |µ| −∆.

Induction step

We will use Lemma 8 to decompose the communication matrix into a small number of
rectangles. After an exchange of a few bits to determine in which rectangle the input lies,
Alice and Bob will be left with a problem for which s or t is significantly smaller. Assume
srec1,µ

ε,δ (f) ≥ srec1,µ
ε,δ (f); in particular, srec1,µ

ε,δ (f) ≤ 2s/100.
Formally, from Lemma 8 (taking ρ =

√
δ), we obtain a rectangle R(00) = X0 × Y0 such

that (a) R(00) is (1 −
√
δ)-biased towards 0, and (b) µ(R(00)) ≥ 1

2s/100 (1 − ε − 2
√
δ)|µ0| ≥

1
3·2s/100 (1−ε−2

√
δ)|µ|. Recall the definitions of the rectangles R(10), R(01), R(11), R(1∗), R(∗1)

and the corresponding restrictions of µ, namely, µ(01), µ(10), µ(11), µ(1∗), µ(∗1). Suppose the
choice of ij in Lemma 9 for which one of the alternatives holds is ij = 01 (the other case
ij = 10 is symmetric). The protocol Π proceeds as follows. Alice starts by telling Bob if
x ∈ X0.
Alice says x ∈ X0. Now, Bob tells Alice if y ∈ Y0.

Bob says y ∈ Y0. The protocol Π(00) in this case has one leaf with answer 0; thus
adv(Π(00) ≥ |µ(00)| · (1−

√
δ).

Bob says y 6∈ Y0. Alice and Bob follow the protocol Π(01) promised by induction for
R(01) under µ(01). To bound the number of leaves in Π(01), we will consider the two
alternatives ((a) and (b)) specified in Lemma 9 separately. First (alternative (a))
suppose 2µ(01)(f−1(1)) ≤ µ(01)(f−1(0)); then we immediately declare 0 as the response,
so that L(Π(01)) = 1 and adv(Π(01)) ≥ |µ(01)|/3. If alternative (b) holds, then we have

srec1,µ(01)

ε(01)+30 4√
δ,δ

(f) ≤ 0.9srec1,µ
ε,δ (f). (2.7)

Then, we obtain Π(01) by induction. We take ε(01) + 30 4
√
δ as ε (if this quantity is

greater than 1, then we use a trivial protocol with one leaf and zero advantage). With
the reduction promised in (2.7), we may use a value of s that is the old s minus 1.
Thus, we have

L(Π(01)) ≤ 4
(

(s− 1) + t

t

)
− 1;

adv(Π(01)) ≥ |µ(01)| ·
(

1
10 − (ε(01) + 30 4

√
δ)− 30s 4

√
δ

)
−∆ · L(Π(01)).

Alice says x 6∈ X0. Alice and Bob follow the protocol Π(1∗) obtained by applying the
induction hypothesis to the rectangle R(1∗) and the associated distribution µ(1∗). Observe
that

|µ(1∗)| ≤ |µ| − µ(R(00)) ≤ |µ|
(

1− 1
3 · 2s/100 (1− ε− 2

√
δ)
)
≤ |µ|

(
1− 1

4 · 2s

)
. (2.8)

For the last inequality we used ε+ 2
√
δ ≤ 1

10 , for otherwise (2.5) holds trivially. Now,
(2.8) implies that log |µ(1∗)| ≤ log |µ| − 1

1002s ; so, for our induction we may take t← t− 1.
The parameters ε, δ and ∆ remain the same. The original LP solutions are still valid for
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the subproblem, so we use the same s. The protocol Π(1∗) obtained by induction satisfies
the following inequalities.

L(Π(1∗)) ≤ 4
(
s+ (t− 1)
t− 1

)
− 1;

adv(Π(1∗)) ≥ |µ(1∗)| ·
(

1
10 − ε

(1∗) − 30(s+ 1) 4
√
δ

)
−∆ · L(Π(1∗)).

Putting all the contributions together, we obtain

L(Π) = 1 + L(Π(01)) + L(Π(1∗))

≤ 1 +
(

4
(

(s− 1) + t

t

)
− 1
)

+
(

4
(
s+ (t− 1)
t− 1

)
− 1
)

= 4
(
s+ t

t

)
− 1;

adv(Π) ≥ |µ(00)| · (1−
√
δ)

+ |µ(01)| ·
(

1
10 − (ε(01) + 30 4

√
δ)− 30s 4

√
δ

)
−∆ · L(Π(01))

+ |µ(1∗)| ·
(

1
10 − ε

(1∗) − 30(s+ 1) 4
√
δ

)
−∆ · L(Π(1∗))

≥
(

1
10 − ε− 30(s+ 1) 4

√
δ

)
|µ| −∆ · L(Π). J

The above lemma yields a protocol whose protocol tree has a small number of leaves, but not
necessarily small depth. We can balance the protocol tree using the following proposition.

I Proposition 11 ([12, Lemma 2.8]). If f has a deterministic communication protocol tree
with ` leaves, then f has a protocol tree with depth at most O(log `).

We are now in a position to complete the proof of the main theorem of this section.

Proof of Theorem 6. To prove the first part of Theorem 6, we invoke Lemma 10 with
∆ = 1/24n and ε = δ = 1/n2 to derive a protocol tree Π with at most

L(Π) = n
O

(
log srec1,µ

1/n2,1/n2 (f)
)2

leaves and advantage at least 1/20. The first part now follows from Proposition 11.
To prove the second part of Theorem 6, we invoke Lemma 10 with s = k, ∆ = 1/25k2 and

ε = δ = 1/(30 · 100(k+ 1)4) where k satisfies the hypothesis. With this setting of parameters
t = d500 · 2kk2e ≤ 22k (for k ≥ 20). Lemma 10 implies a protocol tree Π with at most

L(Π) ≤ (t+ s)s ≤ t2s ≤ 24k2

leaves and advantage at most 1/20. The second claim then follows from Proposition 11. J

2.3 Proofs of Lemmas 8–9
Proof of Lemma 8. Fix z ∈ {0, 1}. In the following we say that a rectangle R is biased
(towards 0) if µ1(R) ≤ ρ · µ0(R); otherwise, we say it is unbiased. Fix a solution 〈wR :

ICALP 2016
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R is a rectangle〉 that achieves the optimum srec0,µ
ε,δ (f) ≤ D. It follows

∑
R:unbiased

wR · µ0(R) ≤
∑

R:unbiased
wR ·

µ1(R)
ρ

≤ 1
ρ
·
∑
R

wR · µ1(R)

= 1
ρ

∑
(x,y)∈f−1(1)

µ(x, y)
∑

R:(x,y)∈R

wR

≤ δ

ρ
· µ1,

where the last inequality follows from the packing constraints (2.2). We now use the covering
constraints (2.1) to conclude that∑

R:biased
wR · µ0(R) =

∑
R

wR · µ0(R)−
∑

R:unbiased
wr · µ0(R) ≥ (1− ε) · µ0 −

δ

ρ
· µ1. (2.9)

Define a probability distribution on the rectangles R as follows p(R) := wR/srec0,µ
ε,δ (f). Then

(2.9) can be rewritten as

ER [Ibiased(R) · µ0(R)] ≥ 1
D
·
(

(1− ε) · µ0 −
δ

ρ
· µ1

)
.

Hence, there exists a large biased rectangle S = X0 × Y0 as claimed. J

Proof of Lemma 9. Since R(00) is (1−
√
δ)-biased towards 0, we have from the packing and

covering constraints (2.2) and (2.3) that∑
(x,y)∈R(00)

µx,y
∑

R3(x,y)

wR

=
∑

(x,y)∈R(00)∩f−1(1)

µx,y
∑

R3(x,y)

wR +
∑

(x,y)∈R(00)∩f−1(0)

µx,y
∑

R3(x,y)

wR

≤ µ1(R(00)) + δµ0(R(00)) ≤ (
√
δ + δ)µ0(R(00)) ≤ 2

√
δµ(R(00)).

Hence,

∑
R

wR ·
(
µ(R(00) ∩R)
µ(R(00))

)
≤ 2
√
δ. (2.10)

Group the rectangles in to subsets as follows:

B(01) :=
{
R : µ(R(01) ∩R)

µ(R(01))
≥ 10 4

√
δ

D

}
, B(10) :=

{
R : µ(R(10) ∩R)

µ(R(10))
≥ 10 4

√
δ

D

}
,

B :=
{
R : µ(R(11) ∩R)

µ(R(11))
≥ 10
D

}
.

By (2.3), we have∑
(x,y)∈R(11)

µx,y
∑

R3(x,y)

wR ≤
∑

(x,y)∈R(11)

µx,y = µ(R(11)).
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Or equivalently,∑
R

wR
D
· µ(R(11) ∩R)

µ(R(11))
≤ 1
D
.

Hence,∑
R∈B

wR ≤ 0.1D. (2.11)

We will now argue that either
∑
R∈B(01) wR ≤ 0.9D or

∑
R∈B(10) wR ≤ 0.9D. Suppose, for

contradiction, that neither is true. Then, by (2.11) we have∑
R∈(B(01)∩B(10))\B

wR ≥ 0.7D. (2.12)

Since µ is a product distribution we have

µ(R(01) ∩R)
µ(R(01))

· µ(R(10) ∩R)
µ(R(10))

= µ(R(00) ∩R)
µ(R(00))

· µ(R(11) ∩R)
µ(R(11))

.

Using the above we have∑
R

wR ·
(
µ(R(00) ∩R)
µ(R(00))

)

≥
∑

R∈(B(01)∩B(10))\B
wR ·

(
µ(R(00) ∩R)
µ(R(00))

)

≥
∑

R∈(B(01)∩B(10))\B
wR ·

(
µ(R(01) ∩R)
µ(R(01))

)
·
(
µ(R(10) ∩R)
µ(R(10))

)/(
µ(R(11) ∩R)
µ(R(11))

)

≥
∑

R∈(B(01)∩B(10))\B
wR ·

(
10 4
√
δ

D

)
·

(
10 4
√
δ

D

)/(
10
D

)

≥ 10
√
δ

D
· (0.7D)

= 7
√
δ.

This contradicts (2.10). Hence, either
∑
R∈B(01) wR ≤ 0.9D or

∑
R∈B(10) wR ≤ 0.9D. Assume,

wlog that
∑
R∈B(01) wR ≤ 0.9D. If f is 1/2-biased towards 0 with respect to the distribution

µ(01), then the alternative (a) of the lemma holds, and we are done. Otherwise, that is
µ0(R(01)) ≤ 2µ1(R(01)) or equivalently µ(R(01)) ≤ 3µ(01)

1 (R(01)). We will infer from this that
srec1,µ(01)

ε(01)+30 4√
δ,δ

(f) ≤ 0.9D. Consider the primal solution given by

w′R =
{
wR, if R ∈ B(01)

0, if R /∈ B(01).

Clearly, w′R, being a part of the original solution, satisfies (2.2) and (2.3), and has objective
value at most 0.9D. All we need to show is that it satisfies the covering constraint (2.1). For
this, we first consider∑

R/∈B(01)

wR ·
(
µ1(R(01) ∩R)
µ(R(01))

)
≤

∑
R/∈B(01)

wR ·
(
µ(R(01) ∩R)
µ(R(01))

)
≤ 10 4

√
δ

D
·D ≤ 10 4

√
δ.

(2.13)

ICALP 2016



135:12 Partition Bound Is Quadratically Tight for Product Distributions

Now, ∑
(x,y)∈f−1(1)∩R(01)

µx,y
∑

R∈(x,y)

w′R

=
∑

(x,y)∈f−1(1)∩R(01)

µx,y
∑

R∈(x,y),R∈B(01)

wR

=
∑

(x,y)∈f−1(1)∩R(01)

µx,y

 ∑
R∈(x,y)

wR −
∑

R∈(x,y),R/∈B(01)

wR


= (1− ε(01))µ1(R(01))−

∑
(x,y)∈f−1(1)∩R(01)

µx,y
∑

R∈(x,y),R/∈B(01)

wR

= (1− ε(01))µ1(R(01))−
∑

R/∈B(01)

wRµ1(R(01) ∩R)

≥ (1− ε(01))µ1(R(01))− 10 4
√
δµ(R(01)) [From (2.13)]

≥ (1− ε(01))µ1(R(01))− 30 4
√
δµ1(R(01)) [Since µ(R(01)) ≤ 3µ1(R(01))]

= (1− ε(01) − 30 4
√
δ)µ1(R(01))

Thus, (2.1) holds for R(01) with ε replaced by ε(01) + 30 4
√
δ. J
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Abstract
Plurality consensus considers a network of n nodes, each having one of k opinions. Nodes execute
a (randomized) distributed protocol with the goal that all nodes adopt the plurality (the opinion
initially supported by the most nodes). Communication is realized via the Gossip (or random
phone call) model. A major open question has been whether there is a protocol for the complete
graph that converges (w.h.p.) in polylogarithmic time and uses only polylogarithmic memory
per node (local memory). We answer this question affirmatively.

We propose two protocols that need only mild assumptions on the bias in favor of the plurality.
As an example of our results, consider the complete graph and an arbitrarily small constant
multiplicative bias in favor of the plurality. Our first protocol achieves plurality consensus in
O (log k · log logn) rounds using log k + Θ (log log k) bits of local memory. Our second protocol
achieves plurality consensus in O (logn · log logn) rounds using only log k+4 bits of local memory.
This disproves a conjecture by Becchetti et al. (SODA’15) implying that any protocol with local
memory log k+ O (1) has worst-case runtime Ω (k). We provide similar bounds for much weaker
bias assumptions. At the heart of our protocols lies an undecided state, an idea introduced by
Angluin et al. (Distributed Computing’08).

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases plurality consensus, voting, majority, distributed, gossip

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.136

1 Introduction

Reaching plurality consensus is a fundamental problem in distributed computing. We consider
this problem in a networked setting, where a graph is given in which each node initially holds
one of k ∈ N opinions. The objective is the design of an efficient distributed protocol that
ensures that eventually all nodes agree on the initial plurality opinion, which is the opinion
that is initially supported by the most nodes. This problem is also referred to as majority
consensus or proportionate agreement [1, 3, 19]. In accordance with [5] and others, we prefer
to refer to it as plurality consensus, so as to make clear that the opinion eventually to be
attained by all nodes need not initially have been absolute majority. One need not stray too
far from the core of distributed computing to come across direct applications of plurality
consensus: the handling of fault tolerance in parallel computing or the implementation of
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majority-based conflict resolution for CRCW PRAMs (and derivative models) are immediate
examples.

Natural metrics for plurality consensus protocols are running time and memory overhead.
The latter is the additional amount of (local) memory needed by each node above and beyond
the bits required to store its current opinion. Results are typically expressed in terms of the
number of nodes, the number of initial opinions, and the initial bias (between plurality and
remaining opinions). Of particular interest, to us and in general, are fast protocols with small
memory overhead. As in [5] we assume a synchronous Pull-based Gossip communication
model on the underlying graph. Here, in each discrete round, every node may contact one
neighbor and query that neighbor’s opinion. We mostly assume the complete graph, but
using a construction of [5] we can easily extend our results to regular expanders. We define
the (relative) plurality gap γ > 1 as the ratio between the plurality opinion and the second
most common opinion. We analyze two protocols in this paper:

A protocol with running time O
(
log k · log logγ n + log logn

)
and memory overhead

Θ (log log k).
A protocol with running time O

(
logn · log logγ n

)
and memory overhead 4.

Plurality consensus is a member of the class of population dynamics, which are of great
interest in fields as varied as epidemiology, physics, statistics, biology, chemistry, or sociology.
All these have in common an initial population of agents with some initial properties and
a protocol (dynamics) that in some manner changes the properties of given agents usually
based on those of other agents. Specific models are as varied as the problems themselves; for
instance, we may or may not have an underlying graph structure, a prescribed timing model,
or restrictions on the amount and nature of communication. Other related dynamics are the
lately en vogue voting protocols and Moran-type processes.

1.1 Related Work
In [3], Aspnes et al. consider k = 2 initial opinions {x, y } and the complete graph as
neighborhood structure. They introduce a third state, referred to as blank, b, which is a
crucial ingredient in their protocol and analysis. Their protocol works such that an activated
node u picks another node v at random. Given the opinions of those two nodes, the transition
now proceeds as follows: If u has a non-blank opinion and sees in v the other non-blank
opinion then it changes to b, if it has a non-blank opinion and sees in v the same non-blank
opinion or b then it maintains its opinion, and if it has the blank opinion then it just copies
whatever it sees in v. The authors show that with high probability all n nodes reach consensus
within O (n logn) many interactions (corresponding to parallel convergence time O (logn)),
and the consensus value is the plurality value provided its (absolute) initial bias is at least
ω (
√
n logn). Each node needs to be able to store one of three values, x, y, or b.

In the case of two opinions the plurality problem can be solved by calculating the median
of the opinions. In [11] the authors present such a protocol that converges in O (logn) rounds
and has constant memory overhead, if the initial difference bias c1−c2 is at least Ω

(√
n logn

)
.

In [2] the authors consider the plurality problem in a sequential setting where only one node
can change its opinion at a time. They present a new protocol called Average and Conquer
(AVC) that solves plurality exactly, in sequential time O (n logn/(sε) + logn log s), where εn
(ε > 1/2) is the size of the plurality opinion and s the number of states. In [7] the authors
generalize the former result to general networks and k opinions. They introduce protocols
that solve the plurality consensus problem that are based on an interesting relationship
between plurality consensus and distributed load balancing.
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In [5] Becchetti et al. take the model of [3] and generalise it to k ≥ 2 initial opinions.
They still use the blank state, which they however refer to as undecided. The authors express
their results in terms of md(c̄), the monochromatic distance of configuration c. Formally,
md(c̄) =

∑k
i=1 ci/c1, where ci is the number of nodes with opinion i and c1 ≥ c2 · · · ≥ ck.

Note that md(c̄) is always between O (1) and O (k). Then authors show almost-tight bounds
on convergence time. Formally, let k = k(n) be any function such that k = O

(
(n/ logn)1/3),

and consider any initial configuration with c1 ≥ (1 + α) · c2, where α ≥ 0 is any arbitrarily-
small constant. Their protocol converges in O (md(c̄) · logn), rounds (w.h.p.) and it has only
constant memory overhead. They also show that for k = O

(
(n/ logn)1/6) and any initial

configuration the convergence time of their protocol is (w.h.p.) linear in the monochromatic
distance. Finally, they show how to adapt their results to regular expanders using random
walks to sample the opinion of nodes. As with [3], they require one state more than is
necessary to store the actual opinion values. They conjecture that any protocol using
log k+ O (1) bits of memory has runtime at least linear in k in the worst case — as discussed
later, we partially refute this conjecture. In [6] the authors consider the 3-majority dynamics.
They show that for k ≤ nα (with constant α) the 3-majority dynamics converges to an
almost-consensus state in time O

(
(k2√logn+ kl logn)(k + logn)

)
. An almost-consensus

state is defined as a state where all but a subset of size O (nγ) (for constant γ < 1) of the
nodes support the same opinion. In [4] the authors consider the undecided dynamics in
complete graphs in an asynchronous setting. They derive the time of convergence and an
upper bound for the probability of error.

A line of research which is related to the plurality consensus problem is the voting
problem. The setting is the same, a network with n nodes is given and initially every node
has one of k opinions. Here the goal is that all nodes agree on one opinion, which is not
necessarily the plurality opinion. A sequential version of the voter model was introduced
in [16]. The parallel voter model was first analyzed in [15]. The authors of [15] bound the
expected consensus time in terms of the expected meeting time Tm of two random walks
and show a bound of O (Tm · logn) = O

(
n3 logn

)
. The authors of [8] provide an improved

upper bound of O
(
1/(1 − λ2) · log4 n + ρ

)
on the expected consensus time for any graph

G, where λ2 is the second eigenvalue of the transition matrix of a random walk on G, and
ρ =

(∑
u∈V (G) d(u)

)2
/
∑
u∈V (G) d

2(u) is the ratio of the square of the sum of node degrees
over the sum of the squared degrees. The authors of [9, 10] consider a modification of the
standard voter model with two opinions, which they call two-sample voting. In every round,
each node chooses two of its neighbors randomly and adopts their opinion only if they both
agree. For regular graphs and random regular graphs, it is shown that two-sample voting
has a consensus time of O (logn) if the initial imbalance between the nodes having the two
opinions is large enough. In [13] the authors consider a 2-choice voting protocol for k opinions
in the complete graph. Their protocol converges to the majority opinion in time O (k · logn),
with high probability, if k=O (nε) for some small ε > 0, and the initial absolute gap between
largest and second-largest opinion is Ω

(√
n logn

)
. They also show that there exist initial

configurations where the Θ (k) bound on the run time is matched. Independently, they also
give a protocol which is similar to our simple, first protocol (cf. Section 3) and has roughly
the same voting time. Other related papers from literature about sensor networks include [12]
(which considers binary interval consensus, which can be used to solve majorization) and [17]
(which considers the plurality problem in a different distributed model and for constant k).

1.2 Our Contribution
In Section 3 we present and analyze protocol RepeatedCleanup, which in a complete graph
of n nodes and k opinions works in O

(
log k · log logγ n+ log logn

)
rounds and has a memory
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overhead of O (log log k) bits. The protocol is a synchronized version of the protocol from [6],
in which the nodes “lose” their opinion and adopt the state “undecided” whenever they
sample a node with a different opinion. Then they will adopt the “real” opinion of the next
(i.e., not undecided) node they sample. The nodes keep changing their opinion until all nodes
agree on the plurality opinion. In contrast, our protocol works in O

(
log logγ n

)
many phases,

each of length Θ (log k). In the first round of every phase the nodes sample a node and lose
the opinion if the sampled node has a different opinion. They then use the rest of the phase
to find a new “real” opinion. In [5] the authors show that for k = O

(
(n/ logn)1/6) and any

initial configuration the convergence time of their protocol is linear in the monochromatic
distance, which can be as large as O (k). Hence, our protocol outperforms the lower bound
for the protocol of [5]. Interestingly, the speed-up is reached by synchronizing the protocol,
which can also be regarded as slowing it down. In our protocol a node that just found a real
opinion again waits until the beginning of the next round to sample another node, instead of
doing that immediately.

The drawback of our first protocol is that it uses a counter to determine the end of a
phase. In Section 4 we present a protocol that works in O

(
logn · log logγ n

)
rounds and

has a memory overhead of only 4 bits. The main idea of the protocol is to slow down the
progress in the individual phases by having nodes toss a biased coin with success probability
1/n, basically replacing the deterministic counter by a probabilistic counterpart. Our result
shows that a conjecture by Becchetti et al. [5], implying that any protocol with constant
memory overhead has worst-case runtime Ω (k), does not hold if nodes have access to such
a coin. Note that the coin toss is not necessary if nodes can decide whether they sampled
themselves (or a marked node/leader).

A very recent, independent result by Ghaffari and Parter [14] suggests a protocol for
plurality consensus with similar time and memory bounds as ours. They employ the same
basic idea of cleanup and decision-accumulation rounds (cf. Section 3), which they name
selection and recovery steps. Their final protocol differs in that they use some of the undecided
nodes as clock nodes (which use the log k bits normally used to store the opinion to count
time) to help synchronize other nodes.

2 Model & Notation

We consider protocols in the complete graph with n ∈ N nodes. Each node u has one of
k ∈ N opinions opu ∈ { 1, 2, . . . , k }. We write opu = ⊥ to indicate that node u is undecided.
Time is modelled in synchronous, discrete and parallel rounds and we assume a Pull-based
Gossip model for communication (nodes can request information from one other node chosen
uniformly at random). Note that each node needs at least dlog ke bits of local memory (to
store its current opinion). Any additional number of bits per node needed by a given protocol
is called the protocol’s memory overhead.

Notation. In the following, ‖·‖1 and ‖·‖2 denote the L1 and L2 norms, respectively, that is,
‖x‖1 =

∑n
i=1 |xi| and ‖x‖2 =

√∑n
i=1 |xi|2 for an n-dimensional vector x. For a real value

x > 0, its binary logarithm is denoted by log x and its natural logarithm by ln x. For an
integer i, the shorthand [i] := { 1, 2, . . . , i } denotes the set of the first i integers. The phrase
with high probability (w.h.p.) refers to probabilities of the form 1− n−Ω(1).

At any point in time, the system can be described by a k-dimensional vector x =
(x1, x2, . . . , xk) ∈ { 0/n, 1/n, . . . , 1 }k ⊆ [0, 1]k, where the i-th entry xi ∈ [0, 1] denotes the
current fraction of nodes with opinion i. We call such a vector x a configuration. Note
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that 1 − ‖x‖1 ∈ [0, 1] is the fraction of undecided nodes. Xi(t) is defined as the random
variable that takes as its values the configuration produced by the protocol at the end of
round t ∈ N0. We use x̄ := X(0) to denote the initial (fixed) configuration. The random
variable Y (t) := 1− ‖X(t)‖1 with values in ∈ [0, 1] denotes the fraction of undecided nodes
at the end of round t.

To measure how far we are from plurality consensus, we define two plurality gap notions:
Assuming (w.l.o.g.) that 1 is a most common opinion, let ψ(x) := x1 −maxi 6=1 xi ∈ [0, 1] be
the absolute plurality gap. Similarly, γ(x) := x1/maxi 6=1 xi ≥ 1 is the relative plurality gap.

Assumptions. In order to guarantee convergence, we need some (mild) bias assumptions.
Given the initial configuration x̄, without loss of generality (w.l.o.g.), we assume x̄1 ≥ x̄i for
all i ∈ [k] and refer to (the initially most common) opinion 1 as the plurality opinion. For
most of the analysis we assume

ψ(x̄) = ω

(
(logn)2
√
n

)
(1)

and

k = o
( √

n

(logn)2

)
. (2)

While Condition (1) is essential1, Condition (2) is without loss of generality (it can
be achieved by merging small opinions). We define ρ = ρ(n) := (logn)2/

√
n and call a

configuration x biased if ψ(x) = ω (ρ). Our analysis assumes n to be at least some sufficiently
large constant.

3 Plurality Consensus with log k + Θ (log log k) Bits

We divide time into phases, each consisting of T := 5 + 2 log k rounds. In each round, every
node u uses a Pull operation to sample a random node v and checks its opinion opv. We
distinguish two types of rounds:

Cleanup rounds represent the first round of each phase. Here, u becomes undecided if
opv differs from u’s own opinion opu (and keeps its opinion otherwise).
Decision-accumulation rounds make up the remaining T − 1 rounds of a phase. Here,
only undecided nodes act and simply adopt the pulled opinion opv.

The synchronization of the steps in which nodes lose their opinion and adopt opinions of
sampled nodes is key to the fast convergence. As we will see in the analysis they ensure
that each phase increases the relative plurality gap exponentially. We call this protocol
RepeatedCleanup. See Listing 1 for a formal description. In the remainder of this section
we prove the following theorem.

I Theorem 1. RepeatedCleanup has a local memory overhead of Θ (log log k) bits. If
started on a biased configuration x̄ with relative plurality gap γ := γ(x̄), then (w.h.p.) plurality
consensus is achieved in O

(
log(k) · log logγ n+ log logn

)
rounds.

We use the shorthand X(τ, t) := X((τ − 1) · T + t) to denote the configuration at the
end of round t in phase τ . Similarly, Xi(τ, t) and Y (τ, t) denote the corresponding fractions

1 Our results hold also under the slightly weaker condition ψ(x̄) = ω
(√

log(n)/n
)
. However, Condition (1)

significantly simplifies some parts of the analysis.
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1 sample a random node v
2 if t ≡ 0 (mod T ): {cleanup}
3 if opv 6= opu: opu ← ⊥
4 else: {decision−accumulation}
5 if opu = ⊥: opu ← opv

Listing 1 Protocol RepeatedCleanup as executed by node u in round t ∈ N. It works in
phases of length T = Θ (log k) and has memory overhead Θ (log log k).

of nodes. The following definition identifies opinions that are supported by only a small
fraction of nodes (and, thus, are likely to vanish in a cleanup round), and configurations that
do not have too many undecided nodes.

An opinion i in configuration x is negligible if xi ≤ ρ (recall that ρ = (logn)2/
√
n).

A configuration x is alive if ‖x‖1 ≥ 1− e−1.

The following simple observation already hints at the basic change of configurations during
a phase: in expectation, the cleanup round squares the relative plurality gap (but reduces
the absolute support of each opinion), while the decision-accumulation rounds increase the
absolute support of each opinion (not changing the relative plurality gap).

I Observation 2. Consider a configuration x with y := 1 − ‖x‖1. If the configuration X

results from a cleanup round on x and Y = 1− ‖X‖1, then

E [Xi] = x2
i , E [‖X‖1] = ‖x‖22, and E [Y ] = 2y − y2. (3)

Similarly, if X results from a decision-accumulation round, then

E [Xi] = (1 + y) · xi, E [‖X‖1] = 2‖x‖1 − ‖x‖
2
1, and E [Y ] = y2 . (4)

Analysis Overview. The bound on the memory overhead in Theorem 1 immediately follows
from the protocol description. The runtime bound is proven in three steps: Lemma 7 shows
that all non-plurality opinions become negligible during the first O

(
log logγ(x̄) n

)
phases.

Lemma 8 proves that all these negligible opinions vanish within an additional constant number
of phases. Lemma 9 shows that any remaining undecided nodes vanish in another O (log logn)
phases. Before we prove these key lemmas (Section 3.3), we show how configurations evolve
during single rounds (Section 3.1) and single phases (Section 3.2).

3.1 Change During a Single Round
Our first two claims show concentration for the expected configuration change in cleanup and
decision-accumulation rounds we saw in Observation 2. They follow by standard Chernoff
bounds.

I Claim 3 (Cleanup Round). Consider a configuration x at the beginning of phase τ . Let
a > 0 be a constant.
(a) Let i ∈ [k] and δ :=

√
3a · log(n)/n · x−1

i . Then

Pr
[
Xi(τ, 1) ≥ max

(
ρ2, (1 + δ) · x2

i

) ∣∣ X(τ, 0) = x
]
≤ n−a and (5)

Pr
[
Xi(τ, 1) ≤ (1− δ) · x2

i

∣∣ X(τ, 0) = x
]
≤ n−a. (6)

(b) Let δ :=
√

3a · log(n)/n ·‖x‖−1
2 . Then Pr

[
‖X(τ, 1)‖1 ≤ (1− δ) · ‖x‖22

∣∣∣ X(τ, 0) = x
]
≤

n−a.
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I Claim 4 (Decision-accumulation Round). Consider a configuration x at the beginning of
round t + 1 > 1 in phase τ . Let a > 0 be a constant and y := 1 − ‖x‖1 the fraction of
undecided nodes.
(a) Let i ∈ [k], δ′ :=

√
13a · logn/(xiy · n), and δ := max(δ′, δ′2). Then

Pr [Xi(τ, t+ 1) ≥ (1 + δy) · xi · (1 + y) |X(τ, t) = x] ≤ n−a and (7)
Pr [Xi(τ, t+ 1) ≤ (1− δ′y) · xi · (1 + y) |X(τ, t) = x] ≤ n−a . (8)

(b) Assume y ≤ 1− ρ. Then Pr
[
Y (τ, t+ 1) ≥ max

(
ρ2, y3/2) ∣∣ X(τ, t) = x

]
≤ n−a .

3.2 Change During a Single Phase
Next, we use the effects of single rounds to show that (a) the property of being alive is
(w.h.p.) invariant from phase to phase (Claim 5) and (b) the relative plurality gap of a
biased configuration increases (w.h.p.) exponentially during a phase (Claim 6).

I Claim 5. Consider a configuration x at the beginning of phase τ . Let a > 0 be a constant.
Assume ‖x‖1 ≥ 1− e−1 and ‖x‖22 = ω (ρ). Then

Pr
[
‖X(τ + 1, 0)‖1 < 1− e−1 ∣∣ X(τ, 0) = x

]
= n−a . (9)

Proof. Let us first consider the effect of the cleanup round. Claim 3(b) gives

Pr
[
‖X(τ, 1)‖1 ≤ ‖x‖

2
2/2

∣∣∣ X(τ, 0) = x
]
≤ n−a−1 , (10)

where we used ‖x‖22 = ω (ρ) = ω
(√

log(n)/n
)
, such that the involved δ-term becomes o (1).

Next, fix the configuration x̃ = X(τ, 1) after the cleanup round. Let ỹ := 1 − ‖x̃‖1 and
assume ỹ ≤ 1−‖x‖22/2 (this holds with probability at least 1−n−a−1 due to Equation (10)).
With the claim’s assumption ‖x‖22 = ω (ρ), this implies ỹ ≤ 1−ρ and we can apply Claim 4(b)
to get

Pr
[
Y (τ, t+ 1) ≥ max(ρ2, ỹ3/2)

∣∣∣ X(τ, 1) = x̃
]
≤ n−a−1 (11)

for a decision-accumulation round t + 1 > 1. A union bound over the T − 1 = O
(
logn

)
decision-accumulation rounds, combined with Equation (10) via the law of total probability,
gives

Pr
[
Y (τ, T ) ≥ max

(
ρ2,
(

1− ‖x‖22/2
)(3/2)T−1) ∣∣∣∣ X(τ, 0) = x

]
≤ n−a . (12)

The second term of the maximum is at most exp
(
−(3/2)T−1 · ‖x‖22/2

)
. For this to be

at most some value z > 0, we need T − 1 ≥ log3/2
(
2 ln(1/z)/‖x‖22

)
. Choosing z :=

exp
(
−k · ‖x‖22/‖x‖

2
1
)
and remembering our choice of T (see beginning of Section 3), we

calculate

log3/2

(
2 ln(1/z)
‖x‖22

)
= log3/2

(
2/‖x‖21

)
+ log3/2(k) ≤ 4 + 2 log(k) = T − 1 , (13)

where we used the claim’s assumption ‖x‖1 ≥ 1 − e−1 to bound log3/2
(
2/‖x‖21

)
≤ 4.

Thus, Equation (12) implies that with probability at least 1 − n−a we have Y (τ, T ) ≤
max(ρ2, z) ≤ e−1, where we used ρ2 = o (1) and the Cauchy-Schwarz inequality to get
z = exp(−k · ‖x‖22/‖x‖

2
1) ≤ e−1. The claim follows with this from ‖X(τ + 1, 0)‖1 =

‖X(τ, T )‖1 = 1− Y (τ, T ). J
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I Claim 6. Consider a configuration x at the beginning of phase τ . Let a > 0 be a constant.
For an opinion i 6= 1 assume x1 − xi = ω (ρ) and let γi := min(x1/ρ, x1/xi). Then

Pr
[
X1(τ + 1, 0)
Xi(τ + 1, 0) ≤ γ

3/2
i

∣∣∣∣ X(τ, 0) = x

]
≤ n−a . (14)

Proof. For a configuration x′ define the shorthands γi(x′) := x′1/x
′
i and ψi(x′) := x′1 − x′i.

We make an inductive argument over γi during the phase (using ψi as an auxiliary tool for
the induction). Applying Claim 3(a) to both opinions (once the upper and once the lower
bound) yields

Pr
[
X1(τ, 1) ≤ (1− δ1) · x2

1
∣∣ X(τ, 0) = x

]
≤ n−a−1 and (15)

Pr
[
Xi(τ, 1) ≥ max

(
ρ2, (1 + δi) · x2

i

) ∣∣ X(τ, 0) = x
]
≤ n−a−1 , (16)

where δj :=
√

3a · log(n)/n · x−1
j for j ∈ { 1, i }. Let δρ :=

√
3a · ln(n)/n · ρ−1 and δ :=

min(δi, δρ). Note that δ1 ≤ δ, since x1 ≥ xi +ω (ρ) by the claim’s assumption. With this, we
bound the right-hand side in the probability of Equation (15) by (1− δ) · x2

1 and, similarly,
the right-hand side in the probability of Equation (16) by (1 + δ) ·max(ρ2, x2

i ). Using a union
bound and the inequality (1− x)/(1 + x) ≥ (1− 2x) for x ∈ [0, 1], with probability at least
1− 2n−a−1 we have γi(X(τ, 1)) ≥ (1− 2δ) · γ2

i . Similarly, we also have ψi(X(τ, 1)) = ω
(
ρ2).

For xi ≤ ρ, this follows immediately from Equations (15) and (16) (since x2
1 = ω

(
ρ2) and

x2
i = O

(
ρ2)). For xi > ρ, we calculate

ψi(X(τ, 1)) = X1(τ, 1)−Xi(τ, 1) ≥ (1− δ1) · x2
1 − (1 + δi) · x2

i

=
(
x2

1 − x2
i − x1 ·

√
3a · logn

n
− xi ·

√
3a · logn

n

)

= (x1 + xi) ·
(
x1 − xi − 2

√
3a · logn

n

)
= ω (ρ) · (ω (ρ)− o (ρ)) = ω

(
ρ2) .

(17)

Next, fix the configuration x̃ = X(τ, t) and let ỹ := 1 − ‖x̃‖1. Assume ψi(x̃) = ω
(
ρ2)

and x̃i ≥ ρ2. Applying Claim 4(a) to both opinions (once the upper and once the lower
bound) yields

Pr
[
X1(τ, t+ 1) ≤ (1− δ̃′1ỹ) · x̃1 · (1 + ỹ)

∣∣ X(τ, t) = x̃
]
≤ n−a−1 and (18)

Pr
[
Xi(τ, t+ 1) ≥ (1 + δ̃iỹ) · x̃i · (1 + ỹ)

∣∣ X(τ, t) = x̃
]
≤ n−a−1 , (19)

where δ̃′j :=
√

13a · logn/(x̃j ỹ · n) and δ̃j := max(δ̃′j , δ̃′2j ) for j ∈ { 1, i }. Note that δ̃′1 ≤ δ̃i,
since x̃1 ≥ x̃i + ω

(
ρ2) by our assumption. Thus, as before we can combine Equations (18)

and (19) via a union bound to get that with probability at least 1 − 2n−a−1 we have
γi(X(τ, t + 1)) ≥ (1 − 2δ̃iỹ) · γi(x̃) and – analogous to the calculation in Equation (17) –
ψi(X(τ, t+ 1)) = ω

(
ρ2). Now, define the error δ̃ := 2δ̃iỹ and note that

δ̃ = max
(√

13a · logn
x̃in

·
√
ỹ,

13a · logn
x̃in

)
≤
√

13a · logn
x̃in

= O
(

(logn)−3/2
)
, (20)

where we used the assumption x̃i ≥ ρ2 = ω (log(n)/n). In particular, this implies that
(w.h.p.) we have γi(X(τ, t+ 1)) ≥ (1− δ̃) ·γi(x̃), ψi(X(τ, t+ 1)) = ω

(
ρ2), and Xi(τ, t+ 1) ≥

Xi(τ, t) = x̃ ≥ ρ2. Moreover, the error δ̃ is non-increasing in t (since x̃i is non-decreasing in
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t), such that we get the largest error for t = 1, such that we can apply the above recursively.
Applying this via the chain rule to the T −1 = O (logn) decision accumulation rounds yields

Pr
[
γi(X(τ, T )) ≥ (1− δ̃)T−1 · x̃1

max(ρ2, x̃i)

∣∣∣∣ X(τ, 1) = x̃

]
≥ 1−O (logn) · 2n−a−1 . (21)

Since δ̃ = O
(
(logn)−3/2), we can bound the error term (1 − δ̃)T−1 ≥ exp(−(T − 1) ·

2δ̃) ≥ 1 − 2T · δ̃. That is, the error due to the decision-accumulation rounds is 1 − δ′ for
δ′ := 2T · δ̃ = O

(
(logn)−1/2). We now combine our result for the cleanup round and the

decision-accumulation rounds via the law of total probability to get that with probability at
least 1− n−a we have γi(X(τ, T )) ≥ (1− 2δ)(1− δ′) · γ2

i .
Using δ̌ := 2 max(2δ, δ′) = O

(
log(n) ·

√
log(n)/n

)
·min(x−1

i , ρ−1), we get γi(X(τ, T )) ≥
(1− δ̌) ·γ2

i . It merely remains to verify that 1− δ̌ ≥ γ−1/2
i . This is equivalent to δ̌ ≤ 1−γ−1/2

i .
If γi = Ω (1), this holds trivially since δ̌ = o (1). So assume γi = 1 + ε for a suitable ε ∈ (0, 1].
For this range, we have 1− γ−1/2

i ≥ ε/4, such that it is sufficient to show δ̌ ≤ ε/4. By the
claim’s assumption x1−xi = ω (ρ), we get ε = γi− 1 = x1/xi− 1 = ω (ρ) ·x−1

i . On the other
hand, we have δ̌ = O

(
log(n)·

√
log(n)/n

)
·min(x−1

i , ρ−1) ≤ O
(√

(logn)3/n
)
·x−1
i = O (ρ)·x−1

i .
This finishes the proof. J

3.3 Wrapping up the Analysis
We now have the tools to prove the three key lemmas mentioned before (which immediately
imply Theorem 1). We first show that after O

(
log logγ(x̄) n

)
phases, (w.h.p.) all opinions

i ≥ 2 are negligible and the configuration is still alive.

I Lemma 7. Consider an initial configuration x̄ that is alive and for which ψ(x̄) = ω (ρ).
Define τ1 := log3/2 logγ(x̄) n. Then

Pr
[
k⋂
i=2

(
Xi(τ1, 0) ≤ ρ

)
∧ ‖X(τ1, 0)‖1 ≥ 1− e−1

∣∣∣∣∣ X(1, 0) = x̄

]
≥ 1− n−2 .

Proof. Fix a phase τ ∈ N and let x denote the configuration at the beginning of phase τ .
Assume x to be alive, biased, and 1 to be the plurality opinion. Let γ := min(x1/ρ, γ(x)).
By Claim 5, with probability at least 1− n−3 we have ‖X(τ + 1, 0)‖1 ≥ 1− e−1. Combined
with Claim 6 via a union bound over all opinions we get

Pr
[
γ(X(τ + 1, 0)) ≤ γ3/2 ∨ ‖X(τ + 1, 0)‖1 < 1− e−1

∣∣∣ X(τ, 0) = x
]
≤ 2n−3 . (22)

Thus, as long as there is at least one non-negligible opinion i ≥ 2, (w.h.p.) the relative
plurality gap increases exponentially and the configuration stays alive. Moreover, note that
X(τ + 1, 0) being alive and the increased relative gap between x1 and max(ρ, xi) for any
other opinion i implies ψ(X(τ + 1, 0)) = ω (ρ). Thus, we can iterate this argument. To this
end, for any τ ∈ N define the event

Eτ+1 :=
(
γ(X(τ + 1, 0)) > γ3/2

τ

)
∧(‖X(τ+1, 0)‖1 ≥ 1−e−1)∧ψ(X(τ+1, 0)) = ω (ρ) , (23)

where γτ := min(X1(τ, 0)/ρ, γ(X(τ, 0))). Above we proved Pr [Eτ+1 | Eτ ,X(τ, 0) = x] ≥
1 − 2n−3. Using the definition of conditional probability, we get Pr[

⋂
τ≤τ1

Eτ ] ≥
(
1 −

2n−3)τ1 ≥ 1−n−2, where we used (by Assumption (1)) τ1 ≤ 2 log logn
log γ(x̄) ≤ 2 log logn

log(1+ψ(x̄)) ≤
2 log 2 logn

ψ(x̄) = o (logn) . Finally, our choice of τ1 guarantees γ(x̄)(3/2)τ1 = n ≥ ρ−1, such that
all opinions are negligible at the start of phase τ1. J
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The next lemma shows that once we are in a configuration that is alive and where all opinions
i ≥ 2 are negligible, (w.h.p.) all these negligible opinions vanish within a constant number of
additional phases.

I Lemma 8. Consider a configuration x that is alive and for which xi ≤ ρ for all i 6= 1.
Define τ2 := τ1 + 3. Then Pr

[∑k
i=2Xi(τ2, 0) = 0 ∧ ‖X(τ2, 0)‖1 ≥ 1− e−1

∣∣∣ X(τ1, 0) = x
]
≥

1− n−2 .

Proof. Applying Claim 6 yields Pr
[⋃

i 6=1

(
X1(τ1+1,0)
Xi(τ1+1,0) ≤ γ

3/2
ρ

) ∣∣∣ X(τ1, 0) = x
]
≤ n−3 , where

γρ = x1/ρ as in Claim 6. Since ‖x‖1 ≥ 1 − e−1 but xi ≤ ρ for all i ≥ 2, we must have
x1 = Ω (1) (or ‖x‖1 ≤ k · ρ + o (1) = o (1) would contradict x being alive). In particular,
we get γρ = Ω (1/ρ). Combining this with Claim 5 via a union bound, with probability
at least 1 − 2n−3 configuration X(τ1 + 1, 0) is alive and Xi(τ1 + 1, 0) < γ

−3/2
ρ = O

(
ρ3/2)

for all i ≥ 2. Now consider the cleanup round of phase τ1 + 1 for an opinion i ≥ 2 with
Xi(τ1 + 1, 0) = O

(
ρ3/2). The probability that even one node of such an opinion remains

decided after the cleanup round is at most Xi(τ1 +1, 0) ·n ·Xi(τ1 +1, 0) = O
(
ρ3n
)
. Repeating

this for a constant number of phases (note that we can use our high probability bounds to
guarantee that the configuration stays alive and the plurality gap high enough) and applying
the geometric distribution, we get that the probability for an opinion i ≥ 2 to survive c
more phases is at most O

(
ρ3cn

)
. The probability that even one of the k − 1 ≤

√
n negligible

opinions survives these c phases is O
(
ρ3c · n3/2) = o

(
n−(c−1)·5/4). The claim’s statement

follows for c = 2. J

Our last lemma shows that once we reached a configuration that is alive and only the plurality
opinion is left, (w.h.p.) all nodes adopt the plurality in O (log logn) phases.

I Lemma 9. For x with
∑
i≥2 xi = 0 and ‖x‖1 = x1 ≥ 1− e−1 let τ3 := τ2 + ln logn+ 1 =

τ2 + O (log logn). Then Pr [X1(τ3, 0) = 1 |X(τ2, 0) = x] ≥ 1− n−2 .

Proof. We will show that the number of undecided nodes decreases exponentially from phase
to phase, until their number is so low that (w.h.p.) they vanish within a constant number of
decision-accumulation rounds. To this end, we use two basic high probability bounds: for
cleanup rounds of a phase τ on any configuration x′ with

∑
i≥2 x

′
i = 0 and ‖x′‖1 = x′1 ≥ 2/3,

we use

Pr
[
Y (τ, 1) ≥ max(ρ2, 2.05 · y′)

∣∣ X(τ, 0) = x′] ≤ n−a . (24)

To see this, first note that2 we have Pr [Y (τ, 1) ≥ (1 + δx′1) · y′ · (1 + x′1) |X(τ, 0) = x′] ≤
n−a for δ′ :=

√
13a · logn/(x′1y′ · n) and δ := max(δ′, δ′2). Equation (24) then follows by

distinguishing whether y′ ≥ ρ2/4 or not.
To show the exponential decrease of the undecided nodes, assume we are given a con-

figuration x′′ with y′′ < max(ρ2, 2.05 · y′) after the cleanup round of a phase τ . We apply
Claim 4(b) to the first t∗ := 5 ≤ T − 1 decision-accumulation rounds of phase τ and use a
union bound to get Pr

[
Y (τ, 1 + t∗) ≥ max

(
ρ2, y′′(3/2)t∗

) ∣∣∣ X(τ, 1) = x′′
]
≤ t∗ · n−a . Since

y′ ≤ e−1, we get (2.05 · y′)(3/2)5 ≤ y′2. Combining these observations with Equation (24)

2 This follows exactly like Claim 4(a) when switching xi for y′ and y for x′
1. If only one opinion is left,

undecided nodes in cleanup rounds increase exactly as decided nodes in decision-accumulation rounds.
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Phase τ :

S U, I D, I

U,A D,A

SD, I

D,A

Phase τ + 1:

U, I D, I

U,A D,A

S U, I

U,A

Figure 1 Illustration how nodes transition through phases. Red (thick) state transitions highlight
slow transitions that ensure that nodes do not get out of sync too much.

we get Pr
[
Y (τ + 1, 0) ≥ max

(
ρ2, y′2

) ∣∣ X(τ, 0) = x′] ≤ 6n−a. In particular, the resulting
configuration is still alive at the start of phase τ + 1, so we can iterate to get

Pr
[
Y (τ2 + t, 0) ≥ max

(
ρ2, y2t

) ∣∣∣ X(τ2, 0) = x
]
≤ 6t · n−a . (25)

Since y ≤ e−1, for t = ln logn we get max
(
ρ2, y2t) = ρ2. Now, consider a configuration x′

with y′ < ρ2. Equation (24) yields Pr
[
Y (τ2 + t, 1) ≥ 2.05ρ2

∣∣ X(τ2 + t, 0) = x′] ≤ n−a. If
Y (τ2 + t, 1) < 2.05ρ2, then the probability that even one undecided node remains undecided
after the first decision-accumulation round is at most Y (τ2+t, 1)n·Y (τ2+t, 1) ≤ 5ρ4n ≤ n−3/4.
Similar to the proof of Lemma 8, we boost this probability using a geometric random variable
by considering the first 4 ≤ T − 1 consecutive decision-accumulation rounds, such that
Pr [Y (τ2 + t, 5) ≥ 0 |X(τ2 + t, 0) = x′] ≤ n−a + n−3. Combined with Equation (25), we get
the desired statement. J

4 Plurality Consensus with log k + 4 Bits

The non-constant memory overhead of RepeatedCleanup is due to the round counter
used to synchronize phases. We now present a protocol that avoids this counter. Each
node u stores its opinion opu ∈ [k], a phase counter pu ∈ N, and a state variable su ∈
{S, (U, I), (D, I), (U,A), (D,A) }. Our description and analysis assume pu to be an arbitrary
integer. While this would result in a non-constant memory overhead, we will prove that
(w.h.p.) |pu−pv| ≤ 1 for any two nodes u, v and any round. Thus, the actual implementation
can restrict pu to { 0, 1, 2 }, such that we get a memory overhead of log(3 · 5) ≤ 4 bits. We
call this protocol ConstOverhead. Our main result is the following theorem:

I Theorem 10. ConstOverhead has a local memory overhead of 4 bits (15 states). If
started on a biased configuration x̄ with relative plurality gap γ := γ(x̄), then (w.h.p.) plurality
consensus is achieved in O

(
logn · log logγ n

)
rounds.

The rest of this section describes the protocol as well as the underlying idea and gives a
sketch of the analysis. More details can be found in the full version.

Protocol Overview. Initially, each node u starts with pu = 1 and su = S. We call u
undecided if su = (U, ·), decided if su = (D, ·), inactive if su = (·, I), and active if su = (·, A).
At the start of a round, each node u samples a random node v and uses v’s data to transition
through its phase. Listing 2 gives the formal protocol description and Figure 1 an illustration.

We start with a high level description of the protocol which we gradually refine. Basically,
ConstOverhead mimics the synchronized behavior of RepeatedCleanup. As in our first
protocol, there are two ways to transition through a phase: if a node u samples another

ICALP 2016
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1 sample a random node v
2 if su = S: {cleanup}
3 if pv ≥ pu or (pv = pu − 1 and sv = (D,A)):
4 if opv = opu: su ← (D, I)
5 else: su ← (U, I)
6 elseif su ∈ { (U, I), (D, I) }: {slow transition}
7 if (pv = pu and v active) or pv > pu or Ber(1/n) = 1:
8 become active
9 elseif su = (U,A): {decision−accumulation}

10 if (pv = pu and v decided) or pv > pu:
11 opu ← opv and become decided
12 elseif su = (D,A): {slow transition }
13 if pv > pu or Ber(1/n) = 1: (pu, su)← (pu + 1, S)

Listing 2 Protocol ConstOverhead as executed by node u in round t ∈ N. This description
assumes pu to be an arbitrary integer.

node v of the same opinion, it keeps its opinion and has to wait for the other nodes to catch
up. While RepeatedCleanup implemented this waiting via a counter, ConstOverhead
uses slow transitions (highlighted red/thick in Figure 1). Otherwise, if u samples a node v
of a different opinion, it becomes undecided and keeps sampling nodes until it finds a new
opinion.

Becoming decided or undecided is modeled by entering the inactive decided state (D, I) or
inactive undecided state (U, I), respectively. This transition from S to one of these inactive
states corresponds to cleanup rounds of RepeatedCleanup. Now, there is a slow transition
to the active decided state (D,A) and active undecided state (U,A). This transition from
inactive to active ensures that (a) decided nodes do not enter the next phase too early
(which could require a large phase counter) and (b) undecided nodes do not sample decided
nodes too early (which could result in a skewed distribution, since the number of decided
nodes might be too small). Once an undecided node u becomes active, it keeps sampling
nodes until it finds a new opinion. This corresponds to decision-accumulation rounds of
RepeatedCleanup. Note that the transition from (D,A) to S (at which the phase counter
is increased) is slow. This ensures that not too many nodes enter the next phase before all
undecided nodes found a new opinion (which could, as before, require a large phase counter).

Some Subtleties. While the above reflects the basic behavior of our protocol, we omitted
some details. Let us make a few important and useful observations:

A node u always checks whether the sampled node v is not too far behind.
Nodes do not explicitly forget their opinion when becoming undecided but simply overwrite
their old opinion when they find a new opinion. In particular, if a node from an earlier
state asks for u’s opinion while u is undecided, u answers with its most recent opinion
(the provision of which does not cost us extra in terms of memory as we simply retain
the information where it was; the undecided state is seperately encoded in the already
accounted-for Θ (1) additional bits).
Slow transitions s → s′ between two states s and s′ basically simulate Pull-rumor
spreading [18]: Nodes in state s′ or later are “informed”, while all other nodes are
“uninformed”. When u samples an informed node (a node in s′ or beyond), it can cross
the slow transition (independent of the sampled opinion). The Bernoulli trial Ber(1/n)
in slow transitions ensures that, eventually, at least one node is “informed”. Without it,
no node could cross such a transition.
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Analysis Overview. Given that ConstOverhead is based on the same principle as Re-
peatedCleanup, namely employing synchronized cleanup rounds to increase the relative
plurality gap exponentially from phase to phase, it is natural to use a similar analysis. The
major difficulty stems from the fact that our synchronization primitive is now probabilistic
(slow transitions) instead of deterministic (counter). In particular, in the case of ConstOver-
head there is no guarantee that nodes wait at slow transitions for other nodes to catch up;
in fact, there will typically be a few nodes that proceed early on over slow transitions. This
might disturb our analysis in two ways: (a) if nodes could proceed arbitrarily far ahead, their
phase counter could become arbitrarily high, resulting in a non-constant memory overhead,
and (b) if a small group of nodes with a non-plurality opinion were “lucky” and proceeded
fast, these nodes might cause more and more latecomers to adopt a non-plurality opinion.

The major tool to address both of these issues are two probabilistic synchronization
results. The first shows that (w.h.p.) there is a period/stage of O (logn) consecutive rounds
such that:

If n− polylog(n) nodes are in state (D,A) of phase τ − 1 or state S of phase τ , and all
remaining nodes are in one of the two inactive states (·, I) of phase τ ,
then at the end of this period, n− polylog(n) nodes are in one of the two inactive states
(·, I) of phase τ , and all remaining nodes are in one of the two active states (·, A) of phase
τ .

The second result shows that (w.h.p.) there is a period/stage of O (logn) consecutive rounds
such that:

If n − polylog(n) nodes are in one of the two inactive states (·, I) of phase τ , and all
remaining nodes are in one of the two active states (·, A) of phase τ ,
then at the end of this period, n − polylog(n) nodes are in state (D,A) of phase τ or
state S of phase τ + 1, and all remaining nodes are in one of the two inactive states (·, I)
of phase τ .

Note that the final condition of the first stage fits perfectly into the assumption of the
second stage and vice versa. We call the first stage the cleanup stage and the second stage the
decision-accumulation stage (in the style of the corresponding round in RepeatedCleanup).
Since these stages are well-sparated, we can prove an analogue of Claim 3 and an analogue of
Claim 4. Equipped with these, the remainder of the proof is basically identical to the proof
of RepeatedCleanup (which was completely based on these concentration bounds).

References
1 Mohammed Amin Abdullah and Moez Draief. Majority consensus on random graphs of a

given degree sequence. CoRR, abs/1209.5025, 2012. URL: http://arxiv.org/abs/1209.
5025.

2 Dan Alistarh, Rati Gelashvili, and Milan Vojnovic. Fast and exact majority in popula-
tion protocols. In Proceedings of the 2015 ACM Symposium on Principles of Distributed
Computing (PODC), pages 47–56, 2015. doi:10.1145/2767386.2767429.

3 Dana Angluin, James Aspnes, and David Eisenstat. A simple population protocol for fast
robust approximate majority. Distributed Computing, 21(2):87–102, 2008. doi:10.1007/
s00446-008-0059-z.

4 Arta Babaee and Moez Draief. Distributed multivalued consensus. The Computer Journal,
57(8):1132–1140, 2014. doi:10.1093/comjnl/bxt026.

5 Luca Becchetti, Andrea E. F. Clementi, Emanuele Natale, Francesco Pasquale, and Ric-
cardo Silvestri. Plurality consensus in the gossip model. In Proceedings of the 26th

ICALP 2016

http://arxiv.org/abs/1209.5025
http://arxiv.org/abs/1209.5025
http://dx.doi.org/10.1145/2767386.2767429
http://dx.doi.org/10.1007/s00446-008-0059-z
http://dx.doi.org/10.1007/s00446-008-0059-z
http://dx.doi.org/10.1093/comjnl/bxt026


136:14 Efficient Plurality Consensus

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 371–390, 2015.
doi:10.1137/1.9781611973730.27.

6 Luca Becchetti, Andrea E. F. Clementi, Emanuele Natale, Francesco Pasquale, and Luca
Trevisan. Stabilizing consensus with many opinions. In Proceedings of the 27th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 620–635, 2016. doi:10.
1137/1.9781611974331.ch46.

7 P. Berenbrink, T. Friedetzky, P. Kling, F. Mallmann-Trenn, and C. Wastell. Plurality
Consensus via Shuffling: Lessons Learned from Load Balancing. ArXiv e-prints, February
2016. arXiv:1602.01342.

8 Colin Cooper, Robert Elsässer, Hirotaka Ono, and Tomasz Radzik. Coalescing random
walks and voting on graphs. In Proceedings of the 31st ACM Symposium on Principles of
Distributed Computing (PODC), pages 47–56, 2012. doi:10.1145/2332432.2332440.

9 Colin Cooper, Robert Elsässer, and Tomasz Radzik. The power of two choices in distributed
voting. In Proceedings of the 41st International Colloquium on Automata, Languages, and
Programming (ICALP), pages 435–446, 2014. doi:10.1007/978-3-662-43951-7_37.

10 Colin Cooper, Tomasz Radzik, Nicolas Rivera, and Takeharu Shiraga. Coalescing walks on
rotor-router systems. In Proceedings of the 22nd International Colloquium on Structural
Information and Communication Complexity (SIROCCO), pages 444–458, 2015. doi:10.
1007/978-3-319-25258-2_31.

11 Benjamin Doerr, Leslie Ann Goldberg, Lorenz Minder, Thomas Sauerwald, and Christian
Scheideler. Stabilizing consensus with the power of two choices. In Proceedings of the 23rd
Annual ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pages
149–158, 2011. doi:10.1145/1989493.1989516.

12 Moez Draief and Milan Vojnović. Convergence speed of binary interval consensus. SIAM
Journal on Control and Optimisation, 50(3):1087–1109, 2012.

13 Robert Elsässer, Tom Friedetzky, Dominik Kaaser, Frederik Mallmann-Trenn, and Horst
Trinker. Efficient k-party voting with two choices. CoRR, abs/1602.04667, 2016. URL:
http://arxiv.org/abs/1602.04667.

14 Mohsen Ghaffari and Merav Parter. A polylogarithmic gossip algorithm for plurality con-
sensus. In Proceedings of the 35th ACM Symposium on Principles of Distributed Computing
(PODC), 2016. to appear.

15 Y. Hassin and D. Peleg. Distributed probabilistic polling and applications to proportionate
agreement. Information and Computation, 171(2):248–268, 2001. doi:10.1006/inco.2001.
3088.

16 R. Holley and T. Liggett. Ergodic theorems for weakly interacting infinite systems and
the voter model. The Annals of Probability, 3(4):643–663, 1975. URL: http://www.jstor.
org/stable/2959329.

17 K. Jung, B. Y. Kim, and M. Vojnovic. Distributed ranking in networks with limited memory
and communication. In Proc. of the 2012 IEEE Int’l Symposium on Information Theory
Proceedings (ISIT), pages 980–984, 2012. doi:10.1109/ISIT.2012.6284710.

18 Richard M. Karp, Christian Schindelhauer, Scott Shenker, and Berthold Vöcking. Ran-
domized rumor spreading. In Proceedings of the 41st Annual Symposium on Foundations
of Computer Science (FOCS), pages 565–574, 2000. doi:10.1109/SFCS.2000.892324.

19 Etienne Perron, Dinkar Vasudevan, and Milan Vojnovic. Using three states for binary
consensus on complete graphs. In Proceedings of the 28th IEEE International Conference
on Computer Communications (INFOCOM), pages 2527–2535, 2009. doi:10.1109/INFCOM.
2009.5062181.

http://dx.doi.org/10.1137/1.9781611973730.27
http://dx.doi.org/10.1137/1.9781611974331.ch46
http://dx.doi.org/10.1137/1.9781611974331.ch46
http://arxiv.org/abs/1602.01342
http://dx.doi.org/10.1145/2332432.2332440
http://dx.doi.org/10.1007/978-3-662-43951-7_37
http://dx.doi.org/10.1007/978-3-319-25258-2_31
http://dx.doi.org/10.1007/978-3-319-25258-2_31
http://dx.doi.org/10.1145/1989493.1989516
http://arxiv.org/abs/1602.04667
http://dx.doi.org/10.1006/inco.2001.3088
http://dx.doi.org/10.1006/inco.2001.3088
http://www.jstor.org/stable/2959329
http://www.jstor.org/stable/2959329
http://dx.doi.org/10.1109/ISIT.2012.6284710
http://dx.doi.org/10.1109/SFCS.2000.892324
http://dx.doi.org/10.1109/INFCOM.2009.5062181
http://dx.doi.org/10.1109/INFCOM.2009.5062181


Fast, Robust, Quantizable Approximate
Consensus∗

Bernadette Charron-Bost1, Matthias Függer2, and Thomas Nowak3

1 CNRS, École polytechnique, Paris, France
charron@lix.polytechnique.fr

2 Max-Planck-Institut für Informatik, Saarbrücken, Germany
mfuegger@mpi-inf.mpg.de

3 Université Paris-Sud, Paris, France
thomas.nowak@lri.fr

Abstract
We introduce a new class of distributed algorithms for the approximate consensus problem in
dynamic rooted networks, which we call amortized averaging algorithms. They are deduced from
ordinary averaging algorithms by adding a value-gathering phase before each value update. This
results in a drastic drop in decision times, from being exponential in the number n of processes to
being polynomial under the assumption that each process knows n. In particular, the amortized
midpoint algorithm is the first algorithm that achieves a linear decision time in dynamic rooted
networks with an optimal contraction rate of 1/2 at each update step.

We then show robustness of the amortized midpoint algorithm under violation of network
assumptions: it gracefully degrades if communication graphs from time to time are non rooted,
or under a wrong estimate of the number of processes. Finally, we prove that the amortized
midpoint algorithm behaves well if processes can store and send only quantized values, rendering
it well-suited for the design of dynamic networked systems. As a corollary we obtain that the
2-set consensus problem is solvable in linear time in any dynamic rooted network model.
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1 Introduction

This paper studies the problem of approximate consensus: given a set of processes, each of
them with an initial real value, for any positive real number ε, every process has to achieve
ε-consensus, i.e., decides on one value that lies in the range of the initial values and that
differs from the other decision values by at most ε. This problem, which is a weakening
of exact (ε = 0) consensus, has a large variety of applications in distributed computing or
multi-agent control (e.g., clock synchronization or geometric coordination tasks) and often
has to be solved in the context of dynamic networks, using local information, and under
adverse constraints.

In recent work [8], we proved that approximate consensus is solvable in a dynamic network
model if and only if the directed time-varying communication graph is always rooted, i.e.,
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contains a rooted spanning tree. The spanning tree can change completely from time to time.
Hence no stability condition is required to solve approximate consensus.

In fact, we showed that when addressing the solvability issue of approximate consensus,
it suffices to consider the class of averaging algorithms where each process maintains a single
scalar state variable and repeatedly updates to a weighted average of the values it has just
received. Indeed, the problem is solvable if and only if it can be solved by an averaging
algorithm.

We proved that, if there is a positive lower bound % on the weights used in averaging
steps, then the averaging algorithm achieves ε-agreement in O

(
n%−n log 1

ε

)
rounds where n is

the number of processes. Moreover, we showed that the classical averaging algorithm, called
the equal-neighbor algorithm, exhibits an exponentially large decision time in the case of the
Butterfly network model.

Contribution. In this work we present a new approximate consensus algorithm that we show
to be fast, being the first algorithm in highly dynamic networks with linear time complexity
in the number of processes, robust to violation of network assumptions, and allowing for
quantization of its variables – leading to a space efficient algorithm.

We list the main contributions in detail in the following:
(i) We consider the property of %-safety for averaging algorithms originally introduced

by Chazelle [12], which is a generalization of the lower bound condition on positive
weights. This property focuses on the set of transmitted values and not on the linear
functions (stochastic matrices) applied in the averaging steps, as done classically. It
thus captures the essential properties needed for contracting the range of current values
in the system. Using a graph-theoretic reduction that already played a key role in [8],
we first give simple proofs of correctness and of upper bounds on the contraction rate of
%-safe averaging algorithms.
More importantly, this approach allows us to propose a new averaging algorithm for
approximate consensus in dynamic rooted networks, that we call the midpoint algorithm,
with an optimal contraction rate of 1/2.

(ii) We introduce the notion of amortization of averaging algorithms, which consists in
inserting a value-gathering phase before each averaging step. This additional phase
transforms %-safe averaging algorithms into “turbo versions” of themselves in that
decision times pass from being exponential [8] to being polynomial in the number n of
processes.
Amortization assumes that each process knows the size n of the network. Furthermore,
processes ought to be able to accumulate and to relay values from the past, as opposed
to averaging algorithms that are memoryless in the sense that processes deal only with
fresh values. More precisely, we show that the amortized version of a %-safe averaging
algorithm solves approximate consensus with polynomial decision times in any dynamic
rooted network, and a priori under the conditions that each process knows the size of
the network, and can store and transmit in every message up to n(n− 1) scalar values.
Then we combine the two above ideas in the design of the amortized midpoint algorithm,
which achieves ε-agreement in O

(
n log 1

ε

)
rounds. Apart its linear decision times, the

positive features of this amortized averaging algorithm are that it works in anonymous
networks (without process identifier) and that processes are required to store and to
transmit in each message only two scalar values, whatever the size of the network is.

(iii) The correctness proof of amortized averaging algorithms relies on two fundamental
hypotheses: common knowledge of the number n of processes and rootedness of all
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occurring communication graphs. However we show that, even with an erroneous estimate
on n or when communication graphs sometimes fail to be rooted, the amortized version
of a %-safe averaging algorithm still solves approximate consensus, albeit with larger
decision time. This graceful degradation property demonstrates that the robustness of a
%-safe averaging algorithm carries over to some extent to its amortized versions.

(iv) Finally we show that if processes can only use variables with finite precision, then the
amortized midpoint algorithm achieves ε-consensus in linear time whenever possible, i.e.,
when ε is larger than the variables’ precision. The decision time with quantization does
not degrade and remains in the same order as without quantization. The robustness to
rounding errors seems to be specific to the amortized midpoint algorithm as our proof
does not work for general amortized %-safe averaging algorithms.

As a corollary, we get that the 2-set consensus problem – another weakening of exact consensus
where disagreement is limited to at most two different decision values – is solvable in linear
time in all dynamic rooted network models.

While the practical implications of a versatile approximate consensus algorithm which is
both fast and robust are clearly appealing for the design of man-made dynamic networked
systems, our results go even beyond that and are interesting also from a different, more
analytic, perspective.

Many natural phenomena, like bird flocking [11], synchronization of coupled oscillators [27,
20], opinion dynamics [16], or firefly synchronization [19], can be modeled with agents that
execute averaging algorithms. However, there is a large mismatch between the fast agreement
times observed in nature and the theoretical worst-case times, which may be exponential [11].
In this sense, our results provide a step towards closing this gap, suggesting that the agents in
these natural systems in fact operate on a different, slower, time scale than their environments,
and that this inertia actually contributes positively to faster consensus.

Related work. The time complexity of approximate consensus has been extensively studied
in the past. Several papers (e.g., [20, 6, 1, 5, 2]) handle the case of time-varying communication
graphs and consider averaging algorithms with decision times which are exponential in the
number of processes.

The first algorithm with polynomial decision times has been proposed by Olshevsky and
Tsitsiklis [24], based on ideas from load balancing. They proved that their algorithm achieves
ε-consensus in O

(
n3 log 1

ε

)
rounds with a time-varying bidirectional topology under the quite

strong stability condition that graphs do not change during each 3 round slot 3k, 3k + 1,
3k + 2. A refined analysis of this algorithm [22] results in an improved quadratic bound. In
the meantime, Chazelle [12] proposed a remarkable averaging algorithm with cubic decision
times, which works in any bidirectional connected network model.

Another approach to speed up decision times – also developed in the context of load
balancing – consists in considering second-order algorithms where the update rule for process p
at round k + 1 involves the old value held by p at round k − 1, in addition to the values
at round k of p’s neighbors; see [21]. Following this approach, Olshevsky [23] has recently
proposed a linear decision time algorithm that requires each process to know n, and to be
able to store and to transmit in every message two scalar values, like the amortized midpoint
algorithm. Unfortunately Olshevsky’s algorithm works only under the assumption of a
fixed bidirectional communication graph. Another linear approximate consensus algorithm
has been proposed in [28] in the case of a fixed topology, possibly non-bidirectional, but
it assumes processes with strong computational power and large memory (processes ought
to store all values of the past). The sum of these efforts makes the time-linearity of the
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relatively simple amortized midpoint algorithm in arbitrarily dynamic directed anonymous
networks all the more so striking.

As for the effects of quantization, they have been studied in a number of papers, but
most of them assume a fixed topology to bound the time complexity; see [18, 15]. In their
seminal paper [22], Nedić et al. analyzed the quantized version of their quadratic averaging
algorithm for a time-varying bidirectional topology and proved that decision times with
quantized values are of the same order as with continuous values.

2 Approximate consensus and averaging algorithms

We assume a distributed, round-based computational model in the spirit of the Heard-Of
model [9]. A system consists in a set of processes [n] = {1, . . . , n}. Computation proceeds in
rounds: In a round, each process sends its state to its outgoing neighbors, receives values
from its incoming neighbors, and finally updates its state based. The value of the updated
state is determined by a deterministic algorithm, i.e., a transition function that maps the
values in the incoming messages to a new state value. Rounds are communication closed in
the sense that no process receives values in round k that are sent in a round different from k.

Communications that occur in a round are modeled by a directed graph G = ([n], E(G))
with a self-loop at each node. The latter requirement is quite natural as a process can obviously
communicate with itself instantaneously. Such a directed graph is called a communication
graph. We denote by Inp(G) and Outp(G) the sets of incoming and outgoing neighbors of p,
respectively.

The product of two communication graphs G and H, denoted G ◦ H, is the directed
graph with an edge from (p, q) if there exists r ∈ [n] such that (p, r) ∈ E(G) and (r, q) ∈
E(H). We easily see that G ◦H is a communication graph and, because of the self-loops,
E(G) ∪ E(H) ⊆ E(G ◦H).

A communication pattern is a sequence (G(k))k>1 of communication graphs. For a
given communication pattern, Inp(k) and Outp(k) stand for Inp(G(k)) and Outp(G(k)),
respectively.

Each process p has a local state sp the value of which at the end of round k > 1 is denoted
by sp(k). Process p’s initial state, i.e., its state at the beginning of round 1, is denoted by sp(0).
Let the global state at the end of round k be the collection s(k) = (sp(k))p∈[n]. The execution
of an algorithm from global initial state s(0), with communication pattern (G(k))k>1 is the
unique sequence (s(k))k>0 of global states defined as follows: for each round k > 1, process p
sends sp(k−1) to all the processes in Outp(k), receives sq(k−1) from each process q in Inp(k),
and computes sp(k) from the incoming messages, according to the algorithm’s transition
function.

When the structure of states allows each process to record and to relay information it has
received during any period of K rounds for some positive integer K, we may be led to modify
time-scale and to consider blocks of K consecutive rounds, called macro-rounds: macro-round
` is the sequence of rounds (` − 1)K + 1, . . . , `K and the corresponding information flow
graph, called communication graph at macro-round `, is the product of the communication
graphs G((`− 1)K + 1) ◦ . . . ◦G(`K).

2.1 Approximate consensus
A crucial problem in distributed systems is to achieve agreement among local process states
from arbitrary initial local states. It is a well-known fact that this goal is not easily achievable
in the context of dynamic network changes [26, 8], and restrictions on communication patterns
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are required for that. We define a network model as a non-empty set N of communication
graphs, those that may occur in communication patterns.

We now consider the above round-based algorithms in which the local state of process p
contains two variables xp and decp. Initially the range of xp is [0, 1] and decp = ⊥ (which
informally means that p has not decided yet).1 Process p is allowed to set decp to the current
value of xp, and so to a value v different from ⊥, only once; in that case we say that p
decides v.

For any ε > 0, an algorithm achieves ε-agreement with communication pattern (G(k))k>1
if each execution from a global initial state as specified above and with the communication
pattern (G(k))k>1 fulfills the following three conditions:
ε-Agreement. The decision values of any two processes are within ε.
Validity. All decided values are in the range of the initial values of processes.
Termination. All processes eventually decide.

An algorithm solves approximate consensus in a network model N if for any ε > 0, it achieves
ε-agreement with each communication pattern formed with graphs all in N. It solves exact
consensus in N if f it achieves 0-agreement with each communication pattern with graphs
in N.

In a previous paper [8], we proved the following characterization of network models in
which approximate consensus is solvable:

I Theorem 1 ([8]). The approximate consensus problem is solvable in a network model N
if and only if each graph in N has a rooted spanning tree.

2.2 Averaging algorithms
We focus on averaging algorithms in which at each round k, every process p updates xp
to some weighted average of the values it has just received: formally, if mp(k − 1) is the
minimum of the values {xq(k − 1) | q ∈ Inp(k)} received by p in round k and Mp(k − 1) is
its maximum, then

mp(k − 1) 6 xp(k) 6Mp(k − 1) .

In other words, at each round k, every process adopts a new value within the interval formed
by the values of its incoming neighbors in the communication graph G(k).

Since we strive for distributed implementations of averaging algorithms, weights in the
average update rule of process p are required to be locally computable by p. They may
depend only on the set of values received by p at round k, as is the case, for instance, with
the update rule of the mean-value algorithm:

xp(k) = 1
|Vp(k)|

∑
v∈Vp(k)

v (1)

where Vp(k) = {xq(k− 1) | q ∈ Inp(k)}. In contrast, even in anonymous networks, weights in
the update rule for p may depend on the multiset of values received by p at round k counted
with their multiplicities: as an example, p’s update rule in the equal-neighbor algorithm is
given by:

xp(k) = 1
| Inp(k)|

∑
q∈Inp(k)

xq(k − 1) . (2)

1 In the case of binary consensus, xp is restricted to be initially from {0, 1}.
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Observe that the decision rule is not specified in the above definition of averaging
algorithms: the decision time immediately follows from the number of rounds that is proven
to be sufficient to reach ε-agreement.

Let % ∈]0, 1/2]; an averaging algorithm is %-safe in N if at any round k of each of its
executions with communication patterns in N , each process adopts a new value within the
interval formed by its neighbors in G(k) not too close to the boundary:

%Mp(k − 1) + (1− %)mp(k − 1) 6 xp(k) 6 (1− %)Mp(k − 1) + %mp(k − 1) .

Clearly if an averaging algorithm is %-safe, then it is %′-safe for any %′ 6 %. We also easily
check the following property of the equal-neighbor and mean-value algorithms.

I Proposition 2. In any network model with n processes, the equal-neighbor algorithm and
the mean-value algorithm are both (1/n)-safe.

Finally, an averaging algorithm is α-contracting in N if at each round k of any of its
executions with communication patterns in N , we have

δ
(
x(k)

)
6 α δ

(
x(k − 1)

)
where δ is the seminorm on Rn defined by δ(x) = maxp(xp)−minp(xp).

I Proposition 3. In any network model, every α-contracting averaging algorithm with
α ∈ [0, 1[ solves approximate consensus and achieves ε-agreement in

⌈
log 1

α

( 1
ε

)⌉
rounds.

3 Averaging algorithms, nonsplitness, and contraction rates

In a previous paper [8], we proved solvability of approximate consensus in rooted network
models by a reduction to nonsplit network models: a directed graph is nonsplit if any two
nodes have a common incoming neighbor. The crucial point of nonsplitness lies in the
following result:

I Theorem 4. In a nonsplit network model, a %-safe averaging algorithm is (1−%)-contracting.
Thus it solves approximate consensus and achieves ε-agreement in

⌈
log 1

1−%

( 1
ε

)⌉
rounds.

Combined with Proposition 2, we obtain an elementary proof of the classical result [4, 7]
that approximate consensus is solvable in rooted network models, which does not make use
anymore of Dobrushin’s coefficients of scrambling matrices [14], which can be defined as
δ(A) = supδ(x) 6=0 δ(Ax)/δ(x).

As an immediate consequence of Theorem 4, we deduce that any %-safe algorithm is at
best (1/2)-contracting since by definition the safety coefficient % cannot be larger than 1/2.
Indeed, in Section 4 we shall present an averaging algorithm that is (1/2)-safe in any nonsplit
network model. But do there exist other averaging algorithms with a contraction rate less
than 1/2? As stated in the following theorem, the answer is no in the network model of
nonsplit communication graphs, except in the case of two processes for which the best
contraction rate is 1/3.

I Theorem 5. In the network model of nonsplit communication graphs with n processes,
there is no averaging algorithm that is α-contracting for any α > 1/3 if n = 2 and for any
α > 1/2 if n > 3.

Both lower bounds in Theorem 5 are tight. Indeed the midpoint algorithm that we will
introduce in Section 4.3 is (1/2)-safe, and so (1/2)-contracting in the network model of
nonsplit communication graphs. For a two process network, we check that Algorithm 1 has a
contraction rate of 1/3.
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Algorithm 1 Averaging algorithm for two processes with contraction rate 1/3
Initialization:
1: xp ∈ [0, 1]

In round k > 1 do:
2: send xp to other process and receive xq if (q, p) ∈ E(k)
3: if xq was received then
4: xp ← xp/3 + 2xq/3
5: end if

4 Speedup by amortization

In [8] we proved the following reduction from rooted to nonsplit network models to show
that averaging algorithms solve approximate consensus in exponential time.

I Proposition 6 ([8]). Every product of n− 1 rooted graphs with n nodes and self-loops at
all nodes is nonsplit.

We next show that one can in fact push this reduction to the extreme, obtaining
significantly faster algorithms: Proposition 6 and Theorem 4 suggest to consider a new
type of distributed algorithms, which we call amortized averaging algorithms, in which each
process repeatedly first collects values during n− 1 rounds, and then computes a weighted
average of values it has just collected. In other words, an amortized averaging algorithm is
an averaging algorithm with the granularity of macro-rounds consisting in blocks of n− 1
consecutive rounds.

We now make this notion more precise. First let us fix some notation. Macro-round ` is
the sequence of rounds (`− 1)(n− 1) + 1, . . . , `(n− 1). We consider algorithms for which
every variable xp is updated only at the end of macro-rounds; xp(`) will denote the value
of xp at the end of round `(n− 1), as no confusion can arise. Given some communication
pattern (G(k))k>1, the communication graph at macro-round ` is equal to:

Ĝ(`) = G((`− 1)(n− 1) + 1) ◦ . . . ◦G(`(n− 1)) .

Each process p can record the set of values it has received during macro-round `, namely the
set Vp(`) = {xq(` − 1) | q ∈ Inp

(
Ĝ(`)

)
}, but in anonymous networks, p cannot determine

the set of its incoming neighbors in Ĝ(`). This is in contrast to networks with unique
process identifiers where each process p can determine the membership of Inp

(
Ĝ(`)

)
by

piggybacking the name of the sender onto every message, and so can compute the set
Wp(`) = {

(
q, xq(`− 1)

)
| q ∈ Inp

(
Ĝ(`)

)
}. Each process can then determine the multiset of

values that it has received during a macro-round, counted with their multiplicities.
In consequence in any anonymous network, we can define the amortized version of an

averaging algorithm A with weights in update rules that depend only on the sets of received
values: at the end of every macro-round `, each process p adopts a new value by applying
the same update rule as in A with the macro-set Vp(`). Based on the above discussion, this
definition can be extended to averaging algorithms with update rules involving the sets of
incoming neighbors when processes have unique identifiers. For instance, the amortized
version of the mean-value algorithm is defined in any anonymous network while the amortized
equal-neighbor algorithm requires to have unique process identifiers.

In both cases, the new value adopted by process p at the end of macro-round ` lies within
the interval formed by the values of its incoming neighbors in the communication graph Ĝ(`):
if m̂p(`− 1) is the minimum of the values in Vp(`) and M̂p(`− 1) is the maximum, then

m̂p(`− 1) 6 xp(`) 6 M̂p(`− 1) .
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Algorithm 2 Amortized equal-neighbor algorithm
Initialization:
1: xp ∈ [0, 1] and Wp ← {(p, xp)}

In round k > 1 do:
2: send Wp to all processes in Outp(k) and receive Wq from all processes q in Inp(k)
3: Wp ←

⋃
q∈Inp(k) Wq

4: if k ≡ 0 mod n− 1 then
5: xp ← 1

|Wp|

∑
(q,v)∈Wp

v

6: Wp ← {(p, xp)}
7: end if

If the original averaging algorithm is %-safe, then we have the additional guarantee that

%M̂p(`− 1) + (1− %)m̂p(`− 1) 6 xp(`) 6 (1− %)M̂p(`− 1) + % m̂p(`− 1) .

We can then combine Proposition 6 and Theorem 4 to derive the following central result for
amortized averaging algorithms.

I Theorem 7. In any rooted network model, the amortized version of a %-safe averaging
algorithm solves approximate consensus and achieves ε-agreement in (n − 1)

⌈
log 1

1−%

( 1
ε

)⌉
rounds.

In order to fix decision times, we have assumed from the beginning that each process
knows the number n of processes or at least a common upper bound on n. However, regarding
the asymptotic consensus problem, obtained by substituting limit values for decision values in
the specification of approximate consensus, this common knowledge on n is actually useless
for averaging algorithms.

In contrast, update rules in amortized averaging algorithms require that the number of
processes in the network is known to all processes. In other words, amortized averaging
algorithms are defined only under the assumption of this common knowledge in the network,
even for solving asymptotic consensus. In fact, we can adapt the definition of amortized
averaging algorithms to the case where n is a fixed parameter and then, because of the
self-loops, obtain that Theorem 7 still holds when n is only an upper bound on the number
of processes.

4.1 A quadratic-time algorithm in rooted networks with process
identifiers

In [8], we proposed an approximate consensus algorithm with a quadratic decision time.
The algorithm (cf. Algorithm 2) does not work in anonymous networks as it uses process
identifiers so that each process can determine whether some value that it has received several
times during a macro-round is originated from the same process or not.

The update rule (line 5) rewrites as:

xp(`) = 1∣∣ Inp (Ĝ(`)
)
}
∣∣ ∑
q∈Inp

(
Ĝ(`)
) xq(`− 1) .

Hence Algorithm 2 is actually the amortized version of the equal-neighbor algorithm.
From Proposition 2 and Theorem 7, it follows that Algorithm 2 solves approximate

consensus. Moreover, because of the inequality log(1 − a) 6 −a when 0 6 a and because
δ (x(0)) 6 1, it follows that if ` > n log 1

ε , then δ (x(`)) 6 ε. Hence Algorithm 2 achieves
ε-agreement in O

(
n2 log 1

ε

)
rounds.
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4.2 A quadratic-time algorithm in anonymous rooted networks
Interestingly, Algorithm 2 still works when processes just collect values without taking into
account processes from which they originate.

Algorithm 3 Amortized mean-value algorithm
Initialization:
1: xp ∈ [0, 1]
2: Vp ⊆ V , initially ∅

In round k > 1 do:
3: send Vp to all processes in Outp(k) and receive Vq from all processes q in Inp(k)
4: Vp ←

⋃
q∈Inp(k) Vq

5: if k ≡ 0 mod n− 1 then
6: xp ← 1

|Vp|

∑
v∈Vp

v

7: Vp ← ∅
8: end if

At each macro-round `, the update rule in the resulting algorithm for anonymous networks
(cf. Algorithm 3, line 6) coincides with the update rule in the mean-value algorithm. In other
words, Algorithm 3 is the amortized version of the mean-value algorithm. Since the latter
algorithm is a (1/n)-safe averaging algorithm (Proposition 2), we may apply Theorem 7 and
obtain the following result.

I Theorem 8. In a rooted network model of n processes, the amortized mean-value algorithm
solves approximate consensus and achieves ε-agreement in O(n2 log 1

ε ) rounds.

4.3 A linear-time algorithm in anonymous rooted networks
We improve the above quadratic upper bound on decision times with a linear amortized
averaging algorithm which differs from our previous algorithm in the update rule: each
process adopts the midpoint of the range of values it has received during a macro-round (cf.
Algorithm 4).

Algorithm 4 Amortized midpoint algorithm
Initialization:
1: xp ∈ [0, 1]
2: mp ∈ [0, 1], initially xp

3: Mp ∈ [0, 1], initially xp

In round k > 1 do:
4: send (mp, Mp) to all processes in Outp(k) and receive (mq, Mq) from all processes q in Inp(k)
5: mp ← min

{
mq | q ∈ Inp(k)

}
6: Mp ← max

{
Mq | q ∈ Inp(k)

}
7: if k ≡ 0 mod n− 1 then
8: xp ← (mp + Mp)/2
9: mp ← xp

10: Mp ← xp

11: end if

Let us now consider the midpoint algorithm that is the simple averaging algorithm with
the midpoint update rule. In other words, Algorithm 4 is the amortized version of the
midpoint algorithm.

By definition, the midpoint algorithm is (1/2)-safe. By Theorem 4, it follows that this
algorithm is a (1/2)-contracting approximate consensus algorithm in any nonsplit network
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model, with a constant decision time. This improves the linear time complexity of the equal
neighbor averaging algorithm [8] for this type of network models and demonstrates that the
1/2 lower bound in Theorem 5 for networks with n > 3 processes is tight.

Furthermore Theorem 7 implies that Algorithm 4 solves approximate consensus in any
rooted network model with a decision time in O(n log 1

ε ) rounds.

I Theorem 9. In a rooted network model of n processes, the amortized midpoint algorithm
solves approximate consensus and achieves ε-agreement in (n− 1)

⌈
log2

1
ε

⌉
rounds.

Hence the amortized mean-value algorithm and the amortized midpoint algorithm both
work in any anonymous network model, under the assumption that the number of processes
is known to all processes. However while the first algorithm has quadratic decision times and
requires each process to store n values per round and to transmit n values per message, the
amortized midpoint algorithm solves approximate consensus in linear-time and with only a
constant number of (namely, two) values per process and per message.

5 Robustness of amortized averaging algorithms

In this section, we discuss the resiliency of our amortized averaging algorithms against a
wrong estimate of the number of processes or against a partial failure of the assumption that
communication graphs are permanently rooted.

Firstly consider some communication pattern in which only part of communication graphs
are rooted: suppose that N−1 communication graphs in any macro-round of n−1 consecutive
rounds are guaranteed to be rooted. Then there are at least n− 1 rooted communication
graphs in any sequence of L =

⌈
n−1
N−1

⌉
macro-rounds of length n− 1, and every product of L

communication graphs of macro-rounds is nonsplit.
Secondly suppose that the network model is indeed rooted but processes do not know

the exact number n of processes and only knows an estimate N on n. Macro-rounds in the
amortized averaging algorithms then consist of N − 1 rounds (instead of n− 1), and so the
cumulative communication graphs in such macro-rounds may be not nonsplit when N < n.
However the communication graph over any block of L =

⌈
n−1
N−1

⌉
macro-rounds of length

N − 1 is nonsplit.
In both cases, the above discussion leads to introduce the notion of K-nonsplit network

model defined as any network model N such that every product of K communication graphs
from N is nonsplit. Theorem 4 can then be extended as follows:

I Theorem 10. In a K-nonsplit network model, a %-safe averaging algorithm is (1− %K)-
contracting over each block of K consecutive rounds, i.e., for every non negative integer k,
we have

δ
(
x(k +K)

)
6 (1− %K) δ

(
x(k)

)
.

As an immediate corollary of Theorem 10, we obtain that the amortized version of a
%-safe averaging algorithm is resilient against a wrong estimate of the number of processes
or against a partial failure of the assumption of a rooted network model, and its decision
times are multiplied by a factor in O

(
L%−L

)
. Note that the theorem measures the number

of macro-rounds, and not the number of rounds.

I Theorem 11. The amortized version of a %-safe averaging algorithm solves approximate
consensus even with an erroneous number of processes or with a communication pattern
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where only part of communication graphs are rooted. Moreover it achieves ε-agreement in
O
(
L%−L · log

( 1
ε

))
macro-rounds if N denotes the estimate on process number or if only

N − 1 rounds in each block of n − 1 consecutive rounds are guaranteed to have a rooted
communication graph and where L =

⌈
n−1
N−1

⌉
.

6 Quantization

In this section, we take into account the additional constraint that processes can only store
and transmit quantized values. This model provides a good approximation for networks with
storage constraints or with finite bandwidth channels.

We include this constraint by quantizing each averaging update rule. For that, we fix
some positive integer Q and choose a rounding function, denoted [ . ], which rounds down (or
rounds up) to the nearest multiple of 1/Q. Then the quantized update rule for process p at
round k writes

xp(k) =

 ∑
q∈Inp(k)

wqp(k)xq(k − 1)

 (3)

where the wqp(k) denote the weights in the average of the original algorithm. Besides we
assume that all initial values are multiples of 1/Q.

6.1 Quantization and midpoint
Nedić et al. [22] proved that in any strongly connected network model, every quantized
averaging algorithm with the update rule (3) solves exact consensus (and so approximate
consensus). Because of the impossibility result for exact consensus [8], their result does
not hold if the strong connectivity assumption is weakened into the one of rooted network
models.

For the same reason, if ε < 1/Q, then ε-consensus cannot be generally achieved in a
rooted network model by a quantized averaging algorithm or its amortized version. In this
section, we prove that the quantization of the amortized midpoint algorithm indeed achieves
1/Q-agreement in any rooted network model.

I Theorem 12. In a rooted network model, quantization of the amortized midpoint algorithm
achieves 1/Q-agreement by round (n− 1)

(⌊
log2(Q− 2)

⌋
+ 2
)
. Moreover in every execution,

the sequence of values of every process p converges to a limit x∗p that is a multiple of 1/Q in
finite time, and for every pair of processes p, q, we have either x∗p = x∗q or

∣∣x∗p − x∗q∣∣ = 1/Q.

We see that the decision times of the quantized and the non-quantized versions of the
amortized midpoint algorithm are in the same order for ε = 1/Q. Further, one can show that
for ε > 2/Q, ε-agreement is achieved earlier, namely in round (n − 1)

(⌊
log2

Q−2
Qε−2

⌋
+ 1
)
.

When increasing precision, i.e., for Q→∞, this reduces to O(n log 1
ε ).

6.2 Approximate consensus versus 2-set consensus
We now consider the 2-set consensus problem which is another natural generalization of
the consensus problem. Instead of requiring that processes agree to within any positive
real-valued tolerance ε, processes have to decide on at most 2 different values:
Agreement. There are at most two different decision values.
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Formally, each process starts with an input value from the set V of multiples of 1/Q
and has to output a decision value from V in such a way that the termination and validity
conditions in the consensus specification as well as the above agreement condition are satisfied.

The 2-set consensus problem naturally reduces to approximate consensus: processes
round off their 1/Q-agreement output values. Unfortunately, the use of averaging procedures
to solve approximate consensus leads processes to exchange values out of the set V in the
resulting 2-set consensus algorithms. The quantized amortized midpoint algorithm allows us
to overcome this problem, and Theorem 12 shows that in any rooted network model, this
algorithm achieves 2-set consensus in (n− 1)

(⌊
log2(Q− 2)

⌋
+ 2
)
rounds.

The above discussion shows that the 2-set consensus problem is solvable in a dynamic
network model if all the communication graphs are rooted. In particular, 2-set consensus is
solvable in a asynchronous complete network with a minority of faulty senders since nonsplit
rounds can be implemented in this model. Combined with the impossibility result in [13] in
the case of a strict majority of faulty processes, we obtain an exact characterization of the
sender faulty models for which 2-set consensus is solvable in asynchronous systems if the
number of processes n is odd and a small gap (namely n/2 faulty processes) when n is even.

Our positive result can be interestingly compared with the 2 faulty processes boundary [3,
17, 25] between possibility and impossibility of the original (and stronger) 2-set consensus
problem [10] where decision values ought to be initial values, instead of being in the range of
the initial values. That points out the crucial role of the validity condition on the solvability
of 2-set consensus.

7 Conclusion

This paper presented a linear-time approximate consensus algorithm in rooted dynamic
network models. For that, we introduced the amortization technique to speed up classical
averaging algorithms from exponential to polynomial time, while preserving their inherent
robustness. Careful study of the properties that make averaging algorithms contracting lead
us to identify the midpoint algorithm as having the optimal contraction rate of 1/2. Central
to our analysis of the amortized midpoint algorithm was the switch from the commonly
employed matrix-based to a value-based view. An important property of the amortized
midpoint algorithm is that it can be used almost unaltered with quantized values, which
allows to decide on at most two neighboring values, thereby a fortiori solving 2-set consensus.
Interestingly, it only needs to store and send two values in each round, which makes it
space-efficient and viable for implementation.
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Abstract
The dual graph model describes a radio network that contains both reliable and unreliable links.
In recent years, this model has received significant attention by the distributed algorithms com-
munity [12, 4, 8, 10, 9, 16, 1, 14]. Due to results in [10], it is known that leader election plays a
key role in enabling efficient computation in this difficult setting: a leader can synchronize the
network in such a manner that most problems can be subsequently solved in time similar to the
classical radio network model that lacks unreliable links. The feasibility of efficient leader election
in the dual graph model, however, was left as an important open question. In this paper, we an-
swer this question. In more detail, we prove new upper and lower bound results that characterize
the complexity of leader election in this setting. By doing so, we reveal a surprising dichotomy:
(1) under the assumption that the network size n is in the range 1 to N , where N is a large upper
bound on the maximum possible network size (e.g., the ID space), leader election is fundament-
ally hard, requiring Ω̃(

√
N) rounds to solve in the worst-case; (2) under the assumption that n

is in the range 2 to N , however, the problem can be solved in only Õ(D) rounds, for network
diameter D, matching the lower bound for leader election in the standard radio network model
(within log factors) [7].
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1 Introduction

The dual graph model is a generalization of the classical radio network model [5, 3] that
augments a connected network topology of reliable links with an additional set of unreliable
links. These latter links can come and go on a round-by-round basis as determined links.
These latter links can come and go on a round-by-round basis as determined by an unknown
adversarial process. The model is motivated by the observation that in real radio networks
link quality can change unpredictably due to many different factors (e.g., [17]). Upper bounds
proved in this general model are therefore more robust in real world deployments, while lower
bounds help formalize the complexity induced by link unreliability.

The dual graph model was introduced in [11] and has since been well-studied in the
distributed algorithms community [12, 4, 8, 10, 9, 16, 1, 14]. In this paper, we present new
upper and lower bounds for the problem of leader election in this setting. As we elaborate
below, by doing so we resolve an important open question from [10] and provide a primitive
that enables efficient solutions to many problems in this difficult model.

The Power of Rerandomization. In more detail, the dual graph model describes a radio
network consisting of n processes connected by two network topology graphs G = (V,E)
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138:2 Leader Election in Unreliable Radio Networks

and G′ = (V,E′), where the nodes in V correspond to the n processes, E describes reliable
links, and E′ describes unreliable links. We assume G is connected and use D to describe
its diameter. We consider randomized algorithms executing in synchronous rounds. In each
round, the network topology is fixed to include all edges in E and some subset of the edges in
E′, where the latter decision is made by an unknown adversary. Once the topology is fixed,
communication follows the standard multi-hop multiple access channel rules (see Section 2).

An important assumption in the dual graph model is the strength of the adversary that
selects the unreliable links to include in each round. Early work on this model assumed the
adversary was strongly adaptive (i.e., it knows the processes’ random bits), which led, not
surprisingly, to pessimistic lower bounds [11, 12, 4, 8, 16]. In response to these negative
results, we argued in [10] that it makes more sense to assume an oblivious adversary, as this
still allows for unpredictable link behavior, but it removes the unrealistic assumption that
link quality can somehow adapt to the processes’ private bits.

To validate the claim that the oblivious dual graph model is tractable, we demonstrated
that if you can synchronize a group of processes with new random bits generated after
the execution begins (and therefore unknown to the adversary), these processes can then
efficiently communicate. The high-level idea is that transmitters use the shared bits to
randomly permute the broadcast probabilities used by the standard Decay contention
management routine [3] in a manner that is hard for the adversary to predict and therefore
is hard for the adversary to impede with its selection of unreliable links.

The key to enabling efficient communication in the dual graph model, therefore, is to
efficiently spread shared random bits among the processes in the network. In [10], we took a
first step toward this goal by showing that if you are provided a single leader in the network,
this leader can generate the bits itself, and then efficiently disseminate them to all processes
in O(D logn + log2(n)) rounds (with high probability in n)—nearly matching the lower
bound of Ω(D log (n/D) + log2 n) for one-to-all broadcast in the standard radio network
model [2, 13, 15]. The high-level idea is that as the new bits spread, the processes that learn
them are synchronized and can therefore run the efficient Decay variation to efficiently spread
them to the next hop.

This strategy reduces the challenge of efficient communication in the dual graph model
to electing a single leader. Whether or not it is possible to efficiently solve leader election in
this setting, however, was left as key open question in [10]. In this paper, we answer it.

Our Results. We prove lower and upper bounds that characterize the complexity of leader
election in the dual graph model with an oblivious adversary. In doing so, we reveal a
surprising dichotomy: (1) under the assumption that the network size n is in the range 1
to N , where N is a large upper bound on the maximum possible network size (e.g., the
ID space), leader election is fundamentally hard, requiring Ω̃(

√
N) rounds to solve in the

worst-case; (2) under the assumption that n is in the range 2 to N , however, the problem can
be solved in only Õ(D) rounds, matching the lower bound for leader election in the standard
radio network model (within log factors) [7].

Put another way: the promise that you are not alone in the world renders the problem of
leader election vastly more tractable. We are unaware of other similar settings for which the
split between n ≥ 1 and n ≥ 2 holds such significance. In the standard radio network model,
for example, the best known leader election algorithms (which nearly match the relevant
lower bounds) work equally well for all network sizes [7].

Our lower bound focuses on the easier problem of loneliness detection, in which the goal is
for each process in a network to correctly determine whether or not it is alone. We construct
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a network of maximum size N that consists of ≈
√
N outsider processes each connected to an

insider process in G. We then connect the insider processes to satisfy the model requirement
that G is connected. The graph G′ describing unreliable links is fully connected. We then
demonstrate how an oblivious adversary can construct a schedule for adding and removing
G′ edges between insider and outsider processes that delays some outsider processes from
receiving messages for a long period. During this period, these outsiders cannot distinguish
this execution from those in networks where they are alone. The challenge in constructing this
schedule is that the insider processes might coordinate after the execution begins, creating
correlated behavior that is hard to predict when constructing our G′ schedule. To sidestep
this problem we connect each insider process to a line of length ≈

√
N such that all these

lines connect at their far ends. This allows us to keep insider behavior independent for the
Ω(
√
N) rounds that pass before any two insider processes can learn common information.
Our upper bound, by contrast, leverages a novel strategy that necessitates that n ≥ 2. In

particular, the algorithm works in phases. In each phase, it attempts to elect a single leader
by having each process flip a weighted coin and become a candidate leader if it comes up
heads. For each weight tried, the processes run a series of experiments to detect whether
they succeeded in electing a single leader.

At a high-level, in these experiments, each candidate leader begins to grow a territory of
processes that it synchronizes with new random bits. These bits allow them to communicate
efficiently using the rerandomization strategy from [10] described above. For territory A to
detect if it neighbors some different territory B (indicating the election failed), processes
within each territory watch the success rate of their internal communication. If the collision
rate is higher than expected, this is evidence that another territory, using different random
bits, exists nearby. This strategy requires that each candidate leader has at least one neighbor
to recruit for this testing—generating our requirement that n ≥ 2. We emphasize that this
cooperative approach to interference detection is new in the dual graph literature.

Related Work. A close predecessor to the dual graph model of unreliable radio communic-
ation was introduced by Clementi et al. [6]. The model in its current form was identified
by Kuhn et al. [11]. It has since been well-studied by the distributed algorithms com-
munity [12, 4, 8, 10, 9, 16, 1, 14]. Under the pessimistic assumption of a strongly adaptive
adversary controlling the unreliable links, results are known for global broadcast [11, 12],
local broadcast [8], and graph structuring algorithms [4, 16]. In [10], we suggested the
assumption of an oblivious adversary and produced near optimal bounds for global broadcast.
We also proved that local broadcast could not be solved in o(D) rounds—establishing the
Õ(D) round strategy for enabling efficient communication presented in this paper as optimal
with respect to its dependence on D. Recent work by Lynch and Newport [14] explored a
different route to efficient communication in this setting by describing how to enable efficient
communication in o(D) time under the additional assumption that G and G′ satisfy strong
geographic constraints. The algorithm described here makes no assumption on the network
topologies and the graphs used in our lower bound do not satisfy the constraints of [14].

2 Model and Problem Statement

Model. We study the dual graph model of unreliable networks with an oblivious adversary.
In more detail, we model a network consisting of n processes connected by a topology
consisting of both reliable and unreliable links. We describe the reliable links with a
connected graph G = (V,E), and the unreliable links with a graph G′ = (V,E′). We use
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D to describe the diameter of G. An algorithm in our setting assigns one computational
process to each node in V , and we assume processes are provided no advance information
about G or G′. In the following, we will use the terms node and process interchangeably.

Executions are divided into synchronous rounds. At the beginning of an execution, an
oblivious adversary determines which edges from G′ to include in the network topology
for all upcoming rounds (e.g., it generates an infinite sequence of graphs, G1, G2, ..., where
each Gi = (V,Ei), where Ei includes every edge in E and a subset of edges from E′). The
adversary does not have access to the nodes’ private random bits in generating this sequence.
In each round r, we call the edges in Gr the active edges for the round. At the beginning of
the round, each node decides to listen or transmit. A node u receives a message m in r if
and only if: (a) u decides to listen; and (b) exactly one neighbor of u in the active edges
(i.e., neighbor in Gr) transmits in r and it transmits m. In this case, u learns whether the
message came from a reliable neighbor. Put another way, if two or more neighbors transmit,
all messages are lost at u due to collision. We assume that collisions cannot be distinguished
from silence (i.e., no collision detection).

Problem Statements. The problem of leader election requires each node v to output a
binary value bv such that, with high probability, exactly one node outputs 1. This node is
called the leader. This problem specification suffices for our lower bound. For our algorithmic
result, we strengthen the problem by also requiring that each node other than the leader
receive at least one message from the leader. The problem of loneliness detection requires
that each node v outputs a binary value b′v such that, with high probability, if v is not alone
in the network, b′v = 0, and if v is alone, then b′v = 1.

3 The Loneliness Detection Lower Bound

Here, we show that detecting whether a node is alone in the network or not requires Ω̃(
√
N)

rounds, where N is the best known upper bound on n, e.g., the size of the ID space. That
is, if all that nodes know about the current number n of nodes in the network is that
n ∈ [1, N ], then leader election in the dual graph model requires much more than its analogue
in the reliable model, where Õ(D) round suffices. Note that in the reliable model, detecting
loneliness can be solved easily in O(log2 N) rounds, with high probability, using the classical
Decay protocol. In contrast, as we show here, the same problem in the unreliable model
requires Ω̃(

√
N) rounds. Formally, we prove the following result:

I Theorem 1. Loneliness detection in the oblivious-adversary dual graph model requires
Ω̃(
√
n) rounds. More specifically, there is a dual graph radio network (G,G′) with at most

N nodes in which, for any execution of any distributed algorithm A, some nodes cannot
distinguish this execution from one in which they are alone.

We first start with describing the structure of the dual graph radio network (G,G′)
that proves this lower bound. We then provide intuitive discussions about the adversary’s
oblivious strategy for each given algorithm A. At the end, we provide the formal attack
strategy and prove that it ensures that some of the nodes in the network experience an
execution identical to one in the setting where they are alone in the network.

The Lower Bound Network. We first explain the reliable graph G. We have b
√
Nc paths,

each consisting of bN−1√
N
c ≈
√
N nodes. We call these support lines, and we label them 1, 2,

..., b
√
Nc. For each line, we call one endpoint “right” and the other “left”. We connect all
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…

𝑎1
𝑏1

𝑎2

𝑎 𝑁−1

𝑎 𝑁

𝑏 𝑁

𝑏 𝑁−1

𝑏2

Figure 1 An illustration of the lower bound network. The reliable G-edges are depicted as solid
blue lines, and the dashed black lines indicate the unreliable G′-edges.

the right endpoints to one node t. For each line i, we call the first node ai and the second
node bi. The unreliable graph G′ is then defined as a complete bipartite graph between
A = {ai|i ∈ [b

√
Nc]} and B = {bi|i ∈ [b

√
Nc]}, except for the first path edges ai–bi, for each

path i, which are reliable and in G. For each i, we refer to ai and bi as pairs of each other.
Figure 1 shows an illustration of this network.

3.1 Intuitive Discussions about the Adversary’s Strategy

The adversary’s plan is to ensure that by round O(
√
N/ logN), with high probability, there

are still at least half of the nodes of A which have not received any message from any other
node. Thus, for each of them, the execution is identical to one in which the node is alone.

The Adversarial Strategy – Take 1. We start with an insufficient but instructive strategy.
For the moment, think of bi nodes as detached from the rest of their respective lines and let
us focus on just the bipartite graph A×B. Let us call a node v ∈ A ∪B compromised if it
has received at least one message from some other node of A ∪B or some node in A ∪B has
received a message of v. Otherwise, we call v uncompromised.

The adversary uses its knowledge of the algorithm A to calculate the expected number of
nodes in A ∪B that will transmit in each given round. If this expectation is greater than
Ω(logN), then the adversary will aim for creating a collision for all nodes, by making all
edges of G′ active. The idea is that, if we have independence between the random decision
of nodes in A ∪B transmitting in this round, then due to this high expectation, with high
probability, two or more nodes transmit. That would mean all nodes in A ∪B experience
collisions and none of them receives a message. Thus, in these high-expectation rounds, no
nodes gets compromised, with high probability. On the other hand, if the expected number
of transmitting nodes in A∪B is at most O(logN), then the adversary will work in the other
extreme, and it does not activate any of the unreliable G′ edges. Assuming independence
between different nodes in A∪B transmitting, with high probability, at most O(logN) nodes
transmit. This means, with high probability, there are at most O(logN) many ai–bi pairs for
which some message exchange happens between ai and bi. Hence, in these low-expectation
rounds, at most O(logN) nodes get compromised. Therefore, per round, O(logN) nodes
get compromised, with high probability. That means, even after O(

√
N/ logN) rounds—for

small enough constants—at least half of A remain uncompromised.
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The Problem in the Take 1 Strategy. The key difficulty with the above strategy is that,
whether different nodes of A ∪ B transmit or not in a given round are not independent.
This creates a challenge for concentration arguments around the expectation. For instance,
there can be dependency between nodes that are compromised as there might be some
communication that happened between them. Furthermore, note that the adversary cannot
know which nodes are compromised in each round, as that depend on the random decisions
of nodes with respect to transmitting or not.

The Adversarial Strategy – Take 2. The adversary will base its decision on the expected
number Xr of uncompromised nodes that transmit, in each given round. Notice that the
adversary does not know which nodes are compromised. Hence, in this expectation, whether
a node is compromised or not is also a random event. Note that Xr =

∑
i x

r
ai

+xrbi
where, for

instance, xrai
is an indicator random variable for the event of ai remaining uncompromised

up to round r and then transmitting in round r.
The reason that we can focus the attack on only uncompromised nodes is that the

behavior of compromised nodes will not impact the new nodes that get compromised, with
high probability. Particularly, if Xr = Ω(logN) and we have independence, then with high
probability, two or more uncompromised nodes transmit. Thus activating all G′ edges makes
every node in A ∪ B experience collision. On the other hand, if Xr = O(logN) and we
have independence, then with high probability, at most O(logN) uncompromised nodes
transmit. Hence, if no G′-edge is activated, only nodes which their pair transmitted can be
compromised. Thus, per round, at most O(logN) new nodes get compromised. Hence, even
after O(

√
N/ logN) rounds, at least half of the nodes in A remain uncompromised.

The Problem in the Take 2 Strategy. It remains to explain how the adversary computes
the probabilities of the indicator random variables xrai

and xrbj
. Furthermore, the events of

these variables are not precisely independent, because there is dependency between different
nodes becoming compromised. For instance, if a node transmits alone in a high-expectation
round in A ∪ B, all nodes are compromised. Also, if a node gets compromised in a low-
expectation round, so does its pair. We need to explain that we have sufficient independence
between the random variables to use concentration arguments.

3.2 The Formal Adversarial Strategy and its Analysis
We now describe our exact adversarial strategy for determining the active edges of G′ per
round. We describe this process algorithmically. We later prove that for any loneliness
detection algorithm A, under this oblivious adversarial strategy, at least half of the A-nodes
remain uncompromised. the schedule produced by this process works well.

In more detail, let T = c
√
n/ logn, for a sufficiently small constant c > 0, to be fixed

later. As mentioned before, the adversary uses only two choices regarding which edges of
G′ are active: The first option is include no extra G′-edges. We call these rounds sparse.
The second option is to include all G′ edges. We call these rounds dense. We can, therefore,
describe the adversary’s behavior with a binary array S of size T , where S[r] = 0 indicates
round r will be sparse and S[r] = 1 indicates it will be dense.
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Oblivious Link Schedule Generation for Duration T
/ / Initialization
α is a positive constant that we use in defining our sparse/dense threshold
A is binary array of size T initialized to 0 in all positions
N(u), for u ∈ A ∪B, is a real value initialized to 1
Pr(u), for u ∈ A ∪B and r ∈ [T ], is the probability node u transmits in r if it is still
uncompromised at r (this depends on the definition of A)

/ / Assigning Values to Array S

for r = 1 to T :
x←

∑
u∈A∪B

N(u) · Pr(u)
if x ≥ α logn then
S[r]← 1 / / round r is dense (so we assume no compromises)

else
S[r]← 0 / / round r is sparse
foreach u ∈ A ∪B
N(u)← N(u) · [(1− Pr(u)) · (1− Pr(v)) + Pr(u) · Pr(v)]
/ / updating the probability that u is compromised,

where v is the pair of u in the respective path.

We must first verify that the above schedule can be generated by the oblivious adversary
prior to the execution. The only non-trivial information in this effort is how the adversary
generates Pr(u) in advance, which we discuss next.

Computing Transmission Probabilities of Uncompromised Nodes in A ∪ B. For u ∈ A,
this follows directly from the definition of the algorithm: given the algorithm and a single
node u, it is straightforward to calculate the probability that the algorithm broadcasts in
any round r, given that node u is isolated.

For u ∈ B, where u = bi the adversary computes Pr(u) by recursively simulating the
following modified graph under a fixed pattern of delivering messages. The graph is simply
the line starting from bi and ending with the left endpoint of the path. The simulation is
done (recursively, round by round) under the setting that whenever S[r] = 1, node bi does not
receive any message even if it is listening and its left neighbor transmits, whenever S[r] = 0,
the reception of bi is the same as it when this detached path is running alone. Simulating
this detached line under this fixed reception strategy to bi allows us to compute the Pr(bi)
for each round r ≤ T . This is because, if bi is not compromised, the only difference between
this simulated ditached line and the line in our network would be the connection to node t
at the far right end. However, that connection cannot affect the behavior of bi in the first
T = c

√
N/ logN rounds, as it is

√
N hops away from bi and due to the synchronous rounds,

the causal dependency propagates with a speed of one hop per round at most.

Analysis. Next we analyze the performance of any algorithm A when executed in our
network with the G′ edges following the adversarial strategy captured by the array S as
generated above.

I Lemma 2. With high probability, in each of the first T = c
√
N/ logN rounds, at most

O(
√
N) new nodes get compromised.

Proof. By induction on r, we show that with high probability, (1) in each dense round, all
nodes in A∪B experience collision and thus no new node gets compromised, and (2) in each
sparse round, at most O(logN) nodes get compromised. This directly proves the lemma.
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The claim is trivially correct for round r = 1 because in this round, all nodes are
uncompromised and N(u) = 1 for all of them. So, the parameter x in the adversary’s
calculations is the correct expectation of the number of transmitting nodes in A ∪B in this
round. Since we have independence between these events in the first round, Chernoff bound
gives that with high probability, dense rounds are in collision for all nodes in A ∪ B, and
sparse rounds compromise at most O(logN) nodes.

Next, we prove the inductive step. Suppose that the claim is true for all rounds r′ ≤ r− 1.
Note that the claim implies that, modulo an inverse-polynomially small term (for the negligible
change of the claim being broken), in round r, the variable N(u) in the pseudo-code correctly
captures the probability of node u remaining uncompromised. This is because, the calculation
ignores the dense rounds, in which we know the u would not get compromised there, and it
takes the transmission probability of the node and its pair into account in sparse rounds, as
only the transmission of exactly one of these two nodes can compromise u.

Define Nr be random variable indicating the set of uncompromised nodes in r. Also,
define the random variable Xr to be the number of uncompromised nodes in A ∪ B that
transmit in r. Let Yr(u) be the indicator variable that is 1 if and only if u is uncompromised
and transmits in r. We clearly have E[Xr] =

∑
u∈A∪B Yr(u) =

∑
u∈A∪B Pr(u) · Pr[u ∈ Nr].

In the following, we use the notation xr to refer to the value of x in the pseudo-code run
by our oblivious scheduler algorithm in round r. By the argument above, and thanks to the
hypothesis of induction, we know that the computations of N(u) for the probability of not
being compromised was correct up to round r − 1.

I Claim 3. By way of induction, assume that in every dense round r′ ≤ r − 1, all nodes of
A∪B experience collision and thus, none of them receives a message. It follows that for each
v, u ∈ A ∪B where (u, v) /∈ G, and each r ≤ T , the events Yr(u) and Yr(v) are independent.

Claim Proof. Given the inductive assumption that collisions are enforced in dense rounds
r′ ≤ r − 1, for each u ∈ A ∪B, we have the following: If it is in A, until u is compromised,
it sees an execution identical to those in which it is alone. Also, if it is in B, until u is
compromised, it experiences an execution identical to those in which the related detached
line is under the reception adversary discussed above when computing Pr(u). Particularly,
u has received no information from outside its support line, and therefore its transmission
decisions are independent of nodes in other lines.

Hence, the only way for a node to be compromised for the first time is if the node u or
its pair transmit during a sparse round, in the past. However, these transmissions (prior to
being compromised) are independent events between nodes of different pairs (i.e., lines). J

By the independence provided by the above claim, we can prove that the inductive
assumption of having collisions in dense rounds is correct also for the next round r. This
is because, under the inductive assumption that dense rounds prior to round r were all in
collisions, the calculations N(u) in the pseudo-code correctly captures the probability of a
node u being uncompromised up to and including round r. This is equal to the probability
of remaining uncompromised up to round r − 1, which we know was correctly computed
by indcution, and then having either none of u and its pair v transmit, or both transmit.
Now, given that these events Yr(u) for different u ∈ A ∪ B are independent, except for
each depending on one other event in the same set, we can finish the argument as follows:
we use the standard extensions of Chernoff bound to settings with bounded (constant)
dependency-graph degree and conclude the following: if the expectation E[Xr] is Ω(logN),
then with high probability, Xr ≥ 2. Hence, with high probability, the dense round r also
is in collision. Similarly, if the expectation E[Xr] is O(logN), then with high probability
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Xr ≤ O(logN) and thus, in round r, at most O(logN) new nodes get compromised. This
finishes the proof of the inductive proof and thus also the proof of the lemma. J

4 The Algorithm

Here, we explain a distributed algorithm that computes a leader in Õ(D) rounds, in the dual
graph model with an oblivious adversary, when nodes are given the promise that n ≥ 2.

I Theorem 4. There is a distributed algorithm that in any dual graph network (G,G′) with
an oblivious adversary, and where n ≥ 2 and G has diameter D, elects a leader in at most
O(D log4 N) rounds, with probability at least 1− 1/N c, for any desired constant c ≥ 2.

4.1 Outline
Suppose that all nodes know an upper bound D on the diameter of the reliable graph G, that
is within a constant factor of the diameter. We will explain how to remove this assumption
using the standard doubling technique, at the end of this section.

We will try O(logN) estimates of the form η = 2i for n, where i ∈ [1, logN ]. For each of
these, we run O(logN) experiments, where in each experiment each node is marked with
probability 1/η = 2−i. Each marked node is considered as a candidate for leadership and an
experiment is successful if and only if there is exactly one candidate. It is easy to see that,
with high probability, there is at least one experiment in which there is exactly one marked
node. The challenge is to identify experiments with exactly one candidate.

We run the O(log2 N) experiments in parallel. Particularly, we divide time into epochs
of length O(log2 N) and the jth round of each epoch belongs to the jth experiment. Let us
focus on one experiment. The problem we need to solve in a single experiment is to detect
whether in this experiment, there is exactly one candidate or not, in Õ(D) rounds.

For now, we focus on one fixed arbitrary experiment. In this experiment, we perform
a special broadcast procedure starting from each of the candidates. At any point in time,
we call the set of nodes that receive (only) the identifier of a candidate v the territory of v.
Nodes that have received two or more candidate identifiers in this experiment are called in
conflict, and nodes that have not received any candidate identifier in this experiment are
called leaderless. We define the conflict and leaderless territories accordingly.

We first explain in Section 4.2 the simple broadcast scheme that starts from each candidate
and tries to grow its territory. The guarantee will be that, if the candidate is alone, the
message reaches all nodes in O(D log2 N) rounds. In Section 4.3, we then explain how to
detect whether the broadcast has already reached all nodes or not. The guarantee will be
that an experiment terminates if and only if there is exactly one candidate, and in that case,
it terminates in Θ(D log2 N) rounds. Hence, once an experiment terminates, if we wait for a
(sufficiently large) constant factor more time, all those experiment that can terminate do so.
At the end, among these successful experiments, the one with the smallest experiment-number
wins. That means the single candidate of that experiment is elected as the leader.

4.2 Growing Territories
Each candidate v initiates a special single-message broadcast procedure. Included in this
message is the identifier of the candidate v, as well as O(log2 N log logN) bits of randomness.
The broadcast procedure then proceeds in D phases, where in each phase, we perform the
following procedure:
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Rerandomized Decay Protocol. Each phase consists of L = α log2 N consecutive rounds,
for a large enough constant α. In each round of the phase, all nodes that have received the
message of a candidate by the start of the phase use the randomness shared in the message
to pick a shared random number j ∈U [1, 2 logN ]. The details of this part will be discussed
shortly. Then, each node decides to transmit with probability 2−j , using its own private
randomness, and remains silent otherwise. At the end of the phase, each node only keeps the
messages that it received from its reliable neighbors, or those that it had before. Note that
the former uses the assumption that each node is able to distinguish successful receptions
from reliable and unreliable neighbors. This will later simplify the process of removing the
assumption of knowing an upper bound on the diameter D.

We note that the above is an adaptation of the classical Decay procedure[3], with the key
change being in the publicly random choice of the transmission probability. This property
helps crucially in defeating the oblivious adversary.

We show that if we have a single candidate, after O(D log2 N) rounds, its message
reaches all nodes, w.h.p. This follows immediately from the following simple lemma, which
particularly implies that if there is only one candidate, its broadcast grows at a speed of one
G-hop per round, thus reaching all nodes in O(D log2 N) rounds.

I Lemma 5. Suppose that node w has at least one G-neighbor that had received the message
of a candidate v by the start of the phase. Furthermore, assume that no G′-neighbor of w
has received a message from any candidate other than v. Then, regardless of the behavior of
the adversary, w.h.p., node w receives the message of candidate v during this phase.

Proof. Consider each round r of the phase and let Gr be the graph fixed by the adversary
for round r. Let dr be the number of active neighbors of w in round r that have received
the message of candidate v, by the start of the phase. Notice that all potentially-active
neighbors of w that transmit have received the message of candidate v and act according to
the randomness bits received in the related message. Particularly, this shared randomness,
they pick a common j ∈U [1, 2 logN ] for this round r. With probability 1

2 logN , the random
value j ∈U [1, 2 logN ] will be such that j = dlog dre. If that happens, the probability that
exactly one active neighbor of w transmit in round r is at least dr

2j (1− 1
2j )dr−1 ≥ 1/5. Thus,

per round, the probability that node w receives the message of candidate v from one of its
active neighbors is at least 1

10 logN . By a simple Chernoff bound, this means that during the
α log2 N rounds of the phase, node w receives the message of v with high probability. J

4.3 Detecting Loneliness for Candidates
Note that if in an experiment, we have two or more candidates, their territories will grow
and eventually reach each other. At that point, the territories can obstruct each other from
growing and covering all nodes. The key task will be to determine if the broadcast of a
candidate has reached all nodes or not.

We call a node u in the territory of candidate v a boundary node of this territory if u has
at least one G-neighbor outside the territory of v. Notice that, if the broadcast of v has not
reached all nodes, then there is at least one boundary node in the territory of node v. On
the other hand, if v was the only candidate, once the broadcast reaches all nodes, there will
not be any boundary nodes.

The boundary nodes have the responsibility for detecting whether the broadcast has
reached all nodes or not. They will deliver their indications to the candidate, which then
decides whether the experiment was successful or not. The existence of boundary nodes will
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be taken as an indication that the territory does not cover all nodes. Let us first explain the
key idea for detecting boundary nodes.

Boundary Detection. As the lower bound from the previous section suggests, even the
rudimentary problem of each node receiving a single message from any nearby node can be
hard. Thus we cannot rely on the boundary nodes receiving a message from a node outside
their territory. We turn the problem around. Instead of insisting on actually receiving a
message from outside the territory, we take lack of a frequent receptions from the node’s own
territory as an indication for collisions, implying that the node is potentially a boundary
node. More concretely, the following two are indications for the bound w being boundary
and thus that the related broadcast has not reached all nodes: (1) if w receives a message
from the territory of a different leader, or more cruicially (2) if w does not receive messages
from its own territory frequently enough. Let us make this formal.

The boundary detection algorithm consists of a single phase—i.e., L = α log2 N rounds.
Each node that has received a message from exactly one candidate v performs one phase
of its Rerandomized Decay Protocol, exactly as explained above. On the other hand, all
other nodes (those in conflict or leaderless) transmits a special NOISE message in all of the
rounds of the phase. A node will consider itself boundary if it receives messages from its own
territory in less than α logN

15 of the rounds of this phase. The next two lemmas, the second of
which is the key lemma in this whole approach, explain why this criterion correctly identifies
the boundary nodes:

I Lemma 6. If a node w is not alone in its territory and it does not have a G′-neighbor out
of its territory, then throughout the phase, it will receive at least α logN

15 messages from its
own territory.

Proof. The proof is similar to Lemma 5. We easily see that per round, w receives a message
from its own territory with probability at least logN

10 . Thus, by a Chernoff bound, node w
receives messages from its own territory in at least α logN

15 rounds, with high probability. J

I Lemma 7. [Key Lemma] If w has at least one G-neighbor out of its territory, then w.h.p.,
it will either receive a message from a different territory, or it receives less than α logN

25
messages from its own territory.

Proof. First note that if w has a G-neighbor in the conflict or leaderless territory, it will not
receive any message from its own territory and hence it detects that it is a boundary. Next,
suppose that each G-neighbor of w has received a message from exactly one marked node.

Consider a given round r of the phase, and fix the edges incident on w made active for this
round by the adversary. Let Ar be the set of active neighbors of w in its own territory, and
let Br be the set of active neighbors of w in other territories. Note that by the assumption
that w has at least one G-neighbor out of its territory, Br is nonempty. Suppose that the
set Br is composed of nodes of t territories, Br = B1

r ∪ B2
r ∪ . . . Btr, where without loss of

generality, Btr is not the conflict or leaderless territory. Define pr to be the probability of
the event that no node in B1

r to Bt−1
r transmits. We have the following simple observations

regarding the transmission probabilities in these sets:
(1) The probability that no node in Ar transmits is at least 1/(2e).
(2) The probability that exactly one node of Ar transmits is in at most 5

logN .
(3) The probability that no node in any of B1

r to Btr transmits is at most pr.
(4) The probability that exactly one node of Br transmits, and it is in Btr, is at least

pr

10 logN .
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Note that the events of different territories are independent. Hence, by (2) and (3), we have
that the probability that w receives a message from its own territory is at most 5pr

logN . Also,
by (1) and (4), we have that the probability that w receives a message from another territory
is at least pr

20e logN .
Therefore, over all the L rounds of the phase, the expected number of messages that w

receives from other territories is at least
∑L
r=1

pr

20e logN . If
∑L
r=1

pr

20e logN ≥ 5 logN , then
with high probability, w receives a message from another territory. On the other hand, if∑L

r=1
pr

20e logN ≤ 5 logN , the expected number of messages that w receives from its own
territory is at most

∑L
r=1

5pr

logN �
α logN

30 , as the constant α is chosen to be large enough.
Thus, in this case, with high probability, the number of rounds in which w receives a message
from its own territory is less than α logN

25 . This completes the proof. J

Delivering the Boundary Signal to the Candidate. If for a candidate v, there is a node u
in the territory of v for which the condition of Lemma 7 is satisfied, then v knows that its
experiment was not successful. We next describe how to let the candidate v know whether
there is such a “boundary” node u in its territory. The basis for this again will be mimicking
collision detection, where lack of frequent receptions from a node’s own territory is regarded
as a collision.

We now explain how we deliver the indicator about the existence of boundaries to the
candidate, and how they react. Note that the broadcast algorithm, explained in Section 4.2,
grows the territory at a speed of one G-hop per phase, when there is a single candidate, and
at a (potentially) slower speed, when there are two or more. Hence, all nodes of the territory
of a candidate v are within its O(D) hops in G. After one phase of boundary detection,
if the territory of v does not include all nodes, there will be at least one node u in this
territory that satisfies the condition of Lemma 7. Thus, this node provides an excuse for not
announcing the experiment successful, and potentially continuing the broadcast.

To deliver this information to the candidate, we run O(D) additional phases of broadcast.
Here, if a node has noticed a boundary (or is in conflict or leaderless), it constantly transmits
NOISE in all the rounds of the phase. Otherwise, the node broadcasts simply according to
its rerandomized decay protocol, using the shared randomness provided in the candidate’s
message. At the end of each phase, each node w believes that there is a boundary node in
its territory if it believed so before or if receives a message from outside territory or a NOISE
message, or more critically, if it does not receive messages from the node’s own territory
frequently enough (less than α logN

25 times). If this happens, node w constantly transmits
NOISE in the rounds of the next phases. The following lemma follows by straightforward
application of Lemma 7.

I Lemma 8. If there is at least one boundary in the territory of candidate v, then by the
end of these O(D) phases, candidate v will be informed about it. Moreover, if the territory
includes all nodes, then v will not receive such an indication.

Finally, if after all these Θ(D) phases, a candidate v received no indication of a boundary, it
considers this experiment successful. It then initiates a “successful experiment” announcement.
Other candidate do not initiate any announcement. We run a broadcast from the candidates,
in Õ(D) rounds, spreading this success announcement. If the experiment was successful,
then with high probability, the candidate is alone and thus, this success announcement gets
delivered to all nodes of the network.
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Removing the knowledge of diameter. Recall that above, we assumed that nodes know a
constant factor upper bound D on the diameter of graph G. Here, we remove this assumption
using a standard doubling method.

Effectively, we try 2-factor estimates of diameter. We divide the time into logN scales,
where the kth is made of Õ(2k) consecutive rounds. In the kth scale, we imagine 2k to
be the upper bound on diameter. We thus grow the territories up to a radius of 2k by
running the broadcast (from scratch) for 2k phases. Then we have one boundary detection
phase, and then we spend 2k additional phases to deliver the indicator about existence
of boundaries to the candidate. A final set of 2k spreads the potential announcements of
successful experiments. Note that since the length of the scales form a geometric sum, and
as when 2k reaches D we will have the first successful experiment, we will observe the first
successful experiment in O(D) phases, considering all the scales. In the other experiments
prior to this scale, the broadcasts will not be able to reach all nodes, as it spreads at a speed
of one G-hop per round. Hence, those experiments will not be announced successful.

Consider the first scale for which some candidate announces a successful experiment.
In this scale, we take the candidate of these successful experiments that has the smallest
experiment number as the global leader.
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Abstract
In this paper we improve the deterministic complexity of two fundamental communication prim-
itives in the classical model of ad-hoc radio networks with unknown topology: broadcasting and
wake-up. We consider an unknown radio network, in which all nodes have no prior knowledge
about network topology, and know only the size of the network n, the maximum in-degree of any
node ∆, and the eccentricity of the network D.

For such networks, we first give an algorithm for wake-up, in both directed and undirected
networks, based on the existence of small universal synchronizers. This algorithm runs in
O( min{n,D∆} log n log ∆

log log ∆ ) time, improving over the previous best O(n log2 n)-time result across all
ranges of parameters, but particularly when maximum in-degree is small.

Next, we introduce a new combinatorial framework of block synchronizers and prove the
existence of such objects of low size. Using this framework, we design a new deterministic
algorithm for the fundamental problem of broadcasting, running in O(n logD log log D∆

n ) time.
This is the fastest known algorithm for this problems, improving upon the O(n logn log logn)-
time algorithm of De Marco (2010) and the O(n log2D)-time algorithm due to Czumaj and
Rytter (2003), the previous fastest results for directed networks, and is the first to come within
a log-logarithmic factor of the Ω(n logD) lower bound due to Clementi et al. (2003).

Our results have also direct implications on the fastest deterministic leader election and
clock synchronization algorithms in both directed and undirected radio networks, tasks which are
commonly used as building blocks for more complex procedures.
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1 Introduction

1.1 Model of communication networks
We consider the classical model of directed ad-hoc radio networks with unknown structure.
A radio network is modeled by a directed network N = (V,E), where the set of nodes
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corresponds to the set of transmitter-receiver stations. The nodes of the network are assigned
different identifiers (IDs), and throughout this paper we assume that all IDs are distinct
numbers in {1, . . . , |V |}. A directed edge (v, u) ∈ E means that node v can send a message
directly to node u. To make propagation of information feasible, we assume that every node
in V is reachable in N from any other.

In accordance with the standard model of unknown (ad-hoc) radio networks (for more
elaborate discussion about the model, see, e.g., [1, 2, 5, 9, 10, 12, 17, 19, 22]), we make
the assumption that a node does not have any prior knowledge about the topology of the
network, its in-degree and out-degree, or the set of its neighbors. We assume that the only
knowledge of each node is the size of the network n, the maximum in-degree of any node ∆,
and the eccentricity of the network D, which is the maximum distance from the source node
to any node in N. For a discussion of these assumptions, see the full version of this paper.

Nodes operate in discrete, synchronous time steps, but we do not need to assume knowledge
of a global clock. When we refer to the “running time” of an algorithm, we mean the number
of time steps which elapse before completion (i.e., we are not concerned with the number of
calculations nodes perform within time steps). In each time step a node can either transmit
a message to all of its out-neighbors at once or can remain silent and listen to the messages
from its in-neighbors. We do not make any restriction on the size of messages.

The distinguishing feature of radio networks is the interfering behavior of transmissions.
In the most standard radio networks model, the model without collision detection (see, e.g.,
[1, 2, 10, 22]), which is studied in this paper, if a node v listens in a given round and precisely
one of its in-neighbors transmits, then v receives the message. In all other cases v receives
nothing; in particular, the lack of collision detection means that v is unable to distinguish
between zero of its in-neighbors transmitting and more than one.

The model without collision detection describes the most restrictive interfering behavior
of transmissions; also considered in the literature is a less restrictive variant, the model with
collision detection, where a node listening in a given round can distinguish between zero of
its in-neighbors transmitting and more than one (see, e.g., [12, 22]).

1.2 Communications primitives: broadcasting and wake-up

In this paper we consider two fundamental communications primitives, namely broadcasting
and wake-up, and consider deterministic protocols for each of these tasks.

1.2.1 Broadcasting

Broadcasting is one of the most fundamental problems in communication networks and has
been extensively studied for many decades (see, e.g., [22] and the references therein).

The premise of the broadcasting task is that one particular node, called the source, has a
message which must become known to all other nodes. We assume that all other nodes start
in a dormant state and do not participate until they are “woken up” by receiving the source
message (this is referred to in some works as the “no spontaneous transmissions” rule). As
a result, while the model does not assume knowledge of a global clock, we can make this
assumption in practice, since the current time can be appended to the source message as
it propagates, and therefore will be known be all active nodes. This is important since it
allows us to synchronize node behavior into fixed-length blocks.
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1.2.2 Wake-up
The wake-up problem (see, e.g., [15]) is a related fundamental communication problem that
arises in networks where there is no designated “source” node, and no synchronized time-step
at which all nodes begin communicating. The goal is for all nodes to become “active” by
receiving some transmission. Rather than a single source node which begins active, we instead
assume that some subset of nodes spontaneously become active at arbitrary time-steps. The
task can be seen as a variant of broadcast, with possibly multiple sources, and without the
ability to assume a global clock. This last point is important, and results in wake-up protocols
being slower than those for broadcast, since nodes cannot co-ordinate their behavior.

1.3 Related work
As a fundamental communications primitive, the task of broadcasting has been extensively
studied for various network models for many decades.

For the model studied in this paper, directed radio networks with unknown structure and
without collision detection, the first sub-quadratic deterministic broadcasting algorithm was
proposed by Chlebus et al. [5], who gave an O(n11/6)-time broadcasting algorithm. After
several small improvements (cf. [6, 21]), Chrobak et al. [9] designed an almost optimal
algorithm that completes the task in O(n log2 n) time, the first to be only a poly-logarithmic
factor away from linear dependency. Kowalski and Pelc [17] improved this bound to obtain
an algorithm of complexity O(n logn logD) and Czumaj and Rytter [11] gave a broadcasting
algorithm running in time O(n log2D). Finally, De Marco [20] designed an algorithm that
completes broadcasting in O(n logn log logn) time steps. Thus, in summary, the state of the
art result for deterministic broadcasting in directed radio networks with unknown structure
(without collision detection) is the complexity of O(nmin{logn log logn, log2D}) [11, 20].
The best known lower bound is Ω(n logD) due to Clementi et al. [10].

Broadcasting has been also studied in various related models, including undirected
networks, randomized broadcasting protocols, models with collision detection, and models
in which the entire network structure is known. For example, if the underlying network
is undirected, then Kowalski [16] gave a deterministic broadcasting algorithm running in
time O(n logD). If spontaneous transmissions are allowed and a global clock available,
then deterministic broadcast can be performed in O(n) time in undirected networks [5].
Randomized broadcasting has been also extensively studied, and in a seminal paper, Bar-
Yehuda et al. [2] designed an almost optimal broadcasting algorithm achieving the running
time of O((D + logn) · logn). This bound has been later improved by Czumaj and Rytter
[11], and independently Kowalski and Pelc [18], who gave optimal randomized broadcasting
algorithms that complete the task in O(D log n

D +log2 n) time with high probability, matching
a known lower bound from [19]. In the model with collision detection, an O(D+ log6 n)-time
randomized algorithm due to Ghaffari et al. [12] is the first to exploit collisions and surpass
the algorithms (and lower bound) for broadcasting without collision detection.

For more details, see e.g., [22] and the references therein.
The wake-up problem (see, e.g., [15]) is a related communication problem that arises in

networks where there is no designated “source” node, and no synchronized time-step at which
all nodes begin communicating. Before any more complex communication can take place, we
must first require all nodes to be “active,” i.e., aware that they should be communicating.
This is the goal of wake-up, and it is a fundamental starting point for most other tasks in
this setting, for example leader election and clock synchronization [8].

The first sub-quadratic deterministic wake-up protocol was given in by Chrobak et al. [8],
who introduced the concept of radio synchronizers to abstract the essence of the problem.
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They give an O(n5/3 logn)-time protocol. Since then, there have been two improvements in
running time, both making use of the radio synchronizer machinery: firstly to O(n3/2 logn)
[4], and then to O(n log2 n) [3]. Unlike for the problem of broadcast, the fastest known
protocol for directed networks is also the fastest for undirected networks. A recent survey of
the current state of research on the wake-up problem is given in [15].

1.4 Our results

In this paper we present a new construction of universal radio synchronizers and introduce
and analyze a new concept of block synchronizers to improve the deterministic complexity
of two fundamental communication primitives in the model of ad-hoc radio networks with
unknown topology: broadcasting and wake-up.

By applying the analysis of block synchronizers, we present a new deterministic broad-
casting algorithm (Algorithm 1) in directed ad-hoc radio networks with unknown structure,
without collision detection, that for any directed network N with n nodes, with eccentricity
D, and maximum in-degree ∆, completes broadcasting in O(n logD log log D∆

n ) time-steps.
This result almost matches a lower bound of Ω(n logD) due to Clementi et al. [10], and
improves upon the previous fastest algorithms due to De Marco [20] and due to Czumaj and
Rytter [11], which require O(n logn log logn) and O(n log2D) time-steps, respectively.

Our result reveals that a non-trivial speed-up can be achieved for a broad spectrum of net-
work parameters. Since ∆ ≤ n, our algorithm has the complexity at most O(n logD log logD).
Therefore, in particular, it significantly improves the complexity of broadcasting for shallow
networks, where D � nO(1). Furthermore, the dependency on ∆ reduces the complexity
even further for networks where the product D∆ is near linear in n including sparse networks
which can appear in many natural scenarios.

Our broadcasting result has also direct implications on the fastest deterministic leader
election algorithm in directed and undirected radio networks. It is known that leader election
can be completed in O(logn) times broadcasting time (see, e.g., [9, 13]) (assuming the
broadcast algorithm extends to multiple sources, which is the case here as long as we have a
global clock), and so our result improves the bound to achieve a deterministic leader election
algorithm running in O(n logn logD log log D∆

n ) time. For undirected networks the best
result is O(n log3/2 n

√
log logn) time [7] (we note that the O(n logD) broadcast protocol of

[16] cannot be used at a logn slowdown for leader election, since it relies on token traversal
and does not extend to multiple sources). Our result therefore favorably compares for shallow
networks (for small D) even in undirected networks.

We also present a deterministic algorithm (Algorithm 2) for the related task of wake-up.
We show the existence of universal radio synchronizers of delay g(k) = O( n log n log k

log log k ), and
demonstrate that this yields a wake-up protocol taking time O(min{n,D∆} log n log ∆

log log ∆ ). This
improves over the previous best result, the O(n log2 n)-time protocol of [3]; the improvement is
largest when ∆ is small, but even when it is polynomial in n, our algorithm is a log logn-factor
faster.

Our improved result for wake-up has direct applications to communication algorithms in
networks that do not have access to a global clock, where wake-up is an essential starting
point for most more complex communication tasks. For example, wake-up is used as a
subroutine in the fastest known protocols for fundamental tasks of leader election and clock
synchronization (cf. [8]). These are two fundamental tasks in networks without global
clocks, since they allow initially unsynchronized networks to be brought to a state in which
synchronization can be assumed, and results from the better-understood setting with a global
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clock can then be applied. Our wake-up protocol yields O(min{n,D∆} log2 n log ∆
log log ∆ )-time leader

election and clock synchronization algorithms, which are the fastest known in both directed
and undirected networks.

1.5 Previous approaches
Almost all deterministic broadcasting protocols with sub-quadratic complexity (that is, since
[5]) have made use of the concept of selective families (or some similar variant thereof,
such as selectors). These are families of sets for which one can guarantee that any subset
of [n] := {1, 2, . . . , n} below a certain size has an intersection of size exactly 1 with some
member of the family. They are useful in the context of radio networks because if the
members of the family are interpreted to be the set of nodes which are allowed to transmit
in a particular time-step, then after going through each member, any node with an active
in-neighbor and an in-neighborhood smaller than the size threshold will be informed. Most
of the recent improvements in broadcasting time have been due to a combination of proving
smaller selective families exist, and finding more efficient ways to apply them (i.e., choosing
which size of family to apply at which time).

One of the drawbacks of selective-family based algorithms is that applying them requires
coordination between nodes. For the problem of broadcast, this means that some time may
be wasted waiting for the current selective family to finish, and also that nodes cannot alter
their behavior based on the time since they were informed, which might be desirable. For
the problem of wake-up, this is even more of a difficulty; since we cannot assume a global
clock, we cannot synchronize node behavior and hence cannot use selective families at all.

To tackle this issue, Chrobak et al. [8] introduced the concept of radio synchronizers.
These are a development of selective families which allow nodes to begin their behavior at
different times. A further extension to universal synchronizers in [4] allowed effectiveness
across all in-neighborhood sizes. However, the adaptability to different node start times
comes at a cost of increased size, meaning that synchronizer-based wake-up algorithms were
slightly slower than selective family-based broadcasting algorithms .

The proofs of existence for selective families and synchronizers follow similar lines: a
probabilistic candidate object is generated by deciding on each element independently at
random with certain carefully chosen probabilities, and then it is proven that the candidate
satisfies the desired properties with positive probability, and so such an object must exist.
The proofs are all non-constructive (and therefore all resulting algorithms non-explicit; cf.
Indyk [14] for an explicit construction of selective families).

Returning to the problem of broadcasting, a breakthrough came in 2010 with a paper
by De Marco [20] which took a new approach. Rather than having all nodes synchronize
their behavior, it instead had them begin their own unique pattern, starting immediately
upon being informed. These behavior patterns were collated into a transmission matrix.
The existence of a transition matrix with appropriate selective properties was then proven
probabilistically. The ability for a node to transmit with a frequency which decayed over
time allowed De Marco’s method to inform nodes with a very large in-neighborhood faster,
and this in turn reduced total broadcasting time from O(n log2D) [11] to O(n logn log logn).

A downside of this new approach is that having nodes begin immediately, rather than
wait until the beginning of the next selector, gives rise to a far greater number of possible
starting-time scenarios that have be accounted for during the probabilistic proof. This caused
the logarithmic factor in running time to be logn rather than logD. Further, the method
was comparatively slow to inform nodes of low in-degree, compared to a selective family of
appropriate size. These are the difficulties that our approach will have to overcome.
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1.6 Overview of our approach

Our wake-up result follows a similar line to the previous works; we prove the existence of
smaller universal synchronizers than previously known, using the probabilistic method. Our
improvement stems from new techniques in analysis rather than method, which allow us to
gain a log-logarithmic factor by choosing what we believe are the optimal probabilities by
which to construct a randomized candidate.

Our broadcasting result takes a new direction, some elements of which are new and
some of which can be seen as a compromise between selective family-type objects and the
transmission schedules of De Marco [20]. We first note that nodes of small in-degree can be
quickly dealt with by repeatedly applying (n, n

D )-selective families “in the background” of
the algorithm. This allows us to tailor the more novel part of the approach to nodes of large
in-degree. We have nodes perform their own behavior patterns with decaying transmission
frequency over time, but they are semi-synchronized to “blocks” of length roughly n

D , in
order to cut down the number of circumstances we must consider. This idea is formalized by
the concept of block synchronizers, combinatorial objects which can be seen as an extension
of the radio synchronizers used for wake-up.

An important new concept used in our analysis of block synchronizers (and also in our
proof of small universal synchronizers) is that of cores. Cores reduce a set of nodes and
starting times to a (usually smaller) set of nodes which are active during a critical period. In
this way we can combine many different circumstances into a single case, and demonstrate
that for our purposes they all behave in the same way.

The most technically involved part of both of the proofs is the selection of the probabilities
with which we generate a randomized candidate object (universal synchronizer or block
synchronizer). Intuitively, when thinking about radio networks, a node in our network is
aiming to inform its out-neighbors, and it should assume that as time goes on, only those with
large in-neighborhoods will remain uninformed (because these nodes are harder to inform
quickly). Therefore a node should transmit with ever-decreasing frequency, roughly inversely
proportional to how large it estimates remaining uninformed neighbors’ in-neighborhoods
must be. However, these in-neighborhoods cannot be estimated exactly, and so we must
tweak the probabilities slightly to cover the possible range. In block synchronizers we do this
using phases of length O(log log D∆

n ) during which nodes halve their transmission probability
every step, but since behavior must be synchronized to achieve this we cannot do the same
for radio synchronizers. Instead, we allow our estimate to be further from the true value,
and require more time-steps around the same value to compensate.

As with previous results based on selective families, synchronizers, or similar combinatorial
structures, the proofs of the structures we give are non-constructive, and therefore the
algorithms are non-explicit.

2 Combinatorial tools

Our communications protocols rely upon the existence of objects with certain combinatorial
properties, and we will separate these more abstract results from their applications to radio
networks. In this section, we will define the combinatorial objects we will need to make use
of, and prove their existence. Next, in Sections 3–4, we will demonstrate in details how these
combinatorial objects can be used to obtain fast algorithms for broadcasting and wake-up.
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2.1 Selective families
We begin with a brief discussion about selective families, whose importance in the context
of broadcasting was first observed by Chlebus et al. [5]. A selective family is a family of
subsets of [n] := {1, . . . , n} such that every subset of [n] below a certain size has intersection
of size exactly 1 with a member of the family. For the sake of consistency with successive
definitions, rather than defining the family of subsets Si, we will instead use the equivalent
definition of a set of binary sequences Sv (that is, Sv

i = 1 if and only if v ∈ Si).
For some m ∈ N, let each v ∈ [n] have its own length-m binary sequence Sv =

Sv
0S

v
1S

v
2 . . . S

v
m−1.

I Definition 1. S = {Sv}v∈[n] is an (n, k)-selective family if for any X ⊆ [n] with
1 ≤ |X| ≤ k, there exists j ∈ [0,m) such that

∑
v∈X Sv

j = 1. (We say that such j hits X.)

2.1.1 Application to radio networks
During the course of radio network protocols we can “apply” a selective family S on an
n-node network by having each node v transmit in time-step j if and only if v has a message
it wishes to transmit and Sv

j = 1 (see, e.g., [5, 10]). Some previous protocols involved nodes
starting to transmit immediately if they were informed of a message during the application
of a selective family (or a variant called a selector designed for such a purpose), but here we
will require nodes to wait until the current selective family is completed before they start
participating. That is, nodes only attempt to transmit their message if they knew it at the
beginning of the current application.

The result of applying an (n, k)-selective family is that any node u which has between
1 and k active neighbors before the application will be informed of a message upon its
conclusion. This is because there must be some time-step j which hits the set of u’s active
neighbors, and therefore exactly one transmits in that time-step, so u receives a message.
This method of selective family application in radio networks was first used in [5].

2.1.2 Existence of small selective families
The following standard lemma (see, e.g., [10]) posits the existence of (n, k)-selective families
of size O(k log n

k ). This has been shown to be asymptotically optimal [10].

I Lemma 2 (Small selective families). For some constant c and for any 1 ≤ k ≤ n there
exists an (n, k)-selective family of size at most m = ck log n

k .

2.2 Radio synchronizers
Radio synchronizers are an extension of selective families designed to account for nodes in
a radio network starting their behavior patterns at different times, and without access to
a global clock. They were first introduced in [8] and used in an algorithm for performing
wake-up, and this is also the purpose for which we will apply them.

To define radio synchronizers, we first define the concept of activation schedule.

I Definition 3. An n-activation schedule is a function ω : [n]→ N.

We will extend the definition to subsets X ⊆ [n] by setting ω(X) = minv∈X ω(v).
As for selective families, let each v ∈ [n] have its own length-m binary sequence Sv =

Sv
0S

v
1S

v
2 . . . S

v
m−1. We then define radio synchronizers as follows:

ICALP 2016



139:8 Faster Deterministic Communication in Radio Networks

I Definition 4. S = {Sv}v∈[n] is an (n, k,m)-radio synchronizer if for any activation
schedule ω and for any X ⊆ [n] with 1 ≤ |X| ≤ k, there exists j ∈ [ω(X), ω(X) +m) such
that

∑
v∈X Sv

j−ω(v) = 1.

One can see that the definition is very similar to that of selective families (Definition 1),
except that now each v’s sequence is offset by the value ω(v). To keep track of this shift in
expressions such as the sum in the definition, we will call such values j columns. As with
selective families, we say that any column j satisfying the condition in Definition 4 hits X.

In [4], this concept was extended to universal radio synchronizers which cover the whole
range of k from 1 to n. Let g : [n]→ N be a non-decreasing function, which we will call the
delay function.

I Definition 5. S = {Sv}v∈[n] is an (n, g)-universal radio synchronizer if for any acti-
vation schedule ω, and for any X ⊆ [n], there exists column j ∈ [ω(X), ω(X) + g(|X|)) such
that

∑
v∈X Sv

j−ω(v) = 1.

2.2.1 Application of universal radio synchronizers to radio networks
One can apply universal radio synchronizers to the problem of wake-up in radio networks by
having ω(v) represent the time-step in which node v becomes active during the course of a
protocol (either spontaneously or by receiving a transmission). Subsequently, v interprets
Sv as the pattern in which it should transmit, starting immediately from time-step ω(v).
That is, in each time-step j after activation, v checks the next value in Sv (i.e., Sv

j−ω(v)),
transmits if it is 1 and stays silent otherwise. Then, the selective property specified by the
definition guarantees that any node u with an in-neighborhood of size q hears a transmission
within at most g(q) steps of its first in-neighbor becoming active.

2.2.2 Existence of small universal radio synchronizers
We will prove existence of small universal synchronizers.

I Theorem 6. For some constant c and for any n ∈ N there exists an (n, g)-universal
radio synchronizer with g(q) = cq log q log n

log log q .

The proof of Theorem 6 is deferred to the full version, but here we present its main ideas.
Our universal synchronizer must hit any set X within g(X) columns of the set’s start

column ω(X). Our first step is to narrow down the amount of sets and activation schedules
we must consider by defining the core of a set. The core removes elements of X which only
become active after we must already have hit X (i.e. after column ω(X) + g(X)), and then
shifts all values of ω so that ω(X) = 0. Multiple different sets X under multiple different
activation schedules can have the same core, and therefore behave the same way during the
critical period. So, by considering cores instead of the original sets and activation schedules,
we can reduce the amount of cases we must account for.

We then probabilistically generate a candidate universal synchronizer, and prove that it
does indeed satisfy the required property with positive probability. The crucial part of this
method is our choice of probabilities with which we include each element in the candidate.

We expect to be able to hit a core of size q within cq log q log n
log log q columns. Therefore, for

a particular element v and for columns greater than ω(v) + cq log q log n
log log q , all remaining cores

containing v that we have left to hit should be larger than q. If we want to hit a set of size
roughly q by randomly selecting each element of [n], then we optimize our probability of
doing so by selecting each element with probability roughly 1

q . This translates to setting
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Sv
cq log q log n

log log q

= 1 with probability roughly 1
q . Substituting j = cq log q log n

log log q , this works out to

give the probability of Sv
j = 1 to be roughly log j log n

j log log j . However, as it transpires, this is not
quite the optimal choice.

To see what we should choose instead, we must first examine how we analyze our candidate.
We define the load fC(j) of a column j with respect to a core C; this is the expected number
of elements of the core selected in that column. We show that the probability of hitting the
core on j is at least fC(j)2−fC(j). Ideally, we want fC(j) to be constant for cores of roughly
the size we should currently be hitting, and then this hitting probability is also constant.
However, if we use the probabilities P[Sv

j = 1] = log j log n
j log log j , we in fact find that fC(j) can be

between Ω(1) and O(log j), depending upon the times at which its elements became active.
This log j-sized gap cannot be closed, since we can easily find cores which do indeed have
loads at either end of the range. What we can do, however, is tweak the probabilities to shift
this range down and maximize hitting probability over it.

Specifically, if we shift probabilities down by a factor of log j
log log j , i.e. to P[Sv

j = 1] ≈ log n
j ,

we shift the range of possible loads to be between Ω( log log j
log j ) and O(log log j), ensuring that

the hitting probability is Ω( log log j
log j ). This is as close to constant as we can get; the gap is

what necessitates the log q
log log q factor in our delay function g.

With this bound on the probability of hitting a particular core at a particular column,
we can use independence to obtain an lower bound for hitting a core over the whole range of
valid columns, and then use a union bound to show that we can hit all cores with positive
probability.

2.3 Block synchronizers
Next, we introduce block synchronizers, which are a new type of combinatorial object designed
for use in a fast broadcasting algorithm. They can be seen as an extension of both radio
synchronizers and the transmission matrix formulation of De Marco [20].

Let each v ∈ [n] have its own length-m binary sequence Sv = Sv
0S

v
1S

v
2 . . . S

v
m−1. Define a

function µB : N→ N, for some fixed B, which rounds its input up to the next multiple of B,
that is, µB(x) = min{pB : p ≥ x

B , p ∈ N}; we will call s(v) := µB(ω(v)) the start column of
v. We extend s to subsets of [n] in the obvious way, s(X) = µB(ω(X)).

I Definition 7. S = {Sv}v∈[n] is an (n,∆, r, B)-block synchronizer if for any activation
schedule ω and any set X ⊆ [n] with |X| ≤ ∆, there exists column j ∈ [s(X), s(X) +Bd |X|r e)
such that

∑
v∈X Sv

j−s(v) = 1.

Block synchronizers differ from radio synchronizers in two ways: Firstly, on top of the
offsetting effect of the activation schedule, there is also the function µB that effectively “snaps”
behavior patterns to blocks of size B, hence the name block synchronizer. Secondly, the size
of the range in which we must hit X is linearly dependent on |X| rather than being fixed.
The parameter r is the increment by which each block increases the size of sets we can hit.

2.3.1 Application of block synchronizers to radio networks
The idea of our broadcasting algorithm will be that any node v waits until the start of the
first block after its activation time ω(v), and then begins its transmission pattern Sv. The
definition of block synchronizer aims to model this scenario. The hitting condition ensures
that any node with an in-neighborhood of size q ≤ ∆ will be informed within Bd q

r e time-steps
of the start of the block in which its first in-neighbor begins transmitting.
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2.3.2 Existence of small block synchronizers
We prove the following theorem.

I Theorem 8. For some constant c and for any n,D,∆ ∈ N with D, ∆ ≤ n < D∆, there
exists an (n,∆, n

D , c
n
D logD log log D∆

n )-block synchronizer.

The proof of this theorem is deferred to the full version, but we outline its main ideas.
We begin in a similar way to that of Theorem 6, in that we define the concept of a core to

narrow down the range of possibilities we must consider. The difference is that now elements
v have their behavior patterns snapped to blocks, so the core need only store the number of
the first block v becomes active, rather than the exact column. This significantly reduces
the number of possible cores, and is essential for obtaining the logD factor in size, rather
than logn. As before, cores also shift the activation schedule to begin at 0.

We wish to proceed in a similar manner as in the proof of small universal synchronizers,
generating a candidate probabilistically and then proving that it satisfies the desired property
with positive probability. While we could do this directly for block synchronizers using
the same method, we would obtain a size of Θ(n logD log log ∆). Our improved bound of
O(n logD log log D∆

n ) results from noting that we can afford to hit cores smaller than n
D using

selective families, leaving a narrower range of cores to be hit by our randomized candidate
object. Therefore, we define an upper block synchronizer which need only hit cores above a
certain size threshold (in our case, n

D ), and this is the object we prove the existence of with
the probabilistic method.

Once again, the most technical aspect of the proof lies in the probabilities with which
we choose elements in our candidate object. Again, we define the load of a column fC(j)
to be the expected number of elements in a core C which are selected in column j, and
show that the probability of hitting the core at j is at least fC(j)2−fC(j). By choosing our
probabilities to be roughly inversely proportional to the size of cores we expect to remain
un-hit, we can guarantee that on a constant fraction of columns we have fC(j) = Ω(1) and
fC(j) = O(log Dj

n ) = O(log D∆
n ). However, the way in which we deal with this range differs

from the case of universal synchronizers.
Since our elements’ behavior is snapped to blocks, we can synchronize changes in proba-

bility of selection between all elements. Specifically, we have O(log log D∆
n )-length phases in

which the selection probability of all elements halves every consecutive column (in addition
to the slight decrease that occurs between columns naturally). This means that fC(j) also
roughly halves every column within phases, and so there is at least one column within each
phase in which it is within some constant range (we use the interval ( 1

3 , 1)). Then, the
probability of hitting the core at that column is also at least some constant.

With this bound, we can again use independence of columns and a union bound to
show that our candidate upper block synchronizer hits all cores larger than n

D with positive
probability. Then, it remains only to insert a (n, n

D )-selective family at the start of every
block in order to hit smaller cores, and we meet the conditions of a block synchronizer.

3 Algorithms for broadcasting and wake-up

In this section we present our algorithms for broadcasting and wake-up in radio networks.

3.1 Broadcasting
We will assume that D∆ > n, otherwise an earlier O(D∆ log n

∆ )-time protocol from [10] can
be used to achieve O(D∆ log n

∆ ) = O(n logD) time.
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Let S be an (n,∆, n
D ,B)-block synchronizer, with B = c n

D logD log log D∆
n , and recall

that µB(x) = min{pB : p ≥ x
B , p ∈ N}. We will say that the source node becomes active

at time-step 0, and any other node v becomes active in a time-step i if it received its first
transmission at time-step i− 1. Our broadcasting algorithm is the following (Algorithm 1):

Algorithm 1 Broadcast at a node v
Let i be the time-step in which v becomes active
for j from 0 to DB − 1, in time-step µB(i) + j do v transmits source message iff Sv

j = 1
end for

3.2 Wake-up
Let S be an (n, g)-universal radio synchronizer with g(q) = cq log q log n

log log q . We will say that a
node v becomes active in a time-step i if it either spontaneous wakes up at i, or received its
first transmission at time-step i− 1. Our wake-up algorithm is the following (Algorithm 2):

Algorithm 2 Wake-up at a node v
Let i be the time-step in which v becomes active
for j from 0 to g(n)− 1, in time-step i+ j do v transmits source message iff Sv

j = 1
end for

4 Analysis of broadcasting and wake-up algorithms

In this section we show that our algorithms for broadcasting and wake-up have the claimed
running times. We begin with the analysis of the broadcasting algorithm.

I Theorem 9. Algorithm 1 performs broadcast in O(n logD log log D∆
n ) time-steps.

To begin the analysis, fix some arbitrary node v and let P be a shortest path from
the source (or first informed node) x to v. Number the nodes in this path consecutively,
e.g., P0 = x and Pdist(x,v) = v. Classify all other nodes into layers dependent upon the
furthest node along the path P to which they are an in-neighbor (some nodes may not
be an in-neighbor to any node in P ; these can be discounted from the analysis). That is,
layer L` = {u ∈ V : maxu in-neighbour to Pi

i = `} for ` ≤ dist(x, v). We separately define
layer Ldist(x,v)+1 to be {v}.

At any time step, we call a layer leading if it is the foremost layer containing an active
node, and our goal is to progress through the network until the final layer is leading, i.e., v is
active. The use of layers allows us to restrict to the set of nodes of our main interest: if we
focus on the path node whose in-neighborhood contains the leading layer, we cannot have
interference from earlier layers since they contain no in-neighbors of this path node, and we
cannot have interference from later layers since they are not yet active.

I Lemma 10. Let h : [∆]→ N be a non-decreasing function, and define T (n,D,∆, h) to be
the supremum of the function

∑D
i=1 h(qi), where integers 1 ≤ qi ≤ ∆ satisfy the additional

constraint
∑D

i=1 qi ≤ n. If a broadcast or wake-up protocol ensures that any layer (under
any choice of v) of size q remains leading for no more than h(q) time-steps, then all nodes
become active within T (n,D,∆, h) time-steps.

Proof. Let qi = |Li|. Layer Ldist(x,v)+1 must be leading (and thus node v active) once
no other layers are leading, and so this occurs

∑dist(x,v)
i=1 h(qi) time-steps after layer L1

ICALP 2016
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becomes leading. Since
∑dist(x,v)

i=1 h(qi) ≤
∑D

i=1 h(qi) and
∑D

i=1 qi ≤ n, this is no more than
T (n,D,∆, h) time-steps. Since v was chosen arbitrarily, all nodes must be active within
T (n,D,∆, h) time-steps of x becoming active. J

We make use of Lemma 10 to give bounds on the running times of our algorithms:

I Lemma 11. Algorithm 1 ensures that any layer of size q remains leading for fewer than
Bd q+r

r e time-steps.

Proof. For all nodes w, let ω(w) be the time-step that w becomes active during the course of
the algorithm. By definition of a block selector, for any layer Li of size qi there is a time-step
j < s(Li) + Bd qi

r e in which exactly one element of Li transmits. Then, either path node
Pi hears the transmission (and so layer Li is no longer leading in time-step j + 1), or Pi

has active in-neighbors not in Li, in which case these must be in a later layer so Li is not
leading. Thus, Li can remain leading for no more than s(Li) + Bd qi

r e − ω(Li) < Bd qi+r
r e

time-steps. J

With these tools, we are now ready to complete the proof of Theorem 9.

Proof. Proof of Theorem 9 By Lemma 10, Algorithm 1 ensures that all nodes are active
(and have therefore heard the source message) within T (n,D,∆, h) time-steps, where h(q) =
Bd q+r

r e. We will use an upper bound T (n,D,∆, h′), where h′(q) = B q+2r
r . Since h′ is linear

and increasing,
∑D

i=1 h
′(qi) subject to

∑D
i=1 qi ≤ n is maximized whenever

∑D
i=1 qi = n, for

example at qi = n
D for all i ∈ [D]. So, the algorithm completes broadcast within

D∑
i=1

h′( n
D

) =
D∑

i=1
B

n
D + 2r
r

= 3BD = 3c′n logD log log D∆
n

time-steps. J

In a similar way, we can analyze Algorithm 2.

I Theorem 12. Algorithm 2 performs wake-up in O(min(n,D∆) log n log ∆
log log ∆ ) time-steps.

5 Conclusions

The task of broadcasting in radio networks is a longstanding, fundamental problem in
communication networks. Our result for deterministic broadcasting in directed networks
combines elements from several of the previous works with some new techniques, and, in
doing so, makes a significant improvement to the fastest known running time. Our algorithm
for wake-up also improves over the previous best running time, and relies on a proof of
smaller universal synchronizers, a combinatorial object first defined in [4].

Neither of these algorithms are known to be optimal. The best known lower bound
for both broadcasting and wake-up is Ω(min(n logD,D∆ log n

∆ )) [10]; our broadcasting
algorithm therefore comes within a log-logarithmic factor, but our wake-up algorithm remains
a logarithmic factor away.

As well as the obvious problems of closing these gaps, there are several other open
questions regarding deterministic broadcasting in radio networks. Firstly, the lower bound
for undirected networks is weaker than that for directed networks [18], and so one avenue
of research would be to find an O(n logD) lower bound in undirected networks, matching
the broadcasting time of [16]. Secondly, the algorithms given here, along with almost all
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previous work, are non-explicit, and therefore it remains an important challenge to develop
explicit algorithms that can come close to the existential upper bound. The best constructive
algorithm known to date is by Indyk [14], but it is a long way from optimality.

Some variants of the model also merit interest, in particular the model with collision
detection. It is unknown whether the capacity for collision detection improves deterministic
broadcast time, as it does for randomized algorithms [12]. Collision detection does remove
the requirement of spontaneous transmissions for the use of the O(n) algorithm of [5], but a
synchronized global clock would still be required. It should be noted that collision detection
renders the wake-up problem trivial, since if every active node transmits in every time-step,
collisions will wake up the entire network within D time-steps.
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Abstract
We consider a network of sellers, each selling a single product, where the graph structure repres-
ents pair-wise complementarities between products. We study how the network structure affects
revenue and social welfare of equilibria of the pricing game between the sellers. We prove positive
and negative results, both of “Price of Anarchy” and of “Price of Stability” type, for special fam-
ilies of graphs (paths, cycles) as well as more general ones (trees, graphs). We describe best-reply
dynamics that converge to non-trivial equilibrium in several families of graphs, and we use these
dynamics to prove the existence of approximately-efficient equilibria.
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1 Introduction

Sellers typically do not operate in isolated markets but in conjunction with other sellers and
buyers. In particular, sellers need to take into account the fact that buyers may value the
goods they sell as substitutes or complements to goods sold by others. This has a tremendous
impact on how sellers compete with each other. Indeed, in Cournot’s [8] famous paper from
1838 about sellers who compete through quantities, Cournot also describes a model of a
duopoly selling perfect complements, zinc and copper. In Cournot’s example, a manufacturer
of zinc may observe that some of her major customers produce brass (made of zinc and
copper); Therefore, zinc manufacturers compete not only with other zinc sellers, but they
also indirectly compete with manufacturers of copper, as both target the money of brass
producers. We are interested in a more complicated competition structure, where as zinc
can be also used for Galvanization of iron, zinc sellers compete at the same time with sellers
of iron. In a similar way, iron is also demanded by car manufacturers that need to purchase
glass from other sellers, and so on.

Another classic example is by Ellet [10], who studied how owners of two consecutive
segments of a canal determine the tolls for shippers; Clearly, every shipper must purchase
a permit from both owners for being granted the right to cross the canal. Another, more
contemporary, example might be a high-tech or pharmaceutical firm that must use two
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registered patents to manufacture its product; The owners of the two patents quote prices for
the usage rights, and these patents can be viewed as perfect complements for the firm. As a
final example, consider an international trader who wishes to export goods from country X to
country Y, and needs to pay license fees to both countries. In the last two examples, one can
see how licenses have a network structure, as each patent may be needed for the production
of several different products, and trade may occur between country X and country Y, but
also between country X and another country Z, etc.

In this paper, we study markets where goods are complementary to several other goods,
but not substitutes. Price discrimination is impossible, and sellers need to offer the same
price in all markets. This situation creates a global price competition between sellers, which
raises interesting questions we aim to explore: What kinds of equilibria exist in these games?
How efficient are the equilibria in this game? Will natural dynamics reach highly efficient
equilibria?

The structure of the market plays a central role in our analysis. We model the market
using a weighted undirected graph, where each vertex represents a seller of a certain good.
An edge with weight v between vertices i and j indicates that there is a buyer that is willing
to pay an amount v for the bundle of goods {i, j}.1 In the above example, a market with
sellers of copper, zinc, iron and glass can be represented as a path-graph with 4 vertices (See
Figure 1), where edges connect copper and zinc, zinc and iron, and iron and glass.

We study the following simultaneous full-information pricing game between sellers on
a graph: the sellers observe the values of the buyers, which are common knowledge; each
seller then posts a single price to all buyers; a buyer on an edge buys the two goods on this
edge if the total price (the sum of the prices of the two goods) is no larger than her value.
Sellers have zero manufacturing costs and unlimited supply, and the profit of each seller is
the price she posted times the number of buyers that accepted this price. In a (pure) Nash
equilibrium, no seller would benefit from changing its price given the prices offered by the
other sellers.

There are two natural benchmarks for measuring the quality of equilibria in such games.
The first is the maximum welfare, which is the sum of values of all buyers.2 This is the
welfare that would be achieved with zero prices for all goods. The second benchmark is the
optimal monopolist revenue, which is the optimal total revenue achievable by a monopolist
that owns all the goods in the network. (Clearly, the optimal monopolist revenue is always at
most the maximum welfare.) Several papers studied the problem of computing the optimal
pricing for a monopolist in our setting. The problem was proposed by [12] which showed
that it is APX-hard and presented an approximation algorithm that is logarithmic in the
number of buyers. A 1/4-approximation algorithm was later presented by [3] when buyers are
interested in bundles of size 2, and recently [19] showed that this bound is tight under some
computational assumptions. A similar algorithm for this problem was suggested by [20] in
the context of setting up peering connections in networks. [18] provided an improved bound
for monopolist revenue maximization with buyers having the same value but interested in one
or two items. Unlike these papers which focus on the monopolist’s algorithmic problem, we
focus on analyzing equilibria in the game between competing sellers and on how the welfare
and revenue of these equilibria approximate the above benchmarks.

1 Throughout this paper, for the simplicity of presentation, we consider buyers that demand bundles of
size 2 which we can model using graphs; Buyers that demand bundles of arbitrary sizes can be modeled
as hyper-edges on a hyper-graph. We show how some of our results extend to hyper-graphs in the full
paper.

2 Assuming 0 production costs for sellers, and payments cancel out.
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$1

Copper

$6

Zinc

$1

Iron Glass

Figure 1 A market with 4 sellers and 3 buyers. The weight on each edges is the amount this
buyer is willing to pay for the bundle of the two adjacent goods. For example, the middle edge
represents a buyer that is willing to pay $6 for a bundle of zinc and iron, but has value 0 for each
good alone.

It is straightforward to see that some equilibria in these games demonstrate a complete
market failure. For example, a vector of prices of ∞ posted by all sellers forms a Nash
equilibrium that yields zero welfare and revenue. Yet, there might be multiple equilibria in
these games, and one may hope that other equilibria perform better. Indeed, we prove that
for some families of graphs the best equilibria (“price of stability”) have high revenue and
welfare. Observe that we cannot hope for full efficiency as even for path graphs, the most
efficient equilibria are sometimes not fully efficient: For example, in Figure 1, if either the
seller of zinc or of iron offer a price above 1, then one of its edges will not be sold. However,
there is no equilibrium in which these two sellers offer prices at most 1: if this occurs, each
seller gains at most 2 (from selling to its two edges) but they can get revenue of at least 5 by
offering 5 and selling to the middle edge only.

Another way to alleviate the problem of low welfare and revenue of some equilibria
is by restricting attention to equilibria with natural properties. For instance, it may be
unreasonable for a seller that does not sell any good to insist on a very high price despite
having zero costs; Such behavior might be considered as a malicious behavior towards his
neighboring sellers. We therefore sometimes restrict attention to non-malicious equilibria,
where all sellers that are not selling at all offer a price of 0. Non-malicious equilibria serve as
a main tool for proving the existence of approximately-optimal equilibria: we show that the
revenue of every such equilibrium approximates the maximum welfare, and we show cases
where such equilibria exist.

Our Results

Our main goal is to understand how the network structure affects various properties of
equilibria in markets. We aim to understand how well can the welfare and revenue in
equilibrium approximate the maximum welfare and the optimal revenue. We explore whether
best-response dynamics can lead to approximately-optimal equilibria, and we prove the
existence of such equilibria in several settings. We study graphs of different complexities,
like paths, cycles, trees and general graphs.

We start by considering some special families of graphs (paths and cycles) and show that
there is a natural best response dynamics that reaches equilibria with a constant fraction
of the optimal welfare as revenue. For path graphs, we consider a dynamics starting with
all sellers pricing at infinity. Then, we change the price of a seller on one side of the path
to zero, and let each seller in turn best reply to current prices. We show that when this
best-reply process reaches the other end of the path, it ends up in an equilibrium. Moreover,
for at least one of the end points, the revenue when starting from that point is at least half
the maximum welfare. An extension of this dynamics for cycles converges to an equilibrium
with revenue of at least one quarter of the optimal welfare.

ICALP 2016
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After we prove that for some families of graphs there exist Nash equilibria with good
revenue guarantees, the immediate question is whether this generalizes to more complex
graphs. It turns out that non-maliciousness of equilibria can be used to prove bounds on
the revenue. In particular, we show that for any tree, every non malicious equilibrium has
revenue that is at most O(log d) factor smaller than the optimal welfare, where d is the
maximum degree. One might hope that such a result can be achieved for general graphs
as well, but unfortunately this is not the case. For a clique of degree d, the loss can be
linear in d,3 and therefore we cannot hope for a logarithmic fraction for general graphs. Our
main positive result presents a refined bound that depends not only on the maximum degree,
but also on the arboricity of the graph (see, e.g., [22]). This additional parameter nicely
captures the difference between trees and cliques (and other graphs). The arboricity of an
undirected graph is the minimum number of forests into which its edges can be partitioned.
(For example, a tree has arboricity 1, a cycle has arboricity 2, and a clique of n nodes
has arboricity n/2.) We prove the following bound on the revenue of any non-malicious
equilibrium:4

I Theorem. In every graph with maximum degree d and arboricity w and every non-malicious
equilibrium in it, the total revenue of all sellers is at least Ω( 1

w+log d ) of the maximum welfare.

The above theorem does not claim anything about the existence of non-malicious equilibria,
but only bounds the revenue obtained by such equilibria if they exist. For this result to imply
a bound on the “price of stability” in such games,5 one needs to show that non-malicious
equilibria actually exist. We prove the existence of non-malicious equilibria via the natural
heuristic of repeated best-reply dynamics. Such a dynamics starts with arbitrary prices; At
each step, a seller who is not best replying is chosen, and he updates his price to a best reply
(breaking ties non-maliciously - towards 0 price). Our main result in this context shows that
in tree graphs, a specific sequence of best replies does stop at a non-malicious equilibrium.

I Theorem. In every tree, for every initial profile of prices, there exists a sequence of best
replies that terminates in a non-malicious Nash equilibrium.

In particular, this result implies the existence of non-malicious equilibria in trees, and
together with the approximation theorem above, we conclude that the price of stability in
trees (i.e., the approximation achieved by the best equilibrium in every tree) is at least
Ω( 1

log d ). Of course, it would be interesting to strengthen this result and show that for any
graph such dynamics terminate in a (non-malicious) equilibrium. Based on simulations we
have executed, we conjecture that this is indeed the case.

I Conjecture. In every graph any non-malicious best response dynamics starting from any
price vector converges to an equilibrium in polynomial number of steps.

This is the strongest version of our conjecture. One can also try to prove weaker versions
of the conjecture by restricting the graph structure, order of plays, and relaxing the required
time to convergence.

3 Consider a clique of degree d with all edges with the same value of 1. Such a clique has a non-malicious
equilibrium in which one seller prices at 0 while all others price at 1. The welfare in this non-malicious
equilibrium is only linear in d, while the optimal welfare is quadratic in d, and thus there is a linear loss
in d.

4 We note that the theorem holds also for non-simple graphs that have parallel edges.
5 Our result above also has a “price-of-anarchy” flavor, as we prove that all non-malicious equilibria (when
exist) exhibit the approximation guarantee.
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We also prove several impossibility results. We first show that the Ω( 1
log d ) approximation

for trees is tight, by presenting trees in which the welfare of every non-malicious equilibrium
is at most an Ω( 1

log d ) fraction of the monopolist revenue (and thus of the optimal welfare).
However, this bound is proved using constructions for which there are other (“malicious”)
equilibria that achieve a constant approximation. We therefore strengthen this impossibility
result and show instances where all equilibria, malicious or not, achieve bad results. In
particular, we would like to find out whether the revenue of the best equilibrium is always a
constant fraction of the monopolist’s revenue. Our main lower bounds show that the answer
is negative, even for trees.

I Theorem. For graphs with maximum degree d:
There are graphs for which the welfare in every Nash equilibrium is at most O( 1√

log d
)

fraction of the monopolist’s revenue.
There are trees for which the welfare in every Nash equilibrium is at most O( 1

log log d )
fraction of the monopolist’s revenue.

Note that the fact that the revenue in every equilibrium is low compared to the monopolist
revenue, implies that it is also low compared to the maximum welfare. Moreover, our bounds
are actually stronger, showing that not only the revenue in equilibrium is low, but also the
welfare.

Related Literature

The analysis of price competition goes back to Cournot [8] and Bertrand [4]. The famous
competition model of [8] describes producers who compete through quantities, but in the
same work he also described a model of a duopoly selling perfect complements.

[21] consider buyers interested in perfect complements, where each bidder is interested in
one specific bundle (single-minded bidders); They study mechanism design for a single seller
and buyers with private information, where our focus is on competition between multiple
sellers with complete information. Auctions for networks of buyers and sellers with private
information were studied in [17].

There is a line of literature studying interactions of sellers and buyers over networks.
Among them, [16] considered bargaining in networks, where agents can choose whom they
want to negotiate with and the solution implies matching of buyers and sellers. In our model,
neighbouring sellers also “negotiate” on dividing the value of the buyer on the edge between
them, but unlike [16], a seller can serve several neighbouring buyers simultaneously (with the
constraint of non-discriminatory pricing). Sub-game perfect equilibria in bargaining games
were studied in [7]. [13] studied general equilibrium models on networks with linear utilities
of buyers.

[2] considered a similar model of sellers that compete in prices, and a trade network that
is modeled as graph, with one main difference from this paper: items are substitutes for the
buyers. Namely, a buyer is interested in buying either from one seller or from the other seller
on the edge, while here we consider buyers that are interested in both. This difference implies
significant differences in results. For example, there, unlike our paper, pure Nash equilibria
hardly ever exist. For trees, equilibrium utilities of the sellers are uniquely defined, while
here they are not.6

6 Our framework can be also viewed as a variant of graphical games [15]. There are several known
algorithms for computing equilibria in graphical games (see survey [14]). Another related family of
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2 Model

We study trade networks which are modeled as weighted undirected graphs, where sellers
are represented by nodes and buyers by weighted edges. The set of edges is denoted by
E, let N be the set of nodes and let i, j ∈ N denote generic sellers. Sellers have no costs
and can supply any number of items. The sellers are the players in the game, interested in
maximizing revenue. Each buyer is single minded and is interested in the bundle of items
sold by both sellers that lie on that edge. The weight vi,j on the edge represents the value of
this buyer for buying the bundle {i, j}. In particular, buyers gain zero value from buying
each item alone. A seller i posts a single price pi ≥ 0 that will be available to all incident
edges (cannot price discriminate between buyers). A buyer of bundle {i, j} buys if and only
if vi,j ≥ pi + pj .

For a given price vector p we denote the set of sold edges by S(p). The edge (i, j) is tight
if pi + pj = vi,j (the sum of prices of the sellers on the edge equals the value of the edge).
We say that an edge (i, j) has slack if pi + pj < vi,j . For a given seller i and an edge (i, j),
the slack of seller i on that edge is vi,j − pj (that is, it equals to the difference between the
value of the edge and the price of the other seller on that edge).

For a given price vector p, the revenue ri of seller i with price pi is pi · |{j|(i, j) ∈ S(p)}|,
that is, pi for every adjacent edge that is sold. The total revenue is

∑
i ri and the welfare is∑

(i,j)∈S(p) vi,j .
The sellers compete in a game in which they simultaneously post prices. These prices

form a (pure) Nash equilibrium (NE) if each seller maximizes his revenue given the prices of
all other sellers. In this paper we only consider pure Nash equilibria.

For a given network, the revenue of the monopolist is the supremum of the total revenue
over all price vectors for the sellers. The maximum welfare is simply the sum of values of all
edges (this can be obtained when every seller prices at 0). We study the ratio between the
revenue in equilibrium and either the revenue of the monopolist or the maximum welfare
(whichever bound is harder to prove): For our positive results we show that the equilibrium
revenue is some fraction of the maximum welfare (which clearly implies approximation to
the monopolist revenue), while for our negative results we prove inapproximability of the
monopolist revenue (which implies the same result with respect to the maximum welfare).

Non Malicious Equilibria. We have already observed that the welfare of the worst equilib-
rium is arbitrarily low. Thus, we sometimes study an equilibrium refinement in which sellers
with 0 utility price at 0. We say that a losing seller (seller with 0 utility) is non malicious if
she prices at 0. A price vector for the sellers is called non malicious if every losing seller is
non malicious. This, in particular, implies that every seller’s revenue is at least as high as
the price he sets. We use the concept of non-malicious NE when proving our main result: we
first show that such equilibria always approximate the optimal welfare, and we then show
that they always exist in trees. This implies a positive result on the price-of-stability in trees.

games is Polymatrix games (see [5, 9, 6]), where an action of a player is played in several simultaneous
bimatrix games (the games in our paper have continuous action spaces); This class of games played an
important role in showing hardness of equilibrium computation results. Our goal in this paper is to find
equilibria with good economic properties, and compare their properties to the optimal non-strategic
solution. Our paper shows that allowing losing sellers to price “maliciously” might be beneficial to
society as a whole, this phenomenon was termed the “Windfall of Malice” by [1].
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3 Special Families of Graphs: Paths and Cycles

In this section, we present positive results for special cases of graphs and algorithms that
compute Nash equilibria with high revenue for those cases. These algorithms consist of
a particular sequence of best responses of the sellers. We present a linear time algorithm
for path graphs that finds an equilibrium that obtains revenue that is at least half of the
maximum welfare. We use it to present a linear time algorithm for cycles that computes an
equilibrium with revenue at least a quarter of the maximum welfare.

3.1 Path Graphs
We first consider the simplest non-trivial graphs: path graphs. Our algorithm (Algorithm
1) assumes that sellers are indexed from left to right, with the leftmost seller indexed by 1.
The algorithm starts with all sellers pricing at ∞ and then changes the price of the leftmost
seller to 0. Then, it goes over the sellers from left to right, letting each seller to choose a
best response. If the seller cannot get positive utility, he prices at the value of the previous
edge (not at 0 - and thus the equilibrium might be malicious). The way we break ties for
sellers with 0 utility ensures that after seller i best responds, all previous sellers are still best
responding (as seller i leaves no slack to the previous seller). Our algorithm may achieve
terrible revenue when executed in a certain direction on the path (for example, when the
weights of the edges are monotonically decreasing), but in such cases we show that running
it from for the opposite direction will perform well. This is essentially since every time the
value of the edge is larger than the previous edge, it is sold tightly. The algorithm thus picks
the better equilibrium out of executing the above procedure starting from one end, or from
the other.7

Algorithm 1 A 1
2 -Approximation for path graphs.

1. Initialize all prices to infinity, and the price of the first (leftmost) seller to 0.
2. Starting from the second seller, go over the sellers from left to right and let each seller best

respond to the current prices. If every price of the current seller i gets him 0 utility, set his price
to the value of edge (i − 1, i) (the value of the previous edge).

3. Mirror the path left to right (mapping node i to become node n + 1 − i) and repeat the above
algorithm. Output one of these two price vectors with the higher total revenue.

This algorithm terminates in a NE with revenue of at least half the maximum welfare
(proof appears in the full paper):

I Proposition 1. For any path graph, Algorithm 1 terminates in a NE after a linear number
of steps. The total revenue in this equilibrium is at least half of the maximum welfare.

3.2 Cycles
Our next result shows that in any cycle graph there is always a NE with high revenue.
Moreover, we show how to compute such a NE in linear time; The algorithm runs the above

7 We illustrate the algorithm for the path graph of Figure 1: The algorithm chooses a price of 0 for the
copper seller, then a price of 1 for the zinc seller, a price of 5 for iron and a price of 1 for glass. This is
a NE with revenue 7 (out of maximum welfare of 8). By symmetry, the revenue starting from the other
end would be the same.
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path-graph algorithm for one full round on all sellers, and then initiates a best-response
dynamic that will end up in such an equilibrium.

Fix an arbitrary seller and mark him as seller 1. Going clockwise along the cycle starting
from seller 1, number the other sellers 2 to n. We present the algorithm as Algorithm 2.

Algorithm 2 A 1
4 -Approximation for Cycles

1. Initialize all prices to be infinity, initialize the price of seller 1 to 0.
2. Going clockwise: Starting from the second seller till the first seller (inclusive), go over the sellers

clockwise and let each seller best response to the current prices. If every price of the considered
seller i gets him 0 utility, set his price to the value of edge (i − 1, i) (the value of the previous
edge in the cycle, with edge (n, 1) being the edge prior to 1).

3. Run a best response dynamics (by iteratively letting a seller that is not best responding to
update his price) till it stops.

4. Mirror the cycle and repeat the above algorithm (i.e. the new order after seller 1 is n, n −
1, . . . , 2, 1). Output one of these two price vectors with the higher total revenue.

I Theorem 2. For any cycle, Algorithm 2 terminates in a Nash equilibrium after linear
number of steps. The total revenue in this equilibrium is at least one quarter of the maximum
welfare.

The details of the proof can be found in the full paper. We next present an informal
description of the algorithm together with an outline of the proof. First, the algorithm
essentially runs Algorithm 1 in one direction, starting with a price of 0 for seller 1 and going
clockwise, letting each seller best respond (pricing at the value of the prior edge if his utility
is 0) including the first seller as the last seller to change his price. We note that the first
seller is now best responding (as the edge to the second seller had no slack, so he could not
get any utility out of it). After that cycle completes, we argue that there is at most one seller
(the second seller) that is not best responding. From this point on, the algorithm runs a best
response dynamics till it stops. We argue that at each point, the only seller that might not
be best responding is the next seller, and once he best responds, either the sellers are in a
NE or the edge with the previous seller is tight. As we show, it follows that this dynamics
will stop after a linear number of steps. We also show that the algorithm running either
clockwise or counter-clockwise gets revenue that is at least one quarter of the maximum
welfare: the path-graph algorithm gets at least half, and from then edges are only added
(and sold tightly), except the edge following the last seller to update his price that might be
dropped. We show that the revenue of the dropped edge is no larger than the remaining
revenue, thus we lose at most half the revenue obtained by the path algorithm.

4 A Positive Result

We start by presenting our main positive result, showing that the revenue in some NE is at
least some fraction of the maximum welfare (and thus also some fraction of the monopolist
revenue). We prove this claim by showing that this is true for any non-malicious NE. For
any network for which a non-malicious equilibrium exists (like in trees, see Theorem 9), this
implies that at least the same fraction can be obtained in the highest revenue equilibrium.8

8 This result actually holds for a more general graph model, where some buyers are interested in a single
good, not a pair, and also for graphs that contain parallel edges (that is, there might be multiple buyers
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The bound we present is in terms of the maximum degree and the arboricity of the graph.
The maximum degree is the largest degree of any node: the maximal number of buyers that
demand an item from the same seller. The arboricity of an undirected graph is the minimum
number of forests into which its edges can be partitioned. Equivalently, it is the minimum
number of spanning forests needed to cover all the edges of the graph.

To gain some intuition for the notion of arboricity, here are some simple examples. A
forest (and a tree) has arboricity 1. A cycle has arboricity 2 as it clearly cannot be spanned
by a single forest, but it can be partitioned into two trees, a spanning tree and the missing
edge. A clique of size n has arboricity dn/2e: the arboricity is at least n/2 as any tree has at
most n− 1 edges and the clique has n(n− 1)/2 edges, and it is at most dn/2e as it can be
covered by bn/2c Hamiltonian paths, plus a star for odd n.

I Theorem 3. In every graph with maximum degree d and arboricity w and every non-
malicious NE in it, the total revenue of all sellers is at least 1

2(w+1+ln d) fraction of the
maximum welfare.

Proof. Fix a graph and a non malicious Nash equilibrium in it. We will say that a vertex u

is low for the edge (v, u) if u’s price in the equilibrium is at most half of the value of the edge
(v, u). We will say that an edge is all-high if both of the vertices on it are not low for the
edge (in this case clearly the edge does not buy). Let EH denote the set of all-high edges.
For a vertex v let Ev denote the set of edges (v, u) (edges adjacent to v) such that u is low
for (v, u). Observe that since every edge is either all-high or low for some node, the set of all
edges E is covered as follows: E = EH ∪ (∪vEv). Thus∑

(v,u)∈E

v(v,u) ≤
∑

(v,u)∈EH

v(v,u) +
∑

v

∑
(v,u)∈Ev

v(v,u) .

Denote the total revenue by r. To complete the proof we bound each of the two terms
separately, the first by 2w · r and the second by 2(ln d + 1) · r, together proving the theorem.

We start by bounding the edges that are not all-high. Let rv denote the revenue of v.
This claim is well known (e.g., [11]) and we present the proof for completeness in the full
paper.9

I Claim 4. For every node v it holds that
∑

(v,u)∈Ev v(v,u) ≤ rv · 2(ln d + 1)

By the claim we derive that∑
v

∑
(v,u)∈Ev

v(v,u) ≤
∑

v

rv · 2(ln d + 1) = 2(ln d + 1) · r .

We next bound the total value of the all-high edges. To take care of the total weight of the
all-high edges we will use the fact that in a graph of arboricity w there exists a mapping from
edges to vertices such that every edge is mapped to one of its two vertices and no vertex has
more than w edges mapped to it (this is true as we can just root each tree and map every
edge to its child node). Since the edge is all-high and the equilibrium is non malicious, the
price – and thus also the revenue – of each of the two vertices on the edge is at least half
the value of the edge. Summing, again, over all vertices, we get that the total weight of all

interested in each pair of goods).
9 The claim essentially says that a single price can gain revenue of at least a logarithmic fraction of the

total demand (in our case, it is the residual demand given the prices of the neighbours- which is at least
half the value of each edge as these edges are not all-high.).
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all-high edges is at most 2w the total revenue of all vertices. Stated formally, consider the
mapping M from EH to the set of nodes N that maps each edge to an adjacent node and
never maps more than w edges to the same node. For every node v that incident at least
one high edge, define u∗(v) to be a vertex such that for all u such that (v, u) ∈ EH we have
v(v,u∗(v)) ≥ v(v,u). Then, it holds that∑

(v,u)∈EH

v(v,u) ≤
∑

v

∑
u|M(v,u)=v

v(v,u) ≤
∑

v|∃u M(v,u)=v

w · v(v,u∗(v)) (1)

≤ w ·
∑

v

2 · rv ≤ 2w · r (2)

J

For any network for which a non-malicious equilibrium exists, the theorem ensures that
some Nash equilibrium has high revenue. Thus, it can be viewed as a “Price of Stability”
result for such networks. In particular, it bounds the price-of-stability for trees, as for
any tree a non-malicious equilibrium exists by Theorem 9. It also ensures that every non-
malicious equilibrium has high revenue, thus can be viewed as a “Price of Anarchy” result
for non-malicious equilibria.

The theorem implies a bound on trees that is only logarithmic in the maximum degree.

I Corollary 5. In any tree with maximum degree d and every non-malicious equilibrium in
it, the total revenue of all sellers is Ω(1/ ln d) fraction of the maximum welfare.

5 Impossibility Results

Theorem 3 gives a positive result, ensuring that the revenue in equilibrium is some fraction
of the welfare. Yet, it might be possible that an improved bound can be shown. Specifically,
we would like to answer the following question: Is the revenue of best equilibrium always a
constant fraction of the revenue of the monopolist? Unfortunately, the answer is no, even
for trees. We first present a lower bound for general graphs. This bound is slightly weaker
than the logarithmic bound (in the maximum degree) of Theorem 3. We then present a
lower bound for trees, showing that the best equilibrium revenue is not necessarily a constant
fraction of the monopolist revenue. For missing proofs see the full paper.

5.1 General Graphs
We start with the lower bound for general graphs. For proving the theorem, we construct
graphs with arboricity that is much smaller than their maximum degree.

I Theorem 6. There exists a family of graphs with maximum degree d and arboricity w for
which w2 = O(ln d) and the revenue that a monopolist seller can get is factor Ω(w) larger
than the revenue (and welfare) in any Nash equilibrium. It terms of d, the factor can be as
large as Ω(

√
ln d) when w2 = Θ(ln d).

The bound is proven using the following construction (see Figure 2). There is a clique of
size w + 1 and any node in the clique is connected to an “harmonic gadget”: d edges with
values 1, 1/2, 1/3, . . . , 1/d. The value of an edge connecting two nodes in the clique is 4. We
first claim that for these parameters, a monopolist would price all the clique nodes at 0 and
get full revenue from all the harmonic gadgets. In any NE, however, at most one seller prices
below 1/w, thus not much revenue is gained from the harmonic gadgets.
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Figure 2 The construction of Theorem 6. A clique of w + 1 sellers, each edge in it is of value 4.
Each node in the clique is connected to an “harmonic gadget”.

5.2 Trees
For trees, the above bound (when w = 1) is a constant. We next present a different
construction that shows that for some trees, the revenue of a monopolist can be factor
Ω(ln ln d) larger than the revenue of the best equilibrium. In particular, it show that a
constant upper bound is impossible.

I Theorem 7. There exists a family of trees with maximum degree d for which the revenue
that a monopolist seller gets is factor Ω(ln ln d) larger than the revenue (and welfare) in any
NE.

For proving this impossibility result we construct the following graph, fixing an integer m

(to be determined later). Consider a path with 2m + 1 edges. The first edge has value 5. For
any j = 1, 2, . . . m, given that edge 2j−1 has value v, set the value of the edge 2j to be 2v +2
and the value of edge 2j + 1 to be 2v + 6. Any node of even index is additionally connected to
an “harmonic gadget” with d−2 spikes: d−2 edges with values 1, 1/2, 1/3, 1/4, . . . , 1/(d−2).

We first argue that in any Nash equilibrium there is at most a single seller of even index
on the path with price that is at most 1. We then argue that a monopolist seller can get
revenue of at least m ln(d− 2) by pricing every seller on the path at 0 and gaining all the
revenue from the m harmonic gadgets. We conclude that the ratio of the monopolist revenue
to equilibrium revenue (and welfare) is at least max{m ln(d−2),2m}

3+ln d+2m+4 . For m = Θ(ln ln d) this
ratio tends to Ω(m) as we aimed to prove. Full details appear in the full paper.

For trees, there is still a gap between this Ω(ln ln d) bound and the upper bound of O(ln d)
for non-malicious NE as implied by Corollary 5. Closing this gap is left as an open problem.

5.3 Non malicious Nash equilibrium
We have observed that the worst Nash equilibrium might have zero revenue, even for a single
edge. In this section, we consider non-malicious NE and present two simple examples that
show that the upper bound of Theorem 3 is tight in both parameters for the non-malicious
NE with the worst revenue (“Price of Anarchy”).

I Proposition 8. The following holds:
For any w ≥ 2 there exists a graph (symmetric clique) with 2w nodes and arboricity w

for which the revenue in some non-malicious equilibrium is smaller than the monopolist
revenue by a factor of at least w. Moreover, for that graph, every best-response dynamics
starting at zero prices converges to such an equilibrium.
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For any d ≥ 2 there exists a tree (star) with maximum degree d for which the revenue in
some non-malicious NE is smaller than the monopolist revenue by a factor of at least
ln d.

The two claims directly follow from the following simple examples. Consider first the
clique graph of n = 2w nodes with all weights being 1. Note that such a clique has arboricity
w. Here is a non-malicious Nash equilibrium: one of the sellers prices at 0 and all others price
at 1. The total revenue (and total welfare in this NE) is exactly (n− 1). Note that there
exists a fully-efficient fully-revenue-extracting non-malicious equilibrium where each seller
prices at 1/2. In this NE the revenue (and welfare) is exactly n(n− 1)/2. Thus, the ratio
between the best non-malicious equilibrium revenue and the worst non-malicious equilibrium
revenue is n/2 = w. Finally, observe that in any best response dynamics starting at 0, sellers
keep increasing prices from 0 to 1, except when there is only one seller pricing at 0, and the
others at 1. Thus, any best response dynamics starting at 0 prices will end at a non-malicious
NE in which one seller prices at 0 and all others price at 1.

Consider now a star with d spikes, with edge i of value 1/i. There is a non-malicious NE
with revenue of 1: the center prices at 1 and all other price at 0. Revenue (and welfare) of∑d

i=1 1/i ≥ ln d can be achieved by pricing the center at 0 and any other seller at the price
of its edge. The second claim follows.

6 Best Reply Dynamics

Our main positive result (Theorem 3) ensures that for any graph for which a non-malicious
equilibrium exists, there is an equilibrium with high revenue. Thus, one naturally wonders
if all graphs admit a non-malicious equilibrium. If so, can one find such an equilibrium in
polynomial time? Is there a natural dynamics that ends in such an equilibrium?

A natural procedure for converging to an equilibrium is repeated best-reply dynamics,
and one might hope that such dynamics will indeed always converge to a non-malicious
equilibrium in polynomial time. Such a dynamics starts with arbitrary prices, and at each
step a seller that is not best replying is chosen, and he updates his price to a best reply. If
the goal is finding a non malicious equilibrium, then one needs to consider a seller with 0
utility that is not pricing at 0 as a seller that is not best replying. We conjecture that for
any graph, such a process terminates in an equilibrium (which is clearly non malicious). A
stronger conjecture is that such an equilibrium will be reached in polynomial time.10

In this section, we prove the existence of non-malicious equilibria in trees by presenting
some best-reply dynamic that converges to equilibrium in a finite number of iterations.11

I Theorem 9. In every tree, for every initial profile of prices, there exists a sequence of
player best replies that terminates in a non-malicious Nash equilibrium.

The full proof appears in the full paper. We now present a sketch of the proof, and
recursively define the sequence of best responses. We pick a leaf u of the tree that is connected
to the rest of the tree via vertex v. Let x0 be the initial price of u and y0 be the initial price
of v. Our best reply dynamics will proceed by repeatedly, for i = 1 . . ., let xi be u’s reply
to yi−1, and then recursively use a best reply sequence that updates the rest of the tree,
assuming that u’s price is set to xi. Note that this recursive best-reply sequence starts with

10We remark that we have simulated best response dynamics on general graphs with arbitrary order, and
they always terminated in equilibrium very fast.

11Our proof only ensures that the dynamics will stop, but does not ensure terminating in polynomial time.
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v updating his price (since all the other vertices are already best-replying from the previous
recursive call, but then other vertices may update their price and v may update again, and
so on). The v’s price at the end of the recursive call is called yi. The recursive call on the
sub-tree terminates due to an inductive use of the theorem (i.e., the theorem is proved by
induction on the number of vertices in the tree). To ensure that the induction hypothesis
applies to the recursive call which is applied not just to a subtree, but rather to a subtree to
which an extra leaf u with a fixed value xi is attached, we prove the theorem (inductively)
also for trees in which each vertex may have an arbitrary number of leaves with a fixed value
attached to them.

References
1 Moshe Babaioff, Robert Kleinberg, and Christos H. Papadimitriou. Congestion games with

malicious players. Games and Economic Behavior, 67(1):22–35, 2009.
2 Moshe Babaioff, Brendan Lucier, and Noam Nisan. Bertrand networks. In ACM Conference

on Electronic Commerce (ACM-EC), 2013.
3 Maria-Florina Balcan and Avrim Blum. Approximation algorithms and online mechanisms

for item pricing. In Proceedings of the 7th ACM Conference on Electronic Commerce, EC’06,
pages 29–35, 2006.

4 Joseph Louis François Bertrand. theorie mathematique de la richesse sociale. Journal de
Savants, 67:499–508, 1883.

5 Yang Cai and Constantinos Daskalakis. On minmax theorems for multiplayer games. In
Proceedings of the Twenty-second Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA’11, pages 217–234, 2011.

6 Xi Chen, Xiaotie Deng, and Shang-Hua Teng. Settling the complexity of computing two-
player nash equilibria. J. ACM, 56(3):14:1–14:57, 2009.

7 Margarida Corominas-Bosch. Bargaining in a network of buyers and sellers. Journal of
Economic Theory, 115(1):35–77, 2004.

8 Antoine Augustin Cournot. Recherches sur les principes mathematiques de la theori des
Richesses. Trans. N.T. Bacon, New York: Macmillan, 1929, 1838.

9 Argyrios Deligkas, John Fearnley, Rahul Savani, and Paul Spirakis. Computing approxim-
ate nash equilibria in polymatrix games. In Web and Internet Economics: 10th Interna-
tional Conference, WINE 2014, pages 58–71, 2014.

10 C. Ellet. An essay on the laws of trade in reference to the works of internal improvement
in the United States. Reprints of economic classics. A.M. Kelley, 1966.

11 Andrew V. Goldberg, Jason D. Hartline, Anna R. Karlin, Michael Saks, and AndrewWright.
Competitive auctions. Games and Economic Behavior, 55(2):242–269, 2006.

12 Venkatesan Guruswami, Jason D. Hartline, Anna R. Karlin, David Kempe, Claire Kenyon,
and Frank McSherry. On profit-maximizing envy-free pricing. In Proceedings of the Six-
teenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’05, pages 1164–1173,
2005.

13 Sham M. Kakade, Michael Kearns, Luis E. Ortiz, Robin Pemantle, and Siddharth Suri.
Economic properties of social networks. In Advances in Neural Information Processing
Systems 17, pages 633–640. MIT Press, 2005.

14 Michael Kearns. In Noam Nisan, Tim Roughgarden, Eva Tardos and Vijay Vazirani (Edit-
ors), Algorithmic Game Theory. Chapter 7. Graphical Games. Cambridge University Press,
2007.

15 Michael J. Kearns, Michael L. Littman, and Satinder P. Singh. Graphical models for game
theory. In Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence,
UAI’01, pages 253–260, 2001.

ICALP 2016



140:14 Networks of Complements

16 Jon Kleinberg and Éva Tardos. Balanced outcomes in social exchange networks. In Proceed-
ings of the Fortieth Annual ACM Symposium on Theory of Computing, STOC’08, pages
295–304, 2008.

17 E. Kranton and Deborah F. Minehart. A theory of buyer-seller networks. American Eco-
nomic Review, 91:485–508, 2001.

18 Robert Krauthgamer, Aranyak Mehta, and Atri Rudra. Pricing commodities. Theor. Com-
put. Sci., 412(7):602–613, 2011.

19 Euiwoong Lee. Hardness of graph pricing through generalized max-dicut. In Proceedings of
the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC’15, pages
391–399, 2015.

20 E.w Lee, D. Buchfuhrer, L. Andrew, A. Tang, and S. Low. Progress on pricing with peering.
In Proceedings of the 45th Annual Allerton Conference on Computing, Communications and
Control, Allerton’07, pages 286–291, 2007.

21 Daniel Lehmann, Liadan Ita O’Callaghan, and Yoav Shoham. Truth revelation in approx-
imately efficient combinatorial auctions. In JACM 49(5), pages 577–602, Sept. 2002.

22 C. St.J. A. Nash-Williams. Edge-disjoint spanning trees of finite graphs. Journal of the
London Mathematical Society, s1-36(1):445–450, 1961.



House Markets with Matroid and Knapsack
Constraints∗

Piotr Krysta1 and Jinshan Zhang2

1 Department of Computer Science, University of Liverpool, Liverpool, UK
pkrysta@liverpool.ac.uk

2 Department of Computer Science, University of Liverpool, Liverpool, UK
jinshan.zhang@liverpool.ac.uk

Abstract
Classical online bipartite matching problem and its generalizations are central algorithmic op-
timization problems. The second related line of research is in the area of algorithmic mechanism
design, referring to the broad class of house allocation or assignment problems. We introduce a
single framework that unifies and generalizes these two streams of models. Our generalizations
allow for arbitrary matroid constraints or knapsack constraints at every object in the allocation
problem. We design and analyze approximation algorithms and truthful mechanisms for this
framework. Our algorithms have best possible approximation guarantees for most of the special
instantiations of this framework, and are strong generalizations of the previous known results.
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1 Introduction

Classic online bipartite matching is one of the central algorithmic optimization problems.
Since the seminal paper of Karp, Vazirani and Vazirani [21], there have been new developments
and generalizations of this model [4, 14, 20]. A related line of research is within algorithmic
mechanism design for a broad class of house allocation/assignment problems [1, 7, 18, 19, 27].
House Allocation (HA) problem is a model of assigning indivisible objects to agents, where
each agent with a preference order over a subset of objects requires at most one object and
payments are not allowed. HA and its generalizations have wide real life applications such as
Campus Housing Allocation [12], Student-project Allocation [2], Machine-job Assignment [9].
Our goal is to unify these two streams of models into a single algorithmic framework.

In classic HA, agents’ preferences over objects are strict. In many situations, it is more
suitable to allow the agent to express indifferences or ties among objects [25]. For example,
in Campus Housing Allocation, each student may provide some features (e.g., separate
bathroom) of dormitories, and he is indifferent between dormitories with same features.
Besides, other optimality criteria for the allocation are also desired, like Pareto optimality.
An allocation µ is Pareto optimal if there is no other allocation µ′ such that no agent is worse
off in µ′ and at least one agent is strictly better in µ′ compared to µ. Moreover, the agents
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are strategic (selfish) players who may not reveal their preference orders truthfully unless
they can not get better by misreports. Thus, designing truthful mechanisms is a central issue
in mechanism design for HA. A mechanism is truthful (in dominant strategies) if no agent
can get better off by misreporting his preference, independent from other agents’ reports.

In real world applications, not all the agents can be guaranteed to be matched since the
set of their acceptable objects is a subset of all the objects and there may not be enough
objects. Thus, designing algorithms to match as many agents as possible is also a much
desired objective. This can be quantified by the approximation ratio between the sizes of the
optimal matching and the matching obtained by the algorithm, preserving truthfulness and
Pareto optimality. In addition, different agents may have different weights or priorities, and
in this case, the ratio is between the weights of the optimal weighted matching and the output
matching. Krysta et al. [22] initiated the study of designing truthful and Pareto optimal
mechanisms for HA with good approximation ratios. They present a tight deterministic 2-
approximation, truthful and Pareto optimal mechanism, and a randomized e

e−1 -approximate,
universally truthful and Pareto optimal mechanism. In their setting, each object can be
allocated to at most one agent. Can we generalize their results to more general settings?

A simple generalization, called generalized HA, allows each object a to be allocated to at
most a given number, ba ∈ N, of agents. We observe that all the results in [22] can easily
be applied to this generalization. Let us create ba copies of each object a, and replace a in
each agent’s preference order by these ba copies in the same indifference class as a. By this
modification, called modified HA, each copy of each object is allowed to be allocated to at
most one agent. Each feasible allocation of the generalized HA can be modified to a feasible
solution to the modified HA, and vice versa. The mechanism in [22], which is Pareto optimal
and truthful for the modified HA, is also Pareto optimal and truthful for the generalized HA.

We study here as our framework, two further natural generalizations of the HA problem:
Matroid House Allocation Problem (MHA) and Knapsack House Allocation Problem (KHA).
Consider the following more realistic application of HA to the Campus Housing Allocation
problem. A university has many dormitories, and each student submits a preference order
over dormitories to the university. Besides this, some students may have further requirements
about their dormitories which should be fulfilled, e.g., one may require that the room should
have an independent bathroom or be far from the kitchen. Thus, for each dormitory a,
viewed as an object, and each student i, the rooms in a satisfying the requirements of i are
a subset of all the rooms in a. Hence, all the feasible sets of students allocated to a form
a transversal matroid (see definition in Section 2) of dormitory a. Our first generalization
of HA is based on this application, where each object in HA is associated with a (possibly
different) matroid and can be allocated to any number of agents in the ground set (which
is the set of agents) of the matroid. The set of agents allocated to each object forms an
independent set of its matroid. We call this generalization the Matroid House Allocation
Problem (MHA). We can show that MHA includes as special cases all the online bipartite
matching models [4, 14, 20, 21] ([20] if fixed vertices are used at most once) mentioned earlier.

The second generalization is as follows: each agent (or job) i is associated with a capacity
cia for each object (machine) a, and each object a is associated with a capacity Ca. As
before, each object can be allocated to multiple agents, but the total capacity of the agents
allocated to a does not exceed its capacity (i.e.,

∑
i cia ≤ Ca). We call this generalization

the Knapsack House Allocation Problem (KHA). An interesting application of KHA is Job
Scheduling Markets [9]. Our main results are the following:
1. We present a tight, deterministic, truthful and Pareto optimal mechanism (TMHA) for

MHA with the approximation ratio of 2, where agents have weights and ties.
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2. Based on TMHA, a randomized, universally truthful and Pareto optimal mechanism
(RTMHA) is presented. We prove that RTMHA is an e

e−1 -approximation mechanism
for MHA where agents have weights and ties. Note, truthful O(1)-approximation is
impossible if each agent has different weights over objects [17, 3]. 1. and 2. are strong
generalizations of the results in [22], and are obtained with completely new techniques.

3. A universally truthful, Pareto optimal mechanism for KHA with a (4, 2)-approximation
(4-approximation ratio, violating each knapsack constraint by a factor 2) for parallel
machines (objects) (cia = ci, for any object a) when weights and ties are allowed ((4, 1)-
approximation without ties). For general KHA with weights and ties, we observe that [11]
implies a universally truthful O(1)-approximate mechanism (but not Pareto optimal).

4. Our mechanism RTMHA applied to the online weighted matroid bipartite matching prob-
lem and the online matroid job recruitment problem, implies tight e

e−1 -approximations.

Technical Contributions. We present a generic approach to design deterministic truthful
and Pareto optimal mechanisms for MHA and KHA when agents’ preferences include ties,
by reducing mechanism design to algorithm design of the underlying graph (i.e., calling
the algorithm of finding maximum cardinality matching on an auxiliary graph as a black
box). The mechanism RTMHA for MHA shares in spirit the same idea as Random SDMT
mechanism in [22]. The main difficulty lies in the analysis of its e

e−1 -approximation. Our new
setting is much more general than [22], thus a completely different analysis is needed. We
split the analysis of RTMHA into three parts, and its starting point is based on the charging
map method (extended to matroid constraints), widely used for matching problems [4, 10].

First, for unweighted agents without ties, we show that the symmetric difference between
a matching µτ output by TMHA under an order τ of all agents and the matching µτ−i output
by TMHA under order τ−i with agent i absent, is an alternating path starting from i. This
characterization implies that, for each object a ∈ A, the agents Sa(τ) matched to a under µτ
and agents Sa(τ−i) matched to a under µτ−i satisfy a nice exchange property: if some agent
can be added to Sa(τ) then he can also be added to Sa(τ−i) obeying the matroid constraint.

When preferences have ties, we say that two matchings are equivalent if the matched
agents are the same and the matched objects of the same agent are in the same indifference
class of that agent. The second part of our analysis, for unweighted agents with ties, shows a
similar characterization between the equivalence class CL(µτ ) (all matchings equivalent to
matching µτ ) and the class CL(µτ−i). That is, there exists an injective map from CL(µτ ) to
CL(µτ−i) such that the symmetric difference of each matching in CL(µτ ) with its image in
CL(µτ−i) is an alternating path. This lets us reduce the problem for agents with ties to that
with agents without ties. We believe this technique will find further applications to analyze
mechanisms for agents with ties in ordinal settings, which may simplify the proofs. For
example, with this technique, we greatly simplify the proof for weighted agents with ties and
objects with uniform matroid constraints in [22], where they use a different technique based
on trading graphs. Based on this characterization we prove the important Injectivity Lemma;
it can be used to show the e

e−1 -approximation for unweighted agents with ties directly.
Thirdly, for the most general setting of weighted agents with ties, we carefully utilize the

previous injectivity lemma, proving a strengthened version of such a lemma (see Lemma 13).
Based on this lemma, we show that there exists an injective map from marginal ‘bad’ events
to ‘good’ events, which suffices for the analysis of the final approximation ratio.

Related Work. Random Serial Dictator (RSD) [1] and Probabilistic Serial (PS) [7] are two
paradigmatic randomized mechanisms for HA. Krysta et al. [22] generalize RSD mechanism
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to HA with ties and obtain a tight 2-approximate deterministic truthful and Pareto optimal
mechanism for weighted agents and an e

e−1 -approximate universally truthful, Pareto optimal
mechanism. They show that no universally truthful, Pareto optimal mechanism can have
approximation better than 18

13 , and if the mechanism is additionally non-bossy, the lower
bound on the approximation ratio is e

e−1 . Our random mechanism is non-bossy for agents with
strict preferences and thus has best possible approximation ratio in this sense. Bogomolnaia
and Moulin [8] show the same ratio e

e−1 also for PS. Recently, [17, 3] establish an O(
√
n)

bound of RSD (w.r.t. the optimal social welfare) when agents have cardinal values (with
arbitrary weights on the objects) over all the objects and show that no truthful in expectation
mechanism can have approximation better than Ω(

√
n). We obtain constant approximation

ratios when the agents are weighted. This lower bound Ω(
√
n) implies that we cannot obtain

similar results when agents have different weights over objects. Tight deterministic truthful
mechanisms for weighted matching markets were proposed by Dughmi and Ghosh [15].

(M)HA is related to online bipartite matching problem (OBM) as follows. If each agent
in HA ranks his desired objects in the order that precisely follows the arrival order of objects
in the OBM, the two problems are equivalent, as emphasized in [6, 22]. Karp et al. [21]
initialize the study of OBM and provide a RANKING algorithm with a tight approximation
ratio e

e−1 . Aggarwal et al. [4] are the first to study the weighted version of OBM (WOBM)
when the fixed vertices have weights (or priorities). They use the charging map approach and
prove that the ratio e

e−1 also holds. Recently, the analysis of WOBM has been unified into
the primal-dual framework by Devanur et al. [14]. There are further generalizations of the
online bipartite matching model, e.g., [10, 23, 24]. Matroid HA has an online interpretation,
which is loosely related to the Matroid Secretary Problem introduced by Babaioff et al. [5].

Organization. Section 2 contains preliminaries, and Section 3 presents our deterministic
mechanism for MHA. We develop a randomized mechanism for MHA in Section 4. Its analysis
is divided into three subsections: 4.1 for unweighted agents without ties, 4.2 for unweighted
agents with ties, 4.3 for weighted agents with ties. Applications of our mechanisms for MHA
and our results for KHA will be published in the the full version of the paper.

2 Preliminaries

Let N = {1, 2, · · · , n1} be a set of n1 agents and A a set of n2 objects; n = n1 + n2. Let
[i] = {1, 2, · · · , i}. Each agent i ∈ N finds a subset of objects acceptable and has a preference
ordering, not necessarily strict, over these objects.

We write at �i as if agent i strictly prefers object at to object as, and at 'i as if i is
indifferent between at and as. We use at �i as to denote that i weakly prefers at to as,
i.e., either at �i as or at 'i as. In some cases a weight wi is associated with each agent i,
representing i’s priority or importance; letW = (w1, w2, . . . , wn1). If we are in an unweighted
setting then wi = 1 for each i.

Each agent’s acceptable objects are divided into indifference classes: he is indifferent
between the objects in the same class and has a strict preference ordering over these classes.
For each agent i, let Cik, 1 ≤ k ≤ n2, be the kth indifference class (tie), of i; assume that
Ciq = ∅, ∀q, l ≤ q ≤ n2, if Cil = ∅ for some l ∈ [n2]. Let L(i) = (Ci1 �i Ci2 �i · · · �i Cin2

) be
the preference list of i. We write a ∈ L(i) if a appears in L(i) (i finds a acceptable). Let
L = (L(1), L(2), · · · , L(n1)) and L(−i) = (L(1), . . . , L(i− 1), L(i+ 1), . . . , L(n1)).

A matroid is a pairM = (X, I), where X is a ground set and I ⊆ 2X (each Y ∈ I is
called independent set) satisfying properties: (1) [non-emptiness] ∅ ∈ I; (2) [heredity]
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If Y ∈ I and Z ⊆ Y , then Z ∈ I; (3) [exchange] If Z, Y ∈ I and |Z| > |Y |, then there is
z ∈ Z\Y such that Y ∪ {z} ∈ I. A base ofM is an independent set with maximum size. By
(3), any maximal independent set is a base. For any S ⊆ X, let rM(S) be the maximum size
of an independent set contained in S; rM(X) is called the rank ofM. A matroidM = (X, I)
is called an `-uniform matroid if Y ⊆ X is independent if and only if |Y | ≤ `. A direct sum
of uniform matroids (not necessarily with the same rank) is called a partition matroid. Given
a set X and a family F = {Xi}si=1 of subsets of X, a set T ⊆ X is called a transversal set of
X if there is an injective map f : T → F s.t. x ∈ f(x), for any x ∈ T . The matroid (X, I),
with I = {T |T is a transversal set of X}, is called a transversal matroid.

In Matroid HA (MHA), we have a matroidMa = (N, Ia) on agent set N , for each object
a ∈ [n2]. A (feasible) matching (or b-matching) µ is an allocation (subset of N ×A) assigning
at most one object to each agent i1 such that, for each object a, the set of agents who are
assigned a is an independent set ofMa (multiple agents may be allocated the same object).
If (i, a) ∈ µ, agent i and object a are matched together. If (i, a) ∈ µ for some a, we say that i
is matched, and unmatched otherwise. The definitions of matched (unmatched) for an object
are analogous. If i ∈ N is matched, µ(i) denotes the object matched to i. If object a is
matched, µ−1(a) denotes the set of agents matched to a. Two matchings µ, µ′ are equivalent
(denoted µ ' µ′) if in these two matchings, the matched agents are the same and the matched
objects for each agent are in the same indifference class of this agent, i.e., µ(i) 'i µ′(i),
allowing ∅ 'i ∅, for any i ∈ N . Let CL(µ) be the class of all matchings equivalent to µ. For
two sets B and C, we sometimes use B+C (B−C, resp.) to denote B∪C (B\C, resp.), and
sometimes write a set {x} simply as x. Let Π denote the set of all permutations of agents.

In what follows, we will consider the undirected graph G = (V,E) where V = (N ∪ A)
and E = {(i, a), i ∈ N, a ∈ L(i)}. We also use µ to denote a matching (a feasible matching
for MHA) in G. The size of a matching µ is equal to the number of agents matched under µ.
In the presence of weights, the weight of a matching is equal to the sum of the weights of the
matched agents. For any subset E′ ⊆ E, define E′v = {u | (u, v) ∈ E′}, for any v ∈ V . An
instance of MHA is denoted by I = (N,A,L, (Ma)a,W ). We drop W and (Ma)a and write
I = (N,A,L,M) if agents are unweighted. Let IMHA denote the set of all possible instances
of MHA. For two given matchings µ1, µ2, we will use µ1 ⊕ µ2 to denote the symmetric
difference with respect to their sets of edges. An alternating path in G, w.r.t. a matching µ1,
is a path that consists of edges that alternately belong to µ1 and do not belong to µ1.

A matching µ is Pareto optimal if there is no other matching under which some agent is
strictly better off while none is worse off, w.r.t. their preferences. Formally, µ is Pareto optimal
if there is no other matching µ′ such that (i) µ′(i) �i µ(i) for all i ∈ N , and (ii) µ′(i′) �i′ µ(i′)
for some i′ ∈ N . Given an order σ ∈ Π, a matching µ is strictly lexicographically σ-better
than a matching µ′ if there exists a k ∈ [n1] such that µ(σ(i)) 'σ(i) µ

′(σ(i)), i ∈ [k − 1] and
µ(σ(k)) �σ(k) µ

′(σ(k)). A matching µ is called a lexicographically σ-maximal matching if
there does not exist a matching µ′ such that µ′ is strictly lexicographically σ-better than
matching µ. Note, if µ is lexicographically σ-maximal, then µ must be Pareto optimal.

LetMMHA denote the set of all possible matchings. A deterministic mechanism φ maps
an instance of MHA to a matching, i.e., φ : IMHA →MMHA. Let R :MMHA → [0, 1] be a
probability distribution over possible matchings (a random matching), i.e.,

∑
µ∈MMHA R(µ) =

1. A randomized mechanism φ is a mapping from IMHA to a distribution over possible
matchings, i.e., φ : IMHA → Rand(MMHA), where Rand(MMHA) is the set of all random

1 Note that if agents are allowed to receive more than one object, the model becomes a many-to-many
matching and the preference spaces of agents are much more complicated, which is not studied here.
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matchings. A deterministic (randomized, resp.) mechanism is Pareto optimal if it returns a
Pareto optimal matching (a distribution over Pareto optimal matchings, resp.).

Agents’ preferences are private knowledge and they may prefer not to reveal their
preferences truthfully if it is not in their best interests, for a given mechanism. A deterministic
mechanism is truthful (in dominant strategies) if agents always find it in their best interests
to declare their preferences truthfully, no matter what other agents declare, i.e., for every i
and every possible declared list L′(i) for i, φ(L(i), L(−i)) �i φ(L′(i), L(−i)), ∀L(i), L(−i).
A randomized mechanism φ is universally truthful if it is a probability distribution over
deterministic truthful mechanisms. Let w(φ(I)) be the (expected) weight of the (random)
matching output by φ on instance I ∈ IMHA, and w(I) be the weight of a maximum weight
Pareto optimal matching in I. The approximation ratio of φ is defined as maxI∈IMHA w(I)

w(φ(I)) .
For any agent i, define a matroid on agent i as Mi = (A, Ii), with Ii = {S |S ⊆

A and |S| ≤ 1}. We define two useful matroids on edge set E. LetM = (E, I), where, for
any E′ ⊆ E, E′ ∈ I if and only if E′a ∈ Ia, for any a ∈ A. Let M′ = (E, I ′), where, for
any E′ ⊆ E, E′ ∈ I ′ if and only if E′i ∈ Ii, for any i ∈ N . Note,M′ is a partition matroid.
Also, an allocation E′ ⊆ E is feasible for MHA if and only if E′ ∈ I ∩ I ′, meaning that E′
is an independent set in both M′ and M. Hence, our objective is to design (universally)
truthful, Pareto optimal mechanisms to find an edge set that is independent in bothM′ and
M, such that its size (or weight for weighted agents) is maximized. Edmonds [16] provides
an algorithm to compute a maximum independent set that is independent for two matroids.

I Proposition 1 ([16, 13]). Given two matroids M1 = (X, I1) and M2 = (X, I2), there
is a matroid intersection algorithm AMI for computing a maximum cardinality common
independent set S ∈ I1 ∩ I2, terminating in polynomial time Γ(|X|) ≤ O(|S| 32 |X|Qtest),
where Qtest is the time needed to test if a given set is independent.

We assume for simplicity that the test time Qtest = O(1), and we omit it in the rest of the
paper. We also need a fact from exchange theory between two bases of a matroid.

I Proposition 2 (Corollary 39.12a [26]). For a matroid M = (X, I) and B1, B2 ∈ I with
|B1| = |B2|, there exists a bijection f : B1−B2 → B2−B1 s.t. ∀x ∈ B1−B2, B1−x+f(x) ∈ I.

3 Deterministic Mechanism for MHA

We introduce TMHA, a truthful and Pareto optimal mechanism, that generalizes SDMT-1
[22] to the case where sets allocated to the objects are independent sets of matroids. Let
I = (N,A,L,M) be an instance of MHA, and σ ∈ Π (w.l.o.g., σ(i) = i for i ∈ N). TMHA,
given in Algorithm 1, proceeds in n1 phases, each phase corresponds to one iteration of the
for loop. Notice, at any stage of TMHA, (i, a) ∈ E if and only if either agent i is matched in
µ and a 'i µ(i) or TMHA is at phase i, examining the indifference class that contains a.

I Observation 3. At the end of phase i of TMHA, if agent i is assigned no object then he
will be assigned no object when TMHA terminates. If i is provisionally assigned an object a,
then he will be allocated an object in the same indifference class as a in the final matching.

By Observation 3, different tie breaking rules lead to equivalent produced matchings.

I Theorem 4. Given an order σ ∈ Π of agents, the matching generated by TMHA is a
lexicographically σ-maximal matching, thus, also Pareto optimal.

TMHA is truthful, no matter which matching is selected in each phase of the mechanism:
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Algorithm 1: Truthful Mechanism for MHA (TMHA)
Input: Agents N ; Objects A; Preference list profile L; Matroids (Ma)a; Order σ
Output: Matching µ

1 Let G = (N ∪A,E), E ← ∅, µ← ∅.
2 for each agent i ∈ N in the order of σ do
3 Let `← 1
4 Step (*): if Ci` 6= ∅ then
5 E ← E ∪ {(i, a) : a ∈ Ci`}; // all new edges are non-matching edges
6 Run AMI on G and obtain a maximum cardinality matching µ′
7 if |µ′| = |µ|+ 1 then
8 modify µ to µ′; // i must be provisionally allocated some a ∈ Ci` and (i, a)

is now a matching edge
9 else

10 E ← E \ {(i, a) : a ∈ Ci`}; `← `+ 1; Go to Step (*)

11 Return µ; //each matched agent is allocated his matched object

I Theorem 5. The mechanism TMHA is truthful.

We now show a bound on the time complexity of TMHA. Let γ denote the size of the largest
indifference class for a given instance I.

I Theorem 6. TMHA terminates in time O(n3
1γ).

Any Pareto optimal matching is at least half the size of a maximum size such matching
[9]. Thus, TMHA achieves approximation ratio 2 with respect to the maximum cardinality
matching. We show that, when agents are assigned arbitrary weights, TMHA is 2-approximate
(w.r.t. maximum weight Pareto optimal matching) if the order σ is by non-increasing agents’
weights, breaking ties arbitrarily. The bound is tight since no deterministic truthful mechanism
can achieve an approximation ratio better than 2 even if rMa = 1, for any a ∈ A, see [22].

I Theorem 7. TMHA achieves a 2-approximation w.r.t. the size of a maximum weight
Pareto optimal matching, if agents are ordered in σ by non-increasing order of their weights.

4 Randomized Mechanism for MHA

We now present a universally truthful, Pareto optimal mechanism for Matroid House Alloca-
tion Problem (see Algorithm 2, where g(y) = ey−1). When the matroid for each object is a
uniform matroid with rank one, Algorithm 2 reduces to SDMT-1 from [22]. The analysis of
RTMHA will be gradually developed in the following three subsections for various settings.
We will start with the simplest setting of unweighted agents without ties (Subsection 4.1),
then proceed to the setting of unweighted agents with ties (Subsection 4.2), and, finally,
weighted agents with ties (Subsection 4.3). The next subsection builds on the previous one.

If the weights are agents’ private data with no over-bidding assumption, Algorithm 2 is
universally truthful (w.r.t. preferences and weights) and Pareto optimal as well [22].

4.1 Unweighted Agents without Ties
We will show now that RTMHA achieves e

e−1 -approximation for unweighted agents without
ties. Note that the order of RTMHA for unweighted agents is just the uniform random order
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Algorithm 2: Random Truthful Mechanism for MHA (RTMHA)
Input: Agents N ; Objects A; Preference list profile L; Matroids (Ma)a; Weights W
Output: Matching

1 for each agent i ∈ N do
2 Pick Yi ∈ [0, 1] uniformly at random;
3 Sort agents in decreasing order of wi(1− g(Yi)) (break ties in favor of smaller index);
4 Run TMHA according to above order;
5 Return the matching;

of agents. Our technique is based on a charging map method (extended by us to matroids),
which is widely used in analyzing the approximation ratio for matching problems [4, 10].

We assume here that agents’ preferences are strict: |Cij | ≤ 1, for i ∈ [n1], j ∈ [n2]. Recall,
each object a is associated with a matroidMa = (N, Ia). We present a characterization of
µτ ⊕ µτ−i , where µτ and µτ−i are the matchings obtained by TMHA under the order τ of
agents and τ−i (τ with i absent), respectively. We first prove a useful lemma.

Lemma 8 shows exchange properties between two independent sets of a matroid and their
switching sets. Let T0 = {i′1, i′2, · · · , i′k} and Tk = {i1, i2, · · · , ik} be two sets of size k with
different elements (orders of elements in T0 and Tk are fixed). We define the switching sets
T`, ` ∈ [k− 1] between T0 and Tk, as T` = {i1, i2, · · · , i`, i′`+1, · · · , i′k}, ` ∈ [k− 1]. (Lemma 8
is used in the proof of Lemma 10 with elements being agents.)

I Lemma 8. Let M = (X, I) be a matroid and S ∈ I. Let T0 = {i′1, i′2, , · · · , i′k} ⊆ X

and Tk = {i1, i2, · · · , ik} ⊆ X and their switching sets T` = {i1, i2, · · · , i`, i′`+1, · · · , i′k} ∈ I,
` ∈ [k−1]. Suppose S+T` ∈ I, for any ` = 0, 1, · · · , k. We also have S+{i1, · · · , i`, i′`} /∈ I,
for any ` ∈ [k]. Then, for any element j (which is not in S + T0 + Tk),
(i) if S + Tk + j ∈ I then S + T0 + j ∈ I;
(ii) if S + T0 + j /∈ I then S + Tk + j /∈ I (contrapositive proposition of (i)).

Proof. For (i), by the exchange property of matroids, there exists a y ∈ Tk + j such that
S+T0+y ∈ I. If y 6= j, suppose y = i` for some ` ∈ [k]. Then we have T = S+{i1, · · · , i`} ∈ I
(from S + Tk ∈ I) and T ′ = S + {i′1, · · · , i′`, i`} ∈ I (from S + T0 + y ∈ I). Then by the
exchange property of matroids, there exists y′ ∈ T ′− T such that T + y′ ∈ I. Let y′ = i′`′ for
some `′ ≤ `. Consequently, S + {i1, i2, · · · , i`′ , i′`′} ∈ I, which leads to a contradiction. J

I Remark. Although in Lemma 8 we require two initial sets with the same cardinality,
we can relax the requirement to allow them to have different cardinalities. Namely, let
T0 = {i′1, i′2, · · · , i′k′} and Tk = {i1, i2, · · · , ik} with k′ ≤ k (the orders of elements in
two sets are fixed). The switching sets T`, ` ∈ [k′] between T0 and Tk are defined as:
T` = {i1, i2, · · · , i`, i′`+1, · · · , i′k′}, ` ∈ [k′ − 1], and Tk′ = Tk. Lemma 8 still holds.

Given τ ∈ Π, let µτ be the matching obtained by TMHA under τ , and let Sa(τ) be the
set of agents matched to a ∈ A by TMHA. Let, for any t ∈ [n1], Sta(τ) ⊆ Sa(τ) be the top
t agents in Sa(τ), i.e., Sta(τ) = {i ∈ Sa(τ) | τ−1(i) ≤ t}. Then Sa(τ) = Sn1

a (τ). Let τ−i be
order τ after removing agent i from τ . Similarly, define Sta(τ−i) and Sa(τ−i) = Sn1−1

a (τ−i).
When we say “under τ”, we mean the process of running TMHA under order τ . For any a ∈ A,
let F ta = Sta(τ−i) ∩ Sta(τ). T t0 = Sta(τ−i) − Sta(τ) = {i′1, i′2, · · · , i′`, i′`+1, · · · , i′k′}, k′ = |T t0 |.
Let T tk = Sta(τ)− Sta(τ−i) = {i1, i2, · · · , i`, i`+1, · · · , ik}, k = |T tk|. We will show in the next
lemma that k ∈ {k′, k′ + 1}, for any t ∈ [n1] and a ∈ [n2]. Note that this includes the case
k′ = 0 (in a sense that Property P (i)-(iv) below trivially holds). The orders in T t0 and T tk
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both follow order τ . We have the switching sets T t` = {i1, i2, · · · , i`, i′`+1, · · · , i′k′} between
T t0 and T tk, ` ∈ [k′ − 1], and T tk′ = T tk. We finally define Property P as follows.

I Definition 9. Let E′ = {(i′, µτ (i′)), (i′, µτ−i(i′)) : i′ ∈ N, i′ matched by µτ and µτ−i}.
We say that Property P holds for µτ and µτ−i if: C = ((µτ ⊕ µτ−i) ∩ E′) ∪ {(i, µτ (i))}
is an alternating path starting from agent i if it is non-empty, and for any a ∈ A, and
t ∈ [n1]:
(i) Fn1

a + T t` ∈ Ia, for any ` ∈ [k′] ;
(ii) F ta + {i1, · · · , i`, i′`} /∈ Ia, ` ∈ [k′];
(iii) For any agent s, if Sta(τ)+s ∈ Ia, then Sta(τ−i)+s ∈ Ia (or equivalently, Sta(τ−i)+s /∈ Ia

implies that Sta(τ) + s /∈ Ia).
(iv) τ−1(i1) < τ−1(i′1) < τ−1(i2) < τ−1(i′2) < · · · < τ−1(ik′) < τ−1(i′k′)

We are ready to give our characterization lemma in the following.

I Lemma 10. Property P holds for unweighted agents with strict preference orders.

Lemma 10 can be used to directly prove that RTMHA is e
e−1 + o(1)-approximate for

unweighted agents without ties. Analysis in Subsection 4.2 builds on developments in this
section.

4.2 Unweighted Agents with Ties
When agents have ties without weights, we will present a similar characterization in Lemma 11
(by alternating path) of symmetric differences between the matching obtained by TMHA
under some order τ of all agents and the matching obtained by TMHA under τ−i when an
agent i is absent. We will prove that in any step of the two processes of TMHA under τ and
under τ−i, there is an injective map from the equivalence class of matchings generated by
TMHA under τ to the class generated by TMHA under τ−i. This injective map is such that
each pair of the corresponding matchings from these two classes satisfies Property P.

For any t ∈ [n1], let CLt(µτ ) denote the equivalence class of matchings equivalent to the
matching found by TMHA under τ until tth iteration. Precisely, if µτ≤t = {(i, µτ (i)) : τ−1(i) ≤
t} is the matching µτ restricted to the first t agents of τ , then: CLt(µτ ) = {µ ∈ G |µ ' µτ≤t}.
Let CL(µτ ) = CLn1(µτ ). When we consider the process of running TMHA under τ−i, to
simplify the notation, we consider an equivalent process that runs TMHA under τ while
imposing the condition that agent i is unmatched. Hence, in the following we suppose TMHA
running on τ−i is such an equivalent process. Thus, we have CLt(µτ−i), for any t ∈ [n1].

I Lemma 11. For any t, there exists an injective map f from CLt(µτ ) to CLt(µτ−i) such
that for any µ ∈ CLt(µτ ), µ and f(µ) satisfy Property P.

Proof. The proof is by induction on the iterations of the two processes of TMHA run under
τ and under τ−i. First, note that CLs(µτ ) = CLs(µτ−i), for any s < τ−1(i). Thus each
matching from CLs(µτ ) can be mapped to itself. This shows that if i is unmatched under τ ,
the lemma trivially holds. Hence, w.l.o.g., suppose agent i is matched under τ .

Second, for any matching µs+1 ∈ CLs+1(µτ ), there exists a unique matching µs ∈ CLs(µτ )
such that µs+1 = µs ∪ {(τ(s+ 1), µs+1(τ(s+ 1)))}, for any s ≤ n1 − 1.

We now prove the induction base case for s = τ−1(i). For any matching µs ∈ CLs(µτ ),
we define f as f(µs) = µs<s ∈ CLs(µτ−i). Now we can see that the symmetric difference of
µs and f(µs) is a single edge and all parts of Property P hold. Hence, the base case is true.

Now suppose the lemma holds for s = k − 1, where k − 1 ≥ τ−1(i), i.e., we have an
injective function f : CLk−1(µτ ) → CLk−1(µτ−i) such that for any µ ∈ CLk−1(µτ ), µ and
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f(µ) satisfy Property P. Let’s see the case s = k ≤ t. Let j = τ(k) be the kth agent of
τ . Consider this new agent j, and any µ ∈ CLk(µτ−i). Since for any a which is strictly
better than µ(j), i.e., a �j µ(j), agent j will not be matched to a under µ, which means
j + Sk−1

a (µ) /∈ Ia, by part (iii) of Property P, j + Sk−1
a (f−1(µ<k)) /∈ Ia if f−1(µ<k) exists.

Therefore, for any µk,τ ∈ CLk(µτ ) and µk,τ−i ∈ CLk(µτ−i) , we will have µk,τ (j) �j µk,τ−i(j).
Let b = µk,τ (j) and c = µk,τ−i(j). Note that for each matching µk,τ ∈ CLk(µτ ), we have
µk,τ≤k−1 ∈ CLk−1(µτ ); similar property holds for CLk(µτ−i). Hence, we consider two cases:
Case(i). If b 'j c, we define f(µk,τ ) = f(µk,τ<k ) ∪ (j, b). We can see that f is well defined
since j can be added into Sb(µk,τ<k ), it also can be added into Sb(f(µk,τ<k )) by Property P
(iii). Second, there is no change for alternating path after j is considered. Third, j will be
added into the set Sb(µk,τ ) ∩ f(Sb(µk,τ )) and the matched object of the other agents will
not change when compared their matchings under τ and under τ−i. Thus, Property P holds.
Case (ii). If b ≺j c, by induction hypothesis, Property P (ii), there exists an object b′ 'j c
such that j + Sb′(µk,τ<k ) /∈ Ib′ and j + Sb′(f(µk,τ<k )) ∈ Ib′ . We know the current alternating
path (up-to iteration k − 1) must be with b′ as its another end point. Hence, b′ is unique.
Otherwise, let d 6= b′ be the end point of the alternating path. Then the switching agent,
i.e., i′` in Property P (ii) for object b′ is not j, and by Property P (i), j + Sb′(µk,τ<k ) ∈ Ib′ , a
contradiction. Define f(µk,τ ) = f(µk,τ<k ) ∪ (j, b′). Now we see that two edges (j, b′) ∈ µk,τ−i
and (j, b) ∈ µk,τ will be added to the alternating path; thus, Property P holds. The end
point of the alternating path is now object b. The last part of the proof of the induction step
(omitted here) is to show that sets of agents matched to objects b and b′ satisfy Property P
(note that sets of agents matched to other objects do not change). J

By Lemma 11, we can suppose w.l.o.g. that there exists a matching in the graph G such
that all the agents are matched. (Otherwise, we can find a maximum matching in graph G and
remove the unmatched agents in this matching and their adjacent edges. After this, Lemma 11
implies that the expected matching size of RTMHA can not increase (because |µ| ≥ |f(µ)|)
and the graph has a matching with all agents matched.) Let µ∗ denote this matching in G.
Given τ , let τ ti denote the order obtained from τ by first removing agent i from τ and then
inserting him into the tth position of τ−i, i.e., τ ti (i) = t. Now fix t ∈ [n1]. For any τ ∈ Π,
a ∈ A, let U ta(τ) be defined as U ta(τ) = {i ∈ Sa(µ∗) | i is not matched by TMHA under τ ti }.

I Lemma 12 (INJECTIVITY LEMMA). |U ta(τ)| ≤ |Sta(τ)|.

Proof. Suppose that |U ta(τ)| > |Sta(τ)|. Then by matroid exchange property, there is an
agent i ∈ U ta(τ) such that Sta(τ)+ i ∈ Ia. Suppose i is unmatched by TMHA under τ . Since i
is unmatched under τ ti , Sta(τ) = St(τ ti ). However Sta(τ ti ) + i = Sta(τ) + i ∈ Ia, implying agent
i will be matched to an object at least as good as a by TMHA under τ ti , a contradiction.
Suppose now that agent i is matched by TMHA under τ . Removing agent i from τ , we get τ−i.
Then inserting i into the tth position of τ−i we get τ ti . Since agent i is unmatched by TMHA
under τ ti , the processes of TMHA under τ ti and under τ−i is the same. Let f be the injective
function from CLt(µτ ) to CLt(µτ−i) in Lemma 11. By Property P (iii), Sta(τ) + i ∈ Ia, then
Sta(f(τ)) + i ∈ Ia. That is Sta(τ ti ) + i ∈ Ia, implying agent i will be matched to an object at
least as good as a by TMHA under τ ti . This leads to a contradiction. J

Lemma 12 can be used to directly prove that RTMHA is e
e−1 + o(1)-approximate for

unweighted agents with ties. Analysis in Subsection 4.3 builds on developments in this
section.
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4.3 Weighted Agents with Ties
Building on Subsection 4.1 and 4.2 we give the proof of the e

e−1 -approximation for weighted
agents with ties. A careful utilization of Lemmas 11 and 12 is needed to obtain a strengthened
version of injectivity lemma (Lemma 13). This lemma helps define an injective function from
marginal ‘bad’ events to ‘good’ events, allowing to prove the ratio. Interestingly, Lemma 11
and primal-dual analysis [22], leads to a significantly simpler proof (compared to [22]) of the
ratio e

e−1 when each associated matroid is uniform. The main technical ingredient of the
proof is a strong version of the injectivity lemma similar to Lemma 12 to define an injective
map from marginal set

⋃
t≥1 Mt (defined later) to the set 2

⋃
t≥1

Qt .
Because of weights, we consider the discrete version of the function 1− g(y) = 1− ey−1

used in the sampling. For every i ∈ N , we will choose an integer t = τ(i) uniformly at random
from {1, · · · , κ}, where κ ∈ N+ is a parameter. Let ψ(t) = 1− (1− 1

κ )κ−t+1. The random
order of agents follows the decreasing order of wiψ(τ(i)), for any i ∈ [n1]. Note, τ ∈ [κ]n1

is different from previous subsections (where τ ∈ Π), but we still call it a permutation and
the discrete process is the same as RTMHA when κ → ∞. For each τ ∈ [κ]n1 , there is a
corresponding order of agents defined above. Hence, when we say ‘under τ ’, we mean to run
the above discrete RTMHA (called DRTMHA) under decreasing order of wiψ(τ(i)), i ∈ [n1].

Let τ ti ∈ [κ]n1 denote the same order of agents except we set i’s τ value to t, i.e., τ ti (i) = t

and τ ti (k) = τ(k), for any agent k 6= i. The other notions have the same meaning as before
unless explicitly redefined. Let µ∗ be the maximum weighted matching on G, i.e., the optimal
matching to our problem. Recall, Sa(µ∗) is the set of agents matched to a under µ∗. Let Qt
be the set of all the triples among permutations, τ values and agents such that the agent
with τ value t at the current order is matched by TMHA. Precisely,

Qt = {(τ, t, i) | i is matched by TMHA under τ and τ(i) = t, i ∈ N, τ ∈ [κ]n1}.

Let Rt be the set of all the triples among permutations, t values and agents such that the
agent matched in µ∗ with τ value at the current order is unmatched. That is:

Rt = {(τ, t, i) | i is unmatched under τ and τ(i) = t, and i is matched inµ∗, τ ∈ [κ]n1}.

Our goal now is to define an injective map from Rt to 2
⋃
s≤t

Qt . Towards this aim, we
define the marginal (loss) set Mt, which is a subset of Rt with marginal property, i.e.,
an agent in Mt will be matched after decreasing his τ value by one: Mt = {(τ, t, i) ∈
Rt | i is matched under τ t−1

i }. Let M0 = ∅. Let OPT = w(µ∗) be the optimal weight and
B = OPT

κ . Let w(Qt) denote the total weights of agents for triples in Qt: w(Qt) =∑
(τ,t,i)∈Qt wi. Similarly, define w(Rt) and w(Mt). Let xt = w(Qt)

κn1 be the expected weights
gained by DRTMHA on all agents with τ value t, and yt = w(Mt)

κn1 the expected marginal loss
of all agents with τ value t. Since each agent appears with τ equal to t ∈ [κ] in DRTMHA
with equal probability 1

κ , if Q
′
t ⊆ Qt is the set of triples with agents matched in µ∗, then

w(Q′t)
κn1 + w(Rt)

κn1 = B, for any t ∈ [κ]. Therefore,

xt + w(Rt)
κn1

≥ B. (1)

So the expected weight of matching obtained by DRTMHA is
∑
t∈[n1] xt. There is a

bijection h : Rt →
⋃
s≤tMs. Note, for any (τ, t, i) ∈ Rt, if there is s ∈ [t−1] s.t. (τsi , s, i) ∈ Qs,

then there is such s that is a unique maximal one. Note, in this case (τs+1
i , s+ 1, i) ∈Ms+1.

Define h(τ, t, i) = (τs+1
i , s + 1, i). Otherwise, define h(τ, t, i) = (τ1

i , 1, i) ∈ M1; note that
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M0 = ∅. (h is well defined.) For any (τ, s, i) ∈Ms, and some s ≤ t, agent i will not be matched
under τ ti since it is unmatched under τ , by Lemma 11 (Property P (iii)). Then (τ ti , t, i) ∈ Rt,
which means h is surjective, i.e., h(τ ti , t, i) = (τ, s, i). If h(τ, t, i) = h(τ ′, t, i′) = (σ, s, i′′) ∈Ms,
by definition i = i′ = i′′ and τ = τ ′ = σti′′ . Then h is also injective. Hence,

w(Rt) =
∑
s≤t

w(Ms) (2)

For any τ ∈ [κ]n1 , a ∈ A, let Sa(τ) be the set of agents matched to a by DRTMHA under τ .
Let Ua(τ) be the set of agents in Sa(µ∗) such that changing the τ of any one of them, e.g., agent
i ∈ Sa(µ∗) to some ti, the new triple of τ together with his new value ti and himself belongs
to Mti (Note that for any agent i ∈ Sa(µ∗), if there exists a ti such that (τ tii , ti, i) ∈ Mti ,
then ti is unique for agent i). Precisely, Ua(τ) = {i ∈ Sa(µ∗) | (τ tii , ti, i) ∈Mti}.

I Lemma 13 (INJECTIVITY LEMMA). There exists an injective function gaτ : Ua(τ)→ Sa(τ)
such that wiψ(ti) ≤ wi′ψ(τ(i′)), for any i ∈ Ua(τ) and i′ = gaτ (i).

Proof (Sketch). From map h: Rt →
⋃
s≤tMs, we know U ta(τ) is well defined. Now, for any

i ∈ U ta(τ), by definition, i is unmatched under τ tii . Let `i denote the position where agent
i sits in the order of agents of DRTMHA under τ tii (we call it a position value). We can
partition U ta(τ) into different groups such that different groups have different position values
`i’s, and agents in the same group have the same position value. That is, partition set U ta(τ)
into n3 such groups {Ts}s∈[n3], where Ts has position value `s.

Note that if i is unmatched when his position value is `i, then he will remain unmatched
when he is in any position ` > `i, by Lemma 11 (part (iii) of Property P). We now use
Lemma 12 iteratively on set

⋃
j≤s Tj , s ∈ [n3] to prove Lemma 13 as follows: suppose we

have constructed a map gaτ on set
⋃
j≤s Tj satisfying the property of Lemma 13. Then

by Lemma 12, there exists an injective map f
`s+1
aτ :

⋃
j≤s+1 Tj → S

`s+1
a (τ), satisfying the

property of the lemma. Combining the two maps gaτ and f
`s+1
aτ , we obtain the map on⋃

j≤s+1 Tj . J

Next we define a map H from
⋃
t∈[κ] Mt to 2

⋃
t∈[κ]

Qt to bound the marginal ‘bad’ events⋃
t∈[κ] Mt by ‘good’ events

⋃
t∈[κ] Qt as follows: For any t ∈ [κ], (τ, t, i) ∈Mt,

H(τ, t, i) = {(τsi , psi , gaτsi (i)) | a = µ∗(i) and psi = τsi (gaτs
i
(i)) and s ∈ [κ]}.

Note that for any (τ, t, i) ∈ Mt, |H(τ, t, i)| = κ. Due to the injectivity of gaτ (Lemma 13),
we will show that the image sets of H are disjoint.

I Lemma 14. For any (τ, t, i) ∈ Mt and (τ ′, t′, i′) ∈ Mt′ , if (τ, t, i) 6= (τ ′, t′, i′), then
H(τ, t, i) ∩H(τ ′, t′, i′) = ∅.

Proof. Suppose there is a triple (σ, s, `) ∈ H(τ, t, i) ∩H(τ ′, t′, i′). Then there exists a ∈ A
s.t. µ∗(i) = µ∗(i′) = a, by the definition of gaσ (since Sa(σ) ∩ Sb(σ) = ∅, for any a 6= b). By
the definition of H, we know that τ = σti and τ ′ = σt

′

i′ . Hence, i, i′ ∈ Ua(σ) since (τ, t, i) ∈Mt,
(τ ′, t′, i′) ∈Mt′ . As gaσ is an injective function from Ua(σ) to Sa(σ), gaσ(i) = gaσ(i′), implies
i = i′. As τ = σti , τ ′ = σt

′

i , there exists a unique t such that (σti , t, i) ∈Mt, which gives that
t = t′ and τ = σti = σt

′

i = τ ′. This shows (τ, t, i) = (τ ′, t′, i′), and thus a contradiction. J

By Lemmas 13 and 14, we have for any (τ, t, i) ∈ Mt, t ∈ [k], and any (σ, s, i′) ∈
H(τ, t, i), wiψ(t) ≤ wi′ψ(s) and (σ, s, i′) ∈

⋃
`≤kQ`. Summing over Mt: ψ(t)w(Mt) =
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∑
(τ,t,i)∈Mt

wiψ(t) ≤
∑

(σ,s,i′)∈H(Mt)
wi′ψ(s)

κ . Therefore:∑
t≤κ

ψ(t)w(Mt) =
∑
t≤κ

∑
(τ,t,i)∈Mt

wiψ(t)

≤
∑
t≤κ

∑
(σ,s,i′)∈H(Mt) wi′ψ(s)

κ

=

∑
(σ,s,i′)∈

⋃
t≤κ

H(Mt) wi′ψ(s)

κ

≤

∑
(σ,s,i′)∈

⋃
t≤κ

Qt
wi′ψ(s)

κ

=
∑
t≤κ

∑
(τ,t,i)∈Qt wiψ(t)
κ

=
∑
t≤κ ψ(t)w(Qt)

κ
.

Dividing both sides of this inequality by κn1 implies
∑
t≤κ ψ(t)yt ≤

∑
t≤κ

xtψ(t)
κ . Com-

bining this inequality with (1) and (2), and following a step in the analysis from [4] implies.

I Theorem 15. DRTMHA is universally truthful and has an approximation ratio e
e−1 +O( 1

κ )
for weighted agents with ties and terminates in O(n4

1γ log κ) time, for any κ ∈ N+.
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Abstract
Internet display advertising industry follows two main business models. One model is based on
direct deals between publishers and advertisers where they sign legal contracts containing terms
of fulfillment for a future inventory. The second model is a spot market based on auctioning page
views in real-time on advertising exchange (AdX) platforms such as DoubleClick’s Ad Exchange,
RightMedia, or AppNexus. These exchanges play the role of intermediaries who sell items (e.g.
page-views) on behalf of a seller (e.g. a publisher) to buyers (e.g., advertisers) on the opposite
side of the market. The computational and economics issues arising in this second model have
been extensively investigated in recent times.

In this work, we consider a third emerging model called reservation exchange market. A reser-
vation exchange is a two-sided market between buyer orders for blocks of advertisers’ impressions
and seller orders for blocks of publishers’ page views. The goal is to match seller orders to buyer
orders while providing the right incentives to both sides. In this work we first describe the im-
portant features of mechanisms for efficient reservation exchange markets. We then address the
algorithmic problems of designing revenue sharing schemes to provide a fair division between
sellers of the revenue collected from buyers.

A major conceptual contribution of this work is in showing that even though both clinching
ascending auctions and VCG mechanisms achieve the same outcome from a buyer perspective,
however, from the perspective of revenue sharing among sellers, clinching ascending auctions are
much more informative than VCG auctions.
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1 Introduction

The universe of internet advertisement is divided in two big worlds: search ads and display
ads. At first glance, they look very similar: both sell impressions using variants of the second
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price auction with reserves. A closer look, however, reveals that they are very different:
in search ads, the platform (Google or Bing, for example) is both the auctioneer and the
seller, i.e., it sells inventory in their own properties. This makes it a one-sided market design
problem, or in other words, the designer needs to reason only about the incentives of the
buyers. In display ads, the platform is auctioning inventory not owned by them, turning it
into a two-sided market design problem, where incentives for buyers (advertisers) and sellers
(publishers, such as websites, blogs and news portals) need to be balanced.

Designing practical markets for display ads is challenging, since the theory of market
design is much more developed for one-sided markets (there are tools like VCG, Myerson’s
optimal auction, . . . ) while for two-sided markets, what classic auction theory offers are
mainly impossibility results, such as the Myerson-Satterthwaite Impossibility Theorem [23].

One complicating factor in display ads is that while we are used to think of internet
advertisement in the form of auctions, auctions are only the tip of the iceberg. The most
premium inventory is sold via the reservations market (also called direct deals or guaranteed
contracts.) In this method, a publisher and an advertiser make a deal to allocate a certain
number of impressions over a certain period, for a pre-specified price per impression. This
deal is made offline in advance for a future inventory. Direct deals are known to suffer from
inefficiencies for two reasons: first is the manual nature of formation of these contracts which
allows a publisher to sign deals with a small number of advertisers, thus creating allocation
inefficiencies. The second reason is the manual negotiation between buyers and publishers
which incurs a huge cost and lowers the overall efficiency.

Auctions are fully automated and don’t suffer from any of these inefficiencies. On the
other hand, they can’t guarantee to buyers and sellers the certainty that reservations can. For
example, a brand launching a large campaign to advertise a new product certainly benefits
from the certainty (both in terms of cost and volume of impressions) provided by reservation
contracts.

The idea of automated reservation market is to overcome the shortcomings of both auctions
(real-time spot market) and traditional reservations (offline negotiation). Such markets would
allow sellers and buyers to transact for a bulk inventory in advance. This is inspired by
a number of recent two-sided markets for online advertising, e.g., an exchange for future
contracts1. In particular, we study a two-sided market, which we call a reservation market,
where publishers can post offers for blocks of ad slots characterized by parameters like supply
level, reserve price, and their preference for a set of advertisers. Advertisers post requests for
ad slots defined by parameters like valuation, demand, and targeting constraints specifying
where and when they want to show their ads. The role of the reservation mechanism is to
match the seller and buyer orders that attain some economic objectives.

Note that, unlike ad exchange markets that offer impressions available on the spot, the
reservation market offers guaranteed deals for an inventory available in the future. Moreover,
the reservation market brings together multiple publishers and advertisers with the goal of
reducing the intermediation costs and the underlying inefficiencies of one-to-one deals, also
by selling bundles of inventories from different publishers.

In this work, we start the investigation of the economics and algorithmic principles that
are central to these reservation markets. The major questions we address in this work are:
What features and incentive properties form the basis of a successful reservation market?
What are the economic objectives of a reservation market? What are the revenue sharing
policies that we can employ? What are the algorithmic problems we need to address in the
design of reservation mechanisms?

1 http://www.massexchange.com/

http://www.massexchange.com/
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1.1 Our contribution
Our main contribution is to propose a formal model of reservation exchange market and
discuss what are desirable properties (referred to as axioms) for this market. Secondly,
we propose two specific mechanisms that help us understand the extent to which some of
the aforementioned properties can be simultaneously achieved. We also provide several
algorithmic results for the two mechanisms that we study.

Axioms for a reservation exchange market. In Section 2, we provide a simple and clean
abstraction of reservation exchange markets for display ads as a two-sided matching market
with buyer orders on one side and seller orders on the other side and in Section 3 we identify
a list of axioms that we wish any mechanism for these markets to approximately satisfy.

The first axiom for the reservation mechanism that we discuss is the efficiency of the
market, i.e., the social welfare of all agents of the market. The agents of the market are
sellers and buyers, both with quasi-linear utilities. Buyers aim at maximizing their utility,
i.e., the total value of the inventory received minus price. Sellers aim at maximizing revenue
minus reservation price. The mechanism decides on the allocation to buyer orders of the
inventory supplied from each seller, a payment to be charged to each buyer and a distribution
of the revenue among sellers.

Individual rationality (IR) requires that participating in the mechanism is beneficial to
all agents. Incentive compatibility (IC) requires that truthfully reporting one’s preferences to
the mechanism is the best strategy for each agent, independently from what the other agents
report.

Budget Balance (BB) states the payments of the advertisers must entirely and exclusively
be transferred to the publishers, i.e., the buyers and the sellers are allowed to trade without
leaving to the mechanism any share of the payments, and without the mechanism adding
money into the market. This axiom might appear strange at first glance, but it reflects a
business practice common to most exchanges, which is of the exchange to get a fixed cut
(typically called revenue sharing margin) of the seller’s revenue. The reasoning behind this
rule is that sellers have the option to send their inventory to different exchanges and keeping
the revenue sharing margin fixed helps the exchange to be perceived as fair and hence attract
more seller’s inventory. Since fixed margins are an industrial standard in the ads world,
any practical mechanism must implement some of that. Fixed margins are equivalent to
budget-balance applied to bids rescaled by the revenue sharing margin up to rescaling bids.

An ideal goal in a reservation exchange is to design IR, IC, BB mechanisms that maximize
the social welfare of all agents in the market. Unfortunately, Myerson and Satterthwaite
[23] proved impossibility for an IR, IC, and BB mechanism that maximizes social welfare in
such a market. The direction we pursue in this work is to ensure full efficiency and incentive
compatibility for buyers as the most desirable goal for advertiser. This can be achieved for
one-side markets by the family of Vickrey-Clarke-Groves (VCG) mechanisms [6, 29]. As
extensively discussed in this work, the main problem with the vanilla VCG allocation is that
it does not offer any good incentives to sellers, e.g., VCG can match fungible inventories
from different sellers to buyers that offer very different payments thus producing the feeling
that revenue is unfairly distributed among sellers.

An alternative to enforcing incentive compatibility for sellers is to design a mechanism
that leads to a fair distribution of mechanism’s revenue among sellers. Envy-free allocations
[28] and other notions of market equilibria have often been considered in markets that cannot
achieve full efficiency with truthful allocations. This leads to our third axiom as follows:
sellers should not envy each other with respect to the revenue that is received from the
mechanism.
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Most of the first part of the paper will be devoted to the discussion of which definition of
envy-freeness among sellers is meaningful for reservation exchange markets. Our conclusion
is that such a definition should crucially rely on the buyer-seller transactions that can arise
in an efficient allocation, while it should disregard revenue that can only be obtained from
allocations with suboptimal social welfare. With this aim, when introducing our notion
of envy-freeness between sellers, we define the concept of clinching graph as the collection
of buyer-seller transactions that can arise in a VCG allocation. We conveniently define
and compute the clinching graph by resorting to the implementation of VCG through an
ascending clinching auction.

A major insight of this paper is that while the usual description of VCG payments as
externalities imposed by agents on others offers little clue on how to split the proceeds of
the auction among the sellers, the alternative description of VCG as an ascending auction
(Ausubel’s clinching framework [1]) provides additional structure obtained from the execution
of the auction that can be exploited to design revenue sharing schemes. The clinching auction
returns not only bundle prices, but the order in which each item was sold and the price at
which the sale occurred. In an ideal case, whenever a clinch happens, if the clinching auction
points to a unique item to be clinched, then there is a unique way to split the revenue among
the sellers (and in this case clinching auctions capture the full information in how to split
the revenue). However, sometimes, when a clinch happens, there are multiple items that can
be used for that clinch. This is precisely the case when the clinching auction, even though it
provides more information than VCG, it doesn’t lead to a unique revenue sharing scheme,
and we rely on a notion of envy-freeness for the revenue sharing scheme.

Finally, we discuss further desirable properties of reservation markets as additional axioms,
and study our proposed mechanisms for their satisfaction of these axioms. These axioms
are stability properties that prevent the market to be manipulated from buyers or sellers.
We define the concept of buyer monotonicity (BM) as the property that the revenue of all
sellers does not decrease when new buyer orders are presented. A second property called
seller monotonicity (SM) states that the increase of the reservation price of a seller is not
responsible of the decrease of the revenue of another seller.

Algorithmic results. We restrict our attention to buyer incentive-compatible efficient mech-
anisms based on VCG allocations. For all these mechanisms truth-telling is a dominant
strategy for buyers. The major issue we face is to complement the VCG mechanism with
a suitable envy-free revenue sharing scheme between sellers. Our first result is actually a
negative result:

There exists no efficient revenue sharing scheme that is both envy-free and budget balance.
We actually demonstrate that any envy-free revenue sharing scheme cannot distribute
more than a

√
3− 1 + δ share of the total revenue, for any δ > 0.

Given the impossibility result above, we investigate the possibility of finding good trade-
offs between budget balance or envy freeness. Relaxing one of these two constraints imply
that either the mechanism is able to distribute a guaranteed share of the total revenue or
that any seller has only limited envy of any other seller. With this goal in mind, we propose
two revenue sharing schemes: (i) a revenue sharing by the clinching auction (CA), and (ii) a
revenue sharing by the eating mechanism (EM).

For the CA revenue sharing scheme, we prove the following desirable properties:
CA is budget balance.
CA is 1/2-envy free and this bound is tight.
CA is budget monotone and seller monotone.
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Finally, for the EM revenue sharing scheme, we prove that following three results:
EM is envy-free.
EM is at most 11+ε

12+ε budget balance, for any ε > 0.
EM is at least e−1

e -budget balance.

Most of the technical proofs are given in the full version of the paper.

1.2 Related work
Double Auctions. Double auctions are special cases of two-sided markets with unit-supply
buyers and sellers. Myerson and Satterthwaite [23] proved that it is impossible to obtain an
IR, Bayesian IC2, and weak BB 3 mechanism to maximize social welfare in double auctions.
Since then, much of the literature has focused on trading off social welfare for buyers and
sellers, incentive compatibility and budget balance for double auctions [21, 25, 26, 11, 7].
The seminal work on double auctions [21] shows that efficiency for both buyers and sellers
can actually be achieved asymptotically in large markets. In the context of one-shot auctions,
optimal auctions for two-sided settings has been studied by [23], following the Nobel-prize
winning work of [22]. The problem of finding the right trade-offs between social welfare, IC
and BB is largely open for two-sided markets that model reservation exchanges. In this work
we investigate two-sided markets that achieve IC for buyers and envy-freeness for sellers.
This follows a line of work that looks at envy-freeness and other market equilibria if social
welfare cannot be optimized truthfully [14, 19, 28]. Recently, this literature has also been
adopted to design the optimal revenue sharing double auctions in the context of advertising
exchanges [18]. In this paper, we focus on two-sided markets where multiple buyers are
allocated to multiple sellers and the allocation and pricing are done differently. Other than
online advertising systems, optimal two-sided markets can be applied to online and offline
retailers and e-commerce websites like Amazon and eBay. A very recent paper by [20]
studies EBay’s double auction problem, but their setting is different from this paper as they
consider one buyer and multiple sellers, and explore approximately optimal pricing schemes
for this setting.

Clinching Ascending Auctions. One fundamental component of this work is the use of
the structure that can be obtained from the execution of Ausubel’s clinching auction [1]
in designing revenue sharing schemes for the sellers. The clinching auction has been very
successful in a variety of scenarios: designing auctions with budget constraints [10, 13, 8, 16],
designing online auctions [17], extracting revenue in settings with budgets [3, 9]. The current
paper adds to this line of work by showcasing another application of the clinching framework.

Cooperative games. Cooperative game theory may provide insights for modeling the fair
sharing of revenue in the ad reservation exchange market. Shapley value [27] is a widely
adopted notion of fair division between agents of the value of a game. It is however hard
to extend this concept to our model since a crucial axiom of Shapley value (summability)
does not hold in our case. Similar difficulties can also be found while trying to design a
revenue sharing scheme that results in an attribution that lies in the core of a game [15]. On
the positive side, we mention that the revenue sharing scheme by the clinching auction we

2 Bayesian incentive compatibility is a less restrictive form of incentive compatibility.
3 Weak budget balance allows the mechanism to retain a share of the payments while not subsidizing the

market.
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present resembles Shapley values since it is defined as the expected revenue obtained over all
possible seller permutations.

Market Equilibria. Several notions of equilibrium in markets have been studied. In a
Walrasian equilibrium, we have item prices such that every agent receives a bundle of items
that maximizes her utility, the market clears, and the corresponding outcome is efficient.
However, except from very special cases (e.g. unit demand buyers), it can’t be converted to
a mechanism that is incentive-compatible for the buyer [19, 12]. Envy-freeness for buyers is
also a concept widely used to characterize the stability of allocations. We do not survey here
the extensive literature on this topic. However, we notice that we instead adopt the notion
of envy-freeness to characterize fair revenue sharing schemes between sellers.

Reservation-based Internet advertising has also previously considered with more optimization-
related questions than mechanism design questions. Examples of this line of work that is
quite unrelated to the scope of this paper can be found in [30, 4, 24]. Markets that combine
characteristics of the spot market and of direct deals between publishers and sellers have
been also considered in [5] with the goal of maximizing the revenue of one single publisher.

2 Preliminaries

We consider a two-sided market, referred to as a reservation exchange market, consisting
of a set B of buyers and a set S of sellers. Each seller si ∈ S holds a supply of `i units of
an indivisible good and has a reserve price ρi for each unit of those goods. Each buyer is
interested in purchasing at most di units and has a value vi per unit. The structure of the
matching market is captured by a bipartite graph G = (B ∪ S, F ) which indicates which
buyer is interested in buying goods from which seller.

For example, in the case of internet advertisement, each buyer bj ∈ B corresponds to an
advertiser and a seller si ∈ S corresponds to a publisher. An edge (bj , si) ∈ F indicates that
buyer bj is interested in purchasing inventory from the publisher si’s website. We define
Bi = {bj ∈ B; (bj , si) ∈ F} as the set of buyers who target seller si inventory. Similarly, we
define Sj = {si ∈ S; (bj , si) ∈ F} as the set of sellers that are targeted by buyer bj .

We are interested in designing reservation exchange mechanisms (or simply reservation
mechanisms) which associate for any given matching market described by (B,S, v, d, `, ρ) an
outcome composed of:

an allocation xi[j] ∈ Z, indicating how many goods from seller si are sold to buyer bj ,
respecting demands aj :=

∑
i xi[j] ≤ dj and supply ci :=

∑
j xi[j] ≤ `i.

a total amount Pj paid by each buyer bj , such that the payment per unit doesn’t exceed
buyer j’s value per unit: Pj ≤ aj · vj
a revenue sharing scheme which allocates for each buyer bj and seller si, a portion Ri[j]
of the buyer’s payment Pj to seller si, such that

∑
iRi[j] ≤ Pj . We define Ri :=

∑
j Ri[j]

to be the total revenue obtained by seller i.

An outcome satisfying the properties above is said to be a feasible outcome. Given a
feasible outcome, the utility of involved agents are as follows:

buyers have quasi-linear utilities, i.e, uj = vj · aj − Pj .
sellers have the revenue minus the reservation price Ri − ρi · ci as their utility.

In the next section, we discuss a set of desirable properties for a reservation mechanism
and discuss which subsets of those properties can be simultaneously satisfied.
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3 Axioms for Reservation Exchange Markets

In this section, we develop an axiomatic approach to reservation markets. First, we define a
set of desirable properties, referred to axioms, for a well-designed market. As it is the case
with axiomatic approaches, some seemingly innocuous axioms might generate impossibility
results and some seemingly powerful axioms might not prevent the pitfalls we intended. Here,
we define a family of axioms (many with different variations) and discuss, using examples,
their strengths and weaknesses.

3.1 Fundamental Axioms: efficiency and budget-balance
We establish as our first and most important goal the maximization of market efficiency,
which is the sum of the utilities of all agents involved:

Efficiency [Eff]: The implemented outcome maximizes SW (B ∪ S) =
∑
j∈B vj · aj +∑

i∈S ρi · (`i − ci) among all feasible outcomes, assuming the seller derives utility ρi for
unsold items.

In order to simplify notation, for each seller that has a reserve price ρi > 0 we add a
proxy buyer j(i) with demand dj(i) = `i and value vj(i) = ρi. Let also j(i) be the endpoint
of a single edge connecting it to seller i. Notice that there is a social-welfare-preserving
one-to-one map between outcomes for sellers with reserve prices and sellers without reserves
but with proxy buyers. This reduction allows us to ignore from this point on the reserve
prices ρi and focus on maximizing

∑
i vj · aj as the [Eff] goal.

A second goal of the mechanism is to distribute the revenue between sellers. A budget
balance mechanism should distribute the entire revenue collected from the buyers to the
sellers. A β-budget balance mechanism should distribute at least a β-fraction of the revenue.

β-Budget Balance [β-BB]: The implemented outcome is β-budget balance for a constant
β ∈ [0, 1] if

∑
i∈S Ri ≥ β

∑
j∈B Pj . We say that the reservation mechanism is exact

budget balance if β = 1.

3.2 Stability properties
A second set of properties describes the stability of the allocation and resilience to manipula-
tion via adding or removing buyers or sellers:

Buyer Monotonicity [BM]: If a new buyer order bj is added, the revenue of all sellers in
Sj does not decrease.
Seller monotonicity [SM]: If a seller increases his reserve price, the revenue of all other
sellers does not decrease.

3.3 Incentive compatibility
We next define a set of desirable incentives properties for buyers and sellers.

[B-IC] Buyer incentive compatibility: Buyers maximize their utility by reporting their
true valuations to the mechanism.
[S-IC] Seller incentive compatibility: Sellers maximize their utility by declaring true
reserve prices and supply levels.

Unfortunately, [B-IC] and [S-IC] cannot be simultaneously achieved in a two-sided
market [23, 21] if not at the expense of efficiency. Here, we choose to relax seller incentive
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compatibility and instead, enforce a fairness constraint among sellers while keeping buyer
incentive compatibility.

If we enforce [Eff] and [B-IC], the only mechanism available to decide on the allocation
and buyer payments is the VCG mechanism. VCG, however, treats all the sellers as one and
therefore doesn’t prescribe how the revenue of the auctions should be distributed among
the sellers. The central issue in the design of reservation exchange mechanisms is how to
distribute the revenue from the VCG auction in a manner that is fair to the sellers. As
we will see next, defining a precise notion of fairness that matches our intuition is a quite
non-trivial task. First, we show how the most natural definitions fail to capture important
situations.

3.4 Seller Fairness and Envy-Freeness

We start by identifying a set of properties that we believe a fair revenue sharing scheme
should satisfy. The challenge here is in identifying, when a buyer gets some item at price p,
if a seller can stake a claim on this revenue or not. Firstly, a seller si can claim revenue only
from buyers that are interested in the inventory owned by seller si, i.e., Ri[j] = 0 for j /∈ Bi.
Also, if a certain buyer bj never receives goods from seller si under any efficient allocation,
seller si shouldn’t be able to claim stake on the revenue of buyer bj . This is so because even
if this seller drops this connection to the buyer, it won’t change the set of efficient outcomes.
Moreover, the seller may end up getting a lower revenue because of the reduced competition
after dropping such a connection.

In order to capture the above notions, we define for each seller si, the set Ai ⊆ Bi as the
set of buyers that are allocated at least one good from si in some efficient allocation. We are
now able to define the concept of envy-free revenue sharing: roughly speaking, we say that a
revenue sharing scheme is envy-free if each seller si extracts from Ai more revenue then any
other seller with at most the same supply and proportionally more revenue than any seller
with higher supply. More specifically, this concept is defined as follows:

Envy-free Revenue Sharing [ERS]: ∀si, si′ ,
∑
j∈Ai

Ri[j] ≥ min(1, `si

`s
i′

) ·
∑
j∈Ai

Ri′ [j].

If all sellers have the same supply, this boils down to
∑
j∈Ai

Ri[j] ≥
∑
j∈Ai

Ri′ [j]. We
note that if one is able to design an envy-free mechanism for sellers with unit-supply, this
automatically extends to sellers with non-unit supply by the following reduction: transform
each seller of supply `i in `i unit supply sellers. An envy free allocation in the transformed
setting naturally translates to an envy-free allocation in the original setting. For this reason
we will assume for the remainder of the paper that sellers are unit supply.

However, as shown in the following example, the above notion of envy-freeness doesn’t
fully capture the notion of a fair allocation among the sellers:

I Example 1. Consider two buyers with valuation v1 = 2, v2 = 1, and demands d1 = 2,
d2 = 1. There are two unit supply sellers s1, s2 with preference constraints shown in Figure 1.
For any mechanism satisfying [Eff], [B-IC] and [ERS], the allocation and payments charged
to the buyers must be the one of the VCG mechanism. So, the mechanism sells both items
to buyer b1 at total price 1.

Since A1 = A2 = {b1}, ERS imposes to share the revenue equally between s1 and s2.
This way to partition of the revenue can be hardly called fair, since the 1 dollar in revenue is
caused by the competition with buyer b2 that is brought to the market by seller s2. So a
natural intuition is that a ‘fair’ scheme should attribute the 1 dollar in revenue to seller 2.
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Figure 1 The two sellers receive different revenue.

The above example implies the need to refine the envy-freeness property to incorporate
some notion of which buyers are responsible for putting the price pressure. To get a handle
on such a notion, we consider ascending auctions to refine our envy-freeness property.

3.5 Fairness via ascending auction
The traditional definition of the VCG mechanism is that it allocates according to an efficient
allocation and charges each agent according to the externality it imposes on other agents.
One problem with this way of defining VCG is that it returns a bundle of items to each agent
and a total price but does not specify how much of the payment is attributed to each item.
An alternative way to define VCG is via an ascending auction [2, 1], in which there is a price
clock p that gradually ascends, and as the price increases items are allocated to buyers. The
total payment of the buyer in such a case is the sum over the prices of all individual items,
where the price of each item is the value of the price clock when the buyer acquired the item.

The ascending auction description of VCG returns for each buyer bj his allocation, say
xj ∈ Z+ together with xj prices p1 ≤ p2 ≤ . . . ≤ pxj

corresponding to the value of the price
clock when he acquires each of those items. In other words, we can describe the outcome of
VCG as an ascending auction as a set of n buying events, where n =

∑
i `i and each buying

event is a pair (bj , p) indicating that one item was sold to buyer bj at price p. Note that we
assume all items are sold by VCG, which is always the case when we consider proxy buyers
as discussed in Section 3.1.

Let E be the set of buying events that represents the outcome of the auction. During its
execution, the ascending auction maintains in each step a tentative assignment of buying
events to sellers. This allows us to define a bipartite graph between sellers and buying events
called the clinching graph. We say that a seller si is connected to buying event ej if this
seller is tentatively allocated to that buying event in some point of the auction execution. If
the auction execution is not unique (because of ties, caused for example by two identical
sellers) we consider an edge to be in the clinching graph if for some execution of the auction
its corresponding buying event is connected to the corresponding seller.

We refer to [1, 10, 13, 16] and to the full version of the paper for a formal definition of
the ascending auction, but we illustrate its execution for the instance in Example 1. The
price clock starts at zero, and at that price the auction is already able to allocate the item in
s1 to buyer b1, since he faces no competition on that item. This generates a buying event
(b1, 0) that is associated with seller s1. For prices between 0 and 1, both buyers compete
for the remaining item. When the price clock reaches 1, buyer b2 is no longer interested in
the remaining item and buyer b1 can acquire it at price 1, generating a buying event (b1, 1),
which is associated with seller s2. There are no ties, so this is the unique execution of the
auction, which generates the clinching graph represented in Figure 2.
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Figure 2 Each seller is linked in the clinching graph to only one buying event.

Given the clinching graph, we are now able to define a stronger notion of envy-freeness
based on it. We denote by Ei the set of buying events associated to buyer bi and by ri[j]
the revenue obtained by seller si from buying event ej ∈ Ei. Let us denote the revenue of
unit supply seller si by ri =

∑
j∈Ei

ri[j]. We now state a new version of Envy-free Revenue
Sharing, that we denote by ERSCG, as follows:

Envy-free Revenue Sharing from Clinching Graph [ERSCG]: ∀si, si′ ,
∑
j∈Ei

ri[j] ≥∑
j∈Ei

ri′ [j].

According to the definition of clinching graph, we obtain for the example of Figure 2
that E1 = {e1} and E2 = {e2}. The revenue sharing scheme that attributes r1[1] = 0,
r1[2] = 0, r2[1] = 0 and r2[2] = 1 is therefore ERSCG. We conclude that the new definition
of envy-freeness is able to characterize a fair sharing of the revenue between sellers.

We also define an approximate version of the previous property:
α-Envy-free Revenue Sharing from Clinching Graph[α-ERSCG]: ∀si, si′ ,

∑
j∈Ei

ri[j] ≥
α

∑
j∈Ei

ri′ [j].

We conclude by observing that the notion of envy-freeness we introduce can easily be
adapted to the original non-unit supply sellers.

4 Impossibility of Envy-freeness and Budget Balance

Before presenting two revenue sharing schemes based on the definition of clinching graph in
Sections 5 and 6, we show that envy-freeness and budget balance are indeed contradicting
objectives for any revenue sharing scheme based on an efficient allocation.

I Theorem 2. There does not exist any revenue sharing efficient mechanism for the reser-
vation exchange market which is BB and α-ERSCG for α ≥

√
3 − 1 + δ ≈ 0.732, for an

arbitrary small value δ > 0.

5 Revenue sharing by the Clinching Ascending Auction.

The first revenue sharing scheme is based on the allocations computed by the clinching
ascending auction (CA). We denote by CA this revenue sharing scheme.

A detailed description of the use of the clinching ascending auction [2, 1] to compute
efficient VCG allocations is given in the full version of the paper. We specifically use a
version for matching markets given in [13].

Crucial to the definition of revenue sharing scheme is the notion of priority order among
sellers that is used in the execution of the CA. Whenever the CA is indifferent about buying
between a set of sellers, it decides in “favor” of the seller with lower priority in the precedence
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order. Intuitively, the seller of higher priority will enjoy a payment that is at least as good as
the lower priority seller since the price in the ascending auction is non-decreasing. A priority
order between sellers is simply represented by a permutation π ∈ Π(S) where Π(S) defines
the set of all permutations of set S.

We set rπi [j] = pj if the execution of CA on permutation π matches ej to si.

Revenue share of seller si from buying event ej is defined as

ri[j] = Eπ∈Π(S)[rπi [j]]. (1)

The revenue of seller si is defined as ri =
∑
ej∈Ei

ri[j]. Since the total revenue of the
mechanism REV =

∑
j∈E pj is shared between sellers, we state a first property of the revenue

sharing scheme CA:

I Claim 3. The revenue sharing scheme CA is BB.

We next prove that the revenue sharing scheme CA is not exact ERSCG.

I Theorem 4. The revenue sharing scheme CA is at most 1/2-ERSCG.

We next prove the approximate envy-freeness of revenue sharing scheme CA.

I Theorem 5. The revenue sharing scheme CA is 1/2-ERSCG.

We conclude with the properties of buyer monotonicity and seller monotonicity for revenue
sharing scheme CA.

I Theorem 6. BM and SM hold for revenue sharing scheme CA.

6 Revenue sharing by the Eating mechanism.

The eating mechanism is defined as a fractional process in time on the clinching graph
CG = (E ∪ S,H), H = {(ej , si) : ej ∈ Ei}. At each time x ∈ [0, 1], the unit supply seller si
“eats” from the the non-exhausted buying event ej ∈ Ei of highest payment pj . Each seller
will eat at most up to a fraction of 1. A buying event is exhausted when it has been eaten for
1 unit. The result of the eating mechanism is a fractional assignment xi[j] ∈ [0, 1] such that∑

j∈Ei
xi[j] ≤ 1 for each seller si ∈ S and

∑
si:ej∈Ei

xi[j] ≤ 1 for each buying event ej ∈ E.

Revenue share of seller si from buying event ej is defined as

ri[j] = xi[j]× pj . (2)

The total revenue of seller si is also equal to ri =
∑
j∈Ei

ri[j].
It is easy to observe that the revenue shares by the eating mechanism can be computed

in polynomial time. We first show that revenue share mechanism EM is envy-free.

I Theorem 7. The revenue sharing scheme EM is ERSCG.

Proof. Consider any two sellers si and si′ . At any time x ∈ [0, 1] of execution of the eating
mechanism, seller si eats from the non-exhausted buying event ej ∈ Ei of highest payment pj .
At the same time x, si′ eats from a buying event ej′ . Buying event ej′ is either outside Ei or
it offers payment pj′ ≤ pj . When si stops eating, all ej ∈ Ei are exhausted. We conclude
that the revenue of si on Ei is higher than the revenue of si′ on Ei. J

It is not clear that in the EM sharing scheme all sellers eat up to 1. We show in the
following that EM is not exact budget balance.

I Theorem 8. For any ε > 0, the revenue sharing scheme EM is at most 11+ε
12+ε -BB.

I Theorem 9. The revenue sharing scheme EM is 1− 1/e-BB.
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7 Conclusions

The reservation exchange market is an emerging model for internet advertising that brings
together multiple publishers and advertisers interested in trading inventories of impressions
available in the future. In this work, we present the axioms and the design principles at the
basis of mechanisms for reservation exchange markets. The goal we define for these markets
is the design of mechanisms that are incentive compatible for buyers, envy-free for sellers,
efficient and budget balance. We show that this is possible if one of the requirements of
budget balance or envy-freeness is slightly relaxed. Our efficient revenue sharing mechanisms
are based on the notion of clinching graph that is a convenient representation of the trades
of efficient VCG allocations.

We leave several open problems in the context of reservation exchange markets. First
of all, it would be interesting to close some of the gaps on approximate envy-freeness and
budget balance of the revenue sharing mechanisms we propose. It is also unknown whether
the eating mechanism holds some of the monotonicity properties we define in this paper.
Moreover, since the clinching graph seems to provide fundamental insights for designing fair
revenue sharing mechanisms, it would be helpful to derive its structure from basic properties
of VCG mechanisms.

Acknowledgements. We thank Marek Adamczyk for suggesting the analysis of budget
balance of the eating mechanism.
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Abstract
We consider the classical problem of constrained queueing (or switched networks): There is a set
of N queues to which unit sized packets arrive. The queues are interdependent, so that at any
time step, only a subset of the queues can be activated. One packet from each activated queue
can be transmitted, and leaves the system. The set of feasible subsets that can be activated,
denoted S, is downward closed and is known in advance. The goal is to find a scheduling
policy that minimizes average delay (or flow time) of the packets. The constrained queueing
problem models several practical settings including packet transmission in wireless networks and
scheduling cross-bar switches.

In this paper, we study this problem using the the competitive analysis: The packet arrivals
can be adversarial and the scheduling policy only uses information about packets currently queued
in the system. We present an online algorithm, that for any ε > 0, has average flow time at most
O
(
R2

ε3 OPT +NR
)
when given (1+ε) speed, i.e., the ability to schedule (1+ε) packets on average

per time step. Here, R is the maximum number of queues that can be simultaneously scheduled,
and OPT is the average flow time of the optimal policy. This asymptotic competitive ratio
O(R

2

ε3 ) improves upon the previous O(Nε2 ) which was obtained in the context of multi-dimensional
scheduling [6]. In the full general model where N can be exponentially larger than R, this is an
exponential improvement. The algorithm presented in this paper is based on Makespan estimates
which is very different from that in [6], a variation of the Max-Weight algorithm. Further, our
policy is myopic, meaning that scheduling decisions at any step are based only on the current
composition of the queues. We finally show that speed augmentation is necessary to achieve any
bounded competitive ratio.
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1 Introduction

Stochastic processing networks [16] capture a wide range of resource allocation scenarios. In
the general setting, there are a set of N queues, Q1, Q2, . . . , QN . Packets of unit size arrive
at these queues according to some arrival process. Time is discrete, and at each time step, at
most one packet from each queue can be served (or scheduled), each packet requiring unit
amount of service. The queues use shared resources for scheduling, leading to constraints
on the subsets of queues that can be simultaneously scheduled. Let S = {S1, S2, . . . , Sm}
denote the set of feasible subsets of queues that can be simultaneously scheduled at any time
slot; we assume the system S is downward closed so that if S ∈ S, then any subset of S
also belongs to S. 1 For such a system let R = maxS∈S |S| denote the maximum number of
packets that can be simultaneously be scheduled.

Such a general model was first formulated in the seminal work of Tassiulas and Ephrimedes
[16]. We first discuss some applications. First consider a n× n packet switch with crossbar
architecture [11, 12, 4]. Packets arrive at each of the n input ports, with each packet
specifying an output port to which it must be scheduled. The crossbar architecture enforces
the constraint that at most one packet can be scheduled per input or output port per time
slot. There are therefore N = n2 queues {Qij}, one per input-output pair (i, j). Queue
Qij queues packets arriving at input i for output j. A feasible subset of queues in S is a
matching of input to output ports, so that S is the set of all matchings between inputs
and outputs. A generalization of this setting arises in wireless networking, where there is
a queue Qij between every pair of locations i and j that are within communication radius;
a feasible subset of queues is any set of pairs (i, j) that can simultaneously communicate
without interference.

A similar problem arises in multicast switch scheduling [14], where packets arriving at an
input port of a crossbar switch need to be simultaneously transmitted to multiple output
ports.

We now present the formal model. Packets arrive into the queues according to an
adversarially chosen process during a finite time interval [0, T ]. We do not constrain the
number of packets that can arrive into any queue at any time step. We assume each packet
suffers a delay of at least one time slot. The main objective considered in this setting is the
average flow time. Let nt denote the number of packets awaiting service at time t; this is
the queue size at time t. Let n denote the total (finite) number of packets arriving in the
system. Let T ′ be a sufficiently large time, for example, T ′ = T + n, by which any ‘non-idle’
algorithm can complete all packets.

Average Flow Time = 1
n

T ′∑
t=0

nt . (1)

A scheduling policy is an algorithm that decides (at every time slot) the set of queues to
schedule. In an online policy, this decision is based on the number of packets in each queue,
but not on the knowledge of future arrivals. Policies whose decisions are based only on queue
sizes (or current system state) are termed Markovian in queueing theory. In this paper, we
will call such policies myopic. Our focus will be on designing myopic policies.

Integral vs. Fractional Schedules. We make a distinction between integral and fractional
schedules. The definition above assumes time is slotted into unit length slots, and we execute

1 Such a set system is often called an independence system, and a set S ∈ S is said to be independent.
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one schedule σ ∈ S per time slot. Using the notation in [15], let

〈S〉 =
{∑
σ∈S

ασσ |
∑
σ∈S

ασ ≤ 1, ασ ≥ 0 ∀σ ∈ S
}

(2)

For each S ∈ S, we let σ(S) denote a binary vector in 2[N ] that encodes the subset of
queues activated in S, and for notational convenience, we let σ ∈ S, omitting S. The set 〈S〉
therefore represents collections of schedules, each executed to a fraction, so that the total
fraction is one unit. A fractional schedule executes one schedule from 〈S〉 per time slot. In
other words, a fractional schedule assumes time is continuous, and that packets are divisible.
When α amount of schedule σ is executed, α amount of the corresponding packets leave
the system. Note that an integral schedule is a special case of a fractional schedule where
ασ ∈ {0, 1} for all σ ∈ S.

In fractional schedule, an alternative but equivalent definition of average flow time will
be useful: we assume that packets are processed in first-in-first-out manner in each queue,
and a packet j’s completion time Cj is the earliest time when the whole packet leaves the
queue. An individual packet’s flow time is defined as its completion time Cj minus its arrival
time at the queue, and the average flow time is the total flow time of all packets divided by
the total number of packets. It is easy to see this definition of average flow time coincides
with the above definition (1).

Let OPT denote the average flow time of the fractional policy that makes optimal
scheduling decisions with knowledge of all future arrivals. This is a valid relaxation since
allowing the optimal scheduler/the adversary to be fractional can only decrease its average
flow time. Our goal is to design an online integral scheduling policy whose average flow time,
for all input sequences, is at most c×OPT . We call c as the competitive ratio of the policy.
We will achieve this by first developing a fractional online schedule and then converting it
into an integral schedule online.

1.1 Resource Augmentation Analysis and Scalable Policies
A simple example shows that no online algorithm can have bounded competitive ratio. To
see this, consider a simple 2× 2 crossbar switch with two input ports and two output ports.
For some large L, at time t = 0, L packets arrive at both inputs destined for output 1. From
time t = L to t = 2L− 1, where one packet arrives per time step destined for output 2; the
algorithm is not told which input port these packets arrive at. (Suppose these arrive at input
1.) Beyond this time, there is one packet per time slot arriving at input 1 for output 1 and
input 2 for output 2. The optimal algorithm which knows the future, spends the first L steps
serving the L packets queued at input 1. From time t = L to t = 2L− 1, it schedules the
matching of input port 1 to output 2 and input port 2 to output 1. Beyond this time, it
has no queued packets, and can schedule each incoming packet in the same time slot. In
the limit as T → ∞, OPT = 1. Any online algorithm has to guess the behavior of OPT
between time t = L and t = 2L− 1. Suppose it keeps x ≤ L packets on input port 1 at time
t = L, then it has x packets queued for all time t ≥ L, leading to average flow time of x.
This shows an unbounded competitive ratio even for randomized strategies.

The above example is typical of several scheduling problems when the input is ad-
versarial [8, 7, 1], and motivates the need for resource augmentation analysis, a framework
introduced by Kalyanasundaram and Pruhs [8]. We say that an online algorithm is given
(1 + ε) speed for any ε > 0, if in the integral case, the algorithm is allowed to perform an
extra round of scheduling every b 1

ε c time steps; or is allowed to execute schedules at rate

ICALP 2016
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(1 + ε) in the fractional case. Equivalently, the online algorithm, given no extra speed, is
compared against the optimal scheduler with (1− ε)-speed. This view is more natural since
we simply constrain the space of feasible schedules used by the optimal policy to have (1− ε)
rate, i.e., use

∑
σ∈S ασ ≤ 1− ε in (2), and give a speed 1 to the online algorithm. This also

highlights the fact that resource augmentation is purely an analysis tool – the algorithms we
design are oblivious to such resource augmentation, using only the current queue sizes to
make scheduling decisions. We call an algorithm scalable if for every ε > 0, the competitive
ratio of the algorithm is f

(
N, 1

ε

)
for some function f .

We note that even with resource augmentation, the design of scalable scheduling policies
is non-trivial. Consider the stochastic setting where packets arrive in each queue according
to a Bernoulli process with known rate. This arguably benign setting is widely studied
in networks [16, 12, 13, 15]. Consider an 3 × 3 crossbar switch, and the natural policy
that maximizes instantaneous throughput: Consider the pairs of inputs and outputs such
that there is at least one packet queued for that input/output pair. Find a maximum size
matching of these input/output pairs and schedule this matching, choosing a matching at
random if there are multiple maximum matchings. It is known [12] that for Bernoulli traffic
where the arrival rates for all inputs and outputs are strictly smaller than one packet per
time step, the expected queue size (and hence expected flow time) of this policy can be
unbounded. However, for such input, there are other policies with bounded expected queue
size (see below for more details). This directly shows that there exists some ε > 0 for which
the maximum throughput policy, even with (1 + ε)-speed has unbounded competitive ratio,
and is hence not scalable.

1.2 Our Results
Our main result is a myopic scheduling policy for arbitrary scheduling constraints S whose
asymptotic competitive ratio only depends on R. Recall that R = maxS∈S |S| is the maximum
number of packets that can be feasibly scheduled any time slot. We first develop a fractional
online scheduler, and then convert it into a feasible integral policy.

I Theorem 1. There is an online fractional policy, which we name Sampling Independent
Set from Min-Makespan (SISM), that is myopic, and is O(R

2

ε3 +N)-competitive when
compared to the optimal scheduler with (1− ε)-speed. More precisely, the online policy has an
average flow time O(R

2

ε3 OPT +N) where OPT is the optimal algorithm’s average flow time.
If the online algorithm does not have to be myopic, the competitive ratio can be improved to
O(R

2

ε4 ).

We note that if OPT is large, then the competitive ratio depends only on R = maxS∈S |S|,
which could be much smaller than N , and is a more robust measure of the complexity of
the scheduling constraints S. On the other hand, N can be made larger by simply splitting
one queue into several “virtual queues". (A related notion to R, called rank, is used in [15]
as a measure of the complexity of S.) In fact, N can be exponentially larger than R. As
mentioned before, the best known competitive ratio prior to this work was O(Nε2 ) [6] which
was found in the context of multi-dimensional scheduling. Further, our algorithm is very
different from [6] which can’t avoid a linear dependency on N ; this previous work will be
discussed in detail in Section 1.4.

Fractional Scheduling Policy. Our scheduling policy SISM is quite natural. At time step
t, let nit denote the (possibly fractional) number of packets queued at queue Qi. At time t,
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assuming no more packets arrive in the future, solve the makespan minimization problem:
Find a fractional cover {λ(S)}S∈S such that if these schedules are executed (in arbitrary
order), then all queues Qi are emptied, i.e.

∑
S:i∈S λ(S) = nit. We process each independence

set S at a rate in proportion to its weight {λ(S)}. An equivalent view which explains the
algorithm’s name is that each cover (independent set) S exists in λ(S) copies, and we sample
a cover uniformly, and process it by an infinitesimal amount.

We first show that our algorithm is O(R2/ε3)-competitive for the fractional average
flow time. Roughly speaking, the algorithm incurs a cost equal to the total remaining size
of packets for the fractional flow – the discrepancy between the total remaining size and
the total number of packets is at most N , hence the N appears in the competitive ratio.
Alternatively, by using a standard method of converting fractional flow to integral flow, we
can get a competitive ratio with no dependency on N , but the resulting algorithm is no
longer myopic.

We note that the SISM has running time poly(|S|). However, for several applications,
|S| itself may be exponential in N , the number of queues, leading to an exponential time
algorithm. This dependence is unavoidable given the generality of the problem statement:
For myopic policies that can not store past scheduling decisions, it is easy to check that
maximizing instantaneous throughput encodes computing independent set of a general graph,
a problem whose solution cannot be approximated to any constant factor unless P = NP .
Assuming P 6= NP , this implies there is no myopic policy with poly(N) computation per
time slot, which has bounded competitive ratio even with constant speed. Nevertheless, for
the case of scheduling crossbar switches, our policy has poly(N) computation time per step
using the Birkhoff-von Neumann theorem (see for instance [13]). Furthermore, as mentioned
above, for settings such as scheduling jobs in data centers where the number of resources in
contention is constant, we can assume S to have constant size.

Integral Policy. As mentioned above, we convert our fractional policy SISM into an integral
scheduler on the fly using an emulation technique from [15]. For comparison, best previous
policies [4] required speed of at least 2, and were specific to crossbar switches.

I Theorem 2. There is an online integral policy that is myopic, and is O(R
2

ε3 + NR)-
competitive when compared to the optimal scheduler with (1 − ε)-speed. More precisely,
the online policy has an average flow time O(R

2

ε3 OPT + NR) where OPT is the optimal
scheduler’s average flow time.

1.3 Technical Contributions
Our analysis proceeds via establishing amortized local competitiveness [7], a framework
first introduced in [2]. Potential functions are often very useful when local competitiveness
analysis fails. As one can deduce from (1), we can perform a strictly local competitiveness
analysis if we can upper bound the number of packets alive in SISM’s queues at any time
by the analogous number for the optimal scheduler. However, this approach fails since the
optimal scheduler can cleverly group packets and complete them more quickly than our
algorithm. Intuitively, in the presence of an arbitrary independence set system S, the number
of queued packets can change very dynamically. In such settings, potential functions allow
us to compare the online algorithm to the optimal scheduler more robustly over time.

As illustrated in [7], the standard approach to designing a potential function is to establish
a rough estimate of the algorithm’s flow time assuming that no more packets arrive. We use
the minimum makespan needed to complete all queued packets as our estimate. A standard
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way of converting this quantity into a potential function is to now replace each packet’s
remaining size with the lag that measures how much the algorithm is behind the optimal
scheduler in processing that packet. This conversion makes the potential resilient to discrete
events such as new packets arriving, and allows us to focus on how the potential changes as
packets are continuously processed. However, the analysis is still complicated since SISM’s
schedule can be very different from OPT’s schedule, which means the algorithm’s processing
may not change the potential in the right direction when needed.

As mentioned above, the potential we use is based on the minimum makespan when
each packet’s remaining size replaced with its lag, which can be very different from the
minimum makespan schedule constructed by SISM. We therefore need to relate these two
schedules, which is not at all obvious. It becomes crucial that SISM sample an independent
set uniformly at random from its min-makespan schedule. This ensures two nice properties.
First, it decreases the makespan of SISM uniformly with time. More importantly, due to the
uniform sampling nature, it processes packets in proportion to their respective remaining sizes.
Using these two properties, we show that if the optimal scheduler has very few packets left
(and these are exactly the times when the algorithm needs the potential), the min-makepsan
schedule for the packet lags (i.e., the potential) mostly consists of independent sets where
all packet’s size decrease almost uniformly. Hence the potential decreases in the desired
direction.

We finally note that we do not know how to use popular linear programming approaches,
such as dual fitting [5] for this problem. We do note that it is relatively straightforward to
obtain a O(1)-competitive algorithm with R-speed using these methods, and the hard part
is to obtain a scalable algorithm.

1.4 Related Work
Constrained queueing systems are among the most widely studied settings in scheduling
theory. Existing work falls in the realm of queueing theory, and has mostly focused on the
stochastic case where packet arrivals are i.i.d. according to some stochastic process (most
commonly Bernoulli or Poisson). In this context, the key assumption is that the arrival
rates into the queues are feasible (in a certain natural sense), and the focus is on designing
policies that are stable, meaning that the expected flow time is finite. The seminal result
of [16] shows that the maximum weight policy is stable: This policy defines the weight of a
queue as the number of packets waiting at the queue, and at each time step, finds a feasible
schedule in S such that the sum of the weights of the queues in the schedule is maximized.
When specialized to a n× n crossbar switch, this policy finds a maximum weight matching
between inputs and outputs [12], where the weight of an input/output pair is the number of
packets queued at that input for that output. In this context, for Bernoulli arrivals, this
policy has expected queue size (or average flow time) O(n2) [15].

Most theoretical work on constrained queueing has focused on improving delay bounds in
the stochastic setting. The work of [13] constructs a policy with average flow time O(n logn)
for an n × n crossbar switch. Their algorithm considers a batch of L packets per input
and output, finds a makespan minimizing schedule over L time steps for this batch, and
runs this schedule for the next L steps. Such a policy is clearly not myopic since the policy
is computed in batches; in addition, they set L carefully based on the input arrival rates,
making the policy specific to the stochastic setting. Our policy Min-Makespan can be
thought of as an online, myopic analog of this policy. Finally, the work of [15] presents a
policy with expected flow time O(n), which can be generalized to arbitrary constraints S;
their policy is based on modeling the constrained system S as a network of queues, and using
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a proportional fairness type queueing policy called Store and Forward Allocation (SFA) [3, 10]
on this queueing network. The SFA policy is a fractional scheduling policy that is specific to
stochastic arrivals, and we need new ideas for the adversarial setting. The main contribution
of [15] is an emulation of fractional scheduling policies by integral policies, and we use this
same technique for converting our fractional schedules to integral ones.

We emphasize that the hard part of our problem is to obtain a scalable algorithm, i.e.,
algorithms that have bounded competitive ratio for any ε extra speed, in addition to being
myopic. It is relatively simple to obtain competitive algorithms that use speed that depends
on S. In particular, for scheduling a crossbar switch, any greedy maximal matching algorithm
is 1-competitive with speed 2. In fact, in this same setting, the work of Chuang et al. [4]
shows something far stronger: With speedup 2, suitably designed stable marriage algorithms
are 1-competitive on any QoS property of delays (such as weighted flow time, lk-norms of
flow time, etc). However, these algorithms are specific to switch scheduling; furthermore,
they have unbounded competitive ratio with speed less than 2, and are hence not scalable.

The constrained queueing problem (fractional version) is a special case of the polytope
scheduling problem (PSP) formulated in [5]. The authors show that the proportional fairness
(PF) algorithm [9] can be adapted to derive a competitive scheduling algorithm for this
general setting. The objective considered is the sum of completion times of the jobs. Using
the KKT conditions combined with dual fitting, the authors show that the PF algorithm is
constant competitive on this objective even when jobs have arbitrary lengths and weights.
The flow time objective we consider corresponds to the difference between completion time
and release date of a job, and is typically a more difficult objective to optimize even in
simpler settings.

In [6], PSP was reformulated with queues. In PSP-Q, the polytope is defined over
queues. This constrains how much each queue can be processed. Then, any two jobs arriving
into the same queue are interchangeable in the sense that one job can be replaced with
the other job, preserving how much the queue is processed. In [6], it was shown that the
Normalized Max-Weight algorithm is (1 + ε)-speed O(N/ε2)-competitive – roughly speaking,
the maximum weight independence set is scheduled assuming that each queue’s weight is
equal to the number of jobs in the queue. The work in [6] can handle weighted jobs, but the
linear dependency on N was unavoidable due to the nature of the algorithm. On the other
hand, this paper can only handle packets of the same size, but the competitive ratio only
depends on R.

2 Fractional Scheduling Policy: SISM

In this section, we present our fractional scheduling policy Sampling Independent Set
from Min-Makespan (SISM), and analyze its performance for the average flow time
objective. For convenience, we abuse the notation slightly to let Qi(t) denote the (possibly
fractional) number of packets (or workload) waiting at queue Qi. See Figure 1 for the
description of the algorithm.

To compute a desired fractional cover, we can simply solve a linear programming over
the variables {λ(S)}S∈S . Then, the running time will be a polynomial in |S|. Note that this
computation needs to be done only when new packets arrive since otherwise the optimal
cover remains the same. As mentioned earlier, for the special case of switch scheduling,
such an optimal cover can be computed in polynomial time in N by using the Birkhoff-von
Neumann theorem; we can represent the current workload as a square matrix; and obtain a
doubly stochastic matrix by adding dummy quantities so that the entries in each row and
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Sampling Independent Set from Min-Makespan (SISM)
At each time t,

Compute a fractional cover {λ(S)}S∈S that completes the workload {Qi(t)}i∈[N ]
with the minimum makespan LQ(t).
(i.e., LQ(t) = min

∑
S∈S λ(S) s.t.

∑
S∈S:i∈S λ(S) = Qi(t)).

Schedule each independent set S at a rate of λ(S)/LQ(t).

Figure 1 The SISM Procedure.

column add up to maxiQi(t) and normalizing the matrix; and decompose it into permutation
matrices.

Our scheduling policy has the following nice property.

I Proposition 3. The policy SISM decreases each Qi(t) at a rate of Qi(t)
LQ(t) at all times when

no packets arrive or are completed by SISM or the optimal scheduler.

The proof easily follows by viewing the policy as sampling an independence set uniformly
from a multi-set of independent sets where each independence set S exists in λ(S) copies,
and observing each queue Qi appears in exactly Qi(t) independent sets in the multi-set.

2.1 Potential Function
Throughout the analysis, we assume that the optimal scheduler (OPT) is restricted to
(1 − 10ε)-speed for ε ≤ 1/10. Our analysis is based on a potential function. To formally
define the potential function, we need more notation. Let Q∗i (t) denote the workload waiting
at Qi at time t in the optimal schedule. Define Zi(t) := max{Qi(t) − Q∗i (t), 0} to be the
algorithm’s lag on queue Qi compared to the optimal scheduler. Define LZ(t) to be the
minimum makespan achievable assuming that each queue Qi has Zi(t) workload. More
precisely,

LZ(t) := min
λZ

∑
S∈S

λZ(S) s.t.
∑

S∈S:i∈S
λZ(S) = Zi(t) ∀i ∈ [N ] (3)

The potential function Φ(t) is defined as follows.

Φ(t) = R

ε
(LZ(t))2 (4)

2.2 High Level Idea
We first give a high-level overview of the analysis. For notational convenience, let time ∞
refer to a sufficiently large time step by which all packets are completed by our policy and
the optimal scheduler. This is well-defined since the total number of packets arriving into
queues is finite. Our final goal is to show∫ ∞

0
V (t)dt ≤ 2R2

ε3

∫ ∞
0

V ∗(t)dt, (5)

where V (t) :=
∑
iQi(t) denotes the total workload waiting in our algorithm’s queues.

Likewise, V ∗(t) is analogously defined for the optimal scheduler. The left-hand-side quantity
is the algorithm’s total fractional flow time, and the right-hand-side quantity is the optimal
scheduler’s total fractional flow time, which is at most the optimal scheduler’s total integral
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flow time. Once we establish the bound (5), using the fact that the number of packets alive
at each time t is at most V (t) +N , we will be able to complete the analysis.

To show (5), it suffices to show that the following standard conditions are satisfied.
1. Boundary condition: Φ(0) = Φ(∞) = 0.
2. Discontinue changes: Φ(t) does not change when a packet arrives, or is completed by the

online algorithm or the optimal scheduler.
3. Continuous changes: For every time t when no job arrives or completes, V (t) + d

dtΦ(t) ≤
2R2

ε3 V
∗(t).

The first condition is easy to check since the potential is clearly 0 when no jobs are waiting
in the algorithm’s or in the optimal scheduler’s queues. When a new packet arrives into Qi,
Qi(t) and Q∗i (t) both increase by 1, hence Zi(t) and LZ(t) remain the same. Completion
of packets does not affect the potential since Zi(t) and LZ(t) are defined in the continuous
time domain. Hence the second condition follows. Note that there are only a finite number
of time steps when discontinuous changes occur.

2.3 Competitive Analysis of Queue Size
In view of the above discussion, we will focus on proving the third condition concerning
continuous changes. Throughout this section, we will consider an infinitesimal time interval
[t, t+ dt] during which no discontinuous changes occur. We will consider two cases. In the
first case where the algorithm has a workload comparable to that of the optimal solution, we
charge the algorithm’s workload plus the possible potential increase to the optimal solution’s
workload. In the other case, the algorithm’s workload in each queue Qi is very similar to Zi(t)
which is always non-negative and measures how much the algorithm is behind the optimal
solution in terms of the workload in queue Qi. This is the case where the potential helps the
algorithm in need. In this case, the algorithm will effectively decrease the makespan LZ(t)
based on lags {Zi(t)} in the potential function, which will cancel off the potential increase
due to the optimal solution’s processing and give enough credits to pay for the algorithm’s
workload due to the extra speed the algorithm is given.

We begin with a couple of definitions.

I Definition 4. A queue Qi is said to be tight at time t if Zi(t) ≥ (1− ε)Qi(t), otherwise
loose. An independent set S ∈ S is said to be tight at time t if all queues in S are tight.
Otherwise, S is said to be loose.

The following simple observation will be used throughout the analysis.

I Proposition 5. LQ(t) ≤ V (t) ≤ R · LQ(t).

To study the continuous changes of Φ(t), we will first take a close look at the optimal sched-
uler’s effect on Φ(t), freezing the algorithm’s effect. Let d

dtΦ(t)
∣∣
OPT denote the continuous

change of Φ(t) due to the optimal scheduler’s processing.

I Lemma 6. d
dtΦ(t)

∣∣
OPT ≤ 2(1− 10ε)Rε LZ(t).

Proof. Fix a time t and consider an infinitesimal time interval [t1 = t, t2] where no discon-
tinuous changes occur. Let LZ,1 denote the minimum makespan for queues with workload
{Zi(t1)}i∈[N ]. Let L′Z,2 the minimum makespan for queues with workload {Z ′i(t2)} where
Z ′i(t2) := max{Qi(t1)−Q∗i (t2), 0} ≤ max{Qi(t1)−Q∗i (t1), 0}+ (Q∗i (t1)−Q∗i (t2)). Note that
(Q∗i (t1)−Q∗i (t2)) is non-negative, and refers to the amount of work that the optimal scheduler
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does for queue Qi during [t1, t2]. Observe that L′Z,2 ≤ LZ,1 + (1 − 10ε)(t2 − t1). This is
because one can empty all queues with sizes Zi(t1) + (Q∗i (t1) − Q∗i (t2)) by following the
schedule that achieves the makespan LZ,1 for workload {Zi(t1)}, and the optimal schedule
during [t1, t2] with 1-speed; recall that the optimal scheduler has (1 − 10ε)-speed. Such
a schedule only does more work than the required workload, {Z ′i(t2)}i∈[N ]. Hence due to
downward closedness of S, we have d

dtLZ(t)
∣∣
OPT ≤ 1− 10ε, which completes the proof. J

We now study the more interesting case of continuous changes of Φ(t) due to the
algorithm’s processing freezing the optimal scheduler’s processing. We consider two cases
depending on the magnitude of the volume of loose queues. Let Vloose(t) denote the total
sum of Qi(t) over all loose queues Qi. Vtight(t) is similarly defined for tight queues.

Case (i): Vloose(t) ≥ (ε/R)V (t), i.e. Vtight(t) ≤ (1−ε/R)V (t). By definition, for any
loose queue Qi, we have Zi(t) := max{Qi(t)−Q∗i (t), 0} ≤ (1− ε)Qi(t), hence Q∗i (t) ≥ εQi(t).
Thus V ∗(t) ≥

∑
i:looseQ

∗
i (t) ≥

∑
i:loose εQi(t) = (ε2/R)V (t). We directly charge V (t) to

V ∗(t). We also charge d
dtΦ(t)

∣∣
OPT to V ∗(t). Towards this end, we use Lemma 6 together

with the following simple observation which immediately follows from Zi(t) ≤ Qi(t) for all i,
and downward closedness of S.

I Proposition 7. LZ(t) ≤ LQ(t).

Hence d
dtΦ(t)

∣∣
OPT ≤

2R
ε LZ(t) ≤ 2R

ε LQ(t) ≤ 2R
ε V (t) ≤ 2R2

ε3 V
∗(t).

The algorithm’s processing can only decrease Φ(t), i.e. d
dtΦ(t)

∣∣
algo
≤ 0, but we do not

need it in this case; in the other case, we will need a stronger bound which is stated in
Lemma 10. Combining these, the desired third condition easily follows.

Case (ii): Otherwise. This is the more interesting case where the potential plays a crucial
role. We begin with showing the following lemma. Intuitively, since Zi(t) is very close to
Qi(t) over most queues, the makespan for workload {Zi(t)} should be almost as large as the
makespan for workload {Qi(t)}.

I Lemma 8. LZ(t) ≥ (1− 3ε)LQ(t).

Proof. It is easy to see that the total weight of tight independent sets in {λQ(S)} is at least
LQ(t) − ε

RV (t) ≥ (1 − ε)LQ(t), since one unit of loose workload in a queue can make at
most one unit of independent sets loose. In other words, among independent sets of total
weight LQ(t), tight independent sets have total weight at least (1 − ε)LQ(t), which lower
bounds how much tight independent sets contribute to the makespan. Now for the sake
of contradiction, suppose that LZ(t) < (1 − 3ε)LQ(t). This implies that there is a way of
scheduling tight queues Qi with workload Zi(t) ≥ (1 − ε)Qi(t) within (1 − 3ε)LQ(t) time
steps, so all tight queues Qi with workload Qi(t) within (1− 3ε)LQ(t)/(1− ε) < (1− ε)LQ(t)
time steps. Hence we can complete all workload appearing in the tight independent sets more
quickly than (1− ε)LQ(t) time steps, which is a contraction to the minimality of LQ(t). J

For notational convenience, let {λZ(S)} be an optimal fractional cover that achieves the
minimum makespan for workload {Zi(t)} as illustrated in (3). We now take a close look at
{λZ(S)} focusing on tight independent sets.

I Lemma 9. The total weight of tight independent sets in {λZ(S)} is at least (1− 3ε)LZ(t).

Proof. Recall that the total workload of loose queues is at most (ε/R)V (t) ≤ εLQ(t).
The total weight of tight independent sets in {λZ(S)} is then at least LZ(t) − εLQ(t) ≥
LZ(t)− εLZ(t)/(1− 3ε) ≥ (1− 3ε)LZ(t). The first inequality is due to Lemma 8. J
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Let yi(t) denote the total weight of tight independent sets in {λZ(S)} that contain queue
Qi. Since our goal is to lower bound the potential’s decrease due to A’s processing, we can
assume that Qi is processed at a rate of yi(t)

LQ(t) ≤
Zi(t)
LQ(t) ≤

Qi(t)
LQ(t) due to Proposition 3 and

downward closeness of S. For each tight independent set S, imagine that we process queue
Qi in S at a rate of λZ (S)

LQ(t) – here note that each Qi is processed exactly at a rate of yi(t)
LQ(t)

in total. Hence the weight of tight indepedent set S decreases at a rate of λZ(S)
LQ(t) , and the

total weight of tight independent sets decreases at a rate of (1−3ε)LZ (t)
LQ(t) ≥ (1− 3ε)2 ≥ 1− 6ε

by summing over all tight independent sets, and subsequently by applying Lemma 9 and 8.
Hence we derive the following lemma.

I Lemma 10. d
dtLZ(t)

∣∣∣
algo
≤ −(1− 6ε), and d

dtΦ(t)
∣∣∣
algo
≤ −2Rε (1− 6ε)LZ(t).

We are now ready to complete the analysis. By Lemma 6, 10, 8, we have d
dtΦ(t) =

−8R · LZ(t) ≤ −4R · LQ(t) ≤ −4V (t). In either of the two cases, we have shown the third
condition on Φ(t) concerning the continuous changes.

2.4 From Queue Size to Flow Time
So far we have shown (5). By processing packets in each queue in first-in-first-out order,
we have that 0 ≤ Ai(t)−Qi(t) < 1 for all i, where Ai(t) denotes the number of packets in
queue Qi at time t. Let A(t) :=

∑
iAi(t). Let T be the collection of maximal intervals such

that V (t) > 0 at all times t during T , for each time interval T ∈ T . Note that A(t) = 0 if
V (t) = 0. Hence the algorithm’s total flow time is∑

T∈T

∑
t∈T

A(t) ≤
∑
T∈T

∑
t∈T

∫ t+1

τ=t

(
V (t) +N

)
dτ ≤ O(R

2

ε3
)
∫ ∞

0
V ∗(t)dt+N

∑
T∈T
|T |

Since our algorithm processes at least one unit of workload at each time if it exists, it is
easy to observe that

∑
T∈T |T | is at least Ω(1) times the total number of packets. Knowing

that each packet has flow time at least one, we can upper bound N
∑
T∈T |T | by N times

the total number of packets. By dividing both sides of the inequality by the total number of
packets, we derive the first part of Theorem 1.

The second part follows by a standard method of converting an algorithm good for
fractional flow time into one for integral flow time. In fact, the quantity

∫∞
0 V (t)dt in

Equation (5) is the algorithm’s total fractional flow time, where each packet incurs a penalty
equal to its remaining size. In general, one can translate an online algorithm that is c-
competitive with s speed for the average fractional flow time objective online into one that
is O(c/ε)-competitive with s(1 + ε)-speed for the average integral flow objective, for any
0 ≤ ε < 1. For example, see [7]. However, after this conversion, the algorithm is no longer
myopic.

3 Emulation by Integral Schedules

Once we have a fractional algorithm we can convert it into an integral algorithm with a small
loss in the competitive algorithm. We remind the reader that an integral algorithm must
schedule exactly one independent set S out of S at each time t. In contrast, a fractional
algorithm schedules an independent set S for any infinitesimal time step dt, and reduces
each queue in S by dt. Shah et al. [15] show that given an fractional schedule B, one can
obtain an integral schedule on the fly that has an O(RN) upper bound on the algorithm’s
total lag at each time as opposed to the optimal schedule.
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Let QBi (t) be the number of packets waiting in queue Qi at time t in the integral
algorithm B’s schedule. The quantity QAi (t) is analogously defined for a given fractional
online algorithm A – however, QAi (t) does not have to be integral at an integer time point.
Define B’s lag as opposed to A as ∆i(t) := max{QBi (t)−QAi (t), 0}. The integral algorithm
B has the following description at any time t.

Compute a (fractional) min-makespan schedule on {∆i(t), i = 1, 2, . . . , N}.

In the above solution, if some independent set is scheduled to an amount at least 1,
schedule this independent set.

Otherwise, let W (t) = {i|∆i(t) ≥ 1}. Find an independent set that schedules the most
number of packets from W (t), and schedule this set.

The following lemma restates Lemma 5.7 and 5.8 in [15].

I Lemma 11. For the algorithm B as described above, we have
∑
i ∆i(t) ≤ R(N + 2).

Note that the above lemma is only concerned with the difference between the queues of
the two algorithms A and B. However, we can now use an idea similar to the one we used in
Section 2.4. The crucial observation is that the discrepancy

∑
i ∆i(t) can occur only at the

times where the algorithm B has at least one packet at time t; the number of such times
is at least the total number of packets arriving at queues. Theorem 2 easily follows from
Theorem 1 and this observation.

4 Conclusions

In this paper, we studied competitive algorithms for constrained queueing systems, which
have been extensively studied in stochastic queueing theory. In queueing theory, the goal
is to obtain a stable algorithm when the load reaches the inherent “system threshold". A
parameter is often used to measure the proximity of the system load to the threshold. For
example, in the special case of switch scheduling, the expected load arriving at queues is
assumed to have a makespan at most 1− ε for ε > 0. The work of [15] shows an expected
total queue size of O(R/ε + RN), and the additive term RN is ignored assuming that ε
is arbitrarily small. In contrast, we give an O(R2/ε3 +RN)-competitive algorithm for the
average flow time objective when compared to the optimal scheduler with (1 − ε)-speed.
As illustrated in the seminal paper [8] that introduced the resource augmentation analysis
model, a slightly weaker adversary/benchmark is also motivated by the system threshold.
The goal is to design an online algorithm whose objective is comparable to the optimal offline
solution with the least possible speed augmentation for all adversarial inputs. As mentioned
before, such an algorithm is said to be scalable. Despite the seemingly similar goals and
motivations as well as the seemingly similar analytic bounds, the relation between queueing
theory (stability) and competitive analysis (scalability) remains unclear. Our work suggests
the possibility of making a rigorous connection between the two concepts.

An open problem is to get tighter upper or lower bounds on the competitive ratio, even in
the special case of switch scheduling. The lower bounds in [5, 6] do not hold since it requires
packets having varying sizes. The only known negative resultis that the problem does not
admit a (bounded) competitive algorithm without speed augmentation. However, we cannot
even rule out the existence of O(poly(1/ε))-competitive algorithms with (1 + ε)-speed.
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Abstract
We study voting models on graphs. In the beginning, the vertices of a given graph have some
initial opinion. Over time, the opinions on the vertices change by interactions between graph
neighbours. Under suitable conditions the system evolves to a state in which all vertices have the
same opinion. In this work, we consider a new model of voting, called the Linear Voting Model.
This model can be seen as a generalization of several models of voting, including among others,
pull voting and push voting. One advantage of our model is that, even though it is very general,
it has a rich structure making the analysis tractable. In particular we are able to solve the basic
question about voting, the probability that certain opinion wins the poll, and furthermore, given
appropriate conditions, we are able to bound the expected time until some opinion wins.
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1 Introduction

Graphs are very popular as a simple model of the complex environment in which individuals
interact. In this paper we focus in voting models on finite graphs, in which vertices of a given
graph have opinions and by interacting with their neighbours they change such opinions.
Voting models can be used to mimic real-life situations such as the spread of opinions or
infections in a society, the evolution of species or models of particle interaction in physics.

While many models has been proposed in the literature, we do not aim to propose a new
particular model, but to unify some of the existing models in a tractable way. With this in
mind, we propose a general model of voting, called the Linear Voting Model. This model
subsumes several models proposed in the past, including, for example, the push model and
the very popular pull model.

Even though the voter model has been widely studied in the case of infinite structures,
one of the first rigorous studies on finite structures was made by Donnelly and Welsh [4]. In
that work, the authors studied a continuous-time version of the pull voting model and, under
the name of infection model, the push voting model. In the continuous time version, each
vertex has an exponential clock and when it rings, the vertex selects a random neighbour and
pulls its opinion (in the case of pull voting) or pushes its opinion on the neighbour (in the
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case of push voting). On the other hand, Hassin and Peleg [6] and Nakata et al. [8] studied
the discrete time version of pull voting, in which vertices do not have a clock but at each
round each vertex synchronously pulls an opinion. Both papers considered the two-party
model and studied its possible application to distributing computing, in particular to the
agreement problem. The focus of [6] and [8] is on the probability that all vertices eventually
adopt the opinion which was initially held by a given subset of vertices. They proved that
the probability that opinion A wins is d(A)/d(V ), where d(X) is the sum of the degrees of
the vertices of X ⊆ V and A is the set of vertices whose initial opinion was A.

The consensus time of G, i.e., the time needed for the vertices of a graph G to agree
on an opinion during voting, has attracted a lot of attention, especially because a low
consensus time implies a better distributed algorithm for the agreement problem. In the
continuous-time setting, Oliveira [9] shows that the expected consensus time is O(Hmax),
where Hmax = maxv,u∈V H(v, u) and H(v, u) is the hitting time of u of a random walk
starting at vertex v. Furthermore, in a later work [10], Olivera proved that under certain
conditions on the underlying graph G, the consensus time is concentrated around 2m(G),
where m(G) is the meeting time of two independent random walk starting in stationary
distribution. It is however, not clear whether the continuous-time results apply to the
discrete-time setting. Hassin and Peleg [6] using a dual process, the coalescing random walk,
proved that the expected consensus time is O(m(G) log(n)), where m(G) is the meeting time
of independent discrete-time random walks, thus giving O(n3 log(n)) in the worst case. By
using the same approach, Cooper et al. [2] improved the previous result and proved that
the consensus time is O(n/(ν(1− λ2))), where n is the number of vertices of G and ν is a
parameter that measures the regularity of the degree sequence, ranging from 1 for regular
graphs to Θ(n) for the star graph. The result of Cooper et al. achieves an upper bound of
O(n3) in the worst case. Berenbrink et al. [1] used a more ad hoc approach and proved that
the consensus time is O((dave/dmin)(n/Φ)) where Φ is the conductance of the graph, and
dave, dmin are the average and minimum degrees respectively.

The consensus time for the push model has not been so widely studied. Push voting is a
particular class of the so-called Moran process. Díaz et al. [3] proved that the the consensus
time is O(n4q) where q is the square of the sum of the inverses of the degree sequence of G,
giving a consensus time of O(n6) in the worst case.

1.1 Our model and results
Let G = (V,E) be a graph with |V | = n. Define a configuration of opinions as a n× 1 vector
ξ ∈ QV , where Q = {0, 1} for the two party model, or Q = {1, . . . , n} if we want to allow
more parties.

LetM(V ) be the set of all n× n matrices indexed by the elements of V , with exactly
one 1 entry per row and all other elements 0. Also, define Π(V ) as the set of probability
measures onM(V ). If no confusion arises, we will just writeM instead ofM(V ) and Π
instead Π(V ).

Let l ∈ Π be a distribution over matrices in M. Given an initial configuration ξ, we
define the process (ξt)t≥0, with t running over the non-negative integers, as

ξt =
{
ξ, if t = 0,
Mt−1ξt−1, if t > 0,

(1)

where Mt are i.i.d matrices sampled from l, and Mξ is the standard matrix-vector multi-
plication. The above process is called a linear voting model with parameters (l, ξ) and it
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is denoted by (ξt) ∼ LVM(l, ξ). Clearly, ξt(v) represents the opinion of vertex v at round
t. Consider M ∈M and ξ′ = Mξ, then if al vertices have different opinions, we have that
ξ′(v) = ξ(w) if and only if M(v, w) = 1. Since M has only one 1 in each row, the voting is
well-defined in the sense at every round each vertex adopts the opinion of only one vertex
(including itself). Examples of linear voting models include the pull voting (asynchronous or
synchronous) and the push voting model.

We proceed to present our contribution. Theorem 1 of this paper gives the probability a
particular opinion wins. This generalises the approach used in [6]. Theorem 2 gives an upper
bound to the expected consensus time. Our technique is qualitatively different from the
approach of previous authors which depended on a detailed dualisation of the voting process,
indeed, we follow an approach similar to Levin et al. [7, chapter 17] or Berenbrink [1].

Let l ∈ Π and define the mean matrix H of l as

H = H(l) =
∑
M∈M

l(M)M.

From Lemma 4 we have that H is the transition Matrix of a Markov Chain with state space
V . We denote by µ the stationary distribution of H (if any). Define the consensus time τcons
as the first time all the opinions are the same, i.e, there exists c such that ξτcons(v) = c for
all v ∈ V . Observe τcons is a stopping time and that c is the final opinion of the vertices. We
have the following theorem about the winning probability.

I Theorem 1. Let (ξt) ∼ LVM(l, ξ) be a linear voting model with mean matrix H with
ξ ∈ {0, 1}V . Assume that H has a unique stationary distribution µ and that τcons <∞, then

P(opinion 1 wins|ξ0 = ξ) =
∑
v∈V

µ(v)ξ(v).

The above theorem solves the winning probability problem under reasonable conditions, so
we focus on the consensus time problem.

Consider the two party model and let St be the set of vertices with opinion 1 at the
beginning of round t. Denote µ(St) =

∑
v∈St

µ(v), where µ is the stationary distribution of
H, and Zt = µ(St+1)− µ(St). Let µ∗ = minv∈V µ(v). Define the quantity Ψ as

Ψ = µ∗ min
S⊆V

S 6=∅,V

E(|Z0||S0 = S)
min{µ(S), 1− µ(S)} , (2)

where the minimum is over all S ⊆ V except S = ∅ and S = V . Using the above definitions
we prove the following theorem.

I Theorem 2. Let (ξt)t≥0 ∼ LVM(l, ξ) with ξ ∈ {0, 1}V be a voting model with Ψ > 0 then

E(τcons) ≤ 64/Ψ.

The structure of the paper is as follows. In Section 2 we introduce the model and give some
examples to gain some intuition and demonstrate the flexibility of the model. In Section 3,
we introduce the necessary notation to prove Theorem 1. In Section 4 we prove Theorem 2.

Notation. G = (V,E) stands for a simple graph. We assume |V | = n. For v ∈ V we denote
by N(v) the neighbourhood of v and define d(v) = |N(v)|. Moreover, given X ⊆ V , we
define d(X) as the sum of the degrees of the vertices in X. We use the notation v ∼ w to
say that v and w are adjacent vertices. Q stands for the set of possible opinions, in general
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Q = {0, 1} or Q = {1, . . . , n}. We denote byM the set of n× n matrices with exactly one 1
in each row and 0 in the other positions. Let Π be the set of probability distribution onM,
and l ∈ Π be a given probability distribution over matrices inM. M> denotes the transpose
of the matrix M .

2 The linear voting model.

Recall the definition of a linear voting model. Given l ∈ Π and ξ ∈ QV we say (ξt)t≥0 ∼
LVM(l, ξ) if ξ0 = ξ and ξt+1 = Mtξt, t ≥ 0, where the Mt are i.i.d. samples from l. The
following models are examples of linear voting.
(a) Synchronous pull model. At each round each vertex samples a random neighbour and

adopts the opinion of such neighbour.
(b) Asynchronous pull model. At each round one vertex v is selected at random, then it

samples a random neighbour and v adopts the opinion of this neighbour.
(c) Asynchronous push model. At each round a vertex v is selected at random, then it

samples a random neighbour and the neighbour adopts the opinion of v.
(d) Abusive push model. At each round one vertex v is selected at random and the whole

neighbourhood adopts the opinion of v.
(e) Pull-push model. At each round one vertex v is selected at random, and two neighbours

u1, u2 are selected randomly (with replacement). Then at the same time, u1 adopts the
opinion of v while v adopts the opinion of u2.

I Remark. To be precise, the changes in the opinions happen at the end of a round t, prior
to round t+ 1. In particular if v adopts the opinion of w at round t, it means that at round
t+ 1, vertex v has the opinion of w at round t.

I Lemma 3. The five models defined above are linear voting models.

Proof Sketch. We just prove it for the first and second model. For the other models the
proof is similar. Let ξt be the configuration of opinions at round t. In the synchronous pull
voting at each round each vertex v samples a random neighbour w(v) and then v adopts the
opinion of w(v). Call ξt+1 the new configuration of opinion. We check that ξt+1 = Mξt where
the (random) matrix M is given by M(v, w(v)) = 1 for all v ∈ V , and 0 for the others entries.
It is straightforward to check that Mξt(v) = M(v, w(v))ξ(w(v)) = ξt(w(v)) = ξt+1(v) and
also that M has only one 1 in each row and thus M ∈M.

For the asynchronous pull model, observe that only one vertex v is selected and then
v adopts the opinion of a random vertex w(v), while all other vertices keep their opinions
unchanged. Call ξt+1 the new configuration. Define M as M(v, w(v)) = 1, M(u, u) = 1 for
all u 6= v and 0 for all other entries (M is like the identity matrix, except in the column of
v). It is not hard to check that the random matrix M mimics the asynchronous pull model,
i.e. ξt+1 = Mξt, and that M ∈M. J

Remember we define the mean matrix of l ∈ Π as H = H(l) =
∑
M∈M l(M)M . Since

most of the models are described by rules rather than by giving the explicit distribution l, it
might be hard to compute H(l). Nevertheless, the following lemma helps us to compute H
without exhibiting l explicitly.

I Lemma 4. For any distribution l over matrices in M, the matrix H = H(l) is the
transition matrix of a Markov chain. Moreover, for every t ≥ 0, and v, w ∈ V ,

H(v, w) = P(v adopts the opinion of w at round t) . (3)
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Proof. Note that, as each element of M is a transition matrix (the rows sum up to 1), H is
the convex combination of transition matrices and thus is a transition matrix. To prove the
second part note that by conditioning on the configuration ξt we have that

E(ξt+1|ξt) =
∑
M∈M

l(M)(Mξt) =
( ∑
M∈M

l(M)M
)
ξt = Hξt. (4)

Choose ξt such that the opinion of w is 1 and all other opinions are 0. Then the event
{v adopts the opinion of w at round t} is equal to {ξt+1(v) = 1}. Thus, from equation (4)

P(ξt+1(v) = 1|ξt) = E(ξt+1(v)|ξt) = (Hξt)(v) =
∑
w∈V

H(v, w)ξt(w) = H(v, w). J

Let P be the transition matrix of a simple random walk on G, A the adjacency matrix
of G and let I denote the identity matrix. Let L = D −A be the combinatorial Laplacian
where D is the diagonal matrix containing the degree sequence of G. Moreover, let F be the
diagonal matrix defined by F (v, v) =

∑
w:w∼v 1/d(w). The next theorem gives the matrix H

for the linear voting models used in our examples.

I Theorem 5. The mean matrix of the synchronous pull, asynchronous pull, push, abusive
push, pull-push models are, respectively, Ha = P [6] and

Hb = n− 1
n

I+ 1
n
P, Hc = I+ 1

n
P>− 1

n
F, Hd = I− 1

n
L, He = 1

n
(P+P>)+n− 1

n
I− 1

n
F.

Proof Sketch. We compute Ha. Observe that Ha(v, w) is the probability that v adopts
the opinion of w. That happens only if the random neighbour selected for v is w. Then
Ha(v, w) = 1

d(v)1v∼w, concluding that Ha = P . For Hb, remember that in asynchronous pull
we select a random vertex v and then v adopts the opinion of a random neighbour w(v).
Observe that for a vertex u we have Hb(u, u) is the probability that u adopts the opinion of
u, i.e. the probability that u does not change the opinion. That happen with probability
(n− 1)/n, On the other hand if w ∼ v then we have Hb(v, w) = 1/nd(v) because v has to
be initially selected and then v has to select w from its neighbourhood. We conclude that
Hb = ((n− 1)/n)I + (1/n)P . The other cases are similar. J

3 Winning probability

The most basic question in any voting model is, ‘who wins?’. In order to answer this question
we use some martingale arguments. Assume the two-party model, Q = {0, 1}. Since the
mean matrix H of a linear voting model is a transition matrix, then all its eigenvalues
lie in [−1, 1]. We order the eigenvalues in decreasing order, i.e. 1 = λ1 ≥ λ2 . . . ,≥ λn.
Let λ be an eigenvalue of H> (H and H> have the same eigenvalues) with corresponding
eigenvector f , that is H>f = λf . Given f, g ∈ RV , we denote 〈f, g〉 =

∑
v∈V f(v)g(v) the

standard inner product. Observe that Q ⊆ R, so if ξ ∈ QV and f ∈ RV , the inner product
〈f, ξ〉 =

∑
v∈V f(v)ξ(v) is well-defined.

I Lemma 6. The process (〈f, ξt〉/λt)t≥0 is a martingale with respect to (ξt)t≥0

Proof. Since 〈f, ξt〉 is bounded, we can check that E(〈f, ξt+1〉|ξt) = λ〈f, ξt〉 and divide both
sides by λt+1. By linearity of (conditional) expectation and equation (4) we have

E(〈f, ξt+1〉 |ξt) = 〈f,Hξt〉 = 〈H>f, ξt〉 = λ 〈f, ξt〉 . J
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Since H is a transition matrix, if the associated Markov chain is recurrent and aperiodic then
the Markov chain has a unique stationary distribution. Denote this stationary distribution
by µ. It is a classic result of the theory of finite Markov chains that µ, interpreted as a
vector, is the unique eigenvector of H> with eigenvalue 1. We assume the vector µ is scaled
so that

∑
v∈V µ(v) = 1. Since, among all eigenvectors, µ is the most important we denote by

mt = 〈µ, ξt〉 the martingale associated with the eigenvalue 1, and we call this martingale the
voting martingale.

Proof of Theorem 1. Denote by 1 and 0 the vector where all components are 1 and 0
respectively. Since (ξt)t≥0 always reaches consensus, it converges to 1 or 0 and thus (mt)t≥0
converges to 1 or 0. Moreover, 0 ≤ mt =

∑
v∈V µ(v)ξt(v) ≤ 1 for every ξt ∈ {0, 1}V , so

(mt)t≥0 is a bounded martingale. These two properties of (mt)t≥0, together with the fact
that τcons is a stopping time, allows us to apply the optional stopping theorem [5] to conclude
E(m0) = E(mτcons). Since ξ0 = ξ is a deterministic quantity then E(m0) = m0. Moreover

E(mτcons) = 〈µ,1〉P(ξτcons = 1|ξ0 = ξ) + 〈µ,0〉P(ξτcons = 0|ξ0 = ξ) = P(ξτcons = 1|ξ0 = ξ).

Hence P(ξτcons = 1|ξ0 = ξ) = m0 = 〈µ, ξ〉, therefore

P(opinion 1 wins|ξ0 = ξ) =
∑
v∈V

µ(v)ξ(v). J

I Corollary 7. Assume the same conditions of Theorem 1 but consider Q = {1 . . . , , n}.
Suppose that ξ ∈ QV . Then the probability that k ∈ Q wins is

P(ξτcons = k1|ξ0 = ξ) =
∑

v∈V :ξ(v)=k

µ(v).

Proof. Replace opinion k by opinion 1 and all other opinions by opinion 0, and then use
Theorem 1 J

I Theorem 8. Let G be a connected graph. Let A be the set of vertices whose initial opinion
is 1. Then, given that the models reach consensus, the probability p that opinion 1 wins is
(a) synchronous pull model: pa = d(A)/d(V )
(b) asynchronous pull model: pb = d(A)/d(V )
(c) push model: pc = (

∑
v∈A d(v)−1)/(

∑
v∈V d(v)−1)

(d) abusive pushing model: pd = |A|/n
(e) pull-push model : pe = |A|/n.

Proof. We apply Theorem 1. For that we need to find the stationary distribution of the
above models. The stationary distribution of P is π(v) = d(v)/d(V ), that gives us the result
for synchronous pull. Observe that (n− 1)/nI + (1/n)P is a lazy version of the random walk
of P , then it has the same stationary distribution, giving us the result for the asynchronous
pull model. For the push model we just guess the stationary distribution and check it. Let
C = 1/(

∑
v∈V d(v)−1) and let π′(v) = C/d(v), then as F = F>

(H>c π)(v) = ((I + 1
n
P − 1

n
F )π′)(v) = π′(v) + 1

n

∑
w∈V

P (v, w)π′(w)− 1
n
F (v, v)π′(v)

= π′(v) + 1
n

∑
w:w∼v

1
d(v)

C

d(w) −
C

d(v)n
∑
w:w∼v

1
d(w) = π′(v)

proving that π′ is the stationary distribution of the mean matrix of the push model. For
the abusive pushing model observe that as I − (1/n)L is a symmetric matrix, its stationary
distribution is uniform. He is also symmetric, giving the result for the push-pull model. J
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4 Consensus Time

In this section we assume the two-party model with opinions Q = {0, 1}. Let (ξt)t≥0 ∼
LVM(l, ξ) be a linear voting model. Assume H = H(l) has a unique stationary distribution
and let (mt)t≥0 be the voting martingale defined in Section 3. We use the following
convenient notation. Let St be the set of vertices with opinion 1 at the beginning of round t,
let µ(St) = mt = 〈µ, ξt〉, and let Zt = µ(St+1)−µ(St). Note that, since µ(St) is a martingale,
E(Zt|St = S) = 0. The random variable Zt gives us information about the change in the
measure of the set St. A larger value of |Zt| implies voting finishes faster.

Let η(S) = min{µ(S), µ(Sc)}, where µ(Sc) = 1− µ(S). Denote by ηt the process η(St).
Since µ(St) ∈ [0, 1] we have ηt ∈ [0, 1/2]. Recall that µ(V ) = 1 and µ(∅) = 0. Note that
ηt+1 = min{µ(St) + Zt, µ(Sct )− Zt}. Noting that if ηt = µ(St), i.e. µ(St) ≤ µ(Sct ), then

ηt+1 ≤ µ(St+1) = µ(St) + Zt = ηt + Zt,

and if ηt = µ(Sct ), the same applies by noticing that µ(Sct+1)− µ(Sct ) = −Zt, i.e.

ηt+1 ≤ µ(Sct+1) = µ(Sct )− Zt = ηt − Zt,

then in both cases we get

ηt+1 ≤ ηt + ρtZt, (5)

where ρt = ρ(St) = 21{µ(St)≤µ(Sc
t )} − 1. Observe ρt ∈ {−1,+1}. We are going to study the

process √η
t
, in particular, E(√ηt). Define Υ(S) by

Υ(S) = E
(
Z2
t 1{ρtZt<0}

∣∣St = S
)

(6)

and define Υ = min Υ(S)
η(S) , where the minimum is over all S ⊆ V but S 6= ∅ and S 6= V . With

these ingredients we are ready to prove a technical lemma, which is fundamental for the
proof of Theorem 2.

I Lemma 9. Let (ξt)t≥0 ∼ LVM(l, ξ) with ξ ∈ {0, 1}V be a voting model with Υ > 0 then

E(τcons) ≤ 32/Υ.

Proof. We borrow part of the argument from [1]. Let S ⊆ V but S 6= ∅ and S 6= V . By
conditioning on St = S, from equation (5) we have ηt+1 ≤ ηt + ρtZt = η(S) + ρtZt (we
replace ηt by η(S) as St = S is fixed). Then, by taking expectations

E(√ηt+1|St = S) ≤
√
η(S)E

(√
1 + ρtZt

ηt

∣∣∣∣∣St = S

)

=
√
η(S)E

((√
1 + ρtZt

ηt

)
1{ρtZt≥0}

∣∣∣∣∣St = S

)
(7)

+
√
η(S)E

((√
1 + ρtZt

ηt

)
1{ρtZt<0}

∣∣∣∣∣St = S

)
. (8)

Let x = ρtZt/ηt. It can be checked that x ≥ −1. Indeed, from equation (5) we have
ρtZt ≥ ηt+1 − ηt ≥ −ηt, concluding x ≥ −1.
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For x ≥ −1 the following partial Taylor expansions are valid,
√

1 + x ≤ 1 + x

2 , (9)

√
1 + x ≤ 1 + x

2 −
x2

8 + x3

16 . (10)

To upper bound (7) use (9), and for (8) use (10). Recall that, since µ(St) is a martingale,
then E(Zt|St = S) = 0. After some rearrangement, we obtain

E(√ηt+1|St = S) ≤
√
η(S)−

√
η(S)E

((
(ρtZt)2

8η2
t

− (ρtZt)3

16η3
t

)
1{ρtZt<0}

∣∣∣∣St = S

)
≤

√
η(S)−

√
η(S)E

(
Z2
t

8η2
t

1{ρtZt<0}

∣∣∣∣St = S

)
=

√
η(S)− Υ(S)

8η(S)3/2 ≤
√
η(S)− Υ

8η(S)1/2 (11)

In the second inequality we used the fact that we are working in {ρtZt < 0} and after
that we used the definition of Υ(S) from (6) and Υ = min(Υ(S)/η(S)). Remember that
η(∅) = η(V ) = 0, then

E(√ηt+1) =
∑
S⊆V

E(√ηt+1|St = S)P(St = S) =
∑

S:S 6=∅,V

E(√ηt+1|St = S)P(St = S)

≤
∑

S:S 6=∅,V

(√
η(S)− Υ

8η(S)1/2

)
P(St = S) (12)

= E(√ηt)−
∑

S:S 6=∅,V

(
Υ

8η(S)1/2

)
P(St = S|τcons > t)P(τcons > t)

= E(√ηt)−
Υ
8 E

(
1
√
ηt

∣∣∣∣τcons > t

)
P(τcons > t), (13)

where (12) follows using equation (11). As 1/x is convex for x > 0, apply Jensen’s inequality
to the random variable x = √ηt, to obtain

E

(
1
√
ηt

∣∣∣∣τcons > t

)
≥ 1

E
(√
ηt
∣∣τcons > t

) = P(τcons > t)
E
(√
ηt
) . (14)

The last equality holds because the event {τcons ≤ t} implies that the vertices reached
consensus, then St = ∅ or St = V , hence ηt = 0, and then

E(√ηt) = E(√ηt|τcons > t)P(τcons > t) + E(√ηt|τcons ≤ t)P(τcons ≤ t)
= E(√ηt|τcons > t)P(τcons > t).

By substituting (14) into (13) we obtain

E(√ηt+1) ≤ E(√ηt)−
Υ
8
P(τcons > t)2

E
(√
ηt
) ,

then as ηt ∈ [0, 1/2]

Υ
8 P(τcons > t)2 ≤ E(√ηt)(E(√ηt)− E(√ηt+1)) ≤

E(√ηt)− E(√ηt+1)
√

2
.
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Summing from t = 0 up to a time T − 1 we have

Υ
T−1∑
t=0

P(τcons > t)2 ≤ 8
E(√η0)− E(√ηT )

√
2

≤ 4. (15)

Let T be the minimum time t such that P(τcons > t) < 1/2, then for every t < T we have
P(τcons > t) ≥ 1/2. Therefore, from equation (15), it holds that

T ≤ 16/Υ.

Note that our bound for T is independent of the initial position, so we assume the worst case.
We compute E(τcons) by looking at the process every T steps. If at round T the process
finished then τcons ≤ T , otherwise, we restart the process and look again after T steps until
we reach consensus. As the probability the process does not finish in T steps is at most 1/2,
we conclude that

E(τcons) ≤
∞∑
k=1

kT

(
1
2

)k
≤ 2T ≤ 32

Υ . J

We need the following simple lemma.

I Lemma 10. Let X be an integrable random variable with mean 0 then

E(|X|1{X<0}) = E(|X|)/2.

Proof. Let X+ = X1{X>0} and X− = |X|1{X<0}. Clearly X = X+ − X− and |X| =
X+ +X−. Then we have the system of equations

E(X+)− E(X−) = E(X) = 0,
E(X+) + E(X−) = E(|X|).

Then E(X−) = E(X+) = E(|X|)/2. J

We proceed with the proof of Theorem 2

Proof of Theorem 2. From Lemma 9 we have

E(τcons) ≤ 32/Υ,

where Υ = min Υ(S)
η(S) and the minimum is over all S ⊆ V other than S = ∅ and S = V .

Observe that if |Zt| > 0, it means that at least one vertex changes its opinion, thus
|Zt| ≥ µ∗ = minv∈V µ(v). From there

Υ(S) = E
(
Z2
t 1{ρtZt<0}

∣∣St = S
)

= E
(
(ρtZt1{ρtZt<0})2∣∣St = S

)
≥ µ∗E

(
|ρtZt1{ρtZt<0}|

∣∣St = S
)

(16)

Note that E(ρtZt|St = S) = ρ(S)E(Zt|St) = 0 because µ(St) is a martingale. Using
Lemma 10 in equation (16), gives Υ(S) ≥ µ∗E(|Zt||St)/2. Hence Υ ≥ µ∗min 1

2
E(|Zt||St)
η(S) .

Recalling the definition of Ψ in equation 2, we conclude Υ ≥ Ψ/2 and therefore

E(τcons) ≤
64
Ψ . J

We apply the above theorems to our examples. We use the following notation. Given
S ⊆ V , denote by E(S : Sc) the number of edges going from S to Sc. Denote by dS(v) the
number of vertices of S adjacent to v. Observe that E(S : Sc) =

∑
v∈S dSc(v) =

∑
v∈Sc dS(v).

We denote the graph conductance by Φ(G) = minS⊆V E(S:Sc)
min{d(S),d(Sc)} where 0/0 =∞.

ICALP 2016
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I Example 11. Consider the asynchronous pulling model on a graph G.

E(|Zt||St = S) =
∑
v∈S

d(v)
d(V )

1
n

dSc(v)
d(v) +

∑
v∈Sc

d(v)
d(V )

1
n

dS(v)
d(v) .

Why? With probability 1/n we select vertex v and this vertex selects a random neighbour
w with probability 1/d(v), and adopts its opinion. The stationary distribution of v is
µ(v) = d(v)/d(V ). If w has the same opinion as v, then Zt = 0, but if w has the opposite
opinion then |Zt| = d(v)/d(V ). Then

E(|Zt||St = S) = 1
nd(V )

(∑
v∈S

dSc(v) +
∑
v∈Sc

dS(v)
)

= 2E(S : Sc)
nd(V ) (17)

therefore from (2)

Ψ = dmin

d(V )
2
n

min
S

E(S : Sc)
min{d(S), d(Sc)} (18)

Hence we conclude that E(τcon) = O(nd(V )/dminΦ). This gives a consensus time of O(n2)
for expanders, which is optimal up to a constant. For the cycle, O(n3) optimal as well.

I Example 12. Consider the push model on a graph G. Let C = (
∑
v∈V d(v)−1)−1.

E(|Zt||St = S) =
∑
v∈S

C

d(v)
∑

w:w∼v,w∈Sc

1
nd(w) +

∑
v∈Sc

C

d(v)
∑

w:w∼v,w∈S

1
nd(w) .

The above equation holds because to change the opinion of a vertex v ∈ S, the push model
needs to select a vertex w ∈ Sc adjacent to v and then w needs to push its opinion on v.
That happens with probability 1/(nd(w)). In such case, the change in |Zt| is µ(v) = C/d(v).
The same applies if v ∈ Sc. Then

E(|Zt||St = S) = 2C
n

∑
v∈S

∑
w∈Sc

1v∼w

d(v)d(w) . (19)

By using the notation J(S) =
∑
v∈S d(v)−1 and that the stationary distribution is µ(v) =

C/d(v) we have

Ψ = 2C
ndmax

min
S

∑
v∈S

∑
w∈Sc

1v∼w

d(v)d(w)

min{J(S), J(Sc)} .

The parameter Ψ does not seem related to the classical graph parameters.

I Example 13. We continue with the abusive push model on a graph G.

E(|Zt||St = S) =
∑
v∈S

1
n

dSc(v)
n

+
∑
v∈S

1
n

dS(v)
n

.

The above equation holds because with probability 1/n we sample a vertex v. Then v

pushes its opinion on all its neighbours. Since the stationary distribution for this model
is µ(v) = 1/n, then the change in |Zt| is dSc(v)/n if v ∈ S and dS(v)/n if v ∈ Sc. Then
E(|Zt||St) = 2

n2E(S : Sc). Then it holds that

Ψ = 2
n2 min

S

E(S : Sc)
min{|S|, |Sc|} (20)
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The parameter minS E(S:Sc)
min{|S|,|Sc|} is very similar to the graph conductance, indeed, for d-

regular graphs minS E(S:Sc)
min{|S|,|Sc|} = dΦ(G). In such case we have that

E(τcons) = O
(
n2

dΦ

)
.

That gives us a O(n2/d) time for regular expanders, which is optimal when the degree is
constant. For the complete graph it gives us O(n), which is far from optimal, since the
abusive push model finishes in just one round on the complete graph. For a cycle it gives us
a O(n3) time which is optimal.

I Example 14. Our final example is for the pull-push model. In this model the stationary
distribution is uniform. Then the only way to produce a positive change in |Zt| is that when
the random vertex v is chosen to pull and push, it selects one neighbour in S and the other
in Sc. In that case, the change in |Zt| will be of 1/n, then

E(|Zt||St = S) =
∑
v∈V

1
n2
dSc(v)dS(v)

d(v)2 .

Then

Ψ = 1
n2 min

S

∑
v∈V

dSc(v)dS(v)
d(v)2

/
min{|S|, |Sc|}.

Once again Ψ does not seem related to the classical graph parameters.

5 Discussion

In this paper we introduced and studied the linear voting model. The model can be seen as
a generalisation of many models of voting. Despite its generality, the process is tractable
and we can compute the probability that a given opinion wins. Moreover, by using a
suitable potential function we were able to provide a bound for the expected consensus time.
Furthermore, applying this bound in specific cases led to classical graph parameters, such as
conductance, as well to other less familiar, or even new, parameters.

Future work includes the study of particular models on interesting graph families, like
expanders, transitive graphs or random graphs, as well as the development of new techniques
to analyse the model.
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Abstract
We consider an asynchronous voting process on graphs which we call discordant voting, and
which can be described as follows. Initially each vertex holds one of two opinions, red or blue
say. Neighbouring vertices with different opinions interact pairwise. After an interaction both
vertices have the same colour. The quantity of interest is T , the time to reach consensus, i.e. the
number of interactions needed for all vertices have the same colour.

An edge whose endpoint colours differ (i.e. one vertex is coloured red and the other one
blue) is said to be discordant. A vertex is discordant if its is incident with a discordant edge. In
discordant voting, all interactions are based on discordant edges. Because the voting process is
asynchronous there are several ways to update the colours of the interacting vertices.

Push: Pick a random discordant vertex and push its colour to a random discordant neighbour.
Pull: Pick a random discordant vertex and pull the colour of a random discordant neighbour.
Oblivious: Pick a random endpoint of a random discordant edge and push the colour to the
other end point.

We show that ET , the expected time to reach consensus, depends strongly on the underlying
graph and the update rule. For connected graphs on n vertices, and an initial half red, half blue
colouring the following hold. For oblivious voting, ET = n2/4 independent of the underlying
graph. For the complete graph Kn, the push protocol has ET = Θ(n logn), whereas the pull
protocol has ET = Θ(2n). For the cycle Cn all three protocols have ET = Θ(n2). For the star
graph however, the pull protocol has ET = O(n2), whereas the push protocol is slower with
ET = Θ(n2 logn).

The wide variation in ET for the pull protocol is to be contrasted with the well known model
of synchronous pull voting, for which ET = O(n) on many classes of expanders.

1998 ACM Subject Classification C.2.4 Distributed Systems, F.2 Analysis of algorithms, G.2
Discrete mathematics

Keywords and phrases Distributed consensus, Voter model, Interacting particles, Randomized
algorithm

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.145

∗ A full version of this paper is available at http://arxiv.org/abs/1604.06884.
† This work was supported in part by EPSRC grant EP/M005038/1, “Randomized algorithms for computer

networks”, NSF grant DMS0753472,and Becas CHILE.

EA
T

C
S

© Colin Cooper, Martin Dyer, Alan Frieze, and Nicolás Rivera;
licensed under Creative Commons License CC-BY

43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016).
Editors: Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi;
Article No. 145; pp. 145:1–145:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.145
http://arxiv.org/abs/1604.06884
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


145:2 Discordant Voting Processes on Finite Graphs

1 Introduction

We consider a type of asynchronous distributed voting process on graphs which we call
discordant voting, and which can be described as follows. Initially each vertex holds one of
two opinions, red or blue say. Neighbouring vertices of different colours, i.e. whose opinions
differ, interact pairwise. After an interaction both vertices have the same colour. If, at some
step, all vertices have the same colour, we say that a consensus has been reached.

The problem of reaching consensus in graph by means of local interactions is an abstraction
of the behavior of both human society and computer networks. As a consequence the process of
voting on graphs has been widely studied. Distributed voting finds application in various fields
of computing including consensus and leader election in large networks [4, 12], serialisation
of read and write in replicated data-bases [10], and the analysis of social behavior in game
theory [21]. Voting algorithms are usually simple, fault-tolerant, and easy to implement
[12, 14]. Recently, there has been considerable interest in population protocols. In this model
the interacting vertices can make limited computations using a finite state machine to address
a wide range of problems in distributed computing, see e.g. [2].

The classical model, synchronous pull voting, is reasonably well understood. If the colours
of the vertices are initially distinct, the randomized process takes Θ(n) expected steps to
reach consensus on many classes of expander graphs on n vertices. This holds for the complete
graph Kn (Aldous [1]), and almost all r-regular random graphs [7]. For general results based
on the eigenvalue gap and variance of the degree sequence see [6]. Hassin and Peleg [12]
and Nakata et al. [17] considered the two-party pull voting model on connected graphs, and
discussed its application to consensus problems in distributed systems.

In contrast to the case of synchronous voting, where only the pull protocol is well defined,
for asynchronous voting, there are at least three ways to update the colours of the interacting
vertices.

Push: Pick a random vertex and push its colour to a random neighbour.
Pull: Pick a random vertex and pull the colour of a random neighbour.
Oblivious: Pick a random endpoint of a random edge and push the colour to the other
end point.

Discordant voting originated in the complex networks community as a model of social
evolution (see e.g. [11], [18]). The general version of the model allows rewiring. The interacting
vertices can break edges joining them and reconnect elsewhere. This serves as a model of
social interaction in which vertices will either change their opinion or their friends.

Holme and Newman [13] investigated discordant voting as a model of a self-organizing
network which restructures based on the acceptance or rejection of differing opinions among
social groups. At each step, a random discordant edge uv is selected, and an endpoint
x ∈ {u, v} chosen with probability 1/2. With probability 1− α the opinion of x is pushed to
the other endpoint y, and with probability α, y breaks the edge and rewires to a random
vertex with the same opinion as itself. Simulations suggested the existence of threshold
behavior in α. This was investigated further by Durrett et al. [8] for sparse random graphs
of constant average degree 4. The paper studies two rewiring strategies, rewire-to-random,
and rewire-to-same, and finds experimental evidence of a phase transition in both cases.
Basu and Sly [3] made a formal analysis of rewiring for Erdos-Renyi graphs G(n, 1/2) with
1−α = β/n, β > 0 constant. They found that for either strategy, if β is sufficiently small the
network quickly disconnects maintaining the initial proportions. As β increases the minority
proportion decreases, and in rewire-to-random a positive fraction of both opinions survive.

Although discordant voting seems a natural model of local interaction, its behavior, is



C. Cooper, M. Dyer, A. Frieze, and N. Rivera 145:3

not well understood even in the simplest cases. The aim of this paper is a fundamental
study of expected time to consensus in the absence of rewiring. As discordant voting always
chooses an edge between the red and blue sets, it should be more efficient, and thus finish
faster than an asynchronous pull voting process which ignores this information, and takes
Ω(n2) steps on many classes of sparse graphs (see [5]). However, we find the performance of
discordant voting protocols vary considerably with the structure of the underlying graph,
and sometimes in a quite counter-intuitive way.

We suppose that the initial vertex colours in the two-party voting model are red and
blue, and let R(t), B(t) denote the sets of vertices with the given colours at any step t. For
the oblivious protocol, the expected time to completion is the same for any connected graph
on n vertices and is independent of graph structure or the number of edges. It depends only
on the initial number of vertices of each colour (R(0), B(0)). Whenever a discordant edge
is chosen, the number of blue vertices in the graph increases (resp. decreases) by one with
probability 1/2. This is equivalent to an unbiased random walk on the line (0, 1, ..., n) with
absorbing barriers, starting from R(0) = r red vertices. Thus ET = r(n− r) (see Feller [9,
XIV.3]).
I Remark. Oblivious protocol. Let T be the time to consensus in the two-party asynchronous
discordant voting process starting from any initial coloring with an equal number of red and
blue vertices R = r,B = n− r. For any connected n vertex graph, ET (Oblivious) = r(n− r).

In stark contrast to the oblivious protocol, the discordant push and pull protocols
can exhibit very different expected times to consensus, and which depend strongly on the
underlying graph in question.

I Theorem 1. Let T be the time to consensus of the asynchronous discordant voting process
starting from any initial coloring with an equal number of red and blue vertices R = B = n/2.
For the complete graph Kn, and for random graphs Gn,p, np ≥ logn

√
n, ET (Push) =

Θ(n logn), and ET (Pull) = Θ(2n).

For reasons of brevity we do not reproduce the proof for Gn,p here, but will make it available
in the full version of this paper. The interesting point is that for the complete graph Kn and
random graphs Gn,p the different protocols give very different expected completion times,
which vary from Θ(n logn) for push, to Θ(n2) for oblivious to Θ(2n) for pull. On the basis
of this evidence, our initial view was that there should be a meta-theorem of the "push is
faster than oblivious, oblivious is faster than pull" type. Intuitively, this is supported by
the following argument. Suppose red (R) is the larger colour class. Choosing a discordant
vertex uniformly at random, favors the selection of the larger class. In the push process, red
vertices push their opinion more often, which tends to increase the size of R. Conversely, the
pull process tends to re-balance the set sizes. If R is larger, it is recoloured more often.

If the graph has limited expansion, the behavior of discordant voting differs considerably
from the above examples. For the cycle Cn, all three protocols are similar.

I Theorem 2. Let T be the time to consensus of the asynchronous discordant voting process
starting from any initial coloring with an equal number of red and blue vertices R = B = n/2.
For any of the Push, Pull or Oblivious protocols on the cycle Cn, ET = Θ(n2).

At this point we were left with a difficult choice. Either to produce evidence for a relationship
of the form ET (Push) = O(ET (Pull)), or to refute it. Mossel and Roch [16] found slow
convergence of the iterated prisoners dialemma problem (IPD) on caterpillar trees. Intuitively
push voting is aggressive, whereas pull voting is altruistic, and thus similar to cooperation in
IPD. Motivated by this, we found the star graph Sn as a counter example.
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I Theorem 3. Let T be the time to consensus in the two-party asynchronous discordant
voting process starting from any initial coloring with an equal number of red and blue vertices
R = B = n/2. For the star graph Sn, ET (Push) = Θ(n2 logn), and ET (Pull) = O(n2).

For stars, experiments show a clear difference in ET for three protocols. For cycles the
difference is smaller and depends on the initial colouring. See Fig. 4 of Section 5.1.

A major problem in analysing discordant voting, is that the effect of recolouring a vertex
is not always monotone. For each of the graphs studied, the way to bound ET differs. The
proof of the pull voting result for the cycle Cn in particular, is somewhat delicate, and
requires an analysis of the optimum of a linear program based on a potential function.

Asynchronous discordant voting model

We next give a formal definition of the discordant voting process. Given a graph G = (V,E),
with n = |V |. Each vertex v ∈ V is labelled with an opinion X(v) ∈ {0, 1}. We call X a
configuration of opinions. We can think of the opinions as having colours; e.g. red (0) and
blue (1), or black (0) and white (1) (see e.g. Figure 2). An edge e = uv ∈ E is discordant if
X(u) 6= X(v). Let K(X) denote the set of discordant edges at time t. A vertex v is discordant
if it is incident with any discordant edge, and D(X) will denote the set of discordant vertices
in X. We consider three random update rules for opinions Xt at time t.
Push: Choose vt ∈ D(Xt), uniformly at random, and a discordant neighbour ut of vt

uniformly at random. Let Xt+1(ut)← Xt(vt), and Xt+1(w)← Xt(w) otherwise.
Pull: Choose vt ∈ D(Xt), uniformly at random, and a discordant neighbour ut of vt uniformly

at random. Let Xt+1(vt)← Xt(ut), and Xt+1(w)← Xt(w) otherwise.
Oblivious: Choose {ut, vt} ∈ K(Xt) uniformly at random. With probability 1/2, Xt+1(vt)←

Xt(ut), with probability 1/2, Xt+1(ut)← Xt(vt), and Xt+1(w)← Xt(w) otherwise.
These three processes are Markov chains on the configurations in G, in which the opinion of
exactly one vertex is changed at each step. Assuming G is connected, there are two absorbing
states, when X(v) = 0 for all v ∈ V , or X(v) = 1 for all v ∈ V , where no discordant vertices
exist. When the process reaches either of these states, we say that is has converged. Let T
be the step at which convergence occurs. Our object of study is ET .

Structure of the paper. In Section 2 we prove results for a Birth-and-Death chain which
we call the Push chain. This chain can be coupled with many aspects of the discordant
voting process. We then prove Theorems 1, 2 and 3 in that order.

2 Birth-and-Death chains

A Markov chain (Xt)t≥0 is said to be a Birth-and-Death chain on state space S = {0, . . . , N}
if given Xt = i then the possible values of Xt+1 are i+ 1, i or i− 1 with probability pi and
qi respectively. We assume that q0 = pN = 0, and p0 = 1, qN = 1, and pi > 0, qi > 0
otherwise. Denote by EiTj the expected hitting time of state j starting from state i, i.e.
Tj = min{t ≥ 0 : Xt = j, X0 = i}. We summarize the results we require on Birth-and-Death
chains (see Peres, Levin and Wilmer [15, 2.5]).

A probability distribution π satisfies the detailed balance condition, if

π(i)P (i, j) = π(j)P (j, i), for all i, j ∈ S. (1)
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Birth-and-Death chains with pi = P (i, i + 1), qi = P (i, i − 1) can be shown to satisfy the
detailed balance equations. It follows from this, (see e.g. [15]) that

Ei−1Ti = 1
qiπ(i)

i−1∑
k=0

π(k) (2)

An equivalent formulation (see [15]) is E0T1 = 1/p0 = 1 and in general

Ei−1Ti =
i−1∑
k=0

1
pk

qk+1 · · · qi−1

pk+1 · · · pi−1
, for i ∈ {1, . . . , N}. (3)

In writing this expression we follow the convention that if k = i− 1 then qk+1···qi−1
pk+1···pi−1

= 1 so
that the last term is 1/pi−1. Note also that the final index k on pk is k = N − 1, i.e. we
never divide by pN = 0.

Starting from state 0, let TM be the number of transitions needed to reach state M
for the first time. For any M ≤ N , we have that E0TM =

∑M
i=1 Ei−1Ti. For example,

E0T1 = 1
p0

= 1 and E0T2 = 1 + 1
p1

+ q1
p0p1

etc. Thus, for M ≥ 1

E0TM =
M∑
i=1

Ei−1Ti =
M∑
i=1

i−1∑
k=0

1
pk

i−1∏
j=k+1

qj
pj
. (4)

We next define a Birth-and-Death chain, the push chain, which features in our analysis.
The chain has states {0, 1, ..., i, ..., N} where N = n/2 (assume n ≥ 2 even). The transition
probabilities from state i given by P (i, i+ 1), Q(i, i+ 1) = 1− P (i, i+ 1).

Let Zt be the state occupied by the push chain at step t ≥ 0. Let δ ∈ {−1, 0,+1} be
fixed. When applying results for the push chain in our proofs, we will state the value of δ we
use. The transition probability pi = P (i, i+ 1) from Zt = i, is given by

pi =


1, if i = 0
1/2 + i/n+ δ/n, if i ∈ {1, . . . , n/2− 1}
0, if i = n/2

. (5)

For a proof of the following lemma see [5].

I Lemma 4. Let E0TM be the expected hitting time of M in the push chain Zt starting from
state 0. For any M ≤ N ,

E0TM ≤ 2N logM +O(1). (6)

For any
√
N ≤M = o(N3/4), there exists a constant C > 0 such that

E0TM ≥ C(N log(M/
√
N) +

√
N). (7)

3 Voting on the complete graph Kn

For the complete graph Kn, the probability B increases at a given step is B(t)/n, whereas in
the pull process it is R(t)/n = 1−B(t)/n. The chain defined by Yt = max{R(t), B(t)}−n/2
is a Birth-and-Death chain. We study the time that takes Yt to reach N = n/2 starting
from 0.
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(a) All X(i) = i mod 2 (b) Lower bound configuration

Figure 1 A cycle with n = 18. Example colourings.

Push process. For the push model, the process Yt is identical to the push chain Zt with
transitions pi given by (5), with δ = 0. The result of Theorem 1 that ET (Push) = Θ(n logn)
follows from Lemma 4.

Pull process. As pull is the opposite of push, the pull process Yt has transitions given by
pi = 1− pi, i.e. . Thus p0 = 1, pi = 1/2− i/n if i ∈ {1, . . . , N − 1}, and pN = 0.

Let wk =
(

n
N+k

)
, k = 0, 1, . . . , N . Then wk satisfies the detailed balance equation (1).

Hence we have π(k) = wk/W , where W = w0 + w1 + · · ·+ wN . It follows from (2) that

Ei−1Ti = 2n
n+ 2i ·

1(
n

N+i
) · i−1∑

k=0

(
n

N + k

)
.

Putting i = N we have

EN−1TN =
N−1∑
k=0

(
n

N + k

)
= 1

2

(
2n − 2 +

(
n

N

))
= Ω(2n).

On the other hand, an upper bound

N∑
i=1

Ei−1Ti ≤ 2 · 2n ·
N∑
i=1

1(
n

N+i
) = O(2n),

follows from a result of Sury [19], that

N∑
i=1

1(
n

N+k
) = n+ 1

2n
n∑
i=0

2i

i+ 1 = O(1).

4 Voting on the cycle

An n-cycle G, with V = [n], has E = {(i, i + 1) : i ∈ [n]}, where we identify vertex n + i

with vertex i. See Fig. 1(i).
If X(i) 6= X(i+ 1) = X(i+ 2) = · · · = X(j) 6= X(j + 1), we say i+ 1, i+ 2, . . . , j is a

run of vertices of length (j − i) (1 ≤ j − i < n). Note that the number of runs is equal to the
number of discordant edges k(X). Also k is even, since red and blue runs must alternate,
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so we can write r(X) = 1
2k(X), and k0 = 2r0 = k(X0). Thus r(X) is the number of paths

of a given colour. A singleton is a run of length 1. Since they lie in two discordant edges,
singletons require special treatment. Let s(X) denote the number of singletons. There are
κ = 2k − s discordant vertices, so k ≤ κ ≤ 2k.

We wish to determine the convergence time T for an arbitrary configuration X0 of the
push or pull process to reach an absorbing state XT with XT (i) = XT (1) (i ∈ [n]). In this
process, the run lengths behave rather like symmetric random walks on the line. However,
an analysis using classical random walk techniques [9] seems problematic. There are two
main difficulties. Firstly, the k “walks” (run lengths) are correlated. If a run is long, the
adjacent runs are likely to be shorter, and vice versa. Secondly, when the recoloured vertex
is a singleton, the three adjacent runs are combined, so three walks suddenly merge into one.
One of the three runs is a singleton, but the other two may have arbitrary lengths. We use
the random walk view only for a lower bound on the convergence time.

I Lemma 5. Let G is an n-cycle, with n = 2N even, and suppose the process starts with
X0(i) = 0 (i = 1, . . . , N), X0(i) = 1 (i = N + 1, . . . , n), then E[T ] = Ω(n2).

Let Lt be the length of (say) the red run at step t, so L0 = N , (see Fig. 1(ii)), and
LT ∈ {0, n}. The number of runs k(Xt) can only be reduced from two to zero if either Lt = 1
or Lt = n− 1, when one of the runs is a singleton. Up to this point, Lt is a symmetric simple
random walk and the push and pull processes proceed identically. Thus E[T ] is bounded
below by the expected time for a symmetric simple random walk started at N to reach either
1 or (n− 1). By Remark 1, E[T ] ≥ (N − 1)2 = Ω(n2).

4.1 Upper bound for push voting: Proof that E[T ] = O(n2)
Let the k runs in X have lengths `1, `2, . . . , `k respectively, thus

∑k
i=1 `i = n. Thus T is the

first t for which k(Xt) = r(Xt) = 0, (a cycle is not a path). For an upper bound on E[T ], we
define a potential function

ψ(X) =
k∑
i=1

√
`i ,

where ψ(X) = 0 if and only if k(X) = 0. The important feature of ψ is that it is a separable
and strictly concave function of the `i (i ∈ [k]).

I Lemma 6. For any configuration X on the n-cycle with k runs, ψ(X) ≤
√
kn.

Proof. If k = 0, this is clearly true. Otherwise, if k ≥ 2, by concavity we have ψ(X)/k =
1
k

∑k
i=1
√
`i ≤

√
1
k

∑k
i=1 `i =

√
n/k, so ψ(X) ≤

√
kn. J

Observe that k(Xt+1) = k(Xt) at step t of either the push or pull process, unless the
recoloured vertex is a singleton, in which case we may have k(Xt+1) = k(Xt) − 2. Thus
{t : k(Xt) = 2r} is an interval [tr, tr−1), which we will call phase r of the process.

Let vt = v ∈ D(Xt) be the active vertex, i.e. the vertex selected to push in the push rule,
or pull in the pull rule. Let δv be the expected change in ψ, i.e.

δv = E[ψ(Xt+1)− ψ(Xt) | vt = v ].

If there are κ = 2k − s discordant vertices, the total expected change δ in ψ is

δ = E[ψ(Xt+1)− ψ(Xt)] = 1
κ

∑
v∈D

δv. (8)
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`v

`u

u

v

(A) u and v not singleton

`w

`u

`v=1

u

v

w

(B) u not singleton, v singleton

`w

`q

w

`u=1

`v=1

u

v

q

(C) u and v both singleton

Figure 2 Cases for discordant edge uv.

We will show that δ is negative, so ψ(Xt) is monotonically decreasing with t, in expectation.
Unfortunately we cannot simply bound δv for each v ∈ D, since it is possible to have δv > 0.
Thus we will consider discordant edges. We partition the set K of discordant edges uv into
three subsets, Note that k can change only if uv ∈ B ∪ C.
(A) A = {uv : u and v not singleton};
(B) B = {uv : u not singleton, v singleton};
(C) C = {uv : u and v both singleton}.
See Fig. 2. Let `z be the length of the run containing discordant vertex z, for z ∈ {u, v, w, q}.

Now let

λuv =


√
`u +

√
`v, uv ∈ A ;√

`u + 1
2
√
`v, uv ∈ B ;

1
2
√
`u + 1

2
√
`v, uv ∈ C .

δuv =


δu + δv, uv ∈ A ;
δu + 1

2δv, uv ∈ B ;
1
2δu + 1

2δv, uv ∈ C .

Each singleton is in two discordant edges, all other discordant vertices in one, and each run
is bounded by two discordant vertices. Therefore

ψ = 1
2

∑
v∈D

√
`v =

∑
uv∈K

λuv , δ = 1
κ

∑
v∈D

δv = 1
κ

∑
uv∈K

δuv .

We will show that δuv < 0 for all uv ∈ K. For the proof of the following lemma see [5].

I Lemma 7. For all three cases (A)–(C), and for all uv ∈ K,
For push voting, δuv < − 1

5 (`−3/2
v + `

−3/2
u ). For pull voting, δuv < − 1

10 (`−3/2
v + `

−3/2
u ).

The following proof that E[T ] = O(n2) is for push voting. The upper bound on E[T ] for
pull voting is at most twice that for push. Using Lemma 7 we evaluate δ in (8).

δ = 1
κ

∑
v∈D

δv = 1
κ

∑
uv∈K

δuv ≤ −
1

5κ
∑
uv∈K

(`−3/2
v + `−3/2

u ) < − 1
5κ
∑
v∈D

`−3/2
v .

Thus

E[ψ(Xt+1)] < ψ(Xt)−
1

5κ
∑
v∈D

`−3/2
v .

Since f(x) = x−3 is a convex function, E[f(X)] ≥ f(E[X]) by Jensen’s inequality [20, 6.6],
so

1
κ

∑
v∈D

`−3/2
v ≥

( 1
κ

∑
v∈D

√
`v

)−3
=
( κ

2ψ(Xt)

)3
≥
( k

2ψ(Xt)

)3
,
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Therefore,

E[ψ(Xt+1)] < ψ(Xt)−
1
5

( k

2ψ(Xt)

)3
= ψ(Xt)−

k3

40ψ(Xt)3 . (9)

Recall that for r ∈ [r0], phase r of the process, during which the number of runs is k = 2r, is
the interval [tr, tr−1). During phase r, by Lemma 6, ψ(Xt) ≤

√
kn. Using this in (9) gives

E[ψ(Xt+1)]− ψ(Xt) ≤ − 1
40k

3/(kn)3/2 = − 1
40 (k/n)3/2 . (10)

Let γr = 1
40 (2r/n)3/2. Then (10) implies that Yt = ψ(Xt)+(t−tr)γr is a supermartingale [20,

10.3] during phase r, and tr−1 is a stopping time. Let ϕr = E[ψ(Xtr )], and let mr =
E[tr−1 − tr]. The optional stopping theorem [20, 10.10] implies that

ϕr−1 + γrmr = E[ψ(Xtr−1) + γr(tr−1 − tr)] ≤ E[ψ(Xtr )] = ϕr ,

which implies

ϕr − ϕr−1 ≥ γrmr = 1
40mr(2r/n)3/2 (r ∈ [r0]) . (11)

Note, in particular, that ϕr ≥ ϕr−1 for all r ∈ [r0]. When r0 = 1
2k(X0), tr0 = 0 and, since

r(XT ) = k(XT ) = 0, when t0 = T then ϕ0 = 0.
Let xr = ϕr − ϕr−1 ≥ 0, for r ∈ [r0], so ϕr =

∑r
i=1 xj ≤

√
2rn. Also, from (11), we have

mr ≤ 40xr(n/2r)3/2 = 10
√

2n3/2xr/r
3/2, so E[T ] =

∑r0
j=1 mj < 10

√
2n3/2∑r0

j=1 xr/r
3/2.

Thus E[T ] is bounded above by T ?, the optimal value of the following linear program.

T ? = max 10
√

2n3/2∑r0
r=1 xr/r

3/2

such that
∑r
j=1 xj ≤

√
2rn (r ∈ [r0])

xj ≥ 0 (j ∈ [r0]) .

(12)

This linear program can be solved by a greedy procedure.

I Lemma 8. Let 0 < b1 < b2 < · · · < bν and c1 > c2 > · · · > cν > 0. Then the linear
program max

∑ν
j=1 cjxj subject to

∑r
j=1 xj ≤ br, xr ≥ 0 (r ∈ [ν]) has optimal solution

x1 = b1, xj = bj − bj−1 (j = 2, 3, . . . , ν).

Proof. This solution has objective function value c1b1 + c2(b2 − b1) + · · · + cν(bν − bν−1).
The dual linear program is min

∑ν
i=1 biyi subject to

∑ν
i=j yi ≥ cj , yj ≥ 0 (j ∈ [ν]), and has

feasible solution yν = cν , yj = cj − cj+1 (j ∈ [ν − 1]). Then the dual objective function has
value bνcν + bν−1(cν−1 − cν) + · · ·+ b1(c1 − c2). However,

c1b1 + c2(b2 − b1) + · · ·+ cν(bν − bν−1) = bνcν + bν−1(cν−1 − cν) + · · ·+ b1(c1 − c2) .

Since the objective function values are equal, it follows that the two solutions are optimal in
the primal and dual respectively. J

Thus, the optimal solution to (12) is xr =
√

2nr−
√

2n(r − 1) =
√

2nr(1−
√

1− 1/r) ≤√
2n/r, for r ∈ [r0], since 1− y ≤

√
1− y for 0 ≤ y ≤ 1. Thus

T ? ≤ 10
√

2n3/2
r0∑
j=1

xr/r
3/2 ≤ 10

√
2n3/2

r0∑
j=1

√
2n/

(√
r r3/2) = 20n2

r0∑
r=1

1/r2 < (10π2/3)n2 ,

since
∑∞
r=1 1/r2 = π2/6. Thus we have an absolute bound of E[T ] = O(n2).
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r + 1, b− 1, R

r, b, B

r, b, R

r − 1, b+ 1, B

r − 1, b+ 1, R

r − 2, b+ 2, B

S(r + 1) S(r) S(r − 1)

b
b+1

r−1
r

1
b+1

1
r+1

1
b+2

1
r

Figure 3 Star graph: Pseudo-states for the push process.

5 Theorem 3: Voting on the star graph Sn

In this section we prove ET (Push) = Θ(n2 logn). The result that ET (Pull) = O(n2) is given
in [5].

Let (r, b,X) denote the coloring of the star graph Sn on n vertices in which there are
r red vertices b = n − r blue vertices. The central vertex has colour X ∈ {R,B}. In the
case of the push process, the transitions from state (r, b, R) are to state (r+ 1, b− 1, R) with
probability 1/(b+ 1) and to state (r− 1, b+ 1, B) with probability b/(b+ 1). The transitions
from state (r − 1, b+ 1, B) are to (r, b, R) with probability (r − 1)/r and to (r − 2, b+ 2, B)
with probability 1/r. For the purposes of discussion we group the states (r,R) = (r, b, R)
and (r − 1, B) = (r − 1, b+ 1, B) into a single pseudo-state S(r).

The transitions probabilities within or between S(r+ 1) or S(r−1) are shown in Figure 3,
and are derived as follows. Let X,Y ∈ {R,B}. For a particle occupying a state (of colour) X
in S(r) let PX(Y, r) be the probability of exit from S(r) via state Y . For example PR(R, r)
is the probability that a particle starting at (r,R) eventually exits from S(r) via state (r,R)
to state (r + 1, R) in S(r + 1). Thus

PR(R, r) = 1
b+ 1

(
1 + b

b+ 1
r − 1
r

+ · · ·+
(

b

b+ 1
r − 1
r

)k
+ · · ·

)
,

so that

PR(R, r) = 1
b+ 1

1
1− [b(r − 1)/(b+ 1)r] = r

n
.

Similarly let PB(R, r) be the probability that a particle currently at (r− 1, B) in S(r) moves
from S(r) to (r + 1, R) in S(r + 1). Then

PB(R, r) = r − 1
r

PR(R, r) = r − 1
n

.

In summary, starting from state X ∈ {R,B} of S(r), for 1 ≤ r ≤ n − 1 the transition
probability pX(r) from S(r) to S(r + 1) (resp. transition probability pX(b) from S(r) to
S(r − 1)) is given by

pX(r) =
r − 1(X=B)

n
, pX(b) =

b+ 1(X=B)

n
. (13)

States (0, B) (i.e. S(0)) and (n,R) (i.e. S(n)) are absorbing.
Let i = max(r, b)− n/2. To obtain lower and upper bounds on the number of transitions

between pseudo-states S(r) before absorption, we can couple the process with a biassed
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random walk on the line L = {0, 1, ..., n/2} with a reflecting barrier at 0 and an absorbing
barrier at n/2. We assume n is even here. For 0 < i < n/2, let pi be the probability of a
transition from i to i+ 1 on L, and let qi = 1− pi be the probability of a transition from i

to i− 1. It follows from (13) that to obtain bounds on the number of transitions between
pseudo-states S(r) before absorption we can use a value of pi given by

pi = 1/2 + (i+ 1)/n Lower bound, pi = 1/2 + (i− 1)/n Upper bound. (14)

We next consider the number of loops, for example (r,R)→ (r− 1, B)→ (r,R), made within
S(r) before exit. For a particle starting from state X of S(r) let CXY = CXY (r) be the
number of loops before exit at state Y . Let λ = b

b+1
r−1
r and ρ = λ/(1− λ)2, then

ECRR =
∑
k≥0

1
b+ 1kλ

k = 1
b+ 1

λ

(1− λ)2 = ρ
1

b+ 1 .

Similarly,

ECBR = ρ
r − 1
r(b+ 1) , ECRB = ρ

b

r(b+ 1) , ECBB = ρ
1
r
.

The conditional expectations µXY (r) = ECXY (r)/PX(Y, r) are given by

µXY (r) =


ρnr

1
b+1 , XY = RR

ρnr
1
b+1 , XY = BR

ρ n
n−r

b
r(b+1) , XY = RB

ρ n
n−r+1

1
r , XY = BB

. (15)

The value of ρ = (rb(r − 1)(b+ 1))/n2. In particular if b, r = (1 + o(1))n/2 then, whatever
colours X,Y

µXY (r) = (1 + o(1))n4 . (16)

Let N = n/2. Starting from r = b = N let T ′N be the number of transitions between states
S(r) to reach max(r, b) = N + n/2. Referring to (14), we consider a biassed random walk
with transition probabilities of Z = max{r, b} − n/2 given by

pi =


1, if i = 0
1/2 + i/n+ δ/n, if i ∈ {1, . . . , n/2− 1}
0, if i = n/2

, (17)

where we set δ = 1 for a lower bound on the number of steps T ′ to absorption, and δ = −1
for an upper bound. The walk in (17) is the push chain Zt with transitions given by (5) as
analysed Section 2. Referring to (5) and (4) we set δ = 0 for a lower bound on E0TM . For
M = N3/4, from Lemma 4,

E0TM ≥ Θ(1)
M∑

i=
√
N

N

i
≥ Θ(N) log M√

N
= Θ(n logn).

For all states i =
√
N, ..., N3/4, the corresponding value of r = (1 + o(1))n/2. Referring to

(16), whatever the type of transition XY between S(r) and neighbouring states, µXY (r) =
(1 + o(1))n/4. Let µ = minX,Y (µXY (r) : n/2 ≤ r ≤M), then µ ≥ n/5. As E0TN ≥ E0TM =
Θ(n logn) we have that

ET (Push) ≥ µ E0TM = Ω(n2 logn).

The upper bound follows by a similar argument. Put δ = −1 in (5), and use Lemma 4.
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5.1 Discordant voting: Simulation results for star graph and cycle
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Figure 4 Legend: Push (Square), Pull (Triangle), Oblivious ET = n2/4 (Solid line). Left plot:
Cycle, initial colouring alternating red-blue (see Fig.1(i)), Right plot: Star graph, random colouring
R(0) = B(0) = n/2. Each plot point consists of at least 15 replications.
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Abstract
In the voter model, each node of a graph has an opinion, and in every round each node chooses
independently a random neighbour and adopts its opinion. We are interested in the consensus
time, which is the first point in time where all nodes have the same opinion. We consider
dynamic graphs in which the edges are rewired in every round (by an adversary) giving rise
to the graph sequence G1, G2, . . . , where we assume that Gi has conductance at least φi. We
assume that the degrees of nodes don’t change over time as one can show that the consensus
time can become super-exponential otherwise. In the case of a sequence of d-regular graphs, we
obtain asymptotically tight results. Even for some static graphs, such as the cycle, our results
improve the state of the art. Here we show that the expected number of rounds until all nodes
have the same opinion is bounded by O(m/(dmin ·φ)), for any graph with m edges, conductance
φ, and degrees at least dmin. In addition, we consider a biased dynamic voter model, where each
opinion i is associated with a probability Pi, and when a node chooses a neighbour with that
opinion, it adopts opinion i with probability Pi (otherwise the node keeps its current opinion).
We show for any regular dynamic graph, that if there is an ε > 0 difference between the highest
and second highest opinion probabilities, and at least Ω(logn) nodes have initially the opinion
with the highest probability, then all nodes adopt w.h.p. that opinion. We obtain a bound on
the convergence time, which becomes O(logn/φ) for static graphs.
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1 Introduction

In this paper, we investigate the spread of opinions in a connected and undirected graph
using the voter model. The standard voter model works in synchronous rounds and is defined
as follows. At the beginning, every node has one opinion from the set {0, . . . , n− 1}, and
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in every round, each node chooses one of its neighbours uniformly at random and adopts
its opinion. In this model, one is usually interested in the consensus time and the fixation
probability. The consensus time is the number of rounds it takes until all nodes have the same
opinion. The fixation probability of opinion i is the probability that this opinion prevails,
meaning that all other opinions vanish. This probability is known to be proportional to the
sum of the degrees of the nodes starting with opinion i [13, 22].

The voter model is the dual of the coalescing random walk model which can be described
as follows. Initially, there is a pebble on every node of the graph. In every round, every
pebble chooses a neighbour uniformly at random and moves to that node. Whenever two or
more pebbles meet at the same node, they are merged into a single pebble which continues
performing a random walk. The process terminates when only one pebble remains. The
time it takes until only one pebble remains is called coalescing time. It is known that the
coalescing time for a graph G equals the consensus time of the voter model on G when
initially each node has a distinct opinion [2, 19].

In this paper we consider the voter model and a biased variant where the opinions have
different popularity. We express the consensus time as a function of the graph conductance φ.

We assume a dynamic graph model where the edges of the graph can be rewired by an
adversary in every round, as long as the adversary respects the given degree sequence and the
given conductance for all generated graphs. We show that consensus is reached with constant
probability after τ rounds, where τ is the first round such that the sum of conductances up
to round τ is at least m/dmin, where m is the number of edges. For static graphs the above
bound simplifies to O(m/(dmin · φ)), where dmin is the minimum degree.

For the biased model we assume a regular dynamic graph G. Similar to [19, 16] the
opinions have a popularity, which is expressed as a probability with which nodes adopt
opinions. Again, every node chooses one of its neighbours uniformly at random, but this
time it adopts the neighbour’s opinion with a probability that equals the popularity of this
opinion (otherwise the node keeps its current opinion). We assume that the popularity of
the most popular opinion is 1, and every other opinion has a popularity of at most 1 − ε
(for an arbitrarily small but constant ε > 0). We also assume that at least Ω(logn) nodes
start with the most popular opinion. Then we show that the most popular opinion prevails
w.h.p.1 after τ rounds, where τ is the first round such that the sum of conductances up to
round τ is of order O(logn). For static graphs the above bound simplifies as follows: the
most popular opinion prevails w.h.p. in O(logn/φ) rounds, if at least Ω(logn) nodes start
with that opinion.

1.1 Related work
A sequential version of the voter model was introduced in [14] and can be described as
follows. In every round, a single node is chosen uniformly at random and this node changes
its opinion to that of a random neighbour. The authors of [14] study infinite grid graphs.
This was generalised to arbitrary graphs in [9] where it is shown among other things that
the probability for opinion i to prevail is proportional to the sum of the degrees of the nodes
having opinion i at the beginning of the process.

The standard voter model was first analysed in [13]. The authors of [13] bound the
expected coalescing time (and thus the expected consensus time) in terms of the expected
meeting time tmeet of two random walks and show a bound of O(tmeet · logn) = O(n3 logn).

1 An event happens with high probability (w.h.p.) if its probability is at least 1 − 1/n.



P. Berenbrink, G. Giakkoupis, A.-M. Kermarrec, and F. Mallmann-Trenn 146:3

Note that the meeting time is an obvious lower bound on the coalescing time, and thus
a lower bound on the consensus time when all nodes have distinct opinions initially. The
authors of [4] provide an improved upper bound of O

( 1
1−λ2

(log4 n + ρ)
)
on the expected

coalescing time for any graph G, where λ2 is the second eigenvalue of the transition matrix
of a random walk on G, and ρ =

(∑
u∈V (G) d(u)

)2
/
∑
u∈V (G) d

2(u) is the ratio of the square
of the sum of node degrees over the sum of the squared degrees. The value of ρ ranges from
Θ(1), for the star graph, to n, for regular graphs.

The authors of [20, 2, 19] investigate coalescing random walks in a continuous setting
where the movement of the pebbles are modelled by independent Poisson processes with a
rate of 1. In [2], it is shown a lower bound of Ω(m/dmax) and an upper bound of O(thit · logn)
for the expected coalescing time. Here m is the number of edges in the graph, dmax is
the maximum degree, and thit is the (expected) hitting time. In [23], it is shown that the
expected coalescing time is bounded by O(thit).

In[19] the authors consider the biased voter model in the continuous setting and two
opinions. They show that for d-dimensional lattices the probability for the less popular
opinion to prevail is exponentially small. In [16], it is shown that in this setting the expected
consensus time is exponential for the line.

The authors of [5] consider a modification of the standard voter model with two opinions,
which they call two-sample voting. In every round, each node chooses two of its neighbours
randomly and adopts their opinion only if they both agree. For regular graphs and random
regular graphs, it is shown that two-sample voting has a consensus time of O(logn) if the
initial imbalance between the nodes having the two opinions is large enough. There are
several other works on the setting where every node contacts in every round two or more
neighbours before adapting its opinion [1, 7, 6, 10].

There are several other models which are related to the voter model, most notably the
Moran process and rumor spreading in the phone call model. In the case of the Moran
process, a population resides on the vertices of a graph. The initial population consists
of one mutant with fitness r and the rest of the nodes are non-mutants with fitness 1. In
every round, a node is chosen at random with probability proportional to its fitness. This
node then reproduces by placing a copy of itself on a randomly chosen neighbour, replacing
the individual that was there. The main quantities of interest are the probability that the
mutant occupies the whole graph (fixation) or vanishes (extinction), together with the time
before either of the two states is reached (absorption time). There are several publications
considering the fixation probabilities [15, 21, 8].

Rumor spreading in the phone call model works as follows. Every node v opens a channel
to a randomly chosen neighbour u. The channel can be used for transmissions in both
directions. A transmission from v to u is called push transmission and a transmission from u

to v is called pull. There is a vast amount of papers analysing rumor spreading on different
graphs. The result that is most relevant to ours is that broadcasting of a message in the
whole network is completed in O(logn/φ) rounds w.h.p, where φ is the conductance (see
Section 1.2 for a definition) of the network. In [12], the authors study rumor spreading in
dynamic networks, where the edges in every round are distributed by an adaptive adversary.
They show that broadcasting terminates w.h.p. in a round t if the sum of conductances up
to round t is of order logn. Here, the sequence of graphs G1, G2, . . . have the same vertex
set of size n, but possibly distinct edge sets. The authors assume that the degrees and the
conductance may change over time. We refer the reader to the next section for a discussion of
the differences. Dynamic graphs have received ample attention in various areas [3, 17, 24, 18].

ICALP 2016



146:4 Bounds on the Voter Model in Dynamic Networks

1.2 Model and New Results

In this paper we show results for the standard voter model and biased voter model in dynamic
graphs. Our protocols work in synchronous steps. The consensus time T is defined at the
first time step at which all nodes have the same opinion.

Standard Voter Model

Our first result concerns the standard voter model in dynamic graphs. Our protocol works
as follows. In every synchronous time step every node chooses a neighbour u.a.r. and adopts
its opinion with probability 1/2.2

We assume that the dynamic graphs G = G1, G2, . . . are generated by an adversary. We
assume that each graph has n nodes and the nodes are numbered from 1 to n. The sequence
of conductances φ1, φ2, . . . is given in advance, as well as a degree sequence d1, d2, . . . , dn.
The adversary is now allowed to create every graph Gi by redistributing the edges of the
graph. The constraints are that each graph Gi has to have conductance φi and node j
has to have degree dj (the degrees of the nodes do not change over time). Note that the
sequence of the conductances is fixed and, hence, cannot be regarded as a random variable
in the following. For the redistribution of the edges we assume that the adversary knows the
distribution of all opinions during all previous rounds.

Note that our model for dynamic graphs is motivated by the model presented in [12].
They allow the adversary to determine the edge set at every round, without having to respect
the node degrees and conductances.

We show (Observation 1) that, allowing the adversary to change the node degrees over time
can results in super-exponential voting time. Since this changes the behaviour significantly,
we assume that the degrees of nodes are fixed. Furthermore, in contrary to [12], we assume
that (bounds on) the conductance of (the graph at any time step) are fixed/given beforehand.
Whether one can obtain the same results, if the conductance of the graph is determined by
an adaptive adversary remains an open question. The reason we consider an adversarial
dynamic graph model is in order to understand how the voting time can be influenced in the
worst-case. Another interesting model would be to assume that in every round the nodes are
connected to random neighbours. One obstacle to such a model seems to be to guarantee that
neighbours are chosen u.a.r. and the degrees of nodes do not change. For the case of regular
random dynamic graphs our techniques easily carry over since the graph will have constant
conductance w.h.p. in any such round since the graph is essentially a random regular graph
in every round.

For the (adversarial) dynamic model we show the following result bounding the consensus
time T .

I Theorem 1 (upper bound). Consider the Standard Voter model and in the dynamic graph
model. Assume κ ≤ n opinions are arbitrarily distributed over the nodes of G1. Let φt be
a lower bound on the conductance at time step t. Let b > 0 be a suitable chosen constant.
Then, with a probability of 1/2 we have that T ≤ min{τ, τ ′}, where
(i) τ is the first round so that

∑τ
t=1 φt ≥ b ·m/dmin. (part 1)

(ii) τ ′ is the first round so that
∑τ ′

t=1 φ
2
t ≥ b · n logn. (part 2)

For static graphs (Gi+1 = Gi for all i), we have T ≤ min{m/(dmin · φ), n logn/φ2}.

2 The factor of 1/2 ensures that the process converges on bipartite graphs.
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For static d-regular graphs, where the graph doesn’t change over time, the above bound
becomes O(n/φ), which is tight when either φ or d are constants (see Observation 2).
Theorem 1 gives the first tight bounds for cycles and circulant graphs Ckn (node i is adjacent
to the nodes i ± 1, . . . , i ± k mod n) with degree 2k (k constant). For these graphs the
consensus time is Θ(n2), which matches our upper bound from Theorem 1.3 For a comparison
with the results of [4] note that φ2 ≤ 1− λ2 ≤ 2φ. In particular, for the cycle φ = 1/n and
1/(1− λ2) = Θ(1/n2). Hence, for this graph, our bound is by a factor of n smaller. Note
that, due to the duality between the voter model and coalescing random walks, the result
also holds for the coalescing time. In contrast to [4, 5], the above result is shown using a
potential function argument, whereas the authors of [4, 5] show their results for coalescing
random walks and fixed graphs. The advantage of analysing the process directly is, that our
techniques allow us to obtain the results for the dynamic setting.

The next result shows that the bound of Theorem 1 is asymptotically tight if the adversary
is allowed to change the node degrees over time.

I Theorem 2 (lower bound). Consider the Standard Voter model in the dynamic graph model.
Assume that κ ≤ n opinions are arbitrarily distributed over the nodes of G1. Let φt be an
upper bound on the conductance at time step t. Let b > 0 be a suitable constant and assume
τ ′′ is the first round such that

∑τ ′′

t=1 φt ≥ bn. Then, with a probability of at least 1/2, there
are still nodes with different opinions in Gτ ′′ .

Biased Voter Model

In the biased voter model we again assume that there are κ ≤ n distinct opinions initially. For
0 ≤ i ≤ κ−1, opinion i has popularity αi and we assume that α0 = 1 > α1 ≥ α2 ≥ . . . ≥ ακ−1.
We call opinion 0 the preferred opinion. The process works as follows. In every round, every
node chooses a neighbour uniformly at random and adopts its opinion i with probability αi.

We assume that the dynamic d-regular graphs G = G1, G2, . . . are generated by an
adversary. We assume that the sequence of φt is given in advance, where φi is a lower bound
on the conductance of Gi. The adversary is now allowed to create the sequence of graphs by
redistributing the edges of the graph in every step. The constraints are that each graph Gi
has n nodes and has to have conductance at least φi. Note that we assume that the sequence
of the conductances is fixed and, hence, it is not a random variable in the following.

The following result shows that consensus is reached considerably faster in the biased
voter model, as long as the bias 1− α1 is bounded away from 0, and at least a logarithmic
number of nodes have the preferred opinion initially.

I Theorem 3. Consider the Biased Voter model in the dynamic regular graph model. Assume
κ ≤ n opinions are arbitrarily distributed over the nodes of G1. Let φt be a lower bound on
the conductance at time step t. Assume that α1 ≤ 1 − ε, for an arbitrary small constant
ε > 0. Assume the initial number of nodes with the preferred opinion is at least c logn, for
some constant c = c(α1). Then the preferred opinion prevails w.h.p. in at most τ ′′′ steps,
where τ ′′′ is the first round so that

∑τ ′′′

t=1 φt ≥ b logn, for some constant b. For static graphs
(Gi+1 = Gi for all i), we have w.h.p. T = O(logn/φ).

3 The lower bound of Ω(n2) follows from the fact that two coalescing random walks starting on opposite
sites of a cycle require in expectation time Ω(n2) to meet.
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The assumption on the initial size of the preferred opinion is crucial for the time bound
T = O(logn/φ), in the sense that there are instances where the expected consensus time is
at least T = Ω(n/φ) if the size of the preferred opinion is small.4

The rumor spreading process can be viewed as an instance of the biased voter model
with two opinions having popularity 1 and 0, respectively. However, the techniques used
for the analysis of rumor spreading do not extend to the voter model. This is due to the
fact that rumor spreading is a progressive process, where nodes can change their opinion
only once, from “uninformed” to “informed”, whereas they can change their opinions over
and over again in the case of the voter model. Note that the above bound is the same as
the bound for rumor spreading of [11] (although the latter bound holds for general graphs,
rather than just for regular ones). Hence, our above bound is tight for regular graphs with
conductance φ, since the rumor spreading lower bound of Ω(logn/φ) is also a lower bound
for biased voting in our model.

2 Analysis of the Voter Model

In this section we show the upper and lower bound for the standard voter model. We begin
with some definitions. Let G = (V,E). For a fixed set S ⊆ V we define cut(S, V \ S) to be
the set of edges between the sets S ⊆ V and V \ S and let λu be the number of neighbours
of u in V \ S. Let vol(S) =

∑
u∈S du. The conductance of G is defined as

φ = φ(G) = min
{∑

u∈U
λu

vol(U)
: U ⊂ V with 0 < vol(U) ≤ m

}
.

We note 1/n2 ≤ φ ≤ 1. We denote by v(i)
t the set of nodes that have opinion i after the first

t rounds and t ≥ 0. If we refer to the random variable we use V (i)
t instead.

First we show Theorem 1 for κ = 2 (two opinions), which we call 0 and 1 in the following.
Then we generalise the result to an arbitrary number of opinions. We model the system with
a Markov chain Mt≥0 = (V (0)

t , V
(1)
t )t≥0.

Let st denote the set having the smaller volume, i.e., st = v
(0)
t if vol(v(0)

t ) ≤ vol(v(1)
t ),

and st = v
(1)
t otherwise. Note that we use st, v(0)

t and v(1)
t whenever the state at time t is

fixed, and St, V (0)
t and V (1)

t for the corresponding random variables. For u ∈ v(0)
t , λu,t is the

number of neighbours of u in V \ v1(t) and for u ∈ v(1)
t , λu,t is the number of neighbours of

u in V \ v(0)
t ; du is the degree of u (the degrees do not change over time).

To analyse the process we use a potential function. Simply using the volume of nodes
sharing the same opinion as the potential function will not work. It is easy to calculate that
the expected volume of nodes with a given opinion does not change in one step. Instead, we
use a convex function on the number of nodes with the minority opinion. We define

Ψ(St) =
√
vol(St).

In Lemma 4 we first calculate the one-step potential drop of Ψ(St). Then we show that
every opinion either prevails or vanishes once the sum of conductances is proportional to the
volume of nodes having that opinion (see Lemma 5), which we use later to prove Part 1 of
Theorem 1. Additionally, Lemma 4 is used to prove Lemma 7 which allows us to prove Part
2 of Theorem 1.

4 Consider a 3-regular graph and n opinions where all other α1 = α2 = · · · = αn−1 = 1/2. The preferred
opinion vanishes with constant probability and the bound for the standard voter model of Observation 2
applies.
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I Lemma 4. Assume st 6= ∅ and κ = 2. Then

E[Ψ(St+1) | St = st] ≤ Ψ(st)−
∑
u∈V λu,t · du

32 · (Ψ(st))3 .

Proof. W.l.o.g. we assume that opinion 0 is the minority opinion, i.e. 0 < vol(V (0)
t ) ≤

vol(V (1)
t ). To simplify the notation we omit the index t in this proof and write v(0) instead

of vt(0), v(1) for V \ v(0)
t , and λu instead of λu,t. Hence, st = v(0) and Ψ(st) =

√
vol(v(0)).

Note that for t = 0 we have vol(v(0)) = Ψ(st)2. Furthermore, we fix St = st in the following
(and condition on it). We define m as the number of edges. Then we have

E[Ψ(St+1)−Ψ(st) | St = st] = E[
√

vol(St+1)−
√
vol(st)]

= E
[√

min
{
vol(V (0)

t+1),m− vol(V (0)
t+1)

}
−
√
vol(st)

]

≤ E
[√

vol(V (0)
t+1)−

√
vol(v(0))

]
(1)

Now we define

Xu =


du w.p. λu

2·du if u ∈ v
(1)

−du w.p. λu
2·du if u ∈ v

(0)

0 otherwise

and ∆ =
∑
u∈V Xu. Note that we have ∆ = vol(V (0)

t+1)− vol(v(0)) and

E
[√

vol(V (0)
t+1)−

√
vol(v(0))

]
= E

[√
vol(v(0)) + ∆−

√
vol(v(0))

]
= E

[√
vol(v(0))

(√
1 + ∆

vol(v(0))
− 1
)]

= Ψ(st) ·E[
√

1 + ∆/Ψ(st)2 − 1].

Unfortunately we cannot bound Ψ(st) ·E[
√

1 + ∆/Ψ(st)2−1] directly. Instead, we define
a family of random variables which is closely related to Xu.

Yu =


λu w.p. 1

2 if u ∈ v(1)

−du w.p. λu
2·du if u ∈ v(0)

0 otherwise

Similarly, we define ∆′ =
∑
u∈V Y (u). Note that |E[Yu]| = λu/2 for both u ∈ v(1) and

u ∈ v(0). In the full version we show that E[
√

1 + ∆/Ψ(st)2] ≤ E[
√

1 + ∆′/Ψ(st)2], which
results in E[Ψ(St+1) − Ψ(st) | St = st] ≤ Ψ(st) · E[

√
1 + ∆′/Ψ(st)2 − 1] From the Taylor

expansion
√

1 + x ≤ 1 + x
2 −

x2

8 + x3

16 , x ≥ −1 it follows that

E[Ψ(St+1)−Ψ(st) | St = st] ≤ Ψ(st) ·E
[ ∆′

2Ψ(st)2 − (∆′)2

8Ψ(st)4 + (∆′)3

16Ψ(st)6

]
.

It remains to bound E[∆′], E[(∆′)2], and E[(∆′)3].

E[∆′]: We have E[∆′] =
∑
u∈V E[Yu] =

∑
u∈v(1)

λu
2 −

∑
v∈v(0)

λv
2 = 0, where the last

equality holds since
∑
u∈v(1) λu and

∑
u∈v(1) λu both count the number of edges crossing

the cut between v(0) and v(1).
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E[(∆′)2]: since E[(Yu)2] = (λu)2/2 for u ∈ v(1) and E[(Yu)2] = −du · λu/2 for u ∈ v(0)

we have

E[(∆′)2] =
∑
u∈V

Var[Yu] + (E[Yu])2 =
∑
u∈V

Var[Yu] + 0 =
∑
u∈V

(E[(Yu)2]− (E[Yu])2)

=
∑
u∈v(0)

(E[(Yu)2]− (E[Yu])2) +
∑
u∈v(1)

(E[(Yu)2]− (E[Yu])2)

=
∑
u∈v(0)

λudu
2 −

∑
u∈v(0)

λ2
u

4 +
∑
u∈v(1)

λ2
u

4 ≥
∑
u∈v(0)

λudu
4 . (2)

E[∆′3]: In the full version we show that E[∆′3] =
∑
u∈V

(
E[(Yu)3]− 3 E[(Yu)2] ·E[Yu] +

2 E[Yu]3
)
. Note that E[(Yu)3] = 1

2 (λu)3 for u ∈ v(1) and E[(Yu)3] = − 1
2λu · (du)2 for

u ∈ v(0). Hence,

E[∆′3] =
∑
u∈v(0)

(
−1

2λu · (du)2 + 3
4(λu)2 · du −

1
4λ

3
u

)

+
∑
u∈v(1)

(
1
2(λu)3 − 3

4(λu)3 + 1
4(λu)3

)
≤ 0, (3)

where the first sum is bounded by 0 because λu ≤ du.

Combining all the above estimations we get

E[Ψ(St+1)−Ψ(st) | St = st] ≤ Ψ(st) ·E
[

∆′

2Ψ(st)2 −
∆′2

8Ψ(st)4 + ∆′3

16Ψ(st)6

]
≤ −

∑
u∈v(0) λudu

32Ψ(st)3 .

This completes the proof of Lemma 4. J

2.1 Part 1 of Theorem 1.
Using Lemma 4 we show that a given opinion either prevails or vanishes with constant
probability as soon as the sum of φt is proportional to the volume of the nodes having that
opinion.

I Lemma 5. Assume that st̂ is fixed for an arbitrary (t̂ ≥ 0) and κ = 2.
Let τ∗ = min

{
t′ :
∑t′

i=t̂ φi ≥ 129 · vol(st̂)/dmin
}
. Then Pr

(
T ≤ τ∗ + t̂

)
≥ 1/2.

In particular, if the graph is static with conductance φ, then Pr
(
T ≤ 129·vol(st̂)

φ·dmin + t̂
)
≥ 1/2.

Proof. From the definition of Ψ(st) and φt it follows for all t that Ψ(st)2 =
∑
u∈v(0) du =

vol(v(0)) and φt ≤
∑
u∈v(0) λu,t/vol(v(0)). Hence, Ψ(st)2 · φt · dmin ≤

∑
u∈v(0) λu,t · du.

Together with Lemma 4 we derive for st 6= ∅

E[Ψ(St+1) | St = st] ≤ Ψ(st)−
∑
u∈V λu,t · du

32 · (Ψ(st))3 ≤ Ψ(st)−
dmin · φt
32 ·Ψ(st)

. (4)

Recall that T = mint{St = ∅}. In the following we use the expression T > t to denote the
event st 6= ∅. Using the law of total probability we get

E[Ψ(St+1)|T > t] = E
[
Ψ(St)−

dmin · φt
32 ·Ψ(St)

∣∣∣T > t

]
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and using Jensen’s inequality we get

E[Ψ(St+1) | T > t] = E[Ψ(St) | T > t]−E
[
dmin · φt
32 ·Ψ(St)

| T > t

]
≤ E[Ψ(St) | T > t]− dmin · φt

32 ·E[Ψ(St)· | T > t] .

Since E[Ψ(St) | T ≤ t] = 0 we have

E[Ψ(St)] = E[Ψ(St) | T > t] · Pr[T > t] + E[Ψ(St) | T ≤ t] · Pr[T ≤ t]
= E[Ψ(St) | T > t] · Pr[T > t] + 0.

Hence,

E[Ψ(St+1)]
Pr (T > t) ≤

E[Ψ(St)]
Pr (T > t) −

dmin · φt · Pr (T > t)
32 E[Ψ(St)]

and

E[Ψ(St+1)] ≤ E[Ψ(St)]−
dmin · φt · (Pr (T > t))2

32 E[Ψ(St)]
.

Let t∗ = min{t : Pr(T > t) < 1/2}. In the following we use contradiction to show

t∗ ≤ max{t :
∑

t̂≤t<t∗
φt ≤ 128 · vol(st̂)/dmin}.

Assume the inequality is not satisfied. With t = t∗ − 1 we get

E[Ψ(St∗)] ≤ E[Ψ(St∗−1)]− dmin · φt · (Pr(T > t∗ − 1))2

32 E[Ψ(St∗−1)] ≤ E[Ψ(St∗−1)]− dmin · φt
∗ · (1/4)

32 E[Ψ(St∗−1)] .

Applying this equation iteratively, we obtain

E[Ψ(St∗)] ≤ E[Ψ(St̂)]−
∑

t̂≤t<t∗

dmin · φt · 1/4
32 E[Ψ(St)]

≤ E[Ψ(St̂)]−
dmin ·

∑
t̂≤t<t∗ φt

128 E[Ψ(St̂)]
. (5)

Using the definition of E[Ψ(St̂)] =
√
vol(st̂) and the definition of t∗ we get

E[Ψ(St∗)] <
√
vol(st̂)−

dmin · 128 · vol(st̂)
128 · dmin ·

√
vol(st̂)

=
√
vol(st̂)−

vol(st̂)√
vol(st̂)

= 0.

This is a contradiction since E[Ψ(St∗)] is non-negative.
From the definition of t∗, we obtain Pr

(
T > τ∗ + t̂

)
< 1/2, completing the proof of

Lemma 5. J

Now we are ready to show the first part of the theorem.

Proof of Part 1 of Theorem 1. We divide the τ rounds into phases. Phase i starts at time
τi = min{t :

∑t
j=1 φj ≥ 2i} for i ≥ 0 and ends at τi+1 − 1. Since φj ≤ 1 for all j ≥ 0 we

have τ0 < τ1 < . . . and
∑τi+1
j=τi φj ≥ 1 for i ≥ 0. Let `t be the number of distinct opinions at

the beginning of phase t. Hence, `0 = κ.
We show in Lemma 6 below that the expected number of phases before the number of

opinions drops by a factor of 5/6 is bounded by 6c · vol(V )/(`t · dmin). For i ≥ 1 let Ti be
the number of phases needed so that the number of opinions drops to (5/6)i · `0. Then only
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one opinion remains after log6/5 κ many of these meta-phases. Then, for a suitably chosen
constant b,

E[T ] =
log6/5 κ∑
j=1

E[Tj ] ≤
log6/5 κ−1∑

j=1

6c · vol(V )
`j · dmin

≤
log6/5 κ∑
j=1

6c vol(V )
(5/6)j · `0 · dmin

= b ·m
4 · dmin

.

By Markov inequality, consensus is reached w.p. at least 1/2 after b ·m/(2dmin) phases. By
definition of τ and the definition of the phases, we have that the number of phases up to
time step τ is at least b ·m/(2dmin). Thus, consensus is reached w.p. at least 1/2 after τ
time steps, which finishes the proof. J

I Lemma 6. Fix a phase t and assume c = 129 and `t > 1. The expected number of phases
before the number of opinions drops to 5/6 · `t is bounded by 6c · vol(V )/(`t · dmin).

Proof. Consider a point when there are `′ opinions left, with 5/6 · ` < `′ ≤ `. Among those
`′ opinions, there are at least `′ − `/3 opinions i such that the volume of nodes with opinion
i is at most 3 · vol(V )/`. Let S denote the set of these opinions and let Zi be an indicator
variable which is 1 if opinion i ∈ S vanished after s = 3c ·vol(V )/(` · dmin) phases and Zi = 0
if it prevails. To estimate Zi we consider the process where we have two opinions only. All
nodes with opinion i retain their opinion and all other nodes have opinion 0. It is easy to see
that in both processes the set of nodes with opinion i remains exactly the same. Hence, we
can use Lemma 5 to show that with probability at least 1/2, after s phases opinion i either
vanishes or prevails. Hence,

E [Σj∈SZj ] = Σj∈S E[Zj ] ≥ |S|/2 ≥ (`′ − `/3)/2.

Using Markov’s inequality we get that with probability 1/2 at least (`′ − `/3)/4 opinions
vanish within s phases, and the number of opinions remaining is at most `′ − (`′ − `/3)/4 =
3/4 · `′+ `/12 ≤ 5/6 · `. The expected number of phases until 5/6 · ` opinions can be bounded
by
∑∞
i=1 2−i · s ≤ 2s = 6c·vol(V )

`·dmin . J

2.2 Part 2 of Theorem 1
We first bound the expected potential drop in round t+ 1, i.e., we bound E[Ψ(St+1)−Ψ(st) |
St = st]. This time however, we express the drop as a function which is linear in Ψ(st). This
allows us to bound the expected size of the potential at time τ ′, i.e., E[Ψ(Sτ ′)], directly.
From the expected size of the potential at time τ ′ we derive the desired bound on Pr (T ≤ τ ′).
The proof can be found in the full version.

I Lemma 7. Assume κ = 2. We have Pr (T ≤ τ ′) ≥ 1/n2. In particular, if the graph is
static with conductance φ, then Pr

(
T ≤ 96·n logn

φ2

)
≥ 1− 1/n2.

We now prove Part 2 of Theorem 1 which generalises to κ > 2.

Proof of Part 2 of Theorem 1. We define a parameterized version of the consensus time
T . We define T (κ) = min{t : Ψ(St) = 0 : the number of different opinions at time t is κ} for
κ ≤ n. We want to show that Pr(T (κ) ≤ τ ′) ≥ 1− 1/n. From Lemma 7 we have that, that
Pr(T (2) ≤ τ ′) ≥ 1 − 1/n2. We define the 0/1 random variable Zi to be one if opinion i

vanishes or is the only remaining opinion after τ ′ rounds and Zi = 0 otherwise. We have
that Pr(Zi = 1) ≥ 1− 1/n2 for all i ≤ κ. We derive Pr(T (κ) ≤ τ ′) = Pr(∧i≤κZi) ≥ 1− 1/n,
by union bound. This yields the claim. J
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2.3 Lower Bounds
In this section, we give the intuition behind the proof of Theorem 2 and state two additional
observations. Recall that Theorem 2 states that our bound for regular graphs is tight for the
adaptive adversary, even for k = 2. The first observation shows that the expected consensus
time can be super-exponential if the adversary is allowed to change the degree sequence. The
second observation can be regarded as a (weaker) counter part of Theorem 2 showing a lower
bound of Ω(n/φ) for static graphs, assuming that either d or φ is constant.

We now give the intuition behind the proof of Theorem 2 and refer the reader to the
full version for the actual proof. The high level approach is as follows. For every step t we
define an adaptive adversary that chooses Gt+1 after observing V (0)

t and V (1)
t . The adversary

chooses Gt+1 such that the cut between V (0)
t and V (1)

t is of order of Θ(φt · dn). We show
that such a graph exists when the number of nodes in both V (0)

t and V (1)
t is at least of linear

size (in n). By this choice the adversary ensures that the expected potential drop of Ψ(St+1)
at most −cφtd/Ψ(st) for some constant c. Then we use the expected potential drop, together
with the optional stopping theorem, to derive our lower bound.

In the following we observe that if the adversary is allowed to change the degrees, then
the expected consensus time is super-exponential. A proof sketch can be found in the full
version.

I Observation 1. There is a sequence G1 = (V,E1), G2 = (V,E2), . . . be a sequence of
graphs with n nodes, where the edges E1, E2, . . . are distributed by an adaptive adversary,
such that the expected consensus time is at least Ω((n/c)n/c) for some constant c.

The bound of Theorem 1 for static regular graphs of O(n/φ) is tight for regular graphs if
either the degree or the conductance is constant. A proof sketch can be found in the full
version.

I Observation 2. For every n, d ≥ 3, and constant φ, there exists a d-regular graph G with
n nodes and a constant conductance such that the expected consensus time on G is Ω(n).
Furthermore, for every even n, φ > 1/n, and constant d, there exists a (static) d-regular
graph G with Θ(n) nodes and a conductance of Θ(φ) such that the expected consensus time
on G is Ω(n/φ).

3 Analysis of the Biased Voter Model

In this section, we prove Theorem 3. We show that the set St of nodes with the preferred
opinion grows roughly at a rate of 1 + Θ(φt), as long as St has at least logarithmic size. For
the analysis we break each round down into several steps, where exactly one node which has
at least one neighbour in the opposite set is considered. Instead of analysing the growth of
St for every round we consider larger time intervals consisting of a suitably chosen number
of steps. We change the process slightly by assuming that there is always one node with the
preferred opinion to allow for an easier analysis. If all other opinions vanish, then node 1 is
set to opinion 1. Note that this will only increase the runtime of the process. We also assume
that if the preferred opinion vanishes totally, node 1 is set back to the preferred opinion.
This alters the process, but as we show later, this event does not happen w.h.p.

The proof unfolds in the following way. First, we define formally the step sequence S .
Second, we define (Definition 8) a step sequence S to be good if, intuitively speaking, the
preferred opinion grows quickly enough in any sufficiently large subsequence of S . Afterward,
we show that if S is a good step sequence, then the preferred opinion prevails in at most

ICALP 2016
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τ ′′′ rounds (Lemma 10). Finally, we show that S is indeed a good step sequence w.h.p.
(Lemma 11).

We now give some definitions. Again, we denote by St the random set of nodes that
have the preferred opinion right after the first t rounds, and let S′t = V \ St. For a fixed
time step t we write st and s′t. We define the boundary ∂st as the subset of nodes in s′t
which are adjacent to at least one node from st. We use the symmetric definition for ∂s′t.
For each u ∈ V , let λu,t be the number of edges incident with u crossing the cut cut(st, s′t),
or equivalently, the number of u’s neighbours that have a different opinion than u’s before
round t.

We divide each round t into |st|+ |s′t| steps, in every step a single node v from either ∂st
or ∂s′t randomly chooses a neighbour u and adopts its opinion with the corresponding bias.
Note that we assume that v sees u’s opinion referring to the beginning of the round, even if
u was considered before v and changed its opinion in the meantime. It is convenient to label
the steps independently of the round in which they take place. Hence, step i denotes the i-th
step counted from the beginning of the first round. Also ui refers to the node considered in
step i and λi = λui,t. We define the indicator variable oi with oi = 1 if ui has the preferred
opinion and oi = 0 otherwise. Let

Λ(i) =
i∑

j=1
(1− oi) · λi and Λ′(i) =

i∑
j=1

oi · λi .

Unfortunately, the order in which the nodes are considered in a round is important for
our analysis and cannot be arbitrary. Note that such an ordering does not affect the outcome
of the process since the probabilities for a node to switch its opinion only depends on the
distribution of opinions at the beginning of the round.

Intuitively, we order the nodes in st and s′t such that the sum of the degrees of nodes
which are already considered from st and the sum of the degrees of nodes already considered
from s′t differs by at most d, i.e.,

|Λi − Λ′i| ≤ d. (6)

The following rule determines the node to be considered in step j + 1: if Λ(j) ≤ Λ′(j),
then the (not yet considered) node v ∈ ∂st is with smallest identifier is considered. Otherwise
the node v ∈ ∂s′t with the smallest identifier is considered. Note that at the first step i of
any round we have Λi = Λ′i. This guarantees that (6) holds. The step sequence S is now
defined as a sequence of tuples, i.e., S = (u1, Z1), (u2, Z2), . . . , where Zj = 1 if uj changed
its opinion in step j and Zj = 0 otherwise for all j ≥ 1. Observe that when given the initial
assignment and the sequence up to step i, then we know the configuration Ci of the system,
i.e., the opinions of all nodes at step i and in which round step i occurred.

In our analysis we consider the increase in the number of nodes with the preferred opinion
in time intervals which contain a sufficiently large number of steps, instead of considering
one round after the other. The following definitions identify these intervals.

For all i, k ≥ 0 where Ci is fixed, we define the random variable Si,k := min{j : Λj −Λi ≥
k}, which is the first time step such that nodes with a degree-sum of at least k were considered.
Let Ii,k = [i+1, Si,k] be the corresponding interval where we note that the length is a random
variable. We proceed by showing an easy observation proven in the full version.

I Observation 3. The number of steps in the interval Ii,k is at most 2k + 2d, i.e., |Ii,k| ≤
2k + 2d. Furthermore, Λ′(Si,k)− Λ′(i) ≤ k + 2d.
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Fix Ci and let Xi,k be the total number of times during interval Ii,k that a switch from a
non-preferred opinion to the preferred one occurs; and define X ′i,k similarly for the reverse
switches. Finally, we define Yi,k = Xi,k −X ′i,k; thus Yi,k is the increase in number of nodes
that have the preferred opinion during the time interval Ii,k.

Define ` = 132β logn
(1−α1)2 and β′ = 600d

α1·(1−α1)2 . In the following we define a good sequence.

I Definition 8. We call the sequence S of steps good if it has all of the following properties
for all i ≤ T ′ = 2β′ · n. Consider the first T ′ steps of S (fix CT ′). Then,
(a) Y0,T ′ ≥ 2n (the preferred opinion prevails in at most T ′ steps).
(b) Y0,i + |S0| > 1 (the preferred opinion never vanishes).
(c) For any 1 ≤ k ≤ T ′, Yi,k ≥ −` (the number of nodes with the preferred opinion never

drops by `).
(d) For any ` ≤ γ ≤ T ′, Yi,k > γ, where k = γ · β′ (the nodes with the preferred opinion

increase).

This definition allows us to prove in a convenient way that a step sequence S is w.h.p.
good: For each property, we simply consider each (sufficiently large) subsequence S separately
and we show that w.h.p. S has the desired property. We achieve this by using a concentration
bound on Yi,k which we establish in Lemma 9. Afterward, we take a union bound over
all of these subsequences and properties. Using the union bound allows us to show the
desired properties in all subsequences in spite of the emerging dependencies. This is done in
Lemma 10.

We now show the concentration bounds on Yi,k. These bounds rely on the Chernoff-type
bound established in the full version. This Chernoff-type bound shows concentration for
variables having the property that the sum of the conditional probabilities of the variables,
given all previous variables, is always bounded (from above or below) by some b. The bound
might be of general interest and its proof can be found in the full version.

I Lemma 9. Fix configuration Ci. Then,
(a) For k = γ 256d

α1·(1−α1)2 with γ ≥ 1 it holds that Pr (Yi,k < γ) ≤ exp (−γ) .
(b) For k ≥ 0, any b′ = α1 · (k + 2d)/d, and any δ > 0 it holds that

Pr (Yi,k < −(1 + δ)b′) ≤ exp
(

eδ

(1+δ)1+δ

)b′
.

The following two lemmas are proven in the full version.

I Lemma 10. Let S be a step sequence. Then S is good with high probability.

I Lemma 11. If S is a good step sequence, then in at most T ′ time steps, the preferred
opinion prevails and the T ′ time steps occur before round τ ′′′.

Proof of Theorem 3. The claim follows from Lemma 10 together with Lemma 11. J
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Abstract
Geometric inhomogeneous random graphs (GIRGs) are a model for scale-free networks with un-
derlying geometry. We study bootstrap percolation on these graphs, which is a process modelling
the spread of an infection of vertices starting within a (small) local region. We show that the
process exhibits a phase transition in terms of the initial infection rate in this region. We determ-
ine the speed of the process in the supercritical case, up to lower order terms, and show that its
evolution is fundamentally influenced by the underlying geometry. For vertices with given posi-
tion and expected degree, we determine the infection time up to lower order terms. Finally, we
show how this knowledge can be used to contain the infection locally by removing relatively few
edges from the graph. This is the first time that the role of geometry on bootstrap percolation
is analysed mathematically for geometric scale-free networks.

1998 ACM Subject Classification C.2.1. Network Architecture and Design

Keywords and phrases Geometric inhomogeneous random graphs, scale-free network, bootstrap
percolation, localised infection process, metastability threshold

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.147

1 Introduction

One of the most challenging and intriguing questions about large real-world networks is how
activity spreads through the network. “Activity” in this context can mean many things,
including infections in a population network, opinions and rumours in social networks, viruses
in computer networks, action potentials in neural networks, and many more. While all these
networks seem very different, in the last two decades there was growing evidence that most
of them share fundamental properties [4, 24]. The most famous property is that the networks
are scale-free, i.e. the degrees follow a power-law distribution Pr[deg(v) ≥ d] ≈ d1−β , typically
for some 2 < β < 3. Other properties include a large connected component which is a small
world (poly-logarithmic diameter) and an ultra-small world (constant or poly-loglog average
distance), that the networks have small separators and a large clustering coefficient. We refer
the reader to [15] for more detailed discussions.

Classical models for random graphs fail to have these common properties. For example,
Erdős-Rényi graphs or Watts-Strogatz graphs do not have power-law degrees, while Chung-Lu
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graphs and preferential attachment (PA) graphs fail to have large clustering coefficients
or small separators. The latter properties typically arise in real-world networks from an
underlying geometry, either spatial or more abstract, e.g., two nodes in a social networks
might be considered “close” if they share similar professions or hobbies. It is well-known
that in real-world networks the spread of activity (of the flu, of viral marketing, ...) is
crucially governed by the underlying spatial or abstract geometry [41]. For this reason, the
explanatory power of classical models is limited in this context.

In recent years models have been developed which overcome the previously mentioned
limitations, most notably hyperbolic random graphs (HypRGs) [13, 12, 10, 44] and their gen-
eralisation1 geometric inhomogeneous random graphs (GIRGs) [15]2, and spatial preferential
attachment (SPA) models [2, 22, 35]. Apart from the power-law exponent β, these models
come with a second parameter α > 1, which models how strongly the edges are predicted by
their distance. Due to their novelty, there are only very few theoretical results on how the
geometry impacts the spreading of activity through these networks.

In this paper we make a first step by analysing a specific process, bootstrap percolation [20],
on the recent and very general GIRG model. In this process, an initial set of infected (or
active) vertices iteratively infects all vertices which have at least k infected neighbours, where
k ≥ 2 is a parameter. It was originally developed to model various physical phenomena (see [1]
for a short review), but has by now also become an established model for the spreading of
activity in networks, for example for the spreading of beliefs [32, 25, 48, 45], behaviour [30, 31],
or viral marketing [38] in social networks (see also [19]), of contagion in economic networks [6],
of failures in physical networks of infrastructure [52] or compute architecture [39, 28], of
action potentials in neuronal networks (e.g, [47, 49, 5, 21, 50, 43, 26, 27], see also [40] for a
review), and of infections in life networks [25].

1.1 Our contribution
We investigate bootstrap percolation on GIRGs with an expected number of n vertices. We
fix a ball B in the underlying geometric space, and we initially infect each vertex in B

independently with probability ρ. In this way, we model that an infection (a rumour, an
opinion, ...) often starts in some local region, and from there spreads to larger parts of
the network. In Theorem 1 we determine a threshold ρc such that in the supercritical case
ρ� ρc whp3 a linear fraction of the graph is infected eventually, and in the subcritical case
ρ� ρc infection ceases immediately. In the critical case ρ = Θ(ρc) both options occur with
non-vanishing probability. If there are enough (at least k) “local hubs” in the starting region,
i.e. vertices of relatively large expected degree, then they become infected and facilitate the
process. On the other hand, without such local hubs the initial infection is not dense enough,
and comes to a halt.

For the supercritical case, we show that it only takes O(log logn) rounds until a constant
fraction of all vertices is infected, and we determine the number of rounds until this happens
up to a factor 1± o(1) in Theorem 2. For the matching lower bound in this result, we need
the technical condition α > β − 1, i.e. edge-formation may not depend too weakly on the

1 It is non-obvious that GIRGs are a generalization of HypRGs, see [15, Theorem 6.3].
2 Other than in [15] we do not condition on the number of vertices to be exactly n, which leads to slightly

less technical proofs.
3 with high probability, i.e. with probability tending to 1 as n→∞. All unspecified limits and asymptotics

will be with respect to n→∞. For example, for a function f = f(n) the notation f = O(1) means that
there is n0 > 0 and an absolute constant C > 0 that depends only the constant parameters α, β, d, wmin, k
of the model, such that f(n) ≤ C for all n ≥ n0. Similarly, f = ω(1) means limn→∞ f(n) =∞ etc.
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geometry. Notably, if the starting region B is sufficiently small then the number of rounds
agrees (up to minor terms) with the average distance in the network. In particular, it does
not depend on the infection rate ρ, as long as ρ is supercritical.

Finally we demonstrate that the way the infection spreads is strongly governed by the
geometry of the process, again under the assumption α > β − 1. Starting from B, the
infection is carried most quickly by local hubs. Once the local hubs in a region are infected,
they pass on their infection a) to other hubs that are even further away, and b) locally
to nodes of increasingly lower degree, until a constant fraction of all vertices the region is
infected. Indeed, given a vertex v (i.e. given its expected degree and its distance from B),
and assuming that v is not too close to B, we can predict whp (Theorem 4) in which round
it will become infected, again up to a factor 1± o(1). In real applications such knowledge is
invaluable: for example, assume that a policy-maker only knows initial time and place of
the infection, i.e. she knows the region B and the current round i. In particular, she does
not know ρ, she does not know the graph, and she has no detailed knowledge about who
is infected. Then we show that she is able to identify a region B′ in which the infection
can be quarantined. In other words, by removing (from round i onwards) all edges crossing
the boundary of B′ whp the infection remains contained in B′. The number of edges to be
deleted is relatively small: it can be much smaller than n (in fact, any function f = f(n)
satisfying f = ω(1) can be an upper bound, if i and Vol(B) are sufficiently small), and it is
even much smaller than the number of edges inside of B′, as was already noted in [15].

1.2 Related work
The GIRG model was introduced in [15], and we rely on many results from this paper. The
average distance of a GIRG (which, as we show, agrees with the time until the bootstrap
percolation process has infected a constant portion of all vertices) was determined in [16] in
a much more general setup.

Bootstrap percolation has been intensively studied theoretically and experimentally on a
multitude of networks, including trees [20, 9], lattices [3, 8], Erdős-Rényi graphs [36], various
geometric graphs [49, 42, 14, 29], and scale-free networks [23, 11, 7, 38]. On geometric
scale-free networks there are some experimental results [18], but little is known theoretically.
Recently, Candellero and Fountoulakis [17] determined the threshold for bootstrap percolation
on HypRGs (in the threshold case α = ∞, cf. below), but they assumed that the initial
infection takes place globally, i.e. whether any vertex is infected initially is independent of
its position, and not locally as in our paper, where no vertex outside of a certain geometric
region is infected initially. This has two major consequences. Firstly, in the global setting,
the (expected) number of initially infected vertices needs to be polynomial in n in order for
the infection to start spreading significantly; while in our setting every ball containing an
expected number of ω(1) vertices can initiate a large infection whp. Secondly, using our
knowledge about how the process evolves in time with respect to the geometry, we show
that the infection time of any vertex is mainly governed by its geometric position and its
weight. On the other hand, with a global initial infection the infection times only depend
on the expected degrees. Note that we do not encode these expected degrees as geometric
information (in contrast to [17]), but rather in the weights. Similarly, the questions studied
in this paper do not apply for non-geometric random graph models.

While there is plenty of experimental literature and also some mean-field heuristics on other
activity spreading processes on geometric scale-free networks (e.g., [51, 53, 34, 54, 33, 46]),
rigorous mathematical treatments are non-existent with the notable exception of [37], where
rumour spreading is analysed in an SPA model with a push and a push&pull protocol.
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2 Model and notation

Graph model

A GIRG is a graph G = (V,E) where both the vertex set V and the edge set E are random.
Each vertex v is represented by a pair (xv, wv) consisting of a position xv (in some ground
space) and a weight wv ∈ R>0.

Ground space and positions. We fix a (constant) dimension d ≥ 1 and consider the
d-dimensional torus Td = Rd/Zd as the ground space. We usually think of it as the d-
dimensional cube [0, 1]d where opposite boundaries are identified and measure distances by
the ∞-norm on Td, i.e. for x, y ∈ [0, 1]d set ‖x− y‖ := max1≤i≤d min{|xi − yi|, 1− |xi − yi|}.

The set of vertices and their positions are given by a homogeneous Poisson point process
on Td with intensity n ∈ N. More formally, for any (Lebesgue-)measurable set B ⊆ Td, let
V ∩B denote (with slight abuse of notation) the set of vertices with positions in B. Then
|V ∩B| is Poisson distributed with mean nVol(B), i.e. for any integer m ≥ 0 we have

Pr [|V ∩B| = m] = Pr[Po (nVol(B)) = m] = (nVol(B))m exp(−nVol(B))
m! ,

and if B and B′ are disjoint measurable subsets of Td then |V ∩B| and |V ∩B′| are inde-
pendent. Note in particular that the total number of vertices |V | is Poisson distributed with
mean n, i.e. it is also random. An important property of this process is the following: Given
a random vertex4 v = (xv, wv), if we condition on xv ∈ B, where B is some measurable
subset of [0, 1]d, then the position xv is uniformly distributed in B.

Weights. For each vertex, we draw independently a weight from some distribution D on
R>0. We say that the weights follow a weak power-law for some exponent β ∈ (2, 3) if a
D-distributed random variable D satisfies the following two conditions: There is a constant
wmin ∈ R>0 such that Pr [D ≥ wmin] = 1, and for every constant γ > 0 there are constants
0 < c1 ≤ c2 such that

c1w
1−β−γ ≤ Pr [D ≥ w] ≤ c2w1−β+γ (1)

for all w ≥ wmin. If this condition is also satisfied for γ = 0, then we say that the weights
follow a strong power-law.

Edges. Next we fix a constant α ∈ R>1 ∪ {∞}. Then (conditional on the Poisson point
process) two distinct vertices u = (xu, wu) and v = (xv, wv) form an edge independently of
all other pairs with probability p(xu, xv, wu, wv), where the function p satisfies

p(xu, xv, wu, wv) = Θ(1) min
{(

wuwv
‖xu − xv‖dn

)α
, 1
}
,

if α <∞. In the threshold model α =∞ we instead require that p satisfies

p(xu, xv, wu, wv) =
{

Ω(1) if ‖xu − xv‖ ≤ C1
(
wuwv
n

)1/d
0 if ‖xu − xv‖ > C2

(
wuwv
n

)1/d
for some constants 0 < C1 ≤ C2 . Note that for C1 6= C2 the edge probability may be
arbitrary in the interval

(
C1
(
wuwv
n

)1/d
, C2

(
wuwv
n

)1/d).
4 By abuse of notation, xv and wv may either denote random variables or values.
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Bootstrap percolation

Let k ≥ 2 be a constant, let B0 ⊆ Td be measurable, and let 0 ≤ ρ ≤ 1. Then the bootstrap
percolation process with threshold k, starting region B0, and initial infection rate ρ is the
following process. For every integer i ≥ 0 there is a set V i ⊆ V of vertices which are infected
(or active) at time i. The process starts with a random set V 0 ⊆ V which contains each
vertex in V ∩B0 independently with probability ρ, and which contains no other vertices. For
all integers i ≥ 0 we then define the set V i+1 iteratively by

V i+1 := V i ∪
{
v ∈ V

∣∣ v has at least k neighbours in V i
}
.

Moreover, we set V∞ :=
⋃
i∈N V

i, and for convenience of notation we extend this definition
to real parameters i ∈ R>0 by setting V i := V die. For a vertex v ∈ V , we define its infection
time as Lv := inf

{
i ≥ 0

∣∣ v ∈ V i} and Lv :=∞ if the infimum does not exist.
We denote by ν = ν(n) := nVol(B0) the expected number of vertices in B0. Throughout

the paper we will assume that B0 is a ball, which is – without loss of generality due to
symmetry of Td – centred at 0. Moreover, we will assume that ν = ω(1).

Further notation

We denote the neighbourhood of a vertex v ∈ V by N (v) := {u ∈ V | {u, v} ∈ E}. Further-
more, for any two sets of vertices U1 and U2, we denote the set of edges between them by
E (U1, U2) := {e = {u1, u2} | u1 ∈ U1, u2 ∈ U2}. For any λ ≥ 0 and any closed ball B ⊆ Td
of radius r ≥ 0 centred at 0 we denote by λB the closed ball of radius λr around 0. By abuse
of notation, if S ⊂ V and B ⊆ Td then S ∩B := {v ∈ S | xv ∈ B}.

3 Main results

First of all we show that bootstrap percolation on a GIRG has a threshold with respect to
the initial infection rate ρ. Since HypRGs are a special instance of GIRGs, this contains in
particular the result of [17] on (threshold) HypRGs, where the case ν = n was studied.

I Theorem 1. Consider a bootstrap percolation process on a GIRG G = (V,E) with constant
parameters α, β, d, wmin, k, initial infection rate ρ = ρ(n) ∈ [0, 1], and initial infection region
B0 with volume ν/n, where ν = ν(n) = ω(1). We set

ρc = ρc(n) := ν−
1

β−1 .

If the weights follow a strong power-law, then as n→∞ we have:
(i) If ρ = ω(ρc), then |V∞| = Θ(n) whp.
(ii) If ρ = Θ(ρc), then |V∞| = Θ(n) with probability Ω(1), but also V∞ = V 0 with probability

Ω(1).
(iii) If ρ = o(ρc), then V∞ = V 0 whp.
If the weights follow a weak power-law, then as n→∞ we have:
(iv) If there is a constant δ > 0 such that ρ ≥ ρ1+δ

c , then |V∞| = Θ(n) whp.
(v) If there is a constant δ > 0 such that ρ ≤ ρ1−δ

c , then V∞ = V 0 whp.

Whenever we refer to the supercritical regime we mean case (i) and (iv). Similarly, (iii)
and (v) form the subcritical regime and (ii) is the critical regime. Note in particular that
there is a supercritical regime regardless of how small the expected number ν of vertices in
the starting region is, provided that ν = ω(1). This is in sharp contrast to non-geometric
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graphs like Chung-Lu graphs, where the expected number of initially infected vertices must
be polynomial in n (if the set of initially infected vertices is chosen at random).

Indeed the proof of Theorem 1 will grant a deeper insight into the evolution of the process.
Since the process whp stops immediately in the subcritical regime, we may restrict ourselves
to the other cases. We show a doubly logarithmic upper bound on the number of rounds
until a constant fraction of all vertices are infected. Furthermore, we prove that this bound
is tight up to minor order terms if the influence of the underlying geometry on the random
graphs is sufficiently strong (α > β − 1). Remarkably, the bounds do not depend on the
initial infection rate ρ, as long as ρ is supercritical. Moreover, if the expected number ν of
vertices in the starting region is sufficiently small (if log log ν = o(log logn)), then the bound
coincides with the average distance in the graph, again up to minor order terms.

I Theorem 2. In the situation of Theorem 1, let ε > 0 be constant and set

i∞ := log logν n+ log logn
| log(β − 2)| .

Then in the supercritical regime whp, and in the critical regime with probability Ω(1) we have
|V (1+ε)i∞ | = Θ(n), as n→∞.
If furthermore α > β − 1 and ν = no(1) then in all regimes we have whp |V (1−ε)i∞ | = o(n),
as n→∞.

In fact, we can still refine the statement of Theorem 2 tremendously, at least in the case
α > β − 1. In the following, we determine for every fixed vertex v its infection time Lv, up
to minor order terms (with the restriction that v may not be too close to the starting region).
We will show that it is given by the following expression (see also Remark 6 below).

I Definition 3. For any x ∈ Td \B0 and w ∈ R>0 we define

Λ(x,w) :=


max

{
0, log logν(‖x‖dn/w)

| log(β−2)|

}
, if w > (‖x‖dn)1/(β−1),

2 log logν(‖x‖dn)−log logν w
| log(β−2)| , if w ≤ (‖x‖dn)1/(β−1).

(2)

In the first case we use the convention that the second term is −∞ if ‖x‖dn/w < 1, and thus
does not contribute to the maximum.

Note that in the second case, the sign of log logν w may be either positive or negative.
However, then we have the lower bound Λ(x,w) ≥ log logν(‖x‖dn)/| log(β − 2)|+O(1) due
to the upper bound of w and thus, in particular Λ(x,w) ≥ 0, since x ∈ Td \B0.

I Theorem 4. Assume we are in the situation of Theorem 1 in the supercritical regime.
Let v = (xv, wv) be any fixed vertex such that xv ∈ Td \ B0, wv = ω(1) and Λ(xv, wv) ≤
log2(‖xv‖dn/ν2/(β−2)). Then, as n→∞, the infection time Lv satisfies whp

Lv ≤ (1 + o(1))Λ(xv, wv) +O(1).

If additionally α > β − 1 then, as n→∞ we also have whp

Lv ≥ (1− o(1))Λ(xv, wv)−O(1).

As in Theorem 2, the bounds do not depend on the initial infection rate ρ, as long as it
is supercritical.
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I Remark 5. The technical restrictions in Theorem 4 are necessary: if a vertex v has weight
wv = O(1) then the number of neighbours is Poisson distributed with mean Θ(wv) (see
Lemma 8), so v is even isolated with probability Ω(1). In particular, we cannot expected
that whp v is ever infected.

The restriction Λ(xv, wv) ≤ log2(‖xv‖dn/ν2/(β−2)) ensures that v is not too close to the
starting region. If v is too close, then it may have neighbours inside of B0, and in this
case it does depend on ρ when they are infected. (And of course, this process iterates.)
The term log2(‖xv‖dn/ν2/(β−2)) is not tight and could be improved at the cost of more
technical proofs. However, there are already rather few vertices that violate the condition
Λ(xv, wv) ≤ log2(‖xv‖dn/ν2/(β−2)). For example, recall that it only takes O(log logn) steps
until a constant fraction of all vertices are infected. At this time, we only exclude vertices
which satisfy ‖xv‖dn ≤ ν2/(β−2) · (logn)O(1), so the expected number of affected vertices
is also at most ν2/(β−2) · (logn)O(1). Even this is a gross overestimate, since the vertices
close to the origin have much smaller infection times Lv, and thus only very few of them are
affected by the condition.

I Remark 6. The first case in Definition 3 is not needed if we restrict ourselves to vertices as
they typically appear in GIRGs. More precisely, as we will see in Lemma 10, whp all vertices
v = (xv, wv) ∈ V ∩ (Td \B0) satisfy wv ≤ (‖xv‖dn)1/(β−1−η) where η > 0 is an arbitrary
constant. In the border case (‖xv‖dn)1/(β−1) ≤ wv ≤ (‖xv‖dn)1/(β−1−η) both expressions
in (2) agree up to additive constants, i.e.

Λ(xv, wv) = 2 log logν(‖xv‖dn)− log logν wv
| log(β − 2)| ±O(1). (3)

Therefore, we could also use (3) as definition for Λ if we would exclude vertices which are
unlikely to exist in Theorem 4 .

Finally, we give a strategy how to contain the infection within a certain region when only
the starting set and the current round are known, but not the set of infected vertices. Note
that the number of edges that need to be removed is substantially smaller than the expected
number ν̃i of vertices in a containment area B̃i, see Definition 11.

I Theorem 7. Assume that we are in the situation of Theorem 1, and that α > β− 1. If the
starting region B0 is known, then by removing all edges crossing the boundary of B̃i before
round i+ 1, whp (as n→∞) the infection is contained in B̃i. The expected number of edges
crossing the boundary of B̃i is ν̃max{3−β,1−1/d}+o(1)

i .

4 Basic properties of GIRGs

In this section we list briefly some basic properties of GIRGs (without proofs). The first
lemma, based on [16, Lemma 4.4 and Theorem 7.3], tells us that the expected degree of a
vertex equals its weight, up to constant factors. Moreover, it gives the marginal probability
that two vertices u, v of fixed weights but random positions in Td are adjacent. This
probability remains the same if the position of one (but not both) of the vertices is fixed.

I Lemma 8. Let v = (xv, wv) be a vertex with fixed weight and position. Then deg(v) is
Poisson distributed with mean Θ(wv). Moreover, if u = (xu, wu) is a vertex with fixed weight,
but with random position xu ∈ Td, then

Pr [{u, v} ∈ E | wu, wv, xv] = Θ
(

min
{wuwv

n
, 1
})

. (4)
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Note in particular that the right hand side of (4) is independent of xv, so the same formula
still applies if also the position xv of v is randomised.

We often need to bound the expected number of neighbours of a given vertex in some
geometric region, which we may do by the following lemma.

I Lemma 9. Let η > 0 and C > 1 be constants, define m := min{α, β− 1− η} and consider
a closed ball B ⊆ Td of radius r > 0 centred at 0. Let v = (xv, wv) be a vertex with fixed
weight and position. Then

E [|N (v)∩B|] = O(nVol(B)) ·

min
{

wv
nVol(B) , 1

}
, if ‖xv‖ ≤ Cr,

min
{(

wv
‖xv‖dn

)m
, 1
}

if ‖xv‖ ≥ Cr.

The last lemma states that whp there are no vertices whose weight is much larger than
their distance from the origin.

I Lemma 10. Let η > 0 be a constant and consider a closed ball B ⊆ Td of radius r > 0
centred at 0, satisfying nVol(B) = Θ(rdn) = ω(1). Then with probability 1− (rdn)−Ω(η) there
is no vertex v = (xv, wv) with xv ∈ Td \B and wv ≥ (‖xv‖dn)1/(β−1−η).

5 Proof outline

5.1 Intuition
Due to space limitations we can only give a very rough sketch of the main ideas. We warn
the reader that the statements as they are formulated in this section are not literally true,
but they are only true if appropriate error margins (slightly smaller/larger weights or regions)
are taken into account. The same holds for definitions within this section. The rigorous
definitions and statements with full technical details can be found in Section 5.2 and 5.3.

For the subcritical regime, we distinguish between high-weight vertices (wv = ω(w0),
where w0 := ν1/(β−1)) and low-weight vertices (wv = O(w0)). By an easy computation, the
expected number of low-weight vertices in B0 that are infected in round 1 is o(1), so by
Markov’s inequality no low-weight vertex becomes infected whp. On the other hand, whp no
high-weight vertex exists in B0, and the expected number of infected vertices outside of B0
is also o(1) because they are too far away from infected vertices. In order words, whp no
vertex is infected in round 1.

In the critical regime, the calculation is similar, but if there exist vertices of weight Θ(w0)
then these vertices are infected with probability Ω(1). The number of vertices of weight
Θ(w0) is Poisson distributed with mean Θ(1), so it may happen (both with probability Ω(1))
that either no such vertex exists (so percolation stops) or that there are at least k such
vertices, and all of them are infected. In the supercritical regime, whp k vertices of weight
(slightly less than) w0 are infected. Whp, these k vertices infect all other vertices of similar
weight in two more rounds. This is sufficient to start an avalanche of infection, and for the
rest of this section we will restrict ourselves to this case.

If the infection gets started, then it evolves as follows. Let ζ := 1/(β − 2) > 1, and
consider the sequence Bi of nested balls of volume νi/n centred at 0, where νi := νζ

i . Then
in the i-th round, all vertices of weight roughly wi := ν

1/(β−1)
i in Bi are infected. In the next

round, whp the vertices of weight wi in Bi infect all vertices of weight wi+1 in Bi+1, thus
spreading the infection to new regions. Note that this statement is easy to prove inductively
since we assumed that all vertices of weight wi in Bi are infected, so for the vertices in Bi+1
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it suffices to count the number of neighbours of a certain weight in Bi, which is a Poisson
distributed random variable. This gives a lower bound on how fast the infection spreads
geometrically. It can not spread faster since whp there are no edges from Bi to Td \Bi+1.
This latter fact already allows us to execute a containment strategy.

On the other hand, if in round j every vertex of weight w in some region has a large
probability to be infected, then in round j + 1 every vertex of weight at least w1/ζ in this
region has a large (though slightly smaller) probability to be infected. To prove this formally,
we consider a vertex of weight w1/ζ . Such a vertex (but not vertices of smaller weight) has at
least wδ neighbours of weight w, with probability at least 1− exp[−wδ]. So we pick k such
neighbours, and bound the probability that at least one of them is not infected by a union
bound. In this way, we lose a factor of k in each round, but by going through the proof
details it turns out that this factor is still negligible compared to the error term exp[−wδ/ζ ].

Complementing this infection pathway by a matching upper bound is the most challenging
and technical part of the proof. In round i − 1 there is no infected vertex in Bi, so it is
not hard to argue that in round i only vertices of large weight in Td \ Bi−1 are infected.
However, in subsequent rounds it does happen that vertices of very small weight in Td \Bi−1
become infected. Fortunately, this only happens with rather small probability, which we can
explicitly bound (Theorem 13 (f)) as a function of the weight. Once we have such a bound
in some round, we use that whp no vertex in Td \Bi−1 (not too close to the boundary) has
strictly more than one neighbour in Bi−1. Therefore, in order to be infected, at least one of
its neighbours in Td \Bi−1 must have been infected in the previous round, and we can bound
the probability of this event by the expected number of previously infected neighbours in
Td \Bi−1. It turns out that this simple bound is sufficient to provide the desired matching
upper bound, safe quite some technical details which we omit.

We remark that it is in this last step where we use the assumption α > β − 1 since
otherwise there do exist vertices in Td \ Bi−1 that have several neighbours in Bi−1, and
these vertices exist in a substantial part of Bi. Even worse, in some (large) subregion of Bi,
the number of infections in round i+ 1 that come from neighbours in Bi−1 dominates the
number of infections that come from neighbours in Bi. For investigating the case α ≤ β − 1
(which we don’t in this paper), it will no longer be possible to use a bound on the infection
probability that is uniform within Td \Bi−1, or within Bi \Bi−1.

Once the claims outlined above are proven (Theorem 13 and 14) we have almost complete
control over the process. In particular, for a each vertex v with fixed weight and position
(outside of the starting region B0), and for each round j we have lower and upper bounds
for the probability that v has already become infected by round j. We can thus compute
rounds j1, j2 for which the probability is at most o(1) and at least 1− o(1), respectively, and
we find that these rounds coincide up to lower order terms. It is still rather complicated to
actually perform the calculations of j1 and j2 due to the many technical details which we
omitted in this outline, but no further knowledge about the infection process is required.

5.2 Formal statements and sketch of proofs
In this section we will give two theorems which describe the geometrical evolution of the
process in detail, and which make the intuitions from Section 5.1 precise. Theorem 13
states that a) certain regions cannot be reached too early by the infection, and b) within
an infected region, vertices of too low weight have a small probability to be infected early.
Hence, the theorem gives an upper bound on the speed of the infection process. Note that this
already gives the quarantine statement (Theorem 7), see Section 5.3 for details. Afterwards,
Theorem 14 gives lower bounds on the probability that a vertex in a given region is infected
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at a given time, in the supercritical case. In particular, a vertex of weight wv = ω(1) will
eventually be infected whp. Thus the theorem provides a lower bound on the speed of the
process. This lower bound also applies in the critical regime if in the first step sufficiently
many heavy vertices became infected, an event which holds with at least constant probability.

In Section 5.1 we introduced balls Bi which essentially correspond to the region of infected
vertices in round i. For the formal statements we need slightly smaller and larger balls, which
we now define formally. In general, ν̃i, B̃i etc. will denote the upper bound variants.

I Definition 11. For all 0 < ε < ζ = 1/(β − 2) and all i ≥ 0, we set

ν0 := ν and νi = νi(ε) := ν
(ζ−ε)i
0 ,

ν̃0 = ν̃0(ε) := ν(β−1)/(β−2)+ε and ν̃i = ν̃i(ε) := ν̃
(ζ+ε)i
0

We define Bi := Bi(ε) and B̃i := B̃i(ε) to be the closed ball centred around 0 of volume
min{νi(ε)/n, 1} and min{ν̃i(ε)/n, 1}, respectively. Note that Bi(ε) ⊆ B̃i(ε′) for all i ≥ 0 and
all 0 < ε, ε′ < ζ.

First we give an upper bound on the speed of the process. For a formal statement, we
define the following families of “good” events.

I Definition 12. Let ε > 0 be a constant and let η = η(ε) > 0 be a constant which is
sufficiently small compared to ε. Moreover, let h = h(n) be a function satisfying h(n) = ω(1),
h(n) = o(logn), and h(n) = νo(1). Then for all i, `, j ≥ 0 we define the following families of
events:
E(i) := {V i∩ (Td \ B̃i) = ∅};
For all w ≥ wmin let S(w, `) := {v ∈ V ≤` | wv ≥ w}. We set

F(`, w) = Fε,η,h(`, w) :=
{
|S(w, `)| ≤ h`w2−β+η ν̃

1−(ζ+ε)−`(β−1)−1

0
}
,

and F(`) = Fε,η,h(`) :=
⋂
w′≥wmin

F(`, w′);
G(j) = Gε,η,h(j) :=

⋂j
j′=0(E(j′) ∩ F(j′)).

In other words, E(i) means that no vertex outside of B̃i is infected at time i, and F(`) is
the event that there are not “too many” vertices which have small weight, are close to the
starting region, and are infected at time `. Finally, G(j) is the event that all “good” events
hold up to time j.

I Theorem 13. Let ε, η, h be given as in Definition 12 and assume α > β − 1. Then, for
sufficiently large n,
(a) E(0) is always satisfied;
(b) Pr[F(0)] ≥ 1−O(h−1);
(c) For all i ≥ 1 we have Pr [E(i) | G(i− 1)] ≥ 1− h−Ω(i);
(d) For all ` ≥ 1 we have Pr [F(`) | G(`− 1)] ≥ 1− h−Ω(`);
(e) Whp, the events G(j) hold for all j ≥ 0;
(f) For all i ≥ 1 and ` ≥ 0, and for every fixed vertex v = (xv, wv) such that xv ∈

Td \ 2`+1B̃i−1 and wv ≥ wmin we have

Pr
[
v ∈ V i+`

∣∣ G(i+ `− 1)
]
≤ wv2`dν̃−(ζ+ε)−`−2/(β−1)

i .

The theorem can be proven by induction on i+ `, with the strategies from Section 5.1,
and using the lemmas from Section 4. We next state the complementary lower bound.

For all i, ` ≥ 0, let wi,` = wi,`(ε) := ν(ζ−ε)i−`/(β−2), and let Ui be the set of vertices in
Bi of weight at least wi,0. Furthermore, we denote by H(i) the event that in round i+ 3 all
vertices in Ui are infected.
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I Theorem 14. Let 0 < ε < ζ and η = η(ε) > 0 be sufficiently small. Assume that we are
in the supercritical case, or instead that |Ui ∩ V 1| ≥ k. Then the following is true:
(a) Whp |Ui| = ν

Ω(η)
i and |Ui| = O(νi) uniformly for all i ≥ 0.

(b) Whp all the events H(i) occur.
(c) There exist constants C0, C1, C2 > 0 such that the following holds: Let v = (xv, wv)

be any vertex with fixed position and weight and let i, ` ≥ 0 be such that xv ∈ Bi and
wv ≥ max{wi,`, C0}. Then for sufficiently large n ∈ N,

Pr[v ∈ V i+3+` | H(0), . . . ,H(i)] ≥ 1− exp
[
−C1ν

C2(ζ−ε)−`
i

]
.

Again, the theorem can be proven inductively, with the strategies from Section 5.1.

5.3 Proof sketches for main results
In this section we highlight the main steps used to deduce the results from Section 3 from
Theorem 13 and Theorem 14.

Threshold and speed of the process: Theorem 1 and Theorem 2

We split the (combined) proof into six claims:
We first show the second statement of Theorem 2, so let 0 < ε < ζ be a constant.

I Claim 15. Assume that α > β − 1 and ν = no(1), then |V (1−ε)i∞ | = o(n) whp.

We define integers i ≥ 0 and ` ≥ 0 such that i + ` ≥ (1 − ε)i∞ and ν̃i = n1−o(1) but
2iν̃i = o(n). Then whp there are only o(n) vertices inside of 2`B̃i, by Markov’s inequality,
and for vertices outside we obtain the corresponding bound from Theorem 14 (f).

In the subcritical regime, (iii) or (v), we will indeed show that whp the process does not
infect any vertices in the first step and therefore terminates immediately.

I Claim 16. V 1 = V 0 whp.

Since the initial infection occurs only within B0 and all vertices have the same probability of
being infected, the number of neighbours of a given vertex is Poisson distributed, and we
can bound the mean by Lemma 9. Thus we can compute the expected number of vertices in
V =1, which is o(1), and this proves the claim by Markov’s inequality.

Next we show that in the critical regime, (ii), with constant probability no further vertices
ever become infected.

I Claim 17. V 1 = V 0 with probability Ω(1).

The number of “heavy” vertices of weight Θ(w0) is Poisson distributed with expectation
Θ(1). Thus, with probability Ω(1) there are no heavy vertices. Conditioned on this event,
the calculations of the subcritical regime carry over.

On the other hand, also with probability Ω(1), at least k heavy vertices exist. Each such
vertex is infected in the first round with probability Ω(1) by vertices very close to it, and all
these events are positively associated. This proves the following claim.

I Claim 18. V 1∩B0 contains at least k heavy vertices with probability Ω(1).

Next we assume that we are in the supercritical regime (i) or (iv), or in the critical regime (ii)
where we also assume that at least k heavy vertices are infected in the first round. Then we
need to show the following claim.

ICALP 2016
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I Claim 19. |V (1+ε)i∞ | = Ω(n) in expectation and whp.

We (carefully) choose i ≥ 0 and ` ≥ 0 such that i+` ≤ (1+ε) Bi = Td and wi,l = O(1). Then
Theorem 14 (c) tells us immediately that every vertex of weight at least C has probability
Ω(1) to be infected by time i + ` + 3, and since the expected number of such vertices is
Ω(n), thus proving the claim for the expectation. The whp statement follows from a small
technical alteration of the previous argument, which we omit for space limitations.

Now Theorem 1 follows from Claims 16, 17, 18 and 19, while Theorem 2 is proven by
Claims 15 and 19.

Infection times: Theorem 4

With our previous results, the idea is very simple: given a v vertex which satisfies the
assumptions of Theorem 4 we show an lower bound on its infection time Lv by Theorem 14
and an upper bound by Theorem 13, respectively. The details become quite long and
technical, and are therefore omitted.

Quarantine strategies: Theorem 7

By Theorem 13, whp there is no vertex outside of B̃i which is infected in round i. Therefore,
it suffices to (permanently) remove by the end of round i all edges that cross the boundary
of B̃i, i.e. all edges in E(B̃i,Td \ B̃i). Using an argument very similar to the one used in [15,
Lemma 7.1 and Theorem 7.2], where the number of edges cutting a grid is considered, we
can bound |E(B̃i, 2B̃i)| the expected number of close-range edges by ν̃max{3−β,1−1/d}+o(1)

i .
On the other hand using Lemma 9, we can estimate the expected number |E(B̃i,Td \ 2B̃i)|
of long-range edges by ν̃3−β

i and the result follows. We omit the details.

6 Concluding remarks

We have shown that in the GIRG model for scale-free networks with underlying geometry,
even a small region can cause an infection that spreads through a linear part of the population.
We have analysed the process in great detail, and we have determined its metastability
threshold, its speed, and the time at which individual vertices becomes infected. Moreover, we
have shown how a policy-maker can utilise this knowledge to enforce a successful quarantine
strategy. We want to emphasise that the latter result is only a proof of concept, intended
to illustrate the possibilities that come from a thorough understanding of the role of the
underlying geometry in infection processes. In particular, we want to remind the reader that
bootstrap percolation is not a perfect model for viral infections (though it has been used to
this end), but is more adequate for processes in which the probability of transmission grows
more than proportional if more than one neighbours is active, like believes spreading through
a social network (“What I tell you three times is true.”), or action potential spreading through
a neuronal network.

Therefore, this paper is only a first step. There are many other models for the spread of
an infection, most notably SIR and SIRS models for epidemiological applications, and we
have much yet to learn from analysing these models in geometric power-law networks like
GIRGs. From a technical point of view, it is unsatisfactory that our analysis does not include
the case α ≤ β − 1. We believe that also in this case, the bootstrap percolation process is
essentially governed by the geometry of the underlying space, only in a more complex way.
Understanding this case would probably also add to our toolbox for analysing less “clear-cut”
processes.
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Abstract
Due to the sheer size of real-world networks, delay and space become quite relevant measures for
the cost of enumeration in network analytics. This paper presents efficient algorithms for listing
maximum cliques in networks, providing the first sublinear-space bounds with guaranteed delay
per enumerated clique, thus comparing favorably with the known literature.
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1 Introduction

The design of efficient algorithms for enumerating all possible solutions of a given problem
dates back to the 1950s [5, 19, 35]. Enumeration algorithms have the purpose of either
counting the number of solutions or listing the solutions one by one. Their study originated
in the area of complexity and optimization [17, 23, 39], and then spread over several other
application domains, including bioinformatics, machine learning, network analytics, and
social analysis [1, 26, 33]. For instance, a number of papers described how to enumerate
triangles [6, 3, 22, 31] and their generalizations such as cliques or other dense subgraphs [7, 9,
11, 12, 14, 15, 21, 25, 29, 34, 38]. Among the first problems attacked is the enumeration of
maximal cliques [2, 5, 7, 18, 24, 28], where a maximal clique is a subset of pairwise connected
vertices that is maximal under inclusion.

This paper focuses on two worst-case efficiency measures, namely, delay and space, that
become relevant for enumeration in massive networks. The delay is the maximum latency
between any two consecutively reported solutions. The space is the maximum amount of
extra memory that should be allocated to enumerate all the solutions, besides the amount
required by the input graph.
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Motivation. Let G(V,E) be an undirected connected graph, represented with ordered
adjacency lists, where n = |V | is the number of vertices and m = |E| is the number of
edges. Although it is known that the number α of maximal cliques in real-world networks
is much smaller than the exponentially many possible subsets of vertices [32], it happens
that α is still large for massive networks. In this scenario the notion of delay provides a
guarantee on the maximum time that a postprocessing algorithm has to wait before the next
enumerated maximal clique is produced: letting t(n,m) be the delay, we observe that not
only the total time is output-sensitive, i.e. O(α t(n,m)) plus the setup cost, but we also
guarantee that listing the next solution takes O(t(n,m)) time in the worst case. This is
a stronger notion than average throughput (e.g., number of cliques per second), which is
obtained by dividing α by the total time. The former implies the latter, but not vice versa.
We observe that the delay has been already used in many papers, e.g. [9, 11, 12, 23, 25, 36],
as a worst-case measure.

Space is another measure that has been considered when enumerating solutions, e.g. [13,
10, 41]. Modern CPUs have multiple cores, where each core has a very fast – but small
– private cache, with a shared last-level cache and a shared slow random access memory.
Consider multiple enumeration threads running simultaneously on the same massive graph
in the shared memory: modern machines have very large shared memory compared to the
private cores, so massive graphs can be stored in shared memory but not in the private cores.
If the memory footprint of each thread is small and fits the private cache of a core, the
shared memory access bottleneck is only caused by accessing the graph itself, and not the
private data. To make a concrete example, the private cache for CPUs in today’s commodity
desktops is few hundreds of kilobytes while the random access memory can host several
terabytes and networks contain millions of vertices and edges. For example, network eu-2005
(Section 7) contains n = 850 thousand vertices, m = 16.1 million edges, and α = 5.7 million
cliques: here, the space of known algorithms ranges from 3 to 164 megabytes, so their working
set does not fit the private cache (Table 2).

We remark that delay and space are somehow related measures. An algorithm with good
overall time can accumulate solutions in the shared memory or store them temporarily in a
file for a subsequent phase of postprocessing. If space is limited (especially in fast memory),
this approach cannot be taken into account.

Furthermore, as most current output-sensitive approaches have a recursive nature, they
can easily reach Θ(n) nesting levels in the worst case even for sparse graphs, thus using
the stack should be avoided: indeed, just storing one memory word per recursion level
kills sublinearity. This motivates the search for enumeration algorithms that provably use
sublinear space and have good delay bounds. Some space-efficient algorithms [13, 10, 41]
work well in practice for real-world networks but cannot guarantee sublinear space.

We remark that this paper does not address cache-efficient or cache-oblivious algorithms
in the parallel or distributed setting, which is worth investigating in future work. What is
emphasized here is that small footprint enumeration algorithms have more chances to reduce
memory contention and memory bandwidth issues when run on modern processors.

Our results. We provide the first algorithms with sublinear space and bounded delay for
enumerating the maximal cliques when the vertices of G are provided in degeneracy order.
This means that there exists an integer d, as small as possible, such that each vertex has d or
fewer neighbors appearing later in the ordering: d is called the degeneracy of G, a well-known
sparsity measure [13, 15, 40, 41], and is equivalently defined as the smallest integer such
that every nonempty subgraph of G has at least one vertex of degree ≤ d. The degeneracy
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Table 1 Bounds for maximal clique enumeration, where q− 1 ≤ d ≤ ∆ ≤ n− 1 ≤ m, d = O(
√
m).

†: it does not list cliques, but outputs a compressed representation. +: h is the smallest integer such
that |{v ∈ V : |N(v)| ≥ h}| ≤ h, where d ≤ h ≤ ∆. ∗: it uses matrix multiplication. A lower bound
in the column for the delay means that there exists a family of graphs with that delay.

Time
Algorithm Setup Delay Overall Space

Bron-Kerbosch [7] O(m) unbounded unbounded O(n+ q∆)
Tomita et al. [34]† O(m) Ω(n3) O(3n/3) O(n+ q∆)
Eppstein et al. [16] O(m) Ω(3n/6) O(d(n− d)3d/3) O(n+ d∆)

Johnson et al. [23] O(mn) O(mn) αO(mn) O(αn)
Tsukiyama et al. [36] O(n2) O((n2 −m)n) αO((n2 −m)n) O(n2)
Chiba-Nishizeki [11] O(m) O(md) αO(md) O(m)
Makino-Uno [25] O(mn) O(∆4) αO(∆4) O(m)
Chang et al. [9]+ O(m) O(∆h3) αO(∆h3) O(m)

Makino-Uno [25]∗ O(n2) O(n2.37) αO(n2.37) O(n2)
Comin-Rizzi [12]∗ O(n5.37) O(n2.09) αO(n2.09) O(n4.27)

This paper Õ(m) Õ(qd(∆ + qd)) α Õ(qd(∆ + qd)) O(q)
This paper Õ(m) Õ(min{md, qd∆}) α Õ(min{md, qd∆}) O(d)

n = #vertices ∆ = max degree α = #maximal cliques
m = #edges d = degeneracy q = largest clique size

ordering can be computed in O(n+m) time by repeatedly removing the vertex of minimum
degree from G. Also, it can be proved that d = O(

√
m), and that the size q of the maximum

clique in G and the maximum degree in the graph ∆ satisfy q − 1 ≤ d ≤ ∆ ≤ n− 1.

The last two rows in Table 1 report our bounds in terms of the above parameters, where
the Õ() notation ignores logO(1)(n+m) factors. We observe that our bounds are expressed
in terms of the parameters q, d,∆ instead of m,n, whenever possible, as they are actually
smaller than m or n. For example, network eu-2005 has q = 387, d = 388 and ∆ = 68 963.
Also, since both q and d are always O(

√
m), our space is provably sublinear (around 20

kilobytes for eu-2005!). Note that ∆ is not always sublinear in the graph size as real-world
networks are sparse and could have ∆ = Θ(n), as shown in Table 2 (see also [13]). Also, our
O(q) space is close to optimal as we have to single out a subset of q vertices from G.

The other rows in Table 1 report the bounds for the main results in the state of the art
(see below for a discussion). The setup time is the preprocessing cost before starting to list
the solutions, and ours is comparable to that of previous results. As for the delay, the cost in
the last row is asymptotically smaller in many cases, except for dense graphs, where matrix
multiplication based algorithms [12, 25] are preferable (but massive networks can hardly
be processed by quadratic space algorithms). As for the overall time, we have a similar
improvement for output-sensitive bounds where the α term appears. Moreover, we observe
that [16] has great time performance in practice (see Section 7) but it is not output-sensitive
as α does not appear in the complexity, and cannot guarantee sublinear space. Summing up,
our algorithms can compete with the state of the art when suitably implemented, with the
additional bonus of guaranteeing small space and bounded delay.
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Related work. The idea of using small space in enumeration algorithms is not new, as
witnessed by the notion of “compactness” introduced in Fukuda [17]: however, his goal is
not sublinear space as in our paper, but polynomially bounded space in terms of the input
size and the maximum output size of a solution. It is also worth mentioning that the class
of CAT (constant amortized time) enumeration algorithms described in Ruskey’s book [30]
seems to be very promising but our algorithms cannot fall within this class as their amortized
cost per solution is non-constant.

Our algorithms are based on the reverse search paradigm introduced by Avis and Fukuda [4]
as it has been conceived to be space-efficient by its authors. Also, we reuse some of the
machinery introduced by Tsukiyama et al. [36] and Makino and Uno [25]. In the reverse
search the solutions are the nodes of a virtual digraph, for which a “successor” function is
defined to jump from one solution to the other. (Gély et al. [20] study new combinatorial
properties of this virtual digraph.) A spanning tree represents all the solutions, where the
depth corresponds to the number of nested levels of the corresponding recursion. To achieve
sublinear space, our algorithms employ the stateless reverse search to avoid using the stack,
plus other properties that exploit the structure of the maximal clique enumeration problem.

Turning to the state of the art for the maximal clique enumeration problem, Table 1
summarizes the main results. The papers by Bron and Kerbosch [7] and Tsukiyama et
al. [36] have defined the main lines of research for algorithms using polynomial space, and
they are currently at the heart of many other algorithms. The Bron-Kerbosch algorithm
relies on a backtracking scheme that is adopted in several efficient algorithms [16, 34, 41].
The algorithm by Tsukiyama et al. has been originally conceived for the enumeration of
maximal independent sets, which is a problem equivalent to that of maximal cliques, and
inspired at least in part the algorithm by Johnson et al. [23], which produces solutions in
lexicographic order but requires exponential space (see also [20]). The approach has been
subsequently adapted to clique enumeration by Chiba-Nishizeki [11], and Makino-Uno [25]
has reinterpreted [36] in the paradigm of reverse search.

Bron-Kerbosch scheme. The Bron-Kerbosch based algorithms are a popular choice for
enumerating cliques due to their simplicity and good performance in practice. The original
version [7] does not provide any guarantee. The version in [34] guarantees a total running
time of O(3n/3), which is optimal for Moon-Moser graphs as they have 3n/3 cliques [8, 27].
The version in [16] further refines and improves the work for sparse graphs, which may have
up to (n − d)3d/3 cliques, by producing an algorithm with O(d(n − d)3d/3) time. All of
these approaches use O(n + q∆) space to store sets of candidates and visited vertices. It
is possible to modify these algorithms to decrease their space usage (e.g. by modifying the
data structure in [16]) but, to the best of our knowledge, with state of the art techniques
they would still require Ω(∆), which is not sublinear as ∆ can be Θ(n) in sparse graphs.
Algorithms that follow this scheme are characterized by their complexity being related to
the worst-case number of cliques in a graph (instead of α), and give no guarantees on the
cost per solution nor the delay: these can be shown to be both Ω(n3) for [34], while [16] can
have a delay of Ω(3n/6) for some families of graphs.

Tsukiyama et al. scheme. The motivation behind algorithms in this class is to achieve
an output-sensitive cost that is proportional to the number α of maximal cliques times a
function that depends on the graph parameters. The original algorithm by Tsukiyama et
al. [36] is a backtracking procedure that enumerates maximal independent sets in O(mn)
time per solution. As a maximal independent set is a maximal clique in the complementary
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graph, this gives an algorithm for enumerating maximal cliques in O((n2 −m)n) time per
solution. The adaptation of the algorithm to maximal cliques has been improved by Chiba
and Nishizeki [11], who bring the delay down to O(md):1 this algorithm is still based on
a stateful backtracking procedure in which the recursion tree has depth Ω(n), making the
required space Ω(n). Makino and Uno [25] take a step towards statelessness by adapting [36]
and [23] to the paradigm of reverse search. The algorithm is still a stateful recursive approach,
which takes Ω(n) space (the depth of the recursion tree). Differently from its predecessors,
each node of the tree corresponds to a unique maximal clique whose children can be computed
as a function of the graph and the clique itself. The Makino-Uno algorithm is provided in
two versions, one combinatorial with delay O(∆4) and one based on matrix multiplication
with delay O(n2.37). The former has been improved to O(∆h3) by Chang et al. [9], where h
is the smallest integer such that |{v ∈ V : |N(v)| ≥ h}| ≤ h: since the reverse search is not
stateless, here the space remains Ω(n). The latter has been improved to O(n2.09) by Comin
and Rizzi [12] using matrix multiplication but requiring higher space usage and setup time.

2 Preliminaries

Let G(V,E) be an undirected graph with |V | = n and |E| = m. We assume that G is
connected and represented using ordered adjacency lists. A clique is a subset K ⊆ V

of pairwise connected vertices: we will use K to denote both this subset of vertices and
the subgraph induced by them. Given G, let ∆ be the maximum vertex degree, d the
degeneracy, and q be the maximum clique size, where q − 1 ≤ d ≤ ∆ ≤ n − 1 ≤ m and
d = O(

√
m); also, let v1 . . . vn be the vertices of V labelled in a degeneracy ordering (see

the introduction). We denote by V≤i the set of vertices v1 . . . vi. Let us define N(v) as the
set of neighbors of v and N>(v) as {x ∈ N(v) : x > v}. We define N<(v) analogously.
Note that |N>(v)| ≤ d as the graph is labelled in degeneracy ordering. Given a set of
vertices A ⊂ V , we define N(A) =

⋂
v∈A N(v) as the set of neighbors common to all the

vertices in A. We call heads the vertices v such that N<(v) = ∅. Moreover, for any v ∈ V ,
A≤v = A∩V≤v and A<v = A≤v \{v}. Given two set of vertices A and B, we say that A < B

if A is lexicographically smaller than B. Given a set X ⊆ V , we define complete(X) as
the lexicographically smallest maximal clique that contains X.

I Lemma 1. If X1 ⊆ X2, then complete(X1) ≤ complete(X2).

Proof. Let C1 and C2 be the set of maximal cliques containing respectively X1 and X2.
Clearly C1 ⊇ C2, and as complete(X) returns the lexicographically smallest maximal clique
that contains X we have complete(X1) = min(C1) ≤ min(C2) = complete(X2). J

3 Reverse Search Revisited

We sketch a reverse search algorithm for the maximal clique enumeration that revises and
simplifies the algorithm by Makino and Uno [25], which is itself a reinterpretation of the
works of Tsukiyama et al. in [36] and Johnson et al. in [23] for maximal independent sets.

The rationale of the algorithm can be summarized as follows. Suppose we iteratively add
the vertices of G to a graph G′, which is initially empty. Each time a vertex v is added,
the new maximal cliques can be computed by looking at the maximal cliques of G′: an
existing clique K ⊆ G′ can be extended partially or totally by v. Of course computing all

1 The work actually exploits the arboricity, but we use d for simplicity as the arboricity is Θ(d).
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Algorithm 1: Enumerate all maximal cliques (a.k.a. revisited Makino-Uno)
Input :Graph G(V,E) where vertices are labeled in degeneracy ordering
Output :Maximal cliques in G
Let v1, v2, . . . vn ∈ V be the vertices labeled in degeneracy ordering, such that v1, . . . , vj are
heads, where j is the number of heads (1 ≤ j ≤ n).

for i ∈ {1, . . . , j} do
Ri ← complete({vi})
spawn(Ri)

Function complete(K)
choose any v ∈ K
foreach increasing w ∈ N(v) do

if K ⊆ N(w) then
K ← K ∪ {w}

return K

Function spawn(K)

cand←
{
w ∈

⋃
u∈K

N>(u)
∖
K : w > pi(K)

}
foreach v ∈ cand do

K′v ← K<v ∩N(v)
D ← complete(K′v ∪ {v})
if complete(K′v) = K and D<v = K′v then

spawn(D)

the cliques of G in this way requires keeping most of the cliques of the graph in memory
(as for independent sets in [23]), which takes exponential space. In order to avoid to store
the cliques, we address the following question: given the clique K, maximal for G′, which
vertices in G \ G′ expand K and which cliques do they produce in G? This “production”
relationship gives us the “successor” function of the reverse search paradigm. Technicalities
are needed to avoid expanding K with candidates leading to the same clique more than once.

It is worth observing that, differently from [25], our algorithm assumes that the vertices of
G are given in degeneracy ordering and begins the recursion from a set of root cliques (instead
of the lexicographically minimum one), where each root Ri corresponds to complete run on
the head vi. Moreover, we alter the given degeneracy ordering in such a way that the heads
are at the beginning. This is always possible: as heads have no backward edges, when moved
backwards they will not change the number of forward edges of any vertex (see Section 6).

The pseudocode is shown in Algorithm 1. The function spawn makes use of the notion
of parent index, borrowed from [25]:

I Definition 2 (Parent Index). Given a maximal clique K, pi(K) is the smallest x such that
complete(K≤x) = K.

The cand set contains the vertices that partially extend K and that are greater than
pi(K). For each vertex in cand we try to generate a child clique; the check in spawn
corresponds to conditions (c) and (d) from Lemma 2 in [25], which guarantees that each child
clique is only generated once. We remark that each call of spawn returns at least a clique.

Space usage and delay. Referring to Algorithm 1, we observe that the complete function
only needs to store the set K, whose size is O(q), and performs O(∆) iterations that take
Õ(q) time each. The cost of an iteration on vertex w is also bounded by Õ(|N(w)|), so
the cost of all the iterations is bounded by Õ(m). Since pi can be computed by running
complete q times, we can conclude the following:

I Lemma 3. Function complete in Algorithm 1 takes O(q) space and Õ(min{q∆,m})
time. Moreover, computing pi takes O(q) space and Õ(qmin{q∆,m}) time.

For the sake of clarity, we will refer to the vertices in G and to the nodes in the recursive
tree induced by our approach. The space requirement of each recursive node is bounded by
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the size of cand, as all other lines take O(q) space. As cand ⊆ V is the union of up to q
sets of vertices each of size at most d, we have |cand| ≤ min{qd, n}. The recursion depth of
Algorithm 1 is O(n), for a total space requirement of O(nmin{qd, n}).

Consider now the delay of Algorithm 1. Note that selecting the next head takes constant
time as heads are contiguous. By making use of alternative output [37], as we have no dead
ends, the delay of the algorithm is bounded by the cost of O(1) recursive nodes. The function
spawn performs |cand| iterations, whose cost is dominated by complete. The total cost
of the loop is thus Õ(min{qd, n}min{q∆,m}), which corresponds to the total cost of the
recursion node as it dominates the cost of computing cand. As a consequence we have some
new interesting bounds shown in Lemma 4, which we improve in the rest of the paper.

I Lemma 4. Algorithm 1 uses O(nmin{qd, n}) space and has Õ(min{qd, n}min{q∆,m})
delay.

4 Improved Algorithm

Algorithm 1 does not meet our space requirements; still, it is the starting point to build
our space efficient scheme. The first issue is its recursive nature: in function spawn, each
time a recursive call is performed the status of the current call needs to be saved. As a
result, we require the space needed by each recursive node multiplied by the height of the
recursion tree. Note that the standard stack-based transformation of recursive programs into
iterative ones, as done in [9], does not solve the issue, as the stack size would be Ω(n). We
will therefore navigate implicitly the recursion tree induced by the reverse search, without
using a stack. The other important issue to achieve sublinear space is the cand set, whose
size can be min{qd, n}. Hence, we need to traverse cand without materializing it.

To address the first issue, we represent the state of the computation with the pair:
the current clique K
the “bookmark” vertex v in cand for K (where initially v = pi(K)).

We remark that the bookmark vertex allows us to resume the computation in the parent
without the need of storing information for each recursive level.

I Fact 1. The state 〈K, v〉 requires O(q) space.

Furthermore, we implicitly traverse the recursion tree using these navigation primitives:
is-root(K) checks if K is the root of current recursion tree.
parent-state(K) returns the state for the parent node of K in the recursion tree.
get-next-cand(K, v) finds the candidate following v in cand for the current K.
child-exists(K, v) checks whether the current state will lead to a child maximal clique.

Algorithm 2 shows how to implement and use the above primitives, and Lemmas 5, 6, 7, 10
prove their correctness.

I Lemma 5. Let K be any maximal clique examined in Algorithm 1: K is a root iff
pi(K) = min(K). As a corollary, roots have no parent.

Proof. Let vi be the head of the recursion tree containing K and Ri = complete(vi) the
relative root. By definition we have that vi is a head iff N<(vi) = ∅, so a head must be the
smallest vertex of any clique. We then have vi = min(Ri), and since min(D) ∈ K for any
child D of K, there cannot be heads other than vi in the current recursion tree. From this it
immediately follows that no other roots are found in the subtree of the root Ri, and hence
roots have no parent.
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Algorithm 2: Improved enumeration of maximal cliques
Assume min(∅) = null, and adopt the following shorthands for maximal clique K:
sub-clique K′v ≡ K<v ∩N(v) and vertex set BK ≡ {u ∈ V \K : K<u ⊆ N(u)}.
Function improved-spawn(K)

v ← pi(K)
while true do

childless← true

while v ← get-next-cand(K, v) 6=null do
if child-exists(K, v) then

K ← complete(K′v ∪ {v})
childless← false

break

if childless then
if is-root(K) then return
else
〈K, v〉 ← parent-state(K)

Function is-root(K)
return pi(K) = min(K)

Function child-exists(K, v)
return N(K′v) ∩ (BK ∪N<(v)) = ∅

Function get-next-cand(K,v)
return min{w ∈

⋃
u∈K

N>(u) \K :
w > v}

Function parent-state(K)
v ← pi(K)
return 〈complete(K<v), v〉

We now show that N<(min(K)) = ∅ and K = complete({min(K)}) iff pi(K) = min(K).
This concludes the proof as the first condition correspond to the definition of a root (min(K)
being the corresponding head). Since {min(K)} = K≤min(K), we have pi(K) = min(K)
iff K = complete({min(K)}) by definition of pi. Moreover, K = complete({min(K)})
implies N<(min(K)) = ∅: indeed, if there was w ∈ N<(min(K)), complete would add w
to {min(K)}, making it different from K. J

The next lemma states that given a clique D, the parent index allows us to identify the
clique that generated D and the vertex in cand used to produce D.

I Lemma 6. Let K, D, and v be defined as in spawn when the recursive call is performed
on D. Then parent-state(D) = 〈K, v〉 in improved-spawn.

Proof. We prove that, given a maximal clique D which is not a root, the parent of D in
the computational tree is complete(D<pi(D)) and the vertex used by the algorithm spawn
to produce D is pi(D). Since K is the parent of D, we have D = complete(K ′v ∪ {v}).
From the conditions tested on K ′v and D, we have complete(D<v) = complete(K ′v) = K.
Now we only need to prove that v = pi(D). We have that D = complete(K ′v ∪ {v}) =
complete(D≤v) > complete(D<v) = K, applying Lemma 1. From this it follows that for
any w < v, complete(D≤w) ≤ complete(D<v) = K < D, thus v = pi(D). J

Since the candidates are examined in increasing order, when returning from the current
child of K, we are able to provide all the remaining children of K. Indeed let v be pi(D):
as a consequence of Lemma 6 we know that D was generated from K using candidate v
and that K = complete(D<v). By using the next lemma, we can provide and test all the
remaining candidates, i.e. the ones greater than v.

I Lemma 7. For a given maximal clique K, let cand = {w ∈
⋃

x∈K N>(x)\K : w > pi(K)}
in spawn and let z1, . . . , zr be the sequence of vertices generated by get-next-cand in
improved-spawn. Then cand = {z1, . . . , zr}.

Proof. We give the proof by induction. The first time get-next-cand is invoked v is pi(K),
meaning that z1 is the minimum element of cand. Let zj be the last vertex generated by



A. Conte, R. Grossi, A. Marino, and L. Versari 148:9

get-next-cand and let us assume that z1, . . . , zj are the first j vertices of cand. Then
min{w ∈

⋃
u∈K N>(u) \K : w > zj} is the the (j + 1)-th element of cand if |cand| > j,

null otherwise. J

The check done in child-exists(K, v) is equivalent to the check done in spawn. We will
prove this in Lemma 10 using Lemmas 8 and 9.

I Lemma 8. N(K ′v) ∩ BK = ∅ is equivalent to complete(K ′v) = K, where BK = {u ∈
V \K : K<u ⊆ N(u)}.

Proof. Let us first prove that if ∃w ∈ N(K ′v) ∩ BK then complete(K ′v) 6= K. Note that
w is adjacent to all the vertices in K<w and in K ′v. complete(K ′v) will iteratively add to
K ′v the smallest vertex z that is a neighbor of all the vertices in K ′v, so clearly z ≤ w. If
z 6∈ K we have complete(K ′v) 6= K; if z ∈ K then z ∈ K<w, thus z ∈ N(w) and w is still a
candidate for the complete procedure. As w remains a candidate when z ∈ K, the process
will eventually add either w or another z 6∈ K. Hence, complete(K ′v) 6= K.

We now prove that if complete(K ′v) 6= K then N(K ′v)∩BK 6= ∅. Let z be the first vertex
not in K selected by complete(K ′v). Since all vertices in K<z were added to K ′v before z, we
have K<z ⊆ N(z) and hence z ∈ BK . Moreover, since z has been selected by the complete
procedure, K ′v ⊆ N(z), which implies z ∈ N(K ′v). It follows that N(K ′v) ∩B ⊇ {z} 6= ∅. J

I Lemma 9. N(K ′v) ∩N<(v) = ∅ is equivalent to complete(K ′v ∪ {v})<v = K ′v.

Proof. We prove that if N(K ′v) ∩ N<(v) 6= ∅ then complete(K ′v ∪ {v})<v 6= K ′v. Let z
be the smallest vertex in N(K ′v) ∩ N<(v). Note that z 6∈ K ′v, since z ∈ N(K ′v). The first
iteration of complete(K ′v ∪ {v}) selects the smallest vertex in N(K ′v ∪ {v}), which is z,
since N(K ′v ∪ {v}) = N(K ′v) ∩ N(v). Since z < v, we have z ∈ complete(K ′v ∪ {v})<v,
which implies complete(K ′v ∪ {v})<v 6= K ′v.

We now prove that if complete(K ′v ∪{v})<v 6= K ′v then N(K ′v)∩N<(v) 6= ∅. Note that
K ′v ⊆ complete(K ′v ∪ {v})<v since K ′v ⊆ V<v. Let z = min(complete(K ′v ∪ {v})<v \K ′v).
Since z has been selected by function complete, we have z ∈ N(K ′v ∪ {v}), that is
z ∈ N(K ′v) ∩N(v). Since z < v, we have N(K ′v) ∩N<(v) ⊇ {z} 6= ∅. J

I Lemma 10. N(K ′v) ∩ (BK ∪N<(v)) = ∅ iff complete(K ′v) = K and complete(K ′v ∪
{v})<v = K ′v

Using Lemmas 5, 6, 7 and 10, we finally obtain the following result:

I Lemma 11. Function spawn in Algorithm 1 and function improved-spawn in Algorithm 2
are equivalent.

Proof. Setting D = complete(K ′v ∪ {v}) we observe that improved-spawn(K) simulates
the preorder traversal of the recursion tree induced by spawn(K). When all the children of
the current clique K have been explored during the traversal, childless is set to true. In this
case, if K is the root of the current tree there are no more maximal cliques to be generated
with the given head vi; otherwise, the state of the parent is restored. J

5 Analysis

Analogously to Section 3, the delay of Algorithm 2 is the sum of the running times of all the
iterations corresponding to the same K. Specifically, the number of iterations of the while
loop is |cand| ≤ min{qd, n} (see Lemma 7). The space usage of improved-spawn, thanks
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to its statelessness, corresponds to that of a single iteration. In order to give space and time
bounds, let us analyze the costs of our navigation primitives.

Since computing pi(K) dominates the space and time costs of functions is-root and
parent-state, we use the bounds in Lemma 3. The next candidate can be obtained from
K and the bookmark v as follows: for each element x ∈ K, perform a binary search in
N(x) to obtain the smallest vertex greater than v; the minimum of these vertices is the next
candidate. Thus we obtain the bounds below:

I Lemma 12. is-root(K) and parent-state(K) take Õ(qmin{q∆,m}) time and O(q)
space. get-next-cand uses Õ(q) time and constant space.

Next we give a careful analysis of child-exists, the dominating cost of improved-spawn.

Cost of testing if a child exists. Function child-exists makes use of the sets BK and
N(K ′v). Due to our memory constraints, we cannot store N(K ′v) explicitly, since it would
take Ω(∆) space. For this reason, we need to iterate over N(K ′v) without materializing it.

Analogously, we cannot store BK = {v ∈ V \K : K<v ⊆ N(v)}, whose size can be Ω(n).
The following lemma will allow us to overcome this issue:

I Lemma 13. The set BK is equal to V<min(K) ∪ {u ∈ N>(min(K)) \K : K<u ⊆ N(u)}.

Proof. vertices in V<min(K) are in BK as K<min(K) = ∅, thus they can be stored implicitly.
All other vertices must clearly be forward neighbors of min(K). J

We denote the non-trivial part of BK , i.e. {u ∈ N>(min(K)) \K : K<u ⊆ N(u)}, as B′K .
We can compute it by testing |N>(min(K))| ≤ d candidates in O(|K|) = O(q) time.

I Lemma 14. Computing (or iterating over) B′K can be done in Õ(qd) time.

We will now analyze the cost of iterating over N(K ′v), and two possible ways of managing
BK (storing it or iterating it implicitly) leading to two different bounds.

Iterating over N(K′
v). Iterating over N(K ′v) using constant space can be done as follows.

Let w be the vertex of K ′v with lowest degree: iterate over the vertices z ∈ N(w) and for
each check whether K ′v ⊆ N(z). This costs Õ(|N(w)||K ′v|) = Õ(

∑
y∈K′

v
|N(y)|), since w is

the lowest degree element of K ′v.

I Lemma 15. The total cost of iterating over all of the sets N(K ′v) for v in
⋃

x∈K

N>(x) is

Õ(dmin{q∆,m}) time.

Proof. Let CK =
⋃

x∈K N>(x). Since the cost of iterating over a given N(K ′v) is bounded
by Õ(

∑
y∈K′

v
|N(y)|), the following steps prove the lemma:∑

v∈CK

∑
y∈K∩N<(v)

|N(y)| =
∑

v∈CK

∑
y∈K

|N(y)|I{y∈N<(v)}

=
∑
y∈K

∑
v∈CK

|N(y)|I{v∈N>(y)}

=
∑
y∈K

∑
v∈N>(y)

|N(y)|

=
∑
y∈K

|N>(y)| · |N(y)|

≤d
∑
y∈K

|N(y)| ≤ dmin{q∆,m} J
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Algorithm 3: In-place algorithm for moving heads to the beginning of V
Input :G(V,E), with V in degeneracy ordering and E as ordered adjacency lists L1 . . . Ln.
Output :G(V,E) with V relabeled in degeneracy ordering so that the j heads are v1, . . . , vj .

1 s, e← n+ 1
2 foreach s in decreasing order from n to 1 do // Reorder, relabel N>(v)
3 if s is not a head then
4 e← e− 1
5 foreach v < s in Ls do replace s with e in Lv

6 replace all v < s with 0 in Ls

7 swap Ls and Le

8 foreach v in decreasing order from n to 1 do // Relabel N<(v)
9 foreach x 6= 0 in Lv do replace the rightmost 0 in Lx with v

Storing BK . By applying Lemma 13, since we can check in constant time whether a vertex
is in V<min(K), we only need to store B′K , whose size is O(d) by definition. The computation
of B′K , which costs Õ(qd) time applying Lemma 14, is done once for K and once for each
child. Hence its cost is payed at most twice for each clique.

Observe that the cost of child-exists is dominated by that of the computation of N(K ′v),
since testing N(K ′v) ∩BK = ∅ and N(K ′v) ∩N<(v) = ∅ can be done in Õ(1) time for each
element of N(K ′v). Applying Lemma 15, we can conclude that:

I Lemma 16. Function child-exists can be implemented such that the cumulative cost of
all the calls to child-exists(K, v) for a fixed K is O(d) space and Õ(dmin{q∆,m}) time.

Iterating over BK . In order to avoid storing B′K , we can compute the intersection between
N(K ′v) and BK iterating over both sets. The iterator for B′K works as described in Lemma 14.
Since the elements of both N(K ′v) and B′K are iterated in increasing order, the cost of
computing their intersection for each call of child-exists is the sum of the costs of the
two iterations. Consider the sum of these costs over all the calls of child-exists: applying
Lemma 14 and Lemma 15, we obtain a total cost of Õ(dmin{q∆,m}+ qdmin{qd, n}), since
|cand| ≤ min{qd, n}. As a result, we have the following lemma:

I Lemma 17. Function child-exists can be implemented such that the cumulative cost
of all the calls to child-exists(K, v) for a fixed K is O(q) space and Õ(dmin{q∆,m} +
qdmin{qd, n}) time.

The final algorithm corresponds to plugging Algorithm 2 into Algorithm 1, i.e. replacing
spawn with improved-spawn. In order to show that the final algorithm takes O(q) or O(d)
space as well, we should also perform the setup described in Section 6. Using Algorithm 3 as
setup, and applying Fact 1 and Lemmas 12, 16, and 17, we obtain our final result (recall
that q − 1 ≤ d ≤ ∆ ≤ n− 1 ≤ m and d = O(

√
m)).

I Theorem 18. Let G be an undirected connected graph with n vertices and m edges, whose
adjacency lists are ordered and whose vertices are labeled in degeneracy ordering. Let ∆ be
the maximum degree of its vertices, q the size of its largest clique, and d its degeneracy. Then
there exists an algorithm that lists all the maximal cliques in G that has Õ(m) setup time,
O(q) space usage, and Õ(qd(∆ + qd)) delay. The latter bound improves to Õ(qd∆) if space
usage is increased to O(d). Space is always sublinear in the size of G.
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Table 2 Experimental results of our comparison with output-sensitive algorithms in the state of
the art. For the graph statistics (upper part), we refer to Table 1. For the comparison (lower part)
we have considered the total time (time), the delay (delay), and the space (mem).

dblp-2008 Amazon-0505 in-2004 eu-2005
n 511 163 410 236 1 353 703 862 664
m 1 871 070 2 439 436 13 126 172 16 138 468
α 447 563 1 034 135 3 384 922 5 727 256
∆ 576 2 760 21 869 68 963
d 114 10 488 388
q 115 11 489 387

time delay mem time delay mem time delay mem time delay mem
algo. sec ms MiB sec ms MiB sec ms MiB sec ms MiB

cn >2h 475 97.56 >2h 636 78.26 >2h 5 285 258.21 >2h 4 077 164.54
mu 39.5 18 3.01 16.9 22 3.01 6 102.7 3 691 52.62 >2h 11 395 30.52

cxq 21.2 4 0.11 60.7 12 0.25 >2h 6 004 1.02 >2h 621 3.15
ralg2 1.8 0.6 1.57 3.1 0.8 0.81 66.6 401 6.46 237.4 245 3.16

alg2 2.3 15 0.01 4.4 0.9 0.01 100.7 410 0.03 363.8 277 0.02

cn: Chiba-Nishizeki [11] mu: Sparse graph Makino-Uno [25] cxq: Chang et al. [9]
ralg2: Recursive Algorithm 2 alg2: Algorithm 2

6 Setup

Algorithm 3 gives some details on how to modify the degeneracy ordering of the vertices so
as to place the heads at the beginning in Õ(m) time and O(1) space. As already noted, the
resulting order is still a degeneracy ordering. The main idea is to maintain a sliding window
over the list of adjacency lists. The window incrementally collects the heads while moving
from the last vertex to the first one in the ordering, so that its final position is the beginning
of the ordering. The window is moved by swapping the greatest vertex before the window,
which is called s and the greatest vertex in the window, which is called e. In case s is a head,
the window is not shifted but simply enlarged to include s. While moving the window, the
occurrences of the labels of the swapped vertices s and e must be updated accordingly. To
this aim just the occurrences of s in N>(v) are relabeled, for each v neighbor of s. At the
end, the backward neighborhoods can be updated by looking at the forward ones.

It is straightforward to see that the time needed by Algorithm 3 is Õ(m). Indeed, in the
loop in line 2, each adjacency list is iterated at most once. The loop in line 8 has the same
time bound, i.e. Õ(m): it traverses the adjacency lists of all vertices performing replace
operations, which can be done in logarithmic time on ordered lists. The constant space usage
follows from the fact that just O(1) variables are stored.

7 Experimental Evaluation

In this section, we report some preliminary experiments on some large real-world networks
that have been taken from lasagne (lasagne-unifi.sourceforge.net/). Our computing
platform is a 24-core machine with Intel(R) Xeon(R) CPU E5-2620 v3 at 2.40GHz, with
128GB of shared memory. The operating system is a Ubuntu 14.04.2 LTS, with Linux kernel
version 3.16.0-30. The code has been written in C++ and forced to run on a single core.

Table 2 reports the results of the comparison between our algorithm and existing al-
gorithms which use at most linear space and are output-sensitive, i.e. the ones providing a
bounded delay or cost per solution, namely cn, mu, and cxq (see Table 1). We limited the
running time to two hours. The algorithm ralg2 refers to a recursive version of Algorithm 2.
alg2 refers to Algorithm 2 which takes O(q) memory by using Lemma 17 (similar results
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can be found for the iterative version which uses Lemma 16). For each algorithm and for
each graph, we report the total time, the maximum delay found while running, and the
memory usage (excluding the input size). Note that both ralg2 and alg2 are significantly
faster than cn, mu, and cxq. It is worth observing that the results highlight how the delay
of ralg2 and alg2 depends on d and q as shown in Theorem 18.

The running times of alg2 are in general higher than ralg2, even though its performance
is competitive. On the other hand, alg2 uses the smallest amount of memory, namely always
less than 0.03 MiB even when these graphs have hundreds of thousands of vertices and
millions of edges. The most striking result is for eu-2005, having more than 850 thousands of
vertices and more than 16 millions of edges, where our algorithm uses just 0.02 MiB. Finally,
observe that the memory seems to be proportional to d and q, since in-2004 and eu-2005
have relatively higher memory consumption.

For the sake of completeness, we also considered the state of the art for Bron-Kerbosch
based algorithms. In particular, we ran the algorithm in [15, 16] using the code provided by
the authors (we are grateful to them). Even though its cost per solution can be higher than
ours and its delay can be exponential, this algorithm is on the average 3.7 times faster than
alg2. On the other hand, as this algorithm uses linear memory, its memory consumption is
on the average 878.9 times larger than the memory of alg2.
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Abstract
We consider temporal graphs with discrete time labels and investigate the size and the approxim-
ability of minimum temporally connected spanning subgraphs. We present a family of minimally
connected temporal graphs with n vertices and Ω(n2) edges, thus resolving an open question of
(Kempe, Kleinberg, Kumar, JCSS 64, 2002) about the existence of sparse temporal connectivity
certificates. Next, we consider the problem of computing a minimum weight subset of temporal
edges that preserve connectivity of a given temporal graph either from a given vertex r (r-MTC
problem) or among all vertex pairs (MTC problem). We show that the approximability of r-MTC
is closely related to the approximability of Directed Steiner Tree and that r-MTC can be solved
in polynomial time if the underlying graph has bounded treewidth. We also show that the best
approximation ratio for MTC is at least O(2log1−ε n) and at most O(min{n1+ε, (∆M)2/3+ε}), for
any constant ε > 0, where M is the number of temporal edges and ∆ is the maximum degree of
the underlying graph. Furthermore, we prove that the unweighted version of MTC is APX-hard
and that MTC is efficiently solvable in trees and 2-approximable in cycles.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory

Keywords and phrases Temporal Graphs, Temporal Connectivity, Approximation Algorithms

Digital Object Identifier 10.4230/LIPIcs.ICALP.2016.149

1 Introduction

Graphs and networks are ubiquitous in Computer Science, as they provide a natural and useful
abstraction of many complex systems (e.g., transportation and communication networks) and
processes (e.g., information spreading, epidemics, routing), and also of the interaction between
individual entities or particles (e.g., social networks, chemical and biological networks).
Traditional graph theoretic models assume that the structure of the network and the strength
of interaction are time-invariant. However, as observed in e.g., [3, 19], in many applications
of graph theoretic models, the availability and the weights of the edges are actually time-
dependent. For instance, one may think of information spreading and distributed computation
in dynamic networks (see e.g., [6, 12, 19, 20]), of mobile adhoc and sensor networks (see e.g.,
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[22]), of transportation networks and route planning (see e.g., [3, 15]), of epidemics, biological
and ecological networks (see e.g., [17, 19]), and of influence systems and coevolutionary
opinion formation (see e.g., [5, 9]).

Several variants of time-dependent graphs have been suggested as abstractions of such
settings and computational problems (see e.g., [6] and the references therein). No matter
the particular variant, the main research questions are usually related either to optimizing
or exploiting temporal connectivity or to computing short time-respecting paths (see e.g.,
[1, 2, 3, 13, 15, 19, 21]). In this work, we adopt the simple and natural model of temporal
graphs with discrete time labels [19] (and its extension with multiple labels per edge [21]), and
study the existence of dense minimally connected temporal graphs and the approximability
of temporally connected spanning subgraphs with minimum total weight.

Temporal Graphs and Temporal Connectivity. A temporal graph is defined on a time-
invariant set of n vertices. Each (undirected) edge e is associated with a set of discrete time
labels denoting when e is available. If every edge is associated with a single time label, as in
[19], the temporal graph is simple. An edge e available at time t comprises a temporal edge
(e, t) and there is a positive weight w(e, t) associated with it. A (resp. strict) temporal (or
time-respecting) path is a sequence of temporal edges with non-decreasing (resp. increasing)
time labels. So, temporal paths respect the time availability constraints of the edges.

Given a source vertex r, a temporal graph is (temporally) r-connected if there is a
temporal path from r to any other vertex. A temporal graph is (temporally) connected if
there exists a temporal path from any vertex to any other vertex. We study the existence of
dense minimally connected temporal graphs and the optimization problems of computing a
minimum weight subset of temporal edges that preserve either r-connectivity or connectivity.
We refer to these optimization problems as (Minimum) Single-Source Temporal Connectivity
(or r-MTC, in short) and (Minimum) All-Pairs Temporal Connectivity (or MTC, in short).
They arise as natural generalizations of Minimum Arborescence and Minimum Spanning
Tree in temporal networks, and to the best of our knowledge, their approximability has not
been determined so far (but see [1, 18] for some results on variants or special cases).

Previous Work and Motivation. The model of simple temporal graphs with discrete time
labels was introduced in [19]. It is essentially equivalent to the model of scheduled networks
[3], where each edge is available in a time interval. [3, 19] investigated how time availability
restrictions on the edges affect certain graph properties. Berman [3] presented an algorithm
for reachability by temporal paths and proved that an analogue of the max-flow-min-cut
theorem holds for temporal graphs. Kempe et al. [19] focused on vertex-disjoint temporal
paths and showed that Menger’s theorem does not generalize to temporal graphs. They also
identified a simple forbidden topological minor for Menger’s theorem in temporal graphs.
Mertzios at al. [21] introduced multiple labels per edge and studied the number of temporal
edges required for a temporal design to guarantee certain graph properties. Interestingly,
they proved that a variant of Menger’s theorem, which also takes time into account, holds
in all temporal graphs. A key technical tool in [3, 19, 21] is the time-expanded version of
a temporal graph, which reduces reachability, edge-disjoint path and vertex-disjoint path
questions in temporal graphs to similar questions in standard directed graphs.

Our motivation comes from a natural open question in [19, Section 6]. Attempting an
analogy between spanning trees of (standard undirected) graphs and connectivity certificates
of temporal graphs, Kempe et al. asked whether any simple temporal graph admits a sparse
connectivity certificate. They observed that any r-connected temporal graph has a time-
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respecting arborescence with n−1 edges that serves as a sparse r-connectivity certificate. For
all-pairs temporal connectivity, however, minimum temporal connectivity certificates may
have different sizes. Kempe et al. observed that an allocation of time labels to the edges of the
hypercube makes it minimally temporally connected. Hence, there are temporal graphs on n
vertices with temporal connectivity certificates of Ω(n logn) edges. An open question in [19,
Section 6] was to determine the tightest function c(n) for which any temporally connected
graph on n vertices has a temporal connectivity certificate with at most c(n) edges. A trivial
upper bound on c(n) is O(n2), since taking n time-respecting arborescences, each rooted
at a different vertex, results in a temporally connected subgraph. Kempe et al. observed
that if we consider strict temporal paths and allow for the same time label at different edges,
c(n) = Ω(n2) (e.g., consider Kn with the same time label on all edges). Nevertheless, for
connectivity with strict temporal paths and distinct time labels, the best known lower bound
on c(n) is Ω(n logn) ([1], again by a labeling of the hypercube).

Contribution. In this work, we resolve the open question of [19] and derive upper and lower
bounds on the approximability of Single-Source and All-Pairs Temporal Connectivity.

In Section 3, we construct a family of simple temporal graphs with 3n vertices and roughly
n(n+ 9)/2 edges which are almost minimally temporally connected, in the sense that the
removal of any subset of 5n edges results in a disconnected temporal graph 1 (Theorem 1).
Hence, we show that c(n) = Θ(n2) (i.e., there are graphs with dense minimum temporal
connectivity certificates), thus resolving the open question of [19]. Our construction is
essentially best possible and can be easily extended to connectivity by strict temporal paths
(with distinct time labels on the edges). An interesting feature of our construction (and an
indication of its tightness) is that slightly increasing the time label of a single temporal edge
results in a temporal connectivity certificate with O(n) edges!

Given the huge gap on the size of temporal connectivity certificates, it is natural to
ask about the complexity and the approximability of Single-Source and All-Pairs Temporal
Connectivity. Previous work shows that we can decide if a temporal graph is connected in
polynomial time (see e.g., [1, 3, 19]) and that Single-Source Temporal Connectivity can be
solved in polynomial time in the unweighted case. Another interesting observation is that if
we use the time-expanded version of a temporal graph for Minimum Temporal Connectivity,
the resulting optimization problems are quite similar to Group Steiner Tree problems. In
fact, this observation serves as the main intuition behind several of our results.

In Section 4, we show that the polynomial-time approximability of Single-Source Temporal
Connectivity (r-MTC) is closely related to the approximability of the classical Directed Steiner
Tree problem. Using a transformation from Directed Steiner Tree to r-MTC (Theorem 2) and
[16, Theorem 1.2], we show that r-MTC cannot be approximated within a ratio of O(log2−ε n),
for any constant ε > 0, unless NP ⊆ ZTIME(npoly log n). Our transformation also implies that
any o(nε)-approximation for r-MTC would improve the best known approximation ratio of
Directed Steiner Tree. On the positive side, using a transformation from r-MTC to Directed
Steiner Tree and the algorithm of [7], we obtain a polynomial-time O(nε)-approximation,
for any constant ε > 0, and a quasipolynomial-time O(log3 n)-approximation for r-MTC
(Theorem 3). We also show that r-MTC can be solved in polynomial time if the underlying
graph has bounded treewidth (Theorem 4).

1 Based on Theorem 1, we can easily obtain a family of minimally connected temporal graphs with
Ω(n2) edges (e.g., we remove temporal edges from the graph, as long as connectivity is preserved).
For simplicity and clarity, we avoid presenting a tight (but more complicated) construction of dense
minimally connected temporal graphs, and stick to almost minimal graphs in the proof of Theorem 1.
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In Section 5, we consider the approximability of All-Pairs Temporal Connectivity (MTC).
Theorem 3 implies an O(n1+ε)-approximation for MTC (Corollary 5). An approximation-
preserving reduction to Directed Steiner Forest and [14, Theorem 1.1] imply a polynomial-time
O((∆M)2/3+ε)-approximation for MTC, where M is the number of temporal edges and ∆
is the maximum degree of the underlying graph (Theorem 6). If M is quasilinear and ∆ is
polylogarithmic, we obtain an O(n2/3+ε)-approximation. On the negative side, a reduction
from Symmetric Label Cover implies that MTC cannot be approximated within a factor of
O(2log1−ε n) unless NP ⊆ DTIME(npoly log n) (Theorem 7, see also [10, Section 4]). We also
show that the unweighted version of MTC is APX-hard (Theorem 8).

In Section 6, we show that MTC can be solved optimally, in polynomial time, if the
underlying graph is a tree (Theorem 9), and that MTC is 2-approximable if the underlying
graph is a cycle (Theorem 10, but it is open whether MTC remains NP-hard for cycles).

For clarity, we focus on connectivity by (non-strict) temporal paths. However, all our
results can be extended (with small changes in the proofs and with the same approximation
guarantees and running times) to the case of connectivity by strict temporal paths.

Comparison to Previous Work. Akrida et al. [1] study connectivity by strict temporal
paths. Allocating distinct time labels to the hypercube, they obtain a minimal temporally
connected graph with Ω(n logn) edges. They also show that any allocation of distinct labels
to Kn results in a temporal graph that is not minimally connected. However, they do not
give any lower bound on the size of temporal connectivity certificates for Kn. Our Theorem 1
improves on the lower bound of [1] from Ω(n logn) to Ω(n2). [1] also shows that computing
the maximum number of edges that are redundant for temporal connectivity is APX-hard.

Huang et al. [18] consider the Single-Source (but not the All-Pairs) version of Minimum
Temporal Connectivity in simple scheduled networks [3]. They show that the problem is APX-
hard. Using a transformation to Directed Steiner Tree, they show that the approximation
guarantees of [7] carry over to Single-Source Temporal Connectivity for scheduled networks.
Although the approximation guarantees are the same, the reduction of [18] is slightly different
and less general than ours in Theorem 3 (which we discovered independently). In addition
to the approximability result, we present strong inapproximability bounds for r-MTC and
show that it is polynomially solvable for graphs with bounded treewidth.

Erlebach et al. [13] study the problem of computing a shortest exploration schedule of a
temporal graph, i.e., a shortest strict temporal walk that visits all vertices. They prove that
it is NP-hard to approximate the shortest exploration schedule within a factor of O(n1−ε),
for any ε > 0, and construct temporal graphs whose exploration requires Θ(n2) steps. Since
the notion of exploration schedules is much stronger than (r-)connectivity, their results do
not have any immediate implications for r-MTC and MTC (e.g., the Θ(n2)-explorable graphs
of [13, Lemma 4] admit a temporally connected subgraph with O(n) edges).

2 The Model and Preliminaries

Throughout, we let [k] ≡ {1, . . . , k}, for any integer k ≥ 1. An (edge weighted) temporal
graph G(V,E, L) with vertex set V , edge set E and lifetime L is a sequence of (undirected
edge-weighted) graphs (Gt(V,Et, wt))t∈[L], where Et ⊆ E is the set of edges available at time
t and wt(e) (or w(e, t)) is the nonnegative weight of each edge e ∈ Et. We often write G or
G(V,E), for brevity. A temporal graph G is unweighted if w(e, t) = 1 for all e ∈ Et and all
t ∈ [L]. For each edge e ∈ Et, we say that (e, t) is a temporal edge of G. For each edge e ∈ E,
Le = {t ∈ [L] : e ∈ Et} denotes the set of time units (or time labels) when e is available. A
temporal graph is simple if |Le| = 1 for all edges e ∈ E.
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We let n be the number of vertices and M =
∑

e |Le| be the number of temporal edges of
G. For temporal connectivity problems, we can assume that at least one temporal edge is
available in each time unit, and thus, L ≤M . The (static) graph G(V,E) is the underlying
graph of G. We say that G has some (non-temporal) graph theoretic property (e.g., is a tree,
a cycle, a clique, has bounded treewidth) if the underlying graph G has this property.

For a vertex set S, G[S] (resp. G[S]) is the underlying (resp. temporal) graph induced
by S. A spanning subgraph G′ of a temporal graph G = (Gt(V,Et, wt))t∈[L] is a sequence of
graphs (G′t(V,E′t, wt))t∈[L] such that E′t ⊆ Et. The total weight of G′ is

∑
t∈[L]

∑
e∈E′t

w(e, t).
A temporal (or time-respecting) path is an alternating sequence of vertices and temporal

edges (v1, (e1, t1), v2, (e2, t2), . . . , vk, (ek, tk), vk+1), such that ei = {vi, vi+1} ∈ Eti , for all
i ∈ [k], and 1 ≤ t1 ≤ t2 ≤ · · · ≤ tk. A temporal path is strict if t1 < t2 < · · · < tk. Such a
temporal path is from v1 to vk+1 (or a temporal v1 − vk+1 path).

A temporal graph G is (temporally) r-connected, for a given source r ∈ V , if there is a
temporal path from r to any vertex u ∈ V . A temporal graph G is (temporally) connected, if
there is a temporal path from u to v for any ordered pair (u, v) ∈ V ×V . If all temporal paths
are strict, G is strictly connected (or strictly r-connected). An (r-)connectivity certificate of
G is any spanning subgraph of G that is also (r-)connected.

Given a temporal graph G and a source vertex r, the problem of (Minimum) Single-Source
Temporal Connectivity (r-MTC) is to compute a temporally r-connected spanning subgraph
of G with minimum total weight. The optimal solution to r-MTC is a simple temporal graph
whose underlying graph is a tree (see e.g., [19, Section 6]). Given a temporal graph G, the
problem of (Minimum) All-Pairs Temporal Connectivity (MTC) is to compute a temporally
connected spanning subgraph of G with minimum total weight.

An algorithm A has approximation ratio ρ ≥ 1 for a minimization problem, such as
Single-Source and All-Pairs Temporal Connectivity, if for any instance I, the cost of A on I
is at most ρ times I’s optimal cost.

Directed Steiner Tree and Forest. To understand the approximability of r-MTC and
MTC, we use reductions from and to Directed Steiner Tree and the Directed Steiner Forest.

Given a directed edge-weighted graph G(V,E) with n vertices, a source r ∈ V and a set of
k terminals S ⊆ V , the Directed Steiner Tree (DST) problem asks for a subgraph of G that
includes a directed path from r to any vertex in S and has minimum total weight. The best
known algorithm for DST is due to Charikar et al. [7] and achieves an approximation ratio of
O(kε), for any constant ε > 0, in polynomial time, and of O(log3 k) in quasipolynomial time.
On the negative side, [16, Theorem 1.2] shows that DST cannot be approximated within a
factor O(log2−ε n), for any constant ε > 0, unless NP ⊆ ZTIME(npoly log n).

Given a directed edge-weighted graph G(V,E) with n vertices and m edges, and a
collection D ⊆ V × V of k ordered vertex pairs, the Directed Steiner Forest (DSF) problem
asks for a subgraph of G that contains an s− t path for each (s, t) ∈ D and has minimum
total weight. [14] presents a polynomial-time O(nε min{n4/5,m2/3})-approximation for DSF,
for any constant ε > 0.

3 A Lower Bound on the Size of Temporal Connectivity Certificates

In this section, we construct an infinite family of simple temporal graphs with Θ(n) vertices
and lifetime Θ(n) such that any temporal connectivity certificate has Ω(n2) edges. Our
construction is essentially best possible, since any temporal graph with n vertices and lifetime
L admits a connectivity certificate with O(min{n2, nL}) edges.
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I Theorem 1. For any even n ≥ 2, there is a simple connected temporal graph with 3n
vertices, n(n+ 9)/2− 3 edges and lifetime at most 7n/2, so that the removal of any subset of
5n edges results in a disconnected temporal graph.

Proof sketch. For any even n, we construct a simple connected temporal graph G with Θ(n)
vertices and Θ(n2) edges so that virtually any edge is essential for temporal connectivity.

We start with describing the construction. For any even n, G consists of 3n vertices
partitioned into three sets A = {a1, . . . , an}, H = {h1, . . . , hn} and C = {c1, . . . , cn}, with
n vertices each. The underlying graph G[A] is the complete graph Kn and comprises the
dense part of the construction with Θ(n2) edges. The edges of G[A] are partitioned into n/2
edge-disjoint paths p1, . . . , pn/2. Each path pi has length n− 1 and spans all vertices in A
(see Figure 1.a). All edges of each path pi have time label i.

The vertices of H comprise the intermediate part of the construction. There are no edges
with both endpoints in H. For every i ∈ [n/2], one endpoint of the path pi is connected to
h2i−1 and the other endpoint is connected to h2i. Both edges have time label i.

The vertices of C form the interconnecting part of the construction. For each i ∈ [n/2],
we refer to c2i−1 (resp. c2i) as the entry vertex (resp. the exit vertex) for the vertices h2i−1
and h2i. There are two edges connecting c2i−1 to h2i−1 and h2i with labels n/2 + 2i− 1 and
n/2+2i, respectively, and two edges connecting c2i to h2i−1 and h2i with labels (n/2+2i−1)ε
and (n/2 + 2i)ε, respectively, for some fixed ε ∈ (0, 1/(4n)). We also connect the vertices
of C to each other. For every i ∈ [n/2− 2], there are edges connecting c2i−1 to c2i+2 and
to cn, and a single edge connecting cn−3 to cn. To allocate time labels to these edges,
we order them in decreasing order of their endpoint with higher index, breaking ties by
ordering them in increasing order of their endpoint with lower index, i.e., the order is {c1, cn},
{c3, cn}, . . . , {cn−3, cn}, {cn−5, cn−2}, {cn−7, cn−4}, . . . , {c1, c4}. The time label of the k-th
edge in this order is 1− (k − 1)ε. Finally, for every i ∈ [n/2], there are an edge with time
label ε connecting the vertex c2i−1 to the vertex a2i−1 in A and an edge with time label n+ 1
connecting the vertex c2i to the vertex a2i in A (see also Figure 1.b).

The total number of edges is n(n + 9)/2 − 3, the number of different time labels is at
most 7n/2, and each edge has a single label.

Next, we present the intuition and discuss the main technical claims. The construction
is based on the collection p1, . . . , pn/2 of n/2 edge-disjoint paths, where all edges in each
path pi have label i. Extending each path pi to vertices h2i−1 and h2i, we get a path that
connects h2i to h2i−1 (and vice versa) and to all vertices in A at time i. Moreover, different
time labels make these paths essentially independent of each other, in the sense that if a
temporal walk begins and ends at time i, it can use only edges with label i (i.e., only edges of
this path) to connect h2i to h2i−1. Formalizing this intuition, we can show that the unique
temporal path from h2i to h2i−1 is through path pi. Therefore, all edges of G[A] must be
present in any temporally connected spanning subgraph of G. To achieve a dense underlying
graph G[A], we observe that the collection of n/2 edge-disjoint paths can be defined so that
they go through the same n vertices, in a different order each (see Figure 1.a). This describes
the main intuition behind our construction and explains how the dense and the intermediate
parts work. The only problem now is that H-vertices with high indices, e.g., hn, cannot
reach H-vertices with low indices, e.g., h1. The vertices in the interconnecting part C serve
to carefully connect each hj to each hi, with j > i+ 1, without destroying the property that
the only temporal path from h2i to h2i−1 is through path pi.

For every vertex pair h2i−1, h2i ∈ H, we introduce a vertex pair c2i−1, c2i ∈ C. As an
entry vertex, c2i−1 is connected to h2i−1 and h2i with “large” labels (larger than n/2). Hence,
starting from the rest of G, we can reach h2i−1 and h2i through c2i−1, but we cannot continue
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(a) Partition into 3 Hamiltonian paths. (b) Putting the 3 parts together.

Figure 1 The temporal graph constructed in the proof of Theorem 1 for n = 6.

to the edges of pi (with label i ≤ n/2). As an exit vertex, c2i is connected to h2i−1 and h2i

with “very small” labels (at most 1/4). Thus, starting from c2i, we can reach first h2i−1
and h2i, and then all vertices in A and any vertex hj with index j > 2i. Moreover, to avoid
creating a temporal path from h2i to h2i−1, the label of the edge {h2i, c2i−1} (resp. {h2i, c2i})
is larger than the label of the edge {h2i−1, c2i−1} (resp. {h2i−1, c2i}).

It remains now to connect the C-vertices to each other, without creating any alternative
temporal paths from h2i to h2i−1, for any i ∈ [n/2]. For each i ∈ [n/2], the edges between
C-vertices should create temporal paths from c2i−1 and c2i to any vertex cj with index
j < 2i − 1. On the other hand, they should not create any temporal c2i − c2i−1 paths,
since then we would have a new temporal h2i − h2i−1 path. We introduce roughly n edges
between C-vertices and carefully select their “small” labels in [3/4, 1]. Furthermore, to
achieve temporal connectivity between all vertex pairs, we introduce an edge {c2i−1, a2i−1}
with the minimum time label ε and an edge {c2i, a2i} with label n+ 1, for each i ∈ [n/2].

To complete the proof, we need to consider all possible types of ordered vertex pairs and
to show that the temporal graph G is indeed connected. Moreover, since any subset of at
least 5n edges includes some edges of G[A], we can show that the removal of any edge from
G[A] with label i destroys the unique temporal path from h2i to h2i−1. J

We should highlight that increasing the label of edge {a1, c1} from ε to 1, in the graph of
Theorem 1, results in a temporal graph that admits a connectivity certificate of size Θ(n).
Moreover, it is not hard to modify the construction of Theorem 1 so that all time labels of
the edges are distinct, the temporal graph G is connected by strict temporal paths, and the
removal of any subset of 5n edges results in a disconnected temporal graph. Therefore, the
quadratic lower bound of Theorem 1 also applies to connectivity by strict temporal paths
and improves on the lower bound of Ω(n logn) in [1, Theorem 3].

4 The Approximability of Single-Source Temporal Connectivity

We proceed to study the approximability of Minimum Single-Source Temporal Connectivity.
We show that the polynomial-time approximability of r-MTC is closely related to the
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approximability of the classical Directed Steiner Tree (DST) problem and that r-MTC can
be solved in polynomial-time for graphs of bounded treewidth.

4.1 A Lower Bound on the Approximability of r-MTC

We start with an approximation-preserving transformation from DST to r-MTC. The
intuition is that we can use strict temporal paths to “simulate” the directed edges of DST.

I Theorem 2. Any polynomial-time ρ(n)-approximation algorithm for r-MTC on simple
temporal graphs implies a polynomial-time ρ(n2)-approximation algorithm for DST.

Proof sketch. We present an approximation-preserving transformation from the DST to
r-MTC. Given an instance I = (G(V,E,w), S, r) of DST with |V | = n, we construct a
temporal graph G′ with n2 vertices so that (i) any Steiner tree connecting r to S in G can be
mapped to an r-connected subgraph of G′ with no larger cost; and (ii) given any r-connected
subgraph of G′, we can efficiently compute a feasible Steiner tree for I with no larger cost.

Each vertex u ∈ V corresponds to a vertex u in the temporal graph G′. For every directed
edge e = (u, v) of G, we create n− 1 strict temporal u− v paths of length 2. Specifically, for
every u ∈ V , G′ contains auxiliary vertices zu

i , for all i ∈ [n− 1], and temporal edges {u, zu
i }

with time label i and weight 0. For every edge e = (u, v) ∈ E, G′ contains temporal edges
{zu

i , v} with time label i + 1 and weight w(e), for all i ∈ [n − 1]. Let Z = {zu
i }u∈V,i∈[n−1]

be the set of all auxiliary vertices. For every vertex x ∈ Z ∪ (V \ S), x 6= r, G′ contains
a temporal edge {r, x} with time label n + 1 and weight 0. These edges ensure that r is
connected to all non-terminal and auxiliary vertices at no additional cost. J

Directed Steiner Tree cannot be approximated within a ratio of O(log2−ε n), for any
constant ε > 0, unless NP ⊆ ZTIME(npoly log n) [16, Theorem 1.2]. Theorem 2 implies
that this inapproximability result carries over to r-MTC. Moreover, any polynomial-time
o(nε)-approximation algorithm for r-MTC would immediately improve the best known
approximation ratio of the notoriously difficult DST problem.

4.2 An Approximation Algorithm for r-MTC

The following shows an approximation-preserving reduction from r-MTC to DST (see also
the more general proof of Theorem 6). Then, we can use the algorithm of [7] and approximate
r-MTC within a ratio of O(nε), for any constant ε > 0, in polynomial time, and within a
ratio of O(log3 n) in quasipolynomial time.

I Theorem 3. Any polynomial-time ρ(k)-approximation algorithm for DST implies a poly-
nomial-time ρ(n)-approximation algorithm for r-MTC on general temporal graphs.

4.3 A Polynomial-Time Algorithm for Graphs with Bounded Treewidth
The following shows that r-MTC can be solved in polynomial time, by dynamic programming,
if the underlying graph has bounded treewidth (see e.g., [11] about nice tree decompositions
and dynamic programming algorithms for graphs of bounded treewidth).

I Theorem 4. Let G be a temporal graph on n vertices with lifetime L, source vertex r and
treewidth at most k. Then, there is a dynamic programming algorithm which given a nice tree
decomposition of G, computes an optimal solution to r-MTC in time O(nk23k(L+ k)k+1).
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5 The Approximability of All-Pairs Minimum Temporal Connectivity

In this section, we study the approximability of the all-pairs version of Minimum Temporal
Connectivity in general temporal graphs. Reducing MTC to r-MTC and to Directed Steiner
Forest, we obtain polynomial-time approximation algorithms for MTC, albeit with not so
strong guarantees (Corollary 5 and Theorem 6). To justify the poor approximation ratios,
we reduce Symmetric Label Cover (SLC) to MTC and show that any ρ(n)-approximation for
MTC implies a ρ(n2)-approximation for SLC (Theorem 7). Moreover, using an approximation-
preserving reduction from the Steiner Tree problem, we show that the unweighted version of
MTC is APX-hard (Theorem 8).

5.1 Approximation Algorithms for MTC
Using every vertex of the temporal graph as a source vertex and taking the union of the
solutions obtained by the algorithm of Theorem 3 for r-MTC, we obtain the following.

I Corollary 5. For any constant ε > 0, there is a polynomial-time O(n1+ε)-approximation
algorithm for MTC on temporal graphs with n vertices.

Next, we present a reduction from MTC to Directed Steiner Forest (DSF) that leads
to a different algorithm. Although the approximation ratio may be worse than O(n1+ε) in
general, this algorithm gives significantly better guarantees if the total number of temporal
edges is quasilinear (and if the maximum degree of the underlying graph is polylogarithmic).

I Theorem 6. Let G be a temporal graph with n vertices and M temporal edges such
that the underlying graph has maximum degree ∆. Then, for any constant ε > 0, there
is a polynomial-time O(Mε min{M4/5, (∆M)2/3})-approximation algorithm for MTC on
G. If M = O(n poly logn), we obtain an approximation ratio of O(n4/5+ε). If both M =
O(n poly logn) and ∆ = O(poly logn), we obtain an approximation ratio of O(n2/3+ε).

Proof. The reduction from DSF to MTC is a generalized version of the reduction used in the
proof Theorem 3. Let I be an instance of MTC consisting of an underlying graph G(V,E), a
finite set of time labels Le for each edge e, and a weight w(e, t) for any temporal edge (e, t).
We show how to transform I into an instance I ′ of DSF so that (i) any feasible solution of
I can be mapped to a feasible solution of I ′ with no larger total weight; and (ii) given a
feasible solution of I ′, we can compute a feasible solution of I with no larger total weight.

For convenience, we denote H the edge-weighted directed graph of the DSF instance I ′.
For every temporal edge (e, t) of G, H contains two vertices h1

(e,t) and h2
(e,t). Intuitively,

h1
(e,t) indicates that we may use (e, t) and h2

(e,t) indicates that we actually use (e, t). For each
edge e ∈ E, let l1(e) < l2(e) < ... < lk(e) be the time labels in Le. For every i ∈ [k − 1], H
contains a directed edge (h1

(e,li(e)), h
1
(e,li+1(e))) with weight 0. Intuitively, these edges indicate

that we can wait and use e at some later time up to lk(e). Moreover, for every i ∈ [k], H
contains a directed edge (h1

(e,li(e)), h
2
(e,li(e))) with weight w(e, li(e)). This edge indicates that

we actually use the temporal edge (e, li(e)) and incur the corresponding cost.
For every ordered pair of temporal edges (e1, t1), (e2, t2) of G, such that e1 6= e2, t2 is

the smallest time label in Le2 such that t2 ≥ t1 (t2 > t1, for strict connectivity), and e1 and
e2 share a common endpoint, H contains a directed edge (h2

(e1,t1), h
1
(e2,t2)) with weight 0.

For every vertex vi ∈ V , i ∈ [n], H contains a pair of terminal vertices si and ti. For
every temporal edge (e, t) incident to vi, H contains a directed edge (si, h

1
(e,t)) with weight 0

and a directed edge (h2
(e,t), ti) with weight 0. The set of connection requirements of the DSF

instance I ′ consists of all pairs (si, tj) for all i, j ∈ [n] with i 6= j.
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By construction, any temporal vi − vj path, which consists of a temporal edge sequence
((e1, t1), (e2, t2), . . . , (ek, tk)), corresponds to a directed si − tj path in H of the form

si, h
1
(e1,t1), h

2
(e1,t1), h

1
(e2,t′′2 ), h

1
(e2,t′2), h

1
(e2,t2), h

2
(e2,t2), . . . , h

1
(ek,tk), h

2
(ek,tk), tj

with the same weight and vice versa. Using this observation, we can now establish claims
(i) and (ii). Specifically, to show (i), we construct a feasible solution to I ′ that includes all
directed edges of weight 0 and the directed edges (h1

(e,t), h
2
(e,t)) corresponding to the temporal

edges (e, t) used in the feasible solution to I. Clearly, the two solutions have the same total
weight and any temporal vi − vj path in the solution to I corresponds to an si − tj path
in the solution to I ′. To show (ii), we first observe that any directed path from some si to
some tj should include some directed edges of the form (h1

(e,t), h
2
(e,t)) with weight w(e, t). So,

we construct a feasible solution to I that includes the temporal edges (e, t) corresponding to
the positive-weight directed edges (h1

(e,t), h
2
(e,t)) included in the feasible solution to I ′.

In the resulting DSF instance I ′, the total number of vertices is O(n+M) = O(M) and
the number of connection requirements is O(n2). If the maximum degree of the underlying
graph is ∆, the total number of edges is dominated by the edges of the form (h2

(e1,t1), h
1
(e2,t2)),

which are O(∆M). Applying the approximation algorithm of [14, Theorem 1.1] to the
DSF instance I ′, we obtain a polynomial-time O(Mε min{M4/5, (∆M)2/3})-approximation
algorithm, for any constant ε > 0. In the special case where the number of temporal edges is
M = O(npoly logn), we obtain an O(n4/5+ε)-approximation, for any constant ε > 0. If both
M = O(npoly logn) and the maximum degree of the underlying graph ∆ = O(poly logn),
we obtain a polynomial-time O(n2/3+ε)-approximation algorithm for any constant ε > 0. J

5.2 A Lower Bound on the Approximability of MTC
In this section, we present an approximation-preserving reduction from Symmetric Label
Cover to MTC. Our reduction along with standard inapproximability results for Symmetric
Label Cover indicate that MTC in general temporal networks is hard to approximate.

I Theorem 7. MTC on temporal graphs with n vertices cannot be approximated within a
factor of O(2log1−ε n), for any constant ε > 0, unless NP ⊆ DTIME(npoly log n).

Proof. We present a polynomial-time approximation-preserving reduction from the Symmet-
ric Label Cover (SLC) problem to MTC. In SLC (see e.g., [10, Definition 4.1]), we are given
a complete bipartite graph H(U,W ), with |U | = |W |, a finite set of colors C and a binary
relation R(u,w) ⊆ C × C for every vertex pair (u,w) ∈ U ×W . We seek to assign a color
subset σ(u) ⊆ C to each vertex u ∈ U ∪W so that for every vertex pair (u,w) ∈ U × U ,
there are colors a ∈ σ(u) and b ∈ σ(w) with (a, b) ∈ R(u,w) and

∑
u∈U∪W |σ(u)|, i.e., the

total number of colors used, is minimized.
Given an instance of SLC, we create a temporal graph G whose vertex set V is partitioned

into six sets VU , VC(U), VW , VC(W ), VX and {p, q}. There is a correspondence between the
vertices of the bipartite graph H and the vertices of G in the sets VU and VW . The vertex
sets VC(U) = VU × C and VC(W ) = VW × C serve to encode the color assignment to the
vertices of U and W in the SLC instance. Moreover, VX contains a vertex (u,w, a, b) for
every vertex pair (u,w) ∈ U ×W and every allowable color pair (a, b) ∈ R(u,w). Intuitively,
the vertices of VX serve to ensure that the color assignment is consistent. Finally, the vertices
p and q ensure that the temporal graph G is connected.

For every u ∈ VU and (u, a) ∈ VC(U), G contains a temporal edge {u, (u, a)} with label
1 and weight 1. Similarly, for every w ∈ VW and (w, b) ∈ VC(W ), G contains a temporal
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edge {w, (w, b)} with label 4 and weight 1. For every vertex (u,w, a, b) ∈ VX , G contains the
temporal edges {(u, a), (u,w, a, b)} with label 2 and weight 0 and {(u,w, a, b), (w, b)} with
label 3 and weight 0. G contains temporal edges with label 5 and weight 0 between p and
every vertex in VU ∪ VC(U) ∪ VC(W ) ∪ VX and between q and every vertex in VU . Moreover,
G contains temporal edges with label 0 and weight 0 between p and every vertex in VW and
between q and every vertex in VW ∪ VC(U) ∪ VC(W ) ∪ VX . We note that G is temporally
connected and has O(k2c2) vertices, where k = |U | = |W | and c = |C| (in fact, the number
of vertices of G is of the same order as the total size of all binary relations R(u,w)).

We next show that this reduction is approximation-preserving. We first show that any
feasible solution to the SLC instance can be mapped to a temporally connected subgraph
G′ of G with at most the same weight. Let us fix any assignment σ of a color set to each
vertex of H that is feasible for the SLC instance. We first include in G′ all temporal edges of
weight 0. For every vertex u ∈ U with assigned colors σ(u), we include in G′ the temporal
edges {u, (u, a)}, for all a ∈ σ(u). The total weight of these edges is |σ(u)|. Similarly, for
every vertex w ∈W , we include in G′ the temporal edges {w, (w, b)}, for all b ∈ σ(w). The
total weight of these edges is |σ(w)|. Therefore, the total weight of the temporal subgraph
G′ is equal to the cost of the solution σ for the SLC problem.

It remains to show that G′ is temporally connected. All vertices in VU ∪ VC(U) ∪ VC(W ) ∪
VX ∪ {p} are connected with each other (through p) by temporal edges with time label 5.
There are also temporal p−q and q−p paths consisting of edges with time label 5 through the
vertices of VU . Similarly, all vertices in VW ∪VC(U)∪VC(W )∪VX∪{q} are connected with each
other (through q) by temporal edges with time label 0. Moreover, there is a temporal path
(using edges with time labels 0 and 5) from every vertex in VW ∪ VC(U) ∪ VC(W ) ∪ VX ∪ {q}
to every vertex in VU . Also, p is connected to every vertex in VW with temporal edges
of time label 0 and vice versa. All these vertex pairs are connected through temporal
paths entirely consisting of 0-weight edges. The really interesting case concerns vertex pairs
(u,w) ∈ VU × VW . By the feasibility of the solution σ, for every vertex pair (u,w) ∈ U ×W ,
there are colors a ∈ σ(u) and b ∈ σ(w) such that (a, b) ∈ R(u,w). Therefore, the temporal
u−w path (u, (u, a), (u,w, a, b), (w, b), b) is included in G′. Hence, G′ is temporally connected.

We also need to show that given a temporally connected subgraph G′ of G, we can
efficiently compute an assignment σ of a color set to each vertex in U ∪W that is feasible for
the SLC instance and has total cost no larger than the total weight of G′. For every u ∈ VU

and every temporal edge of the form ({u, (u, a)}, 1) included in G′, we include the color a
in σ(u). Similarly, for every w ∈ VW and every temporal edge of the form ({w, (w, b)}, 4)
included in G′, we include the color b in σ(w). Since these are the only edges of G (and G′)
with positive weight, the total cost of σ is equal to the total weight of G′.

It remains to show that σ is a feasible solution to the SLC instance. Let (u,w) ∈ U ×W
in the SLC instance. The crucial observation is that the only way to connect u ∈ VU

to w ∈ VW in G′ is through some temporal path ({u, (u, a)}, 1), ({(u, a), (u,w, a, b)}, 2),
({(w, b), (u,w, a, b)}, 3), ({w, (w, b)}, 4), for (a, b) ∈ R(u,w). This claim immediately implies
the feasibility of the assignment σ. To prove this claim, we observe that a temporal u−w path
cannot use any temporal edge incident to p or q, since all edges between VU and {p, q} have
time label 5 and all edges between VW and {p, q} have time label 0. So, any temporal u−w
path in G′ has to move from u to some vertex (u, a) ∈ VC(U). Such a vertex (u, a) ∈ VC(U)
does not have any neighbors in VU other than u. Hence, the next vertex of any temporal
u− w path in G′ must be to visit some (u,w, a, b) ∈ VX , where w ∈W and (a, b) ∈ R(u,w).
Similarly, since such a vertex (u,w, a, b) ∈ VX does not have any neighbors in VC(U) other
than (u, a) and any neighbors in VC(W ) other than (w, b), we conclude that the next step
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of any temporal u− w path in G′ must be to the vertex (w, b) ∈ VC(W ). But now, the last
temporal edge used has time label 3, which implies that the u−w path cannot use any edges
with time labels 1 and 2 anymore. Thus, the path cannot return to VU ∪ VC(U). The only
choice now is that the path moves to w through the temporal edge ({w, (w, b)}, 4), which
establishes the claim about the structure of any temporal u− v path in G′.

The discussion above establishes the correctness of the reduction from SLC to MTC.
Using the fact that the number of vertices of G is quadratic in the number of vertices of H
and standard inapproximability results for SLC (e.g., [10]), we conclude the proof. J

Adjusting the proof of Theorem 7, we can get a reduction from the MinRep problem,
which is considered in [8], to MTC. Thus, any polynomial-time ρ(n)-approximation for MTC
on simple temporal graphs implies a polynomial-time ρ(n2)-approximation for MinRep.
Since the best known approximation ratio for MinRep is O(n1/3 log2/3 n) [8, Section 2], any
O(n1/6)-approximation to MTC would imply an improved approximation ratio for MinRep.

5.3 Inapproximability of Unweighted MTC

The following shows an approximation-preserving reduction from the Steiner Tree problem on
undirected graphs with edge weights either 1 or 2 to MTC on unweighted temporal graphs,
where all temporal edges have weight equal to 1. Since this version of the Steiner Tree
problem is known to be APX-hard [4], we obtain the following.

I Theorem 8. MTC on unweighted temporal graphs is APX-hard, and thus it does not admit
a PTAS, unless P = NP.

6 All-Pairs Temporal Connectivity on Trees and Cycles

We can do better if the underlying graph is either a tree or a cycle. We can show that if the
underlying graph is a tree, there is an optimal solution to the MTC problem that uses each
edge with at most two time labels. Using this structural property, we can show that MTC
can be solved efficiently by dynamic programming if the underlying graph is a tree.

I Theorem 9. Let G be a temporal tree on n vertices with lifetime L. There is a dynamic
programming algorithm that computes an optimal solution to MTC on G in time O(nL4).

We also observe that if the underlying graph is a cycle Cn = (v0, v1, . . . , vn−1, v0), any
temporally connected subgraph G′ can be partitioned into sectors. A sector is a connected
part (vi, vi+1, . . . , vk) of the cycle for which there is a vertex vj 6∈ {vi, . . . , vk−1} such that
the temporal paths pincr = (vi, vi+1, . . . , vj) and pdecr = (vk, vk−1, . . . , vj+1) are present in
G′ (the vertex indices along Cn are taken modulo n). Intuitively, any vertex in the sector
(vi, vi+1, . . . , vk) can reach every vertex in Cn through the paths pincr and pdecr. Then, we
can show that there is an optimal solution to the MTC problem on Cn where each edge is
shared by at most two different sectors. Then, ignoring edges shared by different sectors and
using dynamic programming to determine a near optimal partitioning of Cn into sectors, we
obtain the following.

I Theorem 10. There is a polynomial-time 2-approximation algorithm for the MTC problem
on any temporal cycle Cn.
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Abstract
The cryptogenography problem, introduced by Brody, Jakobsen, Scheder, and Winkler (ITCS
2014), is to collaboratively leak a piece of information known to only one member of a group
(i) without revealing who was the origin of this information and (ii) without any private commu-
nication, neither during the process nor before. Despite several deep structural results, even the
smallest case of leaking one bit of information present at one of two players is not well understood.
Brody et al. gave a 2-round protocol enabling the two players to succeed with probability 1/3
and showed the hardness result that no protocol can give a success probability of more than 3/8.

In this work, we show that neither bound is tight. Our new hardness result, obtained by
a different application of the concavity method used also in the previous work, states that a
success probability of better than 0.3672 is not possible. Using both theoretical and numerical
approaches, we improve the lower bound to 0.3384, that is, give a protocol leading to this success
probability. To ease the design of new protocols, we prove an equivalent formulation of the
cryptogenography problem as solitaire vector splitting game. Via an automated game tree search,
we find good strategies for this game. We then translate the splits that occurred in this strategy
into inequalities relating position values and use an LP solver to find an optimal solution for these
inequalities. This gives slightly better game values, but more importantly, also a more compact
representation of the protocol and a way to easily verify the claimed quality of the protocol.

Unfortunately, already the smallest protocol we found that beats the previous 1/3 success
probability takes up 16 rounds of communication. The protocol leading to the bound of 0.3384
even in a compact representation consists of 18248 game states. These numbers suggest that the
task of finding good protocols for the cryptogenography problem as well as understanding their
structure is harder than what the simple problem formulation suggests.
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Keywords and phrases randomized protocols, anonymous communication, computer-aided proofs,
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1 Introduction

Motivated by a number of recent influential cases of whistle-blowing, Brody, Jakobsen, Scheder,
and Winkler [2] proposed the following cryptogenography problem as model for anonymous
information disclosure in public networks. We have k players (potential information leakers).
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A random one of them holds a secret, namely a random bit. All other players only know
that they are not the secret holder. Now without any non-public communication, the players
aim at both making the secret public and hiding the identity of the secret holder. More
precisely, we are looking for a (fully public) communication protocol in which the players
as only form of communication broadcast bits, which may depend on public information
(including all previous communication), private knowledge (with respect to the secret), and
a private source of randomness. After this phase of communication, the protocol outputs
a single bit depending solely on all data sent in the communication phase. The complete
protocol (regulating the communication and the output function) and all communication is
public, and is monitored by an eavesdropper who aims at identifying the secret owner. We
say that a run of the protocol is a success for the players, if the protocol output is the secret
bit and the eavesdropper fails to identify the secret owner; otherwise it is a success for the
eavesdropper. Since everything is public, optimal strategies for the eavesdropper are easy to
find (see below). We shall therefore always assume that the eavesdropper plays an optimal
strategy. The players’ success probability (for a given protocol) then is the probability (taken
over the random decisions of the players and the random initial secret distribution) that
simultaneously (i) the protocol outputs the true secret and (ii) an optimal eavesdropper does
not blame the secret holder.

It is immediately clear that some positive (players’) success probability is easy to obtain.
A protocol without any communication and outputting a random bit achieves a success
probability of 1

2 −
1

2k (the eavesdropper has no strictly better alternative than guessing a
random player). Surprisingly, Brody et al. could show that the players, despite the complete
absence of private communication, can do better. For two players, they present a protocol
having a success probability of 1

3 (instead of the trivial 1
4 ). For k sufficiently large, they

present a protocol with success probability 0.5644. They also show two hardness results,
namely that a success probability of more than 3

4 cannot be obtained, regardless of the
number of players, and that 3

8 is an upper bound for the two-player case. While all these
results are easy to state, they build on deep analyses of the cryptogenography problem, in
particular, on clever reformulations of the problem in terms of certain convex combinations of
secret distributions (protocol design) and functions that are concave on a certain infinite set
of two-dimensional subspaces (“allowed planes”) of the set of secret distributions (hardness
results).

The starting point for our work is the incomplete understanding of the two-player case.
While the gap between upper and lower bound of 3

8 −
1
3 ≈ 0.04167 is small, our impression is

that the current-best protocol achieving the 1
3 success probability in two rounds together

with the abstract hardness result do not give us much understanding of the structure of
the cryptogenography problem. We therefore imagine that a better understanding of this
smallest-possible problem of leaking one bit from two players, ideally by determining an
optimal protocol (that is, matching a hardness result), could greatly improve the situation.

Our Results. We shall be partially successful in achieving these goals. On the positive side,
we find protocols with strictly larger success probability than 1

3 (namely 0.3384) and we
prove a stricter hardness result of 0.3672. Our new protocols look very different from the
2-round protocol given by Brody et al., in particular, they use infinite protocol trees (but
have an expected finite number of communication rounds). These findings motivate and give
new starting points for further research on the cryptogenography problem.

On the not so positive side, our work on better protocols indicates that good cryptogeno-
graphic protocols can be very complicated. The simplest protocol we found that beats the 1

3
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barrier already has a protocol tree of depth 16, that is, the two players need to communicate
for 16 rounds in the worst case. While we still manage to give a human-readable description
and performance proof for this protocol, it is not surprising that previous works not incorpo-
rating a computer-assisted search did not find such a protocol. Our best protocol, giving a
success probability of 0.3384, already uses 18248 non-equivalent states.

Technical contributions. To find the improved protocols, we use a number of theoretical
and experimental tools. We first reformulate the cryptogenography problem as a solitaire
vector splitting game over vectors in R2×k

≥0 . Both for human researchers and for automated
protocol searches, this reformulation seems to be easier to work with than the previous
reformulation via convex combinations of distributions lying in a common allowed plane [2].
It also proved to be beneficial for improving upon the hardness result.

Restrictions of the vector splitting game to a finite subset of R2×k
≥0 , e.g., {0, . . . , T}2×k,

can easily be solved via dynamic programming, giving (due to the restriction possibly sub-
optimal) cryptogenographic protocols. Unfortunately, for k = 2 even discretizations as fine
as T = 40 are not sufficient to find protocols beating the 1/3 barrier and memory usage
quickly becomes a bottleneck issue. However, exploiting the simple fact that the game values
are homogeneous (that is, multiplying a game position by a non-negative scalar changes the
game value by this factor), we can (partially) simulate a much finer discretization in a coarse
one. This extended dynamic programming approach easily gives cryptogenographic success
probabilities larger than 1/3. Reading off the corresponding protocols, due to the reuse of
the same position in different contexts, needs more care, but in the end gives without greater
difficulties also the improved protocols.

When a cryptogenographic protocol reuses a state a second time (with a non-trivial split
in between), then there is no reason to re-iterate this part of the protocol whenever this
position occurs. Such a protocol allows infinite paths, while still needing only an expected
finite number of rounds. Since the extended dynamic programming approach in finite time
cannot find such protocols, we use a linear programming based post-processing stage. We
translate each splitting operation used in the extended dynamic programming search into an
inequality relating game values. By exporting these into an LP-solver, we do not only obtain
better game values (possibly corresponding to cryptogenographic protocols with infinite
paths, for which we would get a compact representation by making the cycles explicit), but
also a way to easily certify these values using an optimality check for a linear program instead
of having to trust the ad-hoc dynamic programming implementation.

Related work. Despite a visible interest of the research community in the cryptogenography
problem, the only relevant follow-up work is Jakobsen’s paper [5], which analyses the
cryptogenography problem for the case that several of the players know the secret. This
allows to leak a much larger amount of information as made precise in [5]. Due to the
asymptotic nature of these results, unfortunately, they do not give new insight in the 2-player
case. Other work on anonymous broadcasting typically assumes bounded computational
power of the adversary (see, e.g., [6]); we refer to [3] for a survey on anonymous communication
in communication networks.

In [2], the cryptogenography problem was reformulated to the problem of finding the
point-wise minimal function f on the set of secret distributions that is point-wise not smaller
than some given function g and that is concave on an infinite set of 2-dimensional planes.
Such restricted notions of concavity (or, equivalently, convexity) seem to be less understood.
We found work by Matoušek [9] for a similar convexity problem, however, with only a finite
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number of one-dimensional directions in which convexity is required. We do not see how to
extend these results to our needs.

2 Finding Better Cryptogenography Protocols

This section is devoted to the design of stronger cryptogenographic protocols. In particular,
we demonstrate that a success probability of more than 1/3 can be achieved. We start by
making the cryptogenography problem precise (Section 2.1) and introduce an equivalent
formulation as solitaire vector splitting game (Section 2.2). We illustrate both formulations
using the best known protocol for the 2-player case (Section 2.3). In Section 2.4, we state
basic properties that simplify the analysis of protocols and aid our automated search for better
protocols, which is detailed in Section 2.6. In Section 2.5, we give a simple, human-readable
proof that 1/3 is not the optimal success probability by analyzing a protocol with success
probability 449

1334 ≈ 0.3341. We describe how to post-optimize and certify the results obtained
by the automated search using linear programming in Section 2.7 and summarize our findings
(in particular, the best lower bound we have found) in Section 2.8. Proofs and details that
had to be omitted due to space constraints can be found in an extended version of this
article [4].

2.1 The Cryptogenography Problem

Let us fix an arbitrary number k of players called 1, . . . , k for simplicity. We write [k] :=
{1, . . . , k} for the set of players. We assume that a random one of the them, the “secret
owner” J ∈ [k], initially has a secret, namely a random bit X ∈ {0, 1}. The task of the
players is, using public communication only, to make this random bit public without revealing
the identity of the secret owner. More precisely, we assume that the players, before looking
at the secret distribution, (publicly) decide on a communication protocol π. This is again
public, that is, all bits sent are broadcast to all players, and they may depend only on
previous communication, the private knowledge of the sender (whether he is the secret
owner or not, and if so, the secret), and private random numbers of the sender. At the
end of the communication phase, the protocol specifies an output bit Y (depending on all
communication).

The aspect of not disclosing the identity of the secret owner is modeled by an adversary,
who knows the protocol (because it was discussed in public) and who gets to see all commu-
nication (and consequently also knows the protocol output Y ). The adversary, based on all
this data, blames one player K. The players win this game if the protocol outputs the true
secret (that is, Y = X) and the adversary does not blame the secret owner (that is, K 6= J),
otherwise the adversary wins. It is easy to see what the best strategy for the adversary is
(given the protocol and the communication), so the interesting part of the cryptogenography
problem is finding strategies that maximize the probability that the players win assuming
that the adversary plays optimally. We call this the (players’) success probability of the
protocol.

While the game starts with a uniform secret distribution, it will be useful to regard
arbitrary secret distributions. In general, a secret distribution is a distribution D over
{0, 1}× [k], where Dij is the probability that player j ∈ [k] is the secret owner and the secret
is i ∈ {0, 1}. Modulo a trivial isomorphism, D is just a vector in R2×k

≥0 with ‖D‖1 = 1. We
denote by ∆ = ∆k the set of all these distributions (this was denoted by ∆({0, 1} × [k])
in [2]).
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Brody et al. [2] observe that any cryptogenographic protocol can be viewed as successive
rounds of one-bit communication, where in each step some (a priori) secret distribution
probabilistically leads to one of two follow-up (a posteriori) distributions (depending on
the bit transmitted) such that the a priori distribution is a convex combination of these
and a certain proportionality condition is fulfilled (all three distributions lie in the same
“allowed plane”). Conversely, whenever the initial distribution can be written as such a
convex combination of certain distributions, then there is a round of a cryptogenographic
protocol leading to these two distributions (with certain probabilities). Consequently, the
problem of finding a good cryptogenographic protocol is equivalent to iteratively rewriting
the initial equidistribution as certain convex combinations of other secret distributions in
such a way that the success probability, which can be expressed in terms of this rewriting
tree, is large.

2.2 The Solitaire Vector Splitting Game
Instead of directly using the “convex combination” formulation of Brody et al., we propose a
slightly different reformulation as solitaire vector splitting game. This formulation seems to
ease finding good cryptogenographic protocols (lower bounds for the success probability),
both for human researchers and via automated search (Section 2.5). The main advantage of
our formulation is that it takes as positions all 2k-dimensional vectors with non-negative
entries, whereas the cryptogenographic protocols are only defined on distributions over
{0, 1} × [k]. In this way, we avoid arguing about probabilities and convex combinations and
instead simply split a vector (resembling a secret distribution) into a sum of two other vectors.
Furthermore, a simple monotonicity property (Proposition 2.5) eases the analyses. Still,
there is an easy translation between the two formulations, so that we can re-use whatever
results were found in [2].

For reasons of space, we do not repeat in detail the “convex combination” formulation
and its equivalence to cryptogenographic protocols (the latter alone takes around two pages
in [2]). We focus instead on the formal introduction of the vector splitting game (and argue
that its equivalent to the “convex combination” formulation in Lemma 2.6) and refer to [2, 4]
for a more detailed exposition.

I Definition 2.1. Let D ∈ R2×k
≥0 . We say that (D0, D1) is a j-allowed split of D if

D = D0 + D1 and D0 (and thus also D1) is proportional to D on {0, 1} × ([k] \ {j}),
that is, there is a λ ∈ [0, 1] such that (D0)|{0,1}×([k]\{j}) = λD|{0,1}×([k]\{j}). We call
(D0, D1) an allowed split of D if it is a j-allowed split of D for some j ∈ [k].

The objective of the vector splitting game is to recursively apply allowed splits to a given
vector D ∈ R2×k

≥0 with the target of maximizing the sum of the

p(D′) := max
x∈{0,1}

( ∑
j∈[k]

D′x,j −max
j∈[k]

D′x,j

)

values of the resulting vectors (note that when D′ is a distribution, then p(D′) is the 0-bit
success probability of D′; for more details, the reader is referred to [2, 4]). More precisely,
an n-round play of the vector splitting game is described by a binary tree of height at most
n, where the nodes are labeled with game positions in R2×k

≥0 . The root is labeled with the
initial position D. For each non-leaf v, the labels of the two children form an allowed split of
the label of v. The payoff of such a play is

∑
D′ p(D′), where D′ runs over all leaves of the

game tree. The aim is to maximize the payoff. Right from this definition, it is clear that
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the maximum payoff achievable in an n-round game started in position D, the value of this
game, is succn(D) as defined below.

I Definition 2.2. For all n ∈ N and for all D ∈ R2×k
≥0 , we recursively define

(i) succ0(D) := max
x∈{0,1}

( ∑
j∈[k]

Dx,j −max
j∈[k]

Dx,j

)
;

(ii) succn(D) := max
(D0,D1)

(
succn−1(D0) + succn−1(D1)

)
, if n ≥ 1. Here the maximum is

taken over all allowed splits (D0, D1) of D.

For an example of an admissible game, we refer to Figure 1 in Section 2.3.
It is easy to see that the game values are non-decreasing in the number of rounds, but

bounded. The limiting value is thus well-defined.

I Lemma 2.3. Let D ∈ R2×k
≥0 and n ∈ N. Then succn(D) ≤ ‖D‖1 and succn+1(D) ≥

succn(D). Consequently, succ(D) := limn→∞ succn(D) is well-defined and is equal to
supn∈N succn(D).

I Proposition 2.4 (scalability). Let D ∈ R2×k
≥0 and λ ≥ 0. Then succn(λD) = λ succn(D)

for all n ∈ N. Consequently, succ(λD) = λ succ(D).

I Proposition 2.5 (monotonicity). Let D,E ∈ R2×k
≥0 with E ≥ D (component-wise). Then

succn(E) ≥ succn(D) for all n ∈ N. Consequently, succ(E) ≥ succ(D).

From the previous definitions and observations, we derive that the game values for games
starting with a distribution D, that is, ‖D‖1 = 1, and the success probabilities of the optimal
cryptogenographic protocols for D, are equal.

I Lemma 2.6. Let D ∈ R2×k
≥0 with ‖D‖1 = 1. Then for all n ∈ N, our definitions of

succn coincide with the ones of Brody et al., which are the success probabilities of the best
n-round cryptogenographic protocols for the distribution D. Consequently, also the definition
of succ(D) coincides.

2.3 Example: The Best-so-far 2-Player Protocol
We now turn to the case of two players. We use this subsection to describe the best known
protocol for two players in the different languages. We also use this mini-example to sketch
the approaches used in the following subsections to design superior protocols.

For two players, we usually write a game position D = (D01, D11, D02, D12) ∈ R2×2
≥0

as D = (a, b, c, d). The 0-round game value (equaling the success probability of the 0-bit
protocol) then is

succ0(D) = max{min{a, c},min{b, d}}.

As a warmup, let us describe the best known 2-player protocol TwoBit in the two
languages. In the language of Brody et al., the first player can send a (randomized) bit that
transforms the initial distribution ( 1

4 ,
1
4 ,

1
4 ,

1
4 ) with probability 1

2 each into the distributions
( 1

3 ,
1
3 ,

1
6 ,

1
6 ) and ( 1

6 ,
1
6 ,

1
3 ,

1
3 ). In the first case, the second player can send a bit leading to

each of the distributions ( 1
3 ,

1
3 ,

1
3 , 0) and ( 1

3 ,
1
3 , 0,

1
3 ) with probability 1

2 , both having a 0-bit
success probability of 1

3 . In the second possible result of the first move, the first player can
lead to an analogous situation. Consequently, after two rounds of the protocol we end up
with four equally likely distributions all having a 0-bit success probability of 1

3 . Hence the
protocol TwoBit has a success probability of 1

3 .
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(3, 3, 3, 3)

(2, 2, 1, 1) (1, 1, 2, 2)

(1, 1, 1, 0) (1, 1, 0, 1) (1, 0, 1, 1) (0, 1, 1, 1)

Figure 1 Game tree corresponding to TwoBit.

In the language of the splitting games, we can forget about the probabilities and simply
split up the initial distribution. Using the scaling invariance, to ease reading we scaled
up all numbers by a factor of 12. Figure 1 shows the game tree corresponding to the
TwoBit protocol. It shows that succ2(3, 3, 3, 3) ≥ 4, proving again the existence of a
cryptogenographic protocol for the distribution ( 1

4 ,
1
4 ,

1
4 ,

1
4 ) = 1

12 (3, 3, 3, 3) with success
probability 4

12 = 1
3 .

Note that each allowed split (D0, D1) of D implies the inequality succ(D) ≥ succ(D0) +
succ(D1), which follows from clause (ii) of Definition 2.2 and taking the limit n→∞. Hence
the game tree giving the 1

3 lower bound for the success probability equivalently gives the
following proof via inequalities.

succ(3, 3, 3, 3) ≥ succ(2, 2, 1, 1) + succ(1, 1, 2, 2),
succ(2, 2, 1, 1) = succ(1, 1, 2, 2) ≥ succ(1, 0, 1, 1) + succ(0, 1, 1, 1),
succ(1, 0, 1, 1) = succ(0, 1, 1, 1) ≥ succ0(0, 1, 1, 1) = 1.

The splitting game and the inequality view will in the following be used to design stronger
protocols (better lower bounds for the optimal success probability). We shall compute good
game trees by computing lower bounds for the game values of a discrete set of positions
via repeatedly trying allowed splits. For example, the above game tree for the starting
position (3, 3, 3, 3) could have easily be found by recursively computing the game values for
all positions in {0, 1, 2, 3}4.

It turns out that such an automated search leads to better results when we also allow
scaling moves (referring to Proposition 2.4). For example, in the above mini-example of
computing optimal game values for all positions {0, 1, 2, 3}4, we could try to exploit the
fact that succ(1, 1, 1, 1) = 1

3 succ(3, 3, 3, 3). Such scaling moves are a cheap way of working
in {0, 1, 2, 3}4 while trying to gain the power of working in {0, 1, . . . , 9}4, which would be
computationally more costly, especially with regard to memory usage. Scaling moves may
lead to repeated visits of the same position, resulting in cyclic structures. Here translating
the allowed splits used in the tree into the inequality formulation and then using an LP-solver
is an interesting approach (detailed in Section 2.7). It allows to post-optimize the game trees
found, in particular, by solving cyclic dependencies. This leads to slightly better game values
and compacter representations of game trees.

2.4 Useful Facts
For some positions of the vector splitting game, the true value is easy to determine. We do
this here to later ease the presentation of the protocols.
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I Proposition 2.7. We have succ(a, b, c, d) ≤ min{a, c}+ min{b, d}.

I Proposition 2.8. Let D = (a, b, c, 0). Then succ(D) = succ0(D) = min{a, c}.

I Proposition 2.9. If D = (a, b, c, d) is such that a+ b ≤ min{c, d}, then succ(D) = a+ b.

2.5 Small Protocols Beating the 1/3 Barrier
We now present a sequence of protocols showing that there are cryptogenographic protocols
having a success probability strictly larger than 1

3 . These protocols are still relatively simple,
so we also obtain a human-readable proof of the following result.

I Theorem 2.10. succ( 1
4 ,

1
4 ,

1
4 ,

1
4 ) ≥ 449

1334 ≈ 0.3341.

Proof. To be able to give a readable mathematical proof, we argue via inequalities for game
values succ(·). We later discuss how the corresponding protocols (game trees) look like.

We first observe the following inequalities, always stemming from allowed splits (the
underlined entries are proportional). Whenever Proposition 2.8 or 2.9 determine a value, we
exploit this without further notice.

succ(12, 12, 12, 12) ≥ succ(7, 7, 6, 4) + succ(5, 5, 6, 8),
succ(5, 5, 6, 8) ≥ succ(2, 2, 0, 2) + succ(3, 3, 6, 6) = 2 + 6 = 8.

This proves succ(12, 12, 12, 12) ≥ 8 + succ(7, 7, 6, 4). To analyze succ(7, 7, 6, 4), we use the
allowed split

succ(7, 7, 6, 4) ≥ succ(4, 5, 3, 2) + succ(3, 2, 3, 2) (1)

and regard the two positions (4, 5, 3, 2) and (3, 2, 3, 2) separately in some detail.

Claim 1: The value of (4, 5, 3, 2) satisfies succ(4, 5, 3, 2) ≥ 55
12 . By scaling, we have

succ(4, 5, 3, 2) = 1
2 succ(8, 10, 6, 4). We present the allowed splits

succ(8, 10, 6, 4) ≥ succ(4, 5, 2, 4) + succ(4, 5, 4, 0) = succ(4, 5, 2, 4) + 4,
succ(4, 5, 2, 4) ≥ succ(1, 2, 1, 2) + succ(3, 3, 1, 2) = succ(1, 2, 1, 2) + 3,

hence succ(8, 10, 6, 4) ≥ succ(1, 2, 1, 2) + 7. To bound the latter term, we use the scaling
succ(1, 2, 1, 2) = 1

6 succ(6, 12, 6, 12) and consider the allowed splits

succ(6, 12, 6, 12) ≥ succ(5, 10, 3, 9) + succ(1, 2, 3, 3) = succ(5, 10, 3, 9) + 3,
succ(5, 10, 3, 9) ≥ succ(0, 6, 2, 6) + succ(5, 4, 1, 3) = 6 + 4 = 10.

Thus succ(6, 12, 6, 12) ≥ 13 and succ(1, 2, 1, 2) ≥ 13
6 . This shows succ(4, 5, 3, 2) ≥

1
2 (succ(1, 2, 1, 2) + 7) ≥ 55

12 .

Claim 2: We have succ(3, 2, 3, 2) ≥ 5
3 + 2

9 succ(7, 7, 6, 4). By scaling, we obtain
succ(3, 2, 3, 2) = 1

3 succ(9, 6, 9, 6) and compute

succ(9, 6, 9, 6) ≥ succ(6, 3, 6, 4) + succ(3, 3, 3, 2),
succ(6, 3, 6, 4) ≥ succ(3, 0, 3, 2) + succ(3, 3, 3, 2) = 3 + succ(3, 3, 3, 2),

and hence succ(9, 6, 9, 6) ≥ 3 + 2 succ(3, 3, 3, 2). To bound the latter term, we scale
succ(3, 3, 3, 2) = 1

3 succ(9, 9, 9, 6) and present the allowed splits

succ(9, 9, 9, 6) ≥ succ(7, 7, 6, 4) + succ(2, 2, 3, 2),
succ(2, 2, 3, 2) ≥ succ(1, 1, 1, 0) + succ(1, 1, 2, 2) = 1 + 2 = 3.

Thus succ(3, 3, 3, 2) ≥ 1 + 1
3 succ(7, 7, 6, 4), implying succ(3, 2, 3, 2) ≥ 5

3 + 2
9 succ(7, 7, 6, 4).
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(12, 12, 12, 12)

(7, 7, 6, 4) (5, 5, 6, 8)

(4, 5, 3, 2) (3, 2, 3, 2) (2, 2, 0, 2)(3, 3, 6, 6)

(3, 0, 3, 3)(0, 3, 3, 3)

(2, 2, 0, 2)

(8, 10, 6, 4)

· 2

(9, 6, 9, 6)

· 3

(4, 5, 2, 4)(4, 5, 4, 0)

(1, 2, 1, 2)(3, 3, 1, 2)

(6, 12, 6, 12)

· 6

(1, 1, 1, 0)

(1, 1, 1, 0)

(1, 1, 1, 0)

(5, 10, 3, 9)(1, 2, 3, 3)

(0, 6, 2, 6) (5, 4, 1, 3)(1, 0, 1, 1) (0, 2, 2, 2)

(1, 0, 1, 1)(1, 0, 0, 0) (4, 4, 1, 3)

(3, 3, 0, 3)

(6, 3, 6, 4)

(3, 3, 3, 2) (3, 0, 3, 2)

(9, 9, 9, 6)

· 3

(7, 7, 6, 4) (2, 2, 3, 2)

(1, 1, 2, 2)

(0, 1, 1, 1)

Figure 2 Game tree representation of the protocols of Theorem 2.10.

Putting things together. Claims 1 and 2 together with (1) give

succ(7, 7, 6, 4) ≥ 75
12 + 2

9 succ(7, 7, 6, 4).

By solving this elementary equation, we obtain succ(7, 7, 6, 4) ≥ 225
28 , and it follows that

succ(12, 12, 12, 12) ≥ 225
28 + 8 = 449

28 = 16 + 1
28 . Scaling leads to the claim of the theorem

succ( 1
4 ,

1
4 ,

1
4 ,

1
4 ) ≥ 1

3 + 1
1344 = 449

1344 = 0.33407738 . . . . J

When translating the inequalities into a game tree (see Figure 2 for the result), we first
observe that in Claim 2 we obtained two different nodes labeled with the position (3, 3, 3, 2).
Since there is no reason to treat them differently, we can identify these two nodes and thus
obtain a more compact representation of the game tree. This is the reason why the node
labeled (3, 3, 3, 2) in Figure 2 has two incoming edges.

Interestingly, such identifications can lead to cycles. If we translate the equations for
position (7, 7, 6, 4) and its children into a graph, then we observe that the node for (7, 7, 6, 4)
has a descendant also labeled (7, 7, 6, 4) (this is what led to the inequality succ(7, 7, 6, 4) ≥
75
12 + 2

9 succ(7, 7, 6, 4)). By transforming this inequality to succ(7, 7, 6, 4) ≥ 225
28 , we obtain

a statement that is true, but that does not anymore refer to an actual (finite) game
tree. However, there is a sequence of game trees with values converging to the value we
determined. These trees are obtained from recursively applying the above splitting procedure
for (7, 7, 6, 4) a certain number ` of times and then using the 0-round tree for the lowest node
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Table 1 Lower bounds s(T, . . . , T )/(4T ) on succ( 1
4 , 1

4 , 1
4 , 1

4 ) stemming from the automated search
(line 1). Given are also the number of iterations until the automated search procedure converged,
i.e., stopped finding improvements using allowed splits or scalings, and the number of game positions
and constraints that had an influence on the value of s(T, . . . , T ).

T 15 20 25 30
Automated search 0.3369432925 0.3376146092 0.3379027186 0.3381689066
Iterations 119 129 141 146
Constraints 535 1756 4217 13958
Game Positions 394 1326 2956 9646

labeled (7, 7, 6, 4). The value of this game tree is 8 +
∑`−1

i=0( 2
9 )i 75

12 + ( 2
9 )` succ0(7, 7, 6, 4) =

8+ 75
12

1−( 2
9 )`

1− 2
9

+6 · ( 2
9 )` = 449

28 −
57
28 ( 2

9 )`. Hence for ` ≥ 3, this is more than 16 (which represents
a success probability of 1

3 ), corresponding to a game tree of height1 4 + 4` ≥ 16.

2.6 Automated Search
The vector splitting game formulation allows to search for good cryptogenographic protocols
as follows. We try to determine the game values of all positions from a discrete set D :=
{0, . . . , T}2×k by repeatedly applying allowed splits. More precisely, we store a function
s : D → R that gives a lower bound on the game value succ(D) of each position D ∈ D. We
initialize this function with s ≡ succ0 and then in order of ascending ‖D‖1 try all allowed
splits D = D0 +D1 and update s(D)← s(D0) + s(D1) in case we find that s(D) was smaller.

Recall that for any secret distributionD, the game value succ(D) is the supremum success
probability of cryptogenographic protocols for D. Hence, e.g., the value s(T, . . . , T )/(2Tk) ≤
succ(1/(2k), . . . , 1/(2k)) is a lower bound for this success probability. As we will discuss
later, by keeping track of the update operations performed, we can not only compute such a
lower bound, but also concrete protocols.

Since even for k = 2, the size of the position space D and the number of allowed splits
increase quickly with T , only moderate choices of T are computationally feasible, limiting
the power of this approach drastically. However, using the scaling invariance λsucc(D) =
succ(λD), we can introduce a scaling step: we iteratively optimize using allowed splits2,
then backpropagate the computed values (updating, e.g., s(1, 1, 1, 1)← (1/T ) · s(T, T, T, T ))
to repeat the process. Surprisingly, this simple modification is sufficient to find protocols
that are better than the previous best protocol TwoBit. For a more precise description of
the algorithm, see the extended version of this article [4].

The success probabilities of the protocols computed following the above approach, using
different values for T , are given in the first line of Table 1. Further results exploiting the
post-optimization are given in Table 2 in Section 2.8.

2.7 Post-Optimization via Linear Programming
When letting the automated search also keep track of at what time which update operation
was performed, this data can be used to extract strategies for the splitting game (and

1 Note that the height refers to the number of transmitted bits and thus does not include the number of
(virtual) scaling moves.

2 In fact, we use relaxed splits, in which some coordinate in the resulting distributions may additionally
be rounded down – this slightly increases the set of admissible splits. For details, see [4].
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Table 2 Lower bounds s(T, . . . , T )/(4T ) on succ( 1
4 , 1

4 , 1
4 , 1

4 ) stemming from the automated search
only (line 1) and from the LP solution of the linear system extracted from the automated search
data (line 2), when the number of iterations is restricted to 20.

T 30 35 40 45 50
Autom. search 0.3381086510 0.3381937725 0.3383218072 0.3383946540 0.3384414508
LP solution 0.3381527322 0.3382301900 0.3383547901 0.3384303130 0.3384736461
Iterations 20 20 20 20 20
Constraints 5373 8882 12410 18659 24483
Game states 4126 6789 9396 13992 18248

cryptogenographic protocols). Some care has to be taken to only extract those intermediate
positions that had an influence on the final game value for the position we are interested in.

While this approach does deliver good cryptogenographic protocols, manually verifying
the correctness of the updates or analyzing the structure of the underlying protocol quickly
becomes a difficult task, as the size of the protocol grows rapidly. Fortunately, it is possible
to output a compact, machine-verifiable certificate for the lower bound obtained by the
automated search that might even prove a better lower bound than computed: Each update
step in the automated search corresponds to a valid inequality of the form succ(D) ≥
succ(D0) + succ(D1), succ(D) ≥ succ0(D) or λ · succ(D) = succ(λ ·D). We can extract
the (sparse) set ineq(T, T, T, T ) of those inequalities that lead to the computed lower bound
on succ(T, T, T, T ).

Consider replacing each occurrence of succ(D′) in the set of inequalities ineq(T, T, T, T )
found by the automated search by a variable sD′ . We obtain a system of linear inequalities S
that has the feasible solution sD′ = succ(D′) (for every occurring vector D′). Hence in
particular, the optimal solution of the linear program of minimizing sD subject to S is a
lower bound on succ(D). It is easy to see that this solution is at least as good as the
solution stemming from the automated search alone. It can, however, even be better, in
particular when a game strategy yields cyclic visits to certain positions. Table 2 contains,
for different values of T , the success probabilities found by automated search (run with a
bounded iteration number of 20) and by this above linear programming approach. The table
also contains the number of linear inequalities (and game positions) that were extracted from
the automated search run. We observe that consistently the LP-based solution is minimally
better. We also observe that the number of constraints is still moderate, posing no difficulties
for ordinary LP solvers (which stands in stark contrast to feeding all allowed splits and
scalings over the complete discretization to the LP solver, which quickly becomes infeasible).

Hence the advantage of our approach of extracting the constraints from the automated
search stage is that it generates a much sparser sets of constraints that still are sufficiently
meaningful. After solving the LP, we can further sparsify this set of inequalities by deleting
all inequalities that are not tight in the optimal solution of the LP, since these cannot
correspond to the best splits found for the corresponding vector D, yielding a smaller set of
relevant inequalities, which might help to analyze the structure of strong protocols.

2.8 Our Best Protocol
We report the best protocol we found using the approach outlined in the previous sections.

I Theorem 2.11. In the 2-player cryptogenography problem, succ( 1
4 ,

1
4 ,

1
4 ,

1
4 ) ≥ 0.3384736.

Proof. On http://people.mpi-inf.mpg.de/~marvin/verify.html, we provide a linear
program based on feasible inequalities on the discretization D with T = 50. To verify the
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result, one only has to (1) check validity of each inequality, i.e., checking whether each
constraints encodes a feasible scaling, allowed split or zero-bit success probability and (2)
solve the linear program. Since we represent the distributions D = (a, b, c, d) using a normal
form a ≥ b, c, d (to break symmetries), checking validity of each splitting constraint is not
completely trivial, but easy. We provide a simple checker program to verify validity of the
constraints. The LP is output in a format compatible with the LP solver lp_solve3. J

3 A Stronger Hardness Result

In this section, we prove that any 2-player cryptogenographic protocol has a success probability
of at most 0.3672. This improves over the previous 0.375 bound of [2].

I Theorem 3.1. We have succ( 1
4 ,

1
4 ,

1
4 ,

1
4 ) ≤ 47

128 = 0.367188.

To prove the result, we apply the concavity method used by Brody et al. [2] which
consists in finding a function s that (i) is lower bounded by succ0 for all distributions
and (ii) satisfies a certain concavity condition. Similar concavity arguments have been
applied before in information complexity and information theory (see, e.g., [1, 7, 8]). We
first relax the lower bound requirement to hold only for six particular simple distributions
(namely (1, 0, 0, 0), . . . , (0, 0, 0, 1), ( 1

2 , 0,
1
2 , 0) and (0, 1

2 , 0,
1
2 )) instead of all distributions. This

simplifies the search for a suitable stronger candidate function satisfying (i) - it remains to
verify condition (ii) for the thus found candidate function.

More specifically, we adapt the upper bound function of Brody et al. [2] to

s(a, b, c, d) := 1− f(a, b, c, d)
4 ,

f(a, b, c, d) := a2 + b2 + c2 + d2 − 6(ac+ bd) + 8abcd.

In fact, we have changed their upper bound function by introducing an additional term of
8abcd, which attains a value of zero on the distributions ( 1

2 , 0,
1
2 , 0), (1, 0, 0, 0), etc., thus not

affecting the zero-bit success probability condition of the concavity method. Due to space
constraints, we defer the quite technical verification of the concavity condition to [4].

Since this function attains the value of s( 1
4 ,

1
4 ,

1
4 ,

1
4 ) = 47

128 at the uniform distribution, we
obtain the stronger upper bound of succ( 1

4 ,
1
4 ,

1
4 ,

1
4 ) ≤ 47

128 of Theorem 3.1.

4 Conclusion

Despite the fundamental understanding of the cryptogenography problem obtained by Brody
et al. [2], determining the success probability even of the 2-player case remains an intriguing
open problem. The previous best protocol with success probability 1/3, while surprising
and unexpected at first, is natural and very symmetric (in particular when viewed in the
vector splitting game formulation). We disprove the hope that it is an optimal protocol
by exhibiting less intuitive and less symmetric protocols having success probabilities up to
0.3384. Concerning hardness results, our upper bound of 0.3671875 shows that also the
previous upper bound of 3/8 was not the final answer. These findings add to the impression
that the cryptography problem offers a more complex nature than its simple description
might suggest and that understanding the structure of good protocols is highly non-trivial.

3 http://lpsolve.sourceforge.net

http://lpsolve.sourceforge.net
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We are optimistic that our methods support a further development of improved protocols
and bounds. (1) Trivially, investing more computational power or optimizing the automated
search might lead to finding better protocols. (2) Our improved protocols might motivate to
(manually) find infinite protocol families exploiting implicit properties and structure of these
protocols. (3) Our reformulations, e.g., as vector splitting game, might ease further searches
for better protocols and for better candidate functions for a hardness proof.
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