
27th International Conference on
Concurrency Theory

CONCUR’16, August 23–26, 2016, Québec City, Canada

Edited by

Josée Desharnais
Radha Jagadeesan

LIPIcs – Vo l . 59 – CONCUR’16 www.dagstuh l .de/ l ip i c s

Editors
Josée Desharnais Radha Jagadeesan
Université Laval DePaul University
Québec Chicago
josee.desharnais@ift.ulaval.ca rjagadeesan@cs.depaul.edu

ACM Classification 1998
D. Software, E. Data, F. Theory of Computation

ISBN 978-3-95977-017-0

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-95977-017-0.

Publication date
August, 2016

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.CONCUR.2016.0

ISBN 978-3-95977-017-0 ISSN 1868-8969 http://www.dagstuhl.de/lipics

http://www.dagstuhl.de/dagpub/978-3-95977-017-0
http://www.dagstuhl.de/dagpub/978-3-95977-017-0
http://dnb.d-nb.de
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.0
http://www.dagstuhl.de/dagpub/978-3-95977-017-0
http://drops.dagstuhl.de/lipics
http://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Susanne Albers (TU München)
Chris Hankin (Imperial College London)
Deepak Kapur (University of New Mexico)
Michael Mitzenmacher (Harvard University)
Madhavan Mukund (Chennai Mathematical Institute)
Catuscia Palamidessi (INRIA)
Wolfgang Thomas (Chair, RWTH Aachen)
Pascal Weil (CNRS and University Bordeaux)
Reinhard Wilhelm (Saarland University)

ISSN 1868-8969

http://www.dagstuhl.de/lipics

CONCUR 2016

http://www.dagstuhl.de/dagpub/1868-8969
http://www.dagstuhl.de/lipics

Contents

Preface
Josée Desharnais and Radha Jagadeesan . 0:ix

Invited Papers

Bayesian Inversion by ω-Complete Cone Duality
Fredrik Dahlqvist, Vincent Danos, Ilias Garnier, and Ohad Kammar 1:1–1:15

Ethical Preference-Based Decision Support Systems
Francesca Rossi . 2:1–2:7

Consistency in 3D
Marc Shapiro, Masoud Saeida Ardekani, and Gustavo Petri . 3:1–3:14

Love Thy Neighbor: V-Formation as a Problem of Model Predictive Control
Junxing Yang, Radu Grosu, Scott A. Smolka, and Ashish Tiwari 4:1–4:5

Shared Memory

The Benefits of Duality in Verifying Concurrent Programs under TSO
Parosh Aziz Abdulla, Mohamed Faouzi Atig, Ahmed Bouajjani, and
Tuan Phong Ngo . 5:1–5:15

Local Linearizability for Concurrent Container-Type Data Structures
Andreas Haas, Thomas A. Henzinger, Andreas Holzer, Christoph M. Kirsch,
Michael Lippautz, Hannes Payer, Ali Sezgin, Ana Sokolova, and Helmut Veith . . . 6:1–6:15

Robustness against Consistency Models with Atomic Visibility
Giovanni Bernardi and Alexey Gotsman . 7:1–7:15

Verification

Optimal Assumptions for Synthesis
Romain Brenguier . 8:1–8:15

Minimizing Expected Cost Under Hard Boolean Constraints, with Applications to
Quantitative Synthesis

Shaull Almagor, Orna Kupferman, and Yaron Velner . 9:1–9:15

Stability in Graphs and Games
Tomáš Brázdil, Vojtěch Forejt, Antonín Kučera, and Petr Novotný 10:1–10:14

On the Complexity of Heterogeneous Multidimensional Quantitative Games
Véronique Bruyère, Quentin Hautem, and Jean-François Raskin 11:1–11:15

Algorithms and Complexity

Soundness in Negotiations
Javier Esparza, Denis Kuperberg, Anca Muscholl, and Igor Walukiewicz 12:1–12:13

27th International Conference on Concurrency Theory (CONCUR 2016).
Editors: Josée Desharnais and Radha Jagadeesan

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

0:vi Contents

Deciding Hyperproperties
Bernd Finkbeiner and Christopher Hahn . 13:1–13:14

Homogeneous Equations of Algebraic Petri Nets
Marvin Triebel and Jan Sürmeli . 14:1–14:14

Bounded Petri Net Synthesis from Modal Transition Systems is Undecidable
Uli Schlachter . 15:1–15:14

Distributed Systems

Decentralized Asynchronous Crash-Resilient Runtime Verification
Borzoo Bonakdarpour, Pierre Fraigniaud, Sergio Rajsbaum,
David A. Rosenblueth, and Corentin Travers . 16:1–16:15

Lazy Reachability Analysis in Distributed Systems
Loïg Jezequel and Didier Lime . 17:1–17:14

Causally Consistent Dynamic Slicing
Roly Perera, Deepak Garg, and James Cheney . 18:1–18:15

Topological Self-Stabilization with Name-Passing Process Calculi
Christina Rickmann, Christoph Wagner, Uwe Nestmann, and Stefan Schmid 19:1–19:15

Distances for Probabilistic Systems

Linear Distances between Markov Chains
Przemysław Daca, Thomas A. Henzinger, Jan Křetínský, and Tatjana Petrov 20:1–20:15

Complete Axiomatization for the Bisimilarity Distance on Markov Chains
Giorgio Bacci, Giovanni Bacci, Kim G. Larsen, and Radu Mardare 21:1–21:14

Computing Probabilistic Bisimilarity Distances via Policy Iteration
Qiyi Tang and Franck van Breugel . 22:1–22:15

Categories

Robustly Parameterised Higher-Order Probabilistic Models
Fredrik Dahlqvist, Vincent Danos, and Ilias Garnier . 23:1–23:15

Coalgebraic Trace Semantics for Büchi and Parity Automata
Natsuki Urabe, Shunsuke Shimizu, and Ichiro Hasuo . 24:1–24:15

Bisimulations and Unfolding in P-Accessible Categorical Models
Jérémy Dubut, Eric Goubault, and Jean Goubault-Larrecq . 25:1–25:14

A Uniform Framework for Timed Automata
Tomasz Brengos and Marco Peressotti . 26:1–26:15

Timed and Parametrized Systems

Analyzing Timed Systems Using Tree Automata
S. Akshay, Paul Gastin, and Shankara Narayanan Krishna . 27:1–27:14

Contents 0:vii

On the Expressiveness of QCTL
Amélie David, François Laroussinie, and Nicolas Markey . 28:1–28:15

Model Checking Flat Freeze LTL on One-Counter Automata
Antonia Lechner, Richard Mayr, Joël Ouaknine, Amaury Pouly,
and James Worrell . 29:1–29:14

Parameterized Systems in BIP:
Design and Model Checking

Igor Konnov, Tomer Kotek, Qiang Wang, Helmut Veith,
Simon Bliudze, and Joseph Sifakis . 30:1–30:16

Logic

Private Names in Non-Commutative Logic
Ross Horne, Alwen Tiu, Bogdan Aman, and Gabriel Ciobanu . 31:1–31:16

Causality vs. Interleavings in Concurrent Game Semantics
Simon Castellan and Pierre Clairambault . 32:1–32:14

Coherence Generalises Duality:
A Logical Explanation of Multiparty Session Types

Marco Carbone, Sam Lindley, Fabrizio Montesi,
Carsten Schürmann, and Philip Wadler .33:1–332:15

Global Caching for the Alternation-free µ-Calculus
Daniel Hausmann, Lutz Schröder, and Christoph Egger . 34:1–34:15

Probability

Up-To Techniques for Generalized Bisimulation Metrics
Konstantinos Chatzikokolakis, Catuscia Palamidessi, and Valeria Vignudelli 35:1–35:14

Modal Decomposition on Nondeterministic Probabilistic Processes
Valentina Castiglioni, Daniel Gebler, and Simone Tini . 36:1–36:15

Diagnosis in Infinite-State Probabilistic Systems
Nathalie Bertrand, Serge Haddad, and Engel Lefaucheux . 37:1–37:15

CONCUR 2016

Preface

This volume contains the proceedings of the 27th Conference on Concurrency Theory
(CONCUR 2016), which was hosted by Université Laval, in Quebec City, Canada from 23-26
August 2016. This year, CONCUR was co-located with the 13th International Conference
on Quantitative Evaluation of SysTems (QEST) and the 14th International Conference
on Formal Modelling and Analysis of Timed Systems (FORMATS) and two workshops,
EXPRESS/SOS and TRENDS.

The aim of the CONCUR conferences is to bring together researchers, developers and
students in order to contribute to the development and dissemination of the theory of
concurrency and its applications. More than twenty five years after our first meeting in
1990, it is still the reference annual event for researchers in this field. This edition of the
conference attracted 120 submissions of abstracts. 100 full papers were submitted for review,
of which the Program Committee selected 34 papers for presentation at the conference. Most
submissions were reviewed by four reviewers, aided by the generous help provided by external
reviewers. The Conference Chairs warmly thank all the members of the Program Committee
and all the additional reviewers for their excellent work and the constructive discussions.
It is our hope that all authors were benefited as a result of these efforts. The full list of
reviewers is available as part of these proceedings.

The program was enhanced by invited talks from Scott Smolka (joint invited speaker of
QEST and FORMATS) , Vincent Danos, Francesca Rossi and Marc Shapiro. These talks
cover a broad range of topics from traditional concurrency theory and distributed systems
through reasoning about collective decision support systems in the context of autonomous
AI agents. Their abstracts and invited papers (in some cases) are available as part of these
proceedings.

Continuing the change made last year, CONCUR proceedings are available for open
access via LIPIcs.

Last, but not least, we thank the authors and the participants for their enthusiastic
participation.

27th International Conference on Concurrency Theory (CONCUR 2016).
Editors: Josée Desharnais and Radha Jagadeesan

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

Committees

Program Committee

Alessandro Abate

Gui Agha

Nathalie Bertrand

Luis Caires

Véronique Cortier

Josée Desharnais

Yuan Feng

Alexey Gotsman

Éric Goubault

Petr Jancar

Radha Jagadeesan

Anna Ingolfsdottir

Naoki Kobayashi

Barbara König

Jean Krivine

Jérôme Leroux

Alberto Lluch Lafuente

Mohammadreza Mousavi

John Mullins

Uwe Nestmann

Gethin Norman

Catuscia Palamidessi

Jun Pang

Joachim Parrow

Daniela Petrisan

Pavel Sobocinski

Ana Sokolova

Nadia Tawbi

Mirco Tribastone

Ashutosh Trivedi

Franck van Breugel

Rob van Glabbeek

Gianluigi Zavattaro

Lijun Zhang

Co-Chairs

Josée Desharnais

Radha Jagadeesan

Steering Committee

Jos Baeten

Javier Esparza

Joost-Pieter Katoen

Kim G. Larsen

Ugo Montanari

Scott Smolka

Organizing Committee

Andrew Bedford (Laval University)

Josée Desharnais (Laval University)

Raymond Poirier (ITIS)

Gilles Rioux (ITIS)

Nadia Tawbi (Laval University)

27th International Conference on Concurrency Theory (CONCUR 2016).
Editors: Josée Desharnais and Radha Jagadeesan

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

External Reviewers

Samy Abbes
Parosh Aziz Abdulla
Luca Aceto
S. Akshay
Oana Andrei
Sebastian Arming
Clément Aubert
Souheib Baarir
Giorgio Bacci
Eric Badouel
Franco Barbanera
Kamel Barkaoui
Massimo Bartoletti
Francesco Belardinelli
Harsh Beohar
Giovanni Bernardi
Luca Bernardinello
Marco Bernardo
Clara Bertolissi
Devendra Bhave
Filippo Bonchi
Marcello Bonsangue
Laura Bozzelli
Tomas Brazdil
Romain Brenguier
Flavien Breuvart
Paul-David Brodmann
Roberto Bruni
Benjamin Cabrera
Yongzhi Cao
Franck Cassez
Valentina Castiglioni
Dario Cattaruzza
Andrew Cave
Pavol Cerny
Aleksandar Chakarov
Minas Charalambides
Thomas Chatain
Taolue Chen
Corina Cirstea
Pierre Clairambault
Lorenzo Clemente
Christian Colombo
João Costa Seco
Ioana Cristescu

Luís Cruz-Filipe
Pedro Da Rocha Pinto
Ferruccio Damiani
Pallab Dasgupta
Frank De Boer
Romain Demangeon
Stéphane Demri
Yuxin Deng
Pierre-Malo Denielou
Jules Desharnais
Raymond Devillers
Cinzia Di Giusto
Mike Dodds
Simon Doherty
Pierre Donat-Bouillud
Brijesh Dongol
Laurent Doyen
Cezara Dragoi
Derek Dreyer
Jérémy Dubut
Constantin Enea
Javier Esparza
Dirk Fahland
Jerome Feret
Norm Ferns
Carla Ferreira
Nathanael Fijalkow
Wan Fokkink
Paulin Fournier
Adrian Francalanza
Ignacio Fábregas
Álvaro García-Pérez
Blaise Genest
Dan Ghica
Elena Giachino
Hugo Gimbert
Ramūnas Gutkovas
Andreas Haas
Sofie Haesaert
Matthew Hague
Ernst Moritz Hahn
Emmanuel Haucourt
Fei He
Pierre-Cyrille Heam
Tobias Heindel

27th International Conference on Concurrency Theory (CONCUR 2016).
Editors: Josée Desharnais and Radha Jagadeesan

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

0:xiv External Reviewers

Keijo Heljanko
Frédéric Herbreteau
Tom Hirschowitz
Piotr Hofman
Hossein Hojjat
Andreas Holzer
Damien Imbs
Swen Jacobs
Alan Jeffrey
Bengt Jonsson
Aleksandra Jovanovic
Tim Jungnickel
Thierry Jéron
David S. Karcher
Jeroen J.A. Keiren
Daniel Khankin
Artem Khyzha
Stefan Kiefer
Dileep Kini
Helene Kirchner
Hanna Klaudel
Bartek Klin
Sophia Knight
Igor Konnov
Paraschos Koutris
Dimitrios Kouzapas
Jan Kretinsky
Shankara Narayanan Krishna
Clemens Kupke
Sebastian Küpper
Ivan Lanese
Julien Lange
Francois Laroussinie
Fribourg Laurent
Ranko Lazic
Matias David Lee
Stephane Lengrand
Luis Llana
Andreas Lochbihler
Delphine Longuet
Bas Luttik
Luc Maranget
Radu Mardare
Richard Mayr
Hernan Melgratti
Stephan Merz
Roland Meyer
Lukasz Mikulski

Dimitrios Milios
Dale Miller
Samuel Mimram
Andrzej Mizera
Sergio Mover
Muhammad Najib
Laura Nenzi
Van Chan Ngo
Karl Palmskog
Dirk Pattinson
Guillermo Perez
Kirstin Peters
Iain Phillips
Hernan Ponce-De-Leon
Andrei Popescu
Damien Pous
Marc Pouzet
Nuno Preguiça
Tobias Prehn
Jorge A. Pérez
Amgad Rady
Jean-François Raskin
Julian Rathke
Ahmed Rezine
Christina Rickmann
James Riely
Cesar Rodriguez
Adam Rogalewicz
Fernando Rosa-Velardo
Jurriaan Rot
Luca Roversi
Eric Ruppert
Gwen Salaün
Arnaud Sangnier
Ocan Sankur
Zdenek Sawa
Alceste Scalas
Philippe Schnoebelen
Stefan Schwoon
Ilya Sergey
Olivier Serre
Ali Sezgin
Mahsa Shirmohammadi
Natalia Sidorova
Fu Song
Jiri Srba
B Srivathsan
Daniel Stan

External Reviewers 0:xv

Guoxin Su
Kohei Suenaga
Chamseddine Talhi
Qiyi Tang
Maurice H. Ter Beek
Pascal Tesson
Simone Tini
Bernardo Toninho
Max Tschaikowski
Takeshi Tsukada
Andrea Turrini
Nikos Tzevelekos
Viktor Vafeiadis
Frank Valencia
Antti Valmari
Jaco van de Pol
Jan Martijn Van Der Werf
Andrea Vandin
Daniele Varacca
Björn Victor
Valeria Vignudelli
Hagen Voelzer
Walter Vogler
Christoph Wagner
Tjark Weber
Matthias Weidlich
Arno Wilhelm-Weidner
Dominik Wojtczak
Karsten Wolf
James Worrell
Zhilin Wu
Shenggang Ying
Fabio Zanasi
Naijun Zhan
Yi Zhang
Chunlai Zhou
Roberto Zunino
Aditya Zutshi
Johannes Åman Pohjola
Vladimír Štill

CONCUR 2016

List of Authors

Parosh Aziz Abdulla
Uppsala University
Sweden
parosh@it.uu.se

S. Akshay
IIT Bombay
India
akshayss@cse.iitb.ac.in

Shaull Almagor
Hebrew University
Israel
shaull.almagor@mail.huji.ac.il

Mohamed Faouzi Atig
Uppsala University
Sweden
mohamed_faouzi.atig@it.uu.se

Giorgio Bacci
Aalborg University
Denmark
grbacci@cs.aau.dk

Giovanni Bacci
Aalborg University, Denmark
Denmark
giovbacci@cs.aau.dk

Giovanni Bernardi
IMDEA Software Institute
Spain
bernargi@tcd.ie

Nathalie Bertrand
Inria
France
nathalie.bertrand@inria.fr

Simon Bliudze
EPFL
Switzerland
simon.bliudze@epfl.ch

Borzoo Bonakdarpour
McMaster University
Canada
borzoo@mcmaster.ca

Ahmed Bouajjani
LIAFA, University Paris Diderot
France
abou@liafa.univ-paris-diderot.fr

Tomas Brazdil
Masaryk University
Czech Republic
xbrazdil@fi.muni.cz

Tomasz Brengos
Warsaw University of Technology
Poland
t.brengos@mini.pw.edu.pl

Romain Brenguier
University of Oxford
United Kingdom
romain.brenguier@cs.ox.ac.uk

Franck van Breugel
York University
Canada
franck@cse.yorku.ca

Marco Carbone
IT University of Copenhagen
Denmark
carbonem@itu.dk

Simon Castellan
ENS Lyon
France
simon.castellan@ens-lyon.fr

Valentina Castiglioni
University of Insubria
Italy
v.castiglioni2@uninsubria.it

Konstantinos Chatzikokolakis
CNRS & LIX, Ecole Polytechnique
France
kostas@chatzi.org

James Cheney
University of Edinburgh
United Kingdom
jcheney@inf.ed.ac.uk

27th International Conference on Concurrency Theory (CONCUR 2016).
Editors: Josée Desharnais and Radha Jagadeesan

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

0:xviii Authors

Pierre Clairambault
CNRS and ENS de Lyon
France
pierre.clairambault@ens-lyon.fr

Przemyslaw Daca
IST Austria
Austria
przemek@ist.ac.at

Fredrik Dahlqvist
University College London
United Kingdom
f.p.h.dahlqvist@gmail.com

Vincent Danos
Ecole Normale Supérieure, Paris
United Kingdom
vincent.danos@gmail.com

Amélie David
CNRS – LSV & UParis-Saclay
France
amelie.david@lsv.fr

Jérémy Dubut
LSV, ENS Cachan
France
dubut@lsv.ens-cachan.fr

Javier Esparza
TUM
Germany
esparza@in.tum.de

Bernd Finkbeiner
Universität des Saarlandes
Germany
finkbeiner@cs.uni-saarland.de

Vojtech Forejt
Oxford University
United Kingdom
forejt@fi.muni.cz

Pierre Fraigniaud
LIAFA
France
pierre.fraigniaud@liafa.univ-paris-diderot.fr

Deepak Garg
Max Planck Institute for Software Systems
Germany
dg@mpi-sws.org

Ilias Garnier
University of Edinburgh
France
ilias.gar@gmail.com

Paul Gastin
LSV, ENS Cachan
France
paul.gastin@lsv.fr

Daniel Gebler
VU University Amsterdam
Netherlands
e.d.gebler@vu.nl

Alexey Gotsman
IMDEA Software Institute
Spain
alexey.gotsman@imdea.org

Eric Goubault
LIX, Ecole Polytechnique
France
eric.goubault@polytechnique.edu

Jean Goubault-Larrecq
LSV, ENS Cachan, CNRS, INRIA Futurs
France
goubault@lsv.ens-cachan.fr

Serge Haddad
LSV, ENS Cachan, CNRS, INRIA
France
haddad@lsv.fr

Christopher Hahn
Universität des Saarlandes
Germany
s9chhahn@stud.uni-saarland.de

Ichiro Hasuo
Department of Computer Science, University
of Tokyo
Japan
ichiro@is.s.u-tokyo.ac.jp

Daniel Hausmann
Friedrich-Alexander-Universität
Erlangen-Nürnberg
Germany
daniel.hausm4nn@gmail.com

Authors 0:xix

Quentin Hautem
UMONS
Belgium
quentin.hautem@umons.ac.be

Thomas Henzinger
IST Austria
Austria
tah@ist.ac.at

Andreas Holzer
University of Toronto
Canada
andreas.holzer81@gmail.com

Ross Horne
Nanyang Technological University
Singapore
ross.horne@gmail.com

Loig Jezequel
Université de Nantes
France
loig.jezequel@irccyn.ec-nantes.fr

Christoph Kirsch
University of Salzburg
Austria
ck@cs.uni-salzburg.at

Igor Konnov
TU Wien
Austria
konnov@forsyte.at

Tomer Kotek
TU Wien
Austria
kotek@forsyte.at

Jan Kretinsky
Technical University of Munich
Germany
xkretins@fi.muni.cz

Shankara Narayanan Krishna
IIT Bombay
India
krishnas@cse.iitb.ac.in

Antonin Kucera
Masaryk University
Czech Republic
tony@fi.muni.cz

Denis Kuperberg
TUM
Germany
denis.kuperberg@gmail.com

Orna Kupferman
Hebrew University
Israel
orna@cs.huji.ac.il

Francois Laroussinie
LIAFA, Univ. Paris 7, CNRS
France
francoisl@liafa.univ-paris-diderot.fr

Kim Guldstrand Larsen
Computer Science, Aalborg University
Denmark
kgl@cs.aau.dk

Antonia Lechner
University of Oxford
United Kingdom
antonia.lechner@cs.ox.ac.uk

Engel Lefaucheux
IRISA
France
engel.lefaucheux@irisa.fr

Didier Lime
Ecole Centrale de Nantes, IRCCyN
France
didier.lime@ec-nantes.fr

Sam Lindley
University of Edinburgh
United Kingdom
sam.lindley@ed.ac.uk

Michael Lippautz
Google Inc.
Germany
michael.lippautz@gmail.com

Radu Mardare
Aalborg University
Denmark
mardare@cs.aau.dk

Nicolas Markey
LSV, CNRS & ENS Cachan
France
markey@lsv.fr

CONCUR 2016

0:xx Authors

Richard Mayr
University of Edinburgh
United Kingdom
rmayr@inf.ed.ac.uk

Fabrizio Montesi
University of Southern Denmark
Denmark
famontesi@gmail.com

Anca Muscholl
TUM
Germany
anca@labri.fr

Uwe Nestmann
Technische Universität Berlin
Germany
uwe.nestmann@tu-berlin.de

Tuan Phong Ngo
Uppsala University
Sweden
tuan-phong.ngo@it.uu.se

Petr Novotný
IST Austria
Austria
petr.novotny.mail@gmail.com

Joel Ouaknine
Oxford University
United Kingdom
joel@cs.ox.ac.uk

Catuscia Palamidessi
INRIA & LIX, Ecole Polytechnique
France
catuscia@lix.polytechnique.fr

Hannes Payer
Google Inc.
Germany
hannes.payer@gmail.com

Roly Perera
University of Glasgow
United Kingdom
roly.perera@dynamicaspects.org

Marco Peressotti
DiMA, University of Udine
Italy
marco.peressotti@uniud.it

Tatjana Petrov
IST Austria
Austria
tatjana.petrov@gmail.com

Amaury Pouly
University of Oxford
United Kingdom
amaury.pouly@cs.ox.ac.uk

Sergio Rajsbaum
Instituto de Matematicas, UNAM
Mexico
sergio.rajsbaum@gmail.com

Christina Rickmann
Technische Universität Berlin
Germany
c.rickmann@tu-berlin.de

David A. Rosenblueth
Universidad Nacional Autonoma de Mexico
Mexico
drosenbl@servidor.unam.mx

Uli Schlachter
Uni Oldenburg
Germany
uli.schlachter@informatik.uni-oldenburg.de

Stefan Schmid
TU Berlin & Telekom Innovation
Laboratories (T-Labs)
Germany
stefan.schmid@tu-berlin.de

Lutz Schröder
FAU Erlangen-Nürnberg
Germany
lutz.schroeder@fau.de

Carsten Schuermann
IT University of Copenhagen
Denmark
carsten@itu.dk

Ali Sezgin
University of Cambridge
United Kingdom
as2418@cam.ac.uk

Authors 0:xxi

Shunsuke Shimizu
The University of Tokyo
Japan
shunsuke@is.s.u-tokyo.ac.jp

Joseph Sifakis
EPFL
Switzerland
joseph.sifakis@epfl.ch

Ana Sokolova
University of Salzburg
Austria
anas@cs.uni-salzburg.at

Jan Sürmeli
Humboldt-Universität zu Berlin
Germany
suermeli@informatik.hu-berlin.de

Simone Tini
Univerisity of Insubria
Italy
simone.tini@uninsubria.it

Corentin Travers
CNRS and University of Bordeaux
France
corentin.travers@labri.fr

Marvin Triebel
Humboldt-Universität zu Berlin
Germany
triebel@informatik.hu-berlin.de

Natsuki Urabe
The University of Tokyo
Japan
urabenatsuki@is.s.u-tokyo.ac.jp

Helmut Veith
TU Wien
Austria
veith@forsyte.at

Yaron Velner
Hebrew University
Israel
yaron.welner@mail.huji.ac.il

Valeria Vignudelli
University of Bologna & INRIA
Italy
valeria.vignudelli@gmail.com

Philip Wadler
University of Edinburgh
United Kingdom
wadler@inf.ed.ac.uk

Christoph Wagner
TU Berlin
Germany
christoph.wagner@tu-berlin.de

Igor Walukiewicz
TUM
Germany
igw@labri.fr

Qiang Wang
EPFL
Switzerland
qiang.wang@epfl.ch

James Worrell
Oxford University
United Kingdom
jbw@cs.ox.ac.uk

CONCUR 2016

Bayesian Inversion by ω-Complete Cone Duality∗

Fredrik Dahlqvist1, Vincent Danos2, Ilias Garnier3, and
Ohad Kammar4

1 University College London
f.dahlqvist@ucl.ac.uk

2 Ecole Normale Supérieure
vincent.danos@ens.fr

3 University of Edinburgh
igarnier@inf.ed.ac.uk

4 University of Oxford
ohad.kammar@cl.cam.ac.uk

Abstract
The process of inverting Markov kernels relates to the important subject of Bayesian modelling
and learning. In fact, Bayesian update is exactly kernel inversion. In this paper, we investigate
how and when Markov kernels (aka stochastic relations, or probabilistic mappings, or simply
kernels) can be inverted. We address the question both directly on the category of measurable
spaces, and indirectly by interpreting kernels as Markov operators:

For the direct option, we introduce a typed version of the category of Markov kernels and
use the so-called ‘disintegration of measures’. Here, one has to specialise to measurable spaces
borne from a simple class of topological spaces -e.g. Polish spaces (other choices are possible).
Our method and result greatly simplify a recent development in Ref. [4].
For the operator option, we use a cone version of the category of Markov operators (kernels
seen as predicate transformers). That is to say, our linear operators are not just continuous,
but are required to satisfy the stronger condition of being ω-chain-continuous.1 Prior work
shows that one obtains an adjunction in the form of a pair of contravariant and inverse
functors between the categories of L1- and L∞-cones [3]. Inversion, seen through the operator
prism, is just adjunction.2 No topological assumption is needed.
We show that both categories (Markov kernels and ω-chain-continuous Markov operators)
are related by a family of contravariant functors Tp for 1 ≤ p ≤ ∞. The Tp’s are Kleisli
extensions of (duals of) conditional expectation functors introduced in Ref. [3].
With this bridge in place, we can prove that both notions of inversion agree when both defined:
if f is a kernel, and f† its direct inverse, then T∞(f)† = T1(f†).

1998 ACM Subject Classification Semantics of programming languages

Keywords and phrases probabilistic models, Bayesian learning, Markov operators

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2016.1

Category Invited Paper

∗ This work was funded partly through the RULE/320823 ERC project.
1 This stronger continuity condition derives from domain-theoretic ideas and is due to Selinger [14].
2 A similar Lp/Lq duality result also exists [2], and we will investigate it in later work.

© Fredrik Dahlqvist, Vincent Danos, Ilias Garnier, and Ohad Kammar;
licensed under Creative Commons License CC-BY

27th International Conference on Concurrency Theory (CONCUR 2016).
Editors: Josée Desharnais and Radha Jagadeesan; Article No. 1; pp. 1:1–1:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

1:2 Bayesian Inversion by ω-Complete Cone Duality

1 Introduction

Before we get in the technicalities, we review informally the central notions of interest: kernels,
kernels as operators, and Bayesian update. We also take the opportunity to introduce some
of the notations used in the remainder of the paper.

A kernel is a (measurable) map from some measurable space X to the set of probability
distributions on another measurable space Y . Probability distributions have to be equipped
with a set of mesasurables for this to make sense. We will write X → GY or equivalently
X _ Y for the type of such X, Y kernels, where GX is the set of probability distributions over
X. With the appropriate constructions, G is a monad over Mes, the category of measurable
spaces and measurable maps [9].

Kernels are often used as models of probabilistic behaviour. If X = Y is finite, then this is
but the familiar notion of probabilistic state machine (or finite discrete-time Markov chain),
where one jumps probabilistically from one state to the next with no dependence on the
past. We say a kernel f : X → GY is deterministic3 if it factorises in Mes as f = δY ◦ f ′d
for some fd : X → Y , where δX : X _ X sends x to δx the Dirac measure at x. Intuively
determinism means that f allows only one possible jump at each x in X. In particular, δX is
a deterministic kernel itself (with an identical jump).

One can also use a kernel as a family of probabilities over Y parameterised by X. Each
probability in the range of the kernel can be thought as a competing description of a hidden
true probability. Given an additional probability p on the parameter space X, a prior, one
can specify how much ‘trust’ one has in any particular description offered. This is the
Bayesian model of quantification of uncertain probabilities: the prior describes our beliefs
and ‘Bayesian update’ is a process by which new data (minted by the true random source)
can be incorporated to modify the prior, and update our beliefs. The hope is that in the
long run the successive priors will take us closer to the truth.

Kernels as operators

Yet another standpoint on kernels is to look at them as linear maps. Indeed, a finite
f : X → GY can be seen as a transition matrix T(f) of type X × Y with the x, y-entry
specifying the probability that being at x in X one jumps to y in Y .4 Thus, one can think
of f : X → GY as a linear map from the free vector space over Y to that over X. Clearly
T(δX) = IX . In particular, a probability p over X, ie a map from 1 → GX, is a matrix
T(p) of type 1 × X (a row vector). This new standpoint gives a ready access to the key
operation of kernel composition, written ◦G. Because G is a monad (known as the Giry
monad), one knows how to compose kernels for general reasons using the so-called Kleisli
composition (see Section 2). In the operator interpretation, Kleisli composition is just plain
matrix multiplication. E.g. the composition f ◦G p of p and f is represented as T(p)T(f), a
new row vector of type 1× Y . The T (contravariant) functor can be extended to arbitrary
measurable kernels, using the machinery of Banach cones of real functions (see Section 4.4).5

3 Or a deterministic map, following the terminology of Lawvere in his seminar handout notes on the
“category of probabilistic mappings” (1962).

4 Of course the transpose representation is also possible as will be clear in the duality of the operator
interpretation.

5 This predicate transformer view was first championed by Kozen for probabilistic programs [12].

F. Dahlqvist, V. Danos, I. Garnier, and O. Kammar 1:3

Importantly, we will deal not with ‘naked’ Markov kernels, but with ‘typed’ ones of the
form:6

1
p

?z�

q

��$
X

f � ,2Y

(X, p) f � ,2(Y, q)

where the triangle (above, left) is drawn in the Kleisli category of G in Mes and assumed to
commute. The simpler diagram (above, right) is just a more compact notation for the same.
(Recall that we use blocky arrows to remind us that these are Kleisli arrows.) Either diagram
means that in addition to f , we are given probabilities p on X, q on Y with f ◦G p = q.

This category of typed kernels has a natural subcategory where f is deterministic.
The typing simply amounts to saying that q is the push-forward of p along g.7 E.g. δX :
(X, p) _ (X, p) for any p in GX. This subcategory is (equivalent to) the familiar category of
probabilistic triples and measurable measure-preserving maps.8

Bayesian update or inversion

Our main question is as folllows. Given a typed kernel f , we wish to build and characterise a
‘weak’ inverse f†:

(X, p)

f

� %,
(Y, q)

f†
�fm

In the Bayesian world, f† should be the update map we mentioned above. Given a data input
y in Y , this map returns a posterior f†(y) which represents our updated set of beliefs. It is
therefore central to the theory to obtain good and general descriptions of f†. We will access
such descriptions of f† following two routes. The direct route uses the non-trivial notion of
disintegration (aka regular conditional probabilities) which solves the inversion problem in
the special case of a deterministic f . A clever construction based on couplings allows one to
generalise it to any kernel. This is done in Section 3.3 and follows the construction of Ref. [4]
while being markedly simpler. The other route goes the operator way. As alluded to in the
abstract, we use a domain theoretic variant of the usual interpretation which carries a perfect
duality (which one does not have in the standard interpretation). Then, as the notation
suggests, we can just define T(f)† as the adjoint of T(f) (this is done in Section 4). Bayesian
inversion is cone duality! Whence the title. We then show that through our functorial bridge,
T (really a family Tp), both routes agree (Section 5).

The paper is almost self-contained. The only pieces of mathematics borrowed are the
disintegration and the cone duality results and some of the most basic definitions. We now
turn to the technical preliminaries.

6 In category-theoretical words, our arrows are in the ‘category under 1’ of the Kleisli of G.
7 Because in this case f ◦G p = (δ ◦ fd) ◦G p = µ ◦ G(δ ◦ fd) ◦ p = µ ◦ G(δ) ◦ G(fd) ◦ p = G(fd) ◦ p; as follows

from the monad structure equation µ ◦ G(δ) = I.
8 Richer categories of kernels were considered before; for instance, to obtain a notion of almost sure
bisimilarity on labelled kernels (aka labelled Markov processes) Ref. [6, Section 7] equips kernels with
ideals of negligibles.

CONCUR 2016

1:4 Bayesian Inversion by ω-Complete Cone Duality

2 Preliminaries

Measurable and Polish spaces

We refer to Ref. [1] for the definitions of measurable spaces and maps, and Ref. [11] for an
introduction to the theory of Polish spaces (completely metrisable and separable topological
spaces). Where convenient, we will denote measurable spaces and related structures by their
underlying set. If X is a set, (Y,Λ) a measurable space and f : X → Y a function, we denote
by σ(f) its initial σ-algebra, which is the smallest σ-algebra that makes it measurable. As
seen earlier, the category of measurable spaces and measurable maps is denoted by Mes,
and that of Polish spaces and continuous maps by Pol. There is a functor B : Pol→Mes
associating any Polish space to the measurable space with same underlying set equipped
with the ‘Borel’ σ-algebra (generated by open sets), and interpreting continuous maps as
measurable ones. Measurable spaces in the range of B are the standard Borel spaces.

A measure p on a measurable space (X,Σ) is a set function Σ→ R which is σ-additive
and such that p(∅) = 0. One says p is a finite measure whenever p(X) <∞, and a probability
measure if p(X) = 1. A property holds p-almost surely (p-a.s) if its negation holds on a set
of measure 0. A measure space is a triple (X,Σ, p) such that (X,Σ) is a measurable space
and p is a finite measure on (X,Σ). We denote by p|Λ the restriction of p to a sub-σ-algebra
Λ ⊆ Σ. A Borel measurable real-valued function f : (X,Σ, p) → R is called integrable if∫
X
|f | dp <∞.

Radon-Nikodym and conditional expectations

Let (X,Σ) be some measurable space. For p, q finite measures, we say that p is absolutely
continuous with respect to q if for all B measurable, q(B) = 0 implies p(B) = 0. This will be
denoted by p� q. The Radon-Nikodym theorem tells us that we can express p in terms of
its derivative with respect to q:

I Theorem 1 (Radon-Nikodym). If p � q there exists a q-a.s. unique positive integrable
function denoted by dp

dq : (X,Σ, q)→ R such that p = B 7→
∫
B
dp
dqdq.

The function dp
dq is called the Radon-Nikodym derivative of p with respect to q.

Let us denote f · p = B ∈ Λ 7→
∫
B
f dp. Clearly f · p� p. The following two identities

follow from Theorem 1: (i) df ·p
dp = f (ii) dp

dq · q = p. We refer the reader to [1] for further facts
about Radon-Nikodym derivatives. Conditional expectations can be implemented in terms of
Radon-Nikodym derivatives.

IDefinition 2 (Conditional expectation ([10])). Let (X,Σ, p) be a measure space and let Λ ⊆ Σ
be a sub-σ-algebra. The conditional expectation of an integrable function f : (X,Σ, p)→ R
with respect to Λ is the p-a.s. unique integrable function E [f | Λ] : (X,Λ, p|Λ) → R that
verifies for all B ∈ Λ the identity

∫
B
E [f | Λ] dp =

∫
B
f dp.

Theorem 1 implies the existence of conditional expectations: letting f · p = B ∈ Λ 7→∫
B
f dp, we have for all B ∈ Λ the characteristic identity

∫
B
df ·p
dp|Λ dp|Λ =

∫
B
f · p =

∫
B
fdp.

Probability functors

The endofunctor G : Mes → Mes associates to any measurable space X the set of all
probability measures on X with the smallest σ-algebra that makes the evaluation functions
evB : G(X) → R = p 7→ p(B) measurable, for B a measurable set in X. If f : X → Y is
measurable, the action of the functor is defined by G(f)(P) = P ◦ f−1. This functor can be

F. Dahlqvist, V. Danos, I. Garnier, and O. Kammar 1:5

endowed with the structure of the Giry monad (G, µ, δ). The multiplication µ : G2 ⇒ G is
defined at a component X by µX(P)(B) =

∫
G(X) evBdP while the unit δ : Id⇒ G is defined

at X by δX(x) = δx, where δx(B) = 1 if and only if x ∈ B.
The Kleisli category of G will be denoted by K`. It has the same objects as Mes. For

all X,Y measureable spaces, a Kleisli arrow f : X _ Y in K` is a kernel f : X → G(Y)
in Mes. The Kleisli composition of the kernel f : X _ Y with g : Y _ Z is given by
g ◦G f = µY ◦ G(g) ◦ f .

3 Bayesian inversion

Let D be a space representing some space of data and let t ∈ G(D) be the truth, a unknown
probability measure that we wish to discover by sampling repeatedly from it. In order to
make this search analytically or computationally tractable, or more generally to reflect some
additional knowledge or assumptions held about the truth, one might wish to parameterise
the search through a space H of parameters and a measurable likelihood function f : H _ D.
The uncertainty about which parameter best matches the truth is represented by a probability
p ∈ G(H) called the prior. The composite of the two arrows q = f ◦G p is called the marginal
likelihood.

Bayesian inversion is the construction from these data of a posterior map g : D _ H, also
called the inference map. Upon observing a sample d ∈ D, this inference map will produce an
updated prior g(d). In good cases (e.g. H and D finite, and q absolutely continuous w.r.t. t),
sampling independently and identically from the truth t and iterating this Bayesian update
will make the marginal likelihood converge (in some topology to be chosen carefully) to t.
The key step in the above process is the construction of the posterior g, which relies crucially
on disintegrations.

Culbertson & Sturtz give in [4] a nice categorical account of Bayesian inversion in a
setting close to K`. In the following, we provide a streamlined view of their work by defining
a category of kernels where disintegration and Bayesian inversion admit rather elegant
statements.

3.1 Categories of kernels
Let F : Mes → K` be the functor embedding Mes into the Kleisli category of G. It acts
identically on spaces and maps measurable arrows f : X → Y to Kleisli arrows F (f) = δY ◦f .
1 ↓ F is the category having as objects probabilities p : 1 _ X, denoted by (X, p), and
as morphisms f : (X, p) _δ (Y, q) degenerate Kleisli arrows F (f) : X _ Y such that
q = F (f)◦G p = G(f)(p). As said, these correspond to the usual notion of measure-preserving
map. 1 ↓ K` is the category having the same objects as 1 ↓ F but where arrows are non-
degenerate, i.e. an arrow from (X, p) to (Y, q) as above is any Kleisli arrow f : X _ Y such
that q = f ◦G p. Clearly, 1 ↓ F is a subcategory of 1 ↓ K` with the same objects (aka lluf).

The following result ensures that for an arrow f : (X, p) _ (Y, q), there are p-negligibly
many points jumping to q-negligible sets (it corresponds to the condition of non-singularity
of [3]).

I Lemma 3. If f : (X, p) _ (Y, q) is an arrow in 1 ↓ K`, then f(x)� q p-a.s.

Proof. By definition of 1 ↓ K`, q(B) =
∫
X
f(x)(B) dp. Assume q(B) = 0, then having

f(x)(B) > 0 on a set of strictly positive p-measure implies that the integral is strictly
positive, yielding a contradiction. J

CONCUR 2016

1:6 Bayesian Inversion by ω-Complete Cone Duality

For all objects (X, p), (Y, q), let R(X,p),(Y,q) be the smallest equivalence relation on
Hom1↓K`(X,Y) such that (f, f ′) ∈ R(X,p),(Y,q) if f and f ′ are p-a.s. equal.

I Lemma 4. R defines a congruence relation on 1 ↓ K`.

Proof. We must show that for all g : (X ′, p′) _ (X, p) and all h : (Y, q) _ (Y ′, q′),
(h◦Gf◦Gg, h◦Gf

′◦Gg) ∈ R(X′,p′),(Y ′,q′). First, let us prove that (f◦Gg, f
′◦Gg) ∈ R(X′,p′),(X,p).

By Lemma 3, g(x′)� p p′-a.s., hence the following equation holds for p′-almost all x′:

(f ◦G g)(x′) = BY 7→
∫
x∈X

f(x)(BY)dg(x′) = BY 7→
∫
x∈X

f ′(x)(B)dg(x′) = (f ′ ◦G g)(x′)

It remains to prove that h ◦G f ◦G g is p′-a.s. equal to h ◦G f ′ ◦G g. We have:

(h ◦G f ◦G g)(x′) = BY ′ 7→
∫
y′∈Y ′ h(y′)(BY ′)d(f ◦G g)(x′)

= BY ′ 7→
∫
y′∈Y ′ h(y′)(BY ′)d(f ′ ◦G g)(x′) p′-a.s.

= (h ◦G f ′ ◦G g)(x′) p′-a.s.

which concludes the proof. J

This congruence relation allows us to consider R-equivalence classes of 1 ↓ K` arrows as
proper morphisms in the corresponding quotient category (Section 2.8, [13]):

I Definition 5. The category Krn is the quotient category (1 ↓ K`)/R, with subcategory
Krnδ = (1 ↓ F)/R.

In other terms, an arrow f : (X, p) _ (Y, q) in Krn is an equivalence class of kernels that
are p-a.s. equal.

3.2 Disintegrations
Disintegrations are also called regular conditional probabilities and correspond to measurable
families of conditional probabilities. Working in the setting of standard Borel spaces ensures
their existence, and the corresponding statement admits a particularly elegant form in Krn:

I Theorem 6 (Disintegration, [8]). Let X and Y be standard Borel spaces, and let f :
(X, p) _δ (Y, q) be an arrow in Krnδ. There exists a unique Krn arrow f† : (Y, q) _ (X, p)
that verifies f†(y)(f−1({y})) = 1 q-a.s.

We call f† the disintegration of p along f . We will show in Section 5 that disintegrations
and more generally Bayesian inverses are adjoints, hence the use of the −† notation. The last
condition can be equivalently stated as the fact that f ◦ f† = id(Y,q). In order to bridge our
crisp statement of Theorem 6 with the usual measure-theoretic one, let us unfold the objects
at play. If we inspect the type of the arrows f : (X, p) _δ (Y, q) and f† : (Y, q) _ (X, p) we
see that by definition of composition in K`, we have the equation q = (µY ◦ G(δY ◦ f))(p) =
G(f)(p). The existence of the disintegration arrow f† : (Y, q) _ (X, p) implies the equation
p = (µY ◦ G(f†))(q) which corresponds to

p = B 7→
∫

G(Y) evB dG(f†)(q)
= B 7→

∫
y∈Y f

†(y)(B) dq (Change of variables) (1)

We recall that the uniqueness of f† claimed in Theorem 6 is really that of a q-equivalence
class of kernels. Note also that disintegrations do not in general exist in Pol as they need
not be continuous (even when disintegrating along a continuous map).

F. Dahlqvist, V. Danos, I. Garnier, and O. Kammar 1:7

Disintegration, as said above, is a measurable family of conditional probabilities. The sub-
σ-algebras against which the conditionings are performed are encoded through the measurable
map f along which the disintegration is computed. Simple calculations make explicit how
conditional expectation underpins disintegration: for all h : (X, p)→ R integrable,∫

X
h dp =

∫
y∈Y

(∫
X
h df†(y)

)
dq (Equation 1)

=
∫
y∈Y

(∫
f−1(y) h df

†(y)
)
dq (Theorem 6)

The last equation corresponds to the usual measure-theoretic characteristic identity of
disintegrations. Let us consider a measurable set B ∈ σ(f) and let us apply this identity to
the function h · 1B . Applying a change of variables on q = G(f)(p), we get:∫

B
h dp =

∫
x∈X

(∫
f−1(f(x)) h · 1B df

†(f(x))
)
dp (Change of variables)

=
∫
x∈B

(∫
f−1(f(x)) h df

†(f(x))
)
dp (1B constant on fibers)

We recognise the characteristic identity of conditional expectations (Definition 2). This
implies that the following identity holds p-almost everywhere:

E [h | σ(f)] = x 7→
∫
f−1(f(x))

h df†(f(x)) (2)

3.3 Bayesian inversion
Bayesian inversion is a reformulation of the disintegration theorem where the map f is
allowed to be any arrow of Krn (and not just a deterministic one). To formulate our Bayesian
inversion theorem we will define two Set-valued functors and two natural transformations
between them. The first functor is simply the functor Hom((X, p),−) : Krn → Set for a
given (X, p) in Krn. For notational clarity, we will abbreviate objects (X, p), (Y, q), (Y ′, q′)
in Krn to X,Y, Y ′ with the understanding that they come equipped with measures p, q, q′. It
is useful to explicitly write the action of Hom(X,−) on morphisms g : Y _ Y ′. By definition
Hom(X,−)(g) : Hom(X,Y)→ Hom(X,Y ′) maps f ∈ Hom(X,Y) to the kernel:

Hom(X,−)(g)(f) , g ◦G f : X _ Y ′ defined by (g ◦G f)(x)(BY ′) =
∫
y∈Y

g(y)(BY ′) df(x)

Given X in Krn, our second functor Γ(X,−) : Krn → Set is defined on objects as
follows: we define Γ(X,Y) ⊆ G(X × Y) to be the set of couplings of p and q, corresponding
to measures γ such that G(πX)(γ) = p and G(πY)(γ) = q. Couplings corresponds to elements
γ such that the following diagram commutes in K`:

1
γ

_�� q

d��

p

Z	�

X × Y
πY

δ
� �'

πX

δ

7w�
X Y

(3)

On morphisms g : Y _ Y ′, Γ(X, g) is defined as the map Γ(X, g) = ⊗ ◦G (δ × g) ◦G − such
that Γ(X, g)(γ) is the composite

1 γ // X × Y
⊗◦(δX×g) // X × Y ′

CONCUR 2016

1:8 Bayesian Inversion by ω-Complete Cone Duality

where ⊗ : GX × GY ′ → G(X × Y ′) is the product measure bifunctor and δX is the Giry unit
at X. By unravelling the definitions we get

Γ(X, g)(γ)(BX ×BY ′) =
∫

(x,y)∈X×Y
δX(x)(BX) · g(y)(BY ′) dγ

The proof that Γ(X,−) commutes with composition follows from the disintegration theorem.
We now define a transformation αX : Hom(X,−)→ Γ(X,−) defined at Y by

αXY (f)(BX ×BY) =
∫
x∈BX

f(x)(BY) dp

I Proposition 7. αX is natural

Proof. Let g : (Y, q)→ (Y ′, q′), we calculate

Γ(X, g)(αXY (f))(BX ×BY ′)
(1)=
∫

(x,y)∈X×Y
δX(x)(BX)g(y)(BY ′) dαXY (f)

(2)=
∫
x∈X

δX(x)(BX)
(∫

y∈Y
g(y)(BY ′)df(x)

)
dp

=
∫
x∈BX

(∫
y∈Y

g(y)(BY ′) df(x)
)
dp

(3)= αXY ′(Hom(X, g)(f))(BX ×BY ′)

where (1) follows from the definition of Γ, (2) follows from the fact that αXY constructs a
coupling in an explicitly disintegrated form, and (3) follows from the definition of αX and
Hom(X,−). J

Our second natural transformation goes in the opposite direction and is given by the
disintegration along the first projection (which exists by Theorem 6), i.e. we define DX :
Γ(X,−)→ Hom(X,−) at Y in Krn by:

DX
Y (γ) = G(πY) ◦ π†X , such that γ(BX ×BY) =

∫
BX

DX
Y (γ)(x)(BY)dp(dx)

I Proposition 8. DX is natural.

Proof. Let g : (Y, q) → (Y ′, q′) and γ ∈ Γ(X,Y). For notational clarity, for any h ∈
Hom(X,Y) let us write h̃ = Hom(X,−)(g)(h), and let us define f , DX

Y (γ). We now
calculate:

Γ(X, g)(γ)(BX ×BY ′)
(1)=
∫

(x,y)∈X×Y
δX(x)(BX)g(y)(BY ′) dγ

(2)=
∫
x∈X

δX(x)(BX)
(∫

y∈Y
g(y)(BY ′) df(x)

)
dp

=
∫
x∈BX

(∫
y∈Y

g(y)(BY ′) df(x)
)
dp

(3)=
∫
x∈BX

f̃(x)(BY ′) dp

where (1) follows by definition of Γ(X,−), (2) is by definition of f and the Disintegration
Theorem 6, and (3) by definition of Hom(X,−). It follows immediately that f̃ factors through
the disintegration of Γ(X, g)(γ) along the first projection, i.e. that

DX
Y ′(Γ(X, g)(γ)) = Hom(X, g)(DX

Y (γ))

J

F. Dahlqvist, V. Danos, I. Garnier, and O. Kammar 1:9

I Theorem 9 (Bayesian Inversion Theorem). There exists a bijection:

−† : HomKrn((X, p), (Y, q))→ HomKrn((Y, q), (X, p))

Proof. It is immediate from the definitions above that αXY : Hom(X,Y) → Γ(X,Y) and
DX
Y : Γ(X,Y)→ Hom(X,Y) are inverse of one another, and thus bijective. Moreover, it is

also clear that the permutation map G(π2 × π1) : Γ(X,Y)→ Γ(Y,X) being its own inverse
is a bijection. It follows that Hom(X,Y) ' Γ(X,Y) ' Γ(Y,X) ' Hom(Y,X). And we can
set −† = DY

X ◦ G(π2 × π1) ◦ αXY . J

4 ω-complete normed cones

We recall some facts pertaining to the categories of ω-complete normed cones introduced
in [14]. The main object of this section is to give a functional analytic account of kernels
as operators on ω-complete normed cones, in the style of [3]. We improve on the latter by
presenting the transformation from kernels to operators functorially. In Section 5, we will use
the machinery developed here to interpret Bayesian inversion in this domain-theoretic setting.
We first recall some general definitions about ω-complete normed cones and the associated
category ωCC. We then concentrate on the duality existing between the subcategories of
cones of integrable and bounded functions. Proofs not provided here can be found in Ref. [3].

4.1 Basic definitions
Cones are axiomatisations of the positive elements of (real) vector spaces.

I Definition 10 (Cones). A cone (V,+, ·, 0) is a set V together with an associative and
commutative operation + with unit 0 and with a multiplication by real positive scalars ·
distributive over +. We have two more axioms: the cancellation law ∀u, v, w ∈ V, v + u =
w + u⇒ v = w and the strictness ∀v, w ∈ V, v + w = 0⇒ v = w = 0.

Any cone C admits a natural partial order structure ≤ defined as follows: u ≤ v if and
only if there exists w such that v = u+w. We will consider normed cones which are complete
with respect to increasing sequences (chains) in this order which are of bounded norm.

I Definition 11 (Normed cones, ω-complete). A normed cone C is a cone together with a
function ‖−‖ : C → R+ satisfying (i) ∀v ∈ C, ‖v‖ = 0⇔ v = 0; (ii) ∀r ∈ R+, v ∈ C, ‖r · v‖ =
r ‖v‖; (iii) ∀u, v ∈ C, ‖u+ v‖ ≤ ‖u‖+ ‖v‖; (iv) u ≤ v ⇒ ‖u‖ ≤ ‖v‖. A cone is ω-complete if
(i) for all chain (un)n∈N such that {‖un‖}n∈N is bounded, there exists a least upper bound
(lub)

∨
n un and (ii) ‖

∨
n un‖ =

∨
n ‖un‖.

Note that the norm ‖−‖ is ω-continuous. All the cones we are going to consider in the
following are ω-complete and normed. ω-continuous linear maps form the natural notion of
morphism between such structures. Note that linearity implies monotonicity in the natural
order.

I Definition 12 (ω-continuous linear maps). For C,D ω-complete normed cones, an ω-
continuous linear map f : C → D is a linear map such that for every chain (un)n∈N for which∨
n un exists,

∨
n f(un) exists and is equal to f(

∨
n un).

The dual of an ω-complete normed cone is defined in the usual way. We will admit the
following result:

CONCUR 2016

1:10 Bayesian Inversion by ω-Complete Cone Duality

I Proposition 13 (ω-complete dual). If C is an ω-complete normed cone, the cone of ω-
continuous linear maps {φ : C → R+} with the norm ‖φ‖ = infv {c ≥ 0 | |φ(v)| ≤ c ‖v‖} is
ω-complete.

ω-complete normed cones and ω-continuous linear maps form a category denoted by
ωCC. The dual operation gives rise to a contravariant endofunctor −∗ : ωCC→ ωCC. If
f : C → D is an ωCC arrow, f∗ : D∗ → C∗ is defined by f∗(φ) = φ ◦ f . For all φ ∈ D∗ and
x ∈ C, one has

‖f∗(φ)(x)‖ = ‖(φ ◦ f)(x)‖
≤ ‖φ‖ ‖f(x)‖ (φ ω-continuous)
≤ ‖φ‖ ‖f‖ ‖x‖ (f ω-continuous)

Therefore, ‖f∗‖ ≤ ‖f‖. We now introduce the cones we are going to work with in the
remainder of the paper.

4.2 Cones of measures and of measurable functions
Let us fix a measure space (X,Σ, p) with p finite. Much of the constructions in the rest of the
paper rely on dualities between the cones of measurable functions L+

1 (X,Σ, p), L+
∞(X,Σ, p)

and cones of measuresM�p(X,Σ),Mp
UB(X,Σ). Let us introduce these cones in more detail.

Cones of measurable functions

Two positive measurable maps f, f ′ : (X,Σ, p) → R+ are said to be p-equivalent if
p {x | f(x) 6= f ′(x)} = 0. Such as map f : (X,Σ)→ R is p-integrable if

∫
X
f dp <∞. Clearly,

being p-integrable is preserved by p-equivalence. The elements of the cone L+
1 (X,Σ, p) are

p-equivalence classes of real-valued integrable maps. L+
1 (X,Σ, p) is normed by ‖f‖1 =

∫
X
f dp.

The dominated convergence theorem implies that L+
1 (X,Σ, p) is an ω-complete normed cone.

A positive measurable map f is p-essentially bounded if there exists C ≥ 0 such that
p {x | f(x) > C} = 0. The elements of the cone L+

∞(X,Σ, p) are p-equivalence classes of real-
valued essentially bounded maps. The norm is given by ‖f‖∞ = inf {C ≥ 0 | f(x) ≤ C p-a.s.}.

Cones of measures

Closely related to the cones above are cones of absolutely continuous measuresM�p(X,Σ)
and bounded measuresMp

UB(X,Σ).M�p(X,Σ) is the cone of finite measures which are
absolutely continuous with respect to p, with norm given by ‖q‖� = q(X).Mp

UB(X,Σ) is
the cone of finite measures which are uniformly bounded by a finite multiple of p, with norm
given by ‖q‖UB = inf {c ≥ 0 | q ≤ cp}. The ω-completeness of these cones will appear as a
byproduct of the duality to be proved in the next.

4.3 Duality between L1 and L∞ cones
In the following, we will denote by L+

1 the full subcategory of ωCC having as objects cones
L+

1 (X,Σ, p) and by L+
∞ the full subcategory of ωCC having as objects cones L+

∞(X,Σ, p). As
indicated before, the construction of the duality goes through cones of absolutely continuous
measuresM�p(X,Σ) and bounded measuresMp

UB(X,Σ).

I Theorem 14. M�p(X,Σ) is isometrically isomorphic to L+
1 (X,Σ, p) andMp

UB(X,Σ) is
isometrically isomorphic to L+

∞(X,Σ, p).

F. Dahlqvist, V. Danos, I. Garnier, and O. Kammar 1:11

Proof. The Radon-Nikodym derivative induces a map q ∈ M�p(X,Σ) 7→ dq
dp which is

linear, injective and norm-preserving, as is its inverse map u ∈ L+
1 (X,Σ, p) 7→ u · p. There-

fore, M�p(X,Σ) is isometrically isomorphic to L+
1 (X,Σ, p). The isomorphism between

Mp
UB(X,Σ) and L+

∞(X,Σ, p) is proved similarly. We only show that d−
dp is norm preserving.

For q ∈Mp
UB(X,Σ), we have

∥∥∥ dqdp∥∥∥∞ = inf
{
C ≥ 0 | dqdp ≤ C p-a.s.

}
. If dqdp ≤ C then q ≤ C ·p.

By definition, the least such C is ‖q‖UB . J

As a consequence, both cones of finite measures are ω-complete. We are now in position
to state the following variant of the Riesz representation theorem for ω-complete cones:

I Theorem 15. We have the following isometric isomorphisms: L+,∗
1 (X,Σ, p) ∼=Mp

UB(X,Σ)
and L+,∗

∞ (X,Σ, p) ∼=M�p(X,Σ).

We will only prove the first isomorphism, the second one being proved similarly.

Proof. We construct an isometric isomorphism ι : L+,∗
1 (X,Σ, p)→Mp

UB(X,Σ). Let us set
ι(φ) = B 7→ φ(1B). It is clearly linear. Let us show that ι(φ) is countably additive. For
(Bn)n∈N a countable family of pairwise disjoint subsets, we have ι(φ)(∪n∈NBn) = φ(1∪n∈NBn

).
Clearly, the family λk =

∑k
i=1 1Bn

is increasing, measurable and is bounded by 1X . Therefore∨
λk =

∑
n 1Bn exists and by ω-continuity of φ, φ(1∪n∈NBn) =

∑
n φ(1Bn). ι is injective: let

v ∈ L+
1 (X,Σ, p) s.t. φ(v) 6= φ′(v). v, being integrable can be approximated by an increasing

sequence of simple functions. We deduce there must exists B such that φ(1B) 6= φ′(1B).
Let us prove that ι(φ) ∈ Mp

UB(X,Σ). A monotone convergence argument shows that for
all v ∈ L+

1 (X,Σ, p), we have the identity φ(v) =
∫
X
v dι(φ) <∞. We also have p(B) = 0⇒

ι(φ)(B) = 0 hence ι(φ)� p. We deduce from the two previous facts that dι(φ)
dp ∈ L

+
∞(X,Σ, q),

which by Theorem 14 implies that ι(φ) ∈Mp
UB(X,Σ). It remains to prove that ι is surjective:

for q ∈Mp
UB(X,Σ), we have trivially for φq = v 7→

∫
X
v dq that ι(φq) = q. J

An immediate consequence is that L+,∗
1 (X,Σ, p) ∼= L+

∞(X,Σ, p) and reciprocally. This is
notoriously false in the case of general Banach spaces. What makes everything work here is
that we restrict to ω-continuous linear functionals.

Theorem 15 gives rise to a pairing between the spaces of integrable and bounded functions.

I Definition 16 (Pairing). The pairing of L+
∞(X,Σ, p) and L+

1 (X,Σ, p) is a bilinear map
〈·, ·〉X : L+

∞(X,Σ, p)× L+
1 (X,Σ, p)→ R given by 〈u, v〉X =

∫
X
u · v dp. It is continuous and

ω-continuous in both arguments.

This pairing gives rise to a notion of adjoint:

I Proposition 17 (Adjoints). The duality functor −∗ : ωCC → ωCC restricts to a
contravariant functor −† : L+

1 → L+
∞ such that for all L+

1 arrow A : L+
1 (X,Σ, p) →

L+
1 (Y,Λ, q), A† : L+

∞(Y,Λ, q) → L+
∞(X,Σ, p) is the unique adjoint arrow such that for all

u ∈ L+
1 (X,Σ, p), v ∈ L+

∞(Y,Λ, q), 〈v,Au〉Y = 〈A†v, u〉X .
Conversely, for all A : L+

∞(Y,Λ, q) → L+
∞(X,Σ, p) there is a unique adjoint †A :

L+
1 (X,Σ, p)→ L+

1 (Y,Λ, q) such that the equation above is verified.

We will not prove Proposition 17 here but simply sketch how adjoints are constructed.
Given A : L+

1 (X,Σ, p)→ L+
1 (Y,Λ, q) and using that L+

∞(X,Σ, p) ∼= L+,∗
1 (X,Σ, p) we set:

A† = v ∈ L+
∞(Y,Λ, q) 7→

(
u ∈ L+

1 (X,Σ, p) 7→ 〈v,Au〉
)

(4)

Note that A†(v) is written in dual form. The adjoint of †A : L+
∞(Y,Λ, q)→ L+

∞(X,Σ, p) is
defined similarly. Finally, observe that setting Y to be the one point space in Proposition 17
implies Theorem 15.

CONCUR 2016

1:12 Bayesian Inversion by ω-Complete Cone Duality

4.4 Operator interpretations of kernels
In [3], it is shown that kernels that respect a condition of “non-singularity” correspond
to particular linear operators between cones. This view on kernels allows to leverage the
language of functional analysis to approximate and reason on these objects. We improve on
this by showing that the functional interpretation of a non-singular kernel corresponds to
functors defined on Krn and valued in L+

1 and L+
∞. These new developments will be put to

use in Section 5 where we will show that Bayesian inversion (Theorem 9) maps through this
functorial correspondence to the adjunction of Proposition 17.

We introduce contravariant functors T∞ : Krn → L+
∞ and T1 : Krn → L+

1 mapping
kernels into norm 1 ω-continuous operators. T∞ is defined on objects (X, p) by T∞(X, p) =
L+
∞(X, p), while T1(X, p) = L+

1 (X, p). For f : (X, p) _ (Y, q) a Krn arrow, we set

T∞(f) = v ∈ L+
∞(Y, q) 7→

(
x 7→

∫
Y

v df(x)
)
. (5)

Note that this is well-defined, as f(x) is p-a.s. absolutely continuous with respect to q

(Lemma 3). T1(f) is defined similarly but acts on L+
1 (Y, q).

I Proposition 18. T∞ and T1 are functors T∞ : Krn→ L+
∞ and T1 : Krn→ L+

1 ranging
in operators of norm 1.

Proof. We first check that T∞ and T1 are well-typed. Let us fix f : (X, p) _ (Y, q) in Krn.
T∞(f) and T1(f) as defined above are clearly linear. We start with T1. We have for all
v ∈ L+

1 (Y, q) that

‖T1(f)(v)‖1 =
∫
X

(∫
Y

v df(x)
)
dp =

∫
Y

v d(µY ◦ G(f))(p) =
∫
Y

v dq = ‖v‖1

Therefore ‖T1(f)‖ = 1. Prop. 5.2 of [3] ensures that T1(f) is ω-continuous. Let us treat the
case of T∞. For all v ∈ L+

∞(Y, q), the inequality
∫
Y
v df(x) ≤ ‖v‖∞ is verified. This implies

‖T∞(f)(v)‖∞ = inf
{
C ≥ 0 |

∫
Y

v df(x) ≤ C p-a.s.
}
≤ ‖v‖∞

therefore ‖T∞(f)‖ ≤ 1. The upper bound is reached for v = 1Y , therefore ‖T∞(f)‖ = 1.
ω-continuity of T∞(f) follows from the dominated convergence theorem. In the following,
both T1 and T∞ are denoted by T. If we denote by id′ = δ◦id an identity in K`, T(id′)(v) = v.
Let f : (X, p) _ (Y, q), g : (Y, q) _ (Z, r) be two arrows in Krn. By definition of T and
using naturality of µ, we get:

T(g ◦ f)(v)(x) =
∫
Z

v d(g ◦M f(x)) =
∫
y∈Y

(∫
Z

v dg(y)
)
df(x) = (T(f)T(g))(v)(x)

Therefore, T is a well-defined functor. J

We will call operators in the range of T∞ and T1 abstract Markov kernels. Postcomposing
T∞ with †− (or T1 with −†) yields the covariant (“forward”) interpretation of Krn arrows,
called Markov operators. The restriction of T∞ to Krnδ is familiar, as it reduces in this case to
the precomposition functor P∞ : Krnδ → L+

∞ acting on Krnδ (hence deterministic) arrows
f : (X, p) _δ (Y, q) by P∞(f) = v 7→ v ◦f . Postcomposing P∞ with †− yields the conditional
expectation functor E1 : L+

1 → L+
1 . Similarly, functors P1 and E∞ can are constructed

by considering T1 instead of T∞. We invite the reader to compare our developments with

F. Dahlqvist, V. Danos, I. Garnier, and O. Kammar 1:13

Section 3 and 4 of [3] for more details. We sum up the developments so far in the following
(non-commuting) diagram:

L+
∞

†−

��

Krnδ

E∞=−†◦T1
//

E1=†−◦T∞ //

� � // Krn

T∞
<<

T1 ""
L+

1

−†

GG
(6)

We conclude this section by indicating that the duality between L+
1 and L+

∞ generalises to
arbitrary dual pairs L+

p ,L+
q [2]. We conjecture that the functors T1,T∞ have counterparts in

this more general setting. In the next section, we give a functional interpretation of Bayesian
inversion through these functors.

5 Bayesian inversion as duality

As shown in Section 3, Bayesian inversion is a symmetrised disintegration, which by Equation 2
corresponds to a measurable family of conditional probabilities. As these are a fundamental
tool of the modern probabilistic toolkit, a natural question is to find a corresponding process
in the functional analytic setting of norm-1 operators between the ω-complete cones L+

1 and
L+
∞. It is well-known that conditional expectation can be framed as a projection operator

(e.g. in the L2 case, see [10]). The result we are about to prove provides a fresh perspective
on this classical problem: the Bayesian inverse of a kernel corresponds to the adjoint of its
functional form.

I Theorem 19 (Inversion as duality). Let X,Y be standard Borel spaces and f : (X, p) _ (Y, q)
a Krn arrow. We have:

†T∞(f) = T1(f†)

I.e. T∞(f) is adjoint to T1(f†).

Proof. Let us recall the types of the objects:

T∞(f) : L+
∞(Y, q)→ L+

∞(X, p)
†T∞(f) : L+

1 (X, p)→ L+
1 (Y, q)

It is enough to prove that for all u ∈ L+
1 (Y, q), for all v ∈ L+

∞(X, p),

〈v,T∞(f)(u)〉X = 〈T1(f†)(v), u〉Y

Unfolding, we must prove:∫
X
vT∞(f)(u)dp =

∫
Y

T1(f†)(v)udq
⇔

∫
x∈X v(x)

(∫
Y
udf(x)

)
dp =

∫
y∈Y

(∫
X
v df†(y)

)
u(y)dq

⇔
∫
x∈X

(∫
y∈Y v(x)u(y)df(x)

)
dp =

∫
y∈Y

(∫
x∈X v(x)u(y)df†(y)

)
dq

Let γ ∈ Γ(p, q) be the coupling corresponding to f : (X, p) _ (Y, q). Continuing the string of
equivalences above, we must prove:∫

x∈X

(∫
y∈Y v(x)u(y)df(x)

)
dG(πX)(γ) =

∫
y∈Y

(∫
x∈X v(x)u(y)df†(y)

)
dG(πY)(γ)

CONCUR 2016

1:14 Bayesian Inversion by ω-Complete Cone Duality

Now, recall that by Equation 1, the disintegration theorem gives us for all integrable
e : (X × Y, γ)→ R that∫

X×Y edγ =
∫
x∈X

(∫
π−1

X
(x) e df(x)

)
dG(πX)(γ) (disintegrating γ along πX)

1=
∫
x∈X

(∫
Y
e(x,_) df(x)

)
dG(πX)(γ) (disintegrations live on the fiber)

=
∫
y∈Y

(∫
π−1

Y
(y) e df

†(y)
)
dG(πY)(γ) (disintegrating γ along πY)

2=
∫
y∈Y

(∫
X
e(_, y) df†(y)

)
dG(πY)(γ) (disintegrations live on the fiber)

Taking e(x, y) = v(x)u(y) and using equations marked 1 and 2 above concludes the proof. J

Some comments are in order. Note that the disintegration and Bayesian inversion theorems
rely on some strong assumptions on the underlying spaces–here, we assume the spaces to be
standard Borel; Culbertson & Sturtz [4] work in the setting of perfect measure spaces and
equiperfect kernels. However, the cone duality works for any measure space! We conjecture
that these regularity conditions are necessary if one wishes to extract a measurable kernel
from a Markov operator or dually from an abstract Markov kernel.

6 Conclusion

We have established that the functional representation of measurable kernels as operators
acting on ω-complete cones presented in [3] is functorial. Two variants of the functor exist,
mapping kernels to operators acting either on bounded functions or on integrable ones. The
category of ‘typed’ kernels on which these functors are defined allows to state elegantly
the famous disintegration theorem and its generalisation, Bayesian inversion. What’s more,
we uncovered the categorical underpinnings of Bayesian inversion as particular natural
transformations mapping kernels to couplings and reciprocally. Finally, we have shown that
Bayesian inversion amounts in the functional world to adjunction.

Several further developments suggest themselves. First of all, It remains to be seen whether
our construction generalises from the duality L+

1 /L
+
∞ to arbitrary pair of dual cones L+

p /L
+
q

(e.g. the pair p = q = 2 which allows one to talk about reversible kernels), and can prove
a stronger statement, namely Tp(f†) = Tq(f)† for all conjugate exponents p, q. Another
line of thought is to connect these results with some of the authors recent’s work [7, 5]. In
particular, instantiating the kernel-theoretic framework with the Dirichlet process [7], might
provide insight into the operator-theoretic counterpart of so-called nonparametric methods in
Bayesian learning. On a different note, this process has the type of a natural and continuous
kernel and admits a convenient finitary characterisation. We are eager to study how these
properties map through the operator interpretation.

References
1 C. Aliprantis and K. Border. Infinite dimensional analysis, volume 32006. Springer, 1999.
2 C. Badescu and P. Panangaden. Abstract Markov processes with Lp spaces. Private

communication, 2012.
3 P. Chaput, V. Danos, P. Panangaden, and G. Plotkin. Approximating Markov Processes

by averaging. Journal of the ACM, 61(1), January 2014. 45 pages.
4 J. Culbertson and K. Sturtz. A categorical foundation for Bayesian probability. Applied

Categorical Structures, pages 1–16, 2012.
5 F. Dahlqvist, V. Danos, and I. Garnier. Giry and the machine. Feb 2016. To appear in the

proceedings of MFPS XXXII.

F. Dahlqvist, V. Danos, I. Garnier, and O. Kammar 1:15

6 V. Danos, J. Desharnais, F. Laviolette, and P. Panangaden. Bisimulation and cocongruence
for probabilistic systems. Information and Computation, 204(4):503–523, 2006.

7 V. Danos and I. Garnier. Dirichlet is natural. Electronic Notes in Theoretical Computer
Science, 319:137 – 164, 2015. MFPS XXXI.

8 C. Dellacherie and P.A. Meyer. Probabilities and Potential, C: Potential Theory for Discrete
and Continuous Semigroups. North-Holland Mathematics Studies. Elsevier Science, 2011.

9 M. Giry. A categorical approach to probability theory. In Categorical Aspects of Topology
and Analysis, number 915 in Lecture Notes In Math., pages 68–85. Springer-Verlag, 1981.

10 O. Kallenberg. Foundations of Modern Probability. Springer, 1997.
11 A. S. Kechris. Classical descriptive set theory, volume 156 of Graduate Text in Mathematics.

Springer, 1995.
12 D. Kozen. Semantics of probabilistic programs. Journal of Computer and System Sciences,

22(3):328–350, 1981.
13 S. Mac Lane. Categories for the Working Mathematician, volume 111 of Graduate Texts in

Mathematics. Springer, 1998.
14 P. Selinger. Towards a semantics for higher-order quantum computation. In Proceedings

of the 2nd International Workshop on Quantum Programming Languages, TUCS General
Publication, volume 33, pages 127–143, 2004.

CONCUR 2016

Ethical Preference-Based Decision Support
Systems∗

Francesca Rossi

IBM T.J. Watson Research Center
(on leave from the University of Padova, Italy)
frossi@it.ibm.com

Abstract
The future will see autonomous intelligent systems acting in the same environment as humans,
in areas as diverse as driving, assistive technology, and health care. Think of self-driving cars,
companion robots, and medical diagnosis support systems. Also, humans and machines will
often need to work together and agree on common decisions. Thus hybrid collective decision
making systems will be in great need. In these scenarios, both machines and collective decision
making systems should follow some form of moral values and ethical principles (appropriate
to where they will act but always aligned to humans’). In fact, humans would accept and
trust more machines that behave as ethically as other humans in the same environment. Also,
these principles would make it easier for machines to determine their actions and explain their
behavior in terms understandable by humans. Moreover, often machines and humans will need to
make decisions together, either through consensus or by reaching a compromise. This would be
facilitated by shared moral values and ethical principles. In this paper we introduce some issues
in embedding morality into intelligent systems. A few research questions are defined, with the
hope that the discussion raised by the questions will shed some light onto the possible answers.

1998 ACM Subject Classification I.2 Artificial Intelligence

Keywords and phrases preferences, decision making, multi-agent systems

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2016.2

Category Invited Paper

1 Motivation and Introduction

How do humans or machines make a decision? Whenever we make a decision, we consider
our preferences over the possible options. Also, in a social context, collective decisions are
made by aggregating the preferences of the individuals. AI systems that support individual
and collective decision making have been studied for a long time, and several preference
modelling and reasoning frameworks have been defined and exploited in order to provide
rationality to the decision process and its result.

However, little effort has been devoted to understand whether this decision process, or its
result, is ethical or moral. Rationality does not imply morality. How can we embed morality
into a decision process? And how do we ensure that the decision we make, as an individual or
a collectivity of individuals, are moral? In other words, how do we pass from the individuals’
personal preferences to moral behaviour and decision making?

∗ This work is partially supported by the project "Safety constraints and ethical principles in collective
decision making systems" funded by the Future of Life Institute.

© Francesca Rossi;
licensed under Creative Commons License CC-BY

27th International Conference on Concurrency Theory (CONCUR 2016).
Editors: Josée Desharnais and Radha Jagadeesan; Article No. 2; pp. 2:1–2:7

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.2
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2:2 Ethical Decision Support Systems

When we pass from humans to AI systems, the task of modelling and embedding morality
and ethical principles is even more vague and elusive. Are the existing ethical theories
applicable also to AI systems? On one hand, things seem easier since we can narrow the
scope of an AI system, so that the contextual information can help us in define the correct
moral values it should work according to. However, it is not clear what moral values we
should embed in the system, nor how to embed them. Should we code them in a set of rules,
or should we let the system learn the values by observing us humans?

Preferences and ethical theories are not that different in one respect: they both define
priorities over actions. So, can we use existing preference formalisms to also model ethical
theories? We discuss how to exploit and adapt current preference formalisms in order to
model morality and ethics theories, as well as the dynamic integration of moral code into
personal preferences. We also discuss the use of meta-preferences, since morality seems to
need a way to judge preferences according to their morality level.

It is imperative that we build intelligent systems which behave morally. To work and live
with us, we need to trust such systems, and this requires that we are "reasonably" sure that
it behaves morally, according to values that are aligned to the human ones. Otherwise, we
would not let a robot take care of our elderly people or our kids, nor a car to drive for us, nor
we would listen to a decision support system in any healthcare scenario. Of course the word
"reasonable" makes sense when the application domain does not include critical situations
(like suggesting a friend on a social media or a movie in an online selling system). But when
the AI system is helping (or replacing) humans in critical domains such as healthcare, then
we need to have a guarantee that nothing morally wrong will be done.

2 Preference modelling and reasoning

Preferences have been studied for a long time in AI, both in the area of knowledge represent-
ation and in multi-agent systems. Several frameworks have been defined to model different
kinds of preferences, such as qualitative (as in, e.g., "I prefer blue to red") and quantitative
ones (as in, e.g., "I give 5 stars to Breakfast at Tiffany’s and 2 stars to Terminator"). In
general preferences are defining an ordering over a set of options. This order can be total
and strict, but in practice it may have a lot of ties and incomparability.

When the set of options is very large, and each option is defined by a set of features
(such as a car, which can be defined by it model, its colour, its engine, etc.), preferences
can be expressed over single features of small sets of them, rather than entire options (as in,
e.g., "If I buy a convertible, I prefer it to be red rather than white"). This allows for a faster
and easier preference specification phase, as well as for more efficient preference elicitation.
Several ways have been defined to pass from such compact ways to model preferences over
features to the preference ordering over the options. However, it is possible to reason about
such preferences without generating the exponentially large ordering over the options, which
makes preferences reasoning tractable in some cases. Examples of framework to do this are
constraints [19], soft constraints [13] and CP-nets [3].

Once an individual’s preferences over the possible options are specified, we need to be able
to find the most preferred option, or the next best option, or to compare two options that
may be presented to us. Several algorithms to performs such tasks have been defined [4, 3].

When individuals, or AI systems, are part of a social environment and need to make
collective decisions, individual’s preferences are aggregated (for example via some voting
rule) and an option is chosen for the whole group. Many voting rules have been defined and
studied, as well as their properties [2]. Issues such as manipulation, control, bribery, as well

F. Rossi 2:3

as properties such as fairness and unanimity have long being investigated, in order to define
decision support systems that behave as desired [1, 6, 5, 22, 10, 16, 17, 7, 12, 18, 11].

3 From preferences to morality

To trust an AI system, like a companion robot or a self-driving car, we need to be reasonably
sure that it behaves morally, according to values that are aligned to the human ones.
Otherwise, we would not let a robot take care of our elderly people or our kids, nor a car to
drive for us, nor we would listen to a decision support system in any healthcare scenario. So
it is imperative that we understand how to provide AI systems with morality [14, 21, 9].

Morality and ethical behaviour are based on prioritising actions on the basis of what
is morally right or wrong. Many ethical theories have been defined and studied in the
psychology literature. They include the following ones:

Consequentialism: Action consequences are evaluated interns of a scale of good and bad,
and an agent should choose the action that minimise the bad and maximises the good.
Virtue Ethics: An agent should choose actions that satisfy some pre-defined set of virtues
Deontologism: Actions are predefined as good or bad, and an agent should choose the
best action, no matter the consequences.

No matter which ethical theory one decides to use, the notion of right and wrong of course
depends on the context in which humans (or machines) function, so formally an ethical theory
can be defined as a function from a context to a partial ordering over actions. Indeed, usually
we have a partial order over actions, since some actions could be incomparable to others. As
one may notice by looking at the previous section on preferences, this is not that different
from what preferences define: a partial order over possible options (of actions, or decisions
in general). So it makes sense to investigate the possible use of preference frameworks in
modelling and embedding morality into AI systems.

Research question 1: Are existing preference modelling and reasoning frameworks ready
to be used also to model and reason with ethical principles and moral code, or we need to
adapt them or invent new ones?

If we had the "moral" partial order and the "preference" partial order for each individual,
one could try to merge them in some way, to obtain a "moral preference ordering". For
example, two CP-nets modelling the moral and the preference orderings could be syntactically
or semantically merged via operators that could give priority to the moral CP-net and let
the preference one dictate the behaviour only when it is not in conflict with the moral one.
The technical details have not been spelled out yet, but one could imagine several reasonable
ways of doing this.

Research question 2: Given a moral and an ethical ordering over actions, how to combine
them? Given such orderings in the forms of CP-nets or soft constraints, or other compact
formalisms to model preferences, how to combine them? What properties should we desire
about their combination?

However, knowing the preferences of an individual is already a difficult task. Elicitation
and learning framework have bee proposed in order to do that in a way that is most faithful
to the "real" preferences of the individual. Knowing the moral ordering of an individual is
even more difficult. And this is even more so when we are in a social context, since this

CONCUR 2016

2:4 Ethical Decision Support Systems

may make individuals change their moral attitudes over time because of social interaction.
The existing approaches to define ethical principles in AI systems range from trying to code
ethical principles in the form of rules, to letting the system "learn" such principles from a
(possibly supervised) observation of the behaviour of humans in similar settings. Some AI
systems try to list the set of rules to use in self-driving cars to solve ethical dilemmas like the
trolley problem. However, such approaches are usually not general, since it is unfeasible to
foresee all possible situations in a very wide scenario. On the other hand, other approaches
use, for example, inverse reinforcement learning [15] to try to learn morality from human
behaviour. I personally feel that the best results could be obtained by combining these two
approaches, although it is not clear yet how to do it best.

Research question 3: How to combine bottom-up learning approaches with top-down
rule-based approaches in defining ethical principles for AI systems?

Research question 4: Recently, the most successful AI systems are based on statistical
machine learning approaches that, by their nature, do not provide a natural way to explain
or justify their decisions (or suggestions), nor they assure optimality. If we employ this
approach also for embedding morality into a machine, how are we going to prove that nothing
morally wrong will happen?

4 Morality by meta-preferences

As mentioned above, in a social context, individual preferences are transformed little by little
by incorporating reasonable elements from the societal interaction with other members of
the group. This is often called "reconciliation" of individual preferences with social reason,
and takes place in the context of collective choice. To be able to describe the dynamic
moving from one preference ordering over the next one (in time), and to make sure that
the later preference orderings are indeed better in terms of morality, one needs to have a
way to judge preferences according to some notion of good and bad (in any of the above
mentioned ethical theories). Indeed, Sen [20] claims that morality requires judgement among
preferences. To account for this, he introduced the notion of metaranking (that is, preferences
over preferences) which enables to formalise individual preference modifications. A moral
code could then be defined as ranking of preference rankings. That is, the moral code is
defined by a structure that, by employing notions such as distance, is able to rank preferences
according to their morality level.

The distance intrinsic in the moral code can then be useful in measuring the deviation of
any social or individual action from the moral code itself.

Research question 5: Given a moral code, in a social choice context, where individuals
submit their preference ordering and the result is a collective preference ordering, how to
measure the deviation of the collective ordering from a moral code? And how to measure
the deviation of individuals from a collective moral code?

If an individual modifies its preference ordering from a morally low to a morally higher
ordering, we should want to use collective decision making system in which such a move
leads to collective actions of higher morality. That is, some form of monotonicity should be
desired.

F. Rossi 2:5

Research question 6: Which properties should be desired in a moral preference aggregation
environment?

5 Morality in narrow AI systems

In [8] it is shown that human moral judgment doesn’t come from a dedicated moral system,
but it is rather the product of the interaction of many general-purpose brain networks, each
working and being useful in narrow contexts. So it seems that humans need a general purpose
brain in order to be moral. Is it true also for AI systems?

Research question 7: Can narrow AI systems be moral? If humans bring all of their
general intelligence to bear when making moral decisions, even fairly simple ones, does that
that mean that we have to solve Artificial General Intelligence in order to produce something
useful?

6 Concurrency in moral collective decision making

Collective decision making has to do with several agents (machines or humans) that express
their preferences and, based on them, give their opinions over the alternative options for the
collective decision. The agents are acting in parallel and independently, submitting more
and more information about their preferences as time passes. It is easy to see that this can
be faithfully modelled by a concurrent environment where preference data is accumulated
over time, being generated by some agent and incrementally used by the other agents that
are influenced or need to react to the opinions of others. When enough preferences are
provided by the concurrent agents, a centralised agent make a collective decision based on
what has been accumulated. The addition of ethical/moral preferences can easily be cast
into this framework, by adding another concurrent agent and/or by modifying the preference
aggregation agent.

The formalisation of an ethical collective decision making system in terms of concurrent
agents can be very helpful in terms of the study of the properties of the resulting system.
The extensive literature on theoretical properties of concurrent systems can be of great help
in both defining the interesting properties for collective decision making and in studying
their presence in specific systems. The morality of a system could be modelled as one of
those properties, or a collection of them, thus giving rise to a formal treatment of morality
in collective decision making.

Research question 8: How to model an ethical collective decision making system as a
concurrent system? How to translate properties typically studied in concurrent systems
(such as fairness etc.) into interesting properties for decision systems? What set of formal
properties could faithfully model morality?

7 Conclusions

Intelligent systems are going to be more and more pervasive in our everyday lives. To name
just a few applications, they will take care of elderly people and kids, they will drive for us,
and they will suggest doctors how to cure a disease. However, we cannot let them do all this
very useful and beneficial tasks if we don’t trust them. To build trust, we need to be sure

CONCUR 2016

2:6 Ethical Decision Support Systems

that they act in a morally acceptable way. So it is important to understand how to embed
moral values into intelligent machines.

Existing preference modelling and reasoning framework can be a starting point, since
they define priorities over actions, just like an ethical theory does. However, many more
issues are involved when we mix preferences (that are at the core of decision making) and
morality, both at the individual level and in a social context.

Concurrency theory can be useful in both modelling ethical collective decision making
systems and in studying their properties.

References
1 S. Airiau, U. Endriss, U. Grandi, D. Porello, and J. Uckelman. Aggregating dependency

graphs into voting agendas in multi-issue elections. In Proceedings of IJCAI 2011, pages
18–23, 2011.

2 K. J. Arrow, A. K. Sen, and K. Suzumura. Handbook of Social Choice and Welfare. North-
Holland, 2002.

3 C. Boutilier, R. I. Brafman, C. Domshlak, H. H. Hoos, and D. Poole. CP-nets: A tool for
representing and reasoning with conditional ceteris paribus preference statements. JAIR,
21:135–191, 2004.

4 R. I. Brafman, F. Rossi, D. Salvagnin, K. B. Venable, and T. Walsh. Finding the next
solution in constraint- and preference-based knowledge representation formalisms. In Pro-
ceedings of KR 2010, 2010.

5 V. Conitzer, J. Lang, and L. Xia. Hypercubewise preference aggregation in multi-issue
domains. In Proceedings of IJCAI 2011, pages 158–163, 2011.

6 H. Fargier, J. Lang, J. Mengin, and N. Schmidt. Issue-by-issue voting: an experimental
evaluation. In Proceedings of MPREF 2012, 2012.

7 C. Gonzales, P. Perny, and S. Queiroz. Preference aggregation with graphical utility models.
In Proceedings of AAAI 2008, pages 1037–1042, 2008.

8 Joshua Greene. The cognitive neuroscience of moral judgment and decision making. In
The Cognitive Neurosciences V (ed. M.S. Cazzaniga). MIT Press, 2014.

9 Joshua Greene, Francesca Rossi, John Tasioulas, Kristen Brent Venable, and Brian Willi-
ams. Embedding ethical principles in collective decision support systems. In Proceedings
AAAI 2016. AAAI Press, 2016.

10 J. Lang, M. S. Pini, F. Rossi, K. B. Venable, and T. Walsh. Winner determination in
sequential majority voting. In Proceedings of IJCAI 2007, pages 1372–1377, 2007.

11 J. Lang and L. Xia. Sequential composition of voting rules in multi-issue domains. Math-
ematical social sciences, 57:304–324, 2009.

12 A. Maran, N. Maudet, M. S. Pini, F. Rossi, and K. B. Venable. A framework for aggregating
influenced CP-nets and its resistance to bribery. In Proceedings of AAAI 2013, 2013.

13 P. Meseguer, F. Rossi, and T. Schiex. Soft constraints. In P. Van Beek F. Rossi and
T. Walsh, editors, Handbook of Constraint Programming. Elsevier, 2005.

14 Bert Musschenga and Anton (eds.) van Harskamp. What Makes Us Moral? On the capa-
cities and conditions for being moral. Springer, 2013.

15 Andrew Y. Ng and Stuart Russell. Algorithms for inverse reinforcement learning. In
Proceedings of the Seventeenth International Conference on Machine Learning. Morgan
Kaufmann, 2000.

16 M. S. Pini, F. Rossi, K. B. Venable, and T. Walsh. Incompleteness and incomparability in
preference aggregation: Complexity results. Artif. Intell., 175(7-8):1272–1289, 2011.

17 G. Dalla Pozza, M. S. Pini, F. Rossi, and K. B. Venable. Multi-agent soft constraint
aggregation via sequential voting. In Proceedings of IJCAI 2011, pages 172–177, 2011.

F. Rossi 2:7

18 K. Purrington and E. H. Durfee. Making social choices from individuals’ CP-nets. In
Proceedings of AAMAS 2007, pages 1122–1124, 2007.

19 F. Rossi, P. Van Beek, and T. Walsh. Handbook of Constraint Programming. Elsevier,
2006.

20 Amartya Sen. Choice, ordering and morality. In Practical Reason, Korner S. (ed). Oxford,
1974.

21 Wendell Wallach and Colin Allen. Moral Machines. Oxford, 2009.
22 L. Xia and V. Conitzer. Strategy-proof voting rules over multi-issue domains with restricted

preferences. In Proceedings of WINE 2010, pages 402–414, 2010.

CONCUR 2016

Consistency in 3D∗

Marc Shapiro1, Masoud Saeida Ardekani2, and Gustavo Petri3

1 Sorbonne-Universités-UPMC-LIP6 & Inria Paris
2 Purdue University †

3 IRIF, Université Paris Diderot

Abstract
Comparisons of different consistency models often try to place them in a linear strong-to-weak
order. However this view is clearly inadequate, since it is well known, for instance, that Snapshot
Isolation and Serialisability are incomparable. In the interest of a better understanding, we
propose a new classification, along three dimensions, related to: a total order of writes, a causal
order of reads, and transactional composition of multiple operations. A model may be stronger
than another on one dimension and weaker on another. We believe that this new classification
scheme is both scientifically sound and has good explicative value. The current paper presents
the three-dimensional design space intuitively.

1998 ACM Subject Classification C.2.4 Distributed databases; D.1.3 Concurrent programming;
D.2.4 Software/Program Verification; E.1 Distributed data structures

Keywords and phrases Consistency models; Replicated data; Structural invariants; Correctness
of distributed systems;

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2016.3

Category Invited Paper

1 Introduction

A distributed database maintains data scattered and replicated across nodes separated by
networks that are inherently slow and unreliable. In this context, designers face an inherent
trade-off between system cost and application cost. In particular, the CAP theorem [13]
shows that, when failures can partition the network (P), a database can either be strongly
consistent (C) or available (A), but not both. Strong consistency masks parallelism and
failures from the application, at the cost of constant synchronisation, which translates to high
latency and even stalling when the network is down (CP). A model with weaker consistency
significantly improves availability, performance and cost (AP), but increases the opportunities
for subtle yet potentially catastrophic application errors.

This trade-off has spurred a lot of creativity. A dizzying number of consistency designs are
available, as theoretical models, protocol designs, and implemented systems. Note however
that, among the many options, not all are related to CAP.

In order to develop high-performance yet correct distributed applications, we need a
better understanding, in particular how an application’s needs relate to consistency. How
does a particular application behave in a particular consistency model? What are its pros
and cons? This paper aims to clarify this crowded space.

∗ This research is supported in part by European FP7 project 609 551 SyncFree.
† Now at Samsung Research America

© Marc Shapiro, Masoud Saeida Ardekani, Gustavo Petri;
licensed under Creative Commons License CC-BY

27th International Conference on Concurrency Theory (CONCUR 2016).
Editors: Josée Desharnais and Radha Jagadeesan; Article No. 3; pp. 3:1–3:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.3
http://syncfree.lip6.fr/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

3:2 Consistency in 3D

Figure 1 Some consistency models situated in the three dimensions.

The strongest consistency model, called Strict Serialisability (SSER), has three remarkable
features:1 absence of concurrent operations, i.e., transactions execute in a total order; this
ordering is monotonic and respects causality; and the unit of interaction with the database,
the transaction, is a composition of operations.

The thesis of this paper is that each of these features aims to guarantee a different class
of application invariants. The mechanism associated with each feature has an inherent
associated cost, respectively synchronisation, transitivity, and grouping.

Other consistency models differ from SSER by providing the same three features to a
lesser degree, or even not at all. Relaxing a feature generally lowers its system cost but
weakens the class of guaranteed invariants, increasing its cost to application programmers.
Accordingly, we argue for classifying models in a three-dimensional space, along the axes of
total-order, visibility, and composition. This insight is illustrated in Figure 1, and is fully
detailed in Table 5.

Whereas previous surveys [1, 2, 29] are comprehensive and detailed, our focus is more
pedagogical. Our three axes constitute a simplification. We do not claim to explain everything,
but wish to help the reader situate a model on a mental map, glossing over details when
convenient.

This paper is structured as follows. After this introduction (Section 1), Section 2 presents
a generic system model. Then we define and discuss the three axes in turn: Gen1 invariants
and total order in Section 3, PO invariants and visibility order in Section 4, EQ invariants
and composition in Section 5. Finally, Section 6 summarises the relations between the three
axes and concludes.

Inevitably, it is difficult to discuss one axis without referring to the others. We ask the
reader’s patience with such apparent circularities, which we do our best to minimise.

2 System model

Our model and definitions are derived from previous work [9, 14, 25, 29]. The system is
composed of an unbounded set of sequential processes, uniquely identified. We divide it into
an application layer running above a consistency layer. The application consists of objects
stored in the database and of client processes that call operations on objects and receive
results in return. Clients do not communicate directly, only via operations on shared data.

1 We refer to Table 6 for a full list the consistency models discussed herein and the primary reference for
each.

M.Shapiro, M. Saeida Ardekani, G. Petri 3:3

(a) Operation u decomposed into indivisible call,
return, generator u? and effector u!. Precondi-
tion upre is true at the effector.

(b) The effectors of concurrent operations may
execute in different orders in the general case.

Figure 2 Operation model.

The consistency layer manages state and executes the message sending, receiving and
delivery events described hereafter. A consistency model consists of a set of restrictions
imposed on the ordering of events, in order to guarantee a class of invariants that remains
true in any execution of that model. Ideally, we would like to ensure any invariant of a
sequential execution.

To simplify the discussion, there will be no failures: a message sent is eventually received,
unaltered, by its destination process. We focus on safety and do not consider liveness
properties.

2.1 Data
Server processes collectively implement the abstraction of a database or persistent memory.
The database consists of discrete data items of objects x, y. The state of server i, noted σi,
contains a copy or replica, noted xi, of object x.2

A common object type is the register, which supports the read and write operations,
respectively returning and completely overwriting overwrites the register’s content. The state
of a register depends only on the last write. However, our model is not restricted to registers.
The application may store object types of arbitrary complexity, for instance a set, a stack, a
table, or a tree, with their high-level operations (respectively, add and remove, push and pop,
insert row, or rebalance).

2.2 Operations
We decompose an operation into indivisible asynchronous events, as illustrated in Figure 2a
(a specific consistency model may place restrictions on their ordering).

The semantics of update operations is defined by a function:
F ∈ Op→ (State→ Val× (State→ State)) where Op is the set of operations, State the
set of replica states, and Val the set of return values. Operationally, an update u starts as a
call event, a message from client to origin replica. Delivering this message triggers an initial
computation at the origin, called the generator u?. The generator reads the state of the
origin without modifying it, then:
1. Computes a return value uret, sent back to the client. When the client receives it, the

update is visible to the client.

2 To simplify the model, we assume full replication: every replica has a copy of every object.

CONCUR 2016

3:4 Consistency in 3D

2. Computes a state transformation, the effector u!. The effector is sent to all replicas,
including the origin itself. If and when a replica delivers the effector, it applies its
transformation to the replica’s local state, making the update visible to the replica.
The effector is generated based on the origin state read by the generator; we abstract

this dependence with the precondition upre of the effector. The generator can check the
precondition at the origin but not at other replicas [14].

An operation reads (generator) and writes (effector) the replicas of a single object. As we
shall see shortly, objects can be connected by invariants and/or transactions.

The history of a client consists of a sequence of call (sending) followed by return (delivery)
events. The history of a server consists of a sequence of generator (reading and sending)
events and effector (delivery and side-effect) events. The current state of a server can be
identified with the sequence the effectors it has delivered. In the general case, effectors of
different updates may be delivered in different orders, as illustrated in Figure 2b.

This model is very general. It abstracts away from any specific data type (from registers to
complex data types with high level operations), transmission mode (state-based or operation-
based), and concurrency semantics (which will be encoded into the function definition). We
model operations that do not return by returning nil; we model queries that do not modify
state by the skip effector; we abstract arguments away by folding them into the function
definition.

The client may choose an arbitrary origin replica, not necessarily the same for successive
client operations. Therefore, client-side guarantees may be weaker than those at the server [8,
27]. Conversely, we consider that the server-side guarantees are at least as strong as the
client-side ones.

2.3 Executions
We define an execution as a tuple ex = 〈R,E , so−→, ro−→, ext−−→〉 where:
(i) R is a set of replicas – which shall otherwise remain abstract.
(ii) E is a set of events, including calls, generators, effectors and returns.
(iii) so−→ is a relation among events of the same session [29], indicating the order in which

the client issued the operations; so−→ is our abstraction of the behavior of the client.
(iv) ro−→ is a family of orders – indexed by replica name – of events that affect that replica.

These events include: call, generator and return events for any operation that has this
replica as its origin, and effectors of any operation that is delivered to the replica. We
shall denote ro−→

ri

the replica order of replica ri, and we shall overload the notation ro−→
to denote as the set-theoretic union of the replica orders of each replica, formally the
relation

⋃
ri∈dom(

ro−→)
ro−→
ri

.

(v) Finally, ext−−→ is an external order representing the real-time (otherwise called wall-clock
time) in which the events occurred; we shall simply assume the existence of this order
for some models, and it shall otherwise remain opaque.

Provided with the definition of executions we obtain the derived definition of visibility of
operations:

u
vis−→
ri

v ⇐⇒ u!
ro−→
ri

v?
vis−→ =

⋃
ri∈R

vis−→
ri

In turn, we obtain a definition the happens-before order: hb−→ = (so−→ ∪ vis−→)+, where we
denote by a superscript + the set-theoretic transitive closure of a binary relation. We speak
of transitive visibility if vis−→

∗
⊆ vis−→, and we speak of causal visibility if the visibility relation

is consistent w.r.t. the happens-before relation: u hb−→ v ⇒ u
vis−→ v.

M.Shapiro, M. Saeida Ardekani, G. Petri 3:5

Table 1 Application assumptions (top) and robustness conditions (bottom).

Baseline Semantic condition =⇒ Reference
Sequential Sufficient precondition Safe [14]

TOE Deterministic operations Same state [9],
[28]

0 Unspecified convergence conditions EC [30]
0 Monotonic semi-lattice Monotonic SEC [5]
CC Commutative concurrent effectors SEC [25]
CC Stable effector precondition Gen1 [14]
SI Materialized conflict SI ∩ SER [11]

0 = lowest point on all three axes. Sequential = sequential non-replicated system.

2.4 How models relate to application semantics
Applications care about consistency models for the guarantees that they provide. We say
that model guarantees a certain class of invariants, if an invariant of that class remains
true in any execution of that model without requiring additional instrumentation from the
programmer.

Some guarantees refer to relations between replicas, for instance, Identical State and Con-
vergence. However, an application-observable invariant refers to the state that is observable
for a client, e.g., single-object statements such as x > 0 or multi-object statements such as
x = y or P (x) ⇐= Q(y). As we shall discuss in detail hereafter, some consistency models
guarantee some related classes of invariants.

Although it is convenient to think of the consistency and application levels as independent,
this is not entirely true. The correctness of the guarantees rests on two crucial assumptions
about the application:
1. A generator and an effector are functions, i.e., their result is deterministic.
2. The application is sequentially correct, i.e., each operation (or, in the transactional case,

each transaction) in isolation maintains the application invariant. This is the C condition
of ACID, called “consistency” or “correctness” in the database literature. Formally, for
some invariant I, ∀σ ∈ State, u ∈ Op : I(σ) ∧ upre =⇒ I(σ • u!) for the single-operation
case, where we denote by σ • u! the state resulting from updating σ with the effector u!.
A robustness condition is one by which an application, running above a less-than-perfect

consistency model, can compensate for its deficiencies and support the same invariants as
a stronger model. For instance, EC (Eventual Consistency) requires that the application
converges, even when running above level zero on all axes (for this, see Convergent Data
Types [5] or CRDTs [25]).

Fekete et al. show how the application can emulate Serialisability (SER) above Snapshot
Isolation (SI) by applying some simple programming rules [11, Section 5.1].

Gotsman et al. [14] discuss under which conditions concurrent execution can maintain
arbitrary application invariants (class Gen1 hereafter). They demonstrate (under certain
conditions) that, if all effector preconditions upre are stable under all concurrent updates v!,
then the invariant remains true, no matter what the order of delivery of effectors.

3 Gen1/Total Order Axis

This section focuses on guaranteeing invariants by restricting concurrency as summarised in
Table 2. This axis orders the different consistency properties according to which events must
be totally-ordered with respect to each other. Here we consider operations on a single object
(the other two axes consider multiple objects). Let us now consider the different protocols

CONCUR 2016

3:6 Consistency in 3D

Table 2 Total-order axis. The double line marks the “CAP boundary.”

Level Guarantees Other axes Examples
External visibility SSER, LINTOG=TOE Gen1 Transitive visibility SER
External visibility SSI
Causal visibility PSIGapless TOE No lost updates,

Identical State Transitive visibility NMSI
Transitive visibility LWWCapricious TOE register =⇒ Identical State Non-monotonic Bayou
Monotonic visibility RC0 = Concurrent Blind1 EC

according to the ordering of events that they impose on the operations to the object of
interest (ignoring operations on other objects, which may proceed in parallel).

Unless indicated otherwise, we assume the Monotonic Client property, which is the
conjunction of the Monotonic Reads guarantee: given two operations related by the session
order v so−→ w, if the former “views” a third operation u (i.e., u vis−→ v) then so does the latter
(u vis−→ w); and the Read-My-Writes guarantee: if two operations are related by the session
order u so−→ v, then so are they by the visibility order u vis−→ v.

3.1 Same total order for generators and effectors (TOG=TOE)
The first class of models we consider are those for which there exists a Total Order relating
all Effectors and Generators (TOG=TOE), let us denote this (existentially quantified) order
with the arrow toeg−−→.3 These are the strongest models in the total-order axis. Evidently,
there are a number of constraints that are required for toeg−−→:
1. Generators and effectors are uninterrupted by other events in the order (therefore the

sequences u?
toeg−−→ v?

toeg−−→ u! and u?
toeg−−→ v!

toeg−−→ u! are disallowed).
2. The visibility relation is consistent w.r.t. the total order, meaning that each generator

sees exactly the effectors that precede it in this order (u toeg−−→ v =⇒ u
vis−→ v).

Table 2 presents in the cell at the first row and last column protocols that fall under this
category in the total order axis.

Importantly, the existence of such an order implies that the Visibility relation, restricted
to the object, is transitive since each generator must see all the effectors before it, and the
effectors of an operation necessarily follow its generator. On the other hand, causality is
not guaranteed unless we add the condition that the total order respects the client order
((so−→ ∪ toeg−−→)+ is irreflexive). By adding this additional constraint we require the Visibility
relation to be causal for this object.

3.2 TOG=TOE and Gen1 Invariants.
At this strongest point in this axis, we consider generic (arbitrary) single-item invariants,
noted hereafter Gen1. For instance, a banking application may require that the balance of
accounts be non-negative: bal ≥ 0. Another example: an object G that represents a graph,
with the invariant that the graph forms a tree.

3 In the interest of readability and space, we shall present some definitions intuitively instead of providing
precise mathematical definitions. Their mathematical interpretation is generally self-evident.

M.Shapiro, M. Saeida Ardekani, G. Petri 3:7

Recall from Section 2.4 that a sequential program enforces its invariants assuming the
effector-precondition upre, which may be verified locally by the generator. In the bank
account example, credit(amt)! and debit(amt)! respectively add or subtract amt to or from
the local balance bali. To maintain invariant bal ≥ 0, the sequential preconditions are
creditpre = amt ≥ 0 and debitpre = bal ≥ amt ≥ 0 respectively. However, under unbounded
concurrency there exists no safe precondition that can be evaluated locally at the origin
replicas; intuitively, enforcing this invariant requires to totally order at least some operations.

In the case of protocols respecting TOG=TOE, and assuming the system respects the
ordering of operations issued by the client (the session order: so−→), any invariant that is
correct for a shared memory implementation of the object – where we interpret the clients as
being processes, and the database as being the shared memory – will also be respected in
this case. We posit that anything provable using, for instance, the Owiki-Gries [21] logic
under the shared-memory interpretation, is respected in such a model.

3.3 Total Order of Effectors (TOE): Capricious vs. Gapless

Since generators only read state without changing it, it is tempting to remove them from
the total order, therefore allowing concurrency between reads and writes. We shall denote
this weaker existential order as toe−−→. This introduces the possibility of anomalies such as
write-skew [7].

The order toe−−→ may be Capricious: meaning that servers assign sequence numbers
independently from one another. While effectors are totally ordered (i.e., each effector has a
unique place in the order), they may be received in a non-increasing sequence. This conflicts
with the monotonic-client requirement; as a consequence, updates might be lost, if an effector
has been delivered at a replica while another effector ordered lower in toe−−→ is received at a
later point. This approach is used, for instance, in the Last-Writer Wins (LWW) protocol.

Alternatively, toe−−→ can be Gapless: in this case replicas must synchronise to guarantee
that the effectors are given a slot in the total order in a strictly monotonic fashion, and
therefore replicas can buffer effectors until all prior updates in toe−−→ have been delivered. Here
lies the “CAP Line:” Capricious TOE is Available even when the network is Partitioned,
whereas Gapless TOE (and of course gapless TOG=TOE) is not Available when Partitions
occur.

Strictly speaking, a protocol could be both Capricious and TOG=TOE; however this
combination is not very useful; therefore, to simplify the presentation, we order TOG=TOE
above Gapless TOE.

3.4 TOE and Causality Based Invariants

In terms of application guarantees provided by protocols satisfying TOE guarantees we
cannot generally assume that Gen1 invariants will be satisfied. On the other hand, under
Causal Visibility, Rely-Guarantee based techniques can be used [14].

As it is the case with TOG=TOE models, the existence of a toe−−→ order implies that
the visibility relation is transitive per-object. If we additionally require that toe−−→ respects
the client order (so−→) we can conclude that visibility is causal per-object. An important
distinction between capricious and gapless toe−−→ models is that in the latter, any two replicas
that have received the same updates have the exact same state. In contrast, capricious
models cannot guarantee the same-state property.

CONCUR 2016

3:8 Consistency in 3D

3.5 Concurrent Effectors
At the weakest end of the total order axis, the protocol “Concurrent effectors” in Table 2
does not require any total ordering of effectors and/or generators.

Consider a register, with an invariant that refers only to the current state: e.g., register z
must contain an odd number of “1” bits. To maintain it, the order and history of updates
is immaterial, and it suffices that each update is individually safe. We shall denote these
invariants that are blind to the environment and on a single object (1), Blind1 in Table 2.

4 PO/Visibility Axis

The Visibility dimension (Table 3) constitutes our second axis. It aims to guarantee invariants
that require control of which effectors are visible, in which order, to generators. Whereas the
first axis concerned single-object guarantees, this one connects multiple updates, system-wide.
Whereas the first axis is concerned mostly about writes (effectors), this one is mostly about
reads (generators). However, they are not totally independent.

4.1 PO-type invariants
The PO-type invariants discussed in this section abstract the concept of a partial order.
Conventionally we will write them as L ≥ R and refer to the two terms as left- and right-
hand-side, LHS and RHS, respectively. The prime example is program order, where each
process proceeds through statements S1;S2; . . . ;Sn, left to right. This may be re-written
(abusing notation somewhat) as S1 ⇐= S2 ⇐= . . . ⇐= Sn, i.e., executing Si implies that
Si−1 has executed. Similarly, write-read dependences, where v? reads the result of u!, can be
summarised as u! ⇐= v? and message delivery as u? ⇐= v!.

Other PO-type invariants are traditional data invariants, such as “employee’s salary must
be less than his manager’s”, stock maintenance [6], or referential integrity (object x allocated
⇐= y points to x).

Even with unbounded concurrency, it is safe to update the objects involved in a PO-type
invariant, by first increasing the LHS by some amount c, and later increasing the RHS by
an amount c′ ≤ c. More generally, it is always safe to strengthen the invariant, and later
weaken it assuming that the prior strengthening has been applied. This is known as the
Demarcation Protocol [6] or the safe-publication idiom [1]. As a special case, c′ can be null,
i.e., it is safe to unilaterally increase the LHS.

We will consider different versions of the demarcation protocol according to the visibility
guarantees enforced by the underlying model (as shown in Table 3). For instance, for a system
enforcing causal visibility, we can operate under the causal demarcation protocol if one client
does the strengthening of the invariant and notifies another client of this fact by writing on
a flag. When the second client sees the effects of the update on the flag, by causality we can
assume that the invariant can be safely weakened according to the prior strengthening on
the other operation. A similar arguments can be made for transitive demarcation.

The above requires that updates become visible to other replicas in the same order. We
discuss such protocols in the next section.

At the weakest level of the Visibility axis, labeled “Rollbacks” in Table 3, there is no
required order between reads. A client could observe the effects of some update u, and
later observe a state where u has not occurred. This violates the so-called Monotonic-Reads
session guarantee [27]. Similarly, a client might update an object, and later observe a state
of the object before the update is applied. This violates Read-My-Writes [27].

M.Shapiro, M. Saeida Ardekani, G. Petri 3:9

Table 3 Visibility axis.

Level Guarantees Other axes Example
External external demarcation SSER, LIN, SSI

TOE PSITrans. Vis. + Client Order
= Causal Visibility causal demarcation not TOE Causal HAT, CC

TOE SER, NMSIMonotonic + WR dependence
= Transitive Visibility transitive demarcation not TOE

MR + RMW = Monotonic Client client progress
0 = Rollbacks Bayou

MR = Monotonic Reads. RMW = Read-My-Writes. WR = Write-Read dependency. Client Order conjoins all
these relations with Write-Write dependencies [29].

Few systems are at Rollback level; most models assume what we call the Monotonic
Client level, in which the client state is monotonic, ensuring both Monotonic Reads and
Read-My-Writes (as defined in Section 3). In fact, client monotonicity must appear so obvious
that many authors do not even state this assumption, e.g., Gray and Reuter [15]. We will
follow the common practice of assuming the Monotonic Client guarantee in this paper, unless
explicitly mentioned. Frigo [12] argues that non-monotonic models are “not reasonable,” but
some systems deliberately eschew these guarantees for the benefit of responsiveness [28].

The next-stronger level, Transitive Visibility, simply requires the visibility relation to
be transitive. Given operations u and v, if the (generator of) update v reads the result of
(the effector of) update u, then all clients should observe the results of u before those of v.
Formally vis−→

∗
⊆ vis−→. Note that Total Order of Effectors implies Transitive Visibility, but not

vice-versa. Not all models have the Transitive Visibility property. For instance, SER has
it, but not EC nor PRAM. To simplify the presentation, hereafter Transitive Visibility also
includes Monotonic Client.

The next level adds Client Order (Monotonic Writes and Writes Follow Reads [27]),
resulting in Causal Visibility (also called Causal Consistency or Causal Memory [3]). Formally
this requires that visibility be consistent with the session order: hb−→ ⊆ vis−→. Transitive and
Causal Visibility are partial orders. They can be further strengthened by requiring the
existence of a total order that is causal (hence also transitive); this point meets the TOG=TOE
point of the Total Order axis of Section 3.

Causal visibility is strictly stronger than transitive visibility, and is not supported by all
models. As a case in point, SER does not require causal visibility: if a client calls operations
u and then v, and u and v are on different object, a server (even the origin server) may
execute v before u.4

The highest point in the Visibility axis is External Consistency. This requires that all
operations are totally ordered (finding a toeg−−→ as in Section 3), and that this order coincides
with the external (real-time) order: ext−−→ ⊆ toeg−−→. In this way, updates can be related with
external events, and the causality between internal and external events is preserved.

Causal Visibility is the conjunction of the four so-called session guarantees [8]: formally,
all sixteen combinations are possible. Pragmatically, however, we find that the linear
presentation of Table 3 captures the important practical properties.

4 Here we argue about operations, while serialisability is defined for transactions. The analogous argument
is obvious assuming that the transactions operate on different object sets.

CONCUR 2016

3:10 Consistency in 3D

Table 4 Composition axis.

Level Guarantees Other axes
All-or-Nothing + Snapshot EQ + Gen* TOG=TOE

EQ
All-or-Nothing Effectors
0 = Single Operation

5 EQ/Composition Axis

Our third axis aims to guarantee some form of coupling between separate objects. It provides
mechanisms to:
(i) compose together multiple updates and multiple objects dynamically, and
(ii) to close the guarantees provided by the Total Order and/or Visibility axes over the

whole composition.

5.1 EQ-type and Gen* invariants
An EQ-type invariant is one that maintains an equivalence relation between objects. EQ
requires to always group together updates to both objects; we call this All-Or-Nothing
Effectors; intuitively, either all the updates of the composition are visible, or none is. For
instance, a symmetric friendship graph x.friendOf(y) ⇐⇒ y.friendOf(x), or disjoint union
to a constant set, A ∩ B = ∅ ∧ A ∪ B = C. Notice the similarity between EQ and Blind1:
neither depends on previous state, only on the current transaction (resp. operation). As it
is the case for Blind1 invariants, in order to verify EQ invariants, no ordering assumptions
are required from the environment, and it suffices to show that each individual transaction
preserves the invariant if it was initially valid.

Consider now a generic sequential invariant over multiple objects, noted Gen*. Since
multiple objects are involved, this likely requires All-Or-Nothing Effectors. Furthermore, the
generators’ reads will need to be mutually consistent, and served from a consistent snapshot.
Finally, Gen* may require a total order, by the same reasoning as for Gen1 (recall Sections 3.2
and 3.3). The Transactional Composition axis serves to enforce these requirements.

Transactions support “ad-hoc” composition. For instance, when buying a ticket online,
ensuring that the buyer has sufficient balance and that a ticket is available (ad-hoc Gen*),
and ensuring that the money is both debited from the buyer’s account and credited to the
seller’s (ad-hoc EQ).

5.2 (Transactional) Composition axis
For this axis we add begin and end markers to the repertoire of events uttered by a client,
grouping all the intervening calls and returns into one transaction. Depending on the model,
transactions may be associated with the properties “All-Or-Nothing Effectors” and “Snapshot.”
Table 4 shows the composition axis.

In many implementations, a server may execute a transaction speculatively, and either
commit or abort at the end [23]. An aborted transaction has no effect and does not return
anything. Our model considers only committed transactions.

All-Or-Nothing Effectors means that, if some effector of transaction T1 is visible to
transaction T2, then all of T1’s effectors are visible to T2. (This is the A in ACID, sometimes
called Atomic.) TOE guarantees extend to all effectors of a transaction: if u! and v! are part

M.Shapiro, M. Saeida Ardekani, G. Petri 3:11

Table 5 Matrix of features and consistency models.

Total Order Composition Visibility
Rollbacks Monotonic Transitive Causal External

All-or-Nothing + Snapshot SER SSER
All-or-Nothing EffectorsTOG=TOE

Single Operation SC LIN
All-or-Nothing + Snapshot NMSI PSI SSI
All-or-Nothing EffectorsGapless TOE

Single Operation
All-or-Nothing + Snapshot Bayou ∅
All-or-Nothing Effectors ∅Capricious TOE

Single Operation LWW ∅
All-or-Nothing + Snapshot Causal HAT ∅
All-or-Nothing Effectors RC ∅Concurrent Ops

Single Operation EC PRAM CC ∅

of T1, w! and t! are of part of T2, and u! < w! in the TOE, then v! < w! and u! < t!. We
may write simply T1! < T2!.

Typically, all the generators of the transaction read from a same set of effectors, called
its snapshot. Generator order guarantees, if any, extend to the whole snapshot, i.e.,
(i) Monotonic-Client, resp. Transitive, resp. Causal Visibility: the snapshot (the set of

effectors read from) is closed under the visibility order.
(ii) TOG=TOE: the generators are adjacent in the total order.

5.3 Composition: Discussion

Transactional protocols generally assume All-or-Nothing but differ in their snapshot guaran-
tees. For instance, SER, NMSI or SI require Transitive Visibility but do not enforce client
order, i.e., Monotonic Writes [15]. Indeed, these models allows a client to execute T1; T2
and the system to serialise as T2; T1 if their read-write sets are disjoint. Strong Snapshot
Isolation (SSI) does ensure client order, hence Causal Visibility, as it mandates to choose a
snapshot greater than any commit point when a transaction starts. The same is true of a
protocol that requires external causality, such as Strict Serialisability (SSER).

In addition to the features discussed so far, snapshots may be partially ordered or totally
ordered. For instance, NMSI’s snapshots are partially ordered, whereas SI, SSI, and SER
snapshots are totally ordered. This represents the main difference between SI and NMSI.

As a simplification, our linear axis does not differentiate between partially- and totally-
ordered snapshots. Unfortunately and consequently, SI is missing from our summary table
(Table 5) as it would occupy the same position as NMSI.

6 Discussion and conclusion

Our system model (Section 2) is very general. The separation between generators and effectors
allows for internal parallelism; if unusual, it reflects practical implementations [23]. Our total
order axis (Section 3), classifies the degree of concurrency between operations to a single
object, including only effectors or also generators, and accounts for both available (capricious)
and consensus-based (gapless) approaches. The other two axes introduce mechanisms that
relate multiple objects; however, they serve different purposes and have different costs.
Visibility order (Section 4) relates reads to writes and involves maintaining a system-wide
transitive closure, and aims to support PO-type invariants. Transactions (composition,

CONCUR 2016

3:12 Consistency in 3D

Table 6 Cross-reference of models, protocols and systems.

Acronym Full name Type Total-Order Visibility Composition Ref.
Bayou Bayou system Capricious TOE Rollbacks All-or-Nothing + Snapshot [28]
CC Causal Consistency model Concurrent Ops Causal Single Operation [3]

Causal HAT Causal Highly-Av. Txn. model Concurrent Ops Causal All-or-Nothing + Snapshot [4]
EC Eventual Consistency model Concurrent Ops Rollbacks Single Operation [30]
LIN Linearisability model TOG=TOE External Single Operation [17]
LWW Last-Writer Wins protocol Capricious TOE Monotonic Single Operation [18]
NMSI Non-Monotonic SI model Gapless TOE Transitive All-or-Nothing + Snapshot [24]
PRAM Pipeline RAM model Concurrent Ops Monotonic Single Operation [20]
PSI Parallel SI model Gapless TOE Causal All-or-Nothing + Snapshot [26]
RC Read Committed model Concurrent Ops Monotonic All-or-Nothing Effectors [7]
SC Sequential Consistency model TOG=TOE Causal Single Operation [19]
SER Serialisability model TOG=TOE Transitive All-or-Nothing + Snapshot [15]
SI Snapshot Isolation model Gapless TOE Transitive All-or-Nothing + Snapshot [7]

SSER Strict Serialisability model TOG=TOE External All-or-Nothing + Snapshot [22]
SSI Strong Snapshot Isolation model Gapless TOE External All-or-Nothing + Snapshot [10]

Section 5) serves to enforce ad-hoc EQ and Gen*; a transaction is a one-off grouping,
requested by the application.

In order to be intuitively useful, our classification simplifies the design space into three
approximately linear axes (which we relate to application invariants). Obviously, this
cannot account for the full complexity of the relations between models. We acknowledge
the deficiencies of such a simplification. For instance, we flatten the visibility axis, and
abusively assume that all TOG=TOE models must be gapless. We defend this simplification
as practically relevant, even if not formally justified. We also ignored hybrid models, such as
Update Serialisability [16].

We focus on client-monotonic models, as they are the most intuitive, and because
monotonicity is trivial to implement. While the specifications of SER, NMSI, or RC do not
require Monotonic visibility, all the actual implementations that we know of do provide it.

Table 5 positions some major consistency models within the three axes. Compare for
instance two prominent strong consistency models: SSER and LIN. While LIN considers
single operations and single objects, SSER is a transactional model requiring All-or-Nothing
and Snapshot. Also notice how the visibility axis differentiates SSER from SER, and NMSI
from PSI.

While our results are preliminary, we believe that this classification sheds light on the
crowded space of distributed consistency guarantees, towards a better understanding of the
application invariants enforced by each of them. We intend, in further work, to formalize
our definitions and prove some interesting meta-properties. This work aims to be an step
towards a rigorous and systematic understanding of distributed database implementations
and their applications.

References
1 Sarita V. Adve and Kourosh Gharachorloo. Shared memory consistency models: A tutorial.

Computer, 29(12):66–76, December 1996.
2 Atul Adya. Weak Consistency: A Generalized Theory and Optimistic Implementations for

Distributed Transactions. PhD thesis, Mass. Institute of Technology, Cambridge, MA, USA,
March 1999.

3 Mustaque Ahamad, Gil Neiger, James E. Burns, Prince Kohli, and Phillip W. Hutto. Causal
memory: definitions, implementation, and programming. Distributed Computing, 9(1):37–
49, March 1995.

http://dx.doi.org/10.1109/2.546611
http://pmg.csail.mit.edu/pubs/adya99__weak_consis-abstract.html
http://pmg.csail.mit.edu/pubs/adya99__weak_consis-abstract.html
http://dx.doi.org/10.1007/BF01784241
http://dx.doi.org/10.1007/BF01784241

M.Shapiro, M. Saeida Ardekani, G. Petri 3:13

4 Peter Bailis, Aaron Davidson, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and Ion
Stoica. Highly available transactions: Virtues and limitations. Proc. VLDB Endow.,
7(3):181–192, November 2013.

5 Carlos Baquero and Francisco Moura. Using structural characteristics for autonomous
operation. OSR, 33(4):90–96, 1999.

6 Daniel Barbará-Millá and Hector Garcia-Molina. The demarcation protocol: A technique
for maintaining constraints in distributed database systems. VLDB Jrnl., 3(3):325–353,
July 1994.

7 Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick O’Neil.
A critique of ANSI SQL isolation levels. SIGMOD Rec., 24(2):1–10, May 1995.

8 J. Brzezinski, C. Sobaniec, and D. Wawrzyniak. From session causality to causal consistency.
In Conf. on Parallel, Distributed and Network-Based Processing (PDP), pages 152–158, A
Coruña, Spain, February 2004. Euromicro.

9 Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, and Marek Zawirski. Replicated
data types: Specification, verification, optimality. In POPL, pages 271–284, San Diego,
CA, USA, January 2014.

10 Khuzaima Daudjee and Kenneth Salem. Lazy database replication with snapshot isolation.
In VLDB, pages 715–726, 2006.

11 Alan Fekete, Dimitrios Liarokapis, Elizabeth O’Neil, Patrick O’Neil, and Dennis Shasha.
Making snapshot isolation serializable. TODS, 30(2):492–528, June 2005.

12 Matteo Frigo. The weakest reasonable memory model. PhD thesis, MIT, Cambridge, MA,
USA, October 1997.

13 Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of consistent, avail-
able, partition-tolerant web services. SIGACT News, 33(2):51–59, 2002.

14 Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh, and Marc Shapiro.
’Cause I’m strong enough: Reasoning about consistency choices in distributed systems. In
POPL, pages 371–384, St. Petersburg, FL, USA, 2016.

15 Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques. Morgan
Kaufmann, San Francisco CA, USA, 1993. ISBN 1-55860-190-2.

16 R C Hansdah and Lalit M. Patnaik. Update serializability in locking. In Giorgio Ausiello
and Paolo Atzeni, editors, Int. Conf. on Database Theory, pages 171–185, 1986.

17 Maurice Herlihy and Jeannette Wing. Linearizability: a correcteness condition for concur-
rent objects. ACM Transactions on Programming Languages and Systems, 12(3):463–492,
July 1990.

18 Paul R. Johnson and Robert H. Thomas. The maintenance of duplicate databases. Internet
Request for Comments RFC 677, Information Sciences Institute, January 1976.

19 Leslie Lamport. How to make a multiprocessor computer that correctly executes multipro-
cess programs. IEEE Trans. on Computers, C-28(9):690–691, September 1979.

20 R J Lipton and J S Sandberg. PRAM: A scalable shared memory. Technical Report
CS-TR-180-88, Princeton University, Department of Computer Science, 1988.

21 Susan Owicki and David Gries. Verifying properties of parallel programs: an axiomatic
approach. CACM, 19(5):279–285, May 1976.

22 Christos H. Papadimitriou. The serializability of concurrent database updates. Journal of
the ACM, 26(4):631–653, October 1979.

23 F. Pedone, R. Guerraoui, and A. Schiper. The database state machine approach. J. of
Dist. and Parallel Databases and Technology, 14(1):71–98, 2003.

24 Masoud Saeida Ardekani, Pierre Sutra, and Marc Shapiro. Non-Monotonic Snapshot Isol-
ation: scalable and strong consistency for geo-replicated transactional systems. In SRDS,
pages 163–172, Braga, Portugal, October 2013. IEEE Comp. Society.

CONCUR 2016

http://dx.doi.org/10.14778/2732232.2732237
http://dx.doi.org/http://doi.acm.org/10.1145/334598.334614
http://dx.doi.org/http://doi.acm.org/10.1145/334598.334614
http://dx.doi.org/10.1007/BF01232643
http://dx.doi.org/10.1007/BF01232643
http://dx.doi.org/10.1145/568271.223785
http://dx.doi.org/10.1109/EMPDP.2004.x
http://dx.doi.org/10.1145/2535838.2535848
http://dx.doi.org/10.1145/2535838.2535848
http://dx.doi.org/http://doi.acm.org/10.1145/1071610.1071615
http://dx.doi.org/http://doi.acm.org/10.1145/564585.564601
http://dx.doi.org/http://doi.acm.org/10.1145/564585.564601
http://dx.doi.org/10.1145/2837614.2837625
http://doi.acm.org/10.1145/78969.78972
http://doi.acm.org/10.1145/78969.78972
http://www.rfc-editor.org/rfc.html
http://dx.doi.org/http://doi.acm.org/10.1145/360051.360224
http://dx.doi.org/http://doi.acm.org/10.1145/360051.360224
http://dx.doi.org/10.1109/SRDS.2013.25
http://dx.doi.org/10.1109/SRDS.2013.25

3:14 Consistency in 3D

25 Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Conflict-free replicated
data types. In Xavier Défago, Franck Petit, and V. Villain, editors, SSS, volume 6976 of
LNCS, pages 386–400, Grenoble, France, October 2011. Springer Verlag.

26 Yair Sovran, Russell Power, Marcos K. Aguilera, and Jinyang Li. Transactional storage for
geo-replicated systems. In SOSP, pages 385–400, Cascais, Portugal, October 2011. Assoc.
for Comp. Mach.

27 Douglas B. Terry, Alan J. Demers, Karin Petersen, Mike J. Spreitzer, Marvin M. Theimer,
and Brent B. Welch. Session guarantees for weakly consistent replicated data. In PDIS,
pages 140–149, Austin, Texas, USA, September 1994.

28 Douglas B. Terry, Marvin M. Theimer, Karin Petersen, Alan J. Demers, Mike J. Spreitzer,
and Carl H. Hauser. Managing update conflicts in Bayou, a weakly connected replicated
storage system. In SOSP, pages 172–182, Copper Mountain, CO, USA, December 1995.
ACM SIGOPS, ACM Press.

29 Paolo Viotti and Marko Vukolić. Consistency in non-transactional distributed storage
systems. ArXiv e-print 1512.00168, arXiv.org, December 2015. Accepted for publication in
ACM Computing Surveys.

30 Werner Vogels. Eventually consistent. ACM Queue, 6(6):14–19, October 2008.

http://dx.doi.org/10.1007/978-3-642-24550-3_29
http://dx.doi.org/10.1007/978-3-642-24550-3_29
http://dx.doi.org/http://doi.acm.org/10.1145/2043556.2043592
http://dx.doi.org/http://doi.acm.org/10.1145/2043556.2043592
http://www.acm.org/pubs/articles/proceedings/ops/224056/p172-terry/p172-terry.pdf
http://www.acm.org/pubs/articles/proceedings/ops/224056/p172-terry/p172-terry.pdf
http://dx.doi.org/http://doi.acm.org/10.1145/1466443.x

Love Thy Neighbor: V-Formation as a Problem of
Model Predictive Control∗

Junxing Yang1, Radu Grosu2, Scott A. Smolka3, and
Ashish Tiwari4

1 Stony Brook University, USA
2 Stony Brook University, USA and

Vienna University of Technology, Austria
3 Stony Brook University, USA
4 SRI International, USA

Abstract
We present a new formulation of the V-formation problem for migrating birds in terms of model
predictive control (MPC). In our approach, to drive a collection of birds towards a desired
formation, an optimal velocity adjustment (acceleration) is performed at each time-step on each
bird’s current velocity using a model-based prediction window of T time-steps. We present both
centralized and distributed versions of this approach. The optimization criteria we consider are
based on fitness metrics of candidate accelerations that birds in a V-formations are known to
benefit from, including velocity matching, clear view, and upwash benefit. We validate our MPC-
based approach by showing that for a significant majority of simulation runs, the flock succeeds
in forming the desired formation. Our results help to better understand the emergent behavior
of formation flight, and provide a control strategy for flocks of autonomous aerial vehicles.

1998 ACM Subject Classification I.6.4 [Simulation and Modeling]: Model Validation and Anal-
ysis; I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods, and Search – Control
theory; J.3 [Life and Medical Sciences]: Biology

Keywords and phrases Bird flocking, V-formation, model predictive control, particle swarm
optimization.

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2016.4

Category Invited Paper

1 Introduction

It has long been observed that flocks of birds organize themselves into V-formations, particu-
larly migrating birds traveling long distances. There are two main reasons for this behavior.
The first relates to the aerodynamics of formation-flight, where birds generate an upwash
region off the trailing edge of their wings, allowing birds behind them to save energy from
this free lift [2, 11]. The second reason is that a V-formation provides birds with an optimum
combination of a clear visual field along with visibility of lateral neighbors [5, 6].

Previous work on modeling this emergent behavior has focused on providing combinations
of dynamical flight rules as driving forces. For example, in [4], the authors extend Reynolds’
model [9] with a rule that forces a bird to move laterally away from any bird that blocks

∗ Research supported in part by the following grants: AFOSR FA9550-14-1-0261, NSF CPS-1446832,
NSF CNS-1423298, NSF IIS-1447549, NSF CNS-1445770, and NSF CNS-1430010.

© Junxing Yang, Radu Grosu, Scott A. Smolka, and Ashish Tiwari;
licensed under Creative Commons License CC-BY

27th International Conference on Concurrency Theory (CONCUR 2016).
Editors: Josée Desharnais and Radha Jagadeesan; Article No. 4; pp. 4:1–4:5

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.4
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

4:2 Love Thy Neighbor: V-Formation as a Problem of Model Predictive Control

its view. This can result in multiple V-shaped clusters, but flock-wide convergence is not
guaranteed. The work of [3] induces V-formations by extending Reynolds’ model with a drag
reduction rule, but the final formation tends to oscillate as birds repeatedly adjust the angle
of the V. Another approach, based on three positioning rules, is that of [8]. Their model,
however, is limited by the assumption that birds have a constant longitudinal heading. The
authors of [10] attempt to improve upon this approach by handling turning movements. But
their model also produces small clusters of birds, each of which is only moderately V-like.

We, in contrast, view the problem of V-formation as one of optimal control. Compared
to previous work, there are no behavioral rules in our approach. Instead, we adopt the idea
of model predictive control (MPC) [1]. To drive a collection of N birds towards a desired
formation, an optimal velocity adjustment (acceleration) is performed at each time-step on
each bird’s current velocity using a model-based prediction window of T time-steps. This
yields an optimal acceleration sequence of length T , and the first acceleration in the sequence
is applied. We present both centralized and distributed versions of this approach.

The optimization we perform is based on fitness metrics that capture the essence of
a V-formation, namely Velocity Matching (VM), Clear View (CV), and Upwash Benefit
(UB). VM means that bird velocities are aligned, allowing them to maintain formation. CV
requires birds to have an unobstructed frontal view, while UB models the energy saving
birds obtain from the upwash regions generated by their frontal neighbors. We show by
simulations that birds succeed in forming the desired formations with high probability.

2 Model Predictive Control for V-Formation

Let x(t)i, v(t)i and a(t)i be the vector of 2-dimensional positions, velocities and acceler-
ations, respectively, of bird i at time t, 1 ≤ i ≤ N . The following equations model the
behaviors of bird i in discrete time:

x(t+ 1)i = x(t)i + v(t+ 1)i
v(t+ 1)i = v(t)i + a(t)i

Our MPC approach uses an optimization function to find the best acceleration a(t)i at each
time-step. Each bird optimizes its own acceleration based on local information about its
nearest NR neighboring birds. It tries to find the best accelerations of all of its neighbors
including itself, and uses its own component of the solution to update its velocity and
position. Let xNi , vNi and aNi be the vector of positions, velocities and accelerations of
bird i’s neighbors. We consider the following optimization problem for bird i at time t:

a∗Ni
(t), ...,a∗Ni

(t+ T − 1) = arg min
aNi

(t),...,aNi
(t+T−1)
J(aNi(t+ T − 1),xNi(t+ T − 1),vNi(t+ T − 1))

subject to xNi
(t),vNi

(t) = Neighbors(i,x(t),v(t), NR);
∀τ∈[t,t+T−1],xNi

(τ + 1) = xNi
(τ) + vNi

(τ + 1),vNi
(τ + 1) = vNi

(τ) + aNi
(τ);

∀i≤NR
||vNi(τ)i|| ≤ vmax, ||aNi(τ)i|| ≤ δ||vNi(τ)i||, δ ∈ (0, 1).

where T is the prediction horizon and J is the fitness function. Function Neighbors returns
the positions and velocities of the nearest NR birds of bird i (including i) at time t. We
place constraints on the maximum velocities and accelerations. We apply a(t)i = a∗Ni

(t)i as
the optimal acceleration for bird i at time t.

We also consider a centralized approach in which birds have information about the entire
flock, i.e. NR = N . In this case, we only need to perform one optimization for all birds at
each time-step. The fitness function J consists of a sum-of-squares combination of VM, CV

J. Yang, R. Grosu, S. Smolka, and A. Tiwari 4:3

and UB. Let v′ = v(t) + a(t) and x′ = x(t) + v′ be the new velocities and positions after
applying the accelerations.

J(a(t),x(t),v(t)) = (VM (v′)−VM ∗)2 + (CV (x′,v′)− CV ∗)2 + (UB(x′,v′)−UB∗)2

where VM ∗ = 0,CV ∗ = 0,UB∗ = 1 are the optimal values in a V-formation.

3 Fitness Metrics

Velocity Matching.

The velocity-matching metric is defined as VM (v) =
∑
i>j

(
||vi−vj ||
||vi||+||vj ||

)2
where vi is bird

i’s velocity. The optimal value in a V-formation is VM ∗ = 0, as all birds will have the same
velocity, enabling them to maintain formation.

Clear View.

A bird’s visual field is a cone with angle θ that can be blocked by the wings of other birds.
We define the clear-view metric by accumulating the percentage of a bird’s visual field that
is blocked by other birds:

Bij(hij , vij) =

{α|max(π − θ2 , atan(vij

hij + w
)) ≤ α ≤ min(π + θ

2 , atan(vij
hij − w

))}

if (hij < w ∨ hij−w
vij

< tan θ) ∧ Front(j, i);

∅ otherwise.

CVi(x,v) =
|
⋃
j 6=iBij(hij , vij)|

θ
, CV (x,v) =

∑
i

CVi(x,v)

where w is the wing span of a bird, and hij and vij are the horizontal and vertical distances
between birds i and j w.r.t. the direction of i’s velocity; these distances can be computed
using x and v. Each Bij(hij , vij) computes the range of i’s view angle being blocked by j,
and is a sub-interval of [(π− θ)/2, (π+ θ)/2]. CVi(x,v) computes the percentage of i’s view
that is blocked by other birds. Predicate Front(j, i) is true when bird j is in front of bird i.
The optimal value in a V-formation is CV ∗ = 0, as all birds have a clear visual field.

Upwash Benefit.

Upwash is generated near the wingtips of a bird, while downwash is generated near the
center of a bird. We accumulate all birds’ upwash benefits using a Gaussian-like model of
the upwash and downwash region. The upwash and downwash a trailing bird i obtains from
a preceding bird j is given by:

UBij(hij , vij) =

vi·vj

||vi||·||vj ||S(hij) ·G(hij , vij , µ1,Σ1) if hij ≥ (4−π)w
8 ∧ Front(j, i)

S(hij) ·G(hij , vij , µ2,Σ2) if hij < (4−π)w
8 ∧ Front(j, i)

0 otherwise

S(hij) = erf(2
√

2(hij − (4−π)w
8)), G(hij , vij , µ,Σ) = e(− 1

2 ([hij ,vij]−µ)T Σ−1([hij ,vij]−µ))

where w is the wing span, hij = (4 − π)w/8 is the boundary between the upwash and
downwash regions [7], S(hij) is a smoothing function with erf being the error function,
and G(hij , vij , µ,Σ) is a Gaussian-like function. Parameters µ1, µ2 are chosen such that

CONCUR 2016

4:4 Love Thy Neighbor: V-Formation as a Problem of Model Predictive Control

(a) Centralized Control (b) Distributed Control, NR = 3

Figure 1 Final formations from simulations with 5 birds. The red-filled circle and two protruding
line segments represent a bird’s body and wings with wing span w = 1. Arrows represent bird
velocities. Dotted lines illustrate clear-view cones with angle θ = π/3. A brighter background color
indicates a higher upwash, while a darker background color indicates a higher downwash.

the upwash benefit is maximized when hij = (12 + π)w/16 [7] and vij = 1, and minimized
when hij = 0 and vij = 0. Moreover, bird i only gets maximum upwash if the velocities of
i and j are aligned; so the upwash is discounted by vi·vj

||vi||·||vj || . The total upwash benefit of
the whole flock is UB(x,v) =

∑
i(1−min(

∑
j UBij(hij , vij), 1)). The maximum upwash a

bird can obtain is constrained to not be greater than 1. The optimal value in a V-formation
UB∗ = 1, as there is one leader that does not get any upwash.

4 Experimental Results

We used MATLAB function particleswarm from the Global Optimization Toolbox as the
optimization algorithm. We placed a collision-avoidance constraint on the minimum distance
between any two birds. The optimizer discards accelerations that will lead to collisions. The
initial positions and velocities are randomly chosen with maximum velocity vmax = 5. The
bound on acceleration δmodel = 0.5 for the model and δplant = 0.4 for the plant. If the
acceleration that the model produces exceeds the limit of the plant, we keep its direction
and use the plant upper bound for its magnitude. We ran simulations of 50 time-steps with
prediction horizon T = 1.

Fig. 1 shows the formations reached in the last step of simulation. We ran five simulations
starting from random initial conditions for both centralized and distributed control. In both
cases, four of the five simulations resulted in on-target formations. Future work will focus
on further improving the success rate.

References
1 Eduardo F Camacho and Carlos Bordons Alba. Model Predictive Control. Springer Science

& Business Media, 2013.
2 C Cutts and J Speakman. Energy savings in formation flight of pink-footed geese. The

Journal of Experimental Biology, 189(1):251–261, 1994.
3 GDimock and M Selig. The aerodynamic benefits of self-organization in bird flocks. Urbana,

51:61801, 2003.

J. Yang, R. Grosu, S. Smolka, and A. Tiwari 4:5

4 Gary William Flake. The Computational Beauty of Nature: Computer Explorations of
Fractals, Chaos, Complex Systems, and Adaptation. MIT Press, 1998.

5 WJ Hamilton. Social aspects of bird orientation mechanisms. Animal Orientation and
Navigation,, pages 57–71, 1967.

6 Frank H Heppner, Jeffrey L Convissar, Dennis E Moonan Jr, and John GT Anderson.
Visual angle and formation flight in Canada geese (Branta Canadensis). The Auk,, pages
195–198, 1985.

7 Dietrich Hummel. Aerodynamic aspects of formation flight in birds. Journal of Theoretical
Biology, 104(3):321–347, 1983.

8 Andre Nathan and Valmir C Barbosa. V-like formations in flocks of artificial birds. Artificial
Life, 14(2):179–188, 2008.

9 Craig W Reynolds. Flocks, herds and schools: A distributed behavioral model. In ACM
Siggraph Computer Graphics, volume 21, pages 25–34. ACM, 1987.

10 Forrest Stonedahl and Uri Wilensky. Finding forms of flocking: Evolutionary search in
ABM parameter-spaces. In Multi-Agent-Based Simulation XI, pages 61–75. Springer, 2011.

11 Henri Weimerskirch, Julien Martin, Yannick Clerquin, Peggy Alexandre, and Sarka Ji-
raskova. Energy saving in flight formation. Nature, 413(6857):697–698, 2001.

CONCUR 2016

The Benefits of Duality in Verifying Concurrent
Programs under TSO∗

Parosh Aziz Abdulla1, Mohamed Faouzi Atig2, Ahmed Bouajjani3,
and Tuan Phong Ngo4

1 Uppsala University, Sweden
parosh@it.uu.se

2 Uppsala University, Sweden
mohamed_faouzi.atig@it.uu.se

3 IRIF, Université Paris Diderot & IUF, France
abou@liafa.univ-paris-diderot.fr

4 Uppsala University, Sweden
tuan-phong.ngo@it.uu.se

Abstract
We address the problem of verifying safety properties of concurrent programs running over the
TSO memory model. Known decision procedures for this model are based on complex encodings
of store buffers as lossy channels. These procedures assume that the number of processes is fixed.
However, it is important in general to prove correctness of a system/algorithm in a parametric
way with an arbitrarily large number of processes. In this paper, we introduce an alternative (yet
equivalent) semantics to the classical one for the TSO model that is more amenable for efficient
algorithmic verification and for extension to parametric verification. For that, we adopt a dual
view where load buffers are used instead of store buffers. The flow of information is now from the
memory to load buffers. We show that this new semantics allows (1) to simplify drastically the
safety analysis under TSO, (2) to obtain a spectacular gain in efficiency and scalability compared
to existing procedures, and (3) to extend easily the decision procedure to the parametric case,
which allows to obtain a new decidability result, and more importantly, a verification algorithm
that is more general and more efficient in practice than the one for bounded instances.

1998 ACM Subject Classification D.2.4 Software/Program Verification

Keywords and phrases Weak Memory Models, Reachability Problem, Parameterized Verification

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2016.5

1 Introduction

Most modern processor architectures execute instructions in an out-of-order manner to gain
efficiency. In the context of sequential programming, this out-of-order execution is transparent
to the programmer since one can still work under the Sequential Consistency (SC) model [24].
However, this is not true when we consider concurrent processes that share the memory. In
fact, it turns out that concurrent algorithms such as mutual exclusion and producer-consumer
protocols may not behave correctly any more. Therefore, program verification is a relevant
(and difficult) task in order to prove correctness under the new semantics. The inadequacy
of the interleaving semantics has led to the invention of new program semantics, so called

∗ This work was supported in part by the Swedish Research Council and carried out within the Linnaeus
centre of excellence UPMARC, Uppsala Programming for Multicore Architectures Research Center.

© Parosh Aziz Abdulla, Mohamed Faouzi Atig, Ahmed Bouajjani, and Tuan Phong Ngo;
licensed under Creative Commons License CC-BY

27th International Conference on Concurrency Theory (CONCUR 2016).
Editors: Josée Desharnais and Radha Jagadeesan; Article No. 5; pp. 5:1–5:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

5:2 The Benefits of Duality in Verifying Concurrent Programs under TSO

Weak (or relaxed) Memory Models (WMM), by allowing permutations between certain types
of memory operations [7, 20, 8]. Total Store Ordering (TSO) is one of the the most common
models, and it corresponds to the relaxation adopted by Sun’s SPARC multiprocessors [28]
and formalizations of the x86-tso memory model [26, 27]. These models put an unbounded
perfect (non-lossy) store buffer between each process and the main memory where a store
buffer carries the pending store operations of the process. When a process performs a store
operation, it appends it to the end of its buffer. These operations are propagated to the
shared memory non-deterministically in a FIFO manner. When a process reads a variable, it
searches its buffer for a pending store operation on that variable. If no such a store operation
exists, it fetches the value of the variable from the main memory. Verifying programs
running on the TSO memory model poses a difficult challenge since the unboundedness of the
buffers implies that the state space of the system is infinite even in the case where the input
program is finite-state. Decidability of safety properties has been obtained by constructing
equivalent models that replace the perfect store buffer by lossy channels [11, 12, 2]. However,
these constructions are complicated and involve several ingredients that lead to inefficient
verification procedures. For instance, they require each message inside a lossy channel to
carry (instead of a single store operation) a full snapshot of the memory representing a
local view of the memory contents by the process. Furthermore, the reductions involve
non-deterministic guessing the lossy channel contents. The guessing is then resolved either
by consistency checking [11] or by using explicit pointer variables (each corresponding to one
process) inside the buffers [2], causing a serious state space explosion problem.

In this paper, we introduce a novel semantics which we call the dual TSO semantics.
Our aim is to provide an alternative (and equivalent) semantics that is more amenable for
efficient algorithmic verification. The main idea is to have load buffers that contain pending
load operations (more precisely, values that will potentially be taken by forthcoming load
operations) rather than store buffers (that contain store operations). The flow of information
will now be in the reverse direction, i.e., store operations are performed by the processes
atomically on the main memory, while values of variables are propagated non-deterministically
from the memory to the load buffers of the processes. When a process performs a load
operation it can fetch the value of the variable from the head of its load buffer. We show that
the dual semantics is equivalent to the original one in the sense that any given set of processes
will reach the same set of local states under both semantics. The dual semantics allows us to
understand the TSO model in a totally different way compared to the classical semantics.
Furthermore, the dual semantics offers several important advantages from the point of view
of formal reasoning and program verification. First, the dual semantics allows transforming
the load buffers to lossy channels without adding the costly overhead that was necessary
in the case of store buffers. This means that we can apply the theory of well-structured
systems [6, 5, 21] in a straightforward manner leading to a much simpler proof of decidability
of safety properties. Second, the absence of extra overhead means that we obtain more
efficient algorithms and better scalability (as shown by our experimental results). Finally, the
dual semantics allows extending the framework to perform parameterized verification which
is an important paradigm in concurrent program verification. Here, we consider systems,
e.g., mutual exclusion protocols, that consist of an arbitrary number of processes. The
aim of parameterized verification is to prove correctness of the system regardless of the
number of processes. It is not obvious how to perform parameterized verification under
the classical semantics. For instance, extending the framework of [2], would involve an
unbounded number of pointer variables, thus leading to channel systems with unbounded
message alphabets. In contrast, as we show in this paper, the simple nature of the dual

P.A. Abdulla, M. F. Atig, A. Bouajjani, and T. P.Ngo 5:3

semantics allows a straightforward extension of our verification algorithm to the case of
parameterized verification. This is the first time a decidability result is established for the
parametrized verification of programs running over WMM. Notice that this result is taking
into account two sources of infinity: the number of processes, and the size of the buffers.

Based on our framework, we have implemented a tool and applied it to a large set of
benchmarks. The experiments demonstrate the efficiency of the dual semantics compared to
the classical one (by two order of magnitude in average), and the feasibility of parametrized
verification in the former case. In fact, besides its theoretical generality, parametrized
verification is practically crucial in this setting: as our experiments show, it is much more
efficient than verification of bounded-size instances (starting from a number of components
of 3 or 4), especially concerning memory consumption (which is the critical resource).

Related Work. There have been a lot of works related to the analysis of programs running
under WMM (e.g., [25, 22, 23, 17, 2, 15, 16, 13, 14, 29]). Some of these works propose precise
analysis techniques for checking safety properties or stability of finite-state programs under
WMM (e.g., [2, 13, 19, 4]). Others propose stateless model-checking techniques for programs
under TSO and PSO (e.g., [1, 30, 18]). Different other techniques based on monitoring and
testing have also been developed during these last years (e.g., [15, 16, 25]). There are also a
number of efforts to design bounded model checking techniques for programs under WMM
(e.g., [9, 29, 14]) which encode the verification problem in SAT/SMT.

The closest works to ours are those presented in [2, 11, 3, 12] which provide precise and
sound techniques for checking safety properties for finite-state programs running under TSO.
However, as stated in the introduction, these techniques are complicated and can not be
extended, in a straightforward manner, to the verification of parameterized systems (as it is
the case of the developed techniques for the dual TSO semantics).

In Section 7, we experimentally compare our techniques with Memorax [2, 3] which is the
only precise and sound tool for checking safety properties for programs under TSO.

2 Preliminaries

Let Σ be a finite alphabet. We use Σ∗ (resp. Σ+) to denote the set of all words (resp.
non-empty words) over Σ. Let ε be the empty word. The length of a word w ∈ Σ∗ is denoted
by |w| (and in particular |ε| = 0). For every i : 1 ≤ i ≤ |w|, let w(i) be the symbol at position
i in w. For a ∈ Σ, we write a ∈ w if a appears in w, i.e., a = w(i) for some i : 1 ≤ i ≤ |w|.

Given two words u and v over Σ, we use u � v to denote that u is a (not necessarily
contiguous) subword of v (i.e., if there is an injection h : {1, . . . , |u|} 7→ {1, . . . , |v|} such that:
(1) h(i) < h(j) for all i < j, and (2) for every i ∈ {1, . . . , |u|}, we have u(i) = v(h(i))).

Given a subset Σ′ ⊆ Σ and a word w ∈ Σ∗, we use w|Σ′ to denote the projection of w
over Σ′, i.e., the word obtained from w by erasing all the symbols that are not in Σ′.

Let A and B be two sets and let f : A 7→ B be a total function from A to B. We use
f [a←↩ b] to denote the function f ′ such that f ′(a) = b and f ′(a′) = f(a′) for all a′ 6= a.

A transition system T is a tuple
(
C, Init, Act,∪a∈Act

a−→
)
where C is a (potentially infinite)

set of configurations, Init ⊆ C is a set of initial configurations, Act is a set of actions, and for
every a ∈ Act, a−→ ⊆ C×C is a transition relation. We use c a−→ c′ to denote that (c, c′) ∈ a−→.
Let −→ = ∪a∈Act

a−→. A run π of T is of the form c0
a1−−→ c1

a2−−→· · · an−−→ cn, where ci
ai+1−−−→ ci+1

for all i : 0 ≤ i < n. Then, we write c0 π−→ cn. We use target (π) to denote the configuration cn.
The run π is said to be a computation if c0 ∈ Init. Two runs π1 = c0

a1−−→ c1
a2−−→· · · am−−→ cm

and π2 = cm+1
am+2−−−−→ cm+2

am+3−−−−→· · · an−−→ cn are compatible if cm = cm+1. Then, we write

CONCUR 2016

5:4 The Benefits of Duality in Verifying Concurrent Programs under TSO

π1 • π2 to denote the run π = c0
a1−−→ c1

a2−−→· · · am−−→ cm
am+2−−−−→ cm+2

am+3−−−−→· · · an−−→ cn. For
two configurations c and c′, we use c ∗−→ c′ to denote that c π−→ c′ for some run π. A
configuration c is said to be reachable in T if c0 ∗−→ c for some c0 ∈ Init, and a set C of
configurations is said to be reachable in T if some c ∈ C is reachable in T .

3 Concurrent Systems

In this section, we define the syntax we use for concurrent programs, a model for representing
communicating concurrent processes. Communication between processes is performed through
a shared memory that consists of a finite number of shared variables (over finite domains) to
which all processes can read and write. Then we recall the classical TSO semantics including
the transition system it induces and its reachability problem. Next, we introduce the Dual
TSO semantics and its induced transition system. Finally, we state the equivalence between
the two semantics (for a given concurrent program, we can reduce its reachability problem
under the classical TSO to its reachability problem under Dual TSO and vice-versa).

3.1 Syntax
Let V be a finite data domain and X be a finite set of variables. We assume w.l.o.g. that V
contains the value 0. Let Ω(X,V) be the smallest set of memory operations that contains (1)
“no operation” nop, (2) read operation r(x, v), (3) write operation w(x, v), (4) fence operation
fence, and (5) atomic read-write operation arw(x, v, v′), where x ∈ X, and v, v′ ∈ V .

A concurrent system is a tuple P = (A1, A2, . . . , An) where for every p : 1 ≤ p ≤ n, Ap
is a finite-state automaton describing the behavior of the process p. The automaton Ap is
defined as a triple

(
Qp, q

init
p ,∆p

)
where Qp is a finite set of local states, qinit

p ∈ Qp is the
initial local state, and ∆p ⊆ Qp × Ω(X,V) × Qp is a finite set of transitions. We define
P = {1, . . . , n} to be the set of process IDs, Q := ∪p∈PQp to be the set of all local states
and ∆ := ∪p∈P∆p to be the set of all transitions.

3.2 Classical TSO semantics
In the following, we recall the semantics of concurrent systems under the classical TSO model
as formalized in [26, 27]. To do that, we define the set of configurations and the induced
transition relation. Let P= (A1, A2, . . . , An) be a concurrent system.

Configurations. A TSO-configuration c is a triple (q,b,mem) where (1) q : P 7→ Q is the
global state of P mapping each process p ∈ P to a local state in Qp (i.e., q(p) ∈ Qp), (2)
b : P 7→ (X × V)∗ gives the content of the store buffer of each process, and (3) mem : X 7→ V

defines the value of each shared variable. Observe that the store buffer of each process
contains a sequence of write operations, where each write operation is defined by a pair,
namely a variable x and a value v that is assigned to x. The initial TSO-configuration cinit
is defined by the tuple (qinit ,binit ,meminit) where, for all p ∈ P and x ∈ X, we have that
qinit(p) = qinit

p , binit(p) = ε and meminit(x) = 0. In other words, each process is in its
initial local state, all the buffers are empty, and all the variables in the shared memory are
initialized to 0. We use CTSO to denote the set of TSO-configurations.

Transition Relation. The transition relation −→TSO between TSO-configurations is given
by a set of rules, described in Figure 1. Here we informally explain these rules. A nop
transition (q, nop, q′) ∈ ∆p changes only the local state of the process p from q to q′. A

P.A. Abdulla, M. F. Atig, A. Bouajjani, and T. P.Ngo 5:5

t = (q, nop, q′) q(p) = q

(q,b,mem) t−→TSO (q [p←↩ q′] ,b,mem)
Nop

t = (q,w(x, v), q′) q(p) = q

(q,b,mem) t−→TSO (q [p←↩ q′] ,b [p←↩ (x, v) · b(p)] ,mem)
Write

t = updatep

(q,b [p←↩ b(p) · (x, v)] ,mem) t−→TSO (q,b,mem [x←↩ v])
Update

t = (q, r(x, v), q′) q(p) = q b(p)|{x}×V = (x, v) · w
(q,b,mem) t−→TSO (q [p←↩ q′] ,b,mem)

Read-Own-Write

t = (q, r(x, v), q′) q(p) = q b(p)|{x}×V = ε mem(x) = v

(q,b,mem) t−→TSO (q [p←↩ q′] ,b,mem)
Read Memory

t = (q, arw(x, v, v′), q′) q(p) = q b(p) = ε mem(x) = v

(q,b,mem) t−→TSO (q [p←↩ q′] ,b,mem [x←↩ v′])
ARW

t = (q, fence, q′) q(p) = q b(p) = ε

(q,b,mem) t−→TSO (q [p←↩ q′] ,b,mem)
Fence

Figure 1 The transition relation −→TSO under TSO. Here p ∈ P and t ∈ ∆p ∪
{

updatep

}
where

updatep is an operation that updates the memory using the oldest message in the buffer of process p.

write transition (q,w(x, v), q′) ∈ ∆p adds the message (x, v) to the tail of the store buffer
of the process p. A memory update transition updatep can be performed at any time by
removing the oldest message in the store buffer of the process p and updating the memory
accordingly. For a read transition (q, r(x, v), q′) ∈ ∆p, if the store buffer of the process p
contains some write operations to x, then the read value v must correspond to the value
of the most recent such a write operation. Otherwise the value v of x is fetched from the
memory. A fence transition may be performed by a process p only if its store buffer is empty.
Finally, an atomic read-write transition (q, arw(x, v, v′), q′) ∈ ∆p can be performed by the
process p only if its store buffer is empty. This operation checks then whether the value of x
is v and changes it to v′.

We use c−→TSO c
′ to denote that c t−→TSO c

′ for some t ∈ ∆ ∪ ∆′ where
∆′ :=

{
updatep| p ∈ P

}
. The transition system induced by P under the classical TSO

semantics is then given by TTSO = (CTSO, {cinit}, ∆ ∪ ∆′,−→TSO).

The TSO Reachability Problem. A global state qtarget is said to be reachable in TTSO
iff there is a TSO-configuration c of the form (qtarget,b,mem), with b(p) = ε for all p ∈ P ,
such that c is reachable in TTSO. The reachability problem for the concurrent system P under
TSO asks, for a given global state qtarget, whether qtarget is reachable in TTSO. Observe that,
in the definition of the reachability problem, we require that the buffers of the configuration
c must be empty instead of being arbitrary. This is only for sake of simplicity and does not
constitute a restriction. Indeed, we can easily show that the “arbitrary buffer” reachability
problem is reducible to the “empty buffer” reachability problem.

CONCUR 2016

5:6 The Benefits of Duality in Verifying Concurrent Programs under TSO

3.3 Dual TSO semantics

In this section, we define the Dual TSO semantics. The model has a perfect FIFO load
buffer between the main memory and each process. The load buffer is used to store potential
read operations that will be performed by the process. Each message in the load buffer of a
process p is either a pair of the form (x, v) or a triple of the form (x, v, own) where x ∈ X
and v ∈ V . A message of the form (x, v) corresponds to the fact that x had the value v in
the shared memory. While a message (x, v, own) corresponds to the fact that the process p
has written the value v to x. A write operation w(x, v) of the process p immediately updates
the shared memory and a message of the form (x, v, own) is then appended to the tail of the
load buffer of p. Read propagation is then performed by non-deterministically choosing a
variable (let’s say x and its value is v in the shared memory) and appending the message
(x, v) to the tail of the load buffer of p. This propagation operation speculates on a read
operation of p on x that will be performed later on. Moreover, any message at the head of
the load buffer can be removed at any time. A read operation r(x, v) of the process p can be
executed if the message at the head of the load buffer (i.e., the oldest one) of p is of the form
(x, v) and there is no pending message of the form (x, v′, own). In the case that the load
buffer contains a message belonging to p (i.e., of the form (x, v′, own)), the read value must
correspond to the value of the most recent message belonging to p (implicitly, this allows to
simulate the Read-Own-Write transitions). A fence means that the load buffer of p must be
empty before p can continue. Let P= (A1, A2, . . . , An) be a concurrent system.

Configurations. A DTSO-configuration c is a triple (q,b,mem) where q : P 7→ Q is the
global state of P, b : P 7→ ((X × V) ∪ (X × V × {own}))∗ is the content of the load buffer,
and mem : X 7→ V gives the value of each variable. The initial DTSO-configuration cDinit is
defined by (qinit ,binit ,meminit) where, for all p ∈ P and x ∈ X, we have that qinit(p) = qinit

p ,
binit(p) = ε and meminit(x) = 0. We use CDTSO to denote the set of DTSO-configurations.

Transition Relation. The transition relation −→DTSO induced by the Dual TSO semantics is
given in Figure 2. This relation is induced by members of ∆ and
∆aux :=

{
propagatexp , deletep| p ∈ P, x ∈ X

}
. propagatexp is an operation that speculates

on a read operation of p over x that will be executed later. This is done by appending the
message (x, v) to the tail of the load buffer of p where v is the current value of x in the shared
memory. The operation deletep removes the oldest message in the load buffer of process p. A
write operation w(x, v) updates the memory and appends the message (x, v, own) to the tail
of the load buffer. A read operation r(x, v) checks first if the load buffer contains a message
of the form (x, v′, own), and in that case the read value v should correspond to the value of
the most recent message of that form. If there is no message on the variable x belonging to
p in its load buffer then the value v of x is fetched from the message at the head of its load
buffer.

We use c−→DTSO c
′ to denote that c t−→DTSO c

′ for some t ∈ ∆ ∪ ∆aux. The trans-
ition system induced by P under the Dual TSO semantics is then given by TDTSO =
(CDTSO, {cD

init}, ∆ ∪ ∆aux,−→DTSO).

The Dual TSO Reachability Problem. The reachability problem for P under the Dual TSO
semantics is defined in a similar manner to the case of TSO. A global state qtarget is said to
be reachable in TDTSO iff there is a DTSO-configuration c of the form (qtarget,b,mem), with
b(p) = ε for all p ∈ P , such that c is reachable in TDTSO. Then, the reachability problem

P.A. Abdulla, M. F. Atig, A. Bouajjani, and T. P.Ngo 5:7

t = (q, nop, q′) q(p) = q

(q,b,mem) t−→DTSO (q [p←↩ q′] ,b,mem)
Nop

t = (q,w(x, v), q′) q(p) = q

(q,b,mem) t−→DTSO (q [p←↩ q′] ,b [p←↩ (x, v, own) · b(p)] ,mem [x←↩ v])
Write

t = propagatex
p mem(x) = v

(q,b,mem) t−→DTSO (q,b [p←↩ (x, v) · b(p)] ,mem)
Propagate

t = deletep |m| = 1
(q,b [p←↩ b(p) ·m] ,mem) t−→DTSO (q,b,mem)

Delete

t = (q, r(x, v), q′) q(p) = q b(p)|{x}×V×{own} = (x, v, own) · w
(q,b,mem) t−→DTSO (q [p←↩ q′] ,b,mem)

Read-Own-Write

t = (q, r(x, v), q′) q(p) = q b(p)|{x}×V×{own} = ε b(p) = (x, v) · w
(q,b,mem) t−→DTSO (q [p←↩ q′] ,b,mem)

Read from buffer

t = (q, arw(x, v, v′), q′) q(p) = q b(p) = ε mem(x) = v

(q,b,mem) t−→DTSO (q [p←↩ q′] ,b,mem [x←↩ v′])
ARW

t = (q, fence, q′) q(p) = q b(p) = ε

(q,b,mem) t−→DTSO (q [p←↩ q′] ,b,mem)
Fence

Figure 2 The induced transition relation −→DTSO under the Dual TSO semantics. Here p ∈ P
and t ∈ ∆p ∪∆′p where ∆′p :=

{
propagatex

p , deletep| x ∈ X
}
.

consists in checking whether qtarget is reachable in TDTSO. The following theorem states
equivalence of the reachability problems under the TSO and Dual TSO semantics.

I Theorem 1. A global state qtarget is reachable in TTSO iff qtarget is reachable in TDTSO.

4 The Dual TSO Reachability Problem

In this section, we show the decidability of the Dual TSO reachability problem by making
use of the framework of Well-Structured Transition Systems (Wsts) [5, 21]. First, we briefly
recall the framework of Wsts and then we instantiate it to show the decidability of the Dual
TSO reachability problem.

4.1 Well-Structured Transition Systems
Let T =

(
C, Init, Act,∪a∈Act

a−→
)
be a transition system. Let v be a well-quasi ordering on

C. Recall that a well-quasi ordering on C is a binary relation over C that is reflexive and
transitive and for every infinite sequence (ci)i≥0 of elements in C there exist i, j ∈ N such
that i < j and ci v cj . A set U ⊆ C is called upward closed if for every c ∈ U and c′ ∈ C with
c v c′, we have c′ ∈ U. It is known that every upward closed set U can be characterised by
a finite minor set M ⊆ U such that: (i) for every c ∈ U there is c′ ∈ M such that c′ v c, and
(ii) if c, c′ ∈ M and c v c′ then c = c′. We use min to denote the function which for a given
upward closed set U returns its minor set.

CONCUR 2016

5:8 The Benefits of Duality in Verifying Concurrent Programs under TSO

Let D ⊆ C. The upward closure of D is defined as D ↑:= {c′ ∈ C| ∃c ∈ D with c v c′}. We
also define the set of predecessors of D as PreT (D) := {c| ∃c1 ∈ D, c−→ c1}. For a finite set of
configurations M ⊆ C, we use minpre (M) to denote min (PreT (M ↑) ∪ M ↑).

The transition relation −→ is said to be monotonic wrt. v if, given c1, c2, c3 ∈ C s.t.
c1−→ c2 and c1 v c3, we can compute a configuration c4 ∈ C and a run π s.t. c3 π−→ c4 and
c2 v c4. The pair (T ,v) is called monotonic transition system if −→ is monotonic wrt. v.

Given a finite set of configurations M ⊆ C, the coverability problem of M in the monotonic
transition system (T ,v) asks whether the set M ↑ is reachable in T . For the decidability of
this problem the following three conditions are sufficient: (i) For every two configurations
c1 and c2, it is decidable whether c1 v c2, (ii) for every c ∈ C, we can check whether
{c} ↑ ∩Init 6= ∅, and (iii) for every c ∈ C, the set minpre (c) is finite and computable.

The solution for the coverability problem as suggested in [5, 21] is based on a backward
analysis approach. It is shown that starting from a finite set M0 ⊆ C, the sequence (Mi)i≥0
with Mi+1 := minpre (Mi), for i ≥ 0 reaches a fixpoint and is computable.

4.2 Dual TSO Transition System is a Wsts

In this section, we instantiate the framework of Wsts to show the following result:

I Theorem 2. The Dual TSO reachability problem is decidable.

The rest of this section is devoted to the proof of the above theorem. Let P =
(A1, A2, . . . , An) be a concurrent system (as defined in Section 3). Let
TDTSO = (CDTSO, {cD

init}, ∆ ∪ ∆aux,−→DTSO) be the transition system induced by P under
the Dual TSO semantics (as defined in Section 3.3). In the following, we will first define a
well-quasi ordering v on the set of DTSO-configurations (Lemma 4) such that for every two
configurations c1 and c2, it is decidable whether c1 v c2. Then we show that the transition
system induced under the Dual TSO semantics is monotonic wrt. to v (Lemma 5). We will
show also that the Dual TSO reachability problem for P can be reduced to the coverability
problem in the monotonic transition system (TDTSO,v) (Lemma 6). (Observe that this
reduction is needed since we require that the load buffers are empty when defining the Dual
TSO reachability problem.) The second sufficient condition (i.e., checking whether the upward
closed set {c} ↑, with c is a DTSO-configuration, contains an initial configuration) for the
decidability of the coverability problem is trivial. This check boils down to verifying whether
c is an initial configuration. Finally, the computability of the set of minimal configurations
for the set of predecessors of any upward closed set is stated by the following lemma:

I Lemma 3. For any configuration c, we can compute minpre({c}).

Well-quasi Ordering. In the following, we define a well-quasi ordering v on CDTSO. Let us
first introduce some notations and definitions. Consider a word
w ∈ ((X × V) ∪ (X × V × {own}))∗ representing the content of a load buffer. We define
an operation that divides w into a number of fragments according to the most-recent own-
messages concerning each variable. We define
[w]own := (w1, (x1, v1, own), w2, . . . , wm, (xm, vm, own), wm+1), where the following con-
ditions are satisfied: (1) xi 6= xj if i 6= j, (2) if (x, v, own) ∈ wi then x = xj for
some j < i (i.e., the most recent own-message on xj occurs at position j), and (3)
w = w1 · (x1, v1, own) · w2 · · ·wm · (xm, vm, own) · wm+1 (i.e., the fragments correspond
to the given word w).

P.A. Abdulla, M. F. Atig, A. Bouajjani, and T. P.Ngo 5:9

Let w,w′ ∈ ((X × V) ∪ (X × V × {own}))∗ be two words. Let us assume that
[w]own = (w1, (x1, v1, own), w2, . . . , wr, (xr, vr, own), wr+1), and
[w′]own = (w′1, (x′1, v′1, own), w′2, . . . , w′m, (x′m, v′m, own), w′m+1). We write w v w′ to denote
that the following conditions are satisfied: (i) r = m, (ii) x′i = xi and v′i = vi for all
i : 1 ≤ i ≤ m, and (iii) wi � w′i for all i : 1 ≤ i ≤ m+ 1.

Consider two DTSO-configurations c = (q,b,mem) and c′ = (q′,b′,mem′), we extend
the ordering v to configurations as follows: c v c′ iff the following conditions are satisfied:
(i) q = q′, (ii) b(p) v b′(p) for all process p ∈ P , and (iii) mem′ = mem. The following
lemma shows that v is indeed a well-quasi ordering.

I Lemma 4. The relation v is a well-quasi ordering over CDTSO. Furthermore, for every
two DTSO-configurations c1 and c2, it is decidable whether c1 v c2.

Monotonicity. Given configurations c1 = (q1,b1,mem1) , c2 = (q2,b2,mem2) , c3 =
(q3,b3,mem3) ∈ CDTSO such that c1

t−→DTSO c2 for some transition
t ∈ ∆p ∪

{
propagatexp , deletep| x ∈ X

}
, with p ∈ P , and c1 v c3, we will show that it is

possible to compute a configuration c4 ∈ CDTSO and a run π such that c3 π−→DTSO c4
and c2 v c4. To that aim, we first show that it is possible from c3 to reach a con-
figuration c′3, by performing a certain number of deletep operations, such that the pro-
cess p will have the same last message in its load buffer in the configurations c1 and c′3
while c1 v c′3. Then, from the configuration c′3, the process p can perform the same
transition t as c1 did in order to reach the configuration c4 such that c2 v c4. Let us
assume that [b1(p)]own is of the form 〈w1, (x1, v1, own), w2, . . . , wm, (xm, vm, own), wm+1〉,
and [b3(p)]own is of the form 〈w′1, (x′1, v′1, own), w′2, . . . , w′m, (x′m, v′m, own), w′m+1〉. We define
the word w ∈ ((X × V) ∪ (X × V × {own}))∗ to be the longest word such that w′m+1 =
w′ · w with wm+1 � w′. Observe that in this case we have either wm+1 = w′ = ε or
w′(|w′|) = wm+1(|wm+1|). Then, after executing a certain number |w| of deletep operations
from the configuration c3, one can obtain a configuration c′3 = (q3,b′3,mem3) such that
b3 = b′3 [p←↩ b′3(p) · w]. As a consequence, we have c1 v c′3. Furthermore, since c1 and c′3
have the same global state, the same memory valuation, the same sequence of most-recent
own messages concerning each variable, and the same last message in the load buffer of p, c′3
can perform the transition t and reaches a configuration c4 such that c2 v c4. The following
lemma shows that (TDTSO,v) is monotonic system.

I Lemma 5. The relation −→DTSO is monotonic wrt. v.

From Reachability to Coverability. Let qtarget be a global state of P and Mtarget be the
set of DTSO-configurations of the form c = (qtarget,b,mem) with b(p) = ε for all p ∈ P .
Next, we show that the reachability problem of qtarget in TDTSO can be reduced to the
coverability problem of Mtarget in (TDTSO,v). Recall that qtarget in TDTSO iff Mtarget is
reachable in TDTSO. Let us assume that Mtarget↑ is reachable in TDTSO. This means that
there is a configuration c ∈ Mtarget↑ which is reachable in TDTSO. Let us assume that c is
of the form (qtarget,b,mem). Then, from the configuration c, it is possible to reach the
configuration c′ = (qtarget,b′,mem), with b′(p) = ε for all p ∈ P , by performing a sequence
of deletep operations to empty the load buffer of each process. It is then easy to see that
c′ ∈ Mtarget and so Mtarget is reachable in TDTSO. The other direction of the following lemma
is trivial since Mtarget ⊆ Mtarget↑.

I Lemma 6. Mtarget↑ is reachable in TDTSO iff Mtarget is reachable in TDTSO.

CONCUR 2016

5:10 The Benefits of Duality in Verifying Concurrent Programs under TSO

5 Parameterized Concurrent Systems

Let V be a finite data domain and X be a finite set of variables ranging over V . A parameter-
ized concurrent system (or simply a parameterized system) consists of an unbounded number
of identical processes running under the Dual TSO semantics. Formally, a parameterized
system S is defined by a finite-state automaton A =

(
Q, qinit ,∆

)
uniformly describing the

behavior of each process. An instance of S is a concurrent system P= (A1, A2, . . . , An), for
some n ∈ N, where for every p : 1 ≤ p ≤ n, we have Ap = A. In other words, it consists of a
finite set of processes each running the same code defined by A. Observe that considering
that all processes run the same code is not a real restriction. In fact, the case where the
processes run (finitely many) different finite-state automata A1, A2, . . . , Am can be easily
encoded in our model by constructing an extended automaton A which represents the union
of these automata A1, A2, . . . , Am. We use Inst(S) to denote all possible instances of S. We
use TP = (CP, InitP, ActP,−→P) to denote the transition system induced by an instance P of
S under the Dual TSO semantics.

A parameterized configuration α is a pair (P, c) where P = {1, . . . , n}, with n ∈ N, is
the set of process IDs and c is a DTSO-configuration of an instance P of S of the form
(A1, A2, . . . , An). The parameterized configuration α = (P, c) is said to be initial if c is an
initial configuration of P (i.e., c ∈ InitP). We use C (resp. Init) to denote the set of all the
parameterized configurations (resp. initial configurations) of S.

Let Act denote the set of actions of all possible instances of S (i.e., Act = ∪P∈Inst(S) ActP).
We define a transition relation −→ on parameterized configurations such that (P, c) t−→ (P ′, c′)
for some action t ∈ Act iff P ′ = P and there is an instance P of S such that t ∈ ActP and
c−→P c′. The transition system induced by S is given by T = (C, Init, Act,−→).

In the following we extend the definition of the Dual TSO reachability problem to the
case of parameterized systems. A global state qtarget : P ′ 7→ Q is said to be reachable in T if
there exists a parameterized configuration α = (P, (q,b,mem)), with b(p) = ε for all p ∈ P ,
such that α is reachable in T and qtarget(1) · · ·qtarget(|P ′|) � q(1) · · ·q(|P |). Then, the
reachability problem consists in checking whether qtarget is reachable in T . In other words,
the Dual TSO reachability problem for parameterized systems asks whether there is an
instance of the parameterized system that reaches a configuration with a number of processes
in certain given local states.

6 Decidability of the Parameterized Verification Problem

We prove hereafter the following fact:

I Theorem 7. The Dual TSO reachability problem for parameterized systems is decidable.

Let S =
(
Q, qinit ,∆

)
be a parameterized system and (C, Init, Act,−→) be its induced

transition system. The proof of Theorem 7 is done by instantiating the framework of Wsts.
Following that framework, we will first define an ordering that we denote by E on the set
of parameterized configurations and show the monotonicity of the the relation −→ wrt. this
ordering (see Lemma 9 and Lemma 10). Then we will show that the Dual TSO reachability
problem for S can be reduced to the coverability problem in the monotonic transition system
(T ,E) (Lemma 11). The second sufficient condition (i.e., checking whether the upward closed
set {α} ↑, with α is a parameterized configuration, contains an initial configuration) for
the decidability of the coverability problem is trivial. This check boils down to whether
the configuration α is initial. Finally, the last sufficient condition (i.e., computing the set

P.A. Abdulla, M. F. Atig, A. Bouajjani, and T. P.Ngo 5:11

of minimal configurations for the set of predecessors of any upward closed set) for the
decidability of the coverability problem is stated by the following lemma:

I Lemma 8. For any parameterized configuration α, we can compute minpre({α}).

Well-quasi Ordering. Let α = (P, (q,b,mem)) and α′ = (P ′, (q′,b′,mem′)) be two para-
meterized configurations. We define the ordering E on the set of parameterized configurations
as follows: α E α′ iff the following conditions are satisfied: (1) mem = mem′ and (2) there is
an injection h : {1, . . . , |P |} 7→ {1, . . . , |P ′|} such that (i) p < p′ implies h(p) < h(p′), and
(ii) for every p ∈ {1, . . . , |P |}, q(p) = q′(h(p)) and b(p) v b′(h(p)). The following lemma
states that E is indeed a well-quasi ordering.

I Lemma 9. The relation E is a well-quasi ordering over C. Furthermore, for every two
parameterized configurations α and α′, it is decidable whether α E α′.

Monotonicity. Let α1 = (P, (q1,b1,mem1)), α2 = (P, (q2,b2,mem2)) and
α3 = (P ′, (q3,b3,mem3)) be parameterized configurations. Furthermore, we assume that
α1 E α3 and α1

t−→α2 for some transition t. Since α1 E α3, there is an injection func-
tion h : {1, . . . , |P |} 7→ {1, . . . , |P ′|} such that (i) p < p′ implies h(p) < h(p′), and
(ii) for every p ∈ {1, . . . , |P |}, q1(p) = q3(h(p)) and b1(p) v b3(h(p)). We define the
parameterized configuration α′ from α3 by only keeping the local state and load buf-
fers of processes in h(P). Formally, α′ = (P, (q′,b′,mem′)) is defined as follows: (i)
mem′ = mem3 and (ii) for every p ∈ {1, . . . , |P |}, q′(p) = q3(h(p)) and b′(p) = b3(h(p)).
(Observe that (q1,b1,mem1) v (q′,b′,mem′)). Since the relation −→DTSO is monotonic
wrt. the ordering v (see Lemma 5), there is a Dual TSO-configuration (q′′,b′′,mem′′) such
that (q′,b′,mem′)−→∗DTSO (q′′,b′′,mem′′) and (q2,b2,mem2) v (q′′,b′′,mem′′). Consider
now the parameterized configuration α4 = (P ′, (q4,b4,mem4)) such that mem′′ = mem4,
(ii) for every p ∈ {1, . . . , |P |}, q′′(p) = q4(h(p)) and b′′(p) = b4(h(p)), and (iii) for
p ∈ ({1, . . . , |P ′|} \ {h(1), . . . , h(|P |)}), we have q4(p) = q3(p) and b4(p) = b3(p). It is easy
then to see that α2 E α4 and α3−→∗ α4. Hence, we obtain the following result:

I Lemma 10. The relation −→ is monotonic wrt. E.

From Reachability to Coverability. Let qtarget : P ′ 7→ Q be a global state. Let Mtarget
be the set of parameterized configurations of the form α = (P ′, (qtarget,b,mem)) with
b(p) = ε for all p ∈ P ′. In the following, we show that Mtarget ↑ is reachable in T iff there is
a parameterized configuration α = (P, (q,b,mem)), with b(p) = ε for all p ∈ P , such that
α is reachable in T and qtarget(1) · · ·qtarget(|P ′|) � q(1) · · ·q(|P |).

Let us assume that there is a parameterized configuration α = (P, (q,b,mem)), with
b(p) = ε for all p ∈ P , such that α is reachable in T and
qtarget(1) · · ·qtarget(|P ′|) � q(1) · · ·q(|P |). It is then easy to show that α ∈ Mtarget ↑.

Now let us assume that there is α′ = (P ′′, (q′,b′,mem′)) ∈ Mtarget↑ which is reachable in T .
From the configuration α′, it is possible to reach the configuration α′′ = (P ′′, (q′,b′′,mem′)),
with b′′(p) = ε for all p ∈ P ′′, by performing a sequence of deletep operations to empty
the load buffer of each process. Since α′ ∈ Mtarget ↑, we have qtarget(1) · · ·qtarget(|P ′|) �
q′(1) · · ·q′(|P ′′|). Hence, α′′ is a witness of the state reachability problem.

I Lemma 11. qtarget is reachable in T iff Mtarget↑ is reachable in T .

CONCUR 2016

5:12 The Benefits of Duality in Verifying Concurrent Programs under TSO

Table 1 Comparison between Dual-TSO and Memorax: The columns #P, #T and #C give
the number of processes, the running time in seconds and the number of generated configurations,
respectively. If a tool runs out of time, we put TO in the #T column and • in the #C column.

Program #P Dual-TSO Memorax
#T #C #T #C

SB 5 0.3 10641 559.7 10515914
LB 3 0.0 2048 71.4 1499475
WRC 4 0.0 1507 63.3 1398393
ISA2 3 0.0 509 21.1 226519
RWC 5 0.1 4277 61.5 1196988
W+RWC 4 0.0 1713 83.6 1389009
IRIW 4 0.0 520 34.4 358057
Nbw_w_wr 2 0.0 222 10.7 200844
Sense_rev_bar 2 0.1 1704 0.8 20577
Dekker 2 0.1 5053 1.1 19788
Dekker_simple 2 0.0 98 0.0 595
Peterson 2 0.1 5442 5.2 90301
Peterson_loop 2 0.2 7632 5.6 100082
Szymanski 2 0.6 29018 1.0 26003
MP 4 0.0 883 TO •
Ticket_spin_lock 3 0.9 18963 TO •
Bakery 2 2.6 82050 TO •
Dijkstra 2 0.2 8324 TO •
Lamport_fast 3 17.7 292543 TO •
Burns 4 124.3 2762578 TO •

7 Experimental Results

We have implemented our techniques described in Section 4 and Section 6 in an open-source
tool called Dual-TSO1. The tool checks the state reachability problems for (parameterized)
concurrent systems under the Dual TSO semantics. We compare our tool with Memorax [2,
3] which is the only precise and sound tool for deciding the state reachability problem
of concurrent systems under TSO. Observe that Memorax cannot handle parameterized
verification. All experiments are performed on an Intel x86-32 Core2 2.4 Ghz machine and
4GB of RAM.

In the following, we present two sets of results. The first set concerns the comparison of
Dual-TSO with Memorax (see Table 1). The second set shows the benefit of the parameterized
verification compared to the use of the state reachability when increasing the number of
processes (see Figure 3 and Table 2). Our examples are from [2, 10, 13, 4, 25]. In all
experiments, we set up the time out to 600 seconds.

Table 1 presents a comparison between Dual-TSO and Memorax on a representative sample
of 20 benchmarks. In all these examples, Dual-TSO and Memorax return the same result
for the state reachability problem (except 6 examples where Memorax runs out of time). In
the examples where the two tools return, Dual-TSO out-performs Memorax and generates
fewer configurations (and so uses less memory). Indeed, Dual-TSO is 600 times faster than

1 https://www.it.uu.se/katalog/tuang296/dual-tso

P.A. Abdulla, M. F. Atig, A. Bouajjani, and T. P.Ngo 5:13

Table 2 Parameterized verification with Dual-TSO.

Program Dual-TSO
#T #C

SB 0.0 147
LB 0.6 1028
MP 0.0 149
WRC 0.8 618
ISA2 4.3 1539
RWC 0.2 293
W+RWC 1.5 828
IRIW 4.6 648

 0

 200

 400

 600

 2 3 4 5 6 7 8 9 10 11

SB

Dual-TSO

Memorax

 0

 200

 400

 600

 2 3 4 5 6 7 8 9 10

LB

Dual-TSO

Memorax

 0

 200

 400

 600

 2 4 6 8 10 12

MP

Dual-TSO

Memorax

 0

 200

 400

 600

 3 4 5 6 7 8 9 10 11

WRC

Dual-TSO

Memorax

 0

 200

 400

 600

 3 4 5 6 7 8 9 10 11

ISA2

Dual-TSO

Memorax

 0

 200

 400

 600

 2 4 6 8 10 12 14

RWC

Dual-TSO

Memorax

 0

 200

 400

 600

 3 4 5 6 7 8 9 10 11 12

W+RWC

Dual-TSO

Memorax

 0

 200

 400

 600

 4 6 8 10 12 14

IRIW

Dual-TSO

Memorax

Figure 3 Running time of Memorax and Dual-TSO by increasing number of processes. The x axis
is number of processes, the y axis is running time in seconds.

Memorax and generates 277 times fewer configurations on average.
The second set compares the scalability of Memorax and Dual-TSO while increasing the

number of processes. The results are given in Fig. 3. We observe that Dual-TSO scales
better than Memorax in all these examples. In fact, Memorax can only handle the examples
with at most 5 processes. Table 2 presents the running time and the number of generated
configurations when checking the state reachability problem for the parameterized version of
these examples. We observe that the verification of these parameterized systems is much
more efficient than verification of bounded-size instances (starting from a number of processes
of 3 or 4), especially concerning memory consumption (which is given in terms of number of
generated configurations). The reason behind is that the size of the generated minor sets
in the analysis of a parameterized system is usually smaller than the size of the generated
configurations during the analysis of an instance of the system with a large number of
processes.

8 Conclusion

In this paper, we have presented an alternative (yet equivalent) semantics to the classical
one for the TSO model. This new semantics allows us to understand the TSO model in
a totally different way compared to the classical semantics. Furthermore, the proposed
semantics offers several important advantages from the point of view of formal reasoning
and program verification. First, the dual semantics allows transforming the load buffers to
lossy channels without adding the costly overhead that was necessary in the case of store
buffers. This means that we can apply the theory of well-structured systems [6, 5, 21] in a

CONCUR 2016

5:14 The Benefits of Duality in Verifying Concurrent Programs under TSO

straightforward manner leading to a much simpler proof of decidability of safety properties.
Second, the absence of extra overhead means that we obtain more efficient algorithms
and better scalability (as shown by our experimental results). Finally, the dual semantics
allows extending the framework to perform parameterized verification which is an important
paradigm in concurrent program verification.

In the future, we plan to apply our techniques to more memory models and to combine
with predicate abstraction for handling programs with unbounded data domain.

References
1 P. Abdulla, S. Aronis, M.F. Atig, B. Jonsson, C. Leonardsson, and K. Sagonas. Stateless

model checking for TSO and PSO. In TACAS, volume 9035 of LNCS, pages 353–367.
Springer, 2015.

2 P.A. Abdulla, M.F. Atig, Y.F. Chen, C. Leonardsson, and A. Rezine. Counter-example
guided fence insertion under TSO. In TACAS 2012, pages 204–219, 2012.

3 P.A. Abdulla, M.F. Atig, Y.F. Chen, C. Leonardsson, and A. Rezine. Memorax, a precise
and sound tool for automatic fence insertion under TSO. In TACAS, pages 530–536, 2013.

4 P.A. Abdulla, M.F. Atig, and N.T. Phong. The best of both worlds: Trading efficiency and
optimality in fence insertion for TSO. In ESOP 2015, pages 308–332, 2015.

5 P.A. Abdulla, K. Cerans, B. Jonsson, and Y.K. Tsay. General decidability theorems for
infinite-state systems. In LICS’96, pages 313–321. IEEE Computer Society, 1996.

6 Parosh Aziz Abdulla. Well (and better) quasi-ordered transition systems. Bulletin of
Symbolic Logic, 16(4):457–515, 2010.

7 S. Adve and K. Gharachorloo. Shared memory consistency models: a tutorial. Computer,
29(12), 1996.

8 S. Adve and M. D. Hill. Weak ordering - a new definition. In ISCA, 1990.
9 J. Alglave, D. Kroening, and M. Tautschnig. Partial orders for efficient bounded model

checking of concurrent software. In CAV, volume 8044 of LNCS, pages 141–157, 2013.
10 Jade Alglave, Luc Maranget, and Michael Tautschnig. Herding cats: Modelling, simulation,

testing, and data mining for weak memory. ACM TOPLAS, 36(2):7:1–7:74, 2014.
11 M. F. Atig, A. Bouajjani, S. Burckhardt, and M. Musuvathi. On the verification problem

for weak memory models. In POPL, 2010.
12 M.F. Atig, A. Bouajjani, S. Burckhardt, and M. Musuvathi. What’s decidable about weak

memory models? In ESOP, volume 7211 of LNCS, pages 26–46. Springer, 2012.
13 Ahmed Bouajjani, Egor Derevenetc, and Roland Meyer. Checking and enforcing robustness

against TSO. In ESOP, volume 7792 of LNCS, pages 533–553. Springer, 2013.
14 S. Burckhardt, R. Alur, and M. M. K. Martin. CheckFence: checking consistency of con-

current data types on relaxed memory models. In PLDI, pages 12–21. ACM, 2007.
15 Sebastian Burckhardt and Madanlal Musuvathi. Effective program verification for relaxed

memory models. In CAV, volume 5123 of LNCS, pages 107–120. Springer, 2008.
16 Jacob Burnim, Koushik Sen, and Christos Stergiou. Testing concurrent programs on relaxed

memory models. In ISSTA, pages 122–132. ACM, 2011.
17 A. Marian Dan, Y. Meshman, M. T. Vechev, and E. Yahav. Predicate abstraction for

relaxed memory models. In SAS, volume 7935 of LNCS, pages 84–104. Springer, 2013.
18 Brian Demsky and Patrick Lam. Satcheck: Sat-directed stateless model checking for SC

and TSO. In OOPSLA 2015, pages 20–36. ACM, 2015.
19 Egor Derevenetc and Roland Meyer. Robustness against Power is PSpace-complete. In

ICALP (2), volume 8573 of LNCS, pages 158–170. Springer, 2014.
20 M. Dubois, C. Scheurich, and F. A. Briggs. Memory access buffering in multiprocessors.

In ISCA, 1986.

P.A. Abdulla, M. F. Atig, A. Bouajjani, and T. P.Ngo 5:15

21 A. Finkel and Ph. Schnoebelen. Well-structured transition systems everywhere! Theor.
Comput. Sci., 256(1-2):63–92, 2001.

22 Michael Kuperstein, Martin T. Vechev, and Eran Yahav. Automatic inference of memory
fences. In FMCAD, pages 111–119. IEEE, 2010.

23 Michael Kuperstein, Martin T. Vechev, and Eran Yahav. Partial-coherence abstractions
for relaxed memory models. In PLDI, pages 187–198. ACM, 2011.

24 L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess
programs. IEEE Trans. Comp., C-28(9), 1979.

25 Feng Liu, Nayden Nedev, Nedyalko Prisadnikov, Martin T. Vechev, and Eran Yahav. Dy-
namic synthesis for relaxed memory models. In PLDI ’12, pages 429–440, 2012.

26 S. Owens, S. Sarkar, and P. Sewell. A better x86 memory model: x86-tso. In TPHOL,
2009.

27 P. Sewell, S. Sarkar, S. Owens, F. Z. Nardelli, and M. O. Myreen. x86-tso: A rigorous and
usable programmer’s model for x86 multiprocessors. CACM, 53, 2010.

28 D. Weaver and T. Germond, editors. The SPARC Architecture Manual Version 9. PTR
Prentice Hall, 1994.

29 Y. Yang, G. Gopalakrishnan, G. Lindstrom, and K. Slind. Nemos: A framework for ax-
iomatic and executable specifications of memory consistency models. In IPDPS. IEEE,
2004.

30 N. Zhang, M. Kusano, and C. Wang. Dynamic partial order reduction for relaxed memory
models. In PLDI, pages 250–259. ACM, 2015.

CONCUR 2016

Local Linearizability for Concurrent
Container-Type Data Structures∗

Andreas Haas1, Thomas A. Henzinger2, Andreas Holzer3,
Christoph M. Kirsch4, Michael Lippautz5, Hannes Payer6,
Ali Sezgin7, Ana Sokolova8, and Helmut Veith9

1 Google Inc.
2 IST Austria, Austria
3 University of Toronto, Canada
4 University of Salzburg, Austria
5 Google Inc.
6 Google Inc.
7 University of Cambridge, UK
8 University of Salzburg, Austria
9 Vienna University of Technology, Austria and

Forever in our hearts

Abstract
The semantics of concurrent data structures is usually given by a sequential specification and a
consistency condition. Linearizability is the most popular consistency condition due to its sim-
plicity and general applicability. Nevertheless, for applications that do not require all guarantees
offered by linearizability, recent research has focused on improving performance and scalability
of concurrent data structures by relaxing their semantics.

In this paper, we present local linearizability, a relaxed consistency condition that is applicable
to container-type concurrent data structures like pools, queues, and stacks. While linearizability
requires that the effect of each operation is observed by all threads at the same time, local
linearizability only requires that for each thread T, the effects of its local insertion operations and
the effects of those removal operations that remove values inserted by T are observed by all threads
at the same time. We investigate theoretical and practical properties of local linearizability and
its relationship to many existing consistency conditions. We present a generic implementation
method for locally linearizable data structures that uses existing linearizable data structures as
building blocks. Our implementations show performance and scalability improvements over the
original building blocks and outperform the fastest existing container-type implementations.

1998 ACM Subject Classification D.3.1 [Programming Languages]: Formal Definitions and
Theory—Semantics; E.1 [Data Structures]: Lists, stacks, and queues; D.1.3 [Software]: Pro-
gramming Techniques—Concurrent Programming

Keywords and phrases (concurrent) data structures, relaxed semantics, linearizability

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2016.6

∗ This work has been supported by the National Research Network RiSE on Rigorous Systems Engin-
eering (Austrian Science Fund (FWF): S11402-N23, S11403-N23, S11404-N23, S11411-N23), a Google
PhD Fellowship, an Erwin Schrödinger Fellowship (Austrian Science Fund (FWF): J3696-N26), EPSRC
grants EP/H005633/1 and EP/K008528/1, the Vienna Science and Technology Fund (WWTF) trough
grant PROSEED, the European Research Council (ERC) under grant 267989 (QUAREM) and by the
Austrian Science Fund (FWF) under grant Z211-N23 (Wittgenstein Award).

© Andreas Haas, Thomas A. Henzinger, Andreas Holzer, Christoph M. Kirsch, Michael Lippautz,
Hannes Payer, Ali Sezgin, Ana Sokolova, and Helmut Veith;
licensed under Creative Commons License CC-BY

27th International Conference on Concurrency Theory (CONCUR 2016).
Editors: Josée Desharnais and Radha Jagadeesan; Article No. 6; pp. 6:1–6:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.6
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

6:2 Local Linearizability for Concurrent Container-Type Data Structures

T1

T2

enq(1) deq(2)

enq(2) deq(1)

The thread-induced history of thread T1
is enclosed by a dashed line while the
thread-induced history of thread T2 is
enclosed by a solid line.

Figure 1 Local Linearizability.

1 Introduction

Concurrent data structures are pervasive all along the software stack, from operating system
code to application software and beyond. Both correctness and performance are imperative
for concurrent data structure implementations. Correctness is usually specified by relat-
ing concurrent executions, admitted by the implementation, with sequential executions,
admitted by the sequential version of the data structure. The latter form the sequential
specification of the data structure. This relationship is formally captured by consistency
conditions, such as linearizability, sequential consistency, or quiescent consistency [22].

Linearizability [23] is the most accepted consistency condition for concurrent data struc-
tures due to its simplicity and general applicability. It guarantees that the effects of all
operations by all threads are observed consistently. This imposes the need of extensive
synchronization among threads which may in turn jeopardize performance and scalability.
In order to enhance performance and scalability of implementations, recent research has
explored relaxed sequential specifications [20, 35, 2], resulting in well-performing imple-
mentations of concurrent data structures [2, 16, 20, 25, 33, 6]. Except for [24], the space
of alternative consistency conditions that relax linearizability has been left unexplored to a
large extent. In this paper, we explore (part of) this gap by investigating local linearizability,
a novel consistency condition that is applicable to a large class of concurrent data struc-
tures that we call container-type data structures, or containers for short. Containers include
pools, queues, and stacks. A fine-grained spectrum of consistency conditions enables us to
describe the semantics of concurrent implementations more precisely, e.g. in the extended
version of our paper [15] we show that work stealing queues [30] which could only be proven
to be linearizable wrt pool are actually locally linearizable wrt double-ended queue.

Local linearizability is a (thread-)local consistency condition that guarantees that in-
sertions per thread are observed consistently. While linearizability requires a consistent
view over all insertions, we only require that projections of the global history—so called
thread-induced histories—are linearizable. The induced history of a thread T is a projection
of a program execution to the insert-operations in T combined with all remove-operations
that remove values inserted by T irrespective of whether they happen in T or not. Then,
the program execution is locally linearizable iff each thread-induced history is linearizable.
Consider the example (sequential) history depicted in Figure 1. It is not linearizable wrt a
queue since the values are not dequeued in the same order as they were enqueued. However,
each thread-induced history is linearizable wrt a queue and, therefore, the overall execution
is locally linearizable wrt a queue. In contrast to semantic relaxations based on relaxing
sequential semantics such as [20, 2], local linearizability coincides with sequential correct-
ness for single-threaded histories, i.e., a single-threaded and, therefore, sequential history is
locally linearizable wrt a given sequential specification if and only if it is admitted by the
sequential specification.

A. Haas et al. 6:3

Local linearizability is to linearizability what coherence is to sequential consistency. Co-
herence [19], which is almost universally accepted as the absolute minimum that a shared
memory system should satisfy, is the requirement that there exists a unique global order per
shared memory location. Thus, while all accesses by all threads to a given memory location
have to conform to a unique order, consistent with program order, the relative ordering of
accesses to multiple memory locations do not have to be the same. In other words, coherence
is sequential consistency per memory location. Similarly, local linearizability is linearizab-
ility per local history. In our view, local linearizability offers enough consistency for the
correctness of many applications as it is the local view of the client that often matters. For
example, in a locally linearizable queue each client (thread) has the impression of using a
perfect queue—no reordering will ever be observed among the values inserted by a single
thread. Such guarantees suffice for many e-commerce and cloud applications. Implement-
ations of locally linearizable data structures have been successfully applied for managing
free lists in the design of the fast and scalable memory allocator scalloc [5]. Moreover, ex-
cept for fairness, locally linearizable queues guarantee all properties required from Dispatch
Queues [1], a common concurrency programming mechanism on mobile devices.

In this paper, we study theoretical and practical properties of local linearizability. Local
linearizability is compositional—a history over multiple concurrent objects is locally linear-
izable iff all per-object histories are locally linearizable (see Thm. 12) and locally linearizable
container-type data structures, including queues and stacks, admit only “sane” behaviours—
no duplicated values, no values returned from thin air, and no values lost (see Prop. 4). Local
linearizability is a weakening of linearizability for a natural class of data structures including
pools, queues, and stacks (see Sec. 4). We compare local linearizability to linearizability,
sequential, and quiescent consistency, and to many shared-memory consistency conditions.

Finally, local linearizability leads to new efficient implementations. We present a generic
implementation scheme that, given a linearizable implementation of a sequential specific-
ation S, produces an implementation that is locally linearizable wrt S (see Sec. 6). Our
implementations show dramatic improvements in performance and scalability. In most cases
the locally linearizable implementations scale almost linearly and even outperform state-of-
the-art pool implementations. We produced locally linearizable variants of state-of-the-art
concurrent queues and stacks, as well as of the relaxed data structures from [20, 25]. The
latter are relaxed in two dimensions: they are locally linearizable (the consistency condi-
tion is relaxed) and are out-of-order-relaxed (the sequential specification is relaxed). The
speedup of the locally linearizable implementation to the fastest linearizable queue (LCRQ)
and stack (TS Stack) implementation at 80 threads is 2.77 and 2.64, respectively. Verifica-
tion of local linearizability, i.e. proving correctness, for each of our new locally linearizable
implementations is immediate, given that the starting implementations are linearizable.

2 Semantics of Concurrent Objects

The common approach to define the semantics of an implementation of a concurrent data
structure is (1) to specify a set of valid sequential behaviors—the sequential specification, and
(2) to relate the admissible concurrent executions to sequential executions specified by the
sequential specification—via the consistency condition. That means that an implementation
of a concurrent data structure actually corresponds to several sequential data structures, and
vice versa, depending on the consistency condition used. A (sequential) data structure D is
an object with a set of method calls Σ. We assume that method calls include parameters,
i.e., input and output values from a given set of values. The sequential specification S of D

CONCUR 2016

6:4 Local Linearizability for Concurrent Container-Type Data Structures

Table 1 The pool axioms (1), (2), (3); the queue order axiom (4); the stack order axiom (5).

(1) ∀i, j ∈ {1, . . . , n}. s = m1 . . . mn ∧ mi = mj ⇒ i = j

(2) ∀x ∈ V. r(x) ∈ s ⇒ i(x) ∈ s ∧ i(x) ≺s r(x)
(3) ∀e ∈ Emp. ∀x ∈ V. i(x) ≺s r(e)⇒ r(x) ≺s r(e)
(4) ∀x, y ∈ V. i(x) ≺s i(y) ∧ r(y) ∈ s ⇒ r(x) ∈ s ∧ r(x) ≺s r(y)
(5) ∀x, y ∈ V. i(x) ≺s i(y) ≺s r(x) ⇒ r(y) ∈ s ∧ r(y) ≺s r(x)

is a prefix-closed subset of Σ∗. The elements of S are called D-valid sequences. For ease of
presentation, we assume that each value in a data structure can be inserted and removed at
most once. This is without loss of generality, as we may see the set of values as consisting
of pairs of elements (core values) and version numbers, i.e. V = E × N. Note that this
is a technical assumption that only makes the presentation and the proofs simpler, it is
not needed and not done in locally linearizable implementations. While elements may be
inserted and removed multiple times, the version numbers provide uniqueness of values. Our
assumption ensures that whenever a sequence s is part of a sequential specification S, then,
each method call in s appears exactly once. An additional core value, that is not an element,
is empty. It is returned by remove method calls that do not find an element to return. We
denote by Emp the set of values that are versions of empty, i.e., Emp = {empty} × N.

IDefinition 1 (Appears-before Order, Appears-in Relation). Given a sequence s ∈ Σ∗ in which
each method call appears exactly once, we denote by ≺s the total appears-before order over
method calls in s. Given a method call m ∈ Σ, we write m ∈ s for m appears in s. �

Throughout the paper, we will use pool, queue, and stack as typical examples of con-
tainers. We specify their sequential specifications in an axiomatic way [21], i.e., as sets of
axioms that exactly define the valid sequences.

I Definition 2 (Pool, Queue, & Stack). A pool, queue, and stack with values in a set V
have the sets of methods ΣP = {ins(x), rem(x) | x ∈ V } ∪ {rem(e) | e ∈ Emp}, ΣQ =
{enq(x), deq(x) | x ∈ V } ∪ {deq(e) | e ∈ Emp}, and ΣS = {push(x), pop(x) | x ∈ V } ∪
{pop(e) | e ∈ Emp}, respectively. We denote the sequential specification of a pool by SP ,
the sequential specification of a queue by SQ, and the sequential specification of a stack
by SS . A sequence s ∈ Σ∗P belongs to SP iff it satisfies axioms (1) - (3) in Table 1—the
pool axioms—when instantiating i() with ins() and r() with rem(). We keep axiom (1)
for completeness, although it is subsumed by our assumption that each value is inserted
and removed at most once. Specification SQ contains all sequences s that satisfy the pool
axioms and axiom (4)—the queue order axiom—after instantiating i() with enq() and r()
with deq(). Finally, SS contains all sequences s that satisfy the pool axioms and axiom
(5)—the stack order axiom—after instantiating i() with push() and r() with pop(). �

We represent concurrent executions via concurrent histories. An example history is
shown in Figure 1. Each thread executes a sequence of method calls from Σ; method
calls executed by different threads may overlap (which does not happen in Figure 1). The
real-time duration of method calls is irrelevant for the semantics of concurrent objects;
all that matters is whether method calls overlap. Given this abstraction, a concurrent
history is fully determined by a sequence of invocation and response events of method calls.
We distinguish method invocation and response events by augmenting the alphabet. Let
Σi = {mi | m ∈ Σ} and Σr = {mr | m ∈ Σ} denote the sets of method-invocation events
and method-response events, respectively, for the method calls in Σ. Moreover, let I be the
set of thread identifiers. Let ΣI

i = {mk
i | m ∈ Σ, k ∈ I} and ΣI

r = {mk
r | m ∈ Σ, k ∈ I}

A. Haas et al. 6:5

denote the sets of method-invocation and -response events augmented with identifiers of
executing threads. For example, mk

i is the invocation of method call m by thread k. Before
we proceed, we mention a standard notion that we will need in several occasions.

I Definition 3 (Projection). Let s be a sequence over alphabet Σ and M ⊆ Σ. By s|M
we denote the projection of s on the symbols in M , i.e., the sequence obtained from s by
removing all symbols that are not in M . �

I Definition 4 (History). A (concurrent) history h is a sequence in (ΣI
i ∪ ΣI

r)∗ where
1. no invocation or response event appears more than once, i.e., if h = m1 . . .mn and

mh = mk
∗(x) and mj = ml

∗(x), for ∗ ∈ {i, r}, then h = j and k = l, and
2. if a response event mk

r appears in h, then the corresponding invocation event mk
i also

appears in h and mi ≺h mr. �

I Example 5. A queue history (left) and its formal representation as a sequence (right):

T1

T2

enq(2) deq(1)

enq(1) enq(2)1
i enq(1)2

i enq(2)1
rdeq(1)1

i enq(1)2
rdeq(1)1

r

A history is sequential if every response event is immediately preceded by its match-
ing invocation event and vice versa. Hence, we may ignore thread identifiers and identify
a sequential history with a sequence in Σ∗, e.g., enq(1)enq(2)deq(2)deq(1) identifies the
sequential history in Figure 1.

A history h is well-formed if h|k is sequential for every thread identifier k ∈ I where h|k
denotes the projection of h on the set {mk

i | m ∈ Σ}∪{mk
r | m ∈ Σ} of events that are local

to thread k. From now on we will use the term history for well-formed history. Also, we
may omit thread identifiers if they are not essential in a discussion.

A history h determines a partial order on its set of method calls, the precedence order:

IDefinition 6 (Appears-in Relation, Precedence Order). The set of method calls of a history h
is M(h) = {m | mi ∈ h}. A method call m appears in h, notation m ∈ h, if m ∈ M(h).
The precedence order for h is the partial order <h such that, for m,n ∈ h, we have that
m <h n iff mr ≺h ni. By <k

h we denote <h|k, the subset of the precedence order that relates
pairs of method calls of thread k, i.e., the program order of thread k. �

We can characterize a sequential history as a history whose precedence order is total. In
particular, the precedence order <s of a sequential history s coincides with its appears-before
order ≺s. The total order for history s in Fig. 1 is enq(1) <s enq(2) <s deq(2) <s deq(1).

I Definition 7 (Projection to a set of method calls). Let h be a history, M ⊆ Σ, M I
i = {mk

i |
m ∈M,k ∈ I}, and M I

r = {mk
r | m ∈M,k ∈ I}. Then, we write h|M for h|(M I

i ∪M I
r). �

Note that h|M inherits h’s precedence order: m <h|M n ⇔ m ∈M ∧ n ∈M ∧ m <h
n

A history h is complete if the response of every invocation event in h appears in h. Given
a history h, Complete(h) denotes the set of all completions of h, i.e., the set of all complete
histories that are obtained from h by appending missing response events and/or removing
pending invocation events. Note that Complete(h) = {h} iff h is a complete history.

A concurrent data structure D over a set of methods Σ is a (prefix-closed) set of concur-
rent histories over Σ. A history may involve several concurrent objects. Let O be a set of
concurrent objects with individual sets of method calls Σq and sequential specifications Sq

for each object q ∈ O. A history h over O is a history over the (disjoint) union of method

CONCUR 2016

6:6 Local Linearizability for Concurrent Container-Type Data Structures

calls of all objects in O, i.e., it has a set of method calls
⋃

q∈O{q.m | m ∈ Σq}. The added
prefix q. ensures that the union is disjoint. The projection of h to an object q ∈ O, denoted
by h|q, is the history with a set of method calls Σq obtained by removing the prefix q. in
every method call in h|{q.m | m ∈ Σq}.

I Definition 8 (Linearizability [23]). A history h is linearizable wrt the sequential specific-
ation S if there is a sequential history s ∈ S and a completion hc ∈ Complete(h) such
that
1. s is a permutation of hc, and
2. s preserves the precedence order of hc, i.e., if m <hc

n, then m <s n.
We refer to s as a linearization of h. A concurrent data structure D is linearizable wrt S if
every history h of D is linearizable wrt S. A history h over a set of concurrent objects O is
linearizable wrt the sequential specifications Sq for q ∈ O if there exists a linearization s of
h such that s|q ∈ Sq for each object q ∈ O. �

3 Local Linearizability

Local linearizability is applicable to containers whose set of method calls is a disjoint union
Σ = Ins ∪ Rem ∪ DOb ∪ SOb of insertion method calls Ins, removal method calls Rem, data-
observation method calls DOb, and (global) shape-observation method calls SOb. Insertions
(removals) insert (remove) a single value in the data set V or empty; data observations return
a single value in V ; shape observations return a value (not necessarily in V) that provides
information on the shape of the state, for example, the size of a data structure. Examples
of data observations are head(x) (queue), top(x) (stack), and peek(x) (pool). Examples of
shape observations are empty(b) that returns true if the data structure is empty and false
otherwise, and size(n) that returns the number of elements in the data structure.

Even though we refrain from formal definitions, we want to stress that a valid sequence
of a container remains valid after deleting observer method calls:

S | (Ins ∪ Rem) ⊆ S. (1)

There are also containers with multiple insert/remove methods, e.g., a double-ended
queue (deque) is a container with insert-left, insert-right, remove-left, and remove-right
methods, to which local linearizability is also applicable. However, local linearizability
requires that each method call is either an insertion, or a removal, or an observation. As a
consequence, set is not a container according to our definition, as in a set ins(x) acts as a
global observer first, checking whether (some version of) x is already in the set, and if not
inserts x. Also hash tables are not containers for a similar reason.

Note that the arity of each method call in a container being one excludes data structures
like snapshot objects. It is possible to deal with higher arities in a fairly natural way,
however, at the cost of complicated presentation. We chose to present local linearizability
on simple containers only. We present the definition of local linearizability without shape
observations here and discuss shape observations in [15].

I Definition 9 (In- and out-methods). Let h be a container history. For each thread T

we define two subsets of the methods in h, called in-methods IT and out-methods OT of
thread T , respectively:

IT = {m | m ∈M(h|T) ∩ Ins}
OT = {m(a) ∈M(h) ∩ Rem | ins(a) ∈ IT } ∪ {m(e) ∈M(h) ∩ Rem | e ∈ Emp}

∪ {m(a) ∈M(h) ∩ DOb | ins(a) ∈ IT }. �

A. Haas et al. 6:7

Hence, the in-methods for thread T are all insertions performed by T . The out-methods
are all removals and data observers that return values inserted by T . Removals that remove
the value empty are also automatically added to the out-methods of T as any thread (and
hence also T) could be the cause of “inserting” empty. This way, removals of empty serve as
means for global synchronization. Without them each thread could perform all its operations
locally without ever communicating with the other threads. Note that the out-methods OT

of thread T need not be performed by T , but they return values that are inserted by T .

I Definition 10 (Thread-induced History). Let h be a history. The thread-induced history
hT is the projection of h to the in- and out-methods of thread T , i.e., hT = h| (IT ∪OT). �

I Definition 11 (Local Linearizability). A history h is locally linearizable wrt a sequential
specification S if
1. each thread-induced history hT is linearizable wrt S, and
2. the thread-induced histories hT form a decomposition of h, i.e., m ∈ h ⇒ m ∈ hT for

some thread T .
A data structure D is locally linearizable wrt S if every history h of D is locally linearizable
wrt S. A history h over a set of concurrent objects O is locally linearizable wrt the sequential
specifications Sq for q ∈ O if each thread-induced history is linearizable over O and the
thread-induced histories form a decomposition of h, i.e., q.m ∈ h ⇒ q.m ∈ hT for some
thread T . �

Local linearizability is sequentially correct, i.e., a single-threaded (necessarily sequential)
history h is locally linearizable wrt a sequential specification S iff h ∈ S. Like linearizabil-
ity [22], local linearizability is compositional. The complete proof of the following theorem
and missing or extended proofs of all following properties can be found in [15].

I Theorem 12 (Compositionality). A history h over a set of objects O with sequential specific-
ations Sq for q ∈ O is locally linearizable iff h|q is locally linearizable wrt Sq for every q ∈ O.

Proof (Sketch). The property follows from the compositionality of linearizability and the
fact that (h|q)T = hT |q for every thread T and object q. J

The Choices Made. Splitting a global history into subhistories and requiring consistency
for each of them is central to local linearizability. While this is common in shared-memory
consistency conditions [19, 27, 28, 3, 14, 4, 18], our study of local linearizability is a first
step in exploring subhistory-based consistency conditions for concurrent objects.

We chose thread-induced subhistories since thread-locality reduces contention in concur-
rent objects and is known to lead to high performance as confirmed by our experiments. To
assign method calls to thread-induced histories, we took a data-centric point of view by (1)
associating data values to threads, and (2) gathering all method calls that insert/return a
data value into the subhistory of the associated thread (Def. 9). We associate data values to
the thread that inserts them. One can think of alternative approaches, for example, associ-
ate with a thread the values that it removed. In our view, the advantages of our choice are
clear: First, by assigning inserted values to threads, every value in the history is assigned
to some thread. In contrast, in the alternative approach, it is not clear where to assign the
values that are inserted but not removed. Second, assigning inserted values to the inserting
thread enables eager removals and ensures progress in locally linearizable data structures.
In the alternative approach, it seems like the semantics of removing empty should be local.

An orthogonal issue is to assign values from shape observations to threads. In [15],
we discuss two meaningful approaches and show how local linearizability can be extended
towards shape and data observations that appear in insertion operations of sets.

CONCUR 2016

6:8 Local Linearizability for Concurrent Container-Type Data Structures

Finally, we have to choose a consistency condition required for each of the subhistories.
We chose linearizability as it is the best (strong) consistency condition for concurrent objects.

4 Local Linearizability vs. Linearizability

We now investigate the connection between local linearizability and linearizability.

I Proposition 1 (Lin 1). In general, linearizability does not imply local linearizability.

Proof. We provide an example of a data structure that is linearizable but not locally linear-
izable. Consider a sequential specification SNearlyQ which behaves like a queue except when
the first two insertions were performed without a removal in between—then the first two
elements are removed out of order. Formally, s ∈ SNearlyQ iff
1. s = s1enq(a)enq(b)s2deq(b)s3deq(a)s4 where s1enq(a)enq(b)s2deq(a)s3deq(b)s4 ∈ SQ

and s1 ∈ {deq(e) | e ∈ Emp}∗ for some a, b ∈ V , or
2. s ∈ SQ and s 6= s1enq(a)enq(b)s2 for s1 ∈ {deq(e) | e ∈ Emp}∗ and a, b ∈ V .
The example below is linearizable wrt SNearlyQ. However, T1’s induced history
enq(1)enq(2)deq(1)deq(2) is not.

T1

T2

enq(1) enq(2) deq(3) deq(2)

enq(3) deq(1)

J

The following condition on a data structure specification is sufficient for linearizability
to imply local linearizability and is satisfied, e.g., by pool, queue, and stack.

I Definition 13 (Closure under Data-Projection). A seq. specification S over Σ is closed
under data-projection1 iff for all s ∈ S and all V ′ ⊆ V , s|{m(x) ∈ Σ | x ∈ V ′ ∪ Emp} ∈ S. �

For s = enq(1)enq(3)enq(2)deq(3)deq(1)deq(2) we have s ∈ SNearlyQ, but
s|{enq(x), deq(x) | x ∈ {1, 2} ∪ Emp} /∈ SNearlyQ, i.e., SNearlyQ is not closed under data-
projection.

I Proposition 2 (Lin 2). Linearizability implies local linearizability for sequential specifica-
tions that are closed under data-projection.

Proof (Sketch). The property follows from Definition 13 and Equation (1). J

There exist corner cases where local linearizability coincides with linearizability, e.g., for
S = ∅ or S = Σ∗, or for single-producer/multiple-consumer histories.

We now turn our attention to pool, queue, and stack.

I Proposition 3. The seq. specifications SP , SQ, and SS are closed under data-projection.

Proof (Sketch). Let s ∈ SP , V ′ ⊆ V , and let s′ = s| ({ins(x), rem(x) | x ∈ V ′ ∪ Emp}).
Then, it suffices to check that all axioms for pool (Definition 2 and Table 1) hold for s′. J

I Theorem 14 (Pool & Queue & Stack, Lin). For pool, queue, and stack, local linearizability
is (strictly) weaker than linearizability.

1 The same notion has been used in [7] under the name closure under projection.

A. Haas et al. 6:9

T1

T2

i(1) r(empty)

i(2) r(1)

r(2)

Figure 2 LL, not SC (Pool, Queue, Stack).

T1

T2

i(1) r(1)

r(empty)

Figure 3 SC, not LL (Pool, Queue, Stack).

Proof. Linearizability implies local linearizability for pool, queue, and stack as a con-
sequence of Proposition 2 and Proposition 3. The history in Figure 2 is locally linearizable
but not linearizable wrt pool, queue and stack (after suitable renaming of method calls). J

Although local linearizability wrt a pool does not imply linearizability wrt a pool (The-
orem 14), it still guarantees several properties that ensure sane behavior as stated next.

I Proposition 4 (LocLin Pool). Let h be a locally linearizable history wrt a pool. Then:
1. No value is duplicated, i.e., every remove method appears in h at most once.
2. No out-of-thin-air values, i.e., ∀x ∈ V. rem(x) ∈ h⇒ ins(x) ∈ h ∧ rem(x)6<hins(x).
3. No value is lost, i.e., ∀x ∈ V. ∀e ∈ Emp. rem(e) <h rem(x)⇒ ins(x) 6<h rem(e) and
∀x ∈ V. ∀e ∈ Emp. ins(x) <h rem(e)⇒ rem(x) ∈ h ∧ rem(e) 6<hrem(x).

Proof. By direct unfolding of the definitions. J

Note that if a history h is linearizable wrt a pool, then all of the three stated properties
hold, as a consequence of linearizability and the definition of SP .

5 Local Linearizability vs. Other Relaxed Consistency Conditions

We compare local linearizability with other classical consistency conditions to better under-
stand its guarantees and implications.

Sequential Consistency (SC). A history h is sequentially consistent [22, 26] wrt a se-
quential specification S, if there exists a sequential history s ∈ S and a completion hc ∈
Complete(h) such that
1. s is a permutation of hc, and
2. s preserves each thread’s program order, i.e., if m <T

h n, for some thread T , then m <s n.
We refer to s as a sequential witness of h. A data structure D is sequentially consistent
wrt S if every history h of D is sequentially consistent wrt S.

Sequential consistency is a useful consistency condition for shared memory but it is not
really suitable for data structures as it allows for behavior that excludes any coordination
between threads [34]: an implementation of a data structure in which every thread uses a
dedicated copy of a sequential data structure without any synchronization is sequentially
consistent. A sequentially consistent queue might always return empty in one (consumer)
thread as the point in time of the operation can be moved, e.g., see Figure 3. In a producer-
consumer scenario such a queue might end up with some threads not doing any work.

CONCUR 2016

6:10 Local Linearizability for Concurrent Container-Type Data Structures

I Theorem 15 (Pool, Queue & Stack, SC). For pool, queue, and stack, local linearizability
is incomparable to sequential consistency. J

Figures 2 and 3 give example histories that show the statement of Theorem 15. In
contrast to local linearizability, sequential consistency is not compositional [22].

(Quantitative) Quiescent Consistency (QC & QQC). Like linearizability and sequential
consistency, quiescent consistency [11, 22] also requires the existence of a sequential history,
a quiescent witness, that satisfies the sequential specification. All three consistency con-
ditions impose an order on the method calls of a concurrent history that a witness has to
preserve. Quiescent consistency uses the concept of quiescent states to relax the requirement
of preserving the precedence order imposed by linearizability. A quiescent state is a point
in a history at which there are no pending invocation events (all invoked method calls have
already responded). In a quiescent witness, a method call m has to appear before a method
call n if and only if there is a quiescent state between m and n. Method calls between
two consecutive quiescent states can be ordered arbitrarily. Quantitative quiescent consist-
ency [24] refines quiescent consistency by bounding the number of reorderings of operations
between two quiescent states based on the concurrent behavior between these two states.

The next result about quiescent consistency for pool is needed to establish the connection
between quiescent consistency and local linearizability.
I Proposition 5. A pool history h satisfying 1.-3. of Prop. 4 is quiescently consistent. J

From Prop. 4 and 5 follows that local linearizability implies quiescent consistency for pool.

I Theorem 16 (Pool, Queue & Stack, QC). For pool, local linearizability is (strictly) stronger
than quiescent consistency. For queue and stack, local linearizability is incomparable to
quiescent consistency. J

Local linearizability also does not imply the stronger condition of quantitative quies-
cent consistency. Like local linearizability, quiescent consistency and quantitative quiescent
consistency are compositional [22, 24]. For details, please see [15].

Consistency Conditions for Distributed Shared Memory. There is extensive research on
consistency conditions for distributed shared memory [3, 4, 8, 14, 18, 19, 26, 27, 28]. In [15],
we compare local linearizability against coherence, PRAM consistency, processor consistency,
causal consistency, and local consistency. All these conditions split a history into subhistories
and require consistency of the subhistories. For our comparison, we first define a sequential
specification SM for a single memory location. We assume that each memory location is
preinitialized with a value vinit ∈ V . A read-operation returns the value of the last write-
operation that was performed on the memory location or vinit if there was no write-operation.
We denote write-operations by ins and read-operations by head. Formally, we define SM

as SM = {head(vinit)}? · {ins(v)head(v)i | i ≥ 0, v ∈ V }?. Note that read-operations are
data observations and the same value can be read multiple times. For brevity, we only
consider histories that involve a single memory location. In the following, we summarize our
comparison. For details, please see [15].

While local linearizability is well-suited for concurrent data structures, this is not neces-
sarily true for the mentioned shared-memory consistency conditions. On the other hand,
local linearizability appears to be problematic for shared memory. Consider the locally lin-
earizable history in Figure 4. There, the read values oscillate between different values that
were written by different threads. Therefore, local linearizability does not imply any of the

A. Haas et al. 6:11

T1

T2

ins(1)

ins(2) head(2) head(1) head(2) head(1)

Figure 4 Problematic shared-memory history.

shared-memory consistency conditions. In [15], we further show that local linearizability is
incomparable to all considered shared-memory conditions.

6 Locally Linearizable Implementations

In this section, we focus on locally linearizable data structure implementations that are gen-
eric as follows: Choose a linearizable implementation of a data structure Φ wrt a sequential
specification SΦ, and we turn it into a (distributed) data structure called LLD Φ that is
locally linearizable wrt SΦ. An LLD implementation takes several copies of Φ (that we call
backends) and assigns to each thread T a backend ΦT . Then, when thread T inserts an
element into LLD Φ, the element is inserted into ΦT , and when an arbitrary thread removes
an element from LLD Φ, the element is removed from some ΦT eagerly, i.e., if no element is
found in the attempted backend ΦT the search for an element continues through all other
backends. If no element is found in one round through the backends, then we return empty.

I Proposition 6 (LLD correctness). Let Φ be a data structure implementation that is linear-
izable wrt a sequential specification SΦ. Then LLD Φ is locally linearizable wrt SΦ.

Proof. Let h be a history of LLD Φ. The crucial observation is that each thread-induced
history hT is a backend history of ΦT and hence linearizable wrt SΦ. J

Any number of copies (backends) is allowed in this generic implementation of LLD Φ.
If we take just one copy, we end up with a linearizable implementation. Also, any way of
choosing a backend for removals is fine. However, both the number of backends and the
backend selection strategy upon removals affect the performance significantly. In our LLD
Φ implementations we use one backend per thread, resulting in no contention on insertions,
and always attempt a local remove first. If this does not return an element, then we continue
a search through all other backends starting from a randomly chosen backend.

LLD Φ is an implementation closely related to Distributed Queues (DQs) [16]. A DQ
is a (linearizable) pool that is organized as a single segment of length ` holding ` backends.
DQs come in different flavours depending on how insert and remove methods are distributed
across the segment when accessing backends. No DQ variant in [16] follows the LLD ap-
proach described above. Moreover, while DQ algorithms are implemented for a fixed number
of backends, LLD Φ implementations manage a segment of variable size, one backend per
(active) thread. Note that the strategy of selecting backends in the LLD Φ implement-
ations is similar to other work in work stealing [30]. However, in contrast to this work
our data structures neither duplicate nor lose elements. LLD (stack) implementations have
been successfully applied for managing free lists in the fast and scalable memory allocator
scalloc [5]. The guarantees provided by local linearizability are not needed for the correct-
ness of scalloc, i.e., the free lists could also use a weak pool (pool without a linearizable
emptiness check). However, the LLD stack implementations provide good caching behavior
when threads operate on their local stacks whereas a weak pool would potentially negatively
impact performance.

CONCUR 2016

6:12 Local Linearizability for Concurrent Container-Type Data Structures

We have implemented LLD variants of strict and relaxed queue and stack implementa-
tions. None of our implementations involves observation methods, but the LLD algorithm
can easily be extended to support observation methods. For details, please see [15]. Finally,
let us note that we have also experimented with other locally linearizable implementations
that lacked the genericity of the LLD implementations, and whose performance evaluation
did not show promising results (see [15]). As shown in Sec. 4, a locally linearizable pool
is not a linearizable pool, i.e., it lacks a linearizable emptiness check. Indeed, LLD imple-
mentations do not provide a linearizable emptiness check, despite of eager removes. We
provide LL+D Φ, a variant of LLD Φ, that provides a linearizable emptiness check under
mild conditions on the starting implementation Φ (see [15] for details).

Experimental Evaluation. All experiments ran on a uniform memory architecture (UMA)
machine with four 10-core 2GHz Intel Xeon E7-4850 processors supporting two hardware
threads (hyperthreads) per core, 128GB of main memory, and Linux kernel version 3.8.0.
We also ran the experiments without hyper-threading resulting in no noticeable difference.
The CPU governor has been disabled. All measurements were obtained from the artifact-
evaluated Scal benchmarking framework [10, 17, 9], where you can also find the code of
all involved data structures. Scal uses preallocated memory (without freeing it) to avoid
memory management artifacts. For all measurements we report the arithmetic mean and
the 95% confidence interval (sample size=10, corrected sample standard deviation).

In our experiments, we consider the linearizable queues Michael-Scott queue (MS) [29]
and LCRQ [31] (improved version [32]), the linearizable stacks Treiber stack (Treiber) [36]
and TS stack [12], the k-out-of-order relaxed k-FIFO queue [25] and k-Stack [20] and linear-
izable well-performing pools based on distributed queues using random balancing [16] (1-RA
DQ for queue, and 1-RA DS for stack). For each of these implementations (but the pools)
we provide LLD variants (LLD LCRQ, LLD TS stack, LLD k-FIFO, and LLD k-Stack) and,
when possible, LL+D variants (LL+D MS queue and LL+D Treiber stack). Making the
pools locally linearizable is not promising as they are already distributed. Whenever LL+D
is achievable for a data structure implementation Φ we present only results for LL+D Φ as,
in our workloads, LLD Φ and LL+D Φ implementations perform with no visible difference.

We evaluate the data structures on a Scal producer-consumer benchmark where each
producer and consumer is configured to execute 106 operations. To control contention, we
add a busy wait of 5µs between operations. This is important as too high contention res-
ults in measuring hardware or operating system (e.g., scheduling) artifacts. The number of
threads ranges between 2 and 80 (number of hardware threads) half of which are producers
and half consumers. To relate performance and scalability we report the number of data
structure operations per second. Data structures that require parameters to be set are con-
figured to allow maximum parallelism for the producer-consumer workload with 80 threads.
This results in k = 80 for all k-FIFO and k-Stack variants (40 producers and 40 consumers
in parallel on a single segment), p = 80 for 1-RA-DQ and 1-RA-DS (40 producers and
40 consumers in parallel on different backends). The TS Stack algorithm also needs to be
configured with a delay parameter. We use optimal delay (7µs) for the TS Stack and zero
delay for the LLD TS Stack, as delays degrade the performance of the LLD implementation.

Figure 5 shows the results of the producer-consumer benchmarks. Similar to experi-
ments performed elsewhere [12, 20, 25, 31] the well-known algorithms MS and Treiber do
not scale for 10 or more threads. The state-of-the-art linearizable queue and stack algorithms
LCRQ and TS-interval Stack either perform competitively with their k-out-of-order relaxed
counter parts k-FIFO and k-Stack or even outperform and outscale them. For any imple-

A. Haas et al. 6:13

0
2
4
6
8
10
12
14
16
18
20
22
24
26

2 10 20 30 40 50 60 70 80m
ill
io
n
op

er
at
io
ns

pe
r
se
c
(m

or
e
is

be
tt
er
)

number of threads

MS
LCRQ
k-FIFO

LL+D MS
LLD LCRQ
LLD k-FIFO

1-RA DQ

“queue-like” data structures

0
2
4
6
8
10
12
14
16
18
20
22
24
26

2 10 20 30 40 50 60 70 80m
ill
io
n
op

er
at
io
ns

pe
r
se
c
(m

or
e
is

be
tt
er
)

number of threads

Treiber
TS Stack
k-Stack

LL+D Treiber
LLD TS Stack
LLD k-Stack

1-RA DS

“stack-like” data structures

Figure 5 Performance and scalability of producer-consumer microbenchmarks with an increasing
number of threads on a 40-core (2 hyperthreads per core) machine.

mentation Φ, LLD Φ and LL+D Φ (when available) perform and scale significantly better
than Φ does, even slightly better than the state-of-the-art pool that we compare to. The best
improvement show LLD variants of MS queue and Treiber stack. The speedup of the locally
linearizable implementation to the fastest linearizable queue (LCRQ) and stack (TS Stack)
implementation at 80 threads is 2.77 and 2.64, respectively. The performance degradation
for LCRQ between 30 and 70 threads aligns with the performance of fetch-and-inc—the
CPU instruction that atomically retrieves and modifies the contents of a memory location—
on the benchmarking machine, which is different on the original benchmarking machine [31].
LCRQ uses fetch-and-inc as its key atomic instruction.

7 Conclusion & Future Work

Local linearizability splits a history into a set of thread-induced histories and requires con-
sistency of all such. This yields an intuitive consistency condition for concurrent objects
that enables new data structure implementations with superior performance and scalability.
Local linearizability has desirable properties like compositionality and well-behavedness for
container-type data structures. As future work, it is interesting to investigate the guarantees
that local linearizability provides to client programs along the line of [13].

CONCUR 2016

6:14 Local Linearizability for Concurrent Container-Type Data Structures

References
1 iOS Developer Library, Concurrency Programming Guide, Dispatch Queues. URL:

https://developer.apple.com/library/ios/documentation/General/Conceptual/
ConcurrencyProgrammingGuide/OperationQueues/OperationQueues.html.

2 Y. Afek, G. Korland, and E. Yanovsky. Quasi-Linearizability: Relaxed Consistency for
Improved Concurrency. In OPODIS, pages 395–410, 2010.

3 M. Ahamad, R.A. Bazzi, R. John, P. Kohli, and G. Neiger. The Power of Processor
Consistency. In SPAA, pages 251–260, 1993.

4 M. Ahamad, G. Neiger, J.E. Burns, P. Kohli, and P.W. Hutto. Causal memory: definitions,
implementation, and programming. Distributed Computing, 9(1):37–49, 1995.

5 M. Aigner, C. M. Kirsch, M. Lippautz, and A. Sokolova. Fast, multicore-scalable, low-
fragmentation memory allocation through large virtual memory and global data structures.
In OOPSLA, pages 451–469, 2015.

6 D. Alistarh, J. Kopinsky, J. Li, and N. Shavit. The SprayList: A Scalable Relaxed Priority
Queue. In PPoPP, pages 11–20, 2015.

7 A. Bouajjani, M. Emmi, C. Enea, and J. Hamza. On Reducing Linearizability to State
Reachability. In ICALP, pages 95–107, 2015.

8 S. Burckhardt, A. Gotsman, H. Yang, and M. Zawirski. Replicated Data Types: Specific-
ation, Verification, Optimality. In POPL, pages 271–284, 2014.

9 POPL 2015 Artifact Evaluation Committee. POPL 2015 Artifact Evaluation. Accessed on
01/14/2015. URL: http://popl15-aec.cs.umass.edu/home/.

10 Computational Systems Group, University of Salzburg. Scal: High-Performance Multicore-
Scalable Computing. URL: http://scal.cs.uni-salzburg.at.

11 J. Derrick, B. Dongol, G. Schellhorn, B. Tofan, O. Travkin, and H. Wehrheim. Quiescent
Consistency: Defining and Verifying Relaxed Linearizability. In FM, pages 200–214, 2014.

12 M. Dodds, A. Haas, and C.M. Kirsch. A Scalable, Correct Time-Stamped Stack. In POPL,
pages 233–246, 2015.

13 I. Filipovic, P.W. O’Hearn, N. Rinetzky, and H. Yang. Abstraction for concurrent objects.
Theor. Comput. Sci., 411(51-52):4379–4398, 2010.

14 J.R. Goodman. Cache consistency and sequential consistency. University of Wisconsin-
Madison, Computer Sciences Department, 1991.

15 A. Haas, T.A. Henzinger, A. Holzer, C.M. Kirsch, M. Lippautz, H. Payer, A. Sezgin,
A. Sokolova, and H. Veith. Local Linearizability. CoRR, abs/1502.07118, 2016.

16 A. Haas, T.A. Henzinger, C.M. Kirsch, M. Lippautz, H. Payer, A. Sezgin, and A. Sokolova.
Distributed Queues in Shared Memory: Multicore Performance and Scalability through
Quantitative Relaxation. In CF, 2013.

17 A. Haas, T. Hütter, C.M. Kirsch, M. Lippautz, M. Preishuber, and A. Sokolova. Scal: A
Benchmarking Suite for Concurrent Data Structures. In NETYS, pages 1–14, 2015.

18 A. Heddaya and H. Sinha. Coherence, Non-coherence and Local Consistency in Distributed
Shared Memory for Parallel Computing. Technical report, Computer Science Department,
Boston University, 1992.

19 J.L. Hennessy and D.A. Patterson. Computer Architecture, Fifth Edition: A Quantitative
Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 5th edition, 2011.

20 T.A. Henzinger, C.M. Kirsch, H. Payer, A. Sezgin, and A. Sokolova. Quantitative relaxation
of concurrent data structures. In POPL, pages 317–328, 2013.

21 T.A. Henzinger, A. Sezgin, and V. Vafeiadis. Aspect-Oriented Linearizability Proofs. In
CONCUR, pages 242–256, 2013.

22 M. Herlihy and N. Shavit. The Art of Multiprocessor Programming. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 2008.

https://developer.apple.com/library/ios/documentation/General/Conceptual/ConcurrencyProgrammingGuide/OperationQueues/OperationQueues.html
https://developer.apple.com/library/ios/documentation/General/Conceptual/ConcurrencyProgrammingGuide/OperationQueues/OperationQueues.html
http://popl15-aec.cs.umass.edu/home/
http://scal.cs.uni-salzburg.at

A. Haas et al. 6:15

23 M. Herlihy and J.M. Wing. Linearizability: A Correctness Condition for Concurrent Ob-
jects. ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990.

24 R. Jagadeesan and J. Riely. Between Linearizability and Quiescent Consistency - Quantit-
ative Quiescent Consistency. In ICALP, pages 220–231, 2014.

25 C.M. Kirsch, M. Lippautz, and H. Payer. Fast and Scalable, Lock-free k-FIFO Queues. In
PaCT, pages 208–223, 2013.

26 L. Lamport. How to Make a Multiprocessor Computer That Correctly Executes Multipro-
cess Programs. IEEE Trans. Comput., 28(9):690–691, September 1979.

27 R.J. Lipton and J.S. Sandberg. PRAM: A Scalable Shared Memory. Technical Report Nr.
180, Princeton University, Department of Computer Science, 1988.

28 R.J. Lipton and J.S. Sandberg. Oblivious memory computer networking, September 28
1993. CA Patent 1,322,609.

29 M.M. Michael and M.L. Scott. Simple, fast, and practical non-blocking and blocking
concurrent queue algorithms. In PODC, pages 267–275, 1996.

30 M.M. Michael, M.T. Vechev, and V.A. Saraswat. Idempotent Work Stealing. In PPoPP,
pages 45–54, 2009.

31 A. Morrison and Y. Afek. Fast Concurrent Queues for x86 Processors. In PPoPP, pages
103–112, 2013.

32 Multicore Computing Group, Tel Aviv University. Fast Concurrent Queues for x86 Pro-
cessors. Accessed on 01/28/2015. URL: http://mcg.cs.tau.ac.il/projects/lcrq/.

33 H. Rihani, P. Sanders, and R. Dementiev. MultiQueues: Simpler, Faster, and Better
Relaxed Concurrent Priority Queues. CoRR, 2014. arXiv:1411.1209.

34 A. Sezgin. Sequential Consistency and Concurrent Data Structures. CoRR, abs/1506.04910,
2015.

35 N. Shavit. Data Structures in the Multicore Age. CACM, 54(3):76–84, March 2011.
36 R.K. Treiber. Systems Programming: Coping with Parallelism. Technical Report RJ-5118,

IBM Research Center, 1986.

CONCUR 2016

http://mcg.cs.tau.ac.il/projects/lcrq/
http://arxiv.org/abs/1411.1209

Robustness against Consistency Models with
Atomic Visibility
Giovanni Bernardi1 and Alexey Gotsman2

1 IMDEA Software Institute, Madrid, Spain
2 IMDEA Software Institute, Madrid, Spain

Abstract
To achieve scalability, modern Internet services often rely on distributed databases with consist-
ency models for transactions weaker than serializability. At present, application programmers
often lack techniques to ensure that the weakness of these consistency models does not violate
application correctness. We present criteria to check whether applications that rely on a database
providing only weak consistency are robust, i.e., behave as if they used a database providing seri-
alizability. When this is the case, the application programmer can reap the scalability benefits of
weak consistency while being able to easily check the desired correctness properties. Our results
handle systematically and uniformly several recently proposed weak consistency models, as well
as a mechanism for strengthening consistency in parts of an application.

1998 ACM Subject Classification C.2.4 Distributed Systems

Keywords and phrases Robustness, Replication, Consistency models, Transactions

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2016.7

1 Introduction

To achieve scalability and availability, modern Internet services often rely on large-scale
databases that replicate and partition data across a large number of nodes and/or a wide
geographical span (e.g., [14, 20, 26, 3, 6, 4, 5, 11, 22, 27, 10]). The database clients invoke
transactions on the data at any of the nodes, and the nodes communicate changes to each
other using message passing. Ideally, we want this distributed system to provide strong guar-
antees about transaction processing, such as serializability [8]: the results of concurrently
executing a set of transactions could be obtained if these transactions were executed serially
in some order. Serializability is useful because it allows an application programmer to easily
establish desired correctness properties. For example, to check that the transactions of an
application preserve a given data integrity constraint, the programmer only needs to check
that every transaction does so when executed in isolation, without worrying about con-
currency. Unfortunately, achieving serializability requires excessive synchronisation among
database nodes, which slows down the database and even makes it unavailable if network
connections between replicas fail [17, 1]. For this reason, nowadays large-scale databases
often provide weak consistency guarantees, which allow non-serializable behaviours, called
anomalies.

As a motivating example, consider a toy on-line auction application with transactions
defined by the transactional programs in Figure 1. The program RegUser creates a new
user account. It manipulates the table USERS, whose rows contain a primary key (uId)
and a nickname. An invocation of RegUser(uname) inserts a new row in USERS only if
the nickname uname does not appear in USERS, to ensure that nicknames are unique. The
program ViewUsers can be used to view all the users. Some databases [22, 26, 3] may allow

© Giovanni Bernardi and Alexey Gotsman;
licensed under Creative Commons License CC-BY

27th International Conference on Concurrency Theory (CONCUR 2016).
Editors: Josée Desharnais and Radha Jagadeesan; Article No. 7; pp. 7:1–7:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.7
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

7:2 Robustness against Consistency Models with Atomic Visibility

RegUser(uname)
select name
from USERS
as ret_name
where name = uname;
if ret_name defined
then abort
else
insert into USERS
values (new uId, uname);

StoreBid(iid,val)
insert into BIDS
values
(new bId, iid, val);
select nbids
from ITEMS
as n where iId = iid;
update ITEMS
set nbids = n + 1
where iId = iid;

ViewItem(iid)
select *
from ITEMS as ret_item
where iId = iid;

ViewUsers()
select *
from USERS
as ret_users;

USERS(uId, name)
ITEMS(iId, desc, nbids)
BIDS(bId, iId, val)

Figure 1 SQL code and table schema for an auction application. Primary keys are underlined.

executions of RegUser and ViewUsers such as the one sketched in Figure 2(c). There two
invocations of RegUser generate the transactions T1 and T2; these write two rows of USERS,
denoted by x and y, to register the users Alice and Bob. The program ViewUsers() then is
invoked twice; the invocation in T3 sees Alice but not Bob, while the invocation in T4 sees
Bob but not Alice. This result, called a long fork anomaly, cannot be obtained by executing
the four transactions in any sequence and, hence, is not serializable.

The past few years have seen a number of proposals of new transactional consistency
models for modern large-scale databases [22, 11, 26, 3, 5], differing in how much they weaken
consistency, by exposing such anomalies, in exchange for improved performance. Unfortu-
nately, application programmers often lack techniques to ensure that the weakness of these
consistency models does not violate application correctness. This situation hinders the ad-
option of the novel consistency models by mainstream database developers and application
programmers.

One way to address this problem is using the notion of application robustness [16, 15, 9].
An application is robust against a particular weak consistency model if it behaves the same
whether using a database providing this model or serializability. If an application is robust
against a given weak consistency model, then programmers can reap the performance benefits
of using weak consistency while being able to easily check the desired correctness properties.

In this paper we develop criteria for checking the robustness of applications against three
recently proposed consistency models—causal (aka causal+) consistency (CC) [22], prefix
consistency [11] (PC) and parallel snapshot isolation [26] (PSI, aka non-monotonic snapshot
isolation [3]). As a corollary of our results, we also derive an existing robustness criterion [16]
for a classical model of snapshot isolation [6] (SI). Our criteria also handle variants of the
consistency models that allow application programmers to request that certain transactions
be executed under serializability and thereby ensure the robustness of applications that are
not robust otherwise.

We handle the above four consistency models in a uniform and systematic way by ex-
ploiting a recently proposed framework [12] for declaratively specifying their semantics (Sec-
tion 2). In particular, all of the consistency models that we consider guarantee the atomic
visibility of transactions: either all or none of the writes performed by a transaction can
be observed by other transactions. This allows us to simplify reasoning needed to establish
robustness criteria by abstracting from internals of transactions in application executions.
We first propose a dynamic robustness criterion that checks whether a given execution is
serializable (Section 3). We formulate this criterion in terms of the dependency graph of the
execution [2], describing several kinds of relationships between its transactions: an execution

G. Bernardi and A. Gotsman 7:3

is serializable if its dependency graph contains no cycles of a certain form, which we call
critical. Criteria for robustness against different consistency models differ in which cycles
are considered critical. We then illustrate how our dynamic robustness criteria on a single
execution can be lifted to static criteria that check that all executions of a given application
are serializable (Section 4).

2 Consistency Model Specifications

We start by recalling from [12] a formal model of database computations and the specifica-
tions of the consistency models that we handle. These specifications are declarative, which
greatly simplifies our formal development. Nonetheless, as shown in [12], the specifications
are equivalent to certain operational specifications, close to implementations.

We consider a database storing objects Obj = {x, y, . . .}, which we assume to be natural-
valued. Clients interact with the database by issuing read and write operations on the
objects, grouped into transactions. We denote each operation invocation by an event (ι, o),
where ι is an identifier from a denumerable set EventId, and o ∈ {read(x, n), write(x, n) |
x ∈ Obj, n ∈ N} describes the operation invoked and its outcome: reading a value n from an
object x or writing n to x. We range over events by e, f, g and denote the set of all events
by Event. In the following we denote irrelevant expressions by _, and write e ` write(x, n)
if e = (_, write(x, n)) and e ` read(x, n) if e = (_, read(x, n)). A binary relation < is
a strict partial order if it is transitive and irreflexive. It is total if additionally for all
elements a and b, we have a < b, b < a or a = b.

I Definition 1. A transaction T, S, . . . is a pair (E,<po), where E ⊆ Event is a finite, non-
empty set of events with distinct identifiers, and the program order <po is a total order
over E. A history H is a finite set of transactions with disjoint sets of event identifiers.
An annotated history (H, level) is a pair where H is an history and level : H → {SER,⊥}.
An execution is a triple X = ((H, level), <hb, <ar), where (H, level) is an annotated history,
<hb is a strict partial order over H, and <ar is a total order over H such that <hb ⊆ <ar.
We refer to <hb and <ar as happens-before and arbitration. J

We denote components of an execution as in X.H and use the same notation for similar
structures.

A transaction records a set of operations and the order in which the client program
invoked them. A history records transactions that committed in a finite database compu-
tation. For simplicity we elide the treatment of aborted and ongoing transactions, as well
as infinite database computations. Annotated histories enrich histories with a function level
that records which transactions the programmer requested to execute under serializability,
and which transactions under the weak consistency model offered by the underlying data-
base. Finally, executions enrich annotated histories with a happens-before order and an
arbitration order, which declaratively represent internal database processing. Intuitively,
T <hb S means that S is aware of the updates performed by T , and thus the outcome of the
operations in S may depend on the effects of T . We call transactions that are not related by
happens-before concurrent. The relationship T <ar S means that the versions of objects
written by S supersede those written by T . The constraint <hb ⊆ <ar ensures that writes
by a transaction T supersede those that T is aware of.

We use the set {CC,PC,PSI,SI,SER} to refer to the consistency models that we treat
(Section 1), and we range over this set by wm. In Figure 4 we specify these consistency
models as combination of the axioms in Figure 3, constraining executions. Formally, we let

CONCUR 2016

7:4 Robustness against Consistency Models with Atomic Visibility

(a) Causality violation. (c) Long fork. Disallowed by Prefix.
Disallowed by the transitivity of <hb.

write(x, book) <po write(y, empty)

read(x, book) <po write(y, review)

read(x, empty) <po read(y, review)

T1

T2

T3

write(x,Alice)

write(y,Bob)

read(x,Alice) <po read(y,−)

read(x,−) <po read(y,Bob)

T1

T2

T3

T4

wr, x

rw, y

wr, y

rw, x

(b) Lost update. Disallowed by Conflict. (d) Write skew. Disallowed by TotalHB.
read(nbids, 0) <po write(nbids, 1)

read(nbids, 1)

read(nbids, 0) <po write(nbids, 1)

T1

T2

T3
read(−, x) <po write(Alice, y)

read(−, y) <po write(Alice, x)

rw, x rw, y

Figure 2 Non-serializable executions illustrating anomalies. Boxes represent transactions, and
thin arrows between boxes represent the happens-before relation. We omit arbitration edges to
avoid clutter. The thick arrows marked wr/rw are explained in Section 3.

∀(E,<po) ∈ H. ∀e ∈ E.∀x, n.
e ` read(x, n) =⇒ (before(e,<po,_ x) = ∅ ∨max(before(e,<po,_ x), <po) ` _(_, n)) (Int)
∀T ∈ H. ∀x, n.
T ` read(x, n) =⇒ ((before(T,<hb, write x) = ∅ ∧ n = 0) ∨

max(before(T,<hb, write x), <ar) ` _(_, n)) (Ext)
∀T, S ∈ H. (∃x. T ` write(x,_) ∧ S ` write(x,_)) =⇒ T = S ∨ T <hb S ∨ S <hb T (Conflict)
<ar ; <hb ⊆ <hb (Prefix)
∀T, S ∈ H.T = S ∨ T <hb S ∨ S <hb T (TotalHB)
∀T, S ∈ H. (level(T) = level(S) = SER) =⇒ T = S ∨ T <hb S ∨ S <hb T (SerTotal)

Figure 3 Consistency axioms constraining an execution ((H, level), <hb, <ar).

the set of annotated histories allowed by a consistency model wm be given by hist(wm) =
{(X.H,X.level) | X |= wm}. We now explain the axioms and the anomalies that they
(dis)allow. We summarise these anomalies in Figure 2.

Given a total order < ⊆ A × A and a set B ⊆ A, we write max(B,<) for the element
b ∈ B such that ∀a ∈ B. a ≤ b; if A = ∅, then max(B,<) is undefined. We define min in the
obvious dual manner. In the following, when we write max(B,<) or min(B,<), we assume
that they are defined. Given a partial order < ⊆ A×A and an a ∈ A, we define the downset
of a as before(a,<) = {a′ ∈ A | a′ < a}, and let before(a,<, opx) = before(a,<) ∩ {a′ ∈ A |
a′ ` op(x,_)}.

The internal consistency axiom Int ensures that, within a transaction, the database
provides sequential semantics: in a transaction (E,<po), a read event e on an object x
returns the value of the last event on x preceding e. The events on x preceding e are given
by the set before(e,<po,_ x). If in (E,<po) a read e on x is not preceded by an operation
on the same object (i.e., before(e,<po,_ x) = ∅), then its value is determined in terms of
writes by other transactions, using the external consistency axiom Ext. To formulate

G. Bernardi and A. Gotsman 7:5

CC ≡ Int ∧ Ext ∧ SerTotal
PSI ≡ CC ∧Conflict
PC ≡ CC ∧ Prefix
SI ≡ PSI ∧ Prefix

SER ≡ Int ∧ Ext ∧TotalHB

Figure 4 Consistency model definitions.

Ext we lift the ` notation to transactions. For given T = (E,<po), x ∈ Obj and n ∈ N, we
write:

T ` write(x, n) if max({e ∈ E | e ` write(x,_)}, <po) ` write(x, n); and
T ` read(x, n) if min({e ∈ E | e ` _(x,_)}, <po) ` read(x, n).

According to Ext, if a transaction T reads an object x before writing to it, then the value
returned by the read is determined by the transactions that happen before T and that write
to x; the set of such transactions is given by before(T,<hb, write x). If this set is empty,
then T reads the initial value 0; otherwise it reads the value written by the transaction from
the set that is the last one in <ar. Ext guarantees the atomic visibility of a transaction:
either all or none of its writes can be visible to another transaction. A detailed discussion
on the matter can be found in [12, Section 3].

The axiom SerTotal formalises the additional guarantees provided to transactions that
the application programmer required to execute on serializability, as recorded by level. We
discuss this axiom in more detail below; for now we assume level = (λT.⊥) for all executions.

The axioms Int, Ext and SerTotal define causal consistency (CC) [22]. This forbids
the causality violation anomaly in Figure 2(a), where a user sees the review, but not the
book it was associated with. This anomaly is forbidden because <hb is transitive, so we
must have T1 <hb T3. Since T1 <ar T2, the writes by T2 supersede those by T1, and thus
Ext implies T3 ` read(y, review) and T3 ` read(x, book).

Causal consistency allows the lost update anomaly, illustrated by the execution in Fig-
ure 2(b). This execution may arise from the programs ViewItem and StoreBid in Figure 1,
which respectively let a user query the information about an item and bid on an item. They
access a table ITEMS, whose rows represent items and contain a primary key (iId), an item
description (desc) and the number of existing bids (nbids). The anomaly in Figure 2(b) is
caused by two invocations of the program StoreBid that generate the transactions T1 and
T2, meant to increase the number of bids of an item. The two transactions read the initial
number of bids for the item, namely 0, and concurrently modify it, resulting in one addition
getting lost. This is observed by a third transaction T3 generated by ViewItem. The lost
update anomaly is disallowed by the axiom Conflict, which guarantees that transactions
updating the same object are not concurrent. This axiom rules out any execution with the
history in Figure 2(b). We specify parallel snapshot isolation (PSI) [26] by strengthening
causal consistency with the axiom Conflict. This consistency models allows the long fork
anomaly given in Figure 2(c), which we discussed in Section 1.

We specify prefix consistency (PC) [11] and snapshot isolation (SI) [6] by strengthening
respectively CC and PSI via the axiom Prefix: if T observes S, then it also observes all
<ar-predecessors of S, which is formalised using sequential composition ; of relations. The
axiom Prefix disallows any execution with the history in Figure 2(c): T1 and T2 have to
be related by <ar one way or another; but then by Prefix, either T4 has to observe Alice
or T3 has to observe Bob. Like causal consistency, prefix consistency allows the lost update

CONCUR 2016

7:6 Robustness against Consistency Models with Atomic Visibility

StoreBid(iId1,7)

ViewItem(iId1)

ViewItem(iId1)

StoreBid(iId1,10)

ret_item = (iId1, book1, 1)

ret_item = (iId1, book1, 2)

wr, ITEMS(iId1).nbids<hb wr, ITEMS(iId1).nbids;<hb

<hb

wr, ITEMS(iId1).nbids<hb

Figure 5 An execution produced by the programs in Figure 1 and its dynamic dependency
graph (the latter explained in Section 3). We assume level = (λT.⊥). We omit events inside
transactions and only show the parameters and the return values of the corresponding programs.
Since <hb ⊆ <ar, all the relevant arbitration edges coincide with the happens-before ones, and we
omit the <ar label.

anomaly in Figure 2(b). Snapshot isolation disallows it, but allows the anomaly of write
skew, illustrated by the execution in Figure 2(d). This execution could be produced by
RegUser in Figure 1. The objects x and y correspond to different rows in the table USERS.
Two invocations of RegUser generate transactions that miss each other’s writes and, as a
consequence, concurrently register two users with the same nickname.

We define serializability (SER) using the axiom TotalHB, which requires happens-
before to be total. It disallows any execution with one of the histories in Figure 2.

Finally, the consistency models we consider include the axiom SerTotal, which requires
happens-before to be total on transactions that the programmer marked as serializable.
For example, in a database providing CC, the history in Figure 2(c) can be disallowed by
letting level(T1) = level(T2) = SER and level(T3) = level(T4) = ⊥. This is because then
SerTotal forces T1 and T2 to be related by happens-before, and therefore either T3 or
T4 has to observe both T1 and T2. We can disallow the history in Figure 2(b) by letting
level(T1) = level(T2) = SER and level(T3) = ⊥.

As the last example, we consider the execution X in Figure 5, which is produced on a
PSI database by the programs StoreBid and ViewItem in Figure 1: X |= PSI. In X the
two transactions due to StoreBid submit bids for an item iId1: one bid of 7 dollars and one
bid of 10 dollars. The other two transactions due to ViewItem query the state of the item.
The query on the left sees the bid of 7, but not that of 10. The query on the right sees
both bids. It is easy to check that the history of this execution is serializable. As a matter
of fact, the results we develop in the following sections let us show that any execution
produced by the programs StoreBid and ViewItem under PSI has a serializable history.
Hence, a database can process the corresponding transactions using the PSI concurrency
control without exposing any anomalies to its users.

3 Dynamic Robustness Criteria

Our first goal is to define criteria to check whether a single execution X in one of the
consistency models that we consider has a serializable history: X.H ∈ hist(SER). From
these dynamic robustness criteria, in the next section we derive static criteria to check
whether this is the case for all executions of a given application.

Our dynamic criteria are formulated in terms of dependency graphs, widely used in the
database literature [2]. Let the set of labels L be defined as follows: D = {(wr, x), (ww, x) |
x ∈ Obj}, L = D ∪ {(rw, x) | x ∈ Obj}. We use λ to range over L and s, t to range over

G. Bernardi and A. Gotsman 7:7

L?. A graph G is a pair (H,−−→), where H ∈ Hist and −−→ ⊆ H × L × H. We write
T

λ−−→ S ∈ G in place of (T, λ, S) ∈ −−→. We also use some graph-theoretic notions. A path
π in G is a non-empty finite sequence of edges T0

λ0−−→ T1
λ1−−→ . . .

λn−1−−−−→ Tn. In this case
we write π ∈ G. The path is a cycle if T0 = Tn, and it is a simple cycle if all other pairs of
transactions on it are distinct. We also write T λ−−→ S ∈ π to mean that the edge T λ−−→ S

appears in the path π. Given a graph G = (H,−−→), we denote by s−−−→+ the least relation
such that
(i) T λ−−→+ S if T λ−−→ S ∈ G; and
(ii) T λs−−−→+ S whenever T λ−−→ T ′ ∈ G and T ′ s−−→+ S for some T ′ ∈ H.
We denote with s−−→? the reflexive closure of s−−→+, so that T ε−→? T for every T ∈ H. We
now define a map from executions into dependency graphs.

I Definition 2. The dynamic dependency graph of an execution X = ((H,_), <hb, <ar)
is DDG(X) = (H,−−→), where for every x ∈ Obj the relation −−→ contains the following
triples:
read-dependency: T wr, x−−−−→ S if S ` read(x,_) and T = max(before(S,<hb, write x), <ar);
write-dependency: T ww, x−−−−→ S if T ` write(x,_), S ` write(x,_) and T <ar S;
anti-dependency: T rw, x−−−−→ S if T 6= S and either

(i) T ` read(x,_), S ` write(x,_) and before(T,<hb, write x) = ∅, or
(ii) T ′ wr, x−−−−→ T and T ′ ww, x−−−−→ S for some T ′ ∈ H. J

Thus, T wr, x−−−−→ S means that S reads T ’s write to x (cf. Ext in Figure 3), and T ww, x−−−−→ S

means that S overwrites T ’s write to x. The relation T rw, x−−−−→ S means that S overwrites
the write to x read by T (the initial value of an object is overwritten by any write to this
object). In Figures 2(c), 2(d) and 5 we draw the dependency graphs with thick edges.

Dependency graphs provide a way to show that executions have serializable histories [2].

I Lemma 3. For every X, if X |= Int∧Ext and DDG(X) is acyclic, then X.H ∈ hist(SER).

For instance, the history in Figure 5 is serializable. The graphs of the executions in Fig-
ure 2(c, d) contain cycles and, in fact, the histories of these executions are not serializable.

As we now show, to ensure that the history of an execution X arising from a particular
consistency model is serializable, it is enough to check that DDG(X) does not contain cycles
of a particular form, which we call critical. This more precise characterisation is instrumental
in obtaining our static robustness criteria (Section 4).

A path π in a dynamic dependency graph G is chord-free if, whenever u s−−−→+ v ∈ π
for some s ∈ Ln with n ≥ 2, we have ¬(u _−−−→ v ∈ G). A path π is rw-minimal if,
whenever u rw,_−−−−→ v ∈ π and u λ−−→ v ∈ G, we have λ = (rw,_). The last notion forces us
exclude an rw edge from π if there is another option.

I Definition 4. Given an execution X, an edge T λ−−→ S ∈ DDG(X) is unprotected if
either X.level(T) 6= SER or X.level(S) 6= SER. A cycle π ∈ DDG(X) among transactions
T0, T1, . . . , Tn (where T0 = Tn) that is simple, chord-free and rw-minimal is:
CC-critical, if π contains an unprotected edge Ti

rw,_−−−−→ Ti+1 and an unprotected edge
Tj

λ−−→ Tj+1 with i 6= j and λ ∈ {(ww,_), (rw,_)};
PC-critical, if π contains an unprotected edge Ti

rw,_−−−−→ Ti+1 and at least two adjacent
unprotected edges with labels in {(ww,_), (rw,_)};

PSI-critical, if:
1. π contains at least two unprotected rw edges; and

CONCUR 2016

7:8 Robustness against Consistency Models with Atomic Visibility

2. for every Ti
rw, x−−−−→ Ti+1, Tj

rw, y−−−−→ Tj+1 ∈ π, if i 6= j, then x 6= y;
SI-critical, if:

1. π contains at least two adjacent unprotected rw edges; and
2. for every Ti

rw, x−−−−→ Ti+1, Tj
rw, y−−−−→ Tj+1 ∈ π, if i 6= j, then x 6= y. J

The graphs of the executions in Figure 2 (with level = (λT.⊥)) contain critical cycles: (c)
contains a PSI-critical cycle, and (d) contains an SI-critical cycle.

I Theorem 5. For every wm and X, if X |= wm, then DDG(X) contains a cycle if and
only if it contains a wm-critical cycle.

From Theorem 5 and Lemma 3 we obtain our dynamic robustness criterion.

I Corollary 6. For every wm and every X, if X |= wm and DDG(X) contains no wm-critical
cycle then X.H ∈ hist(SER).

We note that the above robustness criterion for SI is a variant of an existing one [16, 15].
In our setting, it is just a consequence of our novel criterion for PSI.

To prove Theorem 5 we show how the axioms in Figure 3 impact the properties of edges
and paths in dependency graphs. First, observe that there is a relation between wr,ww edges
and the orders <hb and <ar: for every X and every T, S ∈ X.H, the definitions ensure that

T
wr,_−−−−→ S ∈ DDG(X) =⇒ T <hb S;

(T wr,_−−−−→ S ∈ DDG(X) ∨ T ww,_−−−−→ S ∈ DDG(X)) =⇒ T <ar S;
(X |= Conflict ∧ T ww,_−−−−→ S ∈ DDG(X)) =⇒ T <hb S.

These implications let us show that, under certain conditions, if two transactions in a de-
pendency graph are connected by a path, then they are also related by happens-before or
arbitration.

I Lemma 7. For any X, s ∈ L+ and T s−→+ S ∈ DDG(X), if X |= SerTotal then:
1. if all the rw and ww edges in T

s−→+ S are protected then T <hb S;
2. if all the rw edges in T

s−→+ S are protected then T <ar S;
3. if X |= Conflict and all the rw edges in T

s−→+ S are protected then T <hb S.

The following lemma shows that, if T rw, x−−−−→ S, then T cannot happen-before S: in this
case T would have to read a value at least as up-to-date as that written by S, contradicting
the definition of anti-dependencies.

I Lemma 8. ∀X.∀x ∈ Obj.∀T, S ∈ X.H. T rw, x−−−−→ S ∈ DDG(X) =⇒
S 66hb T ∧ T ` read(x,_) ∧ S ` write(x,_).

Proof of Theorem 5. The if implication is obvious, so let us prove the only if implication.
Suppose that the graph DDG(X) contains a cycle π′. From π′ we can easily build a cycle

π = T0
λ0−−→ T1

λ1−−→ . . .
λn−1−−−−→ Tn (where T0 = Tn, n ≥ 2) (1)

in DDG(X) that is simple, chord-free and rw-minimal. The argument now is a case analysis
on the wm. Here we consider only CC and PSI and defer the full proof to [7].

Case of wm = CC. Lemma 7(2) implies that π contains at least one unprotected rw
edge, for otherwise T0 <ar T0, contradicting the irreflexivity of X.<ar. Let this edge be
Ti

rw,_−−−−→ Ti+1. Then Lemma 8 ensures that Ti+1 6<hb Ti. Since π contains the non-empty

G. Bernardi and A. Gotsman 7:9

path Ti+1
_−−→+ Ti, Lemma 7(1) implies that on this path there is at least one unprotected

edge Tj
λ−−→ Tj+1 with λ ∈ {(ww,_), (rw,_)} and i 6= j. It follows that π is CC-critical.

Case of wm = PSI. First we prove that the cycle π contains at least two unprotected
edges rw edges. Since X |= PSI, we know that X |= CC. Thus, the previous argument
ensures that the cycle π contains at least one unprotected rw edge, say Ti

rw, x−−−−→ Ti+1.
Suppose that π contains exactly one such edge. Since X |= Conflict, Lemma 7(3) now
ensures Ti+1 <hb Ti. But by Lemma 8, Ti

rw, x−−−−→ Ti+1 implies Ti+1 6<hb Ti. The resulting
contradiction shows that π must contain at least two unprotected rw edges.

Now we have to prove

∀Ti
rw, x−−−−→ Ti+1, Tj

rw, y−−−−→ Tj+1 ∈ π. i 6= j =⇒ x 6= y. (2)

Suppose that π does not satisfy (2). Then, as <ar is total, Definition 2 guarantees that we
have either Ti+1

ww,x−−−−→ Tj+1 or Tj+1
ww,x−−−−→ Ti+1. Since π is a simple cycle, in the first

case we contradict either that π is chord-free or that π is rw-minimal. In the second case,
we have either (a) Tj+1 = Ti or (b) Tj+1 6= Ti. If (a) holds, then we contradict that π is
rw-minimal, because Ti

rw,_−−−−→ Ti+1 ∈ π and Ti
ww,_−−−−→ Ti+1. If (b) holds, then the sub-path

Tj+1
s−→+ Ti+1 of π contains at least two edges and it is chord-free by construction. But

this contradicts Tj+1
ww,x−−−−→ Ti+1. It follows that π satisfies (2) above, and thus it is a

PSI-critical cycle. J

4 Static Robustness Criteria

We now illustrate how the dynamic robustness criteria (Corollary 6) can be lifted to static
criteria, which allow programmers to analyse the behaviour of their applications and which
can serve as a basis for static analysis tools.

We define an application A by a set of transactional programs fi, giving the code
of its transactions: A = {f1, . . . , fn} (e.g., see Figure 1). As is standard in the database
literature [16], this abstracts from the rest of the application logic to focus on the parts
that directly interact with the database. We call a pair I = (f,v) of a program and a
vector of its actual parameters a program instance. An application instance I is a
set of program instances, and an annotated application instance is a pair (I, levelS),
where levelS : I → {SER,⊥} defines which programs the programmer requested to execute
under serializability. We first formulate criteria for checking the robustness of a particular
annotated application instance, resulting from running a set of transactional programs with
given parameters. We then sketch how these criteria can be generalised to whole applications.

We aim to illustrate the ideas for lifting dynamic robustness criteria to static ones in
the simplest form. To this end, we abstract from the syntax of the programming language
and assume that we are only given approximate information about the set of objects read
or written by each transactional program. Namely, we assume a function rwsets that maps
every program instance I to a triple rwsets(I) = (R3,W3,W2). Informally, R3 and W3

are the sets of all the objects that may be read or written in some execution of I, and W2

is a set of the objects that must be written in any execution of I, with the proviso that
W2 ⊆W3. For instance, for I = (StoreBid, 〈iId1, 7〉) (Figure 1) we have

rwsets(I) = ({ITEMS(iId1).nbids}, {ITEMS(iId1).nbids,BIDS(∗).∗}, {ITEMS(iId1).nbids})

where ∗ means “all fields” or “all rows”.
To formalise the meaning of the read/write sets, we define a relation that determines if a

history can be produced by a given I. We let T I for rwsets(I) = (R3,W3,W2), if:

CONCUR 2016

7:10 Robustness against Consistency Models with Atomic Visibility

RegUser(Alice) ViewItem(iId1)

StoreBid(iId1, 7)

StoreBid(iId1, 10)
ww=ww, ITEMS(iIdi).nbids
wr =wr, ITEMS(iIdi).∗; wr,BIDS(∗).∗
rw =rw, ITEMS(iIdi).∗; rw,BIDS(∗).∗

rw,USERS(∗).∗; wr,USERS(∗).∗; ww,USERS(∗).∗ wr rw

wr

rw

ww

ww

ww

ww,BIDS(∗).∗

ww,BIDS(∗).∗

Figure 6 The static dependency graph SDG(I) of the application instance I defined in (3). We
draw may edges with dashed arrows, and must edges with solid arrows.

(i) T ` write(x,_) =⇒ x ∈W3;
(ii) T ` read(x,_) =⇒ x ∈ R3;
(iii) x ∈W2 =⇒ T ` write(x,_).

We lift the relation to annotated histories and annotated application instances:

(H, level) (I, levelS) ⇐⇒ ∀T ∈ H.∃I ∈ I. T I ∧ levelS(I) = level(T).

Note that the definition of allows multiple transactions in H to be associated to a single
I in I. For example, we have (H, (λT.⊥)) (I, (λI.⊥)) for the history H in Figure 5 and

I = {(RegUser,Alice), (ViewItem, iId1), (StoreBid, 〈iId1, 7〉), (StoreBid, 〈iId2, 10〉)}. (3)

We formulate our robustness criteria by adapting modal transition systems [21].

I Definition 9. The static dependency graph of an application instance I is a triple
SDG(I) = (I, > ,←−→), where the relations > and ←−→ are defined as follows. For
every I, J ∈ I, if rwsets(I) = (W3

I , R
3
I ,W

2
I) and rwsets(J) = (W3

J , R
3
J ,W

2
J), then:

I
wr, x

> J ⇐⇒ x ∈W3
I ∩R

3
J ; I

ww, x
> J ⇐⇒ x ∈W3

I ∩W
3
J ;

I
rw, x

> J ⇐⇒ x ∈ R3
I ∩W

3
J ; I

ww,x←−−→ J ⇐⇒ x ∈W2
I ∩W2

J .

Figure 6 shows the static dependency graph of the I in (3). Informally, the edges of
the static dependency graph SDG(I) describe possible dependencies between transactions
in executions produced by I: an edge I λ

> J represents a dependency that may exist, and
an edge I λ←→ J a dependency that must exists. Formally, given an annotated application
instance (I, levelS), we say that the pair (DDG(X), X.level) is over-approximated by the
pair (SDG(I), levelS), written (DDG(X), X.level)�(SDG(I), levelS), if for some total function
f : X.H → I we have:
1. ∀T λ−−→ S ∈ DDG(X). f(T) λ

> f(S) ∈ SDG(I);
2. ∀I λ←→ J ∈ SDG(I).
∀T ∈ f−1(I).∀S ∈ f−1(J). T λ−−→ S ∈ DDG(X) ∨ S λ−−→ T ∈ DDG(X); and

3. level(T) = levelS(f(T)).

I Lemma 10. ∀X.∀(I, levelS). (X.H,X.level) (I, levelS) =⇒
(DDG(X), level) � (SDG(I), levelS).

We now formulate our static robustness criteria by using the same notions of paths and
cycles for static dependency graphs as for dynamic ones (Section 3). Given a pair (I, levelS)
and a cycle in π ∈ SDG(I) among program instances I0, I1, . . . , In (where I0 = In), we

G. Bernardi and A. Gotsman 7:11

say that an rw edge Ii
rw, x

> Ii+1 ∈ π is critical in π, if for all Il, Im in π such that
l 6= m and for all t, t′ ∈ D? such that Il

t
> ? Ii ∈ π and that Ii+1

t′
> ? Im ∈ π, we

have ¬(Il
ww,_←−−−→ Im). For example, the graph in Figure 6 contains the following cycle π, in

which the left-most rw edge is critical, while the right-most rw edge is not critical:

ViewItem(iId1) StoreBid(iId1, 7) ViewItem(iId1) StoreBid(iId1, 7) ViewItem(iId1)
rw wr rw wr

ww

(4)

I Definition 11. Given a pair (I, levelS), an edge Ii
λ

> Ii+1 ∈ SDG(I) is unprotected if
either levelS(Ii) 6= SER or levelS(Ii+1) 6= SER. A cycle π ∈ SDG(I) among program instances
I0, I1, . . . , In (where I0 = In) is:
CC-critical, if π contains an unprotected edge Ii

rw, _
> Ii+1 and an unprotected edge

Ij
λ

> Ij+1 with i 6= j and λ ∈ {(ww,_), (rw,_)};
PC-critical, if π contains an unprotected edge Ii

rw, _
> Ii+1 and at least two adjacent

unprotected edges with labels in {(ww,_), (rw,_)}. ;
PSI-critical, if:

1. π contains at least two unprotected critical rw edges; and
2. for every Ii

rw, x
> Ii+1, Ij

rw, y
> Ij+1 ∈ π, if i 6= j, then x 6= y;

SI-critical, if:
1. π contains at least two adjacent unprotected critical rw edges; and
2. for every Ii

rw, x
> Ii+1, Ij

rw, y
> Ij+1 ∈ π, if i 6= j, then x 6= y. J

Note that, unlike a critical cycle in a dynamic dependency graph (Definition 4), a critical
cycle in a static graph does not have to be simple. The following lemma states that �
preserves critical cycles.

I Lemma 12. For every wm, (G, level) and (F, levelS) such that (G, level) � (F, levelS), if G
contains a wm-critical cycle, then F contains a wm-critical cycle.

Lemmas 10 and 12 (which are proven in [7]) and Corollary 6 establish our static criteria.

I Theorem 13. For every (H, level), (I, levelS) and wm, if SDG(I) contains no wm-critical
cycles and (H, level) ∈ hist(wm), then whenever (H, level) (I, levelS), we have H ∈
hist(SER).

For example, let levelS = (λI.⊥) and consider I defined by (3). The corresponding
static dependency graph in Figure 6 contains PSI-critical cycles, one of which is obtained by
following twice the loop RegUser(Alice) rw,USERS(_).name

> RegUser(Alice). Indeed, as we
explained in Section 2, the annotated instance (I, levelS) is not robust against PSI, because
it can produce the write skew anomaly in Figure 2(d). Now let level′S(RegUser,Alice) = SER
and level′S(_) = ⊥ otherwise. Figure 6 contains the static dependency graph corres-
ponding to the annotated instance (I, level′S). This graph does not contain PSI-critical
cycles. To see why, observe that in the graph there are only two kinds of cycles: the
ones due to the self-loop on the node RegUser(Alice), and the ones that connect nodes in
{StoreBid(iId1, 7), StoreBid(iId1, 10), ViewItem(iId1)}. The cycles of the first kind con-
tain only protected rw edges thanks to level′S, while the cycles of the second kind contain at
most one critical rw edge, as sketched in (4) above. It follows that no cycle is PSI-critical,
and thus by executing only the RegUser transaction on serializability, we make I robust.
However, the graph contains a CC-critical cycle, namely the one shown in (4) above. It is
CC-critical for its two rw edges are unprotected. As we explained in Section 2, under CC I
may produce the lost update anomaly in Figure 2(b), and it is unsafe to run I over a CC
database.

CONCUR 2016

7:12 Robustness against Consistency Models with Atomic Visibility

RegUser(uname)

ViewUsers()

ViewItem(iid′) StoreBid(iid′′, val)

rw,USERS(∗).∗; wr,USERS(∗).∗; ww,USERS(∗).∗; true

wr,USERS(∗).∗;
true

rw,USERS(∗).∗;
true wr, ITEMS(iid′).nbids;

iid′ = iid′′

rw, ITEMS(iid′).nbids;
iid′ = iid′′ ww; ITEMS(iid′).nbids;

iid′ = iid′′

ww;BIDS(∗).∗;
true

Figure 7 The summary dependency graph SDG(A), where A contains all the transactional
programs in Figure 1.

Analysing Whole Applications. The static criteria in Theorem 13 allow a programmer to
analyse the robustness of a given application instance. Analysing an application completely
using the theorem requires considering an infinite number of its instances, a task best done by
an automatic static analysis tool. We now sketch how ideas from abstract interpretation [13,
25] can be used to finitely represent and analyse the set of all instances of an application.
In the future, this can pave the way to automating our robustness criteria in static analysis
tools. Due to space constraints, we only present the concepts by an example.

We associate an application A with a summary dependency graph SDG(A) that
summarises the static graphs of all the instances of A. In Figure 7 we show the summary
dependency graph SDG(A) for the application in Figure 1. Every program in A yields a
summary node in the graph SDG(A), representing all instances of the program. Every
edge in SDG(A) is a summary edge, summarising the possible dependencies between the
corresponding programs. It is annotated by a constraint relating the actual parameters of
the incident programs between which the dependency exists. For example, the summary
edge from ViewItem to StoreBid in Figure 7 means that for every instance I of A we have
StoreBid(iId1,_) rw, x

> ViewItem(iId2) in SDG(I) iff
x ∈ {BIDS(∗).iId,BIDS(∗).val, ITEMS(iId1).nbids} and iId1 = iId2. Similarly, the ww
edge incident to StoreBid means that we have StoreBid(iId1,_) ww, x←−−−→ StoreBid(iId2,_)
in SDG(I) iff x = ITEMS(iId1).nbids and iId1 = iId2.

Definition 11 carries over to summary graphs of applications by taking into account the
constraints on summary edges when checking whether a given rw edge is critical in a given
cycle π, and whether the objects that appear on the rw edges of π are different. For example,
consider the following cycle in the graph in Figure 7:

StoreBid(iid1, val) ViewItem(iid2) StoreBid(iid3, val)

wr, ITEMS(iid2).nbids;
iid2 = iid1

rw, ITEMS(iid2).nbids;
iid2 = iid3

We consider the rw edge on this cycle not critical. This is because the constraints on the
edges in the cycle imply iid1 = iid3, which satisfies the constraint on the must ww edge
between StoreBid programs in Figure 7. For any annotated instance (I, levelS) of the
application A in Figure 1, using the adjusted Definition 11 we can check that, if levelS maps
the instances of RegUser and ViewUser in I to SER, then (I, levelS) is robust against PSI1.

1 Marking ViewUser as SER is actually unnecessary to make this application robust under PSI, because
the graph SDG(A) contains an edge ViewUser() rw,USERS(∗).∗

> RegUser(uname) which does not exist
in the dependency graph of any execution of A. This can be addressed by a more precise static analysis.

G. Bernardi and A. Gotsman 7:13

5 Related Work

In the setting of databases, application robustness was first investigated by Fekete et al. [16],
who proposed a criterion for robustness against snapshot isolation (SI) [6]. Fekete then
extended the criterion to SI databases allowing the programmer to request serializability for
certain transactions [15], a mechanism that we also consider. Our criterion is formulated in
a way similar to that of Fekete et al., using dependency graphs [2]. However, in contrast to
their work, we consider more subtle models of parallel snapshot isolation, prefix consistency
and causal consistency, which allow more anomalies than SI. The method we use is also
different from that of Fekete et al. They consider an operational specification of SI [6],
which makes the proof of the robustness criterion highly involved. In contrast, we benefit
from using declarative specifications that achieve conciseness by exploiting atomic visibility
of transactions [12]. This allows us to come up with robustness criteria more systematically.

Robustness has also been investigated for applications running on weak shared-memory
models of common multiprocessors and programming languages (e.g., [9]). However, this
line of work has not considered applications using transactions. Transactions complicate the
consistency model semantics, which makes establishing robustness criteria more challenging.

Serializability of transactions in an application simplifies establishing its correctness prop-
erties, but is not necessary for this. Thus, an alternative approach to establishing application
correctness is to prove its desired properties directly, without requiring the transactions to
produce only serializable behaviours. Corresponding methods have been proposed for ANSI
SQL isolation levels and SI by Lu et al. [23], and for PSI and some of other recent models by
Gotsman et al. [18]. Such methods are complementary to ours: the conditions they require
can be satisfied by more applications, but are more difficult to check than robustness.

6 Conclusion

In this paper we have made the first steps towards understanding the impact of recently-
proposed transactional consistency models for large-scale databases on the correctness prop-
erties of applications using them. To this end, we have proposed criteria for checking when
an application using a weak consistency model exhibits only strongly consistent behaviours.
This enables programmers to check that application correctness will be preserved for a par-
ticular choice of a consistency model or transactions to be executed under serializability.

The robustness result of Fekete et al. for SI has previously given rise to automatic
tools for statically detecting anomalies in applications [19]. Our work could form a basis for
similar advances in databases providing weaker consistency models. Our dynamic robustness
criteria are also of an independent interest: apart from serving as a basis for static analysis,
such criteria can be used to optimise run-time monitoring algorithms [24, 28].

In establishing our robustness criteria, we have followed a systematic approach that
exploits axiomatic specifications [12]: using the axioms of a consistency model, we have
characterised the cycles allowed in dependency graphs of executions on the model, and
exploited the characterisations to provide sound static analysis techniques. We hope that
this method will be applicable to other consistency models being proposed for large-scale
databases.

References
1 D. Abadi. Consistency tradeoffs in modern distributed database system design: CAP is

only part of the story. IEEE Computer, 45(2), 2012.

CONCUR 2016

7:14 Robustness against Consistency Models with Atomic Visibility

2 Atul Adya. Weak Consistency: A Generalized Theory and Optimistic Implementations for
Distributed Transactions. Ph.D., MIT, Cambridge, MA, USA, March 1999.

3 M. S. Ardekani, P. Sutra, and M. Shapiro. Non-monotonic snapshot isolation: Scalable
and strong consistency for geo-replicated transactional systems. In SRDS, 2013.

4 P. Bailis, A. Davidson, A. Fekete, A. Ghodsi, Joseph M. Hellerstein, and I. Stoica. Highly
Available Transactions: virtues and limitations. In VLDB, 2014.

5 P. Bailis, A. Fekete, A. Ghodsi, J. M. Hellerstein, and I. Stoica. Scalable atomic visibility
with RAMP transactions. In SIGMOD, 2014.

6 H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and P. O’Neil. A critique of ANSI
SQL isolation levels. In SIGMOD, 1995.

7 G. Bernardi and A. Gotsman. Robustness against consistency models with atomic visibility
(extended version). Available from http://software.imdea.org/∼gotsman/.

8 P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in
Database Systems. Addison-Wesley, 1987.

9 A. Bouajjani, E. Derevenetc, and Roland M. Checking and enforcing robustness against
TSO. In ESOP, 2013.

10 S. Burckhardt, D. Leijen, M. Fähndrich, and M. Sagiv. Eventually consistent transactions.
In ESOP, 2012.

11 S. Burckhardt, S. Leijen, J. Protzenko, and M. Fähndrich. Global sequence protocol: A
robust abstraction for replicated shared state. In ECOOP, 2015.

12 A. Cerone, G. Bernardi, and A. Gotsman. A framework for transactional consistency
models with atomic visibility. In CONCUR, 2015.

13 P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis
of programs by construction or approximation of fixpoints. In POPL, 1977.

14 G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Sivas-
ubramanian, P. Vosshall, and W. Vogels. Dynamo: Amazon’s highly available key-value
store. In SOSP, 2007.

15 A. Fekete. Allocating isolation levels to transactions. In PODS, 2005.
16 A. Fekete, D. Liarokapis, D. J. O’Neil, P.E O’Neil, and D. Shasha. Making snapshot

isolation serializable. ACM Trans. Database Syst., 30(2), 2005.
17 S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of consistent, available,

partition-tolerant web services. ACM SIGACT News, 33(2), 2002.
18 A. Gotsman, H. Yang, C. Ferreira, M. Najafzadeh, and M. Shapiro. ’Cause I’m strong

enough: reasoning about consistency choices in distributed systems. In POPL, 2016.
19 S. Jorwekar, A. Fekete, K. Ramamritham, and S. Sudarshan. Automating the detection of

snapshot isolation anomalies. In VLDB, 2007.
20 A. Lakshman and P. Malik. Cassandra: A decentralized structured storage system. SIGOPS

Oper. Syst. Rev., 44(2), 2010.
21 K. G. Larsen and B. Thomsen. A modal process logic. In LICS, 1988.
22 W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. Don’t settle for eventual:

scalable causal consistency for wide-area storage with COPS. In SOSP, 2011.
23 S. Lu, A. J. Bernstein, and P. M. Lewis. Correct execution of transactions at different

isolation levels. IEEE Trans. Knowl. Data Eng., 16(9), 2004.
24 Dan R. K. Ports and Kevin Grittner. Serializable snapshot isolation in PostgreSQL. Proc.

VLDB Endow., 5(12), August 2012.
25 M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic. ACM

Trans. Program. Lang. Syst., 24(3):217–298, 2002.
26 Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transactional storage for geo-replicated

systems. In SOSP, 2011.

G. Bernardi and A. Gotsman 7:15

27 D. Terry, V. Prabhakaran, R. Kotla, M. Balakrishnan, and M. K. Aguilera. Transactions
with consistency choices on geo-replicated cloud storage. Technical Report MSR-TR-2013-
82, Microsoft Research, 2013.

28 Kamal Zellag and Bettina Kemme. Consistency anomalies in multi-tier architectures: Auto-
matic detection and prevention. The VLDB Journal, 23(1), 2014.

CONCUR 2016

Optimal Assumptions for Synthesis
Romain Brenguier∗

University of Oxford, UK
rbrengui@cs.ox.ac.uk

Abstract
Controller synthesis is the automatic construction a correct system from its specification. This
often requires assumptions about the behaviour of the environment. It is difficult for the designer
to identify the assumptions that ensures the existence of a correct controller, and doing so manu-
ally can lead to assumptions that are stronger than necessary. As a consequence the generated
controllers are suboptimal in terms of robustness. In this work, given a specification, we identify
the weakest assumptions that ensure the existence of a controller. We also consider two important
classes of assumptions: the ones that can be ensured by the environment and assumptions that
restricts only inputs of the systems. We show that optimal assumptions correspond to strongly
winning strategies, admissible strategies and remorse-free strategies depending on the classes.
Using these correspondences, we then propose an algorithm for computing optimal assumptions
that can be ensured by the environment.

1998 ACM Subject Classification D.2.4 Software/Program Verification

Keywords and phrases Controller synthesis, Parity games, Admissible strategies

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2016.8

1 Introduction

The goal of synthesis is the implementation of a correct reactive system from its specifica-
tions. A specification is given by a ω-regular language over input and output signals of the
desired system. It is realisable if we can guarantee that the sequence of inputs and outputs
belong to the language. For regular languages this can be done using finite memory and
thus implemented using Moore machines. Several tools have been developed to solve this
problem (see for example: [3, 14]).

In general, the realisation of a specification requires some assumptions about the envir-
onment. In this work, we look for the weakest assumption that makes it realisable. For us,
an assumption is weaker if it allows more behaviours. We therefore use language inclusion
to compare assumptions, which means there may be incomparable and there is not a unique
weakest in general. Apart from looking for just an assumption, we also consider two im-
portant classes of assumptions: ensurable and input assumptions. Ensurable assumptions
can be ensured by the environment; in other term they cannot be falsified by a strategy of
the controller. These assumptions are natural to consider when faced with a reactive envir-
onment. On the other hand, input assumptions are independent of the sequence of output
that is produced. They are better suited to ensurable assumptions when the behaviour of
the environment does not depend on the outputs of our system.

Synthesis is in general achieved by the computation of winning strategies in a game. For
instance, if the specification is given by a parity automaton, we can see it has a game where
the controller chooses output symbols and the adversary controls input symbols. Winning

∗ Work supported by EPSRC grant EP/M023656/1.

© Romain Brenguier;
licensed under Creative Commons License CC-BY

27th International Conference on Concurrency Theory (CONCUR 2016).
Editors: Josée Desharnais and Radha Jagadeesan; Article No. 8; pp. 8:1–8:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.8
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

8:2 Optimal Assumptions for Synthesis

s1

s2

s3 s4

s5

s6 s7

⊥

⊥
ΣI

send0

¬send0

ack0

¬ack0

send0

¬send0

send1

¬send1

ack1
¬ack1

send1

¬send1

ΣI ΣO

Figure 1 A Büchi automaton for the specification ΣI · (send0 · (¬ack0 · send0)∗ · ack0 · send1 ·
(¬ack1 · send1)∗ · ack1)ω. Accepting states (with colour 0) are double lined. Square states mean
that the next signal is an input, while circles mean it will be an output.

strategies in this game correspond to correct implementation of the system, and their ex-
istence implies realisability. When winning strategies do not exist, different classes have
been introduced to characterise strategies that make their best effort to win. In particu-
lar, strongly winning strategy [10] play a winning strategy as soon as the current history
(sequence of signals seen so far) makes it possible. Admissible strategies [1] are not dom-
inated by other ones, in the sense that no strategy performs better than them against all
adversary strategies. Remorse-free strategies [8] are such that no other strategy performs
better than them against all words played by the adversary. We draw a link between classes
of assumptions and these classes of strategies.

Example. As an example, assume we want to design a sender on a network where pack-
ets can be lost or corrupted, and our goal is to obtain a protocol similar to the classical
alternating bit protocol. The outputs of the sender are actions send0 and send1, and the
environment controls ack0, ack1 corresponding to acknowledgement of good reception of the
packet. The specification is given by the ω-regular expression: ΣI · (send0 · (¬ack0 · send0)∗ ·
ack0 · send1 · (¬ack1 · send1)∗ · ack1)ω. Intuitively, we have to send message with bit control
0 until receiving the corresponding acknowledgement, then do the same thing with the next
message with bit control 1 and repeat this forever.

Although the implementation of the protocol seems straightforward, classical realisability
fails here since if all packets are lost after some point the specification will not be satisfied,
hence there is no winning strategy. To ensure realisability we have to make the assumption
that a packet that is repeatedly sent will eventually be acknowledged. An admissible strategy
for this specification can be implemented by a Moore machine which has the same structure
as the automaton in Figure 1 with output function G such that G(s2) = G(s4) = send0
and G(s5) = G(s7) = send1. This implementation is natural for the given specification and
corresponds indeed to the alternating bit protocol. The assumption corresponding to this
strategy is the language recognised by the same automaton where we add ⊥-states to the
set of accepting states. As we will see in Theorem 23, it is an optimal ensurable assumption
for the specification.

R. Brenguier 8:3

Table 1 Link between classes of assumptions and strategies.

Class of assumption: Optimal achieved by:
General (A) Strongly winning strategies Theorem 12
Ensurable (E) Admissible strategies Theorem 23
Input (I) Remorsefree strategies Theorem 38

Scenarios. Specifications disallow behaviours that are not desirable. Dually, we may want
to specify execution scenarios that should be possible in the synthesised system. We ask
then for a system whose outcomes are all within the specifications and contains all the given
scenarios. Scenarios are also a means for the user to provide feedback when the assumptions
and strategies suggested by our algorithm are not the expected ones.

Generalisation. Sometimes, we already know a sufficient assumption but we want to syn-
thesise a system which is as robust as possible by generalising this assumption. For instance,
for the alternating bit protocol we could suggest as an initial assumption that two successive
packets cannot be lost. With this assumption, we would offer no guarantee when than more
two packets in a row are lost. By generalising the assumption, we ensure that the strategy
synthesised works well under the assumption and for as many input sequences as possible.
For instance, the alternating bit protocol works if an infinite number of packets are not lost.

Contribution. In this article we establish correspondences between class of assumptions
and classical classes of strategies, which are summarised in Table 1.

We also show existence of optimal assumptions in most cases and give algorithms to
compute optimal assumptions. In particular, we show the following properties. The exist-
ence of sufficient input assumptions compatible with a scenario is always true (Theorem 6).
It is also true for safety assumptions if the scenario is itself a safety language (Theorem 7).
There may exist an infinite number of optimal and ensurable-optimal assumptions (The-
orem 14) and of input-optimal assumptions (Theorem 34). We can compute an optimal
ensurable assumption in exponential time for parity specification and in polynomial time if
we have an oracle to solve parity games (Theorem 27 and Theorem 30). There is an expo-
nential algorithm that given a sufficient assumption, generalises it to an ensurable-optimal
assumption (Theorem 33).

Comparison on previous works on assumptions for synthesis. In [7], the study is focused
on safety conditions defined by forbidding edges of the automaton defining specification L.
This approach depends on the choice of the automaton representing L, while ours does not.
In the setting of [7], comparison between assumptions is based on the number of edges, while
we compare them based on language inclusion which we find more relevant. Consider the
example of Figure 2 taken from [7]. There is no winning strategy from s1. According to [7],
there are 2 minimal sufficient assumptions which are to remove either (s3, s6) or (s5, s7).
However if we remove the edge from s3 to s6, state s5 is no longer reachable which means that
the first assumption is in fact stronger than the second one from the point of view of language
inclusion. Moreover, we show that even for this restricted class of safety assumption, the
claim that there is a unique non-restrictive optimal assumption [7, Theorem 5] does not
hold for our notion of ensurable assumption. Consider the example of Figure 3: removing
(s3, s6) or (s4, s6) is sufficient for L = ΣI · (o1 · i1 + o2 · i2) ·ΣO · (ΣI ·ΣO)ω, and both these
assumptions are ensurable-optimal.

CONCUR 2016

8:4 Optimal Assumptions for Synthesis

s1

s2 s3

s5 s6

s7

s9

s10

s4

s8

Figure 2 A game from [7].

s1 s2

s3

s4 s5 s8

s6 s7

ΣI

o1

o2

i1

i2

i2

i1
ΣO

ΣI

ΣO

ΣI

Figure 3 Automaton for specification ΣI · (o1 · i1 + o2 · i2) · ΣO · (ΣI · ΣO)ω.

Other related works. Our goal is close to the work on assume-guarantee synthesis [6].
However assume-guarantee synthesis relies on equilibria concepts inspired by Nash equilibria.
As such they assume rationality of the environment of the system and that its objective is
known. By contrast, here we do not assume a rational environment and we look for the
minimal assumptions about it. Closer to our work is [8] which relies on a notion of dominant
strategy to obtain the weakest input assumption for which a component of the system can be
implemented. A problem with this approach is that dominant strategies do not always exist.
Here we characterise all minimal assumptions, and we look both at input assumptions and
ensurable assumptions, which are more relevant in the context of a reactive environment.

2 Preliminaries

Given a finite alphabet Σ and an infinite word w ∈ Σω, we use wi to denote the i-th symbol
of w, and w≤i = w1 · · ·wi the finite prefix of w of length i. We write |w≤i| = i its length. A
reactive system reads input signals in a finite alphabet ΣI and produces output signals in a
finite alphabet ΣO. We fix these alphabets for the remainder of this paper. A specification
of a reactive system is an ω-language L ⊆ (ΣI · ΣO)ω. A program or strategy is a mapping
σ∃ : (ΣI · ΣO)∗ · ΣI → ΣO. An outcome of such a strategy σ∃ is a word w such that for all
i ∈ N, w2·i+2 = σ∃(w≤2·i+1). We write Out(σ∃) for the set of outcomes of σ∃.

Given a specification L, the realizability problem [15] asks whether there exists a strategy
σ∃ such that Out(σ∃) ⊆ L. Such a strategy is said winning for L. The process of constructing
such a strategy is called synthesis.

Parity automata. We assume that specifications are given by deterministic parity auto-
mata, which can recognise any ω-regular languages [13]. A parity automaton is given by
〈S, s0,∆, χ〉, where S is a finite set of states, s0 ∈ S is the initial state, ∆ ∈ S×(ΣI∪ΣO)×S
is the transition relation, and χ : S → N is a colouring function. A path ρ ∈ Sω is accepting
if the smallest colour seen infinitely often is even (i.e. if min{c | ∀i ∈ N. ∃j ≥ i. χ(wj) =

R. Brenguier 8:5

s1 s2s3 s4 s5

i1i2

o2

o1
o1

o2 ΣI

ΣO

Figure 4 A Büchi automaton corresponding to specification (i1 · o2 + i2 · o1)ω.

c} ∈ 2 · N). A word w is accepted if there is an accepting path whose labelling is w. A
Büchi automaton is a parity automaton for which χ(S) ⊆ {0, 1}. A safety automaton is a
Büchi automaton where states of colour 1 are absorbing. The language recognised by an
automaton is the set of words it accepts. Specification can also be given in temporal logics
such as LTL before being translated to an automaton representation. In some examples, we
will use LTL formulas with the syntax Xφ meaning φ holds in the next state, φ1Uφ2 meaning
φ1 holds until φ2 holds (and φ2 must hold at some point), Fφ := true U φ and Gφ := ¬F(¬φ).

Strategies. The realizability problem is best seen as a game between two players [12]. The
environment chooses the input signals and the controller the output signals. We therefore
also define the concept of environment-strategy which is a mapping σ∀ : (ΣI · ΣO)∗ → ΣI .
Given an environment-strategy σ∀, we write Out(σ∀) the set of words w such that for all
i ∈ N, w2·i+1 = σ∀(w≤2·i). Given an input word u ∈ ΣI

ω, we write Out(σ∃, u) the unique
outcome such that for all i ∈ N, w2·i+1 = ui+1 and w2·i+2 = σ∃(w≤2·i+1). We also write
Out(σ∃, σ∀) = Out(σ∃)∩Out(σ∀), note that it contains only one outcome. A finite prefix of an
outcome is called a history. Given a history h, we write Outh(σ∃) a word w such that for all
i ≤ |h|, wi = hi and for all i such that 2 · i+ 2 > |h|, w2·i+2 = σ∃(w≤2·i+1). We write πI and
πO the samplings over input and output signals respectively, that is πI : (ΣI · ΣO)ω → ΣI

ω

is such that πI(w)i = w2·i−1 and πO : (ΣI · ΣO)ω → ΣO
ω is such that πO(w)i = w2·i.

Moore machine. Finite memory strategies are implemented as Moore machines. Note that
the machines as we will define them read both inputs and outputs. In many application,
reading outputs is unnecessary since the strategy can be left undefined on incompatible
histories. However the definition we provide is coherent with our definition of strategies and
makes it easier to combine strategies which may not be compatible with the same histories. A
Moore machine is given by 〈SI , SO, s0, δ, G〉 where S = SI∪SO is a finite set of states, SI is a
set of input states and SO of output states, s0 ∈ SI is the initial state, δ : S×(ΣI ∪ΣO)→ S

is the transition function, and G : SO → ΣO is an output function. A Moore machine
implements a strategy σ∃ where for all history h ∈ (ΣI · ΣO)∗ · ΣI , σ∃(h) = G(s|h|) where
for all 0 ≤ i < |h|, si+1 = δ(si, hi+1).

2.1 Assumptions

An assumption A ⊆ (ΣI · ΣO)ω is sufficient for specification L if there is a strategy σ∃ of
the controller such that any outcome either satisfies L or is not in A, i.e. Out(σ∃) ∩A ⊆ L.
In this case we also say that A is sufficient for σ∃. We look for assumptions that are the
least restrictive. We say that assumption A is less restrictive than B if B ⊆ A. We say it is
strictly less restrictive if B ⊂ A (i.e. B ⊆ A and A 6= B). We consider the following classes:

An assumption is an ω-regular language A ⊆ (ΣI · ΣO)ω. We write the class of all
assumptions A.

CONCUR 2016

8:6 Optimal Assumptions for Synthesis

An input-assumption is an assumption which concerns only inputs and does not restrict
outputs. We write this class I = {A ∈ A | ∀w,w′ ∈ (ΣI · ΣO)ω. πI(w) = πI(w′) ∧ w ∈
A⇒ w′ ∈ A}.
An ensurable assumption is an assumption for which the environment has a winning
strategy, i.e. for each w ∈ (ΣI · ΣO)∗, if w · (ΣI · ΣO)ω ∩ A 6= ∅ then there exists an
environment strategy σ∀ such that w · (ΣI · ΣO)ω ∩ Out(σ∀) 6= ∅ and Out(σ∀) ⊆ A. We
write this class E . The fact that the environment can ensure the assumption is often a
requirement in synthesis (see for instance [2]).
An output-restrictive assumption A is an assumption which it restricts the strategies of
the controller, that is there is w ∈ (ΣI ·ΣO)∗ and σ∃ a strategy, such that: A ∩w · (ΣI ·
ΣO)ω 6= ∅ and Out(σ∃) ∩ w · (ΣI · ΣO)ω 6= ∅ and A ∩ Out(σ∃) ∩ w · (ΣI · ΣO)ω = ∅.
Intuitively an output-restrictive assumption A forbids strategy σ∃, so playing σ∃ would
be a trivial way to satisfy A ⇒ L. From the point of view of synthesis it is better to
avoid such assumptions. We write this class R.
A safety assumption is an assumption A for which every word not in A has a bad
prefix [11], i.e. A = (ΣI · ΣO)ω \ {w | ∃k. w≤2·k ∈ Bad(A)}, where Bad(A) = {h ∈
(ΣI ·ΣO)∗ | h · (ΣI ·ΣO)ω ∩A = ∅} is the set of bad prefixes of A. We write this class S.

For a class C of assumptions, we say that assumption A is C-optimal for L if A belongs
to C, is sufficient for L and there is no assumption B ∈ C that is strictly less restrictive than
A and sufficient for L.
I Remark. Note that L is always a sufficient assumption, however it is too strong and will
never be interesting for synthesis: if we assume that our specification always hold then any
strategy would do. That is why we ask for assumptions that are as weak as possible.

We first note the following relationships between the classes of assumptions.

I Lemma 1. Non-empty input assumptions are ensurable, i.e. (I \ {∅}) ⊂ E

I Lemma 2. Ensurable assumptions are the non-output-restrictive ones: E = A \R.

I Example 3. In all the examples of this article we will assume that the set of input signals
is ΣI = {i1, i2} and the set output of output signals is ΣO = {o1, o2}. The automaton for
specification L given by formula o1Ui1 is represented in Figure 5. This specification is not
realisable, however several assumptions can be sufficient for it. Consider for instance the
assumption A given by the LTL formula Fo1. It is sufficient for L and is in fact sufficient for
any specification since a strategy σ∃ which never plays o1 has no outcome in A. To avoid
this degenerate assumptions we focus on non-restrictive assumptions: Fo1 is indeed output
restrictive. On the other hand F(o1)⇔ F(i1) is ensurable because the environment can react
to make the assumption hold, no matter the strategy σ∃ we chose. We can also check that
it is sufficient for L: the strategy that always play o1 is winning.

This assumption is fine in the context of a reactive environment, but if the environment
behaves independently of the output of the system, o1 should not appear in the assumption.
Imagine the inputs are read from a file, then the environment cannot react to our outputs
since the input word is already present on disk before we started producing outputs. Thus
there is no way the assumption F(o1)⇔ F(i1) can be satisfied for all possible programs. In
that case, the input-assumption Fi1 which is independent from outputs is better suited.

2.2 Refinement using scenarios
As we will see in the next sections, in general there are an infinite number of incomparable
optimal assumptions. This raises the problem of choosing one among all the possibilities.

R. Brenguier 8:7

s1s2s3 s4 s5 s6
i1

ΣO

ΣI i2

o1
o2

ΣI

ΣO

Figure 5 Büchi automaton recognising the language corresponding to LTL formula o1Ui1.

s0 s1 s2 s3 s4s5 s6

i1, i2

o1

o2

i1

i2

o1, o2

i1, i2

o1, o2

i1, i2

Figure 6 Büchi automaton for specification (¬o2)U(o2 ∧ Xi2).

A solution is to get some feedback from the user in the form of scenarios. A scenario is a
behaviour that the strategy we produce should allow.

Scenario. Formally a scenario is given by a language S ⊆ (ΣI · ΣO)ω. A strategy σ∃ is
compatible with the set of scenarios S when S ⊆ Out(σ∃). Similarly S is compatible with
specification L if S ⊆ L. Assumption A is sufficient for L and S, if there exists σ∃ such
that S ⊆ A ∩ Out(σ∃) ⊆ L. We say that an assumption A is C-optimal for L and S if it is
sufficient for L and S and there is no A′ ∈ C strictly less restrictive than A and sufficient for
L and S. A scenario S is coherent if there is no words w,w′ ∈ S such that w≤2·i+1 = w′≤2·i+1
and w2·i+2 6= w′2·i+2 for some i ∈ N. If S is not coherent, then as no strategy can play both
w≤2·i+2 and w′≤2·i+2, no strategy can be compatible with S. Coherence is in fact a necessary
and sufficient condition for the existence of a compatible strategy.

I Lemma 4. Scenario S is coherent if, and only if, there exists a strategy compatible with S.
In particular, given a coherent scenario S and a strategy σ∃, the strategy [S → σ∃] is compat-

ible with S, where: [S → σ∃](h) =
{
wh+1 if there is w ∈ S such that h is a prefix of w
σ∃(h) otherwise .

I Example 5. Consider the example in Figure 6. There are many different possible assump-
tions we could chose from. However if we give the scenario ΣI · o2 · i2 ·ΣO · (ΣI ·ΣO)ω then
the only ensurable-optimal assumption is (ΣI · o2 · i2 + ΣI · o1 · ΣI) · ΣO · (ΣI · ΣO)ω. The
corresponding winning strategy consists in playing o2 for the first output.

2.3 Existence of a sufficient assumption with scenario
We show that given a scenario, there exists an input assumption which is sufficient and
compatible with it. A safety assumption also exists if the scenario is itself a safety language.

I Theorem 6. Let L be a specification and S a scenario. If S is compatible with L, then
there exists an input assumption which is sufficient for L and compatible with S.

Proof. Assume S is compatible with L and let A = {w ∈ (ΣI · ΣO)ω | ∃w′ ∈ S. πI(w) =
πI(w′)}. A is clearly an input assumption. We prove that for any strategy σ∃, A is sufficient
for [S → σ∃]. Let w ∈ A ∩ Out([S → σ∃]). Since w ∈ A, there is w′ ∈ S such that
πI(w′) = πI(w). Since [S → σ∃] is compatible with S (Lemma 4), it is compatible with w′,
and therefore w′ = Out(σ∃, πI(w)) = w. This proves w ∈ S, and thus A sufficient for L. J

CONCUR 2016

8:8 Optimal Assumptions for Synthesis

I Theorem 7. Let L be a specification and S a scenario compatible with L. If S is a safety
language, then there exists a safety assumption sufficient for L and compatible with S.

I Remark. There are examples of scenarios which are not safety languages for which there is
no sufficient safety assumption. Consider L and S both given by Fi1. A safety assumption
A compatible with S has to contain Fi1. Assume towards a contradiction that there is
w 6∈ A. Since A is a safety assumption, w has a bad prefix, that is there is i such that
w≤2·i · (ΣI ·ΣO)ω ∩A = ∅. As w≤2·i · (i1 · o1)ω ∈ S, this is contradiction with the fact that
A is compatible with S. Therefore A = (ΣI · ΣO)ω and this is not sufficient for L.

3 General assumptions

In this section we study general assumptions, without concern for whether there are ensur-
able or not. Properties established here will be useful when studying ensurable assumptions.

Necessary and sufficient assumptions. Given a specification L and a strategy σ∃, we say
that an assumption A is necessary for σ∃ if B sufficient for σ∃ implies B ⊆ A.

I Lemma 8. Given a strategy σ∃, the assumption GA(σ∃) = L ∪ ((ΣI · ΣO)ω \ Out(σ∃)) is
sufficient and necessary for σ∃.

I Corollary 9. If A is optimal, then there exists σ∃ such that A = GA(σ∃).

Link with strongly winning strategies. Our goal is to establish a link with the notion of
strongly winning strategy. Intuitively this corresponds to the strategies that play a winning
strategy whenever it is possible from the current history.

I Definition 10 ([10, 4]). Strategy σ∃ is strongly winning when for any history h, if there
exists σ′∃ such that ∅ 6= (Out(σ′∃) ∩ h · (ΣI · ΣO)ω) ⊆ L, then (Out(σ∃) ∩ h · (ΣI · ΣO)ω) ⊆
L. A subgame winning strategy (called subgame perfect in [10]), is such that for any history
h, if there exists σ′∃ such that Outh(σ′∃) ⊆ L then Outh(σ∃) ⊆ L.

I Lemma 11 ([10, Lemma 1]). For every specification, there exists strongly winning and
subgame winning strategies.

I Theorem 12. Let GA(σ∃) = L ∪ ((ΣI · ΣO)ω \ Out(σ∃)). If strategy σ∃ is strongly win-
ning for L, then GA(σ∃) is an optimal assumption for L. Reciprocally, if A is an optimal
assumption for L, then there is a strongly winning strategy σ∃ such that A = GA(σ∃).

Proof. Assume that σ∃ is strongly winning. First notice that by Lemma 8, GA(σ∃) is
sufficient for σ∃ and thus sufficient for L. Let A be an assumption which is sufficient for L,
we will prove that GA(σ∃) 6⊂ A, which shows that GA(σ∃) is optimal. Let σ′∃ be a strategy
for which A is sufficient. If A \ GA(σ∃) = ∅, then A ⊆ GA(σ∃) which shows the property.
Otherwise there exists w ∈ A \ GA(σ∃). Since w 6∈ GA(σ∃) and L ⊆ GA(σ∃), w 6∈ L, i.e.
w is losing. Since w 6∈ GA(σ∃) and (ΣI · ΣO)ω \ Out(σ∃) ⊆ GA(σ∃), w ∈ Out(σ∃), i.e. it is
an outcome of σ∃. Since A ∩ Out(σ′∃) ⊆ L and w ∈ A \ L, w 6∈ Out(σ′∃), i.e. it is not an
outcome of σ′∃. Let w≤k be the longest prefix of w that is compatible with σ′∃. Since σ∃
is strongly winning and w is an outcome of σ∃ which is losing, for all strategies σ′′∃ , either
w≤k · (ΣI · ΣO)ω ∩ Out(σ′′∃) = ∅ or w≤k · (ΣI · ΣO)ω ∩ Out(σ′′∃) \ L 6= ∅. Since w≤k is
compatible with σ′∃, w≤k · (ΣI · ΣO)ω ∩ Out(σ′∃) 6= ∅, and therefore there is an outcome w′
of σ′∃ which is losing. Since A is sufficient for σ′∃, w′ 6∈ A. Note that w′ is not an outcome

R. Brenguier 8:9

s0s1 s2 s3s4 s5s6

i1
i2

o1

o2

o1

o2

ΣI

ΣOΣI

ΣO

Figure 7 Büchi automaton for expression (i1 · o1)∗ · i2 · o2 · (ΣI · ΣO)ω.

of σ∃: w′k+1 = σ′∃(w≤k) 6= σ∃(w≤k). Hence, w ∈ (ΣI · ΣO)ω \ Out(σ∃) ⊆ GA(σ∃). Therefore
w′ ∈ GA(σ∃) \A which proves GA(σ∃) 6⊂ A.

Let now A be an optimal assumption for L and σ∃ a strategy for which A is sufficient.
Note that by Corollary 9, A ⊆ GA(σ∃). We show that σ∃ is strongly winning. Let h be a
history such that there is σ′∃ such that ∅ 6= Out(σ′∃) ∩ h · (ΣI · ΣO)ω ⊆ (L). We prove that
Out(σ∃) ∩ h · (ΣI · ΣO)ω ⊆ L which shows the result. If Out(σ∃) ∩ h · (ΣI · ΣO)ω = ∅ the
property holds and otherwise consider the strategy σ∃ [h← σ′∃] that plays according to σ∃
and when h is reached shifts to σ′∃. Formally, given a history h′:

σ∃ [h← σ′∃] =
{
σ′∃(h′) if h is a prefix of h′
σ∃(h′) otherwise

Since h is compatible with σ′∃ and Out(σ′∃) ∩ h · (ΣI ·ΣO)ω ⊆ L, we also have σ∃ [h← σ′∃]∩
h · (ΣI · ΣO)ω ⊆ L. Moreover all outcomes not in h · (ΣI · ΣO)ω are compatible with σ∃.
Hence GA(σ∃)∪ h · (ΣI ·ΣO)ω is sufficient for σ∃ [h← σ′∃]. By the optimality of assumption
GA(σ∃), GA(σ∃) 6⊂ GA(σ∃)∪ h · (ΣI ·ΣO)ω. Hence h · (ΣI ·ΣO)ω ⊆ GA(σ∃). Since GA(σ∃) is
sufficient for σ∃, Out(σ∃) ∩ h · (ΣI · ΣO)ω ⊆ L, which shows the result. J

I Example 13. Consider the specification L given by expression (i1 · o1)∗ · i2 · o2 · (ΣI ·ΣO)ω

and for which a Büchi automaton is given in Figure 7. There is no winning strategy in this
game, since if the input is always i1 there is no way to satisfy the specification. However, if
the current history is of the form (i1 · o1)∗ · i2, then controller has a winning strategy which
consists in replying o2. Strongly winning strategies must therefore present this behaviour
for all (i1 · o1)∗ · i2 that are compatible with it. Consider strategy σ∃ such that if the first
input is i2, then σ∃ plays the winning strategy we described and otherwise always play o2.
This is a strongly winning strategy since for histories beginning with i2 it is winning and
for any other history compatible with σ∃ there is no winning strategy. The assumption
corresponding to this strategy is GA(σ∃) = i2 ·ΣO · (ΣI ·ΣO)ω + i1 · (ΣO ·ΣI)∗ ·o1 · (ΣI ·ΣO)ω.

Infinity of optimal assumptions. As Figure 8 illustrates, there can be an infinite number
of optimal assumptions.

I Theorem 14. There is a specification for which there are an infinite number of optimal
assumptions and an infinite number of optimal ensurable assumptions.

Proof. Consider the game of Figure 8. In this game there are an infinite number of strongly
winning strategies. They must all play o2 in s5 but have the choice of how long to stay
in s2. We write σn

∃ the strategy that plays o1, n times before playing o2 (note that we
could also consider strategies that depend on the choice of input in s1, but this will not
be necessary here). The sufficient hypothesis for σn

∃ is GA(σn
∃) = (ΣI · ΣO)ω \ (ΣI · o1)n ·

ΣI · o2 · i1 · ΣO · (ΣI · ΣO)ω. They are incomparable and since σn
∃ are strongly winning

they are all optimal. This shows that there is an infinite number of optimal assumptions.
Note that these assumptions are ensurable, and therefore there also is an infinite number of
ensurable-optimal assumptions. J

CONCUR 2016

8:10 Optimal Assumptions for Synthesis

s1 s2 s3 s4 s8s7s6s5

ΣI

o2
o1

i1

i2

o1

o2 ΣO

ΣI

ΣO

ΣI

Figure 8 A parity automaton for a specification with an infinity of optimal assumptions.

Scenarios. Strategy [S → σ∃] corresponds to an optimal assumption when σ∃ is winning.

I Lemma 15. If σ∃ is subgame winning strategy for L, then GA([S → σ∃]) is optimal for L
and S.

Generalisation. Assume now we are given a sufficient assumption A and want to generalise
it, that is find A′ optimal and such that A ⊆ A′. We compute σ∃ winning for A ⇒ L (i.e.
such that Out(σ∃)∩A ⊆ L and σ′∃ subgame winning for L. We then define σ′∃[A \W → σ∃]
to be the function that maps h to σ′∃(h) if h is not a prefix of a word w ∈ A or h ∈ W =
{h | Out(σ′∃) ∩ h · (ΣI · ΣO)ω ⊆ L}, and maps h to σ∃(h) otherwise.

I Lemma 16. If Out(σ∃)∩A ⊆ L and σ′∃ is subgame winning for L, then GA(σ′∃[A\W → σ∃])
is an optimal assumption for L and contains A.

4 Ensurable assumptions

Consider again the solution given in Example 13. Assumption i2 · ΣO · (ΣI · ΣO)ω + i1 ·
(ΣO · ΣI)∗ · o1 · (ΣI · ΣO)ω is indeed an optimal, but it may not be what we would expect
because the expression i1 · (ΣO ·ΣI)∗ · o1 is an assumption about the controller rather than
the environment. A controller which falsifies the assumption would then be considered
correct. Instead of this, we would prefer an assumption which only restrict the behaviour
environment. This motivates the search for nonrestrictive assumptions.

4.1 Necessary and sufficient non-restrictive assumptions
In this section, we show properties of assumptions that are not restrictive. As we have seen
in Lemma 2, this coincide with ensurable assumptions for ω-regular objectives.

Given a strategy σ∃, the word w is doomed for σ∃ if there is an index k such that one
outcome of σ∃ has prefix w≤k and all outcome of σ∃ that have prefix w≤k do not satisfy L.
We write Doomed(σ∃) for the set of words that are doomed for σ∃ i.e. Doomed(σ∃) = {w |
∃k ∈ 2 · N. Out(σ∃) ∩ w≤k · (ΣI · ΣO)ω 6= ∅ and Out(σ∃) ∩ w≤k · (ΣI · ΣO)ω ∩ L = ∅}. We
consider the assumption EA(σ∃) = GA(σ∃) \ Doomed(σ∃).

I Lemma 17. Let σ∃ be a strategy, we have the following properties: 1. EA(σ∃) is suffi-
cient for σ∃, and nonrestrictive; 2. for all assumption A sufficient for σ∃ and not output-
restrictive, we have that A ⊆ EA(σ∃).

I Example 18. For the strategy σ∃ we defined in Example 13, the set of doomed histories
is i1 · o2 · (ΣI · ΣO)ω. Then EA(σ∃) is i2 · ΣO · (ΣI · ΣO)ω which is nonrestrictive. This
assumption describes better than GA(σ∃) the assumptions on the environment necessary
to win. However it is not optimal among nonrestrictive assumptions, and we will now
characterise the strategies for which EA(σ∃) is optimal.

R. Brenguier 8:11

4.2 Link between non-dominated strategies and optimal assumptions
We use the notion of weak dominance classical in game theory. Intuitively a strategy dom-
inates another one if it performs at least as well against any strategy of the environment.

I Definition 19 ([5]). Strategy σ∃ is very weakly dominated from history h by strategy σ′∃
if for all strategy σ∀ of the environment, Outh(σ∃, σ∀) ∈ L⇒ Outh(σ′∃, σ∀) ∈ L. It is weakly
dominated from h by σ′∃ if moreover σ′∃ is not very weakly dominated by σ∃ from h. A
strategy is said non-dominated if no strategy weakly-dominates it from the empty history ε.
A strategy is non-subgame-dominated if there is no strategy that weakly-dominates it from
any history h. A strategy is said dominant if it very weakly dominates all strategies.

We can draw a link between optimal assumptions and non-dominated strategies.

I Lemma 20. If EA(σ∃) ⊆ EA(σ′∃) then σ∃ is very weakly dominated by σ′∃.

I Lemma 21. If σ∃ is very weakly dominated by σ′∃ then EA(σ∃) ⊆ EA(σ′∃).

I Example 22. Consider again Example 13 and a strategy σ′∃ which plays o1 in s1 and o2
in s2. We have that σ′∃ weakly dominates σ∃. The assumption necessary to σ′∃ is GA(σ′∃) =
(i1 · o1)∗ · (i1 · o2 + i2 · ΣO) · (ΣI · ΣO)ω which is incomparable with GA(σ∃): it does not
contain (i1 ·o1)ω for instance. But Doomed(σ′∃) = ∅ while Doomed(σ∃) = i1 ·ΣO · (ΣI ·ΣO)ω

(which rules out (i1 · o1)ω). So we indeed have EA(σ∃) ⊂ EA(σ′∃).

I Theorem 23. Let L be an ω-regular specification. If σ∃ is a non-dominated strategy for L,
then EA(σ∃) is ensurable optimal for L. Reciprocally if A is an ensurable optimal assumption
for L, then there is a non-dominated strategy σ∃ for L such that A = EA(σ∃).

Proof. Let σ∃ be a non-dominated strategy. By Lemma 17, the assumption EA(σ∃) is suffi-
cient for L and not output-restrictive. We now prove it is optimal. Let A be a nonrestrictive
assumption sufficient for L and σ′∃ for which A is sufficient. By Lemma 8, A ⊆ GA(σ′∃).
As σ∃ is not weakly dominated by σ′∃, either: 1. σ∃ is not very weakly dominated by
σ′∃. Then by Lemma 20 EA(σ∃) 6⊆ EA(σ′∃). Or 2. σ∃ very weakly dominates σ′∃ then by
Lemma 21, EA(σ′∃) ⊆ EA(σ∃). Therefore EA(σ∃) 6⊂ EA(σ′∃) and by Lemma 17 A ⊆ EA(σ′∃),
so EA(σ∃) 6⊂ A. This shows that EA(σ∃) is E-optimal for L.

Now let σ∃ be a strategy such that EA(σ∃) is E-optimal, we show that σ∃ is non-
dominated. Let σ′∃ be a strategy which very weakly dominates σ∃, we prove that σ∃
very weakly dominates σ′∃. By Lemma 21, EA(σ∃) ⊆ EA(σ′∃). Since EA(σ∃) is optimal,
EA(σ∃) 6⊂ EA(σ′∃). Therefore EA(σ∃) = EA(σ′∃). By Lemma 20 this implies that σ′∃ is very
weakly dominated by σ∃ and shows that σ∃ is not weakly dominated. J

I Corollary 24. If σ∃ is dominant, then EA(σ∃) is the unique E-optimal assumption.

4.3 Computation of optimal ensurable assumptions
In parity games, deciding the existence of a winning strategy from a particular state is in
the complexity class NP∩ coNP [9]. We will show that if an algorithm for solving parity
games is available, then the other operations to obtain optimal assumptions can be performed
efficiently. We first construct a representation of one arbitrary non-dominated strategy. Our
construction is based on the notion of memoryless strategies: given L as a parity automaton,
a strategy is said memoryless if it only depends on the current state of the automaton, in
other words it can be implemented with a Moore machine with the same structure as the
given automaton.

CONCUR 2016

8:12 Optimal Assumptions for Synthesis

I Lemma 25. Given a parity automaton and a memoryless strategy σ∃ which ensures we
are winning from each state in the winning region, we can compute in polynomial time a
Moore machine implementing a memoryless non-dominated strategy σ′∃.

By combining this construction with a parity automaton for L, we can build an auto-
maton for GA(σ′∃) = L ∪ ((ΣI · ΣO)ω \ Out(σ∃)). We can then exclude doomed histories by
removing transitions going to states from which there is no winning path, and obtain an
automaton which recognises EA(σ∃).

I Lemma 26. Given a specification as a parity automaton, and a strategy σ∃ as a Moore
machine, we can compute in polynomial time a parity automaton recognising EA(σ∃).

I Theorem 27. Given a specification as a parity automaton, we can compute in exponential
time a parity automaton of polynomial size recognising an ensurable optimal assumption.
Moreover, if we have access to an oracle for computing memoryless winning strategies in
parity games, our algorithm works in polynomial time.

Proof. We first need to obtain a Moore machine for a memoryless winning strategy σ∃, this
can be done in exponential time or constant time if we have an oracle. Then by Lemma 25,
we can compute a Moore machine implementing a memoryless non-dominated strategy σ′∃.
By Lemma 26, we can construct a parity automaton recognising EA(σ′∃). By Lemma 23, the
language of this automaton is an ensurable optimal assumption. J

4.4 Scenarios
Assume now, we are given a scenario and asked for a correct system compatible with the
scenario. We first characterise optimal ensurable assumptions that are needed for this.

I Theorem 28. Let L be a specification, and S a coherent scenario compatible with L. If
σ∃ is a non-subgame-dominated, then EA([S → σ∃]) is E-optimal for L and S.

I Lemma 29. Given a parity automaton for a coherent scenario S and a strategy σ∃ we
can compute in polynomial time a Moore machine for [S → σ∃].

We can now compute an optimal ensurable assumption compatible with the scenario.

I Theorem 30. Given a specification L and a scenario S as parity automata, we can
compute in exponential time a parity automaton of polynomial size recognising an E-optimal
assumption for L and S.

Proof. We can compute in exponential time a memoryless strategy in parity game and
as seen in Lemma 25, deduce in polynomial time a memoryless non-dominated strategy
σ′∃. From the definition of non-subgame-dominated, this strategy is in fact non-subgame-
dominated. Then by Lemma 29, we can compute a Moore machine for [S → σ∃]. By
Theorem 28, the corresponding assumption EA([S → σ∃]) is ensurable optimal for L and S.
By Lem 26, EA([S → σ∃]) can be computed in polynomial time. J

4.5 Generalisation
We have seen in Lemma 16 that from a winning strategy for A⇒ L and a strongly winning
strategy for L, we could obtain a strategy σ∃ that has both properties. Furthermore, we
can compute σ′∃ that is strongly non-dominated for L and define a strategy that is both
non-dominated for L and winning for A⇒ L. We define σ′∃[A→ σ∃] to be the function that
maps h to σ∃(h) if h · σ∃(h) is a prefix of some w ∈ A and maps h to σ′∃(h) otherwise.

R. Brenguier 8:13

I Lemma 31. If σ∃ is winning for A ⇒ L and strongly winning for L and σ′∃ is strongly
non-dominated for L, then EA(σ′∃[A→ σ∃]) contains A and is ensurable-optimal for L.

I Lemma 32. Given strategies σ′∃, σ∃ as Moore machines and assumption A as a parity
automaton, can construct in polynomial time a Moore machine for σ′∃[A→ σ∃].

I Theorem 33. There is an exponential algorithm that given L and A sufficient for L as
parity automata, computes a parity automaton whose language A′ is such that A ⊆ A′ and
A′ ensurable-optimal for L.

Proof. Assume we are given automata AA for A, and AL for L. We construct AA⇒L

recognising L ∪ (ΣI · ΣO)ω \ A, and σ∃ a winning strategy in AA⇒L, then compute in
exponential time a memoryless strategy σ′∃ which is winning in AL from all states from
which there is a winning strategy [13]; it is in fact strongly winning. We can construct a
Moore machine for σ′∃[A → σ∃] (Lemma 32), and also an automaton for EA(σ′∃[A → σ∃])
(Lemma 26). EA(σ′∃[A→ σ∃]) is ensurable optimal for L and contains A (Lemma 31). J

5 Input-assumptions

We now focus on input assumptions. There can be an infinite number of incomparable ones
that are sufficient. This can be seen in the example of Figure 6, where the specification
was (¬o2)U(o2 ∧Xi2). There, we need the assumption to tell us when exactly the first i2 will
occur. This corresponds to assumptions of the form An = (ΣI ·ΣO)ω \ {(ΣI ·ΣO)n · i1 ·ΣO ·
(ΣI · ΣO)ω}. Any such assumption will be sufficient and they are all incomparable.

I Theorem 34. There is a specification L for which there are an infinite number of optimal
input assumptions.

We show a link between input assumptions and a class of strategies called remorsefree.

I Definition 35 (Remorsefree). Given a specification L, a strategy σ∃ is remorsefree if for
all σ′∃ and w ∈ Σω

I , Out(σ′∃, w) |= L implies Out(σ∃, w) |= L. This is the notion used
in [8] for dominance. A strategy σ∃ is remorsefree-admissible if for all σ′∃ either ∀w ∈
Σω

I . Out(σ′∃, w) |= L⇒ Out(σ∃, w) |= L or ∃w ∈ Σω
I . Out(σ∃, w) |= L 6⇒ Out(σ′∃, w) |= L.

I Lemma 36. Given a strategy σ∃, if L 6= ∅ then the input-assumption IA(σ∃) = {w ∈
(ΣI · ΣO)ω | πI(w) 6∈ πI(Out(σ∃) \ L)} is sufficient for σ∃. Moreover if A is an input-
assumption which is sufficient for σ∃ then A ⊆ IA(σ∃).

I Example 37. Consider the game of Figure 9. In this game the only remorsefree strategy is
to output o1 at the first step. The corresponding assumption is A = ΣI ·ΣO ·((i2 + i3) ·ΣO)ω

while the assumption corresponding to the strategy outputting o2 is ΣI ·ΣO ·(i3 ·ΣO)ω which
is more restrictive. The assumption A is indeed the unique optimal input-assumption.

In [8], Damm and Finkbeiner show that there is a remorsefree strategy if, and only if,
there is a unique minimal assumption for L. We generalise this result using the associated
notion of admissibility to characterise the minimal assumptions that are sufficient to win.

I Theorem 38. If σ∃ is a remorsefree admissible strategy for L, then IA(σ∃) is an optimal
input-assumption for L. Reciprocally if A is an optimal input-assumption for L, then there
is a remorsefree admissible strategy σ∃, such that A = IA(σ∃).

CONCUR 2016

8:14 Optimal Assumptions for Synthesis

s0 s1 s2 s3

s4s5 s6 s7

ΣI o1

o2
i1

i1, i2 o1, o2

i1, i2, i3

i2, i3

o1, o2

o1, o2

i3

Figure 9 Büchi automaton for which the remorsefree strategy consists in outputting o1.

Proof. Let σ∃ be a remorsefree-admissible strategy and A the corresponding environment
assumption. Let B be such that A ⊂ B. We prove that B is not sufficient for L which
will show that A is optimal. Assume towards a contradiction that B is sufficient for a
strategy σ′∃. Since σ∃ is remorsefree-admissible, one of those two cases occurs: 1. ∀w′ ∈
Σω

I . Out(σ′∃, w′) |= L ⇒ Out(σ∃, w′) |= L. Let w ∈ B \ A. Since A = IA(σ∃), we have
that w ∈ πI(Out(σ∃) \ L). Hence Out(σ∃, w) 6|= L, and we have that Out(σ′∃, w) 6|= L which
shows that B is not sufficient for σ′∃; or 2. ∃w′ ∈ Σω

I . Out(σ∃, w′) |= L ∧ Out(σ′∃, w′) 6|= L.
We have that w′ belongs to A by definition, thus it belongs to B by hypothesis, and since
Out(σ′∃, w′) 6|= L, B is not sufficient for σ′∃.

Let now A be an optimal assumption for L and σ∃ the corresponding strategy. We show
that σ∃ is remorsefree-admissible. Let σ′∃ be another strategy. Since A is optimal, it is not
strictly included in B = IA(σ′∃), so either A = B or A\B 6= ∅. 1. If A = B then we show that
∀w ∈ Σω

I . Out(σ′∃, w) |= L ⇒ Out(σ∃, w) |= L: a. if w ∈ A = IA(σ∃), then Out(σ∃, w) |= L,
and the implication holds. b. if w 6∈ A = B = IA(σ′∃), then Out(σ′∃, w) 6|= L, and the
implication holds. 2. Otherwise A\B 6= ∅ then let w ∈ A\B. Since w ∈ A, Out(σ∃, w) |= L

and since w 6∈ B = IA(σ′∃), Out(σ′∃, w) 6|= L. Hence Out(σ∃, w) |= L 6⇒ Out(σ′∃, w) |= L. J

References

1 Dietmar Berwanger. Admissibility in infinite games. In STACS, volume 4393 of LNCS,
pages 188–199. Springer, February 2007.

2 Roderick Bloem, Rüdiger Ehlers, Swen Jacobs, and Robert Könighofer. How to handle
assumptions in synthesis. In SYNT, pages 34–50, 2014. doi:10.4204/EPTCS.157.7.

3 Aaron Bohy, Véronique Bruyère, Emmanuel Filiot, Naiyong Jin, and Jean-François Raskin.
Acacia+, a tool for LTL synthesis. In Computer Aided Verification, pages 652–657. Springer,
2012.

4 Romain Brenguier, Jean-François Raskin, and Ocan Sankur. Assume-admissible synthesis.
In CONCUR, volume 42 of LIPIcs, pages 100–113. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2015. doi:10.4230/LIPIcs.CONCUR.2015.100.

5 Romain Brenguier, Jean-François Raskin, and Mathieu Sassolas. The complexity of ad-
missibility in omega-regular games. In CSL-LICS ’14, 2014. ACM, 2014. doi:10.1145/
2603088.2603143.

6 Krishnendu Chatterjee and Thomas A Henzinger. Assume-guarantee synthesis. In
TACAS’07, volume 4424 of LNCS. Springer, 2007.

7 Krishnendu Chatterjee, Thomas A. Henzinger, and Barbara Jobstmann. Environment
assumptions for synthesis. In CONCUR, pages 147–161. Springer, 2008.

8 Werner Damm and Bernd Finkbeiner. Does it pay to extend the perimeter of a world
model? In FM 2011: Formal Methods, pages 12–26. Springer, 2011.

http://dx.doi.org/10.4204/EPTCS.157.7
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2015.100
http://dx.doi.org/10.1145/2603088.2603143
http://dx.doi.org/10.1145/2603088.2603143

R. Brenguier 8:15

9 E Allen Emerson and Charanjit S Jutla. Tree automata, mu-calculus and determinacy.
In 32nd Annual Symposium on Foundations of Computer Science, pages 368–377. IEEE,
1991.

10 Marco Faella. Admissible strategies in infinite games over graphs. In MFCS 2009, volume
5734 of Lecture Notes in Computer Science, pages 307–318. Springer, 2009.

11 Rachel Faran and Orna Kupferman. Spanning the spectrum from safety to liveness. In
Automated Technology for Verification and Analysis, pages 183–200. Springer, 2015.

12 Emmanuel Filiot, Naiyong Jin, and Jean-François Raskin. An antichain algorithm for LTL
realizability. In Computer Aided Verification, pages 263–277. Springer, 2009.

13 Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata Logics, and Infinite
Games: A Guide to Current Research. Springer-Verlag, New York, NY, USA, 2002.

14 Swen Jacobs, Roderick Bloem, Romain Brenguier, Rüdiger Ehlers, Timotheus Hell, Robert
Könighofer, Guillermo A. Pérez, Jean-François Raskin, Leonid Ryzhyk, Ocan Sankur,
Martina Seidl, Leander Tentrup, and Adam Walker. The first reactive synthesis com-
petition (SYNTCOMP 2014). Int J Softw Tools Technol Transfer, pages 1–24, 2016.
doi:10.1007/s10009-016-0416-3.

15 Amir Pnueli and Roni Rosner. On the synthesis of a reactive module. In Proceedings of the
16th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages
179–190. ACM, 1989.

CONCUR 2016

http://dx.doi.org/10.1007/s10009-016-0416-3

Minimizing Expected Cost Under Hard Boolean
Constraints, with Applications to Quantitative
Synthesis∗

Shaull Almagor1, Orna Kupferman2, and Yaron Velner3

1 School of Computer Science and Engineering, The Hebrew University, Israel.
2 School of Computer Science and Engineering, The Hebrew University, Israel.
3 School of Computer Science and Engineering, The Hebrew University, Israel.

Abstract
In Boolean synthesis, we are given an LTL specification, and the goal is to construct a transducer
that realizes it against an adversarial environment. Often, a specification contains both Boolean
requirements that should be satisfied against an adversarial environment, and multi-valued com-
ponents that refer to the quality of the satisfaction and whose expected cost we would like to
minimize with respect to a probabilistic environment.

In this work we study, for the first time, mean-payoff games in which the system aims at
minimizing the expected cost against a probabilistic environment, while surely satisfying an
ω-regular condition against an adversarial environment. We consider the case the ω-regular
condition is given as a parity objective or by an LTL formula. We show that in general, optimal
strategies need not exist, and moreover, the limit value cannot be approximated by finite-memory
strategies. We thus focus on computing the limit-value, and give tight complexity bounds for
synthesizing ε-optimal strategies for both finite-memory and infinite-memory strategies.

We show that our game naturally arises in various contexts of synthesis with Boolean and
multi-valued objectives. Beyond direct applications, in synthesis with costs and rewards to
certain behaviors, it allows us to compute the minimal sensing cost of ω-regular specifications –
a measure of quality in which we look for a transducer that minimizes the expected number of
signals that are read from the input.

1998 ACM Subject Classification F.4.3 : Formal Languages, B.8.2 Performance Analysis and
Design Aids, F.1.1 Models of Computation

Keywords and phrases Stochastic and Quantitative Synthesis, Mean Payoff Games, Sensing.

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2016.9

1 Introduction

Synthesis is the automated construction of a system from its specification: given a linear
temporal logic (LTL) formula ψ over sets I and O of input and output signals, we synthesize a
system that realizes ψ [11, 17]. At each moment in time, the system reads a truth assignment,
generated by the environment, to the signals in I, and it generates a truth assignment to
the signals in O. The system realizes ψ if all the computations that are generated by the
above interaction satisfy ψ.

∗ The research leading to these results has received funding from the European Research Council under
the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement no
278410, from the Israel Science Foundation (grant no 1229/10), and from the US-Israel Binational
Science Foundation (grant no 2010431).

© Shaull Almagor, Orna Kupferman, and Yaron Velner;
licensed under Creative Commons License CC-BY

27th International Conference on Concurrency Theory (CONCUR 2016).
Editors: Josée Desharnais and Radha Jagadeesan; Article No. 9; pp. 9:1–9:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.9
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

9:2 Minimizing Expected Cost Under Hard Boolean Constraints

One weakness of automated synthesis in practice is that it pays no attention to the
quality of the synthesized system. Indeed, the classical setting is Boolean: a computation
satisfies a specification or does not satisfy it. Accordingly, while the synthesized system is
correct, there is no guarantee about its quality. In recent years, researchers have considered
extensions of the classical Boolean setting to a quantitative one, which takes quality into
account. Quality measures refer to the system itself, examining parameters like size or
consumption of memory, sensors, voltage, bandwidth, etc., or refer to the way the system
satisfies the specification. In the latter, we allow the designer to specify the quality of a
behavior using quantitative specification formalisms [1, 6, 13]. For example, rather than
the Boolean specification requiring all requests to be followed by a grant, a quantitative
specification formalism gives a different satisfaction value to a computation in which requests
are responded immediately and one in which requests are responded after long delays.1

Solving the synthesis problem in the Boolean setting amounts to solving a two-player
zero-sum game between the system and the environment. The goal of the system is to satisfy
the (Boolean) specification, and the environment is adversarial. Then, a winning strategy
for the system corresponds to a transducer that realizes the specification. In the quantitative
setting, the goal of the system is no longer Boolean, as every play is assigned a cost by the
specification. In the classical quantitative approach, we measure the satisfaction value in
the worst-case semantics. Thus, the value of a strategy for the system is the maximal cost
of a play induced by this strategy, and the goal of the system is to minimize this value.
Recently, there is a growing interest also in the expected cost of a play, under a probabilistic
environment. The motivation behind this approach is that the quality of satisfaction is a
“soft constraint”, and should not be measured in a worst-case semantics. Then, the game
above is replaced by a mean-payoff Markov Decision Process (MDP): a game in which each
state has a cost, inducing also costs to infinite plays (essentially, the cost of an infinite play
is the limit of the average cost of prefixes of increased lengths). The goal is to find a strategy
that minimizes the expected cost [10, 12].

While quantitative satisfaction refines the Boolean one, often a specification contains
both Boolean conditions that should be satisfied against all environments, and multi-valued
components that refer to the quality of the satisfaction and whose expectation we would
like to minimize with respect to a probabilistic environment. Accordingly, researchers have
suggested the beyond worst-case approach, where a specification has both hard and soft
constraints, and the goal is to realize the hard constraints, while maximizing the expected
satisfaction value of the soft constraints.

In this work, we consider, for the first time, mean-payoff MDPs equipped with a parity
winning condition (parity-MDPs, for short). The goal is to find a strategy that surely wins
the parity game (that is, against an adversarial environment), while minimizing the expec-
ted cost of a play against a probabilistic environment. While the starting point in earlier
related work is the MDP itself, possibly augmented by different objectives, our starting point
depends on the application, and we view the construction of the MDP as an integral part
of our contribution. We focus on two applications: synthesis with penalties to undesired
scenarios and synthesis with minimal sensing.

Let us describe the two applications. We start with penalties to scenarios. Consider

1 Note that the polarity of some quality measures is negative, as we want to minimize size, consumption,
costs, etc., whereas the polarity of other measures is positive, as we want to maximize performance
and satisfaction value. For simplicity, we assume that all measures are associated with costs, which we
want to minimize.

S. Almagor, O. Kupferman, and Y. Velner 9:3

an LTL specification ψ over I and O. Activating an output signal may have a cost; for
example, when the activation involves a use of a resource. Taking these costs into account,
the input to the synthesis problem includes, in addition to ψ, a cost function γ assigning
cost to some assignments to output signals. The cost of a computation is then the mean
cost of assignments in it. While the specification ψ is a hard constraint, as we only allow
correct computations, minimizing the expected cost of computations with respect to γ is a
soft constraint. More elaborated cost functions refer to on-going regular scenarios. Power
consumption, for example, is an important consideration in modern chip design. As the
chips become more complex, the cost of powering a server farm can easily outweigh the cost
of the servers themselves, thus design teams go to great lengths in order to reduce power
consumption in their designs. The most widely researched logical power saving techniques
are clock gating, in which a clock is prevented from making a “tick” if it is redundant [5],
and power gating, in which whole sections of the chip are powered off when not needed and
then powered on again [14]. The goal of these techniques is to reduce power consumption
and the number of changes in the values of signals, the main source of power consumption
in chips. The input to the problem of synthesis with penalties to scenarios includes, in
addition to ψ, a set of deterministic automata on finite words, each describing a undesired
scenario and its cost. For example, it is easy to specify the scenario of “value flip" with a
two-state deterministic automaton. We show how the setting can be translated into solving
our parity-MDPs, thus generating systems that realize ψ with minimal expected cost.

Our primary application considers activation of sensors. The quality measure of sensing
was introduced in [2, 3], as a measure for the detail with which a random input word
needs to be read in order to realize the specification. In the context of synthesis, our
goal is to construct a transducer that realizes the specification and minimizes the expected
average number of sensors (of input signals) that are used along the interaction. Thus,
the hard constraint is the LTL specification, and the soft one is the expected number of
active sensors. Giving up sensing has a flavor of synthesis with incomplete information [15]:
the transducer has to realize the specification no matter what the incomplete information is.
Thus, as opposed to the examples above, the modeling of cost involves a careful construction
of the MDP to be analyzed, and also involves an exponential blow-up, which we show to
be unavoidable. In [3], the problem was solved for safety specifications. Our solution to the
parity-MDP problem enables a solution for full LTL. We also study the complexity of the
problem when the input is an LTL formula, rather than a deterministic automaton.

Back to parity-MDPs, we show that in general, optimal strategies need not exist. That
is, there are parity-MDPs in which an infinite-state strategy can get arbitrarily close to some
limit optimal value, but cannot attain it. Moreover, the limit value cannot be approxim-
ated by finite-memory strategies. Accordingly, our solution to parity-MDPs suggests two
algorithms. The first, described in Section 3.1, finds the limit value of all possible strategies,
which corresponds to infinite-state transducers. The second, described in Section 3.2, com-
putes the limit value over all finite-memory strategies. The complexity of both algorithms
is NP∩coNP. Moreover, they are computable in polynomial time when an oracle to a two-
player parity game is given. Hence, our complexity upper bounds match the trivial lower
bounds that arise from the fact that every solution to a parity-MDP is also a solution to a
parity game. For our applications, we show that the complexity of the synthesis problem
for LTL specifications stays doubly-exponential, as in the Boolean setting, even when we
minimize penalties to undesired scenarios or minimize sensing.

CONCUR 2016

9:4 Minimizing Expected Cost Under Hard Boolean Constraints

Related Work. The combination of worst-case synthesis with expected-cost synthesis,
dubbed beyond worst-case synthesis, was studied in [7, 12] for models that are closely related
to ours. In [7] the authors study mean-payoff MDPs, where both the hard constraints and
the soft constraints are quantitative. Thus, a system needs to ensure a strict upper bound
on the mean-payoff cost, while minimizing the expected cost. In [12], multidimensional
mean-payoff MDPs are considered. Thus, the MDP is equipped with several mean-payoff
costs, and the goal is to find a system that ensures the mean-payoff in some of the mean-
payoffs is below an upper bound, while minimizing the expected mean-payoffs (or rather,
approximating their Pareto-curve).

In comparison, our work is the first to consider a hard Boolean constraint (namely the
parity condition). This poses both a conceptual and a technical difference. Conceptu-
ally, when quantitative synthesis is taken as a refinement of Boolean synthesis, it is typic-
ally meant as a ranking of different systems that satisfy a Boolean specification. Thus, it
makes sense for the hard constraint to be Boolean as well. Technically, combining Boolean
and quantitative constraints gives rise to some subtleties that do not exist in the pure-
quantitative setting. Specifically, when both the hard and the soft constraints are quantit-
ative, a strategy can intuitively “alternate” between satisfying them. Thus, if while trying
to meet the soft constraint the hard constraint is violated, we can switch to a worst-case
strategy until the hard constraint is satisfied, and go back to trying to minimize the soft con-
straint. This alternation can be done infinitely often. In the Boolean setting, however, this
alternation can violate the Boolean constraint. We note that unlike classical parity games,
where the parity winning condition can be translated to a richer mean-payoff objective, the
parity winning condition in our parity-MDPs does not admit a similar translation.

Other works on MDPs and mean-payoff objectives tackle different aspects of quantitative
analysis. In [18], a solution to the expected mean-payoff value over MDPs is presented. In [8]
and [9], the authors study a combination of mean-payoff and parity objectives over MDPs
and over stochastic two-player games. There, the goal of the system is to ensure with
probability 1 that the parity condition holds and that the mean-payoff is below a threshold.
This differs from our work in that the parity condition is not a hard constraint, as it is met
only almost-surely, and in that the expected mean-payoff is not guaranteed to be minimized.
As detailed in the paper, these differences make the technical challenges very different.

Due to lack of space, some of the proofs are omitted and can be found in the full
version [4].

2 Parity-MDPs

A parity Markov decision process (Parity-MDP, for short) combines a parity game with
a mean-payoff MDP. The game is played between Player 1, who models a system, and
Player 2, who models the environment. The environment is adversarial with respect to the
parity winning condition and is stochastic with respect to the mean-payoff objective. Form-
ally, a parity-MDP is a tuple M = 〈S1, S2, s0, A1, A2, δ1, δ2,P, cost, α〉, with the following
components. The sets S1 and S2 are finite set of states, for Players 1 and 2, respectively.
Let S = S1 ∪ S2. Then, s0 ∈ S is an initial state, and A1 and A2 are sets of actions for
the players. Not all actions are available in all states: for every state s ∈ Si, for i ∈ {1, 2},
we use Ai(s) to denote the finite set of actions available to Player i in the state s. For
i ∈ {1, 2}, the (partial) transition function δi : Si × Ai 7→ S is such that δi(s, a) is defined
iff a ∈ Ai(s). Let δ = δ1 ∪ δ2. Note that δ2 gets an action of Player 2 as a parameter. We
distinguish between two approaches to the way an action is chosen in Player 2 states. In the

S. Almagor, O. Kupferman, and Y. Velner 9:5

adversarial approach, it is Player 2 who chooses the action. In the stochastic approach, the
choice depends on the (partial) function P : S2 × A2 7→ [0, 1], where for every state s ∈ S2
and a ∈ A2, we have that P(s, a) > 0 only if a ∈ A2(s). Also,

∑
a∈A2(s) P(s, a) = 1. Finally,

cost : S → N is a cost function, and α : S → {0, ..., d}, for some d ∈ N, is a parity winning
condition.

The parity-MDPM induces a parity game MP = 〈S1, S2, s0, A1, A2, δ1, δ2, α〉, obtained
by omitting P and cost. In this game, we follow the adversarial approach to the environment.
Thus, both players choose their actions. Formally, a strategy for Player i inM, for i ∈ {1, 2}
is a function fi : S∗×Si → Ai such that for s0, . . . , sn, we have f(s0, . . . , sn) ∈ Ai(sn). Thus,
a strategy suggests to Player i an available action given the history of the states traversed
so far. Note that we do not consider randomized strategies, but rather deterministic ones.
Our results in Section 3 show that this is sufficient, in the sense that the players cannot gain
by using randomization.

Given strategies f1 and f2 for Players 1 and 2, the play induced f1 and f2 is is the
infinite sequence of states s0, s1, ... such that for every j ≥ 0, if sj ∈ Si, for i ∈ {1, 2}, then
sj+1 = δi(sj , f(s0, ..., sj)). For an infinite play r, we denote by inf(r) the set of states that r
visits infinitely often. The play r = s0, s1, ... ofM is parity winning if max {α(s) : s ∈ inf(r)}
is even.

The parity-MDPM also induces an MDP MMDP = 〈S1, S2, s0, A1, A2, δ1, δ2,P, cost〉, ob-
tained by omitting α. In this game, we follow the stochastic approach to the environment
and consider the distribution of plays when only a strategy for Player 1 is given. Form-
ally, we first extend P to transitions as follows: For states s ∈ S2 and s′ ∈ S, we define
P(s, s′) =

∑
a∈A(s):δ2(s,a)=s′ P(s, a). Then, a play of M with strategy f1 for Player 1 is

an infinite sequence of states s0, s1, ... such that for every j ≥ 0, if sj ∈ S1, then sj+1 =
δ1(sj , f1(s0, ..., sj)), and if sj ∈ S2, then P(sj , sj+1) > 0. The cost of a strategy f1 is the ex-
pected average cost of a random walk inM in which Player 1 proceeds according to f1. Form-
ally, for m ∈ N and for a prefix τ = s0, s1, ...sm of a play, let I2 = {j : j < m and sj ∈ S2}.
Then, we define Pf1(τ) =

∏
j∈I P(sj , sj+1) and costm(f1, τ) = 1

m+1
∑m
j=0 cost(sj). The cost

of the strategy f1 is then cost(f1) = lim infm→∞
∑
τ :|τ |=m costm(f1 , τ) ·Pf1(τ). We denote

by inf(f1) the random variable that associates inf(ρ) with a sequence of states ρ = s0, s1, ...,
under the probability space induced byM with f1.

A finite memory strategy forM is described by a finite set M called memory, an initial
memory init ∈ M , a memory update function next : S1 ×M → M , and an action function
act : S1 ×M → A1 such that act(s,m) ∈ A1(s) for every s ∈ S1 and m ∈M .

A strategy ismemoryless if it has finite memoryM with |M | = 1. Note that a memoryless
strategy depends only on the current state. Thus, we can describe a memoryless strategy
by f1 : S1 → A1. Let cost(M) = inf{cost(f1) : f1 is a strategy forM}. That is, cost(M) is
the expected cost of a game played onM in which Player 1 uses an optimal strategy.

The following is a basic property of MDPs.

I Theorem 1. Consider an MDP M. Then, cost(M) can be attained by a memoryless
strategy, which can be computed in polynomial time.

Recall that a strategy f1 for player 1 is winning inMP if every play ofM with f1 satisfies
the parity condition α. Note that we require sure winning, in the sense that all plays must
be winning, rather than winning with probability 1 (almost-sure winning). On the other
hand, the definition of cost in MMDP considered strategies for Player 1 and ignore the parity
winning condition. We now define the sure cost of the parity-MDP, which does take them
into account. For a strategy f1 for Player 1, the sure cost of f1, denoted costsure(f1), is

CONCUR 2016

9:6 Minimizing Expected Cost Under Hard Boolean Constraints

cost(f1), if f1 is winning, and is ∞ otherwise. The sure cost of M is then costsure(M) =
inf {costsure(f1) : f1 is a strategy forM}.

Consider a parity-MDP M = 〈S1, S2, s0, A1, A2, δ1, δ2,P, cost, α〉. An end component
(EC, for short) is a set U ⊆ S such that for every state s ∈ U , the following hold.

1. If s ∈ S1, then there exists an action a ∈ As such that δ1(s, a) ∈ U .
2. If s ∈ S2, then for every a ∈ A2(s) such that P(s, a) > 0, it holds that δ2(s, a) ∈ U .
3. For every t, t′ ∈ U , there exist a path t = t0, t1, ..., tk = t′ and actions a1, ..., at such

that for every 0 ≤ i < t, it holds that ti ∈ U , and there exists an action a such that
δ(ti, a) = ti+1.

Intuitively, the probabilistic player cannot force the play to leave U , and Player 1 has positive
probability of reaching every state in U from every other state.

For an EC U and a state s ∈ U , we can consider the parity-MDP M|sU , in which the
states are U , the initial state is s, and all the components are naturally restricted to U . Since
U is an EC, then this is indeed a parity-MDP. An EC U is maximal if for every nonempty
U ′ ⊆ S \ U , we have that U ∪ U ′ is not an EC.

3 Solving Parity MDPs

In this section we study the problem of finding the sure cost for an MDP. Recall that for
MDPs, there always exists an optimal memoryless strategy. We start by demonstrating that
for the sure cost of parity-MDPs, the situation is much more complicated.

I Theorem 2. There is a parity-MDP M in which Player 1 does not have an optimal
strategy (in particular, not a memoryless one) for attaining the sure cost of M. Moreover,
for every ε > 0, Player 1 may need infinite memory in order to ε-approximate costsure(M).

Proof. Consider the parity-MDPM appearing in Figure 1. Player 1 can decrease the cost
of a play towards 1 by staying in the initial state s0. However, in order to ensure an even
parity rank, Player 1 must either play b and reach s3 w.p. 0.5, or play c but incur cost 10.
A finite memory strategy for Player 1 must eventually play c from s0 in almost every play,2
thus the cost of every winning finite-memory strategy is 10. On the other hand, for every
ε > 0, there exists an infinite memory strategy f that gets cost at most 1 + ε. Essentially
(see Lemma 4 for a formal proof of the general case), the strategy f plays b for a long time.
If s3 is reached, it plays b for even longer, and otherwise plays c.

s0 : 1, 1s1 : 2, 10 s2 : 1, 10 s3 : 2, 10

aa

c 0.5

1

b

0.5

Figure 1 The Parity MDP M. States of Player 1 are circles, these of Player 2 are squares, with
outgoing edges marked by their probability. Each state is labeled by its parity rank (left) and cost
(right). Player 1 has no optimal strategy and needs infinite memory for an ε approximation.

Finally, there is no optimal strategy for Player 1, as every strategy that plays c from s0
eventually (i.e., as a response to some strategy of Player 2) gets cost 10 with some positive
probability. However, a strategy that never plays c is not parity-winning. J

2 Note that this also implies that randomized strategies could not be of help here.

S. Almagor, O. Kupferman, and Y. Velner 9:7

Following Theorem 2, our solution to parity MDPs suggests two algorithms. The first,
described in Section 3.1, finds the limit value of all possible strategies, which corresponds
to infinite-state transducers. The second, described in Section 3.2, computes the limit value
over all finite-memory strategies. The complexity of both algorithms is NP∩coNP. Moreover,
they are computable in polynomial time when an oracle to a two-player parity game is given.
Hence, our complexity upper bounds match the trivial lower bounds that arise from the fact
that every solution to a parity-MDP is also a solution to a parity game.

3.1 Infinite-Memory Strategies
In this section we study the problem of finding the sure cost of a parity-MDP when infinite-
memory strategies are allowed. We prove the upper bound in the following theorem. As
stated above, the lower bound is trivial.

I Theorem 3. Consider a parity-MDPM. Then, costsure(M) can be computed in NP∩co-
NP, and is parity-games hard.

Consider a parity-MDPM = 〈S1, S2, s0, A1, A2, δ1, δ2,P, cost, α〉. We first remove from
M all states that are not sure-winning for Player 1 in MP. Clearly, every strategy that
attains costsure(M) cannot visit a state that is losing inMP. Thus, we henceforth assume
that all states in M are winning for Player 1 in MP. We say that an EC C of M is good
(GEC, for short) if its maximal rank is even. That is, maxs∈C {α(s)} is even.

The idea behind our algorithm is as follows. W.p. 1, each play inM eventually reaches
and visits infinitely often all states of some EC. Hence, when restricting attention to plays
that are winning for Player 1 in MP, it must be the case that this EC is good. It follows
that the sure cost ofM is affected only by the properties of its GECs. Moreover, since the
minimal expected mean-payoff value is the same in all the states of an EC, we can consider
only maximal GECs and refer to the value of an EC, namely the minimal expected value
that Player 1 can ensure while staying in the EC. Our algorithm constructs a new MDP
(without ranks)M′ in which the cost of a state is the value of the maximal GEC it belongs
to. If a state does not belong to a GEC, then we assign it a very high cost inM′, where the
intuition is that Player 1 cannot benefit from visiting this state infinitely often. We claim
that the sure cost in the parity-MDPM coincides with the cost of the MDPM′.

Formally, for an EC C, let Cmax be the set of the states of C with the maximal parity
rank in C. By definition, this rank is even when C is a GEC. Note that if C and C ′ are
GECs and C∩C ′ 6= ∅, then C∪C ′ is also a GEC. Thus, we can restrict attention to maximal
GEC. For a GEC C, there exists a memoryless strategy fC that maximizes the probability
of reaching Cmax from every state s ∈ C while staying in C. Moreover, since C is an EC, the
probability of reaching Cmax by playing fC is strictly positive from every state s ∈ C. Let
t be a state in C. Consider the MDP MMDP|tC . Since C is EC, we have that cost(MMDP|tC)
is independent of the initial state t. Thus, we can define cost(MMDP|C) as cost(MMDP|tC) for
some t ∈ C.

Recall that our algorithm starts by a preprocessing step that removes all states that
are not sure-winning for Player 1 in MP. It then finds the maximal GECs of M (using a
polynomial-time procedure that we describe in the full version [4]), and obtain an MDPM′
by assigning every state within a GEC C the cost cost(MMDP|C), and assigning every state
that is not inside a GEC cost W + 1, where W is the maximal cost that appears inM. We
claim that costsure(M) = cost(M′).

Before proving the claim, note that all the steps of the algorithm except for the prepro-
cessing step that involves a solution of parity game require polynomial time. In particular,

CONCUR 2016

9:8 Minimizing Expected Cost Under Hard Boolean Constraints

the strategies fC above are computable in polynomial time by solving a reachability MDP,
and, by Theorem 1, so does the final step of finding cost(M ′).

Proving that costsure(M) = cost(M′) involves the following steps (see the full version [4]
for the full proof). First, proving costsure(M) ≥ cost(M′) is not hard, as a play with a
winning strategy f for Player 1 inM reaches and stays in some GEC C w.p. 1, and within
C, the best expected cost one can hope for is cost(MMDP|C), which is exactly what the
strategy f attains when played inM′.

Next, proving costsure(M) ≤ cost(M′), we show how an optimal strategy f ′ in M′
induces an ε-optimal strategy f in M. We start with Lemma 4, which justifies the costs
within a GEC.

I Lemma 4. Consider a GEC C in M, and s ∈ C. Let v(s) = cost(MMDP|sC), then for
every ε > 0 there exists a strategy f ofMs with costsure(f) ≤ v(s) + ε.

Intuitively, in a good EC, f minimizes the expected mean-payoff and once in a while it
plays reachability, aiming to visit to a state with the maximal rank in the EC. Since the EC
is good, this rank is even. If reachability is not obtained after N rounds, for a parameter N ,
then f gives up and aims at only surely satisfying the parity objective (our preprocessing
step ensures that this is possible). Otherwise, after reaching the maximal rank, f switches
again to minimizing mean-payoff. This process is repeated forever, increasing N in each
iteration. Hence, the probability that Player 1 eventually gives up can be bounded from
above by an arbitrarily small ε > 0. Accordingly, Player 1 can achieve a value that is
arbitrarily close to cost(MMDP|C).

Finally, we construct the ε-optimal strategy f in M as follows. The strategy f first
mimics f ′ for a large number of steps k, or until an EC (in which f ′ stays forever) is
reached. If a good EC is not reached, then f aims at only surely satisfying the parity
objective. If a good EC is reached, then f behaves as prescribed above, per Lemma 4. Since
the probability of f ′ reaching a good EC within k steps tends to 1, then Player 1 can achieve
a value within ε of cost(M′).
I Example 5. Recall the parity-MDPM in Figure 1. The GECs are C1 = {s0, s2, s3} and
C2 = {s1}, and their costs as MDPs are 1 and 10, respectively. Since Player 1 can force
the play to stay in C1, then costsure(M) = 1, and an ε approximation is obtained as per
Lemma 4, and as described in the proof of Theorem 2. J

3.2 Finite-Memory Strategies
In this section we study the problem of finding the sure cost of a parity-MDP, when re-
stricted to finite memory strategies. For a parity-MDP M, we define costsure,<∞(M) =
inf{costsure(f) : f is a finite memory strategy for M}. We prove the upper bound in the
following theorem. As stated above, the lower bound is trivial.

I Theorem 6. Consider a parity-MDP M. Then, costsure,<∞(M) can be computed in
NP∩co-NP, and is parity-games hard.

The general approach is similar to the one we took in Section 3.1. That is, we remove from
M all states that are not sure-winning for Player 1 inMP, and proceed by reasoning about
a certain type of ECs. However, for finite-memory strategies, we need a more restricted
class of ECs than the GECs that were used in Section 3.1. Indeed, a finite-memory strategy
might not suffice to win the sure-parity condition in a GEC.

For a GEC C, let k be the maximal odd priority in C, with k = −1 if there are no odd
priorities. We define Cmax

even = {q ∈ C : α(q) > k and α(q) is even}. We say that a GEC C in

S. Almagor, O. Kupferman, and Y. Velner 9:9

M is super good (SGEC, for short) if from every state s ∈ C, there exists a finite-memory
strategy f forM|sC such that the play ofM under f reaches Cmax

even w.p. 1, and if the play
does not reach C

max
even, then it is parity winning. We refer to f as a witness to C being a

SGEC. If C is not a SGEC, we call its states that do satisfy the above super-good states.
We argue that SGECs are the proper notion for reasoning about finite-memory strategies.

Specifically, we show that in a SGEC, Player 1 can achieve ε-optimal expected cost with
a finite-memory strategy, and that every finite-memory winning strategy reaches a SGEC
w.p. 1.

Our algorithm finds the maximal SGECs of M and obtain an MDP M′ in the same
manner we did in Section 3.1, namely by assigning high weights to states not in SGECs,
and the optimal mean-payoff MDP value to states in SGECs. As there, we claim that
cost(M′) = costsure,<∞(M). The analysis of the algorithm as well as its concrete details,
are, however, more intricate.
I Example 7. Recall again the parity-MDP M in Figure 1. The only SGEC is {s1}, and
thus we have that costsure,<∞(M) = 10 (see the proof of Theorem 2). J

We start by proving that the notion of maximal SGECs is well defined. To this end, we
present the following lemma, whose proof appears in the full version [4]. Note that in the
case of GECs, the lemma was trivial.

I Lemma 8. Consider SGEC C and D, such that C ∩D 6= ∅, then C ∪D is also a SGEC.

Intuitively, we prove this by considering witnesses f, g for C and D being SGECs. We then
modify f such that from every state in C, it tries to reach D for N steps, for some parameter
N . Once D is reached, g takes over. If D is not reached, f attempts to reach Cmax

even. Thus,
w.p. 1, the strategy reaches Dmax

even, and if it does not, it either reaches Cmax
even infinitely often,

or wins the parity condition.
Next, we note that unlike the syntactic definition of GECs, the definition of SGECs

is semantic, as it involves a strategy. Thus, finding the maximal SGECs adds another
complication to the algorithm. In fact, it is not hard to see that even checking whether an
EC is a SGEC is parity-games hard. Using techniques from [8], we show in the full version [4]
that we can reduce the latter to the problem of solving a parity-Büchi game. We thus have
the following lemma.

I Lemma 9. Consider an EC C in a parity-MDPM. We can decide whether C is a SGEC
in NP∩ co-NP, as well as compute a witness strategy and, if C is not a SGEC, find the set
of super-good states.

Next, we show how to find the maximal SGECs of M. Essentially, for every odd rank
k, we can find the SGECs whose maximal odd rank is k by removing all states with higher
odd ranks, and recursively refining ECs by keeping only super-good states, using Lemma 9.
Thus, we have the following (see the full version [4] for complete details).

I Theorem 10. Consider a parity-MDP M. We can find the maximal SGECs of M in
NP∩co-NP.

Theorem 10 shows that our algorithm for computing costsure,<∞(M) solves the problem
in NP∩co-NP. It remains to prove its correctness. First, Lemma 11 justifies the assignment
of costs within a SGEC.

I Lemma 11. Consider a SGEC C in M and a state s in C. Let v(s) = cost(MMDP|sC).
Then, for every ε > 0, there exists a finite-memory strategy f of M|sC with costsure(f) ≤
v(s) + ε.

CONCUR 2016

9:10 Minimizing Expected Cost Under Hard Boolean Constraints

Proof. Let g be a memoryless strategy such that cost(g) = cost(MMDP|sC). By Theorem 1
such a strategy exists. Let h be a finite-memory strategy that witnesses C being a SGEC.
For every k ∈ N, consider the strategy fk that repeatedly plays g for k steps and then
plays h until Cmax

even is reached. Since g and h are finite-memory, then fk is finite memory.
In addition, observe that h reaches Cmax

even w.p. 1, and if Cmax
even is not reached, then h is

parity-winning. Thus fk is parity-winning, and it reaches Step 1 infinitely often w.p. 1.
Moreover, since h has finite memory, then for every n ∈ N, there is a bounded probability
0 < p(n) ≤ 1 that f reaches Cmax

even within n steps, with limn→∞ p(n) = 1. Thus, we get that
limk→∞ costsure(fk) = costsure(g) = cost(MMDP|sC), which concludes the proof. J

Lemma 11 implies that we can approximate the optimal value of SGECs with finite-
memory strategies. It remains to show that it is indeed enough to consider SGECs. Con-
sider a finite-memory strategy f . Then, w.p. 1, f reaches an EC. Let C be an EC with
PrM(inf(f) = C) > 0. The following lemma characterizes an assumption we can make on
the behavior of f in such an EC.

I Lemma 12. Consider a parity-MDPM and an EC C. For every finite-memory strategy
f , if PrM(inf(f) = C) > 0, then there exists a finite-memory strategy g such that for every
s ∈ C, we have that PrMs(inf(g) = C) = 1 and every play of g from s stays in C. Moreover,
if f is parity winning, then so is g.

Intuitively, we show that there exists some finite history h such that the strategy fh, which
is f played after seeing the history h, has the following property: fh reaches and stays in C,
and w.p. 1 visits infinitely often all the states in C, and in particular Cmax

even. For the proof,
we consider the set F = {fh : h is a finite history}. Since f has finite memory, it follows
that this set is finite. Using this, we show that if PrM(inf(g) = C) < 1 for every g ∈ F ,
then PrM(inf(f) = C) = 0, which is a contradiction. Finally, since f is also parity winning,
it follows that fh above is also parity-winning, and is thus a witness for C being a SGEC.
The full proof appears in the full version [4].

Finally, by Lemma 13, we can assume that once f reaches an EC C, it stays in C and
visits all its states infinitely often w.p. 1. Since f is parity-winning, it follows that C has a
maximal even rank, and that f reaches Cmax

even w.p. 1. Moreover, in every play that does not
reach Cmax

even, f wins the parity condition. We can thus conclude with the following Lemma,
which completes the correctness proof of our algorithm for computing costsure,<∞(M). See
the full version [4] for the proof.

I Lemma 13. Consider a parity-MDPM and an EC C. For every finite-memory strategy
f , if f is parity winning and PrM(inf(f) = C) > 0, then C is a SGEC.

3.3 Comparison with Related Work

Both our work and [7, 12] analyze ECs and reduce the problem to reasoning about an MDP
that ignores the hard constraints. The main difference with [7] is that there, the hard and
soft constraints have the same objective (i.e., worst-case mean-payoff value and expected-
case mean-payoff value). In [7], the strategy played for N rounds to satisfy the soft objective
and then at most M rounds to satisfy the hard objective, for some constants N and M . In
our setting, we cannot bound M , and in fact it might be the case that Player 1 would play
to satisfy the parity objective for the rest of the game (i.e., forever) even after reaching a
super-good end component.

S. Almagor, O. Kupferman, and Y. Velner 9:11

The difference with [12] is twofold. First, technically, the type of hard constraints in [12]
is worst-case mean-payoff, whereas our setting uses the Boolean parity condition. In clas-
sical parity games, the parity condition can be reduced to a mean-payoff objective. Similar
reductions, however, do not work in order to reduce our setting to the setting of [12]. Thus,
our contribution is orthogonal to [12]. Secondly, Boolean constraints are conceptually differ-
ent than quantitative constraints, and as we demonstrate in Section 4, they arise naturally
in quantitative extensions of Boolean paradigms.

We note that [12] also study a relaxation in which almost-sure winning is allowed for the
hard constraints. An analogue in our setting is to consider an almost-sure parity condition.
We note that in such a setting, GECs are sufficient for reasoning both about finite-memory
and infinite-memory strategies. Moreover, the preprocessing involves solving an almost-
sure parity MDP (without mean-payoff constraints), which can be done in polynomial time.
Thus, as is the case in [12], we can compute the cost of an MDP with almost-sure hard
constraints in polynomial time.

4 Applications

In this section we study two applications of parity-MDPs. Both extend the Boolean synthesis
problem. Due to lack of space, our description is only an overview. Full definitions and
details can be found in the full version [4]. We start with some basic definitions.

For finite sets I and O of input and output signals, respectively, an I/O transducer is
T = 〈I,O,Q, q0, δ, ρ〉, where Q is a set of states, q0 ∈ Q is an initial state, δ : Q × 2I → Q

is a total (deterministic) transition function, and ρ : Q → 2O is a labeling function on the
states. The run of T on a word w = i0 · i1 · · · ∈ (2I)ω is the sequence of states q0, q1, . . .

such that qk+1 = δ(qk, ik) for all k ≥ 0. The output of T on w is then o1, o2, . . . ∈ (2O)ω

where ok = ρ(qk) for all k ≥ 1. Note that the first output assignment is that of q1, and we
do not consider ρ(q0). This reflects the fact that the environment initiates the interaction.
The computation of T on w is then T (w) = i0 ∪ o1, i1 ∪ o2, . . . ∈ (2I∪O)ω. When Q is a
finite set, we say that the transducer is finite.

The synthesis problem gets as input a specification L ⊆ (2I∪O)ω and generates a trans-
ducer T that realizes L; namely, all the computations of T are in L. The language L is
typically given by an LTL formula [16] or by means of an automaton of infinite words.

4.1 Penalties on Undesired Scenarios
Recall that in Boolean synthesis, the goal is to generate a transducer that associates with
each infinite sequence of inputs an infinite sequence of outputs so that the result computation
satisfies a given specification. Typically, some behaviors generated by the transducers may
be less desired than others. For example, as discussed in Section 1, designs that use fewer
resources or minimize expensive activities are preferable. The input to the synthesis with
penalties problem includes, in addition to the Boolean specification, languages of finite words
that describe undesired behaviors, and their costs. The goal is to generate a transducer that
realizes the specification and minimizes cost due to undesired behaviors.

Formally, the input to the problem includes languages L1, . . . , Lm of finite words over the
alphabet 2I∪O and a penalty function γ : {1, . . . ,m} → N specifying for each 1 ≤ i ≤ m the
penalty that should be applied for generating a behavior in Li. As described in Section 1,
the language Li may be local (that is, include only words of length 1) and thus refer only
to activation of output signals, may specify short scenarios like flips of output signals, and
may also specify rich regular scenarios. Note that we allow penalties also for behaviors that

CONCUR 2016

9:12 Minimizing Expected Cost Under Hard Boolean Constraints

depend on the input signals. Intuitively, whenever a computation π includes a behavior in
Li, a penalty of γ(i) is applied. Formally, if π = σ1, σ2, . . ., then for every position j ≥ 1, we
define penalty(j) = {i : there is k ≤ i such that σk · σk+1 · · ·σj ∈ Li}. That is, penalty(j)
points to the subset of languages Li such that a word in Li ends in position j. Then, the
cost of position j, denoted cost(j), is

∑
i∈penalty(j) γ(i). Finally, for a finite computation

π = σ1, σ2, . . ., we define its cost, denoted cost(π), as lim supm→∞ 1
m

∑m
j=1 cost(j).

Let A be a deterministic parity automaton (DPW, for short) over the alphabet 2I∪O that
specifies the specification ψ. We describe a parity-MDP whose solution is a transducer that
realizes A with the minimal cost for penalties. The idea is simple: on top of the parity game
G described above, we compose monitors that detect undesired scenarios. We assume that
the languages L1, . . . , Lm and are given by means of deterministic automata on finite words
(DFWs) U1, . . . ,Um where for every 1 ≤ i ≤ m, we have that L(Ui) = (2I∪O)∗ · Li. That is,
Ui accepts σ1 · · ·σn iff there exists k ≤ n such that σk · · ·σn ∈ Li. Essentially, we turn A into
a parity-MDP by composing it with the DFWs U1, . . . ,Um. Then, Ui reaching an accepting
state indicates that the penalty for Li should be applied, which induces the costs in the
parity-MDP. The probabilities in the parity-MDP are induced form the distribution of the
assignments to input signals. The full construction can be found in the full version [4]. We
note that an alternative definition can replace the DFWs U1, . . . ,Um and the cost function
γ by a single weighted automaton that can be composed with A.

4.2 Sensing
Consider a transducer T = 〈I,O,Q, q0, δ, ρ〉. For a state q ∈ Q and a signal p ∈ I, we say
that p is sensed in q if there exists a set S ⊆ I such that δ(q, S \ {p}) 6= δ(q, S ∪ {p}).
Intuitively, a signal is sensed in q if knowing its value may affect the destination of at least
one transition from q. We use sensed(q) to denote the set of signals sensed in q. The sensing
cost of a state q ∈ Q is scost(q) = |sensed(q)|. For a finite run r = q1, . . . , qm of T , we define
the sensing cost of r, denoted scost(r), as 1

m

∑m−1
i=0 scost(qi). That is, scost(r) is the average

number of sensors that T uses during r. For a finite input sequence w ∈ (2I)∗, we define the
sensing cost of w in T , denoted scostT (w), as the sensing cost of the run of T on w. Finally,
the sensing cost of T is the expected sensing cost of input sequences of length that tends to
infinity, which is parameterized by a distribution on (2I)ω given by a sequence of distributions
D1, D2, ... such that Dt : 2I → [0, 1] describes the distribution over 2I at time t ∈ N. For
simplicity, we assume that the distribution is uniform. Thus, Dt(i) = 2−|I| for every t ∈ N.
For the uniform distribution we have scost(T) = limm→∞ |(2I)|−m

∑
w∈(2I)m scostT (w).

Note that this definition also applies when the transducer is infinite. However, for infinite
transducers, the limit in the definition of scost(T) might not exist, and we therefore define
scost(T) = lim supm→∞ |2I |−m

∑
w∈(2I)m scostT (w). Finally, for a realizable specification

L ∈ 2I∪O, we define scostI/O(L) = inf{scost(T) : T is an I/O transducer that realizes L}.
In [3], we study the sensing cost of safety properties. We show that there, a finite,

minimally-sensing transducer, always exists (albeit of exponential size), and the problem
of computing the sensing cost is EXPTIME-complete. In our current setting, however, a
minimally-sensing transducer need not exist, and any approximation may require infinite
memory. We demonstrate this with an example.

I Example 14. Let I = {a} and O = {b}, and consider the specification ψ = (GFa ∧ Gb) ∨
G(¬b→ XG(a↔ b)). Thus, ψ states that either a holds infinitely often and b always holds,
or, if b does not holds at a certain time, then henceforth, a holds iff b holds. Observe that
once the system outputs ¬b, it has to always sense a in order to determine the output. The

S. Almagor, O. Kupferman, and Y. Velner 9:13

system thus has an incentive to always output b. This, however, may render ψ false, as a
need not hold infinitely often.

We start by claiming that every finite-memory transducer T that realizes ψ has sensing
cost 1. Indeed, let n be the number of states in T . A random input sequence contains the
infix (¬a)n+1 w.p. 1. Upon reading such an infix, T has to output ¬b, as otherwise it would
not realize ψ on a computation with suffix (¬a)ω. Thus, from then on, T senses a in every
state. So, scost(T) = 1.

However, by using infinite-memory transducers, we can follow the construction in Sec-
tion 3.1 and reduce the sensing cost arbitrarily close to 0. Let M ∈ N. We construct a
transducer T ′ as follows. After initializing i to 1, the transducer T ′ senses a and outputs b
for iM steps. If a does not hold during this time, then T ′ outputs ¬b and starts sensing a
and outputting b accordingly. Otherwise, if a holds during this time, then T ′ stops sensing
a for 2i steps, while outputting b. It then increases i by 1 and repeats the process. Note
that T ′ outputs ¬b iff a does not hold for iM consecutive positions at the i-th round (which
happens w.p. 2−iM). Thus, the probability of T ′ outputting ¬b in a random computation is
bounded from above by

∑∞
i=1 2−iM = 2−M , which tends to 0 asM tends to∞. Note that in

the i-th round, T ′ senses a for only iM steps, and then does not sense anything for 2iM steps,
so if T ′ does not output ¬b, the sensing cost is 0. Thus, we have limM→∞ scost(T ′) = 0. J

We proceed by describing the general solution to computing the sensing cost of a spe-
cification. Recall that synthesis of a DPW A is reduced to solving a parity game. When
sensing is introduced, it is not enough for the system to win this game, as it now has to
win while minimizing the sensing cost. Intuitively, not sensing some inputs introduces in-
complete information to the game: once the system gives up sensing, it may not know the
state in which the game is and knows instead only a set of states in which the game may
be. Technically (see the full version for the detailed proof), we force the system to satisfy
the specification with respect to all assignments to the un-sensed inputs by converting the
DPW A into a universal parity automaton (UPW) – an automaton in which a the transition
function maps each state and letter to a set of successor states, and a word is accepted if all
the runs on it are accepting.

I Theorem 15. Consider a DPW specification A over 2I∪O. There exists a parity-MDP
M such that costsure(M) = scostI/O(L(A)). Moreover, the number of states ofM is singly
exponential in that of A, and the number of parity ranks onM is polynomial in that of A.

I Theorem 16. Consider a DPW specification A over 2I∪O. We can compute scostI/O(
L(A)) in singly-exponential time. Moreover, the problem of deciding whether scostI/O(
L(A)) > 0 is EXPTIME-complete.

Proof. We obtain from A a parity-MDPM as per Theorem 15. Observe that the algorithm
in the proof of Theorem 3 essentially runs in polynomial time, apart from solving a parity
game, which is done in NP∩co-NP. However, deterministic algorithms for solving parity
games run in time polynomial in the number of states, and singly-exponential in the number
of parity ranks. Since the number of parity ranks inM is polynomial in that ofA, we can find
costsure(M) in time singly-exponential in the size of A. Since costsure(M) = scostI/O(L(A)),
we are done.

For the lower bound, we note that the problem of deciding whether scostI/O(L(A)) > 0
is EXPTIME-hard even for a restricted class of automata, namely looping automata [3]. J

The input to the synthesis problem is typically given as an LTL formula, rather than a
DPW. Then, the translation from LTL to a DPW involves a doubly-exponential blowup.

CONCUR 2016

9:14 Minimizing Expected Cost Under Hard Boolean Constraints

Thus, a naive solution for computing the sensing cost of a specification given by an LTL
formula is in 3EXPTIME. However, by translating the formula to a UPW, rather than a
DPW, we show how we can avoid one exponent, thus matching the 2EXPTIME complexity
of standard Boolean synthesis.

I Theorem 17. Consider an LTL specification ψ over I∪O. We can compute scostI/O(L(ψ))
in doubly-exponential time.

Proof. We start by translating ψ to a UPWA of size single-exponential in the size of ψ. This
can be done, for example, by translating ¬ψ to a nondeterministic Büchi automaton [19] and
dualizing it. We then follow the proof of Theorem 15, by adding the universal transitions
described there directly to the UPW A. Thus, when we finally determinize the UPW to a
DPW, the size of the DPW is doubly-exponential, so computing the sensing cost can also
be done in doubly-exponential time. J

References
1 S. Almagor, U. Boker, and O. Kupferman. Formalizing and reasoning about quality. Journal

of the ACM, 63(3), 2016.
2 S. Almagor, D. Kuperberg, and O. Kupferman. Regular sensing. In 34th FSTTCS,

volume 29 of LIPIcs, pages 161–173, 2014.
3 S. Almagor, D. Kuperberg, and O. Kupferman. The sensing cost of monitoring and syn-

thesis. In 35th FSTTCS, volume 35 of LIPIcs, pages 380–393, 2015.
4 Shaull Almagor, Orna Kupferman, and Yaron Velner. Minimizing expected cost under hard

boolean constraints, with applications to quantitative synthesis. CoRR, abs/1604.07064,
2016. URL: http://arxiv.org/abs/1604.07064.

5 E. Arbel, O. Rokhlenko, and K. Yorav. Sat-based synthesis of clock gating functions using
3-valued abstraction. In FMCAD, pages 198–204, 2009.

6 Patricia Bouyer, Nicolas Markey, and Raj Mohan Matteplackel. Averaging in LTL. In 25th
CONCUR, pages 266–280, 2014.

7 V. Bruyère, E. Filiot, M. Randour, and J-F. Raskin. Meet your expectations with guar-
antees: Beyond worst-case synthesis in quantitative games. In 31st STACS, volume 25 of
LIPIcs, pages 199–213, 2014.

8 K. Chatterjee and L. Doyen. Energy and mean-payoff parity markov decision processes. In
36th MFCS, pages 206–218, 2011.

9 K. Chatterjee, L. Doyen, H. Gimbert, and Y. Oualhadj. Perfect-information stochastic
mean-payoff parity games. In 17th FOSSACS, pages 210–225, 2014.

10 K. Chatterjee, Z. Komárková, and J. Kretínský. Unifying two views on multiple mean-
payoff objectives in markov decision processes. In 30th LICS, pages 244–256, 2015.

11 A. Church. Logic, arithmetics, and automata. In Proc. Int. Congress of Mathematicians,
1962, pages 23–35. Institut Mittag-Leffler, 1963.

12 L. Clemente and J-F. Raskin. Multidimensional beyond worst-case and almost-sure prob-
lems for mean-payoff objectives. In 30th LICS, pages 257–268, 2015.

13 L. de Alfaro, M. Faella, T.A. Henzinger, R. Majumdar, and M. Stoelinga. Model checking
discounted temporal properties. Theoretical Computer Science, 345(1):139–170, 2005.

14 M. Keating, D. Flynn, R. Aitken, A. Gibbons, and K. Shi. Low Power Methodology Manual.
Springer, 2007.

15 O. Kupferman and M.Y. Vardi. Synthesis with incomplete information. In Advances in
Temporal Logic, pages 109–127. Kluwer Academic Publishers, 2000.

16 A. Pnueli. The temporal semantics of concurrent programs. Theoretical Computer Science,
13:45–60, 1981.

http://arxiv.org/abs/1604.07064

S. Almagor, O. Kupferman, and Y. Velner 9:15

17 A. Pnueli and R. Rosner. On the synthesis of a reactive module. In 16th POPL, pages
179–190, 1989.

18 M.L. Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

19 M.Y. Vardi and P. Wolper. Reasoning about infinite computations. I&C, 115(1):1–37,
1994.

CONCUR 2016

Stability in Graphs and Games∗

Tomáš Brázdil1, Vojtěch Forejt2, Antonín Kučera3, and
Petr Novotný4

1 Faculty of Informatics, Masaryk University, Czech Republic
2 Department of Computer Science, University of Oxford, UK
3 Faculty of Informatics, Masaryk University, Czech Republic
4 IST Austria, Klosterneuburg, Austria

Abstract
We study graphs and two-player games in which rewards are assigned to states, and the goal of
the players is to satisfy or dissatisfy certain property of the generated outcome, given as a mean
payoff property. Since the notion of mean-payoff does not reflect possible fluctuations from the
mean-payoff along a run, we propose definitions and algorithms for capturing the stability of the
system, and give algorithms for deciding if a given mean payoff and stability objective can be
ensured in the system.

1998 ACM Subject Classification F.1.1 Automata, D.2.4 Formal methods

Keywords and phrases Games, Stability, Mean-Payoff, Window Objectives

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2016.10

1 Introduction

Finite-state graphs and games are used in formal verification as foundational models that
capture behaviours of systems with controllable decisions and possibly with an adversarial
environment. States correspond to possible configurations of a system, and edges describe
how configurations can change. In a game, each state is owned by one of two players, and
the player owning the state decides what edge will be taken. A graph is a game where only
one of the players is present. When the choice of the edges is resolved, we obtain an outcome
which is an infinite sequence of states and edges describing the execution of the system.

The long-run average performance of a run is measured by the associated mean-payoff,
which is the limit average reward per visited state along the run. It is well known that
memoryless deterministic strategies suffice to optimize the mean payoff, and the corres-
ponding decision problem is in NP ∩ coNP for games and in P for graphs. If the rewards
assigned to the states are multi-dimensional vectors of numbers, then the problem becomes
coNP-hard for games [21].

Although the mean payoff provides an important metric for the average behaviour of the
system, by definition it neglects all information about the fluctuations from the mean payoff
along the run. For example, a “fully stable” run where the associated sequence of rewards is
1, 1, 1, 1, . . . has the same mean payoff (equal to 1) as a run producing n, 0, 0, . . . , n, 0, 0, . . .
where a state with the reward n is visited once in n transitions. In many situations, the
first run is much more desirable that the second one. Consider, e.g., a video streaming

∗ The work has been supported by the Czech Science Foundation, grant No. 15-17564S, by EPSRC grant
EP/M023656/1, and by the People Programme (Marie Curie Actions) of the European Union’s Seventh
Framework Programme (FP7/2007-2013) under REA grant agreement no [291734].

© Tomáš Brázdil, Vojtěch Forejt, Antonín Kučera, and Petr Novotný;
licensed under Creative Commons License CC-BY

27th International Conference on Concurrency Theory (CONCUR 2016).
Editors: Josée Desharnais and Radha Jagadeesan; Article No. 10; pp. 10:1–10:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.10
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

10:2 Stability in Graphs and Games

application which needs to achieve a sufficiently high bit-rate (a long-run average number of
bits delivered per second) but, in addition, a sufficient level of “stability” to prevent buffer
underflows and overflows which would cause data loss and stuttering. Similar problems
appear also in other contexts. For example, production lines should be not only efficient (i.e.,
produce the number of items per time unit as high as possible), but also “stable” so that the
available stores are not overfull and there is no “periodic shortage” of the produced items. A
food production system should not only produce a sufficiently large amount of food per day
on average, but also a certain amount of food daily. These and similar problems motivate the
search for a suitable formal notion capturing the intuitive understanding of “stability”, and
developing algorithms that can optimize the performance under given stability constraints.
That is, we are still seeking for a strategy optimizing the mean payoff, but the search space
is restricted to the subset of all strategies that achieve a given stability constraint.

Since the mean-payoff mp(λ) of a given run λ can be seen as the average reward of a
state visited along λ, a natural idea is to define the stability of λ as sample variance of
the reward assigned to a state along λ. More precisely, let ri be the reward of the i-th
state visited by λ, and let c0, c1, . . . be an infinite sequence where ci = (mp(λ) − ri)2. The
long-run variance of the reward assigned to a state along λ, denoted by va(λ), is the limit-
average of c0, c1, . . . The notion of long-run variance has been introduced and studied for
Markov decision processes in [5]. If va(λ) is small, then large fluctuations from mp(λ) are
rare. Hence, if we require that a strategy should optimize mean-payoff while keeping the
long-run variance below a given threshold, we in fact impose a soft stability constraint which
guarantees that “bad things do not happen too often”. This may or may not be sufficient.

In this paper, we are particularly interested in formalizing hard stability constraints
which guarantee that “bad things never happen”. We introduce a new type of objectives
called window-stability multi-objectives that can express a rich set of hard stability con-
straints, and we show that the set of all strategies that achieve a given window-stability
multi-objective can be characterized by an effectively constructible finite-memory permissive
strategy scheme. From this we obtain a meta-theorem saying that if an objective (such as
mean-payoff optimization) is solvable for finite-state games (or graphs), then the same ob-
jective is solvable also under a given window-stability multi-objective constraint. We also
provide the associated upper and lower complexity bounds demonstrating that the time
complexity of our algorithms is “essentially optimal”.

More specifically, a single window-stability objective (inspired by [8], see Related work
below) is specified by a window lengthW ≥ 1, a checkpoint distance D ≥ 1, and two bounds
µ and ν. For technical reasons, we assume that D divides W . Every run λ = s0, s1, s2, . . .

then contains infinitely many checkpoints s0, sD, s2D, s3D, . . . The objective requires that the
average reward assigned to the states sj , . . . , sj+W−1, where sj is a checkpoint, is between
µ and ν. In other words, the “local mean-payoff” computed for the states fitting into a
window of length W starting at a checkpoint must be within the “acceptable” bounds µ
and ν. The role of W is clear, and the intuition behind D is the following. Since D divides
W , there are two extreme cases: D = 1 and D = W . For D = 1, the objective closely
resembles the standard “sliding window” model over data streams [13]; we require that the
local mean-payoff stays within the acceptable bounds “continuously”, like the “local bit-
rate” in video-streaming. If D = W , then the windows do not overlap at all. This is useful
in situations when we wish to guarantee some time-bounded periodic progress. For example,
if we wish to say that the number of items produced per day stays within given bounds,
we set W so that it represents the (discrete) time of one day and put D = W . However,
there can be also scenarios when we wish to check the local mean-payoff more often then

T. Brázdil, V. Forejt, A. Kučera, and P. Novotný 10:3

once during W transitions, but not “completely continuously”. In these cases, we set D to
some other divisor of W . A window-stability multi-objective is a finite conjunction of single
window-stability objectives, each with dedicated rewards and parameters. Hence, window-
stability multi-objectives allow for capturing more delicate stability requirements such as “a
factory should produce between 1500 and 1800 gadgets every week, and in addition, within
every one-hour period at least 50 computer chips are produced, and in addition, the total
amount of waste produced in 12 consecutive hours does not exceed 500 kg.”

Our contribution. The results of this paper can be summarized as follows:
(A) We introduce the concept of window-stability multi-objectives.
(B) We show that there is an algorithm which inputs a game G and a window-stability

multi-objective ∆, and outputs a finite-state permissive strategy scheme for ∆ and G.
A finite-state permissive strategy scheme for ∆ and G is a finite-state automaton Γ
which reads the history of a play and constraints the moves of Player � (who aims at
satisfying ∆) so that a strategy σ achieves ∆ in G iff σ is admitted by Γ. Hence, we
can also compute a synchronized product G×Γ which is another game where the set of
all strategies for Player � precisely represents the set of all strategies for Player � in
G which achieve the objective ∆. Consequently, any objective of the form ∆ ∧ Ψ can
be solved for G by solving the objective Ψ for G × Γ. In particular, this is applicable
to mean-payoff objectives, and thus we solve the problem of optimizing the mean-
payoff under a given window-stability multi-objective constraint. We also analyze the
time complexity of these algorithms, which reveals that the crucial parameter which
negatively influences the time complexity is the number of checkpoints in a window
(i.e., W/D).

(C) We complement the upper complexity bounds of the previous item by lower complexity
bounds that indicate that the time complexity of our algorithms is “essentially optimal”.
Some of these results follow immediately from existing works [21, 8]. The main con-
tribution is the result which says that solving a (single) window-stability objective is
PSPACE-hard for games and NP-hard for graphs, even if all numerical parameters (W ,
D, µ, ν, and the rewards) are encoded in unary. The proof is based on novel techniques
and reveals that the number of checkpoints in a window (i.e., W/D) is a crucial para-
meter which makes the problem computationally hard. The window stability objective
constructed in the proof satisfies D = 1, and the tight window overlapping is used to
enforce a certain consistency in Player � strategies.

(D) For variance-stability, we argue that while it is natural in terms of using standard math-
ematical definitions, it does not prevent unstable behaviours. In particular, we show
that the variance-stability objective may demand an infinite-memory strategy which
switches between two completely different modes of behaviour with smaller and smaller
frequency. We also show that the associated variance-stability problem with single-
dimensional rewards is in NP for graphs. For this we use some of the results from [5]
where the variance-stability is studied in the context of Markov decision processes. The
main difficulty is a translation from randomized stochastic-update strategies used in [5]
to deterministic strategies.

Related work. Multi-dimensional mean-payoff games were studied in [21], where it was
shown that the lim-inf problem, relevant to our setting, is coNP-hard. Further, [11] studies
memory requirements for the objectives, and [20] shows that for a “robust” extension (where
Boolean combinations of bounds on the resulting vector of mean-payoffs are allowed) the

CONCUR 2016

10:4 Stability in Graphs and Games

problem becomes undecidable. Games with quantitative objectives in which both lower and
upper bound on the target value of mean-payoff is given were studied in [15]. We differ from
these approaches by requiring the “interval” bounds to be satisfied within finite windows,
making our techniques and results very different.

As discussed above, we rely on the concept of windows, which was in the synthesis setting
studied in [8] (see also [14]), as a conservative approximation of the standard mean-payoff
objective. More concretely, the objectives in [8] are specified by a maximal window length
W and a threshold t. The task is to find a strategy that achieves the following property of
runs: a run can be partitioned into contiguous windows of length at most W such that in
each window, the reward accumulated inside the window divided by the window length is
at least t. The objective ensures a local progress in accumulating the reward, and it was
not motivated by capturing stability constraints. The fundamental difference between our
window-stability approach and windows in [8] is that in the latter one can easily get rid of
windows overlapping due to so called inductive window property, which does not hold under
stricter stability constraints. This results in different computational problems, as witnessed
by the fact that our PSPACE lower bound discussed in the point (C) above does not (most
likely) carry over to the setting of [8], where a similar-looking decision problem is in P.

The notion of finite-state permissive strategy scheme is based on the concept of permissive
strategies [1] and multi-strategies [4, 3].

The notion of long-run variance has been introduced and studied for Markov decision
processes in [5]. Since we consider deterministic strategies, none of our results is a special
case of [5], and we have to overcome new difficulties as it is explained in Section 4.

More generally, our paper fits into an active field of multi-objective strategy synthesis,
where some objectives capture the “hard” constraints and the other “soft”, often quantit-
ative, objectives. Examples of recent results in this area include [2], where a 2-EXPTIME
algorithm is given for the synthesis of combined LTL and mean-payoff objectives, [9], where
a combination of parity and mean-payoff performance objectives is studied, or [10], where
the controlling player must satisfy a given ω-regular objective while allowing the adversary
to satisfy another “environmental” objective.

2 Preliminaries

We use N, N0, and Q to denote the sets of positive integers, non-negative integers, and
rationals, respectively. Given a set M , we use M∗ to denote the set of all finite sequences
(words) overM , including the empty sequence. For a vector ~v = (v1, . . . , vk) of numbers and
a non-zero number a, we use ~v[i] for vi, and ~v/a for the vector given by (~v/a)[i] = ~v[i]/a.

A game is a tuple G = (S, (S�, S♦), E) where S is a non-empty set of states, (S�, S♦)
is a partition of S into two subsets controlled by Player � and Player ♦, respectively, and
E ⊆ S × S are the edges of the game such that for every s ∈ S there is at least one edge
(s, t) ∈ E. A graph is a game such that S♦ = ∅. A run in G is an infinite path in the
underlying directed graph of G. An objective Φ is a Borel property1 of runs. Note that the
class of all objectives is closed under conjunction.

A strategy for player �, where � ∈ {�,♦} is a function τ : S∗S� → S satisfying that
(s, τ(hs)) ∈ E for all s ∈ S� and h ∈ S∗. The sets of all strategies of Player � and Player ♦
are denoted by ΣG and ΠG, respectively. When G is understood, we write just Σ and Π.

1 Recall that the set of all runs can be given the standard Cantor topology. A property is Borel if the set
of all runs satisfying the property belongs to the σ-algebra generated by all open sets in this topology.

T. Brázdil, V. Forejt, A. Kučera, and P. Novotný 10:5

A pair of strategies (σ, π) ∈ Σ × Π together with an initial state s induce a unique run
outcomeσ,πs in the standard way. We say that a strategy σ ∈ Σ achieves an objective Φ in a
state s if outcomeσ,πs satisfies Φ for every π ∈ Π. The set of all σ ∈ Σ that achieve Φ in s is
denoted by ΣΦ(s). An objective Φ is solvable for a given subclass G of finite-state games if
there is an algorithm which inputs G ∈ G and its state s, and decides whether ΣΦ(s) = ∅. If
ΣΦ(s) 6= ∅, then the algorithm also outputs a (finite description of) σ ∈ ΣΦ(s).

We often consider strategies of Player � tailored for a specific initial state. A finite
sequence of states s0, . . . , sn is consistent with a given σ ∈ Σ if s0, . . . , sn is a finite path in
the graph of G, and σ(s0, . . . , si) = si+1 for every 0 ≤ i < n where si ∈ V�. Given σ, σ′ ∈ Σ
and s ∈ S, we say that σ and σ′ are s-equivalent, written σ ≡s σ′, if σ and σ′ agree on all
finite sequences of states initiated in s that are consistent with σ. Note that if σ ≡s σ′, then
outcomeσ,πs = outcomeσ′,πs for every π ∈ Π.

A reward function % : S → Nk0 , where k ∈ N, assigns non-negative integer vectors to the
states of G. We use dim% to denote the dimension k of %, and max% to denote the maximal
number employed by %, i.e., max% = max{%(s)[i] | 1 ≤ i ≤ k, s ∈ S}. An objective is reward-
based if its defining property depends just on the sequence of rewards assigned to the states
visited by a run. For every run λ = s0, s1, . . . of G, let mp%(λ) = lim infn→∞ 1

n+1
∑n
i=0 %(si)

be the mean payoff of λ, where the lim infn→∞ is taken component-wise. A mean-payoff
objective is a pair (%, b), where % : S → Nk0 is a reward function and b ∈ Qk. A run λ satisfies
a mean-payoff objective (%, b) if mp%(λ) ≥ b.

Similarly, the long-run variance of the reward of a run λ is defined by va%(λ) =
lim supn→∞ 1

n+1
∑n
i=0(%(si)−mp(λ))2; intuitively, the long-run variance is a limit superior

of sample variances where the samples represent longer and longer run prefixes. A variance-
stability objective is a triple (%, b, c), where % : S → Nk0 is a reward function and b, c ∈ Qk.
A run λ satisfies a variance-stability objective (%, b, c) if mp%(λ) ≥ b and va%(λ) ≤ c.

Let W ∈ N be a window size and D ∈ N a checkpoint distance such that D divides W .
For every ` ∈ N0, the local mean payoff at the `th checkpoint in a run λ is defined by
lmpW,D,%,`(λ) = 1

W

∑W−1
i=0 %(s`·D+i). Thus, every run λ determines the associated infinite

sequence lmpW,D,%,0(λ), lmpW,D,%,1(λ), lmpW,D,%,2(λ), . . . of local mean payoffs. A window-
stability objective is a tuple Φ = (W,D, %, µ, ν), where W,D ∈ N such that D divides W ,
% : S → Nk0 is a reward function, and µ, ν ∈ Qk. A run λ satisfies Φ if, for all ` ∈ N, we
have that µ ≤ lmpW,D,%,`(λ) ≤ ν. A window-stability multi-objective is a finite conjunction
of window-stability objectives.

In this paper, we study the solvability of variance-stability objectives, window-stability
multi-objectives, and objectives of the form ∆ ∧ Ψ where ∆ is a window-stability multi-
objective and Ψ a mean-payoff objective.

3 The Window-Stability Multi-Objectives

This section is devoted to the window-stability multi-objectives and objectives of the form
∆∧Ψ, where ∆ is a window-stability multi-objective. In Section 3.1, we show how to solve
these objectives for finite-state games, and we derive the corresponding upper complexity
bounds. The crucial parameter which makes the problem computationally hard is the num-
ber of checkpoints in a window. In Section 3.2, we show that this blowup is unavoidable
assuming the expected relationship among the basic complexity classes.

CONCUR 2016

10:6 Stability in Graphs and Games

3.1 Solving Games with Window-Stability Multi-Objectives
We start by recalling the concept of most permissive strategies which was introduced in
[1]. Technically, we define permissive strategy schemes which suit better our needs, but the
underlying idea is the same.

I Definition 1. Let G = (S, (S�, S♦), E) be a game. A (finite-memory) strategy scheme
for G is a tuple Γ = (Mem,Up,Const, Init), where Mem 6= ∅ is a finite set of memory
elements, Up : S ×Mem → Mem is a memory update function, Const : S� ×Mem → 2S is
a constrainer such that Const(s,m) ⊆ {s′ ∈ S | (s, s′) ∈ E}, and Init : S ⇀ M is a partial
function assigning initial memory elements to some states of S.

We require2 that Const(s,m) 6= ∅ for all (s,m) ∈ Reach(Init) such that s ∈ S�. Here,
Reach(Init) is the least fixed-point of F : 2S×Mem → 2S×Mem where for all Ω the set F(Ω)
consists of all (s′,m′) such that either (s′,m′) ∈ Init, or there is some (s′′,m′′) ∈ Ω such that
(s′′, s′) ∈ E and Up(s′′,m′′) = m′; if s′′ ∈ S�, we further require s′ ∈ Const(s′′,m′′). J

We say that Γ is memoryless if the set Mem is a singleton. Every strategy scheme
Γ = (Mem,Up,Const, Init) for a game G = (S, (S�, S♦), E) determines a game GΓ =
(S×Mem, (S�×Mem, S♦×Mem), F), where

for every (s,m) ∈ S♦×Mem, ((s,m), (s′,m′)) ∈ F iff Up(s,m) = m′ and (s, s′) ∈ E;
for every (s,m) ∈ S�×Mem where Const(s,m) 6= ∅, we have that ((s,m), (s′,m′)) ∈ F
iff Up(s,m) = m′ and (s, s′) ∈ Const(s,m);
for every (s,m) ∈ S�×Mem where Const(s,m) = ∅, we have that ((s,m), (s′,m′)) ∈ F
iff s = s′ and m = m′.

A strategy σ ∈ ΣG is admitted by Γ in a given s ∈ S if Init(s) 6= ⊥ and for every
finite path s0, . . . , sn in G initiated in s which is consistent with σ there is a finite path
(s0,m0), . . . , (sn,mn) in GΓ such that m0 = Init(s0) and si+1 ∈ Const(si,mi) for all
0 ≤ i < n where si ∈ S�. Observe that if σ is admitted by Γ in s, then σ naturally in-
duces a strategy τ [σ, s] ∈ ΣGΓ which is unique up to ≡(s0,m0). Conversely, every τ ∈ ΣGΓ

and every s ∈ S where Init(s) 6= ⊥ induce a strategy σ[τ, s] ∈ ΣG such that, for every finite
path (s0,m0), . . . , (sn,mn) initiated in (s, Init(s)) which is consistent with τ , we have that
σ[τ, s](s0, . . . , sn) = sn+1 iff τ((s0,m0), . . . , (sn,mn)) = (sn+1,mn+1) . Note that σ[τ, s] is
determined uniquely up to ≡s.

I Definition 2. Let G be a game, Γ a strategy scheme for G, ΛG ⊆ ΣG, ΛGΓ ⊆ ΣGΓ , and
s ∈ S. We write ΛG ≈s ΛGΓ if the following conditions are satisfied:

Every σ ∈ ΛG is admitted by Γ in s, and there is τ ∈ ΛGΓ such that τ [σ, s] ≡(s,Init(s)) τ .
For every τ ∈ ΛGΓ there is σ ∈ ΛG such that σ[τ, s] ≡s σ.

Further, we say that Γ is permissive for an objective Φ if ΣΦ
G (s) ≈s ΣGΓ(s) for all s ∈ S,

where ΣGΓ(s) is either ∅ or ΣGΓ , depending on whether Init(s) = ⊥ or not, respectively.

The next proposition follows immediately.
I Proposition 3. Let G be a game, Φ,Ψ objectives, and Γ a strategy scheme permissive
for Φ. Then, for every s ∈ S we have that ΣΦ∧Ψ

G (s) ≈s ΣΨ
GΓ

(s).
Another simple but useful observation is that the class of objectives for which a permissive

strategy scheme exists is closed under conjunction.

2 Alternatively, we could stipulate Const(s,m) 6= ∅ for all (s,m) ∈ S� ×Mem, but this would lead to
technical complications in some proofs. The presented variant seems slightly more convenient.

T. Brázdil, V. Forejt, A. Kučera, and P. Novotný 10:7

s0 snsc0sc1sc2

D · j D D D

W

α0
α1

α2

Figure 1 The information represented by the memory elements of Γ (for ` = 3).

I Proposition 4. Let G = (S, (S�, S♦), E) be a finite-state game, and n ∈ N. Further, for
every 1 ≤ i ≤ n, let Γi = (Memi,Upi,Consti, Initi) be a strategy scheme for G which is
permissive for Φi. Then there is a strategy scheme for G with

∏n
i=1 |Memi| memory elements

computable in O(|S|2 · |E| ·
∏n
i=1 |Memi|2) time which is permissive for Φ1 ∧ · · · ∧ Φn.

As it was noted in [1], permissive strategy schemes do not exist for objectives which
admit non-winning infinite runs that do not leave the winning region of player �, such as
reachability, Büchi, parity, mean payoff, etc. On the other hand, permissive strategy schemes
exists for “time bounded” variants of these objectives. Now we show how to compute a
permissive strategy scheme for a given window-stability objective.

I Theorem 5. Let G = (S, (S�, S♦), E) be a finite-state game and Φ = (W,D, %, µ, ν)
a window-stability objective where dim% = k. Then there is a strategy scheme Γ with
W · (max% ·W)k·(W/D) memory elements computable in O(|S|2 ·|E|·W 2 ·(max% ·W)2k·(W/D))
time which is permissive for Φ.

Proof. Let ` = W/D and V = {0, . . . ,max% · (W−1)}k. We put
Mem = {0, . . . , D−1} × {0, . . . , `−1} × V`.

Our aim is to construct Γ so that for every run s0, s1, . . . in G, the memory elements in the
corresponding run (s0,m0), (s1,m1), . . . in GΓ, where (s0,m0) ∈ Init, satisfy the following.
Let n ∈ N0, and let mn = (i, j, α0, . . . , α`−1). Then

i = n mod D is the number of steps since the last checkpoint, and j = min{bn/Dc, `−1}
is a bounded counter which stores the number of checkpoint visited, up to ` − 1 (this
information is important for the initial W steps);
for every 0 ≤ r < `, we put cr = n − r ·D − (n mod D) if n − r ·D − (n mod D) ≥ 0,
otherwise cr = n. Intuitively, the state scr

is the r-th previous checkpoint visited along
s0, s1, . . . before visiting the state sn (see Figure 1). If the total number of checkpoints
visited along the run up to sn (including sn) is less than r, we put cr = n. The vector
αr stored in mn is then equal to the total reward accumulated between scr

and sn (not
including sn), i.e., αr =

∑n−1
t=cr

%(st) where the empty sum is equal to ~0. In particular
m0 = (0, 0,~0, . . . ,~0).

Note that by Definition 1, we are obliged to define Up(s,m) for all pairs (s,m) ∈ S×Mem,
including those that will not be reachable in the end. Let ‘⊕’ be a bounded addition over
N0 defined by a ⊕ b = min{a + b,max% · (W−1)}. We extend ‘⊕’ to V in the natural
(component-wise) way. The function Up is constructed as follows (consistently with the
above intuition):

For all i, j ∈ N0 such that 0 ≤ i ≤ D − 2 and 0 ≤ j ≤ `− 1, we put
Up(s, (i, j, α0, . . . , α`−1)) = (i+1, j, α0 ⊕ %(s), . . . , αj ⊕ %(s), αj+1, . . . , α`−1).

CONCUR 2016

10:8 Stability in Graphs and Games

For all j ∈ N0 such that 0 ≤ j ≤ ` − 2, we put Up(s, (D−1, j, α0, . . . , α`−1)) =
(0, j+1,~0, α0 ⊕ %(s), . . . , αj ⊕ %(s), αj+1, . . . , α`−2).
Up(s, (D−1, `−1, α0, . . . , α`−1)) = (0, `−1,~0, α0 ⊕ %(s), . . . , α`−2 ⊕ %(s)).

For every (s,m) ∈ S ×Mem, let succ(s,m) be the set of all (s′,m′) ∈ S ×Mem such that
(s, s′) ∈ E and Up(s,m) = m′. Now we define a function F : 2S×Mem → 2S×Mem such that,
for a given Ω ⊆ S ×Mem, the set F(Ω) consists of all (s, (i, j, α0, . . . , α`−1)) satisfying the
following conditions:

if i = D−1 and j = `−1, then µ ·W ≤ α`−1 + %(s) ≤ ν ·W .
if s ∈ S♦, then succ(s, (i, j, α0, . . . , α`−1)) ⊆ Ω.
if s ∈ S�, then succ(s, (i, j, α0, . . . , α`−1)) ∩ Ω 6= ∅.

Observe that F is monotone. Let gfix(F) be the greatest fixed-point of F . For every
(s,m) ∈ S� × Mem, we put Const(s,m) = succ(s,m) ∩ gfix(F). Further, the set Init
consists of all (s, (0, 0,~0, . . .~0)) ∈ gfix(F). It follows directly from the definition of Γ that
Const(s,m) 6= ∅ for all (s,m) ∈ Reach(Init) such that s ∈ S�.

Since gfix(F) can be computed in O(|S|2 · |E| ·W 2 · (max% ·W)2k·(W/D)) time by the
standard iterative algorithm, the strategy scheme Γ = (Mem,Up,Const, Init) can also be
computed in this time. Further, observe the following:

(A) Let (s0,m0), (s1,m1), . . . be a run in GΓ such that (s0,m0) ∈ Init. Then s0, s1, . . . is a
run in G that satisfies the window-stability objective Φ.

(B) Let (s,m) 6∈ gfix(F), and let Γ∗ be a strategy scheme which is the same as Γ except
for its constrainer Const∗ which is defined by Const∗(s,m) = succ(s,m) for all (s,m) ∈
S� ×Mem. Then there is a strategy π∗ ∈ ΠGΓ∗ such that for every strategy σ∗ ∈ ΣGΓ∗

we have that outcomeσ
∗,π∗

(s,m) visits a configuration (t, (D − 1, ` − 1, α0, . . . , α`−1)) where
α`−1 + %(t) < µ ·W or α`−1 + %(t) > ν ·W .

Both (A) and (B) follow directly from the definition of F . Now we can easily prove that Γ
indeed encodes the window-stability objective Φ, i.e., ΣΦ

G (s) ≈s ΣGΓ(s) for all s ∈ S.
Let τ ∈ ΣGΓ(s). We need to show that σ[τ, s] achieves the objective Φ in s. So, let

π ∈ ΠG, and let s0, s1, . . . be the run outcomeσ[τ,s],π
s . Obviously, there is a corresponding

run (s0,m0), (s1,m1), . . . in GΓ initiated in (s, Init(s)), which means that s0, s1, . . . satisfies Φ
by applying (A). Now let σ ∈ ΣΦ

G (s). We need to show that σ is admitted by Γ in s. Suppose
it is not the case. If Init(s) = ⊥, then (s, (0, 0,~0, . . . ,~0)) 6∈ gfix(F), and hence σ 6∈ ΣΦ

G (s) by
applying (B). If Init(s) 6= ⊥, there is a finite path s0, . . . , sn, sn+1 of minimal length such
that s0 = s, sn ∈ S�, and the corresponding finite path (s0,m0), . . . , (sn,mn), (sn+1,mm+1)
in GΓ∗ , where m0 = Init(s) and mi+1 = Up(si,mi) for all 0 ≤ i ≤ n, satisfies that sn+1 6∈
Const(sn,mn). Note that for all si ∈ S� where i < n we have that si+1 ∈ Const(si,mi),
because otherwise we obtain a contradiction with the minimality of s0, . . . , sn, sn+1. Since
(sn+1,mn+1) 6∈ gfix(F), by applying (B) we obtain a strategy π∗ ∈ ΠGΓ∗ such that for
every σ∗ ∈ ΣGΓ∗ we have that outcomeσ

∗,π∗

(sn+1,mn+1) visits a configuration (t, (D − 1, ` −
1, α0, . . . , α`−1)) where α`−1 +%(t) < µ ·W or α`−1 +%(t) > ν ·W . Let π ∈ ΠG be a strategy
satisfying the following conditions:

outcomeσ,πs starts with s0, . . . , sn+1.
For all finite paths of the form s0, . . . , sn+1, . . . , st in G such that st ∈ S♦, let
(s0,m0), . . . , (sn+1,mn+1), . . . , (st,mt) be the unique corresponding finite path in GΓ∗ .
We put π(s0, . . . , sn, . . . st) = st+1, where π∗((sn+1,mn+1), . . . , (st,mt)) = (st+1,mt+1).

Clearly, the run outcomeσ,πs does not satisfy the objective Φ, which contradicts the assump-
tion σ ∈ ΣΦ

G (s). J

T. Brázdil, V. Forejt, A. Kučera, and P. Novotný 10:9

For every window-stability multi-objective ∆ = Φ1 ∧ · · · ∧ Φn where we have Φi =
(Wi, Di, %i, µi, νi), we put M∆ =

∏n
i=1Wi · (max%i

·Wi)ki·(Wi/Di), where ki = dim%i
. As a

direct corollary to Theorem 5 and Proposition 4, we obtain the following:

I Corollary 6. Let G = (S, (S�, S♦), E) be a finite-state game and ∆ a window-stability
multi-objective. Then there is a permissive strategy scheme for ∆ withM∆ memory elements
constructible in time O(|S|2 · |E| ·M2

∆).

Now we can formulate a (meta)theorem about the solvability of objectives of the form
∆∧ψ, where ∆ is a window-stability multi-objective and ψ is a reward-based objective such
that the time complexity of solving Ψ for a game G = (S, (S�, S♦), E) and a reward function
% can be asymptotically bounded by a function f in |S|, |E|, max% , and dim% .

I Theorem 7. Let Ψ be a reward-based objective solvable in O(f(|S|, |E|,max% , dim%)) time
for every finite-state game G = (S, (S�, S♦), E) and every reward function % for Ψ. Further,
let ∆ be a window-stability multi-objective. Then the objective ∆ ∧Ψ is solvable in time

O(max{f(|S| ·M∆, |E| ·M∆,max% , dim%), |S|2 · |E| ·M2
∆})

for every finite-state game G = (S, (S�, S♦), E) and every reward function % for Ψ.

Note that Theorem 7 is a simple consequence of Corollary 6 and Proposition 3.
Since mean-payoff objectives are solvable in O(|S| · |E| ·max%) time when dim% = 1 [7]

and in O(|S|2 · |E| ·max% ·k · (k · |S| ·max%)k2+2k+1) time when dim% = k ≥ 2 [12], we finally
obtain:

I Theorem 8. Let G = (S, (S�, S♦), E) be a finite-state game, ∆ a window-stability multi-
objective, and Ψ = (%, b) a mean-payoff objective. If dim% = 1, then the objective ∆ ∧ Ψ is
solvable in time O(|S|2 · |E| ·M2

∆ · max%). If dim% = k ≥ 2, then the objective ∆ ∧ Ψ is
solvable in time O(|S|2 · |E| ·M3

∆ ·max% · k · (k · |S| ·M∆ ·max%)k2+2k+1).

Let us note that for a given window-stability multi-objective ∆ and a given one-dimensional
reward function %, there exists the maximal bound b such that the objective ∆ ∧ (%, b) is
achievable. Further, this bound b is rational and computable in time O(|S|2 ·|E|·M2

∆ ·max%).

3.2 Lower Bounds for Window-Stability Objectives
We now focus on proving lower bounds for solving the window-stability objectives. More
precisely, we establish lower complexity bounds for the problem whose instances are triples
of the form (G, s,Φ), where G is a game (or a graph), s is a state of G, Φ = (W,D, %, µ, ν)
is a window-stability objective, and the question is whether there exists a strategy σ ∈ Σ
which achieves Φ in s. The components of Φ can be encoded in unary or binary, which is
explicitly stated when presenting a given lower bound.

The main result of this section is Theorem 12 which implies that solving a window-
stability objective is PSPACE-hard for games and NP-hard for graphs even if dim% = 1,
D = 1, and W as well as the values %(s) for all s ∈ S are encoded in unary. Note that an
upper time complexity bound for solving these objectives is O(|S|2 · |E| ·W · (max% ·W)W/D)
by Corollary 6. Hence, the parameter which makes the problem hard is W/D.

As a warm-up, we first show that lower bounds for solving the window-stability objectives
where the reward function is of higher dimension, or W , D, and the rewards are encoded
in binary, follow rather straightforwardly from the literature. Then, we develop some new
insights and use them to prove the main result.

CONCUR 2016

10:10 Stability in Graphs and Games

I Theorem 9. Solving the window-stability objectives (where dim% is not restricted) is
EXPTIME-hard. The hardness result holds even if the problem is restricted to instances
1. where each component of each reward vector is in {−1, 0, 1}, or
2. where the reward vectors have dimension one (but the rewards are arbitrary binary-

encoded numbers).

Proof. The result can be proven by a straightforward adaptation of the proof of EXPTIME-
hardness of multi-dimensional fixed-window mean-payoff problem [8, Lemma 23 and 24].
The reductions in [8] that we can mimic are from the acceptance problem for polynomial-
space alternating Turing machines (item 1.) and countdown games [17] (item 2.). Although
the fixed-window mean-payoff problem differs from ours (see Section 1), an examination
of the proofs in [8] reveals that almost the same constructions work even in our setting.
In particular, while the problem to which countdown games are reduced in [8] assumes
two-dimensional rewards, in our setting we can restrict to single dimension due to window-
stability objective imposing both a lower and an upper bound on local mean payoff. J

The reductions in the previous theorem require that the window size W is encoded in
binary, as the windows need to be exponentially long in the size of the constructed graph.
For the case whenW is given in unary encoding, the following result can be adapted from [8].

I Theorem 10. Solving the window-stability objectives (where dim% is not restricted) where
the window size W is encoded in unary is PSPACE-hard, even if it is restricted to instances
where the components of reward functions are in {−1, 0, 1}.

A proof of Theorem 10 is obtained by adapting a proof from [8, Lemma 25], where a reduction
from generalized reachability games is given.

The results of [8] do not yield lower bounds for window-stability objectives with one-
dimensional reward functions in which either the windows size or the rewards are encoded
in unary. In our setting, for the case of binary rewards/unary window size one can come
up with NP-hardness for graphs and PSPACE-hardness for games via reductions from the
Subset-Sum problem and its quantified variant [18], respectively. Similarly, for unary reward-
s/binary window size a PSPACE-hardness for games via reduction from emptiness of 1-letter
alternating finite automata [16] seems plausible. We do not follow these directions, since we
are able to prove an even stronger and somewhat surprising result: solving window-stability
objectives with one-dimensional reward functions is PSPACE-hard for games and NP-hard
for graphs even if all the numbers in the input instance are encoded in unary. The proof of
this result requires a new proof technique sketched below.

We rely on reductions from special variants of the SAT and QBF problems. An instance
of the Balanced-3-SAT problem is a propositional formula ϕ in a 3-conjunctive normal form
which contains an even number of variables. Such an instance is positive if and only if ϕ
admits a satisfying assignment which maps exactly half of ϕ’s variables to 1 (true). We
can also define a quantified variant, a Balanced-QBF problem: viewing a quantified Boolean
formula ψ = ∃x1∀x2 · · · ∃xn−1∀xn ϕ (where ϕ is quantifier-free), as a game between player
controlling existentially quantified variables (who strives to satisfy ϕ) and player controlling
universal variables (who aims for the opposite), we ask whether the existential player can
enforce assignment mapping exactly half of the variables to 1 and satisfying ϕ (a formal
definition of Balanced-QBF is given in [6]. The following lemma is easy.

I Lemma 11. The Balanced-QBF problem is PSPACE-complete. The Balanced-3-SAT is
NP-complete.

T. Brázdil, V. Forejt, A. Kučera, and P. Novotný 10:11

0

s1

0

s2

0

s3

0

sn1

t1

0

f1

1

t2

0

f2

1

tn−1

0

fn−1

1

tn

0

fn

0

s′1

0

s′2

0

s′3

0

s′n1

t′1

0

f ′1

1

t′2

0

f ′2

1

t′n−1

0

f ′n−1

1

t′n

0

f ′n

Figure 2 In the lower gadget, Player � must mimic the assignment she chose in the upper one.

Let G be a finite-state game and Φ = (W,D, %, µ, ν) a window-stability objective. An in-
stance (G, s,Φ) is small if dim%=1, andW , D, max% , and the numerators and denominators
of the fully reduced forms of µ and ν, are bounded by the number of states of G.

I Theorem 12. Solving the window-stability objectives with one-dimensional reward func-
tions is PSPACE-hard for games and NP-hard for graphs, even for small instances.

Proof (sketch). We proceed by reductions from Balanced-3-SAT for graphs and from
Balanced-QBF for games. As the reductions are somewhat technical, we explain just their
core idea. The complete reduction can be found in [6].

Assume a formula ϕ in 3-CNF with variables {x1, . . . , xn}, n being even. Consider the
graph G in Figure 2. Both the “upper” gadget (consisting of non-primed states) and the
“lower” gadget (with primed states) represent a standard “assignment choice” gadget, in
which Player � selects an assignment to variables in ϕ (e.g. choosing an edge going to t1
from s1 corresponds to setting variable x1 to true etc.). With no additional constraints, �
can choose different assignments in the two gadgets, and she may change the assignment
upon every new traversal of the lower gadget. Now assign reward 1 to states that correspond
to setting some variable to true and 0 to all the other states, let window size W = 2n,
checkpoint distance D = 1, µ = n

2 , and ν = n
2 + 1

3n (say). In order to satisfy the window-
stability objective (W,D, %, µ, ν) from s1, � has to select a balanced assignment in the upper
gadget and moreover, mimic this assignment in all future points in the lower gadgets. The
necessity of the first requirement is easy. For the second, assume that there is some ` such
that in the `-th step of the run λ the player chooses to go from, say, si to ti (or from s′i to t′i),
while in the (`+ 2n)-th step she goes from s′i to f ′i . Then the rewards accumulated within
windows starting in the `-th and (` + 1)-th step, respectively, differ by exactly one. Thus,
|lmpW,D,`(λ)− lmpW,D,`+1(λ)| = 1/2n > 1/3n, which means that the local mean payoffs at
the `-th and (`+ 1)-th checkpoint cannot both fit into the interval [µ, ν].

Note that we use the balanced variant of 3-SAT and QBF, as to set up µ and ν we need
to know in advance the number of variables assigned to true.

Once we force the player to commit to some assignment using the above insight, we
can add more copies of the “primed” gadget that are used to check that the assignment
satisfies ϕ. Intuitively, we form a cycle consisting of several such gadgets, one gadget per
clause of ϕ, the gadgets connected by paths of suitable length (not just by one edge as
above). In each clause-gadget, satisfaction of the corresponding clause C by the chosen

CONCUR 2016

10:12 Stability in Graphs and Games

assignment is checked by allowing the player to accrue a small additional reward whenever
she visits a state representing satisfaction of some literal in C. This small amount is then
subtracted and added again on a path that connects the current clause-gadget with the next
one: subtracting forces the player to satisfy at least one literal in the previous clause-gadget
(and thus accrue the amount needed to “survive” the subtraction) while adding ensures that
this “test” does not propagate to the next clause-gadget. Rewards have to be chosen in a
careful way to prevent the player from cheating. For PSPACE-hardness of the game version
we simply let the adversary control states in the initial gadget (but not in clause-gadgets)
corresponding to universally quantified variables. J

4 The variance-stability problem

In this section, we prove the results about variance-stability objectives promised in Section 1.

I Theorem 13. The existence of a strategy achieving a given one-dimensional variance-
stability objective for a given state of a given graph is in NP. Further, the strategy may
require infinite memory.

Let us now prove the above theorem. Consider a graph G = (S, (S, ∅), E) and an instance
of the variance-stability problem determined by a reward function % together with a mean-
payoff bound b ∈ Q and a variance bound c ∈ Q. We assume that all runs are initiated in a
fixed initial state s̄. A frequency vector is a tuple (fe)e∈E ∈ [0, 1]|E| with

∑
e∈E fe = 1 and∑

s′:(s′,s)∈E

f(s′,s) =
∑

s′:(s,s′)∈E

f(s,s′) (1)

for all s ∈ S. Now consider the following constraints:

mp :=
∑
s∈S

fs · %(s) ≥ a and va :=
∑
s∈S

fs · (%(s)−mp)2 ≤ b (2)

Here fs =
∑

(s′,s)∈E f(s′,s) for every s ∈ S. As every graph is a special case of a Markov
decision process, we may invoke Proposition 5 of [5] and obtain the following proposition.
I Proposition 14 ([5]). Assume that there is a solution to the given variance-stability
problem. Then there is a frequency vector (fe)e∈E satisfying the inequalities (2). All e ∈ E
satisfying fe > 0 belong to the same strongly connected component of G reachable from s̄.
The above inequalities (2) can be turned into a negative semi-definite program, using tech-
niques of [5], and hence their satisfiability can be decided in non-deterministic polynomial
time [19]. To finish our algorithm, we need to show that a solution to the above inequalities
can also be turned into a strategy which visits each e ∈ E with the frequency fe.

Let λ = s0s1 . . . be a run. Given e ∈ E and i ∈ N we define a random variable aei (λ) to
take value 1 if (si, si+1) = e, and 0 otherwise.

I Lemma 15. Suppose (fe)e∈E is a frequency vector such that all e ∈ E satisfying fe > 0
belong to the same strongly connected component reachable from the initial state s̄. Then
there is a strategy σf with limi→∞

1
i+1
∑i
j=0 a

e
i (λ) = fe for all e ∈ E, where λ is the run

induced by σf (initiated in s̄).

Proof. Let us assume, w.l.o.g., that G itself is strongly connected. If (fe)e∈E is rational and
all edges e satisfying fe > 0 induce a strongly connected graph, we may easily construct
the strategy σf as follows. We multiply all numbers fe with the least-common-multiple of

T. Brázdil, V. Forejt, A. Kučera, and P. Novotný 10:13

4

B

0

A

1

D

−10

C

Figure 3 One player game in which there is an infinite-memory strategy σ such that
mp(outcomeσ,πs) ≥ 3/2 and va(outcomeσ,πs) ≤ 9/4 (here π is the only “trivial” strategy of the
environment). However, there is no finite-memory σ with this property.

their denominators and obtain a vector of natural numbers f ′e that still satisfy the above
equation (1). Now we may imagine the game as a multi-digraph, where each edge e has the
multiplicity f ′e. It is easy to show that the flow equations are exactly equivalent to existence
of a directed Euler cycle. From this Euler cycle in the digraph we immediately get a cycle
in our game which visits each edge exactly f ′e times. By repeating the cycle indefinitely we
obtain a run with the desired frequencies fe of edges.

For vectors with irrational frequencies we adapt the above approach and use a sequence
of converging rational approximations. The proof is technical, and is given in [6]. J

This finishes the proof of Theorem 13.
We now show that variance-stability objectives may require strategies with infinite

memory. Consider the graph in Figure 3, and the variance-stability objective which re-
quires to achieve a mean payoff of at least 3/2 and long-run variance at most 9/4. Observe
that there is an infinite-memory strategy achieving the above bounds. It works as follows:
We start in the state A, the strategy proceeds in infinitely many phases. In the n-th phase
it goes n times from A to B and back. Afterwards it goes to D, makes 2n steps on the loop
on D, and then returns back to A. One can show that the mean payoff converges along this
run. The limit is 4/4 + 0/4 + 1/2 = 3

2 since the −10 reward is obtained with zero frequency.
The long-run variance is 1

4
(
− 3

2
)2 + 1

4
(
4− 3

2
)2 + 1

2
(
1− 3

2
)2 = 9

4 . Now we show that there
is no finite-memory strategy achieving a mean payoff of 3/2 and a long-run variance of 9/4.
Note that the maximal mean payoff achievable (without any constraints) in the graph is 2.
Assume that there is a finite memory strategy σ yielding mean payoff x with 3/2 ≤ x ≤ 2,
and variance at most 9/4. We first argue that σ visits C with zero frequency. Denote by fY
the frequency of state Y . Because x = 0 · fA + 4 · fB + (−10) · fC + 1 · fD by the definition of
mean payoff, and also fA = fB and fD = 1− fA − fB − fC by the definition of our graph,
we have fA = (x+ 11 · fC − 1)/2 and fD = 2− x− 12 · fC . Thus, the variance is

fA·(0− x)2 + fB · (4− x)2 + fC · (−10− x)2 + fD(1− x)2

= x− 1
2 ·

(
(0− x)2 + (4− x)2)+ (2− x) · (1− x)2

+ fC ·
(11

2 ·
(
(0− x)2 + (4− x)2)+ (−10− x)2 − 12 · (1− x)2

)
.

Using calculus techniques one can easily show that the first term is at least 9/4 for all
x ∈ [3/2, 2], while the parenthesized expression multiplied by fC is positive for all such
x. Hence fC = 0. But any finite-memory strategy that stays in C with frequency 0 either
eventually loops on D, in which case the mean payoff is only 1, or it eventually loops on A
and B, in which case the variance is 4.

Even finite-memory strategies that approximate the desired variance-stability (up to
some ε > 0) must behave in a peculiar way: Infinitely many times stay in {A,B} for a large
number of steps (depending on ε) and also stay in C for a large number of steps. Hence, in
a real-life system, a user would observe two repeating phases, one with low mean payoff but
high instability, and one with low stability and high mean payoff.

CONCUR 2016

10:14 Stability in Graphs and Games

References
1 Julien Bernet, David Janin, and Igor Walukiewicz. Permissive strategies: from parity games

to safety games. RAIRO – Theoretical Informatics and Applications, 36(3):261–275, 2002.
2 Aaron Bohy, Véronique Bruyère, Emmanuel Filiot, and Jean-François Raskin. Synthesis

from LTL specifications with mean-payoff objectives. In Proc. of TACAS 2013, volume
7795 of LNCS, pages 169–184. Springer, 2013.

3 Patricia Bouyer, Marie Duflot, Nicolas Markey, and Gabriel Renault. Measuring permissiv-
ity in finite games. In Proc. of CONCUR 2009, volume 5710 of LNCS, pages 196–210.
Springer, 2009.

4 Patricia Bouyer, Nicolas Markey, Jörg Olschewski, and Michael Ummels. Measuring per-
missiveness in parity games: Mean-payoff parity games revisited. In Proc. of ATVA 2011,
volume 6996 of LNCS, pages 135–149. Springer, 2011.

5 Tomáš Brázdil, Krishnendu Chatterjee, Vojtěch Forejt, and Antonín Kučera. Trading
performance for stability in Markov decision processes. In Proc. of LICS 2013, pages 331–
340. IEEE, 2013.

6 Tomáš Brázdil, Vojtech Forejt, Antonín Kučera, and Petr Novotný. Stability in graphs and
games. CoRR, abs/1604.06386, 2016.

7 L. Brim, J. Chaloupka, L. Doyen, R. Gentilini, and J.-F. Raskin. Faster algorithms for
mean-payoff games. Formal Methods in System Design, 38(2):97–118, 2010.

8 Krishnendu Chatterjee, Laurent Doyen, Mickael Randour, and Jean-François Raskin. Look-
ing at mean-payoff and total-payoff through windows. Inf. Comput., 242:25–52, 2015.

9 Krishnendu Chatterjee, Thomas A. Henzinger, and Marcin Jurdzinski. Mean-payoff parity
games. In Proc. of LICS 2005, pages 178–187. IEEE, 2005.

10 Krishnendu Chatterjee, Florian Horn, and Christof Löding. Obliging games. In Proc. of
CONCUR 2010, volume 6269 of LNCS, pages 284–296. Springer, 2010.

11 Krishnendu Chatterjee, Mickael Randour, and Jean-Franccois Raskin. Strategy synthesis
for multi-dimensional quantitative objectives. Acta Informatica, 51:129–163, 2014.

12 Krishnendu Chatterjee and Yaron Velner. Hyperplane separation technique for multidi-
mensional mean-payoff games. In Proc. of CONCUR 2013, volume 8052 of LNCS, pages
500–515. Springer, 2013.

13 Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Maintaining stream
statistics over sliding windows. SIAM Journal on Computing, 31(6):1794–1813, 2002.

14 Paul Hunter, Guillermo A. Pérez, and Jean-François Raskin. Looking at mean-payoff
through foggy windows. In Proc. of ATVA 2015, volume 9364 of LNCS, pages 429–445.
Springer, 2015.

15 Paul Hunter and Jean-François Raskin. Quantitative games with interval objectives. In
Proc. of FST&TCS 2014, volume 29 of LIPIcs, pages 365–377, 2014.

16 Petr Jančar and Zdeněk Sawa. A note on emptiness for alternating finite automata with a
one-letter alphabet. Inf. Process. Lett., 104(5):164 – 167, 2007.

17 Marcin Jurdzinski, Jeremy Sproston, and François Laroussinie. Model checking probabil-
istic timed automata with one or two clocks. Logical Methods in Comp. Sci., 4(3), 2008.

18 Stephen Travers. The complexity of membership problems for circuits over sets of integers.
Theoretical Computer Science, 369(1–3):211 – 229, 2006.

19 Stephen A. Vavasis. Quadratic programming is in NP. Inf. Process. Lett., 36(2):73–77,
1990.

20 Yaron Velner. Robust multidimensional mean-payoff games are undecidable. In Proc. of
FOSSACS 2015, volume 9034 of LNCS, pages 312–327. Springer, 2015.

21 Yaron Velner, Krishnendu Chatterjee, Laurent Doyen, Thomas A. Henzinger, Alexander
Rabinovich, and Jean-Francois Raskin. The complexity of multi-mean-payoff and multi-
energy games. Inf. Comput., 241:177 – 196, 2015.

On the Complexity of Heterogeneous
Multidimensional Quantitative Games
Véronique Bruyère1, Quentin Hautem∗2, and Jean-François
Raskin†3

1 Département d’informatique, Université de Mons (UMONS),
Mons, Belgium

2 Département d’informatique, Université de Mons (UMONS),
Mons, Belgium

3 Département d’informatique, Université Libre de Bruxelles (U.L.B.),
Brussels, Belgium

Abstract
We study two-player zero-sum turn-based games played on multidimensional weighted graphs
with heterogeneous quantitative objectives. Our objectives are defined starting from the measures
Inf, Sup, LimInf, and LimSup of the weights seen along the play, as well as on the window mean-
payoff (WMP) measure recently introduced in [6]. Whereas multidimensional games with Boolean
combinations of classical mean-payoff objectives are undecidable [19], we show that CNF/DNF
Boolean combinations for heterogeneous measures taken among {WMP, Inf, Sup, LimInf, LimSup}
lead to EXPTIME-completeness with exponential memory strategies for both players. We also
identify several interesting fragments with better complexities and memory requirements, and
show that some of them are solvable in PTIME.

1998 ACM Subject Classification B.6.3 [design aids]: automatic synthesis; F.1.2 [Modes of
computation]: interactive and reactive computation

Keywords and phrases two-player zero-sum games played on graphs, quantitative objectives,
multidimensional heterogeneous objectives

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2016.11

1 Introduction

Two-player zero-sum turn-based games played on graphs are an adequate mathematical
model to solve the reactive synthesis problem [18]. To model systems with resource con-
straints, like embedded systems, games with quantitative objectives have been studied, e.g.
mean-payoff [22] and energy games [3]. In [5, 21, 6, 20], multidimensional games with con-
junctions of several quantitative objectives have been investigated, such that all dimensions
use the same measure. In this paper, we initiate the study of games played on multidimen-
sional weighted graphs such that the objectives use different measures over the dimensions.
As an example of conjunction of heterogeneous measures, you may want to design a system
with (φ1) a good window mean-response time (MP), that (φ2) avoids too slow reaction after
a finite prefix (LimInf), and that (φ3) does not exceed some peak energy consumption in

∗ Author supported by FRIA fellowship
† Author supported by ERC Starting Grant (279499: inVEST) and partly by European project Cassting
(FP7-ICT-601148).

© Véronique Bruyère, Hautem Quentin and Jean-François Raskin;
licensed under Creative Commons License CC-BY

27th International Conference on Concurrency Theory (CONCUR 2016).
Editors: Josée Desharnais and Radha Jagadeesan; Article No. 11; pp. 11:1–11:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

11:2 Heterogeneous Multidimensional Quantitative Games

the long run (LimSup). Now, assume that you want to ensure such a conjunction only un-
der the hypothesis that (ψ) the frequency of requests from the environment is below some
threshold (expressible as an MP). Such a property ψ → (φ1 ∧ φ2 ∧ φ3) is equivalent to the
DNF Boolean combination of heterogeneous measures ¬ψ ∨ (φ1 ∧ φ2 ∧ φ3). We claim that
such heterogeneous quantitative games provide a general, natural, and expressive model for
the reactive synthesis problem and that the complexity of solving these games needs to be
studied. Knowing that Boolean combination of MP objectives is undecidable [19], we have
initiated this study with the omega-regular measures Inf, Sup, LimInf and LimSup, and the
recent interesting window version WMP of MP introduced in [6].

While the MP measure considers the long-run average of the weights along the whole play,
the WMP measure considers weights over a local window of a given size sliding along the play.
A WMP objective asks now to ensure that the average weight satisfies a given constraint
over every bounded window. This is a strengthening of the MP objective: winning for the
WMP objective implies winning for the MP objective. Also, any finite-memory strategy that
forces an MP measure larger than threshold ν + ε (for any ε > 0), also forces the WMP
measure to be larger than ν provided that the window size is taken large enough. Aside
from their naturalness, WMP objectives are algorithmically more tractable than classical MP
objectives, see [6, 14]. First, unidimensional WMP games can be solved in polynomial time
when working with polynomial windows [6] while only pseudo-polynomial time algorithms
are known for MP games [22, 4]. Second, multidimensional games with Boolean combinations
of MP objectives are undecidable [19], whereas we show here that games with Boolean
combinations of WMP objectives and other classical objectives are decidable.

We show in this paper (see also Table 1) that the problem is EXPTIME-complete for
CNF/DNF Boolean combinations of heterogeneous measures taken among {WMP, Inf, Sup,
LimInf, LimSup}. We provide a detailed study of the complexity when the Boolean combina-
tion of the measures is replaced by an intersection, as it is often natural in practice to consider
conjunction of constraints. EXPTIME-completeness of the problem still holds for the inter-
section of measures in {WMP, Inf, Sup, LimInf, LimSup}, and we get PSPACE-completeness
when WMP measure is not considered. To avoid EXPTIME-hardness, we consider fragments
where there is at most one occurrence of a WMP measure. In case of intersections of one
WMP objective with any number of objectives of one kind among {Inf, Sup, LimInf, LimSup}
(this number must be fixed in case of objectives Sup), we get P-completeness when dealing
with polynomial windows, a reasonable hypothesis in practical applications. In case of no
occurrence of WMP measure, we propose several refinements (on the number of occurrences
of the other measures) for which we again get P-completeness. Some of our results are
obtained by reductions to known qualitative games but most of them are obtained by new
algorithms that require new ideas to handle in an optimal way one WMP objective together
with qualitative objectives such as safety, reachability, Büchi and coBüchi objectives. In our
results, we also provide a careful analysis of the memory requirements of winning strategies
for both players.1

Let us mention some related work. Multidimensional mean-payoff games have been
studied in [20]. Conjunction of lim inf mean-payoff (MP) objectives are coNP-complete,
conjunctions of lim sup MP (MP) objectives are in NP∩ coNP. The general case of Boolean
combinations of MP and MP is undecidable [19]. Multidimensional energy games with un-
fixed initial credit are coNP-complete [5, 8], and with fixed initial credit, they are 2EXPTIME-
complete [16]. Generalization of these games with imperfect information have been studied

1 All details of this paper can be found in the arXiv version arXiv:1511.08334v2.

V.Bruyère, Q.Hautem and J.-F. Raskin 11:3

Table 1 Overview - Our results are marked with (*).

Objectives Complexity class Player 1 memory Player 2 memory

(CNF/DNF) Boolean combination of MP, MP [19] Undecidable infinite infinite
(CNF/DNF) Boolean combinaison of

EXPTIME-completeWMP, Inf, Sup, LimInf, LimSup (*)
exponentialIntersection of WMP, Inf, Sup, LimInf, LimSup (*)

Intersection of WMP [6]
Intersection of Inf, Sup, LimInf, LimSup (*) PSPACE-complete

and refinements (*) See Table 4
Intersection of MP [20] coNP-complete infinite

memorylessIntersection of MP [20] NP ∩ coNP
Unidimensional MP [22, 4] memoryless
Unidimensional WMP [6] P-complete pseudo-polynomial

WMP ∩ Ω with Ω ∈ {Inf, Sup, LimInf, LimSup} (*) (Polynomial windows)
Unidimensional Inf, Sup, LimInf, LimSup [13] P-complete memoryless

in [9] and shown undecidable. The WMP measure was first introduced in [6]. Unidimensional
WMP games can be solved in polynomial time for polynomial windows, and multidimen-
sional WMP games are EXPTIME-complete. In [6], the WMP measure is considered on all
the dimensions, with no conjunction with other measures like Inf, Sup, LimInf, and LimSup,
and the case of Boolean combinations of WMP objectives is not investigated. Games with
objectives expressed in fragments of LTL have been studied in [1]. Our result that games
with intersection of objectives in {Inf, Sup, LimInf, LimSup} are in PSPACE can be obtained
by reduction to some of these fragments. But we here propose a simple proof adapted to
our context, that allows to identify several polynomial fragments. Our other results cannot
be obtained in this way and require new techniques and new algorithmic ideas.

2 Preliminaries

We consider turn-based two-player games on a finite multidimensional weighted directed
graph. A multi-weighted game structure is a tuple G = (V1, V2, E, w) where (i) (V,E) is a
finite directed graph, with V the set of vertices and E ⊆ V × V the set of edges such that
for each v ∈ V , there exists (v, v′) ∈ E for some v′ ∈ V (no deadlock), (ii) (V1, V2) forms
a partition of V such that Vp is the set of vertices controlled by player p ∈ {1, 2}, and (iii)
w : E → Zn is the n-dimensional weight function that associates a vector of n weights to
each edge, for some n ≥ 1. We also simply say that G is a (n-weighted) game structure.

The opponent of player p ∈ {1, 2} is denoted by p. A play of G is an infinite sequence
ρ = ρ0ρ1 . . . ∈ V ω such that (ρk, ρk+1) ∈ E for all k ∈ N. Histories of G are finite sequences
ρ = ρ0 . . . ρi ∈ V + defined in the same way. We denote by Plays(G) the set of plays in G and
by Hist(G) the set of histories. Given a play ρ = ρ0ρ1 . . ., the history ρk . . . ρk+i is denoted
by ρ[k,k+i]. We denote by wm the projection of function w on the mth dimension, and by
W the maximum weight in absolute value on all dimensions.

Strategies, objectives and winning sets

A strategy σ for player p ∈ {1, 2} is a function σ : V ∗Vp → V assigning to each history
hv ∈ V ∗Vp a vertex v′ = σ(hv) such that (v, v′) ∈ E. It is memoryless if σ(hv) = σ(h′v) for
all histories hv, h′v ending with the same vertex v, that is, σ is a function σ : Vp → V . It

CONCUR 2016

11:4 Heterogeneous Multidimensional Quantitative Games

is finite-memory if σ(hv) only needs finite memory of the history hv (recorded by a Moore
machine). Given a strategy σ of player p ∈ {1, 2}, we say that a play ρ of G is consistent
with σ if ρk+1 = σ(ρ0 . . . ρk) for all k ∈ N such that ρk ∈ Vp. A history consistent with a
strategy is defined similarly. Given an initial vertex v0, and a strategy σp of each player p,
we have a unique play that is consistent with both strategies, called the outcome of (σ1, σ2)
from v0, and denoted by Out(v0, σ1, σ2).

An objective for player p is a set of plays Ω ⊆ Plays(G); it is qualitative (it only depends
on the graph (V,E)), or quantitative (it also depends on the weight function w). A play ρ
is winning for player p if ρ ∈ Ω, and losing otherwise (i.e. winning for player p). We thus
consider zero-sum games such that the objective of player p is Ω = Plays(G)\Ω, i.e., opposite
to the objective Ω of player p. In the following, we always take the point of view of player 1
by supposing that Ω is his objective, and we denote by (G,Ω) the corresponding game. A
strategy σp for player p is winning from an initial vertex v0 if Out(v0, σp, σp) ∈ Ω for all
strategies σp of player p. Vertex v0 is also called winning for player p and the winning set
WinΩ

p is the set of all his winning vertices. Similarly the winning vertices of player p are
those from which p can ensure his objective Ω against all strategies of player p, and WinΩ

p

is his winning set. The game is said determined when WinΩ
p ∪WinΩ

p = V . It is known that
every game with Borel objectives is determined [17].

Qualitative objectives

Let G = (V1, V2, E) be an unweighted game structure. Given a set U ⊆ V , classical qualitat-
ive objectives are the following ones. A reachability objective Reach(U) asks to visit a vertex
of U at least once. A safety objective Safe(U) asks to visit no vertex of V \U , that is, to avoid
V \U . A Büchi objective Buchi(U) asks to visit a vertex of U infinitely often. A co-Büchi ob-
jective CoBuchi(U) asks to visit no vertex of V \U infinitely often. Let U1, . . . , Ui be a family
of subsets of V . A generalized reachability objective GenReach(U1, . . . , Ui) = ∩ik=1Reach(Uk)
asks to visit a vertex of Uk at least once, for each k ∈ {1, . . . , i}. A generalized Büchi ob-
jective GenBuchi(U1, . . . , Ui) = ∩ik=1Buchi(Uk) asks to visit a vertex of Uk infinitely often,
for each k ∈ {1, . . . , i}. All these objectives can be mixed by taking their intersection.

A game with an objective Ω is just called Ω game. As all the previous objectives Ω are
ω-regular and thus Borel, the corresponding games (G,Ω) are determined.

Quantitative objectives

For a 1-weighted game structure G = (V1, V2, E, w) (with dimension n = 1), we now intro-
duce quantitative objectives defined by some classical measure functions f : Plays(G)→ Q.
Such a function f associates a rational number to each play ρ = ρ1ρ2 . . . according to the
weights w(ρk, ρk+1), k ≥ 0, and can be one among the next functions. The Inf measure
Inf(ρ) = infk≥0(w(ρk, ρk+1)) (resp. the Sup measure Sup(ρ) = supk≥0(w(ρk, ρk+1))) defines
the minimum (resp. maximum) weight seen along the play. The LimInf measure LimInf(ρ) =
lim inf
k→∞

(w(ρk, ρk+1)) (resp. the LimSup measure LimSup(ρ) = lim sup
k→∞

(w(ρk, ρk+1))) defines

the mininum (resp. maximum) weight seen infinitely often along the play.
Given such a measure function f ∈ {Inf, Sup, LimInf, LimSup}, a bound ν ∈ Q, and a

relation ∼ ∈ {>,≥, <,≤}, we define the objective Ω = f(∼ ν) such that

f(∼ ν) = {ρ ∈ Plays(G) | f(ρ) ∼ ν}. (1)

We are also interested in the next two measure functions defined on histories instead of
plays. Let ρ = ρ0 . . . ρi ∈ Hist(G). The total-payoff (TP) measure TP(ρ) = Σi−1

k=0w(ρk, ρk+1)

V.Bruyère, Q.Hautem and J.-F. Raskin 11:5

v0 v1v2

(−1,−1,−1)

(2,−1,−1)(1,−1,0)

(−1,−1,0)
(0,−1,0) (−1,0,−1)

Figure 1 A multi-weighted two-player game.

defines the sum of the weights seen along ρ. The mean-payoff (MP) measure MP(ρ) =
1
iTP(ρ) defines the mean of the weights seen along ρ. The second measure can be extended
to plays ρ as either MP(ρ) = lim infk≥0 MP(ρ[0,k]) or MP(ρ) = lim supk≥0 MP(ρ[0,k]). The
MP measure on histories allows to define the window mean-payoff objective, a new ω-regular
objective introduced in [6]: given a bound ν ∈ Q, a relation ∼ ∈ {>,≥, <,≤}, and a window
size λ ∈ N\{0}, the objective WMP(λ,∼ ν)2 is equal to

WMP(λ,∼ ν) = {ρ ∈ Plays(G) | ∀k ≥ 0,∃l ∈ {1, . . . , λ},MP(ρ[k,k+l]) ∼ ν}. (2)

The window mean-payoff objective asks that the average weight becomes ∼ ν inside a local
bounded window for all positions of this window sliding along the play, instead of the classical
mean-payoff objective asking that the long run-average MP(ρ) (resp. MP(ρ)) is ∼ ν. This
objective is a strengthening of the mean-payoff objective.

Given a n-weighted game structure G (with n ≥ 1), we can mix objectives of (1) and
(2) by fixing one such objective Ωm for each dimension m, and taking the intersection
∩nm=1Ωm. More precisely, given a vector (∼1 ν1, . . . ,∼n νn), each objective Ωm uses a
measure function based on the weight function wm; Ωm is either of the form f(∼m νm) with
f ∈ {Inf, Sup, LimInf, LimSup}, or of the form WMP(λ,∼m νm) for some window size λ (this
size can change with m).

As for qualitative objectives, we use the shortcut Ω game for a game with quantitative
objective Ω. For instance an Inf(∼ ν) game is a 1-weighted game with objective Inf(∼ ν), a
LimSup(∼1 ν1)∩WMP(λ,∼2 ν2)∩Inf(∼3 ν3) game is a 3-weighted game with the intersection
of a LimSup(∼1 ν1) objective on the first dimension, a WMP(λ,∼2 ν2) objective on the
second one, and an Inf(∼3 ν3) objective on the third one. We sometimes abusively say that
Ω = ∩nm=1Ωm with Ωm ∈ {WMP, Inf, Sup, LimInf, LimSup} without mentioning the used
relations, bounds and window sizes. It is implicitly supposed that Ωm deals with the mth

component of the weight function.

3 Problem

In this paper, we want to study the following problem.

I Problem 1. Let (G,Ω) be a multi-weighted game with dimension n ≥ 1 and Ω = ∩nm=1Ωm
such that each Ωm ∈ {WMP, Inf, Sup, LimInf, LimSup}. Can we compute the winning sets
WinΩ

1 and WinΩ
2 ? If yes what is the complexity of computing these sets and how (memoryless,

finite-memory, general) are the winning strategies of both players? Given such a game (G,Ω)
and an initial vertex v0, the synthesis problem asks to decide whether player 1 has a winning
strategy for Ω from v0 and to build such a strategy when it exists.

2 This objective is called “direct fixed window mean-payoff” in [6] among several other variants.

CONCUR 2016

11:6 Heterogeneous Multidimensional Quantitative Games

I Remark 1. (i) In this problem, we can assume that the bounds used in the vector (∼1
ν1, . . . ,∼n νn) are such that (ν1, . . . , νn) = (0, . . . , 0). Indeed, suppose that νm = a

b with
a ∈ Z and b ∈ N\{0}, then replace the mth component wm of the weight function w by
b · wm − a. (ii) Moreover notice that if νm = 0 and Ωm = WMP, then MP(ρ[k,k+l]) can be
replaced by TP(ρ[k,k+l]) in (2). (iii) Finally, the vector (∼1 0, . . . ,∼n 0) can be supposed
to be equal to (≥ 0, . . . ,≥ 0). Indeed strict inequality > 0 (resp. < 0) can be replaced by
inequality ≥ 1 (resp. ≤ −1), and inequality ≤ 0 can be replaced by ≥ 0 by replacing the
weight function by its negation and the measure Inf (resp. Sup, LimInf, LimSup, TP) by Sup
(resp. Inf, LimSup, LimInf, TP).
From now on, we only work with vectors (≥ 0, . . . ,≥ 0) and we no longer mention symbol
≥. Hence, as an example, Inf(≥ 0) and WMP(2,≥ 0) are replaced by Inf(0) and WMP(2, 0);
and when the context is clear, we only mention Inf and WMP.

The games (G,Ω) of Problem 1 are determined since all the objectives Ω are ω-regular.
Let us give an example where we mix quantitative objectives.

I Example 1. Consider the 3-weighted game structure of Figure 1. In all examples in this
paper, we assume that circle (resp. square) vertices belong to player 1 (resp. player 2). Let
Ω = WMP(3, 0)∩Sup(0)∩LimSup(0) be the objective of player 1. We recall that by definition
of Ω, we look at the WMP (resp. Sup, LimSup) objective on the first (resp. second, third)
dimension. Let us show that v0 is a winning vertex for player 1. Let σ1 be the following
strategy of player 1 from v0: go to v1, take the self loop once, go back to v0 and then always
go to v2. Notice that ρ ∈ v0v1v1v0{v2, v0}ω. As player 1 forces ρ to begin with v0v1v1, he
ensures that Sup(ρ) ≥ 0 on the second component. Moreover as ρ visits infinitely often edge
(v2, v2) or (v2, v0), player 1 also ensures to have LimSup(ρ) ≥ 0 on the third component.
Finally, we have to check that ρ ∈ WMP(3, 0) with respect to the first component, that is
(by Remark 1), for all k, there exists l ∈ {1, 2, 3} such that TP(ρ[k,k+l]) ≥ 0. For k = 0
(resp. k = 1, k = 2, k = 3) and l = 3 (resp. l = 2, l = 1, l = 1), we have TP(ρ[k,k+l]) ≥ 0.
Now, from position k = 4, the sum of weights is non-negative in at most 2 steps. Indeed,
either player 2 takes the self loop (v2, v2) or he goes to v0 where player 1 goes back to v2.
Therefore, for each k ≥ 4, either ρk = v0 and TP(ρ[k,k+l]) ≥ 0 with l = 1, or ρk = v2
and TP(ρ[k,k+l]) ≥ 0 with l = 1 if ρk+1 = v2, and with l = 2 otherwise. It follows that
v0 ∈ WinΩ

1 . The strategy σ1 needs memory: indeed, player 1 needs to remember if he has
already visited the edge (v1, v1) as this is the only edge visiting a non-negative weight for
the Sup objective. Finally, one can show that WinΩ

1 = {v0, v1} and WinΩ
2 = {v2}.

I Remark 2. In Problem 1, the vector (∼1 ν1, . . . ,∼n νn) can be assumed equal to
(≥ 0, . . . ,≥ 0) by Remark 1. Thus an Inf (resp. Sup, LimInf, LimSup) objective is nothing
else than a safety (resp. reachability, co-Büchi, Büchi) objective, and conversely. More
precisely, every game (G,Ω = ∩nm=1Ωm) with each Ωm ∈ {WMP, Inf, Sup, LimInf, LimSup}
can be polynomially reduced to a game (G′,Ω′ = ∩nm=1Ω′m) such that each Ω′m belongs
to {WMP, Safe,Reach,CoBuchi,Buchi}, and with |V | + |E| vertices and 2 · |E| edges. This
reduction is obtained by splitting each edge into two consecutive edges and decorating ac-
cordingly the new intermediate vertex to transfer the objectives. The WMP objectives in G
are now WMP objectives in G′ with a doubled window size. There also exists a polynomial
reduction in the other direction, but without WMP objectives, and keeping the same game
structure G′ = G. These two game reductions will be used throughout this paper.

V.Bruyère, Q.Hautem and J.-F. Raskin 11:7

Table 2 Overview of some known results for qualitative objectives (i is the number of objectives
in the intersection of reachability/Büchi objectives).

Objective Complexity class Algorithmic complexity Player 1 memory Player 2 memory
Reach/Safe [2, 13, 15] P-complete O(|V |+ |E|) memoryless memoryless

Buchi/CoBuchi [7, 11, 15] P-complete O(|V |2) memoryless memoryless
GenReach [12] PSPACE-complete O(2i · (|V |+ |E|)) exponential memory exponential memory

GenReach (i fixed) [12] P-complete O(2i · (|V |+ |E|)) polynomial memory polynomial memory
GenBuchi [10] P-complete O(i · |V | · |E|) polynomial memory memoryless

GenBuchi ∩ CoBuchi P-complete O(i2 · |V | · |E|) polynomial memory memoryless

Some well-know properties

Table 2 gathers several well-known results about qualitative objectives in an unweighted
game structure and Theorem 2 states the known results about the WMP objective. In this
paper, the complexity of the algorithms is expressed in terms of the size |V | and |E| of
the game structure G, the maximum weight W (in absolute value) and the dimension n of
the weight function when G is weighted, the number i of objectives in an intersection of
objectives3, and the window size λ.

I Theorem 2. [6]4 Let (G,Ω) be an n-weighted game such that Ω = ∩nm=1Ωm with Ωm =
WMP. The synthesis problem is EXPTIME-complete (with an algorithm in O(λ4n ·|V |2 ·W 2n)
time), exponential memory strategies are sufficient and necessary for both players. This
problem is already EXPTIME-hard when n = 2.

When n = 1, the synthesis problem is decidable in O(λ · |V | · (|V |+ |E|) · dlog2(λ ·W)e)
time, both players require finite-memory strategies, and memory in O(λ2 · W) (resp. in
O(λ2 ·W · |V |)) is sufficient for player 1 (resp. player 2). Moreover, if λ is polynomial in
the size of the game, then the synthesis problem is P-complete.

Solution to Problem 1 and extensions

We here give the solution to Problem 1. We show that the synthesis problem is EXPTIME-
complete and that exponential memory strategies are necessary and sufficient for both play-
ers:

I Theorem 3. Let (G,Ω) be an n-weighted game such that Ω = ∩nm=1Ωm with Ωm ∈ {WMP,
Inf, Sup, LimInf, LimSup}. The synthesis problem is EXPTIME-complete (with an algorithm
in O(|V | · |E| · (λ2 · W)2n) time), and exponential memory strategies are necessary and
sufficient for both players.

Proof. First, we show that the synthesis problem is in EXPTIME. To this end, we use an
exponential reduction from [6] dealing with WMP objectives, that we adapt in a way to also
deal with the Inf, Sup, LimInf and LimSup objectives. In this reduction, a game (G′,Ω′)
with Ω′ = ∩nm=1Ω′m, is constructed such that for all m, Ω′m ∈ {Buchi,CoBuchi}, and the
size of the game is exponential with O(|V | · (λ2 ·W)n) vertices and O(|E| · (λ2 ·W)n) edges.
Recall that the intersection of co-Büchi objectives is a co-Büchi objective. It follows that G′
is a generalized Büchi ∩ co-Büchi game. Then, by Table 2 (last item), we can compute the
winning sets of both players in G in time O(n2 ·|V ′|·|E′|) = O(|V |·|E|·(λ2 ·W)2n). Moreover,

3 Notice that i = n for the objectives considered in Problem 1.
4 When n = 1, the time complexity and the memory requirements have been here correctly stated.

CONCUR 2016

11:8 Heterogeneous Multidimensional Quantitative Games

since polynomial memory strategies are sufficient in G′, exponential memory strategies are
sufficient in G. Finally, the EXPTIME-hardness and the necessity of exponential memory
follow from Theorem 2. J

The previous theorem and proof can be generalized to Boolean combinations in DNF and
CNF forms (instead of intersections) of objectives in {WMP, Inf, Sup, LimInf, LimSup}. One
can assume w.l.o.g. that the dimension of the game is equal to the number of objectives
that appear in the Boolean combination (by making copies of components of the weight
function). The following theorem sums up the latter result, and then we discuss the general
case of Boolean combinations.

I Theorem 4. Let (G,Ω) be an nd-weighted game such that Ω = ∪dk=1 ∩nm=1 Ωk,m with
Ωk,m ∈ {WMP, Inf, Sup, LimInf, LimSup}. The synthesis problem is EXPTIME-complete
(with an algorithm in O(nd(d+2) ·|V |d+1 ·|E|·(λ2 ·W)nd(d+2)) time), and exponential memory
strategies are sufficient and necessary for both players. The same result holds when Ω =
∩dk=1 ∪nm=1 Ωk,m.

I Remark 3. (i) Whereas the synthesis problem for Boolean combinations of MP and MP is
undecidable [19], it is here decidable for Boolean combinations of objectives in {WMP, Inf,
Sup, LimInf, LimSup}. Furthermore, one can show that this problem is in EXPSPACE using
a result of [1]. (ii) Note that when the number of dimensions is fixed (n in Theorem 3, nd
in Theorem 4), the synthesis problem is still EXPTIME-hard by Theorem 2.

4 Efficient fragment with one WMP objective

In the previous section, we considered games (G,Ω) with Ω = ∩nm=1Ωm being any intersec-
tion of objectives in {WMP, Inf, Sup, LimInf, LimSup}. We here focus on a particular class of
games in a way to achieve a lower complexity for the synthesis problem. We do not consider
the case where at least two Ωm are WMP objectives since the synthesis problem is already
EXPTIME-hard in this case (by Theorem 2). We thus focus on the intersections of exactly
one5 objective WMP and any number of objectives of one kind in {Inf, Sup, LimInf, LimSup}.
Note that this number must be fixed in the case of objectives Sup to avoid PSPACE-hardness
in this case (see Table 2, third row). For the considered fragment, we show that the syn-
thesis problem is P-complete for polynomial windows. The latter assumption is reasonable
in practical applications where one expects a positive mean-payoff in any “short” window
sliding along the play.

I Theorem 5. Let (G,Ω) be an n-weighted game with objective Ω = Ω1 ∩ Γ for player 1
such that Ω1 = WMP and Γ = ∩nm=2Ωm such that ∀mΩm = Inf (resp. ∀mΩm = LimInf,
∀mΩm = LimSup, {∀mΩm = Sup and n is fixed}). Then the synthesis problem is decidable
(in time polynomial in the size of the game, λ and dlog(W)e). In general, both players
require finite-memory strategies, and pseudo-polynomial memory is sufficient for both play-
ers. Moreover, when λ is polynomial in the size of the game then the synthesis problem is
P-complete.

To prove this theorem, we use the first reduction of Remark 2 to obtain a game (G′,Ω′1∩
Γ′) (with Γ′ = ∩nm=2Ω′m) such that Ω′1 = WMP and ∀mΩ′m ∈ {Reach, Safe, Buchi, CoBuchi}.
Recall that the intersection of safety (resp. co-Büchi) objectives is a safety (resp. co-Büchi)

5 The case with no WMP objective will be treated in the next section.

V.Bruyère, Q.Hautem and J.-F. Raskin 11:9

Table 3 Overview of the fragment (i is the number of objectives in the intersection of Reach/Büchi
objectives).

Objective Algorithmic complexity Player 1 memory Player 2 memory
WMP ∩ Safe O(λ · |V | · (|V |+ |E|) · dlog(λ ·W)e) O(λ2 ·W) O(λ2 ·W · |V |)

WMP ∩ Reach O(λ · |V | · (|V |+ |E|) · dlog(λ ·W)e) O(λ2 ·W · |V |) O(λ2 ·W · |V |)
WMP ∩ GenReach (i fixed) O(λ · 22i · |V | · (|V |+ |E|) · dlog(λ ·W)e) O(λ2 · 2i ·W · |V |) O(λ2 · 2i ·W · |V |)

WMP ∩ Buchi O(λ · |V |2 · (|V |+ |E|) · dlog(λ ·W)e) O(λ2 ·W · |V |) O(λ2 ·W · |V |2)
WMP ∩ GenBuchi O(λ · i3 · |V |2 · (|V |+ |E|) · dlog(λ ·W)e) O(λ2 ·W · i · |V |) O(λ2 ·W · i2 · |V |2)
WMP ∩ CoBuchi O(λ · |V |2 · (|V |+ |E|) · dlog(λ ·W)e) O(λ2 ·W · |V |2) O(λ2 ·W · |V |)

. . . ρk . . . ρk+l . . .
≥ 0 ≥ 0

≥ 0

Figure 2 A λ-window at position k that is inductively-closed in k + l.

objective. We thus have to study WMP ∩ Safe (resp. WMP ∩ Reach, WMP ∩ GenReach
(with n fixed), WMP ∩ Buchi, WMP ∩ GenBuchi, WMP ∩ CoBuchi) games. Table 3 gives an
overview of the obtained properties; it indicates time polynomial in the size of the game, λ
and dlog(W)e, and pseudo-polynomial6 memories for both players. We then get Theorem 5
such that the algorithmic complexity and the memory requirements are those of Table 3
with |V | replaced by |V | + |E|. Notice that finite memory is necessary for both players by
Theorem 2. When λ is polynomial in size of the game, the complexity becomes polynomial,
and the synthesis problem is P-hard (see Table 2).

Apart the objective Ω = WMP(λ, 0) ∩ Safe(U), solving the games of Table 3 is difficult
and requires to develop some new tools generalizing the classical concept of p-attractor while
dealing with good windows (the p-attractor of a set U is the set of vertices from which player
p has a strategy to reach U against any strategy of player p). To this end, let us introduce
some properties of windows.

Properties of windows

Let us focus on the WMP(λ, 0) objective (with TP in (2)) and introduce some terminology.
Let ρ = ρ0ρ1 . . . be a play. A λ-window at position k is a window of size λ placed along ρ
from k to k + λ. If there exists l ∈ {1, . . . , λ} such that TP(ρ[k,k+l]) ≥ 0, such a λ-window
at position k is called good or closed in k + l (to specify index l), otherwise it is called
bad. Moreover if l is the smallest index such that TP(ρ[k,k+l]) ≥ 0, we say it is first-closed
in k + l. An interesting property is the next one: a λ-window at position k is inductively-
closed in k + l if it is closed in k + l and for all k′ ∈ {k + 1, . . . , k + l− 1}, the λ-window at
position k′ is also closed in k + l (see Figure 2). A λ-window at position k that is first-closed
in k + l is inductively-closed in k + l. The next lemma will be useful:

I Lemma 6. A play ρ is winning for WMP(λ, 0) iff there exists a sequence (ki)i≥0 with
k0 = 0 such that ∀i, ki+1 − ki ∈ {1, . . . , λ}, and the λ-window at position ki is inductively-
closed in ki+1.

6 Having pseudo-polynomial memories is not really a problem since the proofs show that the strategies
can be efficiently encoded by programs using two counters, as in the case of Theorem 2.

CONCUR 2016

11:10 Heterogeneous Multidimensional Quantitative Games

Algorithm 1 ICWEnd
Require: 1-weighted game structure G = (V1, V2, E, w), set U ⊆ V , window size λ ∈ N\{0}
Ensure: WinICWEndλ(U)

1
1: for all v ∈ V do
2: if v ∈ U then
3: C0(v)← 0
4: else
5: C0(v)← −∞
6: for all l ∈ {1, . . . , λ} do
7: for all v ∈ V1 do
8: Cl(v)← max(v,v′)∈E{w(v, v′)⊕max{C0(v′), Cl−1(v′)}}
9: for all v ∈ V2 do
10: Cl(v)← min(v,v′)∈E{w(v, v′)⊕max{C0(v′), Cl−1(v′)}}
11: return {v ∈ V | Cλ(v) ≥ 0}

When such a sequence (ki)i≥0 exists for a play ρ, it is called a λ-good decomposition of ρ. We
extend this notion to histories ρ = ρ0ρ1 . . . ρk as follows. A finite sequence (ki)ji=0 is a λ-good
decomposition of ρ if k0 = 0, kj = k, for each i ∈ {0, . . . j−1} we have ki+1−ki ∈ {1, . . . , λ},
and the λ-window at position ki is inductively-closed in ki+1. From now on, a λ-window is
simply called a window.

Two new objectives

Let us now introduce our new tools. They are based on the following new objectives.

I Definition 7. Let G = (V1, V2, E, w) be a 1-weighted game structure, U ⊆ V be a set of
vertices, and λ ∈ N \ {0} be a window size. We consider the next two sets of plays:

ICWEndλ(U) = { ρ ∈ Plays(G) | ∃l ∈ {1, . . . , λ}, ρl ∈ U , and the window at position 0 is
inductively-closed in l },
GDEndλ(U) = { ρ ∈ Plays(G) | ∃l ≥ 0, ρl ∈ U and ρ[0,l], has a λ-good decomposition }.

Notice that the plays of ICWEndλ(U) are particular plays of GDEndλ(U). Hence we have
ICWEndλ(U) ⊆ GDEndλ(U). We propose two algorithms, Algorithms 1 and 2, one for
computing the winning set of player 1 for the objective ICWEndλ(U), and the other for the
objective GDEndλ(U).

Algorithm 1 uses the operator ⊕ defined as follows. Let a, b ∈ Z∪{−∞}, then a⊕b = a+b
if a + b ≥ 0, and −∞ otherwise. With this definition, either a ⊕ b ≥ 0 or a ⊕ b = −∞.
Algorithm 1 intuitively works as follows. Given a vertex v and a number i of steps, the
value Ci(v) is computed iteratively (from Ci−1(v)) and represents the best total payoff that
player 1 can ensure in at most i steps while closing the window from v in a vertex of U .
Value −∞ indicates that the window starting in v cannot be inductively-closed in U . The
winning set of player 1 is thus the set of vertices v for which Cλ(v) ≥ 0. This algorithm is
inspired from Algorithm GoodWin in [6] computing WinICWEndλ(U)

1 with U = V .7

7 We have detected a flaw in this algorithm that has been corrected in Algorithm 1. The algorithm in [6]
wrongly computes the set of vertices from which player 1 can force to close the window in exactly l
steps (instead of at most l steps) for some l ∈ {1, . . . , λ}.

V.Bruyère, Q.Hautem and J.-F. Raskin 11:11

Algorithm 2 GDEnd
Require: 1-weighted game structure G = (V1, V2, E, w), subset U ⊆ V , window size λ ∈

N \ {0}
Ensure: WinGDEndλ(U)

1
1: k ← 0
2: X0 ← U

3: repeat
4: Xk+1 ← Xk ∪ ICWEnd(G,Xk, λ)
5: k ← k + 1
6: until Xk = Xk−1
7: return Xk

I Lemma 8. Let G be a 1-weighted game structure, U be a subset of V , and λ ∈ N \ {0} be
a window size. Then Algorithm ICWEnd computes the set WinICWEndλ(U)

1 in O(λ · (|V |+ |E|) ·
dlog2(λ ·W)e) time, and finite-memory strategies with memory linear in λ are sufficient for
both players.

We now turn to Algorithm 2 for computing the winning set of player 1 when the objective
is GDEndλ(U). It shares similarities with the classical algorithm computing the p-attractor
of U while requiring to use previous Algorithm ICWEndλ(U).

I Lemma 9. Let G be a 1-weighted game structure, U be a subset of V , and λ ∈ N \ {0} be
a window size. Then Algorithm GDEnd computes the set WinGDEndλ(U)

1 of winning vertices
of player 1 for the objective GDEndλ(U) in O(λ · |V | · (|V |+ |E|) · dlog2(λ ·W)e) time, and
finite-memory strategies with memory in O(λ2 ·W · |V |) (resp. in O(λ2 ·W)) are sufficient
for player 1 (resp. player 2).

The proof of Lemma 9 works as follows. Let X∗ = ∪k≥0Xk be the set computed by
Algorithm GDEnd. We explain why X∗ = WinGDEndλ(U)

1 . From v0 ∈ X∗, player 1 plays a
winning strategy for the objective ICWEndλ(Xk), and as soon as this objective is realized
he repeats such a strategy for decreasing values of k until reaching U . This strategy is
winning for the objective GDEndλ(U) and it is finite-memory. Let us now consider v0 ∈
V \ X∗. As player 2 has a winning strategy σ∗2 for the objective ICWEndλ(X∗), then for
ρ = Out(v0, σ1, σ

∗
2) with σ1 being any strategy of player 1, if the window at position 0 is

inductively-closed in ρl for l ∈ {1, . . . , λ}, then necessarily ρl ∈ V \X∗. Therefore we propose
the following strategy of player 2 from v0: (1) If the current vertex v belongs to V \X∗, play
the winning strategy σ∗2 . (2) As soon as the window starting from v is first-closed in v′ in l
steps with l ∈ {1, . . . , λ}, as v′ ∈ V \X∗, go back to step (1). (3) As soon as the window
starting from v is bad, play whatever. This strategy is finite-memory and it is winning for
player 2 since it ensures that the play cannot have a prefix with a λ-good decomposition
ending in U .

I Example 10. Consider the game (G,Ω) depicted on Figure 3, where Ω = GDEnd2(U)
with U = {v1, v3, v4}. Let us execute Algorithm 2: X0 = U , X1 = WinICWEnd2(X0)

1 =
{v1, v2, v3, v4} and then, X2 = WinICWEnd2(X1)

1 = V . Thus all vertices in G are winning for
player 1 for the objective Ω. A winning strategy for player 1 consists in looping once in v2
and then going to v3. Indeed for any strategy of player 2, the outcome is either v0v

ω
1 or

v0v2v2v3v
ω
4 , and both outcomes admit a prefix which has a 2-good decomposition and ends

with a vertex of U .

CONCUR 2016

11:12 Heterogeneous Multidimensional Quantitative Games

v0

v2

v1

v3 v4

−1

0

−1
1

0
0

1

Figure 3 Objective GDEnd2(U).

v0

v2

v1

v3 v4

−1

0

−1
1

0
0

1

Figure 4 Objective WMP(2, 0) ∩ Reach(U).

Objective WMP ∩ Reach

Now that we have introduced our new tools, let us come back to the games of Table 3, second
row. Notice that the objectives GDEndλ(U) and WMP(λ, 0) ∩ Reach(U) are close to each
other: a play ρ belongs to GDEndλ(U) if it has a prefix which has a λ-good decomposition
and ends with a vertex in U , while ρ belongs to WMP(λ, 0) ∩ Reach(U) if it has a λ-good
decomposition and one of its vertices belongs to U . Therefore solving games for the objective
WMP(λ, 0) ∩ Reach(U) requires to win for a modified objective GDEndλ(U) such that the
λ-good decomposition visits U and ends in a winning vertex for the objective WMP. The
following example illustrates this modified objective.

I Example 11. Consider the game (G,Ω) depicted on Figure 4, where Ω = WMP(2, 0) ∩
Reach(U) with U = {v1, v3}. To compute the winning set WinΩ

1 , we need to modify G

in a new game structure G′ where we add a bit to each vertex indicating whether U has
been visited (bit equals 1) or not (bit equals 0). This game structure is the one of previous
Figure 3, where the set U ′ = {v1, v3, v4} of gray nodes are those with bit 1. We already
know that every vertex of G′ is winning for objective GDEnd2(U ′), and we note that they
are also all winning for objective WMP(2, 0). Therefore, in G′, player 1 can ensure a finite
2-good decomposition ending in a vertex of U ′ from which he can ensure an infinite 2-good
decomposition. Thanks to the added bit and coming back to G, we get that all vertices of
G are winning for Ω.

Now, it is easy to solve games for the objective WMP(λ, 0) ∩ GenReach(U1, . . . , Ui−1)
when i is fixed (see Table 3, third row). From such a game, we construct a new game
structure where we add i bits to each vertex: the jth bit equals 1 if Uj has been visited,
and 0 otherwise. Note that i has to be fixed to get a polynomial construction, otherwise the
problem is already PSPACE-hard by Table 2 (third row). Finally, we solve the new game
where the objective is WMP(λ, 0)∩GenReach(U ′) where U ′ is the set of vertices with all bits
equal to 1.

Objective WMP ∩ Buchi

Solving games for the objective WMP ∩ Buchi needs an algorithm that repeatedly uses the
algorithm for the objective WMP ∩ Reach.

V.Bruyère, Q.Hautem and J.-F. Raskin 11:13

I Proposition 1. Let G = (V1, V2, E, w) be a 1-weighted game structure, and Ω be the
objective WMP(λ, 0) ∩ Buchi(U). Then WinΩ

1 can be computed in O(λ · |V |2 · (|V | + |E|) ·
dlog2(λ ·W)e) time and finite-memory strategies with memory in O(λ2 ·W · |V |) (resp. in
O(λ2 ·W · |V |2)) are sufficient for player 1 (resp. player 2).

The algorithm for the objective WMP ∩ Buchi works as follows: (1) Compute the winning
set X for player 1 for the objective WMP(λ, 0)∩Reach(U) in G; (2) compute the 2-attractor
Y of the set V \X in G; (3) repeat step (1) in the game G[V \Y] and step (2) in the game
G, until X is empty or X is the set of all vertices in G[V \Y]. The final set X is the winning
set of player 1 for the objective WMP(λ, 0) ∩ Buchi(U).

We first explain why X ⊆ WinWMP(λ,0)∩Buchi(U)
1 . Notice that this algorithm exactly

computes the setX of vertices such that player 1 wins for the objective WMP(λ, 0)∩Reach(U)
while staying in X (player 2 cannot leave this set). Therefore, from v0 ∈ X, player 1 plays
a winning strategy for the objective WMP(λ, 0) ∩ Reach(U), and as soon as a vertex of U
has been visited and the current history has a λ-good decomposition ending in a vertex
v ∈ X, he repeats such a strategy, ad infinitum. This strategy is winning for the objective
WMP(λ, 0)∩Buchi(U) and it is finite-memory. Now, we show that WinWMP(λ,0)∩Buchi(U)

1 ⊆ X.
If player 1 can win for the objective WMP(λ, 0)∩Buchi(U), then a winning strategy ensures
that he only visits vertices of WinWMP(λ,0)∩Reach(U)

1 . Then, player 1 has a strategy to win
the WMP(λ, 0)∩Reach(U) objective using only vertices from which this property is ensured,
which shows that v0 ∈ X.

Concerning the two last rows of Table 3, one can derive an algorithm for the objective
WMP ∩ GenBuchi from the algorithm for the objective WMP ∩ Buchi; the objective WMP ∩
CoBuchi is the most difficult to solve and requires elaborated arguments to manage correctly
two nested fixpoints together with the good windows.

5 Intersection of objectives in {Inf,Sup,LimInf,LimSup}

The aim of this section is to provide a refinement of Theorem 3 for games (G,Ω = ∩nm=1Ωm)
when no objective Ωm is a WMP objective. In this case, we get the better complexity of
PSPACE-completeness (instead of EXPTIME-completeness) for the synthesis problem; nev-
ertheless the two players still need exponential memory strategies to win (Theorem 12). We
also study with precision (in Table 4) the complexity and the memory requirements in terms
of the objectives of {Inf, Sup, LimInf, LimSup} that appear in the intersection Ω = ∩nm=1Ωm.
When there is at most one Sup, we get a polynomial fragment and in certain cases, players
can play memoryless. Notice that the membership to PSPACE in Theorem 12 could have
been obtained from one result proved in [1] (in this paper, the objective is defined by an LTL
formula, and it is proved that deciding the winner is in PSPACE for Boolean combinations
of formulas of the form “eventually p” and “infinitely often p”). We here propose a simple
proof adapted to our context, that allows an easy study of the winning strategies as well as
the identification of polynomial fragments.

I Theorem 12. Let (G,Ω) be an n-weighted game such that Ω = ∩nm=1Ωm with Ωm ∈ {Inf,
Sup, LimInf, LimSup}. The synthesis problem is PSPACE-complete (with an algorithm in
O(2n · (|V |+ |E|)) time) and exponential memory strategies are necessary and sufficient for
both players.

In Table 4, we recall Theorem 12 (first row) and exhibit several polynomial refinements
(next rows). As shown by Example 13, these additional results are optimal with respect to
the required memory (no/finite memory) for the winning strategies.

CONCUR 2016

11:14 Heterogeneous Multidimensional Quantitative Games

Table 4 Overview of properties for the intersection of objectives in {Inf, Sup, LimInf, LimSup}.

Inf Sup LimInf LimSup Complexity class Algorithmic complexity Player 1 memory Player 2 memory
any any any any PSPACE-complete O(2n · (|V |+ |E|)) exponential memory exponential memory
any ≤ 1 any any P-complete O(n2 · (|V |+ |E|) · |E|) polynomial memory memoryless
any 0 any ≤ 1 P-complete O((|V |+ |E|) · |E|) memoryless memoryless
any 1 0 0 P-complete O(|V |+ |E|) memoryless memoryless

v0

v1

v2

v3

v4

v5

(−1,0)

(0,−1)

(−1,−1)

(−1,−
1)

(−1,0)

(0,−1)

(−1,−1)

(−1,−1)

Figure 5 Example where player 2 needs memory.

I Example 13. First, we come back to the game structure G depicted on Figure 1, where we
only keep the second and the third dimensions. Assume Ω = Sup(0) ∩ LimSup(0). Then, v0
is winning for player 1 but memory is required to remember if player 1 has visited the edge
(v1, v1). The same argument holds for Ω = Sup(0) ∩ LimInf(0) and Ω = Sup(0) ∩ Sup(0).
This example with objective Ω = Sup(0) ∩ LimSup(0) indicates that player 1 cannot win
memoryless in a game as in the second row of Table 4. This example with objective Ω =
Sup(0) ∩ LimSup(0) (resp. Ω = Sup(0) ∩ LimInf(0), Ω = Sup(0) ∩ Sup(0)) also shows that
player 1 needs memory to win if [1, 0, 0] (referring to the second, third and fourth columns
of Table 4) in the last row of Table 4 is replaced by [1, 0, 1] (resp. [1, 1, 0], [2, 0, 0]). Now,
assume that v2 ∈ V1, that is, G is a one-player game and let Ω = LimSup(0) ∩ LimSup(0).
Again, v0 is winning but player 1 needs memory since he has to alternate between v1 (and
take the self loop) and v2. This shows that in the third row of Table 4, if [≤ 1] is replaced
by [2] then player 1 needs memory to win. Finally, consider the game depicted on Figure 5.
Let Ω = Sup(0) ∩ Sup(0). Vertex v0 is losing for player 1 (i.e. winning for player 2), but
player 2 needs memory since he has to know which edge player 1 took from v0 to counter
him by taking the edge with the same vector of weights from v3. This shows that in the
second row of Table 4, if [≤ 1] is replaced by [2] then player 2 needs memory.

I Remark 4. When n is fixed, the synthesis problem becomes P-complete for games (G,Ω)
such that Ω = ∩nm=1Ωm with Ωm ∈ {Inf, Sup, LimInf, LimSup}. The P-easyness follows from
Theorem 12 and the P-hardness follows from Table 2 and the second reduction of Remark 2.

Acknowledgments. We would like to thank Mickael Randour for his availability and help.

References
1 R. Alur, S. La Torre, and P. Madhusudan. Playing games with boxes and diamonds. In

CONCUR 2003, volume 2761 of LNCS, pages 127–141. Springer, 2003.
2 C. Beeri. On the membership problem for functional and multivalued dependencies in

relational databases. ACM Trans. Database Syst., 5(3):241–259, 1980.
3 P. Bouyer, U. Fahrenberg, K. G. Larsen, N. Markey, and J. Srba. Infinite runs in weighted

timed automata with energy constraints. In FORMATS 2008, volume 5215 of LNCS, pages
33–47. Springer, 2008.

V.Bruyère, Q.Hautem and J.-F. Raskin 11:15

4 L. Brim, J. Chaloupka, L. Doyen, R. Gentilini, and J.-F. Raskin. Faster algorithms for
mean-payoff games. Formal Methods in System Design, 38(2):97–118, 2011.

5 K. Chatterjee, L. Doyen, T. A. Henzinger, and J.-F. Raskin. Generalized mean-payoff and
energy games. In FSTTCS 2010, volume 8 of LIPIcs, pages 505–516, 2010.

6 K. Chatterjee, L. Doyen, M. Randour, and J.-F. Raskin. Looking at mean-payoff and
total-payoff through windows. Inf. Comput., 242:25–52, 2015.

7 K. Chatterjee and M. Henzinger. Efficient and dynamic algorithms for alternating büchi
games and maximal end-component decomposition. J. ACM, 61(3):15:1–15:40, 2014.

8 K. Chatterjee, M. Randour, and J.-F. Raskin. Strategy synthesis for multi-dimensional
quantitative objectives. Acta Inf., 51(3-4):129–163, 2014.

9 A. Degorre, L. Doyen, R. Gentilini, J.-F. Raskin, and S. Toruńczyk. Energy and mean-
payoff games with imperfect information. In CSL 2010, volume 6247 of LNCS, pages
260–274. Springer, 2010.

10 S. Dziembowski, M. Jurdzinski, and I. Walukiewicz. How much memory is needed to win
infinite games? In LICS 1997, pages 99–110. IEEE Computer Society, 1997.

11 E. Allen Emerson and C. S. Jutla. Tree automata, mu-calculus and determinacy (extended
abstract). In FOCS 1991, pages 368–377. IEEE Computer Society, 1991.

12 N. Fijalkow and F. Horn. Les jeux d’accessibilité généralisée. Technique et Science Inform-
atiques, 32(9-10):931–949, 2013.

13 E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and Infinite Games: A
Guide to Current Research, volume 2500 of LNCS. Springer, 2002.

14 P. Hunter, G. A. Pérez, and J.-F. Raskin. Looking at mean-payoff through foggy windows.
In ATVA 2015, volume 9364 of LNCS, pages 429–445. Springer, 2015.

15 N. Immerman. Number of quantifiers is better than number of tape cells. J. Comput. Syst.
Sci., 22(3):384–406, 1981.

16 M. Jurdzinski, R. Lazic, and S. Schmitz. Fixed-dimensional energy games are in pseudo-
polynomial time. In ICALP 2015, volume 9135 of LNCS, pages 260–272. Springer, 2015.

17 D. A. Martin. Borel determinacy. Annals of Mathematics, 102(2):363–371, 1975.
18 A. Pnueli and R. Rosner. On the synthesis of a reactive module. In ACM 1989, pages

179–190. ACM Press, 1989.
19 Y. Velner. Robust multidimensional mean-payoff games are undecidable. In FoSSaCS 2015,

volume 9034 of LNCS, pages 312–327. Springer, 2015.
20 Y. Velner, K. Chatterjee, L. Doyen, T. A. Henzinger, A. M. Rabinovich, and J.-F. Raskin.

The complexity of multi-mean-payoff and multi-energy games. Inf. Comput., 241:177–196,
2015.

21 Y. Velner and A. Rabinovich. Church synthesis problem for noisy input. In FOSSACS
2011, volume 6604 of LNCS, pages 275–289. Springer, 2011.

22 U. Zwick and M. Paterson. The complexity of mean payoff games on graphs. Theor.
Comput. Sci., 158(1&2):343–359, 1996.

CONCUR 2016

Soundness in Negotiations∗

Javier Esparza1, Denis Kuperberg2, Anca Muscholl3, and
Igor Walukiewicz4

1 Technical University of Munich
2 Technical University of Munich
3 Technical University of Munich, IAS & CNRS†

4 University of Bordeaux, CNRS, LaBRI

Abstract
Negotiations are a formalism for describing multiparty distributed cooperation. Alternatively,
they can be seen as a model of concurrency with synchronized choice as communication primitive.
Well-designed negotiations must be sound, meaning that, whatever its current state, the nego-
tiation can still be completed. In a former paper, Esparza and Desel have shown that deciding
soundness of a negotiation is PSPACE-complete, and in PTIME if the negotiation is determin-
istic. They have also provided an algorithm for an intermediate class of acyclic, non-deterministic
negotiations, but left the complexity of the soundness problem open.

In the first part of this paper we study two further analysis problems for sound acyclic determ-
inistic negotiations, called the race and the omission problem, and give polynomial algorithms.
We use these results to provide the first polynomial algorithm for some analysis problems of
workflow nets with data previously studied by Trcka, van der Aalst, and Sidorova.

In the second part we solve the open question of Esparza and Desel’s paper. We show that
soundness of acyclic, weakly non-deterministic negotiations is in PTIME, and that checking
soundness is already NP-complete for slightly more general classes.

1998 ACM Subject Classification D.1.3 Concurrent Programming, D.3.2 Language Classifica-
tions, D.2.2 Design Tools and Techniques, F.2.0 Analysis of Algorithms and Problem Commplex-
ity – General, H.4.1 Office Automation

Keywords and phrases Negotiations, workflows, soundness, verification, concurrency.

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2016.12

1 Introduction

A multiparty atomic negotiation is an event in which several processes (agents) synchron-
ize in order to select one out of a number of possible outcomes. In [3] Esparza and Desel
introduced negotiations, a model of concurrency with multiparty atomic negotiation as in-
teraction primitive. The model describes a workflow of “atomic” negotiations. After an
atomic negotiation concludes with the selection of an outcome, the workflow determines the
set of atomic negotiations each agent is ready to engage next.

The negotiation model has been studied in [3, 4, 5], and in [6] the results have been
applied to the analysis of industrial business processes modeled as workflow Petri nets, a very
successful formal backend for graphical notations like BPMN (Business Process Modeling
Notation), EPC (Event-driven Process Chain), or UML Activity Diagrams (see e.g. [15, 14]).

∗ This work was partially supported by the DFG Project “Negotiations: A Model for Tractable Concur-
rency”

† On leave from the University of Bordeaux.

© Javier Esparza, Denis Kuperberg, Anca Muscholl, and Igor Walukiewicz;
licensed under Creative Commons License CC-BY

27th International Conference on Concurrency Theory (CONCUR 2016).
Editors: Josée Desharnais and Radha Jagadeesan; Article No. 12; pp. 12:1–12:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.12
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

12:2 Soundness in Negotiations

As shown in [1], deterministic negotiations are very closely related to free-choice workflow
nets, a class that is expressive enough to model many business processes (for example, 70%
of the almost 2000 workflow nets from the suite of industrial models studied in [16, 7, 6] are
free-choice).

The most prominent analysis problem for the negotiation model is soundness. Loosely
speaking, a negotiation is sound if for every reachable configuration there is an execution
leading to proper termination of the negotiation. In [3] it is shown that the soundness prob-
lem is Pspace-complete for non-deterministic negotiations and coNP-complete for acyclic
non-deterministic negotiations1. For this reason, and in search of a tractable class, [3] in-
troduces the class of deterministic negotiations. In deterministic negotiations all agents are
deterministic, meaning that they are never ready to engage in more than one atomic negoti-
ation per outcome (in the same way that in a deterministic automaton, for each action the
automaton is only ready to move to one state). The main results of [3] are a polynomial
time reduction algorithm for checking soundness of acyclic deterministic negotiations, and
an extension of the algorithm to the more expressive class of acyclic, weakly deterministic2
negotiations. The runtime of this second algorithm was however left open, as well as the
more general question of determining the complexity of checking soundness for other classes
of acyclic negotiations. In [4] the polynomial result for acyclic deterministic negotiations is
extended to the cyclic case.

While unsound negotiations are clearly faulty, sound negotiations are not automatically
correct, they must satisfy other properties. In the first contribution of this paper, we study
two other analysis problems for sound acyclic deterministic negotiations: the race problem
and the omission problem. The race problem is to determine if there is an execution in which
two given atomic negotiations are concurrently enabled. The omission problem asks for given
sets of atomic negotiations P and B if there exists a run that visits all elements of P and
omits all of B. We show that for sound negotiations the race problem is polynomial, as well
as the omission problem for P of bounded size. We then apply these polynomial algorithms
to analysis problems for negotiations with global data studied in [13, 11] in the context of
workflow Petri nets. In this model atomic negotiations can manipulate global variables,
so classical analysis questions are raised, for instance whether every value written into a
variable is guaranteed to be read, or whether a variable can be allocated and deallocated
by two atomic negotiations taking place in parallel. While the algorithms of [13, 11] are
exponential, our solutions for acyclic sound deterministic negotiations take polynomial time.

Our second contribution is the study of the complexity of soundness for classes beyond
deterministic negotiations. We propose to analyze this problem through properties of the
graph of a negotiation. The first indication of the usefulness of this approach is a short
argument giving an Nlogspace algorithm for deciding soundness of acyclic deterministic
negotiations. Next, we settle the question left open in [3], and prove that the soundness
problem can be solved in polynomial time for acyclic, weakly non-deterministic negotiations,
a class even more general than the one defined in [3]. We then show that if we leave out
one of the two assumptions, acyclicity or weak non-determinism, then the problem becomes
coNP-complete3. These results set a limit to the class of negotiations with a polynomial
soundness problems, but also admit a positive interpretation. Indeed, if all processes are

1 In [3] the notion of soundness has one more requirement, which makes the soundness problem for acyclic
negotiations coNP-hard and in DP.

2 The class considered [3] was called “weakly deterministic”. In this paper we refer to it as “very weakly
non-deterministic”.

3 We show that coNP-hardness holds even for a very mild relaxation of acyclicity.

Javier Esparza, Denis Kuperberg, Anca Muscholl, and Igor Walukiewicz 12:3

allowed to be cyclic and non-deterministic, then the soundness problem is Pspace-complete,
while for the class above it belongs to coNP.

Related formalisms and related work. The connection between negotiations and Petri
nets is studied in detail in [1]. Every negotiation can be transformed into an exponentially
larger 1-safe workflow Petri net with an isomorphic reachability graph. Every deterministic
negotiation is equivalent to a 1-safe workflow free-choice net with a linear blow-up. Con-
versely, every sound workflow free-choice net can be transformed into a sound deterministic
negotiation with a linear blow-up. Recent papers on free-choice workflow Petri nets are [8, 6].
In [8] soundness is characterized in terms of anti-patterns, which can be used to explain why
a given workflow net is unsound. Our work provides an anti-pattern characterization for
acyclic weakly non-deterministic negotiations, which goes beyond the free-choice case. In
[6] a polynomial reduction algorithm for free-choice workflow Petri nets is presented. Our
results show that soundness is also polynomial for workflow Petri nets coming from acyclic
weakly deterministic negotiations.

As a process-based concurrent model, negotiations can be compared with another well-
studied model for distributed computation, namely Zielonka automata [17, 2, 10]. Such
an automaton is a parallel composition of finite transition systems with synchronization
on common actions. The important point is that a synchronization involves exchange of
information between states of agents: the result of the synchronization depends on the states
of all the components taking part in it. Zielonka automata have the same expressive power as
arbitrary, possibly nondeterministic negotiations. Deterministic negotiations correspond to
a subclass that does not seem to have been studied yet, and for which verification becomes
considerably easier. For example, the question whether some local state occurs in some
execution is Pspace-complete for “sound” Zielonka automata, while it can be answered in
polynomial time for sound deterministic negotiations.

A somewhat similar graphical formalism are message sequence charts/graphs, used to
describe asynchronous communication. Questions like non-emptiness of intersection are in
general undecidable for this model, even assuming that communication buffers are bounded.
Subclasses of message sequence graphs with decidable model-checking problem were pro-
posed, but the complexity is Pspace-complete [9].

Overview. Section 2 introduces definitions and notations, then Section 3 reconsiders sound-
ness for acyclic, deterministic negotiations. In Section 4 we provide an Nlogspace algorithm
for the race problem. Section 5 solves the omitting problem, that is used in Section 6 for
analyzing properties of workflows described by acyclic, deterministic negotiations, and later
in Section 7 to decide soundness for acyclic weakly non-deterministic negotiations in Ptime.
Finally, Section 8 establishes the coNP complexity bounds.

2 Negotiations

A negotiation N is a tuple 〈Proc, N, dom, R, δ〉, where Proc is a finite set of processes (or
agents) that can participate in negotiations, and N is a finite set of nodes (or atomic nego-
tiations) where the processes can synchronize. The function dom : N → P(Proc) associates
to every atomic negotiation n ∈ N the (non-empty) set dom(n) of processes participating
in it. Nodes are denoted as m or n, and processes as p or q; possibly with indices.

The set of possible outcomes of atomic negotiations is denoted R, and we use a, b, . . .
to range over its elements. The control flow in a negotiation is determined by a partial
transition function δ : N×R×Proc ·−→ P(N), telling that after the outcome a of an atomic

CONCUR 2016

12:4 Soundness in Negotiations

������������

����������

����������

�����
�����
�����
�����

������������������������������

������������ ����������

n0 n1 n7

n3

Process p

Process q
a a a a

a a a a

a

n2

n6n4 n5 b
b

b

Figure 1 A negotiation. Atomic negotiation n1 involves processes p, q, and has two possible
outcomes a and b. The arrows show next negotiations in which respective processes are willing to
engage.

negotiation n, process p ∈ dom(n) is ready to participate in any of the negotiations from
the set δ(n, a, p). So for every n′ ∈ δ(n, a, p) we have p ∈ dom(n′) ∩ dom(n). Every atomic
negotiation n ∈ N has its set of possible outcomes out(n), and for every n, a ∈ out(n) and
p ∈ dom(n) the result δ(n, a, p) has to be defined. So all processes involved in an atomic
negotiation should be ready for all its possible outcomes. Observe that atomic negotiations
may have one single participant process, and/or have one single outcome.

Negotiations admit a graphical representation. Figure 1 shows a negotiation with Proc =
{p, q}, N = {n0, . . . , n7} and R = {a, b}. For example, we have dom(n1) = {p, q},
δ(n1, b, p) = {n3} and δ(n1, b, q) = {n6}. More details can be found in [3].

A configuration of a negotiation is a function C : Proc → P(N) mapping each process p
to the set of atomic negotiations in which p is ready to engage. An atomic negotiation n is
enabled in a configuration C if n ∈ C(p) for every p ∈ dom(n), that is, if all processes that
participate in n are ready to proceed with it. A configuration is a deadlock if no atomic
negotiation is enabled in it. If an atomic negotiation n is enabled in C, and a is an outcome
of n, then we say that (n, a) can be executed, and its execution produces a new configuration
C ′ given by C ′(p) = δ(n, a, p) for p ∈ dom(n) and C ′(p) = C(p) for p 6∈ dom(n). We denote
this by C (n,a)−→ C ′. For example, in Figure 1 we have C (n1,a)−→ C ′ for C(p) = {n1} = C(q)
and C ′(p) = {n2}, C(q) = {n4}.

A run of a negotiation N from a configuration C1 is a finite or infinite sequence w =
(n1, a1)(n2, a2) . . . such that there are configurations C2, C3, . . . with

C1
(n1,a1)−→ C2

(n2,a2)−→ C3 . . .

We denote this by C1
w−→, or C1

w−→ Ck if the sequence is finite and finishes with Ck. In
the latter case we say that Ck is reachable from C1 on w. We simply call it reachable if w
is irrelevant, and write C1

∗−→ Ck.
Negotiations come equipped with two distinguished initial and final atomic negotiations

ninit and nfin in which all processes in Proc participate. The initial and final configurations
Cinit , Cfin are given by Cinit(p) = {ninit} and Cfin(p) = {nfin} for all p ∈ Proc. A run is
successful if it starts in Cinit and ends in Cfin. We assume that every atomic negotiation
(except possibly for nfin) has at least one outcome. In Figure 1, ninit = n0 and nfin = n7.

2.1 Main definitions
A negotiation N is sound if every partial run starting at Cinit can be completed to a
successful run. If a negotiation has no infinite runs, then it is sound iff it has no reachable
deadlock configuration.

Javier Esparza, Denis Kuperberg, Anca Muscholl, and Igor Walukiewicz 12:5

Process p is deterministic in a negotiation N if for every n ∈ N , and a ∈ R, the set
of possible next negotiations, δ(n, a, p), is a singleton or the empty set. A negotiation is
deterministic if every process p ∈ Proc is deterministic. The negotiation of Figure 1 is
deterministic.

A negotiation is weakly non-deterministic if for every n ∈ N at least one of the processes
in dom(n) is deterministic. A negotiation is very weakly non-deterministic4 if for every
n ∈ N , a ∈ R, and p ∈ Proc, there is a deterministic process q such that q ∈ dom(n′) for all
n′ ∈ δ(n, a, p).

Examples of weakly non-deterministic negotiations can be found in [3]. In particular,
weakly non-deterministic negotiations allow to model deterministic negotiations with global
resources (see Section 6). The resource (say, a piece of data) can be modeled as an additional
process, which participates in the atomic negotiations that use the resource. The outcome of
a negotiation can change the state of the resource (say, from “confidential” to “public”), and
at each state the resource may be ready to engage in a different set of atomic negotiations.

The graph of a negotiation has atomic negotiations, N , as set of nodes; the edges are
n

p,a−→ n′ if n′ ∈ δ(n, a, p). Observe that p ∈ dom(n) ∩ dom(n′).
A negotiation is acyclic if its graph is so. Acyclic negotiations cannot have infinite

runs, so as mentioned above, soundness is equivalent to deadlock-freedom. For an acyclic
negotiation N we fix a linear order 4N on its nodes that is a topological order on the graph
of N . This means that if there is an edge from m to n in the graph of N then m 4N n.

The restriction of a negotiation N to a subset of its processes Proc′ is the negotiation
〈Proc′, N ′, dom′, R, δ′〉 where N ′ is the set of those n ∈ N for which dom(n) ∩ Proc′ 6=
∅, dom′(n) = dom(n) ∩ Proc′, and δ′(n, r, p) = δ(n, r, p) ∩ N ′. The restriction of N to
deterministic processes is denoted as ND throughout the paper.

A negotiation N is det-acyclic if ND is acyclic. It follows easily from the definitions that
a weakly non-deterministic, det-acyclic negotiation does not have any infinite run.

3 Soundness of acyclic deterministic negotiations

The main objective of this section is to provide some tools that we will use later. We show
how some properties of negotiations can be determined by patterns in their graphs. As an
example of an application of our techniques we revisit the soundness problem for acyclic,
deterministic negotiations. We provide an alternative polynomial-time algorithm that is
actually in Nlogspace, in contrast with the algorithm of [3] that is based on rewriting.

Fix a negotiation N . A local path is a path n0
p0,a0−→ n1

p1,a1−→ . . .
pk−1,ak−1−→ nk in the graph

of N . The path is realizable from some configuration C, if there is a run C w−→ with w of the
form (n0, a0)w1(n1, a1) · · ·wk−1(nk−1, ak−1), such that pi /∈ dom(wi+1), for all i. Here we
use dom(v) to denote the set of all processes involved in some atomic negotiation appearing
in sequence v: dom(v) =

⋃
{dom(n) : for some a, (n, a) appears in v}.

For what follows Lemma 1 is particularly useful as it gives a simple criterion when an
atomic negotiation is a part of some successful run.

I Lemma 1. Let n0
p0,a0−→ n1

p1,a1−→ . . .
pk−1,ak−1−→ nk be a local path in the graph of a sound

deterministic negotiation N . If C is a reachable configuration of N and n0 is enabled in C
then the path is realizable from C.

4 This class was called weakly deterministic in [3].

CONCUR 2016

12:6 Soundness in Negotiations

Proof. Let C be such that C(p) = n0 for every p ∈ dom(n0). By induction on i we show
that there is a run C

∗−→ Ci realizing n0
p0,a0−→ n1

p1,a1−→ . . .
pi−1,ai−1−→ ni and such that ni is

enabled in Ci.
For i = 0, we simply take Ci = C. For the induction step we assume the existence of Ci

in which ni is enabled. Let C ′i+1 be the result of executing (ni, ai) from Ci. Observe that
C ′i+1(pi) = ni+1 (recall that N is deterministic). Since N is sound, and C ′i+1 is reachable,
there is a run from C ′i+1 to Cfin. We set then Ci+1 to be the first configuration on this run
when ni+1 is enabled. J

Lemma 1 says that there is a run containing the atomic negotiation m iff there is a local
path from ninit to m. If dom(m) ∩ dom(n) 6= ∅ then the lemma also provides an easy test
for knowing whether there is a run containing both m,n: it suffices to check the existence
of a local path ninit

∗−→ m
∗−→ n, or with m,n interchanged. The next lemma takes care of

the opposite situation.

I Lemma 2. Let m,n be two atomic negotiations in a sound deterministic negotiation N ,
and assume that dom(m) ∩ dom(n) = ∅.

There exists some run of N containing both m,n iff there is an atomic negotiation m′

such that
there is a local path from ninit to m′,
δ(m′, p, a) = m0, δ(m′, q, a) = n0 for some p, q ∈ dom(m′), a ∈ out(m′),
there are two disjoint local paths in N , one from m0 to m, the other from n0 to n.

Soundness can be characterized by excluding a special variant of the pattern from the
above lemma. Consider two processes p 6= q of an acyclic negotiation N . A (p, q)-pair is a
pair of disjoint local paths of N :

m0
p,a0−→ . . .

p,ak−1−→ mk and n0
q,b0−→ . . .

q,bl−1−→ nl

such that mk 4N nl and q ∈ dom(mk).

I Lemma 3. Let N be an acyclic deterministic negotiation. Then N is not sound if and
only if there exist an atomic negotiation m′ and two processes p, q such that:

there is a local path from ninit to m′,
δ(m′, p, a) = m0, δ(m′, q, a) = n0 for some a ∈ out(m′),
there is a (p, q)-pair as above.

I Theorem 4. Soundness of acyclic deterministic negotiations is Nlogspace-complete.

Proof. Clearly the problem is Nlogspace-hard since graph reachability is a special instance
of it. The Nlogspace algorithm for deciding soundness establishes the existence of the
pattern from the previous lemma. Note that the topological order 4N we use is arbitrary,
so we can simply replace the condition mk 4N nl by asking that there is no path from nl
to mk.

J

4 Races

For a given pair of atomic negotiations m,n ∈ N of a deterministic negotiation N =
〈Proc, N, dom, R, δ〉, we want to determine if there is a reachable configuration at which
m,n are concurrently enabled. In other words, we are asking whether a race between m and

Javier Esparza, Denis Kuperberg, Anca Muscholl, and Igor Walukiewicz 12:7

n is possible. This is a standard question for concurrent systems, that is difficult to answer
when working with linearizations. In this section we show a simple linear time algorithm
answering the above question for acyclic, sound negotiations. Our algorithm reduces it to
graph reachability questions, and can be implemented in logarithmic space. In the long ver-
sion of our paper we also give a polynomial-time algorithm for possibly cyclic (and sound)
negotiations.

We will write m ‖ n when there is a reachable configuration C of N where both m and
n are enabled. Our goal is to decide if m ‖ n holds for given m, n.

We say below that a run w ∈ (N ×R)∗ can be reordered into another run w′ if w′ can be
obtained from w by repeatedly exchanging adjacent (m, a)(n, b) into (n, b)(m, a) whenever
dom(m) ∩ dom(n) = ∅.

I Lemma 5. Let N be an acyclic, deterministic, sound negotiation, and let m,n be two
atomic negotiations in N . Then m ‖ n iff every run w from ninit containing both m and n
can be reordered into a run w′ such that w′ = Cinit

∗−→ C
∗−→ C ′ for some configuration C

where both m and n are enabled.

Proof. It suffices to show the implication from left to right. So assume that there exists
some reachable configuration C where both m and n are enabled. In particular, dom(m) ∩
dom(n) = ∅. By way of contradiction, let us suppose that there exists some run containing
both m and n, but this run cannot be reordered as claimed. We claim that there must be
some local path fromm to n in N . To see this, assume the contrary and consider a run of the
form w = w1(m, a)w2(n, b)w3. The run w defines a partial order (actually a Mazurkiewicz
trace) tr(w) with nodes corresponding to positions in w, and edges from (m′, c) to (n′, d)
if dom(m′) ∩ dom(n′) 6= ∅ and (m′, c) precedes (n′, d) in w. Since there is no path from m

to n in N , nodes (m, a) and (n, b) are unordered in tr(w). So we can choose a topological
order w′ of tr(w) of the form w′ = w′1(m, a)(n, b)w′2. This shows the claim.

So let π be a path in N from m,n1, . . . , nk, n. Let p be some process such that nk
p,a′−→ n

for some outcome a′.
Let us go back to C. Since bothm and n are enabled in C, we have a transition C n,b−→ C1,

for some b ∈ out(n). Note that m is still enabled in C1, since dom(m)∩ dom(n) = ∅. So we
can apply Lemma 1 to C1 and π (because N is sound), obtaining a configuration C2 where
C2(p) = n. But since n was executed before C1, this violates the acyclicity of N . J

The next step is to convert the condition from Lemma 5 to a condition on the graph of
a negotiation.

I Proposition 6. Let N be an acyclic, deterministic, sound negotiation, and let m,n be two
atomic negotiations in N . Then m ‖ n iff there exists a run containing both m,n, and there
is neither a local path from m to n nor a local path from n to m.

Observe that dom(m)∩ dom(n) = ∅ is a necessary condition for m ‖ n. Thus, from Propos-
ition 6 and Lemma 2 we immediately obtain:

I Theorem 7. For any acyclic, deterministic, sound negotiation N we can decide in linear
time whether two atomic negotiations m,n of N satisfy m ‖ n. The above problem is
Nlogspace-complete.

5 Omitting problem

In this section we will be interested in determining the existence of some special successful
runs of a deterministic negotiation N . Let B ⊆ N be a set of nodes of a negotiation N . We

CONCUR 2016

12:8 Soundness in Negotiations

say that a run (n1, a1)(n2, a2) . . . omits B if it does not contain any nodes from B, that is,
ni 6∈ B for all i. Let P ⊆ N × R be a set of positive requirements. We say that a run as
above includes P and omits B if it omits B and contains all the pairs from P .

We are interested in deciding if for a given N together with P and B there is a successful
run of N including P and omitting B. We will consider only N that are sound, acyclic, and
deterministic.

As a first step we define a game G(N , B) that is intended to produce runs that omit B
(see e.g. [12] for an introduction to games):

the positions of Eve are N \B,
the positions of Adam are N ×R,
from n, Eve can go to any (n, a) with a ∈ out(n),
from (n, a), Adam can choose any process p ∈ Proc and go to n′ = δ(n, a, p),
the initial position is ninit ,
Adam wins if the play reaches a node in B, Eve wins if the play reaches nfin.

Observe that since N is acyclic, the winning condition for Eve is actually a safety condition:
every maximal play avoiding B is winning for Eve. So if Eve can win then she wins with a
positional strategy. A deterministic positional strategy for Eve is a function σ : N → R, it
indicates that at position n Eve should go to position (n, σ(n)). Since G(N , B) is a safety
game for Eve, there is a biggest non-deterministic winning strategy for Eve, i.e., a strategy
of type σmax : N → P(R). The strategy σmax is obtained by computing the set WE of all
winning positions for Eve in G(N , B), and then setting for every n ∈ N :

σmax(n) = {a ∈ out(n) : ∀p ∈ dom(n). δ(n, a, p) ∈WE}

I Lemma 8. If N has a run omitting B then Eve has a winning strategy in G(N , B).

I Lemma 9. Suppose N is sound. Let σ : N → R be a winning strategy for Eve in G(N , B).
Consider the set S of nodes that are reachable on a play from ninit respecting σ. There is a
successful run of N containing precisely the nodes S.

Proof. Consider an enumeration n1, n2, ..., nk of the nodes in S ⊆ (N \B) according to the
topological order 4N . Let wi = (n1, σ(n1)) . . . (ni, σ(ni)). By induction on i ∈ {1, . . . , k}
we prove that there is a configuration Ci such that Cinit

wi−→ Ci is a run of N . This will
show that wk is a successful run containing precisely the nodes of S.

For i = 1, n1 = ninit , in Cinit all processes are ready to do n1, so C1 is the result of
performing (n1, σ(n1)).

For the inductive step, we assume that we have a run Cinit
wi−→ Ci, and we want to

extend it by Ci
(ni+1,σ(ni+1))−→ Ci+1. Consider a play respecting σ and reaching ni+1. The

last step in this play is (nj , σ(nj)) → ni+1, for some j ≤ i and nj in S. This means that
δ(nj , σ(nj), p) = ni+1 for some process p. Since j ≤ i and (nj , σ(nj)) occurred in wi (but
not ni+1), we have Ci(p) = ni+1. If we show that Ci(q) = {ni+1} for all q ∈ dom(ni+1) then
we obtain that ni+1 is enabled in Ci and we get the required Ci+1. Suppose by contradiction
that Ci(q) = {nl} for some l 6= i + 1. We must have l > i + 1, since otherwise nl already
occurred in wi. By definition of our indexing ni+1 ≺N nl. But then no execution from Ci
can bring process q to a state where it is ready to participate in negotiation ni+1, and p will
stay forever in ni+1. This contradicts the fact that the negotiation is sound. J

I Corollary 10. For a sound negotiation N : Eve wins in G(N , B) iff N has a successful
run omitting B.

Javier Esparza, Denis Kuperberg, Anca Muscholl, and Igor Walukiewicz 12:9

I Theorem 11. Let K be a constant. It can be decided in Ptime if for a given deterministic,
acyclic, and sound negotiation N and two sets B ⊆ N , and P ⊆ N ×R, with the size of P
at most K, there is a successful run of N containing P and omitting B.

Proof. If for some atomic negotiation m, we have (m, a) ∈ P and (m, b) ∈ P for a 6= b

then the answer is negative as N is acyclic. So let us suppose that it is not the case. By
Lemmas 8 and 9 our problem is equivalent to determining the existence of a deterministic
strategy σ for Eve in the game G(N , B) such that σ(m) = a for all (m, a) ∈ P , and all these
(m, a) are reachable on a play respecting σ.

To decide this we calculate σmax, the biggest non-deterministic winning strategy for
Eve in G(N , B). This can be done in Ptime as the size of G(N , B) is proportional to the
size of the negotiation. Strategy σmax defines a graph G(σmax) whose nodes are atomic
negotiations, and edges are (m, a,m′) if (m, a) ∈ σmax and m′ = δ(m, a, p) for some process
p. The size of this graph is proportional to the size of the negotiation. In this graph we look
for a subgraph H such that:

for every node m in H there is at most one a such that (m, a,m′) is an edge of H for
some m′;
for every (m, a) ∈ P there is an edge (m, a,m′) in H for some m′, and moreover m is
reachable from ninit in H.

We show that such a graph H exists iff there is a strategy σ with the required properties.
Suppose there is a deterministic winning strategy σ such that σ(m) = a for all (m, a) ∈ P ,

and all these (m, a) are reachable on a play respecting σ. We now define H by putting an
edge (m, a,m′) in H if σ(m) = a and and m′ = δ(m, a, p) for some process p. As σ is
deterministic and winning, this definition guarantees that H satisfies the first item above.
The second item is guaranteed by the reachability property that σ satisfies.

For the other direction, given such a graph H we define a deterministic strategy σH . We
put σH(m) = a if (m, a,m′) is an edge of H. If m is not a node in H, or has no outgoing
edges in H then we put σH(m) = b for some arbitrary b ∈ σmax(m). It should be clear that
σH is winning since every play respecting σH stays in winning nodes for Eve. By definition
σH(m) = a for all (m, a) ∈ P , and all these (m, a) are reachable on a play respecting σH .

So we have reduced the problem stated in the theorem to finding a subgraph H of
G(σmax) as described above. If there is such a subgraph H then there is one in form of a
tree, where the edges leading to leaves are of the form (m, a,m′) with (m, a) ∈ P . Moreover,
there is such a tree with at most |P | nodes with more than one child. So finding such a tree
can be done by guessing the |P | branching nodes and solving |P |+ 1 reachability problems
in G(σmax). This can be done in Ptime since the size of P is bounded by K. J

6 Workflows and deterministic negotiations with data

We show how our algorithms from the previous sections can be used to check functional prop-
erties of deterministic negotiations, like those studied for workflow systems with data [15].
We take some of the functional properties of [15], and give polynomial algorithms for veri-
fying them over deterministic, acyclic, sound negotiations.

In this section we consider acyclic, deterministic negotiations with shared variables over
a finite domain, that can be updated by the outcomes of the negotiation. More precisely,
each outcome (n, a) ∈ N ×R comes with a set Σ of operations on these shared variables. In
our examples this set Σ is composed of alloc(x), read(x), write(x), and dealloc(x).

Formally, a negotiation with data is a negotiation with one additional component: N =
〈Proc, N, dom, R, δ, `〉 where ` : (N × R) → P(Σ×X) maps every outcome to a (possibly

CONCUR 2016

12:10 Soundness in Negotiations

Table 1 Data for the negotiation of Figure 1 (adapted from [13]).

atom. neg. n0 n1 n2 n3 n4 n5 n6 n7

outcome a a b a a a a b a a

alloc 1, . . . , 10
read 1 1 1, 8 5 2, 7, 9 6, 8, 9
write 3, 5, 6 3 1, 4, 8 9, 10 2, 7, 10 7 9 6, 8
dealloc 4 2 5, 6, 7

empty) set of data operations on variables from X. We assume that for each (n, a) ∈ N ×R
and for each variable x ∈ X the label `(n, a) contains at most one operation on x, that is,
at most one element of Σ× {x}.

As an example, we enrich the negotiation of Figure 1 with data, as shown in Table 1.
(This example is taken from [13]). The variables are X = {x1, . . . , x10}. The table gives
for each outcome and for each operation the set of (indices of the) variables to which the
outcome applies this operation.

In [13] some examples of data specifications for workflows are considered. They are
presented in the form of anti-patterns, that is, patterns that the negotiation should avoid.

1. Inconsistent data: an atomic negotiation reads or writes a variable x while another atomic
negotiation is writing, allocating, or deallocating it in parallel.
In our example there is an execution in which (n2, a) and (n6, a) write to x8 in parallel.

2. Weakly redundant data: there is an execution in which a variable is written and never
read before it is deallocated or the execution ends.
In the example, there is an execution in which x10 is written by (n4, a), and never read
again.

3. Never destroyed: there is an execution in which a variable is allocated and then never
deallocated before the execution ends.
In the example, the execution taking (n5, b) never deallocates x2.
It is easy to give algorithms for these properties that are polynomial in the size of the

reachability graph. We give the first algorithms that check these properties in polynomial
time in the size of the negotiation, which can be exponentially smaller than its reachability
graph.

For the first property we can directly use the algorithm of the previous section: It
suffices to check if the negotiation has two outcomes (m, a), (n, b) such that m and n can be
concurrently enabled, and there is variable x such that `(a) ∩ {read(x),write(x)} 6= ∅ and
`(b) ∩ {write(x), alloc(x), dealloc(x)} 6= ∅.

In the rest of the section we present a polynomial algorithm for the following ab-
stract problem, which has the problems (2) and (3) above as special instances. Given
sets O1,O2,O ⊆ N ×R such that O1 ∪O2 ⊆ O, we say that the negotiation N violates the
specification (O1,O2,O) if there is a run w = (n1, a1) · · · (nk, ak) with indices 0 ≤ i < j ≤ k
such that (ni, ai) ∈ O1, (nj , aj) ∈ O2, and (nl, al) /∈ O for all i < l < j. In this case we also
say that (O1,O2,O) is violated at (ni, ai), (nj , aj). Otherwise N complies with (O1,O2,O).

I Example 12. Observe that variable x is weakly redundant (specification of type (2)) iff
N violates (O1,O2,O), where O1 = {(n, a) ∈ N × R : write(x) ∈ `(n, a)}, O2 = {(n, b) ∈
N ×R : n = nfin ∨ dealloc(x) ∈ `(n, b)} and O = {(n, c) : `(n, c) ∩ (Σ× {x}) 6= ∅}.

Variable x is never destroyed (specification of type (3)) iff N violates (O1,O2,O), where
O1 = {(n, a) ∈ N × R : alloc(x) ∈ `(n, a)}, O2 = {nfin}, O = {(n, c) : n = nfin ∨ `(n, c) ∩
{alloc(x), dealloc(x)} 6= ∅}.

Javier Esparza, Denis Kuperberg, Anca Muscholl, and Igor Walukiewicz 12:11

For the next proposition it is convenient to use the notation m +−→ n, whenever there is
a (non-empty) local path in N from the atomic negotiation m to the atomic negotiation n.

I Proposition 13. Let N be an acyclic, deterministic, sound negotiation with data, and
(O1,O2,O) a specification. Let (m, a) ∈ O1, (n, b) ∈ O2. Then N violates (O1,O2,O) at
(m, a), (n, b) iff either m ‖ n, or m +−→ n and N has a run from ninit containing P =
{(m, a), (n, b)}, and omitting the set B = {m′ ∈ O : m +−→ m′

+−→ n}.

Putting together Proposition 13 and Theorem 11 we obtain:

I Corollary 14. Given an acyclic, deterministic, sound negotiation with data N , and a
specification (O1,O2,O), it can be checked in polynomial time whether N complies with
(O1,O2,O).

7 Soundness of acyclic weakly non-deterministic negotiations is in
Ptime

In previous sections we have presented algorithms for analysis of sound negotiations. Here
we show that our techniques also allow to find a bigger class of negotiations for which we can
decide soundness in Ptime. The class we consider is that of acyclic, weakly non-deterministic
negotiations, c.f. page 5. That is, we allow some processes to be non-deterministic, but every
atomic negotiation should involve at least one deterministic process.

Recall that ND is the restriction of N to deterministic processes. Since N is weakly non-
deterministic, every atomic negotiation involves a deterministic process, so ND = N . Recall
also that for an acyclic negotiation N we fixed some linear order 4N that is a topological
order of the graph of N .

The first lemma gives a necessary condition for the soundness of N that is easy to check.
It is proved by showing that ND cannot have much more behaviours than N .

I Lemma 15. If N is a sound, acyclic, weakly non-deterministic negotiation then ND is
sound.

We then first consider the case of a negotiation with only one non-deterministic process.
The next lemma reduces (un)soundness of N to some pattern in ND.

I Lemma 16. Let N be an acyclic, weakly non-deterministic negotiation with only one
non-deterministic process p. Then N is not sound, if and only if, either:
ND is not sound, or
ND is sound, and it has two nodes m 4N n with outcomes a ∈ out(m), b ∈ out(n) such
that:
p ∈ dom(m) ∩ dom(n), n 6∈ Sp = δ(m, a, p), and
there is a successful run of ND containing P = {(m, a), (n, b)} and omitting B =
{n′ ∈ Sp : m ≺N n′ ≺N n}.

The next lemma deals with the case when there is more than one non-deterministic
process.

I Lemma 17. An acyclic weak non-deterministic negotiation N is not sound if and only if:
1. either its restriction ND to deterministic processes is not sound,
2. or, for some non-deterministic process p, its restriction N p to p and the deterministic

processes is not sound.

CONCUR 2016

12:12 Soundness in Negotiations

I Theorem 18. Soundness can be decided in Ptime for acyclic, weakly non-deterministic
negotiations.

Proof. By Lemma 17 we can restrict to negotiations N with one non-deterministic process.
For every m 4N n, a and b we check the conditions described in Lemma 16. The existence
of a run of ND can be checked in Ptime thanks to Theorem 11 and the fact that the size
of P is constant. J

8 Beyond acyclic weakly non-deterministic negotiations

In this section we show that the polynomial-time result for acyclic, weakly non-deterministic
negotiations from Section 7 requires both acyclicity and weak non-determinism. We prove
that if we remove one of the two assumptions then the problem becomes coNP-complete. In-
deed, even a very mild extension of acyclicity makes the soundness problem coNP-complete.

It is not very surprising that deciding soundness for acyclic, non-deterministic negoti-
ations is coNP-complete. The problem is in coNP since all runs are of polynomial size, so
it suffices to guess a run and check if the reached configuration is a deadlock. The hardness
is by a simple reduction of SAT to the complement of the soundness problem. It strongly
relies on non-determinism.

I Proposition 19. Soundness of acyclic non-deterministic negotiations is coNP-complete.

In view of the above proposition, the other possibility is to keep weak non-determinism
and relax the notion of acyclicity. We consider a very mild relaxation: deterministic processes
still need to be acyclic. This condition implies that all the runs are of polynomial size. We
show that even for very weakly non-deterministic negotiations (c.f. page 5) the problem is
already coNP-complete.

I Theorem 20. Non-soundness of det-acyclic, very weakly non-deterministic negotiations
is NP-complete.

9 Conclusions

Analysis of concurrent systems is very often Pspace-hard because of the state explosion
problem. One way to address this problem is to look for restricted classes of concurrent
systems which are non-trivial, and yet are algorithmically easier to analyze. We argue
in this paper that negotiations are well adapted for this task. Processes in a negotiation
are stateless, at every moment their state is the set of negotiations they are willing to
engage. When processes are non-deterministic this mechanism can simulate states, so that
the interesting cases occur when non-determinism is limited. These limitations are still
relevant as show examples from workflow nets. In short, the negotiation model offers a simple
way to formulate restrictions that are sufficiently expressive and algorithmically relevant.

We have shown that a number of verification problems for sound deterministic acyclic
negotiations can be solved in Ptime or even in Nlogspace. In our application to workflow
Petri nets, acyclicity and determinism (equivalent to free-choiceness) are quite common:
about 70% of the industrial workflow nets of [16, 7, 6] are free-choice, and about 60% are
both acyclic and free-choice (see e.g. the table at the end of [6]).

Open problems. It would be interesting to have a better understanding what verification
problems for deterministic, acyclic, sound negotiations can be solved in Ptime. The coNP

Javier Esparza, Denis Kuperberg, Anca Muscholl, and Igor Walukiewicz 12:13

result for weakly-deterministic negotiations shows that one should proceed carefully here:
allowing arbitrary products with finite automata would not work.

References
1 Jörg Desel and Javier Esparza. Negotiations and Petri nets. In Int. Workshop on Petri

Nets and Software Engineering (PNSE’15), volume 1372 of CEUR Workshop Proceedings,
pages 41–57. CEUR-WS.org, 2015.

2 Volker Diekert and Grzegorz Rozenberg, editors. The Book of Traces. World Scientific,
Singapore, 1995.

3 Javier Esparza and Jörg Desel. On negotiation as concurrency primitive. In CONCUR,
pages 440–454, 2013. Extended version in CoRR abs/1307.2145.

4 Javier Esparza and Jörg Desel. On negotiation as concurrency primitive II: Determin-
istic cyclic negotiations. In FoSSaCS, pages 258–273, 2014. Extended version in CoRR
abs/1403.4958.

5 Javier Esparza and Jörg Desel. Negotiation programs. In Application and Theory of Petri
Nets and Concurrency, volume 9115 of LNCS, pages 157–178. Springer, 2015.

6 Javier Esparza and Philipp Hoffmann. Reduction rules for colored workflow nets. In FASE,
volume 9633 of LNCS, pages 342–358. Springer, 2016.

7 Dirk Fahland, Cédric Favre, Barbara Jobstmann, Jana Koehler, Niels Lohmann, Hagen
Völzer, and Karsten Wolf. Instantaneous soundness checking of industrial business process
models. In Business Process Management, pages 278–293. Springer, 2009.

8 Cédric Favre, Hagen Völzer, and Peter Müller. Diagnostic information for control-flow
analysis of workflow graphs (a.k.a. free-choice workflow nets). In TACAS 2016, volume
9636 of LNCS, pages 463–479. Springer, 2016.

9 Blaise Genest, Dietrich Kuske, and Anca Muscholl. A Kleene theorem and model checking
algorithms for existentially bounded communicating automata. Inf.& Comput., 204(6):920–
956, 2006.

10 Anca Muscholl. Automated synthesis of distributed controllers. In ICALP 2015, volume
9135 of LNCS, pages 11–27. Springer, 2015.

11 Natalia Sidorova, Christian Stahl, and Nikola Trcka. Soundness verification for conceptual
workflow nets with data: Early detection of errors with the most precision possible. Inf.
Syst., 36(7):1026–1043, 2011.

12 Wolfgang Thomas. Church’s problem and a tour through automata theory. In Pillars of
Computer Science, Essays Dedicated to Boris (Boaz) Trakhtenbrot on the Occasion of His
85th Birthday, volume 4800 of LNCS, pages 635–655. Springer, 2008.

13 Nikola Trcka, Wil M. P. van der Aalst, and Natalia Sidorova. Data-flow anti-patterns:
Discovering data-flow errors in workflows. In Advanced Information Systems Engineering
(CAiSE), volume 5565 of LNCS, pages 425–439. Springer, 2009.

14 Wil M. P. van der Aalst. Business process management as the “Killer App” for Petri nets.
Software & Systems Modeling, 14(2):685–691, 2015.

15 Wil M.P. van der Aalst. The application of Petri nets to workflow management. J. Circuits,
Syst. and Comput., 08(01):21–66, 1998.

16 B. van Dongen, M. Jansen-Vullers, H.M.W. Verbeek, and Wil M. P. van der Aalst. Verifica-
tion of the SAP reference models using EPC reduction, state-space analysis, and invariants.
Computers in Industry, 58(6):578–601, 2007.

17 W. Zielonka. Notes on finite asynchronous automata. RAIRO–Theoretical Informatics and
Applications, 21:99–135, 1987.

CONCUR 2016

Deciding Hyperproperties∗

Bernd Finkbeiner1 and Christopher Hahn2

1 Saarland University
Saarbrücken, Germany
finkbeiner@react.uni-saarland.de

2 Saarland University
Saarbrücken, Germany
hahn@react.uni-saarland.de

Abstract
Hyperproperties, like observational determinism or symmetry, cannot be expressed as properties
of individual computation traces, because they describe a relation between multiple computation
traces. HyperLTL is a temporal logic that captures such relations through trace variables, which
are introduced through existential and universal trace quantifiers and can be used to refer to
multiple computations at the same time. In this paper, we study the satisfiability problem of
HyperLTL. We show that the problem is PSPACE-complete for alternation-free formulas (and,
hence, no more expensive than LTL satisfiability), EXPSPACE-complete for ∃∗∀∗ formulas, and
undecidable for ∀∃ formulas. Many practical hyperproperties can be expressed as alternation-
free formulas. Our results show that both satisfiability and implication are decidable for such
properties.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Programs

Keywords and phrases temporal logics, satisfiability, hyperproperties, complexity

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2016.13

1 Introduction

Hyperproperties [4] are system properties that relate multiple computation traces. For
example, in the design of a system that handles sensitive information, we might specify
that a certain secret is kept confidential by requiring that the system is deterministic in its
legitimately observable inputs, i.e., that all computations with the same observable inputs
must have the same observable outputs, independently of the secret [13, 16]. In the design of
an access protocol for a shared resource, we might specify that the access to the resource
is symmetric between multiple clients by requiring that for every computation and every
permutation of the clients, there exists a computation where the access is granted in the
permuted order [7].

To express hyperproperties in a temporal logic, linear-time temporal logic (LTL) has
recently been extended with trace variables and trace quantifiers. In HyperLTL [3], obser-
vational determinism can, for example, be expressed as the formula ∀π.∀π′. (Iπ = Iπ′)→

(Oπ = Oπ′), where I is the set of observable inputs and O is the set of observable outputs.
The universal quantification of the trace variables π and π′ indicates that the property must
hold for all pairs of computation traces. It has been shown that many hyperproperties of
interest can be expressed in HyperLTL [12].

∗ This work was partially supported by the German Research Foundation (DFG) in the Collaborative
Research Center 1223 and by the Graduate School of Computer Science at Saarland University.

© Bernd Finkbeiner and Christopher Hahn;
licensed under Creative Commons License CC-BY

27th International Conference on Concurrency Theory (CONCUR 2016).
Editors: Josée Desharnais and Radha Jagadeesan; Article No. 13; pp. 13:1–13:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.13
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

13:2 Deciding Hyperproperties

In this paper, we study the satisfiability problem of HyperLTL. Unlike the model checking
problem, for which algorithms and tools exist [3, 7], the decidability and complexity of the
satisfiability problem was, so far, left open. The practical demand for a decision procedure
is strong. Often, one considers multiple formalizations of similar, but not necessarily
equivalent hyperproperties. An alternative (and slightly stronger) version of observational
determinism requires, for example, that differences in the observable output may only occur
after differences in the observable input have occurred: ∀π.∀π′. (Oπ = Oπ′) W (Iπ 6= Iπ′).
A decision procedure for HyperLTL would allow us to automatically check whether such
formalizations imply each other. Another important application is to check whether the
functionality of a system, i.e., a standard trace property, is compatible with the desired
hyperproperties, such as confidentiality. Since both types of properties can be expressed in
HyperLTL, a decision procedure for HyperLTL would make it possible to identify inconsistent
system requirements early on, before an attempt is made to implement the requirements.

The fundamental challenge in deciding hyperproperties is that hyperproperties are usually
not ω-regular [1]. HyperLTL formulas thus cannot be translated into equivalent automata [6].
Intuitively, since hyperproperties relate multiple infinite traces, an automaton, which only
considers one trace at a time, would have to memorize an infinite amount of information from
one trace to the next. This means that the standard recipe for checking the satisfiability of a
temporal logic, which is to translate the given formula into an equivalent Büchi automaton and
then check if the language of the automaton is empty [15], cannot be applied to HyperLTL.

In model checking, this problem is sidestepped by verifying the self-composition [2] of
the given system: instead of verifying a hyperproperty that refers to n traces, we verify a
trace property that refers to a single trace of a new system that contains n copies of the
original system. Since the satisfiability problem does not refer to a system, this idea cannot
immediately be applied to obtain a decision procedure for HyperLTL. However, it would
seem natural to define a similar self-composition, on the formula rather than the system, in
order to determine satisfiability.

We organize our investigation according to the quantifier structure of the HyperLTL
formulas. LTL, for which the satisfiablity problem is already solved [14], is the sublogic
of HyperLTL where the formulas have a single universally quantified trace variable, which
is usually left implicit. The next larger fragment consists of the alternation-free formulas,
i.e., formulas with an arbitrary number of trace variables and a quantifier prefix that either
consists of only universal or only existential quantifiers. Many hyperproperties of practical
interest, such as observational determinism, belong to this fragment. It turns out that the
satisfiability of alternation-free formulas can indeed be reduced to the satisfiability of LTL
formulas by replicating the atomic propositions such that there is a separate copy for each
trace variable. This construction is sound, because in an alternation-free formula, the values
for the quantifiers can be chosen independently of each other. The size of the resulting
LTL formula is the same as the given HyperLTL formula; as a result, the satisfiability
problem of the alternation-free fragment has the same complexity, PSPACE-complete, as
LTL satisfiability.

If the formula contains a quantifier alternation, the values of the quantifiers can no
longer be chosen independently of each other. However, if the quantifier structure is of
the form ∃∗∀∗, i.e., the formula begins with an existential quantifier and then has a single
quantifier alternation, then it is still possible to reduce HyperLTL satisfiability to LTL
satisfiability by explicitly considering all possible interactions between the existential and
universal quantifiers. For example, ∃π0∃π1∀π2. (pπ0) ∧ (pπ1) ∧ (pπ2) is equisatisfiable
to ∃π0∃π1. (pπ0) ∧ (pπ1) ∧ (pπ0) ∧ (pπ1), which is in turn equisatisfiable to the

B. Finkbeiner and C. Hahn 13:3

Table 1 Complexity results for the satisfiability problem of HyperLTL.

∃∗ ∀∗ ∃∗∀∗ bounded
∃∗∀∗ ∀∃

PSPACE-
complete

PSPACE-
complete

EXPSPACE-
complete

PSPACE-
complete undecidable

LTL formula (p0) ∧ (p1) ∧ (p0) ∧ (p1). In general, enumerating all combinations
of existential and universal quantifiers causes an exponential blow-up and we show that
the satisfiability problem for the ∃∗∀∗-fragment is indeed EXPSPACE-complete. This high
complexity is, however, relativized by the fact that practical hyperproperties rarely need a
large number of quantifiers. If we bound the number of universal quantifiers by a constant,
the complexity becomes PSPACE again.

Formulas where an existential quantifier occurs in the scope of a universal quantifier
make the logic dramatically more powerful, because they can be used to enforce, inductively,
models with an infinite number of traces. We show that a single pair of quantifers of the
form ∀∃ suffices to encode Post’s correspondence problem. The complete picture is thus as
summarized in Table 1: The largest decidable fragment of HyperLTL is the EXPSPACE-
complete ∃∗∀∗ fragment. Bounding the number of universal quantifiers and in particular
restricting to alternation-free formulas reduces the complexity to PSPACE. Any fragment
that contains the ∀∃ formulas is undecidable.

From a theoretical point of view, the undecidability of the ∀∃ fragment is a noteworthy
result, because it confirms the intuition that hyperproperties are truly more powerful than
trace properties. In practice, already the alternation-free fragment suffices for many important
applications (cf. [7]). From a practical point of view, the key result of the paper is therefore
that both satisfiability of alternation-free formulas and implication between alternation-free
formulas, which can be expressed as unsatisfiability of an ∃∗∀∗ formula, are decidable.

2 HyperLTL

Let AP be a set of atomic propositions. A trace t is an infinite sequence over subsets of
the atomic propositions. We define the set of traces TR := (2AP)ω. A subset T ⊆ TR is
called a trace property. We use the following notation to manipulate traces: let t ∈ TR be
a trace and i ∈ N be a natural number. t[i] denotes the i-th element of t. Therefore, t[0]
represents the starting element of the trace. Let j ∈ N and j ≥ i. t[i, j] denotes the sequence
t[i] t[i+ 1] . . . t[j − 1] t[j]. t[i,∞] denotes the infinite suffix of t starting at position i.

LTL Syntax. Linear-time temporal logic (LTL) [9] combines the usual boolean connectives
with temporal modalities such as the Next operator and the Until operator U . The syntax
of LTL is given by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | ϕ | ϕ U ϕ

where p ∈ AP is an atomic proposition. ϕ means that ϕ holds in the next position of a
trace; ϕ1 U ϕ2 means that ϕ1 holds until ϕ2 holds. There are several derived operators, such
as ϕ ≡ true U ϕ, ϕ ≡ ¬ ¬ϕ, and ϕ1 Wϕ2 ≡ (ϕ1 U ϕ2) ∨ ϕ1. ϕ states that ϕ will
eventually hold in the future and ϕ states that ϕ holds globally; W is the weak version of
the until operator.

CONCUR 2016

13:4 Deciding Hyperproperties

LTL Semantics. Let p ∈ AP and t ∈ TR. The semantics of an LTL formula is defined as
the smallest relation |= that satisfies the following conditions:

t |= p iff p ∈ t[0]
t |= ¬ψ iff t 6|= ψ

t |= ψ1 ∨ ψ2 iff t |= ψ1 or t |= ψ2

t |= ψ iff t[1,∞] |= ψ

t |= ψ1 U ψ2 iff there exists i ≥ 0 : t[i,∞] |= ψ2

and for all 0 ≤ j < i we have t[j,∞] |= ψ1

LTL-SAT is the problem of deciding whether there exists a trace t ∈ TR such that t |= ψ.

I Theorem 1. LTL-SAT is PSPACE-complete [14].

HyperLTL Syntax. HyperLTL [3] extends LTL with trace variables and trace quantifiers.
Let V be an infinite supply of trace variables. The syntax of HyperLTL is given by the
following grammar:

ψ ::= ∃π. ψ | ∀π. ψ | ϕ
ϕ ::= aπ | ¬ϕ | ϕ ∨ ϕ | ϕ | ϕ U ϕ

where a ∈ AP is an atomic proposition and π ∈ V is a trace variable. Note that atomic
propositions are indexed by trace variables. The quantification over traces makes it possible
to express properties like “on all traces ψ must hold”, which is expressed by ∀π. ψ. Dually,
one can express that “there exists a trace such that ψ holds”, which is denoted by ∃π. ψ.
The derived operators , , and W are defined as for LTL.

HyperLTL Semantics. A HyperLTL formula defines a hyperproperty, i.e., a set of sets of
traces. A set T of traces satisfies the hyperproperty if it is an element of this set of sets.
Formally, the semantics of HyperLTL formulas is given with respect to a trace assignment
Π from V to TR, i.e., a partial function mapping trace variables to actual traces. Π[π 7→ t]
denotes that π is mapped to t, with everything else mapped according to Π. Π[i,∞] denotes
the trace assignment that is equal to Π(π)[i,∞] for all π.

Π |=T ∃π.ψ iff there exists t ∈ T : Π[π 7→ t] |=T ψ

Π |=T ∀π.ψ iff for all t ∈ T : Π[π 7→ t] |=T ψ

Π |=T aπ iff a ∈ Π(π)[0]
Π |=T ¬ψ iff Π 6|=T ψ

Π |=T ψ1 ∨ ψ2 iff Π |=T ψ1 or Π |=T ψ2

Π |=T ψ iff Π[1,∞] |=T ψ

Π |=T ψ1 U ψ2 iff there exists i ≥ 0 : Π[i,∞] |=T ψ2

and for all 0 ≤ j < i we have Π[j,∞] |=T ψ1

HyperLTL-SAT is the problem of deciding whether there exists a non-empty set of traces T
such that Π |=T ψ, where Π is the empty trace assignment and |=T is the smallest relation
satisfying the conditions above. If it is clear from the context, we omit Π and simply write
T |= ψ. If |=T ψ, we call T a model of ψ.

B. Finkbeiner and C. Hahn 13:5

3 Alternation-free HyperLTL

We begin with the satisfiability problem for the alternation-free fragments of HyperLTL.
We call a HyperLTL formula ψ (quantifier) alternation-free iff the quantifier prefix only
consists of either only universal or only existential quantifiers. We denote the corresponding
fragments as the ∀∗ and ∃∗ fragments, respectively. For both fragments, we show that every
formula can be reduced, as discussed in the introduction, to an equisatisfiable LTL formula
of the same size. As a result, we obtain that the satisfiability problem of alternation-free
HyperLTL is PSPACE-complete, like the satisfiability problem of LTL. In the following,
some proofs are omitted due to space constraints. The proofs can be found in the full version
of this paper [5].

3.1 The ∀∗ Fragment
The ∀∗ fragment is particularly easy to decide, because we can restrict the models, without
loss of generality, to singleton sets of traces: since all quantifiers are universal, every model
with more than one trace could immediately be translated into another one where every trace
except one is omitted. Hence, we can ignore the trace variables and interpret the HyperLTL
formula as a plain LTL formula.

I Example 2. Consider the following HyperLTL formula with atomic propositions {a, b}:

∀π1∀π2. bπ1 ∧ ¬bπ2

Since the trace variables are universally quantified, we are reasoning about every pair of
traces, and thus in particular about the pairs where both variables refer to the same trace. It
is, therefore, sufficient to check the satisfiability of the LTL formula b ∧ ¬b, which turns
out to be unsatisfiable.

The satisfiability of hyperproperties that can be expressed in the ∀∗ fragment, such as
observational determinism, thus immediately reduces to LTL satisfiability.

I Lemma 3. For every ∀∗ HyperLTL formula there exists an equisatisfiable LTL formula of
the same size.

3.2 The ∃∗ Fragment
A model of a formula in the ∃∗ fragment may, in general, have more than one trace. For
example the models of ∃π1∃π2. aπ1 ∧ ¬aπ2 have (at least) two traces. In order to reduce
HyperLTL satisfiability again to LTL satisfiability, we zip such traces together. For this
purpose, we introduce a fresh atomic proposition for every atomic proposition a and every
path variable π that occur as an indexed proposition aπ in the formula. We obtain an
equisatisfiable LTL formula by removing the quantifier prefix and replacing every occurrence
of aπ with the new proposition.

I Example 4. Consider the following HyperLTL formula over the atomic propositions {a, b}:

∃π1∃π2. aπ1 ∧ ¬bπ1 ∧ bπ2

By discarding the quantifier prefix and replacing the indexed propositions with fresh proposi-
tions, we obtain the equisatisfiable LTL formula over the atomic propositions {a1, b1, b2}:

a1 ∧ ¬b1 ∧ b2

CONCUR 2016

13:6 Deciding Hyperproperties

The LTL formula is satisfied by the trace p̃: ({a1, b2})ω. We can map the fresh propositions
back to the original indexed propositions. In this way, we obtain witnesses for π1 and π2 by
splitting p̃ into two traces {a}ω and {b}ω, where for every position in these traces only those
atomic propositions that were labelled with π1 or π2, respectively, hold. Hence, the trace set
satisfying the HyperLTL formula is {{a}ω, {b}ω}.

I Lemma 5. For every ∃∗ HyperLTL formula there exists an equisatisfiable LTL formula of
the same size.

Combining Lemma 3 and Lemma 5, we conclude that HyperLTL-SAT inherits the
complexity of LTL-SAT for the alternation-free fragment.

I Theorem 6. HyperLTL-SAT is PSPACE-complete for the alternation-free fragment.

4 The ∃∗∀∗ Fragment

Allowing quantifier alternation makes the satisfiability problem significantly more difficult,
and even leads to undecidability, as we will see in the next section. In this section, we show
that deciding formulas with a single quantifier alternation is still possible if the quantifiers
start with an existential quantifier. A HyperLTL formula is in the ∃∗∀∗ fragment iff it is
of the form ∃π1 . . . ∃πn∀π′1 . . . ∀π′m. ψ. This fragment is especially interesting, because it
includes implications between alternation-free formulas. The idea of the decision procedure
is to eliminate the universal quantifiers by explicitly enumerating all possible interactions
between the universal and existential quantifiers. This leads to an exponentially larger, but
equisatisfiable ∃∗ formula.

I Lemma 7. For every formula in the ∃∗∀∗ fragment, there is an equisatisfiable formula in
the ∃∗ fragment with exponential size.

Proof. We define a function sp that takes a formula of the form ∃π1 . . . ∃πn∀π′1 . . . ∀π′m. ψ
and yields an ∃∗ HyperLTL formula ψ′ of size O(nm) of the following shape, where ψ[π′i\πi]
denotes that the trace variable π′i in ψ is replaced by πi:

∃π1 . . . ∃πn.
n∧

j1=1
. . .

n∧
jm=1

. ψ[π′1\πj1] . . . ψ[π′m\πjm
]

Let ϕ be an ∃∗∀∗ HyperLTL formula satisfied by some model T . Hence, there exist traces
t1, . . . , tn ∈ T such that {t1, . . . , tn} satisfies sp(ϕ). Assume sp(ϕ) is satisfied by some model
T ′. Since sp covers every possible combination of trace assignments for the universally
quantified trace variables, T ′ |= ϕ. J

I Example 8. Consider the ∃∗∀∗ formula ∃π1∃π2∀π′1∀π′2. (aπ′
1
∧ bπ′

2
) ∧ (cπ1 ∧ dπ2).

Applying the construction from Lemma 7, we obtain the following ∃∗ formula:

sp(∃π1∃π2∀π′1∀π′2. (aπ′
1
∧ bπ′

2
) ∧ (cπ1 ∧ dπ2)) yields :

∃π1∃π2. ((aπ1 ∧ bπ1) ∧ (cπ1 ∧ dπ2))
∧ ((aπ2 ∧ bπ1) ∧ (cπ1 ∧ dπ2))
∧ ((aπ1 ∧ bπ2) ∧ (cπ1 ∧ dπ2))
∧ ((aπ2 ∧ bπ2) ∧ (cπ1 ∧ dπ2))

Combining the construction from Lemma 7 with the satisfiability check for ∃∗ formulas
from Section 3, we obtain an exponential-space decision procedure for the ∃∗∀∗ fragment.

B. Finkbeiner and C. Hahn 13:7

I Theorem 9. ∃∗∀∗ HyperLTL-SAT is EXPSPACE-complete.

Proof. Membership in EXPSPACE follows from Lemma 7 and Lemma 5. We show
EXPSPACE-hardness via a reduction from the problem whether an exponential-space
bounded deterministic Turing machine T accepts an input word x. Given T and x, we
construct an ∃∗∀∗ HyperLTL formula ϕ such that T accepts x iff ϕ is satisfiable.

Let T = (Σ, Q, q0, F,→), where Σ is the alphabet, Q is the set of states, q0 ∈ Q is the
initial state, F ⊆ Q is the set of final states, and → ⊆ Q × Σ × Q × Σ × {L,R} is the
transition relation. We use (q, σ)→ (q′, σ′,∆) to indicate that when T is in state q and it
reads the input σ in the current tape cell, it changes its state to q′, writes σ′ in the current
tape cell, and moves its head one cell to the left if ∆ = L and one cell to the right if ∆ = R.
Let n ∈ O(|x|) be such that the working tape of T has 2n cells. We encode each letter of
Σ as a valuation of a set ~s = {s1, . . . , skΣ} of atomic propositions and each state Q as a
valuation of another set ~q = {q1, . . . , qkQ

} of atomic propositions, where kΣ is logarithmic in
|Σ| and kQ is logarithmic in |Q|. We furthermore use the valuations of a set ~a = {a1, . . . , an}
to encode the position of a tape cell in a configuration of T , and the valuations of a set
~h = {h1, . . . , hn} to encode the position of the head of the Turing machine. With these
atomic propositions, we can represent configurations of the Turing machine as sequences
of valuations of the atomic propositions. The state of the Turing machine is encoded as
the valuation of ~q at the position indicated by ~h. Computations of a Turing machine are
sequences of configurations; we thus represent computations as traces.

We begin our encoding into HyperLTL with four quantifier-free formulas over a free trace
variable π: ϕinit(π) encodes that the initial configuration represents x and q0, and places the
head in the first position of the sequence. ϕhead(π) ensures that the position of the head may
only change when a new configuration begins and that the change of the position as well
as the change of the state is as defined by →. ϕcount(π) expresses that the addresses in ~a
continuously count from 1 to 2n. ϕhalt(π) expresses that the Turing machine halts eventually,
i.e., the trace eventually visits a final state at the position of the head.

The more difficult part of the encoding now concerns the comparison of the tape content
from one configuration to the next. We need to enforce that the tape content at the position
represented by ~h changes as defined by→, and that the content of all tape cells except for the
position represented by ~h stays the same. For this purpose, we need to be able to memorize
a position from one configuration to the next. We accomplish the “memorization” with the
following trick: we introduce two existentially quantified trace variables πzero and πone. Let
v be a new atomic proposition. We use a quantifier-free formula ϕzero/one(πzero, πone) to
ensure that v is always false on πzero and always true on πone. We now introduce another
set of n universally quantified trace variables π1, π2, . . . , πn that will serve as memory: if one
of these trace variables is bound to πzero its “memory content” is 0, if it is bound to πone
its memory content is 1. We add a sufficient number of universally quantified variables to
memorize the position of some cell and its content. Our complete encoding of the Turing
machine as a HyperLTL formula then looks, so far, as follows:

∃π, πzero, πone. ∀π1, π2, . . . , πn, π
′
1, π
′
2, . . . , π

′
kΣ
.

ϕinit(π) ∧ ϕhead(π) ∧ ϕcount(π) ∧ ϕhalt(π) ∧ ϕzero/one(πzero, πone)
∧ψ(π, π1, π2, . . . , πn, π

′
1, π
′
2, . . . , π

′
kΣ

)

The missing requirement about the correct contents of the tape cells is encoded in the last
conjunct ψ. We first ensure that all the universally quantified traces have constant values in
v, i.e., v is either always true or always false. To enforce that the tape content changes at
the head position, we specify in ψ that whenever we are at the head position, i.e., whenever

CONCUR 2016

13:8 Deciding Hyperproperties

ai,π = hi,π for all i = 1, . . . , n, then when we visit the same position in the next configuration,
the tape content must be as specified by →: i.e., if ai,π = vπi

for all i = 1, . . . , n, then when
ai,π = vπi

holds again for all i = 1, . . . , n during the next configuration, the tape content as
represented in ~s must be the one defined by →. To enforce that the tape content is the same
at every position except that encoded in ~h, we specify that for all positions except the head
position, i.e., whenever ai,π 6= hi,π for some i = 1, . . . , n, then if ai,π = vπi for all i = 1, . . . , n,
and si,π = vπ′

i
for all i = 1, . . . , kΣ, then the following must hold: when, during the next

configuration, we visit the same position again, i.e., when again ai,π = vπi for all i = 1, . . . , n,
we must also find the same tape content again, i.e., si,π = vπ′

i
for all i = 1, . . . , kΣ.

By induction on the length of the computation prefix, we obtain that any model of the
HyperLTL formula represents in π a correct computation of the Turing machine T . Since this
computation must reach a final state, the model exists iff T accepts the input word x. J

In practice, the number of quantifiers is usually small. Often it is sufficient to reason
about pairs of traces, which can be done with just two quantifiers. To reflect this observation,
we define a bounded version of the ∃∗∀∗ fragment, where the number of universal quantifiers
that may occur in the HyperLTL formula is bounded by some constant b ∈ N. A bounded
∃∗∀∗ formula of length n with bound b can be translated to an equisatisfiable LTL formulas
of size O(nb). The satisfiablility problem can thus be solved in polynomial space.

I Corollary 10. Bounded ∃∗∀∗ HyperLTL-SAT is PSPACE-complete.

Another observation that is important for the practical application of our results is that
implication between alternation-free formulas is decidable. As discussed in the introduction,
it frequently occurs that multiple formalizations are proposed for the same hyperproperty,
and one would like to determine whether the proposals are equivalent, or whether one version
is stronger than the other. A HyperLTL formula ψ implies a HyperLTL formula ϕ iff every
set T of traces that satisfies ψ also satisfies ϕ.

To determine whether ψ implies ϕ, we check the satisfiability of the negation ¬(ψ → ϕ).
If one formula is in the ∀∗ fragment and the other in the ∃∗ fragment, implication checking
is especially easy, because the formula we obtain is alternation-free.

I Example 11. To determine if the ∀∗ formula ∀π1 . . . ∀πn. ψ implies the ∀∗ formula
∀π′1 . . . ∀π′m. ϕ, we check the ∃∗∀∗ formula ∃π1 . . . πn∀π′1 . . . π′m. ψ ∧ ¬ϕ for unsatisfiability.

Analogously to Theorem 9, we obtain that checking implication between two alternation-
free HyperLTL formulas is EXPSPACE-complete.

I Theorem 12. Checking implication between alternation-free HyperLTL formulas is EXPSPACE-
complete.

Proof. The upper bound of Theorem 9 applies here as well. For the lower bound, we note
that the encoding in the proof of Theorem 9 is of the form

∃π, πzero, πone. ∀~π′. ϕ1(π) ∧ ϕ2(πzero, πone) ∧ ψ(π, ~π′),

which is not an implication of alternation-free formulas. We can, however, transform this
formula into an equisatisfiable formula by quantifying π universally:

∃πzero, πone. ∀π, ~π′. ϕ1(π) ∧ ϕ2(πzero, πone) ∧ ψ(π, ~π′)

In the models of the new formula, the accepting computation of the Turing machine is simply
represented on all traces instead of on some trace. The formula is satisfiable iff the following

B. Finkbeiner and C. Hahn 13:9

∀π∃πs∃π′.
((

(ȧ, ȧ)πs ∨ (ḃ, ḃ)πs

)
(1)

∧ ((ã, ã)πs
∨ (b̃, b̃)πs

)U (#,#)πs

)
(2)

∧ (#,#)π (3)

∧

(∨
i∈{1,2,3}

StoneEncodingi (4)

∨ (#,#)π

)
(5)

Figure 1 Reduction to HyperLTL for the PCP instance from Example 13.

implication between ∃∗ formulas does not hold:

∃πzero, πone. ϕ2(πzero, πone) implies ∃π, ~π′. ¬(ϕ1(π) ∧ ψ(π, ~π′))

Hence, we have reduced the problem whether an exponential-space bounded deterministic
Turing machine accepts a certain input word to the implication problem between two ∃∗
HyperLTL formulas. J

With the results of this section, we have reached the borderline of the decidable HyperLTL
fragments. We will see in the next section that HyperLTL-SAT immediately becomes
undecidable if the formulas contain a quantifier alternation that starts with a universal
quantifier.

5 The Full Logic

We now show that any extension beyond the already considered fragments makes the
satisfiability problem undecidable. We prove this with a many-one-reduction from Post’s
correspondence problem (PCP) [11] to the satisfiability of a ∀∃ HyperLTL formula. In PCP,
we are given two lists α and β consisting of finite words from some alphabet Σ. For example,
α, with α1 = a, α2 = ab and α3 = bba and β, with β1 = baa, β2 = aa and β3 = bb, where αi
denotes the ith element of the list, and αij denotes the jth symbol of the ith element. In this
example, α31 corresponds to b. PCP is the problem to find an index sequence (ik)1≤k≤K
with K ≥ 1 and 1 ≤ ik ≤ n for all k, such that αi1 . . . αiK = βi1 . . . βiK . We denote the finite
words of a PCP solution with iα and iβ , respectively.

It is a useful intuition to think of the PCP instance as a set of n domino stones. The
first stone of our example is a

baa , the second is ab
aa and the third, and last, is bba

bb . Those
stones must be arranged (where copying is allowed) to construct the same word with the α-
and β-concatenations. A possible solution for this PCP instance would be (3, 2, 3, 1), since
the stone sequence bba

bb
ab
aa

bba
bb

a
baa produces the same word, i.e., bbaabbbaa = iα = iβ . For

modelling the necessary correspondence between the α and β components, we will use pairs
of the PCP instance alphabet as atomic propositions, e.g., (a, b). We represent a stone as
a sequence of such pairs, where the first position of the pair contains a symbol of the α
component and the second position a symbol of the β component. For example, the first stone

a
baa will be represented as (a, b), (#, b)(#, a). We will use # as a termination symbol. Since

CONCUR 2016

13:10 Deciding Hyperproperties

StoneEncoding3 = (6)((
((ḃ, ḃ)π ∧ (b, b)π ∧ (a, ∗̇)π ∧ (∗̇, ∗̃)π) (7)

∨ ((ḃ, ḃ)π ∧ (b, b)π ∧ (a,#)π ∧ (#,#)π)
)

(8)

∧ ((ã, ∗)π → (ã, ∗)π′) (9)
∧ ((b̃, ∗)π → (b̃, ∗)π′) (10)
∧ ((#, ∗)π → (#, ∗)π′) (11)
∧ ((∗, ã)π → (∗, ã)π′) (12)
∧ ((∗, b̃)π → (∗, b̃)π′) (13)

∧ ((∗,#)π → (∗,#)π′)
)

(14)

Figure 2 Formula in the reduction of the PCP instance from Example 13, encoding that a trace
may start with a valid stone 3 and that there must also exist a trace where stone 3 is deleted.

the α and β component of a stone may differ in its length, a sequence of stone representations
might “overlap”. Therefore, we indicate the start of a new stone with a dotted symbol. For
example, we can string the first stone two times together: (ȧ, ḃ), (ȧ, b)(#, a)(#, ḃ)(#, b)(#, a).
In the following, we write ã if we do not care if this symbol is an a or ȧ and use ∗ as syntactic
sugar for an arbitrary symbol of the alphabet. We assume that only singletons are allowed
as elements of the trace, which could be achieved by adding for every atomic proposition
(y1, y2) the conjunction

∧
(y1,y2)6=(y,y′) (¬((y1, y2) ∧ (y, y′))), for all (y, y′).

I Example 13. Consider, again, the following PCP instance with Σ = {a, b} and two lists
α, with α1 = a, α2 = ab and α3 = bba and β, with β1 = baa, β2 = aa and β3 = bb. We
can reduce this PCP instance to the question whether the HyperLTL formula shown in
Figure 1 is satisfiable. Let AP := ({a, b, ȧ, ḃ} ∪ {#})2. The stone encoding is sketched with
the example of stone 3 in Figure 2.

The subformula (1) expresses that there exists a trace that starts with (ȧ, ȧ) or (ḃ, ḃ).
Intuitively, this means that there must exist a stone whose α and β component start with
the same symbol. Subformula (2) requires that there exists a “solution” trace πs. It ensures
that the trace ends synchronously with (#,#)ω. Combined, this guarantees that the word
constructed from the α components is equal to the word constructed from the β components,
i.e., iα = iβ for a PCP solution i(k). Subformula (3) ensures that every trace eventually ends
with the termination symbol #. It is important to notice here that all traces besides πs are
allowed to end asynchronously.

It remains to ensure that trace πs only consists of valid stones. This is where the ∀∃
structure of the quantifier prefix comes into play. The key idea is to use a ∀∃ formula to
specify that for every trace with at least one stone there is another trace with the first stone
removed. Since we check that every trace begins with a valid stone, this implies that all
stones are valid. The encoding of stone 3 is exemplarily shown in Figure 2. The first three α
components and the first two β components of the new trace are deleted. The example set
shown in Figure 3 shows this behavior for πs, which starts with stone 3. By deleting stone 3
from πs and shifting every position accordingly, we obtain π′s. Since π′s starts with a valid
stone, namely stone 2, it satisfies subformula (4) for i = 2. This requires that there exists

B. Finkbeiner and C. Hahn 13:11

another trace where stone 2 is deleted analogously. This argument is repeated until the trace
is reduced to (#,#)ω, which is the only possibility for “termination” in the sense that πs
ends synchronously with (#,#)ω.

Corresponding to this example, we can give a generalized reduction, establishing the unde-
cidability of ∀∃ formulas.

I Theorem 14. ∀∃ HyperLTL-SAT is undecidable.

Proof. Let a PCP instance with Σ = {a1, a2, ..., an} and two lists α and β be given. We
choose our alphabet as follows: Σ′ = (Σ∪{ȧ1, ȧ2, ..., ȧn}∪#)2, where we use the dot symbol
to encode that a stone starts at this position of the trace. Again, we write ã if we do not
care if this symbol is an a or ȧ and use ∗ as syntactic sugar for an arbitrary symbol of the
alphabet. We encode the idea from Example 13 in the following formula.

ϕreduc := ∀π∃πs∃π′. ϕsol(πs) ∧ ϕvalidStone(π) ∧ ϕdelete(π, π′) ∧ (#,#)π

ϕsol(πs) := (
∨n
i=1(ȧi, ȧi)πs

) ∧ (
∨n
i=1(ãi, ãi)πs

)U (#,#)πs

We ensure that there exists a “solution” trace πs, which starts pointed, i.e., where
the α and β components are the same. Accordingly to PCP, we require synchronous
“termination”.
ϕvalidStone(π). This is ensured by a generalization of lines (7) and (8) of the stone
encoding sketched in Figure 2.
Every trace in the trace set starts with a valid stone. Note that we do not require
synchronous termination in any other trace than the “solution” trace.
ϕdelete(π, π′). This is ensured by a generalization of lines (9) to (14) of the stone encoding
sketched in Figure 2.
By exploiting the ∀∃ structure of the formula, we encode that for every trace π there
exists another trace π′ which is nearly an exact copy of π but with its first stone removed.

Correctness. We prove correctness of the reduction by showing that if there exists a solution,
namely an index sequence i(l) with l ∈ N, for a PCP instance, then there exists a trace set
T satisfying the resulting formula ϕreduc and vice versa. For the sake of readability, again,
we omit the set braces around atomic propositions, since we can assume that only singletons
occur.

Assume there exists a solution i to the given PCP instance with |iα| = |iβ | = k. We can
construct a trace set T by building the trace (iα[0], iβ [0]) . . . (iα[k], iβ [k])(#,#)ω, denoted
by t0 and adding a dot to the symbol corresponding to the new stones start. We can
infer the correct placement of the dots from the solution. We distinguish two cases. If
the solution is only of length 1, we add (#,#)ω to T and successfully constructed a trace
set satisfying the formula. Otherwise, let t0 start with stone j. We also add one of the
following traces t1 based on t0 to T :

if |αj | = |βj | : (i[|αj |], i[|βj |]) . . . (i[k], i[k])(#,#)ω

if |αj | < |βj | : (i[|αj |], i[|βj |]) . . . (i[k], i[k − |βj |+ |αj |]) . . . (#, i[k])(#,#)ω

if |αj | > |βj | : (i[|αj |], i[|βj |]) . . . (i[k − |αj |+ |βj |], i[k]) . . . (i[k],#)(#,#)ω

We repeat adding traces tn based on the starting stone of every newly added trace tn−1
until we terminate with (#,#)ω. Note that tn−1 might already end asynchronously. By
construction this is exactly a trace set T satisfying ϕreduc.

CONCUR 2016

13:12 Deciding Hyperproperties

Start
πs : (ḃ, ḃ)(b, b)(a, ȧ)(ȧ, a)(b, ḃ)(ḃ, b)(b, ḃ)(a, a)(ȧ, a)(#,#)(#,#) . . .
Delete stone 3
π′s : (ȧ, ȧ)(b, a)(ḃ, ḃ)(b, b)(a, ḃ)(ȧ, a)(#, a)(#,#)(#,#) . . .
Delete stone 2
π′′s : (ḃ, ḃ)(b, b)(a, ḃ)(ȧ, a)(#, a)(#,#)(#,#) . . .
Delete stone 3
π′′′s : (ȧ, ḃ)(#, a)(#, a)(#,#)(#,#) . . .
Delete stone 1
π′′′′s : (#,#)(#,#) . . .
End

Figure 3 Trace set satisfying the formula from Example 13, with omitted set braces around the
atomic propositions.

Let the formula ϕreduc be satisfiable by a trace set T . Therefore, there exists a witness
t0 for πs, which starts with a dot, whose α and β components are the same at all
positions, and which ends synchronously with (#,#)ω. t0 also needs to start with a valid
stone, which is ensured by the stone encoding, since otherwise t0 6∈ T . By construction
there exists a subset Tmin ⊆ T that satisfies ϕreduc, which contains t0 and every trace
constructed by deleting one stone after another, with the last trace being (#,#)ω. Because
t0 eventually terminates synchronously with (#,#), the solution remains finite. We
define a total order for the traces in Tmin according to the number of dots or, equivalently,
the number of stones. We also define a function s that maps traces to the index of their
starting stone. Let A = [t0, t1, . . . , tn] be the list of traces in Tmin sorted in descending
order. A possible solution for the PCP instance is the index sequence s(t0) s(t1) . . . s(tn).

Since we can use the construction from Subsection 3.2, the minimal undecidable fragment of
HyperLTL is, in fact, ∀∃. J

6 Conclusion

We have analyzed the decidability and complexity of the satisfiability problem for various
fragments of HyperLTL. The largest decidable fragment of HyperLTL is the EXPSPACE-
complete ∃∗∀∗ fragment; the alternation-free ∃∗ and ∀∗ formulas are PSPACE-complete; any
fragment that contains the ∀∃ formulas is undecidable. Despite the general undecidability,
our results provide a strong motivation to develop a practical SAT checker for HyperLTL.
The key result is the PSPACE-completeness for the alternation-free fragment and the
bounded ∃∗∀∗ fragment, which means that for the important class of hyperproperties that
can be expressed as a HyperLTL formula with a bounded number of exclusively universal or
exclusively existential quantifiers, satisfiability and implication can be decided within the
same complexity class as LTL.

There are several directions for future work. An important open question concerns the
extension to branching time. HyperLTL is a sublogic of the branching-time temporal logic
HyperCTL∗ [3]. While the undecidability of HyperLTL implies that HyperCTL∗ is also, in

B. Finkbeiner and C. Hahn 13:13

general, undecidable (this was already established in [3]), the obvious question is whether it
is possible to establish decidable fragments in a similar fashion as for HyperLTL.

Another intriguing, and still unexplored, direction is the synthesis problem for HyperLTL
(and HyperCTL∗) specifications. In synthesis, we ask for the existence of an implementation,
which is usually understood as an infinite tree that branches according to the possible inputs
to a system and whose nodes are labeled with the outputs of the system. Since HyperLTL
can express partial observability, the synthesis problem for HyperLTL naturally generalizes
the well-studied synthesis under incomplete information [8] and the synthesis of distributed
systems [10].

Finally, it will be interesting to develop a practical implementation of the constructions
presented in this paper and to use this implementation to analyze the relationships between
various hyperproperties studied in the literature.

References
1 Rajeev Alur, Pavol Cerný, and Steve Zdancewic. Preserving secrecy under refinement. In

Michele Bugliesi, Bart Preneel, Vladimiro Sassone, and Ingo Wegener, editors, Automata,
Languages and Programming, 33rd International Colloquium, ICALP 2006, Venice, Italy,
July 10-14, 2006, Proceedings, Part II, volume 4052 of Lecture Notes in Computer Science,
pages 107–118. Springer, 2006. doi:10.1007/11787006_10.

2 Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk. Secure information flow by self-
composition. In 17th IEEE Computer Security Foundations Workshop, CSFW-17 2004,
28-30 June 2004, Pacific Grove, CA, USA, pages 100–114. IEEE Computer Society, 2004.
doi:10.1109/CSFW.2004.17.

3 Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N.
Rabe, and César Sánchez. Temporal logics for hyperproperties. In Martín Abadi and
Steve Kremer, editors, Principles of Security and Trust - Third International Conference,
POST 2014, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceedings, volume 8414
of Lecture Notes in Computer Science, pages 265–284. Springer, 2014. doi:10.1007/
978-3-642-54792-8_15.

4 Michael R. Clarkson and Fred B. Schneider. Hyperproperties. Journal of Computer Security,
18(6):1157–1210, 2010. doi:10.3233/JCS-2009-0393.

5 Bernd Finkbeiner and Christopher Hahn. Deciding Hyperproperties. CoRR,
abs/1606.07047, 2016. URL: http://arxiv.org/abs/1606.07047.

6 Bernd Finkbeiner and Markus N. Rabe. The linear-hyper-branching spectrum of temporal
logics. it - Information Technology, 56(6):273–279, 2014. URL: http://www.degruyter.
com/view/j/itit.2014.56.issue-6/itit-2014-1067/itit-2014-1067.xml.

7 Bernd Finkbeiner, Markus N. Rabe, and César Sánchez. Algorithms for model checking
HyperLTL and HyperCTL∗. In Daniel Kroening and Corina S. Pasareanu, editors, Com-
puter Aided Verification - 27th International Conference, CAV 2015, San Francisco, CA,
USA, July 18-24, 2015, Proceedings, Part I, volume 9206 of Lecture Notes in Computer
Science, pages 30–48. Springer, 2015. doi:10.1007/978-3-319-21690-4_3.

8 Orna Kupferman and Moshe Vardi. Synthesis with incomplete informatio. In Advances in
Temporal Logic, pages 109–127. Springer, 2000.

9 Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations
of Computer Science, Providence, Rhode Island, USA, 31 October - 1 November 1977, pages
46–57. IEEE Computer Society, 1977. doi:10.1109/SFCS.1977.32.

10 Amir Pnueli and Roni Rosner. Distributed reactive systems are hard to synthesize. In
31st Annual Symposium on Foundations of Computer Science, St. Louis, Missouri, USA,

CONCUR 2016

http://dx.doi.org/10.1007/11787006_10
http://dx.doi.org/10.1109/CSFW.2004.17
http://dx.doi.org/10.1007/978-3-642-54792-8_15
http://dx.doi.org/10.1007/978-3-642-54792-8_15
http://dx.doi.org/10.3233/JCS-2009-0393
http://arxiv.org/abs/1606.07047
http://www.degruyter.com/view/j/itit.2014.56.issue-6/itit-2014-1067/itit-2014-1067.xml
http://www.degruyter.com/view/j/itit.2014.56.issue-6/itit-2014-1067/itit-2014-1067.xml
http://dx.doi.org/10.1007/978-3-319-21690-4_3
http://dx.doi.org/10.1109/SFCS.1977.32

13:14 Deciding Hyperproperties

October 22-24, 1990, Volume II, pages 746–757. IEEE Computer Society, 1990. doi:10.
1109/FSCS.1990.89597.

11 Emil L Post. A variant of a recursively unsolvable problem. Bulletin of the American
Mathematical Society, 52(4):264–268, 1946.

12 Markus N. Rabe. A Temporal Logic Approach to Information-flow Control. PhD thesis,
Saarland University, 2016.

13 A. W. Roscoe. CSP and determinism in security modelling. In Proceedings of the 1995
IEEE Symposium on Security and Privacy, Oakland, California, USA, May 8-10, 1995,
pages 114–127. IEEE Computer Society, 1995. doi:10.1109/SECPRI.1995.398927.

14 A. Prasad Sistla and Edmund M. Clarke. The complexity of propositional linear temporal
logics. J. ACM, 32(3):733–749, 1985. doi:10.1145/3828.3837.

15 Moshe Y. Vardi and Pierre Wolper. Reasoning about infinite computations. Inf. Comput.,
115(1):1–37, 1994. doi:10.1006/inco.1994.1092.

16 Steve Zdancewic and Andrew C. Myers. Observational determinism for concurrent program
security. In 16th IEEE Computer Security Foundations Workshop, CSFW-16 2003, 30
June - 2 July 2003, Pacific Grove, CA, USA, page 29. IEEE Computer Society, 2003.
doi:10.1109/CSFW.2003.1212703.

http://dx.doi.org/10.1109/FSCS.1990.89597
http://dx.doi.org/10.1109/FSCS.1990.89597
http://dx.doi.org/10.1109/SECPRI.1995.398927
http://dx.doi.org/10.1145/3828.3837
http://dx.doi.org/10.1006/inco.1994.1092
http://dx.doi.org/10.1109/CSFW.2003.1212703

Homogeneous Equations of Algebraic Petri Nets∗

Marvin Triebel1 and Jan Sürmeli2

1 Humboldt-Universität zu Berlin
triebel@hu-berlin.de

2 Humboldt-Universität zu Berlin
suermeli@hu-berlin.de

Abstract
Algebraic Petri nets are a formalism for modeling distributed systems and algorithms, describing
control and data flow by combining Petri nets and algebraic specification. One way to specify
correctness of an algebraic Petri net model N is to specify a linear equation E over the places of
N based on term substitution, and coefficients from an abelian group G. Then, E is valid in N
iff E is valid in each reachable marking of N . Due to the expressive power of Algebraic Petri nets,
validity is generally undecidable. Stable linear equations form a class of linear equations for which
validity is decidable. Place invariants yield a well-understood but incomplete characterization
of all stable linear equations. In this paper, we provide a complete characterization of stability
for the subclass of homogeneous linear equations, by restricting ourselves to the interpretation of
terms over the Herbrand structure without considering further equality axioms. Based thereon,
we show that stability is decidable for homogeneous linear equations if G is a cyclic group.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Pro-
grams, D.3.1 Formal Definitions and Theory

Keywords and phrases Algebraic Petri Nets, Invariants, Linear Equations, Validity, Stability

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2016.14

1 Introduction

The formalism of algebraic Petri nets (APNs) permits to formally model both control flow
and data flow of distributed systems and algorithms, extending Petri nets with concepts
from algebraic specification, namely a signature together with equality axioms. Thus, APNs
combine the benefits of Petri nets, such as explicit modeling of concurrency and options
for structural analysis, with the ability to describe data objects on a freely chosen level of
abstraction. The price to pay for this expressive power is that many important behavioral
properties, such as reachability of a certain marking, are undecidable. However, there are
behavioral properties that can be proven based on structural properties, such as invariants.

In this paper, we study a particular class of behavioral properties, namely linear equations.
Intuitively, a linear equation E formalizes a linear correlation between the tokens on different
places, requiring that each reachable marking satisfies E. More formally, an APN N is defined
over a signature Σ, and the tokens are ground terms over Σ. A linear equation E has the
form ∑p∈P γpκp = b1µ1+ . . .+bnµn, where P is the set of places, each γp and bi are coefficients
stemming from an abelian group, each κp is a term over Σ, and each µi is a ground term over
Σ. A marking satisfies E if substituting each variable in each κp with the tokens on p yields
an equality. Validity of E in N requires that each reachable marking of N satisfies E. Case

∗ This work was partially funded by the DFG Graduiertenkolleg 1651 (SOAMED).

© Marvin Triebel and Jan Sürmeli;
licensed under Creative Commons License CC-BY

27th International Conference on Concurrency Theory (CONCUR 2016).
Editors: Josée Desharnais and Radha Jagadeesan; Article No. 14; pp. 14:1–14:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.14
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

14:2 Homogeneous Equations of Algebraic Petri Nets

studies have shown that this class of properties permits to formalize important behavioral
properties of distributed systems and algorithms. Unfortunately, verifying the validity of E
in N is generally infeasible. However, if E is stable then validity of E becomes decidable.
Stability requires the preservation of E along all—not necessarily reachable—steps, that is,
if a marking satisfies E, then firing a transition yields a marking satisfying E. Now, if E is
stable, validity of E coincides with the initial marking satisfying E.

Place invariants yield a subclass of stable linear equations. Intuitively, a place invariant
is a solution of a homogeneous system of linear equations given by the structure of N ,
providing the coefficients γp and terms κp—the right hand side can be chosen arbitrarily.
This characterization is known to be decidable but incomplete, that is, there are stable
linear equations, such that the left hand side is not given by a place invariant. A decidable,
complete characterization of stability—or an undecidability proof—is still an open problem.

In this paper, we contribute to this field of study as follows:
1. We show the undecidability of validity of homogeneous equations.
2. We provide a complete characterization of stability, restricting ourselves to

homogeneous linear equations, that is, n = 1 and b1 = 0, and
the interpretation of terms in the Herbrand structure, that is, assuming coincidence of
syntax and semantics of a term, without considering further equality axioms for terms.

3. We show that our characterization is decidable if the coefficients stem from a cyclic group.

Section 2 recalls required notions for equations of algebraic Petri nets. We summarize
our main theorems in Section 3, and prove these theorems in Section 4 and Section 5. We
discuss related work in Section 6, and conclude in Section 7. Due to lack of space, the reader
is referred to the companion technical report [16] for the missing proofs.

2 Formalization

2.1 Preliminaries
We write Z for the set of all integers, and N denotes the set {0,1,2, . . .} of natural numbers
including 0. Let z ∈ Z. Then, ∣z∣ denote the absolute value.

2.1.1 Polynomials over Abelian Groups
Polynomials over abelian groups serve as a common algebraic base to formalize APNs and
linear equations of APNs.

▸ Definition 1 (Abelian Group, Scalar Product). An abelian group (G,⊕) consists of a set G,
and an associative, commutative, binary operation ⊕ on G with an identity 0G, and inverses
⊖g for each g ∈ G. Let z ∈ Z and a ∈ G. We define the scalar product za ∈ G by

za ∶=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

z

⊕
i=0
a if z ≥ 0

⊖(−za) otherwise.

(G,⊕) is cyclic iff there exists a ∈ G, such that G = {za ∣ z ∈ Z}.

Whenever clear from context, we simply write G for (G,⊕). Examples for abelian groups
are the real numbers, rational numbers, integers, and the additive group Z/nZ of integers
modulo some n ∈ N. The group Z is infinite and cyclic, the group Z/nZ is finite and cyclic.
In contrast to that, the group of rational numbers is not cyclic.

M. Triebel and J. Sürmeli 14:3

▸ Definition 2 (Series, Polynomial, Monomial, Empty Polynomial). Let M be a set, G be an
abelian group, and f ∶ M → G be a function. Then, f is a (linear) series over M and G
with support supp(f) ∶= {m ∈M ∣ f(m) /= 0G}. If supp(f) is finite, then f is a polynomial.
We write G⟨M⟩ for the set of all polynomials over M and G. If supp(f) is singleton, f is a
monomial, and we denote f by (m,a) where supp(f) = {m} and f(m) = a. If supp(f) = ∅,
then f is empty, and we denote f by 0G.

We lift ⊕ and the scalar product to G⟨M⟩ by pointwise application:

▸ Definition 3 (Addition of Polynomials). Let M be a set and G be an abelian group. For
p1, p2 ∈ G⟨M⟩, m ∈M , and z ∈ Z, we define the polynomials p1 ⊕ p2 and zp1 over M and G
by

(p1 ⊕ p2)(m) ∶= p1(m)⊕ p2(m) ,

(zp1)(m) ∶= zp1(m) .

We lift associative binary operations from M to G⟨M⟩ × Z⟨M⟩ by applying the Cauchy
product:

▸ Definition 4 (Cauchy Product). Let ⊙ be an associative binary operation on a set M , G be
an abelian group, p1 ∈ G⟨M⟩, and p2 ∈ Z⟨M⟩. We define the series p1 ⊙ p2 over M and G by

(p1 ⊙ p2)(m) ∶= ⊕
m=m1⊙m2

p2(m2)
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

∈Z

p1(m1)
´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶

∈G

.

Because p1 and p2 are polynomials, the set supp(p1 ⊙ p2) = {m1 ⊙m2 ∣m1,m2 ∈ G, p1(m1) /=
0G, p2(m2) /= 0} is finite, and thus p1 ⊙ p2 is again a polynomial over M and G.

2.1.2 Terms
For this paper, we fix a set of variables VAR, a non-empty, finite index set I, and a signature
Σ = (ḟi/ai)i∈I consisting of ∣I∣ distinct function symbols ḟi with respective arity ai.

▸ Definition 5 (Term). For a set V ⊆ VAR, the set ΘV of terms over variables V is the
smallest set satisfying the following conditions:
1. V ⊂ ΘV .
2. Let i ∈ I, and θ1, . . . , θai ∈ ΘV . Then, ḟi(θ1, . . . , θai) ∈ ΘV .
The elements of Θ∅ are called ground terms.

As usual, if ai = 0, we abbreviate ḟi() as ḟi. We abbreviate the set ΘVAR of all terms as Θ.
A substitution maps each variable to a term. A substitution is an assignment if it maps

each variable to a ground term.

▸ Definition 6 (Substitution, Assignment). Every function σ ∶ VAR → Θ is a substitution. Let
θ ∈ Θ. The term θσ is defined by:

θσ ∶=
⎧⎪⎪⎨⎪⎪⎩

σ(θ) if θ ∈ VAR
ḟi(θ1σ, . . . , θaiσ) if θ = ḟi(θ1, . . . , θai), i ∈ I.

If σ(x) ∈ Θ∅ for each x ∈ VAR, then σ is an assignment, and we also write JθKσ instead of θσ.

Obviously, if σ is an assignment, then JθKσ ∈ Θ∅ for all θ ∈ Θ.
Unification is the problem of applying a substitution to terms, such that the resulting

terms become identical.

CONCUR 2016

14:4 Homogeneous Equations of Algebraic Petri Nets

▸ Definition 7 (Unification problem, unifier, solvable). A unification problem U is a finite
subset {(θ1, θ

′
1), . . . , (θn, θ′n)} of Θ×Θ, also denoted by {θ1 ≐ θ′1, . . . , θn ≐ θ′n}. A substitution

σ is a unifier for U iff for all 1 ≤ i ≤ n: θiσ = θ′iσ. If there exists a unifier for U , then U is
solvable.

It is known that every solvable unification problem has a most general unifier (up to variants)
that subsumes all other unifiers:

▸ Lemma 8. Let U be a solvable unification problem. Then, there exists a unifier σ̂ for U ,
such that: For each unifier σ for U , there exists a substitution σ′ with σ(x) = σ̂(x)σ′ for all
x ∈ VAR.

We define a product on terms by means of term substitution: The product of % and θ is
defined by substituting every occurrence of any variable in % by θ.

▸ Definition 9 (Term Product). Let %, θ ∈ Θ be terms, and σ be the substitution with σ(x) = θ
for all x ∈ VAR. Then, %⊙ θ ∶= %σ is the product of % and θ.

We observe that ⊙ is associative. If % ∈ Θ∅, then %⊙ θ = %.
We lift substitutions from terms to polynomials over terms and abelian groups by pointwise

substitution and subsequent “simplification” of the polynomial:

▸ Definition 10 (Substitutions in Polynomials over Terms). Let G be an abelian group, and
p ∈ G⟨Θ⟩. Let σ be a substitution. We define pσ ∈ G⟨Θ⟩ by

pσ(θ) ∶= ⊕
θ=Jθ′Kσ

p(θ′).

If σ is an assignment, we also write JpKσ instead of pσ.

We observe (%⊙ θ)σ = %⊙ θσ for all %, θ ∈ Θ, and (p1 ⊙ p2)σ = p1 ⊙ p2σ for all p1, p2 ∈ G⟨Θ⟩.
Moreover, if σ is an assignment then supp(JpKσ) ⊆ Θ∅.

2.1.3 Vectors
In this paper, a P -vector is a mapping from a set P into polynomials over terms and an
abelian group.

▸ Definition 11 (P -vector). Let P be a set, (G,⊕) be an abelian group, and k⃗ ∶ P → G⟨Θ⟩.
Then, k⃗ is a P -vector over G. We write G⟨Θ⟩P for the set of all P -vectors over G. If k⃗(p) is a
monomial for each p ∈ P , then k⃗ is simple. If G = Z, and k⃗ ≥ 0 (k⃗ ≤ 0), then k⃗ is semi-positive
(semi-negative).

In order to simplify notation, we lift the basis notions from polynomials to P -vectors:

▸ Definition 12 (P -vectors: Support, emptiness, addition, Cauchy product, and assignments).
Let P be a set, (G,⊕) be an abelian group, k⃗, k⃗1, k⃗2 ∈ G⟨Θ⟩P , and k⃗′ ∈ Z⟨Θ⟩P .

supp(k⃗) ∶= ⋃p∈P supp(k⃗(p)) is the support of k⃗.
If k⃗(p) = 0G for all p ∈ P , then k⃗ is the empty P -vector, also denoted by 0G.
We define (k⃗1 ⊕ k⃗2)(p) ∶= k⃗1(p)⊕ k⃗2(p) for all p ∈ P ,
We extend ⊙ from G⟨Θ⟩ × Z⟨Θ⟩ → G⟨Θ⟩ to G⟨Θ⟩P × Z⟨Θ⟩P → G⟨Θ⟩ by defining (k⃗ ⊙
k⃗′)(θ) ∶=⊕p∈P k⃗(p)⊙ k⃗′(p) for all θ ∈ Θ,
If σ is an assignment, we define Jk⃗Kσ ∈ G⟨Θ⟩P by Jk⃗Kσ(p) ∶= Jk⃗(p)Kσ for all p ∈ P .

Let k⃗1 ∈ G⟨Θ⟩P , k⃗2 ∈ Z⟨Θ⟩P and δ be a substitution. We observe: k⃗1⊙(k⃗2δ) = ∑p∈P k⃗1(p)⊙
(k⃗2δ)(p) = ∑p∈P k⃗1(p)⊙ (k⃗2(p)δ) = ∑p∈P (k⃗1(p)⊙ k⃗2(p))δ = (k⃗1 ⊙ k⃗2)δ.

M. Triebel and J. Sürmeli 14:5

B C

t

A D

ġ(W)

ḟ(Y)
W

2Z
E

ḟ(W)

(a) An APNS S1.

Σ = {ḟ/1, ġ/1, ċ/0}
(b) The Signature of S1.

A B C D E G
E1 4ḟ(A) 3ġ(B) −5ḟ(ġ(C)) −D 0 Z
E2 3ċ 0 0 2D 0 Z/7Z

(c) Homogeneous equations over Z and Z/7Z.

Figure 1 An APNS S1 with equations E1 and E2.

2.1.4 Algebraic Petri Nets
An algebraic Petri net structure consists of places P and transitions T . A place p ∈ P
describes a token store, and a transition t is given by two semi-positive P -vectors t⃗− and t⃗+,
describing token consumption and production, respectively.

▸ Definition 13 (Transition, algebraic Petri net structure). Let P /= ∅ be a set. A transition
t = (t⃗−, t⃗+) over P consists of two semi-positive simple P -vectors t⃗−, t⃗+ over Z. We define the
effect t⃗∆ ∈ Z⟨Θ⟩P of t by t⃗∆ ∶= −t⃗− + t⃗+. Let T be a set of transitions over P . Then, (P,T) is
an algebraic Petri net structure (APNS). We write pre(t) for {p ∈ P ∣ t⃗−(p) > 0}.

Figure 1 shows an example of an APNS S1 with transition t, places A, B, C, D and E
and signature Σ using two unary function symbols ḟ and ġ and the constant ċ. Transition t
consists of t− = (ġ(W) ḟ(Y) W 2Z 0) and t+ = (0 0 0 0 ḟ(W)).

A token is a ground term, a marking maps each place to a multiset of tokens:

▸ Definition 14 (Marking). Let (P,T) be an APNS. Let m⃗ ∈ Z⟨Θ⟩P be a semi-positive
P -vector over Z with supp(m⃗) ⊆ Θ∅. Then, m⃗ is a marking of (P,T). We write Z⟨Θ∅⟩P≥0 for
the set of all markings of (P,T).

Algebraic Petri net semantics are defined by the notion of a step based on the effect of a
transition, and the notion of a firing mode:

▸ Definition 15 (Step). Let (P,T) be an APNS, m⃗, m⃗′ ∈ Z⟨Θ∅⟩P≥0, t ∈ T , and σ be an
assignment, such that m⃗ ≥ Jt⃗−Kσ and m⃗′ = m⃗ + Jt⃗∆Kσ. Then, m⃗ enables transition t in firing
mode σ, denoted by m⃗ [tσ⟩ , and (m⃗, t, σ, m⃗′) is a step of (P,T), denoted by m⃗ [tσ⟩ m⃗′.

We remark that our definition of enabling does not consider additional equality axioms;
permitting such axioms is left for future work.

An algebraic Petri net APN is an APNS together with an initial marking. Subsequent
steps from the initial marking are runs, the resulting markings are reachable:

▸ Definition 16 (Algebraic Petri net, run, reachable). Let (P,T) be an APNS, and m⃗0 ∈
Z⟨Θ∅⟩P≥0. Then, (P,T, m⃗0) is an algebraic Petri net (APN). Let m⃗0 [t1σ1⟩ m⃗1 . . . m⃗n−1 [tnσn⟩
m⃗n be a sequence of steps. Then, (t1, σ1) . . . (tn, σn) is a run of (P,T, m⃗0) and m⃗n is reachable
in (P,T, m⃗0).

2.2 Homogeneous Linear Equations of APNs
A homogeneous (linear) P -equation over a set P of places has the form ∑p∈P γpκp = 0G,
where γp ∈ G (p ∈ P) are elements of an abelian group G with 0G as neutral element and each
κp (p ∈ P) is a term. Formally, a homogeneous P -equation is given by a simple P -vector.

CONCUR 2016

14:6 Homogeneous Equations of Algebraic Petri Nets

▸ Definition 17 (Homogeneous P -equation). Let P be a set, G be an abelian group and
k⃗ ∈ G⟨Θ⟩P be simple. Then, k⃗ induces a homogeneous P -equation over G.

Figure 1 shows two equations E1 and E2. E1 is over the group of integer Z and E2 is over
the group of integers modulo 7, Z/7Z. The table shows the simple P -vectors. For instance,
k⃗1(A)⊙XA is the monomial (ḟ(A),4).

A marking m⃗ satisfies E if replacing P by m⃗ yields an identity. A homogeneous P -equation
is valid in an APN if it is satisfied by each reachable marking.

▸ Definition 18 (Satisfaction, validity). Let (P,T) be an APNS, m⃗ be a marking, G be an
abelian group, and E be a homogeneous P -equation over G given by the simple P -vector
k⃗ ∈ G⟨Θ⟩P . If k⃗⊙ m⃗ = 0G, then m⃗ satisfies E. If each reachable marking of (P,T, m⃗) satisfies
E, then E is valid in (P,T, m⃗).

A homogeneous P -equation is stable if satisfaction is preserved by all steps:

▸ Definition 19 (Stability). Let (P,T) be an APNS, t ∈ T , G be an abelian group, and E be
a homogeneous P -equation over G. Then, E is t-stable in (P,T) iff for each step m⃗ [tσ⟩ m⃗′

of (P,T): If m⃗ satisfies E, then m⃗′ satisfies E.

Stability together with satisfaction in the initial marking yields validity:

▸ Lemma 20. Let (P,T, m⃗) be an APN, G be an abelian group, and E be a homogeneous
P -equation over G given by a simple P -vector k⃗ ∈ G⟨Θ⟩P . If E is t-stable for each t ∈ T , and
m⃗ satisfies E, then E is valid in (P,T, m⃗).

A place invariant k⃗ is a simple P -vector such that for each t ∈ T , we have k⃗ ⊙ t⃗∆ = 0G. Then,
the homogeneous equation induced by k⃗ is stable:

▸ Lemma 21. Let (P,T) be an APN, G be an abelian group, and E be a homogeneous
P -equation over G given by a simple P -vector k⃗ ∈ G⟨Θ⟩P . Let t ∈ T and k⃗ ⊙ t⃗∆ = 0G. Then,
E is t-stable in (P,T).

3 Contributions

We summarize our contributions in the form of two main theorems which we prove in the
subsequent sections. Our first contribution is a proof that validity of a given P -equation in
an APN is undecidable. The proof can be found in Section 4 and bases on a reduction of the
halting problem of Minsky machines.

▸ Theorem 22. Let (P,T, m⃗) be an APN and E a homogeneous P -equation. Then, validity
of E in (P,T, m⃗) is undecidable.

Proof. Follows from Lemma 25 and Lemma 29. ◂

Our second contribution is a decidability proof for the stability of a homogeneous P -
equation in an APNS under the assumption that the coefficients stem from a cyclic group.
Here, we develop a decidable, necessary and sufficient criterion, generalizing the invariant
theorem (cf. Lemma 21), in Section 5.

▸ Theorem 23. Let (P,T) be an APNS and E be a homogeneous P -equation over a cyclic
group, then stability of E in (P,T) is decidable.

Proof. Follows from Lemma 44 and Lemma 46. ◂

M. Triebel and J. Sürmeli 14:7

qi qz

pr

ti
ċċ

ḟ(X)X

(a) Encoding an instruction Ii = INC(r, z). t′i

qi

qz1

pr

ti
ċ

ċ

ċ
ċ

ċċ

Xḟ(X)

qz2

(b) Encoding an instruction Ii = JZ(r, z1, z2).

Figure 2 Encoding Minsky Machines into APNs.

4 Undecidability of Validity of Homogeneous Equations

In this section, we give short description how to encode a Minsky Machine [10] M into an
APN NM using the Herbrand structure. Then, the halting problem in the Minsky Machine
reduces to validity of an equation. This proof technique has been used before for Petri Nets,
for example in [12]. First, we recall the required notions of a Minsky machine, its states and
its steps:

▸ Definition 24 (Minsky machine). A Minsky Machine M = (I,R) consists of number
of registers R ∈ N and a sequence I = I1, . . . , In of instructions, where each instruction
Ii ∈ {INC(r, z) ∣ 1 ≤ r ≤R, 1 ≤ z ≤ n} ∪ {JZ(r, z1, z2) ∣ 1 ≤ r ≤R, 1 ≤ z1 ≤ n − 1, 1 ≤ z2 ≤ n − 1}
and In =HALT .

Every tuple (ρ, `) ∈ NR×{1, . . . , n} is a state of M . If I` = INC(r, z), then (ρ, `)→ (ρ′, z)
is a step in M with ρ′(r) = ρ(r) + 1 and ρ′(q) = ρ(q) for all q /= r. If I` = JZ(r, z1, z2) and
ρ(r) > 0, then (ρ, `) → (ρ′, z1) is a step in M with ρ′(r) = ρ(r) − 1 and ρ′(q) = ρ(q) for all
q /= r. If I` = JZ(r, z1, z2) ρ(r) = 0, then (ρ, `) → (ρ, z2) is a step. We denote the reflexive
transitive closure of → with →∗.

We recall that the halting problem for Minsky machines is undecidable:

▸ Lemma 25 ([10]). Let M be a Minsky Machine. It is undecidable, whether M halts, i.e.
the following problem is undecidable: ∃ρ ∈ NR such that (0,1)→∗ (ρ,n).

To reduce the halting problem, we encode a Minsky Machine into an APNS.

▸ Definition 26 (Encoding of Minsky Machine). Let M be a Minsky Machine M , then the
APNS NM encodes M , if:

The signature is ΣM = {ḟ/1, ċ/0},
the set of places is P = {pr ∣ 1 ≤ r ≤R} ∪ {qi ∣ 1 ≤ i ≤ n},
for every INC-instruction Ii, let ti be the transition with the pattern shown in Figure 2a,
and for every JZ-instruction Ii let ti and t′i be the transitions following the pattern shown
in Figure 2b.

▸ Definition 27. Let (ρ, `) ∈ NR be a state of M . For x ∈ N, we define θx ∈ Θ by

θx ∶=
⎧⎪⎪⎨⎪⎪⎩

ċ if x = 0
ḟ(θx−1) otherwise.

CONCUR 2016

14:8 Homogeneous Equations of Algebraic Petri Nets

Implementation

Satisfying Marking

Zero (Definition 31)

Realization

Step from Satisfying Marking

Derivation

Lemma 35

Definition 34

Definition 36

Definition 37

Lemma 38

Figure 3 Overview of the proof of Theorem 23.

Then, we define the marking m⃗ρ
` ∈ Z⟨Θ∅⟩P≥0 of NM as follows for p ∈ P and θ ∈ Θ:

m⃗(p) ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

(ċ,1) if p = q`
(θρ(r),1) if p = pr
0 otherwise

Now, we can relate the steps of a Minsky Machine M to the steps of the encoding NM .

▸ Lemma 28. Let (ρ, `), (ρ′, `′) be states of M with (ρ, `)→ (ρ′, `′). Then:
1. There exists a step m⃗ρ

` [tσ⟩ m⃗
′ of NM .

2. If m⃗ρ
` [tσ⟩ m⃗

′ is a step of NM , then m⃗′ = m⃗ρ′

`′ .
Finally, we reduce the halting problem for M to the validity of the homogeneous P -equation
qn = 0 in (NM , m⃗1

0). The P -vector over Z that induces the P -equation is zero for all places
p ∈ P ∖ {qn} and 1 for qn. Inductively applying Lemma 28 reduces reachability of the HALT
state in M to non-emptiness of the place qn in (NM , m⃗1

0) and thus to validity of qn = 0.

▸ Lemma 29. The equation qn = 0 is valid in (NM , m⃗1
0) if and only if the Minsky Machine

M does not halt.

5 Deciding Stability of Homogeneous Equations over Cyclic Groups

In this section, we show that stability of a homogeneous P -equation E given by a simple
P -vector k⃗ in an APNS N = (P,T) is decidable, if G is a cyclic group. To this end, we
identify a decidable, necessary and sufficient condition for stability, which generalizes the
necessary but not sufficient condition given by the classical invariant theorem (cf. Lemma 21).
We develop our condition based on the following lemma, which directly follows from applying
additivity arguments to the definition of stability:

▸ Lemma 30. Let t ∈ T be a transition. Then, the following statements are equivalent:
1. E is t-stable.
2. For all steps m⃗ [tσ⟩ m⃗′: If k⃗ ⊙ m⃗ = 0G, then k⃗ ⊙ Jt⃗∆Kσ = 0G.

Lemma 30 generalizes Lemma 21 in the sense that we can derive Lemma 21 from Lemma 30,
but not vice versa. However, the condition stated in Lemma 30 does not directly infer a
decision procedure, because the set of steps m⃗ [tσ⟩ m⃗′ with k⃗ ⊙ Jt⃗∆Kσ = 0G is infinite, that

M. Triebel and J. Sürmeli 14:9

A B C D Zero of E1? Zero of E2? %(νi)

ν1 0 1 0 3 yes no ġ(B)
ν2 5 0 4 0 yes no ḟ(ġ(C))
ν3 0 2 0 6 yes no ġ(B)
ν4 1 1 1 2 no yes ċ

ν5 2 0 0 4 no yes ċ

(a) Zeros ν1, . . . , ν5 ∈ NP .

A B C D impl. ν1 for E1? impl. ν2 for E1? impl. ν5 for E2?
m⃗1 0 ċ 0 3ġ(ċ) yes no no
m⃗2 0 2ḟ(ċ) 0 6ġ(ḟ(ċ)) yes no no
m⃗3 5ġ(ċ) 0 4ċ 0 no yes no
m⃗4 2ġ(ċ) 0 0 4ċ no no yes

(b) Implementations of zeros ν1 (w.r.t. E1), ν2 (w.r.t. E1) and ν5 (w.r.t. E2).

Figure 4 Examples for zeros, realizations, and implementations.

is, one has to reason about infinitely many markings m⃗ and firing modes σ. Our approach
copes with this challenge by applying symbolic techniques, that is, we finitely characterize
the infinite set of all such m⃗ and σ conveniently for computation. Figure 3 summarizes the
notions applied in our proof: We first symbolically describe the set of E-satisfying markings
by means of zeros and their implementations. Then, we derive symbolically described firing
modes from zeros, and characterize stability by means of realizability.

In order to simplify notation, we fix for this section an APNS (P,T), an abelian group
G, and a homogeneous P -equation E given by a simple vector k⃗ ∈ G⟨Θ⟩P . Moreover, we
assume that for each p ∈ P , k⃗(p) is the monomial (κp, γp), that is, γp = k⃗(p)(κp) ∈ G is the
coefficient of the only term κp in supp(k⃗(p)).

Our first goal is to abstractly characterize infinite sets of E-satisfying markings by means
of a zero. Intuitively, an E-satisfying marking assigns “right number” of a “right kind of
tokens” to each place.

▸ Definition 31 (Zero). Let ν ∶ P → N such that ∑p∈P ν(p)γp = 0. If the unification problem
U = {κp ≐ κp′ ∣ p, p′ ∈ P, γp, γp′ , ν(p), ν(p′) /= 0} is solvable, ν is a zero of E, and we write ν
for the most general unification of U .

We observe that 0 is always a zero. Furthermore, the sum of two zeros ν1, ν2 yield again
∑p∈P (ν1(p) + ν2(p)) = 0, but the unification problem is not necessarily solvable. However, a
zero may be the sum of other zeros.

Figure 4a shows some examples for zeros using the net structure and equations shown
in Figure 1. In this section, we ignore the place E, as it is irrelevant for enabling t. ν1 is a
zero of E1 as 3 − 3 = 0, and ġ(B) ≐ D can be unified with D ↦ ġ(B). ν2 is a zero of E1 as
20− 20 = 0 and A↦ ġ(C) unifies ḟ(A) ≐ ḟ(ġ(C)). For ν4 and E1 we have 4+ 3− 5− 2 = 0, but
it is not a zero of E1 as ḟ(A) ≐ ġ(B) cannot be unified. ν5 is not a zero for E1 as 8 − 4 /= 0.
Regarding E2, ν1 and ν2 aren’t zeros as 6 /≡7 0 and 15 /≡7 0. ν4 is a zero for E2 as 3 + 4 ≡7 0
and D ↦ ċ unifies ċ ≐ D. Finally, ν5 is also a zero of E2, as 6 + 8 ≡7= 0 and as for ν4 the
unification problem is solvable as for ν4.

CONCUR 2016

14:10 Homogeneous Equations of Algebraic Petri Nets

Because ν is a unifier, applying ν to κp yields the same result for every p ∈ P satisfying
γp /= 0G and ν(p) /= 0 .

▸ Lemma 32. Let ν be a zero. The set {κpν ∣ p ∈ P, γp /= 0G, ν(p) /= 0} is singleton.

▸ Definition 33 (Result of the unification). We define %(ν) by {%(ν)} = {κpν ∣ p ∈ P, γp /=
0G, ν(p) /= 0}

Intuitively, an implementation of a zero ν is a marking which satisfies E “in the same way” as
ν. Formally, we define this based on an assignment transforming the result of the unification
to a marking.

▸ Definition 34 (Implementation of a zero). Let m⃗ ∈ Z⟨Θ∅⟩P≥0 be a marking and ν be a zero
for E. Then, m⃗ implements ν, or: m⃗ is an implementation of ν, if for all p ∈ P with ν(p) /= 0
and γp /= 0G:
1. ν(p) = ∑θ∈supp(m⃗(p)) m⃗(p)(θ), and
2. there exists an assignment σ, such that {J%(ν)Kσ} = supp(k⃗(p)⊙ m⃗(p)).

As an example, in Figure 4b, the marking m⃗1 implements ν1 for E1 as for assignment
σ1 with σ1(B) = ċ we have JBKσ1 = ċ = D ⊙ ġ(ċ). m⃗2 implements ν1 for E1, because for
assignment σ2 with σ2(B) = ḟ(ċ), we have JBKσ2 = D⊙ ḟ(ġ(ċ)). m⃗3 implements ν2 for E1,
because for assignment σ3 with σ3(C) = ċ, we have Jḟ(ġ(C))Kσ2 = ḟ(ġ(C)) = ḟ(A)⊙ ġ(ċ) =
ḟ(ġ(C)) ⊙ ċ. Moreover, m⃗4 implements ν5 for E2 as for assignment σ4 with σ4(D) = ċ we
have JċKσ4 = ċ⊙ ġ(ċ) = D⊙ ċ.

Next, we show that the set of all zeros exactly characterizes the set of all E-satisfying
markings: For every term ω used by an E-satisfying marking m⃗ we can identify an imple-
mentation m⃗ω of a zero. Because the set of E-satisfying markings is closed under addition,
the converse also holds.

▸ Lemma 35. Let m⃗ be a marking, the following are equivalent:
1. k⃗ ⊙ m⃗ = 0G.
2. There exist zeros ν1, . . . , νn of E, and markings m⃗1, . . . , m⃗n, such that: m⃗ = ∑1≤i≤n m⃗i

and m⃗i implements νi for all i = 1, . . . , n.

Our next goal is to abstractly describe sets of firing modes derivable from a set of
zeros. Formally, we describe such a set of derived firing modes by a substitution, abstractly
describing a way of enabling a transition.

▸ Definition 36 (Derivable). Let t ∈ T . Let S be a set of zeros. For every q ∈ pre(t) let
Xq ∈ VAR be a fresh variable, such that Xq does not occur in E or t and Xq =Xq′ implies
q = q′. Let νq ∈ S be a zero with νq(q) ≥ 1. Let U = {%(νq)⊙Xq ≐ κq ⊙ θq,t ∣ q ∈ pre(t)},
where {θq,t} = supp(t⃗−(q)). Let U be solvable by most general unification δ. Then, δ is
derivable from S.

In the example of Figure 5, we can derive δ1 for E1 with νA = νC = ν4 and νB = νD = ν1.
For E2, we can derive δ2 with νA = νB = νC = νD = ν5.

A realization is an assignment which refines a derivable substitution:

▸ Definition 37 (Realization). Let S be a set of zeros and δ be derivable from S. Then, σ is
a realization of δ, if there exists an assignment σ′ with σ(X) = Jδ(X)Kσ′ for all X ∈ VAR.

The assignment σ1 shown in Figure 5 is a realization of δ1. The assignment σ with
σ(XC) = σ(XB) = ċ gives σ1(A) = JXAKσ = ċ, σ1(B) = JXBKσ = ċ and σ1(C) = Jġ(XB)Kσ = ġ(ċ).

M. Triebel and J. Sürmeli 14:11

W Y Z Derivable from some Ej? k⃗j ⊙ (t⃗
∆δi)

δ1 XC XB ġ(XB) yes, for j = 1 −ḟ(ġ(XC)) + ġ(XB) (j = 1)
δ2 XC XB ċ yes, for j = 2 0 (j = 2)

W Y Z Realization of k⃗1 ⊙ Jt⃗∆Kσ1

σ1 ċ ċ ġ(ċ) δ1 −ḟ(ġ(ċ)) + ġ(ċ)

Figure 5 Derivable substitutions δ1 and δ2, and a realization σ1 of δ1.

Next, we show that the derived substitutions from the set of all zeros exactly characterize
the set of E-satisfying, t-enabling markings: If an E-satisfying marking m⃗ enables t in firing
mode σ, then σ is a realization of some derivable substitution, and vice versa:

▸ Lemma 38. Let S be the set of all zeros and σ be an assignment. Then, the following two
statements are equivalent:
1. There exists a marking m⃗ with: m⃗ ≥ Jt⃗−Kσ and k⃗ ⊙ m⃗ = 0G.
2. There exists a δ that is derivable from S and σ is a realization of δ.

A derivable substitution δ generally has infinitely many realizations. We show that the
choice of the realization does not matter for deciding stability.

▸ Lemma 39. Let S be a set of zeros and δ be derivable from S. Then, the following two
statements are equivalent:
1. k⃗ ⊙ (t⃗∆δ) = 0
2. k⃗ ⊙ Jt⃗∆Kσ = 0 for all σ that are realizations of δ.

Our proof of “2.⇒1.” utilizes the existence of a realization σ preserving the distinctness of
terms in k⃗⊙ t⃗∆, that is, if two terms θ1, θ2 occur in k⃗⊙ t⃗∆ with θ1δ ≠ θ2δ, then Jθ1Kσ /= Jθ2Kσ.

Now, we prove that t-stability can be characterized by the set of all derivable substitutions:

▸ Lemma 40. Let S be the set of all zeros. The following are equivalent:
1. E is t-stable.
2. For all δ derivable from S holds: k⃗ ⊙ (t⃗∆δ) = 0.

In the example shown in Figure 1, E1 is not stable. Consider the marking m⃗5 ∶=
m⃗1 + m⃗2 + m⃗3. There, t is enabled. But, for the firing mode σ1, we have k⃗1 ⊙ σ1 /= 0. On the
other hand, E2 is stable, although we have k⃗2 ⊙ t⃗∆ /= 0.

The following lemma proves a closure property for the derived substitutions: If one
combines zeros from a set S to a new zero ν, then for every realizable substitution derivable
from S ∪ {ν}, there exists a realizable substitution derivable from S.

▸ Lemma 41. Let S be a set of zeros and ν /∈ S with ν = ∑ni=1 νi where νi ∈ S. Let δ be
derivable from S ∪ {ν} and σ be assignments that realizes δ. Then, there exists δ′ such that:
δ′ is derivable from S and σ realizes δ′.

We observe that we can only derive finite sets of substitutions from finite sets of zeros.

▸ Lemma 42. Let S be a finite set of zeros. The set {δ ∶ VAR → Θ ∣ δ is derivable from S}
is finite and computable.

Our next goal is to combine Lemma 41 and Lemma 42. To this end, we first define the
notion of a spanning set of zeros: A set capable of generating all zeros by means of addition.

CONCUR 2016

14:12 Homogeneous Equations of Algebraic Petri Nets

▸ Definition 43 (Spanning Set). Let S be a set of zeros of E, such that for each zero ν of E,
there exist ν1, . . . , νn ∈ S, with ν(p) = ∑ni=1 νi(p) for all p ∈ P . Then, S is a spanning set (of
zeros) of E.

Now, we show that given a finite spanning set of zeros, we can decide t-stability.

▸ Lemma 44. Given a finite spanning set S of zeros, t-stability of E is decidable.

Proof. By Lemma 41, for every δ that is derivable from the set of zeros, there exists a
δ′ derivable from S. By Lemma 42, the set of all these δ′ is finite and computable. By
Lemma 40, E is stable if and only if for every δ′ we have k⃗⊙ t⃗∆δ′ = 0, which is computable. ◂

The last step in our proof of Theorem 23 is showing that a finite spanning set of zeros
can be computed if G is cyclic. For infinite cyclic groups, we apply that there exists a
computable isomorphism into the integers. As a prerequisite, we observe that every spanning
set contains every indecomposable zero, i.e., a zero which cannot be written as a sum of
other zeros. For example, consider the zeros ν1, ν2 and ν3 from Figure 4a: ν1 and ν2 are
indecomposable, but ν3 = ν1 + ν1 is not. Thus, we show that there exists an upper bound
for the coefficients of indecomposable zeros. To this end, we first show an auxiliary lemma,
based on the maximum coefficient γ, and the absolute value γ of the minimal coefficient in
γ. In the example equation E1 from Figure 1, we have γ = 4 and γ = 5. Intuitively, if the
maximum constituent in a zero ν over places with negative (resp. positive) coefficients is less
than γ (resp. γ), then the sum of the constituents in ν is bounded by 2∣P ∣γγ. For E1, the
upper bound is 2 ⋅ 5 ⋅ 4 ⋅ 5 = 200.

▸ Lemma 45. Let ν ∈ NP . Let η ∈ ZP be mixed with ∑p∈P ν(p) ⋅η(p) = 0. Let η ∶= max{η(p) ∣
p ∈ P} and η ∶= max{∣η(p)∣ ∣ η(p) < 0, p ∈ P} with:
1. max{ν(p) ∣ η(p) < 0, p ∈ P} < η
2. or max{ν(p) ∣ η(p) > 0, p ∈ P} < η.
Then, ∑p∈P ν(p) < 2∣P ∣ηη

Finally, we show the computability of a finite spanning set of zeros. To this end, we utilize
Lemma 45 to show that the sum of constituents of each indecomposable zero is bounded
by 2∣P ∣γγ: We assume a zero ν with ∑p∈P ν(p) ≥ 2∣P ∣γγ, and show that ν decomposes into
two zeros ν̂ and ν − ν̂. Thus, extracting all zeros from the finite set of all ν ∈ NP with
∑p∈P ν(p) < 2∣P ∣γγ yields a set of zeros containing all indecomposable zeros, and hence a
finite spanning set.

▸ Lemma 46. If G is cyclic, a finite spanning set S of zeros is computable.

Proof. Assume k⃗ is semi-positive or semi-negative, then 0 is the only zero. In the following,
we assume k⃗ to have mixed coefficients. We distinguish the cases whether G is finite or
infinite.

First case: G is infinite. As G is cyclic, there exists a computable isomorphism to Z (see
for instance [17]). Thus, we assume w.l.o.g that G = Z. Let γ ∶= max{γ(p) ∣ p ∈ P} and
γ ∶= max{∣γ(p)∣ ∣ γ(p) < 0, p ∈ P}. Let ν be a zero with ∑p∈P ν(p) > 2∣P ∣γγ (*). We show
that that then, there exist p, p ∈ P with: γp > 0 ∧ γp < 0 ∧ ν(p) ≥ ∣γp∣ ∧ ν(p) ≥ γp. Assume
the opposite: Then, max{ν(p) ∣ γp < 0, p ∈ P} < γ or max{ν(p) ∣ γp > 0, p ∈ P} < γ. By
Lemma 45, then ∑p∈P ν(p) < 2∣P ∣γγ, which contradicts (*).
Now, let ν̂ ∶ P → N with:

ν̂(p) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∣γp∣ if p = p
γp if p = p
0 otherwise

M. Triebel and J. Sürmeli 14:13

By definition, we have ν̂ ≤ ν, moreover as ∑p∈P ν̂(p) ≤ γγ < ∑p∈P ν(p), we have ν̂ < ν. Let
ν′ = ν − ν̂. Then, ν′ ∶ P → N and ν′ > 0.
Now we show that ν̂ and ν′ are zeros. For ν̂ we have ∑p∈P ν(p) = ∣γp∣γp + γpγp =
−γpγp+γpγp = 0 and accordingly 0 = ∑p ∈ Pν(p) = ∑p∈P ν̂(p)+∑p∈P ν′(p) = 0+∑p∈P ν′(p).
It remains to show that the unification problems of ν̂ and ν′ are solvable. We observe
ν̂ ≤ ν (ν′ ≤ ν) implies that unification problem of ν̂ (ν′) is a subset of the unification
problem of ν. Thus, ν is a sum of the zeros ν′ and ν̂.
Now, we see that ∑p∈P ν̂(p) < 2∣P ∣γγ. Assume additionally ∑p∈P ν′(p) ≤ 2∣P ∣γγ, then we
can continue. Otherwise, if ∑p∈P ν′(p) > 2∣P ∣γγ, we can apply induction, as ν′ < ν, Hence,
ν is the sum of other zeros ν1, . . . , νn, where for each 1 ≤ i ≤ n: ∑p∈P νi(p) ≤ 2∣P ∣γγ.
Finally, {ν ∈ Np ∣ ∑p∈P ∣ν(p)∣ ≤ ∣2P ∣γγ and ν is zero} is finite, spanning and computable.
Second Case: Let G be finite with order o ∈ N ∖ {0}. As G is cyclic, there exists the
generator e ∈ G. Let g ∈ G. Then, it holds that g + oe = g. Thus, for every ν ∶ P → N,
and p ∈ P with ν(p) > o, we have ν(p)γp = (ν(p) − o)γp. Hence, for every zero ν

we can find a zero ν′ with ν′(p) ≤ o and ∑p∈P γpν(p) = ∑p ∈ Pγpν′(p). Therefore,
{ν ∈ Np ∣ ν(p) ≤ o and ν is zero} is finite, spanning and computable. ◂

6 Related Work

APNs or similar “high level net”-formalisms are an established, expressive modeling language
for distributed systems[11, 2]. Moreover, tools for Colored Petri Nets support simulation
and (partial) verification [7, 8]. The idea to prove stable properties in Petri nets that use
distinguishable tokens has been pursued at least since the early 80s [5]. Ever since, the
class of invariants became a substantial part of Petri Net analysis [9, 2, 11]. Other stable
properties for Algebraic Petri Nets have been studied in the context of Traps/Co-Traps
[15]. In elementary Petri Nets (P/T-Nets), stable properties such as traps and co-traps have
been studied [11] and been shown as useful for verification [11, 4]. Compared to this, the
number of publications regarding stable properties in APNs is comparatively small. In the
last years, Petri Net variants with distinguishable tokens gained more attention to model
data in distributed systems and applying analytic methods such as [3, 6, 13].

The concept of stability has been used in other areas of research; the most similar maybe
being abstract interpretation as a technique for verification of iterative programs [1]. In
the context of data-aware business processes, stability has been used in a similar context,
following a graph-oriented approach focusing on data modeling [14].

7 Concluding Remarks

Throughout this paper, we applied three restrictions: First, we only considered the inter-
pretation of terms in the Herbrand structure, second, we only considered homogeneous
P -equations, and third, we required for the decidability proof that the group of coefficients
is cyclic.

If one chooses another structure for the interpretation of terms than the Herbrand
structure, one can observe that validity and stability are preserved in one direction: If a
P -equation is valid (stable) w.r.t. the Herbrand structure, then it is valid (stable) w.r.t. every
generated structure. Because the Herbrand structure is a specific structure, the undecidability
result (Theorem 22) could be generalized by allowing an arbitrary, but not fixed, structure.
For the decidability result (Theorem 23), we observe that we can use our decision procedure
as a sufficient but not necessary criterion for an arbitrary fixed structure.

CONCUR 2016

14:14 Homogeneous Equations of Algebraic Petri Nets

The restriction to homogeneous P -equations yields that satisfying markings are closed
under addition, which is not the case if one allowed arbitrary constants on the right hand
side. Here, our approach of finding a finite spanning set symbolically describing all satisfying
markings does not work. The main challenge for generalizing our approach is that markings
have natural numbers as coefficients (in contrast to integers).

For our decidability result, we require that the coefficients stem from a cyclic group.
Here, we explicitly exploit in the proofs that there exist a distinct generator element, and an
isomorphism to the integers, or the integers modulo some natural number n.

References
1 Ahmed Bouajjani, Cezara Dragoi, Constantin Enea, Ahmed Rezine, and Mihaela Sighire-

anu. Invariant synthesis for programs manipulating lists with unbounded data. In CAV’10,
volume 6174 of LNCS, pages 72–88. Springer, 2010.

2 Hartmut Ehrig and Wolfgang Reisig. An algebraic view on petri nets. Bulletin of the
EATCS, 61, 1997.

3 Javier Esparza and Philipp Hoffmann. Reduction rules for colored workflow nets. In
FASE’16, volume 9633 of LNCS, pages 342–358. Springer, 2016.

4 Javier Esparza, Ruslán Ledesma-Garza, Rupak Majumdar, Philipp J. Meyer, and Filip
Niksic. An smt-based approach to coverability analysis. In CAV’14, volume 8559 of LNCS,
pages 603–619. Springer, 2014.

5 Hartmann J. Genrich and Kurt Lautenbach. Special issue semantics of concurrent computa-
tion system modelling with high-level petri nets. Theoretical Computer Science, 13(1):109
– 135, 1981.

6 Piotr Hofman, Slawomir Lasota, Ranko Lazic, Jérôme Leroux, Sylvain Schmitz, and Patrick
Totzke. Coverability trees for petri nets with unordered data. In FOSSACS’16, pages 445–
461, 2016.

7 Kurt Jensen and Lars Michael Kristensen. Coloured Petri Nets - Modelling and Validation
of Concurrent Systems. Springer, 2009.

8 Kurt Jensen and Lars Michael Kristensen. Colored petri nets: a graphical language for
formal modeling and validation of concurrent systems. Commun. ACM, 58(6):61–70, 2015.

9 Gérard Memmi and Jacques Vautherin. Analysing nets by the invariant method. In Petri
Nets: Central Models and Their Properties, pages 300–336, 1986.

10 Marvin L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1967.

11 Wolfgang Reisig. Understanding Petri Nets - Modeling Techniques, Analysis Methods, Case
Studies. Springer, 2013.

12 Pierre-Alain Reynier and Arnaud Sangnier. Weak time petri nets strike back! In CON-
CUR’09, pages 557–571, 2009.

13 Fernando Rosa-Velardo, María Martos-Salgado, and David de Frutos-Escrig. Accelerations
for the coverability set of petri nets with names. Fundam. Inform., 113(3-4):313–341, 2011.

14 Ognjen Savkovic, Elisa Marengo, and Werner Nutt. Query stability in monotonic data-
aware business processes. In ICDT’16, volume 48 of LIPIcs, pages 16:1–16:18. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.

15 Karsten Schmidt. Verification of siphons and traps for algebraic petri nets. In ICATPN’97,
pages 427–446, 1997.

16 M. Triebel and J. Sürmeli. Homogeneous Equations of Algebraic Petri Nets. ArXiv e-prints,
June 2016. arXiv:1606.05490.

17 T.A. Whitelaw. An introduction to abstract algebra. Blackie, 1978.

http://arxiv.org/abs/1606.05490

Bounded Petri Net Synthesis from Modal
Transition Systems is Undecidable∗

Uli Schlachter

Department of Computing Science, Carl von Ossietzky Universität Oldenburg,
D-26111 Oldenburg, Germany
uli.schlachter@informatik.uni-oldenburg.de

Abstract
In this paper, the synthesis of bounded Petri nets from deterministic modal transition systems
is shown to be undecidable. The proof is built from three components. First, it is shown that
the problem of synthesising bounded Petri nets satisfying a given formula of the conjunctive nu-
calculus (a suitable fragment of the mu-calculus) is undecidable. Then, an equivalence between
deterministic modal transition systems and a language-based formalism called modal specifica-
tions is developed. Finally, the claim follows from a known equivalence between the conjunctive
nu-calculus and modal specifications.

1998 ACM Subject Classification F.4.1 Mathematical Logic and Formal Languages

Keywords and phrases Petri net synthesis, conjunctive nu-Calculus, modal transition systems

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2016.15

1 Introduction

Modal transition systems are a well-known and useful method for specifying systems [18,
1, 8, 17]. Petri net synthesis, or more precisely, the problem of finding an unlabelled Petri
net implementing a given labelled transition system, has also been investigated since many
years [3]. Petri net synthesis not only yields implementations which are correct by design,
but it also allows to extract concurrency and distributability information from a sequential
specification [4, 7, 21]. Since modal transition systems are extensions of labelled transition
systems, it has been suggested to extend Petri net synthesis to cover modal transition
systems, e.g., in [9]. However, some questions that are settled in the basic net synthesis
theory are still open for such an extension. For example, the decidability status of checking
whether a bounded Petri net implementing a given modal transition system exists, has been
stated as unknown in [3].

In this paper, we give a negative answer to this question, by proving that it is undecidable
whether a given deterministic modal transition system can be implemented by a bounded
Petri net. This is done in several steps, two reductions and an equivalence. First, a counter
machine, also known as Minsky machine [20], is encoded in a specification that is interpreted
on a special class of Petri nets. The technique used in this step resembles constructions
known from other papers, for instance [15] (but in the context of labelled Petri nets). In
this first step, a variation of the model checking problem is shown to be undecidable. In a
second step, the class of Petri nets used in the first step is encoded in a second specification,
allowing the Petri net synthesis problem to be shown undecidable. In principle, the two steps

∗ This work was supported by the German Research Foundation (DFG) project ARS (Algorithms for
Reengineering and Synthesis), reference number Be 1267/15-1.

© Uli Schlachter;
licensed under Creative Commons License CC-BY

27th International Conference on Concurrency Theory (CONCUR 2016).
Editors: Josée Desharnais and Radha Jagadeesan; Article No. 15; pp. 15:1–15:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.15
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

15:2 Bounded Petri Net Synthesis from Modal Transition Systems is Undecidable

would suffice for our proof, because both specifications used in them can be represented as
deterministic modal transition systems. However, these representations are complex and
hard to understand or reason about. Therefore, in order to simplify the representations,
we add a third step using the conjunctive nu-calculus [11, 12, 13], a fragment of the modal
mu-calculus [16, 2]. The first two steps are done with the conjunctive nu-calculus and in this
third step we show the equivalence of the nu-calculus, modal specifications and deterministic
modal transition systems to derive our main result.

Section 2 introduces the bounded execution problem for two-counter machines. In sec-
tion 3, we define a class of Petri nets Nsim(b0, b1) which can simulate two-counter machines
whose counters stay below the bounds (b0, b1) ∈ N2. Section 4 characterises the reachability
graphs of Nsim(b0, b1) in a specification that is independent of b0 and b1 and derives the un-
decidability of the bounded Petri net synthesis problem for the conjunctive nu-calculus. We
then obtain the main result, the undecidability of the bounded Petri net synthesis problem
for deterministic modal transition systems, in section 5 by introducing an effective trans-
lation between deterministic modal transition systems and modal specifications, which are
known to be equivalent to the conjunctive nu-calculus [11, 13].

The nu-calculus, used in all but the last section, does not allow to express, e.g., non-
determinism or unimplementable specifications. It turns out to be well-suited for research
into Petri net synthesis from modal transition systems and was (to the author’s knowledge)
invented in [12] for the investigation of its Petri net synthesis problem. In fact, the pure
and unbounded Petri net synthesis problem for the conjunctive nu-calculus was shown to be
undecidable in [12]. Unfortunately, the approach described in [12] cannot be lifted to impure
or bounded Petri nets because it encodes the effect of transitions on individual places via
auxiliary transitions that have to be able to surpass any bounds. The effect of a transition
only characterises the transition in pure Petri nets, but not in impure nets. Instead, a new
approach for encoding Petri nets in the nu-calculus has been developed for the purpose of
our proof. In fact, the results of [12] and the present paper are incomparable: neither implies
the other.

The limitation of the expressivity of the nu-calculus tends to make it incomparable to
other fragments of the mu-calculus. For example, the mu-calculus fragment considered in
[10] has an undecidable model checking problem, while the nu-calculus is weaker and has a
decidable model checking problem, likely even in polynomial time, because of its equivalence
with deterministic modal transition systems, where model checking is possible in polynomial
time [6].

2 Preliminaries

I Definition 1. A (finite, initial) labelled transition system (lts) is a structure A = (Q,Σ,→,
q0) where Q is a finite set of states, Σ is an alphabet, →⊆ Q × Σ × Q is the transition
relation and q0 is the initial state. An arc (q, a, q′) ∈→ is written as q a−→ q′. This is
extended to words w ∈ Σ∗ via q ε−→ q and q

w−→ q′
a−→ q′′ ⇒ q

wa−−→ q′′. If some q′ ∈ Q

with q w−→ q′ exists, we write q w−→. If no such q′ exists, write q 6 w−→. The language of A is
L(A) = {w ∈ Σ∗ | q0

w−→}. A is deterministic if ∀q, q′, q′′, a : q a−→ q′∧q a−→ q′′ ⇒ q′ = q′′. Two
lts A1, A2 with Ai = (Qi,Σ,→i, q0i) are isomorphic if there exists a bijection ξ : Q1 → Q2
so that ξ(q01) = q02 and for all q, q′ ∈ Q1, a ∈ Σ: q a−→1 q

′ ⇐⇒ ξ(q) a−→2 ξ(q′).

I Definition 2. A (place-transition, initially marked, injectively labelled, arc-weighted)
Petri net is a tuple N = (P,Σ, F,M0) where P,Σ are disjoint and finite sets of places,
respectively transitions, F : ((P × Σ) ∪ (Σ × P)) → N is the flow relation and M0 is the

U. Schlachter 15:3

initial marking where a marking M is a mapping M : P → N. We call M(p) the number
of tokens on place p in M . A Petri net is pure if it satisfies ∀p ∈ P, t ∈ Σ: F (p, t) =
0 ∨ F (t, p) = 0, otherwise it is impure. The effect E(t) ∈ Zp of a transition t ∈ Σ is defined
by E(t)(p) = F (t, p) − F (p, t). A transition t ∈ Σ has no effect if E(t)(p) = 0 for all p.
A transition t ∈ Σ is enabled in marking M , written M [t〉, if ∀p ∈ P : M(p) ≥ F (p, t). In
this situation t can fire and leads to marking M ′, written M [t〉M ′, if M ′ = M +E(t). This
is extended to sequences via M [ε〉M , and if M [u〉M ′[v〉M ′′ then M [uv〉M ′′. The set of all
markings reachable from M0 is E(N) = {M | ∃w ∈ Σ∗ : M0[w〉M}. The reachability graph
of M is the lts RG(N) = (E(N),Σ,→,M0) where → = {(M, t,M ′) | M [t〉M ′}. We call N
k-bounded if ∀M ∈ E(N), p ∈ P : M(p) ≤ k and bounded if such a k exists. The language of
a Petri net is L(N) = L(RG(N)).

The conjunctive nu-calculus is a syntactic fragment of the modal mu-calculus [16, 2]. For
example the disjunction, the negation and the least fixed point µX.β from mu-calculus
are missing. Usually, the semantics of the mu-calculus is defined as sets of states. The
language-based version used here simplifies some of the proofs in the rest of the paper. A
deterministic lts satisfies a formula β ∈ Lν in the language-based semantics if and only if
it does in state-based semantics [12]. The nu-calculus has operations similar to the modal
process logic [19] except that the nu-calculus cannot express non-determinism.

I Definition 3 ([11, 12, 13]). Given a set of variables Var = {X1, X2, . . . } and an alphabet Σ,
the set of all formulas of the conjunctive nu-calculus is called Lν and is defined recursively as
the least set containing true, X,→a, 6→a and if β1, β2 ∈ Lν , then [a]β1, β1 ∧β2, νX.β1 ∈ Lν ,
where a ∈ Σ and X ∈ Var. A variable X ∈ Var is free in β ∈ Lν if it is not under the scope
of any νX, which is the greatest fixed point operator. The interpretation JβKval

L ⊆ L of a
formula β ∈ Lν is based on a prefix-closed language L ⊆ Σ∗ and a valuation val : Var → 2L
which assigns subsets of L to variables. JβKval

L is defined inductively over the structure of β:

JtrueKval
L = L JXKval

L = val(X)
J→aKval

L = {w ∈ L | wa ∈ L} J 6→aKval
L = {w ∈ L | wa /∈ L}

J[a]βKval
L = {w ∈ L | wa ∈ JβKval

L ∨ wa /∈ L} Jβ1 ∧ β2Kval
L = Jβ1Kval

L ∩ Jβ2Kval
L

JνX.βKval
L =

⋃
{V ⊆ L | JβKval(V/X)

L ⊇ V }

The valuation val(V/X) is defined by val(V/X)(X1) = V for X = X1 and val(V/X)(X1) =
val(X1) otherwise. We write 〈a〉β for the formula →a ∧ [a]β and by definition this means
J〈a〉βKval

L = {w ∈ L | wa ∈ JβKval
L }. For a word w = a1 . . . an ∈ Σ+ we define both 〈w〉β =

〈a1〉 . . . 〈an〉β and [w]β = [a1] . . . [an]β. Via this we can define [V]β = [v1]β∧· · ·∧ [vn]β for a
finite set V ⊆ Σ+. Because the semantics of a formula β without any free variables does not
depend on the valuation val, we simply write JβKL. A language L satisfies such a formula,
written L |= β, if and only if ε ∈ JβKL (understand this as the state reached via ε, i.e. the
initial state, satisfying the formula). For a Petri net N we define N |= β as L(N) |= β.

The operator [a]β can be interpreted as a kind of disjunction as its meaning is 〈a〉β ∨ 6→a,
so it allows a continuation of a word, but does not require it. This is the analogue of a may
arc in modal transition systems [18].

I Example 4. We consider the formula [a]→a for the languages L1 = {ε}, L2 = {ε, a} and
L3 = {ε, a, aa}. The interpretation is J[a]→aKLi

= {w ∈ Li | wa ∈ J→aKLi
∨ wa /∈ Li}.

First, we evaluate J→aKL1 = ∅, J→aKL2 = {ε}, and J→aKL3 = {ε, a}. Then, we derive
J[a]→aKL1 = ∅∪{ε} = {ε}, J[a]→aKL2 = ∅∪{a} = {a}, and J[a]→aKL3 = {ε}∪{aa} = {ε, aa}.
The results are L1 |= [a]→a, L2 6|= [a]→a and L3 |= [a]→a. An intuitive understanding of

CONCUR 2016

15:4 Bounded Petri Net Synthesis from Modal Transition Systems is Undecidable

[a]→a is: If a ∈ L, then aa ∈ L. However, this formula only checks the beginning of words
and is not influenced by a elsewhere, since, for example, {ε, b, ba} |= [a]→a for the same
reasons as L1 |= [a]→a.

For an example exhibiting a fixed point operator, consider νX1.→a ∧ [a]X1. We begin
evaluating the subformula →a ∧ [a]X1. The first part requires a ∈ L. The second part
states that if a ∈ L (which is true by the first part), then a ∈ val(X1) where X1 is bound
by the fixed point operator. For an intuitive understanding, we can substitute →a ∧ [a]X1
for X1 and get the formula →a ∧ [a](→a ∧ [a]X1). Now we see that also aa ∈ L is required.
Substituting X1 many times results in the ‘infinite formula’→a∧[a](→a∧[a](→a∧[a](. . .))).
An example for a language which satisfies this formula is produced by the regular expression
a∗. Our formula is equivalent to νX1.〈a〉X1 by the definition of 〈a〉β.

As another example, consider β = νX1.→b∧〈a〉X1 and the regular language L = L(a∗(b+
ε)). In this setting, L |= β. This language is prefix-closed, as required for JβKL to be defined.

I Definition 5. A two-counter machine [20] is a tuple C = (`, γ) where ` ∈ N is the number
of states and γ : {1, . . . , `} → Γ` maps states to instructions. Every instruction γ(k) ∈ Γ` has
one of three possible forms; γ(k) = INCi k′, γ(k) = DECi k′ ELSE k′′ or γ(k) = HALT where
i ∈ {0, 1} and k′, k′′ ∈ {1, . . . , `}. The first instruction increments counter i and switches
to state k′. The second instruction decrements counter i if possible and then switches to
state k′. Otherwise, it switches to state k′′. A configuration is a tuple c = (k, (j0, j1))
where k ∈ {1, . . . , `} is the current state and j0, j1 ∈ N are the values of the counters. An
execution of C is a sequence of configurations which begins with (1, (0, 0)) and a configuration
c = (k, (j0, j1)) is followed by c′ = (k′, (j′0, j′1)) if γ(k) 6= HALT and:

If γ(k) = INCi k′′, then k′ = k′′, j′i = ji + 1 and j′1−i = j1−i.
If γ(k) = DECi k′′ ELSE k′′′, then either ji = 0 and c′ = (k′′′, (j0, j1)) or ji 6= 0, k′ = k′′,
j′i = ji − 1 and j′1−i = j1−i.

The execution of C is unique, hence two-counter machines are deterministic. We say that C
halts if a configuration with an instruction HALT is reached. An execution is called bounded
by (b0, b1) if all of its configurations (k, (j0, j1)) satisfy j0 ≤ b0 and j1 ≤ b1. It is called
bounded if such (b0, b1) exist.

The bounded execution problem for C is to decide if the execution of the two-counter machine
C is bounded. This problem is undecidable, because two-counter machines have the same
computational power as Turing machines and solving this problem would allow to decide
the halting problem.

3 Simulating Two-Counter Machines with Petri nets

This section introduces a family of bounded Petri nets Nsim(b0, b1) with transitions Σ =
{�,�,�,�,�,�} and parameters b0, b1 ∈ N. They are defined such that a two-counter
machine C can be simulated on the reachability graph of such a net via a formula ΦC of the
conjunctive nu-calculus if and only if its execution is bounded (lemma 10).

A prototypical member of the class Nsim(b0, b1) is depicted in Figure 1. The Petri
nets from this class can simulate two bounded counters. The values of the counters are the
number of tokens on p0, respectively p1. Each counter has an initial value of zero, a capacity
of b0, resp. b1 (this is because the complement places pi have bi tokens initially), and can be
incremented, decremented and tested for zero via transitions �, � and � (resp. �, � and �).
Every reachable marking M satisfies, by the structure of the net, M(p0) +M(p0) = b0 and
M(p1) + M(p1) = b1. As an example of the behaviour of these Petri nets, the reachability
graph RG(Nsim(2, 3)) is shown in Figure 1.

U. Schlachter 15:5

p0
�

�
b0

p0

�

p1
�

�
b1

p1

�

b0

b0

b1

b1

� �

� �

�

� �

� �

�

� �

� �

�

� �

� �

�

�

�

�

�

�

�
�

�

�

�

�

�

�
�

�

�

�

�

�

�
�

init

Figure 1 The family of nets Nsim(b0, b1) with b0, b1 ∈ N is depicted on the left. On the right, the
reachability graph of Nsim(2, 3) is shown and the firing sequence ���������� is highlighted.

I Lemma 6. For t ∈ Σ = {�,�,�,�,�,�} and M ∈ E(Nsim(b0, b1)): M [t〉M ′ iff:
For t = � we have M ′(p0) = M(p0) + 1 ≤ b0 and M ′(p1) = M(p1).
For t = � we have M ′(p0) = M(p0)− 1 ≥ 0 and M ′(p1) = M(p1).
For t = � we have M ′ = M and M(p0) = 0.
Analogously for t ∈ {�,�,�} (the second counter).

Proof. This lemma follows from the structure and behaviour of each net Nsim(b0, b1). J

We define a formula ΦC describing a two-counter machine C. By exploiting the structure of
Nsim(b0, b1), such a formula is satisfied on Nsim(b0, b1) iff the execution of C is bounded.

I Definition 7. Given a two-counter machine C = (`, γ), the formula Φk for a state k ∈
{1, . . . , `} in the variables X1 to X` is defined by:

Φk =

〈�〉Xk′ if γ(k) = INC0 k
′

〈�〉Xk′ if γ(k) = INC1 k
′

[�]Xk′ ∧ [�]Xk′′ if γ(k) = DEC0 k
′ ELSE k′′

[�]Xk′ ∧ [�]Xk′′ if γ(k) = DEC1 k
′ ELSE k′′

true if γ(k) = HALT

Consider the equation system Xi = Φi(X1, . . . , X`) for i ∈ {1, . . . , `} where the Φk =
Φk(X1, . . . , X`) are as defined above and the syntax β(X) is used to clarify free variables.
The Gaussian elimination principle (see, e.g., [2]), constructs for each k a formula Ψk repres-
enting a greatest fixed point solution of Xk in this system. For example, a variable Xk cur-
rently defined as Xk = β(Xk) is eliminated by replacing Xk = β(Xk) with Ψk = νXk.β(Xk)
and substituting Xk in all other formulas with νXk.β(Xk). In this way, all variables are
eliminated. Since the starting state of C is state 1, define ΦC := Ψ1.

Intuitively we can understand that Φk is fulfilled if the behaviour of state k can be simulated.
The free variables are used to connect the formulas with each other. For the increment
operation, the corresponding event has to be possible and afterwards the following state
should be simulated. The decrement operation is more complicated, because there are
two possibilities for the following state. To implement this, the structure of Nsim(b0, b1) is
exploited. In every reachable marking, exactly one of the transitions � and � (resp. � and
�) is enabled. Thus, the [a]-operator can be used to express this choice. The increment
operation uses the 〈a〉-operator instead, which will make the simulation fail if a counter
needs to be incremented beyond the bound b0 or b1 of Nsim(b0, b1) (because this transition
is disabled).

CONCUR 2016

15:6 Bounded Petri Net Synthesis from Modal Transition Systems is Undecidable

The following examples show the construction and the Gaussian elimination principle:

I Example 8. We will construct ΦC for the two-counter machine C = (5, γ) with:

γ(1) = INC0 2 γ(3) = DEC0 2 ELSE 4 γ(5) = HALT

γ(2) = INC1 3 γ(4) = DEC1 3 ELSE 5

This machine begins by incrementing its first counter once (instruction 1). In a loop, it then
increments the second counter and decrements the first (instructions 2–3). When the first
counter reaches zero, another loop is done decrementing the second counter (instructions
3–4). Its execution and the corresponding operations are:

(1, (0, 0)) �−→ (2, (1, 0)) �−→ (3, (1, 1)) �−→ (2, (0, 1)) �−→ (3, (0, 2)) �−→ (4, (0, 2)) �−→

(3, (0, 1)) �−→ (4, (0, 1)) �−→ (3, (0, 0)) �−→ (4, (0, 0)) �−→ (5, (0, 0))

This execution is bounded by (1, 2), but also by (2, 3). The formulas for each state are
shown in the following system, where a solution for X1 is needed for ΦC :

X1 = 〈�〉X2 X2 = 〈�〉X3 X3 = [�]X2 ∧ [�]X4 X4 = [�]X3 ∧ [�]X5 X5 = true

The Gaussian elimination principle now eliminates variables. We begin by substituting
the only uses of X5 and X4 with their definitions. This produces X4 = [�]X3 ∧ [�]true
and X3 = [�]X2 ∧ [�]([�]X3 ∧ [�]true). The variable X3 is eliminated by substituting
νX3.[�]X2 ∧ [�]([�]X3 ∧ [�]true) (note the added νX3 in front of the value of X3). This
yields X2 = 〈�〉(νX3.[�]X2 ∧ [�]([�]X3 ∧ [�]true)). Continuing by substituting X2 and
eliminating X1 produces the result:

ΦC = Ψ1 = 〈�〉(νX2.〈�〉(νX3.[�]X2 ∧ [�]([�]X3 ∧ [�]true)))

As we saw above, the execution of C is bounded by (2, 3). The reader may verify that
Nsim(2, 3) |= ΦC due to ���������� being in L(Nsim(2, 3)) (compare Figure 1), which
is the word representing the correct execution of C.

I Example 9. An example for a machine which has a bounded execution, but does not halt,
is the machine C′ = (1, γ′) with γ′(1) = DEC0 1 ELSE 1. This machine loops in its initial
configuration. Its formula is ΦC′ = νX1.[�]X1 ∧ [�]X1. Here we have Nsim(0, 0) |= ΦC′ and
the ‘infinite word’ representing a correct simulation is �ω. If we modify this machine by
setting γ′(1) = INC0 1, we get ΦC′ = νX1.〈�〉X1. This machine’s unbounded execution is
represented by �ω. No instance of Nsim(b0, b1) allows an infinite sequence of increments.

I Lemma 10. The execution of a two-counter machine C is bounded by (b0, b1) ∈ N× N if
and only if Nsim(b0, b1) |= ΦC.

Proof sketch. An analogous result was shown in [12]. The main difference is in the defini-
tions of Nsim(b0, b1) and Φk, so that we can incorporate impure Petri nets.

We can define words wi ∈ Σ∗ that contain the operations done to reach the i-th con-
figurations in C’s execution. Assuming C is bounded, by induction it follows from lemma 6
that all wi ∈ L := L(Nsim(b0, b1)). These words can be grouped into sets Vk containing for a
state k all words wi where the i-th configuration is in state k. Show that JΦkKval

L ⊇ Vk holds
for val defined by val(Xi) = Vi. By standard fixed point theory it follows that these values
are contained in the unique greatest fixed point and so w1 = ε ∈ V1 ⊆ JΦ1Kval

L ⊆ JΦCKL,
which was to show.

U. Schlachter 15:7

Reachable markings of Nsim(b0, b1) are related to counter values in an obvious way.
Assuming ε ∈ JΦCKL, it can be shown via lemma 6 that the words wi as defined above reach
markings corresponding to the i-th configuration. Thus, ΦC follows the operations done
by C and since in Nsim(b0, b1) only bounded markings are reachable, the execution of C is
bounded by the same numbers. J

Because the bounded execution problem is undecidable, we obtain:

I Corollary 11. Given C, it is undecidable if ∃b0, b1 ∈ N such that Nsim(b0, b1) |= ΦC.

4 Undecidability of Petri Net Synthesis from the Nu-calculus

This section characterises the reachability graph of Petri nets Nsim(b0, b1) via a formula
ΦNsim independent of b0 and b1. Our goal is to show that, given a formula β ∈ Lν , the
existence of a bounded Petri net satisfying β is undecidable. For this, we first want to
show that if a bounded Petri net satisfies ΦNsim ∧ ΦC , then there are numbers b0, b1 so
that Nsim(b0, b1) |= ΦC . The undecidability then follows via corollary 11. In the following
sections, various parts of ΦNsim are introduced. Section 4.3 then shows the result sketched
above.

4.1 Auxiliary Formulas
We begin with a formula that signifies that a word w ∈ Σ∗ can be fired infinitely often:

NoEffect(w) = νX1.(〈w〉X1)

I Lemma 12. N |= NoEffect(w) for a bounded Petri net N if and only if M0[w〉M0.

Proof. By definition JNoEffect(w)KL =
⋃
{V ⊆ L | {v ∈ L | vw ∈ V } ⊇ V }. This means

it is the largest subset W of L that satisfies v ∈ W ⇒ vw ∈ W . Thus, the premise
ε ∈ JNoEffect(w)KL is equivalent to {w}∗ ⊆ JNoEffect(w)KL. Since always JβKL ⊆ L, we
derive {w}∗ ⊆ L. In any bounded Petri net it holds that {w}∗ ⊆ L iff M0[w〉M0. J

By M0[aa′〉M0 ⇒M0 = M0 +E(a) +E(a′), we get that Inv(a, a′) expresses that transitions
a, a′ ∈ Σ have opposite effects:

Inv(a, a′) = NoEffect(aa′)

I Corollary 13. N |= Inv(a, a′) for a bounded Petri net N if and only if M0[aa′〉 and
E(a) = −E(a′).

Next, we define a formula that requires some formula β to hold globally. Here, X1 is a fresh
variable which does not appear in β.

Global(β) = νX1.([Σ]X1 ∧ β)

I Lemma 14. ε ∈ JGlobal(β)Kval
L if and only if L = JβKval

L .

Proof. We begin with J[Σ]X1 ∧ βKval
L = {w ∈ JβKval

L | ∀a ∈ Σ: wa ∈ val(X1) ∨ wa /∈ L}.
The fixed point produces JGlobal(β)Kval

L = {w ∈ JβKval
L | ∀a ∈ Σ: wa ∈ L ⇒ wa ∈ JβKval

L } =
{w ∈ JβKval

L | ∀u ∈ Σ∗ : wu ∈ L ⇒ wu ∈ JβKval
L }. The following implications follow:

ε ∈ JGlobal(β)Kval
L ⇒ L = JβKval

L ⇒ L = JGlobal(β)Kval
L ⇒ ε ∈ JGlobal(β)Kval

L . J

CONCUR 2016

15:8 Bounded Petri Net Synthesis from Modal Transition Systems is Undecidable

a

bb′a′b
a

start

Figure 2 Illustration for Swph(a, b, a′, b′). Whenever the dashed arcs are present, the solid arcs
are required. The interpretation begins in the upper left corner.

Next we define formulas which require two events to be swappable in the language, using
events with opposite effects to ‘undo’ the firing of a transition. Swapping ab into ba is
expressed by Swph and the opposite direction is added by Swp. This is extended to all
combinations of the four events a, b, a′ and b′ by Swap. Figure 2 illustrates Swph(a, b, a′, b′).

Swph(a, b, a′, b′) = Global([a][b]〈b′〉〈a′〉〈b〉〈a〉true)
Swp(a, b, a′, b′) = Swph(a, b, a′, b′) ∧ Swph(b, a, b′, a′)

Swap(a, b, a′, b′) = Swp(a, b, a′, b′) ∧ Swp(a, b′, a′, b) ∧ Swp(a′, b, a, b′) ∧ Swp(a′, b′, a, b)

I Lemma 15. Let N be a Petri net with E(a) = −E(a′) and E(b) = −E(b′). Then
N |= Swp(a, b, a′, b′) if and only if ∀w ∈ L(N) : wab ∈ L(N) ⇐⇒ wba ∈ L(N).

Proof. First, we have ε ∈ JSwph(a, b, a′, b′)KL iff for all wab ∈ L also wabb′a′ba ∈ L by the
definition of the semantics and by lemma 14. Since a and a′ (and b and b′) have opposite
effects, this can be restated as: For all reachable markings M , we have M [ab〉 ⇒ M [ba〉.
This shows both directions of the lemma. J

I Corollary 16. For a net N with E(a) = −E(a′) and E(b) = −E(b′), N |= Swap(a, b, a′, b′)
if and only if ∀c ∈ {a, a′}, d ∈ {b, b′}, w ∈ L(N) : wcd ∈ L(N) ⇐⇒ wdc ∈ L(N).

4.2 Characterisation of our Class of Nets via the Nu-Calculus
We will characterise Nsim(b0, b1) by a formula ΦNsim = ΦE∧Φswap∧Φ1

dec∧Φ2
dec∧Φdep∧Φzero.

With ΦE, we will restrict the effects of transitions, Φswap requires swaps to be possible, and
Φ1
dec forbids the decrement of a counter with value zero. The formula Φ2

dec requires a counter
decrement to be possible after every increment and the formula Φdep ensures that counters
are independent. The correct behaviour of the zero-test event is required by Φzero.

ΦE = Inv(�,�) ∧NoEffect(�) ∧ Inv(�,�) ∧NoEffect(�)

By lemma 12 and corollary 13, ΦE expresses that the increment and decrement transitions
have opposite effects and that the test transitions have no effect on the marking. It can
easily be seen that all Petri nets in the class Nsim(b0, b1) have these properties.

Another property of Nsim(b0, b1) is that it contains two independent subnets. The order
in which transitions from different subnets fire is arbitrary. By ΦE, transitions � and � have
no effect and do not need to be considered. For the other events, Swap is used. Additionally,
in the initial marking, the decrement operations are disabled by φ1

dec:

Φswap = Swap(�,�,�,�) Φ1
dec = 6→� ∧ 6→�

I Lemma 17. For a bounded Petri net N over Σ such that N |= ΦE ∧ Φswap ∧ Φ1
dec, for

every reachable marking M there are words w ∈ {�}∗ and v ∈ {�}∗ so that M0[vw〉M and
M0[wv〉M .

U. Schlachter 15:9

Proof. SinceM is a reachable marking, there is a word u ∈ Σ∗ so thatM0[u〉M . By N |= ΦE
and lemma 12, events � and � have no effect and can be removed from u without problems.
By corollary 16 and N |= Φswap, we can freely swap remaining events belonging to different
counters. Every subword ba of u with a ∈ {�,�} and b ∈ {�,�} is now swapped into ab.
This results in a word from {�,�}∗ · {�,�}∗. Again by N |= ΦE and by corollary 13, we
know that � and � (respectively � and �) have opposite effects. Thus all subwords ��,
��, �� and �� can be removed. A firing sequence u = vw of the required form reaching
M remains and induction over corollary 16 swaps this into wv. Note that by Φ1

dec, neither
v nor w begin with a decrement operation and thus both only contain increments. J

Whenever a counter is incremented, it can be decremented afterwards:

Φ2
dec = Global([�]→�) ∧Global([�]→�)

I Lemma 18. If N |= Φ2
dec then for all w ∈ Σ∗ it holds that w� ∈ L(N) ⇒ w�� ∈ L(N)

and w� ∈ L(N)⇒ w�� ∈ L(N).

Proof. We only show the first part. Let w� ∈ L(N). Since L(N) is prefix closed and by
lemma 14, we have w ∈ L(N) = J[�]→�KL(N) = {u ∈ L(N) | u� 6∈ L(N) ∨ u�� ∈ L(N)}.
By w� ∈ L(N), w must satisfy the second part of the disjunction. Thus, w�� ∈ L(N). J

The formulas defined so far allow the simulation of counters. However, it is still possible
that the counters are interdependent and can, for example, reach the values (2, 3) and (3, 2),
but not (3, 3). Such dependencies are not present in Nsim(b0, b1) and we exclude them via
the formula Φdep:

Φdep = Global([�][�]→�)

We use this formula in the next lemma to express that, if both counters can be incremented,
then they can also be incremented one after another. Since Lν does not allow implications,
the situation that both counters can be incremented is captured as [�][�]. Φdep only makes
a requirement on the first counter, because the second counter follows via Φswap.

I Lemma 19. If N |= ΦE ∧ Φswap ∧ Φ2
dec ∧ Φdep, then for every w ∈ Σ∗, we have w� ∈

L(N) ∧ w� ∈ L(N)⇒ w�� ∈ L

Proof. First, we can apply lemma 18 and get w� ∈ L(N)⇒ w�� ∈ L(N). By N |= ΦE, we
know that �� has no effect, so w and w�� reach the same marking. Because of w� ∈ L(N),
this means that we also have w��� ∈ L(N). Thus, after w�, the sequence �� is enabled
and Φdep yields that � is enabled afterwards, so w���� ∈ L(N). Since �� has no effect,
we can remove this part and get w�� ∈ L(N). J

I Definition 20. For a Petri net N define the associated numbers b0(N), b1(N) ∈ N ∪ {∞}
to be the supremum of possible values so that M0[�b0(N)〉 and M0[�b1(N)〉.

We can now characterise the state space of a Petri net satisfying the formulas defined so far:

I Lemma 21. For a bounded Petri net N over Σ with N |= ΦE∧Φswap∧Φ1
dec∧Φ2

dec∧Φdep,
a marking M is reachable if and only if it is reachable via M0[�j0�j1〉M with ji ≤ bi(N).

Proof. First we show that all sequences �j0�j1 are enabled. By definition we have �j0 ∈
L(N) and �j1 ∈ L(N). Applying lemma 19 and corollary 16 (to swap the firing sequences
into the needed form) inductively shows that �j0�j1 ∈ L(N). It remains to show that no

CONCUR 2016

15:10 Bounded Petri Net Synthesis from Modal Transition Systems is Undecidable

more markings are reachable. According to lemma 17, we only have to consider markings
M reachable through words of our form. Thus, it only remains to show that j0 ≤ b0(N)
and j1 ≤ b1(N). However, corollary 16 can be used to bring either the part �j0 or �j1 to
the beginning of the word. Now, the definitions of b0(N) and b1(N) guarantee that these
bounds are not exceeded. J

Φzero = Φ0
zero ∧ Φ1

zero requires that the zero test is enabled when a counter has the value
zero, no matter which value the other counter has, and is disabled otherwise:

Φ0
zero = (νX1.[�]X1 ∧→�) ∧Global([�]6→�)

Φ1
zero = (νX1.[�]X1 ∧→�) ∧Global([�]6→�)

For a language satisfying this formula, the first part of Φ0
zero requires that for any �i ∈ L,

also �i� ∈ L. The second part states that no word may end in �� and thus the zero test
is not possible after an increment.

I Lemma 22. Let N be a bounded Petri net with N |= ΦE∧Φswap∧Φ1
dec∧Φzero and j0, j1 ∈ N

so that w = �j0�j1 ∈ L(N). Then w� ∈ L(N) ⇐⇒ j0 = 0 and w� ∈ L(N) ⇐⇒ j1 = 0.

Proof. If j1 = 0, then the first part of Φ1
zero requires w� = �j0� ∈ L(N) for any value of

j0. Similarly, if j1 > 0, the second part requires w� = �j0�j1� 6∈ L(N). For the analogous
statement for the first counter, we apply lemma 17 to get �j1�j0 ∈ L(N) and make an
analogous argument afterwards. J

I Lemma 23. Let N be a bounded Petri net such that N |= ΦE∧Φzero. Then the transition
� has a negative effect on some place p and � has a negative effect on some place q, where
p = q is allowed, and both b0(N) 6= 0 6= b1(N) and b0(N) 6=∞ 6= b1(N) hold.

Proof. Observe that by Φ0
zero, transition � is initially enabled, but disabled after � (which

has to be enabled by ΦE). Thus, � consumes tokens required by � from a place p.
For the second part, by corollary 13, Inv(�,�) (part of ΦE) requires � to be enabled

in the initial marking. Thus, b0(N) > 0. For b0(N) 6=∞, we observe that the initial token
count M0(p) on the place p from which � consumes tokens is finite and � becomes disabled
eventually (b0(N) <∞). A similar argument can be made for q and 0 < b1 <∞. J

4.3 Undecidability of Petri Net Synthesis from the Nu-calculus
With the definitions and results of the previous sections, we now prove that ΦNsim :=
ΦE ∧Φswap ∧Φ1

dec ∧Φdep ∧Φ2
dec ∧Φzero characterises the reachability graph of Nsim(b0, b1):

I Lemma 24. Let N be a bounded Petri net over the alphabet Σ with N |= ΦNsim , then
RG(N) and RG(Nsim(b0(N), b1(N))) are isomorphic.

Proof. Lemma 23 shows that b0(N) 6= ∞ 6= b1(N). Thus, Nsim(b0(N), b1(N)) is well-
defined. By lemma 6 and lemma 21, all reachable markings in either net are reached via
firing sequences �j0�j1 with j0 ≤ b0(N) and j1 ≤ b1(N). By lemma 23 and by the structure
of Nsim(b0(N), b1(N)), different such firing sequences reach different markings. Thus, we can
uniquely identify markings of either net with firing sequences �j0�j1 and use this relation
as a bijection between markings.

It remains to show that this bijection preserves the firing of transitions. By the structure
of Nsim(b0(N), b1(N)) and by lemma 22, the zero test is enabled in a markingM of either net
exactly if the corresponding counter was not increased to reachM . By ΦE and the structure

U. Schlachter 15:11

of Nsim(b0(N), b1(N)), the zero test has no effect and reaches the marking M again. By a
similar argument, this time including lemma 18, a decrement is possible if the corresponding
counter has a non-zero value and reaches the marking where the corresponding counter was
incremented one time less often. Finally, by the structure of Nsim(b0(N), b1(N)) and lemma
21, a counter can be incremented as long as it is below its maximal value.

Altogether this shows that we have an isomorphism between RG(Nsim(b0(N), b1(N)))
and RG(N) that preserves the firing of transitions. J

I Theorem 25. It is undecidable whether there exists a bounded Petri net N with transitions
Σ = {�,�,�,�,�,�} so that N |= β for a given formula β ∈ Lν without free variables.

Proof. We use a reduction from the problem of finding b0, b1 ∈ N so that Nsim(b0, b1) |= ΦC ,
which is undecidable according to corollary 11. Define βC = ΦNsim ∧ ΦC . We show that
∃N : N |= βC ⇐⇒ ∃b0, b1 ∈ N : Nsim(b0, b1) |= ΦC .

Assume a bounded Petri net N with N |= βC . By lemma 24, RG(N) and A :=
RG(Nsim(b0(N), b1(N))) are isomorphic. From this, we derive L(RG(N)) = L(A) and be-
cause the semantics of Lν are defined on languages, we arrive at Nsim(b0(N), b1(N)) |= βC .
By definition of the conjunction, this gives us Nsim(b0(N), b1(N)) |= ΦC . We can easily
compute b0(N), b1(N) ∈ N via their definition.

For the other direction, assume that there are numbers b0, b1 ∈ N so that Nsim(b0, b1) |=
ΦC . Without loss of generality we can assume that b0 6= 0 6= b1, because if the execution of C
is bounded by (b0, b1), it is also bounded by (b0 + 1, b1 + 1) (apply lemma 10). It remains to
show that ∀x, y > 0: Nsim(x, y) |= ΦNsim , because we can combine this to ΦNsim ∧ ΦC = βC
and arrive at Nsim(b0, b1) |= βC . To satisfy ΦNsim , all its parts have to hold. The formula ΦE
only makes requirements about the effect of transitions by requiring some infinite sequences
to be initially enabled (see lemma 12 and corollary 13). These sequences are possible in
Nsim(b0, b1), but only if b0 > 0 and b1 > 0, which we can assume. The rest follows directly
from the semantics of ΦNsim and the structure of the Petri net together with corollary 16. J

5 Undecidability of Synthesis from Modal Transition Systems

We will show our main result in theorem 30 via an equivalence between the conjunctive
nu-calculus and deterministic modal transition systems. This equivalence is established via
another formalism, modal specifications, which is known to be equivalent to the conjunctive
nu-calculus. Similar equivalences are known for more expressive models [5], but depend on
a ∨-operator, which Lν does not have, for transforming a formula to an automaton. A
different approach follows.

Remember that a finite automaton A = (Q,Σ,→, F, q0) is a lts equipped with a set
F ⊆ Q of final states. The language of A is Lf (A) = {w ∈ Σ∗ | ∃q ∈ F : q0

w−→ q}. Every
regular language is the language of a unique minimal deterministic finite automaton AL [14].

I Definition 26 ([18]). A modal transition system is a tupleM = (S,Σ,→�,→♦, s0) where
S is a finite set of states, Σ an alphabet, s0 the initial state and →�,→♦ ⊆ S ×Σ× S with
→� ⊆ →♦ are its must and may arcs, respectively. The maximal implementation of M is
the ltsM = (S,Σ,→♦, s0). M is deterministic ifM is.

A lts A = (Q,Σ,→, q0) is an implementation of M, written A |= M, if a relation
R ⊆ Q×S exists so that (q0, s0) ∈ R and for all (q, s) ∈ R and all a ∈ Σ the following holds:
1. If s a−→� s′, then ∃q′ ∈ Q with q a−→ q′ and (q′, s′) ∈ R.
2. If q a−→ q′, then ∃s′ ∈ S with s a−→♦ s

′ and (q′, s′) ∈ R.
Also, L |=M for a prefix-closed language L, iff there is a det. lts A |=M with L = L(A).

CONCUR 2016

15:12 Bounded Petri Net Synthesis from Modal Transition Systems is Undecidable

I Lemma 27. For any modal transition system M = (S,Σ,→�,→♦, s0) and any prefix-
closed language L, both M |= M and L |= M ⇒ L ⊆ L(M) hold. If A |= M for a lts
A = (Q,Σ,→, q0) and M and A are both deterministic, then R = {(q, s) | ∃w ∈ Σ∗ : q0

w−→
q ∧ s0

w−→♦ s} is a relation witnessing A |=M.

I Definition 28 ([11]). A modal specification is a tuple Sm = ({Ca}a∈Σ, I) describing a class
of languages where Ca ⊆ Σ∗ contains all words that must be extendable by an additional a,
while words from I ⊆ Σ∗ are forbidden to occur at all. All Ca and I are regular languages.
The completion operator associated to Sm is the function CSm

: 2Σ∗ → 2Σ∗ defined by
CSm

(L) =
⋃
a∈Σ(L∩Ca) ·{a}. A prefix-closed language satisfies Sm, written L |= Sm, if and

only if CSm(L) ⊆ L and L ∩ I = ∅. A modal specification is incoherent if I ∩ CSm(Σ∗) 6= ∅.

I Lemma 29 ([13]). For every modal specification Sm there is an equivalent coherent modal
specification S′m.

Proof sketch. For S′m, modify the Ca according to C ′a = Ca \ {w ∈ Σ∗ | wa ∈ I}. J

We can now prove our main result:

I Theorem 30. Given a deterministic modal transition system M, it is undecidable if a
bounded Petri net N with L(N) |=M exists.

Proof. It is known that formulas of Lν without free variables and modal specification are
equally expressive [11, 13]. Therefore, invoking theorem 25 shows that it is undecidable if
for a given modal specification Sm there is a bounded Petri net N with L(N) |= Sm. We
prove this theorem by showing that modal specification and deterministic modal transition
systems are equally expressive.

Given a deterministic modal transition systemM = (S,Σ,→�,→♦, s0), we construct a
modal specification Sm(M) so that for all prefix-closed languages L ⊆ Σ∗ : L |= M ⇐⇒
L |= Sm(M) as follows. The set S(a) := {s ∈ S | s a−→�} is the set of all states having
an outgoing must arc with label a. Via this, define AS(a)

M as the finite automaton based
on the lts M with S(a) as its set of final states. Now Ca := Lf (AS(a)

M) is the regular lan-
guage containing words after which an a is required. Finally, define the modal specification
Sm(M) := ({Ca}a∈Σ, I) where I := Σ∗ \ L(M) is the set of forbidden words.

Analogously, given a coherent modal specification Sm, there is a deterministic modal
transition system M(Sm) so that for all prefix-closed languages L ⊆ Σ∗ : L |= Sm ⇐⇒
L |= M(Sm). For a regular language L, let AL be the deterministic automaton accepting
it, let Sm = ({Ca}a∈Σ, I) be given and let A be the synchronous product of all ACa

and
AI . The synchronous product of two automata is a lts constructed by taking the Cartesian
product of the sets of states and defining the transition relation element-wise, i.e. if q a−→ q′

and s a−→ s′, then (q, s) a−→ (q′, s′). This can be generalized to multiple automata.
The states ofM(Sm) are the states of A and its initial state and alphabet are kept. The

may arcs →♦ are based on the arcs of A. However, all arcs that reach states which belong
to final states of AI are removed. This ensures that the allowed behaviour between Sm and
M(Sm) is the same. M(Sm) is deterministic because A is deterministic. For →�, for each
a ∈ Σ look at each state s containing a final state q of ACa . Because Sm is coherent, the
arc s a−→♦ was not removed in the previous step. The (unique) arc s a−→ s′ is added to →�.

The correctness of both constructions can be shown. For this, lemma 27 is useful. J

I Example 31. Figure 3 shows a deterministic modal transition system M. We will now
construct Sm(M). We have S(a) = S(b) = {1}, since for both letters this is the only state

U. Schlachter 15:13

1 2
init

b
a

a

M :

1 2 3
init

b

a

a

a, b
b

A :

Figure 3 On the left, a modal transition system M is shown. May arcs are dashed and solid
lines represent may and must arcs.On the right, the product automaton A being the synchronous
product of ACa , ACb and AI is depicted. For ACa and ACb , state 1 is the only final state. For AI ,
this is state 3.

with an outgoing must arc, so Ca = Cb = Lf (AS(a)
M). The reader may easily verify that

Lf (AS(a)
M) = L((a+ ba)∗). For I, derive L(M) = L((a+ ba)∗(ε+ b)) and I = Σ∗ \ L(M) =

L((a+ ba)∗bb(a+ b)∗). This finishes the construction of Sm(M) = ({Ce}e∈{a,b}, I)
For the other direction, we begin with the modal specification Sm := Sm(M) that was

just derived and constructM(Sm). The synchronous product of ACa
, ACb

and AI is shown
in Figure 3. The may arcs ofM(Sm) are all arcs of A except those reaching a final state of AI .
Thus, the arc from state 2 to state 3 and the two loops around state 3 are removed. For the
must arcs, the arcs leaving a final state of ACa

(resp. ACb
) labelled with the corresponding

event are considered. These are both arcs leaving state 1. The only may arc which is not
also a must arc is the arc from state 2 to state 1. The constructed modal transition system
M(Sm) is the same asM from Figure 3, except that it also contains an isolated state 3.

6 Conclusion

In this paper, the problem of finding a bounded Petri net implementing a given deterministic
modal transition system was shown to be undecidable. This was done by first showing this
problem to be undecidable for the conjunctive nu-calculus. The main result followed via
an equivalence between the nu-calculus and deterministic modal transition systems. This
result also settles the undecidability for the more powerful class of non-deterministic modal
transition systems.

Several interesting questions are still open. The author believes that the presented
approach can also be applied to the pure and bounded Petri net synthesis problem. The
main difficulty is the zero-test transition, which would have to be split into two parts.

Another direction is to find decidable subcases of the Petri net synthesis problem. This
could be done via structural restrictions on the modal transition systems or via limiting the
class of synthesised Petri nets. For example, for a given k, the k-bounded Petri net synthesis
problem from modal transition systems is decidable, because k-bounded Petri nets can be
restricted to arc weights ≤ k without loss of generality. Only a finite number of Petri nets
remain and each can be model-checked against the specification.

Possible structural restrictions on the modal transition systems might forbid must-arcs
to form loops or might require each specification to be reachable via must-arcs.

Acknowledgements. I am grateful for the thoughtful remarks and suggestions by Eric
Badouel, Eike Best, Valentin Spreckels, and Harro Wimmel. Also, I’d like to thank the
anonymous reviewers for their helpful comments.

References
1 Adam Antonik, Michael Huth, Kim G. Larsen, Ulrik Nyman, and Andrzej Wasowski. 20

years of modal and mixed specifications. Bulletin of the EATCS, 95:94–129, 2008.

CONCUR 2016

15:14 Bounded Petri Net Synthesis from Modal Transition Systems is Undecidable

2 André Arnold and Damian Niwiński. Rudiments of µ-calculus. North Holland, 2001.
3 Eric Badouel, Luca Bernardinello, and Philippe Darondeau. Petri Net Synthesis. Springer,

2015. doi:10.1007/978-3-662-47967-4.
4 Eric Badouel, Benoît Caillaud, and Philippe Darondeau. Distributing finite automata

through petri net synthesis. Formal Aspects of Computing, 13(6):447–470, 2002. doi:
10.1007/s001650200022.

5 Nikola Benes, Benoît Delahaye, Uli Fahrenberg, Jan Kretínský, and Axel Legay. Hennessy-
milner logic with greatest fixed points as a complete behavioural specification theory. In
Pedro R. D’Argenio and Hernán C. Melgratti, editors, CONCUR 2013, volume 8052 of
LNCS, pages 76–90. Springer, 2013. doi:10.1007/978-3-642-40184-8_7.

6 Nikola Benes, Jan Kretínský, Kim Larsen, and Jirí Srba. On determinism in modal trans-
ition systems. Theoretical Computer Science, 410(41):4026–4043, 2009. doi:10.1016/j.
tcs.2009.06.009.

7 Eike Best and Philippe Darondeau. Petri net distributability. In Edmund M. Clarke, Irina
Virbitskaite, and Andrei Voronkov, editors, PSI 2011, Revised Selected Papers, volume
7162 of LNCS, pages 1–18. Springer, 2011. doi:10.1007/978-3-642-29709-0_1.

8 Glenn Bruns. An industrial application of modal process logic. Science of Computer
Programming, 29(1-2):3–22, 1997. doi:10.1016/S0167-6423(96)00027-5.

9 Philippe Darondeau. Distributed implementations of Ramadge-Wonham supervisory con-
trol with Petri nets. In Eduardo Camacho, editor, Proceedings of the 44th IEEE CDC-ECC
2005, pages 2107–2112. IEEE, 2005. doi:10.1109/CDC.2005.1582472.

10 Javier Esparza. On the decidability of model checking for several µ-calculi and petri nets.
In Sophie Tison, editor, CAAP 1994, volume 787 of LNCS, pages 115–129. Springer, 1994.
doi:10.1007/BFb0017477.

11 Guillaume Feuillade. Modal specifications are a syntactic fragment of the Mu-calculus.
Research Report RR-5612, INRIA, 2005. URL: https://hal.inria.fr/inria-00070396.

12 Guillaume Feuillade. Spécification logique de réseaux de Petri. PhD thesis, Université de
Rennes I, 2005.

13 Guillaume Feuillade and Sophie Pinchinat. Modal specifications for the control theory of
discrete event systems. DEDS, 17(2):211–232, 2007. doi:10.1007/s10626-006-0008-6.

14 John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Languages and
Computation. Addison-Wesley, Reading, Mass, 1st edition, 1979.

15 Petr Jancar. Nonprimitive recursive complexity and undecidability for petri net equival-
ences. Theoretical Computer Science, 256(1-2):23–30, 2001. doi:10.1016/S0304-3975(00)
00100-6.

16 Dexter Kozen. Results on the propositional mu-calculus. Theoretical Computer Science,
27:333–354, 1983. doi:10.1016/0304-3975(82)90125-6.

17 Jan Kretínský and Salomon Sickert. MoTraS: A tool for modal transition systems and their
extensions. In Dang Van Hung and Mizuhito Ogawa, editors, ATVA 2013, volume 8172 of
LNCS, pages 487–491. Springer, 2013. doi:10.1007/978-3-319-02444-8_41.

18 Kim Larsen. Modal specifications. In Joseph Sifakis, editor, AVMFSS, volume 407 of
LNCS, pages 232–246. Springer, 1989. doi:10.1007/3-540-52148-8_19.

19 Kim Larsen and Bent Thomsen. A modal process logic. In LICS 1988, pages 203–210.
IEEE, 1988. doi:10.1109/LICS.1988.5119.

20 Marvin Lee Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1967.

21 Rob J. van Glabbeek, Ursula Goltz, and Jens-Wolfhard Schicke-Uffmann. On character-
ising distributability. Logical Methods in Computer Science, 9(3), 2013. doi:10.2168/
LMCS-9(3:17)2013.

http://dx.doi.org/10.1007/978-3-662-47967-4
http://dx.doi.org/10.1007/s001650200022
http://dx.doi.org/10.1007/s001650200022
http://dx.doi.org/10.1007/978-3-642-40184-8_7
http://dx.doi.org/10.1016/j.tcs.2009.06.009
http://dx.doi.org/10.1016/j.tcs.2009.06.009
http://dx.doi.org/10.1007/978-3-642-29709-0_1
http://dx.doi.org/10.1016/S0167-6423(96)00027-5
http://dx.doi.org/10.1109/CDC.2005.1582472
http://dx.doi.org/10.1007/BFb0017477
https://hal.inria.fr/inria-00070396
http://dx.doi.org/10.1007/s10626-006-0008-6
http://dx.doi.org/10.1016/S0304-3975(00)00100-6
http://dx.doi.org/10.1016/S0304-3975(00)00100-6
http://dx.doi.org/10.1016/0304-3975(82)90125-6
http://dx.doi.org/10.1007/978-3-319-02444-8_41
http://dx.doi.org/10.1007/3-540-52148-8_19
http://dx.doi.org/10.1109/LICS.1988.5119
http://dx.doi.org/10.2168/LMCS-9(3:17)2013
http://dx.doi.org/10.2168/LMCS-9(3:17)2013

Decentralized Asynchronous Crash-Resilient
Runtime Verification∗

Borzoo Bonakdarpour1, Pierre Fraigniaud2, Sergio Rajsbaum3,
David A. Rosenblueth4, and Corentin Travers5

1 McMaster University, Canada, borzoo@mcmaster.ca
2 CNRS and University Paris Diderot, France, pierref@irif.fr
3 UNAM, México, rajsbaum@unam.mx
4 UNAM, México, drosenbl@unam.mx
5 University of Bordeaux, France, travers@labri.fr

Abstract
Runtime Verification (RV) is a lightweight method for monitoring the formal specification

of a system during its execution. It has recently been shown that a given state predicate can
be monitored consistently by a set of crash-prone asynchronous distributed monitors, only if
sufficiently many different verdicts can be emitted by each monitor. We revisit this impossibility
result in the context of Ltl semantics for RV. We show that employing the four-valued logic
Rv-Ltl will result in inconsistent distributed monitoring for some formulas. Our first main
contribution is a family of logics, called Ltl2k+4, that refines Rv-Ltl incorporating 2k+ 4 truth
values, for each k ≥ 0. The truth values of Ltl2k+4 can be effectively used by each monitor to
reach a consistent global set of verdicts for each given formula, provided k is sufficiently large.
Our second main contribution is an algorithm for monitor construction enabling fault-tolerant
distributed monitoring based on the aggregation of the individual verdicts by each monitor.

1998 ACM Subject Classification C.2.4 Distributed Systems, D.2.5 Testing and Debugging;
Monitors, D.2.4 Software/Program Verification

Keywords and phrases Runtime monitoring, Distributed algorithms, Fault-tolerance

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2016.16

1 Introduction

Runtime Verification (RV) is a technique where a monitor process determines whether or
not the current execution of a system under inspection complies with its formal specification.
The state-of-the-art RV methods for distributed systems exhibit the following shortcomings.
They (1) employ a central monitor, (2) employ several monitors but lack a systematic way
to monitor formally specified properties of a system (e.g., [12, 10, 11]), or (3) assume a
fault-free setting, where each individual monitor is resilient to failures [16, 7, 15, 17, 19,
5, 8]. Relaxing the latter assumption, that is, handling monitors subject to failures, poses
significant challenges as individual monitors would become unable to agree on the same
perspective of the execution, due to the impossibility of consensus [9]. Thus, it is unavoidable

∗ This work was partially sponsored by Canada NSERC Discovery Grant 418396-2012 and NSERC
Strategic Grants 430575-2012 and 463324-2014, UNAM-PAPIIT Grant IN107714, PASPA-DGAPA-
UNAM and Conacyt grants 221341 and 261225, as well as the French State, managed by the French
National Research Agency (ANR) in the frame of the "Investments for the future" Programme IdEx
Bordeaux - CPU (ANR-10-IDEX-03-02).

© Borzoo Bonakdarpour, Pierre Fraigniaud, Sergio Rajsbaum, David A. Rosenblueth,
and Corentin Travers;
licensed under Creative Commons License CC-BY

27th International Conference on Concurrency Theory (CONCUR 2016).
Editors: Josée Desharnais and Radha Jagadeesan; Article No. 16; pp. 16:1–16:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.16
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

16:2 Decentralized Asynchronous Crash-Resilient Runtime Verification

that individual monitors emit different local verdicts about the current execution, so that
a consistent global verdict with respect to a correctness property can be constructed from
these verdicts.

The necessity of using more than just the two truth values of Boolean logic is a known
fact in the context of RV with a single monitor. For instance, Rv-Ltl [3] has four truth
values B4 = {>,⊥,>p,⊥p}. These values identify cases where a finite execution (1) per-
manently satisfies, (2) permanently violates, (3) presumably satisfies, or (4) presumably
violates an Ltl formula. For example, consider a request/acknowledge property, where a
request r1 is eventually responded by acknowledgement a1, and a1 should not occur before
r1; i.e., Ltl formula ϕ = G(¬a1 ∧¬r1) ∨ [(¬a1 U r1) ∧ Fa1]. In Rv-Ltl, a finite execution
containing r1 and ending in a1 (i.e., the request has been acknowledged) yields the truth
value ‘permanently satisfied’, whereas an execution containing only r1 (i.e., the request has
not yet been acknowledged) yields ‘presumably violated’.

Although Rv-Ltl can monitor ϕ (see Figure 1 for its monitor automaton) in a central-
ized setting, we show B4 is not sufficient to consistently monitor a conjunction of two such
formulas in a framework of several asynchronous unreliable monitors. Namely, the set of
verdicts emitted by the monitors may not be sufficient to distinguish executions that satisfy
the formula from those that violate it. Intuitively, this is because each monitor has only
a partial view of the system under scrutiny, and after a finite number of rounds of com-
munication among monitors, still too many different perspectives about the global system
state remain. In fact, it was proved in [10] using algebraic topology techniques [13] that
fault-tolerant distributed monitoring requires that the individual verdicts are taken from a
set whose size depends on the formula being monitored.

Our results. In this paper, we propose a framework for distributed fault-tolerant RV.
To this end, we make a novel connection between RV and consensus in a failure-prone
distributed environment by proposing a multi-valued temporal logic. This new logic is a
refinement of Rv-Ltl. More specifically, we propose a family of (2k + 4)-valued logics,
denoted Ltl2k+4, for k ≥ 0. In particular, Ltl2k+4 coincides with Rv-Ltl when k = 0.
The syntax of Ltl2k+4 is identical to that of Ltl. Its semantics is based on Fltl [14] and
Ltl3 [4], two Ltl-based finite trace semantics for RV. For each k ≥ 0, the kth instance
of the family has 2k + 4 truth values, that intuitively represent a degree of certainty that
the formula is satisfied. We characterize the formulas that when verified at run time with
Ltl2k+4, no additional information is gained if they are verified with Ltl 2k′+4, for a larger
value k′. We present a monitor construction algorithm that generates a finite-state Moore
machine for any given Ltl formula and k ≥ 0.

For example, for formula ϕ = ϕ1 ∧ . . .∧ ϕt, where each ϕi is an independent request/ac-
knowledgement formula, Ltl2k+4 can be used to consistently monitor ϕ, whenever k ≥ t.
In particular, when t = 2, the set of truth values is B8 = {>0,⊥0,>1,⊥1,>2,⊥2,>,⊥}.
Moreover, formula ϕ evaluates to: >0 (presumably true with the lowest degree of certainty)
in a finite execution that does not contain neither r1 nor a1, then to ⊥1 in an extension
where r1 appears (presumably true with a higher degree of certainty), to >1 in an extension
that includes both r1 and a1, to ⊥2 if r2 appears, and finally to > (permanently true) in an
execution that contains r1, a1, r2, and a2.

Our second contribution is an algorithm for fault-tolerant distributed RV, where the mon-
itors are asynchronous wait-free processes that communicate with each other via a read/write
shared-memory, and any of them can fail by crashing. (For simplicity we use this abstract
model, which is well-understood [2, 13], and is known to be equivalent, with respect to task

B. Bonakdarpour, P. Fraigniaud, S. Rajsbaum, D. A. Rosenblueth, and C. Travers 16:3

computability, to a message-passing model where less than half the processes can crash.)
Each monitor gets a partial view of the system’s global state, communicates with the other
monitors a fixed number of rounds, and then emits a verdict from B2k+4. We show how,
given any Ltl formula and a large enough k, the truth values of Ltl2k+4 can be effectively
used such that a set of verdicts collectively provided by the monitors can be mapped to the
verdict computed by a centralized monitor that has full view of the system under inspection.
It follows from the general lower bound result in [10] that our algorithm is optimal, meaning
that for any k ≥ 0, there exists an Ltl formula that cannot be monitored consistently in
Ltl2k+4, if k is not sufficiently large. Finally, we prove that the value of k is solely a function
of the structure of the Ltl formula.

Related Work. While there has been significant progress in sequential monitoring in the
past decade, there has been less work devoted to distributed monitoring. Lattice-theoretic
centralized and decentralized online predicate detection in distributed systems has been
studied in [7, 15]. This line of work does not address monitoring properties with temporal
requirements. This shortcoming is partially addressed in [17], but for offline monitoring.
In [19], the authors design a method for monitoring safety properties in distributed systems
using the past-time linear temporal logic (PLTL). In such a work, however, the valuation of
some predicates and properties may be overlooked. This is because monitors gain knowledge
about the state of the system by piggybacking on the existing communication among pro-
cesses. That is, if processes rarely communicate, then monitors exchange little information
and, hence, some violations of properties may remain undetected. Runtime verification of
LTL for synchronous distributed systems where processes share a single global clock has
been studied in [5, 8]. In [6], the authors introduce parallel algorithms for runtime verific-
ation of sequential programs. As already mentioned, our work is inspired by the research
line of [10, 12, 11], the first one to study the effects of monitor failures in distributed RV.
Distributed applications that can be runtime monitored with three opinions were studied
in [12], and the number of opinions needed to runtime monitor set agreement was analyzed
in [11]. More generally, [10] proves a tight lower bound on the number of opinions needed
to monitor a property based on its alternation number. The goal of this paper is to give
a formal semantics to the opinions studied in [10, 12, 11], and derive a framework in the
actual formal context of runtime verification.

2 Background: Linear Temporal Logics for RV

Let AP be a set of atomic propositions and Σ = 2AP be the set of all possible states. A
trace is a sequence s0s1 · · · , where si ∈ Σ for every i ≥ 0. We denote by Σ∗ (resp., Σω) the
set of all finite (resp., infinite) traces. Throughout the paper, we denote infinite traces by
the letter σ, and finite traces by the letter α. We denote the empty trace by ε. For a finite
trace α = s0s1 · · · sn, |α| denotes its length, i.e., its number of states n + 1. Finally, by αi,
we mean trace sisi+1 · · · sn of α. We assume that the syntax and semantics of standard Ltl
is common knowledge.

Example. We use the following request/acknowledgement Ltl formula throughout the pa-
per to explain the concepts:

ϕra = G(¬a ∧ ¬r) ∨ [(¬aU r) ∧ Fa]

That is (1) if a request is emitted (i.e., r = true), then it should eventually be acknowledged
(i.e., a = true), and (2) an acknowledgement happens only in response to a request.

CONCUR 2016

16:4 Decentralized Asynchronous Crash-Resilient Runtime Verification

Finite LTL (FLTL). In the context of runtime verification, the semantics of Ltl is not
fully appropriate as it is defined over infinite traces. Finite Ltl (Fltl, see [14]) allows us
to reason about finite traces for verifying properties at run time. The syntax of Fltl is
identical to that of Ltl and the semantics is based on the truth values B2 = {>,⊥}. The
semantics of Fltl for atomic propositions and Boolean operators are identical to those of
Ltl. We now recall the semantics of Fltl for the temporal operators. Let ϕ, ϕ1, and ϕ2
be Ltl formulas, α = s0s1 · · · sn be a non-empty finite trace, and |=F denote satisfaction
in Fltl. We have

[α |=F Xϕ] =
{

[α1 |=F ϕ] if α1 6= ε

⊥ otherwise

and

[α |=F ϕ1 Uϕ2] =
{
> if ∃k ∈ [0, n] : ([αk |=F ϕ2] = >) ∧ (∀` ∈ [0, k), [α` |=F ϕ1] = >)
⊥ otherwise

To illustrate the difference between Ltl and Fltl, let ϕ = Fp and α = s0s1 · · · sn. If
p ∈ si for some i ∈ [0, n], then we have [α |=F ϕ] = >. Otherwise, [α |=F ϕ] = ⊥, and
this holds even if the program under inspection extends α in the future to a state where p
becomes true.

Multi-valued LTLs. As illustrated above, for a finite trace α, Fltl ignores the possible
future extensions of α, when evaluating a formula. 3-valued Ltl (Ltl3, see [4]) evaluates
Ltl formulas for finite traces with an eye on possible future extensions. In Ltl3, the set of
truth values is B3 = {>,⊥, ?}, where ‘>’ (resp., ‘⊥’) denotes that the formula is permanently
satisfied (resp., violated), no matter how the current execution extends, and ‘?’ denotes an
unknown verdict; i.e., there exist an extension that can falsify the formula, and another
extension that can truthify the formula.

Now, let α ∈ Σ∗ be a non-empty finite trace. The truth value of an Ltl3 formula ϕ with
respect to α, denoted by [α |=3 ϕ], is defined as follows:

[α |=3 ϕ] =

> if ∀σ ∈ Σω : ασ |= ϕ

⊥ if ∀σ ∈ Σω : ασ 6|= ϕ

? otherwise.

Rv-Ltl [3], which we will denote in this paper Ltl4, refines the truth value ? into ⊥p
and >p. That is, B4 = {>,>p,⊥p,⊥}. More specifically, evaluation of a formula in Ltl4
agrees with Ltl3 if the verdict is ⊥ or >. Otherwise, (i.e., when the verdict in Ltl3 is ?),
Ltl4 utilizes Fltl to compute a more refined truth value.

Now, let α ∈ Σ∗ be a finite trace. The truth value of an Ltl4 formula ϕ with respect to
α, denoted by [α |=4 ϕ], is defined as follows:

[α |=4 ϕ] =

> if [α |=3 ϕ] = >
⊥ if [α |=3 ϕ] = ⊥
>p if [α |=3 ϕ] =? ∧ [α |=F ϕ] = >
⊥p if [α |=3 ϕ] =? ∧ [α |=F ϕ] = ⊥

The Ltl4 monitor of a formula ϕ is the unique deterministic finite state machineMϕ
4 =

(Σ, Q, q0, δ, λ), where Q is a set of states, q0 is the initial state, δ : Q × Σ → Q is the

B. Bonakdarpour, P. Fraigniaud, S. Rajsbaum, D. A. Rosenblueth, and C. Travers 16:5

>p⊥p

> ⊥

¬a ∧ r

a ∧ ¬r

¬a ∧ ¬r

a ∧ r

¬a ∧ r

a

truetrue

Figure 1 Ltl4 monitor of ϕra.

transition function, and λ : Q→ B4, is a function such that:

λ(δ(q0, α)) = [α |=4 ϕ]

for every finite trace α ∈ Σ∗. In [4], the authors introduce an algorithm that takes as input
an Ltl formula and constructs as output an Ltl4 monitor. For example, Figure 1 shows the
Ltl4 monitor for the request/acknowledgement formula ϕra = G(¬a∧¬r) ∨ [(¬aU r)∧Fa].

3 Distributed Runtime Monitoring and Insufficiency of LTL4

In this section, we present a general computation model for asynchronous distributed wait-
free monitoring. Throughout the rest of the paper, the system under inspection produces
a finite trace α = s0s1 · · · sk, and is inspected with respect to an Ltl formula ϕ by a set
M = {M1,M2, . . . ,Mn} of asynchronous distributed wait-free monitors.

Algorithm sketch: For every j ∈ [0, k − 1], between each sj and sj+1, each monitor, in a
wait-free manner:
1. reads the value of propositions in sj , which may result in a partial observation of sj ;
2. repeatedly communicates its partial observation with other monitors through a single-

writer/multi-reader shared memory;
3. updates its knowledge resulting from the aforementioned communication, and
4. evaluates ϕ and emits a verdict from B4.
Since each monitor observes and maintains only a partial view of sj , and since the monitors
run asynchronously, different read/write interleavings are possible, where each interleaving
may lead to a different collective set of verdicts emitted by the monitors in M for sj . In
Subsection 3.1, we formally introduce our notion of wait-free distributed monitoring.

To ensure consistent distributed monitoring, one has to be able to map a collective set
of verdicts of monitors (for any execution interleaving) to one and only one verdict of a
centralized monitor that has the full view sj . A necessary condition for this mapping is
that, for every two finite traces α, α′ ∈ Σ∗, if [α |=F ϕ] 6= [α′ |=F ϕ], then the monitors
in M should compute different collective sets of verdicts for α and α′, no matter what
their initial partial observation and subsequent read/write interleavings are. We call this
condition global consistency, described in detail in Subsection 3.2.

3.1 Wait-Free Distributed Monitoring
We consider a set M = {M1,M2, . . . ,Mn} of monitors, each observing a system under
inspection. We assume that each monitor inM has only a partial view of the system under
inspection.

CONCUR 2016

16:6 Decentralized Asynchronous Crash-Resilient Runtime Verification

I Definition 1. A partial state is a mapping S from the set AP of atomic propositions to
the set {true, false, \}, where \ denotes an unknown value.

When a state s is reached in a finite trace, each monitor Mi ∈ M, for 1 ≤ i ≤ n, takes
a sample from s, which results in obtaining a partial state. More formally:

I Definition 2. A sample of a state s ∈ Σ by monitor Mi is a partial state Ssi such that,
for all ap ∈ AP, we have: (Ssi (ap) = true → ap ∈ s) ∧ (Ssi (ap) = false → ap 6∈ s).

Definition 2 entails that, in a sample, if the value of an atomic proposition is not unknown,
then the sampled value is consistent with state s. Thus, two monitorsMi andMj cannot take
inconsistent samples. That is, for any state s and samples Ssi , Ssj , and for every ap ∈ AP,
we have: (Ssi (ap) 6= Ssj (ap)) → (Ssi (ap) = \ ∨ Ssj (ap) = \).

We say that a set of monitors cover a state if the collection of partial views of these
monitors covers the value of the all atomic propositions. Formally:

I Definition 3. A set M = {M1,M2, . . . ,Mn} satisfies state coverage for a state s if and
only if for every ap ∈ AP, there exists Mi ∈M such that Ssi (ap) 6= \.

Each monitor Mi inM is a process, and the monitors run in the standard asynchronous
wait-free read/write shared memory model [2]. Each monitor (1) runs at its own speed, that
may vary along with time and (2) may fail by crashing (i.e., halt and never recover). We
assume that up to n− 1 monitors can crash, and thus a monitor never “waits” for another
monitor (since this may cause a livelock). Every monitor that does not fail is required to
output; i.e., to emit a verdict. Hence, a distributed algorithm in this settings consists for
each monitor in a bounded sequence of read/write accesses to the shared memory at the end
of which a verdict is emitted. If the number of possible inputs is bounded, the lengths of
such sequences are globally bounded. We thus assume without loss of generality that each
monitor accesses the shared memory a fixed number of times before emitting a verdict [13].

More specifically, for every state sj in α = s0s1 · · · sk, each monitor Mi maintains a
so-called local snapshot LS i[j] consisting of n registers, one per monitor inM (i.e., the local
snapshot is organized as an array of registers). We denote by LS li[j] the local register of
monitor Mi associated with monitor Ml for state sj . Each register has |AP| elements, one
for each atomic proposition in AP. The monitors in M communicate by means of shared
memory. The structure of the shared memory SM is similar to monitor local snapshots: for
each state sj , SM [j] consists of n atomic registers, one per monitor, and each register has
|AP| elements one for each atomic proposition (i.e, single-writer/multiple-reader (SWMR)
registers). Thus, for state sj , each monitor Mi can read the entire content of SM [j], but
can only write into register SM i[j]1.

The distributed monitoring algorithm. Each monitorMi ∈M, i ∈ [1, n], runs Algorithm 1
that we shall now describe in detail. For any given new state sj , Monitor Mi first initializes
all registers of its local snapshot to \ (cf. Line 1). Then, Mi takes a sample from state
sj (cf. Line 2). Recall from Def. 2 that the value of an atomic proposition in a sample is
either true, false, or \. The set of values in the sample is copied in local register LS ii[j].

1 We assume that each monitor is aware of the change of state of the system under inspection. Thus,
for a state sj , a monitor Mi reads and writes in the associated local and shared memory locations, i.e.,
LSi[j] and SM [j].

B. Bonakdarpour, P. Fraigniaud, S. Rajsbaum, D. A. Rosenblueth, and C. Travers 16:7

Algorithm 1: Behavior of Monitor Mi, for i ∈ [1, n]
Data: Ltl formula ϕ and state sj

Result: a verdict from B4

1 initialize all elements of LS i[j] with \;
2 LS i

i[j]← Ssj

i ; /* take sample from state sj */
3 for some fixed number of rounds do
4 SM i[j]← p(LS i[j]); /* write (i.e., project) current knowledge in shared memory */
5 LS i[j]← SM [j]; /* take a snapshot of the shared memory */
6 emit [x(LS i[0]) . . . x(LS i[j]) |=4 ϕ]; /* evaluate ϕ using extrapolation function */

After sampling, each monitor Mi executes a sequence of write/snapshot actions (cf. Lines 4
and 5) for some a priori known number of times, that we detail next2.

In Line 4, Mi computes its knowledge about each proposition ap, given its content of
LS i[j], and atomically writes it into its associated register SM i[j] in the shared memory.
Function p = (pap)ap∈AP where pap : {true, false, \}n → {true, false, \} is the projection
function defined by

pap(v1, . . . , vn) =

true if ∃i ∈ [1, n] : vi = true
false if ∃i ∈ [1, n] : vi = false
\ otherwise

Given a local snapshot LS i, p(LS i) denotes the partial state obtained by applying pap to n
values of each atomic proposition ap in LS i. Notice that, based on Definition 2, p cannot
receive contradicting values for an atomic proposition.

In Line 5, Mi reads of all the registers in SM [j], and copies them into LS i[j], in a
single atomic step. Finally, after a certain number of iterations, the for-loop ends, and Mi

evaluates ϕ and emits a verdict based on the content of its local snapshots LS i[0] · · ·LS i[j]
(cf. Line 6). To evaluate ϕ on s0s1 · · · sj , monitor Mi needs to compute one and only one
Boolean value for each atomic proposition. To this end, we assume that for each atomic
proposition ap ∈ AP, all monitors are provided with the same extrapolation function xap
allowing them to associate a Boolean value to each atomic proposition, even if its truth value
is unknown at some monitors. Such an extrapolation function must satisfy the following
consistency condition.

I Definition 4. Given ap ∈ AP, a function xap : {true, false, \}n → {true, false} is an ex-
trapolation function if and only if pap(v1, . . . , vn) 6= \ → xap(v1, . . . , vn) = pap(v1, . . . , vn).

Given a local snapshot array LS , x(LS) denotes the state obtained by applying xap to
n values of each atomic proposition ap in LS . Also given a state sj , by JLS i[j]K, we mean
the local snapshot of monitor Mi obtained after termination of the for loop in Algorithm 1.

Example. LetM = {M1,M2} and consider the formula for two requests and acknowledge-
ments:

ϕra2 =
(

G(¬a1 ∧ ¬r1) ∨ [(¬a1 U r1) ∧ Fa1]
)
∧
(

G(¬a2 ∧ ¬r2) ∨ [(¬a2 U r2) ∧ Fa2]
)

2 Algorithm 1 uses snapshot operations for the sake of simplifying the presentation. We emphasize that
atomic snapshots can be implemented using atomic read/write operations in a wait-free manner [1].

CONCUR 2016

16:8 Decentralized Asynchronous Crash-Resilient Runtime Verification

Figure 2 shows different execution interleavings of monitors M1 and M2 when running
Algorithm 1 from states s0 = {r1, a1} and s′0 = {r1, a1, r2}. Based on the order of monitor
write-snapshot actions: M1,M2 (resp., M2,M1) denotes the case where monitor M1 (resp.,
M2) executes a write-snapshot before monitorM2 (resp.,M1) does, andM1||M2 denotes the
case where monitors M1 and M2 execute their write-snapshot actions concurrently. In case
of s0, after executing Line 2 of Algorithm 1, monitor M1’s sample, i.e., the local snapshot
LS1

1[0], consists of Ss0
1 (r1) = true, Ss0

1 (a1) = \, and Ss0
1 (r2) = Ss0

1 (a2) = false. Moreover,
initially, M1 has no knowledge of M2’s sample. Monitor M2’s sample from s0, i.e., the local
snapshot LS2

2[0], consists of Ss0
2 (r1) = Ss0

2 (a1) = true, Ss0
2 (r2) = \, and Ss0

2 (a2) = false
while it initially has no knowledge of M1’s sample. Likewise, for state s′0, Figure 2 shows
different local snapshots byM1 andM2. Given two values v1 and v2, we define (an arbitrary)
extrapolation function as follows:

xap(v1, v2) =
{

true if (v1 = true) ∨ (v2 = true)
false otherwise

where ap ∈ {a1, r1, a2, r2}. Finally, starting from s0, if (1) the for loop of Algorithm 1 ter-
minates after 1 communication round, and (2) the interleaving isM1,M2, then x(JLS2[0]K) =
{r1, a1}, and evaluation of ϕra2 by M2 in Ltl4 results in [x(JLS2[0]K) |=4 ϕra2] = >p.

3.2 Global Consistency
For any state sj , when a set of monitors execute Algorithm 1, different interleavings, and
hence different sets of verdicts, are possible. Global consistency is the property enabling to
map the set of verdicts of the distributed monitors to the verdict of a centralized monitor
that has the full view of states.

I Definition 5. A monitor trace in Ltl4 for α is a sequence m = m0m1 · · ·mk, where,
for every j ∈ [0, k], mj ⊆ B4, and each element of each mj is the verdict of some monitor
Mi ∈M by evaluating [x(JLS i[0]K)x(JLS i[1]K) · · ·x(JLS i[j]K) |=4 ϕ]. For example, Figure 3,
shows a concrete finite trace α and its corresponding monitor trace.

I Definition 6. Let ϕ be an Ltl formula, α be a finite trace in Σ∗, and m be any of its
monitor traces. We say that m satisfies global consistency in Ltl4 iff there exists a function
µ : 2B4 → {>,⊥} such that µ(m|α|−1) = [α |=F ϕ].

We now show that Ltl4 is unable to consistently monitor all Ltl formulas. To see
this, observe that in Figure 2, the shaded collective verdicts m0 and m′0 are both equal to
{⊥p,>p}, but [s0 |=4 ϕ] 6= [s′0 |=4 ϕ]. This clearly does not meet global consistency (see the
proof of Lemma 7 for details).

I Lemma 7. Not all Ltl formulas can be consistently monitored by a 1-round distributed
monitor with traces in Ltl4, even if monitors satisfy state coverage, and even if no monitors
crash during the execution of the monitor.

Lemma 7 holds for an arbitrary number of communication rounds as well. Indeed,
additional rounds of communication will not result into reaching global consistency. This
impossibility result is a direct consequence of the main lower bound in [10], which can be
rephrased as follows.

I Theorem 8. Not all Ltl formulas can be consistently monitored by a distributed monitor
with traces in Ltl4, even if monitors satisfy state coverage, even if no monitors crash during
the execution of the monitor, and even if the monitors perform an arbitrarily large number
of communication rounds.

B. Bonakdarpour, P. Fraigniaud, S. Rajsbaum, D. A. Rosenblueth, and C. Travers 16:9

M1
M1 M2

r1 t \
a1 \ \
r2 f \
a2 f \

M2
M1 M2

r1 \ t
a1 \ t
r2 \ \
a2 \ f

LS1[0]

LS2[0]

samples

M1
M1 M2

r1 t \
a1 \ \
r2 f \
a2 f \

⊥p

M2
M1 M2

r1 t t
a1 \ t
r2 f \
a2 f f

>p

M1
M1 M2
t t
\ t
f \
f f

>p

M2
M1 M2
t t
\ t
f \
f f

>p

M1
M1 M2
t t
\ t
f \
f f

>p

M2
M1 M2
\ t
\ t
\ \
\ f

>p

s0 = {r1, a1}
[s0 |=F ϕra2] = >

write/snapshot
interleavings

M1,M2

M1||M2

M2,M1

LS1[0]

LS2[0]

m0 = {>p,⊥p} m0 = {>p} m0 = {>p}

M1
M1 M2

r1 \ \
a1 \ \
r2 t \
a2 f \

M2
M1 M2

r1 \ t
a1 \ t
r2 \ \
a2 \ f

LS
′

1[0]

LS
′

2[0]

M2,M1

M1||M2

M1,M2

M1
M1 M2

r1 \ t
a1 \ t
r2 t \
a2 f f

⊥p

M2
M1 M2

r1 \ t
a1 \ t
r2 \ \
a2 \ f

>p

M1
M1 M2
\ t
\ t
t \
f f

⊥p

M2
M1 M2
\ t
\ t
t \
f f

⊥p

M1
M1 M2
\ \
\ \
t \
f \

⊥p

M2
M1 M2
\ t
\ t
t \
f f

⊥p

s′
0 = {r1, a1, r2}

[s′
0 |=F ϕra2] = ⊥

LS
′

1[0]

LS
′

2[0]

m′
0 = {>p,⊥p} m′

0 = {⊥p} m′
0 = {⊥p}

Inconsistency

Figure 2 Example: Monitors M1 and M2 monitoring formula ϕra2 from two different states s0

and s′
0.

s0 = {r1, a1}
[s0 |=F ϕra2] = >

JLS1[0]K
M1 M2

r1 t \
a1 \ \
r2 f \
a2 f \

⊥p

JLS2[0]K
M1 M2
t t
\ t
f \
f f

>p

m0 = {⊥p,>p}

s1 = {r1}
[s0s1 |=F ϕra2] = >

JLS1[1]K
M1 M2
t \
\ \
f f
f \

>p

JLS2[1]K
M1 M2
\ \
\ \
\ f
\ \

>p

m1 = {>p}

s2 = {r1, a1, r2}
[s0s1s2 |=F ϕra2] = ⊥

JLS1[2]K
M1 M2
\ t
\ t
t \
f \

⊥p

JLS2[2]K
M1 M2
\ t
\ t
\ \
\ \

>p

m2 = {⊥p,>p}

s3 = {r1, r2, a1, a2}
[s0s1s2s3 |=F ϕra2] = >

JLS1[3]K
M1 M2
t \
t t
\ t
\ t

>

JLS2[3]K
M1 M2
\ \
\ t
\ t
\ t

>

m3 = {>}

α = s0s1s2s3

m = m0m1m2m3

Figure 3 A monitor trace.

In the next section, we revisit the notion of alternation number introduced in [10] in order
to identify formulas that can be monitored by Ltl4, and to design a multi-valued logic to
monitor Ltl formulas that cannot be monitored in Ltl4.

CONCUR 2016

16:10 Decentralized Asynchronous Crash-Resilient Runtime Verification

4 Alternation Number

We now define the notion of alternation number [10] in the context of Ltl. In the next
section, we shall show that the alternation number essentially determines an upper bound
on the number of truth values needed to ensure consistency in distributed monitoring.

Let α ∈ Σ∗ be a finite trace, α′ be the longest proper prefix of α, and ϕ be an Ltl
formula. We set the alternation number of ϕ with respect to α as follows:

AN (ϕ, α) =

0 if |α| = 1
AN (ϕ, α′) + 1 if (|α| ≥ 2) ∧ ([α′ |=F ϕ] 6= [α |=F ϕ])
AN (ϕ, α′) otherwise

The alternation number with respect to infinite traces is defined as follows. Let σ ∈ Σω be an
infinite trace. If for any prefix α of σ, there exists a finite extension α′, such that AN (ϕ, α) <
AN (ϕ, α′), then we set AN (ϕ, σ) =∞. Otherwise, we set AN (ϕ, σ) = AN (ϕ, α) where α is
such that there does not exist a finite extension α′ of α such that AN (ϕ, α) < AN (ϕ, α′).
Finally, the alternation number of ϕ with respect to a (possibly infinite) set A of traces is

AN (ϕ,A) = max
{

AN (ϕ, α) | α ∈ A
}

I Definition 9. The alternation number of an Ltl formula ϕ is AN (ϕ) = AN (ϕ,Σ∗).

Examples. We have AN (G p) = 1 because, in any finite trace α, if the valuation of G p

in Fltl changes from > to ⊥, then, in no extension of α this value can change back to >.
We have AN (G(r → Fa)) = ∞, because any occurrence of r ∧ ¬a evaluates the formula
to ⊥, and a subsequent occurrence of a evaluates the formula to > in Fltl. We have
AN (ϕra) = AN (G(¬a ∧ ¬r) ∨ [(¬aU r) ∧ Fa]) = 2. Indeed, as long as ¬r ∧ ¬a is true
throughout a trace α, we have [α |=F ϕra] = >. When r ∧ ¬a becomes true, the valuation
of ϕra changes to ⊥. If a becomes true subsequently, then ϕra evaluates to >. By the same
type of arguments, we show AN (ϕra2) = 4.

Interestingly, the alternation number of an Ltl formula ϕ can be determined from the
structure of its Ltl4 monitor automaton Mϕ

4 .

I Theorem 10. Let ϕ be an Ltl formula. The alternation number of ϕ, AN (ϕ), is equal
to the length of the longest alternating walk in its Ltl4 monitor Mϕ

4 .

Example. Let ϕra = G(¬a∧¬r) ∨ [(¬aU r) ∧ Fa]). We have AN (ϕra) = 2, and one can
check on Figure 1 that indeed the length of the longest alternating walk in Mϕra

4 is 2.

5 Multi-Valued LTL for Consistent Distributed Monitoring

In this section, we introduce a family of multi-valued logics (called Ltl2k+4), for every k ≥ 0,
and relate it to the notion of alternation number. For every k ≥ 0, the syntax of Ltl2k+4 is
identical to that of Ltl. We present the semantics, monitor synthesis, and proof of global
consistency of Ltl2k+4 in Subsections 5.1, 5.2, and 5.3, respectively.

B. Bonakdarpour, P. Fraigniaud, S. Rajsbaum, D. A. Rosenblueth, and C. Travers 16:11

5.1 Semantics of LTL2k+4

Truth values. The semantics of Ltl2k+4 refines Ltl4. Ltl2k+4 employs the following set
of 2k + 4 truth values:

B2k+4 = {⊥,>,⊥0, . . . ,⊥k,>0, . . . ,>k}.

Intuitively, for i ∈ [0, k], truth value ⊥i means possibly false with degree of certainty i, and
truth value >i means possibly true with degree of certainty i, while > and ⊥ have the same
meaning as their Ltl3 counterparts. Thus, Ltl2k+4 coincides with Ltl4 for k = 0. Consider
a non-empty finite trace α = s0s1 · · · sn in Σ∗. We denote the valuation of a formula ϕ with
respect to α in Ltl2k+4 by [α |=2k+4 ϕ]. Since, for any i ∈ [0, k], ⊥i implies ‘?’ in Ltl3, we
require that [α |=2k+4 ϕ] = ⊥i → [α |=3 ϕ] = ? ∧ [α |=F ϕ] = ⊥. The latter conjunct is
to relate ⊥i with the valuation of α in Fltl. Likewise, we require that, for any i ∈ [0, k]:
[α |=2k+4 ϕ] = >i → [α |=3 ϕ] = ? ∧ [α |=F ϕ] = >. We determine the degree of certainty
of [α |=2k+4 ϕ] inductively according to the judgement rules below, where α′ = s0s1 · · · sn−1.

Observe that the degree of certainty does not change if the Fltl valuation does not
change in α′ and α, or change from ⊥ to >. On the contrary, the degree of certainty does
change if the Fltl valuation changes in α′ and α from > to ⊥, respectively.

[α |=2k+4 ϕ] =

⊥ if [α |=3 ϕ] = ⊥
> if [α |=3 ϕ] = >
⊥0 if |α| = 1 ∧ [α |=3 ϕ] =? ∧ [α |=F ϕ] = ⊥
>0 if |α| = 1 ∧ [α |=3 ϕ] =? ∧ [α |=F ϕ] = >
>i with i ∈ [0, k] if |α| ≥ 2 ∧ [α |=3 ϕ] =? ∧ [α |=F ϕ] = > ∧

[α′ |=2k+4 ϕ] ∈ {>i,⊥i}
⊥i with i ∈ [0, k) if |α| ≥ 2 ∧ [α |=3 ϕ] =? ∧ [α |=F ϕ] = ⊥ ∧

[α′ |=2k+4 ϕ] ∈ {⊥i,>i−1}
⊥k if |α| ≥ 2 ∧ [α |=3 ϕ] =? ∧ [α |=F ϕ] = ⊥ ∧

[α′ |=2k+4 ϕ] ∈ {⊥k,>k,>k−1}

5.2 Monitorability and Monitor Synthesis for LTL2k+4

Pnueli and Zaks [18] characterize an Ltl formula ϕ as monitorable for a finite trace α, if α
can be extended to one that can be evaluated with respect to ϕ at run time. That is, an
Ltl formula ϕ is monitorable in Ltl3 if and only if: ∀α ∈ Σ∗ : ∃α′ ∈ Σ∗ : [αα′ |=3 ϕ] 6= ?.
We stick to the same definition for Ltl2k+4.

I Definition 11. Let ϕ be an Ltl formula. The Ltl2k+4 monitor of ϕ is the unique
deterministic finite state machineMϕ

2k+4 = (Σ, Q, q0, δ, λ), where Q is a set of states, q0 is
the initial state, δ : Q × Σ → Q is the transition function, and λ : Q → B2k+4, such that,
for every non-empty finite trace α ∈ Σ∗, we have [α |=2k+4 ϕ] = λ(δ(q0, α)).

Algorithm 2 constructs Ltl2k+4 monitors. Intuitively, our algorithm creates k+1 copies
of Ltl4 [3] monitors by invoking Function ConstructMonitor, and cascades them in such a way
that incrementing the degree of certainty is implemented as prescribed by our definition of
Ltl2k+4. Observe that for a given value i ∈ [0, k], Function ConstructMonitor renames truth
value >p (respectively, ⊥p) in Ltl4 to >i (respectively, ⊥i) (see Lines 14-18). Cascading

CONCUR 2016

16:12 Decentralized Asynchronous Crash-Resilient Runtime Verification

Algorithm 2: Monitor construction for Ltl2k+4

Input: Alphabet Σ, Ltl formula ϕ, k ≥ 0
Output: Ltl2k+4 monitor Mϕ

2k+4 = (Σ, Q, q0, δ, λ)
1 (Q, q0, δ, λ)← ConstructMonitor(Σ, ϕ, 0);
2 for i← 1 to k do
3 (Q̄, q̄0, δ̄, λ̄)← ConstructMonitor(Σ, ϕ, i);
4 Q← Q ∪ Q̄; δ ← δ ∪ δ̄; λ← λ ∪ λ̄;
5 forall the q ∈ Q, q̄ ∈ Q̄ do
6 if (λ(q) = >i−1 ∧ λ(q̄) = ⊥i) then
7 forall the q′ ∈ Q, a ∈ Σ do
8 if λ(q′) = ⊥i−1 ∧ δ(q, a) = q′ then
9 δ = δ − {(q, a, q′)};

10 δ = δ ∪ {(q, a, q̄)};

11 return Mϕ
2k+4 = (Σ, Q, q0, δ, λ);

12 Function ConstructMonitor(alphabet Σ, Ltl formula ϕ, i ≥ 0)

13 Let Mϕ
4 = (Σ, Q, q0, δ, λ);

14 forall the q ∈ Q do
15 if (λ(q) = >p) then
16 λ(q)← >i;
17 if (λ(q) = ⊥p) then
18 λ(q)← ⊥i;

19 return (Q, q0, δ, λ);

the monitors in Algorithm 2 is as follows. Initially, we generate an Ltl4 monitor for k = 0
(Line 1). Then, in each step i ∈ [1, k] of the for-loop, we generate a new Ltl4 monitor (cf.
Line 3). We ensure incrementing the degree of certainty by removing monitor transitions
(q, a, q′), where q is annotated by >i−1 and q′ is annotated by ⊥i−1, and adding transitions
(q, a, q̄), where q̄ is annotated by ⊥i (Lines 5-10).

I Theorem 12. Let ϕ be an Ltl formula, and let Mϕ
2k+4 = (Σ, Q, q0, δ, λ) be its Ltl2k+4

monitor such as constructed by Algorithm 2. Then, for any non-empty finite trace α ∈ Σ∗,
we have λ(δ(q0, α)) = [α |=2k+4 ϕ].

5.3 Monitoring Algorithm and Global Consistency in LTL2k+4

Monitoring Algorithm Let α = s0s1 · · · sk be a finite trace in Σ∗. As discussed in Section 3,
for any state sj , where j ∈ [0, k], each monitor runs Algorithm 1 and emits a verdict. In
order to employ Ltl2k+4 and ensure consistency, each monitor has to compute the highest
possible degree of certainty by considering all possible monitor communication interleavings
that result in state sj . Formally, the set of all interleavings that reach a state s ∈ Σ is the
set of sequences of partial states defined as follows:

Is =
{
S0S1 · · · Sl | (∀ap ∈ AP : S0(ap) = \) ∧ (Sl = s)∧

[∀i ∈ [0, l) : ∀ap ∈ AP : (Si(ap) 6= \) → (∀m ∈ (i, l] : Si(ap) = Sm(ap))]
}

B. Bonakdarpour, P. Fraigniaud, S. Rajsbaum, D. A. Rosenblueth, and C. Travers 16:13

M1
M1 M2

r1 t \
a1 \ \
r2 f \
a2 f \

M2
M1 M2

r1 \ t
a1 \ t
r2 \ \
a2 \ f

LS1[0]

LS2[0]

samples

M1
M1 M2

r1 t \
a1 \ \
r2 f \
a2 f \

⊥1

M2
M1 M2

r1 t t
a1 \ t
r2 f \
a2 f f

>1

M1
M1 M2
t t
\ t
f \
f f

>1

M2
M1 M2
t t
\ t
f \
f f

>1

M1
M1 M2
t t
\ t
f \
f f

>1

M2
M1 M2
\ t
\ t
\ \
\ f

>1

s0 = {r1, a1}
[s0 |=F ϕra2] = >

write/snapshot
interleavings

M1,M2

M1||M2

M2,M1

LS1[0]

LS2[0]

m0 = {>1,⊥1} m0 = {>1} m0 = {>1}

M1
M1 M2

r1 \ \
a1 \ \
r2 t \
a2 f \

M2
M1 M2

r1 \ t
a1 \ t
r2 \ \
a2 \ f

LS
′

1[0]

LS
′

2[0]

M2,M1

M1||M2

M1,M2

M1
M1 M2

r1 \ t
a1 \ t
r2 t \
a2 f f

⊥2

M2
M1 M2

r1 \ t
a1 \ t
r2 \ \
a2 \ f

>1

M1
M1 M2
\ t
\ t
t \
f f

⊥2

M2
M1 M2
\ t
\ t
t \
f f

⊥2

M1
M1 M2
\ \
\ \
t \
f \

⊥1

M2
M1 M2
\ t
\ t
t \
f f

⊥2

s′
0 = {r1, a1, r2}

[s′
0 |=F ϕra2] = ⊥

LS
′

1[0]

LS
′

2[0]

m′
0 = {>1,⊥2} m′

0 = {⊥2} m′
0 = {⊥1,⊥2}

Consistency

Figure 4 Global consistency of Ltl2k+4 monitors M1 and M2 for formula ϕra2 , where k = 2.

Now, for state sj in α and formula ϕ, a monitor Mi computes AN (ϕ, Ix(JLSi[j]K)). This
can be done by running each trace in Ix(JLSi[j]K) on the Ltl2k+4 monitor of ϕ. This is indeed
the key idea to ensure global consistency.

I Observation 13. For any state s ∈ Σ and Ltl formula ϕ, we have AN (ϕ, Is) ≤ AN (ϕ).

Example. Figure 4 shows how monitorsM1 andM2 evaluate formula ϕra2 in Ltl2k+4 with
k = 2. Observe that the two sets of verdicts that were not distinguishable in Figure 2 (i.e.,
m0 = m′0 = {⊥p,>p}) are now distinguishable (i.e., m0 = {⊥1,>1}, while m′0 = {>1,⊥2}),
as we are now using 8 truth values instead of just 4. The ability of monitoring a formula in
Ltl2k+4 for a given k ≥ 0 is strongly related to the alternation number of the formula.

Main Results. The following identifies an upper-bound on the number of truth values
needed to monitor any Ltl formula.

I Theorem 14. An Ltl formula ϕ can consistently be monitored by a wait-free distributed
monitor in Ltl2k+4, if

k ≥ d12(min(AN (ϕ), n)− 1)e

where n is the number of monitors.

CONCUR 2016

16:14 Decentralized Asynchronous Crash-Resilient Runtime Verification

An immediate consequence of Theorem 14 is for computing µ (Definition 6) for Ltl2k+4.
For a set m ∈ B2k+4, one can compute µ(m) by identifying the supremum of m, for the total
order ⊥0 < >0 < ⊥1 < >1 < . . . < ⊥k < >k. It is straightforward to observe that such a µ
results in global consistency for Ltl2k+4. Also, notice that Theorem 14 is best possible. It
matches the following generalization of Theorem 8. The proof is similar to the lower bound
of [10].

I Theorem 15. For each k ≥ 0, there is an Ltl formula ϕ that cannot be consistently
monitored by a wait-free distributed monitor in Ltl2k+4, if

k < d12(min(AN (ϕ), n)− 1)e

where n is the number of monitors.

6 Conclusion and Future Work

In this paper, we proposed a family of multi-valued logics Ltl2k+4, each one with 2k + 4
truth values, for fault-tolerant distributed RV, refining existing finite Ltl semantics. We
presented an idealized setting where a set of unreliable monitors emit consistent verdicts in
Ltl2k+4 about the correctness of the system under inspection, if k is sufficiently large.

We note that wait-free computing is a powerful and simple abstraction to model and
reason about distributed algorithms. All results in this paper can theoretically be trans-
formed to more practical refinements such as message passing frameworks. Of course, further
research is needed to develop such transformations. From a more practical perspective, it
would be interesting to relax the timing model enabling monitors to observe, communicate,
and emit verdicts between any two global states; to study frameworks for message passing
systems, and to address more severe, even Byzantine failures.

References
1 Yehuda Afek, Hagit Attiya, Danny Dolev, Eli Gafni, Michael Merritt, and Nir Shavit.

Atomic snapshots of shared memory. Journal of the ACM, 40(4):873–890, 1993.
2 Hagit Attiya and Jennifer Welch. Distributed Computing: Fundamentals, Simulations, and

Advanced Topics. Wiley, 2004.
3 A. Bauer, M. Leucker, and C. Schallhart. Comparing LTL Semantics for Runtime Verific-

ation. Journal of Logic and Computation, 20(3):651–674, 2010.
4 A. Bauer, M. Leucker, and C. Schallhart. Runtime Verification for LTL and TLTL. ACM

Transactions on Software Engineering and Methodology (TOSEM), 20(4):14, 2011.
5 A. K. Bauer and Y. Falcone. Decentralised LTL monitoring. In Proceedings of the 18th

International Symposium on Formal Methods (FM), pages 85–100, 2012.
6 S. Berkovich, B. Bonakdarpour, and S. Fischmeister. GPU-based runtime verification. In

Proceedings of the 27th IEEE International Parallel and Distributed Processing Symposium
(IPDPS), pages 1025–1036, 2013.

7 H. Chauhan, V. K. Garg, A. Natarajan, and N. Mittal. A distributed abstraction algorithm
for online predicate detection. In Proceedings of the 32nd IEEE Symposium on Reliable
Distributed Systems (SRDS), pages 101–110, 2013.

8 C. Colombo and Y. Falcone. Organising LTL monitors over distributed systems with a
global clock. In Proceedings of the 14th International Conference on Runtime Verification
(RV), pages 140–155, 2014.

9 M. J. Fischer, N. .A. Lynch, and M. S. Peterson. Impossibility of distributed consensus
with one faulty processor. Journal of the ACM, 32(2):373–382, 1985.

B. Bonakdarpour, P. Fraigniaud, S. Rajsbaum, D. A. Rosenblueth, and C. Travers 16:15

10 P. Fraigniaud, S. Rajsbaum, and C. Travers. On the number of opinions needed for fault-
tolerant run-time monitoring in distributed systems. In Proceedings of the 5th International
Conference on Runtime Verification (RV), pages 92–107, 2014.

11 Pierre Fraigniaud, Sergio Rajsbaum, Matthieu Roy, and Corentin Travers. The opinion
number of set-agreement. In Proceedings of the 18th International Conference on Principles
of Distributed Systems (OPODIS), pages 155–170, 2014.

12 Pierre Fraigniaud, Sergio Rajsbaum, and Corentin Travers. Locality and checkability in
wait-free computing. Distributed Computing, 26(4):223–242, 2013. URL: http://dx.doi.
org/10.1007/s00446-013-0188-x, doi:10.1007/s00446-013-0188-x.

13 M.H. Herlihy, D. Kozlov, and S. Rajsbaum. Distributed Computing Through Combinatorial
Topology. Morgan Kaufmann-Elsevier, 2013.

14 Z. Manna and A. Pnueli. Temporal verification of reactive systems - safety. Springer, 1995.
15 N. Mittal and V. K. Garg. Techniques and applications of computation slicing. Distributed

Computing, 17(3):251–277, 2005.
16 M. Mostafa and B. Bonakdarpour. Decentralized runtime verification of LTL specifications

in distributed systems. In Proceedings of the 29th International Parallel and Distributed
Processing Symposium (IPDPS), pages 494–503, 2015.

17 V. A. Ogale and V. K. Garg. Detecting temporal logic predicates on distributed com-
putations. In Proceedings of the 21st International Symposium on Distributed Computing
(DISC), pages 420–434, 2007.

18 A. Pnueli and A. Zaks. PSL Model Checking and Run-Time Verification via Testers. In
14th Int. Symp. on Formal Methods (FM), pages 573–586, 2006.

19 K. Sen, A. Vardhan, G. Agha, and G.Rosu. Efficient decentralized monitoring of safety
in distributed systems. In Proceedings of the 26th International Conference on Software
Engineering (ICSE), pages 418–427, 2004.

CONCUR 2016

http://dx.doi.org/10.1007/s00446-013-0188-x
http://dx.doi.org/10.1007/s00446-013-0188-x
http://dx.doi.org/10.1007/s00446-013-0188-x

Lazy Reachability Analysis in Distributed Systems
Loïg Jezequel1 and Didier Lime2

1 Université de Nantes, IRCCyN UMR CNRS 6597, France
Loig.Jezequel@irccyn.ec-nantes.fr

2 École Centrale de Nantes, IRCCyN UMR CNRS 6597, France
Didier.Lime@ec-nantes.fr

Abstract
We address the problem of reachability in distributed systems, modelled as networks of finite
automata and propose and prove a new algorithm to solve it efficiently in many cases. This
algorithm allows to decompose the reachability objective among the components, and proceeds
by constructing partial products by lazily adding new components when required. It thus con-
structs more and more precise over-approximations of the complete product. This permits early
termination in many cases, in particular when the objective is not reachable, which often is an
unfavorable case in reachability analysis. We have implemented this algorithm in a first prototype
and provide some very encouraging experimental results.

1998 ACM Subject Classification D.2.4 Software/Program Verification

Keywords and phrases Reachability analysis, compositional verification, automata

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2016.17

1 Introduction

As distributed systems become more and more pervasive, the need for the verification of
their correctness increases accordingly. The problem of verifying that some particular state
of the system is reachable is a cornerstone in this endeavour. Yet even this simple problem is
challenging in a distributed context, due to the exponential growth of the state-space of the
system with the number of components, a problem often referred to as “state explosion”.

To alleviate this issue several approaches have been proposed in the last two decades. In
particular, partial order techniques, which allow to explore only part of the state-space while
preserving completeness, have proved to be an efficient approach [12] and are implemented
in some state-of-the-art tools, including LoLA [15]. Another technique called partial model-
checking has been proposed in [1], which consists in incrementally quotienting temporal
logic formulas by incorporating the behaviours of individual processes into that formula.
This leads to a compositional verification scheme that has been recently extended and
implemented in the PMC tool on top of the CADP toolbox [14]. This idea to incrementally
take into account components of distributed systems is also present in works on compositional
minimization [9, 6] and modular model checking [10, 7]. Recently, the IC3 algorithm [3]
has been proposed to address the safety / reachability issue, with very promising results.
This algorithm incrementally generates more and more precise over-approximations of the
reachability relation, by computing stronger and stronger inductive assertions using SAT
solving [3] or SMT solving [4]. Similar ideas of incremental refinements were also successfully
used in AI planning [2, 11].

A common high-level scheme in the partial model-checking approach, the IC3 approach,
and the hierarchical planning approach is to incrementally compute more and more precise
approximate objects until sufficient precision permits to conclude. We propose a new approach

© Loïg Jezequel and Didier Lime;
licensed under Creative Commons License CC-BY

27th International Conference on Concurrency Theory (CONCUR 2016).
Editors: Josée Desharnais and Radha Jagadeesan; Article No. 17; pp. 17:1–17:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.17
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

17:2 Lazy Reachability Analysis in Distributed Systems

also based on this scheme. Contrarily to IC3, we deliberately use the classical tools of explicit
state space exploration in finite automata-based models, with the motivation of ultimately
combining our technique with some of the most successful improvements of these tools, like
partial-order reduction techniques, and with well-known extensions to more expressive models
like timed automata. In contrast to the partial model-checking approach, we take advantage
of the simplicity of the reachability property we study, and adopt a lower-level approach, by
focusing on the individual components of the system and their fine interactions.

Our contribution in this paper is therefore the following: first an algorithm, which projects
a reachability property on the individual components, then lazily adds components to the
projections and merges them together as interactions that are meaningful to the reachability
property are discovered. We provide full proofs for completeness, soundness, and termination.
Second, we report on a prototype implementation that permits a first evaluation of our
algorithm. We have compared these performances with LoLA.

The paper is organized as follows: in Section 2 we give the basic definitions upon which
our algorithm is built. In Section 3, we describe our algorithm and prove it. In Section 4 we
report on experimental results, and we conclude in Section 5.

2 Preliminary definitions

2.1 LTSs and their products
We focus on labelled transition systems, synchronized on common actions, as models.

I Definition 1. A labelled transition system (LTS) is a tuple L = (S, ι, T,Σ, λ) where S is a
non-empty finite set of states, ι ∈ S is an initial state, Σ is an alphabet of transition labels,
T ⊆ S × S is a finite set of transitions, and λ : T → Σ is a transition labeling function.

By a slight abuse of notations, we also denote by Σ(L) the set of labels of L and by λ(L)
the set of labels effectively associated to at least one transition in L.

I Definition 2. In such an LTS, a path is a sequence of transitions π = t1 . . . tn such that:
∀1 ≤ k ≤ n, tk = (sk, sk+1) ∈ T and s1 = ι. In this case we say that π reaches sn+1. A state
s is said to be reachable if there exists a path that reaches s.

I Definition 3. We say that two LTSs L1 = (S1, ι1, T1,Σ1, λ1) and L2 = (S2, ι2, T2,Σ2, λ2)
are isomorphic if and only if there exists two bijections fS : S1 → S2 and fT : T1 → T2 so
that: fS(ι1) = ι2, and ∀s1, s

′
1 ∈ S1, (s1, s

′
1) ∈ T1 iff (fS(s1), fS(s′1)) ∈ T2, and λ1((s1, s

′
1)) =

λ2((fS(s1), fS(s′1))).

Our systems are built as parallel compositions of multiple LTSs.

I Definition 4. Let L1, . . . ,Ln be LTSs such that ∀1 ≤ i ≤ n,Li = (Si, ιi, Ti,Σi, λi). The
compound system L1 ‖ . . . ‖ Ln is the LTS (S, ι, T,Σ, λ) such that S = S1 × · · · × Sn,
ι = (ι1, . . . , ιn), Σ = Σ1 ∪ · · · ∪ Σn, and t = ((s1, . . . , sn), (s′1, . . . , s′n)) ∈ T with λ(t) = σ if
and only if ∀1 ≤ i ≤ n if σ ∈ Σi then ti = (si, s

′
i) ∈ Ti and λi(ti) = σ else si = s′i.

Remark that (L1 ‖ L2) ‖ L3, L1 ‖ (L2 ‖ L3), and L1 ‖ L2 ‖ L3 are isomorphic (they are
identical up to renaming of states and transitions). It is thus possible to compute compound
systems step by step, by adding LTSs to the composition one after the other.

I Definition 5. Lid = (Sid, ιid, Tid,Σid, λid) with Sid = {id}, ιid = id, Tid = ∅, Σid = ∅, and
λid is the unique function from ∅ to ∅.

L. Jezequel and D. Lime 17:3

Remark that Lid can be considered as the neutral element for the composition of LTSs:
∀L,L ‖ Lid and L are isomorphic. Also remark that for any LTS L, there is an LTS
containing only the initial state of L which is isomorphic to Lid. We denote it by id(L).

2.2 Partial products and reachability of partial states
We define a notion of extension of LTSs, using a partial order relation.

I Definition 6. An LTS L = (S, ι, T,Σ, λ) extends an LTS L′, noted L′ v L, if and only
if L′ is isomorphic to some LTS (S′, ι′, T ′,Σ′, λ′) with S′ ⊆ S, T ′ ⊆ T, Σ′ ⊆ Σ, ι = ι′, and
λ′ = λ|T ′ . If, moreover, S′ 6= S, or T ′ 6= T, or Σ′ 6= Σ, L is said to strictly extend L′, noted
L′ @ L.

We define ini(L) as the LTS containing only the initial state of L but, contrarily to id(L),
with Σ(ini(L)) = Σ(L). Note that we clearly have ini(L) v L.

Given a set of LTSs, we now define partial products as products in which some parts of
the LTSs, or possibly some LTSs altogether, are not used:

I Definition 7. An LTS L′ is a partial product of a compound system L = L1 ‖ · · · ‖ Ln if
there exists m LTSs L′k1

, . . . ,L′km
(with {kj : j ∈ [1..m]} ⊆ [1..n]) such that L′ is isomorphic

to L′k1
‖ · · · ‖ L′km

and ∀j ∈ [1..m],L′kj
v Lkj .

Note that in the algorithm we propose in Section 3, we will actually always have, by
construction, ini(Lkj

) v L′kj
v Lkj

, which implies that all three LTSs have the same alphabet.
We focus on solving particular reachability problems where one is interested in reaching

partial states.

I Definition 8. In a compound system L1 ‖ . . . ‖ Ln we call any element from S1× · · · ×Sn

a global state. A partial state is an element from (S1 ∪ {?})× · · · × (Sn ∪ {?}) \ {(?, . . . , ?)}.
We say that a partial state (s′1, . . . , s′n) concretises a partial state (s1, . . . , sn) if ∀i, si 6= ?

implies s′i = si.

A partial state is therefore in some sense the specification of the set of global states that
concretise it, i.e., that share the same values on dimensions not equal to ? in the partial
state. We use partial states to specify our reachability objectives.

I Definition 9. In a compound system L, a partial state is said reachable, if there exists a
reachable global state that concretises it. Given a set R of partial states, we call reachability
problem (RPRL) the problem of deciding whether or not some element from R is reachable.

Given a reachability problem RPRL we denote by Lg the set of indices of the LTSs
involved in R: for each i ∈ Lg, there exists at least one partial state in which the element
corresponding to Li is not ?. In a reachability problem, if there exists a reachable global
state in L that concretises an element from R, we write L → R. If this is not the case, we
write L 9 R.

We conclude this section by establishing two basic results on partial products of LTSs
that will be instrumental in proving that our approach is sound and complete.

Lemma 10 formalizes the fact that, due to the synchronization by shared labels mechanism,
removing an LTS from a product produces an over-approximation of the reachability property
projected on the remaining LTSs.

CONCUR 2016

17:4 Lazy Reachability Analysis in Distributed Systems

I Lemma 10. Let L = L1 ‖ · · · ‖ Ln be a compound system in which some global state
s = (s1, . . . , sn) is reachable. Let L′ be the partial product of L obtained by removing Li for
some i. Similarly, let s′ be the state of L′ obtained from s by removing the ith component si.

Then s′ is reachable in L′.

Lemma 11 works in the opposite direction to Lemma 10: If we can find a subset of the
LTSs, in which we can reach some given state, and that does not make use of any label
appearing in an LTS not in this subset – condition (i) –, then we can add the missing LTSs
to get the full product, while still ensuring the reachability of our given state. The result we
prove is actually a bit stronger: one can preserve the reachability found in a partial product
of our subset of LTSs, provided that if some label appears on a transition in the partial
product, then it is present in the alphabets of all the components of the partial product that
can be extended into an LTS that uses this label – condition (ii). Condition (i) ensures that
we do not add any synchronization constraint to existing transitions when adding new LTS,
while condition (ii) does the same but when extending the LTSs already in the subset.

I Lemma 11. Let L = L1 ‖ · · · ‖ Ln be a compound system. Let H ⊆ [1..n]. Suppose to
simplify the writing that H = [1..h] and let C = C1 ‖ · · · ‖ Ch be a partial product of (‖ i∈HLi)
such that: (i) for all i 6∈ H, Σ(Li) ∩ λ(C) = ∅, and (ii) for all i ∈ H, Σ(Li) ∩ λ(C) ⊆ Σ(Ci).

If some global state s = (s1, . . . , sn) is reachable in C with path π then the global state
s∗ = (s∗1, . . . , s∗n) defined by s∗i = si if i ∈ H and s∗i is an arbitrary state of Li otherwise is
reachable in L with the same path from the state s0 = (s0

1, . . . , s
0
n) such that s0

i is the initial
state of Li if i ∈ H and s0

i = s∗i otherwise.

3 The Lazy Reachability Analysis Algorithm

In the following subsections, we present our algorithm. It makes use of the classical abstract
list data-structure, with the usual operations: hd(), tl(), len() give respectively the head, tail,
and length of a list. Operator : is the list constructor (prepend) and ++ is concatenation.
rev() reverses a list. [] is the empty list and L[i] is the ith element of list L.

Algorithm 1 is the main function solving our reachability problems. It starts from a
partition of the LTSs involved in the reachability objective. The idea here is to decompose
this objective and verify it separately on each involved component with the hope that they
do not interact. List Ls has (initially) one element per part of the initial partition. Each of
those elements is a list of tuples (A,C, I, J,K), described in details in the next subsection,
that represent more and more concrete partial products (in the sense that they include more
and more LTSs) of the system built around the LTSs in each partition, as we go towards the
end of the list. In our algorithm, this list is walked along using the functional programming
idiom of Huet’s Zipper by decomposing it in Left, the current element, and Right, but it
could as well be represented as a big array with a current index, etc.

We start with partial products consisting of only the initial states of each involved LTSs.
The algorithm then performs two main tasks: concretisation and merging.

3.1 Concretisation
Concretisation consists in extending the partial products in two different directions: by
computing more and more states and transitions for a given number of LTSs, and by adding
LTSs. The (indices of the) LTSs currently used in the products are in the set J , and those
being added are in set K. Set I serves as a memory of the initial partition of LTSs involved

L. Jezequel and D. Lime 17:5

Algorithm 1 Algorithm solving RPRL (Lg: indices of LTSs involved in R)

1: function Solve(L,R)
2: choose a partition {I1, . . . , Ip} of Lg

3: ∀k ∈ [1..p], let IDk =‖ i∈Ik
id(Li) and INIk =‖ i∈Ik

ini(Li).
4: Ls← [([], (ID1, INI1, I1, ∅, I1), []), . . . , ([], (IDp, INIp, Ip, ∅, Ip), [])]
5: Complete ← False
6: Consistent ← False
7: while not Complete or not Consistent do
8: Complete ← ∀k, Ls[k] is complete
9: if not Complete then
10: optional unless Consistent
11: mayHaveSol ← Concretise(Ls)
12: if not mayHaveSol then return False
13: end if
14: end option
15: end if
16: Consistent ← Ls is consistent
17: if not Consistent then
18: optional unless Complete
19: Merge(Ls)
20: end option
21: end if
22: end while
23: return True
24: end function

in the objective. LTS C is the current partial product we have computed and A represents
what we had computed at the previous level (before we added the LTSs in K).

The goal of the Concretise() function (Algorithm 2) is to find a partial product reaching
the objective and using only LTSs that are either in J or in K. This is what we call complete
and is formalized as follows:

I Definition 12 (Completeness). The tuple (Left, (A,C, I, J,K),Right) is complete if ∃C∗ v C
such that C∗ → R|J∪K and {i /∈ J ∪K : Σ(Li) ∩ λ(C∗) 6= ∅} = ∅.

To ensure completeness, we have to add LTSs that share actions with our current partial
product: this is the role of the case in line 10.

LTS A serves as a limit as to what we are allowed to compute at a given level. If we need
to compute more, because we cannot find the (partial) objective, we have to backtrack to the
previous level to increase this limit (line 19). If we cannot backtrack (line 16), then we have
explored the whole product only missing some components, so we have an over-approximation,
which implies that the property is false. If we successfully backtrack, and when we have
extended again our partial product at that “lower” level, we can go forth again using the
memory of what we had already computed (line 7).

Note the use of the Forget() function in line 19 that permits to “forget” part of that
memory when we backtrack. This is useful if we are able to determine that we had made bad
moves: for instance in the choice of the LTSs to add to the product. Many implementations
of this function are possible provided they have the following property:

CONCUR 2016

17:6 Lazy Reachability Analysis in Distributed Systems

Algorithm 2 Auxiliary function Concretise() for Algorithm 1
1: function Concretise(Ls)
2: choose k ∈ [0..len(Ls)− 1] such that Ls[k] is not complete
3: (Left, (A,C, I, J,K),Right)← Ls[k]
4: if there exists C∗ s.t. C @ C∗ v (‖ i∈KLi) ‖ A and C∗ → R|J∪K then
5: choose such a C∗

6: N ← {i /∈ J ∪K : Σ(Li) ∩ λ(C∗) 6= ∅}
7: case Right 6= []
8: (_,C′,_, J ′,K ′)← hd(Right)
9: Ls[k]← ((A,C∗, I, J,K) : Left, (C∗,C′, I, J ′,K ′), tl(Right))

10: case Right = [] and N 6= ∅
11: choose ∅ ⊂ K ′ ⊆ N
12: Ls[k]← ((A,C∗, I, J,K) : Left, (C∗, ‖i∈J∪K∪K′ ini(Li), I, J ∪K,K ′), [])
13: case Right = [] and N = ∅
14: Ls[k]← (Left, (A,C∗, I, J,K), [])
15: else
16: if Left = [] then return False
17: else
18: Right′ ← Forget((A,C, I, J,K) : Right)
19: Ls[k]← (tl(Left), hd(Left),Right′)
20: end if
21: end if
22: return True
23: end function

I Property 13 (Good Forget() implementation). Let Lt be a list [(A1,C1, I1, J1,K1), . . . ,
(An,Cn, In, Jn,Kn)] of tuples. Then Forget(Lt) must be a list [(A′1,C

′
1, I
′
1, J
′
1,K

′
1), . . . ,

(A′m,C
′
m, I

′
m, J

′
m,K

′
m)] of tuples with 0 ≤ m ≤ n and f : [1..m] → [1..n] a non-decreasing

function, such that:
A′1 = A1, J ′1 = J1,
∀j ∈ [1..m],
I ′j = I1 (remark that, by construction, I1 = I2 = · · · = In),
∅ ⊂ K ′j ⊆ (Jf(j) ∪Kf(j)) \ J ′j
C′j v Cf(j) and ‖ k∈J′

j
∪K′

j
ini(Lk) v C′j v (‖k∈K′

j
Lk) ‖ A′j

∀j ∈ [2..m],
A′j = C′j−1
J ′j = J ′j−1 ∪K ′j−1

In some sens, a good Forget() implementation can be seen as a restriction of Lt to a
subset of its elements. Each of these elements being itself restricted to a less concrete tuple
(by taking subsets of C, J , and/or K).

The two most obvious implementations are either to never forget anything (then Forget()
is just the identity function) or to always forget everything (that is, take m = 0 in the above
property – then Forget() always returns the empty list). It is clear that these two choices
satisfy Property 13.

Finally, in any element of Ls, we have a list of partial products that concern more and
more LTSs. To sum up, a call to Concretise() at least adds new LTSs to the current tuple
(A,C, I, J,K), or adds paths in C.

L. Jezequel and D. Lime 17:7

3.2 Merging
Merging occurs when two parts of a partition concretised independently use common LTSs.
We have to ensure that these common LTSs behave consistently and we therefore merge the
two partitions by computing the product of the two partial products. This use of common
LTSs in different partitions we call inconsistency and it is formals as follows:

I Definition 14 (Consistency). The list of triples Ls = [(Left1, (_,_,_, J1,K1),Right1), . . . ,
(Leftn, (_,_,_, Jn,Kn),Rightn)] is consistent if ∀i 6= j ∈ [1..n], (Ji ∪Ki) ∩ (Jj ∪Kj) = ∅

Merging itself is done by the Merge() function. As for the Forget() function, many
implementations are possible provided they satisfy Property 15:

I Property 15 (Good Merge() implementation). Let Ls be a non-consistent list of triples
[T1, . . . , Tn]. For any triple Tk, note Tk = (Leftk, (Ak,Ck, Ik, Jk,Kk),Rightk) and Full(Tk) =
rev(Leftk) ++[(Ak,Ck, Ik, Jk,Kk)] ++Rightk. Then Merge(Ls) is any list [T1, . . . , Ti−1,

Ti+1, . . . , Tj−1, Tj+1, . . . , Tn, T] of triples such that:
(Ji ∪Ki) ∩ (Jj ∪Kj) 6= ∅ (such i, j always exist because Ls is not consistent)
There exist two non-decreasing functions fi : [1..m] → [1..ni] and fj : [1..m] →
[1..nj] so that Full(T) = [(A′′1 ,C

′′
1 , I
′′
1 , J

′′
1 ,K

′′
1), . . . , (A′′m,C

′′
m, I

′′
m, J

′′
m,K

′′
m)], Full(Ti) =

[(A1,C1, I1, J1,K1), . . . , (Ani
,Cni

, Ini
, Jni

,Kni
)], and Full(Tj) = [(A′1,C

′
1, I
′
1, J
′
1,K

′
1), . . . ,

(A′nj
,C′nj

, I ′nj
, J ′nj

,K ′nj
)] with m ≤ ni + nj verify:

A′′1 = A1 ‖ A′1, J ′′1 = J1 ∪ J ′1 = ∅ (remark that, by construction, J1 = J ′1 = ∅),
I1 ∪ I ′1 ⊆ K ′′1 ⊆ Jfi(1) ∪Kfi(1) ∪ J ′fj(1) ∪K

′
fj(1)

∀k ∈ [1..m],
∗ I ′′k = I1 ∪ I ′1 (remark that, by construction, I1 = · · · = Ini

and I ′1 = · · · = I ′nj
),

∗ C′′k v Cfi(k) ‖ Cfj(k) and ‖ `∈J′′
k
∪K′′

k
ini(L`) v C′′k v (‖`∈K′′

k
L`) ‖ A′′k

∀k ∈ [2..m],
∗ ∅ ⊂ K ′′k ⊆ (Jfi(k) ∪Kfi(k) ∪ J ′fj(k) ∪K

′
fj(k)) \ J ′′k

∗ A′′k = C′′k−1
∗ J ′′k = J ′′k−1 ∪K ′′k−1

Intuitively, a good Merge() implementation should select two triples breaking the con-
sistency of Ls and merge them. These two triples are in fact two histories of concretisations
(i.e. the result of a sequence of calls to Concretise()). Merging them basically consists
in interleaving these two histories and then apply a Forget()-like construct on this inter-
leaving. This produces an history that could have been produced by a sequence of calls to
Concretise() starting from ([], (‖ i∈I1∪I′

1
id(Li), ‖ i∈I1∪I′

1
ini(Li), I1 ∪ I ′1, ∅, I1 ∪ I ′1), []), i.e

if I1 ∪ I ′1 had been an element of the initial partition chosen in Algorithm 1.
At the lowest level of implementation, the basic merging operation of two tuples

h1 = (A1,C1, I1, J1,K1) and h2 = (A2,C2, I2, J2,K2) gives the tuple (A1 ‖ A2,C1 ‖
C2, I1 ∪ I2, J1 ∪ J2, (K1 \ J2) ∪ (K2 \ J1)). Let us denote it by h1 ∗ h2. Building on that,
a minimal implementation satisfying Property 15 would be to select i and j such that
Ls[i] = (Lefti, hi,Righti), with hi = (Ai,Ci, Ii, Ji,Ki) and Ls[j] = (Leftj , hj ,Rightj), with
hj = (Aj ,Cj , Ij , Jj ,Kj), and (Ji ∪Ki) ∩ (Jj ∪Kj) 6= ∅, remove them from Ls and replace
them by the singleton list ([], hd(Lefti) ∗ hd(Leftj), []). Another relevant choice, which is
easy to compute and also trivially satisfies Property 15, would be to also keep the current
elements by replacing both Ls[i] and Ls[j] by ([hd(Lefti) ∗ hd(Leftj)], hi ∗ hj , []).

When we have found a list of complete partial products that is consistent then we know
that our objective is reachable.

CONCUR 2016

17:8 Lazy Reachability Analysis in Distributed Systems

L1

s0 s1

s2

s3α

a

β

b
δ s4

L2

s6s5
α

β
γ s7

L3

s9s8

γ δ

γ

L4

s10 s11

γ

γ

Figure 1 A compound system with four LTSs (L1 to L4).

C∗
1

s0 s1 s3α β

C∗∗
1

s0 s1

s2

s3α

a

β

b

C∗
12

(s0, s4) (s1, s4)

(s2, s4)

(s3, s6)

a

β
b

C∗
3

s9

s7

δ

C∗∗
1 ‖ C∗

3

(s0, s7) (s1, s7)

(s2, s7)

(s3, s7)

α

a

β
b

C∗
123

(s0, s4, s7) (s1, s4, s7)

(s2, s4, s7)

(s3, s6, s7) (s3, s6, s9)

a

β
b

δ

Figure 2 Some LTSs appearing during an execution of our algorithm on the example of Figure 1.

3.3 Example
Let us perform a sample execution of the algorithm on the system described in Figure 1.
Suppose we want to reach the partial state (s3, ?, s9, ?). Therefore we have the set of indices
of the LTSs involved in the objective Lg = {1, 3} and we choose to partition it, for instance,
as {{1}, {3}}.

Then, Ls[1] is the list [([], (id(L1), ini(L1), {1}, ∅, {1}), [])] and, similarly, Ls[2] is the list
[([], (id(L3), ini(L3), {3}, ∅, {3}), [])]. None of those elements is complete because they do
not reach their part of the objective so we call Concretise().

In that function, we choose for instance k = 1 and compute an extension of ini(L1)
that reaches the objective. Say we compute the extension C∗1 made of the path s0, s1, s3
(Figure 2). Then, since labels α and β are shared with L2, and 2 6∈ K1 = {1}, we have
N = {2}. Since Right1 = [], we get to line 10, replace ini(L1) by C∗1, add the tuple
(C∗1, ini(L1) ‖ ini(L2), {1}, {1}, {2}) to the list represented by Ls[1], and set that tuple as the
current element of that list. Finally, we return true.

Back in the main function, Ls is consistent for now, so we move to the next iteration.
Again both Ls[1] and Ls[2] are not complete because their current elements do not reach
their objective. Let us say we concretise again Ls[1]. This time we cannot find an extension
of ini(L1) ‖ ini(L2) in the product of L1, L2 and C∗1, which is empty. Then, since Left1 is not
empty, we go to line 18, call Forget() (suppose here it forgets nothing), and set again the
head of the list represented by Ls[1] (which is also the head of Left1) as the current element.
Then we return true again.

Back in the main function, Ls is still consistent and both its element are not complete.
We then call Concretise() and for the example choose again k = 1. This time we extend
C∗1 by taking C∗∗1 as the whole of L1 except the δ transition (Figure 2). Since Right1 is not
empty this time, we go to line 7, update the tuples with C∗∗1 , and move the current element
of the list right, then return true.

L. Jezequel and D. Lime 17:9

Back in the main function we still call Concretise() and choose again k = 1. This time,
we can extend ini(L1) ‖ ini(L2) with the LTS C∗12 made only of the path (s0, s4), (s2, s4),
(s1, s4), (s3, s6) (Figure 2). Set N is empty because no LTS other than L1 and L2 has labels
β, a or b (used in this path). Right1 is also empty so we just update the current element in
Ls[1] with C∗12 (line 14) and return true.

Back in the main function, Ls[1] is now complete but not Ls[2]. So, we call Concretise()
and choose k = 2. We extend ini(L3) by C∗3 made of the path s7, s9 (Figure 2). Then
N = {1} because L1 shares label δ with C∗3 and, as before, Right2 being empty, we go to
line 10, replace ini(L3) by C∗3, add the tuple (C∗3, ini(L3) ‖ ini(L1), {3}, {3}, {1}) to the list
represented by Ls[2], and set that tuple as the current element of that list. Then we return
true.

Now, we have the index 1 in J ∪K for both the current elements of Ls[1] and Ls[2], so we
can choose to merge them. Let us do it: we use the second of the simple strategies outlined
above: we keep and merge only the first and current elements of each list. After the call
to Merge(), Ls = [([(id(L1) ‖ id(L3),C∗∗1 ‖ C∗3, {1, 3}, ∅, {1, 3})], (C

∗∗
1 ‖ C∗3,C

∗
12 ‖ ini(L3) ‖

ini(L1), {1, 3}, {1, 3}, {2}), [])] and C∗12 ‖ ini(L3) ‖ ini(L1) consists only of state (s0, s4, s7),
because ini(L1) restricts C∗12 to its initial state and δ is not in C∗12. That product has no path
to a state (s3, ?, s9), so the new Ls[1] is not complete and we need to call Concretise() one
last time.

We will then be able to extend C∗12 ‖ ini(L3) ‖ ini(L1) to an LTS C∗123 containing state
(s3, s6, s9) but with no transition γ (Figure 2). Then N is empty, as well as Right1, so we go
through line 14 to update the current LTS, and return true. Finally, in the main function,
we now have that Ls is consistent, since it contains only one element, and that element is
complete because C∗123 contains only labels not shared with L4. So we terminate and return
true.

Note that we never needed to consider products involving L4 – which is the reason why
we call our analysis “lazy”.

3.4 Soundness, completeness, termination
We now proceed to proving that our algorithm is sound and complete and that it terminates.
We first state two utility lemmas.

I Lemma 16. Let (Left, h,Right) be an element of Ls in Solve(L,R) and let L = (‖i∈[1..n]
Li).

Let (A,C, I, J,K) be either h, or an element of Left, or an element of Right. Then C is a
partial product of (‖i∈J∪K Li) and, if we write C = (‖i∈J∪K Ci), then Σ(Ci) = Σ(Li).

I Lemma 17. Let (Left, (A,C, I, J,K),Right) be an element of Ls in Solve(L,R). If Left
is empty then I ⊆ K, J = ∅ and A =‖ i∈I id(Li).

And finally the main results:
I Proposition 18. If Solve(L,R) returns False then R is not reachable in L.

Proof. The only way Solve(L,R) can return False is through line 12 in Algorithm 1, and in
turn this means that the call to Concretise() in line 11 returned False. Now Concretise()
will only return False through line 16 in Algorithm 2. To get there, there must exist some
k such that Ls[k] can be decomposed as the triple (Left, (A,C, I, J,K),Right), with (1) Left
being empty, and (2) there is no C∗ s.t. C @ C∗ v (‖ i∈KLi) ‖ A and C∗ → R|J∪K .

By Lemma 16 we know that C is a partial product of L. With (1) and Lemma 17, we
have that I ⊆ K, J = ∅ and A =‖ i∈I id(Li). So (‖ i∈KLi) ‖ A = (‖ i∈KLi). Then, with (2),

CONCUR 2016

17:10 Lazy Reachability Analysis in Distributed Systems

we can deduce that R|K is not reachable in (‖ i∈KLi), and finally with the contrapositive of
Lemma 10, we get that R is not reachable in L. J

I Proposition 19. If Solve(L,R) returns True then R is reachable in L.

Proof. The only way Solve(L,R) can return True is through line 23 in Algorithm 1. This
can only happen when Ls is such that (1) for all k, Ls[k] is complete and (2) Ls is consistent.

If we denote by (Ak,Ck, Ik, Jk,Kk) the second component of Ls[k], and by Hk the union
Jk ∪ Kk, (1) translates to ∀k, there exists C∗k v Ck such that C∗k can reach R|Hk

and
{i 6∈ Hk : Σ(Li) ∩ λ(C∗k) 6= ∅} = ∅. Similarly, (2) translates to ∀i, j,Hi ∩Hj = ∅.

By Lemma 16, each C∗k is a partial product of (‖ i∈Hk
Li) (and thus also of L). Now

consider some i ∈ Hk and σ ∈ Σ(Li) ∩ λ(C∗k). By Lemma 16, we know that there exist
some Ci such that C∗ = (‖i∈Hk

Ci) and Σ(Ci) = Σ(Li). Consequently, for all i ∈ Hk,
Σ(Li) ∩ λ(C) ⊆ Σ(Ci). From (2), we also have that ∀i 6∈ Hk, Σ(Li) ∩ λ(C) = ∅ and we
can thus use Lemma 11 and obtain that R|Hk

is reachable in L, whatever the states of
the components not in Hk (and leaving them unchanged). Therefore, by finally putting all
components together, R is reachable in L. J

Relation v is not sufficient to reflect progress in our algorithm. We therefore introduce a
new relation <` , built on top of v, as a partial order over lists Ls (as the ones appearing
in Algorithm 1). Relation <` does reflect progress in concretisation (by advancing in the
history of concretisations (2), or by adding LTSs (3), or by adding paths in partial products
(4,5)), and merging (by reducing the length of the list (1)).

I Definition 20. Given two lists of tuples Ls1 and Ls2 with the same type as Ls in Algorithm 1,
we define <` such that Ls1 <` Ls2 if and only if Ls1 6= Ls2 and:

len(Ls1) > len(Ls2), or (1)
len(Ls1) = len(Ls2) and ∀k, Ls1[k] 6= Ls2[k] =⇒ Ls1[k] <t Ls2[k];

where (Left1, h1,Right1) <t (Left2, h2,Right2) if and only if, for hLri = rev(Lefti) ++[hi],
hLr2 is a prefix of rev(Left1), or (2)
∃`, hLr1[`] 6= hLr2[`] and, for the smallest such ` one has hLr1[`] <a hLr2[`];

where (A1,C1, I1, J1,K1) <a (A2,C2, I2, J2,K2) if and only if:
J1 ∪K1 ⊂ J2 ∪K2, or (3)
J1 ∪K1 = J2 ∪K2 and A1 @ A2, or (4)
J1 ∪K1 = J2 ∪K2, A1 = A2, and C1 @ C2. (5)

If Ls1 <` Ls2 or Ls1 = Ls2 we write Ls1 ≤` Ls2.

I Proposition 21. The calls to Solve(L,R) always terminate (and return only True or
False).

Sketch of the proof. The fact that, if a call to Solve(L,R) terminates, it can only return
True or False, comes from lines 23 (returning True) and 12 (returning False) of Algorithm 1
which are the only return statements of the Solve(,) function.

In order to prove the termination one can show that (1) ≤` is an order relation over the
Ls used in Algorithm 1, (2) the set of such lists appearing in any instance of Algorithm 1 is
finite (and so, there are lists which are greater or incomparable to any other lists with respect
to ≤`), and (3) any step of the while loop of Algorithm 1 terminates and if the return of
line 12 is not used, strictly increases Ls with respect to ≤` . From (1) and (2) one then gets
that, in any instance of Algorithm 1, there cannot exist an infinite strictly increasing chain
of Ls with respect to ≤` . Hence, from (3), Algorithm 1 always terminates. J

L. Jezequel and D. Lime 17:11

4 Experimental analysis

In order to get insight on the practical efficiency of our algorithm we developed a tool1
(LaRA, for Lazy Reachability Analyzer) using it. We then compared the time efficiency of
LaRA with that of other tools on several reachability analysis tasks in distributed systems.
We originally selected three other tools for these experiments:

LoLA2: A Petri net analyzer (it is straightforward to convert the compound systems we
consider in this paper into (safe) Petri nets) which efficiently implements many techniques
for model checking Petri nets. LoLA is arguably very effective for reachability analysis
in Petri nets as it won the reachability track at the last model checking contest [13].
PMC [14]: A tool for partial model checking that uses incremental techniques for dealing
with the verification of distributed systems.
The on the fly model checking capabilities of the CADP toolbox [8]

Early preliminary experiments revealed that, on all our benchmarks, LoLA outperformed
PMC and CADP. For the larger experiments on which we report here we thus focused on
comparing LoLA with our tool.

4.1 Implementation choices
LaRA consists of approximately 500 lines of Haskell code, using the standard Parsec
parsing library, and the fgl graph library. Note that memory management in Haskell is
automatic.

We have presented our algorithm in a manner as generic as possible including the
possibility for many heuristic choices. For our first prototype presented here, we have chosen
to completely compute each partial product before adding more components. This eliminates
the need for backtracking, which greatly simplifies the code and, to some extent, favors the
case when the desired state is not reachable. This choice is rather drastic and probably not
optimal when exploring big partial products, in which a more on-the-fly approach would
usually give better results. However, we believe it is reasonable, as our objective was to
evaluate the influence of the laziness feature of our approach.

Before adding LTSs to the partial product, we trim it by keeping only the reachable and
coreachable states. We add only one automaton each time, chosen arbitrarily in the set of
LTSs synchronized on the path that synchronizes as few LTSs as possible.

4.2 Benchmarks
Our benchmarks where taken from a set of benchmarks proposed by Corbett in the 90’s [5].
Among these, we selected the ones where scaling increases the number of components but
does not change the size of individual components. The reason for this choice is that our early
implementation is not made for dealing with large state spaces of individual components –
as, again, our goal is to evaluate the impact of its laziness feature. Not embedding efficient
search techniques it was hopeless to cope with finely tuned model checking tools. This left
us with six models, described in Table 1. For each model we define a simple reachability
property and state if it is verified by the model.

Both tools were used in a similar setting: on a machine with four Intel® Xeon® E5-2620
processors (six cores each) with 128GB of memory. Though this machine has some potential

1 For reproducibility of experiments, LaRA is available at http://lara.rts-software.org
2 http://service-technology.org/lola/

CONCUR 2016

http://lara.rts-software.org
http://service-technology.org/lola/

17:12 Lazy Reachability Analysis in Distributed Systems

Table 1 Benchmarks description.

Model Description Size Property Verified?
Cyclic Milner’s cyclic scheduler, a

set of tasks have to be sched-
uled in a cyclic order.

Number of tasks to be
scheduled.

One task in two can
be in their waiting
state together.

Yes.

DAC Divide and conquer compu-
tation, a task has to be com-
pleted by a set of processes.
Each one can complete the
task alone or fork.

Maximal number of
processes involved in
the solving of the
task.

A given process can
be involved in the
solving and decide to
complete it alone.

Yes.

Philo Dining philosophers, in its
eating cycle a philosopher
takes and releases his left
fork first.

Number of philosoph-
ers.

One philosopher in
two can eat together.

Yes for even sizes.
No for odd sizes.

PhiloDico Variation of Philo, a diction-
ary turns around the table,
preventing the philosopher
holding it to take forks.

Number of philosoph-
ers.

One philosopher in
two can eat together.

Yes for even sizes.
No for odd sizes.

PhiloSync Variation of Philo, philosoph-
ers take and release both
their forks in a single step.

Number of philosoph-
ers.

One philosopher in
two can eat together.

Yes for even sizes.
No for odd sizes.

TokenRing Classical mutual exclusion al-
gorithm with a token circu-
lating on a ring of processes.

Number of processes. Two given processes
can reach their crit-
ical section together.

No.

for parallel computing, all the experiments presented here are actually monothreaded. We
put a time limit of 20 minutes for computations. For each experiment, each tool had as
input a file in its own format: file generation and conversion are not taken into account in
the processing times.

4.3 Positive results.

In most of the cases (namely Cyclic, Philo, PhiloDico, and PhiloSync) our tool outperformed
LoLA with increasing size of models. On DAC, our results are comparable to those obtained
with LoLA, and for very large instances we slightly outperform it. The experimental results
for these cases are summarized in Table 2. For each model, timeout indicates the first
instance of this model for which a tool reached the time limit of 20 minutes. Notice that, in
the variants of the dining philosophers, there are two timeouts: one for instances of odd size
and the other one for instances of even size. This is because the property we verify is false
for odd sizes and true for even sizes, which makes a significant difference for LoLA.

4.4 Focus on TokenRing.

Table 3 presents the results obtained with various modeling of TokenRing. It compares
runtimes of LoLA and our tool on Corbett’s modeling. It appears that LaRA is far from
efficient on this particular example. This is due to the fact that, without taking into account
all the components, it is not possible for our tool to figure out that only one token exists in
the system. So, for deciding that no two processes can be in their critical sections together,
LaRA cannot be lazy and has to explore the full state space of the system.

L. Jezequel and D. Lime 17:13

Table 2 Comparison of runtimes of LoLA and LaRA on instances of increasing size of Cyclic,
DAC, Philo, PhiloDico, and PhiloSync.

Size Cyclic DAC Philo PhiloDico PhiloSync
LaRA LoLA LaRA LoLA LaRA LoLA LaRA LoLA LaRA LoLA

15 0.01s <0.01s 0.01s <0.01s 0.04s 28.47s 0.10s 30.92s 0.02s <0.01s
16 0.01s <0.01s 0.01s <0.01s 0.04s <0.01s 0.05s <0.01s 0.02s <0.01s
17 0.01s <0.01s 0.01s <0.01s 0.05s 327.55s 0.10s 349.38s 0.02s 0.02s
18 0.01s <0.01s 0.02s <0.01s 0.04s <0.01s 0.06s <0.01s 0.03s <0.01s
19 0.01s <0.01s 0.01s <0.01s 0.05s Timeout 0.10s Timeout 0.02s 0.05s
24 0.02s <0.01s 0.01s <0.01s 0.05s <0.01s 0.08s <0.01s 0.03s <0.01s
25 0.02s <0.01s 0.01s <0.01s 0.06s 0.13s 0.03s 0.97s
35 0.03s <0.01s 0.02s <0.01s 0.08s 0.15s 0.04s 182.54s
45 0.03s <0.01s 0.02s <0.01s 0.11s 0.17s 0.06s Timeout

1000 0.57s 2.55s 0.35s 0.56s 1.90s 2.44s 2.34s 2.50s 1.11s 2.38s
3000 2.68s 64.32s 1.08s 1.15s 6.87s 64.84s 8.56s 64.55s 4.82s 64.31s
6000 8.07s 514.89s 2.25s 1.62s 17.86s 520.86s 21.32s 523.54s 13.83s 519.21s
8000 13.37s Timeout 2.97s 2.79s 27.63s Timeout 32.21s Timeout 22.15s Timeout
10000 20.86s 3.72s 3.14s 39.73s 44.69s 33.10s
30000 234.97s 11.24s 9.46s 334.79s 346.36s 319.15s
50000 687.68s 19.10s 19.75s 1063.69s 1072.71s 946.86s

Table 3 Runtimes on TokenRing.

Size TokenRing
LaRA LoLA

7 0.514s <0.01s
8 1.716s <0.01s
9 6.713s <0.01s
10 25.810s <0.01s
11 70.370s <0.01s
12 322.440s <0.01s
13 Timeout <0.01s

1000 0.15s

5 Conclusion

We have presented a new approach for the verification of reachability in distributed systems.
It builds on both decomposing the goal state into its projection on the different components
of the system and lazily adding components in an iterative fashion to produce more and
more precise over-approximations. This notably allows for early termination both when
the state is reachable and when it is not. We have presented an algorithm based on this
approach, together with proofs for completeness, soundness, and termination. We have also
implemented this into an early prototype named LaRA. This rather naive implementation
already gives very promising results, on which we report together with comparisons to LoLA,
a state-of-art model-checker for Petri nets.

Further note that, when a reachability property is true, LaRA has computed, and can
output, a consistent list of complete LTSs satisfying that property. An interesting plus-value
is that adding whatever number of new components to that list would not change the
outcome provided that none of those new components shares actions that are used in the list.
Therefore in systems with a particular synchronization structure, like rings for instance, we
can generalize the reachability result to any number of components in the ring : for instance
to prove that a philosopher can eat we need to add the two forks around her and the other
two philosophers that could also use those forks. Now, any additional fork or philosopher

CONCUR 2016

17:14 Lazy Reachability Analysis in Distributed Systems

beyond those do not share any action required to establish that the first philosopher can eat.
We can then deduce that she can eat regardless of the number of philosophers around the
table.

We have proposed and proved our algorithm in a generic and extendable way. In particular,
it seems very likely that partial order or Decision Diagram-based symbolic techniques could
be incorporated in this approach. The algorithm we propose also offers several opportunities
for parallelisation. First, between two merge operations all concretisations in the different
partitions can clearly be performed in parallel. Second, the different choices left open in the
algorithm, such as the choice of a particular path to concretise, or a specific automaton to
add to the product, can be resolved by some heuristics but may also better be handled by
testing several of the different choices in parallel.

In addition to studying theses issues, further work includes extensions to more expressive
formalisms, in particular (parametric) timed automata and time Petri nets, and to more
complex properties.

Acknowledgments. We gratefully thank Frédéric Lang for the time he spent helping us
to use his partial model checking tool. We also thank Karsten Wolf for offering help with
LoLA. Finally, we thank the anonymous reviewers for their valuable comments.

References
1 H. R. Andersen. Partial model checking. In LICS, pages 398–407, 1995.
2 F. Bacchus and Q. Yang. Downward refinement and the efficiency of hierarchical problem

solving. Artificial Intelligence, 71(1):43–100, 1994.
3 A. R. Bradley. SAT-based model checking without unrolling. In VMCAI, pages 70–87,

2011.
4 A. Cimatti and A. Griggio. Software model checking via IC3. In CAV, pages 277–293,

2011.
5 J. C. Corbett. Evaluating deadlock detection methods for concurrent software. IEEE Trans.

Software Eng., 22(3):161–180, 1996.
6 P. Crouzen and F. Lang. Smart reduction. In FASE, pages 111–126, 2011.
7 C. Flanagan and S. Qadeer. Thread-modular model checking. In SPIN, pages 213–224,

2003.
8 H. Garavel, F. Lang, R. Mateescu, and W. Serwe. CADP 2011: a toolbox for the construc-

tion and analysis of distributed processes. STTT, 15(2):89–107, 2013.
9 S. Graf and B. Steffen. Compositional minimization of finite state systems. In CAV, pages

186–196, 1990.
10 O. Grumberg and D. E. Long. Model checking and modular verification. TOPLAS,

16(3):843–871, 1994.
11 J. Hoffmann, J. Porteous, and L. Sebastia. Ordered landmarks in planning. JAIR,

22(1):215–278, 2004.
12 G. J. Holzmann and D. Peled. An improvement in formal verification. In FORTE, pages

197–211, 1994.
13 F. Kordon, H. Garavel, L. M. Hillah, F. Hulin-Hubard, A. Linard, M. Beccuti, A. Hamez,

E. Lopez-Bobeda, L. Jezequel, J. Meijer, E. Paviot-Adet, C. Rodriguez, C. Rohr, J. Srba,
Y. Thierry-Mieg, and K. Wolf. Complete Results for the 2015 Edition of the Model Checking
Contest. http://mcc.lip6.fr/2015/results.php, 2015.

14 F. Lang and R. Mateescu. Partial model checking using networks of labelled transition
systems and boolean equation systems. LMCS, 9(4), 2013.

15 A. Lehmann, N. Lohmann, and K. Wolf. Stubborn sets for simple linear time properties.
In ICATPN, pages 228–247, 2012.

Causally Consistent Dynamic Slicing
Roly Perera∗1, Deepak Garg2, and James Cheney†3

1 Laboratory for Foundations of Computer Science, University of Edinburgh,
Edinburgh, UK
rperera@inf.ed.ac.uk and
School of Computing Science, University of Glasgow, Glasgow, UK
roly.perera@glasgow.ac.uk

2 Max Planck Institute for Software Systems, Saarbrücken, Germany
dg@mpi-sws.org

3 Laboratory for Foundations of Computer Science, University of Edinburgh,
Edinburgh, UK
jcheney@inf.ed.ac.uk

Abstract
We offer a lattice-theoretic account of dynamic slicing for π-calculus, building on prior work in the
sequential setting. For any run of a concurrent program, we exhibit a Galois connection relating
forward slices of the start configuration to backward slices of the end configuration. We prove
that, up to lattice isomorphism, the same Galois connection arises for any causally equivalent
execution, allowing an efficient concurrent implementation of slicing via a standard interleaving
semantics. Our approach has been formalised in the dependently-typed language Agda.

1998 ACM Subject Classification D.1.3 Concurrent Programming; D.2.5 Testing and debugging

Keywords and phrases π-calculus; dynamic slicing; causal equivalence; Galois connection

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2016.18

1 Introduction

Dynamic slicing, due originally to Weiser [18], is a runtime analysis technique with applications
in debugging, security and provenance tracking. The basic goal is to identify a sub-program,
or program slice, that may affect an outcome of interest called the slicing criterion, such as
the value of a variable. Dynamic slicing in concurrent settings is often represented as a graph
reachability problem, thanks to influential work by Cheng [2]. However, most prior work
on dynamic slicing for concurrency does not yield minimum slices, nor allows particularly
flexible slicing criteria, such as arbitrary parts of configurations. Systems work on concurrent
slicing [8, 13, 17] tends to be largely informal.

Perera et al [14] developed an approach where backward dynamic slicing is treated as a
kind of (abstract) reverse execution or “rewind” and forward slicing as a kind of (abstract)
re-execution or “replay”. Forward and backward slices are related by a Galois connection,
ensuring the existence of minimal slices. This idea is straightforward in the sequential setting
of the earlier work. However, generalising it to concurrent programs is non-trivial. Suppose

∗ Perera was supported by the Air Force Office of Scientific Research, Air Force Material Command,
USAF, under grant number FA8655-13-1-3006. Perera was also supported by UK EPSRC project
EP/K034413/1.

† Cheney was supported by the Air Force Office of Scientific Research, Air Force Material Command,
USAF, under grant number FA8655-13-1-3006.

© Roly Perera, Deepak Garg, and James Cheney;
licensed under Creative Commons License CC-BY

27th International Conference on Concurrency Theory (CONCUR 2016).
Editors: Josée Desharnais and Radha Jagadeesan; Article No. 18; pp. 18:1–18:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.18
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

18:2 Causally Consistent Dynamic Slicing

Scheduler thread 1 Scheduler thread 2 A1 A2

a1.c1.(b1.c2.r1 + c2.b1.r1) | c1.a2.c2.(b2.c1.r2 + c1.b2.r2) | a1.b1.p1 | a2.b1.p2

−−−−→ c1.(b1.c2.r1 + c2.b1.r1) | c1.a2.c2.(b2.c1.r2 + c1.b2.r2) | b1.p1 | a2.b1.p2

−−−−→ b1.c2.r1 + c2.b1.r1 | a2.c2.(b2.c1.r2 + c1.b2.r2) | b1.p1 | a2.b1.p2

−−−−→ b1.c2.r1 + c2.b1.r1 | c2.(b2.c1.r2 + c1.b2.r2) | b1.p1 | b1.p2

−−−−→ c2.r1 | c2.(b2.c1.r2 + c1.b2.r2) | b1.p1 | a2.b1.p2

−−−−→ a1.c1.(b1.c2.r1 + c2.b1.r1) | b2.c1.r2 + c1.b2.r2 | b1.p1 | a2.b1.p2

Figure 1 Stuck configuration, overlaid with backward slice with respect to final state of thread 1.

we run a concurrent computation, discover a bug, and then wish to compute a dynamic slice.
It would clearly be impractical to require the slice be computed using the exact interleaving
of the original run, particularly in a distributed setting. On the other hand, computing the
slice using a brand-new concurrent execution may make different non-deterministic choices,
producing a slice of a computation other than the one intended.

Intuitively, any execution which exhibits the same causal structure should be adequate for
computing the slice, and any practical approach to concurrent slicing should take advantage
of this. Danos and Krivine [4] make a similar observation about reversible concurrency,
arguing that the most liberal notion of reversibility is one that just respects causality: an
action can only be undone after all the actions that causally depend on it have been undone.

In this paper we formalise dynamic slicing for π-calculus, and show that any causally equi-
valent execution generates precisely the same slicing information. We do this by formalising
slicing with respect to a particular execution t̃, and then proving that slicing with respect to
any causally equivalent computation ũ yields the same slice, after a unique “rewiring” which
interprets the path witnessing t̃ ' ũ as a lattice isomorphism relating the two slices. The
isomorphism is constructive, rewriting one slice into the other: this allows non-deterministic
metadata (e.g. memory addresses or transaction ids) in the slicing execution to be aligned
with the corresponding metadata in the original run. We build on an earlier “proof-relevant”
formalisation of causal equivalence for π-calculus in Agda [15]. As long as causality is
respected, an implementation of our system can safely use any technique (e.g. redex trails,
proved transitions, or thread-local memories) to implement rewind and replay.

Example: scheduler with non-compliant task. While dynamic slicing cannot automatically
isolate bugs, it can hide irrelevant detail and yield compact provenance-like explanations
of troublesome parts of configurations. As an example we consider Milner’s scheduler
implementation [12, p. 65]. The scheduler controls a set of n tasks, executed by agents
A1, . . . , An. Agent Ai sends the message ai (announce) to the scheduler to start its task,
and message bi (break) to end its task. The scheduler ensures that the actions ai occur
cyclically starting with a1, and that for each i the actions ai and bi alternate, starting with
ai. Although started sequentially, once started the tasks are free to execute in parallel.

Figure 1 shows five transitions of a two-thread scheduler, with the redex selected at each
step highlighted in bold. The parts of the configuration which contribute to the final state
of thread 1 are in black; the grey parts are discarded by our backward-slicing algorithm.
Assume prefixing binds more tightly than either · | · or +. To save space, we omit the
ν-binders defining the various names, and write x.0 simply as x. The names r1, r2, p1 and p2
are used to make recursive calls [12, p. 94]: a recursive procedure is implemented as a server
which waits for an invocation request, spawns a new copy of the procedure body, and then

R. Perera, D. Garg, and J. Cheney 18:3

returns to the wait state. Here we omit the server definitions, and simply replace a successful
invocation by the spawned body; thus in the final step of Figure 1, after the synchronisation
on c2 the invocation r1 is replaced by a fresh copy of the initial state of scheduler thread 1.

The final state of Figure 1 has no redexes, and so is stuck. The slice helps highlight the
fact that by the time we come to start the second loop of scheduler 1, the task was terminated
by message b1 from A2, before any such message could be sent by A1. We can understand
the slice of the initial configuration (computed by “rewinding”, or backward-slicing) as
sufficient to explain the slice of the stuck configuration by noting that the former is able to
compute the latter by “replay”, or forward-slicing. In other words, writing a sliced part of
the configuration as ◻, and pretending the holes ◻ are sub-computations which get stuck, we
can derive

a1.c1.(b1.◻+ ◻) | c1.a2.◻ | a1.◻ | a2.b1.p2 −−−−→∗ a2.◻

without getting stuck. The slice on the left may of course choose to take the right-hand
branch of the choice instead. But if we constrain the replay of the sliced program to follow
the causal structure of the original unsliced run – to take the same branches of internal
choices, and have the same synchronisation structure – then it will indeed evolve to the slice
on the right. This illustrates the correctness property for backward slicing, which is that
forward-slicing its result must recompute (at least) the slicing criterion.

For this example, the tasks are entirely atomic and so fixing the outcome of + has the
effect of making the computation completely sequential. Less trivial systems usually have
multiple ways they can evolve, even once the causal structure is fixed. A confluence lemma
typically formalises the observational equivalence of two causally equivalent runs. However,
a key observation made in [15] is that requiring causally equivalent runs to reach exactly the
same state is too restrictive for π-calculus, in particular because of name extrusion. As we
discuss in Section 3, two causally unrelated extrusion-rendezvous lead to states which differ in
the relative position of two ν-binders, reflecting the two possible orderings of the rendezvous.
Although technically unobservable to the program, interleaving-sensitive metadata, such
as memory locations in a debugger or transaction ids in a financial application, may be
important for domain-specific reasons. In these situations being able to robustly translate
between the target states of the two executions may be useful.

Summary of contributions. Section 2 defines the core forward and backward dynamic
slicing operations for π-calculus transitions and sequences of transitions (traces). We
prove that they are related by a Galois connection, showing that backward and forward
slicing, as defined, are minimal and maximal with respect to each other. Section 3 ex-
tends this framework to show that the Galois connections for causally equivalent traces
compute the same slices up to lattice isomorphism. Section 4 discusses related work and
Section 5 offers closing thoughts and prospects for follow-up work. Appendix A summar-
ises the Agda module structure and required libraries; the source code can be found at
https://github.com/rolyp/concurrent-slicing, release 0.1.

2 Galois connections for slicing π-calculus programs

To summarise informally, our approach is to interpret, functorially, every transition diagram
in the π-calculus into the category of lattices and Galois connections. For example the
interpretation of the transition diagram on the left is the commutative diagram on the right:

CONCUR 2016

https://github.com/rolyp/concurrent-slicing

18:4 Causally Consistent Dynamic Slicing

Name x, y ::= 0 | 1 | · · ·
Payload z ::= ◻ erased

x retained
Action a ::= ◻ erased

x input
x〈z〉 output
x bound output
τ silent

Process P,Q,R, S ::= ◻ erased
0 inactive
x.P input
x〈z〉.P output
P +Q choice
P | Q parallel
νP restriction
!P replication

Figure 2 Syntax of names, processes and actions.

P

Q

R

S

t

t′

u

u′

↓P

↓Q

↓R

↓S

stept

stept′

stepu

stepu

where ↓P means the lattice of slices of P , and stept : ↓P −→ ↓Q is a Galois connection,
a kind of generalised order isomorphism. An order isomorphism between posets A and B
is a pair of monotone functions f : A −→ B and g : B −→ A such that f ◦ g = idB and
g ◦ f = idA. Galois connections require only f ◦ g ≥ idB and g ◦ f ≤ idA where ≤ means the
pointwise order. Galois connections are closed under composition.

The relationship to slicing is that these properties can be unpacked into statements of
sufficiency and minimality: for example f ◦ g ≥ idB means g (backward-slicing) is “sufficient”
in that f (forward-slicing) is able to use the result of g to restore the slicing criterion, and
g ◦ f ≤ idA means g is “minimal” in that it computes the smallest slice with that property.
One can dualise these statements to make similar observations about f .

We omit a treatment of structural congruence from our approach, but note that it slots
easily into the framework, generating lattice isomorphisms in a manner similar to the “bound
braid” relation o discussed in Section 3, Definition 12.

2.1 Lattices of slices
The syntax of names, processes and actions is given in Figure 2. Slices are represented
syntactically, via the ◻ notation introduced informally in Section 1. Our formalisation employs
de Bruijn indices [5], an approach with well-known strengths and weaknesses compared to
other approaches to names such as higher-order abstract syntax or nominal calculi.

Names. Only names which occur in the “payload” (argument) position of a message may
be erased. The erased name ◻ gives rise to a (trivial) partial order ≤ over payloads, namely
the partial order containing precisely ◻ ≤ z for any z. The set of slices of x is written ↓x
and defined to be {z | z ≤ x}; because names are atomic ↓x is simply the two-element set
{◻, x}. The set ↓x is a finite lattice with meet and join operations u and t, and top and
bottom elements x and ◻ respectively. For any lattice, the meet and join are related to the
underlying partial order by z ≤ z′ ⇐⇒ z t z′ = z′ ⇐⇒ z u z′ = z. Lattices are closed
under component-wise products, justifying the notation ↓(z, z′) for ↓z × ↓z′.

R. Perera, D. Garg, and J. Cheney 18:5

x.P
x

−−−−→ P x〈z〉.P x〈z〉−−−−→ P

P
a−−−−→ R

P +Q
a−−−−→ R

P
c−−−−→ R

P | Q c−−−−→ R | Q

(∗)
P

b−−−−→ R

P | Q b−−−−→ R | push∗Q
(§)

P
x

−−−−→ R Q
x〈z〉−−−−→ S

P | Q τ−−−−→ (pop z)∗R | S

P
(x+1)〈0〉−−−−→ R

νP
x−−−−→ R

P
x

−−−−→ R Q
x−−−−→ S

P | Q τ−−−−→ ν(R | S)
(†)

P
push∗c−−−−→ R

νP
c−−−−→ νR

(‡)
P

push∗b−−−−→ R

νP
b−−−−→ ν(swap∗R)

P | !P a−−−−→ R

!P a−−−−→ R

Figure 3 Labelled transition relation P a−−−−→ R (symmetric variants omitted).

Processes. The ≤ relation and ↓· operation extend to processes, via payloads which may
be ◻, and a special undefined process also written ◻. A slice of P is simply P with some
sub-terms replaced by ◻. The relation ≤ is the least compatible partial order which has
◻ as least element; all process constructors both preserve and reflect ≤, so we assume an
equivalent inductive definition of ≤ when convenient. A process has a closing context Γ
enumerating its free variables; in the untyped de Bruijn setting Γ is just a natural number.
Often it is convenient to conflate Γ with a set of that cardinality.

Actions. An action a labels a transition (Figure 3 below), and is either bound or non-bound.
A bound action b is of the form x or x and opens a process with respect to x, taking it from
Γ to Γ + 1. A non-bound action c is of the form x〈z〉 or τ and preserves the free variables of
the process. The ≤ relation and ↓· operation extend to actions via ◻ names, plus a special
undefined action also written ◻.

Renamings. In the lattice setting, a renaming ρ : Γ −→ Γ′ is any function from Γ to
Γ′] {◻}; we also allow σ to range over renamings. Renaming application ρ∗P is extended
with the equation ρ∗◻ = ◻. The ≤ relation and ↓· operation apply pointwise.

Labelled transition semantics. The late-style labelled transition semantics is given in
Figure 3, and is distinguished only by its adaptation to the de Bruijn setting. The primary
reference for a de Bruijn formulation of π-calculus is [9]; the consequences of such an approach
are explored in some depth in [15]. One pleasing consequence of a de Bruijn approach is
that the usual side-conditions associated with transition rules can be operationalised via
renamings. We briefly explain this, along with other uses of renamings in the transition rules,
and refer the interested reader to these earlier works for more details. Definition 1 defines
the renamings used in Figure 3 and Definition 2 the application ρ∗a of ρ to an action a.

I Definition 1 (push, pop, and swap).
pushΓ : Γ −→ Γ + 1
push x = x+ 1

popΓ z : Γ + 1 −→ Γ
pop z 0 = z

pop z (x+ 1) = x

swapΓ : Γ + 2 −→ Γ + 2
swap 0 = 1
swap 1 = 0
swap (x+ 2) = x+ 2

CONCUR 2016

18:6 Causally Consistent Dynamic Slicing

I Definition 2 (Action renaming). Define the following lifting of a renaming to actions.

·∗ : (Γ −→ Γ′) −→ Action Γ −→ Action Γ′

ρ∗ ◻ = ◻

ρ∗ x = ρx

ρ∗ x = ρx

ρ∗ τ = τ

ρ∗ x〈z〉 = ρx〈ρz〉

push occurs in the transition rule which propagates a bound action through a parallel
composition P | Q (rule (∗) in Figure 3), and rewires Q so that the name 0 is reserved.
The effect is to ensure that the binder being propagated by P is not free in Q.
push also occurs in the rules which propagate an action through a ν-binder (rules (†)
and (‡)), where it is applied to the action being propagated using the function defined
in Definition 2. This ensures the action does not mention the binder it is propagating
through. The use of ·+ 1 in the name extrusion rule can be interpreted similarly.
pop z is used in the event of a successful synchronisation (rule (§)), and undoes the effect
of push, substituting the communicated name z for index 0.
swap occurs in the rule which propagates a bound action through a ν-binder (rule (†))
and has no counterpart outside of the de Bruijn setting. As a propagating binder passes
through another binder, their relative position in the syntax is exchanged, and so to
preserve naming R is rewired with a “braid” that swaps 0 and 1.

Although its use in the operational semantics is unique to the de Bruijn setting, swap will
also play an important role when we consider the relationship between slices of causally
equivalent traces (Section 3 below), where it captures how the relative position of binders
changes between different (but causally equivalent) interleavings.

2.2 Galois connections for slicing
We now compositionally assemble a Galois connection for each component of execution,
starting with renamings, and then proceeding to individual transitions and entire traces,
which relates forward and backward slices of the initial and terminal state.

Slicing renamings. The application ρx of a renaming to a name, and the lifting ρ∗P of
that operation to a process give rise to the Galois connections defined here.

I Definition 3 (Galois connection for ρx). Suppose ρ : Γ −→ Γ′ and x ∈ Γ. Define the
following pair of monotone functions between ↓(ρ, x) and ↓(ρx).

appρ,x : ↓(ρ, x) −→ ↓(ρx)
appρ,x (σ, ◻) = ◻

appρ,x (σ, x) = σx

unappρ,x : ↓(ρx) −→ ↓(ρ, x)
unappρ,x z = (x 7→ρ z, ρ

−1
x z)

where x 7→ρ · : ↓(ρx) −→ ↓ρ
(x 7→ρ z) x = z

(x 7→ρ z) y = ◻ (if y 6= x)

ρ−1
x : ↓(ρx) −→ ↓x
ρ−1
x ◻ = ◻

ρ−1
x z = x (if z 6= ◻)

It is convenient to decompose unappρ,x into two components: x 7→ρ z denotes the least
slice of ρ which maps x to z, and ρ−1

x z denotes the least slice of x such that ρx = z.

I Lemma 4. (appρ,x, unappρ,x) is a Galois connection.
1. appρ,x ◦ unappρ,x ≥ idρx
2. unappρ,x ◦ appρ,x ≤ idρ,x

R. Perera, D. Garg, and J. Cheney 18:7

I Definition 5 (Galois connection for a renaming ρ∗P).
Suppose ρ : Γ −→ Γ′ and Γ ` P . Define monotone functions between ↓(ρ, P) and ↓(ρ∗P) by
structural recursion on ↓P , using the following equations. Here ◻ρ denotes the least slice of
ρ, namely the renaming which maps every x ∈ Γ to ◻.

renρ,P : ↓(ρ, P) −→ ↓(ρ∗P)
renρ,P (σ, ◻) = ◻

renρ,0 (σ,0) = 0
renρ,x.P (σ, x.R) = x.renρ+1,P (σ,R)
renρ,x〈z〉.P (σ, x〈z′〉.R) = x〈z′′〉.renρ,P (σ,R) where z′′ = appρ,y(σ, z′)
renρ,P+Q (σ,R+ S) = renρ,P (σ,R) + renρ,Q (σ, S)
renρ,P |Q (σ,R | S) = renρ,P (σ,R) | renρ,Q (σ, S)
renρ,νP (σ, νR) = ν(renρ+1,P (σ + 1, R)
renρ,!P (σ, !R) = !(renρ,P (σ,R))

unrenρ,P : ↓(ρ∗P) −→ ↓(ρ, P)
unrenρ,P ◻ = (◻ρ, ◻)
unrenρ,0 0 = (◻ρ,0)
unrenρ,x.P x.R = (ρ′, x.P ′) where unrenρ+1,P R = (ρ′ + 1, P ′)
unrenρ,x〈z〉.P x〈z′〉.R = (ρ′ t (z 7→ρ z

′), x〈z′′〉.P ′) where unrenρ,P R = (ρ′, P ′) and z′′ = ρ−1
z z
′

unrenρ,P+Q (R+ S) = (ρ1 t ρ2, P
′ +Q′) where unrenρ,P R = (ρ1, P

′) and unrenρ,Q S = (ρ2, Q
′)

unrenρ,P |Q (R | S) = (ρ1 t ρ2, P
′ | Q′) where unrenρ,P R = (ρ1, P

′) and unrenρ,Q S = (ρ2, Q
′)

unrenρ,νP νR = (ρ′, νP ′) where unrenρ+1,P R = (ρ′ + 1, P ′)
unrenρ,!P !R = (ρ′, !P ′) where unrenρ,P R = (ρ′, P ′)

I Lemma 6. (renρ,P , unrenρ,P) is a Galois connection.
1. renρ,P ◦ unrenρ,P ≥ idρ∗P
2. unrenρ,P ◦ renρ,P ≤ idρ,P
Proof. In each case by induction on P , using Lemma 4 and the invertibility of ·+ 1. J

Slicing transitions. Transitions also lift to the lattice setting, in the form of Galois connec-
tions defined by structural recursion over the proof that t : P a−−−→ P ′. Figures 4 and 5
define the forward and backward slicing judgements. We assume a determinising convention
where a rule applies only if no earlier rule applies.

The judgement RP
a′a−−−⇁ R′P ′ asserts that there is a “replay” transition from R ≤ P to

(a′, R′) ≤ (a, P), with R the input and (a′, R′) the output. The judgement R′P
a′a↽−−− RP ′

asserts that there is a “rewind” transition from (a′, R) ≤ (a, P ′) to R′ ≤ P , with (a′, R) the
input and R′ the output. When writing RP where R ≤ P we exploit the preservation and
reflection of ≤ by all constructors, for example writing ν(RP | SQ) for ν(R | S)ν(P |Q).

For backward slicing, we permit the renaming application operator ∗ to be used in
a pattern-matching form, indicating a use of the lower adjoint unren: given a renaming
application ρ∗P , the pattern σ∗P ′ matches any slice R of ρ∗P such that unrenρ,P (R) = (σ, P ′).

I Definition 7 (Galois connection for a transition). Suppose t : P a−−−→ P ′. Define the
following pair of monotone functions between ↓P to ↓(a, P ′).

stept : ↓P −→ ↓(a, P ′)
stept R = (a′, R′) where RP

a′a−−−−⇁ R′P ′

unstept : ↓(a, P ′) −→ ↓P
unstept (R, a′) = R′ where R′P

a′a↽−−−− RP ′

We omit the proofs that these equations indeed define total, deterministic, monotone
relations.

I Theorem 8 ((stept, unstept) is a Galois connection).
1. stept ◦ unstept ≥ ida,P ′
2. unstept ◦ stept ≤ idP
Proof. By induction on t : P a′−−−→ P ′, using Lemma 6 for the cases involving renaming. J

CONCUR 2016

18:8 Causally Consistent Dynamic Slicing

◻P
◻a−−−−⇁ ◻P ′ x.RP

x−−−−⇁ RP x〈z′z〉.RP
x〈z′z〉−−−−⇁ RP

RP
a′a−−−−⇁ R′P ′

RP + SQ
a′a−−−−⇁ R′P ′

RP
c′c−−−−⇁ R′P ′

RP | SQ
c′c−−−−⇁ R′P ′ | SQ

RP
b′
b−−−−⇁ R′P ′

RP | SQ
b′
b−−−−⇁ R′P ′ | push∗SQ

RP
x−−−−⇁ R′P ′ SQ

x〈z′z〉−−−−⇁ S′Q′

RP | SQ
τ−−−−⇁ (pop z′z)

∗
R′P ′ | S′Q′

RP
◻x−−−−⇁ R′P ′ SQ

x〈z′z〉−−−−⇁ S′Q′

RP | SQ
◻τ−−−−⇁ (pop z′z)

∗
R′P ′ | S′Q′

RP
ax−−−−⇁ R′P ′ SQ

◻x〈z〉−−−−⇁ S′Q′

RP | SQ
◻τ−−−−⇁ (pop ◻z)∗R′P ′ | S′Q′

RP
(x+1)〈0〉−−−−⇁ R′P ′

νRP
x−−−−⇁ R′P ′

RP
a(x+1)〈0〉−−−−⇁ R′P ′

νRP
◻x−−−−⇁ R′P ′

RP
x−−−−⇁ R′P ′ SQ

x−−−−⇁ S′Q′

RP | SQ
τ−−−−⇁ ν(R′P ′ | S′Q′)

RP
ax−−−−⇁ R′P ′ SQ

a′
x−−−−⇁ S′Q′

RP | SQ
◻τ−−−−⇁ ν(R′P ′ | S′Q′)

RP
push∗c′c−−−−⇁ R′P ′

νRP
c′c−−−−⇁ νR′P ′

RP
push∗b′

b−−−−⇁ R′P ′

νRP
b′
b−−−−⇁ ν(swap∗R′P ′)

RP | !RP
a′a−−−−⇁ R′P ′

!RP
a′a−−−−⇁ R′P ′

Figure 4 Forward slicing judgement RP
a′a−−−−⇁ R′P ′ .

Slicing traces. Finally we extend slicing to entire runs of a π-calculus program. A sequence
of transitions t̃ is called a trace; the empty trace at P is written εP , and the composition of
a transition t : P a−−−→ R and trace t̃ : R ã−−−→ S is written t · t̃ : P a·ã−−−→ S where actions
are composable whenever their source and target contexts match.

I Definition 9 (Galois connection for a trace). Suppose t̃ : P ã−−−→ P ′. Define the following
pair of monotone functions between ↓P and ↓P ′, using variants of stept and unstept which
discard the action slice (going forward) and which use ◻ as the action slice (going backward).

fwdt̃ : ↓P −→ ↓P ′

fwdεP = id↓P
fwdt·t̃ ◻ = ◻

fwdt·t̃ R = fwdt̃ (step′t R) (R 6= ◻)

step′t : ↓P −→ ↓P′

step′t R = R′ where stept R = (a′, R′)

bwdt̃ : ↓P ′ −→ ↓P
bwdεP ′ = id↓P ′
bwdt·t̃ ◻ = ◻

bwdt·t̃ R = unstep′t (bwdt̃ R) (R 6= ◻)

unstep′t : ↓P ′ −→ ↓P
unstep′t R

′ = unstept (◻, R′)

At the empty trace εP the Galois connection is simply the identity on ↓P . Otherwise, we
recurse into the structure of the trace t · t̃, composing the Galois connection for the single
transition t with the Galois connection for the tail of the computation t̃.

I Theorem 10 ((fwdt̃, bwdt̃) is a Galois connection).

1. fwdt̃ ◦ bwdt̃ ≥ idP ′

2. bwdt̃ ◦ fwdt̃ ≤ idP

Note that the trace used to define forward and backward slicing for a computation is not an
auxiliary data structure recording the computation, such as a redex trail or memory, but
simply the proof term witnessing P ã−−−→ P ′.

R. Perera, D. Garg, and J. Cheney 18:9

◻P
◻a↽−−−− ◻P ′ x.RP

ax↽−−−− RP x〈z′z〉.RP
x〈z′z〉↽−−−− RP x〈◻z〉.RP

◻x〈z〉↽−−−− RP

R′P
a′a↽−−−− RP ′

R′P + ◻Q
a′a↽−−−− RP ′

R′P
c′c↽−−−− RP ′

R′P | SQ
c′c↽−−−− RP ′ | SQ

R′P
c′c↽−−−− ◻P ′

R′P | ◻Q
c′c↽−−−− ◻P ′|Q

R′P
b′
b↽−−−− RP ′

R′P | SQ
b′
b↽−−−− RP ′ | ρpush

∗SQ

R′P
b

↽−−−− ◻P ′
R′P | ◻Q

b
↽−−−− ◻P ′|push∗Q

R′P
x

↽−−−− RP ′ S′Q
x〈z′z〉↽−−−− SQ′

R′P | S′Q
τ

↽−−−− ρpop z
∗RP ′ | SQ′

ρ0 = z′
R′P

◻x↽−−−− RP ′ S′Q
x〈z〉

↽−−−− SQ′
R′P | S′Q

◻τ↽−−−− ρpop z
∗RP ′ | SQ′

ρ0 = z

R′P
◻x↽−−−− RP ′ S′Q

◻x〈z〉↽−−−− SQ′
R′P | S′Q

◻τ↽−−−− ρpop z
∗RP ′ | SQ′

ρ0 = ◻

RP
x

↽−−−− ◻P ′ SQ
x〈◻z〉↽−−−− ◻Q′

RP | SQ
τ

↽−−−− ◻(pop z)∗P ′|Q′

R′P
(x+1)〈0〉
↽−−−− RP ′

νR′P
ax↽−−−− RP ′

R′P
x

↽−−−− RP ′ S′Q
x

↽−−−− SQ′
R′P | S′Q

τ
↽−−−− ν(RP ′ | SQ′)

R′P
◻x↽−−−− RP ′ S′Q

◻x↽−−−− SQ′
R′P | S′Q

◻τ↽−−−− ν(RP ′ | SQ′)

RP
x

↽−−−− ◻P ′ SQ
x

↽−−−− ◻Q′
RP | SQ

τ
↽−−−− ν◻P ′|Q′

RP
◻x↽−−−− ◻P ′ SQ

◻x↽−−−− ◻Q′
RP | SQ

◻τ↽−−−− ν◻P ′|Q′

RP
x

↽−−−− ◻P ′ SQ
x

↽−−−− ◻Q′
RP | SQ

τ
↽−−−− ◻ν(P ′|Q′)

R′P
push∗c′
↽−−−− RP ′

νR′P
c′c↽−−−− νRP ′

R′P
push∗c′
↽−−−− ◻P ′

νR′P
c′c↽−−−− ◻νP ′

R′P
push∗b′
↽−−−− RP ′

νR′P
b′
b↽−−−− ν(ρswap

∗RP ′)
R′P

push∗b
↽−−−− ◻P ′

νR′P
b

↽−−−− ◻ν(swap∗P ′)

R′P | R2
!P

a′a↽−−−− RP ′
(!R′ tR2)!P

a′a↽−−−− RP ′

Figure 5 Backward slicing judgement R′P
a′a↽−−−− RP ′ .

3 Slicing and causal equivalence

In this section, we show that when dynamic slicing a π-calculus program, slicing with respect
to any causally equivalent execution yields essentially the same slice. “Essentially the same”
here means modulo lattice isomorphism. In other words slicing discards precisely the same
information regardless of which interleaving is chosen to do the slicing.

Proof-relevant causal equivalence. Causally equivalent computations are generated by
transitions which share a start state, but which are independent. Following Lévy [11], we
call such transitions concurrent, written t ^ t′. We illustrate this idea, and the non-trivial
relationship that it induces between terminal states, by way of example. For the full definition
of concurrency for π-calculus, we refer the interested reader to [15] or to the Agda definition1.
For the sake of familiarity the example uses regular names instead of de Bruijn indices.

Example. Consider the process P0
def= (νyz) (x〈y〉.P) | x〈z〉.Q for some unspecified processes

P and Q. This process can take two transitions, which we will call t and t′. Transition

1 https://github.com/rolyp/proof-relevant-pi/blob/master/Transition/Concur.agda

CONCUR 2016

https://github.com/rolyp/proof-relevant-pi/blob/master/Transition/Concur.agda

18:10 Causally Consistent Dynamic Slicing

t : P0
x(y)−−−→ P1 extrudes y on the channel x:

P0
x(y)−−−−→ (νz) P | x〈z〉.Q def= P1

whereas transition t′ : P0
x(z)−−−→ P ′1 extrudes z, also on the channel x:

P0
x(z)−−−−→ (νy) (x〈y〉.P) | Q def= P ′1

In both cases the output actions are bound, representing the extruding binder. Moreover, t
and t′ are concurrent, written t ^ t′, meaning they can be executed in either order. Having
taken t, one can mutatis mutandis take t′, and vice versa. Concurrency is an irreflexive and
symmetric relation defined over transitions which are coinitial (have the same source state).

The qualification is needed because t′ will need to be adjusted to operate on the target
state of t, if t is the transition which happens first. If t′ happens first then t will need to be
adjusted to operate on the target state of t′. The adjusted version of t′ is called the residual
of t′ after t, and is written t′/t. In this case t′/t can still extrude z:

P1 = (νz) P | x〈z〉.Q x(z)−−−−→ P | Q def= P ′0

whereas the residual t/t′ can still extrude y:

P ′1 = (νy) (x〈y〉.P) | Q x(y)−−−−→ P | Q = P ′0

The independence of t and t′ is confirmed by the fact that t · t′/t and t′ · t/t′ are cofinal
(share a target state), as shown on the left below.

P0

P1

P ′1

P ′0

t

t′

t′/t

t/t′

↓P0

↓P1

↓P ′1

↓P ′0

stept

stept′

stept′/t

stept/t′

We say that the traces t̃ def= t · t′/t and ũ
def= t′ · t/t′ are causally equivalent, written

t̃ ' ũ. The commutativity of the right-hand square (Theorem 16 below) means the two
interleavings are also equivalent for slicing purposes. Here stept denotes the Galois connection
(stept, unstept).

However [15], which formalised causal equivalence for π-calculus, showed that causally
equivalence traces do not always reach exactly the same state, but only the same state up
to some permutation of the binders in the resulting processes. This will become clear if
we consider another process Q0

def= (x(y′).R) | x(z′).S able to synchronise with both of the
extrusions raised by P0 and consider the two different ways that P0 | Q0 can evolve.

First note that Q0 can also take two independent transitions: u : Q0
x(y′)−−−→ R | x(z′).S def=

Q1 inputs on x and binds the received name to y′; and u′ : Q0
x(z′)−−−→ (x(y′).R) | S def= Q′1

also inputs on x and binds the received name to z′. (Assume z is not free in the left-
hand side of Q0 and that y is not free in the right-hand side.) The respective residuals
Q1 = R | x(z′).S x(z′)−−−→ R | S def= Q′0 and Q′1 = (x(y′).R) | S x(y′)−−−→ R | S = Q′0 again
converge on the same state Q′0, leading to a diamond for Q0 similar to the one for P0 above.

The subtlety arises when we put P0 and Q0 into parallel composition, since now we have
two concurrent synchronisation possibilities. For clarity we give the derivations, which we
call s and s′:

t : P0
x(y)−−−−→ P1 u : Q0

x(y′)−−−−→ Q1

s : P0 | Q0
τ−−−−→ (νy) P1 | Q1{y/y′}

t′ : P0
x(z)−−−−→ P ′1 u′ : Q0

x(z′)−−−−→ Q′1

s′ : P0 | Q0
τ−−−−→ (νz) P ′1 | Q′1{z/z′}

R. Perera, D. Garg, and J. Cheney 18:11

The labelled transition system is closed under renamings; thus the residual u′/u has an
image in the renaming ·{y/y′}, and u/u′ has an image in the renaming ·{z/z′}, allowing us
to derive composite residual s′/s:

t′/t : P1
x(z)−−−−→ P ′0

u′/u : Q1
x(z′)−−−−→ Q′0

(u′/u){y/y′} : Q1{y/y′}
x(z′)−−−−→ Q′0{y/y′}

s′/s : (νy) P1 | Q1{y/y′}
τ−−−−→ (νyz) P ′0 | Q′0{y/y′}{z/z′}

By similar reasoning we can derive s/s′:

s/s′ : (νz) P ′1 | Q′1{y/y′}
τ−−−−→ (νzy) P ′0 | Q′0{z/z′}{y/y′}

By side-conditions on the transition rules the renamings ·{y/y′} and ·{z/z′} commute
and so Q′0{y/y′}{z/z′}

def= Q2
0 = Q′0{z/z′}{y/y′}. However, the positions of binders y and z

are transposed in the terminal states of s′/s and s/s′. Instead of the usual diamond shape,
we have the pentagon on the left below, where φ is a braid representing the transposition of
the binders. Lifted to slices, φ becomes the unique isomorphism braidφ relating slices of the
terminal states, as shown in the commutative diagram on the right:

P0 | Q0

(νz) P1 | Q1{y/y′}

(νy) P ′1 | Q′1{z/z′}

(νyz) P ′0 | Q′′0

(νzy) P ′0 | Q′′0

s

s′

s′/s

s/s′

φ ↓(P0 | Q0)

↓((νz) P1 | Q1{y/y′})

↓((νy) P ′1 | Q′1{z/z′})

↓((νyz) P ′0 | Q′′0)

↓((νzy) P ′0 | Q′′0)

steps

steps′

steps′/s

steps/s′

braidφ

In the de Bruijn setting, a braid like φ does not relate two processes of the form (νyz) R
and (νyz) R but rather two processes of the form ννR and νν(swap∗R): the transposition of
the (nameless) binders is represented by the transposition of the roles of indices 0 and 1 in
the body of the innermost binder.

I Definition 11 (Bound braid P o R). Inductively define the symmetric relation P o R
using the rules below.

νν-swapP
ννP o ννP ′

P = swap∗P ′ ·+Q
P o R

P +Q o R+Q
P + ·

Q o S
P +Q o P + S

· | Q
P o R

P | Q o R | Q
P | ·

Q o S
P | Q o P | S

ν·
P o R
νP o νR

!·
P o R

!P o !R

Following [15], we adopt a compact term-like notation for o proofs, using the rule names
which occur to the left of each rule in Definition 11. For the extrusion example above, φ (in
de Bruijn indices notation) would be a leaf case of the form νν-swap·|·.

I Definition 12 (Lattice isomorphism for bound braid). Suppose φ : Q o Q′. Define the
following pair of monotone functions between ↓Q and ↓Q′ by structural recursion on φ.
braidφ : ↓Q −→ ↓Q′

braidνν-swapP (ννR) = νν(renswap,P (R))
braidφ+S (R+ S) = braidφ R+ S

braidR+ψ (R+ S) = R+ braidψ S
braidφ|S (R | S) = braidφ R | S
braidR|ψ (R | S) = R | braidψ S
braidνφ (νR) = ν(braidφ R)
braid!φ (!R) = !(braidφ R)

unbraidφ : ↓Q′ −→ ↓Q
unbraidνν-swapP (ννR) = νν(renswap,P (R))
unbraidφ+S (R+ S) = unbraidφ R+ S

unbraidR+ψ (R+ S) = R+ unbraidψ S
unbraidφ|S (R | S) = unbraidφ R | S
unbraidR|ψ (R | S) = R | unbraidψ S
unbraidνφ (νR) = ν(unbraidφ R)
unbraid!φ (!R) = !(unbraidφ R)

CONCUR 2016

18:12 Causally Consistent Dynamic Slicing

I Lemma 13.
1. braidφ ◦ unbraidφ = id↓Q′
2. unbraidφ ◦ braidφ = id↓Q

Proof. Induction on φ. In the base case use the idempotence of swap lifted to lattices. J

I Definition 14 (Lattice isomorphism for cofinality map). Suppose t ^ t′ with tgt(t′/t) = Q

and tgt(t/t′) = Q′. By Theorem 1 of [15], there exists a unique γt,t′ witnessing Q = Q′,
Q n Q′ or Q o Q′. Define the following pair of monotone functions between ↓Q and ↓Q′.
mapγt,t′ : ↓Q −→ ↓Q′

mapQ=Q′ = id↓Q
mapQ nQ′ = renswap,Q

mapφ:Q oQ′ = braidφ

unmapγt,t′ : ↓Q′ −→ ↓Q
unmapQ=Q′ = id↓Q
unmapQ nQ′ = unrenswap,Q

unmapφ:Q oQ′ = unbraidφ

I Lemma 15.
1. mapγt,t′ ◦ unmapγt,t′ = id↓Q′
2. unmapγt,t′ ◦mapγt,t′ = id↓Q

I Theorem 16. Suppose t ^ t′ as on the left. Then the pentagon on the right commutes.

P

R

R′

Q

Q′

t

t′

t′/t

t/t′

γt,t′ ↓P

↓R

↓R′

↓Q

↓Q′

stept

stept′

stept′/t

stept/t′

mapγt,t′

Lattice isomorphism for arbitrary causal equivalence. Concurrent transitions t ^ t′ induce
an “atom” of causal equivalence, t · t′/t ' t′ · t/t′. The full relation is generated by closing
under the trace constructors (for horizontal composition) and transitivity (for vertical
composition). In [15] this yields a composite form of cofinality map γα where α : t̃ ' ũ is an
arbitrary causal equivalence. We omit further discussion for reasons of space, but note that
γα is built by composing and translating (by contexts) atomic cofinality maps, and so gives
rise, by composition of isomorphisms, to a lattice isomorphism between ↓tgt(t̃) and ↓tgt(ũ).

4 Related work

Reversible process calculi. Reversible process calculi have recently been used for speculative
execution, debugging, transactions, and distributed protocols that require backtracking. A
key challenge is to permit backwards execution to leverage concurrency whilst ensuring causal
consistency. In contrast to our work, reversible calculi focus on mechanisms for reversibility,
such as the thread-local memories used by Danos and Krivine’s reversible CCS [4], Lanese et
al’s ρπ [10], and Cristescu et al’s reversible π-calculus [3]. We intentionally remain agnostic
about implementation strategy, whilst providing a formal guarantee that causally consistent
rewind and replay are a suitable foundation for any implementation.

R. Perera, D. Garg, and J. Cheney 18:13

Concurrent program slicing. An early example of concurrent dynamic slicing is Duesterwald
et al, who consider a language with synchronous message-passing [7]. They give a notion
of correctness with respect to a slicing criterion, but find that computing least slices is
undecidable, in contrast to our slices which are extremal by construction. Following Cheng [2],
most subsequent work has recast dynamic slicing as a dependency-graph reachability problem;
our approach is to slice with respect to a particular interleaving, but show how to derive the
slice corresponding to any execution with the same dependency structure.

Goswami and Mall consider shared-memory concurrency [8], and Mohapatra et al tackle
slicing for concurrent Java [13], but both present only algorithms, with no formal guarantees.
Tallam et al develop an approach based on dependency graphs, but again offer only algorithms
and empirical results [17]. Moreover most prior work restricts the slicing criteria to the
(entire) values of particular variables, rather than arbitrary parts of configurations.

Provenance and slicing. Our interest in slicing arises in part due to connections with
provenance, and recent applications of provenance to security [1]. Others have also considered
provenance models in concurrency calculi, including Souliah et al [16] and Dezani-Ciancaglini
et al [6]. Further study is needed to relate our approach to provenance and security.

5 Conclusion

The main contribution of this paper is to extend our previous approach to slicing based
on Galois connections to π-calculus, and show that the resulting notion of slice is invariant
under causal equivalence. For this latter step, we build on a prior formalisation of causal
equivalence for π-calculus [15]. Although de Bruijn indices significantly complicate the
resulting definitions, the formalism is readily implemented in Agda. This paper provides
a foundation for future development of rigorous provenance tracing or dynamic slicing
techniques for practical concurrent programs, which we plan to investigate in future work.

Acknowledgements. The U.S. Government and University of Edinburgh are authorized
to reproduce and distribute reprints for their purposes notwithstanding any copyright
notation thereon. Umut Acar helped with problem formulation and an earlier approach. Vít
Šefl provided valuable Agda technical support. Our anonymous reviewers provided useful
comments.

References
1 U. A. Acar, A. Ahmed, J. Cheney, and R. Perera. A core calculus for provenance. Journal

of Computer Security, 21:919–969, 2013. Full version of a POST 2012 paper.
2 J. Cheng. Slicing concurrent programs: A graph-theoretical approach. In Automated and

Algorithmic Debugging, number 749 in LNCS, pages 223–240. Springer-Verlag, 1993.
3 I. Cristescu, J. Krivine, and D. Varacca. A compositional semantics for the reversible

pi-calculus. In LICS, pages 388–397, June 2013.
4 V. Danos and J. Krivine. Reversible communicating systems. In Concurrency Theory, 15th

International Conference, CONCUR ’04, LNCS, pages 292–307. Springer, 2004.
5 N.G. de Bruijn. Lambda-calculus notation with nameless dummies: a tool for automatic

formula manipulation with application to the Church-Rosser theorem. Indagationes Math-
ematicae, 34(5):381–392, 1972.

6 M. Dezani-Ciancaglini, R. Horne, and V. Sassone. Tracing where and who provenance in
linked data: A calculus. Theoretical Computer Science, 464:113–129, 2012.

CONCUR 2016

18:14 Causally Consistent Dynamic Slicing

7 E. Duesterwald, R. Gupta, and M. L. Soffa. Distributed slicing and partial re-execution
for distributed programs. In Proceedings of the 5th International Workshop on Languages
and Compilers for Parallel Computing, pages 497–511. Springer, 1993.

8 D. Goswami and R. Mall. Dynamic slicing of concurrent programs. In High Performance
Computing – HiPC 2000, volume 1970 of LNCS, pages 15–26. Springer, 2000.

9 D. Hirschkoff. Handling substitutions explicitly in the pi-calculus. In 2nd International
Workshop on Explicit Substitutions: Theory and Applications to Programs and Proofs, 1999.

10 I. Lanese, C. A. Mezzina, and J.-B. Stefani. Reversing higher-order π. In Concurrency
Theory, 21st International Conference, CONCUR ’10, pages 478–493. Springer, 2010.

11 J.-J. Lévy. Optimal reductions in the lambda-calculus. In J. P. Seldin and J. R. Hindley,
editors, To H. B. Curry: Essays in Combinatory Logic, Lambda Calculus and Formalism,
pages 159–191. Academic Press, New York, NY, USA, 1980.

12 R. Milner. Communicating and mobile systems: the π calculus. Cambridge University
Press, Cambridge, UK, 1999.

13 D.P. Mohapatra, Rajib Mall, and Rajeev Kumar. An efficient technique for dynamic slicing
of concurrent Java programs. In Applied Computing, volume 3285 of LNCS, pages 255–262.
Springer, 2004.

14 R. Perera, U. A. Acar, J. Cheney, and P. B. Levy. Functional programs that explain their
work. In 17th ACM SIGPLAN International Conference on Functional Programming, ICFP
’12, pages 365–376. ACM, 2012.

15 R. Perera and J. Cheney. Proof-relevant pi-calculus, 2016. Submitted to Mathematical
Structures in Computer Science. http://arxiv.org/abs/1604.04575.

16 I. Souilah, A. Francalanza, and V. Sassone. A formal model of provenance in distributed
systems. In TAPP 2009, Berkeley, CA, USA, 2009. USENIX Association.

17 S. Tallam, C. Tian, and R. Gupta. Dynamic slicing of multithreaded programs for race
detection. In 24th IEEE International Conference on Software Maintenance (ICSM 2008),
pages 97–106. IEEE, 2008.

18 M. Weiser. Program slicing. In Proceedings of the 5th International Conference on Software
Engineering, ICSE ’81, pages 439–449, Piscataway, NJ, USA, 1981. IEEE Press.

A Agda module structure

Figure 6 summarises the module structure of the repository concurrent-slicing, which
contains the Agda formalisation. The module structure of the auxiliary repositories is
described in [15]. All repositories can be found at the URL https://github.com/rolyp.

http://arxiv.org/abs/1604.04575
https://github.com/rolyp

R. Perera, D. Garg, and J. Cheney 18:15

Auxiliary repositories
agda-stdlib-ext 0.0.3 Extensions to Agda library
proof-relevant-pi 0.3 Concurrent transitions, residuals and causal equival-

ence

Core modules
Action.Lattice Action slices a′ ∈ ↓a
Action.Concur.Lattice Action residual, lifted to slices
Action.Ren.Lattice Action renaming, lifing to slices
Braiding.Proc.Lattice Bound braids, lifted to slices via braidφ and unbraidφ
ConcurrentSlicing Include everything; compile to build project
ConcurrentSlicingCommon Common imports from standard library
Example Milner’s scheduler example
Example.Helper Utility functions for examples
Lattice Lattice typeclass
Lattice.Product Component-wise product of lattices
Name.Lattice Name slices y∈↓x
Proc.Lattice Process slices P ′∈↓P
Proc.Ren.Lattice Process renaming, lifted to slices via renρ,P and

unrenρ,P
Ren.Lattice Renaming slices σ∈↓ρ and application to slices (appρ,x

and unappρ,x)
Ren.Lattice.Properties Additional properties relating to renaming slices
Transition.Lattice Slicing functions stept and unstepgt
Transition.Ren.Lattice Renaming of transitions, lifted to lattices

Transition.Concur.Cofinal.Lattice Braidings γt,t′ lifted to slices
Transition.Seq.Lattice Slicing functions fwdt̃ and bwdt̃

Common sub-modules
.GaloisConnection Galois connection between lattices defined in parent

module

Figure 6 concurrent-slicing module overview, release 0.1.

CONCUR 2016

Topological Self-Stabilization with Name-Passing
Process Calculi
Christina Rickmann1, Christoph Wagner2, Uwe Nestmann3, and
Stefan Schmid4

1 Technische Universität Berlin, Germany
c.rickmann@tu-berlin.de

2 Technische Universität Berlin, Germany
christoph.wagner@tu-berlin.de

3 Technische Universität Berlin, Germany
uwe.nestmann@tu-berlin.de

4 Aalborg University, Denmark
schmiste@cs.aau.dk

Abstract
Topological self-stabilization is the ability of a distributed system to have its nodes themselves es-
tablish a meaningful overlay network. Independent from the initial network topology, it converges
to the desired topology via forwarding, inserting, and deleting links to neighboring nodes.

We adapt a linearization algorithm, originally designed for a shared memory model, to asyn-
chronous message-passing. We use an extended localized π-calculus to model the algorithm and
to formally prove its essential self-stabilization properties: closure and weak convergence for every
arbitrary initial configuration, and strong convergence for restricted cases.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, F.3.1 Specify-
ing and Verifying and Reasoning about Programs

Keywords and phrases Distributed Algorithms, Fault Tolerance, Topological Self-Stabilization,
Linearization, Process Calculi

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2016.19

1 Introduction and Technical Preliminaries

Distributed algorithms are designed to be executed on networked hardware consisting of
several connected processes like computers, processors or threads [7]. With the importance
of distributed algorithms and the increasing complexity, the need for robust, error-prone
solutions rises. The field of self-stabilization [5] offers such fault tolerance. We adapt the
algorithm of [4] to a more realistic setting, i.e., we are using a local memory model with
asynchronous message-passing opposed to the shared memory model of [4]. Based on an
adapted version of the localized π-calculus [8], we formalize the algorithm and use methods
similar to [3, 12] to prove it correct.

The approach of self-stabilizing systems was first introduced by [2]. According to [3],
the idea of a self-stabilizing system is simply as follows: when started in an arbitrary state
it always converges to a desired state. This leads to the ability to tolerate any transient
fault, including process crash with recovery, transmission errors like loss or corruption, and
corrupted random-access memory. A transient fault is any event that may changes the state
of the system, but not its behavior i.e., the program code. The state after the end of the
last fault can be considered as a new initial state and the system must recover if no new

© Christina Rickmann, Christoph Wagner, Uwe Nestmann, and Stefan Schmid;
licensed under Creative Commons License CC-BY

27th International Conference on Concurrency Theory (CONCUR 2016).
Editors: Josée Desharnais and Radha Jagadeesan; Article No. 19; pp. 19:1–19:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.19
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

19:2 Topological Self-Stabilization with Name-Passing Process Calculi

faults occur for a sufficiently long period of time. Another characteristic of self-stabilizing
algorithms is that they must not terminate [3] and processes must continuously communicate
with neighboring nodes. As a consequence, the participating processes can not know whether
the system is stabilized (i.e., is in a correct configuration). Dolev defines a self-stabilizing
system in [3] as follows:

I Definition 1 (Self-Stabilizing System). A self-stabilizing system can be started in any
arbitrary configuration and will eventually exhibit a desired “legal” behavior. We define the
desired legal behavior by a set of legal executions denoted LE . A set of legal executions
is defined for a particular system and a particular task. Every system execution of a self-
stabilizing system should have a suffix that appears in LE. A configuration c is safe with
respect to a task LE and an algorithm if every fair execution of the algorithm that starts from
c belongs to LE (closure). An algorithm is self-stabilizing for a task LE if every fair execution
of the algorithm reaches a safe configuration with respect to LE ([strong] convergence).

According to [3], so-called potential functions are a classic approach to prove convergence.
The idea is to define a function over the configuration set and to prove that this function
monotonically decreases (or increases) with every executed step. Additionally, it has to be
shown that after the function reaches a certain threshold, the system is in a safe configuration.
Since the closure property states that every step from a safe or correct configuration leads
again to a correct configuration, closure is usually proven through invariants. An easier to
achieve and easier to prove property is weak stabilization. According to [6], a system is
weakly stabilizing if for every initial configuration there is an execution that reaches a safe
or correct configuration. This property is called weak convergence.

Topological self-stabilization describes a particular class of self-stabilizing systems. The
goal is that the nodes themselves establish a meaningful overlay network, independent from
the initial network topology, via forwarding, inserting, and deleting links to neighboring
nodes. One of such desired network topologies is a chain. Given a fixed set of nodes V with
unique identifiers (ids) and a total order (≤), the goal is to build an ordered list of the nodes
according to their ids. Hence, the (undirected) linear/chain graph GL = (V,EL) is defined as
{u, v} ∈ EL iff u = succ(v)∨ v = succ(u) (where succ(v) defines the ≤-next id after v). Since
the successor of any node is (if existent) uniquely defined, the linear graph is also unique for
a given node set V . According to [4], a linearization algorithm is defined as follows:

I Definition 2 (Linearization). A linearization algorithm is a distributed self-stabilizing
algorithm where an initial configuration forms any (undirected) connected graph G0 = (V,E0),
the only legal configuration is the linear topology GL = (V,EL) on the nodes V , and actions
only update the neighborhoods of the nodes.

Gall et al. introduce in [4] two variants of a self-stabilizing algorithm for graph linearization,
named LINall and LINmax . Both are based on the idea that whenever a node has two
neighbors, both of which have a smaller (or both a greater) id, it establishes a link between
them and deletes its link to the smaller (respectively greater) one. These steps are called
left and right linearization and are depicted in Figure 1. The variants of the algorithm only
differ in which linearization steps are enabled.

The algorithm only works in a setting where all nodes have write access to the whole
memory as the shared variables are written not only by the nodes themselves but also by their
neighbors. Such a shared memory model does not seem a good match for distributed systems
like peer-to-peer systems, which usually rely on message-passing, and where communication
links may be asymmetric. We redesigned and modelled the algorithm for an asynchronous

C. Rickmann, C. Wagner, U. Nestmann, and S. Schmid 19:3

uvw

(a) Left Linearization.

u v w

(b) Right Linearization.

Figure 1 Linearization steps.

message-passing system. Our algorithm corresponds to the LINall variant, but it would be
equally possible—with a small adjustment—to implement LINmax .

In order to prevent a faulty design of an algorithm and to confirm the correctness of proofs
the usage of formal methods is imperative. The π-calculus is a well-known and widely-used
process calculus to model concurrent and distributed systems. According to [9] it is designed
to naturally express processes with a changing link infrastructure, as the communication
between processes carries information that leads to a change in the linkage of processes. We
model our algorithm in an extension of the localized π-calculus [8], a distributable variant [1]
of the π-calculus [11]. We extend the calculus with data (similar to [12]) in order to explicitly
keep track of the neighbors of each node and thus of the systems topology. Each node can
receive messages via a channel with the same name as its own id. To enable a neighboring
node to communicate with another neighbor it is sufficient to send it the corresponding id.
We prove the self-stabilization properties closure, weak convergence, and restricted cases of
strong convergence utilizing state-based reasoning rather than an action-based style (cf. [12]).

Related Work. Self-stabilization in the context of distributed computing was first introduced
by [2]. The fundamentals of topological self-stabilization and linearization for this work
originated in [4], which is also the foundation for the algorithm and the main idea of the
proofs. The basics in designing a self-stabilizing algorithm and main proof techniques, as well
as a general introduction and overview can be found in [3]. We used an extended localized
π-calculus to model our algorithm in an unambiguous way and as a formal basis for proofs.
Self-stabilization does not offer masking fault tolerance, i.e., it does not ensure liveness and
safety of the whole system, but it still ensures liveness, hence nonmasking fault tolerance.
Even though masking fault tolerance is strictly stronger than nonmasking, it might not always
be achievable or too costly [5], making nonmasking fault tolerance—thus self-stabilizing
algorithms—a good alternative. The basic localized π-calculus is due to [8] and extended in
a way similar to [12]. Furthermore, we introduce standard forms for reachable states—again
based on ideas from [12], and inspired by [9]—which enables us to explicitly and structurally
keep track of the global state and therefore the topology of the system.

Contributions and Overview. We adapt a self-stabilizing algorithm for graph linearization:
whereas the original algorithm works only in a very restrictive shared memory model, our
algorithm is applicable in a completely asynchronous message-passing system.

We formally prove the closure property, i.e., if the system reaches a correct configuration, it
stays in a correct configuration if no fault occurs. Furthermore, we prove strong convergence
for restricted cases. Assume an initial configuration that is connected while taking the
messages in transit into account. Strong convergence holds whenever every process knows,
first, at most its desired neighbors, and second, at least its desired neighbors. For the general
case, i.e., an arbitrary connected initial configuration, we prove weak convergence. With
strong convergence for the corner cases and weak convergence in general, we have all essentials
for proving strong convergence in general. Approaches are discussed in [10].

CONCUR 2016

19:4 Topological Self-Stabilization with Name-Passing Process Calculi

1 2 3 4 5

Figure 2 Desired network topology, whereby the nodes are ordered according to their ids.

First, we introduce our model (Section 2) and the redesigned algorithm for asynchronous
message-passing (Section 3). Then, we present selected proven properties (Section 4); the
complete proofs can be found in [10]. Finally, we summarize our approach and hint at future
work (Section 5).

2 Model for Asynchronous Message-Passing

We assume n processes in the system and every process has a unique id. To be as general as
possible, we only assume the existence of a total order on these ids.

I Assumption (Ids). Every process has a unique constant id.

I Definition 3 (Process identifiers P). Let P be the (non-empty) finite set of unique identifiers
of the processes in the system. Let ≤ be a total order on P. Let |P| = n ∈ N then there
exists an index function (bijection) i : P → {1, . . . , n} and ∀p ∈ P.i(p) = |{q ∈ P|q ≤ p}| i.e.,
i(p) describes the position of p with respect to ≤.

We define the predecessor and the successor pred, succ : P → (P ∪ ⊥) of a process as
respectively the next smaller and next greater process according to the total order (and ⊥ if
there is none). We call such a pair of processes consecutive. The overlay network that the
processes (represented as nodes) shall establish is an ordered doubly-linked list according to
the total order on the ids (example depicted in Figure 2). Every process has an unidirectional
link (represented as edge) to its predecessor and its successor (with exception of the smallest
resp. greatest process) and there are no other links. We call this topology the (directed)
linear graph. The undirected linear graph is the undirected variant. Here, for every pair of
consecutive processes at least one of them has a link to the other one.

I Definition 4 (Desired Topology Graph). The (directed) linear graph GLIN = (P, E) is
defined as E = {(p, q)|p, q ∈ P ∧ (p = succ(q) ∨ q = succ(p))} and the undirected ULIN is
defined accordingly.

The distance dist : P×P → N is the number of nodes between the two processes according
to the total order. A process has a distance of zero to itself and the distance between a pair
of consecutive processes is one. The length of a (directed or undirected) edge is defined as
the distance between the connected nodes.

Extended Localized Pi-Calculus. To model the algorithm, we introduce an extension of
the name-passing localized π-calculus, the extended localized π-calculus eLπ =

〈
PeL, 7−→

〉
.

The extension is based on ideas similar to [12], which allows us to define a kind of standard
form for a configuration of our algorithm. The local state of all processes and the messages in
transit, and therefore the global state of the system, is directly accessible via the parameters
of the corresponding process definition. This in turn allows state-based proofs, which is more
traditional for distributed algorithms [7], instead of the action-based style of process calculi.

I Notation (Multisets). Let a, b, c ∈ S be arbitrary elements of an arbitrary set S. We denote
with M = {|a, a, b, c|} a multiset and use NS as the type of such a set. Furthermore, the

C. Rickmann, C. Wagner, U. Nestmann, and S. Schmid 19:5

union ∪ of two multisets is the multiset where all appearances of elements in both are added
and the difference \ is the multiset where all appearances of elements in the first multiset
are decreased by those in the second (but at least zero). Since sets are only special cases
with multiplicity one for all elements, we also use combinations of sets and multisets.

We assume the existence of a countably infinite set A containing all channel names,
function names, and variables. K(X) denotes a parameterized process constant, which is
defined with respect to a finite set of process equations D of the form {Kj(X) = Pj}j∈J .
Since we use parameterized process constants, we exclude replication and use instead recursion
via process definitions to model repetitive behavior.

I Definition 5 (Syntax of the extended Localized π-Calculus: PeL).

Data Values V v ::= ⊥ | 0 | 1 | c | (v, v) | {v, . . . , v} |
{|v, . . . , v|}, with c ∈ A

Variable Pattern X ::= x | (X,X) , with x ∈ A
Expressions e ::= v | X | (e, e) | f (e) , with f ∈ A
Processes P P ::= 0 | P | P | c(X) .P | c〈v〉 | (νc)P |

if e then P else P | let X = e in P | K(e)
Process Equations D ={Kj(X) = Pj}j∈J a finite set of process definitions

where in c(X) .P every variable x that appears in X may not occur free in P in input
position.

Names received as an input and restricted names are bound names. The remaining names
are free names. Accordingly, we assume three sets, the sets of names n(P) and its subsets
of free names fn(P) and bound names bn(P), with each term P . To avoid name capture or
clashes, i.e., to avoid confusion between free and bound names or different bound names,
bound names can be mapped to fresh names by α-conversion. We write P ≡α Q if P
and Q differ only by α-conversion. The substitution of value v for a variable pattern X in
expression e or process P is written {v/X}e and {v/X}P respectively. Note that only data
values can be substituted for names and that all variables of the pattern X must be free in P
(while possibly applying α-conversion to avoid capture or name clashes). Let [[e]] denote the
evaluation of expression e which allows results in a data value, defined in the standard way.

I Definition 6 (Structural Congruence for the Localized π-Calculus). The structural congruence
for the extended localized π-calculus is based on the structural congruence for the π-calculus:
P ≡ Q if P ≡α Q P | 0 ≡ P P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R (νn) 0 ≡ 0

P | (νn)Q ≡ (νn) (P | Q) , if n /∈ fn(P) (νn) (νm)P ≡ (νm) (νn)P
if e then P else Q ≡ P, if [[e]] = 1 if e then P else Q ≡ Q if [[e]] = 0

let X = e in P ≡ {[[e]]/X}P K(e) ≡ {[[e]]/X}P if (K(X) = P) ∈ D

We are only interested in the interaction between the processes and not with any further
environment. Therefore, we only present a reduction semantics for our extended localized
π-calculus, based on the reduction semantics of the π-calculus.

I Definition 7 (Reduction Semantics of the extended Localized π-Calculus: 7−→). Defined as:

comm:
c(X).P | c〈v〉 7−→ {v/X}P

P ≡ Q Q 7−→ Q′ Q′ ≡ P ′
struct:

P 7−→ P ′

P 7−→ P ′res:
(νc)P 7−→ (νc)P ′

P 7−→ P ′par:
P | Q 7−→ P ′ | Q

CONCUR 2016

19:6 Topological Self-Stabilization with Name-Passing Process Calculi

I Definition 8 (Steps). We call a single application of this reduction semantics, P 7−→ P ′, a
step and write p=⇒ for the reflexive and transitive closure of 7−→. We use execution to refer
to a reduction starting from a particular term.

Every structural extension like function calls, if-then-else-statements, and let-in-statements
are evaluated in the structural congruence. The evaluation of these constructs is not considered
a step on its own. Hence, internal computations are executed as parts of other steps.

The fault tolerance of self-stabilization is based on the property that the initial state
can be arbitrarily. It is sufficient to show that every arbitrary state can serve as an initial
state to ensure this form of fault tolerance since the state after every fault can be seen as
a new initial state. Thus, we assume for the proofs as usual that there are no faults. An
infinite message delay can be seen as message loss. Therefore, every message that is sent is
received after finite time. Since the message-passing model is asynchronous, there are no
further assumptions regarding the delivery time of messages.

I Assumption (No Message Loss). Every message is received after a finite but arbitrary
number of steps.

Furthermore, we need an assumption of fairness, as otherwise nodes could starve. A
process starves if it never executes a step. Furthermore, a subprocess of a node could starve,
e.g. if the process is only consuming messages, but never tries to find a linearization step
itself. Without a fairness assumption, it is not possible to show any progress in the system.

I Assumption (Fairness). Every continuously enabled subprocess will eventually (after an
arbitrary but finite number of steps) execute a step.

3 Linearization Algorithm for Asynchronous Message-Passing

The utilization of a calculus enables us to model the algorithm unambiguously and allows us
to formally prove properties of the algorithm. Although in the calculus itself all channels
are bidirectional, we only use them in an unidirectional manner. Together with the output-
capability restriction of the localized π-calculus this helps us to ensure that every process
can be implemented in an asynchronous setting on a different location [1].

Each node can receive messages from other nodes via a channel with the same name as
its id. One could think of the ids as serving as the IP address of the corresponding process.
To enable a neighbor to communicate with another process, one sends it the corresponding
id. Thus, A contains the ids of all processes in the system i.e., P ⊆ A.

To model local variables, we use restricted channels for every process. Each variable
is represented through a message in transit that only can be sent and received by the
corresponding process. The value of such a local variable is modeled by the value of the
matching message in transit. Thus, receiving the message corresponds to reading the variable
and sending corresponds to writing. In our algorithm, every process p has one local variable
nbp, describing the neighborhood of the process i.e., it contains the ids of all processes that p
knows and can send messages to.

Each process can be in one of two states. In the state Alg (p, nb) the process p is able to
receive a message from another process in the system. In the state Alg′ (p, nb, x) the process
p can add a previously received process id x to its current neighborhood nb. In doing so,
a process blocks the reception of messages until the the previously received id is added to
the neighborhood. In both states, the process can additionally try to find a linearization
step in its current neighborhood nb based on internal computations. If it finds no possible
linearization step, it sends keep-alive-messages to its current neighbors.

C. Rickmann, C. Wagner, U. Nestmann, and S. Schmid 19:7

uvw

(a) Directed Left Linearization.

u v w

(b) Directed Right Linearization.

Figure 3 Directed linearization steps.

In the algorithm, LeftN : P × 2P → 2P calculates the left neighborhood of a process
i.e., all neighbors with a smaller id and corresponding RightN : P × 2P → 2P the right
neighborhood of a process i.e., all neighbors with a greater id. findLin : P × 2P×P → 2P×P
calculates all possible linearization steps in the neighborhood of a process, based on the input
set: findLin (p, y) = {(q, r)|q, r ∈ y ∧ q < r ∧ (q, r ∈ LeftN (p, y) ∨ RightN (p, y))}.
The function select : 2P×P → (P × P) returns one arbitrary of these linearization steps.

I Definition 9 (Subprocesses). For every process p ∈ P we denote Algmatch (p) ,Algrec (p),
and Algadd (p, ·) as subprocesses of p. Note that all subprocess are input guarded.

Alg (p, initNb) = (νnbp)
(
nbp〈initNb〉 | Algrec (p) | Algmatch (p)

)
Alg′ (p, initNb, x) = (νnbp)

(
nbp〈initNb〉 | Algadd (p, x) | Algmatch (p)

)
Algrec (p) = p(x) .Algadd (p, x) Algadd (p, x) = nbp(y) .

(
nbp〈y ∪ {x}〉 | Algrec (p)

)
Algmatch (p) = nbp(y) .

(
let x = select (findLin (p, y)) in

if x = ⊥ then
∏
j∈y

j〈p〉 | nbp〈y〉

else if x = (j, k) then
if j < k ∧ k < p then j〈k〉 | nbp〈y \ {j}〉
else if j < k ∧ p < j then k〈j〉 | nbp〈y \ {k}〉

else nbp〈y〉
else nbp〈y〉

| Algmatch (p)
)

The subprocess Algrec (p) models the ability of a process to receive a message. When it
receives a message with content x, it continues as subprocess Algadd (p, x), thus the process
changes its state. Algadd (p, x) reads the current value of the neighborhood of p and adds the
previous received process id x. Afterwards, the process is again able to receive any message.

The subprocess Algmatch (p) defines the behavior, based on the internal computations
of findLin (p, nb), in case process p tries to find a linearization step in its neighborhood
nb. If there is no possible linearization step, select returns ⊥ and the process sends keep-
-alive-messages to its current neighbors. In case select returns a tuple, it defines a left or
right linearization step respectively and p sends the further away process the id of the other
process and deletes the receiver from its neighborhood (as depicted in Figure 3). The other
two else cases are only implemented to obtain a complete case distinction. It is ensured by
the definitions that these branches are never explored. The sending of the message nbp〈y〉
ensures that, if there would be a possibility to explore these branches, nothing changes. The
same value that was read in the previous step (i.e., received by the nbp(y) message) is written
(i.e., sent) again and therefore the neighborhood remains unchanged. In all cases, the process
is directly able to try to find another linearization step.

CONCUR 2016

19:8 Topological Self-Stabilization with Name-Passing Process Calculi

The system is composed of n such processes. The global states that serve as starting
points for the executions of our algorithm are called initial configurations. Later we show
that every global state can serve as such a starting point as required for self-stabilization.

I Definition 10 (Initial Configuration). Let
P be the set of unique identifiers and P, P ′ ⊆ P with P ∪ P ′ = P and P ∩ P ′ = ∅,
init : P → 2P a function that defines for every process p ∈ P the neighborhood i.e.,
which process ids are known by p,
Msgs ∈ NP×P a multiset that describes the messages in transit and
add : P ⇀ P a partial function with ∀p ∈ P ′.∃q ∈ P.(p, q) ∈ add and ∀p ∈ P.∀q ∈
P.(p, q) /∈ add that describes the adding in progress i.e., where add(p) = q describes that
p wants to add q to its neighborhood.

Then, an initial configuration of the algorithm is defined as the process term:

Algall (P, P ′, init,Msgs, add) =
∏
j∈P

Alg (j, init(j)) |
∏
j∈P ′

Alg′ (j, init(j), add(j)) |
∏

(j,k)∈Msgs

j〈k〉

In an initial configuration there is for every process p ∈ P exactly one nbp〈·〉-message.
This message can not be lost or duplicated through a previous fault as it models a variable.
A transient fault can lead to an arbitrary value of a variable but not to its disappearance or
duplication. This does not restrict the fault tolerance of the algorithm. Self-stabilization
tolerates transient faults but no permanent ones. The disappearance or duplication of a
variable could only be caused by corruption of the program code itself which would be a
permanent fault. The value of this message can be an arbitrary set of P (without p itself),
reflecting the arbitrary initial neighborhood of p. These messages of all processes describe the
initial network topology. A configuration describes the global state of the system, consisting
of the states of all processes and messages in transit.

I Definition 11 (Configuration). Let I be the set of all initial configurations. We call
every process term C that can be reached from any arbitrary initial configuration, i.e.,
∃I ∈ I.I p=⇒ C, configuration. We denote the set of all such configurations with T .

I Definition 12 (Reachability). We call a configuration C ′ reachable from a configuration C
iff C p=⇒ C ′. Further, we say a configuration with a predicate P is reached from configuration
C iff in every execution there is a configuration C ′ with C p=⇒ C ′ and P holds for C ′.

For every configuration C there are parameters with the same properties as in Definition 10
so that C is structurally equivalent to Algall (·, ·, ·, ·, ·). We call Algall (·, ·, ·, ·, ·) the standard
form of a configuration and use it as representative of all structurally equivalent configurations.
Therefore, every configuration is structurally equivalent to an initial configuration.

I Lemma 13 (Standard form). Starting from an arbitrary initial configuration every reachable
configuration is structurally equivalent to a term Algall (P, P ′,nb,Msgs, add) whereby P, P ′ ⊆
P with P ∪ P ′ = P and P ∩ P ′ = ∅, nb : P → 2P is a function that defines for every process
p ∈ P the neighborhood, Msgs ∈ NP×P is the multiset of messages in transit, add : P ⇀ P
is a partial function with ∀p ∈ P ′.∃q ∈ P.(p, q) ∈ add and ∀p ∈ P.∀q ∈ P.(p, q) /∈ add.

I Notation (Configuration Components). Let A be an arbitrary configuration then there are
parameters P, P ′, nb, Msgs, add with A ≡ Algall (P, P ′,nb,Msgs, add) and we denote in
the following : PA = P, P ′A = P ′, nbA = nb, MsgsA = Msgs and addA = add.

C. Rickmann, C. Wagner, U. Nestmann, and S. Schmid 19:9

u v w

(a) Topology without Messages.

u v w

(b) Topology with Messages.

Figure 4 Topology with and without messages whereby solid lines represent the edges.

I Corollary 14 (Steps). For every configuration A there are always exactly the following
steps (up to structural congruence) possible:
∀p ∈ P.select (findLin (p, nbA(p))) = ⊥ =⇒

A 7−→ Algall (PA, P ′A,nbA,MsgsA ∪ {(j, p)|j ∈ nbA(p)}, addA)
∀p ∈ P.select (findLin (p, nbA(p))) = (j, k) ∧ (j < k ∧ k < p) =⇒ A 7−→ A′ with

A′ ≡ Algall (PA, P ′A,nb,MsgsA ∪ {(j, k)}, addA) and nb(x) =
{
nbA(x), if x 6= p

nbA(p) \ {j}, if x = p

∀p ∈ P.select (findLin (p, nbA(p))) = (j, k) ∧ (j < k ∧ p < j) =⇒ A 7−→ A′ with

A′ ≡ Algall (PA, P ′A,nb,MsgsA ∪ {(k, j)}, addA) and nb(x) =
{
nbA(x), if x 6= p

nbA(p) \ {k}, if x = p

∀p ∈ P.if select (findLin (p, nbA(p))) does not match any previous case =⇒ A 7−→ A

∀p ∈ PA.∃q ∈ P.(p, q) ∈ MsgsA =⇒
A 7−→ Algall (PA \ {p}, P ′A ∪ {p},nbA,MsgsA \ {(p, q)}, addA ∪ {(p, q)})

∀p ∈ P ′A.∃q ∈ P.(p, q) ∈ addA∧ A 7−→ A′ with nb(x) =
{
nbA(x), if x 6= p

nbA(p) ∪ {q}, if x = p
and

A′ ≡ Algall (PA ∪ {p}, P ′A \ {p},nb,MsgsA, addA \ {(p, q)})

Topology of Configuration. The system is in a legal state i.e., correct configuration, if the
network topology of the system is the desired one, i.e., the linear graph. Thus, we need to
define the network topology of a configuration. The network topology graph of a configuration
describes to whom each process can send messages directly and therefore corresponds to the
neighborhood sets of all processes. To define the several cases in which strong convergence
holds and lower the preconditions as much as possible, we introduce variants of the network
topology of a configuration. They differ in whether we regard the direction of edges, and if
we take messages in transit into account or not. The network topology graphs with messages
describe the neighborhoods if all current messages in transit were received and processed
(depicted in Figure 4). This variant of the topology is, for example, also needed to define a
correct configuration. It is not enough that the current topology corresponds to the linear
graph, it also has to be ensured that no undesired connection will be established through a
message in transit.

I Notation (Topology (without messages)). In figures of the topology graph without messages
a solid line represents a process in the neighborhood, a dotted line a message in transit, and
a dashed line an adding in progress, i.e., an id that is already received but not yet added to
the neighborhood. In the topology graph with messages these are all defined as edges and
represented through a solid line.

I Definition 15 (Network Topology Graph (without Messages)). Let A be an arbitrary
configuration. The (directed) topology graph (without messages) T(A) = (P, E) is defined as:
E = {(p, q)|p, q ∈ P ∧ q ∈ nbA(p)}

CONCUR 2016

19:10 Topological Self-Stabilization with Name-Passing Process Calculi

1 2 3 4 5

Figure 5 Topology of an undirected correct configuration.

I Definition 16 (Network Topology Graph with Messages). Let A be an arbitrary configuration.
The (directed) topology graph with messages TM (A) = (P, E) is defined as: E = {(p, q)|p, q ∈
P ∧ (q ∈ nbA(p) ∨ (p, q) ∈ MsgsA ∨ addA(p) = q)}.

The undirected variants, i.e., the undirected topology graph U(A) and the undirected
topology graph with messages UM (A), are defined correspondingly.
I Notation (Topology Graph Components). Let A be an arbitrary configuration, we introduce
ET(A),ETM (A),EU(A) and EUM (A) to denote the edges of the different topology graphs
T(A) = (P, E), TM (A) = (P, E′), U(A) = (P, E′′) and UM (A) = (P, E′′′), i.e., we denote
in the following: ET(A) = E, ETM (A) = E′, EU(A) = E′′ and EUM (A) = E′′′.

If the topology graph with messages of the initial configuration is weakly connected, the
topology graph with messages of all reachable configurations is weakly connected. The only
steps that remove edges are linearization steps. If a process executes a linearization step, the
removed edge can be simulated by the introduced edge and the edge to the other neighbor of
the executing process. Thus, linearization can not result in partitioning the network.

I Lemma 17 (Connectivity). Let A0 be an initial configuration and A an arbitrary reachable
configuration. Then, it holds that if UM (A0) is connected, also UM (A) is connected.

Correct Configuration. A configuration is correct if every process knows only its consecutive
processes. To ensure that no other connections will be established, it must also hold that every
message in transit contains the id of a consecutive process of the receiver. Thus, the network
topology with and without messages must be the desired linear graph. With exception of the
number of these messages and the state of the processes, the correct configuration is unique.

I Definition 18 (Correct Configuration). Let A be an arbitrary configuration. A is a correct
configuration iff TM (A) = GLIN ∧ T(A) = GLIN

I Lemma 19 (Uniqueness, Directed Case). The correct configuration is unique up to structural
congruence, the number of messages in the system and the state of the processes.

A weaker property is described by an undirected correct configuration. Here, we only
demand that the undirected topology with message must be the undirected linear graph (as
depicted in Figure 5). Hence, the neighborhood of each process is a subset of its consecutive
processes and the messages in transit must satisfy the same requirement as before. To ensure
connectivity, between each pair of consecutive processes there must be at least one connection
while taking the messages in transit into account. Similarly to a correct configuration, an
undirected configuration is uniquely defined with exception of the number of messages, the
state of a process, and the type of the connection between a consecutive pair of processes.

I Definition 20 (Undirected Correct Configuration). Let A be an arbitrary configuration. A
is an undirected correct configuration iff UM (A) = ULIN

I Lemma 21 (Uniqueness, Undirected Case). The undirected correct configuration is unique
up to structural congruence, the number of messages in the system, the state of the processes,
and the type of connections.

C. Rickmann, C. Wagner, U. Nestmann, and S. Schmid 19:11

4 Results

We want to prove the algorithm correct. In order to show that the algorithm is self-stabilizing,
we have to prove convergence and closure (Definition 1). To be a linearization algorithm
according to Definition 2, the system is in a legal state if and only if the topology is the
linear graph. The complete proofs together with all omitted results can be found in [10].

Closure. Several closure properties are based on two facts: every process may only remove
processes from its own neighborhood and a process never removes the id of a desired neighbor
i.e., its predecessor and successor. Further, if every process knows only (a subset of) desired
neighbors, there are no more possible linearization steps in the system. All processes only
send and receive keep-alive-messages to and from desired neighbors respectively.

The only steps that remove edges i.e., ids from the neighborhood, are linearization
steps. Whenever a process does not execute any linearization steps, its neighborhood can be
expanded by reception of messages but not shrink.

If a process executes a linearization step it never removes a correct neighbor as it always
removes the process that is further away. Thus, if a process knows a correct neighbor, it
remains in the neighborhood for every reachable configuration. It follows directly that in the
directed and undirected topology without messages edges between consecutive neighbors are
preserved.

I Corollary 22 (Preservation of Correct Edges). Let A be an arbitrary configuration. For every
reachable configuration R i.e., A p=⇒ R, it holds: ∀p ∈ P.∀p′ ∈ {succ(p),pred(p)}.(p, p′) ∈
ET(A) =⇒ (p, p′) ∈ ET(R) and ∀p ∈ P.{p, succ(p)} ∈ EU(A) =⇒ {p, succ(p)} ∈ EU(R)

This preservation holds further for correct edges in the topologies with messages. Every
id carried by a messages cannot get lost and is received and processed eventually. Therefore,
also edges between desired neighbors that represent adding or messages are preserved.

I Lemma 23 (Preservation of Correct Edges with Messages). Let A be an arbitrary configu-
ration. For every reachable configuration R holds: ∀p ∈ P.∀p′ ∈ {succ(p),pred(p)}.(p, p′) ∈
ETM (A) =⇒ (p, p′) ∈ ETM (R) and ∀p ∈ P.{p, succ(p)} ∈ EUM (A) =⇒ {p, succ(p)} ∈ EUM (R).

The topology of a configuration contains the desired topology i.e., the linear graph is a
subgraph, if every correct edge is already established but possibly undesired edges are still
existent in addition. Since every correct edge is always preserved, this property is invariant.

I Corollary 24 (Closure for TM ⊆ GLIN ∧ T ⊆ GLIN). If A is a configuration with GLIN ⊆
TM (A) ∧ GLIN ⊆ T(A) it holds for every reachable configuration R i.e., A p=⇒ R, that
GLIN ⊆ TM (R) ∧ GLIN ⊆ T(R).

In the topology of an undirected correct configuration every edge is correct but there may
be correct edges missing. Through preservation of correct edges this property is invariant.
Each configuration that is reachable from an undirected correct configuration is itself an
undirected correct configuration. Further, none already established correct edge has been
removed.

I Lemma 25 (Closure for Undirected Correct Configuration). Let A be an arbitrary undirected
correct configuration. It holds for every reachable configuration C i.e., A p=⇒ C, that C is
also an undirected correct configuration.

CONCUR 2016

19:12 Topological Self-Stabilization with Name-Passing Process Calculi

The topology is the linear graph if and only if the configuration is a correct configuration
as in Definition 18. Closure states once a correct configuration is reached, provided no fault
occurs, the system stays in a correct configuration.

I Theorem 26 (Closure for Correct Configurations). Let A be a correct configuration then it
holds for every reachable configuration C i.e., A p=⇒ C, that C is also a correct configuration.

Convergence We prove strong convergence for restricted cases and weak convergence in
general. Strong convergence is proven if either there are possibly correct edges missing but no
non-correct edges existent in the topology with messages i.e., the topology is a subgraph of
the linear graph, or there are possibly still non-correct edges but at least all correct edges are
contained in the topology with messages i.e., the linear graph is a subgraph of the topology.

If there are only correct edges missing, there is at least one connection between every pair
of consecutive processes. No more possible linearization steps exist and every process sends
keep-alive-messages to the current known subset of desired neighbors. All these messages are
received and processed eventually and all missing correct edges are eventually established.

I Lemma 27 (Convergence for UM = ULIN). Let A be an arbitrary configuration. If the
undirected network topology with messages is the desired undirected topology i.e., UM (A) =
ULIN, then a correct configuration C is reached after a finite number of steps i.e., A p=⇒
C ∧ TM (C) = GLIN ∧ T(C) = GLIN.

If there are possibly still undesired edges in the topology but at least all correct edges are
established, the only processes that can send keep-alive-messages are processes that only know
their desired neighbors. Every process knows at least its desired neighbors and whenever a
process has additional neighbors, there is a linearization step. With every linearization step
the topology gets closer to the desired topology which is shown via a potential function.

I Lemma 28 (Convergence for GLIN ⊆ TM ∧ GLIN ⊆ T). Let A be an arbitrary configuration.
If GLIN ⊆ TM (A) ∧ GLIN ⊆ T(A), then a correct configuration C is reached after a finite
number of steps i.e., A p=⇒ C ∧ TM (C) = GLIN ∧ T(C) = GLIN.

Convergence also holds if the desired topology is a subgraph of the topology with messages.
Since every message that is in transit will eventually be received and processed, we always
reach a configuration with the linear graph as a subgraph of the topology without messages.

I Lemma 29 (Convergence for GLIN ⊆ TM). Let A be an arbitrary configuration. If GLIN ⊆
TM (A), then a correct configuration C is reached after a finite number of steps i.e., A p=⇒
C ∧ TM (C) = GLIN ∧ T(C) = GLIN.

The proofs use the fact that keep-alive-messages are only exchanged between desired
neighbors. Proving strong convergence in general is much more difficult as the sending
of keep-alive-messages to undesired neighbors can cause the reestablishing of undesired
connections. Therefore, we show weak convergence i.e., for every initial configuration there
are executions that converge to a correct configuration. For this, we define a perfect oracle.
It cannot be implemented and should only be seen as a restriction on the set of executions.

I Definition 30 (Perfect Oracle O). A perfect oracle is a global omniscient instance that
whenever the system is not in an (undirected) correct configuration only let the processes send
keep-alive-messages to resolve deadlocks and otherwise suppresses all keep-alive-messages.

C. Rickmann, C. Wagner, U. Nestmann, and S. Schmid 19:13

wvu wvu u v w u v w

Figure 6 Linearization steps in the undirected topology with messages but not in the directed.

I Remark. We show in Theorem 31 that starting from an arbitrary initial configuration a
correct configuration is reached after a finite number of steps. A perfect oracle O does not
suppress the sending of keep-alive-messages in a correct configuration. Once the system is in
a correct configuration, it stays in a correct configuration according to the closure property as
shown in Theorem 26. Hence, a perfect oracle is not contradictory to the fairness assumption.

We show that every execution that is admissible under the restriction of a perfect oracle
converges to a correct configuration. Since for every configuration this set of executions is
non-empty, we prove weak convergence in general. We introduced three potential functions
and showed that whenever at least one of them is minimal, the system reaches a correct
configuration in a finite number of steps. For every configuration, exactly one of the three
cases true: there is no more linearization step in the undirected topology with messages,
there is a linearization step in the directed topology with messages, or there is a linearization
step in the undirected but not in the directed topology with messages. We show that the
system neither can stay infinite long in the second case nor can infinitely often alternate
between the second and the third case without reaching a configuration in which at least one
of the three potential functions is minimal and thus convergence ensured.

I Theorem 31 (Convergence with Perfect Oracle). Let I be an arbitrary connected, i.e.,
UM (I) is connected, initial configuration and A an arbitrary reachable configuration i.e.,
I p=⇒ A. Assume there is a perfect oracle O. Then a correct configuration C is reached after
a finite number of steps i.e., A p=⇒ C ∧ TM (C) = GLIN ∧ T(C) = GLIN.

5 Conclusion

We adapted the algorithm for shared memory of [4] such that it works in an asynchronous
message-passing system. The algorithm of [4] requires a system where all processes must
have access to the whole memory, which is very restrictive. In the redesigned algorithm,
processes communicate via message-passing and we do not make any assumptions about the
time a process needs to execute a step or for message delivery. This makes it applicable in a
completely asynchronous message-passing system which is a significantly weaker requirement
and corresponds more to real life system conditions.

An algorithm is self-stabilizing, if it satisfies the properties of closure and convergence.
We formally proved the closure property, i.e., if the system reaches a correct configuration,
it stays in a correct configuration if no fault occurs. There are two forms of convergence.
Starting with an arbitrary initial configuration, strong convergence requires that in every
execution a correct configuration is reached, whereas weak convergence only claims the
existence of such an execution. We proved strong convergence for restricted cases. First,
whenever the topology with messages of a connected initial configuration only lacks desired
edges but no undesired ones exist, i.e., every process knows at most its desired neighbors,
strong convergence holds. Second, strong convergence also holds, whenever in the topology
with messages of an initial configuration there are just too many edges, but no desired ones
are missing. For the general case, i.e., an arbitrary connected initial configuration, we proved
weak convergence. For this proof, we introduced a global omniscient entity, called a perfect
oracle. We showed that every execution that is admissible under the assumption of a perfect

CONCUR 2016

19:14 Topological Self-Stabilization with Name-Passing Process Calculi

oracle ensures strong convergence. Since for every initial configuration this is a non-empty
set of executions, weak convergence holds in general.

We extended the localized π-calculus, which provides us through its clearly defined syntax
and semantics with the possibility to model the algorithm in a precise and unambiguous
manner. It is also the basis for formally proving properties about the algorithm. The usage
of standard forms [12] of configurations helps us to simplify the proof by identifying every
possible reachable process term with a structurally equivalent representative and significantly
reduces the number of cases to be analyzed. Further, this enables us to explicitly and
conveniently keep track of the global state of the system. This allows us to execute our proofs
in a state-based fashion, which is more traditional for distributed algorithms [7], rather than
in an action-based style, which would be more typical when using process calculi [11].

Future Work. As we strongly conjecture strong convergence to hold in general, the primary
goal is a convergence proof for the general case that works without any oracle at all. The
problem is that keep-alive-messages can reestablish edges that were already removed through
linearization steps. Nevertheless, if a process executes a linearization step, it prevents
the further away process eventually from ever sending keep-alive-messages to it again.
Neither keep-alive-messages nor linearization steps establishing edges that are longer as the
current longest edge in the topology with messages. The edge that is established through a
linearization step is even strictly shorter than the at least temporarily removed one.

The main difficulty is: a potential function that decreases strictly with every linearization
step cannot be monotonically decreasing with every step. Thus, potential functions alone
are not sufficient to prove strong convergence. A promising approach lies in finding good
properties for livelock freedom. With such properties, a general proof can likely be achieved
in various ways, as discussed in [10]. For example, livelock freedom properties could be used
to show that linearization steps involving the current longest edges are eventually enabled
and executed. If it can be shown that the current longest edges are eventually removed
permanently, strong convergence would hold.

In preparation for a general proof, it could be interesting to lower the restrictions on
the set of executions by an oracle and consider a weaker oracle to acquire further insight in
properties that could be helpful for a proof without any oracle.

References
1 P.-D. Brodmann. Distributability of Asynchronous Process Calculi. Master’s thesis, Tech-

nische Universität Berlin, Germany, October 2014.
2 E. W. Dijkstra. Self-stabilizing Systems in Spite of Distributed Control. Communications

of the ACM, 17(11):643–644, November 1974.
3 S. Dolev. Self-Stabilization. The MIT Press, 2000.
4 D. Gall et al. A Note on the Parallel Runtime of Self-Stabilizing Graph Linearization.

Theory of Computing Systems, 55(1):110–135, 2014.
5 F. C. Gärtner. Fundamentals of Fault-tolerant Distributed Computing in Asynchronous

Environments. ACM Comput. Surv., 31(1):1–26, March 1999.
6 M. G. Gouda. The Triumph and Tribulation of System Stabilization. In Proc. of the 9th

International WDAG, WDAG ’95, pages 1–18, 1995.
7 N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., 1996.
8 M. Merro and D. Sangiorgi. On Asynchrony in Name-Passing Calculi. In Proc. of ICALP,

volume 1443 of LNCS, pages 856–867. Springer, 1998.
9 R. Milner. communicating and mobile systems: the pi-calculus. Cambridge UP, 1999.

C. Rickmann, C. Wagner, U. Nestmann, and S. Schmid 19:15

10 C. Rickmann. Topological Self-Stabilization with Name-Passing Process Calculi. Master’s
thesis, Technische Universität Berlin, Germany, October 2015. arxiv.org/abs/1604.04197.

11 D. Sangiorgi and D. Walker. The π-calculus: A Theory of Mobile Processes. Cambridge
UP, 2001.

12 C. Wagner and U. Nestmann. States in Process Calculi. In Proc. of EXPRESS/SOS,
volume 160 of EPTCS, pages 48–62, 2014.

CONCUR 2016

Linear Distances between Markov Chains∗

Przemysław Daca1, Thomas A. Henzinger2, Jan Křetínský3, and
Tatjana Petrov4

1 IST Austria, Klosterneuburg, Austria
2 IST Austria, Klosterneuburg, Austria
3 Institut für Informatik, Technische Universität München, Germany
4 IST Austria, Klosterneuburg, Austria

Abstract
We introduce a general class of distances (metrics) between Markov chains, which are based on
linear behaviour. This class encompasses distances given topologically (such as the total variation
distance or trace distance) as well as by temporal logics or automata. We investigate which of the
distances can be approximated by observing the systems, i.e. by black-box testing or simulation,
and we provide both negative and positive results.

1998 ACM Subject Classification G.3 Probability and Statistics, F.4.3 Formal Languages

Keywords and phrases probabilistic systems, verification, statistical model checking, temporal
logic, behavioural equivalence

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2016.20

1 Introduction

Behaviour of processes is traditionally compared using various notions of equivalence, such
as trace equivalence, bisimulation, etc. However, the concept of equivalence is often too
coarse for quantitative systems, such as Markov chains. For instance, probabilities of
failures of particular hardware components are typically only empirically estimated and
the slightest imprecision in the estimate may result in breaking the equivalence between
processes. Moreover, if the (possibly black-box) processes are indeed different we would like
to measure how much they differ. This has led to lifting the Boolean idea of behavioural
equivalence to a finer, quantitative notion of behavioural distance between processes. The
distance between processes s and t is typically formalized as supp∈C |p(s)− p(t)| where C is a
class of properties of interest and p(s) is a quantitative value of the property p in process s
[13]. This notion has been introduced in [13] for Markov chains and further developed in
various settings, such as Markov decision processes [16], quantitative transition systems [12],
or concurrent games [11].

Several kinds of distances have been investigated for Markov chains. On the one hand,
branching distances, e.g. [1, 13, 26, 25, 4, 3, 2, 18], lift the equivalence given by the probabilistic
bisimulation of Larsen and Skou [22]. On the other hand, there are linear distances, in
particular the total variation distance [8, 6] and trace distances [20, 5]. Linear distances
are particularly appropriate when (i) we are interested in linear-time properties, and (ii) we
want to estimate the distance based only on simulation runs from the initial distribution of

∗ This research was funded in part by the European Research Council (ERC) under grant agreement 267989
(QUAREM), the Austrian Science Fund (FWF) under grants project S11402-N23 (RiSE and SHiNE)
and Z211-N23 (Wittgenstein Award), by the Czech Science Foundation Grant No. P202/12/G061, and
by the SNSF Advanced Postdoc. Mobility Fellowship – grant number P300P2_161067.

© Przemysław Daca, Thomas A. Henzinger, Jan Křetínský, and Tatjana Petrov;
licensed under Creative Commons License CC-BY

27th International Conference on Concurrency Theory (CONCUR 2016).
Editors: Josée Desharnais and Radha Jagadeesan; Article No. 20; pp. 20:1–20:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.20
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

20:2 Linear Distances between Markov Chains

the system, i.e. in a black-box setting. (Recall that for branching distances, the underlying
probabilistic bisimulation corresponds to testing equivalence where not only runs from the
initial distribution can be observed, but it is also possible to dump the current state of the
system, and later restart the simulation from this state [22].)

In this paper, we introduce a simple framework for linear distances between Markov
chains, using the formula above, where p(s) is the probability of satisfying p when starting
a simulation run in state s (when p is seen as a language of ω-words it is the probability
to generate a trace belonging to p). We consider several classes C of languages of interest,
characterized from several points of view, e.g. topologically, by linear-time logics, or by
automata, thus rendering our framework versatile.

We investigate when a given distance can be estimated in a black-box setting, i.e. only
from simulations. One of the main difficulties is that the class C typically includes properties
with arbitrarily long horizon or even infinite-horizon properties, whereas every simulation run
is necessarily finite. Note that we do not employ any simplifications such as imposed fixed
horizon or discounting, typically used for obtaining efficient algorithms, e.g., [13, 26, 3], and
the undiscounted setting is fundamentally more complex [25]. Since even simpler tasks are
impossible for unbounded horizon in the black-box setting without any further knowledge,
we assume we only know a lower bound on the minimum transition probability pmin. Note
that knowledge of pmin has been justified in [10].

Our contribution is the following:

We introduce a systematic linear-distance framework and illustrate it with several ex-
amples, including distances previously investigated in the literature.
The main technical contributions are (i) a negative result stating that the total variation
distance cannot be estimated by simulating the systems, and (ii) a positive result that
the trace distance can be estimated.
These results are further exploited to provide both negative and positive results for each
of the settings where the language class is given topologically, by LTL (linear temporal
logic) fragments, and by automata. We also show that the negative result on the total
variation distance can be turned into a positive result if the transition probabilities have
finite precision.

1.1 Related work
There are two main linear distances considered for Markov chains: the total variation distance
and trace distance. Several algorithms have been proposed for both of them in the case when
the Markov chains are known (white-box setting). We are not aware of any work where the
distances are estimated only from simulating the systems (black-box setting).

Firstly, for the total variation distance in the white-box setting, [8] shows that deciding
whether it equals one can be done in polynomial time, but computing it is NP-hard and
not known to be decidable, however, it can be approximated; [6] considers this distance
more generally for semi-Markov processes, provides a different approximation algorithm, and
shows it coincides with distances based on (i) metric temporal logic, and (ii) timed automata
languages.

Secondly, the trace distance is based on the notion of trace equivalence, which can be
decided in polynomial time [15] (however, trace refinement of Markov decision processes is
already undecidable [17]). Several variants of trace distance are considered in [20] where
it is taken as a limit of finite-trace distances, possibly using discounting or averaging. In
[5] the finite-trace distance is shown to coincide with distances based on (i) LTL, and (ii)

P. Daca, T. A. Henzinger, J. Křetínský, and T. Petrov 20:3

LTL without the U operator, i.e., only using the X operator and Boolean connectives. This
distances is also shown to be NP-hard and not known to be decidable, similarly to the total
variation distance. Finally, an approximation algorithm is shown (again in the white-box
setting), where the over-approximates are branching-time distances, showing an interesting
connection between the branching and linear distances.

In [21] the distinguishability problem is considered, i.e. given two Markov chains whether
there is a monitor that reads a single sample and with high probability decides which chain
produced the sequence. This is indeed possible when the total variation distance between
the chains equals one, and [21] shows how to construct such monitors. In contrast, our
negative results shows that it is not possible to decide with high probability whether the
total variation distance equals one when the two Markov are black-box.

Linear distances have been proposed also for quantitative transition systems, e.g. [11].
Moreover, there are other useful distances based on different fundaments; for instance, the
Skorokhod distance [7, 23, 14] measures the discrete differences between systems while
allowing for timing distortion; Kullback-Leibler divergence [20] is useful from the information-
theoretic point of view. Finally, distances have been also studied with respect to applications
in linear-time model checking [24, 5].

1.2 Outline
After recalling the basic notions in Section 2, we introduce our framework and illustrate it
with examples in Section 3. We define our problem formally in Section 4. In Sections 5 and 6
we provide the proofs of our technically principal negative and positive result, respectively.
Section 7 extends the results in the settings of topology, logics and automata, and discusses
general conditions for estimability. We conclude in Section 8.

Proofs omitted due to space constraints can be found in [9].

2 Preliminaries

We consider a finite set Ap of atomic propositions and denote Σ = 2Ap.

I Definition 1 (Markov chain). A (labelled) Markov chain (MC) is a tupleM = (S,P, µ, L),
where

S is a finite set of states,
P : S × S → [0, 1] is a transition probability matrix, such that for every s ∈ S it holds∑
s′∈S P(s, s′) = 1,

µ is an initial probability distribution over S,
L : S → Σ is a labelling function.

A run ofM is an infinite sequence ρ = s1s2 · · · of states, such that µ(s1) > 0 and P(si, si+1) >
0 for all i ≥ 1; we let ρ[i] denote the state si. A path in M is a finite prefix of a run of
M. An ω-word is an infinite sequence a1a2 · · · ∈ Σω of symbols from Σ; a word is a finite
prefix w ∈ Σ∗ of an ω-word. We extend the labelling notation so that for a path π ∈ Sk, the
projected sequence L(π) is the word w ∈ Σk, where w[i] = L(π[i]), and the inverse map is
L−1(w) = {π ∈ Sk | L(π) = w}. Given a path π = s1 · · · sn, we denote the k-prefix of π by
π ↓ k = s1 · · · sk, and similarly for prefixes of words.

Each path π inM determines the set of runs Cone(π) consisting of all runs that start
with π. ToM we assign the probability space (Runs,F ,PM), where Runs is the set of all
runs inM, F is the σ-algebra generated by all Cone(π), and PM is the unique probability
measure such that PM(Cone(s1 · · · sn)) = µ(s1) ·

∏n−1
i=1 P(si, si+1), where the empty product

CONCUR 2016

20:4 Linear Distances between Markov Chains

equals 1. We will omit the subscript in PM if the Markov chain is clear from the context.
Further, we write PsM for the probability measure, where µ(s) = 1 and µ(s′) = 0 for s′ 6= s.
Finally, we overload the notation and for a path π write P(π) meaning P(Cone(π)), and for a
(ω)-word w, we write P(w) meaning P(L−1(w)).

3 Framework for Linear Distances

In this section we introduce our framework for linear distances. For i ∈ {1, 2}, let Mi =
(S,Pi, µi, L) denote a Markov chain1 and (Runs,F ,Pi) the induced probability space. Since
single runs of Markov chains typically have measure 0, we introduce linear distances using
measurable sets of runs:

I Definition 2 (L-distance). For a class L ⊆ F of measurable ω-languages2, the L-distance
DL is defined by

DL(M1,M2) = sup
X∈L
|P1(X)− P2(X)| .

Note that every DL is a pseudo-metric3. However, two different MCs can have distance 0,
for instance, when they induce the same probability space.

The definition of L-distances can be instantiated either (i) by a direct topological
description of L, or indirectly (ii) by a class A of automata inducing the class of recognized
languages L = {L(A) | A ∈ A}, or (iii) by a set of formulae L of a linear-time logic inducing
the languages of models L = {L(ϕ) | ϕ ∈ L} where L(ϕ) denotes the language of ω-words
satisfying the formula ϕ.

We now discuss several particularly interesting instantiations:

I Example 3 (Total variation). One extreme choice is to consider all measurable languages,
resulting in the total variation distance DTV(M1,M2) = supX∈F(Σ) |P1(X)− P2(X)|.

I Example 4 (Trace distances). The other extreme choices are to consider (i) only the
generators of F(Σ), i.e. the cones {wΣω | w ∈ Σ∗}, resulting in the finite-trace distance
DFT(M1,M2) = supw∈Σ+ |P1(w) − P2(w)|; or (ii) only the elementary events, i.e. Σω,
resulting in the infinite-trace distance DIT(M1,M2) = supw∈Σω |P1(w)− P2(w)|.

I Example 5 (Topological distances). There are many possible choices for L between the two
extremes above, such as clopen sets ∆1, which are finite unions of cones (being both closed
and open), open sets Σ1, which are infinite unions of cones, closed sets Π1, or classes higher
in the Borel hierarchy such as the class of ω-regular languages (within ∆3), or languages
given by thresholds for a long-run average reward (within Σ3).

I Example 6 (Automata distances). The class of ω-regular languages can also be given in
terms of automata, for instance by the class of all deterministic Rabin automata (DRA).
Similarly, the closed sets Π1 correspond to the class of deterministic Büchi automata with
all states final. Further, we can restrict the class of all DRA to those of size at most k for a
fixed k ∈ N, denoting the resulting distance by DDRA≤k.

1 To avoid clutter, the chains are defined over the same state space with the same labelling, which can be
w.l.o.g. achieved by their disjoint union.

2 Formally, the measurable space of ω-languages is given by the set Σω equipped with a σ-algebra F(Σ)
generated by the set of cones {wΣω | w ∈ Σ∗}. This ensures, for every measurable ω-language X, that
L−1(X) is measurable in every MC.

3 It is symmetric, it satisfies the triangle inequality, and the distance between identical MCs is 0.

P. Daca, T. A. Henzinger, J. Křetínský, and T. Petrov 20:5

I Example 7 (Logical distances). The class of ω-regular languages can also be given in terms
of logic, by the monadic second-order logic (with order). Further useful choices include
the first-order logic with order, corresponding to the star-free languages and to the linear
temporal logic (LTL), or its fragments such as LTL with only X or only F and G operators
etc.

I Remark. The introduced distances can also be considered in the discrete setting, resulting
in various notions of equivalence. For instance, the finite-trace equivalence EFT can be derived
from the finite-trace distance by the following discretization:

EFT(M1,M2) =
{

0 if DFT(M1,M2) = 0
1 otherwise, i.e., DFT(M1,M2) > 0.

4 Problem Statement

Linear distances can be very useful when we want to compare a black-box system with
another system, e.g. a white-box specification or a black-box previous version of the system.
Indeed, in such a setting we can typically obtain simulation runs of the system and we
must establish a relation between the systems based on these runs only. This is in contrast
with branching distances where either both systems are assumed white-box or there are
strong requirements on the testing abilities, such as dumping the current state of the system,
arbitrary many restarts from there, and nesting this branching arbitrarily. Therefore, we
focus on the setting where we can obtain only finite prefixes of runs and we use statistics
to (i) deduce information on the whole infinite runs, and (ii) estimate the distance of the
systems.

For a given distance function DL, the goal is to construct an almost-surely terminating
algorithm that given

any desired finite number of sampled simulation run from Markov chainsM1 and
M2 of any desired finite length,
lower bound pmin > 0 on the minimum (non-zero) transition probability,
confidence α ∈ (0, 1),
interval width δ ∈ (0, 1),

computes an interval I such that |I| ≤ δ and Pr[DL(M1,M2) ∈ I] ≥ 1− α.

A distance function is called estimable, if there exists an algorithm in the above sense,
and inestimable otherwise.

5 Inestimability: Total variation distance

We show that for the total variation distance DTV there exists no “statistical” algorithm (in
the above sense) which is correct for all inputs (M1,M2, α, δ). Our argument consists of
two steps:

1. We construct two chains such that DTV(M1,M2) = 1, namely the two MCs shown in
Figure 1 (similar to [20]): one with τ = 0 and the other with small τ > 0.

2. We show that any potentially correct algorithm will give with high probability an incorrect
output for some choice of τ, α, δ.

CONCUR 2016

20:6 Linear Distances between Markov Chains

a b

0.5 + τ

0.5− τ

0.5− τ 0.5 + τ

Figure 1 A Markov chain with labelling displayed in states.

Maximizing event. We start by showing that even an arbitrarily small difference in trans-
ition probabilities between two Markov chains may result in total variation distance of 1.
Consider two Markov chains as in Figure 1, whereM1 has τ = 0, andM2 has τ > 0. We
assume that the initial distribution for each chain is its stationary distribution. In this
setting, every simulation step is like an independent trial with probability 0.5 − τ (resp.
0.5 + τ) of seeing a (resp. b).

Let Xn (resp. Yn) denote the number of b symbols in a random path of length n sampled
from M1 (resp. M2). By the central limit theorem the distributions of Xn and Yn are
converging to the normal distribution when n→∞:

Xn ≈ N (0.5n, 0.52n) Yn ≈ N ((0.5 + τ)n, n(0.25− τ2)).

For n ∈ N let the event En mean “there is at most cn = (0.5 + τ/2)n symbols b in the
path prefix of length n.” The probabilities of event En in the two Markov chains are:

PM1(En) = PM1(Xn ≤ cn) = Φ(τ
√
n) PM1(En) = PM1(Yn ≤ cn) = Φ(−0.5τ

√
n√

0.25− τ2
),

where Φ is the CDF of the standard normal distribution. For n→∞ the probability of En
inM1 andM2 converges to 1 and 0, respectively, so the total variation distance converges
to 1.

Negative result for total variation distance. Now we show that there is no statistical
procedure for estimating total variation distance that would almost-surely terminate.

I Theorem 8. For any δ < 1 and α < 1
2 , there is no algorithm for computing a 1 − α

confidence interval of size δ for the total variation distance that almost-surely terminates.

Proof. Let us write M(τ) for a Markov chain in Figure 1 with the parameter τ and the
initial distribution being stationary.

For α < 1
2 we define the following decision problem Bα:

The input to Bα is a single path fromM(τ) of arbitrary length, where τ is unknown,
The task of Bα is to output answer Yes with probability ≥ 1−α if DTV(M(0),M(τ))) = 1,
output answer No with probability ≥ 1 − α if DTV(M(0),M(τ)) = 0. Note that
DTV(M(0),M(τ)) can equal only 0 or 1.

The remaining part of proof is done in two parts. In the first part, we show that there is
no algorithm that solves Bα and almost-surely terminates. In the second part we reduce the
problem Bα to computing a confidence interval for the total variation distance.

Part I. Suppose the opposite of the claim: that for some α < 1
2 there is an algorithm which

solves Bα and almost-surely terminates. We represent the algorithm for solving Bα as a
deterministic Turing machine TM, which works as follows:

P. Daca, T. A. Henzinger, J. Křetínský, and T. Petrov 20:7

1. The input tape of TM contains a (single) randomly sampled run ofM(τ),
2. TM reads a part of the run from the tape and eventually returns Yes/No answer.

The input to the TM is random, therefore we can assign a probability distribution to the
computations of TM. To this end, we represent the answer of TM by the random variable
X : Runs 7→ {Yes, No}, and we use the random variable Y : Runs 7→ N ∪ {∞} to represent
the number of path symbols TM reads before terminating, where ∞ means that TM does
not terminate.

Suppose we run TM on the Markov chainM(0). We write P1 for the probability measure
of TM on this input. The total variation distance between the two Markov chainsM(0) is 0,
so with probability ≥ 1− α TM returns answer No, i.e. P1(X = No) ≥ 1− α.

By assumption TM almost-surely terminates on every input, so P1(Y ∈ N) = 1. Let q be
the following quantile:

q = min{c ∈ N : P1(Y ≤ c) ≥ 0.5 + α}.

I Claim. q ∈ N.
It follows that:

P1(X = No∧Y ≤ q) = 1−P1(X = Yes∨Y > q) ≥ 1−P1(X = Yes)−P1(Y > q) ≥ 0.5. (1)

Turing machine TM is deterministic, so if it terminates after reading prefix π of some run
ρ, then it terminates after reading prefix π of any run. As a consequence, the event Y ≤ q
can be represented as a union of ` cones where ` ≤ |Σ|q = 2q since Σ = {a, b} inM:

{ρ : Y (ρ) ≤ q} =
⋃̀
i=1

Cone(πi),

where all πi ∈ Σq are distinct. The event X = No ∧ Y ≤ q is a refinement of the event
Y ≤ q, so it may also be represented as

{ρ : X = No ∧ Y (ρ) ≤ q} =
m⋃
i=1

Cone(πi), (2)

where m ≤ ` ≤ 2q. Since every path inM(0) of length q has probability 0.5q, we get by (2)

P1(X = No ∧ Y (ρ) ≤ q) = P1(
m⋃
i=1

Cone(πi)) =
m∑
i=1

P1(πi) = m0.5q.

Then by (1) it follows that m ≥ 2q−1.
Now, we run TM on the Markov chainM(ε) where ε = 0.5−α

1
q 2

1−q
q if q > 0 and ε = 0.25

in the degenerated case of q = 0.
I Claim. ε > 0.

Let us write P2 for the probability measure of TM on the input M(ε). The distance
betweenM(0) andM(ε) is 1, since ε > 0. As a consequence, TM should return answer Yes
on this input with probability ≥ 1− α, or equivalently answer No with probability < α. We
show, however, that the probability of No is ≥ α:

P2(X = No ∧ Y ≤ q) =
m∑
i=1

P2(πi) by (2)

CONCUR 2016

20:8 Linear Distances between Markov Chains

=
m∑
i=1

(0.5 + ε)ui(0.5− ε)q−ui ui is number of b’s in πi

≥
m∑
i=1

(0.5− ε)q = m(0.5− ε)q

≥ 2q−1(0.5− ε)q = α. by m ≥ 2q−1..

We obtain a contradiction, thus the assumed machine TM does not exist.

Part II. Suppose for a contradiction that for some α < 1
2 , δ < 1 there exists an algorithm

Algα,δ that solves the problem defined in the theorem and almost-surely terminates. Then
then this algorithm can solve the problem Bα in the following way:

1. Use Algα,δ to compute a confidence interval I for the total variation distance between
M(0) andM(τ). Algorithm Algα,δ can sample any number of paths fromM(0). Observe
that in M(τ) probability of seeing states a and b remains constant over time. Thus,
sampling multiple paths fromM(τ) by Algα,δ can be replaced by sampling a single path
fromM(τ).

2. Output Yes if 1 ∈ I, No if 0 ∈ I.
We have shown that for any α < 1

2 the problem Bα cannot by solved by an algorithm that
almost-surely terminates. As a consequence, the algorithm Algα,δ cannot exist. J

From Part II, it follows that there is no statistical algorithm even for fixed α and δ.

6 Estimability: Finite-trace distance

In Section 6.1 we show how to estimate the distance given by traces of a fixed length.
In Section 6.2 we show how to reduce the problem of computing the finite-trace distance
DFT (where traces of arbitrary lengths are considered) to computing a constant number of
fixed-length distances.

6.1 Estimates for fixed length
Given two Markov chainsM1 andM2 we wish to estimate the finite-trace distance for fixed
length k ∈ N

DkFT = sup
w∈Σk

|P1(w)− P2(w)|.

There is m = |Σ|k words in Σk (we enumerate them as w1, · · · , wm), so the traces of length
k follow a multinomial distribution, i.e. for i = 1, 2

∑m
j=1,Pi(wj) = 1.

We present a statistical procedure that estimates Dk
FT with arbitrary precision. For

j ≤ |Σ|k we call a contrast ∆j the difference in probabilities of trace wj betweenM1 and
M2: ∆j = |P1(wj) − P2(wj)|. The distance Dk

FT is the maximum over all such contrasts
Dk

FT = maxj≤m ∆j . We use the statistical procedure of [19] to simultaneously estimate all
contrasts. We sample random paths from both Markov chains, and let nji denote the number
of observations of trace wj in a Markov chain Mi. We write ni =

∑
j≤m n

j
i for the sum

of all observations inMi. The estimator of Pi(wj) is p̃ji = nj
i

ni
, and the estimator of ∆j is

∆̃j = |p̃j1 − p̃
j
2|.

P. Daca, T. A. Henzinger, J. Křetínský, and T. Petrov 20:9

a a a b1 1 1

0.5
0.5

Figure 2 Markov chain with 4 states. The leftmost state is 6-deterministic, but not deterministic.

I Theorem 9 ([19]). As n1, n2 →∞ the probability approaches 1− α that simultaneously
for all contrasts

|∆j − ∆̃j | ≤ SjM where Sj =

√
p̃j1 − (p̃j1)2

n1
+ p̃j2 − (p̃j2)2

n2
,

and M is the square root of the 1−α
100 percentile of the χ2 distribution with |Σ|k degrees of

freedom.

The procedure for estimating DkFT works as follows. For ε, α > 0 we sample paths fromM1
andM2 until, by Theorem 9, with probability 1− α for all contrasts |∆j − ∆̃j | ≤ ε. Then
with probability 1− α it holds that |DkFT −maxj≤m ∆̃j | ≤ ε.

6.2 Estimates for unbounded length
Intuitively, the longer the path, the less probable it is, and the less distance it can cause.
However, this is only true if along the path probabilistic choices are made repeatedly.

I Definition 10. In a Markov chainM, a state s ∈ S is k-deterministic, if there exists a
word w of length k, such that Ps(w) = 1. Otherwise, s is k-branching. A state s ∈ S is
deterministic, if it is k-deterministic for all k ∈ N.

I Lemma 11. If s ∈ S is k-branching, it is also (k + 1)-branching. Dually, if it is k-
deterministic, it is also (k − 1)-deterministic.

I Example 12. Every state is trivially 1-deterministic.
In Figure 3, the leftmost state is 3-deterministic and 4-
branching. The states of the MC on the right are determin-
istic.

a a0.5

0.5

1

I Lemma 13. Consider a state s in a Markov chain M with n states. If state s is n2-
deterministic, then it is deterministic.

Before proceeding to the proof, notice that even though it may seem that every branching
state must be n+ 1 branching, this is not the case in general. Observe the counterexample
in Figure 2. The leftmost state is 6-deterministic (only the word aaabaa can be generated),
while n = 4.

Proof. Consider state s that is n2-deterministic and assume for contradiction that s is not
deterministic. Let N > n2 be the smallest number such that s is N -branching, and thus not
(N − 1)-branching. Then there exist two paths π = s1, s2, . . . , sN and π′ = s1, s

′
2, . . . , s

′
N

such that s1 = s and for i = 1, 2, . . . , N − 1, we have L(si) = L(s′i) and L(sN) 6= L(s′N).
Looking at a sequence of pairs (s1, s1), (s2, s

′
2), . . . , (sN−1, s

′
N−1), since there are at most

n2 possible pairs of states over S, by the pigeon-hole principle at least two pairs will be

CONCUR 2016

20:10 Linear Distances between Markov Chains

a a a b1− pmin pmin pmin pmin

1− pmin 1− pmin 1− pmin

pmin

Figure 3 Markov chain, s.t. P(a) = P(aa) = P(aaa) = 1, P(aaab) = p3
min, P(aaaa) = 1− p3

min.

repeating in the observed sequence, say (si, s′i) = (sj , s′j), where i < j. But then the paths
π′′ = s1, s2, . . . , si, sj+1, . . . , sN and π′′′ = s1, s2, . . . , si, sj+1, . . . , sN haveM < N states and
they witness that s1 is M -branching, which by Lemma 11 is in contradiction with s being
(N − 1)-deterministic. J

I Lemma 14. If a state s ∈ S is k-branching, then any word of length k starting from s has
probability at most (1− pk−1

min), i.e., ∀w ∈ Σk : Ps(w) ≤ 1− pk−1
min .

To illustrate this, observe the Markov chain in Figure 3 with leftmost initial state.

Proof. Let w ∈ Σk. Since s is k-branching, there exists a word w′ ∈ Σk such that w′ 6= w

and Ps(w′) > 0. Hence there exists at least one path with k − 1 transitions, producing the
trace w′, and thus Ps(w′) ≥ pk−1

min . Finally, Ps(w) ≤ 1− Ps(w′) ≤ 1− pk−1
min . J

We show that, for estimating the finite trace distance with the required precision ε, it
suffices to infer probabilities of the words up to some finite length k, which depends on ε. The
idea is that paths that become deterministic before step k do not change their probability
afterwards, while all other paths together have the probability bounded by ε.

I Lemma 15. Let s be a n2-deterministic state in a Markov chainM with n states. Then
there are words u, z, such that |z|+ |u| ≤ n, |u| ≥ 1, and Ps(zuω) = 1 .

This motivates the following definition, where pref(w) denotes the set of all prefixes of
the (ω-)word w.

I Definition 16. A word w ∈ Σ+ is called k-ultimately periodic in a Markov chain M if
P(w) > 0 and there exists a word u such that w ∈ pref(Σkuω) and 1 ≤ |u| ≤ n, where n is
the number of states inM. J

Intuitively, for sufficiently long word w and large ε, if P(w) > ε and w is k-ultimately
periodic, then it enters within k steps a BSCC, which is bisimilar to a cycle (all transition
probabilities are 1). One can also prove that this is the only way for a ω-word to achieve a
probability greater than ε.

For a word w we write Bk(w) for the set of paths that are labelled by w, have a positive
probability and where all states up to step k are n2-branching:

Bk(w) = {π = s1 · · · s|w| ∈ L−1(w) | P(π) > 0 ∧ ∀i ≤ min(k, |w|). si is n2-branching} .

In a similar way, we write Dk(w) for the set of paths that enter a (n2-)deterministic state
before step k

Dk(w) = {π = s1 · · · s|w| ∈ L−1(w) | P(π) > 0∧ ∃i ≤ min(k, |v|). si is n2-deterministic} .

For any k, we can partition paths labeled by w into Bk-paths and Dk-paths:

P(w) =
∑

π∈L−1(w)

P(π) =
∑

π∈Bk(w)

P(π) +
∑

π∈Dk(w)

P(π) . (3)

Now we show that the probability of Bk-paths diminishes exponentially with length k:

P. Daca, T. A. Henzinger, J. Křetínský, and T. Petrov 20:11

I Lemma 17. Consider a Markov chainM with n states. For every k ∈ N and word w, if
|w| > k then∑

π∈Bk(w)

P(π) ≤ (1− pn
2

min)b
k

n2 c .

I Lemma 18. Let w be a word in a Markov chain M with n states. For every ε > 0, if
P(w) > ε and |w| > k then w is k-ultimately periodic inM, where k = n2d log ε

log(1−pn2
min)
e+ n.

Proof. Assume that |w| > k. We split paths labelled by w into Bk−n(w) and Dk−n(w) as
in (3):

P(w) =
∑

s1···s|w|∈L−1(w)

P(s1 · · · s|w|) =
∑

s1···s|w|∈
Bk−n(w)

P(s1 · · · s|w|) +
∑

s1···s|w|∈
Dk−n(w)

P(s1 · · · s|w|) . (4)

By Lemma 17 we get∑
s1···s|w|∈Bk−n(w)

P(s1 · · · s|w|) ≤ ε . (5)

Now, from the assumption P(w) > ε, (4) and (5), it follows that∑
s1···s|w|∈Dk−n(w)

P(s1 · · · s|w|) > 0 .

This implies that there is a path π = s1 · · · s|w| ∈ Dk−n(w). By definition of Dk−n(w),
π has a n2-deterministic state before step k − n, and w.l.o.g. let sk−n be that state. By
Lemma 15, every positive word from state sk−n is a prefix of zuω for some words z, u such
that |z|+ |u| ≤ n. Therefore w ∈ pref(yzuω), where y = L(s1 · · · sk−n), i.e. w is |k|-ultimately
periodic. J

I Lemma 19. Consider a Markov chainM with n states. Let w be a k-ultimately periodic
word inM, and x be a prefix of w such that |x| > k + n. Then

P(x)− P(w) ≤ (1− pn
2

min)b
k−n

n2 c .

I Theorem 20. Consider Markov chainsM1 andM2 that have at most n states. For ε > 0
it holds that

|DFT(M1,M2)−max
i≤k

DiFT(M1,M2)| ≤ ε, where k = n2d log ε
log(1− pn2

min)
e+ 2n.

Proof. We show that for any word w ∈ Σ+:

∣∣∣|P1(w)− P2(w)| − |P1(w ↓ k)− P2(w ↓ k)|
∣∣∣ ≤ ε . (6)

For |w| ≤ k (6) holds trivially. Suppose that |w| ≥ k and consider two cases.

1. If Pi(w ↓ k) > ε, then by Lemma 18 w ↓ k is (k − n)-ultimately periodic. Then by
Lemma 19 Pi(w ↓ k) ≤ Pi(w) + ε.

CONCUR 2016

20:12 Linear Distances between Markov Chains

2. If Pi(w ↓ k) ≤ ε, then clearly Pi(w ↓ k) ≤ Pi(w) + ε.

Both cases can be summarised by

Pi(w) ≤ Pi(w ↓ k) ≤ Pi(w) + ε . (7)

W.l.o.g assume that P1(w) ≥ P2(w). Then by (7)

P1(w ↓ k)− P2(w ↓ k) ≥ P1(w)− P2(w)− ε,

which implies (6). J

7 Consequences and Discussion

We now discuss the consequences of the (in)estimability results for several specific subclasses
of ω-regular languages, captured topologically, logically, or by automata. We also remark on
the estimability in case when the transition probabilities have finite precision.

7.1 Topology

Negative result for clopen sets. Note that the proof of inestimability was based on the
ability to express the events En for any n ∈ N:

En = “there is at most cn = (0.5 + τ/2)n symbols b in the prefix path of length n.”

Observe that each En can be expressed as finite union of cones, each expressing exact positions
of a’s and b’s in the first n steps. For instance, for τ = 0.2, the event E2, “there is at most 1
symbol b in the first 2 steps,” can be described by the union Cone(aa)∪Cone(ab)∪Cone(ba).

Since finite unions of cones form exactly the clopen sets, the lowest class ∆1 in the Borel
hierarchy, it follows that distances based on any class in the hierarchy are inestimable.

Positive result for the infinite-trace distance. Using the result on finite-trace distance, we
can prove that the infinite-trace distance DIT of Example 4 is also estimable. Indeed, the
distance is non-zero only due to k-ultimately periodic ω-words with positive probability. By
Lemma 19 we can provide confidence intervals for these probabilities through the k-prefixes
using the fixed-length distance DkFT.

7.2 Logic

Negative result for LTL. The LTL distance as in Example 7 is again inestimable since
we can express the event En in LTL by a finite composition of operators X,∧,∨ (notably
this fragment induces the same distance as LTL [5]). Indeed, for instance, for τ = 0.2, the
event E10, “there is at most 6 symbols b in the path prefix of length 10,” is equivalent to “at
least 4 symbols a in the path prefix of length n,” and it can be described by a disjunction of(10

4
)
formulae, each determining the possible position of symbols a, resulting in a formula

(a ∧Xa ∧X2a ∧X3a) ∨ (a ∧Xa ∧X2a ∧X4a) ∨ . . . ∨ (X7a ∧X8a ∧X9a ∧X10a).

P. Daca, T. A. Henzinger, J. Křetínský, and T. Petrov 20:13

Positive result for LTL(FG,GF). The distance generated by the fragment of LTL described
by combining operators FG and GF and Boolean operators is estimable. Notice that the
probability of the property ϕ ≡ FGϕ′ equals the probability of reaching a BSCC such that ϕ′
holds in all of its states, while the probability of property ϕ ≡ GFϕ′ equals the probability
that every BSCC contains a state which satisfies ϕ′. Hence, properties expressed in this
fragment of LTL can be checked by inferring all BSCCs of a chain and a simple analysis of
them. The statistical estimation of all BSCCs for labelled Markov chains where only the
minimal transition probability is known is possible and is shown in [10].

7.3 Automata
Negative result for automata distances. For the class of all deterministic Rabin automata
(DRA), the distance (as in Example 6) is inestimable. This is implied by the inestimability
for clopen sets or for LTL. Further, we can also directly encode the event En that “at least
k symbols a are observed in the path of length n” by an automaton: the DRA counts how
many symbols a are seen in the prefix up to length n; this can be done with k · n states
where the automaton is in a state sk′,n′ if and only if in the n′ ≤ n prefix of the input word,
there are k′ ≤ k symbols a.

Positive result for fixed-size automata. When restricting to the class of DRA of size
at most k ∈ N, the distance DDRA≤k can be estimated. A naive algorithm amounts to
enumerating all automata up to given size k, then applying statistical model checking to
infer the probability of satisfying the automata in each of the Markov chains, and checking
for which automaton the probability difference in the two chains is maximized. Statistically
inferring the probability of whether a (black-box) Markov chain satisfies a property given
by a DRA is a subroutine of the procedure for statistical model checking Markov chains for
LTL, described in [10].

7.4 Finite Precision
When the transition probabilities have finite precision, e.g. are given by at most two decimal
digits, several negative results turn positive. Finite precision allows us to learn the MCs
exactly with high probability, by rounding the learnt transition probabilities to the closest
multiple of the precision. Subsequently, we can approximate the distance by the algorithms
applicable in the white-box setting. In case of the total variation distance, one can apply the
approximation algorithm of [8]; for trace distances, the approximation algorithm of [5] is also
available. In particular, for the special case of the trace equivalence EFT we can leverage the
fact that Markov chains are equivalent when all their traces up to length |M1|+ |M2| − 1
have equal probability. With the assumption of finite precision one can get by sampling the
exact distribution of such traces with high confidence. Note that the same algorithm can
not be applied without assuming finite precision, since arbitrarily small difference in chains
cannot be detected.

8 Conclusions and Future Work

We have introduced a linear-distance framework for Markov chains and considered estimating
the distances in the black-box setting from simulation runs. We investigated several distances,
delimiting the (in)estimability boarder for distances given topologically, logically, and by
automata. As the next step, it is desirable to look for practical algorithms that would

CONCUR 2016

20:14 Linear Distances between Markov Chains

converge fast on practical benchmarks. Another direction is to characterize the largest
language for which the distance can be estimated, and, dually, the smallest language that
cannot be estimated.

References
1 Alessandro Abate. Approximation metrics based on probabilistic bisimulations for general

state-space Markov processes: A survey. Electr. Notes Theor. Comput. Sci., 297:3–25, 2013.
2 Giorgio Bacci, Giovanni Bacci, Kim G. Larsen, and Radu Mardare. The BisimDist library:

Efficient computation of bisimilarity distances for Markovian models. In QEST, pages
278–281, 2013.

3 Giorgio Bacci, Giovanni Bacci, Kim G. Larsen, and Radu Mardare. Computing behavioral
distances, compositionally. In MFCS, pages 74–85, 2013.

4 Giorgio Bacci, Giovanni Bacci, Kim G. Larsen, and Radu Mardare. On-the-fly exact com-
putation of bisimilarity distances. In TACAS, pages 1–15, 2013.

5 Giorgio Bacci, Giovanni Bacci, Kim G. Larsen, and Radu Mardare. Converging from
branching to linear metrics on Markov chains. In ICTAC, pages 349–367, 2015.

6 Giorgio Bacci, Giovanni Bacci, Kim G. Larsen, and Radu Mardare. On the total variation
distance of semi-Markov chains. In FoSSaCS, pages 185–199, 2015.

7 Paul Caspi and Albert Benveniste. Toward an approximation theory for computerised
control. In EMSOFT, pages 294–304, 2002.

8 Taolue Chen and Stefan Kiefer. On the total variation distance of labelled Markov chains.
In CSL-LICS, pages 33:1–33:10, 2014.

9 Przemyslaw Daca, Thomas A. Henzinger, Jan Křetínský, and Tatjana Petrov. Linear
distances between Markov chains. Technical Report abs/1605.00186, arXiv.org, 2014.

10 Przemyslaw Daca, Thomas A. Henzinger, Jan Křetínský, and Tatjana Petrov. Faster stat-
istical model checking for unbounded temporal properties. TACAS, pages 112–129, 2016.

11 Luca de Alfaro, Marco Faella, and Mariëlle Stoelinga. Linear and branching metrics for
quantitative transition systems. In ICALP, pages 97–109, 2004.

12 Luca de Alfaro, Rupak Majumdar, Vishwanath Raman, and Mariëlle Stoelinga. Game
relations and metrics. In LICS, pages 99–108, 2007.

13 Josee Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash Panangaden. Metrics
for labeled Markov systems. In CONCUR, pages 258–273, 1999.

14 Jyotirmoy V. Deshmukh, Rupak Majumdar, and Vinayak S. Prabhu. Quantifying conform-
ance using the Skorokhod metric. In CAV, pages 234–250, 2015.

15 Laurent Doyen, Thomas A. Henzinger, and Jean-François Raskin. Equivalence of labeled
Markov chains. Int. J. Found. Comput. Sci., 19(3):549–563, 2008.

16 Norm Ferns, Prakash Panangaden, and Doina Precup. Metrics for finite Markov decision
processes. In AAAI, pages 950–951, 2004.

17 Nathanaël Fijalkow, Stefan Kiefer, and Mahsa Shirmohammadi. Trace refinement in la-
belled Markov decision processes. In FOSSACS, pages 303–318, 2016.

18 Antoine Girard and George J. Pappas. Approximate bisimulation: A bridge between com-
puter science and control theory. Eur. J. Control, 17(5-6):568–578, 2011.

19 Leo A Goodman. Simultaneous confidence intervals for contrasts among multinomial pop-
ulations. The Annals of Mathematical Statistics, pages 716–725, 1964.

20 Manfred Jaeger, Hua Mao, Kim G. Larsen, and Radu Mardare. Continuity properties of
distances for Markov processes. In QEST, pages 297–312, 2014.

21 Stefan Kiefer and A. Prasad Sistla. Distinguishing hidden markov chains. In 31th Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2016, 2016.

22 Kim G. Larsen and Arne Skou. Bisimulation through probabilistic testing. In POPL, pages
344–352, 1989.

P. Daca, T. A. Henzinger, J. Křetínský, and T. Petrov 20:15

23 Rupak Majumdar and Vinayak S. Prabhu. Computing the Skorokhod distance between
polygonal traces. In HSCC, pages 199–208, 2015.

24 Ilya Tkachev and Alessandro Abate. On approximation metrics for linear temporal model-
checking of stochastic systems. In HSCC, pages 193–202, 2014.

25 Franck van Breugel, Babita Sharma, and James Worrell. Approximating a behavioural
pseudometric without discount for probabilistic systems. In FOSSACS, pages 123–137,
2007.

26 Franck van Breugel and James Worrell. Approximating and computing behavioural dis-
tances in probabilistic transition systems. Theor. Comput. Sci., 360(1-3):373–385, 2006.

CONCUR 2016

Complete Axiomatization for the Bisimilarity
Distance on Markov Chains∗

Giorgio Bacci1, Giovanni Bacci2, Kim G. Larsen3, and
Radu Mardare4

1 Dept. of Computer Science, Aalborg University, Denmark.
grbacci@cs.aau.dk

2 Dept. of Computer Science, Aalborg University, Denmark.
giovbacci@cs.aau.dk

3 Dept. of Computer Science, Aalborg University, Denmark.
klg@cs.aau.dk

4 Dept. of Computer Science, Aalborg University, Denmark.
mardare@cs.aau.dk

Abstract
In this paper we propose a complete axiomatization of the bisimilarity distance of Desharnais
et al. for the class of finite labelled Markov chains. Our axiomatization is given in the style
of a quantitative extension of equational logic recently proposed by Mardare, Panangaden, and
Plotkin (LICS’16) that uses equality relations t ≡ε s indexed by rationals, expressing that “t is
approximately equal to s up to an error ε”. Notably, our quantitative deductive system extends in
a natural way the equational system for probabilistic bisimilarity given by Stark and Smolka by
introducing an axiom for dealing with the Kantorovich distance between probability distributions.

1998 ACM Subject Classification F.3.2 Algebraic Approaches to Semantics.

Keywords and phrases Markov chains, Behavioral distances, Axiomatization.

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2016.21

1 Introduction

A very attractive approach toward the study of the behavior of systems consists in expressing
behavioral properties in an equational algebraic fashion. The attractiveness of the equational
reasoning comes from the fact that one can deal with different notions of behaviors (such as
non-deterministic, probabilistic, etc.) in a compositional way, by introducing new algebraic
operators and their corresponding axioms as a sequence of successive refinements.

There is a well-established literature considering complete axiomatizations of several
semantic theories [15, 3, 19, 4, 1, 16, 6, 18]. Amongst the aforementioned references, the
studies [19, 1, 16, 18] consider operators for the definitions of recursive behaviors and offer
implicational equational proof systems for probabilistic bisimulation equivalence. It is well-
known that for reasoning about the behavior of probabilistic system, a notion of distance
measuring the dissimilarities of two systems is preferable to that of equivalence, since the
latter is not robust w.r.t. small variations of numerical values (see e.g. [7] for more details).

∗ Work supported by the EU 7th Framework Programme (FP7/2007-13) under Grants Agreement
nr.318490 (SENSATION), nr.601148 (CASSTING), the Sino-Danish Basic Research Center IDEA4CPS
funded by Danish National Research Foundation and National Science Foundation China, the ASAP
Project (4181-00360) funded by the Danish Council for Independent Research, the ERC Advanced
Grant LASSO, and the Innovation Fund Denmark center DiCyPS.

© Giorgio Bacci, Giovanni Bacci, Kim G. Larsen, and Radu Mardare;
licensed under Creative Commons License CC-BY

27th International Conference on Concurrency Theory (CONCUR 2016).
Editors: Josée Desharnais and Radha Jagadeesan; Article No. 21; pp. 21:1–21:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.21
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

21:2 Complete Axiomatization for the Bisimilarity Distance on Markov Chains

The first proposals for a complete axiomatization of behavioral distances for quantitative
systems are due to Larsen et al. [12] and D’Argenio et al. [5], respectively axiomatizing the
weighted and probabilistic bisimulation metrics. The approaches pursued in these works,
however, are rather specific and based on ad hoc assumptions.

Recently, Mardare, Panangaden, and Plotkin [14] —with the purpose of developing a
general research program for a quantitative algebraic theory of effects [17]— proposed the
concepts of quantitative equational theory and quantitative algebra as models for these the-
ories. The key idea behind their approach is to use equations of the form t ≡ε s annotated
with a rational number ε to be interpreted as “t is approximately equal to s up to an error ε”.
Their main result is that completeness for a quantitative theory always holds on the freely
generated algebra of terms equipped with a metric that is freely induced by the axioms. Due
to this result, they were able to prove completeness for many interesting axiomatizations,
such as the Hausdorff, the total variation, the p-Wasserstein, and the Kantorovich metrics.

In this paper, we contribute to the quest of complete axiomatizations of behavioral met-
rics, by proposing a quantitative equational theory in the sense of [14] that is proved to
be complete w.r.t. the bisimilarity distance of Desharnais et al. [7] for finitely presentable
labelled Markov chains. The signature of operators that we consider is the one of [19], con-
sisting of a prefix operator, a binary probabilistic choice operator, and a recursion operator.
The set of axioms we use is that of barycentric algebras relative to the probabilistic choice
operator and Milner’s axioms for recursion [15]. To deal with the Kantorovich distance
—that is the basic ingredient for the definition of the bisimilarity distance— we use the
axiom (IB) from [14]. The resulting axiomatization is simpler than the one presented in [5]
for probabilistic transition systems and it extends [5] by allowing recursive behaviors.

For the proof of completeness we could not apply the general proof technique of [14], since
the recursion operator is not sound w.r.t. the axiom of non-expansiveness, that is required to
fit within the quantitative algebraic framework of [14]. To prove completeness we needed to
appeal to specific properties of the functional operator used to define the distance, namely,
that it preserves infima of countable decreasing chains, a.k.a. ω-cocontinuity. Interestingly,
the proof technique we use seems to be generic on the functional operator that defines the
distance, provided that it is ω-cocontinuous.

Moreover, we show that the class of expressible behaviors, namely those that can be
described as syntactic terms of this signature, corresponds up to bisimilarity to the class of
finite and finitely supported labelled Markov chains. This establishes a strong correspond-
ence between syntactic terms and a clearly defined semantic class of probabilistic systems.

2 Preliminaries and Notation

For R ⊆ X ×X an equivalence relation, we denote by X/R its quotient set. For two sets X
and Y , we denote by X] Y their disjoint union.

A discrete sub-probability on X is a function µ : X → [0, 1], such that µ(X) ≤ 1, where,
for E ⊆ X, µ(E) =

∑
x∈E µ(x); it is a probability distribution if µ(X) = 1. The support

of µ is the set supp(µ) = {x ∈ X | µ(x) > 0}. We denote by ∆(X) and D(X) the set of
probability and finitely-supported sub-probability distributions on X, respectively.

A 1-bounded pseudometric on X is a function d : X × X → [0, 1] such that, for any
x, y, z ∈ X, d(x, x) = 0, d(x, y) = d(y, x) and d(x, y) + d(y, z) ≥ d(x, z); d is a metric
if, in addition, d(x, y) = 0 implies x = y. The pair (X, d) is called (pseudo)metric space.
For n ∈ N, the n-th product (pseudo)metric space of (X, d) is defined as (Xn, d′) where
d′((x1, . . . , xn), (y1, . . . , yn)) = maxni=1 d(xi, yi). The kernel of a (pseudo)metric d is the set
ker(d) = {(x, y) | d(x, y) = 0}.

G. Bacci, G. Bacci, K. G. Larsen, and R. Mardare 21:3

3 Quantitative Algebras and their Equational Theories

We recall the notions of quantitative equational theory and quantitative algebras from [14].
Let Σ be an algebraic signature of function symbols f : n ∈ Σ of arity n ∈ N. Fix a

countable set of metavariables X, ranged over by x, y, z, . . . ∈ X. We denote by T(Σ, X) the
set of Σ-terms freely generated over X; terms will be ranged over by t, s, u, . . . A substitution
of type Σ is a function σ : X → T(Σ, X) that is homomorphically extended to terms as
σ(f(t1, . . . , tn)) = f(σ(t1), . . . , σ(tn)); by S(Σ) we denote the set of substitutions of type Σ.

A quantitative equation of type Σ is an expression of the form t ≡ε s, where t, s ∈ T(Σ, X)
and ε ∈ Q+. Let E(Σ) denote the set of quantitative equations of type Σ and let range over
its subsets by Γ,Θ,Π, . . . ⊆ E(Σ).

Let ` ⊆ 2E(Σ) × E(Σ) be a binary relation from the powerset of E(Σ) to E(Σ). We write
Γ ` t ≡ε s if (Γ, t ≡ε s) ∈ `, and Γ 0 t ≡ε s otherwise; by ` t ≡ε s we denote ∅ ` t ≡ε s, and
by Γ ` Θ we mean that Γ ` t ≡ε s, for all t ≡ε s ∈ Θ. The relation ` is called quantitative
deduction system of type Σ if it satisfies the following axioms and rules

(Refl) ` t ≡0 t ,

(Symm) {t ≡ε s} ` s ≡ε t ,
(Triang) {t ≡ε u, u ≡ε′ s} ` t ≡ε+ε′ s ,

(Max) {t ≡ε s} ` t ≡ε+ε′ s , for all ε′ > 0 ,
(Arch) {t ≡ε′ s | ε′ > ε} ` t ≡ε s ,

(NExp) {t1 =ε s1, . . . , tn =ε sn} ` f(t1, . . . , tn) ≡ε f(s1, . . . , sn) , for all f : n ∈ Σ ,

(Subst) If Γ ` t ≡ε s, then σ(Γ) ` σ(t) ≡ε σ(t), for all σ ∈ S(Σ) ,
(Cut) If Γ ` Θ and Θ ` t ≡ε s, then Γ ` t ≡ε s ,

(Assum) If t ≡ε s ∈ Γ, then Γ ` t ≡ε s .

where σ(Γ) = {σ(t) ≡ε σ(s) | t ≡ε s ∈ Γ}.
An expression of the form {t1 ≡ε1 s1, . . . , tn ≡εn sn} ` t ≡ε s —i.e., with finite set of

hypotheses— is called basic quantitative inference. A quantitative equational theory is a set
U of basic quantitative inferences closed under `-deducibility. A set A of basic inferences
is said to axiomatize a quantitative equational theory U , if U is the smallest quantitative
equational theory containing A. A theory U is called inconsistent if ` x ≡0 y ∈ U , for
distinct metavariables x, y ∈ X, it is called consistent otherwise1. The models of quantitative
equational theories are given by the following structures.

I Definition 1 (Quantitative Algebra). A quantitative Σ-algebra is a tuple A = (A,ΣA, dA),
consisting of a pseudometric space (A, dA), with dA : A × A → [0,∞], and a set of non-
expansive interpretations ΣA =

{
fA : An → A | f : n ∈ Σ

}
for the function symbols in Σ.

Quantitative Σ-algebras extend standard Σ-algebras with a notion of distance. Morphisms
of quantitative algebras are non-expansive homomorphisms.

A quantitative algebra A = (A,ΣA, dA) satisfies the quantitative inference Γ ` t ≡ε s,
written Γ |=A t ≡ε s, if for any assignment of the meta-variables ι : X → A,(

for all t′ ≡ε′ s′ ∈ Γ, dA(ι(t′), ι(s′)) ≤ ε′
)

implies dA(ι(t), ι(s)) ≤ ε ,

1 Note that for an inconsistent theory U , by Subst, we have ` t ≡0 s ∈ U , for all t, s ∈ T(Σ, X).

CONCUR 2016

21:4 Complete Axiomatization for the Bisimilarity Distance on Markov Chains

where, for a term t ∈ T(Σ, X), ι(t) denotes the homomorphic interpretation of t in A. A
quantitative algebra A is said to be a model for a quantitative theory U , if Γ |=A t ≡ε s, for
all Γ ` t ≡ε s ∈ U .

In [14] it is shown that any quantitative theory U has a universal model TU (the freely gen-
erated `-model) satisfying exactly those quantitative equations belonging to U . Moreover,
in [14] it is proven a strong completeness theorem for quantitative equational theories U ,
stating that a basic inference is satisfied by all the algebras satisfying U iff it belongs to U .

Furthermore, in [14] several interesting examples of quantitative equational theories have
been proposed. The one we will focus on later in this paper is the so called interpolative
barycentric equational theory (see §10 in [14]).

4 The Quantitative Algebra of Probabilistic Behaviors

In this section we present the quantitative algebra of open Markov chains. Open Markov
chains extend the familiar notion of discrete-time labelled Markov chain with “open” states
taken from a fixed countable set X of names ranged over by X,Y, Z, . . . ∈ X . Names indicate
states at which the behavior of the Markov chain can be extended by substitution of another
Markov chain, in a way which will be made precise later.

4.1 Open Markov Chains and Bisimilarity Distance
In what follows we fix a set L of labels, ranged over by a, b, c, . . . ∈ L. Recall that D(M)
denotes the set of finitely supported discrete sub-probability distributions over a set M .

I Definition 2 (Open Markov Chain). An open Markov chain M = (M, τ) consists of a set
M of states and a transition probability function τ : M → D((L ×M)] X).

Intuitively, if M is in a state m ∈ M it moves with action a ∈ L to a state n ∈ M , with
probability τ(m)(a, n) and to a name X ∈ X with probability τ(m)(X). A name X ∈ X is
said to be unguarded in a statem ∈M , if τ(m)(X) > 0. Clearly, L-labelled sub-probabilistic
Markov chains are encoded as open Markov chains by letting τ(m)(X) = 0, for all m ∈M .

A pointed open Markov chain, denoted by (M,m), is a Markov chainM = (M, τ) with a
distinguished initial state m ∈M . We useM = (M, τ) and N = (N, θ) to range over open
Markov chains and (M,m), (N , n) to range over the set OMC of pointed open Markov
chains. In the following we will often refer to the constituents ofM and N implicitly.

Next we recall the probabilistic bisimulation of Larsen and Skou [13].

I Definition 3 (Bisimulation). An equivalence relation R ⊆M ×M is a bisimulation onM
if whenever m R m′, then, for all a ∈ L, X ∈ X and C ∈M/R,

τ(m)(X) = τ(m′)(X),
τ(m)({a} × C) = τ(m′)({a} × C).

Two states m,m′ ∈M are bisimilar w.r.t.M, written m ∼M m′, if there exists a bisimula-
tion relation onM relating them.

We say that two pointed open Markov chains (M,m), (N , n) ∈ OMC are bisimilar, written
(M, n) ∼ (N , n), if m and n are bisimilar w.r.t. the disjoint union ofM and N , defined as
expected. The bisimilarity relation ∼ ⊆ OMC×OMC is an equivalence (see e.g. [2]).

The notion of bisimulation can be lifted to pseudometrics by means of a straightforward
extension of the bisimilarity distance of Desharnais et al. [7] over open Markov chains —we
refer the interested reader to [7, 22] for more details about its properties— that is based
on the Kantorovich distance K(d)(µ, ν) = min

{∫
d dω | ω ∈ Ω(µ, ν)

}
between probability

G. Bacci, G. Bacci, K. G. Larsen, and R. Mardare 21:5

measures µ, ν ∈ ∆(A) w.r.t. the underlying distance d on A. In the definition, Ω(µ, ν) is the
set of couplings for (µ, ν), i.e., a probability distributions ω ∈ ∆(A × A) such that, for all
E ⊆ A, ω(E ×A) = µ(E) and ω(A× E) = ν(E).
I Remark. The definition of K(d) above is tailored on probability distributions, whereas in
the present setting we are dealing with sub-probability distributions µ ∈ D(A). To use K(d)
on D(A) it is standard to add a bottom element ⊥ in A, that is assumed to be at maximum
distance from all elements a ∈ A, written A⊥; and define µ∗ ∈ ∆(A⊥) as the unique
probability distribution such that, for all E ⊆ A, µ∗(E) = µ(E) and, µ∗(⊥) = 1−µ(A). J

The set of 1-bounded pseudometrics over a set M ordered point-wise by d v d′ iff for
all m,n ∈ M , d(m,n) ≤ d′(m,n) is a complete partial order, with bottom given by the 0-
constant pseudometric 0 and join being the point-wise supremum. We define the bisimilarity
pseudometric dM : M×M → [0, 1] overM = (M, τ) as the least fixed-point of the following
functional operator on 1-bounded pseudometrics

ΨM(d)(m,m′) = K(Λ(d))(τ∗(m), τ∗(m′)) (Kantorovich Operator)

where Λ(d) is the greatest 1-bounded pseudometric on
(
(L ×M)] X

)
⊥ such that, for all

a ∈ L and t, s ∈ T, Λ(d)((a, t), (a, s)) = d(t, s). Hereafter, whenever M is clear from the
context we will simply write d and Ψ in place of dM and ΨM, respectively.

The well definition of d is guaranteed by the first half of the next lemma and Knaster-
Tarski fixed-point theorem. We also prove that Ψ is ω-continuous, i.e., it preserves suprema
of countable increasing chains. Note that by this and Kleene fixed-point theorem, the
bisimilarity distance can be alternatively characterized as d =

⊔
n∈ω Ψn(0).

I Lemma 4. The operator Ψ is monotonic and ω-continuous.

Proof. Monotonicity of Ψ follows from the monotonicity of K and Λ. ω-continuity follows
from [21, Theorem 1] by showing that Ψ is non expansive, i.e., for all d, d′ : M ×M → [0, 1],
‖Ψ(d′) − Ψ(d)‖ ≤ ‖d′ − d‖, where ‖f‖ = supx |f(x)| is the supremum norm. It suffices to
prove that for all d v d′ and m,m′ ∈M , Ψ(d′)(m,m′)−Ψ(d)(m,m′) ≤ ‖d′ − d‖:

Ψ(d′)(m,m′)−Ψ(d)(m,m′)
= K(Λ(d′))(τ∗(m), τ∗(m′))−K(Λ(d))(τ∗(m), τ∗(m′)) (by def. Ψ)

by choosing ω ∈ Ω(τ∗(m), τ∗(m′)) such that K(Λ(d))(τ∗(m), τ∗(m′)) =
∫

Λ(d) dω,

= K(Λ(d′))(τ∗(m), τ∗(m′))−
∫

Λ(d) dω
≤
∫

Λ(d′) dω −
∫

Λ(d) dω (by def. of K(Λ(d′)))
=
∫

(Λ(d′)− Λ(d)) dω (by linearity)

and since, for all (α, β) /∈ E = {((a, n), (a, n′)) | a ∈ L, n, n′ ∈M}, Λ(d′)(α, β) = Λ(d)(α, β),

=
∫
E

(Λ(d′)− Λ(d)) dω
≤
∫
E
‖d′ − d‖ dω (by def. Λ)

≤ ‖d′ − d‖ . (by linearity and
∫
E

1 dω ≤ 1)

J

The next Lemma states that d lifts the bisimilarity relation to a pseudometric.

CONCUR 2016

21:6 Complete Axiomatization for the Bisimilarity Distance on Markov Chains

I Lemma 5. d(m,m′) = 0 iff m ∼ m′.

Proof. (⇐) We prove that R = {(m,m′) | d(m,m′) = 0} (i.e., ker(d)) is a bisimulation.
Clearly, R is an equivalence, and also ker(Λ(d)) is so. Assume (m,m′) ∈ R. By definition
of Ψ, we have that K(Λ(d))(τ∗(m), τ∗(m′)) = 0. By [8, Lemma 3.1], for all ker(Λ(d))-
equivalence classes D ⊆ ((L ×M)] X)⊥, τ∗(m)(D) = τ∗(m′)(D). By definition of Λ, this
implies that, for all a ∈ L, X ∈ X and C ∈ M/R, τ(m)(X) = τ(m′)(X) and, moreover,
τ(m)({a} × C) = τ(m′)({a} × C).

(⇒) Let R ⊆ M × M be a bisimulation on M, and define dR : M × M → [0, 1] by
dR(m,m′) = 0 if (m,m′) ∈ R and dR(m,m′) = 1 otherwise. We show that Ψ(dR) v dR.
If (m,m′) /∈ R, then dR(m,m′) = 1 ≥ Ψ(dR)(m,m′). If (m,m′) ∈ R, then for all a ∈ L,
X ∈ X and C ∈M/R, τ(m)(X) = τ(m′)(X), τ(m)({a}×C) = τ(m′)({a}×C). This implies
that for all ker(Λ(dR))-equivalence class D ⊆ ((L×M)]X)⊥, τ∗(m)(D) = τ∗(m′)(D). By
[8, Lemma 3.1], we have K(Λ(dR))(τ∗(m), τ∗(m′)) = 0. This implies that Ψ(dR) v dR.
Since ∼ is a bisimulation, Ψ(d∼) v d∼, so that, by Tarski’s fixed point theorem, d v d∼.
By definition of d∼ and d v d∼, m ∼ m′ implies d(m,m′) = 0. J

The definition above can be extended to the collection OMC of open Markov chains as
dOMC : OMC ×OMC → [0, 1] by using the bisimilarity distance on the disjoint union of
their open Markov chains structures and by taking the distance between their initial states.

4.2 The Algebra of Open Markov Chains
Next we turn to simple algebra of pointed Markov chains. The signature of this algebra is
defined as follows,

Σ = {X : 0 | X ∈ X} ∪ (names)
{a.(·) : 1 | a ∈ L} ∪ (prefix)
{+e : 2 | e ∈ [0, 1]} ∪ (probabilistic choice)
{recX : 1 | X ∈ X} , (recursion)

consisting of a constant X for each name in X ; prefix a.· and a recursion recX unary
operators, for each a ∈ L and X ∈ X ; and a probabilistic choice +e binary operator for
each e ∈ [0, 1]. For t ∈ T(Σ,M), fn(t) denotes the set of free names in t, where the notions
of free and bound name are defined in the standard way, with recX acting as a binding
construct. A term is closed if it does not contain any free variable. Throughout the paper
we consider two terms as syntactically identical if they are identical up to renaming of their
bound names. For t, s1, . . . , sn ∈ T(Σ,M) and an n-vector X = (X1, . . . , Xn) of distinct
names, t[s/X] denotes the simultaneous capture avoiding substitution of Xi in t with si, for
i = 1, . . . , n. A name X is guarded2 in a term t if every free occurrence of X in t occurs
within a context the following forms: a.[·], s+1 [·], or [·] +0 s.

Since from now on we will only refer to terms constructed over the signature Σ, we will
simply write T(M) and T, in place of T(Σ,M) and T(Σ, ∅), respectively.

Before giving the interpretation for these operations in OMC, we define an operator on
open Markov chains, takingM = (M, τ) to the open Markov chain U(M) = (T(M), µM),
where µM : T(M)→ D((L×T(M))]X) is defined as the least solution (over the complete

2 This notion, coincides with the one in [19], though our definition may seem more involved due to the
fact that we allow the probabilistic choice operators +e with e ranging in the closed interval [0, 1].

G. Bacci, G. Bacci, K. G. Larsen, and R. Mardare 21:7

partial order of the set of transition probability functions over T(M), ordered point-wise as
τ v τ ′ iff τ(t)(E) ≤ τ ′(t)(E), for all t ∈ T(M), and E ⊆ (L × T(M))] X) of the equation

µM = PM
(
µM

)
,

where PM is defined by induction on T(M), for arbitrary transition probability functions θ
over T(M), as follows:

PM(θ)(m) = τ(m)
PM(θ)(X) = δX

PM(θ)(a.t) = δ(a,t)

PM(θ)(t+e s) = eθ(t) + (1− e)θ(s)
PM(θ)(recX.t) = θ(t[recX.t/X]) ,

where δX and δ(a,t) denote the Dirac distributions pointed at X ∈ X and (a, t) ∈ L×T(M),
respectively. The definition of µM corresponds essentially to the transition probability of the
operational semantics of probabilistic processes given by Stark and Smolka in [19]. The only
difference with their definition is that µM is defined over T(M) rather than T(∅); and that
our formulation simplifies theirs by skipping the definition of a labelled transition system.
We refer the interested reader to [19] for more information on the definition of µM. Here
we limit ourself to recalling that µM(recX.X)((a, t)) = 0, for all a ∈ L and t ∈ T(M) and
µM(recX.X)(Y) = 0, for all Y ∈ X , that is, recX.X is a terminating state in U(M).

I Definition 6 (Universal open Markov chain). LetM∅ = (∅, τ∅) be the open Markov chain
with τ∅ the empty transition function. The universal open Markov chain is U(M∅).

The reason why it is called universal will be clarified later. As for now just note that U(M∅)
has T as the set of states, and that its transition probability function corresponds to the
one defined in [19]. To ease the notation we will denote U(M∅) as U = (T, µT).

Next we give an algebraic interpretation over OMC to the operations in Σ. For arbitrary
(M,m), (N , n) ∈ OMC and f : n ∈ Σ define fomc : OMCn → OMC as follows:

Xomc = (U, X) ,
(a.(M,m))omc = (U(M), a.m) ,

(M,m) +omc
e (N , n) = (U(M⊕N),m+e n) ,

(recX.(M,m))omc = (U(M∗X,m), recX.m) ,

where M⊕ N denotes the disjoint union of M and N , and for M = (M, τ), M∗X,m is
the open Markov chain (M, τ∗X,m) with transition function defined, for all m′ ∈ M and
E ⊆ (L×M)]X , as τ∗X,m(m′)(E) = τ(m′)(X)τ(m)(E\{X})+(1−τ(m′)(X))τ(m′)(E\{X}).
Intuitively, τ∗X,m modifies τ by removing the name X ∈ X from the support of all τ(m′) and
replacing the removed probability mass with the probabilistic behavior of m.

I Definition 7. The quantitative algebra of open Markov chains is (OMC,Σomc,dOMC).

The (initial) semantics for terms t ∈ T to pointed open Markov chains is given via the
function J·K : T→ OMC, defined by induction on terms as follows

JXK = Xomc

Ja.tK = (a.JtK)omc ,

Jt+e sK = JtK +omc
e JsK ,

JrecX.tK = (recX.JtK)omc .
(semantics)

For an example of how a term is interpreted to a pointed open Markov chain see Figure 1.
Note that the freely-generated algebra of Σ-terms, namely (T,Σ) can be turned into a

quantitative algebra as U = (T,Σ,dU), where dU is the bisimilarity distance defined over
the universal open Markov chain U. The next result states the universality of U.

CONCUR 2016

21:8 Complete Axiomatization for the Bisimilarity Distance on Markov Chains

m1 m2

m3

Z

a, 1
2

b, 1
2

a, 1
4

b, 3
4

b, 1
3

2
3

t1 = recX.(a.t2 + 1
2
b.t3)

t2 = a.X + 1
4
b.t3

t3 = recY.(b.Y + 1
3
Z)

Figure 1 The term t1 is interpreted to the pointed open Markov chain Jt1K ∼ (M, m1) depicted
on the left (restricted only to the states reachable from t1).

I Theorem 8 (Universality). Let t, s ∈ T. Then JtK ∼ (U, t) and dOMC(JtK, JsK) = dU(t, s).

Proof (sketch). The proof of JtK ∼ (U, t) is by induction on t. The base case is trivial.
The cases for the prefix and probabilistic choice operations are completely routine from
the definition of the interpretations and the operator U : OMC → OMC (in each case a
bisimulation can be constructed from those given by the inductive hypothesis). The only
nontrivial case is when t = recX.t′. The proof carries over in two steps. First one shows
that (U, recX.t′) ∼ (recX.(U, t′))omc; then, by using the inductive hypothesis Jt′K ∼ (U, t′),
that (recX.(U, t′))omc ∼ (recX.Jt′K)omc. Since JrecX.t′K = (recX.Jt′K)omc, by transitivity of
the bisimilarity relation JrecX.t′K ∼ (U, recX.t′).

The proof of dOMC(JtK, JsK) = dU(t, s) follows by Lemma 5 and the above result. Indeed

dOMC(JtK, JsK) = d(JtK, JsK) (def. d)
≤ d(JtK, (U, t)) + d((U, t), (U, s)) + d((U, s), JsK) (triangular ineq.)
= d((U, t), (U, s)) (JtK ∼ (U, t), JsK ∼ (U, s) & Lemma 5)
= dU(t, s) . (def. d)

By a similar argument we also have dOMC(JtK, JsK) ≥ dU(t, s), hence the thesis. J

The above result states that it is totally equivalent to reason about the behavior of JtK
by just considering the state corresponding to the term t in the universal model U. Hence,
due to Theorem 8, in the rest of the paper whenever we refer to the distance between two
terms we will use dU, often simply denoted as d. Similarly, Γ |=OMC t ≡ε s is equivalent to
Γ |=U t ≡ε s, and it will be denoted just by Γ |= t ≡ε s.
I Remark. We already noted that the universal open Markov chain U corresponds to the
operational semantics of probabilistic expressions given by Stark and Smolka [19]. In the
light of Theorem 8, the soundness and completeness results for axiomatic equational system
w.r.t. probabilistic bisimilarity over probabilistic expressions given in [19], can be moved
without further efforts to the class of open Markov chains of the form JtK.

5 Axiomatization of the Bisimilarity Distance

This section presents a quantitative deductive system, namely the one satisfying the axioms
in Figure 2, and prove it to be sound and complete w.r.t. the bisimilarity distance d.

The axioms (B1), (B2), (SC), (SA) are that of barycentric algebras [20], used to axio-
matize probability distributions. The axioms (Unfold), (Unguard), (Fix), (Cong) are used
to axiomatize recursive behaviors and correspond to those proposed by Milner [15]. All
together, these axioms have been used by Stark and Smolka [19] to provide a complete
axiomatization of probabilistic bisimilarity. To this set of axioms we add the axiom (IB)

G. Bacci, G. Bacci, K. G. Larsen, and R. Mardare 21:9

(B1) ` t+1 s ≡0 t ,

(B2) ` t+e t ≡0 t ,

(SC) ` t+e s ≡0 s+1−e t ,

(SA) ` (t+e s) +e′ u ≡0 t+ee′ (s+ e′−ee′
1−ee′

u) , for e, e′ ∈ [0, 1) ,

(Unfold) ` recX.t ≡0 t[recX.t/X] ,
(Unguard) ` recX.t+e X ≡0 recX.t ,

(Fix) {s ≡0 t[s/X]} ` s ≡0 recX.t , for X guarded in t,
(Cong) {t ≡0 s} ` recX.t ≡0 recX.s ,

(Top) ` t ≡1 s ,

(IB) {t ≡ε s, t′ ≡ε′ s′} ` t+e t
′ ≡ε′′ s+e s

′ , for ε′′ ≥ eε+ (1− e)ε′.

Figure 2 Quantitative axioms for the bisimilarity pseudometric.

of [14], that, in combination with the barycentric axioms, axiomatizes the Kantorovich dis-
tance between finitely-supported probability distributions (see §10 in [14] for more details).
Finally the axiom (Top) is used to bound the distance between terms.

A significant difference w.r.t. the original framework of quantitative deductive systems
of Mardare, Panangaden, and Plotkin, recalled in Section 3, is that we do not impose non-
expansiveness for the operator recX (i.e., the axiom (NExp) associated to recX is dropped).
This is replaced by the weaker axiom (Cong). The intuitive reason why (NExp) is not sound
for recX is that the recursion magnifies the differences of the behaviors of its arguments.
We refer the interested reader to [9] for an exhaustive explanation of this phenomenon.

By [20, Theorem 2], any barycentric algebra has a one-to-one embedding into a convex
subset of a suitable vector space. By this result, we can conveniently its elements as n-ary
convex combinations of terms t1, . . . , tn ∈ T, as

∑n
i=1 ei · ti ∈ T, provided that ei ∈ [0, 1] and∑n

i=1 ei = 1. We refer the reader to [19, 10, 11] for an analytic discussion of this notation.

5.1 Soundness
In this section we show the soundness of our quantitative deductive system w.r.t. the bisim-
ilarity distance. As noticed in Remark 4.2, the soundness of the axioms already present in
the deductive system of Stark and Smolka follow without further changes from [19], due to
Theorem 8 and Lemma 5.

I Theorem 9 (Soundness). If ` t ≡ε s then |= t ≡ε s.

Proof. As usual, we must show that each axiom and rule of inference is valid. The axioms
(Refl), (Symm), (Triang), (Max), and (Arch) are sound since d is a pseudometric (Lemma 5).
The soundness of the classical logical deduction rules (Subst), (Cut), and (Assum) is immedi-
ate. By Lemma 5, the kernel of d is ∼. Hence the axioms of barycentric algebras (B1), (B2),
(SC), and (SA) all along with the axioms (Unfold), (Unguard), (Cong), and (Fix) follow dir-
ectly by the soundness theorem proven in [19]. The axiom (Top) is immediate consequence
of the fact that d is 1-bounded. Note that (IB) subsumes the axiom (NExp+e) —the two
coincide when ε = ε′. It only remains to show the soundness of (NExp-pref) for the prefix

CONCUR 2016

21:10 Complete Axiomatization for the Bisimilarity Distance on Markov Chains

operator and (IB). To prove (NExp-pref) it suffices to show that d(t, s) ≥ d(a.t, a.s):

d(a.t, a.s) = K(Λ(d))(µ∗T(a.t), µ∗T(a.s)) (d fixed-point & def. Ψ)
= K(Λ(d))(δ(a,t), δ(a,s)) (def. µT & PU)
= Λ(d)((a, t), (a, s)) (def. K)
= d(t, s) . (def. Λ)

Finally, the soundness of (IB) follows by ed(t, s) + (1− e)d(t′, s′) ≥ d(t+e t
′, s+e s

′)

ed(t, s) + (1− e)d(t′, s′)
= eΨ(d)(t, s) + (1− e)Ψ(d)(t′, s′) (d fixed point)
= eK(Λ(d))(µ∗T(t), µ∗T(s)) + (1− e)K(Λ(d))(µ∗T(t′), µ∗T(s′)) (def. Ψ)

then, for ω ∈ Ω(µ∗T(t), µ∗T(s)) and ω′ ∈ Ω(µ∗T(t′), µ∗T(s′)) optimal couplings for K(Λ(d)), and
by noticing that eω + (1− e)ω′ ∈ Ω(eµ∗T(t) + (1− e)µ∗T(t′), eµ∗T(s) + (1− e)µ∗T(s′)) we have

= e
∫

Λ(d) dω + (1− e)
∫

Λ(d) dω′

=
∫

Λ(d) d(eω + (1− e)ω′) (linearity)
≥ K(Λ(d))(eµ∗T(t) + (1− e)µT(t′), eµ∗T(s) + (1− e)µT(s′)) (def. K and above)
= K(Λ(d))(PU(µT)∗(t+e t

′),PU(µT)∗(s+e s
′)) (def. PU)

= K(Λ(d))(µ∗T(t+e t
′), µ∗T(s+e s

′)) (µT fixed-point)
= d(t+e t

′, s+e s
′) (def. Ψ & δ fixed-point)

The above concludes the proof. J

5.2 Completeness
This section is devoted to prove the completeness of our axiomatization w.r.t. the bisimilarity
distance. The proof relies on the completeness theorem of the axiomatization of probabilistic
bisimilarity in [19], and the one for interpolative barycentric algebras in [14].

The next theorem, due to Milner [15], and restated in the probabilistic setting by Stark
and Smolka [19, Theorem 1] is essential for proving the completeness of our axiomatization.

I Theorem 10 (Unique Solution of Equations). Let X = (X1, . . . , Xk) and Y = (Y1, . . . , Yh)
be distinct names, and t = (t1, . . . , tk) terms with free names in (X,Y) in which each Xi is
guarded. Then there exist terms s = (s1, . . . , sk) with free names in Y such that

` si ≡0 t[s/X] , for all i ≤ k.

Moreover, if for some terms u = (u1, . . . , uk) with free variables in Y , ` ui ≡0 t[u/X], for
all i ≤ k, then ` si ≡0 ui, for all i ≤ k.

The next theorem is the equational characterization theorem of Stark and Smolka. In
our formulation the statement is simpler than [19, Theorem 2] since in our axiomatization
we have the unit laws for +1 and +0, derivable from the axioms (B1) and (SC).

I Theorem 11 (Equational Characterization). For any term t, with free names in Y , there
exist terms t1, . . . , tk with free names in Y , such that ` t ≡0 t1 and

` ti ≡0
∑h(i)
j=1 pij · sij +

∑l(i)
j=1 qij · Yg(i,j) , for all i ≤ k,

where the terms sij and names Yg(i,j) are enumerated without repetitions, and sij is either
recX.X or has the form aij .tf(i,j).

G. Bacci, G. Bacci, K. G. Larsen, and R. Mardare 21:11

Recall that (NExp) is not sound for the recursion operator. Nevertheless, the com-
pleteness of the axiomatization can be carried out regardless, thanks to the fact that the
bisimilarity distance can alternatively be obtained as δ =

d
k∈ω Ψ̃k(1), i.e., as the ω-limit of

the decreasing sequence 1 w Ψ̃(1) w Ψ̃2(1) w . . . of the operator

Ψ̃(d)(m,m′) =
{

0 if m ∼ m′,
Ψ(d)(m,m′) otherwise.

I Lemma 12. The operator Ψ̃ is monotone and ω-cocontinuous. Moreover, δ =
d
k∈ω Ψ̃k(1).

Proof. Monotonicity and ω-cocontinuity follow similarly to Lemma 4 and [21, Theorem 1].
By ω-cocontinuity

d
k∈ω Ψ̃k(1) is a fixed point. By Lemma 5 and δ = Ψ(δ), also δ is a fixed

point of Ψ̃. We show that they coincide by proving that Ψ̃ has a unique fixed point.
Assume that Ψ̃ has two fixed points d and d′ such that d < d′. Define R ⊆ M ×M as

m R m′ iff d′(m,m′)− d(m,m′) = ‖d′ − d‖. By the assumption made on d and d′ we have
that ‖d′ − d‖ > 0 and R ∩ ∼ = ∅. Consider arbitrary m,m′ ∈M such that m R m′, then

‖d′ − d‖ = d′(m,m′)− d(m,m′)
= Ψ̃(d′)(m,m′)− Ψ̃(d)(m,m′) (by d = Ψ̃(d) and d′ = Ψ̃(d′))
= Ψ(d′)(m,m′)−Ψ(d)(m,m′) (by m 6∼ m′ and def. Ψ̃)
≤
∫
E

(Λ(d′)− Λ(d)) dω , (as proved in Lemma 4)

where we recall that E = {((a, n), (a, n′)) | a ∈ L, n, n′ ∈M}.
Observe that (Λ(d′)− Λ(d))((a, n), (a, n′)) = d′(n)− d(n′) ≤ ‖d′ − d‖, for all n, n′ ∈ M

and a ∈ L. Since ‖d′ − d‖ > 0 the inequality ‖d′ − d‖ ≤
∫
E

(Λ(d′)− Λ(d)) dω ≤ ‖d′ − d‖
holds only if the support of ω is included in ER = {((a, n), (a, n′)) | a ∈ L and n R n′}.
Since the argument holds for arbitrary m,m′ ∈ M such that m R m′, we have that R is a
bisimulation, which is in contradiction with the initial assumptions. J

Now we are ready to prove the main result of this section.

I Theorem 13 (Completeness). If |= t ≡ε s, then ` t ≡ε s.

Proof. Let t, s ∈ T and ε ∈ Q+. We have to show that if d(t, s) ≤ ε then ` t ≡ε s. The
case ε ≥ 1 trivially follows by (Top) and (Max). Let ε < 1. By Theorem 11, there exist
terms t1, . . . , tk and s1, . . . , sr with free names in X and Y , respectively, such that ` t ≡0 t1,
` s ≡0 s1, and

` ti ≡0
∑h(i)
j=1 pij · t′ij +

∑l(i)
j=1 qij ·Xg(i,j) , for all i ≤ k, (1)

` su ≡0
∑n(u)
v=1 euv · s′uv +

∑m(u)
v=1 duv · Yw(u,v) , for all u ≤ r, (2)

where the terms t′ij (resp. s′uv) and names Xg(i,j) (resp. Yw(u,v)) are enumerated without
repetitions, and t′ij (resp. s′uv) have either the form aij .t

′
f(i,j) (resp. buv.s′z(u,v)) or recZ.Z.

By induction on α ∈ N, we prove that

` ti ≡ε su , for all i ≤ k, u ≤ r, and ε ≥ Ψ̃α(1)(ti, su) . (3)

(Base case: α = 0) Ψ̃0(1)(ti, su) = 1(ti, su). Since 1(ti, su) = 0 whenever ti = su and
1(ti, su) = 1 if ti 6= su, then (3) follows by the axioms (Refl), (Top) and (Max).
(Inductive step: α ≥ 0). Assume that (3) holds for α. We want to show ` ti ≡ε su, for
all ε ≥ Ψ̃α+1(1)(ti, su). Since our deduction system includes the one of Stark and Smolka,

CONCUR 2016

21:12 Complete Axiomatization for the Bisimilarity Distance on Markov Chains

whenever ti ∼U su, by completeness w.r.t. ∼U, namely [19, Theorem 3], we obtain ` ti ≡0 su.
By (Max) ` ti ≡ε su, for all ε ≥ Ψ̃α+1(1)(ti, su) = 0. Let consider the case ti 6∼U su. By
inductive hypothesis, we have that (3) holds. For each name Xg(i,j) and Yw(u,v) occurring in
(1) and (2), respectively, by (Top) we have ` Xg(i,j) ≡1 Yw(u,v) whenever Xg(i,j) 6= Yw(u,v),
and by (Refl) we have ` Xg(i,j) ≡0 Yw(u,v) whenever Xg(i,j) = Yw(u,v). For each term
aij .t

′
f(i,j) and buv.s′z(u,v) occurring in (1) and (2), respectively, by inductive hypothesis and

(NExp) we can deduce ` aij .t′f(i,j) ≡ε buv.s
′
z(u,v), for all ε ≥ Ψ̃α(1)(t′f(i,j), s

′
z(u,v)), whenever

aij = buv. If aij 6= buv, by (Top) we get ` aij .t′f(i,j) ≡1 buv.s
′
z(u,v). As for recZ.Z, by (Top)

we have ` recZ.Z ≡1 β for all terms β 6= recZ.Z occurring in the right hand side of (1) and
(2); and by (Refl) we have ` recZ.Z ≡0 recZ.Z.

Note that in this manner —possibly using (Max)— we have deduced ` β ≡ε′ γ, for all
ε′ ≥ Λ(Ψ̃α(1))(β, γ), where β and γ are arbitrary terms occurring in the right hand side of
(1) and (2), respectively. Since our quantitative deductive system includes all the axioms of
interpolative barycentric algebras in the sense of [14], by completeness w.r.t. the Kantorovich
distance (see §10 in [14]), for all ti 6∼U su,

` ti ≡ε su , for all ε ≥ K(Λ(Ψ̃α(1)))(µ∗T(ti), µ∗T(su)) = Ψ̃α+1(1)(ti, su) . (4)

By Lemma 12 and (3), applying (Arch) we have ` ti ≡ε su, for all ε ≥ d(ti, su). By ` t ≡0 t1,
` s ≡0 s1, and (Triang), we deduce ` t ≡ε s, for all ε ≥ d(t, s). J

6 The Class of Expressible Open Markov Chains

In this last section we show that the class of expressible open Markov chains corresponds up
to bisimilarity to the class of finite (and finitely supported) open Markov chains. Specifically,
this means that any finite open Markov chain (hence, also “closed” Markov chains) can be
represented, up to bisimilarity, as Σ-terms; so that by Theorems 9 and 13 we can reason
about their quantitative operational semantics in a purely algebraic way via the axiomatic
system presented in Section 53.

A pointed Markov chain (M,m) is said expressible if there exists a term t ∈ T such that
JtK ∼ (M,m). The next result is a corollary of Theorems 8, 10, and 9.

I Corollary 14. If (M,m) is finite then it is expressible.

Proof. We have to show that there exists t ∈ T such that JtK ∼ (M,m). Since the set of
states M = {m1, . . . ,mk} is finite and, for each mi ∈ M , τ(mi) is finitely supported, then
the sets of unguarded names {Y i1 , . . . , Y ih(i)} = supp(τ(mi)) ∩ X and labelled transitions
{αi1, . . . , αil(i)} = supp(mi)∩ (L×M) of mi are finite. Let us associate with each αij a name
Xi
j , for all i ≤ k and j ≤ l(i). For each i ≤ k, we define the terms

ti =
∑l(i)
j=1 τ(mi)(αij) · aij .Xi

j +
∑h(i)
j=1 τ(mi)(Y ij) · Y ij ,

where αij = (aij ,mi
j), for all i ≤ k and i ≤ l(i). By Theorem 10, for i ≤ k, there exists

terms si = (si1, . . . , sil(i)) such that ` si ≡0 ti[si/Xi], so that by soundness (Theorem 9),
JsiK ∼ Jti[si/Xi]K. Hence, by Theorem 8, we have (U, si) ∼ (U, ti[si/Xi]).

Let mi = (mi
1, . . . ,m

i
l(i)) and Xi = (Xi

1, . . . , X
i
l(i)), for i ≤ k. It is a routine check

to prove that the smallest equivalence relation Ri containing {(mi, ti[mi/Xi]) | i ≤ k} is

3 The results in this section can be alternatively obtained as in [18] by observing that open Markov
chains are coalgebras of a quantitative functor.

G. Bacci, G. Bacci, K. G. Larsen, and R. Mardare 21:13

a bisimulation for (M,mi) and (U(M), ti[mi/Xi]), hence (M,mi) ∼ (U(M), ti[mi/Xi]).
Similarly, one can prove (U(M), ti[mi/Xi]) ∼ (U, ti[si/Xi]) by taking the smallest equival-
ence relation containing {(ti[mi/Xi], ti[si/Xi]) | i ≤ k} and {(mi

j , s
i
j) | i ≤ k, j ≤ l(i)}. By

transitivity of ∼, (M,mi) ∼ JsiK, for all i ≤ k, hence (M,m) is expressible. J

The converse (up to bisimilarity) of the above result can also be proved, and it follows
as a corollary of Theorems 8, 9, and 11.

I Corollary 15. If (M, n) is expressible then it is finite up-to-bisimilarity.

Proof. Let t ∈ T. We have to show that there exists (M,m) ∈ OMC with a finite set of
states such that JtK ∼ (M,m). From Theorem 11, there exist t1, . . . , tk with free names in
Y , such that ` t ≡0 t1 and

` ti ≡0
∑h(i)
j=1 pij · sij +

∑l(i)
j=1 qij · Yg(i,j) , for all i ≤ k,

where the terms sij and names Yg(i,j) are enumerated without repetitions, and sij is either
recX.X or has the form aij .tf(i,j). Let Z1, . . . , Zk be fresh names distinct from Y , and
define t′i as the term obtained by replacing in the right end side of the equation above each
occurrence of ti with Zi. Then, clearly ` ti ≡0 t

′
i[t/Z]. By soundness (Theorem 9), we have

that JtiK ∼ Jt′i[t/Z]K, so that, by Theorem 8, (U, ti) ∼ (U, t′i[t/Z]).
DefineM = (M, τ) by settingM = {t1, . . . , tk}, m = t1, and, for all i ≤ k, taking as τ(ti)

the smallest sub-probability distribution on (L×M)]X such that τ(ti)((aij , tf(i,j))) = pij
and τ(ti)(Yg(i,e)) = qie, for all i ≤ k, j ≤ h(i), and e ≤ l(i). Notice that since the equation
above is without repetitions, τ is well defined. Moreover, 1 − τ(mi)((L ×M)] X) = piw
whenever there exists w ≤ h(i) such that siw = recX.X. It is not difficult to prove that
(M, ti) ∼ (U, t′i[t/Z]) (take the smallest equivalence relation containing the pairs (ti, t′i[t/Z]),
for i ≤ k), so that by transitivity of ∼, (M, ti) ∼ JtiK, for all i ≤ k. By ` t ≡0 t1 and
Theorem 9, we also have JtK ∼ Jt1K, so that JtK ∼ (M,m). J

7 Conclusions and Future Work

In this paper we proposed a complete axiomatization for the bisimilarity distance of De-
sharnais et al. The axiomatic system comes as a natural generalization of the one proposed
by Stark and Smolka [19] for probabilistic bisimilarity, where we only added the axiom (IB)
from [14] for dealing with the Kantorovich distance. Although the use of the recursion op-
erator does not fit the general framework of Mardare et al. [14], we believe that the proof
technique employed in the present paper may be general enough to accommodate the axio-
matization of other behavioral distances for probabilistic systems, such as the total variation
distance. Moreover, in the light of the results in Section 6, it would be interesting to see
to what extent one could approach infinitary behaviors by means of finitary ones, and how
such an axiomatization would look like. These questions are left open for future work.

Acknowledgments. We thank the anonymous reviewers for their comments and sugges-
tions. The first two authors are indebted to Lotte Legarth for the support provided and the
delicious meals.

References

1 Luca Aceto, Zoltán Ésik, and Anna Ingólfsdóttir. Equational axioms for probabilistic
bisimilarity. In AMAST 2002, LNCS, pages 239–253, 2002.

CONCUR 2016

21:14 Complete Axiomatization for the Bisimilarity Distance on Markov Chains

2 Giorgio Bacci, Giovanni Bacci, Kim G. Larsen, and Radu Mardare. Bisimulation on Markov
Processes over Arbitrary Measurable Spaces. In Horizons of the Mind. A Tribute to Prakash
Panangaden, volume 8464 of LNCS, pages 76–95. Springer, 2014.

3 Jos C. M. Baeten, Jan A. Bergstra, and Scott A. Smolka. Axiomatizing probabilistic
processes: ACP with generative probabilities. Inf. Comput., 121(2):234–255, 1995.

4 Emanuele Bandini and Roberto Segala. Axiomatizations for probabilistic bisimulation. In
ICALP, LNCS, pages 370–381, 2001.

5 Pedro R. D’Argenio, Daniel Gebler, and Matias D. Lee. Axiomatizing bisimulation equi-
valences and metrics from probabilistic SOS rules. In FoSSaCS, LNCS, pages 289–303,
2014.

6 Yuxin Deng and Catuscia Palamidessi. Axiomatizations for probabilistic finite-state beha-
viors. Theor. Comput. Sci., 373(1-2):92–114, 2007.

7 Josee Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash Panangaden. Metrics
for labelled Markov processes. Theoretical Computer Science, 318(3):323–354, 2004.

8 Norm Ferns, Prakash Panangaden, and Doina Precup. Metrics for finite Markov Decision
Processes. In Proceedings of the 20th conference on Uncertainty in Artificial Intelligence,
UAI, pages 162–169. AUAI Press, 2004.

9 Daniel Gebler, Kim Guldstrand Larsen, and Simone Tini. Compositional metric reasoning
with probabilistic process calculi. In FoSSaCS, LNCS, pages 230–245, 2015.

10 C. Jones and Gordon D. Plotkin. A probabilistic powerdomain of evaluations. In LICS,
pages 186–195. IEEE Computer Society, 1989.

11 Klaus Keimel and Gordon Plotkin. Mixed powerdomains for probability and nondetermin-
ism. Logical Methods in Computer Science, page ??, 2015. (to appear).

12 Kim G. Larsen, Uli Fahrenberg, and Claus R. Thrane. Metrics for weighted transition
systems: Axiomatization and complexity. Theor. Comput. Sci., 412(28):3358–3369, 2011.

13 Kim Guldstrand Larsen and Arne Skou. Bisimulation Through Probabilistic Testing. In
POPL, pages 344–352, 1989.

14 Radu Mardare, Prakash Panangaden, and Gordon Plotkin. Quantitative algebraic reason-
ing. In LICS, page ?? IEEE Computer Society, 2016. (to appear).

15 Robin Milner. A complete inference system for a class of regular behaviours. J. Comput.
Syst. Sci., 28(3):439–466, 1984.

16 Michael Mislove, Joël Ouaknine, and James Worrell. Axioms for probability and non-
determinism. Electronic Notes in Theoretical Computer Science, 96:7–28, 2004.

17 Gordon D. Plotkin and John Power. Semantics for algebraic operations. Electr. Notes
Theor. Comput. Sci., 45:332–345, 2001.

18 Alexandra Silva, Filippo Bonchi, Marcello M. Bonsangue, and Jan J. M. M. Rutten. Quant-
itative kleene coalgebras. Inf. Comput., 209(5):822–849, 2011.

19 Eugene W. Stark and Scott A. Smolka. A complete axiom system for finite-state probab-
ilistic processes. In Proof, Language, and Interaction, Essays in Honour of Robin Milner,
MIT Press, pages 571–596, 2000.

20 Marshall H. Stone. Postulates for the barycentric calculus. Annali di Matematica Pura ed
Applicata, 29(1):25–30, 1949.

21 Franck van Breugel. On behavioural pseudometrics and closure ordinals. Inf. Process. Lett.,
112(19):715–718, 2012.

22 Franck van Breugel and James Worrell. Towards Quantitative Verification of Probabilistic
Transition Systems. In ICALP, volume 2076 of LNCS, pages 421–432, 2001.

Computing Probabilistic Bisimilarity Distances via
Policy Iteration∗

Qiyi Tang1 and Franck van Breugel2

1 DisCoVeri Group, Department of Electrical Engineering and Computer Science
York University, Toronto, Canada

2 DisCoVeri Group, Department of Electrical Engineering and Computer Science
York University, Toronto, Canada

Abstract
A transformation mapping a labelled Markov chain to a simple stochastic game is presented.
In the resulting simple stochastic game, each vertex corresponds to a pair of states of the la-
belled Markov chain. The value of a vertex of the simple stochastic game is shown to be equal
to the probabilistic bisimilarity distance, a notion due to Desharnais, Gupta, Jagadeesan and
Panangaden, of the corresponding pair of states of the labelled Markov chain. Bacci, Bacci,
Larsen and Mardare introduced an algorithm to compute the probabilistic bisimilarity distances
for a labelled Markov chain. A modification of a basic version of their algorithm for a labelled
Markov chain is shown to be the policy iteration algorithm applied to the corresponding simple
stochastic game. Furthermore, it is shown that this algorithm takes exponential time in the worst
case.

1998 ACM Subject Classification D.2.4 Software/Program Verification, F.1.1 Models of Com-
putation, G.3 Probability and Statistics

Keywords and phrases labelled Markov chain, simple stochastic game, probabilistic bisimilarity,
pseudometric, value function, policy iteration

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2016.22

1 Introduction

A behavioural equivalence answers the fundamental question “when are two states of a
model considered behaviourally the same?” The most prominent behavioural equivalence
is bisimilarity, due to Milner [21] and Park [24]. We refer the reader to, for example, [25,
page 1–4], for an extensive discussion of the importance of behavioural equivalences such as
bisimilarity.

A behavioural pseudometric is a quantitative generalization of a behavioural equivalence.
Such a pseudometric assigns to each pair of states a number in the unit interval [0, 1]. The
smaller this number, the more alike the states behave. Those states that have distance zero
are considered behaviourally equivalent. As first observed by Giacalone, Jou and Smolka
[14], behavioural equivalences are not robust for models that include quantitative information
such as time and probabilities. For these models, behavioural pseudometrics are an essential
complement to behavioural equivalences. For a more detailed discussion of the merits of
behavioural pseudometrics, we refer the reader to, for example, [23, Chapter 8].

∗ This research has been supported by a grant of the Natural Sciences and Engineering Research Council
of Canada.

© Qiyi Tang and Franck van Breugel;
licensed under Creative Commons License CC-BY

27th International Conference on Concurrency Theory (CONCUR 2016).
Editors: Josée Desharnais and Radha Jagadeesan; Article No. 22; pp. 22:1–22:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.22
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

22:2 Computing Probabilistic Bisimilarity Distances

Systems with probabilistic behaviour are often modelled as labelled Markov chains. An
example of such a Markov chain is depicted below. In a labelled Markov chain, each state
has a label. In the example, the label is represented by the colour of the state. These labels
are used to capture that particular properties of interest hold in some states and do not hold
in other states. In diagrams, like the one below, only if the probabilities of the outgoing
transitions of a state are not all the same, as is the case for state u1, we denote the actual
probabilities.

s0

s1

s2

t0

t1

u0

t2

u1

1
4

3
4

The most prominent behavioural equivalence for labelled Markov chains is probabilistic
bisimilarity, due to Larsen and Skou [19]. Numerous quantititative generalizations of this
behavioural equivalence have been proposed, the probabilistic bisimilarity pseudometric due to
Desharnais et al. [12] being the most notable one. In this paper, we focus on this probabilistic
bisimilarity pseudometric.

In order to exploit behavioural pseudometrics such as the probabilistic bisimilarity
pseudometric, it is essential to be able to approximate or compute these behavioural distances.
The first algorithm to approximate these distances was presented by Van Breugel, Sharma
and Worrell in [5]. In their algorithm, the distance between states s and t, denoted δ(s, t), is
computed as follows. Since δ(s, t)<q, for some rational q, can be expressed in the existential
fragment of the first order theory over the reals as shown by Van Breugel et al., and this
theory is decidable as shown by Tarski [28], one can use binary search to approximate δ(s, t).
The satisfiability problem for the existential fragment of the first order theory over the reals
can be solved in polynomial space [7]. The algorithm of Van Breugel et al. can only handle
labelled Markov chains with a handful of states.

Subsequently, Chen, Van Breugel and Worrell [8] presented a polynomial time algorithm
to compute the distances. They showed that the distances are rational and that those
distances can be computed by means of Khachiyan’s ellipsoid method [18]. In particular,
they showed that the distance function can be expressed as the solution of a linear program.
In this case, the separation algorithm, which is an integral part of the ellipsoid method, boils
down to solving a minimum cost flow problem. The network simplex algorithm solves the
latter problem in polynomial time [22]. In practice, it is several orders of magnitude slower
than the algorithm of Bacci et al. which we will discuss next.

Bacci, Bacci, Larsen and Mardare [2] put forward yet another algorithm to compute the
bisimilarity distances. In their paper, they showed that their algorithm, in contrast to the
two algorithms mentioned above, can handle labelled Markov chains of 50 states. Their
algorithm can be viewed as a basic algorithm, enhanced with an optimization. The key
idea behind this optimization is to compute the distances “on-the-fly.” Roughly speaking,
to compute δ(s, t) we only need to compute δ(u, v) where s and t can reach u and v in n
transitions for some n > 0. In this paper, we will not consider this optimization, but focus
on the basic algorithm only.

Q. Tang and F. van Breugel 22:3

Stochastic games were introduced by Shapley [26]. A simplified version of these games,
called simple stochastic games, were studied by Condon [9]. A simple stochastic game is
played with a single token by two players, called min and max, on a finite directed graph.
The graph has five types of vertices: min, max and average vertices, 0-sinks and 1-sinks. The
min, max and average vertices have two outgoing edges, whereas the 0-sinks and 1-sinks
have no outgoing edges. Whenever the token is in a min (max) vertex, the token is moved to
one of the two successors of the vertex, chosen by the min (max) player. If the token is in
an average vertex, the successor is chosen randomly. The min (max) player’s objective is to
minimize (maximize) the probability of reaching a 1-sink.

In its strategy, the min player chooses for each min vertex one of its two successors.
Similarly, a strategy for the max player assigns to each max vertex one of its successors.
Strategies are also known as policies. Given a strategy for the min player and a strategy
for the max player, we can define a function that maps the vertices to the interval [0, 1].
This function maps each vertex v to the probability that the max player wins the game,
provided that the game starts in vertex v and the min and max player play according to
their strategies. When the strategy of both players is optimal, this function is called the
value function.

A variety of algorithms has been developed to compute the value function of a simple
stochastic game. Several of these algorithms use policy iteration. As long as there exists
a choice in the strategy of the min or max player that is not locally optimal, switch that
choice for one that is locally optimal. Hoffman and Karp [15] introduced a policy iteration
algorithm for stochastic games in which all non-optimal choices are switched in each iteration.
Condon [10] presented a similar algorithm, known as simple policy iteration, that switches
only one non-optimal choice per iteration.

Most of the main results of this paper rely on a transformation mapping each labelled
Markov chain to a simple stochastic game. The resulting simple stochastic game does not
have any max vertices. Each min vertex v of the simple stochastic game corresponds to a pair
(s, t) of states of the labelled Markov chain. In Section 4, we will show that the value of v is
the distance of s and t. In [6], Van Breugel and Worrell present a similar transformation.
They map a probabilistic automaton, which is a more general model as it includes not only
probabilistic choices but also nondeterminstic choices, to a simple stochastic game. They
also show that values and distances correspond, and use this correspondence to prove a
complexity result for computing behavioural distances for probabilistic automata, but they
do not present any algorithm.

Below we present (part of) the simple stochastic game corresponding to the labelled
Markov chain presented earlier in this introduction. The min vertices vi correspond to the
state pairs (si, ti) and the min vertices wi correspond to the state pairs (si−1, ui−1). The
average vertices are denoted by bullets. The 0- and 1-sinks are labelled with zeroes and ones.

CONCUR 2016

22:4 Computing Probabilistic Bisimilarity Distances

v2

1 w2

1

1

v1

1 w1

1 0

1

v0

1

1

0 0

In Section 5, we will prove that a small modification of the basic algorithm of Bacci et al.
corresponds to Condon’s simple policy iteration. That is, the modified basic algorithm for
computing the distances of all state pairs of a labelled Markov chain can be viewed as simple
policy iteration applied to the corresponding simple stochastic game. As a consequence, the
proof by Condon [9, Lemma 4] that simple policy iteration computes the value function of a
simple stochastic game also shows that the modified basic algorithm computes the distances.

Let us highlight a technical detail here. Condon’s proof that simple policy iteration
computes the value function of a simple stochastic game relies on the assumption that the
game halts with probability one. That is, no matter which strategy the min and max player
use, the game reaches a 0- or 1-sink with probability one. To be able to use Condon’s proof
in our setting, we need to show that the simple stochastic game resulting from the labelled
Markov chain halts with probability one. As we will see, this is accomplished by mapping
state pairs (s, t) of the labelled Markov chain, for which s and t are probabilistic bisimilar, to
a 0-sink in the simple stochastic game. Hence, before running the basic algorithm of Bacci
et al., we first need to decide which states are probabilistic bisimilar, which can be done
in polynomial time [3]. This is the small, yet essential, modification of their algorithm, to
which we alluded earlier.

In Section 6, we will show that in the worst case, our algorithm takes exponential time.
Many similar lower bounds have been proved for closely related algorithms by showing that
the algorithms can be viewed as binary counters. We refer the reader to, for example, the
thesis of Friedmann [13] for several such proofs. For simple stochastic games, Melekopoglou
and Condon [20] showed that simple policy iteration takes exponential time in the worst
case. We cannot directly use their result since no labelled Markov chain maps to the simple
stochastic games they use in their proof. As we mentioned before, the labelled Markov chain
depicted earlier gives rise to the simple stochastic game (of which a part is) depicted above.
That simple stochastic game implements a 3-bit counter, as we will discuss next.

For the above simple stochastic game, a strategy of the min player consists of either going
to the right (represented by 0) or down (represented by 1) in the vertices v2, v1 and v0. In
the table below, we present for each strategy the values of the vertices v2, v1 and v0. Going
from one column to the next, the strategy for either v2, v1 or v0 is switched. As a result,
none of the values increase and one of the values decreases. The table contains all eight 3-bit
combinations and, hence, the simple stochastic game can be viewed as a 3-bit counter. As we
will show in Section 6, for each n ∈ N we can construct a labelled Markov chain of size O(n)
that gives rise to a simple stochastic game that implements an n-bit counter. Hence, from a
theoretical point of view, the algorithm of Bacci et al. is inferior to the algorithm of Chen et
al.

Q. Tang and F. van Breugel 22:5

strategy

v2 0 1 1 0 0 1 1 0

v1 0 0 1 1 1 1 0 0

v0 0 0 0 0 1 1 1 1

value

v2 1 15
16

15
16

7
8

7
8

13
16

13
16

3
4

v1 1 1 3
4

3
4

3
4

3
4

1
2

1
2

v0 1 1 1 1 0 0 0 0

As Bacci et al. already showed in [2], in practice their algorithm outperforms the other
algorithms to compute bisimilarity distances. Recall that we only consider their basic
algorithm. We have shown that our modification of this algorithm also performs very well
in practice. We ran the algorithm on a variety of labelled Markov chains obtained from
examples of probabilistic model checkers such as PRISM1 and MRMC2. The performance of
our modified algorithm, which has to decide probabilistic bisimilarity first, is comparable to
the performance of their basic algorithm. We expect the same results by adapting our basic
algorithm to the on-the-fly setting.

2 The Probabilistic Bisimilarity Pseudometric

In this section, we review the model of interest, labelled Markov chains, and the probabilistic
bisimilarity pseudometric due to Desharnais et al. [12]. We denote the set of probability
distributions on a set S by Dist(S).

I Definition 1. A labelled Markov chain is a tuple 〈S,L, τ, `〉 consisting of
a set S of states,
a set L of labels,
a transition function τ : S → Dist(S),
a labelling function ` : S → L.

We restrict our attention to labelled Markov chains with finitely many states and the
transition probabilities of which are rationals. For the remainder of this section, we fix such
a labelled Markov chain 〈S,L, τ, `〉.

I Definition 2. Let µ, ν ∈ Dist(S). The set Ω(µ, ν) of couplings of µ and ν is defined by

Ω(µ, ν) =
{
ω ∈ Dist(S × S)

∣∣∣∣∣ ∑
t∈S

ω(s, t) = µ(s) ∧
∑
s∈S

ω(s, t) = ν(t)
}
.

Note that ω ∈ Ω(µ, ν) is a joint probability distribution with marginals µ and ν.

I Definition 3. The function T : Dist(S)×Dist(S)× [0, 1]S×S → [0, 1] is defined by

T (µ, ν, d) = min
ω∈Ω(µ,ν)

∑
u,v∈S

ω(u, v) d(u, v).

1 www.prismmodelchecker.org
2 www.mrmc-tool.org

CONCUR 2016

www.prismmodelchecker.org
www.mrmc-tool.org

22:6 Computing Probabilistic Bisimilarity Distances

The function T can be viewed as the minimal cost of a transportation problem. Consider
two disjoint copies of S, one representing sources and the other representing targets. For each
s, t ∈ S, µ(s) represents the supply at source s and ν(t) represents the demand at target t.
The cost of transporting one unit from source s to target t is captured by d(s, t). The amount
transported from source s to target t is captured by ω(s, t). The distance function T (µ, ν, d)
is known as the Kantorovich metric [17].

I Definition 4. The function ∆ : [0, 1]S×S → [0, 1]S×S is defined by

∆(d)(s, t) =
{

1 if `(s) 6= `(t)
T (τ(s), τ(t), d) otherwise

To define the behavioural pseudometric, we use the Knaster-Tarski fixed point theorem
(see, for example, [11, Chapter 2]). To apply that theorem, we need to define an order on
[0, 1]S×S . For d, e ∈ [0, 1]S×S we write d v e if d(s, t) ≤ e(s, t) for all s, t ∈ S. The set
[0, 1]S×S endowed with the order v forms a complete lattice. Since ∆ is a monotone function,
we can conclude from the Knaster-Tarski fixed point theorem that ∆ has a least fixed
point. We denote this fixed point by δ. This is the probabilistic bisimilarity pseudometric of
Desharnais et al.

3 An Alternative Characterization of δ

Next, we provide an alternative characterization of the probabilistic bisimilarity pseudomet-
ric δ which can be found in the extended version of [8]. This characterization can also be
found in the work of Bacci et al. [2, Theorem 9]. It provides the basis for their algorithm.
The characterization relies on couplings, a notion from the theory of Markov chains.

I Definition 5. The set C of couplings of the labelled Markov chain 〈S,L, τ, `〉 is defined by

C = {T ∈ Dist(S × S)E | ∀(s, t) ∈ E : T (s, t) ∈ Ω(τ(s), τ(t)) }

where E = { (s, t) ∈ S × S | `(s) = `(t) }.

For the remainder of this section, we fix a labelled Markov chain 〈S,L, τ, `〉. We also fix
a coupling T ∈ C of the labelled Markov chain. Note that 〈S × S, T 〉 can be viewed as a
Markov chain, where the states (s, t) 6∈ E are absorbing.

I Definition 6. The function ΓT : [0, 1]S×S → [0, 1]S×S is defined by

ΓT (d)(s, t) =

1 if `(s) 6= `(t)∑
u,v∈S

T (s, t)(u, v) d(u, v) otherwise

Since [0, 1]S×S is a complete lattice and ΓT is a monotone function, we can conclude from
the Knaster-Tarski fixed point theorem that ΓT has a least fixed point. We denote this fixed
point by γT . Note that γT (s, t) is the probability of reaching a state (u, v) 6∈ E from the
state (s, t) in the Markov chain 〈S × S, T 〉.

For all µ, ν ∈ Dist(S), we denote the set of vertices of the convex polytope Ω(µ, ν) by
V (Ω(µ, ν)). We define

V (C) = {T ∈ Dist(S × S)E | ∀(s, t) ∈ E : T (s, t) ∈ V (Ω(τ(s), τ(t))) }.

The probabilistic bisimilarity pseudometric δ can be characterized as follows.

Q. Tang and F. van Breugel 22:7

I Theorem 7. δ = min
T∈V (C)

γT .

The basic algorithm of Bacci et al. relies on the fact that if a coupling T is locally optimal,
that is, ∆(γT) = γT , then it is globally optimal as well, that is, γT = δ (see [2, Lemma 18]).
However, as we will show next, this is not the case in general.

We denote the Dirac distribution concentrated at the pair of states (s, t) by δ(s,t), that is,
δ(s,t)(u, v) = 1 if s = u, t = v and δ(s,t)(u, v) = 0 otherwise.

I Theorem 8. There exists a labelled Markov chain and T ∈ V (C) such that ∆(γT) = γT

and γT 6= δ.

Proof. Consider the following labelled Markov chain.

s1s1 s2s2

s0

t1t1 t2t2

t0

Note that

V (Ω(τ(s0), τ(t0)) = { 1
2δ(s1,t1) + 1

2δ(s2,t2),
1
2δ(s1,t2) + 1

2δ(s2,t1)}
V (Ω(τ(s1), τ(t1)) = {δ(s0,t0)} and V (Ω(τ(s2), τ(t2)) = {δ(s0,t0)}

Now take T , U ∈ V (C) such that

T (s0, t0) = 1
2δ(s1,t2) + 1

2δ(s2,t1) and U(s0, t0) = 1
2δ(s1,t1) + 1

2δ(s2,t2)

Then we have

γT (s0, t0) = γT (s1, t1) = γT (s2, t2) = γT (s1, t2) = γT (s2, t1) = 1
γU (s0, t0) = 0

Furthermore,

∆(γT)(s0, t0) = min{ 1
2γ

T (s1, t2) + 1
2γ

T (s2, t1), 1
2γ

T (s1, t1) + 1
2γ

T (s2, t2)} = 1
∆(γT)(s1, t1) = γT (s0, t0) = 1
∆(γT)(s2, t2) = γT (s0, t0) = 1

J

4 Simple Stochastic Games

In this section, we present the transformation that maps each labelled Markov chain to a
simple stochastic game such that distances correspond to values. Let us first formally define
simple stochastic games.

I Definition 9. A simple stochastic game is a tuple (V,E, π) consisting of
a finite directed graph (V,E) such that
V is partitioned into the sets
∗ Vmin of min vertices,
∗ Vmax of max vertices,
∗ Vrnd of random vertices,
∗ V0 of 0-sinks, and
∗ V1 of 1-sinks,

CONCUR 2016

22:8 Computing Probabilistic Bisimilarity Distances

the vertices in V0 and V1 have outdegree zero and all other vertices have outdegree at
least one,

a function π : Vrnd → Dist(V) such that for each vertex v ∈ Vrnd, π(v)(w) > 0 iff
(v, w) ∈ E.

In this paper, we consider a slightly more general definition than the one given by Condon
in [9]. In particular, the outdegree of min, max and random vertices is at least one (instead
of exactly two), there may be multiple 0-sinks and 1-sinks (rather than exactly one), and the
outgoing edges of a random vertex are labelled with rationals (rather than 1

2). However, a
simple stochastic game as defined above can be transformed in polynomial time into a simple
stochastic game as defined in [9], as shown by Zwick and Paterson [29, page 355].

In the construction below, we need the notion of probabilistic bisimilarity. This notion
can be captured as follows.

I Definition 10. An equivalence relation R ⊆ S × S is a probabilistic bisimulation if for all
(s, t) ∈ R, `(s) = `(t) and there exists ω ∈ Ω(τ(s), τ(t)) such that support(ω) ⊆ R, where
support(ω) = { (u, v) ∈ S × S | ω(u, v)> 0 }. Probabilistic bisimilarity, denoted ∼, is defined
as the largest probabilistic bisimulation.

In [16, Theorem 4.6] it is shown that the above characterization of probabilistic bisimilarity
is equivalent to the standard definition given in [19]. Now, we are ready to introduce the
transformation that maps each labelled Markov chain to a simple stochastic game.

I Definition 11. Let 〈S,L, τ, `〉 be a labelled Markov chain. The simple stochastic game
〈V,E, π〉 is defined by

Vmin = { (s, t) ∈ S × S | s 6∼ t ∧ `(s) = `(t) },
Vmax = ∅,
Vrnd =

⋃
{V (Ω(τ(s), τ(t))) | s, t ∈ S ∧ s 6∼ t ∧ `(s) = `(t) },

V0 = { (s, t) ∈ S × S | s ∼ t },
V1 = { (s, t) ∈ S × S | `(s) 6= `(t) },
E = { 〈(s, t), ω〉 | (s, t) ∈ Vmin ∧ ω ∈ V (Ω(τ(s), τ(t))) } ∪ { 〈ω, (u, v)〉 | ω(u, v)> 0 }, and
π(ω)(u, v) = ω(u, v).

Note that the resulting simple stochastic game does not have any max vertices.3 As a
result, the max player never gets to move the token. Therefore, there is no need for a strategy
of the max player and, hence, we only need to consider the strategy of the min player. Recall
that a strategy of the min player maps each min vertex to one of its successors. That is, such
a strategy maps (s, t), with s 6∼ t and `(s) = `(t), to ω ∈ V (Ω(τ(s), τ(t))). Hence, we can
view T ∈ V (C) as such a strategy by ignoring its values for (s, t) with s ∼ t.

For the remainder of this section, we fix a labelled Markov chain 〈S,L, τ, `〉 and a coupling
T ∈ V (C). The following definition of ΘT is very similar to the definition of ΓT given in
Definition 6.

3 The simple stochastic game of Definition 11 is a special type of simple stochastic game since it does not
have any max vertices. It can also be viewed as a Markov decision process. Note, though, that it is also
a special type of the Markov decision process since the reward function maps all transitions to zero
apart from those that reach a 1-sink which it maps to one.

Q. Tang and F. van Breugel 22:9

I Definition 12. The function ΘT : [0, 1]S×S → [0, 1]S×S is defined by

ΘT (d)(s, t) =

0 if s ∼ t
1 if `(s) 6= `(t)∑
u,v∈S

T (s, t)(u, v) d(u, v) otherwise

Since [0, 1]S×S is a complete lattice and ΘT is a monotone function, we can conclude
from the Knaster-Tarski fixed point theorem that ΘT has a least fixed point. We denote this
fixed point by θT .

Note that θT (s, t) is the value of the min vertex (s, t) with respect to the strategy T . As we
will show next, the optimal strategy gives rise to the probabilistic bisimilarity pseudometric δ,
that is, the probabilistic bisimilarity distances of the states s and t of the labelled Markov
chain are the values of the vertices (s, t) of the corresponding simple stochastic game.

I Theorem 13. δ = min
T∈V (C)

θT .

5 Simple Policy Iteration

As we already mentioned in the introduction, Condon’s simple policy iteration algorithm
computes the values of a simple stochastic game, provided that the simple stochastic game
halts with probability one. As we have shown in the previous section, the probabilistic
bisimilarity distances of a labelled Markov chain are the values of the corresponding simple
stochastic game defined in Definition 11. Hence, if that simple stochastic game halts
with probability one, then we can use simple policy iteration to compute the probabilistic
bisimilarity distances.

A simple stochastic game and a pair of strategies for the min and max player give naturally
rise to a Markov chain, where the vertices of the simple stochastic game are the states of the
Markov chain (see, for example, [9, Section 2.1] for details). We will call this the coupled
Markov chain. For example, the coupled Markov chain induced by the simple stochastic
game presented in the introduction, where the strategy for the min player (the values of the
vertices v2, v1 and v0) is 001, is given below.

v2 v1 v0 0

1 1 0

A simple stochastic game halts with probability one if for each pair of strategies, in the
coupled Markov chain each state reaches a 0-sink or 1-sink with probability one.

I Theorem 14. The simple stochastic game defined in Definition 11 halts with probability
one.

Proof. Towards a contradiction, assume that the simple stochastic game does not halt
with probability one. Then there exists a strategy for the min player, that is, an element
T ∈ V (C), and a vertex (s, t) which does not reach a 0- or 1-sink with probability one in
the coupled Markov chain. Each state in a Markov chain reaches with probability one a
closed communication class, also known as a bottom strongly connected component (see,
for example, [4, Theorem 10.27]). Note that a 0-sink and a 1-sink each forms a closed

CONCUR 2016

22:10 Computing Probabilistic Bisimilarity Distances

communication class. Since (s, t) does not reach a 0- or 1-sink with probability one, (s, t)
reaches a closed communication class C not consisting of a 0- or 1-sink. We can also show
that for each (s, t) ∈ C, we have s ∼ t. However, in that case, (s, t) is a 0-sink, which
contradicts the fact that C does not consist of a 0- or 1-sink.

J

Simple policy iteration starts with an arbitrary strategy, that is, an arbitrary T ∈ V (C)
(see line 1). As long as there is a min vertex which is not locally optimal with respect to the
current strategy, the strategy at that vertex is improved to the locally optimal choice. Note
that a min vertex (s, t) is not locally optimal if there exists a different choice for that vertex,
that is, ω ∈ V (Ω(τ(s), τ(t)), so that the value of the vertex decreases. This is captured in
line 2. In line 3, we compute a locally optimal choice and update the strategy.

1 T ← an element of V (C)
2 while ∃(s, t) ∈ Vmin : θT (s, t)>∆(θT)(s, t)
3 T (s, t)← arg min

ω∈V (Ω(τ(s),τ(t)))

∑
u,v∈S

ω(u, v) θT (u, v)

This is our modification of the basic algorithm of Bacci et al.
In line 1, an initial strategy T ∈ V (C) can be computed by the North-West corner

method in polynomial time (see, for example, [27, page 180]). In line 2, rather than choosing
an arbitrary min vertex that is not locally optimal, in the simple policy iteration a select
procedure can be defined as follows: we number all the vertices in Vmin and select the one
with the highest number [20, Section 2]. Note that θT can be computed in polynomial time
[4, Section 10.1.1]. In line 3, the computation can be viewed as a minimum-cost flow problem,
where s is the source vertex and t is the sink vertex. Below we present the flow network,
the sets {u1, · · · , un} and {v1, · · · , vn} are copies of S. For the edge (s, ui) and (vj , t), the
capacity is τ(s)(ui) and τ(t)(vj) respectively. There is no cost transporting along these edges.
Each edge (ui, vj) ∈ S × S has a capacity of min (τ(s)(ui), τ(t)(vj)) and θT (ui, vj) is the
cost of edge (ui, vj). The minimum cost of transporting one unit from s to t is captured
by ∆(θT)(s, t), which can be solved using the network simplex algorithm and is strongly
polynomial time [1, Section 11.8]. Note that each piece is polynomial so that the complexity
of the algorithm is determined by the number of iterations, as we will see in the next section.

s

u1

u2

un

t

v1

v2

vn

...

...

6 An Exponential Lower Bound

Below, we will prove an exponential lower bound for the algorithm we presented in the
previous section. In particular, for each n ∈ N we will construct a labelled Markov chain of
size O(n). Furthermore, we will show that our simple policy iteration algorithm takes Ω(2n)
iterations for the resulting simple stochastic game.

Q. Tang and F. van Breugel 22:11

I Definition 15. For n ∈ N, the labelled Markov chainMn is defined as follows by induction
on n. The labelled Markov chainM0 is defined as

s0

s1

t0

t1

u0

If n > 0 then the labelled Markov chainMn is defined as

sn

sn−1

tn−2

tn−1

un−2

tn

un−1

1
4

3
4

where the two dashed triangles together represent the labelled Markov chainMn−1.

In the introductory section, we presented M1. Note that Mn has 4n + 10 states and
7n+ 14 transitions and, hence, is of size O(n). Next, we give the simple stochastic games
corresponding to the above defined labelled Markov chains according to transformation
presented in Definition 11.

I Definition 16. For n ∈ N, the simple stochastic game Gn is defined as follows by induction
on n. The simple stochastic game G0 is defined as

v1

1 w1

1 0

1

v0

0 0

1

1

If n > 0 then the simple stochastic game Gn is defined as

CONCUR 2016

22:12 Computing Probabilistic Bisimilarity Distances

vn

1 wn

1

1

vn−1

1 wn−1

1

vn−2

1
4

1
4

where the dashed rectangle represents the simple stochastic game Gn−1.

In the introductory section, we presented G1. In the above definition, we use vi to denote
the min node (si, ti) and wi to denote the min node (si−1, ui−1). The transformation given
in Definition 11 applied to labelled Markov chainMn gives rise to a simple stochastic game
of which Gn is only a part. In particular, for 2 ≤ i ≤ n a random vertex and the following
edges have not been included in Gn, as they are never selected in any of the strategies we
construct in our proofs.

wi

wi−1

1

vi−2

1
4 1

2

1
4

Next, we consider the strategies for the simple stochastic game Gn. Recall that the Dirac
distribution δv is defined by δv(w) = 1 if w = v and δv(w) = 0 otherwise. In order to avoid
clutter, for 1 ≤ i ≤ n, instead of T (vi) = 1

2δ1 + 1
2δvi−1 we write T (i) = 0 and instead of

T (vi) = 1
2δ1 + 1

2δwi
we write T (i) = 1. Also, instead of T (v0) = 1

2δ1 + 1
2δ1 we write T (0) = 0

and instead of T (v0) = 1
2δ0 + 1

2δ0 we write T (0) = 1.
A vertex is switchable if it is not locally optimal.

I Definition 17. The vertex vi is switchable with respect to T if θT (vi)> θT i(vi), where

T i(j) =
{

1− T (j) if j = i

T (j) otherwise

Rather than starting from an arbirary strategy, we pick a specific initial strategy (line 1–2).
Furthermore, rather than choosing an arbitrary min vertex that is not locally optimal, we
pick the vi which is not locally optimal with the largest index (line 4).

1 for i = 0, . . . , n
2 T (i)← 0
3 while ∃0 ≤ i ≤ n : vi is switchable with respect to T

4 m← max{ i | vi is switchable with respect to T }
5 T (m)← 1− T (m)

Q. Tang and F. van Breugel 22:13

The above simple policy iteration algorithm applied to the simple stochastic game Gn
gives rise to exponentially many iterations.

I Theorem 18. For each n ∈ N, there exists a labelled Markov chain of size O(n) such that
simple policy iteration takes Ω(2n) iterations.

7 Conclusion

Based on a correspondence between labelled Markov chains and simple stochastic games,
we have shown that a modification of the basic algorithm of Bacci et al. for computing
probabilistic bisimilarity distances of a labelled Markov chain is simple policy iteration
applied to the corresponding simple stochastic game. The correspondence between labelled
Markov chains and simple stochastic games also allows us to use Condon’s correctness proof
of simple policy iteration to show that our modification of the basic algorithm of Bacci
et al. is correct. As we have shown in Theorem 8, that modification is essential. Such a
modification also needs to be applied to the on-the-fly algorithm of Bacci et al.

Although Bacci et al. had already shown that their algorithm performs very well in
practice, we show that in the worst case, their basic algorithm takes exponential time. Our
example can also be used to show that their on-the-fly algorithm takes exponential time in
the worst case as well. Our experimental results confirm that our modification gives rise
to very little overhead. In several cases our modified algorithm even performs better than
theirs. A detailed study of the performance of our modification of the on-the-fly algorithm is
left for future research.

As we already mentioned in the introduction, the difference between Hoffman and Karp’s
policy iteration and Condon’s simple policy iteration is that the former switches all locally non-
optimal vertices in every iteration, whereas the latter only switches one of them. The question
whether policy iteration, applied to a labelled Markov chain to compute its behavioural
distances, may also give rise to exponentially many iterations is still open and left for future
research. Note that an affirmative answer to this question would also prove an exponential
lower bound for policy iteration for simple stochastic games, a problem that has been open
for several decades.

Acknowledgments. The authors would like to thank Norm Ferns for extensive discussions.
The authors are also grateful to the referees for their constructive feedback.

References
1 Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows: Theory,

Algorithms, and Applications. Prentice-Hall, Upper Saddle River, NJ, USA, 1993.
2 Giorgio Bacci, Giovanni Bacci, Kim Larsen, and Radu Mardare. On-the-fly exact computa-

tion of bisimilarity distances. In Nir Piterman and Scott Smolka, editors, Proceedings of the
19th International Conference on Tools and Algorithms for the Construction and Analysis
of Systems, volume 7795 of Lecture Notes in Computer Science, pages 1–15, Rome, Italy,
March 2013. Springer-Verlag.

3 Christel Baier. Polynomial time algorithms for testing probabilistic bisimulation and simula-
tion. In Rajeev Alur and Thomas Henzinger, editors, Proceedings of the 8th International
Conference on Computer Aided Verification, volume 1102 of Lecture Notes in Computer
Science, pages 50–61, New Brunswick, NJ, USA, July/August 1996. Springer-Verlag.

4 Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. The MIT Press,
Cambridge, MA, USA, 2008.

CONCUR 2016

22:14 Computing Probabilistic Bisimilarity Distances

5 Franck van Breugel, Babita Sharma, and James Worrell. Approximating a behavioural
pseudometric without discount. Logical Methods in Computer Science, 4(2), April 2008.

6 Franck van Breugel and James Worrell. The complexity of computing a bisimilarity pseudo-
metric on probabilistic automata. In Franck van Breugel, Elham Kashefi, Catuscia Palam-
idessi, and Jan Rutten, editors, Horizons of the Mind – A Tribute to Prakash Panangaden,
volume 8464 of Lecture Notes in Computer Science, pages 191–213. Springer-Verlag, 2014.

7 John Canny. Some algebraic and geometric computations in PSPACE. In Janos Simon,
editor, Proceedings of the 20th Annual ACM Symposium on Theory of Computing, pages
460–467, Chicago, IL, USA, May 1988. ACM.

8 Di Chen, Franck van Breugel, and James Worrell. On the complexity of computing probabil-
istic bisimilarity. In Lars Birkedal, editor, Proceedings of the 15th International Conference
on Foundations of Software Science and Computational Structures, volume 7213 of Lecture
Notes in Computer Science, pages 437–451, Tallinn, Estonia, March/April 2012. Springer-
Verlag.

9 Anne Condon. The complexity of stochastic games. Information and Computation,
96(2):203–224, February 1992.

10 Anne Condon. On algorithms for simple stochastic games. In Jin-Yi Cai, editor, Advances in
Computational Complexity Theory, volume 13 of DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, pages 51–73. American Mathematical Society, 1993.

11 Brian Davey and Hilary Priestley. Introduction to Lattices and Order. Cambridge University
Press, Cambridge, United Kingdom, 2002.

12 Josee Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash Panangaden. Metrics
for labelled Markov processes. Theoretical Computer Science, 318(3):323–354, June 2004.

13 Oliver Friedmann. Exponential Lower Bounds for Solving Infinitary Payoff Games and
Linear Programs. PhD thesis, Ludwig-Maximilians-University, Munich, Germany, 2011.

14 Alessandro Giacalone, Chi-Chang Jou, and Scott Smolka. Algebraic reasoning for prob-
abilistic concurrent systems. In Proceedings of the IFIP WG 2.2/2.3 Working Conference
on Programming Concepts and Methods, pages 443–458, Sea of Gallilee, Israel, April 1990.
North-Holland.

15 Alan Hoffman and Richard Karp. On nonterminating stochastic games. Management
Science, 12(5):359–370, January 1966.

16 Bengt Jonsson and Kim Larsen. Specification and refinement of probabilistic processes. In
Proceedings of the 6th Annual Symposium on Logic in Computer Science, pages 266–277,
Amsterdam, The Netherlands, July 1991. IEEE.

17 Leonid Kantorovich. On the transfer of masses (in Russian). Doklady Akademii Nauk,
5(1):1–4, 1942. Translated in Management Science, 5(1):1–4, October 1958.

18 Leonid Khachiyan. A polynomial algorithm in linear programming. Soviet Mathematics
Doklady, 20(1):191–194, 1979.

19 Kim Larsen and Arne Skou. Bisimulation through probabilistic testing. Information and
Computation, 94(1):1–28, September 1991.

20 Mary Melekopoglou and Anne Condon. On the complexity of the policy iteration algorithm.
Computer Science Technical Report 941, University of Wisconsin, Madison, WI, USA, June
1990.

21 Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in
Computer Science. Springer-Verlag, Berlin, Germany, 1980.

22 James Orlin. A polynomial time primal network simplex algorithm for minimum cost flows.
Mathematical Programming, 78(2):109–129, August 1997.

23 Prakash Panangaden. Labelled Markov Processes. Imperial College Press, London, United
Kingdom, 2009.

Q. Tang and F. van Breugel 22:15

24 David Park. Concurrency and automata on infinite sequences. In Peter Deussen, editor,
Proceedings of 5th GI-Conference on Theoretical Computer Science, volume 104 of Lecture
Notes in Computer Science, pages 167–183, Karlsruhe, Germany, March 1981. Springer-
Verlag.

25 Davide Sangiorgi. Introduction to Bisimulation and Coinduction. Cambridge University
Press, Cambridge, United Kingdom, 2012.

26 Lloyd Shapley. Stochastic games. Proceedings of the Academy of Sciences, 39(10):1095–
1100, October 1953.

27 James K. Strayer. Linear programming and its applications. Springer-Verlag, New York,
NY, USA, 1989.

28 Alfred Tarski. A decision method for elementary algebra and geometry. University of
California Press, Berkeley, CA, USA, 1951.

29 Uri Zwick and Mike Paterson. The complexity of mean payoff games on graphs. Theoretical
Computer Science, 158(1/2):343–359, May 1996.

CONCUR 2016

Robustly Parameterised Higher-Order
Probabilistic Models∗

Fredrik Dahlqvist1, Vincent Danos2, and Ilias Garnier3

1 University College London
f.dahlqvist@ucl.ac.uk

2 Ecole Normale Supérieure
vincent.danos@ens.fr

3 University of Edinburgh
igarnier@inf.ed.ac.uk

Abstract
We present a method for constructing robustly parameterised families of higher-order probab-
ilistic models. Parameter spaces and models are represented by certain classes of functors in
the category of Polish spaces. Maps from parameter spaces to models (parameterisations) are
continuous and natural transformations between such functors. Naturality ensures that para-
meterised models are invariant by change of granularity – ie that parameterisations are intrinsic.
Continuity ensures that models are robust with respect to their parameterisation. Our method
allows one to build models from a set of basic functors among which the Giry probabilistic functor,
spaces of cadlag trajectories (in continuous and discrete time), multisets and compact powersets.
These functors can be combined by guarded composition, product and coproduct. Parameter
spaces range over the polynomial closure of Giry-like functors. Thus we obtain a class of robust
parameterised models which includes the Dirichlet process, point processes and other classical
objects of probability theory such as the de Finetti theorem. By extending techniques developed
in prior work, we show how to reduce the questions of existence, uniqueness, naturality, and
continuity of a parameterised model to combinatorial questions only involving finite spaces.

1998 ACM Subject Classification Semantics of programming languages

Keywords and phrases Topological semantics, probabilistic models

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2016.23

1 Introduction

In a widely read paper [1], Beylin and Dybjer reinterpret coherence for monoidal categories
as a result of normalisation on a linear non-commutative lambda-calculus. They prove that
the structural arrows of a monoidal category are characterised by their domain and codomain.
In this paper we follow a parallel path for probabilistic models. There are several differences
with Dybjer’s correspondence, however.

First, we work in Pol, the concrete category of Polish spaces Polish spaces form a classic
and convenient environment to construct a large variety of stochastic models. We exploit
this potential to build up a sufficiently expressive stock of structure arrows. Specifically,
we build up structure arrows based on a two-sorted polynomial type theory of ‘parameter’
functors and ‘model’ ones. Model functors include as primitives the Vietoris functor of
compact non-determinism, the Giry functor of probabilities, and most interestingly the

∗ This work was funded by the ERC grant RULE.

© Fredrik Dahlqvist, Vincent Danos, and Ilias Garnier;
licensed under Creative Commons License CC-BY

27th International Conference on Concurrency Theory (CONCUR 2016).
Editors: Josée Desharnais and Radha Jagadeesan; Article No. 23; pp. 23:1–23:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2 Robustly Parameterised Higher-Order Probabilistic Models

Skorokhod functor of cadlag functions - i.e. with countably many jumps and values in any
Polish space - which captures traces of processes both in discrete and continuous time. Model
functors can be combined by products, coproducts, and guarded composition; parameter
functors are less malleable (perhaps because we do not understand them well yet). Hence,
our type theory allows for iterations of ‘compact’ non-determinism (as captured by the
Vietoris functor) and probabilism (the Giry monad) - which have been a fundamental pursuit
in quantitative models of concurrency theory since Segala’s early work [18, 10, 19, 14]. In
addition, topology (and the possible recourse to metrics) allows one to talk about continuity
and to quantify notions of approximate bisimulation. Our arrows come pre-equipped with
metric interpretations which several and in particular van Breugel et al. have convincingly
argued are fundamental in probabilistic modeling [6, 20].

Thus, our stock of arrows is remarkably expressive. Of course, this would amount to
little, without a characterization of arrows equality. Here again, our result is slightly different
from Dybjer’s. We do not show that natural transformations are uniquely determined by
their ‘types’. Instead, using the ‘machine’ built in earlier work [5, 4], we show that structure
arrows are completely characterised by their behaviours on finite spaces. In effect, our result
makes the structure arrow equality problem (the equivalent of the normalisation of linear
lambda-terms if we follow our analogy) purely combinatorial. For some special choices of
parameter and model functors (of the Giry type), we can even show rigidity [4], that is to
say, types do characterise arrows. Regarding existence, we provide a converse to the above
result, and prove that not only are structure arrows wholly determined by the finite case,
but that finite data is enough to define such arrows.

The standpoint presented here departs from the more common “forward semantics”
approach where one knows already what one wants to semanticize. Here we embrace a less
trodden path (but usually rewarding, as in the Ehrhard-Regnier invention of differential
linear logic via the study of spaces of sequences, or Girard’s own carving of linear logic via
coherence spaces) of “reverse semantics” where the mathematical tractability of the semantic
universe is the primary tool for constructing the universe of computational discourse.

The outline of the paper is as follows: we start with a ‘slicing’ of the category of Polish
spaces in convenient layers, and recall the basic points of our existence and unicity ‘Machine’,
spelling out the conditions on our parameter and model functors. With this behind us, we
attack the description of the type theory and develop a string of propositions which justify
that choice by building its semantics. We conclude with our “normalisation” theorem and an
application of our framework to the celebrated de Finetti theorem, a key result in probability
theory and statistics.

2 Preliminaries

We work in the category Pol of completely metrisable and separable topological spaces and
continuous maps. There is the obvious Borel functor B : Pol → Meas mapping a Polish
space to the measurable space with the Borel σ-algebra and mapping continuous maps to
measurable ones, together with the underlying set functor U : Pol→ Set with the obvious
forgetful action. Pol has all countable limits and all countable coproducts [3, IX].

2.1 Pol endofunctors
We introduce some Pol endofunctors which are going to be used as examples in the rest of
the paper and form the primitive bricks for our structure arrows. First, there is the Giry
functor G [9, 17] which maps a space X to the space of Borel probability measures (with the

F. Dahlqvist, V. Danos, and I. Garnier 23:3

topology induced by the Kantorovich metric) over X. Related to G are the finite nonzero
positive measure functor M+ ∼= G × R>0. A parallel construction is that of the Vietoris
functor V which maps X to the “hyperspace” of its compact subsets topologised with the
Hausdorff distance [13, 4.F]. The finite multiset functor B and the related finite list functor W
are also Pol endofunctors [4]. Finally, we have a pair of functional functors. The Skorokhod
functor D, which maps X to the space of cadlag (right-continuous with left limits) functions
from [0,∞) to X equipped with the J1 topology [7], which is fundamental to the study of
continuous-time stochastic processes. And for any compact Polish set X, the functor C(X,−)
which maps any Polish space Y to that of continuous maps from X to Y .

Our family of functors covers both probabilistic behaviour through G, compact non-
determinism through V and spaces of trajectories through D and C. Moreover, working in the
category of Polish spaces makes the analogies between these functors all the more striking: G
is metrised by Kantorovich, V by Hausdorff and the same holds of D using a metric allowing
“time transport”. Recent work [16] might shed additional light on these similarities.

2.2 The structure of Pol
We slice Pol into the following full subcategories: finite Polish spaces Polf ; compact zero-
dimensional spaces Polcz; zero-dimensional spaces Polz; and compact spaces Polc:

Polf �
� // Polczq�

##

� � // Polz �
� // Pol

Polc
-

<< (1)

Finite spaces are equipped with the discrete topology. Compact zero-dimensional Polish
spaces (such as the Cantor set 2N) can be characterised as projective limits of finite Polish
spaces. Zero-dimensional spaces (such as the Baire space NN) are those spaces which admit
a base of their topology constituted of clopen sets. These subcategories have interesting
structures: any zero-dimensional space equipped with a choice of a countable base of clopen
sets can be mapped to its compactification, which is compact zero-dimensional [4]. In the
other direction, any Polish space equipped with a choice of a countable base can be mapped
to a zero-dimensional Polish refinement of its topology. We give some more details on
these operations in the next section, together with characterisations of Polish and compact
zero-dimensional spaces as respectively colimits and limits of particular diagrams.

2.2.1 Characterisations of zero-dimensional spaces
A countable codirected diagram in A (an A ccd for short) is a functor D : Iop → A where I
is a countable directed partial order and A is a subcategory of Pol. The characterisation of
objects of Polcz can be formulated as follows:

I Proposition 1 ([11]). A space X is compact zero-dimensional if and only if there exists a
Polf ccd D such that X ∼= limD.

Any Polish space can be written as the colimit of a diagram in Polz:

I Proposition 2 ([5], Proposition 3.2). Let X be a Polish space and F a countable base of
the topology of X. Let ZX(F) , (U(X), 〈Bool(F)〉) be the space having the same underlying
set as X and the topology generated by the Boolean algebra generated by F . The following
holds: (i) ZX(F) is zero-dimensional Polish, (ii) B(ZX(F)) = B(X). We call ZX(F) the
zero-dimensionalisation of X with respect to F .

CONCUR 2016

23:4 Robustly Parameterised Higher-Order Probabilistic Models

The family of zero-dimensionalisations of a space X indexed by all countable bases of X
forms a codirected diagram. This diagram is indexed by Bases(X) the set of all countable
bases of X partially ordered by inclusion; Bases(X) is directed by closing the union of two
bases under finite intersection [4, Def. 2.10]. If F , G are such bases then, if F ⊆ G, the
identity function is continuous from ZX(G) to ZX(F). This defines a codirected diagram
from the directed partial order Bases(X) to Polz, that we still denote by ZX . The following
statement states that any Polish space is the colimit of its diagram of zero-dimensionals:

I Theorem 3 ([5], Th. 3.5; [4], Proposition 2.11). For every Polish space X, X ∼= colimZX .

2.3 Converging in G(X)
We recall some standard facts about convergence in G(X) for X Polish. The boundary of a
set A ⊆ X is the set-theoretic difference between its closure and its interior, and is denoted
by ∂XA. By the Portmanteau theorem ([2], Th. 2.1), a sequence (pn)n∈N of probability
measures converges to p ∈ G(X) iff pn(A)→ p(A) for each Borel set A which is a p-continuity
set, i.e. which verifies p(∂XA) = 0. Note that for all p, p-continuity sets form a Boolean
algebra that we denote CX(p) ([17], Lemma 6.4). We have the following facts:

I Lemma 4. Countable Polish spaces are zero-dimensional.

Proof. Let X be Polish, x ∈ X and U be open in X. It is not difficult to use the metric
to define a function f : X → [0, 1] with f(x) = 0 and f(y) = 1 when y ∈ U c. If X is
countable, then f [X] is countable and thus there exists p ∈ [0, 1] such that p /∈ f [X] and it is
easy to check that f−1([0, p)) = f−1([0, p]) is clopen and included in U , and the conclusion
follows. J

I Lemma 5. Let X,Y be Polish, p ∈ G(X) and let f : X → Y be continuous. If B is a
G(f)(p)-continuity set then f−1(B) is a p-continuity set.

Proof. Direct consequence of the inequality ∂X(f−1(B)) ⊆ f−1(∂YB). J

I Lemma 6. Let X be Polish and uncountable and let {pi}i∈I ⊆ G(X) be a countable family
of probability measures. There exists a countable base F of X such that F ⊆ Boole(F) ⊆
∩iCX(pi).

Proof. Let B(x, ε) be the open ball of radius ε > 0 centered on x. Observe that for 0 < ε < ε′,
∂XB(x, ε) ∩ ∂XB(x, ε′) = ∅. Therefore, for a given p, there can at most be countably many
radiuses εk such that the B(x, εk) are not p-continuity sets, as otherwise the total mass of
∪k∂XB(x, εk) would diverge. Using that a countable union of countable sets is countable,
there are at most countably many radiuses εk such that B(x, εk) 6∈ ∩i∈ICX(pi). For any dense
subset E ⊆ R>0, the open balls N (x) = {B(x, ε)}ε∈E characterise convergence to x. For our
purposes, it is enough to take E such that E does not intersect the forbidden radii {εk},
which can always be done. The sought base F is obtained by considering a countable dense
subset D of X and taking F to be the closure under finite intersections of {N (x) | x ∈ D}.
Since continuity sets form a boolean algebra, we get Boole(F) ⊆ ∩iCX(pi). J

3 The Machine

The parameterised models we are interested in use ‘the Machine’ [4], a powerful theorem
allowing one to extend a class of natural transformations from finite Polish spaces to
arbitrary ones. This extension theorem hinges on particular conditions on the domain and

F. Dahlqvist, V. Danos, and I. Garnier 23:5

codomain functors of the natural transformation, corresponding respectively to constraints on
parameters and models. Accordingly, we will call domain functors ‘P-functors’ and codomain
functors ‘M-functors’. Below, we list these conditions. In Section 4, we will study closure
properties of these conditions, and derive a syntax for parameters and models.

3.1 Parameter condition
The Machine applies to natural transformations whose P-functor commutes with colimits of
diagrams of zero-dimensionals (Section 2.2.1). We call this property Z-cocontinuity:

I Definition 7 (Z-cocontinuity). An endofunctor F : Pol→ Pol is Z-cocontinuous if for all
space X, there exists an isomorphism F (colimZX) ∼= colimFZX .

In order for the Machine to apply, P-functors must also preserve epis. The parameter
condition is the conjunction of these two conditions.

I Definition 8 (Parameter conditions). An endofunctor F : Pol→ Pol satisfies the parameter
condition (or equivalently, is a P-functor) if (i) F is Z-cocontinuous and (ii) F preserves epis.

I Example 9. The following are P-functors: (i) the identity functor (it is Z-cocontinuous
by Theorem 3); (ii) the Polish Giry functor G (Z-cocontinuity is proved in Ref. [5, Th. 3.7]),
and the related finite positive nonzero measure functor M+; (iii) the multiset functor B
(see [4]). (iv) for any discrete (and thus at most countable) space X, C(X,−) is trivially
Z-cocontinuous.

3.2 Model condition
The Machine also requires M-functors to verify a list of conditions, corresponding to
constraints on models.

The model condition

Before defining the model condition, we introduce some terminology related to commutation
of functors with some limits.

I Definition 10. Let A be a subcategory of Pol. An endofunctor G : Pol → Pol is
A-continuous if for all ccd (Section 2.2) D : Iop → A, G(limD) ∼= limGD.

M-functors are endofunctors that satisfies the following.

I Definition 11 (Model conditions). An endofunctor G : Pol → Pol satisfies the model
condition (or equivalently, is an M-functor) if: (i) G preserves monos, (ii) G preserves
embeddings, (iii) G preserves intersections, (iv) G is Polf -continuous.

I Example 12. The following areM-functors: (i) the Giry functor G, and finite measure
functors M+; (ii) the multiset and list functors B,W; (iii) the Vietoris functor V; (iv) the
Skorokhod functor D and the continuous map functor C(X,−) from a compact Polish space
X (see [4]).

Observe that in Definition 11, all conditions are preserved by composition of endofunctors
except the last one. We will come back to this in Section 4.

CONCUR 2016

23:6 Robustly Parameterised Higher-Order Probabilistic Models

3.3 The Machine
The Machine states that natural transformations (parameterised models) betweenM-functors
and P-functors are entirely characterised by their components on finite spaces.

I Theorem 13 ([4]). Let F1 be a P-functor and F2 be aM-functor; one has Nat(F1, F2) ∼=
Nat(F1|Polf

, F2|Polf
).

I Example 14. Let us give some examples of finitely characterised natural transformations.
The unite of the Giry monad η : 1⇒ G is entirely characterised by its finite components.
We conjecture that the parameter condition is closed under composition by G, which
would imply that multiplication µ : G2 ⇒ G of the Giry monad is also characterised on
the whole of Pol by its finite components.
The normalisation ν : M+ ⇒ G defined by νX : M+X → GX,µ 7→ µ

µ(X) is also finitely
characterised. Moreover, the Machine allows to prove that it is the unique natural
transformation between M+ and G [4, Th. 5.2].

Classical objects of statistics can be framed as natural transformations:
the i.i.d. distribution on sequences of samples iid : G⇒ G(−N) (Section 5);
the Dirichlet process D : M+ ⇒ G2 a cornerstone of Bayesian nonparametrics [8];
the Poisson process P : M+ ⇒ GB which is the prototypical point process. Using the
Machine, it is enough to define the Poisson process on finite sets, this is done via

Pn : M+(n) ' (R+)n → GB(n) ' G(Nn), (λ1, . . . , λn) 7→ Po(λ1)× . . .× Po(λn)

where Po(λ) is the Poisson measure on N with parameter λ.

4 A grammar for parameterised models

We turn now to the main question of the paper, which is to find operations on functors under
which the parameter and model conditions are closed. For parameters, this result takes the
form of a simple grammar over functors. For models, we develop a simple type system over
polynomial terms generated from a family of functors, well-typedness implying the model
condition. This syntax for parameter and models lifts to natural transformations, giving rise
to a language of natural combinators for parameterised models.

As Pol has all countable limits and coproducts, the category of Pol endofunctors is closed
under at most countable coproducts and products (recall that if F,G : Pol→ Pol are two
endofunctors, their coproduct F +G acts on objects by (F +G)(X) = F (X) +G(X) and on
morphisms by (F + G)(f) = F (f) + G(f), and similarly for products). Endofunctors are
also trivially closed under composition.

4.1 Closure properties of the parameter condition
Let us start with parameter conditions. At the time of writing, we do not know whether
these are closed under products and/or functor composition. However, we show that they
are closed under coproducts. We also derive specific results for particular functors that
altogether yield a sufficiently expressive class of parameterisations.

Finite coproducts preserve the parameter condition

The following facts are easily verified:

I Proposition 15. If G,H preserve epis, then so does G+H.

I Proposition 16. The parameter condition is preserved by finite coproducts.

F. Dahlqvist, V. Danos, and I. Garnier 23:7

Products of Giry-like functors satisfy the parameter condition

Countable products of Giry-like functors (i.e. G,M+) satisfy the parameter condition. The
case of finite products follow trivially from the same result.

I Proposition 17. Let {Fk}k∈N be given with Fk ∈ {G,M+}. Then
∏
k Fk satisfies the

parameter condition.

Proof. It is enough to treat the case of G as M+ is naturally isomorphic to G × R>0.
Preservation of epis by G lifts to products of G. Let us prove Z-cocontinuity. We reuse the
proof method of ([5], Th. 3.7). It is enough to exhibit, for all X and all countable family of
converging sequences {p(k)

n → p(k)}k∈N in G(X)N, a base of F ∈ Bases(X) s.t. the sequence
converge in G(ZX(F))N. It follows from Lemma 4 that for countable Polish spaces there is
nothing to show, and we can thus assume w.l.o.g. that X is uncountable. Applying Lemma 6,
we get a base F s.t. Boole(F) ⊆ ∩kCX(p(k)). Noting that Boole(F) is a base of ZX(F), an
application of Th. 2.2 in (Billingsley [2]) concludes. J

Giry-like functors over products satisfy the parameter condition

Our grammar for parameterisations admits a way of specifying quantitative relations on
points of the underlying space, as shown below in Proposition 18 (which generalises to
Giry-like functors M+). In what follows, we treat countable products. The case of finite
products follows easily from the same proof.

I Proposition 18. G(−N) satisfies the parameter condition.

Proof. Preservation of epis still follows from the properties of G. To prove Z-cocontinuity,
we follow the proof scheme of Proposition 17. We denote πk : XN → X,π1...k : XN → Xk

the canonical projections. Let X be Polish and let (pn)n∈N → p be a converging sequence
in G(XN). By Lemma 6, there exists a base F of X such that for all k > 0, Boole(F) ⊆
∩k CX(G(πk)(p)). The sets of the form π−1

k (O) with O ranging in Boole(F) induce a base
H of ZX(F)N. Using Lemma 5 plus the fact that continuity sets are closed under finite
intersections, we deduce that H ⊆ CXN(p). Therefore, for all V ∈ H, pn(V)→ p(V). Using
Th. 2.2 in (Billingsley [2]), we get that pn → p in G(ZX(F)N). We conclude that G(−N) is
Z-cocontinuous. J

4.2 Closure properties of the model condition
We turn now to closure properties of model conditions. As we are going to show, all model
conditions (Definition 11) are closed under all polynomial operations with the exception of
the last one, namely Polf -continuity.

Finite coproducts preserve the model condition

We prove preservation of the model condition under finite coproducts. We proceed with the
other parts of the model condition, namely preservation of embeddings, intersections and
Polf -continuity. The following proposition is routine.

I Proposition 19. (i) If G,H preserve monos, then so does G+H. (ii) If G,H preserve
embeddings, then so does G+H. (iii) If G,H preserve embeddings and intersections, then
so does G+H.

The following one is a bit more technical and deserves a proof.

CONCUR 2016

23:8 Robustly Parameterised Higher-Order Probabilistic Models

I Proposition 20. If G,H are A-continuous, then so is G+H.

Proof. Let (Xi)i∈I be a ccd with limit X, we’re assuming that GX = limiGXi and HX =
limiHXi. The diagrams (GXi)i∈I and (HXi)i∈I define a diagram (GXi +HXi)i∈I where
for each i < j there exists a unique arrow Gpi,j +Gpi,j : GXi +HXi → GXj +HXj , with
pi,j : Xi → Xj the connecting morphism of the diagram (Xi)i∈I . The coproduct GX +HX

is a cone over this diagram via the maps Gpi +Hpi : GX +HX → GXi +HXi constructed
from the canonical projections pi : X → Xi by the universal property of coproducts. There
must therefore exist a unique continuous map φ : GX + HX → limi(GXi + HXi) which
maps a thread in GX to the obvious thread in limi(GXi +HXi) and similarly for threads in
HX. It is clear that φ is injective, moreover it is easy to see that threads in limi(GXi+HXi)
must be the form (xi)i∈I with every xi ∈ GXi or with every xi ∈ HXi, and in particular φ
is surjective. Thus φ is continuous and bijective, and it only remains to show that it is open.
Let U be open in GX +HX. By definition of the coproduct topology, UG = i−1

GX(U) and
UH = i−1

HX(U) are open, and thus by definition of the topology on the limit,

UG =
⋃
i

Gp−1
i (Vi) and UH =

⋃
j

Gq−1
j (Wj)

where each Vi (resp. Wj) is open in GXi (resp. HXj). Since I is cofiltered, for every i, j ∈ I
there exists a k ∈ I and morphisms pk,i : Xk → Xi and pk,j : Xk → Xj . Let us denote by
i ∧ j the choice of such a k for the pair i, j and note that Gp−1

i (W) = Gp−1
i∧j(Gp

−1
i∧j,i(W)).

Consider now the set

V =
⋃
i,j

q−1
i∧j(Gp

−1
i∧j,i(Ui)]Hp

−1
i∧j,i(Uj))

where qi is the canonical projection (limiHXi +GXi)→ HXi +GXi. By construction it
is open in limi(GXi +HXi) since it is a union of inverse images of sets which are open in
GXi∧j +HXi∧j by definition of the coproduct topology. We claim that φ[U] = V . For any
thread (xi) ∈ U , if the thread is in the HX component then it must belong to UG and thus
there must exist an i such that xi ∈ Vi, since we can assume that the connecting morphisms
are surjective there exists for each j an element xi∧j ∈ Gp−1

i∧j,i(Ui) in the thread and it
follows that the thread belongs to V , and similarly if the thread (xi) is in the GX component.
Similarly, starting from (xi) in V , it is clear that (xi) belongs to U and it thus φ is open. J

Finite products preserve the model condition

I Proposition 21. (i) If G,H preserve monos, then so does G×H. (ii) If G,H preserve
embeddings, then so does G×H. (iii) If G,H preserve intersections, then so does G×H.
(iv) If G,H are A-continuous, then so is G×H.

Proof. (i) Straightforward. (ii) Since embeddings are equalizers in Pol, this result is simply
a case of limits commuting with limits (Mac Lane [15] IX). (iii) Similarly, since intersections
are finite limits and they commute with finite limits in Pol. (iv) Finally, since ccds are
cofiltered limits, they commute with finite products. J

Composition

We now consider the operation of functor composition. The following is trivial:

I Proposition 22. The conditions 1. to 3. of Definition 11 are preserved under functor
composition.

F. Dahlqvist, V. Danos, and I. Garnier 23:9

Pol // Pol

Polz

OO 22

Polc

gg

**Polcz

OO 77

// Polc

OO

Polf

OO 22

Figure 1 Signature for G and V.

The condition of Polf -continuity (Definition 11, 4.) does not behave as well: if F,G
are Polf -continuous endofunctors and F maps finite spaces to non-finite spaces, GF has no
reason to be Polf -continuous. On the other hand, if F maps finite spaces to a subcategory
with respect to which G is continuous, then the composition GF will be Polf -continuous. In
order to make this intuition formal, we need to capture the global behaviour of functors on
the subcategories of Pol. To do so, we propose to abstract functors as monotonic functions
on the poset of subcategories of Pol.

I Definition 23 (Partial order on subcategories). We denote by (P,≤) the lattice over the
subcategories of Pol displayed in Equation 1 and generated by the subcategory relation,
i.e. A ≤ B iff A is a subcategory of B. We will denote by ∧ and ∨ the infinimum and the
supremum.

Note that P has as maximal element Pol and as minimal element Polf . The known
behaviour of a endofunctor over Pol can be presented as a monotonic function from P to
itself. We call such a function a signature assigned to the functor.

I Definition 24 (Signatures and signature assignments). We denote by Sign(P) the set of
order-preserving functions from P to itself. We say that an endofunctor G admits f ∈ Sign(P)
as a signature if for all A ∈ P, there exists a functor G′ : A→ f(A) such that the following
diagram commutes in Cat:

Pol G // Pol

A
G′
//

IAPol

OO

f(A)

If(A)Pol

OO (2)

where IAB denotes the obvious inclusion functor. If G admits f as a signature, we call the
pair (G, f) a signature assignment.

I Example 25. It is known that the Giry functor G and the Vietoris functor V preserve
compactness (see resp. Parthasarathy [17], Th. 6.4 and Kechris [13], Th. 4.26). Therefore,
both G and V admit the signature (in dotted arrows) in Figure 1. However, the fact that V
maps finite spaces to finite spaces implies that it admits a finer signature (Figure 2). Note
also that the functor M+ does not preserve compactness.

The exact signature of a functor might be unknown. However, it is always possible to
assign to a functor the signature corresponding to the constant function A ∈ P 7→ Pol. In
fact, the lattice structure on P lifts to signatures:

CONCUR 2016

23:10 Robustly Parameterised Higher-Order Probabilistic Models

Pol // Pol

Polz

OO 22

Polc

gg

**Polcz

OO 77

// Polc

OO

Polf

OO

// Polf

OO

Figure 2 A finer signature for V.

I Lemma 26. Define the relation on Sign(P) f ≤∗ g ⇔ ∀A ∈ P, f(A) ≤ g(A). Set
f ∧ g = A 7→ f(A) ∧ g(A) and similarly for ∨. Then (Sign(P),≤∗) is a lattice and the
constant function A 7→ Pol is its maximal element.

Proof. Reflexivity and transitivity are trivial. Assume f ≤∗ g and g ≤∗ f , then by
antisymmetry of (P,≤) we have f = g. Maximality of the constant Pol function is trivial. J

Let us now define a criterion for functor composition ensuring preservation of Polf -
continuity.

I Proposition 27. Let F and G be respectively a A-continuous and a B-continuous functor
such that F admits signature f and G admits signature g. If f(Polf) ≤ B, then GF is
C-continuous, where C = sup {C′ | C′ ≤ A ∧ f(C′) ≤ B}.

Proof. Since f(Polf) ≤ B, we know thatC exists and verifies Polf ≤ C. LetD : Iop → C be
a C ccd. By assumption of A-continuity and using hat C ≤ A, F (limD) ∼= limFD. Since F
admits f as a signature, FD is a f(C)-ccd and since f(C) ≤ B, G(limFD) ∼= limGFD. J

In the next section, we will leverage Proposition 27 by defining a type system for
polynomial composites of endofunctors.

4.3 Syntax for parameterisations and models
We capture the results of this section into grammars for parameterisations and models.

A grammar for parameterisations

In what follows, we let G = {G,M+} be the Giry-like functors (respectively Giry, the finite
positive measure and finite nonzero measure functors). We recall that ∆ is the diagonal
functor.

I Definition 28 (Parameterisations generated by a family of functors). Parameterisations,
denoted by P, are defined by the following grammar:

P ::= F | G∆ | G×G | P + P
G ::= G | M+

where F ranges over functors satisfying the parameter condition.

We have the following expected result:

I Theorem 29. All P ∈ P verify the parameter condition.

Proof. By induction, using the results of Section 4.1. J

F. Dahlqvist, V. Danos, and I. Garnier 23:11

Axiom
F ∈M0 F is A-continuous F admits signature f

F :: (A, f)

Sum
F :: (A, f) G :: (B, g)
F +G :: (A ∧B, f ∨ g)

Product
F :: (A, f) G :: (B, g)
F ×G :: (A ∧B, f ∨ g)

Composition
F :: (A, f) G :: (B, g) g(Polf) ≤ A

F ◦G :: (C, f ◦ g) whereC = sup {C′ | C′ ≤ A ∧ f(C′) ≤ B}

Figure 3 Inferences rules for the type system on models.

A grammar for models

Proposition 27 gives a sufficient condition ensuring that composition of functors satisfying
the model condition still satisfies the model condition. We integrate this result in a type
system for polynomial composites of functors satisfying the model condition.

I Definition 30 (Functor types). A functor type is a pair (A, f) with A ∈ P and f ∈ Sign(P).
The set of types is defined by Types(P) , P× Sign(P).

Functor types are assigned to elements of the polynomial closure of the set of functors
that satisfy the model condition.

I Definition 31 (Typing judgments). We inductively define a relation between functors
satisfying the model condition and functor types through the set of inference rules in Figure 3.
The fact that a functor F admits the type (A, f) will be denoted by F :: (A, f).

Our type system is sound with respect to the model condition.

I Theorem 32. If M :: (A, f) then M is A-continuous, m admits signature f and M

satisfies the model condition.

Proof. The proof is by induction. The properties of preservation of monos, preservation of
embeddings and preservation of intersections are treated in Section 4.2. Sum rule. Both F
and G are A ∧B-continuous, therefore by Proposition 20, F +G is A ∧B-continuous (and
therefore are least Polf -continuous). It is clear that a coproduct of finite spaces is finite
and similarly for compact zero-dimensional spaces, compact spaces and zero-dimensional
spaces. Therefore, F +G admits f ∨ g as a signature. The case of the product rule is similar.
Composition. C-continuity is by Proposition 27. That FG admits f ◦ g as a signature is
trivial. J

I Example 33. It is instructive to consider the the multiset functor B. It maps finite spaces
to finite spaces but we ignore its behaviour on other subcategories, hence the signature:

CONCUR 2016

23:12 Robustly Parameterised Higher-Order Probabilistic Models

Pol // Pol

Polz

OO 33

Polc

ee 66

Polcz

OO 99

AA

Polf

OO

// Polf

OO

It is only known to be Polf -continuous ([4]). Therefore, GB is a valid model functor but BG
breaks the third premise of the composition rule in Figure 3: indeed, G maps finite spaces to
compact spaces (Figure 1).

I Definition 34. The set of models is defined to be that of typeable functors and will be
denoted byM.

Natural parameterised models

Theorem 29 and 32 delineate a class of parameters and models to which the Machine
(Theorem 13) applies. These combined results can be reframed concisely as follows:

I Theorem 35. For all parameterisation P ∈ P and all model M ∈M,

Nat(P,M) ∼= Nat(P |Polf
,M |Polf

).

5 Applications

It is hard to overstate the importance of independently and identically distributed (i.i.d.)
sequences of random of variables and their generalisation to exchangeable processes to
probability and statistics, as witnessed by the wealth of powerful asymptotic results which
apply to them – to name a few, the law of large number, the central limit theorem and the
de Finetti theorem [12]. We illustrate the usefulness of our framework by recasting i.i.d.
processes and the de Finetti theorem as instances of our parameterised models.

5.1 The iid natural transformation
Let X be finite Polish. For all integer n > 0, we construct an arrow iidnX : G(X)→ G(Xn) as
follows: iidnX(p) = (B1, B2, . . . , Bn) 7→ p(B1) · p(B2) · · · p(Bn). One easily verifies that this
map is well-typed and continuous. We have the following result:

I Proposition 36. For all all positive integer n, the family iidnX defines a natural transform-
ation iidn : G⇒ G(−n).

Proof. Let X,Y be finite spaces and let f : X → Y be a function. Let p ∈ G(X) be given
and let (y1, . . . , yn) be a sequence in Y n. We have:

(G(fn) ◦ iidnX)(p)(y1, . . . , yn) = (iidnX(p) ◦ (fn)−1)(y1, . . . , yn)
= p(f−1(y1)) · p(f−1(y2)) · · · p(f−1(yn))
= iidnY (G(f)(p))(y1, . . . , yn)

We have proved that the iidn transformation is well defined on all finite spaces. One easily
checks that G is a P-functor and G(−n) is aM-functor. Applying Theorem 35, we conclude
that iidn admits an unique extension to the whole of Pol. J

F. Dahlqvist, V. Danos, and I. Garnier 23:13

G iid //

iid ''

G(−N)

G(σ̂)
��

G(−N)

Figure 4 iid is exchangeable.

G2 G(iid) //

G(iid) ''

G2(−N)

G2(σ̂)
��

µ // G(−N)

G(σ̂)
��

G2(−N)
µ
// G(−N)

Figure 5 Mixtures of iid are exchangeable.

The family of natural transformations {iidn}n>0 can in turn be extended to a natural
transformation iid : G ⇒ G(−N). The following result relies on the Bochner extension
theorem ([5], Th. 2.5) along with the naturality of the canonical projections πn : −N ⇒ −n
and πnm : −n ⇒ −m.

I Proposition 37. There exists a unique natural transformation iid : G⇒ G(−N) such that
for all n, iidn = G(πn) ◦ iid.

5.2 Exchangeable measures and the de Finetti theorem
For all n > 0, we denote by Sn the symmetric group on {1, . . . , n}. Each σ ∈ Sn in-
duces a natural transformation σ̂ : −N ⇒ −N whose component at X is defined by
σ̂X(x1, . . . , xn, . . .) = (xσ(1), . . . , xσ(n), xn+1, . . .). As illustrated by the commutative diagram
in Figure 4, the distribution of iid is invariant by the action of such permutations. Elements
of G(XN) invariant by the action of G(σ̂) for all n and all σ ∈ Sn are called exchangeable
measures. The diagram in Figure 4 indicates that iid is a natural family of exchangeable
measures. An easy computation shows that the same property is verified by mixtures of
iids (see Figure 5). The de Finetti theorem states that all exchangeable measures can be
represented as such mixtures of iids. We will prove that this representation is natural. We
introduce a functor mapping any Polish space X to the space of exchangeable measures
Gex(XN). Exchangeable measures form a closed convex subset of G(XN), therefore they form
a Polish space when given the subspace topology. We have the following result:

I Proposition 38. Gex(−N) is a P-functor.

Proof. Note that Gex(−N) is a subfunctor of G(−N) which is a P-functor (Proposition 18).
Z-cocontinuity is easily seen to be preserved by subfunctors. Preservation of epis follow from
the measurable selection theorem and naturality of σ̂ for all σ ∈ Sn. J

Let us introduce another natural transformation: for all n > 0, the empirical measure
En : −n ⇒ G computes the relative frequencies of elements of a sequence and is defined by
En,X(x1, . . . , xn) = 1

n

∑n
i=1 δxi . For all n, we define the random empirical measure at time n

G(En ◦ πn) : Gex(−N)→ G2. This defines a sequence of natural transformations indexed by n.
The de Finetti theorem gives us the following:

I Theorem 39 (de Finetti [12]). Let X be Polish.

CONCUR 2016

23:14 Robustly Parameterised Higher-Order Probabilistic Models

For all P ∈ Gex(XN), the limit deFX(P) , limn G(En ◦ πn)(P) exists in G2(X);
the associated map P 7→ deFX(P) is continuous from Gex(XN) to G2(X);
exchangeable probabilities are mixtures of iids: µX ◦ G(iidX) ◦ deFX = idGex(XN).

Given this, we can easily prove the following:

I Theorem 40. The family of maps deF constructed in Theorem 39 is a natural transform-
ation from Gex(−N) to G2.

Proof. Let f : X → Y be a continuous map. We have:

(G2(f) ◦ deFX)(P) = G2(f)(limn G(En,X ◦ πn)(P))
= limn G2(f)(G(En,X ◦ πn)(P)) (Continuity)
= limn G(En,Xπn ◦ fN)(P) (Naturality)
= limn G(En,Xπn)(Gex(fN)(P))
= deFY (Gex(fN)(P))

J

This result together with Proposition 38 and Theorem 35 implies that the de Finetti
transformation is entirely characterised by its finite components. Concretely, it is enough to
prove the de Finetti theorem on finite spaces for our framework to extend it to arbitrary
Polish spaces.

6 Conclusion

We have proposed a type theory for Polish spaces with the essential functors of the modeling
trade: Vietoris, Giry, and Skorokhod. Thus one can re-construct all classical models of mixed
probabilistic and non-determinism within our grammar, guaranteeing an adequate level of
expressivity for parameterised models. Not only do we subsume classical constructions studied
in concurrency theory, but the compass of our type theory also includes probabilities on
functions spaces which are hot pursuits in probabilistic modeling - e.g. solutions of stochastic
differential equations. For this fledgling type theory, we provide a “normalisation theorem”
showing that existence and equality between our structure arrows is completely determined
by the finite case.

However, in many ways this type theory is still a draft. An axiomatic or syntactic
treatment is not yet in order, as one needs first to decide a certain number of questions which
this contribution has left unanswered. For instance, we do not know if parameter functors
are closed under products. Further progress might hint at natural such treatments.

References
1 I. Beylin and P. Dybjer. Extracting a proof of coherence for monoidal categories from

a proof of normalization for monoids. In Types for Proofs and Programs, pages 47–61.
Springer Berlin Heidelberg, 1995.

2 P. Billingsley. Convergence of Probability Measures. Wiley, 1968.
3 N. Bourbaki. Elements de mathématique. Topologie Générale. Springer, 1971.
4 F. Dahlqvist, V. Danos, and I. Garnier. Giry and the machine. Feb 2016. To appear in the

proceedings of MFPS XXXII.
5 V. Danos and I. Garnier. Dirichlet is natural. Electronic Notes in Theoretical Computer

Science, 319:137 – 164, 2015. The 31st Conference on the Mathematical Foundations of
Programming Semantics (MFPS XXXI).

F. Dahlqvist, V. Danos, and I. Garnier 23:15

6 J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Metrics for labelled Markov
processes. Theoretical Computer Science, 318(3):323–354, 2004.

7 S.N. Ethier and T.G. Kurtz. Markov processes: characterization and convergence. Probab-
ility and mathematical statistics. Wiley, 1986.

8 B. A. Frigyik, A. Kapila, and M.R. Gupta. Introduction to the Dirichlet distribution and
related processes. Technical report, University of Washington., 2010.

9 M. Giry. A categorical approach to probability theory. In Categorical Aspects of Topology
and Analysis, number 915 in Lecture Notes In Math., pages 68–85. Springer-Verlag, 1981.

10 J. Goubault-Larrecq and K. Keimel. Choquet–Kendall–Matheron theorems for non-
Hausdorff spaces. Mathematical Structures in Computer Science, 21(03):511–561, 2011.

11 P.T. Johnstone. Stone Spaces. Cambridge Studies in Advanced Mathematics. Cambridge
University Press, 1986.

12 O. Kallenberg. Probabilistic Symmetries and Invariance Principles. Number v. 10 in Ap-
plied probability. Springer, 2005.

13 A. S. Kechris. Classical descriptive set theory, volume 156 of Graduate Text in Mathematics.
Springer, 1995.

14 K. Keimel and G. Plotkin. Predicate transformers for extended probability and non-
determinism. Mathematical Structures in Computer Science, 19(03):501–539, 2009.

15 S. Mac Lane. Categories for the Working Mathematician. Graduate Texts in Mathematics.
Springer, 1998.

16 R. Mardare, P. Panangaden, and G. Plotkin. Quantitative algebraic reasoning. To appear
in LICS 2016, 2016.

17 K.R. Parthasarathy. Probability Measures on Metric Spaces. AMS Chelsea Publishing
Series. Academic Press, 1972.

18 R. Segala and N. Lynch. Probabilistic simulations for probabilistic processes. Nordic
Journal of Computing, 2(2):250–273, 1995.

19 R. Tix, K. Keimel, and G. Plotkin. Semantic domains for combining probability and non-
determinism. Electronic Notes in Th. Comp. Sc., 222:3–99, 2009.

20 F. van Breugel and J. Worrell. A behavioural pseudometric for probabilistic transition
systems. Theoretical Computer Science, 331(1):115–142, 2005.

CONCUR 2016

Coalgebraic Trace Semantics for Büchi and Parity
Automata∗

Natsuki Urabe†1, Shunsuke Shimizu2, and Ichiro Hasuo3

1 Department of Computer Science, The University of Tokyo, Japan and
JSPS Research Fellow
urabenatsuki@is.s.u-tokyo.ac.jp

2 Department of Computer Science, The University of Tokyo, Japan
shunsuke@is.s.u-tokyo.ac.jp

3 Department of Computer Science, The University of Tokyo, Japan
ichiro@is.s.u-tokyo.ac.jp

Abstract
Despite its success in producing numerous general results on state-based dynamics, the theory
of coalgebra has struggled to accommodate the Büchi acceptance condition—a basic notion in
the theory of automata for infinite words or trees. In this paper we present a clean answer
to the question that builds on the “maximality” characterization of infinite traces (by Jacobs
and Cîrstea): the accepted language of a Büchi automaton is characterized by two commuting
diagrams, one for a least homomorphism and the other for a greatest, much like in a system
of (least and greatest) fixed-point equations. This characterization works uniformly for the
nondeterministic branching and the probabilistic one; and for words and trees alike. We present
our results in terms of the parity acceptance condition that generalizes Büchi’s.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases coalgebra, Büchi/parity/probabilistic/tree automaton

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2016.24

1 Introduction

Büchi Automata. Automata are central to theoretical computer science. Besides their sig-
nificance in formal language theory and as models of computation, many formal verification
techniques rely on them, exploiting their balance between expressivity and tractable com-
plexity of operations on them. See e.g. [30, 12]. Many current problems in verification are
about nonterminating systems (like servers); for their analyses, naturally, automata that
classify infinite objects—such as infinite words and infinite trees—are employed.

The Büchi acceptance condition is the simplest nontrivial acceptance condition for au-
tomata for infinite objects. Instead of requiring finally reaching an accepting state —which
makes little sense for infinite words/trees—it requires accepting states visited infinitely often.
This simple condition, too, has proved both expressive and computationally tractable: for
the word case the Büchi condition can express any ω-regular properties; and the emptiness
problem for Büchi automata can be solved efficiently by searching for a lasso computation.

∗ The authors are supported by Grants-in-Aid No. 24680001 & 15KT0012, JSPS.
† N.U. is supported by Grant-in-Aid for JSPS Fellows.

© Natsuki Urabe, Shunsuke Shimizu and Ichiro Hasuo;
licensed under Creative Commons License CC-BY

27th International Conference on Concurrency Theory (CONCUR 2016).
Editors: Josée Desharnais and Radha Jagadeesan; Article No. 24; pp. 24:1–24:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.24
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

24:2 Coalgebraic Trace Semantics for Büchi and Parity Automata

Coalgebras. Studies of automata and state-based transition systems in general have been
shed a fresh categorical light in 1990’s, by the theory of coalgebra. Its simple modeling
of state-based dynamics—as a coalgebra, i.e. an arrow c : X → FX in a category C—
has produced numerous results that capture mathematical essences and provide general
techniques. Among its basic results are: behavior-preserving maps as homomorphisms; a
final coalgebra as a fully abstract domain of behaviors; coinduction (by finality) as definition
and proof principles; a general span-based definition of bisimulation; etc. See e.g. [16, 22].
More advanced results are on: coalgebraic modal logic (see e.g. [7]); process algebras and
congruence formats (see e.g. [18]); generalization of Kleene’s theorem (see e.g. [24]); etc.

Büchi Automata, Coalgebraically. In the coalgebra community, however, two important
phenomena in automata and/or concurrency have been known to be hard to model—many
previous attempts have seen only limited success. One is internal (τ -)transitions and weak
(bi)similarity; see e.g. recent [11]. The other one is the Büchi acceptance condition.

FX
Ff
// FY

X
f
//

c
OO

Y
d
OO

Here is a (sketchy) explanation why these two phenomena should be hard
to model coalgebraically. The theory of coalgebra is centered around homo-
morphisms as behavior-preserving maps; see the diagram on the right. Deep
rooted in it is the idea of local matching between one-step transitions in c and those in d. This
is what fails in the two phenomena: in weak bisimilarity a one-step transition in c is matched
by a possibly multi-step transition in d; and the Büchi acceptance condition—stipulating
that accepting states are visited infinitely often, in the long run—is utterly nonlocal.

There have been some works that study Büchi acceptance conditions (or more general
parity or Muller conditions) in coalgebraic settings. One is [5], where they rely on the
lasso characterization of nonemptiness and use Sets2 as a base category. Another line is on
coalgebra automata (see e.g. [31]), where however Büchi/parity/Muller acceptance conditions
reside outside the realm of coalgebras.1 Inspired by these works, and also by our work [14]
on alternating fixed points and coalgebraic model checking, the current paper introduces a
coalgebraic modeling of Büchi and parity automata based on systems of fixed-point equations.

Contributions. We present a clean answer to the question of “Büchi automata, coalge-
braically,” relying on the previous work on coalgebraic infinitary trace semantics [15, 6] and
fixed-point equations [14]. Our modeling, hinted in (1), features: 1) accepting states as a
partition of a state space; and 2) explicit use of µ and ν—for least/greatest fixed points—in
diagrams. We state our results for the parity condition (that generalizes the Büchi one).

FX
� //

=ν

FZ

X

_c
OO

�
tr∞(c)

// Z

_Jζ∼=
OO in a Kleisli

category K`(T)

Characterization of languages under no (i.e.
the trivial) acceptance condition [15, 6]

=⇒

FX
� //

=µ

FZ

X1

_c1
OO

�
trp(c1)

// Z

_Jζ∼=
OO FX

� //
=ν

FZ

X2

_c2
OO

�
trp(c2)

// Z

_Jζ∼=
OO

Under the Büchi acceptance condition,
with X1 = { ’s} and X2 = { ’s}

(1)

Our framework is generic: its leading examples are nondeterministic and (generative) prob-
abilistic tree automata, with the Büchi/parity acceptance condition.

Our contributions are: 1) coalgebraic modeling of automata with the Büchi/parity con-
ditions; 2) characterizing their accepted languages by diagrams with µ’s and ν’s (trp in (1));

1 More precisely: a coalgebra automaton is an automaton (with Büchi/parity/Muller acceptance condi-
tions) that classifies coalgebras (as generalization of words and trees). A coalgebra automaton itself is
not described as a coalgebra; nor is its acceptance condition.

N. Urabe, S. Shimizu and I. Hasuo 24:3

and 3) proving that the characterization indeed captures the conventional definitions. The
last “sanity-check” proves to be intricate in the probabilistic case, and our proof—relying
on previous [6, 23]—identifies the role of final sequences [32] in probabilistic processes.

With explicit µ’s and ν’s—that specify in which homomorphism, among many that ex-
ist, we are interested—we depart from the powerful reasoning principle of finality (existence
of a unique homomorphism). We believe this is a necessary step forward, for the theory
of coalgebra to take up long-standing challenges like the Büchi condition and weak bisim-
ilarity. Our characterization (1)—although it is not so simple as the uniqueness argument
by finality—seems useful, too: we have obtained some results on fair simulation notions
between Büchi automata [28], following the current work.

Organization of the Paper. In Section 2 we provide backgrounds on: the coalgebraic
theory of trace in a Kleisli category [15, 6] (where we explain the diagram on the left in (1));
and systems of fixed-point equations. In Section 3 we present a coalgebraic modeling of
Büchi/parity automata and their languages. Coincidence with the conventional definitions
is shown in Section 4 for the nondeterministic setting, and in Section 5 for the probabilistic
one.

Most proofs are deferred to the appendices, that are found in [27].

Future Work. Here we are based on the coalgebraic theory of trace and simulation [21, 15,
13, 25]; it has been developed under the trivial acceptance condition (any run that does not
diverge, i.e. that does not come to a deadend, is accepted). The current paper is about ac-
commodating the Büchi/parity conditions in the trace part of the theory; for the simulation
part we also have exploited the current results to obtain sound fair simulation notions for
nondeterministic Büchi tree automata and probabilistic Büchi word automata [28].

On the practical side our future work mainly consists of proof methods for trace/language
inclusion, a problem omnipresent in formal verification. Simulations—as one-step, local
witnesses for trace inclusion—have been often used as a sound (but not necessarily complete)
proof method that is computationally more tractable; with the observations in [28] we
are naturally interested in them. Possible directions are: synthesis of simulation matrices
between finite systems by linear programming, like in [26]; synthesis of simulations by other
optimization techniques for program verification (where problem instances are infinite due
to the integer type); and simulations as a proof method in interactive theorem proving.

2 Preliminaries

2.1 Coalgebras in a Kleisli Category

We assume some basic category theory, most of which is covered in [16].
The conventional coalgebraic modeling of systems—as a function X → FX—is known

to capture branching-time semantics (such as bisimilarity) [16, 22]. In contrast accepted
languages of Büchi automata (with nondeterministic or probabilistic branching) constitute
linear-time semantics; see [29] for the so-called linear time-branching time spectrum.

For the coalgebraic modeling of such linear-time semantics we follow the “Kleisli model-
ing” tradition [21, 15, 13]. Here a system is parametrized by a monad T and an endofunctor
F on Sets: the former represents the branching type while the latter represents the (linear-

CONCUR 2016

24:4 Coalgebraic Trace Semantics for Büchi and Parity Automata

time) transition type; and a system is modeled as a function of the type X → TFX.2
A function X → TFX is nothing but an F -coalgebra X →p FX in the Kleisli category

K`(T)—where F is a suitable lifting of F . This means we can apply the standard coalgebraic
machinery to linear-time behaviors, by changing the base category from Sets to K`(T).

A monad T = (T, η, µ) on a category C induces the Kleisli category K`(T). The objects
of K`(T) are the same as C’s; and for each pair X,Y of objects, the homset K`(T)(X,Y) is
given by C(X,TY). An arrow f ∈ K`(T)(X,Y)—that is X → TY in C—is called a Kleisli
arrow and is denoted by f : X →p Y for distinction. Given two successive Kleisli arrows
f : X →p Y and g : Y →p Z, their Kleisli composition is given by µZ ◦Tg ◦ f : X →p Z (where
◦ is composition in C). This composition in K`(T) is denoted by g � f for distinction. The
Kleisli inclusion J : C→ K`(T) is defined by J(X) = X and J(f) = ηY ◦ f : X →p Y .

In this paper we mainly use two combinations of T and F . The first is the powerset
monad P and a polynomial functor on Sets; the second is the (sub-)Giry monad [10] G and
a polynomial functor on Meas, the category of measurable spaces and measurable functions.
The Giry monad [10] is commonly used for modeling (not necessarily discrete) probabilistic
processes. We shall use its “sub” variant; a subprobability measure over (X,FX) is a measure
µ such that 0 ≤ µ(X) ≤ 1 (we do not require µ(X) = 1).

I Definition 2.1 (P,G). The powerset monad P on Sets is: PX = {A ⊆ X}; (Pf)(A) =
{f(x) | x ∈ A}; its unit is ηPX(x) = {x}; and its multiplication is µPX(M) =

⋃
A∈M A.

The sub-Giry monad is a monad G = (G, ηG , µG) on Meas such that G(X,FX) =
(GX,FGX), where GX is the set of all subprobability measures on (X,FX), and FGX is
the smallest σ-algebra such that, for each S ∈ FX , the function evS : GX → [0, 1] defined by
evS(P) = P (S) is measurable. Moreover, ηG(X,FX)(x)(S) is 1 if x ∈ S and 0 otherwise (the
Dirac distribution), and µG(X,FX)(Ψ)(S) =

∫
G(X,FX) evS dΨ.

I Definition 2.2 (polynomial functors on Sets and Meas). A polynomial functor F on Sets
is defined by the BNF notation F ::= id | A | F1 × F2 |

∐
i∈I Fi. Here A ∈ Sets.

A (standard Borel) polynomial functor F on Meas is defined by the BNF notation
F ::= id | (A,FA) | F1 × F2 |

∐
i∈I Fi. Here I is countable, and we require each constant

(A,FA) ∈Meas be a standard Borel space (see e.g. [9]). The σ-algebra FFX associated to
FX is defined as usual, with (co)product σ-algebras, etc. F ’s action on arrows is obvious.

A standard Borel polynomial functor shall often be called simply a polynomial functor.

The technical requirement of being standard Borel—meaning that it arises from a Polish
space [9]—will be used in the probabilistic setting of Section 5; we follow [6, 23] in its use.

There is a well-known correspondence between a polynomial functor and a ranked alpha-
bet—a set Σ with an arity map | | : Σ→ N. In this paper a functor F (for the linear-time
behavior type) is restricted to be polynomial; this essentially means that we are dealing with
systems that generate trees over some ranked alphabet (with additional T -branching).

I Definition 2.3 (TreeΣ). An (infinitary) Σ-tree, as in the standard definition, is a possibly
infinite tree whose nodes are labeled with the ranked alphabet Σ and whose branching
degrees are consistent with the arity of labels. The set of Σ-trees is denoted by TreeΣ.

2 Another eminent approach to coalgebraic linear-time semantics is the Eilenberg-Moore one (see e.g. [17,
1]): notably in the latter a system is expressed as X → FTX. The Eilenberg-Moore approach can be
seen as a categorical generalization of determinization or the powerset construction. It is however not
clear how determinization serves our current goal (namely a coalgebraic modeling of the Büchi/parity
acceptance conditions).

N. Urabe, S. Shimizu and I. Hasuo 24:5

Table 1 Overview of existing results on coalgebraic trace semantics.

Semantics Finite trace Infinitary trace

Coalgebraic
modeling

FX

=

�F (tr(c))
// FA

X

_c
OO

�
tr(c)

// A

_Jα−1
final∼=

OO (3) FX

=ν

�F (tr∞(c))
// FZ

X

_c
OO

�
tr∞(c)

// Z

_Jζ
weakly
final∼=

OO (4)

Finality in K`(T) (Theorem 2.7) (Weak finality + maximality) in K`(T) (Theorem 2.8)

I Lemma 2.4. Let Σ be a ranked alphabet, and FΣ =
∐
σ∈Σ()|σ| be the corresponding poly-

nomial functor on Sets. The set TreeΣ of (infinitary) Σ-trees carries a final FΣ-coalgebra.
The same holds in Meas, for countable Σ and the corresponding polynomial functor FΣ. J

We collect some standard notions and notations for such trees in Appendix A in [27].

K`(T) F // K`(T)

C F //
J
OO

C
J
OO (2)

It is known [13, 25] that for (C, T) ∈ {(Sets,P), (Meas,G)} and
polynomial F on C, there is a canonical distributive law [20] λ : FT ⇒
TF—a natural transformation compatible with T ’s monad structure.
Such λ induces a functor F : K`(T)→ K`(T) that makes the diagram (2) commute.

Using this lifting F of F from C to K`(T), an arrow c : X → TFX in C—that is how we
model an automaton—can be regarded as an F -coalgebra c : X →p FX in K`(T).

Then the dynamics of A—ignoring its initial and accepting states—is modeled as an F -
coalgebra c : X →p FX in K`(P) where: F = {a, b} × (), X = {x1, x2} and c : X → PFX
is the function c(x1) = c(x2) = {(a, x1), (b, x2)}. The information on initial and accepting
states is redeemed later in

x1

x2

OO
a, 12ee

b, 12

HH
b, 12

yy

a, 12
��

I Example 2.5. LetM be the Markov chain on the right. The dynamics of
M is modeled as an F -coalgebra c : X →p FX in K`(G) where: F = {a, b}×
(), X = {x1, x2} with the discrete measurable structure, and c : X → GFX
is the (measurable) function defined by c(x)

{
(a, x1)

}
= c(x)

{
(b, x2)

}
= 1/2,

and c(x)
{

(d, x′)
}

= 0 for the other (d, x′) ∈ {a, b} ×X.
Later we will equip Markov chains with accepting states and obtain (generative) proba-

bilistic Büchi automata. Their probabilistic accepted languages will be our subject of study.
I Remark 2.6. Due to the use of the sub-Giry monad is that, in f : X →p Y in K`(G), the
probability f(x)(Y) can be smaller than 1. The missing 1− f(x)(Y) is understood as that
for divergence. In the nondeterministic case f : X →p Y in K`(P) diverges at x if f(x) = ∅.

This is in contrast with a system coming to halt generating a 0-ary symbol (such as X
in (5) later); this is deemed as successful termination.

2.2 Coalgebraic Theory of Trace
The above “Kleisli” coalgebraic modeling has produced some general results on: linear-time
process semantics (called trace semantics); and simulations as witnesses of trace inclusion,
generalizing the theory in [19]. Here we review the former; it underpins our developments
later. A rough summary is in Table 1: typically the results apply to T ∈ {P,D,G}—where
D is the subdistribution monad on Sets, a discrete variant of G—and polynomial F . In
what follows we present these previous results in precise terms, sometimes strengthening
the assumptions for the sake of presentation. The current paper’s goal is to incorporate the
Büchi acceptance condition in (the right column of) Table 1.

Firstly, finite trace semantics—linear-time behaviors that eventually terminate, such as
the accepted languages of finite words for NFAs—is captured by finality in K`(T).

CONCUR 2016

24:6 Coalgebraic Trace Semantics for Büchi and Parity Automata

I Theorem 2.7 ([13]). Let T ∈ {P,D} and F be a polynomial functor on Sets. An initial
F -algebra α : FA ∼=→ A in Sets yields a final F -coalgebra in K`(T), as in (3) in Table 1. J

The carrier A of an initial F -algebra in Sets is given by finite words/trees (over the alphabet
that corresponds to F). The significance of Theorem 2.7 is that: for many examples, the
unique homomorphism tr(c) induced by finality (3) captures the finite trace semantics of
the system c. Here the word “finite” means that we collect only behaviors that eventually
terminate.

What if we are also interested in nonterminating behaviors, like the infinite word bω =
bbb . . . accepted by the automaton in Example 2.5? There is a categorical characterization
of such infinitary trace semantics too, although proper finality is now lost.

I Theorem 2.8 ([15, 6, 25]). Let (C, T) ∈ {(Sets,P), (Meas,G)} and F be a polynomial
functor on C. A final F -coalgebra ζ : Z ∼=→ FZ in C gives rise to a weakly final F -coalgebra
in K`(T), as in (4) in Table 1. Moreover, the coalgebra Jζ additionally admits the greatest
homomorphism tr∞(c) with respect to the pointwise order v in the homsets of K`(T) (given
by inclusion for T = P, and by pointwise ≤ on subprobability measures for T = G). That
is: for each homomorphism f from c to Jζ we have f v tr∞(c). J

◦ X

(5)
//

a

�� //

In many examples the greatest homomorphism tr∞(c) captures the infini-
tary trace semantics of the system c. (Here by infinitary we mean both finite
and infinite behaviors.) For example, for the system (5) where X denotes
successful termination, its finite trace semantics is {ε, a, aa, . . . } whereas its infinitary trace
semantics is {ε, a, aa, . . . } ∪ {aω}. The latter is captured by the diagram (4), with T = P
and F = {X}+ {a} × ().

2.3 Equational Systems for Alternating Fixed Points
Nested, alternating greatest and least fixed points—as in a µ-calculus formula νu2.µu1. (p∧
u2) ∨ �u1—are omnipresent in specification and verification. For their relevance to the
Büchi/parity acceptance condition one can recall the well-known translation of LTL formulas
to Büchi automata and vice versa (see e.g. [30]). To express such fixed points we follow [8, 2]
and use equational systems—we prefer them to the textual µ-calculus-like presentations.

I Definition 2.9 (equational system). Let L1, . . . , Ln be posets. An equational system E

over L1, . . . , Ln is an expression

u1 =η1 f1(u1, . . . , un) , . . . , un =ηn fn(u1, . . . , un) (6)

where: u1, . . . , un are variables, η1, . . . , ηn ∈ {µ, ν}, and fi : L1×· · ·×Ln → Li is a monotone
function. A variable uj is a µ-variable if ηj = µ; it is a ν-variable if ηj = ν.

The solution of the equational system E is defined as follows, under the assumption that
Li’s have enough supremums and infimums. It proceeds as: 1) we solve the first equation
to obtain an interim solution u1 = l

(1)
1 (u2, . . . , un); 2) it is used in the second equation to

eliminate u1 and yield a new equation u2 =η2 f
‡
2 (u2, . . . , un); 3) solving it again gives an

interim solution u2 = l
(2)
2 (u3, . . . , un); 4) continuing this way from left to right eventually

eliminates all variables and leads to a closed solution un = l
(n)
n ∈ Ln; and 5) by propagating

these closed solutions back from right to left, we obtain closed solutions for all of u1, . . . , un.
A precise definition is found in Appendix B in [27].

It is important that the order of equations matters: for (u =µ v, v =ν u) the solution is
u = v = > while for (v =ν u, u =µ v) the solution is u = v = ⊥.

N. Urabe, S. Shimizu and I. Hasuo 24:7

Whether a solution is well-defined depends on how “complete” the posets L1, . . . , Ln are.
It suffices if they are complete lattices, in which case every monotone function Li → Li has
greatest/least fixed points (the Knaster-Tarski theorem). This is used in the nondetermin-
istic setting: note that PY , hence the homset K`(P)(X,Y), are complete lattices.

I Lemma 2.10. The system E (6) has a solution if each Li is a complete lattice. J

This does not work in the probabilistic case, since the homsets K`(G)(X,Y) = Meas(X,GY)
with the pointwise order—on which we consider equational systems—are not complete lat-
tices. For example GY lacks the greatest element in general; even if Y = 1 (when G1 ∼= [0, 1]),
the homset K`(G)(X, 1) can fail to be a complete lattice. See Example B.2 in [27]. Our
strategy is: 1) to apply the following Kleene-like result to the homset K`(G)(X, 1); and 2)
to “extend” fixed points in K`(G)(X, 1) along a final F -sequence. See Section 5.1 later.

I Lemma 2.11. The equational system E (6) has a solution if: each Li is both a pointed
ω-cpo and a pointed ωop-cpo; and each fi is both ω-continuous and ωop-continuous. J

In Appendix B in [27] we have additional lemmas on “homomorphisms” of equational
systems and preservation of solutions. They play important roles in the proofs of the later
results.

3 Coalgebraic Modeling of Parity Automata and Its Trace Semantics

Here we present our modeling of Büchi/parity automata. We shall do so axiomatically
with parameters C, T and F—much like in Section 2.1–2.2. Our examples cover: both
nondeterministic and probabilistic branching; and automata for trees (hence words as a
special case).

I Assumptions 3.1. In what follows a monad T and an endofunctor F , both on C, satisfy:
The base category C has a final object 1 and finite coproducts.
The functor F has a final coalgebra ζ : Z → FZ in C.
There is a distributive law λ : FT ⇒ TF [20], hence F : C→ C is lifted to F : K`(T)→
K`(T). See (2).
For each X,Y ∈ K`(T), the homset K`(T)(X,Y) carries an order vX,Y (or simply v).
Kleisli composition � and cotupling [,] are monotone with respect to the order v.
The latter gives rise to an order isomorphism K`(T)(X1 + X2, Y) ∼= K`(T)(X1, Y) ×
K`(T)(X2, Y), where + is inherited along a left adjoint J : C→ K`(T).
F : K`(T)→ K`(T) is locally monotone: for f, g ∈ K`(T)(X,Y), f v g implies Ff v Fg.

I Example 3.2. The category Sets, the powerset monad P (Definition 2.1) and a polynomial
functor F on Sets (Definition 2.2) satisfy Assumption 3.1. Here for X,Y ∈ K`(P), an order
vX,Y is defined by: f v g if f(x) ⊆ g(x) for each x ∈ X.

I Example 3.3. The category Meas, the sub-Giry monad G (Definition 2.1) and a polynomial
functor F on Meas (Definition 2.2) satisfy Assumption 3.1. For X,Y ∈ K`(G), a natural
order v(X,FX),(Y,FY) is defined by: f v g iff f(x)(A) ≤ g(x)(A) (in [0, 1]) for each x ∈ X
and A ∈ FY .

3.1 Coalgebraic Modeling of Büchi/Parity Automata
The Büchi and parity acceptance conditions have been big challenges to the coalgebra com-
munity, because of their nonlocal and asymptotic nature (see Section 1). One possible

CONCUR 2016

24:8 Coalgebraic Trace Semantics for Büchi and Parity Automata

modeling is to take the distinction between vs. —or different priorities in the parity
case—as state labels. This is much like in the established coalgebraic modeling of determin-
istic automata as 2 × ()Σ-coalgebras (see e.g. [22, 16]). Here the set 2 tells if a state is
accepting or not.

A key to our current modeling, however, is that accepting states should rather be specified
by a partition X = X1 +X2 of a state space, with X1 = { ’s} and X2 = { ’s}. This idea
smoothly generalizes to parity conditions, too, by Xi = {states of priority i}. Equipping
such partitions to coalgebras (with explicit initial states, as in Section 2.2) leads to the
following.

Henceforth we state results for the parity condition, with Büchi being a special case.

I Definition 3.4 (parity (T, F)-system). A parity (T, F)-system is given by a triple X =(
(X1, . . . , Xn), c : X →p FX, s : 1→p X

)
where n is a positive integer, and:

(X1, . . . , Xn) is an n-tuple of objects in C for states (with their priorities), and we define
X = X1 + · · ·+Xn (a coproduct in C);
c : X →p FX is an arrow in K`(T) for dynamics; and
s : 1→p X is an arrow in K`(T) for initial states.

For each i ∈ [1, n] we define ci : Xi →p FX to be the restriction c ◦ κi : Xi →p FX along the
coprojection κi : Xi ↪→ X, in case the maximum priority is n = 2, a parity (T, F)-system is
referred to as a Büchi (T, F)-system.

3.2 Coalgebraic Trace Semantics under the Parity Acceptance
Condition

On top of the modeling in Definition 3.4 we characterize accepted languages—henceforth
referred to as trace semantics—of parity (T, F)-systems. We use systems of fixed-point
equations; this naturally extends the previous characterization of infinitary traces (i.e. under
the trivial acceptance conditions) by maximality (Theorem 2.8; see also (1)).

I Definition 3.5 (trace semantics of parity (T, F)-systems). Let X =
(

(X1, . . . , Xn), c, s
)
be

a parity (T, F)-system. It induces the following equational system EX , where ζ : Z ∼=→ FZ

is a final coalgebra in C (see Assumption 3.1). The variable ui ranges over the poset
K`(T)(Xi, Z).

EX :=

u1 =µ (Jζ)−1 � F [u1, . . . , un]� c1 ∈ K`(T)(X1, Z)
u2 =ν (Jζ)−1 � F [u1, . . . , un]� c2 ∈ K`(T)(X2, Z)

...
un =ηn (Jζ)−1 � F [u1, . . . , un]� cn ∈ K`(T)(Xn, Z)

Here ηi = µ if i is odd and ηi = ν if i is even. The functions in the equations are seen to be
monotone, thanks to the monotonicity assumptions on cotupling, F and � (Assumption 3.1).

We say that (T, F) constitutes a parity trace situation, if EX has a solution for any parity
(T, F)-system X , denoted by trp

1(X) : X1 →p Z, . . . , trp
n(X) : Xn →p Z. The composite

trp(X) :=
(

1 s−→p X = X1 +X2 + · · ·+Xn
[trp1(X),trp2(X),...,trpn(X)]
−−−−−−−−−−−−−−−−→p Z

)
is called the trace semantics of the parity (T, F)-system X .

If X is a Büchi (T, F)-system, the equational system EX—with their solutions trp
1(X) and

trp
2(X) in place—can be expressed as the following diagrams (with explicit µ and ν). See (1).

N. Urabe, S. Shimizu and I. Hasuo 24:9

FX
�F [trp(c1),trp(c2)]

//

=µ
FZ

X1

_c1
OO

�
trp(c1)

// Z

_Jζ∼=
OO FX

�F [trp(c1),trp(c2)]
//

=ν
FZ

X2

_c2
OO

�
trp(c2)

// Z

_Jζ∼=
OO

(7)

4 Coincidence with the Conventional Definition: Nondeterministic

The rest of the paper is devoted to showing that our coalgebraic characterization (Defini-
tion 3.5) indeed captures the conventional definition of accepted languages. In this section
we study the nondeterministic case; we let C = Sets, T = P, and F be a polynomial functor.

We first have to check that Definition 3.5 makes sense. Existence of enough fixed points
is obvious because K`(P)(Xi, Z) is a complete lattice (Lemma 2.10). See also Example 3.2.

I Theorem 4.1. T = P and a polynomial F constitute a parity trace situation (Defini-
tion 3.5). J

Here is the conventional definition of automata [12].

I Definition 4.2 (NPTA). A nondeterministic parity tree automaton (NPTA) is a quadruple

X =
(

(X1, . . . , Xn), Σ, δ : X → P
(∐

σ∈ΣX
|σ|), s ∈ PX) ,

where X = X1 + · · · + Xn, each Xi is the set of states with the priority i, Σ is a ranked
alphabet (with the arity map | | : Σ → N), δ is a transition function and s is the set of
initial states.

The accepted language of an NPTA X is conventionally defined in the following way.
Here we are sketchy due to the lack of space; precise definitions are in Appendix A in [27].

A (possibly infinite) (Σ×X)-labeled tree ρ is a run of an NPTA X = (~X,Σ, δ, s) if: for
each node with a label (σ, x), it has |σ| children and we have

(
σ, (x1, . . . , x|σ|)

)
∈ δ(x) where

x1, . . . , x|σ| are the X-labels of its children. For a pedagogical reason we do not require the
root X-label to be an initial state. A run ρ of an NPTA X is accepting if any infinite branch
π of the tree ρ satisfies the parity acceptance condition (i.e. max{i | π visits states in Xi

infinitely often} is even). The sets of runs and accepting runs of X are denoted by RunX
and AccRunX , respectively.

The function rt : RunX → X is defined to return the root X-label of a run. For each
X ′ ⊆ X, we define RunX ,X′ by {ρ ∈ RunX | rt(ρ) ∈ X ′}; the set AccRunX ,X′ is similar.
The map DelSt : RunX → TreeΣ takes a run, removes all X-labels and returns a Σ-tree.

I Definition 4.3 (Lang(X) for NPTAs). Let X be an NPTA. Its accepted language Lang(X)
is defined by DelSt(AccRunX ,s).

(σ, x)

ρ|σ|· · ·ρ1 (8)

The following coincidence result for the nondeterministic set-
ting is fairly straightforward. A key is the fact that accepting runs
are characterized—among all possible runs—using an equational
system that is parallel to the one in Definition 3.5.

I Lemma 4.4. Let X = (~X,Σ, δ, s) be an NPTA, and lsol
1 , . . . , lsol

n be the solution of the
following equational system, whose variables u1, . . . , un range over P(RunX).

u1 =η1 ♦X (u1∪ · · · ∪un)∩RunX ,X1 , . . . , un =ηn ♦X (u1∪ · · · ∪un)∩RunX ,Xn (9)

CONCUR 2016

24:10 Coalgebraic Trace Semantics for Büchi and Parity Automata

Here: ♦X : P(RunX)→ P(RunX) is given by ♦XR :=
{(

(σ, x), (ρ1, . . . , ρ|σ|)
)
∈ RunX

∣∣σ ∈
Σ, x ∈ X, ρi ∈ R

}
(see the figure (8) above); X = X1 + · · ·+Xn; and ηi is µ (for odd i) or

ν (for even i). Then the i-th solution lsol
i coincides with AccRunX ,Xi . J

We shall translate the above result to the characterization of accepted trees (Lemma 4.5).
In its proof (that is deferred to the appendix in [27]) Lem. B.3—on homomorphisms of
equational systems—plays an important role.

I Lemma 4.5. Let X = (~X,Σ, δ, s) be an NPTA, and let l′sol
1 , . . . , l′sol

n be the solution of the
following equational system, where u′i ranges over the complete lattice

(
P(TreeΣ)

)Xi :
u′1 =η1 ♦δ([u′1, . . . , u′n]) � X1 , . . . , u′n =ηn ♦δ([u′1, . . . , u′n]) � Xn . (10)

Here ηi is µ (for odd i) or ν (for even i); () � Xi :
(
P(TreeΣ)

)X → (
P(TreeΣ)

)Xi denotes
domain restriction; and the function ♦δ :

(
P(TreeΣ)

)X → (
P(TreeΣ)

)X is given by

(♦δT)(x) :=
{(
σ, (τ1, . . . , τ|σ|)

) ∣∣ (σ, (x1, . . . , x|σ|)
)
∈ δ(x), τi ∈ T (xi)

}
.

Then we have a coincidence l′sol
i = DelSt′(AccRunX ,Xi), where the function DelSt′ : P(RunX)→

(P(TreeΣ))X is given by DelSt′(R)(x) := DelSt({ρ ∈ R | rt(ρ) = x}). Recall that rt returns
a run’s root X-label. J

I Theorem 4.6 (coincidence, in the nondeterministic setting). Let X = ((X1, . . . , Xn),Σ, δ, s)
be an NPTA, and FΣ =

∐
σ∈Σ()|σ| be the polynomial functor on Sets that corresponds to

Σ. Then X is identified with a parity (P, FΣ)-system; moreover Lang(X) (in the conven-
tional sense of Definition 4.3) coincides with the coalgebraic trace semantics trp(X) (Defi-
nition 3.5). Note here that TreeΣ carries a final FΣ-coalgebra (Lemma 2.4).

Proof. We identify X with the (P, FΣ)-system
(
(X1, . . . , Xn), δ : X →p FΣX, s : 1 →p X

)
,

and let 1 = {•}. The equational system EX in Definition 3.5 is easily seen to coincide with
(9) in Lemma 4.5. The claim is then shown as follows, exploiting the last coincidence.

trp(X) = [trp
1(X), . . . , trp

n(X)]� s(•) by Definition 3.5
= [DelSt′(AccRunX ,X1), . . . ,DelSt′(AccRunX ,Xn)](s)
= DelSt(AccRunX ,s) = Lang(X) by Definition 4.3. J

5 Coincidence with the Conventional Definition: Probabilistic

In the probabilistic setting the coincidence result is much more intricate. Even the well-
definedness of parity trace semantics (Definition 3.5) is nontrivial: the posets K`(G)(Xi, Z)
of our interest are not complete lattices, and they even lack the greatest element >. There-
fore neither of Lemma 2.10–2.11 ensures a solution of EX in Definition 3.5. As we hinted
in Section 2.3 our strategy is: 1) to apply the Lemma 2.11 to the homset K`(G)(X, 1); and
2) to “extend” fixed points in K`(G)(X, 1) along a final F -sequence. Implicit in the proof
details below, in fact, is a correspondence between: abstract categorical arguments along a
final sequence; and concrete operational intuitions on probabilistic parity automata.

In this section we let C = Meas, T = G (Definition 2.1), and F be a polynomial functor.
I Remark 5.1. The class of probabilistic systems of our interest are generative (as opposed
to reactive) ones. Their difference is eminent in the types of transition functions:

X −→ G(A×X) (word) X −→ G(
∐
σ∈ΣX

|σ|) (tree) for generative;
X −→ (GX)A (word) X −→

∏
σ∈Σ G(X |σ|) (tree) for reactive.

N. Urabe, S. Shimizu and I. Hasuo 24:11

A generative system (probabilistically) chooses which character to generate; while a reactive
one receives a character from the environment. Reactive variants of probabilistic tree au-
tomata have been studied e.g. in [4], following earlier works like [3] on reactive probabilistic
word automata. Further discussion is in Appendix C.1 in [27].

5.1 Trace Semantics of Parity (G, F)-Systems is Well-Defined
In the following key lemma—that is inspired by the observations in [6, 23, 25]—a typical
usage is for XA = X1 + · · ·+Xi and XB = Xi+1 + · · ·+Xn.

I Lemma 5.2. Let X = ((X1, . . . , Xn), s, c) be a parity (G, F)-system, and suppose that we
are given a partition X = XA +XB of X := X1 + · · ·+Xn.

We define a function Γ: K`(G)(X,Z)→ K`(G)(X, 1) by Γ(g) = J !Z � g, where ! : Z → 1
is the unique function of the type. Its variants ΓA : K`(G)(XA, Z) → K`(G)(XA, 1) and
ΓB : K`(G)(XB , Z)→ K`(G)(XB , 1) are defined similarly.

For arbitrary gB : XB →p Z, we define GgB and HgB as the following sets of “fixed points”:

GgB :=
gA :
XA →p Z

∣∣∣∣∣∣∣∣
FX �F [gA,gB]

//

=
FZ

_Jζ−1
��

XA

_cA
OO

�
gA

// Z

 and

HgB :=
hA :
XA →p 1

∣∣∣∣∣∣∣∣
FX �F [hA,ΓB(gB)]

//

=
F1

_
J!F1��

XA

_cA
OO

�
hA

// 1

 (11)

Then ΓA restricts to a function GgB → HgB . Moreover, the restriction is an order isomor-
phism, with its inverse denoted by ∆gB : HgB ∼=→ GgB . J

In the proof of the last lemma (deferred to the appendix in [27]), the inverse ∆gB is defined
by “extending” hA : XA →p 1 to XA →p Z, along the final F -sequence 1 ← F1 ← · · · (more
precisely: the image of the sequence under the Kleisli inclusion J : Meas→ K`(G)).

We are ready to prove existence of EX ’s solution (Definition 3.5).

I Lemma 5.3. Assume the same setting as in Lemma 5.2. We define ΦX : K`(G)(X,Z)→p
K`(G)(X,Z) and ΨX : K`(G)(X, 1)→p K`(G)(X, 1), respectively, by

ΦX (g) := Jζ−1 � Fg � c and ΨX (h) := J !F1 � Fh� c ;

these are like the diagrams in (11), except that the latter are parametrized by XA, XB , gB.
Now consider the following equational systems, where: ηi = µ if i is odd and ηi = ν if i is
even; ui ranges over K`(G)(Xi, Z); and u′i ranges over K`(G)(Xi, 1).

E =

 u1 =η1 ΦX ([u1, . . . , un])� κ1
...

un =ηn ΦX ([u1, . . . , un])� κn

 E′ =

 u′1 =η1 ΨX ([u′1, . . . , u′n])� κ1
...

u′n =ηn ΨX ([u′1, . . . , u′n])� κn

 (12)

We claim that the equational systems have solutions (lsol
1 , . . . , lsol

n) and (l′sol
1 , . . . , l′sol

n); and
moreover, we have Γ(trp(X)) = Γ([lsol

1 , . . . , lsol
n]) = [l′sol

1 , . . . , l′sol
n]. J

I Theorem 5.4. T = G and a polynomial F constitute a parity trace situation (Defini-
tion 3.5). J

I Remark 5.5. The process-theoretic interpretation of the isomorphism GgB ∼= HgB is inter-
esting. Let us set XA = X and XB = ∅ for simplicity. The greatest element on the left is

CONCUR 2016

24:12 Coalgebraic Trace Semantics for Büchi and Parity Automata

the infinitary trace semantics (i.e. accepted languages under the trivial acceptance condi-
tion), as in Theorem 2.8 (cf. Table 1). The corresponding greatest element on the right—a
function hA : XA → G1 ∼= [0, 1]—assigns to each state x ∈ X the probability with which
a run from x does not diverge (recall from Remark 2.6 that the sub-Giry monad G allows
divergence probabilities). The accepted language under the parity condition is in general an
element of GgB that is neither greatest nor least; the corresponding element in HgB assigns
to each state the probability with which it generates a accepting run (over any Σ-tree).

5.2 Probabilistic Parity Tree Automata and Its Languages
I Definition 5.6 (PPTA). A (generative) probabilistic parity tree automaton (PPTA) is

X =
(

(X1, . . . , Xn), Σ, δ : X → G
(∐

σ∈ΣX
|σ|), s ∈ GX) ,

where X = X1 + · · ·+Xn, each Xi is a countable set and Σ is a countable ranked alphabet.
The subdistribution s over X is for the choice of initial states.

In Definition 5.6 the size restrictions on X and Σ are not essential: restricting to discrete
σ-algebras, however, makes the following arguments much simpler.

We shall concretely define accepted languages of PPTAs, continuing Section 4 and de-
ferring precise definitions to Appendix A in [27]. This is mostly standard; a reactive variant
is found in [4].

I Definition 5.7 (TreeΣ and RunX). Let Σ be a ranked alphabet; TreeΣ is the set of Σ-trees.
A finite (Σ∪{∗})-labeled tree λ, with its branching degrees compatible with the label arities,
is called a partial Σ-tree. Here the new symbol ∗ (“continuation”) is deemed to be 0-ary.
The cylinder set associated to λ, denoted by CylΣ(λ), is the set of (non-partial) Σ-trees that
have λ as their prefix (in the sense that a subtree is replaced by ∗). The (smallest) σ-algebra
on TreeΣ generated by the family {CylΣ(λ) | λ is a partial Σ-tree} will be denoted by FΣ.

A run of a PPTA X with state space X is a (possibly infinite) (Σ × X)-labeled tree
whose branching degrees are compatible with the arities of Σ-labels. RunX denotes the set
of runs. The measurable structure FX on RunX is defined analogously to FΣ: a partial run
ξ of X is a suitable (Σ∪{∗})×X-labeled tree; it generates a cylinder set CylX (ξ) ⊆ RunX ;
and these cylinder sets generate the σ-algebra FX . Finally, the set AccRunX of accepting
runs consists of all those runs all branches of which satisfy the (usual) parity acceptance
condition (namely: max{i | π visits states in Xi infinitely often} is even).

The following result is much like [4, Lem. 36] and hardly novel.

I Lemma 5.8. The set AccRunX of accepting runs is an FX -measurable subset of RunX . J

In the following NoDivX (x) is the probability with which an execution from x does not
diverge: since we use the sub-Giry monad (Definition 5.6), a PPTA can exhibit divergence.

I Definition 5.9 (µRun
X over RunGX). Let X = ((X1, . . . , Xn),Σ, δ, s) be a PPTA.

Firstly, for each k ∈ N, let NoDivX ,k : X → [0, 1] (“no divergence in k steps”) be defined
inductively by: NoDivX ,0(x) := 1 and

NoDivX ,k+1(x) :=
∑

(σ,(x1,...,x|σ|))∈
∐

σ∈Σ
X|σ|

δ(x)
(
σ, (x1, . . . , x|σ|)

)
·
∏
i∈[1,|σ|] NoDivX ,k(xi) .

We define NoDivX (x) :=
∧
k∈N NoDivX ,k(x).

N. Urabe, S. Shimizu and I. Hasuo 24:13

Secondly we define a subprobability measure µRun
X over RunX . It is given by

µRun
X (CylX (ξ)) := s

(
rt(ξ)

)
· PX (ξ) for each partial run ξ, where PX (ξ) is given by

PX (ξ) :=

{
NoDivX (x) if ξ =

(
(∗, x)

)
;

δ(x)
(
σ,
(
rt(ξ1), . . . , rt(ξ|σ|)

))
·
∏
i∈[1,|σ|] PX (ξi) if ξ =

(
(σ, x), (ξ1, . . . , ξ|σ|)

)
.

(13)

The above extends to a measure thanks to Carathéodory’s theorem. See Lem. C.3 in [27].
Thirdly we introduce a measure µTree

X over TreeΣ (“which trees are generated by what
probabilities”). It is a push-forward measure of µRun

X along DelSt : RunX → TreeΣ:

µTree
X (CylΣ(λ)) := µRun

X
(

DelSt−1(CylΣ(λ)) ∩AccRunX
)

for each partial Σ-tree λ. (14)

Since X is countable DelSt is easily seen to be measurable. Finally, the accepted language
Lang(X) ∈ G(TreeΣ) of X is defined by µTree

X in the above.

5.3 Coincidence between Conventional and Coalgebraic Languages
I Lemma 5.10. Let X = ((X1, · · · , Xn),Σ, δ, s) be a PPTA with X =

∐
iXi, and Ψ′X be

Ψ′X : [0, 1]X→ [0, 1]X, Ψ′X (p)(x) :=
∑

(σ,x1,...,x|σ|)∈
∐

σ
X|σ| δ(x)(σ, (x1, . . . , x|σ|))·

∏
i∈[1,|σ|]p(xi).

Let us define µTree
X ,x := µTree

X (x) where X (x) is the PPTA obtained from X by changing its ini-
tial distribution s into the Dirac distribution δx; µRun

X ,x is similar. We define AccProbX : X →
[0, 1]—it assigns to each state the probability of generating an accepting run—by AccProbX (x) :=
µRun
X ,x (AccRunX).
Consider the following equational system, where u′i ranges over K`(G)(Xi, 1), and () �

Xi denotes domain restriction.

u′1 =η1 Ψ′X ([u′1, · · · , u′n]) � X1, . . . , un =ηn Ψ′X ([u′1, · · · , u′n]) � Xn

We claim: 1) the system has a solution l′sol
1 , . . . , l′sol

n ; and 2) [l′sol
1 , . . . , l′sol

n] = AccProbX . J

Its proof (in [27]) relies on Lem. B.4 on homomorphisms of equational systems.

I Theorem 5.11 (coincidence, in the probabilistic setting). Let X = ((X1, . . . , Xn),Σ, δ, s) be
a PPTA, and X = X1 + · · · + Xn, and FΣ be the polynomial functor on Meas that corre-
sponds to Σ. Then X is identified with a parity (G, FΣ)-system; moreover its coalgebraic trace
semantics trp(X) (Definition 3.5) coincides with the (probabilistic) language Lang(X) con-
cretely defined in Definition 5.9. Precisely: trp(X)(•)(U) = Lang(X)(U) for any measurable
subset U of TreeΣ, where • is the unique element of 1 in trp(X) : 1→ G(TreeΣ). J

Acknowledgments. Thanks are due to Corina Cîrstea, Kenta Cho, Bartek Klin, Tetsuri
Moriya and Shota Nakagawa for useful discussions; and to the anonymous referees for their
comments.

References
1 Jirí Adámek, Filippo Bonchi, Mathias Hülsbusch, Barbara König, Stefan Milius, and

Alexandra Silva. A coalgebraic perspective on minimization and determinization. In
Proc. FoSSaCS’12, volume 7213 of LNCS, pages 58–73. Springer, 2012. doi:10.1007/
978-3-642-28729-9_4.

CONCUR 2016

http://dx.doi.org/10.1007/978-3-642-28729-9_4
http://dx.doi.org/10.1007/978-3-642-28729-9_4

24:14 Coalgebraic Trace Semantics for Büchi and Parity Automata

2 André Arnold and Damian Niwiński. Rudiments of µ-Calculus, volume 146 of Stud-
ies in Logic and the Foundations of Mathematics. North-Holland, 2001. doi:10.1016/
S0049-237X(01)80001-X.

3 Christel Baier and Marcus Größer. Recognizing omega-regular languages with probabilistic
automata. In Proc. LICS’05, pages 137–146. IEEE Computer Society, 2005. URL: http:
//dx.doi.org/10.1109/LICS.2005.41, doi:10.1109/LICS.2005.41.

4 Arnaud Carayol, Axel Haddad, and Olivier Serre. Randomization in automata on infinite
trees. ACM Trans. Comp. Logic, 15(3):24:1–24:33, 2014. doi:10.1145/2629336.

5 Vincenzo Ciancia and Yde Venema. Stream automata are coalgebras. In Selected Pa-
pers of CMCS’12, volume 7399 of LNCS, pages 90–108. Springer, 2012. doi:10.1007/
978-3-642-32784-1_6.

6 Corina Cîrstea. Generic infinite traces and path-based coalgebraic temporal logics. Electr.
Notes in Theor. Comp. Sci., 264(2):83–103, 2010. doi:10.1016/j.entcs.2010.07.015.

7 Corina Cîrstea, Alexander Kurz, Dirk Pattinson, Lutz Schröder, and Yde Venema. Modal
logics are coalgebraic. Comp. Journ., 54(1):31–41, 2011. doi:10.1093/comjnl/bxp004.

8 Rance Cleaveland, Marion Klein, and Bernhard Steffen. Faster model checking for the
modal mu-calculus. In Proc. CAV’92, volume 663 of LNCS, pages 410–422. Springer, 1992.
doi:10.1007/3-540-56496-9_32.

9 Ernst-Erich Doberkat. Stochastic Coalgebraic Logic. Monographs in Theoretical Computer
Science. An EATCS Series. Springer, 2009. doi:10.1007/978-3-642-02995-0.

10 Michèle Giry. Categorical aspects of topology and analysis. In A categorical approach to
probability theory, an Intl. Conference at Carleton University, 1981, Proceedings, volume
915 of Lect. Notes in Math., pages 68–85. Springer, 1982. doi:10.1007/BFb0092872.

11 Sergey Goncharov and Dirk Pattinson. Coalgebraic weak bisimulation from recursive equa-
tions over monads. In Proc. ICALP’14, Part II, volume 8573 of LNCS, pages 196–207.
Springer, 2014. doi:10.1007/978-3-662-43951-7_17.

12 Erich Grädel, Wolfgang Thomas, and Thomas Wilke, editors. Automata, Logics, and
Infinite Games: A Guide to Current Research, volume 2500 of LNCS. Springer, 2002.
doi:10.1007/3-540-36387-4.

13 Ichiro Hasuo, Bart Jacobs, and Ana Sokolova. Generic trace semantics via coinduction.
Logical Methods in Comp. Sci., 3(4):11:1–11:36, 2007. doi:10.2168/LMCS-3(4:11)2007.

14 Ichiro Hasuo, Shunsuke Shimizu, and Corina Cîrstea. Lattice-theoretic progress measures
and coalgebraic model checking. In Proc. POPL’16, pages 718–732. ACM, 2016. doi:
10.1145/2837614.2837673.

15 Bart Jacobs. Trace semantics for coalgebras. Electr. Notes in Theor. Comp. Sci., 106:167–
184, 2004. doi:10.1016/j.entcs.2004.02.031.

16 Bart Jacobs. Introduction to coalgebra. Towards mathematics of states and observations.
Draft of a book (ver. 2.0), available online, 2012. URL: http://www.cs.ru.nl/B.Jacobs/
CLG/JacobsCoalgebraIntro.pdf.

17 Bart Jacobs, Alexandra Silva, and Ana Sokolova. Trace semantics via determinization. J.
Comp. & Syst. Sci., 81(5):859–879, 2015. doi:10.1016/j.jcss.2014.12.005.

18 Bartek Klin. Bialgebraic methods and modal logic in structural operational semantics. Inf.
& Comp., 207(2):237–257, 2009. doi:10.1016/j.ic.2007.10.006.

19 Nancy Lynch and Frits Vaandrager. Forward and backward simulations. Inf. & Comp.,
121(2):214–233, 1995. doi:10.1006/inco.1995.1134.

20 Philip S. Mulry. Lifting theorems for Kleisli categories. In Proc. MFPS’93, volume 802 of
LNCS, pages 304–319. Springer, 1994. doi:10.1007/3-540-58027-1_15.

21 John Power and Hayo Thielecke. Environments, continuation semantics and indexed
categories. In Proc. TACS’97, volume 1281 of LNCS, pages 391–414. Springer, 1997.
doi:10.1007/BFb0014560.

http://dx.doi.org/10.1016/S0049-237X(01)80001-X
http://dx.doi.org/10.1016/S0049-237X(01)80001-X
http://dx.doi.org/10.1109/LICS.2005.41
http://dx.doi.org/10.1109/LICS.2005.41
http://dx.doi.org/10.1109/LICS.2005.41
http://dx.doi.org/10.1145/2629336
http://dx.doi.org/10.1007/978-3-642-32784-1_6
http://dx.doi.org/10.1007/978-3-642-32784-1_6
http://dx.doi.org/10.1016/j.entcs.2010.07.015
http://dx.doi.org/10.1093/comjnl/bxp004
http://dx.doi.org/10.1007/3-540-56496-9_32
http://dx.doi.org/10.1007/978-3-642-02995-0
http://dx.doi.org/10.1007/BFb0092872
http://dx.doi.org/10.1007/978-3-662-43951-7_17
http://dx.doi.org/10.1007/3-540-36387-4
http://dx.doi.org/10.2168/LMCS-3(4:11)2007
http://dx.doi.org/10.1145/2837614.2837673
http://dx.doi.org/10.1145/2837614.2837673
http://dx.doi.org/10.1016/j.entcs.2004.02.031
http://www.cs.ru.nl/B.Jacobs/CLG/JacobsCoalgebraIntro.pdf
http://www.cs.ru.nl/B.Jacobs/CLG/JacobsCoalgebraIntro.pdf
http://dx.doi.org/10.1016/j.jcss.2014.12.005
http://dx.doi.org/10.1016/j.ic.2007.10.006
http://dx.doi.org/10.1006/inco.1995.1134
http://dx.doi.org/10.1007/3-540-58027-1_15
http://dx.doi.org/10.1007/BFb0014560

N. Urabe, S. Shimizu and I. Hasuo 24:15

22 Jan J. M. M. Rutten. Universal coalgebra: a theory of systems. Theor. Comp. Sci.,
249(1):3–80, 2000. doi:10.1016/S0304-3975(00)00056-6.

23 Christoph Schubert. Terminal coalgebras for measure-polynomial functors. In Proc.
TAMC’09, volume 5532 of LNCS, pages 325–334. Springer, 2009. doi:10.1007/
978-3-642-02017-9_35.

24 Alexandra Silva. A short introduction to the coalgebraic method. ACM SIGLOG News,
2(2):16–27, April 2015. doi:10.1145/2766189.2766193.

25 Natsuki Urabe and Ichiro Hasuo. Coalgebraic infinite traces and kleisli simulations. In
Lawrence S. Moss and Pawel Sobocinski, editors, Proc. CALCO’15, volume 35 of LIPIcs,
pages 320–335. Schloss Dagstuhl, 2015. doi:10.4230/LIPIcs.CALCO.2015.320.

26 Natsuki Urabe and Ichiro Hasuo. Quantitative simulations by matrices. Inf. & Comp.,
2016. In press. doi:10.1016/j.ic.2016.03.007.

27 Natsuki Urabe, Shunsuke Shimizu, and Ichiro Hasuo. Coalgebraic trace semantics for Büchi
and parity automata. arXiv preprint, 2016.

28 Natsuki Urabe, Shunsuke Shimizu, and Ichiro Hasuo. Fair simulation for nondeterministic
and probabilistic Büchi automata: a coalgebraic perspective. CoRR, abs/1606.04680, 2016.
URL: http://arxiv.org/abs/1606.04680.

29 R.J. van Glabbeek. The linear time – branching time spectrum I: The semantics of concrete,
sequential processes. In J.A. BergstraA. PonseS.A. Smolka, editor, Handbook of Process
Algebra, chapter 1, pages 3–99. Elsevier, 2001. doi:10.1016/B978-044482830-9/50019-9.

30 Moshe Y. Vardi. An automata-theoretic approach to linear temporal logic. In Logics for
Concurrency, the of 8th Banff Higher Order Workshop, 1995, Proceedings, volume 1043 of
LNCS, pages 238–266. Springer, 1995. doi:10.1007/3-540-60915-6_6.

31 Yde Venema. Automata and fixed point logic: A coalgebraic perspective. Inf. & Comp.,
204(4):637–678, 2006. doi:10.1016/j.ic.2005.06.003.

32 James Worrell. On the final sequence of a finitary set functor. Theor. Comp. Sci., 338(1-
3):184–199, 2005. doi:10.1016/j.tcs.2004.12.009.

CONCUR 2016

http://dx.doi.org/10.1016/S0304-3975(00)00056-6
http://dx.doi.org/10.1007/978-3-642-02017-9_35
http://dx.doi.org/10.1007/978-3-642-02017-9_35
http://dx.doi.org/10.1145/2766189.2766193
http://dx.doi.org/10.4230/LIPIcs.CALCO.2015.320
http://dx.doi.org/10.1016/j.ic.2016.03.007
http://arxiv.org/abs/1606.04680
http://dx.doi.org/10.1016/B978-044482830-9/50019-9
http://dx.doi.org/10.1007/3-540-60915-6_6
http://dx.doi.org/10.1016/j.ic.2005.06.003
http://dx.doi.org/10.1016/j.tcs.2004.12.009

Bisimulations and Unfolding in P-Accessible
Categorical Models
Jérémy Dubut1, Eric Goubault2, and Jean Goubault-Larrecq3

1 LSV, ENS Cachan, CNRS, Université Paris-Saclay, 94235 Cachan, France and
LIX, Ecole Polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau,
France
dubut@lsv.ens-cachan.fr

2 LIX, Ecole Polytechnique, CNRS, Université Paris-Saclay, 91128 Palaiseau,
France
goubault@lix.polytechnique.fr

3 LSV, ENS Cachan, CNRS, Université Paris-Saclay, 94235 Cachan, France
goubault@lsv.ens-cachan.fr

Abstract
We propose a categorical framework for bisimulations and unfoldings that unifies the classical
approach from Joyal and al. via open maps and unfoldings. This is based on a notion of categories
accessible with respect to a subcategory of path shapes, i.e., for which one can define a nice notion
of trees as glueings of paths. We show that transition systems and presheaf models are instances
of our framework. We also prove that in our framework, several notions of bisimulation coincide,
in particular an “operational one” akin to the standard definition in transition systems. Also, our
notion of accessibility is preserved by coreflections. This also leads us to a notion of unfolding
that behaves well in the accessible case: it is a right adjoint and is a universal covering, i.e., it is
initial among the morphisms that have the unique lifting property with respect to path shapes.
As an application, we prove that the universal covering of a groupoid, a standard construction
in algebraic topology, is an unfolding, when the category of path shapes is well chosen.

1998 ACM Subject Classification F.1.1 Models of Computation, F.1.2 Modes of Computation

Keywords and phrases categorical models, bisimulation, coreflections, unfolding, universal cov-
ering

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2016.25

1 Introduction

Bisimulations were introduced in [12] as a way to express that two concurrent systems
are “equivalent”, in a way that would reflect not only trace equivalence, but also the
branching structure of executions. Later, Joyal, Nielsen and Winskel [6] developed a theory
of bisimulations using open maps, which are particular morphisms in some category of
models, which satisfy lifting properties with respect to a specified subcategory of execution
paths. They made explicit links between this abstract view of bisimulations and the classical
relational definition, for some models of concurrency, including transition systems and event
structures.

In some other line of work, Nielsen, Plotkin and Winskel [10] introduced a notion of
unfolding for 1-safe Petri nets. The unfolding produces an “equivalent” Petri net, which is
infinite in general (in the absence of cut-rules) and is non-looping. This is at the basis of
numerous verification methods on Petri nets [2]. Later, Winskel [13] developed the categorical
framework of Petri nets and unfoldings by relating them to coreflections (special cases of

© Jérémy Dubut, Eric Goubault, and Jean Goubault-Larrecq;
licensed under Creative Commons License CC-BY

27th International Conference on Concurrency Theory (CONCUR 2016).
Editors: Josée Desharnais and Radha Jagadeesan; Article No. 25; pp. 25:1–25:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.25
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

25:2 Bisimulations and Unfolding in P-Accessible Categorical Models

adjoint functors) between some categories of concurrent models, more particularly occurence
nets and event structures. Winskel also developed a classification of concurrent models by
coreflections [14].

As open maps, unfoldings are closely related to prominent concepts in algebraic topology.
Unfoldings are closely linked to coverings, which are nice fibered spaces which (also) satisfy
unique lifting properties (see e.g. [4]). Coverings are closely related to partial unfoldings of
the state space (see e.g. [13]). The universal covering can actually be defined, in ordinary
algebraic topology, as a complete delooping of paths in topological spaces, which makes
it very similar to unfoldings of transition systems. Although the analogy is enlightening,
formalizing it stumbles on various difficulties. In this paper, we propose to unify those
theories, by putting lifting properties of “paths” at the center of the picture.

In Section 2 we recall the case of transition systems, and the classical notion of bisimilarity
[12]. The categorical approaches to bisimulation via open maps and via “strong path-
bisimulation” of Joyal, Nielsen and Winskel [6] are equivalent to this classical notion of
bisimulation in the particular case of transition systems, but are not equivalent in general, if
we do not set up the proper context.

The framework of P-accessible models we are developing is going to define this context,
where those two notions of bisimilarities will be equivalent. We introduce accessible models
in Section 3 and prove this result in the same section. Somehow, these categories are the
right ones in the sense that their objects are closely tied with the glueing of paths within
them. It will be trivially the case for transition systems: they will be accessible models in
our sense.

In Section 4, we show that the framework of presheaf models of [6] is also a particular
case of our framework, yielding another proof of one of the main results of [6].

Many models are related through coreflections (see, e.g. [11]). In Section 5, we show that,
when two models are related this way, then accessibility is transferred from one the other.
This makes our notion possibly applicable to a great variety of models.

We then turn to unfoldings in accessible models, in Section 6. Indeed, there is a very nice
notion of paths and path extensions in accessible models, making the notion of unfolding
very natural. In particular, in Section 6.2, we show that the unfolding of a model is bisimilar
to the original model. As a bonus, unfoldings are defined in a canonical manner in accessible
categories: they are right adjoints (Section 6.3). Finally, we show that unfoldings in accessible
models enjoy unique path lifting properties (Section 7.2) making them similar to universal
coverings. In the case of groupoids for instance, we show that unfoldings are universal
coverings (recapped in Section 7.1).

2 Categorical models and bisimilarities

We first recall, from [6], two notions of bisimilarity in a category with a specified subcategory
of path shapes.

2.1 Category of models, subcategory of paths

We consider a categoryM (of models) together with a small subcategory (of path-shapes)
P . We assume thatM and P have a common initial object I, i.e., an object I ∈ P such that
for every object A of P (resp. ofM), there is a unique morphism in P (resp. inM) from I

to A. We note ιA this unique morphism. One typical example is the category of transition
systems, that we briefly recap below.

J. Dubut, E. Goubault, and J. Goubault-Larrecq 25:3

Fix an alphabet Σ. A transition system T = (Q, i,∆) on Σ is the following data: a set
Q (of states); a initial state i ∈ Q; a set of transitions ∆ ⊆ Q× Σ×Q.

A morphism of transition systems on Σ f : T1 = (Q1, i1,∆1) −→ T2 = (Q2, i2,∆2)
is a function f : Q1 −→ Q2 such that f(i1) = i2 and for every (p, a, q) ∈ ∆1, (f(p), a, f(q)) ∈
∆2.

We note TS(Σ), the category of transition systems on Σ and morphisms of transition
systems.

The subcategory of path-shapes will be in this case the category of branches: for n ∈ N,
a n-branch shape on Σ is a transition system ([n], 0,∆) where:

[n] is the set {0, . . . , n};
∆ is of the form {(i, ai, i+ 1) | i ∈ [n− 1]} for some a0, ..., an−1 in Σ.

0 1 2 . . . n− 1 n
a0 a1 an−1

We then take Br(Σ) as the full subcategory of TS(Σ) of n-branch shapes for all n ∈ N.
A common initial object of TS(Σ) and Br(Σ) is then the 0-branch shape I = ([0], 0,∅).
We call n-branch of a transition system T any morphism of transition system from a
n-branch form to T .

2.2 A relational bisimilarity of models: path-bisimilarity
Equivalence of transition systems is defined through the notion of bisimulation. Classically
[12], a bisimulation between T1 = (Q1, i1,∆1) and T2 = (Q2, i2,∆2) is a relation R ⊆ Q1×Q2
such that:
(i) (i1, i2) ∈ R;
(ii) if (q1, q2) ∈ R and (q1, a, q

′
1) ∈ ∆1 then there is q′2 ∈ Q2 such that (q2, a, q

′
2) ∈ ∆2 and

(q′1, q′2) ∈ R;
(iii) if (q1, q2) ∈ R and (q2, a, q

′
2) ∈ ∆2 then there is q′1 ∈ Q1 such that (q1, a, q

′
1) ∈ ∆1 and

(q′1, q′2) ∈ R.
We then say that two transition systems are bisimilar if there is a bisimulation between
them.

A bisimulation between T1 and T2 induces a relation R′n between n-branches of T1 and
n-branches of T2 by:

R′n = {(f1 : B1 −→ T1, f2 : B2 −→ T2) | ∀i ∈ [n], (f1(i), f2(i)) ∈ R}

These relations satisfy that:
(ιT1 , ιT2) ∈ R′0 by (i);
by (ii), if (f1, f2) ∈ R′n and if (f1(n), a, q1) ∈ ∆1 then there is q2 ∈ Q2 such that
(f2(n), a, q2) ∈ ∆2 and (f ′1, f ′2) ∈ R′n+1 where f ′i(j) = fi(j) if j ≤ n, qi otherwise;
symmetrically with (iii);
if (f1, f2) ∈ R′n+1 then (f ′1, f ′2) ∈ R′n where f ′i is the restriction of fi to [n].

In fact, bisimilarity of transition systems is equivalent to the existence of such relations
on n-branches. This leads us to the general notion of strong path-bisimulation [6].

A strong path-bisimulation R between X and Y , objects ofM is a set of elements of
the form X

f←−−− P g−−−→ Y with P object of P such that:
(a) X ιX←−−−− I ιY−−−−→ Y belongs to R;
(b) if X f←−−− P

g−−−→ Y belongs to R then for every path extension of X, i.e, every
morphism p in P such that:

CONCUR 2016

25:4 Bisimulations and Unfolding in P-Accessible Categorical Models

P X

Q

p

f ′

f

commutes then there exists a path extension of Y

P Y

Q

p

g′

g

such that X f ′←−−−− Q g′−−−→ Y belongs to R;
(c) symmetrically;
(d) if X f←−−− P

g−−−→ Y belongs to R and if we have a morphism p : Q −→ P ∈ P then
X

f◦p←−−−−− Q g◦p−−−−→ Y belongs to R;
We say that X and Y are strong path bisimilar iff there exists a strong path bisimulation
between them.

2.3 A fibrational bisimilarity of models: P-bisimilarity

Lifting properties are a useful ingredient in category theory and algebraic topology. In [6],
they permit to design an abstract notion of bisimilarity via morphisms which satisfy lifting
properties with respect to paths, recovering a large variety of models and motivating the use
of presheaf models by the work on pretopoi in [5].

We say that a morphism f : X −→ Y ofM is (P-)open iff for all commutative diagrams:

P X

Q Y

x

f

y

p

with p : P −→ Q ∈ P, there exists a morphism θ : Q −→ X such that the following diagram
commutes:

P X

Q Y

x

f

y

p
θ

We then say that two objects X and Y of M are P-bisimilar iff there exists a span
f : Z −→ X and g : Z −→ Y where f and g are P-open.

It is known that if X and Y are P-bisimilar then they are strong path bisimilar [6]. The
converse also holds in the case of transition systems (both P and path bisimilarities coincide
with the classical bisimilarity), but there is no general result for the converse. The purpose
of the following section is to investigate a general framework in which those two notions of
bisimilarity will coincide.

J. Dubut, E. Goubault, and J. Goubault-Larrecq 25:5

3 Accessible models and equivalence of bisimilarities

For the converse, we must build a span of open maps from a strong path-bisimulation. It
requires in particular that we construct an object ofM, which will be the tip of the span.
One way of doing so is to glue the elements of the bisimulation in order to obtain an "object
of bisimilar paths". Categorically, a glueing is a colimit, so a natural hypothesis should be
the existence of some colimits inM.

Concretely, a P-tree inM is a colimit inM of a small diagram with values in P , i.e., of
a functor D : D −→ P where D is a small category. We say that all P-trees exist in M
if every small diagram with values in P has a colimit inM. In the category of transition
systems, Br(Σ)-trees are exactly synchronization trees, i.e., a transition system T = (Q, i,∆)
such that:

every state in Q is accessible, i.e., for every q ∈ Q, there is a n-branch f : B −→ T for
some n ∈ N such that f(n) = q;
T is acyclic, i.e., for every branch f : B −→ T , there is no i 6= j such that f(i) = f(j);
T is non-joining, i.e., if (q1, a, p) and (q2, b, p) ∈ ∆ then a = b and q1 = q2.

In particular, all Br(Σ)-trees exists in TS(Σ). We note Tree(M,P) for the full subcategory
ofM of P-trees.

Let R be a strong path bisimulation between X and Y and assume that all P-trees exist.
Let us construct a span of maps between X and Y . First, we construct the tip of the span as
the colimit of a particular diagram with values in P , defined from R. Let C be the following
category:

objects of C are elements of R;
morphisms from X

x←−−− P y−−−→ Y to X x′←−−−− Q y′−−−−→ Y are morphisms p : P −→ Q

of P such that the following diagram commutes:
P

YX

Qx′

x

p

y′

y

Then define the diagram F : C −→ P which maps every X x←−−− P y−−−→ Y ∈ R to P and
every p to itself. Since P-trees exist (F is small because R is a set), let (Z, ([α])α∈R) be the
colimit of F , where the [X x←−−− P

y−−−→ Y] : P = F (X x←−−− P
y−−−→ Y) −→ Z are the

maps from the colimit.
Z will be the tip of our span. Now we need to construct maps Φ : Z −→ X and

Ψ : Z −→ Y . Let us do it for Φ: since (X, (F (X x←−−− P y−−−→ Y) x−→ X)) is a cocone of F ,
there exists a unique morphism Φ : Z −→ X such that for all X x←−−− P y−−−→ Y ∈ R the
following diagram commutes:

P Z

X

x
Φ

[X x←−−− P y−−−→ Y]

To prove that strong path-bisimilarity implies P-bisimilarity, we just need to prove that
Φ is open. But it does not hold in general. We will need that we do not create more paths
in a tree than the ones we used in the glueing. In the case of transition systems, this says
that every path in a tree seen as the colimit of a certain diagram D with values in P is a
subbranch of some D(i). More generally, we will say thatM is P-accessible if :

CONCUR 2016

25:6 Bisimulations and Unfolding in P-Accessible Categorical Models

all P-trees exist;
every morphism f : P −→ Z where P ∈ P and (Z, (ηd)d∈D) is the colimit of a non-
empty small diagram D : D −→ P factorizes as f = ηd ◦ p for some d ∈ D with
p : P −→ D(d) ∈ P.

In particular, TS(Σ) is Br(Σ)-accessible.

I Remark. The name “accessible” is a reference to κ-accessible categories [8] where κ is
a cardinal, which is a very similar property of a category, requiring the existence of some
colimits (in this case, filtered colimits) and the same kind of factorizations for morphisms
whose codomain is such a colimit.

Assuming thatM is P-accessible, we can now prove that Φ is open. Consider a commut-
ative diagram of the form:

P Z

Q X

z

Φ

x

p

with p in P. As Z is a colimit of a non-empty (because R is non-empty) small diagram,
then by P-accessibility, z : P −→ Z factorizes as [X x′←−−−− P ′

y′−−−−→ Y] ◦ p′ for some
X

x′←−−−− P ′
y′−−−−→ Y ∈ R and p′ : P −→ P ′ ∈ P. Then, by condition (d) of a strong path

bisimulation, X x′◦p′←−−−−−− P
y′◦p′−−−−−→ Y belongs to R. Moreover, the following diagram

commutes:

P

YX

P ′x′

x′ ◦ p′

p′

y′

y′ ◦ p′

Then, z = [X x′←−−−− P ′ y′−−−−→ Y] ◦ p′ = [X x′◦p′←−−−−−− P y′◦p′−−−−−→ Y].
So, x ◦ p = Φ ◦ z = Φ ◦ [X x′◦p′←−−−−−− P y′◦p′−−−−−→ Y] = x′ ◦ p′ by definition of Φ. This means
that we have the following commutative diagram:

P X

Q

p
x

x′ ◦ p′

Then, by condition (b) of a strong path bisimulation, there is a path extension of Y :

P Y

Q

p
y

y′ ◦ p′

such that X x←−−− Q y−−−→ Y belongs to R.
Then the morphism θ = [X x←−−− Q y−−−→ Y] : Q −→ Z is the lifting we were looking for:

J. Dubut, E. Goubault, and J. Goubault-Larrecq 25:7

P Z

Q X

z

Φ

x

p
θ

So we deduce:

I Theorem 1. IfM is P-accessible and if X and Y are strong path bisimilar then they are
P-bisimilar.

4 Presheaf models

Presheaf models were introduced in [6], motivated by the work on pretopoi in [5]. We prove
in this section that presheaf models are a particular case of accessible models.

Assume given a small category ∆ with an initial object J . A rooted presheaf on ∆ is a
functor F from ∆op to Set such that F (J) is a singleton. Let [∆op, Set]∗ be the category of
rooted presheaves on ∆ and natural transformations. We have a functor (called the Yoneda
embedding) Y : ∆ −→ [∆op, Set]∗:

we associate an object P of ∆ with the rooted presheaf Y(P) which maps:
every object Q of ∆ to ∆(Q,P)
every morphism p : Q −→ Q′ of ∆ to the function Y(P)(p) : ∆(Q′, P) −→ ∆(Q,P)
f 7→ f ◦ p

we associate a morphism p : P −→ P ′ with the natural transformation Y(p) : Y(P) −→
Y(P ′) defined by

Y(p)Q : ∆(Q,P) −→ ∆(Q,P ′) f 7→ p ◦ f

I Theorem 2. Let P be the image of Y andM = [∆op, Set]∗. ThenM is P-accessible.

Proof.
P is a full embedding of M: by the Yoneda lemma.
computation of colimits in M: consider a small diagram D : U −→M. The colimit
in [∆op, Set]∗ of D is the colimit in [∆op, Set] (which is cocomplete [1]) of the small
(non-empty) diagram D⊥ : U⊥ −→M where:

U⊥ is the category obtained by adding an object ⊥ to U with a unique morphism from
⊥ to any object of U or ⊥ and no morphism from an object of U to ⊥
D⊥ maps ⊥ to Y(J) (which is the initial object ofM and P by the Yoneda lemma),
any object u of U to D(u), the morphism from ⊥ to u object of U⊥ to the unique
natural transformation ηu from Y(J) to D⊥(u) and any morphism ν of U to D(ν)

all trees exist: consequence of the previous point
P-accessibility: let D : U −→ P be a non-empty small diagram and f : Y(P) −→
colim D a morphism ofM with P in ∆ and colim D the colimit of D inM. (colim D)(P)
is computed as the quotient:

(
⊔
u∈U

D(u)(P) t∆(P, J))/ ∼

where ∼ is the equivalence relation on
⊔
u∈U

D(u)(P) t∆(P, J) generated by:

for every ν : u −→ u′ of U , for every x ∈ D(u)(P), x ∼ D(ν)P (x)
for every x ∈ ∆(P, J) and every u in U , x ∼ ηu(x)

CONCUR 2016

25:8 Bisimulations and Unfolding in P-Accessible Categorical Models

Since U is non-empty, every x in ∆(P, J) is equivalent to some element of
⊔
u∈U

D(u)(P). So,

every element of (colim D)(P) is the image of one of the projections of an element of some
D(u)(P). Let v be an object of U and x ∈ D(v)(P) such that fP (idP) ∈ (colim D)(P) is
the image of x by the projection from D(v)(P) to (colim D)(P). By the Yoneda lemma,
there exists a unique natural transformation θ : Y(P) −→ D(v) such that θP (idP) = x.
θ belongs to P because P is a full embedding of M. If πv : D(v) −→ colimD is the
morphism from the universal cocone, then by the Yoneda lemma, f = πv ◦ θ.

J

5 Relationships with coreflections

Coreflections are a nice categorical way to express the fact that a computational model can
be simulated by another one. This view was initiated in [13], where it was shown in particular
that there is a coreflection from event structures to occurrence nets and so to 1-safe Petri
nets. Note that the right adjoints of those coreflections give interesting constructions : in
the case of occurrence nets in Petri nets, the right adjoint gives what is called the unfolding
of a 1-safe Petri net. In this section, we prove that accessibility is preserved by coreflections.

In fact we can prove the even more general following theorem:

I Theorem 3. Let P (resp. P ′) be a subcategory ofM (resp. M′). Assume that:
M is P-accessible
there is a functor F :M−→M′ such that:
F preserves trees i.e. for every small diagram D : U −→ P, the colimit of F ◦D in
M′ exists and is equal to F (colim D)
F induces an functor from P to P ′
there is a functor G : P ′ −→ P and a natural isomorphism ν : F ◦G −→ idP′

ThenM′ is P ′-accessible.

The preservation of trees holds for example when F is a left adjoint. The other two
conditions hold for example when F induces a equivalence between P and P ′. So, we deduce:

I Corollary 4. If F :M−→M′ is a coreflection, if P ′ is the image of P by F and ifM is
P-accessible thenM′ is P ′-accessible.

Proof of Theorem 3. Let G : P ′ −→ P and ν : F ◦G −→ idP′ a natural isomorphism.
existence of trees: let D : U −→ P ′ be a small diagram. By preservation of trees
and existence of trees in M, the colimit of F ◦ G ◦ D in M′ exists and is equal to
F (colim G ◦D). But ν induces a natural isomorphism between D and F ◦G ◦D. Then
the colimit of D inM′ exists.
P ′-accessibility: Let z : P ′ −→ Z morphism ofM′ with P ′ ∈ P ′ and (Z, (ηu)u∈U) is
the colimit of a non-empty small diagram D : U −→ P ′.
By naturality of ν, the following diagram commutes:

P ′ Z

F ◦G(P ′) F ◦G(Z)

z

ν−1
P ′

νZ

F ◦G(z)

By P-accessibility, G(z) : G(P ′) −→ G(colim D) = colim (G ◦D) factorizes as G(z) =
ηu ◦ p with p : G(P ′) −→ G ◦D(u) morphism of P and ηu : G ◦D(u) −→ colim(G ◦D)
is from the universal cocone. Then the following diagram commutes:

J. Dubut, E. Goubault, and J. Goubault-Larrecq 25:9

F ◦G ◦D(u)

P ′ colim D

F ◦G(P ′) F ◦G(colim D)

F (p) F (ηu)

z

ν−1
P ′

νcolim D

F ◦G(z)

Then z factorizes as η′u ◦ (νD(u) ◦ F (p) ◦ ν−1
P ′) with η′u : D(u) −→ colim D coming from

the universal cocone and νD(u) ◦ F (p) ◦ ν−1
P ′ : P ′ −→ D(u) morphism of P ′.

J

6 Unfoldings in accessible models

6.1 The case of TS(Σ)
The unfolding of a transition system is an equivalent system without loops, obtained by
“unfolding” the loops. More precisely, it is a tree which will be bisimilar to the transition
system. Given a transition system T = (Q, i,∆), the unfolding Unfold(T) of T is the
synchronization tree (P, j,Γ) where:

P = {(q0, a1, q1, . . . , an, qn) | qi ∈ Q, ai ∈ Σ, (qi, ai+1, qi+1) ∈ ∆ ∧ q0 = i}
j = (i)
Γ = {((q0, a1, q1, . . . , an, qn), b, (q0, a1, q1, . . . , an, qn, b, q)) | (qn, b, q) ∈ ∆}

It is easy to check that {(qn, (q0, a1, q1, . . . , an, qn)) | (q0, a1, q1, . . . , an, qn) ∈ P} is a bisimu-
lation between T and Unfold(T).
Equivalently, the unfolding of T can be defined as a glueing of all branches of T , this is the
way we will define more generally the unfolding in a categorical model.

6.2 P-unfolding and bisimilarity
LetM be a category where all P-trees exist and X an object ofM. Let P ↓ X be the small
comma category whose:

objects are morphisms x : P −→ X ofM with P in P
morphisms from x : P −→ X to x′ : Q −→ X are morphisms p : P −→ Q of P such that
the following diagram commutes:

P

X

Qx′

x

p

We then define the small diagram FX : P ↓ X −→ P which maps every x : P −→ X to
P and every p to itself. Let Unfold(X) be the colimit of FX in M. We call it the (P-)
unfolding of X. Since (X, (x : P −→ X)x) is a cocone of FX , there is a unique morphism
unfX : Unfold(X) −→ X such that for every x : P −→ X with P ∈ P , the following diagram
commutes:

FX(x : P −→ X) = P

X

Unfold(X)
unfX

x

[x : P −→ X]

CONCUR 2016

25:10 Bisimulations and Unfolding in P-Accessible Categorical Models

where [x : P −→ X] is the morphism coming from the colimit.
Using a similar argument as in Theorem 1, we have the following:

I Theorem 5. When M is P-accessible, unfX is P-open and so X and Unfold(X) are
P-bisimilar (strong path bisimilar).

6.3 Unfolding is a right adjoint
The following lemma implies that the unfolding of a tree (and so of an unfolding) is isomorphic
to the tree itself:

I Lemma 6.
(i) When all trees exist inM, Unfold extends to a functor Unfold :M−→ Tree(M,P).
(ii) When M is P-accessible, P is dense in Tree(M,P) i.e. for all X ∈ Tree(M,P),

(X, (x)x:P−→X) is a colimit of FX .

Proof.
(i) Let f : X −→ Y be a morphism ofM. Then (Unfold(Y), ([f ◦ x : P −→ Y])x:P−→X) is

a cocone of FX . So there is a unique morphism Unfold(f) : Unfold(X) −→ Unfold(Y)
such that for every path x : P −→ X of X, the following diagram commutes:

P

Unfold(X)

Unfold(Y)Unfold(f)

[x : P −→ X]

[f ◦ x : P −→ Y]

(ii) Assume given another cocone (Z, (κx : P −→ Z)x:P−→X) of FX . We construct a
morphism Φ : X −→ Z like this: as X is in Tree(M,P), there is a small non-empty
diagram G : U −→ P such that (X, (µu)u∈U) is a colimit of G for some µu. So, for all u,
µu : D(u) −→ X is an object of P ↓ X. Since (Z, (κµu : D(u) −→ Z)u∈U) is a cocone
of D, there is a unique morphism Φ : X −→ Z such that for all u ∈ U , the following
diagram commutes:

D(u)

Z

X
µu

κµu

Φ

Then, we can check that Φ is a morphism of cocones from (X, (x)x:P−→X) to (Z, (κx :
P −→ Z)x:P−→X) and that it is the unique such morphism.

J

From this sort of density property, we deduce that the unfolding is a right adjoint of the
inclusion of trees inM. This result is similar to the one from [13] stating that the unfolding
is the right adjoint of the inclusion of occurrence nets in 1-safe Petri nets.

I Theorem 7. WhenM is P-accessible, Unfold is a right adjoint of inj : Tree(M,P) −→
M, the embedding of Tree(M,P) inM. In particular, the injection of Tree(M,P) inM
is a coreflection.

Proof.
definition of the counit ε : inj ◦Unfold −→ idM: εX = unfX .

J. Dubut, E. Goubault, and J. Goubault-Larrecq 25:11

definition of the unit η : idTree(M,P) −→ Unfold◦ inj: by density of P in Tree(M,P),
for all X ∈ Tree(M,P) there is a unique (iso)morphism ηX : X −→ Unfold(X) such
that for all x : P −→ X, ηX ◦ x = [x : P −→ X].

J

7 Unfoldings and universal coverings

Unfoldings and coverings of spaces [9] are very similar in the sense that they both “unfold”
loops (or “kill” the first homotopy group). But it seems that there were no general formal
links in the literature between those two structures. We present here a view toward this.

7.1 Coverings of groupoids
Coverings of groupoids are more natural than coverings of spaces as they are defined by
lifting properties and their existence does not assume any hypothesis on the groupoid. They
are very close to coverings of spaces since a covering of a space induces a covering of its
fundamental groupoid and lots of properties of coverings of spaces can be expressed on the
induced coverings of groupoids [9].

A small pointed connected groupoid (spc groupoids for short) is a pair (C, c) of
a small connected groupoid C and an object c of C. A pointed functor is a functor
F : (C, c) −→ (D, d) between spc groupoids such that F (c) = d. We note Grpd? the category
of spc groupoids and pointed functors.

A covering of a spc groupoids (C, c) is a pointed functor F : (C̃, c̃) −→ (C, c) such
that for every morphism f : c −→ c′ of C there exists a unique object c̃′ of C̃ and an
unique morphism f̃ : c̃ −→ c̃′ such that F (f̃) = f . We say that a covering is universal if
C̃(c̃, c̃) = {idc̃}.

Covering are similar to open maps since they satisfy a lifting property. In fact, they
are open maps when we consider the following subcategory of paths. Let I be the full
subcategory of Grpd? whose objects are the following to spc groupoids:

0, the spc groupoid with one object and only the identity as morphism
1, the spc groupoid with two objects:

0 1

pointed on 0.

It is easy to check that Grpd? is I-accessible.
Coverings are exactly the open maps whose lifts are unique. Universal coverings are

universal in the category of coverings in the following sense [9]: given a universal covering
F : (C̃, c̃) −→ (C, c) and a covering G : (D, d) −→ (C, c), then there is a unique pointed
functor H : (C̃, c̃) −→ (D, d) such that G ◦H = F . Moreover, H is a covering. This means
that universal covering is initial in the category of coverings. In particular, universal coverings
are unique up to isomorphism. Contrary to universal coverings of spaces, universal coverings
of groupoids always exist [9].

7.2 Unfoldings and unique path lifting property
We have just seen that (universal) coverings are defined by unique lifting property. Now let
us see the link between unfoldings and unique liftings.

We say that a morphism f : X −→ Y is a (P-) covering if it has the unique path
lifting property, i.e., if for all commutative diagram:

CONCUR 2016

25:12 Bisimulations and Unfolding in P-Accessible Categorical Models

P X

Q Y

x

f

y

p

with p : P −→ Q ∈ P, there exists a unique morphism θ : Q −→ X such that the following
diagram commutes:

P X

Q Y

x

f

y

p
θ

I Remark. This is the same as P-open but with the unicity of the lift.
The following result states that unfolding is a covering and that moreover it is initial

among coverings.

I Theorem 8. WhenM is P-accessible:
(i) unfX has the unique path lifting property
(ii) for every morphism f : Y −→ X which has the unique lifting property, there is a unique

morphism f̃ : Unfold(X) −→ Y such that f ◦ f̃ = unfX . Moreover, f̃ has the unique
path lifting property.

Proof.
(i) This is a consequence of ii) because idX has the unique path lifting property and

idX ◦ unfX = unfX and so unfX = ĩdX .
(ii) construction of f̃ : For every x : P −→ X, by the unique path lifting property,

there is a unique x̃ : P −→ Y such that

I Y

P X

ιY

f

x

ιP
x̃

i.e. a unique x̃ such that f ◦ x̃ = x. Since (Y, (x̃)x:P−→X) is a cocone of FX and since
(Unfold(X), ([x])x) is a colimit of FX , there is a unique f̃ : Unfold(X) −→ Y such
that for every x : P −→ X, f̃ ◦ ιx = x̃ and so, f ◦ f̃ ◦ ιx = f ◦ x̃ = x = unfX ◦ ιx and
by unicity of the definition of unfX , f ◦ f̃ = unfX .
unicity of f̃ : consequence of the unique path lifting property of f .
existence of the lift: The lift of a diagram of the form:

P Unfold(X)

Q Y

z

f̃

y

p

with p ∈ P, is obtained as a lift of the following diagram:
P Unfold(X)

Q X

z

unfX

f ◦ y

p

J. Dubut, E. Goubault, and J. Goubault-Larrecq 25:13

coming from the fact that unfX is P-open.
unicity of the lift: consequence of P-accessibility.

J

In the case of Grpd? and I, this implies that the unfolding is a covering and is initial in
the category of coverings. So we deduce:

I Corollary 9. The universal covering of a spc groupoid coincides with its I-unfolding.

8 Conclusion

We have generalized Joyal, Nielsen and Winskel’s approach of [6] to what we called accessible
models. We have shown in particular that presheaf models and transitions systems are
particular cases of accessible models. In these models, not only do we have a faithful
formulation of bisimulation in the form of open maps, but also, we have a nice characterization
of unfoldings, as form of generalized universal covering.

In the future, we would like to exploit this framework on a variety of models. As
coreflections produce accessible categories from accessible categories, this is already the
case for some interesting models. On top of this, we would like to study the case of 1-safe
Petri nets in more detail and also, hybrid and stochastic hybrid models for which notions of
bisimulations have been defined in the literature, see e.g. [7, 3].

References
1 F. Borceux. Handbook of Categorical Algebra 2 : Categories and Structures. Cambridge

University Press, 1994.
2 J. Esparza and K. Heljanko. Unfoldings: A Partial-Order Approach to Model Checking.

Monographs in Theoretical Computer Science. An EATCS Series. Springer Publishing Com-
pany, Incorporated, 2008.

3 A. Girard, A. A. Julius, and G. J. Pappas. Approximate bisimulation for a class of stochastic
hybrid systems. In 2006 American Control Conference, June 2006.

4 A. Hatcher. Algebraic Topology. Cambridge University Press, 2002.
5 A. Joyal and I. Moerdijk. A completeness theorem for open maps. Annals of Pure and

Applied Logic, 70:51–86, 1994.
6 A. Joyal, M. Nielsen, and G. Winskel. Bisimulation from Open Maps. Information and

Computation, 127(2):164–185, 1996.
7 G. Lafferriere, G. J. Pappas, and S. Sastry. Hybrid Systems V, chapter Hybrid Systems

with Finite Bisimulations, pages 186–203. Springer Berlin Heidelberg, 1999.
8 M. Makkai and R. Paré. Accessible categories: The foundations of categorical model theory

Contemporary Mathematics. 104. American Mathematical Society, 1989.
9 J. P. May. A Concise Course in Algebraic Topology. Chicago Lectures in Mathematics.

University of Chicago Press, 1999.
10 M. Nielsen, G. Plotkin, and G. Winskel. Petri Nets, Event Structures and Domains, Part

I. Theor. Comput. Sci., 13:85–108, 1981.
11 M. Nielsen and G. Winskel. Models for Concurrency. Oxford University Press, 1995.
12 D. Park. Concurrency and Automata on Infinite Sequences. Lecture Notes in Computer

Science, 154:167–183, 1981.
13 G. Winskel. A New Definition of Morphism on Petri Nets. In STACS 84, Symposium of

Theoretical Aspects of Computer Science, Paris, France, 11-13 April, 1984, Proceedings,
pages 140–150, 1984.

CONCUR 2016

25:14 Bisimulations and Unfolding in P-Accessible Categorical Models

14 G. Winskel. Event structures. In Petri Nets: Central Models and Their Properties, Ad-
vances in Petri Nets 1986, Part II, Proceedings of an Advanced Course, Bad Honnef, 8.-19.
September 1986, pages 325–392, 1986.

A Uniform Framework for Timed Automata
Tomasz Brengos1 and Marco Peressotti2

1 Faculty of Mathematics and Information Science,
Warsaw University of Technology, Poland
t.brengos@mini.pw.edu.pl

2 Department of Mathematics, Computer Science, and Physics,
University of Udine, Italy
marco.peressotti@uniud.it

Abstract
Timed automata, and machines alike, currently lack a general mathematical characterisation. In
this paper we provide a uniform coalgebraic understanding of these devices. This framework
encompasses known behavioural equivalences for timed automata and paves the way for the
extension of these notions to new timed behaviours and for the instantiation of established results
from the coalgebraic theory as well. Key to this work is the use of lax functors for they allow
us to model time flow as a context property and hence offer a general and expressive setting
where to study timed systems: the index category encodes “how step sequences form executions”
(e.g. whether steps duration get accumulated or kept distinct) whereas the base category encodes
“step nature and composition” (e.g. non-determinism and labels). Finally, we develop the notion
of general saturation for lax functors and show how equivalences of interest for timed behaviours
are instances of this notion. This characterisation allows us to reason about the expressiveness
of said notions within a uniform framework and organise them in a spectrum independent from
the behavioural aspects encoded in the base category.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases Coalgebras, lax functors, general saturation, timed behavioural equival-
ence, timed language equivalence

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2016.26

1 Introduction

Timed automata, and machines alike, are abstract devices used in the modelling and
verification of real-time dynamical systems and recipients of much attention, both in terms of
theoretical and practical developments [2, 17, 9, 19]. Despite decades long efforts, a general
and mathematical characterisation of all these devices is missing. A uniform account of these
formalisms would provide guidelines for developing new kinds of timed systems starting from
existing notions of computations and, from a more foundational point of view, would allow a
cross-fertilizing exchange of definitions, notions, and techniques.

The theory of coalgebras has been recognized as a good context for the study of concurrent
and reactive systems [22]: systems are represented as maps of the form X → BX for some
suitable behavioural functor B. By changing the underlying category and functor a wide
range of cases are covered, from traditional LTSs to systems with I/O, quantitative aspects,
probabilistic distribution, and even systems with continuous state. Frameworks of this kind
provide great returns from a theoretical and a practical point of view, since they prepare the
ground for general results and tools which can be readily instantiated to various cases, and
moreover they help us to discover connections and similarities between apparently different

© Tomasz Brengos and Marco Peressotti;
licensed under Creative Commons License CC-BY

27th International Conference on Concurrency Theory (CONCUR 2016).
Editors: Josée Desharnais and Radha Jagadeesan; Article No. 26; pp. 26:1–26:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:t.brengos@mini.pw.edu.pl
mailto:marco.peressotti@uniud.it
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.26
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

26:2 A Uniform Framework for Timed Automata

strong timed
bisimulation

weak timed
bisimulation

strong time-abstract
bisimulation

weak time-abstract
bisimulation

T∗ T

1∗ 1

εT

ε1

!∗T !T

combines unobservable moves

ab
st
ra
ct
s
tim

e

Figure 1 Monoid morphisms and the corresponding spectrum of behavioural equivalences.

notions. Among the several valuable results offered by the coalgebraic approach we mention
general accounts of bisimulation [1, 26], structural operational semantics [27, 21], trace
equivalence [12], minimization [3], determinisation [23] and up-to techniques [4].

Recent works [8, 6, 7] extended the theory of coalgebras with a general understanding
of coalgebras with unobservable moves and their weak bisimulations. As shown in loc. cit.
systems with internal steps should be modelled as coalgebras whose type is a monad. This
allows us to view coalgebras as endomorphisms in suitable Kleisli categories, hence, allowing
mutual composition. At the heart of weak bisimulation of such systems lies the notion of
saturation. Intuitively, it can be understood as a reflexive and transitive closure of a system.
Already, at this coalgebraic level, the so-called lax functors start to emerge. Indeed, the
reflexive and transitive morphisms can be seen as lax functors whose domain category is
the terminal category [7]. Additionally, the results of [6] demonstrate that the coalgebraic
saturation arises as a consequence of an adjoint situation between certain two categories of
lax functors. All these observations suggest that lax functors and adjunctions between lax
functor categories lie at the heart of different behavioural equivalences that take into account
accumulation and abstraction of certain portions of data.

In this paper we embrace and extend the lax functorial setting as a general environment
where to model systems dynamics. In the approach we propose:

the index category models those aspects of the computations under scrutiny associated
with the computation context, like time flow;
the base category models effects like non-determinism or unobservable moves.

Because systems considered in this work have a flat1 state space we can safely restrict to
index categories with one object i.e. monoids.

We extend the theory of saturation by allowing for monoid homomorphisms whose
codomain is not the final one-object monoid thus introducing the so called general saturation
(for lax functors on a monoid category). This theory extends the uniform definition of strong
and weak behavioural equivalences given by (simple) saturation offering a greater control
of which computational aspects are abstracted away. The resulting notion of behavioural
equivalence is parameterised by monoid congruences and naturally forms a spectrum reflecting
their discriminating power. This spectrum reflects the inclusion ordering on congruences with
coarser congruences yielding coarser notions of behavioural equivalence. This remarkable
correspondence allows for reasoning about the expressiveness of these definitions by means of
simple diagrams of monoid homomorphisms (cf. Figure 1). Besides from finer to coarser, this
spectrum can be organised along two orthogonal dimensions which intuitively correspond to:

1 We say that a class of systems has flat state spaces when there are no archetypal rôles associated to
states that prescribe restrictions on their possible behaviours, as opposed i.e., to alternating games.

T. Brengos and M. Peressotti 26:3

collecting effects modelled in the base category (e.g. τ -actions) and
abstracting from aspects modelled in the index category (e.g. time).

The former is determined by the counit ε : (−)∗ → Id of the free-monoid adjunction whereas
the latter by arbitrary monoid morphisms and their extension to free monoids as exemplified
by the inner diagram in Figure 1.

Synopsis and related work Our paper is closely related to the research presented in
[5, 7, 8, 6] with the emphasis laid on [6]. Indeed, Brengos’ [6], which is highly motivated
by Sobociński’s work on relational presheaves (i.e. lax functors whose codomain category
is the category of sets and relations) and their saturation [25], presents the lax functorial
framework as a natural extension of coalgebraic weak bisimulation and saturation studied
in [7, 8]. The main focus of [6] is on lax functorial weak bisimulation and reflexive and
transitive saturation. It is worth mentioning that in loc. cit. the author already pointed out
that timed transition systems and their weak behavioural equivalence can be modelled in the
lax functorial setting. Our paper extends these results in a systematic way by:

describing the categorical framework which pinpoints the relation between timed automata
and their semantics (Section 2.2),
presenting the concept of general saturation and the family of behavioural equivalences
associated with it (Section 2.3),
capturing a much wider spectrum of language and behavioural equivalences (Section 3).

2 A coalgebraic account of timed automata and their semantics

In this section we introduce a general framework for timed automata and systems alike.
The key ingredient is to separate time flow from other aspects of the computation (like
non-determinism) and model the dependency of the latter from the former by means of
(lax) functors. We remark that, although we use timed automata as a reference example,
this framework can accommodate any notion of resources and effects as long as they can be
modelled by some monoid M and by a (suitably enriched) category K, respectively.

We assume the reader to be familiar with basic 1-category and 2-category theory notions
and refer to [20, 18] for a thorough introduction.

2.1 Unobservable moves, acceptance and non-determinism
The behaviour associated to the classical notion of timed automata arise from non-determ-
inism, unobservable moves, and acceptance with the latter being relevant when language
equivalence is considered. All these computational effects are described briefly below and are
captured by Kleisli categories of well-known monads we will use as running examples.

The first example we discuss is the powerset monad P whose Kleisli category Kl(P)
consists of sets as objects and maps of the form X → PY as morphisms between X and Y
and, for each f : X → PY and g : Y → PZ, the composite g ◦ f : X → PZ is:

g ◦ f(x) =
⋃
g(f(x)) = {z | z ∈ g(y) and y ∈ f(x)}.

Let Στ , Σ+{τ}. The Set-endofunctor PΣ , P(Στ×Id) whose coalgebras model labelled
transition systems with unobservable moves [22] is a monad [7], herein the LTS monad. The
Kleisli category Kl(PΣ) has sets as objects and maps X → P(Στ × Y) as morphisms from
X to Y . For f : X → PΣ(Y) and g : Y → PΣ(Z) the composite g ◦ f ∈ Kl(PΣ) is

g ◦ f(x) = {(σ, z) | x σ−→f y
τ−→g z or x τ−→f y

σ−→g z},

CONCUR 2016

26:4 A Uniform Framework for Timed Automata

where x σ−→f y denotes (σ, y) ∈ f(x). The above Kleisli category (see [7, 8] for a discussion)
lets us consider non-deterministic systems with unobservable moves (a.k.a. τ -actions) as
endomorphisms and allows their mutual composition. We refer the interested reader to [5, 7]
for further details on how to extend other computational effects besides non-determinism
with unobservable moves.

Finally, the endofunctor PΣ
X , P(Στ × Id+ {X}) whose coalgebras model the behaviour

of non-deterministic automata with ε-moves (or ε-NA in short) [11, 24] also carries a monadic
structure [7, Example 4.5] (here and in loc. cit., the label ε is represented by the label τ).
The composition in its Kleisli category is given as follows. For two morphisms f : X → PΣ

X(Y)
and g : Y → PΣ

X(Z) the value of their composition g ◦ f in Kl(PΣ
X) on x ∈ X is:

{(σ, z) | x σ−→f y
τ−→g z or x τ−→f y

σ−→g z} ∪ {X | X ∈ f(x) or x τ−→f y and X ∈ g(y)}.

Morphisms of this category model non-deterministic computations with unobservables and
accepting states (for a morphism f : X → PΣ

XY any such state x ∈ X is specified by X ∈ f(x),
which we will often denote as x ↓). It is important to note that PΣ is a submonad of PΣ

X.
However, since the terminating states in classical timed automata and their semantics are
an extra feature [2] we decide to consider these two examples of monads separately. Indeed,
the Kleisli category for the LTS monad will be our main example throughout Section 2.2,
2.3 and 3.1. Our focus will move onto Kl(PΣ

X) in Section 3.2, where we discuss finite trace
equivalence and sets of accepted words.

The essence of non-determinism of these three examples lies in the fact that their Kleisli
categories are suitably order enriched in a natural point-wise manner:

f ≤ g 4⇐⇒ f(x) ⊆ g(x) ∀x ∈ X

with their hom-posets admitting arbitrary joins. Composition in Kl(P) and Kl(PΣ) preserves
them, whereas in Kl(PΣ

X) it only preserves non-empty ones [7]. Joins of morphisms, which
abstractly model non-deterministic choice, will play a key rôle in saturation.

I Remark. It is an easy exercise to prove that these three Set-based monads are commutative
strong monads [16]. It means that the monoidal structure (Set,×, 1) extends to all three
Kleisli categories above in a natural manner.

2.2 Timed automata in K and their semantics
Recall from [2] that a timed automaton, a.k.a. time transition table, over an alphabet Σ
and with access to C-many clocks is essentially a set of locations L and a relation on source
and target locations, symbols, and expressions for describing clock constraints and resets.
However, the actual semantics of clock expressions is not part of the definition of timed
transition tables but rather of their semantics as timed transition systems (herein TTS)
which is covered below. Hence, a timed automaton is essentially a morphism L→ E ⊗ L in
K = Kl(T) (where T is PΣ

X or PΣ, depending whether acceptance is necessary, and ⊗ is ×)
or, more generally, a (E ⊗ Id)-coalgebra for some given object of (clock) expressions E ∈ K
for a monoidal category (K,⊗, I).

The interaction between timed automata and time flow is mediated by (a fixed and
finite set of) clocks which an automaton can interact with by means of the clock expressions
associated to its transitions. Clocks can be abstracted as an object V ∈ K representing clock
configurations (a.k.a. clock valuations) together with:

a morphism eval : V ⊗ E → V specifying the effect of expressions and

T. Brengos and M. Peressotti 26:5

a T-indexed family {flowt : V → V}t∈T describing the effect of time flow and such that
flow0 = idV and, for all t, t′ ∈ T, flowt+t′ = flowt ◦ flowt′ with T = (T,+, 0) being the
monoid of time, e.g. T = ([0,∞),+, 0).

In the case of timed automata (with clocks in C) the object of configurations is the set V of all
functions v : C → T and the object of expressions is the set E of pairs (γ, δ) where γ is a subset
of C and δ is a syntactic expression generated by the grammar δ ::= c ≤ r | r ≤ c | ¬δ | δ ∧ δ
where c is a clock and the r is a non-negative rational number (cf. [2, Def. 3.6]).

I Example 2.1. Consider the timed transition table from [2, Ex. 3.4] depicted below:
where > can be seen as a short hand for 0 ≤ c which is always satisfied.
Let C = {c} and Σ = {σ, θ}. Intuitively, the edge from l to l′ describes a
transition that can be performed provided the input character is σ and resets
c as its side effect. The other transition assumes c < 2 input θ and does not

l l′

>; {c}; σ

c < 2; ∅; θ
reset c. This automaton is equivalent to the E ⊗ Id-coalgebra α on {l, l′} such that:

α(l) = {(σ, (({c},>), l′))} α(l′) = {(θ, ((∅, c < 2), l))}.

Time flow is given, on t ∈ T, as flowt(v) = {(τ, λc : C.v(c) + t)} and expression evaluation as

eval(v, (γ, δ)) =
{
{(τ, v[γ := 0])} if v � δ
∅ otherwise

where v[γ := 0](c) =
{

0 if c ∈ γ
v(c) otherwise

and v � δ is the obvious interpretation of the boolean expression obtained by replacing every
c in δ with v(c).
I Remark. At a first glance τs and singletons may sound strident, especially given how the
semantics of timed automata is presented in [2]. However, their meaning is precise and plays
a crucial rôle in capturing how eval and flow interact with timed automata in defining their
semantics as timed transition systems—as will be made clear below. In fact, they arise from
the unit of PΣ meaning that when composed the only computational effect (modelled in K
and) carried by eval and flow is to prevent the firing of any transition not enabled by the
current clock configuration.

Given the semantics for expressions and (time) flow, every timed automaton yields a timed
transition system (TTS) that is a transition system with labels2 in Στ × T or, equivalently, a
T-indexed family of LTSs i.e. endomorphisms in K = Kl(PΣ):

X → P(Στ × T×X)
T→ P(Στ ×X)X

Albeit the two presentations are equivalent for TTSs, we adopt the latter since:
As noted in [17], the correspondence does not hold for arbitrary timed behaviours e.g.
the convex-set semantics of Segala systems assume probability distribution supports to
be (finitely) bounded (cf. [5, 13]) whereas a single entry of a timed transition table can
easily yield uncountably many transitions in the associated TTS.
Time flow is an aspect of the computational context instead of an observation and
the latter representation allows us to separate the rôle of time from non-deterministic
computations modelled in the base category K—along the lines of the lax functor approach.

2 The definition of TTS may vary: some authors (e.g. [2]) consider transitions to be labelled by pairs (σ, t)
of consumed symbols and time (durations) whereas others (e.g. [19]) consider “duration-less” discrete
transitions (i.e. labelled by σ ∈ Σ) and “symbol-less” time transitions (i.e. labelled by t ∈ (0,∞)). By
introducing a distinguished symbol τ the two approaches are uniformly covered by a single model where
labels are pairs in Στ ×T; duration-less and symbol-less transitions become (σ, 0) and (τ, t), respectively.

CONCUR 2016

26:6 A Uniform Framework for Timed Automata

In general, given eval and flow, every E ⊗Id-coalgebra, i.e. every morphism α : L→ E⊗L
in K induces its semantics, i.e. a T-indexed family {αt : V ⊗ L → V ⊗ L}t∈T where each
endomorphism αt ∈ K is defined as:

V ⊗ L V ⊗ E ⊗ L V ⊗ L

αt

flowt ⊗ α eval⊗ idL

From the definition of αt it is clear how any computational effect described by eval and flow
interact with α. In particular, when K = Kl(PΣ) and α models a timed automaton, the
above definition readily expands as follows:

αt(v, l) = {(σ, v′, l′) | (σ, (γ, δ), l′) ∈ α(l), vt = λc.v(c)+ t, vt � δ, and v′ = vt[γ := 0]} (1)

highlighting the contribution of effects in the definition of expression and flow semantics for
timed automata. Clearly, (1) precisely defines the timed transition system associated to the
given automaton α. This correspondence can be easily checked when the presentation from
[2] is used: consider the LTS with labels in Στ × T given by

(v, l) (σ,t)−−−→ (v′, l′) 4⇐⇒ (σ, v′, l′) ∈ αt(v, l)

then recall from [2, Def. 3.8] that

(l, v) (σ,t)−−−→ (l′, v′) 4⇐⇒ ∃(l, δ, γ, σ, l′) ∈ Tα s.t. v + t � δ and v′ = (v + t)[γ := 0]

where Tα ⊆ (L, E ,Σ, L) is the automaton transition table (cf. [2, Def. 3.7]) and

(l, δ, γ, σ, l′) ∈ Tα ⇐⇒ (σ, (γ, δ), l′) ∈ α(l).

I Example 2.2. Let α be the coalgebra from Example 2.1, then:

αt(v, l) = {(σ, (v + t)[c := 0], l′)} αt(v, l′) = {(θ, (v + t), l) | (v + t) < 2}.

Although flowt+t′ = flowt◦flowt′ we can derive neither αt+t′ ≤ αt◦αt′ nor αt+t′ ≥ αt◦αt′ .
This can be routed to clock constraints being as fine grained as being able to single out
exact time instants (e.g. c = 42) and hence the semantics cannot preserve (not even up-to
laxness) the action of time described by flow. Indeed, the notion of TTS does not assume
any condition on the time component of transitions (cf. [2, 17]) and the associated notion of
execution (or run) maintains transition duration distinct.

There is a 1-1 correspondence between families {αt}t∈T and (strict) functors α : T∗ → K:

αt1...tn = αt1 ◦ . . . ◦ αtn for t1 . . . tn ∈ T∗

where the free monoid T∗ is seen as a single object category: each αt is α(t) for t : ∗ → ∗
and the shared carrier is α(∗). In order to better illustrate the rôle of the free monoid let
T be the trivial monoid 1 = ({0},+, 0) and recall that 1∗ ∼= N: a functor α : 1∗ → K is
an endomorphism in K together with all its finite self-compositions (i.e. α(n) = αn). As
observed in [6] this precisely puts coalgebras with unobservable moves into the (lax) functorial
picture as they are endomorphisms in the Kleisli categories for their type monads.

So far we modelled the semantics of timed automata as families of transition systems
indexed over time durations i.e. strict functors from T∗ to K. This setting is enough to
define “timed” behavioural equivalences by componentwise extension of the “untimed” notion

T. Brengos and M. Peressotti 26:7

but, however intuitive it may be, its limited applicability become clear as soon as weak or
time-abstract bisimulations are considered. In such cases lax functors have to be considered.

In fact, all these notions share a certain pattern: they combine computations abstracting
time or unobservable moves (i.e. effects). Since computations of a timed automaton α are
described by a functor α : T∗ → K, these transformations can be intuitively understood as
“turning a functor T∗ → K into some functor-like assignment with a different base category”.
In the remaining of the section we develop a general theory of such transformations we will
refer to as saturations.

2.3 General saturation for lax functors
In this section we extend the theory of saturation developed in [7, 8, 6] for modelling weak
behavioural equivalences for systems with unobservable moves to cope with time in the
abstract sense described above. Intuitively, saturation can be understood as a closure of
a given system w.r.t. a certain pattern (e.g. reflexive and transitive closure). Akin to
loc. cit., the theory is developed in an order enriched setting where the order stems from
suitable notion of simulation and non-determinism between systems and provides a notion of
approximation between the intermediate steps of the aforementioned closure operation. For
timed automata, the ordering is given by pointwise extension of the inclusion order defined
by P (cf. loc. cit.).

Below we assume J is a wide subcategory of an order enriched category K (i.e. a
subcategory with all objects from K).

The category of lax functors

Here we focus on recalling the main notions from the theory of order enriched categories and
lax functors needed in our paper.

A functor-like assignment π from a category D to K is called lax functor if:
idπD ≤ π(idD) for any object D ∈ D,
π(d1) ◦ π(d2) ≤ π(d1 ◦ d2) for any two composable morphisms d1, d2 ∈ D.

Let π, π′ : D → K be two lax functors. A family f = {fD : πD → π′D}D∈D of morphisms
in K is called lax natural transformation from π to π′ if for any d : D → D′ in D we have
fD′ ◦ π(d) ≥ π′(d) ◦ fD. Oplax functors and oplax transformations are defined by reversing
the order in the above. Note that in the more general 2-categorical setting an (op)lax functor
and an (op)lax natural transformation are assumed to additionally satisfy extra coherence
conditions [18]. In our setting of order enriched categories these conditions are vacuously
true, hence we do not list them here.

Let D be a small category. By [D,K]J we denote the category whose objects are lax
functors from D to K and whose morphisms are oplax transformations with components
from J . The category [D,K]J is order enriched with the order on hom-sets given as follows.
For π, π′ ∈ [D,K]J and two oplax transformations f, f ′ : π → π′ whose components are
morphisms in J we define:

f ≤ f ′ ⇐⇒ fD ≤ f ′D in K for any D ∈ D.

Any functor q : D → E between small categories induces the change-of-base functor
[q,K]J : [E,K]J → [D,K]J which is given for any object π ∈ [E,K]J and for any oplax
transformation f = {fE : π(E) → π′(E)}E∈E between π, π′ ∈ [E,K]J by [q,K]J(π) = π ◦ q
and [q,K]J(f)D = fq(D).

CONCUR 2016

26:8 A Uniform Framework for Timed Automata

To keep the paper more succinct, we only focus on D being a monoid category (i.e. a
one-object category). In this case, a monoid M = (M, ·, 1) will be often associated with the
one-object category it induces. The only object of the categoryM will be denoted by ∗ and the
composition ◦ of morphisms m1,m2 : ∗ → ∗ for m1,m2 ∈M is given by: m1 ◦m2 = m1 ·m2.
In this case, any lax functor π ∈ [M,K]J is a family π = {π(m) = πm : X → X}m∈M of
endomorphisms in K with a common carrier X = π(∗) which additionally satisfies [6]:

idX ≤ π1 and πm ◦ πn ≤ πm·n.

An oplax transformation between two lax functors π = {πm : X → X}m∈M and π′ =
{π′m : Y → Y }m∈M in [M,K]J is given in terms of an arrow f : X → Y in J which satisfies:

f ◦ πm ≤ π′m ◦ f for any m ∈M .

The curious reader is referred to [6] for several examples of these categories.

General saturation

For a functor q : M → N between monoid categories for (M, ·, 1) and (N, ·, 1) (i.e. a monoid
homomorphism) and an order enriched category K we say that K admits q-saturation provided
that [q,K]J : [N,K]J → [M,K]J admits a left strict 2-adjoint. In order to prove q-saturation
admittance below, we work with stronger types of order enrichment on K. We will introduce
them now. We say that K is DCpo∨-enriched if it is DCpo-enriched (i.e. each hom-set is a
complete order with directed suprema being preserved by the composition) and, additionally,
each hom-set admits binary joins (which are not assumed to be preserved by the composition).
A DCpo∨-enriched category K is J-left distributive if f ◦ (g ∨ h) = f ◦ g ∨ f ◦ h for any maps
f ∈ J and g, h ∈ K with suitable domains and codomains. We define J-right distributivity
dually. Finally, we say that K is J-distributive if it is both, J-left and J-right distributive.

I Theorem 2.3. Let q : M → N be a surjective homomorphism and K be J-left distributive
(hence DCpo∨-enriched). Then K admits q-saturation with the left strict 2-adjoint Σq :
[M,K]J → [N,K]J given as the identity on morphisms and on any lax functor π ∈ [M,K]J as

Σq(π)(∗) = π(∗) and Σq(π)w =
∨

Πw

where w ∈ N , Πw =
⋃
n∈N Πw,n, Πw,0 = {πm1 ∨ . . . ∨ πmk

| q(mi) = w}, and Πw,n =
{t1 ∨ t2 ∨ . . . ∨ tk | ti ∈ Πw1,n−1 ◦ . . . ◦Πwl,n−1 and w1 . . . wl = w}.

Proof. Firstly we show that Σq(π) is a well defined lax functor in [N,K]J . Note that the
family {Πw,n}n∈N is an ascending family of sets and Πw is, by surjectivity of q, a non-empty
directed set. Moreover, Πw ◦Πw′ ⊆ Πw·w′ for any w,w′ ∈ N . We have id ≤

∨
Π1 ≤ Σq(π)1

and

Σq(π)w ◦ Σq(π)w′ =
∨

Πw ◦
∨

Πw′ =
∨

Πw ◦Πw′ ≤
∨

Πw·w′ = Σq(π)w·w′ .

This proves the first statement. Now, we will verify that any oplax transformation in [M,K]J
is mapped onto an oplax transformation in [N,K]J . Assume f ◦ πm ≤ π′m ◦ f for any m ∈M .
We have f ◦Σq(π)w = f ◦

∨
Πw =

∨
f ◦Πw≤

∨
Π′w ◦ f = Σq(π′)w ◦ f , which follows by J-left

distributivity, induction and Scott continuity of the composition.

T. Brengos and M. Peressotti 26:9

To complete the proof we have to show that for any lax functor π ∈ [M,K]J and
π′ ∈ [N,K]J the poset [M,K]J(π, [q,K](π′)) is isomorphic to [N,K]J(Σq(π), π′). Indeed:

f ◦ πm ≤ π′q(m) ◦ f for any m ∈M (†)⇐⇒

f ◦ (πm1 ∨ . . . ∨ πmk
) ≤ π′q(m) ◦ f for any m,m1 . . .mk ∈M and q(mi) = q(m) ⇐⇒

∀m ∈M,f ◦
∨

Πq(m),0 ≤ π′q(m) ◦ f
(††)⇐⇒ ∀m ∈M, ∀n ∈ N, f ◦

∨
Πq(m),n ≤ π′q(m) ◦ f

⇐⇒ ∀m ∈M,f ◦
∨

Πq(m) ≤ π′q(m) ◦ f ⇐⇒ ∀m ∈M,f ◦ Σq(π)q(m) ≤ π′q(m) ◦ f.

The equivalence (†) follows by J-left distributivity of K and (††) by induction on n ∈ N. J

If K comes equipped with an even stronger type of order enrichment then the formula for Σq
simplifies considerably. Indeed, we have the following (see also [6, Th. 3.14]).

I Theorem 2.4. If the hom-posets of K admit arbitrary non-empty suprema which are
preserved by the composition then for any π ∈ [M,K]J we have:

Σq(π)w =
∨

m:q(m)=w

πm.

Proof. It follows by the fact that in this case we have Πw = Πw,0. Hence, Σq(π)w =
∨

Πw =∨
Πw,0 =

∨
m:q(m)=w πm. J

I Remark. The notion of lax functorial saturation has already been considered in [6] whenever
N = 1 is the one-element monoid and q : M → 1 the unique homomorphism sending all
elements of M to the neutral element of 1. In that case it was simply called saturation and
was shown to be directly linked to the notion of coalgebraic weak bisimulation.

In the remaining of this subsection we take q1 : M → N1, q2 : N1 → N2 and q : M → N

to be monoid homomorphisms and K to be J-left distributive (hence DCpo∨-enriched).

I Theorem 2.5. The functor Σq2 ◦ Σq1 is (naturally isomorphic to) Σq2◦q1 .

Proof. This statement follows directly by the fact that Σq1 and Σq2 are left adjoints and
that [q1,K]J ◦ [q2,K]J = [q2 ◦ q1,K]J . J

I Theorem 2.6. The functor Σq ◦ [q,K]J is the identity on [N,K]J .

Proof. It is enough to show that for any π′ ∈ [N,K]J we have Σq(π′ ◦q) = π′. Take π = π′ ◦q
and note that Πw,0 = {πm1 ∨ . . . ∨ πmk

| q(mi) = w} = {π′w ∨ . . . ∨ π′w | q(mi) = w} = {π′w}
for w ∈ N . Moreover, since π′ is a lax functor we can easily prove by induction that t ≤ π′w
holds for any t ∈ Πw,n. Hence, Σq(π′ ◦ q)w =

∨
Πw = π′w which proves the assertion. J

I Theorem 2.7. If K is J-distributive then, for any π, π′ ∈ [M,K]J and f : π(∗)→ π′(∗) ∈ J :

f ◦ πm = π′m ◦ f for any m ∈M =⇒ f ◦ Σq(π)w = Σq(π′)w ◦ f for any w ∈ N .

Proof. We have:

f◦(πm1∨. . .∨πmk
) J-LD= f◦πm1∨. . .∨f◦πmk

= π′m1
◦f∨. . .∨π′mk

◦f J-RD= (π′m1
∨. . .∨π′mk

)◦f .

Hence, for any f ◦Πw,0 = Π′w,0 ◦ f . By induction it follows that f ◦Πw,n = Π′w,n ◦ f for any
n. Hence, f ◦Πw = Π′w ◦ f which proves the assertion. J

CONCUR 2016

26:10 A Uniform Framework for Timed Automata

2.4 Saturation-based behavioural equivalences
Notions of coalgebraic strong bisimulation have been well captured in the literature [1, 22, 26].
This paper builds on a variant called kernel bisimulation i.e. “a relation which is the kernel of
a compatible refinement of a system” [26]. However, since coalgebras with internal moves are
endomorphisms in suitable Kleisli categories[7], kernel bisimulation has been reformulated in
[8] in the language of behavioural morphisms for endomorphisms in an arbitrary category
K. This choice allows us to streamline the exposition while working at the abstract level
of morphism between endomorphisms and accommodate general saturation along the lines
of [8]. Let us quickly recall this notion here. We say that f : X → Y ∈ J is a behavioural
morphism on an endomorphism α : X → X ∈ K provided that there is β : Y → Y ∈ K such
that f ◦ α = β ◦ f . If K = Kl(T) for a monad T on C and J is the category whose objects
are those of C and whose morphisms are ηY ◦ f , where η is the unit of the monad and
f : X → Y a morphism of C, then the behavioural morphisms coincide with homomorphisms
of T -coalgebras [8]. This approach is adopted in this paper taking lax functors and their
saturation into account.

I Definition 2.8. Let π ∈ [M,K]J and X = π(∗). A morphism f : X → Y in J is called
q-behavioural morphism on π provided that there is a lax functor π′ ∈ [N,K]J such that
π′(∗) = Y for any n ∈ N the following holds:

f ◦ Σq(π)n = π′n ◦ f .

A q-bisimulation on π is a relation R⇒ π(∗) (i.e. a jointly monic span) in J which is the
kernel pair of a q-behavioural morphism on π.

I Theorem 2.9. A morphism f : X → Y in J is a q-behavioural morphism on π ∈ [M,K]J
if and only if there is π′ ∈ [M,K]J such that f ◦ Σq(π)n = Σq(π′)n ◦ f for any n ∈ N .

Proof. By Theorem 2.6. J

Definition 2.8 is a conservative extension of kernel bisimulation. In fact, α ∈ [M∗,K]
describes a family of endomorphisms in K, i.e., a timed system, and all its finite self-
composition and since ΣidM∗

∼= Id, idM∗ -bisimulation coincides with kernel bisimulation.
Among the several choices of monoid homomorphisms we focus on two main families:

those abstracting effects (e.g. non-determinism) and those abstracting aspects modelled by
the context (e.g. time). The first case corresponds to εM : M∗ →M where ε : (−)∗ → Id is
the counit forming the free monoid adjunction. By Theorem 2.4, if K admits and preserves
arbitrary non-empty joins the functor ΣεM

: [M∗,K]J → [M,K]J is given on a system α:

ΣεM
(α)m =

∨
~m∈ε−1

M
(m) α~m =

∨
m1·...·mk=m αm1 ◦ · · · ◦ αmk

.

Steps in the saturated system are combinations of all sequences in the original one associated
with any decomposition of the stage m. In particular, when K models unobservable moves,
εM -bisimulation can be seen as the weak counterpart of strong behavioural equivalence
for systems modelled in [M∗,K]J , i.e., idM∗-bisimulation. The second case corresponds to
q∗ : M∗ → N∗ for some q : M → N . The functor Σq∗ : [M∗,K]J → [N∗,K]J is given on a
system α as:

Σq∗(α)n1...nk
=

∨
ni=q(mi) αm1...mk

=
∨
ni=q(mi) αm1 ◦ · · · ◦ αmk

.

Steps in the saturated system are combinations of all steps associated to a pre-image through
q; in particular, Σq∗(α)n =

∨
n=q(m) αm. When !M : M → 1 is considered, all the information

T. Brengos and M. Peressotti 26:11

in M is erased whereas computational effects in K are preserved. From this perspective
!∗M -bisimulation can be seen as a conservative generalisation of time-abstract bisimulations
(cf. Section 3.1). These two orthogonal directions can be combined as εN ◦ q∗ or as q ◦ εM ;
by naturality of ε the notions of saturation coincide:

ΣεN◦q∗(α)n = Σq◦εM
(α)n =

∨
n1·...·nk=n
ni=q(mi)

αm1 ◦ · · · ◦ αmk
=

∨
n=q(m)

m1·...·mk=m

αm1 ◦ · · · ◦ αmk
.

When K models unobservable moves and N is 1, !M∗-bisimulation can be thought as the
weak counterpart of !∗M -bisimulation.

The notion of q-bisimulation for systems modelled in [M,K]J arise from some congruence
for M and, vice versa, each congruence defines a notion of q-bisimulation. The following
theorem states that that coarser congruences define coarser notions of bisimulations. In
the remainder of this section we assume that q1 : M → N1 and q2 : N1 → N2 are monoid
morphisms and K is a J-distributive DCpo∨-enriched category.

I Theorem 2.10. A q1-behavioural morphism on π is a (q2 ◦ q1)-behavioural morphism on π.

Proof. Follows directly by Theorems 2.5 and 2.7. J

I Corollary 2.11. Let q1 : M → N1 and q2 : N1 → N2 be monoid homomorphisms. For any
π ∈ [M,K]J , if R⇒ π(∗) is a q1-bisimulation on π then it is a (q2 ◦ q1)-bisimulation on π.

Thus, q-bisimulations for systems modelled in the context of [M,K]J form a spectrum where
the finest and coarsest notions are defined by idM : M →M and !M : M → 1, respectively.

3 Application: timed behavioural and language equivalences

This section instantiates the general framework developed in Section 2.4 to timed auto-
mata covering semantic equivalences of interest such as (weak) timed and time-abstract
bisimulations and (finite) timed and untimed language equivalences.

3.1 Behavioural equivalences
This subsection recovers known notions of behavioural equivalences for timed automata as
instances of q-bisimulation thus deriving the spectrum illustrated in Figure 1. Before stating
these results, recall from [2, 19] the following definitions of the main bisimulations of interest.

I Definition 3.1 ([2, 19]). For a TTS α and an equivalence relation R on its carrier:

R is a (strong) timed bisimulation for α if (x, y) ∈ R and x (σ,t)−−−→ x′ implies that there is
y′ ∈ X such that y (σ,t)−−−→ y′ and (x′, y′) ∈ R;

R is a (strong) time-abstract bisimulation for α if (x, y) ∈ R and x (σ,t)−−−→ x′ implies that
there are y′ ∈ X and t′ ∈ [0,∞) such that y (σ,t′)−−−→ y′ and (x′, y′) ∈ R;

R is a weak timed bisimulation for α if (x, y) ∈ R and x
(σ,t)==⇒ x′ implies that there is

y′ ∈ X such that y (σ,t)==⇒ y′ and (x′, y′) ∈ R;

R is a weak time-abstract bisimulation for α if (x, y) ∈ R and x (σ,t)==⇒ x′ implies that there
are y′ ∈ X and t′ ∈ [0,∞) such that y (σ,t′)===⇒ y′ and (x′, y′) ∈ R;

CONCUR 2016

26:12 A Uniform Framework for Timed Automata

where → and ⇒ denote the transition relation of α and the smallest relation such that:

x
(τ,0)===⇒ x

x
(τ,t)−−−→ y

x
(τ,t)===⇒ y

x
(τ,t0)====⇒ x′ x′

(σ,t1)−−−→ y′ y′
(τ,t2)====⇒ y t = t0 + t1 + t2

x
(σ,t)===⇒ y

I Theorem 3.2. For a TTS α, an equivalence relation R on its carrier is a timed/weak
timed/time-abstract/weak time-abstract bisimulation for α if, and only if, it is a idT∗-/εT-
/!∗T-/!T∗-bisimulation for α, respectively.

I Corollary 3.3. For a TTS α and an equivalence relation R on its carrier, the implications
illustrated in Figure 1 hold true.

Proof. By the (inner) commuting diagram in Figure 1, Corollary 2.11 and Theorem 3.2. J

Finally, since neither !∗T factors εT nor vice versa it is not possible to derive that, in
general, strong time-abstract bisimulations are weak timed ones nor vice versa.

3.2 Finite trace equivalence
This subsection focuses on putting the language equivalence of timed systems into the lax
functorial setting. Here, we work with K = Kl(PΣ

X)- the Kleisli category for the ε-NA monad
together with the monoidal structure (×, 1). A timed coalgebra α : L→ E ⊗ L in K is a set
map α : L→ P(Στ × E × L+ {X}) and it represents an ordinary timed automaton with a
specified set of terminal states (here, this set is given by {l ∈ L | X ∈ α(l)}). Classically, its
semantics is a transition system V×L→ P(Στ ×T×V×L+{X}) over the state-space V×L,
which is obtained from α analogously to (1) taking into account the terminals [2]. Systems
of type X → PΣ

X(T×X) will be referred to as timed transition systems with accepting states
or X-TTS in short. However, from our perspective, and following the guidelines of the
setting from Section 2.2, the semantics of α is given in terms of a functor α : T∗ → K with
αt1,...,tn = αt1 ◦ . . . ◦ αtn , where αt : V × L→ PΣ

X(V × L) for (v, l) is defined by:

αt(v, l) ={(σ, v′, l′) | (σ, l′, (γ, δ)) ∈ α(l), vt = λc.v(c) + t, vt � δ, and v′ = vt[γ := 0]}
∪ if X ∈ α(l) then {X} else ∅.

Now, in order to obtain finite (weak) (un)timed trace equivalence, we will play with
the second parameter that the q-bisimulation takes implicitly into account, namely the
base category J . Here, we consider J to be different from Set. We put J to be the
Kleisli category Kl(P) for the powerset monad, as it is a subcategory of Kl(PΣ

X) with the
inclusion functor (−)] : Kl(P)→ Kl(PΣ

X) given, for any X and f : X → PY by X] = X and
f](x) = {(τ, y) | y ∈ f(x)}. Taking the source category of behavioural morphisms to be
different from Set is akin to the classical approach towards modelling coalgebraic finite trace
equivalence in terms of bisimulation for base categories given by the Kleisli categories for a
monadic part of the type functor [12, 14].

Given a state x of a X-TTS we define the following four sets of languages it accepts:

T (x) = {(σ1, t1) . . . (σn, tn) ∈ (Στ × T)∗ | x (σ1,t1)−−−−→ . . .
(σn,tn)−−−−−→ xn and xn ↓},

UT (x) = {σ1 . . . σn ∈ Σ∗τ | ∃t1, . . . tn s.t.(σ1, t1) . . . (σn, tn) ∈ T (x)},

WT (x) = {(σ1, t1) . . . (σn, tn) ∈ (Σ× T)∗ | x (σ1,t1)====⇒ . . .
(σn,tn)====⇒ xn and xn ↓},

WUT (x) = {σ1 . . . σn ∈ Σ∗ | ∃t1, . . . tn s.t.(σ1, t1) . . . (σn, tn) ∈WT (x)}.

T. Brengos and M. Peressotti 26:13

I Theorem 3.4. Let α : X → P(Στ × T×X + {X}) be a X-TTS with its induced functor
denoted by α : T∗ → K. A morphism f : X → PY in Kl(P) is a idT∗-/εT-/!∗T-/!T∗-behavioural
morphism on α making f(x) = f(x′) for x, x′ ∈ X if, and only if we have respectively:

T (x) = T (x′) / WT (x) = WT (x′) / UT (x) = UT (x′) / WUT (x) = WUT (x′).

4 Conclusions

In this paper we presented a framework for modelling timed automata and showed how
behavioural equivalences of interest can be recovered in a uniform and general way. Moreover,
we were able to organise, by means of simple diagrams of monoid homomorphisms, these
equivalences in a spectrum on the base of their discriminating power—as Figure 1 exemplifies.

Lax functors are the cornerstone these results build on for they allow us to separate aspects
of the computations under scrutiny into those arising from effects (base category) and from the
environment (index category). We extended the theory of saturation [6, 8, 7] developing the
notion of general saturation for lax functors on a monoid category. Akin to saturation cf. loc.
cit., this construction offers a uniform definition of behavioural equivalences and a fine control
on the computational aspects they abstract away, being these time or unobservable moves.
Thanks to its categorical development, this framework can accommodate any computational
aspect modelled by some monoid M together with a DCpo∨-enriched, J-distributive category
K. Besides non-deterministic systems we should mention Segala, weighted, probabilistic,
nominal, and continuous systems as possible instances for K and refer the curious reader
to [6, 8]. Although the categories formed by these systems do not necessarily satisfy left
distributivity, in [6, 8] we presented a method to obtain it by moving to a richer category
and performing saturation there. This suggests that results described here should readily
generalise q-behavioural morphisms to systems which do not necessarily satisfy this paper
assumptions.

Although timed processes present some fundamental differences w.r.t. timed automata,
we mention the interesting account of these systems and their strong bisimulation by Kick
[15]. In loc. cit., time-dependent computations are modelled by a suitable comonad over Set
and then combined with other behavioural aspects by means of comonad products. Because
of technical difficulties associated with comonad products, this approach appears less flexible
when behavioural equivalences beside strong timed bisimulation are considered.

Perhaps the closest work to ours is [10] where a categorical account of timed weak
bisimulation is proposed. We remark that loc. cit. relies on open-map bisimulation and is
limited to weak timed bisimulation for timed transition systems only.

The categorical characterization of timed automata paves the way for further interesting
lines of research. One is to explore the framework expressiveness providing new instances
besides timed. Another is to extend the framework with results from the rich theory of
coalgebras such as minimization [3], determinisation [23], and up-to techniques [4]. Finally,
we believe this, and recent works like [6, 8] suggest the rich and malleable setting of lax
functors as a context where to study complex interactions of several computational aspects.
To this end, we plan to further develop the general theory of lax functors and saturation.

References
1 Peter Aczel and Nax Mendler. A final coalgebra theorem. In D. H. Pitt, D. E. Rydeheard,

P. Dybjer, A. M. Pitts, and A. Poigné, editors, Proc. CTCS, volume 389 of Lecture Notes
in Computer Science, pages 357–365. Springer, 1989.

CONCUR 2016

26:14 A Uniform Framework for Timed Automata

2 Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, April 1994.

3 Filippo Bonchi, Marcello M. Bonsangue, Helle Hvid Hansen, Prakash Panangaden, Jan J.
M. M. Rutten, and Alexandra Silva. Algebra-coalgebra duality in brzozowski’s minimization
algorithm. ACM Trans. Comput. Log., 15(1):3, 2014.

4 Filippo Bonchi, Daniela Petrisan, Damien Pous, and Jurriaan Rot. Coinduction up-to in a
fibrational setting. In CSL-LICS, pages 20:1–20:9. ACM, 2014.

5 Tomasz Brengos. On coalgebras with internal moves. In Marcello M. Bonsangue, editor,
Proc. CMCS, Lecture Notes in Computer Science, pages 75–97. Springer, 2014.

6 Tomasz Brengos. Lax functors and coalgebraic weak bisimulation. CoRR, abs/1404.5267,
2015.

7 Tomasz Brengos. Weak bisimulation for coalgebras over order enriched monads. Logical
Methods in Computer Science, 11(2:14):1–44, 2015.

8 Tomasz Brengos, Marino Miculan, and Marco Peressotti. Behavioural equivalences for coal-
gebras with unobservable moves. Journal of Logical and Algebraic Methods in Programming,
84(6):826–852, 2015.

9 Taolue Chen, Tingting Han, and Joost-Pieter Katoen. Time-abstracting bisimulation for
probabilistic timed automata. In TASE, pages 177–184. IEEE Computer Society, 2008.

10 Natalya Gribovskaya and Irina Virbitskaite. A categorical view of timed weak bisimulation.
In TAMC, volume 6108 of Lecture Notes in Computer Science, pages 443–454. Springer,
2010.

11 Ichiro Hasuo, Bart Jacobs, and Ana Sokolova. Generic forward and backward simulations.
In Proc. JSSST Annual Meeting, 2006.

12 Ichiro Hasuo, Bart Jacobs, and Ana Sokolova. Generic trace semantics via coinduction.
Logical Methods in Computer Science, 3(4), 2007.

13 Bart Jacobs. Coalgebraic trace semantics for combined possibilistic and probabilistic sys-
tems. In Proc. CMCS, Electronic Notes in Theoretical Computer Science, pages 131–152,
2008.

14 Bart Jacobs, Alexandra Silva, and Ana Sokolova. Trace semantics via determinization. In
Dirk Pattinson and Lutz Schröder, editors, Proc. CMCS, volume 7399 of Lecture Notes in
Computer Science, pages 109–129. Springer, 2012.

15 Marco Kick. A Mathematical Model of Timed Processes. Ph.D. dissertation, University of
Edinburgh, 2003.

16 Anders Kock. Strong functors and monoidal monads. Arc. Math., 23(1):113–120, 1972.
17 Marta Z. Kwiatkowska, Gethin Norman, Roberto Segala, and Jeremy Sproston. Auto-

matic verification of real-time systems with discrete probability distributions. Theoretical
Computer Science, 282(1):101–150, 2002.

18 Stephen Lack. A 2-categories companion. Springer, 2010.
19 Kim G. Larsen and Yi Wang. Time-abstracted bisimulation: Implicit specifications and

decidability. Information and Computation, 134(2):75 – 101, 1997.
20 Saunders Mac Lane. Categories for the Working Mathematician. Springer, 1971.
21 Marino Miculan and Marco Peressotti. Structural operational semantics for non-

deterministic processes with quantitative aspects. Theoretical Computer Science, 2016.
22 Jan J. M. M. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer

Science, 249(1):3–80, 2000.
23 Alexandra Silva, Filippo Bonchi, Marcello M. Bonsangue, and Jan J. M. M. Rutten. Gener-

alizing determinization from automata to coalgebras. Logical Methods in Computer Science,
9(1), 2013.

T. Brengos and M. Peressotti 26:15

24 Alexandra Silva and Bram Westerbaan. A coalgebraic view of ε-transitions. In Reiko Heckel
and Stefan Milius, editors, Proc. CALCO, volume 8089 of Lecture Notes in Computer
Science, pages 267–281. Springer, 2013.

25 Paweł Sobociński. Relational presheaves, change of base and weak simulation. Journal of
Computer and System Sciences, 81(5):901–910, 2015.

26 Sam Staton. Relating coalgebraic notions of bisimulation. Logical Methods in Computer
Science, 7(1), 2011.

27 Daniele Turi and Gordon Plotkin. Towards a mathematical operational semantics. In
Proc. LICS, pages 280–291. IEEE Computer Society Press, 1997.

CONCUR 2016

Analyzing Timed Systems Using Tree Automata∗

S. Akshay1, Paul Gastin2, and Shankara Narayanan Krishna1

1 Dept. of CSE, IIT Bombay, Powai, Mumbai 400076, India
akshayss@cse.iitb.ac.in

2 LSV, ENS-Cachan, CNRS, Université Paris-Saclay, 94235 Cachan, France
paul.gastin@lsv.ens-cachan.fr

1 Dept. of CSE, IIT Bombay, Powai, Mumbai 400076, India
krishnas@cse.iitb.ac.in

Abstract
Timed systems, such as timed automata, are usually analyzed using their operational semantics
on timed words. The classical region abstraction for timed automata reduces them to (untimed)
finite state automata with the same time-abstract properties, such as state reachability. We
propose a new technique to analyze such timed systems using finite tree automata instead of
finite word automata. The main idea is to consider timed behaviors as graphs with matching
edges capturing timing constraints. Such graphs can be interpreted in trees opening the way to
tree automata based techniques which are more powerful than analysis based on word automata.
The technique is quite general and applies to many timed systems. In this paper, as an example,
we develop the technique on timed pushdown systems, which have recently received considerable
attention. Further, we also demonstrate how we can use it on timed automata and timed multi-
stack pushdown systems (with boundedness restrictions).

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases Timed automata, tree automata, pushdown systems, tree-width

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2016.27

1 Introduction

The advent of timed automata [4] marked the beginning of an era in the verification of
real-time systems. Today, timed automata form one of the well accepted real-time modelling
formalisms, using real-valued variables called clocks to capture time constraints. The
decidability of the emptiness problem for timed automata is achieved using the notion of
region abstraction. This gives a sound and finite abstraction of an infinite state system, and
has paved the way for state-of-the-art tools like UPPAAL, which have successfully been used
in the verification of several complex timed systems. In recent times [1, 6, 13] there has been
a lot of interest in the theory of verification of more complex timed systems enriched with
features such as concurrency, communication between components and recursion with single
or multiple threads. In most of these approaches, decidability has been obtained by cleverly
extending the fundamental idea of region or zone abstractions.

In this paper, we give a technique for analyzing timed systems, inspired from a different
approach based on graphs and tree automata. This approach has been exploited for analyzing
various types of untimed systems, e.g., [17, 10]. The basic template of this approach has
three steps: (1) capture the behaviors of the system as graphs, (2) show that the class of

∗ This work was partly supported by LIA InForMeL, Indo-French CEFIPRA project AVERTS and
DST-INSPIRE faculty award [IFA12-MA-17].

© S. Akshay, Paul Gastin, and Shankara Narayanan Krishna;
licensed under Creative Commons License CC-BY

27th International Conference on Concurrency Theory (CONCUR 2016).
Editors: Josée Desharnais and Radha Jagadeesan; Article No. 27; pp. 27:1–27:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.27
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

27:2 Analyzing Timed Systems Using Tree Automata

graphs that are actual behaviors of the system is MSO-definable, and (3) show that this class
of graphs has bounded tree-width (or clique-width or split-width), or restrict the analysis
to such bounded behaviors. Then, non-emptiness of the given system boils down to the
satisfiability of an MSO sentence on graphs of bounded tree-width, which is decidable by
Courcelle’s theorem. Since, graphs of bounded tree-width can be interpreted in binary trees,
the problem reduces to non-emptiness of a tree automaton whose existence follows from
Courcelle’s theorem. But, by providing a direct construction of the tree automaton, it is
possible to obtain a good complexity for the decision procedure.

Our technique starts similarly, by replacing timed word behaviors of timed systems
with graphs consisting of untimed words with additional time-constraint edges, called
words with timing constraints (TCWs). However, the main complication here is that a
TCW describes a run of the timed system, where the constraints are recorded but not
checked. The TCW corresponds to an actual concrete run iff it is realizable. So, we are
interested in the class of graphs which are realizable TCWs. The structural property that
a graph must be a TCW is MSO-definable. However, it is unclear whether realizability
is MSO definable over words with timing constraints. Given this, we cannot directly
apply the approach of [17, 10]. Instead, we work on decomposition trees and construct a
finite tree automaton checking realizability, which is the most involved part of the paper.

a c

(2,∞)
b d

(1, 3)

a b c d

(2,∞) (1, 3)

a b c d

(2,∞) (1, 3)

More precisely, we show that words with timing constraints
(TCWs) which are behaviors of certain classes of timed systems
(like timed pushdown systems) are graphs of bounded split/tree-
width. Hence, these graphs admit binary tree decompositions
as depicted in the adjoining figure. Each node of the tree
depicts an incomplete behavior/graph of the system, and by
combining these behaviors as we go up the tree, we obtain a
full or complete behavior (run) of the system. We construct a
tree automaton that checks if the generated graph encoded as
a tree satisfies the ValCoRe property (1) Validity: The root
node depicts a syntactically correct labeled graph (TCW); (2) Correctness of run: The graph
is indeed a correct run of the underlying timed system and; (3) Realizability: The root node
depicts a realizable graph, i.e., we can find timestamps that realize all timing-constraints.
To check realizability, the tree automaton needs to maintain a finite abstraction for each
subtree encoding a TCW. Thanks to the bound on split/tree-width, our abstraction keeps a
bounded number of positions, called end-points, in the (arbitrarily large) TCW. It subsumes
(arbitrarily long) paths of timing constraints in the TCW by new timing constraints between
these end-points. The constants in these new constraints are sums of original constants and
may grow unboundedly. Hence, a key difficulty is to introduce suitable abstractions which
aid in bounding the constants, while at the same time preserving realizability. Using tree
decompositions of graph behaviors of bounded split/tree-width and tree automata proved to
be a very successful technique for the analysis of untimed infinite state systems [17, 11, 10, 2].
This paper opens up this powerful technique for analysis of timed systems.

To illustrate the technique, we have reproved the decidability of non-emptiness of timed
automata and timed pushdown automata (TPDA), by showing that both these models have
a split-width (|X|+ 3 and 4|X|+ 6) that is linear in the number of clocks X of the underlying
system. This bound directly tells us the amount of information that we need to maintain
in the construction of the tree automata. For TPDA we obtain an ExpTime algorithm,
matching the known lower-bound for the emptiness problem of TPDA. For timed automata,
since the split-trees are word-like (at each binary node, one subtree is small) we may use

S. Akshay, P. Gastin, and S. Krishna 27:3

word automata instead of tree automata, reducing the complexity from ExpTime to PSpace,
again matching the lower-bound. Interestingly, if one considers TPDA with no explicit
clocks, but the stack is timed, then the split-width is a constant, 2. In this case, we have a
polynomial time procedure to decide emptiness, assuming a unary encoding of constants in
the system. To further demonstrate the power of our technique, we derive a new decidability
result for non-emptiness of timed multi-stack pushdown automata under bounded rounds, by
showing that the split-width of this model is again linear in the number of clocks, stacks
and rounds. Exploring decidable subclasses of untimed multi-stack pushdown systems is an
active research area [5, 12, 14, 16, 15], and our technique can extend these to handle time.

It should be noticed that the tree automata for validity and realizability (the most involved
construction of this paper) are independent of the timed system under study. Hence, to apply
the technique to other systems, one only needs to prove the bound on split-width and to show
that their runs can be captured by tree automata. This is a major difference compared to
many existing techniques for timed systems which are highly system dependent. Finally, we
mention an orthogonal approach to deal with timed systems given in [6], where the authors
show the decidability of the non-emptiness problem for a class of timed pushdown automata
by reasoning about sets with timed-atoms. Detailed proofs and illustrative examples, omitted
due to lack of space, can be found in [3].

2 Graphs for behaviors of timed systems

We fix an alphabet Σ and use Σε to denote Σ ∪ {ε} where ε is the silent action. We also fix
a finite set of closed intervals I which contains the special interval [0, 0]. For a set S, we use
≤ ⊆ S × S to denote a partial or total order on S. For any x, y ∈ S, we write x < y if x ≤ y
and x 6= y, and xl y if x < y and there does not exist z ∈ S such that x < z < y.

2.1 Abstractions of timed behaviors
I Definition 1. A word with timing constraints (TCW) over Σ, I is a structure V = (P,→
, λ,B, θ) where P is a finite set of positions or points, λ : P → Σε labels each position, the
reflexive transitive closure ≤ =→∗ is a total order on P and → = l is the successor relation,
B ⊆ < = →+ gives the pairs of positions carrying a timing constraint, whose interval is
given by θ : B→ I.

For any position i ∈ P , the indegree (resp. outdegree) of i is the number of positions j such
that (j, i) ∈ B (resp. (i, j) ∈ B). A TCW is simple (denoted STCW) if each position has
at most one timing constraint (incoming or outgoing) attached to it, i.e., for all i ∈ P ,
indegree(i) + outdegree(i) ≤ 1. A TCW is depicted below (left) with positions 1, 2, . . . , 5
labelled over {a, b}. indegree(4)=1, outdegree(1)=1 and indegree(3)=0. The curved edges
decorated with intervals connect the positions related by B, while straight edges are the
successor relation →. Note that this TCW is simple.

a b a b b

[3,3] [2,5]
a b a b b

3

-3

5

-2
0000

An ε-timed word is a sequence w = (a1, t1) . . . (an, tn) with a1 . . . an ∈ Σ+
ε and (ti)1≤i≤n

a non-decreasing sequence of real time values. If ai 6= ε for all 1 ≤ i ≤ n, then w is
a timed word. The projection on Σ of an ε-timed word is the timed word obtained by
removing ε-labelled positions. Consider a TCW W = (P,→, λ,B, θ) with P = {1, . . . , n}.

CONCUR 2016

27:4 Analyzing Timed Systems Using Tree Automata

A timed word w is a realization of W if it is the projection on Σ of an ε-timed word
w′ = (λ(1), t1) . . . (λ(n), tn) such that tj − ti ∈ θ(i, j) for all (i, j) ∈ B. In other words, a
TCW is realizable if there exists a timed word w which is a realization of W . For example,
the timed word (a, 0.9)(b, 2.1)(a, 2.1)(b, 3.9)(b, 5) is a realization of the TCW depicted above
(left), while (a, 1.2)(b, 2.1) (a, 2.1)(b, 3.9)(b, 5) is not.

We can (and often will) view a TCW W as a directed weighted graph with edges E =
B ∪B−1 ∪→−1 and weights induced by θ as follows: if (i, j) ∈ B and θ(i, j) = [I`, Ir] then
the weight of the forward edge is the upper constraint wt(i, j) = Ir and the weight of the
back edge is the negative value of the lower constraint wt(j, i) = −I`. Further, to ensure
that time is non-decreasing we add 0-weight back edges between consecutive positions that
are not already constrained, i.e., if (i, j) ∈ l \B then wt(j, i) = 0. The directed weighted
graph depicted above (right) corresponds to the TCW on its left. A directed path in W is
a sequence of positions ρ = p1, p2, . . . , pn (n > 1) linked with edges: (pi, pi+1) ∈ E for all
1 ≤ i < n. It is a cycle or loop if pn = p1. Its weight is wt(ρ) =

∑
1≤i<n wt(pi, pi+1). Then,

we have the following standard result:

I Proposition 2 ([7]). A TCW W is realizable iff it has no negative cycles.

Thus, to check if a TCW is realizable, we check for absence of negative weight cycles, which
can be done in polynomial time, e.g., using the Bellman Ford algorithm (see [7] for details).

2.2 TPDA and their semantics as simple TCWs

Dense-timed pushdown automata (TPDA), introduced in [1], are an extension of timed
automata, and operate on a finite set of real-valued clocks and a stack which holds symbols
with their ages. The age of a symbol in the stack represents time elapsed since it was pushed
on to the stack. Formally, a TPDA S is a tuple (S, s0,Σ,Γ,∆, X, F) where S is a finite set
of states, s0 ∈ S is the initial state, Σ, Γ, are respectively a finite set of input, stack symbols,
∆ is a finite set of transitions, X is a finite set of real-valued variables called clocks, F ⊆ S
are final states. A transition t ∈ ∆ is a tuple (s, γ, a, op, R, s′) where s, s′ ∈ S, a ∈ Σ, γ is
a finite conjunction of atomic formulae of the kind x ∈ I for x ∈ X and I ∈ I, R ⊆ X are
clocks reset, op is one of the following stack operations:

1. nop does not change the contents of the stack,
2. ↓c where c ∈ Γ is a push operation that adds c on top of the stack, with age 0.
3. ↑Ic where c ∈ Γ is a stack symbol and I ∈ I is an interval, is a pop operation that removes

the top most symbol of the stack provided it is a c with age in the interval I.

Timed automata (TA) can be seen as TPDA using nop operations only. This definition of
TPDA is equivalent to the one in [1], but allows checking conjunctive constraints and stack
operations together. In [6], it is shown that TPDA of [1] are expressively equivalent to timed
automata with an untimed stack. Nevertheless, our technique is oblivious to whether the
stack is timed or not, hence we focus on the syntactically more succinct model TPDA with
timed stack and get good complexity bounds.

We define the semantics in terms of simple TCWs. An STCW V = (P,→, λ,B, θ) is gener-
ated or accepted by a TPDA S if there is an accepting abstract run ρ = (s0, γ1, a1, op1, R1, s1)
(s1, γ2, a2, op2, R2, s2) · · · (sn−1, γn, an, opn, Rn, sn) of S such that, sn ∈ F and

the sequence of push-pop operations is well-nested: in each prefix op1 · · · opk, number of
pops is at most number of pushes, and in the full sequence op1 · · · opn, they are equal.

S. Akshay, P. Gastin, and S. Krishna 27:5

We have P = P0] P1] · · ·] Pn with Pi × Pj ⊆ →+ for 0 ≤ i < j ≤ n. Each transition
δi = (si−1, γi, ai, opi, Ri, si) gives rise to a sequence of consecutive points Pi in the STCW.
The transition δi is simulated by a sequence of “micro-transitions” as depicted below
(left) and it represents an STCW shown below (right). Incoming red edges check guards
from γi (wrt different clocks) while outgoing green edges depict resets from Ri that will
be checked later. Further, the outgoing edge on the central node labeled ai represents a
push operation on stack.

si−1 δ0
i δ1

i δhi−1
i δhi

i
δx1

i δxm
i

si

{ζ} γ1
i γhi

i ai, opi ε ζ = 0

{x1} {xm}

ε ε ε ai ε ε ε

[0,0]

where γi = γ1
i ∧ · · · ∧ γ

hi
i and Ri = {x1, . . . , xm}. The first and last micro-transitions,

corresponding to the reset of a new clock ζ and checking of constraint ζ = 0 ensure that
all micro-transitions in the sequence occur simultaneously. We have a point in Pi for each
micro-transition (excluding the ε-micro-transitions between δxj

i). Hence, Pi consists of
a sequence `i → `1i → · · · → `hi

i → pi → r1
i → · · · → rgi

i → ri where gi is the number of
timing constraints which are checked later, corresponding to clocks reset during transition
i. Thus, the reset-loop on a clock is fired k ≥ 0 times if k constraints are checked on
this clock until its next reset. This ensures that the STCW remains simple. Similarly, hi
is the number of timing constraints conjuncted in γi. We have λ(pi) = ai and all other
points are labelled ε. The set P0 encodes the initial resets of clocks that will be checked
before their first reset. So we let R0 = X and P0 is `0 → r1

0 → . . .→ rg0
0 → r0 .

The relation for timing constraints can be partitioned as B = Bs]
⊎
x∈X∪{ζ}B

x where

Bζ = {(`i, ri) | 0 ≤ i ≤ n} and we set θ(`i, ri) = [0, 0] for all 0 ≤ i ≤ n.
We have piBs pj if opi = ↓b is a push and opj = ↑Ib is the matching pop (same number
of pushes and pops in opi+1 · · · opj−1), and we set θ(pi, pj) = I.
for each 0 ≤ i < j ≤ n such that the t-th conjunct of γj is x ∈ I and x ∈ Ri and
x /∈ Rk for i < k < j, we have rsi Bx `tj for some 1 ≤ s ≤ gi and θ(rsi , `tj) = I. Therefore,
every point `ti with 1 ≤ t ≤ hi is the target of a timing constraint. Moreover, every
reset point rsi for 1 ≤ s ≤ gi should be the source of a timing constraint: rsi ∈ dom(Bx)
for some x ∈ Ri. Also, for each i, the reset points r1

i , . . . , r
gi

i are grouped by clocks (as
suggested by the sequence of micro-transitions simulating δi): if 1 ≤ s < u < t ≤ gi
and rsi , rti ∈ dom(Bx) for some x ∈ Ri then rui ∈ dom(Bx). Finally, for each clock, we
require that the timing constraints are well-nested: for all uBx v and u′ Bx v′, with
u, u′ ∈ Pi, if u < u′ then u′ < v′ < v.

We denote by STCW(S) the set of simple TCWs generated by S and define the language of
S as the set of realizable STCWs, i.e., L(S) = Real(STCW(S)). Indeed, this is equivalent
to defining the language as the set of timed words accepted by S, according to a usual
operational semantics [1]. The STCW semantics of timed automata (TA) can be obtained
from the above discussion by just ignoring the stack components (using nop operations only).

We now identify some important properties satisfied by STCWs generated from a TPDA.
Let V = (P,→, λ,B, θ) be a STCW. We say that V is well timed w.r.t. a set of clocks Y and
a stack s if the B relation can be partitioned as B = Bs]

⊎
x∈Y Bx where

(T1) the relation Bs corresponds to the matching push-pop events, hence it is well-nested: for
all iBs j and i′ Bs j′, if i < i′ < j then i′ < j′ < j.

(T2) For each x ∈ Y , the relation Bx corresponds to the timing constraints for clock x and
is well-nested: for all i Bx j and i′ Bx j′, if i < i′ are in the same x-reset block (i.e.,

CONCUR 2016

27:6 Analyzing Timed Systems Using Tree Automata

a maximal consecutive sequence i1 l · · · l in of positions in the domain of Bx), and
i < i′ < j, then i′ < j′ < j. Each guard should be matched with the closest reset block
on its left: for all iBx j and i′Bx j′, if i < i′ are not in the same x-reset block then j < i′.

It is then easy to check that STCWs defined by a TPDA with set of clocks X are well-timed
for the set of clocks Y = X ∪ {ζ}, i.e., satisfy the properties above. We obtain the same for
TA by just ignoring the stack edges, i.e., (T1) above.

3 Bounding the width of graph behaviors of timed systems

In this section, we check if the graphs (STCWs) introduced in the previous section have a
bounded tree-width. As a first step towards that, we introduce special tree terms (STTs)
from Courcelle [8] and their semantics as labeled graphs. It is known [8] that special tree
terms using at most K colors (K-STTs) define graphs of “special” tree-width at most
K − 1. Formally, a (Σ,Γ)-labeled graph is a tuple G = (V, (Eγ)γ∈Γ, λ) where λ : V → Σ
is the vertex labeling and Eγ ⊆ V 2 is the set of edges for each label γ ∈ Γ. Special tree
terms form an algebra to define labeled graphs. The syntax of K-STTs over (Σ,Γ) is
given by τ ::= (i, a) | Addγi,j τ | Forgeti τ | Renamei,j τ | τ ⊕ τ , where a ∈ Σ, γ ∈ Γ and
i, j ∈ [K] = {1, . . . ,K} are colors. The semantics of each K-STT is a colored graph
JτK = (Gτ , χτ) where Gτ is a (Σ,Γ)-labeled graph and χτ : [K] → V is a partial injective
function assigning a vertex of Gτ to atmost one color.

J(i, a)K consists of a single a-labeled vertex with color i.
Addγi,j adds a γ-labeled edge to the vertices colored i and j (if such vertices exist).
Forgeti removes color i from the domain of the color map.
Renamei,j exchanges the colors i and j.
⊕ is the disjoint union of two graphs if they use different colors and is undefined otherwise.

The special tree-width of a graph G is defined as the leastK such that G = Gτ for some (K+1)-
STT τ . See [8] for more details and its relation to tree-width. For TCWs, we have successor
edges and B-edges carrying timing constraints, so we take Γ = {→} ∪ {(x, y) | x ∈ N, y ∈ N}
with N = N ∪ {∞}. In this paper, we will actually make use of STTs with the following
restricted syntax, which are sufficient and make our proofs simpler:

atomicSTT ::= (1, a) | Addx,y1,2 ((1, a)⊕ (2, b))
τ ::= atomicSTT | Add→i,j τ | Forgeti τ | Renamei,j τ | τ ⊕ τ

with a, b ∈ Σε, 0 ≤ x < M , 0 ≤ y < M or y = +∞ for some M ∈ N and i, j ∈ [2K] =
{1, . . . , 2K}. The terms defined by this grammar are called (K,M)-STTs. Here, timing
constraints are added directly between leaves in atomic STTs which are then combined using
disjoint unions and adding successor edges. For instance, consider the 4-STT given below

τ = Forget3 Add→1,3 Forget2 Add→2,4 Add→3,2(Add2,∞
1,2 ((1, a)⊕ (2, c))⊕ Add1,3

3,4((3, b)⊕ (4, d)))

a b c d

(2,∞) (1, 3)
where Addγi,j((i, α)⊕ (j, β)), i, j ∈ N, α, β ∈ Σε is the same as
Rename1,i Rename2,j Addγ1,2((1, α)⊕ (2, β)). Its semantics JτK is
the adjoining STCW where only endpoints labelled a and d are
colored, as the other two colors were “forgotten” by τ .Abusing
notation, we will also use JτK for the graph Gτ ignoring the coloring χt.

S. Akshay, P. Gastin, and S. Krishna 27:7

Split-TCWs and split-game. We find it convenient to prove that a STCW has bounded
special tree-width by playing a split-game, whose game positions are STCWs in which
some successor edges have been cut, i.e., are missing. Formally, a split-TCW is a structure
V = (P,→, 99K, λ,B, θ) where → and 99K are the present and absent successor edges (also
called holes), respectively, such that →∩ 99K = ∅ and (P,→∪ 99K, λ,B, θ) is a TCW. Notice
that, for a split-TCW, l = → ∪ 99K and < = l+. A block or factor of a split-TCW is a
maximal set of points of P connected by →. We denote by EP(V) ⊆ P the set of left and
right endpoints of blocks of V. A left endpoint e is one for which there is no f with f → e.
Right endpoints are defined similarly. Points in P \ EP(V) are called internal. The number
of blocks is the width of V: width(V) = 1 + |99K|. TCWs may be identified with split-TCWs
of width 1, i.e., with 99K = ∅. A split-TCW is atomic if it consists of a single point (|P | = 1)
or a single timing constraint with a hole (P = {p1, p2}, p1 99K p2, p1 B p2). The directed
weighted graph for a split-TCW is defined on the associated TCW under →∪ 99K and hence
has back edges with wt = 0 across a hole as well.

The split-game is a two player turn based game G = (V∃] V∀, E) where Eve’s set of game
positions V∃ consists of all connected (wrt. → ∪ B) split-TCWs and Adam’s set of game
positions V∀ consists of non-connected split-TCWs. The edges E of G reflect the moves of
the players. Eve’s moves consist of splitting a factor in two, i.e., removing one successor edge
in the graph. Adam’s moves amount to choosing a connected component of the split-TCW.
Atomic split-TCWs are terminal positions in the game: neither Eve nor Adam can move from
an atomic split-TCW. A play on a split-TCW V is a path in G starting from V and leading
to an atomic split-TCW. The cost of the play is the maximum width of any split-TCW
encountered in the path. Eve’s objective is to minimize the cost, while Adam’s objective is to
maximize it. Notice that Eve has a strategy to decompose a TCW V into atomic split-TCWs
if and only if V is simple, i.e, at most one timing constraint is attached to each point. The
cost of a strategy σ for Eve from a split-TCW V is the maximal cost of the plays starting
from V and following strategy σ.

The split-width of a simple (split-)TCW V is the minimal cost of Eve’s (positional)
strategies starting from V. Let STCWK (resp. STCWK,M) denote the set of simple TCWs
with split-width bounded by K (resp. and using constants at mostM) over the fixed alphabet
Σ. The crucial link between special tree-width and split-width is given below.

I Lemma 3. STCWs of split-width at most K have special tree-width at most 2K − 1.

Intuitively, we only need to keep colors for end-points of blocks. Hence, each block of
an STCW V needs at most two colors and if the width of V is at most K then we need at
most 2K colors. From this it can be shown that a strategy of Eve of cost at most K can be
encoded by a 2K-STT, which gives a special tree-width of at most 2K − 1.

Split-width for timed systems. Viewing special tree terms as trees, our goal in the next
section is to construct tree automata to recognize sets of (K,M)-STTs, and thus capture (K
split-width) bounded behaviors of a given system. To show that these capture all behaviors
of the given system, we show that we can find K such that all (graph) behaviors of the given
system have K-bounded split-width. We do this now for TPDA and timed automata.

I Theorem 4. Given a timed system S using a set of clocks X, all words in its STCW
language have split-width bounded by K, i.e., STCW(S) ⊆ STCWK , where

1. K = |X|+ 4 if S is a timed automaton,
2. K = 4|X|+ 6 if S is a timed pushdown automaton,

CONCUR 2016

27:8 Analyzing Timed Systems Using Tree Automata

We prove a slightly more general result, by showing that all well-timed split-STCWs for
the set of clocks Y = X ∪ {ζ} have bounded split-width (lifting the definition of well-timed
to split-STCWs). As noted earlier, the STCWs defined by a TPDA with set of clocks X are
well-timed for the set of clocks Y = X ∪ {ζ} and hence we obtain a bound on the split-width
as required above. The following lemma completes the proof of Theorem 4 (2).

I Lemma 5. The split-width of a well-timed STCW is bounded by 4|Y |+ 2.

Proof (sketch). We prove this by playing the “split-width game” between Adam and Eve in
which Eve has a strategy to disconnect the word without introducing more than 4|Y |+ 2
blocks. Eve’s strategy processes the word from right to left. We have three cases as follows.

Case (1) is when the last/right-most event, say j, is an internal point, i.e., it is not the
target of a B relation. In this case, Eve will just split the process-edge before the last point
with a single cut.

Case (2) is when the last event is the target of Bx for some clock x ∈ Y . In this case, she
will detach the last timing constraint iBx j where j is the last point of the split-TCW. By
(T2) we deduce that i is the first point of the last reset block for clock x. Eve splits three
process-edges to detach the matching pair iBx j: these three edges are those connected to i
and j. Since the matching pair iBx j is atomic, to prolong the game Adam should choose
the remaining split-TCW V ′. Note that we now have a hole instead of position i. We call
this a reset-hole for clock x. During the inductive process, we have at most one such reset
hole for each x ∈ Y , since the hole only widens in the reset block for each clock.

Note that the last event cannot be a push or the source of a timing constraint. So, the
remaining Case (3) is a stack edge i Bs j where the pop event j is the last event of the
split-TCW, details of which are in [3]. J

Now, if the STCW is from a timed automaton then, Bs is empty and Eve’s strategy only
has the first two cases above. Doing, this we obtain a bound of |Y |+ 3 on split-width, which
proves Theorem 4 (1).

4 The tree automata technique illustrated via TPDA and TA

We now describe our proof technique of using tree automata to analyze timed systems. At
a high level, given a timed system S using constants less than M (say a timed automaton
or a TPDA), we want to construct a tree automaton that accepts all (K,M)-STTs whose
semantics are STCWs of split-width at most K which are realizable and accepted by S. We
break this into three parts. First, recall that STCWs of bounded split-width are graphs of
bounded STTs (Lemma 3). However, not all graphs defined by bounded STTs are STCWs.
We construct a tree automaton AK,Mvalid which accepts only valid (K,M)-STTs, i.e., those
representing STCWs of split-width at most K.
I Proposition 6. We can build a tree automaton AK,Mvalid of size O(M) · 2O(K2) which accepts
only (K,M)-STTs and such that STCWK,M = {JτK | τ ∈ L(AK,Mvalid)}.

Our next step is to define a tree automaton AK,Mreal which accepts all valid STTs whose
semantics are realizable STCWs.
I Proposition 7. We can build a tree automaton AK,Mreal of size MO(K2) · 2O(K2 lgK) such that
L(AK,Mreal) = {τ ∈ L(AK,Mvalid) | JτK is realizable}.

Note that AK,Mreal may not accept all (K,M)-STTs which denote realizable STCWs, but it
will accept all such valid STTs. Once we have this, our third and final step is to build a tree
automaton which accepts the valid STTs denoting STCWs accepted by the timed system.

S. Akshay, P. Gastin, and S. Krishna 27:9

I Proposition 8. Let S be a TPDA of size |S| (constants encoded in unary) with set of clocks
X and using constants less than M . Then, we can build a tree automaton AK,MS of size
|S|O(K2) · 2O(K2(|X|+1)) such that L(AK,MS) = {τ ∈ L(AK,Mvalid) | JτK ∈ STCW(S)}.

In Section 5, we detail the most complex tree automaton construction, AK,Mreal for realiz-
ability, thus proving Proposition 7. The construction of AK,Mvalid (Proposition 6) is somewhat
similar (and easier) and we refer the reader to [3] for its details as well as the proof of
(Proposition 8). We remark that for AK,Mvalid ,A

K,M
S we can also define an MSO formula and

use Courcelle’s theorem [9], but the direct tree automata construction gives us better control
on complexity bounds and helps for AK,Mreal .

Thus, the tree automatonA checking ValCoRe (i.e., validity, correctness and realizability)
is A = AK,Mreal ∩A

K,M
S . We have L(A) 6= ∅ iff there exist some realizable STCWs in STCW(S)∩

STCWK,M . Since checking emptiness of a finite tree automaton is decidable in PTIME, we
obtain that emptiness is decidable for the corresponding timed system restricted to STCWs
of split-width at most K.

I Theorem 9. Checking whether the timed system S accepts a realizable STCW of split-width
at most K is decidable.

By Theorem 4, all STCWs in the semantics of a TPDA S have split-width bounded by
some fixed K and Theorem 9 gives a complete decision procedure for checking emptiness
of TPDA. From these bounds on split-width and the size of the tree automata for validity,
realizability and the system given in the above propositions, we obtain ExpTime decision
procedures for checking emptiness of TPDA.

In the above technique, the only system-specific component is the automaton AK,MS for
the timed system S. However, Proposition 8 can easily be adapted for timed automata and
for several other timed systems, which are discussed in Section 6. Hence, this technique is
generic and can be used for several other timed systems.

Moreover, for timed automata, it can be seen, for instance, from the analysis of Cases (1)
and (2) of proof of Lemma 5 that one of the connected components (the pair iBx j) is always
atomic. Therefore the split-tree is “word-like”, i.e., for each binary node, one subtree is small,
in our case atomic. Therefore, we can encode the subtree in the label of the binary node itself
and use word automata instead of tree automata to check for emptiness (in NLogSpace
instead of PTime), yielding the complexity stated below.

I Corollary 10. Emptiness of TPDA and TA are decidable in ExpTime and PSpace
respectively.

5 Tree automata for realizable valid (K, M)-STTs

Our goal in this section is to define a finite bottom-up tree automaton AK,Mreal that runs on
(K,M)-STTs and accepts only valid (K,M)-STTs whose semantics are realizable STCWs.
Let us first give a high-level picture. A state of the tree automaton will be a split-TCW
with at most K blocks and 2K points. At any stage of the run, while processing a subtree
τ of the (K,M)-STT, the state, i.e., split-TCW q reached will be a finite abstraction of
the split-TCW JτK generated by τ , such that q is valid and realizable iff the TCW JτK is.
At a leaf, the state of an atomic-STT is just a single matching edge with a hole. At each
subsequent step going up, the tree automaton simulates the operations of τ : at a ⊕ move, it
combines two split-TCW q1 and q2 to form a new valid split-TCW q by guessing an ordering
between the blocks such that no new negative cycle is introduced (i.e., q continues to be
realizable), and at an Add→i,j node, it adds a process edge to fill up the corresponding hole in

CONCUR 2016

27:10 Analyzing Timed Systems Using Tree Automata

the split-TCW. At a Forgeti node, it removes an internal point, but to maintain realizability,
the constraints on internal positions must be propagated to the end-points of the block and
this process is continued. Finally, at the root, we obtain a TCW which is a finite abstraction
of the semantics JτK of a valid (K,M)-STT τ such that JτK is a realizable TCW. Then, we
show that the tree automaton accepts all such (K,M)-STTs, which concludes the proof of
Proposition 7. There are two key difficulties that we have glossed over in this sketch:

first, the propagation of constraints can increase the bounds arbitrarily, along an arbitrarily
long (even if finite) run. Fixing this is the hardest part and we carefully define abstractions
that bound the constraints by a constant M ′ = O(M), while preserving realizability.
This leads to another subtle issue: while checking that realizability is preserved under our
operations (of combining split-TCW and adding process edges), it is no longer sufficient
to just check whether this combination is “safe”. It may be that currently no negative
cycle is formed, but at a later stage, some other operation (⊕) gives rise to a negative
cycle, which we do not observe since we capped the value of timing constraints. So, we
need to show that all operations are safe no matter what happens in the future. For this
we start by defining the notion of preserving realizability “under all contexts” as well as
the formal notion of a “shuffle” used at ⊕ nodes.

Shuffle and Realizability under contexts. Let V1 = (P1,→1, 99K1, λ1,B1, θ1) and V2 =
(P2,→2, 99K2, λ2,B2, θ2) be two split-TCWs such that their respective set of positions P1 and
P2 are disjoint. Further, let ≤ be a total order on P = P1 ∪ P2 such that 99K1 ∪ 99K2 ⊆ <
and →1 ∪ →2 ⊆ l. Such orders are called admissible. Then, we define the split-TCW
V = (P,→, 99K, λ,B, θ) by P = P1] P2, λ = λ1 ∪ λ2, → = →1 ∪ →2, 99K = l \ →,
B = B1 ∪B2, and θ = θ1 ∪ θ2. Indeed, this corresponds to shuffling the blocks V1 and V2
with respect to the admissible order ≤ and is called a shuffle, denoted by V = V1 tt≤ V2.

Let M be a positive integer. An M -context C is a split-TCW such that the maximal
constant in the intervals is strictly smaller than the fixed constant M . Given a context
C and a split-TCW V, we define an operation C ◦ V if width(C) = width(V) + 1. C ◦ V
is the split-TCW obtained by shuffling the blocks of C and V in strict alternation. Two
split-TCWs U and V are equivalent, denoted U ∼M V , iff they have the same number of
blocks and preserve realizability under all M -contexts. That is, there exists k ∈ N such
that width(U) = width(V) = k and for all M -contexts C ∈ STCW with width(C) = k + 1,
C ◦ U is realizable iff C ◦ V is realizable. It is easy to see that ∼M is an equivalence relation.
A function f : STCW → STCW is said to be sound if it preserves realizability under all
M -contexts, i.e., for all W ∈ STCW we have W ∼M f(W). The idea is to define a sound
abstraction of finite index, so that a finite tree automaton can work only on the abstractions.

I Lemma 11. (Congruence lemma) Let U1, U2, U ′1 and U ′2 be split-TCWs such that U1 ∼M U ′1
and U2 ∼M U ′2. Then, U1 tt≤ U2 ∼M U ′1 tt≤ U ′2 for all admissible orders ≤ on the blocks.

A (possibly infinite) tree automaton for realizability. We now build the tree automaton
for realizability in two steps. First, we detail a construction which is correct and sound (i.e.,
preserves realizability under all contexts), but in which constants can grow unboundedly.
Subsequently, we show conditions under which it has finitely many states and additional
abstractions to ensure finiteness.

I Proposition 12. We can build a tree automaton AK,Minf such that L(AK,Minf) = {τ ∈
L(AK,Mvalid) | JτK is realizable}.

S. Akshay, P. Gastin, and S. Krishna 27:11

Proof. The construction builds on the construction of AK,Mvalid , which is detailed in [3]. The
states of AK,Minf are pairs (q,wt) where q = (P,<,→) is a state of AK,Mvalid , i.e., P ⊆ [2K], <
is a total order on P , → ⊆ l is the successor relation between points in the same block, q
has at most K blocks; and wt : P 2 → Z = Z ∪ {+∞} gives the timing constraints. The first
component is finite but weights can grow unboundedly. We assume wt(k, k) = 0 for all k ∈ P
and if i < j then wt(j, i) ≤ 0 ≤ wt(i, j). We identify (q,wt) with a split-TCW (ignoring B,Σ,
as these are irrelevant for realizability).

We first give the invariant that will be maintained by the automaton. Let τ be a (K,M)-
STT with JτK = (V,→, λ,B, θ, χ). If a (bottom-up) run of AK,Minf reads τ and reaches state
(q,wt) with q = (P,<,→), it induces a total order on blocks of JτK and turns it into a
split-TCW (JτK, 99K). We say that the abstraction (q,wt) of τ computed by AK,Minf is sound
if it preserves realizability under contexts, i.e., (JτK, 99K) ∼M (q,wt). The key invariant is
that AK,Minf always computes a sound abstraction of the given STT. We now formalize the
definition of the tree automaton.

AtomicSTTs: When reading the atomic STT τ = (1, a) with a ∈ Σ, AK,Minf moves to
state (q,wt) where q = ({1}, ∅, ∅) and wt(1, 1) = 0. Similarly, when reading an atomic
STT τ = Addc,d1,2((1, a)⊕ (2, b)), AK,Minf moves to state (q,wt) where q = ({1, 2}, 1 < 2, ∅),
wt(1, 1) = 0 = wt(2, 2), wt(1, 2) = d and wt(2, 1) = −c. In both cases, it is easy to check
that (q,wt) is a sound abstraction of τ .
Renamei,j : We define transitions (q,wt) Renamei,j−−−−−−→ (q′,wt′) where (q′,wt′) is obtained by
exchanging colors i and j in (q,wt), which clearly preserves soundness.

Add→i,j : We define (q,wt)
Add→

i,j−−−−→ (q′,wt), when q′ is obtained from q = (P,<,→) by adding
a successor edge (i, j) ∈ l\→. Then, if τ ′ = Add→i,j τ and (q,wt) is a sound abstraction of
τ , it follows that (q′,wt′) is a sound abstraction of τ ′ (adding edges only reduces number
of contexts to be considered to show equivalence of realizability under contexts.)
⊕: We define transitions (q1,wt1), (q2,wt2) ⊕−→ (q,wt) when q = (P,<,→) is a shuffle of q1
and q2 and for all i, j ∈ P = P1]P2, wt(i, j) is wt1(i, j) if i, j ∈ P1 and wt2(i, j) if i, j ∈ P2.
If they do not come from the same state, i.e., if (i, j) ∈ (P1×P2)∪ (P2×P1), then wt(i, j)
is ∞ if i < j and 0 otherwise, i.e., i ≥ j. Now, if τ = τ1 ⊕ τ2 and (q1,wt1), (q2,wt2) are
sound abstractions of τ1, τ2 then (q,wt) is a sound abstraction of τ . The total ordering <
of q indicates how blocks of q1 and q2 are shuffled. Hence (q,wt) = (q1,wt1)tt≤ (q2,wt2).
Now, the induced ordering on the blocks of JτK corresponds to the same shuffle of blocks,
i.e., (JτK, 99K) = (Jτ1K, 99K1) tt≤ (Jτ2K, 99K2). Now, applying the congruence Lemma 11,
we obtain that (q,wt) is a sound abstraction of τ .
Forgeti: We define transitions (q,wt) Forgeti−−−−→ (q′,wt′) when the following hold
i is not an endpoint, q′ is obtained from q = (P,<,→) by removing internal point i,
i is not part of a negative cycle of length 2: for all j 6= i we have wt(j, i) + wt(i, j) ≥ 0,
for all j, k ∈ P ′ = P \ {i}, we define wt′(j, k) = min(wt(j, k),wt(j, i) + wt(i, k)), i.e.,
wt′ is obtained by eliminating i.

If the second condition above is not satisfied then the tree automaton AK,Minf has no
transitions from (q,wt) reading Forgeti. With this we can prove that if τ ′ = Forgeti τ and
(q,wt) is a sound abstraction of τ , then (q′,wt′) is a sound abstraction of τ ′.
Accepting condition: Finally, we define a state (q,wt) to be accepting if q consists of a
single block with no internal points, left endpoint i and right endpoint j (possibly i = j),
and the pair (q,wt) is realizable, i.e., wt(i, j) + wt(j, i) ≥ 0.

We can now check that L(AK,Minf) = {τ ∈ L(AK,Mvalid) | JτK is realizable}. J

CONCUR 2016

27:12 Analyzing Timed Systems Using Tree Automata

Observe that the constants in wt′ increase only at forget transitions, where a back edge j > k

with j > i > k grows in absolute value with the update wt′(j, k) = min(wt(j, k),wt(j, i) +
wt(i, k)). A forward edge j < k may get a big value only if wt(j, k) = ∞, else it can only
decrease due to the min operation. A first question is if there are classes where they will not
grow unboundedly. A simple solution is to consider time-bounded classes where all behaviors
must occur within some global time bound T : if some back edge grows > T in absolute value
after a forget move we reject the STT; while if the same happens with a forward edge, then
replace it with ∞. Thus, we obtain,

I Corollary 13. If the system is time-bounded by some constant T , then there exists a finite
tree automaton AK,Mreal of size at most TO(K2) · 2O(K2 lgK) for checking realizability.

However, when we do not assume a global time bound the constants in the states of AK,Minf
may grow unboundedly. We next show how to modify the above construction so that the
constants are always bounded. This generalizes the above corollary with a better complexity.

Bounding the constants. The finite tree automaton AK,Mreal will work on a finite subset of
the states of AK,Minf . More precisely, a state (q,wt) of AK,Minf with q = (P,<,→) is a state of
AK,Mreal if for all i, j ∈ P we have wt(i, j) = +∞ or |wt(i, j)| ≤ 8KM .

Now, to bound back edges we define a transformation β which reduces the weight of a back
edge when it goes above a certain constant, while preserving realizability under all contexts.
In fact, we define it on back edges across a block. Let (q,wt) be a state of AK,Minf with
q = (P,<,→). A pair of points (j, i) ∈ P 2 is said to be a block back edge (denoted BBE) if i < j

are the end points of a block in q, i.e., i→+ j and this→-path cannot be extended (on the left
or on the right). A big block back edge (BBBE) is block back edge e such that M + wt(e) ≤ 0.
For any two positions i < j, we define BBE(i, j) to be the set of block back edges between i
and j. That is, BBE(i, j) = {(`, k) | (`, k) is a BBE and i ≤ k < ` ≤ j}. We also define B(i, j)
to be the set of big block back edges between i and j: B(i, j) = {e ∈ BBE(i, j) | e is big}.
We now define β(q,wt) = (q,wt′) where, for any i < j,

wt′(i, j) = wt(i, j) +
∑

e∈B(i,j)

(M + wt(e)) wt′(j, i) = wt(j, i)−
∑

e∈B(i,j)

(M + wt(e))

The idea is to change the weight of big BBE to −M by adding an offset to all the other
edges (backward and forward) crossing this block. Note that this does not increase the
absolute value of any constant. Further, after the backward abstraction, the absolute
value of weights of block back edges is bounded by M , i.e., for all BBE i x j, we have
wt′(j, i) ≥ −M . Indeed, either the edge was big and we get wt′(j, i) = −M or it was not big
and wt′(j, i) = wt(j, i) > −M . Notice also that a BBE is big in (q,wt) iff it is big in β(q,wt).
The crucial property is that we leave the weights of all cycles unchanged (under all contexts).

I Lemma 14. For all states W = (q,wt) of AK,Minf with q = (P,<,→) such that all points
are endpoints P = EP(W), we have W ∼M β(W).

While block back edges are now bounded (and back edges across holes can also be bounded
by −M), this does not suffice to bound all back edges. To obtain such a bound on all back
edges, we need to relate large back edges to edges contained within them.

I Definition 15. A split-TCW W is said to satisfy the back edge property (BEP) if for all
i ≤ j ≤ k ≤ ` with either j 99K k or j = k, we have wt(`, i) > wt(`, k)−M + wt(j, i).

S. Akshay, P. Gastin, and S. Krishna 27:13

With this, we have our second and crucial invariant, that we maintain inductively in the
tree automaton, (I2): AK,Mreal always satisfies BEP. Preserving this invariant requires a slight
transformation of the shuffle operation (at a ⊕ node). Namely, after every shuffle we must
strengthen the constraints of the back edges. Formally, we define a map σ, σ(q,wt) = (q,wt′)
where for all i < j, wt′(i, j) = wt(i, j) and wt′(j, i) = min{wt(j′, i′) | i ≤ i′ ≤ j′ ≤ j} and
perform this after every ⊕ move of the tree automaton. It is easy to check that σ preserves
realizability under contexts and this allows us to show that the invariant (I2) is preserved.
Now, under the BEP assumption, we can show that all back edges are bounded,

I Lemma 16. Let W = (q,wt) be a state of AK,Minf with q = (P,<,→) such that P = EP(W).
If β(W) satisfies BEP, then the weight of all back edges in β(W) are bounded by 2KM .

Finally, forward abstraction γ removes all forward edges (i.e., changes their weight to
∞) that are too large to be useful for creating negative cycles. Let W = (q,wt) be a
state of AK,Minf with q = (P,<,→). A forward edge (i, j) ∈ P 2 with i < j is called big if
wt(i, j) +

∑
e∈BBE(i,j) wt(e) ≥ (3K− 1)M . Note, wt(e) ≤ 0 as it is a (block) back edge. Then,

we define γ(q,wt) = (q,wt′) where, for any i < j, wt′(j, i) = wt(j, i) and wt′(i, j) =∞ if (i, j)
is big and unchanged otherwise. While the definition of this abstraction is simple, showing
that it is sound (i.e., preserves realizability under all contexts) is rather tricky. We have,

I Lemma 17. If W = (q,wt) is a state of AK,Minf which satisfies BEP, then we have
W ∼M γ(W).

Thus, AK,Mreal is derived from AK,Minf by applying the abstractions at ⊕ nodes and at Forgeti
nodes. More precisely, (q1,wt1), (q2,wt2) ⊕−→ σ(q,wt) is in AK,Mreal if (q1,wt1), (q2,wt2) ⊕−→
(q,wt) is in AK,Minf . Similarly, if (q,wt) Forgeti−−−−→ (q′,wt′) is a transition in AK,Minf then
(q,wt) Forgeti−−−−→ (q′′,wt′′) is in AK,Mreal where (q′′,wt′′) = γ(β(q′,wt′)) if q′ has no internal
points and (q′′,wt′′) = (q′,wt′) otherwise. The reason for assuming that q′ has no internal
points before applying the abstractions is that it is a precondition for Lemmas 14 and 16.
Note that reachable states of AK,Mvalid (and hence AK,Mreal) can have at most two internal points.
Thus, along a run, if a state (q,wt) has no internal points, then the constants are bounded
by 4KM , otherwise, the constants are bounded by 8KM . Thus the constants never exceed
8KM in states of AK,Mreal , which bounds our state space.

Since the transformations σ, β, γ preserve realizability under contexts (Lemma 14 and
Lemma 17) we conclude that the key invariant holds, i.e., AK,Mreal always computes a sound
abstraction of the given STT. The acceptance condition of AK,Mreal is the same as for AK,Minf ,
and the correctness follows as for AK,Minf . This completes the proof of Proposition 7.

6 Discussion and Future work

The main contribution of this paper is the technique for analyzing timed systems via tree
automata. For simplicity, we only considered closed intervals in this paper, but our technique
can be easily adapted to work for all kinds of intervals, i.e., open, half-open etc. Similarly,
diagonal constraints of the form x− y ∈ I can be handled easily by adding matching edges
and changing AK,MS appropriately.

As another application of our technique, we now consider the model of dense-timed multi-
stack pushdown automata (dtMPDA), which have several stacks. The reachability problem
for untimed multi-stack pushdown automata (MPDA) is already undecidable, but several
restrictions have been studied on (untimed) MPDA, like bounded rounds [14], bounded phase,
bounded scope and so on to regain decidability. We look at dtMPDA with the restriction of

CONCUR 2016

27:14 Analyzing Timed Systems Using Tree Automata

“bounded rounds”. To the best of our knowledge, this timed model has not been investigated
until now. Under this restriction, any run of a dtMPDA can be broken into a finite number
of rounds, such that in each round only a single stack is used. As before, the sequence of
push-pop operations of any stack must be well-nested. Now, lifting the definition of well-timed
STCWs to k-round well-timed STCWs, we can show that such STCWs have split-width at
most (4nk + 4)(|X|+ 2), where n is the number of stacks. Thus all STCWs generated by
runs of dtMPDA using at most k rounds have a bounded split-width. Now, by modifying
AK,MS appropriately (see [3] for details), we obtain

I Theorem 18. Checking emptiness for k-round dtMPDA is decidable in ExpTime.

We believe that our techniques can be extended to other restrictions for dtMPDA such as
bounded scope and phase and to the more general model [13] of recursive hybrid automata.
Another interesting direction is to use our technique to go beyond reachability and show results
on model checking for timed systems. While model-checking against untimed specifications
is easy to obtain with our approach, the challenge is to extend it to timed specifications.

References
1 P. Abdulla, M. F. Atig, and J. Stenman. Dense-timed pushdown automata. In LICS

Proceedings, pages 35–44, 2012.
2 C. Aiswarya and P. Gastin. Reasoning about distributed systems: WYSIWYG (invited

talk). In FSTTCS Proceedings, pages 11–30, 2014.
3 S. Akshay, P. Gastin, and S. N. Krishna. Analyzing timed systems using tree automata.

CoRR, abs/1604.08443, 2016. URL: http://arxiv.org/abs/1604.08443.
4 R. Alur and D. Dill. A theory of timed automata. In TCS, 126(2):183–235, 1994.
5 M. F. Atig. Model-checking of ordered multi-pushdown automata. LMCS, 8(3), 2012.
6 L. Clemente and S. Lasota. Timed pushdown automata revisited. In LICS Proceedings,

pages 738–749, 2015.
7 T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction to Algorithms.

McGraw-Hill Higher Education, 2nd edition, 2001.
8 B. Courcelle. Special tree-width and the verification of monadic second-order graph prop-

erties. In FSTTCS Proceedings, pages 13–29, 2010.
9 B. Courcelle and J. Engelfriet. Graph Structure and Monadic Second-Order Logic - A

Language-Theoretic Approach, volume 138 of Encyclopedia of mathematics and its applica-
tions. CUP, 2012.

10 A. Cyriac. Verification of Communicating Recursive Programs via Split-width. Thèse de
doctorat, LSV, ENS Cachan, January 2014.

11 A. Cyriac, P. Gastin, and K. Narayan Kumar. MSO decidability of multi-pushdown systems
via split-width. In CONCUR Proceedings, pages 547–561, 2012.

12 W. Czerwinski, P. Hofman, and S. Lasota. Reachability problem for weak multi-pushdown
automata. In CONCUR Proceedings, pages 53–68. Springer, 2012.

13 S. N. Krishna, L. Manasa, and A. Trivedi. What’s decidable about recursive hybrid auto-
mata? In HSCC Proceedings, pages 31–40, 2015.

14 S. La Torre, P. Madhusudan, and G. Parlato. The language theory of bounded context-
switching. In LATIN Proceedings, pages 96–107, 2010.

15 S. La Torre, M. Napoli, and G. Parlato. Scope-bounded pushdown languages. In DLT
Proceedings, pages 116–128. Springer, 2014.

16 S. La Torre, M. Napoli, and G. Parlato. A unifying approach for multistack pushdown
automata. In MFCS Proceeedings, pages 377–389. Springer, 2014.

17 P. Madhusudan and G. Parlato. The tree width of auxiliary storage. In POPL Proceedings,
pages 283–294, 2011.

http://arxiv.org/abs/1604.08443

On the Expressiveness of QCTL∗

Amélie David1, François Laroussinie2, and Nicolas Markey3

1 LSV – CNRS, ENS Cachan & University Paris-Saclay – France
2 IRIF – University Paris Diderot & CNRS – France
3 LSV – CNRS, ENS Cachan & University Paris-Saclay – France

Abstract
QCTL extends the temporal logic CTL with quantification over atomic propositions. While
the algorithmic questions for QCTL and its fragments with limited quantification depth are
well-understood (e.g. satisfiability of QkCTL, with at most k nested blocks of quantifiers, is
(k + 1)-EXPTIME-complete), very few results are known about the expressiveness of this logic.
We address such expressiveness questions in this paper. We first consider the distinguishing power
of these logics (i.e., their ability to separate models), their relationship with behavioural equi-
valences, and their ability to capture the behaviours of finite Kripke structures with so-called
characteristic formulas. We then consider their expressive power (i.e., their ability to express
a property), showing that in terms of expressiveness the hierarchy QkCTL collapses at level 2
(in other terms, any QCTL formula can be expressed using at most two nested blocks of quanti-
fiers).

1998 ACM Subject Classification F.4.1 Mathematical Logic

Keywords and phrases Specification, Verification, Temporal Logic, Expressiveness, Tree auto-
mata

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2016.28

1 Introduction

Temporal logics have been introduced in computer science in the late 1970’s [18]; they provide
a powerful formalism for specifying and verifying (e.g. model checking [19, 3]) correctness
properties of (finite-state models representing) evolving systems. Various kinds of temporal
logics have been defined, with different expressiveness, succinctness and algorithmic properties.
For instance, the Computation Tree Logic (CTL) expresses properties of the computation
tree of the system under study; it has rather limited expressive power (it cannot express
fairness), but enjoys PTIME-complete model-checking. The Linear-time Temporal Logic (LTL)
expresses properties of a single execution at a time. It can express fairness along that single
execution, but cannot express properties of other possible executions; LTL model checking is
PSPACE-complete. The logic CTL∗ combines CTL and LTL, offering better expressiveness
than CTL with the same (theoretical) complexity as LTL.

In terms of expressiveness, CTL∗ still has some limitations: in particular, it lacks the
ability of counting. For instance, it cannot express that an event occurs (at least) at every
even position along a path, or that a state has two successors. In order to cope with this,
temporal logics have been extended with propositional quantifiers [20]: those quantifiers
allow for adding fresh atomic propositions in the model before evaluating the truth value of
a temporal-logic formula. That a state has at least two successors can then be expressed

∗ Work supported by STREP project Cassting (FP7-601148) and ERC Stg Grant EQualIS (FP7-308087).

© Amélie David, François Laroussinie, and Nicolas Markey;
licensed under Creative Commons License CC-BY

27th International Conference on Concurrency Theory (CONCUR 2016).
Editors: Josée Desharnais and Radha Jagadeesan; Article No. 28; pp. 28:1–28:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.28
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

28:2 On the Expressiveness of QCTL

(in quantified CTL, hereafter written QCTL) by saying that it is possible to label the model
with atomic proposition p in such a way there is a successor that is labelled with p and one
that is not.

The algorithmic questions about QCTL have been extensively studied [14, 7, 17, 8, 4, 15],
with various semantic assumptions (in particular, depending on whether the labellings refer
to the finite-state model or to its execution tree). In the latter case, model-checking QCTL
with at most k nested propositional quantifiers (written QkCTL) has been shown k-EXPTIME-
complete [15], which tends to indicate that propositional quantification substantially increases
the expressiveness of the logic.

However, the expressiveness of QCTL has remained mostly unexplored, except for a few
(rather straightforward) results: QCTL is as expressive as1 MSO; QCTL and QCTL∗ are
equally expressive; QCTL formulas can be written in prenex normal form. To the best of
our knowledge, no results are known about the relative expressiveness of QCTL and its
fragments QkCTL with limited quantification height.

In this paper, we focus on the so-called tree semantics, where quantification refers to the
execution tree. The main contributions presented in this paper are the following:

all logics from Q1CTL to full QCTL∗ have the same distinguishing power. We define a
bisimulation equivalence that precisely corresponds to the distinguishing power of these
logics.
given a regular tree T , one can build a characteristic formula ΦT in Q2CTL such that
any tree T ′ satisfying ΦT is isomorphic to T . This completes the result of [2], where
a construction of characteristic formulas in CTL was presented for the bisimulation
equivalence.
all logics from Q2CTL to QCTL∗ have the same expressiveness, but Q1CTL and Q1CTL∗

are less expressive. In particular, any QCTL or QCTL∗ formula can be translated into a
formula in Q2CTL (i.e., with at most two nested blocks of propositional quantifiers)2.

The outline of the paper is as follows: we begin with setting up the necessary formalism
in order to define QCTL∗ and its fragments. We then devote Section 3 to the study of the
distinguishing power of QkCTL, showing in particular that if QCTL can distinguish between
two finite-state models, then already Q1CTL can. We also develop characteristic formulas
in this section. Finally, Section 4 focuses on expressiveness, with as main result the fact
that any QCTL∗ formula has an equivalent formula in Q2CTL, but Q2CTL is strictly more
expressive than Q1CTL∗.

2 Definitions

2.1 Words and trees

Let Σ be a finite alphabet. A finite word over Σ is a finite sequence w = (wi)1≤i≤k. The in-
teger k is the length of w, usually denoted by |w|. We write ε for the empty word, which is the
unique word of size zero, and identify the alphabet Σ with the set of words of length 1 as long

1 This requires adequate definitions, since a temporal logic formula may only deal with the reachable part
of the model, while MSO has a more global point of view.

2 Notice that a similar result exists for MSO over trees: one alternation of second-order quantifiers is
enough to express any MSO property. But while it relies on similar tree-automata techniques, our result
does not directly follow from the result for MSO: the translated MSO formula may contain first-order
quantifiers, which involves extra propositional quantifiers when translated to QCTL.

A. David, F. Laroussinie, and N. Markey 28:3

as it raises no ambiguity. For a non-empty word w, we let last(w) = w|w|. The concatenation
of two words w and w′, denoted w · w′, is the word z of size |w|+ |w′| defined as

zi = wi when 1 ≤ i ≤ |w| zi = w′i−|w| when |w|+ 1 ≤ i ≤ |w|+ |w′|.

For a finite word w and a finite set of words S, we let w · S = {w · w′ | w′ ∈ S}. A word w
is a prefix of a word z if there exists a word w′ such that z = w · w′. This defines a partial
order ≤ over words. An infinite word is the limit of an infinite increasing sequence of finite
words; infinite words can equivalently be seen as infinite sequences of letters of Σ. The size of
an infinite word w is |w| = +∞. The notions of concatenation of a finite word with an infinite
word, and of prefix of an infinite word, are easily obtained from the definitions for finite words.
We write Σ∗ for the set of finite words, and Σω for the set of infinite words. Given an infinite
word w, we write Inf(w) ⊆ Σ for the set of letters that appear infinitely many times in w.

I Definition 1. Let D be a set and Σ be a finite alphabet. A Σ-labelled D-tree is a
pair T = 〈T, l〉, where

T ⊆ D∗ is a non-empty set of finite words on D satisfying the following constraints: for any
non-empty word x ∈ T , which can be written unequivocally as x = y · c with y ∈ D∗
and c ∈ D, the word y is in T . Moreover, we require that for every word y ∈ T , there
exists c ∈ D such that y · c ∈ T .
l : T → Σ is a labelling function.

Let T = 〈T, l〉 be a Σ-labelled tree. The elements of T are the nodes of T and the empty
word ε, which is easily shown to necessarily belong to T , is the root of T . Given a node
x ∈ T , we use SuccT (x) (or Succ(x) when the underlying tree is clear) to denote the set
of successors of x, defined as x · Σ ∩ T . The degree of x ∈ T , denoted dT (x) (or d(x)), is
the cardinality of Succ(x). A tree has bounded branching if the degree of all its nodes is
bounded. Given a node x ∈ T , we denote with Tx the subtree 〈Tx, lx〉 rooted at x, defined by
Tx = {y ∈ D∗ | x · y ∈ T}.

An (infinite) branch in T is an infinite increasing (for the prefix relation) sequence of
nodes. A branch can be identified with an infinite word ρ = (xi)i∈N over D; it can be
associated with the infinite word l(ρ) = (l(xi))i∈N over Σ. A branch ρ contains a node x
whenever x is a prefix of ρ.

2.2 Kripke structures
Fix a finite set AP of atomic propositions.

I Definition 2. A Kripke structure is a tuple K = 〈V,E, `〉 where V is a finite set of vertices,
E ⊆ V ×V is a set of edges (requiring that for any v ∈ V , there exists v′ ∈ V s.t. (v, v′) ∈ E),
and ` : V → 2AP is a labelling function.

A path in a Kripke structure is a finite or infinite word w over V such that (wi, wi+1) ∈ E
for all i < |w|. We write Path∗K and PathωK for the sets of finite and infinite paths of K,
respectively. Given a vertex v ∈ V , the execution tree of K from v is the 2AP-labelled
V -tree TK,v = 〈TK,v, ˆ̀〉 with TK,x = {w ∈ V ∗ | v · w ∈ Path∗K} and ˆ̀(v · w) = `(last(v · w)).
Notice that two nodes w and w′ of TK,v for which last(w) = last(w′) give rise to the same
subtrees. A tree is said regular when it corresponds to the execution tree of some finite
Kripke structure.

It will be convenient in some situations to allow Kripke structures to have infinitely many
states. For instance, a tree can be seen as an infinite-state Kripke structure.

CONCUR 2016

28:4 On the Expressiveness of QCTL

2.3 QCTL∗ and its fragments
This section is devoted to the definition of the logic QCTL∗ and its fragments, and to the
semantics of these logics.

2.3.1 Syntax and (tree) semantics
I Definition 3. The syntax of QCTL∗ over a finite set AP of atomic propositions is defined
by the following grammar:

QCTL∗ 3 ϕs, ψs ::= q | ¬ϕs | ϕs ∨ψs | Eϕp | Aϕp | ∃p. ϕs
ϕp, ψp ::= ϕs | ¬ϕp | ϕp ∨ψp | Xϕp | ϕpUψp

where q and p range over AP. Formulas ϕs and ψs are called state formulas, while ϕp and ψp
are path formulas. The size of a formula ϕ ∈ QCTL∗, denoted |ϕ|, is the number of steps
needed to built ϕ. The logic CTL∗ is obtained from QCTL∗ by disallowing rule ∃p. ϕs. The
logics QCTL and CTL are obtained by using path formulas built with the following grammar:

ϕp, ψp ::= Xϕs | ϕsUψs.

Finally, LTL is the fragment of CTL∗ containing exactly one path quantifier3 (E or A); it is
easily seen that any LTL formula can be written as Eϕ or Aϕ, where ϕ contains no path
quantifier.

QCTL∗ formulas are evaluated over (execution trees of) finite Kripke structures. We begin
with defining the semantics of CTL∗ (and CTL). Given a CTL∗ formula ϕ, an infinite 2AP-
labelled D-tree T = 〈T, l〉, a branch ρ and a node (i.e., a prefix) x of ρ, we write T , ρ, x |= ϕ

to denote that ϕ holds at x along ρ. This is defined inductively as follows:

T , ρ, x |= p iff p ∈ l(x)
T , ρ, x |= ¬ϕ iff T , ρ, x 6|= ϕ

T , ρ, x |= ϕ∨ψ iff T , ρ, x |= ϕ or T , ρ, x |= ψ

T , ρ, x |= Eϕp iff ∃ρ′ containing x. T , ρ′, x |= ϕp

T , ρ, x |= Aϕp iff ∀ρ′ containing x. T , ρ′, x |= ϕp

T , ρ, x |= Xϕp iff ∃a ∈ D. x · a ≤ ρ and T , ρ, x · a |= ϕp

T , ρ, x |= ϕpUψp iff ∃w ∈ D∗. x · w ≤ ρ and
T , ρ, x · w |= ψp and ∀w′ � w. T , ρ, x · w′ |= ϕp

In order to extend this definition to QCTL∗, we first introduce some extra definitions. For a
function l : T → 2AP and P ⊆ AP, we write l∩P for the function defined as (l∩P)(q) = l(q)∩P
for all x ∈ T . Now, for P ⊆ AP, two trees T = 〈T, l〉 and T ′ = 〈T ′, l′〉 are said P -equivalent
(denoted by T ≡P T ′) if T = T ′, and l ∩ P = l′ ∩ P . Then:

T , ρ, x |= ∃p. ϕs iff ∃T ′ ≡AP\{p} T s.t. T ′, ρ, x |= ϕs.

It is easily noticed that for any state formula ϕs of QCTL∗ and any two paths ρ and ρ′
containing node x, we have T , ρ, x |= ϕs if, and only if, T , ρ′, x |= ϕs. In view of this,

3 It is more usual to assume that LTL formulas contain no path quantifier at all; our definition allows for
a more uniform presentation, and fits better in our branching-time setting, making it clear how LTL
formulas are to be evaluated (existentially or universally) in a tree.

A. David, F. Laroussinie, and N. Markey 28:5

s t s′ t′u′

Figure 1 Two Kripke structures (with empty labelling functions) with s and s′ being bisimilar.

we define T , x |= ϕs in the natural way. Finally, for a Kripke structure K and one of its
states v, we write K, v |= ϕs whenever TK,v, ε |= ϕs.

In the sequel, we use standard abbreviations such as > = p∨¬p, ⊥ = ¬>, Fϕ = >Uϕ,
Gϕ = ¬F¬ϕ and ∀p. ϕs = ¬∃p. ¬ϕs. Also note that Aϕp = ¬E¬ϕp.

2.3.2 Discussion on the semantics.
Several other natural semantics coexist in the literature for propositional quantifiers. Above
we have introduced the tree semantics: ∃p. ϕ holds true when there exists a p-labelling of
the execution tree of the Kripke structure under which ϕ holds. Therefore two nodes (in the
tree) corresponding to the same state of the Kripke structure may be labelled differently
with the newly-quantified propositions. For example, in the Kripke structure depicted at
Fig. 1, we have: s |= ∃p.(EX p∧ EX EX ¬ p), because it is possible to label only the first
occurrence of t with p in the execution tree of this Kripke structure.

Another classical semantics (called the structure semantics) consists in labelling the
Kripke structure directly. With this semantics, ∃p.(EX p∧ EX EX ¬ p) would not hold
true in state s of Fig. 1: all the occurrences of state t in the execution tree would be labelled
the same way.

These two semantics have very different properties (see [15] for a deeper study of these
semantics). But none of them make QCTL bisimulation-invariant4: as we exemplify in the
next section, under both semantics, QCTL can count the number of successors of a given
state (and thus distinguish between states s and s′ in Fig. 1, even though they are bisimilar).

Finally, let us mention the amorphous semantics [7], where ∃p. ϕ holds true at a state s
in some Kripke structure K if, and only if, there exists some Kripke structure K′ with a state
s′ such that s and s′ are bisimilar and for which there exists a p-labeling making ϕ hold true
at s′. With this semantics, the logic is insensitive to unwinding, and more generally it is
bisimulation-invariant (for example, states s and s′ of Fig. 1 satisfy the same formulas). This
semantics corresponds to bisimulation quantification as studied in [5, 9].

2.3.3 Fragments of QCTL∗.
The central topic of this paper is the hierarchy of temporal logics defined by restricting
quantifications in QCTL formulas. We define this hierarchy here. Given QCTL∗ (state)
formulas ϕ and (ψi)i, and atomic propositions (pi)i that appear free in ϕ (i.e., not as
quantified propositions), we write ϕ[(pi → ψi)i] (or ϕ[(ψi)i] when (pi)i are understood from
the context) for the formula obtained from ϕ by replacing each occurrence of pi with ψi.
Given two sublogics L1 and L2 of QCTL∗, we write L1[L2] = {ϕ[(ψi)i] | ϕ ∈ L1, (ψi)i ∈ L2}.

For a set P = {pi | 1 ≤ i ≤ k} ⊆ AP, we define blocks of existential quantifiers ∃P. ϕ as
a shorthand for ∃p1. ∃p2 . . . ∃pk. ϕ. We write EQ1CTL for the set of formulas of the form
∃P. ϕ for ϕ ∈ CTL, and define Q1CTL = CTL[Q1CTL] and Qk+1CTL = Q1CTL[QkCTL].

4 The notion of bisimulation is formally defined in Section 2.4.

CONCUR 2016

28:6 On the Expressiveness of QCTL

I Example 4. Consider formula

E1Xϕ = EXϕ∧¬∃p.
(
EX (p∧ϕ)∧ EX (¬ p∧ϕ)

)
(where we assume that p does not appear in ϕ). This Q1CTL formula states that there is exactly
one successor satisfying ϕ: if there were two of them, then labelling only one of them with p
would falsify the formula. Now, for P = {pi | 1 ≤ i ≤ k} ⊆ AP, consider the following formula

ϕdupl(P) = ∃{q1, q2}. E1X (q1)∧ E1X (q2)∧ AX (¬ q1 ∨¬ q2)∧∧
p∈P

(
EX (q1 ∧ p)⇔ EX (q2 ∧ p)

)
.

where P ∩ {q1, q2} = ∅. This formula in Q2CTL holds true whenever there are two different
successor nodes that carry the same atomic propositions of P . Formula ϕexp = ∀P. ϕdupl(P)
in Q3CTL is then true in nodes that have at least 2k +1 successors: it states that any labelling
with P gives rise to at least two successors with the exact same labelling. Of course, a simpler
formula could be obtained for expressing the existence of exactly k successors satisfying a
given property; for instance:

EkXϕ = ∃P.
[∧

1≤i≤k
E1X pi ∧

∧
1≤i6=j≤k

AX ¬
(
pi ∧ pj

)
∧ AX

((∨
1≤i≤k

pi
)
⇔ϕ

)]
.

This formula is in Q2CTL. We can express that at least k successors satisfy ϕ in Q1CTL as
follows:

E≥kXϕ = ∃P.
(∧

1≤i≤k
EX

(
pi ∧

∧
i′ 6=i

¬ pi′
)
∧ AX

((∨
1≤i≤k

pi
)
⇒ϕ

))
.

2.4 Expressive power and distinguishing power
In the sequel, we compare the relative expressiveness of the fragments QkCTL. Several criteria
are classically used to compare the expressiveness of temporal logics: one can compare their
ability to distinguish between models (the distinguishing power), their ability to express
properties (the expressive power), or their succinctness. In this paper, we only consider the
former two notions, which we now formally define.

Distinguishing power. A logic L is said to be at least as distinguishing as another logic L′
over a classM of models, denoted L ≥M L′ (we may omit to mentionM when it is clear
from the context), whenever any two states s and s′ of any two structures K and K′ inM
that are L-equivalent (i.e., for all ϕ ∈ L, it holds K, s |= ϕ if, and only if, K′, s′ |= ϕ) are
also L′-equivalent. Both logics are said equally distinguishing, written L ≡M L′, if L ≥M L′,
and L′ ≥M L; finally, L is strictly more distinguishing than L′, denoted L >M L′, whenever
L ≥M L′, and L′ 6≥M L. In our setting,M is the class of all finite Kripke structures.

For classical branching-time temporal logics, it is well known [10] that CTL∗, CTL, and
the fragment B(X) of CTL not involving the Until modality, all have the same distinguishing
power. Note also that the distinguishing power is often related to some behavioral equivalence.
Here we recall the classical notion of (strong) bisimulation: given two Kripke structures K =
〈V,E, `〉 and K′ = 〈V ′, E′, `′〉, a relation R ⊆ V ×V ′ is a bisimulation when for any (v, v′) ∈ R,
the following properties hold:

`(v) = `′(v′);
for any transition (v, w) ∈ E, there is a transition (v′, w′) ∈ E such that (w,w′) ∈ R;

A. David, F. Laroussinie, and N. Markey 28:7

for any transition (v′, w′) ∈ E, there is a transition (v, w) ∈ E such that (w,w′) ∈ R.
Two states v and v′ are bisimilar (denoted by v ∼ v′) whenever there exists a bisimulation
relation R such that (v, v′) ∈ R.

Bisimilarity characterizes the distinguishing power of CTL∗, CTL and B(X) for finitely-
branching Kripke structures: in particular, two bisimilar states cannot be distinguished
by CTL [10]. For instance, CTL cannot distinguish between a finite Kripke structure and its
execution tree.

Expressive power. A logic L is said to be at least as expressive as a logic L′ over a classM
of models, which we denote by L �M L′ (omitting to mention M if it is clear from the
context), whenever for any formula ϕ′ ∈ L′, there is a ϕ ∈ L such that ϕ and ϕ′ are
equivalent overM. Both logics L and L′ are equally expressive, denoted L uM L′, when
L � L′ and L′ � L; finally, L is strictly more expressive than L′, written L �M L′, if L � L′
and L′ 6� L.

One easily notices that expressive power is finer than distinguishing power: being more
distinguishing implies being more expressive. The converse is not true: for instance, CTL∗ is
strictly more expressive than CTL [6], and CTL is strictly more expressive than B(X).

3 Distinguishing power of QCTL

In this section, we prove the following:

I Theorem 5. Over finite Kripke structures, CTL < Q1CTL ≡ QkCTL ≡ QkCTL∗ ≡ QCTL ≡
QCTL∗ for k ≥ 1.

That CTL < Q1CTL is easily observed, for instance using the Kripke structures of Fig. 1:
states s and s′ are bisimilar, thus equivalent for CTL, but formula E1X> (“there is exactly
one successor”) is true in s and false in s′. We now prove the equivalences of Theorem 5.

3.1 Characteristic formulas with QCTL
As said above, CTL has enough power to distinguish between two non-bisimilar states. More
precisely, given a finite Kripke structure K and a state v, one can build a CTL formula αK,v
such that for any Kripke structure K′ and any state v′, we have: K′, v′ |= αK,v if, and only if,
v ∼ v′ [2].

For QCTL and QCTL∗, the appropriate behavioural equivalence is the isomorphism of
the execution tree. Two trees T = 〈T, `〉 and T ′ = 〈T ′, `′〉 are said isomorphic if there exists
a bijection ϕ : T → T ′ such that `′(ϕ(t)) = `(t) for all t, and ϕ(εT) = εT ′ and ϕ(u) is a
successor of ϕ(t) in T ′ if, and only if, u is a successor of t in T . As we now explain, QCTL
can capture the behaviour of K up to tree isomorphism: there exists a Q2CTL formula βK,v
such that for any tree T ′, it holds T ′ |= βK,v if, and only if, TK,v and T ′ are isomorphic.

Given a finite Kripke structure K = 〈V,E, `〉, and a vertex v ∈ V = {v0, . . . , vn}, we define
the Q2CTL formula βK,v as follows:

βK,v = ∃V.
[
v ∧ AG

n∧
i=0

(
vi ⇒

(∧
j 6=i
¬vj ∧

∧
p∈`(vi)

p∧
∧

p∈AP\V ∪`(vi)

¬ p∧

¬ E≥d(vi)+1X>∧
∧

(vi,vj)∈E

E1X vj

)]

CONCUR 2016

28:8 On the Expressiveness of QCTL

Formula βK,v holds true at the root of a tree T ′ when it is possible to associate with every
node of T a state v of K in such a way that this node will behave exactly as v (same labelling
and same successors).

I Lemma 6. Let K = (V,E, `) be a finite Kripke structure, and v ∈ V . For any tree
T ′ = (T ′, `′), we have: T ′, εT ′ |= βK,v if, and only if, TK,v and T ′ are isomorphic.

Lemma 6 shows that Q2CTL is powerful enough to distinguish between two finite Kripke
structures that do not have isomorphic execution trees. Conversely:

I Lemma 7. Two finite Kripke structures that have isomorphic execution trees cannot be
separated by QCTL∗.

3.2 Q1CTL, QCTL and QCTL∗ have the same distinguishing power
We show in this section that Q1CTL is sufficient to separate non-isomorphic trees.

I Proposition 8. Q1CTL has the same distinguishing power as QCTL and QCTL∗ over finite
Kripke structures.

Proof. Given a finite tree U , we can easily define a Q1CTL formula γU expressing that U is
embedded as a subtree, in the following sense: any infinite tree T satisfying γU contains a
subtree that is isomorphic to U . Write U = {pi | 0 ≤ i ≤ k} for the set of nodes of U (with
p0 = εU being the root of U). Formula γU first existentially quantifies over p0, . . . , pk (seen
here as atomic propositions), labelling nodes of T with names of nodes of U . Then γU checks
that

p0 holds true initially;
at most one pi can be true at a time;
if pj is a successor of pi in U , then γU enforces AG (pi⇒ EX pj);
the labelling function of T matches that of U .

Notice that we do not prevent any of the pi to hold true at several places, which would require
an extra universal quantification. Obviously, any tree T containing a subtree isomorphic to U
satisfies γU . The converse also holds: assuming T has been labelled with {pi | 0 ≤ i ≤ k},
we extract a subtree V as follows: the root of T (labelled with p0) is in V, and for each
node n in V labelled with some pi, for each successor pj of pi in U , we insert into V exactly
one successor of n labelled with pj (γU enforces the existence of such a node). It is easily
seen that V is isomorphic to U .

Now, if two regular trees are not isomorphic, there must exist a finite subtree U of one
of them that cannot be embedded into the second one. Then γU will distinguish between
these two trees. It follows that Q1CTL and QCTL (and QCTL∗) have the same distinguishing
power over finite Kripke structures. J

3.3 Behavioural equivalences for QkCTL
We conclude our study of the fragments of QCTL by defining intermediary notions of
bisimulations which we prove characterize each level of the QkCTL hierarchy. We begin with
defining those refined bisimulations. In this definition, for two labelling functions ` : T → 2AP

and ν : T → 2P with P ⊆ AP, we write ` ◦ ν : T → 2AP for the labelling function mapping
each t ∈ T to [`(t) ∩ (AP \ P)] ∪ ν(t).

I Definition 9. Consider two regular trees T = 〈T, `〉 and T ′ = 〈T ′, `′〉. A relation
R ⊆ T × T ′ is a k-labelling bisimulation if R is a bisimulation and either k = 0, or k > 0 and

A. David, F. Laroussinie, and N. Markey 28:9

for any (t, t′) ∈ R, for any P ⊆ AP and any regular labelling ν : T → 2P (resp. ν′ : T → 2P),
there exists a regular labelling ν′ : T ′ → 2P (resp. ν : T → 2P) such that there exists a
(k−1)-labelling bisimulation in the trees U = 〈T, `∪ν〉 and U ′ = 〈T ′, `′∪ν′〉 containing (t, t′).
We write t ≈k t′ when there exists a k-labelling bisimulation containing (t, t′).

Notice that for all k, it holds ≈k+1 ⊆ ≈k. The relation ≈∞ can thus be defined as the
limit of these sequences of relations.

In this definition, with regular labelling of a regular tree 〈T, `〉, we mean a labelling ν such
that 〈T, `◦ν〉 is still regular. We let ∃rp.ϕ be a new QCTL∗ modality where the quantification
ranges only over regular labellings. Formally:

T , ρ, x |= ∃rp.ϕ iff ∃ν : T → 2{p}. ν is regular and 〈T, ` ◦ ν〉, ρ, x |= ϕ.

Quantifying over regular labelling does not restrict the expressive power of our logics:

I Lemma 10. Given a finite Kripke structure K, a state s, and a QCTL∗ formula ∃p.ϕ,

K, s |= ∃p.ϕ iff K, s |= ∃rp.ϕ

Fix two Kripke structures K and K′, and a logic L (intended to range over QkCTL
and QkCTL∗). For any two states s and s′, in K and K′ respectively, we write s ≡L s′ when
s and s′ are L-equivalent (i.e., when they cannot be distinguished by L). It is easily noticed
that if L ⊆ L′, then ≡L′ ⊆ ≡L.

I Lemma 11. Over finite Kripke structures, for any k ≥ 0, the relations ≈k, ≡QkCTL
and ≡QkCTL∗ coincide. More precisely, for any two states s and s′,

s ≈k s′ iff s ≡QkCTL s
′ iff s ≡QkCTL∗ s

′.

As a corollary of Lemmas 6, 7 and 11, we get:

I Corollary 12. For every k, k′, k′′ ≥ 2, the relations ≡QkCTL∗ , ≡Qk′CTL, ≡QCTL, ≈k′′ ,
and ≈∞ coincide.

4 Expressive power of QCTL

We now focus on the relative expressive power of the QkCTL hierarchy. Notice that being
more distinguishing implies being more expressive. Hence we already have CTL ≺ Q1CTL.
In this section, we prove the following:

I Theorem 13. Over finite Kripke structures, CTL ≺ Q1CTL � Q1CTL∗ ≺ Q2CTL u
QkCTL u QkCTL∗ u QCTL u QCTL∗ for k ≥ 2.

4.1 Q2CTL is strictly more expressive than Q1CTL and Q1CTL∗

In order to prove this, we have to exhibit a formula of Q2CTL with no equivalent formula
in Q1CTL. First consider the Kripke structures depicted at Fig. 2. Those structures depend
on an integer parameter p. As stated in the following lemma, these structures cannot be
distinguished by any Q1CTL∗ formula of size less than p:

I Lemma 14. For the Kripke structures Kp and K′p of Fig. 2, and for any ϕ ∈ Q1CTL∗ of
size less than p it holds Kp, s0 |= ϕ if, and only if, K′p, s′0 |= ϕ.

CONCUR 2016

28:10 On the Expressiveness of QCTL

Kp s0

r ta
[p]

[2]

K′p s′0

r ta
[2] [p]

[2]

Figure 2 The states s0 and s′
0 can be distinguished by E1X (E1X a) (we use double arrows

labelled with [k] to indicate the presence of k arrows).

I Theorem 15. We have Q2CTL � Q1CTL and Q2CTL � Q1CTL∗.

Proof. Q1CTL is syntactically contained in Q2CTL, so that Q2CTL � Q1CTL. Moreover,
from Theorem 16, every QCTL∗ formula can be expressed in Q2CTL, i.e. Q2CTL � QCTL∗,
which in particular entails Q2CTL � Q1CTL∗.

Moreover the Q2CTL formula E1X (E1X a) (which states that there exists a unique path
leading to a state where there is a unique successor verifying a) allows us to distinguish the
trees of Fig. 2 (for any p): indeed E1X (E1X a) holds true in s0, but not in s′0.

Now assume that E1X (E1X a) have an equivalent formula in Q1CTL∗. On the one hand,
for any p, this formula would holds true in s0 and not in s′0; on the other hand, it would
have a given size p0, and according to Lemma 14 it could not distinguish between s0 and s′0.
Hence E1X (E1X a) has no Q1CTL∗ formula. J

4.2 QCTL and Q2CTL are equally expressive

In this section we prove that the hierarchies QkCTL and QkCTL∗ also collapse in terms of
expressive power. We propose an effective translation, using symmetric tree automata, which
proves the following result:

I Theorem 16. Any QCTL∗ formula can be translated into an equivalent formula in Q2CTL.

4.2.1 Symmetric tree automata

We consider here so-called symmetric tree automata (i.e., automata over unranked trees
of arbitrary branching), borrowing formalism from MSO-automata of [12, 13, 24], in order
to prove that the expressiveness hierarchy of QkCTL collapses: the proof consists in first
translating any QCTL formula into a (symmetric) tree automaton, and then expressing
acceptance of such a tree automaton as a Q2CTL formula. Using “classical” tree automata
(as in [16]), the second step would not be possible (at least not easily), as QCTL cannot
distinguish the different successors in a ranked tree; moreover, it would only provide an
equivalent formula for a limited branching degree.

In the literature, a similar construction is done for MSO [23, 11, 1, 24]: MSO-automata
are powerful tree automata whose transition functions are defined with first-order-logic
formulas (where the states of the automata are used as unary predicates); this provides a
powerful way of describing transition functions for unranked trees with arbitrary branching.
Then any MSO formula ϕ can be turned into a MSO-automaton Aϕ recognizing exactly the
trees satisfying ϕ. Here we use an slightly different (but equally expressive) model of tree
automata, which correspond to MSO-automata where transition functions are in a so-called
basic form (see [24] for full details). Formally:

A. David, F. Laroussinie, and N. Markey 28:11

I Definition 17. Fix an alphabet Σ. A symmetric parity tree automaton over Σ is a
tuple A = 〈Q, q0, δ,Ω〉 where

Q is the finite set of states of the automaton, and q0 is the initial state;
δ : Q× Σ→ 2(N2Q

×22Q
) is the transition function;

Ω: Q→ N defines the parity acceptance condition.

An execution of such a tree automaton 〈Q, q0, δ,Ω〉 over a Σ-labelled D-tree T = 〈T, l〉 is
a Q× T -labelled Q×D-tree T ′ = 〈T ′, l′〉 satisfying the following requirements:

l′(εT ′) = (q0, εT), and for any node n = (qi, di)1≤i≤k, it holds l′(n) = (qk, (di)1≤i≤k);
for any node n = (qi, di)1≤i≤k of T ′, there is a tuple (E,U) ∈ δ(l′(n)) such that, writing
e =

∑
s∈2Q E(s) and viewing E as a multiset {Ej | 1 ≤ j ≤ e}, there exists a set

∆ = {d′j | 1 ≤ j ≤ e} of e distinct directions in D such that
for all 1 ≤ j ≤ e, it holds (di)1≤i≤k · d′j ∈ T ,
for all 1 ≤ j ≤ e, and for all q ∈ Ej , node n · (q, d′j) is in T ′,
for all node (di)1≤i≤k+1 in T such that dk+1 /∈ ∆, for there exists q ∈ U , such that for
all q ∈ q, node n · (q, dk+1) is in T ′.

A branch of an execution tree is accepting if its associated sequence of states of A satisfies
the parity condition (the least priority appearing infinitely often is even). An execution tree
is accepting whenever all its branches are. The language L(A) of such an automaton A is
the set of trees over which A has an accepting execution tree.

I Example 18. Let AP = {a, b} and Σ = 2AP. Let A be the automaton with states {q0, q1, q2},
with q0 being the initial state, and with

δ(q0, σ) =
{

(q1 7→ 1; q0) if a ∈ σ
(∅; q0) otherwise

δ(q1, σ) =

(∅; q2) if b /∈ σ
(q1 7→ 1; q0) if a, b ∈ σ
(∅; q0) otherwise

and δ(q2, σ) = (∅; q2) for any σ. The transition δ(q0, a) = (q1 7→ 1; q0) means that when the
automaton is visiting some node n in state q0, one successor of n will be visited in state q1,
and all the other nodes will be visited in state q0. Similarly, δ(q2, σ) = (∅; q2) indicates that
when the automaton is in state q2, it will remain in state q2 when visiting all the successors
of the node being visited; in this case, ∅ represents the empty multiset, or equivalently the
constant function 0. In the end, assuming that q0 and q1 are accepting (Büchi condition),
this automaton accepts those tree in which any node labelled with a has a successor labelled
with b.

As defined above, symmetric tree automata are alternating, in the sense that they may
launch several computations along the same subtree of the input tree. A symmetric tree
automaton is said non-alternating5 when the transition function takes values in 2(NQ×2Q).
One may notice that in this case, any execution tree can be seen as a D-tree, instead of a
Q×D-tree. The automaton of Example 18 is non-alternating.

It is not difficult to notice that symmetric tree automata are closed under union: given
two symmetric tree automata A and B, there exists a tree automaton C accepting the union

5 The classical terminology for this class of automata is non-deterministic, for historical reasons. We prefer
using non-alternating, which better characterizes this class.

CONCUR 2016

28:12 On the Expressiveness of QCTL

of the set of trees accepted by A and B. Similarly, non-alternating symmetric tree automata
are easily seen to be closed under projection.

Symmetric tree automata can also be proven to be closed under complement; this however
involves dualizing the transition function and writing it back under the expected basic
form. Finally, any symmetric tree automaton can be transformed into a non-alternating one
accepting the same set of trees. This can be achieved by a refined powerset construction, as
explained in [24]. In the end:

I Theorem 19 ([24]). Any symmetric tree automaton can be made non-alternating. Non-
alternating symmetric tree automata are closed under union, intersection, projection and
complement.

4.2.2 From QCTL to symmetric tree automata
In this section, we briefly explain how a state formula of QCTL∗ can be translated into a (non-
alternating) symmetric tree automaton accepting the same tree language. This construction
follows the same ideas as explained in [16]: in that paper however, the construction builds
a “classical” tree automaton, running on bounded-branching ranked trees. The translation
back to QCTL is not possible for such tree automata, as QCTL cannot distinguish between
ranked successors of a node.

The construction is inductive, using Theorem 19 for the various rules defining state-
formulas of QCTL∗. The basic cases of atomic propositions and boolean operations are
easy to handle. Existential quantification over atomic propositions is handled by projection:
given a tree automaton Aϕ corresponding to a QCTL∗ formula ϕ, the projection of Aϕ from
alphabet 2AP to alphabet 2AP\{p} yields a tree automaton characterizing formula ∃p. ϕ.

Finally, formulas of the form Eϕp and Aϕp are handled by considering word automata
for the path formula ϕp: nested QCTL subformulas can be handled separately, by induction,
and replaced by fresh atomic propositions. The resulting formula ϕ̃p is a pure LTL formula,
and can be turned into a deterministic parity word automaton, which in turn is easily turned
into a symmetric tree automaton for Eϕ̃p or Aϕ̃p. The nested QCTL subformulas can then
be included back by plugging the corresponding symmetric tree automata where needed.

Notice that this construction involves several exponential blowups in the size of the
automaton and in the number of priorities. Since model checking QkCTL formulas is
k-EXPTIME-complete, there is no hope of avoiding this non-elementary explosion in the
construction of the automaton (because our translation back into Q2CTL is linear in the size
of the automaton, as we explain below).

4.2.3 From symmetric tree automata to Q2CTL
In this section, we turn a non-alternating symmetric tree automaton A = (Q, q0, δ,Ω) into a
QCTL formula ΦA such that T ∈ L(A)⇔ T , ε |= ΦA for any 2AP-labelled tree T .

We begin with a preliminary lemma, which we believe is interesting in itself but will be
used in a special case in the sequel.

I Lemma 20. For any LTL formula Eϕ, there exists a Q1CTL formula Ψ Eϕ such that for
all tree T , it holds T , ε |= Eϕ if, and only if, T , ε |= Ψ Eϕ.

Proof. Following classical techniques [22, 21], we associate with ϕ a Büchi (word) automaton
Bϕ = 〈Q, q0, δ, F 〉 accepting exactly the set of infinite words in which ϕ holds. The auto-
maton Bϕ is a non-deterministic word automaton, so that for any q ∈ Q and any σ ∈ 2AP,

A. David, F. Laroussinie, and N. Markey 28:13

it holds δ(q, σ) ⊆ Q. The acceptance condition is defined in terms of a set F ⊆ Q of states:
an execution is accepting if some state of F is visited infinitely many times.

We use this automaton in order to write a Q1CTL-formula characterizing those trees
containing (at least) one branch accepted by Bϕ. The formula expresses that the tree can be
(partially) labelled with states of Bϕ in such a way that at least one branch is fully labelled
with a sequence of states corresponding to an accepting run of Bϕ. Following this intuition,
we use the states of Q = {qi | 0 ≤ i ≤ n = |Q| − 1} as new atomic propositions. For the
sake of readability, we define the following two shorthand formulas: for a subset S ⊆ Q,
formula λS is the propositional formula

∨
q∈S q, while for P, P ′ ⊆ AP, we write χP,P ′ for∧

p∈P p∧
∧
p′∈P ′ ¬ p′. We then let Ψ Eϕ = ∃q0 . . . ∃qn. Ψ̃ Eϕ, with Ψ̃ Eϕ being defined as

q0 ∧
n∧
i=0

AG
(
qi⇒

(
¬λQ\{qi} ∧

[∨
P⊆AP′

(χP,AP′\P ∧ EXλδ(qi,P) ∧¬ EXλQ\δ(qi,P))
]))

∧
(
AG AF (¬λQ ∨λF)

)
where AP′ stands for AP \ {q0, . . . , qn}. Formula Ψ Eϕ reads as follows: it is possible to label
the input tree with propositions (qi)0≤i≤n in such a way that the root is labelled with q0,
and any node labelled with some qi is not labelled with any other state and has a successor
node labelled with a possible successor state of Bϕ. This in particular entails that at least
one branch ρ is fully labelled with states of Q. Finally, the second part of the formula asserts
that any branch has to fulfill the Büchi acceptance condition or to contain unlabelled nodes.
In particular, the branch ρ identified above satisfies the Büchi condition.

It is now easy to prove equivalence of Eϕ and Ψ Eϕ:
consider a tree T = 〈T, l〉 in which one branch ρ satisfies ϕ: then Bϕ has an accepting
run on l(ρ), and this run can be used to label T with states of Bϕ so as to fulfill Ψ̃ Eϕ;
conversely, if T can be labelled with states of Q in order to fulfill Ψ̃ Eϕ, then one branch
has to be fully labelled, and each node along that branch will be labelled with exactly
one state of Q. Formula Ψ Eϕ then enforces that the labelling of consecutive nodes is
coherent with the transition function of Bϕ, and that it satisfies the Büchi condition. J

We now describe our main construction: we consider a non-alternating symmetric parity
tree automaton A = 〈Q, q0, δ,Ω〉, where Q = {qi | 0 ≤ i ≤ n = |Q|−1} and δ(q, σ) ⊆ NQ×2Q
is a set of pairs (E,U) with E : Q → N and U ⊆ Q. For such a pair (E,U), we write
k(E) =

∑
q∈QE(q), and we let kmax be the largest such value appearing in δ. We also see E

as a multiset {Ei | 1 ≤ i ≤ k(E)}.
Reusing ideas (and notations) of the proof of Lemma 20, and with AP′ = AP\{q0, . . . , qn,

p1, . . . , pkmax}, our formula ΦA is written as ∃q0 . . . ∃qn.∃p1 . . . ∃pkmax . Φ̃A, where Φ̃A is
defined as

q0 ∧
n∧
i=0

AG
[
qi ⇒

(
¬λQ\{qi} ∧

∨
P⊆AP′

(
χP,AP′\P ∧

∨
(E,U)∈δ(qi,P)

Ψ(E,U)
))]
∧¬Ψ E¬ parity(Ω)

where Ψ(E,U) encodes the transition (E,U) of A and Ψ E¬ parity(Ω) encodes the parity accept-
ance condition. Using Lemma 20, the latter formula can be expressed as a Q1CTL formula
(since parity acceptance condition can be expressed in LTL). Now, we let

Ψ(E,U) =
k(E)∧
j=1

[
E1X pj ∧ EX

(
pj ∧

∧
1≤j′≤kmax
∧ j′ 6=j

¬pj′ ∧Ej
)
∧ AX

(
(
k∧
j=1
¬pj)⇒

∨
q∈U

q
)]

CONCUR 2016

28:14 On the Expressiveness of QCTL

Note that Ψ(E,U) belongs to Q1CTL (because it uses E1X pj), so that ΦA is in Q2CTL. It is
not hard to see that ΦA characterizes the behaviour of A, since the labelling of a tree T
with {qi | 0 ≤ i ≤ n} corresponds to an execution tree of A on T . This ends the proof of
Theorem 16.

5 Concluding remarks

We see two main directions for future work. First it would be interesting to consider the
expressiveness of QCTL∗ fragments when the size of block of quantifiers (i.e. the number of
atomic propositions used in a block) is bounded (several of our proofs use arbitrary many
propositions). The second direction is to analyze the expressiveness of these logics in the
context of the structure semantics (when the labellings apply to Kripke structures instead of
execution trees) in order to see whether the hierarchy also collapses for this semantics.

References
1 D. Berwanger and A. Blumensath. The monadic theory of tree-like structures. In Automata,

Logics, and Infinite Games, volume 2500 of LNCS, pages 285–302. Springer, 2002.
2 M. C. Browne, E. M. Clarke, and O. Grumberg. Characterizing finite Kripke structures in

propositional temporal logic. Theoretical Computer Science, 59(1-2):115–131, 1988.
3 E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization skeletons using

branching-time temporal logic. In LOP’81, volume 131 of LNCS, pages 52–71. Springer,
1982.

4 A. Da Costa, F. Laroussinie, and N. Markey. Quantified CTL: Expressiveness and model
checking. In CONCUR’12, volume 7454 of LNCS, pages 177–192. Springer, 2012.

5 G. D’Agostino and M. Hollenberg. Logical questions concerning the µ-calculus: Interpola-
tion, lyndon and łoś-tarski. Journal of Symbolic Logic, 65(1):310–332, 2000.

6 E. A. Emerson and J. Y. Halpern. "Sometimes" and "not never" revisited: On branching
versus linear time temporal logic. Journal of the ACM, 33(1):151–178, 1986.

7 T. French. Decidability of quantified propositional branching time logics. In AJCAI’01,
volume 2256 of LNCS, pages 165–176. Springer, 2001.

8 T. French. Quantified propositional temporal logic with repeating states. In TIME-
ICTL’03, pages 155–165. IEEE Comp. Soc. Press, 2003.

9 T. French. Bisimulation Quantifiers for Modal Logics. Ph.D. thesis, School of Computer
Science & Software Engineering, University of Western Australia, 2006.

10 M. C. B. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency.
Journal of the ACM, 32(1), 1985.

11 D. Janin and G. Lenzi. On the relationship between monadic and weak monadic second
order logic on arbitrary trees. Fundamenta Informaticae, 61(3-4):247–265, 2004.

12 D. Janin and I. Walukiewicz. Automata for the modal µ-calculus and related results. In
MFCS’95, volume 969 of LNCS, pages 552–562. Springer, 1995.

13 J. Johannsen and M. Lange. CTL+ is complete for double exponential time. In ICALP’03,
volume 2719 of LNCS, pages 767–775. Springer, 2003.

14 O. Kupferman. Augmenting branching temporal logics with existential quantification over
atomic propositions. In CAV’95, volume 939 of LNCS, pages 325–338. Springer, 1995.

15 F. Laroussinie and N. Markey. Quantified CTL: expressiveness and complexity. Logicical
Methods in Computer Science, 10(4), 2014.

16 F. Laroussinie and N. Markey. Augmenting ATL with strategy contexts. Information and
Computation, 245:98–123, 2015.

A. David, F. Laroussinie, and N. Markey 28:15

17 A. C. Patthak, I. Bhattacharya, A. Dasgupta, P. Dasgupta, and P. P. Chakrabarti. Quan-
tified computation tree logic. Information Processing Letters, 82(3):123–129, 2002.

18 A. Pnueli. The temporal logic of programs. In FOCS’77, pages 46–57. IEEE Comp. Soc.
Press, 1977.

19 J.-P. Queille and J. Sifakis. Specification and verification of concurrent systems in CESAR.
In SOP’82, volume 137 of LNCS, pages 337–351. Springer, 1982.

20 A. P. Sistla. Theoretical Issues in the Design and Verification of Distributed Systems. PhD
thesis, Harvard University, Cambridge, Massachussets, USA, 1983.

21 M. Y. Vardi. Nontraditional applications of automata theory. In TACS’94, volume 789 of
LNCS, pages 575–597. Springer, 1994.

22 M. Y. Vardi and P. Wolper. Automata theoretic techniques for modal logics of programs.
Journal of Computer and System Sciences, 32(2):183–221, 1986.

23 I. Walukiewicz. Monadic second order logic on tree-like structures. Theoretical Computer
Science, 275(1-2):311–346, 2002.

24 F. Zanasi. Expressiveness of Monadic Second-Order Logics on Infinite Trees of Arbitrary
Branching Degrees. Master’s thesis, Amsterdam University, the Netherlands, 2012.

CONCUR 2016

Model Checking Flat Freeze LTL on One-Counter
Automata∗

Antonia Lechner1, Richard Mayr2, Joël Ouaknine†3,
Amaury Pouly†4, and James Worrell5

1 Department of Computer Science, University of Oxford, UK
antonia.lechner@cs.ox.ac.uk

2 School of Informatics, LFCS, University of Edinburgh, UK
http://homepages.inf.ed.ac.uk/rmayr/

3 Department of Computer Science, University of Oxford, UK
joel.ouaknine@cs.ox.ac.uk

4 Department of Computer Science, University of Oxford, UK
amaury.pouly@cs.ox.ac.uk

5 Department of Computer Science, University of Oxford, UK
james.worrell@cs.ox.ac.uk

Abstract
Freeze LTL is a temporal logic with registers that is suitable for specifying properties of data
words. In this paper we study the model checking problem for Freeze LTL on one-counter
automata. This problem is known to be undecidable in full generality and PSPACE-complete for
the special case of deterministic one-counter automata. Several years ago, Demri and Sangnier
investigated the model checking problem for the flat fragment of Freeze LTL on several classes of
counter automata and posed the decidability of model checking flat Freeze LTL on one-counter
automata as an open problem. In this paper we resolve this problem positively, utilising a known
reduction to a reachability problem on one-counter automata with parameterised equality and
disequality tests. Our main technical contribution is to show decidability of the latter problem
by translation to Presburger arithmetic.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases One-counter automata, disequality tests, reachability, freeze LTL, Pres-
burger arithmetic

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2016.29

1 Introduction

Runs of infinite-state machines, such as counter automata, can naturally be seen as data
words, that is, sequences in which each position is labelled by a letter from a finite alphabet
and a datum from an infinite domain. Freeze LTL is an extension of Linear Temporal Logic
with registers (or variables) and a binding mechanism, which has been introduced to specify
properties of data words [3, 4, 8, 11]. The registers allow to compare data at different
positions along the same computation.

An example of a freeze LTL formula is

F(v ∧ ↓r XF(v ∧ ↑r)) . (1)

† Supported by ERC grant AVS-ISS (648701).
∗ See full version at https://arxiv.org/abs/1606.02643

© Antonia Lechner, Richard Mayr, Joël Ouaknine, Amaury Pouly, and James Worrell;
licensed under Creative Commons License CC-BY

27th International Conference on Concurrency Theory (CONCUR 2016).
Editors: Josée Desharnais and Radha Jagadeesan; Article No. 29; pp. 29:1–29:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.29
https://arxiv.org/abs/1606.02643
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

29:2 Model Checking Flat Freeze LTL on One-Counter Automata

Evaluated on a run of a one-counter automaton, this formula is true if and only if there
are at least two different positions in the run which both have control state v and the same
counter value. Intuitively the operator ↓r binds the current counter value to register r, while
the operator ↑r tests whether the current counter value is equal to the content of register r.

This paper concerns the model checking problem for Freeze LTL on one-counter automata.
It is known that this problem is undecidable in general, but PSPACE-complete if one restricts
to deterministic one-counter automata [5]. Rather than restricting the class of one-counter
automata, one can seek to identify decidable syntactic fragments of Freeze LTL. This approach
was pursued in [6], which studied the flat fragment of Freeze LTL. The flatness condition
places restrictions on the occurrence of the binding construct ↓r in relation to the until
operator (see Section 2.2 for details). For example, in a flat formula in negation normal form
the binding operator ↓r can occur within the scope of F but not G. (Thus formula (1) is flat.)
The flatness restriction for Freeze LTL has a similar flavour to the flatness restriction for
constraint LTL [2] and for Metric Temporal Logic [1].

Demri and Sangnier [6] considered the decidability of model checking flat Freeze LTL
across a range of different counter-machine models. For one-counter automata they showed
decidability of model checking for a certain fragment of flat Freeze LTL and they left open
the problem of model checking flat Freeze LTL in general.

The approach taken in [6] was to reduce the model checking problem for fragments of
Freeze LTL on a class of counter automata to a repeated reachability problem in counter
automata of the same class with certain kinds of parameterised tests. In particular, under
their approach the model checking problem for flat Freeze LTL on one-counter automata
reduces to a repeated reachability problem for the class of one-counter automata extended
with parameterised equality and disequality tests. This problem considers one-counter
automata whose transitions may be guarded by equality or disequality tests that compare
the counter value to integer-valued parameters, and it asks whether there exist parameter
values such that there is an infinite computation that visits an accepting location infinitely
many times. The main technical contribution of this paper is to show decidability of the
latter problem by reduction to the decision problem for Presburger arithmetic.

A related work is [9], which considers one-counter automata with parameterised updates
and equality tests. It is shown in [9] that reachability in this model is inter-reducible with
the satisfiability problem for quantifier-free Presburger arithmetic with divisibility, and
therefore decidable. In contrast to [9], in the present paper the counter automata do not
have parameterised updates but they do have parameterised disequality tests. The results
in this paper do not appear to be straightforwardly reducible to those of [9] nor vice versa.
Both reachability problems can be seen as special cases of a long-standing open problem
identified by Ibarra et al. [10] which asks to decide reachability on a class of automata with
a single integer-valued counter, sign tests, and parameterised updates.

2 Preliminaries

2.1 One-Counter Automata with Equality and Disequality Tests
We consider automata with an associated single counter, which ranges over the nonnegative
integers, and with both equality and disequality tests on counter values. Formally, a one-
counter automaton (1-CA) is a tuple C = (V,E, λ, τ), where V is a finite set of states,
E ⊆ V × V is a finite set of edges between states, λ : E → Op labels each edge with an
element from Op = {add(a) : a ∈ Z} ∪ {eq(a) : a ∈ N}, and τ : V → 2N maps each state v to
a finite set τ(v) of invalid counter values at state v. Intuitively the operation add(a) adds a

A. Lechner, R. Mayr, J. Ouaknine, A. Pouly, and J. Worrell 29:3

to the counter and eq(a) tests the counter for equality with a. The association of invalid
counter values with each state can be seen as a type of disequality test. This feature is not
present in classical presentations of 1-CA, but we include it here to facilitate our treatment
of freeze LTL.

For any edge e = (v, v′) with λ(e) = op(a), define start(e) = v, end(e) = v′, and
weight(e) = a if op = add, weight(e) = 0 if op = eq. A path γ is a finite word on the alphabet
E: γ = e1 · · · en such that end(ei) = start(ei+1) for every i. The length of γ, denoted |γ|,
is n. The state sequence of γ is start(e1), end(e1), end(e2), . . ., end(en). The start of γ,
denoted start(γ), is start(e1). The end of γ, denoted end(γ), is end(en). A path is simple if
it contains no repeated vertices. The weight of γ, denoted by weight(γ), is

∑n
i=1 weight(ei).

A subpath γ′ of γ is any factor of γ: γ′ = eiei+1 . . . ej . If γ and γ′ are two paths such that
end(γ) = start(γ′), γγ′ is the concatenation of both paths.

A cycle ω is a path such that start(ω) = end(ω). A cycle is simple if there are no repeated
vertices except for the starting point, which appears twice. A cycle is positive if it has positive
weight, negative if it has negative weight and zero-weight if it has weight zero. We denote by
ωk = ωω · · ·ω︸ ︷︷ ︸

k times

the sequence of k iterations of cycle ω.

A configuration of a 1-CA C = (V,E, λ, τ) is a pair (v, c) with v ∈ V and c ∈ Z. Intuitively,
(v, c) corresponds to the situation where the 1-CA is in state v with counter value c. Since
counter values range over the nonnegative integers, configurations (v, c) with c > 0 are called
valid, otherwise they are invalid. The transition relation E between states with guards λ and
τ induces an unlabelled transition relation between configurations: for any two configurations
(v, c) and (v′, c′), there is a transition (v, c) −→ (v′, c′) if and only if there is an edge e ∈ E
with λ(e) = op(a) for some a, start(e) = v, end(e) = v′, and weight(e) = c′ − c. We will
sometimes write (v, c) e−−→ (v′, c′) for such a transition. The transition is valid if c, c′ > 0
and c 6∈ τ(v), and also c = a if op = eq. Otherwise it is invalid.

A computation π is a (finite or infinite) sequence of transitions:

π = (v1, c1) −→ (v2, c2) −→ (v3, c3) −→ · · ·

We write |π| for the length of π. If (v1, c1) e1−−→ (v2, c2) e2−−→ · · · en−1−−−→ (vn, cn) is a finite
computation, we will also write it as (v1, c1) γ−−→∗ (vn, cn), where γ = e1e2 · · · en−1, or simply
(v1, c1) −→∗ (vn, cn). A computation π is valid if all transitions in the sequence are valid,
otherwise it is invalid. If π is invalid, an obstruction is a configuration (vi, ci) such that
(vi, ci) −→ (vi+1, ci+1) is an invalid transition, or, if π is of finite length n − 1, i = n and
ci < 0.

Given a path γ and a counter value c ∈ Z, the path computation γ(c) is the (finite)
computation starting at (start(γ), c) and following the sequence of transitions that correspond
to the edges in γ.

A one-counter automaton with parameterised tests is a tuple (V,E,X, λ, τ), where V , E
and λ are defined as before, X is a set of nonnegative integer variables, Op = {add(a) : a ∈
Z} ∪ {eq(a), eq(x) : a ∈ N, x ∈ X}, and τ : V → 2N∪X . Note that τ(v) is still required to be
finite for each v ∈ V .

For a given 1-CA C = (V,E, λ, τ), an initial configuration (v, c) and a target configuration
(v′, c′), the reachability problem asks if there is a valid computation from (v, c) to (v′, c′).
When C has sets F1, . . . , Fn ⊆ V of final states and an initial configuration (v, c), the
generalised repeated reachability problem asks if there is a valid infinite computation from
(v, c) which visits at least one state in each Fi infinitely often.

For a 1-CA C = (V,E,X, λ, τ) with parameterised tests with given initial configuration
(v, c) and target configuration (v′, c′), the reachability problem asks if there exist values for

CONCUR 2016

29:4 Model Checking Flat Freeze LTL on One-Counter Automata

the parameters such that there is a computation from (v, c) to (v′, c′). Similarly, in the
case where C has sets F1, . . . , Fn ⊆ V of final states and an initial configuration (v, c), the
generalised repeated reachability problem asks if there exist values for the parameters such
that substituting these values satisfies the generalised repeated reachability condition above.

2.2 Model Checking Freeze LTL on One-Counter Automata
Freeze LTL [5] is an extension of Linear Temporal Logic that can be used to specify properties
of data words. Freeze LTL is one of a variety of formalisms that arise by augmenting a
temporal or modal logic with variable binding. Given a finite alphabet Σ and set of registers
R, the formulas of Freeze LTL are given by the following grammar

ϕ ::= a | ↑r | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕ U ϕ | ↓r ϕ ,

where a ∈ Σ and r ∈ R. We write LTL↓ for the set of formulas of Freeze LTL. A sentence is
a formula in which each occurrence of a subformula ↑r is in the scope of an operator ↓r (for
the same register r).

In general, formulas of LTL↓ are interpreted over data words. In this paper we are
interested in a particular kind of data word, namely those arising from valid computations of
1-CA, and we directly define the semantics of LTL↓ over such computations (assuming that
the alphabet Σ is the set of control locations of the 1-CA). In this context ↓r can be seen as
a binding construct that stores in register r the counter value at the current position in a
computation, while ↑r tests whether the counter value at the current position is equal to the
content of register r. Formally, define a register valuation to be a partial function f : R→ N
and consider a valid infinite computation

π = (v1, c1) −→ (v2, c2) −→ (v3, c3) −→ · · ·

of a 1-CA C. We define a satisfaction relation π, i �f ϕ specifying when an LTL↓ formula ϕ
is satisfied at position i in π under valuation f :

π, i �f a
def⇐⇒ vi = a

π, i �f ↑r
def⇐⇒ ci = f(r)

π, i �f Xϕ def⇐⇒ π, i+ 1 �f ϕ
π, i �f ϕ1 U ϕ2

def⇐⇒ π, j �f ϕ2 for some j > i and π, k �f ϕ1 for all i 6 k < j

π, i �f ↓r ϕ
def⇐⇒ π, i �f [r 7→ci] ϕ

where f [r 7→ c] is the function that maps r to c and is otherwise equal to f . We have omitted
the clauses for the Boolean connectives.

An occurrence of a subformula in a LTL↓ formula is positive if it lies within the scope of
an even number of negations, otherwise it is negative. The flat fragment of LTL↓ is the set of
LTL↓ formulas such that in every positive occurrence of a subformula ϕ1 U ϕ2, the binding
operator ↓r does not appear in ϕ1, and in every negative occurrence of such a subformula,
the binding operator does not appear in ϕ2.

The negation of many natural LTL↓ specifications yield flat formulas. For example,
consider the response property G(↓r (req → F(serve ∧ ↑r))), expressing that every request
is followed by a serve with the same associated ticket. Here F and G are the “future” and
“globally” modalities, which can be expressed in terms of U in a standard way. The negation
of this formula is equivalent to F(↓r (req ∧ G(¬serve ∨ ¬↑r))). The latter is easily seen to be
flat after rewriting to the core LTL↓ language with only the U temporal operator.

A. Lechner, R. Mayr, J. Ouaknine, A. Pouly, and J. Worrell 29:5

The main subject of this paper is the decidability of the following model checking problem:
given a 1-CA C, a valid configuration (v, c) of C, and a flat sentence ϕ ∈ LTL↓, does there
exist a valid infinite computation π of C, starting at (v, c), such that π, 1 �∅ ϕ? Note that,
following [6], we have given an existential formulation of the model checking problem. The
problem above is equivalent to asking whether ¬ϕ holds along all infinite computations
starting at (v, c).

The model checking problem for flat LTL↓ on 1-CA was reduced to the generalised
repeated reachability problem for 1-CA with parameterised tests in [6, Theorem 15]. The
idea of the reduction is, given a 1-CA C and a flat LTL↓ sentence ϕ, to construct a 1-CA
with parameterised tests which is the product of C and ϕ. This product automaton includes
a parameter xr for each register r that is mentioned in a subformula of ϕ of type ↓r ϕ′.
This is where the restriction to the flat fragment of LTL↓ is crucial, since it allows us to
assume, without loss of generality, that the value stored in a register is never overwritten
along any computation of C, so that it can be represented by precisely one parameter. An
occurrence of the binding operator ↓r in ϕ is represented in the product automaton by an
equality test eq(xr). A positive occurrence of a formula of the type ↑r is likewise represented
by an equality test eq(xr), while a negative occurrence of such a subformula is represented
by a disequality test τ(vr) = {xr}.

Note that the definition of 1-CA with parameterised tests in [6] includes parameterised
equality and disequality tests (as in the present paper) together with parameterised inequality
tests, i.e., testing whether the counter value is less than or greater than the value of a
parameter. However, it is clear from the details of the reduction that only equality and
disequality tests are needed, and thus we do not consider inequality tests in this paper.
Note also that in the previous section we defined 1-CA to have equality tests on edges and
disequality tests on states. On the other hand, the 1-CA considered in [6] have both kinds of
tests on edges and allow multiple edges between the same pair of states. It is easy to see that
both models are equivalent with respect to reachability, i.e., there are reductions in both
directions between reachability problems in the two models.

2.3 Presburger Arithmetic

Presburger arithmetic is the first-order logic over 〈Z,+, <, 0, 1〉, where + and < are the stand-
ard addition and ordering of integers. Presburger arithmetic is known to be decidable [12].
Using shorthand notation, we can assume that the atomic formulas of Presburger arithmetic
are equalities or inequalities between linear polynomials with integer coefficients.

3 Normal Form for Paths

In this section, we show that any valid finite computation of a 1-CA can be rewritten to a
normal form whose shape only depends on the automaton. Informally, any such computation
can be described as a sequence of “take this edge” and “take this cycle k times”. We show that
the maximum length of a description of this kind is independent of the original computation.

First we show that without loss of generality, any computation can be broken down into
a small number of segments that do not contain any transitions with equality tests. The
idea is that any segment between two identical equality tests can be omitted.

I Lemma 1 (Equality test isolation). Let π be a valid finite computation from (v, c) to (v′, c′).
Then there exists a path γ such that γ(c) is a valid computation from (v, c) to (v′, c′) and γ

CONCUR 2016

29:6 Model Checking Flat Freeze LTL on One-Counter Automata

is of the form γ = γ0e1γ1e2 · · · enγn, where ei is an edge with an equality test, γi is a path
without equality tests and n 6 |E|.

We give a proof of Lemma 1 in the full version of this paper.
We need to introduce some terminology to formalise our notion of normal form. Given a

state v, SC(v) (resp. SC+(v), SC−(v)) denotes the set of equality-free simple (resp. positive
simple, negative simple) cycles starting at v. The set of all equality-free simple (resp. positive
simple, negative simple) cycles from all vertices is SC (resp. SC+, SC−). Note that each
equality-free simple cycle is counted several times in SC: once for each state in the cycle.

The cycle alphabet, denoted C, consists of symbols of the form ωk where ω ∈ SC and
k ∈ N. Note that this alphabet is infinite. Also note that ωk is a single symbol, underlined
to indicate the difference from the cycle ωk, which consists of |ω|k symbols from E. For
convenience, ω is a shorthand for ω1. We naturally define the start and end of symbol ωk by
the start of ω: start(ωk) = end(ωk) = start(ω).

A folded path χ is a word on the alphabet E ∪ C: χ = s1 · · · sn such that end(si) =
start(si+1) for every i < n. We also define the natural unfolding of a folded path as a
monoid homomorphism unfold : (E ∪ C)∗ → E∗ such that unfold(e) = e for e ∈ E and
unfold(ωk) = ωk for ωk ∈ C. The weight of a folded path is the weight of its unfolding.

From now on, until Theorem 8 at the end of this section, we fix an initial counter value
c ∈ N and we only consider computations starting at c which do not include equality tests.
We refer to a folded path χ as being valid if unfold(χ)(c) is a valid computation.

Define the following nondeterministic rewriting system on folded paths. Each rule of the
system has a name, a pattern to match against, a condition which must be satisfied for the
rule to apply and the result of the rule. We denote by χ; χ′ the fact that χ rewrites to χ′.

Rule Pattern Result Condition
fold ψωφ ψωφ ω is a simple cycle of nonzero weight.

simplify ψρφ ψφ Nonempty ρ, weight(unfold(ρ)) = 0 and
end(ψ) = start(φ).

gather+ ψωkρω`φ ψωk+1ρω`−1φ Result is valid, ω is a positive simple cycle and ` > 0.
gather- ψωkρω`φ ψωk−1ρω`+1φ Result is valid, ω is a negative simple cycle and k > 0.

I Lemma 2 (Soundness). If χ is valid and rewrites to χ′ then χ′ is valid. Furthermore, χ
and χ′ start and end at the same state and weight(unfold(χ)) = weight(unfold(χ′)).

The proof of Lemma 2 is included in the full version of this paper.

I Lemma 3 (Termination). There are no infinite chains of rewriting.

A proof of Lemma 3 can be found in the full version. Here we give an informal explanation.
The first thing to notice is that the length of a folded path (over alphabet E ∪ C) never
increases after a rewriting operation. The second thing is that the length of a folded path
over E (i.e., ignoring symbols from C) never increases either. Since rule simplify decreases
the length, it can only be applied finitely many times. Similarly, rule fold decreases the
length over E because it replaces a symbol from E by one from C. Rules gather± are more
difficult to analyse because they only reorder the path by replacing symbols from C. But as
it can be seen, a symbol ω, where ω is a positive cycle, can only move left, and similarly a
negative cycle can only move right. Intuitively, this process must be finite because once a
positive (negative) cycle reaches the leftmost (rightmost) position, it cannot move anymore.

I Lemma 4 (Size of cycle-free subpaths). If ψρφ is such that ρ ∈ E∗ and no rule applies,
then |ρ| < |V |.

A. Lechner, R. Mayr, J. Ouaknine, A. Pouly, and J. Worrell 29:7

Proof. Assume the contrary: if ρ only consists of edges and has length > |V |, then some
state is repeated in the state sequence of ρ. Thus ρ contains a cycle and thus a simple cycle.
So rule fold applies if the cycle has nonzero weight, or rule simplify applies if it has weight
zero. J

For S ⊆ Z and x ∈ Z, we use S−x to denote {y−x | y ∈ S}. The idea of the next lemma
is to show that given a state v, some counter values prevent reordering of cycles within the
folded path. These counter values act as a “barrier” for the gather rules and increase the
size of the normal form. We call these values critical for positive (resp. negative) cycles and
denote them by B+(v) (resp. B−(v)). Formally, B+(v) contains:

τ(v)− weight(ω), for every positive (resp. negative) simple cycle ω,
τ(end(γ))−weight(γ) for every prefix1 γ of every positive (resp. negative) simple cycle ω
starting at v.

I Lemma 5 (Obstructions in irreducible paths with cycles). Let ω be a positive cycle and
assume that rule gather+ (resp. gather-) does not apply on ψωkρω`φ (which we assume is
valid and k, ` > 0) for this particular pattern. Then there exists a (potentially empty) prefix
µ of ρ such that unfold(ψωkµ)(c) has the form (v, c) −→∗ (v′, c′) where c′ is critical for v′
for positive (resp. negative) cycles, i.e. c′ ∈ B+(v′) (resp. c′ ∈ B−(v′)). Furthermore B+(v′)
and B−(v′) only depends on the automaton and

|B+(v′)| 6 |SC+ |
∑
v∈V
|τ(v)| and |B−(v′)| 6 |SC− |

∑
v∈V
|τ(v)|.

Proof. We first show the result for positive cycles. Let π = unfold(ψωkρω`φ)(c) and
π′ = unfold(ψωk+1ρω`−1φ)(c). To make things slightly easier to understand, note that:

π = [unfold(ψ)ωk unfold(ρ)ωω`−1 unfold(φ)](c)
π′ = [unfold(ψ)ωkω unfold(ρ)ω`−1 unfold(φ)](c).

Since unfold(ρ)ω and ω unfold(ρ) have the same weight, it is clear that the first (unfold(ψ)ωk)
and last (ω`−1 unfold(φ)) parts of the computation are the same in π and π′, i.e., they have
the same counter values. Consequently, if they are valid in π, the same parts are also valid
in π′. Since by the hypothesis gather+ does not apply, π′ is invalid. So there must be an
obstruction (u, d) in the middle part (ω unfold(ρ)) of π′. There are two possibilities.

The first case is when the obstruction (u, d) is in the unfold(ρ) part of π′. Note that
d = c∗ + weight(ω), where (u, c∗) is the corresponding configuration in the unfold(ρ) part of
π. Since ω is a positive cycle, d > c∗ cannot be negative (since (u, c∗) occurs in π, which is
valid). Since we assumed that all computations are free of equality tests, the obstruction
must be because of a disequality, i.e., it must be that d = c∗ + weight(ω) ∈ τ(u). Thus
c∗ ∈ τ(u) − weight(ω) and c∗ is critical for u. Then there exists a prefix µ of ρ such that
unfold(ψωkµ)(c) = (v, c) −→∗ (u, c∗) and this shows the result.

The second case is when (u, d) is in the ω part of the middle part (ω unfold(ρ)) of π′.
Again, it is impossible that the counter value d be negative. Indeed, remember that ω is a

1 Other than ω and the empty prefix. Indeed the empty prefix is impossible because c2 /∈ τ(v1) as π is
valid. And ω correspond to the previous case of the definition.

CONCUR 2016

29:8 Model Checking Flat Freeze LTL on One-Counter Automata

positive cycle and k > 0, thus

π′ = [unfold(ψ)ωk+1 unfold(ρ)ω`−1 unfold(φ)](c)
= [unfold(ψ)ωk−1ωω unfold(ρ)ω`−1 unfold(φ)](c)

= (v, c) unfold(ψ)ωk−1

−−−−−−−−−→∗ (v1, c1) ω−→∗ (v1, c2) ω−→∗ (v1, c3) unfold(ρ)ω`−1 unfold(φ)−−−−−−−−−−−−−−−→∗ (v′′, c′′).

We already argued that (v, c) −→∗ (v1, c2) is valid, so in particular (v1, c1) ω−−→∗ (v1, c2) is
valid. Note that the obstruction is in the second iteration of ω: (v1, c2) ω−−→∗ (v1, c3). Since
ω is a positive cycle, c2 > c1. Note that initially the cycle ω was feasible (with the counter
not going negative) starting with a lower counter value (c1) so the counter cannot possibly
become negative on the second iteration starting with a higher counter value (c2). Thus,
again, the obstruction happens because of a disequality. That is, we can write ω = γγ′ such
that:

π′ = (v, c) unfold(ψ)ωk−−−−−−−−→∗ (v1, c2) γ−−→∗ (u, d) γ′−−→∗ (v1, c3) unfold(ρ)ω`−1 unfold(φ)−−−−−−−−−−−−−−−→∗ (v′′, c′′)

and the obstruction happens because d ∈ τ(u). Note however that d = c2 + weight(γ) and
thus c2 ∈ τ(u)−weight(γ). In this case, c2 is critical for v1. Choose µ to be the empty word,
so that unfold(ψωkµ)(c) = (v, c) −→∗ (v1, c2) to show the result.

Observe that the definition of critical values only depend on the automaton itself. Fur-
thermore, the size of B+(v) can easily be bounded. Indeed, there are |SC+ | positive simple
cycles, so in the first case of the definition, there are at most |SC+ ||τ(v′)| values. In the
second case, since the cycle ω is simple, each prefix γ of ω ends at a different state. Thus
each state is visited at most once, and v is not visited because the prefix is not empty or
equal to ω. So the second case includes at most an additional |SC+ |

∑
u 6=v |τ(u)| values.

Finally the total bound is |SC+ |
∑
v∈V |τ(v)|.

The proof is exactly the same in the negative case except for one detail. This time we
move negative cycles to the right so that the middle part of π′ (unfold(ρ)ω) can only get
higher counter values than the middle part of π (ω unfold(ρ)), as in the positive case. J

I Lemma 6 (Length of irreducible paths). Let χ be a folded path such that no rule applies on
χ. Let Y = SC+ or Y = SC−. Then for every ω ∈ Y , the number of symbols in χ of the
form ω· (the exponent does not matter) is bounded by

|V ||Y |
(

1 +
∑
v∈V
|τ(v)|

)
.

Proof. Without loss of generality, we show the result for X = SC+. First note that if ωk
appears in χ and no rule applies, then k > 0, otherwise we could apply simplify to remove
ω0. We can thus decompose the path as:

χ = φ0ω
k1φ1ω

k2φ2 · · ·φn−1ω
knφn

where ki > 0 and φi does not contain any ω· symbol. Since no rule applies, by Lemma 5,
there exist prefixes µ1, µ2, . . . , µn−1 of φ1, φ2, . . . , φn−1 respectively, such that for each i:

(v, c) φ0ω
k1φ1···φi−1ω

kiµi−−−−−−−−−−−−−→∗ (vi, ci) where ci ∈ B+(vi).

A. Lechner, R. Mayr, J. Ouaknine, A. Pouly, and J. Worrell 29:9

Assume for a contradiction that there is a repeated configuration among the (vi, ci). Then
there exists i < j such that vi = vj and ci = cj . Let φi = µiρ and φj = µjρ

′, and observe
that:

(v, c) φ0ωk1φ1···φi−1ω
kiµi−−−−−−−−−−−−−−−−→∗ (vi, ci)

ρω
ki+1φi+1···φj−1ω

kj µj−−−−−−−−−−−−−−−−−−−→∗ (vi, ci)
ρ′ωkj+1φj+1···φn−1ω

knφn
−−−−−−−−−−−−−−−−−−−−−→∗ (v′, c′).

Thus the subpath ρωki+1φi+1 · · ·φj−1ω
kjµj has weight 0 and rule simplify must apply:

χ ; φ0ω
k1φ1 · · ·φi−1ω

kiµiρ
′ωkj+1φj+1 · · ·φn−1ω

knφn

which is a contradiction because we assumed that no rule can apply on χ.
Consequently, for any i 6= j, we have (vi, ci) 6= (vj , cj). But remember that ci ∈ B+(vi),

thus (vi, ci) ∈ A where:

A =
⋃
v∈V
{v} ×B+(v).

This shows that n− 1 6 |A|. Indeed, by the pigeonhole principle, some pair (vi, ci) would be
repeated if n− 1 > |A|. We can easily bound the size of A using the bound on B+(v) from
Lemma 5:

|A| 6
∑
v∈V
|B+(v)| 6 |V ||SC+ |

∑
v∈V
|τ(v)|.

Finally we have

n 6 |V ||SC+ |
∑
v∈V
|τ(v)|+ 1 6 |V ||SC+ |

(
1 +

∑
v∈V
|τ(v)|

)
because |V | > 1 and |SC+ | > 1 unless there are no positive cycles, in which case n = 0
anyway. J

I Lemma 7 (Length of equality-free computations). Let π be a valid finite computation
(without equality tests) from (v, c) to (v′, c′). Then there exists a folded path χ such that
unfold(χ(c)) is a valid computation from (v, c) to (v′, c′), the length of unfold(χ(c)) at most
that of π and the word length of χ is bounded by:

|V |+ |V |2|SC |2
(

1 +
∑
v∈V
|τ(v)|

)
Proof. Let χ0 be the path defined by π: it is a word over alphabet E and is thus a (trivial)
folded path. By definition unfold(χ0(c)) = π is a valid computation from (v, c) to (v′, c′) and
the length of unfold(χ0(c)) is equal to that of π. Let χ be any rewriting of χ0 such that no
rule applies on χ: it exists because there are no infinite rewriting chains by Lemma 3. By
Lemma 2, unfold(χ(c)) is still a valid computation from (v, c) to (v′, c′). Let ω be a simple
cycle: note that it is either positive or negative, because rule simplify removes zero-weight
cycles. Then by Lemma 6, the number of symbols of the form ω· appearing in χ is bounded
by2:

|V ||SC |
(

1 +
∑
v∈V
|τ(v)|

)
(2)

2 Since obviously max(| SC+ |, | SC− |) 6 | SC |.

CONCUR 2016

29:10 Model Checking Flat Freeze LTL on One-Counter Automata

and thus the total number of symbols in χ of the form ω· for any ω is bounded by:

|V ||SC |2
(

1 +
∑
v∈V
|τ(v)|

)
. (3)

Furthermore, inbetween symbols of the form ω·, there can be subpaths consisting of symbols
in E only, so χ is of the form

χ = φ0ω
k1
1 φ1ω

k2
2 · · ·ωknn φn

where φi ∈ E∗ and ωi ∈ SC for all i. By the reasoning above, n 6 (3). Furthermore, by
Lemma 4, φi < |V | for all i. It follows that the total length of χ is bounded by

(n+ 1)(|V | − 1) + n 6 |V |+ n|V |

6 |V |+ |V |2|SC |2
(

1 +
∑
v∈V
|τ(v)|

)
.

Finally the length of unfold(χ(c)) at most that of π because the rewriting system does not
increase the length of the path and the length of unfold(χ0(c)) is equal to that of π. J

The main result of this section shows that any valid computation has an equivalent valid
computation given by a folded path whose length only depends on the automaton.

I Theorem 8 (Length of computations). Let π be a valid finite computation from (v, c) to
(v′, c′). Then there exists a folded path χ such that χ(c) is a valid computation from (v, c) to
(v′, c′), the length of unfold(χ(c)) is at most that of π and the word length of χ is bounded by:

|E|

(
1 + |V |+ |V |2|SC |2

(
1 +

∑
v∈V
|τ(v)|

))
.

Proof. Apply Lemma 1 to isolate the equality tests (at most |E| of them) and apply Lemma 7
to each equality-free subcomputation. We can improve the bound slightly by noticing that
there can only be up to |E| equality-free subcomputations (and not |E| + 1). Indeed, if
there are |E| different equality tests in the path, there are no further edges available for
equality-free computations, and the word length is at most |E|. J

4 Reachability with Parameterised Tests

In this section we will show that both the reachability problem and the generalised repeated
reachability problem for 1-CA with parameterised tests are decidable, via a symbolic encoding
of folded paths, making use of the normal form from the previous section. The result of this
encoding is a formula of Presburger arithmetic.

Recall that C = {ωk : ω ∈ SC, k ∈ N}. Let C ′ = {ω· : ω ∈ SC}. We define a path shape
to be a word over the alphabet E ∪ C ′: ξ = t1 . . . tn such that end(ti) = start(ti+1), where
start(ω·) = end(ω·) = start(ω). Given a path shape ξ = γ0ω

·
1γ1 . . . ω

·
nγn with γi ∈ E∗, we

write ξ(k1, . . . , kn) for the folded path γ0ω
k1
1 γ1 . . . ω

kn
n γn. The advantage of working with

path shapes rather than folded paths is that the former are words over a finite alphabet.

I Lemma 9 (Encoding computations). Given a 1-CA C = (V,E,X, λ, τ) with parameterised
tests and configurations (v, c) and (v′, c′), and given a path shape ξ = t1t2 . . . tn ∈ (E ∪
C ′)∗, there exists a Presburger arithmetic formula ϕ(ξ),(v,c),(v′,c′)

comp (k,x), with free variables x

corresponding to the parameters X and k corresponding to exponents to be substituted in ξ,
which evaluates to true if and only if unfold(ξ(k))(c) is a valid computation from (v, c) to
(v′, c′).

A. Lechner, R. Mayr, J. Ouaknine, A. Pouly, and J. Worrell 29:11

Proof. Assume first that ξ does not include any equality tests. We define a formula
ϕ

(t)
valid,noeq(k,x, y) which, given an equality-free symbol t ∈ E∪C ′ and an integer y, evaluates

to true if and only if unfold(t(k))(y) is a valid computation. There are two cases:
t ∈ E. Then ϕ(t)

valid,noeq(x, y) ≡ y > 0 ∧ y + weight(t) > 0 ∧ y /∈ τ(start(t)).
t ∈ C ′, i.e., t(k) = ωk for some simple cycle ω = e1e2 . . . e` and k ∈ k. Then

ϕ
(t)
valid,noeq(k,x, y) ≡ ∀k′ (0 6 k′ < k)⇒

∧̀
i=1

y + k′ weight(ω) +
i−1∑
j=1

weight(ej) > 0∧

y + k′ weight(ω) +
i−1∑
j=1

weight(ej) /∈ τ(start(ei))

 ∧ y + kweight(ω) > 0.

Note that for each edge e ∈ E, weight(e) is a constant, given by the automaton, and
weight(ω) is a shorthand for

∑`
i=1 weight(ei), which is also a constant. So the only type

of multiplication in the formula is by a constant. A formula of the form a /∈ τ(u) is a
shorthand for

∧
b∈τ(u) a 6= b, which is clearly a Presburger arithmetic formula. Since C has

parameterised tests, in general some of these disequalities include variables from x. We can
now define a formula with the required property in the case where ξ does not include any
equality tests:

ϕ(ξ),(v,c),(v′,c′)
comp,noeq (k,x) ≡

(
n−1∧
i=1

end(ti) = start(ti+1)
)
∧ start(t1) = v ∧ end(tn) = v′∧

n∑
i=1

weight(ti(k)) = c′ − c ∧
n∧
i=1

ϕ
(ti)
valid,noeq(k,x, c+

i−1∑
j=1

weight(tj(k))),

where we use the shorthand weight(s) for s ∈ E ∪ C: if s ∈ E then weight(s) is a constant
as above, and if s ∈ C then it is of the form ωk and weight(s) = k

∑
e∈ω weight(e). Again,

the only multiplications are by constants, so the resulting formula is a formula of Presburger
arithmetic.

Finally, in the case where ξ includes equality tests, we split unfold(ξ) at the ti which are
equality tests, and construct a formula ϕcomp,noeq as above for each equality-free part of ξ.
ϕ

(ξ),(v,c),(v′,c′)
comp (k,x) is the conjunction of these formulas. J

I Remark 10 (Removing the universal quantification). For simplicity, we have used a universal
quantifier in ϕ(t)

valid,noeq(k,x, y) to express that k iterations of a cycle yield a valid computation.
In fact it is possible to rewrite ϕ(t)

valid,noeq(k,x, y) as a purely existential formula, with a
polynomial blowup. Let ω = e1 · · · e` be a cycle and suppose we want to check that ωk(y)
is a valid computation. Let u = start(ei) be a state on the cycle. First we need to express
that the counter value at u is never negative along ωk(y). Since the counter value at u is
monotone during the k iterations of the cycle (it increases if ω is positive and decreases if ω
is negative), we only need check that it is nonnegative at the first and last iteration:

y +
i−1∑
j=1

weight(ej) > 0 ∧ y + (k − 1) weight(ω) +
i−1∑
j=1

weight(ej) > 0.

Next, for each b ∈ τ(u), we need to check that the cycle avoids b in u. Without loss
of generality, assume that ω is positive. Then the counter value at u increases after each
iteration. We can now perform a case analysis on the three ways to satisfy a disequality test
during the k iterations of ω:

CONCUR 2016

29:12 Model Checking Flat Freeze LTL on One-Counter Automata

The value at the first iteration is already bigger than b:

y +
i−1∑
j=1

weight(ej) > b.

The value at the last iteration is less than b:

y + (k − 1) weight(ω) +
i−1∑
j=1

weight(ej) < b.

There is an iteration k′, with 0 6 k′ < k − 1, at which the counter value is less than b,
but where at the next iteration k′ + 1 the counter value is bigger than b:

∃k′ (0 6 k′ < k − 1) ∧ y + k′weight(ω) +
i−1∑
j=1

weight(ej) < b

∧ y + (k′ + 1) weight(ω) +
i−1∑
j=1

weight(ej) > b.

Finally, we can use a conjunction over all vertices in ω to get a formula which is equivalent
to ϕ(t)

valid,noeq(k,x, y) but has no universal quantifiers.

I Lemma 11 (Encoding reachability). Let C = (V,E,X, λ, τ) be a 1-CA with parameterised
tests, and let (v, c) and (v′, c′) be given configurations of C. Then there exists a Presburger
arithmetic formula ϕ

(v,c),(v′,c′)
reach (x) which evaluates to true if and only if there is a valid

computation from (v, c) to (v′, c′) in C, as well as a formula ϕ(v,c),(v′,c′)
reach+

which is true if and
only if there is such a computation of length at least 1.

Proof. Note that the bounds on the length of computations in 1-CA from the previous
section do not depend on the values occurring in equality or disequality tests. That is, if
there is a valid computation (v, c) π−−→∗ (v′, c′) for any given values of the parameters, then
there is a folded path χ of word length at most p(C) such that (v, c) unfold(χ(c))−−−−−−−−→∗ (v′, c′) is a
valid computation, where p is the polynomial function given in Theorem 8. Equivalently,
there is a path shape ξ of word length at most p(C) and there exist values k such that
(v, c) unfold(ξ(k)(c))−−−−−−−−−→∗ (v′, c′) is a valid computation.

Since path shapes are words over a finite alphabet, we can express this property as a
finite disjunction

ϕ
(v,c),(v′,c′)
reach (x) ≡ ∃k

∨
|ξ|6p(C)

ϕ(ξ),(v,c),(v′,c′)
comp (k,x).

For ϕreach+ , we simply change the disjunction to be over all ξ such that 1 6 |ξ| 6 p(C). J

I Lemma 12 (Encoding repeated reachability). Let C = (V,E,X, λ, τ) be a 1-CA with
parameterised tests, let F ⊆ V be a set of final states, and let (v, c) be the initial configuration
of C. Then there exists a Presburger arithmetic formula ϕ(v,c),(F)

rep-reach(x) which evaluates to true
if and only if there is a valid infinite computation π which starts in (v, c) and visits at least
one state in F infinitely often.

A. Lechner, R. Mayr, J. Ouaknine, A. Pouly, and J. Worrell 29:13

Proof. Suppose there is an infinite computation which starts in (v, c) and visits a state u ∈ F
infinitely often. Equivalently, there is a counter value d ∈ N such that (v, c) −→∗ (u, d) is
a valid (finite) computation, and there is a cycle ω with start(ω) = u such that ωk(d) is a
valid computation for all k ∈ N. There are two possible cases:

weight(ω) = 0, so ωk(d) is valid for all k if and only if ω(d) is valid.
weight(ω) > 0, so it might be possible to start from (u, d) and follow the edges of ω
a finite number of times before an obstruction occurs. However, if ω can be taken an
arbitrary number of times, then the counter value will tend towards infinity, so we are
free to choose ω to be an equality-free simple cycle, and d to be high enough to guarantee
that if ω can be taken once without obstructions, it can be taken infinitely many times.

The resulting formula is then

ϕ
(v,c),(F)
rep-reach(x) ≡∃d

∨
u∈F

ϕ(v,c),(u,d)
reach (x) ∧

(
ϕ

(u,d),(u,d)
reach+

(x)∨

(d > M(x) ∧ ∃d′
∨

ω∈SC+

ϕ
(ω·),(u,d),(u,d′)
comp,noeq (1,x))

)
where M(x) = max

(⋃
v∈V τ(v)

)
−
∑
{weight(e) : e ∈ E,weight(e) < 0}. The sum over

negative edge weights ensures that the counter always stays above max
(⋃

v∈V τ(v)
)
along

the computation ω(d), since each edge is taken at most once in ω. Since ω is a positive cycle,
this implies that the counter always stays above all bad values along ω(dk) for each k ∈ N,
so no obstructions can occur. J

I Theorem 13 (Decidability of reachability problems). Both the reachability problem and the
generalised repeated reachability problem are decidable for 1-CA with parameterised tests.

Proof. Given a 1-CA C = (V,E,X, λ, τ) with parameterised tests and configurations (v, c)
and (v′, c′), to check if there exist values for the parameters X such that there is a valid com-
putation from (v, c) to (v′, c′), we use Lemma 11 to construct the formula ∃xϕ(v,c),(v′,c′)

reach (x).
To solve the generalised repeated reachability problem for a 1-CA C = (V,E,X, λ, τ) with

sets of final states F1, . . . , Fn ⊆ V and initial configuration (v, c), note that this problem can
easily be reduced to the simpler case where n = 1, using a translation similar to the standard
translation from generalised Büchi automata to Büchi automata. In the case where n = 1,
we can use Lemma 12 to construct the formula ∃xϕ(v,c),(F1)

rep-reach(x). J

I Corollary 14 (Decidability of model checking flat Freeze LTL). The existential model checking
problem for flat Freeze LTL on 1-CA is decidable.

5 Conclusion

The main result of this paper is that the model checking problem for the flat fragment
of Freeze LTL on one-counter automata is decidable. We have concentrated on showing
decidability rather than achieving optimal complexity. For example, we have reduced the
model checking problem to the decision problem for the class of sentences of Presburger
arithmetic with quantifier prefix ∃∗∀∗. We explained in Remark 10 that in fact the reduction
can be refined to yield a (polynomially larger) purely existential sentence.

Another important determinant of the complexity of our procedure is the dependence
of the symbolic encoding of computations (via path shapes) in Section 4 on the number of

CONCUR 2016

29:14 Model Checking Flat Freeze LTL on One-Counter Automata

simple cycles in the underlying control graph of the one-counter automaton. The number of
such cycles may be exponential in the number of vertices. It remains to be seen whether it is
possible to give a more compact symbolic representation, e.g., in terms of the Parikh image
of paths. As it stands, our procedure works as follows. From the flat LTL↓ formula, we build
a 1-CA with parameterised tests (of exponential size). We then guess the normal form of the
path shapes (of exponential size in the size the automaton). We finally check the resulting
existential Presburger formula. Since the Presburger formula has size double exponential in
the size of the original LTL↓ formula, we get a naive upper bound of 2NEXPTIME for our
algorithm. Improving this bound is a subject of ongoing work.

Another interesting complexity question concerns configuration reachability in one-counter
automata with non-parameterised equality and disequality tests. For automata with only
equality tests and with counter updates in binary, reachability is known to be NP-complete [9].
If inequality tests are allowed then reachability is PSPACE-complete [7]. Now automata with
equality and disequality tests are intermediate in expressiveness between these two models
and the complexity of reachability in this case is open as far as we know.

References
1 P. Bouyer, N. Markey, J. Ouaknine, and J. Worrell. On expressiveness and complexity in

real-time model checking. In Proceedings of ICALP, volume 5126 of LNCS, pages 124–135.
Springer, 2008.

2 H. Comon and V. Cortier. Flatness is not a weakness. In Proceedings of CSL, volume 1862
of LNCS. Springer, 2000.

3 S. Demri and R. Lazić. LTL with the freeze quantifier and register automata. In Proceedings
of LICS, pages 17–26. IEEE Computer Society, 2006.

4 S. Demri, R. Lazić, and D. Nowak. On the freeze quantifier in constraint LTL: decidability
and complexity. In Proceedings of TIME, pages 113–121, 2005.

5 S. Demri, R. Lazić, and A. Sangnier. Model checking freeze LTL over one-counter automata.
In Proceedings of FOSSACS, volume 4962 of LNCS, pages 490–504, 2008.

6 S. Demri and A. Sangnier. When model-checking freeze LTL over counter machines becomes
decidable. In Proceedings of FOSSACS, volume 6014 of LNCS, pages 176–190, 2010.

7 John Fearnley and Marcin Jurdzinski. Reachability in two-clock timed automata is
PSPACE-complete. Inf. Comput., 243:26–36, 2015.

8 T. French. Quantified propositional temporal logic with repeating states. In Proceedings
of TIME-ICTL, pages 155–165. IEEE Computer Society, 2003.

9 C. Haase, S. Kreutzer, J. Ouaknine, and J. Worrell. Reachability in succinct and parametric
one-counter automata. In Proceedings of CONCUR, volume 5710 of LNCS, pages 369–383.
Springer, 2009.

10 O. H. Ibarra, T. Jiang, N. Tran, and H. Wang. New decidability results concerning two-
way counter machines and applications. In Proceedings of ICALP, volume 700 of LNCS.
Springer, 1993.

11 A. Lisitsa and I. Potapov. Temporal logic with predicate lambda-abstraction. In Proceedings
of TIME, pages 147–155. IEEE Computer Society, 2005.

12 M. Presburger. Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer
Zahlen, in welchem die Addition als einzige Operation hervortritt. In Comptes Rendus du
I congrés de Mathématiciens des Pays Slaves. Warsaw, pages 92–101, 1929.

Parameterized Systems in BIP:
Design and Model Checking∗

Igor Konnov1, Tomer Kotek2, Qiang Wang3, Helmut Veith4,
Simon Bliudze5, and Joseph Sifakis6

1 TU Wien (Vienna University of Technology), Austria
Konnov@forsyte.at

2 TU Wien (Vienna University of Technology), Austria
Kotek@forsyte.at

3 École polytechnique fédérale de Lausanne, Switzerland
Qiang.Wang@epfl.ch

4 TU Wien (Vienna University of Technology), Austria
Veith@forsyte.at

5 École polytechnique fédérale de Lausanne, Switzerland
Simon.Bliudze@epfl.ch

6 École polytechnique fédérale de Lausanne, Switzerland
Joseph.Sifakis@epfl.ch

Abstract
BIP is a component-based framework for system design built on three pillars: behavior,

interaction, and priority. In this paper, we introduce first-order interaction logic (FOIL) that
extends BIP without priorities to systems parameterized in the number of components. We show
that FOIL captures classical parameterized architectures such as token-passing rings, cliques of
identical components communicating with rendezvous or broadcast, and client-server systems.

Although the BIP framework includes efficient verification tools for statically-defined sys-
tems, none are available for parameterized systems with an unbounded number of components.
On the other hand, the parameterized model checking literature contains a wealth of techniques
for systems of classical architectures. However, application of these results requires a deep under-
standing of parameterized model checking techniques and their underlying mathematical models.
To overcome these difficulties, we introduce a framework that automatically identifies paramet-
erized model checking techniques applicable to a BIP design. To our knowledge, this is the
first framework that allows one to apply prominent parameterized model checking results in a
systematic way.

1998 ACM Subject Classification [Software Engineering] D.2.2: Design Tools and Techniques,
D.2.4 Software/Program Verification

Keywords and phrases Rigorous system design, BIP, verification, parameterized model checking

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2016.30

∗ We dedicate this article to the memory of Helmut Veith, who passed away tragically while this manuscript
was being prepared. His curiosity and energy ignited our joint effort in this research.
This work was supported by the Austrian National Research Network S11403-N23 (RiSE), the Vienna
Science and Technology Fund (WWTF) through the grant APALACHE (ICT15-103), and, partially, by
the Swiss National Science Foundation through the National Research Programme “Energy Turnaround”
(NRP 70) grant 153997.

© Igor Konnov, Tomer Kotek, Qiang Wang, Helmut Veith, Simon Bliudze, and Joseph Sifakis;
licensed under Creative Commons License CC-BY

27th International Conference on Concurrency Theory (CONCUR 2016).
Editors: Josée Desharnais and Radha Jagadeesan; Article No. 30; pp. 30:1–30:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.30
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

30:2 Parameterized Systems in BIP: Design and Model Checking

1 Introduction

Design, manufacture and verification of large scale complex hardware/software systems (e.g.,
cyber-physical systems) remains a grand challenge in system design automation [25]. To
address this challenge, the rigorous system design methodology [24] and the behaviour-
interaction-priority (BIP) framework [4] have been recently proposed. BIP comes with
a formal framework and a toolchain. The BIP framework has well-defined semantics for
modeling system behavior and architectures. The BIP toolchain supports verification of
high-level system designs and automatic system synthesis of low-level implementations from
high-level system designs.

The existing BIP tools focus on design and verification of systems with a fixed number of
communicating components [5, 22]. However, many distributed systems are designed with
parameterization in mind. For instance, the number of components in the system is not
typically fixed, but varies depending on the system setup. In this case, one talks about
parameterized verification, where the number of components is a parameter.

Model checking is a pragmatic approach to verification that has found many applications
in industry, e.g., see [19]. Many efforts were invested into extension of model checking to the
parameterized case, which led to numerous parameterized model checking techniques (see [9]
for a recent survey). Unfortunately, often parameterized model checking techniques come
with their own mathematical models, which makes their practical application difficult. To
perform parameterized model checking, the user has to thoroughly understand the research
literature. Typically, the user needs to first manually inspect the parameterized models and
match them with the mathematical formalisms from the relevant parameterized verification
techniques. Using the match, the user would then apply the decidability results (if any)
for the parameterized models, e.g., by computing a cutoff or translating the parameterized
model into the language of a particular tool for the specific architecture. Thus, there is a gap
between the mathematical formalisms and algorithms from the parameterized verification
research and the practice of parameterized verification, which is usually done by engineers
who are not familiar with the details of the research literature. In this paper, we aim at
closing this gap by introducing a framework for design and verification of parameterized
systems in BIP. With this framework, we make the following contributions:
1. We extend propositional interaction logic to the parameterized case with arithmetics,

which we call first-order interaction logic (FOIL). We build on the ideas from configuration
logic [21] and dynamic BIP [10]. FOIL is powerful enough to express architectures found in
distributed systems, including the classical architectures: token-passing rings, rendezvous
cliques, broadcast cliques, and rendezvous stars. We also identify a decidable fragment
of FOIL which has important applications in practice. This contribution is covered by
Section 3.

2. We provide a framework for integration of mathematical models from the parameterized
model checking literature in an automated way: given a parameterized BIP design, our
framework detects parameterized model checking techniques applicable to this design.
This automation is achieved by the use of SMT solvers and standard (non-parameterized)
model checkers. This contribution is covered by Sections 4 and 5.

3. We provide a preliminary prototype implementation of the proposed framework. Our
prototype tool takes a parameterized BIP design as its input and detects whether one of the
following classical results applies to this BIP design: the cut-off results for token-passing
rings by Emerson & Namjoshi [16], the VASS-based algorithms by German & Sistla [18],
and the undecidability and decidability results for broadcast systems by Abdulla et al. [1]

I. Konnov, T. Kotek, Q.Wang, H. Veith, S. Bliudze, and J. Sifakis 30:3

and Esparza et al. [17]. More importantly, our framework is not specifically tailored to
the mentioned techniques. This contribution is covered by Sections 5 and 6.

We remark that our framework builds on the notions of BIP, which allows us to express
complex notions in terminology understood by engineers. Moreover, our framework allows
an expert in parameterized model checking to capture seminal mathematical models found
in the verification literature, e.g., [18, 17, 16, 13].

This paper is structured as follows. In Section 2, we briefly recall the BIP modeling
framework. In Section 3, we introduce our parameterized extension. In Sections 4 and 5,
we present our verification framework and the automatic system architecture identification
technique. In Section 6, we present the preliminary experiments. Section 7 closes with related
work, conclusions, and future work.

2 BIP without priorities

In this section, we review the notions of BIP [4] with the following restrictions: (i) states of
the components do not have specific internal structure; (ii) we do not consider interaction
priorities. While we believe that our approach can be extended to priorities, we leave this
for future work.

As usual, a labeled transition system is a tuple (S, s0, A,R) with a set of locations S, an
initial location s0 ∈ S, a non-empty set of actions A, and a transition relation R ⊆ S×A×S.

IDefinition 2.1 (Component type). A component type is a transition system B = 〈Q, `0,P,E〉
over the finite sets Q and P. By convention, the set of actions P is called the set of ports.

Ports form the interface of a component type. We assume that, for each location, no two
outgoing transitions from this location are labeled with the same port. We also assume that
the ports of each component type, as well as the locations, are disjoint.

Let 〈B0, . . . ,Bk−1〉 be a tuple of component types, where each Bi is 〈Qi, `0i ,Pi,Ei〉 for i ∈
[0, k). We introduce an infinite set of components {Bi[j] | j ≥ 0} for i ∈ [0, k). A
component Bi[j] = 〈Qi[j], `0i [j],Pi[j],Ei[j]〉 is obtained from the component type Bi by
renaming the set of ports. Thus, as transition systems, Bi[j] and Bi are isomorphic. We
postulate Pi[j] ∩ Pi[j′] = ∅, for j 6= j′.

A BIP model is a composition of finitely many components instantiated from the
component types 〈B0, . . . ,Bk−1〉. To denote the number of components of each type, we
introduce a size vector N̄ = 〈N0, . . . , Nk−1〉: there are Ni components of component type Bi,
for i ∈ [0, k).

Coordination of components is specified with interactions. Intuitively, an interaction
defines a multi-party synchronization of component transitions. A BIP interaction is a finite
set of ports, which defines a possible synchronization among components.

I Definition 2.2 (Interaction). Given a tuple of component types 〈B0, . . . ,Bk−1〉 and a size
vector N̄ = 〈N0, . . . , Nk−1〉 , an interaction γ ⊆ {p ∈ Pi[j] | i ∈ [0, k), j ∈ [0, Ni)} is a set of
ports such that |γ ∩ Pi[j]| ≤ 1 for all i ∈ [0, k) and j ∈ [0, Ni), i.e., an interaction is a set of
ports such that at most one port of each component takes part in an interaction. If p ∈ γ,
we say that p is active in γ.

I Definition 2.3 (BIP Model). Given a tuple of component types 〈B0, . . . ,Bk−1〉 and a size
vector N̄ = 〈N0, . . . , Nk−1〉, a BIP model 〈B0, . . . ,Bk−1〉N̄,Γ is a tuple 〈B,Γ〉, where B is the
set {Bi[j] | i ∈ [0, k), j ∈ [0, Ni)} and Γ is a set of interactions defined w.r.t. 〈B0, . . . ,Bk−1〉
and N̄ .

CONCUR 2016

30:4 Parameterized Systems in BIP: Design and Model Checking

I Definition 2.4 (BIP operational semantics). Given a BIP model 〈B0, . . . ,Bk−1〉N̄,Γ, we
define its operational semantics as a transition system TS(〈B0, . . . ,Bk−1〉N̄,Γ) = 〈S, s0,Γ, R〉,
where:
1. The set of configurations S is defined as the Cartesian product of the sets of locations of

the components QN0
0 × · · · × QNk−1

k−1 . Given a configuration s ∈ S, we denote by s(i, j)
the jth member of the tuple defined by the ith product QNi

i where j ∈ [0, Ni).
2. The initial configuration s0 ∈ S satisfies that s0(i, j) = `0i [j] for all i ∈ [0, k) and

j ∈ [0, Ni).
3. The transition relation R contains a triple (s, γ, s′), if, for each i ∈ [0, k) and j ∈ [0, Ni),

the jth component of type i
either has an active port p ∈ γ ∩ Pi[j] and 〈s(i, j), p, s′(i, j)〉 ∈ Ei[j],
or is not participating in the interaction γ, i.e., γ ∩ Pi[j] = ∅ and s′(i, j) = s(i, j).

Intuitively, the local transitions of components fire simultaneously, provided that their
ports are included in the interaction; other components do not move.

I Example 2.5 (Milner’s scheduler). We follow the formulation by Emerson & Namjoshi [16].
A scheduler is modeled as a token-passing ring. Only the process that owns the token may
start running a new task. The component type B0 = 〈Q0, `

0
0,P0,E0〉 is given by the locations

Q0 = {S0, . . . , S4}, the initial location `00 = S0, the port types P0 = {snd, rcv, start,finish},
and the edges E0 that are shown in the figure below:

S0 S1 S2

S3

S4

start snd rcv finish

finish

rcv

A component owns the token when in the location S0, S1, or S3. In S0, a component
initiates its task by interacting on port start. The token is then sent to the component’s
right neighbor on the ring via an interaction on port snd. The component then waits until
(a) its initiated task has finished, and (b) the component has received the token again. When
both (a) and (b) have occurred, the component may initiate a new task. Note that (a) and
(b) may occur in either order.

Fix a number N0 ∈ N. The following set of interactions represents the ring structure:

Γ = {γi→j , γstart(i), γfinish(i) | 0 ≤ i < N0 and j ≡ i+ 1 mod n0}

where γi→j = {(snd, i), (rcv, j)} is the interaction passing the token from the ith component
to the next component on the ring, while the interactions γstart(i) = {(start, i)} and γfinish(i) =
{(finish, i)} allow the ith component to take the internal transitions labeled ’start’ and ’finish’
respectively. The BIP model of the Milner scheduler of size N0 is 〈B,Γ〉, where B is the set
of components {B0[j] | j ∈ [0, N0)}.

3 Parameterized BIP without priorities

Since the number of possible interactions in a parameterized system is unbounded, and
each interaction itself may involve an unbounded number of actions, the set of all possible
interactions is infinite. Hence, we need a symbolic representation of such a set. To this end,
we propose first order interaction logic—a uniform and formal language for system topologies
and coordination mechanisms in parameterized systems. Using this logic, we introduce a
parameterized extension of BIP, and show that this extension naturally captures standard
examples.

I. Konnov, T. Kotek, Q.Wang, H. Veith, S. Bliudze, and J. Sifakis 30:5

3.1 FOIL: First order interaction logic
In this section, we fix a tuple of component types 〈B0, . . . ,Bk−1〉. For each port p ∈ Pi
of an ith component type, we introduce a unary port predicate with the same name p.
Furthermore, we introduce a tuple of constants n̄ = 〈n0, . . . , nk−1〉, which represents the
number of components of each type. We also assume the standard vocabulary of Presburger
arithmetic, that is, 〈0, 1,≤,+〉.

FOIL syntax. Assume an infinite set of index variables I. We say that ψ is a first order
interaction logic formula, if it is constructed according to the following grammar:

ψ ::= p(i) | ¬ψ | ψ1 ∧ ψ2 | ψ1 ∨ ψ2 | ∃i :: typej : φ. ψ | ∀i :: typej : φ. ψ ,

where p ∈ P0 ∪ · · · ∪ Pk−1, i ∈ I, and φ is a formula in Presburger arithmetic over index
variables and the vocabulary 〈0, 1,≤,+, n̄〉.

Informally, the syntax Q i :: typej : φ. ψ, where Q ∈ {∃,∀}, restricts the index variable i
to be associated with the component type Bj . Notice, however, that this syntax does not
enforce type correctness of ports. For instance, one can write a formula ∃i :: typej : p(i) with
some p 6∈ Pj . While this formula is syntactically correct, it is not in line with Definition 2.2
of interaction given in Section 2. To this end, we say that a FOIL formula is natural, if for
each of its subformulae Q i :: typej : φ. ψ(i), for Q ∈ {∃,∀}, and every atomic formula p(i)
of ψ, it holds that p ∈ Pj . From here on, we assume FOIL formulae to be natural. We write
∃i :: typej . ψ as a shorthand for ∃i :: typej : true. ψ.

FOIL semantics. We give the semantics of a FOIL formula by means of structures. A
first-order interaction logic structure (FOIL structure) is a pair ξ = (N, αξ): the set of natural
numbers N is the domain of ξ, while αξ is the interpretation of all the predicates and of the
constants n̄. The symbols 0, 1, ≤, and + have the natural interpretations over N.

A valuation σ is a function σ : I → N. We denote by σ[x 7→ j] the valuation obtained
from σ by mapping the index variable x to the value j. Assignments are used to give values to
free variables in formulae. For a FOIL structure ξ and a valuation σ, the semantics of FOIL
is formally given as follows (the semantics of Boolean operators and universal quantifiers is
defined in the standard way):

ξ, σ |=FOIL p(i) iff αξ(p) is true on σ(i)
ξ, σ |=FOIL ∃i :: typej : φ. ψ iff there is l ∈ [0, αξ(nj)) such that

ξ, σ[i 7→ l] |=FO φ and ξ, σ[i 7→ l] |=FOIL ψ

where |=FO to denotes the standard ’models’ relation of first-order logic.
Finally, for a FOIL formula ψ without free variables and a structure ξ, we write ξ |=FOIL ψ,

if ξ, σ0 |=FOIL ψ for the valuation σ0 that assigns 0 to every index i ∈ I.1

Decidability. It is easy to show that checking validity of a FOIL sentence2 is undecidable,
and that FOIL contains an important decidable fragment:

I Theorem 3.1 (Decidability of FOIL). The following results about FOIL hold:

1 Since ψ has no free variables, our choice of σ0 is arbitrary: for all σ we have ξ, σ |=FOIL ψ if and only if
ξ, σ0 |=FOIL ψ.

2 A FOIL formula with no free variables is called a sentence. A sentence is valid if it is satisfied by all
structures.

CONCUR 2016

30:6 Parameterized Systems in BIP: Design and Model Checking

(i) Validity of FOIL sentences is undecidable.
(ii) Validity of FOIL sentences in which all additions are of the form i+ 1 is decidable.

Proof. (i) FOIL contains Presburger arithmetic with unary predicates, which is known to
be as strong as Peano arithmetic [20]. Hence, satisfiability and validity of FOIL formulae are
undecidable.

(ii) The formula j = i + 1 is definable in FOIL by i ≤ j ∧ j 6= i ∧ ψconsecutive(i, j),
where ψconsecutive(i, j) = ∀` :: typet. (j ≤ ` ∧ ` ≤ i) → (` = i ∨ ` = j), where t is the type
of i and j. Hence, we can rewrite any FOIL sentence ψ in which all additions are of the
form i + 1 as an equi-satisfiable first-order logic sentence ψ′ without using addition (+).
The sentence ψ′ belongs to S1S, the monadic second order theory of (N, 0, 1,≤), which is
decidable, see [27]. J

In the following, we restrict addition to the form i+ 1, and thus stay in the decidable
fragment.

3.2 Interactions as FOIL structures
In contrast to Definition 2.2 of a standard interaction, which is represented explicitly as
a finite set of ports, we use first order interaction logic formulae to define all the possible
interactions in parameterized systems. Our key insight is that each structure of a formula
uniquely defines at most one interaction, and the set of all possible interactions is the union
of the interactions derived from the structures that satisfy the formula.

Intuitively, if p(j) evaluates to true in a structure ξ, then the jth instance of the respective
component type—uniquely identified by the port p—takes part in the interaction identified
with ξ. Thus, we can reconstruct a standard BIP interaction from a FOIL structure by
taking the set of ports, whose indices are evaluated to true by the unary predicates. Formally,
given a FOIL structure ξ = (N, αξ), we define the set γξ = {(p, j) | i ∈ [0, k), p ∈ Pi, j ∈
[0, αξ(nj)), αξ(p)(j) = true}. In the following, the notation (p, j) denotes the port p of the
jth component of the type Bi with p ∈ Pi.

Notice that γξ does not have to be an interaction in the sense of Definition 2.2. Indeed,
one can define ξ whose set γξ includes two ports of the same component. We say that ξ
induces an interaction, if γξ is an interaction in the sense of Definition 2.2.

I Definition 3.2 (Parameterized BIP Model). A parameterized BIP model is a tuple
〈�, n̄, ψ, ε〉, where � = 〈B0, . . . ,Bk−1〉 is a tuple of component types, ψ is a sentence
in FOIL over port predicates and a tuple n̄ = 〈n0, . . . , nk−1〉 of size parameters, and ε is a
linear constraint over n̄.

The tuple n̄ consists of the size parameters for all component types, and the constraint
ε restricts these parameters. For example, the formula (n0 = 1) ∧ (n1 ≥ 10) requires every
instance of a parameterized BIP model to have only one component of the first type and at
least ten components of the second type. The FOIL sentence ψ restricts both the system
topology and the communication mechanisms, see Example 3.4.

I Definition 3.3 (PBIP Instance). Given a parameterized BIP model 〈�, n̄, ψ, ε〉 and a size
vector N̄ , a PBIP instance is a BIP model 〈B0, . . . ,Bk−1〉N̄,Γ = 〈B,Γ〉, where B and Γ are
defined as follows:
1. the numbers N̄ satisfy the size constraint ε,
2. the set of components B is {Bi[j] | i ∈ [0, k) and j ∈ [0, Nj)}, and

I. Konnov, T. Kotek, Q.Wang, H. Veith, S. Bliudze, and J. Sifakis 30:7

3. the set of interactions Γ consists of all interactions γξ induced by a FOIL structure ξ such
that the size parameters n̄ are interpreted in ξ as N̄ , and ξ satisfies ψ, i.e. αξ(n̄) = N̄

and ξ |=FOIL ψ.

In the rest of this section, we give three examples that show expressiveness of parameterized
BIP.

I Example 3.4 (Milner’s scheduler revisited). The parameterized BIP model of Milner’s
scheduler is 〈〈B0〉, 〈n0〉, ψ, true〉, where B0 is from Example 2.5 and ψ = ψtoken ∨ ψinternal
defined as follows. The formula ψtoken defines the token-passing interactions and the formula
ψinternal defines the internal interactions of starting or finishing a task:

ψtoken = ∃i, j :: type0 : j = (i+ 1) mod n0. snd(i) ∧ rcv(j) ∧ ψonly(i, j)
ψonly(i, j) = ∀` :: type0 : ` 6= i ∧ ` 6= j. ¬snd(`) ∧ ¬rcv(`) ∧ ¬start(i) ∧ ¬finish(i)
ψinternal = ∃i :: type0. ψonly(i, i) ∧ (start(i) ∨ finish(i))

The formula ψtoken does not have free variables and holds for a structure ξ, if the
induced interaction γξ is a send-receive interaction along some edge i → j of the ring,
where j = (i+ 1) mod n0. In fact, j = (i+ 1) mod n0 is just a shorthand for the formula:
(i+ 1 < n0∧ j = i+ 1)∨ (i+ 1 = n0∧ j = 0). The formula ψonly(i, j) excludes any component
other than i and j from participating in the interaction. (If i = j then all components other
than i are excluded.) The formula ψinternal enables the transitions labeled with ’start’ and
’finish’, in which only one component changes its location.

Observe that the semantics of FOIL forces the quantified variables i, j, ` to be in the
range from 0 to N0 − 1. Hence, we omit explicit range constraints. For instance, ψtoken is
equivalent to the formula:

∃i, j :: type0 : 0 ≤ i, j < n0 ∧ (j = (i+ 1) mod n0). snd(i) ∧ rcv(j) ∧ ψonly(i, j)

The set of FOIL structures ξ that satisfy ψ induces the same set of interactions Γ as in
Example 2.5. While Example 2.5 defines the set Γ explicitly for any fixed value N0, in the
parameterized setting the interactions are defined uniformly by a single FOIL formula ψ, for
all values of N0.

In this example we do not restrict the initial locations so that exactly one process owns
the token in the initial configuration. This delicate issue is resolved in Section 5.4.

I Example 3.5 (Broadcast in a star). Let 〈〈B0,B1〉, 〈n0, n1〉, ψ, ε〉 be a parameterized BIP
model with two component types and the size constraint ε ≡ (n0 = 1). We also assume
that component type B0 (resp. B1) has only one port send (resp. receive), i.e., P0 = {send}
and P1 = {receive}. The FOIL formula ψ = ∃i :: type0. send(i) specifies broadcast from the
component B0[0], the center of the star, to the leaves of type B1. The set of interactions
defined by ψ consists of all sets of ports of the form {(send, 0)} ∪ {(receive, d) | d ∈ D)} for
all D ⊆ [0, n1), including the empty set D = ∅.

I Example 3.6 (Barrier). Consider a barrier synchronization protocol, cf. [9, Example 6.6].
The component type B0 is as shown below:

master
neutral

slave

loopM loopN loopS
exit

go exit

follow

The location neutral is the initial location. A synchronization episode consists of three
stages:

CONCUR 2016

30:8 Parameterized Systems in BIP: Design and Model Checking

(i) First, a single component enters the barrier by moving to master.
(ii) Then, each of the others components moves to slave.
(iii) Finally, the master triggers a broadcast and all components leave the barrier by moving

to neutral.
The parameterized BIP model of the barrier synchronization protocol is 〈〈B0〉, 〈n0〉, ψ, true〉,
where ψ = ψgo ∨ ψfollow ∨ ψexit, and the following formulae ψgo, ψfollow, and ψexit describe
the interactions of stages (i), (ii), and (iii) respectively:

ψgo = ∃i :: type0. go(i) ∧ ∀j :: type0 : i 6= j. loopN (j)
ψfollow = ∃i, j :: type0. follow(i) ∧ loopM (j)∧

∀` :: type0 : i 6= `. loopM (`) ∨ loopN (`) ∨ loopS(`)
ψexit = ∀i :: type0. exit(i)

All three formulae enforce progress by requiring at least one process to change its state.

4 Parameterized model checking

In this section, we review the syntax and semantics of the indexed version of CTL∗, called
ICTL?, which is often used to specify the properties of parameterized systems [9]. Though
we use indexed temporal logics to define the standard parameterized model checking problem,
these logics are not the focus of this paper. Further, we introduce the parameterized model
checking problem for parameterized BIP design, and show its undecidability.

Syntax. For a set of index variables I, the ICTL? state and path formulae follow the
grammar:

θ ::= true | at(q, i) | ¬θ | θ1 ∧ θ2 | ∃i :: typej : φ. θ | ∀i :: typej : φ. θ | Eϕ | Aϕ , (state formulae)
ϕ ::= θ | ¬ϕ | ϕ1 ∧ ϕ2 | Xϕ | Fϕ | Gϕ | ϕ1Uϕ2 . (path formulae)

where q ∈
⋃

0≤j<kQj is a location, i ∈ I is an index, and φ is a formula in Presburger
arithmetic over size variables n̄ and index variables from the set I.

Semantics. Fix a BIP model 〈B0, . . . ,Bk−1〉N̄,Γ and its transition system M = 〈S, s0,Γ, R〉
= TS(〈B0, . . . ,Bk−1〉N̄,Γ) as per Definition 2.4. To evaluate Presburger formulae, we use the
first-order structure PA =

〈
N, 0, 1,≤,+, N̄

〉
. The semantics of ICTL? formulae is defined

inductively using M and PA. We only briefly discuss semantics to highlight the role of
quantifiers in indexed temporal logics. For further discussions, we refer the reader to the
textbook [12].

State formulae are interpreted over a configuration s and a valuation of index variables
σ : I → N (the semantics of Boolean operators and universal quantifiers is defined in the
standard way):

M, s, σ |=ICTL? at(q, i) iff q = s(j, σ(i)), where q ∈ Qj

M, s, σ |=ICTL? ∃i :: typej : φ. θ iff PA, σ[i 7→ l] |=FO φ and M, s, σ[i 7→ l] |=ICTL? θ hold,
for some l ∈ [0, Nj)

M, s, σ |=ICTL? Eϕ iff M,π, σ |=ICTL? ϕ for some infinite path π starting from s

Path formulae are interpreted over an infinite path π, and the valuation function σ as
follows (the semantics for Boolean operators and temporal operators F and G is defined in
the standard way):

M,π, σ |=ICTL? θ iff M, s, σ |=ICTL? θ, where s is the first configuration of the path π
M, π, σ |=ICTL? Xϕ iff M,π1, σ |=ICTL? ϕ

M,π, σ |=ICTL? ϕ1Uϕ2 iff ∃j ≥ 0. M, πj , σ |=ICTL? ϕ2 and ∀i < j. M, πi, σ |=ICTL? ϕ1,

I. Konnov, T. Kotek, Q.Wang, H. Veith, S. Bliudze, and J. Sifakis 30:9

where πi is the suffix of the path π starting with the ith configuration.
Finally, given a formula ϕ without free variables, we say that M satisfies ϕ, written

as M |=ICTL? ϕ, if M, s0, σ0 |=ICTL? ϕ for the valuation σ0 that assigns zero to each index
from the set I. The choice of σ0 is arbitrary, as for all σ, it holds that M, s0, σ |=ICTL? ϕ if
and only if M, s0, σ0 |=ICTL? ϕ.

Now we are in the position to formulate the parameterized model checking problem for
BIP:

I Problem 4.1 (Parameterized model checking). The verification problem for a parameterized
BIP model 〈�, n̄, ψ, ε〉 and an ICTL? state formula θ without free variables, is whether every
instance 〈B0, . . . ,Bk−1〉N̄,Γ satisfies θ.

Not surprisingly, Problem 4.1 is undecidable in general. For instance, one can use the
proof idea [16] to obtain the following theorem. We do not give a detailed proof here: to a
large extent, it repeats the encoding of a unidirectional token ring, which we discuss later in
Section 5.4.

I Theorem 4.2 (Undecidability). Given a two-counter machine M2, one can construct an
ICTL?-formula G¬halt and a parameterized BIP model B = 〈�, n̄, ψ, ε〉 that simulates M2
and has the property: M2 does not halt if and only if 〈B0, . . . ,Bk−1〉N̄,Γ |= G¬halt for all
instances of B.

5 Identifying the architecture of a parameterized BIP model

In the non-parameterized case, knowing the architecture is not crucial, as there are model
checking algorithms that apply in general to arbitrary finite transition systems. However, the
architecture dramatically affects decidability of parameterized model checking. Architecture
identification plays an important step in our verification framework. In this section, we show
how to identify system architectures automatically, and present applications to verification.

Our framework. For the sake of exposition, we assume that parameterized BIP models
have only one component type. Our identification framework extends easily to the general
case.

Given an architecture A, e.g., the token ring architecture, an expert in parameterized
model checking creates formula templates in FOIL (FOIL-templates) and in temporal logic
(TL-templates). FOIL-templates describe the system topology and communication mechanism
for the architecture A. TL-templates describe the behaviour of the component type required
by the architecture A, e.g., in a token ring, a component which does not have the token
cannot send the token. These templates are designed once for all parameterized BIP models
compliant with A. In the sequel, TL-templates are only used for token rings, thus we omit
them from the discussion of other architectures.

Given a parameterized BIP model 〈〈B〉, 〈n〉, ψ, ε〉—not necessarily compliant with the
architecture A—the templates for the architecture A are instantiated to FOIL formulae
ϕFOIL

1 , . . . , ϕFOIL
m , and temporal logic formulae ϕTL

1 , . . . , ϕ
TL
` . The FOIL formulae guarantee

that the set of interactions expressed by the FOIL formula ψ adheres to A. The temporal
logic formulae guarantee that the behaviour of the component type B adheres to A. The
identification criterion is as follows: if ϕFOIL

1 ∧ · · · ∧ ϕFOIL
m is valid and B |=TL ϕ

TL
1 ∧ · · · ∧ ϕTL

`

holds, then the parameterized model 〈〈B〉, 〈n〉, ψ, ε〉 is compliant with the architecture A. In
practice, we use an SMT solver to check validity of the FOIL formulae and a model checker
to check that the component type B satisfies the temporal formulae.

CONCUR 2016

30:10 Parameterized Systems in BIP: Design and Model Checking

In the rest of this section we construct FOIL-templates and TL-templates for well-
known architectures: cliques of processes communicating via broadcast, cliques of processes
communicating via rendezvous, token rings, and server-client systems in which processes are
organized in a star and communicate via rendezvous. We show that the provided templates
identify the architectures in a sound way.

5.1 The common templates for BIP semantics
As we discussed in Section 3.2, not every FOIL structure induces a BIP interaction. We show
that one can write a FOIL-template that restricts FOIL structures to induce BIP interactions.
The following template ηFOIL

interaction(P0) expresses that there is no component with more than
one active port: ∀j :: type0.

∧
p,q∈ P0, q 6=p ¬p(j) ∨ ¬q(j)

As expected, the template ηFOIL
interaction(P0) restricts FOIL structures to BIP interactions:

I Proposition 5.1. Let P0 be a set of ports, and η be the instantiation of ηFOIL
interaction with P0.

A FOIL structure ξ satisfies η if and only if ξ induces an interaction.

To express that a component has at least one active port, we introduce template
active(j) ≡

∨
p∈P0

p(j). To simplify notation, parameterization of active(j) by P0 is omitted.

5.2 Pairwise rendezvous in a clique
In a BIP model, components are said to communicate by binary rendezvous, if all the
allowed interactions consist of exactly two ports. The communication is said to be by
pairwise rendezvous, if there is a binary rendezvous between every two components. Pairwise
rendezvous has been widely used as a basic primitive in the parameterized model checking
literature, e.g., in [18, 3].

FOIL-templates. We construct a template using two formulae ηFOIL
≤2 (P0) and ηFOIL

≥2 (P0):

The formula ηFOIL
≤2 (P0) expresses that every interaction has at most two ports:

∀i, j, ` :: type0. active(i) ∧ active(j) ∧ active(`)→ i = j ∨ j = ` ∨ i = `.
The formula ηFOIL

≥2 (P0) expresses that every interaction has at least two ports:
∃i, j :: type0 : i 6= j. active(i) ∧ active(j).

We show that the combination of ηFOIL
interaction , ηFOIL

≥2 , and ηFOIL
≤2 defines pairwise rendezvous

communication in cliques of all sizes:

I Theorem 5.2. Given a one-type parameterized BIP model 〈〈B〉, 〈n〉, ψ, ε〉, if
(ψ ∧ ηFOIL

interaction) ↔ (ηFOIL
interaction ∧ ηFOIL

≥2 ∧ ηFOIL
≤2) is valid, then for every instance BN,Γ, the

following holds:
1. every interaction is of size 2, that is, |γ| = 2 for γ ∈ Γ, and
2. for every pair of indices i and j such that 0 ≤ i, j < N and i 6= j and every pair of ports

p, q ∈ P0, there is a FOIL structure ξ such that ξ |=FOIL ψ ∧ p(i) ∧ q(j).

Proof. Fix an instance BN,Γ of 〈〈B〉, 〈n〉, ψ, ε〉.
To show Point 1, fix an interaction γ of BN,Γ. By Definition 3.3, there is a FOIL

structure ξ such that ξ |=FOIL ψ and γ = γξ. As ξ induces an interaction, by Proposition 5.1,
we immediately have that γξ satisfies the instantiation of ηFOIL

interaction. Hence, since (ψ ∧
ηFOIL

interaction)↔ (ηFOIL
interaction ∧ηFOIL

≥2 ∧ηFOIL
≤2) is valid we conclude that ξ also satisfies ηFOIL

≥2 ∧ηFOIL
≤2 .

This immediately gives us the required equality |γξ| = 2.

I. Konnov, T. Kotek, Q.Wang, H. Veith, S. Bliudze, and J. Sifakis 30:11

To show Point 2, fix a pair of indices i and j such that 0 ≤ i, j < N and i 6= j

and a pair of ports p, q ∈ P0. The set γ = {(p, i), (q, j)} is an interaction. Obviously,
one can construct a FOIL structure ξ that induces γ. Since i 6= j and |γξ| = 2, it holds
that ξ |=FOIL η

FOIL
interaction∧ηFOIL

≥2 ∧ηFOIL
≤2 . Thus, since (ψ∧ηFOIL

interaction)↔ (ηFOIL
interaction∧ηFOIL

≥2 ∧ηFOIL
≤2)

is valid, it follows that ξ |=FOIL ψ. From this and that ξ induces the interaction γ, we conclude
that ξ |=FOIL ψ ∧ p(i) ∧ q(j). J

In Theorem 5.2, the right-hand side of the equivalence does not restrict which pairs of
ports may interact, e.g., it does not require the ports to be the same. Thus, if ψ is more
restrictive than the right-hand side of the equivalence, validity will not hold. Obviously, one
can further restrict the equivalence to reflect additional constraints on the allowed pairs of
ports. Moreover, one may restrict which ports are required by the template to communicate
via pairwise rendezvous for compositionality, e.g. to allow other ports to participate in other
communication primitives and in internal transitions. (One may augment or restrict the
templates of all the architectures below similarly.)

Applications. Theorem 5.2 gives us a criterion for identifying parameterized BIP models,
where all processes may interact with each other using rendezvous communication. To verify
such parameterized BIP models, we can immediately invoke the seminal result by German &
Sistla [18, Sec. 4]. Their result applies to specifications written in indexed linear temporal
logic without the operator X .

More formally, we say that an ICTL? path formula χ(i) is a 1-LTL\X formula, if χ has only
one index variable i and χ does not contain quantifiers ∃, ∀, A , E , nor temporal operator X .
Given a parameterized BIP model 〈〈B〉, 〈n〉, ψ, ε〉 and a 1-LTL\X formula χ, one can check in
polynomial time, whether every instance BN, Γ satisfies the formula E ∃i :: type0 : true. χ(i).

5.3 Broadcast in a clique
In BIP, components communicate via broadcast, if there is a “trigger” component whose
sending port is active, and the other components either have their receiving port active, or
have no active ports. In this section, we denote the sending port with send and the receiving
port with receive. Our results can be easily extended to treat multiple sending and receiving
ports. In a broadcast step, all the components with the active ports make their transitions
simultaneously. Broadcasts were extensively studied in the parameterized model checking
literature [17, 23].

One way to enforce all the processes to receive a broadcast, if they are ready to do so, is
to use priorities in BIP: an interaction has priority over any of its subsets. In this paper,
we consider BIP without priorities. In this case, one can express broadcast by imposing
the following restriction on the structure of the component type B: every location has a
transition labeled with the port receive. This restriction enforces all interactions to involve all
the components, though some of the components may not change their location by firing
a self-loop transition. This requirement can be statically checked on the transition system
of B, and if the component type does not fulfill the requirement, it is easy to modify the
component type’s transition system by adding required self-loops.

FOIL-templates. First, we define the formula ηFOIL
bcast(P0), which guarantees that every

interaction includes one sending port by one component and the receiving ports of the other
components:

∃i :: type0. send(i) ∧ ∀j :: type0 : j 6= i. receive(j)

CONCUR 2016

30:12 Parameterized Systems in BIP: Design and Model Checking

We show that the combination of ηFOIL
interaction and ηFOIL

bcast defines broadcast in cliques of all
sizes:

I Theorem 5.3. Given a one-type parameterized BIP model 〈〈B〉, 〈n〉, ψ, ε〉, if
(ψ ∧ ηFOIL

interaction)↔ (ηFOIL
interaction ∧ ηFOIL

bcast) is valid, then for every instance BN,Γ, the following
holds:
1. every interaction consists of one send port and N − 1 receive ports.
2. for every index c, such that 0 ≤ c < N , there is a FOIL structure ξ satisfying the

following:
ξ |=FOIL ψ ∧ send(c) ∧ ∀j :: type0 : j 6= c. receive(j).

Proof. The proof follows the same principle as the proof of Theorem 5.2. J

Applications. Theorem 5.3 gives a criterion for identifying parameterized BIP models in
which all components may send and receive broadcast. Its implications are two-fold. First,
it is well-known that parameterized model checking of safety properties is decidable [1] (cf.
the discussion in [17]), and there are tools for well-structured transition systems applicable
to model checking of parameterized BIP. Second, parameterized model checking of liveness
properties is undecidable [17]. From the user perspective, this indicates the need to construct
abstractions, or to use semi-decision procedures.

Identifying sending and receiving ports. Now we illustrate how to automatically detect
the sending and receiving ports in a parameterized BIP model. We say that a port p ∈ P0 in
the component type may be a sending port, if in every interaction exactly one component
uses this port. Similarly, we say that a port q ∈ P0 in the component type may be a receiving
port, if in every interaction all but one component use this port. Intuitively, we have to
enumerate all port types and check whether they are acting as sending ports or receiving
ports. Formally, to find whether p is a potential sending port and q is a potential receiving
port, we check whether the following is valid:

ψ ∧ ηFOIL
interaction ∧ ∃i :: type0.

(
p(i) ∨ q(i)

)
→
(
∃i :: type0. p(i) ∧ ∀j :: type0 : j 6= i. q(j)

)

5.4 Token rings
Token ring is a classical architecture: (i) all processes are arranged in a ring, (ii) the ring
size is parameterized but fixed in each run, and (iii) one component owns the token and
can pass the token to its neighbor(s). It is easy to express token-passing with rendezvous,
so we re-use the templates from Section 5.2. We assume that there is a pair of ports: the
port send giving away the token and the port receive accepting the token. We do not allow
the token to change its type, as the parameterized model checking problem is undecidable in
this case [26, 16]. Nevertheless, it is easy to extend our results to multiple token types. Here
the token is passed in one direction, that is, every component may only receive the token
from one neighbor and may only send the token to its other neighbor.

TL-templates. Following the standard assumption [16], we require that every process sends
and receives the token infinitely often. We encode this requirement as a local constraint in a
form of an LTL formula that is checked against the component type (and not against a BIP
instance):

G
(
receive→ X (¬receive U send)

)
∧G

(
send→ X

(
¬send U receive)

)

I. Konnov, T. Kotek, Q.Wang, H. Veith, S. Bliudze, and J. Sifakis 30:13

The left conjunct forces a component that has the token to eventually send it. The right
conjunct prevents a component from sending the token twice before receiving it back.

FOIL-templates. We extend the pairwise rendezvous templates with a formula ηFOIL
uniring(P0)

that restricts the interactions to be performed only among the neighbors in one direction:

∃i, j :: type0. (j = (i+ 1) mod n0). send(i) ∧ receive(j)

The modulo notation “j = (i+ 1) mod n0” can be seen as syntactic sugar, as it expands
into (i = n0 − 1→ j = 0) ∧ (i < n0 − 1→ j = i+ 1).

I Theorem 5.4. Given a one-type parameterized BIP model 〈〈B〉, 〈n〉, ψ, ε〉, if
(ψ ∧ ηFOIL

interaction)↔ (ηFOIL
interaction ∧ ηFOIL

≥2 ∧ ηFOIL
≤2 ∧ ηFOIL

uniring) is valid, then every instance BN,Γ
satisfies:
1. every interaction γ ∈ Γ is of the form {send(c), receive(d)} for some indices c and d such

that 0 ≤ c, d < N and d = (c+ 1) mod N , and
2. for every index c such that 0 ≤ c < N and the index d = (c+ 1) mod N , there is a FOIL

structure ξ such that ξ |=FOIL ψ ∧ send(c) ∧ receive(d).

Proof. The proof follows the same principle as the proof of Theorem 5.2. J

Distributing the token. The token ring architecture assumes that initially only one com-
ponent has the token. Emerson & Namjoshi [16] assumed that the token was distributed
using a “daemon”, but this primitive is obviously outside of the token ring architecture. Our
framework encompasses token distribution. To this end, we restrict the transition system of
the component as follows:

We assume that the location set Q0 of the component type B0 is partitioned into two
sets: Qtok0 is the set of locations possessing the token, and Qntok0 is the set of locations
without the token. The initial location does not possess the token: `0 ∈ Qntok0 .
We assume that there are two auxiliary ports called master and slave that are only used
in a transition from the initial location `0. There are only two transitions involving `0:
the transition from `0 to a location in Qtok0 that broadcasts via the port master , and the
transition from `0 to a location in Qntok0 that receives the broadcast via the port slave. The
broadcast interaction can be checked with the constraints similar to those in Section 5.3.

Applications. Theorem 5.4 gives us a criterion for identifying parameterized BIP models
that express a unidirectional token ring. This criterion has a great impact: one can apply
non-parameterized BIP tools to verify parameterized BIP designs expressing token rings.
As Emerson & Namjoshi showed in their celebrated paper [16], to verify parameterized
token rings, it is sufficient to run model checking on rings of small sizes. The bound on the
ring size—called a cut-off—depends on the specification and typically requires two or three
components.

5.5 Pairwise rendezvous in a star
In a star architecture, one component acts as the center, and the other components commu-
nicate only with the center. The components communicate via rendezvous (considered in
Section 5.2). This architecture is used in client-server applications. Parameterized model
checking for the star architecture was investigated by German & Sistla [18]. We assume
that a parameterized BIP model contains two component types: B0 with only one instance,
and B1 that may have many instances.

CONCUR 2016

30:14 Parameterized Systems in BIP: Design and Model Checking

Table 1 Experimental results of identifying architecture models. The column “Outcome” indicates,
whether the benchmark was recognized to have the given architecture (positive), or not (negative).
The experiments were performed on a 64-bit Linux machine with 2.8GHz × 4 CPU and 7.8GiB
memory.

Benchmark Architecture model Outcome Time (sec.) Memory (MB)
Milner’s scheduler uni-directional token ring positive 0.068 ≤ 10
Milner’s scheduler broadcast in clique negative 0.016 ≤ 10
Semaphore pairwise rendezvous in star positive 0.096 ≤ 10
Semaphore pairwise rendezvous in clique negative 0.084 ≤ 10
Barrier broadcast in clique positive 0.028 ≤ 10
Barrier pairwise rendezvous in star negative 0.008 ≤ 10

FOIL-templates. The requirements of rendezvous communication are defined in Section 5.2.
We add the restriction ηFOIL

center that the center is involved in every interaction:
∃i :: type0. active0(i). By restricting ε to have only one instance of type B0, we arrive
at Theorem 5.5, which to a large extent is a consequence of Theorem 5.2.

I Theorem 5.5. Given a two-component parameterized BIP model 〈〈B0,B1〉, 〈n0, n1〉, ψ, ε〉,
if (ψ ∧ ηFOIL

interaction) ↔ (ηFOIL
interaction ∧ ηFOIL

≥2 ∧ ηFOIL
≤2 ∧ ηFOIL

center) and ε ↔ (n0 = 1) are both valid,
then every instance 〈B0,B1〉〈N0, N1〉,Γ admits only the rendezvous interactions with the center,
i.e., the only component of type B0.

Applications. Theorem 5.5 gives us a criterion for identifying parameterized BIP models,
where the user processes communicate with the coordinator via rendezvous. To verify such
parameterized BIP models, we can immediately invoke several results by German & Sistla [18,
Sec. 3]. First, one can analyze such parameterized BIP models for deadlocks, which is of
extreme importance to the practical applications of BIP. Second, the results [18] reduce
parameterized model checking to reachability in Petri nets, which allows one to use the
existing tools for Petri nets.

6 Prototype implementation and experiments

We have implemented a prototype of the framework introduced in Section 5. This prototype
uses the following architecture templates: (a) pairwise rendezvous and broadcast in cliques,
(b) token rings, (c) and pairwise rendezvous in stars. As described in Section 5 (see our
framework), given a parameterized BIP model, the tool constructs a set of FOIL formulae and
a set of temporal formulae. The parameterized BIP model follows a predefined architecture,
if the FOIL formulae are valid and the component types satisfy the temporal formulae. Our
implementation uses nuXmv [11] to check temporal formulae and Z3 [14] to check validity of
first-order formulae. FOIL formulae are translated to first-order formulae by guarding the
range of quantification explicitly, e.g. ∃i :: type0. θ is substituted with ∃i. 0 ≤ i < n0 ∧ θ. To
deal with quantifiers, we run a customized solver with tactic ’qe’ (i.e. quantifier elimination).
The implementation and benchmarks are available at http://risd.epfl.ch/parambip.

Table 1 summarizes our experiments with three benchmarks. We conducted each exper-
iment using two kinds of templates: the expected architecture of the benchmark, and an
architecture different from the expected one. In all cases, the architectures were identified
as expected. Our preliminary results demonstrate both correctness and efficiency of our
approach.

http://risd.epfl.ch/parambip

I. Konnov, T. Kotek, Q.Wang, H. Veith, S. Bliudze, and J. Sifakis 30:15

7 Related work and conclusions

We have shown that our framework encompasses several prominent parameterized model
checking techniques. To our understanding, the other seminal results can be integrated into
our framework: the cut-off results for disjunctive and conjunctive guards [15], network de-
composition techniques [13, 3], and techniques based on well-structured transition systems [1]
and monotonic abstraction [2].

First-order interaction logic extends propositional interaction logic [6, 7], which was
also extended by Dy-BIP [10] and configuration logic [21]. Dy-BIP extends propositional
interaction logic with quantification to define interaction topology independent of the number
of component instances. It uses dedicated history variables to break the symmetry and
specify that, throughout the system execution, successive interactions happen among the
same components. Dy-BIP does not have a mechanism, such as indexing, to statically
distinguish instances of the same component type. Hence, many architectures, e.g., token
rings, cannot be expressed. Configuration logic uses higher-order formulae to represent sets
of topologies. It does not use indexing either, thereby requiring the second-order extension
to express simple architectures such as token rings and linear architectures. Finally, no
decidability results or decision procedures have been proposed for the configuration logic yet.

In the future, we will study second-order extensions of FOIL to express more complex
architectures such as server-client whose coordinator is chosen non-deterministically. In
the long term, we plan to implement a tool that integrates multiple parameterized model
checking techniques and uses our framework to guide the verification of parameterized BIP
designs. FOIL can also be seen as a specification language for BIP interactions and used
for their synthesis similarly to [7]. Finally, it is worth investigating, whether FOIL can be
extended to include priorities as in [8].

References
1 P. A. Abdulla, K. Cerans, B. Jonsson, and Y. Tsay. General decidability theorems for

infinite-state systems. In LICS, 1996.
2 P. A. Abdulla, G. Delzanno, N. B. Henda, and A. Rezine. Monotonic abstraction: on

efficient verification of parameterized systems. Int. J. Found. Comput. Sci., 2009.
3 B. Aminof, T. Kotek, S. Rubin, F. Spegni, and H. Veith. Parameterized model checking of

rendezvous systems. In CONCUR. Springer, 2014.
4 A. Basu, S. Bensalem, M. Bozga, J. Combaz, M. Jaber, T. Nguyen, and J. Sifakis. Rigorous

component-based system design using the BIP framework. Software, IEEE, 2011.
5 S. Bliudze, A. Cimatti, M. Jaber, S. Mover, M. Roveri, W. Saab, and Q. Wang. Formal

verification of infinite-state BIP models. In ATVA, 2015.
6 S. Bliudze and J. Sifakis. The algebra of connectors —structuring interaction in BIP. In

EMSOFT, 2007.
7 S. Bliudze and J. Sifakis. Causal semantics for the algebra of connectors. FMSD, 2010.
8 S. Bliudze and J. Sifakis. Synthesizing glue operators from glue constraints for the con-

struction of component-based systems. In Software Composition, 2011.
9 R. Bloem, S. Jacobs, A. Khalimov, I. Konnov, S. Rubin, H. Veith, and J. Widder. Decid-

ability of parameterized verification. Synthesis Lectures on Distributed Computing Theory,
2015.

10 M. Bozga, M. Jaber, N. Maris, and J. Sifakis. Modeling dynamic architectures using Dy-
BIP. In Software Composition. Springer, 2012.

11 R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli, S. Mover,
M. Roveri, and S. Tonetta. The nuXmv symbolic model checker. In CAV, 2014.

CONCUR 2016

30:16 Parameterized Systems in BIP: Design and Model Checking

12 E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.
13 E. Clarke, M. Talupur, T. Touili, and H. Veith. Verification by network decomposition. In

CONCUR, 2004.
14 L. De Moura and N. Bjørner. Z3: An efficient SMT solver. In TACAS, 2008.
15 E. A. Emerson and V. Kahlon. Model checking guarded protocols. In LICS, 2003.
16 E. A. Emerson and K. S. Namjoshi. Reasoning about rings. In POPL, 1995.
17 J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast protocols. LICS, 1999.
18 S. M. German and A. P. Sistla. Reasoning about systems with many processes. J. ACM,

1992.
19 O. Grumberg and H. Veith. 25 years of model checking: history, achievements, perspectives.

Springer, 2008.
20 J. Y Halpern. Presburger arithmetic with unary predicates is π1

1 complete. J. of Symb.
Logic, 1991.

21 A. Mavridou, E. Baranov, S. Bliudze, and J. Sifakis. Configuration logics: Modelling
architecture styles. In FACS, 2015.

22 Q.Wang and S. Bliudze. Verification of component-based systems via predicate abstraction
and simultaneous set reduction. In TGC, 2015.

23 S. Schmitz and P. Schnoebelen. The power of well-structured systems. In CONCUR, 2013.
24 J. Sifakis. Rigorous system design. Foundations and Trends in Electr. Design Automation,

2013.
25 J. Sifakis. System design automation: Challenges and limitations. Proc. of the IEEE, 2015.
26 I. Suzuki. Proving properties of a ring of finite-state machines. Inf. Process. Lett., 1988.
27 W. Thomas. Languages, automata, and logic. Springer, 1997.

Private Names in Non-Commutative Logic∗

Ross Horne1, Alwen Tiu2, Bogdan Aman3, and Gabriel Ciobanu4

1 School of Computer Science and Engineering, Nanyang Technological
University, Singapore
rhorne@ntu.edu.sg

2 School of Computer Science and Engineering, Nanyang Technological
University, Singapore
atiu@ntu.edu.sg

3 Romanian Academy, Institute of Computer Science, Blvd. Carol I no.8,
700505 Iaşi, Romania
bogdan.aman@iit.academiaromana-is.ro

4 Romanian Academy, Institute of Computer Science, Blvd. Carol I no.8,
700505 Iaşi, Romania
gabriel@info.uaic.ro

Abstract
We present an expressive but decidable first-order system (named MAV1) defined by using the
calculus of structures, a generalisation of the sequent calculus. In addition to first-order universal
and existential quantifiers the system incorporates a de Morgan dual pair of nominal quantifiers
called ‘new’ and ‘wen’, distinct from the self-dual Gabbay-Pitts and Miller-Tiu nominal quanti-
fiers. The novelty of the operators ‘new’ and ‘wen’ is they are polarised in the sense that ‘new’
distributes over positive operators while ‘wen’ distributes over negative operators. This greater
control of bookkeeping enables private names to be modelled in processes embedded as predicates
in MAV1. Modelling processes as predicates in MAV1 has the advantage that linear implication
defines a precongruence over processes that fully respects causality and branching. The transit-
ivity of this precongruence is established by novel techniques for handling first-order quantifiers
in the cut elimination proof.

1998 ACM Subject Classification F.4.1 Mathematical Logic; F.3.2 Semantics of Programming
Languages; F.1.2 Modes of Computation

Keywords and phrases process calculi, calculus of structures, nominal logic, causal consistency

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2016.31

1 Introduction

This paper introduces a first-order non-commutative logic, of significance for modelling
processes, expressed in a formalism called the calculus of structures [17, 18, 34, 36, 37].
The calculus of structures is effectively a term rewriting system modulo a congruence that
can express proof systems combining connectives for sequentiality and parallelism. The
calculus of structures was motivated by a desire to understand why pomset logic [30] could
not be expressed in the sequent calculus. Pomset logic is inspired by pomsets [29] and
linear logic [15], the former being a model of concurrency respecting causality [33], while the

∗ The first two authors receive support from MOE Tier 2 grant MOE2014-T2-2-076. The second author
receives support from NTU Start Up grant M4081190.020. The first, third and fourth authors are
supported by ANCS grant number PN-II-ID-PCE-2011-3-0919.

© Ross Horne, Alwen Tiu, Bogdan Aman, and Gabriel Ciobanu;
licensed under Creative Commons License CC-BY

27th International Conference on Concurrency Theory (CONCUR 2016).
Editors: Josée Desharnais and Radha Jagadeesan; Article No. 31; pp. 31:1–31:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.31
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

31:2 Private Names in Non-Commutative Logic

latter can be interpreted in various ways as a logic of resources and concurrency [9, 21, 42].
Acknowledging connections between pomsets, linear logic and concurrency, it is natural to
consider the calculus of structures in the context of concurrency theory.

Initial investigations [7] relate a basic process calculus with parallel composition (P ‖ Q)
and action prefix (α.P) to a proof system in the calculus of structures called BV [17]. In that
work, a logical characterisation of completed traces is established using provability. As a
consequence of this logical characterisation and cut elimination for BV, if P implies Q and P
has a completed trace then Q has the same completed trace. Thereby, linear implication is
strictly finer than completed trace inclusion. Strictness follows since some processes related
by linear implication are not related by trace inclusion. For example, a desirable property of
linear implication is that autoconcurrency [4, 40, 41] is avoided, since the embedding of α ‖ α
does not logically imply the embedding of α.α. Avoiding autoconcurrency indicates that
linear implication fully respects the causal order of events. Preorders that respect causality
are significant for various applications, not limited to soundly reasoning about processes
deployed on large high-availability distributed systems where a consensus on interleavings is
infeasible but causality is respected [11, 22].

Recently, BV was extended with additives to obtain the system MAV [20], enabling choice
in processes to be modelled. Results concerning multi-party compatibility and subtyping
in a session type system inspired by Scribble [19] have been established using MAV [12].
The current paper continues this line of enquiry by modelling name passing processes in a
conservative extension of MAV with first-order quantifiers, named MAV1. The system MAV1
is also a conservative extension of first-order multiplicative additive linear logic MALL1 [23]
with mix. A novelty is that MAV1 includes a pair of de Morgan dual nominal quantifiers
pronounced new and wen and written И and Э respectively. In a processes-as-predicates
embedding [16], И models new name restriction in the π-calculus. The dual nominal quantifier
Э is essential for defining linear implication and models the input of private names in a
processes-as-predicates embedding for the πI-calculus [32].

Logically speaking, nominal quantifiers И and Э sit between ∀ and ∃ such that ∀x.P (
Иx.P and Иx.P (Эx.P and Эx.P (∃x.P , where(is linear implication. The quantifier
И is similar in some respects to ∀, whereas Э is similar to ∃. A crucial difference between
∃x.P and Эx.P is that variable x in the latter cannot be instantiated with arbitrary terms,
but only ‘fresh’ names introduced by И.

The need for new quantifiers. We illustrate why neither universal quantification nor an
established self-dual nominal quantifier [14, 25, 28] are capable of soundly modelling name
restriction in a processes-as-predicates embedding. We argue that, since trace inclusion is
considered to be amongst the coarsest preorders on process [39], it makes sense to impose a
minimum requirement that linear implication cannot relate two processes that are unrelated
by trace inclusion.

In the following, observe that R1 = νx.(ax ‖ bx) is a π-calculus process that can output a
fresh name twice, once on channel a and once on channel b; but cannot output two perceivably
distinct names in any execution. In contrast, observe that R2 = νx.ax ‖ νx.bx is a π-calculus
process that outputs two distinct fresh names before terminating, but cannot output the
same name twice in any execution. The processes R1 and R2 are unrelated by trace inclusion
in either direction.

For an encoding using universal quantifiers for name restriction, processes R1 and R2 are
respectively encoded as predicates P1 = ∀x.

(
ax ‖ bx

)
and P2 = ∀x.ax ‖ ∀x.bx, where operator

‖ is overloaded to connect parallel composition and par from linear logic. Unfortunately, the

R. Horne, A. Tiu, B. Aman, and G. Ciobanu 31:3

implication P2 (P1 is provable. However, R2 can output two perceivably distinct names but
R1 cannot, so implication would not be sound with respect to trace inclusion. Additionally,
we must also avoid the following diagonalisation property [25]: ∀x.∀y.P (x, y)(∀z.P (z, z).

The self-dual nominal quantifiers of either Gabbay-Pitts [28] or Miller-Tiu [25, 14], as
recently investigated in the calculus of structures [31], do successfully avoid the above
diagonalisation property. Unfortunately, rather surprisingly, encoding private names using
any of these self-dual nominal quantifiers, say ∇, leads to the following problem. Suppose
processes R1 and R2 are encoded by the respective predicates Q1 = ∇x.(ax ‖ bx) and
Q2 = ∇x.ax ‖ ∇x.bx. In this case, the linear implication Q1 (Q2 is provable. This
implication is also unsound, since R1 has a trace that outputs two identical names, whereas
R2 admits no such trace.

Our new quantifier И, distinct from the Gabbay-Pitts operator, addresses the above
limitations of universal quantification and established self-dual nominal quantifiers. In
addition to avoiding diagonalisation, our И quantifier does not distribute over parallel
composition in either direction. In MAV1, the predicates Иx.(ax ‖ bx) and Иx.ax ‖ Иx.bx
are, correctly, unrelated by linear implication.

Outline. For a new logical system it is necessary to justify correctness, which we approach in
proof theoretic style by cut elimination. Section 2 defines MAV1 and explains cut elimination.
Section 3 illustrates a processes-as-predicates embedding in MAV1 and explains that linear
implication defines a branching-time preorder that respects causality. Section 4 presents a
more detailed explanation of the rules for the nominal quantifiers and the novel strategy of
the cut elimination proof.

2 Syntax and Semantics of Predicates in MAV1

In this section we present the syntax and semantics of a first-order system expressed in the
calculus of structures, with the technical name MAV1. We assume that the reader has a basic
understanding of term-rewriting systems [24].

A term-rewriting system requires an abstract syntax, defined in Fig. 1. The rewrite
rules, in Fig 3, define rules that can be applied to rewrite a predicate of the form on
the left of the long right arrow to the predicate on the right. All rewrite rules can be
applied in any context, i.e. MAV1 predicates from Fig. 1 with a hole of the following
form C{ } ::= { · } | C{ } � P | P � C{ } |

Q

x.C{ }, where � ∈ {;, ‖,⊗,&,⊕} andQ

∈ {∃,∀,И,Э}.
Further to rewriting according to rules, the term-rewriting system is defined modulo a

congruence, where a congruence is an equivalence relation that holds in any context. The
congruence, defined in Fig. 2, makes par and times commutative and seq non-commutative
in general. The congruence enables α-conversion for quantifiers. In addition, equivariance
allows names bound by successive nominal quantifiers to be swapped.

As standard, we define a freshness predicate such that a variable x is fresh for a predicate
P , written x # P , if and only if x is not a member of the set of free variables of P , such that
all quantifiers bind variables in their scope. We also assume the standard notion of capture
avoiding substitution of a variable for a term. Terms may be constructed from variables,
constants and function symbols. When predicates model process in the π-calculus, atoms
are pairs of terms, where the first term represents a channel and the second a message.

We postpone a discussion on the rules until after we introduce the notion of a proof and
explain cut elimination in the next section.

CONCUR 2016

31:4 Private Names in Non-Commutative Logic

P ::= α (atom)
α (co-atom)
I (unit)
∀x.P (all)
∃x.P (some)
Иx.P (new)
Эx.P (wen)
P & P (with)
P ⊕ P (plus)
P ‖ P (par)
P ⊗ P (times)
P ; P (seq)

Figure 1 MAV1 syntax.

(P, ‖, I) and (P,⊗, I) are commutative monoids

Q

x.P ≡

Q

y.(P{y/x}) if y #

Q

x.P (α-conversion)

(P, ;, I) is a monoid Иx.Иy.P ≡ Иy.Иx.P (equivariance) Эx.Эy.P ≡ Эy.Эx.P (equivariance)

Figure 2 Congruence (≡) for MAV1 predicates. For α-conversion

Q

∈ {∃, ∀,И,Э} is any quantifier.

2.1 Linear Implication and Cut Elimination
This section confirms that MAV1 is a consistent logical system, as established by a cut
elimination theorem. Surprisingly, to date, the only direct proof of cut elimination involving
quantifiers in the calculus of structures is for a self-dual nominal quantifier [31] distinct
from any quantifier in MAV1. Related cut elimination results involving first-order quantifiers
in the calculus of structures rely on a correspondence with the sequent calculus [6, 35].
However, due to the presence of the non-commutative operator seq there is no sequent
calculus presentation [37] for MAV1; hence we pursue here a direct proof.

A derivation is a sequence of zero or more rewrite rules from Fig. 3, where the congruence
in Fig. 2 can be applied at any point. We are particularly interested in special derivations,
called proofs.

I Definition 1. A proof in MAV1 is a derivation P −→ I from a predicate P to the unit I.
When such a derivation exists, we say that P is provable, and write ` P .

To explore the theory of proofs, two auxiliary definitions are introduced: linear negation
and linear implication. Notice in the syntax in Fig. 1 linear negation applies only to atoms.

I Definition 2. Linear negation is defined by the following function from predicates to
predicates.

α = α P ⊗Q = P ‖ Q P ‖ Q = P ⊗Q P ⊕Q = P &Q P &Q = P ⊕Q
I = I P ;Q = P ;Q ∀x.P = ∃x.P ∃x.P = ∀x.P Иx.P = Эx.P Эx.P = Иx.P

Linear implication, written P (Q, is defined as P ‖ Q.

Linear negation defines de Morgan dualities. As in linear logic, the multiplicatives ⊗ and ‖
are de Morgan dual; as are the additives & and ⊕, the first-order quantifiers ∃ and ∀, and the
nominal quantifiers И and Э. As in BV, sequential composition and the unit are self-dual.

R. Horne, A. Tiu, B. Aman, and G. Ciobanu 31:5

C{ α ‖ α } −→ C{ I } (atomic interaction) C{ P ‖ (Q⊗ S) } −→ C{ (P ‖ Q)⊗ S } (switch)

C{ (P ;Q) ‖ (R ; S) } −→ C{ (P ‖ R) ; (Q ‖ S) } (sequence)

C{ (P &Q) ‖ R } −→ C{ (P ‖ R) & (Q ‖ R) } (external) C{ I & I } −→ C{ I } (tidy)

C{ (P ;Q) & (R ; S) } −→ C{ (P &R) ; (Q& S) } (medial)

C{ P ⊕Q } −→ C{ P } (left choice) C{ P ⊕Q } −→ C{ Q } (right choice)

C{ ∀x.P ‖ R } −→ C{ ∀x.(P ‖ R) } only if x # R (extrude1) C{ ∀x.I } −→ C{ I } (tidy1)

C{ ∀x.(P ; S) } −→ C{ ∀x.P ; ∀x.S } (medial1) C{ ∃x.P } −→ C{ P{v/x} } (select1)

C{ Иx.P ‖ Эx.Q } −→ C{ Иx.(P ‖ Q) } (close) C{ Иx.I } −→ C{ I } (tidy name)

C{ Иx.P ‖ R } −→ C{ Иx.(P ‖ R) } only if x # R (extrude new)

C{ Эx.P } −→ C{ Иx.P } (fresh) C{ Иx.Эy.P } −→ C{ Эy.Иx.P } (new wen)

C{ Иx.(P ; S) } −→ C{ Иx.P ; Иx.S } (medial new)

C{ Эx.P � Эx.S } −→ C{ Эx.(P � S) } where � ∈ {‖, ;} (medial wen)

C{ Эx.P �R } −→ C{ Эx.(P �R) } where � ∈ {‖, ;} only if x # R (left wen)

C{ R� Эx.Q } −→ C{ Эx.(R�Q) } where � ∈ {‖, ;} only if x # R (right wen)

C
{
∀x.

Q

y.P
}
−→ C

{ Q

y.∀x.P
}

for

Q

∈ {И,Э} (all name)

C
{ Q

x.P &

Q

x.S
}
−→ C

{ Q

x.(P & S)
}

for

Q

∈ {И,Э} (with name)

C
{ Q

x.P &R
}
−→ C

{ Q

x.(P &R)
}

only if x # R for

Q

∈ {И,Э} (left name)

C
{
R&

Q

x.Q
}
−→ C

{ Q

x.(R&Q)
}

only if x # R for

Q

∈ {И,Э} (right name)

Figure 3 Rewrite rules for predicates in system MAV1. Notice the figure is divided into four parts.
The first part defines sub-system BV [17]. The first and second parts together define sub-system
MAV [20]. The following restrictions are placed on the rules to ensure the system is analytic [8].

The switch, sequence, medial1, medial new and extrude new rules are such that P 6≡ I and S 6≡ I.
The medial rule is such that either P 6≡ I or R 6≡ I and also either Q 6≡ I or S 6≡ I.
The rules external, extrude1, extrude new, left wen and right wen are such that R 6≡ I.

A derivation is a sequence of rewrites, where the congruence in Fig. 2 can be applied at any point
in a derivation. The length of a derivation involving only the congruence is zero. The length of
a derivation involving one rule from Fig. 3 is one. Given a derivation P −→ Q of length m and
another Q −→ R of length n, the derivation P −→ R is of length m+ n. Unless we make it clear
in the context that we refer to a specific rule, −→ is generally used to represent derivations of any
length.

CONCUR 2016

31:6 Private Names in Non-Commutative Logic

The following proposition is simply a reflexivity property of linear implication in MAV1.

I Proposition 3 (Reflexivity). For any predicate P , ` P ‖ P holds.

The main result of this paper is the following, which is a generalisation of cut elimination
to the setting of the calculus of structures.

I Theorem 4 (Cut elimination). For any predicate P , if ` C
{
P ⊗ P

}
holds, then ` C{ I }

holds.

The above theorem can be stated alternatively by supposing that there is a proof in MAV1
extended with the extra rewrite rule: C{ I } −→ C

{
P ⊗ P

}
(cut). Given such a proof, a

new proof can be constructed that uses only the rules of MAV1. In this formulation, we say
that cut is admissible.

The cut elimination proof for the propositional sub-system MAV appears in a companion
journal paper [20]. The current paper advances cut-elimination techniques to tackle first-order
system MAV1, as achieved by the lemmas in later sections. Before proceeding with the
necessary lemmas, we provide a corollary that demonstrates that one of many consequences
of cut elimination is indeed that linear implication defines a precongruence — a reflexive
transitive relation that holds in any context.

I Corollary 5. Linear implication defines a precongruence.

3 Linear Implication as a Precongruence for Processes-as-Predicates

We highlight connections between MAV1 and the π-calculus. This illustrates the rationale
behind design decisions in MAV1. We assume the reader is familiar with the syntax of the
π-calculus. For the π-calculus define a processes-as-predicates embedding as follows.

Jx(y).P Kπ = ∃y.(xy ; JP Kπ) Jxy.P Kπ = xy ; JP Kπ JP ‖ QKπ = JP Kπ ‖ JQKπ
Jνx.P Kπ = Иx.JP Kπ JP +QKπ = JP Kπ ⊕ JQKπ J1Kπ = I

Notice action prefixes are captured using atoms consisting of pairs of first-order variables. We
consider preorders that do not observe τ actions and are termination sensitive [1, 41], hence
distinguish between successful termination and deadlock. Successful termination is indicated
by a process 1, differing from 0 typical of process calculi. For example P + 1 represents the
process that may behave like P or may successfully terminate, contrasting to P + 0 which
only may only proceed as P . This distinction is useful for modelling protocols; for example,
we can choose to perform no action in certain executions to avoid deadlocking. Furthermore,
1 as a primitive process matches the unit inherited from BV. Otherwise, the semantics are
standard for the π-calculus.

Define labelled transitions for the π-calculus by the following deductive system, plus the
symmetric rules for parallel composition and choice. Function n(.) is such that n(x(y)) =
n(x(y)) = n(xy) = {x, y}, and x # P is such that x is fresh for P where z(x).P and νx.P
bind x in P .

x(y).P x(y)
I P xy.P

xyI P

P AI Q

P +R AI Q P + 1 τ I 1

P AI Q

νx.P AI νx.Q
x 6∈ n(A) ‡ P AI Q

P ‖ R AI Q ‖ R
if A = x(y) or A = x(y)
then y # R

P
xyI Q

νy.P
x(y)
I Q

x 6= y P
x(z)
I P ′ Q

x(z)
I Q′

P ‖ Q τ I νz.(P ′ ‖ Q′)
†

P
xyI P ′ Q

x(z)
I Q′

P ‖ Q τ I P ′ ‖ Q′{y/z}

R. Horne, A. Tiu, B. Aman, and G. Ciobanu 31:7

Define (symbolic weak) completed traces inductively as follows.
For any process P formed using only the unit 1, name restriction and parallel composition
(i.e. with no actions or choice) P has the completed trace I.
If P x(y)

I Q and Q has completed trace tr then P has completed trace ∀y.(xy ; tr).
If P x(y)

I Q and Q has completed trace tr then P has completed trace Эy.(xy ; tr).
If P xyI Q and Q has completed trace tr then P has completed trace xy ; tr.
If P τ I Q and Q has completed trace tr then P has completed trace tr.

Observe that deadlocked processes have no completed trace. Contrast for example νx.x(y) ‖ 1
and νx.x(y) + 1, where the former has no completed trace but the later has completed trace
I.

Interestingly, equivariance, in Fig. 2, is a design decision in the sense that cut elimination
is still provable for a MAV1 without equivariance. However, equivariance is a requirement
for modelling private names in process calculi. Consider π-calculus process νy.νx.(zx.wy)
and the completed trace Эx.(zx ; Эy.wy) that outputs a fresh name on channel z then a
separate fresh name on channel w. ` Иy.Иx.(zx ; wy) ‖ Эx.(zx ; Эy.wy) is provable only
with equivariance. Hence equivariance is necessary for the following proposition.

I Proposition 6. If a process P has completed trace tr then ` JP Kπ ‖ tr.

Proof. The proof follows by induction over the structure of the derivation for a labelled
transition. We present only two inductive cases, for the communication of an input and
bound output (†), and the extrusion of a bound output over a distinct private name (‡).

Assume the induction hypotheses, ` JP Kπ ‖ ∀z
(
xz ; JP ′Kπ

)
and ` JQKπ ‖ Эz

(
xz ; JQ′Kπ

)
.

Implication `
(
JP Kπ ‖ ∀z.

(
xz ; JP ′Kπ

))
⊗

(
JQKπ ‖ Эz.

(
xz ; JQ′Kπ

))
(JP Kπ ‖ JQKπ ‖

Эz.
(
JP ′Kπ ⊗ JQ′Kπ

)
is provable as follows, using Proposition 3.(

JP Kπ ⊗ ∃z.
(
xz ;

q
P ′y

π

))
‖

(
JQKπ ⊗Иz.

(
xz ;

q
Q′y

π

))
‖ JP Kπ ‖ JQKπ ‖ Эz.

(
JP ′Kπ ⊗ JQ′Kπ

)
−→

((
JP Kπ ‖ JP Kπ

)
⊗ ∃z

(
xz ;

q
P ′y

π

))
‖

((
JQKπ ‖ JQKπ

)
⊗Иz

(
xz ;

q
Q′y

π

))
‖ Эz.

(
JP ′Kπ ⊗ JQ′Kπ

)
−→ ∃z.

(
xz ;

q
P ′y

π

)
‖ Иz.

(
xz ;

q
Q′y

π

)
‖ Эz.

(
JP ′Kπ ⊗ JQ′Kπ

)
switch and Proposition 3

−→ ∃z.
(
xz ;

q
P ′y

π

)
‖ Иz.

((
xz ;

q
Q′y

π

)
‖

(
JP ′Kπ ⊗ JQ′Kπ

))
close

−→ Иz.
(
∃z.

(
xz ;

q
P ′y

π

)
‖

(
xz ;

q
Q′y

π

)
‖

(
JP ′Kπ ⊗ JQ′Kπ

))
extrude new

−→ Иz.
((
xz ;

q
P ′y

π

)
‖

(
xz ;

q
Q′y

π

)
‖

(
JP ′Kπ ⊗ JQ′Kπ

))
select1

−→ Иz.
(
(xz ‖ xz) ;

(q
P ′y

π
‖

q
Q′y

π
‖

(
JP ′Kπ ⊗ JQ′Kπ

)))
sequence

−→ Иz.
(
(xz ‖ xz) ;

((q
P ′y

π
‖ JP ′Kπ

)
⊗

(q
Q′y

π
‖ JQ′Kπ

)))
switch

−→ Иz.I −→ I Proposition 3 and tidy new

Hence by Theorem 4, ` JP ‖ QKπ ‖ Jνz.(P ′ ‖ Q′)Kπ, as required.
As the induction hypothesis, assume that ` JP Kπ ‖ Эz.

(
xz ; JQKπ

)
holds, where y is such

that x 6= y and z 6= y. Thereby the following proof can be constructed directly as required.

Jνy.P Kπ ‖ Эz.
(
xz ; Jνy.QKπ

)
= Иy.JP Kπ ‖ Эz.

(
xz ; Эy.JQKπ

)
by definition

−→ Иy.JP Kπ ‖ Эz.Эy.
(
xz ; JQKπ

)
right wen

≡ Иy.JP Kπ ‖ Эy.Эz.
(
xz ; JQKπ

)
equivariance

−→ Иy.
(
JP Kπ ‖ Эz.

(
xz ; JQKπ

))
−→ Иy.I −→ I induction and tidy

The proof concludes by inductively applying Theorem 4 to each transition forming a
trace. �

The above proposition also holds for a processes-as-predicates embedding for the πI-
calculus [32], where input of private names is such that Jx(y).P KπI = Эy.(xy ; JP KπI) and
output of private names is such that Jx(y).P KπI = Иy.(xy ; JP KπI). The labelled transition

CONCUR 2016

31:8 Private Names in Non-Commutative Logic

system for the πI-calculus, is such that x(y).P x(y)
I P and complete traces are such that,

if P x(y)
I Q and Q has completed trace tr then P has completed trace Иy.(xy ; tr). We

envision models of processes exploiting more of the expressive power of MAV1, such as the
primitives employed for modelling session types using MAV [20].

For a basic process calculus with only parallel composition and prefix the converse to
Proposition 6 is known to hold [7]. The converse direction for the π-calculus relies on
techniques beyond cut elimination, hence will receive separate attention in a future paper.

Linear implication v.s. completed traces. We re-emphasise that the above completed
trace semantics is a minimal justification for design decisions. Completed traces and linear
implication are at the opposite ends of the linear-time/branching-time [39] and interleaving/-
causal [33] spectra.

A characteristic distinction between linear-time and branching-time preorders is in how
processes of the form α.(P +Q) and α.P + α.Q are related. For completed traces they are
equivalent but for linear implication, only the direction ` Jα.(P +Q)Kπ (Jα.P + α.QKπ
holds. Hence linear implication is at the branching-time end of the spectrum.

Simulation preorders are also at the branching-time end of the spectrum. However,
many simulation preorders interleave events as characterised by expansion rules [26] which
equate processes with identical interleavings. For linear implication, expansion holds in one
direction only. For example, processes α.α and α ‖ α have the same interleavings, but linear
implication holds only in the direction ` Jα.αKπ (Jα ‖ αKπ. As a further example, processes
α.(α.β ‖ β) and α.β ‖ α.β have identical interleavings but linear implication holds only in
the direction established by the following proof.

Jα.(α.β ‖ β)Kπ (Jα.β ‖ α.βKπ =
(
α ;

((
α ; β

)
⊗ β

))
‖ (α ; β) ‖ (α ; β) by definition

−→
(
(α ‖ α) ;

(((
α ; β

)
⊗ β

)
‖ β

))
‖ (α ; β) sequence

−→
((
α ; β

)
⊗ β

)
‖ β ‖ (α ; β) interaction

−→
(
α ; β

)
⊗

(
β ‖ β

)
‖ (α ; β) switch

−→
(
α ; β

)
‖ (α ; β) interaction

−→ (α ‖ α) ;
(
β ‖ β

)
sequence

−→ I interaction

By not identifying interleavings, we argue that linear implication respects the causal order of
events. Existing notions of simulation that respect the causal order of events, such as history
preserving simulation [4, 40, 41], have not yet been extended to the setting with private names.
Thereby MAV1 enables us to objectively explore the properties of fresh names in this part of
the spectrum. For example, the implication ` Jνx. (P ‖ Q{y/z})Kπ (Jνx.(xy.P ‖ x(z).Q)Kπ
is provable. However, the converse is not provable. Intuitively, although no other process
can communicate on channel x, the processes can be distinguished by a network partition
interrupting communication the private channel.

Observe that no bisimulation can be complete with respect to logical equivalence. To
see this observe that the embeddings Jα.(β + γ) + α.βKπ and Jα.(β + γ)Kπ are logically
equivalent; whereas any bisimulation distinguishes these processes. Logical equivalence,
as with mutual simulation [39], is checked using a preorder in each direction, by proving
predicate (P (Q) & (Q(P).

Questions formally relating observational preorders and linear implication rely on cut
elimination for MAV1. This leads us to the cut elimination result of this paper.

R. Horne, A. Tiu, B. Aman, and G. Ciobanu 31:9

4 Logical Properties of the Pair of Nominal Quantifiers

This section offers deeper insight into the nature of the nominal quantifiers И and Э, and
sketches the cut elimination proof.1 Cut elimination (Theorem 4) is achieved by advancing
methods developed in the propositional sub-system MAV [20]. A direct proof of co-rule
elimination for universal quantifiers (Lemma 11) simplifies splitting (Lemma 16), and context
reduction (Lemma 20) is adapted for existential quantifiers by working up-to substitutions.
Lemmas check the interplay between nominal quantifiers and other connectives, as illustrated
by the discussion in the following subsection.

4.1 Discussion on the Rules for Nominal Quantifiers

The rules for the nominal quantifiers new И and wen Э require some justification. The
close and tidy name rules ensure the reflexivity of implication for nominal quantifiers. Using
the extrude new rule (and Proposition 3) we can establish the following proof, and its dual
statement ` Эx.P (∃x.P .

∀x.P (Иx.P = ∃x.P ‖ Иx.P −→ Иx.
(
∃x.P ‖ P

)
−→ Иx.

(
P ‖ P

)
−→ Иx.I −→ I

Using the fresh rule we can establish the following implication between new and wen.

Иx.P (Эx.P = Эx.P ‖ Эx.P −→ Иx.P ‖ Эx.P −→ Иx.
(
P ‖ P

)
−→ Иx.I −→ I

This completes the chain ` ∀x.P (Иx.P , ` Иx.P (Эx.P and ` Эx.P (∃x.P . These
linear implications are strict unless x # P , in which case, for

Q
∈ {∀,∃,И,Э},

Q
x.P is

logically equivalent to P . For example, using the fresh and extrude new rules, the following
holds given x # P .

Иx.P (P = Эx.P ‖ P −→ Иx.P ‖ P −→ Иx.
(
P ‖ P

)
−→ Иx.I −→ I

Alternatively, the extrude new and fresh rules could be replaced by extending the congruence
with Иx.P ≡ P ≡ Эx.P , where x # P . However, this has the disadvantage that an arbitrary
number of nominal quantifiers can be introduced during proof search thereby jeopardising
analyticity [8].

The medial new rule is particular to handling nominal quantifiers in the presence of the
self-dual non-commutative operator seq. To see why this rule cannot be excluded, consider
the following.

(a ; Эx.(b ; c))⊗ (d ; Эx.(e ; f))((a ; ∃x.b ; ∃x.c)⊗ (d ; ∃x.e ; ∃x.f)
(a ; ∃x.b ; ∃x.c)⊗ (d ; ∃x.e ; ∃x.f)(((a ; ∃x.b)⊗ (d ; ∃x.e)) ; (∃x.c⊗ ∃x.f)

Without using the medial new rule, the above predicates are provable but the following
predicate would not be provable; hence cut elimination cannot hold without the medial new
rule.

(a ; Эx.(b ; c))⊗ (d ; Эx.(e ; f))(((a ; ∃x.b)⊗ (d ; ∃x.e)) ; (∃x.c⊗ ∃x.f)

1 Details of proofs appear in a technical report at: http://iit.iit.tuiasi.ro/TR/reports/fml1502.pdf

CONCUR 2016

http://iit.iit.tuiasi.ro/TR/reports/fml1502.pdf

31:10 Private Names in Non-Commutative Logic

In contrast, with the medial new rule the above predicate is provable, verified by the following
proof.

(
a ; Иx.

(
b ; c

))
‖

(
d ; Иx.

(
e ; f

))
‖ ((a ; ∃x.b)⊗ (d ; ∃x.e)) ; (∃x.c⊗ ∃x.f)

−→
(
a ; Иx.b ; Иx.c

)
‖

(
d ; Иx.e ; Иx.f

)
‖ ((a ; ∃x.b)⊗ (d ; ∃x.e)) ; (∃x.c⊗ ∃x.f)

−→
((
a ; Иx.b

)
‖

(
d ; Иx.e

))
;
(
Иx.c ‖ Иx.f

)
‖ ((a ; ∃x.b)⊗ (d ; ∃x.e)) ; (∃x.c⊗ ∃x.f)

−→
((
a ; Иx.b

)
‖

(
d ; Иx.e

)
‖ ((a ; ∃x.b)⊗ (d ; ∃x.e))

)
;
(
Иx.c ‖ Иx.f ‖ (∃x.c⊗ ∃x.f)

)
−→

(((
a ; Иx.b

)
‖ (a ; ∃x.b)

)
⊗

((
d ; Иx.e

)
‖ (d ; ∃x.e)

))
;
(
(Иx.c ‖ ∃x.c)⊗

(
Иx.f ‖ ∃x.f

))
−→

((
(a ‖ a) ;

(
Иx.b ‖ ∃x.b

))
⊗

((
d ‖ d

)
; (Иx.e ‖ ∃x.e)

))
;
(
(Иx.c ‖ ∃x.c)⊗

(
Иx.f ‖ ∃x.f

))
−→

((
(a ‖ a) ; Иx.

(
b ‖ ∃x.b

))
⊗

((
d ‖ d

)
; Иx.(e ‖ ∃x.e)

))
;
(
Иx.(c ‖ ∃x.c)⊗Иx.

(
f ‖ ∃x.f

))
−→

((
(a ‖ a) ; Иx.

(
b ‖ b

))
⊗

((
d ‖ d

)
; Иx.(e ‖ e)

))
;
(
Иx.(c ‖ c)⊗Иx.

(
f ‖ f

))
−→ (Иx.I⊗Иx.I) ; (Иx.I⊗Иx.I) −→ I

Notice that the above proof uses only the medial new, extrude new and tidy name rules for
nominals. These three rules are of the same form as the rules for universal quantifiers, hence
the same argument holds for the necessity of the medial1 rule.

Including the medial new rule forces the medial wen rule to be included. To see this observe
that (Иx.a ; Иx.b) ⊗ (Иx.c ; Иx.d) (Иx.(a ; b) ⊗ Иx.(c ; d) and Иx.(a ; b) ⊗ Иx.(c ; d) (
Иx.((a ; b)⊗ (c ; d)) are provable. However, without the medial wen rule the following
implication is not provable, which would contradict the main cut elimination result of this
paper.

(Иx.a ; Иx.b)⊗ (Иx.c ; Иx.d)(Иx.((a ; b)⊗ (c ; d))

Fortunately, including the medial wen rule ensures that the above implication is provable. A
similar argument justifies the inclusion of the left wen and right wen rules.

As with focussed proof search [3, 10], assigning a positive or negative polarity to operators
explains certain distributivity properties. Consider ‖, &, ∀ and И to be negative operators,
and ⊗, ⊕, ∃ and Э to be positive operators, where seq is neuter. The negative quantifier
И distributes over all positive operators. Considering positive operator times for example,
` Иx.α⊗Иx.β(Иx. (α⊗ β) holds but the converse implication does not hold. Furthermore,
assuming x appears free in α and β, Эx.α⊗ Эx.β and Эx. (α⊗ β) are unrelated by linear
implication. Dually, for the negative operator par the only distributivity property that
holds for nominal quantifiers is ` Эx. (α ‖ β)(Эx.α ‖ Эx.β. The new wen rule completes
this picture of new distributing over positive operators and wen distributing over negative
operators. From the perspective of embedding name-passing process calculi in logic, the
above distributivity properties of new and wen suggest that processes should be encoded
using negative operators И and ‖ for private names and parallel composition (or perhaps
dually, using positive operators Э and ⊗), so as to avoid private names distributing over
parallel composition, which we have shown to be problematic in the introduction.

The control of distributivity exercised by new and wen contrast with the situation for
universal and existential quantifiers, where ∃ commutes in one direction over all operators
and ∀ commutes with all operators in the opposite direction. For a system with equivariance
some of these distributivity properties for И over & and ∀ are explicit rules all name, with
name, left name, right name. These rules allow И quantifiers to propagate to the front of
certain contexts. In the sense of control of distributivity, new and wen behave more like
multiplicatives than additives, but are unrelated to multiplicative quantifiers in the logic of
bunched implications [27].

R. Horne, A. Tiu, B. Aman, and G. Ciobanu 31:11

4.2 Preliminary Lemmas and Killing Contexts
We extend a trick employed for MAV [20] to MAV1 where with & and all ∀ receive a more
direct treatment than other operators. The proof for with has a knock on effect for the
nominal quantifiers requiring some vacuous new and wen quantifiers to be removed; while
the proof for all requires closure of rules under substitution of terms for variables. This leads
to the following five lemmas, established directly by functions over predicates.

I Lemma 7 (Substitution). If P −→ Q holds then P{v/x} −→ Q{v/x} holds.

I Lemma 8 (Vacuous new). If ` C{ Иx.P } holds and x # P then ` C{ P } holds.

I Lemma 9 (Vacuous wen). If ` C{ Эx.P } holds and x # P then ` C{ P } holds.

I Lemma 10 (Branching). If ` C{ P &Q } holds then both ` C{ P } and ` C{ Q } hold.

I Lemma 11 (Universal). If ` C{ ∀x.P } holds then, for all terms v, ` C{ P{v/x} } holds.

We require a restricted form of context called a killing context (terminology is from [10]). A
killing context is a context with one or more holes, defined as follows.

I Definition 12. A killing context is a context defined by the following grammar.

T { } ::= { · } | T { }& T { } | ∀x.T { } | Иx.T { }

In the above, { · } is a hole into which any predicate can be plugged. An n-ary killing context
is a killing context in which n holes appear.

A killing context represents a context that cannot in general be removed until all other
rules in a proof have been applied, hence the corresponding tidy rules are suspended until
the end of a proof. A killing context has properties that are applied frequently in proofs,
characterised by the following lemma.

I Lemma 13. For any killing context T { }, ` T { I, . . . , I } holds; and, assuming the
variables of T { } and the free variables of P are disjoint, P ‖ T { Q1, Q2, . . . Qn } −→
T { P ‖ Q1, P ‖ Q2, . . . P ‖ Qn }.

For readability of large predicates involving an n-ary killing context, we introduce the notation
T { Qi : 1 ≤ i ≤ n } as shorthand for T { Q1, Q2, . . . , Qn }; and T { Qi : i ∈ I } for a family
of predicates indexed by finite subset of natural numbers I. Killing contexts also satisfy the
following property that is necessary for handling the seq operator, which interacts subtly
with killing contexts.

I Lemma 14. Assume that I is a finite subset of natural numbers, Pi and Qi are predicates,
for i ∈ I, and T { } is a killing context. There exist killing contexts T 0{ } and T 1{ } and
sets of natural numbers J ⊆ I and K ⊆ I such that the following derivation holds.

T { Pi ;Qi : i ∈ I } −→ T 0{ Pj : j ∈ J } ; T 1{ Qk : k ∈ K }

The following lemma checks that wen quantifiers can propagate to the front of a killing
context.

I Lemma 15. Consider an n-ary killing context T { } and predicates such that x # Pi and
either Pi = Эx.Qi or Pi = Qi, for 1 ≤ i ≤ n. If for some i such that 1 ≤ i ≤ n, Pi = Эx.Qi,
then T { P1, P2, . . . Pn } −→ Эx.T { Q1, Q2, . . . , Qn }.

CONCUR 2016

31:12 Private Names in Non-Commutative Logic

4.3 The Splitting Technique for Simulating the Sequent Calculus
The technique called splitting [17, 18] generalises the application of rules in the sequent
calculus. In the sequent calculus, any root connective in a sequent can be selected and some
rule for that connective can be applied. In this setting, a sequent corresponds to a shallow
context of the form { · } ‖ Q. Splitting proves that a distinguished principal predicate P in a
shallow context { P } ‖ Q can always be rewritten to a form such that a rule for the root
connective of the principal predicate may be applied. The cases for times, seq, new and wen
are treated together in a Lemma 16. These operators give rise to commutative cases, where
rules for these operators can permute with any principal predicate, swapping the order of
rules in a proof. Principal cases are where the root connective of the principal predicate is
directly involved in the bottommost rule of a proof. As with MAV [20], the principal cases
for seq are challenging, demanding Lemma 14. The principal case induced by medial new
demands Lemma 15. The cases where two nominal quantifiers commute are also interesting,
particularly where the case arises due to equivariance.

I Lemma 16 (Core Splitting). The following statements hold.
If ` (P ⊗Q) ‖ R, then there exist predicates Vi and Wi such that ` P ‖ Vi and
` Q ‖ Wi, where 1 ≤ i ≤ n, and n-ary killing context T { } such that R −→
T { V1 ‖W1, V2 ‖W2, . . . , Vn ‖Wn } and if x appears in T { } then x # (P ⊗Q).
If ` (P ;Q) ‖ R, then there exist predicates Vi and Wi such that ` P ‖ Vi and
` Q ‖ Wi, where 1 ≤ i ≤ n, and n-ary killing context T { } such that R −→
T { V1 ;W1, V2 ;W2, . . . , Vn ;Wn } and if x appears in T { } then x # (P ;Q).
If ` Иx.P ‖ Q, then there exist predicates V and W where x # V and ` P ‖ W and
either V = W or V = Эx.W , such that derivation Q −→ V holds.
If ` Эx.P ‖ Q, then there exist predicates V and W where x # V and ` P ‖ W and
either V = W or V = Иx.W , such that derivation Q −→ V holds.

Furthermore, for all 1 ≤ i ≤ n, in the first two cases the size of the proofs 2 of P ‖ Vi and
Q ‖Wi are bounded above by the size of the proofs of (P ⊗Q) ‖ R and (P ;Q) ‖ R. In the
third and fourth cases, the size of the proof P ‖W is bounded above by the size of the proofs
of Иx.P ‖ Q and Эx.P ‖ Q.

The final three splitting lemmas mainly involve checking commutative cases, which follow a
pattern.

I Lemma 17. If ` ∃x.P ‖ Q, then there exist predicates Vi and values vi such that ` P{vi/x} ‖
Vi, where 1 ≤ i ≤ n, and n-ary killing context T { } such that Q −→ T { V1, V2, . . . , Vn }
and if y appears in T { } then y # (∃x.P).

I Lemma 18. The following statements hold, for any atom α, where if x appears in T { }
then x # α.

If ` α ‖ Q, then there exist n-ary killing context T { } such that Q −→ T { α, α, . . . , α }.
If ` α ‖ Q, then there exist n-ary killing context T { } such that Q −→ T { α, α, . . . , α }.

I Lemma 19. If ` (P ⊕Q) ‖ R, then there exist predicates Wi such that either ` P ‖
Wi or ` Q ‖ Wi where 1 ≤ i ≤ n, and n-ary killing context T { } such that R −→
T { W1,W2, . . . ,Wn } and if x appears in T { } then x # (P ⊕Q).

2 For the multiset measure of the size of a proof see http://iit.iit.tuiasi.ro/TR/reports/fml1502.
pdf.

http://iit.iit.tuiasi.ro/TR/reports/fml1502.pdf
http://iit.iit.tuiasi.ro/TR/reports/fml1502.pdf

R. Horne, A. Tiu, B. Aman, and G. Ciobanu 31:13

4.4 Context Reduction and the Admissibility of Co-rules
Splitting is always performed in a shallow context, i.e. a hole directly inside a parallel
composition. Context reduction extends rules simulated by splitting to any context.

I Lemma 20 (Context reduction). If ` Pσ ‖ R yields that ` Qσ ‖ R, for any predicate R
and substitution of terms for variables σ, then ` C{ P } yields ` C{ Q }, for any context
C{ }.

The subtlety of context reduction is to accommodate plus and some by the following stronger
induction invariant: If ` C{ T }, then there exist predicates Ui and substitutions σi such
that ` Tσi ‖ Ui, for 1 ≤ i ≤ n; and n-ary killing context T { } such that for any predicate
V there exist Wi such that either Wi = V σi ‖ Ui or Wi = I, for 1 ≤ i ≤ n, and the following
holds: C{ V } −→ T { W1,W2, . . . ,Wn }.

For every rule there is a co-rule, where for rule P −→ Q, the co-rule is of the form Q −→ P .
For example close has co-rule C{ Эx.(P ⊗Q) } −→ C{ Эx.P ⊗Иx.Q } and extrude1 has
co-rule if x # Q then C{ ∃x.(P ⊗Q) } −→ C{ ∃x.P ⊗Q }. The following eight lemmas
establish that a co-rule is admissible in MAV1. In each case, the proof proceeds by applying
splitting in a shallow context, forming a new proof, and finally applying Lemma 20.

I Lemma 21 (Co-close). If ` C{ Эx.P ⊗Иx.Q } holds then ` C{ Эx.(P ⊗Q) } holds.

I Lemma 22 (Co-tidy name). If ` C{ Эx.I } holds then ` C{ I } holds.

I Lemma 23 (Co-extrude1). If x # Q and ` C{ ∃x.P ⊗Q } holds then ` C{ ∃x.(P ⊗Q) }
holds.

I Lemma 24 (Co-tidy1). If ` C{ ∃x.I } holds then ` C{ I } holds.

The above four lemmas are particular to MAV1. The proofs for the four lemmas below are
similar to the corresponding cases in MAV [20].

I Lemma 25 (Co-external). If ` C{ P ⊗ (Q⊕R) } holds then ` C{ (P ⊗Q)⊕ (P ⊗R) }
holds.

I Lemma 26 (Co-tidy). If ` C{ I⊕ I } holds, then ` C{ I } holds.

I Lemma 27 (Co-sequence). If ` C{ (P ;Q)⊗ (R ; S) } holds then ` C{ (P ⊗R) ; (Q⊗ S) }
holds.

I Lemma 28 (Atomic co-interaction). If ` C{ α⊗ α } holds then ` C{ I } holds.

The Proof of Theorem 4. The main result of this paper follows by induction on the
structure of P in a predicate of the form ` C

{
P ⊗ P

}
, by applying the above eight co-rule

elimination lemmas and also Lemma 10 in the cases for with and plus, and Lemma 11 in the
cases for all and some.

Co-rules are interesting in their own right, since derivations extended with all co-rules
coincide with provable linear implications. Suppose that SMAV1 is the system MAV1 extended
with all co-rules. The following corollary is a consequence of Theorem 4.

I Corollary 29. ` P (Q in MAV1 if and only if Q −→ P in SMAV1.

An advantage of defining linear implication using provability, is that MAV1 is analytic [8];
hence, with some care taken for existential quantifiers [5, 23], each predicate gives rise to
finitely many derivations up-to congruence. Consequently, proof search is decidable.

I Proposition 30. It is decidable whether a predicate in MAV1 is provable.

CONCUR 2016

31:14 Private Names in Non-Commutative Logic

5 Conclusion

This paper makes two significant contributions: a novel de Morgan dual pair of nominal
quantifiers and the first direct cut elimination result for first-order quantifiers in the calculus
of structures. As a consequence of cut-elimination (Theorem 4), we obtain the first consistent
proof system that features both non-commutative operator seq and first-order quantifiers.
The novelty of the nominal quantifiers new and wen is in how they distribute over positive
and negative operators. This greater control of bookkeeping of names enables private names
to be modelled in direct embeddings of processes as predicates in MAV1.

This paper continues a line of work on logical systems defined using the calculus of
structures with applications to modelling processes [7, 12, 20]. Our approach is distinct from
related work on nominal logic [2, 13, 38] where processes are terms, rather than predicates,
and an operational semantics is given either as an inductive definition or a logical theory.
The related approach is capable of encoding observational preorders and bisimulations, but
has the drawback that implication cannot be directly used to compare processes. Our
approach is also distinct from the proofs-as-processes Curry-Howard inspired approach to
session types [9, 42]. Instead, we adopt a processes-as-predicates approach, setting up a
discussion on the relationship between linear implication in MAV1 and observational preorders.
Amongst the consequences of cut elimination (Theorem 4) is that linear implication defines
a branching-time precongruence over processes that fully respects causality.

Acknowledgements. We are grateful to Catuscia Palamidessi and the CONCUR panel for
their thorough analysis of a draft.

References
1 Luca Aceto and Matthew Hennessy. Adding action refinement to a finite process algebra.

Information and Computation, 115(2):179–247, 1994. doi:10.1006/inco.1994.1096.
2 Andrei Alexandru and Gabriel Ciobanu. Nominal techniques for πI-calculus. Romanian

Journal of Information Science and Technology, 16(4):261–286, 2013.
3 Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. Journal of

Logic and Computation, 2(3):297–347, 1992. doi:10.1093/logcom/2.3.297.
4 Marek Bednarczyk. Hereditary history preserving bisimulations. Technical report, Polish

Academy of Sciences, Gdańsk, 1991.
5 Kai Brünnler. Deep inference and symmetry in classical proofs. PhD thesis, TU Dresden,

2003.
6 Kai Brünnler. Locality for classical logic. Notre Dame J. Form. Log., 47(4):557–580, 2006.
7 Paola Bruscoli. A purely logical account of sequentiality in proof search. In ICLP, volume

2401 of LNCS, pages 302–316. Springer, 2002. doi:10.1007/3-540-45619-8_21.
8 Paola Bruscoli and Alessio Guglielmi. On the proof complexity of deep inference.

ACM Transactions on Computational Logic (TOCL), 10(2), 2009. doi:10.1145/1462179.
1462186.

9 Luís Caires and Frank Pfenning. Session types as intuitionistic linear propositions. In
CONCUR 2010, pages 222–236. Springer, 2010. doi:10.1007/978-3-642-15375-4_16.

10 Kaustuv Chaudhuri, Nicolas Guenot, and Lutz Straßburger. The focused calculus of struc-
tures. In EACSL, volume 12, pages 159–173, 2011. doi:10.4230/LIPIcs.CSL.2011.159.

11 Gabriel Ciobanu and Ross Horne. Non-interleaving operational semantics for geographically
replicated databases. In SYNASC 2013, pages 440–447, 2013. doi:10.1109/SYNASC.2013.
64.

http://dx.doi.org/10.1006/inco.1994.1096
http://dx.doi.org/10.1093/logcom/2.3.297
http://dx.doi.org/10.1007/3-540-45619-8_21
http://dx.doi.org/10.1145/1462179.1462186
http://dx.doi.org/10.1145/1462179.1462186
http://dx.doi.org/10.1007/978-3-642-15375-4_16
http://dx.doi.org/10.4230/LIPIcs.CSL.2011.159
http://dx.doi.org/10.1109/SYNASC.2013.64
http://dx.doi.org/10.1109/SYNASC.2013.64

R. Horne, A. Tiu, B. Aman, and G. Ciobanu 31:15

12 Gabriel Ciobanu and Ross Horne. Behavioural analysis of sessions using the calculus of
structures. In PSI 2015, 25-27 August, Kazan, Russia, volume 9609 of LNCS, 2015.

13 Murdoch J. Gabbay. The π-calculus in FM. In Thirty Five Years of Automating Mathem-
atics, pages 247–269. Springer, 2003. doi:10.1007/978-94-017-0253-9_10.

14 Andrew Gacek, Dale Miller, and Gopalan Nadathur. Nominal abstraction. Information
and Computation, 209(1):48–73, 2011. doi:10.1016/j.ic.2010.09.004.

15 Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–112, 1987. doi:
10.1016/0304-3975(87)90045-4.

16 Alessio Guglielmi. Re:encoding pi calculus in calculus of structures. post on public mailing
list http://permalink.gmane.org/gmane.science.mathematics.frogs/161, 2004.

17 Alessio Guglielmi. A system of interaction and structure. ACM Transactions on Compu-
tational Logic, 8(1), 2007. doi:10.1145/1182613.1182614.

18 Alessio Guglielmi and Lutz Straßburger. A system of interaction and structure V: The
exponentials and splitting. Math. Struct. Comp. Sci., 21(03):563–584, 2011. doi:10.1017/
S096012951100003X.

19 Kohei Honda et al. Scribbling interactions with a formal foundation. In ICDCIT 2011,
volume 6536 of LNCS, pages 55–75. Springer, 2011. doi:10.1007/978-3-642-19056-8_4.

20 Ross Horne. The consistency and complexity of multiplicative additive system virtual. Sci.
Ann. Comp. Sci., 25(2):245–316, 2015. URL: http://dx.doi.org/10.7561/SACS.2015.2.
245.

21 Naoki Kobayashi and Akinori Yonezawa. ACL – a concurrent linear logic programming
paradigm. In ILPS’93, pages 279–294. MIT Press, 1993.

22 Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commu-
nications of the ACM, 21(7):558–565, 1978. doi:10.1145/359545.359563.

23 Patrick Lincoln and Natarajan Shankar. Proof search in first-order linear logic and other
cut-free sequent calculi. In LICS’94, pages 282–291. IEEE, 1994. doi:10.1109/LICS.1994.
316061.

24 José Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoretical
Computer Science, 96(1):73–155, 1992. doi:10.1016/0304-3975(92)90182-F.

25 Dale Miller and Alwen Tiu. A proof theory for generic judgements. ACM Transactions on
Computational Logic (TOCL), 6(4):749–783, 2005. doi:10.1145/1094622.1094628.

26 Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, I and II.
Information and Computation, 100(1):1–77, 1992. doi:10.1016/0890-5401(92)90008-4.

27 Peter O’Hearn and David Pym. The logic of bunched implications. Bulletin of Symbolic
Logic, 5(2):215–244, 1999. doi:10.2307/421090.

28 Andrew Pitts. Nominal logic, a first order theory of names and binding. Information and
Computation, 186(2), 2003. doi:10.1016/S0890-5401(03)00138-X.

29 Vaughan Pratt. Modelling concurrency with partial orders. International Journal of Par-
allel Programming, 15(1):33–71, 1986. doi:10.1007/BF01379149.

30 Christian Retoré. Pomset logic: A non-commutative extension of classical linear lo-
gic. In TLCA’97, volume 1210 of LNCS, pages 300–318. Springer, 1997. doi:10.1007/
3-540-62688-3_43.

31 Luca Roversi. A deep inference system with a self-dual binder which is complete for lin-
ear lambda calculus. J. of Log. and Comp., 26(2):677–698, 2016. doi:10.1093/logcom/
exu033.

32 Davide Sangiorgi. π-calculus, internal mobility, and agent-passing calculi. Theoretical
Computer Science, 167(1):235–274, 1996. doi:10.1016/0304-3975(96)00075-8.

33 Vladimiro Sassone, Mogens Nielsen, and Glynn Winskel. Models for concurrency: towards
a classification. Th. Comp. Sci., 170(1-2):297–348, 1996. doi:10.1016/S0304-3975(96)
80710-9.

CONCUR 2016

http://dx.doi.org/10.1007/978-94-017-0253-9_10
http://dx.doi.org/10.1016/j.ic.2010.09.004
http://dx.doi.org/10.1016/0304-3975(87)90045-4
http://dx.doi.org/10.1016/0304-3975(87)90045-4
http://permalink.gmane.org/gmane.science.mathematics.frogs/161
http://dx.doi.org/10.1145/1182613.1182614
http://dx.doi.org/10.1017/S096012951100003X
http://dx.doi.org/10.1017/S096012951100003X
http://dx.doi.org/10.1007/978-3-642-19056-8_4
http://dx.doi.org/10.7561/SACS.2015.2.245
http://dx.doi.org/10.7561/SACS.2015.2.245
http://dx.doi.org/10.1145/359545.359563
http://dx.doi.org/10.1109/LICS.1994.316061
http://dx.doi.org/10.1109/LICS.1994.316061
http://dx.doi.org/10.1016/0304-3975(92)90182-F
http://dx.doi.org/10.1145/1094622.1094628
http://dx.doi.org/10.1016/0890-5401(92)90008-4
http://dx.doi.org/10.2307/421090
http://dx.doi.org/10.1016/S0890-5401(03)00138-X
http://dx.doi.org/10.1007/BF01379149
http://dx.doi.org/10.1007/3-540-62688-3_43
http://dx.doi.org/10.1007/3-540-62688-3_43
http://dx.doi.org/10.1093/logcom/exu033
http://dx.doi.org/10.1093/logcom/exu033
http://dx.doi.org/10.1016/0304-3975(96)00075-8
http://dx.doi.org/10.1016/S0304-3975(96)80710-9
http://dx.doi.org/10.1016/S0304-3975(96)80710-9

31:16 Private Names in Non-Commutative Logic

34 Lutz Straßburger. Linear logic and noncommutativity in the calculus of structures. PhD
thesis, TU Dresden, 2003.

35 Lutz Straßburger. Some observations on the proof theory of second order propositional
multiplicative linear logic. In TLCA 2009, volume 5608 of LNCS, pages 309–324. Springer,
2009. doi:10.1007/978-3-642-02273-9_23.

36 Lutz Straßburger and Alessio Guglielmi. A system of interaction and structure IV: the
exponentials and decomposition. TOCL, 12(4):23, 2011. doi:10.1145/1970398.1970399.

37 Alwen Tiu. A system of interaction and structure II: The need for deep inference. Logical
Methods in Computer Science, 2(2:4):1–24, 2006. doi:10.2168/LMCS-2(2:4)2006.

38 Alwen Tiu and Dale Miller. Proof search specifications of bisimulation and modal logics
for the π-calculus. TOCL, 11(2):13, 2010. doi:10.1145/1656242.1656248.

39 Rob van Glabbeek. The linear time-branching time spectrum (extended abstract). In CON-
CUR ’90, volume 458 of LNCS, pages 278–297. Springer, 1990. doi:10.1007/BFb0039066.

40 Rob van Glabbeek. Structure preserving bisimilarity, supporting an operational Petri net se-
mantics of CCSP. In Correct System Design, volume 9360 of LNCS, pages 99–130. Springer,
2015. doi:10.1007/978-3-319-23506-6_9.

41 Rob van Glabbeek and Ursula Goltz. Refinement of actions and equivalence notions for con-
current systems. Acta Informatica, 37(4-5):229–327, 2001. doi:10.1007/s002360000041.

42 Philip Wadler. Propositions as sessions. J. of Fun. Prog., 24(2-3):384–418, 2014. doi:
10.1145/2364527.2364568.

http://dx.doi.org/10.1007/978-3-642-02273-9_23
http://dx.doi.org/10.1145/1970398.1970399
http://dx.doi.org/10.2168/LMCS-2(2:4)2006
http://dx.doi.org/10.1145/1656242.1656248
http://dx.doi.org/10.1007/BFb0039066
http://dx.doi.org/10.1007/978-3-319-23506-6_9
http://dx.doi.org/10.1007/s002360000041
http://dx.doi.org/10.1145/2364527.2364568
http://dx.doi.org/10.1145/2364527.2364568

Causality vs. Interleavings in Concurrent Game
Semantics
Simon Castellan1 and Pierre Clairambault2

1 Univ Lyon, CNRS, ENS de Lyon, UCB Lyon 1, LIP
2 Univ Lyon, CNRS, ENS de Lyon, UCB Lyon 1, LIP

Abstract
We investigate relationships between interleaving and causal notions of game semantics for

concurrent programming languages, focusing on the existence of canonical compact causal rep-
resentations of the interleaving game semantics of programs.

We perform our study on an affine variant of Idealized Parallel Algol (IPA), for which we
present two games model: an interleaving model (an adaptation of Ghica and Murawski’s fully
abstract games model for IPA up to may-testing), and a causal model (a variant of Rideau and
Winskel’s games on event structures). Both models are sound and adequate for affine IPA. Then,
we relate the two models. First we give a causality-forgetting operation mapping functorially
the causal model to the interleaving one. We show that from an interleaving strategy we can
reconstruct a causal strategy, from which it follows that the interleaving model is the observational
quotient of the causal one. Then, we investigate several reconstructions of causal strategies
from interleaving ones, showing finally that there are programs which are inherently causally
ambiguous, with several distinct minimal causal representations.

1998 ACM Subject Classification F.3.2 Denotational Semantics

Keywords and phrases Game semantics, concurrency, causality, event structures

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2016.32

1 Introduction

Game semantics present a program as a representation of its behaviour under execution,
against any execution environment. This interpretation is computed compositionally, follow-
ing the methodology of denotational semantics. Game semantics and interactive semantics
in general have been developed for a variety of programming language features. They are an
established theoretical tool in the foundational study of logic and programming languages,
with a growing body of research on applications to various topics, e.g. model-checking [1, 10],
hardware [4] or software [13] compilation, for higher-order programs. These works exploit
the ability of game semantics to provide compositionally a clean and elegant presentation
of the operational behaviour of a program, which can then give an invariant for program
transformations, or be exploited for analysis.

One subject where game semantics particularly shine is for reasoning about program
equivalence. Indeed, game semantics models are often fully abstract: they characterise
programs up to contextual equivalence, meaning that two programs behave in the same way
in all contexts if and only if the corresponding strategies have the same plays. Concurrent
languages are no exception: Ghica and Murawski’s games model for IPA [5] is fully abstract
wrt. may-testing. Although, in this language, contextual equivalence is undecidable even
for second-order programs, decidability can be recovered for a restricted language [6]. But
Ghica and Murawski’s model represents concurrent programs with interleavings, so whether

© Simon Castellan and Pierre Clairambault;
licensed under Creative Commons License CC-BY

27th International Conference on Concurrency Theory (CONCUR 2016).
Editors: Josée Desharnais and Radha Jagadeesan; Article No. 32; pp. 32:1–32:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.32
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

32:2 Causality vs. Interleavings in Concurrent Game Semantics

one works in a decidable fragment or simply uses non automated tools, reasoning on the
fully abstract model requires one to explore all possible interleavings. This is the so-called
state explosion problem familiar in the verification of concurrent systems [7].

Partial order methods provide good tools to alleviate this problem. They provide more
compact representations of concurrent programs, avoiding the enumeration of all interleav-
ings. For IPA, recent advances in partial-order based game semantics [11, 3] allow us to
restate Ghica and Murawski’s model based on partial orders or event structures. But can
we get back full abstraction this way? Since the interleaving model is fully abstract, the
question is: can we give a clean, compact, presentation of the interleaving games model
of IPA via partial orders? As it is, the interpretation of IPA in e.g. [3] is certainly not
fully abstract since it retains intensional information (such as the point of non-deterministic
branching) invisible up to may-testing. But can we rework it so it yields canonical partial-
order representatives for strategies in the interleaving model? In this paper, we show that
already in an affine setting, the answer is no.

Our contributions are the following. We describe an affine variant of IPA – it is mostly
there to provide illustrations and an operational light. For this affine IPA, we give two
new categories of games. The first is an affine version of Ghica and Murawski’s model.
The second draws inspiration from Rideau and Winskel’s category of strategies as event
structures, without the information on the point of non-deterministic branching, which is
irrelevant up to may-testing. Via a collapse of the causal model into the interleaving one, we
show that the latter is the observational quotient of the former. We describe several causal
reconstructions from an interleaving strategy, aiming for minimality. Finally, we show that
interleaving strategies have in general no canonical minimal causal representation.

On the game semantics front, our two models are arena-based, in the spirit of HO games
[8]. They both operate on a notion of arenas enriched with conflict, which is required
in an affine setting. Our interleaving model is not fully abstract for affine IPA. Indeed,
we have omitted well-bracketing (as well as bad variables and semaphores) in an effort to
make the presentation lighter. These aspects are orthogonal to the problem at hand, and
our developments would apply just as well with those. Apart from well-bracketing, our
interleaving model is fully compatible with Ghica and Murawski’s – strategies in our sense
can easily be read as strategies in their sense, as pointers can be uniquely recovered.

2 Affine IPA and its interleaving game semantics

In this section we introduce affine IPA, and the category GM of interleaving strategies.

2.1 Affine IPA
▸ Definition 1. The types of affine IPA are A,B ∶∶= B ∣ com ∣ A⊸ B ∣ ref r ∣ refw.

We have types for booleans, commands, and a linear function space. Finally we have two
types ref r and refw for read-only and write-only variables (this splitting of ref is necessary
to make the variables non-trivial in an affine setting).

The terms of affine IPA are the following:

M,N ∶∶= x ∣MN ∣ λx.M ∣ tt ∣ ff ∣ if MN1N2 ∣ �
∣ skip ∣M ;N ∣ newref v inM ∣M ∶= tt ∣ !M ∣M ∥ N

References are considered initialized to ff . As they can only be read once, the only useful
value to write is tt, hence the restricted assignment command. Typing rules are standard,

Simon Castellan and Pierre Clairambault 32:3

(com ⊸ com)⊸ B
q−

run+
done−

ff+

(com ⊸ com)⊸ B
q−

run+
run−

done+
done−

tt+

Figure 1 Maximal plays of the alternating game semantics of strict.

we only mention a few. Firstly, affine function application and boolean elimination.

Γ ⊢M ∶ A⊸ B ∆ ⊢ N ∶ A
Γ,∆ ⊢MN ∶ B

Γ ⊢M ∶ B ∆ ⊢ N1 ∶ A ∆ ⊢ N2 ∶ A
Γ,∆ ⊢ if MN1N2 ∶ A

Crucially the first rule treats the context multiplicatively, making the language affine.
Secondly, here are the rules for reference manipulation.

Γ, r ∶ ref r, r ∶ refw ⊢M ∶ B
Γ ⊢ newref r inM ∶ B

Γ ⊢M ∶ ref r

Γ ⊢ !M ∶ B
Γ ⊢M ∶ refw

Γ ⊢M ∶= tt ∶ com

Splitting between the read and write capabilities of the variable type is necessary for the
variables to be used in a non-trivial way. For example, the following term is typable:

strict = λfcom⊸com.newref r in (f (r ∶= tt)); !r ∶ (com⊸ com)⊸ B

The language is equipped with the same operational semantics as in [5] – we skip the
details. The operational semantics yields an evaluation relation: for ⊢ M ∶ B, we write
M ⇓may b to mean that M may evaluate to the boolean b, or just M ⇓may to mean that
M may converge. From the combination of concurrency and state, affine IPA is a non-
deterministic language.

2.2 Arenas
In game semantics, one interprets a program as a set of interactions, usually called plays,
with its execution environment. For instance, some maximal plays of the interpretation
JstrictK of the term strict ∶ (com ⊸ com) ⊸ B defined above are displayed in Figure 1.
Those diagrams are read from top to bottom, and moves have polarity either Player (+,
Program) or Opponent (−, Environment). In the first play of Figure 1 Opponent behaves
like a constant, where in Figure 1 he is strict. Although the programs are stateful, plays do
not carry state: instead, we only see how the state influences Player’s behaviour.

To make this formal, we first extract from the type the computational events on which
plays such as the above are formed. These are organized into arenas.

▸ Definition 2. An event structure with polarities is a tuple (A,≤A, ♯A,polA) where A
is a set of moves or events, ≤A is a partial order on A such that for any a ∈ A, [a] = {a′ ∈
A ∣ a′ ≤A a} is finite, ♯A is an irreflexive symmetric conflict relation such that for all a ♯A a′,
for all a′ ≤A a′0, we also have a ♯A a′0. Finally, polA ∶ A→ {−,+} is a polarity function.

Apart from the fact that we only have binary conflict, this is the same notion of event
structures with polarities as in [11]. A configuration of A, written x ∈ C (A), is a finite

CONCUR 2016

32:4 Causality vs. Interleavings in Concurrent Game Semantics

x ⊆ A which is down-closed (if a ∈ x and a′ ≤A a, then a′ ∈ x as well) and consistent (for
all a1, a2 ∈ x, ¬(a1 ♯A a2)). For a1, a2 ∈ A, we say that a1 immediately causes a2, written
a1 _ a2, when a1 <A a2 and for all a1 ≤ a ≤ a2 we have either a1 = a or a = a2. We also
write a1 ∼ a2 if a1 and a2 are in immediate conflict, meaning a1 ♯A a2 and for all a′1 ≤A a1,
a′2 ≤A a2 (with at least one of them strict), we have ¬(a′1 ♯A a′2). Finally, we write min(A)
for the set of minimal events of A.

Arenas are certain event structures with polarities:

▸ Definition 3. An arena is an event structure with polarities such that ≤A is a forest (for all
a1, a2 ≤A a, either a1 ≤A a2 or a2 ≤A a1), is alternating (for all a1 _ a2, polA(a1) ≠ polA(a2)),
and race-free (if a1 ∼ a2, then pol(a1) = pol(a2)).

Although our formulation is slightly different, our arenas are very close to the standard
notion of [8]: the three differences is that we have no Question/Answer distinction, our
arenas are not necessarily negative, and we have a conflict relation.

▸ Example 4. We display below the arenas for some types of IPA.

JcomK =
run−

_���
done+

JBK =
q−

H~~� v��
tt+ ff+

J(com⊸ com)⊸ BK =
q−0tt| _��� � ��(

run+/ss{ _���
tt+ ff+

run−_���
done−

done+

On JcomK, Opponent may start running the command (run−), which may or may not
terminate (done+). On JBK, Opponent may interrogate the boolean (q−), and Player may
or may not answer. If he does, it will be with exactly one of the incompatible tt+ and ff+.

We will see later on how to systematically interpret types of IPA as arenas. For now on
though, we give two simple constructions on arenas.

▸ Definition 5. Let A be an arena. Its dual, written A⊥, has the same data as A but
polarity reversed. If A and B are arenas, then their parallel composition A ∥ B, also
written A⊗B for the tensor, has components:

Events/moves. the disjoint union {1} ×A ∪ {2} ×B,
Causality, conflict. Inherited from A and B.

In this paper, we will define two categories GM and PO with arenas as objects.

2.3 Interleaving-based game semantics on arenas
Now, we define a compact closed category of games called GM, by reference to Ghica and
Murawski’s model of IPA [5]. Our category will be much simpler though, as it will be an
affine version of theirs, without bracketing conditions. Firstly, we need to define plays.

▸ Definition 6. Let A be an arena. A play s on A, written s ∈ PA, is a total order s = (∣s∣,≤s)
of moves of A such that ∣s∣ ∈ C (A), and for any a, b ∈ s, if a ≤A b then a ≤s b. We write s ⊑ t
for the usual prefix ordering on plays.

In [5], strategies are closed under some saturation conditions: for instance, if sa+b− ∈ σ
and b does not actually depend on a in the game, then σ can always delay a until after b
was played. In other words, we have sba ∈ σ as well. In our affine variant, we will have a
slightly different formulation of saturation. First we define an order on plays.

Simon Castellan and Pierre Clairambault 32:5

JcomK⊥ ∥JcomK⊥∥ JcomK
run−

run+
done−

run+
done−

done+

JcomK⊥ ∥JcomK⊥∥ JcomK
run−

run+
done−

run+
done−

done+

JcomK⊥ ∥JcomK⊥∥ JcomK
run−

run+
run+

done−
done−

done+

Figure 2 Some plays in J∥KGM.

▸ Definition 7. Let s, t ∈ PA for A an arena. Then we say that s ⪯ t iff ∣s∣ ⊆ ∣t∣, and:
If a+1 ≤s a

−

2 , then a1 ≤t a2.
For a+2 ∈ ∣s∣, if a1

− ≤t a
+

2 , then a1 ∈ ∣s∣ and a1 ≤s a2.

Clearly, ⪯ is a partial order on PA. Intuitively, going upwards in ⪯ corresponds to
strengthening causal information by pushing Opponent moves behind Player moves, hence
implying that those Opponent moves were not true dependencies for the Player moves. The
partial order ⪯ is generated by elementary permutations, as in the saturation conditions in
[5], along with the prefix ordering. We now define:

▸ Definition 8. A GM-strategy on arena A, written σ ∶ A, is a set σ ⊆ PA which is:
Saturated: if s ∈ σ and t ⪯ s, then t ∈ σ as well,
Receptive: if s ∈ σ and ∣s∣ ⊂ ∣s∣ ∪ {a−} ∈ C (A), then sa ∈ σ as well.

▸ Example 9. The GM-strategy J∥KGM ∶ JcomK⊥ ∥ JcomK⊥ ∥ JcomK comprises all plays on
JcomK⊥ ∥ JcomK⊥ ∥ JcomK such that:

If run+ appears on either occurrence of JcomK⊥, then run− must appear before,
If done+ appears, then both done− must appear before.

Figure 2 displays several plays of J∥KGM. In total, J∥KGM has six maximal plays.

As usual in play-based game semantics, operations on GM-strategies rely crucially on
a notion of restriction of plays. Consider A an arena, s ∈ PA, and B some sub-component
on A (we leave the notion of sub-component intentionally somewhat vague: for instance A
is a subcomponent of A⊗B, and A1 ∥ B1 is a sub-component of A1 ⊗A2 ∥ B1 ⊗B2). The
restriction s ↾ B ∈ PB is the subsequence of s of moves in component B, in the same order.

Using that, we can now define the copycat strategy on A to be:

cc A = {s ∈ PA⊥∥A ∣ ∀s′ ⊑ s, ∀a ∈ ∣s′ ↾ A⊥∣, polA⊥(a) = + Ô⇒ a ∈ ∣s′ ↾ A∣,
∀a ∈ ∣s′ ↾ A∣,polA(a) = + Ô⇒ a ∈ ∣s′ ↾ A⊥∣}

It is a GM-strategy. Using the usual parallel composition plus hiding mechanism, we
can also define composition. Given σ ∶ A⊥ ∥ B and τ ∶ B⊥ ∥ C, first define their interaction
τ ⊛ σ = {u ∈ PA∥B∥C ∣ u ↾ A ∥ B ∈ σ & u ↾ B ∥ C ∈ τ}. The composition τ ⊙ σ ∶ A⊥ ∥ C is
obtained through hiding, by τ ⊙ σ = {u ↾ (A ∥ C) ∣ u ∈ τ ⊛ σ}. Altogether:
▸ Proposition 1. There is a compact closed category GM with arenas as objects, and as
morphisms from A to B, GM-strategies σ ∶ A⊥ ∥ B. We also write σ ∶ A GM→ B.

Proof. The operation ⊗ on arenas is extended to GM-strategies by setting, for σ1 ∶ A1
GM→

B1 and σ2 ∶ A2
GM→ B2, σ1 ⊗ σ2 = {s ∈ P(A1⊗A2)⊥∥B1⊗B2 ∣ s ↾ A⊥1 ∥ B1 ∈ σ1 & s ↾ A⊥2 ∥ B2 ∈

σ2}. Rather than detailing explicitly the rest of the structure, we will inherit it from the
forthcoming category PO. All laws will then follow from Proposition 4. ◂

CONCUR 2016

32:6 Causality vs. Interleavings in Concurrent Game Semantics

(com ⊸ com)⊸ B
q−

run+
run−

done−
done+

tt+

(com ⊸ com)⊸ B
q−

run+
run−

done−
done+

ff+

(com ⊸ com)⊸ B
q−

run+
run−

done+
done−

tt+

Figure 3 Some maximal plays of the non-alternating game semantics of strict.

For now we do not show how to interpret affine IPA in GM – for that one actually needs
a symmetric monoidal closed subcategory of negative arenas, which seems difficult to define
without appealing to PO. However, we illustrate this interpretation by revisiting Figure 1.

▸ Example 10. The GM-strategy corresponding to strict will contain, among others, the
maximal plays described in Figure 3.

Although strict is a sequential program, the fact that in GM, Opponent may not be
sequential (and, in this case, non well-bracketed either) allows us to observe new behaviours
from strict. For instance, in the first two plays of Figure 3, Opponent concurrently answers
and asks for the argument on com⊸ com. This triggers a race between the subterms r ∶= tt
and !r of strict. As a consequence, one can observe both tt and ff as final results of the
computation. However, if Opponent was to answer only after r ∶= tt was evaluated (as in
the third play of Figure 3), the only possible final result would be tt.

There are, in total, ten maximal non-alternating plays in the GM-strategy for strict.

3 Causal game semantics for affine IPA

We give a causal variant of GM, where plays are partial orders. This yields a category PO,
close to the category of concurrent games of Rideau and Winskel [11] – the main difference
is that strategies in PO omit information about the point of non-deterministic branching.

3.1 Po-plays and po-strategies
First, we define the notion of partially ordered play.

▸ Definition 11. A partially ordered play (po-play) on arena A is a partial order
q = (∣q∣,≤q) where ∣q∣ ∈ C (A), and q satisfies the following properties:

Respects the game: for a1, a2 ∈ ∣q∣, if a1 ≤A a2 then a1 ≤q a2,
Is courteous: if a+1 _q a2 then a1 _A a2, and if a1 _q a

−

2 , then a1 _A a2.
We write P©

A for the set of po-plays on arena A.

Unlike usual (alternating or non-alternating) plays, po-plays are not chronologically
ordered, but carry causal information about Player’s choices. Hence, a po-play cannot ex-
press that an Opponent event happens after a given event, unless that dependency is already
present in the arena. In fact, a po-play cannot force a dependency between two Player moves
either: such a dependency may be broken by an asynchronous execution environment.

Although one po-play may carry information about many interleavings, representing a
GM-strategy might take several. Indeed, a po-play is by itself only able to represent a
process which is deterministic up to the choice of the scheduler (note that parallel com-
position is indeed deterministic up to the choice of the scheduler, it is only via its inter-

Simon Castellan and Pierre Clairambault 32:7

JcomK⊥ ∥ JcomK⊥ ∥ JcomK

run−
%oou

,rrz
run+_���

run+_���
done−

�))/
done−

� $$,
done+

(a) A po-play for parallel composi-
tion.

(com ⊸ com)⊸ B

q−1tt}
run+-ssz

_���
run−_���

� ''.
done−

� ""*done+ tt+

(com ⊸ com)⊸ B

q−1tt}
run+-ssz

_���
run−_���

done−-ssz � ""*done+ ff+

(b) The two maximal po-plays of JstrictKPO.

Figure 4 Some po-plays.

action with e.g. a shared memory that non-determinism arises). For instance, the GM-
strategy coin ∶ JBK = {ε,q−,q−tt+,q−ff+} can only be represented via two maximal po-plays:
q− _ tt+ and q− _ ff+. It features actual non-determinism, independent from the scheduler.

To express such non-determinism, Rideau and Winskel [11] formalize strategies as event
structures rather than partial orders. Our causal notion of strategies builds on their work;
but since the present paper is only interested in relating causal with interleaving game
semantics (therefore with may-testing), we drop the explicit non-deterministic branching
point and consider po-strategies to be certain sets of partial orders. For that we first define:

▸ Definition 12. Let q,q′ be two partial orders. We say that q is rigidly included in
q′, or that q is a prefix of q′, written q ↪ q′, if we have the inclusion ∣q∣ ⊆ ∣q′∣, for any
a1, a2 ∈ ∣q∣ we have a1 ≤q a2 iff a1 ≤q′ a2, and q is down-closed in q′.

We are now in position to define PO-strategies.

▸ Definition 13. A PO-strategy on A, written σ ∶∶ A, is a non-empty prefix-closed σ ⊆ P©
A,

which is additionally receptive: for all q ∈ σ, if ∣q∣ ∈ C (A) extends to ∣q∣ ∪ {a−} ∈ C (A),
then there is q ↪ q′ ∈ σ such that ∣q′∣ = ∣q∣ ∪ {a}.

It follows by courtesy that q′ is necessarily unique: the immediate dependency of a in
q′ is forced by its immediate dependency in A.

Clearly, the set of prefixes of the po-play of Figure 4a gives a PO-strategy. For a non-
trivial non-deterministic example, we give in Figure 4b the two maximal (up to prefix / rigid
inclusion) po-plays of the PO-strategy corresponding to strict. This gives a quite compact
representation of all of the ten maximal plays of the GM-strategy for strict of Example 10.

3.2 The compact closed category PO

To construct PO we start with the causal copycat, which is – configuration-wise – as in [11].

▸ Definition 14. Let A be an arena. We define a partial order ≤CCA
on A⊥ ∥ A:

≤CC©
A

= ({((1, a), (1, a′)) ∣ a ≤A a′} ∪ {((2, a), (2, a′)) ∣ a ≤A a′}∪
{((1, a), (2, a)) ∣ polA(a) = +} ∪ {((2, a), (1, a)) ∣ polA(a) = −})+

where (−)+ denotes the transitive closure of a relation. Then, cc ©
A ∶∶ A⊥ ∥ A comprises all

x ∥ y ∈ C (A⊥ ∥ A) down-closed for ≤CC©
A
, with the induced partial order.

CONCUR 2016

32:8 Causality vs. Interleavings in Concurrent Game Semantics

JrefK

r−
_���

wtt−
_���.ss{tt+ ok+

r−
_��� � ##+

wtt−
_���

ff+ ok+

JrefK⊥ ∥ J(com ⊸ com)⊸ BK

q−/ss{
run+_���+rry

run−
&oov

done−
%oour+_���

wtt+_���
b−

� **1

ok−
� %%,

done+ b+

Figure 5 cell ∶∶ JrefK and Jλfcom⊸com. f (r ∶= tt); !rK ∶∶ JrefK⊥ ∥ J(com⊸ com)⊸ BK.

We will see in Proposition 4 that this is indeed a causal version of cc A ∶ A⊥ ∥ A. Now, we
define composition of PO-strategies. We first define composition of po-plays (via interaction
plus hiding, essentially as in [11]), before lifting it component-wise to PO-strategies.

▸ Definition 15. Two dual po-plays q ∈ P©
A, q′ ∈ P©

A⊥ such that ∣q∣ = ∣q′∣ are causally
compatible if (≤q ∪ ≤q′)∗ is a partial order, i.e. is acyclic. Then we write q∧q′ = (∣q∣,≤q∧q′)
for the resulting partial order.

If q and q′ are causally compatible po-plays on dual games as above, the events of q∧q′
have no well-defined polarity, so it is not a po-play. If q ∈ P©

A⊥∥B and q′ ∈ P©
B⊥∥C are not dual

but composable, we say that they are causally compatible if ∣q∣ = xA ∥ xB , ∣q′∣ = xB ∥ xC ,
plus (q ∥ xC) and (xA ∥ q′) are causally compatible (where xA, xC inherit the order from
A,C – in particular, xA is regarded as a member of P©

A, and xC as a member of P©
C⊥), we

define their open interaction q′ ⊛ q = (q ∥ xC) ∧ (xA ∥ q′).
In that case we define q′ ⊙ q ∈ P©

A⊥∥C as the projection q′ ⊛ q ↓ A⊥ ∥ C, with events
those of q′ ⊛ q that are in A or C, and partial order as in ≤q′⊛q. This being a po-play is a
variation on the stability by composition of courtesy in [11] (there called innocence).

▸ Definition 16. Let σ ∶∶ A⊥ ∥ B and τ ∶∶ B⊥ ∥ C be PO-strategies. Their composition is
τ ⊙σ = {q′⊙q ∣ q′ ∈ τ & q ∈ σ causally compatible}. Then, τ ⊙σ ∶∶ A⊥ ∥ C is a PO-strategy.

The construction is a simplification of [11]: po-plays are certain concurrent strategies, and
their composition is close to the composition of concurrent strategies with the simplification
that events of po-plays are those of the games rather than only labeled by the game.

▸ Example 17. Consider Jref rK⊗ JrefwK =
r−?zz� � ��%

wtt−_���
tt+ ff+ ok

, for the type of references.

By abuse of notation, we write JrefK for JrefwK⊗ Jref rK. The PO-strategy interpreting
strict is the composition of the PO-strategy with maximal po-play at the right hand side
of Figure 5 (interpreting r ∶ refw, r ∶ ref r ⊢ λfcom⊸com. f (r ∶= tt); !r following Section 3.3),
and cell ∶∶ JrefK for the memory cell (with maximal po-plays at the left hand side of Figure
5). Performing composition as above produces the two maximal po-plays of Figure 4b.

▸ Proposition 2. There is a compact closed category PO with arenas as objects, and PO-
strategies σ ∶∶ A⊥ ∥ B as morphisms from A to B, also written σ ∶ A PO→ B.

Simon Castellan and Pierre Clairambault 32:9

Proof. The tensor q1 ⊗ q2 of q1 ∈ P©
A⊥1∥B1

and q2 ∈ P©
A⊥2∥B2

is the obvious inherited partial
order on (A1 ∥ A2)⊥ ∥ (B1 ∥ B2). The tensor σ1 ⊗ σ2 of PO-strategies σ1 ∶∶ A⊥1 ∥ B1 and
σ2 ∶ A⊥2 ∥ B2 is defined component-wise. Structural morphisms are copycat PO-strategies.

PO simplifies (omitting explicit non-deterministic branching information) the bicategory
of concurrent games [11], whose compact closed structure is established with details in [2]. ◂

3.3 Interpretation of affine IPA
For completeness, we succinctly describe how one can define the interpretation of affine IPA
in PO. In fact, affine IPA will not be interpreted directly in PO, which does not support
weakening of variables as the empty arena 1, unit for the tensor, is not terminal (since
PO-strategies can have minimal positive events, there are in general several PO-strategies
on A⊥ ∥ 1 as soon as A has at least one minimal negative event). We have to restrict to a
proper subcategory of PO, defined as follows.

▸ Definition 18. An event structure with polarities A is negative if pol(min(A)) ⊆ {−}.
The category PO− is the subcategory of PO with objects negative arenas, and morph-

isms the negative PO-strategies whose po-plays are all negative.

The empty arena 1 is terminal in PO−: if A is negative then A⊥ ∥ 1 has no negative
minimal event. Therefore a negative σ ∶∶ A⊥ ∥ 1 must be empty, as a potential minimal event
would be in particular minimal in A⊥ ∥ 1. However, restricting to PO− has a price: we lose
the closure A⊥ ∥ B, which is in general not negative and hence not an object of PO−. Thus
we build a negative version, where the minimal events of A depend on those of B.

▸ Definition 19. Let A,B be two negative arenas. The arena A⊸ B has:
Events/polarity: (∥b∈min(B) A

⊥) ∥ B.
Causality: (∥b∈min(B) A

⊥) ∥ B, enriched with ((2, b), (1, (b, a))) for a ∈ A and b ∈ min(B).
Conflict: (∥b∈min(B) A

⊥) ∥ B, plus those inherited by (1, (b1, a)) ∼ (1, (b2, a)) for b1 ≠ b2.

If A, B are conflict-free and B has a unique minimal event, then A⊸ B coincides with
the usual arrow arena construction in Hyland-Ong games [8]. In general if B has a unique
minimal event, then A⊸ B does not introduce new conflicts or copies of A, and only differs
from A⊥ ∥ B by the fact that events of A⊥ now depend on the minimal event of B – see
Example 4 for such an arrow arena. However, if B has several minimal events, then multiple
copies of A are created; fortunately we can use conflict to maintain linearity.

The arena A⊸ B does not yet give a closure with respect to the tensor. The issue is that
there are more PO-strategies in A ⊸ B than in A⊥ ∥ B. Indeed, consider a PO-strategy
σ ∶∶ B⊥ ∥ (B ⊗ B), that plays q+ in the left hand side occurrence of B whenever Opponent
plays q− in both right hand side occurrences of B. Then on B⊸ (B⊗B) there are two ways
to replicate this, as they are two copies of the left hand side B in the arena. To get back a
closed structure, we need to restrict the category further.

▸ Definition 20. A negative PO-strategy σ ∶∶ A is well-threaded iff, for any q ∈ σ, q has
at most one minimal event. Copycat is well-threaded and well-threaded PO-strategies are
stable under composition – they form a subcategory PO−

wt of PO−.

Up to renaming of events, negative well-threaded strategies on (A ∥ B)⊥ ∥ C exactly
coincide with those on A⊥ ∥ B ⊸ C. Leveraging the compact closed structure of PO, it
follows that PO−

wt is symmetric monoidal closed (where the monoidal unit 1 is terminal). As
such, it supports the interpretation of the affine λ-calculus: any term x1 ∶ A1, . . . , xn ∶ An ⊢

CONCUR 2016

32:10 Causality vs. Interleavings in Concurrent Game Semantics

M ∶ B is interpreted as a PO-strategy JMK ∶ JA1K⊗ . . .⊗JAnK
PO−

wt→ JBK. Along with the PO-
strategy with unique po-play that of Figure 4a for parallel composition, the interpretation
of the newref construct as sketched in Example 17, and the obvious PO-strategies for the
other affine IPA combinators, we get an interpretation J−K of affine IPA into PO−

wt, which
is a subcategory of PO. Standard techniques entail:

▸ Proposition 3. The interpretation J−K is sound and adequate for affine IPA, i.e. for ⊢M ∶
com, we have M ⇓may iff JMK contains a positive event.

4 From PO to GM and back

We finally enter the final section of this paper, and relate the two semantics.

4.1 Forgetting causality
We start with the easy part: that PO can be embedded into GM. As partial orders are
more informative than plays, it is easy to move from the former to the latter.

▸ Definition 21. Let q ∈ P©
A. A play in q is s ∈ PA such that ∣s∣ ⊆ ∣q∣, and such that for all

a2 in ∣s∣, if a1 ≤q a2, then a1 ∈ ∣s∣ and a1 ≤s a2. We write Plays(q) for the set of plays in q.

From courtesy of q it follows that Plays(q) satisfies the saturation condition of Definition
8. For σ ∶∶ A a PO-strategy, we have Plays(σ) = ⋃{Plays(q) ∣ q ∈ σ} a GM-strategy, as
receptivity follows from receptivity of σ. In fact, we have:

▸ Proposition 4. There is an identity-on-object functor Plays ∶ PO→GM.

This is a direct verification. As in Section 2.2 we have by anticipation defined the compact
closed structure of GM to be the image of that of PO through Plays, this functor preserves
the compact closed structure by construction. Combined with the interpretation J−K of
affine IPA in PO, this gives a sound and adequate interpretation Plays○ J−K of affine IPA in
GM. Providing a direct sound interpretation to GM without PO would be awkward, as it
is unclear how to define well-threaded GM-strategies with no access to causality.

As emphasized in the introduction, the interpretation Plays○ J−K is not fully abstract for
affine IPA. However, let us emphasize again that we are not interested in full abstraction for
affine IPA; rather this serves as a simpler setting in which to study the relationship between
the fully abstract model for IPA [5] and its causal variant in e.g. [3].

4.2 Recovering causality
We now investigate how one can recover a PO-strategy from a GM-strategy.

4.2.1 A naive causal reconstruction
As a first step, we simply reverse the construction of Definition 21.

▸ Definition 22. A causal resolution σ ∶ A is any q ∈ P©
A such that Plays(q) ⊆ σ.

Because some GM-strategies (such as coin ∶ B) are inherently non-deterministic, it is
hopeless to try to describe them with a unique maximal causal resolution. A first rough
causal reconstruction for a GM-strategy consists simply in taking all causal resolutions.

Simon Castellan and Pierre Clairambault 32:11

▸ Proposition 5. Let σ ∶ A be a GM-strategy. Then, Caus(σ) = {q ∈ P©
A ∣ Plays(q) ⊆ σ}

is a PO-strategy such that Plays(Caus(σ)) = σ. Moreover, this yields a lax functor Caus ∶
GM → PO, i.e. we have cc ©

A ⊆ Caus(cc A) and Caus(τ) ⊙ Caus(σ) ⊆ Caus(τ ⊙ σ) for all
σ ∶ A⊥ ∥ B and τ ∶ B⊥ ∥ C (but neither of the other inclusions hold).

Proof. Each causal resolution is courteous by definition; receptivity and closure under prefix
are immediate. Each play s ∈ σ appears in a causal resolution qs, whose plays are exactly
those t ⪯ s obtained by saturation from s. Finally, lax functoriality is straightforward.

To see why Caus(−) is only lax functorial, take A = {a−}, C = {c−} and B = 1. Take the
PO-strategy σ ∶∶ A⊥ ∥ B to have as only non-empty po-play the singleton a+, while τ ∶∶ B⊥ ∥ C
has only non-empty po-play the singleton c−. Then the GM-strategy Plays(τ) ⊙ Plays(σ)
admits c− _ a+ as a causal resolution, which is therefore a po-play of Caus(Plays(τ) ⊙
Plays(σ)). On the other hand, Caus(Plays(τ)) ⊙ Caus(Plays(σ)) = τ ⊙ σ has only one
maximal po-play, with causally independent c− and a+. ◂

In particular, each GM-strategy is definable as a PO-strategy. Along with Proposition
4, and the fact that (just as in [5]) two distinct GM-strategies can always be distinguished
by a GM-strategy, this entails that GM is the observational quotient of PO, in the
sense that for σ1, σ2 ∶∶ A, Plays(σ1) = Plays(σ2) iff for all α ∶∶ A⊥ ∥ com, α⊙ σ1 = α⊙ σ2.

There are in general many PO-strategies corresponding to one GM-strategy, as GM-
strategies only remember the observable behaviour. Some PO-strategies are more succinct
than others for a fixed GM-strategy; and the causal reconstruction Caus(−) is not very
economical as it constructs the biggest such causal representation. For instance, the PO-
strategy Caus(J∥KGM) not only comprises the po-play of Figure 4a, but also the linear
po-play of sequential command composition.

4.2.2 Extremal causal resolutions
As we have seen, the construction Caus(−) presented above does not yield a satisfactory
causal representation of a GM-strategy because it is not minimal. Seeking a minimal
canonical causal representation of a GM-strategy, we now investigate when certain causal
resolutions are subsumed by others, and hence can be removed without changing Plays(σ).

For q1,q2 ∈ P©
A with ∣q1∣ = ∣q2∣, considering q1 subsumed by q2 when Plays(q1) ⊆

Plays(q2) is a bit too naive. Indeed, consider cell ∶∶ JrefK of Figure 5. We have:

Plays(
r−

� ��(
wtt−

_���
ok+

) ⊆ Plays(
r− wtt−

_���
ok+

)

However, moving from the former to the latter does not preserve the future: namely,
whereas any play in the left hand side can only be extended with ff+, there are plays in the
right hand side that can be extended with tt+ as well. So, the left hand side has to be kept.

To address this relaxation of causality while taking account of the future, for ∣q1∣ = ∣q2∣
with Plays(q1) ⊆ Plays(q2), we will say that q2 relaxes q1 if the inclusion of plays is
automatically transferred to all possible rigid extensions of q1. More formally:

▸ Definition 23. We define a partial order t called relaxation coinductively, by q1 t q2
iff ∣q1∣ = ∣q2∣, Plays(q1) ⊆ Plays(q2), and for all q1 ↪ q′1, there exists q2 ↪ q′2 such that
q′1 t q′2.

For σ ∶ A a GM-strategy and q ∈ Caus(σ), we say that q is extremal in σ iff q is
t-maximal. Let Extr(σ) be denote the set of extremal po-plays in σ.

CONCUR 2016

32:12 Causality vs. Interleavings in Concurrent Game Semantics

▸ Proposition 6. For any σ ∶ A, we have Extr(σ) ∶∶ A such that Plays(Extr(σ)) = σ.
The operation Extr(−) performs well on many examples: for instance, it recovers the

proper PO-strategies for all the examples of GM-strategies in this paper until now. It
also properly reverses Plays(−) for deterministic PO-strategies, with only one maximal po-
play. In that case, it matches the previously known correspondence between Rideau and
Winskel’s deterministic concurrent strategies [12] and Melliès and Mimram’s category of
receptive ingenuous strategies [9].

In the general case however, Extr(−) is not even lax functorial. But more importantly,
it turns out that Extr(σ) is still not necessarily a minimal causal representation of σ. We
present an example outside of the interpretation of affine IPA as it is more succinct, but it
is easy to find similar examples within the interpretation.

▸ Example 24. Let A be a non-negative arena, with two concurrent events ⊖ and ⊕. Consider
the GM-strategy σ ∶ A1 ∥ A2 with plays (annotations are for disambiguation):

σ = Plays(
⊖1

_���
⊖2

_���⊕1 ⊕2
) ∪Plays(

⊖1
~��$
⊖2

⊕1 ⊕2
) ∪Plays(

⊖1 ⊖2@zz�⊕1 ⊕2
)

All three po-plays are extremal in σ. However, despite being extremal, the first po-play is
redundant: it can be removed, yielding the same GM-strategy. Indeed, call the three po-
plays above q1,q2,q3; and take s ∈ Plays(q1). If s /∈ Plays(q2), then ⊕2 ≤s ⊖1 as this is the
only constraint in q2. Likewise, s /∈ Plays(q3) means that ⊕1 ≤s ⊖2. But these constraints,
put together with those of q1, yield a contradiction. Therefore s ∈ Plays(q2) ∪ Plays(q3).
The two extremal po-plays q2,q3 yield a smaller representation of σ.

In the example above, {q2,q3} is the unique minimal causal representation for σ. But
can we always reach such a canonical representation by removing redundant extremals?

4.2.3 Causally ambiguous GM-strategies
Until this point, and including Example 24, all the examples of GM-strategies considered
in this paper have a unique minimal causal representation, i.e. a unique set of extremal
po-plays with minimal cardinality. They are all causally unambiguous:

▸ Definition 25. For A a finite arena, a GM-strategy σ ∶ A is causally ambiguous if there
are (at least) two distinct sets of extremal po-plays of minimal cardinality X = {q1, . . . ,qn}
and Y = {q′1, . . . ,q′n}, such that σ = ⋃1≤i≤n Plays(qi) = ⋃1≤i≤n Plays(q′i).

To conclude this paper, we show the following result.

▸ Theorem 26. There is a term of affine IPA:

⊢M ∶ ((com⊸ com⊸ com⊸ com⊸ com⊸ com)⊸ com)⊸ com

such that JMKGM is causally ambiguous.

Proof. We first exhibit a causally ambiguous GM-strategy outside of the interpretation of
affine IPA, and then sketch how the same phenomenon can be replicated via a term.

Figure 6 displays five po-plays q1, . . . ,q5, generating a GM-strategy σ = ∪1≤i≤5Plays(qi)
– the game A is the same as in Example 24. A rather tedious but direct verification ensures
that they are all extremal: for that, it suffices to check that for each of these po-plays,

Simon Castellan and Pierre Clairambault 32:13

A1 ∥A2 ∥A3 ∥A4

⊖1

_��� � ##+

⊖2

_���

⊖3

_���

⊖4

_���
⊕1 ⊕2 ⊕3 ⊕4

A1 ∥A2 ∥A3 ∥A4

⊖1

_��� u���

⊖2

_���

⊖3

_��� u���

⊖4

_���
⊕1 ⊕2 ⊕3 ⊕4

A1 ∥A2 ∥A3 ∥A4

⊖1

_���

⊖2

_���

⊖3

_���
I���

⊖4

_���
⊕1 ⊕2 ⊕3 ⊕4

A1 ∥A2 ∥A3 ∥A4

⊖1

_���

⊖2

_���

⊖3

I��� _���

⊖4

I���
⊕1 ⊕2 ⊕3 ⊕4

A1 ∥A2 ∥A3 ∥A4

⊖1

_���

⊖2

_���
I���

⊖3

I��� _��� u���

⊖4

⊕1 ⊕2 ⊕3 ⊕4

Figure 6 Extremal generators q1,q2,q3,q4 and q5 of a causally ambiguous GM-strategy.

dropping any of the causal links unlocks a play not yet in σ. For instance, dropping the
diagonal immediate causal link in q1 unlocks the play ⊖4 ⊕4 ⊖2⊕2 /∈ σ.

Then, we note that q2 is redundant. Indeed, Plays(q2) ⊆ Plays(q1) ∪ Plays(q3): as in
Example 24, we cannot have at the same time ⊕4 ≤s ⊖1 and ⊕2 ≤s ⊖3 in s ∈ Plays(q2).
Perhaps less obviously, q3 is redundant as well: we have Plays(q3) ⊆ Plays(q2)∪Plays(q4)∪
Plays(q5). Indeed, take s ∈ Plays(q3). If s /∈ Plays(q4), then ⊕3 ≤s ⊖4. If s /∈ Plays(q5),
then either ⊕1 ≤s ⊖2 or ⊕4 ≤s ⊖3, but the latter is incompatible as the constraints we already
have on ⊖3,⊕3,⊖4,⊕4 yield a cycle. Thus ⊕1 ≤s ⊖2. But then if s /∈ Plays(q2), then ⊕2 ≤s ⊖1
or ⊕4 ≤s ⊖3, but both possibilities yield a cycle; absurd.

None of q1,q4,q5 are redundant: only q2 and q3. Removing both q2 and q3 leads to
the loss of the play ⊖3 ⊕3 ⊖4 ⊕4 ⊖1⊕1. There are two distinct minimal sets of extremals
{q1,q3,q4,q5} and {q1,q2,q4,q5}, both generating σ – so σ is causally ambiguous.

We replicate this in affine IPA. First, we replace each A with com. However, q4 and
q5 do not have the causal link ⊖4 _ ⊕4; so we need five occurrences of com, organised as
com1 ∥ com2 ∥ com3 ∥ com4 ∥ com′

4, where run′4, done4 play the role of ⊖4,⊕4 and ⊕′4
is ignored. This yields σ′ ∶ com1 ∥ com2 ∥ com3 ∥ com4 ∥ com′

4 causally ambiguous. This
is not a type of affine IPA (and σ′ is not well-threaded), so instead we lift σ′ to:

σ′′ ∶ J((com⊸ com⊸ com⊸ com⊸ com⊸ com)⊸ com)⊸ comK

Using variables, one can implement in affine IPA each of the po-plays corresponding in
this type to the qis above. It is also easy to define a non-deterministic choice operation in
affine IPA, using which these are put together to define M such that JMKGM = σ′′. ◂

5 Conclusions

The phenomenon presented here is fairly robust, and causally ambiguous strategies would
most likely emerge as well in other concurrent programming languages. Since interleaving
games models are inherently related with observational equivalence as they exactly capture
the observable behaviour of programs, it seems that unfortunately we cannot use the causal
model presented here or those of e.g. [11, 3] to give canonical compact representations of
concurrent programs up to contextual equivalence.

Causal structures are however still very relevant for other purposes (e.g. model-checking,
error diagnostics, weak memory models, . . .), and constructing them compositionally from
programs remains an interesting challenge.

Acknowledgements. We are also grateful to Andrzej Murawski for interesting discussions
on the topic.

CONCUR 2016

32:14 Causality vs. Interleavings in Concurrent Game Semantics

References
1 Samson Abramsky, Dan R. Ghica, Andrzej S. Murawski, and C.-H. Luke Ong. Apply-

ing game semantics to compositional software modeling and verification. In Kurt Jensen
and Andreas Podelski, editors, TACAS 2004, volume 2988 of Lecture Notes in Computer
Science, pages 421–435. Springer, 2004.

2 Simon Castellan, Pierre Clairambault, Silvain Rideau, and Glynn Winskel. Concurrent
games. ArXiv, 2015. URL: http://arxiv.org/abs/1604.04390.

3 Simon Castellan, Pierre Clairambault, and Glynn Winskel. The parallel intensionally fully
abstract games model of PCF. In 30th Annual ACM/IEEE Symposium on Logic in Com-
puter Science, LICS 2015, Kyoto, Japan, July 6-10, 2015, pages 232–243. IEEE, 2015.

4 Dan R. Ghica. Geometry of synthesis: a structured approach to VLSI design. In Martin
Hofmann and Matthias Felleisen, editors, Proceedings of the 34th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2007, Nice, France, January
17-19, 2007, pages 363–375. ACM, 2007.

5 Dan R. Ghica and Andrzej S. Murawski. Angelic semantics of fine-grained concurrency.
Ann. Pure Appl. Logic, 151(2-3):89–114, 2008.

6 Dan R. Ghica, Andrzej S. Murawski, and C.-H. Luke Ong. Syntactic control of concurrency.
In Josep Díaz, Juhani Karhumäki, Arto Lepistö, and Donald Sannella, editors, ICALP
2004, Turku, Finland, July 12-16, 2004. Proceedings, volume 3142 of Lecture Notes in
Computer Science, pages 683–694. Springer, 2004.

7 Patrice Godefroid. Partial-Order Methods for the Verification of Concurrent Systems -
An Approach to the State-Explosion Problem, volume 1032 of Lecture Notes in Computer
Science. Springer, 1996.

8 J. M. E. Hyland and C.-H. Luke Ong. On full abstraction for PCF: I, II, and III. Inf.
Comput., 163(2):285–408, 2000.

9 Paul-André Melliès and Samuel Mimram. Asynchronous games: Innocence without altern-
ation. In Luís Caires and Vasco Thudichum Vasconcelos, editors, CONCUR, volume 4703
of LNCS, pages 395–411. Springer, 2007.

10 C.-H. Luke Ong. On model-checking trees generated by higher-order recursion schemes.
In 21th IEEE Symposium on Logic in Computer Science (LICS) 2006, 12-15 August 2006,
Seattle, WA, USA, Proceedings, pages 81–90. IEEE Computer Society, 2006.

11 Silvain Rideau and Glynn Winskel. Concurrent strategies. In LICS, pages 409–418. IEEE
Computer Society, 2011.

12 Silvain Rideau and Glynn Winskel. Concurrent strategies. In LICS, volume 11, pages
409–418, 2011.

13 Ulrich Schöpp. On the relation of interaction semantics to continuations and defunctional-
ization. Logical Methods in Computer Science, 10(4), 2014.

http://arxiv.org/abs/1604.04390

Coherence Generalises Duality:
A Logical Explanation of Multiparty Session
Types∗

Marco Carbone1, Sam Lindley2, Fabrizio Montesi3,
Carsten Schürmann4, and Philip Wadler5

1 IT University of Copenhagen
2 University of Edinburgh
3 University of Southern Denmark
4 IT University of Copenhagen
5 University of Edinburgh

Abstract
Wadler introduced Classical Processes (CP), a calculus based on a propositions-as-types corres-
pondence between propositions of classical linear logic and session types. Carbone et al. intro-
duced Multiparty Classical Processes, a calculus that generalises CP to multiparty session types,
by replacing the duality of classical linear logic (relating two types) with a more general notion
of coherence (relating an arbitrary number of types). This paper introduces variants of CP and
MCP, plus a new intermediate calculus of Globally-governed Classical Processes (GCP). We show
a tight relation between these three calculi, giving semantics-preserving translations from GCP
to CP and from MCP to GCP. The translation from GCP to CP interprets a coherence proof as
an arbiter process that mediates communications in a session, while MCP adds annotations that
permit processes to communicate directly without centralised control.

1998 ACM Subject Classification F1.2 Modes of Computation: Parallelism and concurrency;
F4.1 Mathematical logic: Proof theory

Keywords and phrases Multiparty Session Types, Linear Logic, Propositions as Types

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2016.33

1 Introduction

Session types, introduced by Honda, Vasconcelos, and Kubo [11, 20], are protocols that
describe valid communication patterns in process calculi. A correspondence between process
calculi and classical linear logic was found by Abramsky [1] and Bellin and Scott [3], and
another between session types and intuitionistic linear logic by Caires and Pfenning [6, 7], in
both of which channel types correspond to propositions of linear logic, processes to proofs,
and communication to proof normalisation. Based on these, Wadler [22] introduced Classical
Processes (CP), in which session types correspond to propositions of classical linear logic,
processes to proofs, and communication to cut elimination. Key properties of session types
such as deadlock freedom follow from key properties of linear logic such as cut elimination.

∗ Montesi was supported by the CRC project, grant no. DFF–4005-00304 from the Danish Council for
Independent Research. Schürmann was partly supported by DemTech, grant no. 10-092309 from the
Danish Council for Strategic Research. Lindley and Wadler were supported by the EPSRC grant ABCD
(EP/K034413/1). This work was also supported by the EU COST Action IC1201 BETTY.

© Marco Carbone, Sam Lindley, Fabrizio Montesi, Carsten Schürmann, and Philip Wadler;
licensed under Creative Commons License CC-BY

27th International Conference on Concurrency Theory (CONCUR 2016).
Editors: Josée Desharnais and Radha Jagadeesan; Article No. 33; pp. 33:1–33:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.33
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

33:2 Coherence Generalises Duality

Last year, Carbone et al. [9] introduced Multiparty Classical Processes (MCP), which
extends CP to the multiparty session types introduced by Honda, Yoshida, and Carbone [12].
In CP duality is defined between two propositions, whereas in MCP duality is replaced by
coherence among multiple propositions. Coherence relates a global type (a description of a
multiparty protocol) to many local types (the behaviours of each participant in a session).

MCP came at a cost as compared to CP. First, MCP required annotating logical con-
nectives with roles, and it was unclear how such annotations related to classical linear logic.
Second, MCP omitted the axiom and atomic and quantified propositions, losing support
for parametric polymorphism. Third, MCP inverted the usual interpretation of connectives
⊗ and O, treating output as input and vice versa, which we no longer believe is a tenable
position. This work presents an updated version of MCP that overcomes these shortcomings.

Section 2 introduces our variant of CP. We modify restriction to replace a single channel
by two endpoints, yielding a logical reconstruction of the covariable formulation of session
types due to Vasconcelos [20]. We partition types into input and output types (a slight
variation of positive and negative polarities [13, 17]), which allows us to orient the axiom
rule. And, in order to align with the subsequent development, we restrict the cut of axiom
against a process to atomic variables, applying η-expansion to handle the remaining cases.

Section 3 introduces a calculus of Globally-governed Classical Processes (GCP), interme-
diate between CP and MCP. GCP uses global types to describe multiparty sessions, and
coherence to relate the global type to many local types. GCP differs from MCP in not
requiring annotations; types in GCP are the standard propositions of CP. We present a
semantics-preserving translation from GCP into CP, where a global type is translated into an
arbiter, an auxiliary process that coordinates communication. Caires and Perez [4] introduce
a medium which is similar to our arbiter; we compare our work with theirs in Section 5. We
show that under our translation GCP is simulated by CP. We also give a translation from
CP to GCP and show that it too is a simulation.

Section 4 introduces our variant of MCP. MCP augments GCP with annotations which
permit processes to communicate directly without centralised control. Whereas the original
MCP refers to sessions and roles, our variant uses a simpler formulation based exclusively
on endpoints. Our variant also restores the proper correspondence of ⊗ with output and
O with input, and supports parametric polymorphism. We present a semantics-preserving
translation of MCP into GCP, which simply consists of erasing annotations. We show under
our translation there is a bisimulation between MCP and GCP.

Section 5 discusses related and future work.
We illustrate our encodings using the classic 2-buyer protocol [12] as a running example.

Two buyers, B1 and B2, attempt to buy a book together from a seller S. First, B1 sends the
title of the book that she wishes to purchase to S, who in turn sends a quote to both B1 and
B2. Then, B1 decides on how much she wishes to contribute, and informs B2, who either
pays the rest or cancels the transaction. A similar example appears in the original paper on
MCP [9], but is degenerate in that it represents data using the unit type. There, it is not
possible to replace the unit type with a non-degenerate type because of the inversion of ⊗
and O. Here, we present non-degenerate encodings in CP, GCP, and MCP.

2 Classical Processes (CP)

We describe our version of Classical Processes (CP), originally introduced by Wadler [22].

M. Carbone, S. Lindley, F. Montesi, C. Schürmann, and P. Wadler 33:3

Types. We start by introducing propositions, which we interpret as session types. Let
A,B,C,D range over propositions and X,Y range over atomic propositions.

A,B,C,D ::= A⊗ B (send A, proceed as B) | AO B (receive A, proceed as B)
| A⊕ B (select A or B) | ANB (offer A or B)
| 0 (unit for ⊕) | > (unit for &)
| 1 (unit for ⊗) | ⊥ (unit for O)
| ?A (client request) | !A (server accept)
| X (atomic propositions) | X⊥ (dual of atomic proposition)
| ∃X.A (existential) | ∀X.A (universal)

We give a behavioural explanation to the types above. Proposition A⊗B is the type of a
channel over which we send a fresh channel of type A and then continue as B. Dually, AOB

is the type of a channel over which we receive a channel of type A and then continue as
B. Proposition A⊕ B is the type of a channel over which we can select to proceed either
with type A or with type B. Dually, A N B is the type of a channel offering a choice of
proceeding with either type A or type B. Propositions 0, >, 1 and ⊥ are units for ⊕, N, ⊗
and O, respectively. Proposition ?A is the type of a channel over which a client may request
multiple invocations of a server. Dually, !A is the type of a channel over which a server may
accept multiple invocations from a client. Atomic propositions X and X⊥, and universal
propositions ∃X.A and ∀X.A model polymorphic channels [22].

Each type in the left-hand column is dual to the corresponding type in the right-hand
column. We write A⊥ for the dual of A. We refer to types on the left as output types, and
types on the right as input types. Our output and input types correspond, respectively, to
the standard notions in logic of positive and negative types [13]. The one exception are
the exponentials: we classify ? as an output type and ! as an input type, while logicians
classify ? as negative and ! as positive. Exponentials are already known to have a less strong
correspondence with positive and negative types than other connectives. For instance, negative
types have invertible rules while positive types do not, the exception being exponentials,
where the rule for ! is invertible while the rules for weakening and contraction are not.

Processes. In CP, proofs correspond to proof terms, expressed in a π-calculus with sessions.
Let x, y, and z range over channel endpoints. The syntax of processes is given by the proof
terms (denoted in red) shown in Figure 1. In an output operation the sent object is always
contained in square brackets [. . .], and, dually, in an input operation the received variable is
always bound in round parentheses (. . .). As in the internal π-calculus [18], the object y in a
send x[y].(P | Q) and in a client request ?x[y].P is bound (this is not the case in selection
and send type). A link process x→ yB forwards communications from x to y. A restriction
(νxAy)

(
P | Q) pairs two endpoints x and y into a session (as done by Vasconcelos [20]).

We give the type rules for CP in Figure 1. All rules are standard CLL rules. In the logic,
link corresponds to axiom and restriction to cut. Their interpretation as proof terms follows
that of Wadler [22], with rules Axiom and Cut adopting the new syntax.

Semantics. CLL is equipped with proof transformations that give semantics to CP processes.
Figure 2 displays structural equivalence rules, η-expansions and β-reductions for processes
and cuts. Structural equivalences permit swapping the names in a link and in a restriction,
and reassociating two restrictions. The η-expansions for link do not appear in the original
presentation of CP [22], but are standard and appear elsewhere [16]. We reformulate CP to
use them, as they prove helpful in defining GCP in the next section. The expansion replaces

CONCUR 2016

33:4 Coherence Generalises Duality

x→ yA ` x : A⊥, y : A
Axiom

P ` Γ, x : A Q ` ∆, y : A⊥

(νxAy) (P | Q) ` Γ,∆
Cut

P ` Γ, y : A Q ` ∆, x : B
x[y].(P | Q) ` Γ,∆, x : A⊗B

⊗
P ` Γ, y : A, x : B

x(y).P ` Γ, x : AOB
O

P ` Γ, x : A
x[inl].P ` Γ, x : A⊕B

⊕1
P ` Γ, x : B

x[inr].P ` Γ, x : A⊕B
⊕2

P ` Γ, x : A Q ` Γ, x : B
x.case(P,Q) ` Γ, x : ANB

N

P ` Γ, y : A
?x[y].P ` Γ, x : ?A ?

P ` ?Γ, y : A
!x(y).P ` ?Γ, x : !A ! P ` Γ

P ` Γ, x : ?A Weaken

P ` Γ, x : B[A/X]
x[A].P ` Γ, x : ∃X.B ∃

P ` Γ, x : B X /∈ ftv(Γ)
x(X).P ` Γ, x : ∀X.B ∀

P ` Γ, y : ?A, z : ?A
P{x/y, x/z} ` Γ, x : ?A Contract

x[] ` x : 1 1 P ` Γ
x().P ` Γ, x : ⊥ ⊥ (no rule for 0) x.case() ` Γ, x : > >

Figure 1 CP, Type Rules.

a link, step-by-step, by processes that perform the communications required by its type. The
β-reductions of CP correspond to the cut elimination rules in CLL, and are standard.

We omit commuting conversions, which lift prefixes out of cuts on different endpoints;
they are as in [22]. Structural equivalence and reductions apply inside a cut, but not inside
a prefix. We use juxtaposition for the composition of relations, write R+ for the transitive
closure and R∗ for the transitive reflexive closure of relation R. We write =⇒ for ≡−→≡.

I Theorem 1 (Subject reduction for CP). If P ` Γ and P =⇒ Q, then Q ` Γ.

I Theorem 2 (Cut elimination for CP). If P ` Γ then there exists a Q such that P =⇒∗ Q
and Q is not a cut.

The proof of cut elimination for CP is standard [22]. All other theorems in this paper follow
by straightforward induction.

I Example 3. We now describe the 2-buyer protocol in CP.
First, we proceed by providing a set of suitable types for the endpoints along which B1,

B2, and S communicate. We assume that cost,name,addr are atomic propositions. In CP,
B1’s endpoint has type name⊗ cost⊥O cost⊗ 1, B2’s endpoint has type cost⊥O cost⊥O(
(addr⊗ 1)⊕ 1

)
, and S’s endpoint has type name⊥ O cost⊗ cost⊗

(
(addr⊥ O ⊥)N⊥

)
.

In terms of traditional multiparty sessions, these types amount to local types, but with the
roles erased.

Second, we define an arbiter process over three endpoints, b1, b2, s, one each for commu-
nication with B1, B2, and S, respectively.

b1(b′1).s[s′].(b′1 → s′
name | s(s′).b1[b′1].(s′ → b′1

cost |
s(s′).b2[b′2].(s′ → b′2

cost | b1(b′1).b2[b′2].(b′1 → b′2
cost |

b2.case(s[inl].b2(b′2).s[s′].(b′2 → s′
addr | b1().b2().s[]), s[inr].b1().b2().s[])))))

The arbiter process mediates between the parties, incorporating the missing role information
that would normally appear in local types. In terms of traditional multiparty sessions, the
arbiter corresponds to the dual of a global type.

Finally, an instantiation of the protocol must cut implementations of B1, B2, and S

against the arbiter process.

M. Carbone, S. Lindley, F. Montesi, C. Schürmann, and P. Wadler 33:5

Structural equivalence (Processes)

y → xA⊥
≡ x→ yA (νyA⊥

x) (Q | P) ≡ (νxAy) (P | Q)
(νwBz) (P | (νxAy) (Q | R)) ≡ (νxAy) ((νwBz) (P | Q) | R)

η-expansions (Processes)

x→ yA⊗B −→ x(u).y[v].(u→ vA | x→ yB) x→ y1 −→ x().y[]
x→ yA⊕B −→ x.case(y[inl].x→ yA, y[inr].x→ yB) x→ y0 −→ x.case()
x→ y?A −→ !x(u).?y[v].u→ vA x→ y∃X.A −→ x(X).y[X].x→ yA

β-reductions (Processes)

(νxXy) (w → xX | Q) −→ Q{w/y}
(νxA⊗By) (x[u].(P | Q) | y(v).R) −→ (νuAv) (P | (νxBy) (Q | R))

(νx1y) (x[] | y().P) −→ P

(νxA⊕By) (x[inl].P | x.case(Q,R)) −→ (νxAy) (P | Q)
(νxA⊕By) (x[inr].P | x.case(Q,R)) −→ (νxBy) (P | R)

(no rule for 0 with >)
(νx?Ay) (?x[u].Q | !y(v).P) −→ (νuAv) (P | Q)

(νx?Ay) (P | !y(v).Q) −→ P

(νx?Ay) (P{x/x′, x/x′′} | !y(v).Q) −→ (νx′?A
y′) (((νx′′?A

y′′) (P | !y′(v).Q)) | !y′′(v).Q)
(νx∃X.By) (x[A].P | y(X).Q) −→ (νxB{A/X}y) (P | Q{A/X})

Figure 2 CP, Structural Equivalence and Reduction Rules.

Directing link and restriction. We make a useful observation here that does not appear
in [22]. A link or a restriction will always be between an input type and its dual output type.
The swap rule y → xA

⊥ ≡ x→ yA may always be applied to orient a link so that the input
type is on the left and the output type on the right, and in this case the flow of information
in the link will always be from left to right. Similarly, the swap rule may always be applied
to orient a restriction so that the output type is on the left and the input type on the right,
and in this case the flow of information in the restriction will always be from left to right.
These descriptions are pleasingly similar, but note that input and output swap positions in
the description of link and restriction!

May one invert output and input? The original presentation of MCP [9] states: “Our work
inverts the interpretation of ⊗ as output and O as input given in [3]. This makes our process
terms in line with previous developments of multiparty session types, where communications
go from one sender to many receivers [10].” Implicit is the claim that whether one assigns ⊗
to output and O to input is a convention that may be inverted without harm. Here we argue
that such a view is not tenable. As an illustration, consider the derivation in Figure 3; it
types a process that inputs a single bit (or, more precisely, offers a choice between two units)
and outputs two copies of that bit (or, more precisely, twice makes a selection between two
units, both times echoing the choice made on input).

Would it make sense to modify our interpretation of the process terms (in red), so that
inputs are considered as outputs and vice versa? Absolutely not! The interpretation of N as
offering a choice and ⊕ as making a selection is uncontroversial (it is also accepted in [9]).
Once the interpretations of N and ⊕ are fixed then in this example the only way to view
O is as input and ⊗ is as output. Nor is it possible to assign a sensible view if we swap
the interpretations of N and ⊕, since then the process would input two bits which must be

CONCUR 2016

33:6 Coherence Generalises Duality

Px
def= x[y].(y[inl].y[] | x[inl].x[]) Qx

def= x[y].(y[inr].y[] | x[inr].x[])

y[] ` y : 1 1

y[inl].y[] ` y :1⊕1
⊕1

x[] ` x : 1 1

x[inl].x[] ` x :1⊕1
⊕1

Px ` x : (1⊕ 1)⊗ (1⊕ 1)
⊗

w().Px ` w : ⊥, x : (1⊕ 1)⊗ (1⊕ 1) ⊥

y[] ` y : 1 1

y[inr].y[] ` y :1⊕1
⊕1

x[] ` x : 1 1

x[inr].x[] ` x :1⊕1
⊕1

Qx ` x : (1⊕ 1)⊗ (1⊕ 1)
⊗

w().Qx ` w : ⊥, x : (1⊕ 1)⊗ (1⊕ 1) ⊥

w.case(w().Px, w().Qx) ` w : ⊥N⊥, x : (1⊕ 1)⊗ (1⊕ 1)
N

x(w).w.case(w().Px, w().Qx) ` x : (⊥N⊥) O ((1⊕ 1)⊗ (1⊕ 1))
O

Figure 3 Example: duplicating a bit.

identical and output one bit which is equal to both inputs; this would eliminate the idea
that each channel can have its value chosen independently, and we cannot see how to make
sense of the process calculus that would result. More generally, it makes perfect sense when
outputting one channel along another channel to assign the behaviour of the output channel
and of remaining behaviour of the original channel to two separate processes (as happens
when ⊗ is interpreted by output), and when inputting one channel along another channel to
assign the behaviour of both channels to a single process (as happens when O is interpreted
by input). But it makes no sense to take the inverse interpretation, and when inputting one
channel along another channel assign the behaviour of the input channel and the behaviour
of the remainder of the original channel to two separate processes—then the behaviour of the
input could have no effect on the behaviour of the remainder of the original channel, which
contradicts the notion of how input is intended to behave. (We are grateful to Bob Atkey for
this general argument about input and output.)

3 Globally-governed Classical Processes (GCP)

In CP, communications between two parties take place over a binary cut. In this section, we
introduce GCP, by replacing the binary cut in CP with a multiparty cut (called coherence
cut), where communications among multiple parties are governed by a global type.

Types. Coherence, introduced in [9], generalises the notion of duality found in classical
linear logic. Two propositions A and B are dual if each output type in A is matched by
an input type in B and vice versa. Duality ensures that two processes can be composed
safely, by connecting two respective endpoints that have compatible interfaces (dual types).
In GCP, we wish to also compose more than two processes, and therefore, we need a notion
that generalises duality to compatibility among n processes. The notion of coherence serves
this purpose and it is given as a proof system whose judgements have the form G � Γ where
Γ is a set of compatible types and G, called the global type, is the corresponding proof term.

Global types give the flow of communications that sessions must follow. Their syntax is
given by the proof terms (in red) in Figure 4. Let G,H range over global types, and write x̃
to abbreviate the sequence (xi)i. In x̃→ y(G).H, endpoints x̃ each send a message to y to
create a new session of type G and then continue as H. In x̃→ y, endpoints x̃ each send a
message to y to terminate the session. In x→ ỹ.case(G,H), endpoint x sends a choice to
endpoints ỹ on whether to proceed as G or H. In x→ ỹ.case(), x sends an empty choice to
ỹ. In !x→ ỹ(G), client x sends a request to servers ỹ to create a session of global type G. In

M. Carbone, S. Lindley, F. Montesi, C. Schürmann, and P. Wadler 33:7

G � (xi : Ai)i, y : C H � Γ, (xi : Bi)i, y : D
x̃→ y(G).H � Γ, (xi : Ai ⊗Bi)i, y : C OD

⊗O
x̃→ y � (xi : 1)i, y : ⊥ 1⊥

G � Γ, x : A, (yi : Ci)i H � Γ, x : B, (yi : Di)i

x→ ỹ.case(G,H) � Γ, x : A⊕B, (yi : Ci NDi)i
⊕N

x→ ỹ.case() � Γ, x : 0, (yi : >)i
0>

G � x : A, (yi : Bi)i

!x→ ỹ(G) � x : ?A, (yi : !Bi)i
?!

G � Γ, x : A, (yi : Bi)i X /∈ ftv(Γ)
x→ ỹ.(X)G � Γ, x : ∃X.A, (yi : ∀X.Bi)i

∃∀

xA → y � x : A, y : A⊥
Axiom

(Pi ` Γi, xi : Ai)i G � (xi : Ai)i

(νx̃Ã : G) (P̃) ` Γ̃
CCut

Figure 4 GCP, Coherence Rules and Coherence Cut.

x → ỹ.(X)G, endpoint x sends a type to endpoints ỹ and the protocol proceeds as G. In
xA → y, x is connected to y. Thus, a coherence cut in which the global type is an axiom
behaves exactly like a binary cut.

Types for endpoints in GCP are identical to those of CP. Then, coherence, denoted by �,
is defined by the rules given in Figure 4. Rule ⊗O says that if we have some endpoints of
type Ai ⊗Bi and an endpoint of type C OD then a communication can happen (denoted as
x̃→ y in the global type) which will create a new session with endpoints of type (Ai)i and
C, and the old session will continue as Γ, (Bi)i, D. All other rules are similar.

The rules and the proof terms for GCP are identical to those of CP save that the standard
binary cut Cut is replaced by the coherence cut CCut, given in Figure 4, with the proof
term (νx̃Ã : G) (P̃). In CCut, the use of coherence becomes clear: the global type G governs
all communication between the processes P̃ . Each endpoint xi in each Pi is bound with
type Ai, and the coherence relation G � (xi : Ai)i ensures that such processes can safely
communicate on such endpoints. The types Ã adorning the endpoints x̃ are superfluous,
since they are determined by G, but will come in handy when we write the translation from
GCP to CP. It will follow from the translation, presented below, that if G � (xi : Ai)i holds
then ` (A⊥i)i is derivable in classical linear logic. As in the original formulation of MCP [9],
the restriction of coherence to two parties is exactly duality: G � x : A, y : B if and only if
A = B⊥. But, as we shall see at the end of this section, the connection between coherence
and duality goes deeper than this.

Semantics. Figure 5 displays the interesting structural equivalences, η-expansions, and β-
reductions of GCP. In addition we retain the structural equivalence for axiom and η-expansions
of processes from Figure 2. We omit the straightforward commuting conversions, each one
allowing a prefix to be lifted out of a coherence cut; see [9]. The β-rules are similar to CP,
but engage multiple parties and all communication is coordinated by global types. Structural
equivalence and reduction applies inside a coherence cut (including inside a global type), but
not inside a prefix. Note that η-expansion on processes is necessary for cut-elimination to hold.
For example, the process (νxA⊗ByA⊥OCzD : x→ y(G).H) (w → xA⊗B | y(y′).P | Q) can
only reduce if we first expand w → xA⊗B to w(w′).x[x′].(w′ → x′

A | w → xB).

I Theorem 4 (Subject reduction for GCP). If P ` Γ and P =⇒ Q, then Q ` Γ.

I Theorem 5 (Cut elimination for GCP). If P ` Γ, then there exists Q such that P =⇒∗ Q
and Q is not a cut.

CONCUR 2016

33:8 Coherence Generalises Duality

Structural equivalence (Global types and processes)

yA⊥
→ x ≡ xA → y

(νw̃, y, x, z̃ : G) (P̃ | R | Q | S̃) ≡ (νw̃, x, y, z̃ : G) (P̃ | Q | R | S̃)
(νz, w̃ : H) ((νx, ỹ : G) (P | R̃) | Q̃) ≡ (νx, ỹ : G) ((νz, w̃ : H) (P | Q̃) | R̃)

η-expansions (Global types)

xA⊗B → y −→ x→ y(xA → y).xB → y x1 → y −→ x→ y

xA⊕B → y −→ x→ y.case(xA → y, xB → y) x0 → y −→ x→ y.case()
x?A → y −→ !x→ y(xA → y) x∃X.A → y −→ x→ y.(X)xA → y

β-reductions (Global types and processes)

(νx̃, y, z̃ : x̃→ y(G).H) ((xi[x′i].(Pi | Qi))i | y(y′).R | S̃) −→
(νx̃′, y′ : G{x̃′/x̃, y′/y}) (P̃ | (νx̃, y, z̃ : H) (Q̃ | R | S̃))

(νx̃, y : x̃→ y) ((xi[])i | y().P) −→ P

(νx, ỹ, z̃ : x→ ỹ.case(G,H)) (x[inl].P | (yi.case(Qi, Ri))i | S̃) −→ (νx, ỹ, z̃ : G) (P | Q̃ | S̃)
(νx, ỹ, z̃ : x→ ỹ.case(G,H)) (x[inr].P | (yi.case(Qi, Ri))i | S̃) −→ (νx, ỹ, z̃ : H) (P | R̃ | S̃)

(νx, ỹ : !x→ ỹ(G)) (?x[x′].P | (!yi(y′i).Q)i) −→ (νx′, ỹ′ : G{x′/x, ỹ′/ỹ}) (P | Q̃)
(νx, ỹ : !x→ ỹ(G)) (P | (!yi(y′i).Q)i) −→ P , if x /∈ fv(P)

(νx, ỹ : !x→ ỹ(G)) (P{x/w, x/z} | (!yi(y′i).Q)i) −→
(νw, ỹ : !w → ỹ(G{w/x})) ((νz, ỹ : !z → ỹ(G{z/x})) (P | (!yi(y′i).Q)i) | (!yi(y′i).Q)i)

(νx, ỹ : x→ ỹ.(X)G) (x[A].P | (xi(X).Qi)) −→ (νx, ỹ : G{A/X}) (P | (Q̃){A/X})
(νx, y : xX → y) (w → xX | Q) −→ Q{w/y}
(νx, y : yX → x) (x→ wX | Q) −→ Q{w/y}

Figure 5 GCP, Structural Equivalence and Reduction Rules.

Cut elimination in GCP depends crucially on the η-expansions both in processes and in
global types. One could prove cut elimination directly for GCP, but instead we will appeal
to the standard cut elimination result for CP.

As with the original MCP [9], it is sound to swap independent actions in global types in
GCP (and our new variant of MCP). We omit these rules, which are the expected ones [9].

I Example 6. We continue with the exposition of our running example. To represent the
2-buyer protocol in GCP, it is no longer necessary to construct an unwieldy arbiter process
as in Example 3 in CP, but rather construct a global type, which is easily derived in GCP.
Let G be the global type:

B1 → S(B1
name → S). S → B1(Scost → B1).

S → B2(Scost → B2). B1 → B2(B1
cost → B2).

B2 → S.case(B2 → S(B2
addr → S).(B1, B2)→ S, (B1, B2)→ S))

Then, we can immediately prove the following coherence judgement:

G �
B1 : name⊗ cost⊥ O cost⊗ 1,
B2 : cost⊥ O cost⊥ O ((addr⊗ 1)⊕ 1),
S : name⊥ O cost⊗ cost⊥ ⊗ ((addr⊥ O⊥) N⊥)

Using this global type in a CCut, we can compose the three processes for B1, B2, and S.

Translations. Translations from GCP to CP (J−K) and from CP to GCP (L−M) are given in
Figure 6. The function J−K from GCP to CP is a homomorphism on all process forms except
coherence cut. Coherence cut is translated into a series of binary cuts where the global type

M. Carbone, S. Lindley, F. Montesi, C. Schürmann, and P. Wadler 33:9

Global cut as binary cut

J(νx̃Ã : G) (P̃)K def= (νx1
A1y1) (JP1K | · · ·(νxn

Anyn) (JPnK | JGK{ỹ/x̃})· · ·), ỹ fresh

Global types as processes

Jx̃→ y(G).HK def= x1(u1).· · ·xn(un).y[v].(JGK{ũ/x̃, v/y} | JHK), ũ, v fresh
Jx̃→ yK def= x1().· · ·xn().y[]

Jx→ ỹ.case(G,H)K def= x.case(y1[inl].· · ·yn[inl].JGK, y1[inr].· · ·yn[inr].JHK)
Jx→ ỹ.case()K def= x.case()

J!x→ ỹ(G)K def= !x(u).?y1[v1].· · ·?yn[vn].JGK{u/x, ṽ/ỹ}, u, ṽ fresh
Jx→ ỹ.(X)GK def= x(X).y1[X].· · ·yn[X].JGK

JxA → yK def= x→ yA

Binary cut as global cut

L(νxAy) (P | Q)M = (νx, y : yA → x) (LP M | LQM)

Figure 6 Translations Between CP and GCP.

becomes an arbiter process that mediates all communication. The function L−M maps CP
processes to GCP. It is a homomorphism on all process forms except binary cut. Binary cut
is translated into a coherence cut with two processes in which the global type is a link.

Why η-expansion? We now pause to explain how η-expansion simplifies the system. In the
current formulation, the axiom cut rules apply only at atomic types. If we attempt to allow
axiom cut at other types, then we need some way of reducing a coherence cut over an axiom
process in which the global type is not itself an axiom. For instance, consider (νx1

1, x2
⊥ :

x1 → x2) (P | x2 → w1). Translating to CP, we obtain (νx1
1y1) (P | (νx2

⊥y2) (x2 →
w1 | y1().y2[])) which reduces by the unrestricted axiom cut rule to (νx1

1y1) (P | y1().w[]).
An obstacle to mapping this reduction back to GCP is that the substitution of w for y2
occurs inside the arbiter process, that is, the image of a global type. In order to support this
substitution we must generalise the CCut rule to allow free variables in global types. This
in turn necessitates further reduction rules to prevent free variables in global types from
blocking reduction. A more complex system including an unrestricted axiom cut rule is of
practical interest as it admits implementations that take advantage of type erasure, but is
beyond the scope of this paper.

I Theorem 7 (Type preservation from GCP to CP).
1. If P ` Γ in GCP, then JP K ` Γ in CP.
2. If G � Γ in GCP, then JGK ` Γ⊥ in CP.
A coherence judgement G � Γ translates to a judgement JGK ` Γ⊥, where JGK is an arbiter
processes acting as an intermediary between the processes of a global session. It is typed in
the dual of the environment in which we type the global type G. Write −→η for η-expansion.

I Theorem 8 (Simulation of GCP in CP).
1. If P ` Γ and P ≡ Q in GCP, then JP K ≡ JQK in CP.
2. If P ` Γ and P −→η Q in GCP, then JP K −→η JQK in CP.
3. If G � Γ and G −→η H in GCP, then JGK −→η JHK in CP.
4. If P ` Γ and P −→ Q in GCP, then JP K =⇒+ JQK in CP.

CONCUR 2016

33:10 Coherence Generalises Duality

Each reduction in GCP is simulated by one or more reductions in CP. For instance, a cut
involving a global type x̃→ y(G).H performs a series of sends to the arbiter along x̃ followed
by a receive from the arbiter along y. Theorem 8 shows that GCP is strongly normalising,
by strong normalisation of CP (a standard result for classical linear logic).

I Theorem 9 (Reflection of CP in GCP). If P ` Γ in GCP and JP K −→ Q′ in CP, then there
exists Q such that P =⇒ Q in GCP and Q′ =⇒∗ JQK in CP.

Theorem 9 shows that cut-elimination (Theorem 5), and hence deadlock-freedom, holds for
GCP, by cut-elimination for CP. For if P does not reduce, then JP K must not reduce either,
which means it is not a cut, which in turn means that P is not a cut.

I Theorem 10 (Type preservation from CP to GCP). If P ` Γ, then LP M ` Γ.

I Theorem 11 (Simulation of CP in GCP).
1. If P ` Γ and P ≡ Q in CP, then LP M ≡ LQM in GCP.
2. If P ` Γ and P −→ Q in CP, then LP M −→+ LQM in GCP.
Structural equivalence in CP is simulated by structural equivalence in GCP. Each reduction
in CP is simulated by one or two reductions in GCP. Before performing the main reduction,
it is sometimes necessary to η-expand a global link.

Coherence generalises duality. It is well known that axiom at any type is admissible given
axiom at atomic types, and that the proof of admissibility corresponds to η-expansion [19,
Chapter 6]. If we restrict axioms to atomic propositions, then every cut-free derivation of a
judgement ` A⊥, A in CLL corresponds to the η-expansion of a link process x→ yA. Note
the close relation between η-expansion and the translation of global types. For instance,
compare the η-expansion of O⊗ in CP with the translation of the global type for O⊗ in
GCP. For CP, we have that x→ yA⊗B expands to

x(u).y[v].(P | Q)

where P = u→ vA and Q = x→ yB , while for GCP, we have that x̃→ y(G).H translates to

x1(u1).· · ·xn(un).y[v].(P | Q)

where P = JGK{ũ/x̃, v/y} and Q = JHK. The relation is similarly close for each of the other
logical connectives. Hence, duality corresponds to η-expansion and coherence corresponds to
a straightforward generalisation of η-expansion.

4 Multiparty Classical Processes (MCP)

The semantics of GCP is governed, unlike in standard multiparty session types [12]. For
example, process x[w].(P | Q) in GCP does not say to which other endpoint the message
should be routed; a communication can happen only under a restriction with a global type
that pairs such output action with an input action, e.g., when in a context such as in
(νxyz̃ : x→ y(G).H) (x[w].(P | Q) | R̃). Thus, a global type is a central point of control.
In standard multiparty session types, this is avoided by annotating actions with the endpoint
that they should interact with. In our example, the process becomes xy[w].(P | Q), meaning
that this output can synchronise only with an input performed at endpoint y (which, dually,
has to express that it intends to synchronise with an output from x). In this section, we
define a variant of the calculus of Multiparty Classical Processes (MCP) [9], which follows the
standard methodology of multiparty session types, simply by annotating types and processes
of GCP with endpoints. Formally, MCP is defined as GCP with the following modifications.

M. Carbone, S. Lindley, F. Montesi, C. Schürmann, and P. Wadler 33:11

Coherence rules

G � (xi :Ai)i, y :C H � Γ, (xi :Bi)i, y :D
x̃→ y(G).H � Γ, (xi :Ai ⊗y Bi)i, y :C Ox̃ D

⊗O
x̃→ y � (xi :1y)i, y :⊥x̃ 1⊥

G1 � Γ, x :A, (yi :Ci)i G2 � Γ, x :B, (yi :Di)i

x→ ỹ.case(G1, G2) � Γ, x :A⊕ỹ B, (yi :CiNxDi)i

⊕N
G � x :A, (yi :Bi)i

!x→ ỹ(G) � x :?ỹA, (yi :!xBi)i

!?

x→ ỹ.case() � Γ, x :0ỹ, (yi :>x)i

0>
G � Γ, x :A, (yi :Bi)i X 6∈ ftv(Γ)

x→ ỹ.(X)G � Γ, x :∃ỹX.A, (yi :∀xX.Bi)i

∃∀

|A|⊥ = |B|
xA → yB ` x : A, y : B

Axiom

Typing rules
|A|⊥ = |B|

xA → yB ` x : A, y : B
Axiom

(Pi ` Γi, xi : Ai)i G � (xi : Ai)i

(νx̃Ã : G) (P̃) ` Γ̃
CCut

P ` Γ, y : A Q ` ∆, x : B
xz[y].(P | Q) ` Γ,∆, x : A⊗z B

⊗
P ` Γ, y : A, x : B

xz̃(y).P ` Γ, x : AOz̃ B
O

P ` Γ, x : A
xz̃[inl].P ` Γ, u : A⊕z̃ B

⊕1
P ` Γ, x : B

xz̃[inr].P ` Γ, x : A⊕z̃ B
⊕2

P ` Γ, x : A Q ` Γ, x : B
xz.case(P,Q) ` Γ, x : ANzB

N

P ` ?Γ, y : A
!xz(y).P ` ?Γ, x : !zA !

P ` Γ, y : A
?xz̃[y].P ` Γ, x : ?z̃A

? P ` Γ
P ` Γ, x : ?z̃A

Weaken

P ` Γ, x : B[A/X]
xz̃[A].P ` Γ, x : ∃z̃X.B

∃
P ` Γ, x : B X /∈ ftv(Γ)
xz(X).P ` Γ, x : ∀zX.B

∀
P ` Γ, y : ?w̃A, z : ?w̃A

P [x/y, x/z] ` Γ, x : ?w̃A
Contract

xz[] ` x : 1z 1 P ` Γ
xz̃().P ` Γ, x : ⊥z̃ ⊥ no rule for 0 xz.case() ` Γ, x : >z >

Figure 7 MCP, Coherence Rules and Typing Rules.

Types. The coherence relation for MCP, given in Figure 7, is identical to that of GCP,
except from the type connectives, which are now annotated with the names of the endpoints
with which they are supposed to interact. By an abuse of notation, we now let A,B,C,D
range over types with annotations. Rule Axiom is also slightly different then that of GCP. In
its premise, we use the operation |A|, which removes all annotations from a given proposition
A. For instance, |B1 ⊗x B2| = |B1| ⊗ |B2|. The syntax of global types is the same as that
given for GCP, with the exception of the extra annotation in the term for the axiom.

Endpoint annotations restrict which derivations we can use to prove that some types are
coherent. As an example, for some Ai, Bi, and C, consider the following annotated types:

x :A1 ⊗y B1, y :A2 Ox B2, z :A3 Ow B3, w : C

In MCP, it is necessary to eventually apply rule ⊗O to x :A1 ⊗y B1 and y :A2 Ox B2. However,
in GCP, this would not be necessary: there may also be a coherence proof in which we apply
rule ⊗O to x :A1 ⊗y B1 and z :A3 Ow B3 instead (after removing annotations).

The typing rules for MCP processes are given in Figure 7. As for coherence, the typing
rules of MCP are those of GCP, but now with annotations. Importantly, the annotation of
each communication action must be the same as that of the corresponding type construct.
E.g., the send process is now written as xz[y].(P | Q), meaning that endpoint x is sending
y to endpoint z, and the corresponding ⊗ connective in the type is annotated with the same
z. Again, by an abuse of notation, we now let P,Q,R range over processes with annotations.

CONCUR 2016

33:12 Coherence Generalises Duality

Semantics. The semantics of MCP is the same as that of GCP, extended with the expected
endpoint annotations. The consequence of annotations is that MCP enjoys an ungoverned
semantics; it is fully distributed, as in the original theories of multiparty session types [12]
and MCP [9]. As an example, here is the η-expansion rule for O and ⊗:

xAOw̃B → yC⊗
zD −→ xw̃(u).yz[v].(uA → vC | xB → yD)

Similarly, here is the β-reduction rule for ⊗ and O:

(νz̃, x̃, y : x̃→ y(G).H) (S̃ | (xiy[x′i].(Pi | Qi))i | yx̃(y′).R) −→
(νx̃′, y′ : G{x̃′/x̃, y′/y}) (S̃ | P̃ | (νz̃, x̃, y : H) (Q̃ | R))

In the reduction above (and all other reductions of MCP), the global type of the session is
unnecessary for the communicating processes to know which others processes are involved
in the communication; that information is instead taken from the endpoint annotations of
their respective actions. Type preservation is ensured by the annotations used to type the
processes, since that guarantees that coherence continues to hold for the reductum.

I Theorem 12 (Subject reduction for MCP). If P ` Γ and P =⇒ Q, then Q ` Γ.

I Theorem 13 (Cut elimination for MCP). If P ` Γ, then there exists Q such that P =⇒∗ Q
and Q is not a cut.

Cut elimination for MCP follows from that for GCP (by Theorems 15, 16, 17, and 18).

I Example 14. We revisit the 2-buyer protocol from Example 6 in MCP. The global type
is exactly the same (except for the axioms, which have the extra annotation on the left).
However, the types of each endpoint are now appropriately annotated.

B1 : name⊗S cost⊥ OS cost⊗B2 1S ,
B2 : cost⊥ OS cost⊥ OB1 ((addr⊗S 1S)⊕S 1S),
S : name⊥ OB1 (cost⊗B1 (cost⊗B2 ((addr⊥ OB2 ⊥B1,B2) NB2 ⊥B1,B2)))

The annotations on the connectives say that, e.g., B1 first sends a name to an implementation
of endpoint S, and then, she receives a quote from S, before sending her bid to B2.

Translations. Proofs in MCP translate to proofs in GCP, by erasing annotations. We write
|P | for the erasure of annotations from P . We obtain the following type preservation results.

I Theorem 15 (Type preservation from MCP to GCP).
1. If P ` Γ in MCP, then |P | ` |Γ| in GCP.
2. If G � Γ in MCP, then |G| � |Γ| in GCP.

I Theorem 16 (Type preservation from GCP to MCP).
1. If P ` Γ in GCP, then there exist Q,∆ such that |Q| = P , |∆| = Γ, and Q ` ∆ in MCP.
2. If G � Γ in GCP, then there exist H,∆ such that |H| = G, |∆| = Γ, and H � ∆ in MCP.

We also obtain a lockstep bisimulation between MCP and GCP.

I Theorem 17 (Simulation of MCP in GCP). Assume P ` Γ and G � Γ in MCP.
1. If P ≡ Q in MCP, then |P | ≡ |Q| in GCP.
2. If P −→ Q in MCP, then |P | −→ |Q| in GCP.
3. If G −→ H in MCP, then |G| −→ |H| in GCP.

M. Carbone, S. Lindley, F. Montesi, C. Schürmann, and P. Wadler 33:13

I Theorem 18 (Reflection of GCP in MCP). Assume P ` Γ and G � Γ in MCP.
1. If |P | ≡ Q in GCP, then there exists R such that |R| = Q and P ≡ R in MCP.
2. If |P | −→ Q′ in GCP, then there exists Q such that |Q| = Q′ and P −→ Q in MCP.
3. If |G| −→ H ′ in GCP, then there exists H such that |H| = H ′ and G −→ H in MCP.

Combining these results with those for the translation from GCP to CP, we obtain an
end-to-end translation of distributed multiparty sessions into arbitrated binary sessions.

5 Related and Future Work

Arbiters. Caires and Perez [4] show how to translate multiparty sessions by translating a
global type to a process, which they call a medium. Their medium is similar to our arbiter,
and their translation of a global type to a medium is similar to our translation of GCP to
CP, which takes a global type to an arbiter. Their system, like ours, guarantees fidelity
and deadlock freedom via the translation; and, like us, they extend their system to support
polymorphism. However there are several differences. Our work is based on classical linear
logic, whereas theirs is based on intuitionistic linear logic; we suspect that their approach
could be adopted to classical logic, and ours to intuitionistic. More importantly, where we
use coherence, they use the standard definition of projection [12]. Projection is closer to
the original formulation of multiparty session types [12], but lacks the tighter connection
to logic offered by coherence, in particular the way in which coherence is organised around
pairs of logical connectives, generalising duality. Unlike us, they do not consider replication
and nesting in global types. Their medium process imposes global governance, similar to our
GCP, but they offer no decentralised system based on direct communication like our MCP.

Multiparty session types. Coherence logically reconstructs the notion of well-formedness
found in multiparty session types [12, 10], in the context of synchronous communication [2].
Polymorphism for binary session types is considered in a proposition-as-types setting by
Wadler [21] and Caires et al. [5]; we have generalised this notion to the multiparty case. Our
new coherence proof system extends the one presented in the original MCP [9] with rules for
polymorphism. Since coherence yields an algorithm for extracting a global type from a set of
types [9], ours is also the first work dealing with the extraction of polymorphic global types.

Issues with axiom. In the original formulation of CP [22], axiom reduction applies at all
types and all reductions are independent of types. In the current formulation, axiom reduction
applies only at atomic types and other instances are handled by η-rules that depend upon
types. As a result, the implementation of type instantiation may be problematic. Alternative
implementations may seek to restore a version of axiom that applies at all types. We have
explored one variant that does so, but the formalism is more complicated as it requires free
variables in global types. We leave further exploration to future work.

Coherence. Coherence in GCP may be generalised. In ⊗O, the context Γ in the conclusion
may be distributed to the two premises. Similarly, in !? a context !Γ may be added to the
premise and conclusion of the rule, splitting channels between those that retain ! in the
premise and those that lose it. While such splits are straightforward in GCP, it is unclear
how to add them without centralised control in MCP. We also leave this to future work.

CONCUR 2016

33:14 Coherence Generalises Duality

Choreography. Carbone et al. [8] search for a propositions-as-types correspondence for the
calculus of compositional choreographies of Montesi and Yoshida [15]. This work inspired
the notion of coherence in the original MCP [9] — typing choreographies requires a similar
handling of multiple connectives. However, it was limited to binary sessions, whereas the
original theory by Montesi and Yoshida supported multiparty sessions. This work may close
the circle: our generalisation of CP to GCP seems applicable to choreographies, and would
yield an expressive choreography language with parametric polymorphism.

Relationship with standard multiparty session types. MCP is directly connected to clas-
sical linear logic, while also bearing a close resemblance to traditional multiparty session
types. However, there remain important differences between the two. First, we do not handle
recursive behaviour [14]. Second, multiparty session types support broadcast from one sender
to many receivers, while our types gather information from many senders to one receiver – a
choice dictated by our desire to translate MCP to CP. We look forward to further studying
the relation between MCP, GCP, CP, and other systems with multiparty session types.

References
1 Samson Abramsky. Proofs as processes. Theor. Comput. Sci., 135(1):5–9, 1994.
2 Andi Bejleri and Nobuko Yoshida. Synchronous multiparty session types. ENTCS, 241:3–

33, 2009.
3 Gianluigi Bellin and Philip J. Scott. On the pi-calculus and linear logic. TCS, 135(1):11–65,

1994.
4 Luís Caires and Jorge Perez. Multiparty session types within a canonical binary theory,

and beyond. In FORTE, 2016.
5 Luís Caires, Jorge A. Pérez, Frank Pfenning, and Bernardo Toninho. Behavioral poly-

morphism and parametricity in session-based communication. In ESOP, pages 330–349,
2013.

6 Luís Caires and Frank Pfenning. Session types as intuitionistic linear propositions. In
CONCUR, pages 222–236, 2010.

7 Luís Caires, Frank Pfenning, and Bernardo Toninho. Linear logic propositions as session
types. MSCS, 26(3):367–423, 2016.

8 Marco Carbone, Fabrizio Montesi, and Carsten Schürmann. Choreographies, logically. In
CONCUR, pages 47–62, 2014.

9 Marco Carbone, Fabrizio Montesi, Carsten Schürmann, and Nobuko Yoshida. Multiparty
session types as coherence proofs. In CONCUR, pages 412–426, 2015.

10 Mario Coppo, Mariangiola Dezani-Ciancaglini, Nobuko Yoshida, and Luca Padovani.
Global progress for dynamically interleaved multiparty sessions. MSCS, 760:1–65, 2015.

11 Kohei Honda, Vasco Vasconcelos, and Makoto Kubo. Language primitives and type discip-
lines for structured communication-based programming. In ESOP, pages 22–138, 1998.

12 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session
types. JACM, 63(1):9, 2016. Also: POPL, 2008, pages 273–284.

13 Chuck Liang and Dale Miller. Focusing and polarization in linear, intuitionistic, and clas-
sical logics. TCS, 410(46):4747–4768, 2009.

14 Sam Lindley and Garrett Morris. Talking bananas: structural recursion for session types.
In ICFP. ACM, 2016. To appear.

15 Fabrizio Montesi and Nobuko Yoshida. Compositional choreographies. In CONCUR, pages
425–439, 2013.

16 Jennifer Paykin and Steve Zdancewic. Linear λµ is CP (more or less). In A List of Successes
That Can Change The World, pages 273–291, 2016.

M. Carbone, S. Lindley, F. Montesi, C. Schürmann, and P. Wadler 33:15

17 Frank Pfenning and Dennis Griffith. Polarized substructural session types. In Foundations
of Software Science and Computation Structures, pages 3–22. Springer, 2015.

18 Davide Sangiorgi. Pi-calculus, internal mobility, and agent-passing calculi. TCS,
167(1&2):235–274, 1996.

19 A. S. Troelstra and H. Schwichtenberg. Basic Proof Theory (2nd Ed.). Cambridge Univer-
sity Press, 2000.

20 Vasco T. Vasconcelos. Fundamentals of session types. Inf. Comput., 217:52–70, 2012.
21 Philip Wadler. Propositions as sessions. In ICFP, pages 273–286, 2012.
22 Philip Wadler. Propositions as sessions. JFP, 24(2–3):384–418, 2014. Also: ICFP, pages

273–286, 2012.

CONCUR 2016

Global Caching for the Alternation-free µ-Calculus
Daniel Hausmann1, Lutz Schröder2, and Christoph Egger3

1 Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
2 Friedrich-Alexander Universität Erlangen-Nürnberg, Germany
3 Friedrich-Alexander Universität Erlangen-Nürnberg, Germany

Abstract
We present a sound, complete, and optimal single-pass tableau algorithm for the alternation-free
µ-calculus. The algorithm supports global caching with intermediate propagation and runs in
time 2O(n). In game-theoretic terms, our algorithm integrates the steps for constructing and
solving the Büchi game arising from the input tableau into a single procedure; this is done on-
the-fly, i.e. may terminate before the game has been fully constructed. This suggests a slogan to
the effect that global caching = game solving on-the-fly. A prototypical implementation shows
promising initial results.

1998 ACM Subject Classification F.4.1 Mathematical Logic - Temporal Logic

Keywords and phrases modal logic, fixpoint logic, satisfiability, global caching, coalgebraic logic

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2016.34

1 Introduction

The modal µ-calculus [25, 3] serves as an expressive temporal logic for the specification
of sequential and concurrent systems containing many standard formalisms such as linear
time temporal logic LTL [28, 33], CTL [7], and PDL [34]. Satisfiability checking in the
modal µ-calculus is ExpTime-complete [31, 10]. There appears to be, to date, no readily
implementable reasoning algorithm for the µ-calculus, and in fact (prior to [23]) even for its
fragment CTL, that is simultaneously optimal, i.e. runs in ExpTime, and single-pass, i.e.
avoids building an exponential-sized data structure in a first pass. Typical data structures
used in worst-case-optimal algorithms are automata [10], games [13], and, for sublogics such
as CTL, first-pass tableaux [9].

The term global caching describes a family of single-pass tableau algorithms [18, 21] that
build graph-shaped tableaux bottom-up in so-called expansion steps, with no label ever
generated twice, and attempt to terminate before the tableau is completely expanded by
means of judicious intermediate propagation of satisfiability and/or unsatisfiability through
partially expanded tableaux. Global caching offers wide room for heuristic optimization,
regarding standard tableau optimizations as well as the order in which expansion and
propagation steps are triggered, and has been shown to perform competitively in practice;
see [21] for an evaluation of heuristics in global caching for the description logic ALCI.
One major challenge with global caching algorithms is typically to prove soundness and
completeness, which becomes harder in the presence of fixpoint operators. A global caching
algorithm for PDL has been described by Goré and Widmann [20]; finding an optimal global
caching algorithm even for CTL has been named as an open problem as late as 2014 [15] (a
non-optimal, doubly exponential algorithm is known [15]).

The contribution of the present work is an optimal global-caching algorithm for satisfiab-
ility in the alternation-free µ-calculus, extending our earlier work on the single-variable (flat)
fragment of the µ-calculus [23]. The algorithm actually works at the level of generality of the

© Daniel Hausmann, Lutz Schröder, and Christoph Egger;
licensed under Creative Commons License CC-BY

27th International Conference on Concurrency Theory (CONCUR 2016).
Editors: Josée Desharnais and Radha Jagadeesan; Article No. 34; pp. 34:1–34:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.34
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

34:2 Global Caching for the Alternation-free µ-Calculus

alternation-free fragment of the coalgebraic µ-calculus [6], and thus covers also logics beyond
the realm of standard Kripke semantics such as alternating-time temporal logic ATL [1],
neighbourhood-based logics such as the monotone µ-calculus that underlies Parikh’s game
logic [32], or probabilistic fixpoint logic. To aid readability, we phrase our results in terms
of the relational µ-calculus, and discuss the coalgebraic generalization only at the end of
Section 4. The model construction in the completeness proof yields models of size 2O(n).

We have implemented of our algorithm as an extension of the Coalgebraic Ontology Logic
Reasoner COOL, a generic reasoner for coalgebraic modal logics [22]; given the current state
of the implementation of instance logics in COOL, this means that we effectively support
alternation-free fragments of relational, monotone, and alternating-time [1] µ-calculi, thus in
particular covering CTL and ATL. We have evaluated the tool in comparison with existing
reasoners on benchmark formulas for CTL [19] (which appears to be the only candidate
logic for which well-developed benchmarks are currently available) and on random formulas
for ATL and the alternation-free relational µ-calculus, with promising results; details are
discussed in Section 5.

Related Work. The theoretical upper bound ExpTime has been established for the full
coalgebraic µ-calculus [6] (and earlier for instances such as the alternating-time µ-calculus
AMC [36]), using a multi-pass algorithm that combines games and automata in a similar
way as for the standard relational case, in particular involving the Safra construction. Global
caching has been employed successfully for a variety of description logics [18, 21], and lifted
to the level of generality of coalgebraic logics with global assumptions [16] and nominals [17].

A tableaux-based non-optimal (NExpTime) decision procedure for the full µ-calculus has
been proposed in [24]. Friedmann and Lange [13] describe an optimal tableau method for the
full µ-calculus that, unlike most other methods including the one we present here, makes do
without requiring guardedness. Like earlier algorithms for the full µ-calculus, the algorithm
constructs and solves a parity game, and in principle allows for an on-the-fly implementation.
The models constructed in the completeness proof are asymptotically larger than ours, but
presumably the proof can be adapted for the alternation-free case by using determinization
of co-Büchi automata [29] instead of Safra’s determinization of Büchi automata [35] to yield
models of size 2O(n), like ours. For non-relational instances of the coalgebraic µ-calculus,
including the alternation-free fragment of the alternating-time µ-calculus AMC, the 2O(n)

bound on model size appears to be new, with the best known bound for the alternation-free
AMC being 2O(n logn) [36].

In comparison to our own recent work [23], we move from the flat to the alternation-free
fragment, which means essentially that fixpoints may now be defined by mutual recursion,
and thus can express properties such as ‘all paths reach states satisfying p and q, respectively,
in strict alternation until they eventually reach a state satisfying r’. Technically, the main
additional challenge is the more involved structure of eventualities and deferrals, which now
need to be represented using cascaded sequences of unfoldings in the focusing approach; this
affects mainly the soundness proof, which now needs to organize termination counters in a
tree structure. While the alternation-free algorithm instantiates to the algorithm from [23]
for flat input formulas, its completeness proof includes a new model construction which
yields a bound of 3n ∈ 2O(n) on model size, slightly improving upon the bound n · 4n
from [23]. We present the new algorithm in terms that are amenable to a game-theoretic
perspective, emphasizing the correspondence between global caching and game-solving. In
fact, it turns out that global caching algorithms effectively consist in an integration of the
separate steps of typical game-based methods for the µ-calculus [13, 14, 31] into a single

Daniel Hausmann, Lutz Schröder, and Christoph Egger 34:3

on-the-fly procedure that talks only about partially expanded tableau graphs, implicitly
combining on-the-fly determinization of co-Büchi automata with on-the-fly solving of the
resulting Büchi games [11]. This motivates the mentioned slogan that

global caching is on-the-fly determinization and game solving.

In particular, the propagation steps in the global caching pattern can be seen as solving
an incomplete Büchi game that is built directly by the expansion steps, avoiding explicit
determinization of co-Büchi automata analogously to [29]. One benefit of an explicit global
caching algorithm integrating the pipeline from tableaux to game solving is the implementation
freedom afforded by the global caching pattern, in which suitable heuristics can be used to
trigger expansion and propagation steps in any order that looks promising.

2 Preliminaries: The µ-Calculus

We briefly recall the definition of the (relational) µ-calculus. We fix a set P of propositions, a
set A of actions, and a set V of fixpoint variables. Formulas φ, ψ of the µ-calculus are then
defined by the grammar

ψ, φ ::= ⊥ | > | p | ¬p | X | ψ ∧ φ | ψ ∨ φ | 〈a〉ψ | [a]ψ | µX.ψ | νX.ψ

where p ∈ P , a ∈ A, and X ∈ V; we write |ψ| for the size of a formula ψ. Throughout the
paper, we use η to denote one of the fixpoint operators µ or ν. We refer to formulas of the
form ηX.ψ as fixpoint literals, to formulas of the form 〈a〉ψ or [a]ψ as modal literals, and
to p, ¬p as propositional literals. The operators µ and ν bind their variables, inducing a
standard notion of free variables in formulas. We denote the set of free variables of a formula
ψ by FV (ψ). A formula ψ is closed if FV (ψ) = ∅, and open otherwise. We write ψ ≤ φ

(ψ < φ) to indicate that ψ is a (proper) subformula of φ. We say that φ occurs free in ψ if φ
occurs as a subformula in ψ that is not in the scope of any fixpoint. Throughout, we restrict
to formulas that are guarded, i.e. have at least one modal operator between any occurrence of
a variable X and an enclosing binder ηX. (This is standard although possibly not without
loss of generality [13].) Moreover we assume w.l.o.g. that input formulas are clean, i.e. all
fixpoint variables are distinct, and irredundant, i.e. X ∈ FV (ψ) for all subformulas ηX.ψ.

Formulas are evaluated over Kripke structures K = (W, (Ra)a∈A, π), consisting of a set
W of states, a family (Ra)a∈A of relations Ra ⊆W ×W , and a valuation π : P → P(W) of
the propositions. Given an interpretation i : V → P(W) of the fixpoint variables, define
[[ψ]]i ⊆ W by the obvious clauses for Boolean operators and propositions, [[X]]i = i(X),
[[〈a〉ψ]]i = {v ∈ W | ∃w ∈ Ra(v).w ∈ [[ψ]]i}, [[[a]ψ]]i = {v ∈ W | ∀w ∈ Ra(v).w ∈ [[ψ]]i},
[[µX.ψ]]i = µ[[ψ]]Xi and [[νX.ψ]]i = ν[[ψ]]Xi , where Ra(v) = {w ∈W | (v, w) ∈ Ra}, [[ψ]]Xi (G) =
[[ψ]]i[X 7→G], and µ, ν take least and greatest fixpoints of monotone functions, respectively.
If ψ is closed, then [[ψ]]i does not depend on i, so we just write [[ψ]]. We write x |= ψ

for x ∈ [[ψ]]. The alternation-free fragment of the µ-calculus is obtained by prohibiting
formulas in which some subformula contains both a free ν-variable and a free µ-variable. E.g.
µX. µY. (�X ∧ ♦Y ∧ νZ.♦Z) is alternation-free but νZ. µX. (�X ∧ νY. (♦Y ∧ ♦Z)) is not.
CTL is contained in the alternation-free fragment.

We have the standard tableau rules (each consisting of one premise and a possibly empty
set of conclusions) which will be interpreted AND-OR style, i.e. to show satisfiability of a set
of formulas ∆, it will be necessary to show that every rule application that matches ∆ has

CONCUR 2016

34:4 Global Caching for the Alternation-free µ-Calculus

some conclusion that is satisfiable. Our algorithm will use these rules in the expansion step.

(⊥) Γ,⊥ () Γ, p,¬p

(∧) Γ, ψ ∧ φ
Γ, ψ, φ (∨) Γ, ψ ∨ φ

Γ, ψ Γ, φ

(〈a〉) Γ, [a]ψ1, . . . , [a]ψn, 〈a〉φ
ψ1, . . . , ψn, φ

(η) Γ, ηX. ψ
Γ, ψ[X 7→ ηX.ψ]

(for a ∈ A, n ∈ N, p ∈ P); we refer to the set of modal rules (〈a〉) by Rm and to the set of the
remaining rules by Rp and usually write rules with premise Γ and conclusion Σ = Γ1, . . . ,Γn
in sequential form, i.e. as (Γ/Σ).

I Example 1. As our running example, we pick a non-flat formula, i.e. one that requires
two recursion variables. Consider the alternation-free formulas

ψ1 = µX. ((p ∧ (r ∨�ψ2)) ∨ (¬q ∧�X)) ψ2 = µY. ((q ∧ (r ∨�X)) ∨ (¬p ∧�Y))

(where A = {∗} and we write � = [∗], ♦ = 〈∗〉). The formulas ψ1 and ψ2[X 7→ ψ1] state that
all paths will visit p and q in strict alternation until r is eventually reached, starting with p
and with q, respectively. Using the measure of entanglement [2], one can show that these
properties cannot be expressed using only one variable.

3 The Global Caching Algorithm

We proceed to describe our global caching algorithm for the alternation-free µ-calculus. First
off, we need some syntactic notions regarding decomposition of fixpoint literals.

I Definition 2 (Deferrals). Given fixpoint literals χi = ηXi. ψi, i = 1, . . . , n, we say that
a substitution σ = [X1 7→ χ1]; . . . ; [Xn 7→ χn] sequentially unfolds χn if χi <f χi+1 for all
1 ≤ i < n, where we write ψ <f ηX. φ if ψ ≤ φ and ψ is open and occurs free in φ (i.e. σ
unfolds a nested sequence of fixpoints in χn innermost-first). We say that a formula χ is
irreducible if for every substitution [X1 7→ χ1]; . . . ; [Xn 7→ χn] that sequentially unfolds χn,
we have that χ = χ1([X2 7→ χ2]; . . . ; [Xn 7→ χn]) implies n = 1 (i.e. χ = χ1). An eventuality
is an irreducible closed least fixpoint literal. A formula ψ belongs to an eventuality θn, or is a
θn-deferral, if ψ = ασ for some substitution σ = [X1 7→ θ1]; . . . ; [Xn 7→ θn] that sequentially
unfolds θn and some α <f θ1. We denote the set of θn-deferrals by dfr(θn).

E.g. the substitution σ = [Y 7→ µY. (�X∧♦♦Y)]; [X 7→ θ] sequentially unfolds the eventuality
θ = µX. µY. (�X ∧ ♦♦Y), and (♦Y)σ = ♦µY. (�θ ∧ ♦♦Y) is a θ-deferral. A fixpoint literal
is irreducible if it is not an unfolding ψ[X 7→ ηX.ψ] of a fixpoint literal ηX.ψ; in particular,
every clean irredundant fixpoint literal is irreducible.

I Lemma 3. Each formula ψ belongs to at most one eventuality θ, and then θ ≤ ψ.
I Example 4. Applying the tableau rules Rm and Rp to the formula ψ1 ∧EG¬r, where ψ1
is defined as in Example 1 and EGφ abbreviates νX. (φ ∧ ♦X), results in a cyclic graph,
with relevant parts depicted as follows:

ψ1 ∧ EG¬r
(∧)

ψ1, EG¬r =: Γ1(∨,∧, ν, µ)∗
Γ, p,�ψ2[X 7→ ψ1]

(♦)
ψ2[X 7→ ψ1], EG¬r =: Γ2

(∨,∧, ν, µ)∗
Γ, q,�ψ1(♦)

Γ1

Γ,¬p,�ψ2[X 7→ ψ1]
(♦)

Γ2

Γ,¬q,�ψ1 (♦)
Γ1

Daniel Hausmann, Lutz Schröder, and Christoph Egger 34:5

where Γ = {¬r,♦EG¬r}. The graph contains three cycles, all of which contain but never
finish a formula that belongs to ψ1 (where a formula belonging to an eventuality ψ1 is
said to be finished if it evolves to a formula that does not belong to ψ1): In the rightmost
cycle, the deferral δ1 := ψ1 evolves to the deferral δ2 := �ψ1 which then evolves back to
δ1. For the cycle in the middle, δ1 evolves to δ3 := �ψ2[X 7→ ψ1] which in turn evolves to
δ4 := ψ2[X 7→ ψ1] before looping back to δ3. In the leftmost cycle, δ1 evolves via δ3 and δ4
to δ2 before cycling back to δ1. The satisfaction of ψ1 is thus being postponed indefinitely,
since EG¬r enforces the existence of a path on which r never holds. As a successful example,
consider the graph that is obtained when attempting to show the satisfiability of ψ1 ∧EG¬q,
(where Γ′ := {¬q,♦EG¬q}):

ψ2 ∧ EG¬q
(∧)

ψ2, EG¬q =: Γ3(∨,∧, µ, ν)∗
Γ′, p, r ∨�ψ2[X 7→ ψ1]

(∨)
Γ′, p, r

(♦)
EG¬q =: Γ5(∧, ν)

Γ′
(♦)

Γ5

Γ′, p,�ψ2[X 7→ ψ1]
(♦)

ψ2[X 7→ ψ1], EG¬q =: Γ4
(∨,∧, µ)∗

Γ′, q, r ∨�ψ1()
Γ′,¬p,�ψ2[X 7→ ψ1]

(♦)
Γ4

Γ′,�ψ1 (♦)
Γ3

The two loops through Γ3 and Γ4 are unsuccessful as they indefinitely postpone the satisfaction
of the deferrals δ2 and δ3, respectively; also there is the unsuccessful clashing node Γ′, q, r∨�ψ1,
containing both q and ¬q. However, the loop through Γ5 is successful since it contains no
deferral that is never finished; as all branching in this example is disjunctive, the single
successful loop suffices to show that the initial node is successful. Our algorithm implements
this check for ‘good’ and ‘bad’ loops by simultaneously tracking all deferrals that occur
through the proof graph, checking whether each deferral is eventually finished.

We fix an input formula ψ0 and denote the Fischer-Ladner closure [26] of ψ0 by F; notice
that |F| ≤ |ψ0|. Let N = P(F) be the set of all nodes and S ⊆ N the set of all state nodes,
i.e. nodes that contain only >, non-clashing propositional literals (where p clashes with ¬p)
and modal literals; so |S| ≤ |N| ≤ 2|ψ0|. Put

C = {(Γ, d) ∈ N× P(F) | d ⊆ Γ}, and CG = {(Γ, d) ∈ C | Γ ∈ G} for G ⊆ N,

recalling that nodes are just sets of formulas; note |C| ≤ 3|ψ0|. Elements v = (Γ, d) ∈ C are
called focused nodes, with label l(v) = Γ and focus d. The idea of focusing single eventualities
comes from work on LTL and CTL [27, 4]. In the alternation-free µ-calculus, eventualities
may give rise to multiple deferrals so that one needs to focus sets of deferrals instead of
single eventualities. Our algorithm incrementally builds a set of nodes but performs fixpoint
computations on P(C), essentially computing winning regions of the corresponding Büchi
game (with the target set of player 0 being the nodes with empty focus) on-the-fly.

I Definition 5 (Conclusions). For a node Γ ∈ N and a set S of tableau rules, the set of
conclusions of Γ under S is

Cn(S,Γ) = {{Γ1, . . . ,Γn} ∈ P(N) | (Γ/Γ1 . . .Γn) ∈ S}.

We define Cn(Γ) as Cn(Rm,Γ) if Γ is a state node and as Cn(Rp,Γ) otherwise. A set N ⊆ N
of nodes is fully expanded if for each Γ ∈ N ,

⋃
Cn(Γ) ⊆ N .

I Definition 6 (Deferral tracking). Given a node Γ = ψ1, . . . , ψn, φ and a state node ∆ ∈ S
that contains [a]ψ1, . . . , [a]ψn, 〈a〉φ as a subset, we say that Γ inherits φ from (〈a〉φ,∆) and
ψi from ([a]ψi,∆). For a non-state node ∆ ∈ N, a node Γ ∈ N with φ ∈ Γ, and ψ ∈ ∆,
Γ inherits φ from (ψ,∆) if Γ = Γi is conclusion of a non-modal rule (Γ0/Γ1 . . .Γn) with

CONCUR 2016

34:6 Global Caching for the Alternation-free µ-Calculus

Γ0 = ∆ and either ψ has one of the forms φ, φ ∨ χ, χ ∨ φ, φ ∧ χ, χ ∧ φ, or ψ = ηX. χ and
φ = χ[X 7→ ψ]. We put

Inhm(φ, 〈a〉φ,∆) = {Γ ∈ N | Γ inherits φ from (〈a〉φ,∆)}
Inhm(φ, [a]φ,∆) = {Γ ∈ N | Γ inherits φ from ([a]φ,∆)}

Inhp(φ, ψ,∆) = {Γ ∈ N | Γ inherits φ from (ψ,∆)},

where ∆ is a state node in the first two clauses and a non-state node in the third clause. We
write evs for the set of eventualities in F. For a node Γ ∈ N, the set of deferrals of Γ is

d(Γ) = {δ ∈ Γ | ∃θ ∈ evs. δ ∈ dfr(θ)}.

For a set d 6= ∅ of deferrals and nodes Γ,∆ ∈ N, we put

d∆ Γ = {δ ∈ d(Γ) | ∃θ ∈ evs.∃〈a〉δ ∈ d. Γ ∈ Inhm(δ, 〈a〉δ,∆) and δ, 〈a〉δ ∈ dfr(θ) or
∃[a]δ ∈ d. Γ ∈ Inhm(δ, [a]δ,∆) and δ, 〈a〉δ ∈ dfr(θ)}

if ∆ is a state node, and

d∆ Γ = {δ1 ∈ d(Γ) | ∃θ ∈ evs.∃δ2 ∈ d. Γ ∈ Inhp(δ1, δ2,∆) and δ1, δ2 ∈ dfr(θ)}

if ∆ is a non-state node. I.e. d∆ Γ is the set of deferrals that is obtained by tracking d from
∆ to Γ, where Γ is the conclusion of a rule application to ∆. We put ∅∆ Γ = d(Γ), with the
intuition that if the focus d is empty at (∆, d), then we refocus, i.e. choose as new focus for
the conclusion Γ the set d(Γ) of all deferrals in Γ.

I Example 7. Revisiting the proof graphs from Example 4, we fix additional abbreviations
Γ6 := Γ,¬p,�ψ2[X 7→ ψ1], Γ7 := Γ′, p, r∨�ψ2[X 7→ ψ1] and Γ8 := Γ′, p, r. In the first graph,
e.g. d(Γ6) = {δ3} and d(Γ2) = {δ4}; in the second graph, e.g. d(Γ7) = {r ∨�ψ2[X 7→ ψ1]}
and d(Γ8) = ∅. In the first graph, the node Γ6 inherits the deferral δ3 from δ4 at Γ2,
i.e. d(Γ2)Γ2 Γ6 = {δ4}Γ2 Γ6 = {δ3} since Γ6 ∈ Inhm(ψ2[X 7→ ψ1],�ψ2[X 7→ ψ1],Γ2).
Regarding the second graph, Γ8 does not inherit any deferral from Γ7, i.e. d(Γ7)Γ8 Γ7 =
{r ∨ �ψ2[X 7→ ψ1]}Γ8 Γ7 = ∅ since Γ8 ∈ Inhp(r, r ∨ �ψ2[X 7→ ψ1],Γ7) but r ∨ �ψ2[X 7→
ψ1] ∈ dfr(ψ1) while r /∈ dfr(ψ1), i.e. r ∨�ψ2[X 7→ ψ1] belongs to ψ1 but r does not. This
corresponds to the intuition that Γ8 represents a branch originating from Γ7 that actually
finishes the deferral r ∨�ψ2[X 7→ ψ1].

We next introduce the functionals underlying the fixpoint computations for propagation of
satisfiability and unsatisfiability.

I Definition 8. Let C ⊆ C be a set of focused nodes. We define the functions f : P(C)→
P(C) and g : P(C)→ P(C) by

f(Y) = {(∆, d) ∈ C | ∀Σ ∈ Cn(∆).∃Γ ∈ Σ. (Γ, d∆ Γ) ∈ Y }
g(Y) = {(∆, d) ∈ C | ∃Σ ∈ Cn(∆).∀Γ ∈ Σ. (Γ, d∆ Γ) ∈ Y }

for Y ⊆ C. We refer to C as the base set of f and g.

That is, a focused node (∆, d) is in f(Y) if each rule matching ∆ has a conclusion Γ such
that (Γ, d′) ∈ Y , where the focus d′ is the set of deferrals obtained by tracking d from ∆ to Γ.

Daniel Hausmann, Lutz Schröder, and Christoph Egger 34:7

I Definition 9 (Proof transitionals). For X ⊆ C ⊆ C, we define the proof transitionals
f̂X : P(C)→ P(C), ĝX : P(C)→ P(C) by

f̂X(Y) := (f(Y) ∩ F) ∪ (f(X) ∩ F) = f(Y) ∪ (f(X) ∩ F)
ĝX(Y) := (g(Y) ∪ F) ∩ (g(X) ∪ F) = g(X) ∪ (g(Y) ∩ F),

for Y ⊆ C, where F = {(Γ, d) ∈ C | d = ∅} and F = {(Γ, d) ∈ C | d 6= ∅} are the sets of
focused nodes with empty and non-empty focus, respectively, and where C is the base set of
f and g.

That is, f̂X(Y) contains nodes with non-empty focus that have for each matching rule a
successor node in Y as well as nodes with empty focus that have for each matching rule a
successor node in X. The least fixpoint of f̂X thus consists of those nodes that finish their
focus – by eventually reaching nodes from F with empty focus – and loop to X afterwards.

I Lemma 10. The proof transitionals are monotone w.r.t. set inclusion, i.e. if X ′ ⊆ X,
Y ′ ⊆ Y , then f̂X′(Y ′) ⊆ f̂X(Y) and ĝX′(Y ′) ⊆ ĝX(Y).

I Definition 11 (Propagation). For G ⊆ N, we define EG, AG ⊆ CG as

EG = νX.µY. f̂X(Y) and AG = µX.νY. ĝX(Y),

where CG is the base set of f and g.

Notice that in terms of games, the computation of EG and AG corresponds to solving an
incomplete Büchi game. The set EG contains nodes (Γ, d) for which player 0 has a strategy
to enforce – for each infinite play starting at (Γ, d) – the Büchi condition that nodes in F ,
i.e. with empty focus, are visited infinitely often; similarly AG is the winning region of player
1 in the corresponding game, i.e. contains the nodes for which player 1 has a strategy to
enforce an infinite play that passes F only finitely often or a finite play that gets stuck in a
winning position for player 1.

I Example 12. Returning to Example 4, we have (Γ1, d(Γ1)) = (Γ1, {ψ1}) ∈ AG1 and
(Γ3, d(Γ3)) = (Γ3, {ψ1}) ∈ EG2 where G1 and G2 denote the set of all nodes of the first
and the second proof graph, respectively; the global caching algorithm described later will
therefore answer ‘unsatisfiable’ to Γ1, and ‘satisfiable’ to Γ3. To see (Γ1, {ψ1}) ∈ AG1

note that AG1 = νY. ĝAG1
(Y) by definition, so AG1 = (ĝAG1

)n(CG1) for some n. For each
focused node (∆, d) ∈ CG1 there is a rule matching ∆ all whose conclusions Γ satisfy
(Γ, d∆ Γ) ∈ CG1 , i.e. g(CG1) = CG1 . Moreover, since all loops in G1 indefinitely postpone
some eventuality, no node with non-empty focus ever reaches one with empty focus, so
ĝ∅(CG1) = F . Since ĝ is monotone and (Γ1, {ψ1}) ∈ F , we obtain by induction over n that
(Γ1, {ψ1}) ∈ (ĝAG1

)n(CG1). To see (Γ3, d(Γ3)) = (Γ3, {ψ1}) ∈ EG2 , note that that starting
from Γ3, the single deferral ψ1 can be finished in finite time while staying in EG2 . This holds
because we can reach (Γ8, ∅) by branching to the left twice and (Γ8, ∅) ∈ EG2 , since the loop
through Γ5 does not contain any deferrals whose satisfaction is postponed indefinitely and
hence is contained in EG2 .

I Lemma 13. If G′ ⊆ G, then EG′ ⊆ EG and AG′ ⊆ AG.

I Lemma 14. Let G ⊆ N be fully expanded. Then EG = AG.

Our algorithm constructs a partial tableau, maintaining sets G,U ⊆ N of expanded and
unexpanded nodes, respectively. It computes EG, AG ⊆ CG in the propagation steps; as these
sets grow monotonically, they can be computed incrementally.

CONCUR 2016

34:8 Global Caching for the Alternation-free µ-Calculus

Algorithm (Global caching). Decide satisfiability of a closed formula φ0.
1. (Initialization) Let G := ∅, Γ0 := {φ0}, U := {Γ0}.
2. (Expansion) Pick t ∈ U and let G := G ∪ {t}, U := (U − {t}) ∪ (

⋃
Cn(t)−G).

3. (Intermediate propagation) Optional: Compute EG and/or AG. If (Γ0, d(Γ0)) ∈ EG,
return ‘Yes’. If (Γ0, d(Γ0)) ∈ AG, return ‘No’.

4. If U 6= ∅, continue with Step 2.
5. (Final propagation) Compute EG. If (Γ0, d(Γ0)) ∈ EG, return ‘Yes’, else ‘No’.
Note that in Step 5, G is fully expanded. For purposes of the soundness proof, we note an
immediate consequence of Lemmas 13 and 14:

I Lemma 15. If some run of the algorithm without intermediate propagation steps is
successful on input φ0, then all runs on input φ0 are successful.

I Remark. For alternation-free fixpoint logics, the game-based approach (e.g. [14]) is to
(1.) define a nondeterministic co-Büchi automaton of size O(n) that recognizes unsuccessful
branches of the tableau. This automaton is then (2.) determinized to a deterministic
co-Büchi automaton of size 2O(n) (avoiding the Safra construction using instead the method
of [29]; here, alternation-freeness is crucial) and (3.) complemented to a deterministic Büchi
automaton of the same size that recognizes successful branches of the tableau. A Büchi game
is (4.) constructed as the product game of the carrier of the tableau and the carrier of the
Büchi automaton. This game is of size 2O(n) and can be (5.) solved in time 2O(n). Our global
caching algorithm integrates analogues of items (1.) to (5.) in one go: We directly construct
the Büchi game (thus replacing (1.) through (4.) by a single definition) step-by-step during
the computation of the sets E and A of (un)successful nodes as nested fixpoints of the proof
transitionals; the propagation step corresponds to (5.). Our algorithm allows for intermediate
propagation, corresponding to solving the Büchi game on-the-fly, i.e. before it has been fully
constructed.

4 Soundness, Completeness and Complexity

Soundness. Let φ0 be a satisfiable formula. By Lemma 15, it suffices to show that a run
without intermediate propagation is successful.

I Definition 16. For a formula ψ, we define ψX(φ) = ψ[X 7→ φ], ψ0
X = ⊥ and ψn+1

X =
ψX(ψnX). We say that a Kripke structure K is stabilizing if for each state x in K, each
µX.ψ, and each fixpoint-free context c(−) such that x |= c(µX.ψ), there is n ≥ 0 such that
x |= c(ψnX).

We note that finite Kripke structures are stabilizing and import the finite model property
(without requiring a bound on model size) for the µ-calculus from [26]; for the rest of the
section, we thus fix w.l.o.g. a stabilizing Kripke structure K = (W, (Ra)a∈A, π) satisfying the
target formula φ0 in some state.

I Definition 17 (Unfolding tree). Given a formula ψ, an unfolding tree t for ψ consists of
the syntax tree of ψ together with a natural number as additional label for each node that
represents a least fixpoint operator. We denote this number by t(κ, µX. φ) for an occurrence
of a fixpoint literal µX. φ at position κ ∈ {0, 1}∗ in ψ. We define the unfolding ψ(t) of ψ
according to an unfolding tree t for ψ by

X(t) = X (φ1 ∧ φ2)(t) = φ1(t1) ∧ φ2(t2) (µX. φ1)(t) = (φ1(t1))t(ε,µX. φ1)
X ,

where ti is the i-th child of the root of t, and similar clauses for 〈a〉, [a], ∨, and ν as for ∧.

Daniel Hausmann, Lutz Schröder, and Christoph Egger 34:9

Given a formula ψ, we define the order <ψ on unfolding trees for ψ by lexically ordering the
lists of labels obtained by pre-order traversal of the syntax tree of ψ.

I Definition 18 (Unfolding). The unfolding of a formula ψ at a state x with x |= ψ is defined
as unf (ψ, x) = ψ(t), where t is the least unfolding tree for ψ (w.r.t. <ψ) such that x |= ψ(t)
(such a t exists by stabilization).

Note that in unfoldings, all least fixpoint literals µX. φ are replaced with finite iterates of φ.

I Theorem 19 (Soundness). The algorithm returns ‘Yes’ on input φ0 if φ0 is satisfiable.

Proof. (Sketch) We show that any node (Γ, d) that is constructed by the algorithm and
whose label is satisfied at some state x in K is successful, i.e. (Γ, d) ∈ EG; the proof is by
induction over the maximal modal depth of unf (δ, x) for δ ∈ d. J

Completeness. Assume that the algorithm answers ‘Yes’ on input φ0, having constructed
the set E := EG of successful nodes. Put D = {(Γ, d) ∈ E | Γ ∈ S}; note |D| ≤ |E| ≤ 3|φ0|.

I Definition 20 (Propositional entailment). For a finite set Ψ of formulas, we write
∧

Ψ for
the conjunction of the elements of Ψ. We say that Ψ propositionally entails a formula φ
(written Ψ `PL φ) if

∧
Ψ→ φ is a propositional tautology, where modal literals are treated as

propositional atoms and fixpoint literals ηX.φ are unfolded to φ(ηX.φ) (recall that fixpoint
operators are guarded).

I Definition 21. We denote the set of formulas in a node Γ that do not belong to an
eventuality θ by

N(Γ, θ) = {φ ∈ Γ | φ /∈ dfr(θ)}.

A set d of deferrals is sufficient for δ ∈ dfr(θ) at a node Γ, in symbols d `Γ δ, if d ∪N(Γ, θ) `PL
δ. We write `Γ δ to abbreviate ∅ `Γ δ.

I Definition 22 (Timed-out tableau). Let U ⊆ S× S and let L ⊆ U × U . We denote the set
of L-successors of v ∈ U by L(v) = {w | (v, w) ∈ L}. Let d be a set of deferrals. We put
to(∅, n) = U for all n (to for timeout). For d 6= ∅, we put to(d, 0) = ∅ and define to(d,m+ 1)
to be the set of of focused nodes (∆, d′) such that writing Cn(∆) = {Σ1, . . . ,Σn}, we have
L(∆, d′) = {(Γ1, d1), . . . , (Γn, dn)} where for each i there exists Γ ∈ Σi such that

Γi `PL
∧

Γ and di `Γi
d′∆ Γ, and

(Γi, di) ∈ to(d′′,m) for some d′′ ⊆ d(Γi) with d′′ `Γi d∆ Γ.
If for each focused node (Γ, d) ∈ U there is a number m such that (Γ, d) ∈ to(d(Γ),m), then
L is a timed-out tableau over U .

Roughly, to(d,m) can be understood as the set of all focused nodes in U that finish all deferrals
in d within m modal steps, i.e. with time-out m; this is similar to Kozen’s µ-counters [25].

I Lemma 23 (Tableau existence). There exists a timed-out tableau over D.

Proof sketch. Since D ⊆ EG, we can define L ⊆ D ×D in such a way that all paths in L
visit F (the set of nodes with empty focus) infinitely often, so every deferral contained in
some node in D will be focused by the unavoidable eventual refocusing; this new focus will
in turn eventually be finished so that L is a timed-out tableau. J

For the rest of the section, we fix a timed-out tableau L over D and define a Kripke structure
K = (D, (Ra)a∈A, π) by taking Ra(v) to be the set of focused nodes in L(v) whose label is
the conclusion of an (〈a〉)-rule that matches l(v) and by putting π(p) = {v ∈ D | p ∈ l(v)}.

CONCUR 2016

34:10 Global Caching for the Alternation-free µ-Calculus

I Definition 24 (Pseudo-extension). The pseudo-extension [̂[φ]] of φ in D is

[̂[φ]] = {v ∈ D | l(v) `PL φ}.

I Lemma 25 (Truth). In the Kripke structure K, [̂[ψ]] ⊆ [[ψ]] for all ψ ∈ F.

Proof sketch. Induction on ψ, with an additional induction on time-outs in the case for
least fixpoint literals, exploiting alternation-freeness. J

I Corollary 26 (Completeness). If a run of the algorithm with input φ0 returns ‘Yes’, then
φ0 is satisfiable.

Proof sketch. Combine the existence lemma and the truth lemma to obtain a model over D.
Since ({φ0}, d({φ0})) ∈ E and [̂[φ0]] ⊆ [[φ0]], there is a focused node in D that satisfies φ0. J

As a by-product, our model construction yields

I Corollary 27. Every satisfiable alternation-free fixpoint formula φ0 has a model of size at
most 3|φ0|.

Thus we recover the bound of 2O(n) for the alternation-free relational µ-calculus, which
can be obtained, e.g., by carefully adapting results from [13] to the alternation-free case; for
the alternation-free fragment of the alternating-time µ-calculus, covered by the coalgebraic
generalization discussed next, the best previous bound appears to be nO(n) = 2O(n logn) [36].

Complexity. Our algorithm has optimal complexity (given that the problem is known to be
ExpTime-hard):

I Theorem 28. The global caching algorithm decides the satisfiability problem of the
alternation-free µ-calculus in ExpTime, more precisely in time 2O(n).

The Alternation-Free Coalgebraic µ-Calculus. Coalgebraic logic [6] serves as a unifying
framework for modal logics beyond standard relational semantics, subsuming systems with,
e.g., probabilistic, weighted, game-oriented, or preference-based behaviour under the concept
of coalgebras for a set functor F . All our results lift to the level of generality of the
(alternation-free) coalgebraic µ-calculus [5]; details are in a technical report at https:
//www8.cs.fau.de/hausmann/afgc.pdf. In consequence, our results apply also to the
alternation-free fragments of the alternating-time µ-calculus [1], probabilistic fixpoint logics,
and the monotone µ-calculus (the ambient fixpoint logic of Parikh’s game logic [32]), as all
these can be cast as instances of the coalgebraic µ-calculus.

5 Implementation and Benchmarking

The global caching algorithm has been implemented as an extension of the Coalgebraic On-
tology Logic Reasoner (COOL) [22], a generic reasoner for coalgebraic modal logics, available
at https://www8.cs.fau.de/research:software:cool. COOL achieves its genericity by
instantiating an abstract core reasoner that works for all coalgebraic logics to concrete in-
stances of logics; our global caching algorithm extends this core. Instance logics implemented
in COOL currently include relational, monotone, and alternating-time logics, as well as
any logics that arise as fusions thereof. In particular, this makes COOL, to our knowledge,
the only implemented reasoner for the alternation-free fragment of the alternating-time

https://www8.cs.fau.de/hausmann/afgc.pdf
https://www8.cs.fau.de/hausmann/afgc.pdf
https://www8.cs.fau.de/research:software:cool

Daniel Hausmann, Lutz Schröder, and Christoph Egger 34:11

0 21 41 61 81 101 121 141
0.001

0.01

0.1

1

10

100

1000

value of n

ru
n

ti
m

e
(s

)

COOL GMUL CTL-RPc

TreeTab MLSolverc BDDCTLc

(a) Montali, n = 1 (satisfiable).

0 21 41 61 81
0.001

0.01

0.1

1

10

100

1000

value of n

ru
n

ti
m

e
(s

)

COOL GMUL CTL-RPc

TreeTab MLSolverc BDDCTLc

(b) Montali, n = 1 (unsatisfiable).

Figure 1 Runtimes for the Montali-formulas.

Table 1 Runtimes (in s) for the Alternating Bit Protocol formulas

Type of formula COOL TreeTab GMUL MLSolverc BDDCTLc CTL-RPc
(i) <0.01 <0.01 <0.01 0.02 <0.01 0.02
(ii) 0.12 – 0.02 0.95 <0.01 0.15
(iii) 0.12 – 0.02 0.87 <0.01 0.16

µ-calculus (a tableau calculus for the sublogic ATL is prototypically implemented in the
TATL reasoner [8]) and the star-nesting free fragment of Parikh’s game logic.

Although our tool supports the full alternation-free µ-calculus, we concentrate on CTL
for experiments, as this appears to be the only candidate logic for which substantial sets of
benchmark formulas are available [19]. CTL reasoners can be broadly classified as being either
top-down, i.e. building graphs or tableaux by recursion over the formula, or bottom-up; the
two groups perform very differently [19]. We compare our implementation with the top-down
solvers TreeTab [15], GMUL [19], MLSolver [12] and the bottom-up solvers CTL-RP [37] and
BDDCTL [19]. Out of the top-down solvers, only TreeTab is single-pass like COOL; however,
TreeTab has suboptimal (doubly exponential) worst-case runtime. MLSolver supports the full
µ-calculus. For MLSolver, CTL-RP and BDDCTL, formulas have first been compacted [19].
All tests have been executed on a system with Intel Core i7 3.60GHz CPU with 16GB RAM,
and a stack limit of 512MB.

On the benchmark formulas of [19], COOL essentially performs similarly as the other
top-down tools, and closer to the better tools when substantial differences show up. As an
example, the runtimes of COOL, TreeTab, GMUL, MLSolver, CTL-RP, and BDDCTL on
the Montali-formulas [30, 19] are shown in Figure 1. To single out one more example, Table 1
shows the runtimes for the alternating bit protocol benchmark from [19]; COOL performs
closer to GMUL than to MLSolverc on these formulas.

This part of the evaluation may be summed up as saying that COOL performs well despite
being, at the moment, essentially unoptimized: the only heuristics currently implemented is
a simple-minded dependency of the frequency of intermediate propagation on the number of
unexpanded nodes.
In addition, we design two series of unsatisfiable benchmark formulas that have an exponen-

CONCUR 2016

34:12 Global Caching for the Alternation-free µ-Calculus

0 2 4 6 8 10 12 14 16 18 20
0.001

0.01

0.1

1

10

100

1000

value of n

ru
n

ti
m

e
(s

)

COOL GMUL CTL-RPc

TreeTab MLSolverc BDDCTLc

(a) early(n, 4, 2) (unsatisfiable).

0 2 4 6 8 10 12 14 16 18 20
0.001

0.01

0.1

1

10

100

1000

value of n

ru
n

ti
m

e
(s

)

COOL GMUL CTL-RPc

TreeTab MLSolverc BDDCTLc

(b) earlygc(n, 4, 2) (unsatisfiable).

Figure 2 Formulas with exponential search space and sub-exponential refutations.

tially large search space but allow for detection of unsatisfiability at an early stage. Recall
that in CTL we can express the statement ‘in the next step, the n-bit counter x represented
by the variables x1, . . . , xn will be incremented’ (with wraparound) as a formula c(x, n) of
polynomial size in n. We define unsatisfiable formulas early(n, j, k) that specify an n-bit
counter p with n bits and additionally branch after 2j steps (i.e. when pj holds) to start a
counter r with k bits which in turn forever postpones the eventuality EF p:

early(n, j, k) = startp ∧ init(p, n) ∧ init(r, k) ∧AG ((r → c(r, k)) ∧ (p→ c(p, n)))∧
AG ((

∧
0≤i≤j pi → EX(startr ∧ EF p)) ∧ ¬(p ∧ r) ∧ (r → AX r))

init(x,m) = AG ((startx → (x ∧
∧

0≤i<m ¬xi)) ∧ (x→ EX x)).

Note here that init uses x as a string argument; startx is an atom indicating the start of
counter x, and the atom x itself indicates that the counter x is running. The second series
of unsatisfiable formulas earlygc(n, j, k) is obtained by extending the formulas early(n, j, k)
with the additional requirement that a further counter q with n bits is started infinitely often,
but at most at every second step:

earlygc(n, j, k) = early(n, j, k) ∧ b ∧ init(q, n) ∧AG (¬(p ∧ q) ∧ ¬(q ∧ r) ∧ (q → c(q, n)))
∧ AG (AF b ∧ (b → (EX p ∧ EX startq ∧AX ¬b)))

Figure 2 shows the respective runtimes for these formulas. In all cases, COOL finishes before
the tableau is fully expanded, while GMUL and MLSolver will necessarily complete their
first pass before being able to decide the formulas, and hence exhibit exponential behaviour;
TreeTab seems not to benefit substantially from its capability to close tableaux early. For
the earlygc formulas, the ability to cache previously seen nodes appears to provide COOL
with additional advantages. The earlygc series can be converted into satisfiable formulas by
replacing AX with EX, with similar results.

Due to the apparent lack of benchmarking formulas for the alternation-free µ-calculus and
ATL, we compare runtimes on random formulas for these logics. For the alternation-free µ-
calculus, formulas were built from 250 random operators (where disjunction and conjunction
are twice as likely as the other operators). The experiment was conducted with formulas
over three and over ten propositional atoms, respectively. MLSolver ran out of memory on

Daniel Hausmann, Lutz Schröder, and Christoph Egger 34:13

21% on the formulas over three atoms and on 16% of the formulas over ten atoms. COOL
answered all queries without exceeding memory restrictions, and in under one second for
all queries but one. Altogether, COOL was faster than MLSolver for more than 98% of the
random alternation-free formulas, with the median of the ratios of the runtimes being 0.0431
in favour of COOL for formulas over three atoms and 0.0833 for formulas over ten atoms
(recall however that MLSolver supports the full µ-calculus). For alternating-time temporal
logic ATL, we compared the runtimes of TATL and COOL on random formulas consisting of
50 random operators; COOL answered faster than TATL on all of the formulas, with the
median of the ratios of runtimes being 0.000668 in favour of COOL.

6 Conclusion

We have presented a tableau-based global caching algorithm of optimal (ExpTime) complexity
for satisfiability in the alternation-free coalgebraic µ-calculus; the algorithm instantiates to
the alternation-free fragments of e.g. the relational µ-calculus, the alternating-time µ-calculus
(AMC) and the serial monotone µ-calculus. Essentially, it simultaneously generates and
solves a deterministic Büchi game on-the-fly in a direct construction, in particular skipping
the determinization of co-Büchi automata; the correctness proof, however, is stand-alone.
We have generalized the 2O(n) bound on model size for alternation-free fixpoint formulas
from the relational case to the coalgebraic level of generality, in particular to the AMC.

We have implemented the algorithm as part of the generic solver COOL; the imple-
mentation shows promising performance for CTL, ATL and the alternation-free relational
µ-calculus. An extension of our global caching algorithm to the full µ-calculus would have
to integrate Safra-style determinization of Büchi automata [35] and solving of the resulting
parity game, both on-the-fly.

References
1 Rajeev Alur, Thomas Henzinger, and Orna Kupferman. Alternating-time temporal logic.

J. ACM, 49:672–713, 2002.
2 Dietmar Berwanger, Erich Grädel, and Giacomo Lenzi. The variable hierarchy of the µ-

calculus is strict. Theory Comput. Sys., 40:437–466, 2007.
3 Julian Bradfield and Colin Stirling. Modal µ-calculi. In Handbook of Modal Logic, pages

721–756. Elsevier, 2006.
4 Kai Brünnler and Martin Lange. Cut-free sequent systems for temporal logic. J. Log.

Algebr. Prog., 76:216–225, 2008.
5 Corina Cîrstea, Clemens Kupke, and Dirk Pattinson. EXPTIME tableaux for the coalgeb-

raic µ-calculus. Log. Meth. Comput. Sci., 7, 2011.
6 Corina Cîrstea, Alexander Kurz, Dirk Pattinson, Lutz Schröder, and Yde Venema. Modal

logics are coalgebraic. Comput. J., 54:31–41, 2011.
7 Edmund Clarke and E. Allen Emerson. Design and synthesis of synchronization skeletons

using branching-time temporal logic. In Logics of Programs, volume 131 of LNCS, pages
52–71. Springer, 1982.

8 Amélie David. TATL: Implementation of ATL tableau-based decision procedure. In Auto-
mated Reasoning with Analytic Tableaux and Related Methods, TABLEAUX 2013, volume
8123 of LNCS, pages 97–103. Springer, 2013.

9 E. Allen Emerson and Joseph Halpern. Decision procedures and expressiveness in the
temporal logic of branching time. J. Comput. Sys. Sci., 30:1–24, 1985.

10 E. Allen Emerson and Charanjit Jutla. The complexity of tree automata and logics of
programs. SIAM J. Comput., 29(1):132–158, September 1999.

CONCUR 2016

34:14 Global Caching for the Alternation-free µ-Calculus

11 Oliver Friedmann and Martin Lange. Local strategy improvement for parity game solv-
ing. In Games, Automata, Logic, and Formal Verification, GANDALF 2010, volume 25 of
EPTCS, pages 118–131. Open Publishing Association, 2010.

12 Oliver Friedmann and Martin Lange. A solver for modal fixpoint logics. In Methods for
Modalities, M4M-6 2009, volume 262 of ENTCS, pages 99–111, 2010.

13 Oliver Friedmann and Martin Lange. Deciding the unguarded modal µ-calculus. J. Appl.
Non-Classical Log., 23:353–371, 2013.

14 Oliver Friedmann, Markus Latte, and Martin Lange. Satisfiability games for branching-time
logics. Log. Methods Comput. Sci., 9, 2013.

15 Rajeev Goré. And-Or tableaux for fixpoint logics with converse: LTL, CTL, PDL and
CPDL. In Automated Reasoning, IJCAR 2014, volume 8562 of LNCS, pages 26–45.
Springer, 2014.

16 Rajeev Goré, Clemens Kupke, and Dirk Pattinson. Optimal tableau algorithms for coalgeb-
raic logics. In Tools and Algorithms for the Construction and Analysis of Systems, TACAS
2010, volume 6015 of LNCS, pages 114–128. Springer, 2010.

17 Rajeev Goré, Clemens Kupke, Dirk Pattinson, and Lutz Schröder. Global caching for
coalgebraic description logics. In Automated Reasoning, IJCAR 2010, volume 6173 of
LNCS, pages 46–60. Springer, 2010.

18 Rajeev Goré and Linh Anh Nguyen. Exptime tableaux for ALC using sound global caching.
J. Autom. Reasoning, 50:355–381, 2013.

19 Rajeev Goré, Jimmy Thomson, and Florian Widmann. An experimental comparison of
theorem provers for CTL. In Temporal Representation and Reasoning, TIME 2011, pages
49–56. IEEE, 2011.

20 Rajeev Goré and Florian Widmann. An optimal on-the-fly tableau-based decision procedure
for PDL-satisfiability. In Automated Deduction, CADE 2009, volume 5663 of LNCS, pages
437–452. Springer, 2009.

21 Rajeev Goré and Florian Widmann. Sound global state caching for ALC with inverse roles.
In Automated Reasoning with Analytic Tableaux and Related Methods, TABLEAUX 2009,
volume 5607 of LNCS, pages 205–219. Springer, 2009.

22 Daniel Gorín, Dirk Pattinson, Lutz Schröder, Florian Widmann, and Thorsten Wißmann.
COOL – a generic reasoner for coalgebraic hybrid logics (system description). In Automated
Reasoning, IJCAR 2014, volume 8562 of LNCS, pages 396–402. Springer, 2014.

23 Daniel Hausmann and Lutz Schröder. Global caching for the flat coalgebraic µ-calculus. In
Temporal Representation and Reasoning, TIME 2015, pages 121–143. IEEE, 2015.

24 Natthapong Jungteerapanich. A tableau system for the modal µ-calculus. In Automated
Reasoning with Analytic Tableaux and Related Methods, TABLEAUX 2009, volume 5607 of
LNCS, pages 220–234. Springer, 2009.

25 Dexter Kozen. Results on the propositional µ-calculus. Theor. Comput. Sci., 27:333–354,
1983.

26 Dexter Kozen. A finite model theorem for the propositional µ-calculus. Stud. Log., 47:233–
241, 1988.

27 Martin Lange and Colin Stirling. Focus games for satisfiability and completeness of tem-
poral logic. In Logic in Computer Science, LICS 2001, pages 357–365. IEEE Computer
Society, 2001.

28 Zohar Manna and Amir Pnueli. The modal logic of programs. In Automata, Languages
and Programming, ICALP 1979, volume 71 of LNCS, pages 385–409. Springer, 1979.

29 Satoru Miyano and Takeshi Hayashi. Alternating finite automata on ω-words. Theoret.
Comput. Sci., 32:321–330, 1984.

Daniel Hausmann, Lutz Schröder, and Christoph Egger 34:15

30 Marco Montali, Paolo Torroni, Marco Alberti, Federico Chesani, Marco Gavanelli, Evelina
Lamma, and Paola Mello. Verification from declarative specifications using logic program-
ming. In Logic Programming, ICLP 2008, volume 5366 of LNCS, pages 440–454. Springer,
2008.

31 Damian Niwinski and Igor Walukiewicz. Games for the µ-calculus. Theor. Comput. Sci.,
163:99–116, 1996.

32 Rohit Parikh. The logic of games and its applications. Ann. Discr. Math., 24:111–140,
1985.

33 Amir Pnueli. The temporal logic of programs. In Foundations of Computer Science, FOCS
1977, pages 46–57. IEEE Computer Society, 1977.

34 Vaughan Pratt. Semantical considerations on Floyd-Hoare logic. In Foundations of Com-
puter Science, FOCS 1976, pages 109–121. IEEE Computer Society, 1976.

35 Shmuel Safra. On the complexity of omega-automata. In Foundations of Computer Science,
FOCS 1988, pages 319–327. IEEE Computer Society, 1988.

36 Sven Schewe. Synthesis of distributed systems. PhD thesis, Universität des Saarlands, 2008.
37 Lan Zhang, Ullrich Hustadt, and Clare Dixon. A resolution calculus for the branching-time

temporal logic CTL. ACM Trans. Comput. Log., 15, 2014.

CONCUR 2016

Up-To Techniques for Generalized Bisimulation
Metrics
Konstantinos Chatzikokolakis1, Catuscia Palamidessi2, and
Valeria Vignudelli3

1 CNRS and LIX, Ecole Polytechnique
2 Inria and LIX, Ecole Polytechnique
3 University of Bologna and Inria

Abstract
Bisimulation metrics allow us to compute distances between the behaviors of probabilistic systems.
In this paper we present enhancements of the proof method based on bisimulation metrics, by
extending the theory of up-to techniques to (pre)metrics on discrete probabilistic concurrent
processes.

Up-to techniques have proved to be a powerful proof method for showing that two systems are
bisimilar, since they make it possible to build (and thereby check) smaller relations in bisimulation
proofs. We define soundness conditions for up-to techniques on metrics, and study compatibility
properties that allow us to safely compose up-to techniques with each other. As an example, we
derive the soundness of the up-to-bisimilarity-metric-and-context technique.

The study is carried out for a generalized version of the bisimulation metrics, in which the
Kantorovich lifting is parametrized with respect to a distance function. The standard bisimula-
tion metrics, as well as metrics aimed at capturing multiplicative properties such as differential
privacy, are specific instances of this general definition.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Programs

Keywords and phrases bisimulation, metrics, up-to techniques, Kantorovich, differential privacy

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2016.35

1 Introduction

Bisimulation has played a fundamental role in the analysis and verification of traditional
concurrent systems. In recent times, however, there is a growing tendency to consider probab-
ilistic frameworks, partly to capture the random nature of interactions in distributed systems,
partly to model and reason about protocols which make use of randomized mechanisms, such
as those used in security and privacy. In this context, equivalences are not suitable, because
they are not robust w.r.t. small variation of the transition probabilities, and they are usually
replaced by (pseudo-)metrics: unlike an equivalence relation, a metric can vary smoothly as
a function of the probabilities, and it can be used to measure the similarity of two systems
in a more informative way than an equivalence relation.

Bisimulation metrics are particularly successful, especially in the area of concurrency,
They can be defined by generalizing to metrics the bisimilarity “progress” relation; using
a terminology introduced by Sangiorgi [12], we say that a relation between processes R
progresses to S if for every pair of processes in R, every transition from one process is matched
by a transition from the other, and the derivative processes are related by S. A bisimulation
can then be defined as a relation that progresses to itself. Using the same terminology for
probabilistic transitions, a metric d on states progresses to a metric l on distributions over

© Konstantinos Chatzikokolakis, Catuscia Palamidessi, and Valeria Vignudelli;
licensed under Creative Commons License CC-BY

27th International Conference on Concurrency Theory (CONCUR 2016).
Editors: Josée Desharnais and Radha Jagadeesan; Article No. 35; pp. 35:1–35:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.35
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

35:2 Up-To Techniques for Generalized Bisimulation Metrics

states if, for all processes at d-distance ε, every transition from one process is matched by a
transition from the other and the resulting distributions are at l-distance at most ε. Then d
is a bisimulation metric if it progresses to its own lifting K(d) on distributions.

Among the bisimulation metrics, those based on the Kantorovich lifting are the most
popular. Originally proposed in the seminal works of Desharnais et al. [5, 6, 7] and of van
Breugel and Worrel [13, 14], the traditional Kantorovich lifting has been extended in [3] so
as to capture privacy properties such as differential privacy [8]. Part of their success is due
to the Kantorovich-Rubinstein duality, which allows us to compute the lifting efficiently using
linear programming algorithms [1, 13, 15, 16].

Analogously to the bisimilarity relation∼, which is defined as the union of all bisimulations,
the bisimilarity metric bm is defined coinductively as the smallest bisimulation metric. This
means that we can extend the bisimulation proof method to metrics: given two processes P
and Q, to prove P ∼ Q it is sufficient to find a bisimulation R such that P RQ. Similarly, to
show that bm(P,Q) ≤ ε, it is sufficient to find a bisimulation metric d such that d(P,Q) ≤ ε.
The main difficulty in the bisimulation method is that the cost of naively checking that R is
a bisimulation can be proportional to its size. Indeed, we need to prove that for all pairs of
processes in R, the derivatives of the matching transitions are still related by R. Now, the
size of bisimulations typically depends on the complexity of the underlying transition system,
and if the transition system is unbounded, bisimulations are, in general, infinite sets. This
difficulty translates immediately to the metric level: to prove that d is a bisimulation metric
we need to prove that for all pairs of processes at d-distance ε, the distributions resulting
from the matching transitions have K(d)-distance at most ε.

One well known and general approach, originally due to Milner [9], for reducing the sizes
of bisimulations, is to represent them up to a different relation that identifies redundant pairs
of process expressions. For instance, he showed that, when we consider the relation between
the derivative processes, we can reason modulo bisimilarity. In other words, to prove P ∼ Q it
is sufficient to find a relation R that relates P and Q, and that progresses to ∼ R ∼. In other
words, if P ′ and Q′ are the derivative processes, we do not need to show P ′RQ′, we only
need to find a pair or processes P ′′ and Q′′ such that P ′ ∼ P ′′, P ′′RQ′′, and Q′′ ∼ Q′. Such
an R is called bisimulation up to bisimilarity. This technique was successively generalized by
Sangiorgi [12], who introduced the notion of bisimulation up to F , where F is a function
from relations to relations. The idea is that F(R) contains the pairs of derivatives. The
method is sound if, whenever R progresses to F(R), then R ⊆∼. The paper also defines
respectfulness for up-to techniques, later generalized as compatibility [11], which guarantees
that it is sound to compose them with each other. The up-to techniques can be so effective
that they may reduce the size of the relation to be checked from infinite to finite, and even,
in some cases, to a singleton.

In this paper we aim at generalizing the up-to bisimulation method to the Kantorovich
bisimulation metrics (in the extended version of [3]), thus enhancing the corresponding proof
technique. The aim is to obtain a proof method that allows us to prove that bm(P,Q) ≤ ε by
finding a metric d such that d(P,Q) ≤ ε, and such that the set of pairs of processes for which
we have to check the progress relation is relatively small. In other words, a metric d which
gives maximal distance (and therefore the progress relation is verified trivially) between
all processes except a small set. As an example, consider the following processes (from a
probabilistic version of CCS):

A = a.([1
2]A | b⊕ [1

2]c) A′ = a.([1
2]A′ | b⊕ [1

4]c⊕ [1
4]d)

After performing an a-action, process A has one half probability of going back to itself, with
the additional possibility of performing an action b in parallel, and one half probability of

K. Chatzikokolakis, C. Palamidessi and V. Vignudelli 35:3

performing action c. Process A′ behaves similarly to A, but with probability one fourth it
performs action d instead of c. In order to prove that bm(A,A′) ≤ 1

2 , we should define a
metric assigning distance one half not only to the pair (A,A′), but also to all pairs of the
form A | bn and A | bn, where bn is the parallel composition of n instances of b, representing
the pairs to be inspected after the action a is performed for the n-th time. Each of these pairs
should then be proved to satisfy the bisimulation metric clauses. Using up-to techniques, we
can prove that bm(A,A′) ≤ 1

2 just by considering a (pre)metric assigning one half distance to
(A,A′), and maximal distance to all other non-identical states. When A performs a, then A′
replies with the same action and the (probabilistic) up-to-context technique guarantees that
it is sound to directly use the distance on (A,A′) in place of the distance on (A | b, A′ | b).

Plan of the paper. Section 2 recalls some preliminary notions. Section 3 introduces some
operators on premetrics and discusses some relevant properties of them. Section 4 presents
the extension to metrics of the up-to techniques. Section 5 shows some examples of these
techniques applied to probabilistic CCS and to the verification of differential privacy. Finally,
Section 6 concludes. Some proofs were omitted for space reasons, they can be found in the
report version of this paper [4].

2 Preliminaries

2.1 Premetrics and metrics
An (extended) premetric on a set X is a very relaxed form of metric, namely a function
m : X2 → [0,+∞] satisfying only reflexivity (m(x, x) = 0). An (extended, pseudo) metric d
on X is a premetric also satisfying symmetry (d(x, y) = d(y, x)) and the triangle inequality
(d(x, z) ≤ d(x, y) + d(y, z)). For simplicity we drop “extended” and “pseudo” but they
are always implied; we denote by M(X),Md(X) the set of premetrics and metrics on X
respectively. The kernel ker(m) of m is an equivalence relation on X relating elements at
distance 0, i.e. (x, y) ∈ ker(m) iff m(x, y) = 0.

PremetricsM(X) bounded by some maximal distance > ∈ [0,∞] form a complete lattice
under element-wise ordering (m ≤ m′ iff m(x, y) ≤ m′(x, y) for all x, y), with suprema
and infima given by (

∨
A)(x, y) = supm∈Am(x, y) and (

∧
A)(x, y) = infm∈Am(x, y). Note

that the lattice depends on the choice of > – the value (possibly +∞) assigned by the top
premetric >M(X) to all distinct elements – which we generally leave implicit.

Metrics Md(X) bounded by > also form a complete lattice under ≤, with the same
supremum operator. On the other hand, the infimum operator, denoted by

∧
d, is different

since the inf of metrics is not necessarily a metric. Still, infima exist and can be obtained by∧
dA =

∨
(↓dA), where ↓dA = {d ∈Md(X) | ∀d′ ∈ A : d ≤ d′ }.

2.2 Probabilistic automata, bisimilarity and metrics
Let S be a countable set of states.1 We denote by P(S) the set of all (discrete) probability
measures ∆,Θ over S; the Dirac measure on s by δ(s). A Probabilistic automaton (henceforth
PA) A is a tuple (S,A,D) where A is a countable set of action labels, and D ⊆ S×A×P(S)
is a transition relation. We write s α−→ ∆ for (s, α,∆) ∈ D, and define a family of functions
→α: S → 2P(S) as →α (s) = {∆ | s α−→ ∆}.

1 A countable state space is assumed for simplicity; however, the proofs of several results do not rely on
this assumption, and we expect those that do to be extendible to the continuous case.

CONCUR 2016

35:4 Up-To Techniques for Generalized Bisimulation Metrics

Let R ⊆ S × S be an equivalence relation on S; its lifting L(R) is an equivalence relation
on P(S), defined as (∆,Θ) ∈ L(R) iff ∆,Θ assign the same probability to all equivalence
classes of R. Probabilistic bisimilarity ∼ can be defined as the largest equivalence relation R
on S such that (s, t) ∈ R and s α−→ ∆ imply t α−→ Θ with (∆,Θ) ∈ L(R).

Bisimilarity is a strong notion that often fails in probabilistic systems due to some “small”
mismatch of probabilities. Hence, it is natural to define a metric that tells us “how much”
different two states are, and such that its kernel coincides with ∼. Let K : Md(S) →
Md(P(S)) be a lifting operator mapping metrics on S to metrics on distributions over S.
A well known such operator is the Kantorovich lifting, but it is not unique: in fact, the
Kantorovich itself can be generalized to a family of liftings, parametrized by an underlying
distance (c.f. Section 3.2).

A metric d ∈ Md(S) is a bisimulation metric if d(s, t) < > and s α−→ ∆ imply t α−→ Θ
with K(d)(∆,Θ) ≤ d(s, t).2 The bisimilarity metric bm can be defined as the

∧
d of all

bisimulation metrics. Note that the lattice order of metrics has inverse meaning than the
one of relations: a smaller metric corresponds to a larger relation.

It should be emphasized that, although ∼ is a uniquely defined relation, bm depends first
on the choice of > and second, on the choice of the K operator. If K,L commute with ker,
i.e. ker(K(d)) = L(ker(d)) for all d ∈ Md(S), it can be shown that ∼ = ker(bm) [3]. In
other words, we can have different metrics, all characterizing bisimilarity at their kernel, but
which do not coincide on the distance they assign to non-bisimilar states.

Note that, although ∼ was defined as the union of all equivalence relations satisfying the
bisimulation property, the “equivalence” requirement is only for convenience, so that the
lifting L(R) has a simple form; we could obtain the same ∼ as the union of all arbitrary
relations R satisfying the same property. The same is true for bm: although in the literature
it is typically defined as the

∧
d of bisimulation metrics, we show in Section 4.1 that it can

be constructed as the
∧

of bisimulation premetrics. The advantage of using premetrics (resp.
arbitrary relations) is that one has to construct a simpler bisimulation premetric m (resp.
bisimulation relation R) not necessarily satisfying the triangle inequality (resp. transitivity),
in order to bound the bisimilarity distance between two states.

3 Premetrics: operations and their properties

In this section we discuss various operations on premetrics and their properties. These will
provide the technical building blocks for developing the up-to techniques in Section 4.

3.1 Lipschitz property and reverse maps
Lipschitz is a fundamental strong notion of continuity that plays a central role in all
constructions of this work. A function f : A → B is Lipschitz (or nonexpansive) wrt the
metrics mA,mB , written mA,mB-Lip, iff

mB(f(a), f(a′)) ≤ mA(a, a′) ∀a, a′ ∈ A

Tightly connected to this property is the reverse map on premetrics f←:M(B) →M(A)
induced by f : A→ B, defined as f←(mB)(a, a′) = mB(f(a), f(a′)).

I Proposition 1. The following hold:

2 Note that if d(s, t) = > (i.e. s, t are maximally “non-bisimilar”) then t a−→ Θ is not required at all.

K. Chatzikokolakis, C. Palamidessi and V. Vignudelli 35:5

1. f is mA,mB-Lip iff mA ≥ f←(mB).
2. f←is monotone.
3. f←preserves metrics: mB ∈Md(B) implies f←(mB) ∈Md(A).
4. f←preserves

∧
,
∨
, that is: f←(

∧
M) =

∧
f←(M) and f←(

∨
M) =

∨
f←(M).

Note that, from the first property above, we have that mA = f←(mB) is the smallest
premetric such that f is mA,mB-Lip.

3.2 Generalized Kantorovich lifting
To construct metrics for probabilistic systems, as described in Section 2, one needs to lift
(pre)metrics on the state space S to (pre)metrics on P(S). One well known such lifting is
the Kantorovich metric, defined either via Lipschitz functions, or dually as a transportation
problem. In [3] a generalization of this construction is given by extending the range of
Lipschitz functions from (R, | · |) to a generic metric space (V, dV), where V ⊆ R is a convex
subset of the reals and dV ∈Md(V).

A function f : S → V can be lifted to a function f̂ : P(S)→ V by taking expectations:
f̂(∆) =

∫
S
fd∆. The requirement that V is convex ensures that f̂(∆) ∈ V . Then, given a

premetric m ∈M(S), we can define a lifted metric K(m) ∈M(P(S)) as:

K(m)(∆,Θ) = sup{dV (f̂(∆), f̂(Θ)) | f is m, dV -Lip}

The lifting K depends on the choice of (V, dV) that we generally leave implicit: many
results are given for any member of the family, while some state specific conditions on
dV . Note the difference between m, the premetric being lifted, and dV , a parameter of the
construction. Using the construction of Section 2, each member of the family gives rise to
a different bisimilarity metric bm, and under mild assumptions it can be shown that all of
them characterize bisimilarity at their kernel [3].3

Of particular interest is the classical Kantorovich K⊕, corresponding to (V, dV) =
(R, | · |), and the multiplicative variant K⊗, corresponding to (V, dV) = ((0,+∞), d⊗) where
d⊗(a, b) = | ln a − ln b|. The corresponding bisimilarity metric obtained from the classical
Kantorovich has been extensively studied; an important property of it is that bm(s, t) is
a bound on the total variation distance between the trace distributions originated from
states s, t (a quantitative analogue of the fact that bisimilarity implies trace equivalence).
The multiplicative Kantorovich provides the same bound, but for the multiplicative total
variation distance, a metric of central importance to the area of differential privacy. Hence,
the multiplicative variant provides a means for verifying privacy for concurrent systems.

Somewhat unexpectedly, it turns out that K(m) is a proper metric, even if m itself is
only a premetric: the metric properties of K(m) come from those of dV .

I Proposition 2. The following hold:
1. K is monotone.
2. K(m) ∈Md(S) (a proper metric) for all premetrics m ∈M(S).

Another interesting property of K concerns its relationship with f←. Given f : A→ B,
let f∗ : P(A)→ P(B) denote the function mapping ∆ to its pushforward measure, given by

f∗(∆)(Z) = ∆(f−1(Z)) for all measurable Z ⊆ B

3 Note that these “mild assumptions” are orthogonal to the results of this paper. If they are not satisfied,
ker(bm) might be strictly included in ∼, without violating any of our results.

CONCUR 2016

35:6 Up-To Techniques for Generalized Bisimulation Metrics

Then, we can map metrics inM(B) to those inM(P(A)) by either applying f←followed by
K, or applying K followed by f∗←. The two options are related by the following result:

I Proposition 3. Let f : A→ B and mB ∈M(B). Then (K ◦ f←)(mB) ≥ (f∗←◦K)(mB).
Due to the above result, K can be shown to preserve the Lip property (c.f. Section 3.4),

which in turn is crucial for establishing the soundness of the up-to context techniques.

Dual form on premetrics. The classical Kantorovich lifting can be dually expressed as
a transportation problem. The primal and dual formulations are well-known to coincide
on metrics; however, this is no longer the case when we work on premetrics. To see this,
notice that in the transportation problem, the distance Kd(m)(δ(s), δ(t)) (where Kd denotes
the dual Kantorovich) between two point distributions is exactly m(s, t), in other words
δ←◦Kd = idM(S). On the other hand, K(m) is always a metric, and it can be shown that
δ←◦K gives the metric closure operator.

Note that the dual forms of both the classical and the multiplicative Kantorovich are
particularly useful since, in contrast to the primal form, they provide direct algorithms for
computing the distance between finite distributions. Since the two forms no longer coincide,
we should ensure that both of them are sound when used in the up-to techniques. For
a general Kantorovich lifting K, let Kd be a monotone lifting that coincides with K on
metrics. It can be shown that Kd(m) ≤ K(m) for all premetrics m, which in turn means
that replacing K with Kd in the up-to techniques of Section 4 is sound.

3.3 Metric closure and chaining
A metric can be thought of as a generalization of an equivalence relation, since it satisfies
reflexivity, symmetry and transitivity (in the form of the triangle inequality). Similarly to
the equivalence closure, it is natural to define the metric closure mO of m: intuitively, the
goal is to decrease m just enough to enforce the metric properties. SinceMd is a complete
lattice, mO can be naturally defined as the greatest metric below m:

mO =
∨

(Md ∩ ↓m)

It can be shown that m 7→ mO is a closure operator whose fixpoints are exactlyMd(S).
Let MO denote the set {mO | m ∈M}. We can show that metric closure commutes with

the infima of the two lattices.

I Proposition 4. Let M ⊆M. Then
∧
d(MO) = (

∧
M)O.

This, in turn, means that the metric infimum
∧
d can be obtained by the premetric

infimum followed by metric closure, that is:
∧
dD = (

∧
D)O for D ⊆Md(S). Based on this,

we extend the
∧
d operator to premetrics, defined as

∧
dM = (

∧
M)O.

Finally, we can define the chaining m1 fm2 of two premetrics as:

(m1 fm2)(s1, s2) = inf
t∈S

(m1(s1, t) +m2(t, s2))

Chaining combines two premetrics by passing through some midway point, and will be used
as a primitive block for constructing up-to techniques in Section 4.

I Proposition 5. The following hold:
1. f is associative and monotone on both arguments
2. m1 ∧d m2 ≤ m1 fm2 ≤ m1 ∧m2

3. K(m1 fm2) ≤ K(m1)fK(m2)

K. Chatzikokolakis, C. Palamidessi and V. Vignudelli 35:7

3.4 Operations that preserve Lipschitz
The Lipschitz property plays a central role in all constructions of this work, since both the
Kantorovich lifting and the notion of progression depend on it. The following operations
preserving this property will play a crucial role in the up-to techniques developed in Section 4.

I Theorem 1. Let f : A→ B and assume it is mA,mB-Lip. Moreover, let MA = {mi
A}i∈I

and MB = {mi
B}i∈I such that f is mi

A,m
i
B-Lip for all i ∈ I. The following hold:

1. Inc/dec-reasing the source/target metric: f is m′A,m′B-Lip ∀m′A ≥ mA,m
′
B ≤ mB

2. Infima and suprema: f is
∨
MA,

∨
MB-Lip and

∧
MA,

∧
MB-Lip

3. Metric closure: f is mA
O,mB

O-Lip
4. Kantorovich lifting: f∗ is K(mA),K(mB)-Lip

Note that the property (3) above implies that K(m) = K(mO) since the sup in the
definition of K for both sides ranges over the same set of functions.

3.5 Convex and quasiconvex premetrics
If X is a convex set then X2 can be also viewed as a convex set of vectors (x, y), where∑
i λi(xi, yi) = (

∑
i λixi,

∑
i λiyi) for all λi’s such that

∑
i λi = 1. This allows us to talk

about the convexity of a premetric jointly on both arguments. We say that m ∈M(X) is:
convex iff m(

∑
i λi(xi, yi)) ≤

∑
i λim(xi, yi)

quasiconvex iff m(
∑
i λi(xi, yi)) ≤ maxim(xi, yi)

Note that there exist several distinct abstract notions of convexity for general metric spaces,
here (quasi)convexity is used in the usual sense of (quasi)convex functions.

The set P(S) is convex and so is V used in the construction of the Kantorovich lifting.
It can be shown that if dV is convex (resp. quasiconvex) then K(m) is also convex (resp.
quasiconvex) for all m ∈ M(S). As a consequence, the classical Kantorovich K⊕(m) is
convex (since | · | is convex), while the multiplicative variant K⊗(m) is quasiconvex (since
d⊗ is quasiconvex).

4 Up-to techniques

In this section, we extend to the metric case the theory of up-to techniques presented in
[12]. All the constructions assume some fixed underlying PA, which could be produced by a
process calculus like the probabilistic CCS of Section 5. In what follows, we use l to denote
premetrics on P(S).

4.1 Progressions
For a relation R on states of a non-probabilistic automaton, bisimulation can be defined in
terms of progressions. A relation R progresses to R′, denoted by R� R′, if whenever sR t
and s α−→ s′ then t α−→ t′ and s′R′ t′, and vice versa. A bisimulation can be thereby defined
as a relation that progresses to itself, i.e. R� R.

An important difference in the probabilistic case is that progressions have different source
and target domains. A premetric m on S (the source premetric) progresses to a premetric l
on P(S) (the target premetric).

I Definition 2. Given m ∈ M(S), l ∈ M(P(S)) we say that m progresses to l, written
m� l, iff m(s, t) < > implies that:

whenever s α−→ ∆ then t α−→ Θ with l(∆,Θ) ≤ m(s, t)

CONCUR 2016

35:8 Up-To Techniques for Generalized Bisimulation Metrics

whenever t α−→ Θ then s α−→ ∆ with l(∆,Θ) ≤ m(s, t)
Using the Hausdorff metric, progression can be written as a Lipschitz property:4

m� l iff ∀α : →α is m,H(l)-Lip

From the results about operations preserving Lipschitz, and the fact that Hausdorff is
monotone, we obtain the following useful properties of the progress relation:

m� l implies m′� l′ for all m′ ≥ m, l′ ≤ l.
Let d ∈Md(P(S)). Then m� d implies mO� d.
Let m =

∧
imi and l =

∧
li such that for all i: mi� li. Then m� l.

From the definition of bisimulation (pre)metrics (Section 2), we have that m ∈M(S) is
a bisimulation (pre)metric iff m� K(m). The bisimilarity metric is traditionally defined as
the

∧
d of all bisimulation metrics. Since metric closure preserves the Lip property, it also

preserves the bisimulation property, which means that we can equivalently obtain bm as the∧
of all bisimulation premetrics.

I Theorem 3. m is a bisimulation premetric iff mO is a bisimulation metric. Hence:
bm =

∧
d{d ∈Md(S) | d� K(d)} =

∧
{m ∈M(m) | m� K(m)}

Proof. Assuming that m is a bisimulation premetric, we have that →α is m,H(K(m))-Lip
for all α. Since H(K(m)) is a metric, from Theorem 1 we get that →α is mO, H(K(m))-Lip
and since K(mO) = K(m) we get that →α is mO, H(K(mO))-Lip which implies that mO is
a bisimulation metric. J

4.2 F functions, soundness, respectfulness
We can define an up-to technique using a function F onM(P(S)). Ideally, for a premetric m
on states, we want to allow the distance F(K(m))(∆,Θ) to be used instead of K(m)(∆,Θ)
in a bisimulation proof, since a bound to F(K(m)) could be easier to compute. Therefore,
we consider progressions of the form m� F(K(m)), where F :M(P(S))→M(P(S)).

I Definition 4. A function F :M(P(S)) →M(P(S)) is sound if m� F(K(m)) implies
bm ≤ m.

Hence, if F is a sound function then a bisimulation premetric up-to F allows us to derive
upper-bounds to the distance between two states. At the same time, using F in the target
metric allows us to simplify the proof that the states actually satisfy these bounds.

Respectful functions. Given a function F : M(P(S)) → M(P(S)), one can prove that
it is a sound up-to technique by means of a direct proof. However, it is known that the
composition of sound functions on relations is not necessarily a sound function, and the
standard counterexamples apply to the metric setting as well. In the non-probabilistic case,
this has led to the definition of “respectfulness”: an up-to function F on relations is respectful
if whenever R� R′ and R ⊆ R′, then F(R)� F(R′) and F(R) ⊆ F(R′). Respectfulness
implies soundness and at the same time is closed under composition [12].
On metrics, the definition of respectfulness must take care of the fact that the source and
target metrics have different domains, and that the function F is defined on the domain
P(S) of the target metric. Hence, a “corresponding” function G : M(S) →M(S) on the

4 We could also define progression as a Lipschitz property of a single function→ (s) = {(α,∆) | s α−→ ∆}.

K. Chatzikokolakis, C. Palamidessi and V. Vignudelli 35:9

source metric has to be defined. Instead of constructing a specific such G, we only assume its
existence and that it “plays well” with F and K, meaning that (K ◦ G)(m) ≤ (F ◦K)(m).
A concrete G is then chosen in the respectfulness proof of each up-to technique F .

I Definition 5. A function F :M(P(S)) →M(P(S)) is respectful iff it is monotone and
there exists G :M(S)→M(S) such that for all m,m′ ∈M(S):

(K ◦ G)(m) ≤ (F ◦K)(m)
m� K(m′) and m ≥ m′ imply G(m)� K(G(m′)) and G(m) ≥ G(m′)

I Theorem 6. Any respectful function is sound.

Proof. Let F be respectful and let G be its corresponding source map from the definition
of respectfulness. Assume that m � F(K(m)). Analogously to the proof in [12], we
define a sequence of metrics mn, n ≥ 0 as: m0 = m and mn+1 = G(mn) ∧ mn. By
construction, mn ≥ mn+1 for all n ≥ 0. We now show that mn � K(mn+1) for all
n ≥ 0 For the base case n = 0, from the respectfulness of F and the monotonicity of
K we have that F(K(m)) ≥ K(G(m)) ≥ K(G(m) ∧ m). Hence m � F(K(m)) implies
m0 = m � K(G(m) ∧ m) = K(m1). For the inductive step, we want to show that
mn+1 � K(mn+2), that is, G(mn) ∧mn� K(G(mn+1) ∧mn+1). We have that:

mn� K(mn+1) induction hypothesis
⇒ G(mn)� K(G(mn+1)) respectfulness, mn ≥ mn+1

⇒ G(mn) ∧mn� K(G(mn+1)) ∧K(mn+1) ∧ preserves �
⇒ G(mn) ∧mn� K(G(mn+1) ∧mn+1) K(a ∧ b) ≤ K(a) ∧K(b)

Since progressions are closed under infima,
∧
n≥0mn� K(

∧
n≥0mn). Hence,

∧
n≥0mn is a

bisimulation metric, and m ≥
∧
n≥0mn, which concludes the proof. J

4.2.1 Composing up-to techniques
The advantage of the respectfulness condition is that it makes it possible to derive the
soundness of a composed up-to function just by proving the respectfulness of its components.
We present here three operations that preserve respectfulness: function composition, function
chaining, and taking the infimum of a set of functions (these operations respectively correspond
to composition, chaining and union in the relational case).

I Theorem 7. The composition of respectful functions is respectful.

The theorem is proved by showing that, given two respectful functions F1,F2 and their
corresponding source maps G1,G2 from the definition of respectfulness, F = F1 ◦ F2 and
G = G1 ◦ G2 satisfy the requirements of respectfulness.

The chaining of up-to functions is defined using the f operator from Section 4.2.1. Define
the chaining of two functions F1,F2 as (F1fF2)(m) = F1(m)fF2(m). Using the properties
of f proved in Proposition 5, we derive the following result.

I Theorem 8. The chaining of respectful functions is respectful.

Analogously to chaining, define the infimum of a countable set of functions
∧
{Fi} as∧

{Fi}(m) =
∧
{Fi(m)}. Given a countable set {Fi} of respectful functions with correspond-

ing source maps {Gi}, we prove that the function
∧
{Fi} is respectful by using the source

map
∧
{Gi}.

I Theorem 9. The infimum of a set of respectful functions is respectful.

CONCUR 2016

35:10 Up-To Techniques for Generalized Bisimulation Metrics

4.2.2 Up-to bisimilarity metric and up-to (quasi)convexity
The respectfulness (and soundness) of up-to techniques such as up-to-bisimilarity-metric can
now be recovered by applying the operations presented in Section 4.2.1 to basic respectful
functions.

I Theorem 10. The identity Fid(l) = l and the constant-to-bm Fbm(l) = K(bm) functions
are respectful.

The result directly follows from the definition: for the first we take Gid(m) = m, for the
second Gbm(m) = bm. The up-to-bisimilarity-metric function can be now simply constructed
as Fbm f Fid f Fbm, and it is respectful as the chaining of respectful functions is (Theorem
8). By Theorem 9, we can also derive the respectfulness of the up-to-triangle-inequality
function (corresponding to the up-to-transitive-closure technique on relations), defined as∧
{fnFid}n≥1, where fnFid is the chaining of Fid with itself n-times.

Another useful proof technique consists in the possibility of splitting probability distributions
into components with common factors, and then only consider the (possibly weighted)
distances between the components. Define the up-to-quasiconvexity and the up-to-convexity
functions as follows:
Fqcv(l)(∆,Θ) = inf{maxi l(∆i,Θi)|∆ =

∑
i pi∆i and Θ =

∑
i piΘi}

Fcv(l)(∆,Θ) = inf{
∑
i pil(∆i,Θi)|∆ =

∑
i pi∆i and Θ =

∑
i piΘi}

The respectfulness of the above up-to techniques depends on the (quasi)convexity of the
Kantorovich operator. The following result is derived using the identity Gid as a source map.

I Theorem 11. If K is quasiconvex (resp. convex) then Fqcv (resp. Fcv) is respectful.

4.3 Faithful contexts
With up-to context techniques, common contexts in the probability distributions reached in
the bisimulation game are allowed to be safely removed. Given a set of states S, a context is
a function C : S → S. As usual, we write C[s] to denote the image of s under C. We look at
states in S as defined by a language whose terms are syntactically finite expressions, which
justifies the following assumption: for any class C of contexts, there is only a finite number
of states s′ such that s = C[s′] for some C ∈ C.

I Definition 12. Given a class of contexts C, a premetric m is closed under C iff C is
m,m-Lip for all C ∈ C. The closure of m under C, denoted by C(m), is defined as the greatest
premetric below m that is closed under C:

C(m) =
∨
{m′ ≤ m | m′ is closed under C}

Let C∗ = {C∗ | C ∈ C}. The up-to faithful context function FC is defined as: FC(l) = C∗(l).

Since the Lipschitz property is preserved by
∨

(Thm 1), it is easy to show that C(m) itself
is closed under C, that is, C(m)(C[s], C[t]) ≤ C(m)(s, t) ≤ m(s, t) for all C ∈ C. Moreover, it
follows from Thm 1 that K preserves the closure under C. Hence, K(C(m)) is always closed
under C∗: for all C ∈ C, K(C(m))(C∗[∆], C∗[Θ]) ≤ K(C(m))(∆,Θ) ≤ K(m)(∆,Θ).
The function C(m) (respectively: C∗(l)) can be alternatively characterized by considering the
infimum value of m when a common context is removed from two terms (respectively: from
two distributions). The context closure (s, t)C of the pair (s, t) is the set of all pairs of terms
of the form (C[s], C[t]), for C ∈ C. The context closure (∆,Θ)C∗ is extended to probability
distributions using the set of contexts C∗ ∈ C∗.

K. Chatzikokolakis, C. Palamidessi and V. Vignudelli 35:11

I Theorem 13. The functions C and C∗ can be alternatively characterized as follows:
1. C(m)(s, t) = inf{m(s′, t′) | (s, t) ∈ (s′, t′)C}
2. C∗(l)(∆,Θ) = inf{l(∆′,Θ′) | (∆,Θ) ∈ (∆′,Θ′)C∗}

In what follows, we often write C[∆] to denote C∗[∆].
Instead of directly proving soundness (or respectfulness) for up-to context functions FC

where C are contexts of a specific language, we follow [12] and define the class of faithful
contexts. Faithfulness only depends on general properties of the semantics of the contexts,
and the up-to-faithful-context function is respectful whenever used with a quasiconvex
Kantorovich operator (Theorem 15). In Section 5, the contexts of a probabilistic extension
of CCS are proved to satisfy the condition of faithfulness.

I Definition 14. A context class C is faithful if whenever C ∈ C, all transitions of C[s] are
of the form C[s] α−→

∑
i piCi[∆], where Ci ∈ C and either

1. ∆ = δ(s) and ∀t: C[t] α−→
∑
i piCi[δ(t)], or

2. s
α′−−→ ∆ and ∀t: if t α′−−→ Θ then C[t] α−→

∑
i piCi[Θ].

We can now prove the respectfulness of FC , assuming that the Kantorovich operator is
quasiconvex. The reason for this extra condition is that faithfulness allows contexts to be
probabilistic, meaning that when a transition is performed, the common context can be split
into a weighted sum of contexts. Quasiconvexity then allows us to establish a bound to the
distances between weighted sums of distributions with a common contexts (e.g.,

∑
i piCi[∆′]

and
∑
i piCi[Θ′]) based on the bounds of the components, which now are of the desired form

(Ci[∆′] and Ci[Θ′]).

I Theorem 15. If K is quasiconvex then FC is respectful.

Proof. The monotonicity of FC comes directly from the definition of C(m). Let G(m) = C(m),
we prove that G is the source map required by the definition of respectfulness:
1. we prove K(G(m)) ≤ FC(K(m)). From G(m) ≤ m we derive K(G(m)) ≤ K(m), and

since G(m) is closed under C and K preserves closedness, then K(G(m)) is closed under
C∗. Finally, FC(K(m)) is the greatest premetric below K(m) that is is closed under C∗,
from which the result follows;

2. suppose m� K(m′) and m ≥ m′. Then G(m) ≥ G(m′) comes from the monotonicity of
C(m), and it remains to prove that G(m)� K(G(m′)). We first show that
? for any faithful context C, C[s] α−→ ∆ implies that, for all t, if m(s, t) < > then
C[t] α−→ Θ with K(G(m′))(∆,Θ) ≤ m(s, t)

by considering the two cases of the definition of respectfulness and using quasiconvexity
to derive the result. Since a term has only a finite number of subterms, by Theorem
13 we have G(m)(s, t) = m(s′, t′) for some s′, t′ and C faithful such that s = C[s′] and
t = C[t′]. Hence, by property ? we have that G(m)� K(G(m′)).

J

5 Up-to techniques for probabilistic CCS

The conditions of faithfulness are quite general and can be instantiated by several varieties
of probabilistic languages. We consider here CCS with a probabilistic choice operator and
prove that its unary contexts (i.e., terms with a single hole, occurring only once) are faithful.
The terms of pCCS are defined by the following grammar:

P,Q ::= 0
∣∣∣ α.⊕i [pi]Pi

∣∣∣ P +Q
∣∣∣ P |Q ∣∣∣ (νa)P

∣∣∣ A

CONCUR 2016

35:12 Up-To Techniques for Generalized Bisimulation Metrics

a.⊕i [pi]Pi
α−→
∑
i piδ(Pi)

P
α−→ ∆

P +Q
α−→ ∆

P
α−→ ∆

P |Q α−→ ∆ | δ(Q)

P
α−→ ∆ Q

ᾱ−→ Θ
P |Q τ−→ ∆ |Θ

P
α−→ ∆ α 6= a, ā

(νa)P α−→ ∆
P

α−→ ∆ A = P

A
α−→ ∆

Figure 1 Structured Operational Semantics for pCCS.

where α ::= a, ā, τ is an action label, for some underlying set of labels such that a ∈ Act
iff ā ∈ Act, and ¯̄α = α for α ∈ Act, where τ 6∈ Act. The semantics is given by the rules
in Figure 1, where the parallel composition of distributions ∆,Θ on pCCS terms is defined
by ∆ |Θ(P) = ∆(P1) ·Θ(P2) if P = P1 |P2, and 0 otherwise. The symmetric rules for the
nondeterministic choice and parallel composition are omitted. We assume that every constant
A of the language is defined by an equation A = P for some pCCS process P where A may
occur guarded. When the distribution following an action label is a point distribution, the
⊕i is omitted.

I Theorem 16. The (unary) contexts of pCCS are faithful.

Theorem 16 is proved by induction on the structure of the contexts. Since the up-to
context technique is respectful for faithful contexts (Theorem 15), it follows from Theorem
16 that the up-to context function FC where C is the set of pCCS contexts is respectful.

I Example 17. Let A and A′ be the pCCS constants defined in the introduction. We prove
that their distance in the bisimilarity metric bm⊕, based on the standard Kantorovich lifting
K⊕ and with > = 1, is bounded by 1

2 . Define the premetric m on pCCS terms as follows:
m(A,A′) = 1

2 and, for all P,Q different from A,A′, m is the discrete metric, i.e., m(P,Q) = 0
if P = Q and m(P,Q) = 1 otherwise. We prove that m is a bisimulation premetric up-to
(Fcv ◦ FC) f Fid, i.e., the chaining of the up-to-convexity-and-context function with the
up-to-identity function.
Suppose that A moves (the case when A′ moves is symmetrical). If A a−→ ∆ = 1

2 ·δ(A)+ 1
2 ·δ(c),

then A′ a−→ ∆′ = 1
2 · δ(A

′) + 1
4 · δ(c) + 1

4 · δ(d). Define ∆′′ = 1
2 · δ(A

′) + 1
2 · δ(c). Then:

((Fcv ◦ FC)f Fid)(K⊕(m))(∆,∆′) ≤ (Fcv ◦ FC)(K⊕(m))(∆,∆′′) + (K⊕(m))(∆′′,∆′)
≤ 1

2 · (K⊕(m))(δ(A), δ(A′)) + (K⊕(m))(∆′′,∆′)
≤ 1

4 + 1
4

Note that the same premetric and the same proof can be applied when an arbitrary pCCS
process P is substituted to b in the definition of the constants A,A′.

Finally, we give an example to illustrate how the generalized Kantorovich lifting captures
differential privacy, and how the techniques developed in this paper can help to verify this
property. Following [3], we model differential privacy in pCCS as a bound eε on the ratio
between the probability that a process P produce a set of traces ψ, and the probability that
an “adjacent” process P ′ produce the same set ψ, for any ψ. In [3] it is shown that in order
to establish this property it is sufficient to show that bm⊗(P, P ′) ≤ ε, where bm⊗ is defined
based on the multiplicative Kantorovich K⊗ and > = +∞.

In the example, we consider a database D containing medical information relative to
(at most) n patients. We assume that we are interested in obtaining statistical information

K. Chatzikokolakis, C. Palamidessi and V. Vignudelli 35:13

about a certain disease, and that for this purpose we are allowed to ask queries like “how
many patients are affected by the disease”. Queries of this kind are called counting queries
and it is well known that they can be sanitized, i.e. made ε-differentially private, by adding
geometric noise to the real answer, namely a noise distribution py(z) = cze

|z−y|ε, where y is
the real answer, z is the reported answer (ranging between 0 and n), and cz is a normalization
constant that depends only on z. Another database D′ is adjacent to D if it differs from D

for only one record (i.e., one patient). Clearly, the (sanitized) answers to the above query in
two adjacent databases will differ by at most 1, and it is easy to see that the ratio between
py+1(z) and py(z) is at most eε, which proves that ε-differential privacy is satisfied by the
geometrical-noise method.

I Example 18. Consider the adjacent databases D,D′ where y and y+1 patients are affected
by the disease, respectively. We model D and D′ in pCCS as

D = q.⊕nz=0 [py(z)]v̄z.D D′ = q.⊕nz=0 [py+1(z)]v̄z.D′

where the prefix q represents the acceptance of a query request, and the action v̄z represents
the delivery of the reported answer. Consider now a process Q that queries the database.
This can be defined as Q = q̄. +n

z=0 vz.w̄z, where +n
z=0Pz denotes the nondeterministic

choice P0 + P2 + ...+ Pn. It is possible to prove that the processes D |Q and D′ |Q satisfy
ε-differential privacy, by proving that bm⊗(D |Q,D′ |Q) ≤ ε.

What we want to prove now is that the level of differential privacy decreases linearly with
the number of queries (this is a well-known fact, the interest here is to show it using up-to
techniques). Namely that if we define the processes P and P ′ as the parallel composition of
i instances of Q and D and D′ respectively, then K⊗(P, P ′) ≤ iε We prove this for the case
i = 2. Define the premetricm asm(D |Q |Q,D′ |Q |Q) = 2ε, and as the discrete metric on all
other pairs. The interesting case is when D (symmetrically: D′) synchronizes with one of the
queries. Suppose that D |Q |Q τ−→ ∆, with ∆ =

∑n
z=0 py(z) ·δ(v̄z.D | (+n

z=0vz.w̄z) |Q). Then
D′ |Q |Q τ−→ ∆′, with ∆′ =

∑n
z=0 py+1(z)·δ(v̄z.D′ | (+n

z=0vz.w̄z) |Q). We derive the result by
exploiting the soundness of the composition of up-to-quasiconvexity, up-to-context and up-to-
bm functions, chained with up-to-identity. Let ∆′′ =

∑n
z=0 py(z) · δ(v̄z.D′ | (+n

z=0vz.w̄z) |Q).
We have:

((Fqcv ◦ FC ◦ Fbm)f Fid)(K⊗(m))(∆,∆′)
≤ (Fqcv ◦ FC ◦ Fbm)(K⊗(m))(∆,∆′′) + (K⊗(m))(∆′′,∆′)
≤ (K⊗(bm))(δ(D |Q), δ(D′ |Q)) + (K⊗(m))(∆′′,∆′)
≤ ε+ ε

6 Conclusion and future work

In this paper we studied techniques to increase the efficiency of the bisimulation proof
method in the case of the (extended) Kantorovich metric. To this purpose, we have explored
properties of the Kantorovich lifting, and we have generalized to the case of metrics the
bisimulation up to F method by Sangiorgi. This allows us to reduce the size of the set of
pairs for which we have to show the progress relation.

The theory of compatibility [11] for up-to techniques generalizes the respectfulness
conditions on relations in a lattice-theoretic setting, where general properties of the progress
relation and of the up-to functions (seen as functionals on the same lattice) can be proved and
later instantiated to capture bisimulation relations on automata. A more recent approach

CONCUR 2016

35:14 Up-To Techniques for Generalized Bisimulation Metrics

[10] consists in directly focusing on the greatest compatible (or respectful) function. In this
paper we considered probabilistic systems and metrics, where the domain and the target
of the progress relation are not in the same lattice anymore, and the up-to functions are
defined on the target domain. The generalization of the techniques presented in this paper
to a lattice-theoretic setting provides an interesting line of research.
In [2], up-to techniques are developed in an abstract fibrational setting, from which one could
be able to obtain techniques for metrics. Studying whether the techniques of this paper can
be obtained in this way is left as future work.

References
1 Giorgio Bacci, Giovanni Bacci, Kim G. Larsen, and Radu Mardare. On-the-fly exact com-

putation of bisimilarity distances. In Proc. of TACAS, volume 7795 of LNCS, pages 1–15.
Springer, 2013.

2 Filippo Bonchi, Daniela Petrişan, Damien Pous, and Jurriaan Rot. Coinduction up-to in a
fibrational setting. In Proc. of CSL-LICS, pages 20:1–20:9. ACM, 2014.

3 Konstantinos Chatzikokolakis, Daniel Gebler, Catuscia Palamidessi, and Lili Xu. Gener-
alized bisimulation metrics. In Proc. of CONCUR, volume 8704 of LNCS, pages 32–46.
Springer, 2014.

4 Konstantinos Chatzikokolakis, Catuscia Palamidessi, and Valeria Vignudelli. Up-to tech-
niques for generalized bisimulation metrics. Technical report, INRIA, 2016. URL: https:
//hal.inria.fr/hal-01335234.

5 Josee Desharnais, Vineet Gupta, Radha Jagadeesan, and Prakash Panangaden. Metrics
for labeled markov systems. In Proc. of CONCUR, volume 1664 of LNCS, pages 258–273.
Springer, 1999.

6 Josee Desharnais, Radha Jagadeesan, Vineet Gupta, and Prakash Panangaden. The metric
analogue of weak bisimulation for probabilistic processes. In Proc. of LICS, pages 413–422.
IEEE, 2002.

7 Josee Desharnais, Radha Jagadeesan, Vineet Gupta, and Prakash Panangaden. Metrics
for labelled Markov processes. Theor. Comp. Sci., 318(3):323–354, 2004.

8 Cynthia Dwork. Differential privacy. In Proc. of ICALP, volume 4052 of LNCS, pages 1–12.
Springer, 2006.

9 R. Milner. Communication and Concurrency. Series in Comp. Sci. Prentice Hall, 1989.
10 Damien Pous. Coinduction all the way up. To appear in Proc. of LICS, 2016.
11 Damien Pous and Davide Sangiorgi. Enhancements of the bisimulation proof method. In

Advanced Topics in Bisimulation and Coinduction. Cambridge University Press, 2012.
12 Davide Sangiorgi. On the bisimulation proof method. Mathematical Structures in Computer

Science, 8(5):447–479, 1998.
13 Franck van Breugel and James Worrell. An algorithm for quantitative verification of prob-

abilistic transition systems. In Proc. of CONCUR, volume 2154 of LNCS, pages 336–350.
Springer, 2001.

14 Franck van Breugel and James Worrell. Towards quantitative verification of probabilistic
transition systems. In Proc. of ICALP, volume 2076 of LNCS, pages 421–432. Springer,
2001.

15 Franck van Breugel and James Worrell. Approximating and computing behavioural dis-
tances in probabilistic transition systems. Theor. Comp. Sci., 360(1–3):373–385, 2006.

16 Franck van Breugel and James Worrell. The complexity of computing a bisimilarity pseudo-
metric on probabilistic automata. In Horizons of the Mind, volume 8464 of LNCS, pages
191–213. Springer, 2014.

https://hal.inria.fr/hal-01335234
https://hal.inria.fr/hal-01335234

Modal Decomposition on Nondeterministic
Probabilistic Processes
Valentina Castiglioni1, Daniel Gebler2, and Simone Tini3

1 University of Insubria, Como, Italy
v.castiglioni2@uninsubria.it

2 VU University Amsterdam, Amsterdam, The Netherlands
e.d.gebler@vu.nl

3 University of Insubria, Como, Italy
simone.tini@uninsubria.it

Abstract
We propose a SOS-based method for decomposing modal formulae for nondeterministic proba-
bilistic processes. The purpose is to reduce the satisfaction problem of a formula for a process
to verifying whether its subprocesses satisfy certain formulae obtained from its decomposition.
By our decomposition, we obtain (pre)congruence formats for probabilistic bisimilarity, ready
similarity and similarity.

1998 ACM Subject Classification F.3.2 Semantics of Programming Languages

Keywords and phrases SOS, nondeterministic probabilistic process algebras, logical characteri-
zation, decomposition of modal formulae

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2016.36

1 Introduction

In this paper we provide a SOS [23] driven method for the decomposition of modal formulae
for nondeterministic probabilistic transition systems (PTSs) [6, 24], which are a model in
which nondeterminism and probability coexist. In essence, our target is to reduce the
satisfaction problem of a modal formula for a process to the satisfaction of suitable formulae
for its subprocesses, where these formulae are derived from the SOS transition rules.

In the non probabilistic setting, such a problem has been tackled in [2, 12–14, 22], by
exploiting ruloids [3], which are SOS transition rules that are derived from the SOS specifi-
cation and define the behavior of open processes in terms of the behavior of their variables.
In [2,12,14] the decomposition of modal formulae is used to systematically derive expressive
congruence formats for several behavioral equivalences and preorders from their modal char-
acterizations. In [15] such an approach is applied to the reactive probabilistic model [21],
which does not admit internal nondeterminism and is therefore less general than PTSs.

In the PTS model, processes perform actions and evolve to probability distributions over
processes, i.e. an a-labeled transition is of the form t

a−→ π, with t a process and π a dis-
tribution holding all information on the probabilistic behavior arising from this transition.
All modal logics developed for the PTS model are equipped with modalities allowing for the
specification of the quantitative properties of processes. In essence, this means that some
modal formulae are (possibly indirectly) evaluated on distributions. In order to decompose
this kind of formulae, we introduce a SOS machinery, called distribution specification, allow-
ing us to infer transitions of the form π

q−→ t whenever the distribution π assigns probability
© Valentina Castiglioni, Daniel Gebler and Simone Tini;
licensed under Creative Commons License CC-BY

27th International Conference on Concurrency Theory (CONCUR 2016).
Editors: Josée Desharnais and Radha Jagadeesan; Article No. 36; pp. 36:1–36:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.36
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

36:2 Modal Decomposition on Nondeterministic Probabilistic Processes

q to process t. Then we derive the distribution ruloids, which allow us to define the be-
havior of open distributions in terms of the behavior of their distribution variables. These
distribution ruloids can support the decomposition of formulae in any modal logic for PTSs.

We present the decomposition of formulae from the two-sorted boolean-valued modal
logic L of [7]. This is an expressive logic, which characterizes probabilistic bisimilarity [7]
and bisimilarity metric [4]. We apply our decomposition method also to two subclasses of
formulae in L, denoted by Lr and L+, which we prove to characterize resp. probabilistic
ready similarity and similarity. Finally, to show the robustness of our approach we apply it
to derive the congruence theorem for probabilistic bisimilarity wrt. the PGSOS format [5]
and the precongruence theorem for probabilistic ready similarity and similarity wrt. the
PGSOS format and the positive PGSOS format, respectively. Summarizing:
1. We present new logical characterizations of probabilistic ready similarity and similarity

obtained by means of two sublogics of L, resp. Lr and L+.
2. We define a SOS machinery for the specification of the probabilistic behavior of processes,

which can support the decomposition of any modal logic for PTSs.
3. We develop a method of decomposing formulae in L and in its sublogics Lr and L+.
4. We derive (pre)congruence formats for probabilistic bisimilarity, ready similarity and

similarity by exploiting our decomposition method on the logics characterizing them.

2 Probabilistic Transition Systems

The PTS model. A signature Σ is a countable set of operators. We let n range over the
rank of the operators. We assume a countable set of (state) variables Vs disjoint from Σ.
The set T(Σ, V) of terms over Σ and V ⊆ Vs is defined as usual. By T (Σ) we denote the
set of the closed terms T(Σ, ∅). By T(Σ) we denote the set of the open terms T(Σ,Vs).

Nondeterministic probabilistic transition systems (PTSs) [6,24] extend LTSs by allowing
for probabilistic choices in the transitions. The state space is the set of the closed terms
T (Σ). The transitions are of the form t

a−→ π, with t a term in T (Σ), a an action label and π
a probability distribution over T (Σ), i.e. a mapping π : T (Σ)→ [0, 1] with

∑
t∈T (Σ) π(t) = 1.

By ∆(T (Σ)) we denote the set of all probability distributions over T (Σ).

I Definition 1 (PTS, [6, 24]). A PTS is a triple (T (Σ),A,−→), where:
(i) Σ is a signature,
(ii) A is a countable set of actions, and
(iii) −→⊆ T (Σ)×A×∆(T (Σ)) is a transition relation.

We say that a PTS P = (T (Σ),A,−→) is image finite if each closed term in T (Σ) has finitely
many outgoing a-labeled transitions for each a ∈ A.

For π ∈ ∆(T (Σ)), supp(π) = {t ∈ T (Σ) | π(t) > 0} is the support of π. For t ∈ T (Σ), δt
is the Dirac distribution s.t. δt(t) = 1 and δt(s) = 0 for s 6= t. For f ∈ Σ and πi ∈ ∆(T (Σ)),
f(π1, . . . , πn) is the distribution defined by f(π1, . . . , πn)(f(t1, . . . , tn)) =

∏n
i=1 πi(ti). The

convex combination
∑
i∈I piπi of a family of distributions {πi}i∈I ⊆ ∆(T (Σ)) with pi ∈ (0, 1]

and
∑
i∈I pi = 1 is defined by (

∑
i∈I piπi)(t) =

∑
i∈I(piπi(t)) for all t ∈ T (Σ).

Bisimulation. A (probabilistic) bisimulation is an equivalence relation over T (Σ) equating
two terms if they can mimic each other’s transitions and evolve to distributions related by
the same bisimulation. To formalize this, we need to lift relations over terms to distributions.

V. Castiglioni, D. Gebler, and S. Tini 36:3

I Definition 2 (Relation lifting, [8]). The lifting of a relation R ⊆ T (Σ) × T (Σ) is the
relation R† ⊆ ∆(T (Σ))×∆(T (Σ)) with πR† π′ whenever there is a countable set of indexes
I s.t.:
(i) π =

∑
i∈I piδsi ,

(ii) π′ =
∑
i∈I piδti , and

(iii) si R ti for all i ∈ I.

I Definition 3 (Probabilistic (bi)simulations, [21, 24]). Assume a PTS (T (Σ),A,−→).
1. A binary relation R ⊆ T (Σ)× T (Σ) is a simulation if, whenever sR t, if s a−→ πs then

there is a transition t a−→ πt s.t. πsR †πt.
2. A simulation R is a ready simulation if, whenever sR t, if s a−→6 then t a−→6 .
3. A bisimulation is a symmetric simulation.

The union of all simulations (resp.: ready simulations, bisimulations) is the greatest sim-
ulation (resp.: ready simulation, bisimulation), denoted v (resp.: vr, ∼), called similarity
(resp.: ready similarity, bisimilarity), and is a preorder (resp.: preorder, equivalence).

Logical characterization. As a logic expressing behavioral properties over terms, we con-
sider the modal logic L of [7], which extends HML [19] with a probabilistic choice modality.

I Definition 4 (Modal logic L, [7]). The classes of state formulae Ls and distribution for-
mulae Ld over A are defined by the following BNF-like grammar:

Ls : ϕ ::= > | ¬ϕ |
∧
j∈J ϕj | 〈a〉ψ Ld : ψ ::=

⊕
i∈I riϕi

where:
(i) ϕ ranges over Ls,
(ii) ψ ranges over Ld,
(iii) a ∈ A,
(iv) I, J are at most countable sets of indexes with I, J 6= ∅, and
(v) ri ∈ (0, 1] for each i ∈ I and

∑
i∈I ri = 1.

We shall write 〈a〉ϕ for 〈a〉
⊕

i∈I riϕi with I = {i}, ri = 1 and ϕi = ϕ.

I Definition 5 (Satisfaction relation, [7]). The satisfaction relation |=⊆ (T (Σ) × Ls) ∪
(∆(T (Σ))× Ld) is defined by structural induction on formulae by

t |= > always;
t |= ¬ϕ iff t |= ϕ does not hold;
t |=

∧
j∈J ϕj iff t |= ϕj for all j ∈ J ;

t |= 〈a〉ψ iff t a−→ π for a distribution π ∈ ∆(T (Σ)) with π |= ψ;
π |=

⊕
i∈I riϕi iff π =

∑
i∈I riπi for distributions πi with t |= ϕi for all t ∈ supp(πi).

Dealing with L is motivated by its characterization of bisimilarity, proved in [7] (see
Thm. 6 below), bisimilarity metric, proved in [4], and similarity and ready similarity, proved
here (see Thm. 8 below).

I Theorem 6 ([7]). Assume an image finite PTS (T (Σ),A,−→) and terms s, t ∈ T (Σ).
Then, s ∼ t if and only if they satisfy the same formulae in Ls.

The characterization of ready similarity and similarity requires two subclasses of L.

CONCUR 2016

36:4 Modal Decomposition on Nondeterministic Probabilistic Processes

I Definition 7. The classes of ready formulae Lr and positive formulae L+ are defined as

Ls
r : ϕ ::= > | ā |

∧
j∈J ϕj | 〈a〉ψ Ld

r : ψ ::=
⊕

i∈I riϕi
Ls

+ : ϕ ::= > |
∧
j∈J ϕj | 〈a〉ψ Ld

+ : ψ ::=
⊕

i∈I riϕi

where ā stays for ¬〈a〉>.

The classes Lr and L+ are strict sublogics of the one proposed in [9] for the character-
ization of failure similarity and forward similarity [24]. In particular, the logic used in [9]
allows for arbitrary formulae to occur after the diamond modality. We can show that our
sublogics are powerful enough for the characterization of ready similarity and similarity.

I Theorem 8. Assume an image finite PTS (T (Σ),A,−→) and terms s, t ∈ T (Σ). Then:
1. s vr t iff for any formula ϕ ∈ Ls

r, s |= ϕ implies t |= ϕ.
2. s v t iff for any formula ϕ ∈ Ls

+, s |= ϕ implies t |= ϕ.

Probabilistic transition system specifications. PTSs are usually defined by means of SOS
rules, which are syntax-driven inference rules allowing us to infer the behavior of terms
inductively wrt. their structure. Here we consider rules in the probabilistic GSOS format [5]
(examples in Ex. 10), which allow for specifying most of probabilistic process algebras [16,18].

In these rules we need syntactic expressions that denote probability distributions. We
assume a countable set of distribution variables Vd. We denote by V the set of state and
distribution variables V = Vs ∪ Vd. We let µ, ν, . . . range over Vd and ζ range over V. The
set of distribution terms over Σ, Vs ⊆ Vs and Vd ⊆ Vd, notation DT(Σ, Vs, Vd), is the least
set satisfying:
(i) {δt | t ∈ T(Σ, Vs)} ⊆ DT(Σ, Vs, Vd),
(ii) Vd ⊆ DT(Σ, Vs, Vd),
(iii) f(Θ1, . . . ,Θn) ∈ DT(Σ, Vs, Vd) whenever f ∈ Σ and Θi ∈ DT(Σ, Vs, Vd), and
(iv)

∑
i∈I piΘi ∈ DT(Σ, Vs, Vd) whenever Θi ∈ DT(Σ, Vs, Vd) and pi ∈ (0, 1] with

∑
i∈I pi =

1.
We write DT(Σ) for DT(Σ,Vs,Vd), i.e. the set of all open distribution terms, and DT (Σ) for
DT(Σ, ∅, ∅), i.e. the set of all closed distribution terms. Distribution terms have the following
meaning. An instantiable Dirac distribution δt instantiates to δt′ if t instantiates to t′. A
distribution variable µ ∈ Vd is a variable that takes values from ∆(T (Σ)). Case (3) lifts
the structural inductive construction of terms to distribution terms. Case (4) allows us to
construct convex combinations of distributions. By var(t) (resp. var(Θ)) we denote the set
of the variables occurring in t (resp. Θ).

A positive (resp. negative) literal is an expression of the form t
a−→ Θ (resp. t a−→6) with

t ∈ T(Σ), a ∈ A and Θ ∈ DT(Σ). The literals t a−→ Θ and t a−→6 are said to deny each other.

I Definition 9 (PGSOS rules, [5]). A PGSOS rule r has the form:

{xi
ai,m−−−→ µi,m | i ∈ I,m ∈Mi} {xi

ai,n−−−→6 | i ∈ I, n ∈ Ni}
f(x1, . . . , xn) a−→ Θ

with f ∈ Σ, I = {1, . . . , n}, Mi, Ni finite indexes sets, ai,m, ai,n, a ∈ A actions, xi ∈
Vs, µi,m ∈ Vd variables and Θ ∈ DT(Σ) a distribution term. Furthermore, all µi,m for i ∈ I
and m ∈ Mi are distinct, all x1, . . . , xn are distinct, and var(Θ) ⊆ {µi,m | i ∈ I,m ∈
Mi} ∪ {x1, . . . , xn}.
We say that P = (Σ,A, R), with Σ a signature, A a countable set of actions and R a finite set
of PGSOS rules, is a PGSOS probabilistic transition system specification (PGSOS-PTSS).

V. Castiglioni, D. Gebler, and S. Tini 36:5

I Example 10. The operators of synchronous parallel composition | and probabilistic alter-
native composition +p, with p ∈ (0, 1], are specified by the following PGSOS rules:

x
a−→ µ y

a−→ ν

x|y a−→ µ|ν
x

a−→ µ y
a−→6

x+p y
a−→ µ

x
a−→6 y

a−→ ν

x+p y
a−→ ν

x
a−→ µ y

a−→ ν

x+p y
a−→ pµ+ (1− p)ν

.

For a PGSOS rule r, the positive (resp. negative) literals above the line are the posi-
tive premises, notation pprem(r) (resp. negative premises, notation nprem(r)). The literal
f(x1, . . . , xn) a−→ Θ is called the conclusion, notation conc(r), the term f(x1, . . . , xn) is
called the source and the distribution term Θ is called the target.

A PGSOS rule r is said to be positive if nprem(r) = ∅. Then we say that a PGSOS-PTSS
P = (Σ,A, R) is positive if all the PGSOS rules in R are positive.

A PTS is derived from a PTSS through the notions of substitution and proof.
A substitution is a mapping σ : V → T(Σ) ∪ DT(Σ) s.t. σ(x) ∈ T(Σ) if x ∈ Vs and

σ(µ) ∈ DT(Σ) if µ ∈ Vd. It extends to terms, literals and rules by element-wise application.
A substitution is closed if it maps variables to closed terms. A closed substitution instance
of a literal (resp. PGSOS rule) is called a closed literal (resp. closed PGSOS rule).

I Definition 11 (Proof). A proof from a PTSS P of a closed literal α is a well-founded,
upwardly branching tree, with nodes labeled by closed literals, s.t. the root is labeled α and,
if β is the label of a node q and K is the set of labels of the nodes directly above q, then:

either β is positive and K/β is a closed substitution instance of a rule in R,
or β is negative and for each closed substitution instance of a rule in R whose conclusion
denies β, a literal in K denies one of its premises.

A literal α is provable from P , notation P ` α, if there exists a proof from P of α.

The set of literals provable from a PGSOS-PTSS P is unique and contains literals that do
not deny each other [3]. The model induced by P is the PTS (T (Σ),A,−→) whose transition
relation −→ contains exactly the closed positive literals provable from P .

3 Distribution specifications

The decomposition of state formulae in Sec. 4 is based on a collection of rules extracted from
the PTSS, called ruloids. To have a similar method for distribution formulae, we develop a
SOS-like machinery allowing us to infer the expression Θ q−→ t whenever a closed distribution
term Θ assigns probability weight q to a closed term t. Such a machinery can be exploited
also to decompose formulae of any logic, and can be easily generalized to cover the case of
sub-distributions that are used in models different from PTSs.

A distribution literal is of the form Θ q−→ t, with Θ ∈ DT(Σ), q ∈ (0, 1] and t ∈ T(Σ). A
set of distribution literals {Θ qi−−→ ti | i ∈ I} is a distribution over terms if

∑
i∈I qi = 1 and

all ti are distinct. This expresses that Θ is the distribution over T(Σ) giving weight qi to ti.
To infer distributions over terms {Θ qi−−→ ti | i ∈ I} inductively wrt. the structure of

Θ, we introduce the Σ-distribution rules. Let δVs := {δx | x ∈ Vs} denote the set of all
instantiable Dirac distributions with a variable as term, and ϑ, ϑi, . . . denote distribution
terms in DT(Σ) ranging over Vd ∪ δVs . Then, for arbitrary sets S1, . . . , Sn, we denote by
×n

i=1 Si the set of tuples k = [s1, . . . , sn] with si ∈ Si. The i-th element of k is denoted k(i).

I Definition 12 (Σ-distribution rules). Assume a signature Σ. The set RΣ of the Σ-
distribution rules consists of the least set containing the following inference rules:
1. {δx

1−→ x} for any state variable x ∈ Vs;

CONCUR 2016

36:6 Modal Decomposition on Nondeterministic Probabilistic Processes

2.

⋃
i=1,...,n

{
ϑi

qi,j−−−→ xi,j | j ∈ Ji,
∑
j∈Ji

qi,j = 1
}

{
f(ϑ1, . . . , ϑn) qk−−→ f(x1,k(1), . . . , xn,k(n)) | qk =

∏
i=1,...,n

qi,k(i), k ∈ ×
i=1,...,n

Ji

}
where f ∈ Σ, the distribution terms ϑi ∈ Vd∪δVs are all distinct, and for each i = 1, . . . , n
the state variables xi,j ’s with j ∈ Ji are pairwise distinct;

3.

⋃
i∈I

{
ϑi

qi,j−−−→ xi,j | j ∈ Ji,
∑
j∈Ji

qi,j = 1
}

{∑
i∈I

piϑi
qx−−→ x | qx =

∑
i∈I,j∈Ji s.t. xi,j=x

pi · qi,j and x ∈ {xi,j | j ∈ Ji, i ∈ I}
}

where I is an at most countable set of indexes, the distribution terms ϑi ∈ Vd ∪ δVs are
all distinct, and for each i ∈ I the state variables xi,j ’s with j ∈ Ji are pairwise distinct.

Then, the Σ-distribution specification (Σ-DS) is the pair DΣ = (Σ, RΣ).

For each Σ-distribution rule rD, all sets above the line are called premises, notation
prem(rD), and the set below the line is called conclusion, notation conc(rD). It is not hard
to see that all premises and the conclusion are distributions over terms.

I Example 13. An example of Σ-distribution rule with source µ|ν is the following:

{µ 1/4−−−→ x1, µ
3/4−−−→ x2} {ν

1/3−−−→ y1, ν
2/3−−−→ y2}

{µ|ν 1/12−−−→ x1|y1, µ|ν 1/6−−−→ x1|y2, µ|ν 1/4−−−→ x2|y1, µ|ν 1/2−−−→ x2|y2}
.

The following notion of reduction wrt. a substitution allows us to extend the notion of
substitution to distributions over terms and, then, to Σ-distribution rules.

I Definition 14 (Reduction wrt. a substitution). Assume a substitution σ and a distribution
over terms L = {Θ qi−−→ ti | i ∈ I}. We say that σ reduces L to the set of distribution literals
L′ = {σ(Θ) qj−−→ tj | j ∈ J}, or that L′ is the reduction wrt. σ of L, notation σ(L) = L′, if:

for each index j ∈ J there is at least one index i ∈ I with σ(ti) = tj ;
the terms {tj | j ∈ J} are pairwise distinct;
for each index j ∈ J , we have qj =

∑
{i∈I|σ(ti)=tj} qi.

I Proposition 15. For a substitution σ and a distribution over terms L, the set of distri-
bution literals σ(L) is a distribution over terms.

I Definition 16 (Reduced instance of a Σ-distribution rule). The reduced instance of a Σ-
distribution rule rD wrt. a substitution σ is the inference rule σ(rD) s.t.:
1. If rD is as in Def. 12.1, then σ(rD) = {δσ(x)

1−→ σ(x)}.
2. If rD is as in Def. 12.2, then

σ(rD) =

⋃
i=1,...,n

{σ(ϑi)
qi,h−−−→ ti,h | h ∈ Hi}{

f(σ(ϑ1), . . . , σ(ϑn)) qκ−−→ f(t1,κ(1), . . . , tn,κ(n)) | qκ =
∏

i=1,..,n
qi,κ(i), κ ∈ ×

i=1,..,n
Hi

}
where {σ(ϑi)

qi,h−−−→ ti,h | h ∈ Hi} = σ({ϑi
qi,j−−−→ xi,j | j ∈ Ji}).

3. If rD is as in Def. 12.3, then

σ(rD) =

⋃
i∈I
{σ(ϑi)

qi,h−−−→ ti,h | h ∈ Hi}{∑
i∈I

piσ(ϑi)
qt−−→ t | qt =

∑
i∈I,h∈Hi s.t. ti,h=t

pi · qi,h, t ∈ {ti,h | h ∈ Hi, i ∈ I}
}

V. Castiglioni, D. Gebler, and S. Tini 36:7

where {σ(ϑi)
qi,h−−−→ ti,h | h ∈ Hi} = σ({ϑi

qi,j−−−→ xi,j | j ∈ Ji}).

Notice that Prop. 15 ensures that the premises of σ(rD) are distributions over terms.
Moreover, it is not hard to see that also the conclusion of σ(rD) is a distribution over terms.

I Definition 17 (Proof from the Σ-DS). A proof from the Σ-DS DΣ of a closed distribution
over terms L is a well-founded, upwardly branching tree, whose nodes are labeled by closed
distributions over terms, s.t. the root is labeled L, and, if β is the label of a node q and K
is the set of labels of the nodes directly above q, then K/β is a closed reduced instance of a
Σ-distribution rule in RΣ.

A closed distribution over terms L is provable from DΣ, notation DΣ ` L, if there exists
a proof from DΣ for L.

Since Σ-distribution rules have only positive premises, the set of the distribution over
terms provable from the Σ-DS is unique. The following result confirms that all probability
distributions over T (Σ) can be inferred through the Σ-DS.

I Proposition 18. Assume a signature Σ. Let π ∈ DT (Σ) be a closed distribution term and
{tm}m∈M ⊆ T (Σ) a set of pairwise distinct closed terms. Then

DΣ ` {π
qm−−→ tm | m ∈M} ⇔ for all m ∈M it holds π(tm) = qm, and

∑
m∈M

qm = 1.

4 The decomposition method

In this section we present our method for decomposing formulae in L, Lr and L+. Our
aim is to reduce the satisfaction problem of a formula for a (distribution) term to the
satisfaction problem of derived formulae for its subterms. In Sec. 4.1 we define ruloids and
distribution ruloids, namely derived (distribution) rules allowing us to infer the behavior
of any (distribution) term from the behavior of its variables. Both classes of ruloids are
sound and specifically witnessing [3], i.e. a closed literal α (resp. a distribution over terms
L) is provable from a PGSOS-PTSS (resp. the Σ-DS) iff α (resp. L) is an instance of
the conclusion of a ruloid (resp. distribution ruloid) (Thm. 21 and Thm. 24). Then, in
Sec. 4.2 we exploit the two classes of ruloids for the decomposition. The decomposition
of state formulae follows [2, 12–15] and consists in assigning to each term t ∈ T(Σ) and
formula ϕ ∈ Ls, a set of functions ξ : Vs → Ls, called decomposition mappings, assigning to
each variable x in t a proper formula in Ls s.t. for any closed substitution σ it holds that
σ(t) |= ϕ iff σ(x) |= ξ(x) for each x ∈ var(t) (Thm. 28). Each mapping ξ is defined on a
ruloid having t as source. The decomposition of distribution formulae consists in assigning to
each distribution term Θ ∈ DT(Σ) and distribution formula ψ ∈ Ld a set of decomposition
mappings η : V → Ld ∪Ls s.t. for any closed substitution σ we get that σ(Θ) |= ψ iff
σ(ζ) |= η(ζ) for each ζ ∈ var(Θ) (Thm. 28).

4.1 Ruloids
Ruloids are defined by an inductive composition of PGSOS rules. All PGSOS rules are
ruloids. Then, from a rule r and substitution σ, a ruloid ρ with conclusion σ(conc(r)) is
built as follows:
1. for each positive premise α in σ(r), we take any ruloid having α as conclusion and we

put its premises among the premises of ρ;

CONCUR 2016

36:8 Modal Decomposition on Nondeterministic Probabilistic Processes

2. for each negative premise α in σ(r) and for each ruloid ρ′ having any literal denying α as
conclusion, we select any premise β of ρ′, we take any literal β′ denying β, and we put
β′ among the premises of ρ.
For a PGSOS-PTSS P = (Σ,A, R), let Lit(P) denote the set of literals that can be built

with terms in T(Σ) ∪ DT(Σ) and actions in A.

I Definition 19 (Ruloids). Let P = (Σ,A, R) be a PGSOS-PTSS. The set of P -ruloids <P
is the smallest set s.t.:

x
a−→ µ

x
a−→ µ

is a P -ruloid for all x ∈ Vs, a ∈ A and µ ∈ Vd;⋃
i∈I

(⋃
m∈Mi

Hi,m ∪
⋃
n∈Ni

Hi,n
)

f(t1, . . . , tn) a−→ Θ
is a P -ruloid if there is a PGSOS rule r ∈ R

{xi
ai,m−−−→ µi,m | i ∈ I,m ∈Mi} {xi

ai,n−−−→6 | i ∈ I, n ∈ Ni}
f(x1, . . . , xn) a−→ Θ′

together with a substitution σ, with σ(xi) = ti for i = 1, . . . , n and σ(Θ′) = Θ, s.t.:
for every positive premise xi

ai,m−−−→ µi,m of r
∗ either σ(xi) is a variable and Hi,m = {σ(xi)

ai,m−−−→ σ(µi,m)},
∗ or there is a P -ruloid ρi,m = Hi,m/σ(xi)

ai,m−−−→ σ(µi,m);
for every negative premise xi

ai,n−−−→6 of r
∗ either σ(xi) is a variable and Hi,n = {σ(xi)

ai,n−−−→6 },
∗ or Hi,n = opp(pick(<P(ai,n))), where:

(i) define <P(ai,n) ∈ P(P(Lit(P))) as the set containing the sets of the premises of
all P -ruloids with conclusion σ(xi)

ai,n−−−→ θ, formally

<P(ai,n) = {prem(ρ) | ρ ∈ <P and conc(ρ) = σ(xi)
ai,n−−−→ θ for some θ ∈ DT(Σ)},

(ii) define any mapping pick : P(P(Lit(P)))→ P(Lit(P)) s.t. for any set of literals
Lk with k ∈ K, pick({Lk | k ∈ K}) = {lk | k ∈ K ∧ lk ∈ Lk},

(iii) define any mapping opp: P(Lit(P))→ P(Lit(P)) satisfying opp(L) = {opp(l) |
l ∈ L} for all set of literals L, where opp(t′ a−→ θ) = t′

a−→6 , and opp(t′ a−→6) =
t′

a−→ θ for some fresh distribution term θ;
right hand side variables rhs(ρi,m) are all pairwise disjoint.

I Example 20. From rules in Ex. 10, we can build the following ruloids for term x+p (y|z):

x
a−→ µ y

a−→6
x+p (y|z) a−→ µ

x
a−→ µ z

a−→6
x+p (y|z) a−→ µ

x
a−→6 y

a−→ ν z
a−→ υ

x+p (y|z) a−→ ν|υ
x

a−→ µ y
a−→ ν z

a−→ υ

x+p (y|z) a−→ pµ+ (1− p)(ν|υ)
.

We describe the construction of the first ruloid:

x
a−→ µ

x
a−→ µ

y
a−→6

y|z a−→6
x+p (y|z) a−→ µ

.

It is not hard to see that if the PTSS is positive then also the derived ruloids are positive.

I Theorem 21 (Ruloid theorem). Assume a PGSOS-PTSS P and a closed substitution σ.
Then P ` σ(t) a−→ Θ′ for t ∈ T(Σ) and Θ′ ∈ DT (Σ) if and only if there are a P -ruloid
H

t
a−→ Θ

and a closed substitution σ′ with P ` σ′(H), σ′(t) = σ(t) and σ′(Θ) = Θ′.

V. Castiglioni, D. Gebler, and S. Tini 36:9

As the Σ-DS is positive, the definition of Σ-distribution ruloids results technically simpler.

I Definition 22 (Distribution ruloids). Let DΣ = (Σ, RΣ) be the Σ-DS. The set of Σ-
distribution ruloids <Σ is the smallest set s.t.:
{δx

1−→ x}
{δx

1−→ x}
is a Σ-distribution ruloid for any x ∈ Vs;

{µ qi−−→ xi |
∑
i∈I

qi = 1}

{µ qi−−→ xi | i ∈ I}
is a Σ-distribution ruloid for any µ ∈ Vd;⋃

i=1,...,n
Hi{

f(Θ1, . . . ,Θn) Qm−−−→ f(t1,m, . . . , tn,m) | m ∈M
} is a Σ-distribution ruloid if there is a

Σ-distribution rule rD ∈ RΣ of the form⋃
i=1,...,n

{ϑi
qi,j−−−→ xi,j | j ∈ Ji,

∑
j∈Ji

qi,j = 1}{
f(ϑ1, . . . , ϑn) qk−−→ f(x1,k(1), . . . , xn,k(n)) | qk =

∏
i=1,...,n

qi,k(i), k ∈ ×
i=1,...,n

Ji

}
together with a substitution σ, with σ(ϑi) = Θi for i = 1, . . . , n, s.t.:

σ(rD) =

⋃
i=1,...,n

{Θi
qi,h−−−→ ti,h | h ∈ Hi,

∑
h∈Hi

qi,h = 1}{
f(Θ1, . . . ,Θn) qκ−−→ f(t1,κ(1), .., tn,κ(n)) | qκ =

∏
i=1,..,n

qi,κ(i), κ ∈ ×
i=1,..,n

Hi

} ,
there is a bijection f :×n

i=1Hi →M such that ti,κ(i) = ti,f(κ) and qκ = Qf(κ),
for every Θi with i = 1, . . . , n we have that:
∗ either Θi is a variable or a Dirac distribution and Hi = {Θi

qi,h−−−→ ti,h | h ∈ Hi},
∗ or there is a Σ-distribution ruloid ρD

i = Hi/{Θi
qi,h−−−→ ti,h | h ∈ Hi};⋃

i∈I
Hi{∑

i∈I
piΘi

Qm−−−→ tm | m ∈M
} is a Σ-distribution ruloid if there is a Σ-distribution rule

rD ∈ RΣ of the form ⋃
i∈I
{ϑi

qi,j−−−→ xi,j | j ∈ Ji,
∑
j∈Ji

qi,j = 1}{∑
i∈I

piϑi
qx−−→ x | qx =

∑
i∈I,j∈Ji s.t. xi,j=x

pi · qi,j , x ∈ {xi,j | j ∈ Ji, i ∈ I}
}

together with a substitution σ, with σ(ϑi) = Θi for i ∈ I, s.t.:

σ(rD) =

⋃
i∈I
{Θi

qi,h−−−→ ti,h | h ∈ Hi,
∑
h∈Hi

qi,h = 1}{∑
i∈I

piΘi
qu−−→ u | qu =

∑
i∈I,h∈Hi s.t. ti,h=u

pi · qi,h, u ∈ {ti,h | h ∈ Hi, i ∈ I}
}

there is a bijection f : {ti,h | h ∈ Hi, i ∈ I} →M s.t. u = tf(u) and qu = Qf(u),
for every Θi with i ∈ I we have that:
∗ either Θi is a variable or a Dirac distribution and Hi = {Θi

qi,h−−−→ ti,h | h ∈ Hi},
∗ or there is a Σ-distribution ruloid ρD

i = Hi/{Θi
qi,h−−−→ ti,h | h ∈ Hi}.

CONCUR 2016

36:10 Modal Decomposition on Nondeterministic Probabilistic Processes

I Example 23. Consider the distribution term 2
5µ + 3

5 (ν|υ), which is an instance of the
target of the fourth ruloid in Ex. 20. Then, we can build the following Σ-distribution ruloid:

{µ 1/4−−−→ x1 µ
3/4−−−→ x2}

{µ 1/4−−−→ x1 µ
3/4−−−→ x2}

{ν 1/3−−−→ y1, ν
2/3−−−→ y2} {υ

1−→ w}

{ν|υ 1/3−−−→ y1|w ν|υ 2/3−−−→ y2|w}{2
5µ+ 3

5(ν|υ)
1

10−−→ x1,
2
5µ+ 3

5(ν|υ)
3

10−−→ x2,
2
5µ+ 3

5(ν|υ)
1
5−→ y1|w,

2
5µ+ 3

5(ν|υ)
2
5−→ y2|w

}
I Theorem 24 (Distribution ruloid theorem). Assume the Σ-DS DΣ and a closed substitution
σ. Then DΣ ` {σ(Θ) qm−−→ tm | m ∈M} for Θ ∈ DT(Σ) and tm ∈ T (Σ) pairwise distinct if
and only if there are a Σ-distribution ruloid H

{Θ qm−−→ um | m ∈M}
and a closed substitution

σ′ with DΣ ` σ′(H), σ′(Θ) = σ(Θ) and σ′(um) = tm for each m ∈M .

Although the construction of our ruloids resembles that in [15], the two classes are quite
different. [15] bases on the rule format of [20] instead of the PGSOS format of [5], deals
with reactive systems, which are less expressive than PTSs since they do not admit internal
nondeterminism, and considers transitions of the form t

a,p−−→ t′, denoting that t evolves by
a to t′ with probability p. Informally, our ruloids generalize those in [15] in the same way
PTSs generalize reactive systems. In fact, to deal with t a,p−−→ t′, ruloids in [15] are defined by
keeping track of rules and ruloids used in their construction, in order to obtain a partitioning
over ruloids ensuring that the probabilities of all a-labeled transitions from a term t sum up
to either 0 or 1. Here we do not need this technicality, since, given a term t, all ruloids in
one partition for t of [15] are captured by one of our ruloids and one Σ-distribution ruloid.
Our ruloid captures all the requirements that the subterms of t must satisfy to derive the
transition to the desired distribution over terms. The proper probability weights are then
assigned by the Σ-distribution ruloid.

4.2 Decomposition of modal formulae
First we need to introduce the notion of matching for a distribution term, seen as a probabil-
ity distribution over terms, and a distribution formula, which can be viewed as a probability
distribution over state formulae [4, 7].

I Definition 25 (Matching). Assume Θ ∈ DT(Σ), a Σ-distribution ruloid H/{Θ qm−−→ tm |
m ∈ M} and a distribution formula ψ =

⊕
i∈I riϕi ∈ L

d. Then a matching for Θ and ψ is
a distribution over the product space w ∈ ∆(T(Σ) × Ls) having Θ and ψ as left and right
marginals, that is

∑
i∈I w(tm, ϕi) = qm for all m ∈ M and

∑
m∈M w(tm, ϕi) = ri for all

i ∈ I. We denote by W(Θ, ψ) the set of all matchings for Θ and ψ.

I Definition 26 (Decomposition of L). Let P = (Σ,A, R) be a PGSOS-PTSS and let DΣ be
the Σ-DS. We define the mapping ·−1 : T(Σ)→ (Ls → P(Vs → Ls)) as the function that for
each t ∈ T(Σ) and ϕ ∈ Ls returns the set t−1(ϕ) ∈ P(Vs → Ls) of decomposition mappings
ξ : Vs → Ls generated as follows. Let t denote an univariate term. Then:
1. ξ ∈ t−1(>) iff ξ(x) = > for all x ∈ Vs;
2. ξ ∈ t−1(¬ϕ) iff there is a function f : t−1(ϕ)→ var(t) s.t.

ξ(x) =
∧

ξ′∈f−1(x)

¬ξ′(x), if x ∈ var(t), and ξ(x) = >, otherwise;

3. ξ ∈ t−1(
∧
j∈J ϕj) iff there exist decomposition mappings ξj ∈ t−1(ϕj), for j ∈ J , s.t.

ξ(x) =
∧
j∈J

ξj(x) for all x ∈ Vs;

V. Castiglioni, D. Gebler, and S. Tini 36:11

4. ξ ∈ t−1(〈a〉ψ) iff there are a P -ruloid H
t
a−→Θ

and a decomposition mapping η ∈ Θ−1(ψ)
s.t.

ξ(x) =
∧

x
b−→µ∈H

〈b〉η(µ) ∧
∧

x
c−→6 ∈H

¬〈c〉> ∧ η(x), if x ∈ var(t), and ξ(x) = >, otherwise;

5. ξ ∈ (σ(t))−1(ϕ) for a non injective substitution σ : var(t)→ Vs iff there is a decomposition
mapping ξ′ ∈ t−1(ϕ) s.t.

ξ(x) =
∧

y∈σ−1(x)

ξ′(y) for all x ∈ Vs.

Then we define the mapping ·−1 : DT(Σ)→ (Ld → P(V → L)) as the function that for each
Θ ∈ DT(Σ) and ψ ∈ Ld returns the set Θ−1(ψ) ∈ P(V → L) of decomposition mappings
η : V → L generated as follows. Let Θ denote an univariate distribution term. Then:
6. η ∈ Θ−1(

⊕
i∈I riϕi) iff there are a Σ-distribution ruloid H

{Θ qm−−→ tm | m ∈M}
and a

matching w ∈ W(Θ,
⊕

i∈I riϕi) s.t. for all m ∈ M and i ∈ I there is a decomposition
mapping ξm,i with ξm,i ∈ t−1

m (ϕi), if w(tm, ϕi) > 0, and ξm,i ∈ t−1
m (>), otherwise, s.t.:

a. for µ ∈ Vd we have η(µ) =

⊕

{µ
qj−−→xj |

∑
j∈J

qj=1}∈H

qj
∧
i∈I
m∈M

ξm,i(xj) if µ ∈ var(Θ)

1> otherwise

b. for x ∈ Vs we have η(x) =

∧

i∈I,m∈M
ξm,i(x) if x ∈ var(Θ)

> otherwise.
7. η ∈ (σ(Θ))−1(ψ) for a non injective substitution σ : var(Θ) → V iff there is a decom-

position mapping η′ ∈ Θ−1(ψ) s.t. for ζ ∈ var(σ(Θ)) it holds η′(z) = η′(z′) for all
z, z′ ∈ σ−1(ζ) and

η(ζ) = η′(z̃) if ζ ∈ var(σ(Θ)) and z̃ ∈ σ−1(ζ), and η(ζ) = > if ζ 6∈ var(σ(Θ)).

We discuss only the decomposition of ψ =
⊕

i∈I riϕi ∈ L
d. Let σ be a closed substitution

and consider Θ ∈ DT(Σ). We have σ(Θ) |= ψ iff σ(Θ) =
∑
i∈I riπi with t |= ϕi for all t ∈

supp(πi). So, we need to identify which properties each σ(ζ) with ζ ∈ var(Θ) must satisfy to
guarantee that σ(Θ) is such a distribution

∑
i∈I riπi. Assume supp(σ(Θ)) = {tm | m ∈M}

and σ(Θ)(tm) = qm. By Prop. 18, this is equivalent to have DΣ ` {σ(Θ) qm−−→ tm | m ∈
M}. From Thm. 24, DΣ ` {σ(Θ) qm−−→ tm | m ∈ M} iff there are a Σ-distribution ruloid
H/{Θ qm−−→ um | m ∈ M} and a closed substitution σ′ with σ′(Θ) = σ(Θ), σ′(um) = tm
and DΣ ` σ′(H). Since the weights qm are univocally determined by the distributions
over terms in H, we can define, for each µ ∈ var(Θ) ∩ Vd, η(µ) using as weights the qj
in {µ qj−−→ xj |

∑
j∈J qj = 1} ∈ H. Finally, to ensure that if σ′(um) ∈ supp(πi), then

σ′(um) |= ϕi, we define w(um, ϕi) positive if σ′(um) ∈ supp(πi) so that we can assign the
proper decomposed formula ξm,i(x) to each x ∈ var(um). Since each σ′(um) may occur in
the support of more than one πi, we impose that each x ∈ var(um) satisfies the conjunction
of all the decomposed formulae ξm,i(x).

I Example 27. We exemplify two mappings in t−1(ϕ) for ϕ = 〈a〉ψ, with ψ = 1
2 〈a〉> ⊕

1
2¬〈a〉>, and t = x +2/5 (y|z), which is the term in Ex. 20 with p = 2/5. Let ρ be the last

CONCUR 2016

36:12 Modal Decomposition on Nondeterministic Probabilistic Processes

Table 1 Derived decomposition mappings.

x−1
1 (〈a〉>) = {ξ1} ξ1(x1) = 〈a〉>, ξ1(x) = > for all other variables
x−1

2 (¬〈a〉>) = {ξ2} ξ2(x2) = ¬〈a〉>, ξ2(x) = > for all other variables

(y1|w)−1(¬〈a〉>) = {ξ3, ξ4}
ξ3(y1) = ¬〈a〉> ξ3(w) = >, ξ3(x) = > for all other variables
ξ4(y1) = > ξ4(w) = ¬〈a〉>, ξ4(x) = > for all other variables

(y2|w)−1(〈a〉>) = {ξ5} ξ5(y2) = 〈a〉> ξ5(w) = 〈a〉>, ξ5(x) = > for all other variables

ruloid for t in Ex. 20, Θ = 2
5µ+ 3

5 (ν|υ) denote its target, and ρD be the Σ-distribution ruloid
for Θ in Ex. 23. By Def. 26.4, the decomposition mappings ξ ∈ t−1(ϕ) built over ρ are s.t.:

ξ(x) = 〈a〉η(µ) ξ(y) = 〈a〉η(ν) ξ(z) = 〈a〉η(υ) (1)

where η ∈ Θ−1(ψ). Consider the matching w ∈ W(Θ, ψ) for Θ and ψ defined through ρD
by

w(x1, 〈a〉>) = 1/10 w(x2,¬〈a〉>) = 3/10 w(y1|w,¬〈a〉>) = 1/5 w(y2|w, 〈a〉>) = 2/5.

For the terms and the formulae to which w gives a positive weight, we obtain the decompo-
sition mappings in Tab. 1, where ξ3 and ξ4 derive from Def. 26.2.

Next, we construct the decomposition mappings for the variable ν in Θ wrt. ρD and w. By
Def. 26.6a we consider the weights of the premises of ρD having ν as left-hand side, namely
Hν = {ν 1/3−−−→ y1, ν

2/3−−−→ y2}, and use them as weights of the
⊕

operator. Then for the
variables y1, y2 in the right side of Hν , we consider the conjunction of the formulae assigned
to y1, y2 by one mapping from each set in the first column of Tab. 1. The choice of ξ3 or
ξ4 generates two different mappings in Θ−1(ψ): by ξ3 we obtain the mapping η1 ∈ Θ−1(ψ)
with η1(ν) = 1/3¬〈a〉> ⊕ 2/3〈a〉> and by ξ4 we obtain the mapping η2 ∈ Θ−1(ψ) with
η2(ν) = 1/3>⊕ 2/3〈a〉>. By applying the same reasoning to µ and υ we obtain

η1(µ) = 1/4〈a〉> ⊕ 3/4¬〈a〉> η1(ν) = 1/3¬〈a〉> ⊕ 2/3〈a〉> η1(υ) = 1(> ∧ 〈a〉>)

η2(µ) = 1/4〈a〉> ⊕ 3/4¬〈a〉> η2(ν) = 1/3>⊕ 2/3〈a〉> η2(υ) = 1(¬〈a〉> ∧ 〈a〉>)

where we have omitted multiple occurrences of the > formulae in conjunctions. Finally, we
obtain two mappings in t−1(ϕ) by substituting η with either η1 or η2 in Eq. (1).

The following result confirms that our decomposition method is correct.

I Theorem 28 (Decomposition theorem). Let P = (Σ,A, R) be a PGSOS-PTSS and let DΣ
be the Σ-DS. For any t ∈ T(Σ), closed substitution σ and ϕ ∈ Ls we have

σ(t) |= ϕ⇔ ∃ ξ ∈ t−1(ϕ) s.t. for all x ∈ var(t) it holds σ(x) |= ξ(x)

and for any Θ ∈ DT(Σ), closed substitution σ and ψ ∈ Ld we have

σ(Θ) |= ψ ⇔ ∃ η ∈ Θ−1(ψ) s.t. for all ζ ∈ var(Θ) it holds σ(ζ) |= η(ζ).

The decompositions of formulae in Lr and L+ can be derived from the one for L.

I Definition 29 (Decomposition of Lr and L+). Let P = (Σ,A, R) be a PGSOS-PTSS and
DΣ be the Σ-DS. The mappings ·−1 : T(Σ)→ (Ls

r → P(Vs → Ls
r)) and ·−1 : DT(Σ)→ (Ld

r →
P(V → Lr)) are obtained as in Def. 26 by rewriting Def. 26.2 and Def. 26.4, resp., by

V. Castiglioni, D. Gebler, and S. Tini 36:13

2. ξ ∈ t−1(ā) iff there is a function f : t−1(〈a〉>)→ var(t) s.t.

ξ(x) =
∧

ξ′∈f−1(x)

¬ξ′(x), if x ∈ var(t), and ξ(x) = >, otherwise;

4. ξ ∈ t−1(〈a〉ψ) iff there are a ruloid H
t
a−→Θ

and a decomposition mapping η ∈ Θ−1(ψ) s.t.

ξ(x) =
∧

x
b−→µ∈H

〈b〉η(µ) ∧
∧

x
c−→6 ∈H

c̄ ∧ η(x), if x ∈ var(t), and ξ(x) = >, otherwise.

If P is positive, the mappings ·−1 : T(Σ)→ (Ls
+ → P(Vs → Ls

+)) and ·−1 : DT(Σ)→ (Ld
+ →

P(V → L+)) are obtained as in Def. 26 by removing Def. 26.2 and by rewriting Def. 26.4 by
4. ξ ∈ t−1(〈a〉ψ) iff there are a positive P -ruloid H

t
a−→Θ

and a decomposition mapping
η ∈ Θ−1(ψ) s.t.

ξ(x) =
∧

x
b−→µ∈H

〈b〉η(µ) ∧ η(x), if x ∈ var(t), and ξ(x) = >, otherwise.

Notice that by decomposing formulae in Lr (resp. L+) we get formulae in Lr (resp. L+).

I Theorem 30 (Decomposition theorem II). Let P = (Σ,A, R) be a PGSOS-PTSS and DΣ
be the Σ-DS. Assume the decomposition mappings as in Definition 29. Then:

The results in Theorem 28 hold for ϕ ∈ Ls
r and ψ ∈ Ld

r .
Moreover, if P is positive, then the results in Theorem 28 hold for ϕ ∈ Ls

+ and ψ ∈ Ld
+.

4.3 Probabilistic bisimilarity as a congruence
To support the compositional reasoning, the congruence (resp. precongruence) property is
required for any behavioral equivalence (resp. preorder) R . It consists in verifying whether
f(t1, . . . , tn) R f(t′1, . . . , t′n) whenever tiR t′i for i = 1, . . . , n. In [5] it is proved that
probabilistic bisimilarity is a congruence for all operators defined by a PGSOS-PTSS. We
can restate this result as a direct consequence of the characterization result of [7] (Thm. 6)
combined with our first decomposition result in Thm. 28. Then, by our characterization
results in Thm. 8 and our decomposition results in Thm. 30 we can derive precongruence
formats for both ready similarity and similarity.

I Theorem 31. Let P = (Σ,A, R) be a PGSOS-PTSS. Then:
1. Probabilistic bisimilarity is a congruence for all operators defined by P ;
2. Probabilistic ready similarity is a precongruence for all operators defined by P ;
3. If P is positive, probabilistic similarity is a precongruence for all operators defined by P .

5 Conclusions

We proposed distribution ruloids as a powerful tool supporting the decomposition of modal-
ities over the PTS model. This allowed us to define modular proof systems for modal
properties of probabilistic systems (Thms. 28, 30), from which we also derived congruence
formats (Thm. 31). Our approach can be easily adapted to models with subdistributions.

We will continue this line of research as follows. We will apply our decomposition method
to derive congruence formats for testing and trace equivalences. Next, we will use our
decomposition method to systematically derive formats for bisimilarity metric [10,25], weak

CONCUR 2016

36:14 Modal Decomposition on Nondeterministic Probabilistic Processes

metric semantics [11] and metric variants of branching bisimulation equivalence [1]. These
metric semantics provide notions of distance over processes, and the formats will guarantee
that a small variance in the behavior of the subprocesses leads to a bounded small variance
in the behavior of the composed processes (uniform continuity, [16–18]). Then, we will study
decomposition methods for real-valued modal formulae.

References
1 S. Andova and T.A.C. Willemse. Branching bisimulation for probabilistic systems: char-

acteristics and decidability. Theoret. Comput. Sci., 356(3):325–355, 2006.
2 B. Bloom, W. J. Fokkink, and R. J. van Glabbeek. Precongruence formats for decorated

trace semantics. ACM Trans. Comput. Log., 5(1):26–78, 2004.
3 B. Bloom, S. Istrail, and A. R. Meyer. Bisimulation can’t be traced. J. ACM, 42(1):232–268,

1995.
4 V. Castiglioni, D. Gebler, and S. Tini. Logical characterization of bisimulation metrics. In

Proc. QAPL 2016, Electronic Proceedings in Theoretical Computer Science, 2016.
5 P. R. D’Argenio, D. Gebler, and M. D. Lee. Axiomatizing bisimulation equivalences and

metrics from probabilistic SOS rules. In Proc. FoSSaCS 2014, volume 8412 of Lecture Notes
in Computer Science, pages 289–303. Springer, 2014.

6 P. R. D’Argenio and M. D. Lee. Probabilistic transition system specification: Congruence
and full abstraction of bisimulation. In Proc. FoSSaCS 2012, volume 7213 of Lecture Notes
in Computer Science, pages 452–466. Springer, 2012.

7 Y. Deng and W. Du. Logical, metric, and algorithmic characterisations of probabilistic
bisimulation. CoRR, abs/1103.4577, 2011.

8 Y. Deng and R. J. van Glabbeek. Characterising probabilistic processes logically - (extended
abstract). In Proc. LPAR-17, volume 6397 of Lecture Notes in Computer Science, pages
278–293. Springer, 2010.

9 Y. Deng, R. J. van Glabbeek, M. Hennessy, and C. Morgan. Characterising testing preorders
for finite probabilistic processes. Logical Methods in Computer Science, 4(4), 2008.

10 J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Metrics for labelled markov
processes. Theoret. Comput. Sci., 318(3):323–354, 2004.

11 J. Desharnais, R. Jagadeesan, V. Gupta, and P. Panangaden. The metric analogue of
weak bisimulation for probabilistic processes. In Proc. LICS 2002, pages 413–422. IEEE
Computer Society, 2002.

12 W. J. Fokkink and R. J. van Glabbeek. Divide and congruence II: from decomposition
of modal formulas to preservation of delay and weak bisimilarity. CoRR, abs/1604.07530,
2016.

13 W. J. Fokkink, R. J. van Glabbeek, and P. de Wind. Compositionality of Hennessy-Milner
logic by structural operational semantics. Theoret. Comput. Sci., 354(3):421–440, 2006.

14 W. J. Fokkink, R. J. van Glabbeek, and P. de Wind. Divide and congruence: From decom-
position of modal formulas to preservation of branching and η-bisimilarity. Inf. Comput.,
214:59–85, 2012.

15 D. Gebler and W. J. Fokkink. Compositionality of probabilistic Hennessy-Milner logic
through structural operational semantics. In Proc. CONCUR 2012, volume 7454 of Lecture
Notes in Computer Science, pages 395–409. Springer, 2012.

16 D. Gebler, K. G. Larsen, and S. Tini. Compositional metric reasoning with Probabilistic
Process Calculi. In Proc. FoSSaCS’15, volume 9034 of Lecture Notes in Computer Science,
pages 230–245. Springer, 2015.

17 D. Gebler, K. G. Larsen, and S. Tini. Compositional metric reasoning with Probabilistic
Process Calculi. Logical Methods in Computer Science, 2016.

V. Castiglioni, D. Gebler, and S. Tini 36:15

18 D. Gebler and S. Tini. SOS specifications of probabilistic systems by uniformly continuous
operators. In Proc. CONCUR 2015, volume 42 of LIPIcs, pages 155–168. Schloss Dagstuhl
- Leibniz-Zentrum fuer Informatik, 2015.

19 M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concurrency. J. ACM,
32:137–161, 1985.

20 R. Lanotte and S. Tini. Probabilistic bisimulation as a congruence. ACM Trans. Com-
put. Log., 10:1–48, 2009.

21 K. G. Larsen and A. Skou. Bisimulation through probabilistic testing. Inf. Comput.,
94(1):1–28, 1991.

22 K. G. Larsen and L. Xinxin. Compositionality through an operational semantics of contexts.
J. Log. Comput., 1(6):761–795, 1991.

23 G. Plotkin. A structural approach to operational semantics. Report DAIMI FN-19, Aarhus
University, 1981.

24 R. Segala. Modeling and Verification of Randomized Distributed Real-Time Systems. PhD
thesis, MIT, 1995.

25 F. van Breugel and J. Worrell. An algorithm for quantitative verification of probabilistic
transition systems. In Proc. CONCUR 2001, volume 2154 of Lecture Notes in Computer
Science, pages 336–350. Springer, 2001.

CONCUR 2016

Diagnosis in Infinite-State Probabilistic Systems∗

Nathalie Bertrand1, Serge Haddad2, and Engel Lefaucheux3

1 Inria, France nathalie.bertrand@inria.fr
2 LSV, ENS Cachan & CNRS & Inria, France serge.haddad@ens-cachan.fr
3 Inria, France and

LSV, ENS Cachan & CNRS & Inria, France engel.lefaucheux@ens-cachan.fr

Abstract
In a recent work, we introduced four variants of diagnosability (FA, IA, FF, IF) in (finite) probabil-
istic systems (pLTS) depending whether one considers (1) finite or infinite runs and (2) faulty or
all runs. We studied their relationship and established that the corresponding decision problems
are PSPACE-complete. A key ingredient of the decision procedures was a characterisation of
diagnosability by the fact that a random run almost surely lies in an open set whose specification
only depends on the qualitative behaviour of the pLTS. Here we investigate similar issues for
infinite pLTS. We first show that this characterisation still holds for FF-diagnosability but with
a Gδ set instead of an open set and also for IF- and IA-diagnosability when pLTS are finitely
branching. We also prove that surprisingly FA-diagnosability cannot be characterised in this
way even in the finitely branching case. Then we apply our characterisations for a partially ob-
servable probabilistic extension of visibly pushdown automata (POpVPA), yielding EXPSPACE
procedures for solving diagnosability problems. In addition, we establish some computational
lower bounds and show that slight extensions of POpVPA lead to undecidability.

1998 ACM Subject Classification D.2.5 Testing and Debugging; F.3.1 Specifying and Verifying
and Reasoning about Programs

Keywords and phrases Diagnosis – Infinite-state systems – Partial observation – Markov chains

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2016.37

1 Introduction

Diagnosis. Monitoring (hardware and/or software) systems prone to faults involves several
critical tasks: controlling the system to prevent faults as much as possible, deducing the cause
of the faults, etc. Most of these tasks assume that an observer has the capability to assess the
status of the current run based on the outputs of the system: providing information about
the possible occurrence of faults. Such an observer is called a diagnoser and its associated
task is called diagnosis. This framework leads to interesting decision and synthesis problems:
“Does there exist a diagnoser?” and in the positive case “How to build such a diagnoser?”,
“Which kind of diagnoser is sufficient?”, etc. The decision problem, on which we focus here,
is called diagnosability [15].

Diagnosis of discrete event systems. In order to formally reason about diagnosability, the
systems were first modelled by finite labelled transition systems (LTS). Then the specification
of a diagnoser is defined by two requirements: correctness, meaning that the information
provided by the diagnoser is accurate, and reactivity, ensuring that a fault will eventually

∗ S. Haddad has been supported by ERC project EQualIS (FP7-308087).

© Nathalie Bertrand, Serge Haddad, and Engel Lefaucheux;
licensed under Creative Commons License CC-BY

27th International Conference on Concurrency Theory (CONCUR 2016).
Editors: Josée Desharnais and Radha Jagadeesan; Article No. 37; pp. 37:1–37:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2016.37
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

37:2 Diagnosis in Infinite-State Probabilistic Systems

be detected. Within the framework of finite LTS, the decision problem was shown to be
solvable in PTIME [10] and it is in fact NLOGSPACE-complete.

Diagnosis of probabilistic systems. A natural way of modelling partially observable
systems consists in introducing probabilities (e.g. when the design is not fully known or
the effects of the interaction with the environment is not predictible). Thus the notion
of diagnosability was later extended to Markov chains with labels on transitions, also
called probabilistic labelled transition systems (pLTS) [16]. In this context, the reactivity
requirement now asks that faults will be almost surely eventually detected. Regarding
correctness, two specifications have been proposed: either one sticks to the original definition
and requires that the provided information is accurate, defining A-diagnosability; or one
weakens the correctness by admitting errors in the provided information that should, however,
have an arbitrary small probability defining AA-diagnosability. From a computational
viewpoint, we recently proved that A-diagnosability is PSPACE-complete [3] and that AA-
diagnosability can be solved in PTIME [4].

In case a system is not diagnosable, one may be able to control it, by forbidding some
controllable actions, so that is becomes diagnosable. This property of active diagnosability has
been studied for discrete-event systems [14, 9], and for probabilistic systems [2]. Interestingly,
the diagnosability notion in the latter work slightly differs from the original one in [16].
Building on this variation, in [3] semantical issues have been investigated and four relevant
notions of diagnosability (FA, IA, FF, IF) have been defined depending on (1) whether one
considers finite or infinite runs and (2) faulty or all runs. In finite pLTS, it was shown that
all these notions can be characterized by the fact that a random run almost surely lies in an
open set, whose specification only depends on the qualitative behaviour of the pLTS.

Diagnosis of infinite-state systems. Diagnosability in infinite-state systems has been
studied, on the one hand for restricted Petri nets [6], for which an accurate diagnoser can
be designed, and on the other hand for visibly pushdown automata (VPA) [12], for which
diagnosability can be decided via the determinisation procedure of [1]. However to the best
of our knowledge diagnosis of probabilistic infinite-state systems has not yet been studied.

Contributions. The characterisations of diagnosability established in [3] strongly relied
on the finiteness of the models. Our first aim is thus to establish characterisations in the
infinite-state case. FF-diagnosability (the original notion of diagnosability) states that almost
surely a faulty run will be detected in finite time. We establish that FF-diagnosability
can be characterised by the fact that a random run almost surely lies in a Gδ set, only
depending on the qualitative behaviour of the system. This characterisation also applies
to IF-diagnosability for finitely-branching systems, since then the two notions coincide. An
ambiguous infinite correct (resp. faulty) run is a run indistinguishable from a faulty (resp.
correct) run. IA-diagnosability states that almost surely a run is unambiguous. The set
of ambiguous runs is an analytic set (so a priori not known to be a Borel set). However
in the finitely-branching case, we establish that the set of unambiguous runs is a Gδ set,
yielding a characterisation of IA-diagnosability. FA-diagnosability states that the probability
that a finite run is unambiguous goes to 1 when its length goes to infinity. Surprisingly,
despite the fact that IA-diagnosability and FA-diagnosability are very close, we prove that
FA-diagnosability cannot be characterised by the fact that a random run almost surely lies in
a Gδ set. Furthermore we strenghten this result by another inexpressivess result also related
to FA-diagnosability.

N. Bertrand, S. Haddad, and E. Lefaucheux 37:3

Partially observable probabilistic visibly pushdown automata (POpVPA) are models
generating infinite-state probabilistic systems. We show how to exploit the above charac-
terisations to design a decision procedure for diagnosability in POpVPA. More precisely
we show that we can “encode” our characterisations in an enlarged probabilistic VPA and
then exploit the decision procedures of [8] leading to an EXPSPACE algorithm. Since our
characterisations are not regular, this requires some tricky machinery. Finally we complete
this work by exhibiting an EXPTIME lower-bound and showing that slight extensions of
POpVPA lead to undecidability of the diagnosability problem.

Organisation. In Section 2, we introduce probabilistic infinite-state systems, equip them
with partial observation and faults, and define diagnosability notions. In Section 3, we
establish characterisations of the diagnosability notions and inexpressiveness results. We
exploit the characterisations to design decision procedures for POpVPA in Section 4, also
proving hardness and undecidability results. We conclude and give some perspectives in
Section 5. More details and all the proofs can be found in the associate research report [5].

2 Diagnosis specifications for infinite-state probabilistic systems

2.1 Probabilistic labelled transition systems
Probabilistic labelled transition systems (pLTS) are labelled transition systems equipped
with probability distributions on transitions outgoing from a state.

▸ Definition 1. A pLTS is a tupleM = ⟨Q, q0,Σ, T,P⟩ where:
Q is a finite or countable set of states with q0 ∈ Q the initial state;
Σ is a finite set of events;
T ⊆ Q ×Σ ×Q is a set of transitions;
P ∶ T → Q>0 is the transition probability fulfilling: ∀q ∈ Q, ∑(q,a,q′)∈T P[q, a, q′] = 1.

Given a pLTSM, the transition relation of the underlying LTS L is defined by q aÐ→ q′

for (q, a, q′) ∈ T ; this transition is then said to be enabled in q. In order to emphasise the
relation between the pLTS and the LTS, we sometimes writeM = (L,P). Note that since we
assume the state space to be at most countable, a pLTS is by definition at most countably
branching: from every state q, there are at most countably many transitions enabled in q.

▸ Example 2. The pLTS of Figure 1 represents a server that accepts jobs (event in) until it
randomly decides to serve the jobs (event serve). When a job is done the result is delivered
(event out). When all jobs are done, the server waits for a new batch of jobs. However
randomly, the server may trigger a fault (event f) and then abort all remaining jobs (event
abort). Afterwards, the server is reset (event reset). In the figure, the label of a transition
(q, a, q′) is depicted as P[q, a, q′] ⋅ a.

Let us now introduce some important notions and notations that will be used throughout
the paper. A run ρ of a pLTSM is a (finite or infinite) sequence ρ = q0a0q1 . . . such that
for all i, qi ∈ Q, ai ∈ Σ and when qi+1 is defined, qi

aiÐ→ qi+1. The notion of run can be
generalised, starting from an arbitrary state q. We write Ω for the set of all infinite runs
ofM starting from q0, assuming the pLTS is clear from context. When it is finite, ρ ends
in a state q and its length, denoted ∣ρ∣, is the number of events occurring in it. Given a
finite run ρ = q0a0q1 . . . qn and a (finite or infinite) run ρ′ = qnanqn+1 . . ., the concatenation
of ρ and ρ′, written ρρ′, is the run q0a0q1 . . . qnanqn+1 . . .; the run ρ is then a prefix of ρρ′,

CONCUR 2016

37:4 Diagnosis in Infinite-State Probabilistic Systems

q0

q10

f10

q01

q11

f11

q02

q12

f12

. . .

. . .

. . .

1 ⋅ in 1
2 ⋅ in 1

2 ⋅ in

1
2 ⋅ out 1

2 ⋅ out 1
2 ⋅ out

1 ⋅ empty 1
2 ⋅ serve 1

2 ⋅ serve

1 ⋅ abort 1 ⋅ abort 1 ⋅ abort

1
2 ⋅ f

1
2 ⋅ f

1
2 ⋅ f

1 ⋅ reset

Figure 1 An infinite-state pLTS.

which we denote ρ ⪯ ρρ′. The cylinder defined by a finite run ρ is the set of all infinite runs
that extend ρ: C(ρ) = {ρ′ ∈ Ω ∣ ρ ⪯ ρ′}. Cylinders form a basis of open sets for the standard
topology on the set of runs (which can be viewed as an infinite tree). One equips a pLTS
with a probability measure on Ω with σ-algebra being B, the set of Borel sets, and which is
uniquely defined by Caratheodory’s extension theorem from the probabilities of the cylinders:

P(C(q0a0q1 . . . qn)) = P[q0, a1, q1]⋯P[qn−1, an−1, qn] .
We will sometimes omit the C and write P(ρ) for P(C(ρ)). It is well-known that once the
measure is fixed, one can enlarge the set of of measurable sets by considering the smallest
σ-algebra containing B and the “null” sets: {A ∣ ∃B ∈ B A ⊆ B ∧ P(B) = 0} and then extend
the original measure to a (complete) measure on this enlarged σ-algebra. We consider this
measure in the sequel.

The sequence associated with ρ = qa0q1 . . . is the word σρ = a0a1 . . ., and we write either
q
ρÐ→∗ or q

σρÐ→∗ (resp. q ρÐ→∗q′ or q
σρÐ→∗q′) for an infinite (resp. finite) run ρ. A state q

is reachable (from q0) if there exists a run such that q0
ρÐ→∗q, which we alternatively write

q0 Ð→∗q. The (infinite) language of pLTSM consists of all infinite words that label runs of
M and is formally defined as Lω(M) = {σ ∈ Σω ∣ q0

σÐ→∗ }.

2.2 Partial observation and faults
The observation of a pLTS is given by a mask function. This function projects every event
to its observation. This observation is partial as an event can have no observation or shares
its observation with another event, but it is deterministic.

▸ Definition 3. A partially observable pLTS (POpLTS) is a tuple N = ⟨M,Σo,P⟩ consisting
of a pLTSM equipped with a mapping P ∶ Σ→ Σo ∪ {ε} where Σo is the set of observations.

Note that our setting generalises most existing frameworks of fault diagnosis by considering
a mask function P onto a possibly different alphabet rather than a partition of the event
alphabet into observable and unobservable events. An event a ∈ Σ is said unobservable if
P(a) = ε, otherwise, it is observable and we distinguish a being fully observable if P(a) ≠ ε
and P−1({P(a)}) = {a} or partially observable if P(a) ≠ ε and ∣P−1({P(a)})∣ > 1. The set
of unobservable events is denoted Σu.

Let σ ∈ Σ∗ be a finite word; its length is denoted ∣σ∣. The mapping P is extended to finite
words inductively: P(ε) = ε and P(σa) = P(σ)P(a). We say that P(σ) is the mask of σ.
Write ∣σ∣o for ∣P(σ)∣. When σ is an infinite word, its mask is the limit of the masks of its
finite prefixes. This mask function is applicable to runs via their associated sequence; it can

N. Bertrand, S. Haddad, and E. Lefaucheux 37:5

be either finite or infinite. As usual the mask function is extended to languages. With respect
to P, a POpLTS N is convergent if there is no infinite sequence of unobservable events
from any reachable state: Lω(M) ∩Σ∗Σωu = ∅. When N is convergent, for every σ ∈ Lω(M),
P(σ) ∈ Σωo . In the rest of the paper we assume that POpLTS are convergent. P can also be
be viewed as a mapping from runs to Σωo by defining P(q0a0q1a1 . . .) = P(a0a1 . . .). Remark
that this mapping is continuous. We will refer to a sequence for a finite or infinite word over
Σ, and an observed sequence for a finite or infinite sequence over Σo. Clearly, the application
of the mask function onto Σo of a sequence yields an observed sequence.

The observable length of a run ρ denoted ∣ρ∣o ∈ N∪{∞}, is the number of observable events
that occur in it: ∣ρ∣o = ∣σρ∣o. A signalling run is a finite run whose last event is observable.
Signalling runs are precisely the relevant runs w.r.t. partial observation issues since each
observable event provides additional information about the execution to an external observer.
Given states q, q′ and an observed sequence σ ∈ Σ+

o , we write q σÔ⇒ q′ if there is a signalling
run from q to q′ with observed sequence σ.

In the sequel starting from the initial state q0, SR denotes the set of signalling runs, and
SRn the set of signalling runs of observable length n. Since we assume that the POpLTS are
convergent, for all n > 0, SRn is equipped with a probability distribution defined by assigning
measure P(ρ) to each ρ ∈ SRn. Given ρ a finite or infinite run, and n ≤ ∣ρ∣o, ρ↓n denotes the
signalling subrun of ρ of observable length n. For convenience, we consider the empty run q0
to be the single signalling run, of null length.

2.3 Fault diagnosis for POpLTS
To model the problem of fault diagnosis in POpLTS, we assume the event alphabet Σ contains
a special event f ∈ Σ called the fault. A run ρ is then said to be faulty if its associated
sequence of events contains a fault, i.e. σρ ∈ Σ∗fΣω; otherwise it is correct. The set of faulty
(resp. correct) runs is denoted F (resp. C). For n ∈ N, we write Fn for the set of infinite runs
ρ such that ρ↓n is faulty and Cn for the set of infinite runs ρ such that ρ↓n is correct. By
definition, for all n, Ω = Fn ⊎ Cn, moreover, F = ⋃n∈N Fn and C = ⋂n∈N Cn.

In order to reason about faults we partition sequences of observations into three subsets:
an observed sequence σ ∈ Σω

o is surely correct if P−1(σ) ∩ Lω(M) ⊆ (Σ ∖ f)ω; it is surely
faulty if P−1(σ) ∩ Lω(M) ⊆ Σ∗fΣω; otherwise, it is ambiguous. For finite sequences, we need
to rely on signalling runs: a finite observed sequence σ ∈ Σ∗

o is surely faulty (resp. surely
correct) if for every signalling run ρ with P(σρ) = σ, ρ is faulty (resp. correct); otherwise
it is ambiguous. A (finite signalling or infinite) run ρ is surely faulty (resp. surely correct,
ambiguous) if P(ρ) is surely faulty (resp. surely correct, ambiguous).

In order to specify various requirements for diagnosability we need to refine the notion of
ambiguity. Let N be a POpLTS and n ∈ N with n ≥ 1. Then:

FAmb∞ (resp. CAmb∞) is the set of infinite faulty (resp. correct) ambiguous runs of N ;
FAmbn (resp. CAmbn) is the set of infinite runs of N whose signalling subrun of observable
length n is faulty (resp. correct) and ambiguous;

At this point it is interesting to look at the status of the different subsets of runs we have
introduced with respect to the Borel hierarchy. The complementary sets Fn and Cn are
unions of cylinders; so they are open (and by complementation) closed sets. The set of faulty
(resp. correct) runs F (resp. C) is an open (resp. closed) set as a union (resp. intersection)
of open (resp. closed) sets. The sets FAmbn and CAmbn are unions of cylinders; so they are
open. The sets FAmb∞ and CAmb∞ may be defined as follows. Consider (Σ2

o)ω and Ω2 both
equipped with the product topology. SameObs = {(ρ, ρ′) ∣ P(ρ) = P(ρ′)} is the inverse image
by a continuous mapping of the closed set {(σ,σ) ∣ σ ∈ Σω

o }. Therefore SameObs is closed.

CONCUR 2016

37:6 Diagnosis in Infinite-State Probabilistic Systems

q0 f1 f2q1

1
2 ⋅ f

1
2 ⋅ a

1
2 ⋅ u

1
2 ⋅ a 1 ⋅ b1 ⋅ a

q0 q2 f1 f2q1

1
2 ⋅ u

1
2 ⋅ f

1
2 ⋅ a

1
2 ⋅ u

1 ⋅ a 1 ⋅ b1
2 ⋅ b

1
2 ⋅ a

Figure 2 Left: a POpLTS that is IF-diagnosable but not IA-diagnosable. Right: a POpLTS that
is IA-diagnosable but not FA-diagnosable.

Thus C × F ∩ SameObs is a Borel set. The first and second projections are exactly CAmb∞
and FAmb∞ which establishes that these sets are analytic sets (i.e. continuous images of
Borel sets). The set of analytic sets is a strict superset of Borel sets but every analytic set is
still measurable w.r.t. the complete measure [13, 2H8 p.83].

In the context of finite POpLTS, we introduced four possible specifications of diagnosab-
ility [3]. There are two discriminating criteria: whether the non ambiguity requirement holds
for faulty runs only or for all runs, and whether ambiguity is defined at the infinite run level
or for longer and longer finite signalling subruns.

▸ Definition 4. Let N be a POpLTS. Then:
N is IF-diagnosable if P(FAmb∞) = 0.
N is IA-diagnosable if P(FAmb∞ ⊎ CAmb∞) = 0.
N is FF-diagnosable if lim supn→∞ P(FAmbn) = 0.
N is FA-diagnosable if lim supn→∞ P(FAmbn ⊎ CAmbn) = 0.

We recall in the next theorem all the implications that hold between these definitions. Missing
implications do not hold, already for finite-state POpLTS.

▸ Theorem 5 ([3]). Let N be a POpLTS. Then
N FA-diagnosable ⇒ N IA-diagnosable and FF-diagnosable;
N IA-diagnosable or FF-diagnosable ⇒ N IF-diagnosable;
If N is finitely branching, then N is IF-diagnosable iff N is FF-diagnosable.

In order to illustrate the different kinds of diagnosability, we describe below some
discriminating examples, already presented in [3].

Consider the POpLTS N on the left of Figure 2 where {u, f} is the set of unobservable
events (represented by dashed arrows) and P is the identity over the other events. A faulty
run will almost surely produce a b-event that cannot be mimicked by the single correct
run. Thus this POpLTS is IF-diagnosable. The unique correct run ρ = q0uq1aq1 . . . has
probability 1

2 and its corresponding observed sequence aω is ambiguous. Thus the POpLTS
is not IA-diagnosable. This simple example shows that, already for finite-state POpLTS,
IF-diagnosability does not imply IA-diagnosability.

Similarly, let us look at the POpLTS on the right of Figure 2 where {u, f} is the set of
unobservable events and P is the identity over the other events. Any infinite faulty run will
contain a b-event, and cannot be mimicked by a correct run, therefore FAmb∞ = ∅. The
two infinite correct runs have aω as observed sequence, and cannot be mimicked by a faulty
run, thus CAmb∞ = ∅. As a consequence, this POpLTS is IA-diagnosable. Consider now
the infinite correct run ρ = q0uq1aq1 It has probability 1

2 , and all its finite signalling
subruns are ambiguous since their observed sequence is an, for some n ∈ N. Thus for all
n ≥ 1, P(CAmbn) ≥ 1

2 , so that this POpLTS is not FA-diagnosable.

N. Bertrand, S. Haddad, and E. Lefaucheux 37:7

3 Characterisation of diagnosability

The aim of this section is to establish “simple” characterisations of the diagnosability notions
for a POpLTS N = ((L,P),Σo,P) and more precisely to study whether one can express it
as a Borel set B ∈ B only depending on the underlying LTS L and the mask function P , such
that almost surely a random run belongs to B if and only if N is diagnosable. Furthermore
if possible, one looks for a set B belonging to a low level of the Borel hierarchy. Observe
that for all notions, this requires some machinery since the finite runs-based notions FF and
FA are expressed by a family of Borel sets and the infinite runs-based notions IF and IA are
expressed by a set which is not a priori a Borel set.

Pursuing this goal, we introduce a language pathL for specifying Borel sets of runs. It is
based on path formulae. A path formula α is a predicate over finite prefixes of runs. The
(pseudo-)syntax of a formula of pathL is:

φ ∶∶= α ∣ ¬φ ∣ φ1 ∧ φ2 ∣◇φ
where α is a path formula. In the sequel we use the standard shortcut ◻φ ≡ ¬◇ ¬φ.

A formula is evaluated at some position k of a run ρ = q0a0q1 The prefix ρ[0, k] of ρ
is defined by ρ[0, k] = q0a0q1 . . . qk. The semantics of pathL is inductively defined by:

ρ, k ⊧ α if and only if α(ρ[0, k]);
ρ, k ⊧ ¬φ if and only if ρ, k /⊧ φ;
ρ, k ⊧ φ1 ∧ φ2 if and only if ρ, k ⊧ φ1 and ρ, k ⊧ φ2;
ρ, k ⊧◇φ if and only if there exists k′ ≥ k such that ρ, k′ ⊧ φ.

Finally ρ ⊧ φ if and only if ρ, 0 ⊧ φ. Due to the presence of path formulae (with no restriction)
this language subsumes LTL and more generally any ω-regular specification language. In
order to reason about the probabilistic behaviour of a POpLTS, we introduce qualitative
probabilistic formulae P&p(φ) with & ∈ {<,>,=}, p ∈ {0,1} and φ ∈ pathL. The semantics
is obvious: N ⊧ P&p(φ) if and only if PN ({ρ ∈ Ω ∣ ρ ⊧ φ}) & p. Since pathL is closed by
complementation the probabilistic formulae can be restricted to P=0(φ) and P>0(φ).

Let us give some examples of path formulae. Given a finite run ρ = q0a0q1 . . . qk, let f

be defined by f(ρ) = true if ai = f for some index i. This path formula characterises the
faulty finite runs. Let U be defined by U(ρ) = true if there exists a correct signalling run ρ′
with P(ρ) = P(ρ′). Using the path formulae f and U, we exhibit a formula of pathL that
characterises FF-diagnosability.

▸ Proposition 6. Let N be a POpLTS. Then N is FF-diagnosable iff N ⊧ P=0(◇◻ (f ∧ U)).

Due to Theorem 5, in finitely-branching POpLTS the above characterisation also holds
for IF-diagnosability. We also need the finitely-branching assumption in order to characterise
IA-diagnosability. To this goal, let us introduce a more intricate path formula. For σ ∈ Σ∗

o ,
we define firstf(σ) by firstf(σ) = min{k ∣ ∃ρ signalling run P(ρ) = σ ∧ ρ↓k is faulty} with the
convention that min(∅) = ∞. Then the path formula W is defined by: W(ε) = false and
W(q0a0 . . . qn+1) = true if firstf(P(q0a0 . . . qn+1)) = firstf(P(q0a0 . . . qn)) <∞.

▸ Proposition 7. Let N be a finitely branching POpLTS. Then N is IA-diagnosable iff
N ⊧ P=0(◇◻ (U ∧W)).

The POpLTS of Figure 3 illustrates the need for the finitely-branching assumption in
Proposition 7. The set of unobservable events is {u, f} and P is the identity over the other
events. Observation b occurs in every infinite correct run, while the observed sequence of the
single infinite faulty run is aω. This POpLTS is thus IA-diagnosable. However, it does not
satisfy P=0(◇◻(U∧W)) since the unique infinite faulty run has probability 1

2 and satisfies at

CONCUR 2016

37:8 Diagnosis in Infinite-State Probabilistic Systems

q0qf q1 q2 q3

⋮

⋯
1
2 ⋅ f

1
4 ⋅ u

1
8 ⋅ u 1

16 ⋅ u

1 ⋅ a1 ⋅ a1 ⋅ a

1 ⋅ b

Figure 3 An infinitely-branching IA-diagnosable POpLTS.

the same time ◻W, by unicity, and ◻U. Indeed for every n ∈ N, there is a correct signalling
run with observed sequence an.

Observe that the sets of runs specified by the characterisations of FF-diagnosability
(◇◻ (f∧U)) and IA-diagnosability (◇◻ (U∧W)) are Fσ sets, i.e. countable unions of closed
sets. Surprisingly, we show that such a characterisation is impossible for FA-diagnosability:
there is no Fσ set E such that a POpLTS N is FA-diagnosable if and only if N ⊧ P=0(E).

▸ Proposition 8. There exists a finitely-branching LTS L and a mask function P such that
for every Fσ set E of runs, there exists a POpLTS N = ((L,P),Σo,P) such that:

either N is FA-diagnosable and PN (E) > 0;
or N is not FA-diagnosable and PN (E) = 0.

We conjecture that the impossibility also holds for arbitrary Borel sets. The next proposition
shows that a positive probability characterization cannot exist whatever the Borel set.

▸ Proposition 9. There exists a finitely-branching LTS L and a mask function P such that
for every Borel set E of runs, there exists a POpLTS N = ((L,P),Σo,P) such that:

either N is FA-diagnosable and PN (E) = 0;
or N is not FA-diagnosable and PN (E) > 0.

4 Diagnosis for probabilistic pushdown automata

We now turn to a concrete model for infinite-state POpLTS, namely the ones generated by
probabilistic pushdown automata, and more specifically by probabilistic visibly pushdown
automata. Our goal is to use the characterisations from the previous section to decide the
diagnosability of POpLTS generated by partially observable probabilistic visibly pushdown
automata (POpVPA). To do so, we face the difficulty that the Borel sets that characterise
IF-, IA- and IF-diagnosability are not a priori regular, even in the finite branching case.
Yet, for POpVPA, we circumvent this problem, and manage to specify these sets by pLTL
formulae on a determinisation of the model, tagged with the needed atomic propositions.
The decidability of the qualitative model checking for recursive probabilistic systems [8] then
yields the decidability of the above three diagnosability notions for POpVPA.

4.1 Probabilistic visibly pushdown automata
Among probabilistic infinite-state systems the ones generated by probabilistic pushdown
automata [11, 8] support relevant decision procedures. Already in the non-probabilistic case,
the subclass of visibly pushdown automata (VPA) [1] is more tractable than the general
model. In VPA, the type of events determines whether the operation on the stack is a push,
a pop, or possibly changes the top stack symbol, so that the languages defined by VPA enjoy
most of the desirable properties regular languages have.

N. Bertrand, S. Haddad, and E. Lefaucheux 37:9

q0 q1 f1

1
2 ⋅ γ,serve, γ

1 ⋅ �0,empty,�0

1
2 ⋅ γ, f , ε

1 ⋅ �0,reset,�0

1
2 ⋅ γ,in, γγ

1 ⋅ �0,in,�0γ

1
2 ⋅ γ,out, ε 1 ⋅ γ,abort, ε

(q0, �0) (q0,
γ

�0
) (q0,

γ

γ

�0

) (q1,

γ

γ

�0

) (q1,
γ

�0
) (q1, �0) (q0, �0)

(f1,
γ

�0
) (f1, �0) (q0, �0)

in in serve out out empty

abort abort reset

Figure 4 A pVPA generating the pLTS from Figure 1 with two finite runs.

▸ Definition 10. A probabilistic visibly pushdown automaton (pVPA) is a tuple
A = (Q,Σ,Γ, δ,P) where:

Q is a finite set of control states with q0 the initial state;
Σ is a finite alphabet of events, partitionned into local, push and pop events Σ = Σ♮⊎Σ♯⊎Σ♭.
Γ is a finite alphabet of stack symbols including a set of bottom stack symbols Γ� with
initial symbol �0 ∈ Γ�;
δ ⊆ Q×Γ×Σ×Q×Γ∗ is the set of transitions such that for every (q, γ, a, q′,w) ∈ δ, ∣w∣ ≤ 2,
γ ∈ Γ� implies w ∈ Γ�(Γ ∖ Γ�)∗ and γ ∉ Γ� implies w ∈ (Γ ∖ Γ�)∗;
P is the transition probability function fulfilling for every q ∈ Q and γ ∈ Γ:
∑(q,γ,a,q′,w)∈δ P[(q, γ, a, q′,w)] = 1.

A transition t = (q, γ, a, q′,w) ∈ δ is said to be a local (resp. push, pop) transition if ∣w∣ = 1
(resp. ∣w∣ = 2, ∣w∣ = 0). We require that for every transition t = (q, γ, a, q′,w) ∈ δ, t is a local
(resp. push, pop) transition iff a is a local (resp. push, pop) event.

The semantics of a pVPA is an infinite-state pLTS whose states are pairs (q, z) consisting
of a control state and a stack contents.

▸ Definition 11. A pVPA V = (Q,Σ,Γ, δ,P) defines a pLTSMV = (QV , (q0,�0),Σ, TV ,PV)
where:

QV = {(q, z) ∣ q ∈ Q ∧ z ∈ Γ�(Γ ∖ Γ�)∗};
TV = {((q, zγ), a, (q′, zw)) ∣ zγ ∈ Γ�(Γ ∖ Γ�)∗ ∧ (q, γ, a, q′,w) ∈ δ};
For every ((q, zγ), a, (q′, zw)) ∈ TV , PV[((q, zγ), a, (q′, zw))] = P[(q, γ, a, q′,w)].

▸ Example 12. Figure 4 gives an example of a pVPA. The event alphabet is composed
of local events {serve,empty,reset}, a push event in and pop events {out, f ,abort}. A
transition t = (q, γ, a, q′,w) is represented by an edge from state q to state q′ and labelled by
P[t] ⋅ γ, a,w. The semantics of this pVPA is precisely the pLTS from Figure 1. Indeed, the
stack alphabet consists of two letters Γ = {γ,�0} where the set of bottom stack symbol is
Γ� = {�0}. Thus one can encode the stack using a counter that gives the number of γ in the
stack. For instance, in the pLTS from Figure 1 the configuration (q1,�0γ

n) of the pVPA
corresponds to the state q1n.

To define partially observable pVPA, we equip a pVPA with a mask function and
require that only local events may be unobservable, and that pushes and pops can still be

CONCUR 2016

37:10 Diagnosis in Infinite-State Probabilistic Systems

distinguished. This restriction is crucial since it ensures that the observed sequence of a
signalling run of a POpVPA still provides the information about the height of the stack.
▸ Definition 13. A partially observable pVPA (POpVPA) is a tuple ⟨V,Σo,P⟩ consisting of
a pVPA V equipped with a mapping P ∶ Σ→ Σo ∪ {ε} such that:

Σo = Σo,♮ ⊎Σo,♯ ⊎Σo,♭ is the set of observations;
P(Σ♮) ⊆ Σo,♮ ∪ {ε}, P(Σ♯) ⊆ Σo,♯ and P(Σ♭) ⊆ Σo,♭.
In the sequel, we may identify a POpVPA with the POpLTS it generates. In particular,

the various concepts of diagnosability are lifted from POpLTS to POpVPA.

4.2 Diagnosability for POpVPA
To obtain an algorithm for the diagnosability of POpVPA, we follow the finite-state case
approach [3]. First, we determinise POpVPA V into A(V), with the diagnosis objective in
mind, building on the deterministic automaton recognising unambiguous sequences from [9].
We therefore introduce tags that reflect the category of runs (faulty or correct) given an
observed sequence with a distinction between “old” and “young” faulty runs. It then suffices
to check whether the characterisations hold on the synchronised product V̂ ×A(V) where V̂
enlarges V by keeping track of a fault occurrence. To reduce to a decidable model checking
question, we specify the Borel sets from Section 3 by LTL formulae.

4.2.1 Diagnosis-oriented determinisation
The determinisation of V (where probabilities are irrelevant for this transformation) into
A(V) exploits some ideas of the original determinisation by Alur and Madhusudan [1], yet,
it is customised to diagnosis. In particular, it uses tags that were first defined to construct a
deterministic Büchi automaton recognising the unambiguous sequences of a finite LTS [9].
The complete definition of the estimate VPA A(V) associated with a POpVPA V is technical
and detailed in [5]. We emphasise here some aspects of the construction and illustrate them
on an example. Figure 5 represents the deterministic VPA associated with our example
POpVPA. For readability, we use shortcuts on the transitions in this figure, namely symbols
aX

0 , aX
1 , etc. denote stack symbols of A(V).

Figure 6 displays two finite runs of the deterministic VPA A(V) from Figure 5 sharing
most transitions to the exception of the last one.
States and stack symbols. The VPA A(V) tracks all runs with the same observation
in parallel memorising their status w.r.t. faults. More precisely to the current set of runs
corresponds the symbol on the top of the stack which is a set of tuples where each tuple is
written as a fraction γ,X,q

γ−,X−,q− . Let us describe the meaning of this tuple:
q is the current state of the run and γ is the symbol on the top of its stack;
X ∈ Tg = {U,V,W} is the status of the run: U for a correct run, V for a young faulty run
and W for an old faulty run;
The denominator (γ−,X−, q−), is related to the configuration just after the last push event
of the run: γ− is the stack symbol under the top symbol, while X− is the status of the
run reaching this configuration and q− the state of this configuration.

A priori, a single state run would be enough. However the simulation of a pop event in the
original VPA is performed in two steps requiring some additional states that we explain later.

Illustration. The initial configuration of the VPA A(V) of Figure 5 (run, ∣{�0,U,q0
�0,U,q0

}∣) cor-
responds to the empty run represented by a singleton. The denominator of bottom stack
symbols is by convention (�0,U, q0) and is irrelevant for specifying the transitions of A(V).

N. Bertrand, S. Haddad, and E. Lefaucheux 37:11

aX
0 = {�0,X,q0

�0,X,q0
}, aX

1 = { γ,X,q0
�0,X,q0

}, aX
∞ = {γ,X,q0

γ,X,q0
}, bX

1 = { γ,X,q1
�0,X,q0

}, bX
∞ = {γ,X,q1

γ,X,q0
}

cX
0 = {�0,X,q1

�0,U,q0
, �0,X,f1
�0,U,q0

}, cX
1 = { γ,X,q1

�0,X,q0
, γ,X,f1
�0,X,q0

}, cX
∞ = {γ,X,q1

γ,U,q0
, γ,X,f1
γ,U,q0

}, X ∈ {U,W}

run

{ U,q1
�0,U,q0

, W,f1
�0,U,q0

}

{ W,q1
�0,W,q0

, W,f1
�0,W,q0

}

{ U,q1
γ,U,q0

, W,f1
γ,U,q0

}

{ W,q1
γ,W,q0

, W,f1
γ,W,q0

}

bU
1 ,pop, ε
cU

1 ,pop, ε

aU
0 , ε, c

U
0

bW
1 ,pop, ε
cW

1 ,pop, ε

aW
0 , ε, c

W
0

bU
∞,pop, ε
cU
∞,pop, ε

aU
1 , ε, c

U
1

aU
∞, ε, c

U
∞

bW
∞,pop, ε
cW
∞,pop, ε

aW
1 , ε, c

W
1

aW
∞, ε, c

W
∞

aX
1 ,serve, bX

1

aX
∞,serve, bX

∞

cX
0 ,empty, aX

0

cX
0 ,reset, aW

0

aX
0 ,in, aX

0a
X
1

aX
1 ,in, aX

1a
X
∞

aX
∞,in, aX

∞a
X
∞

Figure 5 The VPA A(V) associated with the POpVPA V of Figure 4.

(run, { �0,U,q0
�0,U,q0

}) (run,
{ γ,U,q0
�0,U,q0

}
{ �0,U,q0
�0,U,q0

}) (run,
{ γ,U,q0
γ,U,q0

}
{ γ,U,q0
�0,U,q0

}
{ �0,U,q0
�0,U,q0

}
) (run,

{ γ,U,q1
γ,U,q0

}
{ γ,U,q0
�0,U,q0

}
{ �0,U,q0
�0,U,q0

}
)

({ U,q1
γ,U,q0

, W,f1
γ,U,q0

}, {
γ,U,q0
�0,U,q0

}
{ �0,U,q0
�0,U,q0

})(run,
{ γ,U,q1
�0,U,q0

, γ,W,f1
�0,U,q0

}
{ �0,U,q0
�0,U,q0

})({ U,q1
�0,U,q0

, W,f1
�0,U,q0

}, { �0,U,q0
�0,U,q0

})

(run, { �0,U,q1
�0,U,q0

, �0,W,f1
�0,U,q0

})

(run, { �0,U,q0
�0,U,q0

})

(run, { �0,W,q0
�0,U,q0

})

in in serve

pop

εpop

ε
empty

reset

Figure 6 Two runs of the VPA from Figure 5.

Tag updates. Let us explain how the tag X of an item γ,X,q
γ−,X−,q− of the current stack symbol

is determined. If this item corresponds to a correct run then X = U. When, in a current state,
after a transition of A(V) a (tracked) correct run becomes faulty in the next state, there are
two cases. Either there was no tag W in (the numerators of items of) the top stack symbol
of the current state then the run is tagged by W. Otherwise it is tagged by V meaning that
it is a young faulty run. The tag V (young) becomes W (old) when, in the previous state,
there was no tag W in the top stack symbol. A tag W is unchanged along the run.

Push transitions. Given an observed push event o ∈ Σo,♯, from the control state run with
top stack symbol bel, there is a looping push transition (run, bel, o, run, bel′bel′′) in A(V)
that encodes the possible signalling runs with observation o in V. More precisely for every
transition sequence (q,α) oÔ⇒ (r, β−β) in V (i.e. a sequence of unobservable local events
ending by an event e with P(e) = o) and α,X,q

α−,X−,q− ∈ bel one inserts β−,Y,r
α−,X−,q− in bel′ and β,Y,r

β−,Y,r
in bel′′. The value of Y follows the rules of tag updates.

CONCUR 2016

37:12 Diagnosis in Infinite-State Probabilistic Systems

Illustration. In Figure 5 several transitions correspond to the transition (q0,�0, in, q0,�0γ)
of V, including (run,{�0,U,q0

�0,U,q0
},in, run,{�0,U,q0

�0,U,q0
}{ γ,U,q0

�0,U,q0
}) and several transitions correspond

to the transition (q0, γ,in, q0, γγ) of V, including (run,{ γ,U,q0
�0,U,q0

},in, run,{ γ,U,q0
�0,U,q0

}{γ,U,q0
γ,U,q0

}).
Here, the specification of the tag updates is straightforward since it does not involve faulty
runs. The runs represented in Figure 6 use these two transitions from the initial state.

Local transitions. Given an observed local event o ∈ Σo,♮, from the control state run
with top stack symbol bel, there is a looping local transitions (run, bel, o, run, bel′) in A(V)
that encodes the possible signalling runs with observation o in V. More precisely for every
transition sequence (q,α) oÔ⇒ (r, β) in V (i.e. a sequence of unobservable local events ended
by an event e with P(e) = o) and α,X,q

α−,X−,q− ∈ bel one inserts β,Y,r
α−,X−,q− in bel′. The value of Y

follows the rules of tag updates.
Illustration. In the VPA A(V) of Figure 5 there are several transitions corresponding to
transition (q0, γ,serve, q1, γ) of V including (run,{γ,U,q0

γ,U,q0
},serve, run,{γ,U,q1

γ,U,q0
}). The runs

represented in Figure 6 use this transition.
Pop transitions. Given an observed local event o ∈ Σo,♭, from the control state run with
top stack symbol bel, the “pop operation” is performed by a sequence of two transitions: a
pop transition labelled by o that keeps in the next state all the information needed by the
next (local) transition labelled by ε to move back to state run with a consistent stack symbol.
Given an intermediate stack symbol, there is exactly one possible such transition. Thus
despite these transitions, A(V) is still deterministic. The first transition (run, bel, o, `, ε)
in A(V) is specified as follows. The next state ` is a set of items of the following shape

X,q
α−,X−,q− . More precisely for every transition sequence (q,α) oÔ⇒ (r, ε) in V (i.e. a sequence of
unobservable local events ended by an event e with P(e) = o) and α,X,q

α−,X−,q− ∈ bel one inserts
Y,r

α−,X−,q− in `. The value of Y follows the rules of tag updates. A transition (`, bel, ε, run, bel′)
is specified as follows. For every X′,q′

γ,X,q in ` and γ,X,q
γ−,X−,q− in bel (i.e. the denominator of the

first fraction and the numerator of the second fraction match), one inserts γ,X′,q′
γ−,X−,q− in bel′.

Illustration. Let us describe how the pop event is performed by two transitions in the runs
of the VPA of Figure 6 from the state reached after event serve. From q1 with γ as top of the
stack there are two transitions whose observation is pop: (q1, γ,out, q1, ε) and (q1, γ, f , f1, ε).
Thus starting from run with top stack symbol {γ,U,q1

γ,U,q0
}, one reaches state ` = { U,q1

γ,U,q0
, W,f1
γ,U,q0

}.
The faulty run is tagged with W as there was no tag W in the former top stack symbol. In
the next configuration, the top stack symbol is { γ,U,q0

�0,U,q0
}. So the transition labelled by ε

moves back to state run with updated top stack symbol { γ,U,q1
�0,U,q0

, γ,W,f1
�0,U,q0

}.

4.2.2 Product VPA
To recover the probabilistic behaviour of V, we need to construct a synchronised product of
V and the deterministic VPA A(V). In order to track the presence of a fault in a run of this
product, we first enrich V to track occurrences of f . We thus define the POpVPA V̂ whose set
of states Q̂ is a duplication of Q in correct states Qc and faulty states Qf . Given a transition
of V starting from q leading to q′, there is in V̂ a transition starting from qf leading to q′f
and a transition starting from qc leading either to q′c if the event is not f or to q′f otherwise.
We then construct VA(V) = V̂ ×A(V) the product automaton of V̂ and A(V) synchronised
on the alphabet of observed events Σo. The transitions of V̂ labelled by unobservable events
do not change the second component of the state and the transitions of A(V) labelled by

N. Bertrand, S. Haddad, and E. Lefaucheux 37:13

ε do not change the first component of the state. Due to the determinism of A(V), VA(V)
has the same probabilistic behaviour as the one of V except that it memorises additional
information along the run. More precisely, let ρ be a run of V, then ρ̄, a run of VA(V), is
obtained from ρ by following the same transitions and adding the single ⊖ transition firable
after any pop transition. One immediately gets PVA(V)(ρ) = PV(ρ).

Let us explain how to transform the paths formulae f, U and W into atomic propositions
on the pairs ((q, run)(γ, bel)) consisting of a control state of VA(V) together with a top
stack contents. For path formula f, we define the corresponding atomic proposition νf by
νf((q, run)(γ, bel)) = true if and only if q ∈ Qf . Let bel ⊆ (Γ × Tg × Q)2, we say that X
occurs in bel if there exists γ,X,q

γ−,X−,q− ∈ bel. We define atomic propositions νu and νw by:
νu((q, run)(γ, bel)) = true if and only if U occurs in bel; and νw((q, run)(γ, bel)) = true if and
only if W occurs in bel.

Given a run ρ of VA(V), we write last(ρ) for the pair formed of the control state and top
stack symbol in VA(V) after ρ. The atomic propositions νf and νu perfectly reflect the paths
formula f and U, and νw is eventually forever true if and only if W is.

▸ Proposition 14. Let ρ be an infinite run of V. Then:
For all k ∈ N, f(ρ↓k)⇔ νf(last(ρ̄↓k)) and U(ρ↓k)⇔ νu(last(ρ̄↓k));
ρ ⊧◇◻W⇔ ∃K∀k ≥K. νw(last(ρ̄↓k)) = true.

4.2.3 Complexity of diagnosability for POpVPA
Thanks to the relationships between the paths formulae and the atomic propositions, and
using the characterisations from Section 3, we manage to reduce the FF-, IF- and IA-diagnosis
to the model checking of a pLTL formula on the product VPA VA(V). Model checking
qualitative pLTL for probabilistic pushdown automata is achievable in polynomial space in
the size of the model [8]. In our case, VA(V) is exponential in the size of V. We thus obtain
the decidability and a complexity upper-bound for the diagnosability problems for POpVPA.

▸ Theorem 15. FF-diagnosability, IF-diagnosability and IA-diagnosability are decidable in
EXPSPACE for POpVPA.

Proof. For V a POpVPA, V and VA(V) have the same probabilistic behaviour. Therefore,
using the relation between path formulae and atomic propositions from Proposition 14, we
reformulate Propositions 6 and 7 into pLTL characterisations of diagnosability:
V is FF-diagnosable iff VA(V) ⊧ P=0(◇◻ (νf ∧ νu));
V is IA-diagnosable iff VA(V) ⊧ P=0(◇◻ (νu ∧ νw)).

Moreover, since the POpLTS generated by POpPDA are finitely-branching, IF-diagnosability
coincides with FF-diagnosability [3] (see also Theorem 5). The two above qualitative
pLTL formulae can be checked on general probabilistic pushdown automata (beyond visibly
pushdown ones) thanks to [8]. More precisely, one can transform VA(V) into a recursive
Markov chain (the transformation is linear) [7]. Then, the model checking of qualitative
pLTL on recursive Markov chains is doable in PSPACE in the size of the Recursive Markov
Chain and EXPTIME in the size of the formulae [8]. In our case, the product VPA VA(V)
is exponential in the size of V and the size of the formulae is constant. This yields an
EXPSPACE algorithm for checking diagnosability of POpVPA. ◂

Reducing the universality problem for VPA, which is known to be EXPTIME-complete [1],
we obtain the EXPTIME-hardness of all diagnosability variants for POpVPA.

▸ Theorem 16. Diagnosability is EXPTIME-hard for POpVPA.

CONCUR 2016

37:14 Diagnosis in Infinite-State Probabilistic Systems

The restriction to visibly pushdown automata is motivated by the unfeasibility of diagnosis
for general probabilistic pushdown automata.

▸ Theorem 17. Diagnosability is undecidable for POpPDA.

The undecidability can be obtained by adapting the proof for diagnosis of non-probabilistic
pushdown automata [12]. However, in order to show how robust the result is, we rather
reduce from the Post Correspondence Problem and prove the undecidability of diagnosability
for restricted classes of partially observable probabilistic pushdown automata. In particular,
undecidability already holds for two (incomparable) subclasses of POpPDA [5] with restriction
on what is observable and on the number of phases of any run, where a phase is a portion of
run in which the stack either never decreases or never increases.

5 Conclusion

We studied the diagnosability problem for infinite-state probabilistic systems, both from a
semantical perspective, and from an algorithmic one when considering probabilistic visibly
pushdown automata. A natural research aim is to reduce the complexity gap for the
diagnosability of POpVPA (currently EXPTIME-hard and in EXPSPACE). We could also
investigate the diagnosability problem for other probabilistic extensions infinite state systems,
such as lossy channel systems or VASS. Another research direction would be to consider the
fault diagnosis problem for continuous-time probabilistic models, starting with CTMC.

References
1 R. Alur and P. Madhusudan. Visibly pushdown languages. In Proc. STOC’04, pages

202–211. ACM, 2004.
2 N. Bertrand, É. Fabre, S. Haar, S. Haddad, and L. Hélouët. Active diagnosis for probabil-

istic systems. In Proc. FoSSaCS’14, volume 8412 of LNCS, pages 29–42. Springer, 2014.
3 N. Bertrand, S. Haddad, and E. Lefaucheux. Foundation of diagnosis and predictability in

probabilistic systems. In Proc. FSTTCS’14, volume 29 of LIPIcs, pages 417–429. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2014.

4 N. Bertrand, S. Haddad, and E. Lefaucheux. Accurate approximate diagnosability of
stochastic systems. In Proc. LATA’16, volume 9618 of LNCS, pages 549–561. Springer,
2016.

5 N. Bertrand, S. Haddad, and E. Lefaucheux. Diagnosis in infinite-state probabilistic systems
(long version). Technical report, HAL Inria, 2016. https://hal.inria.fr/hal-01334218.

6 M. P. Cabasino, A. Giua, and C. Seatzu. Diagnosability of discrete-event systems using
labeled Petri nets. IEEE Trans. Automation Science and Engineering, 11(1):144–153, 2014.

7 K. Etessami and M. Yannakakis. Recursive Markov chains, stochastic grammars, and
monotone systems of nonlinear equations. Journal of the ACM, 56(1), 2009.

8 K. Etessami and M. Yannakakis. Model checking of recursive probabilistic systems. ACM
Trans. Computational Logic, 13(2):12, 2012.

9 S. Haar, S. Haddad, T. Melliti, and S. Schwoon. Optimal constructions for active diagnosis.
In Proc. FSTTCS’13, volume 24 of LIPIcs, pages 527–539. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 2013.

10 S. Jiang, Z. Huang, V. Chandra, and R. Kumar. A polynomial algorithm for testing
diagnosability of discrete-event systems. IEEE Trans. Automatic Control, 46(8):1318–1321,
2001.

11 A. Kučera, J. Esparza, and R. Mayr. Model checking probabilistic pushdown automata.
Logical Methods in Computer Science, 2(1), 2006.

https://hal.inria.fr/hal-01334218

N. Bertrand, S. Haddad, and E. Lefaucheux 37:15

12 C. Morvan and S. Pinchinat. Diagnosability of pushdown systems. In Proc. HVC’09, volume
6405 of LNCS, pages 21–33. Springer, 2009.

13 Y. N. Moschovakis. Descriptive Set Theory. Mathematical Surveys and Monographs. AMS,
2009.

14 M. Sampath, S. Lafortune, and D. Teneketzis. Active diagnosis of discrete-event systems.
IEEE Trans. Automatic Control, 43(7):908–929, 1998.

15 M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen, and D. Teneketzis. Diagnos-
ability of discrete-event systems. IEEE Trans. Automatic Control, 40(9):1555–1575, 1995.

16 D. Thorsley and D. Teneketzis. Diagnosability of stochastic discrete-event systems. IEEE
Trans. Automatic Control, 50(4):476–492, 2005.

CONCUR 2016

	p00-frontmatter
	Preface

	p01-danos
	Introduction
	Preliminaries
	Bayesian inversion
	Categories of kernels
	Disintegrations
	Bayesian inversion

	Omega-complete normed cones
	Basic definitions
	Cones of measures and of measurable functions
	Duality between L1 and Linf cones
	Operator interpretations of kernels

	Bayesian inversion as duality
	Conclusion

	p01-ZZZ-Blank
	p02-rossi
	Motivation and Introduction
	Preference modelling and reasoning
	From preferences to morality
	Morality by meta-preferences
	Morality in narrow AI systems
	Concurrency in moral collective decision making
	Conclusions

	p02-ZZZ-Blank
	p03-shapiro
	Introduction
	System model
	Data
	Operations
	Executions
	How models relate to application semantics

	Gen1/Total Order Axis
	Same total order for generators and effectors (TOG=TOE)
	TOG=TOE and Gen1 Invariants.
	Total Order of Effectors (TOE): Capricious vs. Gapless
	TOE and Causality Based Invariants
	Concurrent Effectors

	PO/Visibility Axis
	PO-type invariants

	EQ/Composition Axis
	EQ-type and Gen* invariants
	(Transactional) Composition axis
	Composition: Discussion

	Discussion and conclusion

	p04-smolka
	Introduction
	Model Predictive Control for V-Formation
	Fitness Metrics
	Experimental Results

	p04-ZZZ-Blank
	p05-abdulla
	Introduction
	Preliminaries
	Concurrent Systems
	Syntax
	Classical TSO semantics
	Dual TSO semantics

	The Dual TSO Reachability Problem
	Well-Structured Transition Systems
	Dual TSO Transition System is a Wsts

	Parameterized Concurrent Systems
	Decidability of the Parameterized Verification Problem
	Experimental Results
	Conclusion

	p05-ZZZ-Blank
	p06-haas
	Introduction
	Semantics of Concurrent Objects
	Local Linearizability
	Local Linearizability vs. Linearizability
	Local Linearizability vs. Other Relaxed Consistency Conditions
	Locally Linearizable Implementations
	Conclusion & Future Work

	p06-ZZZ-Blank
	p07-bernardi
	Introduction
	Consistency Model Specifications
	Dynamic Robustness Criteria
	Static Robustness Criteria
	Related Work
	Conclusion

	p07-ZZZ-Blank
	p08-brenguier
	Introduction
	Preliminaries
	Assumptions
	Refinement using scenarios
	Existence of a sufficient assumption with scenario

	General assumptions
	Ensurable assumptions
	Necessary and sufficient non-restrictive assumptions
	Link between non-dominated strategies and optimal assumptions
	Computation of optimal ensurable assumptions
	Scenarios
	Generalisation

	Input-assumptions

	p08-ZZZ-Blank
	p09-almagor
	Introduction
	Parity-MDPs
	Solving Parity MDPs
	Infinite-Memory Strategies
	Finite-Memory Strategies
	Comparison with Related Work

	Applications
	Penalties on Undesired Scenarios
	Sensing

	p09-ZZZ-Blank
	p10-brazdil
	Introduction
	Preliminaries
	The Window-Stability Multi-Objectives
	Solving Games with Window-Stability Multi-Objectives
	Lower Bounds for Window-Stability Objectives

	The variance-stability problem

	p11-bruyere
	Introduction
	Preliminaries
	Problem
	Efficient fragment with one WMP objective
	Intersection of objectives in {Inf,Sup,LimInf,LimSup}

	p11-ZZZ-Blank
	p12-esparza
	Introduction
	Negotiations
	Main definitions

	Soundness of acyclic deterministic negotiations
	Races
	Omitting problem
	Workflows and deterministic negotiations with data
	Soundness of acyclic weakly non-deterministic negotiations is in Ptime
	Beyond acyclic weakly non-deterministic negotiations
	Conclusions

	p12-ZZZ-Blank
	p13-finkbeiner
	Introduction
	HyperLTL
	Alternation-free HyperLTL
	The Forall* Fragment
	The Exists* Fragment

	The Exists*Forall* Fragment
	The Full Logic
	Conclusion

	p14-triebel
	Introduction
	Formalization
	Preliminaries
	Polynomials over Abelian Groups
	Terms
	Vectors
	Algebraic Petri Nets

	Homogeneous Linear Equations of APNs

	Contributions
	Undecidability of Validity of Homogeneous Equations
	Deciding Stability of Homogeneous Equations over Cyclic Groups
	Related Work
	Concluding Remarks

	p15-schlachter
	Introduction
	Preliminaries
	Simulating Two-Counter Machines with Petri nets
	Undecidability of Petri Net Synthesis from the Nu-calculus
	Auxiliary Formulas
	Characterisation of our Class of Nets via the Nu-Calculus
	Undecidability of Petri Net Synthesis from the Nu-calculus

	Undecidability of Synthesis from Modal Transition Systems
	Conclusion

	p16-bonakdarpour
	Introduction
	Background: Linear Temporal Logics for RV
	Distributed Runtime Monitoring and Insufficiency of LTL4
	Wait-Free Distributed Monitoring
	Global Consistency

	Alternation Number
	Multi-Valued LTL for Consistent Distributed Monitoring
	Semantics of LTL2k+4
	Monitorability and Monitor Synthesis for LTL2k+4
	Monitoring Algorithm and Global Consistency in LTL2k+4

	Conclusion and Future Work

	p16-ZZZ-Blank
	p17-jezequel
	Introduction
	Preliminary definitions
	LTSs and their products
	Partial products and reachability of partial states

	The Lazy Reachability Analysis Algorithm
	Concretisation
	Merging
	Example
	Soundness, completeness, termination

	Experimental analysis
	Implementation choices
	Benchmarks
	Positive results.
	Focus on TokenRing.

	Conclusion

	p18-perera
	Introduction
	Galois connections for slicing pi-Calculus programs
	Lattices of slices
	Galois connections for slicing

	Slicing and causal equivalence
	Related work
	Conclusion
	Agda module structure

	p18-ZZZ-Blank
	p19-rickmann
	Introduction and Technical Preliminaries
	Model for Asynchronous Message-Passing
	Linearization Algorithm for Asynchronous Message-Passing
	Results
	Conclusion

	p19-ZZZ-Blank
	p20-daca
	Introduction
	Related work
	Outline

	Preliminaries
	Framework for Linear Distances
	Problem Statement
	Inestimability: Total variation distance
	Estimability: Finite-trace distance
	Estimates for fixed length
	Estimates for unbounded length

	Consequences and Discussion
	Topology
	Logic
	Automata
	Finite Precision

	Conclusions and Future Work

	p20-ZZZ-Blank
	p21-bacci
	Introduction
	Preliminaries and Notation
	Quantitative Algebras and their Equational Theories
	The Quantitative Algebra of Probabilistic Behaviors
	Open Markov Chains and Bisimilarity Distance
	The Algebra of Open Markov Chains

	Axiomatization of the Bisimilarity Distance
	Soundness
	Completeness

	The Class of Expressible Open Markov Chains
	Conclusions and Future Work

	p22-tang
	Introduction
	The Probabilistic Bisimilarity Pseudometric
	An Alternative Characterization of delta
	Simple Stochastic Games
	Simple Policy Iteration
	An Exponential Lower Bound
	Conclusion

	p22-ZZZ-Blank
	p23-dahlqvist
	Introduction
	Preliminaries
	Pol endofunctors
	The structure of Pol
	Characterisations of zero-dimensional spaces

	Converging in G(X)

	The Machine
	Parameter condition
	Model condition
	The Machine

	A grammar for parameterised models
	Closure properties of the parameter condition
	Closure properties of the model condition
	Syntax for parameterisations and models

	Applications
	The iid natural transformation
	Exchangeable measures and the de Finetti theorem

	Conclusion

	p23-ZZZ-Blank
	p24-urabe
	Introduction
	Preliminaries
	Coalgebras in a Kleisli Category
	Coalgebraic Theory of Trace
	Equational Systems for Alternating Fixed Points

	Coalgebraic Modeling of Parity Automata and Its Trace Semantics
	Coalgebraic Modeling of Büchi/Parity Automata
	Coalgebraic Trace Semantics under the Parity Acceptance Condition

	Coincidence with the Conventional Definition: Nondeterministic
	Coincidence with the Conventional Definition: Probabilistic
	Trace Semantics of Parity (G,F)-Systems is Well-Defined
	Probabilistic Parity Tree Automata and Its Languages
	Coincidence between Conventional and Coalgebraic Languages

	p24-ZZZ-Blank
	p25-dubut
	Introduction
	Categorical models and bisimilarities
	Category of models, subcategory of paths
	A relational bisimilarity of models: path-bisimilarity
	A fibrational bisimilarity of models: P-bisimilarity

	Accessible models and equivalence of bisimilarities
	Presheaf models
	Relationships with coreflections
	Unfoldings in accessible models
	The case of TS(Sigma)
	P-unfolding and bisimilarity
	Unfolding is a right adjoint

	Unfoldings and universal coverings
	Coverings of groupoids
	Unfoldings and unique path lifting property

	Conclusion

	p26-brengos
	Introduction
	A coalgebraic account of timed automata and their semantics
	Unobservable moves, acceptance and non-determinism
	Timed automata in K and their semantics
	General saturation for lax functors
	Saturation-based behavioural equivalences

	Application: timed behavioural and language equivalences
	Behavioural equivalences
	Finite trace equivalence

	Conclusions

	p26-ZZZ-Blank
	p27-akshay
	Introduction
	Graphs for behaviors of timed systems
	Abstractions of timed behaviors
	TPDA and their semantics as simple TCWs

	Bounding the width of graph behaviors of timed systems
	The tree automata technique illustrated via TPDA and TA
	Tree automata for realizable valid (K,M)-STTs
	Discussion and Future work

	p28-david
	Introduction
	Definitions
	Words and trees
	Kripke structures
	QCTL * and its fragments
	Syntax and (tree) semantics
	Discussion on the semantics.
	Fragments of QCTL *.

	Expressive power and distinguishing power

	Distinguishing power of QCTL
	Characteristic formulas with QCTL
	QCTL [1], QCTL and QCTL * have the same distinguishing power
	Behavioural equivalences for QCTL [k]

	Expressive power of QCTL
	QCTL [2] is strictly more expressive than QCTL [1] and QCTL [1]*
	QCTL and QCTL [2] are equally expressive
	Symmetric tree automata
	From QCTL to symmetric tree automata
	From symmetric tree automata to QCTL [2]

	Concluding remarks

	p28-ZZZ-Blank
	p29-lechner
	Introduction
	Preliminaries
	One-Counter Automata with Equality and Disequality Tests
	Model Checking Freeze LTL on One-Counter Automata
	Presburger Arithmetic

	Normal Form for Paths
	Reachability with Parameterised Tests
	Conclusion

	p30-konnov
	Introduction
	BIP without priorities
	Parameterized BIP without priorities
	FOIL: First order interaction logic
	Interactions as FOIL structures

	Parameterized model checking
	Identifying the architecture of a parameterized BIP model
	The common templates for BIP semantics
	Pairwise rendezvous in a clique
	Broadcast in a clique
	Token rings
	Pairwise rendezvous in a star

	Prototype implementation and experiments
	Related work and conclusions

	p31-horne
	Introduction
	Syntax and Semantics of Predicates in MAV1
	Linear Implication and Cut Elimination

	Linear Implication as a Precongruence for Processes-as-Predicates
	Logical Properties of the Pair of Nominal Quantifiers
	Discussion on the Rules for Nominal Quantifiers
	Preliminary Lemmas and Killing Contexts
	The Splitting Technique for Simulating the Sequent Calculus
	Context Reduction and the Admissibility of Co-rules

	Conclusion

	p32-castellan
	Introduction
	Affine IPA and its interleaving game semantics
	Affine IPA
	Arenas
	Interleaving-based game semantics on arenas

	Causal game semantics for affine IPA
	Po-plays and po-strategies
	The compact closed category PO
	Interpretation of affine IPA

	From PO to GM and back
	Forgetting causality
	Recovering causality
	A naive causal reconstruction
	Extremal causal resolutions
	Causally ambiguous GM-strategies

	Conclusions

	p33-carbone
	Introduction
	Classical Processes (CP)
	Globally-governed Classical Processes (GCP)
	Multiparty Classical Processes (MCP)
	Related and Future Work

	p33-ZZZ-Blank
	p34-hausmann
	Introduction
	Preliminaries: The mu-Calculus
	The Global Caching Algorithm
	Soundness, Completeness and Complexity
	Implementation and Benchmarking
	Conclusion

	p34-ZZZ-Blank
	p35-chatzikokolakis
	Introduction
	Preliminaries
	Premetrics: operations and their properties
	Lipschitz property and reverse maps
	Generalized Kantorovich lifting
	Metric closure and chaining
	Operations that preserve Lipschitz
	Convex and quasiconvex premetrics

	Up-to techniques
	Progressions
	F functions, soundness, respectfulness
	Composing up-to techniques
	Up-to bisimilarity metric and up-to (quasi)convexity

	Faithful contexts

	Up-to techniques for probabilistic CCS
	Conclusion and future work

	p36-castiglioni
	Introduction
	Probabilistic Transition Systems
	Distribution specifications
	The decomposition method
	Ruloids
	Decomposition of modal formulae
	Probabilistic bisimilarity as a congruence

	Conclusions

	p36-ZZZ-Blank
	p37-bertrand
	Introduction
	Diagnosis specifications for infinite-state probabilistic systems
	Probabilistic labelled transition systems
	Partial observation and faults
	Fault diagnosis for POpLTS

	Characterisation of diagnosability
	Diagnosis for probabilistic pushdown automata
	Probabilistic visibly pushdown automata
	Diagnosability for POpVPA
	Diagnosis-oriented determinisation
	Product VPA
	Complexity of diagnosability for POpVPA

	Conclusion

	p37-ZZZ-Blank

