
Approximation, Randomization,
and Combinatorial Optimization.
Algorithms and Techniques

19th International Workshop, APPROX 2016, and
20th International Workshop, RANDOM 2016
September 7–9, 2016, Paris, France

Edited by

Klaus Jansen
Claire Mathieu
José D. P. Rolim
Chris Umans

LIPIcs – Vo l . 60 – APPROX/RANDOM’16 www.dagstuh l .de/ l ip i c s

Editors
Klaus Jansen Claire Mathieu
University of Kiel CNRS, Ecole Normale Superieure
Kiel, Germany Paris, France
kj@informatik.uni-kiel.de cmathieu@di.ens.fr

Jośe Rolim Chris Umans
University of Geneva California Institute of Technology
Geneva, Switzerland Pasadena, CA, USA
Jose.Rolim@unige.ch umans@cs.caltech.edu

ACM Classification 1998
F.0 Theory of Computation, F.1.1 Models of Computation, F.1.2 Modes of Computation – Online
Computation, F.1.3 Complexity Measures and Classes, F.2 Analysis of Algorithms and Problem Complexity,
F.2.1 Numerical Algorithms and Problems – Computations on Matrices, F.2.2 Nonnumerical Algorithms
and Problems – Computations on Discrete Structures – Sequencing and Scheduling – Geometrical
Problems and Computations, F.2.3 Tradeoffs between Complexity Measures, G.1.3 Numerical Linear
Algebra, G.2.1 Combinatorics – Counting Problems, G.2.2 [Discrete Mathematics] Graph Theory–Graph
Algorithms, Path and Circuit Problems, G.3 Probability and Statistics – Probabilistic Algorithms, I.2.8
Problem Solving, Control Methods, and Search (Dynamic Programming)

ISBN 978-3-95977-018-7

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-95977-018-7.

Publication date
September, 2016

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.APPROX-RANDOM.2016.0

ISBN 978-3-95977-018-7 ISSN 1868-8969 http://www.dagstuhl.de/lipics

http://www.dagstuhl.de/dagpub/978-3-95977-018-7
http://www.dagstuhl.de/dagpub/978-3-95977-018-7
http://dnb.d-nb.de
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.0
http://www.dagstuhl.de/dagpub/978-3-95977-018-7
http://drops.dagstuhl.de/lipics
http://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Susanne Albers (TU München)
Chris Hankin (Imperial College London)
Deepak Kapur (University of New Mexico)
Michael Mitzenmacher (Harvard University)
Madhavan Mukund (Chennai Mathematical Institute)
Catuscia Palamidessi (INRIA)
Wolfgang Thomas (Chair, RWTH Aachen)
Pascal Weil (CNRS and University Bordeaux)
Reinhard Wilhelm (Saarland University)

ISSN 1868-8969

http://www.dagstuhl.de/lipics

APPROX/RANDOM’16

http://www.dagstuhl.de/dagpub/1868-8969
http://www.dagstuhl.de/lipics

Contents

Preface
Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans ix

Program Committees
. xi

External Reviewers
. xiii

List of Authors
. xv

Regular Papers
Contributed Talks of APPROX

Constant-Distortion Embeddings of Hausdorff Metrics into Constant-Dimensional
`p Spaces

Artūrs Bačkurs and Anastasios Sidiropoulos . 1:1–1:15

Computing Approximate PSD Factorizations
Amitabh Basu, Michael Dinitz, and Xin Li . 2:1–2:12

Hardness of Approximation for H-Free Edge Modification Problems
Ivan Bliznets, Marek Cygan, Paweł Komosa†, and Michał Pilipczuk 3:1–3:17

On Approximating Target Set Selection
Moses Charikar, Yonatan Naamad, and Anthony Wirth . 4:1–4:16

Approximation Algorithms for Parallel Machine Scheduling with Speed-Up
Resources

Lin Chen, Deshi Ye, and Guochuan Zhang . 5:1–5:12

The Densest k-Subhypergraph Problem
Eden Chlamtáč, Michael Dinitz, Christian Konrad, Guy Kortsarz,
and George Rabanca . 6:1–6:19

Online Row Sampling
Michael B. Cohen, Cameron Musco, and Jakub Pachocki . 7:1–7:18

Oblivious Rounding and the Integrality Gap
Uriel Feige, Michal Feldman, and Inbal Talgam-Cohen . 8:1–8:23

A Deterministic Fully Polynomial Time Approximation Scheme for Counting
Integer Knapsack Solutions Made Easy

Nir Halman . 9:1–9:11

A Competitive Flow Time Algorithm for Heterogeneous Clusters Under Polytope
Constraints

Sungjin Im, Janardhan Kulkarni, Benjamin Moseley, and Kamesh Munagala 10:1–10:15
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016).
Editors: Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

0:vi Contents

Revisiting Connected Dominating Sets: An Optimal Local Algorithm?
Samir Khuller and Sheng Yang . 11:1–11:12

Online Energy Storage Management: an Algorithmic Approach
Anthony Kim, Vahid Liaghat, Junjie Qin, and Amin Saberi . 12:1–12:23

LP-Relaxations for Tree Augmentation
Guy Kortsarz and Zeev Nutov . 13:1–13:16

A Bi-Criteria Approximation Algorithm for k-Means
Konstantin Makarychev, Yury Makarychev, Maxim Sviridenko, and Justin Ward . 14:1–14:20

Near-Optimal UGC-hardness of Approximating Max k-CSPR

Pasin Manurangsi, Preetum Nakkiran, and Luca Trevisan . 15:1–15:28

Constant-Factor Approximations for Asymmetric TSP on Nearly-Embeddable
Graphs

Dániel Marx, Ario Salmasi, and Anastasios Sidiropoulos . 16:1–16:54

Planar Matching in Streams Revisited
Andrew McGregor and Sofya Vorotnikova . 17:1–17:12

A Robust and Optimal Online Algorithm for Minimum Metric Bipartite Matching
Sharath Raghvendra . 18:1–18:16

Search-to-Decision Reductions for Lattice Problems with Approximation Factors
(Slightly) Greater Than One

Noah Stephens-Davidowitz . 19:1–19:18

Proving Weak Approximability Without Algorithms
Ridwan Syed and Madhur Tulsiani . 20:1–20:15

Contributed Talks of RANDOM

Every Property of Outerplanar Graphs is Testable
Jasine Babu, Areej Khoury, and Ilan Newman . 21:1–21:19

The Condensation Phase Transition in the Regular k-SAT Model
Victor Bapst and Amin Coja-Oghlan . 22:1–22:18

On Higher-Order Fourier Analysis over Non-Prime Fields
Arnab Bhattacharyya, Abhishek Bhowmick, and Chetan Gupta 23:1–23:29

Bounded Independence vs. Moduli
Ravi Boppana, Johan Håstad, Chin Ho Lee, and Emanuele Viola 24:1–24:9

Approximating Subadditive Hadamard Functions on Implicit Matrices
Vladimir Braverman, Alan Roytman, and Gregory Vorsanger . 25:1–25:19

Local Convergence and Stability of Tight Bridge-Addable Graph Classes
Guillaume Chapuy and Guillem Perarnau . 26:1–26:11

Belief Propagation on Replica Symmetric Random Factor Graph Models
Amin Coja-Oghlan and Will Perkins . 27:1–27:15

Towards a Constructive Version of Banaszczyk’s Vector Balancing Theorem
Daniel Dadush, Shashwat Garg, Shachar Lovett, and Aleksandar Nikolov 28:1–28:12

Contents 0:vii

On the Beck-Fiala Conjecture for Random Set Systems
Esther Ezra and Shachar Lovett . 59:1–59:10

The Niceness of Unique Sink Orientations
Bernd Gärtner and Antonis Thomas . 30:1–30:14

Uniqueness, Spatial Mixing, and Approximation for Ferromagnetic 2-Spin Systems
Heng Guo and Pinyan Lu . 31:1–31:26

On Polynomial Approximations to AC0

Prahladh Harsha and Srikanth Srinivasan . 32:1–32:14

On the Structure of Quintic Polynomials
Pooya Hatami . 33:1–33:18

Lower Bounds on Same-Set Inner Product in Correlated Spaces
Jan Hązła, Thomas Holenstein, and Elchanan Mossel . 34:1–34:11

Estimating Parameters Associated with Monotone Properties
Carlos Hoppen, Yoshiharu Kohayakawa, Richard Lang, Hanno Lefmann,
and Henrique Stagni . 35:1–35:13

Stable Matching with Evolving Preferences
Varun Kanade, Nikos Leonardos, and Frédéric Magniez . 36:1–36:13

An Õ(n) Queries Adaptive Tester for Unateness
Subhash Khot and Igor Shinkar . 37:1–37:7

A Local Algorithm for Constructing Spanners in Minor-Free Graphs
Reut Levi, Dana Ron, and Ronitt Rubinfeld . 38:1–38:15

Tight Bounds for Sketching the Operator Norm, Schatten Norms, and Subspace
Embeddings

Yi Li and David P. Woodruff . 39:1–39:11

Bounds on the Norms of Uniform Low Degree Graph Matrices
Dhruv Medarametla and Aaron Potechin . 40:1–40:26

Lower Bounds for CSP Refutation by SDP Hierarchies
Ryuhei Mori and David Witmer . 41:1–41:30

A No-Go Theorem for Derandomized Parallel Repetition: Beyond Feige-Kilian
Dana Moshkovitz, Govind Ramnarayan, and Henry Yuen . 42:1–42:29

Fast Synchronization of Random Automata
Cyril Nicaud . 43:1–43:12

A Direct-Sum Theorem for Read-Once Branching Programs
Anup Rao and Makrand Sinha . 44:1–44:15

Explicit List-Decodable Codes with Optimal Rate for Computationally Bounded
Channels

Ronen Shaltiel and Jad Silbak . 45:1–45:38

Counting Hypergraph Matchings up to Uniqueness Threshold
Renjie Song, Yitong Yin, and Jinman Zhao . 46:1–46:29

Sampling in Potts Model on Sparse Random Graphs
Yitong Yin and Chihao Zhang . 47:1–47:22

APPROX/RANDOM’16

Preface

This volume contains the papers presented at the 19th International Workshop on Approxim-
ation Algorithms for Combinatorial Optimization Problems (APPROX 2016) and the 20th
International Workshop on Randomization and Computation (RANDOM 2016), which took
place concurrently at the Institut Henri Poincaré in Paris, France during September 7–9,
2016.

APPROX focuses on algorithmic and complexity issues surrounding the development of
efficient approximate solutions to computationally difficult problems, and was the 19th in
the series after Aalborg (1998), Berkeley (1999), Saarbrücken (2000), Berkeley (2001), Rome
(2002), Princeton (2003), Cambridge (2004), Berkeley (2005), Barcelona (2006), Princeton
(2007), Boston (2008), Berkeley (2009), Barcelona (2010), Princeton (2011), Boston (2012),
Berkeley (2013), Barcelona (2014), and Princeton (2015). RANDOM is concerned with
applications of randomness to computational and combinatorial problems, and was the 20th
workshop in the series following Bologna (1997), Barcelona (1998), Berkeley (1999), Geneva
(2000), Berkeley (2001), Harvard (2002), Princeton (2003), Cambridge (2004), Berkeley
(2005), Barcelona (2006), Princeton (2007), Boston (2008), Berkeley (2009), Barcelona (2010),
Princeton (2011), Boston (2012), Berkeley (2013), Barcelona (2014), and Princeton (2015).

Topics of interest for APPROX and RANDOM are: design and analysis of approximation
algorithms, hardness of approximation, small space algorithms, sub-linear time algorithms,
streaming algorithms, embeddings and metric space methods, spectral methods, mathematical
programming methods, combinatorial optimization in graphs and networks, algorithmic game
theory, mechanism design and economics, computational geometric problems, distributed and
parallel approximation, approximate learning, online algorithms, approaches that go beyond
worst case analysis, design and analysis of randomized algorithms, randomized complexity
theory, pseudorandomness and derandomization, random combinatorial structures, random
walks/Markov chains, expander graphs and randomness extractors, probabilistic proof
systems, random projections and embeddings, error-correcting codes, average-case analysis,
property testing, computational learning theory, and other applications of approximation
and randomness.

The volume contains 20 contributed papers, selected by the APPROX Program Committee
out of 40 submissions, and 27 contributed papers, selected by the RANDOM Program
Committee out of 45 submissions.

We would like to thank all of the authors who submitted papers, the invited speakers, the
members of the Program Committees, and the external reviewers. We gratefully acknowledge
the Institute of Computer Science of the Christian-Albrechts-Universität zu Kiel, the Com-
puter Science Department of École normale Supérieure, the Department of Computer Science
of the University of Geneva, and the Computing and Mathematical Sciences Department at
Caltech.

September 2016 Klaus Jansen, Claire Matthieu
José D. P. Rolim, and Chris Umans

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016).
Editors: Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

Program Committees

APPROX 2016
Anna Adamaszek University of Copenhagen, Denmark
Shiri Chechik Tel Aviv, Israel
Anne Driemel TU Eindhoven, The Netherlands
Lee-Ad Gottlieb Ariel University, USA
Varun Kanade University of Oxford, United Kingdom
Nitish Korula Google Research, USA
Stefano Leonardi Sapienza University of Rome, Italy
Daniel Lokshtanov University of Bergen, Norway
Claire Mathieu (chair) École normale supérieure, France
Nicole Megow Technische Universität München, Germany
Tobias Moemke Universität des Saarlandes, Germany
Shayan Oveis Gharan University of Washington, USA
Debmalya Panigrahi Duke University, USA
Richard Peng Georgia Institute of Technology, USA
Ely Porat Bar-Ilan University, Israel
Adi Rosén Université Paris Diderot - Paris 7, France
Adrian Vetta McGill University, Canada
Rico Zenklusen ETH Zurich, Switzerland

RANDOM 2016
Mahdi Cheraghchi Imperial College London, United Kingdom
Elena Grigorescu Purdue University, USA
Neeraj Kayal Microsoft Research, India
Adam Klivans University of Texas, USA
Swastik Kopparty Rutgers University, USA
Ravi Kumar Google Research, USA
Dana Moshkovitz Massachusetts Institute of Technology, USA
Ashwin Nayak University of Waterloo, Canada
Ryan O’Donnell Carnegie Mellon University, USA
Asaf Shapira Tel-Aviv University, Israel
Ronen Shaltiel University of Haifa, Israel
Alexander Sherstov University of California, USA
Thomas Thierauf Aalen University, Germany
Chris Umans (chair) California Institute of Technology, USA
Eric Vigoda Georgia Institute of Technology, USA

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016).
Editors: Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

External Reviewers

Dimitris Achlioptas
David Adjiashvili
Alex Andoni
Antonios Antoniadis
Per Austrin
Nikhil Bansal
Mohammadhossein Bateni
Louay Bazzi
Itai Benjamini
Mikhail Berlinkov
Ivona Bezakova
Prateek Bhakta
Amey Bhangale
Arnab Bhattacharyya
Vijay Bhattiprolu
Andrej Bogdanov
Zvika Brakerski
Michael Brautbar
Joshua Brody
Eshan Chattopadhyay
Dehua Cheng
Steve Chestnut
Flavio Chierichetti
Vincent Cohen-Addad
Ben Cousins
Anirban Dasgupta
Stephen Desalvo
Carola Doerr
Charilaos Efthymiou
Leah Epstein
Hossein Esfandiari
Uriel Feige
Jan Foniok
Lance Fortnow
Alan Frieze
Takuro Fukunaga
Andreas Galanis
Ankit Garg
Rong Ge
Parikshit Gopalan
Martin Groß
Gus Gutoski
Samuel Haney
Thomas Dueholm Hansen
Pooya Hatami

Lisa Hellerstein
Sangxia Huang
T.S. Jayram
Hossein Jowhari
Michael Kapralov
Nathaniel Kell
David Kempe
Guy Kindler
Philip Klein
Gillat Kol
Christian Konrad
Pravesh Kothari
Ioannis Koutis
Euiwoong Lee
Christoph Lenzen
Amit Levi
Vahid Liaghat
Laci Lovasz
Shachar Lovett
Jannik Matuschke
Andrew McGregor
Manor Mendel
Sarah Miracle
Neeldhara Misra
Viswanath Nagarajan
Jelani Nelson
Sasho Nikolov
Sergey Norin
Zeev Nutov
Igor Pak
Konstantinos Panagiotou
Daniel Paulusma
Chris Peikert
Pan Peng
Sofya Raskhodnikova
Dana Ron
Noga Ron-Zewi
Tselil Schramm
Igor Shinkar
Amir Shpilka
Adam Smith
Shay Solomon
Frits Spieksma
Daniel Spielman
Nikhil Srivastava

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016).
Editors: Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

0:xiv Reviewers

Daniel Stefankovic
Tibor Szabo
Justin Thaler
Charalampos Tsourakakis
Erik Jan van Leeuwen
Rob van Stee
Stephen Vavasis
Mikhail Volkov
Thomas Watson
Weiqiang Wen
Andreas Wiese
Anthony Wirth
David Woodruff
Yitong Yin
Samson Zhou
David Zuckerman

List of Authors

Jasine Babu
Arturs Backurs
Victor Bapst
Amitabh Basu
Arnab Bhattacharyya
Abhishek Bhowmick
Ivan Bliznets
Ravi Boppana
Vladimir Braverman

Guillaume Chapuy
Moses Charikar
Lin Chen
Eden Chlamtáč
Michael B. Cohen
Amin Coja-Oghlan
Marek Cygan

Daniel Dadush
Michael Dinitz

Esther Ezra

Uriel Feige
Michal Feldman

Bernd Gärtner
Shashwat Garg
Heng Guo
Chetan Gupta

Nir Halman
Prahladh Harsha
Johan Håstad
Pooya Hatami
Jan Hązła
Thomas Holenstein
Carlos Hoppen

Sungjin Im

Varun Kanade
Subhash Khot
Areej Khoury
Anthony Kim
Yoshiharu Kohayakawa
Paweł Komosa
Christian Konrad
Guy Kortsarz
Samir Khuller Janardhan Kulkarni

Richard Lang
Chin Ho Lee
Hanno Lefmann
Nikos Leonardos
Reut Levi
Xin Li
Yi Li
Vahid Liaghat
Shachar Lovett
Pinyan Lu

Frédéric Magniez
Konstantin Makarychev
Yury Makarychev
Pasin Manurangsi
Dániel Marx
Andrew McGregor
Dhruv Medarametla
Ryuhei Mori
Benjamin Moseley
Dana Moshkovitz
Elchanan Mossel
Kamesh Munagala
Cameron Musco

Yonatan Naamad
Preetum Nakkiran
Ilan Newman
Cyril Nicaud
Aleksandar Nikolov
Zeev Nutov

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016).
Editors: Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

0:xvi Authors

Jakub Pachocki
Guillem Perarnau
Will Perkins
Michał Pilipczuk
Aaron Potechin

Junjie Qin

George Rabanca
Sharath Raghvendra
Govind Ramnarayan
Anup Rao
Dana Ron
Alan Roytman
Ronitt Rubinfeld

Amin Saberi
Ario Salmasi
Ronen Shaltiel
Igor Shinkar
Anastasios Sidiropoulos
Jad Silbak
Makrand Sinha
Renjie Song
Srikanth Srinivasan
Henrique Stagni
Noah Stephens-Davidowitz
Maxim Sviridenko
Ridwan Syed

Inbal Talgam-Cohen
Antonis Thomas
Luca Trevisan
Madhur Tulsiani

Emanuele Viola
Sofya Vorotnikova
Gregory Vorsanger

Justin Ward
Anthony Wirth
David Witmer
David P. Woodruff

Sheng Yang
Deshi Ye
Yitong Yin
Henry Yuen

Chihao Zhang
Guochuan Zhang
Jinman Zhao

Constant-Distortion Embeddings of Hausdorff
Metrics into Constant-Dimensional `p Spaces

Artūrs Bačkurs∗1 and Anastasios Sidiropoulos†2

1 MIT, Cambridge MA, USA
backurs@mit.edu

2 The Ohio State University, Columbus OH, USA
sidiropoulos.1@osu.edu

Abstract
We show that the Hausdorff metric over constant-size pointsets in constant-dimensional Euclidean
space admits an embedding into constant-dimensional `∞ space with constant distortion. More
specifically for any s, d ≥ 1, we obtain an embedding of the Hausdorff metric over pointsets of size
s in d-dimensional Euclidean space, into `sO(s+d)

∞ with distortion sO(s+d). We remark that any
metric space M admits an isometric embedding into `∞ with dimension proportional to the size
of M . In contrast, we obtain an embedding of a space of infinite size into constant-dimensional
`∞.

We further improve the distortion and dimension trade-offs by considering probabilistic em-
beddings of the snowflake version of the Hausdorff metric. For the case of pointsets of size s
in the real line of bounded resolution, we obtain a probabilistic embedding into `O(s log s)

1 with
distortion O(s).

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases metric embeddings, Hausdorff metric, distortion, dimension

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2016.1

1 Introduction

Low-distortion embeddings between metric spaces have given rise to a plethora of tools in
computer science and mathematics [10, 15, 2, 5, 17]. The most well-studied case is embedding
into `dp, that is Rd endowed with the `p distance. In this case the most important parameters
are the distortion of the embedding and the dimension of the target space; the former
quantifies the extent to which the geometry of the input space is preserved, while the latter
affects the complexity of various algorithmic methods performed on the target space.

In most embeddings of finite metric spaces both of these parameters depend on the size of
the input space. Prototypical such examples are Bourgain’s Theorem [4] which asserts that
any n-point metric admits an embedding into `2 with distortion O(logn), and the seminal
result of Johnson and Lindenstrauss [14] asserting that any n-point subset of `2 admits an
embedding into `O(ε−2 logn)

2 with distortion 1 + ε.
However, in several applications one seeks an embedding of some input space of infinite

size. One such application is in algorithms and data structures (e.g. nearest neighbor data
structures) with approximation guarantee independent of the input size. Another application

∗ Arturs Backurs was supported by NSF and Simons Foundation.
† Anastasios Sidiropoulos is supported by NSF under grant CCF-1423230 and award CAREER-1453472.

© Arturs Backurs and Anastasios Sidiropoulos;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016).
Editors: Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans; Article No. 1; pp. 1:1–1:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

1:2 Constant-Distortion Embeddings of Hausdorff Metrics

is when designing an oblivious or streaming algorithm that requires an embedding of the
input space that can be computed independently at each point without having access to the
rest of the input (e.g. [12, 13]).

A classical example of an embedding of an infinite metric is Dvoretzky’s Theorem [6]
which asserts that for any k ≥ 1, there exists d ≥ 1 such that `k2 admits an embedding into
any d-dimensional normed space with distortion 1 + ε.

Interestingly, the case of input spaces that are not normed, is much less understood.
One important such space is given by the Hausdorff metric which is used to measure
the dissimilarity between two pointsets. Given two finite pointsets A = {a1, . . . , as} and
B = {b1, . . . , bs}, the Hausdorff distance is defined as

Hs(A,B) = max(h(A,B), h(B,A)),

where

h(A,B) = max
a∈A

min
b∈B

m(a, b)

and m(·, ·) is underlying metric on the points of A and B. We use the notation Hs,d to denote
the Hausdorff distance with underlying metric `d2. We will omit subscripts if the cardinality
of the pointsets or the underlying metric is clear from the context, or the statement is valid
independent from the cardinality or the underlying space.

We study embeddings of the Hausdorff metric over finite subsets of Euclidean space.
This is an infinite space since there are infinitely many possible subsets even in the real line.
Therefore known results for embedding finite metrics into `p space are not directly applicable
in this case.

1.1 Our results and techniques

1.1.1 Embedding for Hausdorff metric over pointsets in R1

We show that there exists an embedding of Hs,1 into `sO(s)

∞ with distortion sO(s). LetM be a
collection of metric spaces on the same pointset X. We say that a metric is a `∞-metric over
M if for any pair of points in X the distance is given by the maximum over all distances in
M. Our result is obtained via iteratively embedding Hs into an `∞-metric over Hs−1 metrics.
The key property in this mapping is that it preserves all distances in the infinite space Hs.
Repeating this process we inductively obtain an embedding of Hs into an `∞-metric over H1
metrics. Since H1 = R1, the resulting embedding is into `∞.

1.1.2 Embedding for Hausdorff metric over pointsets in Rd

We extend the above approach to Hs,d. This is done by embedding Hs,d into an `∞-metric
over Hs,d−1 metrics. By repeating this embedding we obtain an embedding of Hs,d into an
`∞ metric over Hs,1 metrics. Combining with the above embedding we obtain the desired
embedding of Hs,d into `∞.

1.1.3 Probabilistic embeddings
The above embeddings obtain distortion and dimension that depend only on s. We show how
to exponentially improve the dependence of both parameters on s by considering probabilistic
embeddings of the snowflake version of Hs into `1.

A. Bačkurs and A. Sidiropoulos 1:3

Table 1 Summary of our and previous results on embedding Hausdorff distance into `p spaces.
Column “dimension” specifies the dimension of the target `p space. We consider Hausdorff distance
over pointsets of size s coming from the underlying space. Here, ε > 0 is a small constant.

Underlying
space To Dimension Distortion Comments

Theorem 10 `d
2 `∞ sO(s+d) sO(s+d)

Theorem 23 `1
p `1 O(s log s) O(s/α) Snowflaked embedding

with parameter α

[11] {0, . . . ,∆}d
∞ `∞ s2 · eO(d) · log2 ∆ 1 + ε Threshold embedding

[16] `d
2 `∞ eO(ds) 1 + ε Snowflaking

1.1.4 Embedding into high-dimensional `1 space
To improve the distortion of the embedding, we relax the requirements of the embedding.
First, we embed a snowflake version of the Hausdorff distance into `1. This means that we
embed the distance H1−α

s for some α > 0 into `1. Second, we allow that the expansion
property holds in expectation (see Section 2 for a formal definition). This allows us to achieve
distortion O(s/α), which is an exponential improvement over the deterministic embedding.
The embedding uses ideas that were previously used to construct embeddings for earth-mover
distance [9, 1]. In particular, we recursively subdivide the underlying metric space into cells
and designate a coordinate in the target space for every cell. Instead of counting the number
of points that fall into each cell (as was done in the case of embeddings of earth-mover
distance), we instead detect whether at least one point falls into the cell. To achieve distortion
that does not depend on the size of the underlying metric, we use ideas developed in [1],
embedding a snowflake version of the Hausdorff distance.

1.1.5 Embedding into low-dimensional `1 space
To improve the dimension of the target `1 space, we further relax the requirements of the
embedding. We allow that the embedding contracts with probability bounded by some
small constant. This allows us to reduce the dimension exponentially. The dimension of
the target `1 space becomes O(s log s). This improvement is obtained by observing that a
vector resulting from the embedding into high dimensional space, is essentially sparse; that
is, the main contribution to the `1 norm comes from few non-zero entries. This suggests
that we can use dimensionality reduction techniques for `1 space for sparse vectors. To this
end we use a construction from [3]. We remark that a similar dimensionality reduction idea
was used in [1]. We note that we can decrease the probability of contraction to an arbitrary
δ > 0 by combining O(log(1/δ)) independent copies of the embedding.

In Table 1 we summarize our results and highlight the previous work on embedding
Hausdorff distance into simpler spaces.

1.2 Related work
Farach-Colton and Indyk [7] have studied the problem of embedding the Hausdorff metric
over finite pointsets into `∞. However, they only obtain embeddings that approximately
preserve distances that are within a fixed range [r,R], for some 0 < r < R. This weaker
guarantee is sufficient for designing an approximate nearest neighbor data structure. However,
in order to obtain an embedding that preserves all distances up to some small distortion, one

APPROX/RANDOM’16

1:4 Constant-Distortion Embeddings of Hausdorff Metrics

has to concatenate O(log ∆) such embeddings, where ∆ is the spread of the metric. Since ∆
is in general unbounded, this leads to a host space of arbitrarily large dimension.

Indyk [11] studied threshold embeddings for Hausdorff distance. In this setting the goal is
to obtain an embedding so that the following two conditions hold: First, the embedding is a
contraction. Second, if the distance between two points in the original space is at least r,
then their distance in the target space is at least r′, for some r ≥ r′ > 0. The distortion of a
threshold embedding is defined to be the ratio r/r′. The dimension of the target space in
[11] depends on the size of the underlying metric, which can be unbounded.

Previous works [8, 16] studied embeddings of snowflake metrics. They showed that, if
the doubling dimension of a metric is t, then it is possible to embed such a metric into `eO(t)

∞
with distortion 1 + ε, for any constant ε > 0. We will not define doubling dimension here but
we note that for the case of Hausdorff metric over `dp, it is bounded by O(ds).

2 Preliminaries

I Definition 1. Consider the Hausdorff distance over pointsets in some underlying space.
Let f be a function that maps pointsets to vectors in some `∞-space. We say that f is an
embedding if there exist L ≥ l > 0 such that

l · ‖f(A)− f(B)‖∞ ≤ H(A,B) ≤ L · ‖f(A)− f(B)‖∞ (1)

for all pointsets A and B. The quantity L/l is the distortion of the embedding.

I Definition 2. Let D be a probability distribution over functions that map pointsets of
some space into some `∞-space. We say that a function f chosen from D is a probabilistic
embedding. Moreover, if there exist L ≥ l > 0 such that for all sets A,B, we have

l · Ef [‖f(A)− f(B)‖∞] ≤ H(A,B)

and

Pr
f

[H(A,B) ≤ L · ‖f(A)− f(B)‖∞] ≥ 2/3,

then the distortion of f is defined to be L/l. Note that the choice of 2/3 is arbitrary; we can
amplify it by sampling independent copies of the function f and concatenating the resulting
embeddings.

I Definition 3. A probabilistic embedding f is called a snowflaked embedding with parameter
α > 0 if it satisfies the following properties: There exist L ≥ l > 0 such that for all sets A,B,
we have

l · Ef [‖f(A)− f(B)‖∞] ≤ H1−α(A,B)

and

Pr
f

[
H1−α(A,B) ≤ L · ‖f(A)− f(B)‖∞

]
≥ 2/3.

The distortion of f is defined to be L/l.

A. Bačkurs and A. Sidiropoulos 1:5

2.1 Notation
Given two vectors A ∈ Rx, A = (a1, . . . ax)T and B ∈ Ry, B = (b1, . . . , by)T , we denote
concatenation of A and B by

A⊕B := (a1, . . . , ax, b1, . . . , by)T .

For an integer n, we denote the set {1, 2, . . . , n} by [n]. For any x, y ∈ R, we denote the
set {x ≤ z ≤ y | z ∈ R} by [x, y]. For any X ⊆ R and y ∈ R, we denote the set {x ·y | x ∈ X}
by X · y. Similarly, we denote the set {x− y | x ∈ X} by X − y. For any function g : R→ R
and X ⊆ R, we denote the set {g(x) | x ∈ X} by g(X).

3 Embedding for Hausdorff metric over pointsets in R1

Below we will work with Hs,1(A,B) and we will write Hs(A,B) instead of Hs,1(A,B).
We define 10s2 functions f i : [0, 1]→ [0, 1], one for each i ∈ {1, . . . , 10s2}, as follows.

f i(x) :=
{

x
yi

if x ≤ yi;
1−x
1−yi

otherwise,

where yi = 1
3 + i

3(10s2+1) . Notice that the function f i satisfies the following four properties:
1. f i achieves the maximum value 1 at yi;
2. 1

3 < yi <
2
3 ;

3. f i(0) = f i(1) = 0;
4. f i grows linearly in the interval [0, yi] and decreases linearly in the interval [yi, 1].

To prove our results, we need the following lemma.

I Lemma 4. Let A = {a1, . . . , as} ⊆ R and B = {b1, . . . , bs} ⊆ R with 0 = a1 ≤ a2 ≤ . . . ≤
as = 1 and 0 = b1 ≤ b2 ≤ . . . ≤ bs = 1. We have

Hs(A,B) ∈ [1/10, 1000s2] ·max
i
Hs−1

(
f i(A), f i(B)

)
.

Proof. Notice that, since f i(0) = f i(1) = 0, we have |f i(A)|, |f i(B)| = s− 1. This is why
we have Hs−1 in the right side of the equation in the statement of the lemma. From now on
we will use H instead of Hs or Hs−1.

Now we will establish H(A,B) ≥ 1
10 maxi(H(f i(A), f i(B))). It is sufficient to show that

H(A,B) ≥ 1
10H(f i(A), f i(B)) for all i ∈ [10s2]. Fix i ∈ [10s2]. We can check that for all

x, y ∈ [0, 1], |f i(x)− f i(y)| ≤ 10|x− y| (f i is a piece-wise linear function with the derivative
bounded by 3 in absolute value in every piece). That is, f i is a Lipschitz function with
constant 10 in the interval [0, 1]. That means that f i can increase distance between any
two points by a factor of at most 10. Therefore, inequality H(A,B) ≥ 1

10H(f i(A), f i(B))
follows.

It remains to show that H(A,B) ≤ 1000s2 maxiHs−1
(
f i(A), f i(B)

)
. The remainder of

the proof is devoted to show this inequality. We need to show that there exists i ∈ [10s2]
such that H(f i(A), f i(B)) ≥ 1

1000s2H(A,B). We will show that there exists i such that

∀a ∈ A, d(f i(a), f i(B)) ≥ 1
1000s2 d(a,B) (2)

and

∀b ∈ B, d(f i(b), f i(A)) ≥ 1
1000s2 d(b, A), (3)

APPROX/RANDOM’16

1:6 Constant-Distortion Embeddings of Hausdorff Metrics

where function d is defined as follows. For point y and finite pointset X,

d(y,X) := min
x∈X
‖x− y‖.

The first inequality shows that for every point from A, the distance to the closest point from
B decreases by a factor of at most 1000s2 if we apply map f i to the point and to the set
B. Similarly, the second inequality shows that for every point from B, the distance to the
closest point from A decreases by a factor of at most 1000s2 if we apply map f i to the point
and to the set A. By the definition of Hausdorff distance, it is sufficient to show these two
inequalities to establish what we need.

To prove (2) and (3), we will use the following proposition.

I Proposition 5. For all i1 6= i2 and x, y ∈ [0, 1] with x ≤ y,

1
1000s2 min(x, y − x) ≤ max

(
|f i1(x)− f i1(y)|, |f i2(x)− f i2(y)|

)
(4)

and
1

1000s2 min(1− y, y − x) ≤ max
(
|f i1(x)− f i1(y)|, |f i2(x)− f i2(y)|

)
. (5)

Proof. We will show (4). The proof of (5) is analogous. W.l.o.g., i1 < i2. We have that
yi1 < yi2 (see the definition of function f i). If x ≥ yi1 , we have that |f i1(x)− f i1(y)| ≥ y−x
by the definition of the function f i1 . Similarly, if y ≤ yi2 , we have that |f i2(x)−f i2(y)| ≥ y−x
by the definition of function f i2 . Therefore, if x ≥ yi1 or y ≤ yi2 ,

y − x ≤ max
(
|f i1(x)− f i1(y)|, |f i2(x)− f i2(y)|

)
(6)

and we are done proving (4) and (5).
Now we consider the complement case: x ≤ yi1 and y ≥ yi2 . We will show inequality

1
1000s2x ≤ max

(
|f i1(x)− f i1(y)|, |f i2(x)− f i2(y)|

)
. (7)

Notice that, by combining (6) and (7), we get (4). Suppose that

|f i1(x)− f i1(y)| < 1
1000s2x (8)

since otherwise we have established (7). By the definition of f i1 and f i2 ,

f i1(x)− f i2(x) = 3x ·
(

1
1 + i1

10s2+1
− 1

1 + i2
10s2+1

)
≥ x

20s2 , (9)

where we use the fact that i2 − i1 ≥ 1. Using inequalities f i2(y) ≥ f i1y, (8) and (9), we get

|f i2(x)− f i2(y)| ≥
(
f i2(y)− f i1(y)

)
+
(
f i1(x)− f i2(x)

)
− |f i1(y)− f i1(x)|

≥ x

20s2 −
x

1000s2 ≥
x

1000s2 .

This establishes (7). J

Now we continue the proof of Lemma 4. We will use several times the fact that {0, 1} ⊆ A,B.
Consider a ∈ A and b ∈ B with a ≤ b. By (4), inequality

1
1000s2 d(a,B) ≤ 1

1000s2 min(a, b− a) ≤ |f i(a)− f i(b)| (10)

A. Bačkurs and A. Sidiropoulos 1:7

holds for all indices i ∈ [10s2] except at most one. Consider a ∈ A and b ∈ B with a > b. By
(5), inequality

1
1000s2 d(a,B) ≤ 1

1000s2 min(1− a, a− b) ≤ |f i(a)− f i(b)| (11)

holds for all indices i ∈ [10s2] except at most one. By fixing a ∈ A and considering all b ∈ B,
from (10) and (11) we have that

1
1000s2 d(a,B) ≤ d(f i(a), f i(B)) (12)

holds for all indices i ∈ [10s2] except for at most s indices.
Analogously we get that for any fixed b ∈ B,

1
1000s2 d(b, A) ≤ d(f i(b), f i(A)) (13)

holds for all indices i ∈ [10s2] except for at most s indices.
From (12) we get that (2) holds for all but s2 indices. From (13) we get that (3) holds

for all but s2 indices. By definition of f i, we consider 10s2 indices. We conclude that there
must be at least 10s2− 2s2 ≥ 1 index that satisfy both (2) and (3). This concludes the proof
of the lemma. J

We define function git(x) : R→ R, parameterized by t ∈ R and i ∈ [10s2], as follows:

git(x) := t · f i
(x
t

)
.

I Lemma 6. Let A = {a1, . . . , as} ⊆ R and B = {b1, . . . , bs} ⊆ R with a1 ≤ . . . ≤ as and
b1 ≤ . . . ≤ bs, and a1 = b1, and as = bs. We have

Hs(A,B) ∈ [1/10, 1000s2] ·max
i
Hs−1

(
gias−a1

(A− a1), gibs−b1(B − b1)
)
.

Proof. Hausdorff distance is shift invariant, that is, for any x ∈ R, H(A,B) = H(A−x,B−x).
Because of this and a1 = b1, we can assume that a1 = b1 = 0. Then the inequality we want
to prove simplifies to

Hs(A,B) ∈ [1/10, 1000s2] ·max
i
Hs−1

(
gias

(A), gibs
(B)

)
. (14)

By the definition of Hausdorff distance, for any positive y ∈ R, H(A,B) = H(x·A,x·B)
x .

Because of this equality, expression (14) follows from Lemma 4 and the definition of git and
f i. J

I Lemma 7. Let A = {a1, . . . , as} ⊆ R and B = {b1, . . . , bs} ⊆ R with a1 ≤ . . . ≤ as and
b1 ≤ . . . ≤ bs. We have

Hs(A,B) ∈[1/1000, 106s2]

·max
(
|a1 − b1|, |as − bs|,max

i
Hs−1

(
gias−a1

(A− a1), gibs−b1(B − b1)
))
.

Proof. We define pointsets A′ = {a′1, . . . , a′s} and B′ = {b′1, . . . , b′s} from A and B in the
following way.
1. We set a′i = ai and b′i = bi for all i ∈ [s];
2. if a′1 < b′1, we set b′1 to be equal to a′1;

APPROX/RANDOM’16

1:8 Constant-Distortion Embeddings of Hausdorff Metrics

3. if a′1 > b′1, we set a′1 to be equal to b′1;
4. if a′s < b′s, we set a′s to be equal to b′s;
5. if a′s > b′s, we set b′s to be equal to a′s.
We define M := max(|a1 − b1|, |as − bs|).

I Proposition 8.∣∣∣H (gias−a1
(A− a1), gibs−b1(B − b1)

)
−H

(
gia′s−a′1(A′ − a′1), gib′s−b′1(B′ − b′1)

)∣∣∣ ≤ 100M.

Proof. Notice that for every x, such that 0 ≤ x ≤ as − a1,

|gias−a1
(x)− gia′s−a′1(x)| ≤ 50M. (15)

This is true because gi is a Lipshitz function with Lipshitz constant at most 10 and |as −
a′s|, |a1 − a′1| ≤M . Similarly, for every x, 0 ≤ x ≤ bs − b1,

|gibs−b1(x)− gib′s−b′1(x)| ≤ 50M. (16)

(15) and (16) mean that, as we apply function gj to set A′ instead of A and to B′ instead of
B, every point in the resulting sets (after application of gj) changes its position by at most
50M , and the assertion follows. J

By Lemma 6,

H(A′, B′) ∈ [1/10, 1000s2] ·max
i
H
(
gia′s−a′1(A′ − a′1), gib′s−b′1(B′ − b′1)

)
.

We get

max
(
|a1 − b1|, |as − bs|,max

i
H
(
gias−a1

(A− a1), gibs−b1(B − b1)
))

≤M + max
i
H
(
gias−a1

(A− a1), gibs−b1(B − b1)
)

≤M + 100M + max
i
H
(
gia′s−a′1(A′ − a′1), gib′s−b′1(B′ − b′1)

)
≤101M + 10H(A′, B′)
≤111M + 10H(A,B)
≤200H(A,B).

In the second inequality we use Proposition 8. In the third inequality we use the result of
Lemma 6. In the second to last inequality we use H(A′, B′) ≤M +H(A,B), which follows
from the definition of A′ and B′. In the last inequality we use H(A,B) ≥M , which follows
from the definition of M . This shows the lower bound in the statement of the lemma. We
prove the upper bound now.

We have

H(A,B) ≤M +H(A′, B′)

≤M + 1000s2 max
i
H
(
gia′s−a′1(A′ − a′1), gib′s−b′1(B′ − b′1)

)
≤M + 1000s2

(
max
i
H
(
gias−a1

(A− a1), gibs−b1(B − b1)
)

+ 100M
)

≤ 106s2 ·max
(
M,H

(
gias−a1

(A− a1), gibs−b1(B − b1)
))
.

The second inequality follows from Lemma 6. The third inequality follows from Proposition 8.
We established the upper bound of the lemma and the proof of Lemma 7 is complete. J

A. Bačkurs and A. Sidiropoulos 1:9

I Theorem 9. There exists an embedding of Hs,1 into `sO(s)

∞ with distortion sO(s).

Proof. We will construct embedding f of Hs into `sO(s)

∞ with distortion sO(s). Let A =
{a1, . . . , as} ⊆ R and B = {b1, . . . , bs} ⊆ R with a1 ≤ . . . ≤ as and b1 ≤ . . . ≤ bs. By
Lemma 7, we can bound H(A,B) in terms of the maximum of |a1 − b1|, |as − bs| and

Hs−1
(
gias−a1

(A− a1), gibs−b1(B − b1)
)

over all i ∈ [10s2]. By Lemma 7, we lose a factor O(s2) in the distortion. Notice that
pointsets gias−a1

(A − a1) and gibs−b1(B − b1) are of size s − 1. That is, we decreased the
number of points in the sets by 1. Also notice that the functions gias−a1

and gibs−b1 depend
only on sets A and B, respectively. The idea now is to apply this expression recursively until
we arrive at pointsets of size 1, which we can embed into l∞ trivially. More precisely, we
define the following recursive embedding hs of pointset A of size s. If s ≥ 2,

hs(A) :=
(
a1, as, h

s−1(g1
as−a1

(A− a1)), . . . , hs−1(g10s2
as−a1

(A− a1))
)
.

If s = 1, then h1(A) = (a1). hs(A) is concatenation of values a1, as and 10s2 vector defined
recursively by hs−1. We define f(A) := h|A|(A). We call the recursive embedding at most s
times, each time increases number of dimensions by a factor of O(s2) and the distortion by a
factor of O(s2). This means that the final distortion is ≤ [O(s2)]s ≤ sO(s) and the dimension
is ≤ [O(s2)]s ≤ sO(s). J

4 Embedding for Hausdorff metric over pointsets in Rd

I Theorem 10. There exists an embedding of Hs,d into `sO(s+d)

∞ with distortion sO(s+d) for
an arbitrary integer d ≥ 1.

Proof. It suffices to consider the case d > 1, since the case d = 1 has been handled in the
previous Section. Given sets A,B ⊆ `d2 of size |A| = |B| = s, we show how to produce sets
A1, . . . , A2s2+1 and B1, . . . , B2s2+1 with the following properties.
1. Each Ai depends on A only. Each Bi depends on B only.
2. For every i, Ai, Bi ⊆ `d−1

2 and |Ai| = |Bi| = s.
3. For every i, Hs,d−1(Ai, Bi) ≤ Hs,d(A,B).
4. There exists i such that Hs,d−1(Ai, Bi) ≥ 1

Cs2Hs,d(A,B) for sufficiently large constant C.
From the properties we see that

Hs,d(A,B) ≥ max
i=1,...,2s2+1

Hs,d−1(Ai, Bi) ≥
1
Cs2Hs,d(A,B)

where A and B are any two subsets of d dimensional space and Ai, Bi are subsets of d− 1
dimensional space. If we repeat the construction d− 1 times in total, we get embedding that
satisfies inequality

Hs,d(A,B) ≥ max
j=1,...,(2s2+1)d−1

Hs,1(A′j , B′j) ≥
1

(Cs2)d−1Hs,d(A,B).

Now we apply Theorem 9 to embed sets A′j , B′j into ls
O(s)

∞ with distortion sO(s). The final
dimension of the embedding is (2s2 +1)d−1 ·sO(s) = sO(s+d) as promised. The final distortion
of the embedding is (Cs2)d−1 · sO(s) = sO(s+d) as promised.

In the remainder of the proof we show how to construct the embedding with the four
properties stated at the beginning of the proof. Consider the first two vectors of the standard

APPROX/RANDOM’16

1:10 Constant-Distortion Embeddings of Hausdorff Metrics

basis of `d2. These two vectors span a plane. Choose 2s2 + 1 unit vectors v1, . . . , v2s2+1 in
this plane so that angle between vectors vi, vi+1 is 2π/(2s2 + 1) for all i = 1, . . . , 2s2 + 1 and
v1 is the first standard basis vector of `d2. We define v2s2+2 := v1. We build Ai (Bi, resp.)
by projecting A (B, resp.) on the hyperplane perpendicular to vi for all i = 1, . . . 2s2 + 1.
The first property follows from the definition of Ai and Bi. The second property follows
because every hyperplane of `d2 span `d−1

2 . The third property follows because projection on
hyperplane can only decrease interpoint distances. It remains to show the fourth property.
Consider any pair of points a ∈ A and b ∈ B. There can be at most two values i such that

‖Πi(a)−Πi(b)‖2 <
1

10000s2 ‖a− b‖2, (17)

where Πi denotes projection on the hyperplane defined by vector vi. This is true because of
the following considerations. Consider i such that inequality (17) does not hold. Then we
must have

|vi · (a− b)| >
(

1− 1
10000s2

)
· ‖vi‖2 · ‖a− b‖2.

However, this can happen to at most two vectors vi by the construction of vi. Because there
are 2s2 + 1 vectors vi and at most s2 pairs (a, b), a ∈ A, b ∈ B determine distance Hs(A,B),
the fourth property follows. J

5 Probabilistic embedding

I Theorem 11. For any α ∈ (0, 1/2) and integer ∆ > 0, there exists a probabilistic embedding
f of Hs over subsets of [∆] into 8∆-dimensional `1 space `8∆

1 that satisfies the following
properties. For any two pointsets A,B ⊆ [∆] with |A| = |B| = s,
1. 1

10H
1−α
s (A,B) ≤ ‖f(A)− f(B)‖1;

2. E[‖f(A)− f(B)‖1] ≤ 100s/α ·H1−α
s (A,B),

where the expectation in the second property is over the randomness of the embedding.

Proof. W.l.o.g. we assume that log2 ∆ is positive integer. If this is not so, we increase ∆ to
2dlog2 ∆e. For integer y and finite set X ⊆ R, we define

y +X := {x+ y | x ∈ X}.

For integer i, 0 ≤ i ≤ log2(2∆), and finite set X ⊆ R, we define vector fi(X) ∈ R
2∆
2i as

follows. For l = 1, . . . , 2∆
2i ,

(fi(X))l =
{

1 ∃x ∈ X such that (l − 1)2i < x ≤ l · 2i;
0 otherwise.

For integer v and finite set X ⊆ R, we define embedding fv(X):

fv(X) :=
log2(2∆)⊕
i=0

2i(1−α)fi(v +X).

Embedding f is defined by choosing v ∈ {1, . . . ,∆} uniformly at random and setting
f(X) = fv(X). Now we will show that the embedding satisfy the stated properties. Let
h = Hs(A,B).

The following lemma establishes the first inequality.

A. Bačkurs and A. Sidiropoulos 1:11

I Lemma 12. For every v,

‖fv(A)− fv(B)‖1 ≥
1
10h

1−α.

Proof. We assume that h ≥ 2. If h = 1, then ‖fv(A)− fv(B)‖1 ≥ 1 ≥ 1
10 . If h = 2, there is

nothing to prove. W.l.o.g., let a ∈ A be such that d(a,B) = h. Let i = (log2 h)− 1 ≥ 0 and
l =

⌈
a+v
2i

⌉
. Because a ∈ A and by the choice of l, we have

(fi(v +A))l = 1.

Because d(a,B) = h and by the choice of i and l, we have

(fi(v +B))l = 0.

Therefore, we conclude:

‖fv(A)− fv(B)‖1 ≥ 2i(1−α)‖fi(v +A)− fi(v +B)‖1

≥
(
h

2

)1−α
| (fi(v +A))l − (fi(v +B))l | ≥

1
10h

1−α. J

The following lemma establishes the second inequality.

I Lemma 13. E[‖f(A)− f(B)‖1] ≤ 100s/α · h1−α.

Proof.

I Proposition 14. For every i ∈ {0, . . . , log2(2∆)},

Ev[‖fi(v +A)− fi(v +B)‖1] ≤ 2smin(1, 2h/2i).

Proof. We define an undirected bipartite graph G = (A,B,E) as follows. For every a ∈ A,
we add edge (a, b), b ∈ B such that d(a,B) = |a − b|. If there are multiple possibilities
for b, we choose one b arbitrarily. For every b ∈ B, we add edge (a, b), a ∈ A such that
d(b, A) = |a− b|. If there are multiple possibilities for a, we choose one a arbitrarily.

By the definition of Hausdorff distance and fi, we get

Ev[‖fi(v +A)− fi(v +B)‖1] ≤
∑

(a,b)∈E

Pr
v∈[∆]

[⌈
a+ v

2i

⌉
6=
⌈
b+ v

2i

⌉]
.

We can upper bound every probability in the latter quantity by min(1, 2h/2i) because for
every (a, b) ∈ E, |a− b| ≤ h. We get the bound stated in the proposition because |E| ≤ 2s
by the definition of graph G. J

Using this proposition, we get

E[‖f(A)− f(B)‖1] ≤
log2(2∆)∑
i=0

2i(1−α)Ev[‖fi(v +A)− fi(v +B)‖1]

≤ 2s
log2(2∆)∑
i=0

2i(1−α) min(1, 2h/2i)

≤ 2s
1+log2 h∑
i=1

(
2i(1−α)

)
+ 4sh

log2(2∆)∑
i=2+log2 h

2−iα

≤ 20sh1−α + 4sh
(
2−α

)2+log2 h
∞∑
i=0

(
2−α

)i

APPROX/RANDOM’16

1:12 Constant-Distortion Embeddings of Hausdorff Metrics

≤ 20sh1−α + 20sh1−α

α

≤ 100s/α · h1−α,

which is what we needed. J

J

I Lemma 15. Let U := log2 s+ log2 h+ 10. Then

Pr
v

[∀i ≥ U , fi(v +A) = fi(v +B)] ≥ 0.9.

Proof. Since fU (v +A) = fU (v +B) implies that fi(v +A) = fi(v +B) for all i ≥ U , it is
sufficient to prove that Prv[fU (v +A) = fU (v +B)] ≥ 0.9.

Let G = (A,B,E) be the bipartite graph defined in Proposition 14. Since for all (a, b) ∈ E,
|a− b| ≤ h, we have

Pr
v

[fU (v +A) = fU (v +B)] ≥ Pr
v

[
∀(a, b) ∈ E ,

⌈
a+ v

2i

⌉
=
⌈
b+ v

2i

⌉]
≥ 1−

∑
(a,b)∈E

Pr
v

[⌈
a+ v

2i

⌉
6=
⌈
b+ v

2i

⌉]

≥ 1− |E| · 2h
2U ≥ 1− 2s · 2h

2U
≥ 0.9.

J

I Lemma 16. Let L := log2 h− 1
1−α log s− 20. For every v ∈ {1, . . . ,∆},∥∥∥∥∥

L⊕
i=0

2i(1−α)(fi(v +A)− fi(v +B))

∥∥∥∥∥
1

≤ h1−α

1000 .

Proof. We use the definition of ⊕ and L:
L∑
i=0

∥∥∥2i(1−α)(fi(v +A)− fi(v +B))
∥∥∥ ≤ 2s · 5 · 2L(1−α) ≤ h1−α

1000 .

J

From Lemmas 15 and 16, we get that, with probability ≥ 0.9 the following happens.
Almost all `1 mass of ‖f(A)− f(B)‖1 comes from U −L− 1 ≤ 100 log2 s vectors fi(v+A)−
fi(v + B). fi(v + A) − fi(v + B) that correspond to i ≥ U or i < L contribute at most
h1−α/1000 to the `1 mass. Also notice that, by Theorem 11, the `1 mass of f(A)− f(B) is at
least h1−α/10. We get that we lose relatively small amount of `1 mass by discarding of many
vectors f i. We will use these observations in Theorem 23 below to reduce the dimensionality
of the target `1 space in Theorem 11.

I Definition 17. Let G = (A,B,E) be a bipartite graph. We call it r-regular if, for every
vertex a ∈ A, the degree of a is equal to r.

I Definition 18. Graph G = (A,B,E) is called random r-regular bipartite graph if it comes
from a distribution defined by the following process. Initially, E = ∅. For every a ∈ A we
choose a subset of r distinct vertices of B uniformly at random and connect a to the all
chosen vertices.

A. Bačkurs and A. Sidiropoulos 1:13

I Definition 19. Let G = ([n], [m], E) be r-regular bipartite graph for some integers
r, n,m ≥ 1. We define matrix ΦG ∈ Rm×n as follows.

(ΦG)i,j =
{

1
r if (i, j) ∈ E;
0 otherwise.

for all i ∈ [m] and j ∈ [n].

The following lemma can be shown using the probabilistic method.

I Lemma 20. Let G = ([n], [O(n/δ2)], E) be random r-regular bipartite graph for r = O(1/δ).
For any subset X of vertices, let N(X) denote the set of neighbors of vertices in X. Then
we have

Pr
G

[∀X ⊆ A : |N(X)| ≥ (1− δ)r|X|] ≥ 0.99.

The following result was shown in [3].

I Theorem 21. Let G = ([n], [m], E) be some r-regular bipartite graph with the property that

∀X ⊆ A : |N(X)| ≥ (1− δ)r|X|.

Let ΦG be the matrix according as in Definition 19. Then we have that for all x ∈ Rn,

(1−O(δ))‖x‖1 ≤ ‖ΦGx‖1 ≤ ‖x‖1.

Below we will need the following lemma.

I Lemma 22. Let G = ([n′], O(n/δ2), E) be random r-regular bipartite graph for r = O(1/δ).
Then for every x ∈ Rn′ with ‖x‖0 ≤ n (number of non-zero entries of x is at most n),

Pr
G

[(1−O(δ))‖x‖1 ≤ ‖ΦGx‖1 ≤ ‖x‖1] ≥ 0.99.

Proof. Consider matrix ΦG restricted to the columns corresponding to the non-zero entries
of x. This matrix correspond to random r-regular bipartite graph with at most n vertices on
the left side. By Lemma 20, this matrix will satisfy the requirement for Theorem 21 with
probability at least 0.99, concluding the proof. J

I Theorem 23. For any α ∈ (0, 1/2) and integer ∆ > 0, there exists a probabilistic embedding
f ′ of Hs into `O(s log s)

1 that satisfies the following properties. For any two pointsets A,B ⊆ [∆]
with |A| = |B| = s,
1. 1

100H
1−α
s (A,B) ≤ ‖f ′(A)− f ′(B)‖1 with probability ≥ 2/3;

2. E[‖f ′(A)− f ′(B)‖1] ≤ 100s/α ·H1−α
s (A,B).

Proof. Let C1, C2 > 0 be large constants and δ > 0 be a small enough constant that we will
set later.

Let G = ([8∆], C1·200s log2 s
δ2 , E) be random C2

δ -regular bipartite graph. By Lemma 22, for
all x ∈ R8∆ with ‖x‖0 ≤ 200s log2 s,

Pr
G

[0.9 · ‖x‖1 ≤ ‖ΦGx‖1 ≤ ‖x‖1] ≥ 0.99, (18)

where we choose C1 and C2 be large enough constants and δ > 0 to be a small enough
constant so that 1−O(δ) ≥ 0.9.

APPROX/RANDOM’16

1:14 Constant-Distortion Embeddings of Hausdorff Metrics

Let fv(X) be the embedding as in Theorem 11. For graph G and integer v, we define
embedding f ′G,v(X) := ΦG · fv(X). Embedding f ′(X) is defined by choosing uniformly
random v ∈ [∆] and G. Property 2 in the theorem follows since, for some G and v,

‖f ′(A)− f ′(B)‖1 = ‖ΦG · (fv(A)− fv(B))‖1 ≤ ‖fv(A)− fv(B)‖1

and property 2 of Theorem 11. We used the fact that matrix ΦG is a left stochastic matrix
(that is, all columns of it sum up to 1) to conclude the inequality.

The remainder of the proof is devoted to show the first property. Consider entries of
fv(A)− fv(B) corresponding to embedding fi for i = U, . . . , log2(2∆). By Lemma 15, with
probability ≥ 0.9, all these entries are 0. We assume that this happens from now on. Consider
entries of fv(A)− fv(B) that correspond to embeddings fi for i = 0, . . . , L. By Lemma 16,
the total sum of absolute values of these entries is upper bounded by h1−α/1000. We set all
these entries (corresponding to f0, . . . , fL) to 0. Because ΦG is left stochastic, we change the
value of ‖f ′(A)− f ′(B)‖1 by at most h1−α/1000. Now the only entries that are nonzero in
fv(A)− fv(B) correspond to fL+1, . . . , fU−1. The total number of nonzero entries is at most

(|A|+ |B|) · (U − L− 1) ≤ 2s · 100 log2 s ≤ 200s log2 s.

By (18), we have that with probability ≥ 0.99,

‖f ′(A)− f ′(B)‖1 ≥ 0.9 · ‖fv(A)− fv(B)‖1 − h1−α/1000

≥ 0.9 ·
(

1
10h

1−α − h1−α/1000
)
− h1−α/1000

≥ 1
100h

1−α,

which is what we need. In the second inequality we used the first property from Theorem 11
and the fact that we did set all entries, corresponding to fi with i ≤ L, to 0. The lower
bound holds with probability 1− 0.1− 0.01 ≥ 2/3 by using the union bound. J

Acknowledgments. We thank Piotr Indyk for many helpful discussions.

References
1 Artūrs Bačkurs and Piotr Indyk. Better embeddings for planar earth-mover distance

over sparse sets. In Proceedings of the Thirtieth Annual Symposium on Computational
Geometry, SOCG’14, pages 280:280–280:289, New York, NY, USA, 2014. ACM. doi:
10.1145/2582112.2582120.

2 Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and
data representation. Neural computation, 15(6):1373–1396, 2003.

3 Radu Berinde, Anna C. Gilbert, Piotr Indyk, H. Karloff, and Martin J. Strauss. Combining
geometry and combinatorics: A unified approach to sparse signal recovery. In Communic-
ation, Control, and Computing, 2008 46th Annual Allerton Conference on, pages 798–805.
IEEE, 2008.

4 J. Bourgain. On lipschitz embedding of finite metric spaces in hilbert space. Israel Journal
of Mathematics, 52(1-2):46–52, 1985. doi:10.1007/BF02776078.

5 Manuel Costa, Miguel Castro, Antony Rowstron, and Peter Key. Pic: Practical internet
coordinates for distance estimation. In Distributed Computing Systems, 2004. Proceedings.
24th International Conference on, pages 178–187. IEEE, 2004.

6 Aryeh Dvoretzky. Some results on convex bodies and Banach spaces. Hebrew University,
1960.

http://dx.doi.org/10.1145/2582112.2582120
http://dx.doi.org/10.1145/2582112.2582120
http://dx.doi.org/10.1007/BF02776078

A. Bačkurs and A. Sidiropoulos 1:15

7 Martin Farach-Colton and Piotr Indyk. Approximate nearest neighbor algorithms for haus-
dorff metrics via embeddings. In Foundations of Computer Science, 1999. 40th Annual
Symposium on, pages 171–179. IEEE, 1999.

8 Sariel Har-Peled and Manor Mendel. Fast construction of nets in low-dimensional metrics
and their applications. SIAM Journal on Computing, 35(5):1148–1184, 2006.

9 P. Indyk and N. Thaper. Fast color image retrieval via embeddings. Workshop on Statistical
and Computational Theories of Vision (at ICCV), 2003.

10 Piotr Indyk. Algorithmic applications of low-distortion geometric embeddings. In focs,
page 10. IEEE, 2001.

11 Piotr Indyk. High-dimensional Computational Geometry. PhD thesis, Stanford University,
2001.

12 Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data stream
computation. Journal of the ACM (JACM), 53(3):307–323, 2006.

13 Piotr Indyk, Avner Magen, Anastasios Sidiropoulos, and Anastasios Zouzias. On-line em-
beddings. In Proc. of APPROX, 2010.

14 William B Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings into a
hilbert space. Contemporary mathematics, 26(189-206):1, 1984.

15 Nathan Linial, Eran London, and Yuri Rabinovich. The geometry of graphs and some of
its algorithmic applications. Combinatorica, 15(2):215–245, 1995.

16 Ofer Neiman. Low dimensional embeddings of doubling metrics. In Christos Kaklamanis
and Kirk Pruhs, editors, Approximation and Online Algorithms, volume 8447 of Lecture
Notes in Computer Science, pages 12–23. Springer International Publishing, 2014.

17 Santosh S Vempala. The random projection method, volume 65. American Mathematical
Soc., 2005.

APPROX/RANDOM’16

Computing Approximate PSD Factorizations
Amitabh Basu∗1, Michael Dinitz†2, and Xin Li‡3

1 Dept. of Applied Mathematics and Statistics, Johns Hopkins University,
Baltimore, USA
abasu9@jhu.edu

2 Dept. of Computer Science, Johns Hopkins University, Baltimore, USA
mdinitz@cs.jhu.edu

3 Dept. of Computer Science, Johns Hopkins University, Baltimore, USA
lixints@cs.jhu.edu

Abstract
We give an algorithm for computing approximate PSD factorizations of nonnegative matrices.
The running time of the algorithm is polynomial in the dimensions of the input matrix, but
exponential in the PSD rank and the approximation error. The main ingredient is an exact
factorization algorithm when the rows and columns of the factors are constrained to lie in a
general polyhedron. This strictly generalizes nonnegative matrix factorizations which can be
captured by letting this polyhedron to be the nonnegative orthant.

1998 ACM Subject Classification F.2.1 Numerical Algorithms and Problems, G.1.3 Numerical
Linear Algebra

Keywords and phrases PSD rank, PSD factorizations

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2016.2

1 Introduction

Matrix factorization is a fundamental operation that has importance for diverse areas of
mathematics and engineering such as machine learning, communication complexity, polyhedral
combinatorics, statistical inference, and probability theory, to name a few. The problem can
be stated quite simply as follows:

Given two sequences of sets K = {Kd}d∈N and K′ = {K ′d}d∈N where Kd,K
′
d are

subsets of Rd for all d ∈ N, and a matrix M ∈ Rn×m, find a factorization M = UV

where U ∈ Rn×d and V ∈ Rd×m, and each row of U is in Kd and each column of V is
in K ′d.

Such a factorization is called a K,K′ factorization. The smallest d ∈ N such that such a
factorization exists is called the K,K′ rank. Most of the literature on this problem focuses
on the case when the matrix M is nonnegative. In this context, when Kd = K ′d = Rd+,
the factorization is called nonnegative factorization, and the corresponding rank is called
nonnegative rank. When Kd = K ′d are the cone of d× d PSD matrices, the factorization is
known as a PSD factorization and the corresponding rank is called the PSD rank. These
notions will be the object of study in this paper. A more general notion is that of cone

∗ Supported in part by the NSF grant CMMI1452820.
† Supported in part by NSF awards CCF-1464239 and CCF-1535887.
‡ Supported in part by NSF award CCF-1617713.

© Amitabh Basu, Michael Dinitz, and Xin Li;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016).
Editors: Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans; Article No. 2; pp. 2:1–2:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.2
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2:2 Computing Approximate PSD Factorizations

factorizations, where K is a family of cones and K′ is the family of corresponding dual cones;
see [11].

One of the most elegant applications of such factorizations arises in combinatorial
optimization. A very common technique in approaching combinatorial optimization problems
is to formulate the problem as a linear programming problem. However, a naive formulation
of a problem may result in a polytope (the feasible region of the LP) with a large number
of facets (exponentially many in the size of the problem), making it intractable to actually
solve. One way around this is to try to express the polytope as the projection of a higher
dimensional convex set. In particular, suppose that it can be expressed as the projection
of either a higher dimensional polytope (LP), the feasible region of an SDP, or the feasible
region of a more general convex optimization problem. Furthermore suppose that the number
of “extra” dimensions is polynomial in the size of the original problem, and the description
of the higher-dimensional convex optimization problem is also polynomial in the size of the
original problem (i.e. there are not an exponential number of facets). Then we can efficiently
solve the higher-dimensional problem, which means we can efficiently solve the original LP,
even if its size makes solving it directly intractable.

It turns out that the smallest size of such a reformulation is a direct function of the
nonnegative rank (for LP reformulations), the PSD rank (for SDP reformulations), or more
general cone factorization ranks of the so-called slack matrix of the original LP formulation.
The actual factorization can be used to explicitly find the smallest reformulation. This line
of research started with a seminal paper by Yannakakis [24], and has recently seen a flurry
of research activity – see the surveys [15, 7] and [10, 9, 21, 6, 16, 22, 17, 5] for some of the
most recent breakthroughs.

In machine learning applications the actual factorization is perhaps more important
than the value of the rank, as this factorization is key to certain text mining, clustering,
imaging and bioinformatics applications. A key algorithmic question is computing such a
factorization. Unfortunately, this question is computationally challenging – even computing
the nonnegative rank was proved to be NP-hard by Vavasis [23].

A recent algorithmic breakthrough was achieved by Arora et al [1], where they showed
that computing nonnegative factorizations can be done in polynomial time (in the dimensions
of the input matrix) for the family of matrices with fixed (constant) nonnegative rank. The
running time of their algorithm was doubly exponential in the nonnegative rank, and this
was later improved to a singly exponential algorithm by Moitra [18], which he showed to be
nearly optimal under the Exponential Time Hypothesis. The analogous question for PSD
factorizations is largely open (the question is also posed in the survey [8]):

I Question 1. Let r ∈ N be a constant. Does there exist an algorithm which, given any
n×m nonnegative matrix M with PSD rank r, computes a PSD factorization of rank r in
time polynomial in n,m?

Our main result is a polynomial time algorithm to compute approximate factorizations of
matrices with fixed PSD rank. We consider the space Sr of r × r symmetric matrices, and
the cone of r × r PSD matrices in this space, denoted by Sr+. Given any matrix M ∈ Rn×m,
we use the notation ‖M‖∞ := maxi,j |Mij |.

More precisely, we prove:

I Theorem 2. There exists an algorithm which, given any ε > 0 and any n×m nonnegative
matrix M with PSD rank r, computes a factorization M = UV such that each row of U and
each column of V are in Sr+ such that

‖M − UV ‖∞ ≤ ε‖M‖∞

A. Basu, M. Dinitz, and X. Li 2:3

and has runtime O((4mn)f1(ε,r)(2mn+ f2(ε, r))f3(ε,r)) + (m+n)(r3 + r2 log2 r log(1
ε)), where

f1(ε, r) = r2(ra(1
ε)
rb)r2+2r2

, f2(ε, r) = 4r2(ra(1
ε)
rb)r2+1, and f3(ε, r) = 2r2(ra(1

ε)
rb)r2 for

some universal constants a and b. Note that f1(ε, r), f2(ε, r) and f3(ε, r) are independent
of m and n, so the runtime becomes polynomial in the dimensions of M if r, ε are fixed
constants.

Approximate PSD factorizations can be useful for reformulation questions in combinatorial
optimization, where one seeks approximations of the original polyhedron using SDPs, as
opposed to an exact reformulation – see [12] for results along this direction. In particular,
approximate factorizations of the slack matrix of a polytope can sometimes be used to
compute “inner" and “outer" approximations of the polytope, each of which can then be
optimized over in order to give an approximation to the true optimal solution of the polytope.
However, in [12], these approximations are guaranteed only when the corresponding matrix
factorization error is calculated in certain induced matrix norms (in particular the ‖ · ‖1,2
and ‖ · ‖1,∞ norms). Consequently, it is unclear if the approximate factorizations generated
by Theorem 2 give similar results, primarily since our notion of an approximate factorization
involves the ‖ · ‖∞-norm rather than the appropriate induced matrix norms. Thus while our
results do not directly imply any new approximation algorithms, they do provide ideas on
how to go beyond nonnegative factorizations to PSD or more general conic factorizations, if
one admits approximate factorizations as opposed to exact ones.

1.1 Technical overview
Our algorithm for Theorem 2 is inspired by ideas behind the algorithm in Arora et al [1].
However, there are some important differences. Arora et al’s algorithm uses properties of the
nonnegative orthant that do not hold for the cone of PSD matrices. To overcome this difficulty,
we need to approximate the PSD cone by a polyhedral cone obtained by intersecting enough
tangent halfspaces. We then generalize Arora et al’s techniques to compute factorizations
inside a general polyhedron, as opposed to just the nonnegative orthant. The nonnegative
orthant is a very special polyhedron, and many of its special properties are utilized in the
algorithm of Arora et al. We have to use interesting techniques from polyhedral theory
(such as Fourier-Motzkin elimination) to extend these ideas to handle general polyhedra (see
Theorem 14). Finally, to bound the errors in the approximate factorization, we use some
technical results on rescaling PSD factorizations due to Briet et al [6] (Theorem 17).

1.2 Model of computation
We will present our algorithm from Theorem 2 in the real arithmetic model of computation
developed by Blum, Shub and Smale [4], thus ignoring questions of approximating irrational
computations by rational arithmetic. This is just for the ease of exposition. In Section 4.1,
we show that Theorem 2 can be proved by designing an algorithm that operates in the more
standard Turing machine model of computation.

2 Preliminaries

For any normed space (V, ‖·‖), we denote the distance between two subsets X,Y ⊆ V by
dist(X,Y) := inf{‖x− y‖: x ∈ X, y ∈ Y }. A closed subset P of a normed space V is called
a closed cone if it is convex and λP ⊆ P for all λ ≥ 0. A cone is called a polyhedral cone if it
is the intersection of finitely many halfspaces. For any closed cone P in an inner product

APPROX/RANDOM’16

2:4 Computing Approximate PSD Factorizations

space (V, 〈·, ·〉) (closed with respect to the norm obtained from the inner product), the dual
cone will be denoted by

P ∗ = {v ∈ V : 〈v, y〉 ≥ 0 ∀y ∈ P}.

We recall a standard fact about dual cones:

I Fact 3. Let (V, 〈·, ·〉) be an inner product space with ‖·‖ denoting the norm on V induced
by the inner product. For any closed cone P ⊆ V , if x ∈ V such that dist(x, P) = δ, then
there exists a vector a ∈ P ∗ with ‖a‖ = 1 such that the distance of x from the hyperplane
{y ∈ V : 〈a, y〉 = 0} is δ, i.e., 〈a, x〉 = −δ.

On the space Sr of r × r symmetric matrices, we consider the inner product 〈A,B〉 =∑
i,j AijBij .

I Fact 4. The PSD cone Sr+ is self-dual, i.e., (Sr+)∗ = Sr+.

I Definition 5. Let C be a subset of a normed space (V, ‖·‖). For ε > 0, Xε ⊆ C is called
an ε-covering for C with respect to the norm ‖·‖ if for every a ∈ C, there exists a′ ∈ Xε such
that ‖a− a′‖ < ε.

I Definition 6. For any closed cones P1 ⊆ P2 in a normed space (V, ‖·‖), we say P2 is an
ε-approximation of P1 with respect to ‖·‖ for some ε > 0, if for every p2 ∈ P2, there exists a
point p1 ∈ P1 such that ‖p2 − p1‖ ≤ ε‖p2‖.

I Theorem 7. Let C = {x ∈ Sr+ : ‖x‖2 = 1} be the spherical cap on the PSD cone. Let
ε > 0 and let Xε ⊆ C be any finite ε-covering for C with respect to some norm ‖·‖. Then the
polyhedral cone

P := {x ∈ Sr : 〈a′, x〉 ≥ 0 ∀a′ ∈ Xε}

is an ε-approximation for Sr+ with respect to ‖·‖.

Proof. It suffices to prove that for any x ∈ Sr such that dist(x,Sr+) > ε‖x‖, then x 6∈ P .
By Fact 3 and Fact 4, there exists a ∈ C such that 〈a, x〉 < −ε‖x‖. By definition of
ε-covering, there exists a′ ∈ Xε such that ‖a − a′‖ < ε. By Cauchy-Schwartz, we have
|〈a′, x〉−〈a, x〉| ≤ ‖a−a′‖‖x‖ < ε‖x‖. Combined with 〈a, x〉 < −ε‖x‖, this implies 〈a′, x〉 < 0.
Thus, by definition of P , x 6∈ P . J

I Remark. Since C is a compact set, there always exists a finite ε-covering of C for any
ε > 0. Rabani and Shpilka [20] give explicit constructions of small ε-coverings of the sphere
Sd−1 = {x ∈ Rd : ‖x‖2 = 1}, which will prove useful for us. In particular, their results imply
the following bound.

I Theorem 8. There exists a polyhedral ε-approximation of Sr+ with respect to the ‖ · ‖∞
norm of size O(raε−rb) for some universal constants a, b.

The following fact from linear algebra will be used.

I Proposition 9. Any linear transformation T : Rd → Rm can be expressed as T = A ◦ φ
where φ : Rd → ker(T)⊥ is the projection of Rd onto ker(T)⊥ and A : ker(T)⊥ → Im(T) is
an invertible linear transformation.

This leads to the following observation about linear transformation of polyhedra.

A. Basu, M. Dinitz, and X. Li 2:5

I Proposition 10. Let P ⊆ Rd be a polyhedron defined by p inequalities. Let T : Rd → Rm be
any linear transformation. Then T (P) is a polyhedron defined by at most O(p2d) inequalities.

Proof. Let us make a change of coordinates such that ker(T)⊥ = Rd′ with d ≥ d′ ≥ 0 - this
does not change the number of inequalities required to describe P or T (P). By Proposition 9,
T can be expressed as A ◦ φ where φ is the projection from Rd → Rd′ , and A is an invertible
transformation from Rd′ → Im(T). So we just need to analyze the effect of φ and A on the
number of inequalities.

To analyze φ(P), we note that the Fourier-Motzkin elimination process [25] implies that
projecting out a single variable can be done by squaring the number of inequalities. By
repeatedly applying this, we get that φ(P) has at most p2d−d′ inequalities. Since A is an
invertible linear transformation, A(φ(P)) has the same number of inequalities as φ(P). The
result follows. J

We list one final linear algebraic observation. Let dim(W) denote the dimension of an
affine subspace W , and let aff(X) denote the affine hull of the columns of a matrix X (or
just a finite set of vectors X).

I Proposition 11. Let {m1, . . . ,mt} ⊆ Rm and {b1, . . . , bt} ⊆ Rd such that there exists
a linear transformation A : Rd → Rm satisfying mi = A(bi) for all i = 1, . . . , t. Further
suppose that dim(aff({m1, . . . ,mt})) = dim(aff({b1, . . . , bt})) = k and that m1, . . . ,mk+1
and b1, . . . , bk+1 are maximal affinely independent subsets, respectively. Then, for every
i > k + 1, if mi is expressed as an affine combination mi = λ1m1 + . . . + λk+1mk+1 with∑k+1
j=1 λj = 1, then bi = λ1b1 + . . .+ λk+1bk+1. In other words, bi is an affine combination

of b1, . . . , bk+1 with the same coefficients as in the expression for mi.

The following result about projecting onto the PSD cone will be used [14].

I Proposition 12. Let C be an r × r symmetric matrix with spectral decomposition UΛUT ,
where U is the matrix with the eigenvectors of C as columns, and Λ = Diag(λ1, . . . , λr)
is the diagonal matrix with eigenvalues of C on the diagonals. Then, the matrix C∗ =
U (Diag(max{0, λ1}, . . . ,max{0, λr}))UT is the closest matrix in Sr+ to C with respect to
the ‖ · ‖2 norm.

We also use the following deep result from real algebraic geometry and quantifier elimina-
tion.

I Theorem 13 ([2]). There is an algorithm that tests the feasibility of any system of s
polynomial equalities involving N variables with d as the maximum degree of any polynomial,
that runs in time (sd)O(N).

3 Factorizations from a polyhedron

Our main tool for proving Theorem 2 will be the following generalization of the algorithm
of Arora et al. [1], who proved it for the special case of P being the nonnegative cone. We
generalize this to an arbitrary polyhedron P .

I Theorem 14. Let M be an n ×m matrix with nonnegative entries, and let P be some
polyhedron in Rd described by p inequalities. If there exists a factorization M = UV such
that each row of U and each column of V is in P , then one can compute such a factorization
in time O((4mn)d(pd+2d

)(2mn + 4dpd+1)2pdd2), which is polynomial in m,n if d and p are
fixed.

APPROX/RANDOM’16

2:6 Computing Approximate PSD Factorizations

In order to prove this theorem, we first need a few useful lemmas. Let X be a p × q
matrix. For any subset C ⊆ {1, . . . q}, let XC denote the matrix formed by the subset of
columns indexed by C. Similarly, for any subset R ⊆ {1, . . . p}, let XR denote the matrix
formed by the rows indexed by R.

I Lemma 15. Let M be an n×m matrix with nonnegative entries. Let P be some polyhedron
in Rd described by p inequalities. Suppose there exists a factorization M = UV such that each
row of U and each column of V is in P . Then there exists a partition C1] C2] . . .] Ck =
{1, . . . ,m}, a partition R1]R2] . . .]R` = {1, . . . , n}, and matrices Ū ∈ Rn×d, V̄ ∈ Rd×m
such that the following properties all hold:
1. M = Ū V̄ .
2. Each row of Ū and each column of V̄ is in P . Moreover, there exist faces F1, . . . , Fk of P

such that for every j = 1, . . . , k, the columns of V̄ Cj all lie on Fj. Similarly, there exist
faces G1, . . . , G` such that for every i = 1, . . . , `, the rows of ŪRi all lie on Gi.

3. dim(aff(MCj)) = dim(aff(V̄ Cj)) for all j = 1, . . . , k.
4. dim(aff((MRi)T)) = dim(aff((ŪRi)T)) for all i = 1, . . . , `.
5. k, ` ≤ pd.

Proof. We use an idea from Arora et al. [1] to produce Ū , V̄ and the partitions with the
stated properties. Starting from U, V , we will first construct V̄ , and then use this to construct
Ū . Slightly more formally, we will first construct a partition C1]C2] . . .]Ck = {1, . . . ,m},
a matrix V̄ such that M = UV̄ , and exhibit faces F1, . . . , Fk such that columns of V̄ Cj are
contained in Fj for all j, and also condition 3 in the statement is satisfied. We will then
construct a partition R1]R2] . . .]R` = {1, . . . , n}, a matrix Ū such that M = Ū V̄ , and
exhibit faces G1, . . . , G` such that rows of ŪRi are contained in Gi for all i, and condition 4
from the statement is satisfied. Condition 5 will then be verified.

For any p ∈ P , let Fp be the face of P of minimum dimension containing p. This induces
a partial ordering � on the points in P , where p1 � p2 if Fp1) Fp2 .

For every column vj of V , consider the set (vj +ker(U))∩P and define v̄j to be a minimal
element in this set according to this partial order. Note that for any p ∈ P , if there exists
u ∈ ker(U) \ {0} such that the line p+ λu, λ ∈ R lies in the affine hull of Fp, then one can
choose λ such that p+ λu is in a strict face of Fp. Thus, by the minimal choice of v̄j , we
have that (v̄j + ker(U)) ∩ aff(Fv̄j) = v̄j for every j ∈ {1, . . . ,m}. We set V̄ to be the matrix
with columns v̄j . Note that M = UV̄ as desired, since Uv̄j = U(vj + xj) = Uvj for every
j ∈ {1, . . . ,m}, where xj is some vector in ker(U).

The partition C1] C2] . . .] Ck of the columns of V̄ is obtained by grouping the
columns together based on the face of minimum dimension that they lie on. Thus, k ≤ pd
which is an upper bound on the number of faces of P . Moreover, these faces of minimum
dimension will form the faces F1, . . . , Fk in Condition 2. We now need to verify that
dim(aff(MCj)) = dim(aff(V̄ Cj)) for all j = 1, . . . , k. Fix some j and let the columns of MCj

be {m0,m1, . . . ,mh} and let the columns of V̄ Cj be v0, v1, . . . , vh. Let dim(aff(V̄ Cj)) = k, and
without loss of generality assume that v0, . . . , vk are affinely independent. SinceMCj = UV̄ Cj ,
we know that dim(aff(MCj)) ≤ dim(aff(V̄ Cj)). If the inequality is strict, then the columns
m0, . . . ,mk are affinely dependent, and thus there exist λ0, . . . , λk ∈ R not all zero such that
and λ0 +λ1 + . . .+λk = 0 and λ0m0 +λ1m1 + . . . , λkmk = 0. SinceMCj = UV̄ Cj , the vector
v = λ0v0 + λ1v1 + . . . , λkvk satisfies v ∈ ker(U) \ {0} (v 6= 0 because v1, . . . , vk are affinely
independent). Recall that Fj is the face of minimum dimension containing v0, v1, . . . , vh, we
find that v0 + λv, λ ∈ R lies in the affine hull of Fj . This would contradict the construction
of the columns of V̄ . Therefore, dim(aff(MCj)) = dim(aff(V̄ Cj)).

A. Basu, M. Dinitz, and X. Li 2:7

In a similar manner, we can change the rows of U (keeping V̄ fixed) to obtain Ū so that
conditions 1 still holds, and there is a partition R1] R2] . . .] R` = {1, . . . , n} and faces
G1, . . . , G` so that Conditions 2 and 4 are satisfied. Finally, as was the case with the column
partition, the upper bound on the total number of faces of P gives ` ≤ pd. This completes
the construction. J

Let X be a a set of points in Rd. We say a set of polyhedra P1, . . . , Pk is a polyhedral
covering of X if (P1 ∩ X) ∪ . . . ∪ (Pk ∩ X) = X – note that P1, . . . , Pk do not have to
be disjoint polyhedra. We say a partition X1] . . .] Xk = X is induced by a polyhedral
covering if there exists a polyhedral covering P1, . . . , Pk of X such that X1 = P1 ∩X and
Xi = (Pi ∩ X) \ (X1 ∪ . . . ∪ Xi−1) for i = 2, . . . , k. A (k1, k2)-polyhedral partition of X
is a partition induced by a polyhedral covering of X with at most k1 polyhedra and each
polyhedron is described by at most k2 inequalities.

I Lemma 16. Let k1, k2 be fixed natural numbers and let X be a set of points in Rd. The
number of (k1, k2)-polyhedral partitions is at most O((2dmd)k1k2) and one can enumerate
these partitions in time O((2dmd)k1k2), where m = |X|.

Proof. Let us first count the number of subsets of X of the form P ∩ X where P is a
polyhedron with at most k2 inequalities. As observed in Arora et al [1], this can be reduced
to counting the number of subsets of the form H ∩X where H is a halfspace. The number of
such subsets is O(2dmd) and can be enumerated in the same amount of time (as was shown
in Arora et al [1] by a simple iterative procedure). To choose a subset of the form P ∩X
where P is a polyhedron with at most k2 inequalities, one simply needs to iteratively choose
k2 subsets given by halfspace intersections. Thus, there are O((2dmd)k2) such subsets and
these can be enumerated in this iterative fashion.

To finally get partitions induced by polyhedral coverings, one needs to iteratively choose
k1 subsets of the form P ∩X where P is a polyhedron with at most k2 inequalities. The
result follows. J

Using these tools, we can now prove Theorem 14.

Proof of Theorem 14. By Lemma 15, there exists a partition C1]C2]. . .]Ck = {1, . . . ,m},
a partition R1] R2] . . .] R` = {1, . . . , n}, and matrices Ū ∈ Rn×d, V̄ ∈ Rd×m such that
conditions 1− 5 in Lemma 15 hold. Our algorithm will find these partitions, as well as the
matrices Ū and V̄ . By conditions 1 and 2 of Lemma 15, these matrices form the desired
factorization of M .

Let F1, . . . , Fk, G1, . . . , G` be the faces of P referred to in Condition 2 of Lemma 15.
For any fixed j ∈ {1, . . . , k}, since M{s} = Ū V̄ {s} for every s ∈ Cj , we have {M{s} : s ∈
Cj} ⊆ Ū(Fj) by Condition 2 from Lemma 15. Invoking Proposition 10, we obtain that
Ū(Fj) is described using at most p2d inequalities. By Lemma 15, k is bounded by pd.
Therefore, MC1 , . . . ,MCk is a (pd, p2d)-polyhedral partition of {M1, . . . ,Mm} using the
polyhedra Ū(F1), . . . , Ū(Fk). Similarly, MR1 , . . . ,MR`

is a (pd, p2d)-polyhedral partition of
{M1, . . . ,Mn} using the the polyhedra V̄ T (G1), . . . , V̄ T (G`).

Lemma 16 implies that we can enumerate all possible (pd, p2d)-polyhedral partitions of
{M1, . . . ,Mm} in time O((2dmd)pd+2d

). Similarly, one can enumerate all possible partitions
(pd, p2d)-polyhedral partitions of {M1, . . . ,Mn} in time O((2dnd)pd+2d

).
Condition 3 from Lemma 15 and Proposition 11 imply that for each j ∈ {1, . . . , k}, there

exist dim(aff(MCj)) + 1 ≤ d+ 1 columns of V̄ Cj , such that every other column in V̄ Cj can
be expressed as affine combinations of these columns. Moreover, the coefficients in these

APPROX/RANDOM’16

2:8 Computing Approximate PSD Factorizations

affine combinations can be computed from the columns of MCj . Similarly, Condition 4 from
Lemma 15 and Proposition 11 imply that for every i = 1, . . . , `, the rows of ŪRi

can be
expressed as known affine combinations of dim(aff(MRj

)) + 1 ≤ d+ 1 rows of ŪRi
.

We first make a guess for the partitions by enumerating all possible (pd, p2d)-polyhedral
partitions C1, . . . , Ck of the columns of M and all possible (pd, p2d)-polyhedral partitions
R1, . . . , R` of the rows of M . For each choice of such partitions, introduce variables for the
entries of the dim(aff(MCj)) + 1 special columns of V̄ Cj , j = 1, . . . , k, and dim(aff(MRj

)) +
1 special rows of ŪRi

, i = 1, . . . , ` which would correspond to the appropriate affinely
independent columns in MCj and rows in MRi respectively. We now need to ensure that
M = Ū V̄ . For this we set up a system of mn quadratic constraints Mij = 〈Ūi, V̄ j〉 for each
i = 1, . . . , n and j = 1, . . . ,m, where the entries of Ūi and V̄ j are expressed in terms of the
variables the dim(aff(MCj)) + 1 special columns of V̄ Cj , and dim(aff(MRj

)) + 1 special rows
of ŪRi

as discussed above. Notice that this system has only O((k + `)d2) variables. We
finally also impose the condition that these special columns are in P , which corresponds to
(k+ `)dp more linear inequalities in these variables. We finally invoke Theorem 13 to test the
feasibility of such a system. This process is then repeated for all possible (pd, p2d)-polyhedral
partitions C1, . . . , Ck of the columns of M and (pd, p2d)-polyhedral partitions R1, . . . , R` of
the rows of M , until we find one that satisfies all the conditions in Lemma 15. J

4 Proof of Theorem 2

For any square matrix X ∈ Rr×r, we use ‖X‖sp := maxy∈Rr\{0}
‖Xy‖2
‖y‖2

to denote the spectral
norm of X. The algorithm depends on this key result (paraphrased here) from [6].

I Theorem 17. Let M be an n × m matrix with nonnegative entries. If M has a PSD
factorization M = UV such that the rows of U and columns of V are in Sr+, then there exists
a PSD factorization M = Ū V̄ such that the rows of Ū and the columns of V̄ have spectral
norm bounded by

√
r‖M‖∞.

We outline the steps of the algorithm in Theorem 2. Let f(r) be such that for every matrix
X ∈ Sr, ‖X‖∞ ≤ f(r)‖X‖sp. Such an f(r) must exist because all norms are equivalent
on a Euclidean space, i.e., their values are the same upto a factor depending only on the
dimension of the space.

1. Given M , let ∆ = ‖M‖∞. Construct a polyhedral ε-approximation of Sr+ with respect
to the ‖ · ‖∞ norm on Sr using Theorem 8. Let P be the polyhedron formed by the
intersection of this polyhedral approximation with the cube {x ∈ Sr : ‖x‖∞ ≤ f(r)

√
r∆}.

2. By Theorem 17 and the assumption that M has PSD rank r, we know there exists a
factorization M = Ū V̄ such that the rows of Ū and columns of V̄ are in the PSD cone,
and their spectral norm is at most

√
r∆. Therefore, for every row u of Ū , we have

‖u‖∞ ≤ f(r)
√
r∆ and similarly for the columns of V̄ . This implies that the rows of Ū

and columns of V̄ are in P . Since Ū , V̄ exist, we can employ Theorem 14 to construct a
factorization M = U ′V ′ such that the rows of U ′ and the columns of V ′ are in P . Note
that the algorithm of Theorem 14 may not produce a PSD factorization. To obtain an
approximate PSD factorization, we construct matrices U and V by projecting each row
of U ′ to the nearest point in the PSD cone (according to the ‖ · ‖∞ norm), and similarly
for the columns of V ′. This can be done in polynomial time by invoking Proposition 12.

A. Basu, M. Dinitz, and X. Li 2:9

This concludes the description of the algorithm. The running time claimed by Theorem 2
is tedious but straightforward to verify. It remains to prove that

‖M − UV ‖∞ ≤ ε‖M‖∞.

Our first step will be to use the fact that we projected from an ε-approximation to the PSD
cone. In particular, we know that ‖V ′j − V j‖∞ ≤ ε‖V ′j‖∞ for each j ∈ {1, . . . ,m}, and
similarly ‖U ′i − Ui‖∞ ≤ ε‖U ′j‖∞ for each i ∈ {1, . . . , n}. This clearly implies that

‖V ′ − V ‖∞ ≤ ε‖V ′‖∞ and ‖U ′ − U‖∞ ≤ ε‖U ′‖∞. (1)

Now we can analyze the approximation of our factorization:

‖M − UV ‖∞ = ‖U ′V ′ − UV ‖∞
≤ ‖U ′V ′ − U ′V ‖∞ + ‖U ′V − UV ‖∞
≤ r‖U ′‖∞‖V ′ − V ‖∞ + r‖U ′ − U‖∞‖V ‖∞
≤ r‖U ′‖∞(ε‖V ′‖∞) + rε‖U ′‖∞‖V ‖∞

(2)

where the first equality is from the fact thatM = U ′V ′, the first inequality is from the triangle
inequality, and the third is from (1). The second inequality follows from the observation that
for any matrices A ∈ Rn×r, B ∈ Rr×m, ‖AB‖∞ ≤ r‖A‖∞‖B‖∞.

Since ‖V ‖∞ ≤ (1 + ε)‖V ′‖∞ because of (1), we obtain ‖M − UV ‖∞ ≤ 3εr‖U ′‖∞‖V ′‖∞.
Since each row u of U ′ is in P , we have ‖u‖∞ ≤ f(r)

√
r∆. Therefore, ‖U ′‖∞ ≤ f(r)

√
r∆.

Similarly, ‖V ′‖∞ ≤ f(r)
√
r∆. Hence, ‖M − UV ‖∞ ≤ 3εr‖U ′‖∞‖V ′‖∞ ≤ 3f(r)r2ε∆. By

redefining ε appropriately (in particular, letting ε′ be the previous ε and letting ε = 3f(r)fε′),
we get that

‖M − UV ‖∞ ≤ ε‖M‖∞

as desired.

4.1 Computing on a Turing Machine
As mentioned in the introduction, the algorithm described above works in the real arithmetic
model of computation. However, this was only for ease of exposition. We now show how to
remove this assumption and work in the more standard Turing machine model of computation.

The assumption of real arithmetic was used in two places. First, it was used when
invoking Theorem 13 to solve a system of polynomial inequalities in the proof of Theorem 14.
The second time it was used was for computing the spectral decompositions in Proposition 12
while projecting to the PSD cone in Step 2 above.

The first problem can be resolved by using a result of Grigor’ev and Vorobjov [13] which
states that one can compute rational approximations to solutions of polynomial systems
with integer coefficients within δ accuracy for any rational δ > 0, in time that is polynomial
in the parameters log(1

δ), maximum bit length of the coefficients, and (sd)N2 , where s is
the number of inequalities, d is the maximum degree, and N is the number of variables
(See “Remark” at the end of page 2 in [13]). This implies that one can find rational
approximations for the rows and columns of U ′ and V ′ in Step 2 above, with the guarantee
that ‖M − U ′V ′‖∞ ≤ O(δ). Thus, in (2), the first line would be replaced by the inequality
‖M −UV ‖∞ ≤ ‖U ′V ′ −UV ‖∞ +O(δ), and this extra error term of O(δ) will carry through
in all the subsequent inequalities in (2).

APPROX/RANDOM’16

2:10 Computing Approximate PSD Factorizations

Further, although these rational approximations for the rows of U ′ and the columns of
V ′ may not be in the polytope P defined in Step 1 above, they will be within O(δ) distance
of P .

The problem of computing spectral decompositions to within any desired accuracy was
shown to be possible in time polynomial in the size of the matrix and log(1

δ), where δ > 0
is the desired accuracy (under any matrix norm, and since for us the dimensions of these
matrices are constants, i.e., r × r, the choice of the norm also does not matter) [19]. This
simply means that instead of projecting in to the closest point to the PSD cone, we instead
project to some approximation of the closest point. However, this error can also be controlled.
Note that the approximating point will also be in the PSD cone (it might just not be the
closest one).

Thus, by keeping track of these additional error terms and defining the error parameters
appropriately based on the given ε > 0, we can still keep the guarantee ‖M−UV ‖∞ ≤ ε‖M‖∞.

5 Open Questions

Question 1 remains the outstanding open question in the line of research on factorization
algorithms with polynomial time guarantees. Another interesting direction would be generalize
Theorem 2 to approximation guarantees with other norms. For example, the induced
norms ‖M‖1,2 := maxx∈Rm

‖Mx‖2
‖x‖1

and ‖M‖∞,2 := maxx∈Rm
‖Mx‖2
‖x‖∞ were used in [12]. The

authors show that approximate factorization with respect to these norms give rise to small
SDP reformulations whose projections approximate a given polytope, where the geometric
approximation is tightly determined by the approximation factor in the matrix factorization.

It would also be interesting to resolve the following question:

Let r ∈ N and ε > 0 be fixed constants. LetM be the family of nonnegative matrices
such that for every M ∈ M, there exists another nonnegative matrix M such that
‖M −M‖∞ ≤ ε‖M‖∞ and M admits a rank r PSD factorization.
Does there exists an algorithm which, given any nonnegative matrix M ∈M, can find
matrices U and V such that each row of U and each column of V are in Sr+ such that

‖M − UV ‖∞ ≤ O(ε)‖M‖∞,

and has runtime polynomial in the dimensions of M? In other words: if the input
matrix M is close to a matrix with small PSD rank, can we find a low PSD-rank
factorization that is a good approximation to M?

Approximate low-rank nonnnegative factorizations of matrices with high nonnegative
rank have been extensively studied – see [3] for a survey of the diverse applications, and [1] for
a recent algorithm with provable guarantees on the complexity. The corresponding question
for PSD factorizations is of similar interest.

References
1 Sanjeev Arora, Rong Ge, Ravindran Kannan, and Ankur Moitra. Computing a nonnegative

matrix factorization–provably. In Proceedings of the Forty-Fourth Annual ACM Symposium
on Theory of computing, STOC’12, pages 145–162. ACM, 2012.

2 Saugata Basu, Richard Pollack, and Marie-Françoise Roy. On the combinatorial and alge-
braic complexity of quantifier elimination. Journal of the ACM (JACM), 43(6):1002–1045,
1996.

A. Basu, M. Dinitz, and X. Li 2:11

3 Michael W Berry, Murray Browne, Amy N Langville, V Paul Pauca, and Robert J Plem-
mons. Algorithms and applications for approximate nonnegative matrix factorization. Com-
putational statistics & data analysis, 52(1):155–173, 2007.

4 Lenore Blum, Mike Shub, and Steve Smale. On a theory of computation and complexity
over the real numbers: W-completeness, recursive functions and universal machines. Bull.
Amer. Math. Soc, 21(1):1–46, 1989.

5 Gábor Braun, Jonah Brown-Cohen, Arefin Huq, Sebastian Pokutta, Prasad Raghavendra,
Aurko Roy, Benjamin Weitz, and Daniel Zink. The matching problem has no small symmet-
ric sdp. In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA’16, pages 1067–1078, Philadelphia, PA, USA, 2016. Society for Indus-
trial and Applied Mathematics. URL: http://dl.acm.org/citation.cfm?id=2884435.
2884510.

6 Jop Briët, Daniel Dadush, and Sebastian Pokutta. On the existence of 0/1 polytopes with
high semidefinite extension complexity. Mathematical Programming, pages 1–21, 2014.

7 Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli. Extended formulations in
combinatorial optimization. 4OR, 8(1):1–48, 2010.

8 Hamza Fawzi, Jo ao Gouveia, Pablo A. Parrilo, Richard Z. Robinson, and Rekha R. Thomas.
Positive semidefinite rank. http://arxiv.org/abs/1407.4095, 2015.

9 Samuel Fiorini, Volker Kaibel, Kanstantsin Pashkovich, and Dirk Oliver Theis. Combi-
natorial bounds on nonnegative rank and extended formulations. Discrete mathematics,
313(1):67–83, 2013.

10 Samuel Fiorini, Serge Massar, Sebastian Pokutta, Hans Raj Tiwary, and Ronald de Wolf.
Linear vs. semidefinite extended formulations: exponential separation and strong lower
bounds. In Proceedings of the 44th Annual ACM Symposium on Theory of Computing,
pages 95–106. ACM, 2012.

11 Joao Gouveia, Pablo A Parrilo, and Rekha R Thomas. Lifts of convex sets and cone
factorizations. Mathematics of Operations Research, 38(2):248–264, 2013.

12 João Gouveia, Pablo A Parrilo, and Rekha R Thomas. Approximate cone factorizations
and lifts of polytopes. Mathematical Programming, 151(2):613–637, 2015.

13 D Yu Grigor’ev and NN Vorobjov. Solving systems of polynomial inequalities in subexpo-
nential time. Journal of symbolic computation, 5(1):37–64, 1988.

14 Didier Henrion and Jérôme Malick. Projection methods in conic optimization. In Handbook
on Semidefinite, Conic and Polynomial Optimization, pages 565–600. Springer, 2012.

15 Volker Kaibel. Extended formulations in combinatorial optimization. arXiv preprint
arXiv:1104.1023, 2011.

16 J Lee, Prasad Raghavendra, David Steurer, and Ning Tan. On the power of symmetric lp
and sdp relaxations. In Proceedings of the 29th Conference on Computational Complexity
(CCC), pages 13–21. IEEE, 2014.

17 James R. Lee, Prasad Raghavendra, and David Steurer. Lower bounds on the size of
semidefinite programming relaxations. In Proceedings of the Forty-Seventh Annual ACM
Symposium on Theory of Computing, STOC’15, pages 567–576, New York, NY, USA, 2015.
ACM. doi:10.1145/2746539.2746599.

18 Ankur Moitra. An almost optimal algorithm for computing nonnegative rank. In Pro-
ceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA’13, pages 1454–1464. SIAM, 2013.

19 Victor Y Pan and Zhao Q Chen. The complexity of the matrix eigenproblem. In Proceedings
of the Thirty-First Annual ACM Symposium on Theory of computing, pages 507–516. ACM,
1999.

20 Yuval Rabani and Amir Shpilka. Explicit construction of a small ε-net for linear threshold
functions. SIAM Journal on Computing, 39(8):3501–3520, 2010.

APPROX/RANDOM’16

http://dl.acm.org/citation.cfm?id=2884435.2884510
http://dl.acm.org/citation.cfm?id=2884435.2884510
http://dx.doi.org/10.1145/2746539.2746599

2:12 Computing Approximate PSD Factorizations

21 Thomas Rothvoß. Some 0/1 polytopes need exponential size extended formulations. Math-
ematical Programming, 142(1-2):255–268, 2013.

22 Thomas Rothvoß. The matching polytope has exponential extension complexity. In Pro-
ceedings of the 46th Annual ACM Symposium on Theory of Computing, pages 263–272.
ACM, 2014.

23 Stephen A Vavasis. On the complexity of nonnegative matrix factorization. SIAM Journal
on Optimization, 20(3):1364–1377, 2009.

24 Mihalis Yannakakis. Expressing combinatorial optimization problems by linear programs.
In Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, pages
223–228. ACM, 1988.

25 G. M. Ziegler. Lectures on Polytopes, volume 152 of Graduate Texts in Mathematics.
Springer-Verlag, New York, 1995. doi:10.1007/978-1-4613-8431-1.

http://dx.doi.org/10.1007/978-1-4613-8431-1

Hardness of Approximation for H-Free Edge
Modification Problems
Ivan Bliznets∗1, Marek Cygan†2, Paweł Komosa†3, and
Michał Pilipczuk‡4

1 St. Petersburg Department of Steklov Institute of Mathematics, Russia
iabliznets@gmail.com

2 Institute of Informatics, University of Warsaw, Poland
cygan@mimuw.edu.pl

3 Institute of Informatics, University of Warsaw, Poland
p.komosa@mimuw.edu.pl

4 Institute of Informatics, University of Warsaw, Poland
michal.pilipczuk@mimuw.edu.pl

Abstract
The H-free Edge Deletion problem asks, for a given graph G and integer k, whether it is
possible to delete at most k edges from G to make it H-free, that is, not containing H as an
induced subgraph. The H-free Edge Completion problem is defined similarly, but we add
edges instead of deleting them. The study of these two problem families has recently been the
subject of intensive studies from the point of view of parameterized complexity and kernelization.
In particular, it was shown that the problems do not admit polynomial kernels (under plausible
complexity assumptions) for almost all graphs H, with several important exceptions occurring
when the class of H-free graphs exhibits some structural properties.

In this work we complement the parameterized study of edge modification problems to H-free
graphs by considering their approximability. We prove that whenever H is 3-connected and has
at least two non-edges, then both H-free Edge Deletion and H-free Edge Completion
are very hard to approximate: they do not admit poly(OPT)-approximation in polynomial time,
unless P = NP, or even in time subexponential in OPT, unless the Exponential Time Hypothesis
fails. The assumption of the existence of two non-edges appears to be important: we show that
whenever H is a complete graph without one edge, then H-free Edge Deletion is tightly
connected to the Min Horn Deletion problem, whose approximability is still open. Finally, in
an attempt to extend our hardness results beyond 3-connected graphs, we consider the cases of
H being a path or a cycle, and we achieve an almost complete dichotomy there.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases hardness of approximation, parameterized complexity, kernelization,
edge modification problems

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2016.3

∗ The research of I. Bliznets is supported by the Government of the Russian Federation (grant
14.Z50.31.0030), by the Grant of the President of the Russian Federation (MK-6550.2015.1) as well as
by Warsaw Center of Mathematics and Computer Science.

† The work of M. Cygan and P. Kamosa is the part of a project TOTAL that has received funding
from the European Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement No 677651).

‡ The research of M. Pilipczuk is supported by Polish National Science Centre grant UMO-
2013/11/D/ST6/03073. M. Pilipczuk is also supported by the Foundation for Polish Science (FNP) via
the START stipend programme.

© Ivan Bliznets, Marek Cygan, Paweł Komosa, and Michał Pilipczuk;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016).
Editors: Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans; Article No. 3; pp. 3:1–3:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

3:2 Hardness of Approximation for H-Free Edge Modification Problems

1 Introduction

We consider the following general setting of graph modification problems: given a graph
G, one would like to modify G as little as possible in order to make it satisfy some fixed
property of global nature. Motivated by applications in de-noising data derived from imprecise
experimental measurements, graph modification problems occupy a prominent role in the
field of parameterized complexity and kernelization. This is because the allowed number of
modifications usually can be assumed to be small compared to the total instance size, which
exactly fits the motivation of considering it as the parameter of the instance.

Moving to the formal setting, consider some hereditary class of graphs Π, that is, a class
closed under taking induced subgraphs. For such a class Π, we can define several problems
depending on the set of allowed modifications. In each case the input consists of a graph G
and integer k, and the question is whether one can apply at most k modification to G so
that it falls into class Π. In this paper we will consider deletion and completion problems,
where we are allowed only to delete edges, respectively only to add edges. However, other
studied variants include vertex deletion problems (the allowed modification is removal of a
vertex) and editing problems (both edge deletions and completions are allowed). Moreover,
we restrict ourselves to classes Π characterized by one forbidden induced subgraph H. In
other words, Π is the class of H-free graphs, that is, graphs that do not contain H as an
induced subgraph (H is assumed to be constant).

The study of the parameterized complexity of H-free Edge Deletion and H-free
Edge Completion focused on two aspects: designing fixed-parameter algorithms and
kernelization procedures. The classic observation of Cai [3] shows that H-free Edge
Deletion (Completion) can be both solved in time ck ·nO(1) for some constant c depending
only on H, using a straightforward branching strategy. However, for several completion
problems related to chordal graphs and their subclasses, like (proper) interval graphs or
trivially perfect graphs, one can design subexponential parameterized algorithms, typically
with the running time of 2O(

√
k log k) · nO(1). The study of this surprising subexponential

phenomenon, and of its limits, has recently been the subject of intensive studies; we refer to
the introductory section of [2] for more details. However, for the vast majority of graphs H,
the running time of the form ck ·nO(1) is essentially the best one can hope for H-free Edge
Deletion (Completion). Indeed, Aravind et al. [1] proved that, whenever H has at least
two edges, then H-free Edge Deletion is NP-hard and has no 2o(k) ·nO(1)-time algorithm
unless the Exponential Time Hypothesis fails, and the same result holds for H-free Edge
Completion whenever H has at least two non-edges. The remaining cases are easily seen
to be polynomial-time solvable, so this establishes a full dichotomy.

Another interesting aspect of graph modification problems is their kernelization complexity.
Recall that a polynomial kernel for a parameterized problem is a polynomial-time algorithm
that, given an instance of the problem with parameter k, reduces it to another instance of
the same problem that has size bounded polynomially in k. While every H-Free Vertex
Deletion problem admits a simple polynomial kernel by a reduction to the d-Hitting Set
problem (for d = |V (H)|), the situation for edge deletion and edge completion problems is
much more complex. This is because the removal/addition of some edge may create new
induced copies of H that were originally not present, and hence the obstacles can “propagate”
in the graph. In fact, a line of work [4, 5, 9, 12] showed that, unless NP ⊆ coNP/poly,
polynomial kernels for the H-free Edge Deletion (Completion) problems exist only for
very simple graphs H, for which the class of H-free graphs exhibits some structural property.
This line culminated in the work of Cai and Cai [4, 5], who attempted to obtain a complete

I. Bliznets, M. Cygan, P. Komosa, and Mi. Pilipczuk 3:3

dichotomy. While this goal was not fully achieved and there are some cases missing, the
obtained complexity picture explains the general situation very well. For example, Cai and
Cai [4, 5] showed that polynomial kernels do not exist (under NP * coNP/poly) for the
H-free Edge Deletion (Completion) problems whenever H is 3-connected and has at
least 2 non-edges. Nontrivial positive cases include e.g. H being a path on 4 vertices [9]
(that is, Cograph Edge Deletion (Completion)), and H being a K4 minus one edge [5]
(that is, Diamond-free Edge Deletion). One of the most prominent open cases left is
the kernelization complexity of Claw-Free Edge Deletion [4, 6].

Our motivation and results

The starting point of our work is the realization that the propagational character of H-
free Edge Deletion (Completion), which is the basic explanation of its apparent
kernelization hardness, also makes the greedy approach to approximation incorrect. One
cannot greedily remove all the edges of any copy of H in the graph, because removing an
edge does not necessarily always help: it may create new copies of H in the instance. Hence,
the approximation complexity of H-free Edge Deletion (Completion) is actually also
highly unclear. On the other hand, the links between approximation and kernelization are
well-known in parameterized complexity: it is often the case that a polynomial kernel for a
problem can be turned into a poly(OPT)-approximation algorithm (i.e. an algorithm that
returns a solution of cost bounded by some polynomial function of the optimum), by just
taking greedily the kernel and reverting the reduction rules. While this intuitive link is far
from being formal, and actually there are examples of problems behaving differently [8], it is
definitely the case that the combinatorial insight given by kernelization algorithms may be
very useful in the approximation setting.

Therefore, we propose to study the approximability of H-free Edge Deletion (Com-
pletion) as well, alongside with the best possible running times of fixed-parameter algorithms
and the existence of polynomial kernels. This work is the first step in this direction.

We prove that the H-free Edge Deletion (Completion) problems are very hard
to approximate for a vast majority of graphs H, which mirrors the kernelization hardness
results of Cai and Cai [4, 5]. The following theorem explains our main result formally.

I Theorem 1. Let H be a 3-connected graph with at least two non-edges. Then, unless
P = NP, neither H-free Edge Deletion nor H-free Edge Completion admits a
poly(OPT)-approximation algorithm running in polynomial time. Moreover, unless the
Exponential Time Hypothesis fails, neither of these problems admits even a poly(OPT)-
approximation algorithm running in time 2o(OPT) · nO(1).

Theorem 1 makes two structural assumptions about graph H: that it is 3-connected, and
has at least two non-edges. The first one is a crucial technical ingredient in the reductions,
because it enables us to argue that for any vertex cut of size 2, every copy of H in the graph
is completely contained on one side of the cut. Relaxing this assumption is a major issue
addressed by Cai and Cai [4, 5] in their work. In an attempt to lift this assumption in our
setting as well, we try to resolve the case of H being a path or a cycle first; this reflects the
development of the story of kernelization hardness for the considered problems [5, 4, 9, 12].
The following theorem summarizes our results in this direction.

I Theorem 2. Let H be a cycle on at least 4 vertices or a path on at least 5 vertices. Then,
unless P = NP, neither H-free Edge Deletion nor H-free Edge Completion admits
a poly(OPT)-approximation algorithm running in polynomial time. Moreover, unless the

APPROX/RANDOM’16

3:4 Hardness of Approximation for H-Free Edge Modification Problems

Exponential Time Hypothesis fails, neither of these problems admits even a poly(OPT)-
approximation algorithm running in time 2o(OPT) · nO(1).

Together with some easy cases and known positive results [14], this gives an almost
complete dichotomy for paths and cycles. The only missing case is Cograph Edge
Deletion (for H = P4), for which we expect a positive answer due to the existence of a
polynomial kernel [9]. However, our preliminary attempt at lifting the kernel of Guillemot et
al. [9] showed that the approach does not directly work for approximation, and new insight
seems to be necessary.

Finally, somewhat surprisingly we show that the assumption that H has at least two
non-edges appears to be important. Suppose H = Kn \ e is a complete graph on n ≥ 5
vertices with one edge removed. While H-free Edge Completion is trivially polynomial-
time solvable, due to each obstacle having only one way to be destroyed, the complexity of
H-free Edge Deletion turns out to be much more interesting. Namely, we show that it
is tightly connected to the complexity of Min Horn Deletion, which apparently is one
of the remaining open cases in the classification of the approximation complexity of CSP
problems of Khanna et al. [11]. Hence, the following theorem shows that the case of H being
a complete graph without an edge may be an interesting outlier in the whole complexity
picture.

I Theorem 3. For any n ≥ 5, the Kn \ e-free Edge Deletion problem is Min Horn
Deletion-complete with respect to A-reductions.

The exact meaning of Min Horn Deletion-completeness, A-reductions and other
definitions related to the hardness of approximation for CSP problems are explained in
Section 4. A direct consequence of Theorem 3 and the work of Khanna et al. [11] is that
Kn \ e-free Edge Deletion does not admit a 2O(log1−ε |E|)-approximation algorithm
working in polynomial time, for any ε > 0, where |E| is the number of edges in a given graph.
Moreover, Theorem 3 implies that Kn \ e-free Edge Deletion is poly-APX-hard if and
only if each Min Horn Deletion-complete problem is poly-APX-hard, the latter being an
intriguing open problem left by Khanna et al. [11] in their study of approximability of CSPs.

While there is no direct connection between the existence of a poly(OPT) approximation
and poly-APX-hardness, we still believe that our reduction corroborates the hardness of
resolving approximation question of Kn \ e-free Edge Deletion in terms of optimum
value. Intuitively, showing poly-APX-hardness should be easier than refuting poly(OPT)
approximation. Below we state formally what our reduction actually implies.

I Corollary 4. Let n ≥ 5. Then it is NP-hard to approximate the Kn \ e-free Edge
Deletion problem within factor 2O(log1−ε |E|) for any ε > 0, where |E| is the number of
edges in a given graph.

I Corollary 5. Let n ≥ 5. Then the Kn \ e-free Edge Deletion problem admits an
nδ-approximation for all δ > 0, if and only if each Min Horn Deletion-complete problem
admits an nδ1-approximation for all δ1 > 0.

Our techniques

To prove our main result, Theorem 1, we employ the following strategy. We first consider
the sandwich problem defined as follows: in Sandwich H-Free Edge Deletion we are
given a graph G together with a subset D of undeletable edges, and the question is whether
there exists a subset F ⊆ E(G) \ D of deletable edges for which G − F is H-free. Note

I. Bliznets, M. Cygan, P. Komosa, and Mi. Pilipczuk 3:5

that the sandwich problem differs from the standard H-free Edge Deletion problem
in two aspects: first, some edges are forbidden to be deleted, and, second, it is a decision
problem about the existence of any solution—we do not impose any constraint on its size.
For completion, the sandwich problem is defined similarly: we have non-fillable non-edges,
i.e., non-edges that are forbidden to be added in the solution.

The crux of the approach is to prove that Sandwich H-Free Edge Deletion is
actually NP-hard under the given assumptions on H. The next step is to reduce from the
sandwich problem to the standard optimization variant. This is done by adding gadgets that
emulate undeletable edges by introducing a large approximation gap, as follows. For each
undeletable edge e, attach a large number of copies of H to e, so that each copy becomes an
induced H-subgraph if e gets deleted. Then any solution that deletes the undeletable edge e
must have a very large cost, due to all the disjoint copies of H that appear after the removal
of e. The assumption that H is 3-connected is very useful for showing that the constructions
do not introduce any additional, unwanted copies of H in the graph.

The approach for completion problems is similar. To prove Theorem 2 that concerns
paths and cycles, we give problem-specific constructions using the same approach. Some
of them are based on previous ETH-hardness proofs for the problems, given by Drange et
al. [7].

As far as Theorem 3 is concerned, we employ a similar reduction strategy, but instead of
starting from 3SAT, we start from a carefully selected MinOnes(F) problem: the problem
of optimizing the number of ones in a satisfying assignment to a boolean formula that uses
only constraints from some fixed family F . In particular, the constraint family F needs to be
rich enough to be Min Horn Deletion-hard, while at the same time it needs to restrictive
enough so that it can be expressed in the language of Kn \ e-free Edge Deletion.

Our constructions are inspired by the rich toolbox of hardness proofs for kernelization and
fixed-parameter algorithms for edge modification problems [1, 4, 5, 7, 12, 9]. In particular, the
idea of considering sandwich problems can be traced back to the work of Cai and Cai [4, 5],
who use the term quarantine for the optimization variants of sandwich edge modification
problems, with undeletable edges and non-fillable non-edges. Quarantined problems serve a
technical, auxiliary role in the work of Cai and Cai [4, 5]: one first proves hardness of the
quarantined problem, and then lifts the quarantine by attaching gadgets, similarly as we do.

However, we would like to point out the new challenges that appear in the approximation
setting. Most importantly, the vast majority of previous reductions heavily use budget
constraints (i.e. the fact that the solution is stipulated to be of size at most k) to argue
the correctness; this includes the general results of Cai and Cai [4, 5]. In our setting, we
cannot use arguments about the tightness of the budget, because we need to introduce a
large approximation gap at the end of the construction. The usage of the sandwich problems
without any budget constraints is precisely the way we overcome this difficulty. Thus, most
of the old reductions do not work directly in our setting, but of course some technical
constructions and ideas can be salvaged.

Outline

In Section 2 we introduce terminology and recall the most important facts from the previous
works. Section 3 is devoted to the proof of our main result, Theorem 1. However, as the
proof for H-free Edge Completion is similar to the proof for H-free Edge Deletion,
the details are postponed to the full version of the paper (arXiv:1606.02688). In Section 4 we
discuss the proof of Theorem 3. The proof of Theorem 2 is also omitted, and included in the
full version of the paper. Concluding remarks and prospects on future work are in Section 5.

APPROX/RANDOM’16

3:6 Hardness of Approximation for H-Free Edge Modification Problems

2 Preliminaries

2.1 Basic graph definitions
We use standard graph notation. For a graph G by V (G) and E(G) we denote the set of
vertices and edges of G, respectively. Throughout the paper we consider simple graphs only,
i.e., there are no self-loops nor parallel edges. We use Kn to denote the complete graph on
n vertices. By P` (C`) we denote the path (cycle) with exactly ` vertices. By G we denote
the complement of G, i.e., a graph on the same vertex set, where two distinct vertices are
adjacent if and only if they were not adjacent in G. We say that a graph G is H -free, if G
does not contain H as an induced subgraph.

We define a graph G to be 3-vertex-connected if G has at least 3 vertices, and removing
any set of at most two vertices causes G to stay connected. For brevity, we call such graphs
3-connected.

2.2 Problems and approximation algorithms
In the decision version the H-free Edge Deletion (Completion) problem, for a given
graph G and an integer k, one is to decide whether it is possible to delete (add) at most k
edges from (to) G to make it H-free. In particular, we consider the P 5-Free Deletion
(Completion) problem, and call it House-Free Deletion (Completion). However,
in the optimization variant of H-free Edge Deletion (Completion) the value of k is
not given and the goal is to find a minimum size solution. It will be clear from the context
whether we refer to a decision or optimization variant.

In the Sandwich H-Free Edge Deletion (Completion) problem we are given a
graph G together with a subset D of undeletable edges (non-fillable non-edges). The question
is whether there exists a subset F ⊆ E(G) \D (F ⊆ E(G) \D) of deletable (fillable) edges
for which G− F (G+ F) is H-free. Note that it is a decision problem, where we ask about
existence of any solution, i.e., we do not impose any constraint on the solution size.

Let f be a fixed non-decreasing function on positive integers. An f(OPT)-factor approx-
imation algorithm for a minimization problem X is an algorithm that finds a solution of size
at most f(OPT) ·OPT , where OPT is the size of an optimal solution for a given instance
of X.

2.3 Satisfiability and Exponential Time Hypothesis
We employ the standard notation related to satisfiability problems. A 3CNF formula is a
conjunction of clauses, where a clause is a disjunction of at most three literals. The 3SAT
problem asks, for a given formula ϕ, whether there is a satisfying assignment to ϕ.

The Exponential Time Hypothesis (ETH), introduced by Impagliazzo, Paturi and Zane [10]
is now an established tool used for proving conditional lower bounds in the parameterized
complexity area (see [13] for a survey on ETH-based lower bounds).

I Hypothesis 6 (Exponential Time Hypothesis (ETH) [10]). There is no 2o(n) time algorithm
for 3SAT, where n is the number of variables of the input formula.

The main consequence of the Sparsification Lemma of [10] is the following theorem: there
is no subexponential algorithm for 3SAT even in terms of the number of clauses of the
formula.

I Theorem 7 ([10]). Unless ETH fails, there is no 2o(n+m) time algorithm for 3SAT, where
n, m are the number of variables, and clauses, respectively.

I. Bliznets, M. Cygan, P. Komosa, and Mi. Pilipczuk 3:7

3 Hardness for 3-connected H

In this section we present the proof of Theorem 1 for H-free Edge Deletion.

3.1 Deletion problems
We start with proving hardness of the sandwich problem.

I Lemma 8. Let H be a 3-connected graph with at least 2 non-edges. There is a polynomial-
time reduction, which given an instance of 3SAT with n variables and m clauses, creates
an equivalent instance of Sandwich H-free Edge Deletion with O(n+m) edges. Con-
sequently, Sandwich H-free Edge Deletion is NP-hard for such graphs H.

Proof. Let ϕ be the given formula in 3CNF, and let vars and cls be the sets of variables
and clauses of ϕ. By standard modifications of the formula, we may assume that each clause
contains exactly three literals of pairwise different variables. We construct an instance G of
Sandwich H-free Edge Deletion as follows. The graph G is created from three types of
gadgets: a clause gadget, a variable gadget, and a connector gadget. They are depicted in
Figure 1, where presented edges are deletable, and all others are undeletable.

We first explain constructions of the gadgets, and then discuss connections between them.
For each variable x ∈ vars, we create a variable gadget Gx, which is the graph H with two
added edges ex and e¬x in place of any two non-edges of H. In the graph Hx, all edges are
marked as undeletable except ex and e¬x. Intuitively, deletion of the edge ex or e¬x mimics
an assignment of the corresponding literal to true. The variable gadget forbids simultaneous
assignments of both literals to true. If we delete both edges ex and e¬x, we get an induced
subgraph H in which we cannot delete any edge.

Each clause c = `1 ∨ `2 ∨ `3 ∈ cls has the corresponding clause gadget Hc, which is a
copy of the graph H. As Hc is 3-connected, it has at least 3 edges. We pick arbitrarily three
edges of Hc and label them by e`1 , e`2 , e`3 . We mark all others edges as undeletable. In order
to make the clause gadget H-free, we have to delete at least one edge from e`1 , e`2 , e`3 (note
that some of the three distinguished edges might potentially share an endpoint). Intuitively,
deletion of the edge labeled by e` corresponds to assigning value true to literal `.

The third type of gadgets is the connector gadget. The connector gadget C is a copy of
the graph H, with one added edge in place of any non-edge of H. We label this edge as ein.
In C, there also exists another edge that does not share any of its endpoints with ein. To
see this, for the sake of contradiction suppose that every edge of C is incident to one of the
endpoints of ein. If C has at least two vertices other than these endpoints, then the endpoints
of ein form a vertex cut of size 2 separating them, a contradiction with 3-connectedness of
H. Otherwise C has only one vertex other than the endpoints of ein, so H has at most 3
vertices; again, a contradiction with the 3-connectedness of H, as we assume H to have at
least 2 non-edges. We select any edge in H that does not share endpoints with ein, and we
label it as eout. Edges ein and eout are made deletable, and all other edges of C are made
undeletable. Note that deletion of the edge ein creates an induced subgraph H, and then we
have to delete eout in order to destroy this subgraph.

Knowing the structure of all gadgets, we can proceed with the main construction of our
reduction.

Given a formula ϕ, for each clause c ∈ cls and variable x ∈ vars, we create the clause
gadget Hc and the variable gadget Gx, respectively. Moreover, for each literal ` belonging to
the clause c ∈ cls, we create a chain C`,c1 , C`,c2 , . . . , C`,cp+2 consisting of p + 2 copies of the
connector gadget, where p = |V (H)|. This chain is constructed in the following way: the

APPROX/RANDOM’16

3:8 Hardness of Approximation for H-Free Edge Modification Problems

ex e¬x

H ∪ ex ∪ e¬x

(a) Variable gadget Gx

el2 el3

el1

H

(b) Clause gadget Hc

ein

H ∪ ein

eout

(c) Connector gadget C

Figure 1 Gadgets for Sandwich H-free Edge Deletion.

edge eout of C`,ci is identified with the edge ein of C`,ci+1, for i = 1, . . . , p+ 1. We also identify
the edge eout in the subgraph C`,cp+2 with the edge e` in the variable gadget of the variable of
`. Moreover, the edge ein in the subgraph C`,c1 is identified with the edge e` from the clause
gadget Hc. We use those chains to not allow the copy of H to be shared by any two gadgets,
and we will prove it in the claim below.

Clearly, the constructed graph G has at most O(n+m) edges.

I Claim 9. If G is a YES instance, then ϕ is satisfiable.

Proof. Take any solution to the instance G. Note that in each clause gadget we must
delete at least one edge. We set the literals corresponding to the deleted edges to true, thus
satisfying every clause. We prove now that for each variable x we have not set both literals
x and ¬x to true, so that we can find a true/false assignment to the variables that sets the
literals accordingly. Deletion of an edge in the clause gadget propagates deletions up to the
variable gadget via the chain of connector gadgets. This happens because the deletion of ein
in C`,c1 forces us to delete the eout in C`,c1 , which is ein in C`,c2 , so we are forced to delete
eout in C`,c2 , and so on. Following the chain of connector gadgets, it is easy to see that the
edge e` must be deleted in the corresponding variable gadget. As the solution to the instance
G cannot delete both edges ex and e¬x in any variable gadget at the same time, we obtain
that there are no variables with both of its literals set to true. J

I Claim 10. If ϕ is satisfiable, then G is a YES instance.

Proof. Consider a true/false assignment that satisfies the formula ϕ and delete all edges in
all clause gadgets that correspond to literals taking value true. Propagate deletions to all
the connector and variable gadgets, as in the proof of Claim 9. It remains to prove that the
obtained graph is indeed an H-free graph. By counting the number of edges in each gadgets,
it follows that after the deletions, all gadgets become not isomorphic to H: in every variable
gadget, we deleted exactly one edge, in every clause gadget, we deleted at least one edge,
and in each connector gadget we deleted zero or two edges. So if the obtained graph contains
an induced subgraph of H, then H is distributed across several gadgets. However, this is
also not possible for the following reason.

For the sake of contradiction, suppose after the deletions there is an induced copy H ′
of the graph H. Since H ′ is connected and is distributed among more than one gadget,
there have to be two different gadgets G1, G2 that share a vertex, for which H ′ contains
both some vertex u ∈ V (G1) \ V (G2), and some vertex v ∈ V (G2) \ V (G1). Since H ′ is
3-connected, there are 3 internally vertex-disjoint paths in H ′ that lead from u to v. But

I. Bliznets, M. Cygan, P. Komosa, and Mi. Pilipczuk 3:9

uv

p(k)× (H ∪ uv)
Huv

1 Huv
2

Huv
3

Huv
p(k)

Figure 2 Gadgets Huv
i for H-free Edge Deletion.

every two gadgets share at most two common vertices, so at least one of these paths, say P ,
avoids V (G1) ∩ V (G2). Since the path P avoids V (G1) ∩ V (G2), from the construction of G
it easily follows that such path P contains at least one vertex of some variable gadget and at
least one vertex of some clause gadget. However, the distance between ein and eout in each
connector gadget is at least 1, so the distance between any variable gadget and any clause
gadget is at least |V (H)|. But the path P is entirely contained in H ′, thus its length is at
most |V (H)| − 1, a contradiction. J

Claims 9 and 10 ensure that the output instance G is equivalent to the input instance ϕ
of 3SAT, so we are done. J

Now, we show how to reduce Sandwich H-free Edge Deletion to the optimization
variant of H-free Edge Deletion. Note that we only require H to have at least one
non-edge; this is because we will reuse this lemma in the next section.

I Lemma 11. Let H be a 3-connected graph with at least one non-edge, and p(·) be a
polynomial with p(`) ≥ `, for all positive `. Then there is a polynomial-time reduction which,
given an instance G of Sandwich H-free Edge Deletion, creates an instance (G′, k) of
H-free Edge Deletion, such that:

k is the number of deletable edges in G;
G′ has O(p(k) · |E(G)| · |E(H)|) edges;
If G is a YES instance, then (G′, k) is a YES instance;
If G is a NO instance, then (G′, p(k)) is a NO instance.

Proof. We create G′ in the following way. For each undeletable edge uv, we add p(k) copies
Huv
i of the graph H, i = 1, . . . , p(k). In each copy, we choose any non-edge uivi and identify

the vertex ui with u, and vi with v. The construction is presented in Figure 2.
Note that if we delete the edge uv in G′, we also must delete at least one edge in every

Huv
i . Hence, at least p(k) + 1 edges will be deleted in such a situation. With this observation

in mind, we proceed to the proof of the correctness.

I Claim 12. If G is a YES instance, then (G′, k) is a YES instance.

Proof. Let F be a subset deletable edges, such that G − F is H-free. Obviously |F | ≤ k,
because there are k deletable edges in G in total. We will prove that G′ − F is also H-free,
which implies that (G′, k) is a YES instance.

Let us assume otherwise, that there is an induced copy H ′ of H in G′. Since G− F is
H-free, we have that H ′ has to contain at least one vertex of V (G′) \ V (G). Say that H ′

APPROX/RANDOM’16

3:10 Hardness of Approximation for H-Free Edge Modification Problems

contains some vertex x of V (Huv
i) \ V (G), for some undeletable edge uv and some index

i. The edge uv is undeletable in G, so it is not included in F . Consequently, the subgraph
of G′ induced by V (Huv

i) contains one more edge than H, so it is not isomorphic to H.
We conclude that H ′ must contain some vertex y that lies outside of V (Huv

i). Since H is
3-connected, there are 3 internally vertex-disjoint paths between x and y in H. However, in
G, the set V (Huv

i)∩ V (G) = {u, v} is a vertex cut of size 2 that separates x and y. This is a
contradiction, so G′ − F is indeed H-free. J

I Claim 13. If G is a NO instance, then (G′, p(k)) is a NO instance.

Proof. For the sake of contradiction, suppose there is a set F ′ of at most p(k) edges of G′,
such that G′−F ′ is H-free. Note that, F ′ has to contain at least one undeletable edge uv, as
otherwise F ′ ∩E(G) would be a solution to G. But then F ′ has to contain at least p(k) more
edges inside gadgets Huv

i , for i = 1, 2, . . . , p(k), which is a contradiction with |F ′| ≤ p(k). J

Claims 12 and 13 ensure the correctness of the reduction, and hence we are done. J

By composing the reductions of Lemmas 8 and 11, we can deduce the part of Theorem 1
concerning deletion problems. Indeed, suppose H-free Edge Deletion admitted a
polynomial-time q(OPT)-factor approximation algorithm, for some polynomial q. Take any
instance of 3SAT, and apply first the reduction of Lemma 8, and then the reduction of
Lemma 11 for polynomial p(`) = q(`) · ` + 1. Finally, observe that the application of the
hypothetical approximation algorithm for H-free Edge Deletion to the resulting instance
would resolve whether the optimum value is at most k or at least p(k), which, by Lemma 11,
resolves whether the input instance of 3SAT is satisfiable. The subexponential hardness of
approximation under ETH follows from the same reasoning and the observation that the
value of k in the output instance is bounded linearly in the size of the input formula.

4 Connections with Min Horn Deletion

In this section we prove Theorem 3. First, we need to introduce some definitions and notation
regarding Min Horn Deletion hardness and completeness.

Khanna et al. [11] attempted to establish a full classification of approximability of boolean
constraint satisfaction problems. In particular, many problems have been classified as APX-
complete or poly-APX-complete. Even though some cases remained unresolved, Khanna et
al. [11] grouped them into classes, such that all problems from the same class are equivalent
(with respect to appropriately defined reductions) to a particular representative problem.
One such representative problem is Min Horn Deletion, defined as follows: Given is a
boolean formula ϕ in CNF that contains only unary clauses, and clauses with three literals
out of which exactly one is negative. The problem asks for minimizing the number of ones in
a satisfying assignment for ϕ.

We are not going to operate on instances of Min Horn Deletion directly, so the
definition above is given only in order to complete the picture for the reader. Instead, we will
rely on the approximation hardness results exhibited by Khanna et al. [11], which relate the
approximability of various boolean CSPs to Min Horn Deletion. In particular, it is known
that Min Horn Deletion does not admit a 2O(log1−ε nvars) approximation algorithm, unless
P = NP, where nvars is the number of variables in the instance. On the other hand, it is an
open problem whether any Min Horn Deletion-complete problem (under A-reductions,
defined below) is actually poly-APX-complete.

I. Bliznets, M. Cygan, P. Komosa, and Mi. Pilipczuk 3:11

I Definition 14 (A-reducibility, Definition 2.6 of [11]). A combinatorial optimization problem
is said to be an NPO problem if instances and solutions can be recognized in polynomial
time, solutions are polynomially-bounded in the input size, and the objective function can
be computed in polynomial time from an instance and a solution.

An NPO problem P is said to be A-reducible to an NPO problem Q, denoted P ≤A Q, if
there are two polynomial-time computable functions F and G and a constant α, such that:
1. For any instance I of P , F (I) is an instance of Q.
2. For any instance I of P and any feasible solution S ′ for F (I), G(I,S ′) is a feasible

solution for I.
3. For any instance I of P and any r ≥ 1, if S ′ is an r-approximate solution for F (I), then

G(I,S ′) is an (αr)-approximate solution for I.

Intuitively, A-reductions preserve approximability problems up to a constant factor (or
higher). As a source of Min Horn Deletion-hardness we will use the MinOnes(F)
problem, defined below, for a particular choice of the family of constraints F .

In the MinOnes(F) problem, we are given a ground set of boolean variables X together
with a set of boolean constraints. Each constraint f is taken from a specified family F ,
and f is applied to some tuple of variables from X. The goal of the problem is to find an
assignment satisfying all the constraints, while minimizing the number of variables set to
one. Note that the family F is considered a part of the problem definition, not part of the
input. In order to use known results for the MinOnes(F) problem we need to define some
properties of boolean constraints.

A boolean constraint f is called weakly positive if it can be expressed using a CNF formula
that has at most one negated variable in each clause.
A boolean constraint f is 0-valid if the all-zeroes assignment satisfies it.
A boolean constraint f is IHS-B+ if it can be expressed using a CNF formula in which
the clauses are all of one of the following types: x1 ∨ · · · ∨ xk for some positive integer
k ≤ B, or ¬x1 ∨ x2, or ¬x1. IHS-B− constraints are defined analogously, with every
literal being replaced by its complement.

The definition can be naturally extended to families of constraints, e.g., a family of
constraints is weakly positive if all its constraints are weakly positive. We say that a family
of constraints is IHS-B if it is either IHS-B+ or IHS-B− (or both). The following result was
proved by Khanna et al. [11].

I Theorem 15 (Lemmas 8.7 and 8.14 from [11]). If a family of constraints F is weakly positive,
but it is neither 0-valid nor IHS-B for any constant B, then the problem MinOnes(F) is
Min Horn Deletion-complete under A-reductions; that is, there is an A-reduction from
Min Horn Deletion to MinOnes(F) and an A-reduction from MinOnes(F) to Min
Horn Deletion. Consequently, it is NP-hard to approximate MinOnes(F) within factor
2O(log1−ε nvars) for any ε > 0, where nvars is the number of variables in the given instance.

Our strategy for the proof of Theorem 3 is as follows. In Section 4.1 we show a reduction
from MinOnes(F) to a properly defined quarantined version ofKn\e-free Edge Deletion.
Next, in Section 4.2 we show a reduction which removes the quarantine. Finally, in Section 4.3
we conclude the proof of Theorem 3 and show the completeness with respect to A-reductions.

Note that having Theorem 3, we can immediately infer Corollaries 4,5 using Theorem 15
and the definition of an A-reduction.

APPROX/RANDOM’16

3:12 Hardness of Approximation for H-Free Edge Modification Problems

4.1 From MinOnes (F) to Quarantined H-free Edge Deletion
In the Quarantined H-free Edge Deletion problem we are given a graph G, some
edges of which are marked as undeletable. Quarantined H-free Edge Deletion is an
optimization problem, where the goal is to obtain an H-free graph by removing the minimum
number of deletable edges.

Next, we define the family of constraints that will be used in the MinOnes(F) problem.

I Definition 16. We define the following constraints:
a constraint f1(x1, x2, x3), which is equal to zero if and only if exactly one of the variables
x1, x2, x3 is set to 1;
a constraint f2(x) = x.

The family of constraints F ′ is defined as F ′ = {f1, f2}.

A direct check, presented below, verifies that F ′ has the properties needed to claim, using
Theorem 15, that MinOnes(F ′) is Min Horn Deletion-hard.

I Lemma 17. The family of constraints F ′ = {f1, f2} is weakly positive, and at the same
time it is neither 0-valid, nor IHS-B for any B.

Proof. Note that f1 is weakly positive since f1(x1, x2, x3) = (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨
x3) ∧ (x1 ∨ x2 ∨ ¬x3). Constraint f2 is clearly weakly positive by definition. As f2 is not
0-valid, we have that F ′ is not 0-valid either.

We prove now that f1 is not IHS-B for any B. First, observe that any CNF formula
expressing f1 cannot contain a clause with only positive literals, as such a clause would not be
satisfied by the assignment x1 = x2 = x3 = 0, which in turn satisfies f1. Similarly, no clause
can have only negative literals. Due to the definition of IHS-B, the only remaining case is
a 2-clause with one positive and one negative literal. Without loss of generality, consider
a clause x1 ∨ ¬x2. Observe, that it is not satisfied by the assignment x1 = 0, x2 = x3 = 1,
which however satisfies f1. Therefore f1, and consequently F ′, is not IHS-B for any B. J

Consequently, Theorem 15 and Lemma 17 together imply that MinOnes(F ′) is Min Horn
Deletion-hard under A-reductions. We now give our main reduction, from MinOnes(F ′)
to Quarantined Kn \ e-free Edge Deletion.

I Lemma 18. Let n ≥ 5. There is a polynomial-time computable transformation T which,
given an instance I of the MinOnes(F ′) problem, outputs an instance T (I) of the Quar-
antined Kn \ e-free Edge Deletion problem, such that:

if I admits a satisfying assignment with k ones, then there is a solution of cost ∆ · k for
the instance T (I),
if T (I) admits a solution of cost k′, then there is a satisfying assignment with bk′/∆c
ones for the instance I,

where ∆ = 9n2
vars + 2 and nvars is the number of variables in I.

Proof. First, we show how to transform an instance I (with a formula ϕ) of MinOnes(F ′)
into an instance T (I) (with a graph G) of Quarantined Kn \ e-free Edge Deletion.
Given an instance I, for any constraint f1(x, y, z) we create a separate clique Kn, which will
be called the constraint clique. We arbitrarily choose three edges in the clique and label them
x, y, z. Mark all edges as undeletable except edges labelled by x, y, z. Moreover, for each
variable x we additionally create a clique Kn (called further the variable clique), and mark
all edges in the clique as undeletable except two edges, which we label by xin, xout. The

I. Bliznets, M. Cygan, P. Komosa, and Mi. Pilipczuk 3:13

xin

xout

x

x

x

y

z

clique for
variable x

clique for
constraint f1(x, y, z)

first clique

second clique

third clique

Figure 3 Gadgets for Quarantined Kn \ e-Free Edge Deletion. Deletable edges are shown
by dashed lines.

edges xin, xout are selected arbitrarily, however we require that they do not share common
endpoints.

Now we connect the variable cliques with the constraint cliques. For each variable x and
a constraint f1 of the instance I which contains x among its arguments, we add three cliques,
as shown in Figure 3, such that the following properties are satisfied:

The first added clique shares with the variable clique of x only the edge xout.
The second added clique shares one deletable edge with the first clique and a different
deletable edge with the third clique. Label both these deletable edges by x.
The third added clique shares with the clique corresponding to the constraint only the
edge labelled (in the constraint clique) by x.

All the other edges of the introduced cliques, not mentioned above, are marked as undeletable.
Note that each of the introduced cliques shares two edges with two different cliques. We
may perform this construction so that these two edges never share endpoints (as depicted
Figure 3), and hence we will assume this property.

Denote by δ(x) the number of occurrences of the variable x in all f1-type constraints.
Note that, by removing superfluous copies of the same constraint, we can assume that all
f1-type constraints are pairwise different, so in particular there is at most n3

vars of them. As
each variable can occur in one constraint at most three times, for any variable x we have
δ(x) ≤ 3n2

vars.
Next, for each variable x we add 3·(3n2

vars−δ(x)) or 3·(3n2
vars−δ(x))+1 cliques that share

the deletable edge xin from the variable clique of x, and are otherwise disjoint. Moreover, in
each such clique we make one more edge deletable; we label it by x. We add 3 · (3n2

vars− δ(x))
cliques if the formula does contain the clause f2(x) = x, and 3 · (3n2

vars − δ(x)) + 1 cliques
otherwise.

Finally, if there is a clause f2(x) = x in the instance I, then we delete the edge labelled
by xin in the corresponding variable clique.

Observe that in the constructed instance of Quarantined Kn \e-free Edge Deletion,
among all the 9n2

vars + 2 edges labelled by x, xin, xout, where x is any variable, we have to
delete either none, or all of them. This is because the deletion of any of them forces the
deletion of all the others due to the appearance of induced copies of Kn \ e in the graph.
Moreover, if the edge xin is not present due to the existence of constraint f2(x) = x in I,
then all of them have to be deleted.

APPROX/RANDOM’16

3:14 Hardness of Approximation for H-Free Edge Modification Problems

I Claim 19. If there is a satisfying assignment with k ones for the instance I, then it is
possible to delete (9n2

vars + 2) · k edges in T (I) in order to make it a Kn \ e-free graph.

Proof. It is enough to delete all edges labelled by x, xin, xout for all variables x that are
set to 1 in the satisfying assignment; the number of such edges is exactly (9n2

vars + 2) · k.
Let us prove the statement. Suppose the obtained graph is not Kn \ e-free. Let H ′ be an
induced subgraph isomorphic to Kn \ e. Note that for n ≥ 5 the graph Kn \ e is 3-connected.
Moreover, even after deletion of two arbitrary vertices in Kn \ e, there are no two vertices at
distance larger than two. Consequently, a direct check shows that the assumed H ′ subgraph
must stay completely in one of the cliques corresponding to a constraint or to a variable, or in
one of the cliques connecting a variable clique with a constraint clique. Obviously, H ′ cannot
be contained in a variable clique or a connection clique, as in such cliques either all edges are
present, or two edges are missing. This means that H ′ must stay in a constraint clique, so
exactly one of the edges of this constraint clique is deleted. However, this is equivalent with
the corresponding constraint being not satisfied under the considered assignment; this is a
contradiction. J

I Claim 20. If T (I) admits a solution of cost k′, then there is a satisfying assignment for
the instance I with bk′/(9n2

vars + 2)c ones.

Proof. Take any solution for the output instance T (I). As mentioned earlier, in any solution
for T (I), for any variable x either all edges labeled by x, xin, xout are deleted or none of
them is deleted. The number of such edges for one variable x is equal to 9n2

vars + 2. We set a
variable to 1 if and only if the corresponding edges are deleted in the considered solution for
T (I). All clauses of the form f2(x) will be satisfied, since in the construction of T (I) we
delete xin if the clause f2(x) = x is present in I. All f1-type constraints will be satisfied
as well, as otherwise in the clique corresponding to an unsatisfied constraint only one edge
would be deleted and, hence, the graph would not be Kn \ e-free. J

The correctness of the transformation follows from Claims 19 and 20; hence the proof of
Lemma 18 is complete. J

4.2 Lifting the quarantine
In the following lemma we show how to reduce an instance of the quarantined problem to its
regular version, using the same approach as in the proof of Lemma 11.

I Lemma 21. Let n ≥ 5. There is a polynomial-time reduction which, given an instance G
of Quarantined Kn \ e-free Edge Deletion with m edges, outputs an instance G′ of
Kn \ e-free Edge Deletion such that:

G′ has O(m3) vertices and edges.
If there is a solution of size k for the instance G, then there is a solution of size k for the
instance G′.
If there is a solution of size k ≤ m2 for the instance G′, then there is a solution of size k
for the instance G.

Proof. We apply the reduction described in the proof of Lemma 11 for p(m) = m2 and
H = Kn \ e. Now we verify that G′ has the claimed properties. The bound on the size of G′
follows directly from the size bound given by Lemma 11.

Suppose first that G has some solution of size k. In the proof of Lemma 11 we argued
that the same solution also works for the instance G′ (see the proof of Claim 12). Hence, G′
also has a solution of size k.

I. Bliznets, M. Cygan, P. Komosa, and Mi. Pilipczuk 3:15

Suppose now that G′ has a solution F of some size k ≤ m2. In the proof of Claim 13 we
argued that F does not delete any of the undeletable edges of G, because this would require
deleting at least m2 more edges in the attached gadgets. Hence, F ∩ E(G) is a set of size at
most k, whose deletion turns G into an H-free graph, due to being an induced subgraph of
G′ − F . Hence, G has some solution of size at most k. J

The composition of the reductions of Lemmas 18 and 21 gives an A-reduction (for α = 1)
from a Min Horn Deletion-hard problem MinOnes(F), yielding the hardness part of
Theorem 3. Indeed, given an instance I of MinOnes(F) we can transform it into an instance
G of Quarantined Kn \ e-free Edge Deletion using Lemma 18, which in turn we can
further transform into an instance G′ of Kn \ e-free Edge Deletion using Lemma 21.
Given any feasible solution F ′ for G′ we check whether |F ′| ≤ |E(G)|2. If this is the case,
we translate back the solution F ′ into a solution F for G (using Lemma 21) and then into a
solution for the initial instance I (using Lemma 18). On the other hand, if |F ′| > |E(G)|2,
then we may take a trivial solution being an assignment setting all the variables to one. This
is an r-approximation where r > |E(G)|, as |E(G)| > nvars for the initial instance I. The
assignment will satisfy all the contraints and will be at least an r-approximation as we need
to assign at least one variable to one, otherwise we may output all zeroes assignment.

4.3 Completeness
To finish the proof of Theorem 3 it remains to show a reduction in the other direction:
from Kn \ e-free Edge Deletion to Min Horn Deletion. We achieve this goal by
presenting an A-reduction from the Kn \e-free Edge Deletion problem to another variant
of MinOnes(F), which is Min Horn Deletion-complete.

I Definition 22. Let n ≥ 5, and let t = n(n − 1)/2. We define family of constraints
F ′′n = {fn, gn} as follows:

fn(x1, x2, . . . xt) = 0 if and only if exactly one of the variables takes value 1;
gn(x1, x2, . . . xt−1) = 0 if and only if all the variables take value 0.

The proof of the following lemma is a technical check that is essentially the same as the
proof of Lemma 17. Hence, we leave it to the reader.

I Lemma 23. For each n ≥ 5, the set of constraints F ′′n = {fn, gn} is weakly positive, and
at the same time it is neither 0-valid, nor IHS-B for any B.

Therefore, by Theorem 15 we know that MinOnes(F ′′n) is Min Horn Deletion-
complete and it suffices to present an A-reduction from Kn \ e-free Edge Deletion to
MinOnes(F ′′n).

I Lemma 24. There is a polynomial-time algorithm, which given an instance G of Kn \ e-
free Edge Deletion produces an instance I of MinOnes(F ′′n), such that it is possible to
remove exactly k edges in G to make it Kn \ e-free if and only if one can find a satisfying
assignment for I that sets exactly k variables to 1.

Proof. Consider an instance G of the Kn \ e-free Edge Deletion problem. We enu-
merate all the edges in the graph G as e1, e2, . . . , em, and to each edge ei we assign a
fresh boolean variable xi. For any induced subgraph H isomorphic to Kn \ e we list all
its edges ei1 , ei2 , . . . , eit−1 and create a corresponding constraint g(xi1 , xi2 , . . . , xit−1). For
any induced clique K containing n vertices and edges ei1 , ei2 , . . . , eit , we create a constraint

APPROX/RANDOM’16

3:16 Hardness of Approximation for H-Free Edge Modification Problems

f(xi1 , xi2 , . . . , xit). The output instance I of MinOnes(F ′′n) is obtained by taking xi to be
the variable set, and putting all the constraints constructed above.

Note that if we delete some edges in the graph G, then an induced copy of the graph
Kn \ e can be obtained only on vertices that originally were inducing Kn \ e or Kn. The
constraints in the constructed instance guarantee that in each induced Kn \ e subgraph at
least one edge from the subgraph must be deleted, and in each induced subgraph Kn either
at least two edges should be deleted, or none of the edges should be deleted. So, for any
S ⊆ {1, 2, . . . , |E(G)|}, the graph G− F , where F = {ei : i ∈ S}, is Kn \ e-free if and only if
the assignment {xi = 1 iff i ∈ S} satisfies I. This equivalence of solution sets immediately
proves the lemma. J

As discussed earlier, Lemma 24 gives an A-reduction from Kn \ e-free Edge Deletion
to MinOnes(F ′′n), which is Min Horn Deletion-complete, thereby proving that Kn \ e-
free Edge Deletion is A-reducible to Min Horn Deletion. This concludes the proof of
Theorem 3.

5 Conclusions

In this work we initiated the study of approximability of edge modification problems related
to the classes of H-free graphs. Mirroring known kernelization hardness results, we have
shown that the problems are hard to approximate whenever H is a 3-connected graph with
at least two non-edges, or it is a long enough path or cycle. It therefore seems that the
approximation complexity of H-free Edge Deletion (Completion) somewhat matches
the kernelization complexity in the cases considered so far, so it is tempting to formulate a
conjecture that for every graph H, the H-free Edge Deletion (Completion) problem
admits a polynomial kernel if and only if it admits a poly(OPT)-approximation algorithm.
Since neither for kernelization nor for approximability the classification is close to being
complete, this conjecture should be regarded as a very distant goal. However, one very
concrete open question that arises is whether Cograph Edge Deletion (equivalent to
H = P4) admits a poly(OPT)-approximation. Here, we expect the answer to be positive,
due to the existence of the polynomial kernel of Guillemot et al. [9]. The same question can
be asked about the diamond graph, that is, a K4 minus an edge; a polynomial kernel for
Diamond-Free Edge Deletion was given by Cai [5]. Also, further investigation of the
links between the case of a complete graph without one edge and the Min Horn Deletion
problem, seems like an interesting direction.

References
1 N. R. Aravind, R. B. Sandeep, and Naveen Sivadasan. Parameterized lower bound and

NP-completeness of some h-free edge deletion problems. In COCOA 2015, volume 9486 of
LNCS, pages 424–438. Springer, 2015.

2 Ivan Bliznets, Marek Cygan, Paweł Komosa, Lukáš Mach, and Michał Pilipczuk. Lower
bounds for the parameterized complexity of Minimum Fill-in and other completion prob-
lems. In SODA 2016, pages 1132–1151. SIAM, 2016.

3 Leizhen Cai. Fixed-parameter tractability of graph modification problems for hereditary
properties. Inf. Process. Lett., 58(4):171–176, 1996.

4 Leizhen Cai and Yufei Cai. Incompressibility of H-free edge modification problems. Al-
gorithmica, 71(3):731–757, 2015.

5 Yufei Cai. Polynomial kernelisation of H-free edge modification problems. Master’s thesis,
The Chinese University of Hong Kong, 2012. Available at author’s website.

I. Bliznets, M. Cygan, P. Komosa, and Mi. Pilipczuk 3:17

6 Marek Cygan, Marcin Pilipczuk, Michał Pilipczuk, Erik Jan van Leeuwen, and Marcin
Wrochna. Polynomial kernelization for removing induced claws and diamonds. CoRR,
abs/1503.00704, 2015. To appear in the proceedings of WG 2015.

7 Pål Grønås Drange, Fedor V. Fomin, Michał Pilipczuk, and Yngve Villanger. Exploring
the subexponential complexity of completion problems. TOCT, 7(4):14, 2015.

8 Archontia C. Giannopoulou, Daniel Lokshtanov, Saket Saurabh, and Ondrej Suchý. Tree
deletion set has a polynomial kernel (but no OPTO(1) approximation). In FSTTCS 2014,
volume 29 of LIPIcs, pages 85–96. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik,
2014.

9 Sylvain Guillemot, Frédéric Havet, Christophe Paul, and Anthony Perez. On the (non-
)existence of polynomial kernels for P`-free edge modification problems. Algorithmica,
65(4):900–926, 2013.

10 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. J. Comput.
Syst. Sci., 62(2):367–375, 2001.

11 Sanjeev Khanna, Madhu Sudan, Luca Trevisan, and David P. Williamson. The approxim-
ability of constraint satisfaction problems. SIAM Journal on Computing, 30(6):1863–1920,
2001. doi:10.1137/S0097539799349948.

12 Stefan Kratsch and Magnus Wahlström. Two edge modification problems without polyno-
mial kernels. Discrete Optimization, 10(3):193–199, 2013.

13 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based on the expo-
nential time hypothesis. Bulletin of the EATCS, 105:41–72, 2011.

14 Assaf Natanzon. Complexity and approximation of some graph modification problems.
Master’s thesis, Department of Computer Science, Tel Aviv University, 1999.

APPROX/RANDOM’16

http://dx.doi.org/10.1137/S0097539799349948

On Approximating Target Set Selection
Moses Charikar1, Yonatan Naamad2, and Anthony Wirth3

1 Computer Science Department, Stanford University, Stanford, CA, USA
moses@cs.stanford.edu

2 Department of Computer Science, Princeton University, Princeton, NJ, USA
ynaamad@cs.princeton.edu

3 Department of Computing and Information Systems, The University of
Melbourne, Parkville, Vic, Australia
awirth@unimelb.edu.au

Abstract
We study the Target Set Selection (TSS) problem introduced by Kempe, Kleinberg, and Tardos
(2003). This problem models the propagation of influence in a network, in a sequence of rounds.
A set of nodes is made “active” initially. In each subsequent round, a vertex is activated if at
least a certain number of its neighbors are (already) active. In the minimization version, the goal
is to activate a small set of vertices initially – a seed, or target, set – so that activation spreads
to the entire graph. In the absence of a sublinear-factor algorithm for the general version, we
provide a (sublinear) approximation algorithm for the bounded-round version, where the goal
is to activate all the vertices in r rounds. Assuming a known conjecture on the hardness of
Planted Dense Subgraph, we establish hardness-of-approximation results for the bounded-round
version. We show that they translate to general Target Set Selection, leading to a hardness factor
of n1/2−ε for all ε > 0. This is the first polynomial hardness result for Target Set Selection, and
the strongest conditional result known for a large class of monotone satisfiability problems. In
the maximization version of TSS, the goal is to pick a target set of size k so as to maximize
the number of nodes eventually active. We show an n1−ε hardness result for the undirected
maximization version of the problem, thus establishing that the undirected case is as hard as the
directed case. Finally, we demonstrate an SETH lower bound for the exact computation of the
optimal seed set.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases target set selection, influence propagation, approximation algorithms,
hardness of approximation, planted dense subgraph

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2016.4

1 Introduction

In this paper, we address the problem of targeting individuals to spread influence (or infection)
in a network. Based on an average-case assumption about finding a planted dense subgraph,
we develop the first polynomial-factor lower bound for a key minimization problem. Also, for
a fixed-round version, we introduce the first sub-linear-factor approximation algorithm.

Motivated by work of Domingos and Richardson [14, 20], Kempe, Kleinberg, and Tardos
[18] introduced the following model. A vertex is either active (infected) or inactive (uninfected).
Given an initial seed set of active vertices, influence proceeds in a sequence of rounds. Every
vertex v has a known, deterministic threshold τ(v). A previously inactive vertex v becomes
active in a particular round if in the previous round at least τ(v) neighbors of v were
active. Once a vertex is active, it remains active in all subsequent rounds. Since the process
(essentially) stops if there is no new active vertex in some round, there are at most n rounds.

© Moses Charikar, Yonatan Naamad, and Anthony Wirth;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016).
Editors: Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans; Article No. 4; pp. 4:1–4:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.4
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

4:2 On Approximating Target Set Selection

Both directed and undirected versions have been considered. In the directed case, the
head vertex of an edge directly contributes to activating the tail vertex, but not vice versa.

The key question that arises in the study of viral marketing is Target Set Selection.
Given the graph and the activation thresholds for vertices, which nodes should be initially
targeted so as to spread the activation widely in the network? Specifically, we have these
two problems,

Min-TSS: Find a minimum-size seed set that leads to all vertices eventually being active;
Max-TSS: Given budget k, find a size-k seed set that maximizes the final active set size.

Kempe, Kleinberg, and Tardos focused on the maximization problem where all thresholds
are drawn randomly from a given range [18]. For the directed Max-TSS problem, with
deterministic thresholds, they showed that obtaining an n1−ε approximation is NP-hard. By
reducing from Label Cover, Chen [7] showed that the minimization problem, Min-TSS,
cannot be approximated to within 2log1−ε n unless NP ⊆ DTIME(npolylog(n)), even for
instances with uniform thresholds of 2. In fact [13], it is NP-hard to approximate Label
Cover within 2log1−ε n, and this hardness bound extends to Min-TSS.

Cicalese et al. [11, 10], considered versions of the problem in which the number of rounds
is bounded. For graphs of bounded clique-width, given parameters α, β, and λ, they gave
polynomial-time algorithms to determine whether there exists a target set of size β, such
that at least α vertices are activated in at most λ rounds. Various other aspects of target set
selection have been studied. For example, Coja-Oghlan et al. [12] obtained combinatorial
bounds for the size of target sets in expanders, while Ben-Zwi et al. [5] obtained upper and
lower bounds for this problem on low-treewidth graphs.

Our Results
We seek a polynomial-factor lower-bound for approximating Min-TSS. Obtaining such
a result by reduction from known NP-hard problems would be a breakthrough. As we
point out in Section 7, (the bounded-round version of) Min-TSS belongs to the MMSA
hierarchy [13]. A prevailing definition of this class of problems is: Given a monotone Boolean
circuit, minimize the number of inputs set to True so that the circuit evaluates to True. No
problem in the MMSA hierarchy is currently known to have a polynomial hardness result.1
We derive a polynomial-factor hardness result for Min-TSS from an average-case hardness
conjecture for the Planted Dense Subgraph problem (see Section 3.2)

In Section 4.2, we show the following hardness result for the bounded-round version
of Min-TSS. Assuming the Planted Dense Subgraph Conjecture, for every ε > 0,
r-round Min-TSS is n1/2−1/2br/2c−ε hard to approximate. In Section 4.3, we prove the
corollary that, assuming the Planted Dense Subgraph Conjecture, Min-TSS (with
unbounded number of rounds) is NP-hard to approximate within n1/2−ε for every ε > 0.

After this, in Section 5, we provide an O((τmax/τmin)1−1/rn1−1/r log1/r n) approximation
algorithm for r-round Min-TSS, where τmax and τmin are the maximum and minimum
thresholds in the instance, respectively. Subsequently, we show in Section 6 that undirected
Max-TSS is as hard as the directed version, giving an n1−ε hardness for undirected Max-
TSS. Finally, in Section 8, we reuse ideas from Section 4.3 to give an O(nk) SETH-lower

1 As explained in Section 7, another variant of MMSA, where the circuits may use non-monotone gates in
computing a monotone function, is known to admit problems that are O(n1−ε) hard to approximate
unless NP ⊆ DTIME[nO(log n)] [21].

M. Charikar, Y. Naamad, and A. Wirth 4:3

bound on the time needed to find contagious sets of size k, for k = O(1), which is tight up to
near-linear factors.

2 Outline of Key Technical Ideas

The main goal of our paper is to obtain a better understanding of the complexity of Min-TSS.
We focus in particular on the bounded-round variant, which has previously only been studied
from the point of view of fixed-parameter tractability. As we show, understanding the
hardness of the bounded-round variant is a good stepping stone in obtaining hardness results
for (unbounded) Min-TSS.

2.1 Hardness of Min-TSS
A 2log1−ε n hardness factor is known for Min-TSS, but there are no non-trivial approximation
upper bounds for this problem. We obtain a polynomial hardness factor based on the planted
dense subgraph conjecture by introducing and exploiting a recursive version. Roughly
speaking, the planted dense subgraph conjecture says that it is hard to distinguish random
graphs of degree nα from such graphs where k =

√
n vertices have a planted dense subgraph

of degree kβ , for β < α.
To assist our exposition of the intuition, we will sacrifice a little accuracy, and think

of β = α = 1/2. So (pretend that) it is hard to distinguish random graphs of degree
√
n

(unplanted) from such graphs where a subset of
√
n vertices have a planted random graph of

degree n1/4 (planted) – a factor of roughly n1/4 larger than the expected vertex degree in a
random subgraph of that size. Consider these graph families as inputs to Min-TSS with
the threshold set to a large constant. In the unplanted case, we can show that at least n1/2

vertices must be initially activated in order to activate all vertices in a constant number of
rounds. On the other hand, in the planted case, a target set of roughly n1/4 vertices will
activate all vertices in at most four rounds: in two rounds, all the vertices in the planted set
will be activated, and in two more rounds all vertices in the graph will be activated. This
leads to an Ω(n1/4) hardness result for 4-round Min-TSS.

In order to show stronger hardness results (for more rounds), we recurse. Consider
a recursively planted dense subgraph instance where we start with a random graph of
degree n1/2 and plant a random subgraph of n1/2 vertices and degree n1/4. Within this, we
plant a random subgraph of n1/4 vertices and degree n1/8, and so on; the last subgraph in
this sequence is on n1/2t vertices with degree n1/2t+1 . (Again, to facilitate the explanation,
the parameters are slightly inaccurate.) We show that the planted dense subgraph conjecture
implies the hardness of the recursive version. As before, in the unplanted case, at least n1/2

vertices must be initially activated in order to activate all vertices in a constant number
of rounds. In the recursively planted case, activating roughly n1/2t+1 vertices will activate
all vertices in at most 2(t + 1) rounds: in two rounds, all the vertices of the inner-most
planted subgraph will be activated, in a further two rounds, all vertices of the second-deepest
planted subgraph will be activated, and so on. This establishes a hardness of n1/2−1/2t+1 for
2(t+ 1)-round Min-TSS.

Via a direct reduction, we show that the hardness results for r-round Min-TSS imply
hardness for (unbounded-round) Min-TSS. For every constant ε > 0, we show that Min-TSS
is n1/2−ε hard to approximate. The reduction is easiest to describe with directed edges, but
these can be simulated with a gadget comprising undirected edges. Given an instance of
r-round Min-TSS on G(V,E), the construction consists of 2r + 1 layers of copies of vertices
of V : layers S0, S1, . . . , Sr are interleaved with layers M0, . . . ,Mr−1. Layer S0 contains the

APPROX/RANDOM’16

4:4 On Approximating Target Set Selection

seed set and for each i > 0, vertices active in Si represent the set of vertices active in G

after i rounds. Each layer Mi contains “memory” vertices: the copy of vertex v in this
layer is activated if a copy of v is activated in at least one of the previous layers, S0, . . . , Si.
Between layers Mi and Si+1 we place a bipartite copy of the original graph G, and the copy
of v in Si+1 has the same threshold as v in the original graph. This simulates one round of
the activation process on the original graph. Finally, we place a complete bipartite graph
directed from vertices in Sr to those in S0: each vertex in S0 has threshold |V |, so, unless in
the seed set, it is activated if and only if all vertices in Sr are active.

The recursive planted dense subgraph construction and its application are new. It would
be interesting to understand what sequences of parameters in the recursive construction
imply indistinguishability between the unplanted case and the recursively planted case. Our
hybrid-like argument for indistinguishibility relies on the fact that the recursively planted
instances are scaled-down copies of hard instances of planted dense subgraph; however, this
might not be needed in the recursive construction. Together with a better understanding
of planted dense subgraph in regimes where the planted subgraph size k �

√
n, this could

lead to tight hardness results for Min-TSS. Although we are unaware of an algorithm for
Min-TSS with approximation factor o(n), our current construction establishes hardness at
most n1/2 because the unplanted case has OPT = O(n1/2). Establishing stronger hardness
results will need constructions where OPT is much higher; this could be achieved by setting
the order of the planted subgraph to be n1−ε, with appropriate choices of degrees for the
planted and ambient graphs. Because the assumptions were originally formulated to capture
the hard case for approximating densest subgraph, the stated assumptions in the literature
about hardness of planted dense subgraph only apply to k ≤

√
n. A more comprehensive

understanding of planted dense subgraph in the k >
√
n regime would be interesting in its

own right, and could lead to an almost-tight n1−ε hardness for Min-TSS.

2.2 Approximation of r-round Min-TSS
Until now, no non-trivial approximation algorithms for bounded-latency Min-TSS is known.
When all thresholds are the same, our algorithm follows a greedy approach and obtains an
Õ(n1−1/r)-approximation for r-round Min-TSS. In general, the approximation factor also
depends on the ratio of the largest to smallest thresholds. The challenge in applying a greedy
approach to Min-TSS is quantifying the progress made in adding a single vertex to the
seed set. Indeed, a single vertex may have negligible impact until several other vertices are
picked. The key idea behind our algorithm is a potential function, called hunger, that guides
the algorithm. Given a seed set S and a bound r on the number of rounds, a vertex v has
positive hunger if and only if it remains inactive after r rounds. In this case, v’s hunger is
the number of additional neighbors that need to be active after r − 1 rounds, in order to
activate v in the next round.

Our algorithm chooses the seed set in two phases, based on a parameter β that we choose
appropriately to obtain the approximation guarantee. In the first phase, we greedily pick
vertices that have more than β neighbors that would not otherwise become active within one
round. The first phase ensures that in the “residual” graph, degrees of vertices are bounded
by β. With this, we can relate the size of the seed set picked in the second phase to the
optimum seed set size. In the second phase, given the current seed set, we repeatedly pick
vertices greedily to reduce the total hunger. Our analysis shows that one of the vertices of
the optimal solution reduces the total hunger by a significant quantity. However, we lose
a factor of βr−1 in relating the drop in the total hunger to the effect of this vertex on the
optimal solution. Consequently, in the second phase, the bound on the size of the picked
seed set is (roughly) a factor βr−1 times optimal.

M. Charikar, Y. Naamad, and A. Wirth 4:5

3 Preliminaries

3.1 Formal definition and notation
An instance of Target Set Selection (TSS) is an n-vertex (di)graph G = (V,E) coupled
with a threshold function τ : V → Z+. Seed set S ⊂ V comprises the vertices that are
active in round 0. For all t > 0, a vertex v ∈ V is called active in round t if either it is
active in round t − 1 or at least τ(v) of its (in)neighbors were active in round t − 1. The
rth-round activation family of a seed set S ⊂ V , denoted by Ar(S), comprises those vertices
active in round t = r, conditioned on exactly the vertices in S being active at time t = 0.
The activation family of seed set S is A∞(S) ≡ limr→∞Ar(S). By monotonicity, and the
Markovian nature of this process, it is easy to verify that A∞(S) is equivalent to An−1(S).
We study three variants of the Target Set Selection problem.

TSS: Given G and τ , what is the size of the smallest seed set S for which A∞(S) = V ?
RTSSr: Given G and τ , what is the size of the smallest seed set S for which Ar(S) = V ?
MaxTSS: Given G, τ , and k > 0, conditioned on |S| ≤ k, what is the largest value

of |A∞(S)|?

We sometimes refer to TSS as Min-TSS, and RTSS stands for r-Round TSS. For both
minimization problems, a seed set whose activation family (within the round limit, if any) is
the whole graph is called a contagious set. When all thresholds are equal, we may abuse
notation and let τ itself be an integer. All tuples in this paper are written thus ~a, and are
indexed in two ways. If ~ξ = (ξ1, ξ2, · · · , ξm) is a tuple and 1 ≤ i < j ≤ m, we let ~ξji denote
the contiguous sub-tuple (ξi, ξi+1, · · · , ξj). Sometimes, we are interested in the suffix of the
tuple, so we can index the final elements thus: ~ξ(−1)

(−i) = (xm−(i−1), xm−(i−2), . . . , xm).

3.2 Planted Dense Subgraph Conjecture
The Planted Dense Subgraph (PDS) problem is a generalization of Planted Clique,
in which the goal is to distinguish a G(n, p), Erdős-Rényi, random graph from one that
contains a planted dense Erdős-Rényi component. Formally, an instance of the problem
PDS(n, k, α, β) is parameterized by the graph order n, the subgraph order k, and log-densities
α, β ∈ (0, 1). We are then asked for an algorithm that with high probability distinguishes
between these two families of random graphs:

Unplanted: An Erdős-Rényi random graph G(n, nα−1) (i.e., a random graph with expected
degree ≈ nα).

Planted: An Erdős-Rényi random graph G(n, nα−1) from which k vertices are chosen uni-
formly at random and their induced subgraph is replaced by an instance of G(k, kβ−1).

The input to the PDS(n, k, α, β) problem is a graph, with the promise that with prob-
ability 1/2 it is drawn from the Planted distribution and with probability 1/2 it is drawn
from the Unplanted distribution. The output is True or False, indicating whether the
graph has a planted subcomponent. An algorithm solves the problem if, for some ε > 0,
independent of n, it attains an ε advantage over random guessing. That is, with probability
at least 1/2 + ε, it correctly states from which of the two distributions the input graph was
drawn. This statement about probability is over the joint distribution of the input graph
and the random choice sequence of the algorithm.

APPROX/RANDOM’16

4:6 On Approximating Target Set Selection

As observed by Bhaskara et al. [6], PDS(n, k, α, β) admits a simple polynomial-time
deterministic algorithm when β > α; for k >

√
n, an eigenvalue approach works with a

weaker condition on β. For β < α and k ≤
√
n, there is no quasipolynomial-time algorithm

(deterministic or randomized) known for PDS, giving rise to the Planted Dense Subgraph
Conjecture, viz.

I Conjecture 1. For every ε > 0, k ≤
√
n, and β < α, no probabilistic polynomial-time

(PPT) algorithm can, with advantage greater than ε, solve PDS(n, k, α, β).

This conjecture is attractive because the current best-known algorithms for the problem
require 2nΘ(1) time (as opposed to nΘ(logn) for the well-studied Planted Clique problem).

Similar conjectures have previously been made in different contexts in theoretical computer
science [2, 3, 4]. The precise form of the conjecture we state is very similar to the conjecture
stated by Awasthi et al. [4]. As we show in Section 4, Planted Dense Subgraph also
naturally lends itself to showing hardness for the bounded-round version of Min-TSS, which
in turn leads to a hardness result for the (unbounded) Min-TSS problem.

4 Hardness of Min-TSS

In this section, we prove that the Planted Dense Subgraph (PDS) conjecture implies that for
all ε > 0, there is no probabilistic polynomial-time algorithm for Min-TSS that achieves
an approximation factor of O(n1/2−ε). We first show that the Planted Dense Subgraph
conjecture implies the hardness of a recursive version, and we use this recursive version to
show hardness for Min-TSS.

4.1 Recursive extension of PDS
To simplify notation, we define a right-associative operator, /, on distributions of graphs.
Suppose there are two distributions on graphs, G1, on graphs of order n, and G2, on graphs
of order n′, with n > n′. The distribution G1 / G2 is defined thus:

Draw a graph G1 from G1 and a graph G2 from G2, then choose uniformly at random
a subset S′ of vertices of size n′ from G1 and replace its induced subgraph with G2.

Hence PDS(n, k, α, β) asks us to state whether a graph is drawn from G(n, nα−1)/G(k, kβ−1)
(True) or from G(n, nα−1) (False).

In the definition of PDS(n, k, α, β), one consequence of the random construction of both
G(n, nα−1) and G(k, kβ−1) is that the planting process can be naturally recursed. For every
pair of length-m tuples ~n = (n1, n2, . . . , nm) – the subgraph orders – and ~α = (α1, α2, . . . , αm)
– the subgraph log-densities – with, for each i, ni ∈ Z+, ni > ni+1, and αi ∈ (0, 1), we define
the PDSm(~n, ~α) distribution via the recurrence

PDSm(~n, ~α) =
{
G(n1, n1

α1−1) /PDSm−1(~n(−1)
(−m+1), ~α

(−1)
(−m+1)) if m > 1;

G(n1, n1
α1−1), otherwise.

We also define the (eponymous) PDSm(~n, ~α) problem: distinguish with ε advantage graphs
drawn from the PDSm(~n, ~α) distribution from those drawn simply from PDS1(n1, α1) =
G(n1, n

α1−1). More formally, under the promise that with probability 1/2 the graph is from
the former distribution, and with probability 1/2 from the latter, an algorithm solves the
problem if with probability at least 1/2 + ε it correctly states which of the distributions the
graph came from. Setting m = 2, ~n = (n, k), and ~α = (α, β) recovers exactly PDS(n, k, α, β).

M. Charikar, Y. Naamad, and A. Wirth 4:7

We now show that for monotonically decreasing log-densities, recursive planting of small,
but polynomially sized, subgraphs leads to a problem no simpler than PDS.

I Lemma 2. Assuming Conjecture 1, if m ≥ 2 is a constant, αi > αi+1 for every i < m, and
for some constant c > 0, ni+1 ∈ [nci ,

√
ni], then no PPT algorithm can solve the PDSm(~n, ~α)

problem with ε advantage.

Proof (by contradiction). Consider the minimum m for which some algorithm A solves
PDSm(~n, ~α) with ε advantage. We show how to construct an algorithm that attains an
ε′ > 0 advantage for the problem PDSm−1(~n(−1)

(−m+1), ~α
(−1)
(−m+1)), contradicting the minimality

of m. For a distribution H, let F(H) be the distribution G(n1, n
α1−1
1) /H. Hence

F
(

PDSm−1(~n(−1)
(−m+1), ~α

(−1)
(−m+1))

)
is PDSm(~n, ~α) and F

(
G(n2, n2

α2−1)
)
is PDS2 ((n1, n2), (α1, α2)). But, of course, this F

operator represents a (randomized) polynomial-time-computable operation on a graph, once
drawn from distribution H. Assuming the existence of algorithm A, we propose algorithm AF
for PDSm−1(~n(−1)

(−m+1), ~α
(−1)
(−m+1)):

Given graph H, apply algorithm A to F(H) and return A’s answer.

For the following three distributions, let pi be the probability that A reports True when the
graph is drawn from distribution i.
1. G(n1, n1

α1−1);
2. F

(
G(n2, n2

α2−1)
)

= PDS2 ((n1, n2), (α1, α2));
3. F

(
PDSm−1(~n(−1)

(−m+1), ~α
(−1)
(−m+1))

)
= PDSm(~n, ~α)

Since we assumed the Planted Dense Subgraph Conjecture, the probability
of returning the correct answer when distinguishing between distributions 1 and 2 is at
most 1/2 + o(1). That is, (1− p1)/2 + p2/2 ≤ 1/2 + o(1). On the other hand, since A solves
PDSm(~n, ~α), with ε advantage, (1− p1)/2 + p3/2 ≥ 1/2 + ε.

Consider algorithm AF , it applies F to its input graph and sends it to A. Although A
was promised a graph that was with probability 1/2 from the first distribution and with
probability 1/2 from the third2, its input is merely a graph with nonzero mass in each of the
two distributions, and thus it outputs some value in probabilistic polynomial time3. The
probability of algorithm AF correctly reporting True is (by definition) (1− p2)/2 + p3/2,
which, from the two previous inequalities, is easily seen to be at least 1/2 + ε− o(1). Hence,
for sufficiently large n, Algorithm AF is a PPT algorithm with advantage ε/2 for the
PDSm−1(~n(−1)

(−m+1), ~α
(−1)
(−m+1)) problem, contradicting the minimality of m. J

4.2 Hardness of fixed-round TSS
We now prove the following theorem on the hardness of r-round Min-TSS.

2 This application of a promise oracle to non-promise-satisfying inputs is an example of a non-smart
reduction [16].

3 Although the positivity of the mass on some order-n graph might seem like a technicality, it is not
intrinsic to the analysis. For other, similar, distributions of graphs where F(H) may have 0 probability
in either distribution, we can run A up to its polynomial-time upper-bound for promise-satisfying
instances and return False if it has failed to return by then. The rest of the analysis proceeds identically,
up to the necessary modifications needed to handle the new ensemble of distributions.

APPROX/RANDOM’16

4:8 On Approximating Target Set Selection

I Theorem 3. Assuming the Planted Dense Subgraph Conjecture, for every ε > 0, no
PPT algorithm can approximate r-round Min-TSS to within a factor of O(n1/2−1/2br/2c−ε).

The general idea is as follows. We first prove (in Lemma 4) a lower bound on the size of r-round
contagious sets on G(n1, n1

α1−1) for particular (ranges of) values of n1 and α1. Afterwards,
we argue (in Lemma 5) that for some appropriate setting of ~n = (n1, n2, · · · , nbr/2c) and
~α = (α1, α2, · · · , αbr/2c), the nbr/2c vertices in the densest component of PDSbr/2c(~n, ~α)
must form a contagious set of size nbr/2c. Theorem 3 then follows from a direct application
of Lemma 2.

I Lemma 4. For all α ∈ (0, 1/2] and all positive integers r, τ , the r-round Min-TSS instance
RTSSr(G(n, nα−1), τ) has |OPT | = Ω̃(nβ), where β = (τ(1− α)− 1)/(τ − 1).

Proof. For a seed set S of size Õ(nβ), chosen uniformly at random (u.a.r.), and a vertex v /∈ S,
chosen u.a.r., the probability that v has k neighbors in S is, by the union bound, at most(|S|
k

)
(nα−1)k = Õ

(
(nβnα−1)k

)
(for constant k), which decreases geometrically with k. Thus,

the number of vertices newly activated after one round, |A1(S) \ S|, follows a binomial
distribution with mean µ = Õ(n(nβnα−1)τ) = Õ(n1+(α+β−1)τ). Because (α+β−1)τ = β−1,
this expression simplifies to Õ(nβ). Chernoff bounds tell us that the probability that
|A1(S) \ S| exceeds its expectation by a log2 n factor is bounded by

exp[µ(log2 n− 1− 2 log2 n(log logn))] < exp[µ(− log2 n)] = n−µ logn .

Given it has size Õ(nβ), there are Õ
((

n
nβ

))
choices of seed set S. By the union bound,

the probability that at least one of them activates more than Õ(nβ) vertices within one
round is 1/nΩ(1). By induction, after a constant number of activation rounds, for all ε > 0,
the number of active nodes is with high probability at most o(nβ+ε). Hence, with high
probability, no seed set of size Õ(nβ) is an r-round contagious set. J

I Lemma 5. Suppose, in an instance of the r-round Min-TSS problem, every vertex shares
the same constant threshold τ , with

ρ ≡ br/2c, ε0 ∈
(

0, 1
3(τ + 1)2

)
, ~n =

(
n,
√
n,

√√
n, . . . , 2ρ

√
n

)
, and

~α =
(

1
2 ,

1
2 −

ε0

1 + ρ
,

1
2 −

2ε0

1 + ρ
. . . ,

1
2 −

ρε0

1 + ρ

)
.

If G ∼ PDSρ(~n, ~α), then RTSSr(G, τ) has |OPT | = O(2ρ
√
n).

Proof. For i ∈ 1, 2, · · · , 1 + ρ, let Gi be the depth-i planted component of G, i.e., the
graph of order ki = 2i−1√

n and average degree ki1/2−(i−1)ε0/(1+ρ) planted in G. Further,
for every i, define ai = ki

−1/2−ε0 , making ai a lower bound on the edge probability in Gi.
For i ∈ {1, 2, . . . , ρ}, choosing a subset of size

√
ki = ki+1 of Gi’s vertices u.a.r. to be the

seed set S, leads to random variable |A1(S) \ S| following a binomial distribution with
µ = Ω(ki · (

√
kiai)τ). Each indicator of membership in A1(S) \ S is a Bernoulli random

variable with probability (of activation) at least
(√

ki
τ

)
ai
τ . The expression for the mean is thus

Ω(ki(
√
ki · ki−1/2−ε0)τ), which is Ω(ki1−τε0). The probability that, for a randomly chosen

seed set of size
√
ki, fewer than µ/2 vertices become active is, again by the Chernoff bounds,

less than e−Ω(µ) = n−Ω(µ/ logn) = n−Ω(ki1−τε0/ logn) < n−k
2/3
i � n−

√
ki−2. Every remaining

inactive vertex in Gi would now have d̂ = µai = Ω̃(ki1/2−ε0(τ+1)) = Ω̃(ki1/2−1/(3(τ+1)))
activated neighbors in expectation. Thus, with high probability, no vertex has fewer than
Ω̃(ki1/3) active neighbors. Since each vertex has so many active neighbors, with high

M. Charikar, Y. Naamad, and A. Wirth 4:9

a1

b1

c1

d1

a2

b2

c2

d2

a0

b0

c0

d0

+

+

+

+

+

+

+

+

a1

b1

c1

d1

ar

br

cr

dr

a0

b0

c0

d0

Figure 1 Sample of the first few layers of the r-round Min-TSS to TSS reduction. The i-th
stage vertices are white and the memory vertices are grey. All drawn arcs are oriented rightwards.
Not shown: directed edges from each vertex in Sr to all those in S0.

probability, all of Gi’s vertices becomes active within two rounds of all of Gi+1’s vertices
becoming active. By induction, activating all of Gr′+1’s vertices will with high probability
activate all of G1’s vertices after 2ρ ≤ r rounds. Since |V (Gρ+1)| = n1/2ρ , the lemma
follows. J

Proof of Theorem 3. Given an instance G of the PDSm(~n, ~α) problem with ~n and ~α satis-
fying the conditions of Lemma 5 (and thus Lemma 2), we choose a threshold τ satisfying
(τ/2 − 1)/(τ − 1) > 1/2 − ε/2 and generate the r-round Min-TSS instance RTSSr(G, τ).
If G comes from the unplanted distribution, an application of Lemma 4 provides a lower
bound of Ω̃(n1/2−ε/2) on the size of some optimal seed set, OPT. On the other hand, if G
comes from the planted distribution, Lemma 5 provides an upper bound of O(n1/2br/2c) on
the size of OPT. Thus a PPT algorithm with approximation factor in

Õ(n1/2−ε/2/n1/2br/2c) = Õ(n1/2−1/2br/2c−ε/2) = O(n1/2−1/2br/2c−ε)

for r-round Min-TSS can distinguish the two cases, contradicting the Planted Dense
Subgraph Conjecture. J

4.3 Hardness of round-unbounded TSS
We now show that for every constant r the general form of Min-TSS is, up to a constant
factor, at least as hard to approximate as r-round Min-TSS.

I Theorem 6. An O(f(n))-approximation algorithm for Min-TSS can be transformed into
an O(f(n))-approximation algorithm for r-round Min-TSS.

Proof. Our reduction relies heavily on directed edges. The hardness for undirected Min-TSS
follows by simulating each directed edge with a directed-edge gadget, as shown in the left
part of Figure 2. Given an instance RTSSr(G = (V,E), τ) of r-round Min-TSS, we create
an instance TSS(G′, τ ′) of TSS as follows, and as depicted in Figure 1.
1. For i = 0, 1, . . . , r, and for each v ∈ V , there is a vertex vi. Collectively, the vertices
{vi}v∈V constitute Si, the “i-th stage” vertices of G′.

2. For j = 0, 1, . . . , r − 1, and for each v ∈ V , there is a vertex v+
j . Collectively, the vertices

{v+
j }v∈V constitute Mj , the “j-th stage memory vertices” of G′.

3. For i = 0, 1, . . . , r − 1, and for j = i, . . . , r − 1, there is a directed edge (gadget) from vi
to v+

j .
4. For i = 0, 1, . . . , r − 1, and for each pair (u, v) in E, there is a directed edge (gadget)

from u+
i to vi+1.

5. For each vertex x ∈ Sr and for each y ∈ S0 there is a directed-edge (gadget) from x to y.

APPROX/RANDOM’16

4:10 On Approximating Target Set Selection

6. For each v ∈ V , and i = 0, . . . , r and j = 0, . . . , r − 1, τ ′(v0) = |V |, τ ′(vi) = τ(v), and
τ ′(v+

j) = 1.

The goal of the construction is for the active vertices in S0 to represent (at least initially)
the seed set S and for the active vertices in Si to represent Ai(S) in G. If Sr is entirely
active – representing Ar(S) = V – this set in turn activates all of S0, causing all vertices
in G′ to become active. With the exception of those from Sr to S0, the directed edges ensure
that vertices in some stage cannot activate those in an “earlier” stage.

In designing G′, simply linking vertices in Si to those in Si+1 with directed edges is
inappropriate. We need to ensure that a vertex in G that is active in round i, represented by
an active vertex in stage i of G′, is (also) represented as active in stage i+ 1 of G′. That is, if
all vi are active for v ∈ Ai(S), then all vi+1 are also active for v ∈ Ai(S). To assist us in this,
the memory vertex v+

j , in Mj is active whenever there is some vi, with i < j, that is active.
Thus, a contagious set for the RTSS instance corresponds exactly to a contagious set

in S0. To show that G′ does not contain smaller contagious sets, observe that activating v0
weakly dominates activating each of vi, for i > 0, and v+

i , for i ≥ 0. Vertex vi will become
active within i rounds anyway, so there is no benefit in activating it earlier; a similar argument
applies to v+

i . Thus, a contagious set containing vertices in V (G′) \ S0 can be transformed
into a no-larger contagious set entirely inside S0. Hence the optimal values of both this
instance G′ of TSS and of the initial instance G of RTSS are equal. J

Picking r sufficiently large, Theorem 3 and Theorem 6 together imply the following theorem.

I Theorem 7. Assuming the Planted Dense Subgraph Conjecture, for no ε > 0 can
a PPT algorithm approximate Min-TSS to within a factor of O(n1/2−ε).

5 Approximation of r-round Min-TSS

In Section 4.2, we showed that the Planted Dense Subgraph Conjecture implies
O(n1/2−1/2br/2c−ε) hardness for the r-round Min-TSS problem, even in instances where all
vertices have thresholds bounded by a constant. In this section, we complement the hardness
result with an Õ(n1−1/r) approximation algorithm for such graphs, viz.

I Theorem 8. For every r ∈ Z+, there is a polynomial-time algorithm approximating r-round
TSS to within a factor of O((τmax/τmin)1−1/rn1−1/r log1/r n).

Overall, the algorithm follows a two-step process. A degree-reduction step – where we greedily
add vertices to the seed set S whose neighborhoods contain many vertices that would not be
in A1(S) for the S thus far – followed by a greedy step – where we greedily select vertices
that most reduce a potential function we call the total hunger. Roughly, if the seed set S
would activate vertex v in r rounds, then v’s hunger is zero; otherwise, its is the number of
active neighbors v still “lacks” at the end of the (r − 1)th round. The total hunger of the
graph is the sum of these vertex hungers. We then argue that each vertex chosen in the
degree-reduction step necessarily reduces the total hunger by a large amount. After these
degree-reducing vertices have been added to the seed set, the residual graph has bounded
degree, which means that the greedy algorithm is effective.

Formally, for a vertex v and seed set S, define v’s hunger thus, where δ(v) is the set of
v’s neighbors:

hS,r(v) =
{

0, if v ∈ Ar(S)
τ(v)− |{u : u ∈ δ(v), u ∈ Ar−1(S)}|, otherwise.

M. Charikar, Y. Naamad, and A. Wirth 4:11

Algorithm 1 Algorithm for computing a target set: parameter β specified below.
1: S1 ← ∅, S2 ← ∅ {Initialization}
2: while There exists some vertex u with more than β (S1, 1)-hungry neighbors do
3: Add u to S1. {Degree-reduction step}
4: end while
5: while There exists an (S1 ∪ S2, r)-hungry vertex do
6: Add to S2 the vertex that most reduces the total hunger of (S1 ∪S2, r)-hungry vertices.

{Greedy step}
7: end while
8: Return S1 ∪ S2.

Likewise, define the total (S, r) hunger in the graph thus, hr(S) =
∑
v∈V hS,r(v). Vertex v is

called (S, r)-hungry if hS,r(v) > 0. Algorithm 1, including a parameter β that will be defined
below, details the construction of the two components of the seed set, S1 and S2.

Since Step 5 only terminates when there are no more (S1 ∪ S2, r)-hungry vertices, the
algorithm returns a valid contagious set. We now bound the sizes of sets S1 and S2.

I Lemma 9. |S1| ≤ nτmax/β

Proof of Lemma 9. The initial total 1-round hunger is bounded by nτmax. Each element
added to S1 reduces this quantity by at least β, and since the total 1-round hunger is
non-negative, |S1|β ≤ nτmax. J

To analyze the size of S2, we focus on the sub-problem induced by including S1 in
the seed set. The residual problem, Residual(S1), is an instance of r-round Min-TSS
on V \ S1 in which, because the process is Markovian, τ(v) becomes hS1,1(v). This residual
instance has the unusual feature that zero-threshold vertices become active in one round. The
degree-reduction step ensures that no vertex in Residual(S1) has more than β neighbors in
V \ S1, which leads to the following lemma.

I Lemma 10. |S2| ≤ O(|OPT|βr−1 logn)

Proof of Lemma 10. During each iteration of the greedy step, letO be a minimum-cardinality
set for which S2 ∪O is (r-round) contagious for Residual(S1). We let ~O = o1, o2, o3, . . . , ok
be an arbitrary, but fixed, ordering over O. Were we to add the elements of ~O, in order,
to some initially empty set S3, we would reduce the total hunger hr(S2 ∪ S3) from hr(S2)
down to 0. Therefore, for some o∗ in the sequence ~O, adding o∗ to S3 causes hr(S2 ∪ S3) to
decrease by at least ∆∗ ≡ hr(S2)/k.

We now argue that adding o∗ directly to S2 must also significantly reduce the total
amount of hunger amongst (S2, r)-hungry vertices. Denote the magnitude of this change
in total hunger by δ∗, that is, δ∗ = hr(S2) − hr(S2 ∪ {o∗}). In a t-round activation
process, the amount of hunger that can be removed by adding some vertex u to the seed
set is bounded above by the number of up-to-length-t simple paths coming out of u. The
residual graph has degree bounded by β, and thus the number of such paths is bounded by
1 + β + (β − 1)2 + · · ·+ (β − 1)t ≤ 2βt.

The addition of o∗ to S3 activates at most δ∗ neighbors, each of which may be seen as
initiating an (r − 1)-round activation process. Therefore, by adding o∗ to S3 in the original
ordering ~O, hr(S2 ∪ S3) drops by at most δ∗ · 2βr−1. By definition, ∆∗ ≤ 2δ∗βr−1 and hence
δ∗ ≥ ∆∗/(2βr−1) = hr(S2)/(2kβr−1).

APPROX/RANDOM’16

4:12 On Approximating Target Set Selection

1

1

1

2a b

v1

v2

vm

v3

u1

u2

un

u3

p1

p2

p4

p3

p6

p5

p'1

p'2

p'4

p'3

p'6

p'5

|V|=m
τ=n+1

|U|=n
τ=1

|P|=n1/ɛ0
τ=n

|P'|=nc

τ=n1/ɛ0

Figure 2 Left: This gadget, which has only undirected edges, simulates directed edge a→ b. The
threshold of each gadget vertex is displayed. An active a “sends” one unit of activation to b, but an
active b cannot “send” activation to a. Right: To create a hard undirected instance, the unshaded
region augments the shaded region, the hard instance of directed Max-TSS. In the shaded part, all
drawn connections are oriented rightwards; in the unshaded part, solid lines represent undirected
edges.

We cannot identify o∗: it depends both on the unknown optimal solution and some
arbitrary ordering. However, we know that there exists some o∗ for which

hr(S2 ∪ {o∗}) = hr(S2)− δ∗ ≤
(
1− 1/(2βr−1k)

)
hr(S2) . (1)

By iterating through each vertex, we can choose (in polynomial time) the vertex o+ that
minimizes hr(S2 ∪ {o+}): this latter expression is clearly also bounded by the right-hand
side of inequality (1). Therefore, after Θ(kβr−1 logn) iterations of greedily choosing such o+,
and adding it to S2, the total hunger hr(S2), in the residual graph, drops below 1 and so
Algorithm 1 terminates. J

Proof of Theorem 8. Given Lemmas 9 and 10, all that remains is to find the optimal choice
of β for Algorithm 1. If we knew |OPT|, we would let β be Θ([nτmax/(|OPT| logn)]1/r),
and we would have |S1|+ |S2| = O((nτmax)1−1/r|OPT|1/r log1/r n), so the ratio of |S1|+ |S2|
to |OPT| would be

O((nτmax)1−1/r log1/r n/|OPT|1−1/r) = O((τmax/τmin)1−1/rn1−1/r log1/r n) , (2)

where this “inequality” follows from the fact that |OPT| ≥ τmin. Although we do not
know |OPT|, we can run Algorithm 1 with each β in 1, 2, . . . , n, and return the best solution;
our approximation ratio will be at most the right-hand side of “inequality” (2). J

6 Hardness of Undirected Max-TSS

In this section, we show that the hardness of the undirected variant of Max-TSS matches
the O(n1−ε)-hardness of the directed variant studied by Kempe, Kleinberg, and Tardos [18].

I Theorem 11. For every ε > 0, it is NP-hard to approximate the undirected version of
Max-TSS to within an O(n1−ε) multiplicative factor.

6.1 Revisiting the directed-edge construction
First, we recall the O(n1−ε0) hardness construction for the directed variant [18], as depicted
in the shaded region of Figure 2. Given an instance of the NP-hard Max Coverage problem

M. Charikar, Y. Naamad, and A. Wirth 4:13

with set system S = {S1, S2, . . . , Sm}, universe of n̂ elements X =
⋃m
i=1 Si = {x1, x2, . . . , xn̂}

with |X | ≥ |S|, budget k, and coverage goal g, construct a graph containing a vertex vi ∈ V
for each set Si, a vertex uj ∈ U for each element xj , and a collection P of n̂1/ε0 additional
“padding” vertices {pi}. Whenever xj ∈ Si, add a directed edge from vi to uj . Next, add a
directed edge from each vertex in U to each vertex in P . Every vertex in V has threshold
m+ 1, every vertex in U has threshold 1, and every vertex in P has threshold g.

Now, a seed set that has a vertex y in either U or P is weakly dominated by one that
instead has a vertex v ∈ V with a path to y. If no such v is available, choose an arbitrary
unactivated element of V for the seed set. Therefore, consider only solutions in which the
seed set S is a subset of V . Since the edges are directed, the vertices in U that are in
the activation family are exactly those that have an in-edge from some vertex in the seed
set S ⊂ V . Hence the vertex ui becomes active if and only if the corresponding xi is in some
set Sj for which vj is active. Thus, it is possible to activate ≥ g vertices in U if and only if
the Max Coverage instance is satisfiable.

Each p ∈ P has threshold g and there is the full family of directed edges in U × P . So,
if at least g vertices of U become active at some stage, then all n̂1/ε0 vertices in P become
active. If not, then since m ≤ n̂, no more than O(n̂) vertices in the construction become
active. Therefore, an O(n̂1/ε0/n̂) = O(n̂1/ε0−1)-approximation algorithm to Max-TSS can
distinguish these two cases, and thus solve the initial Max Coverage instance. As the size
of the instance is n = O(n̂1/ε0), this translates to an O(n1−ε0) hardness result.

6.2 Translating to undirected edges
Unfortunately, naively replacing the construction’s directed edges with undirected edges
fails. A single active vertex in P would then activate all of U in a single time step. Instead,
replacing each directed edge with the “directed-edge gadget”, shown at the left of Figure 2,
simulates the previous activation process using only undirected edges. However, these gadgets
introduce O(n̂ · n̂1/ε0) extra vertices. To account for the larger problem size, we add a second
padding set P ′ of size n̂c, for some c � 1/ε0 to be chosen later. Each vertex in P ′, the
unshaded region in the right of Figure 2, has threshold n̂1/ε0 .

Finally, we add an undirected edge for each (p, p′) ∈ P ×P ′. Due to their high thresholds,
no vertex in P ′ will become active before all P are active, so these undirected edges in
P × P ′ are “safe”. As before, including a vertex outside V in the seed set S is dominated
by activating one in V , so the analysis in Section 6.1 translates to the construction with
set P ′. Hence it is NP-hard to distinguish |A∞(S)| = Ω(n̂c) from |A∞(S)| = O(n̂1+1/ε0),
with the potential activation of gadget vertices being the dominating term in the latter
number. As n = Θ(n̂c), this translates to an inapproximability factor of O(n1−(1+1/ε0)/c).
For every ε > 0, choosing c ≥ (1 + 1/ε0)/ε gives a hardness result of O(n1−ε).

7 Application to Minimum Monotone Satisfying Assignment

Intuitively, the MMSA class of problems asks for the smallest minterm of a monotone
Boolean function f , i.e., the Boolean vector ~x with f(~x) = 1 that minimizes |~x|1. However,
there is no single agreed definition of MMSA: both the exact description of function f and
the measure of quality of a candidate solution ~x have been defined in several ways. The
input f has varyingly been given as a monotone formula [17, 13, 8], a monotone circuit [1],
and as a circuit that evaluates a monotone function (though it may use ¬ gates internally) [21].
The quality of an approximate solution (the “n” in the approximation factor) has also been
measured either in terms of the formula/circuit size or in terms of the length of the input

APPROX/RANDOM’16

4:14 On Approximating Target Set Selection

vector, in which case the circuit size is assumed to be poly(n). To standardize terminology,
we rename MMSA by applying the prefix “MF”, “MC”, or “NMC” when f is a monotone
formula, monotone circuit, or nonmonotone circuit, respectively, and add the superscript “f”
or “x” to denote whether it is the description of f or the length of x, respectively, that
determines n (in other contexts, previously, subscripts have denoted bounded-depth formulas
and circuits).

While each of these models has been shown to give a LabelCover-like hardness of
2log1−ε n, only Umans [21] manages to establish a stronger hardness for the nonmonotone form,
namely n1−ε-hardness for both NMC-MMSAf and NMC-MMSAx. For MC-MMSAx, the
strongest known hardness results (to our knowledge) conditioned on an established conjecture
are only implicitly described by Chlamtac, Dinitz, and Krauthgamer [9]; these lead to a
hardness of n3−2

√
2 ≈ n.172 for the Smallest m-Edge Subgraph problem, assuming some

slight modification of Conjecture 1. Despite the weak lower bounds in the case where f is
given as a monotone formula/circuit, there is no MMSA problem for which we are aware of
a sublinear factor approximation algorithm. A related observation has been previously made
by Coja-Oghlan et al. in the context of Target Set Selection [12].

Here, we discuss the scenario in which f is provided as a monotone circuit, and n is
either the length of the input or the size of the circuit description. We prove the following
conditional results:

I Theorem 12. Assuming Conjecture 1, for every ε > 0, it is hard to approximate
MC-MMSAx to within an O(n1/2−ε) factor. .

I Theorem 13. Assuming Conjecture 1, for every ε > 0, it is hard to approximate
MC-MMSAf to within an O(n1/3−ε).

We begin with the proof of Theorem 12; the proof of Theorem 13 follows naturally.

Proof of Theorem 12. By the construction in Theorem 3, it is hard (assuming PDS) to
approximate constant-round, constant-threshold, degree-O(

√
n) versions of TSS to within a

factor of n1/2−ε. Therefore, it suffices to show that we can transform these instances into
monotone circuits with size polynomial in n. The reduction is quite simple: for each round
t = 1, 2, . . . , r we have n gates, one for each vertex. The gate corresponding to vertex v is
the output of a monotone circuit evaluating the threshold function Thdτ (Nt−1(v)), where τ
is the threshold of v, d is its degree, and Nt−1(v) comprises the gates corresponding to the
previous timestep’s gates that are in-neighbors of v (for the first timestep, these are just
the input gates). Finally, the gates corresponding to the last round all feed into an ∧ gate,
forming our output.

The correctness of this circuit is easy to verify. It simulates running the activation process
for all r rounds, and checking whether all vertices are active by the end of round r. As the
in-degree of each vertex in the RTSSr instance is Õ(

√
n), the monotone circuit construction

of Friedman [15] requires at most O(τ12.6√n log
√
n) = O(

√
n logn) gates. Since we have rn

of these circuits, the total number of gates is O(rn
√
n logn) = poly(n). J

Proof of Theorem 13. The construction used in the proof of Theorem 12 provides a circuit
with O(m3/2 logm) gates for which it is hard to approximate the optimal value to within
m1/2−ε′ for every ε′ > 0. Choosing n such that n = m3/2 logm, for every ε > 0 we have a
circuit with n gates whose hardness is Õ(n(1/2−ε′)/(3/2)) = O(n1/3−ε). J

M. Charikar, Y. Naamad, and A. Wirth 4:15

8 Lower Bounds for k-Contagious Set

When a Min-TSS instance contains a contagious set of size k, brute force search (plus
simulation of the activation process) can identify such a set in O(mnk) time, where m is
the number of edges in the graph. In this section, we show that improving on this naive
approach on directed graphs by even slightly super-linear factors is difficult. Namely, using a
construction similar to that in Theorem 6, we show that for k ≥ 3 an O(nk−ε)-time algorithm
for k-Contagious Set implies an O(2(1−ε′)n)-time algorithm for CNF-SAT, violating the
Strong Exponential Time Hypothesis (SETH).

I Theorem 14. For k ≥ 3, there is no O(nk−ε)-time algorithm for k-Contagious Set
unless SETH is false.

Proof. We reduce from the k-Dominating Set problem, which has been shown not to
admit an O(nk−ε)-time algorithm unless SETH is false [19]. Suppose we are given an
instance graph G = (V,E) of k-Dominating Set, from which we derive an instance G′ of
k-Contagious Set. Graph G′ contains two vertices, av and bv, for each vertex v ∈ V . A
directed edge exists from au to bv whenever either u = v or when v is a neighbor of u in G.
Additionally, a directed edge exists from bu to av for every pair u and v, regardless of their
adjacency in G. Finally, for all v ∈ V , we set τ(av) = n and τ(bv) = 1.

It is easy to verify that a size-k dominating set S in G corresponds to a size-k contagious
set in G′. The seed set {av | v ∈ S} activates all of the b vertices, which in turn activates
the rest of the a vertices. Conversely, a size-k contagious set S′ in G′ can be converted into
a size-k dominating set for G: {v ∈ V | av ∈ S′ or bv ∈ S′}. Without loss of generality, we
can assume that S′ ⊂ A. The choice of a bv in seed set S′ is dominated by the selection
of av, and no vertex in A \ S′ could become active unless S′ activates all of {b} in one round.
Hence S′ corresponds to a dominating set in G.

Thus, in O(n2) time, we can reduce finding a k-Dominating Set in G to finding a
k-Contagious Set in some G′ that has O(n) vertices. Since k > 2, it follows that a
O(nk−ε)-time algorithm for k-Contagious Set on G′ implies the existence of such an
algorithm for k-Dominating Set, violating SETH. J

Acknowledgements. The authors would like to thank Andrew Chester for many fruitful
discussions, especially those relating to Section 5.

References
1 Michael Alekhnovich, Sam Buss, Shlomo Moran, and Toniann Pitassi. Minimum propos-

itional proof length is NP-hard to linearly approximate. The Journal of Symbolic Logic,
66(01):171–191, 2001.

2 Benny Applebaum, Boaz Barak, and Avi Wigderson. Public-key cryptography from differ-
ent assumptions. In Proceedings of the 42nd ACM Symposium on Theory of Computing
(STOC), pages 171–180. ACM, 2010.

3 Sanjeev Arora, Boaz Barak, Markus Brunnermeier, and Rong Ge. Computational complex-
ity and information asymmetry in financial products. In Proceedings of the Innovations in
(Theoretical) Computer Science Conference (ICS), pages 49–65, 2010.

4 Pranjal Awasthi, Moses Charikar, Kevin A. Lai, and Andrej Risteski. Label optimal regret
bounds for online local learning. In Proceedings of the 28th Conference on Learning Theory
(COLT), pages 150–166, 2015.

5 Oren Ben-Zwi, Danny Hermelin, Daniel Lokshtanov, and Ilan Newman. Treewidth governs
the complexity of target set selection. Discrete Optimization, 8(1):87–96, 2011.

APPROX/RANDOM’16

4:16 On Approximating Target Set Selection

6 Aditya Bhaskara, Moses Charikar, Eden Chlamtac, Uriel Feige, and Aravindan Vi-
jayaraghavan. Detecting high log-densities: an O(n1/4) approximation for densest k-
subgraph. In Proceedings of the 42nd ACM Symposium on Theory of Computing (STOC),
pages 201–210. ACM, 2010.

7 Ning Chen. On the approximability of influence in social networks. SIAM Journal on
Discrete Mathematics, 23(3):1400–1415, 2009.

8 Ramkumar Chinchani, Duc Ha, Anusha Iyer, Hung Q Ngo, and Shambhu Upadhyaya. On
the hardness of approximating the min-hack problem. Journal of Combinatorial Optimiz-
ation, 9(3):295–311, 2005.

9 Eden Chlamtac, Michael Dinitz, and Robert Krauthgamer. Everywhere-sparse spanners
via dense subgraphs. In Proceedings of the 53rd Annual Symposium on Foundations of
Computer Science (FOCS), pages 758–767. IEEE, 2012.

10 Ferdinando Cicalese, Gennaro Cordasco, Luisa Gargano, Martin Milanič, Joseph Peters,
and Ugo Vaccaro. Spread of influence in weighted networks under time and budget con-
straints. Theoretical Computer Science, 586:40–58, 2015.

11 Ferdinando Cicalese, Gennaro Cordasco, Luisa Gargano, Martin Milanič, and Ugo Vaccaro.
Latency-bounded target set selection in social networks. Theoretical Computer Science,
535:1–15, 2014.

12 Amin Coja-Oghlan, Uriel Feige, Michael Krivelevich, and Daniel Reichman. Contagious
sets in expanders. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 1953–1987. SIAM, 2015.

13 Irit Dinur and Shmuel Safra. On the hardness of approximating label-cover. Information
Processing Letters, 89(5):247–254, 2004.

14 Pedro Domingos and Matt Richardson. Mining the network value of customers. In Pro-
ceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 57–66. ACM, 2001.

15 Joel Friedman. Constructing O(n logn) size monotone formulae for the kth threshold
function of n Boolean variables. SIAM Journal on Computing, 15(3):641–654, 1986.

16 Oded Goldreich and Shafi Goldwasser. On the possibility of basing cryptography on the
assumption that P 6= NP., 1998.

17 Michael Goldwasser and Rajeev Motwani. Intractability of assembly sequencing: Unit disks
in the plane. Springer, 1997.

18 David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence through
a social network. In Proceedings of the Ninth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 137–146. ACM, 2003.

19 Mihai Pătraşcu and Ryan Williams. On the possibility of faster sat algorithms. In Pro-
ceedings of the 21st Annual ACM-SIAM symposium on Discrete Algorithms (SODA), pages
1065–1075. Society for Industrial and Applied Mathematics, 2010.

20 Matthew Richardson and Pedro Domingos. Mining knowledge-sharing sites for viral mar-
keting. In Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 61–70. ACM, 2002.

21 Christopher Umans. Hardness of approximating Σp2 minimization problems. In Proceedings
of the 40th Annual Symposium on Foundations of Computer Science (FOCS), pages 465–
474. IEEE, 1999.

Approximation Algorithms for Parallel Machine
Scheduling with Speed-Up Resources
Lin Chen1, Deshi Ye2, and Guochuan Zhang3

1 Institute for Computer Science and Control, Hungarian Academy of Sciences
(MTA SZTAKI), Budapest, Hungary
chenlin198662@gmail.com

2 Zhejiang University, College of Computer Science, Hangzhou, China
yedeshi@zju.edu.cn

3 Zhejiang University, College of Computer Science, Hangzhou, China
zgc@zju.edu.cn

Abstract
We consider the problem of scheduling with renewable speed-up resources. Given m identical ma-
chines, n jobs and c different discrete resources, the task is to schedule each job non-preemptively
onto one of the machines so as to minimize the makespan. In our problem, a job has its original
processing time, which could be reduced by utilizing one of the resources. As resources are dif-
ferent, the amount of the time reduced for each job is different depending on the resource it uses.
Once a resource is being used by one job, it can not be used simultaneously by any other job until
this job is finished, hence the scheduler should take into account the job-to-machine assignment
together with the resource-to-job assignment.

We observe that, the classical unrelated machine scheduling problem is actually a special
case of our problem when m = c, i.e., the number of resources equals the number of machines.
Extending the techniques for the unrelated machine scheduling, we give a 2-approximation al-
gorithm when both m and c are part of the input. We then consider two special cases for the
problem, with m or c being a constant, and derive PTASes (Polynomial Time Approximation
Schemes) respectively. We also establish the relationship between the two parameters m and c,
through which we are able to transform the PTAS for the case when m is constant to the case
when c is a constant. The relationship between the two parameters reveals the structure within
the problem, and may be of independent interest.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.1 Com-
binatorics

Keywords and phrases approximation algorithms, scheduling, linear programming

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2016.5

1 Introduction

We consider a natural generalization of the classical scheduling problem in which there are
multiple different resources available. Each job has an original processing time which may be
reduced by utilizing one of the resources. Since resources are different, the amount of the
time reduced for each job is different depending on the resource it uses. It is a hard constraint
that the usage of the resources does not conflict, that is, once a specific resource is being
used by some job, it becomes unavailable to all the other jobs until this job is completed.
Consequently a good schedule not only needs to choose the right machine and resource for
each job but also needs to sequence jobs on each machine in a proper way such that the
usage of each resource does not conflict.

© Lin Chen, Deshi Ye, and Guochuan Zhang;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016).
Editors: Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans; Article No. 5; pp. 5:1–5:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

5:2 Approximation Algorithms for Parallel Machine Scheduling with Speed-Up Resources

The problem arises naturally in production logistics where a task not only relies on the
machine but also on the personnel it is assigned to. It also has its own right from a theoretical
point of view. As we will provide details later, this problem is a special case of the general
multiprocessor task scheduling problem (P |set|Cmax), which does not admit any constant
ratio approximation algorithm [2], and meanwhile a generalization of the unrelated machine
scheduling problem (R||Cmax), for which a 2-approximation algorithm stands for more than
two decades [11].

We give a formal description of our model. There are m parallel identical machines, n
jobs and c discrete resources. Each job j has a processing time pj and has to be processed
non-preemptively on one of the machines. This processing time might be reduced by utilizing
a resource. Specifically, when resource k is allocated to job j then its processing time becomes
pjk. At most one resource could be allocated to a job and once a resource, say resource k, is
being used by job j, then it can no longer be used by any other job during the time interval
where job j is processed. Throughout this paper, we do not necessarily require pjk ≤ pj . We
assume all parameters are taking integral values.

As we have described, in our model jobs could be processed with or without a resource.
However, we always assume that each job is processed with a resource unless otherwise
specified. Such an assumption causes no loss of generality since we could always introduce m
dummy resources (that could not alter the processing time of any job), one for each machine,
and jobs scheduled on a machine without a resource could then be viewed as processed with
the dummy resource corresponding to this machine. This assumption works for the case that
c, the number of resources, is part of the input. For the case that c is a constant, we return
to the original assumption that the usage of resources is optional.

Related work. One special case of our problem with c = 1 and m = 2 is considered in [12],
in which an FPTAS (Fully Polynomial Time Approximation Scheme) is derived. Another
related problem is considered in [10], in which c = 1 again, but the machines are dedicated,
i.e., for each job the processing machine is known in advance. For the two-machine case,
they prove that the problem is NP-hard but admits an FPTAS. For an arbitrary number of
machines, they give a 3/2-approximation algorithm. Moreover, a PTAS is designed for a
constant number of machines.

Another closely related model is that a job can be given several resources and yet all
resources are identical, so the processing time of each job does not depend on which resource
but the number of resources it uses. For this problem on unrelated machines, Grigoriev et
al. [3] give a (3.75 + ε)-approximation algorithm. On identical machines, Kellerer [9] gives a
(3.5 + ε)-approximation algorithm, which is improved very recently by Jansen, Maack and
Rau [4] to an asymptotic PTAS.

Our problem is a generalization of the classical unrelated machine scheduling problem,
denoted as R||Cmax, in which each job j has a (machine dependent) processing time pij if
it is processed on machine i. Indeed, if the number of machines is equal to the number of
resources, i.e. m = c, and pj =∞ (indeed, it suffices to have pj >

∑
i,j′ pij′ , as in this case a

schedule that does not process job j with any resource is never optimal), then our problem
is equivalent to the unrelated machine scheduling problem. To see why, notice that given
any feasible solution of our problem, we can rearrange jobs so that all jobs using the same
resource, say, k, are scheduled on machine k. By doing so the makespan is not increased,
and meanwhile the new solution is a feasible solution of the unrelated machine scheduling
problem in which machine k is one of the unrelated machines which processes job j with
time pjk. The current best-known approximation ratio for the unrelated scheduling problem

L. Chen, D. Ye, and G. Zhang 5:3

is 2 if m is part of the input, whereas no approximation algorithm could achieve a ratio
strictly better than 2, assuming P 6= NP [11]. If m is a constant, an FPTAS exists [7] and
its current best running time is O(n) + (logm/ε)O(m logm) [5].

Meanwhile, our problem is also a special case of the general multiprocessor task scheduling
problem, denoted as P |set|Cmax, in which each task (job), say, j, could be processed
simultaneously on multiple machines, and its processing time is pj,S where S is the set of
machines we choose to process it. To see why our problem is a special case, we view each
resource as a special machine which we call a resource machine, and each job could either be
processed on a normal machine with processing time pj , or processed simultaneously on a
normal machine i and some resource machine k, with pj,{i,k} = pjk. Thus our problem could
be transformed to a multiprocessor task scheduling problem with m+ c machines. There is
a PTAS for the general multiprocessor task scheduling problem if the number of machines is
a constant, and no constant ratio approximation algorithm exists if the number of machines
is part of the input [2][6]. This result implies that for our problem, if both the number of
resources and the number of machines are constants, then there is a PTAS.

Our contribution. We study the scheduling problem with speed-up resources. As we have
mentioned, it is an intermediate model between the general model P |set|Cmax and the
classical unrelated machine scheduling R||Cmax. We hope our research could bridge the
study of these two well-known models and leads to a better understanding of them.

In this paper, we give the first 2-approximation algorithm when the number of machines
m and resources c are both part of the input. We then consider two special cases with either
m or c being a constant, and provide PTASes, respectively.

For the general case, we observe that the natural LP (Linear Programming) formulation
of the problem has too many constraints, whereas its extreme point solution may split too
many jobs which causes the classical rounding technique from [11] inapplicable. To handle
this, the key idea is to iteratively remove constraints from the LP. We will iteratively modify
the fractional solution such that either we get a new solution with fewer split jobs (which
is the same as the traditional rounding), or we get a new solution for which we need fewer
constraints to characterize it.

Given the lower bound of 1.5 for the unrelated machine scheduling problem R||Cmax, and
hence also for our problem, PTASes are only possible for special cases. We first consider the
case when m is a constant and present a PTAS. To achieve this, we first determine (through
enumeration) the scheduling of a constant number of jobs, and then handle the scheduling of
remaining jobs by formulating it as an LP. We prove that, the LP we construct has a special
structure which enforces that only a constant number among its huge number (non-constant)
of constraints could become tight and correspond to an extreme point solution. Using this
fact we are able to make use of the classical rounding technique from [11] to derive a PTAS.

We then consider the case when c is a constant. We establish an interesting relationship
between this special case and the case when m is a constant. Indeed, we show that it suffices
to consider solutions where all jobs using resources are scheduled only on O(c) machines.
Thus, this special case is a combination of scheduling with resources on O(c) machines,
together with the classical scheduling without resources on the remaining m−O(c) machines.

2 General case

In this section, we consider the problem when the number of machines and resources, i.e., m
and c, are both part of the input and give a 2-approximation algorithm. Recall that we can
assume every job is processed with one resource.

APPROX/RANDOM’16

5:4 Approximation Algorithms for Parallel Machine Scheduling with Speed-Up Resources

We start with a natural LP formulation of this problem. Let xijk = 1 denote that job j is
processed on machine i with resource k, and xijk = 0 otherwise. We first ignore the disjoint
condition, i.e., the usage of each resource is not in conflict, and establish the following LPr.

m∑
i=1

c∑
k=1

xijk = 1 ∀j (1a)

m∑
i=1

n∑
j=1

pjkxijk ≤ T ∀k (1b)

n∑
j=1

c∑
k=1

pjkxijk ≤ T ∀i (1c)

0 ≤ xijk ≤ 1 (1d)
xijk = 0 if pik > T. (1e)

Constraint (1a) ensures that every job is scheduled. Constraint (1b) ensures that the total
processing time of jobs processed with the same resource k does not exceed T . Constraint (1c)
ensures that the total processing time of jobs on each machine does not exceed T . Through
binary search we can find the minimum integer T = T ∗ such that LPr admits a feasible
solution, which is obviously a lower bound on the optimal solution. We denote by x∗ the
fractional solution of LPr for T = T ∗. Our rounding technique tries to make x∗ into an
integral solution so that (1b) and (1c) could be violated but not much, and the disjoint
condition becomes respected, i.e., the disjoint condition which is not met by the LPr will be
achieved via rounding.

We remark that in the classical unrelated machine scheduling problem, the LP relaxation
has only n+m constraints, hence in its extreme point solution only m jobs would get split.
By re-assigning these jobs to m machines, one per machine, a 2-approximation solution
is derived. However, our LPr has n + m + c constraints. Its extreme point solution may
cause m+ c jobs to be split, which is too many for carrying out the subsequent re-assigning
procedure. To handle this, the key idea of our rounding procedure is to reduce the number
of constraints via well structured fractional solutions.

In the following we define well structured solutions as well as its rank, both of which are
crucial for our rounding procedure.

Given any fractional solution x when T = T ∗, we can compute the fraction of job j

processed with resource k through xjk =
∑m
i=1 xijk ∈ [0, 1]. We call x̂ = (xjk) a semi-solution

to LPr.
Obviously it holds for every resource k that

∑n
j=1

∑m
i=1 pjkxijk =

∑n
j=1 pjkxjk ≤ T ∗. We

say resource k is saturated with respect to x̂ (and also x) if the equality holds. The number
of saturated resources is called the degree of x̂ (and x), and denoted as d(x̂) (= d(x)).

We call
∑n
j=1 pjkxjk the load of resource k. A semi-solution is called feasible, if the load

of each resource is no greater than T ∗, and the total load of all resources is no greater than
mT ∗. Obviously any feasible solution of LPr implies a feasible semi-solution. On the other
hand, any feasible semi-solution also implies a feasible solution of LPr through the following
Direct Schedule. (For simplicity we suppose resource 1 to resource d = d(x̂) are saturated.)

Direct schedule
1. For 1 ≤ k ≤ d, put (fractions of) jobs using resource k onto machine k.
2. For k > d, put (fractions of) jobs using unsaturated resources arbitrarily onto machine

d+ 1 to machine m such that the load of each machine is no greater than T ∗.

L. Chen, D. Ye, and G. Zhang 5:5

Consequently, each solution has its corresponding semi-solution, and vice versa.
A semi-solution x̂ (and also its corresponding solution x) is called well structured, if every

job uses at most one unsaturated resource. We have the following lemma.

I Lemma 1. Given a feasible semi-solution x̂, a feasible well structured semi-solution x̂′ can
be constructed such that d(x̂′) ≥ d(x̂).

Proof. For each job j, if it uses two or more unsaturated resources, then xj,k1 > 0 and
xj,k2 > 0 for some unsaturated resources k1 and k2. For simplicity we assume the total load
of jobs using the two resources are L1 and L2 respectively.

Suppose without loss of generality pj,k1 ≤ pj,k2 , we can choose δ = min{xj,k2 ,
T∗−L1
pj,k1

}
and replace xj,k1 and xj,k2 with xj,k1 + δ and xj,k2 − δ respectively. By doing so either
resource k1 becomes saturated or xj,k2 becomes 0. In both cases the number of unsaturated
resources used by job j is decreased by one. Notice that by altering x̂ in this way, the total
processing time of all jobs does not increase and the load of each resource is still no greater
than T ∗.

We iteratively apply the above procedure until every job uses at most one unsaturated
resource, and a feasible well structured semi-solution x̂′ with d(x̂′) ≥ d(x̂) is derived. J

Now we are able to define the rank of a well structured (semi-)solution.
Again we assume that resource 1 to resource d(= d(x̂)) are saturated. A bipartite graph

G(x̂) = (V1(x̂) ∪ V2(x̂), E(x̂)) corresponding to x̂ is constructed in the following way.
We let V1(x̂) = {J1, J2, · · · , Jn} be the set of job nodes. If d < m, then V2(x̂) =

{R0, R1, R2, · · · , Rd} with nodes R1 to Rd corresponding to the saturated resources, and R0
corresponding to all the unsaturated resources. Otherwise d = m, then there is no unsaturated
resources and V2(x̂) = {R1, R2, · · · , Rd}. Let xj0 =

∑c
k=d+1

∑m
i=1 xijk =

∑c
k=d+1 xjk ∈

[0, 1] if R0 exists. For 0 ≤ k ≤ d, there is an edge (j, k) ∈ E(x̂) if and only if 0 < xjk < 1.
Additionally, if there are any isolated nodes, we simply remove them (from V1(x̂)). This

completes the construction of G(x̂) for x̂.
The rank of a well structured semi-solution x̂ is defined as r(x̂) = |E(x̂)|+m− d(x̂).
The rank will serve as a potential function which allows us to iteratively round an initial

feasible solution until a certain criterion is satisfied. Indeed, we have the following.

I Lemma 2. Given a well structured semi-solution x̂ and its corresponding graph G(x̂) =
(V1(x̂) ∪ V2(x̂), E(x̂)), let Gi(x̂) = (V i1 (x̂) ∪ V i2 (x̂), Ei(x̂)) be any of its connected component.
If |Ei(x̂)| > |V i1 (x̂)|+ |V i2 (x̂)|, then a well structured solution x̂′ of LPr with a lower rank
(i.e. r(x̂′) ≤ r(x̂)− 1) can be constructed in polynomial time.

Given the above lemma, we are able to show the following key theorem, which directly
implies a 2-approximation algorithm.

I Theorem 3. Let x∗ be the fractional solution of LPr as we define before. Then an integer
solution xIP = (xIPijk) for the following Integer Programming can be derived in polynomial
time.

m∑
i=1

c∑
k=1

xijk = 1 ∀j

n∑
j=1

m∑
i=1

pjkxijk ≤ T ∗ + pmax ∀k

n∑
j=1

c∑
k=1

pjkxijk ≤ T ∗ + pmax ∀i

xijk ∈ {0, 1}

APPROX/RANDOM’16

5:6 Approximation Algorithms for Parallel Machine Scheduling with Speed-Up Resources

Here pmax = maxj,k{pjk|x∗ijk 6= 0}. And moreover, we could schedule jobs in a proper
sequence on each machine so that the disjoint condition is also satisfied. Hence the makespan
of the generated schedule is at most twice the optimal solution.

3 The special case with a constant number of machines

In this section, we show that the problem admits a PTAS if the number of machines m is a
given constant. Again, we assume that every job is processed with one resource.

Let p̄j = min{pj1, · · · , pjc} be the shortest possible processing time of job j and we call
it the critical processing time. The resource with which the processing time of job j achieves
p̄j is then called the critical resource of j (if there are multiple such resources, we choose
arbitrarily one). We sort jobs so that p̄1 ≥ p̄2 ≥ · · · ≥ p̄n. Consider the first q jobs where q
is some constant to be fixed later, we call them critical jobs, and others non-critical jobs.

Notice that we have a 2-approximation algorithm for the general case, thus we can
compute some value T such that the makespan of the optimum solution (i.e., OPT) falls
in [T/2, T]. We provide an algorithm such that given any t ∈ [T/2, T] and a small positive
ε > 0, it either determines that OPT > t, or produces a feasible schedule with makespan
bounded by t+O(εT).

The basic idea of the algorithm is simple. We first determine (through enumeration) the
scheduling of all the critical jobs. For each possible scheduling of the critical jobs, we set up
an LP (Linear Programming) for the remaining jobs. If such an LP does not admit a feasible
solution, then OPT > t. Otherwise we compute its extreme point solution and show that in
such a solution only a constant number (depending on q and ε) of jobs get split. Finally we
show how to construct a feasible schedule based on such a solution.

Configuration schedules. Let λ = 1/ε be an integer. Let ST = {0, T ε/q, 2Tε/q, · · · , T +
2Tε} be the set of scaled time points (and hence |ST | = λq + 2q + 1). Given a schedule, the
processing interval of job j is defined to be the interval (uj , vj) such that the processing of j
starts at time uj and ends at time vj . We say two jobs overlap if they use the same resource
and the intersection of their processing interval is nonempty.

A container for a critical job, say, j, is a four-tuple ~vj = (i, kj , aj , bj) where 1 ≤ i ≤ m,
1 ≤ kj ≤ c, aj , bj ∈ ST . It implies that job j is processed with resource kj on machine i
during the time window (aj , bj) (i.e., its processing interval (uj , vj) is a subset of (aj , bj)),
and furthermore, no other jobs are processed during (aj , bj) on machine i.

Obviously there are mc(λq + 2q + 1)2 different kinds of containers. A configuration is
then a list of containers for all the critical jobs, namely (~v1, ~v2, · · · , ~vq). It can be easily seen
that there are at most mqcq(λq + 2q + 1)2q different configurations.

A feasible schedule is called a configuration schedule if we can compute a container for
each critical job. Notice that this is not always the case since aj , bj ∈ ST , and it is possible
that any interval (aj , bj) during which the critical job j is processed contains some other
jobs. Nevertheless, with O(ε)-loss we can focus on configuration schedules, as is implied by
the following lemma.

I Lemma 4. Given a feasible schedule of makespan t, there exists a feasible configuration
schedule with makespan no more than t+ 2Tε.

Linear Programming for non-critical jobs. Lemma 4 ensures the existence of a configuration
schedule whose makespan is bounded by OPT + 2Tε. Thus for any t ∈ [T/2, T], if t ≥ OPT
then there exists a configuration schedule whose makespan is bounded by t+ 2Tε.

L. Chen, D. Ye, and G. Zhang 5:7

Recall that there are η ≤ mqcq(λq + 2q + 1)2q different configurations. Let them be CF1,
CF2, · · · , CFη. For each configuration, say, CFκ, the scheduling of critical jobs are fixed. In
the following we set up a linear programming LPm(CFκ) for the remaining jobs.

Suppose according to CFκ there are ζ ≤ 2q different container points (i.e., the time point
when a container starts or ends). We sort them in increasing order as t1 < t2 < · · · < tζ . We
plug in tζ+1 = t+ 2Tε and t0 = 0.

During each interval (ti, ti+1) (0 ≤ i ≤ ζ), if there is a critical job being processed on a
machine, then this machine is called occupied. Otherwise we call it a free machine. Let Mi

be the set of free machines during (ti, ti+1). Similarly during each interval (ti, ti+1), each
resource is either used by a critical job or is not used. Let Ri be the set of resources that are
not used during (ti, ti+1).

Recall that we sort jobs such that p̄1 ≥ p̄2 ≥ · · · ≥ p̄n, and the remaining non-critical
jobs are job q + 1 to job n. We set up a linear programming LPm(CFκ) as follows.

ζ∑
i=0

∑
k∈Ri

xijk = 1, q + 1 ≤ j ≤ n (2a)

n∑
j=q+1

∑
k∈Ri

pjkxijk ≤ (ti+1 − ti)|Mi|, 0 ≤ i ≤ ζ (2b)

n∑
j=q+1

pjkxijk ≤ ti+1 − ti, 0 ≤ i ≤ ζ, k ∈ Ri (2c)

xijk ≥ 0, 0 ≤ i ≤ ζ, q + 1 ≤ j ≤ n, k ∈ Ri (2d)

Here xijk denotes the fraction of job j processed during (ti, ti+1) with resource k. Constraint
(2a) ensures that each non-critical job is scheduled. Since during time interval (ti, ti+1), only
|Mi| machines are free, thus the total load (processing time) of non-critical jobs should not
exceed (ti+1 − ti)|Mi|, which is implied by (2b). Furthermore, during this interval, the total
load of non-critical jobs using any resource k ∈ Ri is no greater than ti+1 − ti (otherwise the
disjoint condition is violated), as is implied by (2c).

As long as t ≥ OPT , among all the configurations there exists some CFκ such that
LPm(CFκ) admits a feasible solution. If there is no such a configuration, then we conclude
that t < OPT . Otherwise, we show a feasible schedule with makespan t + 3tε could be
generated.

I Lemma 5. Let x be an extreme point solution of LPm(CFκ) for some κ, then we have
|{j|0 < xijk < 1 for some i, k}| ≤ (m + 1)(2q + 1), i.e., at most (m + 1)(2q + 1) jobs are
split.

Proof. Suppose there are ψ ≥ n− q non-zero variables in the extreme point solution, then
they correspond to exact ψ tight constraints among constraints (1), (2) and (3).

Notice that constraints (1) and (2) are composed of n− q and ζ + 1 different inequalities
respectively, while constraint (3) is made up of (ζ + 1)c inequalities. We show that, among
the ψ equalities (tight constraints), at most m(ζ + 1) ones could be from (3). To see
why, consider each 0 ≤ i ≤ ζ. For any i, there are at most |Mi| ≤ m equalities from (3)
since otherwise, the constraint

∑n
j=q+1

∑
k∈Ri pjkxijk ≤ (ti+1 − ti)|Mi| is violated. Thus

ψ ≤ n− q + (m+ 1)(ζ + 1) ≤ n− q + (m+ 1)(2q + 1).
Now using a similar argument as [11], we denote µ as the number of jobs getting split

(i.e., xijk ∈ (0, 1) for some i and k), then 2µ + n − q − µ ≤ ψ ≤ n − q + (m + 1)(2q + 1),
which completes the proof. J

APPROX/RANDOM’16

5:8 Approximation Algorithms for Parallel Machine Scheduling with Speed-Up Resources

Based on the solution satisfying the above lemma, we show how to generate a near optimal
feasible schedule.

First, all the critical jobs are fixed according to CFκ and we do not need to consider them.
Let D be the set of (at most (m+ 1)(2q + 1)) split jobs. Temporarily we do not consider
them. For each of the remaining non-critical jobs, say, j, there exist some i and k such that
xijk = 1, implying that job j should be scheduled during (ti, ti+1) with resource k. Let Ui
be the set of all non-critical jobs (excluding jobs in D) to be scheduled during (ti, ti+1).

Now we aim to schedule jobs of Ui onto |Mi| free machines during (ti, ti+1). A preemptive
schedule satisfying the disjoint condition could be constructed as follows: We order jobs
in Ui such that jobs using the same resource are adjacent. We pick a free machine of Mi

and put jobs one by one onto it according to the job sequence until their total processing
time exceeds ti+1 − ti. Then the last job is split and on the next machine we start with its
remaining fraction, followed by next jobs in the sequence.

Notice that Constraints (2b) and (2c) ensure that any job of Ui has a processing time
no more than ti+1 − ti, and their total processing time is no more than |Mi|(ti+1 − ti), thus
the above method returns a preemptive schedule where at most |Mi| ≤ m jobs are split.
Furthermore, the disjoint condition is satisfied. To see why, consider any resource k. All jobs
using this resource are adjacent in the job sequence and their total processing time is no
more than ti+1 − ti, hence they are scheduled either on one machine or on two machines. If
they are on one machine then certainly there is no overlap, otherwise on one machine they
are started from ti and on the other machine they are finished until ti+1, and if there is
overlap then their total processing time becomes strictly larger than ti+1 − ti, which is a
contradiction.

Carrying out the above procedure for each (ti, ti+1), we derive a preemptive schedule in
which at most m(2q + 1) jobs get split. We take them out and add them to D. Now it can
be easily seen that except for jobs in D, all the other jobs are scheduled integrally during
(0, t+ 2Tε) and the disjoint condition is satisfied.

There are at most (2m+1)(2q+1) jobs in D. Consider the sum of their critical processing
times. It remains to show that, there exists a constant q (depending on m and 1/ε), such that
this value is bounded by Tε. If this claim holds, then we simply put jobs in D on machine 1
during interval (t+ 2Tε, t+ 3Tε) and let each job be processed with its critical resource. A
feasible schedule with makespan no more than t+ 3Tε is derived.

The following lemma from [7] ensures the existence of such a q.

I Lemma 6 ([7]). Suppose d1 ≥ d2 ≥ · · · ≥ dn ≥ 0 is a sequence of real numbers and
D =

∑n
j=1 dj . Let u, v be nonnegative integers, α > 0, and assume that n is sufficiently large

(i.e., n > (d 1
αeu + 1)(v + 1)d 1

α e suffices). Then, there exists an integer q = q(u, v, α) such
that

dq + dq+1 + · · ·+ dq+u+vq−1 ≤ αD,

q ≤ (v + 1)d 1
α e−1 + u[1 + (v + 1) + · · ·+ (v + 1)d 1

α e−2].

In our problem,
∑n

j=1
p̄j

m ≤ OPT ≤ T , thus we choose α = ε
m , u = 2m+1 and v = 4m+2,

and derive that q ≤ (6m+ 3)(4m+ 2)dmε e, which is a constant. Thus we have the following.

I Theorem 7. There exists a PTAS for the scheduling with speed-up resources problem when
m is a constant.

L. Chen, D. Ye, and G. Zhang 5:9

4 The special case with a constant number of resources

In this section we assume that each job could be processed with or without a resource. We
show that the problem when c is a constant admits a PTAS. The following lemma, which
characterize the relationship between the two parameters m and c, is the key to the algorithm.

I Lemma 8. Given any positive integer λ = 1/ε, if there is a feasible solution with makespan
T and m > 3cλ, then there exists a feasible solution with makespan T (1 + ε) and all the jobs
processed with resources are distributed only on 3cλ machines.

Proof idea. The proof is constructive. We only give the main idea here and the reader
may refer to the full version of this paper for details. We start with the feasible solution of
makespan T and modify it iteratively into the solution satisfying the lemma. During the
modification, we only move jobs and do not change the resource each job uses. For simplicity,
given a solution, a job processed with resource is called a resource job, and otherwise it is
called a non-resource job.

We postpone all jobs by Tε and then divide the time horizon [0, T (1 + ε)] equally into
λ+ 1 = 1/ε+ 1 sub-intervals, each of length Tε. Consider each time point Tεη for 1 ≤ η ≤ λ.
On each machine, if there is any resource job whose processing interval contains one of these
time points, this machine becomes a good machine. It is not difficult to see there are at most
2cλ good machines. We consider the remaining bad machines. We additionally select cλ
machines out of them and move all resource jobs of bad machines onto them. This procedure
is carried out iteratively. For 1 ≤ η ≤ λ, suppose we have modified the solution so that the
following is true: Among all bad machines, there exist c(η − 1) special machines (called as
semi-good machines) such that if the processing of a resource job is finished earlier or at
the time Tεη, then it is either on a good machine or on a semi-good machine. Notice that
when η = 1 this condition is trivially true since we postpone all jobs by Tε and none of
them could finish before Tε. In step η, we try to additionally select c machines out of the
remaining machines (not good or semi-good) and try to move onto them all resource jobs
scheduled within (Tεη, T ε(η + 1)). Assume for simplicity that there is no job crossing time
points Tεη and Tε(η + 1) on the c machines we have selected. The crucial observation is
that these c additional machines are neither good nor semi-good, hence no resource jobs
are scheduled on them before Tεη. Given that we have postponed all jobs by Tε, on these c
additional machines we could shift back by Tε all the non-resource jobs before Tε(η + 1),
whereas enforcing that during (Tεη, T ε(η+ 1)) only resource jobs are left on these c machines.
Now we could simply take out all the resource jobs scheduled within (Tεη, T ε(η + 1)), and
let all jobs using the same resource be scheduled on one of the c machines. By doing so
the disjoint condition is respected and by adding these additional c machines to semi-good
machines, we can continue the above procedure for η + 1. J

Let pj0 = pj , τ be some constant to be fixed later and Λ = 3cτλ(λ + 1). Again
p̄j = min{pj0, pj1, · · · , pjc} is called the critical processing time of job j. We sort all jobs
in non-increasing order of their critical processing times. Let T be some integer such that
T/2 ≤ OPT ≤ T . A job is called big if p̄j > Tε/τ , and small otherwise. With O(ε)-loss we
could round (down) the processing times of big jobs such that pjk is a multiple of Tε/Λ (if
pjk > T we simply round it to ∞). It is easy to verify that there are φ ≤ (λΛ)c+1 different
kinds of big jobs.

According to Lemma 8, with additional O(ε)-loss we may assume that all jobs processed
with resources are on the first 3cλ machines. We call them critical machines and others non-
critical machines. With additional O(ε)-loss we could further assume that every (rounded)

APPROX/RANDOM’16

5:10 Approximation Algorithms for Parallel Machine Scheduling with Speed-Up Resources

big job j on critical machines has starting and ending times multiples of Tε/Λ. Let Sol
be the solution of makespan OPT + T ·O(ε) satisfying all above requirements (the reader
may refer to the full version of this paper for a formal proof). In the following we give an
algorithm such that given t ∈ [T/2, T], it either returns a feasible solution of makespan
t+O(Tε), or concludes there is no feasible solution of makespan no more than t.

Consider non-critical machines in Sol. We first classify jobs into groups according to pj0.
Let Gl = {j|(l − 1)Tε2 < pj0 ≤ lT ε2, 1 ≤ j ≤ n} for λ+ 1 ≤ l ≤ λ2 and Gλ = {j|pj0 ≤ Tε}.
Notice that now we do not round the processing times but only classify jobs into groups.
Similar as the traditional parallel machine scheduling problem [1], we use a (λ2 − λ + 2)-
tuple (νλ, νλ+1, · · · , νλ2) to represent the jobs scheduled on a non-critical machine. Here νl
(λ+ 1 ≤ l ≤ λ2) is the number of jobs from Gl on this machine. Furthermore, νλ is computed
in the following way: we first compute the total processing time of jobs from Gλ and let it be
ξ, then νλ = b ξTεc. It is easy to verify that there are at most λO(λ2) different kinds of tuples.
We list all the tuples as (νλ(i), · · · , νλ2(i)) for 1 ≤ i ≤ γ = λO(λ2). We say a non-critical
machine is of type i, if the jobs on it correspond to the tuple (νλ(i), · · · , νλ2(i)).

Now we define an outline of a feasible schedule. It indicates which big jobs are scheduled on
critical machines. Indeed, given a schedule, an outline for it is a φ-tuple ω = (ω1, ω2, · · · , ωφ),
where ωi the number of the i-th kind of big jobs that are scheduled on critical machines.
Recall that there are at most Λ big jobs on critical machines, there are (Λ + 1)φ different
possible outlines and we could guess out the outline for Sol. Let the outline be Oι. Let Jb
be the set of all big jobs and CR be the set of big jobs on critical machines according to Oι.

Similar as we did in Section 3, we define a container (i, kj , aj , bj) for a big job j on critical
machines, where kj is its resource, and aj , bj are the starting and ending times, which is a
multiples of Tε/Λ. We also define configurations in a similar way. Let q′ ≤ |CR| be some
constant to be determined later. We take out q′ jobs in CR with the largest critical processing
times and let W ⊂ CR be the set of them. A configuration is a list of q′ containers for the q′
jobs in W . Simple calculations show that there are (λΛ)O(q′) different configurations.

Suppose we guess the correct outline Oι and configuration CFκ. According to the
configuration, we sort all different container points as t1 < t2 < · · · tζ with ζ ≤ 2q′. Again we
plug in t0 = 0 and tζ+1 = t and set up a mixed integer linear programming MILP (Oι, CFκ).

ζ∑
i=0

∑
k∈Ri

xijk = 1, j ∈ CR \W (3a)

xj0 = 1, j ∈ Jb \ CR (3b)

xj0 +
ζ∑
i=0

∑
k∈Ri

xijk = 1, j 6∈W (3c)

∑
j 6∈W

∑
k∈Ri

pjkxijk ≤ (ti+1 − ti)|Mi|, 0 ≤ i ≤ ζ (3d)

∑
j 6∈W

pjkxijk ≤ ti+1 − ti, 0 ≤ i ≤ ζ, k ∈ Ri \ {0} (3e)

zi = 0 if
λ2∑
l=λ

νl(i)(l − 1)Tε2 ≥ t (3f)

γ∑
i=1

zi = m− 3cλ (3g)

L. Chen, D. Ye, and G. Zhang 5:11

∑
j∈Gl

xj0 =
γ∑
i=1

ziνl(i), λ+ 1 ≤ l ≤ λ2 (3h)

∑
j∈G0

xj0pj0 ≤
γ∑
i=1

ziνl(i)lT ε, λ ≤ l ≤ λ2 (3i)

xijk ≥ 0, xj0 ≥ 0 0 ≤ i ≤ ζ, j 6∈W,k ∈ Ri (3j)
zi ≥ 0, zi ∈ Z, 1 ≤ i ≤ γ (3k)

Here we use similar notations as that of Section 3. Note that the positions of jobs in W are
already fixed by CFκ and we do not need to consider them. Ri is the set of resources that
are not used by jobs of W during (ti, ti+1). Specifically, 0 is taken as a special resource such
that if job j is processed without any resource, then it is taken as processed with resource 0.
Thus resource 0 is always available and 0 ∈ Ri for any 0 ≤ i ≤ ζ. Mi is the set of critical
machines that are not occupied by jobs of W during (ti, ti+1) and again we call them as free
machines.

We explain the variables used. xijk is the fraction of job j scheduled during (ti, ti+1) with
resource k. Since during this interval only resources of Ri are available, thus it is only defined
for k ∈ Ri. Furthermore, xij0 denotes the fraction of job j scheduled without any resource
and as we mention before, it is viewed as processed with resource 0. xj0 is the fraction of
job j scheduled on non-critical machines. zi is the number of non-critical machines of type i.

We explain the constraints. Notice that a big job (of Jb) is either on critical machines or
on non-critical machines, and this is determined beforehand by Oι. For j ∈ CR, it should be
on critical machines and there are two cases. One is that j ∈W , then the position of this
job is further determined through CFκ and we do not need to consider it. The other case is
j ∈ CR \W , then it should be on critical machines, just as (3a) implies. For big jobs that
are not on critical machines, they are on non-critical machines, which is implied by (3b).
Constraint (3c) implies that each job should be scheduled either on critical machines or on
non-critical machines, and this holds for both big and small jobs.

Constraints (3d) and (3e) are the same with the constraints in LPm we derive in Section 3.
(3d) means the total processing time of jobs scheduled during (ti, ti+1) on critical machines
should not exceed the available times provided by free machines. This is straightforward
since the other 3cλ− |Mi| critical machines are occupied by jobs of W and we can not put
jobs on it. (3e) means the total processing time of jobs using resource k ∈ Ri during (ti, ti+1)
should not exceed ti+1 − ti. Notice that 0 should be excluded since it is not a real resource,
i.e., jobs processed without resource could be processed at the same time if they are on
different machines.

Constraints (3f),(3g),(3h),(3i) are standard constraints. (3f) excludes tuples that are
infeasible. (3g) holds as each non-critical machine is of a certain type. Both sides of (3h)
equal to the number of jobs in Gl that are scheduled on non-critical machines. Notice that
here Gλ is not taken account of since such jobs can be split, just as in the classical scheduling
problem. The left side of (3i) calculate the total processing time of jobs in Gl on non-critical
machines and the right side is obviously its upper bound.

It can be easily seen that the in the above MILP there is only a constant number of
integer variables which is bounded by γ = (λ+ 4)λ2−λ+1, i.e., 2O(1/ε2 log(1/ε)), thus it could
be solved in f(1/ε)poly(n, logP) time using Kannan’s algorithm [8]. Here P =

∑n
j=1 p̄j is a

natural upper bounded for T and f(1/ε) only depends on 1/ε. Given a feasible solution of
the MILP (Oι, CFκ), we can show that it could be rounded into an integer solution with an
additive loss of Tε · O(λ2 + cq′). This is again by observing that once we fix the value of

APPROX/RANDOM’16

5:12 Approximation Algorithms for Parallel Machine Scheduling with Speed-Up Resources

integer variables zi, there are only a limited number of constraints for the fractional variable
xijk, whereas we get at most O(λ2 + cq′) split (small) jobs. Choosing proper q′ and τ allows
us to bound the overall increase by O(ε)OPT . The reader is referred to the full version of
this paper for details.

I Theorem 9. There is a PTAS for the scheduling with speed-up resources problem when c
is a constant.

Acknowledgements. We thank Janer Chen for pointing out the relationship between the
problem we consider and P |set|Cmax and other useful communications.

References
1 N. Alon, Y. Azar, G.J. Woeginger, and T. Yadid. Approximation schemes for scheduling.

In 8th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’97), pages 493–500,
1997. doi:10.1109/SFCS.1975.23.

2 J. Chen and A. Miranda. A polynomial time approximation scheme for general multipro-
cessor job scheduling. SIAM journal on computing, 31(1):1–17, 2001. doi:10.1145/361604.
361612.

3 A. Grigoriev, M. Sviridenko, and M. Uetz. Machine scheduling with resource dependent
processing times. Mathematical programming, 110(1):209–228, 2007. doi:10.1145/361604.
361612.

4 K. Jansen, M. Maack, and M. Rau. Approximation schemes for machine scheduling with
resource (in-)dependent processing times. In 27th Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), pages 1526–1542, 2016. doi:10.1109/SFCS.1975.23.

5 K. Jansen and M. Mastrolilli. Scheduling unrelated parallelmachines: linear programming
strikes back. Technical report, University of Kiel, 2010. Technical Report Bericht-Nr. 1004.
doi:10.1109/SFCS.1975.23.

6 K. Jansen and L. Porkolab. General multiprocessor task scheduling: Approximate solutions
in linear time. In Workshop on Algorithms and Data Structures (WADS’99), pages 110–121,
1999. doi:10.1109/SFCS.1975.23.

7 K. Jansen and L. Porkolab. Improved Approximation Schemes for Scheduling Unrelated
Parallel Machines. Mathematics of Operations Research, 26(2):324–338, 2001. doi:10.
1145/361604.361612.

8 R. Kannan. Minkowski’s convex body theorem and integer programming. Mathematics of
Operations Research, 12:415–440, 1987. doi:10.1145/361604.361612.

9 H. Kellerer. An approximation algorithm for identical parallel machine scheduling with
resource dependent processing times. Operations Research Letters, 36(2):157–159, 2008.
doi:10.1145/361604.361612.

10 H. Kellerer and V.A. Strusevich. Scheduling parallel dedicated machines with the speeding-
up resource. Naval Research Logistics, 55(5):377–389, 2008. doi:10.1145/361604.361612.

11 J. K. Lenstra, D. B. Shmoys, and Eva Tardos. Approximation algorithms for scheduling
unrelated parallel machines. Mathematical Programing, 46:259–271, 1990. doi:10.1145/
361604.361612.

12 H. Xu, L. Chen, D. Ye, and G. Zhang. Scheduling on two identical machines with a speed-
up resource. Information Processing Letters, 111(7):831–835, 2011. doi:10.1145/361604.
361612.

http://dx.doi.org/10.1109/SFCS.1975.23
http://dx.doi.org/10.1145/361604.361612
http://dx.doi.org/10.1145/361604.361612
http://dx.doi.org/10.1145/361604.361612
http://dx.doi.org/10.1145/361604.361612
http://dx.doi.org/10.1109/SFCS.1975.23
http://dx.doi.org/10.1109/SFCS.1975.23
http://dx.doi.org/10.1109/SFCS.1975.23
http://dx.doi.org/10.1145/361604.361612
http://dx.doi.org/10.1145/361604.361612
http://dx.doi.org/10.1145/361604.361612
http://dx.doi.org/10.1145/361604.361612
http://dx.doi.org/10.1145/361604.361612
http://dx.doi.org/10.1145/361604.361612
http://dx.doi.org/10.1145/361604.361612
http://dx.doi.org/10.1145/361604.361612
http://dx.doi.org/10.1145/361604.361612

The Densest k-Subhypergraph Problem

Eden Chlamtáč∗1, Michael Dinitz†2, Christian Konrad‡3,
Guy Kortsarz§4, and George Rabanca¶5

1 Department of Computer Science, Ben Gurion University, Beersheva, Israel
chlamtac@cs.bgu.ac.il.

2 Dept. of Computer Science, Johns Hopkins University, Baltimore, MD, USA
mdinitz@cs.jhu.edu

3 ICE-TCS, School of Computer Science, Reykjavik University, Iceland
christiank@ru.is

4 Computer Science Department, Rutgers University, Camden, NY, USA
guyk@crab.rutgers.edu

5 Department of Computer Science, The Graduate Center, CUNY, USA
grabanca@gradcenter.cuny.edu

Abstract
The Densest k-Subgraph (DkS) problem, and its corresponding minimization problem Smallest
p-Edge Subgraph (SpES), have come to play a central role in approximation algorithms. This is
due both to their practical importance, and their usefulness as a tool for solving and establishing
approximation bounds for other problems. These two problems are not well understood, and it
is widely believed that they do not an admit a subpolynomial approximation ratio (although the
best known hardness results do not rule this out).

In this paper we generalize both DkS and SpES from graphs to hypergraphs. We consider the
Densest k-Subhypergraph problem (given a hypergraph (V,E), find a subsetW ⊆ V of k vertices
so as to maximize the number of hyperedges contained in W) and define the Minimum p-Union
problem (given a hypergraph, choose p of the hyperedges so as to minimize the number of vertices
in their union). We focus in particular on the case where all hyperedges have size 3, as this is
the simplest non-graph setting. For this case we provide an O(n4(4−

√
3)/13+ε) ≤ O(n0.697831+ε)-

approximation (for arbitrary constant ε > 0) for Densest k-Subhypergraph and an Õ(n2/5)-
approximation for Minimum p-Union. We also give an O(

√
m)-approximation for Minimum

p-Union in general hypergraphs. Finally, we examine the interesting special case of interval
hypergraphs (instances where the vertices are a subset of the natural numbers and the hyperedges
are intervals of the line) and prove that both problems admit an exact polynomial time solution
on these instances.

1998 ACM Subject Classification G.2.2 Graph Theory, F.2.2 Nonnumerical Algorithms and
Problems

Keywords and phrases Hypergraphs, Approximation algorithms

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2016.6

∗ Partially supported by ISF grant 1002/14.
† Partially supported by NSF grants 1464239 and 1535887.
‡ Supported by Icelandic Research Fund grants 120032011 and 152679-051.
§ Partially supported by NSF grants 1218620 and 1540547.
¶ Supported by ARL grant W911NF-09-2-0053

© Eden Chlamtáč, Michael Dinitz, Christian Konrad, Guy Kortsarz, and George Rabanca;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016).
Editors: Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans; Article No. 6; pp. 6:1–6:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.6
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

6:2 The Densest k-Subhypergraph Problem

1 Introduction

Two of the most important outstanding problems in approximation algorithms are the
approximability of the Densest k-Subgraph problem (DkS) and its minimization version, the
Smallest p-Edge Subgraph problem (SpES or min-DkS). In DkS we are given as input a graph
G = (V,E) and an integer k, and the goal is to find a subset V ′ ⊆ V with |V ′| = k which
maximizes the number of edges in the subgraph of G induced by V ′. In the minimization
version, SpES, we are given a lower bound p on the number of required edges and the goal
is to find a set V ′ ⊆ V of minimum size so that the subgraph induced by V ′ has at least p
edges. These problems have proved to be extremely useful: for example, a variant of DkS
was recently used to obtain a new cryptographic system [3]. The same variant of the DkS
problem was shown to be central in understanding financial derivatives [4]. The best-known
algorithms for many other problems involve using an algorithm for Densest k-Subgraph or
SpES as a black box (e.g. [22, 15, 11]).

Despite decades of work, very little is actually known about these problems. The first
approximation ratio for DkS was O(n2/5) [18] and was devised in 1993. These days, 23 years
later, the best known ratio for the Densest k-Subgraph is O(n1/4+ε) for arbitrarily small
constant ε > 0 [7], and the best known approximation for SpES is O(n3−2

√
2+ε) for arbitrarily

small constant ε > 0 [9]. Given the slow improvement over 23 years, it is widely believed that
DkS and SpES do not admit better than a polynomial approximation ratio. Furthermore, the
existing approximation guarantees are tight assuming the recently conjectured hardness of
finding a planted dense subgraph in a random graph (for certain parameters) [7, 9]. However,
there has been very little progress towards an actual proof of hardness of approximation. It
is clear that they are both NP-hard, but that is all that is known under the assumption that
P 6= NP . Under much stronger complexity assumptions it is known that they cannot be
approximated better than some constant [16, 12] or any constant [1], but this is still a long
way from the conjectured polynomial hardness.

Based on the believed hardness of DkS and SpES, they have been used many times to
give evidence for hardness of approximation. For example, consider the Steiner k-Forest
problem in which the input is an edge weighted graph, a collection of q pairs {si, ti}qi=1, and
a number k < q. The goal is to find a minimum cost subgraph that connects at least k of
the pairs. It is immediate to see that SpES is a special case of the Steiner k-forest problem1,
and hence it seems highly unlikely that the Steiner k-Forest problem admits a better than
polynomial approximation ratios.

Given the interest in and importance of DkS and SpES, it is somewhat surprising that
there has been very little exploration of the equivalent problems in hypergraphs. A hypergraph
is most simply understood as a collection E of subsets over a universe V of vertices, where
each e ∈ E is called a hyperedge (so graphs are the special case when each e ∈ E has
cardinality 2). In general hypergraphs, the obvious extensions of DkS and SpES are quite
intuitive. In the Densest k-Subhypergraph (DkSH) problem we are given a hypergraph (V,E)
and a value k, and the goal is to find a set W ⊆ V of size k that contains the largest number
of hyperedges from E. In the Minimum p-Union (MpU) problem we are given a hypergraph
and a number p, and the goal is to choose p of the hyperedges to minimize the size of their
union.

Clearly these problems are at least as hard as the associated problems in graphs, but how
much harder are they? Can we design nontrivial approximation algorithms? Can we extend

1 Given an instance (G = (V, E), p) of SpES, create an instance of Steiner k-Forest on a star with V as
the leaves, uniform weights, a demand pair for each edge in E, and k = p.

E. Chlamtáč, M. Dinitz, C. Konrad, G. Kortsarz, and G. Rabanca 6:3

the known algorithms for graphs to the hypergraph setting? Currently, essentially only lower
bounds are known: Applebaum [2] showed that they are both hard to approximate to within
nε for some fixed ε > 0, assuming that a certain class of one-way functions exist. But it was
left as an open problem to design any nontrivial upper bound (see footnote 5 of [2]).

1.1 Our Results
In this paper we provide the first nontrivial upper bounds for these problems. Let n denote
the number of vertices and m denote the number of hyperedges in the input hypergraph.
Our first result is an approximation for Minimum p-Union in general hypergraphs:

I Theorem 1. There is an O(
√
m)-approximation for the Minimum p-Union problem.

We then switch our attention to the low rank case, since this is the setting closest to
graphs. In particular, we focus on the 3-uniform case, where all hyperedges have size at
most 3. In this setting it is relatively straightforward to design an O(n)-approximation for
Densest k-Subhypergraph, although even this is not entirely trivial (the optimal solution
could have size up to k3 rather than k2 as in graphs, which would make the trivial algorithm
of choosing k/3 hyperedges only an O(n2)-approximation rather than an O(n)-approximation
as in graphs). We show that by very carefully combining a set of algorithms and considering
the cases where they are all jointly tight we can significantly improve this approximation,
obtaining the following theorem:

I Theorem 2. For every constant ε > 0, there is an O(n4(4−
√

3)/13+ε) ≤ O(n0.697831+ε)-
approximation for the Densest k-Subhypergraph problem on 3-uniform hypergraphs.

Adapting these ideas to the minimization setting gives an improved bound for Minimum
p-Union as well.

I Theorem 3. There is an Õ(n2/5)-approximation for the Minimum p-Union problem on
3-uniform hypergraphs.

It is worth noting that any f -approximation for DkSH can be used to give an Õ(f)-
approximation for MpU (see Theorem 10), so Theorem 3 gives a significant improvement
over this blackbox reduction from Theorem 2.

Finally, we define an interesting special case of Densest k-Subhypergraph and Minimum p-
Union that can be solved exactly in polynomial time. Suppose we have an interval hypergraph:
a hypergraph in which the vertices are a finite subset of N and each hyperedge is an interval
of the real line (restricted to the vertices). Then we show that a dynamic programming
algorithm can be used to actually solve our problems.

I Theorem 4. Densest k-Subhypergraph and Minimum p-Union can be solved in polynomial
time on interval hypergraphs.

1.2 Related Work
As discussed, the motivation for these problems mostly comes from the associated graph
problems, which have been extensively studied and yet are still poorly understood. The
Densest k-Subgraph problem was introduced by Kortsarz and Peleg [18], who gave an O(n2/5)
ratio for the problem. Feige, Kortsarz and Peleg [13] improved the ratio to O(n1/3−ε) for
ε that is roughly 1/60. The current best-known approximation for DkS is O(n1/4+ε) for
arbitrarily small constant ε > 0, due to Bhaskara et al. [7]. For many years the minimization

APPROX/RANDOM’16

6:4 The Densest k-Subhypergraph Problem

version, SpES, was not considered separately, and it was only relatively recently that the
first separation was developed: building on the techniques of [7] but optimizing them for
the minimization version, Chlamtáč, Dinitz, and Krauthgamer [9] gave an O(n3−2

√
2+ε)-

approximation for SpES for arbitrarily small constant ε > 0.
While defined slightly differently, DkSH and MpU were introduced earlier by Apple-

baum [2] in the context of cryptography: he showed that if certain one way functions exist
(or that certain pseudorandom generators exist) then DkSH is hard to approximate within nε
for some constant ε > 0. Based on this result, DkSH and MpU were used to prove hardness
for other problems, such as the k-route cut problem [10]. To the best of our knowledge,
though, there has been no previous work on algorithms for these problems.

1.3 Organization
We begin in Section 2 with some preliminaries, showing the basic relationships between the
problems. In Section 3 we give our O(

√
m)-approximation for MpU in general hypergraphs.

We then focus on small-rank hypergraphs, giving an O(n4/5)-approximation for DkSH on
3-uniform hypergraphs in Section 4, which we then improve to roughly O(n0.698) in Section 5.
We follow this in Section 6 with our improved bound for MpU on 3-uniform hypergraphs.
Finally in Section 7 we show how to solve both problems exactly in polynomial time on
interval hypergraphs. We conclude in Section 8 with some open questions for future work.

2 Preliminaries and Notation

A hypergraph H = (V,E) consists of a set V (the vertices) together with a collection E ⊆ 2V
(the hyperedges), where each hyperedge is a subset of V . We will typically use n = |V | and
m = |E| to denote the number of vertices and hyperedges respectively. The degree of a
vertex in a hypergraph is the number of hyperedges which contain it. Given a subset V ′ ⊆ V ,
the subhypergraph of H induced by V ′ is H[V ′] = (V ′, EH) where EH = {e ∈ E : e ⊆ V ′}.
We say that H is α-uniform if |e| = α for all e ∈ E, and that the rank of H is maxe∈E |e|
(i.e. the smallest α such that all edges have cardinality at most α). A hyperedge e is covered
by a set of vertices V ′ if e ⊆ V ′.

Given a graph G = (V,E) and a vertex v ∈ V , we use ΓG(v) to denote the set of nodes
adjacent to v, and for a subset V ′ ⊆ V we let ΓG(V ′) = ∪v∈V ′Γ(v). If G is clear from
context, we will sometimes drop the subscript.

The main problems that we will consider are the following.

I Definition 5. Given a hypergraph H = (V,E) and an integer k, the Densest k-Subhyper-
graph problem (DkSH) is to find a set V ′ ⊆ V , with |V ′| = k, such that the number of edges
in H[V ′] is maximized.

I Definition 6. Given a hypergraph H = (V,E) and an integer p, the Minimum p-Union
problem (MpU) is to find a set E′ ⊆ E, with |E′| = p, such that | ∪e∈E′ e| is minimized.

Note that on 2-uniform hypergraphs, these two problems are the classic graph problems
DkS and SpES respectively.

A special class of hypergraphs that we will consider are interval hypergraphs, defined as
follows.

I Definition 7. H = (V,E) is an interval hypergraph if V is a finite subset of N and for each
e ∈ E there are values ae, be ∈ N such that e = {i ∈ V : ae ≤ i ≤ be}.

E. Chlamtáč, M. Dinitz, C. Konrad, G. Kortsarz, and G. Rabanca 6:5

2.1 Relationship Between Problems
We begin by proving some relatively straightforward relationships between the two problems.
We first make the obvious observation that a solution for one problem implies a solution for
the other.

I Observation 8. If there exists a polynomial time algorithm that solves the Densest k-
Subhypergraph problem for any k on a hypergraph H, then there exists a polynomial time
algorithm that solves the Minimum p-Union problem on the hypergraph H. Similarly, if there
is an algorithm that solves MpU on H, then there is an algorithm that solves DkSH on H.

The relationship is not quite so simple when we are reduced to approximating the
problems, but it is relatively straightforward to show that a relationship still exists. This is
given by the following lemma, which will also prove to be useful later.

I Lemma 9. If there exists an algorithm which in a hypergraph H containing a subhypergraph
with k vertices and p hyperedges finds a subhypergraph (V ′, E′) with |V ′| ≤ fk and |E′| ≥
|V ′|p/(kf), we can get an O(f log p)-approximation for Min p-Union.

Since any f -approximation algorithm for Densest k-Subhypergraph satisfies the conditions
of the lemma, as an immediate corollary we get the following:

I Theorem 10. If there is an f-approximation for Densest k-Subhypergraph, then there is
an O(f log p)-approximation for Minimum p-Union.

Proof of Lemma 9. Let (H = (V,E), p) be an instance of Minimum p-Union, and let A be
an algorithm as described in the lemma. We assume without loss of generality that we know
the number of nodes k in the optimal solution (since we can just try all possibilities for
k), and hence that there exists a set V ∗ ⊆ V with |V ∗| = k such that V ∗ covers at least p
hyperedges. Initialize E′ = ∅, and consider the following algorithm for Minimum p-Union
that repeats the following until |E′| ≥ p.
1. Let V ′ = A(H, k), and let E′′ be the hyperedges of H covered by V ′.
2. Let E′ ← E′ ∪ E′′.
3. Remove E′′ from H (remove only the edges, not the corresponding vertices).

We claim that this is an Õ(f)-approximation for Minimum p-Union. Indeed, suppose at
iteration i we added xi vertices, and that at the beginning of the iteration, we had already
added p− pi edges to the solution. In particular, that means that at least pi of the original
hyperedges contained in V ∗ were not yet removed. This then implies that the number of
edges added in iteration i was at least xi · pi/(kf). Thus the number of edges we still need to
add after iteration i is pi+1 ≤ pi − xi · pi/(kf) = pi(1− xi/(kf)). Thus by induction, after t
iterations, the number of hyperedges we need to add is bounded by

pt+1 ≤ p
t∏
i=1

(1− xi/(kf)) ≤ p exp
(
−

t∑
i=1

xi/(kf)
)
.

Thus, as soon as the total number of vertices added exceeds kf ln p for the first time, the
number of edges will exceed p. Since the last iteration adds at most kf vertices, we are
done. J

A standard argument also shows a (more lossy) reduction in the other direction.

I Theorem 11. If there is an f -approximation for Minimum p-Union on α-uniform hyper-
graphs, then there is an O(fα)-approximation for Densest k-Subhypergraph on α-uniform
hypergraphs (when α = O(1)).

APPROX/RANDOM’16

6:6 The Densest k-Subhypergraph Problem

Algorithm 1: 2
√
m-approximation algorithm for the Minimum p-Union problem

Data: Bipartite input graph G = (E, V, F) with m = |E|, n = |V |, parameter p
1 E′ ← {};
2 repeat
3 E′′ ←Min-Exp(G[E \ E′, V]);
4 if |E′|+ |E′′| ≤ p then
5 E′ ← E′ ∪ E′′;
6 else
7 Add arbitrary p− |E′| nodes from E′′ to E′;

8 until |E′| ≥ p−
√
m;

9 E′′ ← subset of p− |E′| nodes of E \ E′ of smallest degree;
10 E′ ← E′ ∪ E′′;
11 return E′;

3 Minimum p-Union in General Hypergraphs

Given a hypergraph H = (V,E), in this section we work with the bipartite incidence graph
G = (E, V, F) of H, where F = {(e, v) ∈ E × V : v ∈ e}. Solving MpU on H corresponds to
finding a subset E′ ⊆ E of p vertices in G of minimum vertex expansion, i.e., E′ such that
|ΓG(E′)| is minimized.

Our algorithm requires a subroutine that returns a subset of vertices of minimum expansion
(without the cardinality bound on the set). In other words, we need a polynomial-time
algorithm Min-Exp(G) which returns a subset of E so that

|Min-Exp(G)|
|ΓG(Min-Exp(G))| ≥

|E′|
|ΓG(E′)| ,

for every subset E′ ⊆ E.
Minimally expanding subsets of this kind have previously been used (e.g. in [17, 14]) in

communication settings where computation time is disregarded, but in our context we need
a polynomial-time algorithm. In Appendices A and B we give two different algorithms for
doing this. The first, in Appendix A, uses a reduction to network flows. The second, in
Appendix B, is based on a straightforward adaptation of a linear programming approach for
the graph case due to Charikar [8]. In order to simplify the presentation, we will for the rest
of the section assume that we have such an algorithm and will defer them to the appendices.

In the following, for subsets E′ ⊆ E and V ′ ⊆ V , we denote the induced subgraph of G
by vertex set E′ ∪ V ′ by G[E′, V ′].

In the first phase, our algorithm (Algorithm 1) iteratively adds vertices E′′ to an initially
empty set E′ until E′ exceeds the size p−

√
m. The set E′′ is a minimally expanding subset

in the induced subgraph G[E \E′, V]. If E′′ is large so that |E′ ∪E′′| > p, then an arbitrary
subset of E′′ is added to E′ so that E′ has the desired size p. Then, in the second phase, we
add the p− |E′| vertices of E \ E′ of smallest degree to E′ (ties broken arbitrarily), and the
algorithm returns set E′.

I Theorem 12. Algorithm 1 is a (2
√
m)-approximation algorithm for MpU.

Proof. Let OPT ⊆ E be an optimal solution and let r = |ΓG(OPT)|. Let E′i denote the set
E′ in the beginning of the ith iteration of the repeat loop. Suppose that the algorithm runs

E. Chlamtáč, M. Dinitz, C. Konrad, G. Kortsarz, and G. Rabanca 6:7

in l rounds. Then, E′l+1 is the set E′ after the last iteration of the loop, but before the nodes
selected in Line 9 are added.

Consider an arbitrary iteration i ≤ l and let E′′ ← Min-Exp(G[E \ E′i, V]) as in the
algorithm. Note that by the condition of the loop, we have |E′i| ≤ p−

√
m. Furthermore, we

have

|E′′|
|ΓG(E′′)| ≥

|OPT \ E′i|
|ΓG(|OPT \ E′i|)|

≥ p− |E′i|
r

,

since E′′ is a set of minimum expansion. Then,

|ΓG(E′′)| ≤ |E′′|r
p− |E′i|

≤ |E′′|r
p− p+

√
m

= |E
′′|r√
m

.

Thus, we have |ΓG(E′i+1)| ≤ |ΓG(E′i)| +
|E′′|r√
m

(note that this inequality also captures
the case when only a subset of E′′ is added to E′ in Line 7). Now, note that the sets E′′
of any two different iterations are disjoint and thus the sizes of the sets E′′ of the different
iterations sum up to at most m. We thus obtain the bound:

|ΓG(E′l+1)| ≤ mr√
m

=
√
mr.

In phase two, we select at most
√
m vertices E′′ of minimum degree in G[E \ E′, V].

Clearly, the maximum degree of these vertices is at most r (if it was larger, then |ΓG(OPT)|
would be larger as well) and thus |ΓG(E′′)| ≤

√
mr. The neighborhood of the returned set of

our algorithm is hence at most 2
√
mr which gives an approximation factor of 2

√
m. J

4 Densest k-Subhypergraph in 3-uniform hypergraphs

In this section, we consider the Densest k-Subhypergraph problem in 3-uniform hypergraphs.
We develop an O(n4/5)-approximation algorithm here, and show in Section 5 how to improve
the approximation factor to O(n0.697831+ε), for any ε > 0, by replacing one of our subroutines
with an algorithm of Bhaskara et al. [7].

Throughout this section, let H = (V,E) be the input 3-uniform hypergraph. Let
K ⊆ V denote an optimal solution, i.e., a subset of vertices such that H[K] is a densest
k-subhypergraph. The average degree of H[K] is denoted by d = 3|E(H[K])|/k. We say
that a hyperedge is optimal if it is contained in H[K].

4.1 Overview of our Algorithm
Let K1 ⊆ V be a set of k/3 vertices of largest degree (ties broken arbitrarily), ∆ the minimum
degree of a node in K1, and H ′ = H[V \K1]. Note that the maximum degree in H ′ is ∆.

Suppose first that at least half of the optimal hyperedges contain at least one vertex of
K1. Then the following lemma shows that we can easily achieve a much better approximation
than we are aiming for:

I Lemma 13. Suppose that at least half of the optimal hyperedges contain a vertex of K1.
Then we can achieve an O(n1/4+ε) approximation for any ε > 0.

Proof. By our assumption, there is a set P of optimal hyperedges of size at least dk/6 such
that every edge in P intersects K1. Consider two cases.

Case 1: For at least half the edges e ∈ P , we have |e ∩K1| ≥ 2. Denote the set of these
edges by P ′. For every vertex u ∈ V , let its K1-weight be the number of pairs {v, x} such

APPROX/RANDOM’16

6:8 The Densest k-Subhypergraph Problem

Algorithm 2: Greedy algorithm for Densest k-Subhypergraph in 3-uniform hypergraphs
Data: 3-uniform Hypergraph H = (V,E), parameter k, vertex set K1 ⊆ V of size k/3

1 For every v ∈ V , let its K1-degree be |{e ∈ E | v ∈ e, e ∩K1 6= ∅}|;
2 K2 ← a set of k/3 vertices of highest K1-degree (K1 and K2 may intersect);
3 For any u ∈ V , let its (K1,K2)-degree be the number of edges of the form (u, v, x) ∈ E

such that v ∈ K2 and x ∈ K1;
4 K3 ← a set of k/3 vertices of highest (K1,K2)-degree. (K3 may intersect K1 and/or

K2);
5 return K1 ∪K2 ∪K3;

v, x ∈ K1 and {u, v, x} is a hyperedge. Then by our assumption, the vertices in K have
average K1-weight at least |P ′|/k ≥ d/12. Choosing 2k/3 vertices greedily (by maximum
K1-weight) gives (along with K1) a k-subhypergraph with at least dk/18 hyperedges.

Case 2: P ′′ = P \ P ′ contains at least half the hyperedges in P . Note that |e ∩K1| = 1
for every e ∈ P ′′. For every pair of vertices u, v ∈ V \K1, let its K1-weight be the number of
vertices x ∈ K1 such that {u, v, x} is a hyperedge, and let G be the graph on vertices V \K1
with these edge weights. Then any k′-subgraph of G with total edge weight w corresponds to
a (|K1|+ k′)-subhypergraph of H with at least w hyperedges, and in particular, G contains
a k-subgraph with average weighted degree at least 2|P ′′|/k ≥ d/6, which can be easily
pruned (randomly or greedily) down to a 2k/3-subgraph with average weighted degree Ω(d).
Thus we can run the Densest k-Subgraph approximation algorithm of Bhaskara et al. [7]2,
and find a 2k/3-subgraph of G with total weight at least kd/n1/4+ε, which in turn gives a
(|K1|+ 2k/3 =)k-subhypergraph of H with a corresponding number of hyperedges. J

In the more difficult case, at least half of the optimal hyperedges are fully contained in H ′.
Exploiting the fact that the maximum degree in H ′ is ∆ and trading off multiple algorithms,
we show in the following subsection how to obtain an O(n 4

5)-approximation algorithm in
this case.

4.2 An O(n4/5)-approximation

We start with a greedy algorithm similar to the greedy algorithm commonly used for Densest
k-Subgraph [18, 13, 7].

Algorithm 2 selects a subset K2 of k/3 vertices v with largest K1-degree, i.e., the number
of hyperedges incident to v that contain at least one vertex of K1. Then, a subset K3 of k/3
vertices w with largest (K1,K2)-degree is selected, where the (K1,K2)-degree of w is the
number of hyperedges containing w of the form {w, x, y} with x ∈ K1 and y ∈ K2. Note
that the sets K1,K2 and K3 are not necessarily disjoint and the returned set may thus be
smaller than k.

The following lemma gives a lower bound on the average degree guaranteed by this
algorithm. It is a straightforward extension of similar algorithms for graphs.

I Lemma 14. Algorithm 2 returns a k-subhypergraph with average degree Ω(∆k2/n2).

2 Strictly speaking, the algorithm in [7] is defined for unweighted graphs, but one can easily adapt it by
partitioning the edges into O(log n) sets with similar edge weights, and running the algorithm separately
on every set of edges, thus losing only an additional O(log n) factor in the approximation.

E. Chlamtáč, M. Dinitz, C. Konrad, G. Kortsarz, and G. Rabanca 6:9

Algorithm 3: A neighborhood-based algorithm for Densest k-Subhypergraph in 3-
uniform hypergraphs

Data: 3-uniform Hypergraph H ′ = (V ′, E′) and parameter k.
1 foreach vertex v ∈ V do
2 Gv ← (V \ {v}, {(u, x) | (v, u, x) ∈ E});
3 foreach integer d̂ ∈ [k − 1] do
4 Gd̂v ← Gv;
5 while there exists a vertex u in Gd̂v of degree < d̂ do
6 delete u from Gd̂v;

7 Sd̂v ← a set of (k − 1)/2 vertices with highest degree in Gd̂v;
8 T d̂v ← a set of (k − 1)/2 vertices with the most neighbors in Sd̂v ;

9 return The densest among all subhypergraphs H ′[{v}∪Sd̂v ∪T d̂v] over all choices of v, d̂;

Proof. By choice of K1 and definition of ∆, every vertex in K1 has degree at least ∆, and
so the total number of edges containing vertices in K1 is at least ∆|K1|/3 = ∆k/9 (since we
could potentially be double-counting or triple-counting some edges).

If we were to choose n vertices for K2, there would be at least ∆k/9 edges containing
both a vertex in K1 and a vertex in K2 (as noted above). Choosing k/3 vertices greedily out
of n yields a set K2 such that there are at least ∆k/9 · (k/3)/n = ∆k2/(27n) such edges.

Finally, choosing the k/3 vertices with the largest contribution (out of n) for K3 ensures
that there will be at least ∆k2/(27n) · (k/3)/n = Ω(∆k3/n2) edges in E ∩K1 ×K2 ×K3,
giving average degree Ω(∆k2/n2). J

We now offer a second algorithm, which acts on H ′ and is based on neighborhoods of
vertices.

Algorithm 3 exploits the bound on the maximum degree in H ′ to find a dense hypergraph
inside the neighborhood of any vertex of degree Ω(d) in K, by considering the neighborhood
of a vertex as a graph. Pruning low-degree vertices in this graph (which would not contribute
many hyperedges to K) helps reduce the size of the graph, and makes it easier to find a
slightly denser subgraph. Since the vertices of K and their degrees are not known, the
algorithm tries all possible vertices.

I Lemma 15. If H ′ contains a k-subhypergraph with average degree d′ = Ω(d), then Algo-
rithm 3 returns a k-subhypergraph with average degree Ω(d2/(∆k)).

Proof. Since at the end of the algorithm we take the densest induced subhypergraph of H ′
(among the various choices), it suffices to show that there is some choice of v and d̂ which
gives this guarantee. So let v be an arbitrary vertex in K with degree (in K) at least d′.
We know that Gv contains a subgraph with at most k vertices and at least d′ edges, so its
average degree is at least 2d′/k. Setting d̂ = d′/(2k), we know that the pruning procedure
can remove at most k · d′/(2k) = d′/2 out of the d′ edges in this subgraph, so the subgraph
still retains at least d′/2 edges. On the other hand, we know that Gv has at most ∆ edges
(since we’ve assumed the maximum degree in H ′ is at most ∆), and therefore, the same
holds for the graph Gd̂v, in which the minimum degree is now at least d′/2k. This means that
Gd̂v has at most 2∆/(d′/2k) = O(∆k/d) vertices.

Since there exists a k-subgraph of Gd̂v with Ω(d) edges, the greedy choice of Sd̂v must give
some set in which at least Ω(d) edges are incident. The greedy choice of T d̂v then reduces the

APPROX/RANDOM’16

6:10 The Densest k-Subhypergraph Problem

lower bound on the number of edges by a ((k − 1)/2)/|V (Gd̂v)| = Ω(d/∆) factor, giving us
Ω(d2/∆) edges. However, by the definition of Gv, together with v these edges correspond to
hyperedges in H ′. Thus, the algorithm returns a k-subhypergraph with Ω(d2/∆) hyperedges,
or average degree d2/(∆k). J

Combining the various algorithms we’ve seen with a trivial algorithm and choosing the
best one gives us the following guarantee:

I Theorem 16. There is an O(n4/5)-approximation for Dense k-Subhypergraph in 3-uniform
hypergraphs.

Proof. By Lemma 13, if at least half the optimal edges intersect K1, then we can achieve a
significantly better approximation (namely, n1/4+ε). Thus, from now on let us assume this is
not the case. That is, H ′ still contains a k-subhypergraph with average degree Ω(d). Again,
recall that the maximum degree in H ′ is at most ∆.

By Lemma 14, Algorithm 2 gives us a k-subhypergraph with average degree d1 =
Ω(∆k2/n2). On the other hand, applying Algorithm 3 to H ′ will give us a k-subhypergraph
with average degree d2 = Ω(d2/(∆k)) by Lemma 15.

Finally, we could choose k/3 arbitrary edges in H and the subhypergraph induced on the
vertices they span, giving us average degree d3 ≥ 1. Thus, the best of the three will give us a
k-subhypergraph with average degree at least

max{d1, d2, d3} ≥ (d2
1d

2
2d3)1/5 = Ω((∆2k4/n4 · d4/(∆2k2))1/5) = d · Ω((k2/d)1/5/n4/5).

Since we must have k2/d ≥ 1, the above gives an O(n4/5)-approximation. J

5 An improved approximation for 3-uniform Densest
k-Subhypergraph

In Section 4 we gave an O(n4/5) approximation which combined a greedy algorithm with
Algorithm 3, which looked for a dense subgraph inside a graph defined by the neighborhood
of a vertex in H. To find this dense subgraph, we used a very simple greedy approach.
However, we have at our disposal more sophisticated algorithms, such as that of Bhaskara et
al. [7]. One way to state the result in that paper (see Bhaskara’s PhD thesis for details on
this version [6]) is as follows:

I Theorem 17. In any n-vertex graph G, for any α ∈ [0, 1], if k = nα, then Densest
k-Subgraph in G can be approximated within an nεk1−α factor in time nO(1/ε) for any ε > 0.

The n1/4+ε guarantee of [7] follows since for any α ∈ [0, 1], we have k1−α = nα(1−α) ≤ n1/4.
Using this guarantee instead of the simple greedy algorithm for DkS, we get the following

improved algorithm for 3-uniform Densest k-Subhypergraph:
The approximation guarantee in this final algorithm is given by the following lemma:

I Lemma 18. Let H ′ be an n-vertex 3-uniform hypergraph with maximum degree ≤ ∆,
containing a k-subhypergraph of average degree d′, and let α, β be such that k = nα and
∆k/d′ = nβ. Then Algorithm 4 returns a k-subhypergraph of H of average degree

Ω
(

d′

nε+α(2−α/min{β,1})

)
.

E. Chlamtáč, M. Dinitz, C. Konrad, G. Kortsarz, and G. Rabanca 6:11

Algorithm 4: A DkS-based algorithm for Densest k-Subhypergraph in 3-uniform
hypergraphs

Data: 3-uniform Hypergraph H ′ = (V ′, E′) and parameters k and ε > 0.
1 foreach vertex v ∈ V do
2 Gv ← (V \ {v}, {(u, x) | (v, u, v) ∈ E});
3 foreach integer d̂ ∈ [k − 1] do
4 Gd̂v ← Gv;
5 while there exists a vertex u in Gd̂v of degree < d̂ do
6 Delete u from Gd̂v;

7 K d̂
v ← the vertex set returned by the algorithm of Bhaskara et al. [7] on the
graph Gd̂v with parameters k − 1 and ε;

8 return The densest among all subhypergraphs H ′[{v} ∪K d̂
v] over all choices of v, d̂;

Proof. As in the proof of Lemma 15, we can deduce that for at least some choice of v
and d̂, the graph Gd̂v has at most min{n,O(∆k/d′)} = O(nmin{1,β}) vertices and contains a
k-subgraph with average degree Ω(d′/k).

By Theorem 17, since k = nα = Ω(|V (Gd̂v)|α/min{1,β}), the algorithm of [7] will return a
(k − 1)-subgraph of Gd̂v with average degree

Ω
(

d′/k

nεk1−α/min{β,1}

)
= Ω

(
d′

nε+α(2−α/min{β,1})

)
.

As noted in the proof of Lemma 15, this corresponds to a k-subhypergraph of H ′ with the
same guarantee. J

I Remark. In the notation of Lemma 18 we have ∆/d′ = nβ−α which implies that β ≥ α

(since ∆ ≥ d′).
Trading off the various algorithms we have seen, we can now prove the guarantee stated

in Theorem 2.

I Theorem 19 (Theorem 2 restated). For every constant ε > 0, there exists a polynomial time
algorithm that achieves an O(n4(4−

√
3)/13+ε) ≤ O(n0.697831+ε)-approximation for Densest

k-Subhypergraph in 3-uniform hypergraphs.

Proof. By Lemma 13, if at least half the optimal edges intersect K1, then we can achieve a
significantly better approximation (namely, n1/4+ε). Thus, from now on let us assume this is
not the case. That is, H ′ still contains a k-subhypergraph with average degree Ω(d). Again,
recall that the maximum degree in H ′ is at most ∆.

As before, let α, β be such that k = nα and ∆k/d = nβ . By Lemma 14, Algorithm 2
gives us a k-subhypergraph with average degree

d1 = Ω(∆k2/n2) = Ω
(

d

(d/∆)n2/k2

)
= Ω

(
d

nα−βn2−2α

)
= Ω

(
d

n2−α−β

)
.

On the other hand, by Lemma 18, Algorithm 4 to H ′ will give us a k-subhypergraph with
average degree

d2 = Ω
(

d

nε+α(2−α/min{β,1})

)
.

APPROX/RANDOM’16

6:12 The Densest k-Subhypergraph Problem

Let us analyze the guarantee given by the best of Algorithm 2 and Algorithm 4. First,
consider the case of β > 1. In this case, taking the best of the two gives us approximation ratio
at most nε+min{2−α−β,α(2−α)} ≤ nε+min{1−α,α(2−α)}. It is easy to check that this minimum
is maximized when α = (3 −

√
5)/2 giving approximation ratio n(

√
5−1)/2+ε ≤ n0.618034+ε,

which is even better than our claim.
Now suppose β ≤ 1. In this case, the approximation guarantee is nε+min{h1,h2}, where

h1 = 2 − α − β and h2 = α(2 − α/β). If α ≥ 2/3, then it can be checked that we
always have h1 ≤ h2 for any β ∈ [α, 1], in which case we have approximation factor at
most nε+2−2/3−2/3 = n2/3+ε, which is again better than our claim. On the other hand, if
α ≤ (3−

√
5)/2, then h2 ≤ h1 for any β ≤ 1, and so for this range of α we get approximation

factor at most nε+α(2−α) ≤ n(
√

5−1)/2, which as we’ve noted is also better than our claim.
Finally, if α ∈ ((3−

√
5)/2, 2/3) then a straightforward calculation shows that

min{h1, h2} =
{
h1 if β ≥ 1− 3α

2 +
√

1− 3α+ 13α2/4
h2 otherwise,

and that the value of min{h1, h2} is maximized at this threshold value of β. And so for α
in this range we have min{h1, h2} ≤ 1 + α/2−

√
1− 3α+ 13α2/4, which is maximized at

α = 18+2
√

3
39 ≈ 0.55, giving approximation ratio nε+4(4−

√
3)/13. J

6 Minimum p-Union in 3-uniform hypergraphs

In this section we explore Minimum p-Union (the minimization version of Densest k-
Subhypergraph), and give the following guarantee:

I Theorem 20. There is an Õ(n2/5)-approximation algorithm for Minimum p-Union in
3-uniform hypergraphs.

Note that this is significantly better than the n0.69...-approximation we would get by reduc-
ing the problem to Densest k-Subhypergraph via Theorem 10 and applying the approximation
algorithm from Theorem 2.

In this problem, we are given a 3-uniform hypergraph H = (V,E), and a parameter p,
the number of hyperedges that we want to find. Let us assume that the optimal solution,
P ⊆ E, has k vertices (i.e. | ∪e∈P e| = k). We do not know k, but the algorithm can try
every possible value of k = 1, . . . , n, and output the best solution. Thus, we assume that k is
known, in which case the average degree in the optimum solution is d = 3p/k.

Recall that it is not necessary to get p edges in one shot. By Lemma 9, it is enough to
find any subhypergraph of size at most kn2/5 with average degree at least Ω(d/n2/5).

We follow along the lines of DkSH by choosing vertex set K1 to be the kn2/5 vertices of
largest degree. The following lemma (corresponding to Lemma 13 for DkSH) shows that if
at least half the edges in P intersect K1, then by Lemma 9 we are done.

I Lemma 21. Suppose that at least half of the optimal edges contain a vertex of K1. Then
we can find a subhypergraph with at most O(kn2/5) vertices and average degree at least
Ω(d/n2/5).

Proof. By our assumption, there is a set of optimal hyperedges P ′ ⊂ P of size at least dk/6
such that every edge in P ′ intersects K1.

As in the proof of Lemma 13, if at least half the edges in P ′ intersect K1 in more than
one vertex, then we can easily recover a set of k vertices which along with K1 contain at

E. Chlamtáč, M. Dinitz, C. Konrad, G. Kortsarz, and G. Rabanca 6:13

least Ω(p) = Ω(kd) hyperedges. Since |K1| = kn2/5, this subgraph has O(kn2/5) vertices and
average degree Ω(d/n2/5) as required.

Thus, we may assume that at least half the edges in P ′ intersect K1 in exactly one
vertex. Then again as in Lemma 13, we define a graph G on vertices V \K1 where every
pair of vertices u, v ∈ V \K1 is an edge with weight |{x ∈ K1 | (u, v, x) ∈ E}|. Once again,
subgraphs of G with total edge weight w correspond to a subhypergraphs of H with at least w
edges, and in particular, G contains a k-subgraph with average weighted degree at least Ω(d).
Thus running the SpES approximation of [9] (or more precisely, the weighted version [11]),
gives a subgraph with at most kf vertices and total edge weight at least Ω(kd) for some
f = n0.17+ε (which is well below n2/5). Once again, the corresponding subhypergraph has
at most |K1|+ kf = O(kn2/5) vertices, and so the average degree is at least Ω(d/n2/5) as
required. J

Thus, we will assume from now on that at least half of the hyperedges in P do not
contain at least one vertex from K1, i.e. that H ′ = H[V \K1] still contains at least half the
hyperedges in P .

As with DkSH, we now proceed with a greedy algorithm. Starting with the same vertex set
K1 defined above, it follows from Lemma 14 that if we run Algorithm 2 on H with parameter
n2/5k, then we get a subhypergraph on O(kn2/5) vertices induced on sets K1,K2,K3 such
that if the minimum degree in K1 (which bounds the maximum degree in V \K1) is ∆, then
the subhypergraph has average degree Ω(∆k2n4/5/n2). The total number of hyperedges in
this subhypergraph is Ω(∆k3n6/5/n2) = Ω(∆k3/n4/5). If this is at least p = dk/3, then we
are done. Thus, we will assume from now on that ∆k3/n4/5 = O(dk), that is

∆ = O

(
dn4/5

k2

)
. (1)

We reuse Algorithm 3 on H ′, which gives us the following guarantee:

I Lemma 22. Applying Algorithm 3 to the above hypergraph H ′ with parameter

k̂ = k
√
p∆
d

=
√
k3∆
3d

returns a subhypergraph with at most kf vertices and average degree at least d/f for some

f = O(max{k, n2/5/
√
k}).

Proof. As in the proof of Lemma 15, we can deduce that for at least some choice of v and d̂,
the graph Gd̂v has at most O(∆k/d) vertices and has minimum degree at least Ω(d/k).

Note that we may not even have k̂ vertices in Gd̂v. If we do have at least k̂ vertices, then
the greedy choice of Sd̂v gives us Ω(k̂d/k) edges incident in the set (in fact, any choice of Ω(k̂)
vertices would do). The greedy choice of T d̂v then reduces the number of edges by (in the
worst case) a k̂/(∆k/d)-factor, giving us a total number of edges

Ω
(
k̂ 2d2

∆k2

)
= Ω(p).

Thus, in this case, we only need to bound the size of the subgraph. By (1), we can bound k̂
as follows:

k̂ =
√
k3∆
3d = O

(√
dn4/5

k2 · k
3

d

)
= O

(
k · n

2/5
√
k

)
,

which proves the lemma for this case.

APPROX/RANDOM’16

6:14 The Densest k-Subhypergraph Problem

If we do not have k̂ vertices in Gd̂v, then the algorithm simply returns Gd̂v itself, which has at
most k̂ = O(k · n2/5/

√
k) vertices and average degree at least Ω(d/k), as required.

As noted in the proof of Lemma 15, this corresponds to a subhypergraph of H ′ with the
same guarantee. J

We can now prove the main theorem.

Proof of Theorem 20. By Lemma 22 and Lemma 9, to prove the theorem it suffices to
show that max{k, n2/5/

√
k} = O(n2/5). Since clearly n2/5/

√
k ≤ n2/5, let us consider the

parameter k. By definition of d and ∆, we clearly have d ≤ ∆, thus, by (1) we have

d ≤ ∆ = O

(
dn4/5

k2

)
which implies k = O(n2/5), and so the theorem follows. J

7 Interval Hypergraphs

We show now that DkS and MpU can be solved in polynomial time on interval hyper-
graphs. We only give an algorithm for MpU; a similar algorithm for DkS follows then from
Observation 8.

As defined in Section 2, a hypergraph H = (V,E) is an interval hypergraph, if V ⊆ N
and for each e ∈ E there are integers ae, be such that e = {i ∈ V : ae ≤ i ≤ be}. Solving
MpU on H can be interpreted as finding p intervals with minimum joint support.

I Theorem 23. Minimum p-Union is solvable in polynomial time on interval hypergraphs.

Proof. Let b1, ..., bm be the largest elements in hyperedges e1, ..., em respectively, and assume
that bi ≤ bj for any i < j. Similarly let a1, ..., am be the smallest elements in e1, ..., em
respectively.

We present a dynamic programming algorithm which calculates for each j ≤ i the optimal
solution to an instance of Minimum p-Union on the hyperedges e1, ..., ei with p = j under the
constraint that ei belongs to the solution. Let A[i, j] store the value of this optimal solution.
Assume that the values of A have been computed for all i′, j′ with j′ ≤ i′ < i. We show how
to compute A[i, j] for any j ≤ i.

We partition the hyperedges e1, ..., ei in three sets Ai, Bi, Ci with Ai containing all
hyperedges disjoint from ei, Bi containing all hyperedges intersecting but not included in ei,
and Ci containing ei and all hyperedges included in ei (see Fig. 1). Therefore we have:
1. bi′ < ai for all ei′ ∈ Ai,
2. ai′ < ai ≤ bi′ for all ei′ ∈ Bi, and
3. ai ≤ ai′ ≤ bi′ ≤ bi for all ei′ ∈ Ci.

Clearly, for every j ≤ |Ci| we have A[i, j] = |ei| since by definition of A, ei is included
in the solution, and adding any other j − 1 sets from Ci to the solution does not increase
the size of the union. In the remainder of the proof, when we refer to an optimal solution
corresponding to A[i′, j′] for some indices i′ and j′ we always mean a solution that uses the
maximum number of sets in Ci′ .

For any t ≥ 0 and j = t+ |Ci|, the optimal solution contains exactly t sets in Ai ∪ Bi.
Fix an optimal solution OPTi corresponding to A[i, j] and let ei∗ be the hyperedge with
largest bei∗ in OPTi that does not belong to Ci. We show that

A[i, j] = A[i∗, j − |Ci \ Ci∗ |] + |ei \ ei∗ |. (2)

E. Chlamtáč, M. Dinitz, C. Konrad, G. Kortsarz, and G. Rabanca 6:15

Ci′

ei

ei′

Figure 1 Partitioning of hyperedges induced by ei. The dotted edges form set Ai, the dashed
edge forms set Bi and the elements of Ci are represented by continuous edges. The set Ci′ is also
shown in dashed pattern.

Then, by considering every hyperedge with index i′ < i as the possible i∗ in Eq. (2) and
taking the minimum value, one can compute A[i, j] in linear time.

To complete the proof, we argue why Equation 2 holds. First observe that a solution
with value A[i, j] exists. Indeed, by adding all elements of Ci \ Ci∗ to an optimal solution
for A[i∗, j − |Ci \ Ci∗ |] we obtain a solution for A[i, j] covering exactly |ei \ ei∗ | additional
elements. Next, assume that the value of A[i, j] is less than that of Equation 2. Then we
can obtain a solution for A[i∗, j − |Ci \ Ci∗ |] by removing from OPTi all the elements in
|Ci \ Ci∗ | to obtain a solution with value at most A[i, j]− |ei \ ei∗ |, contradicting the fact
that A[i∗, j − |Ci \ Ci∗ |] is the value of an optimal solution. J

8 Open problems

While no tight hardness results are known for Densest k-Subgraph and Smallest p-Edge
Subgraph, there are lower bounds given by the log-density framework [7, 9]. In this framework,
one considers the problem of distinguishing between a random graph and a graph which
contains a planted dense subgraph. It has been conjectured that for certain parameters
(namely, when the “log-density" of the subgraph is smaller than that of the host graph), this
task is impossible, thus giving lower bounds on the approximability of these problems. In
the graph setting, the existing algorithm of [7, 9] match these lower bounds.

However, in the hypergraph case, our current algorithms are still far from the corresponding
lower bounds. In c-uniform hypergraphs, the lower bounds predicted by the log-density
framework are n(c−1)/4 for Densest k-Subhypergraph and n1−2/(

√
c+1) for Min p-Union. For

c = 3, for example, these lower bounds give n1/2 and n2−
√

3 = n0.2679..., respectively (contrast
with our current guarantees of n0.6978... and n0.4). The existing approach for the graph case
does not seem to easily carry over to hypergraphs, and it remains a technical challenge to
match the log-density based predictions for hypergraphs of bounded rank.

For arbitrary rank, the lower bound given by the log-density framework is m1/4 (note
that we do not expect to achieve approximations that are sublinear in n in this case), as
opposed to our current guarantee of

√
m. In general hypergraphs, one may also hope for

hardness results which at the moment are elusive for the graph case or for bounded rank
hypergraphs.

There is also an interesting connection between MpU/DkSH and the Small-Set Vertex
Expansion problem (SSVE) [5, 20, 19]. In Small-Set Vertex Expansion we are given a graph

APPROX/RANDOM’16

6:16 The Densest k-Subhypergraph Problem

G and a parameter δ, and are asked to find the a set V ′ ⊆ V with |V ′| ≤ δn in order
to minimize |{v∈V \V

′:v∈Γ(v)}|
|V ′| . Given a graph G, consider the collection of neighborhoods

Ê = {Γ(v) : v ∈ V } and the hypergraph H = (V, Ê). If we let p = δn, the MpU problem
(choosing p hyperedges in H to minimize their union) is quite similar to the SSVE problem.
The main difference is that SSVE only “counts" nodes that are in V \ V ′, while MpU would
also count nodes in V ′. It is known [21] that this special case of MpU reduces to SSVE, so
it is no harder than SSVE, but it is not clear how much easier it is. This motivates the
study of MpU when hyperedges are neighborhoods in an underlying graph, and studying the
approximability of this problem is an interesting future direction.

References
1 Noga Alon, Sanjeev Arora, Rajsekar Manokaran, Dana Moshkovitz, and Omri Wein-

stein. Inapproximability of densest k-subgraph from average case hardness. Unpublished
manuscript, 2011.

2 Benny Applebaum. Pseudorandom generators with long stretch and low locality from
random local one-way functions. SIAM Journal on Computing, 42(5):2008–2037, 2013.
doi:10.1137/120884857.

3 Benny Applebaum, Boaz Barak, and Avi Wigderson. Public-key cryptography from dif-
ferent assumptions. In Proceedings of the Forty-second ACM Symposium on Theory of
Computing, STOC’10, pages 171–180, 2010.

4 S. Arora, B. Barak, M. Brunnermeier, and R. Ge. Complicational complexity and informa-
tion asymmetry in finnancial products. Submitted, 2016.

5 Sanjeev Arora and Rong Ge. Approximation, Randomization, and Combinatorial Optimiza-
tion. Algorithms and Techniques: 14th International Workshop, APPROX 2011, and 15th
International Workshop, RANDOM 2011, Princeton, NJ, USA, August 17-19, 2011. Pro-
ceedings, chapter New Tools for Graph Coloring, pages 1–12. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2011. doi:10.1007/978-3-642-22935-0_1.

6 Aditya Bhaskara. Finding Dense Structures in Graphs and Matrices. PhD thesis, Princeton
University, 2012.

7 Aditya Bhaskara, Moses Charikar, Eden Chlamtac, Uriel Feige, and Aravindan Vijayaragha-
van. Detecting high log-densities: an O(n1/4) approximation for densest k-subgraph. In
Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010, Cam-
bridge, Massachusetts, USA, 5-8 June 2010, pages 201–210, 2010.

8 Moses Charikar. Greedy approximation algorithms for finding dense components in a graph.
In Approximation Algorithms for Combinatorial Optimization, Third International Work-
shop, APPROX 2000, Saarbrücken, Germany, September 5-8, 2000, Proceedings, pages
84–95, 2000. doi:10.1007/3-540-44436-X_10.

9 Eden Chlamtac, Michael Dinitz, and Robert Krauthgamer. Everywhere-sparse spanners via
dense subgraphs. In 53rd Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012, pages 758–767, 2012.

10 Julia Chuzhoy, Yury Makarychev, Aravindan Vijayaraghavan, and Yuan Zhou. Approx-
imation algorithms and hardness of the k-route cut problem. ACM Trans. Algorithms,
12(1):2:1–2:40, December 2015. doi:10.1145/2644814.

11 Michael Dinitz, Guy Kortsarz, and Zeev Nutov. Improved Approximation Algorithm for
Steiner k-Forest with Nearly Uniform Weights. In Klaus Jansen, José D. P. Rolim, Nikhil R.
Devanur, and Cristopher Moore, editors, Approximation, Randomization, and Combina-
torial Optimization. Algorithms and Techniques (APPROX/RANDOM 2014), volume 28
of Leibniz International Proceedings in Informatics (LIPIcs), pages 115–127, Dagstuhl,
Germany, 2014. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. URL: http://drops.

http://dx.doi.org/10.1137/120884857
http://dx.doi.org/10.1007/978-3-642-22935-0_1
http://dx.doi.org/10.1007/3-540-44436-X_10
http://dx.doi.org/10.1145/2644814
http://drops.dagstuhl.de/opus/volltexte/2014/4692

E. Chlamtáč, M. Dinitz, C. Konrad, G. Kortsarz, and G. Rabanca 6:17

dagstuhl.de/opus/volltexte/2014/4692, doi:10.4230/LIPIcs.APPROX-RANDOM.2014.
115.

12 Uriel Feige. Relations between average case complexity and approximation complexity.
In Proceedings of the Thiry-fourth Annual ACM Symposium on Theory of Computing,
STOC’02, pages 534–543, New York, NY, USA, 2002. ACM. doi:10.1145/509907.509985.

13 Uriel Feige, Guy Kortsarz, and David Peleg. The dense k-subgraph problem. Algorithmica,
29(3):410–421, 2001.

14 Ashish Goel, Michael Kapralov, and Sanjeev Khanna. On the communication and streaming
complexity of maximum bipartite matching. In Proceedings of the Twenty-Third Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-
19, 2012, pages 468–485, 2012.

15 Anupam Gupta, Mohammadtaghi Hajiaghayi, Viswanath Nagarajan, and R. Ravi. Dial
a ride from k-forest. ACM Trans. Algorithms, 6(2):41:1–41:21, April 2010. doi:10.1145/
1721837.1721857.

16 Subhash Khot. Ruling out ptas for graph min-bisection, dense k-subgraph, and bi-
partite clique. SIAM Journal on Computing, 36(4):1025–1071, 2006. doi:10.1137/
S0097539705447037.

17 Christian Konrad and Adi Rosén. Approximating semi-matchings in streaming and in two-
party communication. In Automata, Languages, and Programming – 40th International
Colloquium, ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part I, pages 637–
649, 2013.

18 Guy Kortsarz and David Peleg. On choosing a dense subgraph. In 34th Annual Symposium
on Foundations of Computer Science, Palo Alto, California, USA, 3-5 November 1993,
pages 692–701, 1993.

19 Anand Louis and Yury Makarychev. Approximation Algorithms for Hypergraph Small Set
Expansion and Small Set Vertex Expansion. In Klaus Jansen, José D. P. Rolim, Nikhil R.
Devanur, and Cristopher Moore, editors, Approximation, Randomization, and Combina-
torial Optimization. Algorithms and Techniques (APPROX/RANDOM 2014), volume 28
of Leibniz International Proceedings in Informatics (LIPIcs), pages 339–355, Dagstuhl,
Germany, 2014. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. URL: http://drops.
dagstuhl.de/opus/volltexte/2014/4707, doi:10.4230/LIPIcs.APPROX-RANDOM.2014.
339.

20 Anand Louis, Prasad Raghavendra, and Santosh Vempala. The complexity of approximat-
ing vertex expansion. 2013 IEEE 54th Annual Symposium on Foundations of Computer
Science, 0:360–369, 2013. doi:10.1109/FOCS.2013.46.

21 Yuru Makarychev. Personal communication.
22 Zeev Nutov. Approximating steiner networks with node-weights. SIAM Journal on Com-

puting, 39(7):3001–3022, 2010. doi:10.1137/080729645.

A Finding a Set of Minimum Expansion

Given a bipartite graph G = (E, V, F), the subroutine Min-Exp(G) returns a subset of E so
that

|Min-Exp(G)|
|ΓG(Min-Exp(G))| ≥

|E′|
|ΓG(E′)| ,

for every subset E′ ⊆ E. Minimally expanding subsets of this kind have previously been
used (e.g. in [17, 14]) in communication settings where computation time is disregarded.
We therefore present a polynomial time implementation for Min-Exp using network flows.
An alternative algorithm can be derived from a straightforward adaptation of a linear

APPROX/RANDOM’16

http://drops.dagstuhl.de/opus/volltexte/2014/4692
http://drops.dagstuhl.de/opus/volltexte/2014/4692
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.115
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.115
http://dx.doi.org/10.1145/509907.509985
http://dx.doi.org/10.1145/1721837.1721857
http://dx.doi.org/10.1145/1721837.1721857
http://dx.doi.org/10.1137/S0097539705447037
http://dx.doi.org/10.1137/S0097539705447037
http://drops.dagstuhl.de/opus/volltexte/2014/4707
http://drops.dagstuhl.de/opus/volltexte/2014/4707
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.339
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.339
http://dx.doi.org/10.1109/FOCS.2013.46
http://dx.doi.org/10.1137/080729645

6:18 The Densest k-Subhypergraph Problem

Es Vs

Graph G Network Nq Et Vt

Figure 2 Left: Input graph G. Center: Network Nq. Right: Min-s-t-cut. Gray edges are cut
edges.

programming approach for the graph case due to Charikar [8] to our setting (see Appendix B
for more details).

Let Nq = (G̃, cq, s, t) be a flow network with directed bipartite graph G̃ = (E ∪ {t}, V ∪
{s}, F̃), capacities cq parameterized by a parameter q with m

n < q < m, source s and sink t
as follows (and as illustrated in Figure 2):

1. Vertex s is connected to every e ∈ E via directed edges (leaving s) with capacity 1.
2. Every v ∈ V is connected to t via a directed edge (directed towards t) with capacity q.
3. Edges from F are included in F̃ and directed from E-vertex to V -vertex with capacity ∞.

Denote by C∗ a minimum s-t cut in Nq and let val(C∗) be the value of the cut. Since
cutting all edges incident to vertex s results in a cut of value m, the min-cut value is at most
m and thus finite, and, in particular, no edge connecting E to V is included in the min-cut.
Denote by Es the set of E-vertices that, when removing the cut-edges from the graph, are
incident to s, and let Et = E \Es. Let Vs = ΓG(Es) and let Vt = V \ Vs. Since removing C∗
from G̃ separates s from t, all outgoing edges from Vs are included in C∗. Furthermore, since
C∗ is a minimum cut, none of the edges leaving Vt are contained in the cut. The resulting
structure is illustrated on the right in Figure 2. The value of the cut is computed as follows:

val(F ∗) = |Et|+ q · |Vs|. (3)

We prove now a property connecting the value of a minimum cut to the expansion of a
subset of E. This property allows us then to define an efficient algorithm for Min-Exp.

I Lemma 24. Let q be such that m
n < q < m. Then:

val(F ∗) < m⇔ ∃E′ ⊆ E : |E′|
|ΓG(E′)| > q.

Proof. Suppose that val(F ∗) < m. We prove that E′ = Es fulfills the claimed property.
The value of the cut val(F ∗) is computed according to Inequality 3 as follows:

m > val(F ∗) = |Et|+ q · |Vs| = m− |Es|+ q · |Vs| = m− |E′|+ q · |ΓG(E′)|,

which implies |E′|
|ΓG(E′)| > q as desired.

E. Chlamtáč, M. Dinitz, C. Konrad, G. Kortsarz, and G. Rabanca 6:19

Suppose now that there is a E′ ⊆ E such that |E′|
|ΓG(E′)| > q. Then the set of edges C

consisting of those that connect s to E \ E′ and those that connect ΓG(E′) to t form a cut.
We compute val(C):

val(C) = |E \ E′|+ q|ΓG(E′)| = m− |E′|+ q|ΓG(E′)| < m− |E′|+ |E′| = m.

The fact that val(C∗) ≤ val(C) completes the proof. J

Lemma 24 allows us to test whether there is a subset E′ ⊆ E such that |E′|
|ΓG(E′)| > q,

for some value of q. For every set E′ ⊆ E, we have |E′|
|ΓG(E′)| ∈ {

a
b : a ∈ {1, . . . ,m}, b ∈

{1, . . . , n}}. We could thus test all values a
b − ε, for a ∈ {1, . . . ,m}, b ∈ {1, . . . , n} and a

small enough ε, in order to identify the desired set (or use a binary search to speed up the
process). Since computing a min-cut can be done in polynomial time, we obtain the following
theorem:

I Theorem 25. Algorithm Min-Exp can be implemented in polynomial time.

B An LP-based algorithm for Minimum Expansion

We use hypergraph notation in this section. So the goal is to find a set E′ ⊆ E which
minimizes | ∪e∈E′ e|/|E′| over all choices of E′ (so there is no requirement that |E′| = p).

We use the following LP relaxation, which is a straightforward adaptation of Charikar’s [8]
algorithm for graphs.

LP = min
∑
i∈V

xi

s.t.
∑
e∈E

ye = 1

xi ≥ ye ∀e ∈ E, i ∈ e
xi ≥ 0 ∀i ∈ V
ye ≥ 0 ∀e ∈ E

Consider the following simple rounding algorithm:
Pick r ∈R [0, 1] uniformly at random.
Let E′ = {e ∈ E | xe ≥ r}.
Let V ′ =

⋃
e∈E′ e.

Clearly, for every vertex e ∈ E we have

Prob[e ∈ E′] = ye.

Also, for every vertex i ∈ V we have

Prob[i ∈ V ′] = max
e3i

ye ≤ xi.

Therefore, by linearity of expectation, we have

E[LP · |E′| − |V ′|] ≥ LP · 1− LP = 0,

and this is obviously still true when we condition the expectation on |E′| > 0 (a positive
probability event), so with positive probability, we get a pair (V0, E0) such that E0 6= ∅,
V0 =

⋃
e∈E0

e and |V0|/|E0| ≤ LP. The rounding is trivially derandomized by trying r = ye
for every vertex e ∈ E.

APPROX/RANDOM’16

Online Row Sampling
Michael B. Cohen∗1, Cameron Musco†2, and Jakub Pachocki‡3

1 Massachusetts Institute of Technology, Cambridge, MA, USA
micohen@mit.edu

2 Massachusetts Institute of Technology, Cambridge, MA, USA
cnmusco@mit.edu

3 Carnegie Mellon University, Pittsburgh, PA, USA
pachocki@cs.cmu.edu

Abstract
Finding a small spectral approximation for a tall n × d matrix A is a fundamental numerical
primitive. For a number of reasons, one often seeks an approximation whose rows are sampled
from those of A. Row sampling improves interpretability, saves space when A is sparse, and
preserves row structure, which is especially important, for example, when A represents a graph.

However, correctly sampling rows from A can be costly when the matrix is large and cannot be
stored and processed in memory. Hence, a number of recent publications focus on row sampling
in the streaming setting, using little more space than what is required to store the outputted
approximation [12, 11].

Inspired by a growing body of work on online algorithms for machine learning and data ana-
lysis, we extend this work to a more restrictive online setting: we read rows of A one by one and
immediately decide whether each row should be kept in the spectral approximation or discarded,
without ever retracting these decisions. We present an extremely simple algorithm that approx-
imates A up to multiplicative error ε and additive error δ using O(d log d log(ε‖A‖2

2/δ)/ε2) online
samples, with memory overhead proportional to the cost of storing the spectral approximation.
We also present an algorithm that uses O(d2) memory but only requires O(d log(ε‖A‖2

2/δ)/ε2)
samples, which we show is optimal.

Our methods are clean and intuitive, allow for lower memory usage than prior work, and
expose new theoretical properties of leverage score based matrix approximation.

1998 ACM Subject Classification F.2.1 [Numerical Algorithms and Problems] Computations
on Matrices, F.1.2 [Modes of Computation] Online computation

Keywords and phrases spectral sparsification, leverage score sampling, online sparsification

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2016.7

1 Introduction

1.1 Background
A spectral approximation to a tall n× d matrix A is a smaller, typically Õ(d)× d matrix Ã
such that ‖Ãx‖2 ≈ ‖Ax‖2 for all x. Typically one asks for a multiplicative approximation,
which guarantees that (1− ε)‖Ax‖2

2 ≤ ‖Ãx‖2
2 ≤ (1 + ε)‖Ax‖2

2. In other notation,

(1− ε)A � Ã � (1 + ε)A.

∗ Michael B. Cohen is partially supported by NSF grant CCF-1111109.
† Cameron Musco is partially supported by NSF Graduate Research Fellowship No. 1122374, AFOSR

grant FA9550-13-1-0042 and the NSF Center for Science of Information.
‡ Jakub Pachocki is partially supported by NSF grant CCF-1065106.

© Michael B. Cohen, Cameron Musco, and Jakub Pachocki;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016).
Editors: Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans; Article No. 7; pp. 7:1–7:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.7
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

7:2 Online Row Sampling

Such approximations have many applications, most notably for solving least squares
regression over A [6, 8]. If A is the vertex edge incidence matrix of a graph, Ã is a spectral
sparsifier [20]. It can be used to approximate effective resistances, spectral clustering, mixing
time and random walk properties, and many other computations.

A number of recent papers focus on fast algorithms for spectral approximation. Using
sparse random subspace embeddings [6, 18, 17], it is possible to find Ã in input sparsity time,
essentially by randomly recombining the rows of A into a smaller number of rows. In some
cases these embeddings are not enough, as it is desirable for the rows of Ã to be a subset of
rows sampled from A. If A is sparse, this ensures that Ã is also sparse. If A represents a
graph, it ensures that Ã is also a graph, specifically a weighted subgraph of the original.

It is well known that sampling O(d log d/ε2) rows of A with probabilities proportional
to their leverage scores yields a (1 + ε) multiplicative factor spectral approximation to A.
Further, this sampling can be done in input sparsity time, either using subspace embeddings
to approximate leverage scores, or using iterative sampling techniques [15], some that only
work with subsampled versions of the original matrix [8].

1.2 Streaming and Online Row Sampling
When A is very large, input sparsity runtimes are not enough – memory restrictions also
become important. Hence, recent work has tackled row sampling in a streaming model of
computation. [12] presents a simple algorithm for sampling rows from an insertion only
stream, using space approximately proportional to the size of the final approximation. [11]
gives a sparse-recovery based algorithm that works in dynamic streams with row insertions
and deletions, also using nearly optimal space. Unfortunately, to handle dynamic streams,
the algorithm in [11] is complex, requires additional restrictions on the input matrix, and uses
significantly suboptimal runtime to recover a spectral approximation from its low memory
representation of the input stream.

While the algorithm in [12] is simple and efficient, we believe that its proof is incomplete,
and do not see an obvious way to fix it. The main idea behind the algorithm is to sample
rows by their leverage scores with respect to the stream seen so far. These leverage scores
may be coarse overestimates of the true scores. However as more rows are streamed in, better
estimates can be obtained and the sampled rows pruned to a smaller set. Unfortunately, the
probability of sampling a row becomes dependent on which other rows are sampled. This
seems to break the argument in that paper, which essentially claims that their process has
the same distribution as would a single round of leverage score sampling.

In this paper we initiate the study of row sampling in an online setting. As in an insertion
stream, we read rows of A one by one. However, upon seeing a row, we immediately decide
whether it should be kept in the spectral approximation or discarded, without ever retracting
these decisions. We present a similar algorithm to [12], however, since we never prune
previously sampled rows, the probability of sampling a row only depends on whether previous
rows in the stream were sampled. This limited dependency structure allows us to rigorously
argue that a spectral approximation is obtained.

In addition to addressing gaps in the literature on streaming spectral approximation,
our restricted model extends work on online algorithms for a variety of other machine
learning and data analysis problems, including principal component analysis [4], clustering
[16], classification [3, 10], and regression [10]. In practice, online algorithms are beneficial
since they can be highly computationally and memory efficient. Further, they can be applied
in scenarios in which data is produced in a continuous stream and intermediate results must
be output as the stream is processed. Spectral approximation is a widely applicable primitive

M.B. Cohen, C. Musco, and J. Pachocki 7:3

for approximate learning and computation, so studying its implementation in an online
setting is a natural direction.

1.3 Our Results
Our primary contribution is a very simple algorithm for leverage score sampling in an online
manner. The main difficultly with row sampling using leverage scores is that leverage scores
themselves are not easy to compute. They are given by li = aTi (ATA)−1ai, and so require
solving systems in ATA if computed naively. This is not only expensive, but also impossible
in an online setting, where we do not have access to all of A.

A critical observation is that it always suffices to sample rows by overestimates of their
true leverage scores. The number of rows that must be sampled is proportional to the sum
of these overestimates. Since the leverage score of a row can only go up when we remove
rows from the matrix, a simple way to obtain an overestimate is to compute leverage score
using just a subset of the other rows of A. That is, letting Aj contain just j of A’s n rows,
we can overestimate li by l̃i = aTi (AT

j Aj)−1ai
[8] shows that if Aj is a subset of rows sampled uniformly at random, then the expected

leverage score of ai is d/j. This simple fact immediately gives a result for online sampling
from a randomly ordered stream. If we compute the leverage score of the current row ai
against all previously seen rows (or some approximation to these rows), then the expected
sum of our overestimates is bounded by d+ d/2 + ...+ ...+ d/n = O(d logn). So, sampling
O(d log d logn/ε2) rows is enough obtain a (1+ε) multiplicative factor spectral approximation.

What if we cannot guarantee a randomly ordered input stream? Is there any hope of
being able to compute good leverage score estimates in an online manner? Surprisingly the
answer to this is yes - we can in fact run nearly the exact same algorithm and be guaranteed
that the sum of estimated leverage scores is low, regardless of stream order. Roughly, each
time we receive a row which has high leverage score with respect to the previous rows, it must
compose a significant part of A’s spectrum. If A does not continue to grow unboundedly,
there simply cannot be too many of these significant rows.

Specifically, we show that if we sample by the ridge leverage scores [1] over all previously
seen rows, which are the leverage scores computed over AT

i Ai+λI for some small regularizing
factor λ, then with just O(d log d log(ε‖A‖2

2/δ)/ε2) samples we obtain a (1 + ε) multiplicative,
δ additive error spectral approximation. That is, with high probability we sample a matrix
Ã with (1− ε)ATA− δI � ÃT Ã � (1 + ε)ATA + δI.

To gain intuition behind this bound, note that we can convert it into a multiplicative
one by setting δ = εσmin(A)2 (as long as we have some estimate of σmin(A)). This setting
of δ will require taking O(d log d log(κ(A))/ε2) samples. If we have a polynomial bound on
the condition number of A, as we do, for instance, for graphs with polynomially bounded
edges weights, this becomes O(d log2 d/ε2) – nearly matching the O(d log d/ε2) achievable if
sampling by true leverage scores.

Our online sampling algorithm is extremely simple. When each row comes in, we compute
the online ridge leverage score, or an estimate of it, and then irrevocably either add the row
to our approximation or remove it. As mentioned, it is similar in form to the streaming
algorithm of [12], except that it does not require pruning previously sampled rows. This
allows us to avoid difficult dependency issues. Additionally, without pruning, we do not
even need to store all previously sampled rows. As long as we store a constant factor
spectral approximation our previous samples, we can compute good approximations to the
online ridge leverage scores. In this way, we can store just O(d log d log(ε‖A‖2

2/δ)) rows
in working memory (O(d log2 d) if we want a spectral graph sparsifier), filtering our input

APPROX/RANDOM’16

7:4 Online Row Sampling

stream into an O(d log d log(κ(A))/ε2) sized output stream. Note that this memory bound
in fact improves as ε decreases, and regardless, can be significantly smaller than the output
size of the algorithm.

In addition to our main sampling result, we use our bounds on online ridge leverage
score approximations to show that an algorithm in the style of [2] allows us to remove
a log d factor and sample just O(d log(ε‖A‖2

2/δ)/ε2) rows (Theorem 10). This algorithm
is more complex and can require O(d2) working memory. However, in Theorem 12 we
show that it is asymptotically optimal. The log(ε‖A‖2

2/δ) factor is not an artifact of our
analysis, but is truly the cost of the restricting ourselves to online sampling. No algorithm
can obtain a multiplicative (1 + ε) additive δ spectral approximation taking fewer than
Ω(d log(ε‖A‖2

2/δ)/ε2) rows in an online manner.

2 Overview

Let A be an n× d matrix with rows a1, . . . ,an. A natural approach to row sampling from
A is picking an a priori probability with which each row is kept, and then deciding whether
to keep each row independently. A common choice is for the sampling probabilities to be
proportional to the leverage scores of the rows. The leverage score of the i-th row of A is
defined to be

aTi (ATA)†ai,

where the dagger symbol denotes the pseudoinverse. In this work, we will be interested in
approximating ATA with some (very) small multiple of the identity added. Hence, we will
be interested in the λ-ridge leverage scores [1]:

aTi (ATA + λI)−1ai,

for a parameter λ > 0.
In many applications, obtaining the (nearly) exact values of aTi (ATA + λI)−1ai for

sampling is difficult or outright impossible. A key idea is that as long as we have a sequence
l1, . . . , ln of overestimates of the λ-ridge leverage scores, that is for i = 1, . . . , n

li ≥ aTi (ATA + λI)−1ai,

we can sample by these overestimates and obtain rigorous guarantees on the quality of the
obtained spectral approximation. This notion is formalized in Theorem 1.

I Theorem 1. Let A be an n × d matrix with rows a1, . . . ,an. Let ε ∈ (0, 1), δ > 0, λ :=
δ/ε, c := 8 log d/ε2. Assume we are given l1, . . . , ln such that for all i = 1, . . . , n,

li ≥ aTi (ATA + λI)−1ai.

For i = 1, . . . , n, let pi := min(cli, 1). Construct Ã by independently sampling each row ai of
A with probability pi, and rescaling it by 1/√pi if it is included in the sample. Then, with
high probability,

(1− ε)ATA− δI � ÃT Ã � (1 + ε)ATA + δI,

and the number of rows in Ã is O
(
(
∑n
i=1 li) log d/ε2

)
.

M.B. Cohen, C. Musco, and J. Pachocki 7:5

Proof. This sort of guarantee for leverage score sampling is well known. See for example
Lemma 4 of [8]. If we sampled both the rows of A and the rows of

√
λI with the leverage

scores over (ATA + λI), we would have (1− ε)(ATA + λI) � ÃT Ã � (1 + ε)(ATA + λI).
However, we do not sample the rows of the identity. Since we could have sampled them each
with probability 1, we can simply subtract λI = (δ/ε)I from the multiplicative bound and
have: (1− ε)ATA− δI � ÃT Ã � (1 + ε)ATA + δI. J

The idea of using overestimates of leverage scores to perform row sampling has been
applied successfully to various problems (see e.g. [13, 8]). However, in these applications,
access to the entire matrix is required beforehand. In the streaming and online settings, we
have to rely on partial data to approximate the true leverage scores. The most natural idea
is to just use the portion of the matrix seen thus far as an approximation to A. This leads
us to introduce the online λ-ridge leverage scores:

li := min(aTi (AT
i−1Ai−1 + λI)−1ai, 1),

where Ai (i = 0, . . . , n) is defined as the matrix consisting of the first i rows of A1.
Since clearly AT

i Ai � ATA for all i, it is not hard to see that li does overestimate the
true λ-ridge leverage score for row ai. A more complex question, however, is establishing an
upper bound on

∑n
i=1 li so that we can bound the number of samples needed by Theorem 1.

A core result of this work, stated in Theorem 2, is establishing such an upper bound; in
fact, this bound is shown to be tight up to constants (Theorem 12) and is nearly-linear in
most cases.

I Theorem 2. Let A be an n× d matrix with rows a1, . . . ,an. Let Ai for i ∈ {0, . . . , n} be
the matrix consisting of the first i rows of A. For λ > 0, let

li := min(aTi (AT
i−1Ai−1 + λI)−1ai, 1).

be the online λ-ridge leverage score of the ith row of A. Then
n∑
i=1

li = O(d log(‖A‖2
2/λ)).

Theorems 2 and 1 suggest a simple algorithm for online row sampling: simply use the
online λ-ridge leverage scores, for λ := δ/ε. This produces a spectral approximation with
only O(d log d log(ε‖A‖2

2/δ)/ε2) rows. Unfortunately, computing li exactly requires us to
store all the rows we have seen in memory (or alternatively to store the sum of their outer
products, AT

i Ai). In many cases, such a requirement would defeat the purpose of streaming
row sampling.

A natural idea is to use the sample we have kept thus far as an approximation to Ai when
computing li. It turns out that the approximate online ridge leverage scores l̃i computed in
this way will not always be good approximations to li; however, we can still prove that they
satisfy the requisite bounds and yield the same row sample size! We formalize these results
in the algorithm Online-Sample (Figure 1) and Theorem 3.

I Theorem 3. Let Ã be the matrix returned by Online-Sample(A, ε, δ). With high prob-
ability,

(1− ε)ATA− δI � ÃT Ã � (1 + ε)ATA + δI,

and the number of rows in Ã is O(d log d log(ε‖A‖2
2/δ)/ε2).

1 We use the proposed scores li for simplicity, however note that the following, perhaps more natural,
definition of online leverage scores would also be effective: l′i := aT

i (AT
i Ai + λI)−1ai.

APPROX/RANDOM’16

7:6 Online Row Sampling

Ã = Online-Sample(A, ε, δ), where A is an n× d matrix with rows a1, . . . ,an,
ε ∈ (0, 1), δ > 0.
1. Set λ := δ/ε, c := 8 log d/ε2.
2. Let Ã0 be a 0× d matrix.
3. For i = 1, . . . , n:

a. Let l̃i := min((1 + ε)aTi (ÃT
i−1Ãi−1 + λI)−1ai, 1).

b. Let pi := min(cl̃i, 1).

c. Set Ãi :=

[

Ãi−1

ai/
√
pi

]
with probability pi,

Ãi−1 otherwise.
4. Return Ã := Ãn.

Figure 1 The basic online sampling algorithm.

To save computation, we note that, with a small modification to our analysis, we can
run Online-Sample with batch processing of rows. Specifically, say we start from the ith
position in the stream. we can store the next b = O(d) rows. We can then compute sampling
probabilities for these rows all at once using a system solver for (ÃT

i+bÃi+b + λI). Using a
trick introduced in [19], by applying a Johnson-Lindenstrauss random projection to the rows
whose scores we are computing, we need just O(log(1/δ)) system solves to compute constant
factor approximations to the ridge scores with probability 1 − δ. If we set δ = 1/poly(n)
then we can union bound over our whole stream, using this trick with each batch of O(d)
input rows. The batch probabilities will only be closer to the true ridge leverage scores than
the non-batch probabilities and we will enjoy the same guarantees as Online-Sample.

Additionally, it turns out that with a simple trick, it is possible to reduce the memory usage
of the algorithm by a factor of ε−2, bringing it down to O(d log d log(ε‖A‖2

2/δ)) (assuming
the row sample is output to an output stream). Note that this expression gets smaller
with ε; hence we obtain a row sampling algorithm with memory complexity independent
of desired multiplicative precision. The basic idea is that, instead of keeping all previously
sampled rows in memory, we store a smaller set of rows that give a constant factor spectral
approximation, still enough to give good estimates of the online ridge leverage scores.

This result is presented in the algorithm Slim-Sample (Figure 2) and Lemma 9. A
particularly interesting consequence for graphs with polynomially bounded edge weights is:

I Corollary 4. Let G be a simple graph on d vertices, and ε ∈ (0, 1). We can construct a
(1 + ε)-sparsifier of G of size O(d log2 d/ε2), using only O(d log2 d) working memory in the
online model.

Proof. This follows simply from applying Theorem 3 with δ = ε/σ2
min(A). For an unweighted

graph on d vertices, ‖A‖2
2 ≤ d, since d is the largest squared singular value of the complete

graph. Combining with Lemma 6.1 of [21], we have that the condition number of a graph on
d vertices whose edge weights are within a multiplicative poly(d) of each other is polynomial
in d. So log(ε‖A‖2

2/δ) = log(κ2(A)) = O(log d). J

We remark that the algorithm of Corollary 4 can be made to run in nearly linear time in
the stream size. We combine Slim-Sample with the batch processing idea described above.
Because A is a graph, our matrix approximation is always a symmetric diagonally dominant
matrix, with O(d) nonzero entries. We can solve systems in it in time Õ(d). Using the

M.B. Cohen, C. Musco, and J. Pachocki 7:7

Johnson-Lindenstrauss random projection trick of [19], we can compute approximate ridge
leverage scores for a batch of O(d) rows with failure probability polynomially small in n in
Õ(d logn) time. Union bounding over the whole stream, we obtain nearly linear runtime.

To complement the row sampling results discussed above, we explore the limits of
the proposed online setting. In Section 4 we present the algorithm Online-BSS, which
obtains spectral approximations with O(d log(ε‖A‖2

2/δ)/ε2) rows in the online setting (with
larger memory requirements than the simpler sampling algorithms). Its analysis is given in
Theorem 10. In Section 5, we show that this number of samples is in fact the best achievable,
up to constant factors (Theorem 12). The log(ε‖A‖2

2/δ) factor is truly the cost of requiring
rows to be selected in an online manner.

3 Analysis of Sampling Schemes

We begin by bounding the sum of online λ-ridge leverage scores. The intuition behind the
proof of Theorem 2 is that whenever we add a row with a large online leverage score to a
matrix, we increase its determinant significantly, as follows from the matrix determinant
lemma (Lemma 5). Thus we can reduce upper bounding the online leverage scores to
bounding the matrix determinant.

I Lemma 5 (Matrix determinant lemma). Assume S is an invertible square matrix and u is
a vector. Then

det(S + uuT) = (det S)(1 + uTS−1u).

Proof of Theorem 2. By Lemma 5, we have

det(AT
i+1Ai+1 + λI) = det(AT

i Ai + λI) ·
(
1 + aTi+1(AT

i Ai + λI)−1ai+1
)

≥ det(AT
i Ai + λI) · (1 + li+1)

≥ det(AT
i Ai + λI) · eli+1/2.

Hence,

det(ATA + λI) = det(AT
nAn + λI)

≥ det(λI) · e
∑

li/2

= λde
∑

li/2.

We have det(ATA + λI) ≤ (‖A‖2
2 + λ)d. Therefore

(‖A‖2
2 + λ)d ≥ λde

∑
li/2.

Taking logarithms of both sides, we obtain

d log(‖A‖2
2 + λ) ≥ d log λ+

∑
li/2∑

li ≤ 2d log(1 + ‖A‖2
2/λ). J

We now turn to analyzing the algorithm Online-Sample. Because the samples taken
by the algorithm are not independent, we are not able to use a standard matrix Chernoff
bound like the one in Theorem 1. However, we do know that whether we take row i does not
depend on later rows; thus, we are able to analyze the process as a martingale. We will use a
matrix version of the Freedman inequality given by Tropp.

APPROX/RANDOM’16

7:8 Online Row Sampling

I Theorem 6 (Matrix Freedman inequality [22]). Let Y0,Y1, . . . ,Yn be a matrix martingale
whose values are self-adjoint matrices with dimension d, and let X1, . . . ,Xn be the difference
sequence. Assume that the difference sequence is uniformly bounded in the sense that

‖Xk‖2 ≤ R almost surely, for k = 1, . . . , n.

Define the predictable quadratic variation process of the martingale:

Wk :=
k∑
j=1

Ej−1
[
X2
j

]
, for k = 1, . . . , n.

Then, for all ε > 0 and σ2 > 0,

P
[
‖Yn‖2 ≥ ε and ‖Wn‖2 ≤ σ2] ≤ d · exp

(
− −ε2/2
σ2 +Rε/3

)
We begin by showing that the output of Online-Sample is in fact an approximation of

A, and that the approximate online leverage scores are lower bounded by the actual online
leverage scores.

I Lemma 7. After running Online-Sample, it holds with high probability that

(1− ε)ATA− δI � ÃT Ã � (1 + ε)ATA + δI,

and also

l̃i ≥ aTi (ATA + λI)−1ai

for i = 1, . . . , n.

Proof. Let

ui := (ATA + λI)−1/2ai.

We construct a matrix martingale Y0,Y1, . . . ,Yn ∈ Rd×d with the difference sequence
X1, . . . ,Xn. Set Y0 = 0. If ‖Yi−1‖2 ≥ ε, we set Xi := 0. Otherwise, let

Xi :=
{

(1/pi − 1)uiuTi if ai is sampled in Ã,
−uiuTi otherwise.

In the case that ‖Yi−1‖2 < ε, by construction, ‖Yj‖2 < ε for all j < i− 1. So we have:

Yi−1 = (ATA + λI)−1/2(ÃT
i−1Ãi−1 −AT

i−1Ai−1)(ATA + λI)−1/2.

Hence, we have

l̃i = min((1 + ε)aTi (ÃT
i−1Ãi−1 + λI)−1ai, 1)

≥ min((1 + ε)aTi (AT
i−1Ai−1 + λI + ε(ATA + λI))−1ai, 1)

≥ min((1 + ε)aTi ((1 + ε)(ATA + λI))−1ai, 1)
= aTi (ATA + λI)−1ai (1)
= uTi ui,

M.B. Cohen, C. Musco, and J. Pachocki 7:9

and so pi ≥ min(cuTi ui, 1). If pi = 1, then Xi = 0. Otherwise, we have pi ≥ cuTi ui and:

‖Xi‖2 ≤ max{1, 1/pi − 1} · ‖uiuTi ‖2 ≤
1
pi

uTi ui ≤ 1/c. (2)

Further

Ei−1
[
X2
i

]
� pi · (1/pi − 1)2(uiuTi)2 + (1− pi) · (uiuTi)2

= (uiuTi)2 · (1− pi)/pi
� uiuTi ·

(
uTi ui/pi

)
� uiuTi /c. (by equation (2))

And so, for the predictable quadratic variation process of the martingale {Yi}:

Wi :=
i∑

k=1
Ek−1

[
X2
k

]
,

we have

‖Wi‖2 ≤

∣∣∣∣∣
∣∣∣∣∣
i∑

k=1
uiuTi /c

∣∣∣∣∣
∣∣∣∣∣
2

≤ 1/c.

Therefore by, Theorem 6, we have

P [‖Yn‖2 ≥ ε] ≤ d · exp
(

−ε2/2
1/c+ ε/(3c)

)
≤ d · exp(−cε2/4)
= 1/d.

This implies that with high probability

‖(ATA + λI)−1/2(ÃT Ã + λI)(ATA + λI)−1/2 − I‖2 ≤ ε

and so

(1− ε)(ATA + λI) � ÃT Ã + λI � (1 + ε)(ATA + λI).

Subtracting λI = (δ/ε)I from all sides, we get

(1− ε)ATA− δI � ÃT Ã � (1 + ε)ATA + δI.

Finally, note that, since we set Xi = 0 if ‖Yi−1‖2 ≥ ε, ‖Yn‖2 < ε implies ‖Yi‖2 < ε for
all i < n. We thus have the desired bound on l̃i by equation (1). J

If we set c in Online-Sample to be proportional to logn rather than log d, we would be
able to take a union bound over all the rows and guarantee that with high probability all
the approximate online leverage scores l̃i are close to true online leverage scores li. Thus
Theorem 2 would imply that Online-Sample only selects O(d logn log(‖A‖2

2/λ)/ε2) rows
with high probability.

In order to remove the dependency on n, we have to sacrifice achieving close approxima-
tions to li at every step. Instead, we show that the sum of the computed approximate online
leverage scores is still small with high probability, using a custom Chernoff bound.

APPROX/RANDOM’16

7:10 Online Row Sampling

I Lemma 8. After running Online-Sample, it holds with high probability that
n∑
i=1

l̃i = O(d log(‖A‖2
2/λ)).

Proof. Define

δi := log det(ÃT
i Ãi + λI)− log det(ÃT

i−1Ãi−1 + λI).

The proof closely follows the idea from the proof of Theorem 2. We will aim to show that
large values of l̃i correlate with large values of δi. However, the sum of δi can be bounded by
the logarithm of the ratio of the determinants of ÃT Ã + λI and λI. First, we will show that
Ei−1

[
exp(l̃i/8− δi)

]
is always at most 1. We begin by an application of Lemma 5.

Ei−1
[
exp(l̃i/8− δi)

]
= pi · el̃i/8(1 + aTi (ÃT

i−1Ãi−1 + λI)−1ai/pi)−1 + (1− pi)el̃i/8

≤ pi · (1 + l̃i/4)(1 + aTi (ÃT
i−1Ãi−1 + λI)−1ai/pi)−1 + (1− pi)(1 + l̃i/4).

If cl̃i < 1, we have pi = cl̃i and l̃i = (1 + ε)aTi (ÃT
i−1Ãi−1 + λI)−1ai, and so:

Ei−1
[
exp(l̃i/8− δi)

]
≤ cl̃i · (1 + l̃i/4)(1 + 1/((1 + ε)c))−1 + (1− cl̃i)(1 + l̃i/4)

= (1 + l̃i/4)(cl̃i(1 + 1/((1 + ε)c))−1 + 1− cl̃i)
≤ (1 + l̃i/4)(1 + cl̃i(1− 1/(4c)− 1))
= (1 + l̃i/4)(1− l̃i/4)
≤ 1.

Otherwise, we have pi = 1 and so:

Ei−1
[
exp(l̃i/8− δi)

]
≤ (1 + l̃i/4)(1 + aTi (ÃT

i−1Ãi−1 + λI)−1ai)−1

≤ (1 + l̃i/4)(1 + l̃i)−1

≤ 1.

We will now analyze the expected product of exp(l̃i/8− δi) over the first k steps. We group
the expectation over the first k steps into one over the first k − 1 steps, aggregating the
expectation for the last step by using one-way independence. For k ≥ 1 we have

E
[

exp
(

k∑
i=1

l̃i/8− δi

)]
= E

first k − 1 steps

[
exp

(
k−1∑
i=1

l̃i/8− δi

)
Ek−1

[
exp(l̃k/8− δk)

]]

≤ E
[

exp
(
k−1∑
i=1

l̃i/8− δi

)]
,

and so by induction on k

E
[

exp
(

n∑
i=1

l̃i/8− δi

)]
≤ 1.

Hence by Markov’s inequality

P
[

n∑
i=1

l̃i > 8d+ 8
n∑
i=1

δi

]
≤ e−d.

M.B. Cohen, C. Musco, and J. Pachocki 7:11

Ã = Slim-Sample(A, ε, δ), where A is an n× d matrix with rows a1, . . . ,an,
ε ∈ (0, 1), δ > 0.
1. Set λ := δ/ε, c := 8 log d/ε2.
2. Let Ã0 be a 0× d matrix.
3. Let l̃1, . . . , l̃n be the approximate online leverage scores computed by an inde-

pendent instance of Online-Sample(A, 1/2, δ/(2ε)).
4. For i = 1, . . . , n:

a. Let pi := min(cl̃i, 1).

b. Set Ãi :=

[

Ãi−1

ai/
√
pi

]
with probability pi,

Ãi−1 otherwise.
5. Return Ã := Ãn.

Figure 2 The low-memory online sampling algorithm.

By Lemma 7, with high probability we have ÃT Ã + λI � (1 + ε)(ATA + λI). We also have
with high probability:

det(ÃT Ã + λI) ≤ (1 + ε)d(‖A‖2
2 + λ)d,

log det(ÃT Ã + λI) ≤ d(1 + log(‖A‖2
2 + λ)).

Hence, with high probability it holds that
n∑
i=1

δi = log det(ÃT Ã + λI)− d log(λ)

≤ d(1 + log(‖A‖2
2 + λ)− log(λ))

= d(1 + log(1 + ‖A‖2
2/λ)).

And so, with high probability,
n∑
i=1

l̃i ≤ 8d+ 8
n∑
i=1

δi

≤ 9d+ 8d log(1 + ‖A‖2
2/λ)

= O(d log(‖A‖2
2/λ)). J

Proof of Theorem 3. The thesis follows immediately from Lemmas 7 and 8. J

We now consider a simple modification of Online-Sample that removes dependency on
ε from the working memory usage with no additional cost.

I Lemma 9. Let Ã be the matrix returned by Slim-Sample(A, ε, δ). Then, with high
probability,

(1− ε)ATA− δI � ÃT Ã � (1 + ε)ATA + δI,

and the number of rows in Ã is O(d log d log(ε‖A‖2
2/δ)/ε2).

Moreover, with high probability the algorithm Slim-Sample’s memory requirement is
dominated by storing O(d log d log(ε‖A‖2

2/δ)) rows of A.

Proof. As the samples are independent, the thesis follows from Theorem 1 and Lemmas 7
and 8. J

APPROX/RANDOM’16

7:12 Online Row Sampling

4 Asymptotically Optimal Algorithm

In addition to sampling by online leverage scores, there is also a variant of the “BSS” method
[2] that applies in our setting. Like the original [2], this approach removes the log d factor
from the row count of the output spectral approximation, matching the lower bound for
online sampling given in Theorem 12.

Unlike [2] itself, our algorithm is randomized – it is similar to, and inspired by, the
randomized version of BSS from [14], especially the simpler “Algorithm 1” from that paper
(the main difference from that is considering each row separately). In fact, this algorithm
is of the same form as the basic sampling algorithm, in that when each row comes in, a
probability pi is assigned to it, and it is kept (and rescaled) with probability pi and rejected
otherwise. The key difference is the definition of the pi.

There are also some differences in the nature of the algorithm and its guarantees. Notably,
the pi cannot be computed solely based on the row sample output so far–it is necessary to
“remember” the entire matrix given so far. This means that the BSS method is not memory
efficient, using O(d2) space. Additionally, online leverage score sampling gives bounds on
both the size of the output spectral approximation and its accuracy with high probability.
In contrast, this method gives an expected bound on the output size, while it never fails to
output a correct spectral approximation. Note that these guarantees are essentially the same
as those in the appendix of [14].

One may, however, improve the memory dependence in some cases simply by running it
on the output stream of the online leverage score sampling method. This reduces the storage
cost to the size of that spectral approximation. The BSS method still does not produce an
actual space savings (in particular, there is a still a log d factor in space), but it does reduce
the number of rows in the output stream while only blowing up the space usage by O(1/ε2)
(due to requiring the storage of an ε-quality approximation rather than only O(1)).

The BSS method maintains two matrices, BU
i and BL

i , acting as upper and lower “barriers”.
The current spectral approximation will always fall between them:

BL
i ≺ ÃT

i ÃT
i ≺ BU

i .

This guarantee, at the end of the algorithm, will ensure that Ã is a valid approximation.
Below, we give the actual BSS algorithm and its performance guarantees.

I Theorem 10.
1. The online BSS algorithm always outputs Ã such that

(1− ε)ATA− δI ≺ ÃT ÃT ≺ (1 + ε)ATA + δI .

2. The probability that a row ai is included in Ã is at most 8
ε2 li, where li is the online

2δ
ε -ridge leverage score of ai. That is li = min(aTi

(
AT
i Ai + 2δ

ε I
)−1 ai, 1). The expected

number of rows in Ã is thus at most 8
ε2

∑n
i=1 li = O(d log(ε‖A‖2

2/δ)/ε2).

Proof of Theorem 10 part 1. We first note the basic invariant that XU
i and XL

i always
remain positive definite–or equivalently,

BL
i ≺ ÃT

i ÃT
i ≺ BU

i .

We may prove this by induction on i. The base case follows from the initialization of Ã0,
BU

0 and BL
0 . For each successive step, we consider two possibilities.

M.B. Cohen, C. Musco, and J. Pachocki 7:13

Ã = Online-BSS(A, ε, δ), where A is an n× d matrix with rows a1, . . . ,an,
ε ∈ (0, 1), δ > 0.
1. Set cU = 2

ε + 1 and cL = 2
ε − 1.

2. Let Ã0 be a 0× d matrix, BU
0 = δI, BL

0 = −δI.
3. For i = 1, . . . , n:

a. Let XU
i−1 = (BU

i−1 − ÃT
i−1Ãi−1), XL

i−1 = (ÃT
i−1Ãi−1 −BL

i−1).
b. Let pi := min(cUaTi (XU

i−1)−1ai + cLaTi (XL
i−1)−1ai, 1).

c. Set Ãi :=

[

Ãi−1

ai/
√
pi

]
with probability pi,

Ãi−1 otherwise.
d. Set BU

i = BU
i−1 + (1 + ε)aiaTi , BL

i = BL
i−1 + (1− ε)aiaTi .

4. Return Ã := Ãn.

Figure 3 The Online BSS Algorithm.

The first is that pi = 1. In that case, ÃT Ã always increases by exactly aiaTi , BU by
(1 + ε)aiaTi and BL by (1− ε)aiaTi . Thus XU and XL increase by exactly εaiaTi , which is
positive semidefinite, and so remain positive definite.

In the other case, pi < 1. Now, XU decreases by at most the increase in ÃT
i ÃT

i , or

Mi = aiaTi
p

.

Since cU > 1, p > aTi (XU
i−1)−1ai, so aiaTi ≺ pXU

i−1 and Mi ≺ XU
i−1. Subtracting this then

must leave XU positive definite. Similarly, XL decreases by at most the increase in BL,
which is (1− ε)aiaTi ≺ aiaTi . Since cL > 1 and p < 1, aTi (XL

i−1)−1ai < 1, and aiaTi ≺ XL
i−1.

Subtracting this similarly leaves XL positive definite. Finally, we note that

BU
n = (1 + ε)ATA + δI

BL
n = (1− ε)ATA− δI.

This gives the desired result. J

To prove part 2, we will use quantities of the form vTX−1v. We will need a lemma
describing how this behaves under a random rank-1 update:

I Lemma 11. Given a positive definite matrix X, two vectors u and v, two multipliers a
and b and a probability p, define the random variable X′ to be X − auuT with probability p
and X − buuT otherwise. Then if uTX−1u = 1,

E
[
vTX′−1v− vTX−1v] = (vTX−1u)2 pa+ (1− p)b− ab

(1− a)(1− b)

]
.

Proof. We apply the Sherman-Morrison formula to each of the two possibilities (subtracting
auuT and buuT respectively). These give X′ values of respectively

X−1 + a
X−1uuTX−1

1− auTX−1u = X−1 + a

1− aX−1uuTX−1

and

X−1 + b
X−1uuTX−1

1− buTX−1u = X−1 + b

1− bX−1uuTX−1.

APPROX/RANDOM’16

7:14 Online Row Sampling

The values of vTX′−1v− vTX−1v are then respectively

a

1− avTX−1uuTX−1v = (vTX−1u)2 a

1− a

and

b

1− bvTX−1uuTX−1v = (vTX−1u)2 b

1− b .

Combining these gives the stated result. J

Proof of Theorem 10 part 2. First, we introduce some new matrices to help in the analysis:

CU
i,j = δI + ε

2AT
i Ai +

(
1 + ε

2

)
AT
j Aj

CL
i,j = −δI− ε

2AT
i Ai +

(
1− ε

2

)
AT
j Aj .

Note that CU
i,i = BU

i , CL
i,i = BL

i , and for j ≤ i, CU
i,j � BU

j and CL
i,j � BL

j . We can then
define:

YU
i,j = CU

i,j − ÃT
j Ãj

YL
i,j = ÃT

j Ãj −CL
i,j .

We then have, similarly, YU
i,i = XU

i , YL
i,i = XL

i , and for j ≤ i, YU
i,j � XU

j and YL
i,j � XL

j .
We will assume that li < 1, since otherwise the claim is immediate (as probabilities

cannot exceed 1). Now, note that

aTi (YU
i,0)−1ai = aTi (YL

i,0)−1ai

= aTi
(ε

2AT
i Ai + δI

)−1
ai

= 2
ε

(
AT
i Ai + 2δ

ε
I

)−1
ai

= 2
ε
li.

Next, we will aim to show that for j < i− 1,

E
[
aTi YU

i−1,j+1ai
]
≤ E

[
aTi YU

i−1,jai
]

E
[
aTi YL

i−1,j+1ai
]
≤ E

[
aTi YL

i−1,jai
]

In particular, we will simply show that conditioned on any choices for the first j rows,
the expected value of aTi YU

i−1,j+1ai is no larger than aTi YU
i−1,jai, and analogously for YL.

Similar to the proof of part 1, we separately consider the case where pj+1 = 1. In that
case, the positive semidefinite matrix ε

2 ajaTj is simply added to YU and YL. Adding this
can only decrease the values of aTi YUai and aTi YLai.

The pj+1 < 1 case is more tricky. Here, we define the vector wj+1 = aj+1√
pj+1

. Importantly

pj+1 ≥ cUaTj+1(XU
j)−1aj+1 ≥ cUaTj+1(YU

i−1,j)−1aj+1

pj+1 ≥ cLaTj+1(XL
j)−1aj+1 ≥ cLaTj+1(YL

i−1,j)−1aj+1.

M.B. Cohen, C. Musco, and J. Pachocki 7:15

This means that

wT
j+1(YU

i−1,j)−1wT
j+1 ≤

1
cU

wT
j+1(YL

i−1,j)−1wT
j+1 ≤

1
cL
.

Now, we additionally define

sUj+1 = wT
j+1(YU

i−1,j)−1wT
j+1

sLj+1 = wT
j+1(YL

i−1,j)−1wT
j+1

uUj+1 = wj+1√
sUj+1

uLj+1 = wj+1√
sLj+1

.

We then deploy Lemma 11 to compute the expectations. For the contribution from
the upper barrier, we use X = YU

i−1,j , u = uUj+1, v = aTi , a = −sUj+1(1 − pj+1(1 + ε/2)),
b = sUj+1pj+1(1 + ε/2), p = pj+1. For the lower barrier, we use X = YL

i−1,j , u = uLj+1,
v = aTi , a = sLj+1(1− pj+1(1− ε/2)), b = −sLj+1pj+1(1− ε/2), p = pj+1. In both cases we
can see that the numerator of the expected change is nonpositive. Finally, this implies that
the probability that row i is sampled is

E [pi] = cU E
[
aTi (XU

i−1)−1ai
]

+ cL E
[
aTi (XL

i−1)−1ai
]

= cU E
[
aTi (YU

i−1,i−1)−1ai
]

+ cL E
[
aTi (YL

i−1,i−1)−1ai
]

≤ cU E
[
aTi (YU

i−1,0)−1ai
]

+ cL E
[
aTi (YL

i−1,0)−1ai
]

= 2
ε

(cU + cL)li

= 8
ε2
li

as desired. J

5 Matching Lower Bound

Here we show that the row count obtained by Theorem 10 is in fact optimal. While it is
possible to obtain a spectral approximation with O(d/ε2) rows in the offline setting, online
sampling always incurs a loss of Ω

(
log(ε‖A‖2

2/δ)
)
and must sample Ω

(
d log(ε‖A‖2

2/δ)
ε2

)
rows.

I Theorem 12. Assume that ε‖A‖2
2 ≥ c1δ and ε ≥ c2/

√
d, for fixed constants c1 and c2.

Then any algorithm that selects rows in an online manner and outputs a spectral approximation
to ATA with (1 + ε) multiplicative error and δ additive error with probability at least 1/2
must sample Ω

(
d log(ε‖A‖2

2/δ)
ε2

)
rows of A in expectation.

Note that the lower bounds we assume on ε‖A‖2
2 and ε are very minor. They just ensure

that log(ε‖A‖2
2/δ) ≥ 1 and that ε is not so small that we can essentially sample all rows.

Proof. We apply Yao’s minimax principle, constructing, for any large enough M , a distribu-
tion on inputs A with ‖A‖2

2 ≤M for which any deterministic online row selection algorithm

APPROX/RANDOM’16

7:16 Online Row Sampling

that succeeds with probability at least 1/2 must output Ω
(
d log(εM/δ)

ε2

)
rows in expectation.

The best randomized algorithm that works with probability 1/2 on any input matrix with
‖A‖2

2 ≤ M therefore must select at least Ω
(
d log(εM/δ)

ε2

)
rows in expectation on the worst

case input, giving us the theorem.
Our distribution is as follows. We select an integer N uniformly at random from

[1, log(Mε/δ)]. We then stream in the vertex edge incidence matrices of N complete graphs
on d vertices. We double the weight of each successive graph. Intuitively, spectrally
approximating a complete graph requires selecting Ω(d/ε2) edges [2] (as long as ε ≥ c2/

√
d

for some fixed constant c2). Each time we stream in a new graph with double the weight, we
force the algorithm to add Ω(d/ε2) more edges to its output, eventually forcing it to output
Ω(d/ε2 ·N) edges – Ω(d log(Mε/δ)/ε2) in expectation.

Specifically, let Kd be the
(
d
2
)
× d vertex edge incidence matrix of the complete graph on

d vertices. KT
d Kd is the Laplacian matrix of the complete graph on d vertices. We weight

the first graph so that its Laplacian has all its nonzero eigenvalues equal to δ/ε. (That is,
each edge has weight δ

dε). In this way, even if we select N = blog(Mε/δ)c we will have overall
‖A‖2

2 ≤ δ/ε+ 2δ/ε+ ...2blog(Mε/δ)c−1δ/ε ≤M .
Even if N = 1, all nonzero eigenvalues of ATA are at least δ/ε, so achieving (1 + ε)

multiplicative error and δI additive error is equivalent to achieving (1 + 2ε) multiplicative
error. ATA is a graph Laplacian so has a null space. However, as all rows are orthogonal to
the null space, achieving additive error δI is equivalent to achieving additive error δIr where
Ir is the identity projected to the span of ATA. δIr � εATA which is why we must achieve
(1 + 2ε) multiplicative error.

In order for a deterministic algorithm to be correct with probability 1/2 on our distribution,
it must be correct for at least 1/2 of our blog(Mε/δ)c possible choices of N .

Let i be the lowest choice of N for which the algorithm is correct. By the lower bound
of [2], the algorithm must output Ω(d/ε2) rows of Ai to achieve a (1 + 2ε) multiplicative
factor spectral approximation. Here Ai is the input consisting of the vertex edge incidence
matrices of i increasingly weighted complete graphs. Call the output on this input Ãi. Now
let j be the second lowest choice of N on which the algorithm is correct. Since the algorithm
was correct on Ai to within a multiplicative (1 + 2ε), to be correct on Aj , it must output a
set of edges Ãj such that

(AT
j Aj −AT

i Ai)− 4εAT
j Aj � ÃT

j Ãj − ÃT
i Ãi � (AT

j Aj −AT
i Ai) + 4εAT

j Aj .

Since we double each successive copy of the complete graph, AT
j Aj � 2(AT

j Aj −AT
i Ai).

So, ÃT
j Ãj − ÃT

i Ãi must be a 1 + 8ε spectral approximation to the true difference AT
j Aj −

AT
i Ai. Noting that this difference is itself just a weighting of the complete graph, by the

lower bound in [2] the algorithm must select Ω(d/ε2) additional edges between the ith and jth
input graphs. Iterating this argument over all blog(Mε/δ)c/2 inputs on which the algorithm
must be correct, it must select a total of Ω(d log(Mε/δ)/ε2) edges in expectation over all
inputs. J

6 Future Work

An obvious open question arising from our work is if one can prove that the algorithm of [12]
works despite dependencies arising due to the row pruning step. By operating in the online
setting, our algorithm avoids row pruning, and hence is able to skirt these dependencies, as
the probability that a row is sampled only depends on earlier rows in the stream. However,

M.B. Cohen, C. Musco, and J. Pachocki 7:17

because the streaming setting offers the potential for sampling fewer rows than in the online
case, obtaining a rigorous proof of [12] would be very interesting.

While our work focuses on spectral approximation, variants on (ridge) leverage score
sampling and the BSS algorithm are also used to solve low-rank approximation problems,
including column subset selection [5, 9] and projection-cost-preserving sketching [7, 9].
Compared with spectral approximation, there is less work on streaming sampling for low-rank
approximation, and understanding how online algorithms may be used in this setting would
an interesting extension of our work.

Acknowledgements. The authors would like to thank Kenneth Clarkson, Jonathan Kelner,
Gary Miller, Christopher Musco and Richard Peng for helpful discussions and comments.

Cameron Musco and Jakub Pachocki both acknowledge the Gene Golub SIAM Summer
School program on Randomization in Numerical Linear Algebra, where work on this project
was initiated.

References
1 Ahmed Alaoui and Michael W Mahoney. Fast randomized kernel ridge regression with

statistical guarantees. In Advances in Neural Information Processing Systems 28 (NIPS),
pages 775–783, 2015.

2 Joshua Batson, Daniel A Spielman, and Nikhil Srivastava. Twice-ramanujan sparsifiers.
SIAM Journal on Computing, 41(6):1704–1721, 2012.

3 Antoine Bordes and Léon Bottou. The huller: a simple and efficient online SVM. In
Machine Learning: ECML 2005, pages 505–512. Springer, 2005.

4 Christos Boutsidis, Dan Garber, Zohar Karnin, and Edo Liberty. Online principal com-
ponents analysis. In Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 887–901, 2015.

5 Christos Boutsidis and David P Woodruff. Optimal CUR matrix decompositions. In
Proceedings of the 46th Annual ACM Symposium on Theory of Computing (STOC), pages
353–362, 2014.

6 Kenneth L. Clarkson and David P. Woodruff. Low rank approximation and regression in
input sparsity time. In Proceedings of the 45th Annual ACM Symposium on Theory of
Computing (STOC), pages 81–90, 2013.

7 Michael B Cohen, Sam Elder, Cameron Musco, Christopher Musco, and Madalina Persu.
Dimensionality reduction for k-means clustering and low rank approximation. In Proceed-
ings of the 47th Annual ACM Symposium on Theory of Computing (STOC), pages 163–172,
2015.

8 Michael B Cohen, Yin Tat Lee, Cameron Musco, Christopher Musco, Richard Peng, and
Aaron Sidford. Uniform sampling for matrix approximation. In Proceedings of the 6th
Conference on Innovations in Theoretical Computer Science (ITCS), pages 181–190, 2015.

9 Michael B Cohen, Cameron Musco, and Christopher Musco. Ridge leverage scores for
low-rank approximation. arXiv:1511.07263, 2015.

10 Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, and Yoram Singer. On-
line passive-aggressive algorithms. The Journal of Machine Learning Research, 7:551–585,
2006.

11 Michael Kapralov, Yin Tat Lee, Cameron Musco, Christopher Musco, and Aaron Sidford.
Single pass spectral sparsification in dynamic streams. In Proceedings of the 55th Annual
IEEE Symposium on Foundations of Computer Science (FOCS), pages 561–570, 2014.

12 Jonathan A Kelner and Alex Levin. Spectral sparsification in the semi-streaming setting.
Theory of Computing Systems, 53(2):243–262, 2013.

APPROX/RANDOM’16

http://arxiv.org/abs/1511.07263

7:18 Online Row Sampling

13 Ioannis Koutis, Gary L Miller, and Richard Peng. Approaching optimality for solving SDD
linear systems. In Proceedings of the 51st Annual IEEE Symposium on Foundations of
Computer Science (FOCS), pages 235–244, 2010.

14 Yin Tat Lee and He Sun. Constructing linear-sized spectral sparsification in almost-linear
time. In Proceedings of the 56th Annual IEEE Symposium on Foundations of Computer
Science (FOCS), pages 250–269, 2015.

15 Mu Li, Gary L Miller, and Richard Peng. Iterative row sampling. In Proceedings of the
54th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 127–
136, 2013.

16 Edo Liberty, Ram Sriharsha, and Maxim Sviridenko. An algorithm for online k-means
clustering. In Proceedings of the Eighteenth Workshop on Algorithm Engineering and Ex-
periments (ALENEX), pages 81–89, 2016.

17 Michael W. Mahoney and Xiangrui Meng. Low-distortion subspace embeddings in input-
sparsity time and applications to robust linear regression. In Proceedings of the 45th Annual
ACM Symposium on Theory of Computing (STOC), pages 91–100, 2013.

18 Jelani Nelson and Huy L. Nguyen. OSNAP: Faster numerical linear algebra algorithms
via sparser subspace embeddings. In Proceedings of the 54th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 117–126, 2013.

19 Daniel A Spielman and Nikhil Srivastava. Graph sparsification by effective resistances.
SIAM Journal on Computing, 40(6):1913–1926, 2011.

20 Daniel A Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph parti-
tioning, graph sparsification, and solving linear systems. In Proceedings of the 36th Annual
ACM Symposium on Theory of Computing (STOC), pages 81–90, 2004.

21 Daniel A Spielman and Shang-Hua Teng. Nearly linear time algorithms for preconditioning
and solving symmetric, diagonally dominant linear systems. SIAM Journal on Matrix
Analysis and Applications, 35(3):835–885, 2014.

22 Joel Tropp. Freedman’s inequality for matrix martingales. Electronic Communications in
Probability, 16:262–270, 2011.

Oblivious Rounding and the Integrality Gap∗

Uriel Feige†1, Michal Feldman‡2, and Inbal Talgam-Cohen§3

1 Department of Computer Science, Weizmann Institute of Science, Israel
uriel.feige@weizmann.ac.il

2 School of Computer Science, Tel-Aviv University, and Microsoft Research,
Israel
michal.feldman@cs.tau.ac.il

3 School of Computer Science, Hebrew and Tel-Aviv Universities, Israel
inbal.talgamcohen@mail.huji.ac.il

Abstract
The following paradigm is often used for handling NP-hard combinatorial optimization problems.
One first formulates the problem as an integer program, then one relaxes it to a linear program
(LP, or more generally, a convex program), then one solves the LP relaxation in polynomial
time, and finally one rounds the optimal LP solution, obtaining a feasible solution to the original
problem. Many of the commonly used rounding schemes (such as randomized rounding, threshold
rounding and others) are oblivious in the sense that the rounding is performed based on the LP
solution alone, disregarding the objective function. The goal of our work is to better understand
in which cases oblivious rounding suffices in order to obtain approximation ratios that match
the integrality gap of the underlying LP. Our study is information theoretic – the rounding
is restricted to be oblivious but not restricted to run in polynomial time. In this information
theoretic setting we characterize the approximation ratio achievable by oblivious rounding. It
turns out to equal the integrality gap of the underlying LP on a problem that is the closure
of the original combinatorial optimization problem. We apply our findings to the study of the
approximation ratios obtainable by oblivious rounding for the maximum welfare problem, showing
that when valuation functions are submodular oblivious rounding can match the integrality gap
of the configuration LP (though we do not know what this integrality gap is), but when valuation
functions are gross substitutes oblivious rounding cannot match the integrality gap (which is 1).

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases Welfare-maximization

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2016.8

1 Introduction

Rounding and Obliviousness

Consider a combinatorial maximization problem π, represented by a pair (V,X). The set V
contains all possible problem instances, where an instance is the linear objective function to

∗ This work was partly done at Microsoft Research, Herzliya, Israel.
† The work of U. Feige was supported in part by the Israel Science Foundation (grant No. 621/12) and

by the I-CORE Program of the Planning and Budgeting Committee and the Israel Science Foundation
(grant no. 4/11).

‡ The work of M. Feldman was supported in part by the European Research Council under the European
Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement number 337122.

§ The work of I. Talgam-Cohen was supported in part by the I-CORE Program of the Planning and
Budgeting Committee and the Israel Science Foundation (grant no. 4/11), and by the European
Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC
grant agreement number 337122.

© Uriel Feige, Michal Feldman, and Inbal Talgam-Cohen;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016).
Editors: Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans; Article No. 8; pp. 8:1–8:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.8
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

8:2 Oblivious Rounding and the Integrality Gap

be maximized, represented as a vector in Rd≥0. The set X contains all feasible solutions to the
problem, also represented as vectors in Rd≥0. The goal is, given an instance v ∈ V , to return
a feasible solution x ∈ X that maximizes the objective v · x among all feasible solutions.
If the combinatorial problem is hard, the goal is to approximate rather than optimize the
objective. As a concrete example, consider the problem of finding a max-cut in a complete
weighted graph. In this case, V is the set of all possible edge weights, and X is the set of all
valid cuts where each cut is represented by the set of edges in the cut. The objective value
v · x that a cut x obtains for a weighted graph v is the total weight of edges in the cut.

A paradigmatic approach to solving combinatorial optimization problems is that of
relaxation and rounding: The problem π is relaxed to a new problem π′ = (V, Y) where Y
is such that X ⊂ Y , i.e., the new feasible solution set is a relaxation of the original one.
Typically the new feasible domain is fractional while the original one is integral. To solve a
given instance v, first a relaxed solution y ∈ Y to the new problem π′ is computed, and then
it is (randomly) rounded to get a solution x ∈ X to the original problem π. The algorithm
designer aims to design a rounding process that does not lose too much in the objective value,
i.e., for which the inner product v · x is not far in a multiplicative sense (and in expectation)
from v · y. If she succeeds we say that the rounding scheme guarantees a good approximation
ratio. A rounding scheme is oblivious if y is rounded to x without knowledge of the objective
function v.1 In other words, v is used only to obtain a relaxed solution (e.g., to formulate
and solve a linear program), and not to round it back to a feasible solution (e.g., a solution
to a corresponding integer program).

Many rounding schemes in the optimization literature are oblivious, and many are not
oblivious (see Section 5). This raises the following natural question: Is there a reason why
for some problems oblivious rounding works well (achieves good approximation ratios to
the optimal objective), while for others it fails miserably? For an algorithm designer it may
be very useful to be able to predict in advance whether the relaxation she has formulated
for the problem admits an oblivious rounding scheme with a good approximation ratio, or
whether any good scheme will need to utilize the objective function to guide its rounding
process. The purpose of this paper is to initiate a systematic study of the power of oblivious
rounding relative to its non-oblivious counterpart. We study this question from an information
perspective, imposing no polynomial time constraint on the rounding schemes. We remark
that even non-polynomial time rounding schemes are of interest, for example, as a way of
bounding the integrality gap of the underlying relaxation.

Advantages of Oblivious Rounding

There is also reason to try and aim specifically for a relaxation that admits good oblivious
rounding, and/or to be able to prove the impossibility of getting a good approximation via
oblivious rounding. The advantages of rounding that is oblivious are demonstrated nicely
in the context of welfare maximization in combinatorial auctions, which will be the main
domain in which we demonstrate the results of our study of oblivious rounding (see Section
4 for more details on welfare maximization). In this context, indivisible items are to be
allocated among buyers, each with her own valuation function mapping bundles of items to
values. The valuations are very large objects (exponential in the number of items), and there
is extensive literature related to their communication complexity (see, e.g., [20]). Oblivious

1 Our notion of oblivious rounding is not to be confused with the rounding technique of [27], which avoids
solving a linear program – see the discussion of related work below.

U. Feige, M. Feldman, and I. Talgam-Cohen 8:3

rounding limits the algorithmic stage in which communication in required, and there is no
need for communication after a relaxed solution is found. Also, as we show in Proposition
23, oblivious rounding gives the different buyers the same treatment in terms of the value
they are guaranteed to obtain after the rounding, and so has a “built-in” fairness guarantee.

Recently in [7], oblivious rounding was studied in the context of incentive properties of
allocation mechanisms. It turns out that when an algorithm is based on the relax-and-round
paradigm, and the rounding is oblivious, there are price rules that can be added to the
algorithm such that the worst equilibrium behavior (the price of anarchy) is determined
by the relaxation and by the approximation ratio of the oblivious rounding. This is quite
remarkable, as there is no a priori reason to believe that the consequences of strategic
behavior would be determined by algorithmic properties of the rounding, and indeed this
is not the case for non-oblivious rounding. Thus, an algorithmic mechanism designer may
aim for a design based on obliviousness to get good strategic properties, and so it would be
helpful to understand what a design based on oblivious rounding can hope to achieve.

Finally, in [12, 24], the issue of robustness of the welfare guarantees to noise in the
objective function is studied. Ideally, an algorithm for approximating welfare will get a good
approximation despite small perturbations in the buyers’ valuations. In the common case
that the welfare maximization problem is relaxed to a linear program which is then solved
and rounded, it turns out that solving the LP is quite robust, and so if the rounding is
oblivious this ensures the robustness of the entire algorithm.

Our Results

Consider a problem π = (V,X) and a relaxed problem π′ = (V, Y). Our main result is to
relate the approximation ratio achievable by oblivious rounding to the well-studied notion of
integrality gap.

In the context of our work, we define the approximation ratio to be the worst case ratio,
over all instances v ∈ V and all relaxed solutions y ∈ Y , between the (expected) objective
value v · x achieved by the (random) rounded solution x ∈ X, and between the objective
v · y achieved by the relaxed solution to be rounded y. Note that there is another notion of
approximation ratio, which compares v · x achieved by the rounding to v · x∗ (rather than
v · y), where x∗ is the optimal feasible solution to instance v. While different in general, in
many cases the two notions coincide.

On the other hand, recall that the integrality gap is the worst case ratio, over all instances
v and all relaxed solutions y, between the objective value v · x that can be achieved by the
best feasible solution x, and between v · y. As our starting point, we observe that no oblivious
rounding can guarantee a better approximation factor than the integrality gap. Thus the
question that we ask is: For which problems does the approximation ratio achievable by
oblivious rounding techniques match the integrality gap? We stress that we do not require
oblivious rounding to be polynomial time, but nevertheless the question is of interest due to
the information-theoretic obliviousness requirement. This question also comes in another
flavor, where one gets an optimal solution to the relaxed problem and needs to round it.

Our general results can be summarized informally by the following theorem. The convex
closure of a problem π is obtained by taking the convex closure of its instance set. This
may not actually change the problem, i.e., the instance set may be closed under convex
combinations. For example, welfare maximization in a combinatorial auction setting with
submodular valuations is an example of such a problem (because submodularity is preserved
under convex combinations), but with gross substitutes (GS) valuations it is not (the average
of two GS functions need not be GS – see Section 4). The convex closure of the class of GS
valuations is the class cone GS (CGS) defined in [6].

APPROX/RANDOM’16

8:4 Oblivious Rounding and the Integrality Gap

I Theorem (Informal).
For optimization problems closed under convex combinations, the approximation ratio of
the best oblivious rounding scheme equals the integrality gap.
More generally, for optimization problems that are not closed under convex combinations,
the approximation ratio of the best oblivious rounding scheme equals the integrality gap of
the convex closure of the problem.
If the relaxed solution to be rounded obliviously is guaranteed to be optimal, the approx-
imation ratio of the best oblivious rounding scheme is at least the integrality gap of the
convex closure of the problem, and may be strictly greater than it in some cases.

See Section 3 for formal statements of these results.
We apply our general results to the welfare maximization problem for combinatorial

auctions. In particular, we use the integrality gap of welfare maximization with coverage
valuations – the convex closure of unit-demand valuations – to establish a bound on what
the best oblivious rounding can achieve for unit-demand valuations.

I Theorem. For the welfare maximization problem with unit-demand valuations and for its
relaxation based on the configuration linear program, no oblivious rounding can get more than
a 5/6-approximation ratio for two buyers, and no oblivious rounding can get more than a
0.782-approximation ratio for n buyers. These bounds immediately extend to gross substitutes,
for which the integrality gap is known to be 1.

Another application of our general results to welfare maximization is the prediction that
the above gap, which occurs between the integrality gap and the approximation ratio of the
best oblivious rounding for unit-demand valuations, will not occur for classes of valuations
like submodular valuations, which are closed under convex combinations. See Section 4 for
formal statements of these results.

Related Work

In recent years, the connection between various notions of rounding and algorithmic mech-
anism design has been studied in several works. [15] use the technique of randomized
metarounding [3] to derive truthful-in-expectation mechanisms. They require their rounding-
based approximation algorithms to satisfy a stronger property than obliviousness (the output
expected allocation should be a scaled version of the input for a universal scaling factor).
We have already mentioned the work of [7] above, which is directly related to the notion
of oblivious rounding that we study (see also Proposition 23 below). Both works and
the latter in particular can be seen as strong motivation to systematically study oblivious
rounding. [6] requires a different property – convexity of the rounding – in order to derive
truthful-in-expectation mechanisms.

In terms of techniques, our work is related to that of [9], which considers a class of
oblivious algorithms for the max directed cut problem. These are algorithms in which each
vertex independently decides at random on which side of the cut to place itself, based only
on its own in-degree and its own out-degree. One of the results in that work (Theorem 1.8 in
the journal version, Theorem 1.5 in the preliminary version) shows equivalence in the worst
case approximation ratio of two different ways of using a finite set of oblivious algorithms,
one called mixed (in which an algorithm is chosen at random), the other called max (in
which the best algorithm is chosen). The proof of that theorem and the proof of our main
theorem are based on similar principles.

U. Feige, M. Feldman, and I. Talgam-Cohen 8:5

[27] introduced a technique for developing approximation algorithms that avoid the
bottleneck of first solving a linear program. This technique is also known as “oblivious
rounding”, but this notion is different than our definition of (objective-)oblivious rounding.

Examples of oblivious rounding techniques that appear in the literature are mentioned in
Section 5.

Organization

In Section 2 we present our general framework. In Section 3 we formally state and prove
our results for the general framework. Section 4 contains our results for the application of
welfare maximization. In Section 5 we list known rounding techniques from the literature
and how they fit into the framework.

2 Framework

In this section we present our framework. After several general definitions, in Section 2.1
we define an optimization problem and its relaxation, and recall the well-known notion of
integrality gap – a measure of how “relevant” optimization of the relaxation is to optimization
of the original problem. In Section 2.2 we introduce oblivious rounding and define the
approximation ratio of such rounding schemes, according to how well they round a solution
to the relaxed problem into a feasible solution of the original problem.

Let d ∈ N>0 be a positive integer. For every set S ⊆ Rd of d-dimensional vectors, let
C(S) denote its convex hull, i.e., C(S) = {

∑
s∈S λss | ∀s ∈ S : λs ≥ 0 and

∑
s∈S λs = 1}. A

set S is compact if it is closed (no infinite sequence of vectors converges to a vector outside
the set), and bounded (there is some finite µ such that the norm of every vector in the
set is at most µ). If S is convex and compact, let ∂(S) denote its outer boundary, i.e.,
∂(S) = {s ∈ S | ∀ scalar δ ∈ R, δ > 1 : δs 6∈ S}.

For sets S1, S2 ⊆ Rd, we use the notation mins1∈S1 maxs2∈S2{·} when we are optimizing
by first choosing s1 ∈ S1, and then choosing s2 ∈ S2 based on knowledge of s1; similarly, the
notation maxs2∈S2 mins1∈S1{·} means that s2 ∈ S2 is chosen first and s1 ∈ S1 is chosen with
prior knowledge of s2. Here, min and max can be replaces by inf and sup where needed.

2.1 Problems, Relaxations, Closures
We consider optimization problems with linear objectives. We define a problem of dimension
d as a collection of d-dimensional instances coupled with a feasible solution set. This means
that in our formulation, problem instances of a certain dimension all share the same set of
feasible solutions.

For concreteness our framework is developed for maximization problems (the results can
be adapted also to minimization).

I Definition 1. A problem π of dimension d is a pair (V,X), where V,X ⊆ Rd≥0 are nonempty
sets of d-dimensional vectors with non-negative entries. V contains the problem instances
(also called value functions or objectives), and X is the set of feasible solutions. Given an
instance v ∈ V , the value of solution x ∈ X is the inner product v · x, and x is optimal if it
has maximum value among all feasible solutions.2

2 The non-negativity in this definition of vectors in V, X can be replaced by a weaker condition of v ·x ≥ 0
for every v ∈ V, x ∈ X, and our results will still hold.

APPROX/RANDOM’16

8:6 Oblivious Rounding and the Integrality Gap

For concreteness, recall the max-cut example mentioned in Section 1: The instances
are modeled as weighted complete graphs over n nodes, all of which share the same set of
possible cuts. An instance is thus simply a vector of n(n− 1)/2 non-negative edge weights,
and a feasible solution is a {0, 1}-vector indicating the edges that participate in a cut.

We now define a problem relaxation, which is itself a problem achieved by expanding the
original set of feasible solutions:

I Definition 2. A problem π′ = (V, Y) is a relaxation of problem π = (V,X) if X ⊆ Y . The
solutions in Y are referred to as relaxed solutions.

For every relaxed solution y ∈ Y , V +
y denotes all instances for which the value of y is

strictly positive, and V ∗y denotes all instances for which y is optimal:

V +
y = {v ∈ V | v · y > 0}; V ∗y = {v ∈ V | v · y ≥ v · y′ ∀y′ ∈ Y }. (1)

Finally, we introduce the closure of a problem, achieved by convexifying the set of
instances:

I Definition 3. The problem cl(π) = (C(V), X) is the closure of problem π = (V,X).

2.1.1 Assumed Properties of Problems and Relaxations
All problems and relaxations we consider in this paper are assumed to have the natural
properties of compactness and positivity unless stated otherwise, and all relaxations are
assumed to be convex:

A problem π = (V,X) is compact if the feasible solution set X is compact, and there is a
compact set V ′ ⊆ Rd≥0 \ {0d} such that the instance set V is {v = cv′ | c ∈ R>0 and v′ ∈
V ′}. Without loss of generality, the vectors in V ′ can also be assumed to be normalized
(i.e.,

∑
k v
′
k = 1). This is a weaker assumption than assuming V is compact, since it allows

unbounded instances as well as instances that approach, but do not reach, 0d. Many
common optimization problems, for example max-cut, are compact: Indeed, the solution
set (cuts) is usually closed and bounded; the value functions that make up the instances
(edge weights) usually exclude the zero function v = 0d, and so can be normalized as
above without loss of generality (without affecting multiplicative approximation factors).
Thus V ′ can be taken to be the set of normalized instances, which is bounded and closed.3
A problem π = (V,X) is positive if for every v ∈ V there is some x ∈ X such that
v · x > 0 (in particular, V is not allowed to include 0d), and for every x ∈ X \ {0d}
there is some v ∈ V such that v · x > 0. In the max-cut example, the first positivity
condition holds because v 6= 0d and so at least one edge must have nonzero weight. For
the second positivity condition, a natural sufficient condition is that the graph has a
spanning tree such that for every edge in the tree, there is an edge-weight function in V
that assigns positive weight to that edge. For every cut x there is at least one edge of the
spanning tree in the cut, and therefore at least one instance v such that v · x > 0. Notice
that by the positivity assumption applied to a relaxation π′, V +

y is nonempty for every
y ∈ Y \ {0d}, ensuring that our definitions (such as Definition 4 below) are well-defined.
A relaxation π′ = (V, Y) to problem π = (V,X) is convex if the set Y of relaxed solutions
is convex. For example, relaxations that result from formulating the problem as an integer

3 There is also a version of our results that holds when V ′ is not closed, in which sup and inf replace
max and min in the appropriate places.

U. Feige, M. Feldman, and I. Talgam-Cohen 8:7

program and relaxing it to a linear program are convex. If π′ is convex then in particular
Y includes the convex hull C(X).

Observe that if a problem is compact and positive, then its closure is also compact and
positive.

2.1.2 Integrality Gap
Given a problem π = (V,X) and a relaxation π′ = (V, Y), an important measure of the
quality of the relaxation is the integrality gap – the worst case (smallest) ratio, over all
possible instances in V , between the value achievable for the instance by a feasible solution
in X, and the value achievable for it by a relaxed solution in Y . Formally:

I Definition 4. Let π = (V,X) and π′ = (V, Y) be a problem and its relaxation. For every
relaxed solution y ∈ Y \ {0d} and instance v ∈ V +

y , the integrality gap at v, y is

ρπ,π′(v, y) = max
x∈X

v · x
v · y

.

The integrality gap at solution y is then obtained by taking the worst case instance v,
i.e., ρπ,π′(y) = infv∈V +

y
ρπ,π′(v, y). Similarly, the integrality gap at instance v is ρπ,π′(v) =

infy:v∈V +
y
ρπ,π′(v, y). The (overall) integrality gap is ρπ,π′ = infy∈Y \{0d} ρπ,π′(y).

We make several basic observations regarding the integrality gap. Short proofs appear
for completeness in Appendix A.

I Observation 5. The integrality gap ρπ,π′ is ≤ 1.

Informally, the closer ρπ,π′ is to 1, the better the relaxation.
Taking the closure of a problem expands the instance set and so makes it “harder” to get

a good relaxation:

I Observation 6. For every π and relaxation π′, ρcl(π),cl(π′) ≤ ρπ,π′ .

The next observation shows that to find the integrality gap, we may restrict attention to
relaxed solutions that lie on the boundary. Recall that Y is compact, then:

I Observation 7. The overall integrality gap is not affected by the integrality gaps at relaxed
solutions that lie strictly within the boundary: ρπ,π′ = miny∈∂(Y) ρπ,π′(y).

2.2 Oblivious Rounding
For the definitions in this section, fix a problem π = (V,X) and a relaxation π′ = (V, Y).

A (randomized) rounding scheme receives an instance v ∈ V and a relaxed solution
y ∈ Y , and returns a distribution over feasible solutions in X. Note that since our objective
functions in V are linear, any distribution over feasible solutions in X can be summarized by
its average, which lies in the convex hull C(X). This leads to the following definition:

I Definition 8. A rounding scheme is a function f : V × Y → C(X).

A rounding scheme is oblivious if it is not allowed to “see” the objective function when
rounding a solution of the relaxed problem:

I Definition 9. An oblivious rounding scheme is a function f : Y → C(X).

I Remark. The rounding schemes we consider, whether oblivious or not, need not be
computable in polynomial time.

APPROX/RANDOM’16

8:8 Oblivious Rounding and the Integrality Gap

2.2.1 Approximation Ratio of Oblivious Rounding
Our goal is to study the power of oblivious rounding schemes for approximation. For this we
shall use the following definition – the approximation ratio of an oblivious rounding scheme
is the worst case ratio, over all possible instances in V , between the value achieved for the
instance by a rounded solution in X, and the value achievable for it by the corresponding
relaxed solution in Y . Formally:

I Definition 10. Consider an oblivious rounding scheme f : Y → C(X). For every relaxed
solution y ∈ Y \ {0d}, the approximation ratio of f at y is

απ,π′(y) = inf
v∈V +

y

v · f(y)
v · y

.

The approximation ratio of f is απ,π′ = infy∈Y \{0d} απ,π′(y).

A larger approximation ratio indicates better approximation by the rounding scheme.
A basic observation regarding the approximation ratio is that it is upper-bounded by the
integrality gap. A short proof appears in Appendix A for completeness.

I Observation 11. For every y ∈ Y \ {0d}, the approximation ratio of f at y is at most the
integrality gap at y: απ,π′(y) ≤ ρπ,π′(y). Therefore απ,π′ ≤ ρπ,π′ ≤ 1.

Observation 11 upper-bounds the approximation ratio, and a natural class of interest is
rounding schemes for which this bound is tight:

I Definition 12. An oblivious rounding scheme f : Y → C(X) is tight if απ,π′ = ρπ,π′ , and
individually tight if απ,π′(y) = ρπ,π′(y) for every relaxed solution y ∈ Y \ {0d}.

By definition, individual tightness implies tightness.

2.2.2 Approximation Ratio for Optimal Solutions
We are also interested in the approximation guarantees of oblivious rounding schemes only
for relaxed solutions y ∈ Y which have the following promised property: they are known
to be optimal solutions to some instance of the relaxed problem. Recall from (1) that V ∗y
denotes the set of all instances for which y is an optimal solution.

I Observation 13. If V ∗y is nonempty then y ∈ ∂(Y).

See Appendix A for a proof.
The two definitions in this subsection are analogous to Definitions 10 (approximation

ratio) and 12 (tightness) above:

I Definition 14. Consider an oblivious rounding scheme f : Y → C(X). For every relaxed
solution y ∈ Y for which V ∗y 6= ∅, the approximation ratio for optimal solutions of f at y is

α∗π,π′(y) = inf
v∈V ∗y

v · f(y)
v · y

.

The approximation ratio for optimal solutions of f is α∗π,π′ = infy∈Y :V ∗y 6=∅{α
∗
π,π′(y)}.

By definition, for every y ∈ Y with nonempty V ∗y it holds that απ,π′(y) ≤ α∗π,π′(y), and
so απ,π′ ≤ α∗π,π′ . Note that this inequality may be strict in some cases, and moreover it is
not necessarily the case that the upper bound ρπ,π′ on απ,π′ is also an upper bound on α∗π,π′
(see Example 35 below). This motivates the next definition:

U. Feige, M. Feldman, and I. Talgam-Cohen 8:9

I Definition 15. An oblivious rounding scheme f : Y → C(X) is tight for optimal solutions
if α∗π,π′ ≥ ρπ,π′ , and individually tight for optimal solutions if α∗π,π′(y) ≥ ρπ,π′(y) for every
relaxed solution y ∈ Y with nonempty V ∗y .

By definition, individual tightness for optimal solutions implies tightness for optimal
solutions.

3 General Results

In this section we state our results for the general framework; some proofs are deferred
to Appendix B.1. Appendix B.2 discusses implications for oblivious rounding of optimal
solutions. Additional results that concern the applications of the framework to welfare
maximization appear in Section 4.

Recall that the closure of problem π = (V,X) is cl(π) = (C(V), X) (Definition 3). Our
main general theorem relates the (pointwise) approximation ratio of oblivious rounding to
the integrality gap of the problem’s closure:

I Theorem 16. Given a problem π = (V,X) and a relaxation π′ = (V, Y):
1. Upper bound: For every oblivious rounding scheme f : Y → C(X), at every point

y ∈ Y \ {0d}, the approximation ratio απ,π′(y) is at most the integrality gap ρcl(π),cl(π′)(y)
of the closure of problem π.

2. Tightness: There exists an oblivious rounding scheme f : Y → C(X) such that απ,π′(y) =
ρcl(π),cl(π′)(y) for every y ∈ Y \ {0d}.

Moreover, our proof method yields the following proposition, by which the approximation
ratio and integrality gap are achieved by the same instance and (random) feasible solution:

I Proposition 17. Given a problem π = (V,X), a relaxation π′ = (V, Y) and a relaxed
solution y ∈ Y \ {0d}, there exist an instance v ∈ C(V) and a random feasible solution x ∈
C(X) of the problem cl(π) such that v·xv·y = ρcl(π),cl(π′)(y) = απ,π′(y), where the approximation
ratio is that of the best oblivious rounding scheme at y.

Proof. By Lemma 33. J

Two useful corollaries follow immediately from Theorem 16. First, we have already
observed that απ,π′ ≤ ρπ,π′ (Observation 11) and that ρcl(π),cl(π′) ≤ ρπ,π′ (Observation 6).
It follows from Theorem 16 that for the best oblivious rounding scheme in fact απ,π′ =
ρcl(π),cl(π′).

I Corollary 18. Given a problem π = (V,X) and a relaxation π′ = (V, Y), there exists
an oblivious rounding scheme f : Y → C(X) that achieves an approximation ratio of
απ,π′ = ρcl(π),cl(π′), and this is the best possible approximation ratio of any oblivious rounding
scheme.

Proof. By Definitions 4 (integrality gap) and 10 (approximation ratio), if for an oblivious
rounding scheme f it holds that απ,π′(y) = ρcl(π),cl(π′)(y) for every y ∈ Y \ {0d}, then
απ,π′ = infy∈Y \{0d} απ,π′(y) = infy∈Y \{0d} ρcl(π),cl(π′) = ρcl(π),cl(π′). By Theorem 16 there
exists such an oblivious rounding scheme. J

I Corollary 19. Given a problem π = (V,X) whose instances form a convex set (i.e.,
π = cl(π)), for every relaxation π′ = (V, Y), there exists an oblivious rounding scheme
f : Y → C(X) that is individually tight.

APPROX/RANDOM’16

8:10 Oblivious Rounding and the Integrality Gap

Proof. By Theorem 16 there exists an oblivious rounding scheme f such that απ,π′(y) =
ρcl(π),cl(π′)(y) for every y ∈ Y \{0d}, and by assumption, ρcl(π),cl(π′)(y) = ρπ,π′(y). The proof
follows from the definition of individual tightness (Definition 12). J

Unlike the statement in Corollary 18, Example 35 shows that the approximation ratio
for optimal solutions α∗π,π′ may surpass the integrality gap of the closure ρcl(π),cl(π′). See
Appendix B.2 for more details on oblivious rounding of optimal solutions.

3.1 Proof of Theorem 16 via Minimax
Our goal in this section is to prove Theorem 16 via our main lemma (Lemma 33), which is a
version of von Neumann’s minimax theorem. In the proof we shall use the classic minimax
theorem for non-finite zero-sum games:

I Theorem 20 ([26]). For every bipartite zero-sum game in which the players’ pure strategy
sets X and V are compact and the payoff function g : V × X → R is continuous, there exists
a unique minimax value µ∗ such that

µ∗ = max
x∈C(X)

min
v∈V

g(v, x) = min
v∈C(V)

max
x∈X

g(v, x). (2)

Moreover, there are equilibrium strategies x∗ ∈ C(X) and v∗ ∈ C(V) such that x∗ maximizes
g(v∗, x), v∗ minimizes g(v, x∗), and µ∗ = g(v∗, x∗).

I Remark. Throughout this section we shall assume that every problem π = (V,X) has a
compact instance set V in which instances are normalized (i.e.,

∑
k vk = 1). This assumption

is without loss of generality, as we assumed in Section 2.1.1 that V = {v = cv′ | c ∈
R>0 and v′ ∈ V ′} where V ′ is compact and normalized. Since an instance v ∈ V appears
exclusively within the expressions v·x

v·y or v·f(y)
v·y , the multiplying constant c cancels out and

we may as well assume that V = V ′.
We begin with an intuitive (albeit imprecise) explanation of the connection between

the minimax theorem and the approximation ratio of an oblivious rounding scheme. Fix
a problem π = (V,X), a relaxation π′ = (V, Y) and a relaxed solution y. We claim that
an oblivious rounding scheme f , which maximizes the approximation ratio απ,π′(y) at y, is
equivalent to an optimal mixed strategy in the following zero-sum game (the games used
in the actual proof are slightly different): Given y, the maximizing “rounding” player picks
a mixed strategy f(y) ∈ C(X) over feasible solutions in X, and the minimizing “instance”
player picks an instance v ∈ V as his pure strategy best-response to f(y). The expected
payoff of the rounding player is the ratio v·f(y)

v·y . By the minimax theorem (Theorem 20), the
resulting zero-sum game has a minimax value achieved by the optimal mixed strategy f(y)
and the worst case v for f(y). This value is thus precisely equal to the approximation ratio
απ,π′(y) of the optimal oblivious rounding scheme at y (recall Definition 10). Note that we
require the rounding to be oblivious, hence the rounding player does not know the strategy
v of the instance player when choosing her mixed strategy f(y) given y.

Again by Theorem 20, the minimax value of the game απ,π′(y) is alternatively achieved by
first letting the instance player pick an optimal mixed strategy (a distribution v ∈ C(V) over
instances), and then allowing the rounding player to pick a best-response feasible solution
x ∈ X. Notice that a mixed strategy v of the instance player is an instance of the closure
cl(π) of the original problem π. Given y and v, the feasible solution x that maximizes the
rounding player’s expected payoff v·x

v·y is precisely the same x that achieves the integrality
gap ρcl(π),cl(π′)(v, y) in Definition 4. Since the instance player is playing an optimal mixed

U. Feige, M. Feldman, and I. Talgam-Cohen 8:11

strategy, we get that the value of the game απ,π′(y) is equal to ρcl(π),cl(π′)(y). We conclude
that the best approximation ratio at y and the integrality gap at y with respect to the closure
coincide.

Given the above paragraphs, it may seem that the proof of Theorem 16 should follow
directly by invoking Theorem 20. However, the classic minimax theorem is not immediately
applicable in our setting due to a technical difficulty: While we can set the payoff function
g in (2) to be v·x

v·y , the approximation ratio and integrality gap notions are defined with
infv∈V +

y
instead of minv∈V (to avoid division by zero). And while X and V +

y are bounded
and X is also closed, V +

y may not be closed, and therefore may not be compact (unlike V).
Lemma 33 and its proof show how to circumvent this problem by defining an appropriate
series of zero-sum games. The lemma, its proof and the proof of Theorem 16 are deferred to
Appendix B.1.

4 Application: Welfare Maximization

In this section we demonstrate our framework and results by applying them to the optimization
problem of welfare maximization in combinatorial auctions. In Section 4.1 we state some
preliminaries regarding the problem. In Section 4.2 we show a fairness property of oblivious
rounding for welfare maximization. In Section 4.3 we bound the approximation ratio of
oblivious rounding schemes for welfare maximization with unit demand valuations. In Section
4.4 we use the particular structure of the welfare maximization problem to extend our
impossibility results to rounding of solutions that are guaranteed to be optimal (this is in
contrast to the general case, see, e.g., Example 35). In Section 4.5 we give an explicit example
of an instance that manages to “fool” oblivious rounding attempts.

4.1 Auction Preliminaries

A combinatorial auction involves a set N = [n] of players and a set M = [m] of indivisible
items. Each player i has a valuation νi, which is a function νi : 2M → R≥0 that assigns a real
value to every subset of items S ⊆M (also called a bundle). Valuations are routinely assumed
to be monotone (for every two bundles S ⊆ T , ν(S) ≤ ν(T)), and bounded (assigning values
up to some maximum value µ). An allocation (S1, . . . , Sn) of the items is a (partial) partition
of M into n bundles of items, one per player (some bundles may be empty). The welfare of a
given allocation is the sum of the players’ values for their allocated bundle, i.e.,

∑n
i=1 νi(Si).

The goal of the welfare maximization problem is to find an allocation of the items that
maximizes the welfare.

In the terminology of our framework, an instance of the welfare maximization problem is
a vector v of dimension n ·2m (indexed by pairs (i, S) of player and bundle) containing all the
players’ values for all the bundles, that is, vi,S = νi(S). A feasible solution is a {0, 1}-vector
x of the same length, n · 2m, that indicates which player receives which bundle (up to one
bundle per player), and does not over-allocate the items. Formally, xi,S ∈ {0, 1}, for every
player i,

∑
S xi,S ≤ 1, and for every item j,

∑
i,S:j∈S xi,S ≤ 1.

The welfare maximization problem can be formulated as an integer program, and its
standard relaxation is the associated linear program, called the configuration LP (see
Appendix C.1). A relaxed solution is a vector y with [0, 1]-entries, which can be thought
of as an allocation of fractional rather than indivisible items, via an allocation of fractions
of bundles. It must still hold that at most one of each item is allocated (

∑
i,S:j∈S yi,S ≤ 1

for every item j), and that each player receives at most one bundle (
∑
S yi,S ≤ 1 for every

APPROX/RANDOM’16

8:12 Oblivious Rounding and the Integrality Gap

player i). In other words, a relaxed solution is any (fractional) feasible solution to the
configuration LP.

A class of welfare maximization problems that has been extensively studied in the literature
is welfare maximization with gross substitutes valuations. Such valuations play a crucial role
in microeconomics [14] and in discrete convex optimization [19]; for a recent algorithmic
survey see [21]. There are many equivalent definitions of gross substitutes valuations, one of
which we give for completeness in Appendix C.1.

An important property of gross substitutes valuations is that the integrality gap of the
configuration LP is 1.

I Proposition 21 ([2]). The integrality gap of the configuration LP for gross substitutes
valuations is 1.

Moreover, if all valuations are gross substitutes, then the welfare maximization problem
can be solved optimally in polynomial time [17, 18].

A subclass of gross substitutes valuations is the class of unit-demand valuations. A
valuation ν is unit-demand if there exists a vector (ν1, . . . , νm) ∈ Rm≥0 such that for every
bundle S, ν(S) = maxj∈S(νj).

Also relevant to our study is the class of coverage valuations. A valuation ν is a coverage
function if it can be described by a tuple ν = 〈E,w, {Ej}j〉, where: (1) E is a ground set of
elements, (2) w : E → R≥0 is a weight function that assigns a weight w(e) for every element
e ∈ E, and (3) for every item j ∈ [m], Ej ⊆ E is the subset of elements covered by item j;
and for every bundle of items S ⊆M , it holds that ν(S) =

∑
e∈
⋃

j∈S
Ej
w(e). The class of

coverage valuations is a strict superset of unit-demand valuations (and is incomparable with
gross substitutes). Coverage valuations are well-studied, with a particular surge in attention
in the context of social networks (see, e.g., [1, 5]).

The convex hull of the class of unit-demand valuations is strictly larger than the class itself.
In particular, the following lemma asserts that the convex hull of unit-demand valuations is
precisely the class of coverage valuations (see Appendix C.2 for a proof).

I Lemma 22. The class of coverage valuations is the convex hull of unit-demand valuations.

4.2 A Fairness Property
In the context of welfare maximization, oblivious rounding with good approximation guaran-
tees also offers certain guarantees per player. The intuition is that a rounding scheme that is
ignorant to the instance has no way of telling which player contributes what to the welfare,
and so must approximately preserve the welfare contributions of all players from behind its
veil of ignorance. This can be viewed as a fairness property of oblivious rounding.

I Proposition 23. Consider an oblivious rounding scheme f for the welfare maximization
problem and its configuration LP relaxation, which has approximation ratio α. Then for
every instance v and fractional allocation y, f(y) guarantees for each player i, in expectation,
an α-fraction of the player’s value

∑
S vi,Syi,S in y.

Proof. Assume for contradiction that there is a player i for which this is not the case. Then
we can create a new instance v′ in which only player i’s valuation is non-zero, meaning that
all welfare comes from this player (note that while we do not allow an all zero valuation,
assigning zero valuations to all players other than player i is valid). Since f is oblivious, it
should achieve the approximation ratio α for v′, contradiction. J

U. Feige, M. Feldman, and I. Talgam-Cohen 8:13

4.3 Impossibility Results
In this section we prove two impossibility results on the approximation ratios of oblivious
rounding schemes for unit-demand valuations. These bounds extend to gross substitutes
valuations.

I Proposition 24. The approximation ratio of any oblivious rounding scheme for welfare
maximization with two unit-demand players and the configuration LP relaxation is at most
5/6.

I Proposition 25. The approximation ratio of any oblivious rounding scheme for welfare
maximization with n unit-demand players and the configuration LP relaxation is at most
≈ 0.782.

These impossibility results are in stark contrast to Proposition 21. In particular, while
the integrality gap of the configuration LP is 1 even for a strict superclass of unit demand
(i.e., gross substitutes), oblivious rounding for unit-demand valuations is quite limited in its
performance.

Proof of Proposition 24. By Corollary 18 and Lemma 22, it is sufficient to show an instance
with two coverage valuations that has an integrality gap of 5/6. We claim that the instance in
[10] for two players with submodular valuations satisfies these conditions. Let us describe the
example explicitly using our notation, and showing in the process that the players’ valuations
are coverage functions.

There are four items and two players. For reasons that will become apparent shortly, it will
be convenient to name the items a11, a12, a21, a22. There are six elements {H1, H2, V1, V2, D1,

D2}. In both valuation functions, the coverage of elements by items is identical, but they
differ in the weights of the different elements. We first state the coverage structure. For
every element e, we denote the set of items that cover element e by ē. Let H̄1 = {a11, a12},
H̄2 = {a21, a22}, V̄1 = {a11, a21}, Similarly, let V̄2 = {a12, a22}, D̄1 = {a11, a22}, and
D̄2 = {a12, a21}.

We now state the weights of the elements according to ν1 and ν2. Let wi(e) denote the
weight of element e according to νi. For player 1, w1(H1) = w1(H2) = 0, w1(V1) = w1(V2) =
2, and w1(D1) = w1(D2) = 1. For player 2, w2(H1) = w2(H2) = 2, w2(V1) = w1(V2) = 0,
and w2(D1) = w2(D2) = 1.

For example, ν1({a11, a12}) = w1(H1) + w1(V1) + w1(V2) + w1(D1) + w1(D2) = 6, and
ν2({a11, a12}) = w2(H1) + w2(V1) + w2(V2) + w2(D1) + w2(D2) = 4.

One may verify that the following fractional solution has welfare 12: player 1 receives
a fraction 1/2 of bundle H̄1 and a fraction 1/2 of bundle H̄2. This gives player 1 value 6.
Player 2 receives a fraction 1/2 of bundle V̄1 and a fraction 1/2 of bundle V̄2. This gives
player 2 value 6. It can be verified that no integer assignment of items gives total welfare
above 10, establishing that the integrality gap is no better than 5/6. This establishes the
assertion of the proposition. J

Proof of Proposition 25. By Corollary 18 and Lemma 22, it is sufficient to show an instance
with n coverage valuations and an integrality gap of ≈ 0.782. We claim that the instance in
[10] for n players with submodular valuations satisfies these conditions.

Let us recall the instance. There are n players and nn items arranged in an n dimensional
cube. A line in direction i is a set of n points whose projection on the ith coordinate gives
all values from 0 to n− 1. There are nn(n−1) lines in direction i. The valuation function νi
is defined such that νi(S) equals the fraction of lines in direction i hit by set S. One can

APPROX/RANDOM’16

8:14 Oblivious Rounding and the Integrality Gap

verify that the valuation of player i is the following coverage valuation: Associate an element
with every line in direction i, and let each item cover the elements corresponding to lines
that contain it. The weight of every element is 1/nn(n−1). As shown in [10], the integrality
gap of this instance is ≈ 0.782. This establishes the assertion of the proposition. J

4.4 Impossibility Results for Optimal Solutions
We now define a strong notion of per-player guarantee. Consider an instance of the welfare
maximization problem. A relaxed solution y = {yi,S} (a fractional solution of the configura-
tion LP) is said to be individually optimal for this instance if the fractional value of every
player in the solution x is his maximum possible value. Assuming that all valuations are
monotone, this means that

∑
S yi,Sνi(S) = νi(M) for every player i.

The significance of individual optimality lies in the following lemma. Consider a class of
valuations P . Let v be an instance with valuations ν1, . . . , νn ∈ C(P), and let ρ(v) denote
its integrality gap (as defined in Definition 4; we omit here the problem and relaxation from
the notation). Let y = {yi,S} be an optimal relaxed solution for instance v, i.e., an optimal
fractional solution to the configuration LP, whose welfare (LP objective value) we denote by
LP(v, y).

I Lemma 26. If y is individually optimal for v, then the approximation ratio for optimal
solutions of any oblivious rounding scheme at y is at most ρ(v).

Proof. By definition, for every i, there exist valuations νik ∈ P such that νi =
∑
k λikνik.

For valuation νi and a fractional solution y, let νi(y) =
∑
S yi,Sνi(S). Let α∗(y) denote the

approximation ratio for optimal solutions of an oblivious rounding of y with respect to P ,
and let f be the oblivious rounding scheme achieving α∗(y). Consider random instances
with valuations in P , where in every instance player i has valuation νik with probability λik
(independently). For every random instance, the expected welfare obtained by f is at least
α∗(y) ·

∑
i νik(y) (Proposition 23).

We claim that the individual optimality of y implies that y is also individually optimal
for every random instance (i.e., νik(y) = νik(M) for every i, k). Suppose otherwise, i.e.,
suppose there exist i, k such that νik(y) < νik(M). Then, for that player i it follows (by
monotonicity of the valuation) that

∑
k λikνik(y) <

∑
k λikνij(M). On the other hand,∑

k λikνik(y) = νi(y) = νi(M), so we get νi(M) >
∑
k λikνik(M), contradiction.

Substituting νik(y) = νij(M), and taking a weighted average over all instances, we get
that the expected value obtained by f is at least α∗(y)

∑
ik λikνik(M) = α∗(y)

∑
i νi(M) =

α∗(y) LP(v, y). Now observe that f obtains the same ratio α∗(y) on the original instance v;
therefore, α(y) ≤ ρ(v) (otherwise, it contradicts the integrality gap of v). J

The following proposition follows directly from Lemma 26.

I Proposition 27. Consider the problem of welfare maximization with valuations from P

and its configuration LP relaxation. Let v be an instance attaining the integrality gap for
C(P), and let y = {yi,S} be an optimal solution of the configuration LP for instance v. If y
is individually optimal, then the approximation ratio for optimal solutions α∗ of any oblivious
rounding scheme is at most the integrality gap of C(P).

Proof. Follows directly from Lemma 26, and from the definition of the approximation ratio
for optimal solutions. Recall that this ratio is the infimum over the approximation ratios for
optimal solutions of all y ∈ Y for which V ∗y is nonempty (Definition 14). J

U. Feige, M. Feldman, and I. Talgam-Cohen 8:15

I Corollary 28. The impossibility results in Propositions 24 and 25 apply also to the approx-
imation ratio of oblivious rounding of optimal solutions of the configuration LP.

Proof. The proof is by applying Proposition 27 and verifying that the instances in the proofs
of Propositions 24 and 25 admit an individually optimal fractional solution. In the instance
used in the proof of Proposition 24, the optimal fractional solution is individually optimal
since this solution gives agent 1 a fraction 1/2 of each of H̄1, H̄2, and agent 2 a fraction 1/2
of each of V̄1, V̄2. In the instance used in the proof of Proposition 25, the optimal fractional
solution is individually optimal since the solution gives a player i the n level sets with respect
to coordinate i, each with probability 1/n. J

4.5 How to Fool Oblivious Rounding

To gain intuition as to why oblivious rounding fails to round optimally, we now describe a
two-player instance related to the instance in the proof of Proposition 24, and show why no
oblivious rounding can succeed in rounding it with an approximation ratio better than 5/6.
The instance is simple, including two players with unit-demand valuations and {0, 1} values.

I Example 29. There are four items and two players. The items are a11, a12, a21, a22. Recall
that a unit-demand function νi can be expressed by {νij}j∈M , where ν(S) = maxj∈S νij .
In our example, νij ∈ {0, 1} for every i, j. We adopt the following notation used in the
proof of Proposition 24: H̄1 = {a11, a12}, H̄2 = {a21, a22}, V̄1 = {a11, a21}, V̄2 = {a12, a22},
D̄1 = {a11, a22}, and D̄2 = {a12, a21}. We denote by Si the items j such that νij = 1. The
valuation functions are as follows: S1 is V̄1 or V̄2, each with probability 1/3, and is D̄1 or
D̄2, each with probability 1/6. S2 is H̄1 or H̄2, each with probability 1/3, and is D̄1 or D̄2,
each with probability 1/6.

Observe that for every realization of the valuations there exists an integral solution with
social welfare 2. In addition, for every realization it holds that ν1(H̄1) = ν1(H̄2) = 1 and
ν2(V̄1) = ν2(V̄2) = 1. Therefore, a fractional solution that assigns a fraction 1/2 of each of
H̄1 or H̄2 to player 1, and a fraction 1/2 of each of V̄1 or V̄2 to player 2, obtains optimal
welfare of 2.

We next show that for every integral solution the expected social welfare is at most 5/3.
Assigning H̄1 to player 1 and H̄2 to player 2, or vice versa, grants player 1 value 1 and player
2 an expected value of 2/3. An analogous argument holds for the assignment of V̄1 and V̄2;
and the assignment of D̄1 and D̄2 grants every player an expected value of 5/6. Each of
these assignments gives welfare 5/3. Finally, it is easy to see that assigning a single item to
one player and a triplet to the other derives even less welfare (3/2).

We conclude that any oblivious rounding obtains welfare at most 5/3, which is 5/6 of the
optimal solution.

5 Oblivious Rounding in the Literature

We list here several examples of rounding schemes which are oblivious, as well as schemes which
are not oblivious. It is interesting to notice that for welfare maximization with budget additive
valuations, which is not closed under convex combinations, the best known approximation is
not oblivious, whereas for welfare maximization with submodular valuations, which is closed
under convex combinations, the best-known approximation is oblivious. Additional examples
appear in [7].

APPROX/RANDOM’16

8:16 Oblivious Rounding and the Integrality Gap

Examples of Oblivious Rounding

Threshold rounding for vertex cover [13].
Randomized rounding for set cover [22].
Random hyperplane rounding for max cut [11].
Welfare maximization for fractionally subadditive (XOS) and submodular valuations
[8, 10].
Randomized metarounding for congestion [3].

Examples of Non-Oblivious Rounding

Rounding of semidefinite programs (SDPs) for the constraint satisfaction problem (CSP)
[23].
Welfare maximization with budget-additive valuations [25, 4].
Facility location [16].

6 Conclusion and Open Questions

In this work we have systematically studied the notion of oblivious rounding and its approx-
imation guarantees, with applications to the welfare maximization problem. We mention
several directions for future research. First, are there optimization problems that are not
closed under convex combinations, where the best known approximation is achieved by an
oblivious rounding scheme, and can potentially be improved by considering non-oblivious
rounding schemes? For which problems are there polynomial-time computable oblivious
rounding schemes that are comparable to the integrality gap? Finally, what else can we hope
to learn about the most promising rounding techniques from properties of the combinatorial
problem?

References
1 Ashwinkumar Badanidiyuru, Shahar Dobzinski, Hu Fu, Robert Kleinberg, Noam Nisan,

and Tim Roughgarden. Sketching valuation functions. In Proceedings of the 23rd Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 1025–1035, 2012.

2 Sushil Bikhchandani and John W. Mamer. Competitive equilibrium in an exchange eco-
nomy with indivisibilities. Journal of Economic Theory, 74(2):385–413, 1997.

3 Robert Carr and Santosh Vempala. Randomized metarounding. Random Structures and
Algorithms, 20(3):343–352, 2002.

4 Deeparnab Chakrabarty and Gagan Goel. On the approximability of budgeted allocations
and improved lower bounds for submodular welfare maximization and GAP. SIAM J.
Comput., 39(6):2189–2211, 2010.

5 Nan Du, Yingyu Liang, Maria-Florina Balcan, and Le Song. Learning time-varying coverage
functions. In Proceedings of the 27th Neural Information Processing Systems Conference,
pages 3374–3382, 2014.

6 Shaddin Dughmi, Tim Roughgarden, and Qiqi Yan. From convex optimization to ran-
domized mechanisms: Toward optimal combinatorial auctions. In Proceedings of the 43rd
Annual ACM Symposium on Theory of Computing, pages 149–158, 2011.

7 Paul Dütting, Thomas Kesselheim, and Éva Tardos. Algorithms as mechanisms: The price
of anarchy of relax-and-round. In Proceedings of the 16th ACM Conference on Economics
and Computation, pages 187–201, 2015.

8 Uriel Feige. On maximizing welfare when utility functions are subadditive. SIAM J. Com-
put., 39(1):122–142, 2009.

U. Feige, M. Feldman, and I. Talgam-Cohen 8:17

9 Uriel Feige and Shlomo Jozeph. Oblivious algorithms for the maximum directed cut prob-
lem. Algorithmica, 71(2):409–428, 2015.

10 Uriel Feige and Jan Vondrák. The submodular welfare problem with demand queries.
Theory of Computing, 6(1):247–290, 2010.

11 Michel X. Goemans and David P. Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. Journal of the
ACM, 42(6):1115–1145, 1995.

12 Avinatan Hassidim and Yaron Singer. Submodular optimization under noise. Manuscript,
2016.

13 Dorit S. Hochbaum. Approximation algorithms for the set covering and vertex cover prob-
lems. SIAM Journal on Computing, 11:555––556, 1982.

14 Alexander S. Kelso and Vincent P. Crawford. Job matching, coalition formation, and gross
substitutes. Econometrica, 50(6):1483–1504, 1982.

15 Ron Lavi and Chaitanya Swamy. Truthful and near-optimal mechanism design via linear
programming. Journal of the ACM, 58(6), 2011. Article 25.

16 Shi Li. A 1.488 approximation algorithm for the uncapacitated facility location problem.
Information and Computation, 222:45–58, 2013.

17 Kazuo Murota. Valuated matroid intersection I: Optimality criteria. SIAM J. Discrete
Math., 9(4):545–561, 1996.

18 Kazuo Murota. Valuated matroid intersection II: Algorithms. SIAM J. Discrete Math.,
9(4):562–576, 1996.

19 Kazuo Murota. Discrete Convex Analysis. Monographs on Discrete Mathematics and
Applications. Society for Industrial and Applied Mathematics, 2003.

20 Noam Nisan and Ilya Segal. The communication requirements of efficient allocations and
supporting prices. Journal of Economic Theory, 129:192–224, 2006.

21 Renato Paes Leme. Gross substitutability: An algorithmic survey. Working paper, 2014.
22 Prabhakar Raghavan and Clark D. Thompson. Randomized rounding: A technique for

provably good algorithms and algorithmic proofs. Combinatorica, 7(4):365–374, 1987.
23 Prasad Raghavendra and David Steurer. How to round any CSP. In Proceedings of the

50th Symposium on Foundations of Computer Science, pages 586–594, 2009.
24 Tim Roughgarden, Inbal Talgam-Cohen, and Jan Vondràk. When are welfare guarantees

robust? Working paper, 2016.
25 Aravind Srinivasan. Budgeted allocations in the full-information setting. In Proceedings of

the 11th International Workshop on Approximation Algorithms for Combinatorial Optimiz-
ation Problems, pages 247–253, 2008.

26 John von Neumann. Zur theorie der gesellschaftsspiele. Math. Annalen., 100:295–320, 1928.
27 Neal E. Young. Randomized rounding without solving the linear program. In Proceedings

of the 6th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 170–178, 1995.

A Appendix for Section 2

A.1 Missing Proofs
Proof of Observation 5. Since X is compact, there exist x∗ ∈ X and v∗ ∈ V such that
x∗ = arg maxx∈X v∗ · x (and thus in particular v∗ ∈ V +

x∗). Set the relaxed solution y to be x∗
(this is a valid choice since x∗ ∈ Y). Then ρπ,π′(y) ≤ 1, since 1 can be achieved by choosing
the instance v in the definition of ρπ,π′(y) to be v = v∗. The observation follows. J

Proof of Observation 6. For every y ∈ Y \ {0d}, the set of instances v such that v · y > 0
expands when we replace v ∈ V by v ∈ C(V). Thus for every y, ρcl(π),cl(π′)(y) ≤ ρπ,π′(y),
and the observation follows. J

APPROX/RANDOM’16

8:18 Oblivious Rounding and the Integrality Gap

Proof of Observation 7. Let y ∈ Y \ ∂(Y) be a point not on the boundary, and let δ > 1 be
a scalar such that δy ∈ ∂(Y). For every v ∈ V +

y , v ·y ≤ v ·δy, and so ρπ,π′(v, y) ≥ ρπ,π′(v, δy).
It follows that ρπ,π′(y) ≥ ρπ,π′(δy), proving the observation. J

Proof of Observation 11. This follows from Definitions 4 (integrality gap) and 10 (approx-
imation ratio), and by noticing that even if f(y) ∈ C(X) \X, for every v ∈ V there must be
some x ∈ X with v · x ≥ v · f(y). J

Proof of Observation 30. Fix y and v ∈ V +
y . Let f ′ be the oblivious rounding scheme that

rounds y to f(δy). So f ′ is reasonable by definition, and achieves v·f ′(y)
v·y = v·f(δy)

v·y ≥ v·f(δy)
v·δy .

Taking the infimum over v maintains these relations, and so the observation holds. J

Proof of Observation 31. Let y ∈ Y \ ∂(Y), y 6= 0d be a point not on the boundary, and
let δ > 1 be a scalar such that δy ∈ ∂(Y). Since f is reasonable, απ,π′(y) ≥ απ,π′(δy), and
since απ,π′ is achieved by taking the infimum over Y \ {0d}, the observation follows. J

Proof of Observation 13. Let y ∈ Y \ ∂(Y) be a point not on the boundary, and let δ > 1
be a scalar such that δy ∈ ∂(Y). Then for every v ∈ V such that v · y > 0, v · y < v · δy and
so v /∈ V ∗y . If v · y = 0, then by positivity of π′, again v /∈ V ∗y . We conclude that V ∗y is empty,
completing the proof. J

A.1.1 Approximation Ratio of Reasonable Oblivious Rounding
We recall our assumption that π′ is a convex relaxation. We say that an oblivious rounding
scheme f is reasonable if it guarantees, for every relaxed solution y ∈ Y \ {0d}, at least the
approximation ratio απ,π′(δy) that it achieves for δy ∈ ∂(Y) (where δ ≥ 1 is the scaler by
which y needs to be multiplied to reach the boundary). Assuming reasonability is without
loss of generality as the following observation shows (see Appendix A for a proof):

I Observation 30. For every oblivious rounding scheme f there is a reasonable oblivious
rounding scheme f ′ such that for every y ∈ Y ′ \ {0d}, the approximation ratio of f ′ at y is
at least the approximation ratio of f at δy ∈ ∂(Y), and so the overall approximation ratio of
f ′ is at least that of f .

For reasonable rounding schemes, the approximation ratios matter only on the boundary
(see Appendix A for a proof):

I Observation 31. The overall approximation ratio of any reasonable oblivious rounding
scheme is not affected by the approximation ratios at relaxed solutions that lie strictly within
the boundary: απ,π′ = miny∈∂(Y) απ,π′(y).

By Observations 7 and 31, if f is a reasonable oblivious rounding scheme and απ,π′(y) =
ρπ,π′(y) for every y ∈ ∂(Y), then f is tight (Definition 12).

B Appendix for Section 3

B.1 Proof of Theorem 16: Missing Details
We now formally state and prove our main lemma. We use (C(V))+

y to denote the set of
instances v ∈ C(V) such that v · y > 0 (recall that V +

y is the set of such instances in V rather
than in C(V)). We also use the following simple observation:

I Observation 32. There exists ε > 0 and x′ ∈ C(X) such that for every v ∈ V , v · x′ ≥ ε.

U. Feige, M. Feldman, and I. Talgam-Cohen 8:19

Proof. Every feasible solution in X is a vector assigning nonnegative values to d variables
x1, . . . , xd. We may assume without loss of generality that for every coordinate 1 ≤ j ≤ d,
there is some solution xj ∈ X for which the variable xj has strictly positive value. (Otherwise
the variable xj has value 0 in all feasible solutions and hence is redundant.) Consider a
solution x′ = 1

d

∑d
j=1 x

j ∈ C(X). All its coordinates are strictly positive. Recall that every
v ∈ V is nonnegative and not identically 0d. Consequently x′ · v > 0 for every v ∈ C(v).
Moreover, our assumption that V is compact (see Section 2.1.1) together with the continuity
of the inner product function implies that the function f(v) = x′ · v attains a minimum over
v ∈ V . Let ε = minv∈V [x′ · v] and note that ε > 0. J

I Lemma 33. Fix y ∈ Y \ {0d}. There exists a value µ∗ such that

µ∗ = max
x∈C(X)

inf
v∈V +

y

v · x
v · y

= inf
v∈(C(V))+

y

max
x∈X

v · x
v · y

. (3)

Moreover, there is a choice of x∗ ∈ C(X) and v∗ ∈ (C(V))+
y such that x∗ maximizes v∗·x

v∗·y ,
v∗ minimizes v·x∗

v·y , and µ
∗ = v∗·x∗

v∗·y .

Proof. Given y ∈ Y \ {0d}, consider a series of two-player zero-sum games parameterized by
µ ∈ R≥0. In each such game, the rounding player has strategy set X, the instance player has
strategy set V , and the payoff to the rounding player for choices x ∈ X, v ∈ V is v ·x−µ(v ·y)
(i.e., we use the difference as payoff instead of the ratio). Since X and V are both compact
by assumption (see Section 2.1.1 and Remark 3.1), then Theorem 20 applies, and the unique
minimax value pµ of the game with parameter µ is

pµ = max
x∈C(X)

min
v∈V
{v · x− µ(v · y)} = min

v∈C(V)
max
x∈X
{v · x− µ(v · y)}.

Let xµ ∈ C(X), vµ ∈ C(V) be equilibrium strategies that achieve the minimax value pµ (by
Theorem 20, such strategies are guaranteed to exist).

We now observe some properties of pµ as a function of µ:
pµ is bounded: This is by the assumption that X and V are bounded.
For sufficiently small µ, pµ is positive: By Observation 32, maxx∈c(X) minv∈V {v · x} ≥
minv∈C(V)[x′ · v] ≥ ε. Taking µ to be sufficiently small we can ensure that µ(v · y) ≤ ε

2
for every v ∈ V , because both y and V are bounded.
For every µ such that pµ ≤ 0 we have that vµ · y > 0 for every equilibrium strategy
vµ (otherwise pµ = vµ · xµ and the rounding player can choose xµ ∈ C(X) such that
vµ · xµ > 0). Hence vµ ∈ (C(V))+

y .
For large enough µ, pµ is negative: Fix v+ ∈ C(V)+

y . Since C(X) is bounded, we can set
µ > (v+ · x)/(v+ · y) for every x ∈ C(X). In particular, v+ · xµ − µ(v+ · y) < 0, and so
since vµ is an equilibrium strategy, pµ = vµ · xµ − µ(vµ · y) ≤ v+ · xµ − µ(v+ · y) < 0.
pµ is monotone (weakly) decreasing in µ: Let µ̄ > µ. Then

pµ̄ = vµ̄ · xµ̄ − µ̄(vµ̄ · y)
≤ vµ · xµ̄ − µ̄(vµ · y) (4)
≤ vµ · xµ − µ(vµ · y), (5)

where (4) holds since vµ̄, xµ̄ are equilibrium strategies, and (5) holds since vµ, xµ are
equilibrium strategies and −µ̄ < −µ.
Let µ′ be the smallest µ such that pµ′ ≤ 0, then pµ is monotone strictly decreasing for
µ ≥ µ′: For every µ ≥ µ′, by monotonicity pµ ≤ 0, and so vµ · y > 0. Thus for every
µ ≥ µ′, we can replace “≤” by “<” in (5).
pµ is continuous when µ > 0.

APPROX/RANDOM’16

8:20 Oblivious Rounding and the Integrality Gap

Given the above properties of pµ, there is a unique µ∗ > 0 for which pµ∗ = 0. We know
that vµ∗ · y > 0, or equivalently, vµ∗ ∈ (C(V))+

y . The condition vµ∗ · xµ∗ − µ∗(vµ∗ · y) = 0
with positive vµ∗ · y implies that µ∗ = v∗·x∗

v∗·y . This completes the proof. J

Proof of Theorem 16. Fix y ∈ Y \ {0d}. On the one hand, for every oblivious rounding
scheme f , recall from Definition 10 that the approximation ratio of f at y is απ,π′(y) =
infv∈V +

y

v·f(y)
v·y . Hence the oblivious rounding scheme with the optimal approximation ratio at

y is the one that rounds y to f(y) = arg maxx∈C(X) infv∈V +
y

v·x
v·y , achieving an approximation

ratio of

απ,π′(y) = max
x∈C(X)

inf
v∈V +

y

v · x
v · y

. (6)

On the other hand, recall from Definition 4 that the integrality gap at y with respect to the
closure is

ρcl(π),cl(π′)(y) = inf
v∈(C(V))+

y

max
x∈X

v · x
v · y

. (7)

So both parts of the theorem follow from Lemma 33, which states that (6) and (7) are
equal. J

B.2 Rounding Optimal Solutions
A corollary of Theorem 16 applies to the approximation guarantees of oblivious rounding
for solutions known to be optimal. The corollary follows directly from the observation in
Section 2.2.2 that for every y ∈ Y with nonempty V ∗y , απ,π′(y) ≤ α∗π,π′(y).

I Corollary 34. Given a problem π = (V,X) and a relaxation π′ = (V, Y), there exists
an oblivious rounding scheme f : Y → C(X) that achieves an approximation ratio of
α∗π,π′(y) ≥ ρcl(π),cl(π′)(y) at every point y with nonempty V ∗y . The overall approximation
ratio of f is α∗π,π′ ≥ ρcl(π),cl(π′).

If π = cl(π) then there exists an oblivious rounding scheme f : Y → C(X) that is
individually tight for optimal solutions.

Proof. By Definitions 4 (integrality gap) and 14 (approximation ratio for optimal solutions),
if for an oblivious rounding scheme f it holds that απ,π′(y) = ρcl(π),cl(π′)(y) for every
y ∈ Y \ {0d}, then α∗π,π′(y) ≥ απ,π′(y) = ρcl(π),cl(π′)(y) for every y with nonempty V ∗y . By
Theorem 16 there exists such an oblivious rounding scheme. It follows that α∗π,π′ ≥ ρcl(π),cl(π′).
If ρcl(π),cl(π′)(y) = ρπ,π′(y) for every y with nonempty V ∗y , then α∗π,π′(y) ≥= ρπ,π′(y), which
by definition implies individual tightness for optimal solutions (Definition 15). J

The next example shows that, unlike the case in Corollary 18, there may be oblivious
rounding schemes whose approximation ratio for optimal solutions α∗π,π′ surpasses the
integrality gap of the closure ρcl(π),cl(π′). The reason for this difference is that α∗π,π′ only
takes into account relaxed solutions that are guaranteed to be optimal for some instance of
the relaxation.

I Example 35. Consider a problem π = (V,X) of dimension 2, where the instances
are V = {v1, v2} = {(1, 0), (0, 1)} and the feasible solutions are X = {x1, x2, x3} =
{(0, 0), (1, 0), (0, 1)}. (For concreteness this example can be thought of as a welfare maximiz-
ation problem with a single item and two buyers, where either: the first buyer has value 1 for
the item and the other has value 0 – this is the first instance; or vice versa – this is the second

U. Feige, M. Feldman, and I. Talgam-Cohen 8:21

instance. See Section 4 for more on welfare maximization.) Consider a relaxation π′ = (V, Y)
where Y is a quadrilateral “kite” with vertices {(0, 0), (1, 0), (3

4 ,
3
4), (0, 1)}. The closures

cl(π), cl(π′) have an instance set C(V) which is the set of vectors {(λ, 1− λ) | λ ∈ [0, 1]}.
Oblivious rounding of the point y = (3

4 ,
3
4) gives a point f(y) that belongs to C(X), i.e.,

to the triangle with vertices {(0, 0), (1, 0), (0, 1)}. For any such point f(y), min{v1 · f(y), v2 ·
f(y)} ≤ 1

2 whereas v1 ·y = v2 ·y = 3
4 , and so the approximation ratio απ,π′(y) of any oblivious

rounding scheme at y is ≤ 1
2/

3
4 = 2

3 . By rounding y to (1
2 ,

1
2) we get απ,π′(y) = 2

3 . It also
follows that the overall approximation ratio of the best oblivious rounding scheme is ≤ 2

3 .
Consider now the integrality gap ρcl(π),cl(π′)(y) at y with respect to the closure. For

every (λ, 1 − λ) ∈ C(V), max{(1
2 ,

1
2) · x1, (1

2 ,
1
2) · x2, (1

2 ,
1
2) · x3} = max{λ, 1 − λ} ≥ 1

2
whereas (λ, 1 − λ) · y = 3

4 , and so the integrality gap is ≤ 2
3 . Since (1

2 ,
1
2) ∈ C(V) we get

ρcl(π),cl(π′)(y) = 2
3 . This is equal to the approximation ratio απ,π′(y) of the best oblivious

rounding scheme at y, as known from Theorem 16. It also follows that the overall integrality
gap ρcl(π),cl(π′) is ≤ 2

3 .
However, the point y = (3

4 ,
3
4) is not an optimal solution of the relaxation with respect to

either of the instances in V . The set of optimal solutions {y ∈ Y | V ∗y 6= ∅} includes only x2
and x3, and so the identity function is an oblivious rounding scheme with approximation
ratio of 1 for optimal solutions. We conclude that 1 = α∗π,π′ > ρcl(π),cl(π′) = 2

3 .

C Appendix for Section 4

C.1 Gross Substitutes and the Configuration LP

I Definition 36. A valuation ν is gross substitutes if the following holds. Consider any two
item-price vectors p, q ∈ Rm such that q ≥ p. Let S be a bundle such that ν(S)−

∑
j∈S pj ≥

ν(T)−
∑
j∈T pj for every bundle T . Let S′ = {j ∈ S | qj = pj}. Then there exists a bundle

U such that S′ ⊆ U and ν(U)−
∑
j∈U qj ≥ ν(T)−

∑
j∈T qj for every bundle T .

In words, a valuation is gross substitutes if for every bundle that maximizes the player’s
utility (value for the bundle minus the aggregate price of its items) given a price vector p,
when prices of some of the items are raised, the items whose prices were not raised still
participate in a bundle that maximizes the player’s utility given the new price vector q.
Intuitively, this monotonicity property facilitates the greedy approach in a similar way to
matroid properties.

I Definition 37. The integer programming formulation of the welfare maximization problem
is the following:

max
∑
i,S xi,Svi,S

s. t. ∑
S xi,S ≤ 1 ∀i ∈ N (8)∑

i,S:j∈S xi,S ≤ 1 ∀j ∈M (9)
xi,S ∈ {0, 1} ∀i ∈ N,S ⊆M.

Constraint (8) corresponds to the requirement that no more than one bundle be allocated
per player, and Constraint (9) corresponds to the requirement that no item is over-allocated.
Note that the welfare maximization instance v appears only in the objective and does not
affect X.

APPROX/RANDOM’16

8:22 Oblivious Rounding and the Integrality Gap

I Definition 38. The relaxed solution set Y of the configuration LP relaxation to the welfare
maximization problem is the set of vectors y that are feasible solutions to the following LP:

max
∑
i,S yi,Svi,S

s. t. ∑
S yi,S ≤ 1 ∀i ∈ N (10)∑

i,S:j∈S yi,S ≤ 1 ∀j ∈M (11)
yi,S ≥ 0 ∀i ∈ N,S ⊆M.

Constraints (10) and (11) correspond to the same requirements as in the integer program-
ming formulation above. However, the variables yi,S can now take any value in the interval
[0, 1], unlike the integral constraint in the IP problem.

C.2 Proof of Lemma 22: Coverage is the Closure of Unit-Demand

In this section we provide a proof of Lemma 22 for completeness (cf., [6], Appendix A.1).

Proof of Lemma 22. Let UD and COV be the classes of unit-demand and coverage valu-
ations, respectively. To prove the proposition we show that C(UD) ⊆ COV and COV ⊆
C(UD). To show that C(UD) ⊆ COV, it is shown, in Lemma 39, that every unit-demand
valuation is a coverage valuation (i.e., UD ⊆ COV and thus C(UD) ⊆ C(COV)), and, in
Lemma 40, we show that the C(COV) ⊆ COV. The fact that COV ⊆ C(UD) is established
in Lemma 41, and this completes the proof. J

I Lemma 39. Every unit-demand valuation is a coverage valuation.

Proof. Let v be a unit-demand valuation. We describe a coverage valuation v′ satisfying
v′(S) = v(S) for every set S ⊆M . Assume, by renaming, that v1 ≤ v2 ≤ · · · ≤ vm, and let
∆j = vj − vj−1. Let D be the set of indices of distinct values; i.e., D = {j ∈ [m]|∆j > 0}
(with the convention that v0 = −1). Associate an element with every distinct value vj and
set its weight to ∆j . For every item j, Ej (i.e., the set of elements covered by j) is the set of
elements corresponding to items up to item j. For example, if there are 4 items with values
v1 = 1, v2 = 1, v3 = 3, v4 = 8, then there would be three elements, corresponding to items
1, 3, 4 with weights 1, 2, 5, respectively. For every S ⊆M it holds that

v′(S) =
∑

e∈
⋃

j∈S
Ej

w(e) = max
j∈S

∑
e∈Ej

w(e) = max
j∈S

∑
k∈D∧k≤j

∆k = max
j∈S

vj = v(S),

as desired. J

I Lemma 40. A convex combination of coverage functions is a coverage function.

Proof. Let v1 = 〈E1, w1, {E1
j }j〉 and v2 = 〈E2, w2, {E2

j }j〉 be two coverage functions. It
is sufficient to show that for every λ ∈ [0, 1], v(S) = λv1(S) + (1 − λ)v2(S) is a coverage
function, where S ranges over all subsets of M . Let E = E1⊎E2, and let w : E → R≥0

be a weight function defined as w(e) = λw1(e) for every e ∈ E1, and w(e) = (1 − λ)w2(e)
for every e ∈ E2. Finally, for every item j ∈M , let Ej = E1

j

⊎
E2
j . Consider the coverage

U. Feige, M. Feldman, and I. Talgam-Cohen 8:23

function v = 〈E,w, {Ej}j〉. For every set S ⊆M it holds that

v(S) =
∑

e∈
⋃

j∈S
E1

j

⊎
E2

j

w(e)

=
∑

e∈
⋃

j∈S
E1

j

w(e) +
∑

e∈
⋃

j∈S
E2

j

w(e)

=
∑

e∈
⋃

j∈S
E1

j

λw1(e) +
∑

e∈
⋃

j∈S
E2

j

(1− λ)w2(e)

= λv1(S) + (1− λ)v2(S),

as desired. J

I Lemma 41. Every coverage valuation can be expressed as a convex combination of unit-
demand valuations.

Proof. Let v = 〈E,w, {Ej}j〉 be a coverage valuation, and let k = |E| be the number of
elements in E. We show that there exist k unit-demand valuations, whose average valuation
for any set S equals v(S). Associate a unit-demand function with every element as follows.
For every element e ∈ E, let Se = {j ∈M : e ∈ Ej} be the set of items that cover element e.
The unit-demand valuation ve associated with element e is defined by

vej =
{
k · w(e), if j ∈ Se
0, otherwise.

For every set of items S ⊆ M , let ES =
⋃
j∈S Ej , and let 1{e ∈ ES} be a binary function

that returns 1 iff e ∈ ES . We show that v(S) can be written as a convex combination of the
unit-demand functions described above. Indeed, for every set S ⊆M ,

1
k

∑
e∈E

ve(S) = 1
k

∑
e∈E

1{e ∈ ES}k · w(e)

= 1
k

∑
e∈ES

k · w(e)

=
∑
e∈ES

w(e) = v(S). J

APPROX/RANDOM’16

A Deterministic Fully Polynomial Time
Approximation Scheme for Counting Integer
Knapsack Solutions Made Easy∗

Nir Halman†

Hebrew University of Jerusalem, Israel
halman@huji.ac.il

Abstract
Given n elements with nonnegative integer weights w = (w1, . . . , wn), an integer capacity C and
positive integer ranges u = (u1, . . . , un), we consider the counting version of the classic integer
knapsack problem: find the number of distinct multisets whose weights add up to at most C. We
give a deterministic algorithm that estimates the number of solutions to within relative error ε in
time polynomial in n, logU and 1/ε, where U = maxi ui. More precisely, our algorithm runs in
O(n

3 log2 U
ε log n logU

ε) time. This is an improvement of n2 and 1/ε (up to log terms) over the best
known deterministic algorithm by Gopalan et al. [FOCS, (2011), pp. 817-826]. Our algorithm is
relatively simple, and its analysis is rather elementary. Our results are achieved by means of a
careful formulation of the problem as a dynamic program, using the notion of binding constraints.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems (Computations
on discrete structures), G.2.1 Combinatorics (Counting problems), I.2.8 Problem Solving, Control
Methods, and Search (Dynamic programming)

Keywords and phrases Approximate counting, integer knapsack, dynamic programming, bound-
ing constraints, K-approximating sets and functions.

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2016.9

1 Introduction

In this paper we target at designing a deterministic fully polynomial time approximation
scheme (FPTAS) for one of the most basic #P-complete counting problems – counting the
number of integer knapsack solutions. Given n elements with nonnegative integer weights
w = (w1, . . . , wn), an integer capacity C, and positive integer ranges u = (u1, . . . , un), we
consider the counting version of the classic integer knapsack problem: find the size of the
set of feasible solutions KNAP(w,C, u) = {x |

∑
i≤n wixi ≤ C, 0 ≤ xi ≤ ui}. (We assume,

w.l.o.g., that wiui ≤ C for all i.) We give a deterministic FPTAS for this problem that
for any tolerance ε > 0 estimates the number of solutions within relative error ε in time
polynomial in the (binary) input size and 1/ε.

Our result. Our main result is the following theorem (the base of the logarithms in this
paper are all 2 unless otherwise specified).

∗ A full version of this paper is available online in http://www.optimization-online.org/DB_HTML/
2015/12/5231.html.

† Partial support for this research was provided by the Recanati Fund of the Jerusalem School of Business
Administration.

© Nir Halman;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016).
Editors: Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans; Article No. 9; pp. 9:1–9:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.9
http://www.optimization-online.org/DB_HTML/2015/12/5231.html
http://www.optimization-online.org/DB_HTML/2015/12/5231.html
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

9:2 FPTAS for Counting Integer Knapsack Solutions

I Theorem 1. Given a knapsack instance KNAP(w,C, u) with U = maxi ui and ε > 0,
there is a deterministic O(n

3 log2 U
ε log n logU

ε) algorithm that computes an ε-relative error
approximation for |KNAP(w,C, u)|.

Relevance to existing literature. The field of approximate counting is largely based on
Markov Chain Monte Carlo Sampling [6], a technique that is inherently randomized, and has
had remarkable success, see [10] and the references therein. The first approximation schemes
for counting integer knapsack solutions are fully polynomial randomized approximation
schemes (FPRASs). Given parameters ε > 0 for the error tolerance and 1 > δ > 0 for the
failure probability, the FPRAS returns a solution which is correct with probability at least
1− δ, and the running time is required to be polynomial in the (binary) input size, 1/ε and
in log(1/δ). To the best of our knowledge, the best FPRAS up to date is given by Dyer [1],
and is achieved by combining dynamic programming (DP, to be distinguished from dynamic
program by context) with simple rejection sampling. The complexity of the algorithm is
O(n5 + n4/ε2), so in fact the algorithm is strongly polynomial (see, e.g., [7]), that is, the
number of arithmetic operations is polynomial in n and independent of C,U .

To the best of our knowledge, the currently best (deterministic) FPTAS for this problem is
given by Gopalan et al. [3], and has complexity O(n

5

ε2 log2 U logW), where W =
∑
i wiui +C

(see also [2]). We note that the real achievement of [2] is providing an FPTAS for the
multidimensional version of the problem. Because of this reason they use a somewhat more
sophisticated approach than ours, relying on read-once branching programs and insight from
Meka and Zuckerman [8].

We note in passing that the first (deterministic) FPTAS for counting 0/1 knapsack
solutions (i.e., our problem restricted to the case where u = (1, . . . , 1)) is given by Štefankovič
et al. [10] and runs in O(n3ε−1 log(n/ε)) time. The currently best (deterministic) FPTAS
runs in O(n3ε−1 log(1/ε)/ logn) time [9].

Technique used. In this paper we give two FPTASs that are based upon formulating the
counting problem as a DP. Instead of deciding at once how many copies of item i to put in
the knapsack, we split the decision into a sequence of at most log ui binary sub-decisions
concerning (not necessarily all the) bundles of 1, 2, 4, . . . , 2bloguic copies of the item. In order
to translate this into a DP, we use the idea of what we call binding constraints, as explained
in detail below. The first FPTAS uses a primal DP formulation and approximates it via
the recent technique of K-approximation sets and functions introduced by [5], which we
overview in Section 3.1. The second FPTAS uses a dual DP formulation and approximates it
in a similar way [10] approximate the 0/1 knapsack problem. We overview their solution in
Section 4.1.

Our contribution. While not strongly polynomial, the running time of our solutions are
of order n and 1/ε (up to log terms) faster than the (randomized, but strongly-polynomial)
algorithm of Dyer [1]. The complexity of our solutions is also better by factors of n2 and
1/ε (up to log terms) than the (non strongly-polynomial, but deterministic) algorithm of
Gopalan et al. [3]. Moreover, our algorithms are relatively simple and their analysis is rather
elementary. A second contribution is our new DP technique – binding constraints, which
may be of independent interest.

Organization of the paper. In Section 2 we introduce the notion of binding constraints. In
Section 3 we design an FPTAS which is based upon a primal DP formulation of the problem.

N. Halman 9:3

5

constraint non-binding

34 2 1 0

+ -

+ -

+ - + -

constraint binding

-

+ -

4

2

1 11

Figure 1 A list of feasible solutions for a knapsack of size 5 and a single item of weight 1 and
maximal number of copies 5, i.e., KNAP((1), 5, (5)).

Our second FPTAS, based upon a dual DP formulation, is given in Section 4. In this way we
showcase that the notion of binding constraints is useful for the primal as well as the dual
DP formulation.

2 Binding constraints and the integer knapsack problem

In this section we present the idea behind the notion of binding constraints. Instead of
deciding at once how many copies of item i to put in the knapsack, we split the decision into
blog uic+ 1 binary sub-decisions. If the values of the various ui are all powers of 2 (minus
one), then the binary sub-decisions j = 1, . . . , blog uic+1 for item i are equivalent to deciding
whether to put in the knapsack “bundles” of 2j−1 copies of item i. E.g., for u1 = 7 we split
the decision concerning item 1 into the 3 independent binary sub-descisions of whether to put
in the knapsack 1, 2, 4 more copies of item 1. In this case there is a simple DP formulation
which is equivalent to a 0/1 knapsack problem with exactly

∑n
i=1 log(ui + 1) items. But

when not all values of the various ui are powers of 2 (minus one), then splitting into binary
sub-decisions is more complicated as a binary sub-decision may not be independent on the
previous sub-decision. We demonstrate this in Example 2.

I Example 2. Suppose we have a knapsack of size 5 and at most 5 copies of a single item
of weight 1, i.e., the instance (w = (1); C = 5; u = (5)). We split the item into 3 different
subitems consisting of bundles of 4, 2, 1 copies of the original item, and decide sequentially
upon putting these subitems in the knapsack. Figure 1 shows that the 3 binary sub-decisions
are not pairwise independent: The decision tree has 3 levels, corresponding to the 3 subitems.
We denote a decision to put (not to put) an item in the knapsack by “+” (“-”), respectively.
The figure shows that if we decide to put the item of weight 4 (leftmost uppermost fork), we
cannot put the subitem of weight 2, so the constraint u1 = 5 becomes binding. On the other
hand, if we decide not to put the subitem of weight 4 in the knapsack (rightmost uppermost
fork), the remaining 2 sub-decisions are independent of each other.

In the DP formulations (2) and (7) we encode whether the constraint is or is not binding
in the third subscript of the variable (denoted by “r”).

APPROX/RANDOM’16

9:4 FPTAS for Counting Integer Knapsack Solutions

3 Algorithm via a primal DP formulation

A pseudo-polynomial algorithm is achieved using the following recurrence:

si(j) =
∑mi(j)
k=0 si−1(j − kwi) 2 ≤ i ≤ n, j = 1, . . . , C,

s1(j) = m1(j) + 1 j = 1, . . . , C,
(1)

where function mi : [0, . . . , C]→Z+ is defined as mi(j) := max{x ∈ Z+ | x ≤ ui, xwi ≤ j}
and returns the maximum number of copies of item i that can be placed in a knapsack with
capacity j. Here si(j) is the number of integer knapsack solutions that use a subset of the
items {1, . . . , i} whose weights sum up to at most j. The solution of the counting problem
is therefore sn(C). The complexity of this pseudo-polynomial algorithm is O(nUC), i.e.,
exponential in both the (binary) sizes of U and C. We call such formulation primal because
the range of the functions in (1) is the number of solutions.

In order to get our FPTAS we give in Section 3.2 a more careful DP formulation which is
exponential only in the (binary) size of C. Before doing so, we briefly overview the technique
of K-approximation sets and functions in Section 3.1. We use this technique in order to get
our first FPTAS. In Section 2 we introduce the idea behind the notion of binding constraints.
We use this notion in order to get both FPTASs.

3.1 K-approximation sets and functions
Halman et al. [5] have introduced the technique of K-approximation sets and functions, and
used it to develop an FPTAS for a certain stochastic inventory control problem. Halman
et al. [4] have applied this tool to develop a framework for constructing FPTASs for a
rather general class of stochastic DPs. This technique has been used to yield FPTASs to
various optimization problems, see [4] and the references therein. In this section we provide
an overview of the technique of K-approximation sets and functions. In the next section
we use this tool to construct FPTASs for counting the number of solutions of the integer
knapsack problem. To simplify the discussion, we modify Halman et al.’s definition of the
K-approximation function by restricting it to integer-valued nondecreasing functions.

Let K ≥ 1, and let ϕ : {0, . . . , B} → Z+ be an arbitrary function. We say that
ϕ̃ : {0, . . . , B} → Z+ is a K-approximation function of ϕ if ϕ(x) ≤ ϕ̃(x) ≤ Kϕ(x) for
all x = 0, . . . , B. The following property of K-approximation functions is extracted from
Proposition 5.1 of [4], which provides a set of general computational rules of K-approximation
functions. Its validity follows directly from the definition of K-approximation functions.

I Property 3. For i = 1, 2 let Ki ≥ 1, let ϕi : {0, . . . , B} → Z+ and let ϕ̃i : {0, . . . , B} → Z+

be a Ki-approximation of ϕi. The following properties hold:
Summation of approximation: ϕ̃1+ϕ̃2 is a max{K1,K2}-approximation function of ϕ1+ϕ2.
Approximation of approximation: If ϕ2 = ϕ̃1 then ϕ̃2 is a K1K2-approximation function

of ϕ1.

LetK > 1. Let ϕ : {0, . . . , B} → Z+ be a nondecreasing function andW = {k1, k2, . . . , kr}
be a subset of {0, . . . , B}, where 0 = k1 < k2 < · · · < kr = B. We say that W is a K-
approximation set of ϕ if ϕ(kj+1) ≤ Kϕ(kj) for each j = 1, 2, . . . , r − 1 that satisfies
kj+1 − kj > 1. This means that the values of ϕ on consecutive points of the approximation
set essentially form a geometric progression with ratio of approximately K. (Consecutive
points of the approximation set itself do not necessarily form a geometric sequence.) It is
easy to see that given ϕ, there exists a K-approximation set of ϕ with cardinality O(logKM),

N. Halman 9:5

Algorithm 1 Function Compress(ϕ,K) returns a step nondecreasing K-approximation
of ϕ
1: Function Compress(ϕ,K)
2: obtain a K-approximation set W of ϕ
3: return the K-approximation function of ϕ induced by W

where M is any constant upper bound of ϕ(·). Furthermore, this set can be constructed in
O
(
(1 + tϕ) logKM log2B

)
time, where tϕ is the amount of time required to evaluate ϕ (see

[4, Prop. 4.6] for a formal proof).
Given ϕ and a K-approximation set W = {k1, k2, . . . , kr} of ϕ, a K-approximation

function of ϕ can be obtained easily as follows [4, Def.4.4]: Define ϕ̂ : {0, . . . , B} → Z+ such
that

ϕ̂(x) = ϕ(kj) kj−1 < x ≤ kj and j = 2, . . . , r,

and that

ϕ̂(k1) = ϕ(k1).

Note that ϕ(x) ≤ ϕ̂(x) ≤ Kϕ(x) for x = 0, . . . , B. Therefore, ϕ̂ is a nondecreasing K-
approximation function of ϕ. We say that ϕ̂ is the K-approximation function of ϕ induced
by W .

The procedure for the construction of a K-approximation function ϕ̃ for ϕ is stated as
Algorithm 11. By applying approximation of approximation in Property 3 and the discussion
above we get the following result (see also [4, Prop. 4.5]).

I Proposition 4. Let K1,K2 ≥ 1 be real numbers, M > 1 be an integer, and let ϕ :
[0, . . . , B]→[0, . . . ,M] be a nondecreasing function. Let ϕ̄ be a nondecreasing K2-approxima-
tion function of ϕ. Then Function Compress(ϕ̄,K1) returns in O((1 + tϕ̄)(logKM logB))
time a nondecreasing step function ϕ̃ with O(logK1 M) steps which K1K2-approximates ϕ.
The query time of ϕ̃ is O(log logK1 M) if it is stored in a sorted array {(x, ϕ̃) | x ∈W}.

Halman et al. have designed a framework that yields FPTASs for DPs that posses a
certain monotone structure [4]. (We say that a DP has depth T if it consists of T sequential
recursive equations. In our case the state space of the DP consists of all possible remaining
capacities in the knapsack and the action space is binary – to put or not to put a certain
(sub)item in the knapsack.)

I Theorem 5. (Adapted from [4, Thm. 8.2]) A monotone DP with depth T , |action space| ≤
A, |state space| ≤ S and bound M on the maximal value of the solution admits an
O(T

2

ε A logS logM log T logM
ε) time FPTAS.

We note in passing that the original result [4, Thm. 8.2] is stated for very large (expo-
nential) action spaces. Theorem 5 is a version modified for action spaces of size polynomial
in the input size and is achieved by performing the minimization in [4, equation (7.1)] over
the entire action space. See the proof of [4, Thm. 8.2] for detail about algorithm analysis.

1 The author thanks Jim Orlin for suggesting the presentation of this function, as well as the term
“Compress”.

APPROX/RANDOM’16

9:6 FPTAS for Counting Integer Knapsack Solutions

3.2 A more efficient DP formulation
In this section we reformulate (1) as a DP that can be solved in time pseudo-polynomial
in the (binary) size of C only. As explained above, instead of deciding at once how many
copies of item i to put in the knapsack, we break the decision into blog+mi(j)c+ 1 binary
sub-decisions. Sub-decision ` = 1, . . . , blog+mi(j)c+ 1 checks the possibility of putting 2`−1

copies of item i in the knapsack. We do so using, what we call, the idea of binding constraints.
For ` ≥ 1 let zi,`,0(j) be the number of solutions for a knapsack of capacity j that use a
subset of the items {1, . . . , i}, put no more than 2` − 1 copies of item i, and no more than
uk copies of item k, for k = 1, . . . , i− 1. For ` ≥ 1 let zi,`,1(j) be the number of solutions
for a knapsack of capacity j that use a subset of the items {1, . . . , i}, put no more than ui
mod 2` copies of item i, and no more than uk copies of item k, for k = 1, . . . , i− 1. In this
way, considering the third index of zi,`,r(j), if r = 0 then the constraint x ≤ ui is assumed
to be non binding. If, on the other hand, r = 1 then the constraint x ≤ ui may be binding.
Before giving the formal recurrences we need a few definitions. Let log+ x := max{0, log x}.
Let msb(x, i) := blog(x mod 2i)c+ 1. msb(x, i) is therefore the most significant 1-digit of (x
mod 2i) if (x mod 2i) > 0, and is −∞ otherwise. E.g., msb(5, 2) = 1 and msb(4, 1) = −∞.
Our recurrences are as follows:

zi,`,0(j) = zi,`−1,0(j) + zi,`−1,0(j − 2`−1wi) ` = 2, . . . , blog+mi(j)c+ 1 , (2a)
zi,`,1(j) = zi,`−1,0(j) + zi,msb(ui,`−1),1(j − 2`−1wi) ` = 2, . . . , blog+mi(j)c+ 1 , (2b)

zi,1,r(j) = zi−1,blog+ mi−1(j)c+1,1(j)+
+zi−1,blog+ mi−1(j−wi)c+1,1(j − wi) ,

(2c)

zi,−∞,1(j) = zi−1,blog+ mi−1(j)c+1,1(j) , (2d)
z1,`,r(j) = m1(j) + 1 ` = 1, . . . , blog+m1(j)c+ 1 , (2e)
zi,`,r(j) = 0 j < 0, (2f)

where r = 0, 1 , i = 2, . . . , n , and j = 0, . . . , C , unless otherwise specified. The solution of
the counting problem is therefore zn,blogunc+1,1(C). The time needed to solve this program
is only O(nC logU).

We now explain the six equations in formulation (2) in more detail. Equation (2a) deals
with the case where the constraint x ≤ ui is non binding, so putting 2` − 1 more copies of
item i in a knapsack of remaining capacity j is a feasible possibility. Clearly, in the following
steps the constraint x ≤ ui remains non binding. As for equation (2b), it deals with the
case where the constraint x ≤ ui may be binding when putting 2`−1 copies of item i in the
knapsack. If we do put this number of copies, the constraint may be binding, otherwise it
is assured to be non binding. Equation (2c) deals with the possibility of putting an odd
number of copies of item i in the knapsack. Equation (2d) is only called by equation (2b),
when exactly ui copies of item i are put in the knapsack. Equation (2e) deals with the initial
condition of one element only, and the last equation deals with the boundary condition that
there is not enough capacity in the knapsack.

In order to design an FPTAS to our problem, we first extend the DP formulation (2)
to any integer positive index ` by letting zi,`,r(j) = 0 for i = 1, . . . , n , r = 0, 1 and
` > blog+mi(j)c+1. (Note that without this extension zi,`,r(·) is not necessarily defined over
the entire interval (−∞, . . . , C]. Moreover, this extended formulation assures that zi,`,r(·) is
monotone nondecreasing.) We denote this extended set of recurrences by (3). The solution
of the counting problem via (3) remains zn,blogunc+1,1(C).

From the fact that zi,`,r(·) are monotone nondecreasing functions and that the action is
binary, one can apply Theorem 5 with parameters set to T ∼ O(n logU), A = 2, S = C and

N. Halman 9:7

Algorithm 2 FPTAS for counting integer knapsack.
1: Function CountIntegerKnapsackPrimal(w,C, u, ε)
2: K ← (n−1)(blog Uc+1)+1√1 + ε

3: for ` := 1 to blog u1c+ 1 and r = 0, 1 do z̃1,`,r ← Compress(z1,`,r,K) /* z1,`,r as defined in
(3) */

4: for i := 2 to n do
5: z̃i,−∞,1(·)← z̃i−1,blog+ mi−1(·)c+1,1(·)
6: for r = 0, 1 do z̃i,1,r(·)← Compress(z̃i−1,blog+ mi−1(·)c+1,1(·) + z̃i−1,blog+ mi−1(·−wi)c+1,1(· −

wi),K)
7: for ` := 2 to blog uic+ 1 do
8: z̃i,`,0(·)← Compress(z̃i,`−1,0(·) + z̃i,`−1,0(· − 2`−1wi),K)
9: z̃i,`,1(·)← Compress(z̃i,`−1,0(·) + z̃

i,msb(ui,`−1),1(· − 2`−1wi),K)
10: end for
11: end for
12: return z̃n,blogunc+1,1(C)

M = Un and get an O(n
3

ε log3 U logC log n logU
ε) time FPTAS. For the sake of completeness,

in the next section we explicitly state the FPTAS for our problem and sketch its analysis.

3.3 Algorithm statement

The idea behind our approximation algorithm is to compute an approximation for
zn,blogunc+1,1(C) by using the recurrences in (3). This is done by recursively comput-
ing K-approximation functions for the O(

∑n
i=1blog uic) different functions in (3). Due to

summation of approximation coupled with approximation of approximation (Property 3)
there is a deterioration of at most factor K between the ratio of approximation of zi,`,r and
that of zi,`−1,r (for ` > 1), as well as between the ratio of approximation of zi,1,r and that of
zi−1,blogui−1c+1,r. Therefore, by choosing K = (n−1)(blog Uc+1)+1

√
1 + ε one gets that the total

accumulated multiplicative error over the entire algorithm does not exceed 1 + ε. For a
given instance (w,C, u) of the integer knapsack problem and a tolerance parameter ε ∈ (0, 1],
our approximation algorithm is formally given as Function CountIntegerKnapsackPri-
mal(w,C, u, ε), see Algorithm 2. (From hereon after we use the notation z(·), where the
“·” stands for the argument of function z. E.g., the value of z(· − w) for variable value 2 is
z(2− w). Put it differently, the function z is shifted by −w.)

The proof that CountIntegerKnapsackPrimal(w,C, u, ε) returns an approximated
number of solutions that varies from the exact number of solutions by relative error of at most
ε is done by double induction over i and `, and shows that z̃i,`,r is a K(i−2)(blogUc+1)+`+1-
approximation of zi,`,r for i = 2, . . . , n, ` = 0, . . . , blog uic + 1 and r = 0, 1. See the full
version of this paper for a formal proof.

We next analyze the complexity of the algorithm. Clearly, the running time of the
algorithm is dominated by the operations done in the inner for-loop, i.e., steps 8-9, which are
executed O(n logU) times. We analyze, w.l.o.g., a single execution of step 8. By Proposition 4,
the query time of each of the z̃i,`−1,0(·) and z̃i,`−1,0(·) is O(log logKM), where M is an upper
bound on the counting problem, e.g., M = Un. Therefore, applying again Proposition 4,
each call to Compress runs in O(logKM logC log logKM) time. Using the inequality
(1 + x

n)n ≤ 1 + 2x which holds for 0 ≤ x ≤ 1 we get that K ≥ 1 + ε

2
(

(n−1)(blogUc+1)+1
) . Using

the inequality log(1+y) ≥ y which holds for y ∈ [0, 1], and changing the bases of the logarithms
to two, we get that the overall running time of the algorithm is O(n

3

ε log3 U logC log n logU
ε).

APPROX/RANDOM’16

9:8 FPTAS for Counting Integer Knapsack Solutions

4 Algorithm via a dual DP formulation

In this section we provide an FPTAS to counting integer knapsack solutions using the analysis
of [10] for counting 0/1 knapsack solutions. Our FPTAS will be faster than the one presented
in the previous section by a factor of logU logC.

4.1 The 0/1 knapsack

In this section we present the main ideas used to derive the FPTAS to counting 0/1 knapsack
solutions [10, Sec. 2]. Štefankovič et al. [10] begin by defining a dual DP formulation as
follows. For i = 1, . . . , n let τi(a) be the smallest capacity C such that there exist at least
a solutions to the knapsack problem with items 1, 2, . . . , i and capacity C. Using standard
conventions, the value of τ0 is given by

τ0(a) =

−∞ if a = 0 ,
0 if 0 < a ≤ 1 ,
∞ otherwise.

(4)

It follows that the number of knapsack solutions satisfies Z = max{a | τn(a) ≤ C}. [10, Lem.
2.1] states that τi(a) satisfies the following recurrence:

τi(a) = min
α∈[0,1]

max
{
τi−1(αa),
τi−1((1− α)a) + wi .

(5)

Intuitively, to obtain a solutions that consider the first i items, we need to have, for some
α ∈ [0, 1], αa solutions that consider the first i− 1 items and (1− α)a solutions that contain
the ith item and consider the first i− 1 items. The recursion tries all possible values of α
and take the one that yields the smallest (optimal) value for τi(a). We call such formulation
dual because the range of the functions in (4)-(5) is the capacity of the knapsack.

[10] then move to an approximation of τ that can be computed efficiently and define
function T : {0, . . . , s}→R+ ∪ {∞} which only considers a small subset of values a for the
argument in τ(·), these values form a geometric progression. Let

T0(a) =

−∞ if a = 0 ,
0 if 0 < a ≤ 1 ,
∞ otherwise,

and let

Q := 1 + ε

n+ 1 , s := dlogQ 2ne = O(n2/ε).

The functions Ti(·) are defined via the recurrence (5) that the function τ satisfies. Namely,
T is defined by the following recurrence:

Ti(j) = min
α∈[0,1]

max
{
Ti−1(j + logQ α),
Ti−1(j + logQ(1− α)) + wi .

(6)

The FPTAS computes all Ti(·) exhaustively and returns Qj′+1, where j′ := max{j | Tn(j)) ≤
C}, see [10] for the analysis of the FPTAS.

N. Halman 9:9

4.2 The dual DP formulation
In what follows we show that even if the values of the ui are not all powers of 2 (minus one)
we can still give a recurrence using, what we call, the idea of binding constraints. For ` ≥ 1
let τi,`,0(a) be the minimal knapsack capacity needed so that there are at least a solutions
that use a subset of the items {1, . . . , i}, put no more than 2` − 1 copies of item i, and no
more than uk copies of item k, for k = 1, . . . , i − 1. For ` ≥ 1 let τi,`,1(a) be the minimal
knapsack capacity needed so that there are at least a solutions that use a subset of the items
{1, . . . , i}, put no more than ui mod 2` copies of item i, and no more than uk copies of
item k, for k = 1, . . . , i − 1. In this way, considering the third index of τi,`,r(a), if r = 0
then the constraint x ≤ ui is assumed to be non binding. If, on the other hand, r = 1 then
the constraint x ≤ ui may be binding. Our recurrences are as follows (for simplicity we set
u0 = 1. Recall that the definition of msb(·) is given in Section 3.2):

τi,`,0(a) = min
α∈[0,1]

max
{
τi,`−1,0(αa),
τi,`−1,0((1− α)a) + 2`−1wi

` = 2, . . . , blog uic+ 1 (7a)

τi,`,1(a) = min
α∈[0,1]

max
{

τi,`−1,0(αa),
τi,msb(ui,`−1),1((1− α)a) + 2`−1wi

` = 2, . . . , blog uic+ 1 (7b)

τi,1,r(a) = min
α∈[0,1]

max
{
τi−1,blogui−1c+1,1(αa),
τi−1,blogui−1c+1,1((1− α)a) + wi

r = 0, 1 (7c)

τi,−∞,1(a) = τi−1,blogui−1c+1,1(a) (7d)

τ0,1,1(a) =

−∞ if a = 0 ,
0 if 0 < a ≤ 1 ,
∞ otherwise.

(7e)

where i = 1, . . . , n. The number of knapsack solutions satisfies

Z = max{a | τn,blog+ unc+1,1(a) ≤ C}.

We now explain the five equations in formulation (7) in more detail. Equation (7a) deals
with the case where the constraint x ≤ ui is non binding, so placing in the knapsack 2` − 1
more copies of item i is a feasible possibility. Clearly, in the following steps the constraint
x ≤ ui remains non binding. As for equation (7b), it deals with the case where the constraint
x ≤ ui may be binding when putting 2`−1 copies of item i in the knapsack. If we do put this
number of copies, the constraint may be binding and at most ui mod 2`−1 more copies can
be placed in the knapsack. Otherwise it is assured to be non binding. Equation (7c) deals
with the possibility of placing in the knapsack an odd number of copies of item i. As for
equation (7d), note that it is called by equation (7b) when exactly ui copies of item i are
put in the knapsack. Equation (7e) is a boundary condition similar to (4).

We now define an approximation Ti,`,r of τi,`,r similarly to the 0/1-knapsack case, but
where

Q := 1 + ε

(n+ 1) logU , s := dlogQ(Un)e = O(n
2 log2 U

ε
).

The function Ti,`,r is defined using the recurrence (7). E.g., using (7a) we define:

Ti,`,0(j) = min
α∈[0,1]

max
{
Ti,`−1,0(j + logQ α),
Ti,`−1,0(j + logQ(1− α)) + 2`−1wi .

(8)

APPROX/RANDOM’16

9:10 FPTAS for Counting Integer Knapsack Solutions

Algorithm 3 FPTAS for counting integer knapsack via dual DP formulation.
1: Function CountIntegerKnapsackDual(w,C, u, ε)
2: Q← 1 + ε

(n+1) logU , s← dlogQ(Un)e, T0,1,1(0)← 0, T0,1,1(j)←∞ for j > 0
3: for i := 1 to n do
4: By convention, Ti,`,r(k)← 0 for ` ≥ 1, r = 0, 1 and k < 0
5: Calculate Ti,−∞,1(·) via the analogue of equation (7d)
6: for r = 0, 1 do Calculate Ti,1,r(·) via the analogue of equation (7c)
7: for ` := 2 to blog uic+ 1 do
8: Calculate Ti,`,0(·) via the analogue of equation (7a), i.e., via equation (8)
9: Calculate Ti,`,1(·) via the analogue of equation (7b)

10: end for
11: end for
12: j′ ← max{j | Tn,blogunvc,1(j) ≤ C}
13: return Qj

′+1

4.3 Algorithm statement

Similarly to the algorithm given in [10], also our algorithm computes all Ti,`,r(·) exhaustively
and returns Qj′+1, where j′ := max{j | Tn,blogunvc,1(j)) ≤ C}. For a given instance (w,C, u)
of the integer knapsack problem and a tolerance parameter ε ∈ (0, 1], our approximation
algorithm is stated as Algorithm 3.
We now outline an analysis of the running time of Algorithm 3. Since the arguments of
function Ti,`,r in (8) and alike are step functions of α, it suffices to consider a discrete set of α
which yields all possible values of the arguments. Such set is of cardinality O(s). Because the
various Ti,`,r are nondecreasing functions of α, the minima in (8) and alike can be computed
in time O(log s) via binary search. Note that there are O(ns) entries of the various functions.
As explained in the analysis in [10], the algorithm can be implemented in O(ns log s) time.
Since we have s = O(n

2 log2 U
ε), the algorithm can be implemented in O(n

3 log2 U
ε log n logU

ε)
time, as indicated in Theorem 1. We note that the running time of the algorithm differs
from the one of [10] because in the latter case we have a different value of s, i.e., s = O(n

2

ε).

5 Concluding remarks

In this paper we present two deterministic FPTASs for counting integer knapsack solutions,
each of which improves upon the best known results. Both FPTASs relay on clever DP
formulations and the new DP technique of binding constraints. The only strongly polynomial
approximation scheme for this problem is a (randomized) FPRAS [1]. It is an open problem
to design an FPTAS that is both strongly-polynomial and deterministic. It is also an open
problem to design an FPTAS for the multidimensional knapsack problem that is more efficient
than the one of [2].

References

1 M. E. Dyer. Approximate counting by dynamic programming. In Proceedings of the 35th
Annual ACM Symposium on Theory of Computing (STOC), June 9-11, 2003, San Diego,
CA, USA, pages 693–699, 2003.

2 P. Gopalan, A. Klivans, and R. Meka. Polynomial-time approximation schemes for Knap-
sack and related counting problems using branching programs. CoRR, abs/1008.3187, 2010.

N. Halman 9:11

3 P. Gopalan, A. Klivans, R. Meka, D. Štefankovič, S. Vempala, and E. Vigoda. An FP-
TAS for #Knapsack and related counting problems. In IEEE 52nd Annual Symposium on
Foundations of Computer Science (FOCS), pages 817–826, 2011.

4 N. Halman, D. Klabjan, C.-L. Li, J. Orlin, and D. Simchi-Levi. Fully polynomial time
approximation schemes for stochastic dynamic programs. SIAM Journal on Discrete Math-
ematics, 28:1725–1796, 2014.

5 N. Halman, D. Klabjan, M. Mostagir, J. Orlin, and D. Simchi-Levi. A fully polynomial time
approximation scheme for single-item stochastic inventory control with discrete demand.
Mathematics of Operations Research, 34:674–685, 2009.

6 M. Jerrum and A. Sinclair. The Markov chain Monte Carlo method: An approach to ap-
proximate counting and integration. In D.S. Hochbaum, editor, Approximation Algorithms
for NP-hard Problems, pages 482–520. PWS Publishing Company, Boston, 1996.

7 N. Megiddo. On the complexity of linear programming. In Advances in economic theory,
pages 225–268, Cambridge, UK, 1989. Econom. Soc. Monogr. 12.

8 R. Meka and D. Zuckerman. Pseudorandom generators for polynomial threshold functions.
In Proceedings of the 42nd ACM Symposium on Theory of Computing (STOC), pages 427–
436, 2010.

9 R. Rizzi and A. Tomescu. Faster FPTASes for counting and random generation of knapsack
solutions. In Proceedings of the 22nd Annual European Symposium on Algorithms (ESA),
pages 762–773, 2014.

10 D. Štefankovič, S. Vempala, and E. Vigoda. A deterministic polynomial-time approximation
scheme for counting knapsack solutions. SIAM Journal on Computing, 41:356–366, 2012.

APPROX/RANDOM’16

A Competitive Flow Time Algorithm for
Heterogeneous Clusters Under Polytope
Constraints

Sungjin Im∗1, Janardhan Kulkarni2, Benjamin Moseley†3, and
Kamesh Munagala‡4

1 EECS, University of California at Merced, Merced, CA, USA
sim3@ucmerced.edu

2 Microsoft Research, Redmond, WA, USA
jakul@microsoft.com

3 Department of Computer Science and Engineering, Washington University,
St. Louis, MO, USA
bmoseley@wustl.edu

4 Department of Computer Science, Duke University, Durham, NC, USA
kamesh@cs.duke.edu

Abstract
Modern data centers consist of a large number of heterogeneous resources such as CPU, memory,
network bandwidth, etc. The resources are pooled into clusters for various reasons such as
scalability, resource consolidation, and privacy. Clusters are often heterogeneous so that they
can better serve jobs with different characteristics submitted from clients. Each job benefits
differently depending on how much resource is allocated to the job, which in turn translates to
how quickly the job gets completed.

In this paper, we formulate this setting, which we term Multi-Cluster Polytope Schedul-
ing (MCPS). In MCPS, a set of n jobs arrive over time to be executed on m clusters. Each
cluster i is associated with a polytope Pi, which constrains how fast one can process jobs as-
signed to the cluster. For MCPS, we seek to optimize the popular objective of minimizing
average weighted flow time of jobs in the online setting. We give a constant competitive al-
gorithm with small constant resource augmentation for a large class of polytopes, which capture
many interesting problems that arise in practice. Further, our algorithm is non-clairvoyant. Our
algorithm and analysis combine and generalize techniques developed in the recent results for the
classical unrelated machines scheduling and the polytope scheduling problem [10, 12, 11].

1998 ACM Subject Classification F.2.2 [Nonnumerical Algorithms and Problem]: Sequencing
and scheduling

Keywords and phrases Polytope constraints, average flow time, multi-clusters, online scheduling,
and competitive analysis.

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2016.10

∗ S. Im was supported in part by NSF grants CCF-1409130 and CCF-1617653.
† B. Moseley was supported in part by NSF grant CCF-1617724, a Yahoo faculty award and a Google

faculty award.
‡ K. Munagala was supported by NSF grants CCF-1408784, IIS- 1447554, and CCF-1348696.

© Sungjin Im, Janardhan Kulkarni, Benjamin Moseley, and Kamesh Munagala;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016).
Editors: Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans; Article No. 10; pp. 10:1–10:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.10
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

10:2 Multi-Cluster Polytope Scheduling

1 Introduction

Modern data centers consist of a large number of machines, each with its own resources
such as CPU, memory, network etc, that are organized into hundreds of clusters. Typically,
jobs are data intensive and require a lot of resources for running. Examples of such jobs
can be found in MapReduce systems. At such large scales, the resources are assumed to be
continuously divisible, thus can be compactly represented as a vector consisting of CPU,
memory, network bandwidth, etc. Efficiently partitioning these resources among jobs is a
major challenge in system design. Complicating the scheduling decisions further is the fact
that jobs have different characteristics, and may get different benefits/utilities even when
assigned the same resources – some jobs are CPU intensive while others require more memory.
In fact, this multi-dimensional nature is a key factor that differentiates data center scheduling
from other well-studied scheduling settings. Due to the explosive growth of data centers and
the associated operating costs, the multi-dimensional scheduling problems have gained a lot of
attention in the systems literature recently; see [8] and follow-up work [4, 18, 9, 1, 2, 17, 15].

Various scheduling problems in the presence of multiple resources can be modeled by a
polytope which constrains the rate at which jobs can be processed. This abstraction of the
data center scheduling problems was introduced under the name Polytope Scheduling
Problem (PSP) in a recent work by Im et al. [10, 11].

Unfortunately, despite its generality, PSP model fails to accurately capture the system
architectures where machines are grouped into clusters. By grouping machines into clusters,
the system can restrict the set of jobs that share a given cluster. Moreover, clusters in data
centers are often heterogeneous in that some clusters are more suitable for certain types of
jobs than others. For example, jobs may get processed more effectively on some clusters
due to their proximity to data. Further, the location of data can also change the resource
requirements of jobs – if a job is assigned to the cluster on which its data is located then it
does not need access to the network when executing. Data centers also have special purpose
hardware (such as FPGA/GPUs) for faster execution of certain jobs. Thus, the processing
times of jobs can also depend on the clusters that they are assigned to.

In this paper, we introduce a more realistic scheduling setting where each cluster is
associated with a distinct polytope that determines the rates at which jobs get processed.
At a high level, this not only captures the multi-dimensional nature found in PSP, but also
captures the unrelated aspect reminiscent of the classical scheduling literature [3]. In the
classical unrelated machines model, each job can get processed at a completely different
rate depending on its machine assignment. Thus, our model lifts the unrelated nature from
machines to clusters while staying faithful to the multi-dimensional aspect of data center
scheduling problems.

We focus on minimizing the average (weighted) flow time of jobs. A job’s flow time
measures how long the job waits from its arrival until its completion, thus the average (or
equivalently total) flow time measures the average delay experienced by clients. For this
popular objective, competitive algorithms are known for some special cases of PSP and also
for the unrelated machines setting. However, their analyses use two very different methods –
dual fitting for the unrelated machines setting [12], and potential function argument for PSP
[11]. In this paper, we combine the two different algorithms used in [12, 11] and develop a
new potential function analysis that unifies the two disparate analyses from the previous
works.

S. Im, J. Kulkarni, B. Moseley, and K. Munagala 10:3

1.1 Problem Definition
The Multi-Cluster Polytope Scheduling (MCPS), which is a generalization of the
Polytope Scheduling Problem (PSP) [10], is defined as follows. A set of n jobs arrive
over time. Each job j has a weight wj , size (or processing length) pj , and arrival time rj , and
needs to be processed using a set of m clusters. Each cluster i is associated with a convex
polytope Pi that constrains the feasible space of rates of jobs assigned to the cluster. Each
polytope Pi is defined over the entire set of jobs and is assumed to be downward-closed,
meaning that if ~y ∈ Pi and ~z ≤ ~y, then any ~z ∈ Pi. The scheduler has to assign rates to
jobs, {yj}j , subject to the polytope constraints and a natural requirement that a job can be
scheduled only on a single cluster at any given instant of time. Applications of MCPS will
be discussed in Section 1.2.

Note that we allow a job to be processed on more than one cluster over the course of its
execution. However, at any given time a job can be processed on only one cluster. This is
exactly the PSP problem [10] when there is only one cluster.

In this paper we seek to design online scheduling algorithms for MCPS, which have to
make scheduling decisions only based on the jobs that have arrived. In other words, the
online scheduler learns about a job j along with its properties when it arrives. Our goal is to
minimize the total weighted flow time of jobs in the setting of MCPS. Let yAjt denote the
rate at which job j is processed at time t by a scheduler A. Then, job j’s completion time
CAj under the schedule of A is defined to be the first time t′ such that

∫ t′
t=rj

yAjtdt ≥ pj . Job
j’s flow time is the length of time job j waits to be completed since its arrival and is defined
as FAj = CAj − rj . Similarly, job j’s weighted flow time is defined as wjFAj factoring in the
job’s weight. When the algorithm A and time t are clear from the context, we may drop
them from the notation. The goal is to minimize

∑
j wjF

A
j .

We will use the standard notion of competitive ratio for analyzing our algorithms. An
online algorithm is α-competitive if for every finite input instance, the cost incurred by
the algorithm is at most α times the cost of some optimal offline solution to the instance.
Unfortunately, the standard competitive analysis turns out to be too pessimistic in analyzing
flow time related objectives: there are no online algorithms with bounded competitive ratios
even in much simpler single dimensional settings [7]. We therefore appeal to the standard
speed augmentation analysis [14], where we assume the online algorithm can perform c > 1
allocations per time step, while OPT is restricted to allocate at the rate of 1. Our goal is to
design algorithms that achieve constant competitive ratios on the total flow time objective
using the smallest possible extra speed c.

1.2 Our Results
Our main result is a non-trivial generalization of the result shown for ‘monotone’ PSP in
[11] to the multi-cluster setting.

Proportional Fairness and Monotone Polytope.

The proportional fairness (PF) algorithm, at each instant of time t, assigns rates {yjt}j to
jobs by solving the following convex program over the polytope P.

max
∑
j

wj log yjt s.t. ~yt ∈ P (1)

Note that P is in the definition of PSP. The PF algorithm generalizes the weighted round
robin (WRR) algorithm to the multidimensional case. The study of PF even dates back to

APPROX/RANDOM’16

10:4 Multi-Cluster Polytope Scheduling

Nash’s seminal work [16]. The algorithm PF has a very nice market clearing interpretation –
It finds prices for resources so that every resource (with a positive price) is completely sold
out when each player (job) j with money wj buys resources to maximize its utility under the
prices. Further, the algorithm PF is known to have many desirable fairness properties such
as sharing incentiveness, and envy-freeness [8].

I Definition 1 ([11]). For a subset of jobs S, let yj(S) denote the rate allocated by PF to
job j ∈ S, as given by the equation (1). The PF allocation is said to be monotone if for any
S and j′ /∈ S, we have the following condition: For all j ∈ S, yj(S) ≥ yj(S ∪ {j′}). The class
Monotone PSP is the sub-class of PSP for which the PF algorithm leads to monotone
allocation.

We call MCPS as Monotone-MCPS when the PF algorithm is monotone for every
polytope Pi. When there is only one cluster, Im et al. [11] showed that the PF algorithm is
(e+ ε)-speed O(1/ε2)-competitive for the Monotone PSP case. Our first main result is a
generalization of this result to the case with an arbitrary number of clusters.

I Theorem 2. For Monotone-MCPS, there is a (e+ε)-speed, O
(
1/ε2

)
-competitive algorithm

for minimizing the total weighted flow-time of jobs. Further, our algorithm is non-clairvoyant
as it does not make use of the processing lengths of jobs.

Monotone-PSP captures many important problems such as flow routing to a single sink,
routing multicast trees (video-on-demand) etc. We refer the readers to [11] for more details
on applications of Monotone-PSP. For completeness, here we give one important class of
problems captured by Monotone-PSP that is very relevant to data center scheduling.

Resource Allocation with Substitutes [11]. Consider the multi-dimensional resource alloc-
ation problem that arises in scheduling jobs within a cluster. Formally, there are D divisible
resources (or dimensions), numbered 1, 2, . . . , D. By scaling we can assume w.l.o.g. that each
resource is available in a unit supply. If job j is assigned a non-negative vector of resources
~x = {x1, x2, . . . , xD}, then the rate at which the job executes is determined by yj = uj(~x),
where uj is a concave utility function that is known to the scheduler. The constraints P
simply capture that each resource can be allocated to unit amount, i.e.

∑
j xjd ≤ 1 for all

d ∈ {1, 2, . . . , D}. A well-studied special class of utilities in the resource allocation literature
are the Constant Elasticity of Scale (CES) utilities, given by:

uj(~xj) =
(

D∑
d=1

cjdx
ρj

jd

)1/ρj

.

When ρ ∈ (0, 1] the utility function captures resources that are imperfect substitutes of each
other, and the parameter ρ captures the extent of substitutability. A special case as ρ→ 0
is termed Cobb-Douglas utilities: uj(~xj) =

∏D
d=1 x

αjd

jd , where
∑
d αjd ≤ 1 and αjd ≥ 0 for

all j, d. These utilities can be used to model task rates in heterogeneous microprocessor
architectures [19]; further, these are widely studied in economics. When ρ = 1, CES utilities
reduce to linear utilities.

It was shown that prove that CES is a special case of Monotone PSP in [11]. Thus, our
result immediately gives a competitive algorithm for these problems in the multiple cluster
setting.

S. Im, J. Kulkarni, B. Moseley, and K. Munagala 10:5

1.3 High-level Description of the Algorithm
Our algorithm for the Monotone-MCPS consists of two parts: Within a cluster, jobs are
assigned rates using the PF algorithm. To decide the assignment of jobs to clusters, we use
the Selfish Migrate framework introduced in [12]. In the Selfish Migrate framework, at every
time instant, a job behaves like a selfish agent and moves to the cluster that maximizes its
own virtual utility function. More precisely, a virtual ordering is maintained among jobs
assigned to each cluster i, and a job j’s virtual utility is calculated as the speed the job
would get on the cluster i under the PF algorithm as if other jobs behind in the ordering
were not present. If the job moves to another cluster i′, it is placed the last in the virtual
ordering of cluster i′. These selfish moves lead to a Nash equilibrium where each job has the
best virtual utility on the cluster it is currently assigned to. The monotonicity property of
polytopes is crucially used in establishing the existence of such an equilibrium. Thus our
algorithm is a mixture of two interesting equilibria – a Nash equilibrium across machines
under virtual utilities and a market clearing equilibrium on each individual cluster under the
algorithm PF. Note that our algorithm does not use job sizes in scheduling decisions, thus is
non-clairvoyant.

1.4 Justification for not Encapsulating Clusters into One Polytope
We take a sidestep to clarify some questions that may arise from our definitions of PSP
and MCPS. It is fair to ask why one needs to define MCPS when PSP is general enough
to model the multiple cluster setting. More precisely, one can define a giant polytope P
that is the union of all polytope constraints Pi, with an extra constraint that at any give
time no job can be processed on more than one cluster. Indeed, such a formulation captures
MCPS. However, this way of looking at the problem leads to a major technical difficulty:
The giant polytope P may not inherit the properties satisfied by the individual polytopes Pi.
In particular, the new polytope may not be monotone even if all individual polytopes Pi
are monotone, meaning that we no longer have nice properties that lead to constant-speed
constant competitiveness of the PF algorithm. To see this, consider the classical unrelated
machines setting. Although it is a special case of PSP, thus our problem, it is not clear if it
is a special case of Monotone-PSP. No known techniques can be directly applicable to prove
unrelated machines fall into a category of Monotone-PSP. In fact, we conjecture that it is
not.

1.5 Our Techniques
Our problem MCPS extends the unrelated machines scheduling and multidimensional
scheduling in a natural way. Expectedly, our algorithm for the problem uses a combination of
the algorithms developed for the unrelated machines scheduling and the PSP setting. More
precisely, within a cluster, our algorithm allocates rates using the Proportional Fairness
algorithm similar to the Monotone-PSP case [11] while assigning jobs to clusters using the
Selfish Migrate framework as done in the unrelated machine setting [12]. The main technical
contribution of this paper lies in unifying the two different analyses of these algorithms – the
former uses a potential function argument and the latter a dual-fitting argument.

To unify the two different analyses, one could attempt to use potential function or dual
fitting. If one wants to try a dual fitting argument for our problem, the first thing to do would
be proving competitiveness of the Monotone-PSP using dual fitting. There are two math
programmings involved here: the convex programming (CP) we solve at any instantaneous
moment to implement the algorithm PF, and the linear programming (LP) we use to establish

APPROX/RANDOM’16

10:6 Multi-Cluster Polytope Scheduling

the competitiveness of PF for the total weighted flow time objective. One could try to use the
values of CP dual variables derived from the KKT conditions of the CP to set the LP dual
variables. However, as discussed in [11], the CP dual variables can have highly unstructured
values even for monotone-PSP, and this is why [11] used only a CP optimality condition
repeatedly, without looking at the dual.

Hence we use a different route by giving an alternative potential function based analysis
of the Selfish Migration rule for unrelated machines, and generalizing it to our problem,
Monotone-MCPS. Surprisingly, we use an unexpectedly simple potential function, which is
just the sum of potential functions for each cluster. The potential for each cluster is defined
over the sets of jobs assigned to the cluster by our algorithm and the optimal solution, and
there are no terms in the potential connecting different clusters. This is surprising since it
has been believed that more sophisticated potential functions should be needed to factor in
the changes of the projected objective based on the current assignment of jobs that occur
when jobs migrate across different machines.

The reader familiar with potential functions may wonder how we can bound the change
of the potential since the jobs the optimal solution assigns to each machine can be vastly
different from those our algorithm does. Hence, the credits we get from our algorithm’s
processing might be completely offset by the debits due to the optimal processing. This is
where we use the Selfish Migration rule crucially. At high level, using the fact that each job
currently resides on the best machine maximizing its virtual utility, we can safely assume
that jobs are assigned following the optimal scheduler since it only gives less credits, which
effectively reduces the analysis to each individual machine. However, the extension of this
analysis from unrelated machines to Monotone-PSP has another issue. In this thought
process of pretending that jobs are assigned to clusters following the optimal solution, we face
the challenge of measuring how fast jobs get processed within a cluster under the PF where
some of them come from our algorithm’s assignment and the other from the optimal solution.
We bound such rates using the polytope monotonicity (Proposition 3) and a CP optimality
condition (Proposition 4). See Section 2.2 for formal statement of the two properties and
how they are used in our analysis.

To summarize, our algorithm, which is a mixture of two equilibria from the Proportional
Fairness algorithm and the Selfish Migration rule, is analyzed delicately using the two
respective monotonicity properties resulting from the two algorithms: (i) jobs get lower
processing rates within a cluster when competing with more jobs; and (ii) each job’s migration
only increases its virtual utility without hurting other jobs.

Finally, as a byproduct we obtain an alternate analysis of the unrelated machine scheduling
to minimize the weighted flow-time in the non-clairvoyant setting. As mentioned before, the
classical unrelated machine setting is a special case of the Monotone-MCPS, where machines
correspond to clusters, and the polytope constraints simply enforce that only one unit of
CPU is allocated at any given time instant. In this single dimensional setting, PF is same as
Weighted Round Robin. Using these facts, we obtain the alternate analysis as a corollary of
Theorem 2. The sketch of this analysis can be found in Section 3. The original analysis in
[12] relied on a dual-fitting argument.

2 Monotone Multi-cluster Polytope Scheduling

In this section we prove Theorem 2. First, we set up some notation. Recall that at every
time instant, each alive job is assigned to exactly one cluster. Let Ait denote the set of alive
jobs at time t that are assigned to cluster i in our algorithm’s schedule. We often drop the

S. Im, J. Kulkarni, B. Moseley, and K. Munagala 10:7

subscripts t or i when it is clear from the context. Similarly, define At to be the set of all
jobs alive at time t; that is, At :=

⋃
iAit = {j | t ∈ [rj , Cj]}. Let ~yt denote the vector of

processing rates of jobs. We use yjt to denote the processing rate job j gets at time t. For
any subset of jobs S, define ~yt(S) as the projection of ~y into S; so, yjt(S) = yjt if j ∈ S, and
0 otherwise.

2.1 Algorithm
Our algorithm for Monotone-MCPS consists of two components: Rate allocation using
Proportional Fairness (PF) and job assignment using Selfish Migrate [12]
1. Proportional Fairness (PF): Each cluster i assigns rates to the set of jobs assigned to

i that are alive at time t using the Proportional Fairness (PF) algorithm. The PF
allocation can be obtained by solving the following convex program.

Maximize
∑
j∈Ait

wj log yjt s.t. ~yt(Ait) ∈ Pi .

The rates assigned to jobs remain unchanged unless a new job arrives to the cluster or a
job departs.

2. Selfish Job Migration: This rule is applied only when a job completes or arrives – at
other times, no job changes its assignment. Selfish Migrate algorithm is best viewed as a
game where each job tries to maximize its own utility (defined later). A key property of
our assignment policy is that at each time instant, a job is assigned to the cluster that
maximizes its utility. In other words, jobs are in Nash equilibrium with respect to their
utility functions.
To define the utility of a job, we need the notion of virtual queues. Each cluster has a
complete virtual ordering of jobs assigned to the cluster, and the utility of a job depends
on its position in this virtual ordering. We emphasize that this ordering is used only for
the job assignment, and the PF algorithm itself is oblivious to this ordering. If job j is
ahead of j′ on cluster i, we denote it as j ≤i j′. For a subset of jobs S and a job j ∈ S,
let y∗ij(S) denote the rate PF assigns to job j if the set of jobs assigned to cluster i is S.
Suppose a job j is on cluster i at time t. Then its utility on i is defined as y∗ij(A

≤j
it). The

job’s utility on any other cluster i′ is defined as y∗i′j(Ai′t ∪ j). Now we describe how the
virtual ordering of jobs are built on each cluster.

When a job j arrives at time t, it is assigned to the cluster i for which y∗ij(Ait ∪ {j})
is maximized. Further, the newly arrived job goes to the tail of the virtual ordering.
When a job completes, it simply disappears without affecting the relative ordering
of the other jobs. However, this may start a chain of jobs migrations, as jobs may
increase their utilities by switching to the cluster from which the job departed. Fix a
job j. If job j is currently residing on cluster i, its utility is y∗ij(A

≤j
it). Here, A≤jit refers

to all the jobs in Ait ahead of j in the virtual ordering including j itself. If job j moves
to another cluster i′ 6= i, the job is placed behind all jobs in Ai′t in the virtual ordering
on i′. Hence, its utility will be y∗i′j(Ai′t ∪ j). A job j is free to move to any cluster i′ as
long as it’s utility improves. If two jobs try to move simultaneously, then we break ties
arbitrarily. This process is repeated until no jobs can improve their utilities. A priori,
it is not clear if this process will terminate. For now we assume that it terminates,
and in Section 2.4 we show that each jobs migrates at most O(nε logn) times in total.

This completes the description of our algorithm.

APPROX/RANDOM’16

10:8 Multi-Cluster Polytope Scheduling

2.2 Key Properties Used in the Analysis
In this section, we summarize two key properties we will crucially use in our analysis. Recall
that we assume in our problem Monotone-MCPS that all polytopes Pi are monotone. The
following proposition is a restatement of Definition 1.

I Proposition 3 (Polytope Monotonicity [11]). Let y∗j (S) denote job j’s processing rate under
the PF algorithm for an arbitrary fixed monotone polytope P. Then, for all j ∈ S and j′ /∈ S,
we have y∗j (S) ≥ y∗j (S ∪ {j′}).

The next proposition, which we call the optimality condition, immediately follows from
the convexity of the polytope and the PF algorithm’s objective. We include the proof for
completeness.

I Proposition 4 (Optimality Condition [11]). Let ~y ∈ P denote any feasible rate vector for
the jobs in S. If the space of feasible rates P is convex, then∑

j∈S
wj

yj
y∗j (S) ≤

∑
j∈S

wj .

Proof. For notational simplicity, let y∗j := y∗j (S). Let f(~y) =
∑
j∈S wj log yj . We have

∂f(~y∗)
∂yj

= wj

y∗
j
. The optimality of ~y∗ implies ∇f(~y∗) · (~y − ~y∗) ≤ 0 for all ~y ∈ P. The

proposition now follows by elementary algebra. J

These two conditions will be repeatedly used in our analysis. As mentioned earlier, our
analysis is based on a potential function which depends on jobs arrival, and processing of
our algorithm and the optimal scheduler. The potential changes will be categorized into two:
discontinuous changes and continuous changes. As we will discuss soon in detail, discontinuous
changes occur when jobs arrive or complete, and all other changes are continuous. Our
analysis differs from the previous work in bounding discontinuous changes, and continuous
changes due to the optimal scheduler’s processing. In particular, the latter, which is formalized
in Lemma 6, is the most interesting part in our analysis.

Before we move to the detailed analysis, we discuss at high level how we bound the
continuous changes of the potential, particularly Lemma 6. As mentioned, the potential
adds up the potential defined over each cluster, which only depends on the jobs assigned
to the cluster by the algorithm and the optimal scheduler, which we denote Ai and Oi,
respectively. If Ai = Oi for all i, then the analysis is essentially equivalent to that of the
single cluster case, which was done in [11]. Otherwise, using the greedy nature of the Selfish
Migration rule and the Polytope monotonicity, we can w.l.o.g. proceed assuming that all
jobs in Oi are also added to Ai for each cluster i. As a result, we are left with the task of
upper bounding

∑
j∈Oi

wj ·
yO

j

y∗
j

(Ai∪Oi) ; see Eqn. (4). At first sight, it is not clear how to
bound this. The numerators are the processing rates of jobs in Oi due to the adversary, and
the denominators are those under PF with extra jobs Ai added. This is where we apply
the optimality condition, Proposition 4 assuming that PF is run on the jobs Ai ∪ Oi and
setting yj following the adversary for jobs j ∈ Oi; yj = 0 for other jobs. Thus, the polytope
monotonicity and the optimality condition are nicely combined to prove the key lemma.

2.3 Competitive Analysis: Proof of Theorem 2
We use amortized local competitiveness to prove the theorem. Our potential function Φ(t) is
inspired by [6, 11]. The potential function adds up potential functions defined for individual

S. Im, J. Kulkarni, B. Moseley, and K. Munagala 10:9

clusters that are essentially identical to the potential in [11]. Define Ot and Oit for the
optimal scheduler analogously as we did for At and Ait for our algorithm. For a set of jobs
S, let W (S) denote the total weight of jobs in the set. Assuming that our algorithm is given
(e+ ε)-speed, we show that the following conditions are satisfied that will imply Theorem 2.
These are standard conditions which are verified for most potential functions. See [13] for a
tutorial on the framework.
1. (Boundary condition) Φ(0) = Φ(∞) = 0;
2. (Discontinuous changes) Φ can only decrease when a job arrives into or departs from the

system; and
3. (Continuous changes) At the other times t, W (At) + d

dtΦ(t) ≤ 3
ε2W (Ot).

It is an easy exercise to verify that conditions are sufficient to establish our algorithm’s
competitiveness by integrating the last inequality [13]. We give a brief explanation. Suppose
all jobs are completed by our algorithm and OPT by time T . The first two conditions imply
that

∫ T
t=0

d
dtΦ(t)dt ≥ 0. Then integrating the above inequality over time, we have:∫ T

t=0
W (At)dt+

∫ T

t=0

d

dt
Φ(t)dt ≤ 3

ε2

∫ T

t=0
W (Ot)dt .

This implies Theorem 2 since the first term above is the weighted flow time of our algorithm,
and the RHS is that of OPT.

To define the potential function formally, we need to set up more notation. Fix a time
instant t. For job j, let pjt denote the remaining size of the job in the PF’s schedule, and
let pOjt denote the remaining size of the job in OPT’s schedule. Define a job j’s lag as
p̃jt = max(0, pjt − pOjt). The quantity p̃jt indicates how much our algorithm is behind the
optimal schedule in terms of job j’s processing. Let Lt = {j ∈ At | p̃jt > 0}. Note that
At \ Lt ⊆ Ot. Recall that y∗j (S) denote the optimal rate the PF algorithm allocates to job
j ∈ S when working on the set S. We define the following potential function:

Φ(t) :=
∑
i

Φi(t) (2)

where Φi(t) := 1
ε

∑
j∈Ait

wj
p̃jt

y∗ij(A
≤j
it)

(3)

It now remains to verify all the above conditions(1-3) are satisfied. The boundary
condition trivially holds since at times t = 0 and t =∞, the algorithm has no alive jobs. In
the following sections, we show the last two conditions hold true.

2.3.1 Discontinuous Changes
First we show that Φ(t) can only decrease when a job arrives or completes in our algorithm’s
schedule.

I Lemma 5. The discontinuous changes in the potential function (2) due to a job arrival or
departure is at most zero.

Proof. Suppose a job j arrives at time t; for notational convenience, we assume that j /∈ At.
For the job j, p̃jt = 0. Suppose j is assigned to cluster i. Since job j is behind any other
jobs on the cluster in the virtual ordering of jobs, no existing terms in Φi change. A new
term,

(
wj · p̃jt

y∗
j

(Ait∪{j})

)
is added for the job j, and the value of this term is 0 since p̃jt = 0.

Therefore, the lemma is true for job arrivals.

APPROX/RANDOM’16

10:10 Multi-Cluster Polytope Scheduling

We now focus on job completions. It is easy to see that the optimal scheduler completing
a job does not lead to any discontinuous changes in the potential function. Hence, we only
consider changes in the potential due to our algorithm completing a job. Suppose a job j
completes. If j was on cluster i just before it completed, the term (wj · p̃jt

y∗
j

(A≤j
it

)
) drops from

Φi(t) as p̃jt becomes zero.
Due to this the value of other terms for jobs k such that j ≤i k (that is, jobs that were

behind the job j in the virtual order) may change from (wk · p̃kt

y∗
j

(A≤k
it

)
) to (wk · p̃kt

y∗
j

(A≤k
it
\{j})

).
Such changes are non-positive due to the monotonicity of Pi.

But completion of a job may result in a sequence of jobs migrations as other jobs may get
a higher utility on the cluster that a job departed from. We show that the potential can only
decrease when jobs migrate. Say a job j migrates from cluster i to cluster i′. Note that the
term (wj · p̃jt

y∗
j

(A≤j
it

)
) drops from Φi(t), and a new term (wj · p̃jt

y∗
j

(Ai′t∪{j})
) is added to Φi′(t).

When a job migrates from cluster i to i′, the value of other terms for jobs k such that
j ≤i k change from (wk · p̃kt

y∗
j

(A≤k
it

)
) to (wk · p̃kt

y∗
j

(A≤k
it
\{j})

). This change in the value is non-positive
due to the monotonicity of Pi. Therefore, we have

∆Φi(t) ≤ −
1
ε
· wj ·

p̃jt

y∗j (A≤jit)
.

Since j moves to cluster i′, (wj · p̃jt

y∗
j

(Ai′t∪{j})
) is added to Φi′(t). However, no terms in the

summation of Φi′ change since j is placed at the end in the ordering of jobs on i′. Hence we
have

∆Φi′(t) = 1
ε
· wj ·

p̃jt
y∗j (Ai′t ∪ {j})

.

Since Φ(t) does not change on other cluster, we have ∆Φ(t) = ∆Φi(t) + ∆Φi′(t) ≤ 0, as
desired. The inequality follows from the fact that job j having moved to i′ means that
y∗j (A≤jit) ≤ y∗j (Ai′t ∪ {j}). J

2.3.2 Continuous Changes
Fix a time instant t when no jobs arrive or depart. To simplify notation, we omit the subscript
t from rest of the proof. Let Φ′|O and Φ′|A denote the potential changes due to OPT’s
processing and our algorithm’s processing respectively. We note that d

dtΦ(t) = Φ′|A + Φ′|O.

I Lemma 6. Φ′|O ≤ 1
ε (W (A) +W (O)).

Proof. Fix a cluster i and consider each job j ∈ Oi. We consider two cases. Let yOj denote
the rate the optimal scheduler processes job j. Consider the case when j is also assigned to i
by our algorithm at time t; that is, j ∈ Ai. Then, Φ′|O due to job j is

wj ·
yOj

y∗j (A≤ji)
≤ wj ·

yOj
y∗j (Ai ∪Oi)

,

where the inequality follows due to PF being monotone for Pi.
Next, we consider the other case where the algorithm processes job j on a different cluster

i′ from i. The reason the job j decided to stay on cluster i′ instead of moving to cluster i
is because it can’t get a better utility when it is added to the end of the ordering of jobs

S. Im, J. Kulkarni, B. Moseley, and K. Munagala 10:11

on cluster i, i.e. y∗j (A≤ji′) ≥ y∗j (Ai ∪ {j}) ≥ y∗j (Ai ∪ Oi). The last inequality is due to the
monotonicity of Pi and the fact that j ∈ Oi. Hence Φ′|O due to job j is

Φ′|O ≤ wj ·
yOj

y∗j (A≤ji′)
≤ wj ·

yOj
y∗j (Ai ∪Oi)

.

Summing over all jobs Oi on each cluster i, we have

Φ′|O ≤
∑
i

∑
j∈Oi

wj ·
yOj

y∗j (Ai ∪Oi)
. (4)

Finally, we show∑
j∈Oi

wj ·
yOj

y∗j (Ai ∪Oi)
≤W (Ai) +W (Oi). (5)

The above two equations 4 and 5 will yield Φ′|O ≤
∑
iW (Ai) + W (Oi), proving the

lemma.
To show equation (5), we appeal to the optimality condition stated in Proposition 4. Say

we process jobs Ai ∪Oi on cluster i using PF. Then each job j gets processed at a rate of
y∗j (Ai ∪Oi). Then, set yj = yOj for all j ∈ Oi and yj = 0 for all other jobs. Note that this
setting of {yj} is a feasible allocation of rates to jobs Ai ∪Oi. Hence, equation (5) follows
from Proposition 4. J

We now bound Φ’s continuous changes due to our algorithm’s processing. Recall that
L = A \O denote the set of jobs that the optimal scheduler has finished but are alive in PF
schedule. Similarly, let Li = Ai \O.

We consider two cases.

Case 1: W (L) ≤ (1 − ε)W (A). Since A \ L ⊆ O, we have W (O) ≥ εW (A). Since
Φ′|A ≤ 0, we have:

W (A) + Φ′ ≤W (A) + Φ′|O ≤
2
ε

(W (A) +W (O)) ≤ 3
ε2
W (O)

where the second inequality follows from Lemma 6.

Case 2: W (L) ≥ (1 − ε)W (A). This is a more interesting case. If job j is on cluster i ,
then PF processes job j at a rate of y∗j (Ai). For every job j ∈ L, PF decreases p̃jt at the
rate of y∗j (Ai). For all other jobs, PF can only decrease the potential. Hence we have,

Φ′|A ≤ −
1
ε

∑
i

∑
j∈Li

wj
y∗j (Ai)
y∗j (A≤ji)

(6)

To bound this quantity, we use the following inequality which was shown in [11] using
the polytope monotonicity and the optimality condition. For the sake of completeness, we
repeat the proof in [11].

I Lemma 7 ([11]). Let S be an arbitrary ordered set of jobs. Let S≤j denote jobs ahead of
j, including j. For any subset S′ ⊆ S, we have,∑

j∈S′
wj ·

y∗j (S)
y∗j (S≤j) ≥W (S′) · exp

(
−W (S)
W (S′)

)
.

APPROX/RANDOM’16

10:12 Multi-Cluster Polytope Scheduling

Proof. For notational convenience, let |S| = κ, and number the jobs in S in increasing order
of arrival time as 1, 2, . . . , κ. For k > j and k ≤ κ, let αjk = y∗j (S≤k−1)

y∗
j

(S≤k) . By the monotonicity
of PF, we have αjk ≥ 1. Define δjk = αjk − 1. Note that δjk ≥ 0.

We now apply Proposition 4 to the set {1, 2, . . . , k} as follows: For jobs j ∈ {1, 2, . . . , k},
the rate assigned by PF when executed on this set is y∗j (S≤k), and this goes into the
denominator in Proposition 4. We consider y∗j (S≤k−1) for j < k, and y∗k(S≤k−1) = 0 as a
different set of rates that go into the numerator in Proposition 4. This yields:

k−1∑
j=1

wj
y∗j (S≤k−1)
y∗j (S≤k) ≤

k∑
j=1

wj .

Observing that y∗j (S≤k−1)
y∗

j
(S≤k) = 1 + δjk, we obtain

∑k−1
j=1 wjδjk ≤ wk for k = 1, 2, . . . , κ.

Adding these inequalities for k = 1, 2, . . . , κ and changing the order of summations, we
obtain:

κ∑
k=1

k−1∑
j=1

wjδjk =
κ∑
j=1

wj

 κ∑
k=j+1

δjk

 ≤W (S) .

Hence,

∑
j∈S′

wj

 κ∑
k=j+1

δjk

 ≤W (S) .

Let ∆j =
∑κ
k=j+1 δjk, so that the above inequality becomes

∑
j∈S′ wj∆j ≤ W (A). Now

observe that

y∗j (S)
y∗j (S≤j) =

κ∏
k=j+1

1
αjk

=
κ∏

k=j+1

1
1 + δjk

≥ exp

− κ∑
k=j+1

δjk

 = exp(−∆j) .

We used the fact that δjk ≥ 0 for all j, k. Therefore,

∑
j∈S′

wj
y∗j (S)
y∗j (S≤j) ≥

∑
j∈S′

wj exp(−∆j) .

Since
∑
j∈S′ wj∆j ≤W (S), the RHS is maximized when ∆j = W (S)/W (S′). Therefore,

∑
j∈S′

wj
y∗j (S)
y∗j (S≤j) ≥ exp(−W (S)/W (S′))

∑
j∈S′

wj = W (S′) · exp(−W (S)/W (S′)) . J

S. Im, J. Kulkarni, B. Moseley, and K. Munagala 10:13

By applying this lemma with S′ = Li and S = Ai for each machine i, we have,

εΦ′|A ≤ −
∑
i

∑
j∈Li

wj
yj(A)
yj(A≤j)

[Equation 6]

≤ −
∑
i

W (Li) exp
(
−W (Ai)
W (Li)

)
[Lemma 7]

= −W (L)
∑
i

W (Li)
W (L) exp

(
−W (Ai)
W (Li)

)

≤ −W (L) exp
(
−
∑
i

W (Li)
W (L) ·

W (Ai)
W (Li)

)
[Due to convexity of exp(−x)]

= −W (L) exp
(
−W (A)
W (L)

)
≤ −(1− ε)W (A) · exp(−1/(1− ε)) [Since W (L) ≥ (1− ε)W (A)]

≤ −1− 2ε
e
·W (A)

for (0 ≤ ε < 1/2). Thus, when PF is given (e+ 3ε) speed , we have Φ′|A ≤ −(1 + 1/ε)W (A).
This together with Lemma 6 gives,

W (A) + Φ′|A + Φ′|O ≤ 1/ε ·W (O) .

Thus we conclude that in both cases W (A) + Φ′ ≤ 3/ε2W (O), completing the proof of
Theorem 2.

2.4 Bounding the Number of Migrations
First, observe that jobs can’t migrate forever. This is because the total utility of jobs strictly
increases when a job migrates and there are only a finite number of configurations regarding
where each job can be residing. To ensure the migration process ends in polynomial time,
we allow each job moves to another cluster only when its utility increases by a factor of
at least (1 + ε). Also we force job j to move to the cluster where its utility is maximized.
For any polytope Pi, it is well-known that a job gets a rate at least 1/n times the rate it
would get when it is the only job on cluster i in the PF allocation. Let sj be the maximum
processing rate when j is the only job in the system. Then, it is easy to see that job j’s
processing rate/utility is at least sj/n and at most sj . Therefore, each job can migrate at
most O(log1+ε n) times. Hence the total number of jobs migrations is at most O(nε logn).

3 Non-Clairvoyant Scheduling On Unrelated Machines

As already mentioned, the unrelated machines model is a special case of Monotone-MCPS,
where each machine corresponds to a cluster i. Recall that in the unrelated machine setting,
if a job is assigned to machine i it takes pj/sij time to complete. The term 0 ≤ sij ≤ 1 is the
machine dependent slow-down factor of job j. It is easy to verify that this can be captured
using polytope constraints of the form

∑
j xjt ≤ 1 and yjt ≤ sij · xjt. Therefore, Theorem 2

gives an (e+ ε)-speed O
(
1/ε2

)
-competitive algorithm for minimizing the weighted flow-time

in the non-clairvoyant setting. However, PF algorithm is the same as Weighted Round Robin
(WRR) in the unrelated machine setting, hence by a more careful analysis of Lemma 7 we can
reduce the speed augmentation to 2 + ε. The entire analysis of Theorem 2 also goes through

APPROX/RANDOM’16

10:14 Multi-Cluster Polytope Scheduling

if we replace WRR by the Latest Arrival Processor Sharing algorithm (LAPS) [5], and we
obtain (1 + ε)-speed O

(
1/ε2

)
-competitive algorithm, matching the best known result [12].

This also gives the first analysis of LAPS for unrelated machine scheduling. The omitted
details are simple, and we defer the complete proof to the full version of the paper.

References
1 Faraz Ahmad, Srimat T. Chakradhar, Anand Raghunathan, and T. N. Vijaykumar. Tarazu:

optimizing mapreduce on heterogeneous clusters. In ASPLOS, pages 61–74. ACM, 2012.
doi:10.1145/2150976.2150984.

2 Amazon EC2-Spot-Instances. URL: http://aws.amazon.com/ec2/spot-instances/.
3 Jivitej S. Chadha, Naveen Garg, Amit Kumar, and V. N. Muralidhara. A competitive al-

gorithm for minimizing weighted flow time on unrelated machines with speed augmentation.
In STOC, pages 679–684, 2009.

4 R. Cole, V. Gkatzelis, and G. Goel. Mechanism design for fair division: allocating divisible
items without payments. In ACM EC, pages 251–268, 2013.

5 Jeff Edmonds and Kirk Pruhs. Scalably scheduling processes with arbitrary speedup curves.
In ACM-SIAM Symposium on Discrete Algorithms, pages 685–692, 2009.

6 Kyle Fox, Sungjin Im, and Benjamin Moseley. Energy efficient scheduling of parallelizable
jobs. In SODA, pages 948–957, 2013.

7 N. Garg and A. Kumar. Better algorithms for minimizing average flow-time on related
machines. In ICALP (1), 2006.

8 A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, I. Stoica, and S. Shenker. Dominant
resource fairness: Fair allocation of multiple resource types. In NSDI, 2011.

9 Robert Grandl, Ganesh Ananthanarayanan, Srikanth Kandula, Sriram Rao, and Aditya
Akella. Multi-resource packing for cluster schedulers. In ACM SIGCOMM 2014 Conference,
SIGCOMM’14, Chicago, IL, USA, August 17-22, 2014, pages 455–466, 2014. doi:10.1145/
2619239.2626334.

10 Sungjin Im, Janardhan Kulkarni, and Kamesh Munagala. Competitive algorithms from
competitive equilibria: Non-clairvoyant scheduling under polyhedral constraints. In STOC,
2014.

11 Sungjin Im, Janardhan Kulkarni, and Kamesh Munagala. Competitive flow time algorithms
for polyhedral scheduling. In IEEE 56th Annual Symposium on Foundations of Computer
Science, FOCS 2015, Berkeley, CA, USA, 17-20 October, 2015, pages 506–524, 2015. doi:
10.1109/FOCS.2015.38.

12 Sungjin Im, Janardhan Kulkarni, Kamesh Munagala, and Kirk Pruhs. Selfishmigrate: A
scalable algorithm for non-clairvoyantly scheduling heterogeneous processors. In 55th IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA,
USA, October 18-21, 2014, pages 531–540, 2014. doi:10.1109/FOCS.2014.63.

13 Sungjin Im, Benjamin Moseley, and Kirk Pruhs. A tutorial on amortized local competit-
iveness in online scheduling. SIGACT News, 42(2):83–97, 2011. doi:10.1145/1998037.
1998058.

14 Bala Kalyanasundaram and Kirk Pruhs. Speed is as powerful as clairvoyance. JACM,
47(4):617–643, 2000.

15 Gunho Lee, Byung-Gon Chun, and Randy H Katz. Heterogeneity-aware resource allocation
and scheduling in the cloud. In Proceedings of the 3rd USENIX Workshop on Hot Topics
in Cloud Computing, HotCloud, volume 11, 2011.

16 J. Nash. The bargaining problem. Econometrica, 18(2):155–162, 1950.
17 Lucian Popa, Gautam Kumar, Mosharaf Chowdhury, Arvind Krishnamurthy, Sylvia Rat-

nasamy, and Ion Stoica. Faircloud: sharing the network in cloud computing. In ACM
SIGCOMM, pages 187–198, 2012.

http://dx.doi.org/10.1145/2150976.2150984
http://aws.amazon.com/ec2/spot-instances/
http://dx.doi.org/10.1145/2619239.2626334
http://dx.doi.org/10.1145/2619239.2626334
http://dx.doi.org/10.1109/FOCS.2015.38
http://dx.doi.org/10.1109/FOCS.2015.38
http://dx.doi.org/10.1109/FOCS.2014.63
http://dx.doi.org/10.1145/1998037.1998058
http://dx.doi.org/10.1145/1998037.1998058

S. Im, J. Kulkarni, B. Moseley, and K. Munagala 10:15

18 Matei Zaharia, Andy Konwinski, Anthony D. Joseph, Randy Katz, and Ion Stoica. Im-
proving mapreduce performance in heterogeneous environments. In OSDI, pages 29–42,
Berkeley, CA, USA, 2008. USENIX Association. URL: http://dl.acm.org/citation.
cfm?id=1855741.1855744.

19 S. M. Zahedi and B. C. Lee. REF: resource elasticity fairness with sharing incentives for
multiprocessors. In ASPLOS, pages 145–160, 2014.

APPROX/RANDOM’16

http://dl.acm.org/citation.cfm?id=1855741.1855744
http://dl.acm.org/citation.cfm?id=1855741.1855744

Revisiting Connected Dominating Sets: An
Optimal Local Algorithm?∗

Samir Khuller1 and Sheng Yang2

1 Dept. of Computer Science, University of Maryland, College Park, USA
samir@cs.umd.edu

2 Dept. of Computer Science, University of Maryland, College Park, USA
styang@cs.umd.edu

Abstract
In this paper we consider the classical Connected Dominating Set (CDS) problem. Twenty years
ago, Guha and Khuller developed two algorithms for this problem - a centralized greedy approach
with an approximation guarantee ofH(∆)+2, and a local greedy approach with an approximation
guarantee of 2(H(∆) + 1) (where H() is the harmonic function, and ∆ is the maximum degree
in the graph). A local greedy algorithm uses significantly less information about the graph, and
can be useful in a variety of contexts. However, a fundamental question remained - can we get
a local greedy algorithm with the same performance guarantee as the global greedy algorithm
without the penalty of the multiplicative factor of “2” in the approximation factor? In this paper,
we answer that question in the affirmative.

1998 ACM Subject Classification G.2.2 Graph Algorithms

Keywords and phrases graph algorithms, approximation algorithms, dominating sets, local in-
formation algorithms

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2016.11

1 Introduction

A connected dominating set (CDS) in a graph is a subset of vertices that induces a connected
subgraph, and is also a dominating set at the same time. A dominating set is a subset of
vertices such that every node in the graph, is either in the dominating set, or adjacent to a
node in the dominating set. Finding a minimum connected dominating set is NP-hard, and
thus for the last twenty years, researchers have explored approximation algorithms for this
problem starting with the work of Guha and Khuller [6]1. One of the original motivations
for the problem was in building a backbone for routing in the context of wireless ad hoc
networks. Over time many other applications have been explored in the context of social
networks and AI [2, 10, 3].

In their paper, Guha and Khuller [6] developed two simple approaches - the first one is
a “local” approach, where we start from a single vertex in the solution, and incrementally
(greedily) add neighboring nodes while maintaining a connected subset of nodes at all
times. It is tempting to imagine that adding one node at a time, maintaining connectivity
might work well. However, this does not work and there are instances where we might
end up with a solution with Ω(n) nodes, while the optimum solution has only O(1) nodes!
Interestingly, a simple modification of this algorithm that explores a 2-hop neighborhood

∗ This work is supported by NSF grant CCF 1217890.
1 This work was recently awarded the ESA Test of Time Award.

© Samir Khuller and Sheng Yang;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016).
Editors: Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans; Article No. 11; pp. 11:1–11:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

11:2 Revisiting Connected Dominating Sets: An Optimal Local Algorithm?

making greedy choices at each step that involves selecting upto two nodes at each step, works
much better and they show that a 2(H(∆) + 1) approximation can be obtained for this
problem (H(n) =

∑n
i=1

1
i is harmonic function, and ∆ is the largest degree in the graph).

The main benefits of the local algorithm are that no knowledge of the entire graph is needed
at each step, and only the part of the “explored” graph suffices to select the next node. This
may not be a useful for a static graph, as you can calculate it once and forever. But to get a
CDS for a graph that changes dynamically, like social networks or wireless ad hoc networks,
limiting the amount of information required can be both important and challenging.

They also developed an improved global algorithm that is again a greedy algorithm, and
constructs a solution that does not maintain any connectivity property, and is only connected
at the very end. This centralized greedy algorithm yields a bound of H(∆)+O(1), eliminating
the factor of 2, and gets us close to the lower bound on this problem of (1− ε)H(∆) due to
set cover hardness [5]. Despite much interest (see book by Du and Wan [3]), the key question
remained open for two decades - is there a local algorithm that gives us the same bound as
the global algorithm?

In this paper, we answer this question in the affirmative. We develop a very simple local
algorithm, and are able to show that it matches the bound of the global algorithm. Such a
result is especially surprising due to its simplicity.

Connected Dominating Sets became a central topic in the context of wireless ad hoc
networks, where the CDS acts as a routing backbone for packet routing. Often it is expensive
to connect all the nodes, as the cost can become prohibitive, and in this case it is fine to
connect most of the nodes (or a given fraction). Liu and Liang [9] formalized the problem
of partial connected dominating sets (PCDS) and provided heuristics without performance
guarantees. Avrachenkov et al. [1] defined the budgeted connected dominating set problem
(BCDS) where we have a budget of k nodes and we wish to find a connected set of at most k
nodes that maximizes the number of nodes it can cover. Inspired by applications in social
networks, they developed practical heuristics using only local information. Khuller et al.
[8] developed the first algorithms with theoretical guarantees for both these problems with
approximation factors of O(ln ∆) for PCDS and 1

13
(
1− 1

ε

)
for BCDS.

Extensions to node weighted versions were considered by Guha and Khuller [7] as well.
Extensive research was subsequently done on this topic with the development of distributed
algorithms [4], as well as for many special classes of graphs [3].

1.1 Our Contributions

Our results can be summarized as follows.
In Section 3, for the Connected Dominating Set problem, we obtain the first local
information algorithm whose approximation ratio is within additive constant to global
algorithm, i.e. H(∆)+O(1). To be precise, our approximation guarantee is H(2∆+1)+1.
This algorithm requires 2-hop local information (see Section 2 for definition).
In Section 4, with 1-hop local information, we obtain an H(∆) + 2

√
H(∆) + 1 approxi-

mation algorithm. In addition to better approximation ratio, it also runs faster than the
Randomized CDS algorithm [6] (Section 2.3), because it explores fewer nodes.

2 Background

We first review existing approaches [6, 2].

S. Khuller and S. Yang 11:3

2.1 Global Algorithm for CDS
The global algorithm runs in two phases. Initially, all nodes are colored white. In the first
phase, the algorithm iteratively adds a node to the solution, colors it black and all its adjacent
white nodes gray. A piece is defined as a white node or a black connected component. A new
node is chosen to be colored black to get maximum reduction in the number of pieces. This
phase ends when no such node exists that can give non-zero reductions. At this time, there
are no white nodes left. Intuitively speaking, black nodes are selected nodes, gray nodes are
nodes that are dominated, i.e. adjacent to black nodes.

In the second phase, we start with a dominating set that consists of several black
components that we need to connect. The connection is done by recursively connecting pairs
of black components with a chain of vertices, until there is only one black component, which
will be our final solution.

The approximation ratio for this algorithm is H(∆) + 2, where H(n) is harmonic function.

2.2 2-hop Local Information Algorithm for CDS
The same paper proposed another algorithm, using only local information. Instead of using
information of the entire graph, it only relies on information within 2-hops to the nodes
chosen in the solution. The formal definition of local information is as follows.

Before we define what local information is, we first define the distance between a node
and a set of nodes.

I Definition 1 (Distance). In undirected graph, denote the distance between u and v in
a graph as d(u, v). It is the length of shortest path from u to v. d(u, S) is defined to be
minv∈S d(u, v)

We now define the local neighborhood of some node, or a set of nodes.

I Definition 2 (Local Neighborhood). Given a set of nodes S in graph G, the r-hop neigh-
borhood around S is the induced subgraph of G containing all nodes v such that d(v, S) ≤ r.
We denote the r-hop neighborhood as Nr(S). When there is no confusion, we use the same
notation to denote the set Nr(S) = {v|d(v, S) ≤ r}.

An algorithm with local information uses information only within the local neighborhood
of the nodes it has chosen. To be specific, if at some step, the set of nodes that an algorithm
has chosen is S, and we have r-hop local information, then we know the induced graph of
Nr(S), as well as the degree of nodes in Nr(S)/Nr−1(S).

From an arbitrary starting node, nodes are added iteratively. For each loop in this
algorithm, one chooses a node, or a node and one of its neighbors. This means we need
knowledge of 2-hop neighborhood to maximize the number of newly covered nodes, which
explains why it uses 2-hops of local information.

The approximation ratio for this algorithm is 2(H(∆) + 1). We can improve it in practice
by maximizing the number of newly covered nodes for each new node selected, which is used
in [10], but the theoretical bound is the same.

2.3 1-hop Local Information Algorithm for CDS
Borgs et al. [2] first came up with this algorithm, which is based on the previous one. Instead
of choosing a node or a pair of adjacent nodes greedily, it chooses only one gray node to
maximize the number of newly covered nodes, and in addition selects one of the newly covered

APPROX/RANDOM’16

11:4 Revisiting Connected Dominating Sets: An Optimal Local Algorithm?

Algorithm 1: CDS with 2-hop Local Information
Data: Graph G = (V,E)
Result: A connected dominating set S

1 s← an arbitrary node;
2 S ← {s};
3 while S is not a dominating set do
4 S̄ ← a node u in N1(S) or a node in N1(S) and one of its neighbors in N1(u)

(which also lies in N2(S)) that maximize the number of newly covered nodes;
5 S ← S ∪ S̄;

Algorithm 2: Randomized CDS with 1-hop Local Information
Data: Graph G = (V,E)
Result: A connected dominating set S

1 s← an arbitrary node;
2 S ← {s};
3 while S is not a dominating set do
4 v ← a node in N1(S) that maximize the number of newly covered nodes;
5 u← a uniformly randomly chosen node from N1(v)−N1(S), i.e. the newly

covered nodes;
6 S ← S ∪ {u, v};

nodes uniformly at random. The maximization process only requires 1-hop neighborhood
information, and we do not worry about the random node we are about to choose. Not only
does this algorithm require less information, it runs much faster.

The approximation ratio for this algorithm is 2(H(∆) + 1).

2.4 Inspiration
Comparing the two algorithms using global information and local information, we find a
gap of factor 2 in the approximation ratio: 2(H(∆)) + O(1) for a local algorithm versus
H(∆) + O(1) for global algorithm. This looks reasonable: we are always better off when
offered more information. But is it really the case? Is this gap the price we paid for lack of
information essential, or the same approximation ratio can be achieved regardless of limited
information. Our answer is affirmative: with local information, we can still get H(∆) +O(1)
approximation. To be specific, an H(2∆ + 1) + 1 approximation.

3 Improved 2-Hop Local Information Algorithm

3.1 Algorithm
S is initially any node. Iteratively add nodes within N2(S) to S. When new nodes are added
to S, the 2-hop neighborhood of S expands, and we repeat this process. By the end of the
process, we have colored all the nodes. Initially, all nodes are white. When a node is added
to S, we color it black, and all its white neighbors gray. The selected black nodes will form
components, and these components may merge when additional nodes are selected.

At each step, we look within a 2-hop neighborhood of S, i.e., among the nodes that are
either gray or adjacent to gray nodes. Add the node v that maximizes 2wv + cv − 1, where cv

S. Khuller and S. Yang 11:5

u
v

Figure 1 Consider u and v as potential choices. For node u, cu = 1, as there is only adjacent
component. Note that wu = 4, it has four white neighbors, and itself is not white, hence 2·wu+cu−1 =
8. For node v, since it is white, there is no adjacent black component, so cv = 0. Note wv equals 3,
since both node v itself and two of its neighbors are white. So the value is 2·wv +cv −1 = 6+0−1 = 5.

Algorithm 3: CDS with 2-hop Local Information
Data: Graph G = (V,E)
Result: A connected dominating set S

1 s← an arbitrary node;
2 S ← {s};
3 V̄ ← N2(S);
4 while ∃v ∈ V̄ , s.t. 2wv + cv − 1 > 0 do
5 v ← argmaxv∈V̄ 2wv + cv − 1;
6 S ← S ∪ {v};
7 V̄ ← N1(N1(v));
8 for all nodes in V , update cv, wv;

is the number of different black components connected to v, and wv is the number of white
nodes in N1(v). Our knowledge of the graph is enriched when we add nodes to our solution.
The algorithm ends when there is no v such that 2wv + cv − 1 > 0. Note that if v was gray
before the selection, cv is guaranteed to be greater or equal to 1. If it was white, cv = 0.

To make everything clear, here is the pseudo code.

3.1.1 Correctness
First we prove that what we get is a dominating set. If not, then there exists a node that is
not dominated, i.e. a white node u. But 2wu + cu − 1 = 2wu + 0− 1 ≥ 2− 1 > 0, we would
have added this node to our solution, a contradiction.

Next, we prove the following theorem that this dominating set is indeed connected.

I Theorem 3. The solution returned by Algorithm 3 is connected.

We have the following observation:

I Observation 4. When a node is added to our solution, it is within 2-hops of some black
node.

It is true because otherwise, this node would be beyond our knowledge and would not be
considered at this step. This ensures the following corollary:

I Corollary 5. Each newly added node can be connected to existing components at the cost
of at most one additional node.

Proof of Theorem 3. We prove this by contradiction. Suppose the algorithm gives a domi-
nating set that is not connected, i.e. has more than one component. Exactly one of these

APPROX/RANDOM’16

11:6 Revisiting Connected Dominating Sets: An Optimal Local Algorithm?

components will contain the starting node, call it starting component. Consider the first time
when a node u outside the starting component joins our solution. According to Corollary 5,
there must exist another node v that can join u to the starting component. Since u is
disconnected from the starting component, v is not in our solution. But at the end of the
algorithm, 2 ·wv + cv − 1 ≥ 0 + 2− 1 > 0, which means that v can be added to our algorithm.
This gives a contradiction. J

So our algorithm will indeed give a connected dominating set.

3.2 Analysis
We are going to use a charging scheme to charge the cost of each selected node and bound
the total charge, which in turn bounds the number of nodes we select. Before that, we define
uncharged black node as:

I Definition 6. An uncharged black node is a node that was charged once when it turned
directly from white to black, and has not been charged afterwards.

For uncharged black nodes, the following lemma holds.

I Lemma 7. Each component contains exactly one uncharged black node.

The proof of this lemma will come later.
Recall in the algorithm, we select a node v that maximizes 2wv + cv − 1, where wv is

the number of white nodes in N1(v), and cv is the number of black components adjacent to
v. We charge 1 for selecting this node, and split this charge into 2wv + cv − 1 shares. For
every white neighbor u of v, it takes two shares, i.e. gets 2/(2wv + cv − 1) charge. For all but
one adjacent components, a share of charge is placed on the uncharged black node of this
component (assuming the correctness of Lemma 7). Notice v may be white or gray before the
selection. If it was white, it means that v is not adjacent to any black nodes, so cv = 0, and it
is charged one share, i.e. 1/(2wv + cv − 1). If it was gray, then nothing needs to be done. In
conclusion, if the node was white, the number of shares equals 2(wv−1)+0+1 = 2wv+cv−1;
if the node was black, the number of shares equals 2wv + (cv − 1) = 2wv + cv − 1. This
means we are not over or under counting charges. A visual explanation is in Figure 2.

We now prove the correctness of Lemma 7.

Proof of Lemma 7. An uncharged black node comes into existence when a white node is
chosen and added to our solution. According to the charging scheme, this node itself forms a
component, and it has exactly one uncharged black node.

Components are connected when a gray node is chosen which connects several components.
Since all but one component was charged, assuming all existing components have exactly
one uncharged black node, the resulting component also has exactly one uncharged black
node. A visual explanation is in Figure 3. J

Everything prepared, we state the main theorem and prove it by bounding the total
charge.

I Theorem 8 (Main Theorem for 2-hop Local Information Algorithm). The improved 2-hop
local information algorithm gives H(2∆ + 1) + 1 approximation.

Proof of Theorem 8. Suppose the optimal solution is OPT, |OPT| = k, with vertices vOPT1 ,
vOPT2 , . . . , vOPTk

. We partition all nodes into SOPT1 , SOPT2 , . . . , SOPTk
. Without loss of

S. Khuller and S. Yang 11:7

2
8

2
8

2
8

2
8

u
v

2
5

2
51

5

u
v

Figure 2 Consider the charging for u and v if they were selected at this step. For u, 2·wu+cu−1 =
8, each white neighbor of u gets 2 shares. For node v, 2 · wv + cv − 1 = 6 + 0 − 1 = 5. Each white
neighbor gets 2 shares, but since node v goes from white directly to black, it only gets one share,
and become an uncharged black node.

2
5

2
5

1
5

w v
u

Figure 3 Suppose the black nodes are already chosen, and we are adding node u to the solution.
There are two black components adjacent to u, so cu = 2. Thus 2wu + cu − 1 = 4 + 2 − 1 = 5.
Each white neighbor of u gets 2 shares. For the two components, all but one component will get
a share. This share is charged against the uncharged black node (node w for the left component
and node v for the right component) of the component, which may not be the node adjacent to u.
After charging, the two components are merged, and the merged component still has exactly one
uncharged black node, i.e. node v. Note there is no charge against node u.

generality, we reorder the nodes, and use i to denote vertex vOPTi
. So Si contains vertex i

and its neighbors. Ties are broken arbitrarily as long as i ∈ Si.
Without loss of generality, we assume that the charge in Si changes at each step. To

describe the total number of charges that nodes in Si can receive, we define pji as the following
value for Si in step j:

2 · wji + bji − 1

where wji is the number of white nodes in Si at step j, bji is the number of uncharged black
nodes at step j in Si. A symbol (e.g. wi, bi) with an upper script j, i.e. wji , b

j
i , c

j
i , denotes

the corresponding value at step j. p1
i = 2δ(i) + 1 (δ(i) is the degree of node i). A white

node can receive two charges (in fact all white nodes will receive two charges, except for
one, which is the only uncharged black node when the algorithm ends). Either it will receive
two charges when it first becomes gray, and never receive any more charge. Or it receives
one charge when it becomes a uncharged black node, and receives another one to become a
charged black node. We have the following lemma:

I Lemma 9. When the total charge inside Si changes, pji decreases by at least one.

APPROX/RANDOM’16

11:8 Revisiting Connected Dominating Sets: An Optimal Local Algorithm?

Proof of Lemma 9. Total charge changes when some node in Si receives charges. There can
be three cases: the node was white, gray, or black. If this node was white before charging,
either it is now gray, which means it receives two charges, or it is now black, meaning one
charge. And pji will decrease by 1 or 2. If it was gray, it must have been fully charged and
will not receive any more charge. If it was black, it must have been an uncharged black node
to receives one charge. In this case, pji also decrease one. For all three cases, either there is
no charge change in Si, or there is a decrease on pji of at least 1. J

We use pj instead of pji when there is no confusion. Notice bji ≤ c
j
i , since every uncharged

black node corresponds to a component, but the uncharged black node may not be in Si.
Consider each step. Suppose the selected node is v . Since node i is also a valid choice, we
have

2wjv + cjv − 1 ≥ 2wji + cji − 1 ≥ 2wji + bji − 1 = pj

The number of charges that Si receives at step j is pj − pj+1, so the total charge in this step
is:

pj − pj+1

2wjv + cjv − 1
≤ pj − pj+1

pj

This holds when 2wji + cji − 1 > 0, which is guaranteed to be true when pji > 0. The
inequality will break down when wjv = 0 and cjv = 1, i.e. when 2wji + cji − 1 = 0. To fix it, we
notice ∀Si,∃ki, s.t.pki

i > 0,∀t > ki, p
t
i ≤ 0. Thus we can take out the last term and bound it

separately. So the total charge until step ki (including step ki) is upper bounded by:

ki∑
j=1

pj − pj+1

pj
=

ki∑
j=1

pj∑
t=pj+1+1

1
pj

≤
ki−1∑
j=1

pj∑
t=pj+1+1

1
t

+

max{pki+1+1,1}−1∑
pki+1+1

1 +
pki∑

t=max{pki+1+1,1}

1
t

≤

ki−1∑
j=1

pj∑
t=pj+1+1

1
t

+
pki∑

t=max{pki+1+1,1}

1
t

+
max{pki+1+1,1}−1∑

pki+1+1

1

=
p1∑
j=1

1
j

+
max{pki+1+1,1}−1∑

pki+1+1

1

= H(p1) + (0− pki+1
i)

where H(n) =
∑n
i=1

1
i is harmonic sum. The last equality uses the fact that 2wv+cv−1 ≥ −1.

Using pki+1
i ≤ 0, pti ≥ −1, combined with our assumption that pji decreases at each step,

there is at most one more step before the whole algorithm stops. So the total amount of
charge is upper bounded by:

(pki+1
i − pki+2

i) · 1 ≤ (pki+1
i + 1)

Adding together, we have,

H(p1) + (0− pki+1
i) + (pki+1

i + 1) = H(p1) + 1

As p1 = 2wi + bi− 1 = 2wi− 1 ≤ 2∆ + 1, the total charge in Si is bounded by H(2∆ + 1) + 1.
Since there are |OPT | different Si, the total charge is bounded by |OPT |(H(2∆ + 1) + 1),
which is also the upper bound for the number of nodes we choose. J

S. Khuller and S. Yang 11:9

Algorithm 4: Improved Algorithm for CDS with 1-hop Local Information
Data: Graph G = (V,E)
Result: A connected dominating set S

1 s← an arbitrary node;
2 S ← {s};
3 while S is not a dominating set do
4 d← the largest degree in N1(S);
5 p← 1√

H(d)
;

6 v ← a node in N1(S) that maximizes the number of newly covered nodes;
7 S ← S ∪ {v};
8 if with probability p then
9 u← a node from the newly covered nodes uniformly at random;

10 S ← S ∪ {u};

4 Improved 1-Hop Local Information Algorithm

4.1 Intuition
Recall that the algorithm by Borgs et al. [2], which selects a random neighbor when a gray
node is chosen. It is too expensive to select a random node every time. If instead of picking a
random neighbor every time, we can pick it with some probability p. The total approximation
ratio will be (this is only an intuition, detailed proof is in Section 4.3) (1 + p)(1

p +H(∆))
that can be minimized when p = 1√

H(∆)
. This works given the assumption that ∆ is known

before hand, which is not always the case.

4.2 Algorithm
Instead of using the largest degree in the graph, every time when calculating p, we use the
largest degree in the explored graph. In another world, the largest degree in N1(S). Below
is the pseudocode.

4.3 Analysis
Like the previous analysis, we do charging, and partition all the nodes into S1, S2, . . . , SOPT
in the same manner. We bound the total charge inside Si, and the total number of nodes
chosen in our solution that corresponds to these charges.

I Theorem 10 (Main Theorem for 1-hop Local Information Algorithm). The improved 1-hop
local information algorithm gives H(∆) + 2

√
H(∆) + 1 approximation.

Proof of Theorem 10. When a node is selected in line 6 in Algorithm 4, we charge 1, and
the charge is uniformly divided among all the newly covered nodes. In line 9, another node
is chosen with probability p = 1√

H(d)
, where d is the largest degree we currently know. Thus

whenever Si receives charge c at some step, the expected number of nodes in our solution
increases by c(1 + p). Note that this p changes over time.

The charging for each Si is divided into two phases. The first phase ends when one of
the nodes in Si got chosen. In another word, we come to the second phase when vi is visible.
For the first phase, we model the charging process with the following problem.

APPROX/RANDOM’16

11:10 Revisiting Connected Dominating Sets: An Optimal Local Algorithm?

I Definition 11. For 1 ≤ j ≤ n, let Xj , Yj be independent Bernoulli random variables with
E[Xj] = pj ∈ [0, 1], E[Yj] = p′j ∈ [0, 1]. Let T be the random variable denoting the smallest
j such that XjYj = 1 (or n if XjYj = 0 for all j).

Here Xj is a random variable indicating whether a node in Si was chosen in the j-th step.
Yj indicate whether a random neighbor was chosen at this step. We will prove the following
theorem

I Theorem 12.

ET [
T∑
j=1

(Xj +XjYj)] ≤ 1 +
√
H(∆) .

Proof. We prove it by induction. If T = 0, it is trivial. Suppose it holds for T = t− 1, we
prove it holds for t

ET

 T∑
j=1

(Xj +XjYj)

=p1p

′
1(1 + 1) + p1(1− p′1)

1 + ET

 T∑
j=2

(Xj +XjYj) |X1 = 1, Y1 = 0

+ (1− p1)ET

 T∑
j=2

(Xj +XjYj) |X1 = 0

=2p1p

′
1 + p1(1− p′1) + p1(1− p′1)ET

 T∑
j=2

(Xj +XjYj)

+ (1− p1)ET

 T∑
j=2

(Xj +XjYj)

=p1 + p1p

′
1 + (1− p1p

′
1)ET

 T∑
j=2

(Xj +XjYj)

≤p1 + p1p

′
1 + (1− p1p

′
1)(1 +

√
H(∆))

=p1 + 1 + (1− p1p
′
1)
√
H(∆)

=1 +
√
H(∆) + p1(1− p′1

√
H(∆))

≤1 +
√
H(∆) + p1(1− 1

H(∆) ·
√
H(∆))

=1 +
√
H(∆) J

The last inequality uses the fact that p′j = 1√
H(δ(v))

for some node v, and δ(v) ≤ ∆. So

p′j ≥ 1
H(∆)

As for the second phase, whenever Si receives charge c, the expected number of nodes
increases by c(1 + p), p = 1√

H(d)
, where d is the largest degree we currently know. Since

di = δ(vi) is already known, we have d ≥ di. So p = 1√
H(d)

≤ 1√
H(di)

, which implies that
the increase in expected number of nodes in Si is bounded by c√

(H(di))

S. Khuller and S. Yang 11:11

The total charge is bounded by H(di). This can be done using the standard technique in
set cover. Thus the total number of nodes chosen in phase 2 is bounded by

H(di) (1 + p) ≤H(di)
(

1 + 1√
H(di)

)
= H(di) + H(di)√

H(di)
= H(di) +

√
H(di)

≤
√
H(∆) +H(∆)

Combining the charge from both phases, the expected number of nodes chosen in Si is
bounded by H(∆) + 2

√
H(∆) + 1. This directly means that expected the size of solution is

bounded by |OPT |·(H(∆)+2
√
H(∆)+1), implying H(∆)+2

√
H(∆)+1 approximation. J

5 Future work

With only local information, we get the same approximation ratio as when we have global
information, for connected dominating set problem. Is it also the case for other problems?
Or does the lack of information prove to be a huge obstacle for designing algorithms?

Our first algorithm requires information within 2-hops. When only 1-hop local information
is available, we cannot get the same result. Compared with previous result, the speed and
approximation ratio is improved, i.e. (H(∆) + 2

√
H(∆) + 1). But a gap still persists. Can

we do better? Or is this the price we pay for lack of information?

References

1 Konstantin Avrachenkov, Prithwish Basu, Giovanni Neglia, Bernardete Ribeiro, and Don
Towsley. Pay few, influence most: Online myopic network covering. In Computer Commu-
nications Workshops (INFOCOM WKSHPS), 2014 IEEE Conference on, pages 813–818.
IEEE, 2014.

2 Christian Borgs, Michael Brautbar, Jennifer Chayes, Sanjeev Khanna, and Brendan Lucier.
The power of local information in social networks. In Internet and Network Economics,
pages 406–419. Springer, 2012.

3 Ding-Zhu Du and Peng-Jun Wan. Connected dominating set: theory and applications,
volume 77. Springer Science & Business Media, 2012.

4 Devdatt Dubhashi, Alessandro Mei, Alessandro Panconesi, Jaikumar Radhakrishnan, and
Aravind Srinivasan. Fast distributed algorithms for (weakly) connected dominating sets
and linear-size skeletons. In Proceedings of the fourteenth annual ACM-SIAM symposium
on Discrete algorithms, pages 717–724. Society for Industrial and Applied Mathematics,
2003.

5 Uriel Feige. A threshold of ln n for approximating set cover. Journal of the ACM (JACM),
45(4):634–652, 1998.

6 Sudipto Guha and Samir Khuller. Approximation algorithms for connected dominating
sets. Algorithmica, 20(4):374–387, 1998.

7 Sudipto Guha and Samir Khuller. Improved methods for approximating node weighted
steiner trees and connected dominating sets. Information and computation, 150(1):57–74,
1999.

8 Samir Khuller, Manish Purohit, and Kanthi K Sarpatwar. Analyzing the optimal neigh-
borhood: algorithms for budgeted and partial connected dominating set problems. In
Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1702–1713. SIAM, 2014.

APPROX/RANDOM’16

11:12 Revisiting Connected Dominating Sets: An Optimal Local Algorithm?

9 Yuzhen Liu and Weifa Liang. Approximate coverage in wireless sensor networks. In Local
Computer Networks, 2005. 30th Anniversary. The IEEE Conference on, pages 68–75. IEEE,
2005.

10 Adish Singla, Eric Horvitz, Pushmeet Kohli, Ryen White, and Andreas Krause. Information
gathering in networks via active exploration. In Proceedings of the 24th International
Conference on Artificial Intelligence, pages 981–988. AAAI Press, 2015.

Online Energy Storage Management: an
Algorithmic Approach
Anthony Kim1, Vahid Liaghat2, Junjie Qin3, and Amin Saberi4

1 Stanford University, Stanford, CA, USA
tonyekim@stanford.edu

2 Stanford University, Stanford, CA, USA
vliaghat@stanford.edu

3 Stanford University, Stanford, CA, USA
jqin@stanford.edu

4 Stanford University, Stanford, CA, USA
saberi@stanford.edu

Abstract
Motivated by the importance of energy storage networks in smart grids, we provide an algorithmic
study of the online energy storage management problem in a network setting, the first to the
best of our knowledge. Given online power supplies, either entirely renewable supplies or those
in combination with traditional supplies, we want to route power from the supplies to demands
using storage units subject to a decay factor. Our goal is to maximize the total utility of satisfied
demands less the total production cost of routed power. We model renewable supplies with the
zero production cost function and traditional supplies with convex production cost functions.
For two natural storage unit settings, private and public, we design poly-logarithmic competitive
algorithms in the network flow model using the dual fitting and online primal dual methods
for convex problems. Furthermore, we show strong hardness results for more general settings
of the problem. Our techniques may be of independent interest in other routing and storage
management problems.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Online Algorithms, Competitive Analysis, Routing, Storage, Approxima-
tion Algorithms, Power Control

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2016.12

1 Introduction

With recent advancements in renewable energy generation technologies and smart grids, the
problem of energy storage management has become a central problem. While renewable
energy sources such as solar and wind are expected to supply a significant portion of electricity
demand (by some measure, 50% by 2050 [37, 19, 23]), they have rather intermittent and
variable output compared to the traditional fossil-fuel power generators. These uncertainties
can lead to supply-demand imbalance and higher reserve requirements and pose a significant
challenge to the renewable power supplies’ integration to the existing power grids and energy
distribution to consumers.

Energy storage provides a solution for maintaining supply-demand balance by providing
the flexibility of transporting energy across time, just as a power network provides transporta-
tion flexibility over a geographical area. Many storage technologies have been researched and
developed: batteries, flywheels, pumped-hydro, and compressed air energy storages [27, 17].

© Anthony Kim, Vahid Liaghat, Junjie Qin, and Amin Saberi;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016).
Editors: Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans; Article No. 12; pp. 12:1–12:23

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.12
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

12:2 Online Energy Storage Management: an Algorithmic Approach

These technologies can help integrate renewable energy sources, such as solar arrays and
wind farms, to the power grids as they become more robust, reliable and economically viable.

In recent years, the energy storage management problem has become a focus of active
research by the power systems community. The problem of single storage control has been
investigated extensively in various settings and several analytical solutions using stochastic
dynamic programming exist (e.g., [34, 39, 35, 21]). For the general case when multiple
storage units are available on a power network, analytical solutions with efficient algorithmic
implementation are more challenging to obtain. We mostly have heuristics such as Model
Predictive Control [41] and look-ahead policies [32] without any performance guarantees with
the exception of few cases (e.g., [36] for a long-term average cost minimization problem).

Motivated by the importance of energy storage networks within smart grids, we provide
an algorithmic study of an online problem of energy storage management with storage units
subject to decay. We consider both private and public storage unit settings and model the
unpredictable output of renewable sources as online power supplies and the predictable, say
hourly, variation of demand as either online or offline demands. We assume a network flow
model which is a good approximation of power flows in the power grids in certain high-voltage
operation regimes. To the best of our knowledge, there is no prior study of energy storage
networks in an online setting which provides provable guarantees.

Our work is closely related to the classical max-flow and multicommodity flow problems
and their generalized flow variants with decay (e.g., [40]) and online variants (e.g., [2, 3, 12])
in terms of the model and techniques. However, these problems have not been studied in
combination with storage units subject to a decay factor in an online setting. Our online
primal dual approach in the case of public storage units is similar to Buchbinder and Naor [12]
and Devanur and Jain [18] and more recent work on online covering and packing problems
with convex objectives in [14, 11, 4, 22]. Furthermore, our work is related to inventory
problems such as the multi-item lot sizing and joint replenishment problems in the planning
aspect. In these problems, one wants to balance the cost of surplus inventory maintenance
for future demand against the cost of frequent inventory replenishment; both offline and
online settings have been well-studied [26, 31, 7, 10].

Other Related Work

Competitive analysis has been applied in other power management problems. Lu et al. [30]
studied the problem of generation scheduling for micro-grids with renewable power sources.
Chau et al. [15] designed an online algorithm for single storage operation with uncertain
prices and renewable generation. Decay factors have been studied previously in different
contexts. Babaioff et al. [5] investigated a variant of the classical secretary problem with
discounts. More broadly speaking, deterioration, perishability and lifetime constraints of
goods have been studied in numerous mathematical models and optimization problems [33].
In addition to the storage challenges of renewable energy, the economic issues around the
energy market and pricing have been investigated by various communities (e.g., [24, 9]).

Our Contributions

In this paper, we develop algorithmic techniques for the Online Energy Storage Management
Problem (OESMP). In addition to bridging between the smart grid and TCS communities,
we believe our techniques can be of its own interest in analyzing other routing and storage
management problems.

Given a network represented by a directed graph G = (V,E) with n nodes and m

capacitated edges, we want to route power from online supplies to demands, online or offline,

A. Kim, V. Liaghat, J. Qin, and A. Saberi 12:3

over T time steps using storage units subject to decay factor γ. We consider two main
storage unit settings: 1) private storage units which are dedicated storage units co-located
with power supplies, and 2) public storage units which are networked units that can store
energy from any power supplies with a routing path. Demands have utility functions W and
supplies have either zero production cost in the case of renewable power supplies or convex
production cost, of the form Q(z) = azρ, in the case of traditional power supplies.

We assume a network flow model which is equivalent to the widely adopted “DC approxi-
mation” of AC power flow for power transmission network [38] when power flow routing is
possible. Power flow routing is possible if the flows on all edges can be directly controlled as
long as conservation and capacity constraints are satisfied. This holds naturally when the
network topology is a tree, which is the case for some bulk transmission networks [16] and is
approximately true for transmission networks in which congestion1 does not involve cycles
[13]. For transmission networks with general network topologies, this may be enabled by
Flexible AC Transmission system (FACTS) devices such as phase shifters or smart wires [25].
The flow model can also be used to approximate power flow on distribution networks when
line capacity constraints are considered (cf. simplified DistFlow model [6]). More details are
provided in Appendix A.

In OESMP, our goal is to route power from supplies to demands and maximize the total
utility of satisfied demands less the total production cost of routed power over a finite time
horizon of T . We design online deterministic algorithms with poly-logarithmic2 competitive
ratios against the optimal offline algorithm. For simplicity, we assume a single decay factor
γ for storage units and a single power exponent ρ for convex cost functions in the following
theorem statements. Furthermore, we assume the marginal utility W ′ is bounded between
wmax and wmin > 0 and let ∆w = wmax/wmin. Note n (m) is the number of nodes (edges).

In the private storage unit setting with online demands (Section 3), we consider only
renewable sources and maximize the utility of satisfied demands. First, we show that an
intuitive greedy algorithm achieves a constant competitive ratio if the utility functions are
linear and identical.

I Theorem 1. For OESMP with private storage units and online demands, there exists a
deterministic online algorithm with the constant competitive ratio of 3 in the case of uniform
utilities.

We analyze the greedy algorithm using a dual-fitting approach. We show that the
congestion on links and storage units leads to a natural dual construction corresponding to
the flow in each time step. However, the decay factor introduces strong dependency between
different time steps which requires a global evaluation of the dual vectors across the time.
We next extend our result to obtain an algorithm with a logarithmic competitive ratio for
the private storage unit setting with concave utility functions.

I Theorem 2. For OESMP with private storage units and online demands, there exists a
deterministic online algorithm with the competitive ratio of O(log ∆w) in the case of concave
utilities.

1 In power systems, thermal constraints limit the amount of power that can be routed through a
transmission line. If the maximum is reached for a line, we say the line is congested. Similarly, we say a
path of multiple consecutive lines is congested if at least one of the lines on the path is congested.

2 In this paper, we say a factor is poly-logarithmic if it is poly-logarithmic with respect to system
parameters n, ∆w and γ; and not necessarily with respect to the input size.

APPROX/RANDOM’16

12:4 Online Energy Storage Management: an Algorithmic Approach

In the public storage unit setting (Section 4), we consider both traditional and renewable
sources and the storage units that can be used by any sources. We show that online demands
are hard to cope with:

I Theorem 3. For OESMP with public storage units and online demands, the competitive
ratio of any online algorithm is Ω(n) even in the case of uniform utilities.

Therefore, for the public storage unit setting, we focus on the offline demand variant.
We apply the online primal dual method to a convex program formulation of the problem
using Fenchel duality. Our analysis requires connections between the convex production cost
functions and their convex conjugates and utilizes similar critical ideas to those recently
developed in [18, 14, 11, 4, 22].

We show poly-logarithmic competitive online algorithms when demands are offline.
Inspired by the daily power markets, we assume that T is a small constant3.

I Theorem 4. For OESMP with public storage units and offline demands, there exists a
deterministic online algorithm with the competitive ratio of O(logn+ log γ−T + log ∆w) in
the case of concave utilities.

I Theorem 5. For OESMP with public storage units and offline demands, there exists a deter-
ministic online algorithm with the competitive ratio of O

(
ρρ/(ρ−1)(logn+ log γ−T + log ∆w)

)
for ρ > ρ0 in the case of concave utilities and convex costs of the form Q(z) = azρ, where ρ0
is some constant arbitrarily close to 1.4

Finally for the general network with cycles where the network flow model does not apply
directly, we show a strong lower bound (Appendix B):

I Theorem 6. For OESMP with public storage units in the general power network model
and offline demands, the competitive ratio of any online algorithm is Ω(n1/5) even in the
case of uniform utilities. This holds even if all the links are physically identical.

2 Notations and Preliminaries

We define the Online Energy Storage Management Problem (OESMP) as follows.

Storage Management Problem

We consider a power transmission network with nodes and edges over a finite time horizon
T .5 The network is represented by a directed graph G = (V,E) with n nodes and m edges.6
Following the DC-approximation framework for high-voltage regimes, we have edge capacities
C : E → R+ modeling the thermal constraints on transmission lines. A node can be a supply
or demand node at different times and some nodes have storage units.

We denote the set of vertices with nonzero power supply (demand) at time step i by Si
(Di). Supply sets Si are given online. Each supply node s has a convex production cost

3 For many markets, T = 24 and γ ∈ [0.9, 1]. Hence, note log γ−T < 1.1 in practice.
4 We can remove the condition ρ > ρ0 completely and obtain a poly-logarithmic competitive ratio in

terms of m, the number of edges, instead of n. The condition arises from our technical analysis and the
constant ρ0 is accompanied by a correspondingly large constant in the big O notation.

5 For our applications, T is a small constant, e.g., T = 24 for 24 hours.
6 For a directed edge (u, v), we assume power can only move from u to v on this edge. Forcing direction
on the edges makes the model only stronger since a bidirectional link between nodes u and v can be
simulated in this model by putting two directed edges (u, v) and (v, u).

A. Kim, V. Liaghat, J. Qin, and A. Saberi 12:5

function Qis(z) for generating z units of power. If s is a renewable power supply, then it has
zero production cost up to the generation capacity at that time. If s is a traditional power
supply, then Qs(z) = asz

ρs for some constants as and ρs, omitting the superscript i.7 We
would need traditional power generators when the renewable ones alone are not enough.

Demand sets Di may be given online or offline. We assume that Si and Di are disjoint
after locally satisfying the demand when there also exists some supply at the same node.
Each demand node d has a concave utility function Wd (positive and non-decreasing) such
that it would receive Wd(y) units of utility for y units of power received. Since Wd is concave,
we have (weakly) diminishing returns on each additional unit of power routed. We assume
the slope of the utility function is bounded, i.e., dWd(y)

dy ∈ [wmin, wmax] where wmin > 0 for
i ∈ [T] and d ∈ Di. Let ∆w := wmax/wmin.8

We denote the set of nodes with storage units by R. Each storage node has a maximum
capacity, a decay factor, charging/discharging inefficiency factors, and ramping constraints.
A storage node r can store at most Lr units of power across a time step and maintains γr
fraction of power stored in the process. When charging or discharging, we are subject to
inefficiency factors and ramping constraints in that we lose some fraction of the power in
these operations and are limited to some maximum amount of charge/discharge rate per time
step. Without loss of generality, we focus on the maximum capacity Lr and decay factor γr
as we can treat the inefficiency factors and ramping constraints similarly.9

Our goal is to route power from supplies to demands and maximize the total utility of
satisfied demands less the total production cost of routed power. We model power flows
using the standard network flow model, which is equivalent to the widely adopted DC
approximation to AC power flow when power routing is possible (see Appendix A).

For analysis, we may represent Si and Di with additional nodes and edges. For example,
for a renewable supply s with Qs(z) = 0 for z ≤ τ and ∞ otherwise, we create a new node s′
with zero production cost and connect it to s with an edge of capacity τ . Similarly, for a
demand d with, say, a linear utility function up until a threshold τ , we create d′ and connect
it to d with an edge of capacity τ . We treat supplies and demands on the same node across
different time steps separately as independent supplies and demands.

Private and Public Storage Units

We consider two main storage unit settings. In the private storage setting, we have dedicated
storage units co-located with power supplies such that each supply node can use only its
own storage unit, if it has one10. In this setting, only renewable sources are considered. In
the public storage setting, we have networked storage units that can store energy from any

7 For many real-life applications, we model Qs(z) = asz
2 + bsz for as, bs > 0 when considering just the

traditional power generators.
8 In real-life applications, ∆w describes the difference between the marginal cost of generation for
traditional sources over time, and log ∆w is often a small constant in the scope of power management
problems.

9 Suppose a storage node r is subject to charging/discharging inefficiency factors (γ+/γ−) and ramping
constraints (τ+/τ−). In our model, we would add a new node r′ and the following edges: an edge (r, r′)
with capacity τ+ and decay factor γ+, and an edge (r′, r) with capacity τ− and decay factor γ−. Node
r becomes an ordinary connection node and node r′ becomes a storage node with the same operation
characteristics as the original r.

10This corresponds to the important practical case where the storage is co-located with some renewable
generation source and is used to smooth the output of random renewable generation [8]. Given the
physical size of the inverter and other equipments in such settings, it is natural to assume that power
always flows from the generation sites (with both renewable generation and storage) to the grid but not
in the other direction.

APPROX/RANDOM’16

12:6 Online Energy Storage Management: an Algorithmic Approach

power supplies (including traditional sources) with a routing path. Consequently, a unit of
power can be stored on multiple storage units over time.

Competitive Analysis

In the online paradigm, supply set Si arrives at each time step i. Demand set Di may be
given online or offline depending on the storage unit setting. Upon the arrival of Si, we need
to dispatch power from supplies in Si and storage units to demands in Di, and possibly to
other storage units. To evaluate the performance of online algorithms, we use the standard
competitive analysis framework. An online algorithm is c-competitive if its achieved objective
value ALG is at least 1

c fraction of the optimal offline algorithm’s value OPT (which knows
the entire input in advance) up to an additive constant in all problem instances, i.e., there
exist c and a constant c0 such that ALG ≥ 1

cOPT− c0 .

3 Private Storage Units

In this section, we consider the private storage setting in which the storage units used by
a supply node are located at that same node. Our goal is to maximize the total utility of
satisfied demands using only the renewable power supplies. As discussed in Section 2, we
assume, without loss of generality, that the renewable supplies Si have unbounded zero-cost
power generation.

We show strong competitive guarantees for the private storage setting given that both
the supply nodes Si and the demand nodes Di are arriving online. In Section 3.1, we analyze
an intuitive greedy algorithm in the simplified case with uniform utility functions where all
demands have the same linear utility function W (y) = y up to the limit y = 1, i.e., each
demand requires at most 1 unit of power. We show that the greedy algorithm has a constant
competitive ratio against the optimal offline algorithm which knows all the supplies and
demands in advance.

In contrast to the uniform utility case, we can show that the greedy algorithm is not
competitive when the utility functions are arbitrary concave functions. In Section 3.2, we
show that we can still design a competitive algorithm for the concave utility case using the
constant competitive greedy algorithm as a black-box. More precisely, we show that an
algorithm with the competitive ratio c for the uniform utility case can be modified to obtain
an algorithm with the competitive ratio of O(c · log ∆w) for the general concave utility case.

3.1 Uniform Utilities
We consider the following primal-dual linear program formulation of the problem with private
storage units. Assume that every supply node s ∈ Si is connected to a private storage unit
rs. For time step i and demand node d ∈ Di, let P+(i, d) denote the set of all paths ending
at d and starting from a supply node or a storage node. For time step i and storage node
r, let p+(i, r) denote the path ending at r and starting from the supply s which owns the
storage node. Let P−(i, r) denote the set of paths from r to a demand node in Di. Note
that since the storage units are co-located with supplies, the paths p+(i, r) are edge-disjoint.
We define P+

D =
⋃
i,d∈Di P

+(i, d), P+ = P+
D ∪

⋃
i,r{p+(i, r)}, and P− =

⋃
i,r P

−(i, r).
For a path p, the variable xp denotes the amount of flow passing through the path.

Furthermore, for a path p ∈ P+ the parameters i(p) and v(p) denote the time step in which
p lies and the node at the beginning of p. For a storage node r and a time step i, yir denotes
the amount of power stored in the node r at the end of time step i.

A. Kim, V. Liaghat, J. Qin, and A. Saberi 12:7

The first set of primal constraints ensure that the total flow routing through an edge does
not violate the edge capacity. The second set of constraints bounds the amount of energy in
storage units. The last set of primal constraints ensures the feasibility of flow over time: we
may assume that a storage node sends the stored energy to the next time step and receives
energy from the previous time step. Intuitively, the last constraint implies that the total
outgoing flow cannot be more than the total incoming flow.

max
∑
p∈P+

D

xp (P)

∀e
∑
p3e

xp ≤ Ce (αe)

∀i, r yir ≤ Lr (βir)

∀i, r yir +
∑

p∈P−(i,r)

xp ≤ γryi−1
r + xp+(i,r) (τ ir)

y0
r = 0; xp, y

i
r ≥ 0

min
∑
e

Ceαe +
∑
i,r

Lrβ
i
r (D)

∀p ∈ P+
D

∑
e∈p

αe + τ
i(p)
v(p) ≥ 1 (D1)

∀i, r
∑

e∈p+(i,r)

αe ≥ τ ir (D2)

∀i, r βir + τ ir ≥ γrτ i+1
r (D3)

α, β, τ ≥ 0;∀v ∈ Si : τi,v = 0

Greedy Algorithm

Upon the arrival of Si and Di, we route the maximum power flow from Si and the storage
units to the demand nodes in Di. We store the residual power generated at a supply in its
private storage unit, up to the storage capacity and edge capacities on the path from the
supply to the storage. Recall that based on the simplifications in our model, there can be
two edges on the path from a supply to its dedicated storage unit.

Dual Construction

We now use a dual-fitting argument to show that the greedy algorithm is indeed constant
competitive. For a time step i, let P+(i) :=

⋃
d∈Di P

+(i, d). After the run of the greedy
algorithm, consider the flow paths x̂ and the storage amounts ŷ chosen by the greedy
algorithm, corresponding to the primal solution. Let x̂i denote the selected flow at time step
i. Furthermore, let x̂(Di) denote the selected flow that satisfies the demands in Di. We note
that by definition, x̂(Di) is a sub-flow of x̂i. In what follows, we say a flow f on a graph
separates a vertex u from v, if f cannot be augmented by a u–v flow in the residual network.
We now describe the construction of our dual solution. We then show the feasibility of the
dual solution and the bound on its objective.
DC Part I. Let Riφ denote the set of storage nodes that are not separated from Di by x̂(Di).

We choose a minimum cut separating Si ∪ (R \ Riφ) from Di. For every edge e in this
cut, we set αe = 1.

DC Part II. We repeat the following process for every j by starting from j = T and ending at
j = 1: For every r ∈ Rjφ, set τ jr = 1. Let i denote the last step before j for which ŷir = Lr
in the greedy solution. If no such i exists, set i = 0. For k = {j− 1, j− 2, . . . , i+ 2, i+ 1},
set the dual variable τkr = γrτ

k+1
r . Furthermore, if i > 0 set βir = γrτ

i+1
r . We note that

in this process, we may reassign values multiple times to τ ir for some i and r11. Hence, it
is important to iterate j from T to 1.

11 In fact, the assigned values can only be non-decreasing.

APPROX/RANDOM’16

12:8 Online Energy Storage Management: an Algorithmic Approach

DC Part III. For every i ∈ [T] and storage node r, if the path p+(i, r) is congested in x̂i, we
choose a congested edge e ∈ p+(i, r). If αe is not set in Part I, we set αe = τ ir.

We now need to prove the feasibility of the constructed dual vector. See Appendix C for
proofs.

I Lemma 7. The dual vector 〈α, β, τ〉 constructed by DC-Parts I-III is feasible.

It now remains to prove a bound on the dual objective. Let GA denote the total primal
value of the greedy solution.

Proof of Theorem 1. We analyze the cost we incur at every part of the dual construction
separately. We show that the dual cost in each part can be upper bounded by GA.

For a flow F , let |F | denote the amount of flow routed by F . Recall that for a flow
F on a graph, if there is no augmenting path from a set U to a set V (i.e., F separates
U from V), then the size of the minimum cut separating U and V is upper bounded by
|F |. Now consider x̂(Di) for some i. By definition, R \Riφ is separated by x̂(Di) from Di.
Furthermore, since the greedy algorithm chooses a maximum flow, we know that x̂i(Di)
cannot be augmented by a path from a supply node in Si to a demand node. Therefore x̂(Di)
is separating Si ∪ (R \Riφ) from Di. The total dual cost of the minimum cut we choose in
Part I for some i is upper bounded by |x̂i(Di)|. Hence, the total cost we incur in Part I is
bounded by

∑
i |x̂i(Di)| ≤ GA.

The cost we incur in Part II is
∑
i,r Lrβ

i
r. The variable βir is positive only if r is full at

time i, i.e., ŷir = Lr. By Lemma 14, we know that the stored power will be used in at most
logγr(β

i
r) steps. Therefore the primal gain from the power stored at time step i in r is at

least γlogγr (βir)
r ŷir = Lrβ

i
r. Furthermore, suppose for two time steps i2 > i1, we have that

βi1r > 0 and βi2r > 0. By Part II of the construction, we know that r should become empty
for some time step j ∈ {i1 + 1, . . . , i2 − 1}. Thus the power stored in r in time steps i for
which βir > 0, are disjoint. Therefore now we can charge the cost

∑
i,r Lrβ

i
r to the utility we

gain from dispatching power stored in the storage units at time steps in which βir > 0.
The cost we incur in Part III can be upper bounded as follows. Suppose τ ir > 0 for some

i and r. The cost we incur is τ irCe for some congested edge e ∈ p+(i, r). We note that the
flow passing through e is either satisfying a demand in Di, or it is being stored in r. In the
former, the utility we gain is 1 per unit of power. In the latter, by Lemma 14, we gain utility
at rate at least γlogγr (τ ir)

r = τ ir. Therefore our primal gain from the flow routed on e is at
least Ceτ ir. Now since the storage nodes are co-located, all the paths p+(i, r) are disjoint.
Therefore we can bound the total cost incurred in Part III by GA.

Finally summing over the three parts, we have that the dual objective is at most 3 GA.
The theorem follows from Lemma 7 and weak duality. J

3.2 Concave Utilities
In this section, we demonstrate a simple reduction from the variant with concave utility
functions to the variant with uniform linear functions losing only a logarithmic factor. We
then use the algorithm of Theorem 1 as a blackbox to solve the case of concave utilities and
obtain the competitive ratio of O(log ∆w).

Proof Sketch of Theorem 2. The main idea is to reduce an instance of the problem with
concave utility functions to O(log ∆w) instances of the problem with uniform utility functions.
Since Wd

′(x) ∈ [wmin, wmax] for each demand node d, we can construct O(log ∆w) instances

A. Kim, V. Liaghat, J. Qin, and A. Saberi 12:9

where each Wd
′ is approximately constant within each instance. Then, we solve each instance

independently using a constant competitive algorithm. Due to the space constraints, we
defer the complete proof to Appendix C. J

4 Public Storage Units

We consider the general setting with public storage units on the network. A supply node can
access any storage unit as long as there is a path, and, consequently, a unit of power can be
stored on multiple storage units over time. As Theorem 3 shows online demands are hard to
satisfy (see Appendix D for proof), we focus on the offline demands in this section. Note
offline demands naturally model scenarios where consumer demands’, say, hourly variation is
predictable.

We investigate two specific cases: the case of renewable power generation in Section 4.1 and
the case of combined traditional and renewable power generation in Section 4.2. In the first
case, we want to route power from renewable supplies to demands assuming the production
cost is zero. In the second case, we still route power but the supplies are equipped with
both traditional and renewable power generators and have time-varying convex production
costs. Supplies are arriving online while demands are given offline and have concave utility
functions.

We design poly-logarithmic competitive online algorithms using the online primal dual
method on convex programming formulations. Our approach is closely related to Buchbinder
and Naor [12] and Devanur and Jain [18] and more recent work on online covering and
packing problems with convex objectives in [14, 11, 4, 22]. For analysis, we use the following
bicriteria notion of competitive algorithms: An algorithm is (c1, c2)-competitive if it routes
the total flow of amount at least 1

c1
of the optimal and the load on each edge is at most

c2, where the load of an edge is the ratio of the total flow going through it divided by its
capacity. Ideally, the total bandwidth allocated for flows should not exceed the capacity.

Time-Expanded Graph

We use time-expanded graph G∗ = (V ∗, E∗) constructed as follows. For i = 1, . . . , T , we
create a time-copy of G, Gi = (V i, Ei). To represent storage, we create storage edges between
time-copies of G; for each node v and time step i, we create an edge of capacity Lv from
vi to vi+1. Let S∗ =

⋃
i S

i and D∗ =
⋃
iD

i. Instead of creating a node for each individual
demand as in Section 2, we add a single node d∗ as the designated super-demand. For each
i ∈ [T] and demand d ∈ Di, we add an edge of infinite capacity from di to d∗; these are
demand edges and we use D∗ to denote both the demand edges and corresponding demands.

For s ∈ S∗ and d ∈ D∗, let P (s, d) be the set of simple paths in G∗ from supply s to
demand d. Let P (s, ·) =

⋃
d P (s, d), P (·, d) =

⋃
s P (s, d), and P be the set of all simple

paths from supplies to demands. For a routing path p, we denote the corresponding supply
and demand nodes by s(p) and d(p), respectively; we simply use s and d if p is clear from the
context. For simplicity, we assume a single decay factor γ for all storage units. We define:

γ(p) := overall decay due to storage edges on p;
γ(p, e) := overall decay due to storage edges on p preceeding edge e ∈ p.

In our case, γ(p) = γ(number of storage edges on p) and γ(p, e) = γ(number of storage edges on p before e).
Let lmax = nT be the maximum routing path length, and γmin = γT be the greatest overall
decay.

APPROX/RANDOM’16

12:10 Online Energy Storage Management: an Algorithmic Approach

Algorithm 1 Online Algorithm for Concave Utilities
1: Let yd =

∑
p∈P (·,d) γ(p)xp,∀d. . y determined in terms of x

2: for i = 1, . . . , T do
3: for s ∈ Si in arbitrary order do
4: while P ′ = {p ∈ P (s, ·) :

∑
e∈p γ(p, e)αe < γ(p)Wd(p)

′(λd(p))} is not empty do
5: Update continuously:
6: p = arg maxp∈P ′ γ(p)Wd(p)

′(λd(p))
7: dxp = 1 . Increase xp at a uniform rate
8: dλd(p)

dxp
= γ(p)

9: dαe
dxp

= c
(
γ(p,e)αe
Ce

+ γ(p)Wd(p)
′(λd(p))

lmaxCe

)
,∀e ∈ p . c ≥ 1 is some parameter

10: end while
11: end for
12: end for

4.1 Concave Utilities
In this section, we consider only renewable power generation with zero production cost and
route power from supplies to demands. We model the demand nodes’ utility functions with
monotonically nondecreasing concave functions Wd such that demand node d gains the utility
of Wd(f) for receiving f units of flow. There is diminishing returns on each additional flow
routed.

We consider the following primal-dual convex program formulation. For each path p, xp
denotes the amount of flow passing through the path. For demand d, yd denotes the total
amount of flow routed to the demand and is set to equal yd =

∑
p∈P (·,d) γ(p)xp. Wd is a

monotonically nondecreasing concave function and we define Ŵd(λ) := Wd(λ)− λWd
′(λ).

max
∑
d

Wd(yd)

∀e
∑
p3e

γ(p, e)xp ≤ Ce

∀d ∈ D∗ yd ≤
∑

p∈P (·,d)

γ(p)xp

x, y ≥ 0

min
∑
e

Ceαe +
∑
d

Ŵd(λd)

∀p ∈ P
∑
e∈p

γ(p, e)αe ≥ γ(p)Wd(p)
′(λd(p))

α, β, λ ≥ 0

We first prove Algorithm 1 is bicriteria competitive.

I Lemma 8. For any c ≥ 1, Algorithm 1 is
(

2c+ 1, O(logn+log γ−T+log ∆w)
c

)
-competitive.

Proof. We show that Algorithm 1 returns a primal solution that violates the edge capacity
constraints by some factor and a feasible dual solution. From the ratio of the primal and
dual objective values, P and D, we obtain the stated competitive ratio.

For a supply s, P ′ in Line 4 is nonempty if there is a violated dual constraint. As
long as P ′ is nonempty, we continuously increase xp and dual variables correspondingly.
Since all variables increase monotonically and the first derivatives Wd

′ are monotonically
non-increasing, violated dual constraints for p ∈ P (s, ·) eventually become satisfied and no
previously satisfied constraints become violated. Hence, the while loop terminates with no
violated dual constraints for p ∈ P (s, ·), and the algorithm terminates with a feasible dual
solution.

A. Kim, V. Liaghat, J. Qin, and A. Saberi 12:11

The lemma follows from the following claims (proved in Appendix D) and the weak
duality:

I Claim 9. The load on each edge is at most O(logn+log γ−T+log ∆w)
c in the primal solution.

I Claim 10. At termination, D ≤ (2c+ 1) · P.
J

We can now prove Theorem 4. For checking the condition and choosing path p in Lines
4–6 in Algorithm 1, we can use a backward variant of Dijkstra’s algorithm in polynomial
time (details in Appendix D):

Proof of Theorem 4. We choose c = c′ · (logn+ log γ−T + log ∆w) for the constant c′ that
results from the analysis in Lemma 8. Then, we get an

(
O(logn+ log γ−T + log ∆w), 1

)
-

competitive algorithm. J

4.2 Concave Utilities and Convex Costs
We consider the more general case where each supply is equipped with both renewable and
traditional power generators. Each supply node s individually manages its own renewable
and traditional power generation and only pays cost for using the traditional generators. It
generates power according to the production cost function Qs(z) = asz

ρs which changes from
time to time depending on the renewable power generation. The production cost functions
are given online.

We consider the following primal-dual convex program formulation. For each path p, xp
denotes the amount of flow passing through the path. For demand d, yd denotes the total
amount of flow routed to the demand and is set to equal yd =

∑
p∈P (·,d) γ(p)xp. For supply

s, zs denotes the total power generated using the traditional power generators and is set
to equal zs =

∑
p∈P (s,·) xp. We define Ŵd(λ) := Wd(λ) − λWd

′(λ) and Q∗ is the convex
conjugate of Q defined to be Q∗(µ) := supz≥0{µz −Q(z)}.

max
∑
d

Wd(yd)−
∑
s

Qs(zs)

∀e ∈ E
∑
p3e

γ(p, e)xp ≤ Ce

∀d ∈ D∗
∑

p∈P (·,d)

γ(p)xp ≥ yd

∀s ∈ S∗
∑

p∈P (s,·)

xp ≤ zs

x, y, z ≥ 0

min
∑
e

Ceαe +
∑
d

Ŵd(λd) +
∑
s

Q∗s(µs)

∀p ∈ P
∑
e∈p

γ(p, e)αe + µs(p) ≥ γ(p)Wd(p)
′(λd(p))

α, λ, µ ≥ 0

We show that Algorithm 2, given in Appendix D, is poly-logarithmic competitive. For
concreteness, we prove Theorem 5 with ρ0 = 1.44. The constant ρ0 can be replaced with a
smaller constant arbitrarily close 1 and with a correspondingly large multiplicative constant
in the competitive ratio. We first prove the following lemma:

I Lemma 11. For any c ≥ 1, Algorithm 2 (in Appendix D) is(
(2c+ 1)ρρ/(ρ−1) + 1, O(logn+log γ−T+log ∆w)

c

)
-competitive where ρ = maxsρs > 1.44.

APPROX/RANDOM’16

12:12 Online Energy Storage Management: an Algorithmic Approach

Proof. The proof is similar to that of Lemma 8. We need to prove claims about the load and
competitive ratio. Analyzing the competitive ratio is more difficult because of the convex
cost functions and requires a different approach.

The lemma follows from the following claims (with complete proofs in Appendix D) and
the weak duality.

I Claim 12. The load on each edge is at most O(logn+log γ−T+log ∆w)
c in the primal solution.

I Claim 13. At termination, D ≤
(
(2c+ 1)ρρ/(ρ−1) + 1

)
· P.

Proof Sketch of Claim 13. Let D0 =
∑
e Ceαe +

∑
sQ
∗
s(µs); so, D = D0 +

∑
d Ŵd(λd).

Assume D0 ≤ (2c + 1)ρρ/(ρ−1)P. Since Ŵd(z) ≤ Wd(z),∀z ≥ 0, it would follow that∑
d Ŵd(λd) ≤

∑
dWd(yd) ≤ P. Then, D =

∑
d Ŵd(λd) + D0 ≤

(
(2c+ 1)ρρ/(ρ−1) + 1

)
P,

and the claim would follow.
To show D0 ≤ (2c + 1)ρρ/(ρ−1)P, we prove dP ≥ 1

σdD0 for σ = (2c + 1)ρρ/(ρ−1) and
ρ > 1.44 when we route power. This reduces to showing(

1− 2c
σ

)
µs −Qs′(zs) ≥

1
σ

(Q∗s)′(µs)
dµs
dzs

,

which is satisfied by our choice of updates to primal and dual variables. For a ρ0 constant
smaller than 1.44, we would need to have a multiplicative factor greater than 2c+ 1. Due to
the space constraints, we defer the complete proof to Appendix D. J

J

We can now prove Theorem 5. For the path construction routine in Algorithm 2, we find
the routing paths in the same manner as in Section 4.1:

Proof of Theorem 5. Let ρ = maxsρs. We choose c = c′ · (logn+ log γ−T + log ∆w) for the
constant c′ that results from the analysis in Lemma 11. Then, we get an(
O
(
ρρ/(ρ−1)(logn+ log γ−T + log ∆w)

)
, 1
)
-competitive algorithm. J

References
1 Rajeev Alur, Sampath Kannan, Kevin Tian, and Yifei Yuan. On the complexity of shortest

path problems on discounted cost graphs. In Proceedings of the 7th International Confer-
ence on Language and Automata Theory and Applications, LATA’13, pages 44–55, Berlin,
Heidelberg, 2013. Springer Berlin Heidelberg. doi:10.1007/978-3-642-37064-9_6.

2 James Aspnes, Yossi Azar, Amos Fiat, Serge Plotkin, and Orli Waarts. On-line routing
of virtual circuits with applications to load balancing and machine scheduling. J. ACM,
44(3):486–504, May 1997. doi:10.1145/258128.258201.

3 B. Awerbuch, Y. Azar, and S. Plotkin. Throughput-competitive online routing. In Proceed-
ings of the 34th Annual IEEE Symposium on Foundations of Computer Science, FOCS’93,
pages 32–40, 1993.

4 Yossi Azar, Ilan Reuven Cohen, and Debmalya Panigrahi. Online covering with convex
objectives and applications. arXiv:1412.3507, Dec 2014. URL: http://arxiv.org/abs/
1412.3507.

5 Moshe Babaioff, Michael Dinitz, Anupam Gupta, Nicole Immorlica, and Kunal Talwar.
Secretary problems: Weights and discounts. In Proceedings of the Twentieth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA’09, pages 1245–1254, Philadelphia, PA,
USA, 2009. Society for Industrial and Applied Mathematics. URL: http://dl.acm.org/
citation.cfm?id=1496770.1496905.

http://dx.doi.org/10.1007/978-3-642-37064-9_6
http://dx.doi.org/10.1145/258128.258201
http://arxiv.org/abs/1412.3507
http://arxiv.org/abs/1412.3507
http://dl.acm.org/citation.cfm?id=1496770.1496905
http://dl.acm.org/citation.cfm?id=1496770.1496905

A. Kim, V. Liaghat, J. Qin, and A. Saberi 12:13

6 M.E. Baran and F.F. Wu. Network reconfiguration in distribution systems for loss reduction
and load balancing. IEEE Transactions on Power Delivery, 4(2):1401–1407, apr 1989.
doi:10.1109/61.25627.

7 Marcin Bienkowski, Jaroslaw Byrka, Marek Chrobak, Lukasz Jeż, Dorian Nogneng, and Jiří
Sgall. Better approximation bounds for the joint replenishment problem. In Proceedings of
the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’14, pages
42–54. SIAM, 2014. URL: http://dl.acm.org/citation.cfm?id=2634074.2634078.

8 E. Bitar, R. Rajagopal, P. Khargonekar, and K. Poolla. The Role of Co-Located Storage for
Wind Power Producers in Conventional Electricity Markets. In Proc. of American Control
Conference (ACC), pages 3886–3891, 2011.

9 E. Bitar and Yunjian Xu. On incentive compatibility of deadline differentiated pricing for
deferrable demand. In Decision and Control (CDC), 2013 IEEE 52nd Annual Conference
on, pages 5620–5627, Dec 2013. doi:10.1109/CDC.2013.6760775.

10 N. Buchbinder, T. Kimbrelt, R. Levi, K. Makarychev, and M. Sviridenko. Online make-to-
order joint replenishment model: Primal dual competitive algorithms. In Proceedings of
the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’08, pages
952–961, Philadelphia, PA, USA, 2008. Society for Industrial and Applied Mathematics.
URL: http://dl.acm.org/citation.cfm?id=1347082.1347186.

11 Niv Buchbinder, Shahar Chen, Anupam Gupta, Viswanath Nagarajan, and Joseph (Seffi)
Naor. Online convex covering and packing problems. arXiv:1412.8347, Dec 2014. URL:
http://arxiv.org/abs/1412.8347.

12 Niv Buchbinder and Joseph (Seffi) Naor. Improved bounds for online routing and pack-
ing via a primal-dual approach. In Proceedings of the 47th Annual IEEE Symposium on
Foundations of Computer Science, FOCS’06, pages 293–304, Washington, DC, USA, 2006.
IEEE Computer Society. doi:10.1109/FOCS.2006.39.

13 California Independent System Operator. Annual Report on Market Issues and Per-
formance, 2014. http://www.caiso.com/Documents/2014AnnualReport_MarketIssues_
Performance.pdf.

14 T-H. Hubert Chan, Zhiyi Huang, and Ning Kang. Online convex covering and packing
problems. arXiv:1502.01802, Apr 2015. URL: http://arxiv.org/abs/1502.01802.

15 Chi-Kin Chau, Guanglin Zhang, and Minghua Chen. Cost Minimizing Online Algorithms
for Energy Storage Management with Worst-case Guarantee. IEEE Transactions on Smart
Grid, nov 2015. URL: http://arxiv.org/abs/1511.07559, arXiv:1511.07559.

16 In-Koo Cho. Competitive equilibrium in a radial network. RAND Journal of Economics,
pages 438–460, 2003.

17 Paul Denholm, Erik Ela, Brendan Kirby, and Michael Milligan. The role of energy storage
with renewable electricity generation. Technical Report NREL/TP-6A2-47187, National
Renewable Energy Laboratory, January 2010.

18 Nikhil R. Devanur and Kamal Jain. Online matching with concave returns. In Proceedings
of the Forty-fourth Annual ACM Symposium on Theory of Computing, STOC’12, pages
137–144, New York, NY, USA, 2012. ACM. doi:10.1145/2213977.2213992.

19 European Commission. Energy Roadmap 2050, 2011. https://ec.europa.eu/energy/
en/topics/energy-strategy/2050-energy-strategy.

20 J Duncan Glover, Mulukutla Sarma, and Thomas Overbye. Power System Analysis &
Design, Fifth Edition. Cengage Learning, 2012.

21 L. Huang, J. Walrand, and K. Ramchandran. Optimal Demand Response with Energy
Storage Management. In Proc. of IEEE Third International Conference on Smart Grid
Communications (SmartGridComm), pages 61–66, 2012. doi:10.1109/SmartGridComm.
2012.6485960.

APPROX/RANDOM’16

http://dx.doi.org/10.1109/61.25627
http://dl.acm.org/citation.cfm?id=2634074.2634078
http://dx.doi.org/10.1109/CDC.2013.6760775
http://dl.acm.org/citation.cfm?id=1347082.1347186
http://arxiv.org/abs/1412.8347
http://dx.doi.org/10.1109/FOCS.2006.39
http://www.caiso.com/Documents/2014AnnualReport_MarketIssues_Performance.pdf
http://www.caiso.com/Documents/2014AnnualReport_MarketIssues_Performance.pdf
http://arxiv.org/abs/1502.01802
http://arxiv.org/abs/1511.07559
http://arxiv.org/abs/1511.07559
http://dx.doi.org/10.1145/2213977.2213992
https://ec.europa.eu/energy/en/topics/energy-strategy/2050-energy-strategy
https://ec.europa.eu/energy/en/topics/energy-strategy/2050-energy-strategy
http://dx.doi.org/10.1109/SmartGridComm.2012.6485960
http://dx.doi.org/10.1109/SmartGridComm.2012.6485960

12:14 Online Energy Storage Management: an Algorithmic Approach

22 Zhiyi Huang and Anthony Kim. Welfare maximization with production costs: A primal dual
approach. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA’15, pages 59–72. SIAM, 2015. URL: http://dl.acm.org/citation.
cfm?id=2722129.2722135.

23 Mark Z. Jacobson, Mark A. Delucchi, Guillaume Bazouin, Zack A. F. Bauer, Christa C.
Heavey, Emma Fisher, Sean B. Morris, Diniana J. Y. Piekutowski, Taylor A. Vencill, and
Tim W. Yeskoo. 100% clean and renewable wind, water, and sunlight (WWS) all-sector
energy roadmaps for the 50 United States. Energy Environ. Sci., 8(7):2093–2117, Jul 2015.
doi:10.1039/C5EE01283J.

24 Thomas Kesselheim, Robert Kleinberg, and Eva Tardos. Smooth online mechanisms: A
game-theoretic problem in renewable energy markets. In Proceedings of the Sixteenth ACM
Conference on Economics and Computation, EC’15, pages 203–220, New York, NY, USA,
2015. ACM. doi:10.1145/2764468.2764487.

25 Frank Kreikebaum, Debrup Das, Yi Yang, Frank Lambert, and Deepak Divan. Smart Wires
— A distributed, low-cost solution for controlling power flows and monitoring transmission
lines. In 2010 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT
Europe), pages 1–8. IEEE, oct 2010. doi:10.1109/ISGTEUROPE.2010.5638853.

26 Retsef Levi, Robin O. Roundy, and David B. Shmoys. Primal-dual algorithms for de-
terministic inventory problems. Math. Oper. Res., 31(2):267–284, February 2006. doi:
10.1287/moor.1050.0178.

27 David Lindley. The energy storage problem. Nature, 463(7), January 2010.
28 S. H. Low. Convex Relaxation of Optimal Power Flow, Part I: Formulations and Equiva-

lence. ArXiv e-prints, May 2014. arXiv:1405.0766.
29 S. H. Low. Convex Relaxation of Optimal Power Flow, Part II: Exactness. ArXiv e-prints,

May 2014. arXiv:1405.0766.
30 Lian Lu, Jinlong Tu, Chi-Kin Chau, Minghua Chen, and Xiaojun Lin. Online energy

generation scheduling for microgrids with intermittent energy sources and co-generation.
ACM SIGMETRICS Performance Evaluation Review, 41(1):53, jun 2013. URL: http:
//dl.acm.org/citation.cfm?id=2494232.2465551, doi:10.1145/2494232.2465551.

31 Viswanath Nagarajan and Cong Shi. Approximation algorithms for inventory problems
with submodular or routing costs. arXiv:1504.06560, April 2015. URL: http://arxiv.
org/abs/1504.06560.

32 National Renewable Energy Laboratory. The Value of Energy Storage for Grid Applications,
2013. URL: http://www.nrel.gov/docs/fy13osti/58465.pdf.

33 Julia Pahl and Stefan Voß. Integrating deterioration and lifetime constraints in produc-
tion and supply chain planning: A survey. European Journal of Operational Research,
238(3):654–674, 2014. doi:10.1016/j.ejor.2014.01.060.

34 J. Qin, R. Sevlian, D. Varodayan, and R. Rajagopal. Optimal Electric Energy Storage
Operation. In Proc. of IEEE Power and Energy Society General Meeting, pages 1–6, 2012.
doi:10.1109/PESGM.2012.6345242.

35 J. Qin, H. I. Su, and R. Rajagopal. Storage in Risk Limiting Dispatch: Control and
Approximation. In Proc. of American Control Conference (ACC), pages 4202–4208, 2013.

36 Junjie Qin, Yinlam Chow, Jiyan Yang, and Ram Rajagopal. Distributed Online Modified
Greedy Algorithm for Networked Storage Operation under Uncertainty. Smart Grid, IEEE
Transactions on, PP(99):1, jun 2014. URL: http://arxiv.org/abs/1406.4615, arXiv:
1406.4615, doi:10.1109/TSG.2015.2422780.

37 SB-350 Clean Energy and Pollution Reduction Act of 2015, 2015. https://leginfo.
legislature.ca.gov/faces/billNavClient.xhtml?bill_id=201520160SB350.

38 Brian Stott, Jorge Jardim, and Ongun Alsaç. Dc power flow revisited. Power Systems,
IEEE Transactions on, 24(3):1290–1300, 2009.

http://dl.acm.org/citation.cfm?id=2722129.2722135
http://dl.acm.org/citation.cfm?id=2722129.2722135
http://dx.doi.org/10.1039/C5EE01283J
http://dx.doi.org/10.1145/2764468.2764487
http://dx.doi.org/10.1109/ISGTEUROPE.2010.5638853
http://dx.doi.org/10.1287/moor.1050.0178
http://dx.doi.org/10.1287/moor.1050.0178
http://arxiv.org/abs/1405.0766
http://arxiv.org/abs/1405.0766
http://dl.acm.org/citation.cfm?id=2494232.2465551
http://dl.acm.org/citation.cfm?id=2494232.2465551
http://dx.doi.org/10.1145/2494232.2465551
http://arxiv.org/abs/1504.06560
http://arxiv.org/abs/1504.06560
http://www.nrel.gov/docs/fy13osti/58465.pdf
http://dx.doi.org/10.1016/j.ejor.2014.01.060
http://dx.doi.org/10.1109/PESGM.2012.6345242
http://arxiv.org/abs/1406.4615
http://arxiv.org/abs/1406.4615
http://arxiv.org/abs/1406.4615
http://dx.doi.org/10.1109/TSG.2015.2422780
https://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=201520160SB350
https://leginfo.legislature.ca.gov/faces/billNavClient.xhtml?bill_id=201520160SB350

A. Kim, V. Liaghat, J. Qin, and A. Saberi 12:15

39 H. I. Su and A. El Gamal. Modeling and Analysis of the Role of Energy Storage for Renew-
able Integration: Power Balancing. IEEE Transactions on Power Systems, 28(4):4109–4117,
2013. doi:10.1109/TPWRS.2013.2266667.

40 Kevin D. Wayne. Generalized maximum flow algorithms. PhD thesis, Cornell University,
1999.

41 L. Xie, Y. Gu, A. Eskandari, and M. Ehsani. Fast MPC-Based Coordination of Wind
Power and Battery Energy Storage Systems. Journal of Energy Engineering, 138(2):43–53,
2012. doi:10.1061/(ASCE)EY.1943-7897.0000071.

A From Electric Power Flow to Network Flow

Bulk electric power grids are operated with Alternating current (AC) power flow, where
the physical quantities of interest, such as voltage, current and power, are sinusoidal signals
of time. Economic and market operations of the grid are usually solved and scheduled
for a slow timescale, such that the controls or set points for the system are modified at a
frequency of every 5 minutes or lower. Consequently the sinusoidal signals have stabilized
into a steady state for almost all time points in each time slot, and are characterized by
constant-frequency sinusoidal waveforms and permit a phasor representation [20, Section 2.1].
The AC voltage is then represented as a phasor, denoted by V exp(iθ) ∈ C, where V ∈ R+ is
the (root-mean-square) voltage magnitude, θ ∈ R is the voltage phase angle, and i =

√
−1.

Provided that current has a similar phasor representation, the resulting power is a complex
number, whose real part is referred to as real power P and imaginary part is referred to as
reactive power Q. Intuitively speaking, real power can be thought of as the actual power that
serves the load, while reactive power is a consequence of the phase difference between the
current and voltage phasors. Thus the majority of the economic aspect of the grid operation
has centered around real power, with reactive power considered often for other purposes such
as power quality.

Given an electric grid represented by a graph G = (V,E) consisting of a set V of buses and
a set E of lines connecting the buses, the AC power flow equation is a set of 2|V | nonlinear
equations relating the voltage phasors (Vv, θv) at each bus v ∈ V and the corresponding
complex powers (Pv,Qv), v ∈ V. Together with additional operational constraints such as
line capacity and suitable objectives, one can formulate corresponding optimization problems
for the set points of the controllable devices on the grid. In general, such optimization
problems are often referred to as AC optimal power flow (AC-OPF) problems. Given the
nonlinear nature of the AC power flow equations, AC OPF is in general nonconvex and
NP-hard [28, 29], so that practical solutions have relied on approximation of the AC power
flow equations.

The most widely adopted approximation for bulk electric power networks (transmission
networks) is a particular linearization of the AC power flow equations referred to as DC
approximation to AC power flow [38]. Assuming that i) the voltage magnitudes over all
buses are held constant, ii) all lines are purely inductive (i.e., there is no real power losses
due to resistance), and iii) voltage phase differences between buses are small, we can obtain a
linear relationship between the nodal real power injections Pv, v ∈ V , and the voltage phase
angles θv, v ∈ V . In particular, the real power flow through any line e = (v, u) ∈ E can be
written as

e ∈ E, fe = Be(θv − θu), (1)

where Be is the reciprocal of the reactance of line e. Consequently, by flow conservation on

APPROX/RANDOM’16

http://dx.doi.org/10.1109/TPWRS.2013.2266667
http://dx.doi.org/10.1061/(ASCE)EY.1943-7897.0000071

12:16 Online Energy Storage Management: an Algorithmic Approach

node v ∈ V , we have

v ∈ V, Pv =
∑

e=(v,u)

Be(θv − θu).

Therefore, the differences of bus voltage phase angles θv, v ∈ V determine all the line flows
and nodal power injections, and hence fully characterize the operation condition of the system
under the DC approximation. As phase angle differences are invariant to a constant shift,
we can without loss of generality set the phase angle at a bus v0, called slack bus, to be 0
and work with the remaining phase angles θv, v ∈ V \{v0}. When the flow capacities of lines
are considered, together with the fact that the nodal power injection at certain buses may
not be controllable, the feasible set of phase angles is then characterized by the constraints

v ∈ V Fix, gv − dv =
∑

e=(v,u)

Be(θv − θu), (2)

e ∈ E, Be(θv − θu) ≤ Ce, (3)

where V Fix ⊂ V is the set of buses only connected to uncontrollable devices, gv is the
uncontrollable generation at bus v, dv is the uncontrollable demand at bus v, and Ce is the
real power capacity of line e.

To convert the formulation in (2) and (3) in terms of phase angles θv, v ∈ V , into a
network flow formulation which uses the flows fe, e ∈ E, as the variables, we observe that,
using (1), (2) and (3) can be written as

v ∈ V Fix, gv − dv =
∑

e=(v,u)

fe, (4)

e ∈ E, fe ≤ Ce. (5)

This set of constraints, however, in general is not an equivalent formulation to (2) and (3) as
not every collection of flows fe, e ∈ E that satisfies these equations will induce a feasible
collection of phase angles θv, v ∈ V . In particular, when V Fix = ∅, we know that the set
of feasible θv, v ∈ V lives in an affine subspace of dimension |V | − 1. However for general
graph with |E| > |V | − 1, the set of feasible flows is of dimension |E|. Consequently the
mapping between fe, e ∈ E and θv, v ∈ V , defined by (1) is not one-to-one. This mapping
would indeed be one-to-one if the graph G is a tree. In this case, it is easy to check that (4)
and (5), which is the standard network flow constraints, equivalently characterize the set of
feasible operation conditions of the system under the DC approximation.

B Hardness of Networks with Cycles

In this section, we show a hardness result for general instances of OESMP when congested
transmission lines can form a cycle in the network. We assume the general network flow
model described in Appendix A and the network flow formulation given by (4)-(5) where Ce
is the capacity and Be is the susceptance, the reciprocal of the reactance, of edge e.

Proof of Theorem 6. We prove the lower bound by constructing a hard example. We
first consider the network in Figure 1 and then construct a related network with identical
edges with the same susceptance and capacity. In the network in Figure 1, the edges are
bidirectional and have the same susceptance of (sufficiently large) B but different capacities,
1 or M , as indicated.

A. Kim, V. Liaghat, J. Qin, and A. Saberi 12:17

k	 copies	

𝑼	 	

1	 unit	 of	 power	 generated	 for	
every	 step	 1..M	

1 1
1

u	

Cap	 M	

v1	

d1	

r1	
1

MM

2M	 units	 of	 demand	
at	 step	 M+1	

Cap	 M	

vk	

dk	

rk	
1

MM

2M	 units	 of	 demand	
at	 step	 M+1	

1

Figure 1 A hard example for general electrical networks with online supplies.

Let M be a large integer and let k = b
√
Mc. In each time step i = 1, . . . ,M , one unit of

power is generated at supply node u. The power can be stored in any of the storage units at
r1, . . . , rk with capacity M . At time i = M + 1, there are 2M units of demand at all the
demand nodes d1, . . . , dk. The demand nodes’ utility functions are linear and uniform.

Consider an arbitrary randomized online algorithm. The algorithm distributes the first
M units of power onto the storage units. Let rj be the storage unit with the least expected
amount of power stored at the beginning of time step i = M + 1. Note the expected amount
of power stored at rj is at most M

k = O(
√
M). At time step i = M + 1, we assume M units

of power at supply vj and zero unit at all other supplies. Then, the algorithm can route at
most O(

√
M) units of power in total to the demand nodes. The algorithm routes O(

√
M)

units of power to demand dj . Since the voltage phase angle difference between vj and rj
can be at most 1, due to the edge of capacity 1 between them, the algorithm routes O(

√
M)

units of newly generated power from vj to dj and O(
√
M) units of stored power from rj to

dj . Similarly, the algorithm further routes at most 2 units of power to other demand nodes.
On the other hand, the optimal offline algorithm routes 2M units of power by first

storing the M units of generated power from u on rj and then routing to dj . The resulting
competitive ratio is Ω(

√
M).

We construct a network with identical edges with the same susceptance and capacity.
Note that we can model an edge of capacity 2c and susceptance B using four edges of capacity
c and susceptance B arranged in the diamond shape.12 We recursively use the diamond
construction logM times to reduce the edges of capacity M to edges of capacity 1. Per an
edge of capacity M , we get 4logM new edges and Θ(4logM) = Θ(M2) new nodes. Therefore,
this network has Θ(M5/2) nodes and the lower bound becomes Ω(n1/5) where n is the number
of nodes. J

12 In the diamond shape, the four edges are arranged as (a, b), (b, d), (a, c), and (c, d).

APPROX/RANDOM’16

12:18 Online Energy Storage Management: an Algorithmic Approach

C Missing Materials from Section 3

We provide the missing proofs from Section 3.

C.1 Uniform Utilities
We prove Lemma 7 below. We first prove the following structural lemma:

I Lemma 14. Consider an arbitrary storage node r for which τ ir > 0 or βir > 0 at a time
step i. Then, all the power stored in r at time i will be dispatched to the demands in no
more than logγr(max(βir, τ ir)) time steps. Furthermore, if τ ir > 0, then the path p+(i, r) is
congested in x̂i.

Proof. Let j ≥ i denote the first step after i for which r ∈ Rjφ. By the recursive construction
in Part II, we know that max(βir, τ ir) = γj−ir and one of variables is zero. On the other hand,
since r ∈ Rjφ, congestion does not block all the routes from r to Dj . Since we have not routed
more flow from r to Dj at that time step, we know that ŷjr = 0. This indeed proves the first
part of the lemma. Furthermore, if τ ir > 0, we know that r never gets full between time steps
i to j, otherwise τ ir would have been zero. Thus the reason that the supply s ∈ Si, which
owns r, is not supplying r with more power is that p+(i, r) is congested; which completes
the proof. J

Proof of Lemma 7. We check the feasibility of each set of dual constraints in the program D
separately. Consider an arbitrary path p ∈ P+

D at time interval i. Constraint D1 enforces a
lower bound of one on

∑
e∈p αe + τ

i(p)
v(p). We distinguish between two cases. If v(p) ∈ Riφ, the

constraint is satisfied in DC-Part II by setting τ iv(p) = 1. Otherwise, v(p) ∈ Si ∪ (R \ Riφ),
for which DC-Part I satisfies the constraint.

The feasibility of D2 constraints follows from Lemma 14; which shows that if τ ir > 0 for
some i and r, then p+(i, r) is congested. Therefore DC Part III satisfies D2.

Finally, the feasibility of D3 constraints follows directly from the iterative construction in
Part II. J

C.2 Concave Utilities
Proof of Theorem 2. Under the concave utility model, scaling down all the storage and
edge capacities by a factor ρ may only change the optimal solution by at worst a factor 1/ρ.
Recall that we assume dWd(x)

dx ∈ [wmin, wmax] for every demand. Let ρ = blog ∆wc+ 1 where
∆w = wmax

wmin
. Given an instance of the general flow problem with concave utility functions

and optimal solution OPT∗, we construct ρ instances of the problem with uniform utility as
follows.

For every i and d ∈ Di, let `d(q) = inf{x : dWd(x)
dx ≤ 2qwmin} for every integer q ∈

{0, . . . , ρ}. We note that `d is monotone non-increasing. For every q ∈ {1, . . . , ρ}, we
construct an uniform-utility instance in which a new node d′ is connected to d with an edge
(d, d′) with capacity `d(q)− `d(q− 1). The node d is not a demand node anymore and instead
d′ is a demand node. Furthermore, we scale down all the storage and edge capacities by a
factor of ρ. Let OPTq denote the optimal solution to the qth instance.

I Claim 15. OPT∗
2ρ ≤

∑ρ
q=1 2q−1wminOPTq ≤ OPT∗ .

Proof. We partition the optimal solution into ρ separate flows of power. Suppose that at
every step of the algorithm, the flows of power are routed continuously. For q ∈ [ρ], let Fq

A. Kim, V. Liaghat, J. Qin, and A. Saberi 12:19

denote the flows corresponding to units of power that are ending up satisfying a demand d
during the interval that the total power received by d is between [`d(q), `d(q − 1)). We note
that

OPT∗

2 ≤
∑
q

2q−1wmin|Fq| ≤ OPT∗ .

Let F ′q denote the flow obtained from Fq by reducing the flows on every edge and storage
unit by a factor ρ. We note that F ′q is indeed a feasible solution for the qth instance of the
problem constructed above: we simply need to re-route the flow coming to d to d′. This
completes the proof since OPTq ≥ |F ′q| ≥

|F ′q|
ρ J

Now suppose we have an online algorithm with competitive ratio c for the uniform-utility
model. Given a general instance, for every q ∈ {1, . . . , ρ}, we separately execute the uniform
weight algorithm on the q-th instance of the problem constructed as above. Let ALGq denote
the solution corresponding to the q-th instance. Since all capacities are scaled down in each
instance, we can route the flows in all instances simultaneously. At every time step we simply
output the union of flows output by the instances of the uniform weight algorithm. The final
utility is therefore at least

ρ∑
q=1

2q−1wminALGq ≥
ρ∑
q=1

2q−1wmin
OPTq
c
≥ OPT∗

2cρ ,

which completes the proof since Theorem 1 gives an algorithm with constant c. J

D Missing Materials from Section 4

We provide the missing materials from Section 4.

D.1 Hardness of Online Demands
We show that online demands are hard to satisfy in the public storage setting by proving the
following theorem:

Proof of Theorem 3. Our lower bound instance is a network similar to that considered
in Theorem 6. Consider a network with n nodes where there exist one supply node with
renewable power generators and n− 1 demand nodes that are connected to the “root” supply
node. Each demand node has a public storage unit with unit capacity and the decay factor
of 1; these are the only storage units on the network. We assume the case of uniform utilities
where each demand node requires at most 1 unit of power, that is, the utility functions are
of the form W (y) = y up to the limit y = 1.

At time i = 1, the supply node generates a unit of power. At time i = 2, exactly one
demand node requests power while other nodes do not. Consider an arbitrary randomized
online algorithm and let d be the demand node with the least expected amount of power
stored at the beginning of time step i = 2. Note the expected amount of power stored at d is
at most O(1/n). We let d be the only demand node to request power at time i = 2, and the
online algorithm routes O(1/n) units of power.

However, the optimal offline algorithm knows where the demand is going to be and can
always satisfy the power demand and obtain total utility of 1. Hence, a lower bound of Ω(n)
on the competitive ratio follows. J

APPROX/RANDOM’16

12:20 Online Energy Storage Management: an Algorithmic Approach

D.2 Concave Utilities
Proof of Claim 9. For each edge e, we show that αe ≥ ωe at all times where

ω(e) := wminγmin

lmax

(
e
c
Ce

∑
p3e

γ(p,e)xp − 1
)
.

Initially, αe = ωe = 0. Note both αe and ωe increase only if some path p containing e is used
for routing. Assume αe ≥ ωe and we show the inequality still holds after the updates due to
routing through p, say, from supply s to demand d. Note that

dωe
dxp

= cγ(p, e)
Ce

wminγmin

lmax
e
c
Ce

∑
p3e

γ(p,e)xp

= cγ(p, e)
Ce

ωe + cwminγminγ(p, e)
lmaxCe

≤ c
(
γ(p, e)αe

Ce
+ γ(p)Wd

′(λd)
lmaxCe

)
= dαe
dxp

.

Hence, αe increases at a faster rate than ωe and it follows that αe ≥ ωe throughout
Algorithm 1.

If αe = wmax, the dual constraints for any path p containing edge e are satisfied and αe
is not further increased. Then, wmax ≥ αe ≥ ωe. It follows that

wmax ≥
wminγmin

lmax

(
e
c
Ce

∑
p3e

γ(p,e)xp − 1
)

log
(
lmax∆w

γmin
+ 1
)
≥ c

Ce

∑
p3e

γ(p, e)xp

O

(
log
(
lmax∆w

γmin

))
Ce
c
≥
∑
p3e

γ(p, e)xp.

Since lmax = nT and γmin = γT , we see that

∑
p3e

γ(p, e)xp ≤
O(lognT + log γ−T + log ∆w)

c
· Ce ≤

O(logn+ log γ−T + log ∆w)
c

· Ce,

where the last inequality follows from the fact that log γ−T dominates log T . J

Proof of Claim 10. Let D0 =
∑
e Ceαe; so, D = D0 +

∑
d Ŵd(λd).

We first show that D0 ≤ 2cP. Initially, P = D0 = 0. Assume we route an in-
finitesimal amount through path p from supply s to demand d and correspondingly up-
date dual variables. We compute corresponding changes in P and D0. Note dP =
Wd
′(yd)dyd = γ(p)Wd

′(yd)dxp since dyd = γ(p)dxp. Furthermore, dD0 =
∑
e∈p Cedαe =∑

e∈p c
(
γ(p, e)αe + wminγmin

lmax

)
dxp ≤ 2cγ(p)Wd

′(λd)dxp. By construction, we increase yd and
λd at the same rate and hence, yd = λd for all demand d ∈ D∗. It follows that dD0 ≤ 2cdP
and D0 ≤ 2cP at termination.

Since Ŵd(z) ≤ Wd(z),∀z ≥ 0, it follows that
∑
d Ŵd(λd) ≤

∑
dWd(yd) = P. Then,

D =
∑
d Ŵd(λd) +D0 ≤ (2c+ 1)P. J

A. Kim, V. Liaghat, J. Qin, and A. Saberi 12:21

Path Construction

We show how to check the condition in Line 4 and choose a routing path p in Line 6 in
Algorithm 1 in polynomial time. More specifically, we show how to check the condition
for paths in P (s, d) for supply s and demand d and find a simple path p, if it exists, such
that

∑
e∈p γ(p, e)αe − γ(p)Wd

′(λd) < 0. This is equivalent to finding a discounted variant
of shortest path where αe are the edge lengths and γe are the discount factors, from which
γ(p, e) can be defined (cf. [1]).

Given s and d, we run a backward variant of Dijkstra’s algorithm starting with d

with initialization σ(d) = −Wd
′(λd) and computing iteratively the discounted “distance”

σ(u) = minp∈P (u,d)
∑
e∈p γ(p, e)αe − γ(p)Wd

′(λd) and corresponding successor π(u) for each
node u. We compute σ and π in stages such that if s is in time t1 and d is in time t2, we
process the time-copies Gt2 , Gt2−1, . . . , Gt1 in that order. For t = t2, . . . , t1, we iteratively
initialize σ and π based on nodes in Gt+1 via storage edges and then compute them for all
nodes in Gt.

The correctness follows from the shortest discounted paths’ optimality property in the
time-expanded graph. Note that the shortest discounted paths have an optimal substructure
property similar to that of shortest paths in that any suffix of a shortest discounted path is
a shortest discounted path. If p is a shortest discounted path from u to d and p = (u, v) ∪ p′,
p′ is a shortest discounted path from v to d. Otherwise, we can find a shorter discounted
path from u to d via a shorter path p′′ ∈ P (v, d), since

∑
e∈p γ(p, e)αe − γ(p)Wd

′(λd) =
α(u,v) + γ(u,v)

(∑
e∈p′ γ(p′, e)αe − γ(p′)Wd

′(λd)
)
. Furthermore, a shortest discounted path’s

length increases monotonically within each time-copy Gt when it is extended to another
shortest discounted path; in other words, there are no “negative-weight” edges in Gt. As
storage edges are the only edges with discount factors and do not form cycles in the time-
expanded graph, the path lengths within each time-copy are correctly computed with the
backward variant of Dijkstra’s algorithm which runs in polynomial time.

D.3 Concave Utilities and Convex Costs

We present the missing algorithm:

Algorithm 2 Online Algorithm for Concave Utilities and Convex Costs
1: Let yd =

∑
p∈P (·,d) γ(p)xp,∀d; zs =

∑
p∈P (s,·) xp,∀s . y, z determined in terms of x

2: Let µs = Qs
′(τszs) for τs = ρ

1/(ρs−1)
s , ∀s . µ determined in terms of z

3: for i = 1, . . . , T do
4: for s ∈ Si in arbitrary order do
5: while P ′ = {p ∈ P (s, ·) :

∑
e∈p γ(p, e)αe + µs < γ(p)Wd(p)

′(λd(p))} 6= ∅ do
6: Update continuously:
7: p = arg maxp∈P ′ γ(p)Wd(p)

′(λd(p))
8: dxp = 1 . Increase xp at a uniform rate
9: dλd(p)

dxp
= γ(p)

10: dαe
dxp

= c
(
γ(p,e)αe
Ce

+ γ(p)Wd(p)
′(λd(p))

lmaxCe

)
,∀e ∈ p . c ≥ 1 is some parameter

11: end while
12: end for
13: end for

APPROX/RANDOM’16

12:22 Online Energy Storage Management: an Algorithmic Approach

Proof of Claim 12. For each edge e, we show that αe ≥ ωe at all times where

ω(e) := wminγmin

lmax

(
e
c
Ce

∑
p3e

γ(p,e)xp − 1
)
.

Initially, αe = ωe = 0. Note both αe and ωe increase only if some path p containing e is used
for routing. Assume αe ≥ ωe and we show the inequality still holds after the updates due to
routing through path p, say, from supply s to demand d. Note that

dωe
dxp

= cγ(p, e)
Ce

wminγmin

lmax
e
c
Ce

∑
p3e

γ(p,e)xp

= cγ(p, e)
Ce

ωe + cwminγminγ(p, e)
lmaxCe

≤ c
(
γ(p, e)αe

Ce
+ Wd

′(λd)γ(p)
lmaxCe

)
= dαe
dxp

.

Hence, αe increases at a faster rate than ωe and it follows that αe ≥ ωe throughout
Algorithm 2.

If αe = wmax, the dual constraints for any path p containing edge e are satisfied and αe is
not further increased. Then, wmax ≥ αe ≥ ωe. On the same line of reasoning as in Lemma 8,
we see that

O(logn+ log γ−T + log ∆w)
c

· Ce ≥
∑
p3e

γ(p, e)xp. J

Proof of Claim 13. Let D0 =
∑
e Ceαe +

∑
sQ
∗
s(µs); so, D = D0 +

∑
d Ŵd(λd). Assume

D0 ≤ (2c+ 1)ρρ/(ρ−1)P. Since Ŵd(z) ≤ Wd(z),∀z ≥ 0, it would follow that
∑
d Ŵd(λd) ≤∑

dWd(yd) ≤ P. Then, D =
∑
d Ŵd(λd) + D0 ≤

(
(2c+ 1)ρρ/(ρ−1) + 1

)
P, and the claim

would follow.
We now show D0 ≤ (2c+ 1)ρρ/(ρ−1)P. For σ = (2c+ 1)ρρ/(ρ−1) and ρ > 1.44, we show

dP ≥ 1
σdD0. Initially, P = D0 = 0. Assume we route an infinitesimal amount through path

p, say, from supply s to demand d and correspondingly update primal and dual variables.
We compute the resulting changes in the primal objective P and (partial) dual objective D0:
dP = Wd

′(yd)dyd − Qs′(zs)dzs; dD0 =
∑
e∈p Cedαe + (Q∗s)′(µs)dµs. Note dzs = dxp and

dyd = γ(p)dxp.
Note dP ≥ 1

σdD0 is equivalent to

Wd
′(yd)dyd −Qs′(zs)dzs ≥

1
σ

(∑
e∈p

Cedαe + (Q∗s)′(µs)dµs

)
. (6)

By the dual variables’ updates, (6) is equivalent to

Wd
′(yd)dyd−Qs′(zs)dzs ≥

1
σ

(
c · dxp ·

∑
e∈p

(
γ(p, e)αe + Wd

′(λd)γ(p)
lmax

)
+ (Q∗s)′(µs)dµs

)
.

Since
∑
e∈p γ(p, e)αe + µs < γ(p)Wd

′(λd), the right hand side is upper bounded by
1
σ

(
2cγ(p)Wd

′(λd)dxp + (Q∗s)′(µs)dµs
)
. It is sufficient to show(

1− 2c
σ

)
γ(p)Wd

′(λd)dxp −Qs′(zs)dzs ≥
1
σ

(Q∗s)′(µs)dµs .

A. Kim, V. Liaghat, J. Qin, and A. Saberi 12:23

Since
∑
e∈p γ(p, e)αe + µs < γ(p)Wd

′(λd), it suffices to show(
1− 2c

σ

)
µs −Qs′(zs) ≥

1
σ

(Q∗s)′(µs)
dµs
dzs

. (7)

If Qs(z) = asz
ρs , then Q∗s(µ) = ρs−1

ρs
1

(asρs)1/(ρs−1)µ
ρs/(ρs−1). Also, µs = Qs

′(τszs). Then,
(7) reduces to σ ≥ τs

ρs (ρs−1)
τsρs−1−1 + 2cτsρs−1

τsρs−1−1 . For τs = ρs
1/(ρs−1), the right hand side is equal to

ρs
ρs/(ρs−1) + 2cρs

ρs−1 . For ρs ≥ 1.44, it is upper bounded by (2c+ 1)ρsρs/(ρs−1) which is exactly
the value of σ chosen. Therefore, (7) holds and dP ≥ 1

σdD0. For a ρ0 constant smaller than
1.44, we would need to have a multiplicative factor greater than (2c+ 1) in the penultimate
step. J

APPROX/RANDOM’16

LP-Relaxations for Tree Augmentation∗

Guy Kortsarz1 and Zeev Nutov2

1 Rutgers University, Camden, NJ, USA
guyk@camden.rutgers.edu

2 The Open University of Israel, Ra’anana, Israel
nutov@openu.ac.il

Abstract
In the Tree Augmentation Problem (TAP) the goal is to augment a tree T by a minimum size edge
set F from a given edge set E such that T ∪F is 2-edge-connected. The best approximation ratio
known for TAP is 1.5. In the more general Weighted TAP problem, F should be of minimum
weight. Weighted TAP admits several 2-approximation algorithms w.r.t. to the standard cut-LP
relaxation. The problem is equivalent to the problem of covering a laminar set family. Laminar
set families play an important role in the design of approximation algorithms for connectivity
network design problems. In fact, Weighted TAP is the simplest connectivity network design
problem for which a ratio better than 2 is not known. Improving this “natural” ratio is a major
open problem, which may have implications on many other network design problems. It seems
that achieving this goal requires finding an LP-relaxation with integrality gap better than 2, which
is an old open problem even for TAP. In this paper we introduce two different LP-relaxations,
and for each of them give a simple algorithm that computes a feasible solution for TAP of size at
most 7/4 times the optimal LP value. This gives some hope to break the ratio 2 for the weighted
case.

1998 ACM Subject Classification G.2.2 Graph Theory: Graph algorithms

Keywords and phrases Tree Augmentation, LP-relaxation, Laminar family, Approximation al-
gorithms

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2016.13

1 Introduction

1.1 Problem definition and related problems
A graph (possibly with parallel edges) is k-edge-connected if there are k pairwise edge-disjoint
paths between every pair of its nodes. We study the following fundamental connectivity
augmentation problem: given a connected undirected graph G = (V,EG) and a set of
additional edges (called “links") E on V disjoint to EG, find a minimum size edge set F ⊆ E
such that G + F = (V,EG ∪ F) is 2-edge-connected. Contracting the 2-edge-connected
components of the input graph G results in a tree. Hence, our problem is:

Tree Augmentation Problem (TAP)
Instance: A tree T = (V,ET) and a set of links E on V disjoint to ET .
Objective: Find a minimum size subset F ⊆ E of links such that T ∪F is 2-edge-connected.

∗ This work was partially supported by NSF grant number 434923.

© Guy Kortsarz and Zeev Nutov;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016).
Editors: Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans; Article No. 13; pp. 13:1–13:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.13
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

13:2 LP-Relaxations for Tree Augmentation

TAP can be formulated as the problem of covering the edges of a tree by paths. For
u, v ∈ V let (u, v) ∈ ET denote the edge in T and uv the link in E between u and v. Let
P (uv) = PT (uv) denote the path between u and v in T . A link uv covers all the edges along
the path P (uv). Then TAP is the problem of finding a minimum subset of (paths of the)
links that cover the edges of T .

TAP can be also formulated as the problem of covering a laminar set family. In what
follows, root T at some node r. The choice of the root r defines a partial order on V : u is a
descendant of v (or v is an ancestor of u) if v belongs to P (ru). The rooted subtree of T induced
by v and its descendants is denoted by Tv (v is the root of Tv). Let T = {Tv : v ∈ V \ {r}}.
The family of node sets of the trees in T is laminar, and F ⊆ E is a feasible solution for TAP
if and only if F covers T , namely, for every T ′ ∈ T there is a link in F from T ′ to T \ T ′.

TAP is also equivalent to the problem of augmenting the edge-connectivity from k to
k + 1 for any odd k; this is since the family of minimum cuts of a k-connected graph with k
odd is laminar.

In the more general Weighted TAP problem, the links in E have weights {we : e ∈ E}
and the goal is to find a minimum weight augmenting edge set F ⊆ E such that T ∪ F is
2-edge connected. Even a more general problem is the 2-Edge-Connected Subgraph problem,
where the goal is to find a spanning 2-edge-connected subgraph of a given weighted graph;
Weighted TAP is a particular case, when the input graph contains a connected spanning
subgraph of cost zero.

In this paper we introduce new LP-relaxations for TAP (that are also valid for Weighted
TAP) and prove that their integrality gap for TAP less than 2.

1.2 Previous and related work
TAP is NP-hard even for trees of diameter 4 [9], or when the set E of links forms a cycle
on the leaves of T [3]. The first 2-approximation for Weighted TAP was given 24 years ago
in 1981 by Fredrickson and Jájá [9], and was simplified later by Khuller and Thurimella
[15]. These algorithms reduce the problem to the Min-Cost Arborescence problem, that is
solvable in polynomial time [5], while invoking a factor of 2 in the ratio. The primal-dual
algorithm of [12, 11] is another combinatorial 2-approximation algorithm for the problem.
The iterative rounding algorithm of Jain [13] is an LP-based 2-approximation algorithms.
These algorithms achieve ratio 2 w.r.t. to the standard cut-LP that seeks to minimize∑

e∈E wexe over the following polyhedron:

xe ≥ 0 ∀e ∈ E (1)
x(δ(T ′)) ≥ 1 ∀T ′ ∈ T (2)

Here δ(T ′) is the set of links with exactly one endnode in T ′, x(F) =
∑

e∈F xe is the sum of
the variables indexed by the links in F , and T is the set of proper rootes subtrees of T w.r.t.
the chosen root r.

Laminar set families play an important role in the design and analysis of exact and
approximation algorithms for network design problems, both in the primal-dual method and
the iterative rounding method, c.f. [17, 12]. Weighted TAP is the simplest network design
problem for which a ratio better than 2 is not known. Breaking the “natural” ratio of 2 for
Weighted TAP is a major open problem in network design, that may have implications on
other problems.

As a starting point, Khuller [14] in his survey on high connectivity network design
problems posed as a major open question achieving ratio better than 2 for TAP. Nagamochi
[19] used a novel lower bound to achieve ratio 1.875 + ε for TAP. The sequence of papers

G. Kortsarz and Z. Nutov 13:3

[7, 8, 16] introduced additional new techniques to achieve ratio 1.8 by a much simpler
algorithm and analysis, and also achieved the currently best known ratio 1.5.

Several algorithms for Weighted TAP with ratio better than 2 are known for special cases.
In [6] is given an algorithm with ratio (1 + ln 2) and running time nf(D) where D is the
diameter of T . In [3] it is shown how to round a half-integral solution to the cut-LP within
ratio 4/3. However, as is pointed in [3], the cut-LP LP has extreme points which are not
half integral.

Studying various LP-relaxations for TAP is motivated by the hope that these may lead
to breaking the ratio of 2 for Weighted TAP. Thus several paper analyzed integrality gaps of
LP/SDP relaxations for the problem. Cheriyan, Karloff, Khandekar, and Koenemann [4]
gave an example of a TAP instance with integrality gap 1.5 w.r.t. a standard cut-LP. For
the special case of TAP when every link connects two leaves, [18] obtained ratios 5/3 w.r.t.
the cut LP, ratio 3/2 w.r.t. to a strengthened “leaf edge-cover” LP, and ratio 17/12 not
related to any LP. However, the analysis of [18] does not extend directly to the general TAP.
Cheriyan and Gao [1] showed that the 1.8-approximation algorithm of [8] achieves its ratio
1.8 w.r.t. an SDP relaxation obtained by Lasserre tightening of a standard LP supplemented
by so called “non-overlapping” constraints. Recently in [2] they improved their analysis,
showing that the 1.5-approximation ratio of [16] is achievable w.r.t. this SDP. However, the
SDP and the analysis in [2] are quite involved, and hence might be very hard to extend to
Weighted TAP.

Finally, we mention some work on the closely related 2-Edge-Connected Subgraph problem.
This problem was also vastly studied. For general weights, the best known ratio is 2 by
Fredrickson and Jájá [9], which can also be achieved by the algorithms in [15] and [13]. For
particular cases, better ratios are known. Fredrickson and Jájá [10] showed that when the
edge weights satisfy the triangle inequality, the Christofides heuristic has ratio 3/2. For the
special case when all the edges of the input graph have unit weights (the “min-size” version
of the problem), the currently best known ratio is 4/3 due to Sebo and Vygen [21].

1.3 Our results
In this paper, with the help of some ideas from [7, 18, 8, 16], we introduce two simple new
LP-relaxations, and prove that they have integrality gap at most 7/4 for TAP. This is the
first LP-relaxation for TAP for which integrality gap less than 2 is proved. We note that our
algorithms use several ideas from [7, 8], but they are not identical to any previous algorithm.

The dual-fitting algorithm is our main result. This is essentially a primal-dual algorithm
when we allow to violate the dual constraints by a factor of 7/4. Unlike all previous
algorithms, we do not need to compute a maximum matching on the leaves, but pick some
inclusionwise maximal matching. The algorithm uses some simple local steps and is faster
than all previous algorithms – the running time is Õ(mn). Since the algorithm and the
LP are quite simple, it has a chance to be extended to Weighted Tap. We note that one
type of constrainst we use, see constraints (3), can be naturally derived from the so called
“subpartiton constrains” or “Gomory cuts”, which say that k disjoint sets need at least dk/2e
edges to cover them. The constraints (3) are derived from the case k = 3 when applied to
the two lowest levels of the tree – leaves and stems.

2 New valid constraints

In this section we introduce new LP-relaxations for TAP and in subsequent sections prove
that (for the unweighted case) they both have integrality gap 7/4. Our LP-relaxations

APPROX/RANDOM’16

13:4 LP-Relaxations for Tree Augmentation

combine some ideas from [18, 8, 16], but also use new crucial valid constraints. We need
some definition to introduce these constraints.

I Definition 1 (shadow, shadow-minimal cover). Let P (uv) denote the path between u and
v in T . A link u′v′ is a shadow of a link uv if P (u′v′) ⊆ P (uv). A cover F of T is
shadow-minimal if for every link uv ∈ F replacing uv by any proper shadow of uv results
in a set of links that does not cover T .

We refer to the addition of all shadows of existing links as shadow-completion. Shadow
completion does not affect the optimal solution size, since every shadow can be replaced by
some link covering all edges covered by the shadow. Thus we may assume the following:

The Shadow-Completion Assumption. The set of links E is closed under shadows.

For A,B ⊆ V and F ⊆ E let δF (A,B) denote the set of links in F with one end in A and
the other end in B, and let δF (A) = δF (A, V \A) denote the set of links in F with exactly
one endnode in A. The default subscript in the above notation is E. To contract a subtree
T ′ of T is to combine the nodes in T ′ into a new node v. The edges and links with both
endpoints in T ′ are deleted. The edges and links with one endpoint in T ′ now have v as their
new endpoint.

I Definition 2 (leaf, twin link, stem). The leaves of T are the nodes in V \ {r} that have
no descendants. We denote the leaf set of T by L(T), or simply by L, when the context is
clear. A link ab ∈ δ(L,L) is a twin link and the least common ancestor s of a, b is a stem
if the contraction of Ts results in a new leaf; such a, b are called twins. Let W denote the
set of twin links, and for e ∈W let se denote the stem of e.

For A ⊆ V , we say that a rooted subtree T ′ of T is A-closed if there is no link in E from
A ∩ T ′ to T \ T ′, and T ′ is A-open otherwise.

I Definition 3 (locked node, locking link, dangerous locking tree). A node a (or a subtree Ta)
is locked by a link bb′ ∈ δ(L,L) and bb′ is the locking link of a if (see Fig. 1(a)) the tree
obtained from T by contracting Ta into the node a has a rooted proper subtree T ′ = Tr′

that is a-closed such that L(T ′) = {a, b, b′}; such minimal T ′ is called the locking tree of a
(note that such locking tree is unique); a locking tree is a dangerous locking tree if it is
as in Fig. 1(b) with the links depicted present in E; namely, a locking tree is dangerous if
there exists an ordering b, b′ of the locking link endnodes such that:

The contraction of ab′ does not create a new leaf.
ab′ ∈ E.
T ′ is b-open.

Let N denote the set of non-dangerous locking trees.

Note that an ordering b, b′ as in the above definition may not be unique; namely, it may
be that also the contraction of ab does not create a new leaf, ab ∈ E, and T ′ is b′-open – see
Fig. 1(c).

In what follows, let us use the following notation:
For a stem s let σ(s) denote the set of links in δ(s) that have an endnode not in Ts.
For T ′ ∈ N let ζ(T ′) denote the set of links incident to some non-leaf node of T ′.
Let OL = {A ⊆ V : |A ∩ L| is odd}.
For x ∈ RE and F ⊆ E let x(F) =

∑
e∈F xe.

G. Kortsarz and Z. Nutov 13:5

Figure 1 (a) A locking tree; no link with an endnode in Ta has its other endnode in T \ Tr′ . (b,c)
Dangerous trees; solid thin lines show links that must exist in E. The endnodes b, b′ of the locking
link are original leaves; in (a), a is an original leaf, and in (b),(c) the subtree Ta is contracted into a,
so a may be a compound node or an original leaf. Some of the edges of T can be paths.

The proof of the following statement can be found in [8, 16]; we provide a proof sketch
for completeness of exposition.

I Lemma 4. Let F be a shadow-minimal cover of T . Then the following holds:
(i) δF (L, V) is an exact edge-cover of L, namely |δF (v)| = 1 for every v ∈ L.
(ii) If e ∈ F ∩W then |σ(se) ∩ F | = 1.
(iii) ζ(T ′) ∩ F 6= ∅ for any T ′ ∈ T .

Proof. Let us say that two links overlap if their paths share an edge and one contains an
end of the other. It is easy to see that F is not shadow minimal if and only if two links in F
overlap. As any two links incident to the same leaf overlap, (i) follows.

Now let e ∈ F ∩W and consider a link f that covers the parent edge of the stem se of e.
It is easy to see that the only case that e and f do not overlap is if f ∈ σ(se), and that any
two links in σ(se) overlap. This implies (ii).

Let T ′ be a locking tree as in Definition 3 (after Ta is contracted into a). We will show that
if ζ(T) ∩ F = ∅ then T ′ is dangerous. Consider a link e = au that covers the parent edge of
a and a link e′ = u′v that covers the parent edge of T ′, where v /∈ T ′. Note that e 6= e′, since
T ′ is a-closed. If ζ(T) ∩ F = ∅ then {u, u′} ⊆ {b, b′}, and since by (i) |δF (b)| = |δF (b′)| = 1,
we must have {u, u′} = {b, b′}. If u = b and contraction of ab creates a new leaf, then the
link in F that covers the parent edge of this new leaf belongs to ζ(T). Otherwise, T ′ must
be dangerous, as claimed. J

Now we present our new valid inequalities for TAP.

I Lemma 5. Suppose that the Shadow-Completion Assumption holds, and let x be the
characteristic vector of a shadow minimal cover F of T . Then x satisfies the following
constraints

x(σ(se))− xe ≥ 0 ∀e ∈W (3)
x(ζ(T ′)) ≥ 1 ∀T ′ ∈ T (4)
x(δ(v)) = 1 ∀v ∈ L (5)

x(δ(A, V)) ≥
⌈
|A ∩ L|

2

⌉
∀A ∈ OL (6)

Proof. Consider the polyhedron ΠL defined by (1), (5), and (6). Then ΠL is the convex hull
of the exact edge-covers of L, see [20, Theorem 34.2]; thus by Lemma 4(i), these constraints

APPROX/RANDOM’16

13:6 LP-Relaxations for Tree Augmentation

are valid. The validity of the constraints (3) follows from Lemma 4(ii) (in fact, x(σ(se)) = xe

holds), and the validity of the constraints (4) follows from Lemma 4(iii). J

In subsequent sections we will consider two LPs, where both have the constraints (1),
(2), and (3). One LP has an additional constraint (4), while the other LP has additional
constraints (5) and (6) instead.

3 The algorithms

For a set of links I ⊆ E, let T/I denote the tree obtained by contracting every 2-edge-
connected component of T ∪ I into a single node. We often refer to the contraction of every
2-edge-connected component of T ∪ I into a single node as the contraction of the links in I.
Our algorithm iteratively contracts certain subtrees of T/I. We refer to the nodes created
by contractions as compound nodes, and denote by C the set of compound nodes of T/I.
Non-compound nodes are referred to as original nodes (of T). For technical reasons, the
root r is also considered as a compound node, hence initially C = {r}.

Our algorithms start with a partial solution I = ∅ and with a certain matching M ⊆
δ(L,L) \W . We denote by U the set of leaves of T/I unmatched by M . The algorithm
iteratively finds a subtree T ′ of T/I and a cover I ′ of T ′, and contracts T ′ with I ′, which
means adding I ′ to I and contracting T ′ into a new compound node. To use the notation
T/I properly, we will assume that I ′ is an exact cover of T ′, namely, that the set of edges
of T/I that is covered by I ′ equals the set of edges of T ′ (this is possible due to shadow
completion).

Another property of a contracted tree T ′ is given in the following definition.

I Definition 6 (M -compatible subtree). Let M be a matching on the leaves of T/I. A
subtree T ′ of T/I is M-compatible if for any bb′ ∈ M either both b, b′ belong to T ′, or
none of b, b′ belongs to T ′. We say that a contraction of T ′ with I ′ is M -compatible if T ′ is
M -compatible.

Assuming all compound nodes were created by M -compatible contractions, then the
following type of contractions is also M -compatible.

I Definition 7 (greedy contraction). Adding to the partial solution I a link with both
endnodes in U is called a greedy contraction.

One of the steps of the algorithm is to apply greedy contractions exhaustively; clearly,
this can be done in polynomial time.

We now describe a more complicated type of M -compatible contractions.

I Definition 8 (semi-closed tree). Let M be a matching on the leaves of T/I. A rooted
subtree T ′ of T/I is semi-closed (w.r.t. M) if it is M -compatible and closed w.r.t. its
unmatched leaves. T ′ is minimally semi-closed if T ′ is semi-closed but any proper subtree of
T ′ is not semi-closed.

For a semi-closed subtree T ′ of T/I let us use the following notation:
M ′ is the set of links in M with both endnodes in T ′.
U ′ is the set of leaves of T ′ unmatched by M .

Our algorithms maintain the following invariant:

G. Kortsarz and Z. Nutov 13:7

Algorithm 1: Dual-Fitting(T = (V, E), E) (ratio: ρ = 7/4)
1 initialize: I ← ∅, C ← {r}.
2 M ← maximal matching in δ(L,L) \W , U ← leaves unmatched by M .
3 Contract every link ab ∈W with a, b ∈ U .
4 Exhaust greedy contractions and update I, C accordingly.
5 while do
6 T/I has more than one node
7 Find T ′, I ′ as in Lemma 10.
8 Contract T ′ with I ′.
9 Exhaust greedy contractions and update I, C accordingly.

10 return I

Partial Solution Invariant. The partial solution I is obtained by sequentially applying a
greedy contraction or a legal semi-closed tree contraction with an exact cover.

I Definition 9 (dangerous semi-closed tree). A semi-closed subtree of T/I is dangerous (w.r.t.
a matching M) if it is as in Definition 3 with bb′ ∈M .

In [8, 16] the following is proved:

I Lemma 10 ([8, 16]). Suppose that the Partial Solution Invariant hold for T , M , and I,
and that T/I has no greedy contraction. Then there exists a polynomial time algorithm that
finds a non-dangerous semi-closed tree T ′ of T/I and an exact cover I ′ ⊆ E of T ′ of size
|I ′| = |M ′|+ |U ′|.

A formal description of the algorithms is given in Algorithms 1 and 2. Algorithm 1
and its dual-fitting analysis are our main results, since they are relatively simple and new.
Our algorithms differ from previous algorithms in the matching M computed at step 2. In
Algorithm 1 the matching M is only required to be inclusion maximal, while all previous
algorithms computed a maximum size matching in δ(L,L) \ W . This is a substantioal
difference, since otherwise, to perform an LP-based analysis, one needs to add the constraints
(6), as we will do in the analysis of Algorithm 2.

Our algorithms are supplemented by an LP-based analysis to achieve ratios better than 2
w.r.t. to the following two linear programs (LP1) and (LP2), where

(LP1) is defined by the constraints (1), (2), (3), and (4).
(LP2) is defined by the constraints (1), (2), (3), (5), and (6).

min x(E)
(LP1) s.t. xe ≥ 0 ∀e ∈ E (1)

x(δ(T ′)) ≥ 1 ∀T ′ ∈ T (2)
x(σ(se))− xe ≥ 0 ∀e ∈W (3)
x(ζ(T ′)) ≥ 1 ∀T ′ ∈ N (4)

min x(E)
(LP2) s.t. xe ≥ 0 ∀e ∈ E (1)

x(δ(T ′)) ≥ 1 ∀T ′ ∈ T (2)
x(σ(se))− xe ≥ 0 ∀e ∈W (3)
x(δ(v)) = 1 ∀v ∈ L (5)
x(δ(A, V)) ≥ d|A ∩ L|/2e ∀A ∈ OL (6)

APPROX/RANDOM’16

13:8 LP-Relaxations for Tree Augmentation

Algorithm 2: Primal-Fitting(T = (V, E), E) (ratio: ρ = 7/4)
1 initialize: C ← {r}.

2 FL ← min-w-weight exact edge-cover of L, we =

ρ e ∈ δ(L,L) \W
ρ− 1

2 e ∈ δ(L, V \ L)
ρ+ 1

2 e ∈W
M ← δFL

(L,L), U ← the set leaves of T unmatched by M
3 I ←M ∩W , M ←M \W .
4 Exhaust greedy contractions and update I, C accordingly.
5 while do
6 T/I has more than one node
7 Find T ′, I ′ as in Lemma 10.
8 Contract T ′ with I ′.
9 Exhaust greedy contractions and update I, C accordingly.

10 return I

I Theorem 11. Algorithm 1 computes a solution I of size at most 7/4 times the optimal
value of (LP1).

I Theorem 12. Algorithm 2 computes a solution I of size at most 7/4 times the optimal
value of (LP2).

4 Dual-fitting analysis of Algorithm 1 (Theorem 11)

For a link e ∈ E let us use the following notation:
δ−1
T (e) = {T ′ ∈ T : e ∈ δ(T ′)}; recall that T is the family of proper rooted subtrees of T .
σ−1

S (e) = {s ∈ S : e ∈ σ(s)}; recall that S is the set of stems of T .
ζ−1
N (e) = {T ′ ∈ N : e ∈ ζ(T ′)}; recall that N is the family of non-dangerous locking trees.

With this notation, the dual LP of (LP1) is:

max y(E) + q(T)
s.t. y(δ−1

T (e)) + z(σ−1
S (e))− |{e} ∩W |ze + q(ζ−1

N (e)) ≤ 1 ∀e ∈ E
(D) yT ′ ≥ 0 ∀T ′ ∈ T

zw ≥ 0 ∀w ∈W
qT ′ ≥ 0 ∀T ′ ∈ N

We rewrite Algorithm 1 with the updates of the dual variables as Algorithm 3.
Note that every compound node v of T/I is obtained by contracting some (not necesarly

rooted) subtree T ′ of T , and that every compound leaf v of T/I is obtained by contracting a
rooted subtree of T . Thus in the algorithm, assigning value yv to a compound leaf v of T/I
means that we assign value yv to the subtree that was contracted into v. During the algorithm,
every non-zero dual variable corresponds to some node v of T/I; if v is an original leaf then
this variable is yv, and if v is a compound node then these are the variables of subtrees
contracted into v. This is so since in the “while loop” of the algorithm, immediately after
some dual variable is raised, the entire subtree corresponding to this variable is contracted
into a compound node.

I Definition 13. During the algorithm, the dual load µ(e) of a link e is defined as the sum
of the dual variables in the constraint of e in the dual program, namely

µ(e) = y(δ−1
T (e)) + z(σ−1

S (e))− |{e} ∩W |ze + q(ζ−1
N (e)) .

G. Kortsarz and Z. Nutov 13:9

Algorithm 3: Dual-Update(T = (V, E), E) (ratio: ρ = 7/4)
1 initialize: C ← {r};

y ← 0, z ← 0, q ← 0.
2 M ← maximal matching in E(L,L) \W , U ← leaves unmatched by M .

yv ← 1 if v ∈ U , yv ← ρ− 1 if v ∈ L \ U .
ze ← ρ− 1 for every link e = ab ∈W with a, b ∈ U .

3 I ←M ∩W , M ←M \W .
4 Exhaust greedy contractions and update I, C accordingly.
5 while do
6 T/I has more than one node
7 Find T ′, I ′ as in Lemma 10.

Case 1: |C ′| = 0 and either: |M ′| = 0 or |M ′| = 1, |U ′| ≥ 2
yT ′ ← ρ− 1
yv ← ρ− 1 if v ∈ U ′ and yv ← 0 if v ∈ L′ \ U ′.

Case 2: |C ′| = 0 and |M ′| = |U ′| = 1 (so T ′ ∈ N)
qT ′ ← ρ− 1

8 Contract T ′ with I ′.
9 Exhaust greedy contractions and update I,M,C accordingly.

10 return I

The dual credit π(v) of a node v is defined as follows. Let π′(v) be the sum of the dual
variables y and q that correspond to v minus the number of links used by the algorithm
to contract the corresponding tree into v. Then π(v) = π′(v) if v does not contain r, and
π(v) = π′(v) + 1 otherwise.

Note that the dual load of a link e = uv can be written as a sum of two parts µ(e) =
µv(e) + µu(e) where: µv(e) is the sum of the dual variables associated with v that contribute
to µ(e), and µu(e) is the sum of the dual variables associated with u that contribute to µ(e).

I Lemma 14. At the end of step 3 of the algorithm, and then at the end of every iteration
in the “while” loop, the following holds.
(i) If a link e has exactly one endnode in a node v of T/I, then µv(e) ≤ 1, and µv(e) ≤ ρ−1

unless the original endnode of e contained in v is an original unmatched leaf. If e has
both endnodes in a compound node v then µ(e) ≤ ρ.

(ii) If ρ ≥ 1.75 then π(v) ≥ 1 for any v ∈ C ∪ U .

Proof. It is easy to see that the statement holds at the end of step 3 of the algorithm. We
will prove by induction on the number of contraction steps that the statement continues to
hold during the algorithm. For that, let us consider various operations performed by the
algorithm.

Let us consider the greedy contraction operation. Then (i) continues to hold since greedy
contractions do not change the dual variables. Suppose that a link uv was contracted into a
compound node c, where u, v are leaves of T/I. By the induction hypothesis, π(u), π(v) ≥ 1.
Thus π(c) ≥ π(u) + π(v)− 1 ≥ 1, and hence (ii) continues to hold as well.

The other operation is contracting a semi-closed tree T ′ with I ′ into a new compound
node c. The easy case is when |C ′| ≥ 1 or |M ′| ≥ 2. Then (i) continues to hold since in this
case we do not change the dual variables. Also (ii) holds for c, since in this case

π(c) ≥ (π(C ′) + 2(ρ− 1)|M ′|+ |U ′|)− (|M ′|+ |U ′|) ≥ π(C ′) + |M ′|/2 ≥ 1 .

APPROX/RANDOM’16

13:10 LP-Relaxations for Tree Augmentation

Now we consider the more complicated cases 1 and 2 in the “while” loop.

Case 1: |C′| = 0 and either |M ′| = 0 or |M ′| = 1, |U ′| ≥ 2. Recall that in this case
we zero the dual variables of the endnodes of the link in M ′, if any, raise the dual variables
of the unmatched leaves by ρ− 1, and raise the dual variable yT ′ of T ′ from 0 to ρ− 1. Let
e = uv be a link and consider two cases.

If e has exactly one endnode in T ′, say v, then v is not an unmatched leaf of T ′, since
T ′ is semi-closed. Thus since C ′ = ∅, µv(e) = 0 after changing the dual variables, and
µc(e) = ρ− 1 after we contract T ′ into c. Hence (i) holds for e.

Suppose that e has both endnodes in T ′. Then the dual load of e can only decrease,
unless one endnode of e, say v, is an unmatched leaf of T ′. Note that then the other endnode
of e is not an unmatched leaf, since T ′ has no greedy contraction. Before we change the
dual variables, we have µv(e) ≤ 1, by the induction hypothesis. After we change the dual
variables, µu(e) = 0 (since T ′ is semi-closed, and since we zero the dual variables of the
endnodes of the link in M ′). Hence at the end of the operation we have µ(e) ≤ ρ, and e
enters the new compound node c, so (i) continues to hold.

Now we show that (ii) holds for the new compound node c. Note that

π(c) ≥ (yT ′ + π(U ′) + (ρ− 1)|U ′|)− (|M ′|+ |U ′|)
≥ (ρ− 1) + |U ′|+ (ρ− 1)|U ′| − |M ′| − |U ′|
= (ρ− 1)(|U ′|+ 1)− |M ′|

If |M ′| = 0 then we get π(c) ≥ 2(ρ − 1) = 1.5. If |M ′| = 1 and |U ′| ≥ 2 then we get
π(c) ≥ 3(ρ− 1)− 1 = 1.25. In both cases, (ii) continues to hold for c.

Case 2: |C′| = 0 and |M ′| = |U ′| = 1 (T ′ is locking non-dangerous). In this case we
only raise the dual variable qT ′ to ρ− 1, and it is easy to verify that (i) continues to hold in
this case. To see that (ii) continues to hold for the new compound node c note that

π(c) ≥ (qT ′ + π(U ′) + 2(ρ− 1)|M ′|)− (|M ′|+ |U ′|)
≥ (ρ− 1) + 1 + 2(ρ− 1)− 2
= 3(ρ− 1)− 1 = 1.25

This concludes the proof of the lemma. J

The above lemma implies that at the end of the algorithm, the dual solution (y, z, q)
violates the dual constraints by a factor of ρ, and thus (y, z, q)/ρ is a feasible solution to
the dual program. Hence by the Weak Duality Theorem, y(E) + q(T) ≤ ρτ , where τ is
the optimal LP value. If ρ ≥ 1.75, then the unique compound node (that contains r) has
dual credit at least 1, and thus our dual solution fully pays for the links added, namely,
y(E) + q(T) ≥ |I|. Consequently, for ρ = 1.75 we get |I| ≤ y(E) + q(T) ≤ ρτ , as required.

G. Kortsarz and Z. Nutov 13:11

5 Primal-fitting analysis of Algorithm 2 (Theorem 12)

5.1 Reduction to the minimum weight leaf edge-cover problem

Let Π be the polyhedron defined by the constraints of (LP1), namely:

xe ≥ 0 ∀e ∈ E (1)
x(δ(T ′)) ≥ 1 ∀T ′ ∈ T (2)

x(σ(se))− xe ≥ 0 ∀e ∈W (3)
x(δ(v)) = 1 ∀v ∈ L (5)

x(δ(A, V)) ≥ d|A ∩ L|/2e ∀A ∈ OL (6)

Let τ = min{x(E) : x ∈ Π} be the optimal value of (LP2). Let R = V \ (L∪ S). Let ρ ≥ 1.5
be a paramter set later to ρ = 7/4. Recall the weight function w on E(L, V) defined at step 2
of Algorithm 2:

we =

ρ if e ∈ δ(L,L) \W
ρ− 1

2 if e ∈ δ(L, V \ L)
ρ+ 1

2 if e ∈W

I Lemma 15. Let FL be a minimum w-weight exact edge-cover of L and x ∈ Π such that
x(E) = τ . Then:

ρτ ≥ w(FL) + 1
2
∑
v∈R

x(δ(v)) . (7)

Proof. Let ΠL be the polyhedron defined by the constraints (1), (5), and (6). Then ΠL is
the convex hull of the exact edge-covers of L, see [20, Theorem 34.2]. Let x′ be defined by
x′e = xe if e ∈ δ(L, V) and x′e = 0 otherwise. Note that x′ ∈ ΠL, since x satisfies (1), (5),
and (6). Since FL is an optimal (integral) exact cover of L with respect to the weights we

and x′ ∈ ΠL, we have:

x′ · w ≥ w(FL) .

Assign ρxe tokens to every e ∈ E. The total amount of tokens is exactly ρx(E) = ρτ . We
will show that these tokens can be moved around such that the following holds:
(i) Every e ∈ δ(L,L), and thus every e ∈W , keeps its initial ρxe tokens.
(ii) Every e ∈ δ(L, V \ L) keeps (ρ− 1

2)xe tokens from its initial ρxe tokens.
(iii) Every v ∈ R gets 1

2xe token for each e ∈ δ(v).
(iv) Every e ∈W gets additional 1

2xe token, to a total of (ρ+ 1
2)xe tokens.

This distribution of tokens is achieved in two steps. In the first step, for every e ∈ E, move
1
2xe token from the ρxe tokens of e to each non-leaf endnode of e, if any. Note that after this
step, (i), (ii), and (iii) hold. In the second step, every e ∈W gets 1

2x(σ(se)) tokens moved at
the first step to its stem se by the links in σ(se). The amount of such tokens is at least 1

2xe,
by (3). This gives an assignment of tokens as claimed. J

To prove Theorem 12 we prove the following.

I Theorem 16. For ρ = 7/4, Algorithm 2 computes a solution I of size at most the right-hand
size of (7). Thus |I| ≤ ρτ = 7

4τ .

APPROX/RANDOM’16

13:12 LP-Relaxations for Tree Augmentation

5.2 Analysis of the algorithm (Proof of Theorem 16)
Let M = δFL

(L,L) be the set of leaf-to-leaf links in FL and U the set of leaves unmatched
by M . Then for ρ = 7/4 we have:

w(FL) = ρ|M \W |+
(
ρ− 1

2

)
|U |+

(
ρ+ 1

2

)
|M ∩W | = 7

4 |M \W |+
5
4 |U |+

9
4 |M ∩W | .

Thus (7) implies:

ρτ ≥ 7
4 |M \W |+

5
4 |U |+

9
4 |M ∩W |+

1
2
∑
v∈R

x(δ(v)) . (8)

For the anlysis, we will assign tokens to nodes and edges of T according to the r.h.s. of
(8), plus 1 extra token to (the compound node) r. Each time a contraction is performed
(lines 3,4,7,8 in Algorithm 2), we assign 1 token to the compound node that results from
the contraction. For example, every link e ∈M ∩W own 9/4 tokens, and when it is added
to the partial solution I at step 3 of Algorithm 2, these 9/4 tokens pay both for the link
addition and for the token assiged to the resulting compound node of T/I (and a spare of 1/4
token remains). After all links in M ∩W are moved from M to I, we maintain the following
invariant for the tree T/I and for links in M and nodes in R that are not yet contracted
into compound nodes.

Tokens Invariant
(i) Every e ∈M \W owns ρ = 7

4 tokens.
(ii) Every non-compound leaf unmatched by M owns ρ− 1

2 = 5
4 tokens.

(iii) Every compound node owns 1 token.
(iv) Every v ∈ R owns 1

2x(δ(v)) tokens.

For a subtree T ′ of T/I let us use the following notation:
M ′ is the set of (not yet contracted) links in M with both endnodes in T ′.
U ′ is the set of leaves of T ′ unmatched by M .
U ′0 is the set of original (non-compound) leaves of T ′ unmatched by M .
C ′ is the set of non-leaf compound nodes of T ′ (this includes r, if r ∈ T ′).
R′ is the set of (not yet contracted) nodes in R that belong to T ′.
Σ′ =

∑
v∈R′ x(δ(v))

Let tokens(T ′) denote the amount of tokens in T ′; this includes the tokens on nodes of
T ′ and tokens of links in M with both endnodes in T ′, namely:

tokens(T ′) = 7
4 |M

′|+ (|C ′|+ |U ′| − |U ′0|) + 5
4 |U

′
0|+

1
2Σ′

= 7
4 |M

′|+ |U ′|+ 1
4 |U

′
0|+

1
2Σ′ + |C ′|

If we require not to overspend the credit provided by (8), then each time we contract T ′
with I ′ we need the following property.

I Definition 17. A contraction of T ′ with I ′ is legal if tokens(T ′) ≥ |I ′|+ 1.

This means that the set I ′ of the links added to I and the 1 token assigned to the new
compound node are paid by the total amount of tokens in T ′. We do only legal contractions,
which implies that at any step of the algorithm

|I|+ tokens(T/I) ≤ tokens(T) .

G. Kortsarz and Z. Nutov 13:13

Thus at the last iteration, when T/I becomes a single compound node, |I| is at most the
right-hand side of (8).

Recall that after step 3, we have only two types of contractions of T ′ with I ′: a greedy
contraction of a path by a single link between two unmatched leaves, and a contraction of a
semi-closed tree with a link set of size |I ′| = |M ′|+ |U ′|. In the case of a greedy contraction,
tokens(T ′) ≥ |U ′| = 2 while |I ′| = 1; thus this contraction is legal. For a semi-closed subtree
T ′ of T/I, we prove the following.

I Lemma 18. Suppose that the Partial Solution Invariant and the Tokens Invariant hold for
T , M , and I, and that T/I has no greedy contraction. Then tokens(T ′) ≥ |M ′|+ |U ′|+ 1
holds for any non-dangerous semi-closed subtree T ′ of T/I.

5.3 Proof of Lemma 18
Let T ′ be a semi-closed subtree of T/I w.r.t. M with root r′ and node set V ′. Assume that
tokens(T ′)− (|M ′|+ |U ′|) < 1. We will show that T ′ is dangerous. Note that by the Tokens
Invariant:

tokens(T ′)− (|M ′|+ |U ′|) = 3
4 |M

′|+ 1
4 |U

′
0|+

1
2Σ′ + |C ′| = 1

4(3|M ′|+ |U ′0|+ 2Σ′) + |C ′|

Since we assume that tokens(T ′)− (|M ′|+ |U ′|) < 1, this immediately implies:

I Lemma 19. |C ′| = 0 and 3|M ′| + |U ′0| + 2Σ′ < 4; thus |M ′| ≤ 1, and if |M ′| = 1 then
|U ′0| = 0 and Σ′ < 1/2.

Let us use the following additional notation:
L′ is the set of leaves of T ′.
S′ is the set of (the original) stems of T ′.

I Lemma 20. |S′| = 0.

Proof. Note that the Partial Solution Invariant implies that every stem s in T/I has exactly
two leaf descendant, and they are both original leaves. Let a, b be the two leaf descendants
of s, so a, b are original leaves and ab is a twin link. Since ab ∈ W , ab /∈ M ′. From the
assumption that that T/I has no link greedy contraction we get that one of a, b is matched by
M , as otherwise ab gives a greedy contraction. Moreover, |M ′ ∩W | = 0 and |M ′| ≤ 1 implies
that |M ′| = 1 and exactly one of a, b is matched by M . Consequently, |M ′| = |U ′0| = 1,
contradicting Lemma 19. J

I Lemma 21. Σ′ ≥ |U ′|+ 1− 2|M ′|.

Proof. Note that no link has both endnodes in U ′ (since T/I has no greedy contraction),
and that δ(U ′) ∩ δ(T ′) = ∅ (since T ′ is U ′-closed). Thus

x(δ(U ′) ∪ δ(T ′)) =
∑

v∈U ′

x(δ(v)) + x(δ(T ′)) ≥ |U ′|+ 1 .

Let e ∈ δ(U ′). Then e contributes xe to Σ′, unless e is incident to a matched leaf. However,
x(δ(b)) = 1 for every matched leaf b, and the number of matched leaves in T ′ is exactly
2|M ′|. Hence Σ′ ≥ |U ′|+ 1− 2|M ′|, as claimed. J

I Lemma 22. If |M ′| = 1 then |U ′| = 1.

APPROX/RANDOM’16

13:14 LP-Relaxations for Tree Augmentation

Figure 2 Illustration to the proof of Lemma 24.

Proof. If |U ′| ≥ 2 then Lemma 21 gives the contradiction Σ′ ≥ 1. Suppose that |U ′| = 0.
Then |L′| = 2, say L′ = {b, b′}, and so M ′ = {bb′}, since |M ′| = 1. Consequently, the
contraction of bb′ creates a new leaf. We obtain a contradiction by showing that then the
path between b and b′ in T/I has an internal compound node. By the Partial Solution
Invariant b, b′ are original leaves. Note that in the original tree T the contraction of bb′
does not create a new leaf, since bb′ /∈W . This implies that in T , there is a subtree T̂ of T
hanging out of a node z on the path between b and b′ in T . This subtree T̂ is not present in
T/I, hence it was contracted into a compound node during the construction of our partial
solution I. Thus T/I has a compound node ẑ that contains T̂ , and since ẑ contains a node z
that belongs to the path between b and b′ in T , the compound node of T/I that contains z
belongs to the path between b and b′in T/I. J

I Corollary 23. |C ′| = |S′| = |U ′0| = 0, |M ′| = |U ′| = 1 (thus T ′ has 3 leaves), and Σ′ < 1/2.

Proof. We have |C ′| = 0 and |M ′| ≤ 1 by Lemma 19 and |S′| = 0 by Lemma 20. If |M ′| = 0
then from Lemma 21 we get that Σ′ ≥ 2, contradicting Lemma 19. Thus |M ′| = 1 and by
Lemmas 19 and 22 we have Σ′ < 1/2, |U ′| = 1, and |U ′0| = 0. J

We now use the properties of T ′ summarized in Corollary 23 to show that T ′ must be
dangerous. Let bb′ be the matched pair and a the unmatched (compound) leaf of T ′. Let u
and u′ be the least common ancestor of ab and ab′, respectively, and assume w.l.o.g. that
u is a descendant of u′ (see Fig. 2, and note that u = u′ or/and u′ = r′ may hold). Let
xab = α, xbb′ = β, xab′ = γ, x(δ(b, T \ T ′) = ε, and x(δ(b′, T \ T ′) = θ.

I Lemma 24. α, θ > 0 or γ, ε > 0; if u 6= u′ then γ, ε > 0.

Proof. Consider the contribution to Σ′ of links in cuts δ(a) and δ(Tr′):
(i) Cut δ(a): 1

2 > Σ′ ≥ x(δ(a))− (α+ γ) ≥ 1− (α+ γ); hence α+ γ > 1
2 .

(ii) Cut δ(Tr′): 1
2 > Σ′ ≥ x(δ(Tr′))− (θ + ε) ≥ 1− (θ + ε); hence θ + ε > 1

2 .
In particular, we cannot have α, γ = 0 or θ, ε = 0. We show that each one of the cases

α, ε = 0 or γ, θ = 0 is also not possible.
If α, ε = 0 then γ, θ > 1

2 , giving the contradiction 1 = x(δ(b′)) ≥ γ + θ > 1.
If γ, θ = 0 then α, ε > 1

2 , giving the contradiction 1 = x(δ(b)) ≥ α+ ε > 1.
Now let us consider the case u 6= u′. Then by considering the cut δ(Tu) we get: 1/2 >

Σ′ ≥ x(δ(Tu))− (β + γ + ε) ≥ 1− (β + γ + ε); hence β + γ + ε > 1/2.
If γ = 0 then β + ε > 1/2, and α > 1/2 by (i); by considering the cut δ(b) we get the

contradiction 1 = x(δ(b)) ≥ α+ β + ε > 1/2 + 1/2 = 1.
If ε = 0 then β + γ > 1/2, and θ > 1/2 by (ii); by considering the cut δ(b′) we get the

contradiction 1 = x(δ(b′)) ≥ β + γ + θ > 1/2 + 1/2 = 1. J

G. Kortsarz and Z. Nutov 13:15

Lemma 24 implies that T ′ is dangerous. Indeed, if u 6= u′, then γ > 0 implies that the link
ab′ exists, and ε > 0 implies that T ′ is b-open. Thus, by the definition, T ′ is dangerous. The
same holds if u = u′ and γ, ε > 0. If u = u′ and α, θ > 0, then ab exists (since α > 0) and T ′
is b′-open (since θ > 0); thus by exchanging the roles of b, b′ we get that T ′ is dangerous, by
the definition.

This concludes the proof of Lemma 18.

References
1 J. Cheriyan and Z. Gao. Private communication. 2014.
2 J. Cheriyan and Z. Gao. Approximating (unweighted) tree augmentation via lift-and-

project, part II. Manuscript, 2015.
3 J. Cheriyan, T. Jordán, and R. Ravi. On 2-coverings and 2-packing of laminar families. In

ESA, pages 510–520, 1999.
4 J. Cheriyan, H. Karloff, R. Khandekar, and J. Koenemann. On the integrality ratio for

tree augmentation. Operation Research Letters, 36(4):399–401, 2008.
5 Y. Chu and T. Liu. On the shortest arborescence of a directed graph. Science Sinica,

14:1396–1400, 1965.
6 N. Cohen and Z. Nutov. A (1 + ln 2)-approximation algorithm for minimum-cost 2-edge-

connectivity augmentation of trees with constant radius. Theoretical Computer Science,
489-490:67–74, 2013.

7 G. Even, J. Feldman, G. Kortsarz, and Z. Nutov. A 3/2-approximation for augmenting a
connected graph into a two-connected graph. In APPROX, pages 90–101, 2001.

8 G. Even, J. Feldman, G. Kortsarz, and Z. Nutov. A 1.8-approximation algorithm for
augmenting edge-connectivity of a graph from 1 to 2. ACM Transactions on Algorithms,
5(2), 2009.

9 G. N. Frederickson and J. Jájá. Approximation algorithms for several graph augmentation
problems. SIAM J. Computing, 10:270–283, 1981.

10 G. N. Frederickson and J. Jájá. On the relationship between the biconnectivity augmenta-
tion and traveling salesman problem. Theoretical Computer Science, 19(2):189–201, 1982.

11 M. Goemans, A. Goldberg, S. Plotkin, E. Tardos D. Shmoys, and D. Williamson. Improved
approximation algorithms for network design problems. In SODA, pages 223–232, 1994.

12 M. Goemans and D. Williamson. A general approximation technique for constrained forest
problems. SIAM J. Computing, 24(2):296–317, 1995.

13 K. Jain. A factor 2 approximation algorithm for the generalized steiner network problem.
Combinatorica, 21(1):39–60, 2001.

14 S. Khuller. Approximation algorithms for finding highly connected subgraphs (chapter 6).
In Approximation algorithms for NP-hard problems (Ed. D. S. Hochbaum). PWS, Boston,
1996.

15 S. Khuller and R. Thurimella. Approximation algorithms for graph augmentation. J. of
Algorithms, 14:214–225, 1993.

16 G. Kortsarz and Z. Nutov. A simplified 1.5-approximation algorithm for augmenting edge-
connectivity of a graph from 1 to 2. To appear in Transactions on Algorithms, 2014.

17 L. C. Lau, R. Ravi, and M. Singh. Iterative Methods in Combinatorial Optimization. Cam-
bridge University Press, 2011.

18 Y. Maduel and Z. Nutov. Covering a laminar family by leaf to leaf links. Discrete Applied
Mathematics, 158(13):1424–1432, 2010.

19 H. Nagamochi. An approximation for finding a smallest 2-edge connected subgraph con-
taining a specified spanning tree. Discrete Applied Math., 126:83–113, 2003.

APPROX/RANDOM’16

13:16 LP-Relaxations for Tree Augmentation

20 A. Schrijver. Combinatorial Optimization, Polyhedra and Efficiency. Springer-Verlag Berlin,
Heidelberg New York, 2004.

21 A. Sebo and J. Vygen. Shorter tours by nicer ears: 7/5-approximation for the graph-
TSP, 3/2 for the path version, and 4/3 for two-edge-connected subgraphs. Combinatorica,
34(5):597–629, 2014.

A Bi-Criteria Approximation Algorithm for
k-Means∗

Konstantin Makarychev1, Yury Makarychev2, Maxim Sviridenko3,
and Justin Ward4

1 Microsoft Research, Redmond, WA, USA
komakary@microsoft.com

2 Toyota Technological Institute at Chicago, Chicago, IL, USA
yury@ttic.edu

3 Yahoo Labs, New York, NY, USA
sviri@yahoo-inc.com

4 Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
justin.ward@epfl.ch

Abstract
We consider the classical k-means clustering problem in the setting of bi-criteria approximation,
in which an algorithm is allowed to output βk > k clusters, and must produce a clustering
with cost at most α times the to the cost of the optimal set of k clusters. We argue that this
approach is natural in many settings, for which the exact number of clusters is a priori unknown,
or unimportant up to a constant factor. We give new bi-criteria approximation algorithms, based
on linear programming and local search, respectively, which attain a guarantee α(β) depending
on the number βk of clusters that may be opened. Our guarantee α(β) is always at most 9+ε and
improves rapidly with β (for example: α(2) < 2.59, and α(3) < 1.4). Moreover, our algorithms
have only polynomial dependence on the dimension of the input data, and so are applicable in
high-dimensional settings.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases k-means clustering, bicriteria approximation algorithms, linear program-
ming, local search

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2016.14

1 Introduction

The k-means clustering problem is one of the most popular models for unsupervised machine
learning. The problem is formally defined as follows.

I Definition 1. In the k-means problem, we are given a set X of n points x1, . . . , xn in Rp
and an integer parameter k ≥ 1. Our goal is to partition X into k clusters S1, . . . , Sk and
assign each cluster a center ai so as to minimize the cost

∑k
i=1
∑
xj∈Si

‖xj − ai‖2.

The most common heuristic for k-means is Lloyd’s algorithm introduced in 1957 [22, 23].
Lloyd’s algorithm starts with some initial solution and then iteratively improves it by
alternating two steps: at the first step, the algorithm picks the optimal clustering for the
current set of centers; at the second step, the algorithm picks the optimal set of centers for

∗ Work partially supported by EPSRC grant EP/J021814/1 and ERC Starting Grant 335288-OptApprox.

© Konstantin Makarychev, Yury Makarychev, Maxim Sviridenko, and Justin Ward;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016).
Editors: Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans; Article No. 14; pp. 14:1–14:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.14
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

14:2 A Bi-Criteria Approximation Algorithm for k-Means

the current clustering. While we know that the algorithm performs well on well-clusterable
data [26] it performs arbitrarily badly on general instances. There exist many variants of
this algorithm and many heuristics for picking the initial solution. Unfortunately, none of
them give a constant (not depending on k) factor approximation. One of the most popular
ones is the k-means++ algorithm that has an O(log k)-approximation factor [5].

There are several results showing that k-means is NP-hard even in restricted special
cases [3, 24, 13]. The general k-means clustering problem has recently been shown to be
APX-hard, ruling out a PTAS in the general case [7]. However, a variety of PTASes exist
for special cases of the problem. Inaba, Katoh, and Imai [16] gave a (1 + ε)-approximation
algorithm for the case in which the number of clusters, k, and the dimension of the space,
p, are fixed. Since then many more PTASes were proposed for other special cases. Most
recently, PTASes have been obtained via local search algorithms in the general setting in
which distances come from a metric of constant doubling dimension [15] or from a graph
with forbidden minors [12]. Both of these results can be specialized yield PTASes in the
standard, Euclidean setting considered here whenever the dimension of the space is fixed.

In the general case, in which the dimension is not fixed, the best constant factor ap-
proximation algorithm was proposed by Kanungo et al. [18]. Their algorithm gives 9 + ε

factor approximation. Previously, Jain and Vazirani [17] gave a (larger) constant-factor
approximation for a discrete variant of k-means, via the primal-dual method. Using and
connection with the k-median problem, Anagnostopoulos, Dasgupta, and Kumar [4] also
designed a constant factor approximation algorithm for the general co-clustering problem,
which includes k-means as a special case. Aggarwal, Deshpande, and Kanan [2] showed that
running the k-means++ algorithm for more steps gives an α = 4 + ε factor approximation
by opening d16(k +

√
k)e centers, and also showed how to modify the resulting solution to

obtain a set of k centers attaining an O(1) factor guarantee.
In most practical applications the target number k of clusters is not fixed in advance.

Rather, we would like to find a number k that provides a well-clusterable solution. Here,
we show how to substantially improve the approximation factor by slightly violating the
constraint on the number of clusters. We present bi-criteria approximation algorithms for
the general case of the problem. A (β, α) bi-criteria approximation algorithm finds a solution
with βk clusters, whose cost is at most α times the optimal cost of a solution using k clusters.
In contrast to the approach of Aggarwal, Deshpand, and Kanan [2], our algorithms find
an approximate solution for every β > 1. Our approximation is always at most 9, and
decreases rapidly with β. In particular, we obtain a 4-approximation by opening only 1.65k
centers, improving over previous results [2] by a factor of nearly 10, and obtain improved
approximation factors α(β) as β continues to grow. For example, α(1.3) < 6.45, α(1.5) < 4.8;
α(2) < 2.59, and α(3) < 1.4. In general, we argue that in many applications the number of
clusters is not important as long as it approximately equals k. For these applications we can
obtain an approximation factor very close to 1.

We give three bi-criteria algorithms – two based on linear programming and one based on
local search. We show the algorithms’ approximation factors as a function of β in Figure 1.
Note that our linear programming algorithm attains a better approximation α for large β,
while the local search algorithm is better for β near 1.

Both of our algorithms are based on a reduction from the general k-means problem, in
which cluster centers may be placed at any point in Rp, to the following problem, in which
we are restricted to a given, discrete set of candidate cluster centers with specified distances
from each point. As part of reduction, we utilize dimensionality reduction to ensure that
the number of discrete candidate centers that must be considered is polynomial in both the
number of points n and in the dimension p.

K. Makarychev, Y. Makarychev, M. Sviridenko, and J. Ward 14:3

1 1.5 2 2.5 3 3.5 4

1

2

3

4

5

6

7

8

9
LP Rounding (Section 4)
Alternative LP Rounding
Local Search (Section 5)

Figure 1 Approximation ratios obtained from opening βk centers.

I Definition 2. In the k-median problem, we are given a set of points D, a set of potential
center locations C and a distance function1 (d(i, j))i∈C,j∈D. The cost of assigning point j to
center i is d(i, j). Our goal is to open at most k centers and assign each point to a center so
as to minimize the total cost.

The first approximation algorithms for the k-median problem were given by Lin and Vitter
[21], who gave an LP-rounding algorithm that attains an approximation factor of 1 + ε

by opening O(k lnn) centers (i.e. a (1 + ε, O(lnn)) bi-criteria approximation). In further
work, Lin and Vitter [20] showed that if the distance function d is a metric, it is possible
to obtain a 2(1 + ε) approximation algorithm by opening only (1 + 1/ε)k centers. The first
constant-factor approximation for the metric k-median problem using only k centers was
obtained by Arya et al. [6], who showed that a simple local search algorithm gives a 3 + ε

approximation. This remained the state of the art until recently, when Li and Svensson [19]
gave a 2.732 + ε approximation algorithm based on LP rounding. Subsequently, this has
been improved to 2.675 + ε by Byrka [8].

Unfortunately, our resulting k-median instance is non-metric, and so we must employ an
alternative to the standard triangle inequality in our analysis. In the case of our LP-based
algorithms, we use the fact that our reduction produces instances satisfying a 3-relaxed 3-hop
triangle inequality, a concept that we define in Section 2. In the case of local search, we note
that given any partition of points of Rp into clusters S1, . . . , Sk, the optimal location of each
k-means cluster Si’s center is the centroid of all points in Si. This, combined with the fact
that our reduction to k-median approximately preserves the k-means cluster costs allows us
to employ a similar approach to that of Kanungo et al. [18].

1 Here, and throughout, we do not require the distance function to be a metric, as in some alternative
definitions of the k-median problem. In particular, in our k-median instance, the distances will be the
squared distances from given k-means instance.

APPROX/RANDOM’16

14:4 A Bi-Criteria Approximation Algorithm for k-Means

1.1 Our Results
We give three approximation algorithms. The first algorithm is based on linear programming.
It gives an

α1(β) = 1 + e−β
(6β

1− β + (β − 1)2

β

)
approximation (see also (14) for a slightly tighter bound). The second algorithm is based on
local search. It gives an

α2(β) = (1 +O(ε))
(

1 + 2
β

)2

approximation. The third algorithm is also based on linear programming. It gives an

α3(β) = max
(
1 + 8e−β , β(e−1 + 8e−β)

β − 1
)

approximation. The algorithm is similar to the first algorithm, but it uses pipage rounding
(see [1]) instead of randomized rounding. In the conference version of the paper, we omit the
description of the third algorithm. The approximation factors are shown in Figure 1.

In Section 2, we introduce the notation that we shall use throughout the rest of the
paper and review standard notions related to both the k-means and k-median problems. In
Section 3, we give the details of our reduction to the k-median problem. Finally, in Sections 4
and 5, respectively, we present our main LP-based algorithm and local search algorithm
for the resulting k-median instances. For the sake of presentation, we defer some technical
details to the appendix.

2 Preliminaries

We now fix some notation, and recall some basic properties of k-means solutions and the
standard linear program for the k-median problem. Additionally, we define the notion of an
α-relaxed 3-hop triangle inequality, which will be crucial to the analysis of our LP-rounding
algorithms.

2.1 k-means
Consider a given instance of the k-means problem, specified by a set of points X ∈ Rp. Given
a partition S = 〈S1, . . . , Sk〉 of X and a set C = 〈c1, . . . , ck〉 of centers in Rp, denote by
costX(S,C) the total cost of the clustering that, for each 1 ≤ i ≤ k assigns each point of Si
to the center ci:

costX(S,C) =
k∑
i=1

∑
x∈Si

‖x− ci‖2.

Note that to describe an optimal solution to the k-means problem, it is sufficient to specify
either all clusters or all centers in the solution. Indeed, given a list of clusters S1, . . . , Sk, we
can find the optimal assignment of centers ci for it: the optimal choice of center ci for Si is

1
|Si|
∑
xj∈Si

xj . For this choice of ci, we have

∑
x∈Si

‖x− ci‖2 = 1
2|Si|

∑
x′,x′′∈Si

‖x′ − x′′‖2. (1)

K. Makarychev, Y. Makarychev, M. Sviridenko, and J. Ward 14:5

Given a partition S = 〈S1, . . . , Sk〉 of X into clusters, we then denote by costX(S) the cost
of this optimal choice of centers. That is,

costX(S) =
k∑
i=1

1
2|Si|

∑
x′,x′′∈Si

‖x′ − x′′‖2.

Similarly, given a list C of centers c1, . . . , ck, we can find the optimal partition S =
〈S1, . . . , Sk〉 of X into clusters. For each c ∈ C, let NC(c) be the set of those points
x ∈ X that are closer to ci than to other centers cj 6= ci (if a point x is at the same
distance from several centers, we break the ties arbitrarily). The optimal partition for C
then sets Si = NC(ci). Given a set C of k centers, we define costX(C) ≡ costX(T), where
T = 〈NC(c1), . . . , NC(ck)〉 is the partition induced by C.

2.2 k-median
We will reduce a given instance X of the k-means problem to an instance of the (non-metric)
discrete k-median problem, specified by 〈D, C, d〉. By analogy with the k-means problem, we
can consider a partition S = S1, . . . , Sk of points from D, and then consider the best choice
of a single center for each partition. We denote the cost of this choice by costD,d(S):

costD,d(S) =
k∑
i=1

min
x∈C

∑
j∈Si

d(x, j).

Similarly, given a list of k centers C = 〈c1, . . . , ck〉, let NC(ci) be the set of those points x ∈ D
that are closer (according to the distance function d) to ci than to any other center in C
(again, if a point x is at the same distance from several facilities, we break ties arbitrarily). As
in the case of k-means, we define costD,d(C) ≡ costD,d(T) where T = 〈NC(c1), . . . , NC(ck)〉
is the partition of D induced by C.

Although the distance function d in our k-median instances will not satisfy the standard
triangle inequality, we can show that it satisfies a relaxed variant of the following sort:

I Definition 3. We say that d satisfies an α-relaxed 3-hop triangle inequality on D ∪ C if,
for any j, j′ ∈ D and i, i′ ∈ C, we have

d(i, j) ≤ α (d(i, j′) + d(i′, j′) + d(i′, j)) .

Specifically, we shall show that the distances produced by our reduction satisfy a 3-relaxed
3-hop triangle inequality.

3 Reduction from k-means to k-median

We now give the details of our reduction from the k-means to the k-median problem. In
the k-median problem, a finite set C of candidate centers is specified, while in the k-means
problem, the ideal center for each cluster Si of points is given by the centroid of Si. Ideally,
we want to ensure that for every possible centroid of the original k-means instance, there is
some nearby candidate center in C. The following notion of an ε-approximate centroid set,
introduced by2 Matoušek [25], captures this requirement.

2 Matoušek’s original definition requires that C contains some point in an ε-tolerance ball centered at the
centroid of each non-empty cluster of points from X. The condition presented here follows from this
one (see, for example, the proof of Lemma 4.1, in [25]).

APPROX/RANDOM’16

14:6 A Bi-Criteria Approximation Algorithm for k-Means

I Definition 4. A set of points C ⊂ Rp is an ε-approximate centroid set for X ⊂ Rp if for
every S ⊂ X,

min
c∈C

∑
x∈S
‖x− c‖2 ≤ (1 + ε) min

c∈Rp

∑
x∈S
‖x− c‖2.

Observe that if C is an ε-approximate centroid set for X, then for every set of k centers C
(in particular, for the optimal set C∗), there exists a k-point subset C̃ ⊂ C such that

costX(C̃) =
∑
x∈X

min
c∈C̃
‖x− c‖2 ≤ (1 + ε)

∑
x∈X

min
c∈C
‖x− c‖2 = (1 + ε) costX(C).

Thus, if we restrict our search for k center points in the k-means problem to only those
points of C, we lose at most a factor of (1 + ε).

Matoušek showed that for every set X in Rp and ε > 0, there exists an ε-approximate
centroid set of size O(|X|ε−p log(1/ε)).

I Theorem 5 (Theorem 4.4 in [25]). Given an n-point set X ⊂ Rp and ε > 0, an ε-
approximate centroid set for X of size O(nε−p log(1/ε)) can be computed in time O(n logn+
nε−p log(1/ε)).

Unfortunately, in our setting, the dimension p of the space in which points x1, . . . , xn lie may
be as large as n. Thus, in order to apply Theorem 5, we first embed X into a low-dimensional
space using the Johnson–Lindenstrauss transform.

I Theorem 6 (Johnson–Lindenstrauss Flattening Lemma). For every set of points X in Rp
and ε ∈ (0, 1), there exists a map ϕ of X into p̃ = O(log |X|/ε2) dimensional space such that

‖x− y‖2
2 ≤ ‖ϕ(x)− ϕ(y)‖2

2 ≤ (1 + ε)‖x− y‖2
2. (2)

We say that the map ϕ is a dimension reduction transform for X.

Given an instance X of k-means, we apply the dimension reduction transform to X, get a
set X ′ ⊂ Rp̃, and then find an ε-approximate centroid set C to X ′. We obtain an instance
〈X ′, C, d〉 of k-median with the squared Euclidean distance d. We show in Theorem 7 that the
value of this instance is within a factor of (1 + ε) of the value of instance X of k-means, and,
moreover, that there is a one-to-one correspondence between solutions of instance 〈X ′, C, d〉
and solutions of instance X. We defer the proof of Theorem 7 to Appendix A.

I Theorem 7. The following hold:
1. For every ε ∈ (0, 1/2), there exists a polynomial-time reduction from k-means to k-median

with distance function that satisfies the 3-relaxed 3-hop triangle inequality. Specifically,
given an instance X of k-means, the reduction outputs an instance 〈D, C, d〉 of k-median
with |D| = |X|, |C| = nO(log(1/ε)/ε2), and distance d that satisfies the 3-relaxed 3-hop
triangle inequality such that

OPTX ≤ OPT〈D,d〉 ≤ (1 + ε)OPTX ,

where OPTX is the value of the optimal solution to X and OPT〈D,d〉 is the value of
the optimal solution to 〈D, C, d〉. The reduction also gives a one-to-one correspondence
ψ : D → X such that

costX(ψ(S)) ≤ costD,d(S) ≤ (1 + ε) costX(ψ(S)),

where S = 〈S1, . . . , Sk〉 is a partition of D and ψ(S) = 〈ψ(S1), . . . , ψ(Sk)〉 is the corres-
ponding partition of X. The reduction runs in time nO(log(1/ε)/ε2).

K. Makarychev, Y. Makarychev, M. Sviridenko, and J. Ward 14:7

2. In instance 〈D, C, d〉, C ⊂ Rp̃ (for some p̃), C is an (ε/3)-approximate centroid set for D,
and d(c, x) = ‖c− x‖2.

We remark, briefly, some elements of our reduction may be improved by using more sophist-
icated approaches for constructing approximate centroids and core sets (e.g. [14]), as well as
recent specialized dimensionality reduction techniques [11]. Here we have chosen instead to
present a more straightforward reduction.

4 Algorithm for k-Median with Relaxed Triangle Inequality

We now turn to the problem of approximating the k-median instance from Theorem 7. Our
first algorithm is based on the following standard linear programming relaxation for the
k-median problem:

min
∑
c∈C

∑
x∈X

zxcd(x, c), (3)∑
c∈C

yc = k, (4)∑
c∈C

zxc = 1, ∀x ∈ X, (5)

zxc ≤ yc, ∀c ∈ C, j ∈ X, (6)
zxc, yc ≥ 0. (7)

In the integral solution, each variable yc indicates whether the center c is open; and each
variable zxc indicates whether the point x is assigned to the center c. Constraint (4) asserts
that we should open exactly k centers; constraint (5) ensures that every point is assigned
to exactly one center; finally, constraint (6) says that points can be assigned only to open
centers. In a fractional LP solution, all zxc and yc lie in the interval [0, 1]. Note that in
the integral solution, zxc = yc, if zxc > 0 (as both zxc and yc must be equal to 1). We can
slightly change any feasible LP solution so it also satisfies this property. Specifically, we
split any center c which does not satisfy yc = zxc (for some x ∈ X) into two co-located
centers c1 and c2: one with weight zxc and the other with weight yc − zxc. We distribute the
weights zx′c among them as follows: we let zx′c1 = min(zx′c, yc1); zx′c2 = yc2 −min(zx′c, yc1).
Note that this is a standard assumption in the k-median literature. We refer the reader
to [27] (see Lemma 1) and [10] for more details. The values yc define the measure y on C:
y(C) =

∑
c∈C yc. In the rounding algorithm and in the analysis, it will be convenient to

think of this measure as a “continuous measure”: That is, if needed we will split the centers
into co-located centers to ensure that we can find a set of any given measure µ.

For every point x ∈ X, let Cx = {c ∈ C : zxc > 0}. The set Cx contains all centers that
serve x in the LP solution. Recall that we modify the solution so that yc = zxc if zxc > 0.
Hence, yc = zxc if x ∈ Cx. For every point x ∈ X, we define its LP radius Rx as:

Rx =
∑
c∈C

zxcd(x, c) =
∑
c∈Cx

ycd(x, c).

Observe, that the LP value, which we denote by LP , equals
∑
x∈X Rx.

Algorithm. We now describe our LP-rounding algorithm for the k-median problem with
relaxed 3-hop triangle inequality.

APPROX/RANDOM’16

14:8 A Bi-Criteria Approximation Algorithm for k-Means

I Theorem 8. There exists a (β, α) bi-criteria approximation algorithm for k-means with

α(β) = 1 + e−β
(6β

1− β + (β − 1)2

β

)
(8)

for every β > 1.

The algorithm first solves the LP problem and modifies the LP solution as described
above if necessary. Then, it partitions all centers into βk groups Z ∈ Z, each with LP
measure 1/β. It picks one center c at random from each group Z with probability βyc (note
that

∑
c∈Z βyc = 1). The algorithm outputs the set of βk chosen centers, and assigns every

point to the closest center.
We now describe the construction of Z in more detail. We partition centers into βk

groups as follows. For every x ∈ X, we find the unique ball Bx around x whose LP weight
exactly equals 1/β (To do so, we may split some centers, and pick some centers in Bx at the
boundary of the ball but not the others). We find a subset of points W such that balls Bx
with x ∈ W are disjoint, and for every point x ∈ X, we also define a “witness” w(x) ∈ W.
To this end, we sort all points x ∈ X by the LP radius Rx in the ascending order, and then
consider them one by one. For each x ∈ X, if Bx is disjoint from all previously chosen balls,
then we add x to the set W and set w(x) = x. Otherwise, if Bx intersects some other ball
Bx′ that is already chosen, we discard Bx and set w(x) = x′. If there are several balls Bx′

intersecting Bx, we pick the first x′ according to our ordering as the witness. Note, that
Rw(x) ≤ Rx for all x. Once we have found a disjoint collection of balls {Bx : x ∈ W}, we add
them to the set Z. We partition centers not covered by ∪x∈WBx into groups of LP weight
1/β arbitrarily and add these groups to Z. Thus, we obtain a partitioning Z of all centers
into groups of LP weight 1/β.

Analysis. We show that the algorithm returns a valid solution, and then prove an upper
bound on its expected cost. For the sake of presentation, we defer some technical claims to
Appendix B.

The algorithm picks exactly one center from each group, so it always picks βk centers.
Hence, it always outputs a valid solution. Let S be the set of centers output by the algorithm.
Denote the radius of the ball Bx by Rβx . For every center x, we estimate the expected
distance from x to the closest center c in the solution S i.e. E[d(x, S)]. We show that
E[d(x, S)] ≤ α(β)Rx for α(β) as in equation (8). Since LP =

∑
xRx, we conclude that the

algorithm has an approximation factor of α(β).
Fix x ∈ X. Recall, that Cx = {c : zxc > 0} is the set of all centers that serve x in the

LP solution. We upper bound d(x, S) by d(x, (Cx ∪ Bw(x)) ∩ S), which is the distance to
the closest center in Cx ∪Bw(x) chosen by the algorithm. Note that the solution S always
contains at least one center in Bw(x), so (Cx ∪ Bw(x)) ∩ S 6= ∅. For the proof, we pick a
particular (random) center f(x) ∈ (Cx ∪Bw(x)) ∩ S.

We define f(x) using the following randomized procedure. Consider the partitioning Z
of all centers into groups of measure 1/β used by the algorithm. Let Z̃ = {Z ∩ Cx : Z ∈
Z; Z ∩ Cx 6= ∅} be the induced partitioning of the set Cx. For all Z̃ ∈ Z̃ we independently
flip a coin and with probability (1− e−βy(Z̃))/(βy(Z̃)) make the set Z̃ active. We let A ⊂ Cx
to be the union of all active sets Z̃; we say that centers in A are active centers. Let f(x) be
the center in A∩ S closest to x, if A∩ S 6= ∅ ; let f(x) to be the unique center in Bw(x) ∩ S,
otherwise. We set E = 0, if A ∩ S 6= ∅; and E = 1, otherwise. Roughly speaking, E indicates
whether f(x) ∈ Cx or f(x) ∈ Bw(x): Specifically, if E = 0, then f(x) ∈ Cx; if E = 1, then
f(x) ∈ Bw(x). Note, however, that Cx ∩Bw(x) 6= ∅, and f(x) may belong to Cx ∩Bw(x).

K. Makarychev, Y. Makarychev, M. Sviridenko, and J. Ward 14:9

The center f(x) may not be the closest to x, but since f(x) ∈ S, we have

d(x, S) ≤ d(x, (Cx ∪Bw(x)) ∩ S) ≤ d(x, f(x)).

Let us now derive bound on the expected distance of a single client x to f(x). We begin by
considering the probability of the event E .

I Lemma 9. Pr(E = 0) = 1− e−β.

Proof. Recall that the algorithm picks one center c in every Z ∈ Z uniformly (with respect
to the measure y) at random. Thus, the probability that the algorithm picks a center from
Z̃ equals βy(Z̃). The probability that a given Z̃ contains a point from the solution S and Z̃
is active equals βy(Z̃)× (1− eβy(Z̃))/(βy(Z̃)) = (1− eβy(Z̃)). The probability that no such
Z̃ exists equals∏

Z̃∈Z̃

e−βy(Z̃) = e
−
∑

Z̃∈Z̃
βy(Z̃) = e−βy(Cx) = e−β . J

Using Lemma 9 we have:

E[d(x, f(x)] = Pr(E = 0)E
[
d(x, f(x)) | E = 0

]
+ Pr(E = 1)E

[
d(x, f(x)) | E = 1

]
= (1− e−β)E

[
d(x, f(x)) | E = 0

]
+ e−β E

[
d(x, f(x)) | E = 1

]
. (9)

Let us now bound each remaining above, in turn.

I Lemma 10. E[d(x, f(x)) | E = 0] ≤ Rx.

Proof. We define two sets of random variables P and Q, and then show that they are
identically distributed. If the algorithm picks a center c in Z̃, and Z̃ is active, let P (Z̃) = c.
Let P (Z̃) =⊥, otherwise. The random variables P (Z̃) are mutually independent for all
Z̃ ∈ Z̃; and

Pr(Z̃ = c) = (1− e−βy(Z̃)) yc
y(Z̃)

for c ∈ Z̃.
To define Q, we introduce an auxiliary Poisson arrival process. At every point of time

t ∈ [0, β], we pick a center c ∈ Cx with probability ycdt (i.e., with arrival rate yc). For every
Z̃, let Q(Z̃) be the first center chosen in Z̃. If no centers in Z̃ are chosen, we let Q(Z̃) =⊥.
Note that we pick two centers at exactly the same time with probability 0, hence Q(Z̃) is well
defined. Conditional on Q(Z̃) 6=⊥, the random variable Q(Z̃) is uniformly distributed in Z̃
with respect to the LP measure y (since at every given time t, the probability of arrival equals
ycdt). Then, Pr(Q(Z̃) 6=⊥) = (1− e−βy(Z̃)). Hence, Pr(Q(Z̃) = c) = (1− e−βy(Z̃))yc/y(Z̃).
Note that all random variables Q are mutually independent. Thus, the random variables Q
have the same distribution as random variables P .

Note that if E = 0, then f(x) is the closest center in {P (Z̃) : Z̃ ∈ Z̃;P (Z̃) 6=⊥} to x. If
E = 1, then all P (Z̃) are equal to ⊥. Let UQ = {Q(Z̃) : Z̃ ∈ Z̃;Q(Z̃) 6=⊥}. Since P and Q
have the same distribution, we have

E[d(x, f(x)) | E = 0] = E[min
c∈UQ

d(x, c) | UQ 6= ∅].

Conditional on UQ 6= ∅, the first center that arrives according to our stochastic process is
uniformly distributed in Cx, according the measure y. The expected distance from it to x
equals Rx. Hence, E[minc∈UQ

d(x, c) | UQ 6= ∅] ≤ Rx. J

APPROX/RANDOM’16

14:10 A Bi-Criteria Approximation Algorithm for k-Means

Observe that for a random center c distributed according to the LP measure y in Cx (i.e.,
Pr(c = c0) = y(c0)/y(Cx) = y(c0)), we have the exact equality E[d(x, c)] = Rx. So Lemma 10
shows that the distribution of f(x) given E = 0 is “not worse” than the distribution according
to y in Cx.

We now bound the expected distance from x to f(x) given E = 1.

I Lemma 11. Let γ = βy(Dx). Then,

E[d(x, f(x)) | E = 1] ≤
(
eγ(1− γ)× 3

(β

β − 1 + r1 + r2

)
+ (1− eγ(1− γ))× β

γ

)
Rx,

for some non-negative numbers r1 and r2 such that r1 ≤ r2 and 1−γ
β r1 + β−1

β r2 ≤ Rx.

Proof. Recall, that w(x) is the witness for x. Thus, the balls Bx and Bw(x) intersect and
Rw(x) ≤ Rx. Let c◦ be an arbitrary center in Bx ∩ Bw(x). By the relaxed 3-hop triangle
inequality,

d(x, f(x)) ≤ 3
(
d(x, c◦) + d(w(x), c◦) + d(w(x), f(x)

)
≤ 3
(
Rβx +Rβw(x) + d(w(x), f(x))

)
. (10)

Here, we used that Rβx is the radius of Bx; Rβw(x) is the radius of Bw(x). Now, let Dx =
Bw(x) ∩ Cx. In Lemmas 15 and 16 in Appendix B, we show that:

Rβx ≤ βRx/(β − 1) (11)

and

Rβw(x) + E[d(w(x), f(x)) | f(x) ∈ Bw(x) \Dx; E = 1] ≤ r1 + r2, (12)

for some pair of nonnegative numbers r1 and r2 (r1 ≤ r2) satisfying the conditions of the
lemma. Taking expectations conditioned on f(x) ∈ Bw(x) \Dx and E = 1 in (10), and then
applying the bounds (11) and (12), we obtain:

E[d(x, f(x)) | f(x) ∈ Bw(x) \Dx; E = 1] ≤ 3
(βRx
β − 1 + r1 + r2

)
. (13)

In Lemmas 17 and 18 in the Appendix, we show, respectively, that

Pr(f(x) ∈ Bw(x) \Dx | E = 1) = eγ(1− γ),

and

E[d(x, f(x)) | f(x) ∈ Dx; E = 1] ≤ βRx
γ

.

Combining these bounds with (13), we obtain the desired inequality. J

Combining Lemmas 10 and 11 with (9), we have:

E[d(x, f(x))] ≤ Rx

(
(1−e−β)+e−β

(
eγ(1−γ)×3

(
β

β − 1 + r1 + r2

Rx

)
+(1−eγ(1−γ))× β

γ

))
.

Now, we recall that γ = βy(Dx), and note that γ ∈ [0, 1], since y(Bw(x)) = 1/β. In order
to bound the right hand side, we take the maximum over all γ ∈ [0, 1] and r1, r2 ≥ 0

K. Makarychev, Y. Makarychev, M. Sviridenko, and J. Ward 14:11

satisfying the conditions given in Lemma 11. The right hand side is a linear function of
r1 and r2. Hence, for a fixed γ the maximum is attained at one of the two extreme points:
(r1, r2) = (0, βRx/(β − 1)) or (r1, r2) = (βRx/(β − γ), βRx/(β − γ)). Substituting r1 and r2
in the previous inequality we get the following upper bound on the ratio E[d(x, f(x))]/Rx:

max
γ∈[0,1]

(
(1−e−β)+3e−(β−γ)(1−γ)

(β

β − 1 +max
(β

β − 1 ,
2β
β − γ

))
+ βe−β(1− eγ(1− γ))

γ

)
.

(14)

This function can in turn be upper bounded by α(β), as defined in (8). We conclude that
the approximation factor of the algorithm is upper bounded by α(β).

5 Local Search

For smaller values of β, we consider the standard local search algorithm (see, e.g., [6]) for the
k-median problem using swaps of size s, but now allow the solution to contain βk centers.
The algorithm works as follows: we maintain a current solution A comprising βk centers in
C. We repeatedly attempt to reduce the cost of the current solution A by closing a set of
at most s centers in A and opening the same number of new centers from C \A. When no
such local swap improves the cost of the solution A we terminate and return A. In order to
simplify our analysis, we do not worry about convergence time of the algorithm here. We
note that by applying standard techniques (see [6, 9]), we can ensure that, for any δ > 0,
the algorithm converges in time polynomial in n = |C ∪ D| and 1

δ by instead stopping when
no local swap improves the cost of A by a factor of

(
1− δ

poly(n)

)
; the resulting algorithm’s

approximation ratio increases by only 1
1−δ .

Unfortunately standard analyses of local search algorithms for the k-median problem[6, 9]
rely heavily on the triangle inequality, while the instances generated by Theorem 7 satisfy
only a 3-relaxed 3-hop triangle inequality. Thus, we proceed as in Kanungo et al. [18].
Similarly to the previous section, we defer some technical details to Appendix C.

Let O = 〈o1, . . . , ok〉 be an optimal set of k centers, and A = 〈a1, . . . , aβk〉 be the set of
βk centers produced by the local search algorithm. As in [18], we say that a center a ∈ A
captures a center o ∈ O if a is the center of A that is closest to o. Note that each center in A
can potentially capture several centers in O, but each center in O is captured by exactly one
center of A. We now construct a set of local swaps to consider in our analysis. We say that
a center in A is “good” if it does not capture any center of O. Then, because each center of
O is captured by only one center of A, we must have at least βk− k = (β − 1)k good centers
in A. We fix some such set of (β − 1)k good centers; we call them “auxiliary” centers and set
them aside for now.

For the remaining k centers B ⊆ A, we proceed exactly as in [18]: we assign each center
in O to the bad center of B that captures it. This creates a partition O1, . . . , Or of centers in
O. We similarly partition the centers of B into r parts B1, . . . , Br with |Bi| = |Oi|; for each
1 ≤ i ≤ r, let Bi contain the bad center of B that captures all of Oi together with |Bi| − 1
unique good centers of B. Note that the fact that each center of O is captured only once
ensures that there are indeed enough good centers in B for our construction. Now, we use
this partition of B and O to construct a set of swaps, each assigned some weight. If |Oi| ≤ s,
we consider the 〈Bi, Oi〉 with weight 1. If |Oi| = q > s, we consider the group of all singleton
swaps 〈{b}, {o}〉, where o ∈ Oi and b is a good center in Bi, each given weight 1

q−1 . At this
point, note that every center in O occurs in swaps of total weight 1, and every center in B

APPROX/RANDOM’16

14:12 A Bi-Criteria Approximation Algorithm for k-Means

occurs in swaps of total weight at most q
q−1 ≤ 1 + 1

s . Now, we add swaps involving auxiliary
centers; for each of the (β − 1)k auxiliary centers a ∈ A \ B and each o ∈ O, we consider
singleton swap 〈{a}, {o}〉, assigned weight 1

k . Each center of O now occurs in swaps of total
weight 1 + (β − 1) = β, while each center of A \B occurs in swaps of total weight 1.

Summarizing, our set of swaps satisfies the following properties: (1) each center of O
occurs in swaps of total weight β; (2) each center of A occurs in swaps of total weight at
most 1 + 1

s ; (3) for any swap 〈A′, O′〉 in our set, no center in A′ captures any center not in
O′. We now give a brief sketch of how these properties lead to our desired approximation
ratio (we give a full description of the analysis in the appendix). Our analysis closely follows
that of [18].

Recall that for some set C of centers and some c ∈ C, we denote by NC(c) the set of all
points x whose closest center in C is c. As in [18], the total change costD,d(A \A′ ∪O′)−
costD,d(A) due to performing a single swap 〈A′, O′〉 is at most:∑

o∈O′

∑
x∈NO(o)

(
d(x, o)− d(x, ax)

)
+
∑
a∈A′

∑
x∈NA(A′)

(
d(x, aox

)− d(x, ax)
)
.

If A is locally optimal, then we must have that costD,d(A \A′ ∪O′)− costD,d(A) ≥ 0 for all
swaps (A′, O′) considered by the algorithm. In particular, for each swap 〈A′, O′〉 in our set,
we have:

0 ≤
∑
o∈O′

∑
x∈NO(o)

(
d(x, o)− d(x, ax)

)
+
∑
a∈A′

∑
x∈NA(A′)

(
d(x, aox

)− d(x, ax)
)
. (15)

Multiplying each inequality (15) by the weight of its swap and then adding the resulting
inequalities we obtain:

0 ≤ β
∑
x∈D

(d(x, ox)− d(x, ax)) +
(

1 + 1
s

)∑
x∈D

(d(x, aox
)− d(x, ax)),

due to properties (1) and (2) of our set of swaps. Theorem 7 part 2, which shows that our
center set is an approximate k-means centroid set, then allows us to simplify the final term
above as in [18], giving:

0 ≤
(
β + 2 + 2

s

)
costD,d(O)−

(
β −

2 + 2
s

α

)
costD,d(A) +O(ε) · costD,d(A),

where α2 = costD,d(A)
costD,d(O) is the squared approximation ratio of our algorithm. Rearranging and

simplifying (again, we give a detailed analysis in the appendix), we obtain

α <

(
1 + 2

β
+ 2
βs

)
1

1−O(ε) .

Thus, we have the following theorem:

I Theorem 12. There exists an algorithm that produces a solution for any instance of
βk-median problem satisfying the properties of Theorem 7, where β > 1 is a fixed constant.
For any s ≥ 1 and any ε ∈ (0, 1], the algorithm runs in time polynomial in |C ∪ D| and
produces a solution A satisfying:

costD,d(A) ≤
(

1 + 2
β

+ 2
βs

)2 1
1−O(ε) · costD,d(O)

where O is the optimal set of k centers in C.

K. Makarychev, Y. Makarychev, M. Sviridenko, and J. Ward 14:13

References
1 Alexander A. Ageev and Maxim Sviridenko. Pipage rounding: A new method of construct-

ing algorithms with proven performance guarantee. J. of Combinatorial Optimization,
8(3):307–328, 2004.

2 Ankit Aggarwal, Amit Deshpande, and Ravi Kannan. Adaptive sampling for k-means
clustering. In Proc. of the 12th International Workshop APPROX, pages 15–28, 2009.

3 D. Aloise, A. Deshpande, P. Hansen, and P. Popat. NP-hardness of Euclidean sum-of-
squares clustering. In Machine Learning, volume 75, pages 245–249, 2009.

4 Aris Anagnostopoulos, Anirban Dasgupta, and Ravi Kumar. A constant-factor approxim-
ation algorithm for co-clustering. In Theory of Computing, volume 8(1), pages 597–622,
2012.

5 D. Arthur and S. Vassilvitskii. k-means++: the advantages of careful seeding. In Proc. of
the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1027–1035, 2007.

6 Vijay Arya, Naveen Garg, Rohit Khandekar, Adam Meyerson, Kamesh Munagala, and
Vinayaka Pandit. Local search heuristics for k-median and facility location problems. SIAM
J. on Computing, 33(3):544–562, 2004.

7 Pranjal Awasthi, Moses Charikar, Ravishankar Krishnaswamy, and Ali Kemal Sinop. The
hardness of approximation of Euclidean k-means. In Proc. of the 31st International Sym-
posium on Computational Geometry, pages 754–767, 2015.

8 Jarosław Byrka, Thomas Pensyl, Bartosz Rybicki, Aravind Srinivasan, and Khoa Trinh. An
improved approximation for k-median, and positive correlation in budgeted optimization.
In Proc. of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 737–756,
2015. Updated version: http://arxiv.org/abs/1406.2951.

9 Moses Charikar and Sudipto Guha. Improved combinatorial algorithms for facility location
problems. SIAM J. on Computing, 34(4):803–824, 2005.

10 Fabian A. Chudak and David B. Shmoys. Improved approximation algorithms for the
uncapacitated facility location problem. SIAM J. on Computing, 33(1):1–25, 2003.

11 Michael B. Cohen, Sam Elder, Cameron Musco, Christopher Musco, and Madalina Persu.
Dimensionality reduction for k-means clustering and low rank approximation. In Proc. of
the 47th Annual ACM on Symposium on Theory of Computing, pages 163–172, 2015.

12 Vincent Cohen-Addad, Philip N. Klein, and Claire Mathieu. Local search yields approx-
imation schemes for k-means and k-median in euclidean and minor-free metrics. CoRR,
abs/1603.09535, 2016. URL: http://arxiv.org/abs/1603.09535.

13 S. Dasgupta. The hardness of k-means clustering. In Technical Report CS2007-0890, Uni-
versity of California, San Diego., 2007.

14 Dan Feldman, Morteza Monemizadeh, and Christian Sohler. A PTAS for k-means clus-
tering based on weak coresets. In Proc. of the 23rd Annual Symposium on Computational
Geometry, pages 11–18, 2007.

15 Zachary Friggstad, Mohsen Rezapour, and Mohammad R. Salavatipour. Local search yields
a PTAS for k-means in doubling metrics. CoRR, abs/1603.08976, 2016. URL: http:
//arxiv.org/abs/1603.08976.

16 Mary Inaba, Naoki Katoh, and Hiroshi Imai. Applications of weighted Voronoi diagrams
and randomization to variance-based k-clustering: (extended abstract). In Proc. of the
10th Annual Symposium on Computational Geometry, pages 332–339, 1994.

17 Kamal Jain and Vijay V. Vazirani. Approximation algorithms for metric facility location
and k-median problems using the primal-dual schema and Lagrangian relaxation. J. ACM,
48(2):274–296, March 2001.

18 Tapas Kanungo, David M. Mount, Nathan S. Netanyahu, Angela Y. Wu, and Christine D.
Piatko. A local search approximation algorithm for k-means clustering. Computational
Geometry, 28(2–3):89–112, 2004.

APPROX/RANDOM’16

http://arxiv.org/abs/1406.2951
http://arxiv.org/abs/1603.09535
http://arxiv.org/abs/1603.08976
http://arxiv.org/abs/1603.08976

14:14 A Bi-Criteria Approximation Algorithm for k-Means

19 Shi Li and Ola Svensson. Approximating k-median via pseudo-approximation. In Proc. of
the 45th Annual ACM Symposium on Theory of Computing, pages 901–910, 2013.

20 Jyh-Han Lin and Jeffrey Scott Vitter. Approximation algorithms for geometric median
problems. Information Processing Lett., 44(5):245–249, December 1992.

21 Jyh-Han Lin and Jeffrey Scott Vitter. ε-approximations with minimum packing constraint
violation. In Proc. of the 24th Annual ACM Symposium on Theory of Computing, pages
771–782, 1992.

22 S. Lloyd. Least squares quantization in PCM. Technical report, Bell Laboratories, 1957.
23 S. Lloyd. Least squares quantization in PCM. IEEE Trans. on Information Theory,

28(2):129–137, Mar 1982.
24 Meena Mahajan, Prajakta Nimbhorkar, and Kasturi Varadarajan. The planar k-means

problem is NP-hard. In Proc. of the 3rd International Workshop on Algorithms and Com-
putation, pages 274–285, 2009.

25 Jirı Matoušek. On approximate geometric k-clustering. Discrete & Computational Geo-
metry, 24(1):61–84, 2000.

26 R. Ostrovsky, Y. Rabani, L. Schulman, and C. Swamy. The effectiveness of Lloyd-type
methods for the k-means problem. In Proc. of the 47th Annual IEEE Symposium on
Foundations of Computer Science, pages 165–174, 2006.

27 Maxim Sviridenko. An improved approximation algorithm for the metric uncapacitated
facility location problem. In Integer Programming and Combinatorial Optimization: Proc.
of the 9th IPCO Conference, pages 240–257, 2002.

A Proof of Theorem 7

In this section, we prove Theorem 7. Consider an instance of k-means with a set of points
X ⊂ Rp. Denote n = |X|. Let ε′ = ε/3. Let ϕ : Rp → Rp̃ be a dimension reduction transform
for X with distortion (1 + ε′) as in Theorem 6. Note that p̃ = O(logn/ε′2) = O(logn/ε2).

Let X ′ = ϕ(X) ⊂ Rp̃. Using the algorithm from Theorem 5, we compute an ε′-
approximate centroid set C ⊂ Rp̃ for X ′. The size of C is

O(nε−p̃ log(1/ε)) = nε−O(logn/ε2) log(1/ε) = n · nO(log(1/ε)/ε2) = nO(log(1/ε)/ε2);

we need time O(n logn+ nε−p̃ log(1/ε)) = nO(log(1/ε)/ε2) to compute it.
We first show that for every solution of the k-means problem on X there is a corresponding

solution of k-means problem on X ′ in which all centers lie in C, and vice versa.

I Lemma 13. The following hold:
1. For every partition S = 〈S1, . . . , Sk〉 of X, there is a corresponding clustering of X ′ given

by S′ = 〈ϕ(S1), . . . , ϕ(Sk)〉 and some centers C ′ = 〈c′1, . . . , c′k〉 ⊆ C such that:

costX′(S′, C ′) ≤ (1 + ε′)2 costX(S).

2. For every partition S′ = 〈S′1, . . . , S′k〉 of X ′, there is a corresponding clustering S =〈
ϕ−1(S1), . . . , ϕ−1(Sk)

〉
of X and some centers C = 〈c1, . . . , ck〉 ⊆ Rp such that

costX(S,C) ≤ costX′(S′).

Proof. Part 1: Consider a partition S = 〈S1, . . . , Sk〉 of X and the corresponding partition
S′ = 〈S′1, . . . , S′k〉 of X ′, where S′i = ϕ(Si). Let c′i = arg minc∈C

∑
x∈S′

i
‖x′ − c‖2 for

K. Makarychev, Y. Makarychev, M. Sviridenko, and J. Ward 14:15

i ∈ {1, . . . , k}. Because C is an ε′-approximate centroid set for X ′, we have, for each cluster
S′i, ∑

x∈S′
i

‖x− c′i‖2 ≤ (1 + ε′) min
c∈Rp̃

∑
x∈S′

i

‖x− c‖2 = (1 + ε′) 1
2|S′i|

∑
x′,x′′∈S′

i

‖x′ − x′′‖2

= 1 + ε′

2|S′i|
∑

x′,x′′∈Si

‖ϕ(x′)− ϕ(x′′)‖2 ≤ (1 + ε′)2

2|Si|
∑

x′,x′′∈Si

‖x′ − x′′‖2

Hence,

costX′(S′) =
k∑
i=1

∑
x∈S′

i

‖x− c′i‖2 ≤ (1 + ε′)2 costX(S).

Part 2: Consider a partition S′ = 〈S′1, . . . , S′k〉 of X ′ and the corresponding partition
S = 〈S1, . . . , Sk〉 of X, where Si = ϕ−1(S′i). Define the centers ci =

∑
x∈Si

x/|Si|. Then, for
each cluster Si, we have:∑

x∈Si

‖x− ci‖2 = 1
2|Si|

∑
x′,x′′∈Si

‖x′ − x′′‖2 ≤ 1
2|Si|

∑
x′,x′′∈Si

‖ϕ(x′)− ϕ(x′′)‖2

= 1
2|S′i|

∑
x′,x′′∈S′

i

‖x′ − x′′‖2.

Hence,

costX(S) =
k∑
i=1

∑
x∈Si

‖x− ci‖2 ≤ costX′(S′). J

Now we are ready to define instance 〈D, C, d〉. Let D = X ′, C be the ε-approximate
centroid we defined above, and d(c, x) = ‖c − x‖2 for every c ∈ C and x ∈ D. Define
ψ : D → X by ψ(x) = ϕ−1(x).

We prove that our reduction, which maps instance X of k-means to instance 〈D, C, d〉 of
k-median, satisfies the conditions of the theorem.

I Lemma 14. Our reduction produces an instance that satisfies the following properties:
1. The distance function d satisfies the 3-relaxed 3-hop triangle inequality on D ∪ C.
2. For every partition S = 〈S1, . . . , Sk〉 of D and the corresponding partition ψ(S) =
〈ψ(S1), . . . , ψ(Sk)〉 of X, we have

costX(ψ(S)) ≤ costD,d(S) ≤ (1 + ε) costX(ψ(S)).

3. We have

OPTX ≤ OPT〈D,d〉 ≤ (1 + ε)OPTX .

Proof. Claim 1 follows from the fact that:

‖x− w‖2 ≤ (‖x− y‖+ ‖y − z‖+ ‖z − w‖)2 ≤ 3(‖x− y‖2 + ‖y − z‖2 + ‖z − w‖2).

for any w, x, y, z ∈ Rp̃.
For claim 2, consider any partition S of D. Let T = ψ(S) be the corresponding partition

of X, given by Ti = ψ(Si). Then, from our definition of d, we have costD,d(S) = costX′(S).

APPROX/RANDOM’16

14:16 A Bi-Criteria Approximation Algorithm for k-Means

Moreover, by Lemma 13, we have costX′(S) is between costX(T) and (1 + ε′)2 costX(T).
Thus,

costX(ψ(S)) ≤ costD,d(S) ≤ (1 + ε′)2 costX(ψ(S)) ≤ (1 + ε) costX(ψ(S)).

Since for every partition S of C there is a corresponding partition ψ(S) of X, and for every
partition T of X there is a corresponding partition ϕ(T) of D, we immediately get from
claim 2 that OPTX ≤ OPT〈D,d〉 ≤ (1 + ε)OPTX . J

B Detailed Analysis of the LP Rounding Algorithm

Here we give a detailed proof of the necessary facts for the analysis of Section 4.

I Lemma 15. The following inequality holds: Rβx ≤ βRx/(β − 1).

Proof. We have

Rx =
∑
c∈Cx

ycd(x, c) ≤
∑

c∈Cx\Bx

ycd(x, c).

Every center c ∈ Cx \Bx is at distance at least Rβx from x. Hence,

Rx ≤
∑

c∈Cx\Bx

ycR
β
x = y(Cx \Bx)Rβx =

(
1− 1

β

)
Rβx .

The desired inequality follows. J

I Lemma 16. There exist two nonnegative numbers r1 and r2 satisfying
1.
(

1−γ
β

)
r1 +

(
β−1
β

)
r2 ≤ Rx,

2. r1 ≤ r2,

such that Rβw(x) + E[d(w(x), f(x)) | f(x) ∈ Bw(x) \Dx; E = 1] ≤ r1 + r2.

Proof. Denote the expected distance from a random center c in Bw(x) \Dx to w(x) by r1
and distance from a random center c in Cw(x) \Bw(x) to w(x) by r2:

r1 =
∑
c∈Bw(x)\Dx

ycd(w(x), c)
y(Bw(x) \Dx) r2 =

∑
c∈Cw(x)\Bw(x)

ycd(w(x), c)
y(Cw(x) \Bw(x))

.

By the definition of Rw(x), we have

Rw(x) =
(∑
c∈Dx

ycd(w(x), c)
)

+ y(Bw(x) \Dx) r1 + y(Cw(x) \Bx) r2

≥
(1− γ

β

)
r1 +

(β − 1
β

)
r2,

since y(Bx) = y(Bw(x)) = 1/β, y(Cw(x)) = 1, and y(Dx) = γ/β. Note that Rw(x) ≤ Rx.
Hence,(1− γ

β

)
r1 +

(β − 1
β

)
r2 ≤ Rx.

Since all centers in Bw(x) \ Dx lie inside of the ball of radius Rβw(x) around w(x), and
all centers in Cw(x) \ Bw(x) lie outside of this ball, we have r1 ≤ Rβw(x) ≤ r2. Hence,

K. Makarychev, Y. Makarychev, M. Sviridenko, and J. Ward 14:17

Rβw(x) + d(w(x), f(x)) ≤ r2 + d(w(x), f(x)) and r1 ≤ r2. Conditional on f(x) ∈ Bw(x) \Dx

and E = 1, the random center f(x) is distributed uniformly in Bw(x) \Dx with respect to
the LP measure y. Hence, E[d(w(x), f(x)) | f(x) ∈ Bw(x) \Dx; E = 1] = r1. Consequently,

Rβw(x) + E[d(w(x), f(x)) | f(x) ∈ Bw(x) \Dx; E = 1] ≤ r1 + r2. J

I Lemma 17. We have Pr(f(x) ∈ Dx | E = 1) = 1− eγ(1− γ).

Proof. Observe that the set Dx = Bw(x) ∩ Cx is one of the sets in the partitioning Z̃ as
w(x) ∈ W and Bw(x) ∈ Z. Assume f(x) ∈ Dx and E = 1. Since f(x) ∈ Dx, we have
S ∩Dx 6= ∅. Thus, Dx must be inactive (otherwise, E would be 0). Moreover, for every
Z̃ 6= Dx (Z̃ ∈ Z), Z̃ is inactive or Z̃ ∩ S = ∅ (again, otherwise, E would be 0). Hence, the
event

{f(x) ∈ Dx and E = 1}

can be represented as the intersection of the following three independent events: {S∩Dx 6= ∅},
{Dx is not active}, and {there are no active centers in (Cx \Dx) ∩ S}. The probability of
the first event is βy(Dx); the probability of the second event is 1− (1− e−βy(Dx))/(βy(Dx));
the probability of the third event is e−βy(Cx\Dx) (this probability is computed as in Lemma 9).
Thus,

Pr(f(x) ∈ Dx and E = 1) = βy(Dx)×
(

1− 1− e−βy(Dx)

βy(Dx)

)
× e−βy(Cx\Dx)

=
(
γ − (1− e−γ)

)
× e−(β−γ) = e−β

(
1− (1− γ)eγ

)
.

Combining this with Lemma 9, which shows that Pr(E = 1) = e−β completes the proof. J

I Lemma 18. The following bound holds: E[d(x, f(x)) | f(x) ∈ Dx; E = 1] ≤ βRx

γ .

Proof. Given f(x) ∈ Dx and E = 1, the random center f(x) is distributed uniformly in Dx

with respect to the LP measure y. Hence, Pr(f(x) = c) = yc/y(Dx) for c ∈ Dx. We have

E[d(x, f(x)) | f(x) ∈ Dx; E = 1] =
∑
c∈Dx

ycd(x, c)
y(Dx) ≤

∑
c∈Cx

ycd(x, c)
y(Dx) = Rx

γ/β
. J

C Detailed Analysis of the Local Search Algorithm

Here we give a detailed analysis of the local search algorithm from Section 5, closely following
Kanungo et al. [18].

For a set of points P ⊆ X and a point c ∈ Rp, define the total distortion of P with
respect to c as ∆(P, c) ≡

∑
c′∈P ‖c′ − c‖2. We shall use the following Lemmas from [18]:

I Lemma 19 (Lemma 2.1 in [18]). Given a finite subset P of points in Rp, let c be the
centroid of P . Then, for any c′ ∈ Rp, ∆(P, c′) = ∆(P, c) + |P | · ‖c− c′‖2

I Lemma 20. Let 〈ρi〉 and 〈ξi〉 be two sequences of reals such that α2 = (
∑
i ρ

2
i)/(

∑
i ξ

2
i)

for some α > 0. Then,

n∑
i=1

ρiξi ≤
1
α

n∑
i=1

ρ2
i .

APPROX/RANDOM’16

14:18 A Bi-Criteria Approximation Algorithm for k-Means

We now show how local optimality implies the desired inequality. For a point x ∈ D,
let ax and ox denote the closest facility to x in A and O, respectively. Recall that for for
a ∈ A, NA(a) is precisely the set of all those points x ∈ D such that ax = a, and, similarly,
for o ∈ O, NO(o) is the set of all points x ∈ D such that ox = o. Now, we upper bound the
change in cost due to some swap 〈A′, O′〉 in our set of swaps. We do this by constructing a
feasible assignment of all points in D to centers in A \A′ ∪O′. For each o ∈ O′, we assign
all the points in NO(o) to o. This changes the cost by

∑
o∈O′

∑
x∈NO(o)

(d(x, o)− d(x, ax)).

Now, fix a point x ∈ NA(A′) \NO(O′), and consider x’s closest optimal center ox. We must
have ox 6∈ O′. Let aox

be the closest center to ox in A. Then, by property (3) of our set of
swaps, aox 6∈ A′, since aox captures ox but ox 6∈ O′. We reassign x to aox . The total cost of
reassigning all such points x is at most:

∑
a∈A′

∑
x∈NA(A′)\NO(O′)

(d(x, aox
)− d(x, ax)) ≤

∑
a∈A′

∑
x∈NA(A′)

(d(x, aox
)− d(x, ax)),

where the inequality follows from the fact that ax is the closest center to x in A, and so
d(x, aox

) − d(x, ax) ≥ 0 for all x ∈ NA(A′) ∩ NO(O′). Thus, the total change costD,d(A \
A′ ∪O′)− costD,d(A) for each swap 〈A′, O′〉 is at most:

∑
o∈O′

∑
x∈NO(o)

(d(x, o)− d(x, ax) +
∑
a∈A′

∑
x∈NA(A′)

(d(x, aox)− d(x, ax)).

If A is locally optimal, then we must have that costD,d(A \A′ ∪O′)− costD,d(A) ≥ 0 for
all swaps (A′, O′) considered by the algorithm. In particular, for each swap 〈A′, O′〉 in our
set, we have:

0 ≤
∑
o∈O′

∑
x∈NO(o)

(
d(x, o)− d(x, ax)

)
+
∑
a∈A′

∑
x∈NA(A′)

(
d(x, aox

)− d(x, ax)
)
.

Set γ = 1 + 1
p . Then, multiplying each such inequality by the weight of its swap and then

adding the resulting inequalities we obtain

0 ≤ β
∑
x∈D

(
d(x, ox)− d(x, ax)

)
+ γ

∑
x∈D

(
d(x, aox

)− d(x, ax)
)

= β costD,d(O)− (β + γ) costD,d(A) + γ
∑
x∈D

d(x, aox
), (16)

where we have exploited properties (1) and (2) of our set of swaps to bound the number of
times a given center in O or A is counted in our sum of inequalities.

It remains to bound the final term in (16). Consider some o ∈ O, and let c be the centroid

K. Makarychev, Y. Makarychev, M. Sviridenko, and J. Ward 14:19

of NO(o). As above, we will let ao denote the closest center in A to O. Then, note that:

∆(NO(o), ao) = ∆(NO(o), c) + |NO(o)| · ‖c− ao‖2 (Lemma 19)
≤ ∆(NO(o), o) + |NO(o)| · ‖c− ao‖2 (c is the centroid of NO(o))

≤
∑

x∈NO(o)

[
d(x, o) + (1 + ε)‖o− ao‖2]

(Theorem 7 part 2, and the fact that o is an optimal center for NO(o))

≤
∑

x∈NO(o)

[
d(x, o) + (1 + ε)‖o− ax‖2] .

(ao is the closest center to o in A)

≤ (1 + ε)
∑

x∈NO(o)

[
d(x, o) + ‖o− ax‖2] .

Let α2 = costD,d(A)
costD,d(O) =

∑
x∈D

d(x,ax)∑
x∈D

d(x,ox)
be the approximation ratio attained by the algorithm.

Summing over all o ∈ O, and recalling that for all x ∈ NO(o) we have ox = o, we obtain:∑
x∈D

d(x, aox) =
∑
o∈O

∆(NO(o), ao)

≤ (1 + ε)
∑
o∈O

∑
x∈NO(o)

[
d(x, o) + ‖o− ax‖2]

= (1 + ε)
∑
x∈D

[
d(x, ox) + ‖ox − ax‖2]

≤ (1 + ε)
∑
x∈D

[
d(x, ox) + ‖x− ox‖2 + ‖x− ax‖2 + 2‖x− ox‖‖x− ax‖

]
= (1 + ε)

∑
x∈D

[2d(x, ox) + d(x, ax) + 2‖x− ox‖‖x− ax‖]

≤ (1 + ε)
∑
x∈D

[
2d(x, ox) + d(x, ax) + 2

α
d(x, ax)

]
= (1 + ε)

[
2 costD,d(O) +

(
1 + 2

α

)
costD,d(A)

]
. (17)

Where in the last inequality, we have applied Lemma 20 to the sequences ρi and ξi defined
by:

α2 =
∑
x∈D d(x, ax)∑
x∈D d(x, ox) =

∑n
i=1 ρi∑n
i=1 ξi

.

Applying the upper bound (17) to the final term of (16), we obtain:

0 ≤ β costD,d(O)− (β + γ) costD,d(A) + γ(1 + ε)
[
2 costD,d(O) +

(
1 + 2

α

)
costD,d(A)

]
≤ (β + 2γ) costD,d(O)−

(
β − 2γ

α

)
costD,d(A) +

(
3 + 2

α

)
γε costD,d(A)

where we have used the fact that costD,d(O) ≤ costD,d(A). Rearranging, we have

(β + 2γ) costD,d(O) ≥
(
β − 2γ

α
−
(
3 + 2

α

)
γε

)
costD,d(A)

=
(
β − 2γ

α
−
(
3 + 2

α

)
γε

)
α2 costD,d(O),

APPROX/RANDOM’16

14:20 A Bi-Criteria Approximation Algorithm for k-Means

which implies:

α2β − 2γα− β − 2γ − α2 (3 + 2
α

)
γε ≤ 0

α2 − 2γα
β
− 1− 2γ

β
− α2

β

(
3 + 2

α

)
γε ≤ 0

(α+ 1)
(
α− 1− 2γ

β

)
− α2

β

(
3 + 2

α

)
γε ≤ 0(

α− 1− 2γ
β

)
− α2

(α+ 1)β
(
3 + 2

α

)
γε ≤ 0.

Thus, we have:

(1−O(ε))α ≤ 1 + 2γ
β

= 1 + 2
β

+ 2
βp
.

Near-Optimal UGC-hardness of Approximating
Max k-CSPR

∗

Pasin Manurangsi1, Preetum Nakkiran2, and Luca Trevisan3

1 University of California, Berkeley, USA
pasin@berkeley.edu

2 University of California, Berkeley, USA
preetum@berkeley.edu

3 University of California, Berkeley, USA
luca@berkeley.edu

Abstract
In this paper, we prove an almost-optimal hardness for Max k-CSPR based on Khot’s Unique
Games Conjecture (UGC). In Max k-CSPR, we are given a set of predicates each of which depends
on exactly k variables. Each variable can take any value from 1, 2, . . . , R. The goal is to find an
assignment to variables that maximizes the number of satisfied predicates.

Assuming the Unique Games Conjecture, we show that it is NP-hard to approximate Max
k-CSPR to within factor 2O(k log k)(logR)k/2/Rk−1 for any k,R. To the best of our know-
ledge, this result improves on all the known hardness of approximation results when 3 ≤ k =
o(logR/ log logR). In this case, the previous best hardness result was NP-hardness of approx-
imating within a factor O(k/Rk−2) by Chan. When k = 2, our result matches the best known
UGC-hardness result of Khot, Kindler, Mossel and O’Donnell.

In addition, by extending an algorithm for Max 2-CSPR by Kindler, Kolla and Trevisan, we
provide an Ω(logR/Rk−1)-approximation algorithm for Max k-CSPR. This algorithm implies
that our inapproximability result is tight up to a factor of 2O(k log k)(logR)k/2−1. In comparison,
when 3 ≤ k is a constant, the previously known gap was O(R), which is significantly larger than
our gap of O(polylogR).

Finally, we show that we can replace the Unique Games Conjecture assumption with Khot’s
d-to-1 Conjecture and still get asymptotically the same hardness of approximation.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes

Keywords and phrases inapproximability, unique games conjecture, constraint satisfaction prob-
lem, invariance principle

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2016.15

1 Introduction

Maximum Constraint Satisfaction Problem (Max CSP) is an optimization problem where
the inputs are a set of variables, an alphabet, and a set of predicates. Each variable can be
assigned any symbol from the alphabet and each predicate depends only on the assignment
to a subset of variables. The goal is to find an assignment to the variables that maximizes
the number of satisfied predicates.

∗ This material is based upon work supported by the National Science Foundation under Grant No. CCF
1540685.

© Pasin Manurangsi, Preetum Nakkiran, and Luca Trevisan;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016).
Editors: Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans; Article No. 15; pp. 15:1–15:28

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.15
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

15:2 Near-Optimal UGC-hardness of Approximating Max k-CSPR

Many natural optimization problems, such as Max Cut, Max k-CUT and Max k-SAT,
can be formulated as Max CSP. In addition, Max CSP has been shown to help approximate
other seemingly-unrelated problems such as Densest k-Subgraph [4]. Due to this, Max
CSP has long been researched by the approximation algorithm community [35, 18, 6, 26, 24,
14]. Furthermore, its relation to PCPs ensures that Max CSP is also well-studied on the
hardness of approximation side [32, 11, 33, 22, 2, 16, 12, 3].

The main focus of this paper is on Max k-CSPR, a family of Max CSP where the
alphabet is of size R and each predicate depends on only k variables. On the hardness
of approximation side, most early works focused on boolean Max k-CSP. Samorodnitsky
and Trevisan first showed that Max k-CSP2 is NP-hard to approximate to within factor
2O(
√
k)/2k [32]. Engebretsen and Holmerin later improved constant factors in the exponent

O(
√
k) but still yielded hardness of a factor 2O(

√
k)/2k [12]. To break this barrier, Sam-

orodnitsky and Trevisan proved a hardness of approximation conditioned on Khot’s Unique
Games Conjecture (UGC), which will be discussed in more detail later; they achieved a ratio
of O(k/2k) hardness, which is tight up to a constant for the boolean case [33]. Chan later
showed that NP-hardness of approximation at this ratio can be achieved unconditionally
and, thus, settled down the approximability of Max k-CSP2 [3].

Unlike the boolean case, the approximability of Max k-CSPR when R > 2 is still not
resolved. In this case, Engebretsen showed RO(

√
k)/Rk NP-hardness of approximation [11].

Under the Unique Games Conjecture, a hardness of approximation of O(kR/Rk−1) factor was
proven by Austrin and Mossel [2] and, independently, by Guruswami and Raghavendra [16].
For the case k = 2, results by Khot et al. [22] implicitly demonstrate UGC-hardness of
approximation within O(logR/R), made explicit in [24]. Moreover, Austrin and Mossel
proved UGC-hardness of approximation of O(k/Rk−1) for infinitely many ks [2], but in the
regime k ≥ R. Recently, Chan was able to remove the Unique Game Conjecture assumption
from these results [3]. More specifically, Chan showed NP-hardness of approximation of
factor O(kR/Rk−1) for every k,R and that of factor O(k/Rk−1) for every k ≥ R. Due
to an approximation algorithm with matching approximation ratio by Makarychev and
Makarychev [26], Chan’s result established tight hardness of approximation for k ≥ R. On
the other hand, when k < R, Chan’s result gives O(kR/Rk−1) hardness of approximation
whereas the best known approximation algorithm achieves only Ω(k/Rk−1) approximation
ratio [26, 14]. In an attempt to bridge this gap, we prove the following theorem.

I Theorem 1 (Main Theorem). Assuming the Unique Games Conjecture, it is NP-hard to
approximate Max k-CSPR to within 2O(k log k)(logR)k/2/Rk−1 factor, for any k ≥ 2 and
any sufficiently large R.

When k = o(logR/ log logR), our result improves upon the previous best known hardness
of approximation result in this regime, due to Chan. In particular, when k is constant, our
results are tight up to a factor of O(polylog R). While Chan’s results hold unconditionally,
our result, similar to many of the aforementioned results (e.g. [33, 2, 16]), rely on the Unique
Games Conjecture.

A unique game is a Max 2-CSP instance where each constraint is a permutation. The
Unique Games Conjecture (UGC), first proposed by Khot in his seminal paper in 2002 [20],
states that, for any sufficiently small η, γ > 0, it is NP-hard to distinguish a unique game
where at least 1− η fraction of constraints can be satisfied from a unique game where at most
γ fraction of constraints can be satisfied. The UGC has since made a huge impact in hardness
of approximation; numerous hardness of approximation results not known unconditionally
can be derived assuming the UGC. More surprisingly, UGC-hardness of approximation for

P. Manurangsi, P. Nakkiran, and L. Trevisan 15:3

Range of k,R NP-Hardness UGC-Hardness Approximation References

k = 2 O
(

log R√
R

)
O
(log R

R

)
Ω
(log R

R

)
[3, 22, 24]

3 ≤ k < R O
(

k
Rk−2

)
– Ω

(
k

Rk−1

)
[3, 26, 14]

R ≤ k O
(

k
Rk−1

)
– Ω

(
k

Rk−1

)
[3, 26]

Any k,R – 2O(k log k)(log R)k/2

Rk−1 Ω
(log R

Rk−1

)
this work

Figure 1 Comparison between our work and previous works. We list the previous best known
results alongside our results. From previous works, there is either an NP-hardness or a UGC-hardness
result matching the best known approximation algorithm in every case except when 3 ≤ k < R. Our
hardness result improves on the best known hardness result when k = o(logR/ log logR), and our
approximation algorithm improves on the previously known algorithm when k = o(logR).

various problems, such as Max Cut [22], Vertex Cover [23] and any Max CSP [31]1,
are known to be tight. For more details on UGC and its implications, we refer interested
readers to Khot’s survey [21] on the topic.

Another related conjecture from [20] is the d-to-1 Conjecture. In the d-to-1 Conjecture,
we consider d-to-1 games instead of unique games. A d-to-1 game is an instance of Max
2-CSP where the constraint graph is bipartite. Moreover, each constraint must be a d-to-1
function, i.e., for each assignment to a variable on the right, there exists d assignments to
the corresponding variable on the left that satisfy the constraint. The d-to-1 Conjecture
states that, for any sufficiently small γ > 0, it is NP-hard to distinguish between a fully
satisfiable d-to-1 game and a d-to-1 game where at most γ fraction of constraints can be
satisfied. Currently, it is unknown whether the d-to-1 Conjecture implies the Unique Games
Conjecture and vice versa.

While the d-to-1 Conjecture has yet to enjoy the same amount of influence as the
UGC, it has been proven successful in providing a basis for hardness of graph coloring
problems [9, 10, 17] and for Max 3-CSP with perfect completeness [30, 34]. Here we show
that, by assuming the d-to-1 Conjecture instead of UGC, we can get a similar hardness of
approximation result for Max k-CSPR as stated below.

I Theorem 2. Assuming the d-to-1 Games Conjecture holds for some d, it is NP-hard to
approximate Max k-CSPR to within 2O(k log k)(logR)k/2/Rk−1 factor, for any k ≥ 2 and
any sufficiently large R.

As mentioned earlier, there has also been a long line of works in approximation algorithms
for Max k-CSPR. In the boolean case, Trevisan first showed a polynomial-time approx-
imation algorithm with approximation ratio 2/2k [35]. Hast later improved the ratio to
Ω(k/(2k log k)) [18]. Charikar, Makarychev and Makarychev then came up with an Ω(k/2k)-
approximation algorithm [6]. As stated when discussing hardness of approximation of Max
k-CSP2, this approximation ratio is tight up to a constant factor.

For the non-boolean case, Charikar, Makarychev, and Makarychev’s algorithm achieve
Ω(k logR/Rk) ratio for Max k-CSPR. Makarychev, and Makarychev later improved the

1 Raghavendra showed in [31] that it is hard to approximate any Max CSP beyond what a certain type
of semidefinite program can achieve. However, determining the approximation ratio of a semidefinite
program is still not an easy task. Typically, one still needs to find an integrality gap for such a program
in order to establish the approximation ratio.

APPROX/RANDOM’16

15:4 Near-Optimal UGC-hardness of Approximating Max k-CSPR

approximation ratio to Ω(k/Rk−1) when k = Ω(logR) [26]. Additionally, the algorithm was
extended by Goldshlager and Moshkovitz to achieve the same approximation ratio for any
k,R [14]. On this front, we show the following result.

I Theorem 3. There exists a polynomial-time Ω(logR/Rk−1)-approximation algorithm for
Max k-CSPR.

In comparison to the previous algorithms, our algorithm gives better approximation ratio
than all the known algorithms when k = o(logR). We remark that our algorithm is just a
simple extension of Kindler, Kolla and Trevisan’s polynomial-time Ω(logR/R)-approximation
algorithm for Max 2-CSPR [24].

1.1 Summary of Techniques

Our reduction from Unique Games to Max k-CSPR follows the reduction of [22] for Max
2-CSPs. We construct a k-query PCP using a Unique-Label-Cover “outer verifier”, and then
design a k-query Long Code test as an “inner verifier”. For simplicity, let us think of k as a
constant. We essentially construct a k-query Dictator-vs.-Quasirandom test for functions
f : [R]n → [R], with completeness Ω(1/(logR)k/2) and soundness O(1/Rk−1). Our test is
structurally similar to the 2-query “noise stability” tests of [22]: first we pick a random
z ∈ [R]n, then we pick k weakly-correlated queries x(1), . . . , x(k) by choosing each x(i) ∈ [R]n
as a noisy copy of z, i.e., each coordinate (x(i))j is chosen as zj with some probability ρ or
uniformly at random otherwise. We accept iff f(x(1)) = f(x(2)) = · · · = f(x(k)). The key
technical step is our analysis of the soundness of this test. We need to show that if f is a
balanced function with small low-degree influences, then the test passes with probability
O(1/Rk−1). Intuitively, we would like to say that for high enough noise, the values f(x(i))
are roughly independent and uniform, so the test passes with probability around 1/Rk−1.
To formalize this intuition, we utilize the Invariance Principle and Hypercontractivity.

More precisely, if we let f i(x) : [R]n → {0, 1} be the indicator function for f(x) = i, then
the test accepts iff f i(x(1)) = · · · = f i(x(k)) = 1 for some i ∈ [R]. For each i ∈ [R], this
probability can be written as the expectation of the product: E[f i(x(1))f i(x(2)) . . . f i(x(k))].
Since x(i)’s are chosen as noisy copies of z, this expression is related to the k-th norm of
a noisy version of f i. Thus, our problem is reduced to bounding the k-norm of a noisy
function f̃ i : [R]n → [0, 1], which has bounded one-norm E[f̃ i] = 1/R since f is balanced. To
arrive at this bound, we first apply the Invariance Principle, which essentially states that a
low-degree low-influence function on [R]n behaves on random input similarly to its “boolean
analog” over domain {±1}nR. Here “boolean analog” refers to the function over {±1}nR
with matching Fourier coefficients.

Roughly speaking, now that we have transfered to the boolean domain, we are left to
bound the k-norm of a noisy function on {±1}nR based on its one-norm. This follows from
Hypercontractivity in the boolean setting, which bounds a higher norm of any noisy function
on boolean domain in terms of a lower norm.

The description above hides several technical complications. For example, when we pass
from a function [R]n → [0, 1] to its “boolean analog” {±1}nR → R, the range of the resulting
function is no longer bounded to [0, 1]. This, along with the necessary degree truncation,
means we must be careful when bounding norms. Further, Hypercontractivity only allows
us to pass from k-norms to (1 + ε)-norms for small ε, so we cannot use the known 1-norm
directly. For details on how we handle these issues, see Section 3. This allows us to prove
soundness of our dictator test without passing through results on Gaussian space, as was done

P. Manurangsi, P. Nakkiran, and L. Trevisan 15:5

to prove the “Majority is Stablest” conjecture [27] at the core of the [22] 2-query dictator
test.

To extend our result to work with d-to-1 Games Conjecture in place of UGC, we observe
that our proof goes through even when we assume a conjecture weaker than the UGC,
which we name the One-Sided Unique Games Conjecture. The only difference between the
original UGC and the One-Sided UGC is that the completeness in UGC is allowed to be any
constant smaller than one but the completeness is a fixed constant for the One-Sided UGC.
The conjecture is formalized as Conjecture 13. We show that the d-to-1 Games Conjecture
also implies the One-Sided UGC, which means that our inapproximability result for Max
k-CSPR also holds when we change our assumption to d-to-1 Games.

Lastly, for our approximation algorithm, we simply extend the Kindler, Kolla and
Trevisan’s algorithm by first creating an instance of Max 2-CSPR from Max k-CSPR

by projecting each constraint to all possible subsets of two variables. We then use their
algorithm to approximate the instance. Finally, we set our assignment to be the same as that
from KKT algorithm with some probability. Otherwise, we pick the assignment uniformly at
random from [R]. As we shall show in Section 4, with the right probability, this technique can
extend not only the KKT algorithm but any algorithm for Max k′-CSPR to an algorithm
for Max k-CSPR where k > k′ with some loss in the advantage over the naive randomized
algorithm.

1.2 Organization of the Paper

In Section 2, we define notations and list background knowledge that will be used throughout
the paper. Next, we prove our hardness of approximation results, i.e., Theorem 1 and
Theorem 2, in Section 3. In Section 4, we show how to extend Kindler et al.’s algorithm to
Max k-CSPR and prove Theorem 3. We also explicitly present the dictator test that is
implicit in our hardness proof, in Section 5. Finally, in Section 6, we discuss interesting open
questions and directions for future works.

2 Preliminaries

In this section, we list notations and previous results that will be used to prove our results.

2.1 Max k-CSPR

We start by giving a formal definition of Max k-CSPR, which is the main focus of our paper.

I Definition 4 (Max k-CSPR). An instance (X , C) of (weighted) Max k-CSPR consists of
A set X = {x1, . . . , xn} of variables.
A set C = {C1, . . . , Cm} of constraints. Each constraint Ci is a triple (Wi, Si, Pi) of
a positive weight Wi > 0 such that

∑m
i=1Wi = 1, a subset of variables Si ⊆ X of

size k, and a predicate Pi : [R]Si → {0, 1} that maps each assignment to variables in
Si to {0, 1}. Here we use [R]Si to denote the set of all functions from Si to [R], i.e.,
[R]Si = {ψ : Si → [R]}.

For each assignment of variables ϕ : X → [R], we define its value to be the total weights of
the predicates satisfied by this assignment, i.e.,

∑m
i=1WiPi(ϕ |Si). The goal is to find an

assignment ϕ : X → [R] that with maximum value. We sometimes call the optimum the
value of (X , C).

APPROX/RANDOM’16

15:6 Near-Optimal UGC-hardness of Approximating Max k-CSPR

Note that, while the standard definition of Max k-CSPR refers to the unweighted
version where W1 = · · · = Wm = 1/m, Crescenzi, Silvestri and Trevisan showed that the
approximability of these two cases are essentially the same [8].2 Hence, it is enough for us to
consider just the weight version.

2.2 Unique Games and d-to-1 Conjectures

In this subsection, we give formal definitions for unique games, d-to-1 games and Khot’s
conjectures about them. First, we give a formal definition of unique games.

I Definition 5 (Unique Game). A unique game (V,W,E,N, {πe}e∈E) consists of
A bipartite graph G = (V,W,E).
Alphabet size N .
For each edge e ∈ E, a permutation πe : [N]→ [N].

For an assignment ϕ : V ∪W → [N], an edge e = (v, w) is satisfied if πe(ϕ(v)) = ϕ(w). The
goal is to find an assignment that satisfies as many edges as possible. We define the value of
an instance to be the fraction of edges satisfied in the optimum solution.

The Unique Games Conjecture states that it is NP-hard to distinguish an instance of
value close one from that of value almost zero. More formally, it can be stated as follows.

I Conjecture 6 (Unique Games Conjecture). For every constant η, γ > 0, there exists a
constant N = N(η, γ) such that it is NP-hard to distinguish a unique game with alphabet size
N of value at least 1− η from one of value at most γ.

Next, we define d-to-1 games, which is similar to unique games except that each constraint
is a d-to-1 function instead of a permutation.

I Definition 7 (d-to-1 Game). A d-to-1 game (V,W,E,N, {πe}e∈E) consists of
A bipartite graph G = (V,W,E).
Alphabet size N .
For each edge e ∈ E, a function πe : [N] → [N/d] such that |π−1

e (σ)| = d for every
σ ∈ [N/d].

Satisfiability of an edge, the goal, and an instance’s value of is defined similar to that of
unique games.

In contrast to the UGC, d-to-1 Conjecture requires perfect completeness, i.e., it states
that we cannot distinguish even a full satisfiable d-to-1 game from one with almost zero
value.

I Conjecture 8 (d-to-1 Conjecture). For every constant γ > 0, there exists a constant
N = N(γ) such that it is NP-hard to distinguish a d-to-1 game with alphabet size N of value
1 from one of value at most γ.

2 More specifically, they proved that, if the weighted version is NP-hard to approximate to within ratio r,
then the unweighted version is also NP-hard to approximate to within r − on(1) where on(1) represents
a function such that on(1)→ 0 as n→∞.

P. Manurangsi, P. Nakkiran, and L. Trevisan 15:7

2.3 Fourier Expansions
For any function g : [q]n → R over a finite alphabet [q], we define the Fourier expansion of g
as follows.

Consider the space of all functions [q]→ R, with the inner-product 〈u, v〉 := Ex∈[q][u(x)v(x)],
where the expectation is over a uniform x ∈ [q]. Pick an orthonormal basis l1, . . . , lq for
this space li : Σ → R, such that l1 is the constant function 1. We can now write g in the
tensor-product basis, as

g(x1, x2, . . . , xn) =
∑
s∈[q]n

ĝ(s) ·
n∏
i=1

ls(i)(xi). (1)

Since we pick l1(x) = 1 for all x ∈ [q], we also have Ex∈[q][li(x)] = 〈li, l1〉 = 0 for every i 6= 1.
Throughout, we use ĝ to refer to the Fourier coefficients of a function g.
For functions g : [q]n → R, the p-norm is defined as

||g||p = E
x∈[q]n

[|g(x)|p]1/p. (2)

In particular, the squared 2-norm is

||g||22 = E
x∈[q]n

[g(x)2] =
∑
s∈[q]n

ĝ(s)2. (3)

2.3.1 Noise Operators
For x ∈ [q]n, let y ρ← x denote that y is a ρ-correlated copy of x. That is, each coordinate yi
is independently chosen to be equal to xi with probability ρ, or chosen uniformly at random
otherwise.

Define the noise operator Tρ acting on any function g : [q]n → R as

(Tρg)(x) = E
y
ρ←x

[g(y)]. (4)

Notice that the noise operator Tρ acts on the Fourier coefficients on this basis as follows.

f(x) = Tρg(x) =
∑
s∈[q]n

ĝ(s) · ρ|s| ·
n∏
i=1

ls(i)(xi) (5)

where |s| is defined as |{i | s(i) 6= 1}|.

2.3.2 Degree Truncation
For any function g : [q]n → R, let g≤d denote the (≤ d)-degree part of g, i.e.,

g≤d(x) =
∑

s∈[q]n,|s|≤d

ĝ(s) ·
n∏
i=1

ls(i)(xi), (6)

and similarly let g>d : [q]n → R denote the (> k)-degree part of g, i.e.,

g>d(x) =
∑

s∈[q]n,|s|>d

ĝ(s) ·
n∏
i=1

ls(i)(xi). (7)

APPROX/RANDOM’16

15:8 Near-Optimal UGC-hardness of Approximating Max k-CSPR

Notice that degree-truncation commutes with the noise-operator, so writing Tρg≤d is
unambiguous.

Also, notice that truncating does not increase 2-norm:

||g≤d||22 =
∑

s∈[q]n,|s|≤d

ĝ(s)2 ≤
∑
s∈[q]n

ĝ(s)2 = ||g||22. (8)

We frequently use the fact that noisy functions have small high-degree contributions.
That is, for any function g : [q]n → [0, 1], we have

||Tρg>d||22 =
∑

s∈[q]n,|s|>d

ρ2|s|ĝ(s)2 ≤ ρ2d
∑
s∈[q]n

ĝ(s)2 = ρ2d||g||22 ≤ ρ2d. (9)

2.3.3 Influences

For any function g : [q]n → R, the influence of coordinate i ∈ [n] is defined as

Infi[g] = E
x∈[q]n

[V arxi∈[q][g(x) | {xj}j 6=i]]. (10)

This can be expressed in terms of the Fourier coefficients of g as follows:

Infi[g] =
∑

s∈[q]n: s(i) 6=1

ĝ(s)2. (11)

Further, the degree-d influences are defined as

Inf≤di [g] = Infi[g≤d] =
∑
s∈[q]n:

|s|≤d, s(i)6=1

ĝ(s)2. (12)

2.3.4 Binary Functions

The previous discussion of Fourier analysis can be applied to boolean functions, by specializing
to q = 2. However, in this case the Fourier expansion can be written in a more convenient
form. Let G : {+1,−1}n → R be a boolean function over n bits. We can choose orthonormal
basis functions l1(y) = 1 and l2(y) = y, so G can be written as

G(y) =
∑
S⊆[n]

Ĝ(S)
∏
i∈S

yi (13)

for some coefficients Ĝ(S).
Degree-truncation then results in

G≤d(y) =
∑

S⊆[n]:|S|≤d

Ĝ(S)
∏
i∈S

yi, (14)

and the noise-operator acts as follows:

TρG(y) =
∑
S⊆[n]

Ĝ(S)ρ|S|
∏
i∈S

yi. (15)

P. Manurangsi, P. Nakkiran, and L. Trevisan 15:9

2.3.5 Boolean Analogs
To analyze k-CSPR, we will want to translate between functions over [R]n to functions over
{±1}nR. The following notion of boolean analogs will be useful.

For any function g : [R]n → R with Fourier coefficients ĝ(s), define the boolean analog of
g to be a function {g} : {±1}n×R → R such that

{g}(z) =
∑
s∈[R]n

ĝ(s) ·
∏

i∈[n],s(i) 6=1

zi,s(i). (16)

Note that

||g||22 =
∑
s∈[R]n

ĝ(s)2 = ||{g}||22, (17)

and that

{g≤d} = {g}≤d. (18)

Moreover, the noise operator acts nicely on {g} as follows:

Tρ{g} = {Tρg}. (19)

For simplicity, we use Tρ to refer to both boolean and non-boolean noise operators with
correlation ρ.

2.4 Invariance Principle and Mollification Lemma
We start with the Invariance Principle in the form of Theorem 3.18 in [27]:

I Theorem 9 (General Invariance Principle [27]). Let f : [R]n → R be any function such
that V ar[f] ≤ 1, Infi[f] ≤ δ, and deg(f) ≤ d. Let F : {±1}nR → R be its boolean analog:
F = {f}. Consider any “test-function” ψ : R→ R that is C3, with bounded 3rd-derivative
|ψ′′′| ≤ C everywhere. Then,∣∣∣∣ E

y∈{±1}nR
[ψ(F (y))]− E

x∈[R]n
[ψ(f(x))]

∣∣∣∣ ≤ C10dRd/2
√
δ. (20)

Note that the above version follows directly from Theorem 3.18 and Hypothesis 3 of [27],
and the fact that uniform ±1 bits are (2, 3, 1/

√
2)-hypercontractive as described in [27].

As we shall see later, we will want to apply the Invariance Principle for some functions ψ
that are not in C3. However, these functions will be Lipschitz-continuous with some constant
c ∈ R (or “c-Lipschitz”), meaning that

|ψ(x+ ∆)− ψ(x)| ≤ c|∆| for all x,∆ ∈ R. (21)

Therefore, similar to Lemma 3.21 in [27], we can “smooth” it to get a function ψ̃ that is that
is C3, and has arbitrarily small pointwise difference to ψ.

I Lemma 10 (Mollification Lemma [27]). Let ψ : R→ R be any c-Lipschitz function. Then
for any ζ > 0, there exists a function ψ̃ : R→ R such that

ψ̃ ∈ C3,
||ψ̃ − ψ||∞ ≤ ζ, and,
||ψ̃′′′||∞ ≤ C̃c3/ζ2.

For some universal constant C̃, not depending on ζ, c.

APPROX/RANDOM’16

15:10 Near-Optimal UGC-hardness of Approximating Max k-CSPR

For completeness, the full proof of the lemma can be found in Appendix A.1.
Now we state the following version of the Invariance Principle, which will be more

convenient to invoke. It can be proved simply by just combining the two previous lemmas.
We list a full proof in Appendix A.2.

I Lemma 11 (Invariance Principle). Let ψ : R→ R be one of the following functions:
1. ψ1(t) := |t|,

2. ψk(t) :=

tk if t ∈ [0, 1],
0 if t < 0,
1 if t ≥ 1.

Let f : [R]n → [0, 1] be any function with all Inf≤di [f] ≤ δ. Let F : {±1}nR → R be its
boolean analog: F = {f}. Let f≤d : [R]n → R denote f truncated to degree d, and similarly
for F≤d : {±1}nR → R.

Then, for parameters d = 10k logR and δ = 1/(R10+100k log(R)), we have∣∣∣∣ E
y∈{±1}nR

[ψ(F≤d(y))]− E
x∈[R]n

[ψ(f≤d(x))]
∣∣∣∣ ≤ O(1/Rk). (22)

2.5 Hypercontractivity Theorem
Another crucial ingredient in our proof is the hypercontractivity lemma, which says that, on
{±1}n domain, the operator Tρ smooths any function so well that the higher norm can be
bound by the lower norm of the original (unsmoothed) function. Here we use the version of
the theorem as stated in [28].

I Theorem 12 (Hypercontractivity Theorem [28]). Let 1 ≤ p ≤ q ≤ ∞. For any ρ ≤
√

p−1
q−1

and for any function h : {±1}n → R, the following inequality holds:

||Tρh||q ≤ ||h||p. (23)

In particular, for choice of parameter ρ = 1/
√

(k − 1) logR, we have

||T2ρh||k ≤ ||h||1+ε. (24)

where ε = 4/ log(R).

3 Inapproximability of Max k-CSPR

In this section, we prove Theorem 1 and Theorem 2. Before we do so, we first introduce a
conjecture, which we name One-Sided Unique Games Conjecture. The conjecture is similar
to UGC except that the completeness parameter ζ is fixed in contrast to UGC where the
completeness can be any close to one.

I Conjecture 13 (One-Sided Unique Games Conjecture). There exists a constant ζ > 0 such
that, for every constant γ > 0, there exists a constant N = N(γ) such that it is NP-hard
to distinguish a unique game with alphabet size N of value at least ζ from one of value at
most γ.

It is obvious that the UGC implies One-Sided UGC with ζ = 1− η for any sufficiently
small η. It is also not hard to see that, by repeating each alphabet on the right d times and

P. Manurangsi, P. Nakkiran, and L. Trevisan 15:11

spreading each d-to-1 constraint out to be a permutation, d-to-1 Games Conjecture implies
One-Sided UGC with ζ = 1/d. A full proof of this can be found in Appendix B.

Since both UGC and d-to-1 Games Conjecture imply One-Sided UGC, it is enough for us
to show the following theorem, which implies both Theorem 1 and Theorem 2.

I Theorem 14. Unless the One-Sided Unique Games Conjecture is false, for any k ≥
2 and any sufficiently large R, it is NP-hard to approximate Max k-CSPR to within
2O(k log k)(logR)k/2/Rk−1 factor.

The theorem will be proved in Subsection 3.3. Before that, we first prove an inequality
that is the heart of our soundness analysis in Subsection 3.2.

3.1 Parameters
We use the following parameters throughout, which we list for convenience here:

Correlation3: ρ = 1/
√

(k − 1) logR
Degree: d = 10k logR
Low-degree influences: δ = 1/(R10+100k log(R))

3.2 Hypercontractivity for Noisy Low-Influence Functions
Here we show a version of hypercontractivity for noisy low-influence functions over large
domains. Although hypercontractivity does not hold in general for noisy functions over large
domains, it turns out to hold in our setting of high-noise and low-influences. The main
technical idea is to use the Invariance Principle to reduce functions over larger domains to
boolean functions, then apply boolean hypercontractivity.

I Lemma 15 (Main Lemma). Let g : [R]n → [0, 1] be any function with Ex∈[R]n [g(x)] = 1/R.
Then, for our choice of parameters ρ, d, δ: If Inf≤di [g] ≤ δ for all i, then

E
x∈[R]n

[(Tρg(x))k] ≤ 2O(k)/Rk.

Before we present the full proof, we outline the high-level steps below. Let f = Tρg, and
define boolean analogs G = {g}, and F = {f}. Let ψk : R→ R be defined as in Lemma 11.
Then,

E
x∈[R]n

[f(x)k] ≈ E[ψk(f≤d(x))] (25)

(Lemma 11: Invariance Principle) ≈ E
y∈{±1}nR

[ψk(F≤d(y))] (26)

(Definition of ψk) ≤ ||F≤d||kk (27)
(Definition of F) = ||TρG≤d||kk (28)

= ||T2ρT1/2G
≤d||kk (29)

(Hypercontractivity, for small ε) ≤ ||T1/2G
≤d||k1+ε (30)

(Invariance, etc.) ≈ 2O(k)||g||k1 (31)

(Since E[|g|] = 1/R) = 2O(k)/Rk. (32)

3 Note that for k = 2, this correlation yields a stability of ≈ 1/R for the plurality. That is,
Prz,x,y[plur(x1, . . . , xn) = plur(y1, . . . , yn)] ≈ 1/R where each zi ∈ [R] is iid uniform, and xi, yi

are ρ-correlated copies of zi.

APPROX/RANDOM’16

15:12 Near-Optimal UGC-hardness of Approximating Max k-CSPR

Proof. To establish line (25), first notice that

ψk(f(x)) = ψk(f≤d(x) + f>d(x)) ≤ ψk(f≤d(x)) + k|f>d(x)| (33)

where the last inequality is because the function ψk is k-Lipschitz.
Moreover, since g(x) ∈ [0, 1], we have f(x) ∈ [0, 1], so

f(x)k = ψk(f(x)). (34)

Thus,

E[f(x)k] = E[ψk(f(x))] (35)
≤ E[ψk(f≤d(x))] + kE[|f>d(x)|] (36)
= E[ψk(f≤d(x))] + k||f>d||1 (37)
≤ E[ψk(f≤d(x))] + k||f>d||2. (38)

(39)

And we can bound the 2-norm of f>d, since f is noisy, we have

||f>d||22 = ||Tρg>d||22 ≤ ρ2d ≤ O(1/R2k). (40)

The last inequality comes from our choice of ρ and d.
So line (25) is established:

E[f(x)k] ≤ E[ψk(f≤d(x))] +O(k/Rk). (41)

Line (26) follows directly from our version of the Invariance Principle (Lemma 11), for
the function ψk:

E
x∈[R]n

[ψk(f≤d(x))] ≤ E
y∈{±1}nR

[ψk(F≤d(y))] +O(1/Rk). (42)

We can now rewrite Ey∈{±1}nR [ψk(F≤d(y))] as

E
y∈{±1}nR

[ψk(F≤d(y))] ≤ E
y∈{±1}nR

[|F≤d(y)|k] (43)

= ||F≤d||kk (44)
= ||TρG≤d||kk (45)
= ||T2ρT1/2G

≤d||kk. (46)
(47)

Now, from the Hypercontractivity Theorem, Equation (24), we have

||T2ρT1/2G
≤d||k ≤ ||T1/2G

≤d||1+ε (48)

for ε = 4/ logR. This establishes line (30):

||T2ρT1/2G
≤d||kk ≤ ||T1/2G

≤d||k1+ε = E[|T1/2G
≤d(y)|1+ε]k/(1+ε). (49)

To show the remaining steps, we will apply the Invariance Principle once more. Notice
that for all t ∈ R : |t|1+ε ≤ |t|+ t2. Hence, we can derive the following bound:

E[|T1/2G
≤d(y)|1+ε] ≤ E[|T1/2G

≤d(y)|] + E[(T1/2G
≤d(y))2] (50)

(Matching Fourier expansion) = E[|T1/2G
≤d(y)|] + E[(T1/2g

≤d(y))2] (51)
(Lemma 11, Invariance Principle) ≤ E[|T1/2g

≤d(x)|] + E[(T1/2g
≤d(x))2] +O(1/Rk).

(52)

P. Manurangsi, P. Nakkiran, and L. Trevisan 15:13

Here we applied our Invariance Principle (Lemma 11) for the function ψ1 as defined in
Lemma 11. We will bound each of the expectations on the RHS, using the fact that g is
balanced, and T1/2g is noisy.

First,

E[|T1/2g
≤d(x)|] = E[|T1/2g(x)− T1/2g

>d(x)|] (53)
(Triangle Inequality) ≤ E[|T1/2g(x)|] + E[|T1/2g

>d(x)|] (54)
= ||g||1 + ||T1/2g

>d||1 (55)
≤ ||g||1 + ||T1/2g

>d||2 (56)
≤ 1/R+ (1/2)d (57)

(By our choice of d) = O(1/R). (58)

Second,

E[(T1/2g
≤d(x))2] =

∑
s∈[R]n,|s|≤d

(1/2)2|s|ĝ(s)2 (59)

≤
∑
s∈[R]n

(1/2)2|s|ĝ(s)2 (60)

= E[(T1/2g(x))2] (61)
(Since g ∈ [0, 1]) ≤ E[T1/2g(x)] (62)

= E[g(x)] = 1/R. (63)

Finally, plugging these bounds into (52), we find:

||T1/2G
≤d||k1+ε = E[|T1/2G

≤d(y)|1+ε]k/(1+ε) (64)

≤ (O(1/R))k/(1+ε) (65)

= 2O(k)/Rk/(1+ε) (66)

≤ 2O(k)/Rk(1−ε) (67)

(Recall ε = 4/ logR) = 2O(k)/Rk. (68)

This completes the proof of the main lemma. J

3.3 Reducing Unique Label Cover to Max k-CSPR

Here we reduce unique games to Max k-CSPR. We will construct a PCP verifier that reads
k symbols of the proof (with an alphabet of size R) with the following properties:

Completeness. If the unique game has value at least ζ, then the verifier accepts an
honest proof with probability at least c = ζk/((logR)k/22O(k log k)).
Soundness. If the unique game has value at most γ = 2O(k)δ2/(4dRk), then the verifier
accepts any (potentially cheating) proof with probability at most s = 2O(k)/Rk−1.

Since each symbol in the proof can be viewed as a variable and each accepting predicate
of the verifier can be viewed as a constraint of Max k-CSPR, assuming the One-sided
UGC, this PCP implies NP-hardness of approximating Max k-CSPR of factor s/c =
2O(k log k)(logR)k/2/Rk−1 and, hence, establishes our Theorem 14.

APPROX/RANDOM’16

15:14 Near-Optimal UGC-hardness of Approximating Max k-CSPR

3.3.1 The PCP
Given a unique game (V,W,E, n, {πe}e∈E), the proof is the truth-table of a function hw :
[R]n → [R] for each vertex w ∈W . By folding, we can assume hw is balanced, i.e. hw takes
on all elements of its range with equal probability: Prx∈[R]n [hw(x) = i] = 1/R for all i ∈ [R].4

Notationally, for x ∈ [R]n, let (x ◦π) denote permuting the coordinates of x as: (x ◦π)i =
xπ(i). Also, for an edge e = (v, w), we write πe = πv,w, and define πw,v = π−1

v,w.
The verifier picks a uniformly random vertex v ∈ V , and k independent uniformly random

neighbors of v: w1, w2, . . . , wk ∈ W . Then pick z ∈ [R]n uniformly at random, and let
x(1), x(2), . . . , x(k) be independent ρ-correlated noisy copies of z (each coordinate xi chosen
as equal to zi w.p. ρ, or uniformly at random otherwise). The verifier accepts if and only if

hw1(x(1) ◦ πw1,v) = hw2(x(2) ◦ πw2,v) = · · · = hwk(x(k) ◦ πwk,v). (69)

To achieve the desired hardness result, we pick ρ = 1/
√

(k − 1) logR.

3.3.2 Completeness Analysis
First, note that that we can assume without loss of generality that the graph is regular on V
side.5 Let the degree of each vertex in V be ∆.

Suppose that the original unique game has an assignment of value at least ζ. Let us
call this assignment ϕ. The honest proof defines hw at each vertex w ∈W as the long code
encoding of this assignment, i.e., hw(x) = xϕ(w). We can written the verifier acceptance
condition as follows:

The verifier accepts⇔ hw1(x(1) ◦ πw1,v) = · · · = hwk(x(k) ◦ πwk,v) (70)

⇔ (x(1) ◦ πw1,v)ϕ(w1) = · · · = (x(k) ◦ πwk,v)ϕ(wk) (71)

⇔ (x(1))πw1,v(ϕ(w1)) = · · · = (x(k))πwk,v(ϕ(wk)). (72)

Observe that, if the edges (v, w1), . . . , (v, wk) are satisfied by ϕ, then πw1,v(ϕ(w1)) =
· · · = πwk,v(ϕ(wk)) = ϕ(v). Hence, if the aforementioned edges are satisfied and x(1), . . . , x(k)

are not perturbed at coordinate ϕ(v), then (x(1))πw1,v(ϕ(w1)) = · · · = (x(k))πwk,v(ϕ(wk)).
For each u ∈ V , let su be the number of satisfied edges touching u. Since w1, . . . , wk are

chosen from the neighbors of v independently from each other, the probability that the edges
(v, w1), (v, w2), . . . , (v, wk) are satisfied can be bounded as follows:

Pr
v,w1,...,wk

[(v, w1), . . . , (v, wk) are satisfied] (73)

=
∑
u∈V

Pr
w1,...,wk

[(v, w1), . . . , (v, wk) are satisfied | v = u] Pr[v = u] (74)

=
∑
u∈V

(su/∆)k Pr[v = u] (75)

= E
u∈V

[
(su/∆)k

]
(76)

≥ E
u∈V

[su/∆]k . (77)

4 More precisely, if the truth-table provided is of some function h̃w : [R]n → [R], we define the “folded”
function hw as hw(x1, x2, x3, . . . xn) := h̃w(x−(x1, x1, . . . , x1))+x1, where the ± is over mod R. Notice
that the folded hw is balanced, and also that folding does not affect dictator functions. Thus we define
our PCP in terms of hw, but simulate queries to hw using the actual proof h̃w.

5 See, for instance, Lemma 3.4 in [23].

P. Manurangsi, P. Nakkiran, and L. Trevisan 15:15

Notice that Eu∈V [su/∆] is exactly the value of ϕ, which is at least ζ. As a result,

Pr
v,w1,...,wk

[(v, w1), . . . , (v, wk) are satisfied] ≥ ζk.

Furthermore, it is obvious that the probability that x1, . . . , xk are not perturbed at the
coordinate ϕ(v) is ρk. As a result, the PCP accepts with probability at least ζkρk. When
ρ = 1/

√
(k − 1) logR and ζ is a constant not depending on k and R, the completeness is

1/((logR)k/22O(k log k)).

3.3.3 Soundness Analysis
Suppose that the unique game has value at most γ = 2O(k)δ2/(4dRk). We will show that
the soundness is 2O(k)/Rk−1.

Suppose for the sake of contradiction that the probability that the verifier accepts
Pr[accept] > t = 2Ω(k)/Rk−1 where Ω(·) hides some large enough constant.

Let hiw(x) : [R]n → {0, 1} be the indicator function for hw(x) = i and let x ρ← z denote
that x is a ρ-correlated copy of z. We have

Pr[accept] = Pr[hw1(x(1) ◦ πw1,v) = · · · = hwk(x(k) ◦ πwk,v)] (78)

=
∑
i∈[R]

Pr[i = hw1(x(1) ◦ πw1,v) = · · · = hwk(x(k) ◦ πwk,v)] (79)

=
∑
i∈[R]

E[hiw1
(x(1) ◦ πw1,v) · · ·hiwk(x(k) ◦ πwk,v)] (80)

=
∑
i∈[R]

E
[
E
w1

[hiw1
(x(1) ◦ πw1,v)] · · · E

wk
[hiwk(x(k) ◦ πwk,v)]

]
. (81)

Where the last equality follows since the wi’s are independent, given v.
Now define giv : [R]n → [0, 1] as

giv(x) = E
w∼v

[hiw(x ◦ πw,v)] (82)

where w ∼ v denotes neighbors w of v.
We can rewrite Pr[accept] as follows:

Pr[accept] =
∑
i∈[R]

E[giv(x(1))giv(x(2)) · · · giv(x(k))] (83)

(Since x(j)’s are independent given z) =
∑
i∈[R]

E

[
E
x
ρ←z

[giv(x)]k
]

(84)

=
∑
i∈[R]

E
v,z

[(Tρgiv(z))k] (85)

= E
v

∑
i∈[R]

E
z
[(Tρgiv(z))k

 . (86)

Next, notice that
∑
i∈[R] Ez[(Tρgiv(z))k] is simply the probability the verifier accepts given

it picks vertex v, and thus this sum is bounded above by 1.
Therefore, since Pr[accept] > t, by (86), at least t/2 fraction of vertices v ∈ V have∑
i∈[R]

E
z
[(Tρgiv(z))k] ≥ t/2. (87)

APPROX/RANDOM’16

15:16 Near-Optimal UGC-hardness of Approximating Max k-CSPR

For these “good” vertices, there must exist some i ∈ [R] for which

E
z
[(Tρgiv(z))k] ≥ t/(2R). (88)

Then for “good” v and i as above,

E
z
[(Tρgiv(z))k] > 2Ω(k)/Rk. (89)

By Lemma 15 (Main Lemma), this means giv has some coordinate j for which

Inf≤dj [giv] > δ (90)

for our choice of d, δ as defined in Subsection 3.1. Pick this j as the label of vertex v ∈ V .
Now to pick the label of a vertex w ∈W , define the candidate labels as

Cand[w] = {j ∈ [n] : ∃ i ∈ [R] s.t. Inf≤dj [hiw] ≥ δ/2}. (91)

Notice that∑
j∈[n]

Inf≤dj [hiw] =
∑

s∈[R]n: |s|≤d

|s|ĥiw(s)2 ≤ d
∑
s:|s|>0

ĥiw(s)2 = d V ar[hiw] ≤ d. (92)

So for each i ∈ [R], the projection hiw can have at most 2d/δ coordinates with influence
≥ δ/2. Therefore the number of candidate labels is bounded:

|Cand[w]| ≤ 2dR/δ. (93)

Now we argue that picking a random label in Cand[w] for w ∈W is in expectation a good
decoding. We will show that if we assigned label j to a “good” v ∈ V , then πv,w(j) ∈ Cand[w]
for a constant fraction of neighbors w ∼ v. Note here that πv,w = π−1

w,v.
First, since giv(x) = Ew∼v[hiw(x ◦ πw,v)], the Fourier transform of giv is related to the

Fourier transform of the long code labels hiw as

ĝiv(s) = E
w∼v

[ĥiw(s ◦ πw,v)]. (94)

Hence, the influence Inf≤dj [giv] of being large implies the expected influence Inf≤d
π−1
v,w(j)[h

i
w]

of its neighbor labels w ∼ v is also large as formalized below.

δ < Inf≤kj [giv] =
∑
s∈[R]n
|s|≤k,sj 6=1

ĝiv(s)2 (95)

=
∑

E
w∼v

[ĥiw(s ◦ πw,v)]2 (96)

≤
∑

E
w∼v

[ĥiw(s ◦ πw,v)2] (97)

= E
w∼v

[
∑
s∈[R]n
|s|≤k,sj 6=1

ĥiw(s ◦ πw,v)2] (98)

= E
w∼v

[
∑
s∈[R]n

|s|≤k,s
π
−1
w,v(j)

6=1

ĥiw(s)2] (99)

(Since πv,w = π−1
w,v) = E

w∼v
[

∑
s∈[R]n

|s|≤k,sπv,w(j) 6=1

ĥiw(s)2] (100)

= E
w∼v

[Inf≤dπv,w(j)[h
i
w]] (101)

P. Manurangsi, P. Nakkiran, and L. Trevisan 15:17

Therefore, at least δ/2 fraction of neighbors w ∼ v must have Inf≤dπv,w(j)[h
i
w] ≥ δ/2, and

so πv,w(j) ∈ Cand[w] for at least δ/2 fraction of neighbors of “good” vertices v.
Finally, recall that at least (t/2) fraction of vertices v ∈ V are “good”. These vertices

have at least (δ/2) fraction of neighbors w ∈W with high-influence labels and the matching
label w ∈W is picked with probability at least δ/(2dR). Moreover, as stated earlier, we can
assume that the graph is regular on V side. Hence, the expected fraction of edges satisfied
by this decoding is at least

(t/2)(δ/2)(δ/2dR) = tδ2/(4dR) = 2Ω(k)δ2/(4dRk) > γ, (102)

which contradicts our assumption that the unique game has value at most γ. Hence, we can
conclude that the soundness is at most 2O(k)/Rk−1 as desired.

4 Ω(log R/Rk−1)-Approximation Algorithm for Max k-CSPR

Instead of just extending the KKT algorithm to work with Max k-CSPs, we will show a more
general statement that any algorithm that approximates Max CSPs with small arity can be
extended to approximate Max CSPs with larger arities. In particular, we show how to extend
any f(R)/Rk′ -approximation algorithm for Max k′-CSPR to an (f(R)/2O(min{k′,k−k′}))/Rk-
approximation algorithm for Max k-CSPR where k > k′.

Since the naive algorithm that assigns every variable randomly has an approximation
ratio of 1/Rk, we think of f(R) as the advantage of algorithm A over the randomized
algorithm. From this perspective, our extension lemma preserves the advantage up to a
factor of 1/2O(min{k′,k−k′}).

The extension lemma and its proof are stated formally below.

I Lemma 16. Suppose that there exists a polynomial-time approximation algorithm A for
Max k′-CSPR that outputs an assignment with expected value at least f(R)/Rk′ times
the optimum. For any k > k′, we can construct a polynomial-time approximation al-
gorithm B for Max k-CSPR that outputs an assignment with expected value at least
(f(R)/2O(min{k′,k−k′}))/Rk times the optimum.

Proof. The main idea of the proof is simple. We turn an instance of Max k-CSPR to
an instance of Max k′-CSPR by constructing

(
k
k′

)
Rk−k

′ new constraints for each original
constraint; each new constraint is a projection of the original constraint to a subset of
variables of size k′. We then use A to solve the newly constructed instance. Finally, B simply
assigns each variable with the assignment from A with a certain probability and assigns it
randomly otherwise.

For convenience, let α be k−k′
k . We define B on input (X , C) as follows:

1. Create an instance (X , C′) of Max k′-CSPR with the same variables and, for each
C = (W,S, P) ∈ C and for every subset S′ of S with |S′| = k′ and every τ ∈ [R]S−S′ , create
a constraint CS′,τ = (W ′, S′, P ′) in C′ where W ′ = W

(kk′)Rk−k′
and P ′ : [R]S′ → {0, 1} is

defined by

P ′(ψ) = P (ψ ◦ τ).

Here ψ ◦ τ is defined as follows:

ψ ◦ τ(x) =
{
ψ(x) if x ∈ S′,
τ(x) otherwise.

APPROX/RANDOM’16

15:18 Near-Optimal UGC-hardness of Approximating Max k-CSPR

2. Run A on input (X , C′). Denote the output of A by ϕA.

3. For each x ∈ X , with probability α, pick ϕB(x) randomly from [R]. Otherwise, let ϕB(x)
be ϕA(x).

4. Output ϕB .

We now show that ϕB has expected value at least (f(R)/2O(min{k′,k−k′}))/Rk times the
optimum.

First, observe that the optimum of (X , C′) is at least 1/Rk−k′ times that of (X , C). To see
that this is true, consider any assignment ϕ : X → [R] and any constraint C = (W,S, P). Its
weighted contribution in (X , C) is WP (ϕ|S). On the other hand, W

(kk′)Rk−k′
P (ϕ|S) appears(

k
k′

)
times in (X , C′), once for each subset S′ ⊆ S of size k′. Hence, the value of ϕ with

respect to (X , C′) is at least 1/Rk−k′ times its value with respect to (X , C)

Recall that the algorithm A gives an assignment of expected value at least f(R)/Rk′

times the optimum of (X , C′). Hence, the expected value of ϕA is at least f(R)/Rk times
the optimum of (X , C).

Next, we will compute the expected value of ϕB (with respect to (X , C)). We start by
computing the expected value of ϕB with respect to a fixed constraint C = (W,S, P) ∈ C,
i.e., EϕB [WP (ϕB |S)]. For each S′ ⊆ S of size k, we define DS′ as the event where, in
step 3, ϕB(x) is assigned to be ϕA(x) for all x ∈ S′ and ϕB(x) is assigned randomly for all
x ∈ S − S′.

Since DS′ is disjoint for all S′ ⊆ S of size k′, we have the following inequality.

E
ϕB

[WP (ϕB |S)] ≥
∑
S′⊆S
|S′|=k′

Pr[DS′] E
ϕB

[WP (ϕB |S) | DS′] (103)

(Since Pr[DS′] = αk−k
′
(1− α)k

′
) = αk−k

′
(1− α)k

′ ∑
S′⊆S
|S′|=k′

W E
ϕB

[P (ϕB |S) | DS′] (104)

Moreover, since every vertex in S−S′ is randomly assigned when DS′ occurs, E[P (ϕB |S) |
DS′] can be view as the average value of P ((ϕA|S′) ◦ τ) over all τ ∈ [R]S−S′ . Hence, we can
derive the following:

E
ϕB

[P (ϕB |S) | DS′] = 1
Rk−k′

E
ϕA

 ∑
τ∈[R]S−S′

P ((ϕA|S′) ◦ τ)

 . (105)

As a result, we have

E
ϕB

[WP (ϕB |S)] ≥ αk−k
′(1− α)k′

Rk−k′

 E
ϕA

 ∑
S′⊆S
|S′|=k′

∑
τ∈[R]S−S′

WP ((ϕA|S′) ◦ τ)

 . (106)

P. Manurangsi, P. Nakkiran, and L. Trevisan 15:19

By summing (106) over all constraints C ∈ C, we arrive at the following inequality.

E
ϕB

 ∑
C=(W,S,P)∈C

WP (ϕB |S)

 (107)

≥ αk−k
′(1− α)k′

Rk−k′
E
ϕA

 ∑
C=(W,S,P)∈C

 ∑
S′⊆S
|S′|=k′

∑
τ∈[R]S−S′

WP ((ϕA|S′) ◦ τ)

 (108)

=
(
k

k′

)
αk−k

′
(1− α)k

′
E
ϕA

 ∑
C=(W,S,P)∈C

 ∑
S′⊆S
|S′|=k′

∑
τ∈[R]S−S′

W(
k
k′

)
Rk−k′

P ((ϕA|S′) ◦ τ)

(109)

=
(
k

k′

)
αk−k

′
(1− α)k

′
E
ϕA

 ∑
C′=(W ′,S′,P ′)∈C

W ′P ′(ϕA|S′)

 (110)

The first expression is the expected value of ϕB whereas the last is
(
k
k′

)
αk−k

′(1− α)k′

times the expected value of ϕA. Since the expected value of ϕA is at least f(R)/Rk times
the optimum of (X , C), the expected value of ϕB is at least (

(
k
k′

)
αk−k

′(1− α)k′)(f(R)/Rk)
times the optimum of (X , C).

Finally, we substitute α = k−k′
k in to get(

k

k′

)
αk−k

′
(1− α)k

′
=
(
k

k′

)(
k − k′

k

)k−k′ (
k′

k

)k′
. (111)

Let l = min{k′, k − k′}. We then have(
k

k′

)(
k − k′

k

)k−k′ (
k′

k

)k′
=
(
k

l

)(
k − l
k

)k−l(
l

k

)l
(112)

≥
(
k

l

)l(
k − l
k

)k−l(
l

k

)l
(113)

≥
(
k − l
k

)k
(114)

=
(

(1− l/k)2k/l
)2l

(115)

(From Bernoulli’s inequality and from l ≤ k/2) ≥ 1/22l. (116)

Hence, ϕB has expected value at least (f(R)/2O(l))/Rk times the optimum of (X , C),
which completes the proof of this lemma. J

Finally, Theorem 3 is an immediate consequence of applying Lemma 16 to the algorithm
from [24] with k′ = 2 and f(R) = Ω(R logR).

5 k-Query Large Alphabet Dictator Test

We remark that the results of Section 3 also implicitly yield a k-query nonadaptive Dictator-vs.-
Quasirandom test for functions over large alphabet. A Dictator-vs.-Quasirandom test aims to
distinguish dictator functions from functions with small low-degree influences (“quasirandom”).

APPROX/RANDOM’16

15:20 Near-Optimal UGC-hardness of Approximating Max k-CSPR

This concept was essentially introduced in [19], and we borrow the “quasirandom” terminology
from [29] (adapted here for functions over non-binary alphabets). Specifically, we have the
following test:

I Theorem 17. For any function f : [R]n → [R], and any i ∈ [R], let f i : [R]n →
{0, 1} denote the indicator function for f(x) = i. For any k,R ≥ 2, set parameters ρ =
1/
√

(k − 1) logR, d = 10k logR, and δ = 1/(R10+100k log(R)). Then there exists a k-query
nonadaptive Dictator-vs.Quasirandom test with the following guarantees:
Completeness: If f is a dictator, i.e. f(x) = xj for some coordinate j ∈ [n], then the test

passes with probability at least

ρk = 1/((logR)k/22O(k log k)) .

Soundness: If f has Inf≤dj [f i] ≤ δ for all coordinates j ∈ [n] and all projections i ∈ [R],
then the test passes with probability at most

2O(k)/Rk−1 .

Notice that if we assume f is balanced, then this theorem is immediately implied by the
techniques of Section 3. However, to extend this to general functions via “folding”, we must
technically show that the operation of folding keeps low-influence functions as low-influence.
The full proof can be found in Appendix C.

6 Conclusions and Open Questions

We conclude by posting interesting open questions regarding the approximability of Max
k-CSPR and providing our opinions on each question. First, as stated earlier, even with our
results, current inapproximability results do not match the best known approximation ratio
achievable in polynomial time when 3 ≤ k < R. Hence, it is intriguing to ask what the right
ratio that Max k-CSPR becomes NP-hard to approximate is. Since our hardness factor
2O(k log k)(logR)k/2/Rk−1 does not match Chan’s hardness factor O(k/Rk−2) when k = R,
it is likely that there is a k between 3 and R− 1 such that a drastic change in the hardness
factor, and technique that yields that factor, occurs.

Moreover, since our PCP has completeness of 1/(2O(k)(logR)k/2), even if one cannot
improve on the inapproximability factor, it is still interesting if one can come up with a
hardness result with almost perfect completeness. In fact, even for k = 2, there is no known
hardness of approximation of factor better than O(logR/

√
R) with near perfect completeness

whereas the best UGC-hardness known is O(logR/R).
It is also interesting to try to relax assumptions for other known inapproximability

results from UGC to the One-Sided UGC. Since the One-Sided UGC is implied by d-to-
1 Games Conjecture, doing so will imply inapproximability results based on the d-to-1
Games Conjecture. Moreover, without going into too much detail, we remark that most
attempts to refute the UGC and the d-to-1 Conjecture need the value of the game to be
high [1, 5, 7, 15, 20, 25, 36]. Hence, these algorithms are not candidates to refute the
One-Sided UGC. In addition, Arora, Barak and Steurer’s [1] subexponential time algorithm
for unique games suggest that unique games have intermediate complexity, meaning that,
even if the UGC is true, the UGC-hardness would not imply exponential time lower bounds.
On the other hand, to the best of the authors’ knowledge, the ABS algorithm does not run
in subexponential time when the completeness is small. Hence, the One-Sided UGC may
require exponential time to solve, which could give similar running time lower bounds for

P. Manurangsi, P. Nakkiran, and L. Trevisan 15:21

the resulting hardness of approximation results. Finally, there are evidences suggesting that
relaxing completeness or soundness conditions of a conjecture can make it easier; the most
relevant such result is that from Feige and Reichman who proved that, if one only cares
about the approximation ratio and not completeness and soundness, then unique game is
hard to approximate to within factor ε for any ε > 0 [13].

References

1 Sanjeev Arora, Boaz Barak, and David Steurer. Subexponential algorithms for unique
games and related problems. J. ACM, 62(5):42, 2015. doi:10.1145/2775105.

2 P. Austrin and E. Mossel. Approximation resistant predicates from pairwise independence.
In Computational Complexity, 2008. CCC’08. 23rd Annual IEEE Conference on, pages
249–258, June 2008. doi:10.1109/CCC.2008.20.

3 Siu On Chan. Approximation resistance from pairwise independent subgroups. In Proceed-
ings of the Forty-fifth Annual ACM Symposium on Theory of Computing, STOC’13, pages
447–456, New York, NY, USA, 2013. ACM. doi:10.1145/2488608.2488665.

4 Moses Charikar, MohammadTaghi Hajiaghayi, and Howard Karloff. Improved approx-
imation algorithms for label cover problems. Algorithmica, 61(1):190–206, 2011. doi:
10.1007/s00453-010-9464-3.

5 Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Near-optimal algorithms
for unique games. In Proceedings of the Thirty-eighth Annual ACM Symposium on Theory
of Computing, STOC’06, pages 205–214, New York, NY, USA, 2006. ACM. doi:10.1145/
1132516.1132547.

6 Moses Charikar, Konstantin Makarychev, and Yury Makarychev. Near-optimal algorithms
for maximum constraint satisfaction problems. ACM Transactions on Algorithms, 5(3),
2009. doi:10.1145/1541885.1541893.

7 Eden Chlamtac, Konstantin Makarychev, and Yury Makarychev. How to play unique games
using embeddings. In 47th Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2006), 21-24 October 2006, Berkeley, California, USA, Proceedings, pages 687–696,
2006. doi:10.1109/FOCS.2006.36.

8 Pierluigi Crescenzi, Riccardo Silvestri, and Luca Trevisan. On weighted vs unweighted
versions of combinatorial optimization problems. Information and Computation, 167(1):10–
26, 2001.

9 Irit Dinur, Elchanan Mossel, and Oded Regev. Conditional hardness for approximate
coloring. SIAM Journal on Computing, 39(3):843–873, 2009. doi:10.1137/07068062X.

10 Irit Dinur and Igor Shinkar. On the conditional hardness of coloring a 4-colorable graph with
super-constant number of colors. In Proceedings of the 13th International Conference on
Approximation, and 14 the International Conference on Randomization, and Combinatorial
Optimization: Algorithms and Techniques, APPROX/RANDOM’10, pages 138–151, Berlin,
Heidelberg, 2010. Springer-Verlag. URL: http://dl.acm.org/citation.cfm?id=1886521.
1886533.

11 Lars Engebretsen. The nonapproximability of non-boolean predicates. SIAM J. Discret.
Math., 18(1):114–129, January 2005. doi:10.1137/S0895480100380458.

12 Lars Engebretsen and Jonas Holmerin. More efficient queries in pcps for np and improved
approximation hardness of maximum csp. Random Struct. Algorithms, 33(4):497–514,
December 2008. doi:10.1002/rsa.v33:4.

13 Uriel Feige and Daniel Reichman. On systems of linear equations with two variables per
equation. In Klaus Jansen, Sanjeev Khanna, JoséD.P. Rolim, and Dana Ron, editors, Ap-
proximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,

APPROX/RANDOM’16

http://dx.doi.org/10.1145/2775105
http://dx.doi.org/10.1109/CCC.2008.20
http://dx.doi.org/10.1145/2488608.2488665
http://dx.doi.org/10.1007/s00453-010-9464-3
http://dx.doi.org/10.1007/s00453-010-9464-3
http://dx.doi.org/10.1145/1132516.1132547
http://dx.doi.org/10.1145/1132516.1132547
http://dx.doi.org/10.1145/1541885.1541893
http://dx.doi.org/10.1109/FOCS.2006.36
http://dx.doi.org/10.1137/07068062X
http://dl.acm.org/citation.cfm?id=1886521.1886533
http://dl.acm.org/citation.cfm?id=1886521.1886533
http://dx.doi.org/10.1137/S0895480100380458
http://dx.doi.org/10.1002/rsa.v33:4

15:22 Near-Optimal UGC-hardness of Approximating Max k-CSPR

volume 3122 of Lecture Notes in Computer Science, pages 117–127. Springer Berlin Heidel-
berg, 2004. doi:10.1007/978-3-540-27821-4_11.

14 Gil Goldshlager and Dana Moshkovitz. Approximating kCSP for large alphabets. https:
//people.csail.mit.edu/dmoshkov/papers/Approximating%20MAX%20kCSP.pdf, 2015.

15 Anupam Gupta and Kunal Talwar. Approximating unique games. In Proceedings of the
Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2006, Miami,
Florida, USA, January 22-26, 2006, pages 99–106, 2006. URL: http://dl.acm.org/
citation.cfm?id=1109557.1109569.

16 Venkatesan Guruswami and Prasad Raghavendra. Constraint satisfaction over a non-
boolean domain: Approximation algorithms and unique-games hardness. In Ashish
Goel, Klaus Jansen, JoséD.P. Rolim, and Ronitt Rubinfeld, editors, Approximation, Ran-
domization and Combinatorial Optimization. Algorithms and Techniques, volume 5171
of Lecture Notes in Computer Science, pages 77–90. Springer Berlin Heidelberg, 2008.
doi:10.1007/978-3-540-85363-3_7.

17 Venkatesan Guruswami and Ali Kemal Sinop. The complexity of finding independent
sets in bounded degree (hyper)graphs of low chromatic number. In Proceedings of the
Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San
Francisco, California, USA, January 23-25, 2011, pages 1615–1626, 2011. doi:10.1137/
1.9781611973082.125.

18 Gustav Hast. Approximating Max kCSP – outperforming a random assignment with al-
most a linear factor. In Proceedings of the 32Nd International Conference on Automata,
Languages and Programming, ICALP’05, pages 956–968, Berlin, Heidelberg, 2005. Springer-
Verlag. doi:10.1007/11523468_77.

19 Johan Håstad. Clique is hard to approximate within n1−ε. In Foundations of Computer
Science, 1996. Proceedings., 37th Annual Symposium on, pages 627–636. IEEE, 1996.

20 Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings of the
Thirty-fourth Annual ACM Symposium on Theory of Computing, STOC’02, pages 767–775,
New York, NY, USA, 2002. ACM. doi:10.1145/509907.510017.

21 Subhash Khot. On the unique games conjecture (invited survey). In Proceedings of the
25th Annual IEEE Conference on Computational Complexity, CCC 2010, Cambridge, Mas-
sachusetts, June 9-12, 2010, pages 99–121, 2010. doi:10.1109/CCC.2010.19.

22 Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal inapproxim-
ability results for MAX-CUT and other 2-variable csps? SIAM J. Comput., 37(1):319–357,
2007. doi:10.1137/S0097539705447372.

23 Subhash Khot and Oded Regev. Vertex cover might be hard to approximate to within 2-ε.
J. Comput. Syst. Sci., 74(3):335–349, May 2008. doi:10.1016/j.jcss.2007.06.019.

24 Guy Kindler, Alexandra Kolla, and Luca Trevisan. Approximation of non-boolean 2csp.
CoRR, abs/1504.00681, 2015. URL: http://arxiv.org/abs/1504.00681.

25 Alexandra Kolla. Spectral algorithms for unique games. Computational Complexity,
20(2):177–206, 2011. doi:10.1007/s00037-011-0011-7.

26 Konstantin Makarychev and Yury Makarychev. Approximation algorithm for non-boolean
max-k-csp. Theory of Computing, 10:341–358, 2014. doi:10.4086/toc.2014.v010a013.

27 Elchanan Mossel, Ryan O’Donnell, and Krzysztof Oleszkiewicz. Noise stability of functions
with low influences: invariance and optimality. Ann. Math. (2), 171(1):295–341, 2010.
doi:10.4007/annals.2010.171.295.

28 Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014.
URL: http://www.cambridge.org/de/academic/subjects/computer-science/
algorithmics-complexity-computer-algebra-and-computational-g/
analysis-boolean-functions.

http://dx.doi.org/10.1007/978-3-540-27821-4_11
https://people.csail.mit.edu/dmoshkov/papers/Approximating%20MAX%20kCSP.pdf
https://people.csail.mit.edu/dmoshkov/papers/Approximating%20MAX%20kCSP.pdf
http://dl.acm.org/citation.cfm?id=1109557.1109569
http://dl.acm.org/citation.cfm?id=1109557.1109569
http://dx.doi.org/10.1007/978-3-540-85363-3_7
http://dx.doi.org/10.1137/1.9781611973082.125
http://dx.doi.org/10.1137/1.9781611973082.125
http://dx.doi.org/10.1007/11523468_77
http://dx.doi.org/10.1145/509907.510017
http://dx.doi.org/10.1109/CCC.2010.19
http://dx.doi.org/10.1137/S0097539705447372
http://dx.doi.org/10.1016/j.jcss.2007.06.019
http://arxiv.org/abs/1504.00681
http://dx.doi.org/10.1007/s00037-011-0011-7
http://dx.doi.org/10.4086/toc.2014.v010a013
http://dx.doi.org/10.4007/annals.2010.171.295
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/analysis-boolean-functions
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/analysis-boolean-functions
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/analysis-boolean-functions

P. Manurangsi, P. Nakkiran, and L. Trevisan 15:23

29 Ryan O’Donnell and Yi Wu. 3-bit dictator testing: 1 vs. 5/8. In Proceedings of the Twentieth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2009, New York, NY, USA,
January 4-6, 2009, pages 365–373, 2009. URL: http://dl.acm.org/citation.cfm?id=
1496770.1496811.

30 Ryan O’Donnell and Yi Wu. Conditional hardness for satisfiable 3-csps. In Proceedings of
the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD,
USA, May 31 – June 2, 2009, pages 493–502, 2009. doi:10.1145/1536414.1536482.

31 Prasad Raghavendra. Optimal algorithms and inapproximability results for every csp? In
Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing, STOC’08,
pages 245–254, New York, NY, USA, 2008. ACM. doi:10.1145/1374376.1374414.

32 Alex Samorodnitsky and Luca Trevisan. A PCP characterization of NP with optimal
amortized query complexity. In Proceedings of the Thirty-Second Annual ACM Symposium
on Theory of Computing, May 21-23, 2000, Portland, OR, USA, pages 191–199, 2000.
doi:10.1145/335305.335329.

33 Alex Samorodnitsky and Luca Trevisan. Gowers uniformity, influence of variables, and
pcps. In Proceedings of the Thirty-eighth Annual ACM Symposium on Theory of Computing,
STOC’06, pages 11–20, New York, NY, USA, 2006. ACM. doi:10.1145/1132516.1132519.

34 Linqing Tang. Conditional hardness of approximating satisfiable max 3csp-q. In Yingfei
Dong, Ding-Zhu Du, and Oscar Ibarra, editors, Algorithms and Computation, volume 5878
of Lecture Notes in Computer Science, pages 923–932. Springer Berlin Heidelberg, 2009.
doi:10.1007/978-3-642-10631-6_93.

35 Luca Trevisan. Parallel approximation algorithms by positive linear programming. Al-
gorithmica, 21(1):72–88, 1998. doi:10.1007/PL00009209.

36 Luca Trevisan. Approximation algorithms for unique games. Theory of Computing,
4(1):111–128, 2008. doi:10.4086/toc.2008.v004a005.

A Proofs of Preliminary Results

For completeness, we prove some of the preliminary results, whose formal proofs were not
found in the literature by the authors.

A.1 Mollification Lemma
Below is the proof of the Mollification Lemma. We remark that, while its main idea is
explained in [28], the full proof is not shown there. Hence, we provide the proof here for
completeness.

Proof of Lemma 10. Let p : R→ R be a C4 function supported only on [−1,+1], such that
p(y) forms a probability distribution. (For example, an appropriately normalized version
of e−1/(1+y2) for |y| ≤ 1). Define pλ(y) to be re-scaled to have support [−λ,+λ] for some
λ > 0:

pλ(y) := (1/λ)p(y/λ). (117)

Let Yλ be a random variable with distribution pλ(y), supported on [−λ,+λ]. We will set
λ = ζ/c.

Now, define

ψ̃ := E
Yλ

[ψ(x+ Yλ)]. (118)

APPROX/RANDOM’16

http://dl.acm.org/citation.cfm?id=1496770.1496811
http://dl.acm.org/citation.cfm?id=1496770.1496811
http://dx.doi.org/10.1145/1536414.1536482
http://dx.doi.org/10.1145/1374376.1374414
http://dx.doi.org/10.1145/335305.335329
http://dx.doi.org/10.1145/1132516.1132519
http://dx.doi.org/10.1007/978-3-642-10631-6_93
http://dx.doi.org/10.1007/PL00009209
http://dx.doi.org/10.4086/toc.2008.v004a005

15:24 Near-Optimal UGC-hardness of Approximating Max k-CSPR

This is pointwise close to ψ, since ψ is c-Lipschitz:

|ψ̃(x)−ψ(x)| = | E
Yλ

[ψ(x+Yλ)−ψ(x)]| ≤ E
Yλ

[|ψ(x+Yλ)−ψ(x)|] ≤ E
Yλ

[c|Yλ|] ≤ cλ = ζ. (119)

Further, ψ̃ is C3, because ψ̃(x) can be written as a convolution:

ψ̃(x) = (ψ ∗ pλ)(x) =⇒ ψ̃′′′ = (ψ ∗ pλ)′′′ = (ψ ∗ p′′′λ). (120)

To see that ψ̃′′′ is bounded, for a fixed x ∈ R, define the constant z := ψ(x). Then,

|ψ̃′′′(x)| = |(ψ ∗ p′′′λ)(x)| (121)
(z is constant, so z′ = 0) = |(ψ ∗ p′′′λ − z′ ∗ p′′λ)(x)| (122)

= |(ψ ∗ p′′′λ − z ∗ p′′′λ)(x)| (123)
= |((ψ − z) ∗ p′′′λ)(x)| (124)

=
∣∣∣∣∫ +∞

−∞
p′′′λ (y)(ψ(x− y)− z)dy

∣∣∣∣ (125)

=
∣∣∣∣∫ +∞

−∞
p′′′λ (y)(ψ(x− y)− ψ(x))dy

∣∣∣∣ (126)

≤
∫ +λ

−λ
|p′′′λ (y)||ψ(x− y)− ψ(x)|dy (127)

(c-Lipschitz) ≤ ||p′′′λ ||∞
∫ +λ

−λ
|cy|dy (128)

= ||p′′′λ ||∞cλ2. (129)

Define the universal constant C̃ := ||p′′′||∞. We have

p′′′λ (y) = (1/λ4)p′′′(y/λ) =⇒ ||p′′′λ ||∞ ≤ (1/λ4)C̃. (130)

With our choice of λ = ζ/c, this yields |ψ̃′′′(x)| ≤ C̃c3/ζ2, which completes the proof of
Lemma 10. J

A.2 Proof of Lemma 11
Below we show the proof of Lemma 11.

Proof. First, we “mollify” the function ψ to construct a C3 function ψ̃, by applying Lemma 10
for ζ = 1/Rk. Notice that both choices of ψ are k-Lipschitz. Therefore the Mollification
Lemma guarantees that |ψ̃′′′(x)| ≤ C̃k3R2k for some universal constant C̃.

Since ψ̃ is pointwise close to ψ, with deviation at most 1/Rk, we have∣∣∣∣ E
y∈{±1}nR

[ψ(F≤d(y))]− E
x∈[R]n

[ψ(f≤d(x))]
∣∣∣∣

≤
∣∣∣∣ E
y∈{±1}nR

[ψ̃(F≤d(y))]− E
x∈[R]n

[ψ̃(f≤d(x))]
∣∣∣∣+O(1/Rk). (131)

Applying the General Invariance Principle (Theorem 9) with the function ψ̃, we have∣∣∣∣ E
y∈{±1}nR

[ψ̃(F≤d(y))]− E
x∈[R]n

[ψ̃(f≤d(x))]
∣∣∣∣ ≤ C̃k3R2k10dRd/2

√
δ. (132)

By our choice of parameters d, δ, this is O(1/Rk). J

P. Manurangsi, P. Nakkiran, and L. Trevisan 15:25

B d-to-1 Games Conjecture implies One-Sided Unique Games
Conjecture

In this section, we prove that if d-to-1 Games Conjecture is true, then so is One-Sided Unique
Games Conjecture.

I Lemma 18. For every d ∈ N, d-to-1 Games Conjecture implies One-Sided UGC.

Proof. Suppose that d-to-1 Games Conjecture is true for some d ∈ N. We will prove One-
Sided UGC; more specifically, ζ in the One-Sided UGC is 1/d. The reduction from a d-to-1
game (V,W,E,N, {πe}e∈E) to a unique game (V ′,W ′, E′, N ′, {π′e}e∈E) can be described as
follows:

Let V ′ = V,W ′ = W,E′ = E, and N ′ = N

We define π′e as follows. For each θ ∈ [N/d], let the elements of π−1
e (θ) be σ1, σ2, . . . , σd ∈

[N]. We then define π′e(σi) = d(θ − 1) + i.

Now, we will prove the soundness and completeness of this reduction.

Completeness. Suppose that the d-to-1 game is satisfiable. Let ϕ : V ∪W → [N] be the
assignment that satisfies every constraint in the d-to-1 game. We define ϕ′ : V ′ ∪W ′ → [N ′]
by first assign ϕ′(v) = ϕ(v) for every v ∈ V . Then, for each w ∈ W , pick ϕ′(w) to be an
assignment that satisfies as many edges touching w in the unique game as possible, i.e., for a
fixed w, ϕ′(w) is select to maximize |{v ∈ N(w) | π′(v,w)(ϕ(v)) = ϕ′(w)}| where N(w) is the
set of neighbors of w. From how ϕ′(w) is picked, we have

|{v ∈ N(w) | π′(v,w)(ϕ(v)) = ϕ′(w)}|

≥1
d

d∑
i=1
|{v ∈ N(w) | π′(v,w)(ϕ(v)) = d(ϕ(w)− 1) + i}|. (133)

Let 1[π′(v,w)(ϕ(v)) = d(ϕ(w)− 1) + i] be the indicating variable whether
π′(v,w)(ϕ(v)) = d(ϕ(w)− 1) + i, we can rewrite the right hand side as follows:

1
d

d∑
i=1
|{v ∈ N(w) | π′(v,w)(ϕ(v)) = d(ϕ(w)− 1) + i}| (134)

= 1
d

d∑
i=1

∑
v∈N(w)

1[π′(v,w)(ϕ(v)) = d(ϕ(w)− 1) + i] (135)

= 1
d

∑
v∈N(w)

d∑
i=1

1[π′(v,w)(ϕ(v)) = d(ϕ(w)− 1) + i]. (136)

From how π′(v,w) is defined and since π(v,w)(ϕ(v)) = ϕ(w), there exists i ∈ [d] such that
π′(v,w)(ϕ(v)) = d(ϕ(w)− 1) + i. As a result, we have

1
d

∑
v∈N(w)

d∑
i=1

1[π′(v,w)(ϕ(v)) = d(ϕ(w)− 1) + i] ≥ 1
d

∑
v∈N(w)

1 = |N(w)|
d

. (137)

In other words, at least 1/d fraction of edges touching w is satisfied in the unique game
for every w ∈W . Hence, ϕ′ has value at least 1/d, which means that the unique game also
has value at least 1/d.

APPROX/RANDOM’16

15:26 Near-Optimal UGC-hardness of Approximating Max k-CSPR

Soundness. Suppose that the value of the d-to-1 game is at most γ. For any assignment
ϕ′ : V ′ ∪W ′ → [N ′] to the unique game, we can define an assignment ϕ : V ∪W → [N] by

ϕ(u) =
{
ϕ′(u) if u ∈ V,
b(ϕ′(u)− 1)/dc+ 1 if u ∈W.

(138)

From how π′e is defined, it is easy to see that, if π′e(ϕ′(v)) = ϕ′(w), then πe(ϕ(v)) = ϕ(w).
In other words, the value of ϕ′ with respect to the unique game is no more than the value of
ϕ with respect to the d-to-1 game. As a result, the value of the unique game is at most ε.

As a result, if it is NP-hard to distinguish a satisfiable d-to-1 game from one with value
at most γ, then it is also NP-hard to distinguish a unique game of value at least ζ = 1/d
from that with value at most γ, which concludes the proof of this lemma. J

C Proof of Dictator Test

Here we prove our result for the Dictator-vs.-Quasirandom test (Theorem 17).

Proof of Theorem 17. For c ∈ [R], define the function

fc(x1, x2, . . . , xn) := f(x1 + c, x2 + c, . . . , xn + c)− c. (139)

Note that ±c is performed modulo R.
The test works as follows: Pick z ∈ [R]n uniformly at random, and let x(1), x(2), . . . , x(k) be

independent ρ-correlated noisy copies of z. Then, pick c1, c2, . . . , ck independently uniformly
at random, where each ci ∈ [R]. Accept iff

fc1(x(1)) = fc2(x(2)) = · · · = fck(x(k)). (140)

For completeness, notice that if f is a dictator, then fc = f for all c ∈ [R]. Say f is a
dictator on the j-th coordinate: f(x) = xj . Then the test clearly accepts with probability at
least ρk (if none of the coordinates j were perturbed in all the noisy copies x(i) ρ← z).

For soundness: For any i ∈ [R], let f i : [R]n → {0, 1} denote the indicator function for
f(x) = i, and similarly for f ic : [R]n → {0, 1}. Notice that

f ic(x) = f i+c(x+ (c, c, . . . , c)) (141)

Then, write the acceptance probability as

Pr[accept] = Pr
ci,z,x(j) ρ←z

[fc1(x(1)) = fc2(x(2)) = · · · = fck(x(k))] (142)

=
∑
i∈[R]

Pr
ci,z,x(j) ρ←z

[i = fc1(x(1)) = fc2(x(2)) = · · · = fck(x(k))]

(143)

=
∑
i∈[R]

E
ci,z,x(j) ρ←z

[f ic1
(x(1))f ic2

(x(2)) . . . f ick(x(k))] (144)

(Independence of ci) =
∑
i∈[R]

E
z,x(j) ρ←z

[E
c1

[f ic1
(x(1))] E

c2
[f ic2

(x(2))] . . . E
c2

[f ick(x(k))]]. (145)

(146)

If we define the function gi : [R]n → [0, 1] as

gi(x) := E
c
[f ic(x)]. (147)

P. Manurangsi, P. Nakkiran, and L. Trevisan 15:27

Then this acceptance probability is

Pr[accept] =
∑
i∈[R]

E
z,xi

ρ←z
[gi(x(1))gi(x(2)) . . . gi(x(k))] (148)

=
∑
i∈[R]

E
z
[(Tρgi(z))k]. (149)

Notice that Ex[gi(x)] = 1/R, because

E
x

[gi(x)] = E
x,c

[f ic(x)] = E
x,c

[f i+c(x+ (c, c, . . . , c))] (150)

(c, x same joint distribution as i+ c, x+ c) = E
x,c

[f c(x)] (151)

= E
x

[E
c
[f c(x)]] = E

x
[1/R] = 1/R. (152)

Thus, if the function gi has small low-degree influences, then Lemma 15 (Main Lemma)
applied to gi in line (149) directly implies that this acceptance probability is 2O(k)/Rk−1. We
will now formally show that the influences of the “expected folded function” gi are bounded
by the influences of the original f i.

First, the Fourier coefficients of gi are

ĝi(s) = E
c
[f̂ ic(s)]. (153)

Thus the low-degree influences of gi are bounded as

Inf≤dj [gi] =
∑
s∈[R]n

s(j)6=1,|s|≤d

ĝi(s)2 (154)

=
∑
s∈[R]n

s(j)6=1,|s|≤d

E
c
[f̂ ic(s)]2 (155)

≤
∑
s∈[R]n

s(j) 6=1,|s|≤d

E
c
[f̂ ic(s)2] (156)

= E
c
[

∑
s∈[R]n

s(j)6=1,|s|≤d

f̂ ic(s)2] (157)

= E
c
[Inf≤dj [f ic]]. (158)

Finally, we must relate the influences of f ic to the influences of f i. For a fixed c ∈ [R], we
have

Inf≤dj [f ic] = Infj [(f ic)≤d] (159)

= E
x∈[R]n

[V arxj∈[R][(f ic)≤d]] (160)

= E
x∈[R]n

[V arxj∈[R][(f i+c)≤d(x1 + c, x2 + c, . . . , xn + c)]] (161)

= E
x∈[R]n

[V arxj∈[R][(f i+c)≤d(x1, x2, . . . , xn)]] (162)

= Infj [(f i+c)≤d] (163)

= Inf≤dj [f i+c]. (164)

APPROX/RANDOM’16

15:28 Near-Optimal UGC-hardness of Approximating Max k-CSPR

Therefore, if Inf≤dj [f i] ≤ δ for all coordinates j ∈ [n] and all projections i ∈ [R] (as we
assume for soundness), then from (158) and (164) we have

Inf≤dj [gi] ≤ E
c
[Inf≤dj [f ic]] = E

c
[Inf≤dj [f i+c]] ≤ δ. (165)

Thus the function gi has small low-degree influences as well.
So we can complete the proof, continuing from line (149) and applying our Main Lemma

to gi:

Pr[accept] =
∑
i∈[R]

E
z
[(Tρgi(z))k] (166)

(Lemma 15) ≤
∑
i∈[R]

2O(k)/Rk (167)

= 2O(k)/Rk−1. (168)

J

Constant-Factor Approximations for Asymmetric
TSP on Nearly-Embeddable Graphs∗

Dániel Marx1, Ario Salmasi2, and Anastasios Sidiropoulos3

1 Institute of Computer Science and Control, Hungarian Academy of Sciences
(MTA SZTAKI), Budapest, Hungary
dmarx@cs.bme.hu

2 Dept. of Computer Science and Engineering, The Ohio State University,
Columbus, OH, USA
salmasi.1@osu.edu

3 Dept. of Computer Science and Engineering and Dept. of Mathematics,
The Ohio State University, Columbus, OH, USA
sidiropoulos.1@osu.edu

Abstract
In the Asymmetric Traveling Salesperson Problem (ATSP) the goal is to find a closed walk of
minimum cost in a directed graph visiting every vertex. We consider the approximability of
ATSP on topologically restricted graphs. It has been shown by Oveis Gharan and Saberi [13]
that there exists polynomial-time constant-factor approximations on planar graphs and more
generally graphs of constant orientable genus. This result was extended to non-orientable genus
by Erickson and Sidiropoulos [8].

We show that for any class of nearly-embeddable graphs, ATSP admits a polynomial-time
constant-factor approximation. More precisely, we show that for any fixed k ≥ 0, there exist
α, β > 0, such that ATSP on n-vertex k-nearly-embeddable graphs admits an α-approximation
in time O(nβ). The class of k-nearly-embeddable graphs contains graphs with at most k apices, k
vortices of width at most k, and an underlying surface of either orientable or non-orientable genus
at most k. Prior to our work, even the case of graphs with a single apex was open. Our algorithm
combines tools from rounding the Held-Karp LP via thin trees with dynamic programming.

We complement our upper bounds by showing that solving ATSP exactly on graphs of
pathwidth k (and hence on k-nearly embeddable graphs) requires time nΩ(k), assuming the
Exponential-Time Hypothesis (ETH). This is surprising in light of the fact that both TSP on
undirected graphs and Minimum Cost Hamiltonian Cycle on directed graphs are FPT paramet-
erized by treewidth.

1998 ACM Subject Classification F.2.2 [Analysis of Algorithms and Problem Complexity] Non-
numerical Algorithms and Problems–Computations on discrete structures, G.2.2 [Discrete Math-
ematics] Graph Theory–Graph algorithms, Path and circuit problems

Keywords and phrases asymmetric TSP, approximation algorithms, nearly-embeddable graphs,
Held-Karp LP, exponential time hypothesis

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2016.16

∗ Research supported by the European Research Council (ERC) grant “PARAMTIGHT: Parameterized
complexity and the search for tight complexity results,” reference 280152 and OTKA grant NK105645,
and by the National Science Foundation (NSF) under grant CCF 1423230 and award CAREER 1453472.

© Dániel Marx, Ario Salmasi, and Anastasios Sidiropoulos;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016).
Editors: Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans; Article No. 16; pp. 16:1–16:54

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.16
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

16:2 Constant-Factor Approximations for Asymmetric TSP on Nearly-Embeddable Graphs

1 Introduction

An instance of the Asymmetric Traveling Salesman Problem (ATSP) consists of a directed
graph ~G and a (not necessarily symmetric) cost function c : E(~G)→ R+. The goal is to find
a spanning closed walk of ~G with minimum total cost. This is one of the most well-studied
NP-hard problems.

Asadpour et al. [2] obtained a polynomial-time O(logn/ log logn)-approximation al-
gorithm for ATSP, which was the first asymptotic improvement in almost 30 years [12, 3, 9, 18].
Building on their techniques, Oveis Gharan and Saberi [13] described a polynomial-time
O(√g log g)-approximation algorithm when the input includes an embedding of the input
graph into an orientable surface of genus g. Erickson and Sidiropoulos [8] improved the
dependence on the genus by obtaining a O(log g/ log log g)-approximation.

Anari and Oveis Gharan [1] have recently shown that the integrality gap of the natural
linear programming relaxation of ATSP proposed by Held and Karp [16] is log logO(1) n.
This implies a polynomial-time log logO(1) n-approximation algorithm for the value of ATSP.
We remark that the best known lower bound on the integrality gap of the Held-Karp LP is 2
[4]. Obtaining a polynomial-time constant-factor approximation algorithm for ATSP is a
central open problem in optimization.

1.1 Our contribution

We study the approximability of ATSP on topologically restricted graphs. Prior to our
work, a constant-factor approximation algorithm was known only for graphs of bounded
genus. We significantly extend this result by showing that there exists a polynomial-time
constant-factor approximation algorithm for ATSP on nearly embeddable graphs. These
graphs include graphs with bounded genus, with a bounded number of apices and a bounded
number of vortices of bounded pathwidth. We remark that prior to our work, even the case
of planar graphs with a single apex was open1. For any a, g, k, p ≥ 0, we say that a graph
is (a, g, k, p)-nearly embeddable if it is obtained from a graph of Euler genus g by adding
a apices and k vortices of pathwidth p (see [20, 19, 7] for more precise definitions). The
following summarizes our result.

I Theorem 1. Let a, g, k ≥ 0, p ≥ 1. There is a O(a(g+k+1)+p2)-approximation algorithm
for ATSP on (a, g, k, p)-nearly embeddable digraphs, with running time nO((a+p)(g+k+1)4).

The above algorithm is obtained via a new technique that combines the Held-Karp LP
with a dynamic program that solves the problem on vortices. We remark that it is not known
whether the integrality gap of the LP is constant for graphs of constant pathwidth.

We complement this result by showing that solving ATSP exactly on graphs of pathwidth
p (and hence on p-nearly embeddable graphs) requires time nΩ(p), assuming the Exponential-
Time Hypothesis (ETH). This is surprising in light of the fact that both TSP on undirected
graphs and Minimum Cost Hamiltonian Cycle on directed graphs are FPT parameterized by
treewidth. The following summarizes our lower bound.

1 Previous algorithms for constructing thin trees [13] and forests [8] on surface-embedded graphs depend
critically on the relation between cuts and cycles in the dual graph, and thus are not directly applicable
to the case of graphs even with a single apex. We also remark that the optimal walk might traverse
the apex arbitrarily many times; thus, any approach that attempts to first solve the problem on the
subgraph obtained by removing the apex, cannot yield a constant-factor approximation.

D. Marx, A. Salmasi, and A. Sidiropoulos 16:3

I Theorem 2. Assuming ETH, there is no f(p)no(p) time algorithm for ATSP on graphs of
pathwidth at most p for any computable function f .

1.2 Overview of the algorithm

We now give a high level overview of the main steps of the algorithm and highlight some of
the main challenges.

Step 1: Reducing the number of vortices. We first reduce the problem to the case of nearly
embeddable graphs with a single vortex. This is done by iteratively merging pairs of
vortices. We can merge two vortices by adding a new handle on the underlying surface-
embedded graph. For the remainder we will focus on the case of graphs with a single
vortex.

Step 2: Traversing a vortex. We obtain an exact polynomial-time algorithm for computing
a closed walk that visits all the vertices in the vortex. We remark that this subsumes as
a special case the problem of visiting all the vertices in a single face of a planar graph,
which was open prior to our work.
Let us first consider the case of a vortex in a planar graph. Let ~W be an optimal walk
that visits all the vertices in the vortex. Let F be the face on which the vortex is attached.
We give a dynamic program that maintains a set of partial solutions for each subpath
of F . We prove correctness of the algorithm by establishing structural properties of ~W .
The main technical difficulty is that ~W might be self-crossing. We first decompose ~W

into a collection W of non-crossing walks. We form a conflict graph I of W and consider
a spanning forest F of I. This allows us to prove correctness via induction on the trees
of F .
The above algorithm can be extended to graphs of bounded genus. The main difference
is that the dynamic program now computes a set of partial solutions for each bounded
collection of subpaths of F .
Finally, the algorithm is extended to the case of nearly-embeddable graphs by adding the
apices to the vortex without changing the cost of the optimum walk.

Step 3: Finding a thin forest in the absence of vortices. The constant-factor approxima-
tion for graphs of bounded genus was obtained by constructing thin forests with a bounded
number of components in these graphs [13, 8]. We extend this result by constructing thin
forests with a bounded number of components in graphs of bounded genus and with a
bounded number of additional apices. Prior to our work even the case of planar graphs
with a single apex was open; in fact, no constant-factor approximation algorithm was
known for these graphs.

Step 4: Combining the Held-Karp LP with the dynamic program. We next combine the
dynamic program with the thin forest construction. We first compute an optimal walk
~W visiting all the vertices in the vortex, and we contract the vortex into a single
vertex. A natural approach would be to compute a thin forest in the contracted graph.
Unfortunately this fails because such a forest might not be thin in the original graph.
In order to overcome this obstacle we change the feasible solution of the Held-Karp LP
by taking into account ~W , and we modify the forest construction so that it outputs a
subgraph that is thin with respect to this new feasible solution.

Step 5: Rounding the forest into a walk. Once we have a thin spanning subgraph of G we
can compute a solution to ATSP via circulations, as in previous work.

APPROX/RANDOM’16

16:4 Constant-Factor Approximations for Asymmetric TSP on Nearly-Embeddable Graphs

1.3 Organization
The rest of the paper is organized as follows. Section 2 introduces some basic notation.
Section 3 defines the Held-Karp LP for ATSP. Section 4 presents the main algorithm, using
the dynamic program and the thin forest construction as a black box. Section 5 presents
the technique for combining the dynamic program with the Held-Karp LP. Section 6 gives
the algorithm for computing a thin tree in a 1-apex graph. This algorithm is generalized to
graphs with a bounded number of apices in Section 7, and to graphs of bounded genus and
with a bounded number of apices in Section 8. In Section 9 we show how to modify the thin
forest construction so that we can compute a spanning thin subgraph in a nearly-embeddable
graph, using the solution of the dynamic program.

The dynamic program is given in Sections 10, 11, 12, 13, and 14. More precisely, Section 10
introduces a certain preprocessing step. Section 11 establishes a structural property of the
optimal solution. Section 12 presents the dynamic program for a vortex in a planar graph.
Sections 13 and 14 generalize this dynamic program to graphs of bounded genus and with a
bounded number of apices respectively.

Finally, Section 15 presents the lower bound.

2 Notation

In this section we introduce some basic notation that will be used throughout the paper.

Graphs. Unless otherwise specified, we will assume that for every pair of vertices in a graph
there exists a unique shortest path; this property can always be achieved by breaking ties
between different shortest paths in a consistent manner (e.g. lexicographically). Moreover for
every edge of a graph (either directed or undirected) we will assume that its length is equal
to the shortest path distance between its endpoints. Let ~G be some digraph. Let G be the
undirected graph obtained from ~G by ignoring the directions of the edges, that is V (G) = V (~G)
and E(G) = {{u, v} : (u, v) ∈ E(~G) or (v, u) ∈ E(~G)}. We say that G is the symmetrization
of ~G. For some x : E(~G) → R we define cost~G(x) =

∑
(u,v)∈E(~G) x((u, v)) · d~G(u, v). For a

subgraph S ⊆ G we define costG(S) =
∑
e∈E(S) c(e). Let z be a weight function on the edges

of G. For any A,B ⊆ V (G) we define z(A,B) =
∑
a∈A,b∈B z({a, b}).

Asymmetric TSP. Let ~G be a directed graph with non-negative arc costs. For each
arc (u, v) ∈ E(~G) we denote the cost of (u, v) by c(u, v). A tour in ~G is a closed walk
in ~G. The cost of a tour τ = v1, v2, . . . , vk, v1 is defined to be cost~G(τ) = d~G(vk, v1) +∑k−1
i=1 d~G(vi, vi+1). Similarly the cost of an open walk W = v1, . . . , vk is defined to be

cost~G(W) =
∑k−1
i=1 d~G(vi, vi+1). The cost of a collection W of walks is defined to be

cost~G(W) =
∑
W∈W cost~G(W). We denote by OPT~G the minimum cost of a tour traversing

all vertices in ~G. For some U ⊆ V (~G) we denote by OPT~G(U) the minimum cost of a tour
in ~G that visits all vertices in U .

3 The Held-Karp LP

We recall the Held-Karp LP for ATSP [15]. Fix a directed graph ~G and a cost function c :
E(~G)→ R+. For any subset U ⊆ V , we define δ+

~G
(U) := {(u, v) ∈ E(~G) : u ∈ U and v /∈ U}

and δ−~G(U) := δ+
~G

(V \ U). We omit the subscript ~G when the underlying graph is clear from
context. We also write δ+(v) = δ+({v}) and δ−(v) = δ−({v}) for any single vertex v.

D. Marx, A. Salmasi, and A. Sidiropoulos 16:5

Let G be the symmetrization of ~G. For any U ⊆ V (G), we define δG(U) := {{u, v} ∈
E(G) : u ∈ U and v /∈ U}. Again, we omit the subscript G when the underlying graph
is clear from context. We also extend the cost function c to undirected edges by defining
c({u, v}) := min{c((u, v)), c((v, u))}. For any function x : E(~G) → R and any subset W ⊆
E(~G), we write x(W) =

∑
a∈W x(a). With this notation, the Held-Karp LP relaxation is

defined as follows.

minimize
∑
a∈E(~G) c(a) · x(a)

subject to x(δ+(U)) ≥ 1 for all nonempty U (V (~G)
x(δ+(v)) = x(δ−(v)) for all v ∈ V (~G)

x(a) ≥ 0 for all a ∈ E(~G)

We define the symmetrization of x as the function z : E(G)→ R where z({u, v}) := x((u, v))+
x((v, u)) for every edge {u, v} ∈ E(G). For any subset W ⊆ E(G) of edges, we write
z(W) :=

∑
e∈W z(e). Let ~W ⊆ ~G. Let α, s > 0. We say that ~W is α-thin (w.r.t. z) if for all

U ⊆ V we have |E(~W) ∩ δ(U)| ≤ α · z(δ(U)). We also say that ~W is (α, s)-thin (w.r.t. x)
if ~W is α-thin (w.r.t. z) and c(E(~W)) ≤ s ·

∑
e∈E(~G) c(e) · x(e). We say that z is ~W -dense

if for all (u, v) ∈ E(~W) we have z({u, v}) ≥ 1. We say that z is ε-thick if for all U (V (G)
with U 6= ∅ we have z(δ(U)) ≥ ε.

4 An approximation algorithm for nearly-embeddable graphs

The following Lemma is implicit in the work of Erickson and Sidiropoulos [8] (see also [2]).

I Lemma 3. Let ~G be a digraph and let x be a feasible solution for the Held-Karp LP for
~G. Let α, s > 0, and let S be a (α, s)-thin spanning subgraph of G (w.r.t. x), with at most
k connected components. Then, there exists a polynomial-time algorithm which computes a
collection of closed walks C1, . . . , Ck′ , for some k′ ≤ k, such that their union visits all the
vertices in V (~G), and such that

∑k
i=1 cost~G(Ci) ≤ (2α+ s)

∑
e∈E(~G) c(e) · x(e).

The following is the main technical Lemma that combines a solution to the Held-Karp
LP with a walk traversing the vortex that is computed via the dynamic program. The proof
of Lemma 4 is deferred to Section 5. A similar result, for the case of graphs of orientable
genus, was first obtained in [13].

I Lemma 4. Let a, g, p > 0, let ~G be a (a, g, 1, p)-nearly embeddable graph, and let G be its
symmetrization. There exists an algorithm with running time nO((a+p)g4) which computes a
feasible solution x for the Held-Karp LP for ~G with cost O(OPT~G) and a spanning subgraph
S of G with at most O(a+ g) connected components, such that S is (O(a · g+ p2), O(1))-thin
w.r.t. x.

Using Lemma 4 we are now ready to obtain an approximation algorithm for nearly-
embeddable graphs with a single vortex.

I Theorem 5. Let a, g ≥ 0, p ≥ 1. There exists a O(a · g + p2)-approximation algorithm for
ATSP on (a, g, 1, p)-nearly embeddable digraphs, with running time nO((a+p)(g+1)4).

Proof. We follow a similar approach to [8]. The only difference is that in [8] the algorithm
uses an optimal solution to the Held-Karp LP. In contrast, here we use a feasible solution
that is obtained by Lemma 4, together with an appropriate thin subgraph.

APPROX/RANDOM’16

16:6 Constant-Factor Approximations for Asymmetric TSP on Nearly-Embeddable Graphs

Let ~G be (a, g, 1, p)-nearly embeddable digraph. By using Lemma 4, we find in time
nO((a+p)g4) a feasible solution x for the Held-Karp LP for ~G with cost O(OPT~G) and a
spanning subgraph S of G with at most O(a + g) connected components, such that S is
(O(a · g + p2), O(1))-thin w.r.t. x. Now we compute in polynomial time a collection of closed
walks C1, . . . , Ck′ , for some k′ ∈ O(a+ g), that visit all the vertices in V (~G), and such that
the total cost of all walks is at most O((a · g + p2) · OPT~G), using Lemma 3. For every
i ∈ {1, . . . , k′}, let vi ∈ V (~G) be an arbitrary vertex visited by Ci. We construct a new
instance (~G′, c′) of ATSP as follows. Let V (~G′) = {v1, . . . , vk′}. For any u, v ∈ V (~G′), we
have an edge (u, v) in E(~G′), with c′(u, v) being the shortest-path distance between u and
v in G with edge weights given by c. By construction we have OPT~G′ ≤ OPT~G. We find a
closed tour C in ~G′ with cost~G′(C) = OPT~G′ in time 2O(|V (~G′)|) · nO(1) = 2O(a+g) · nO(1). By
composing C with the k′ closed walks C1, . . . , Ck′ , and shortcutting as in [11], we obtain a
solution for the original instance, of total cost O(a · g + p2) · OPT~G. J

We are now ready to prove the main algorithmic result of this paper.

Proof of Theorem 1. We may assume k ≥ 2 since otherwise the assertion follows by The-
orem 5. We may also assume w.l.o.g. that p ≥ 2. Let ~G be a (a, g, k, p)-nearly em-
beddable digraph. It suffices to show that there exists a polynomial time computable
(a, g + k − 1, 1, 2p)-nearly embeddable digraph ~G′ with V (~G′) = V (~G) such that for all
u, v ∈ V (~G) we have d~G(u, v) = d~G′(u, v). We compute ~G′ as follows. Let ~H1, . . . , ~Hk be
the vortices of ~G and let ~F1, . . . , ~Fk be the faces on which they are attached. For each
i ∈ {1, . . . , k} pick distinct ei, fi ∈ E(~Fi), with ei = {wi, w′i}, fi = {zi, z′i}. There exists
a path decomposition Bi,1, . . . , Bi,`i of ~Hi, of width at most 2p, and such that Bi,1 = ei,
and Bi,`i

= fi. For each i ∈ {1, . . . , k − 1}, we add edges (wi+1, zi), (zi, wi+1), (w′i+1, z
′
i),

and (z′i, w′i+1) to ~G′, and we set their length to be equal to the shortest path distance
between their endpoints in ~G. We also add a handle connecting punctures in the disks
bounded by ~Fi and ~Fi+1 respectively, and we route the four new edges along this handle.
Since we add k − 1 handles in total the Euler genus of the underlying surface increases
by at most k − 1. We let ~H be the single vortex in ~G′ with V (~H) =

⋃k
i=1 V (~Hi) and

E(~H) =
(⋃k

i=1E(~Hi)
)
∪
(⋃k−1

i=1 {(wi+1, zi), (zi, wi+1), (w′i+1, z
′
i), (z′i, w′i+1)}

)
. It is immedi-

ate that

B1,1, . . . , B1,`1 , {f1, e2}, B2,1, . . . , B2,`2 , {f2, e3}, . . . , Bk,1, . . . , Bk,`k

is a path decomposition of ~H of width at most 2p. Thus ~G′ is (a, g + k − 1, 1, 2p)-nearly
embeddable, which concludes the proof. J

5 Combining the Held-Karp LP with the dynamic program

In this Section we show how to combine the dynamic program that finds an optimal closed
walk traversing all the vertices in a vortex, with the Held-Karp LP. The following summarizes
our exact algorithm for traversing the vortex in a nearly-embeddable graph. The proof of
Theorem 6 is deferred to Section 14.

I Theorem 6. Let ~G be an n-vertex (a, g, 1, p)-nearly embeddable graph and let ~H be the
single vortex of ~G. Then there exists an algorithm which computes a walk ~W visiting all
vertices in V (~H) of total length at most OPT~G(V (~H)) in time nO((a+p)g4).

D. Marx, A. Salmasi, and A. Sidiropoulos 16:7

I Definition 7 (~W -augmentation). Let ~G be a directed graph. Let x : E(~G) → R and let
~W ⊆ ~G. We define the ~W -augmentation of x to be the function x′ : E(~G)→ R such that for
all e ∈ E(~G) we have

x′(e) =
{
x(e) + 1 if e ∈ E(~W)
x(e) otherwise

The following summarizes the main technical result for computing a thin spanning
subgraph in a nearly embeddable graph. The proof of Lemma 8 is deferred to Section 9.

I Lemma 8. Let ~G be a (a, g, 1, p)-nearly embeddable digraph, let ~H be its vortex, and let ~W
be a walk in ~G visiting all vertices in V (~H). Let G, H, and W be the symmetrizations of ~G,
~H, and ~W respectively. Let z : E(G)→ R≥0 be α-thick for some α ≥ 2, and ~W -dense. Then
there exists a polynomial time algorithm which given ~G, ~H, A, ~W , z, and an embedding of
~G \ (A∪ ~H) into a surface of genus g, outputs a subgraph S ⊆ G \H, satisfying the following
conditions:
1. W ∪ S is a spanning subgraph of G and has O(a+ g) connected components.
2. W ∪ S is O(a · g + p2)-thin w.r.t. z.

We are now ready to prove the main result of this section.

Proof of Lemma 4. Let ~H be the single vortex of ~G. We compute an optimal solution
y : E(~G) → R for the Held-Karp LP for ~G. We find a tour ~W in ~G visiting all vertices
in V (~H), with cost~G(~W) = O(OPT~G) using Theorem 6. Let x : E(~G) → R be the ~W -
augmentation of y. Since for all e ∈ E(~G) we have x(e) ≥ y(e), it follows that x is a
feasible solution for the Held-Karp LP. Moreover since cost~G(~W) = O(OPT~G), we obtain
that cost~G(x) = cost~G(y) + costG(~W) = O(OPT~G). Let z be the symmetrization of x.

Note that z is 2-thick and ~W -dense. Therefore, by Lemma 8 we can find a subgraph
S ⊆ G \H such that T = W ∪ S is a O(a · g + p2)-thin spanning subgraph of G (w.r.t. z),
with at most O(g + a) connected components. Therefore, there exists a constant α such that
for every U ⊆ V (G) we have |T ∩ δ(U)| ≤ α · (a · g+ p2) · z(δ(U)). We can assume that α ≥ 1.
Now we follow a similar approach to [8].

Letm =
⌊
n2/α

⌋
. We define a sequence of functions z0, . . . , zm, and a sequence of spanning

forests T1, . . . , Tm satisfying the following conditions.
1. For any i ∈ {0, . . . ,m}, zi is non-negative, 2-thick and ~W -dense.
2. For any i ∈ {1, . . . ,m}, Ti has at most O(a+ g) connected components.
3. For every U ⊆ V (G) we have |Ti+1 ∩ δ(U)| ≤ α · (a · g + p2) · zi(δ(U)).

We set z0 = 3
⌊
zn2⌋/n2. Now suppose for i ∈ {0, . . . ,m − 1} we have defined zi. We

define zi+1 and Ti+1 as follows. We apply Lemma 8 and we obtain a subgraph Ti+1 of
G with at most O(a + g) connected components such that for every U ⊆ V (G) we have
|Ti+1 ∩ δ(U)| ≤ α · (a · g + p2) · zi(δ(U)). Also, for every e ∈ E(G) we set zi+1(e) = zi(e) if
e 6∈ Ti+1, and zi+1(e) = zi(e) − 1/n2 if e ∈ Ti+1. Now by using the same argument as in
[8], we obtain that zi+1 is non-negative and 2-thick. By the construction, we know that z
is ~W -dense and thus for all (u, v) ∈ ~W we have z0({u, v}) ≥ 3. Note that for all e ∈ E(G)
we have zi+1(e) ≥ zi(e) − 1/n2. Thus for all e ∈ E(G) and for all i ∈ {0, . . . ,m} we have
zi(e) ≥ 2. Therefore for all i ∈ {0, . . . ,m} we have that zi is ~W -dense.

Now, similar to [8] we set the desired S to be the subgraph Ti that minimizes costG(Ti),
which implies that S is a (O(a · g + p2), O(1))-thin spanning subgraph with at most O(a+ g)
connected components. J

APPROX/RANDOM’16

16:8 Constant-Factor Approximations for Asymmetric TSP on Nearly-Embeddable Graphs

6 Thin trees in 1-apex graphs

In this section we show how to compute thin trees in 1-apex graphs. The following is implicit
in the work of Oveis Gharan and Saberi [13].

I Theorem 9. If G is a planar graph and z is an α-thick weight function on the edges of G
for some α > 0, then there exists a 10/α-thin spanning tree in G w.r.t. z.

For the remainder of this section, let G be an 1-apex graph with planar part Γ and apex
a. Let z be a 2-thick weight function on the edges of G. We will find a O(1)-thin spanning
tree in G (w.r.t. z). We describe an algorithm for finding such a tree in polynomial time.
The algorithm proceeds in five phases.

Phase 1. We say that a cut U is tiny (w.r.t. z) if z(δ(U)) < 0.1. We start with Γ and
we proceed to partition it via tiny cuts. Each time we find a tiny cut U , we partition the
remaining graph by deleting all edges crossing U . This process will stop in at most n steps.
Let Γ′ be the resulting subgraph of Γ where V (Γ′) = V (Γ) and E(Γ′) ⊂ E(Γ).

Phase 2. By the construction, we know that there is no tiny cuts in each connected
component of Γ′. Therefore, following [13], in each connected component C of Γ′, we can find
a O(1)-thin spanning tree TC (w.r.t. z). More specifically, we will find a 100-thin spanning
tree in each of them.

Phase 3. We define a graph F with V (F) being the set of connected components of Γ′ and
{C,C ′} ∈ E(F) iff there exists an edge between some vertex in C and some vertex in C ′ in
Γ. We set the weight of {C,C ′} to be z(C,C ′). We call F the graph of components.

We define a graph G′ obtained from G by contracting every connected component of Γ′ into
a single vertex. We remark that we may get parallel edges in G′.

Phase 4. In this phase, we construct a tree T ′ in G′. We say that a vertex in F is originally
heavy, if it has degree of at most 15 in F . Since F is planar, the minimum degree of F is at
most 5. We contract all vertices in V (G′) \ {a} into the apex sequentially. In each step, we
find a vertex in F with degree at most 5, we contract it to the apex in G′, and we delete it
from F . Since the remaining graph F is always planar, there is always a vertex of degree
at most 5 in it, and thus we can continue this process until all vertices of V (G′) \ {a} are
contracted into the apex.

Initially we consider all vertices of F having no parent. In each step when we contract a
vertex C with degree at most 5 in F to the apex in G′, for each neighbor C ′ of C in F , we
make C the parent of C ′ if C ′ does not have any parents so far. Note that each vertex in F
can be the parent of at most 5 other vertices, and can have at most one parent.

D. Marx, A. Salmasi, and A. Sidiropoulos 16:9

Every time we contract a vertex C to the apex, we add an edge e to T ′. If C is originally
heavy, we add an arbitrary edge e from C to the apex; we will show in Lemma 11 that
z(C, {a}) ≥ 0.5, which implies that such an edge always exists in G. Otherwise, we add an
arbitrary edge from C to its parent (which is a neighbor vertex, therefore such an edge exists
in G). We will show in the next section that each vertex in F is originally heavy or it has a
parent (or both). Therefore, T ′ is a tree on G′.

Phase 5. In this last phase we compute a tree T in G. We set E(T) = E(T ′) ∪⋃
C∈V (F)E(TC). We prove in the next subsection that T is a O(1)-thin spanning tree

in G.

6.1 Analysis
We next show that T is a O(1)-thin spanning tree in G.

I Lemma 10. The weight of every edge in F is less than 0.1.

Proof. Let {C,C ′} ∈ E(F). By construction, each component of Γ′ is formed by finding a
tiny cut in some other component. Suppose C was formed either simultaneously with C ′ or
later than C ′ by finding a tiny cut in some C ′′. If C ′ ⊆ C ′′ then z(C,C ′) < z(δ(C)) < 0.1.
Otherwise, the total weight of edges from C to C ′ is a part of a tiny cut which means that
z(C,C ′) < 0.1. J

I Lemma 11. Let C be an originally heavy vertex in F . Then z(C, {a}) ≥ 0.5.

Proof. For every neighbor C ′ of C in F , by Lemma 10 we have that the weight of {C,C ′} is
less than 0.1. By the assumption on z, we have that z(δ(C)) ≥ 2. Now since C has degree of
at most 15, we have that z(C, {a}) ≥ 0.5, as desired. J

I Lemma 12. Each vertex C ∈ V (F) is originally heavy or it has a parent (both cases might
happen for some vertices).

Proof. Let C ∈ V (F). If it is originally heavy, we are done. Otherwise, it has degree of at
least 15. We know that all vertices in F are going to be contracted to a at some point, and
we only contract vertices with degree at most 5 in each iteration. This means that at least
10 other neighbors of C were contracted to the apex before we decided to contract C to the
apex. Therefore one of them is the parent of C. J

I Lemma 13. T is a spanning tree in G.

Proof. Suppose G has n vertices and F has m vertices. After the second phase of our
algorithm, we obtain a spanning forest on Γ with m components and n−m− 1 edges. Each
time we contract a vertex of F to the apex, we add a single edge to T . Therefore, T has
n− 1 edges. It is now sufficient to show that T is connected.

We will show that for every vertex u in Γ, there is path between u and a in T . Let u be
a vertex of Γ. Suppose u is in some component Cu which is a vertex of F . If Cu is originally
heavy, then there is an edge e in T between a vertex v ∈ Cu and the apex. Since we have a
spanning tree in Cu, there is a path between u and v in T . Therefore, there is path between
u and the apex a in T .

Otherwise, Cu must have some parent Cu1 and there is an edge between these two
components. Therefore, there is a path between u and each vertex of these two components.
Now, the same argument applies for Cu1 . Either it is originally heavy or it has a parent Cu2 .

APPROX/RANDOM’16

16:10 Constant-Factor Approximations for Asymmetric TSP on Nearly-Embeddable Graphs

If it is originally heavy, we are done. Otherwise, we use the same argument for Cu2 . Note
that by construction and the definition of a parent, we do not reach the same component in
this sequence. Therefore, at some point, we reach a component Cuk

which is originally heavy
and we are done. J

Now we are ready to show that T is a O(1)-thin tree in G (w.r.t. z). We have to show
that there exists some constant α such that for every cut U , |E(T) ∩ δ(U)| ≤ α · z(δ(U)).
Let U be a cut in G. We can assume w.l.o.g. that a /∈ U , since otherwise we can consider
the cut V (G) \ U . We partition E(T) ∩ δ(U) into three subsets:
1. T1 = {{a, v} ∈ E(T) ∩ δ(U) : v ∈ V (Γ)}.
2. T2 = {{u, v} ∈ E(T) ∩ δ(U) : u and v are in the same component of Γ′}.
3. T3 = {{u, v} ∈ E(T) ∩ δ(U) : u and v are in different components of Γ′}.

I Lemma 14. There exists some constant α1 such that |T1| ≤ α1 · z(δ(U)).

Proof. Let e = {a, v} ∈ T1 where v ∈ V (Γ). Let Cv ∈ V (F) such that v ∈ Cv. By the
construction of T , Cv is originally heavy. If Cv ⊆ U , we can charge e to z(Cv, {a}), which
we know is at least 0.5. Otherwise suppose Cv is not a subset of U . By the assumption we
have a /∈ U and thus v ∈ U which implies that U ∩ Cv 6= ∅. By the construction, we know
that there is no tiny cuts in Cv. Therefore, z(δ(U) ∩E(G[Cv])) ≥ 0.1. Thus we can charge e
to the total weight of the edges in δ(U) ∩E(G[Cv]). Note that for each Cv ∈ V (F), there is
at most one edge in T1 between a and Cv. Therefore we have that |T1| ≤ 10 · z(δ(U)). J

I Lemma 15. There exists some constant α2 such that |T2| ≤ α2 · z(δ(U)).

Proof. We have

|T2| =

∣∣∣∣∣∣
⋃

C∈V (F)

(E(C) ∩ T2)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
⋃

C∈V (F)

(E(C) ∩ E(T) ∩ δ(U))

∣∣∣∣∣∣
=

∣∣∣∣∣∣
⋃

C∈V (F)

(E(TC) ∩ δ(U))

∣∣∣∣∣∣ ≤
∑

C∈V (F)

100 · z(δ(U) ∩ E(C)) ≤ 100 · z(δ(U)),

concluding the proof. J

I Lemma 16. There exists some constant α3 such that |T3| ≤ α3 · z(δ(U)).

Proof. We partition T3 into three subsets:
1. T31 = {{u, v} ∈ T3 : u ∈ U, v /∈ U,∃Cu, Cv ∈ V (F) s.t. u ∈ Cu, v ∈ Cv, U ∩ Cv 6= ∅}.
2. T32 = {{u, v} ∈ T3 : u ∈ U, v /∈ U,∃Cu, Cv ∈ V (F) s.t. u ∈ Cu, v ∈ Cv, U ∩ Cu 6= ∅}.
3. T33 = {{u, v} ∈ T3 : u ∈ U, v /∈ U,∃Cu, Cv ∈ V (F) s.t. u ∈ Cu, v ∈ Cv, U ∩ Cv = ∅, Cu ⊆

U}.

First for each e = {u, v} ∈ T31 where v ∈ Cv for some Cv ∈ V (F), we have that
Uv = U ∩ Cv is a cut in Cv which is not tiny. By the construction, Cv can be the parent of
at most five other vertices in F and it can have at most one parent. Therefore, there are at
most six edges in T3 with a vertex in Cv. So we can charge e and at most five other edges to
z(δ(Uv)). Since z(δ(Uv)) ≥ 0.1 we get |T31| ≤ 60 · z(δ(U)).

Second for each e = {u, v} ∈ T32 where u ∈ Cu for some Cu ∈ V (F), we have that
Uu = U ∩Cu is a cut in Cu which is not tiny. Therefore, the same argument for Cv as in the
first case, applies here for Cu and we get |T32| ≤ 60 · z(δ(U)).

D. Marx, A. Salmasi, and A. Sidiropoulos 16:11

Finally, for T33 we need to find a constant α33 such that |T33| ≤ α33 · z(δ(U)). First, we
define a new cut U1 as follows. For every C ∈ V (F) with C ∩U 6= ∅, if C ∩U 6= C, we add all
the other vertices of C to U and we say that C is important. This process leads to a new cut
U1 such that for every C ∈ F , either C ∩U1 = ∅ or C ⊆ U1. Let U2 = {C ∈ V (F) : C ⊆ U1}.
Let X = {C ∈ V (F) : C /∈ U2} and Y = X ∪ {a}.

Let

T331 = {{u, v} ∈ T33 : u ∈ U, u ∈ C for some C ∈ V (F) with degF [U2](C) < 19}.

Let also T332 = T33 \ T331.
For each edge e = {u, v} ∈ T331 where u ∈ U and u ∈ Cu for some Cu ∈ V (F), we have

degF [U2](Cu) < 19. By Lemma 10, we know that for any C,C ′ ∈ V (F), z(C,C ′) ≤ 0.1.
Therefore, we get z(Cu, Y) ≥ 0.2. Note that there are at most six edges in T331 with a
vertex in Cu. So we can charge e and at most five other edges to z(Cu, Y). Therefore,
|T331| ≤ 30 · z(δ(U)).

Let V1 = {C ∈ U2 : degF [U2](C) ≥ 19} and V2 = {C ∈ U2 : degF [U2](C) ≤ 5}. By Euler’s
formula, we know that the average degree of a planar graph is at most 6. Since F [U2] is
planar, we get |V1| ≤ |V2|. For any C ∈ V2, if C is important, then C ∩ U is a cut for C and
we have z(C ∩ U, Y) ≥ 0.1. If C is not important, then we have z(C, Y) ≥ 1.5. Note that
for any C ′ ∈ V1, there are at most six edges in T332 with a vertex in C ′. Therefore, we have
|T332| ≤ 60 · z(δ(U)).

Now since T3 = T31 ∪ T32 ∪ T331 ∪ T332, we have |T3| ≤ 210 · z(δ(U)) completing the
proof. J

I Lemma 17. T is a O(1)-thin spanning tree in G.

Proof. By Lemma 13 we know that T is a spanning tree. For any U ⊆ V (G), by Lemmas
14, 15 and 16 we get |T | ≤ 320 · z(δ(U)). This completes the proof. J

We are now ready to prove the main result of this Section.

I Theorem 18. Let G be a 1-apex graph and let z : E(G)→ R≥0 be β-thick for some β > 0.
Then there exists a polynomial time algorithm which given G and z outputs a O(1/β)-thin
spanning tree in G (w.r.t. z).

Proof. For β ≥ 2, by Lemma 17 we know that we can find a 320-thin spanning tree in G.
For any β with 0 < β < 2, the assertion follows by scaling z by a factor of 2/β. J

7 Thin forests in graphs with many apices

Let a ≥ 1. In this section, we describe an algorithm for finding thin-forests in an a-apex
graph. The high level approach is analogous to the case of 1-apex graphs. We construct a
similar graph F of components and contract each vertex of F to some apex.

Let e0 = {u0, v0} ∈ E(G). Let G′ be obtained from G by contracting e0. We define
a new weight function z′ on the edges of G′ as follows. For any {u, v0} ∈ E(G), we set
z′({u, v0}) = z({u, v0}) + z({u, u0}). For any other edge e we set z′(e) = z(e). We say that
z′ is induced by z. Similarly, when G′ is obtained by contracting a subset X of edges in G,
we define z′ by inductively contracting the edges in X in some arbitrary order.

For the remainder of this section let G be a a-apex graph with the set of apices A =
{a1,a2, · · · ,aa}. Let Γ be the planar part of G. Let z be a 2-thick weight function on the
edges of G. The algorithm proceeds in 5 phases.

APPROX/RANDOM’16

16:12 Constant-Factor Approximations for Asymmetric TSP on Nearly-Embeddable Graphs

Phase 1. We say that a cut U is tiny (w.r.t. z) if z(δ(U)) < 1/(100 · a). Similar to the case
of 1-apex graphs, we start with Γ and repeatedly partition it via tiny cuts until there are no
more such cuts and we let Γ′ be the resulting graph.

Phase 2. For each connected component C of Γ′ we find a O(a)-thin tree TC using The-
orem 9.

Phase 3. We define F and G′ exactly the same way as in the case of 1-apex graphs.

I Lemma 19. For every {C,C ′} ∈ E(F), we have z(C,C ′) ≤ 1/(100 · a).

Proof. The same argument as in Lemma 10 applies here. The only difference here is that a
cut U is tiny if z(δ(U)) < 1/(100 · a). J

Phase 4. We construct a forest T ′ on G′. Let m = |V (F)|. We define a sequence of
planar graphs F0, F1, · · · , Fm, a sequence of graphs G′0, G′1, · · · , G′m and a sequence of weight
functions z0, z1, · · · , zm as follows. Let F0 = F , G′0 = G′ and z0 = z. We also define a
sequence of forests P0, . . . , Pm where each Pj contains a tree rooted at each ai ∈ A. We set
P0 to be the forest that contains a tree for each ai ∈ A and with no other vertices.

Let C ∈ V (Fj) for some j. For any ai ∈ A, we say that C is ai-heavy in Fj if
zj(C, {ai}) ≥ 1/a. Let C ′ ∈ V (F). For any ai ∈ A, we say that C ′ is originally ai-heavy if
C ′ is ai-heavy in F .

We maintain the following inductive invariant:
(I1) For any j ∈ {0, . . . ,m− 1}, let v ∈ V (Fj) be a vertex of minimum degree. Then either

there exists some ai ∈ A such that v is originally ai-heavy or v ∈ V (Pj).

Consider some i ∈ {0, . . . ,m − 1}. Let vi ∈ V (Fi) be a vertex with minimum degree.
If vi is originally aj-heavy for some aj ∈ A, then we contract vi to aj . Otherwise, by the
inductive invariant (I1), we have that vi ∈ V (Pi). Thus there exists a tree in Pi containing
vi that is rooted in some aj ∈ A; we contract vi to aj . In either case, by contracting vi to aj
we obtained G′i+1 from G′i. We also delete vi from Fi to obtain Fi+1. We let zi+1 be the
weight function on G′i+1 induced by zi.

Finally, we need to define Pi+1. If vi was originally aj-heavy then we add vi to Pi via an
edge {vi,aj}. For each u ∈ V (Fi) that is a neighbor of vi, and is not in V (Pi), we add u to
Pi+1 by adding the edge {vi, u} iff the following conditions hold:
(i) For all ar ∈ A, we have that u is not ar-heavy in Fi.
(ii) u is aj-heavy in Fi+1.
In this case we say that v is the parent of u. This completes the description of the process
that contracts each vertex in V (G′) into some apex.

I Lemma 20. Let j ∈ {0, 1, . . . ,m− 1}. Let C ∈ V (Fj) be a vertex with minimum degree.
Then there exists ai ∈ A such that C is ai-heavy in Fj.

Proof. Since C has at most 5 neighbors in Fj , by Lemma 19 we have zj(C,A) ≥ 2− 5/(100 ·
a) ≥ 1. Therefore by averaging, there exists an apex ai such that zj(C, {ai}) ≥ 1/a. J

I Lemma 21. For any j ∈ {0, . . . ,m} and for any v ∈ V (Γ)∩V (Pj), we have degPj
(v) ≤ 6.

Proof. By the construction, in each step we pick a vertex of minimum degree and contract
it into some apex. Since Fi is planar, its minimum degree is at most 5. This means that for
any v ∈ V (Γ) ∩ V (Pj), v can be the parent of at most five other vertices and can have at
most one parent. This completes the proof. J

D. Marx, A. Salmasi, and A. Sidiropoulos 16:13

I Lemma 22. The inductive invariant (I1) is maintained.

Proof. For any j ∈ {0, . . . ,m− 1}, let v ∈ V (Fj) be a vertex of minimum degree. If there
exists some ai ∈ A such that v is originally ai-heavy, then we are done. Suppose for all
ai ∈ A, v is not originally ai-heavy. By Lemma 20 we know that there exists some al ∈ A
such that v is al-heavy in Fj . Let j∗ ∈ {1, . . . , j} be minimum such that v is not at-heavy in
Fj∗−1 for all at ∈ A, and v is at′ -heavy in Fj∗ for some at′ ∈ A. Let u ∈ V (Fj∗−1) be vertex
that is contracted to some apex in step j∗. It follows by construction that u is the parent of
v in Pj∗ . Since j ≥ j∗ it follows that v ∈ V (Pj), concluding the proof. J

Now we are ready to describe how to construct T ′ in G′. For any l ∈ {0, . . . ,m− 1}, let
C ∈ V (Fl) be a vertex of minimum degree. If C is originally ai-heavy for some ai ∈ A and
we contract C to ai, we pick an arbitrary edge e between C and ai and we add it to T ′.
Otherwise, by Lemma 22 we have C ∈ V (Pl). This means that C has a parent C ′. In this
case, we pick an arbitrary edge e between C and C ′ and we add it to T ′.

Phase 5. We construct a forest T in G the same way as in the 1-apex case. We set
E(T) = E(T ′) ∪

⋃
C∈V (F)E(TC).

This completes the description of the algorithm.

7.1 Analysis
By the construction, T has a connected components. We will show that T is a O(a)-thin
spanning forest. Let U be a cut in G. Similar to the 1-apex case, we partition E(T) ∩ δ(U)
into three subsets:
1. T1 = {{ai, v} ∈ E(T) ∩ δ(U) : ai ∈ A, v ∈ V (Γ)}.
2. T2 = {{u, v} ∈ E(T) ∩ δ(U) : u and v are in the same component of Γ′}.
3. T3 = {{u, v} ∈ E(T) ∩ δ(U) : u and v are in different components of Γ′}.

I Lemma 23. There exists a constant α1 such that |T1| ≤ α1 · a · z(δ(U)).

Proof. A similar argument as in the case of 1-apex graph applies here with two differences.
First, a cut U is tiny if z(δ(U)) < 1/(100 · a). Second, for any ai ∈ A and C ∈ V (F)
where C is originally ai-heavy, we have that z(C, {ai}) ≥ 1/a. Therefore, we get |T1| ≤
100 · a · z(δ(U)). J

I Lemma 24. There exists a constant α2 such that |T2| ≤ α2 · a · z(δ(U)).

Proof. Again, a similar argument as in the case of 1-apex graphs applies here. The only
difference here is the definition of tiny cut. Therefore, we get |T2| ≤ 100 · a · z(δ(U)). J

I Lemma 25. There exists a constant α3 such that |T3| ≤ α3 · a · z(δ(U)).

Proof. Similar to the 1-apex case, we partition T3 into three subsets:
1. T31 = {{u, v} ∈ T3 : u ∈ U, v /∈ U,∃Cu, Cv ∈ V (F) s.t. u ∈ Cu, v ∈ Cv, U ∩ Cv 6= ∅}.
2. T32 = {{u, v} ∈ T3 : u ∈ U, v /∈ U,∃Cu, Cv ∈ V (F) s.t. u ∈ Cu, v ∈ Cv, U ∩ Cu 6= ∅}.
3. T33 = {{u, v} ∈ T3 : u ∈ U, v /∈ U,∃Cu, Cv ∈ V (F) s.t. u ∈ Cu, v ∈ Cv, U ∩ Cv = ∅, Cu ⊆

U}.

The arguments for T31 and T32 are the same as in 1-apex graphs. The only difference here
is that a cut U is tiny if z(δ(U)) < 1/(100 · a). Therefore, we have |T31| ≤ 600 · a · z(δ(U))
and |T32| ≤ 600 · a · z(δ(U)).

APPROX/RANDOM’16

16:14 Constant-Factor Approximations for Asymmetric TSP on Nearly-Embeddable Graphs

Now for T33 we want to find a constant α33 such that |T33| ≤ α33 · a · z(δ(U)). We define
two new cuts U1 and U2 as follows. For every C ∈ V (F) with C∩U 6= ∅, if C∩U 6= C, we add
all other vertices of C to U (delete all other vertices of C from U) to obtain U1 (U2) and we
say that C is U -important. Let U ′1 = {C ∈ V (F) : C ⊆ U1} and U ′2 = {C ∈ V (F) : C ⊆ U2}.

For any e = {u, v} ∈ T33 where u ∈ U , v /∈ U , u ∈ Cu and v ∈ Cv for some Cu, Cv ∈ V (F),
by the construction of T3, we have that both Cu and Cv have been contracted to the same
apex ai for some ai ∈ A. Let j ∈ {0, . . . ,m} be the step during which Cu is contracted to ai.
Let B = {C ∈ V (F) : C is contracted to ai}. Let D be the connected component of F [B]
containing Cu. Let Din

U ′1
= D[U ′1], Dout

U ′1
= D[V (D) \U ′1], Din

U ′2
= D[U ′2], Dout

U ′2
= D[V (D) \U ′2].

We consider the following two cases:
Case 1: ai /∈ U . We know that Cu ∈ U . By the construction, we have that zj(Cu, {ai}) ≥

1/a. If z0(Cu, {ai}) ≥ 1/(100 · a), we can charge e to z0(Cu, {ai}) and we know that
there are at most six edges in T33 with a vertex in Cu.
Otherwise, we have that z0(Cu, (V (D) \ Cu)) ≥ 99/(100 · a). If z0(Cu, (V (Dout

U ′1
) \ Cu)) ≥

1/(100 ·a), then by the construction of Dout
U ′1

we get z0(Cu, (G\U)) ≥ 1/(100 ·a). Therefore
we can charge e to z0(Cu, (G \ U)).
Otherwise, we have that z0(Cu, (V (Din

U ′1
) \ Cu)) ≥ 98/(100 · a). This implies that

degDin
U′1

(Cu) ≥ 98. Now note that Din
U ′1

is a planar graph and its average degree is

at most 6. Now a similar argument as in the 1-apex case applies here. Let V1 = {C ∈
Din
U ′1

: degDin
U′1

(C) ≥ 98}. Let V2 = {C ∈ Din
U ′1

: degDin
U′1

(C) ≤ 5}. By planarity of Din
U ′1
,

we have that |V1| ≤ |V2|. For any C ∈ V2, if C is U -important, then C ∩ U is a cut
for C which is not tiny. Therefore we have z(C ∩ U,G \ U) ≥ 1/(100 · a). If C is not
U -important, we have z(C,G\U) ≥ 95/(100 ·a). Now note that for any C ′ ∈ V1 there are
at most six edges in T33 with a vertex in C ′. Therefore we have |T33| ≤ 1000 · a · z(δ(U)).

Case 2: ai ∈ U . Let X1 = {C ∈ Dout
U ′2

: degDout
U′2

(C) ≥ 98}. Let X2 = {C ∈ Dout
U ′2

:

degDout
U′2

(C) ≤ 5}. We know that Cv /∈ U . We follow a similar approach as in the first

case by considering U ′2, Din
U ′2

and Dout
U ′2

. The same argument applies here by replacing U ′1,
Din
U ′1
, Dout

U ′1
, X1 and X2 with U ′2, Dout

U ′2
, Din

U ′2
, V1 and V2 respectively. Therefore, we get

|T33| ≤ 1000 · a · z(δ(U)).

Now from what we have discussed, we have |T31| ≤ 600 ·a ·z(δ(U)), |T32| ≤ 600 ·a ·z(δ(U))
and |T33| ≤ 1000 · a · z(δ(U)). Therefore, we get |T3| ≤ 2200 · a · z(δ(U)) completing the
proof. J

I Lemma 26. T is a O(a)-thin spanning forest in G with at most a connected components.

Proof. By the construction, T is a spanning forest and has at most a connected components.
Let α = α1 + α2 + α3, where α1, α2 and α3 are obtained by Lemmas 23, 24, 25. Therefore
for any U ⊂ V (G), we have |T | ≤ α · a · z(δ(U)) = 2400 · a · z(δ(U)) completing the proof. J

We are now ready to prove the main result of this Section.

I Theorem 27. Let a ≥ 1 and let G be a a-apex graph with set of apices A = {a1, . . . ,aa}.
Let z : E(G)→ R≥0 be β-thick for some β > 0. Then there exists a polynomial time algorithm
which given G, A and z outputs a O(a/β)-thin spanning forest in G (w.r.t. z) with at most
a connected components.

Proof. By Lemma 26, for β ≥ 2, we know that we can find a (2400a)-thin spanning forest
in G (w.r.t. z) with at most a connected components. For any other 0 < β < 2, the claim
follows by scaling z by a factor of 2/β. J

D. Marx, A. Salmasi, and A. Sidiropoulos 16:15

8 Thin forests in higher genus graphs with many apices

In this section we generalize our algorithm for computing a thin tree on a graph with many
apices, to compute a thin forest in a graph of higher genus and with many apices. The
following theorem is implicit in [8].

I Theorem 28 (Erickson and Sidiropoulos [8]). Let G be a graph with eg(G) = g, and let z be
a β-thick weight function on the edges of G for some β ≥ 0. Then there exists a polynomial
time algorithm which given G, z, and an embedding of G into a surface of Euler genus g,
outputs a O(1/β)-thin spanning forest in G (w.r.t. z), with at most g connected components.

In this section, we study the problem in higher genus graphs. First, the following two
Lemmas can be obtained by Euler’s formula.

I Lemma 29. Let G be a graph of genus g ≥ 1 with |V (G)| ≥ 10g. Then there exists
v0 ∈ V (G) with degG(v0) ≤ 7.

I Lemma 30. Let G be an n vertex graph of genus g ≥ 1. Then the average degree of
vertices of G is at most 6 + 12(g − 1)/n.

For the remainder of this section, let G be an a-apex graph with the set of apices
A = {a1,a2, . . . ,aa} on a surface of genus g. Let Γ = G \A, where Γ is a graph of genus g.
Let z be a 2-thick weight function on the edges of G. We will find a O(a · g)-thin (w.r.t. z)
spanning forest in G with at most O(a+ g) connected components. The high level approach
is similar to the case where Γ was planar. The algorithm proceeds in 5 phases.

Phase 1. We say that a cut U is tiny (w.r.t. z) if z(δ(U)) < 1/(1000 · a · g). We construct
Γ′ the same way as in Section 7. The only difference here is the definition of tiny cut.

Phase 2. Similar to the planar case, for each connected component C of Γ′ we find a
O(a · g)-thin forest TC , with at most g connected components, using Theorem 28

Phase 3. We define F and G′ the exact same way as in Section 7.

I Lemma 31. For every {C,C ′} ∈ E(F), we have z(C,C ′) ≤ 1/(1000 · a · g).

Proof. The same argument as in Lemma 10 applies here. The only difference here is the
definition of tiny cut. J

Phase 4. We construct a spanning forest T ′ on G′, with at most a + 10g connected
components. We follow a similar approach as in the planar case. Let m = |V (F)| − 10g. If
m ≤ 0, we set E(T ′) = ∅ and we skip to the next phase. Otherwise, we define two sequences
of graphs F0, F1, . . . , Fm, G′0, G′1, . . . , G′m, a sequence of weight functions z0, z1, . . . , zm, a
sequence of forests P0, P1, . . . , Pm satisfying the inductive invariant (I1) the exact same way
as in Section 7. For any j ∈ {0, 1, . . . ,m − 1}, C ∈ V (Fj) and ai ∈ A, we also define the
notion of ai-heavy and originally ai-heavy the same way as in Section 7. The only differences
here is that m = |V (F)| − 10g instead of |V (F)|.

I Lemma 32. Let j ∈ {0, 1, . . . ,m}. Let C ∈ V (Fj) be a vertex of minimum degree. Then
there exists ai ∈ A such that C is ai-heavy in Fj.

APPROX/RANDOM’16

16:16 Constant-Factor Approximations for Asymmetric TSP on Nearly-Embeddable Graphs

Proof. By the construction, |V (Fj)| ≥ 10g. Therefore by Lemma 29, we have degFj
(C) ≤ 7.

Therefore by Lemma 31, we get zj(C,A) ≥ 2− 7/(1000 · a · g) ≥ 1. This implies that there
exists ai ∈ A such that zj(C, {ai}) ≥ 1/a. J

I Lemma 33. For any j ∈ {0, . . . ,m} and for any v ∈ Γ ∩ Pj, we have degPj
(v) ≤ 8.

Proof. A similar argument as in the planar case applies here. The only difference here is
that the minimum degree is at most 7. Therefore, every vertex can be the parent of at most
7 other vertices and can have at most one parent. J

I Lemma 34. The inductive invariant (I1) is maintained.

Proof. The exact same argument as in Section 7 applies here. J

Now we construct a forest T ′ on G′ the same way as in Section 7.

I Lemma 35. T ′ has at most a+ 10g connected components.

Proof. If |V (F)| ≤ 10g, then we are done. Otherwise, we have |Fm| = 10g. Now since
|A| = a, by the construction, we have that the number of connected components of T ′ is at
most a+ 10g. J

Phase 5. We construct a forest T in G the exact same way as in Section 7, by setting
E(T) = E(T ′) ∪

⋃
C∈V (F)E(TC).

This completes the description of the algorithm.

8.1 Analysis
I Lemma 36. T is a spanning forest in G, with at most O(a+ g) connected components.

Proof. For any C ∈ V (F), let gC be the genus of Γ[C]. By Theorem 28 we know that the
number of connected components in TC is at most gC . Therefore, by Lemma 35 we have that
the number of connected components in T is at most a+ 10g +

∑
C∈V (F) gC ≤ a+ 11g. J

For the thinness of T , we follow a similar approach as in the planar case. There are two
main differences here: First for any j ∈ {0, 1, . . . ,m}, by Lemma 30 we have that the average
degree of Fj is at most 20g. Second a cut U is tiny if z(δ(U)) < 1/(1000 · a · g).

Let U be a cut in G. Similar to the planar case, we partition E(T) ∩ δ(U) into three
subsets:
1. T1 = {{ai, v} ∈ E(T) ∩ δ(U) : ai ∈ A, v ∈ V (Γ)}.
2. T2 = {{u, v} ∈ E(T) ∩ δ(U) : u and v are in the same component of Γ′}.
3. T3 = {{u, v} ∈ E(T) ∩ δ(U) : u and v are in different components of Γ′}.

Also similar to the planar case, we partition T3 into three subsets:
1. T31 = {{u, v} ∈ T3 : u ∈ U, v /∈ U,∃Cu, Cv ∈ V (F) s.t. u ∈ Cu, v ∈ Cv, U ∩ Cv 6= ∅}.
2. T32 = {{u, v} ∈ T3 : u ∈ U, v /∈ U,∃Cu, Cv ∈ V (F) s.t. u ∈ Cu, v ∈ Cv, U ∩ Cu 6= ∅}.
3. T33 = {{u, v} ∈ T3 : u ∈ U, v /∈ U,∃Cu, Cv ∈ V (F) s.t. u ∈ Cu, v ∈ Cv, U ∩ Cv = ∅, Cu ⊆

U}.

I Lemma 37. For any index i ∈ {1, 2, 31, 32}, there exists a constant αi such that |Ti| ≤
αi · a · g · z(δ(U)).

D. Marx, A. Salmasi, and A. Sidiropoulos 16:17

Proof. A similar argument as in Lemmas 23, 24 and 25 applies here. There are two differences
here. First the definition of a tiny cut is different. Second, for each C ∈ V (F), C can be
the parent of at most seven vertices and can have at most one parent. Therefore we get
|T1| ≤ 1000 · a · g · z(δ(U)), |T2| ≤ 1000 · a · g · z(δ(U)), |T31| ≤ 8000 · a · g · z(δ(U)) and
|T32| ≤ 8000 · a · g · z(δ(U)). J

I Lemma 38. There exists a constant α33 such that |T33| ≤ α33 · a · g · z(δ(U)).

Proof. Let e = {u, v} ∈ T33. We follow a similar approach as in the planar case. We define
U1, U2, U ′1, U ′2, B, Din

U ′1
, Dout

U ′1
, Din

U ′2
and Dout

U ′2
the exact same way as in Lemma 25. Let

V1 = {C ∈ Din
U ′1

: degDin
U′1

(C) ≥ 98g}, V2 = {C ∈ Din
U ′1

: degDin
U′1

(C) ≤ 20g}, X1 = {C ∈ Dout
U ′2

:

degDout
U′2

(C) ≥ 98g}, and X2 = {C ∈ Dout
U ′2

: degDout
U′2

(C) ≤ 5g}. By Lemma 30 we have that

|V1| ≤ |V2| and |X1| ≤ |X2|. With these definitions, the rest of the proof is the same as in
Lemma 25, and thus we get |T33| ≤ 10000 · a · g · z(δ(U)). J

I Lemma 39. T is a O(a · g)-thin spanning forest in G, with at most O(a+ g) connected
components.

Proof. By combining Lemmas 36, 37 and 38 we get |T | ≤ 24000 · a · g · z(δ(U)), which proves
the assertion. J

We are now ready to prove the main result of this Section.

I Theorem 40. Let a, g ≥ 1. Let G be a graph and A ⊆ V (G), with |A| = a, such that
H = G \ A is a graph of genus g. Let z : E(G) → R≥0 be β-thick for some β > 0. Then
there exists a polynomial time algorithm which given G, A, an embedding of H on a surface
of genus g, and z outputs a O((a · g)/β)-thin spanning forest in G (w.r.t. z) with at most
O(a+ g) connected components.

Proof. For β ≥ 2, by Lemma 39, we can find a (24000 · a · g)-thin spanning forest with at
most a + 11g connected components. For 0 < β < 2, the claim follows by scaling z by a
factor of 2/β. J

9 Thin subgraphs in nearly-embeddable graphs

In this section we give our algorithm for computing a thin subgraph in a (a, g, 1, p)-nearly
embeddable graph, proving Lemma 8. We first handle graphs without any apices, and then
proceed to the general case.

9.1 (0, g, 1, p)-nearly embeddable graphs
We now describe our algorithm for computing a thin subgraph in a (0, g, 1, p)-nearly embed-
dable graph.

For the remainder of this subsection, let ~G be a (0, g, 1, p)-nearly embeddable digraph and
let G be its symmetrization. Let ~H be the single vortex of ~G of width p, attached to some
face ~F of ~G. Let H and F be the symmetrizations of ~H and ~F respectively. Let {Bv}v∈V (F)

be a path-decomposition of H of width p. Let ~W be a closed walk in ~G visiting all vertices
in V (~H) and let W be its symmetrization. Let z : E(G)→ R≥0 be α-thick, for some α ≥ 2,
and ~W -dense. Let G′ be the graph obtained by contracting F to a single vertex v∗ in G \H.

Following [8] we introduce the following notation. For any u, v ∈ V (G), a ribbon R

between u and v is the set of all parallel edges e = {u, v} such that for every e, e′ ∈ R, there

APPROX/RANDOM’16

16:18 Constant-Factor Approximations for Asymmetric TSP on Nearly-Embeddable Graphs

exists a homeomorphism between e and e′ on the surface. Let R′ be a set of parallel edges in
G. We say that an edge e ∈ R′ is central if the total weight of edges on each side of e in R′
(containing e), is at least z(R′)/2.

We will find a O(1)-thin spanning forest S in G′ (w.r.t. z), with at most g connected
components, such that S is O(1)-thin in G (w.r.t. z). We follow a similar approach to [8] to
construct S. We apply some modifications that assure S is O(1)-thin in G (w.r.t. z).

9.1.1 The modified ribbon-contraction argument
If |V (G′)| ≤ g, then we set E(S) = ∅ and we are done. Otherwise, let l = |V (G′)| − g. We
define two sequences of graphs G0, . . . , Gl and G′0, . . . , G′l, with G0 = G and G′0 = G′. For
each j ∈ {0, . . . , l}, Gj is obtained by uncontracting v∗ ∈ V (G′j). Let i ≥ 0 and suppose we
have defined G′i. Let Ri be the heaviest ribbon in G′i (w.r.t. z). Let R′i ⊆ E(Gi) be the
corresponding set of edges in Gi. We contract all the edges in Ri and we let G′i+1 be the
graph obtained after contracting Ri. We also perform the contraction in a way such that for
all i ∈ {0, . . . , l − 1} we have v∗ ∈ G′i.

Let i ∈ {0, . . . , l− 1}. If Ri = {u, v} where u, v 6= v∗, similar to [8], we let ei be a central
edge in Ri and we add ei to S. Otherwise, suppose that Ri = {u, v∗} for some u ∈ V (G′i).
If there exists an edge e ∈ Ri with e ∈ W or z(e) ≥ 0.1, we let ei = e and we add it to S.
Otherwise, we can assume that there is no edge e ∈ R with e ∈W or z(e) ≥ 0.1.

Let Qi be the set of vertices v ∈ V (F) with an endpoint in R′i. By the construction, Qi
is a subpath of F . Let v1, v2 ∈ V (F) be the endpoints of Qi. Let W ′i be the restriction of
W on

⋃
v∈Qi

Bv. Let W ′′i be the subgraph of W ′i obtained by deleting all edges e with both
endpoints in Bv1 or Bv2 .

For any subgraph C of W , we define the i-load of C as follows. The i-load of C is the total
weight of all edges in R′i with an endpoint in C. Let Ci be the connected component of W ′′i
with the maximum i-load. Let Yi = {e ∈ R′′i : e has an endpoint in Ci}. We let ei be a
central edge in Yi and we add ei to S.

We set T = S∪W . We will show that T is a O(p2)-thin spanning subgraph of G (w.r.t. z),
with at most g connected components.

I Lemma 41. T is a spanning subgraph of G with at most g connected components.

Proof. By the construction, S has at most g connected components in G′. Now note that
W is a closed walk visiting H in G. Therefore, all vertices of F are in the same connected
component in T . This means that T has at most g connected components. J

I Lemma 42. For any i ∈ {0, . . . , l − 1}, W ′i has at most 2p connected components.

Proof. This follows immediately from the fact that {Bv}v∈V (F) is a path-decomposition of
width p and there is no edge in Ri ∩W . J

I Lemma 43. For any i ∈ {0, . . . , l − 1}, W ′′i has at most p(p+ 1) connected components.

D. Marx, A. Salmasi, and A. Sidiropoulos 16:19

Proof. By Lemma 42 we know thatW ′i has at most 2p connected components. W ′′i is obtained
by deleting at most p(p− 1) edges of W ′i . Therefore, W ′′i has at most p(p+ 1) = 2p+ p(p− 1)
connected components. J

I Lemma 44. For any i ∈ {0, . . . , l − 1}, the i-load of W ′i is at least 0.4.

Proof. The i-load of W ′i is z(R′i). Following [8] we know that z(Ri) ≥ 2/5 and thus
z(R′i) ≥ 2/5. J

I Lemma 45. For any i ∈ {0, . . . , l − 1}, the i-load of W ′′i is at least 0.2.

Proof. By Lemma 44 the i-load of W ′ is at least 0.4. By the construction, we have
z({u, v1}) ≤ 0.1 and z({u, v2}) ≤ 0.1. By deleting edges with both endpoints in Bv1 or Bv2 ,
we decrease the i-load by at most 0.2. Therefore, the i-load of W ′′i is at least 0.2. J

I Lemma 46. For any i ∈ {0, . . . , l − 1}, the i-load of Ci is at least 1/5p(p+ 1).

Proof. By Lemma 45 we know that the i-load of W ′′i is at least 0.2. By Lemma 43 there
are at most p(p + 1) connected components in W ′′i . Therefore the i-load of Ci is at least
1/5p(p+ 1). J

I Lemma 47. There exists a constant β such that for any U ⊆ V (G), we have |S ∩ δ(U)| ≤
β · p2 · z(δ(U)).

Proof. First we partition S ∩ δ(U) into two subsets:
1. S1 = {{u, v} ∈ S ∩ δ(U) : u, v 6∈ V (F)}.
2. S2 = {{u, v} ∈ S ∩ δ(U) : v ∈ V (F)}.

By the construction, following [8] we have |S1| ≤ 20 · z(δ(U)). Let e = {u, v} ∈ S2. Let
i ∈ {0, . . . , l−1} be the step that we add e to S. If e ∈W , we can charge it to z(e) ≥ 1/2 and
we are done. Suppose e 6∈W . If there exists an edge e′ ∈ E(Ci)∩ δ(U), we know that by the
construction, e′ does not have both endpoints in Bv1 or Bv2 . Therefore, for all j 6= i we have
e′ /∈ E(Cj). Thus we can charge e to z(e′) ≥ 1/2 and we are done. Otherwise, suppose there
is no edge in E(Ci)∩ δ(U). In this case, by the construction, for all e′′ ∈ Ri with an endpoint
in Ci, we have e′′ ∈ δ(U). Now we know that e is the central edge in Yi. By Lemma 46 we
know that the i-load of Ci is at least 1/5p(p+ 1). Therefore, we can charge e to the i-load of
Ci and we get |S2| ≤ 10 · p2z(δ(U)). Therefore, we have |S ∩ δ(U)| ≤ 20 · p2 · z(δ(U)). J

I Lemma 48. Let ~G be a (0, g, 1, p)-nearly embeddable digraph, let ~H be its vortex, and let
~W be a walk in ~G visiting all vertices in V (~H). Let G, H, and W be the symmetrizations of
~G, ~H, and ~W respectively. Let z : E(G)→ R≥0 be α-thick for some α ≥ 2, and ~W -dense.
Then there exists a polynomial time algorithm which given ~G, ~H, ~W , z, and an embedding
of ~G \ ~H into a surface of genus g, outputs a subgraph S ⊆ G \H, satisfying the following
conditions:
1. W ∪ S is a spanning subgraph of G and has O(g) connected components.
2. W ∪ S is O(p2)-thin w.r.t. z.

Proof. The assertion follows immediately by Lemmas 41 and 47. J

APPROX/RANDOM’16

16:20 Constant-Factor Approximations for Asymmetric TSP on Nearly-Embeddable Graphs

9.2 (a, g, 1, p)-nearly embeddable graphs
For the remainder of this subsection, let a, g, k, p ≥ 0 and ~G be an n-vertex (a, g, 1, p)-nearly
embeddable digraph and let G be its symmetrization. Let ~H be the single vortex of width p,
attached to a face ~F of ~G. Let H and F be the symmetrization of ~H and ~F respectively. Let
A ⊆ V (G) with |A| = a be the set of apices of G, where Γ = G \ (A ∪H) is a graph of genus
g. Let ~W be a walk in ~G visiting all vertices in V (~H) and let W be its symmetrization. Let
z : E(G)→ R≥0 be α-thick, for some α ≥ 2, and ~W -dense. Let G′ be the graph obtained by
contracting F to a single vertex v∗ in G \H.

We follow a similar algorithm as in Section 8 to find a O(a · g + p2)-thin spanning forest
S in G′, with at most O(a+ g) connected components. We modify the algorithm such that
S is a O(a · g + p2)-thin subgraph of G.

We first start with Γ and construct Γ′ the same way as in Section 8. For each connected
component C of Γ′, we want to find a O(p2)-thin spanning forest TC , with at most g connected
components. Let Cv∗ be the connected component of Γ′ with v∗ ∈ Cv∗ . Cv∗ is a graph of
genus at most g. For this component, we apply the modified ribbon-contraction argument
on Subsection 9.1 to find TCv∗ . Therefore, TCv∗ is a O(p2)-thin spanning forest in Cv∗ with
at most g connected components. The rest of the algorithm is the same as in Section 8
and we find a O(a · g + p2)-thin spanning forest S in G′, with at most O(a+ g) connected
components. Let T = S ∪W .

I Lemma 49. T is a spanning subgraph of G with at most O(a+ g) connected components.

Proof. The same proof as in Lemma 41 applies here. The only difference here is that S has
at most O(a+ g) connected components in G′. Therefore, T has at most O(a+ g) connected
components in G. J

I Lemma 50. S is a O(a · g + p2)-thin subgraph of G (w.r.t. z).

Proof. Let U ⊆ V (G) be a cut. Similar to Subsection 9.1, we partition S ∩ δ(U) into two
subsets.
1. S1 = {{u, v} ∈ S ∩ δ(U) : u, v 6∈ V (F)}.
2. S2 = {{u, v} ∈ S ∩ δ(U) : v ∈ V (F)}.

First, by the construction and Lemma 39, we have |S1| ≤ 24000 · a · g · z(δ(U)). Now we
partition S2 into three subsets.
1. S21 = {{aj , v} ∈ S2 : aj ∈ A, v ∈ V (F)}.
2. S22 = {{u, v} ∈ S2 : v ∈ V (F), u and v are in different components of Γ′}.
3. S23 = {{u, v} ∈ S2 : v ∈ V (F), u, v ∈ Cv∗}.

By the construction, we know that |S21| ≤ 1 and |S22| ≤ 7. Also, by Lemma 47 we have
|S23| ≤ 20 · p2 · z′(δ(U)). Therefore, we have |S ∩ δ(U)| ≤ 8(24000 · a · g + 20p2)z(δ(U)). J

I Lemma 51. T is a O(a · g + p2)-thin subgraph of G (w.r.t. z).

Proof. By Lemma 50 we know that S is a O(a · g + p2)-thin subgraph of G (w.r.t. z).
Now note that z is ~W -dense. Therefore, T = S ∪W is a O(a · g + p2)-thin subgraph of G
(w.r.t. z). J

We are now ready to prove the main result of this Section.

Proof of Lemma 8. It follows by Lemmas 49 and 51. J

D. Marx, A. Salmasi, and A. Sidiropoulos 16:21

10 A preprocessing step for the dynamic program

I Definition 52 (Facial normalization). Let g ≥ 0, p ≥ 1 and let ~G be a (0, g, 1, p)-nearly
embeddable graph. Let ~F be the face on which the vortex is attached. We say that ~G is
facially normalized if the symmetrization of ~F is a simple cycle and every v ∈ V (~F) has at
most one incident edge that is not in E(~F).

I Lemma 53. Let g ≥ 0, p ≥ 1 and let ~G be a (0, g, 1, p)-nearly embeddable graph. There
exists a polynomial-time computable (0, g, 1, p)-nearly embeddable facially normalized graph
~G′ such that the following holds. Let ~H be the vortex in ~G and let ~H ′ be the vortex in ~G′.
Then OPT~G(V (~H)) = OPT~G′(V (~H ′)). Moreover there exists a polynomial-time algorithm
which given any closed walk ~W ′ in ~G′ that visits all vertices in V (~H ′), outputs some closed
walk ~W in ~G that visits all vertices in V (~H) with cost~G(~W) = cost~G′(~W

′).

Proof. Let ~F be the face in ~G that ~H is attached to. Let F be the symmetrization of ~F .
We first construct a (0, g, 1, p)-nearly embeddable graph ~G′′, with a vortex ~H ′′ attached to a
face ~F ′′ such that the symmetrization of ~F ′′ is a simple cycle. Initially we set ~G′′ = ~G. If
~F is a simple cycle then there is nothing to be done. Otherwise, suppose that ~F is not a
simple cycle. Therefore, ∂F contains a family of simple cycles C = {C1, . . . , Ck} for some k,
and a family of simple paths P = {P1, . . . , Pl} for some l, such that every Pi ∈ P is a path
x1, x2, . . . , xm where x1 ∈ Cα and xm ∈ Cβ for some Cα, Cβ ∈ C. We allow P to contain
paths of length 0.

For every P = x1, x2, . . . , xm ∈ P, where x1 ∈ C and xm ∈ C ′ for some C,C ′ ∈ C, we
update ~G′′ as follows. Let x′1 ∈ V (C) and x′m ∈ V (C ′) be neighbors of x1 and xm. We first
duplicate P to get a new path P ′ = y1, y2, . . . , ym. For every edge e ∈ E(P), we set the cost
of the corresponding edge e′ ∈ P ′ equal to the cost of e. Also, for every j ∈ {1, . . . ,m}, we
add two edges (xi, yi) and (yi, xi) to ~G′′ with cost~G′′(xi, yi) = cost~G′′(yi, xi) = 0. Also, we
delete edges (x1, x

′
1), (x′1, x1), (xm, x′m), and (x′m, xm) and we add edges (y1, x

′
1), (x′1, y1),

(ym, x′m) and (x′m, ym) with the same cost respectively.

By the construction, ~G′′ is a (0, g, 1, p)-nearly embeddable graph, such that ~F ′′ is a simple
cycle. Also suppose that ~W ′′ is a closed walk in ~G′′ that visits all vertices in V (~H ′′). Then we
can find a closed walk ~W in ~G that visits all vertices in V (~H) with cost~G(~W) = cost~G′′(~W

′′).
Now we construct a facially normalized graph ~G′. Initially we set ~G′ = ~G′′. For every

v ∈ V (~F ′′) that has more than one incident edge in E(~G′′) \ E(~F ′′) we update ~G′ as follows.
Let vleft, vright ∈ V (~F ′′) be the left and right neighbors of v on ~F ′′. Let V = {v1, . . . , vm}
be the set of all neighbors of v in V (~G′′) \ V (~F ′′). Let V ′ = {v′1, . . . , v′m}. First we delete
v from ~G′ and we add V ′ to V (~G′). For every (v, vi) ∈ E(~G′′) we add (v′i, vi) to E(~G′)
with cost~G′(v

′
i, vi) = cost~G′′(v, vi). Also, for every j ∈ {1, . . . ,m− 1}, we add (v′j , v′j+1) and

(v′j+1, v
′
j) to E(~G′) with cost~G′(v

′
j , vj+1) = 0. Finally we add (v′1, vleft), (vleft, v

′
1), (v′m, vright)

and (vright, v
′
m) to ~G′ with the same costs as in ~G′′.

APPROX/RANDOM’16

16:22 Constant-Factor Approximations for Asymmetric TSP on Nearly-Embeddable Graphs

It is immediate that ~G′ is the desired graph. J

I Lemma 54. Let g ≥ 0, p ≥ 1 and let ~G be a (0, g, 1, p)-nearly embeddable graph. There
exists a polynomial-time computable (0, g, 1, p)-nearly embeddable facially normalized graph
~G′′ such that the following conditions hold:
1. Let ~H be the vortex in ~G and let ~H ′′ be the vortex in ~G′′. Then OPT~G(V (~H)) =

OPT~G′(V (~H ′′)).
2. There exists a polynomial-time algorithm which given any closed walk ~W ′′ in ~G′′ that

visits all vertices in V (~H ′′), outputs some closed walk ~W in ~G that visits all vertices in
V (~H) with cost~G(~W) = cost~G′′(~W

′′).
3. Let ~Γ be the genus-g piece of ~G′′. Let ~F ′′ be the face of ~Γ on which the vortex ~H ′′ is

attached. Then any v ∈ V (~Γ) \ V (~F ′′) has degree at most 4.
4. There exists some closed walk ~W ∗ in ~G′′ that visits all vertices in V (~H ′′), with cost~G′′(~W

∗)
= OPT~G′′(V (~H ′′)), and such that every edge in ~Γ is traversed at most once by ~W ∗.

We say that a graph ~G′′ satisfying the above conditions is cross normalized.

Proof. We begin with computing the facially normalized graph ~G′ given by Lemma 53.
Clearly ~G′ satisfies conditions (1) and (2).

We next modify ~G′ so that it also satisfies (3). This can be done as follows. Let ~Γ′ be
the genus-g piece of ~G′ and let ~F ′ be the face on which the vortex is attached. We replace
each v ∈ V (~Γ′) \ V (~F ′) of degree d > 4 by a tree Tv with d leaves and with maximum degree
4; we replace each edge incident to v an edge incident to a unique leaf, and we set the length
of every edge in E(Tv) to 0.

It remains to modify ~G′ so that it also satisfies (4). Let ~H ′ be the vortex in ~G′. Let ~W ′
be a walk in ~G′ that visits all vertices in ~H ′ with cost~G′(~W

′) = OPT~G′(V (~H ′)). We may
assume w.l.o.g. that ~W ′ contains at most n2 edges. Thus, every vertex in v ∈ V (~Γ′) \ V (~F ′)
is visited at most n2 times by ~W ′. We replace each v ∈ V (~Γ′) \ V (~F ′) by a grid Av of size
3n2 × 3n2, with each edge having length 0. Each edge incident to v in ~G′, corresponds to a
unique sides of Av so that the ordering of the sides agrees with the ordering of the edges
around v (in ψ). We replace each (u, v) ∈ E(~Γ′), by a matching of size 3n2 between the
corresponding sides of Au and Av, where each edge in the matching has length equal to the
length of (u, v). Let ~G′′ be the resulting graph.

We obtain the desired walk ~W ∗ in ~G′′ as follows. Let x1, . . . , x4` be the vertices in the
boundary of Av, with ` = 3n2 − 1, appearing in this order along a clockwise traversal of
Av, and such that x1 is the lower left corner. Then for any i ∈ {1, . . . , 4}, the vertices
x(i−1)`+1, . . . , x(i−1)`+n2 correspond to the copies of v on the i-th side of Av. We traverse ~G′

starting at some arbitrary vertex in V (~H ′), and we inductively construct the walk ~W ∗. We
consider each edge (u, v) in the order that it is traversed by ~W ′. Suppose that (u, v) is the
t-th edge traversed by ~W ′, for some t ∈ {1, . . . , n2}. For each i ∈ {1, . . . , 4}, we let the t-th
copy of v on the i-th side of Av to be x(i−1)`+t. We distinguish between the following cases:
(i) If u, v ∈ V (~H ′), then (u, v) ∈ E(~G′′) and we simply traverse (u, v) in ~G′′. (ii) If u ∈ V (~H ′)
and v /∈ V (~H ′) then we traverse the edge in ~G′′ that connects u to the t-th copy of v in

D. Marx, A. Salmasi, and A. Sidiropoulos 16:23

the appropriate side of Av. (iii) If u /∈ V (~H ′) and v ∈ V (~H ′) then we traverse the edge in
~G′′ that connects the t-th copy of u in the appropriate side of Au to v. (iv) If u, v /∈ V (~H ′)
then we traverse the edge in ~G′′ that connects the t-th copy of u to the t-th copy of v in
the appropriate sides of Au and Av respectively. Finally, for any pair of consecutive edges
(u, v), (v, w) traversed by ~W ′, with v /∈ V (~H ′), we need to add a path P in Av connecting
two copies of v in the corresponding sides of Av. Since Av is a grid of size 3n2 × 3n2 this
can be done so that all these paths are edge-disjoint. More precisely, this can be done as
follows. Suppose that (u, v) is the t-th edge traversed by ~W ′, for some t ∈ {1, . . . , n2}. If P
connects vertices x and y in consecutive sides of Av, then we proceed as follows. We may
assume w.l.o.g that x = xt and y = x`+t+1, since other cases can be handled in a similar
way. We set P to be the unique path starting at xt, following t+ 1 horizontal edges in Av,
and finally following `− t vertical edges to x`+t+1. Otherwise, if P connects vertices x and y
in opposite sides of Av, then we proceed as follows. We may assume w.l.o.g that x = xt and
y = x2`+t+1, since other cases can be handled in a similar way. We set P to be the unique
path starting at xt, following t+ n2 horizontal edges in Av, and then following `− 2t vertical
edges, and finally following `− t− n2 − 1 horizontal edges to x2`+t+1.

By the construction, it is immediate that all the paths P constructed above are pairwise edge-
disjoint, which implies that every edge in E(~G′′) is visited by ~W ∗ at most once, concluding
the proof. J

11 Uncrossing an optimal walk traversing a vortex

Let g ≥ 0, p ≥ 1 and let ~G be a (0, g, 1, p)-nearly embeddable graph. By Lemma 54 we may
assume w.l.o.g. that ~G is facially normalized and cross normalized. Let ~G′ ⊆ ~G be the piece
of genus g and fix a drawing ψ of ~G′ into a surface of genus g. Let ~H be the single vortex
in ~G and suppose that ~H is attached to some face ~F of ~G′. Fix an optimal solution ~WOPT,
that is a closed walk in ~G that visits all vertices in ~H minimizing cost~G(~W); if there are
multiple such walks pick consistently one with a minimum number of edges. Since ~G is cross
normalized we may assume w.l.o.g. that ~WOPT traverses every edge in E(~G′) \E(~F) at most
once.

11.1 The structure of an optimal solution
I Definition 55 (Shadow). Let W be a collection of walks in ~G. We define shadow of W
(w.r.t. ~G′) to be the collection of open and closed walks obtained by restricting every walk in
W on ~G′ (note that a walk in W can give rise to multiple walks in W ′, and every open walk
in W ′ must have both endpoints in ~F).

We say that two edje-disjoint paths P , P ′ in ~G′ cross (w.r.to ψ) if there exists v ∈
V (P) ∩ V (P ′) such that v has degree 4 (recall that ~G is cross normalized), with neighbors
u1, . . . , u4, such that the edges {v, u1}, . . . , {v, u4} appear in this order around v in the
embedding ψ, P contains the subpath u1, v, u3, and P ′ contains the subpath u2, v, u4. We

APPROX/RANDOM’16

16:24 Constant-Factor Approximations for Asymmetric TSP on Nearly-Embeddable Graphs

say that two walks in ~G′ cross (at v, w.r.to ψ) if they contain crossing subpaths. Finally, a
walk is self-crossing if it contains two disjoint crossing subpaths.

I Lemma 56 (Uncrossing an optimal walk of a vortex). There exists a collection W =
{ ~W1, . . . , ~W`} of closed walks in ~G satisfying the following conditions:
1. Every edge in E(~G′) \ E(~F) is traversed in total at most once by all the walks in W.
2. V (~W1) ∪ . . . ∪ V (~W`) is a strongly-connected subgraph of ~G.
3. V (~H) ⊆ V (~W1) ∪ . . . ∪ V (~W`).
4.
∑`
i=1 cost~G(~Wi) ≤ OPT~G(V (~H)).

5. Let W ′ be the shadow of W. Then the walks in W ′ are non-self-crossing and pairwise
non-crossing.

Proof. Initially, we set W = { ~WOPT}. Recall that since ~G is cross normalized, every edge
in E(~G′) \ E(~F) is traversed at most once by ~WOPT. Clearly, this choice of W satisfies
conditions (1)–(4). We proceed to iteratively modify W until condition (4) is also satisfied,
while inductively maintaining (1)–(4).

Suppose that the current choice for W does not satisfy (5). This means that either there
exist two distinct crossing walks in W , or there exists some self-crossing walk in W . In either
case, it follows that there exist subpaths P , P ′ of the walks in W that are crossing (w.r.to
φ). This means that there exists v ∈ V (P) ∩ V (P ′) and e1, e2 ∈ E(P), e3, e4 ∈ E(P ′) such
that ψ(e1), ψ(e4), ψ(e2), ψ(e3) appear in this order around ψ(v). We modify P and P ′ by
swapping e1 and e3. It is immediate that the above operation preserves conditions (1)–(4).
Moreover, after performing the operation, the total number of crossings and self-crossings
(counted with multiplicities) between the walks in W decreases by at least one. Since the
original number of crossings is finite, it follows that the process terminates after a finite
number of iterations. By the inductive condition, it is immediate that when the process
terminates the collection W satisfies condition (5), concluding the proof. J

For the remainder of this section let W and W ′ be as in Lemma 56. Let I be a graph
with V (I) =W ′ and with E(I) =

{
{W,W ′} ∈

(W′
2
)

: V (W) ∩ V (W ′) 6= ∅
}
.

Let ~W, ~Z be distinct closed walks in some digraph, and let v ∈ V (~W) ∩ V (~Z). Suppose
that ~W = x1, . . . , xk, v, xk+1, . . . , xk′ , x1 and ~Z = y1, . . . , yr, v, yr+1, . . . , yr′ , y1. Let ~S be
the closed walk x1, . . . , xk, v, yr+1, . . . , yr′ , y1, . . . , yr, v, xk+1, . . . , xk′ , x1. We say that ~S is
obtained by shortcutting ~W and ~Z (at v).

Let J be a subgraph of I. Let WJ be a collection of walks in ~G constructed inductively
as follows. Initially we set WJ =W . We consider all {W,W ′} ∈ E(J) in an arbitrary order.
Note that since {W,W ′} ∈ E(J), it follows that W and W ′ cross at some v ∈ V (~G′). Let R
and R′ be the walks in WJ such that W and W ′ are sub-walks of R and R′ respectively. If
R 6= R′ then we replace R and R′ in WJ by the walk obtained by shortcutting R and R′ at
v. This completes the construction of WJ . We say WJ is obtained by shortcutting W at J .

I Lemma 57. There exists some forest F in I such that the collection of walks obtained by
shortcutting W at F contains a single walk.

Proof. Let F be a forest obtained by taking a spanning subtree in each connected component
of I. Let W,W ′ ∈ W. Let WF be obtained by shortcutting W at F . It suffices to show
that W and W ′ become parts of the same walk in WF . By condition (2) of Lemma 56 we
have that there exists a sequence of walks W1, . . . ,Wt ∈ W, with W1 = W , Wt = W ′, and
such that for any i ∈ {1, . . . , t − 1}, there exists some walk Ai ∈ Wi ∩ ~G′, and some walk
Bi+1 ∈ Wi+1 ∩ ~G′ such that {Ai, Bi+1} ∈ E(I). Therefore Ai and Bi+1 are in the same

D. Marx, A. Salmasi, and A. Sidiropoulos 16:25

connected component of I. Thus there exits some tree Ti in F such that Ai, Bi+1 ∈ V (Ti).
It follows that after shortcutting W at F , the walks Ai and Bi+1 become parts of the same
walk. By induction on i ∈ {1, . . . , t− 1}, it follows that A1 and Bt become parts of the same
walk in WF , and thus so do W and W ′, concluding the proof. J

For the remainder let F be the forest given by Lemma 57.

I Lemma 58. All leaves of F intersect F .

Proof. Suppose that there exists some leaf ~W of F with V (~W) ∩ V (F) = ∅. Then simply
removing ~W fromW leaves a new collection of walks that visits all vertices in V (~H) and such
that the union of all walks is a strongly-connected subgraph of ~G. Thus after shortcutting
all these walks we may obtain a new single walk ~R that visits all vertices in V (~H) with
cost~G(~R) ≤ cost~G(~WOPT) and with fewer edges than ~WOPT, contradicting the choice of
~WOPT. J

12 The dynamic program for traversing a vortex in a planar graph

For the remainder of this section let ~G be a n-vertex (0, 0, 1, p)-nearly embeddable graph
(that is, planar with a single vortex). Let ~H be the vortex in ~G and suppose it is attached on
some face ~F . Fix an optimal solution ~WOPT, that is a closed walk in ~G that visits all vertices
in ~H minimizing cost~G(~W); if there are multiple such walks pick consistently one with a
minimum number of edges. Let F be the symmetrization of ~F . We present an algorithm
for computing a walk traversing all vertices in V (~H) based on dynamic programming. By
Lemma 54 we may assume w.l.o.g. that ~G is facially normalized and cross normalized.

Fix a path-decomposition {Bv}v∈V (F) of ~H of width p.
Let S be a collection of walks in ~G. For any v ∈ V (~G) we denote by in-degreeS(v)

the number of times that the walks in S enter v; similarly, we denote by out-degreeS(v)
the number of times that the walks in S exit v. We define ~G[S] to be the graph with
V (~G[S]) =

⋃
W∈S V (W) and E(~G[S]) =

⋃
W∈S E(W).

12.1 The dynamic program
Let P be the set of all subpaths of F , where we allow allow for simplicity in notation that a
path be closed. Let u, v be the endpoints of P . Let ~HP = ~H

[⋃
x∈V (P)Bx

]
. Let CP be the

set of all possible partitions of Bu ∪Bv. Let Din
P = {0, . . . , n}Bu∪Bv , Dout

P = {0, . . . , n}Bu∪Bv ,
that is, every element of Din

P ∪ Dout
P is a function f : Bu ∪Bv → {0, . . . , n}. Let A = V (F)2.

12.1.1 The dynamic programming table
The dynamic programming table is indexed by all pairs (P, φ) where P ∈ P and φ =
(C, f in, fout, a, l, r, p) ∈ IP , where

IP = CP ×Din
P ×Dout

P × (A∪ (A×A) ∪ nil)× (V (~G) ∪ nil)× (V (~G) ∪ nil)× (V (~G) ∪ nil).

A partial solution is a collection of walks in ~G.
We say that a partial solution S is compatible with (P, φ) if the following conditions are

satisfied:
(T1) For every x ∈ V (~HP) there exists some walk in S that visits x. That is V (~HP) ⊆⋃

Q∈S V (Q).

APPROX/RANDOM’16

16:26 Constant-Factor Approximations for Asymmetric TSP on Nearly-Embeddable Graphs

(T2) If a 6= nil and a ∈ A, let a = (u′, v′). Let Q1 be the shortest path from u′ to l in ~G. Let
Q2 be the shortest path from l to r in ~G. Let Q3 be the shortest path from r to v′ in ~G.
Let Q∗1 be the walk from u′ to v′ obtained by the concatenation of Q1, Q2 and Q3. Then
Q∗1 is a sub-walk of some walk in S. We refer to Q∗ as the grip of S, and in this case we
say that it is an unbroken grip. If a ∈ V (P)2 then we say that the unbroken grip is closed
and otherwise we say that it is open. Otherwise, if a ∈ (A×A), let a = ((u′1, v′1), (u′2, v′2)).
Let Q′1 be the shortest path from u′1 to l in ~G. Let Q′2 be the shortest path from l to v′1
in ~G. Let Q∗2 be the path from u′1 to v′1 obtained by the concatenation of Q′1 and Q′2.
Let Q′′1 be the shortest path from u′2 to r in ~G. Let Q′′2 be the shortest path from r to v′2
in ~G. Let Q∗3 be the path from u′2 to v′2 obtained by the concatenation of Q′′1 and Q′′2 .
Then Q∗2 and Q∗3 are sub-walks of some walks in S. We refer to (Q∗2, Q∗3) as the broken
grip of S.

(T3) If a = nil or a ∈ A, then every open walk in S has both endpoints in Bu ∪Bv, except
possibly for one walk W ∈ S that contains the grip as a sub-walk. If a = (Q1, Q2) ∈
(A×A), then every open walk in S has both endpoints in Bu ∪Bv, except possibly for
at most two walks W1,W2 ∈ S that contain Q1 and Q2 as sub-walks (note that Q1 and
Q2 might be sub-walks of the same walk in S).

(T4) For all x ∈ Bu ∪Bv we have f in(x) = in-degreeS(x) and fout(x) = out-degreeS(x).
(T5) For any x, y ∈ Bu ∪Bv we have that if x and y are in the same set of the partition C

then they are in the same weakly-connected component of
⋃
W∈SW . Moreover for any

z ∈ V (~HP) there exists z′ ∈ Bu∩Bv such that z and z′ are in the same weakly-connected
component of

⋃
W∈SW .

12.1.2 Merging partial solutions
We compute the values of the dynamic programming table inductively as follows. Let
P, P1, P2 ∈ P such that E(P1) 6= ∅, E(P2) 6= ∅, E(P1) ∩ E(P2) = ∅, and P = P1 ∪ P2. Let
u ∈ V (P1), w ∈ V (P1) ∩ V (P2), v ∈ V (P2) such that u,w are the endpoints of P1 and w, v
are the endpoints of P2. Let

φ = (C, f in, fout, a, l, r, p) ∈ IP ,

φ1 = (C1, f
in
1 , f

out
1 , a1, l1, r1, p1) ∈ IP1 ,

φ2 = (C2, f
in
2 , f

out
2 , a2, l2, r2, p2) ∈ IP2 .

For any i ∈ {1, 2} let Si be a partial solution that is compatible with (Pi, φi). We proceed
to compute a collection of walks S that is compatible with (P, φ). This is done in phases, as
follows:

Merging phase 1: Joining the walks. We check that for all x ∈ Bw we have f in
1 (x) = fout

2 (x)
and f in

2 (x) = fout
1 (x). If not then the merging procedure return nil. For any x ∈ Bw

and for any i ∈ {1, 2} let Ei(x)in (resp. Ei(x)out) be the multiset of all edges in all walks
in Si that are incoming to (resp. outgoing from) x counted with multiplicities. Since
fout

1 (x) = f in
2 (x) and fout

2 (x) = f in
1 (x) it follows that |E in

1 (x)∪E in
2 (x)| = |Eout

1 (x)∪Eout
2 (x)|.

Pick an arbitrary bijection σx : E in
1 (x) ∪ E in

2 → Eout
1 (x) ∪ Eout

2 (x). We initially set
S = S1 ∪ S2. For each x ∈ Bw we proceed as follows. For each e ∈ E in(x)

1 ∪ E in
2 (x) we

modify the walk traversing e so that immediately after traversing e it continues with the
walk traversing σx(e) ∈ Eout

1 ∪ Eout
2 .

Merging phase 2: Updating the grip. We check that at least one of the following conditions
is satisfied:

D. Marx, A. Salmasi, and A. Sidiropoulos 16:27

1. Suppose that a = l = r = p = a1 = l1 = r1 = p1 = a2 = l2 = r2 = p2 = nil. Then
there is nothing to do.

2. Suppose that a1 = l1 = r1 = p1 = nil, l = l2, r = r2, p = p2 and a = a2 = (u∗2, v∗2) ∈ A
with {u∗2, v∗2} ∩ V (P1) ⊆ {u,w}, or a2 = l2 = r2 = p2 = nil, l = l1, r = r1, p = p1 and
a = a1 = (u∗1, v∗1) ∈ A with {u∗1, v∗1} ∩ V (P2) ⊆ {w, v}. Then there is nothing to do.

3. Suppose that a1 6= nil, a2 6= nil, and a 6= nil. Suppose a1 = a2 = a = (u∗, v∗) ∈ A,
with a ∈ V (P1)× V (P2) or a ∈ V (P2)× V (P1). Suppose l1 = l2 = l, r1 = r2 = r and
p1 = p2 = p. Then we proceed as follows to ensure that (T2) holds. We may assume
w.l.o.g. that a ∈ V (P1)× V (P2) since the remaining case can be handled in a similar
way. Let Q∗ be the grip between u∗ and v∗ in ~G. It follows by (T2) that for any
i ∈ {1, 2} there exists a walk ~Wi ∈ Si that contains Q∗ as a sub-walk. It follows by
the definition of the merging phase 1 that for any i ∈ {1, 2} there exists ~W ′i ∈ S that
contains Q∗ as a sub-walk. We will modify S in order to ensure that (T2) holds. We
remove Q∗ from ~W ′2 and we merge ~W ′1 with ~W ′2 \Q∗ (via concatenation).

4. Suppose that a1, a2, a ∈ A. Suppose that a1 = (u∗1, v∗1), a2 = (u∗2, v∗2), a = (u∗, v∗),
with u∗ ∈ {u∗1, u∗2}, and v∗ ∈ {v∗1 , v∗2}. Suppose that l1 = l, l2 = r2 = r and
p1 = p2 = p, or l2 = l, l1 = r1 = r and p1 = p2 = p, or l = r = p1 = p2 and l2 = r2, or
l = r = p1 = p2 and l1 = r1. Then we proceed as follows to ensure that (T2) holds.
We may assume w.l.o.g. that a = (u∗2, v∗1), l1 = l, l2 = r2 = r and p1 = p2 = p since
the other cases can be handled in a similar way. For any i ∈ {1, 2} let Q∗i be the
grip of Si. It follows by (T2) that for any i ∈ {1, 2} there exists a walk ~Wi ∈ Si that
contains Q∗i as a sub-walk. It follows that for any i ∈ {1, 2} there exists ~W ′i ∈ S that
contains Q∗i as a sub-walk. We will modify S in order to ensure that (T2) holds. If
a = a1 or a = a2 then there is nothing left to do. Otherwise, let R′1 be the shortest
path in ~G from u∗1 to r1. Let R′′1 be the shortest path in ~G from r1 to l2. Let R′′′1 be
the shortest path in ~G from l2 to v∗2 . Let R∗1 be the path in ~G from u∗1 to v∗2 obtained
by concatenation of R′1, R′′1 and R′′′1 . Let R′2 be the shortest path in ~G from u∗2 to p.
Let R′′2 be the shortest path in ~G from p to l1. Let R′′′2 be the shortest path in ~G from
l1 to v∗1 . Let R∗2 be the path in ~G from u∗2 to v∗1 obtained by concatenation of R′2, R′′2
and R′′′2 . We remove Q∗1 and Q∗2 from ~W ′1 and ~W ′2 and replace them by R∗1 and R∗2.

5. Suppose that a1 = nil and a = a2 ∈ (A×A), or a2 = nil and a = a1 ∈ (A×A). Then
there is nothing to do.

6. Suppose that a1 ∈ A, a2 ∈ A and a ∈ (A×A). Suppose a1 = (u1, v1), a2 = (u2, v2)
and a = ((u′, v′), (u′′, v′′)), with v′ ∈ {v1, v2} and u′′ ∈ {u1, u2}. We may assume
w.l.o.g that a = ((u′, v1), (u2, v

′′)). Suppose that l = l1 = r1, r = l2 = r2 and
p = p1 = p2. For any i ∈ {1, 2}, let Qi be the grip of Si. It follows by (T2) that for

APPROX/RANDOM’16

16:28 Constant-Factor Approximations for Asymmetric TSP on Nearly-Embeddable Graphs

any i ∈ {1, 2} there exists a walk ~Wi ∈ Si that contains Qi as a sub-walk. It follows
that for any i ∈ {1, 2} there exists ~W ′i ∈ S that contains Qi as a sub-walk. Let Q′1 be
the shortest path in ~G from u1 to l1. Let Q′2 be the shortest path in ~G from l1 to l2.
Let Q′3 be the shortest path in ~G from l2 to v2. Let Q∗1 be the path in ~G from u1 to v2
obtained by concatenation of Q′1, Q′2 and Q′3. Let Q′′1 be the shortest path in ~G from
u′ to l1. Let Q′′2 be the shortest path in ~G from l1 to v1. Let Q∗2 be the path in ~G

from u′ to v1 obtained by concatenation of Q′′1 and Q′′2 . Let Q′′′1 be the shortest path
in ~G from u2 to l2. Let Q′′′2 be the shortest path in ~G from l2 to v′′. Let Q∗3 be the
path in ~G from u2 to v′′ obtained by concatenation of Q′′′1 and Q′′′2 . Then we remove
Q1 and Q2 from ~W ′1 and ~W ′2, and replace them by Q∗1, Q∗2 and Q∗3.

7. Suppose that a1 ∈ (A×A), a2 ∈ A and a ∈ (A×A), or a1 ∈ A, a2 ∈ (A×A) and
a ∈ (A × A). We may assume w.l.o.g that a1 ∈ (A × A), a2 ∈ A and a ∈ (A × A).
Suppose that a1 = ((u1, v1), (u′1, v′1)), a2 = (u2, v2) and a = ((u, v), (u′, v′)), with
(u, v) = (u1, v1), u′ ∈ {u1, u2}, and v′ ∈ {v1, v2}, or (u, v) = (u2, v2), u′ ∈ {u1, u2},
and v′ ∈ {v1, v2}. We may assume w.l.o.g that (u, v) = (u1, v1) and (u′, v′) = (u2, v

′
1).

Suppose that l = l1, r = l2 = r2 and p = p1 = p2. Let (Q1, Q
′
1) be the grip of S1 and

let Q2 be the grip of S2. Let R1 be the shortest path in ~G from u′1 to r1. Let R2 be
the shortest path in ~G from r1 to r2. Let R3 be the shortest path in ~G from r2 to v2.
Let R′ be the path in ~G from u′1 to v2 obtained by concatenation of R1, R2 and R3.
Let R′1 be the shortest path in ~G from u2 to r2. Let R′2 be the shortest path in ~G

from r2 to v′1. Let R′′ be the path in ~G from u2 to v′1 obtained by concatenation of
R′1 and R′2. Then we remove Q′1 and Q2, and replace them by R′ and R′′.

If none of the above holds then the merging procedure returns nil.
Merging phase 3: Checking connectivity. We check that condition (T5) holds for S and

we return nil if it does not.

I Lemma 59. If the merging procedure outputs some partial solution S then S is compatible
with φ.

Proof. It follows immediately by the definition of compatibility. J

12.1.3 Initializing the dynamic programming table
For all P ∈ P containing at most one edge and for all φ ∈ IP with φ = (C, f in, fout, a, l, r, p)
we proceed as follows. We enumerate all partial solutions S that are compatible with (P, φ)
and have minimum cost. Any walk in any such partial solution can intersect ~G \ ~H only
on the at most two oppositely-directed edges in E(P). Moreover there are at most O(n7)
possibilities for a, l, r and p. Thus the enumeration can clearly be done in time nO(1) by
ensuring that for all walks W ∈ S, their sub-walks that do not intersect E(P) are shortest
paths between vertices in Bu ∪ Bv. The total running time of this initialization step is
therefore nO(p).

D. Marx, A. Salmasi, and A. Sidiropoulos 16:29

Figure 1 Example of a basic path.

12.1.4 Updating the dynamic programming table
For all P ∈ P containing m > 1 edges, and for all P1, P2 ∈ P with E(P1) 6= ∅, E(P2) 6= ∅,
E(P1) ∩ E(P2) = ∅ and P1 ∪ P2 = P , and for all φ1 ∈ IP1 and φ2 ∈ IP2 we proceed as
follows. Suppose that for all paths P ′ containing m′ < m edges and all φ′ ∈ IP ′ we have
computed the partial solutions in the dynamic programming table at (P ′, φ′). If there exist
partial solutions S1 and S2 at (P1, φ1) and (P2, φ2) respectively, we call the merging process
to merge S1 and S2. Suppose that the merging process returns a partial solution S at (P, φ)
for some φ ∈ IP . If there is no partial solution stored currently at (P, φ) then we store S at
that location. Otherwise if there there exists a partial solution S ′ stored at (P, φ) and the
cost of S is smaller than the cost of S ′ then we replace S ′ with S.

12.2 Analysis
Let W be the collection of walks given by Lemma 56. Let W ′ be the shadow of W. Let F
be the forest obtained by Lemma 57. For every connected component T of F pick some
vT ∈ V (T) and consider T to be rooted at vT .

Let ~G′ be the planar piece of ~G, that is ~G′ = ~G \ (V (~H) \ (~F)). Fix some planar drawing
ψ of G′. Let D be the disk with ∂D = ψ(F) with ψ(~G) ⊂ D.

Let P ∈ P with endpoints u, v, and let T be a subtree of some tree in F . We say that P
covers T if for all D ∈ V (T) we have V (D) ∩ V (F) ⊆ V (P). We say that P avoids T if for
all D ∈ V (T) we have V (D) ∩ V (P) ⊆ {u, v}.

I Definition 60 (Basic path). Let P ∈ P. Let u, v ∈ V (P) be the endpoints of P . We say
that P is basic (w.r.t. W) if either P \ {u, v} does not intersect any of the walks in W (in
this case we call P empty basic) or the following holds. There exists some tree T in F and
some D ∈ V (T), with children D1, . . . , Dk, intersecting D in this order along a traversal of
D, such that the following conditions are satisfied (see Figure 1):
1. For any i ∈ {1, . . . , k}, let TDi

be the subtree of T rooted at Di and let TD be the subtree
of T rooted at D. Then at least one of the following two conditions is satisfied:
1.1. P covers TD and avoids T \ TD.
1.2. There exists j ∈ {1, . . . , k} such that for all l ≤ j, P covers TDl

and P avoids
TD \

⋃j
m=1 TDm

.
2. Let T ′ be a tree in F with T ′ 6= T . Then either P covers T ′ or P avoids T ′.

I Definition 61 (Facial restriction). Let P ∈ P be basic. Let W ′ be the collection of walks
obtained by restricting every W ∈ W on HP . If P is empty, we say that W ′ is the P -facial
restriction of W . Suppose that P is not empty. Let T , D, TD, k and j be as in Definition 60.

APPROX/RANDOM’16

16:30 Constant-Factor Approximations for Asymmetric TSP on Nearly-Embeddable Graphs

Figure 2 Part of the collection of walks in W (left) and the corresponding P -facial restriction of
W depicted in bold (right).

Let F ′ = {T ′ ∈ F : P covers T ′} and let R =
⋃
T ′∈F ′ V (T ′). If P covers TD and avoids

T \ TD, we say that R∪W ′ ∪V (TD) is the P -facial restriction of W . Otherwise, we say that
R∪W ′ ∪ {D} ∪

⋃j
i=1 V (TDi) is the P -facial restriction of W. Figure 2 depicts an example

of a P -facial restriction.

I Definition 62 (Important walk). Let P ∈ P be a basic path. Let W ′ be the P -facial
restriction of W. Let W ′′ be the shadow of W ′. Let Q be a walk in G[W ′′]. We say that Q
is P -important (w.r.to. W) if the following conditions hold:
1. Both endpoints of Q are in V (P).
2. Q is the concatenation of walks Q1, . . . , Q` such that for each i ∈ {1, . . . , `} there exists

some Wi ∈ W such that Qi is a sub-walk of Wi, and for each j ∈ {1, . . . , `− 1} we have
{Wj ,Wj+1} ∈ E(F).

I Proposition 63. For any u, v ∈ V (P), there is at most one P -important walk from u to v.

Proof. It follows immediately by the fact that F is a forest. J

I Lemma 64. Let P ∈ P be basic w.r.t. W with endpoints u, v ∈ V (F), where u = v

if P is closed. Let WP be the P -facial restriction of W. Let Γ =
⋃
~W∈WP

~W . Let C
be the partition of Bu ∪ Bv that corresponds to the weakly-connected components of Γ.
For any x ∈ Bu ∪ Bv let f in(x) = in-degreeWP

(x) and fout(x) = out-degreeWP
(x). Then

there exists some a ∈ A ∪ (A × A) ∪ nil and l, r, p ∈ (V (~G) ∪ nil) such that the dynamic
programming table contains some partial solution S at location (P, (C, f in, fout, a, l, r, p)),
such that cost~G(S) ≤ cost~G(WP).

Proof. Let us first assume that F contains only one tree. We will deal with the more general
case later on. First suppose that P is an empty basic path. Let P = x1, x2, . . . , xm, where
x1 = u and xm = v. We will prove the assertion by induction onm. For the base case, suppose
thatm = 2, and thus P contains only one edge. Let a = l = r = p = nil. In this case, a partial
solution S at location (P, (C, f in, fout, a, l, r, p)) is computed in the initialization step of the
dynamic programming table and clearly we have cost~G(S) ≤ cost~G(WP) and we are done. Now
suppose that m > 2 and we have proved the assertion for all m′ < m. We first decompose P
into two edge-disjoint paths P1 and P2, such that V (P1)∩V (P2) = w for some 1 < j < m and
w = xj . For i ∈ {1, 2} let WPi

be the Pi-facial restriction of ~WOPT and let Γi =
⋃
~W∈WPi

~W .
Let C1 be the partition of Bu∪Bw that corresponds to the weakly-connected components of Γ1
and let C2 be the partition of Bw ∪Bv that corresponds to the weakly-connected components

D. Marx, A. Salmasi, and A. Sidiropoulos 16:31

of Γ2. For any x ∈ Bu ∪ Bw let f in
1 (x) = in-degreeWP1

(x) and fout
1 (x) = out-degreeWP1

(x).
Also for any x ∈ Bw ∪ Bv let f in

2 (x) = in-degreeWP2
(x) and fout

2 (x) = out-degreeWP2
(x).

By the induction hypothesis, there exists partial solutions S1 and S2 that are compatible
with (P1, (C1, f

in
1 , f

out
1 , nil, nil, nil, nil)) and (P2, (C2, f

in
2 , f

out, nil, nil, nil, nil)) respectively, and
we have cost~G(S1) ≤ cost~G(WP1), cost~G(S2) ≤ cost~G(WP2). The dynamic program will
merge S1 and S2 to get the desired S. Note that by the construction, for every x ∈ Bw we
have f in

1 (x) = fout
2 (x) and f in

2 (x) = fout
1 (x). Therefore, by the first merging phase, we can

merge walks in S1 and S2. Also, we let a = l = r = p = nil and we proceed the second phase
of merging. Finally, by the construction and definition of P -facial restriction, (T5) holds and
the merging process returns a partial solution S compatible with (P, (C, f in, fout, a, l, r, p))
with cost~G(S) ≤ cost~G(WP), as desired.

Now suppose that P is not empty basic. Let T , D, TD, k and j be as in Definition 60.
We will prove the assertion by induction on T . For the base case, suppose that D is a leaf of
T . Suppose that P = x1, x2, . . . , xm for some m > 0, where x1 = u and xm = v, and D is a
(possibly closed) walk from xi ∈ V (P) to xj ∈ V (P). We may assume w.l.o.g. that i ≤ j.
There are some possible cases here based on i and j. First suppose that i > 1, j < m and j−
i ≥ 3. In this case, let P1 = x1, . . . , xi, P2 = xi, xi+1, P3 = xi+1, . . . , xj−1, P4 = xj−1, xj and
P5 = xj , . . . , xm. Let P6 = P1∪P2, P7 = P6∪P3 and P8 = P7∪P4. For i ∈ {1, 2, 3, 4, 5, 6, 7, 8}
let WPi

be the Pi-facial restriction of ~WOPT and let Γi =
⋃
~W∈WPi

~W . We also define Ci,
f in
i and fout

i as in the previous case. Note that P1, P3 and P5 are empty basic paths. We
let a1 = a3 = a5 = nil, l1 = l3 = l5 = nil, r1 = r3 = r5 = nil, p1 = p3 = p5 = nil and thus
we can find partial solutions S1, S3 and S5 compatible with (P1, (C1, f

in
1 , f

out
1 , a1, l1, r1, p1)),

(P3, (C3, f
in
3 , f

out
3 , a3, l3, r3, p3)) and (P5, (C5, f

in
5 , f

out
5 , a5, l5, r5, p5)) respectively. We also have

cost~G(S1) ≤ cost~G(WP1), cost~G(S3) ≤ cost~G(WP3) and cost~G(S5) ≤ cost~G(WP5). Let a2 =
a4 = a6 = a7 = a8 = (xi, xj). If D does not have a parent in T , then we let l2 = l4 = l6 =
l7 = l8 = r2 = r4 = r6 = r7 = r8 = p2 = p4 = p6 = p7 = p8 ∈ V (D) to be an arbitrary
vertex of D. Otherwise, suppose that D has a parent D′ in T . If D′ does not have a parent
in T , then we let l2 = l4 = l6 = l7 = l8 = r2 = r4 = r6 = r7 = r8 = p2 = p4 = p6 = p7 =
p8 ∈ V (D) ∩ V (D′). Otherwise, suppose that D′ has a parent D′′ in T . In this case, we
let l2 = l4 = l6 = l7 = l8 = r2 = r4 = r6 = r7 = r8 ∈ V (D) ∩ V (D′) and p2 = p4 = p6 =
p7 = p8 ∈ V (D′) ∩ V (D′′). Therefore, by computing the initialization step, we can find a
partial solution S2 compatible with (P2, (C2, f

in
2 , f

out
2 , a2, l2, r2, p2)) and a partial solution

S4 compatible with (P4, (C4, f
in
4 , f

out
4 , a4, l4, r4, p4)), and we have cost~G(S2) ≤ cost~G(WP2)

and cost~G(S4) ≤ cost~G(WP4). Now by merging S1 and S2, we get a partial solution S6
compatible with (P6, (C6, f

in
6 , f

out
6 , a6, l6, r6, p6)). By merging S6 and S3, we get a partial

solution S7 compatible with (P7, (C7, f
in
7 , f

out
7 , a7, l7, r7, p7)). By merging S7 and S4, we get

a partial solution S8 compatible with (P8, (C8, f
in
8 , f

out
8 , a8, l8, r8, p8)), and finally by merging

S8 and S5, we get the desired partial solution S compatible with (P, (C, f in, fout, a, l, r, p))
with cost~G(S) ≤ cost~G(WP). If i = 1 or j = m, we will follow a similar approach. The only
different is that instead of dividing P into five paths, we divide it into four paths. Finally,
the last case is when j − i < 3. In this case, if i 6= j, we define the same subpaths P1, P2, P4
and P5, and we follow a similar approach. Otherwise, suppose that i = j. In this case, we
let P1 = x1, . . . , xi and P2 = xi, . . . , xm and by following the same approach by mering two
partial solutions, we get the desired S.

Now suppose that D ∈ V (T) is non-leaf. In this case, we prove the assertion by induction
on j, where j comes from Definition 60. Note that we perform a second induction inside
the first induction. For the base case, suppose that j = 1. In this case, D1 is a child of D
and P covers TD1 and avoids TD \ TD1 . Therefore, by using the first induction hypothesis

APPROX/RANDOM’16

16:32 Constant-Factor Approximations for Asymmetric TSP on Nearly-Embeddable Graphs

on D1, there exists a ∈ A ∪ (A × A) ∪ nil and l, r, p ∈ V (~G) ∪ nil such that the dynamic
programming table contains some partial solution S at location (P, (C, f in, fout, a, l, r, p))
with cost~G(S) ≤ cost~G(WP). Now for the same a, l, r, p and S, we have that S is compatible
with (P, (C, f in, fout, a, l, r, p)), as desired. Now suppose that we have proved the assertion for
all 1 ≤ j′ < j. By Definition 60, there exists a basic path P1 ⊆ P , where u is the first vertex
of P1, such that for all l ≤ j−1, P1 covers TDl

and avoids TD \(
⋃j−1
m=1 TDm). Also there exists

a basic path P2 ⊆ P , where v is the last vertex of P2, such that P2 covers TDj
and avoids

T \ TDj . Let u′ ∈ V (F) and v′ ∈ V (F) be the other endpoints of P1 and P2 respectively. Let
P3 ∈ P be the path between u′ and v′ that does not contain v and let P4 = P1 ∪ P3. By the
construction, P3 and P4 are basic. For i ∈ {1, 2, 3, 4}, let WPi

be the Pi-facial restriction
of ~WOPT and let Γi =

⋃
~W∈WPi

~W . Let C1, C2, C3 and C4 be the partitions of Bu ∪ Bu′ ,
Bv′ ∪ Bv, Bu′ ∪ Bv′ and Bu ∪ Bv′ that corresponds to the weakly connected components
of Γ1, Γ2, Γ3 and Γ4 respectively. For any x ∈ Bu ∪ Bu′ let f in

1 (x) = in-degreeWP1
(x)

and fout
1 (x) = out-degreeWP1

(x), for any x ∈ Bv′ ∪ Bv let f in
2 (x) = in-degreeWP2

(x) and
fout

2 (x) = out-degreeWP2
(x), for any x ∈ Bu′∪Bv′ , let f in

3 (x) = in-degreeWP3
(x) and fout

3 (x) =
out-degreeWP3

(x), and for any x ∈ Bu ∪ Bv′ let f in
4 (x) = in-degreeWP4

(x) and fout
4 (x) =

out-degreeWP4
(x). By the second induction hypothesis, there exists some a1 ∈ A ∪ (A ×

A) ∪ nil and l1, r1, p1 ∈ V (~G) ∪ nil, such that the dynamic programming table contains some
partial solution S1 at location (P1, (C1, f

in
1 , f

out, a1, l1, r1, p1)), with cost~G(S1) ≤ cost~G(WP1).
Also by the first induction hypothesis, there exists some a2 ∈ A ∪ (A × A) ∪ nil and
l2, r2, p2 ∈ V (~G) ∪ nil, such that the dynamic programming table contains some partial
solution S2 at location (P2, (C2, f

in
2 , f

out, a2, l2, r2, p2)), with cost~G(S2) ≤ cost~G(WP2). Let
a3 = l3 = r3 = p3 = nil. Let a4 = a1, l4 = l1, r4 = r1 and p4 = p1. Since P3 is basic, there
exists a partial solution S3 compatible with (P3, (C3, f

in
3 , f

out
3 , a3, l3, r3, p3)). Now we merge

S1 and S3 to get a partial solution S4 compatible with (P4, (C4, f
in
4 , f

out
4 , a4, l4, r4, p4)). Note

that for every x ∈ Bu′ , we have f in
3 (x) = fout

1 (x) and fout
3 (x) = f in

1 (x). Therefore, we can
apply the first merging phase. Also we have a4 = a1, l4 = l1, r4 = r1 and p4 = p1, and thus
we can apply the second merging phase. Finally, by the construction (T5) holds and we
get a partial solution S4 compatible with (P4, (C4, f

in
4 , f

out
4 , a4, l4, r4, p4)). Now, we merge

two partial solutions S4 and S2 to get the desired S. Clearly, for every x ∈ Bv′ we have
f in

4 (x) = fout
2 (x) and fout

4 (x) = f in
2 (x). Therefore, we can apply the first phase of merging.

If a2 = l2 = r2 = p2 = a4 = l4 = r4 = p4 = nil, then we let a = l = r = p = nil. Otherwise,
if a4 = l4 = r4 = p4 = nil and a2 = (u∗2, v∗2) ∈ A with {u∗2, v∗2} ∩ V (P4) ⊆ {u, v′}, then
we let a = a2, l = l2, r = r2 and p = p2. If a2 = l2 = r2 = p2 = nil and a4 = (u∗4, v∗4)
with {u∗4, v∗4} ∩ V (P2) ⊆ {v′, v}, then we let a = a4, l = l4, r = r4 and p = p4. Otherwise,
if a2 6= nil, a4 6= nil, a4 = a2, l4 = l2, r4 = r2 and p4 = p2, then we let a = a4, l = l4,
r = r4 and p = p4. Otherwise, if a2 = (u∗2, v∗2) ∈ A, a4 = (u∗4, v∗4) ∈ A, l4 = r4 and p1 = p2,
then we let a = (u∗, v∗), where u∗ ∈ {u∗2, u∗4} and v∗ ∈ {v∗2 , v∗4}, l = l2, r = r4 and p = p2.
Otherwise, if a2 = nil and a4 ∈ (A × A), then we let a = a4, l = l4, r = r4 and p = p4.
Otherwise, if a4 = nil and a2 ∈ (A × A), then we let a = a2, l = l2, r = r2 and p = p2.
Otherwise, if a2 = (u∗2, v∗2) ∈ A, a4 = (u∗4, v∗4) ∈ A, l2 = r2, l4 = r4 and p2 = p4, then we
let a = ((u′, v′), (u′′, v′′)) where v′ ∈ {v2, v4} and u′′ ∈ {u2, u4}, l = l2, r = r2 and p = p2.
Otherwise, if a4 = ((u4, v4), (u′4, v′4)) ∈ (A×A), a2 = (u2, v2) ∈ A, l2 = r2 and p2 = p4, then
we let a = ((u4, v4), (u2, v

′
4)), l = l4, r = r2 and p = p2. Therefore, after applying the second

merging phase, we get a partial solution S compatible with (P, (C, f in, fout, a, l, r, p)).

Now we have to show that cost~G(S) ≤ cost~G(WP). Let us first suppose that D is a closed
walk. We will deal with the case where D is an open walk later on. If a2 = l2 = r2 = p2 = nil
or a4 = l4 = r4 = p4 = nil, then this is immediate. If a2 = a4, l2 = l4, r2 = r4 and p2 = p4,

D. Marx, A. Salmasi, and A. Sidiropoulos 16:33

then we have a = a2, l = l2, r = r2 and p = p2, and thus this case is also immediate.
Suppose that a2 = (u∗2, v∗2) 6= nil, a4 = (u∗4, v∗4) 6= nil, l4 = r4 and p1 = p2, and a = (u∗, v∗),
where u∗ ∈ {u∗2, u∗4} and v∗ ∈ {v∗2 , v∗4}. We may assume w.l.o.g that a = (u∗2, v∗4). We have
that l = l2, r = r4 and p = p2. For i ∈ {2, 4} let Q∗i be the grip of Si, and let ~Wi ∈ Si
that contains Q∗i as a sub-walk. Let Y1 be the shortest-path in ~G from u∗2 to l2. Let Y2
be the shortest-path in ~G from l2 to l4. Let Y3 be the shortest-path in ~G from l4 to v∗4 .
Let R∗1 be the path in ~G from u∗2 to v∗4 obtained by concatenation of Y1, Y2 and Y3. Let
Y ′1 be the shortest-path in ~G from u∗4 to r4. Let Y ′2 be the shortest-path in ~G from r4
to l2. Let Y ′3 be the shortest-path in ~G from l2 to v∗2 . Let R∗2 be the path in ~G from
u∗4 to v∗2 obtained by concatenation of Y ′1 , Y ′2 and Y ′3 . Now by the construction, we have
that cost~G(S) = cost~G(S2) + cost~G(S4) + cost~G(R∗1) + cost~G(R∗2) − cost~G(Q∗2) − cost~G(Q∗4).
Note that by the construction, there exists a P -important walk from u∗2 to v∗4 (w.r.t. W)
and a P -important walk from u∗4 to v∗2 (w.r.t. W). By Proposition 63 these walks are
unique. Let R′1 be the P -important walk from u∗2 to v∗4 (w.r.t. W) and let R′2 be the
P -important walk from u∗4 to v∗2 (w.r.t. W). Also, there exists a P2-important walk from
u∗2 to v∗2 (w.r.t. W) and a P4-important walk from u∗4 to v∗4 (w.r.t. W), and thus by
Proposition 63 these walks are unique. Let Q′2 be the P2-important walk from u∗2 to
v∗2 (w.r.t. W) and let Q′4 be the P4-important walk from u∗4 to v∗4 (w.r.t. W). By the
definition of important walks, we have that cost~G(R∗1) ≤ cost~G(R′1), cost~G(R∗2) ≤ cost~G(R′2),
cost~G(Q∗2) ≤ cost~G(Q′2) and cost~G(Q∗4) ≤ cost~G(Q′4). Also by the construction, we have that
cost~G(R′1) + cost~G(R′2) = cost~G(Q′2) + cost~G(Q′4). Therefore, we have

cost~G(S) = cost~G(S2) + cost~G(S4) + cost~G(R∗1) + cost~G(R∗2)− cost~G(Q∗2)− cost~G(Q∗4)
≤ cost~G(S2) + cost~G(S4) + cost~G(R′1) + cost~G(R′2)− cost~G(Q∗2)− cost~G(Q∗4)
= (cost~G(S2)− cost~G(Q∗4)) + (cost~G(S4)− cost~G(Q∗2)) + cost~G(R′1) + cost~G(R′2)
≤ cost~G(WP1) + cost~G(WP2)
= cost~G(WP).

Now suppose that D is an open walk. If a2 = nil and a4 ∈ (A × A), or a4 = nil and
a2 ∈ (A×A), then this is immediate. If a2 = (u∗2, v∗2) ∈ A, a4 = (u∗4, v∗4) ∈ A, l2 = r2, l4 = r4
and p2 = p4, then we have a = ((u′, v′), (u′′, v′′)) where v′ ∈ {v∗2 , v∗4} and u′′ ∈ {u∗2, u∗4}. We
may assume w.l.o.g that v′ = v∗2 and u′′ = u∗4. Then we have l = l2, r = r2 and p = p2. Let R1
be the shortest-path in ~G from u′ to l2. Let R2 be the shortest-path in ~G from l1 to v′. Let R′
be the path from u′ to v′ obtained by the concatenation of R1 and R2. Let Y1 be the shortest
path in ~G from u′′ to l4. Let Y2 be the shortest path in ~G from l4 to v′′. Let Y ′ be the path
from u′′ to v′′ obtained by the concatenation of Y1 and Y2. Let Z1 be the shortest path in ~G

from u∗2 to l2. Let Z2 be the shortest path in ~G from l2 to l4. Let Z3 be the shortest path in ~G

from l4 to v∗4 . Let Z ′ be the path from u∗2 to v∗4 obtained by the concatenation of Z1, Z2 and
Z3. Let Q∗2 be the grip of S2 and let Q∗4 be the grip of S4. By the construction, we have that
cost~G(S) = cost~G(S2)+cost~G(S4)+cost~G(R′)+cost~G(Y ′)+cost~G(Z ′)−cost~G(Q∗2)−cost~G(Q∗4).
By the construction, there exists a P -important walk from u∗2 to v∗4 , a P -important walk
from u′ to v∗2 , and a P -important walk from u∗4 to v′′. Therefore by Proposition 63, these

APPROX/RANDOM’16

16:34 Constant-Factor Approximations for Asymmetric TSP on Nearly-Embeddable Graphs

important walks are unique. Let R′′, Y ′′ and Z ′′ be the important walks from u′ to v′, u′′ to
v′′, and u∗2 to v∗4 respectively. Therefore, we have that

cost~G(S) = cost~G(S2) + cost~G(S4) + cost~G(R′) + cost~G(Y ′) + cost~G(Z ′)
− cost~G(Q∗2)− cost~G(Q∗4)
≤ cost~G(S2) + cost~G(S4) + cost~G(R′′) + cost~G(Y ′′) + cost~G(Z ′′)
− cost~G(Q∗2)− cost~G(Q∗4)
≤ cost~G(WP1) + cost~G(WP2) = cost~G(WP).

If a4 = ((u4, v4), (u′4, v′4)) ∈ (A × A), a2 = (u2, v2) ∈ A, l2 = r2 and p2 = p4, then we
have a = ((u4, v4), (u2, v

′
4)), l = l4, r = r2 and p = p2. Let (Q∗4, Q∗∗4) be the grip of S4, and

let Q∗2 be the grip of S2. We may assume w.l.o.g that Q∗4 is a path from u4 to v4, and Q∗∗4 is
a path from u′4 to v′4. Let Y1 be the shortest path in ~G from u2 to l2. Let Y2 be the shortest
path in ~G from l2 to v′4. Let Y ′ be the path from u2 to v′4 obtained by the concatenation of
Y1 and Y2. Let Z1 be the shortest path in ~G from u′4 to r4. Let Z2 be the shortest path in
~G from r4 to l2. Let Z3 be the shortest path in ~G from l2 to v2. Let Z ′ be the path from u′4
to v2 obtained by the concatenation of Z1, Z2 and Z3. By the construction, we have that
cost~G(S) = cost~G(S2) + cost~G(S4) + cost~G(Y ′) + cost~G(Z ′) − cost~G(Q∗2) − cost~G(Q∗∗4). By
the construction, there exists a P -important walk from u′4 to v2, and a P -important walk
from u2 to v′4. Therefore by Proposition 63, these important walks are unique. Let Y ′′ and
Z ′′ be the important walks from u2 to v′4, and u′4 to v2 respectively. Therefore we have

cost~G(S) = cost~G(S2) + cost~G(S4) + cost~G(Y ′) + cost~G(Z ′)− cost~G(Q∗2)− cost~G(Q∗∗4)
≤ cost~G(S2) + cost~G(S4) + cost~G(Y ′′) + cost~G(Z ′′)− cost~G(Q∗2)− cost~G(Q∗∗4)
≤ cost~G(WP1) + cost~G(WP2) = cost~G(WP).

Now suppose that F contains more than one tree. Let A = {T1, . . . , Tm} be the set
of all trees in F . For every T ∈ A we define the level of T , L(T), as follows. Let D
be the root of T . We set L(T) = 0, if there exists a basic path P ′ that covers T and
avoids all T ′ ∈ F \ {T }. We call a minimal such path, a corresponding basic path for T
and we denote it by PT ; it is immediate that there is a unique such minimal path. Let
F0 = {T ∈ F : L(T) = 0}. Now for i ≥ 0, suppose that we have defined trees of level i
and Fi. Suppose that L(T) /∈ {0, . . . , i}. We set L(T) = i+ 1 if there exists a basic path
P ′ that covers T such that for all T ′ ∈

⋃i
j=0 Fj , P ′ either avoids or covers T ′, and for all

T ′′ ∈ (F \ {T }) \
⋃i
j=0 Fj , P ′ avoids T ′′. We also call a minimal such path corresponding

basic for T and we denote it by PT . Let Fi+1 = {T ∈ F : L(T) = i+ 1}.
We say that some T ∈ F is outer-most if there is no T ′ ∈ F with L(T ′) > L(T) and

PT ⊂ PT ′ .
Let us first suppose that there exists only one outer-most tree T ∈ F , such that PT ⊆ P .

We will deal with the more general case later. Also, suppose that T ∈ Fm for some m ≥ 0.
We will prove the assertion by induction on m. We also prove that for this case, we have
a = l = r = p = nil. For the base case, if m = 0, then by the construction, T is the only
tree with a corresponding basic path PT ⊆ P . For this case, we have already established
the assertion and we are done. Now suppose that we have proved the assertion for all
m′ < m. Let F ′ = F \ {T }. Let T1, . . . , Tt ∈ F ′ be all outer-most trees in F ′, such that for
j ∈ {1, . . . , t} we have PTj

⊆ P , and they intersect F in this order. By the construction, for
every j ∈ {1, . . . , t} we have L(Tj) < m. For every j ∈ {1, . . . , t} let PTj be a corresponding
basic path for Tj . By the induction hypothesis, for every j ∈ {1, . . . , t} there exists a partial

D. Marx, A. Salmasi, and A. Sidiropoulos 16:35

solution Sj for PTj . Now, we can apply the same argument when we had only one tree T ∈ F
for T . Note that for each j ∈ {1, . . . , t}, we have aj = lj = rj = pj = nil. The only difference
is that the intermediate basic paths here are not necessarily empty basic paths, and each Tj
appears as an intermediate basic path, with a partial solution Sj . Therefore, by following a
similar approach to the previous cases and merging appropriately we get a partial solution S,
as desired.

Now, suppose that there exist more than one outer-most trees T ∈ F , where PT ⊆ P . Let
B = {T1, . . . , Tt} be the set of all such trees, where they intersect consecutive subpaths of
P in this order. In this case, we prove the assertion by induction on t. For the base case
where t = 1, we have already proved the assertion. Now suppose that we have proved the
assertion for all t′ < t. Let B′ = {T1, . . . , Tt−1}. Let P ′ ⊆ P be the subpath of P such that
B′ is the set of all outer-most trees, with PTj

⊆ P ′ for all 1 ≤ j ≤ t− 1. By the induction
hypothesis, there exists a partial solution S ′ for P ′. Let P ′′ = P ⊆ P ′. By the construction,
P ′′ is a corresponding basic path for Tt, and thus by the induction hypothesis, there exists a
partial solution S′′ for P ′′. Therefore, by merging S ′ and S ′′ we get a partial solution S for
P , as desired. J

I Theorem 65. Let ~G be an n-vertex (0, 0, 1, p)-nearly embeddable graph (that is, planar
with a single vortex) and let ~H be the vortex of ~G. Then there exists an algorithm which
computes a walk ~W visiting all vertices in V (~H) of total length OPT~G(V (~H)) in time nO(p).

Proof. We have F ∈ P and it is immediate to check that F is basic. Since F is a cycle,
both the endpoitns of F are some vertex v◦. It follows by Lemma 64 that there exists some
φ ∈ IF such that the dynamic programming table contains a partial solution S at location
(F, φ). Let φ = (C, f in, fout, a, l, r, p). It follows by condition (T4) that for all x ∈ Bv◦

we have in-degreeS(x) = out-degreeS(x). Thus by repeatedly merging pairs of walks that
respectively terminate to and start from the same vertex, we obtain a collection S ′ of closed
walks with cost~G(S ′) = cost~G(S) that visit all vertices in V (~H). By Lemma 57 we can
assume that C is the trivial partition containing only one cluster, that is C = {{Bv◦}}. Since
C is trivial, it follows by (T5) that all vertices in V (~H) are in the same weakly-connected
component of

⋃
W∈SW . Thus all vertices in V (~H) are in the same strongly-connected

component of
⋃
W∈S′W . Since all walks in S ′ are closed, by repeatedly shortcutting

pairs of intersecting walks, we obtain a walk ~W with that visits all vertices in V (~H) with
cost~G(~W) = cost~G(S ′) = cost~G(S) ≤ cost~G(~WOPT) = OPT~G.

The running time is polynomial in the size of the dynamic programming table, which is
at most |P| ·maxP∈P |IP | = O(n2) · pO(p) · nO(p) ·O(n2) = nO(p). J

APPROX/RANDOM’16

16:36 Constant-Factor Approximations for Asymmetric TSP on Nearly-Embeddable Graphs

13 The dynamic program for traversing a vortex in a bounded genus
graph

For the remainder of this section let ~G be a n-vertex (0, g, 1, p)-nearly embeddable graph.
Let ~H be the vortex in ~G, attached to some face ~F . Let ~G′ = ~G \ (V (~H) \ (~F)) and fix
some embedding ψ of ~G′ on a surface S of genus g. Let F be the symmetrization of ~F .
Let ~WOPT be a closed walk in ~G that visits all vertices in ~H with minimum cost~G(~W).
Fix a path-decomposition {Bv}v∈V (F) of ~H of width p. We present a similar algorithm
as in Section 12 for computing a walk traversing all vertices in V (~H) based on dynamic
programming. By Lemma 54 we may assume w.l.o.g. that ~G is facially normalized and cross
normalized.

13.1 The dynamic program
Let Q be the set of all (possible closed) subpaths of F . For any integer m, let

Pm = {A ⊆ Q : |A| ≤ m, for every Q,Q′ ∈ A we have V (Q) ∩ V (Q′) = ∅}

and let

P∞ = {A ⊆ Q : For every Q,Q′ ∈ A we have V (Q) ∩ V (Q′) = ∅}.

For every P = {Q1, . . . , Qm} ∈ P∞, let E(P) =
⋃m
i=1E(Qi) and let V (P) =

⋃m
i=1 V (Qi).

For each i ∈ {1, . . . ,m}, let ui and vi be the endpoints of Qi. Similar to the planar case, let
~HP = ~H

[⋃
x∈V (P)Bx

]
. Let B =

⋃m
i=1(Bui

∪Bvi
). Let CP be the set of all possible partitions

of B. Let Din
P = {0, . . . , n}B, Dout

P = {0, . . . , n}B, that is, every element of Din
P ∪ Dout

P is a
function f : B → {0, . . . , n}.

13.1.1 The dynamic programming table.
Let P = P324000g4 . With these definitions, the dynamic programming table is indexed the
exact same way as in the planar case. Also, a partial solution is a collection of walks in ~G.

We say that a partial solution S is compatible with (P, φ) if the same conditions (T1)-(T5)
as in the planar case are satisfied. The only difference is that instead of Bu ∪Bv, we have B.

13.1.1.1 Merging partial solutions

We follow a similar approach as in the planar case. Let P = {Q1, . . . , Qm}, P1 =
{Q′1, . . . , Q′m′}, P2 = {Q′′1 , . . . , Q′′m′′} ∈ P such that E(P1) 6= ∅, E(P2) 6= ∅, E(P1) ∩
E(P2) = ∅, and E(P) = E(P1) ∪ E(P2). Let φ = (C, f in, fout, a, l, r, p) ∈ IP , φ1 =
(C1, f

in
1 , f

out
1 , a1, l1, r1, p1) ∈ IP1 , φ2 = (C2, f

in
2 , f

out
2 , a2, l2, r2, p2) ∈ IP2 .

Let S1 and S2 be partial solutions compatible with (P1, φ1) and (P2, φ2) respectively.
Similar to the planar case, we compute a partial solution S compatible with (P, φ) as follows.

Merging phase 1: Joining the walks. For every w ∈ V (P1) ∩ V (P2), we check that for all
x ∈ Bw we have f in

1 (x) = fout
2 (x) and f in

2 (x) = fout
1 (x). If not then the merging procedure

returns nil. Otherwise, for every w ∈ V (P1) ∩ V (P2) and every x ∈ Bw, we follow the
exact same approach as in the planar case.

Merging phase 2: Updating the grip. This phase is identical to the planar case.
Merging phase 3: Checking connectivity. Similar to the planar case, we check that condi-

tion (T5) holds for S and we return nil if it does not.

D. Marx, A. Salmasi, and A. Sidiropoulos 16:37

13.1.2 Initializing the dynamic programming table.
For all P ∈ P1 with |E(P)| ≤ 1, we follow the same approach as in the planar case.

13.1.3 Updating the dynamic programming table.
For all P ∈ P with |E(P)| > 1, and for all P1, P2 ∈ P with E(P1) 6= ∅, E(P2) 6= ∅,
E(P1) ∩ E(P2) = ∅ and E(P1) ∪ E(P2) = E(P), and for all φ1 ∈ IP1 and φ2 ∈ IP2 we
proceed as follows. Suppose that for all P ′ ∈ P with |E(P ′)| < |E(P)| and all φ′ ∈ IP ′ , we
have computed the partial solutions in the dynamic programming table at (P ′, φ′). Now
similar to the planar case, if there exists partial solutions S1 and S2 at (P1, φ1) and (P2, φ2)
respectively, we call the merging process to (possibly) get a partial solution S at (P, φ) for
some φ ∈ IP . Now similar to the planar case, if there is no partial solution at (P, φ) then we
store S at (P, φ). Otherwise if there there exists a partial solution S ′ stored at (P, φ) and
cost~G(S) < cost~G(S ′) then we replace S ′ with S.

13.2 Analysis
LetW be the collection of walks given by Lemma 56. Let F be the forest given by Lemma 57.
Let T be a subtree of F . We say that T is trivial if ψ(F) ∪

⋃
D∈V (T) ψ(D) is contractible.

Otherwise, we say that T is non-trivial.
Let Q ∈ Q, and let T be a subtree of some tree in F . We define the terms Q covers T

and Q avoids T the exact same way as in the planar case. Let P = {Q1, . . . , Qm} ∈ P∞.
We say that P covers T if for all D ∈ V (T) we have V (D) ∩ V (F) ⊆ V (Q1 ∪ . . . ∪Qm). We
say that P avoids T if for all Qi ∈ P we have that Qi avoids T .

I Definition 66 (Basic family of paths). Let P = {Q1, . . . , Qm} ∈ P∞. For each i ∈
{1, . . . ,m}, let ui and vi be the endpoints of Qi. We say that P is basic (w.r.t. W) if either
V (P) \ (

⋃m
i=1{ui, vi}) does not intersect any of the walks in W (in which case we call it

empty basic) or there exists T ∈ F and D ∈ V (T), with children D1, . . . , Dk, intersecting
D in this order along a traversal of D, such that the exact same conditions (1) & (2) as in
Definition 60 hold, and |P | is minimal subject to the following:
3. If P covers TD and avoids T \ TD, let T [P] = TD, and otherwise let T [P] =

⋃j
i=1 TDi

.
For every two disjoint subtrees T1 and T2 of T [P], the following holds. If there exists
Qi ∈ P such that Qi covers T1 ∪T2 and avoids T \ (T1 ∪T2), then there exist edge-disjoint
subpaths Q′i, Q′′i of Qi such that Qi = Q′i ∪Q′′i , Q′i covers T1 and avoids T \ T1, and Q′′i
covers T2 and avoids T \ T2 (see Figure 3 for an example).

Moreover if for each non-trivial tree T ′ in F with T ′ 6= T , we have that P avoids T ′, then
we say that P is elementary. Furthermore, if for each non-trivial tree T ′ in F , we have that
P avoids T ′, then we say that P is trivial.

I Definition 67 (Twins). Let P, P ′ ∈ P∞. We say that P and P ′ are twins if for each subtree
T of F , P covers T if and only if P ′ covers T , and P avoids T if and only if P ′ avoids T .

I Definition 68 (Succinctness). Let P = {Q1, . . . , Qm} ∈ P∞ be basic. For each i ∈
{1, . . . ,m}, let ui and vi be the endpoints of Qi, let Q′i = Qi \ {ui} and let Q′′i = Qi \ {vi}.
We say that P is succinct if for all i ∈ {1, . . . ,m}, P and {Q1, . . . , Qi−1, Q

′
i, Qi+1, . . . , Qm}

are not twins, and moreover P and {Q1, . . . , Qi−1, Q
′′
i , Qi+1, . . . , Qm} are not twins.

I Lemma 69. Let P ∈ P∞ be non-empty basic. Then there exists some succinct and basic
P ′ ∈ P∞ such that P and P ′ are twins with E(P ′) ⊆ E(P).

Proof. It is immediate by Definition 68. J

APPROX/RANDOM’16

16:38 Constant-Factor Approximations for Asymmetric TSP on Nearly-Embeddable Graphs

Figure 3 Example of a non-basic family of paths. P = {Qi} is not basic. Let T1 = D1 ∪D2 and
T2 = D3. Then Qi covers T1 ∪ T2 and avoids T \ (T1 ∪ T2), but there is no edge-disjoint subpaths
Q′i, Q

′′
i of Qi satisfying the third condition.

I Lemma 70. Let P ∈ P∞ be non-empty basic elementary and succinct. Let T , D, j,
D1, . . . , Dj be as in Definition 66. Then there exist P1, P2 ∈ P∞ satisfying the following
conditions:
1. P1 and P2 are non-empty basic elementary and succinct.
2. P1 covers

⋃j−1
i=1 TDi and avoids T \ (

⋃j−1
i=1 TDi).

3. P2 covers TDj
and avoids T \ TDj

.
4. E(P1) ⊆ E(P), E(P2) ⊆ E(P), and E(P1) ∩ E(P2) = ∅.

Proof. We begin by defining auxiliary Z1, Z2 ∈ P∞. The desired P1 and P2 will be succinct
twins of Z1 and Z2. First we define Z1. Initially, we set Z1 = P and we inductively modify
Z1 until it covers C1 =

⋃j−1
i=1 TDi and avoids A1 = T \ (

⋃j−1
i=1 TDi) as follows: If Z1 contains

a path Q that does not intersect C1 then we remove Q from Z1. If Z1 contains a path Q that
intersects both C1 and A1 then we proceed as follows: let R be the collection of paths obtained
from Q by deleting all vertices in A1∩Q; let R′ be the collection obtained from R by removing
all paths that do not intersect C1; let R′′ be the collection obtained from R′ by replacing each
Q′ ∈ R′ be the minimal subpath Q′′ ⊆ Q′ with V (Q′′) ∩ C1 = V (Q′) ∩ C1. We repeat the
above process until the resulting Z1 covers C1 =

⋃j−1
i=1 TDi

and avoids A1 = T \ (
⋃j−1
i=1 TDi

).
In a similar fashion we define Z2 that covers C2 = TDj and avoids A2 = T \ TDj . It is
immediate by construction that E(Z1) ⊂ E(P), E(Z2) ⊂ E(P) and E(Z1) ∩ E(Z2) = ∅.

Next we argue that Z1 is basic. It is immediate that conditions (1) & (2) of Definition 66 are
satisfied. It remains to establish condition (3) of Definition 66. Let Q ∈ P1. By construction
there exists Q′ ∈ P such that Q ⊆ Q′. Let T [Z1] and T [P] be as in Definition 66. Let T1
and T2 be disjoint subtrees of T [Z1] such that Q covers T1 ∪ T2 and avoids T \ (T1 ∪ T2). Let
TQ′ be the minimal subtree of T [P] that contains all the nodes of T [P] that are covered by
Q′. Let T ′ = TQ′ ∪ T1 ∪ T2. By definition we have that T ′ is a subtree of T [P]. Therefore
there exist disjoint subtrees T ′1 and T ′2 of T ′ such that T1 ⊆ T ′1 , T2 ⊆ T ′2 , and T ′ = T ′1 ∪ T ′2 .
Since P is basic, it follows by condition (3) of Definition 66 that there exist edge-disjoint
subpaths Q′1, Q′2 of Q′ such that Q′1 covers T ′1 and avoids T \T ′1 and Q′2 covers T ′2 and avoids
T \ T ′2 . Let Q1 = Q ∩Q′1 and Q2 = Q ∩Q′2. It now follows that Q1 covers T1 and avoids
T \ T1 and Q2 covers T2 and avoids T \ T2, establishing Condition (3) of Definition 66.

It remains to show that |P1| is minimal subject to condition (3) of Definition 66. Suppose
not. Then there are Q,Q′ ∈ P1 that are consecutive in F such that we can replace Q and Q′
in P1 by some subpath Q′′ that contains Q and Q′. If Q and Q′ are subpaths of the same
path in P then this is a contradiction because by construction there must exist a vertex in

D. Marx, A. Salmasi, and A. Sidiropoulos 16:39

V (Q′′) \ (V (Q) ∪ V (Q′)) that P1 must avoid. Therefore there must exist distinct R,R′ ∈ P
such that Q ⊆ R and Q′ ⊆ R′. However this means that we can replace R and R′ in P

by some subpath containing both R and R′, contradicting the fact that P is basic. This
establishes that |P1| is minimal subject to condition (3) of Definition 66. We have thus
obtained that Z1 is basic. It is also immediate by construction that since P is elementary,
Z1 is also elementary. By the exact same argument it follows that Z2 is also basic and
elementary.

For any i ∈ {1, 2} let Pi be a succinct twin of Zi obtained by Lemma 69. Since Zi is
basic and elementary, it follows that Pi is also basic and elementary, and thus condition (1)
is satisfied. Since Pi is a twin of Zi, it follows that conditions (2) & (3) are satisfied. Since
E(Zi) ⊂ E(P) and E(Pi) ⊆ E(Zi), we get E(Pi) ⊂ E(P). Finally, since E(Z1) ∩E(Z2) = ∅,
we have E(P1)∩E(P2) = ∅, and thus condition (4) is satisfied, which concludes the proof. J

I Definition 71 (P -facial restriction). Let P = {Q1, . . . , Qm} ∈ P∞ be basic. We define the
P -facial restriction of W the exact same way as in Definition 61. We remark that P is now a
family of paths, while in the planar case P is a single path; the definition remains the same
by replacing the notion of basic path given in Definition 60 by the notion of basic family of
paths given in Definition 66.

I Lemma 72 (Malnič and Mohar [21]). Let S be an either orientable or non-orientable surface
of Euler genus g, and let x ∈ S. Let X be a collection of noncontractible curves. Suppose
that at least one of the following holds:
(i) The curves in X are disjoint and (freely) nonhomotopic.
(ii) There exist x ∈ S such that for every C,C ′ ∈ X , we have C ∩C ′ = x, and the curves in
X are nonhomotopic (in π1(S, x)).

Then,

|X | ≤

0 if S is the 2-sphere
1 if S is the torus or the projective plane
3(g − 1) otherwise

We recall the following result on the genus of the complete bipartite graph [14].

I Lemma 73. For any n,m ≥ 1, the Euler genus of Km,n is d(m− 2)(n− 2)/4e.

I Lemma 74. Let P ∈ P∞ be elementary and succinct. Then |P | ≤ 18000g3.

Proof. Let T [P] be as in Definition 66. If T [P] is trivial, we can find Q ∈ Q such that Q
covers T [P] and avoids T \ T [P], and thus |P | = 1 and we are done. Now suppose that
T [P] is non-trivial. Let m = |P | and suppose that P = {Q1, . . . , Qm} such that Q1, . . . , Qm
are subpaths of F in this order along a traversal of F . Let Z1, . . . , Zm′ be a sequence of
disjoint subsets of P such that P =

⋃m′
i=1 Zi, and each Zi is maximal subject to the following

condition: Let Z ′i be the minimal subpath of F that contains all the paths in Zi and does
not intersect any other paths in P ; then Z ′i avoids all non-trivial tress in F \ T . For every
j ∈ {1, . . . ,m′−1}, let Pj be the subpath between Z ′j and Z ′j+1 and let P ′ = {P1, . . . , Pm−1}.
Note that since P is basic, for every two consecutive Z ′j and Z ′j+1, there exists a non-trivial
tree Tj such that Tj intersects Pj .

We construct a set R of non-trivial trees as follows. We initially set R = {T1}. In each
step i > 1, if there exists T ′ ∈ R such that T ′ intersects Pi, we continue to the next step.
Otherwise, we let T ′i be some non-trivial tree that intersects Pi and we add T ′i to R and we
continue to the next step. We argue that |R| ≤ 20g. Suppose not. For each T ′ ∈ R where

APPROX/RANDOM’16

16:40 Constant-Factor Approximations for Asymmetric TSP on Nearly-Embeddable Graphs

T ′ intersects some P ′ ∈ P ′ at some x′ ∈ V (P ′), we construct a path γT ′ in the surface,
with both endpoints on ψ(F), and such that after contracting ψ(F) into single point, the
loop resulting from γT ′ is non-contractible, as follows. First suppose that ψ(T ′) contains
some non-contractible loop γ. Then let ζ be a path in ψ(T ′) between x′ and some point
in γ. We set γT ′ to be the path starting at x′, traversing ζ, followed by γ, followed by the
reversal of ζ, and terminating at x′. Otherwise, suppose that ψ(cT ′) does not contain any
non-contractible loops. Since T ′ is non-trivial, it follows that ψ(T ′) contains some path ξ
with both endpoints in ψ(F) such that after contracting ψ(F) into a single point, the loop
obtained from ξ is non-contractible. Let ξ′ be some path in ψ(T ′) between x′ and some
point in ξ. By Thomassen’s 3-path condition [22] it follows that ξ ∪ ξ′ contains some path
ξ′′ with both endpoints in ψ(F), such that one of these endpoints is x′, and such that after
contracting ψ(F) into a single point, the loop resulting from ξ′′ is non-contractible. We set
γT ′ to be ξ′′.

Let L be the set of all loops obtained from the paths γT ′ as follows. Pick a point x in
the interior of the disk bounded by ψ(F). Connect x to both endpoints of each γT ′ by paths
such that all chosen paths are interior disjoint. During this process each path γT ′ gives
rise to a non-contractible loop in L such that any two loops in L intersect only at x. Let
L′, L′′, L′′ ∈ L be distinct. We show that L′, L′′ and L′′′ can not be all homotopic. Suppose
not. Since they are interior-disjoint, by removing them from the surface we obtain three
connected components. Since ψ(T) does not intersect any of L′, L′′ and L′′′, it has to be
inside one of the three connected components completely. We may assume w.l.o.g that T is
inside the component which is bounded by L′ and L′′. Therefore, there is no path from T to
L′′′ without crossing L′ ∪ L′′, which is a contradiction.

Let L′ ⊆ L be a maximal subset such that for all L′, L′′ ∈ L′ we have that L′ and
L′′ are non-homotopic. Since |L| > 20g and for every three loops in L′ we know that at
most two of them are homotopic, we have that |L′| > 10g, which contradicts Lemma 72.
Therefore, we have that |R| ≤ 20g and thus there exists T0 ∈ R such that T0 intersects at
least 10g = 200g2/20g elements of P ′. Let x1 be a point inside the face. Let x2 be a point in
the root of T0 and let x3 be a point in ψ(D). There exists P ′1, . . . , P ′10g ∈ P ′ such that for
every i ∈ {1, . . . , 10g}, T0 intersects P ′i . For every i ∈ {1, . . . , 10g}, let yi be a point on P ′i .
By the construction, for every yi we can find non-crossing paths to x1, x2 and x3. Therefore,
we get an embedding of K3,10g in a surface of genus g which contradicts Lemma 73. This
establishes that m′ ≤ 200g2.

Let i ∈ {1, . . . ,m′}. We next we bound |Zi|. Suppose Zi = {Qa, Qa+1, . . . , Qa+`}. Let
x be an arbitrary point in ψ(D). For each j ∈ {0, . . . , b(`− 1)/2c} pick an arbitrary point
xj ∈ ψ(Qa+2j)∩ ψ(T); we define a path in the surface between xj and x as follows: we start
from the vertex D′ of T containing xj ; if D′ is a closed walk then we traverse D′ clockwise
until we reach the point that connects D′ to its parent; otherwise we traverse the unique path
between xj and the point that connects D′ to its parent. We continue in this fashion until we
reach D, and we finally traverse D clockwise until we reach x. This completes the definition
of the path γj . It is immediate that for all j 6= j′, the paths γj and γj′ are non-crossing.

Let S′ be the surface obtained by contracting ψ(F) into a single point y, and identifying
x with y (note that S′ has Euler genus at most g + 2). For each j ∈ {0, . . . , b(` − 1)/2c}
let γ′j be the loop in S′ obtained from γj after the above contraction and identification.
We argue that there can be at most 4 loops γ′j that are pairwise homotopic. Suppose for
the sake of contradiction that there are at least 5 such loops. It follows that there must
exist t ∈ {0, . . . , b(` − 1)/2c} such that γ′t, γ′t+1, and γ′t+2 are all pairwise homotopic. We
are going to obtain a contradiction by arguing that the paths Qa+2t and Qa+2t+1 violate

D. Marx, A. Salmasi, and A. Sidiropoulos 16:41

the fact that P is basic. To that end, let Q′ be the minimal subpath of F that contains
both Qa+2t and Qa+2t+1 and does not intersect any other paths in P . We will show that
(P \ {Qa+2t, Qa+2t+1}) ∪ {Q′} is basic, thus violating the fact that |P | is minimal subject to
condition (3) of definition 66. Let T1, T2 be disjoint subtrees of T [P] such that Q′ covers
T1 ∪ T2 and avoids T \ (T1 ∪ T2). We need to show that there exist edge-disjoint subpaths
Q′1 and Q′2 of Q′ such that Q′ = Q′1 ∪Q′2, Q′1 covers T1 and avoids T \ T1, and Q′2 covers T2
and avoids T \ T2. Let λ be the subpath of ψ(F) in S between xt and xt+1 that contains
xt+1. Since γ′t, γ′t+1, and γ′t+2 are homotopic, it follows that γt ∪ λ ∪ γt+2 bounds a disk
Ψ in S. Each xs is contained in the image of a unique vertex D′s of T [P]. Let B be the
path in T [P] between D′t and D′t+2. For each r ∈ {1, 2}, Tr intersects B into some possibly
empty subpath Br. It follows that there exist disjoint disks Ψ1,Ψ2 ⊂ Ψ such that for each
r ∈ {1, 2}, ψ(Tr) ∩Ψ ⊂ Ψr. Therefore there exist edge-disjoint subpaths Q′1 and Q′2 of Q′
with Q′ = Q′1 ∪Q′2 such that ψ(Q′) ∩Ψ1 ⊆ ψ(Q′1) and ψ(Q′) ∩Ψ2 ⊆ ψ(Q′2). It follows that
Q′1 covers T1 and avoids T \ T1, and Q′2 covers T2 and avoids T \ T2. This contradicts the
fact that P is basic, and concludes the proof that there are at most four loop γ′t that are
pairwise homotopic.

Pick I ⊆ {0, . . . , b(` − 1)/2c}, with |I| ≥ b(` − 1)/10c such that for all t 6= t′ ∈ I,
we have that γ′t and γ′t′ are non-homotopic. Since the paths γt are non-crossing, we may
assume w.l.o.g. that the paths γ′t are interior disjoint after an infinitesimal perturbation.
By Lemma 72 on S′ it follows that |I| ≤ 3(g + 1). Since |I| ≥ `/15, we get ` ≤ 45(g + 1).
Therefore |Zi| ≤ 45(g + 1).

We conclude thatm ≤
∑m′

i=1 |Zi| ≤ m′ ·maxi∈{1,...,m′} |Zi| ≤ 9000g2(g+1) ≤ 18000g3. J

I Lemma 75. Let P1 = {Q1, . . . , Qm} ∈ P be succinct. Let P2 = {Q′1, . . . , Q′l} ∈ P such
that P1 and P2 are twins, V (P1) ⊆ V (P2) and E(P1) ⊆ E(P2). For every i ∈ {1, . . . ,m},
let ui and vi be the endpoints of Qi. Let B1 =

⋃m
i=1(Bui

∪ Bvi
). Let WP1 be the P1-facial

restriction of W. Let Γ1 =
⋃
~W∈WP1

~W . Let C1 be the partition of B1 that corresponds to
the weakly-connected components of Γ1. For any x ∈ B1 let f in

1 (x) = in-degreeWP1
(x) and

fout
1 (x) = out-degreeWP1

(x). We similarly define C2, f
in
2 , f

out
2 and WP2 for P2. Suppose that

there exists some a1 ∈ A∪(A×A)∪nil and l1, r1, p1 ∈ (V (~G)∪nil) such that the dynamic pro-
gramming table contains some partial solution S1 at location (P1, (C1, f

in
1 , f

out
1 , a1, l1, r1, p1)),

with cost~G(S1) ≤ cost~G(WP1). Then there exists some a2 ∈ A ∪ (A × A) ∪ nil and
l2, r2, p2 ∈ (V (~G) ∪ nil) such that the dynamic programming table contains some partial
solution S2 at location (P2, (C2, f

in
2 , f

out
2 , a2, l2, r2, p2)), with cost~G(S2) ≤ cost~G(WP2).

Proof. Let E1 = E(P2) \ E(P1). For every e ∈ E1, let Qe ∈ Q be the path containing
a single edge e, and let Pe = {Qe}. Note that Pe is an empty basic family of paths and

APPROX/RANDOM’16

16:42 Constant-Factor Approximations for Asymmetric TSP on Nearly-Embeddable Graphs

|E(Pe)| = 1. Therefore for every e ∈ E1, the initialization step of the dynamic programming,
finds a partial solution Se for Pe. By merging S1 with all these partial solutions sequentially
in an arbitrary order, we get a partial solution S2 for P2, as desired. J

I Lemma 76. Let P = {Q1 . . . , Qm} ∈ P be basic and trivial (w.r.t. W). For every
i ∈ {1, . . . ,m}, let ui and vi be the endpoints of Qi. Let B =

⋃m
i=1(Bui

∪Bvi
). Let WP be the

P -facial restriction of W. Let Γ =
⋃
~W∈WP

~W . Let C be the partition of B that corresponds
to the weakly-connected components of Γ. For any x ∈ B let f in(x) = in-degreeWP

(x) and
fout(x) = out-degreeWP

(x). Then there exists some a ∈ A ∪ (A × A) ∪ nil and l, r, p ∈
(V (~G) ∪ nil) such that the dynamic programming table contains some partial solution S at
location (P, (C, f in, fout, a, l, r, p)), with cost~G(S) ≤ cost~G(WP).

Proof. Since P is trivial, we have that P ∈ P1, and thus the exact same argument as in
Lemma 64 applies here. J

I Lemma 77. Let P = {Q1 . . . , Qm} ∈ P be succinct and elementary (w.r.t. W). For every
i ∈ {1, . . . ,m}, let ui and vi be the endpoints of Qi. Let B =

⋃m
i=1(Bui

∪Bvi
). Let WP be the

P -facial restriction of W. Let Γ =
⋃
~W∈WP

~W . Let C be the partition of B that corresponds
to the weakly-connected components of Γ. For any x ∈ B let f in(x) = in-degreeWP

(x) and
fout(x) = out-degreeWP

(x). Then there exists some a ∈ A ∪ (A × A) ∪ nil and l, r, p ∈
(V (~G) ∪ nil) such that the dynamic programming table contains some partial solution S at
location (P, (C, f in, fout, a, l, r, p)), with cost~G(S) ≤ cost~G(WP).

Proof. Let T , D, k, D1, . . . , Dk and j be as in Definition 66. We prove the assertion by
induction on T . For the base case, where D is a leaf of T , the same argument as in Lemma 64
applies here. Suppose that D is non-leaf. In this case, we prove the assertion by another
induction on j. For the base case, where j = 1, the same argument as in Lemma 64 applies
here. Now suppose that we have proved the assertion for all j′ < j. Let P1 ∈ P∞ such that
V (P1) ⊆ V (P), E(P1) ⊆ E(P), P1 covers

⋃j−1
i=1 TDi

and avoids T \ (
⋃j−1
i=1 TDi

). Let P2 ∈ P∞
such that E(P2) = E(P) \E(P1). By the construction, P1 and P2 are elementary. Therefore,
by Lemma 69, there exists elementary and succinct P ′1 ∈ P∞ and P ′2 ∈ P∞ for P1 and P2
respectively. Moreover, by Lemma 70, we have that E(P ′1) ⊆ E(P), E(P ′2) ⊆ E(P) and
E(P ′1) ∩ E(P ′2) = ∅ . By Lemma 74 we have that P, P ′1, P ′2 ∈ P18000g3 . We next define some
P ′′1 ∈ P∞. Let Γ be the graph obtained as the union of all paths in P , that is Γ =

⋃
Q∈P Q.

Similarly, let Γ′ =
⋃
Q∈P ′2

Q, let Γ′′ = Γ \E(Γ′), and let Γ′′′ be the graph obtained from Γ′′
by deleting all isolated vertices. We define P ′′1 to be the set of connected components in Γ′′′.
Note that Γ′′′ has at most 36000g3 connected components, and each such component is a
path. Thus P ′′1 ∈ P36000g3 , and E(P ′1) ⊆ E(P ′′1). By the induction hypothesis, there exists a
partial solution S ′1 for P ′1, and thus by Lemma 75, there exists a partial solution S ′′1 for P ′′1 .
Also, by the induction hypothesis, there exists a partial solution S ′2 for P ′2. By merging S ′′1
and S ′2, we get a partial solution S for P , as desired. J

We define the following three types of non-trivial trees in F :
1. We say that a non-trivial tree T is of the first type, if there exists a non-leaf D ∈ V (T),

such that D is a closed walk, with V (D) ∩ V (F) = ∅, such that ψ(D) is non-contractible.
2. We say that a non-trivial tree T is of the second type, if it is not of the first type and

there exists a leaf D ∈ V (T) such that ψ(D) ∪ ψ(F) is non-contractible.
3. We say that a non-trivial tree T is of the third type, if it is not of the first type nor of the

second type.

We say that a non-trivial tree T is good, if at least one of the following conditions holds:

D. Marx, A. Salmasi, and A. Sidiropoulos 16:43

Figure 4 Example of good non-trivial trees T0, T1, and T2 that are pairwise friends; note that T0

is of the second type while T1 and T2 are of the third type.

1. T is of the second type, and for every D1, D2 ∈ V (T) where ψ(D1) ∪ ψ(F) and ψ(D1) ∪
ψ(F) are non-contractible, we have that the loops obtained from ψ(D1) and ψ(D1) by
contracting ψ(F) into a single poit x are homotopic in π1(S, x). Let D ∈ V (T) such that
ψ(D)∪ ψ(F) is non-contractible. We let β(T) to be the homotopy class of the loop ψ(D)
in the surface obtained after contracting ψ(F) into a single point.

2. T is of the third type and the following holds. Let X = ψ(F) ∪
⋃
D∈V (T) ψ(D) and

let X ′ be the image of X after contracting ψ(F) into a single point x. Then and all
non-contractible loops in X ′ are homotopic in π1(S, x). We let β(T) be the homotopy
class in π1(S, x) of all non-contractible loops in X ′; note that we may always take a
non-contractible loop in X ′ that contains the basepoint x since X is connected.

Otherwise, we say that T is a bad tree.
Let T0 and T1 be non-trivial good trees in F . We say that T0 is a friend of T1 if

β(T0) = β(T1) (see Figure 4 for an example).

I Definition 78 (Friendly). Let P ∈ P∞. We say that P is friendly if the following holds.
1. P avoids all non-trivial bad trees.
2. For any two non-trivial good trees T0 and T1 in F that P covers, we have that β(T0) =

β(T1).
3. If P covers a non-trivial good tree T0, then P covers all non-trivial good trees T1 with

β(T0) = β(T1).

I Lemma 79. There exists at most 12g bad trees in F .

Proof. We partition all bad trees in F into three sets:
1. F1 = {T ∈ F : T is a bad tree of the first type}.
2. F2 = {T ∈ F : T is a bad tree of the second type}.
3. F3 = {T ∈ F : T is a bad tree of the third type}.

We first bound |F1|. Let T ∈ F1. We let β(T) to be the homotopy class of some non-leaf
D ∈ V (T), such that D is a closed walk, with V (D)∩V (F) = ∅, and ψ(D) is non-contractible.
Note that by the definition of trees of the first type, such a non-leaf D ∈ V (T) exists. Let
T1, T2, T3 ∈ F1 be distinct. We show that β(T1) = β(T2) = β(T3) cannot happen. Suppose
not, and we have that β(T1) = β(T2) = β(T3). For any i ∈ {1, 2, 3}, let Di ∈ V (Ti) such
that β(Ti) is the homotopy class of Di. By removing ψ(D1), ψ(D2) and ψ(D3) from the
surface we obtain three connected components. We may assume w.l.o.g that ψ(D2) is inside
an annulus bounded by ψ(D1) and ψ(D3). Therefore, there is no path in the surface from

APPROX/RANDOM’16

16:44 Constant-Factor Approximations for Asymmetric TSP on Nearly-Embeddable Graphs

ψ(D2) to ψ(F), that does not intersect ψ(D1 ∪D3), which is a contradiction. Therefore by
Lemma 72 we have that |F1| ≤ 6g.

Next we bound |F2| and |F3|. Let T ∈ F2. By the construction, there exist D1, D2 ∈ V (T)
where ψ(D1) ∪ ψ(F) and ψ(D2) ∪ ψ(F) are non-contractible, and the loops obtained from
ψ(D1) and ψ(D2) after contracting ψ(F) into a single point y are non-homotopic in π1(S, y).
Let x be a point in the interior of the disk bounded by ψ(F). For every T ∈ F2, similarly to
Lemma 74, we construct two non-homotopic loops γT ′ and γ′T ′ in the surface, corresponding
to D1 and D2 respectively, such that they only intersect at x. Let L be the set of all these
loops. Let L′, L′′, L′′′ ∈ L be distinct. Similarly to Lemma 74, we show that L′, L′′ and
L′′′ can not be all homotopic. Suppose not. We may assume w.l.o.g. that L′′ is inside the
disk bounded by L′ and L′′′. Let T ′′ ∈ F2 be the tree corresponding to L′′. Now note
that L′′ is inside the disk bounded by L′ and L′′′, and thus all non-contractible loops in
ψ(F) ∪

⋃
D∈V (T) ψ(D) are in the same homotopy class as L′′. This contradicts the fact that

ψ(D1) ∪ ψ(F) and ψ(D2) ∪ ψ(F) are non-homotopic. Therefore, by Lemma 72 we have that
|F2| ≤ 3g. Using a similar argument, we can show that |F3| ≤ 3g.

Therefore, we have that |F1|+ |F2|+ |F3| ≤ 12g, completing the proof. J

I Lemma 80. Let P = {Q1 . . . , Qm} ∈ P∞ be friendly, succinct and basic (w.r.t. W). For
every i ∈ {1, . . . ,m}, let ui and vi be the endpoints of Qi. Let B =

⋃m
i=1(Bui

∪ Bvi
). Let

WP be the P -facial restriction of W. Let Γ =
⋃
~W∈WP

~W . Let C be the partition of B
that corresponds to the weakly-connected components of Γ. For any x ∈ B let f in(x) =
in-degreeWP

(x) and fout(x) = out-degreeWP
(x). Then there exists some a ∈ A∪ (A×A)∪nil

and l, r, p ∈ (V (~G) ∪ nil) such that the dynamic programming table contains some partial
solution S at location (P, (C, f in, fout, a, l, r, p)), with cost~G(S) ≤ cost~G(WP).

Proof. If P does not cover any non-trivial trees in F , then P is trivial and thus we have that
P ∈ P1 and by Lemma 76 there exists a partial solution S for P . Otherwise suppose that P
covers a non-trivial good tree T in F . By the definition of friendly, for every non-trivial good
tree T ′ in F with β(T) = β(T ′), we have that P covers T ′. Let A = {T ′ ∈ F : β(T) = β(T ′)}.
Suppose that A = {T0, . . . , Tm} such that they intersect F in this order along a traversal
of F . For any i ∈ {0, . . . ,m}, let Pi ∈ P∞ be elementary and succinct such that Pi covers
Ti and avoids any other non-trivial trees in F . By Lemma 74 we have that Pi ∈ P18000g3 .
Moreover, by Lemma 77 we have that there exists a partial solution Si for Pi. For any
i ∈ {0, . . . ,m}, let P ′i ∈ P∞ be succinct and basic, such that P ′i covers

⋃i
j=0 Tj and avoids

any other non-trivial trees in F . By the construction, each P ′i can be obtained by merging
P ′i−1 with Pi and some trivial and empty basic family of paths, and thus we have that
P ′i ∈ P36000g3 . Therefore, by induction and Lemma 76, there exists a partial solution S ′i
for each P ′i , and thus there exists a partial for solution S ′m for P ′m. Note that P ′m = P .
Therefore, we get a partial solution S for P , as desired. J

I Lemma 81. Let P = {F}. Let v◦ ∈ V (F). Let WP be the P -facial restriction of
W. Let Γ =

⋃
~W∈WP

~W . Let C be the partition of Bv◦ that corresponds to the weakly-
connected components of Γ. For any x ∈ Bv◦ let f in(x) = in-degreeWP

(x) and fout(x) =
out-degreeWP

(x). Then there exists some a ∈ A ∪ (A × A) ∪ nil and l, r, p ∈ (V (~G) ∪ nil)
such that the dynamic programming table contains some partial solution S at location
(P, (C, f in, fout, a, l, r, p)), with cost~G(S) ≤ cost~G(WP).

Proof. We first partition F to the sets of basic families of paths as follows:
1. F1 = {P ′ ∈ P∞ : P ′ is elementary and succinct, P ′ covers some bad tree T }.
2. F2 = {P ′ ∈ P∞ : P ′ is basic, succinct and friendly}.

D. Marx, A. Salmasi, and A. Sidiropoulos 16:45

3. F3 = {P ′ ∈ P∞ : P ′ is basic, succinct and trivial}.
4. F4 = {P ′ ∈ P∞ : P ′ is basic, succinct and empty}.

For every bad tree T in F , let P1 ∈ F1 such that P1 covers T and avoids any other
non-trivial tree in F . Since P1 is elementary and succinct, by Lemma 74 we have that
|P1| ≤ 18000g3. Moreover by Lemma 77 there exists a partial solution S1 for P1. Also by
Lemma 79, there exist at most 12g bad trees in F , and thus |F1| ≤ 12g. Therefore there exists
P ′1 ∈ P216000g4 , such that for any T ′ ∈ F , P ′1 covers (resp. avoids) T ′ if and only if there
exists P1 ∈ F1 such that P1 covers (resp. avoids) T ′. Moreover the dynamic programming
table contains a partial solution S ′1 for P ′1. Now we will show that |F2| ≤ 3g. For every
P2 ∈ F2, let T2 be some non-trivial good tree that P2 covers. Let x be a point in the interior
of the disk bounded by ψ(F). Similar to Lemma 74 we construct a non-contractible loop γP2

that contains x, corresponding to T2. Let L be the set of all these interior-disjoint loops. For
every P ′, P ′′ ∈ F2, since P ′ and P ′′ are succinct and friendly, γP ′ and γP ′′ are not homotopic.
Therefore by Lemma 72 we have that |L| ≤ 3g, and thus |F2| ≤ 3g. Furthermore for every
P2 ∈ F2, by Lemma 80, we have that P2 ∈ P36000g3 , and there exists a partial solution S2 for
P2. Therefore there exists P ′2 ∈ P108000g4 , such that for any T ′ ∈ F , P ′2 covers (resp. avoids)
T ′ if and only if there exists P2 ∈ F2 such that P2 covers (resp. avoids) T ′. Moreover the
dynamic programming table contains a partial solution S ′2 for P ′2. Let P ′1,2 ∈ P324000g4 such
that for any T ′ ∈ F , P ′1,2 covers (resp. avoids) T ′ if and only if there exists P ′ ∈ F1 ∪ F2
such that P ′ covers (resp. avoids) T ′. By merging S ′1 and S ′2 we get a partial solution S ′1,2
for P ′1,2.

Let

F5 = {{Q} ∈ F3 ∪ F4 : Q is maximal subject to E(Q) ∩ E(P ′1,2) = ∅}.

For every P3 ∈ F3, by Lemma 76 we have that P3 ∈ P1 and there exists a partial solution S3
for P3. Finally, for every P4 ∈ F4, we have that P4 ∈ P1 and also the dynamic programming
table contains a partial solution S4 for P4. Therefore for every {Q} ∈ F5, the dynamic
programming table contains a partial solution for {Q}. By merging these partial solutions
with P ′1,2 in an arbitrary order, we get a partial solution S, as desired. We remark that after
merging the current partial solution with the partial solution for some {Q} ∈ F5, we obtain
a new partial solution for some P ∈ P∞ with fewer paths. Therefore for all intermediate
P ∈ P∞ we have P ∈ P324000g4 , concluding the proof. J

I Theorem 82. Let ~G be an n-vertex (0, g, 1, p)-nearly embeddable graph and let ~H be the
vortex of ~G. Then there exists an algorithm which computes a walk ~W visiting all vertices in
V (~H) of total length OPT~G(V (~H)) in time nO(pg4).

Proof. Let P = {F}. By Lemma 81, there exists a partial solution for P . Now the exact
same argument as in Theorem 65 applies here. J

14 The algorithm for traversing a vortex in a nearly-embeddable
graph

In this Section we obtain an exact algorithm for computing a closed walk that traverses all
the vertices in the single vortex of a nearly-embeddable graph.

Proof of Theorem 6. The algorithm is as follows. Let A ⊂ V (~G) be the set of apices and let
~F be the face on which the vortex is attached. For each A′ ⊆ A we construct a (0, g, 1, p+ a)-
nearly embeddable graph ~GA′ as follows: Initially we set ~GA′ = ~G \A. We then add A′ to

APPROX/RANDOM’16

16:46 Constant-Factor Approximations for Asymmetric TSP on Nearly-Embeddable Graphs

V (~GA′) and for every u ∈ A′ and every v ∈ V (~F) we add edges (u, v) and (v, u) of length
d~G(u, v) and d~G(v, u) respectively; let EA′ be the set of all these new edges. We consider A′
as being part of the vortex and we modify the path decomposition of the vortex by adding
A′ to each one of its bubbles; it is immediate that the result is a path decomposition of
width at most a+ p. We then run the algorithm of Theorem 82 on ~GA′ and find an optimal
closed walk visiting all vertices in V (~H) ∪ A′. Let ~WA′ be the resulting walk in ~GA′ . We
obtain a walk ~W ′A′ in ~G visiting all vertices in V (~H) with cost~G(~W ′A′) = cost~GA′

(~WA′) by
replacing every edge in (u, v) ∈ EA′ by a shortest path from u to v in ~G. After considering
all subsets A′ ⊆ A, we output the walk ~W ′A′ of minimum cost that we find. This completes
the description of the algorithm.

It is immediate that the running time is O(2an(a+p)g4) = O(n(a+p)g4). It remains to
show that the algorithm computes an optimum walk. Let ~R be the walk computed by the
algorithm. Let ~WOPT be a walk of minimum cost in ~G visiting all vertices in V (~H). Let A∗
be the set of apices visited by ~WOPT, that is A∗ = A ∩ V (~WOPT). Let ~G′ be the genus-g
piece of ~G. We can construct a walk ~Z in ~GA∗ that visits all the vertices in V (~H) ∪A∗ of
cost cost~G(~WOPT) as follows: we replace every sub-walk of ~WOPT that is contained in ~G′,
has endpoints u, v ∈ V (~F), and visits some apex w ∈ A∗, by the path u,w, v in ~GA∗ . It is
immediate that the resulting walk does not traverse any apices and therefore it is contained
in ~GA∗ . Thus we have cost~G(~R) ≤ cost~G(~W ′A∗) = cost~GA∗

(~WA∗) ≤ cost~G(~WOPT) ≤ OPT~G,
which concludes the proof. J

15 The lower bound for graphs of bounded pathwidth

In this section we present the proof of Theorem 2. This is done via the following chain of
reductions:

Clique folklore=====⇒ Multicolored
Biclique

Lemma 86======⇒ Edge
Balancing

Lemma 90======⇒ Constrained
Closed Walk

Lemma 87======⇒ ATSP

15.1 Edge Balancing
Let D be a directed graph and let χ : E(D) → Z+ be an assignment of integers to the
edges. We can extend χ to a set F ⊆ E(D) of edges in the obvious way by defining
χ(F) =

∑
e∈F χ(e). Let δ+

D(v) and δ−D(v) be the set of outgoing and incoming edges of v,
respectively. We say that χ is balanced at v ∈ V (D) if

∑
e∈δ+

D
(v) χ(e) =

∑
e∈δ−

D
(v) χ(e) holds

and we say that χ is balanced if it is balanced at every v ∈ V (D).

Edge Balancing: Given a directed graph D and a set Xe of positive integers for
every edge e ∈ E(D), the task is to select a χ(e) ∈ Xe for every edge e ∈ E(D)
such that χ is balanced.

An easy counting argument shows that it is sufficient to require that χ balanced at all but
one vertex:

I Proposition 83. If χ is balanced at every vertex of V (D) \ {v}, then it is also balanced
at v.

We give a lower bound for Edge Balancing by a parameterized reduction from Multi-
colored Biclique.

D. Marx, A. Salmasi, and A. Sidiropoulos 16:47

w1

w2

w3

w4

w5

w6

xji1
+Bxji2

kxji1
+BY2

w

Y1 +Bkxji2

Figure 5 The instance of Edge Balancing constructed in the proof of Lemma 86. The values
on the edges indicate the value of χ corresponding to a solution (vi,ji)i=1,...,2k of the Multicolored
Biclique instance (we have Y1 =

∑
1≤i≤k

xji and Y2 =
∑

k+1≤i≤2k
xji).

Multicolored Biclique: Given a graph G with a partition (V1, . . . , V2k) of
vertices, find a vertex vi ∈ Vi for every 1 ≤ i ≤ 2k such that vi1 and vi2 are adjacent
for every 1 ≤ i1 ≤ k and k + 1 ≤ i2 ≤ 2k.

There is a very simple folklore reduction from Clique to Multicolored Biclique (see,
e.g., [6]) where the output parameter equals the input one, hence the lower bound of Chen
et al. [5] for Clique can be transferred to Multicolored Biclique.

I Theorem 84. Assuming ETH, Multicolored Biclique cannot be solved in time
f(k)no(k) for any computable function f .

The reduction from Multicolored Biclique to Edge Balancing uses the technique
of k-non-averaging sets to encode vertices [10, 17]. We say that a set X of positive integers
is k-non-averaging if for every choice of k (not necessarily distinct) integers x1, . . . , xk ∈ X,
their average is in X only if x1 = x2 = · · · = xk. For example, X = {(k + 1)i | 1 ≤ i ≤ n} is
certainly a k-non-averaging set of size n. However, somewhat surprisingly, it is possible to
construct much denser k-non-averaging sets where each integer is polynomially bounded in k
and the size n of the set.

I Lemma 85 (Jansen et al. [17]). For every k and n there exists a k-non-averaging set X of
n positive integers such that the largest element of X has value at most 32k2n2. Furthermore,
X can be constructed in time O(k2n3) time.

I Lemma 86. Assuming ETH, Edge Balancing has no f(k)no(k) time algorithm for any
computable function f , where k is the number of vertices of D.

Proof. The proof is by reduction from Multicolored Biclique. Let G be an undirected
graph with a partition V1, . . . , V2k of the vertices in V (G). By padding the instance with
isolated vertices, we may assume without loss of generality that each Vi has the same number
n of vertices; let vi,j be the j-th vertex of Vi. We construct an instance of Edge Balancing
on a directed graph D having 2k + 1 vertices w, w1, w2, . . . , w2k. Let us use Lemma 85
to construct a k-non-averaging set X = {x1, . . . , xn} of n positive integers such that the
maximum value in X is M = O(k2n2). Let B = 2kM .

The edges of D and the sets of integers on them are constructed the following way (see
Figure 5). For every 1 ≤ i1 ≤ k and k + 1 ≤ i2 ≤ 2k, we introduce the edge (wi1 , wi2) into
D and we define the set X(wi1 ,wi2) the following way: for every edge vi1,j1vi2,j2 between Vi1
and Vi2 , let us introduce the positive integer xj1 + Bxj2 into X(wi1 ,wi2). Next, for every
1 ≤ i ≤ k, we introduce the edge (w,wi) and let X(w,wi) = {kx+By | x ∈ X, 1 ≤ y ≤ kM}.
Finally, for every k+ 1 ≤ i ≤ 2k, we introduce the edge (wi, w) and let X(wi,w) = {y+Bkx |
x ∈ X, 1 ≤ y ≤ kM}. This completes the description of the reduction.

APPROX/RANDOM’16

16:48 Constant-Factor Approximations for Asymmetric TSP on Nearly-Embeddable Graphs

Biclique ⇒ balanced assignment χ. Suppose that vi,ji ∈ Vi for 1 ≤ i ≤ 2k form a solution
of Multicolored Biclique. We define χ : E(D) → Z+ the following way. For every
1 ≤ i1 ≤ k and k + 1 ≤ i2 ≤ 2k, we set (see the values on the edges in Figure 5)

χ((wi1 , wi2)) = xji1
+Bxji2

,
χ((w,wi1)) = kxji1

+BY2, where Y2 =
∑
k+1≤i≤2k xji

, and
χ((wi1 , w)) = Y1 +Bkxji2

, where Y1 =
∑

1≤i≤k xji
.

Note that χ(e) ∈ Xe holds for every edge e ∈ E(D). Let us verify that χ is balanced.
For any 1 ≤ i1 ≤ k, we have χ(δ+

D(wi1)) =
∑
k+1≤i2≤2k(xji1

+ Bxji2
) = kxji1

+ BY2 =
χ((w,wi1)) = χ(δ−D(wi1)), as required. Similarly, for for any k + 1 ≤ i2 ≤ 2k, we have
χ(δ−D(wi2)) =

∑
1≤i1≤k(xji1

+ Bxji2
) = Y1 + Bkxji2

= χ((wi2 , w)) = χ(δ+
D(wi2)). Thus we

have shown that χ is balanced at w1, . . . , w2k and it follows by Proposition 83 that χ is
balanced also at w.

Balanced assignment χ ⇒ biclique. For the reverse direction of the equivalence, suppose
that χ : E(D)→ Z+ is a balanced assignment with χ(e) ∈ Xe for every e ∈ E(D). For every
1 ≤ i1 ≤ k, the definition of X(w,wi1) implies that χ((w,wi1)) is of the form kxji1

+ Byi1
where xji1

∈ X for some 1 ≤ ji1 ≤ n and yi1 is a positive integer. As kxji1
≤ kM < B

follows from xji1
∈ X, the value of χ((w,wi1)) uniquely determines ji1 and yi1 . Similarly,

for every k + 1 ≤ i2 ≤ 2k, we have that χ((wi2 , w)) is of the form yi2 +Bkxji2
for uniquely

determined positive integers 1 ≤ ji2 ≤ n and yi2 .
Having defined the values j1, . . . , j2k, we show that χ((wi1 , wi2)) = xji1

+Bxji2
for every

1 ≤ i1 ≤ k and k + 1 ≤ i2 ≤ 2k. If this is true, then the vertices vi,ji
∈ Vi for 1 ≤ i ≤ 2k

form a solution of Multicolored Biclique: the fact that xji1
+Bxji2

was introduced into
X(wi1 ,wi2) implies that there is an edge between vi1,ji1

∈ Vi1 and vi2,ji2
∈ Vi2 .

As the balance requirement holds at vertex wi1 , it also holds if we count modulo B. We
have that χ((w,wi1)) modulo B is exactly kxji1

< B (here we use that kM < B). For
every k + 1 ≤ i2 ≤ 2k, the value χ((wi1 , wi2)) modulo B is an integer from X and the value
χ(δ+

D(wi1)) modulo B is exactly the sum of these k integers from X (as again by kM < B,
this sum cannot reach B). Therefore, we have that the sum of k integers from X is exactly
kxji1

. Since X is a k-non-averaging set, this is only possible if these k integers are all equal
to xji1

. Thus we have shown that χ((wi1 , wi2)) = xji1
modulo B for every 1 ≤ i1 ≤ k and

k + 1 ≤ i2 ≤ 2k.
Let us consider now a vertex wi2 for k + 1 ≤ i2 ≤ 2k. The balance requirement in par-

ticular implies that bχ(δ+
D(wi2))/Bc = bχ(δ−D(wi2))/Bc. First, we have bχ(δ+

D(wi2))/Bc =
bχ((wi2 , w))/Bc = kxji2

. Therefore, the fact that χ is balanced at wi2 implies kxji2
=

bχ(δ−D(wi2))/Bc =
⌊∑

1≤i1≤k χ((wi1 , wi2))/B
⌋

=
∑

1≤i1≤kbχ((wi1 , wi2))/Bc, where the
third equality holds because we have χ((wi1 , wi2))/B − bχ((wi1 , wi2))/Bc ≤ M/B < 1/k.
The definition of X(wi1 ,wi2) implies that bχ((wi1 , wi2))/Bc is an integer from X. Therefore,
the equation above states the the sum of k integers from X is exactly kxji2

. Since X is a
k-non-averaging set, this is only possible if these k integers are all equal to xji2

. Therefore,
we have shown that χ((wi1 , wi2)) modulo B is exactly xij1

and bχ((wi1 , wi2))/Bc is exactly
xji2

, proving that χ((wi1 , wi2)) = xji1
+Bxji2

indeed holds. J

15.2 Constrained Closed Walk and ATSP
To make the hardness proof for ATSP cleaner, we first prove hardness for the variant of
the problem, where instead of optimizing the length of the tour, the only constraint is that
certain vertices cannot be visited more than once.

D. Marx, A. Salmasi, and A. Sidiropoulos 16:49

Constrained Closed Walk: Given an unweighted directed graph G and set
U ⊆ V (G) of vertices, find a closed walk (of any length) that visits each vertex at
least once and visits each vertex in U exactly once.

There is a simple reduction from Constrained Closed Walk to ATSP that preserves
treewidth.

I Lemma 87. An instance of Constrained Closed Walk on an unweighted directed graph
D can be reduced in polynomial time to an instance of ATSP with polynomially bounded
positive integer weights on an edge-weighted version D∗ of D.

Proof. It is easy to see that if we assign weight 1 to every edge (u, v) with v ∈ U and weight
0 to every other edge, then the Constrained Closed Walk instance has a solution if and
only if the resulting weighted graph has closed walk of length at most |U | (or, equiavelently,
less than |U |+ 1) visiting every vertex. To ensure that every weight is positive, let us replace
every weight 0 with weight ε := 1/(2n2). As a minimum solution of ATSP contains at most
n2 edges, this modification increases the minimum cost by at most 1/2. Thus it remains
true that the Constrained Closed Walk instance has a solution if and only if there is a
closed walk of length less than |U |+ 1 visiting every vertex. Finally, to ensure that every
cost is integer, we multiply each of them by 2n2. J

The rest of the section is devoted to giving a lower bound for Constrained Closed
Walk. The lower bound proof uses certain gadgets in the construction of the instances.
Formally, we define a gadget to be a graph with a set of distinguished vertices called external
vertices; every other vertex is internal. To avoid degenerate situations, we always require
that the external vertices of a gadget are independent and each external vertex has either
indegree 0 or outdegree 0 in the gadget; in particular, this implies that a path between two
external vertices contains no other external vertex. Also, this implies that there is no closed
walk containing an external vertex.

We say that a set P of paths of the gadget satisfies a gadget if (1) both endpoints of each
path are external vertices and (2) every internal vertex of the gadget is visited by exactly one
path in P. If a path P ∈ P connects two external vertices of a gadget, then we define the
type of P to be the (ordered) pair of its endpoints. If P satisfies the gadget, then we define
the type of P to be the multiset of the types of the paths in P. For brevity, we use notation
such as a× (v1, v2) + b× (v3, v4) to denote the type that contains a times the pair (v1, v2)
and b times the pair (v3, v4). For a gadget H, we let the set T (H) contain every possible
type of a set P of paths satisfying H.

We construct gadgets where we can exactly tell the type of the collections of paths that
can satisfy the gadget, that is, the set T (H) is of a certain form. In the first gadget, we have
a simple choice between one path or a specified number of paths.

I Lemma 88. For every s ≥ 1, we can construct in time polynomial in n a gadget Hs with
the following properties:
1. Hs has four external vertices ain, aout, bin, and bout.
2. Hs minus its external vertices has constant pathwidth.
3. T (Hs) contains exactly two types: the type (bin, bout) and the type s× (ain, aout) (in other

words, the gadget can be satisfied by a path from bin to bout), can be satisfied by a collection
of s paths from ain to aout), but cannot be satisfied by any other type of collection of
paths).

APPROX/RANDOM’16

16:50 Constant-Factor Approximations for Asymmetric TSP on Nearly-Embeddable Graphs

bin bout

aoutain

v1
1

v2
1

v3
1

v4
1

v6
1

v5
1 v2

2

v3
2

v4
2

v6
2

v5
2

v1
2

v2
s

v4
s

v6
s

v5
s

v1
s

v3
s

bin bout

aoutain

bin bout

aoutain

(a)

(bin, bout) s× (ain, aout)

(b) (c)

Figure 6 The gadget of Lemma 88 with two collections of paths satisfying it.

Proof. The gadget Hs has 6s internal vertices vij (1 ≤ i ≤ 6, 1 ≤ j ≤ s) connected as
shown in Figure 6(a). Additionally, we introduce the edges (bin, v1

1), (v6
s , bout, and for every

1 ≤ j ≤ s, the edges (ain, v3
j) and (v4

j , aout). It is clear that statement (2) holds: Hs minus
its vertices is a graph with constant pathwidth.

This gadget can be satisfied by a path from bin to bout (see Figure 6(b)) and also by a
collection of s paths where the j-th path is ain, v3

j , v2
j , v1

j , v6
j , v5

j , v4
j , aout (see Figure 6(c)).

To complete the proof of statement (3), we need to show that if P satisfies Hs, then P is one
of these two types. The basic observation is that if a path in P contains v2

j , then it has to
contain v1

j and v3
j as well (as each internal vertex is visited exactly once), hence the three

vertices v1
j , v2

j , v3
j have to appear on the same path of P. The same is true for the vertices

v4
j , v5

j , v6
j . Suppose that P contains a path P starting at bin. Then its next vertex is v1

1 ,
which should be followed by v2

1 and v3
1 by the argument above. The next vertex is v4

1 (the
only outneighbor of v3

j not yet visited), which is followed by v5
1 and v6

1 . Now the next vertex
is v1

2 , the only outneighbor of v6
1 not yet visited. With similar arguments, we can show that

P is exactly of the form shown in Figure 6(b), hence P contains only this path, and P is of
type {(bin, bout)}.

Suppose now that P does not contain a path starting at bin. Then the only way to reach
vertex v1

1 is with a path starting as ain, v3
1 , v2

1 , v1
1 . This has to be followed by the unique

outneighbor v6
1 of v1

1 that was not yet visited. This means that the path contains also v5
1

and v4
1 , which has to be followed by aout. Then with similar arguments, we can show for

every j ≥ 2 that v1
j is visited by the path ain, v3

j , v2
j , v1

j , v6
j , v5

j , v4
j , aout. This means that

|P| = s and the type of P is s× (ain, aout). J

I Lemma 89. Let X be a set of n positive integers, each at most M and let S =
∑
x∈X x. In

time polynomial in n andM , we can construct a gadget HX with the following properties:
1. HX has four external vertices ain, aout, cin, and cout.
2. HX minus its external vertices has constant pathwidth.

D. Marx, A. Salmasi, and A. Sidiropoulos 16:51

ain aout

cin cout

v

Hx1 Hx2 Hx3

Figure 7 The gadget HX of Lemma 89 for a set X = {x1, x2, x3} of three integers. The gray
rectangles represent the internal vertices of the three gadgets Hx1 , Hx2 , and Hx3 .

3. T (Hs) contains exactly |X| types: for every x ∈ X, it contains the type (cin, cout) + (S −
x)× (ain, aout).

Proof. The gadget HX is constructed the following way (see Figure 7). Let us introduce an
internal vertex v and the edge (cin, v). For every x ∈ X, let us introduce a copy of Hx defined
by Lemma 88 where ain, aout, v, cout of HX play the role of ain, aout, bin, bout, respectively.
If we remove the four external vertices of HX , then we get a graph with constant pathwidth:
if we remove one more vertex, v, then we get the disjoint union of internal vertices of the
gadgets Hx’s, which have constant pathwidth by Lemma 88.

For every x ∈ X, the gadget can be satisfied by the following collection of paths. The
copy of Hx in HX can be satisfied by a path from v to cout, which can be extended with
the edge (cin, v) to a path from cin to cout. For every x′ ∈ X, x′ 6= x, we can satisfy the
copy of Hx′ in HX by a collection of x′ paths from ain to aout. This way, we constructed
a collection P of paths satisfying HX that consists of a single path of type (cin, cout) and
exactly

∑
x′∈X\{x} x

′ = S − x paths of type (ain, aout).
To complete the proof of statement (3), consider a collection P of paths satisfying HX .

Let P be the unique path of P visiting vertex v. The vertex of P after v is has to be an
internal vertex of the copy of Hx for some x ∈ X (here we use that the external vertices of
the gadget Hx are independent, hence v cannot be followed by any of ain, aout, and cout).
As v was identified with vertex bin of Hx, Lemma 88 implies that P visits every internal
vertex of this copy of Hx and leaves Hx at its vertex bout, which was identified with cout.
Consider now some x′ ∈ X with x′ 6= x. Vertex bin of Hx′ was identified with v, path P is
the only path of P visiting v, and P does not visit any internal vertex of Hx′ . Therefore,
by Lemma 88, the internal vertices of Hx′ are visited by exactly x′ paths of type (ain, aout).
Thus P contains one path of type (cin, cout) and exactly

∑
x′∈X\{x} x

′ = S − x paths of type
(ain, aout). J

I Lemma 90. Assuming ETH, there is no f(p)no(p) time algorithm for Constrained
Closed Walk on graphs of pathwidth at most p for any computable function f .

Proof. The proof is by reduction from Edge Balancing on a directed graph D with k
vertices w1, . . . , wk. We construct a Constrained Closed Walk instance on a directed
graph D∗ the following way. First, let us introduce the vertices w1, . . . , wk into D∗, as well
as two auxiliary vertices cin and cout. For every edge e = (wi1 , wi2) ∈ E(D) with a set Xe

APPROX/RANDOM’16

16:52 Constant-Factor Approximations for Asymmetric TSP on Nearly-Embeddable Graphs

of integers associated to it in the Edge Balancing instance, we construct a copy of the
gadget HXe

defined by Lemma 89 and identify external vertices ain, aout, cin, cout of the
gadget HXe

with vertices wi1 , wi2 , cin, cout of D∗, respectively. Let Se =
∑
x∈Xe

x for every
edge e ∈ V (D), let S+

i =
∑
e∈δ+

D
(wi) Se, let S

−
i =

∑
e∈δ−

D
(wi) Se, and let S∗ =

∑
e∈E(D)Xe =∑k

i=1 S
+
i =

∑k
i=1 S

−
i . We further extend D∗ the following way.

1. For every 1 ≤ i ≤ k, we introduce a set P+
i of S+

i paths of length two from cin to wi (that
is, each of these paths consists of vertex cin, vertex wi, and one extra newly introduced
vertex).

2. For every 1 ≤ i ≤ k, we introduce a set P−i of S−i paths of length two from wi to cout.
3. We introduce a set P∗ of S∗ + |E(D)| paths of length two from cout to cin.
Let Z := {w1, . . . , wk, cin, cout}; note that Z form an independent set in G∗ (as the external
vertices of each gadget are independent). We define U := V (D∗) \ Z to be the set of vertices
that have to be visited exactly once. This completes the description of the reduction.

Observe that if we remove Z from D∗, then what remains is the disjoint union of the
internal vertices of the gadgets HXe , which have constant pathwidth by Lemma 89. As
removing a vertex can decrease pathwidth at most by one, it follows that D∗ has pathwidth
|Z| + O(1) = O(k). Thus if we are able to show that the constructed instance D∗ of
Constrained Closed Walk is a yes-instance if and only if D is a yes-instance of Edge
Balancing, then this implies that an f(p)no(p) time algorithm for Constrained Closed
Walk on graphs of pathwidth p can be used to solve Edge Balancingon k vertex graphs
in time (k)no(k), which would contradict ETH by Lemma 86.

Balanced assignment χ ⇒ closed walk. Suppose that balanced assignment χ : E(D)→ Z+

is a solution to the Edge Balancing instance. For every e = (wi1 , wi2) ∈ E(D), the
construction of the gadget HXe

implies that HXe
can be satisfied by a collection Pe of paths

having type (cin, cout) + (Se − χ(e))× (wi1 , wi2). Let P be a collection of paths that is the
union of the set P∗, the sets P+

i and P−i for 1 ≤ i ≤ k, and the set Pe for e ∈ E(G). Observe
that every vertex of U is contained in exactly one path in P and the paths in P are edge
disjoint. Let H∗ be the subgraph of D∗ formed by the union of every path in P. It is easy
to see that H∗ is connected: every path in P has endpoints in Z and the paths in P∗, P−i ,
P+
i ensure that every vertex of Z is in the same component of H∗. It is also clear that every

vertex of U has indegree and outdegree exactly 1, as each vertex in U is visited by exactly
one path in P . We show below that every vertex of Z is balanced in H∗ (its indegree equals
its outdegree). If this is true, then H∗ has a closed Eulerian walk, which gives a closed walk
in G∗ visiting every vertex at least once and every vertex in U exactly once, what we had to
show.

The endpoints of every path in P are in Z, hence every vertex of U is balanced in H∗ (in
particular has indegree and outdegree exactly 1). Consider now a vertex wi.

For every e ∈ δ+
D(wi), the set Pe contains Se − χ(e) paths starting at wi.

For every e ∈ δ−D(wi), the set Pe contains Se − χ(e) paths ending at wi.
The set P+

i contains S+
i paths ending at wi.

The set P−i contains S−i paths starting at wi.
As these paths are edge disjoint, the difference between the outdegree and the indegree of
wi in H∗ is (S−i +

∑
e∈δ+

D
(wi)(Se − χ(e))) − (S+

i +
∑
e∈δ−

D
(wi)(Se − χ(e))) = (S−i + S+

i −
χ(δ+

D(wi)))− (S+
i +S−i −χ(δ−D(wi))) = 0, since χ is balanced at wi. Consider now vertex cin.

For every 1 ≤ i ≤ k, the set P+
i contains S+

i paths starting at cin.
For every e ∈ E(D), the set Pe contains one path starting at cin.
The set P∗ contains S∗ + |E(D)| paths ending at cin.

D. Marx, A. Salmasi, and A. Sidiropoulos 16:53

It follows that cin is balanced in H∗ with indegree and outdegree exactly S∗ + |E(D)| =∑k
i=1 S

+
i + |E(D)| and a similar argument shows the same for cout. Thus we have shown

that the Constrained Closed Walk instance has a solution.

Closed walk ⇒ balanced assignment χ. For the reverse direction, suppose that the
constructed Constrained Closed Walk instance has a solution (a closed walk W). The
closed walk can be split into a collection P of walks with endpoints in Z and every internal
vertex in U . In fact, these walks are paths: (1) as each vertex of U is visited only once, the
internal vertices of each walk are distinct, (2) the walk cannot be a cycle, since we have
stated earlier that no gadget has a cycle through an external vertex. When defining the sets
P∗, P+

i , P
−
i , we introduced a large number of vertices into D∗ with indegree and outdegree

1. The fact that these vertices are visited implies that P has to contain the set P∗ and the
sets P+

i and P−i for every 1 ≤ i ≤ k. Moreover, every path of P not in these sets contains
an internal vertex of some gadget HXe (here we use that Z is independent) and a path of
P cannot contain the internal vertices of two gadgets (as this would imply that it has an
internal vertex in Z). Therefore, the remaining paths can be partitioned into sets Pe for
e ∈ E(D) such that the internal vertices of HXe

are used only by the paths in Pe. This
means that the set Pe satisfies gadget HXe . If e = (wi1 , wi2), then it follows by Lemma 89
that Pe has type (cin, cout) + (Se − χ(e))(wi1 , wi2) for some integer χ(e) ∈ Xe. In particular,
this means that Pe contains Se − χ(e) paths starting at wi1 and the same number of paths
ending at wi2 .

We claim that χ form a solution of the Edge Balancing problem. Consider a vertex wi.
Taking into account the contribution of the paths in P−i and Pe for e ∈ δ+

D(wi), we have that
the outdegree of wi in the walkW is exactly S−i +

∑
e∈δ+

D
(wi)(Se−χ(e)) = S+

i +S−i −χ(δ+
D(wi)).

Taking into account the contribution of the paths in P+
i and Pe for e ∈ δ−D(wi), we have that

the indegree of wi in the walkW is exactly S+
i +

∑
e∈δ−

D
(wi)(Se−χ(e)) = S−i +S+

i −χ(δ−D(wi)).
As the indegree of wi in W is clearly the same as its outdegree, these two values have to be
equal. This is only possible if χ(δ+

D(wi)) = χ(δ−D(wi)), that is χ is balanced at wi. As this is
true for every 1 ≤ i ≤ k, it follows that the Edge Balancing instance has a solution. J

References
1 Nima Anari and Shayan Oveis Gharan. Effective-resistance-reducing flows, spectrally thin

trees, and asymmetric tsp. In 55th Annual IEEE Symposium on Foundations of Computer
Science, FOCS, 2015.

2 Arash Asadpour, Michel X Goemans, Aleksander Madry, Shayan Oveis Gharan, and Amin
Saberi. AnO(logn/ log logn)-approximation Algorithm for the Asymmetric Traveling Sales-
man Problem. In SODA, volume 10, pages 379–389. SIAM, 2010.

3 Markus Bläser. A new approximation algorithm for the asymmetric tsp with triangle
inequality. ACM Transactions on Algorithms (TALG), 4(4):47, 2008.

4 Moses Charikar, Michel X Goemans, and Howard Karloff. On the integrality ratio for
asymmetric tsp. In Foundations of Computer Science, 2004. Proceedings. 45th Annual
IEEE Symposium on, pages 101–107. IEEE, 2004.

5 Jianer Chen, Xiuzhen Huang, Iyad A Kanj, and Ge Xia. Strong computational lower bounds
via parameterized complexity. Journal of Computer and System Sciences, 72(8):1346–1367,
2006.

6 Holger Dell and Dániel Marx. Kernelization of packing problems. In Proceedings of the
twenty-third annual ACM-SIAM symposium on Discrete Algorithms, pages 68–81. SIAM,
2012.

APPROX/RANDOM’16

16:54 Constant-Factor Approximations for Asymmetric TSP on Nearly-Embeddable Graphs

7 Reinhard Diestel. Graph theory {graduate texts in mathematics; 173}. Springer-Verlag
Berlin and Heidelberg GmbH & amp, 2000.

8 Jeff Erickson and Anastasios Sidiropoulos. A near-optimal approximation algorithm for
asymmetric tsp on embedded graphs. In Proceedings of the thirtieth annual symposium on
Computational geometry, page 130. ACM, 2014.

9 Uriel Feige and Mohit Singh. Improved approximation ratios for traveling salesperson
tours and paths in directed graphs. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, pages 104–118. Springer, 2007.

10 Fedor V Fomin, Petr A Golovach, Daniel Lokshtanov, and Saket Saurabh. Almost optimal
lower bounds for problems parameterized by clique-width. SIAM Journal on Computing,
43(5):1541–1563, 2014.

11 Alan M Frieze and Giulia Galbiati. On the worst-case performance of some algorithms for
the asymmetric traveling salesman problem. Networks, 12(1):23–39, 1982.

12 Alan M. Frieze, Giulia Galbiati, and Francesco Maffioli. On the worst-case performance
of some algorithms for the asymmetric traveling salesman problem. Networks, 12(1):23–39,
1982. doi:10.1002/net.3230120103.

13 Shayan Oveis Gharan and Amin Saberi. The asymmetric traveling salesman problem on
graphs with bounded genus. In Proceedings of the twenty-second annual ACM-SIAM sym-
posium on Discrete Algorithms, pages 967–975. SIAM, 2011.

14 F. Harary. Graph Theory. Addison-Wesley Series in Mathematics. Perseus Books, 1994.
15 Michael Held and Richard Karp. The traveling salesman problem and minimum spanning

trees. Operations Research, 18:1138–1162, 1970.
16 Michael Held and Richard M Karp. The traveling-salesman problem and minimum spanning

trees. Operations Research, 18(6):1138–1162, 1970.
17 Klaus Jansen, Stefan Kratsch, Dániel Marx, and Ildikó Schlotter. Bin packing with fixed

number of bins revisited. Journal of Computer and System Sciences, 79(1):39–49, 2013.
18 Haim Kaplan, Moshe Lewenstein, Nira Shafrir, and Maxim Sviridenko. Approximation

algorithms for asymmetric tsp by decomposing directed regular multigraphs. Journal of
the ACM (JACM), 52(4):602–626, 2005.

19 Ken-ichi Kawarabayashi and Bojan Mohar. Some recent progress and applications in graph
minor theory. Graphs and Combinatorics, 23(1):1–46, 2007.

20 László Lovász. Graph minor theory. Bulletin of the American Mathematical Society,
43(1):75–86, 2006.

21 A. Malnič and B. Mohar. Generating locally cyclic triangulations of surfaces. Journal of
Combinatorial Theory, Series B, 56(2):147–164, 1992.

22 Carsten Thomassen. Embeddings of graphs with no short noncontractible cycles. Journal
of Combinatorial Theory, Series B, 48(2):155–177, 1990.

http://dx.doi.org/10.1002/net.3230120103

Planar Matching in Streams Revisited∗

Andrew McGregor1 and Sofya Vorotnikova2

1 College of Information and Computer Sciences, University of Massachusetts,
Amherst, USA
mcgregor@cs.umass.edu

2 College of Information and Computer Sciences, University of Massachusetts,
Amherst, USA
svorotni@cs.umass.edu

Abstract
We present data stream algorithms for estimating the size or weight of the maximum matching in
low arboricity graphs. A large body of work has focused on improving the constant approximation
factor for general graphs when the data stream algorithm is permitted O(n polylogn) space where
n is the number of nodes. This space is necessary if the algorithm must return the matching.
Recently, Esfandiari et al. (SODA 2015) showed that it was possible to estimate the maximum
cardinality of a matching in a planar graph up to a factor of 24 + ε using O(ε−2n2/3 polylogn)
space. We first present an algorithm (with a simple analysis) that improves this to a factor
5 + ε using the same space. We also improve upon the previous results for other graphs with
bounded arboricity. We then present a factor 12.5 approximation for matching in planar graphs
that can be implemented using O(logn) space in the adjacency list data stream model where
the stream is a concatenation of the adjacency lists of the graph. The main idea behind our
results is finding “local” fractional matchings, i.e., fractional matchings where the value of any
edge e is solely determined by the edges sharing an endpoint with e. Our work also improves
upon the results for the dynamic data stream model where the stream consists of a sequence of
edges being inserted and deleted from the graph. We also extend our results to weighted graphs,
improving over the bounds given by Bury and Schwiegelshohn (ESA 2015), via a reduction to
the unweighted problem that increases the approximation by at most a factor of two.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases data streams, planar graphs, arboricity, matchings

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2016.17

1 Introduction

A large body of work has focused on finding better approximation algorithms for finding large
graph matchings in the data stream model [1, 11, 24, 26, 7, 8, 13, 19, 18, 15, 21, 22, 4, 20, 17].
In this model, the edges of an input graph on n nodes arrive in an arbitrary order and the
algorithm has a limited amount of memory available. For a survey of graph algorithms
in this model, see [25]. Specifically, a sequence of papers have presented algorithms using
O(n polylogn) bits of space that have steadily reduced the best known approximation ratio
for maximum weighted matching: Feigenbaum et al. [13] initially presented a 6 approximation;
McGregor [24] then presented a 5.828 approximation; this was reduced to 5.585 by Zelke
[26]; and then to 4.911 by Epstein et al. [11]; and the best known result is a 4 approximation

∗ Supported by NSF CAREER Award CCF-0953754 and CCF-1320719 and a Google Faculty Research
Award.

© Andrew McGregor and Sofya Vorotnikova;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016).
Editors: Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans; Article No. 17; pp. 17:1–17:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.17
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

17:2 Planar Matching in Streams Revisited

due to Crouch and Stubbs [7]. The best known result for maximum cardinality matching is
a trivial 2 factor that follows by constructing a greedy matching. Konrad et al. [21] showed
that this can be slightly improved if the edges are ordered randomly. Kapralov [18] proved a
lower bound of e/(e− 1) ≈ 1.58 on the best possible approximation factor when using only
O(n polylogn) space. Note that all the above algorithms return the large matching rather
than just estimating its weight.

A natural question is whether constant approximation is possible using o(n) space if we
only need to estimate the weight of the matching. Recently, Esfandiari et al. [12] showed the
surprising result that it was indeed possible in the case of planar graphs and more generally,
bounded arboricity graphs. Recall that a graph G has arboricity α if the set of edges of G
can be partitioned into at most α forests. For example, a planar graph has arboricity α = 3.
Esfandiari et al. presented a (5α+9)(1+ ε) approximation using O(αε−2n2/3 polylogn) space.
In the case of planar graphs this corresponds to a 24+ ε approximation. Very recently Chitnis
et al. [5] and Bury and Schwiegelshohn [4], showed that the same approximation was possible
in the dynamic graph model where the stream consists of edges being added and deleted
from the underlying graph. Bury and Schwiegelshohn [4] also showed that it was possible to
extend the result to weighted graphs but with an O(α4) approximation factor. All of these
results rely on an interesting structural result proved by Esfandiari et al. [12] that relates
the size of the maximum cardinality matching in a graph G of arboricity α to the number
of nodes of “high” degree and the number of edges whose endpoints are both “low” degree.
Specifically:

I Theorem 1 (Esfandiari et al. [12]). Let match(G) be the size of the maximum cardinality
matching in G. Then

match(G)/2 ≤ (h+ s)/2 ≤ max(h, s) ≤ (2.5α+ 4.5) match(G)

where h is the number of nodes with degree greater than 2α+ 3 and s is the number of edges
that remain after all such nodes are removed.

The result then reduces the problem of estimating the matching to estimating the quantities
h and s. A similar, but weaker bound, is implicit in Czygrinow et al. [9].

1.1 Our Results
The first contribution of this paper is to identify a new quantity that a) yields tighter bounds
for match(G) and b) can be approximated in the data stream model.

I Theorem 2 (Structural Result). For an edge e = {u, v} define xe = min
(

1
deg(u) ,

1
deg(v) ,

1
α+1

)
.

Then,

match(G) ≤ (α+ 1)
∑
e∈E

xe ≤ (α+ 2) match(G) .

For example, for a planar graph α = 3 and hence
∑
e∈E xe determines match(G) up to a

factor of 5. For a bipartite planar graph (for such graphs, α = 2) the result can be further
improved to a factor of 3. The proof of Theorem 2 can be found in Section 2.2 and has the
advantage of being conceptually simpler than the proof of Theorem 1. The main idea is
to prove the result via consideration of fractional matchings, specifically “local” fractional
matching where the value of any edge e can be determined by only considering the edges
incident to e. We also show a result for local fractional matchings for weighted graphs.

A. McGregor and S. Vorotnikova 17:3

Using Theorem 2, we show that match(G) on unweighted graphs can be approximated
up to a factor (α+ 2)(1 + ε) using O(ε−2αn2/3 polylogn) bits of space. Furthermore, this
result can be generalized to weighted graphs with approximation factor 2(α+ 2)(1 + ε) and
to the dynamic graph stream model with a slight increase in space. We also show that it is
possible to estimate match(G) up to a factor (α+ 2)2/2 using only the degree sequence of
G. This result immediately leads to a O(logn) space algorithm in the adjacency list stream
model where the stream is a concatenation of the adjacency lists of the graph. The result
can also be generalized to weighted graphs while losing only an additional factor of 2.

2 Graph Properties

In this section we present a variety of results relating the size or weight of a maximum
matching in a low arboricity graph to “simpler” quantities. We start with some necessary
preliminaries about fractional matchings.

2.1 Preliminaries
Define the fractional matching polytope for a graph G as:

FM(G) = {x ∈ RE : xe ≥ 0 for all e ∈ E,
∑

e∈E:u∈e
xe ≤ 1 for all u ∈ V } .

We say any x ∈ FM(G) is a fractional matching. The size of this fractional matching is∑
e∈E xe and for a graph where edge e has weight we, the weight of the matching is

∑
e∈E wexe.

A standard result on fractional matching is that the maximum size of a fractional matching
is at most a factor 3/2 larger than the maximum size of an (integral) matching. We will also
make use of the following lemma which is a simple corollary of Edmonds Matching Polytope
theorem [10].

I Lemma 3. For U ⊂ V , let G[U] denote the induced subgraph on U . Let x ∈ FM(G) and
suppose there exist λ3, λ5, λ7 . . . such that

∀U ⊂ V where |U | ∈ {3, 5, 7, . . .} ,
∑

e∈G[U]

xe ≤ λ|U |
(
|U | − 1

2

)
.

Then for any edge weights {we}e∈E,∑
e∈E

wexe ≤ max(1, λ3, λ5, . . .) match(G)

where match(G) is the weight of the maximum weighted (integral) matching.

Proof. By Edmonds theorem, match(G) = maxz∈IM(G)
∑
e weze where

IM(G) = {x ∈ RE : xe ≥ 0 for all e ∈ E,
∑

e∈E:u∈e
xe ≤ 1 for all u ∈ V ,

∑
e∈G[U]

xe ≤
(
|U | − 1

2

)
for all U ⊂ V of odd size} .

But x
max(1,λ3,λ5,...) ∈ IM(G) and so

∑
e∈E wexe ≤ max(1, λ3, λ5, . . .) match(G) as

required. J

APPROX/RANDOM’16

17:4 Planar Matching in Streams Revisited

For the streaming applications we will be interested in fractional matchings that can be
computed locally.

I Definition 4. For a given graph G, we say a fractional matching x ∈ FM(G) is local if
every xe is only a function of the edges (and their weights in the case of a weighted graph)
that share an end point with e.

2.2 Local Fractional Matching
Define x ∈ RE where for e = {u, v} ∈ E, we set

xe = min
(

1
deg(u) ,

1
deg(v) ,

1
α+ 1

)
.

The next two theorems show that x is a local fractional matching and

1
α+ 1 ·match(G) ≤ score(x) ≤ α+ 2

α+ 1 ·match(G)

where score(x) =
∑
e xe. This proves Theorem 2 and we note that the upper bound can

be improved slightly if α is even. In Section 3.1, we show that it is possible to efficiently
estimate score(x) in the data stream model.

I Theorem 5. x ∈ FM and

score(x)
match(G) ≤

{
α+2
α+1 if α odd,
α+3
α+2 if α even.

Furthermore, if G is bipartite then score(x) ≤ match(G).

Proof. First note that xe ≥ 0 for each e ∈ E and for any u ∈ V ,∑
e∈E:u∈e

xe ≤
∑

e∈E:u∈e
1/ deg(u) = 1 .

and hence x ∈ FM. The bound for bipartite graphs follows because the maximum size of a
fractional matching in a bipartite graph equals the maximum size of an integral matching. For
the rest of the result, we appeal to Lemma 3. Since x ∈ FM, it is simple to show that x satisfies
the conditions of the lemma with λt ≤ t/(t− 1); this follows because

∑
e∈G[U] xe ≤ |U |/2 for

any x ∈ FM. Furthermore, since there are at most
(|U |

2
)
edges in G[U] and xe ≤ 1/(α+ 1)

for all e,∑
e∈G[U]

xe ≤
(
|U |
2

)
1

α+ 1 = |U | − 1
2 · |U |

α+ 1 .

Therefore, λt ≤ min (t/(t− 1), t/(α+ 1)). Consequently,

max
t odd

λt =
{
α+2
α+1 if α odd,
α+3
α+2 if α even.

J

We next bound score(x) in terms of the number of high degree vertices and edges that
are not incident to high degree vertices. As observed in previous work, these two quantities
can then easily be related the size of the maximum matching.

A. McGregor and S. Vorotnikova 17:5

L1

L2

L3

Figure 1 A tight example for Theorem 6. Let L1 consist of α nodes whereas L2 and L2 consist
of n � α nodes. The edges are a complete bipartite graph of L1 and L2 and a matching between L2

and L3. Then score(x) = αn× 1/n+ n× 1/(α+ 1) and match(G) = n. Hence match(G)/ score(x)
tends to α+ 1 as n tends to infinity.

I Theorem 6. Let h be the number of “heavy” nodes with degree at least α+ 2 and s be the
number of “shallow” edges whose endpoints are both not heavy. Then,

score(x) ≥ 2h/(α+ 2) + s/(α+ 1) .

Furthermore, match(G) ≤ (α+ 1) score(x).

Proof. Let di be the degree of node i and assume d1 ≥ d2 ≥ d3 ≥ Let bi = |{j < i :
{i, j} ∈ E}| and ci = |{i < j : {i, j} ∈ E}|, i.e., the number of neighbors of node i that
have higher or lower degree respectively than node i where ties are broken by the ordering
supposed in the above line. Consider labeling an edge e with weight xe where we first
label edges incident to node 1, then the (remaining unlabeled) edges incident to node 2,
etc. Then c1 = d1 edges get labeled with min(1/d1, 1/(α + 1)), c2 edges get labeled with
min(1/d2, 1/(α+ 1)), c3 edges get labeled with min(1/d3, 1/(α+ 1)) etc. Let θ = α+ 2, then

score(x) =
∑
i

ci min(1/di, 1/(α+ 1))

=
∑
i:di≥θ

ci/di +
∑

i:di≤θ−1
ci/(α+ 1)

= h−
∑
i:di≥θ

bi/di +
∑

i:di≤θ−1
ci/(α+ 1)

≥ h− (
∑
i:di≥θ

bi)/θ + (
∑

i:di≤θ−1
ci)/(α+ 1)

Note that
∑
i:di≥θ bi is the number of edges in the induced subgraph on heavy nodes.

This is at most αh because these edges in this induced subgraph can be partitioned into at
most α forests. Similarly,

∑
i:di≤θ−1 ci is the number of shallow edges. Therefore

score(x) ≥ h(1− α/θ) + s/(α+ 1) = 2h/(α+ 2) + s/(α+ 1)

as required. Note that h+ s ≥ match(G) because every edge in a matching is either shallow
or has at least one heavy node as an endpoint. Therefore

score(x) ≥ (h+ s)/(α+ 1) ≥ match(G)/(α+ 1) . J

See Figure 1 for an example that shows that the above theorem is tight.

APPROX/RANDOM’16

17:6 Planar Matching in Streams Revisited

2.3 Local Fractional Matchings for Weighted Graphs
In this section we show how to find a good local fractional matching for weighted graphs. We
will not use this result in our algorithm for approximating the maximum weighted matching
in Section 3 since a better approximation can be achieved using other ideas combined with
the fractional matching proposed for the unweighted case. However, we think the structural
result is interesting and could be useful in other computational models.

Define y ∈ RE where for e = {u, v} ∈ E, we set

ye = min
(

1
dege(u) ·H(deg(u)) ,

1
dege(v) ·H(deg(v)) ,

1
α+ 1

)
where dege(u) and dege(v) are the number of edges at least as heavy as e that are incident
to u and v respectively and H(r) = 1/1 + 1/2 + . . .+ 1/r is the harmonic function.

The next two theorems show that y is a local fractional matching and

1
H(D) · (α+ 1) match(G) ≤ score(y) ≤ α+ 2

α+ 1 match(G)

where score(y) =
∑
e weye and D is the maximum degree of the graph. Note that D can be

as large as n− 1 even for a low arboricity graph. However, since the average degree of G
is at most 2α, we expect D to typically be much smaller for many low arboricity graphs of
interest.

I Theorem 7. y ∈ FM and

score(y)
match(G) ≤

{
α+2
α+1 if α odd,
α+3
α+2 if α even.

Furthermore, if G is bipartite then score(y) ≤ match(G).

Proof. For all u ∈ V ,∑
e∈E:u∈e

xe ≤
1

H(deg(u))
∑

e∈E:u∈e

1
dege(u) ≤

1
H(deg(u)) (1/1 + 1/2 + . . .+ 1/ deg(u)) = 1 ,

and hence y ∈ FM. The result of the proof follows as in the proof of Theorem 5 since
ye ≤ 1/(α+ 1) for all e. J

I Theorem 8. match(G) ≤ H(D)(α+ 1) score(y) where D is the maximum degree.

Proof. Let ze be the optimum weighted integral matching. Let 0 < w1 < w2 < w3 < . . . be
the distinct weights in the graph and let w0 = 0. Let Gk be the unweighted graph formed
from the original weighted graph where all edges whose weight is < wk are deleted and the
other edges are given weight 1. Let zke be the optimum unweighted integral matching for Gk
and let degk(u) be the degree of node u in Gk.

Then,

score(z) =
∑
e

zewe ≤
∑
k

(wk − wk−1)
∑
e∈Gk

zke

≤ (α+ 1)
∑
k

(wk − wk−1)
∑
e∈Gk

min
(

1
degk(u) ,

1
degk(v) ,

1
α+ 1

)
where the last inequality follows by our result for the unweighted case.

A. McGregor and S. Vorotnikova 17:7

But for any e ∈ E,

∑
k:e∈Gk

(wk − wk−1) min
(

1
degk(u) ,

1
degk(v) ,

1
α+ 1

)

≤
∑

k:e∈Gk

(wk − wk−1) min
(

1
dege(u) ,

1
dege(v) ,

1
α+ 1

)

≤ we min
(

1
dege(u) ,

1
dege(v) ,

1
α+ 1

)
≤ H(D)weye

where the first inequality follows because degk(u) ≥ dege(u) for all k such that e ∈ Gk.
Therefore match(G) ≤ H(D)(α+ 1) score(y) as claimed. J

2.4 Exact Degree Distribution

Using ideas from the previous sections, we now show that the size of the maximum matching
can be approximated up to a O(α2) factor given just the degree distribution of G. Specifically,
consider the following estimate:

M̃ =
∑
u∈V

min(α+ 1− deg(u)/2, deg(u)/2) .

The next theorem shows that M̃ is a O(α2) approximation for match(G).

I Theorem 9. match(G) ≤ M̃ ≤ (α+2)2

2 ·match(G).

Proof. Let h be the number of “heavy” nodes with degree at least α+ 2. Partition the edges
E into E0, E1, and E2 depending on whether the edge has zero, one, or two heavy endpoints.
Note that E0 is just the set of shallow edges. Then,∑

u∈V
min(α+ 1− deg(u)/2,deg(u)/2)

=
∑
u∈V

deg(u)/2−max(deg(u)− α− 1, 0)

= |E0|+ |E1|+ |E2| −

 ∑
u:deg(u)≥α+2

max(deg(u)− α− 1, 0)

= |E0|+ |E1|+ |E2| −

 ∑
u:deg(u)≥α+2

deg(u)

+ h(α+ 1)

= |E0|+ |E1|+ |E2| − |E1| − 2|E2|+ h(α+ 1)
= |E0| − |E2|+ h(α+ 1)

First note that |E2| ≤ αh because the number of edges in any induced subgraph is at most
α times the number of nodes in that subgraph. Hence,

|E0| − |E2|+ h(α+ 1) ≥ |E0|+ h ≥ match(G) .

APPROX/RANDOM’16

17:8 Planar Matching in Streams Revisited

By appealing to Theorem 6 and Theorem 5

|E0| − |E2|+ h(α+ 1) ≤ |E0|+ h(α+ 1)

≤ (α+ 2)(α+ 1)
2 · (|E0|/(α+ 1) + 2h/(α+ 2))

≤ (α+ 2)(α+ 1)
2 · α+ 2

α+ 1 ·match(G)

≤ (α+ 2)2

2 ·match(G) . J

3 Data Stream Algorithms

In this section we briefly discuss the improved algorithmic results that can be achieved via
the results from the previous section.

3.1 Arbitrary Order Graph Streams
In the arbitrary order graph stream model, the stream consists of the edges of the input
graph G in arbitrary order. The goal is to estimate the size of the maximum cardinality
matching using only a single pass over this stream and limited memory.

From Theorem 2, we know we can estimate the size of the maximum cardinality via the
following quantity,

A :=
∑

{u,v}∈E

min
(

1
deg(u) ,

1
deg(v) ,

1
α+ 1

)
.

To do this we first show that A can be estimated via the quantity,

AS :=
∑

{u,v}∈E:u,v∈S

min
(

1
deg(u) ,

1
deg(v) ,

1
α+ 1

)
.

where S is a subset of V formed by sampling each node independently with probability p.
The next lemma shows that AS is within a 1 + ε factor of Ap2 with probability at least 3/4
assuming p is sufficiently large. Note that a similar approach is taken in Esfandiari et al. [12]
and Chitnis et al. [5] in the context of their algorithm to estimate the number of high degree
vertices and edges that are not incident to high degree vertices.

I Lemma 10. If p ≥
√

12ε−2A−1, then P
[
|AS −Ap2| ≤ ε ·Ap2] ≥ 3/4.

Proof. For each edge e = {u, v} ∈ E, let xe = min (1/deg(u), 1/deg(v), 1/(α+ 1)) and
define a random variable Xe where Xe = xe if u, v ∈ S and Xe = 0 otherwise. Note that
AS =

∑
e∈E Xe. Then, the expectation and variance of AS are E [AS] = Ap2 and

V [AS] =
∑
e∈E

∑
e′∈E

E [XeXe′]− E [Xe]E [Xe′] .

Note that

∑
e′∈E

E [XeXe′]− E [Xe]E [Xe′] =

x2
e(p2 − p4) if e = e′

xexe′(p3 − p4) if e and e′ share exactly one endpoint
0 if e and e′ share no endpoints

.

A. McGregor and S. Vorotnikova 17:9

Since the sum of all xe′ that share an endpoint with e is at most 2 because x ∈ FM,

V [AS] ≤
(∑
e∈E

x2
e(p2 − p4)

)
+ 2A(p3 − p4) ≤ 3Ap2 .

We then use Chebyshev’s inequality to obtain

P
[
|AS −Ap2| ≤ εAp2] ≤ 3Ap2

ε2A2p4 = 3
ε2Ap2 ≤ 3/4 . J

Given this key lemma, the algorithm and analysis proceed similarly to that of Esfandiari
et al. [12]. Specifically, two algorithms are run in parallel: a greedy matching algorithm and
a sampling-based algorithm. The greedy matching algorithm uses O(n2/3 logn) space to find
a maximal matching of size at least min(n2/3,match(G)/2). The sampling-based algorithm
uses O(αn2/3 logn) space to sample each node with probability p = Θ(ε−1/n2/3) and then
find all edges whose endpoints are both sampled along with the degrees of the sampled edges.
If the greedy matching has size less than n2/3 then it is necessarily a 2 approximation of
match(G). If not, we can use the estimate of A based on the nodes sampled since in this
case A = Ω(n2/3). Similarly, extensions of the above approach for dynamic graph streams
[5, 4] go through with the improved approximation factor. To summarize:

I Theorem 11. There exists a single pass data stream algorithm using O(αε−1nr log δ−1)
space that returns a (α+ 2)(1 + ε) approximation of the maximum matching with probability
at least 1− δ. In the insert-only model, r = 2/3 and in the insert-delete model r = 4/5.

3.2 Adjacency List Graph Streams
In the adjacency list model1 the edges incident to each node v appear consecutively in the
stream [23, 3, 2]. Thus, every edge {u, v} will appear twice: once when we view the adjacency
list of u and once for v. Aside from that constraint, the stream is ordered arbitrarily. For
example, for the graph consisting of a cycle on three nodes V = {v1, v2, v3}, a possible
ordering of the stream could be 〈v3v1, v3v2, v2v3, v2v1, v1v2, v1v3〉. Note that in this model it
is trivial to compute

M̃ =
∑
u∈V

min(α+ 1− deg(u)/2, deg(u)/2) .

in O(logn) space since the degree of a node can be calculated exactly when the adjacency
list of that node appears. The next theorem immediately follows from Theorem 9.

I Theorem 12. An (α + 2)2/2-approximation of the size of maximum matching can be
computed using O(logn) in the adjacency list model. In particular, this yields a 12.5-
approximation for planar graphs.

3.3 Extension to Weighted Graphs
Let G = (V,E) be a weighted graph where edge e has weight we ∈ [1,W] where W = poly(n).
In this section we show that it is possible to reduce the problem of finding a large weighted
matching in G to finding large cardinality matchings. Specifically, we show that given a

1 The adjacency list order model is closely related to the vertex arrival model [15, 18] and row-order
arrival model considered in the context of linear algebra problems [6, 14].

APPROX/RANDOM’16

17:10 Planar Matching in Streams Revisited

t-approximation algorithm for the unweighted problem, there is a 2(1 + ε)t-approximation
the maximum weighted problem where the latter algorithm using a factor O(ε−1 logn) more
space. This reduction uses ideas from work by Crouch and Stubbs [7].2 This immediately
implies a 2(2 + α)(1 + ε)-approximation algorithm for weighted graphs in the arbitrary order
model and a (2 + α)2(1 + ε)-approximation algorithm for weighted graphs in the adjacency
list model.

Reduction to Unweighted Matchings

For k = 0, 1, . . . , blog1+εW c, define the unweighted graph Gk = (V,Ek) where e ∈ Ek
iff we ≥ (1 + ε)k where we is the weight of e in the original weighted graph. Note that
E0 ⊆ E1 ⊆ E2 ⊆ . . . and, in particular, E0, E1, . . . is not a partition of E.

I Lemma 13. Let match(G) be the weight of the maximum weighted matching in G and let
m̃k be a t-approximation of the size of the maximum cardinality matching in Gk. Then,

match(G)/t ≤
∑
k≥0

f(k) · m̃k ≤ 2 · (1 + ε) ·match(G)

where

f(k) =
{

(1 + ε)k+1 − (1 + ε)k if k > 0 ,
(1 + ε) if k = 0 .

Proof. Let mk be the size of the maximum cardinality matching in Gk and let M be the set
of edges in the maximum weighted matching in G. To prove the left inequality, observe that∑

k≥0
f(k) · m̃k ≥

∑
k≥0

f(k) ·mk/t ≥
∑
k≥0

f(k) · |M ∩ Ek|/t ≥ match(G)/t ,

where the last inequality follows since

(1 + ε)we ≥
∑

k:we≥(1+ε)k

f(k) ≥ we . (1)

We now prove the right inequality. Consider the matching R formed by taking a maximal
matching in Er where r = blog1+εW c; extending this to a maximal matching in Er−1;
extending this to a maximal matching in Er−2 as so on. Note that since R∩Ek is a maximal
matching in Ek, we have m̃k ≤ mk ≤ 2|R ∩ Ek|. Therefore,∑

k≥0
f(k) · m̃k ≤ 2

∑
k≥0

f(k) · |R ∩ Ek| ≤ 2(1 + ε)
∑
e∈R

we ≤ 2(1 + ε) match(G) ,

where the second last inequality follows from Eq. 1. J

4 Conclusion

We established better approximation ratios for the data stream problem of estimating the max-
imum weight and cardinality matchings in graphs of bounded arboricity α. The main technical
result is that the relatively simple quantity

∑
{u,v}∈E min (1/deg(u), 1/deg(v), 1/(α+ 1)) de-

termines the size of the maximum cardinality matching up to a factor of (α+ 2), e.g., 5 in
the case of planar graphs, and this quantity can be estimated efficiently in the data stream
model. Other results included establishing that the degree distribution determines the size
of the maximum cardinality matching up to a factor of (α+ 2)2/2, e.g., 12.5 in the case of
planar graphs.

2 Concurrent with our work, Grigorescu, Monemizadeh, and Zhou [16] designed a similar reduction.

A. McGregor and S. Vorotnikova 17:11

References

1 Kook Jin Ahn and Sudipto Guha. Linear programming in the semi-streaming model with
application to the maximum matching problem. Inf. Comput., 222:59–79, 2013. doi:
10.1016/j.ic.2012.10.006.

2 Ziv Bar-Yossef, Ravi Kumar, and D. Sivakumar. Reductions in streaming algorithms, with
an application to counting triangles in graphs. In Proc. of the 13th Annual ACM-SIAM
Symposium on Discrete Algorithms, January 6-8, 2002, San Francisco, CA, USA., pages
623–632, 2002. URL: http://dl.acm.org/citation.cfm?id=545381.545464.

3 Luciana S. Buriol, Gereon Frahling, Stefano Leonardi, Alberto Marchetti-Spaccamela, and
Christian Sohler. Counting triangles in data streams. In Proceedings of the Twenty-Fifth
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, June 26-
28, 2006, Chicago, Illinois, USA, pages 253–262, 2006. doi:10.1145/1142351.1142388.

4 Marc Bury and Chris Schwiegelshohn. Sublinear estimation of weighted matchings in
dynamic data streams. In Algorithms – ESA 2015 – 23rd Annual European Symposium,
Patras, Greece, September 14-16, 2015, Proceedings, pages 263–274, 2015. doi:10.1007/
978-3-662-48350-3_23.

5 Rajesh Chitnis, Graham Cormode, Hossein Esfandiari, MohammadTaghi Hajiaghayi, An-
drew McGregor, Morteza Monemizadeh, and Sofya Vorotnikova. Kernelization via sampling
with applications to finding matchings and related problems in dynamic graph streams.
In Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1326–1344, 2016.
doi:10.1137/1.9781611974331.ch92.

6 Kenneth L. Clarkson and David P. Woodruff. Numerical linear algebra in the streaming
model. In Proceedings of the 41st Annual ACM Symposium on Theory of Computing,
STOC 2009, Bethesda, MD, USA, May 31 – June 2, 2009, pages 205–214, 2009. doi:
10.1145/1536414.1536445.

7 Michael Crouch and Daniel S. Stubbs. Improved streaming algorithms for weighted match-
ing, via unweighted matching. In Approximation, Randomization, and Combinatorial Op-
timization. Algorithms and Techniques, APPROX/RANDOM 2014, September 4-6, 2014,
Barcelona, Spain, pages 96–104, 2014. doi:10.4230/LIPIcs.APPROX-RANDOM.2014.96.

8 Michael S. Crouch, Andrew McGregor, and Daniel Stubbs. Dynamic graphs in the sliding-
window model. In Algorithms – ESA 2013 – 21st Annual European Symposium, Sophia
Antipolis, France, September 2-4, 2013. Proceedings, pages 337–348, 2013. doi:10.1007/
978-3-642-40450-4_29.

9 Andrzej Czygrinow, Michal Hanckowiak, and Edyta Szymanska. Fast distributed ap-
proximation algorithm for the maximum matching problem in bounded arboricity graphs.
In Algorithms and Computation, 20th International Symposium, ISAAC 2009, Honolulu,
Hawaii, USA, December 16-18, 2009. Proceedings, pages 668–678, 2009. doi:10.1007/
978-3-642-10631-6_68.

10 Jack Edmonds. Maximum matching and a polyhedron with 0,1-vertices. Journal of Re-
search of the National Bureau of Standards, 69:125-130, 1965.

11 Leah Epstein, Asaf Levin, Julián Mestre, and Danny Segev. Improved approximation
guarantees for weighted matching in the semi-streaming model. SIAM J. Discrete Math.,
25(3):1251–1265, 2011. doi:10.1137/100801901.

12 Hossein Esfandiari, Mohammad Taghi Hajiaghayi, Vahid Liaghat, Morteza Monemizadeh,
and Krzysztof Onak. Streaming algorithms for estimating the matching size in planar
graphs and beyond. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 1217–
1233, 2015. doi:10.1137/1.9781611973730.81.

APPROX/RANDOM’16

http://dx.doi.org/10.1016/j.ic.2012.10.006
http://dx.doi.org/10.1016/j.ic.2012.10.006
http://dl.acm.org/citation.cfm?id=545381.545464
http://dx.doi.org/10.1145/1142351.1142388
http://dx.doi.org/10.1007/978-3-662-48350-3_23
http://dx.doi.org/10.1007/978-3-662-48350-3_23
http://dx.doi.org/10.1137/1.9781611974331.ch92
http://dx.doi.org/10.1145/1536414.1536445
http://dx.doi.org/10.1145/1536414.1536445
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.96
http://dx.doi.org/10.1007/978-3-642-40450-4_29
http://dx.doi.org/10.1007/978-3-642-40450-4_29
http://dx.doi.org/10.1007/978-3-642-10631-6_68
http://dx.doi.org/10.1007/978-3-642-10631-6_68
http://dx.doi.org/10.1137/100801901
http://dx.doi.org/10.1137/1.9781611973730.81

17:12 Planar Matching in Streams Revisited

13 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang.
On graph problems in a semi-streaming model. Theor. Comput. Sci., 348(2):207–216, 2005.
doi:10.1016/j.tcs.2005.09.013.

14 Mina Ghashami, Edo Liberty, Jeff M. Phillips, and David P. Woodruff. Frequent directions:
Simple and deterministic matrix sketching. CoRR, abs/1501.01711, 2015. URL: http:
//arxiv.org/abs/1501.01711.

15 Ashish Goel, Michael Kapralov, and Sanjeev Khanna. On the communication and stream-
ing complexity of maximum bipartite matching. In Proceedings of the Twenty-Third An-
nual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, Janu-
ary 17-19, 2012, pages 468–485, 2012. URL: http://portal.acm.org/citation.cfm?id=
2095157&CFID=63838676&CFTOKEN=79617016.

16 Elena Grigorescu, Morteza Monemizadeh, and Samson Zhou. Estimating weighted match-
ings in o(n) space. CoRR, abs/1604.07467, 2016. URL: http://arxiv.org/abs/1604.
07467.

17 Venkatesan Guruswami and Krzysztof Onak. Superlinear lower bounds for multipass graph
processing. In Proc. of the 28th Conference on Computational Complexity, CCC 2013, Palo
Alto, California, USA, 5-7 June, 2013, pages 287–298, 2013. doi:10.1109/CCC.2013.37.

18 Michael Kapralov. Better bounds for matchings in the streaming model. In Proceedings of
the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013,
New Orleans, Louisiana, USA, January 6-8, 2013, pages 1679–1697, 2013. doi:10.1137/
1.9781611973105.121.

19 Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Approximating matching size
from random streams. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages
734–751, 2014. doi:10.1137/1.9781611973402.55.

20 Christian Konrad. Maximum matching in turnstile streams. In Algorithms – ESA 2015
– 23rd Annual European Symposium, Patras, Greece, September 14-16, 2015, Proceedings,
pages 840–852, 2015. doi:10.1007/978-3-662-48350-3_70.

21 Christian Konrad, Frédéric Magniez, and Claire Mathieu. Maximum matching in semi-
streaming with few passes. In Approximation, Randomization, and Combinatorial Optim-
ization. Algorithms and Techniques – 15th International Workshop, APPROX 2012, and
16th International Workshop, RANDOM 2012, Cambridge, MA, USA, August 15-17, 2012.
Proceedings, pages 231–242, 2012. doi:10.1007/978-3-642-32512-0_20.

22 Christian Konrad and Adi Rosén. Approximating semi-matchings in streaming and in two-
party communication. In Automata, Languages, and Programming – 40th International
Colloquium, ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part I, pages 637–
649, 2013. doi:10.1007/978-3-642-39206-1_54.

23 Madhusudan Manjunath, Kurt Mehlhorn, Konstantinos Panagiotou, and He Sun. Approx-
imate counting of cycles in streams. In Algorithms – ESA 2011 – 19th Annual European
Symposium, Saarbrücken, Germany, September 5-9, 2011. Proceedings, pages 677–688,
2011. doi:10.1007/978-3-642-23719-5_57.

24 Andrew McGregor. Finding graph matchings in data streams. APPROX-RANDOM, pages
170–181, 2005.

25 Andrew McGregor. Graph stream algorithms: a survey. SIGMOD Record, 43(1):9–20, 2014.
doi:10.1145/2627692.2627694.

26 Mariano Zelke. Weighted matching in the semi-streaming model. Algorithmica, 62(1-2):1–
20, 2012. doi:10.1007/s00453-010-9438-5.

http://dx.doi.org/10.1016/j.tcs.2005.09.013
http://arxiv.org/abs/1501.01711
http://arxiv.org/abs/1501.01711
http://portal.acm.org/citation.cfm?id=2095157&CFID=63838676&CFTOKEN=79617016
http://portal.acm.org/citation.cfm?id=2095157&CFID=63838676&CFTOKEN=79617016
http://arxiv.org/abs/1604.07467
http://arxiv.org/abs/1604.07467
http://dx.doi.org/10.1109/CCC.2013.37
http://dx.doi.org/10.1137/1.9781611973105.121
http://dx.doi.org/10.1137/1.9781611973105.121
http://dx.doi.org/10.1137/1.9781611973402.55
http://dx.doi.org/10.1007/978-3-662-48350-3_70
http://dx.doi.org/10.1007/978-3-642-32512-0_20
http://dx.doi.org/10.1007/978-3-642-39206-1_54
http://dx.doi.org/10.1007/978-3-642-23719-5_57
http://dx.doi.org/10.1145/2627692.2627694
http://dx.doi.org/10.1007/s00453-010-9438-5

A Robust and Optimal Online Algorithm for
Minimum Metric Bipartite Matching
Sharath Raghvendra∗

Dept. of Computer Science, Virginia Tech, Blacksburg, USA
sharathr@vt.edu

Abstract
We study the Online Minimum Metric Bipartite Matching Problem. In this problem, we are given
point sets S and R which correspond to the server and request locations; here |S| = |R| = n. All
these locations are points from some metric space and the cost of matching a server to a request
is given by the distance between their locations in this space. In this problem, the request points
arrive one at a time. When a request arrives, we must immediately and irrevocably match it to a
“free" server. The matching obtained after all the requests are processed is the online matching
M . The cost of M is the sum of the cost of its edges. The performance of any online algorithm
is the worst-case ratio of the cost of its online solution M to the minimum-cost matching.

We present a deterministic online algorithm for this problem. Our algorithm is the first
to simultaneously achieve optimal performances in the well-known adversarial and the random
arrival models. For the adversarial model, we obtain a competitive ratio of 2n − 1 + o(1); it is
known that no deterministic algorithm can do better than 2n− 1. In the random arrival model,
our algorithm obtains a competitive ratio of 2Hn−1+o(1); where Hn is the nth Harmonic number.
We also prove that any online algorithm will have a competitive ratio of at least 2Hn − 1− o(1)
in this model.

We use a new variation of the offline primal-dual method for computing minimum cost match-
ing to compute the online matching. Our primal-dual method is based on a relaxed linear-
program. Under metric costs, this specific relaxation helps us relate the cost of the online
matching with the offline matching leading to its robust properties.

1998 ACM Subject Classification G.2.2 [Graph Theory] Graph Algorithms

Keywords and phrases Online Algorithms, Metric Bipartite Matching

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2016.18

1 Introduction

In an era of instant gratification, consumers desire speedy access to goods and services.
Several new business ventures promise on-demand delivery of such services to consumers.
Typically, these ventures have servers in various locations of the city and when a new request
arrives, they match one of the available servers to this request. The cost associated with
this match is often a metric cost; for instance, it could be the minimum distance traveled
by the server to reach the request. A primary objective is to minimize the overall cost of
the assignments made. This problem is difficult because all of the request locations are not
known in advance.

Each server may have a maximum capacity of how many requests it can serve. A central
problem in online algorithms is the k-server problem where each of the k servers has a

∗ The author would like to acknowledge the support of NSF CRII grant CCF-1464276 in conducting this
research.

© Sharath Raghvendra;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016).
Editors: Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans; Article No. 18; pp. 18:1–18:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.18
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

18:2 A Robust and Optimal Online Algorithm for Minimum Metric Bipartite Matching

capacity to serve an arbitrary number of requests. In the case where the server capacity is 1,
the problem reduces to the well-studied online minimum metric bipartite matching problem.

To define this problem, let S be a set of servers and let R be a set of requests. We assume
that the locations in S ∪R are points from some metric space. Let d(a, b) be the distance
between any two points in this space. Consider a complete bipartite graph G(S ∪R,S ×R),
|S| = |R| = n, with the edge set S × R. Every pair of server and request, (s, r) ∈ S × R
has a distance d(s, r). We refer to this distance as the cost of server s serving request r. A
matching M ⊆ S×R is any set of vertex-disjoint edges of the bipartite graph G(S∪R,S×R).
The cost of any matching M is given by w(M) =

∑
(s,r)∈M d(s, r). A perfect matching is

a matching where every server in S is serving exactly one request in R, i.e., |M | = n. A
minimum-cost perfect matching is a perfect matching with the minimum cost.

Ideally, we would like to match servers to requests so that the cost of this matching is as
small as possible. However, in the online metric bipartite matching problem, the requests
arrive one at a time and when any request arrives, we have to immediately and irrevocably
match it to some unmatched server. The resulting matching is referred to as an online
matching. Designing an online algorithm which finds a matching with minimum-cost is
impossible because, for any partial assignment made by the algorithm, an adversary can
easily fill up the remaining request locations in R so that this partial assignment becomes
sub-optimal. Therefore, we want our algorithm to compute an online matching which is
only near optimal. For any input S,R and any arrival order of requests in R, we say our
algorithm is α-competitive, for α > 1, when the cost of the online matching M is at most α
times the minimum cost, i.e.,

w(M) ≤ αw(Mopt).

Here Mopt is the minimum-cost matching of the locations in S and R.
In the above discussion, note the role of the adversary. In the adversarial model, the

adversary knows the server locations and the assignments made by the algorithm and
generates a sequence to maximize α. In order to account for adversarial input sequence,
algorithms which work well in this model may become very cautious in making low-cost
assignments. As a result, their performance may be hampered on realistic input sequences.

A less pessimistic model is the random arrival model. In this model [13], the adversary
chooses the set of request locations R at the start but the arrival order is a permutation
chosen uniformly at random from the set of all possible permutations; we refer to this as a
random permutation. For any input S,R and an arrival order which is a random permutation
of R, we say our algorithm is α-competitive, for α > 1, when the expected cost of the online
matching M is at most α times the minimum cost, i.e.,

E[w(M)] ≤ αw(Mopt).

In practical situations, one can assume that the requests locations are independent and
identically distributed (i.i.d.) random variables from an unknown but fixed distribution
D . On many occasions, using historical data, one can learn this distribution D . These
KnownIID and UnknownIID models are weaker than the random arrival model. Therefore,
the competitive ratio of an algorithm in the random arrival model is an upper bound on
its performance in the KnownIID and the UnknownIID models; see [9] for algorithms in
these models.

Another popular model of theoretical interest is the oblivious adversary model. In this
model, the adversary knows the algorithm and decides the request locations and their arrival
order. However, the online algorithm is a randomized algorithm and the adversary does not

S. Raghvendra 18:3

know the random choices made by the algorithm. This model is weaker than the adversarial
model but stronger than the random arrival model.

Below is the summary of relative hardness of all these models

Adversarial � Oblivious Adversary � Random Arrival � UnknownIID � KnownIID.

Existing Work. Solutions for the k-server problem and the online bipartite matching
problem use similar mathematical tools and methodologies. Both of these problems have
been extensively studied in the adversarial model and the oblivious model. However, we are
not aware of any work on these problems under the random arrival model.

The k-server problem is central to the theory of online algorithms. The problem was
first posted by Manasse et al. [14]. In the adversarial model, the best-known deterministic
algorithm for this problem is the 2k − 1-competitive work function algorithm [12]. In this
problem, we assume there are k servers, each of which can serve arbitrary many of the n
arriving requests. It is known that no deterministic algorithm can achieve a competitive
ratio better than k and is conjectured that in fact there is a k-competitive algorithm for this
problem. This conjecture is popularly called the k-server conjecture.

For the online metric bipartite matching problem, in the adversarial model, there is a
2n− 1-competitive deterministic algorithm by Khuller et al. [10] and Kalyanasundaram and
Pruhs [8]. They also show that no online algorithm can achieve a better competitive ratio in
this model.

For the oblivious adversary, there are O(poly logn)-competitive algorithms for both the
k-server problem and the online metric bipartite matching problem. Bansal et al. [5] achieve
an O(log2 n)-competitive algorithm for the metric bipartite matching problem. For the
k-server problem, Bansal et al. [4] presented a O(poly logn log k)-competitive algorithm.

All of these algorithms use a standard approach. They first embed the metric space into a
tree metric that leads to a O(logn) distortion in costs. Then, they design a logn-competitive
algorithm for this tree metric. As a consequence, these results obtain a log2 n-competitive
algorithm (poly logn-competitive for the k-server). The bottleneck in improving existing
work is the O(logn)-distortion associated with the tree metric. An open question is whether
one can design an O(logn)-competitive algorithm for these problems.

Also note that for bounded doubling dimension metric, there is an a O(d logn)-competitive
algorithm in the oblivious model [6]; here d is the doubling dimension of the metric space.
In the adversarial model, the question of finding a deterministic O(1)-competitive online
algorithm for the line metric remains an important open question; see [3, 11] for results on
this special case. We would like to note the existence of several fast primal-dual algorithms
to compute approximate (offline) matching in metric and geometric settings [7, 2, 16, 17, 1].

Our Results. In this paper, we give a robust deterministic online algorithm for the metric
bipartite matching problem. Our algorithm achieves an optimal performance of 2n− 1 in
the adversarial model. This same algorithm has an exponentially better performance in the
random arrival model where we obtain optimal 2Hn − 1 + o(1)-competitive ratio. Here Hn is
the nth harmonic number (approximately lnn). We also prove that no algorithm can achieve
a competitive ratio better than 2Hn − 1− o(1).

To our knowledge, this is the first online algorithm which achieves optimal performances
in two different models simultaneously. Our algorithm’s robustness across different models of
adversaries is also crucial in practical settings where there is limited information about the
model of adversary.

APPROX/RANDOM’16

18:4 A Robust and Optimal Online Algorithm for Minimum Metric Bipartite Matching

Unlike previous work, our approach does not use a tree metric, thereby allowing us to
achieve a O(logn)-competitive algorithm in the random arrival model.

Our Techniques. Many deterministic online algorithms use the best minimum-cost offline
solution to construct the online solution. This includes the work-function algorithm for the
k-server problem and the deterministic algorithms for the online minimum metric bipartite
matching problem. Our approach is similar in style, except we use, for some t > 1, a t-
approximate minimum-cost solution to guide our online solution. This approximate matching
is derived from a relaxed linear program where the constraint for every non-matching edge is
relaxed by a multiplicative factor of t. We will fix the value of t for the entire execution of
the algorithm. When a new request arrives, our algorithm updates the offline matching by
computing an augmenting path P . For the online matching, the algorithm simply matches
the two free end points of P .

We observe that for larger values of t, the algorithm picks an augmenting path P of
a smaller length leading to lower cost of the online matching. On the other hand, larger
values of t causes the offline matching to be a weaker approximation which leads to a weaker
bound for the online matching. Therefore, it may seem that the best trade-off between these
opposing observations is achieved at some finite value of t.

However, surprisingly, we show that the performance of our online algorithm improves as
t→∞. We show that the competitive ratio of our algorithm is (2 + 2

t−1)n− (1 + 2
t−1) in

the adversarial model and (2 + 2
t−1)Hn − (1 + 2

t−1) in the random arrival model.

2 Preliminaries

In this section, we present preliminary notations required to describe our algorithm.
Given a matching M∗ on this bipartite graph, an alternating path (or cycle) is a simple

path (resp. cycle) whose edges alternate between those in M∗ and those not in M∗. We
refer to any vertex that is not matched in M∗ as a free vertex. An augmenting path P is an
alternating path between two free vertices. We can augment M∗ by one edge along P if we
remove the edges of P ∩M∗ from M∗ and add the edges of P \M∗ to M∗. After augmenting,
the new matching is given by M∗ ←M∗ ⊕ P , where ⊕ is the symmetric difference operator.
For a parameter t ≥ 1, we define the t-net-cost of an augmenting path P as follows:

φt(P) = t

 ∑
(s,r)∈P\M∗

d(s, r)

− ∑
(s,r)∈P∩M∗

d(s, r) .

When t = 1, we can interpret the t-net-cost of a path as the increase in the cost of
the matching due to augmenting it along P , i.e., for t = 1, φ1(P) = w(M ⊕ P) − w(M).
The well-known Hungarian method iteratively augments along an augmenting path with
the minimum 1-net-cost to compute the optimal matching. For t > 1, the t-net-cost φt(P)
can be very different from w(M ⊕ P) − w(M). As noted earlier, larger values of t yields
smaller length augmenting paths. In Figure 1, there are two augmenting paths. Let the
augmenting path from r to s′ be P ′ and the augmenting path from r to s be P . When t = 1,
the φ1(P) = φ1(P ′) = 1. However, φ2(P ′) = 3 and φ2(P) = 4. As t increases, the difference
between the t-net-costs of these paths is magnified.

We derive an alternate interpretation of the t-net-cost in Section 3 which will be crucial
in providing guarantees for our online solution. The definition of t-net-cost easily extends to
alternating paths and cycles as well.

S. Raghvendra 18:5

r
s

s′

Figure 1 All solid edges are edges in the matching M∗ and the dashed edges are not in M∗. The
cost of every edge is 1.

Feasibility of a Matching. For every vertex v of the graph G(S ∪ R,S × R), let its dual
weight be y(v). For a parameter t ≥ 1, we define a t-feasible matching to be a matching M∗
and a set of dual weights y(·) on the vertex set such that for every edge between request
r ∈ R and server s ∈ S, we have

y(s) + y(r) ≤ td(s, r), (1)
y(s) + y(r) = d(s, r) for (s, r) ∈M∗. (2)

Using t-feasibility and t-net-cost we describe our algorithm next.

2.1 Algorithm

In this section, we present our algorithm without fixing the parameter t. Eventually, to
obtain the bounds on the competitive ratio, we set t = n2 + 1.

For every vertex v ∈ S ∪R, our algorithm will maintain a dual weight y(v). At the start
of the algorithm, the dual weight of every vertex is set to 0. Recollect that, in the online
setting, requests from the set R arrive one at a time. For those requests r′ ∈ R which have
not yet arrived, their dual weight remains 0, i.e., y(r′) = 0. The algorithm also maintains
two matchings M and M∗; both these matchings are initialized to ∅ at the start. M and M∗
match all the request seen so far to servers in S. The matching M∗ together with the dual
weights y(·) is a t-feasible matching; we refer to this as the offline matching. The matching
M , on the other hand, is the online matching.

Algorithm. Given a new request r, our algorithm computes the minimum t-net-cost
augmenting path P with respect to matching M∗. P starts at r and ends at some free
vertex s. The algorithm updates M∗ by augmenting it along P , i.e., M∗ ←M∗⊕P . For
the online matchingM , the algorithm will match the server s to r, i.e.,M ←M∪{(s, r)}.

At any given stage in the algorithm, let SF be the set of free servers in S with respect to
the offline matching M∗. It follows from the description of our algorithm that SF is also the
set of free servers with respect to the online matching M .

Our algorithm maintains the following invariants:
(I1) M∗ and dual weights y(·) form a t-feasible matching, and,
(I2) for every vertex s ∈ S, y(s) ≤ 0 and if s ∈ SF , y(s) = 0.

Next, we present an O(n2) time algorithm to compute the minimum t-net-cost augmenting
path P and update the matchingsM,M∗ and the dual weights. After describing the algorithm,
we prove the invariants (I1) and (I2).

APPROX/RANDOM’16

18:6 A Robust and Optimal Online Algorithm for Minimum Metric Bipartite Matching

Algorithm Details. To compute a minimum t-net-cost augmenting path P with respect to
the offline matchingM∗, we construct a weighted residual graph GM∗ with S∪R as the vertex
set and EM∗ as the set of edges as follows. Let −→sr represent an edge directed from s to r. For
every edge (s, r) ∈M∗, we have an edge −→sr in EM∗ . For every edge (s, r) ∈ (S ×R) \M∗,
there is an edge −→rs in EM∗ . Every edge

−→
ab ∈ EM∗ is assigned a cost as follows:

If (a, b) ∈M∗, we set the cost of the edge to be the slack s(a, b) = d(a, b)− y(a)− y(b).
From t-feasibility (condition (2)) of M∗, we know the slack of every edge in the matching
is s(a, b) = 0.
If (a, b) 6∈M∗, we set the cost of the edge (a, b) to be the slack s(a, b) = td(a, b)−y(a)−y(b).
From t-feasibility (condition (1)) of M∗, we know s(a, b) ≥ 0.

By construction, every edge in E∗M has a non-negative edge cost. Also, notice that the
set of nodes in G(S ∪R,S ×R) (henceforth referred to as G) and GM∗ are identical. GM∗

and G have the same set of edges except that the edges of GM∗ have directions. For any
directed path −→P in GM∗ , we can define its associated path P by replacing every edge

−→
ab ∈

−→
P

with the corresponding undirected edge (a, b) from G. For any directed path −→P in GM∗ , its
associated path P is an alternating path in G. More so, if the two end vertices of −→P are free
vertices, then the associated path P will be an augmenting path.

To compute the minimum t-net-cost augmenting path P , we simply execute Dijkstra’s
algorithm and find the minimum-cost path from r to every other node in GM∗ . For any node
v, let dv be the cost of the shortest path from r to v. Among all free servers of S, we pick
s ∈ SF with the lowest minimum-cost path from r in GM∗ , i.e., s = arg mins′∈SF

ds′ . Let
this lowest minimum-cost path be −→P . Clearly −→P is a directed path from r to s. Let P be
the associated augmenting path of −→P in G. In Lemma 1 and Corollary 2, we show that P is
the minimum t-net-cost augmenting path starting at r.

Before augmenting the matching M∗ along P , we update the dual weights of all nodes of
S ∪R. Let ds = d be the cost of the directed path −→P . We update the dual weight of every
node v as follows:
(a) If dv ≥ d, then y(v) remains unchanged.
(b) If dv < d, and v ∈ R, then we increase the dual weight y(v)← y(v) + d− dv

(c) If dv < d, and v ∈ S, then we decrease the dual weight y(v)← y(v)− d+ dv.
In Lemma 4, we show that the updated dual weights and the matching M∗ are t-feasible.

We also show, in Lemma 4, that after the dual updates, every edge in P \M∗ will satisfy (1)
with equality.

At this point, we update matching M∗ by augmenting M∗ along P , i.e., M∗ ←M∗ ⊕ P .
We also update the dual weight of every vertex r′ ∈ R ∩ P as follows: y(r′) ← y(r′) −
(t− 1)d(s′, r′); here s′ is the match of r′ in the updated M∗. Lemma 5 will show that the
matching after the augmentation and the updated dual weights remain t-feasible.

In processing a new request, note that we update the dual weights twice. First, we update
them right before augmenting the matching along P as describe in a–c. Then, immediately
after augmenting M∗ along the path P , we update the dual weight again. In Lemma 4 and
Lemma 5, we will show that both these updates do not violate the t-feasibility property of
M∗. Therefore, (I1) holds. The proofs of Lemma 1, Lemma 3, Lemma 4, Lemma 5 and Proof
of (I2) are variants of the proofs for the standard primal-dual based Hungarian method. For
the sake of completion, we present these proofs. An expert may choose to skip these proofs.

The following lemma will show that Dijkstra’s algorithm will compute the minimum
t-net-cost path between r and any free server s.

S. Raghvendra 18:7

I Lemma 1. For any free server s ∈ SF , let
−→
P be a directed path from the new request r to

s in GM∗ with a cost d′. Then, the associated path P of −→P is an augmenting path whose
t-net-cost is d′.

Proof. The cost of −→P is:

d′ =
∑
−→
ab∈
−→
P

s(a, b) (3)

For the associated path P , from the definition of t-net-cost and the feasibility of dual weights,
we have

φt(P) = t(
∑

(s′,r′)∈P\M∗
d(s′, r′))−

∑
(s′,r′)∈P∩M∗

d(s′, r′)

= t(
∑

(s′,r′)∈P\M∗
d(s′, r′))−

∑
(s′,r′)∈P∩M∗

(y(s′) + y(r′)) (4)

Since the first and the last vertex of the associated path P , i.e., s and r, are unmatched
in M∗, both the first and the last edge of P is not in the matching M∗. Therefore, we can
write (4) as:

φt(P) =
∑

(s′,r′)∈P\M∗
(t(d(s′, r′))− y(s′)− y(r′)) + y(s) + y(r) (5)

Note that y(s) is 0 by invariant (I2) and by construction y(r) is 0. For every edge (s′, r′) ∈
P ∩M∗, d(s′, r′)− y(s′)− y(r′) = 0. Combining this, we can rewrite equation 5 as

φt(P) =
∑

(s′,r′)∈P\M∗
(t(d(s′, r′))− y(s′)− y(r′)) +

∑
(s′,r′)∈P∩M∗

(d(s′, r′)− y(s′)− y(r′))

=
∑
−→
ab∈
−→
P

s(a, b) = d′ J

As an immediate corollary to Lemma 1, we conclude that the path chosen by our algorithm
is the minimum t-net-cost path.

I Corollary 2. In processing the new request r, the augmenting path P chosen by our
algorithm has the smallest t-net-cost among all augmenting paths that begin at r.

In order to show that M∗ and dual weights y(·) form a t-feasible, we need to show that all
edges in the complete bipartite graph G(S ∪R,S ×R) satisfy t-feasibility conditions (1) and
(2). This includes the edges incident on requests that have not yet arrived. The following
simple lemma will show that any such edge will satisfy t-feasibility conditions at all times.

I Lemma 3. At any stage of the algorithm, consider any edge (r′, s′) ∈ R× S where r′ is
a request that has not yet arrived. We claim that the edge (r′, s′) satisfies the t-feasibility
condition.

Proof. Since r′ has not yet arrived, r′ is a free node. Therefore, the edge (r′, s′) is not in
the current matching M∗. By construction, every request that has not yet arrived has a
dual weight of 0. Therefore, y(r′) = 0. From invariant (I2), y(s′) ≤ 0. Since t ≥ 1 and
d(s′, r′) ≥ 0, we have

y(r′) + y(s′) ≤ 0 ≤ td(s′, r′),

showing that (r′, s′) satisfies (1). J

APPROX/RANDOM’16

18:8 A Robust and Optimal Online Algorithm for Minimum Metric Bipartite Matching

From this point onwards, to show that M∗ is t-feasible, we will focus only on the edges
incident on requests that have already arrived. Lemma 3, allows us to ignore all other edges
incident on requests which have not yet arrived.

The following lemma shows that the updated dual weights before augmenting along P
satisfy the desired properties:

I Lemma 4. Let y(·) be the dual weights assigned to S ∪ R before executing Dijkstra’s
algorithm and let y′(·) be the updated dual weights computed before augmenting M∗ along
P . The matching M∗ and dual weights y′(·) are t-feasible. Furthermore, suppose P is the
augmenting path chosen by the algorithm. Then, every edge of P has 0 slack with respect to
the updated dual weights y′(·), i.e., for every (s′, r′) ∈M∗ ∩ P , d(s′, r′)− y(s′)− y(r′) = 0
and for every (s′, r′) ∈ P \M∗, td(s′, r′)− y(s′)− y(r′) = 0.

Proof. First, for any edge (s′, r′) ∈ M∗, we show that the updated dual weights does not
violate feasibility condition (2). For any edge (s′, r′) ∈M∗ there is a directed edge

−→
s′r′ in

GM∗ . By construction, all edges incident on r′ except for the edge
−→
s′r′ is directed away

from r′ (edges that are not in the matching are directed away from the requests in GM∗).
Therefore any path in GM∗ from the new request r to r′ must contain the edge

−→
s′r′; note that

since (s′, r′) ∈M∗, it has 0 slack and therefore the cost of this edge in GM∗ is s(s′, r′) = 0.
Therefore, the shortest path from r to r′ has the same cost as the shortest path from r to s′,
i.e., ds′ = dr′ . If ds′ ≥ d, the dual weights of s′ and r′ are not updated (update condition
(a)), and therefore the edge continues to satisfy (2). On the other hand, if (ds′ = dr′) < d,
the dual weight y(r′) increases by d− dr′ and the dual weight of y(s′) decreases by d− ds′ .
Since ds′ = dr′ , we have

y′(s′) + y′(r′) = y(s′)− d+ ds′ + y(r′) + d− dr′ = y(s′) + y(r′) = d(s′, r′).

Therefore, every edge (s′, r′) ∈M∗ continues to satisfy the t-feasibility condition (2).
For any edge (s′, r′) ∈ (S ×R) \M∗, there is an edge

−→
r′s′ in GM∗ . Since shortest path

costs satisfy triangle inequality, we have ds′ ≤ dr′ + s(r′, s′), or

ds′ − dr′ ≤ s(r′, s′).

After the dual weights are updated, we have

y′(r′) + y′(s′) = y(r′) + d− dr′ + y(s′)− d+ ds′ ≤ y(s′) + y(r′) + s(s′, r′) ≤ td(s′, r′).

Therefore, every edge (s′, r′) remains feasible after the dual updates.
For every edge in P ∩M∗, we have already shown that the edge satisfies t-feasibility

condition (2) and therefore has a slack of 0. Next, we show that the slack on every edge
(s′, r′) ∈ P \M is also 0. Since (s′, r′) 6∈M∗, there is a directed edge

−→
r′s′ in GM∗ . From the

optimal substructure property of shortest paths, we have ds′ = dr′ + s(r′, s′),. Therefore, we
have

y′(r′) + y′(s′) = y(r′) + d− dr′ + y(s′)− d+ ds′ = y(s′) + y(r′) + s(s′, r′) = td(s′, r′),

implying that the slack on every such edge after the dual weights are updated is 0. J

At this point, the algorithm augments M∗ along P and updates the dual weights again.
The following lemma shows that the augmentation process and the updated dual weights
continue to satisfy t-feasibility conditions.

S. Raghvendra 18:9

I Lemma 5. After augmentation, the updated dual weights together with the updated matching
M∗ form a t-feasible matching.

Proof. For the sake of this proof, let us refer to the matching before augmenting along P as
M∗ and the matching after augmentation as M ′, i.e., M ′ ←M∗⊕P . Also, let y(·) represent
the dual weight right before augmenting M∗ along P and let y′(·) represent the updated
dual weight after augmentation.

Augmenting along P removed edges from P ∩M∗ and adds edges of P \M∗ to matching.
Then, the algorithm updates dual weights of every vertex in R ∩ P . Every edge in (s′, r′) ∈
M∗ ∩M ′ is vertex-disjoint from the path P . Therefore, for every such edge, the dual weights
of s′ and r′ remains unchanged and the edge continues to satisfy (2).

For any edge (s′, r′) ∈ P \M∗, we know (s′, r′) is in the updated matching M ′. From
Lemma 4, every such edge has a 0 slack and therefore,

y(s′) + y(r′) = td(s′, r′).

The updated dual weights for r′ is y′(r′)← y(r′)− (t− 1)d(s′, r′), whereas the dual weight
for s′ remains unchanged. Therefore, the new dual weight will satisfy

y′(s′) + y′(r′) + (t− 1)d(s′, r′) = td(s′, r′),

or

y′(s′) + y′(r′) = d(s′, r′)

satisfying feasibility condition (2) with respect to matching M ′.
For every other edge (s′, r′) ∈ (S ×R) \M ′, if r′ is not on P , then the dual weights of s′

and r′ do not change and therefore the edge continues to be feasible. On the other hand, if
r′ is on the path P , suppose s′′ is the match of r′ in M ′. the dual update will be as follows:
y′(r′)← y(r′)− (t− 1)d(s′′, r′). Therefore,

y′(s′) + y′(r′) = y(s′) + y(r′)− (t− 1)d(s′′, r′) ≤ d(s′, r′).

The last inequality follows from the fact that t ≥ 1, d(s′′, r′) ≥ 0, and the dual weights before
augmentation satisfied (1). J

Proof of (I2). Initially, for every vertex s′ ∈ S, its dual weight y(s′) = 0. At the end of any
iteration, we claim that the dual weight of every vertex in SF remains 0. Recollect that our
algorithm selects the free vertex v ∈ SF with the smallest dv value. Therefore, for every
other free vertex v′ ∈ SF \ {v}, dv′ ≥ dv and therefore from (a), the dual weight of v′ is
not updated and remains 0. After augmentation, only the dual weights of points on P get
updated. Since every vertex of P is matched after augmentation, there is no vertex of SF on
P . Therefore, the dual weight of every vertex of SF remains 0.

For every vertex v ∈ S, initially y(v) = 0.In the update procedure for dual weights, if
the vertex v belongs to S, its dual weight only reduces (see condition (c) for updating dual
weight). The update procedure after augmentation, on the other hand, does not change
the dual weight of any vertex in S. Therefore, the dual weight of v at any time during the
algorithm is y(v) ≤ 0. J

Efficiency. To process a new request, the algorithm executes Dijkstra’s algorithm in O(n2)
time and updates the matching and the dual weights by simply processing every node
individually in O(n) time.

APPROX/RANDOM’16

18:10 A Robust and Optimal Online Algorithm for Minimum Metric Bipartite Matching

I Theorem 6. When a new request arrives, our algorithm processes and assigns an unmatched
server to this request in O(n2) time.

For t = 1, our algorithm is identical to the algorithm of Khuller et al. [10]. For t > 1, we
are able to relate the cost of the online matching produced by our algorithm to the t-net-cost
of the paths produced by the algorithm (Lemma 7(ii)). This relation is crucial to achieve
desired performance bounds of our algorithm.

3 Performance of the Algorithm

To simplify the analysis of the algorithm, we introduce a few notations. We index the requests
in the order of their arrival, i.e., let ri be the ith request to arrive. To process request ri, let
Pi be the augmenting path computed by our algorithm. Let si be the free server at the other
end of the augmenting path Pi. Let M∗i be the offline matching after the ith request has
been processed. Note that M∗0 is an empty matching and M∗n = M∗ is the final matching
after all the n requests have been processed. The online matching Mi is the online matching
after i requests have been processed. Mi consists of edges

⋃i
j=1(sj , rj).

For any path P , let `(P) =
∑

(s,r)∈P d(s, r) be its length. Next, we prove a useful relation
between the t-net-cost of augmenting paths produced by our algorithm and the cost of the
online matching. We utilize the metric property of costs to establish this relation.

I Lemma 7. Let t ≥ 1. Let P1, . . . , Pn be the augmenting paths computed by our algorithm
in that order. Then, the t-net-cost of these paths relate to the cost of the online matching as
follows:
(i) φt(Pi) ≤ td(si, ri) ≤ t`(Pi).
(ii)

∑n
i=1 φt(Pi) ≥ ((t− 1)/2)w(M) + ((t+ 1)/2)w(M∗).

Proof of (i). From triangle inequality, the length `(Pi) of path Pi is at most the distance
d(si, ri) between its end-points. Therefore,

d(si, ri) ≤ `(Pi). (6)

With respect to matching M∗i−1, the edge (si, ri) is an augmenting path of length 1. The
t-net-cost of this path is td(ai, bi). Since, Pi is the minimum net-cost path with respect to
M∗i−1, φt(Pi) ≤ td(ai, bi). This, combined with (6) implies (i). J

Proof of (ii). Since the matchings M∗i and M∗i−1 differ only in the edges of the augmenting
path Pi, we have

w(M∗i)− w(M∗i−1) =
∑

(s,r)∈Pi\M∗i−1

d(s, r)−
∑

(s,r)∈Pi∩M∗
i−1

d(s, r) (7)

= φt(Pi)−

(t− 1)
∑

(s,r)∈Pi\M∗i−1

d(s, r)

= φt(Pi)−

 t− 1
2

∑
(s,r)∈Pi\M∗i−1

d(s, r) + t− 1
2

∑
(s,r)∈Pi\M∗i−1

d(s, r)

The second equality follows from the definition of φt(·).

S. Raghvendra 18:11

We add and subtract (t− 1
2)

∑
(s,r)∈Pi∩M∗

i−1

d(s, r) to the RHS and get the following

w(M∗i)− w(M∗i−1) = φt(Pi)−
t− 1

2

 ∑
(s,r)∈Pi\M∗i−1

d(s, r) +
∑

(s,r)∈Pi∩M∗
i−1

d(s, r)

− t− 1

2

 ∑
(s,r)∈Pi\M∗i−1

d(s, r)−
∑

(s,r)∈Pi∩M∗
i−1

d(s, r)

= φt(Pi)−

t− 1
2 (

∑
(s,r)∈Pi

d(s, r))− t− 1
2 (w(M∗i)− w(M∗i−1))

The last equality follows from (7). Rearranging terms and setting
∑

(s,r)∈Pi
d(s, r) = `(Pi),

we get,

t+ 1
2 (w(M∗i)− w(M∗i−1)) = φt(Pi)−

t− 1
2 `(Pi)

t+ 1
2

n∑
i=1

(w(M∗i)− w(M∗i−1)) =
n∑

i=1
φt(Pi)−

t− 1
2

n∑
i=1

`(Pi)

t+ 1
2 w(M∗) ≤

n∑
i=1

φt(Pi)−
t− 1

2 w(M)

In the second to last equation, the summation on the LHS telescopes canceling all terms except
w(M∗n)−w(M∗0). Since M∗n = M∗ and M∗0 is an empty matching, we get w(M∗n)−w(M∗0) =
w(M∗). From triangle inequality, we know that `(Pi) ≥ d(si, ri). From this, we immediately
get the last inequality. Rearranging the terms, we immediately get (ii). J

Next, equipped with the properties from Lemma 7, we will analyze the performance of
our algorithm in the adversarial and the random arrival models.

To analyze the performance in the online models, letM i
opt be the minimum-cost matching

of the first i requests to the set of servers. Also, we will denote Mn
opt as Mopt. It is easy

to see that w(M i
opt) ≤ w(Mopt). This is because Mopt contains a matching of the first i

request to servers S where as M i
opt is the smallest possible such matching. The cost of M i

opt,
therefore, should be less than the cost of Mopt.

w(M i
opt) ≤ w(Mopt).

Performance in Adversarial Model. We show that the performance of our algorithm in
the adversarial model is optimal.

I Lemma 8. The competitive ratio of our algorithm in the adversarial model is 2n−1 +o(1).

Proof. Consider the graph G̃ with vertex set S∪R and the edges of the symmetric difference
of Mopt and M∗i−1, i.e., G̃(S ∪ R,Mopt ⊕M∗i−1). Since Mopt is a perfect matching, this
graph G̃ contains n− i+ 1 vertex-disjoint augmenting paths with respect to M∗i−1. There
is one augmenting path for each of the n − i + 1 requests that have not yet arrived. Let
{r′1, r′2, . . . , r′n−i+1} be the requests that have not yet arrived and let the n− i+1 augmenting
paths be {P ′1, P ′2, . . . , P ′n−i+1}, where P ′j is an augmenting path that has r′j as one of its
end-vertex.

APPROX/RANDOM’16

18:12 A Robust and Optimal Online Algorithm for Minimum Metric Bipartite Matching

In particular, there is an augmenting path in G̃ with the ith request ri as one of its end
vertex. Let P be this augmenting path.

φt(P) = t
∑

(s,r)∈Mopt∩P

d(s, r)−
∑

(s,r)∈M∗
i−1∩P

d(s, r) ≤ t
∑

(s,r)∈Mopt∩P

d(s, r) ≤ tw(Mopt)

While processing the ith request, our algorithm produces the minimum t-net-cost aug-
menting path. Therefore, the augmenting path Pi generated by our algorithm will have

φt(Pi) ≤ φt(P) ≤ tw(Mopt).

If we sum over all the n augmenting paths generated by our algorithm, we get
n∑

i=1
φt(Pi) ≤ ntw(Mopt).

Using property (ii) in Lemma 5 in conjunction with the previous inequality, we get the
following

ntw(Mopt) ≥ ((t− 1)/2)w(M) + ((t+ 1)/2))w(M∗)
2ntw(Mopt)− (t+ 1)w(M∗) ≥ (t− 1)w(M)

2ntw(Mopt)− (t+ 1)w(Mopt) ≥ (t− 1)w(M)
w(M) ≤ w(Mopt)(2nt− (t+ 1))/(t− 1)

w(M)/w(Mopt) ≤ (2 + 2/(t− 1))n− (1 + 2/(t− 1))

The last inequality upper bounds the competitive ratio of the algorithm. If we set t = n2 + 1,
the upper bound can be simplified to 2n− 1 + 1/n which is 2n− 1 + o(1). J

As shown in [8], no deterministic algorithm can achieve a competitive ratio better than
2n− 1. Therefore, our algorithm is optimal.

Performance in Random Arrival Model. In the random arrival model, we show that the
performance ratio of our algorithm is 2Hn − 1 + o(1).

I Lemma 9. In the random arrival model, the competitive ratio of our algorithm is 2Hn −
1 + o(1).

Proof. Consider the graph G̃ with vertex set S∪R and the edges of the symmetric difference
of Mopt and M∗i−1, i.e., G̃(S ∪ R,Mopt ⊕M∗i−1). Since Mopt is a perfect matching, this
graph contains n − i + 1 vertex-disjoint augmenting paths with respect to M∗i−1. There
is one augmenting path for each of the n − i + 1 requests that have not yet arrived. Let
{r′1, r′2, . . . , r′n−i+1} be the requests that have not yet arrived and let the n− i+1 augmenting
paths in G̃ be {P ′1, P ′2, . . . , P ′n−i+1}, where P ′j is an augmenting path that has r′j as one of
its end vertex.

n−i+1∑
j=1

φt(P ′j) =
n−i+1∑

j=1

t ∑
(s,r)∈P ′

j
\M∗

i−1

d(s, r)−
∑

(s,r)∈P ′
j
∩M∗

i−1

d(s, r)

=

n−i+1∑
j=1

t ∑
(s,r)∈P ′

j
∩Mopt

d(s, r)−
∑

(s,r)∈P ′
j
∩M∗

i−1

d(s, r)

≤

n−i+1∑
j=1

t ∑
(s,r)∈P ′

j
∩Mopt

d(s, r)

 ≤ tw(Mopt).

S. Raghvendra 18:13

The second equation follows from the fact that these paths are formed by the symmetric
difference of M∗i−1 and Mopt and therefore P ′j \M∗i−1 = P ′j ∩Mopt. The last inequality
follows from the fact that all the augmenting paths are vertex disjoint.

Let j be such that the ith request ri is r′j . The algorithm computes the minimum t-net-cost
augmenting path Pi from ri with respect to the matching M∗i−1. Therefore, the t-net-cost of
Pi should be less than the t-net-cost of P ′j (note that ri is one of the end-vertex of P ′j).

φt(Pi) ≤ φt(P ′j).

In the random arrival model, the input request sequence is a random permutation.
Therefore, the ith request can be any one of the remaining n− i+ 1 requests with the same
probability and we have,

E[φt(Pi)] ≤
1

n− i+ 1

n−i+1∑
j=1

φt(P ′j) ≤ 1
n− i+ 1 tw(Mopt).

From linearity of expectation,

E[
n∑

i=1
φt(Pi)] ≤

n∑
i=1

1
n− i+ 1 tw(Mopt) = tHnw(Mopt).

From Lemma 7 (ii) and the obvious fact that w(M∗) ≥ w(Mopt) we have,

E[
n∑

i=1
φt(Pi)] ≥

t− 1
2 E[w(M)] + t+ 1

2 E[w(M∗)]

tHnw(Mopt) ≥ t− 1
2 E[w(M)] + t+ 1

2 w(Mopt)

(t− 1)E[w(M)] ≤ 2tHnw(Mopt)− (t+ 1)w(Mopt)
E[w(M)]
w(Mopt) ≤ 2tHn − (t+ 1)

t− 1
E[w(M)]
w(Mopt) ≤ (2 + 2

t− 1)Hn − (1 + 2
t− 1)

By setting t = nHn + 1, we can bound this competitive ratio by 2Hn − 1 + o(1). J

I Theorem 10. There is an algorithm for the online minimum metric bipartite matching
problem that has a competitive ratio of 2n− 1 + o(1) in the adversarial model. This algorithm
also has a competitive ratio of 2Hn − 1 + o(1) in the random arrival model.

The performance of our algorithm is optimal in the random arrival model. A lower
bound construction for the oblivious adversary model is described in [15]. We adapt this
construction in the random arrival model. Obtaining a tight lower bound of 2Hn − 1− o(1)
requires some technical calculations which we present next.

Lower Bound in the Random Arrival Model. Consider a undirected weighted star graph
with a vertex v connected by an edge to every other vertex v1, . . . vn of this graph. Note that
this graph has n+ 1 vertices and n edges. The weight of each of these n edges is 1. Consider
the shortest path metric on this graph. For any pair (v, vi), the shortest path distance is 1.
Every other pair, (vi, vj) will have a shortest path distance of 2; this is because the only path
between them goes via v and has cost 2. Given this graph, we place our servers at nodes
S = {v1, . . . , vn}. The adversary chooses request locations at nodes R = {v, v1, . . . vn} \ {vt},

APPROX/RANDOM’16

18:14 A Robust and Optimal Online Algorithm for Minimum Metric Bipartite Matching

where t is chosen uniformly at random from integers between 1 and n. Let σ be a random
permutation of requests in R.

First, note that the minimum-cost matching of S and R is of cost 1 – the request at
location v is matched to server at location vt and every other server at location vi is matched
to the corresponding request at location vi.

Consider any online algorithm for this input instance. Let us fix v to be the jth request
in σ. All requests that arrived before v will be matched with zero cost to servers at the same
location. It is easy to see that if the algorithm pursues any other matching scheme, it will
only have a larger final cost. The cost of matching v is 1 since every server is at a distance 1
from v. Therefore, after processing the jth request, the total cost of the matching is 1.

Consider j′th request for any j′ > j. Request rj′ has to be in one of the remaining
n − j′ + 1 locations from the set {v1, . . . , vn} that have not yet seen a request. Since t is
chosen uniformly at random, the next request rj′ can be any one of these n− j′+ 1 locations
with the same probability. Next, observe that, the servers in exactly one of these n− j′ + 1
locations is already matched. If the next request is at this location, it will incur a cost of 2.
This can happen with a probability of 1/(n− j′ + 1). Therefore, the expected cost of serving
the j′th request is at least 2/(n− j′ + 1). Given that v was the jth request, the expected
cost incurred will be at least

1 +
n∑

j′=j+1
(2/(n− j′ + 1)) ≥ 1 + 2Hn−j = 1 + 2 ln(n− j) + 2εn−j + 2γ, (8)

where γ is the Euler–Mascheroni constant and εk ≈ 1/2k. Since σ is a random permutation,
j can be any particular index between 1 and n with probability 1/n. When j = n, the cost
incurred by the algorithm is exactly 1. Equation 8 is meaningful only for 1 ≤ j ≤ n − 1.
Therefore, the expected cost incurred by any algorithm will be at least

1
n

(1 +
n−1∑
j=1

(2 ln(n− j) + 2εn−j + 2γ + 1))

= 1
n

(1 + 2 ln((n− 1)!) + n− 1 + 2
n∑

j=1
εn−j + 2(n− 1)γ)

= 1
n

(n+ 2 ln((n− 1)!) + 2
n−1∑
j=1

εn−j + 2(n− 1)γ)

= 1 + 2
n

((n− 1) ln(n− 1)− (n− 1) + (n− 1)γ +O(logn))

≥ 1 + 2 lnn− 2 + γ + εn − o(1)
≥ 2Hn − 2 + 1− o(1)
≥ 2Hn − 1− o(1)

The third equality follows from Sterling’s approximation which gives us ln((n − 1)!) =
(n− 1) ln(n− 1)− (n− 1) +O(logn). Also,

∑n−1
j=1 εn−j = O(logn).

Therefore, in the random arrival model, any online matching generated by the algorithm
will have an expected cost of 2Hn − 1− o(1) for this input.

I Theorem 11. In the random arrival model, any online algorithm for the minimum metric
bipartite matching problem will have a competitive ratio of at least 2Hn − 1− o(1), where Hn

is the nth Harmonic number.

S. Raghvendra 18:15

4 Conclusion

In this paper, we design a robust deterministic online algorithm for the minimum metric
bipartite matching problem. Our algorithm achieves an optimal competitive ratio in both
the adversarial and the random arrival models. We need such robust solutions for practically
motivated real-time matching problems. We conclude with a few open questions:
(a) Can we extend our approach to the k-server problem and achieve better quality solutions?
(b) Can we improve the performance of our algorithm in special metrics such as the line

metric or the Euclidean metric in 2d?
(c) Can we extend our algorithm to the oblivious model and obtain a O(logn)-competitive

algorithm?

References

1 Pankaj K. Agarwal and R. Sharathkumar. Approximation algorithms for bipartite matching
with metric and geometric costs. In Symposium on Theory of Computing, STOC 2014, New
York, NY, USA, May 31–June 03, 2014, pages 555–564, 2014.

2 Pankaj K. Agarwal and Kasturi R. Varadarajan. A near-linear constant-factor approx-
imation for euclidean bipartite matching? In Proceedings of the 20th ACM Symposium
on Computational Geometry, Brooklyn, New York, USA, June 8-11, 2004, pages 247–252,
2004.

3 Antonios Antoniadis, Neal Barcelo, Michael Nugent, Kirk Pruhs, and Michele Scquizzato. A
o(n)-competitive deterministic algorithm for online matching on a line. In Approximation
and Online Algorithms – 12th International Workshop, WAOA 2014, Wrocław, Poland,
September 11-12, 2014, pages 11–22, 2014.

4 N. Bansal, N. Buchbinder, A Madry, and J. Naor. A polylogarithmic-competitive algorithm
for the k-server problem. In Proceedings of the IEEE 52nd Annual Symposium on Founda-
tions of Computer Science (FOCS), pages 267–276, Oct 2011.

5 Nikhil Bansal, Niv Buchbinder, Anupam Gupta, and Joseph Naor. An o(log2 k)-competitive
algorithm for metric bipartite matching. In Algorithms – ESA 2007, 15th Annual European
Symposium, Eilat, Israel, October 8-10, 2007, Proceedings, pages 522–533, 2007.

6 A. Gupta and K. Lewi. The online metric matching problem for doubling metrics. In
Automata, Languages, and Programming, volume 7391 of LNCS, pages 424–435. Springer,
2012.

7 Piotr Indyk. A near linear time constant factor approximation for euclidean bichromatic
matching (cost). In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, SODA 2007, New Orleans, Louisiana, USA, January 7-9, 2007, pages
39–42, 2007.

8 Bala Kalyanasundaram and Kirk Pruhs. Online weighted matching. J. Algorithms,
14(3):478–488, 1993.

9 Chinmay Karande, Aranyak Mehta, and Pushkar Tripathi. Online bipartite matching
with unknown distributions. In Proceedings of the Forty-third Annual ACM Symposium on
Theory of Computing, STOC’11, pages 587–596, New York, NY, USA, 2011. ACM.

10 Samir Khuller, Stephen G. Mitchell, and Vijay V. Vazirani. On-line algorithms for weighted
bipartite matching and stable marriages. Theor. Comput. Sci., 127(2):255–267, 1994.

11 Elias Koutsoupias and Akash Nanavati. The online matching problem on a line. In Roberto
Solis-Oba and Klaus Jansen, editors, Approximation and Online Algorithms: First Interna-
tional Workshop, WAOA 2003, Budapest, Hungary, September 16-18, 2003. Revised Papers,
pages 179–191. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

APPROX/RANDOM’16

18:16 A Robust and Optimal Online Algorithm for Minimum Metric Bipartite Matching

12 Elias Koutsoupias and Christos H. Papadimitriou. On the k-server conjecture. J. ACM,
42(5):971–983, September 1995.

13 M. Mahdian and Q. Yan. Online bipartite matching with random arrivals: An approach
based on strongly factor-revealing lps. In Proceedings of the 43rd Annual ACM Symposium
on Theory of Computing, STOC’11, pages 597–606, 2011.

14 Mark S. Manasse, Lyle A. McGeoch, and Daniel D. Sleator. Competitive algorithms for
server problems. J. Algorithms, 11(2):208–230, May 1990.

15 A. Meyerson, A. Nanavati, and L. Poplawski. Randomized online algorithms for minimum
metric bipartite matching. In Proceedings of the 17th Annual ACM-SIAM Symposium on
Discrete Algorithm, pages 954–959, 2006.

16 R. Sharathkumar and Pankaj K. Agarwal. Algorithms for the transportation problem in
geometric settings. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages 306–317,
2012.

17 R. Sharathkumar and Pankaj K. Agarwal. A near-linear time ε-approximation algorithm for
geometric bipartite matching. In Proceedings of the Forty-fourth Annual ACM Symposium
on Theory of Computing, STOC’12, pages 385–394. ACM, 2012. doi:10.1145/2213977.
2214014.

http://dx.doi.org/10.1145/2213977.2214014
http://dx.doi.org/10.1145/2213977.2214014

Search-to-Decision Reductions for Lattice
Problems with Approximation Factors (Slightly)
Greater Than One∗

Noah Stephens-Davidowitz

Courant Institute of Mathematical Sciences, New York University, NY, USA
noahsd@gmail.com

Abstract
We show the first dimension-preserving search-to-decision reductions for approximate SVP and
CVP. In particular, for any γ ≤ 1 + O(logn/n), we obtain an efficient dimension-preserving
reduction from γO(n/ log n)-SVP to γ-GapSVP and an efficient dimension-preserving reduction
from γO(n)-CVP to γ-GapCVP. These results generalize the known equivalences of the search
and decision versions of these problems in the exact case when γ = 1. For SVP, we actually obtain
something slightly stronger than a search-to-decision reduction – we reduce γO(n/ log n)-SVP to
γ-unique SVP, a potentially easier problem than γ-GapSVP.

1998 ACM Subject Classification F.2.2 [Nonnumerical Algorithms and Problems] Geometrical
Problems and Computations

Keywords and phrases Lattices, SVP, CVP

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2016.19

1 Introduction

A lattice L = {
∑
aibi : ai ∈ Z} ⊂ Rn is the set of all integer linear combinations of linearly

independent basis vectors b1, . . . ,bn ∈ Rn.
The two most important computational problems on lattices are the Shortest Vector

Problem (SVP) and the Closest Vector Problem (CVP). For any approximation factor
γ = γ(n) ≥ 1, γ-SVP is the search problem that takes as input a lattice and asks us to find
a non-zero vector in this lattice whose length is within a factor of γ of the minimal possible
value. γ-CVP is the search problem that takes as input both a lattice and a target vector
t ∈ Rn and asks us to find a vector in L whose distance to t is within a factor of γ of the
minimal distance. The natural decisional variants of these problems are called GapSVP
and GapCVP respectively. Specifically, γ-GapSVP asks us to approximate the length of
the shortest non-zero vector of a lattice up to a factor of γ, and γ-GapCVP asks us to
approximate the distance from t to the lattice up to a factor of γ.

All four of these problems are interesting for a wide range of approximation factors
γ. Indeed, algorithms for these problems have found a remarkable number of applications
in computer science (e.g., [26, 27, 23, 36, 21, 35, 15]). And, over the past twenty years,
many strong cryptographic primitives have been constructed with their security based on
the (worst-case) hardness of γ-GapSVP with approximation factors γ = poly(n) that are
polynomial in the ambient dimension (e.g., [4, 34, 18, 17, 37, 40, 30, 11, 12]).

∗ Supported by the National Science Foundation (NSF) under Grant No. CCF-1320188. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of the authors and do
not necessarily reflect the views of the NSF.

© Noah Stephens-Davidowitz;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016).
Editors: Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans; Article No. 19; pp. 19:1–19:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.19
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

19:2 Search-to-Decision Reductions for Lattice Problems

Due to their importance, there has been much work towards understanding the relationship
between these problems (and their many close relatives). Since the fastest known algorithms
for these problems run in time that is exponential in the dimension n, even with γ = poly(n),
dimension-preserving reductions between lattice problems are of particular importance [23, 19,
32, 29, 41, 42]. Perhaps the best-known such reduction is the efficient dimension-preserving
reduction from γ-SVP to γ-CVP (and from γ-GapSVP to γ-GapCVP) due to Goldreich,
Micciancio, Safra, and Seifert [19]. This proves that the time complexity of γ-SVP, as a
function of the dimension n, cannot be more than a polynomial factor higher than the time
complexity of γ-CVP. We stress that we could not reach this conclusion if the reduction
increased the dimension significantly, which is why dimension-preserving reductions interest
us.

As a much simpler example, we note that there is a trivial dimension-preserving reduction
from γ-GapSVP to γ-SVP that works by just finding a short vector in the input lattice
and outputting its length. There is of course a similar reduction for CVP as well. More
interestingly, there are relatively simple dimension-preserving search-to-decision reductions in
the special case when γ = 1 – i.e., finding exact shortest vectors is no harder than computing
the exact lengths of shortest vectors, and finding exact closest vectors to targets is no harder
than computing the exact distances between targets and lattices. (See, e.g., [23] or [33], or
simply consider the reductions in the sequel with γ = 1.) However, prior to this work, there
were no known search-to-decision reductions for either SVP or CVP for any approximation
factor γ > 1.

This state of affairs was quite frustrating because, with very few exceptions, our best
algorithms for the decision problems work by just solving the corresponding search problem.
In other words, we don’t really know how to “recognize” that a lattice has a short non-zero
vector (or a vector close to some target) without just finding such a vector.1 If there are
better techniques, then we would be thrilled to find them! But, if this extremely natural
approach is actually optimal, then it would be nice to prove it by formally reducing the
search problems to their decision variants. (Of course, it is conceivable that the search and
decision problems have the same complexity, even if no search-to-decision reduction exists.
One might reasonably argue that this is even the most likely scenario. But, we can at least
hope that Nature would not be so unprincipled.)

The ideal positive result would be an efficient dimension-preserving reduction from γ-SVP
to γ-GapSVP for all γ ≥ 1, and likewise for CVP. But, this seems completely out of reach at
the moment (perhaps because no such reductions exist). So, as a more approachable goal,
we can try to find non-trivial reductions that lose in the approximation factor. Indeed, as we
mentioned above, we know that search and decision problems are equivalent in the exact
case. Can it truly be the case that equivalence holds when γ = 1, but nothing non-trivial
holds for any γ > 1 – even, say, a reduction from n100-CVP to (1 + 2−n)-GapCVP?!

1.1 Our results
We make some progress towards resolving these issues by presenting dimension-preserving
search-to-decision reductions for both approximate SVP and approximate CVP. Our reduc-

1 The author knows of three rather specific exceptions. There is an efficient algorithm for
√
n/ logn-

GapCVP with preprocessing [3], while the best efficient algorithm for search CVP with preprocessing
only achieves factor of γ = n/

√
logn [16]. There is a 2n/2+o(n)-time algorithm for 2-GapSVP for which

no analogous search algorithm is known [1]. And, in the special case of ideal lattices in the ring of
integers of a number field, γ-GapSVP is trivial for some values of γ for which γ-SVP appears to be
hard. (See, e.g., [38].)

N. Stephens-Davidowitz 19:3

tions generalize the known equivalences in the exact case. But, they lose quite a bit in the
approximation factor, and their running times depend on the decision approximation factor.
They are therefore primarily interesting when the decision approximation factor is very close
to one, as we explain below.

I Theorem 1 (SVP reduction). For any γ = γ(n) ≥ 1 and a = a(n) ≥ log(n+ 1), there is
a dimension-preserving (randomized) reduction from γn/a-SVP to γ-GapSVP that runs in
time 2O(a) · γO(n).

Theorem 1 is primarily interesting for any γ ≤ 1 +O(logn/n) and a = Θ(logn). For such
parameters, the running time is poly(n) and the search approximation factor is γO(n/ log n) ≤
O(1). However, we note that the theorem is non-trivial whenever we have 1 < γ ≤ 1 + ε and
a ≤ εn, where ε > 0 is some small universal constant.2

We actually reduce γn/a-SVP to γ-unique SVP, which is a potentially easier problem than
γ-GapSVP. (See Definition 16 for the formal definition of γ-unique SVP, and Theorem 24 for
the reduction.) The reduction described above then follows from this result together with
Lyubashevsky and Micciancio’s reduction from γ-unique SVP to γ-GapSVP [29]. We obtain
a few additional corollaries as well. E.g., this shows a dimension-preserving reduction from√
n-CVP to γ-unique SVP (and thus to γ-GapSVP as well) that runs in time poly(n) · γO(n).

This also gives an alternative and arguably more natural proof of Aggarwal and Dubey’s
result that γ-unique SVP is NP-hard (under randomized reductions) for γ ≤ 1 + 1/nε for
any constant ε > 0 [2].

With some more work, we are also able to use our SVP reduction to derive the following
search-to-decision reduction for CVP.

I Theorem 2 (CVP reduction). For any γ = γ(n) ≥ 1 and ` = `(n) ≥ 1, there is a
dimension-preserving (randomized) reduction from γn/`-CVP to γ-GapCVP that runs in
time nO(`) · γO(n).

This result is primarily interesting when ` is any constant and γ ≤ 1 + O(logn/n), in
which case the reduction runs in polynomial time and the search approximation factor is
γO(n) ≤ poly(n). But, it is still non-trivial for 1 < γ ≤ 1 + ε and ` ≤ εn/ logn, where ε > 0
is some universal constant.

We actually show a (deterministic) nO(`)-time reduction from γn/`-CVP to γ-GapCVP
that works in the presence of a poly(n)-SVP oracle. (See Theorem 28.) The above result
then follows from instantiating this oracle via our SVP reduction.

Finally, we show deterministic reductions that achieve much worse parameters.

I Theorem 3 (Deterministic SVP reduction). For any γ = γ(n) ≥ 1 and p = p(n) ≥ 2, there
is a deterministic dimension-preserving reduction from γ′-SVP to γ-GapSVP that runs in
time poly(n) · p, where γ′ := γO(n2/ log p).

I Theorem 4 (Deterministic CVP reduction). For any γ = γ(n) ≥ 1 and p = p(n) ≥ 2, there
is a deterministic dimension-preserving reduction from γ′-CVP to γ-GapCVP that runs in
time poly(n) · p, where γ′ := γO(n2/ log p).

It is easy to see that our randomized reductions always give a better trade-off between the
approximation factor and running time for non-trivial parameters. So, these new reductions

2 In particular, we can choose ε so that, with a = εn and γ ≤ 1 + ε, we get a reduction from γ1/ε-SVP
to γ-GapSVP that runs in time O(2n). For larger values of a or γ, the reduction is subsumed by the
known 2n+o(n)-time algorithm for SVP [1].

APPROX/RANDOM’16

19:4 Search-to-Decision Reductions for Lattice Problems

are primarily interesting because they are deterministic and because they demonstrate
additional potential approaches for future work in this area.

We note that all of our reductions are Cook reductions. (They make many oracle calls,
sometimes adaptively.)

1.2 Techniques
1.2.1 SVP
Our main SVP reduction works by finding a sublattice of the input lattice that has one
relatively short vector but a significantly longer “second-shortest vector.” (I.e., we wish to
find a sublattice that satisfies the promise of γ-unique SVP. See Definition 16.) To accomplish
this, we use lattice sparsification, which was introduced by Khot [24] and refined in a series
of works [14, 16, 42].

The idea of sparsification is to consider the “sparsified” sublattice

L′ := {y ∈ L : 〈z,B−1y〉 ≡ 0 mod p} ,

where p is some prime and z ∈ Zn
p is chosen uniformly at random. We would like to say

that each short vector in L will land in L′ with probability roughly 1/p, independently of all
other short vectors. Of course, if x,y ∈ L and x = ky for some k 6≡ 0 mod p, then clearly x
will land in L′ if and only if y does. So, we cannot have anything close to independence in
this case. [42] shows that this is essentially “the only bad case.”

Specifically, a lattice vector x ∈ L is non-primitive if x = ky for some k ≥ 2 and y ∈ L.
Otherwise, x is primitive. [42] showed that sparsification behaves very nicely if we restrict our
attention to primitive short lattice vectors. In particular, the distribution of short primitive
vectors in the sparsified sublattice L′ behaves similarly to the distribution over the short
primitive vectors of L that selects each vector independently with probability 1/p. (See
Theorem 22 for the precise statement, which is taken directly from [42, Theorem 4.1].)

So, let ξ(L, r) be the number of primitive lattice points of length at most r. Suppose
there exists some radius r such that ξ(L, γr) is not much larger than ξ(L, r).3 Then, if we
take p ≈ ξ(L, γr), we can expect L′ to contain a primitive vector of length at most r but no
other primitive vectors of length less than γr with probability Θ(ξ(L, r)/ξ(L, γr)). In other
words, with this probability, L′ will be a valid instance of γ-unique SVP with λ1(L′) ≤ r, so
that we can use an oracle for γ-unique SVP to find a non-zero lattice vector of length at
most r.

The parameter a in the reduction determines how large of a ratio ξ(L, γr)/ξ(L, r) we are
“willing to tolerate.” In particular, a simple proof shows that, for a ≥ n log γ, there is always
a radius r ≤ γn/a · λ1(L) such that this ratio is bounded by 2O(a). We can therefore obtain a
valid γ-unique SVP instance with λ1(L′) ≤ r ≤ γn/a · λ1(L) with probability at least 2−O(a).
So, our main reduction essentially works by sampling L′ repeatedly, a total of 2O(a) times,
and calling its γ-unique SVP oracle on each sampled sublattice L′.

1.2.2 CVP
Our search-to-decision reduction for CVP is a simple “guided” variant of Babai’s celebrated
nearest-hyperplane algorithm [7]. Babai’s algorithm works by dividing the lattice into (n−1)-

3 It might be helpful to think of the heuristic that ξ(L, γr)/ξ(L, r) ≈ γn. This holds in the limit as
r →∞, and it holds for random lattices in expectation.

N. Stephens-Davidowitz 19:5

dimensional lattice hyperplanes and then searching inside the closest hyperplane to the target.
However, it is possible that the closest lattice hyperplane does not actually contain very close
lattice points. As a result, Babai’s algorithm can lead to quite large approximation factors.

So, we instead use our GapCVP oracle to “test many nearby hyperplanes” to find one
that is guaranteed to contain a γ-approximate closest lattice point. By repeating this n times
over hyperplanes of progressively lower dimensions, we will find a γn-approximate closest
vector to the target. To find a γn/`-approximate closest vector, we do the same thing with
all nearby (n− `)-dimensional hyperplanes.

In order to make this algorithm efficient, we need to limit the number of hyperplanes
that we must consider. This amounts to finding a short non-zero vector in the dual lattice.
We can find such a vector by using our search-to-decision reduction for SVP (together with
the known reduction from GapSVP to GapCVP [19]). Unfortunately, this costs us a factor
of γO(n) in the running time.

1.2.3 Deterministic reductions
Our alternative deterministic search-to-decision reductions for SVP and CVP are very similar
to the reduction from unique SVP to GapSVP in [29]. They essentially work by finding the
coordinates of a short (or close) lattice vector “bit by bit.” I.e., in the CVP case, we first use
our GapCVP oracle to compare the distance from the target to all lattice vectors whose last
coordinate is even with its distance from all lattice vectors whose last coordinate is odd. If,
say, the odd estimate is lower, then we restrict our attention to the lattice coset of all lattice
vectors whose last coordinate is odd. We choose the remaining bits similarly, eventually
obtaining the coordinates of a relatively close lattice vector. Our more general reductions
follow from “working in base p instead of base 2.”

1.3 Related work
Some efficient dimension-preserving search-to-decision reductions were known for other lattice
problems prior to this work. For example, Regev showed such a reduction for Learning
with Errors, an important average-case lattice problem with widespread applications in
cryptography [40]. (Both the search and decision versions of LWE are average-case problems.)
And, Liu, Lyubashevsky, and Micciancio implicitly use a search-to-decision reduction for
Bounded Distance Decoding in their work [28]. Finally, Aggarwal and Dubey showed how to
use some of the ideas from [29] to obtain a search-to-decision reduction for unique SVP [2].
While all of these works are quite interesting, they are concerned with promise problems,
and not the two most important and natural lattice problems, SVP and CVP.

More generally, this work can be seen as part of the ongoing study of the relationships
between lattice problems under dimension-preserving reductions. By now, this area has
become quite fruitful (e.g., [23, 19, 32, 29, 42]). See [41] for a brief survey of well-known
dimension-preserving reductions between various lattice problems.

Most prior work used sparsification to remove a relatively small number of “annoying”
short vectors from a lattice without losing too many “good” short vectors (e.g., [24, 14, 16]).
In our main SVP reduction, our goal is instead to remove “all but one” short vector.
(Independent work of Bai, Wen, and Stehlé used sparsification in a similar way to reduce
Bounded Distance Decoding to unique SVP [8].) To obtain our result, we rely heavily on the
sparsification analysis of [42], which is tighter and more general than prior work.

Interestingly, Kumar and Sivakumar used a procedure that is very similar to sparsification
in their study of unique SVP, published in 2001 [25]. Indeed, they repeatedly sparsify a lattice

APPROX/RANDOM’16

19:6 Search-to-Decision Reductions for Lattice Problems

with p = 2 to obtain a sequence of sublattices such that at least one of these sublattices (1)
contains a shortest non-zero vector of the original lattice; and (2) contains no other vectors
of this length (up to sign, of course). However, the length of the “second-shortest vector”
can be arbitrarily close to that of the shortest vector in their construction, even in a fixed
dimension n. I.e., they use a restricted form of sparsification to effectively reduce 1-SVP to
1-unique SVP. Our main SVP reduction can be thought of as an updated version of their
result. We use tools that were not available fifteen years ago to obtain a lower bound on the
ratio between the shortest vector and the “second-shortest vector” that depends only on the
dimension n.

To prove hardness of (1 + 1/poly(n))-unique SVP, Aggarwal and Dubey used the result
of Kumar and Sivakumar to show a reduction from SVP to γ-unique SVP that works for a
restricted subset of lattices [2]. In particular, Aggarwal and Dubey chose a set of lattices such
that, over these lattices (1) SVP is NP-hard (as proven by Khot [24]); and (2) this reduction
yields γ = 1 + 1/poly(n). In contrast, we directly reduce 2-SVP to (1 + 1/poly(n))-unique
SVP over all lattices by using a much stronger (and unfortunately more complicated) form
of Kumar and Sivakumar’s reduction.

While the author knows of no other use of our specific variant of Babai, we feel that
it is quite natural and not particularly novel. For example, a similar idea was used in a
different context by Micciancio [32, Corollary 7]. Our primary contribution on this front is
the observation that this method gives a non-trivial search-to-decision reduction when the
decision approximation factor is very small, and when it is combined with our SVP reduction.

We rely heavily on Lyubashevsky and Micciancio’s dimension-preserving reduction from
γ-unique SVP to γ-GapSVP [29]. Their result is necessary to prove Theorem 1, and our
deterministic “bit-by-bit” SVP reduction is very similar to Lyubashevsky and Micciancio’s
reduction. The main difference between our deterministic SVP reduction and that of
Lyubashevsky and Micciancio is that [29] work only with lattices that satisfy the promise
of γ-unique SVP. They show that this promise is enough to guarantee that the γ-GapSVP
oracle essentially behaves as an exact GapSVP oracle. In contrast, our reduction works over
general lattices, so we have to worry about accumulating error. (We also use a different
method to “reduce the dimension of the lattice.”)

1.4 Directions for future work
We view this paper as a first step towards a better understanding of the relationship
between the search and decision variants of approximate SVP and CVP. In particular, we
show that efficient, dimension-preserving search-to-decision reductions do in fact exist for
approximation factors γ > 1. Prior to this work, one might have reasonably conjectured that
such reductions do not exist for non-trivial parameters. But, our reductions lose quite a bit
in the approximation factor, and the running times of our main reductions blow up quickly
as the approximation factor increases. They are therefore primarily interesting for very small
approximation factors γ = 1 + o(1).

Results for such low values of γ have sometimes led to similar results for larger ap-
proximation factors. For example, hardness of γ-GapSVP was originally proven for γ =
1 + 2−poly(n) [5], and then for γ = 1 + 1/poly(n) [13], before better inapproximability results
were found [31, 24, 20]. We therefore ask whether better search-to-decision reductions exist,
and in particular, whether non-trivial efficient dimension-preserving reductions exist for
larger approximation factors.

More specifically, we note that our main reductions are only efficient when the decision
approximation factor is γ = 1 + O(logn/n) because their running time is proportional to

N. Stephens-Davidowitz 19:7

γO(n). This seems inherent to our technique in the case of SVP, and the CVP reduction
suffers the same fate because it uses the SVP reduction as a subroutine. However, we see
no reason why the running time should necessarily increase with the approximation factor,
and this might simply be an artifact of our techniques. So, perhaps we can find reductions
that do not have this problem. (One might try, for example, to eliminate the need for the
SVP oracle in our CVP reduction.) Indeed, the reductions in Section 5 manage to avoid this
pitfall, but they blow up the approximation factor much more and never actually outperform
our main reductions.

In the other direction, we ask whether the search and decision versions of SVP and CVP
can be separated in any way. I.e., can we show that, for some γ > 1, there is no efficient
dimension-preserving reduction from γ-CVP to γ-GapCVP or no such reduction from γ-SVP
to γ-GapSVP (under reasonable complexity-theoretic assumptions or even restrictions on the
behavior of the reduction)? Can we find algorithms that solve the decision problems faster
than our current search-based techniques allow (something more general than the rather
specific examples mentioned in footnote 1)? Of course, any such result would be a major
breakthrough.

2 Preliminaries

We write log x for the logarithm of x in base 2. We write ‖x‖ for the Euclidean norm of
x ∈ Rn. We omit any mention of the bit length of the input throughout. In particular, all of
our algorithms take as input vectors in Rn (with some reasonable representation) and run in
time f(n) · poly(m) for some f , where m is the maximal bit length of an input vector. We
are primarily interested in the dependence on n, so we suppress the factor of poly(m).

2.1 Lattice basics
A rank d lattice L ⊂ Rn is the set of all integer linear combinations of d linearly independent
vectors B = (b1, . . . ,bd). B is called a basis of the lattice and is not unique. We write L(B)
to signify the lattice generated by B. By taking the ambient space to be span(L), we can
implicitly assume that a lattice has full rank n, and we therefore will often implicitly assume
that d = n.

The dual lattice is

L∗ := {w ∈ span(L) : ∀y ∈ L, 〈w,y〉 ∈ Z} .

Similarly, the dual basis B∗ := B(BT B)−1 = (b∗1, . . . ,b∗d) is the unique list of vectors in
span(L) satisfying 〈b∗i ,bj〉 = δi,j . L∗ is itself a rank d lattice with basis B∗.

We write λ1(L) := minx∈L\{0} ‖x‖ for the length of the shortest non-zero vector in the
lattice. Similarly, we write λ2(L) := min{r > 0 : dim(span(L ∩ rBn

2)) ≥ 2} for the length
of the shortest lattice vector that is linearly independent from a lattice vector of length
λ1(L). For any point t ∈ Rn, we write dist(t,L) := minx∈L ‖x− t‖ for the distance between
t and L. The covering radius µ(L) := maxt∈span(L) dist(t,L) is the maximal such distance
achievable in the span of the lattice.

The following two bounds will be useful.4

4 We note that tighter bounds exist for the number of lattice points in a ball of radius r [22, 39], but
we use the bound of [10] because it is simpler. Using a tighter bound here would improve the hidden
constants in the exponents of our running times.

APPROX/RANDOM’16

19:8 Search-to-Decision Reductions for Lattice Problems

I Theorem 5 ([10, Theorem 2.1]). For any lattice L ⊂ Rn and r > 0,

|{y ∈ L : ‖y‖ ≤ rλ1(L)}| ≤ 2d2ren − 1.

I Lemma 6 ([9, Theorem 2.2]). For any lattice L ⊂ Rn, λ1(L∗) · µ(L) ≤ n/2.

We derive a simple though rather specific corollary of Lemma 6 that we will use twice.
The corollary says that a dual vector w ∈ L∗ \ {0} that is relatively short, ‖w‖ ≤ γ · λ1(L∗),
can be used to partition L into (n− 1)-dimensional lattice hyperplanes, such that the closest
vector to any target t must lie in one of the O(γn) hyperplanes closest to t.

I Corollary 7. For any lattice L ⊂ Rn with basis (b1, . . . ,bn) and associated dual basis
(b∗1, . . . ,b∗n), γ ≥ 1, and any target t ∈ Rn, if ‖b∗1‖ ≤ γ · λ1(L∗), then any closest lattice
vector to t must lie in a lattice hyperplane L′ + ib1, where L′ := L(b2, . . . ,bn) and i is an
integer with |i− 〈b∗1, t〉| ≤ γn/2.

Proof. Let y ∈ L be a closest lattice vector to t. It follows from the definition of a lattice
that y ∈ L′ + ib1 for some integer i = 〈b∗1,y〉. We have

|i− 〈b∗1, t〉| = |〈b∗1,y− t〉| ≤ ‖b∗1‖‖y− t‖ ≤ γλ1(L∗) · µ(L) ≤ γn/2 ,

where we have used Lemma 6. J

2.2 LLL-reduced bases
Given a basis, B = (b1, . . . ,bn), we define its Gram-Schmidt orthogonalization (b̃1, . . . , b̃n)
by

b̃i = π{b1,...,bi−1}⊥(bi) ,

and the Gram-Schmidt coefficients µi,j by

µi,j = 〈bi, b̃j〉
‖b̃j‖2 .

Here, πA represents orthogonal projection onto the subspace A and {b1, . . . ,bi−1}⊥ denotes
the subspace of vectors in Rn that are orthogonal to b1, . . . ,bi−1.

I Definition 8. A basis B = (b1, . . . ,bn) is LLL-reduced if
1. for 1 ≤ j < i ≤ n, |µi,j | ≤ 1/2; and
2. for 2 ≤ i ≤ n, ‖b̃i‖2 ≥ (3/4− µ2

i,i−1) · ‖b̃i−1‖2.

I Theorem 9 ([26]). There exists an efficient algorithm that takes as input a (basis for) a
lattice and outputs an LLL-reduced basis for the lattice.

I Lemma 10. For any lattice L ⊂ Rn with LLL-reduced basis B = (b1, . . . ,bn) and
y =

∑
aibi ∈ L, we have

|ai| ≤ 23n/2−i · ‖y‖
λ1(L) ,

for all i.

N. Stephens-Davidowitz 19:9

Proof. It follows immediately from the definition of an LLL-reduced basis that ‖b̃i‖ ≥
‖b1‖/2i/2 ≥ λ1(L)/2n/2 for all i. For each i, we have

‖y‖ ≥
n∑

j=1
|ajµj,i| ·‖b̃i‖ =

(
|ai|−

n∑
j=i+1

|ajµj,i|
)
·‖b̃i‖ ≥

(
|ai|−

1
2

n∑
j=i+1

|aj |
)
·2−n/2 ·λ1(L) .

In particular, |an| ≤ 2n/2 ·‖y‖/λ1(L). We assume for induction that |aj | ≤ 23n/2−j ·‖y‖/λ1(L)
for all j with i < j ≤ n. Then, plugging in to the above, we have

‖y‖ ≥ |ai| · 2−n/2 · λ1(L)−
n∑

j=i+1
2n−j−1‖y‖ ≥ |ai| · 2−n/2 · λ1(L)− 2n−i−1 · ‖y‖ .

The result follows by rearranging. J

I Lemma 11 ([7]). If B = (b1, . . . ,bn) is an LLL-reduced basis, then µ(L) ≤
√
n2n/2−1 ·

‖b̃n‖.

2.3 Lattice problems
We now list the computational problems that concern us. All of the below definitions are
standard.

I Definition 12. For any parameter γ = γ(n) ≥ 1, γ-SVP (the Shortest Vector Problem) is
the search problem defined as follows: The input is a basis B for a lattice L ⊂ Rn. The goal
is to output a lattice vector x with 0 < ‖x‖ ≤ γλ1(L).

I Definition 13. For any parameter γ = γ(n) ≥ 1, γ-CVP (the Closest Vector Problem) is
the search problem defined as follows: The input is a basis B for a lattice L ⊂ Rn and a
target vector t ∈ Rn. The goal is to output a lattice vector x with ‖x− t‖ ≤ γ dist(t,L).

I Definition 14. For any parameter γ = γ(n) ≥ 1, the decision problem γ-GapSVP is
defined as follows: The input is a basis B for a lattice L ⊂ Rn and a number d > 0. The
goal is to output yes if λ1(L) < d and no if λ1(L) ≥ γ · d.

I Definition 15. For any parameter γ = γ(n) ≥ 1, the decision problem γ-GapCVP is
defined as follows: The input is a basis B for a lattice L ⊂ Rn, a target t ∈ Rn, and a
number d > 0. The goal is to output yes if dist(t,L) < d and no if dist(t,L) ≥ γ · d.

I Definition 16. For any parameter γ = γ(n) ≥ 1, γ-uSVP (the Unique Shortest Vector
Problem) is the search promise problem defined as follows: The input is a basis B for a
lattice L ⊂ Rn with λ2(L) ≥ γ(n) · λ1(L). The goal is to output a lattice vector x with
‖x‖ = λ1(L).

2.4 Known results
We will need the following known reductions and hardness results.

I Theorem 17 ([24]). For any constant γ ≥ 1, γ-GapSVP (and therefore γ-SVP) is NP-hard
under randomized reductions.

I Theorem 18 ([19]). For any γ ≥ 1, there is an efficient dimension-preserving reduction
from γ-GapSVP to γ-GapCVP (and from γ-SVP to γ-CVP).

APPROX/RANDOM’16

19:10 Search-to-Decision Reductions for Lattice Problems

I Theorem 19 ([29, Theorem 6.1]). For any 1 ≤ γ(n) ≤ poly(n), there is an efficient
dimension-preserving reduction from γ-uSVP to γ-GapSVP.

I Theorem 20 ([33, Theorem 4.2]). There is an efficient reduction from
√
n-CVP to

√
2-SVP.

Furthermore, all of the oracle calls of the reduction are made in dimension n+ 1, where n is
the input dimension.

Reductions like that of Theorem 20 that increase the dimension by one are good enough
for nearly all applications of perfectly dimension-preserving reductions. But, we can use a
simple idea to convert Theorem 20 into a reduction that preserves the dimension exactly.
(Micciancio uses essentially the same trick in the proof of [32, Corollary 7].)

I Corollary 21. There is a dimension-preserving efficient reduction from
√
n-CVP to

√
2-

SVP.

Proof. On input t ∈ Rn and a lattice L ⊂ Rn, the reduction first uses its SVP oracle to find
a vector b∗1 ∈ L∗ in the dual with 0 < ‖b∗1‖ < 2λ1(L∗). Let B∗ := (b∗1, . . . ,b∗n) be a basis
for L∗, and let B = (b1, . . . ,bn) be the associated primal basis. (Since b∗1 is a primitive
lattice vector, it is always possible to find such a basis.) Let L′ := L(b2, . . . ,bn) be the
lattice generated by B with the first basis vector removed. Finally, let a := 〈b∗1, t〉. For
i = bac − n, . . . , dae+ n, the reduction runs the procedure from Theorem 20 on input t− ib1
and L′, receiving as output yi ∈ L′. The reduction then simply outputs a closest vector to t
amongst the vectors yi + ib1 ∈ L.

It is clear that the reduction is efficient. Furthermore, note that the reduction only uses
the procedure from Theorem 20 with (n− 1)-dimensional input. (Formally, we must project
L′ and t − ib1 onto span(L′) ∼= Rn−1.) Since that procedure increases dimension by one,
this new reduction preserves dimension. For correctness, we note that Corollary 7 implies
that there is a closest vector to t in one of the lattice hyperplanes L′ + iyi. The result then
follows from Theorem 20. J

2.5 A note on decision and estimation

Formally, we consider gapped decision problems, which take as input a number d > 0 and
some additional input I and require us to output YES if f(I) ≤ d and NO if f(I) > γd,
where f is some function and γ is the approximation factor. (For example, I may be some
representation of a lattice and f(I) may be the length of the shortest vector in the lattice.)
However, it is sometimes convenient to work with estimation problems, which take only I as
input and ask for a numerical output d̃ with f(I) ≤ d̃ ≤ γf(I).

For the specific problems that we consider (and most “sufficiently nice” problems), the
estimation variants are equivalent to the gapped decision problems as long as the lattice is
“represented reasonably” by the input. For example, if f(I) can be represented as a string of
length at most poly(|I|) (e.g., f(I) might be a rational number with bounded numerator and
denominator), then we can use binary search and a gapped decision oracle to estimate f(I)
efficiently. This is true, for example, whenever the input is interpreted as a list of vectors
with rational coordinates, using the standard representation of rational numbers. (See [33]
for a careful discussion of this and related issues in the context of lattice problems.) We
therefore make no distinction between gapped decision problems and estimation problems
in the sequel, without worrying about the specific form of our input, or more generally, the
specific representation of numbers.

N. Stephens-Davidowitz 19:11

3 Reducing SVP to uSVP (and GapSVP) via sparsification

3.1 Sparsification
For a lattice L ⊂ Rn, we write Lprim for the set of all primitive vectors in L, and ξ(L, r) :=
|Lprim ∩ rBn

2 |/2 for the number of primitive lattice vectors contained in a (closed) ball of
radius r around the origin (counting x and −x as a single vector). The following theorem
from [42] shows that sparsification behaves nicely with respect to primitive vectors, which is
enough for our use case.

I Theorem 22 ([42, Theorem 4.1]). For any lattice L ⊂ Rn with basis B, primitive lattice
vectors y0,y1, . . . ,yN ∈ Lprim with yi 6= ±y0 for all i > 0, and prime p ≥ 101, if ξ(L, ‖yi‖) ≤
p/(20 log p) for all i, then

1
p
− N

p2 ≤ Pr
[
〈z,B−1y0〉 ≡ 0 mod p and 〈z,B−1yi〉 6≡ 0 mod p ∀i > 0

]
≤ 1
p
,

where z ∈ Zn
p is chosen uniformly at random.

From this, we can immediately derive the following proposition, which is a slight variant
of [42, Proposition 4.2].

I Proposition 23. There is an efficient (randomized) algorithm that takes as input a basis
B for a lattice L ⊂ Rn and a prime p ≥ 101 and outputs a full-rank sublattice L′ ⊆ L such
that for any r1, r2, with λ1(L) ≤ r1 ≤ r2 < pλ1(L) and ξ(L, r2) ≤ p/(20 log p), we have

Pr[λ1(L′) ≤ r1 and λ2(L′) > r2] ≥ ξ(L, r1)
p

·
(

1− ξ(L, r2)
p

)
.

Proof. The algorithm takes as input a basis B for a lattice L ⊂ Rn. It then samples z ∈ Zn
p

uniformly at random and outputs

L′ := {y ∈ L : 〈z,B−1y〉 ≡ 0 mod p} .

Let N := ξ(L, r2) ≤ p/(20 log p), and let y1, . . . ,yN ∈ L be the N unique primitive
vectors in L satisfying ‖y1‖ ≤ · · · ≤ ‖yN‖ ≤ r2 (taking only one vector from each pair ±y).
Note that we have λ1(L′) ≤ r1 and λ2(L′) > r2 if and only if yi ∈ L′ for some i ≤ ξ(L, r1)
and yj /∈ L′ for all j 6= i. (Here, we have used the fact that r2 < pλ1(L) to guarantee that
vectors of the form pyi ∈ L′ do not cause λ2(L′) to be less than r2.)

Applying Theorem 22, we see that this happens with probability at least 1/p−(N−1)/p2 >

1/p−N/p2 for any fixed i. The result follows by noting that these are disjoint events, so
that the probability that at least one of these events occurs is the sum of their individual
probabilities, which is at least

ξ(L, r1) ·
(1
p
− N

p2

)
= ξ(L, r1)

p
·
(

1− ξ(L, r2)
p

)
,

as needed. J

3.2 The reduction
We now present the main step in our search-to-decision reduction for SVP.

I Theorem 24. For any γ = γ(n) ≥ 1 and a = a(n) ≥ log(n + 1), there is a dimension-
preserving (randomized) reduction from γn/a-SVP to γ-uSVP that runs in time 2O(a) · γO(n).

APPROX/RANDOM’16

19:12 Search-to-Decision Reductions for Lattice Problems

Proof. We may assume without loss of generality that a ≤ n/2, since the result is trivial for
larger a. (There are known 2O(n)-time algorithms for SVP [6, 1].) We may also assume that
2a > γn, since this does not affect the asymptotic running time. Let k := d4an/(n−a)e = 2O(a).

On input a lattice L ⊂ Rn, the reduction does the following k times. For i = 0, . . . , ` :=
bn/ac, let pi be a prime with 2ki+1 < pi < 4ki+1. The reduction calls the procedure from
Proposition 23 with input L and pi, receiving as output Li. It then calls its uSVP oracle on
each Li, receiving as output xi. Finally, it simply outputs a shortest non-zero xi.

It is clear that the reduction runs in time poly(n) · k = 2O(a), as needed.5 For each i, let
ri be minimal such that ξ(L, ri) ≥ ki. In particular, r0 = λ1(L). And, recalling the definition
of ξ, we have

|L ∩ r`B
n
2 | > 2ξ(L, r`) ≥ 2k` > 2 · (4an/(n−a))n/a−1 = 2 · 4n .

So, applying Theorem 5, we have that r`/r0 = r`/λ1(L) > 2.
Therefore, there exists an i such that ri+1/ri > 21/` ≥ 2a/n > γ. Let j be minimal such

that rj+1/rj > γ. In particular, this means that ξ(L, γrj) < kj+1 and γrj ≤ 2γλ1(L) <
pjλ1(L). So, we may apply Proposition 23 to obtain

Pr[λ1(Lj) ≤ rj and λ2(Lj) > γrj] ≥ ξ(L, rj)
pj

− ξ(L, rj)ξ(L, γrj)
p2

j

>
kj

pj
·
(

1− kj+1

pj

)
>

1
2k .

Therefore, after running the above procedure k times, the algorithm will output a non-zero
vector of length at most ri with at least some positive constant probability.

Finally, by the definition of rj , we have rj/λ1(L) = rj/r0 ≤ γj ≤ γ` ≤ γn/a. Therefore,
the algorithm outputs a γn/a-approximate shortest vector with at least constant probability,
as needed. J

3.3 Corollaries
From this, we derive some immediate corollaries. The first is our main SVP result.

Proof of Theorem 1. We may assume without loss of generality that γ ≤ 2, since otherwise
the result is trivial as there are known 2O(n)-time algorithms for SVP. Therefore, by The-
orem 19, there is an efficient dimension-preserving reduction from γ-uSVP to γ-GapSVP.
The result then follows from Theorem 24. J

By combining Theorem 24 with Corollary 21, we obtain the following reduction from√
n-CVP to γ-uSVP (and therefore γ-GapSVP).

I Corollary 25. For any γ = γ(n) ≥ 1, there is a dimension-preserving (randomized)
reduction from

√
n-CVP to γ-uSVP that runs in time poly(n) · γO(n).

Similarly, there is a dimension-preserving (randomized) reduction from
√
n-CVP to

γ-GapSVP with the same running time.

5 The reader might notice that the theorem quotes a running time of 2O(a) · γO(n) instead of just 2O(a).
Note that this looser bound on the running time is exactly what allowed us to assume 2a > γn above.
Equivalently, we could simply require a > n log γ in the theorem statement and achieve a running time
of 2O(a). But, we wish to avoid misunderstanding by explicitly stating that the running time is at least
γO(n) in the theorem statement.

N. Stephens-Davidowitz 19:13

Proof. Setting a := 2n log(γ) + log(n+ 1) in Theorem 24 gives a reduction from
√

2-SVP to
γ-uSVP with the claimed running time. The first result then follows from Corollary 21. The
second result follows from Theorem 19. J

We also obtain an alternative proof of the hardness of (1 + 1/poly(n))-uSVP, as originally
shown by Aggarwal and Dubey [2].

I Corollary 26. For any constant ε > 0, (1 + 1/nε)-uSVP is NP-hard (under randomized
reductions).

Proof. For γ ≤ 1 + O(logn/n), taking a := n log(γ) + log(n + 1) in Theorem 24 gives a
polynomial-time reduction from 2-SVP to γ-uSVP. It then follows from Theorem 17 that
γ-uSVP is NP-hard (under randomized reductions).

The full result then follows by noting that there is a simple reduction from (1 + 1/nε)-
uSVP to (1 + 1/n)-uSVP for any constant ε ∈ (0, 1). In particular, given input L ⊂ Rn

with basis B := (b1, . . . ,bn), let N := dn1/εe = poly(n), and let r := 3‖b1‖ > 2λ1(L). Let
L′ := L(b1, . . . ,bn, ren+1, . . . , reN) ⊂ RN be the rank N lattice obtained by “adding N − n
perpendicular vectors of length r to L.” The result follows by noting that Nε ≥ n so that L′
is a valid instance of (1 + 1/Nε)-uSVP if L is a valid instance of (1 + 1/n)-uSVP, and the
two instances have the same solution. J

Finally, we note that a reduction to GapSVP immediately implies a reduction to GapCVP,
by Theorem 18. We will need this in the next section.

I Corollary 27. For any γ = γ(n) ≥ 1 and a = a(n) ≥ log(n + 1), there is a dimension-
preserving (randomized) reduction from γn/a-SVP to γ-GapCVP that runs in time 2O(a) ·
γO(n).

Proof. Combine Theorem 1 with Theorem 18. J

4 Reducing CVP to GapCVP

I Theorem 28. For any γ = γ(n) ≥ 1, h = h(n) ≥ 1, and integer ` = `(n) ≥ 1, there is a
(deterministic) algorithm with access to a γ-GapCVP oracle and a h-SVP oracle that solves
γn/`-CVP in time (poly(n) · h)`. Furthermore, the dimension of the algorithm’s oracle calls
never exceeds the dimension of the input lattice.

Proof. We show how to handle the case ` = 1 and then describe how to extend the result
to arbitrary `. On input a lattice L ⊂ Rn and t ∈ Rn, the algorithm behaves as follows. If
n = 1, then it solves the CVP instance directly. Otherwise, it first uses its SVP oracle to find
a dual vector b∗1 ∈ L∗ with ‖b∗1‖ ≤ h · λ1(L∗). Let b∗2, . . . ,b∗n ∈ L∗ such that (b∗1, . . . ,b∗n) is
a basis of L∗, and let (b1, . . . ,bn) ∈ L be the associated basis of the primal. (This is always
possible if b∗1 is primitive in L∗. If b∗1 is not primitive, then we can simply replace it with a
primitive vector that is a scalar multiple of b∗1.)

Next, let a := 〈b∗1, t〉 and L′ := L(b2, . . . ,bn). Then, for i = ba− h · nc, . . . , da+ h · ne,
the algorithm uses its GapCVP oracle to compute di such that dist(t − i · b1,L′) ≤ di ≤
γ · dist(t− i · b1,L′). The algorithm then picks an index i such that di is minimal and calls
itself recursively on input L′ and t− i · b1, receiving as output y ∈ L′. Finally, it outputs
y + ib1 ∈ L.

It is clear that the running time is as claimed. By Corollary 7, there must exist some j such
that dist(t−j ·b1,L′) = dist(t,L), so that dj ≤ γ dist(t,L). Therefore, di ≤ γ ·dist(t,L), and
dist(t− i ·b1,L′) ≤ γ · dist(t,L). The result then follows from induction on the dimension n.

APPROX/RANDOM’16

19:14 Search-to-Decision Reductions for Lattice Problems

To handle arbitrary ` ≥ 1, the algorithm simply tries all recursive paths up to depth `
and chooses the path that yields the lowest approximate distance according to its γ-GapCVP
oracle. Note that there are at most (2hn+ 2)` = (poly(n) · h)` such paths, so the running
time is as claimed. J

We obtain our main CVP reduction by combining the above result with our SVP reduction.

Proof of Theorem 2. We may assume without loss of generality that ` is an integer.
We can instantiate the SVP oracle required in Theorem 28 above by using Corollary 27.

In particular, taking a := n log γ + log(n+ 1) in Corollary 25 gives a reduction from 2-SVP
to γ-GapCVP that runs in time poly(n) · γO(n). By using this reduction to instantiate the
h-SVP oracle in Theorem 28 with h = 2, we get a dimension-preserving reduction from
γn/`-CVP to γ-CVP that runs in time nO(`) · γO(n), as needed. J

5 Deterministic reductions

We now show deterministic search-to-decision reductions for SVP and CVP that achieve
significantly worse parameters. Both reductions use the same basic idea, which is essentially
to “find the coordinates of a short (or close) lattice point bit-by-bit.”

5.1 The deterministic CVP reduction
We present the CVP reduction first because it is simpler.

Proof of Theorem 4. We may assume without loss of generality that p is an integer and
γ2 < p, since the result is trivial for larger γ.

On input a lattice L ⊂ Rn and t ∈ Rn, the reduction behaves as follows. If n = 1,
then it solves the CVP instance directly. Otherwise, it first uses the procedure from
Theorem 9, to compute an LLL-reduced basis B = (b1, . . . ,bn) for L. It then finds the
nth coordinate of a close lattice vector to t “in base p,” as follows. Let t0 = t, and let
Li := L(b1, . . . ,bn−1, p

i · bn) for all i. For i = 0, . . . , ` − 1, with ` ≥ 1 to be set in the
analysis, the reduction uses its γ-GapCVP oracle to compute di,0, . . . , di,p−1 such that
dist(ti − jpi · bn,Li+1) ≤ di,j ≤ γ dist(ti − jpi · bn,Li+1). It then sets ti+1 = ti − j · pi · bn,
where j is chosen such that di,j is minimal.

Let

t′ := t` − p` ·

⌊
〈t`, b̃n〉
p` · ‖b̃n‖2

⌉
· bn .

The reduction then calls itself recursively on input L′ := L(b1, . . . ,bn−1) and t′, receiving
as output y′ ∈ L′. Finally, the reduction outputs y′ + t− t′ ∈ L.

Take

` :=
⌈
n+ logn+ 2

2 log(p/γ)

⌉
= O(n/ log p) .

It is clear that the running time is as claimed. We first show by induction that dist(ti,Li) ≤
γi · dist(t,L). For i = 0, this is trivial. For any i > 0, let x be a closest vector in Li−1 to
ti−1, and assume for induction that ‖x − ti−1‖ ≤ γi−1 dist(t,L). Note that we can write
x = x′ + cpi−1 · bn, where x′ ∈ Li and c ∈ {0, . . . , p− 1}. In particular,

di,c ≤ γ dist(ti−1 − cpi−1 · bn,Li) = γ‖x− ti−1‖ ≤ γi dist(t,L) .

N. Stephens-Davidowitz 19:15

It follows from the definition of ti that dist(ti,Li) ≤ di,c ≤ γi dist(t,L), as needed.
We now wish to show that dist(t′,L′) = dist(t`,L`). Suppose not. Then, clearly we

have that dist(t`,L`) ≥ p`‖b̃n‖/2. (To see this, consider the “distance in the direction of
b̃n.”) Combining this with the above, we have dist(t,L) ≥ (p/γ)` · ‖b̃n‖/2 ≥

√
n2n/2 · ‖b̃n‖,

contradicting Lemma 11.
Combining everything together, we see that dist(t′,L′) ≤ γ` · dist(t,L). Finally, we

assume for induction that ‖y′ − t′‖ ≤ γ`·(n−1) dist(t′,L′) ≤ γ`·n dist(t,L). It follows that
‖(y′ − t′ + t)− t‖ = ‖y′ − t′‖ ≤ γ`n dist(t,L) = γO(n2/ log p) dist(t,L), as needed. J

5.2 The deterministic SVP reduction
The SVP reduction uses essentially the same idea, but it is a bit more technical because
the GapSVP oracle is so much weaker. The reduction is very similar to the reduction from
unique SVP to GapSVP in [29].

Proof of Theorem 3. We may assume without loss of generality that p is a prime and γ3 < p,
since the result is trivial for larger γ. On input a lattice L ⊂ Rn, the reduction behaves
as follows. If n = 1, it solves the SVP instance directly. Otherwise, let (b1, . . . ,bn) be an
LLL-reduced basis for L (which we can compute efficiently by Theorem 9).

Our goal is to compute a sequence of sublattices L = L(0) ⊂ L(1) ⊂ · · · ⊂ L(`), with
` ≥ 1 to be set in the analysis, such that the index of L(i+1) over L(i) is p, and λ1(L(i+1)) ≤
γ · λ1(L(i)). In particular, we will take L(i) := L(b1, . . . ,bn−2, a

(i)
1 bn−1 + a

(i)
2 bn, a

(i)
3 bn) for

some a(i)
1 , a

(i)
2 , a

(i)
3 , starting with a(0)

1 := 1, a(0)
2 := 0, and a(0)

3 := 1. To compute the remaining
coefficients, the reduction behaves as follows for i = 0, . . . , ` − 1. For j = 0, . . . , p − 1, let
Li,j := L(b1, . . . ,bn−2, a

(i)
1 bn−1+a(i)

2 bn+ja(i)
3 bn, pa

(i)
3 bn) and let Li,p := L(b1, . . . ,bn−2, p·

(a(i)
1 bn−1 + a

(i)
2 bn), a(i)

3 bn). For each j, the reduction uses its GapSVP oracle to compute
di,j such that λ1(Li,j) ≤ di,j ≤ γλ1(Li,j). Let j such that di,j is minimal. The reduction
then sets the coefficients so that L(i+1) := Li,j .6

Let k1 be the largest power of p that divides a(`)
1 , and let k2 be the largest power of p

that divides a(`)
3 . If k1 ≥ k2, the reduction sets L′ := L(b1, . . . ,bn−2,bn) to be “L without

bn−1.” Otherwise, it sets L′ := L(b1, . . . ,bn−2, a
(`)
1 bn−1 + a

(`)
2 bn) to be “L(`) without bn.”

It then calls itself recursively on L′ and returns the result.
Take

` :=
⌈

n+ 3
log(p/γ2)

⌉
= O(n/ log p) .

The running time is clear. We first show that λ1(L(i+1)) ≤ γ · λ1(L(i)) for all i. Indeed,
let v ∈ L(i) such that ‖v‖ = λ1(L(i)). As in the previous proof, it suffices to observe that
v ∈ Li,c for some c, as this will imply that

λ1(L(i+1)) ≤ min
i
di,j ≤ di,c ≤ γλ1(Li,c) = γ‖v‖ = γλ1(L(i)) ,

as needed. To see this, note that we can write v =
∑n−2

i=1 ribi + rn−1 · (a(i)
1 bn−1 + a

(i)
2 bn) +

rn · a(i)
3 bn where ri ∈ Z. If rn−1 ≡ 0 mod p, then clearly v ∈ Li,p. Otherwise, there is a

6 I.e., if j < p, the reduction sets a(i+1)
1 := a

(i)
1 , a(i+1)

2 := a
(i)
2 + ja

(i)
3 , and a(i+1)

3 := pa
(i)
3 . Otherwise, it

sets a(i+1)
1 := pa

(i)
1 , a(i+1)

2 := a
(i)
2 , and a(i+1)

3 := a
(i)
3 .

APPROX/RANDOM’16

19:16 Search-to-Decision Reductions for Lattice Problems

c ∈ {0, . . . , p− 1} such that crn−1 ≡ rn mod p. Then,

v =
n−2∑
i=1

ribi + rn−1 · (a(i)
1 bn−1 + a

(i)
2 bn) + rna

(i)
3 bn

=
n−2∑
i=1

ribi + rn−1 · (a(i)
1 bn−1 + a

(i)
2 bn + ca

(i)
3 bn) + (rn − crn−1)a(i)

3 bn .

Note that by definition rn − crn−1 ≡ 0 mod p, so it follows that v ∈ Li,c, as needed.
In particular, λ1(L(`)) ≤ γ`λ1(L). Now, we claim that λ1(L′) ≤ λ1(L(`)). Note that any

point y =
∑
aibi ∈ L(`) \L′ has either |an| ≥ pmax(k1,k2) ≥ p`/2 or |an−1| ≥ p`/2 (depending

on whether or not k1 ≥ k2). But, by Lemma 10, this implies that ‖y‖ ≥ 2−n/2−1·p`/2·λ1(L) >
γ`λ1(L). Therefore, any vector in L(`) of length at most λ1(L(`)) ≤ γ` · λ1(L) must be in L′,
as needed.

Finally, as in the previous proof, we can show by a simple induction argument that
the output vector has length at most γ`(n−1)λ1(L′) ≤ γ`nλ1(L) = γO(n2/ log p) · λ1(L), as
needed. J

Acknowledgments. I would like to thank Divesh Aggarwal, Huck Bennett, Zvika Brakerski,
Daniel Dadush, Daniele Micciancio, and Oded Regev, all of whom provided helpful com-
mentary on earlier drafts of this paper. In particular, Divesh noted that our SVP reduction
shows hardness of unique SVP (Corollary 26), and Daniele noted that it implied a reduction
from

√
n-CVP to γ-GapSVP (Corollary 21). I also thank the anonymous reviewers for their

helpful comments.

References
1 Divesh Aggarwal, Daniel Dadush, Oded Regev, and Noah Stephens-Davidowitz. Solving

the Shortest Vector Problem in 2n time via discrete Gaussian sampling. In STOC, 2015.
2 Divesh Aggarwal and Chandan Dubey. Improved hardness results for unique Shortest

Vector Problem, 2015. URL: http://eccc.hpi-web.de/report/2013/076/.
3 Dorit Aharonov and Oded Regev. Lattice problems in NP intersect coNP. Journal of the

ACM, 52(5):749–765, 2005. Preliminary version in FOCS’04.
4 Miklós Ajtai. Generating hard instances of lattice problems. In STOC, pages 99–108. ACM,

1996.
5 Miklós Ajtai. The Shortest Vector Problem in L2 is NP-hard for randomized reductions.

In STOC, 1998. doi:10.1145/276698.276705.
6 Miklós Ajtai, Ravi Kumar, and D. Sivakumar. A sieve algorithm for the shortest lattice

vector problem. In STOC, pages 601–610, 2001.
7 L. Babai. On Lovász’ lattice reduction and the nearest lattice point problem. Combinatorica,

6(1):1–13, 1986. doi:10.1007/BF02579403.
8 Shi Bai, WeiqiangWen, and Damien Stehlé. Improved reduction from the Bounded Distance

Decoding problem to the unique Shortest Vector Problem in lattices. In ICALP, 2016.
9 W. Banaszczyk. New bounds in some transference theorems in the geometry of numbers.

Mathematische Annalen, 296(4):625–635, 1993. doi:10.1007/BF01445125.
10 U. Betke, M. Henk, and J.M. Wills. Successive-minima-type inequalities. Discrete &

Computational Geometry, 9(1):165–175, 1993. doi:10.1007/BF02189316.
11 Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption from

(standard) LWE. In FOCS, pages 97–106. IEEE, 2011.
12 Zvika Brakerski and Vinod Vaikuntanathan. Lattice-based FHE as secure as PKE. In

ITCS, pages 1–12, 2014.

http://eccc.hpi-web.de/report/2013/076/
http://dx.doi.org/10.1145/276698.276705
http://dx.doi.org/10.1007/BF02579403
http://dx.doi.org/10.1007/BF01445125
http://dx.doi.org/10.1007/BF02189316

N. Stephens-Davidowitz 19:17

13 Jin-Yi Cai and Ajay Nerurkar. Approximating the SVP to within a factor (1+1/dimε) is NP-
hard under randomized reductions. Journal of Computer and System Sciences, 59(2):221–
239, 1999. doi:10.1006/jcss.1999.1649.

14 Daniel Dadush and Gabor Kun. Lattice sparsification and the approximate Closest Vector
Problem. In SODA, 2013.

15 Daniel Dadush, Chris Peikert, and Santosh Vempala. Enumerative lattice algorithms in
any norm via M-ellipsoid coverings. In FOCS, pages 580–589. IEEE, 2011.

16 Daniel Dadush, Oded Regev, and Noah Stephens-Davidowitz. On the Closest Vector Prob-
lem with a distance guarantee. In CCC, pages 98–109, 2014. doi:10.1109/CCC.2014.18.

17 Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169–178.
ACM, New York, 2009.

18 Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and
new cryptographic constructions. In STOC, pages 197–206, 2008.

19 Oded Goldreich, Daniele Micciancio, Shmuel Safra, and Jean-Paul Seifert. Approximating
shortest lattice vectors is not harder than approximating closest lattice vectors. Information
Processing Letters, 71(2):55–61, 1999. doi:10.1016/S0020-0190(99)00083-6.

20 Ishay Haviv and Oded Regev. Tensor-based hardness of the Shortest Vector Problem to
within almost polynomial factors. Theory of Computing, 8(23):513–531, 2012. Preliminary
version in STOC’07.

21 Antoine Joux and Jacques Stern. Lattice reduction: A toolbox for the cryptanalyst. Journal
of Cryptology, 11(3):161–185, 1998.

22 G. A. Kabatjanskĭı and V. I. Levenštĕın. Bounds for packings on the sphere and in space.
Problemy Peredači Informacii, 14(1):3–25, 1978.

23 Ravi Kannan. Minkowski’s convex body theorem and integer programming. Mathematics
of Operations Research, 12(3):pp. 415–440, 1987. URL: http://www.jstor.org/stable/
3689974.

24 Subhash Khot. Hardness of approximating the Shortest Vector Problem in lattices. Journal
of the ACM, 52(5):789–808, September 2005. Preliminary version in FOCS’04.

25 S. Ravi Kumar and D. Sivakumar. On the unique shortest lattice vector problem. Theoret-
ical Computer Science, 255(1‚Äì2):641–648, 2001. doi:10.1016/S0304-3975(00)00387-X.

26 A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with rational
coefficients. Math. Ann., 261(4):515–534, 1982. doi:10.1007/BF01457454.

27 Hendrik W Lenstra Jr. Integer programming with a fixed number of variables. Mathematics
of operations research, 8(4):538–548, 1983.

28 Yi-Kai Liu, Vadim Lyubashevsky, and Daniele Micciancio. On Bounded Distance Decoding
for general lattices. In RANDOM, 2006.

29 Vadim Lyubashevsky and Daniele Micciancio. On Bounded Distance Decoding, unique
shortest vectors, and the minimum distance problem. In Advances in Cryptology –
CRYPTO 2009, volume 5677 of LNCS, pages 577–594. Springer, 2009. doi:10.1007/
978-3-642-03356-8_34.

30 Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and Learning with
Errors over rings. In EUROCRYPT, 2010.

31 Daniele Micciancio. The Shortest Vector Problem is NP-hard to approximate to within
some constant. SIAM Journal on Computing, 30(6):2008–2035, March 2001. Preliminary
version in FOCS 1998.

32 Daniele Micciancio. Efficient reductions among lattice problems. In SODA, pages 84–93.
ACM, New York, 2008.

33 Daniele Micciancio and Shafi Goldwasser. Complexity of Lattice Problems: a cryptographic
perspective, volume 671 of The Kluwer International Series in Engineering and Computer
Science. Kluwer Academic Publishers, Boston, Massachusetts, March 2002.

APPROX/RANDOM’16

http://dx.doi.org/10.1006/jcss.1999.1649
http://dx.doi.org/10.1109/CCC.2014.18
http://dx.doi.org/10.1016/S0020-0190(99)00083-6
http://www.jstor.org/stable/3689974
http://www.jstor.org/stable/3689974
http://dx.doi.org/10.1016/S0304-3975(00)00387-X
http://dx.doi.org/10.1007/BF01457454
http://dx.doi.org/10.1007/978-3-642-03356-8_34
http://dx.doi.org/10.1007/978-3-642-03356-8_34

19:18 Search-to-Decision Reductions for Lattice Problems

34 Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on Gaus-
sian measures. SIAM Journal on Computing, 37(1):267–302, 2007.

35 Phong Q Nguyen and Jacques Stern. The two faces of lattices in cryptology. In Cryptography
and lattices, pages 146–180. Springer, 2001.

36 Andrew M Odlyzko. The rise and fall of knapsack cryptosystems. Cryptology and compu-
tational number theory, 42:75–88, 1990.

37 Chris Peikert. Public-key cryptosystems from the worst-case Shortest Vector Problem. In
STOC, pages 333–342. ACM, 2009.

38 Chris Peikert and Alon Rosen. Lattices that admit logarithmic worst-case to average-case
connection factors. In STOC, 2007.

39 Xavier Pujol and Damien Stehlé. Solving the shortest lattice vector problem in time 22.465n.
IACR Cryptology ePrint Archive, 2009:605, 2009.

40 Oded Regev. On lattices, Learning with Errors, random linear codes, and cryptography.
Journal of the ACM, 56(6):Art. 34, 40, 2009. doi:10.1145/1568318.1568324.

41 Noah Stephens-Davidowitz. Dimension-preserving reductions between lattice problems,
2015. URL: http://noahsd.com/latticeproblems.pdf.

42 Noah Stephens-Davidowitz. Discrete Gaussian sampling reduces to CVP and SVP. In
SODA, 2016.

http://dx.doi.org/10.1145/1568318.1568324
http://noahsd.com/latticeproblems.pdf

Proving Weak Approximability Without
Algorithms∗

Ridwan Syed1 and Madhur Tulsiani2

1 University of Chicago, Chicago, IL, USA
rsyed@uchicago.edu

2 Toyota Technological Institute at Chicago, Chicago, IL, USA
madhurt@ttic.edu

Abstract
A predicate f : {−1, 1}k 7→ {0, 1} with ρ(f) = Ex∈{−1,1}k [f(x)] is said to be strongly approx-
imation resistant if, for every ε > 0, given a near-satisfiable instance of MAX k-CSP(f), it is
hard to find an assignment such that the fraction of constraints satisfied is outside the range
[ρ(f)−ε, ρ(f) +ε]. A predicate which is not strongly approximation resistant is known as weakly
approximable.

We give a new method for proving the weak approximability of predicates, using a simple SDP
relaxation, without designing and analyzing new rounding algorithms for each predicate. Instead,
we use the recent characterization of strong approximation resistance by Khot et. al [13], and
show how to prove that for a given predicate f , certain necessary conditions for strong resistance
derived from their characterization, are violated. By their result, this implies the existence of a
good rounding algorithm, proving weak approximability.

We show how this method can be used to obtain simple proofs of (weak approximability
analogues of) various known results on approximability, as well as new results on weak approx-
imability of symmetric predicates.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases approximability, constraint satisfaction problems, approximation resist-
ance, linear programming, semidefinite programming

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2016.20

1 Introduction

Constraint Satisfaction Problems (CSPs) are some of the most basic problems in the study
of approximation algorithms and inapproximability. The problem MAX k-CSP(f) is char-
acterized by a Boolean predicate f : {−1, 1}k → {0, 1}. An instance of the problem is
described by (say) n variables x1, . . . , xn taking values in {−1, 1}, and a set of (say) m
constraints where each constraint Ci is of the form Ci ≡ f(xi1 · bi1 , . . . , xik · bik) for some
bi1 , . . . , bik ∈ {−1, 1}. An assignment σ : {x1, . . . , xn} → {−1, 1} is said to satisfy the
constraint Ci if f(σ(xi1) · bi1 , . . . , σ(xik) · bik) = 1. Given an instance of the problem, the
goal is to find an assignment satisfying the maximum possible number of constraints. For a
given instance Φ, we denote the fraction of constraints satisfied by the optimal assignment
as OPT(Φ). An algorithm is said to achieve an approximation factor α if it always produces
an assignment satisfying at least α · OPT(Φ) fraction of constraints.

∗ Research supported by NSF Career Award CCF-1254044.

© Ridwan Syed and Madhur Tulsiani;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016).
Editors: Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans; Article No. 20; pp. 20:1–20:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.20
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

20:2 Proving Weak Approximability Without Algorithms

Given an instance of MAX k-CSP, a trivial algorithm is to assign independently to each
variable xi a random value in {−1, 1}. This satisfies a fraction of constraints concentrated
around the quantity ρ(f) = Ex∈{−1,1}k [f(x)]. A predicate for which this approximation
is best possible i.e. for every ε > 0, given an instance with OPT ≥ 1 − ε it is (NP/UG-)
hard find an assignment satisfying ρ(f) + ε fraction of constraints, is known as approximation
resistant. An even stronger notion of hardness, which was implicit in the literature on
hardness of approximation, and was explicitly defined by Khot et. al. [13], is known as
strong approximation resistance. A predicate is said to be strongly approximation resistant,
if it is hard to find an assignment which significantly deviates from a random assignment
i.e. for every ε > 0, given an instance with OPT(Φ) ≥ 1 − ε, it is (NP/UG-) hard to find
an assignment satisfying a fraction of constraints outside the interval [ρ(f)− ε, ρ(f) + ε].
A predicate which is not approximation resistant is known as approximable, and one which
is not strongly resistant is known as weakly approximable. Note that for an odd predicate
i.e.a predicate satisfying f(x) = 1 − f(−x) ∀x, the notions of approximability and weak
approximability are equivalent.

The notion of approximation resistance has been extensively studied, starting from the
celebrated result of Håstad [9] showing that MAX 3-SAT and MAX 3-XOR are approximation
resistant. Since then, many predicates have been shown to be approximation resistant (see
e.g. [7, 16, 11, 4], all proving NP-hardness). Recently, a remarkable result by Chan [2] proved
the approximation resistance of the Hypergraph Linearity Predicate (he shows NP-hardness
whereas UG-hardness was shown earlier in [17]).

Assuming the Unique Games Conjecture (UGC) of Khot [12], Austrin and Mossel [1]
show that any predicate f for which f−1(1) supports a balanced and pairwise independent
distribution on {−1, 1}k, is approximation resistant. In addition to the above results, a very
general result by Raghavendra [15] also shows that assuming the UGC, the best possible
approximation for any problem of the form MAX k-CSP(f) (for any f) can be obtained
by a certain Semidefinite Programming (SDP) relaxation (see Fig. 1) known as the basic
SDP. Thus, assuming the UGC, a predicate is approximation resistant if and only if one
cannot do better than the trivial algorithm, using the basic SDP. All of the above results on
approximation resistance in fact prove that the predicates in question are strongly resistant1.

For the case of approximability, it follows from the algorithm of Goemans and Williamson
[5] (and was shown by Håstad for every alphabet size [10]) that every predicate on 2 inputs
is approximable. A classification for all predicates of arity 3 follows from the work of Zwick
(see [19, 18]), and a large number of predicates of arity 4 were classified by Hast [8]. Hast
also gave a general sufficient condition (discussed later) for a predicate of arity k to be
approximable. He provided a rounding algorithm for an SDP relaxation, which achieves a
good approximation assuming the above condition.

For predicates with large arity, approximability results are known for various special
cases. The case when f is the sign of a linear polynomial in the variables, was studied by
Cherghachi et. al.[3]. They defined a special subclass, which they called “Chow-robust”
predicates, for which approximability follows from the sufficient condition of Hast. They
studied the approximability curve for these predicates, adapting Hast’s algorithm to obtain
the best possible approximation. Austrin et. al.[14] proved approximability for the case when
f is the sign of a quadratic polynomial which is symmetric in all the variables (with constant
term 0), again by using the algorithm of Hast (for which they gave a simpler analysis). They
also studied a new predicate, known as the “Monarchy” predicate, for which approximability

1 To the best of our knowledge, this is true for all known results proving approximation resistance.

R. Syed and M. Tulsiani 20:3

does not follow from Hast’s algorithm. They gave a new algorithm to obtain a non-trivial
approximation for the Monarchy predicate.

A related result is the study of approximation resistance for symmetric predicates in k
variables, by Guruswami and Lee [6]. They study whether the sufficient condition of Austrin
and Mossel [1] of f−1(1) supporting a balanced pairwise independent distribution, is also
necessary for the case of symmetric predicates2. They show this to be the case when f

is a even symmetric predicate, or corresponds to an interval of values for
∑k
i=1 xi. Since

the Austrin-Mossel condition is sufficient for approximation resistance, showing that it is
necessary corresponds to proving an approximability result. As before, this is also proved
using the condition (and algorithm) by Hast [8].

A characterization of strong approximation resistance

The starting point for our work is a characterization of strong approximation resistance,
recently given by Khot et. al.[13]. Their characterization is in terms of a polytope C(f)
associated with the predicate f . For a distribution µ supported on a subset of f−1(1),
let ζ = ζ(µ) denote the (k + 1) × (k + 1) moment matrix with ζ(i, j) = Ex∼µ [xixj] and
ζ(0, i) = ζ(i, 0) = Ex∼µ [xi]. Then C(f) is defined as the convex polytope

C(f) = {ζ(µ) : supp(µ) ⊆ f−1(1)} .

The condition of Khot et. al.says that a predicate f is strongly approximation resistant if and
only if there exists a probability measure Λ on C(f), satisfying certain symmetry properties.
These properties amount to saying for a set of k linear transformations L1, . . . , Lk (with Lt
depending on Fourier coefficients for sets of size t), we get Lt(Λ) ≡ 0 for all t ∈ [k]. We refer
to such a measure Λ as a vanishing measure.

The results of Khot et. al.in fact characterize approximability with respect to the basic
SDP relaxation. They show that if a vanishing measure exists, then for every ε > 0, there exist
instances such that the value of the SDP relaxation is at least 1− ε, but for every assignment
to the variables, the fraction of constraints satisfied is in the interval [ρ(f) − ε, ρ(f) + ε].
By the results of Raghavendra [15], this shows that the predicate is strongly approximation
resistant (assuming the UGC). Conversely, they also show that if such a measure does not
exist, then there exists a (randomized) rounding algorithm for the basic SDP, which given an
SDP solution with value at least 1− ε, produces an assignment whose value deviates from
ρ(f) by at least ε (in expectation).

Our results

The goal of this work is to show how various results on (weak) approximability can be proved
using the characterization of Khot et. al., without designing a new rounding algorithm in
each case. Given their result, it suffices to show the nonexistence of a vanishing measure,
to show the existence of a good rounding algorithm. For a variety of cases including the
condition of Hast [8] and the Monarchy predicate, we show that the showing the nonexistence
of a vanishing measure turns out to be much simpler to prove. We also derive some new
results on weak approximability results of symmetric predicates, as described below.

We prove the following results corresponding to the approximability condition of Hast.
We note that our proof only gives weak approximability, while the proofs by Hast [8] and

2 Guruswami and Lee consider CSPs both with and without negation. However, we only discuss the
former here.

APPROX/RANDOM’16

20:4 Proving Weak Approximability Without Algorithms

Austrin et. al.[14] based on a rounding algorithm, give approximability under the same
condition on f . The result below also gives weak approximability for any results based on
Hast’s condition.

I Theorem 1. Let f : {−1, 1} → {0, 1} be a predicate. Suppose there exists η ∈ R, such that

2η√
2π
·
∑
i

f̂({i}) · xi + 2
π
·
∑
i<j

f̂({i, j}) · xixj > 0

for all x ∈ f−1(x). Then f is weakly approximable.

For the Monarchy predicate, we prove the following result (proved by Austrin et. al.[14]
using a different rounding algorithm than the one used for the above result)

I Theorem 2. Let f be the Monarchy predicate defined as

f(x) := 1 + sgn ((k − 2) · x1 + x2 + · · ·+ xk)
2 .

Then f is approximable using the basic SDP.

Note that since Monarchy is an odd predicate, the notions of approximability and weak
approximability are equivalent in this case. Finally, we prove that for a symmetric predicate
f with non-zero Fourier mass on sets of size 1 and 2, the condition of Austrin and Mossel is
tight for strong approximation resistance i.e.f is strongly approximation resistant if and only
if f−1(1) supports a balanced pairwise independent distribution. As discussed before, the
condition is known to be sufficient for strong approximation resistance, and thus showing
that it is necessary is a result about (weak) approximability.

I Theorem 3. Let f : {−1, 1}k → {0, 1} be a symmetric predicate such that either f̂ ({1}) =
f̂ ({2}) = 0, or f̂ ({1}) 6= 0 and f̂ ({1, 2}) 6= 0. Then f is strongly approximation resistant if
and only if f−1(1) supports a balanced pairwise independent distribution.

We remark that in the first case of the above theorem, the uniform distribution on f−1(1) is
balanced and pairwise independent. Hence, the interesting part of the result is in the case
Fourier coefficients are non-zero at both the levels.

We conclude this section with two brief remarks on our techniques and the issue of
approximability vs. weak approximability. First, note that the idea of proving a nonexistence
result (for a vanishing measure) instead of an existence result (for an algorithm) seems
counterintuitive, since we switch from an existential quantifier to a universal one. However,
we in fact show the non-existence of a vanishing measure by showing the existence of a
function h and a t ∈ [k] such that

∫
h · Lt(Λ) 6= 0 (and hence Lt(Λ) 6≡ 0 showing that Λ is

not a vanishing measure). The function h turns out to be a simpler “core” object which
encodes all the required information for a rounding algorithm, but is easier to argue about
We characterize the class of functions h which we search over in Section 3, providing a single
framework to capturing various known results.

Secondly, we remark that results in this work only prove weak approximability, and do
not necessarily find the best approximation threshold for a problem. However, in many cases,
the reason for proving approximability, is in fact to rule out approximation resistance. In
such cases, it also seems interesting to rule out strong approximation resistance (i.e.prove
weak approximability) since the known techniques for proving approximation resistance,
seem to also prove strong resistance.

R. Syed and M. Tulsiani 20:5

2 Preliminaries

2.1 Constraint Satisfaction Problems
I Definition 4. For a predicate f : {−1, 1}k → {0, 1}, an instance Φ of MAX k-CSP (f)
consists of a set of variables {x1, . . . , xn} and a set of constraints C1, . . . , Cm where each
constraint Ci is over a k-tuple of variables {xi1 , . . . , xik} and is of the form

Ci ≡ f(xi1 · bi1 , . . . , xik · bik)

for some bi1 , . . . , bik ∈ {−1, 1}. For an assignment σ : {x1, . . . , xn} 7→ {−1, 1}, let sat(σ)
denote the fraction of constraints satisfied by σ. The maximum fraction of constraints that
can be simultaneously satisfied is denoted by OPT(Φ), i.e.

OPT(Φ) = max
σ:{x1,...,xn}7→{−1,1}

sat(σ).

The density of the predicate is ρ(f) = |f−1(1)|
2k .

I Definition 5. A predicate f : {−1, 1}k → {0, 1} is called approximable if there exists a
constant ε > 0 and a polynomial time algorithm, possibly randomized, that given an (1− ε)-
satisfiable instance of MAX k-CSP (f), outputs an assignment A such that EA [sat(A)] ≥
ρ(f) + ε. Here the expectation is over the randomness used by the algorithm. The predicate
is called weakly approximable if the output of the algorithm deviates from ρ(f) in expectation,
i.e. EA [|sat(A)− ρ(f)|] ≥ ε.

Note that the two notions are equivalent for an odd predicate satisfying f(x) = 1− f(−x)
for all x ∈ {−1, 1}k

A predicate that is not approximable is said to be approximation resistant and a predicate
that is not weakly approximable is said to be strongly approximation resistant. However, since
these conditions require the non-existence of algorithms, one can only define them under
certain conjectures such as the Unique Games conjecture of Khot [12] (and P 6= NP), or for
a specific family of algorithms.

It follows from a result of Raghavendra [15] that approximation resistance with respect
to a specific algorithm given by a basic SDP relaxation, discussed in the next section, is
equivalent to approximation resistance assuming the UGC. It was observed in [13] that this
is also true for strong resistance. Thus, we will limit ourselves to discussion of resistance
with respect to the basic SDP relaxation. Since the goal here is to prove approximability, we
in fact prove that the problems in question are approximable using the basic SDP.

2.2 Fourier Analysis
Recall that a function f : {−1, 1}k → R can be written as

f =
∑
S⊆[k]

f̂(S) · χS ,

where the functions χS(x) =
∏
i∈S xi form an orthonormal basis for the space of functions

f : {−1, 1}k → R under the inner product 〈f, g〉 = Ex∈{−1,1}k [f(x)g(x)]. The coefficients
f̂(S) are known as Fourier coefficients and can be computed as

f̂(S) = 〈f, χS〉 = E

[∏
i∈S

xi · f(x)
]
.

APPROX/RANDOM’16

20:6 Proving Weak Approximability Without Algorithms

maximize E
C∈Φ

 ∑
α∈{−1,1}k

f(α · bC) · x(SC ,α)

subject to〈

v(i,1),v(i,−1)
〉

= 0 ∀i ∈ [n]

v(i,1) + v(i,−1) = v(∅,∅) ∀i ∈ [n]∥∥v(∅,∅)
∥∥2 = 1∑

α∈{−1,1}SC
α(i1)=b1,α(i2)=b2

x(SC ,α) =
〈
v(i1,b1),v(i2,b2)

〉
∀C ∈ Φ, i1 6= i2 ∈ SC , b1, b2 ∈ {−1, 1}

x(SC ,α) ≥ 0 ∀C ∈ Φ, ∀α ∈ {−1, 1}SC

Figure 1 Basic Relaxation for MAX k-CSP (f).

2.3 The Basic SDP Relaxation for CSPs

We present below the basic SDP relaxation considered by Raghavendra [15]. The relaxation
is includes non-negative variables x(SC ,α) are included for sets SC corresponding to the set
of CSP variables for some constraint C, and an assignment α ∈ {−1, 1}SC . The variables{
x(SC ,α)

}
α∈{−1,1}SC add up to 1, thus defining a distribution on the assignments to the CSP

variables in the set SC .
The relaxation also has vectors v(i,b) for each i ∈ [n] and b ∈ {−1, 1}, such that the inner

products
〈
v(i1,b1),v(i2,b2)

〉
correspond to the probability that xi1 = b1 and xi2 = b2. The

relaxation (after a minor rewriting) is shown in Fig. 1.
For an SDP relaxation of MAX k-CSP, and for a given instance Φ of the problem, we

denote by FRAC(Φ) the SDP (fractional) optimum. For the particular instance Φ, the
integrality gap is defined as FRAC(Φ)/OPT(Φ). The integrality gap of the relaxation is the
supremum of integrality gaps over all instances. The integrality gap thus defined is in terms
of a ratio whereas we are concerned with the specific gap location 1− o(1) versus ρ(f) + o(1)
and also with the strong integrality gap as defined below.

I Definition 6. Let ε > 0 be a constant. A relaxation is said to have a (1 − ε, ρ(f) + ε)-
integrality gap if there exists a CSP instance Φ such that FRAC(Φ) ≥ 1− ε and OPT(Φ) ≤
ρ(f) + ε.

The relaxation is said to have a strong (1 − ε, ρ(f) ± ε)-integrality gap if there exists
a CSP instance Φ such that FRAC(Φ) ≥ 1− ε and for every assignment σ to the instance,
|sat(σ)− ρ(f)| ≤ ε.

It was shown by Raghavendra [15] that the integrality gap for the basic relaxation as in
Fig. 1 implies a UG-hardness result. It was observed by Khot et. al.[13] that this also holds
for strong integrality gaps.

I Theorem 7 ([15]). If the basic SDP in Fig. 1 has a (1− ε, ρ(f) + ε)-integrality gap for
every ε > 0, then f is approximation resistant assuming the UGC. Moreover, if the SDP
has a strong (1− ε, ρ(f)± ε)-gap for every ε > 0, then f is strongly approximation resistant
(assuming the UGC).

R. Syed and M. Tulsiani 20:7

2.4 Approximation Resistance Characterization
In this section, we briefly review the characterization of strong approximation resistance by
Khot et. al.[13].

Let µ be a probability distribution over {−1, 1}k. Then the symmetric matrix of first
and second moments ζ(µ) is defined as follows

ζ(µ) =

1 E[x1] E[x2] · · · E[xk]

E[x1] 1 E[x1x2] · · · E[x1xk]
E[x2] E[x1x2] 1 · · · E[x2xk]
...

...
...

. . .
...

E[xk] E[x1xk] E[x2xk] · · · 1

with E[xi] in the (0, i) entry, and E[xixj] in the (i, j) entry. All expectations above are with
respect to the distribution µ. The characterization of Khot et. al.is in terms of measures on
the convex polytope

C(f) = {ζ(µ) | supp(µ) ⊆ f−1(1)} .

To describe the characterization, we first consider three ways of transforming such a matrix
ζ. All transformations preserve the symmetry of ζ.

Projection to a subset S: Fix a nonempty S ⊂ [k]. Then ζS is the |S| + 1 by |S| + 1
principal submatrix obtained by restricting to rows and columns in {0} ∪ S.
Permuting rows/columns: Fix a permutation π : S → S. Then, ζS,π is the |S| + 1 by
|S|+ 1 matrix obtained by permuting the rows and columns of ζS corresponding to S,
according to π−1, i.e.

ζS,π(i, j) = ζS(π(i), π(j)) ∀i, j ∈ S and ζS,π(i, 0) = ζS,π(0, i) = ζS(0, π(i)) .

Applying a vector of signs: Fix b ∈ {−1, 1}S . Then, ζS,π,b is the |S|+ 1 by |S|+ 1 matrix
obtained by taking the entry-wise product of ζS,π,b and (1b)(1b)T , i.e.

ζS,π,b(i, j) = bibj · ζS,π(i, j) ∀i, j ∈ S and ζS,π,b(i, 0) = ζS,π,b(0, i) = bi · ζS,π(0, i) .

Now, let Λ be a probability measure over C(f). Fix, nonempty S ⊂ [k], π : S → S, and
b ∈ {−1, 1}S . We define the transformed measure ΛS,π,b (over |S|+ 1 by |S|+ 1 matrices)
defined as

ΛS,π,b(M) := Λ ({ζ ∈ C(f) | ζS,π,b = M}) .

We now state the characterization of strong approximation resistance in terms of the basic
SDP relaxation in Fig. 1.

I Theorem 8 ([13]). A given predicate f : {−1, 1}k → {0, 1} is strongly approximation
resistant for the basic SDP relaxation if and only if there exists a probability measure Λ
supported on C(f) such that for all t ∈ [k] the following function on matricesM is identically 0:

Λ(t)(M) =
∑
|S|=t

∑
π:S→S

∑
b∈{−1,1}S

ΛS,π,b(M) · f̂(S) ·
∏
i∈S

bi

Such a probability measure Λ is called a vanishing measure.

APPROX/RANDOM’16

20:8 Proving Weak Approximability Without Algorithms

3 Weak Approximability of Predicates

We first derive a necessary condition for strong approximation resistance, using the charac-
terization in Theorem 8. We will then derive various approximability results by showing that
the necessary condition is violated.

Suppose f : {−1, 1}k → {0, 1} is strongly approximation resistant. Theorem 8 implies
that there exists a measure Λ supported on the convex body C(f) such that for all t ∈ [k] :

Λ(t)(M) =
∑
|S|=t

∑
π:S→S

∑
b∈{−1,1}|S|

ΛS,π,b(M) · f̂(S) ·
∏
i∈S

bi

is an identically zero function. Then, for any function h we have∫
h(M) · Λ(t)(M) = 0 .

We use this to derive a necessary condition. For t ∈ [k], let h : [−1, 1](t+1)×(t+1) → R
be a function on (t + 1) × (t + 1) matrices. We will consider matrices of the form ζS,π,b
where |S| = t, π : S → S and b ∈ {−1, 1}S . We call h an odd symmetric function if for all
ζ ∈ [−1, 1](t+1)×(t+1) with ζ(i, i) = 1, all π : [t]→ [t] and b ∈ {−1, 1}t, we have

h(ζπ,b) =

∏
i∈[t]

bi

 · h(ζ) .

Note that the permutations π only permute rows and columns 1, . . . , t but do not move the
0th row or column (although the entries in the 0th or column may be permuted). We now
state our necessary condition for strong approximation resistance.

I Lemma 9. Let f : {−1, 1}k → {0, 1} be a predicate and let Λ be a vanishing measure on
C(f) satisfying the condition in Theorem 8 for all t ∈ [k]. Let h : [−1, 1](t+1)×(t+1) → R be
an odd symmetric function. Then,

E
ζ∼Λ

∑
|S|=t

f̂(S) · h (ζS)

 = 0 .

Proof. The proof is a simple consequence of Theorem 8. Let M be a (t+ 1)× (t+ 1) matrix.
Since Λ is a vanishing measure, we know that the signed measure Λ(t) should be identically
zero. Thus, we have

∫
Λ(t)(M) ·h(M) =

∫ ∑
|S|=t

∑
π:S→S

∑
b∈{−1,1}S

f̂(S) ·
∏
i∈S

bi · ΛS,π,b(M)

 ·h(M) = 0 .

From the definition of ΛS,π,b, we know that∫
ΛS,π,b(M) · h(M) = E

ζ∼Λ
[h (ζS,π,b)] .

R. Syed and M. Tulsiani 20:9

Thus, we have

E
ζ∼Λ

∑
|S|=t

∑
π:S→S

∑
b∈{−1,1}S

f̂(S) ·
∏
i∈S

bi · h (ζS,π,b)

 = 0

⇒ E
ζ∼Λ

∑
|S|=t

∑
π:S→S

∑
b∈{−1,1}S

f̂(S) · h (ζS)

 = 0

⇒ E
ζ∼Λ

∑
|S|=t

f̂(S) · h (ζS)

 = 0 ,

where the first implication uses the fact that h is an odd symmetric function. J

I Remark. The restriction to odd symmetric functions in the above lemma is actually without
loss of generality. Starting from an arbitrary function g, we would get

E
ζ∼Λ

∑
|S|=t

∑
π:S→S

∑
b∈{−1,1}S

f̂(S) ·
∏
i∈S

bi · g (ζS,π,b)

 = 0 ,

where

h (ζS) =
∑

π:S→S

∑
b∈{−1,1}S

∏
i∈S

bi · g (ζS,π,b)

is an odd symmetric function of ζS .
We shall use Lemma 9 with different functions h to derive the required approximability
results.

3.1 Low Degree Advantage
A widely used general condition for proving approximability is due to Hast [8]. A simplified
proof was also given by Austrin et. al.[14] using an SDP rounding algorithm. This condition
was also used in the study of approximability of symmetric predicates by Guruswami and
Lee [6].

I Theorem 10 ([8, 14]). Let f : {−1, 1} → {0, 1} be a predicate. Suppose there exists η ∈ R,
such that

2η√
2π
·
∑
i

f̂({i}) · xi + 2
π
·
∑
i<j

f̂({i, j}) · xixj > 0

for all x ∈ f−1(1). Then f is approximable.

We show that the weak approximability analogue of the above theorem follows directly from
Lemma 9.

I Theorem 11. Let f : {−1, 1} → {0, 1} be a predicate. Suppose there exists η ∈ R, such
that

2η√
2π
·
∑
i

f̂({i}) · xi + 2
π
·
∑
i<j

f̂({i, j}) · xixj > 0

for all x ∈ f−1(1). Then f is weakly approximable.

APPROX/RANDOM’16

20:10 Proving Weak Approximability Without Algorithms

Proof. Suppose f is strongly approximation resistant. Then, by Theorem 8, there exists a
vanishing measure Λ on C(f).

We first apply Lemma 9 with t = 1. Note that this case corresponds to |S| = 1. The
matrices ζS are 2× 2 matrices with diagonal entries 1 and off-diagonal entries equal to ζ(0, i)
when S = {i}. We take the function h(M) = M(0, 1) (equal to the off diagonal entry). Since
there are no nontrivial permutations, and multiplying row 1 and column 1 by b ∈ {−1, 1}
multiplies M(0, 1) by b, h is an odd symmetric function. Thus, we get

E
ζ∼Λ

∑
i∈[k]

f̂({i}) · h(ζ{i})

 = E
ζ∼Λ

∑
i∈[k]

f̂({i}) · ζ(0, i)

 = 0 .

Similarly, for the case of t = 2, we consider the function h(M) = M(1, 2). The only nontrivial
permutation of 1, 2 swaps the two indices. Thus, for symmetric matrices ζS with |S| = 2,
this is an odd symmetric function. Hence, we get

E
ζ∼Λ

∑
i<j

f̂({i, j}) · h(ζ{i,j})

 = E
ζ∼Λ

∑
i<j

f̂({i, j}) · ζ(i, j)

 = 0 .

Combining the two conditions, we get

E
ζ∼Λ

 2η√
2π
·
∑
i

f̂({i}) · ζ(0, i) + 2
π
·
∑
i<j

f̂({i, j}) · ζ(i, j)

 = 0 .

Let ζ0 denote the matrix Eζ∼Λ [ζ]. Then, by linearity of expectation

2η√
2π
·
∑
i

f̂({i}) · ζ0(0, i) + 2
π
·
∑
i<j

f̂({i, j}) · ζ0(i, j) = 0 .

Since C(f) is a convex polytope, ζ0 ∈ C(f). Thus, there exists a distribution µ0 with
supp(µ0) ⊆ f−1(1) satisfying ζ0(0, i) = Ex∼µ0 [xi] and ζ0(i, j) = Ex∼µ0 [xi · xj] for all
i, j ∈ [k]. Thus, the above condition can we written as

E
x∼µ0

 2η√
2π
·
∑
i

f̂({i}) · xi + 2
π
·
∑
i<j

f̂({i, j}) · xixj

 = 0 ,

which is a contradiction since the inner quantity is positive for all x ∈ f−1(1) by assumption.
J

3.2 Symmetric Predicates
Recall that f : {−1, 1}k → {0, 1} is a symmetric predicate if permuting the input bits of x
does not change the value of f(x). Alternatively, f(x) only depends on

∑
i xi. We will also

use the fact that for a symmetric function f , f̂(S) only depends on |S|.
The approximability of symmetric predicates was studied by Guruswami and Lee [6].

They consider both the cases with and without negation. For the case with negation, as
considered in this paper, they show that when f is even or corresponds to an interval
(i.e.there is an interval I ⊆ [−k, k] such that f(x) = 1 ⇔

∑
i xi ∈ I), f is approximation

resistant if and only if there exists a balanced pairwise independent distribution distribution
µ supported in f−1(1). Note that this condition was shown to be sufficient by Austrin and

R. Syed and M. Tulsiani 20:11

Mossel [1]. They show that for the cases of intervals and even predicates, this condition is
also necessary.

We study a different class of symmetric predicates, which either have non-zero mass
on both of the first two Fourier levels i.e.f̂ ({1}) 6= 0 and f̂ ({1, 2}) 6= 0, or have f̂ ({1}) =
f̂ ({1, 2}) = 0. We show that any such predicate f is approximation resistant if and only if
f−1(1) supports a balanced pairwise independent distribution. We first consider the case
when f̂ ({1}) = f̂ ({1, 2}) = 0. In this case, it is easy to see that f−1(1) supports a balanced
pairwise independent distribution, and hence f is approximation resistant.

I Theorem 12. Let f : {−1, 1}k → {0, 1} be a symmetric predicate such that f̂ ({1}) =
f̂ ({1, 2}) = 0. Then, the uniform distribution on f−1(1) is balanced and pairwise independent.

Proof. Let µ denote the uniform distribution on f−1(1). Then, for any i ∈ [k]

E
x∼µ

[xi] = 2k

|f−1(1)| · E
x∈{−1,1}k

[f(x) · xi] = 2k

|f−1(1)| · f̂ ({i}) = 0 .

Similarly, we also have that Ex∼µ [xixj] = 0 for all i 6= j. J

Next, we consider the case when both f̂ ({1}) and f̂ ({1, 2}) are nonzero.

I Theorem 13. Let f : {−1, 1}k → {0, 1} be a symmetric predicate such that f̂ ({1}) 6= 0
and f̂ ({1, 2}) 6= 0. Then f is strongly approximation resistant if and only if f−1(1) supports
a balanced pairwise independent distribution.

Proof. We only need to prove that strong approximation resistance implies the existence of
a balanced pairwise distribution supported in f−1(1), since the other direction follows from
the result of Austrin and Mossel [1].

Let f be approximation resistant and let Λ be the corresponding vanishing measure on
C(f). For a permutation π : [k]→ [k], recall that Λπ denotes the measure

Λπ(ζ) = Λ(ζπ) .

By the symmetry of the variables in f , if Λ is a vanishing measure, then so is Λπ. Since
the conditions in Theorem 8 are linear in the measure Λ, we get that Eπ:[k]→[k] [Λπ] is also
a vanishing measure. Thus, we can assume without loss of generality that for the given
vanishing measure, we have

E
ζ∼Λ

[ζ(0, i)] = E
ζ∼Λ

[ζ(0, j)] ∀i 6= j and E
ζ∼Λ

[ζ(i1, j1)] = E
ζ∼Λ

[ζ(i2, j2)] ∀i1 6= j1, i2 6= j2 .

(1)

As in Theorem 11, we apply Lemma 9 with t = 1 using h(M) = M(0, 1), and with t = 2
using h(M) = M(1, 2), to get the conditions

E
ζ∼Λ

∑
i∈[k]

f̂ ({i}) · ζ(0, i)

 = 0 and E
ζ∼Λ

∑
i<j

f̂ ({i, j}) · ζ(i, j)

 = 0 .

Using the symmetry of the Fourier coefficients, and Eq. (1), this gives

f̂ ({1}) · E
ζ∼Λ

[ζ(0, i)] = 0 and f̂ ({1, 2}) · E
ζ∼Λ

[ζ(i, j)] = 0 ∀i, j ∈ [k], i 6= j .

APPROX/RANDOM’16

20:12 Proving Weak Approximability Without Algorithms

Since f̂ ({1}) 6= 0 and f̂ ({1, 2}) 6= 0, we get that Eζ∼Λ [ζ(0, i)] = 0 and Eζ∼Λ [ζ(i, j)] = 0 for
all i 6= j ∈ [k]. Let ζ0 = Eζ∼Λ [ζ]. As before, we know that ζ0 ∈ C(f) by convexity and hence
there exists µ0 supported in f−1(1) such that ζ0 corresponds to the moments of µ0. Hence,

E
x∼µ0

[xi] = ζ0(0, i) = 0 and E
x∼µ0

[xi · xj] = ζ0(i, j) = 0 ∀i, j ∈ [k], i 6= j .

Thus, µ0 is a balanced pairwise independent distribution supported in f−1(1). J

3.3 Monarchy
Next, we consider the Monarchy predicate, which was proved to be approximable by Austrin
et. al.[14]. The predicate is a halfspace defined as

f(x) := 1 + sgn ((k − 2) · · ·x1 + x2 + · · ·+ xk)
2 .

The predicate is determined by the value of x1 unless x2 = · = xk = −x1. Austrin et.
al.considered this predicate as an example of a predicate to which Hast’s condition (discussed
in the previous section) does not apply. Moreover, it did not seem amenable to the rounding
scheme used in the proof of Hast’s result and they provide a new rounding algorithm to
prove the approximability of this predicate.

We show that the approximability of Monarchy follows from Lemma 9. Moreover, since
it is an odd predicate, weak approximability is equivalent to approximability. We shall use
the following observation by Austrin et. al.

I Lemma 14 ([14]). Let f be the monarchy predicate and let µ be a distribution on {−1, 1}k
with supp(µ) ⊆ f−1(1). Then for all i > 1,

E
x∼µ

[xi] ≥ − E
x∼µ

[x1] .

Proof. If x is a satisfying assignment then either x1 = 1, or for all i > 2 xi = 1. In both
cases, we have xi ≥ −x1 for all i > 2. The claim follows by linearity of expectation. J

We will also need the following facts about the Fourier coefficients of the Monarchy predicate.

I Lemma 15. Let f be the Monarchy predicate as defined above. Then
1. f̂({1}) = 1/2− 1/2k−1 and f̂({2}) = · · · = f̂({k}) = 1/2k−1.
2. f̂(S) = 0 for all S such that |S| = 2.
3. For S with |S| = 3, f̂(S) = −1/2k−1 if 1 ∈ S and f̂(S) = 1/2k−1 otherwise.

We can now prove that Monarchy is approximable.

I Theorem 16. Let f be the Monarchy predicate as defined above. Then f is approximable
using the basic SDP.

Proof. Suppose that f is not approximable. Then, by Theorem 8, there exists a vanishing
measure Λ on the polytope C(f). For s ∈ {−1, 0, 1}, define the probabilities p(s) :=
Λ ({ζ | sgn (ζ(0, 1)) = s}). We first prove the following.

I Lemma 17. There exist β1 ≥ 1 and β0 ≥ 0 such that p(−1) = β1 ·p(1)+β0 ·p(0). Moreover,
we must have p(−1) > 0.

R. Syed and M. Tulsiani 20:13

Proof. We apply Lemma 9 for t = 1 and the function h(M) = sgn (M0,1). Then, since h is
an odd symmetric function, we get

E
ζ∼Λ

[
f̂ ({1}) · sgn (ζ(0, 1)) +

∑
i>1

f̂ ({i}) · sgn (ζ(0, i))
]

= 0

⇒
∑

s∈{−1,0,1}

p(s) · E
[
f̂ ({1}) · sgn (ζ(0, 1)) +

∑
i>1

f̂ ({i}) · sgn (ζ(0, i)) | sgn (ζ(0, 1)) = s

]
= 0 .

Using the facts that f̂ ({2}) = · · · = f̂ ({k}) and ζi ≥ −ζ1 ∀i > 2 by Lemma 14, we get

p(−1)·
(
−f̂ ({1}) + (k − 1) · f̂ ({2})

)
+ p(0)·

(
a · f̂ ({2})

)
+ p(1)·

(
f̂ ({1}) + b · f̂ ({2})

)
= 0 ,

for some a ∈ [0, k − 1] and b ∈ [−(k − 1), k − 1]. Thus, we get p(−1) = β1 · p(1) + β0 · p(0),
where

β1 = f̂ ({1}) + b · f̂ ({2})
f̂ ({1})− (k − 1) · f̂ ({2})

≥ 1 and β0 = a · f̂ ({2})
f̂ ({1})− (k − 1) · f̂ ({2})

≥ 0

To prove the second part of the claim, we again apply Lemma 9 with t = 1 and h(M) =
M(0, 1). This gives,

E
ζ∼Λ

[
f̂ ({1}) · ζ(0, 1) +

∑
i>1

f̂ ({i}) · ζ(0, i)
]

= 0.

By the definition of the Monarchy predicate, we also know that for any ζ ∈ C(f),

(k − 2) · ζ(0, 1) +
∑
i>1

ζ(0, i) > 0 .

Using the fact that f̂ ({i}) = f̂ ({2}) for all i > 1, we get(
(k − 2)− f̂ ({1})

f̂ ({2})

)
· E
ζ∼Λ

[ζ(0, 1)] > 0 ⇒ E
ζ∼Λ

[ζ(0, 1)] < 0 .

Hence, we must have p(−1) = P [ζ(0, 1) < 0] > 0. J

Next, we apply Lemma 9 with t = 3 and h(M) =
∏3
j=1M(0, j). This gives

E
ζ∼Λ

∑
|S|=3

f̂(S) ·
∏
i∈S

sgn (ζ(0, i))

 = 0

⇒
∑

s∈{−1,0,1}

p(s) · E

∑
|S|=3

f̂(S) ·
∏
i∈S

sgn (ζ(0, i)) | sgn (ζ(0, 1)) = s

 = 0 . (2)

We analyze the terms for each s ∈ {−1, 0, 1} separately. For s = −1, we have ζ(0, 1) < 0 and
hence, ζ(0, i) > 0 for all i > 1, by Lemma 14. Since the Fourier coefficients are negative
when 1 ∈ S and positive otherwise (Lemma 15), we get that

E(−1) = E

∑
|S|=3

f̂(S) ·
∏
i∈S

sgn (ζ(0, i)) | sgn (ζ(0, 1)) = −1

 =
∑
|S|=3

∣∣∣f̂(S)
∣∣∣ .

APPROX/RANDOM’16

20:14 Proving Weak Approximability Without Algorithms

For s = 0, we have ζ(0, 1) = 0 and hence ζ(0, i) ≥ 0 for all i > 1. This gives

E(0) = E

∑
|S|=3

f̂(S) ·
∏
i∈S

sgn (ζ(0, i)) | sgn (ζ(0, 1)) = 0

= E

∑
|S|=3
1/∈S

f̂(S) ·
∏
i∈S

sgn (ζ(0, i)) | sgn (ζ(0, 1)) = 0

 ≥ 0 ,

since f̂(S) ≥ 0 for all S with |S| = 3 and 1 /∈ S. Finally, for s = 1, we note that since
f̂(S) < 0 for 1 ∈ S, we must have∣∣∣∣∣∣∣

∑
|S|=3
1∈S

f̂(S)
∏
i∈S

sgn (ζ(0, i))

∣∣∣∣∣∣∣ <
∑
|S|=3
1∈S

∣∣∣f̂(S)
∣∣∣ ,

since sgn (ζ(0, i)) · sgn (ζ(0, j)) cannot be simultaneously negative for all i, j > 1. This gives,

|E(1)| =

∣∣∣∣∣∣E
∑
|S|=3

f̂(S) ·
∏
i∈S

sgn (ζ(0, i)) | sgn (ζ(0, 1)) = 1

∣∣∣∣∣∣ <
∑
|S|=3

∣∣∣f̂(S)
∣∣∣ = E(−1) .

We will show that this implies a contradiction to Eq. (2). By Lemma 17, we have that
p(−1) = β1 · p(1) + β0 · p(0) for β1 ≥ 1 and β0 ≥ 0. Thus, we have

p(−1) · E(1) + p(0) · E(0) + p(1) · E(1)
= (β1p(1) + β0p(0)) · E(−1) + p(0) · E(0) + p(1) · E(1)
≥ p(1) · (β1E(−1)− |E(1)|) + p(0) · (β0E(−1) + E(0)) ,

which is strictly greater than 0 (thus contradicting Eq. (2)) unless p(1) = 0 and β0 = 0.
However, this would imply that p(−1) = β1 · p(1) + β0 · p(0) = 0, which is impossible by
Lemma 17. J

References
1 Per Austrin and Elchanan Mossel. Approximation resistant predicates from pairwise

independence. In Proceedings of the 23rd IEEE Conference on Computational Com-
plexity, pages 249–258, Los Alamitos, CA, USA, 2008. IEEE Computer Society. URL:
http://front.math.ucdavis.edu/0802.2300, doi:10.1109/CCC.2008.20.

2 Siu On Chan. Approximation resistance from pairwise independent subgroups. In Pro-
ceedings of the 45th ACM Symposium on Theory of Computing, pages 447–456, 2013.
doi:10.1145/2488608.2488665.

3 Mahdi Cheraghchi, Johan Håstad, Marcus Isaksson, and Ola Svensson. Approximating
linear threshold predicates. ACM Transactions on Computation Theory (TOCT), 4(1):2,
2012.

4 Lars Engebretsen, Jonas Holmerin, and Alexander Russell. Inapproximability Results for
Equations over Finite Groups. Theor. Comput. Sci., 312(1):17–45, 2004. doi:10.1016/
S0304-3975(03)00401-8.

5 M.X. Goemans and D.P. Williamson. Improved approximation algorithms for maximum
cut and satisfiability problems using semidefinite programming. Journal of the ACM,
42(6):1115–1145, 1995. Preliminary version in Proc. of STOC’94.

http://front.math.ucdavis.edu/0802.2300
http://dx.doi.org/10.1109/CCC.2008.20
http://dx.doi.org/10.1145/2488608.2488665
http://dx.doi.org/10.1016/S0304-3975(03)00401-8
http://dx.doi.org/10.1016/S0304-3975(03)00401-8

R. Syed and M. Tulsiani 20:15

6 Venkatesan Guruswami and Euiwoong Lee. Towards a characterization of approximation
resistance for symmetric CSPs. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, APPROX/RANDOM 2015, August 24-26, 2015,
Princeton, NJ, USA, pages 305–322, 2015. doi:10.4230/LIPIcs.APPROX-RANDOM.2015.
305.

7 Venkatesan Guruswami, Daniel Lewin, Madhu Sudan, and Luca Trevisan. A tight char-
acterization of NP with 3 query PCPs. In Proceedings of the 39th IEEE Symposium on
Foundations of Computer Science, pages 8–17, 1998. doi:10.1109/SFCS.1998.743424.

8 Gustav Hast. Beating a Random Assignment. PhD thesis, Royal Institute of Technology,
Sweden, 2005.

9 Johan Håstad. Some optimal inapproximability results. Journal of the ACM, 48(4):798–859,
2001.

10 Johan Håstad. Every 2-CSP Allows Nontrivial Approximation. Computational Complexity,
17(4):549–566, 2008.

11 Subhash Khot. Hardness Results for Coloring 3-Colorable 3-Uniform Hypergraphs. In
Proceedings of the 43rd IEEE Symposium on Foundations of Computer Science, pages 23–
32, 2002. doi:10.1109/SFCS.2002.1181879.

12 Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings of the 34th
ACM Symposium on Theory of Computing, pages 767–775, 2002.

13 Subhash Khot, Madhur Tulsiani, and Pratik Worah. A characterization of strong approx-
imation resistance. In Proceedings of the 46th ACM Symposium on Theory of Computing,
pages 634–643. ACM, 2014.

14 Avner Magen, Siavosh Benabbas, and Per Austrin. On quadratic threshold CSPs. Discrete
Mathematics & Theoretical Computer Science, 14, 2012.

15 Prasad Raghavendra. Optimal algorithms and inapproximability results for every CSP? In
Proceedings of the 40th ACM Symposium on Theory of Computing, pages 245–254, 2008.

16 Alex Samorodnitsky and Luca Trevisan. A PCP characterization of NP with optimal
amortized query complexity. In Proceedings of the 32nd ACM Symposium on Theory of
Computing, pages 191–199, 2000.

17 Alex Samorodnitsky and Luca Trevisan. Gowers uniformity, influence of variables, and
PCPs. In Proceedings of the 38th ACM Symposium on Theory of Computing, pages 11–20,
2006.

18 Johan Håstad. On the Efficient Approximability of Constraint Satisfaction Problems. In
Surveys in Combinatorics, volume 346, pages 201–222. Cambridge University Press, 2007.

19 Uri Zwick. Approximation Algorithms for Constraint Satisfaction Problems Involving at
Most Three Variables per Constraint. In Proceedings of the 9th ACM-SIAM Symposium
on Discrete Algorithms, pages 201–210, 1998.

APPROX/RANDOM’16

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.305
http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2015.305
http://dx.doi.org/10.1109/SFCS.1998.743424
http://dx.doi.org/10.1109/SFCS.2002.1181879

Every Property of Outerplanar Graphs is Testable
Jasine Babu1, Areej Khoury∗2, and Ilan Newman3

1 Department of Computer Science and Engg, Indian Institute of Technology
Palakkad, India
jasine@iitpkd.ac.in

2 Department of Computer Science, University of Haifa, Haifa, Israel
areejkhoury@csweb.haifa.ac.il

3 Department of Computer Science, University of Haifa, Haifa, Israel
ilan@cs.haifa.ac.il

Abstract
A D-disc around a vertex v of a graph G = (V,E) is the subgraph induced by all vertices of
distance at most D from v. We show that the structure of an outerplanar graph on n vertices
is determined, up to modification (insertion or deletion) of at most εn edges, by a set of D-discs
around the vertices, for D = D(ε) that is independent of the size of the graph. Such a result was
already known for planar graphs (and any hyperfinite graph class), in the limited case of bounded
degree graphs (that is, their maximum degree is bounded by some fixed constant, independent of
|V |). We prove this result with no assumption on the degree of the graph.

A pure combinatorial consequence of this result is that two outerplanar graphs that share the
same local views are close to be isomorphic.

We also obtain the following property testing results in the sparse graph model:
graph isomorphism is testable for outerplanar graphs by poly(logn) queries.
every graph property is testable for outerplanar graphs by poly(logn) queries.

We note that we can replace outerplanar graphs by a slightly more general family of k-edge-
outerplanar graphs. The only previous general testing results, as above, where known for forests
(Kusumoto and Yoshida), and for some power-law graphs that are extremely close to be bounded
degree hyperfinite (by Ito).

1998 ACM Subject Classification G.3 Probability and Statistics

Keywords and phrases Property testing, Isomorphism, Outerplanar graphs

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2016.21

1 Introduction

We study property testing and the related learning problem for some classes of sparse graphs.
The theory of property testing in the dense graph model is quite well understood (see [1]
and bibliography therein). The theory of sparse graphs is less understood, and, in particular,
there is no characterization of what properties can be tested, even for the bounded degree
model.

Our starting point is the result in Newman-Sohler [9] stating roughly that every graph
property can be tested by constantly many queries for bounded degree planar1 graphs. The
result follows a long line of previous results, and uses heavily a basic idea of Onak [10], and

∗ Research supported by ERC grant 279559.
1 The result in[9] is for the larger family of hyperfinite graphs containing planar graphs.

© Jasine Babu, Areej Khoury, and Ilan Newman;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016).
Editors: Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans; Article No. 21; pp. 21:1–21:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.21
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

21:2 Every Property of Outerplanar Graphs is Testable

Hassidim et al. [4], (a.k.a. “local partition oracle”) showing that a bounded degree graph G
can be approximated, up to the deletion of εn edges, by a graph G′ whose components are
all of constant size. Moreover, the graph G′ (or a short description of it), can be obtained by
making a constant number of queries to the original graph G.

This result is essentially equivalent to two other formulations: the first is that every
bounded degree planar graph can be learned up to the deletion of εn edges, by making a
constant number of queries to it. For the other formulation, let D be a constant natural
number. The D-local views of a graph G on n vertices is the collection (multiset) of the n
unlabelled discs (balls) of radius D around the n vertices. The other, purely combinatorial
result, states that for any ε, there is a constant D = D(ε, d), such that if two n-vertices
d-bounded degree planar graphs G,H, have the same2 D-local neighbourhoods, then changing
at most εn edges in G makes it isomorphic to H (we will say that G is ε-close to H in this
case).

The results above restrict the graphs they are applicable to, in two conceptually different
ways. The first is being planar (or hyperfinite). Indeed it is known that this is essential;
namely, we know that similar statements as above are wrong for e.g., bounded degree, but
otherwise general graphs. The other restriction is being bounded degree. The results above
(specifically the distance measure) are defined so to be used for sparse graphs - namely of
bounded (constant) average degree. Bounding the maximum degree is essential for the proof
machinery in the papers above, but does not seem to be essential for the results. However, as
of now, the only general results for non-bounded degree families of sparse graphs are known
only for the much simpler family of Forests [6], and the special power-law graphs of Ito [5]
(that are very close to be hyperfinite). In particular, the following, purely combinatorial
question proposed by Sohler [12] is still wide open: Suppose that two n-vertex planar graphs
H,G have identical D-local views (for some large enough constant D), is it true that the
graphs are ε-close to be isomorphic? (ε-close means that we can change at most εn edges in
one to make it isomorphic to the other).

We answer this question positively for a subclass of planar graphs that includes forests
and outerplanar graphs (and k-edge-outerplanar graphs - to be defined later). We follow
coarsely the route used by Newman-Sohler [9], and the generalization of it to non-bounded
degree forests by Kusumoto and Yoshida [6]. As an outcome, we also obtain three other
results as well: (a) every graph property is testable for this subclass. (b) isomorphism is
testable for any two graphs of this subclass. (c) every such graph G can be “learned”, namely
one can infer a graph H that is ε-close to G. All results using poly(logn) many queries.

The presentation is arranged as follows: In Section 2 we present the essential definitions,
and the tools we use. We then state the formal results in Section 3, along with a road map
to the structure of the proof.

2 Notations and Tools

In this paper we consider labelled undirected graphs without multiple edges and self-loops.
We use G = (V,E) to denote a graph with vertex set V and edge set E. We will assume
by default that V (G) = [n], unless otherwise stated. We will say that a graph is d-
bounded degree if its maximum degree is at most d. For a set S ⊆ V we denote by

2 The result are asserted even when the the D-local neighbourhoods are not the same, but just close
enough.

J. Babu, A. Khoury, and I. Newman 21:3

E(S) = {(u, v) ∈ E(G)| u ∈ S, v /∈ S}, and e(S) = |E(S)|. A block in a graph G is a
maximal 2-connected subgraph of G.

The subclass of planar graphs that is discussed in this paper is that of k-edge-outerplanar
graph for some fixed constant k.

I Definition 2.1 (k-Edge-Outerplanar). A graph G is 1-edge-outerplanar if it has a planar
embedding in which all vertices of G are on the outer face.

We say that G is k-edge-outerplanar if G has a planar embedding such that if all edges
on the exterior face are deleted, the connected components of the remaining graph are all
(k − 1)-edge-outerplanar.

Note: Being 1-outerplanar coincides with the standard definition of being outerplanar.
However, for k > 1, being k-edge-outerplanar is a weaker notion than the standard notion of
being k-outerplanar - namely, graphs that have a planar embedding such that the removal of
the vertices on the outer face results in a (k − 1)-outerplanar graph. In particular, a graph
may be 2-outerplanar, but not k-edge-outerplanar for any given constant k.

Two graphs G1 = (V1, E1) and G2 = (V2, E2) are said to be isomorphic, if there is a
bijective mapping Φ : V1 → V2 such that (u, v) ∈ E1, if and only if (Φ(u),Φ(v)) ∈ E2. A
graph property is a (possibly infinite) collection of graphs, which is closed under isomorphism.
We will consider graph properties of graphs with fixed number of vertices (n in what follows),
where the number is growing to infinity. The graphs that are discussed in this paper are all
sparse graphs, specifically, they are planar, and hence their average degree is at most 6.

2.1 Property Testing
I Definition 2.2 (Graph distance). Let G1 = (V1, E1) and G2 = (V2, E2) be planar graphs
on n vertices. The distance dist(G1, G2) is the number of edges that needs to be deleted
and/or inserted from G1 in order to make it isomorphic to G2.

We extend the definition of dist(G1, G2) for the case where G1 and G2 have different
number of vertices, by adding a sufficient number of isolated vertices to the graph with the
lesser number of vertices.

We say that G1, G2 are ε-far from being isomorphic (or G1 is ε-far from G2), if dist(G1, G2)
> εn, where n = min{|V1|, |V2|}. Otherwise, we say that they are ε-close (to being iso-
morphic).

I Definition 2.3 (ε-far). Let Π be any (non-empty) graph property. A graph G = (V,E) is
said to be ε-far from Π, if it is ε-far from every G′ ∈ Π. If G is not ε-far from Π, it is said to
be ε-close to Π.

For algorithms in the model that we will discuss in this paper, the input graph, G = (V,E),
is given but not known to the algorithm. The vertex set V = [n] is known. The neighbours
of each vertex v ∈ [n] are assumed to be ordered, namely by a list u1, . . . , ud(v), where
d(v) = deg(v) is the degree of v. The access of the algorithm to the input graph is via
‘neighbourhood’ queries: A query is to specify a vertex name v ∈ [n], and i ∈ [n], on which
the answer to the query is the name of the i-th neighbour of v, or a special indication if
deg(v) < i. We further augment this standard model with an additional type of queries: On
a queried vertex v, one gets deg(v). It is easy to see that deg(v) can be determined using
the standard model at the cost of O(logn) queries3.

3 A good enough approximation at a better cost would suffice for all our purposes; but we do not use
this here, as we do not expect to optimize the query complexity to better than poly(log n).

APPROX/RANDOM’16

21:4 Every Property of Outerplanar Graphs is Testable

The notion of property testing was introduced by Rubinfeld and Sudan [11] and then
formally defined by Goldreich, Goldwasser and Ron [3]. A property testing algorithm for
property Π, for the model of sparse graphs, or bounded degree graph model is a (randomized)
algorithm that, given query access to a graph G as described above, accepts every graph from
Π with probability at least 2/3, and rejects every graph that is ε-far from Π with probability
at least 2/3. If the graph neither has property Π nor is ε-far from Π, then a property tester
may accept or reject.

2.2 Partitions and the local views of the graph

For a graph G = (V,E), and a set of vertices S ⊆ V (G), G[S] denotes the subgraph induced
by S. A partition of a set V is a set of pairwise disjoint non-empty subsets of V whose union
is V . For a partition P = (C1, C2, ..., Cr) of V (G) we denote by G[P] the graph that is the
union of G[Ci]. Note that G[P] is disconnected if r ≥ 2 and is obtained from G by deleting
all edges whose endpoints are in different partition classes of P .

Every d-bounded degree planar graph admits a partitioning into small (constant size) con-
nected components by removing a fraction of the edges, by using recursively the Lipton-Tarjan
separator [8]. To be useful for property testing and sub-linear approximation algorithms, it
would be nice if the features of such partitions could be obtained by some local sampling.
Hassidim, Kelner, Nguyen, and Onak in a seminal work, [4], following an earlier work of
Benjamini, Schramm and Shapira[2], showed how to construct an oracle to such a partition,
that takes a vertex as input and returns in constant time the partition class that vertex
belongs to.

We will use extensively the local-partition-oracle for d-bounded degree planar graphs,
and the related results which we present in what follows.

A connected graph G = (V,E) with a specially identified vertex v, is called rooted graph
and we sometimes say that G is rooted at v. A rooted graph G = (V,E) has radius D, if
every vertex in V has distance at most D from v. Two rooted graphs G and H are isomorphic,
if there is a graph isomorphism between H and G that identifies the roots with each other.
For a graph G = (V,E), an integer D and a vertex v ∈ V , let BG(v,D) be the subgraph
rooted at v that is induced by all vertices of G that are at distance less or equal to D from v.
BG(v,D) is a graph of radius at most D with root v, and we call it the D-disc around v.
The collection (multiset) of the n unlabelled D-discs of G is called the D-local views of G.
Note that for d-bounded degree graphs, the number of possible non-isomorphic D-discs is a
constant depending on D and d, and does not depend on n.

I Definition 2.4 (Frequency Vector). For integers d ≥ 1 and s ≥ 1, a graph is called
(d, s)-graph if it is d-bounded degree and has at most s vertices.

Let F(d, s) = F (1), F (2), ..., F (f(d,s)) be the family of all non-isomorphic (d, s) planar
graphs and let f(d, s) = |F(d, s)|.

For a graph G = (V,E) and a partition P of V that gives a collection of (d, s) compon-
ents G[P], the P -frequency vector Freq(G[P]) is the f(d, s)-dimensional vector whose i-th
coordinate is the number of (d, s)-components of G that are isomorphic to F (i). Let the
normalized P -frequency vector freq(G[P]) be the `1-unit vector 1

m ·Freq(G[P]), where m is
the number of (d, s) components4 in G[P].

4 In [9] the frequency vector is for rooted components, hence normalization is by dividing into n - the
number of vertices. These two notions are interchangeable in terms of the ability to approximate them.

J. Babu, A. Khoury, and I. Newman 21:5

We will use the following theorem considered and proved first by Onak [10], and by
Hassidim, Kelner, Nguyen, and Onak [4] on partitions of bounded degree hyperfinite graphs.
For the statement below, we use the better bounds achieved by Levi-Ron [7] and we state it
here only for the restricted case of planar graphs.

I Lemma 2.5 (Onak’s local-partition oracle, [7]). Let ε > 0, and d ≥ 2. Then there is an
s = s2.5(ε, d) = O(d2/ε2) and a randomized algorithm (a.k.a “local partition oracle”), A, such
that for every d-bounded degree planar graph G = (V,E), algorithm A produces an implicit
partition P so that G[P] is a collection of (d, s)-components.

Algorithm A provides a “neighbourhood oracle” to G[P], namely, for a query to a vertex
v ∈ V (G), the algorithm returns the name of a component of G[P] in which v lies in, by doing
(d/ε)O(log(1/ε)) queries to the graph G, and more specifically to vertices in BG(v, poly(1/ε)).

The total time complexity of a sequence of q queries to the oracle is q log q · (d/ε)O(log(1/ε))

and with success probability 9/10, the answers are all consistent with a partition P such that
G[P] is ε-close to G.

Using the local partition oracle, Newman-Sohler [9] proved that the normalized P -
frequency vector of G[P], for a (d, s) partition P of a d-bounded degree hyperfinite graph
G can be estimated with an additive error of ε in its l1-norm, simply by querying the
D = D(s)-neighbourhoods (D-discs) around some constant number of randomly chosen
vertices in G.

I Definition 2.6. Let f, g ∈ Rn be two vectors. We say that g λ-approximates f if
|f − g|1 =

∑n
1 |gi − fi| ≤ λ.

The following lemma is a restatement of Lemma 5.2 of [9] for the restricted case of planar
graphs (originally stated in [9] for hyperfinite graphs). Here we do not specify the function
types explicitly, so to make the lemma more readable.

I Lemma 2.7 ([9]). Let G = (V,E) be a d-bounded degree planar graph, and ε ∈ (0, 1) any
constant. Let s = 100d2/ε2. Then there are values D2.7 = D2.7(ε, d), q2.7 = q2.7(ε, d) and a
randomized algorithm Sampler, that accesses the graph G by querying independently q2.7
random vertices of G and exploring the D2.7-discs around them. The algorithm outputs a
frequency vector f̃ with the following properties.

With probability at least 4/5 (over the internal coins of the algorithm) the following
two events occur simultaneously: (a) the output vector f̃ ε-approximates the normalized
(d, s)-frequency vector freq(G[P]) of the graph G[P], where P is a partition of G into
(d, s)-components. (b) G[P] is ε-close to G.

Finally, to close the cycle, the following simple claim shows why an approximation of
freq(G[P]) as above is useful.

I Claim 2.8 ([9]). Let s ≥ 1 be an integer and let 0 < λ < 1. Let G and H be two graphs
that are each a union of (d, s)-graphs on n vertices such that their normalized frequency
vectors (for the corresponding partitions into components) f, g respectively have |f − g|1 ≤ λ.
Then G and H are λ-close.

For non-bounded degree outerplanar graphs it is not always possible to delete εn edges
so that in the resulting graph all components are of constant sizes. E.g., consider the star of
n vertices. Hence, we allow some more complex pieces in the partitions. This motivates the
following definition that is introduced in [6] for partitions of forests.

APPROX/RANDOM’16

21:6 Every Property of Outerplanar Graphs is Testable

I Definition 2.9 ((d, s)-union). A graph G = (V,E) is a (d, s)-rooted graph if G contains
a (unique) vertex v with deg(v) ≥ d+ 1 and each connected component of G \ {v} is (d, s)
graph. The unique vertex v (with degG(v) ≥ d + 1) is called the root vertex of G and is
denoted by root(G).

A graph is a (d, s)-union if it is a vertex disjoint union of (d, s)-rooted components and
(d, s)-components.

I Definition 2.10 (Multiway-Cut). For a graph G and a set of vertices T ⊆ V (G) a T -
multiway cut is a set of edges E′ ⊆ E(G) such that in the graph G \E′ no two vertices from
T are in the same connected component.

3 Global Partitions

In this section we prove the main structural theorem stating that every k-edge outerplanar
graph is close to a k-edge outerplanar (d, s)-union, for some constants d, s (which depend only
on ε and k). For clarity we present in this version the statements, and results for outerplanar
graphs (rather than k-edge outerplanar graphs). The generalization to k-edge-outerplanar
graphs is immediate, but will not be presented here. Note, however that the constants d and
s will depend also on k when the generalization is done.

I Theorem 3.1. Every outerplanar graph G is ε-close to a graph G′ that is an outerplanar
(d, s)-union for some d = d(ε) and s = s(ε).

We note that this does not immediately imply that every such G has a ’short’ (constant
size) description, as each component of G′ may have a root of different and unbounded
degree. It does not imply also, that such a “close” graph G′ can be “learned” from the
local views in G. Thus, this is not directly applicable for property testing, but could be of
independent interest. We will prove the theorem, and provide positive answer for the two
additional properties above, namely that G′ can be learned from the local views, and that it
has a “short” description.

Before we present the proof of Theorem 3.1 we make some observations about outerplanar
graphs which provides the core tool for the proof as well as the motivation for the definition
of k-edge outerplanar graphs.

For a graph G = (V,E) and a, b ∈ V let c(a, b) denote the minimum edge cut in G,
separating a and b. The following basic Lemma 3.2 is used, via a chain of reductions, to
prove Corollary 3.3 (See appendix for further details and proofs).

I Lemma 3.2. Let G(V,E) be 2-connected outerplanar graph, s, t ∈ V such that (s, t) is
an edge of the outer face in the embedding of G as an outerplanar graph. Then c(s, t) ≤
b(log(|V |+ 1))c.

I Corollary 3.3. Let G(V,E) be a connected outerplanar graph and U,W (V be disjoint
subsets of vertices. Suppose that U is an independent set in G Then, there is a U -multiway
cut of size at most 2(|U | − 1) log(2|W |+ 1) in the graph G[W ∪ U].

I Claim 3.4. Let G be a bipartite outerplanar graph with bipartition A,B. If degree of each
vertex in B is at least two, then |B| ≤ 4|A| and hence, G has at most 15|A| edges.

We note that reducing the constants 4 and 15 in the above claim can be reduced by a
factor of two, but this is of little interest in our context. We prefer the current proof of
Claim 3.4 in the appendix, because its generalization to handle k-edge-outerplanar graphs is
easy.

J. Babu, A. Khoury, and I. Newman 21:7

Algorithm 1 Given d, ε, and an outerplanar graph G(V,E) this algorithm returns an
outerplanar (d, s)-union graph G′(V,E′), such that G′ is obtained from G by removing
f(s, d, ε) · n edges, where s = s2.5(ε/4, d).
1: procedure GlobalPartition(G)
2: Let V h = {v ∈ V | degG(v) > d}, and V l = V \ V h.
3: Let E1 = E(G[V h]) be the set of edges with both endpoints in G[V h], and let G1 be

the graph obtained from G by deleting E1.
4: Find a (ε/4, s)-partition of G[V l]. Such a partition exists, and, in particular, as

asserted in Lemma 2.5, a (local) oracle to such partition can be found. Let G2 be the
graph resulting from G[V l] after partitioning. G2 is a disjoint union of (d, s)-components.

5: Replace G[V l] by G2 in G1, that is: let G3 = (V,E2 ∪ F), where E2 = E(G2) and
F = E(G) ∩ (V h × V l). Namely F contains all edges of G with exactly one endpoint in
V h and one endpoint in V l.

6: Finally, obtain G′ from G3 by removing for each component C of G2 a minimum size
V h-multiway cut in the graph G3[C ∪ (V h ∩N(C))].

7: end procedure

Now we are ready to prove Theorem 3.1. The proof will be algorithmic, namely, Algorithm
1 below will produce the required G′ that is close to G.

I Theorem 3.5. Let ε ∈ (0, 1) be any constant. Let G = (V,E) be an outerplanar graph,
d = d(ε) = O(1

ε2), s = s2.5(ε/4, d) = O(d2/ε2). Then Algorithm 1 produces a (d, s)-union
subgraph G′ of G, that is ε-close to G with probability better than 0.9.

Proof. Since G is planar, it follows that |E(G)| ≤ 3n. This implies that |V h| ≤ 6n/d. Since
the graph is planar then G[V h] is planar too. Hence, at most 3|V h| ≤ 18n/d edges are
removed in step 3 of the algorithm. We fix d = O(1

ε2) to be sufficiently high, so to make sure
that at most ε2n/10 edges are removed in step 3.

Applying the global partition in step 4 with parameters ε1 = ε
4 and d we obtain, with

success probability 0.9, a graph G2 that is a a union of (d, s)-components, and that is ε1-close
to G[V l]. This defines the graph G3 in step 5 of the algorithm.

By Claim 3.4, the number of connected components in G2 with at least two neighbours
in V h in the graph G3 is at most 4|V h|. If each of these components is contracted to a single
representative vertex for the component, after removal of parallel edges and self loops, there
are only 15|V h| edges between the representative vertices and V h.

For step 6, observe that if for each component C of G3[V l] we get a N(C) ∩ V h-
multiway cut MC in G3[V (C) ∪ (N(C) ∩ V h)], then M = ∪CMC will be a V h-multiway
cut in G3. Moreover, we can restrict our attention to only components which have at
least two neighbours in V h. As explained in the paragraph above, the number of such
components is only 4|V h| and

∑
C |N(C) ∩ V h| is at most 15|V h|. For each such component

C, we have |MC | ≤ |N(C) ∩ V h| · (2 log(2s + 1)) by Corollary 3.3. From this, it follows
that |M | ≤ 15|V h|(2 log(2s + 1)). Since s = O(d2/ε2), a proper choice of d ensures that
|M | ≤ εn/3.

Thus, the total number of edges removed in all steps of the algorithm is at most εn,
implying that the resultant graph G′ is ε-close to G.

After applying the partitioning oracle in step 4 the size of every connected component in
G2 is at most s. Since V h becomes an independent set after step 3, after executing step 6,
no two vertices in V h have a path between them in G′. Therefore, each component of G′ has

APPROX/RANDOM’16

21:8 Every Property of Outerplanar Graphs is Testable

at most one vertex of degree greater than d. Therefore G′ is a (d, s)-union for d and s as
above. J

We note that in the proof above, step 4 of the algorithm, which is the only random part,
may be replaced with any deterministic partition (e.g., recursively removing edges connected
to a good enough separator). We used random local partition, in the spirit of Onak [4],
looking ahead, to hint to the fact that the partition can actually be done in a distributed
manner, and hence “approximated” locally. The same is also true with respect to step 6,
where a global multiway cut could be taken. It is possible to do step 6 in a distributed way
and locally, because a component C of G2 has at most d · s (which is a constant) neighbours
in Vh, and hence G3[C ∪ (V h ∩N(C))] is a graph of constant size.

4 From global partition to Local partition

Let G = (V,E) be an outerplanar graph. Recall that our goal is two fold: the first is to
roughly “learn” G from its local views. Learning here means to find a graph G′ that is a
(d, s)-union and that is close to G, as asserted by Theorem 3.1. Conceptually this implies
that two graphs with the same local views are close to be isomorphic (some extra care
should be taken here). The 2nd goal is to find the above approximating G′ using a small
number of queries. Conceptually this immediately implies a property testing mechanism for
all properties.

This is summed up in the following theorems.

I Theorem 4.1. For every ε > 0 there is a D = D4.1(ε), s = s4.1(ε), d = d4.1(ε), q =
q4.1(ε, n) = O(poly(logn)), and a randomized algorithm Approx that on an outerplanar
graph G = (V,E) on n vertices:

Approx outputs an outerplanar (d, s)-union graph G∗.
Approx does random queries to q vertices in G, and only inside the D-disc around the
above vertices.
With success probability at least 0.9, G∗ will be ε-close to G.

I Theorem 4.2. For every ε > 0 there is a D4.1 = D(ε), q = q4.1(ε, n) = O(poly(logn)),
and a randomized algorithm Tester, that on two outerplanar graphs G,H on n vertices, it
accepts if H is isomorphic to G and rejects if H is ε far from G with error probability at
most 1/3.

The algorithm Tester does q random queries to q vertices in G and H, only inside the
D-disc around (some of) the above vertices.

I Theorem 4.3. For every ε > 0 and a graph property Π, of graphs on n vertices, there is a
D = D4.1(ε), q = q4.1(ε, n) = O(poly(logn)), and a randomized algorithm TΠ, that accepts
every outerplanar graph G having the property, and rejects every outerplanar graph G that is
ε-far from Π, with error probability 1/3.

The algorithm TΠ does q random queries to q vertices in G, and only inside the D-disc
around (some of) the above vertices. Moreover, the queries to G are oblivious of Π: only the
final decision once the q queries are done, is dependent on Π.

I Theorem 4.4. For every ε > 0 there is a D = D4.1(ε) such that if two outerplanar graphs
G,H on n vertices, have identical D-views then H is ε-close to G.

We note that analogue theorems for planar d-bounded-degree graphs are given in [9].
However, unlike the case for d-bounded-degree planar graphs, that have constant size

J. Babu, A. Khoury, and I. Newman 21:9

approximations in form of a union of (d, s)-components, a (d, s)-union graph does not
necessarily has a short description. This is due to the fact that the degree of the root of
every component may be arbitrary number in [n− 1], and hence there are non-constant many
types of possible components (let alone their number). To overcome this difficulty we define
an ε-net for (d, s)-union graphs, namely, a set G(d, s) of (d, s)-union graphs (of relatively
short description), and show that for every G′ as above, there is a graph G′′ ∈ G(d, s) that is
close to G′.

Further we will show that G′′ can be obtained from the original G by sampling. As will
turn out, this sampling can be restricted to randomly sampling a relatively small number
of vertices (poly(logn)), in some constant-diameter discs in G. Hence this will provide
the “locality” that is stated as desirable above. A similar method in nature, was used by
Kusumoto and Yoshida, [6], for unbounded degree forests.

We need the following definitions.

I Definition 4.5. [γ-layered (d, s) union graphs] Let γ > 1 be a constant. A γ-layered (d, s)
union graph is a (d, s) union graph in which all high-degree vertices have degrees that are
γ-powers, namely, in the set {γi}Li=α where L = blogγ n− 1c and α = min{i|γi ≥ d+ 1}. We
denote by G0 the components of a (d, s) union G that are (d, s) graphs.

In the above definition, all γi are assumed to be integral. This is achieved by rounding
if necessary. We do not explicitly write this rounding to increase readability. The extra
rounding will not affect any of our results.

The role of γ-layered graphs is obvious from the following claim.

I Claim 4.6. For every ε > 0 there is a γ = γ4.6(ε, d) ∈ (1, 2) such that every (d, s)-union
graph G is ε-close to a γ-layered (d, s)-union graph.

Proof. Let γ ∈ (1, 2) to be defined later, and let G0, , ..., GL be a partition of G, where
Gi, i = α, . . . , L contains all (d, s)-rooted components C with deg(root(C)) ∈ (γi−1, γi] and
G0 contains the (d, s) components. Let ni be the number of components in Gi.

Consider each Gi separately. For i ≥ α, and for each component C in Gi we add at
most γi − γi−1 isolated vertices and link them to root(C). This obviously makes the graph
γ-layered. Thus for Gi we added at most ni · (γi − γi−1) = ni(γ − 1)γi−1 edges. Note,
however, that ni · γi−1 ≤ |V (Gi)|, as every component in Gi contains a vertex with degree
larger than γi−1.

For G0 we do not need to change anything. This results in a total number of edge
changes bounded by (γ − 1) ·

∑
i≥α |V (Gi)| ≤ (γ − 1)n. Hence setting γ ≤ (1 + ε) implies

the claim. J

Now, to define a short description (a.k.a. “sketch”) for a γ-layered (d, s) union graph, all
we need is to define the structure of Gi, i = α, . . . , L, and that of G0. For the latter, a good
sketch is the (d, s)-frequency vector of G0, (or a good approximation of it), as being done in
[9]. This will also become clear as a special case in what follows. For Gi, i ≥ α, we only need
to define the structure of C for each component C ∈ Gi.

Note that C \ root(C) is a union of (d, s) components, each with some marked subset of
vertices, indicating the neighbour set of root(C). Since there are constantly many possible
(d, s) graphs, there are also constantly many (d, s)-graphs with marked vertices. Hence, each
component C of Gi is defined by the (d, s) frequency vectors of the marked components,
{Freq(C \ root(C))}C∈Gi . Still, computing for each C ∈ Gi its frequency vector would be
too demanding. Instead we will approximate this vector, using the easy Claim 2.8. Doing
this will bring us two advantages; the first is that we will still get a component C ′ which is

APPROX/RANDOM’16

21:10 Every Property of Outerplanar Graphs is Testable

close enough to C, but which we will be able to afford (in terms of number of queries). The
second and more important feature is the reduction in the number of types of components
to a constant, thereby making it possible to approximate Gi by estimating the number of
components of each of these constantly many types.

This is summed up in what follows:
Recall that for fixed d and s we set f(d, s) = |F(d, s)| (which is a constant), where F(d, s)

is the set of all possible outerplanar(d, s)-graphs. We now add a boolean marking of vertices
in each (d, s)-graph. This boolean marking will be used later to indicate which vertices in the
component are connected to its root in a rooted component (if at all). Hence the histogram,
and the frequency vector, is of dimension 2s · f(d, s), since corresponding to each graph in
F(d, s), we have also to specify which subset of vertices in it are marked (have 1-marking).

For fixed γ > 1 and d, s, let G = G0 ∪ (∪Li=αGi) be a γ-layered (d, s) union graph,
and fix an i ∈ {α, . . . , L}. As explained above, each component C ∈ Gi is completely
defined by its (d, s) frequency vector Freq(C) ∈ [n]2sf(d,s), where the marked vertices in
each (d, s)-component of C \ root(C) are the vertices that are connected to root(C). Let
freq(C) = Freq(C)/(sum of coordinates of Freq(C)). Note that ||freq(C)||1 = 1.

Let 0 < δ < 1 be small enough constant (to be defined later), andN(δ) be a δ-net for the `1-
unit ball of dimension 2sf(d, s). Obviously such an N(δ) whose size is a constant that depends
only on δ, d, s exists. For example, take N(δ) = {δx | x is a (2sf(d, s))-dim vector of integral
coordinates whose absolute values sum up to 1/δ}.

For Freq(C) as above, we define its δ-normalized approximation as a closest vector in
N(δ) to freq(C) (in case of tie choose an arbitrary closest vector). Thus, we have a mapping
that maps each component C of Gi to a constant size alphabet (of size |N(δ)|), and hence
Gi is mapped into a vector LFreq(Gi) ∈ [n]|N(δ)|, where the jth coordinate is the number
of components C in Gi that have type=j as their δ-normalized approximation. Again,
we normalize as follows: Let ni be the number of components in Gi, we let lfreq(Gi) =
1
ni
· LFreq(Gi).

I Claim 4.7. Let Gi be the ith layer, i > 0, of a γ-layered (d, s)-union graph as above. Let
ε > 0. Then there is a constant ν = ν4.7 = ν4.7(d, s, δ, ε) ∈ (0, 1) such that if |ñi − ni|γi ≤
ν ·max{niγi, n/L}, and |f̃ − lfreq(Gi)|1 ≤ ν, the graph G̃i that is defined as stated below
has dist(Gi, G̃i) ≤ ε ·max{niγi, n/L}.

Here G̃i is the following graph: let F = ñi · f̃ = (m̃1, . . . , m̃|N(δ)|) and for j = 1 . . . , |N(δ)|,
let Cj be a rooted component whose frequency vector is the j-type frequency vector. Then for
j = 1 . . . , |N(δ)| we include dm̃je disjoint copies of Cj in G̃i.

Note that the claim only asserts an additive error between Gi and G̃i that is not necessarily
proportional to the size of Gi. However, since there are L “layers”, the average Gi has n/L
vertices. For Gi larger than the average, the above approximation is with a ν-multiplicative
error. For Gi smaller than the average, the additive error is a fraction of the average, which
we will be able to afford.

Proof. Let Gi, G̃i as above , and let mj = LFreq(Gi)j = fj ·ni be the number of components
in Gi of type j. Namely lfreq(Gi) = (f1, . . . , f|N(δ)|). Let ∆ = max{niγi, n/L}. A close
isomorphism between Gi, G̃i is clear: we map for each type j, the corresponding matching
components, leaving |m̃j −mj | components unmatched. For the unmatched components we
remove all edges and make the corresponding nodes isolated points. Hence the contribution
of type j to the distance (edge-count) is bounded by |mj − m̃j | · γi · e(d, s) (disregarding
here errors due to non-integrality), where e(d, s) is the maximum number of edges in a (d, s)
graph (which is constant).

J. Babu, A. Khoury, and I. Newman 21:11

Summing this over all j ∈ [|N(δ)|] one gets:

dist(G̃i, Gi) ≤
|N(δ)|∑
j=1
|mj − m̃j | · γi · e(d, s) ≤ e(d, s)γi

∑
j

|ñif̃j − nifj |

≤ e(d, s)γi
∑
j

|ñif̃j − ñifj + ñifj − nifj |

≤ e(d, s)γiñi · ν + e(d, s)γi|ñi − ni| · |lfreq(Gi)|1
≤ e(d, s) · 2ν∆ + e(d, s)ν∆

Now if we set ν ≤ ε
3e(d,s) we get the asserted claim. J

We now restate Theorem 4.1 in a more detailed version, and present its proof.

I Theorem 4.8. For every ε > 0 there is a D4.1 = D(ε), s = s4.1(ε), d = d4.1(ε), γ4.1(ε),
q = q4.1(ε, n) = O(poly(logn)), there is a randomized algorithm Approx, that on an
outerplanar graph G = (V,E) on n vertices, outputs an outerplanar γ-layered graph G∗.

The algorithm Approx does q random queries to q vertices in G, and only inside the
D-disc around (some of) the above vertices.

It holds that with success probability at least 0.9, G∗ will be ε-close to G.

Proof of Theorem 4.8 (Sketch). We start by defining G′ as the (d, s)-union graph obtained
by Algorithm 1, for ε′ = ε/10. We do not know G′, but we know how it would have been
formed by Algorithm 1. We also know that with high probability it would be ε/10-close to G.
By Claim 4.6, this implicitly defines a γ-layered graph G∗ that is close to G′, for a suitably
small γ. Let G∗ = G0 ∪ ∪Li=αGi, and for i = 0, α, . . . L, let ni be the number of components
of Gi, and fi = lfreq(Gi). Let roots(G′) be the set of high-degree vertices in G′, namely
the roots of the (d, s)-components of G′.

The main part of the algorithm, is algorithm Sampler that is described in the appendix.
Algorithm Sampler aims at choosing a vertex y that is distributed uniformly at random
among the roots(G′) that are in any given layer of G∗. For such y it will also approximate
its degree in G′ accurately enough, and while doing this it will also approximate freq(y),
the approximated frequency vector of y (although this is defined w.r.t G∗ rather than G′).

Once this is done, approximation ni, lfreq(Gi) as required by Claim 4.7, for every i ≤ L is
straight forwards: we just sample q random y’s as above, for q large enough (q = poly(logn))
and for each obtain its freq and degree. Then, by normalizing, the proportion of such
vertices that are in any interval [γi−1, γi) is a good approximation of ni, while the proportion
of each type of freq(y) gives an approximation of lfreq(Gi). Finally, having these estimates,
Claim 4.7 ends the proof.

The idea behind the Sampler is also simple. We choose a high-degree vertex y at random
from V h by sampling uniformly an edge (v, y) where v ∈ V l and y ∈ V h. Once we have
such y, we sample a random neighbour v of it of small degree, discover the component of
v, in G′[V l] by running the local partition oracle for d-bounded graphs, and deleting the
multiway cut. As a result, a random (d, s) component connected to y in G′ is found (or a
conclusion that v is not in the (d, s)-component connected to y). Having found such a random
component, we repeat the process for q independent times, which allows us to estimate (again
by Chernoff), the degree of y in G′, and its frequency freq(y).

Some extra care should be taken since the Sampler cannot succeed for every y that is
a root of G′. Consider a vertex y for which degG(y) >> degG′(y). For such y, for most
neighbours v of y, their components in the (d, s) partition of G[V l] (possibly after deleting

APPROX/RANDOM’16

21:12 Every Property of Outerplanar Graphs is Testable

the edges in the relevant multiway cut) will not be connected to y, and degG′(y) might not be
estimated correctly. Such vertices we call “bad”. In the proof of correctness of the algorithm
Approx that outputs G∗ we will show that while bad vertices contribute some additional
increase in the distance between the estimated G∗ and G, this increase in distance is small
enough, so that the produced G∗ will be (w.h.p) as needed.

We end this very high level description of the sampling process by two notes. The first
is that we need to approximate every (large) Gi. Namely, we need to decrease the failure
probability in each large Gi to O(1/ logn).

The second remark is that, a similar estimation in spirit (although starting from a forest
rather than the more general outerplanar graph), is done in [6], but using a different and
finer metric.

For further details, see the algorithm Approx in the appendix. J

I Remark. It is a suitable point here to note the difference of the results in this paper up
to this point, and the results for d-bounded hyperfinite (or planar) graphs of [9, 4]. In the
cited papers, a local oracle (in the sense of Onak, as described above) is obtained for the
(d, s)-graph H that is close to G. This local oracle is used to approximate the frequency
vector of the components in a straight forwards way, by sampling. In our case, a local oracle
to the (d, s) union graph (γ-layered) graph G∗ is not obtained; instead it is only “nearly”
obtained. It fails to produce a local oracle exactly for the bad y’s as explained in the proof.
Namely, let u be a high-degree vertex in G∗ (and hence in G too). It could be that many
edges adjacent to u in G are absent from G∗. Hence when asking for a random neighbour of
u, the sampler above may not succeed in finding one.

We present now the proofs of Theorems 4.3 and 4.2. These proofs follow from Theorem 4.8
exactly as in [9]. Before getting into the proof, it should be noted that in the standard
model, we are concerned only about the number of queries to the input graph and not about
the running time of the algorithm. The number of vertices in the input graphs is also an
information available.

Proof of Theorem 4.3. Let Π be any graph property, and let Πn be its restriction to graph
on n vertices. An ε-tester TΠ for Πn for outerplanar graphs on n vertices is the following:
We first run the randomized algorithm Approx that is guaranteed in Theorem 4.1 with
parameter ε/2, to produce a graph G∗ that is a (d, s) union and is ε/2-close to G with high
probability. Having a full knowledge of G∗, without further queries to G, Algorithm TΠ
checks if G∗ is ε/2-close to Πn. It accepts if the answer is yes, and reject otherwise.

Note that Tπ is oblivious of Π when performing the queries to G. Once the queries are
made to G and G∗ is obtained, a test for any property can be run (in parallel, say).

To analyse the error probability, assume that G∗ is indeed ε/2-close to G, as asserted by
Theorem 4.1. This happens with probability at least 0.9. Now if G has Π, then TΠ would
accept, because G ∈ Πn, and G∗ is ε/2-close G, which makes it ε/2-close to Πn. On the
other hand, if TΠ accepts on account of finding an H ∈ Πn, and such that G∗ is ε/2-close to
H, then by triangle inequality G is ε-close to Πn. Thus the error probability is bounded by
0.1. J

Proof of Theorem 4.2. Let G,H be two outerplanar graphs on which we want to ε-test
isomorphism. The ε-test will be as follows: It will first run the randomized algorithm
Approx, as guaranteed by Theorem 4.1, to produce a G∗ that is (d, s)-union, with distance
parameter ε/2.

It will then consider the graph property of n-vertex graphs Π(G∗) to be the following
property: the input graph is ε/2-close to G∗. By Theorem 4.3, there is an ε/2-tester T ′ for

J. Babu, A. Khoury, and I. Newman 21:13

Π(G∗). We just run T ′ on H, accept if it does and reject if it rejects. Note that the query
complexity is just doubled. Note also that G∗ and hence T ′ are not known in advance, but
this does not matter, as we do not need to worry about the time complexity.

To analyse the success probability, assume that G∗ is ε/2-close to G, which is asserted
to happen with probability 0.9. Now, assume that H is isomorphic to G, than G∗ is also
ε/2-close to H, and hence H has property Π(G∗). Thus, test T ′ will indeed accept H with
probability at least 0.9. On the other hand, assume that T ′ accepts H, then with probability
0.9, H is ε/2 close to Π(G∗). Then, by the triangle inequality it is ε-close to G as required.
The total error is hence bounded by the events, that either G∗ is not ε/2-close to G or that
T ′ errs. As both are bounded by 0.1, the total error probability is at most 0.2. J

Proof of Theorem 4.4 (Sketch). The proof in this case is somewhat more involved than
the previous theorems. The basic idea, as in [9] is that if G,H have the same local view,
then applying on both the sampler of Theorem 4.1, one will get identical (or close enough),
approximations G∗, H∗ respectively, as the approximation is done based on the information
in the local views, which is identical for both graphs. However, there was a difficulty in
this argument, even in [9] for bounded-degree hyperfinite graphs. To understand what the
difficulty is, let us start to formalize the proof.

Let D be as in Theorem 4.1, and R = f(D) be a constant depending on D, to be defined
later. Let q = poly(logn) be the number of queries asserted by the algorithm Sampler that
is used in the proof of Theorem 4.1, for some fixed ε.

Let V = V (G), and V ′ = V (H). Assume that the R-views of G is identical to the R-views
of H. Hence, we can fix a 1− 1 map φ : V 7→ V ′ so that every v is mapped to v′ = φ(v) such
that the R-disc of v is identical to the R-disc of v′. Our aim is to simulate the process of
the sampler on H, by observing its run in G: that is, if the sampler on G is making some
q queries to discs around vertices v1, . . . , vq, we will aim to use queries on identical discs
of their images v′1, . . . , v′q in H, with the hope that the output graph G∗ produced by the
sampler on G will be identical to the output graph H∗ obtained from H.

The first problem is that the sampler on G might be successful in G, in respect of obtaining
a good approximation G∗, using the queries v1, . . . , vq, while the output graph H∗ obtained
from H on the corresponding sequence v′1, . . . , v′q might not be a good approximation of
H. However, as both process are assured to be successful with high probability, for most
sequences v1, . . . vq, the processes on G and the corresponding one on H are both going
to be successful: on G with queries to discs of v1, . . . vq, and on H with queries to discs
of v′1 = φ(v1), . . . , v′q = φ(vq). It is not clear however, that they will produce the same
approximation although they seemingly see the same view, due to the following reason.

The sampler needs to makes some q i.i.d queries, to components in Gi, in order to
approximate lfreq(Gi). Concentrate first on G0 (which is an identical case to that considered
in [9]). The sampler makes queries to a sequence v1, . . . vq (on which as explained above, we
may assume it will succeed), and explore the D-disc around each vi on which it can run the
local partition oracle on the graph restricted to low-degree vertices, in order to define the
component of each vi in G0. Now suppose that vi is now being queried and that a vertex u in
the D-disc(vi) is also present in the D-disc(vj), for some previously queried vertex vj . Since
the partition must be consistent, the neighbourhood around u that is discovered when vj
was queried, is the same when viewed exploring the disc around vi. However, from the view
point in H, while v′j , v′i have isomorphic discs of the appropriate size as vj , vi respectively,
they do not have to share a vertex u′ = φ(u). Namely, the u ∈ D-disc(vj) is mapped to u′
that is not necessarily in D-disc(vi).

The argument in [9] addressed this issue is the following way: since the degree is bounded

APPROX/RANDOM’16

21:14 Every Property of Outerplanar Graphs is Testable

by some constant d, a situation as above (that for two random D-discs there is a non-empty
intersection) has very low probability, and hence will not occur on most random sequences.

Here this is not correct any more, as the degree of the roots may be as high as Ω(n) in
higher layers. Then it could happen that any two discs around such high-degree vertices do
intersect. To get rid of this problem assume first that there are no edges with two endpoints
that are high-degree, both in G and H. This may be assumed, as for the map φ above,
vertices are mapped to vertices with isomorphic discs even after deleting edges between two
high degree vertices. Further assume that the set of edges M = {(u, y)| u ∈ V l, y ∈ V h} is of
size |M | ≥ εn

q2 logn (otherwise, there is no problem as no high-degree vertex is likely to be seen
at all as a root (in the first item in phase 3 of the sampler - In addition, in this case the graph
is close to a d-bounded degree, and hence the argument above for d bounded degree graphs
implies that with high probability the sampler will produce an identical approximation for
both G and H, when simulated as explained above.

Recall that our sampler makes a total of q queries (which is poly(logn) in our case). At
the top level, it makes some queries to random edges in M (in phase 3 first item, sub-item
(a)), in order to make independent queries to at most q randomly chosen root vertices in Gi
for every level i, and explore the component in Gi under such roots, by random sampling.

Consider the bad case when a low-degree vertex v might be found while randomly exploring
components formed by two such high-degree roots y and y′. Assume that y′ is chosen after
y, and that the random neighbours of y that are queried are u1, . . . ur, where r ≤ q. Then
while forming the (d, s)-components in G[V l] for u1, . . . , ur, they together involves querying
a total of at most q low-degree vertices (v being among them). Further, these vertices have a
total of r ≤ q edges that are queried and whose end points are high-degree vertices other
than y. Call these edges “bad” with respect to y.

Now, for v to be queried while exploring y′, the same should happen with y′, i.e., v
should be among the total of at most q queried edges once the above exploration is done
with y′. However, v will not be queried while exploring y′, if no bad edge with respect to y is
queried while exploring y′, and if the D-discs in G[V l] around the at most q queries from y

to low-degree vertices do not intersect the D-disc(v) in G[V l]. Hence, when y′ is chosen by
a random edge, if none of its at most q queried random neighbours of y′ are bad edges w.r.t.
y, then v will not be queried while exploring y′, due to the first reason, and conditioned
on that, the D-discs around these random vertices will also be disjoint from D-disc(v) as
D-disc(v) contains only a very small (constant) number of vertices .

Therefore, for y′ such that deg(y′) ≥ q5, while exploring y′, encountering a low-degree
vertex u that was encountered earlier while exploring from another such y will happen with
probability at most 1/q3.

For y′ such that deg(y′) ≤ q5, the layer containing y′ has a high mass (more than n/ log2 n)
only if that layer contains at least n

sq5 log2 n
such high-degree vertices, where s = O(d2/ε2) is

the bound set by the partitioning algorithm on the component size. Now, for such y′, if none
of the low-degree neighbours u of y′ has the edge (u, y′) that is bad w.r.t y, again exploration
from y′ will not query a v that was queried while exploring y. As there are at most q bad
edges w.r.t. y, at most q high-degree vertices y′s will have one of these bad edges incident
on them, and hence the probability of picking such a y′ for exploration is at most s·q6 log2 n

n

which is extremely low.
Over all, combining the two cases, the probability that for (y, y′) as above, a common v

will be queried is lower than 1/q3, and hence by the union bound on all possible q2 pairs,
with very high probability, for no pair (y, y′) a common vertex is queried.

Assuming that indeed for no pair (y, y′) of high-degree vertices, there is a common

J. Babu, A. Khoury, and I. Newman 21:15

low-degree vertex that is queried, the local views that are sampled for each root in Gi, i ≥ α
are distinct.

Hence we can couple the two sampling processes, the one for G and that for H in a
consistent way, so to have the same views, and therefore will produce G∗ and H∗ which are
identical.

Thus, if we run the sampler of Theorem 4.8 with parameter ε/2 on G and H, it is ensured
that with high probability the runs are successful and it produces G∗ and H∗ respectively
with dist(G,G∗) ≤ εn/2, dist(H,H∗) ≤ εn/2 and moreover G∗ = H∗. Therefore, we have
dist(G,H) = ε, as desired.

Finally, let us consider what is the disc radius needed to ensure that the above will
indeed occur. Note that for low-degree vertices, we only need D-discs around them to be
able simulate the sampler behaviour from the local information. For high-degree vertices,
some r ≤ q random queries to neighbours are being made in the disc around them. While
q = poly(logn) and not constant, note that all the possibly q such queries, are done to
neighbours (namely, vertices of distance 1), from such high-degree vertices. Further queries
are done in G[V l] to simulate the local partition on low-degree vertices, with an occasional
query that discovers a high-degree vertex, but, in which case, no further exploration is done
from this high-degree vertex. Hence taking 2D-discs is enough to simulate the sampler
behaviour.

We avoid further details in this version. J

5 Discussion

Our results are another step towards understanding the theory of property testing in the
sparse graph model, and mainly for restricted subfamilies of planar graphs. Yet the main
questions in this area are still open:

Which graph properties are testable with sub-linear query complexity?
Is it true that if two n vertices planar graphs H,G have their D-local views identical (for
some large enough constant D), then the graphs are ε-close to be isomorphic? Is this
true for bounded tree-width graphs ?

We note that the above questions are open, even for the class of 2-outerplanar graphs.

References

1 Noga Alon, Eldar Fischer, Ilan Newman, and Asaf Shapira. A combinatorial characteriza-
tion of the testable graph properties: It’s all about regularity. SIAM J. Comput., 39(1):143–
167, 2009. doi:10.1137/060667177.

2 Itai Benjamini, Oded Schramm, and Asaf Shapira. Every minor-closed property of sparse
graphs is testable. In Proceedings of the 40th Annual ACM Symposium on Theory of
Computing, 2008, pages 393–402, 2008. doi:10.1145/1374376.1374433.

3 Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to
learning and approximation. J. ACM, 45(4):653–750, 1998. doi:10.1145/285055.285060.

4 Avinatan Hassidim, Jonathan A. Kelner, Huy N. Nguyen, and Krzysztof Onak. Local graph
partitions for approximation and testing. In 50th Annual IEEE Symposium on Foundations
of Computer Science, FOCS 2009, pages 22–31, 2009. doi:10.1109/FOCS.2009.77.

5 Hiro Ito. Every property is testable on a natural class of scale-free multigraphs. CoRR,
abs/1504.00766, 2015. URL: http://arxiv.org/abs/1504.00766.

APPROX/RANDOM’16

http://dx.doi.org/10.1137/060667177
http://dx.doi.org/10.1145/1374376.1374433
http://dx.doi.org/10.1145/285055.285060
http://dx.doi.org/10.1109/FOCS.2009.77
http://arxiv.org/abs/1504.00766

21:16 Every Property of Outerplanar Graphs is Testable

6 Mitsuru Kusumoto and Yuichi Yoshida. Testing forest-isomorphism in the adjacency list
model. In Automata, Languages, and Programming - 41st International Colloquium, IC-
ALP 2014, Proceedings, Part I, pages 763–774, 2014. doi:10.1007/978-3-662-43948-7_
63.

7 Reut Levi and Dana Ron. A quasi-polynomial time partition oracle for graphs with an
excluded minor. ACM Trans. Algorithms, 11(3):24:1–24:13, 2015. doi:10.1145/2629508.

8 Richard J. Lipton and Robert Endre Tarjan. Applications of a planar separator theorem.
SIAM Journal on Computing, 9(3):615–627, 1980.

9 Ilan Newman and Christian Sohler. Every property of hyperfinite graphs is testable. SIAM
J. Comput., 42(3):1095–1112, 2013. doi:10.1137/120890946.

10 Krzysztof Onak. New sublinear methods in the struggle against classical problems. PhD
Thesis, Massachusetts Institute of Technology, 2010.

11 Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with ap-
plications to program testing. SIAM J. Comput., 25(2):252–271, 1996. doi:10.1137/
S0097539793255151.

12 Christian Sohler. Private Communication, 2015.

A Missing Proofs of Section 3

Proof of Lemma 3.2. We will prove the lemma by induction on |V | = n. Assume that
s, t ∈ V and |V | ≥ 4. Since G is 2-connected and (s, t) ∈ E, then all the vertices are on a
simple path between s and t. Enumerate the vertices along this path v1 = s, v2, . . . vn = t. Let
i < n be the largest such that (s, vi) ∈ E, and let j > 1 be the smallest such that (vj , t) ∈ E.
Since G is outerplanar it follows that i ≤ j, therefore either i ≤ dn2 e or d

n
2 e ≤ j ≤ |V |.

Assume w.l.o.g that i ≤ dn/2e and let V1 = {s, v2, ..., vi}. Note that G[V1] is outerplanar,
with (s, vi) an edge on the outer face. If i = 2, then C1 = {(s, vi)} will separate s from vi in
G[V1]. If i > 2, G[V1] is 2-connected and by induction hypothesis, there is an edge-cut C1
separating between s and vi in G[V1], with |C1| ≤ blog(dn/2e+ 1)c. It is easy to see that
C1 ∪ (s, t) is a {s, t}-multiway cut in G, of size as claimed. J

I Lemma 1.1. Let G be 2-connected outerplanar graph. For any pair of vertices s, t ∈ V (G),
c(s, t) ≤ 2(log(|V (G)|+ 1)).

Proof of Lemma 1.1. Let G be 2-connected outerplanar graph, and s, t ∈ V (G). Since G is
outerplanar, then all vertices of G are on the unique Hamiltonian cycle C of G. We may
assume that s, t are not neighbours on C, as otherwise, Lemma 3.2 immediately implies
the result. Hence, C defines two vertex disjoint paths, from s to t: P1 = (s, v1, . . . , vk = t),
and P2 = (s, u1, . . . , u` = t). Let i ≤ k be the largest such that (s, vi) ∈ E and j < ` the
largest such that (s, uj) ∈ E. Then G1 = G[{s, v1, . . . , vi}] is outerplanar with (s, vi) on its
outer face. If i = 1, then C1 = {(s, vi)} will separate s from vi in G1. Otherwise, G1 is
2-connected and by Lemma 3.2, there exist an edge cut C1 in G1 separating s and vi with
|C1| ≤ log(|V (G)|+ 1). Similarly, G2 = G[{s, u1, . . . , uj}] is outerplanar with (s, uj) on its
outer face and has an edge cut C2 separating s and uj with |C2| ≤ log(|V (G)|+ 1). It is easy
to see that C1 ∪ (s, t) is an edge-cut in G separating s and t, of size as claimed. J

I Lemma 1.2. Let G(V,E) be a connected outerplanar graph and U,W (V be disjoint
subsets of vertices. Suppose that |U | ≥ 2 and U is an independent set in G. Then there exists
an edge cut of size 2 log(2|W |+ 1) in G[W ∪ U] separating some two points in U .

http://dx.doi.org/10.1007/978-3-662-43948-7_63
http://dx.doi.org/10.1007/978-3-662-43948-7_63
http://dx.doi.org/10.1145/2629508
http://dx.doi.org/10.1137/120890946
http://dx.doi.org/10.1137/S0097539793255151
http://dx.doi.org/10.1137/S0097539793255151

J. Babu, A. Khoury, and I. Newman 21:17

Proof of Lemma 1.2. Let G(V,E) be a connected outerplanar graph and U,W (V be
disjoint subsets of vertices. Suppose G[W] is connected and U is an independent set in G
such that every vertex in U is a neighbour of some vertex in W and |U | > 1.

First consider the case when G[W ∪ U] is 2-connected. Since U is an independent set,
then in the Hamiltonian cycle that is the boundary of the outer face of G[W ∪ U], between
every two vertices of U , there must be at least one vertex from W . Hence |U | ≤ |W |, which
implies that |U ∪W | ≤ 2|W |. Take any two arbitrary vertices u1, u2 ∈ U . By Lemma 1.1,
there exists an edge-cut C of size at most 2(log(|U |+ |W |+ 1)) ≤ 2(log(2|W |+ 1)) separating
u1 and u2 in G[W ∪ U].

The same argument as above applies also when G[W ∪ U] is not 2-connected, and there
is a block B of G[W ∪ U] that contains two vertices from U . Hence we may assume that
every block of G contains at most one vertex form U .

Let B be a block of G[W ∪ U] containing a single vertex u from U . Let u′ be another
vertex in U , which by the reasoning above, is in another block B′ of G[W ∪ U]. Let x be
the cut-vertex in B which is a separation point between u and u′ in G[W ∪ U]. In this case,
|V (B)| ≤ |W |+ 1 and by Lemma 1.1, u can be separated from x in B by removing at most
2(log(|W |+ 2)) edges. Such a cut also separates u from u′. J

Proof of Corollary 3.3. We will prove this by induction on |U |. Let t = 2 log(2|W | + 1).
The proof is trivial when |U | = 1. If |U | > 1, by Lemma 1.2 an edge cut C of size t exists
in G[W ∪ U] that separates a subset S ⊆ U from U \ S where 1 ≤ |S| < |U |. Let us now
consider G1 = G[W ∪ S] and G2 = G[W ∪ (U \ S)]. By the induction hypothesis there is a
S-multiway cut C1 of size (|S| − 1)t in the graph G1 and there is a (U \ S) multiway cut of
size C2 of size (|(U \ S)| − 1)t in G2. Taking C ∪ C1 ∪ C2 we obtain a U -multiway cut in G
of size (|U | − 1)t. J

Proof of Claim 3.4. For every vertex b ∈ B remove all but exactly two edges. Hence we
get a subgraph G1 of G in which deg(b) = 2 for every b ∈ B. Hence, every b ∈ B form a
simple path of length 2 in G1. Replace each such path by a single edge; this is equivalent to
the contraction of a single edge in the neighbourhood of every b ∈ B. As a result we get a
multigraph G2 that is a minor of G, and hence outerplanar. In this multigraph, the number
of parallel edges between two vertices is at most two, as otherwise in G, there would have
been a K2,3 minor, which is a contradiction. Hence |E(G2)| ≤ 4|V (G2)|.

However, by construction, every edge e ∈ E(G2) corresponds to a vertex b ∈ B, with a
1− 1 correspondence. Further V (G2) = A. Hence the claim follows. J

B Algorithm Approx

Let G = (V,E) be an outerplanar graph, ε > 0 the error parameter, and let G′ be the
(d, s)-union graph obtained by Algorithm 1, for ε′ = ε/10 (and d accordingly).

The purpose of the algorithm Approx is to estimate the γ-layered graph G∗ that is
ε/10-close to G′ (and hence ε/5-close to G). That is, for each i ∈ [L] to give an approximation
to ni the number of high-degree components in Gi, and lfeq[i] the frequency vector of Gi,
where L is as defined in Definition 4.5.

Algorithm Approx runs a main algorithm Sampler that samples high-degree vertices of
G′ accoring to a distribution in which all root vertices in the same layer are sampled with the
same probability. Sampler runs another algorithm, Sampler2 that estimates the degree
and the component frequency of the sampled vertex in order for Sampler to be able to
update ni and lfreq[i] accordingly.

APPROX/RANDOM’16

21:18 Every Property of Outerplanar Graphs is Testable

We now present the algorithm Sampler2, which given an outerplanar graph G(V,E),
and a vertex y, approximates freqG′(y) and degG′(y).

Let q = poly(logn) (e.g., the reader may take q = 10 log3 n to get the right magnitude,
the exact value will not be defined here).

Algorithm Sampler2(y)
y is a vertex. The output is an estimate ˜degG′(y), and an estimate ˜freqG′(y) for degG′(y)
and freqG′(y) respectively.
1. Obtain degG(y) by one query. If deg(y) ≤ d stop; y is not a root of a (d, s)-rooted

component in G′.
Otherwise, let c = 0 (c will count the number of discovered (d, s)-components that are
connected to y). Let Freq(y) be the all-zero vector of dimension f(d, s).

2. Repeat independently for q times: Choose a random low-degree neighbour u ∈R V l∩N(y).
Look at the component of u in G[V l] (by applying Levi-Ron, as needed), take the
multiway cut, and finally see if y is still in the same component as u in G′ which
is the graph obtained by the simulation of Algorithm 1 locally on v (some edges
adjacent to y might be deleted, due to the multiway cut procedure, and due to the
deletion of edges between two high-degree vertices).
If y is still in the same component as u in G∗, increment c. Also, depending on
the type of the (d, s) component containing u and connected to y, increment the
corresponding coefficient of Freq(y).

3. Take ˜degG′(y) = degG(y) · c/q, and ˜freqG′(y) = Freq(y)/c.

It is easy to see that Sampler2 will estimate well the required parameters for y such that
degG′(y) is high enough. This motivates the following definition.

I Definition 2.1. Let Bad = {y| degG′(y) ≤ degG(y)/(20 logn)}.

We present the following lemma without proof.

I Lemma 2.2. Let G′ be the graph obtained from a graph G by the partition, and y /∈ Bad.
Then for the output of Sampler2 it holds that Pr[| ˜degG′(y)−degG′(y)| ≥ ε2 ·degG′(y)/100] ≤
1/ log5 n, and Pr[|freq(y)− ˜freq(y)| ≥ ε2/100] ≤ 1/ log5 n.

The proof is a standard application of Chernoff-Hoefding bound and will not be presented
here.

We now present the algorithm Sampler, which given an outerplanar graph G(V,E) as
input, returns a high-degree vertex in G′. Among high-degree vertices in any fixed layer i,
the probability of obtaining each one will be roughly the same and the total probability of
returning any one of the roots in layer i will be roughly proportional to niγi, where ni is the
number of high-degree vertices in layer i.

Algorithm Sampler
1. Sample uniformly at random, a vertex v ∈ V (G), if degG(v) ≥ d reject.
2. Otherwise, if degG(v) ≤ d, query all neighbours of v and if for all y ∈ N(v), degG(y) ≤ d

reject.
3. Otherwise, let Nh(v) = {y| degG(y) > d} and let degh(v) = |Nh(v)|. Choose uniformly a

random member y ∈ Nh(v). Discard y and reject with probability 1− degh(v)
d . Otherwise

(with probability degh(v)
d), we will consider y to be a candidate for a (random) root of G′.

J. Babu, A. Khoury, and I. Newman 21:19

4. Run Sampler2(y). If y not rejected, check if v is a neighbour of y in G′ by simulating
locally Algorithm 1, (as is done in Sampler2, for other random neighbours of y). If not
reject.

5. With probability γi/ ˜degG′(y), return y, where i is the largest for which γi ≤ d̃egG′ .

We claim that for each layer of G∗, the distribution that Sampler2(y) indices on its roots
is (nearly) uniform. Moreover, if there is enough “mass” in Gi, i = α, . . . L then Sampler
will produce a random root of G′ (in some layer) w.h.p.

Before stating the corresponding lemma, we note that what appears to be a trivial
sampling is not correct. Namely, choosing a random vertex y ∈ V (G) and returning y if
its degree is high enough is not likely to succeed, as it might be the case that the number
of roots in G′ is very small (possibly 1), while their degree is very high. In such a case, a
random sampling will not find a random root, while the influence of the small number of
roots on the structure of G′ (in terms of distance to G), is very high.

I Lemma 2.3. Suppose that
∑
y∈roots(G′) degG′(y) ≥ εn/ logn then Sampler produces a

random y ∈ roots(G′) distributed uniformly on each layer of G∗, with probability at least
1/ log2 n.

Proof. We do not present the full proof of the lemma in this version. We will only prove that
Sampler induces the uniform probability on each layer of G∗ and that with high probability
it will output such y.

Indeed, consider a fixed y ∈ roots(G′). The only way y is going to be accepted is if a
v that is selected in step 1 is one of the degG′(y) neighbours of y in G′. Denote this set of
neighbours of y by N ′. Each such v is chosen with probability 1/n at step 1, and will pass
step 2. Now, conditioned on specific v chosen, the probability that y is chosen in step 3 and
not discarded is 1

degh(v) ·
degh(v)

d = 1
d . Finally, if y is chosen at step 3, and conditioned on

the event that Sampler2(y) accepts y and estimates degG′(y) correctly, which happen with
probability 1− 1/ log5 n, y will be accepted with probability γi/ ˜degG′(y). Altogether, the
probability of returning y is:

Prob(Sampler returns y) =
∑
v∈N ′

1
n
· 1
d
· 1

˜degG′(y)
= 1
nd
· γ

i · degG′(y)
˜degG′(y)

.

Assuming the estimate is as good as we needed, this probability is very close to γi

nd and
hence to uniform on each layer of G∗, as it is essentially independent of y but just on the
layer.

Finally, let i be such that ni · γi = Ω(n/ logn), namely, such that the ith layer in G∗ has
a large mass. The probability some y in the i layer of G∗ is accepted the sum above for all y
in the layer which is just ni · γ

i

nd ≥
ε

d logn . By our choice of d, the proof is concluded. J

Algorithm Approx is now self evident: it runs Sampler for poly(logn) times to generate
enough random roots to hit all significant layers Gi. Would there be no vertices in Bad, the
estimate would clearly be correct, by Chernoff-Hoefding bounds. The effect of vertices in
Bad can be shown to be small, as the total number connected to vertices in Bad is small.
We avoid further details in this version.

APPROX/RANDOM’16

The Condensation Phase Transition in the Regular
k-SAT Model∗

Victor Bapst1 and Amin Coja-Oghlan2

1 Mathematics Institute, Goethe University, Frankfurt, Germany
bapst@math.uni-frankfurt.de

2 Mathematics Institute, Goethe University, Frankfurt, Germany
acoghlan@math.uni-frankfurt.de

Abstract
Much of the recent work on phase transitions in discrete structures has been inspired by ingenious
but non-rigorous approaches from physics. The physics predictions typically come in the form of
distributional fixed point problems that mimic Belief Propagation, a message passing algorithm.
In this paper we show how the Belief Propagation calculation can be turned into a rigorous proof
of such a prediction, namely the existence and location of a condensation phase transition in the
regular k-SAT model.

1998 ACM Subject Classification G.2.1 Combinatorics, G.3 Probability and Statistics, F.2.2
Nonnumerical Algorithms and Problems

Keywords and phrases random k-SAT, phase transitions, Belief Propagation, condensation

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2016.22

1 Introduction

1.1 Background and motivation
Over the past three decades the study of random constraint satisfaction problems has been
driven by ideas from statistical mechanics [3, 24, 25]. The physics ideas have since had a
substantial impact on algorithms, coding theory and combinatorics [12, 15, 18, 19, 20, 21, 30].
The striking feature of the physics work is that it is based on one generic but non-rigorous
technique called the cavity method that can be applied almost mechanically [23]. Its
centerpiece is the Belief Propagation message-passing algorithm. By contrast, rigorous
studies have largely been case-by-case.

This state of affairs begs the question of whether the Belief Propagation calculations
can be put on a rigorous basis directly. This is precisely the thrust of the present paper.
We show how the physics calculations can be turned into a proof in a highly non-trivial
and somewhat representative case. We expect that this approach generalises to many
other alike problems. Specifically, we determine the precise condensation phase transition
in the random regular k-SAT model. The existence of such a phase transition in a wide
variety of models is one of the key predictions of the cavity method [22] and its impact on
algorithmic as well as information-theoretic question can hardly be overstated [29, 32]. For
example, the condensation phenomenon has a bearing on the performance of message-passing

∗ The research leading to these results has received funding from the European Research Council under
the European Union’s Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement n.
278857–PTCC.

© Victor Bapst and Amin Coja-Oghlan;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016).
Editors: Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans; Article No. 22; pp. 22:1–22:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.22
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

22:2 The Condensation Phase Transition in the Regular k-SAT Model

algorithm such as Belief Propagation guided decimation [29] as well as on statistical inference
problems [5]. Moreover, the regular k-SAT problem shares many of the key properties of
the better-known model where clauses are simple chosen uniformly and independently; in
particular, a condensation phase transition is expected to occur in that model as well [22].
The proof builds upon on our abstract results [6] on the “regularity method” for discrete
probability measures and the connection to spatial mixing properties.1

1.2 The regular k-SAT model
Consider variables x1, . . . , xn that may take the values ‘true’ or ‘false’, represented by +1
and −1. If Φ = Φ1 ∧ · · · ∧ Φm is a k-CNF formula, then we define a function EΦ : {±1}n →
{0, 1, . . . ,m} on the set of truth assignments by letting EΦ(σ) be the number of violated
clauses. In physics jargon, EΦ is called the Hamiltonian. Further, we define the Gibbs
measure at “inverse temperature” β ≥ 0 by letting

σ ∈ {±1}n 7→ exp(−βEΦ(σ))/ZΦ(β) where ZΦ(β) =
∑

σ∈{±1}n

exp(−βEΦ(σ)) (1)

is called the partition function. Thus, the Gibbs measure is a probability measure on the
cube {±1}n.

As β gets larger the mass of the Gibbs measure shifts to assignments that violated fewer
clauses. Ultimately, if we let β →∞, then the Gibbs measure concentrates on the maximally
satisfying assignments. Hence, by tuning β we can “scan” the landscape that the function
EΦ defines on the cube {±1}n. Among other things, grasping this landscape is key in order
to study the performance of local search algorithms such as Simulated Annealing or the
Metropolis process, which attempt to descend from a random starting point to a global
minimum. For instance, if EΦ is riddled with local minima, local search algorithms are bound
to get trapped, while they might be efficient on a nice “convex” landscape [1, 9, 25].

It turns out that the key quantity upon which the study of the Hamiltonian hinges is
the partition function. Therefore, we aim to calculate ZΦ(β) on a random k-CNF formula
Φ. There are several natural probability distributions on k-SAT formulas. The one that we
study here is perhaps the simplest non-trivial example, namely the regular k-SAT model [28].
It comes with two integer parameters k ≥ 3 and d > 1, which is even. For n such that 2k
divides dn we let Φ = Φd,k(n) signify a uniformly random k-SAT formula with m = dn/(2k)
clauses of length k over x1, . . . , xn such that each variable xi occurs precisely d/2 times as a
positive literal xi and precisely d/2 times as a negative literal ¬xi.2 For k exceeding a certain
constant k0 there is an explicitly known critical degree dk−SAT, the satisfiability threshold,
where satisfying assignments cease to exist in a typical Φ [12]3. While the exact formula is
cumbersome, asymptotically we have

dk−SAT/k = 2k ln 2− k ln 2/2− (1 + ln 2)/2 + ok(1), (2)

where ok(1) hides a term that tends to 0 in the limit of large k. Since ZΦ(β) scales
exponentially with n, we consider

φd,k : β ∈ (0,∞) 7→ lim
n→∞

1
n
E[lnZΦ(β)] (3)

1 The present paper builds upon the arXiv version of [6] because the version that appeared in the
proceedings of RANDOM 2015 contained a critical error.

2 The regular k-SAT model shares many of the properties of the better known model where m clauses are
chosen uniformly and independently but avoids the intricacies that result from degree fluctuations.

3 We have lim inf P [Φ is satisfiable] > 0 if d < dk−SAT and limP [Φ is satisfiable] = 0 if d > dk−SAT.

V. Bapst and A. Coja-Oghlan 22:3

with the log inside the expectation and the expectation is over Φ. The existence of the
limit follows from the interpolation method [10]. Moreover, Azuma’s inequality implies that
lnZΦ(β) concentrates about E[lnZΦ(β)] for any d, k, β.

We call β0 ∈ (0,∞) smooth if there exists ε > 0 such that the function

β ∈ (β0 − ε, β0 + ε) 7→ φd,k(β)

admits an expansion as an absolutely convergent power series around β0. Otherwise a phase
transition occurs at β0.4 Thus, with d fixed we aim to investigate the effect of tuning β.

Results. According to the “cavity method” for certain values of d close to the satisfiability
threshold dk−SAT there occurs a so-called condensation phase transition at a certain critical
βcond(d, k) > 0 [22]. The main result of this paper proves this conjecture for k exceeding a
certain constant k0. Let us postpone the precise definition of βcond(d, k) for just a moment.

I Theorem 1. There exists k0 ≥ 3 such that for all k ≥ k0, d ≤ dk−SAT there is βcond(d, k) ∈
(0,∞] such that all β ∈ (0, βcond(d, k)) are smooth. If βcond(d, k) <∞, then there occurs a
phase transition at βcond(d, k).

We will see momentarily that βcond(d, k) <∞ for d exceeding a specific critical degree
dcond(k) < dk−SAT. Theorem 1 is the first rigorous result to identify the precise critical
“inverse temperature” in a random constraint satisfaction problem, apart perhaps from the
far simpler case of the stochastic block model [26].

Let us take a look at βcond(d, k). As most predictions based on the cavity method,
βcond(d, k) results from a distributional fixed point problem, i.e., a fixed point problem on
the space of probability measures on the open unit interval (0, 1). This fixed point problem
derives mechanically from the physicists’ “1RSB cavity equations” [23]. Specifically, writing
P(0, 1) for the set of probability measures on the unit interval, we define two maps

Fk,d,β : P(0, 1)→ P(0, 1), F̂k,d,β : P(0, 1)→ P(0, 1)

as follows. Given π ∈ P(0, 1) let η = (η1, . . . , ηk−1) ∈ (0, 1)k−1 be a random k − 1-tuple
drawn from the distribution (ẑ(η)/Ẑ(π)) d

⊗k−1
j=1 π(ηj), where

ẑ(η) = 2− (1− exp(−β))
∏
j<k

ηj and Ẑ(π) =
∫
ẑ(η)d

⊗
j<k

π(ηj). (4)

Then F̂k,d,β(π) is the distribution of (1 − (1 − exp(−β))
∏k−1
i=1 ηi)/ẑ(η). Similarly, given

π̂ ∈ P(0, 1) draw η̂ = (η̂1, . . . , η̂d−1) from (z(η̂)/Z(π̂))d
⊗k−1

j=1 π̂(η̂j), where

z(η̂) =
∏
j<d/2

η̂j
∏
j≥d/2

(1− η̂j) +
∏
j<d/2

(1− η̂j)
∏
j≥d/2

η̂j , Z(π̂) =
∫
z(η̂)d

⊗
j<k

π̂(η̂j). (5)

Then Fk,d,β(π̂) is the distribution of (
∏
j<d/2 η̂j

∏
j≥d/2(1 − η̂j))/z(η̂). Further, call a

distribution π ∈ P(0, 1) skewed if

π[(exp(−k0.9β), 1− exp(−k0.9β))] < 2−0.9k.

4 This is the usual physics definition of a “phase transition”. The motivation is that the non-analyticity of
φd,k indicates a qualitative change. For illustration, observe that the fraction of vertices in the largest
component of the Erdős-Rényi random graph is non-analytic at average degree one.

APPROX/RANDOM’16

22:4 The Condensation Phase Transition in the Regular k-SAT Model

I Proposition 2. Let d−(k) = dk−SAT − k5 and β−(k, d) = k ln 2 − 10 ln k. The map
Gk,d,β = Fk,d,β ◦ F̂k,d,β has a unique skewed fixed point π?k,d,β, provided that k ≥ k0, d ∈
[d−(k), dk−SAT] and β > β−(k, d).

To extract βcond(d, k), let ν1, . . . , νk, ν̂1, . . . , ν̂d be independent random variables such
that the νi have distribution π?k,d,β and the ν̂i have distribution F̂k,d,β(π?k,d,β). Setting

z1 =
∏
j≤d/2

ν̂j
∏
j>d/2

(1− ν̂j) +
∏
j≤d/2

(1− ν̂j)
∏
j>d/2

ν̂j , z2 = 1− (1− exp(−β))
∏
j≤k

νj

and z3 = ν1ν̂1 + (1− ν1)(1− ν̂1), we let

F(k, d, β) = lnE [z1] + d

k
lnE [z2]− d lnE[z3], (6)

B(k, d, β) = E [z1 ln z1]
E [z1] + d

k

E [z2 ln z2]
E [z2] − dE[z3 ln z3]

E[z3] . (7)

Finally, with the usual convention that inf ∅ =∞ we let

βcond(k, d) =
{
∞ if d < d−(k),
inf{β > β−(k, d) : F(k, d, β) < B(k, d, β)} if d ∈ [d−(k), dk−SAT].

We proceed to highlight a few consequences of Theorem 1 and its proof. The following
result shows that βcond(d, k) < ∞, i.e., that a condensation phase transition occurs, for
degrees d strictly below the satisfiability threshold.

I Corollary 3. If k ≥ k0, then dcond(k) = min{d > 0 : βcond(d, k) <∞} < dk−SAT − Ω(k).

Furthermore, the following corollary shows that the so-called “replica symmetric solution”
predicted by the cavity method yields the correct value of φd,k(β) for β < βcond(d, k).

I Corollary 4. If k ≥ k0, d ≤ dk−SAT and β < βcond(d, k), then φd,k(β) = F(k, d, β).

Corollary 4 opens the door to studying the “shape” of the Hamiltonian EΦ for β <

βcond(d, k), a necessary step towards studying, e.g., the performance of local search algorithms.
Specifically, Corollary 4 enables us to bring the “planting trick” from [1] to bear so that we
can analyse typical properties of samples from the Gibbs measure.

Finally, complementing Corollary 4, the following result shows that F(k, d, β) overshoots
φd,k(β) for β > βcond(d, k).

I Corollary 5. If k ≥ k0, d ≤ dk−SAT and β > βcond(d, k), then there is βcond(d, k) < β′ < β

such that φd,k(β′) < F(k, d, β′).

2 Techniques and related work

Admittedly, the definition of βcond(k, d) is not exactly simple. For instance, even though the
fixed point distribution from Proposition 2 stems from a discrete problem, it is a continuous
distribution on (0, 1). Yet the analytic formula (6) is conceptually far simpler than the
combinatorial definition of φd,k. Indeed, we are going to see in Section 3 that the fixed point
problem can be understood in terms of a branching process, i.e., a random infinite tree.

The proof of Theorem 1 builds upon an abstract result from [6] that, roughly speaking,
breaks the study of the partition function down into two tasks. First, to prove that the Gibbs
measure induced by a random formula Φ̂ chosen from a reweighted probability distribution,

V. Bapst and A. Coja-Oghlan 22:5

the “planted model”, enjoys the non-reconstruction property, a spatial mixing property.
Second, to analyse Belief Propagation on Φ̂. The technical contribution of the present work
is to tackle these two problems in a fairly generic way. In fact, we expect that the proof
strategy extends to other problems. A concrete example that springs to mind is the Potts
antiferromagnet on a random graph, which is intimately related to the information-theoretic
threshold in the “stochastic block model” with multiple classes [5]. While conceptually the
proof strategy allows us to turn the Belief Propagation calculation into a rigorous theorem in a
fairly direct way, the technical challenge of actually analysing the relevant Belief Propagation
fixed point in a completely rigorous manner remains.

The overall proof strategy bears some resemblance to the work of Mossel, Neeman and
Sly [26] on the “stochastic block model”, but the details are quite different. Roughly speaking,
the stochastic block model can be viewed as a planted version of the minimum bisection
problem and the problem is to recover the labels that were used to generate the graph. The
proof from [26] that this is not possible up to a certain point relies on non-reconstruction
as well. Moreover, the contiguity estabished in [26] can be viewed as a condensation result,
albeit with the much simpler interactions of the stochastic block model. In particular, the
“condensation threshold” is merely given by a quadratic equation rather than a distributional
fixed point equation.

The predictions of the “cavity method” typically come as distributional fixed points but
there are only few proofs that establish such predictions rigorously. The one most closely
related to the present work is [7] on condensation in random graph coloring. It determines the
critical average degree d for which condensation starts to occur with respect to the number of
proper k-colorings of the Erdös-Rényi random graph. This corresponds to taking β →∞ in
(3). This simplifies the problem substantially because in the limit “frozen variables” emerge
that are fixed deterministically to one specific value. Other previous results on condensation
gave only approximate answers [8, 13, 14].

Interestingly, determining the satisfiability threshold on Φ is conceptually easier than
identifying the condensation threshold [12]. This is because the local structure of the regular
random formula is essentially deterministic, namely a tree comprising of clauses and variables
in which every variable appears d/2 times positively and d/2 times negatively. In effect, the
satisfiability threshold is given by a fixed point problem on the unit interval, rather than on
the space of probability measures on the unit interval. Similar simplifications occur in other
regular models [17, 16]. By contrast, we will see in Section 3 that the condensation phase
transition hinges on the reweighted distribution Φ̂ with a genuinely random local structure.

Recent work on the k-SAT threshold in uniformly random formulas [12, 11] and in
particular the breakthrough paper by Ding, Sly and Sun [18], also harnessed the Belief/Survey
Propagation calculations and [18] verified the prediction in terms of the corresponding
distributional fixed point problem.5 In the uniformly random model a substantial technical
complication is posed by variables of exceptionally high degree. While [12, 11, 18] apply the
second moment method to a random variable whose construction is guided by Belief/Survey
Propagation, here we employ Belief Propagation in the direct way enabled by [6].

Talagrand [31] and, by means of a different argument, Panchenko [27] studied the k-
SAT model on uniformly random formulas in the “high-temperature” (i.e., small β) case.
Specifically, with d the average degree of a variable, [27, 31] require that min{4β, 1}(k−1)d < 1.
This range of parameters is well below the conjectured condensation phase transition [22].

5 Survey Propagation can be viewed as a Belief Propagation applied to a modified constraint satisfaction
problem [23].

APPROX/RANDOM’16

22:6 The Condensation Phase Transition in the Regular k-SAT Model

3 Proof outline

We assume that k ≥ k0 for a large enough constant k0 and that d < dk−SAT.

3.1 Two moments do not suffice
The default approach to studying φd,k(β) would be the venerable “second moment method” [3].
Cast on a logarithmic scale, if

lim sup
n→∞

1
n

lnE[ZΦ(β)2] ≤ lim
n→∞

2
n

lnE[ZΦ(β)], then (8)

φd,k(β) = lim
n→∞

1
n

lnE[ZΦ(β)]. (9)

Thus, if (8) holds, then we can “swap the log and the expecation”. Unsurprisingly, calculating
lnE[ZΦ(β)] is fairly easy (see (11) below).

From a bird’s eye view, both the physics intuition and the second moment are all about
the geometry of the Gibbs measure of Φ at a given β ∈ (0,∞). Indeed, according to the
physics picture the condensation point βcond(k) should be the supremum of all β > 0 such
that w.h.p. for two random assignments σ1,σ2 ∈ {±1}n chosen from the Gibbs measure we
have |σ1 · σ2| = on(n), i.e., σ1,σ2 are about orthogonal [22]. This is a necessary condition
for the success of the second moment method as well [2, 4], which may instil hopes that (8)
might hold for β right up to βcond(d, k). In fact, (8) holds if either d or β is relatively small.

I Lemma 6. For d ≤ dk−SAT and β > 0 let q ∈ (0, 1) be the unique solution to the equation

1− (1− exp(−β))qk = 2(1− q). (10)

Then
1
n

lnE [Zβ(Φ)] ∼ ln 2 + d

k
ln
(
1− (1− exp(−β))qk

)
+ d

2 ln(4q(1− q)). (11)

Furthermore, if either d ≤ d−(k) or β ≤ β−(k, d) then (8) is true.

However, for d close to dk−SAT and β near βcond(d, k) the second moment method fails.
Formally, if d is such that βcond(d, k) <∞, then there exists β′ < βcond(d, k) such that (8) is
violated for all β ∈ (β′, βcond(d, k)).

3.2 Quenching the average
To understand what goes awry we turn the second moment into a first moment with respect
to reweighted distribution. Specifically, the planted model is the random pair (Φ̂, σ̂) chosen
from the distribution

P
[
(Φ̂, σ̂) = (Φ̂, σ̂)

]
=

exp(−βEΦ̂(σ̂))
(dn)! · E[ZΦ(β)] . (12)

Thus, the probability of that (Φ̂, σ̂) comes up is proportional to exp(−βEΦ̂(σ̂)). Further, the
probability that a specific formula Φ̂ comes up equals P[Φ̂ = Φ̂] = Zβ(Φ̂)/((dn)! · E[Zβ(Φ)]),
proportional to the partition function. In effect,

E[ZΦ(β)2] = E[ZΦ(β)] · E[ZΦ̂(β)]. (13)

Hence, in light of (11) computing the second moment is equivalent to calculating E[ZΦ̂(β)].

V. Bapst and A. Coja-Oghlan 22:7

In fact, the second moment calculation from the proof of Lemma 6 reveals that E[ZΦ̂(β)] is
dominated by two distinct contributions. First, assignments that are more or less orthogonal
to σ̂ yield a term of order E[ZΦ(β)]. The second contribution is from σ close to σ̂; say,
σ · σ̂ ≥ n(1− 2−k/10). Geometrically, this reflects the fact that the “planted assignment” σ̂
sits in a “valley” of the Hamiltonian EΦ̂ w.h.p. The valleys are officially called clusters and
we let

ZΦ̂,σ̂(β) =
∑

σ∈{±1}n

1{σ · σ̂ > n(1− 2−k/10)} exp(−βEΦ̂(σ)). (14)

be the Gibbs-weighted cluster size. Hence, (13) shows that the second moment method
functions iff E[ZΦ̂,σ̂(β)] ≤ E[ZΦ(β)].

But for d close to dk−SAT and β > βcond(d, k) we have E[ZΦ̂,σ̂(β)] ≥ exp(Ω(n))E[ZΦ(β)].
In other words, the expected cluster size blows up. At a second glance, this is unsurprising.
For the cluster size scales exponentially with n and is therefore prone to large deviations effects.
To suppress these we ought to work with E[lnZΦ̂,σ̂(β)] instead of E[ZΦ̂,σ̂(β)]. A similar issue
(that the expected cluster size explodes) occurred in earlier work on condensation [7, 8, 13, 14].
Indeed, borrowing the idea of a truncated second moment method from these papers, we can
reduce the computation of φd,k(β) to the problem of determining E[lnZΦ̂,σ̂(β)] .

I Lemma 7. Equation (9) holds iff

lim sup
n→∞

n−1E[lnZΦ̂,σ̂(β)] ≤ lim
n→∞

n−1 lnE[ZΦ(β)]. (15)

Hence, we are left to calculate E[lnZΦ̂,σ̂(β)], the “quenched average” in physics jargon.
As we saw the log and the expectation do not commute. In such cases, computing the
quenched average is notoriously difficult, certainly well beyond the reach of elementary
methods. Tackling this problem is the main achievement of this paper; recall the expressions
from (6)–(7).

I Proposition 8. Assume that d ∈ [d−(k), dk−SAT] and β > β−(k, d). Then

lim
n→∞

1
n
E[lnZΦ̂,σ̂(β)] = B(k, d, β), while lim

n→∞

1
n

lnE[ZΦ(β)] = F(k, d, β).

We observe that Theorem 1 is immediate from Lemma 6, Lemma 7 and Proposition 8.

3.3 Non-reconstruction
To calculate the quenched average we are going to have to understand the typical internal
structure of the cluster in the planted model. According to the physicists “1-step replica
symmetry breaking picture”, the restriction of the Gibbs measure to the cluster should enjoy
a spatial mixing property called non-reconstruction. In particular, the truth values assigned
to variables that are “far apart” are predicted to be asymptotically independent.

If non-reconstruction holds, then a general result from [6] reduces the computation of the
quenched average to determining the marginals of the restricted Gibbs distribution, which
we are going to calculate via Belief Propagation.

Formally, by the restriction of the Gibbs measure to the cluster we mean the probability
distribution on {±1}n defined by

σ ∈ {±1}n 7→ 1{σ · σ̂ > n(1− 2−k/10)} exp(−βEΦ̂(σ))/ZΦ̂,σ̂(β). (16)

APPROX/RANDOM’16

22:8 The Condensation Phase Transition in the Regular k-SAT Model

For a random variable X(σ) we denote the average with respect to (16) by

〈X(σ)〉′ = 〈X(σ)〉′Φ̂,σ̂,β = 1
ZΦ̂,σ̂(β)

∑
σ∈{±1}n

1{σ · σ̂ > n(1− 2−k/10)} exp(−βEΦ̂(σ)).

Further, to define a metric we set up a bipartite graph whose vertices are the clauses and
variable of Φ̂. Each clause is adjacent to all the variables that it contains. Then the distance
between two variables or clauses is, of course, the length of a shortest path in the graph.

We can now state the non-reconstruction condition. For a variable x, an integer ` ≥ 0
and τ ∈ {±1}n let ∇(Φ̂, x, `, τ) be the set of all χ ∈ {±1}n such that χ(y) = τ(y) for all y
at distance at least 2` from x in Φ̂. Then〈

σ(x)|∇(Φ̂, x, `, τ)
〉′

is the average of the truth value of x once we condition on the event that the truth values of
all variables at distance at least 2` from x are given by the “boundary condition” τ . Thus,
we inspect the distribution of the truth value of x given the faraway variables.

The non-reconstruction condition requires that for most variables x, 〈σ(x)|∇(Φ̂, x, `, τ)〉′
is close to 〈σ(x)〉′ in expectation with respect to a boundary condition τ that is itself chosen
randomly from (16). Formally, (Φ̂, σ̂) has the non-reconstruction property w.h.p. if for any
ε > 0 there is ` > 0 such that

lim
n→∞

P

[
1
n

n∑
i=1

〈∣∣∣∣〈σ(xi)〉′ −
〈
σ(xi)|∇(Φ̂, xi, `, τ)

〉′∣∣∣∣〉′ < ε

]
= 1. (17)

I Proposition 9. Assume that d ∈ [d−(k), dk−SAT] and β > β−(k, d). Then (Φ̂, σ̂) has the
non-reconstruction property w.h.p.

Together with [6, Theorems 4.4–4.5] Proposition 9 reduces the computation of the
quenched average to the problem of computing the marginals under the measure (16).
Specifically, limn→∞

1
nE[lnZΦ̂,σ̂(β)] is given by an expression called the Bethe free energy

that is a function of the vector (〈σ(xi)〉′)i=1,...,n of marginals only.6 The Bethe free energy
originally comes from the physicists cavity method [23, ch. 14].

3.4 A branching process
Hence, we are left to calculate the marginals of (16). Due to the correlation decay guaranteed
by the non-reconstruction property, the marginals are governed by the local structure of the
formula Φ̂. To facilitate the marginal computation, we are going to condition on the event
that the planted assignment σ̂ = 1 is the all-ones vector; this is without loss of generality
because under the planted model (12) σ̂ is uniformly distributed.

Of course, in Φ̂ each variable occurs d/2 times positively and d/2 times negatively. But
the distribution of the signs with which the variables occur in the clauses is non-trivial. We
are going to describe it via a branching process with four types: variable nodes of type ±1
and clause nodes of type ±1. Starting from a single variable node r, the process is defined as
follows; let q ∈ (0, 1) be the solution to (10).

6 Stirctly speaking, Proposition 9 and [6, Theorems 4.4 and 4.5] merely imply that the Bethe free energy is
an upper bound on lim 1

nE[ln ZΦ̂,σ̂(β)]. To obtain the matching lower bound it is necessary to consider
another version of the planted model, see the appendix for details.

V. Bapst and A. Coja-Oghlan 22:9

BR1: For the root r let br,↑ = 1 with probability 1− q and br,↑ = −1 with probability q.
BR2: Suppose that x is a variable node of type bx,↑ = ±1. Then x has d− 1 children, which

are clause nodes. Specifically, d2 − 1 children a are clause nodes of type ba,↑ = bx,↑, and
the remaining d/2 children are clause ndoes of type ba,↑ = −bx,↑.

BR3: Suppose that a is a clause node of type ba,↑ = 1. Then a has k − 1 children in total,
which are variable nodes. Specifically, Xa = Bin(k − 1, 1− q) children have type 1, and
the remaining k − 1−Xa children have type −1.

BR4: Finally, suppose that a is a clause node of type ba,↑ = −1. Then a has k − 1 children,
which are variable nodes and

with probability exp(−β)qk−1/(1− (1− exp(−β))qk−1) all children have type −1,
otherwise Ya = Bin≥1(k − 1, 1− q) children have type 1 and the others have type −1.

Let us write T∞ be the random infinite tree generated by this branching process (including
the type assignment b · ,↑). Moreover, let T∞ be the set of all possible outcomes.

We can think of T∞ as an infinite k-SAT formula in which all variables other than r
appear d/2 times positively and d/2 times negatively. Namely, for each clause node a we
define a Boolean clause whose variables are the parent variable node of a and the k − 1
children of a. The sign with which the parent x of a occurs in a is precisely ba,↑, the type
of a. Thus, a contains the literal x if ba,↑ = 1 and the literal ¬x otherwise. Similarly, each
child y of a occurs with sign by,↑.

The root of T∞ has degree d− 1 rather than d. This will be useful to set up the Belief
Propagation equations below, but to describe the local structure of Φ̂ we actually need a
tree in which the root has degree d. Thus, let T ′∞ be the infinite tree defined just as above
except that the root has d/2 children of type +1 and d/2 children of type −1. Further, let
T ′∞ be the set of all possible outcomes of this process.

The tree T ′∞ captures the local structure of Φ̂. More precisely, for a formula Φ and a
variable x let ∆l

Φx be the sub-formula obtained from Φ by deleting all clauses and variables
at distance at least l from x. Additionally, for a specific formula ϕ let

ρΦ̂(ϕ) = 1
n

∣∣∣{x : ∆2`+1
Φ̂ x ∼= ϕ

}∣∣∣
be the fraction of variables x of Φ̂ whose depth-2` neighborhood is isomorphic to ϕ.

I Lemma 10. For all `, ϕ we have E
∣∣ρΦ̂(ϕ)− P

[
∆2`+1T ′∞

∼= ϕ
]∣∣ = O(n−1/2 lnn).

In light of Lemma 10 we can study the marginals of (16) by way of the random tree T ′∞.
Specifically, we are going construct a map T ′∞ → P({±1}) that yields a probability measure
on {±1} for each tree such that the marginal of a variable x is close to the conditional
expectation of this map given the depth-2` neighborhood ∆2`+1

Φ̂ x for large enough `. It will
emerge that this map is intimately related to the fixed point problem from Proposition 2. To
construct the map T ′∞ → P({±1}) we employ Belief Propagation; for a detailed introduction
to Belief Propagation and the physics intuition behind it see [23].

3.5 Belief Propagation
Fix some integer ` ≥ 1. Viewing the tree T ∈ T∞ as a k-SAT formula as above, we let V2`
be the set of all variable nodes at distance at most 2` from the root of T and let F2` be the
set of all clause nodes at distance at most 2` from the root. Further, let ∂V2` be the set
of all variable nodes of T at distance exactly 2` from the root. Belief Propagation starts
from a boundary condition ∂ν : ∂V2` → P({±1}), x 7→ ∂νx that assigns each x a probability

APPROX/RANDOM’16

22:10 The Condensation Phase Transition in the Regular k-SAT Model

distribution on {±1}. The Belief Propagation messages induced by the boundary condition
∂ν on T are the (unique) families

(νT,∂νx,↑)x∈V2`
, (ν̂T,∂νa,↑)a∈F2`

of probability measures on {±1} determined by the following three conditions. For a node u
of T let ∂↓u be the set of children.
BP1: For all x ∈ ∂V2` we have νT,∂νx,↑ = ∂νx.
BP2: For all x ∈ V2` \ ∂V2` and s ∈ {−1, 1},

νT,∂νx,↑ (s) =
∏
a∈∂↓x

ν̂T,∂νa,↑ (s)∑
s′∈{−1,1}

∏
a∈∂↓x

ν̂T,∂νa,↑ (s′)
. (18)

BP3: For all a ∈ F2` and s ∈ {−1, 1},

ν̂T,∂νa,↑ (s) =
∑
sa∈{−1,1}∂a 1 {sx = s}ψa(sa)

∏
y∈∂↓a

νT,∂νy,↑ (sy)∑
sa∈{−1,1}∂a ψa(sa)

∏
y∈∂↓a

νT,∂νy,↑ (sy)
. (19)

Algorithmically, all messages can be calculated bottom-up from the boundary V2`. The
“result” of the Belief Propagation calculation on T given a certain boundary condition is the
message emanating from the root:

ν∂νT = νT,∂νr,↑ .

The fixed point distribution from Proposition 2 can be obtained organically by running
Belief Propagation on T∞. Indeed, define ∂ν(0) : ∂V2` → P({±1}) by ∂ν(0)

x (1) = 1 for all
x ∈ ∂V2` and let ν(2`)

T = νT,∂ν
(0)

r,↑ .

I Proposition 11. Assume that d−(k) < d ≤ dk−SAT and β > β−(k, d). The sequence
(ν(2`)
T∞

)`≥1 converges almost surely to a limit ν?T∞
. Moreover, π?k,d,β is the distribution of the

random variable ν?T∞
(−br,↑).

We define the Belief Propagation messages ν(2`)
T ′ for the trees T ′ ∈ T ′∞ in which the root

r has degree d exactly as we did above. Of course, the calculation of the messages ν(2`)
T ′ is

closely related to that of the messages ν(2`)
T for T ∈ T∞; after all, the only difference occurs

at the root. The proof of Proposition 11 shows that the Belief Propagation recurrence enjoys
certain contraction properties. In combination with the non-reconstruction property we thus
obtain an asymptotic formula for the marginals of the distribution (16).

I Proposition 12. Assume that d−(k) < d ≤ dk−SAT and β > β−(k, d). The sequence
(ν(2`)
T ′

∞
)`≥1 converges almost surely to a limit ν?T ′

∞
. Moreover,

lim
`→∞

lim
n→∞

1
n

n∑
i=1

E
∣∣∣〈1{σ(xi) = 1}〉′Φ̂,1,β − E[ν?T ′

∞
(1)|∆2`+1T ′∞

∼= ∆2`+1
Φ̂ x]

∣∣∣ = 0

Plugging the asymptotic marginals from Proposition 11 into the Bethe free energy formula,
we obtain an expression for the quenched average lim 1

nE[lnZΦ̂,σ̂(β)]. Due to the inherent
connection between ν?T∞

and ν?T ′
∞
, a (tedious) bit of calculus reveals that this formula can

be expressed in terms of the fixed point distribution π?k,d,β . The Bethe free energy formula
then morphs into the expression B(k, d, β) from (7). In the course of this we also find that
(6) matches the “annealed average” lim 1

n lnE[ZΦ(β)]. Thus Proposition 8 follows.
In the following two sections we outline the two key parts of the proof in some more detail,

namely the proof of the non-reconstruction property and the analysis of Belief Propagation
on the random tree.

V. Bapst and A. Coja-Oghlan 22:11

4 Non-reconstruction

We assume that d ∈ [d−(k), dk−SAT] and that β ≥ β−(k, d). Let cβ = 1− exp(−β).

To prove Proposition 9 we exhibit six deterministic conditions that entail the non-reconstruc-
tion property. First, a formula Φ on variables V = {x1, . . . , xn} satisfies property `-Local
Structure if
`-Local Structure: for all trees T of height 2`+ 2 we have

|ρΦ(T)− P
[
∆2`+3T ′∞

∼= T
]
| ≤ n−0.49.

In words, the empirical distribution of the depth-2` + 2 neighbourhoods is close to the
distribution of the random tree T ′.

The second condition reads
Cycles: The formula Φ contains o(

√
n) cycles of length at most

√
lnn.

To state the third condition we identify a large “well-behaved” bit of the random formula
that we call the core. Similar constructions have been used extensively in prior work on
random constraint satisfaction problems (e.g., [1, 7, 8]). Let ∂±1x be the set of clauses
where the variable x appears as a positive/negative literal and, conversely, let ∂±1a be the
set of variables that appear in clause a positively/negatively. Now, the λ-core of Φ (in
symbols: Coreλ(Φ)) is the largest set W of variables such that all x ∈W satisfy the following
conditions.
CR1: there are at least λ−1k0.99 clauses a ∈ ∂1x such that ∂1a = {x}.
CR2: there are no more than 10λ clauses a ∈ ∂x such that |∂−1a| = k.
CR3: for any 1 ≤ l ≤ k the number of a ∈ ∂−1x such that |∂1a| = l is bounded by λkl+3/l! .
CR4: there are no more than λk3/4 clauses a ∈ ∂1x such that |∂1a| = 1 but ∂a 6⊂W .
CR5: there are no more than λk3/4 clauses a ∈ ∂−1x such that |∂−1a| < k and |∂1a \W | ≥
|∂1a|/4.

The λ-core is well-defined; for if W,W ′ satisfy the above conditions, then so does W ∪W ′.
Further, if λ < λ′, then Coreλ(Φ) ⊂ Coreλ′(Φ). The formula Φ has the property λ-Core if

λ-Core: |Coreλ(Φ)| ≥ (1− 2−0.95k)n.

We are going to identify a large set Vgood ⊂ V of variables that are very likely to be
set to one under a typical assignment σ chosen from 〈 · 〉′Φ,β . As a first attempt we might
try Vgood = Core1/2(Φ). However, the conditions CR1–CR5 are not quite strong enough
to enable an estimate of the 〈 · 〉′Φ,β-marginals. For instance, if the marginals of most of
the neighbors of a given vertex x ∈ Core1/2(Φ) go astray, x will likely follow suit. Yet the
variables x in the core such that 〈σ(x)〉′Φ,β is “small” must clump together. Formally, we say
that a set S ⊂ V is λ-sticky if for all x ∈ S one of the following conditions holds.
ST1: There are at least λk3/4 clauses a ∈ ∂1x such that ∂1a = {x} and ∂−1a ∩ S 6= ∅.
ST2: Yhere are at least λk3/4 clauses a ∈ ∂−1x such that |∂−1a| < k and |∂1a∩S| ≥ |∂1a|/4.
Further, Φ satisfies the property λ-Sticky if
λ-Sticky: Φ has no λ-sticky set of size between 2−0.95kn and 2−k/20n.

The condition Sticky ensures that for λ ∈ {1/2, 1} there is a unique maximal λ-sticky
set Sλ(Φ) ⊂ Coreλ(Φ) of size Sλ(Φ) ≤ 2−0.1kn. Indeed, if S, S′ ⊂ Coreλ(Φ) are two λ-sticky
sets of size at most 2−0.1kn, then S ∪ S′ is sticky as well. Consequently, Sticky guarantees
that |S ∪ S′| ≤ 2−0.95kn. In fact, this argument shows that Sλ(Φ) ≤ 2−0.95kn.

Further, the next condition reads

APPROX/RANDOM’16

22:12 The Condensation Phase Transition in the Regular k-SAT Model

Gap:
〈
1{σ · 1 < (1− 2−k/3)n}

〉′ ≤ exp(−Ωn(n)).
Hence, comparing the above with (14), we realise that Gap requires that assignments σ
with 1− 2−k/10 < σ · 1/n < 1− 2−k/3 contribute little to the cluster size.

Finally, we come to the seventh and last condition. A variable x ∈ V is (ε, 2`)-cold if
the following two conditions are satisfied. Write ∂2`x for the set of all variables at distance
exactly 2` from x.
CD1: The sub-formula T = ∆2`+1x is a tree.
CD2: If τ : ∂2`x→ {±1} is a random assignment such that independently for all y ∈ ∂2`x,

τ (y) =
{
−1 if y 6∈ Core1(Φ) ∪ S1(Φ)
(−1)Be(exp(−k0.9β)) otherwise

,

then

E
[
max

{∣∣∣ν(2`)
T (1)− 〈1{σ(x) = 1}|∇(Φ, x, `, τ)〉′

∣∣∣ : τ ≥ τ
}]
≤ ε. (20)

In words, suppose that we choose a random “boundary condition” τ such that all y at
distance 2` from x that do not belong to the core are set to −1 and all y in the core are
set to −1 with probability exp(−k0.9β) independently. Then an adversary comes along and
obtains τ from τ maliciously by setting τ(y) = 1 for a few y such that τ (y) = −1. (The
adversary is not allowed to make changes in the opposite direction.) Then (20) requires that
the spin σ(x) given the boundary condition τ be close to the Belief Propagation marginal
ν

(2`)
T (1). Of course, the expectation in (20) is over τ only.

(ε, 2`)-Cold: All but εn variables are (ε, 2`)-cold.

A formula Φ is (ε, `, λ)-quasirandom if the properties `-Local Structure, Cycles, λ-
Core, λ-Sticky, Gap and (ε, 2`)-Cold hold.

I Proposition 13. For any ε > 0 there is ` > 0 such that w.h.p. Φ̂ is (ε, `, 1)-quasirandom.

The proof that Φ̂ has the first five properties w.h.p. is based on standard arguments. But
the proof of the (ε, 2`)-Cold property is novel. The argument is intertwined with the study
of the Belief Propagation recurrence on the random tree. In particular, that analysis, which
we sketch in Section 5, is via a contraction argument that enables a comparison between the
result ν∂νT for a given bounardy condition and the result for the all-ones boundardy condition
(Lemma 20 below). In order to transfer this result from the random tree to the random
formula, in which the boundary condition depends on the core, we use a switching argument.
The details can be found in the appendix.

Proposition 9 is immediate from Proposition 13 and the following statement.

I Proposition 14. For any δ > 0 there exists ε > 0 and `0(ε) > 0 such that for any ` > `0(ε)
there exists n0(ε, `) such that for all n > n0 the following is true. If Φ is (ε, `)-quasirandom,
then

1
n

n∑
i=1

〈∣∣∣ν(2`)
∆2`

Φ xi
(1)− 〈1{σ(xi) = 1}|∇(Φ, xi, `, τ)〉′

∣∣∣〉′
Φ,β

< δ.

Proof of Proposition 14
Assume that Φ is (ε, `)-quasirandom and that n > n0 for some large n0 = n0(ε, `). In
particular, |Core1(Φ)| ≥ (1 − 20.95k)n. Let σ : V → {±1} be an assignment. A set
T ⊂ Core1(Φ) \ S1(Φ) is σ-closed if for any x ∈ T and all a ∈ ∂x we have

{y ∈ ∂a ∩ Core1(Φ) \ S1(Φ) : σ(y) = −1} ⊂ T. (21)

V. Bapst and A. Coja-Oghlan 22:13

Hence, if y ∈ Core1(Φ) \ S1(Φ) is set to −1 and there is a clause a connecting y to some
x ∈ T , then y itself must be in T . Moreover, for a clause b we say T ⊂ Core1(Φ) \ S1(Φ) is
(σ, b)-closed if (21) holds for all x ∈ T and all a ∈ ∂x \ b. Additionally, let

∂±1,lx = {a ∈ ∂±1x : |∂1a| = l}

be the set of clauses a with a total number of l positive literals where x appears posit-
ively/negatively.

I Lemma 15. Suppose that Φ is (ε, `)-quasirandom. Then for any σ such that 1 · σ ≥
(1− 2−k/9)n and for any (σ, b)-closed set T ⊂ Core1(Φ) \ S1(Φ) the following is true. Let
σ̃(x) = (−1)1{x∈T}σ(x). Then

EΦ(σ̃) ≤ EΦ(σ)− k0.98|T |. (22)

Proof. Consider the following process:
Let σ0 = σ, V0 = T and U0 = σ−1(−1) \ V0.
While there is it ∈ Vt such that EΦ((−1)1{ ·=it}σt(·)) ≤ EΦ(σt)− k0.98, pick one such it
arbitrarily and let σt+1(·) = (−1)1{ ·=it}σt(·) and Vt+1 = Vt \ {it}.

Clearly,

EΦ(σt) ≤ EΦ(σ)− k0.98t. (23)

Let τ be the stopping time of this process and assume that τ < |T |, or, in other words, that
Vτ 6= ∅. We claim that Vτ is a 1-sticky set. Indeed, because T is σ-closed for i ∈ Vτ we have

−k0.98 ≤ EΦ((−1)1{ ·=i}σt(·))− EΦ(στ)
≤ 1{b ∈ ∂i} − |∂1,0(i)|+ |{a ∈ ∂1,0i, ∂−1a ∩ (Vτ ∪ U0) 6= ∅}|

+ |∂−1,0i|+ | ∪1≤l≤k {a ∈ ∂−1,li, ∂1a ⊂ Vτ ∪ U0)}|.

Because i ∈ Core1(Φ) we have |∂1,0i| ≥ k0.99, |∂−1,0i| ≤ 10, |{a ∈ ∂1,0i, ∂−1a ∩ U0 6= ∅}| ≤
k3/4 and |{a ∈ ∂1,0i, |∂−1a ∩ U0| ≥ |∂−1a|/4}| ≤ k3/4. Therefore, one of the following must
hold.
(a) |{a ∈ ∂1,0, ∂−1a ∩ Vτ 6= ∅}| ≥ k3/4,
(b) |{a ∈ ∂1,0i, |∂−1a ∩ Vτ | ≥ |∂−1a|/4}| ≥ k3/4.
It follows that the set Vτ ⊂ T ⊂ Core1(Φ) \ S1(Φ) is 1-sticky.

However, Core1(Φ) \ S1(Φ) cannot contain a 1-sticky set of size |Vτ | ≤ |T | ≤ 2−k/10 as
this would contradict the maximality of S1(Φ). It follows that τ = |T |, and therefore στ = σ̃,
whence (22) follows using (23). J

Lemma 15 is going to be our principal tool to establish Proposition 14. To put it to work,
we need the following simple observation that follows from the fact that Φ is d-regular.

I Fact 16. For any variable x the following is true. Let γ(x, L) be the number of trees
with L ≥ 1 vertices rooted at x that are contained in the factor graph of Φ. Then γ(x, L) ≤
L(100dk)L.

Write T (x, σ) for the smallest σ-closed set that contains x. If σ(x) = 1 we let T (x, σ) = ∅.
The following lemma shows that T (x, σ) is unlikely to be non-empty and very unlikely to be
large.

I Lemma 17. For all x ∈ Core1(Φ) \ S1(Φ) we have

〈σ(x)〉′ ≥ 1− exp(−βk0.97) and 〈1{|T (x,σ)| > ln lnn}〉′ ≤ 1/ lnn.

APPROX/RANDOM’16

22:14 The Condensation Phase Transition in the Regular k-SAT Model

Proof. Let N = 2−k/4n. Due to Gap we have

〈1{1 · σ < n−N/2}〉′ ≤ exp(−Ω(n)).

Therefore,

〈1{|T (x,σ)| > N}〉′ ≤ exp(−Ω(n)). (24)

Hence, let t ≤ N and let θ be a tree of order t with root x that is contained in the factor graph
of Φ and whose vertices lie in Core1(Φ)\S1(Φ). If σ is such that T (x, σ) = θ, then Lemma 15
implies that σ̃(x) = (−1)1{x∈T (x,σ)}σ(x) satisfies EΦ(σ̃) ≤ EΦ(σ)− k0.98t. Consequently,

〈1{σ = σ}〉′

〈1{σ = σ̃}〉′
≤ exp(−βk0.98t).

Hence, by Fact 16, the union bound and our assumptions on β and d,

〈1{|T (x,σ)| = t}〉′

〈1{σ(x) = 1}〉′
≤ t(100dk)t exp(−βk3/4t) ≤ exp(−0.99βk0.98t). (25)

This bound readily implies the second assertion. To obtain the first assertion, we remem-
ber (24) and sum (25) over 1 ≤ t ≤ N . J

Let r be a variable with depth-2` neighborhood T . Guided by (20), we call τ̃ : V → {±1}
a good boundary condition for r if

max
{∣∣∣ν(2`)

T (1)− 〈1{σ(x) = 1}|∇(Φ, x, `, τ)〉′
∣∣∣ : τ ≥ τ̃

}
≤ ε. (26)

I Lemma 18. Let r be a variable for which the following conditions hold.
1. r is (ε, 2`)-cold.
2. r has distance at least ln1/3 n from any cycle of length at most

√
lnn.

Let Γr be the event that σ is a good boundary condition for r. Then 〈1{σ 6∈ Γr}〉′ ≤ 2ε.

Proof. Let X = (∂2`r) ∩ Core1(Φ) \ S1(Φ). Moreover, let A be the event that

max
x∈X
|T (x,σ)| ≤ ln lnn and σ · 1 ≥ (1− 2−k/4)n.

Because |X| ≤ (dk)` < ln lnn by our assumption that n > n0(ε, `), Lemma 17 and the fact
that Φ is quasirandom imply 〈1{σ ∈ A}〉′ ∼ 1. Furthermore, if A occurs, then assumption
(2) ensures that the subgraph of the factor graph induced on Y = (∆2`+1r) ∪

⋃
x∈X T (x,σ)

is acyclic.
Now, fix a variable x ∈ X and σ ∈ A such that σ(x) = −1. Let a be the clause that is

adjacent to x on its shortest path to r and let T (x, a, σ) be the smallest (σ, a)-closed set that
contains x. Further, define

σ̃(y) = (−1)1{y∈T (x,a,σ)}σ(y).

Then Lemma 15 shows that EΦ(σ̃) ≤ k0.98|T (x, a, σ)|. Moreover, because the subgraph
induced on Y is acyclic we have σ̃(x′) = σ(x′) for all x′ ∈ X \ {x}. Consequently, by Fact 16
and the union bound,〈

1{σ(x) = −1}
∏
y∈X\{x} 1{σ(y) = σ(y)}1{σ ∈ A}

〉′
〈
1{σ(x) = 1}

∏
y∈X\{x} 1{σ(y) = σ(y)}

〉′ ≤
∑

t≤ln lnn

t(100dk)t

exp(βk0.98t)

≤ exp(−βk0.98/2). (27)

V. Bapst and A. Coja-Oghlan 22:15

Since 〈1{σ ∈ A}〉′ = 1− on(1) and because for all τ : X → {±1} we have〈 ∏
y∈X\{x}

1{σ(y) = τ(x)}
〉′
≥ exp(−dkβ|X|) = Ωn(1),

(27) implies that for any τ : X → {±1},〈
1{σ(x) = −1}

∏
y∈X\{x} 1{σ(y) = τ(y)}

〉′
〈
1{σ(x) = 1}

∏
y∈X\{x} 1{σ(y) = τ(y)}

〉′ ≤ exp(−βk0.98/3). (28)

Finally, the assertion follows from (28) and the assumption that r is (ε, 2`)-cold. J

Proof of Proposition 14. The condition Cycles ensures that there are at most on(n) vari-
ables r for which condition (2) from Lemma 18 is violated. Furthermore, due to (ε, 2`)-
Cold all but εn variables r satisfy assumption (1). Therefore, the assertion follows from
Lemma 18. J

5 Belief Propagation on the infinite tree

Assume that d ∈ [d−(k), dk−SAT] and that β ≥ β−(k, d). Let cβ = 1− exp(−β).

We sketch the analysis of the Belief Propagation messages on the random tree T∞ to prove
Propositions 2 and 11. The key step is the proof of the following statement.

I Lemma 19. There exists a number `0 = `0(d, k, β) such that for all ` ≥ `0 the following is
true. Suppose that ∂ν : ∂V2` → {±1} is a random boundary condition, independent of T∞,
such that
H: for any x ∈ ∂V2`, P

[
(∂ν)x(1) ≤ 1− exp(−k0.9β) |(∂ν)y 6=x

]
≤ 2−0.9k.

Then

P
[
‖ν∂νT − ν

(2`)
T ‖TV ≥ 2`−1

]
≤ `−1.

Thus, the condition H provides that for any x on the boundary the message ∂νx(1) is
likely close to one, even given T∞ and all the other boundary messages (∂νy)y 6=x. Further,
Lemma 19 states that the message at the root given that the boundary condition satisfies H
is likely within O`(`−1) of the message obtained from the “all-ones” boundary condition.

We will need a version of Lemma 19 for the random tree T ′∞. Condition H becomes
H’: for any x ∈ ∂V ′2`, P

[
(∂ν)x(1) ≤ 1− exp(−k0.9β) |(∂ν)y 6=x

]
≤ 2−0.9k.

I Lemma 20. There is `0 = `0(d, k, β) > 0 such that for all ` ≥ `0 the following is true.
Assume that the random boundary condition ∂ν′′, independent of T ′, satisfies H′. Moreover,
assume that ∂ν′ is a random boundary condition that may depend on T ′,∂ν′′ such that
∂ν′′

x(1) ≥ ∂ν′x(1) for all x ∈ ∂V ′2`. Then for ` ≥ `0 we have

P
[
‖ν∂ν

′

T ′ − ν(2`)
T ′ ‖∞ ≥ 2 exp(dkβ)`−1

]
≤ 2dk`−1.

To grasp the assumptions of Proposition 20, we may think of ∂ν′ as obtained from ∂ν′′

by allowing an “adversary” to switch some of the −1s of ∂ν′′ to +1s. The adversary knows
both T ′ and ∂ν′′. In the following we tacitly assume that ` ≥ `0 for a large constant `0.

To prove Lemma 19–20 we are going to exhibit a deterministic condition on (T, ∂ν) that
ensures that ν∂νT is close to ν(2`)

T . For a variable node x we let ∂1x be the set of all clauses

APPROX/RANDOM’16

22:16 The Condensation Phase Transition in the Regular k-SAT Model

in which x appears as a positive literal. Similarly, ∂−1x is the set of clauses containing the
literal ¬x. Conversely, for a clause a we let ∂±1a be the set of all variables that appear in a
positively/negatively. Further, we define the trunk of T under the boundary condition ∂ν,
Trunk(T, ∂ν), as the largest subset W of V2` such that for any x ∈W either
TR0: x ∈ ∂V2` and ∂νx(1) ≥ 1− exp(−k0.9β)
or all of the five following conditions hold
TR1: there are at least b2k0.9c clauses a ∈ ∂↓x such that ∂1a = {x}.
TR2: there are no more than dln ke clauses a ∈ ∂x such that |∂−1a| = k.
TR3: for any 1 ≤ l ≤ k the number of a ∈ ∂−1x such that |∂1a| = l is bounded by kl+3/l! .
TR4: there are no more than k3/4 clauses a ∈ ∂1x such that |∂1a| = 1 but ∂a 6⊂W .
TR5: there are no more than k3/4 clauses a ∈ ∂−1x such that |∂−1a| < k and |∂1a \W | ≥
|∂1a|/4.

The trunk is well-defined; for if W , W ′ are sets that satisfy the above conditions, then so is
W ∪W ′. Somewhat unbotanically, the trunk is non-empty only if it contains some of the
leaves. In fact, the construction is monotonous with respect to the boundary condition:

if ∂νx(1) ≤ ∂ν′x(1) for all x ∈ ∂V2`, then Trunk(T, ν) ⊂ Trunk(T, ν′). (29)

For T ∈ T2` with root r and x ∈ ∂V2`, we denote by [x→ r] the shortest path from x to
r in T . Moreover,
1. a variable node x ∈ V2` is cold if x ∈ Trunk(T, ∂ν),
2. a clause node a ∈ F2` is cold if ∂1a ∩ Trunk(T, ∂ν) 6= ∅,
3. the pair (x, a) with x ∈ ∂↓a is cold if x is cold or a is cold,
4. a path [x→ r] from x ∈ ∂V2` to r is cold if it contains at least b0.4`c cold pairs (x, a),
5. the pair (T, ∂ν) ∈ T2` × P({−1, 1})∂V2` is cold if all the paths [x→ r] with x ∈ ∂V2` are

cold.
The following estimate shows the use of these concepts.

I Lemma 21. Assume that ` ≥ `0(d, k, β) is sufficiently large. If

(T, ∂ν) ∈ T2` × P({−1, 1})∂V2`

is cold, then

‖ν∂νT,↑ − ν
(2`)
T,↑ ‖∞ ≤ `

−1.

The proof of Lemma 21 is based on a (technically delicate) contraction argument. More
precisely, the basic insight is that the Belief Propagation operation is a contraction along
cold paths. The proof is based on estimating the derivatives of the formulas (18) and (19).
Once contraction is established, convergence of the messages to a unique limit follows just as
in the Banach fixed point theorem. Furthermore, a “classical” analysis of the random tree
based on Chernoff bounds etc. yields

I Lemma 22. Assume that ` ≥ `0(d, k, β) is sufficiently large and that ∂ν satisfies H. Then

P [(T ,∂ν) is cold] ≥ 1− `−1.

Proof of Lemma 19. The assertion follows from the combination of Lemmas 21 and 22
directly. J

V. Bapst and A. Coja-Oghlan 22:17

Proof of Lemma 20. For h = 1, . . . , (k − 1)d consider the sub-trees T (h) of T ′ pending on
the variables at distance exactly two from the root r of T ′. Then with ∂ν(h) denoting the
boundary condition on T (h) induced by ∂ν′′, (29) and Lemma 22 yield

P
[
(T (h),∂ν(h)) is cold

]
≥ 1− (`− 1)−1.

Hence, Lemma 21 yields

P
[
‖ν∂ν

(h)

T (h) − ν(2`+1)
T (h) ‖TV ≤ `−1

]
≥ 1− (`− 1)−1.

Therefore, the assertion follows from a coupling argument. J

The convergence of the sequence (ν(2`)
T∞

)`≥1 follows from Lemma 19 rather directly by
indunction on `. Similarly, the existence and uniqueness of the distributional fixed point from
Proposition 2 follows from Lemma 19, albeit with a bit of work. In fact, it is straightforward
to verify that the law of ν?T∞

(br,↑) is a fixed point for Proposition 2. Conversely, any fixed
point distribution for Proposition 2 can be “unravelled” to obtain a P({±1})-valued random
variable λ?T∞

such that the original distribution is the law of λ?T∞
(br,↑) that satisfies condition

H. The contraction property from Lemma 19 therefore implies that λ?T∞
coincides with

ν?T∞
almost surely. Hence the uniqueness of the distributional fixed point. Similarly, the

proof of the (ε, 2`)-Cold property required in the non-reconstruction argument is based on
Lemma 20.

References
1 D. Achlioptas and A. Coja-Oghlan. Algorithmic barriers from phase transitions. In Proc.

49th FOCS, pages 793–802, 2008.
2 D. Achlioptas and C. Moore. Random k-sat: two moments suffice to cross a sharp threshold.

SIAM Journal on Computing, 36:740–762, 2006.
3 D. Achlioptas, A. Naor, and Y. Peres. Rigorous location of phase transitions in hard

optimization problems. Nature, 435:759–764, 2005.
4 D. Achlioptas and Y. Peres. The threshold for random k-sat is 2k ln 2 − o(k). Journal of

the AMS, 17:947–973, 2004.
5 J. Banks and C. Moore. Information-theoretic thresholds for community detection in sparse

networks. Information-theoretic thresholds for community detection in sparse networks,
arXiv:1601.02658, 2016.

6 V. Bapst and A. Coja-Oghlan. Harnessing the bethe free energy. Harnessing the Bethe free
energy, arXiv:1504.03975, 2015.

7 V. Bapst, A. Coja-Oghlan, S. Hetterich, F. Raßmann, and D. Vilenchik. The condensation
phase transition in random graph coloring. Communications in Mathematical Physics,
341:543–606, 2016.

8 V. Bapst, A. Coja-Oghlan, and F. Raßmann. A positive temperature phase transition in
random hypergraph 2-coloring. Annals of Applied Probability, 26:1362?1406, 2016.

9 B. Barak. Structure vs. combinatorics in computational complexity, 2013.
10 M. Bayati, D. Gamarnik, and P. Tetali. Combinatorial approach to the interpolation

method and scaling limits in sparse random graphs. Annals of Probability, 41:4080–4115,
2013.

11 A. Coja-Oghlan and K. Panagiotou. Going after the k-sat threshold. In Proc. 45th STOC,
pages 705–714, 2013.

12 A. Coja-Oghlan and K. Panagiotou. The asymptotic k-sat threshold. Advances in Math-
ematics, 288:985–1068, 2016.

APPROX/RANDOM’16

22:18 The Condensation Phase Transition in the Regular k-SAT Model

13 A. Coja-Oghlan and L. Zdeborová. The condensation transition in random hypergraph
2-coloring. In Proc. 23rd SODA, pages 241–250, 2012.

14 P. Contucci, S. Dommers, C. Giardina, and S. Starr. Antiferromagnetic potts model on the
Erdős-Rényi random graph. Communications in Mathematical Physics, 323:517–554, 2013.

15 A. Dembo, A. Montanari, A. Sly, and N. Sun. The replica symmetric solution for potts
models on d-regular graphs. Comm. Math. Phys., 327:551–575, 2014.

16 J. Ding, A. Sly, and N. Sun. Maximum independent sets on random regular graphs. Max-
imum independent sets on random regular graphs, arXiv:1310.4787, 2013.

17 J. Ding, A. Sly, and N. Sun. Satisfiability threshold for random regular nae-sat. In Proc.
46th STOC, pages 814–822, 2014.

18 J. Ding, A. Sly, and N. Sun. Proof of the satisfiability conjecture for large k. In Proc. 47th
STOC, pages 59–68, 2015.

19 D. Gamarnik, T. Nowicki, and G. Swirszcz. Maximum weight independent sets and match-
ings in sparse random graphs: Exact results using the local weak convergence method.
Random Structures and Algorithms, 28:76–106, 2006.

20 D. Gamarnik and M. Sudan. Limits of local algorithms over sparse random graphs. In
Proc. 5th ITCS, pages 369–376, 2014.

21 D. Gamarnik and M. Sudan. Performance of the survey propagation-guided decimation
algorithm for the random nae-k-sat problem. Performance of the Survey Propagation-
guided decimation algorithm for the random NAE-K-SAT problem, arXiv:1402.0052, 2014.

22 F. Krzakala, A. Montanari, F. Ricci-Tersenghi, G. Semerjian, and L. Zdeborova. Gibbs
states and and the set of solutions of random constraint satisfaction problems. Proc. Na-
tional Academy of Sciences, 104:10318–10323, 2007.

23 M. Mézard and A. Montanari. Information, physics and computation. Oxford University
Press, 2009.

24 M. Mézard, G. Parisi, and M. Virasoro. Spin Glass Theory and Beyond. World Scientific,
1987.

25 M. Mézard, G. Parisi, and R. Zecchina. Analytic and algorithmic solution of random
satisfiability problems. Science, 297:812–815, 2002.

26 E. Mossel, J. Neeman, and A. Sly. Reconstruction and estimation in the planted partition
model. Probability Theory and Related Fields, pages 1–31, 2014.

27 D. Panchenko. On the replica symmetric solution of the k-sat model. Electron. J. Probab.,
19:1–17, 2014.

28 V. Rathi, E. Aurell, L. K. Rasmussen, and M. Skoglund. Bounds on threshold of regular
random k-sat. In Proc. 12th SAT, pages 264–277, 2010.

29 F. Ricci-Tersenghi and G. Semerjian. On the cavity method for decimated random con-
straint satisfaction problems and the analysis of belief propagation guided decimation al-
gorithms. J. Stat. Mech., 9001, 2009.

30 T. Richardson and R. Urbanke. Modern coding theory. Cambridge University Press, 2008.
31 M. Talagrand. The high temperature case for the random k-sat problem. Probab. Theory

Related Fields, 119:187–212, 2001.
32 L. Zdeborová and F. Krzakala. Statistical physics of inference: Thresholds and algorithms.

Statistical physics of inference: thresholds and algorithms, arXiv:1511.02476, 2015.

On Higher-Order Fourier Analysis over Non-Prime
Fields

Arnab Bhattacharyya1, Abhishek Bhowmick2, and Chetan Gupta3

1 Department of Computer Science & Automation, Indian Institute of Science,
India
arnabb@csa.iisc.ernet.in

2 Department of Computer Science, The University of Texas at Austin, USA
bhowmick@cs.utexas.edu

3 Department of Computer Science & Automation, Indian Institute of Science,
India
chetan.gupta@csa.iisc.ernet.in

Abstract
The celebrated Weil bound for character sums says that for any low-degree polynomial P and
any additive character χ, either χ(P) is a constant function or it is distributed close to uniform.
The goal of higher-order Fourier analysis is to understand the connection between the algebraic
and analytic properties of polynomials (and functions, generally) at a more detailed level. For
instance, what is the tradeoff between the equidistribution of χ(P) and its “structure"?

Previously, most of the work in this area was over fields of prime order. We extend the tools
of higher-order Fourier analysis to analyze functions over general finite fields. Let K be a field
extension of a prime finite field Fp. Our technical results are:
1. If P : Kn → K is a polynomial of degree 6 d, and E[χ(P (x))] > |K|−s for some s > 0 and non-

trivial additive character χ, then P is a function of Od,s(1) many non-classical polynomials
of weight degree < d. The definition of non-classical polynomials over non-prime fields is one
of the contributions of this work.

2. Suppose K and F are of bounded order, and let H be an affine subspace of Kn. Then, if
P : Kn → K is a polynomial of degree d that is sufficiently regular, then (P (x) : x ∈ H) is
distributed almost as uniformly as possible subject to constraints imposed by the degree of
P . Such a theorem was previously known for H an affine subspace over a prime field.

The tools of higher-order Fourier analysis have found use in different areas of computer science,
including list decoding, algorithmic decomposition and testing. Using our new results, we revisit
some of these areas.
(i) For any fixed finite field K, we show that the list decoding radius of the generalized Reed

Muller code over K equals the minimum distance of the code.
(ii) For any fixed finite field K, we give a polynomial time algorithm to decide whether a given

polynomial P : Kn → K can be decomposed as a particular composition of lesser degree
polynomials.

(iii) For any fixed finite field K, we prove that all locally characterized affine-invariant properties
of functions f : Kn → K are testable with one-sided error.

1998 ACM Subject Classification G.2 Discrete Mathematics, D.2.5 Testing and Debugging

Keywords and phrases finite fields, higher order fourier analysis, coding theory, property testing

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2016.23

© Arnab Bhattacharyya, Abhishek Bhowmick and Chetan Gupta;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016).
Editors: Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans; Article No. 23; pp. 23:1–23:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2 On Higher-Order Fourier Analysis over Non-Prime Fields

1 Introduction

In this work, we provide new results about polynomials over finite fields, relating their
algebraic structure to the distribution of their output. We then apply them to improve
previous work on list-decoding bounds for the Reed-Muller code, testability of affine-invariant
properties, and algorithms for polynomial decomposition.

1.1 Structure versus Randomness for Polynomials over Finite Fields
In many areas of mathematics, there is a remarkable phenomenon where natural objects are
either close to random or have a high degree of structure. A prime example of this is the
Weil bound for character sums [49], a deep result in algebraic geometry.

Let F be a finite field of prime order p, and let K be a finite field extension of F.
Let P : K → K be a univariate polynomial of degree 6 |K|1/2−δ for some δ > 0. If we
let χ : K → C denote a non-trivial additive character, then according to Weil’s bound,
either χ(P (x)) is constant or else, χ(P (x)) is distributed close to uniform in the sense
that |E[χ(P (x))]| 6 |K|−δ. Deligne later [17] proved the same statement for multivariate
polynomials P : Kn → K.

Higher-order Fourier analysis [46] is a recent generalization of some aspects of Fourier
analysis. Over finite fields, one of the main components of the theory is a detailed study of the
interplay between the algebraic structure and analytic properties of polynomials. Consider
the case when K = Fp is a prime field and p is small, for example 2. Weil’s bound does not
apply for d > √p. However, in the context of higher-order Fourier analysis, Kaufmann and
Lovett [37] (extending previous work by Green and Tao [30]) showed that if P : Fnp → Fp is a
polynomial of degree d, then for any non-trivial additive character χ, either |E[χ(P (x))]| < ε

or else, P is a function of a Oε,d,p(1) polynomials of strictly lesser degree. The regime here
is different from that of Weil’s bound (large n versus large |K|) but the result is similar in
spirit.

These recent developments have spurred a deeper look at the dichotomy between random-
ness and structure in polynomials over finite fields. For instance, instead of using the bias,
|E[χ(P (x))]|, as a measure of randomness, one can look at how well P is equidistributed on
affine subspaces. This gives rise to the Gowers norm [28, 29], a central notion in higher-order
Fourier analysis. Low Gowers norm is a much stronger notion of pseudorandomness than
low bias. Green and Tao [30] showed the Gowers inverse theorem, which states that if
P : Fnp → Fp is a polynomial of degree d < p, then either its Gowers norm of order d is
smaller than ε or it is a function of Oε,d,p(1) polynomials of degree < d. When d > p, this
dichotomy fails to be true [40, 30]; Tao and Ziegler [47] showed that if the Gowers norm is not
small, then the polynomial is a function of a bounded number of non-classical polynomials,
functions mapping to the torus that locally look like low-degree polynomials.

All of these results focused on finite fields of prime order. In general fields, the situation
is more complicated for several reasons. Firstly, the additive characters over F are simply
exponential functions χa(x) = e2πiax/p for a 6= 0 which are bijective, while over general fields
K, the additive characters are χa(x) = e2πiTr(ax)/p for a 6= 0 where the trace Tr : K → F
is a linear map with a possibly large kernel. Secondly, if K is of dimension at least 2 over
F, polynomials like xp have degree p but vanish after taking only 2 derivatives. Define the
weight degree of a polynomial P : Kn → K to be the minimum number of derivatives before P
becomes identically a constant. If a variable has individual degree more than p in a monomial
in P , then the weight degree of P may not equal the total degree. Thirdly, while K can
often be profitably viewed as simply a vector space over F, affine subspaces in Kn are not
necessarily vector spaces over F.

A. Bhattacharyya, A. Bhowmick, and C. Gupta 23:3

In this work, we prove the first structure-versus-randomness dichotomy result for poly-
nomials over general fields in the higher-order Fourier analysis setting. We show that if
P : Kn → K is a polynomial of total degree d, then either its Gowers norm of order d is
less than |K|−s (and hence, so is the bias of any additive character of P), or else, P is a
function of Od,s(1) many non-classical polynomials over Kn of weight degree less than d.
Our definition of non-classical polynomials uses the multiplicative structure of K. Also, note
that unlike the results quoted above, our result is non-trivial when |K| is not constant. For
constant d, our result continues to give information about the structure of the polynomial
even when its bias is less than |K|−1/2, the limit of Weil’s bound. To make our bounds hold
in this regime, we use some results recently given by Bhowmick and Lovett [13] where they
mainly1 studied higher-order Fourier analysis over growing prime fields.

Our next dichotomy result holds for constant sized K. Let c be a positive integer bound,
and let P : Kn → K be a polynomial of weight degree d. Then, either for some α ∈ K, Tr(αP)
is expressible in terms of polynomials of lower degree, or the distribution of P on random
affine subspaces of Kn of dimension c is as uniform as possible subject to the constraints
imposed by the weight degree of P . For instance, if the weight degree of P is 1, then
P (x+ y+ z)−P (x+ y)−P (x+ z) +P (x) = 0 for all x, y, z ∈ Kn and hence, this constraint
must be satisfied by the evaluations of P on any affine subspace. The second possibility in
the dichotomy is that modulo such constraints, the value of P is almost unconstrained on
subspaces of dimension c.

1.2 Applications
In this section, we describe three different problems involving a finite field K, which previously
had been solved only when |K| was prime but which we can now solve for arbitrary finite K.

Throughout, let F be a fixed prime order field, and let K be a finite field that extends F.
Let q = |K|, p = |F| and q = pr for r > 0.

1.2.1 List-decoding Reed-Muller codes
The notion of list decoding was introduced by Elias [18] and Wozencraft [50] to decode error
correcting codes beyond half the minimum distance. The goal of a list decoding algorithm
is to produce all the codewords within a specified distance from the received word. At
the same time one has to find the right radius for which the number of such codewords
is small, otherwise there is no hope for the algorithm to be efficient. After the seminal
results of Goldreich and Levin [20] and Sudan [43] which gave list decoding algorithms for
the Hadamard code and the Reed-Solomon code respectively, there has been tremendous
progress in designing list decodable codes. See the survey by Guruswami [34, 33] and Sudan
[44].

Reed-Muller codes (RM codes) were discovered by Muller in 1954. Let d ∈ N. The RM
code RMK(n, d) is defined as follows. The message space consists of degree 6 d polynomials
in n variables over K and the codewords are evaluation of these polynomials on Kn. Let
δq(d) denote the normalized distance of RMK(n, d). Let d = a(q− 1) + b where 0 6 b < q− 1.
We have

δK(d) = 1
qa

(
1− b

q

)
.

1 As we discuss later, they also study non-prime fields in Section 4.9 but they restrict to the case d < p
whereas we focus on small p.

APPROX/RANDOM’16

23:4 On Higher-Order Fourier Analysis over Non-Prime Fields

RM codes are one of the most well studied error correcting codes. Many applications in
computer science involve low degree polynomials over small fields, namely RM codes. Given
a received word g : Kn → K the objective is to output the list of codewords (e.g. low-degree
polynomials) that lie within some distance of g. Typically we will be interested in regimes
where list size is either independent of n or polynomial in the block length qn.

Let Pd(Kn) denote the class of degree 6 d polynomials f : Fn → F. Let dist denote the
normalized Hamming distance. For RMK(n, d), η > 0, let

`F(n, d, η) := max
g:Fn→F

|{f ∈ Pd(Fn) : dist(f, g) 6 η}| .

Let LDRK(n, d) (short for list decoding radius) be the maximum ρ for which `K(n, d, ρ− ε)
is upper bounded by a constant depending only on ε, |K|, d for all ε > 0.

It is easy to see that LDRK(n, d) 6 δK(d). The difficulty lies in proving a matching lower
bound. We review some previous work next. The first breakthrough result was the celebrated
work of Goldreich and Levin [20] who showed that in the setting of d = 1 over F2 (Hadamard
Codes) LDRF2(n, 1) = δF2(1) = 1/2. Later, Goldreich, Rubinfield and Sudan [21] generalized
the field to obtain LDRK(n, 1) = δK(1) = 1 − 1/|K|. In the setting of d < |K|, Sudan,
Trevisan and Vadhan [45] showed that LDRK(n, d) > 1−

√
2d/|K| improving previous work

by Arora and Sudan [2], Goldreich et al [21] and Pellikaan and Wu [41]. Note that this falls
short of the upper bound which is δK(d).

In 2008, Gopalan, Klivans and Zuckerman [26] showed that LDRF2(n, d) = δF2(d).They
posed the following conjecture.

I Conjecture 1 ([26]). For fixed d and finite field K, LDRK(n, d) = δK(d).

It is believed [26, 25] that the hardest case is the setting of small d. An important step
in this direction was taken in [25] that considered quadratic polynomials and showed that
LDRK(n, 2) = δK(2) for all fields K and thus proved the conjecture for d = 2. Recently,
Bhowmick and Lovett [14] resolved the conjecture for prime K.

Our main result for list decoding is a resolution of Conjecture 1.

I Theorem 2. Let K be a finite field. Let ε > 0 and d, n ∈ N. Then,

`K(d, n, δK(d)− ε) 6 c|K|,d,ε.

Thus,

LDRK(n, d) = δK(d).

I Remark (Algorithmic Implications). Using the blackbox reduction of algorithmic list decoding
to combinatorial list decoding in [26] along with Theorem 18, for fixed finite fields, d and ε > 0,
we now have list decoding algorithms in both the global setting (running time polynomial in
|K|n) and the local setting (running time polynomial in nd).

I Remark. Note that the bound on the list size in Theorem 2 depends on |K|. The recent
work of Bhowmick and Lovett [13] shows that this is not necessary when d < p. It is an open
question to show this for general fields. Our dichotomy result for polynomials on general
fields can’t be used in their proof because it only holds for polynomials mapping to K, not
for the more general non-classical polynomials.

A. Bhattacharyya, A. Bhowmick, and C. Gupta 23:5

1.2.2 Algorithmic polynomial decomposition
Consider the following family of properties of functions over a finite field K.

I Definition 3. Given a positive integer k, a vector of positive integers ∆ = (∆1,∆2, . . . ,∆k)
and a function Γ : Kk → K, we say that a function P : Kn → K is (k,∆,Γ)-structured if
there exist polynomials P1, P2, . . . , Pk : Kn → K with each deg(Pi) 6 ∆i such that for all
x ∈ Kn,

P (x) = Γ(P1(x), P2(x), . . . , Pk(x)).

The polynomials P1, . . . , Pk are said to form a (k,∆,Γ)-decomposition.

For instance, an n-variate polynomial over the field K of total degree d factors nontrivially
exactly when it is (2, (d− 1, d− 1), prod)-structured where prod(a, b) = a · b. We shall use the
term degree-structural property to refer to a property from the family of (k,∆,Γ)-structured
properties.

The problem here is, for arbitrary fixed k,K,∆,Γ, given a polynomial, decide efficiently
if it is degree structural and if yes, output the decomposition. An efficient algorithm for
the above would imply a (deterministic) poly(n)-time algorithm for factoring an n-variate
polynomial of degree d over K. Also, it implies a polynomial time algorithm for deciding
whether a d-dimensional tensor over K has rank at most r. Also, it would give polynomial time
algorithms for a wide range of problems not known to have non-trivial solutions previously,
such as whether a polynomial of degree d can be expressed as P1 · P2 + P3 · P4 where each
P1, P2, P3, P4 are of degree d− 1 or less.

This problem was solved for prime K = F, satisfying d < p by Bhattacharyya [6] and
later for all d and prime F by Bhattacharyya, Hatami and Tulsiani [12]. Our main result in
this line of work establishes this for all fixed finite fields.

I Theorem 4. For every finite field K, positive integers k and d, every vector of positive
integers ∆ = (∆1,∆2, . . . ,∆k) and every function Γ : Kk → K, there is a deterministic
algorithm AK,d,k,∆,Γ that takes as input a polynomial P : Kn → K of degree d that runs in
time polynomial in n, and outputs a (k,∆,Γ)-decomposition of P if one exists while otherwise
returning NO.

1.2.3 Testing affine-invariant properties
The goal of property testing, as initiated by [15, 4] and defined formally by [42, 22], is to
devise algorithms that query their input a very small number of times while correctly deciding
whether the input satisfies a given property or is “far” from satisfying it. A property is called
testable if the query complexity can be made independent of the size of the input.

More precisely, we use the following definitions. Let [R] denote the set {1, . . . , R}. Given
a property P of functions in {Kn → [R] | n ∈ Z>0}, we say that f : Kn → [R] is ε-far from
P if

min
g∈P

Prx∈Kn [f(x) 6= g(x)] > ε,

and we say that it is ε-close otherwise.

I Definition 5 (Testability). A property P is said to be testable (with one-sided error) if
there are functions q : (0, 1) → Z>0, δ : (0, 1) → (0, 1), and an algorithm T that, given as
input a parameter ε > 0 and oracle access to a function f : Kn → [R], makes at most q(ε)

APPROX/RANDOM’16

23:6 On Higher-Order Fourier Analysis over Non-Prime Fields

queries to the oracle for f , always accepts if f ∈ P and rejects with probability at least
δ(ε) if f is ε-far from P. If, furthermore, q is a constant function, then P is said to be
proximity-obliviously testable (PO testable).

The term proximity-oblivious testing is coined by Goldreich and Ron in [24]. As an
example of a testable (in fact, PO testable) property, let us recall the famous result by Blum,
Luby and Rubinfeld [15] which initiated this line of research. They showed that linearity of
a function f : Kn → K is testable by a test which makes 3 queries. This test accepts if f is
linear and rejects with probability Ω(ε) if f is ε-far from linear.

Linearity, in addition to being testable, is also an example of a linear-invariant property.
We say that a property P ⊆ {Kn → [R]} is linear-invariant if it is the case that for any f ∈ P
and for any K-linear transformation L : Kn → Kn, it holds that f ◦L ∈ P . Similarly, an affine-
invariant property is closed under composition with affine transformations A : Kn → Kn (an
affine transformation A is of the form L+ c where L is K-linear and c ∈ K). The property
of a function f : Kn → K being affine is testable by a simple reduction to [15], and is itself
affine-invariant. Other well-studied examples of affine-invariant (and hence, linear-invariant)
properties include Reed-Muller codes [4, 3, 19, 42, 1] and Fourier sparsity [27]. In fact, affine
invariance seems to be a common feature of most interesting properties that one would
classify as “algebraic”. Kaufman and Sudan in [39] made explicit note of this phenomenon
and initiated a general study of the testability of affine-invariant properties (see also [23]).

Our main theorem for testing is a very general positive result:

I Theorem 6 (Main testing result). Let P ⊆ {Kn → [R]} be an affine-invariant property that
is t, w-lightly locally characterized, where t, R, w, and char(K) are fixed positive integers.
Then, P is PO testable with t queries.

We are yet to define several terms in the above claim, but as we will see, the weight restriction
is trivial when the field size is bounded. This yields the following characterization.

I Theorem 7 (Testing result for fixed fields). Let P ⊆ {Kn → [R]} be an affine-invariant
property, where R ∈ Z+ and field K are fixed. Then, P is PO testable with t queries if and
only if P is t-locally characterized.

Previously, [9] (building on [8, 11, 10]) proved Theorem 6 in the case that K is of fixed
prime order using higher-order Fourier analytic techniques. We note that other recent results
on 2-sided testability of affine-invariant properties over fixed prime-order fields [35, 51] can
also be similarly extended to non-prime fields but we omit their description here.

1.2.3.1 Local Characterizations

For a PO testable property P ⊂ {Kn → [R]} of query complexity t, if a function f : Kn → [R]
does not satisfy P, then by Definition 5, the tester rejects f with positive probability. Since
the test always accepts functions with the property, there must be t points a1, . . . , at ∈ Kn
that form a witness for non-membership in P. These are the queries that cause the tester
to reject. Thus, denoting σ = (f(a1), . . . , f(at)) ∈ [R]t, we say that C = (a1, a2, . . . , at;σ)
forms a t-local constraint for P. This means that whenever the constraint is violated by a
function g, i.e., (g(a1), . . . , g(at)) = σ, we know that g is not in P. A property P is t-locally
characterized if there exists a collection of t-local constraints C1, . . . , Cm such that g ∈ P
if and only if none of the constraints C1, . . . , Cm are violated. It follows from the above
discussion that if P is PO testable with q queries, then P is t-locally characterized.

For an affine-invariant property, constraints can be defined in terms of affine forms, since
the affine orbit of a constraint is also a constraint. So, we can describe each t-local constraint

A. Bhattacharyya, A. Bhowmick, and C. Gupta 23:7

C as (A1, . . . , At;σ), where for every i ∈ [t], Ai(X1, . . . , Xt) = X1 +
∑t
j=2 ci,jXj for some

ci,j ∈ K is an affine form over K. We define the weight wt of an element c ∈ K as
∑r
k=1 |ck|,

where c is viewed as an r-dimensional vector (c1, . . . , cr) with each ci in the base prime field2
F with respect to a fixed arbitrary basis. The weight of an affine form Ai to be

∑m
j=2 wt(ci,j)

for ci,j as above. A constraint is said to be of weight w if all its affine forms are of weight at
most w, and a property P is said to be t, w-lightly locally characterized if there exist t-local
constraints C1, . . . , Cm, each of weight at most w that characterize P.

Theorem 6 asserts that if P has a light local characterization, then it is testable. There
can exist many local characterizations of a property, and for the theorem to apply, it is only
necessary that one such characterization be of bounded weight. Moreover, we can choose the
basis with which to describe K over F. On the other hand, some restriction in addition to
local characterization is needed, as Ben-Sasson et al. [5] show that there exist affine-invariant
locally characterized properties of functions f : F2n → F2 that require super-constant query
complexity to test.

Another interesting observation is that if a property has a local characterization of
bounded weight, then it has a local single orbit characterization, in the language of [39]. For
linear3 affine-invariant properties, [39] shows that any local single orbit characterized property
is testable. Hence, our result is weaker than [39] in this aspect, though our Theorem 6
allows non-linear properties. It is an interesting open question as to whether dual-BCH codes
and, more generally, sparse affine-invariant codes that were shown to be locally single orbit
characterized in [36] and [31] respectively also have local characterizations of bounded weight.
It is also an open problem to describe a testable property P ⊆ {F2n → F2} that does not
have a local characterization of bounded weight.

1.3 Parallel Work
Subsequent to our first public version of this work [7], Bhowmick and Lovett [13] proved
Theorem 2 for all finite fields, even when the field size is growing with n, but assuming that
the field characteristic is larger than the order of the Reed-Muller code. They focus more on
handling growing field size instead of arbitrary field characteristic, so their techniques are
substantially different.

1.4 Our Techniques

1.4.1 New Ingredients
Our starting point is the observation that K is an r-dimensional vector space over F.
Thus, we can view a function Q : Kn → K as determined by a collection of functions
P1, . . . , Pr : Kn → F where Kn is viewed as Frn. However, it is incorrect to suppose
P1, . . . , Pr are independent as they are generated by the same polynomial over K.

Indeed, in our first dichotomy theorem, we want to deduce structural information about
P just from the fact that P1 is biased. Although we can’t directly prove that biased P1
implies biased Pi for all i ∈ [r], we show that biased DP1 implies biased DPi for all i ∈ [r],
where for a polynomial Q of degree d, DQ(h1, . . . , hd) is the iterated derivative of Q in
directions h1, . . . , hd. Because d is the total degree of the polynomial, the iterated derivative

2 If x ∈ F, |x| is the obvious element of {0, 1, . . . , |F| − 1}.
3 These are properties of functions f : Kn → F, where F is a subfield of K, for which f, g ∈ P implies
αf + βg ∈ P for any α, β ∈ F.

APPROX/RANDOM’16

23:8 On Higher-Order Fourier Analysis over Non-Prime Fields

is multilinear in h1, . . . , hd. The multilinearity allows us to relate the structure of DP1 to
the rest of the DPis. The same strategy was used in [13]. We then follow the steps of [48] to
integrate each of the DPi’s. We show that all of them are functions of the same collection of
non-classical polynomials. Here, a non-classical polynomial Q(x1, . . . , xn) is determined by
a set of monomials axi11 x

i2
2 · · ·xinn where a and the multiplication is in K; the evaluation of

each monomial is then mapped to (Z/pk+1Z)r for some integer k > 0 and the final output is
an integer linear combination of them. Note that unlike our definition, in the definition of
non-classical polynomials over Fn by [48], the multiplicative structure of the field is never
used. Also, our non-classical polynomials are a strict subset of the functions P : Kn → Tr
which identically vanish after d+ 1 derivatives. In fact, if we had used the latter notion as
defining non-classical polynomials, our theorem would have been quite straightforward.

Over constant-sized fields K, it is more economical to write out P as determined by
P1, . . . , Pr and treat them as independent. Then, we have reduced the problem to studying
polynomials mapping to F. However, even in this setting, we cannot totally ignore the
multiplicative structure of K. To see why, recall the question of testing affine-invariant
properties. When K is of bounded order, we can view any one-sided test as examining the
restriction of the input function on a random K-dimensional affine subspace of Kn, for some
constant integer K. In other words, the test will evaluate the input function at elements of
the set H = {x+

∑K
i=1 aiyi : a1, . . . , aK ∈ K} for some x, y1, . . . , yK ∈ K. Clearly, H is not

an affine subspace of Frn because of K’s multiplicative structure. An important component
of the higher-order Fourier analytic approach is to show that any “sufficiently pseudorandom”
collection of polynomials is equidistributed on H, and the proof of this fact in [9] crucially
uses that H is a subspace of a vector space over a prime field. In our work, we show a strong
equidistribution theorem (Theorem 36) that holds when H is an affine subspace of Kn.

A different place where the multiplicative structure of K rears its head is a key Degree
Preserving Lemma of [9]. Informally, if P1, . . . , PC form a “sufficiently pseudorandom”
collection of polynomials and F (x) = Γ(P1(x), . . . , PC(x)) is a polynomial of degree d
where Γ is an arbitrary composition function, then for any other collection of polynomials
Q1, . . . , QC where deg(Qi) 6 deg(Pi) for every i, G(x) = Γ(Q1(x), . . . , QC(x)) also has
degree 6 d. The lemma is crucially used for the analysis of the Reed-Muller list decoding
bound in [14] and the polynomial decomposition algorithm in [6, 12]. Its proof goes via
showing that if all (d+ 1) iterated derivatives of F : Kn → K vanish, then so must all (d+ 1)
iterated derivatives of G : Kn → K. However, for K that is of size p2 or more, this only
implies a bound on the weight degree of G, not on its degree.

We resolve this issue by giving a different and more transparent proof of the Degree
Preserving Lemma, which actually holds in a much more general setting. Using the above
notation, we prove that if F : Kn → K satisfies some locally characterized property P,
then G : Kn → K does also. Since due to a work of Kaufman and Ron [38], we know that
degree is locally characterized, our desired result follows. Our new proof uses our strong
equidistribution theorem on affine subspaces of Kn. An interesting point to note is that both
the equidistribution theorem and the degree preserving lemma work only assuming that the
field characteristic is constant and that the involved affine constraints are of bounded weight,
without any assumption on the field size.

1.4.2 Reed-Muller codes
For a received word g : Kn → K our goal is to upper bound |{f ∈ Pd : dist(f, g) 6 η}|, where
η = δK(d) − ε for some η > 0 and Pd is the class {Q : Kn → K : deg(Q) 6 d}. The proof
technique is similar in structure as [14]. We apply the weak regularity lemma (Corollary 40)

A. Bhattacharyya, A. Bhowmick, and C. Gupta 23:9

to the received word g : Kn → K and reduce the problem to a structured word g′ : Kn → K.
More specifically, whenever dist(f, g) 6 η, we have dist(f, g′) 6 η + ε/2. From here, we first
express each function f : Kn → K as a linear combination of functions f ′ : Kn → F. It can be
then shown that the analysis in [14] works for functions f ′ : Kn → F. A naive recombination
of the f ′ : Kn → F to f : Kn → K gives us useful bounds only when d < char(|F|). To
circumvent this problem, we use our improved degree preserving theorem. This is crucial
to our analysis as the technique of [14] can be used only to analyze the weight degree of
polynomials which is not enough for the argument to work for arbitrary d and |K|.

1.4.3 Polynomial decomposition
The algorithm and its analysis follows the lines of [6, 12]. Given a polynomial P : Kn → K
(where |K| is bounded), we consider the collection of polynomials {Tr(α1P), . . . ,Tr(αrP)}
where α1, . . . , αr ∈ K are linearly independent. We regularize this collection into a pseudo-
random polynomial factor and set one variable to 0 such that the degrees of the polynomials
do not change. We then recursively solve the problem on n − 1 variables and then apply
a lifting procedure to get a decomposition for the original problem. A naive analysis of
the lifting procedure over non-prime fields requires that deg(P) < char(F). In order to get
around this, we use our improved degree preserving theorem which applies for arbitrary
degrees.

1.4.4 Testing affine-invariant properties
Suppose P ⊆ {Kn → [R]} is a locally characterized affine-invariant property (where R and
char(K) are bounded but n|K| is growing). Our proof follows the lines of [11, 10, 9]. Suppose
f is far from P. We first identify a low-rank function close to f in an appropriate Gowers
norm which also contains the violation that f contains. Here, low rank is with respect to a
collection B of non-classical polynomials mapping to T. We then investigate the distribution
of B on the affine constraint that f violates. Since these are affine with respect to Kn, we
need to use our strong equidistribution theorem. The rest of the proof proceeds along the
same lines as [9].

Because the proof of Theorem 6 is very analogous to that in [9] (except for the use of the
new equidistribution theorem) and requires significant additional notation, we omit it here.

1.5 Some Open Questions
We conclude the introduction by giving a list of open questions suggested by this line of
work:

In our dichotomy result, can we show that if P : Kn → K is a polynomial of weight
degree d, then either a character of it is unbiased or P is expressible in terms of other
polynomials of weight degrees less than d? In the current form of the theorem, d is the
degree of P .
Can we show the dichotomy theorem for non-classical polynomials P? Together with the
first item, we would then be able to iteratively regularize collections of polynomials over
finite fields of growing size. Such a procedure would help resolve the list decoding radius
for Reed-Muller codes over such fields, for instance.
Can we improve the bound on the list size for Reed-Muller codes, compared to what we
obtain in Theorem 2 or what is obtained in [13]?
Can we use higher-order Fourier analysis to investigate the list-decoding radius for other
codes, most notably, the Reed-Solomon code or the lifted Reed-Muller codes [32]?

APPROX/RANDOM’16

23:10 On Higher-Order Fourier Analysis over Non-Prime Fields

Is the notion of bounded weight characterization of affine-invariant properties an artifact
of our proof or is it indeed linked to testability?

1.6 Organization
We formally define some notions like polynomials, bias, Gowers norm, and rank in Section 2.
In Section 3, we show the bias versus rank dichotomy for non-classical polynomials. In
Section 4, we show the equidistribution results for polynomials over subspaces. The next two
sections, Sections 5 and 6, describe how the new tools can be used to prove the results for
Reed-Muller list-decoding radius and algorithmic polynomial decomposition.

2 Preliminaries

Fix a prime number p > 2. Let F be the finite field of order p, and let K be a finite field
of characteristic p. Let r denote the dimension of K as a vector space over F; so, |K| = pr.
Note that r is a parameter and may not be held constant.

Let Tr : K→ F denote the trace function: Tr(x) = x+ xp + xp
2 + · · ·+ xp

r−1 for x ∈ K.
Recall that {x→ Tr(ax) : a ∈ K} is in bijection with the set of all F-linear maps from K to
F.

For every K of order r over F, fix a choice of r linearly independent field elements
α1, α2, . . . , αr ∈ K. Then, there exists a dual basis, β1, β2, . . . , βr ∈ K such that any x ∈ K
can be written as

x =
r∑
i=1

βiTr(αix) (1)

In particular, Tr(αiβj) equals 1 if i = j and 0 otherwise.
Let T denote the torus R/Z. This is an abelian group under addition. . For an integer

k > 0, let Uk := 1
pk
Z/Z. Note that Uk is a subgroup of T. Let ι : F → U1 be the

bijection ι(a) = |a|
p (mod 1). This map naturally extends to κ : K→ U1[Z1, Z2, . . . Zr] where

Z1, . . . , Zr are formal variables, by the bijection κ(x) =
∑r
i=1 ι(Tr(αix)) · Zi.

Let e : T→ C be the function e(x) = e2πix. By abuse of notation, we sometimes write
e(x) for x ∈ F to mean e(ι(x)).

2.1 Classical and Non-Classical Polynomials
We start by defining classical polynomials.

I Definition 8. (Classical polynomials over K). We say that P : Kn → K is a classical
polynomial of degree 6 d if there exist coefficients {ci1,...,in ∈ K : i1, . . . , in > 0} such that
for all x ∈ Kn:

P (x) =
∑

i1,...,in>0,
∑

j
ij6d

ci1,...,inx
i1
1 · · ·xinn

where ci1,...,in , x1, . . . , xn ∈ K.

As discussed above, there is a bijection κ : K→ T[Z1, . . . , Zr] where Z1, . . . , Zr are formal
variables. This bijection carries a classical polynomial P : Kn → K of degree 6 d to a

A. Bhattacharyya, A. Bhowmick, and C. Gupta 23:11

function of the form:

κ(P (x)) =
r∑
j=1

∑
06i1,...,in:∑

j
ij6d

(
|Tr(αj · ci1,...,in · x

i1
1 · · ·xinn)|

p
(mod 1)

)
· Zj

where ci1,...,in ∈ K. Non-classical polynomials are defined to map to T[Z1, . . . , Zr] and have
a similar representation.

I Definition 9 (Non-classical polynomials over K). We say that Q : Kn → T[Z1, . . . , Zr] is a
non-classical polynomial of degree 6 d and height 6 k if Q can be written as:

Q(x) =
r∑
j=1

γj +
k∑
`=0

∑
06i1,...,in<pr:∑
j
ij6d−`(p−1)

(
|Tr(αj · ci1,...,in,` · x

i1
1 · · ·xinn)|

p`+1 (mod 1)
) · Zj

for some ci1,...,in,` ∈ K and γj ∈ T.

Crucially, note that the coefficients ci1,...,in,` do not depend on j. Also, observe that non-
classical polynomials of height 0 correspond to classical polynomials and that if K = F, this
definition is identical to the one in [48].

In many parts of this paper, we will speak of non-classical polynomials P : Kn → T.
More precisely, this means that we identify K with Frn, and P is actually a non-classical
polynomial over F. In particular, it has the form:

P (x1, . . . , xn) = α+
k∑
`=0

∑
06di,j<p ∀i∈[n],j∈[r]:∑n

i=1

∑r

j=1
di,j6d−k(p−1)

cd1,1,...,dn,r,k

∏n
i=1
∏r
j=1 |Tr(αjxi)|di,j

p`+1 (mod 1)

where α ∈ T and cd1,1,...,dn,r ∈ {0, 1, . . . , p− 1}
A particular type of classical polynomial plays an important role in our analysis.

I Definition 10 (Classical, symmetric, multilinear (CSM) forms). We say that a polynomial
T : (Kn)d → K is in CSMd(Kn) if T (h1, . . . , hd) is of the form

T (h1, . . . , hd) =
∑

i1,...,id∈[n]

c{i1,...,id}h1,i1 · · ·hd,id

where c{i1,...,id} ∈ K and h1, . . . , hd ∈ Kn. T satisfies the following properties
1. Multilinear: Each term in T has the form above.
2. Symmetric: T is invariant with regards to permutations of h1, . . . , hd.
3. Classical: T (h1, . . . , hd) vanishes whenever at least p of the h1, . . . , hd ∈ Kn are equal.

2.2 Additive Derivatives and Weight Degree
Although polynomials are defined in the above section in terms of their global representation,
we will often be interested in local constraints obeyed by functions.

I Definition 11 (Additive derivative and Weight degree). Given a function f : Kn →
T[Z1, . . . , Zr], its additive derivative in direction h ∈ Kn is Dhf : Kn → T[Z1, . . . , Zr],
given by

Dhf(x) = f(x+ h)− f(x).

APPROX/RANDOM’16

23:12 On Higher-Order Fourier Analysis over Non-Prime Fields

A function P : Kn → T[Z1, . . . , Zr] is said to have weight degree 6 w if for all
x, h1, h2, . . . , hw+1 ∈ Kn,

Dh1Dh2 · · ·Dhw+1P (x) = 0. (2)

If f : Kn → T[Z1, . . . , Zr] and f(x) =
∑r
i=1 fi(x) · Zi, then it is clear that f has weight

degree 6 w if and only if each fi : Kn → T is a non-classical polynomial of degree 6 w (in
the sense of [48]). This is because for functions mapping from a vector space over F to T,
the notion of degree and weight degree coincide. In particular:

I Fact 12. The degree and weight degree of any non-classical polynomial P : Kn → T are
equal.

But what about the relation between degree and weight degree for functions mapping to
T[Z1, . . . , Zr]? Here, we can make two remarks.
I Remark. As mentioned above, a bound of w for the weight degree of a function f =

∑
i fi ·Zi

means that each fi is individually of (weight) degree 6 w, but it does not impose any
relationship whatsoever between the different fi’s. On the other hand, in Definition 9, the
different fi’s are all determined by the same set of coefficients in K.
I Remark. If P : Kn → T[Z1, . . . , Zr] is a non-classical polynomial, then its weight degree
is the maximum weight degree of any of its terms, where the weight degree of a term
Tr(αjci1,...,in,`x

i1
1 ···x

in
n)

p`+1 is `(p− 1) + wt(i1) + wt(i2) + · · ·+ wt(in) and wt(i) for 0 6 i < pr is
the sum of the r digits of i in its p-ary expansion. Hence, if every individual degree ik is less
than p, then the weight degree equals the degree of the polynomial. Also, clearly, the weight
degree is always at most the degree for any non-classical polynomial.

2.3 Bias and Gowers norm
I Definition 13. The bias of a function f : Kn → K is defined as
bias(P) = |Ex∈Kn e(Tr(P (x)))|.

Here, we could have used any non-trivial additive character instead of the trace, but we
choose this definition for concreteness (without any loss of generality). The Gowers norm of
a function measures the bias of its iterated derivative.

I Definition 14 (Gowers norm). Given a function P : Kn → K and an integer d > 1, the
Gowers norm of order d for P is given by

‖P‖Ud =
∣∣∣∣ E
h1,...,hd,x∈Kn

[e(Dh1 · · ·DhdTr(P (x)))]
∣∣∣∣1/2d .

Note that as ‖f‖U1 = bias(f) the Gowers norm of order 1 is only a semi-norm. However for
d > 1, it is not difficult to show that ‖·‖Ud is indeed a norm. Also, note that ‖P‖Ud > bias(P)
for any d > 1.

We can also write the Gowers norm in a slightly different way which will be convenient
for us.

I Definition 15 (Derivative polynomial). If P : Kn → K is a classical polynomial of degree
d (i.e., some term of P has total degree exactly d), then let the derivative polynomial be
DP : Knd → K defined as DP (h1, . . . , hd) = Dh1Dh2 · · ·DhdP (x), which is independent of x.

I Lemma 16. Let P : Kn → K be a classical polynomial of degree d. Then, DP ∈ CSMd(Kn),
and ‖P‖2dUd = bias(DP).

A. Bhattacharyya, A. Bhowmick, and C. Gupta 23:13

Note that if d were the weight degree instead of the degree in Lemma 16, then DP would
be multilinear in the sense that for any i ∈ [d], DP (hi + h′i, (hj)j 6=i) = DP (hi, (hj)j 6=i) +
DP (h′i, (hj)j 6=i), but individual variables could have degree more than 1 (any power of p) in
DP and so could not be in CSMd(Kn) according to Definition 10.

2.4 Rank
I Definition 17. Let P : Kn → K be a classical polynomial of weight degree w. The
K-rank of P is the smallest integer c such that there exist functions Q1, . . . , Qc : Kn →
T[Z1, . . . , Zr] of weight degree < w and a function Γ : T[Z1, . . . , Zr]c → K such that
P (x) = Γ(Q1(x), . . . , Qc(x)).

We will often restrict to the case when p and r are constant. In this case, we can
look at the collection of polynomials P = {Tr(α1P), . . . ,Tr(αrP)}. These are non-classical
polynomials of degree w from Frn to T. Then, upto a factor of r, the minimum F-rank of
any nonzero linear combination of the polynomials in P is at most the K-rank of P .

3 Inverse Theorem for Classical Polynomials

In this section, we establish the Gowers Inverse theorem for polynomial phases over growing
field sizes.

I Theorem 18. Let d, p, r, s ∈ N, and K be a field extension of F = Fp with [K : F] = r. Then,
there exists c = c18(d, s) such that the following is true. Consider any classical polynomial
P : Kn → K of degree 6 d such that ‖P‖Ud > |K|−s. Then, there exist non-classical
polynomials R1, . . . , Rc : Kn → T[Z1, . . . , Zr] of weight degrees 6 d − 1 and a function
Γ : T[Z1, . . . , Zr]c → K such that P = Γ(R1, . . . , Rc).

For context, recall Deligne’s multivariate generalization of Weil’s bound which implies that if
d = deg(P) is a constant, and bias(P) > |K|−1/2, then P must have weight degree 0. Our
theorem shows the structure of constant-degree polynomials when their bias is smaller but
still lower bounded by an inverse polynomial in K.

An immediate corollary of Theorem 18 is that:

I Corollary 19. Let d, p, r, s ∈ N, and K be a field extension of F = Fp with [K : F] = r.
Then, there exists c = c18(d, s) such that the following is true. Consider any classical
polynomial P : Kn → K of degree and weight degree d such that bias(P) > |K|−s. Then,
rank(P) 6 c18(d, s).

It is open how to remove the restriction that the degree and weight degree of P are equal.
We now go on to the proof of Theorem 18.

Proof. Let DP denote the derivative polynomial of P . By Lemma 16,

bias(Tr(DP)) > |K|−s2
d

If the weight degree of P is strictly less than d, we are already done. If not, then DP is a
nonzero polynomial. We will show that there exist non-classical polynomials Q1, . . . , Qc :
Kn → T[Z1, . . . , Zr] of weight degree < d such that for every i ∈ [r],

Tr(αiDP) = DΓi(Q1, . . . , Qc) (3)

APPROX/RANDOM’16

23:14 On Higher-Order Fourier Analysis over Non-Prime Fields

for some function Γi mapping to F. Therefore, because trace and derivative commute and
using (1):

DP = D

(
r∑
i=1

Γi(Q1, . . . , Qc) · βi

)

In other words, P and
∑r
i=1 Γi(Q1, . . . , Qc) · βi differ by a polynomial of weight degree

6 d− 1, proving the theorem.
Our proof for (3) will heavily use the structure of CSM forms. To this end, let us make a

couple of definitions and observations about operations on CSM forms.

I Definition 20 (Concatenation). Let P ∈ CSMk(Kn) and Q ∈ CSM`(Kn) for integers
k, ` > 1. Then the concatenation operator P ∗Q ∈ CSMk+`(Kn) is defined as

P ∗Q(y1, . . . , yk+`) =
∑

A⊆[k+`],|A|=k

P ((yi)i∈A)Q((yi)i∈[k+`]\A)

I Lemma 21. Given two classical polynomials P : Kn → K and Q : Kn → K, D(P ·Q) =
DP ∗DQ.

I Definition 22 (Symmetric Power). Let d > 2 and P ∈ CSMd(Kn), then for m > 1, the
symmetric power Symm(P) ∈ CSMmd(Kn) is defined as

Symm(P)(h1, . . . , hmd) =
∑
A

∏
A∈A

P ((hi)i∈A)

where the sum is over all possible partitions A of {1, . . . ,md} into m-equal sized subsets.

I Remark. Note that d > 2 in the definition of symmetric power. If d = 1, then the symmetric
power need not satisfy the third condition in Definition 10 and hence may not be CSM.
I Remark. Below, we’ll apply the symmetric power operation to the trace of a CSMd(Kn)
form, rather than to the form directly. However, note that the trace of a CSM is also classical,
symmetric and multilinear, though now mapping to F.

Now, we continue with the main thread of our proof. Our first step shows the structure
of high-bias CSM forms.

I Theorem 23 (Analog of Theorem 6.6 in [48]). Suppose d > 2 and s > 1. Let T ∈ CSMd(Kn)
such that bias(T (h1, . . . , hd)) > |K|−s. Then, there exists a subspace V ⊆ Kn of codimension
6 r23(d, s) such that restricted to V d, Tr(T) is a linear combination over F of at most
t23(d, s) expressions of the form:

Symm1(Tr(S1)) ∗ · · · ∗ Symmk(Tr(Sk))

for some m1, . . . ,mk > 1 and 2 6 d1, . . . , dk < d where Sj ∈ CSMdj (V ′) for j ∈ [k] with
m1d1 + · · ·+mkdk = d.

Proof. Our proof is very close to the one by Tao and Ziegler [48]. Where they use the lemma
by Bogdanov and Viola [16] to approximate a biased polynomial by its derivatives, we use
the newer version of this result by Bhowmick and Lovett [13] that gives bounds independent
of field size. By Lemma 3.1 of [13], for any t > 1, we obtain Q1, . . . , Qc : Knd → K and
Γ : Fc → F where c = cBL(d, s, t) such that:

Prx∈Kn [Tr(T (x)) 6= Γ(Tr(Q1(x), . . . ,Tr(Qc(x))))] 6 |K|−t .

A. Bhattacharyya, A. Bhowmick, and C. Gupta 23:15

Each Qi here is an additive derivative of T . However, we want an exact representation
of Tr(T) in terms of lower degree polynomials. Kaufmann and Lovett [37] showed that if
t is large enough in terms of d, and if Tr(Q1), . . . ,Tr(Qc) form a strongly regular factor
in the sense of [37], then in fact, Tr(T) is exactly a function of Tr(Q1), . . . ,Tr(Qc). We
use the regularization procedure in [12] (Lemma 5.2), which iteratively replaces one of the
polynomials in the current collection Tr(Q1), . . . ,Tr(Qc) with an additive derivative of one
of the polynomials in a chosen direction. We do not repeat the definitions and proofs of
these results as they closely follow previous work. We also note that we can always write
any derivative of a trace of a CSM form in terms of traces of other CSM forms. This follows
from the below claim as trace is linear:

I Claim 24. Let s > 0 be an integer, L ∈ CSMs(Kn), and a ∈ (Kn)s. Then the additive
derivative of L in direction a, DaL, can be written as a linear combination of 2s−1 polynomials
(QS)S⊂[s],S 6=∅, where QS ∈ CSMs−|S|(Kn) and cS > 1.

Proof. We can write

DaL(h1, . . . , hs) = L(h1 + a1, . . . , hs + as)− L(h1, . . . , hs) =
∑
S⊂[s]
S 6=∅

L((hi)i/∈S , (ai)i∈S)

where the second equality follows from multilinearity of T . Now letting
QS := L((hi)i/∈S , (1n)s−|S|) we have that QS ∈ CSMs−|S|(Kn). J

The decomposition into concatenation of symmetric powers follows exactly as in [48]. J

Therefore, applying Theorem 23 with T = DP , we get that for a bounded index subspace
V , Tr(DP) restricted to V d is a linear combination of a bounded number of expressions of
the form:

Symm1(Tr(S1)) ∗ · · · ∗ Symmk(Tr(Sk)) .

We next note that since DP ∈ CSMd(Kn), Tr(αiDP)(h1, h2, . . . , hd) =
Tr(DP)(αih1, h2, . . . , hd). Also, because S1, . . . , Sk are each CSM, Sj(αih1, h2, . . . , hd)
equals αiSj(h1, h2, . . . , hd) if Sj depends on h1 and equals Sj(h1, h2, . . . , hd) otherwise.
Hence, for every i ∈ [r], we get that restricted to the subspace V , Tr(αiDP) is a linear
combination of a bounded number of “monomials" of the form:

Symm1(Tr(γi,1S1)) ∗ · · · ∗ Symmk(Tr(γi,kSk)) (4)

where γi,1, . . . , γi,k ∈ K. Crucially, S1, . . . , Sk in all of the above “monomials" are independent
of αi.

Consider any one “monomial" of the form in (4), and we show that there exist non-classical
polynomials Q1, . . . , Qc : Kn → T[Z1, . . . , Zr] of weight degrees < d such that

Symm1(Tr(γi,1S1)) ∗ · · · ∗ Symmk(Tr(γi,kSk)) = D∆i(Q1, . . . , Qk) (5)

for some function ∆i : T[Z1, . . . , Zr]c → F. Restricted to V d, our desired form (3) then
follows from linearity.

We first show a converse to Lemma 16 which resolves the situation when mj = 1.

I Lemma 25. For positive integer d, suppose S ∈ CSMd(Kn). Then there is a degree-d
classical polynomial Q : Kn → K such that DQ = S.

APPROX/RANDOM’16

23:16 On Higher-Order Fourier Analysis over Non-Prime Fields

Proof. Tao and Ziegler (Lemma 4.5, [48]) show the same result for CSM forms over Fn, and
their proof works without any change. J

The next lemma shows that we can integrate symmetric powers of traces of CSM’s in
terms of non-classical polynomials.

I Lemma 26. Let d > 2 and m > 1, γ1, . . . , γr ∈ K, and let S ∈ CSMd(Kn). Then, there
exists a classical polynomial W : Kn → K of weight degree 6 md such that DTr(αiW) =
Symm(Tr(γiS)) for all i ∈ [r]. Moreover, if m > 2, then W is a function of a non-classical
polynomial of degree < md.

We defer the proof of Lemma 26 to Section 3.1 but we first explain how to complete the
proof of Theorem 18. Applying Lemma 26 on each term in the concatenation product in (5),
we get for all j ∈ [k], classical polynomials Wj : Kn → K of weight degree 6 mjdj such that
DTr(αiWj) = Symmj (Tr(γi,jSj)), so that the expression in (4) is the derivative polynomial
of U =

∏k
j=1 Tr(αiWj) by Lemma 21. Note that if k > 1, then U is already a function of

more than one classical polynomial of weight degree < d. Otherwise, if k = 1, then m1 > 2
(as d > 2 and d1 < d), and so, U is a function of the non-classical polynomial of degree (and
hence, weight degree) < d determining W1 that is guaranteed to exist by Lemma 26.

We have proved Theorem 18 when all the variables are drawn from V , a subspace of
Kn of co-dimension t 6 t23. We have shown that we have a degree-d classical polynomial S
measurable in non-classical polynomials {R̃1, . . . , R̃C} of weight degrees 6 d− 1 such that
DP = DS on the bounded index subspace V . We can extend the last statement to the
subspace Kn by using a simple derivative trick. Suppose h′1, · · · , h′t are representatives of
the quotient group Kn/V . Thus for any x ∈ Kn, we can have a i ∈ [K] such that x− h′i ∈ V .
We can write

S(x) = S(x− h′i)−D−h′iS(x)

for x and note that deg(D−h′
i
S) < d. This implies that over Kn, S is measurable in

{D−h′1S, . . . ,D−h′tS, R̃1, . . . , R̃C : Kn → T[Z1, . . . , Zc]} and DP = DS. Now, by letting
Q = S and P ′ = P − S, then DP ′ = 0, meaning that weighted degree of P ′ is less than d,
which concludes the proof. J

I Remark. It is worth noticing that in fact, the proof shows that for every i ∈ [r], Tr(αiP)
also has F-rank bounded by c18(d, s), provided that P has degree and weight degree d.

3.1 Proof of Lemma 26
Proof. Our proof follows the outline of the proof of Lemma 6.4 in [48] but with some
modifications.

Apply Lemma 25 to get that there is a classical polynomial R : Kn → K of degree d
such that DR = S. Let M > 0 be an integer such that pM 6 m < pM+1. There exists
a degree-(d+M(p− 1)) polynomial R̃M : Kn → T[Z1, . . . , Zr] such that pM · R̃M = κ(R).
And then we pull down the polynomial R̃M to the cyclic group (Z/pM+1Z)r and we obtain
a degree-(d+M(p− 1)) polynomial RM : Kn →

(
Z/pM+1Z

)r such that RM = R (mod p).
Define δi,j = |Tr(γiαj)| where i, j ∈ [r], and thus γi =

∑
j δi,jβj . Let

W =
r∑
i=1

(
r∑
j=1

δi,j(RM)j
m

)
(mod p)

 · βi

A. Bhattacharyya, A. Bhowmick, and C. Gupta 23:17

where (RM)j denotes the jth component of RM . Define

Wαi = Tr(αiW) =
(r∑
j=1

δi,j(RM)j
m

)
(mod p)

We claim that
1. deg(Wαi) 6 md.
2. DWαi = Symm(γi,jDR).
Parts 1 and 2 together imply that the weight degree of (W) is at most md. Fix any i ∈ [r]
and define S =

∑r
j=1 δi,j(RM)j . The last part of the theorem follows from the fact that

d+M(p− 1) < md when m > 1 and that Q can be expressed as a function of R̃M which is
of degree d+M(p− 1). Part 1 will be a special case of the following claim, that is, when
j = 0 and m′ = m.

I Lemma 27. Let j > 0 and m′ 6 m be some parameters. Then

deg
((

Dh1 · · ·DhjS

m′

)
(mod p)

)
6 d− j + (m′ − 1) ·max(d− j, 1).

Proof. We break the claim into two cases:

Case i. (d− j+ (m′ − 1)·max(d− j, 1) < 0): In particular, this implies that m′ < j−d.
We need to show that

(Dh1 ···DhjS
m′

)
is divisible by p. Since deg(S) = d + M(p − 1) then

deg(Dh1 · · ·DhjS) 6 d− j +M(p− 1) for any h1, . . . , hj ∈ Kn. And, it is divisible by pa+1

whenever 0 6 a 6M and d− j + a(p− 1) < 0. In particular, if we choose a = bm
′−1
p−1 c, then

Dh1 · · ·DhjS is divisible by pb
m′−1
p−1 c+1. Observe that

(
n
m

)
(mod p) is divisible by p if n is

divisible by pa and m < pa. Since m′ < pb
m′−1
p−1 c+1 = pa+1, we obtain our claim.

Case ii. (d− j+(m′ −1)·max(d− j, 1) > 0): We will prove this by downward induction
on j. The claim is already true for sufficiently large values of j, so we assume inductively
that the claim is proven for all larger values of j; and for fixed j, we assume inductively that
the claim is proven for all smaller m′. It suffices to show that the expression

deg
(
Dhj+1

(
Dh1 · · ·DhjS

m′

)
(mod p)

)
6 (d− j + (m′ − 1) ·max(d− j, 1)− 1

holds ∀hj+1 ∈ Kn. We will use the combinatorial identity
(
r+s
m

)
=

m∑
i=0

(
r
i

)(
s

m−i
)
and then we

see that

Dh

(
F

m

)
=

m∑
i=1

(
DhF

i

)(
F

m− i

)
for h ∈ Kn and F : Kn → Z/pM+1Z. We can therefore write

Dhj+1

(
Dh1 · · ·DhjS

m′

)
=

m′∑
i=1

(
Dh1 · · ·Dhj+1S

i

)(
Dh1 · · ·DhjS

m′ − i

)
where the both sides of the above equality is over mod p. Now for each summand, we apply
the two induction hypothesis and conclude that the degree of the first factor in the right-hand
side is 6 d− (j + 1) + (i− 1)max(d− (j + 1), 1) and the degree of the second factor in the

APPROX/RANDOM’16

23:18 On Higher-Order Fourier Analysis over Non-Prime Fields

right-hand side is 6 d− j + (m′ − i− 1)max(d− j, 1) and thus the degree of the right-hand
side is atmost

(d− (j + 1) + (i− 1) max(d− (j + 1), 1)) + (d− j + (m′ − i− 1) max(d− j, 1))
6 d− j + (m′ − 1) max(d− j, 1)− 1

whenever i > 1 (by handling the cases d− j > 1 and d− j 6 1 separately), and this concludes
the claim that deg(Wαi) 6 md. J

Now we prove the part 2. We know that

Dh

(
S

m

)
=

m∑
i=1

(
DhS

i

)(
S

m− i

)
for any h ∈ Kn. By the above computations, the polynomial

(
DhS
i

)(
S

m−i
)
has degree

6 d− 1 + (i− 1)(d− 1) + d+ (m− i− 1)d = md− i.

In particular, all the terms of i > 1 have degree < mk − 1 and thus will not contribute to
D
(
S
m

)
. The i = 1 term can be simplified as DhTr(γiR)

(
S

m−1
)
by using the equality

Tr(γi ·R) = Tr
(
(

r∑
i=1

δi,jβi) · (
r∑
j=1

(R)jαj)
)

=
r∑
j=1

δi,j · (R)j

We conclude that

DWαi(h1, . . . , hmd) = D
(
Dhmd

(
S

m

))
(h1, . . . , hmd−1)

= D
((
DhmdTr(γiR)

)
·
(

S

m− 1

))
(h1, . . . , hmd−1)

=
(
D
(
DhmdTr(γiR)

)
∗D
(

S

m− 1

))
(h1, . . . , hmd−1)

=
∑

16i1<···<id−1<md

D
(
DhmdTr(γiR)

)
(hi1 , . . . , hid−1 , hmd) ·D

(
S

m− 1

)
(hj1 , . . . , hjmd−d)

where 1 6 j1 < · · · < jmd−d < md are such that {j1, . . . , jmd−d} = {1, . . . ,md − 1} \
{i1, . . . , id−1} and by Lemma 21, we have the second equality. Now, by induction on m, we
have our claim 2. J

4 Equidistribution of regular factors

Our results in this section imply that a high rank collection of polynomials is “as random as
possible”, subject to the degree and depth bounds of its defining polynomials. We first make
some necessary definitions.

4.1 Definitions
A linear form on k variables is a vector L = (w1, w2, . . . , wk) ∈ Kk that is interpreted as a
function from (Kn)k to Kn via the map (x1, . . . , xk) 7→ w1x1 + w2x2 + · · ·+ wkxk. A linear
form L = (w1, w2, . . . , wk) is said to be affine if w1 = 1. From now, linear forms will always
be assumed to be affine. We define wt of a linear form L = (w1, . . . , wk) to be

∑k
i=2 wt(wi).

We specify a partial order � among affine forms. We say (w1, . . . , wk) � (w′1, . . . , w′k) if
|Tr(αjwi)| 6 |Tr(αjw′i)| for all i ∈ [k], j ∈ [r].

A. Bhattacharyya, A. Bhowmick, and C. Gupta 23:19

I Definition 28 (Affine constraints). An affine constraint of size m on k variables is a tuple
A = (L1, . . . , Lm) ofm affine forms L1, . . . , Lm over F on k variables, where: L1(x1, . . . , xk) =
x1. Moreover, it is said to be weight-closed if for any affine form L belonging to A, if L′ � L,
then L′ also belongs to A.

Observe that a weight-closed affine constraint is of bounded size if and only if all its affine
forms are of bounded weight.

Next, we define polynomial factors which play a big role in higher-order Fourier anal-
ysis. Here, we restrict ourselves to non-classical polynomials mapping to T (instead of
T[Z1, . . . , Zr]), essentially because throughout we mainly care about the case of constant r.

I Definition 29 (Factor). A polynomial factor B is a sequence of non-classical polynomials
P1, . . . , PC : Kn → T. We also identify it with the function B : Kn → TC mapping x to
(P1(x), . . . , PC(x)). An atom of B is a preimage B−1(y) for some y ∈ TC . When there is no
ambiguity, we will in fact abuse notation and identify an atom of B with the common value
B(x) of all x in the atom.

The partition induced by B is the partition of Kn given by
{
B−1(y) : y ∈ TC

}
. The

complexity of B, denoted |B|, is the number of defining polynomials C. The order of B,
denoted ‖B‖, is the total number of atoms in B. The degree of B is the maximum degree
among its defining polynomials P1, . . . , PC .

Note that due to Definition 9, if B is defined by polynomials P1, . . . , PC ,

‖B‖ =
C∏
i=1

pdepth(Pi)+1 .

From henceforth, since we will work only with non-classical polynomials P : Kn → T,
rank will denote their F-rank.

I Definition 30 (Rank and Regularity of Polynomial Factor). Let B be a polynomial factor
defined by the sequence P1, . . . , Pc : Kn → T with respective depths k1, . . . , kc. Then, the
rank of B is min(a1,...,ac) rank(

∑c
i=1 aiPi) where the minimum is over (a1, . . . , ac) ∈ Zc such

that (a1 mod pk1+1, . . . , ac mod pkc+1) 6= (0, . . . , 0) .
Given a polynomial factor B and a non decreasing function r : Z+ → Z+, B is r-regular

if B is of rank at least r(|B|).

I Definition 31 (Semantic and Syntactic refinement). Let B and B′ be polynomial factors.
A factor B′ is a syntactic refinement of B, denoted by B′ �syn B if the set of polynomials
defining B is a subset of the set of polynomials defining B′. It is a semantic refinement,
denoted by B′ �sem B if for every x, y ∈ Kn, B′(x) = B′(y) implies B(x) = B(y). Clearly, a
syntactic refinement is also a semantic refinement.

Our next lemma is the workhorse that allows us to convert any factor into a regular one.

I Lemma 32 (Polynomial Regularity Lemma). Let r : Z+ → Z+ be a non-decreasing function
and d > 0 be an integer. Then, there is a function C(r,d)

32 : Z+ → Z+ such that the following is
true. Suppose B is a factor defined by polynomials P1, . . . , PC : Kn → T of additive degree at
most d. Then, there is an r-regular factor B′ consisting of polynomials Q1, . . . , QC′ : Kn → T
of additive degree 6 d such that B′ �sem B and C ′ 6 C

(r,d)
32 (C).

Moreover, if B is itself a refinement of some polynomial factor B̂ that has rank >

(r(C ′) + C ′), then additionally B′ will be a syntactic refinement of B̂.

Proof. Follows directly from Lemma 2.18 of [9] by identifying Kn with Frn. J

APPROX/RANDOM’16

23:20 On Higher-Order Fourier Analysis over Non-Prime Fields

In fact, the regularization process of Lemma 32 can be implemented in time O(nd+1) [12].
Finally, we’ll use the Gowers inverse theorem proved by Tao and Ziegler [48] for non-

classical polynomials mapping to T.

I Theorem 33 (Theorem 1.20 of [48]). Suppose δ > 0 and d > 1 is an integer. There exists
an r = r33(δ, d) such that the following holds. If a non-classical polynomial P : Kn → T with
degree d satisfies ‖P‖Ud > δ, then rank(P) 6 r.

4.2 Equidistribution results
Let us start with the following simple observation.

I Lemma 34. Given ε > 0, let B be a polynomial factor of degree d > 0, complexity C and
rank r34(d, ε), defined by a sequence of non-classical polynomials P1, . . . , PC : Kn → T having
respective depths k1, . . . , kC . Suppose α = (α1, . . . , αC) ∈ Uk1+1 × · · · × UkC+1. Then:

Prx[B(x) = α] = 1
‖B‖

± ε.

Proof. This is standard. See for example lemma 3.2 of [9]. J

In our applications though, we will often need not just B(x) to be nearly uniformly
distributed but the tuple (B(x) : x ∈ H) for a set H ⊆ Kn to be nearly uniformly distributed.
In particular, we consider the case when H is an affine subspace of Kn. The following lemma
is key.

I Lemma 35 (Near orthogonality). Let A = (L1, . . . , Lm) be a weight-closed affine constraint
of bounded size on ` variables. Suppose B is a polynomial factor of degree d and rank
> r(33)(d, δ), defined by the sequence of non-classical polynomials P1, . . . , Pc : Kn → T. Let
Λ = (λij)i∈[c],j∈[m] be a tuple of integers. Define:

PΛ(x1, . . . , xk) =
∑

i∈[c],j∈[m]

λijPi(Lj(x1, . . . , x`)).

Then one of the following is true.
1. For every i ∈ [c], it holds that

∑
j∈[m] λijQi(Lj(·)) ≡ 0 for all polynomials Qi : Kn → T

with the same degree and depth as Pi. Clearly, this implies PΛ ≡ 0.
2. PΛ 6≡ 0. Moreover, bias(PΛ) 6 δ.

Proof. For j ∈ [m], let (wj,1, . . . , wj,`) ∈ K` denote the affine form given by Lj . Note that
wj,1 = 1.

For each i, we do the following. If for some j, we have wt(Lj) > deg(λi,jPi), λi,j 6= 0,
then, Lj(x1, . . . , x`) = x1 +

∑`
i=2 (

∑r
k=1 ui,k · βk)xi where β is the dual basis to α, each

ui,k ∈ [0, p− 1] and
∑
i,k ui,k > deg(λi,jPi). Using Definition 2, we can replace λi,jPi(Lj) by

a Z-linear combination of Pi(Lj′) where Lj′ � Lj until no such j exists. This is where we use
the fact that the affine constraint is weight-closed. Suppose the new coefficients are denoted by
(λ′i,j). If the λ′i,j are all zero, then for every i ∈ [c] individually,

∑
j∈[m] Pi(Lj(x1, . . . , x`)) ≡ 0.

Indeed,
∑
j∈[m]Qi(Lj(x1, . . . , x`)) ≡ 0 for any Qi with the same degree and depth, as the

transformation from λi,j to λ′i,j did not use any other information about Pi.
Else some λ′i,j 6= 0. Also, wtα(Lj) 6 deg(λ′i,jPi). Then we show the second part of the

lemma, that is |E[e(PΛ(x1, . . . , xk)]| 6 δ.
Suppose without loss of generality that the following is true.

A. Bhattacharyya, A. Bhowmick, and C. Gupta 23:21

λ′i,1 6= 0 for some i ∈ [C].
L1 is maximal in the sense that for every j 6= 1, either λ′i,j = 0 for all i ∈ [C] or
wtα(wj,s) < wtα(w1,s) for some s ∈ [`].

For a = (a1, . . . , a`) ∈ K` and y ∈ Kn and P : Kn → T, define

Da,yP (x1, . . . , x`) = P (x1 + a1y, . . . , x` + a`y)− P (x1, . . . , x`).

Then

Da,y(Pi ◦ Lj)(x1, . . . , x`) = (DLj(a)yPi)(Lj(x1, . . . , x`)).

Let ∆ = wtα(L1) 6 d. Define a1, . . . , a∆ be the set of vectors of the form
(−w, 0, . . . , 1, 0, . . . , 0) where 1 is in the ith coordinate for i ∈ [2, `] and for all w ∈ K
satisfying 0 6 wtα(w) < wtα(w1,i). Note that 〈L1, ak〉 6= 0 for k ∈ [∆] but for any j > 1
there exists some k ∈ [∆] such that 〈Lj , ak〉 = 0. Thus,

E
y1,...,y∆,x1,...,x`

[
e
(
(Da∆,y∆ . . . Da1.y1PΛ)(x1, . . . , x`)

)]
=

∥∥∥∥∥
C∑
i=1

λ′i,1Pi

∥∥∥∥∥
2∆

U∆

.

The rest of the analysis is same as Theorem 3.3 in [9] and we skip it here. J

We can now use Lemma 35 to prove our result on equidistribution of regular factors over
affine subspaces of Kn.

I Theorem 36. Let ε > 0. Let B be a polynomial factor defined by non-classical polynomials
P1, . . . , Pc : Kn → T with respective degrees d1, . . . , dc ∈ Z+ and depths k1, . . . , kc ∈ Z>0.
Suppose B has rank at least r(33)(d, ε) where d = max(d1, . . . , dc). Let A = (L1, . . . , Lm)
be a weight-closed affine constraint. For every i ∈ [c], define Λi to be the set of tuples
(λ1, . . . , λm) ∈ [0, pki+1− 1] such that

∑m
j=1 λjQi(Lj(·)) ≡ 0 for all non-classical polynomials

Qi with the same degree and depth as Pi.
Consider (αi,j : i ∈ [c], j ∈ [m]) ∈ Tcm such that for every i ∈ [c] and for every

(λ1, . . . , λm) ∈ Λi,
∑m
j=1 λjαi,j = 0. Then:

Prx1,...,x`∈Kn [B(Lj(x1, . . . , x`)) = (α1,j , . . . , αc,j) ∀j ∈ [m]] =
∏c
i=1 |Λi|
‖B‖m

± ε

Proof.

Prx1,...,x`∈Kn [B(Lj(x1, . . . , x`)) = (α1,j , . . . , αc,j) ∀j ∈ [m]]

= E
x1,...,x`

∏
i,j

1
pki+1

pki+1−1∑
λi,j=0

e(λi,j(Pi(Lj(x1, . . . , x`))− αi,j))

=
(∏

i

p−(ki+1)

)m ∑
(λi,j)

∈
∏

i,j
[0,pki+1−1]

e

−∑
i,j

λi,jαi,j

E

e
∑

i,j

λi,jPi(Lj(x1, . . . , x`))

= p−m
∑c

i=1
(ki+1) ·

(
c∏
i=1
|Λi| ± εpm

∑c

i=1
(ki+1)

)
The last line is due to the observation that from Lemma 35,∑c

i=1
∑m
j=1 λi,jPi(Lj(x1, . . . , x`)) ≡ 0 if and only if for every i ∈ [c], (λi,1, . . . , λi,m) ∈ Λi

(mod pki+1). So,
∑
i,j λi,jPi(Lj(·)) is identically 0 for

∏
i |Λi| many tuples (λi,j) and for

those tupes,
∑
i,j λi,jαi,j = 0 also. J

APPROX/RANDOM’16

23:22 On Higher-Order Fourier Analysis over Non-Prime Fields

Note that in Theorem 36, if ε is a constant, m needs to be bounded for the claim to be
non-trivial, which in turn requires that the affine forms in L be of bounded weight.

4.3 Preservation of Locally Characterized Properties
4.3.1 Local Characterization
As described in the introduction, by a locally characterized property, we informally mean a
property for which non-membership can be certified by a finite sized witness. Specifically for
affine-invariant properties, we define:

I Definition 37 (Locally characterized properties).
An induced affine constraint of size m on ` variables is a pair (A, σ) where A is an affine
constraint of size m on ` variables and σ ∈ [R]m.
Given such an induced affine constraint (A, σ), a function f : Kn → [R] is said to be (A, σ)-
free if there exist no x1, . . . , x` ∈ Kn such that (f(L1(x1, . . . , x`)), . . . , f(Lm(x1, . . . , x`))) =
σ. On the other hand, if such x1, . . . , x` exist, we say that f induces (A, σ) at x1, . . . , x`.
Given a (possibly infinite) collection A = {(A1, σ1), (A2, σ2), . . . , (Ai, σi), . . . } of induced
affine constraints, a function f : Kn → [R] is said to be A-free if it is (Ai, σi)-free for
every i > 1. The size of A is the size of the largest induced affine constraint in A.
Additionally, A = {(A1, σ1), (A2, σ2), . . . , (AK , σK)} is a W -light affine system if there
exists a basis α = (α1, . . . , αr) such that wtα(Ai) 6W for all i ∈ [K].
A property P ⊆ {Kn → [R]} is said to be K,W -lightly locally characterized if it is
equivalent to A-freeness for some W -light affine system A whose size is 6 K.

We recall that Kaufman and Ron [38] show that:

I Theorem 38 ([38]). The property Pd = {P : Kn → K : deg(P) 6 d} is qd(d+1)/(q−q/p)e,

pr d(d+ 1)/(q − q/p)e-lightly locally characterized.

4.3.2 Main Result on Property Preservation
I Theorem 39. Let P ⊂ {Kn → K} be a K,W -lightly locally characterized property. For
an integer d, suppose P1, . . . , Pc : Kn → T are polynomials of additive degree 6 d, forming a
factor of rank > r39(d,K), and Γ : Tc → K is a function such that F : Kn → K defined by
F (x) = Γ(P1(x), . . . , Pc(x)) satisfies P.

For every collection of additive polynomials Q1, . . . , Qc : Kn → T with deg(Qi) 6
deg(Pi) and depth(Qi) 6 depth(Pi) for all i ∈ [c], if G : Kn → K is defined by G(x) =
Γ(Q1(x), . . . , Qc(x)), then G ∈ P too.

Proof. For the sake of contradiction, suppose G /∈ P. Then, for a weight-closed affine con-
straint consisting of K ′ linear forms L1, . . . , LK′ , there exist x1, . . . , x` such that
(G(L1(x1, . . . , x`)), . . . , G(LK′(x1, . . . , x`))) which form a witness to G 6∈ P . Note thatK ′ is a
function of only K andW because the affine forms characterizing P can be made weight 6W

by a choice of basis for K over F and then completed into a weight-closed constraint. So, there
exists x1, . . . , x` ∈ Kn such that the tuple B = (Qi(Lj(x1, . . . , x`)) : j ∈ [K ′], i ∈ [c]) ∈ TcK′

is a proof of the fact that G 6∈ P.
Now we argue that there exist x′1, . . . , x′` such that (Pi(Lj(x′1, . . . , x′`)) : i ∈ [c], j ∈ [K])

equals B, thus showing that F 6∈ P , a contradiction. Notice that B satisfies the conditions
required of α in Theorem 36. So by Theorem 36,

Prx′1,...,x′` [(Pi(Lj(x′1, . . . , x′`) : i ∈ [c], j ∈ [K]) = B] > 0

A. Bhattacharyya, A. Bhowmick, and C. Gupta 23:23

if the rank of the factor formed by P1, . . . , Pc is more than r(33)
(
d, 1

2‖B‖K

)
, where ‖B‖ =

p
∑c

i=1
(depth(Pi)+1). J

In our applications, we will use Theorem 39 for the property of having bounded degree,
which is lightly locally characterized by Theorem 38.

5 List decoding of RM codes

We state the following corollary which we need in the proof to follow. We only state a special
case of it which is enough.

I Corollary 40 (Corollary 3.3 of [14]). Let g : K → K, ε > 0. Then there exist c 6 1/ε2

functions h1, h2, . . . , hc ∈ RMK(n, d) such that for every f ∈ RMK(n, d), there is a function
Γf : Kc → K such that

Prx[Γf (h1(x), . . . , hc(x)) = f(x)] > Prx[g(x) = f(x)]− ε.

I Theorem 2 (restated). Let K = Fq be an arbitrary finite field. Let ε > 0 and d, n ∈ N.
Then,

`K(d, n, δK(d)− ε) 6 cq,d,ε.

Proof. We follow the proof structure in [14]. Let g : Kn → K be a received word. Apply
Corollary 40 with approximation parameter ε/2 gives H0 = {h1, . . . , hc} ⊆ RMK(n, d),
c 6 4/ε2 such that, for every f ∈ RMK(n, d), there is a function Γf : Kc → K satisfying

Pr[Γf (h1(x), h2(x), . . . , hc(x)) = f(x)] > Pr[g(x) = f(x)]− ε/2.

B

Pr[Γ′f (Tr(αihj(x)) : 1 6 i 6 r, 1 6 j 6 c) = F (Tr(αif(x)) : 1 6 i 6 r)] > d/q + ε/2,

where Γ′f : F → K and F : Fr → K. From here onwards, we identify F with U1. Let
H = {Tr(αihj(x)) : 1 6 i 6 r, 1 6 j 6 c} and HF = {Tr(αif(x)) : 1 6 i 6 r)}.

Let r1, r2 : N→ N be two non decreasing functions to be specified later, and let C(32)
r,d be

as given in Lemma 32. We will require that for all m > 1,

r1(m) > r2(C(32)
r2,d

(m+ 1)) + C
(32)
r2,d

(m+ 1) + 1. (6)

As a first step, we r1-regularize H by Lemma 32. This gives an r1-regular factor B′
of degree at most d, defined by polynomials H1, . . . ,Hc : Kn → T, c′ 6 C

(32)
r1,d

(cr) and
rank(B′) > r1(c′). We denote H′ = {H1, . . . ,Hc′}. Let depth(Hi) = ki for i ∈ [c′]. Let
Gf : ⊗c′i=1Uki+1 → U1 be defined such that

Γf (h1(x), . . . , hc(x)) = Gf (h′1(x), . . . , h′c′(x)).

Next, given any polynomial f : Kn → K of degree at most d, we will show that if
Pr[f(x) 6= g(x)] 6 δ(d)− ε, then f is measurable with respect to H′ and this would upper
bound the number of such polynomials by c′(q, d, ε) independent on n.

Fix such a polynomial f . Call Fi = Tr(αif). Appealing again to Lemma 32, we r2-
regularize Bf := B′

⋃
HF . We get an r2-regular factor B′′ �syn B′ defined by the collection

APPROX/RANDOM’16

23:24 On Higher-Order Fourier Analysis over Non-Prime Fields

H′′ = {H1, . . . ,Hc′ , H
′
1, . . . ,H

′
c′′}. Note that it is a syntactic refinement of B′ as by our

choice of r1,

rank(B′) > r1(c′) > r2(C(32)
r2,d

(c′ + 1)) + C
(32)
r2,d

(c′ + 1) + 1 > r2(|B′′|) + |B′′|+ 1.

We will choose r2 such that for all m > 1,

r2(m) = max

r(34)
d

 ε/4(
pb

d−1
p−1 c+1

)m
 , r

(39)
d (m)

 . (7)

Since each Fi is measurable with respect to B′′, there exists F ′ : S → U1 such that

f(x) = F ′(H1(x), . . . ,Hc′(x), H ′1(x), . . . ,H ′c′′(x)).

Summing up, we have

Pr[G(H1(x), H2(x), . . . ,Hc′(x)) = F ′(H1(x), . . . ,Hc′(x), H ′1(x), . . . ,H ′c′′(x))] > d/q+ε/2.

We next show that we can have each polynomial in the factor have a disjoint set of inputs.
This would simplify the analysis considerably.

I Claim 41. Let xi, yj , i ∈ [c′], j ∈ [c′′] be pairwise disjoint sets of n ∈ N variables each. Let
n′ = n(c′ + c′′). Let f̃ : Kn′ → K and g̃ : Kn′ → K be defined as

f̃(x) = F (H1(x1), . . . ,Hc′(xc
′
), H ′1(y1), . . . ,H ′c′′(yc

′′
))

and

g̃(x) = G(H ′1(x1), . . . ,Hc′(xc
′
)).

Then deg(f̃) 6 d and∣∣Prx∈Fn′ [f̃(x) = g̃(x)]−Prx∈Fn [f(x) = Gf (h′1(x), h′2(x), . . . , h′c(x))]
∣∣ 6 ε/4.

Proof. The bound deg(f̃) 6 deg(f) 6 d follows from Lemma 39. To establish the bound on
Pr[f̃ = g̃], for each s ∈ S let

p1(s) = Prx∈Fn [(h′1(x), . . . , h′c′(x), h′′1(x), . . . , h′′c′′(x)) = s].

Applying Lemma 34 and since our choice of r2 satisfies rank(H′′) > r
(34)
d (ε/4|S|), we have

that p1 is nearly uniform over S,

p1(s) = 1± ε/4
|S|

.

Similarly, let

p2(s) = Prx1,...,xc′ ,y1,...,yc′′∈Fn [(h′1(x1), . . . , h′c′(xc
′
), h′′1(y1), . . . , h′′c′′(yc

′′
)) = s].

Note that the rank of the collection of polynomials {h′1(x1), . . . , h′c′(xc
′), h′′1(y1), . . . , h′′c′′(yc

′′)}
defined over Fn′ cannot be lower than that of H′′. Applying Lemma 34 again gives

p2(s) = 1± ε/4
|S|

.

A. Bhattacharyya, A. Bhowmick, and C. Gupta 23:25

For s ∈ S, let s′ ∈ ⊗c′i=1Uki+1 be the restriction of s to first c′ coordinates, that is,
s′ = (s1, . . . , sc′). Thus

Prx∈Fn′ [f̃(x) = g̃(x)] =
∑
s∈S

p2(s)1F (s)=Gf (s′)

=
∑
s∈S

p1(s)1F (s)=Gf (s′) ± ε/4

= Prx∈Fn [f(x) = Gf (h′1(x), h′2(x), . . . , h′c(x))]± ε/4.

J

So, we obtain that

Prx∈Fn′ [f̃(x) = g̃(x)] > Prx∈Fn [f(x) = Gf (h′1(x), . . . , h′c′(x))]− ε/4 > 1− δ(d) + ε/4.

Next, we need the following variant of the Schwartz-Zippel lemma from [14].

I Claim 42. Let d, n1, n2 ∈ N. Let f1 : Kn1+n2 → K and f2 : Kn1 → K be such that
deg(f1) 6 d and

Pr[f1(x1, . . . , xn1+n2) = f2(x1, . . . , xn1)] > 1− δ(d)

Then, f1 does not depend on xn1+1, . . . , xn1+n2 .

With Claim 42 applied to f1 = f̃ , f2 = g̃, n1 = nc′, n2 = nc′′. We obtain that f̃ does not
depend on y1, . . . , yc

′′ . Hence,

f̃(x1, . . . , xc
′
, y1, . . . , yc

′′
) = F (H ′1(x1), . . . ,H ′c′(xc

′
), C1, . . . , Cc′′)

where Cj = H ′′j (0) for j ∈ [c′′]. If we substitute x1 = . . . = xc
′ = x we get that

f(x) = F (H ′1(x), . . . ,H ′c′(x), H ′′1 (x), . . . ,H ′′c′′(x)) = F (H ′1(x), . . . ,H ′c′(x), C1, . . . , Cc′′),

which shows that f is measurable with respect to H′, as claimed. J

6 Polynomial decomposition

We first formally define the problem for which we claim a polynomial time algorithm.

I Definition 43. Given k ∈ N and ∆ = (∆1, . . . ,∆k) ∈ Nk and a function Γ : Kk → K, a
function P : Kn → K is (k,∆,Γ)-structured if there exist polynomials P1, . . . , Pk : Kn → K
with deg(Pi) 6 ∆i such that for x ∈ Kn, we have

P (x) = Γ(P1(x), . . . , Pk(x)).

The polynomials P1, . . . , Pk form a (k,∆,Γ)-decomposition.

The main result we prove is the following.

I Theorem 44. Let k ∈ N. For every ∆ = (∆1, . . . ,∆k) ∈ Nk and every function Γ : Kk → K,
there is a randomized algorithm A that on input P : Kn → K of degree d, runs in time
polyq,k,∆(nd+1) and outputs a (k,∆,Γ)-decomposition of P if one exists while otherwise
returning NO.

APPROX/RANDOM’16

23:26 On Higher-Order Fourier Analysis over Non-Prime Fields

We first show that the notion of rank is robust to hyperplane restrictions over nonprime
fields. More precisely, we have the following.

I Lemma 45. Let P : Kn → T be a non-classical polynomial such that rank(P) > r. Let H
be a hyperplane in Kn. Then the restriction of P to H has rank at least r − q.

Proof. Without loss of generality, let H be defined by x1 = 0. Let P ′ : Kn−1 → T
be the restriction of P defined by P ′(y) = P (0y). Let π : Kn → Kn−1 be the map
π(x1x2 . . . xn) = x2 . . . xn. Let P ′′ : Kn → T be defined by P ′′(x) = P (x) − P ′ ◦ π. Then
P ′′(x) = 0 for x ∈ H. For i ∈ K \ {0}, let hi = (i, 0, . . . , 0). Then, for y ∈ H, define
Rj : Kn → T by

Rj(y) = P ′′(y + hj) = (DhjP
′′)(y).

Note that deg(Rj) 6 d− 1. Now, since P (x) = P ′′(x) + P ′ ◦ π(x), we have

P (x) = Γ(P ′ ◦ π, x1, {Ry(x) : y ∈ F}).

Now, if rank(P ′) 6 r, then rank(P ′ ◦ π) 6 r and hence rank(P) 6 r + q. This finishes the
proof. J

We now start with the proof of Theorem 44.

Proof. Let R1 : N→ N be defined as R1(m) = R2(c(R1,d)
32 (m+k)) + c

(R1,d)
32 (m+k) + q where

R2 : N→ N will be specified later.
We have that P (x) =

∑
i βiTr(αiP (x)) for the dual basis β1, . . . , βr. Set fi(x) =

Tr(αiP (x)). Identifying F with U1 we treat fi : Kn → T. Regularize {f1, . . . , fr} using the
algorithm of [12] to find R1-regular B = {g1, . . . , gC : Kn → T} where C 6 c

(R1,d)
32 (r). So,

fi(x) = Gi(g1(x), . . . , gC(x)) and P (x) =
∑
i αiGi(g1(x), . . . , gC(x)). Thus, if n 6 Cd, then

we are done by a brute force search.
Else, n > Cd. For each gi, pick a monomial mi with degree deg(Pi). Then there is i0 ∈ [n]

such that xi0 does not appear in any gi. Set g′i := gi|xi0 = 0. Let B′ be the factor defined by
the g′is. Note that deg(g′i) = deg(gi) and depth(g′i) = depth(gi). Also, by Lemma 45, B′ is
R1 − q-regular.

Now, using recursion, we solve the problem on n − 1 variables. That is, decide if for
P ′ := P |xi0 = 0 is (k,∆,Γ)-structured. If P ′ is not, then P is not either, so we are done.
Else, suppose the algorithm does not output NO.

Say

P ′(x) = Γ(S1(x), . . . , Sk(x)) = Γ′(Tr(αjSi(x)) : i ∈ [k], j ∈ [r]),

where

Γ′(aij : i ∈ [k], j ∈ [r]) = Γ(
∑
j

αiaij : i ∈ [k]).

Note that while Γ : Kk → K, we have Γ′ : Fkr → K. Let B1 be the factor formed by
{Tr(αjSi)}. Via the algorithm of [12], regularize B′ ∪ B1 using R2 : N → N and we get a
syntactic refinement B′ ∪ B′1 by the choice of R1. Let B′1 = {s′1, . . . , s′D}. where

Tr(αjSi) = Gij(g′i, s′j : i ∈ [C], j ∈ [D]).

A. Bhattacharyya, A. Bhowmick, and C. Gupta 23:27

Choose R2 large enough such that the map induced by B′ ∪ B′1 is surjective. Now, fix any
` ∈ [r]. Then,

Tr(α`P ′) = G`(g′1, . . . , g′C) = F`(Gij(g′i, s′j)),

where F` = Tr(α`Γ′). Thus, for a1, . . . , aC , b1, . . . bD ∈ F,

G`(a1, . . . , aC) = F`(Gij(a1, . . . , bD) : i ∈ [C], j ∈ [D]).

Substituting, ai = gi(x) and bj = 0 we have

Tr(α`P) = G`(g1, . . . , gC) = F`(Gij(gi, 0)).

Now,

Tr(α`P) = Tr(α`Γ(Qi : i ∈ [k])),

where Qi(x) =
∑r
j=1 αjGij(g′i, . . . , 0).

Since, this is true for all ` ∈ [r], we have

P (x) = Γ(Q1(x), . . . , Qk(x)).

where Qi is defined as above. This finishes the proof. J

References
1 Noga Alon, Tali Kaufman, Michael Krivelevich, Simon Litsyn, and Dana Ron. Testing

Reed-Muller codes. IEEE Trans. Inform. Theory, 51(11):4032–4039, 2005. doi:10.1109/
TIT.2005.856958.

2 S. Arora and M. Sudan. Improved low-degree testing and its applications. Combinatorica,
23(3):365–426, 2003.

3 László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking computa-
tions in polylogarithmic time. In Proc. 23rd Annual ACM Symposium on the Theory of
Computing, pages 21–32, New York, 1991. ACM Press.

4 László Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponential time has
two-prover interactive protocols. Computational Complexity, 1(1):3–40, 1991.

5 Eli Ben-Sasson, Ghid Maatouk, Amir Shpilka, and Madhu Sudan. Symmetric LDPC codes
are not necessarily locally testable. In Proc. 26th Annual Conference on Computational
Complexity (CCC), pages 55–65. IEEE, 2011.

6 Arnab Bhattacharyya. Polynomial decompositions in polynomial time. In Proc. 22nd
Annual European Symposium on Algorithms, pages 125–136, 2014.

7 Arnab Bhattacharyya and Abhishek Bhowmick. Using higher-order fourier analysis over
general fields. CoRR, abs/1505.00619, 2015. URL: http://arxiv.org/abs/1505.00619.

8 Arnab Bhattacharyya, Victor Chen, Madhu Sudan, and Ning Xie. Testing linear-invariant
non-linear properties. Theory Comput., 7(1):75–99, 2011.

9 Arnab Bhattacharyya, Eldar Fischer, Hamed Hatami, Pooya Hatami, and Shachar Lovett.
Every locally characterized affine-invariant property is testable. In Proc. 45th Annual ACM
Symposium on the Theory of Computing, pages 429–436, 2013.

10 Arnab Bhattacharyya, Eldar Fischer, and Shachar Lovett. Testing low complexity affine-
invariant properties. In Proc. 24th ACM-SIAM Symposium on Discrete Algorithms, pages
1337–1355, 2013.

11 Arnab Bhattacharyya, Elena Grigorescu, and Asaf Shapira. A unified framework for testing
linear-invariant properties. In Proc. 51st Annual IEEE Symposium on Foundations of
Computer Science, pages 478–487, 2010.

APPROX/RANDOM’16

http://dx.doi.org/10.1109/TIT.2005.856958
http://dx.doi.org/10.1109/TIT.2005.856958
http://arxiv.org/abs/1505.00619

23:28 On Higher-Order Fourier Analysis over Non-Prime Fields

12 Arnab Bhattacharyya, Pooya Hatami, and Madhur Tulsiani. Algorithmic regularity for
polynomials and applications. In Proc. 26th ACM-SIAM Symposium on Discrete Algo-
rithms, pages 1870–1889, 2015.

13 Abhishek Bhowmick and Shachar Lovett. Bias vs structure of polynomials in large fields,
and applications in effective algebraic geometry and coding theory. CoRR, abs/1506.02047,
2015. URL: http://arxiv.org/abs/1506.02047.

14 Abhishek Bhowmick and Shachar Lovett. List decoding Reed-Muller codes over small fields.
In Proc. 47th Annual ACM Symposium on the Theory of Computing, pages 277–285, New
York, NY, USA, 2015. ACM.

15 Manuel Blum, Michael Luby, and Ronitt Rubinfeld. Self-testing/correcting with applica-
tions to numerical problems. J. Comp. Sys. Sci., 47:549–595, 1993. Earlier version in
STOC’90.

16 A. Bogdanov and E. Viola. Pseudorandom bits for polynomials. In Proc. 48th IEEE Symp.
on Foundations of Computer Science (FOCS’07), 2007.

17 Pierre Deligne. Application de la formule des traces aux sommes trigonometriques. In SGA
4 1

2 Springer Lecture Notes in Matematics, volume 569. Springer, 1978.
18 P. Elias. List decoding for noisy channels. Technical Report 335, Research Laboratory of

Electronics, MIT, 1957.
19 Uriel Feige, Shafi Goldwasser, László Lovász, Shmuel Safra, and Mario Szegedy. Interactive

proofs and the hardness of approximating cliques. J. ACM, 43(2):268–292, 1996.
20 O. Goldreich and L. Levin. A hard-core predicate for all one-way functions. In Proc. 21st

ACM Symposium on the Theory of Computing, pages 25–32, 1989.
21 O. Goldreich, R. Rubinfeld, and M. Sudan. Learning polynomials with queries: The highly

noisy case. SIAM J. Discrete Math., 13(4):535–570, 2000.
22 Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to

learning and approximation. J. ACM, 45:653–750, 1998.
23 Oded Goldreich and Tali Kaufman. Proximity oblivious testing and the role of invariances.

In Studies in Complexity and Cryptography, pages 173–190. Springer, 2011.
24 Oded Goldreich and Dana Ron. On proximity oblivious testing. SIAM J. Comput.,

40(2):534–566, 2011.
25 P. Gopalan. A Fourier-analytic approach to Reed-Muller decoding. In Proc. 51st IEEE

Symp. on Foundations of Computer Science (FOCS’10), pages 685–694, 2010.
26 P. Gopalan, A. Klivans, and D. Zuckerman. List decoding Reed-Muller codes over small

fields. In Proc. 40th ACM Symposium on the Theory of Computing (STOC’08), pages
265–274, 2008.

27 Parikshit Gopalan, Ryan O’Donnell, Rocco A. Servedio, Amir Shpilka, and Karl Wimmer.
Testing Fourier dimensionality and sparsity. In Proc. 36th Annual International Conference
on Automata, Languages, and Programming, pages 500–512, 2009.

28 William T. Gowers. A new proof of Szeméredi’s theorem for arithmetic progressions of
length four. Geom. Funct. Anal., 8(3):529–551, 1998.

29 William T. Gowers. A new proof of Szeméredi’s theorem. Geom. Funct. Anal., 11(3):465–
588, 2001.

30 Ben Green and Terence Tao. The distribution of polynomials over finite fields, with appli-
cations to the Gowers norms. Contrib. Discrete Math., 4(2), 2009.

31 Elena Grigorescu, Tali Kaufman, and Madhu Sudan. Succinct representation of codes with
applications to testing. SIAM Journal on Discrete Mathematics, 26(4):1618–1634, 2012.

32 Alan Guo, Swastik Kopparty, and Madhu Sudan. New affine-invariant codes from lifting.
In Proceedings of the 4th conference on Innovations in Theoretical Computer Science, pages
529–540. ACM, 2013.

http://arxiv.org/abs/1506.02047

A. Bhattacharyya, A. Bhowmick, and C. Gupta 23:29

33 V. Guruswami. List Decoding of Error-Correcting Codes, volume 3282 of Lecture Notes in
Computer Science. Springer, 2004.

34 V. Guruswami. Algorithmic Results in List Decoding, volume 2 of Foundations and Trends
in Theoretical Computer Science. Now Publishers, 2006.

35 Hamed Hatami and Shachar Lovett. Estimating the distance from testable affine-invariant
properties. In Proc. 54th Annual IEEE Symposium on Foundations of Computer Science,
pages 237–242. IEEE, 2013.

36 Tali Kaufman and Simon Litsyn. Almost orthogonal linear codes are locally testable. In
Proc. 46th Annual IEEE Symposium on Foundations of Computer Science, pages 317–326.
IEEE, 2005.

37 Tali Kaufman and Shachar Lovett. Worst case to average case reductions for polynomials.
In Proc. 49th Annual IEEE Symposium on Foundations of Computer Science, pages 166–
175, 2008.

38 Tali Kaufman and Dana Ron. Testing polynomials over general fields. SIAM J. on Comput.,
36(3):779–802, 2006.

39 Tali Kaufman and Madhu Sudan. Algebraic property testing: the role of invariance. In
Proc. 40th Annual ACM Symposium on the Theory of Computing, pages 403–412, 2008.

40 Shachar Lovett, Roy Meshulam, and Alex Samorodnitsky. Inverse conjecture for the Gowers
norm is false. In Proc. 40th Annual ACM Symposium on the Theory of Computing, pages
547–556, New York, NY, USA, 2008. ACM.

41 R. Pellikaan and X. Wu. List decoding of q-ary Reed-Muller codes. IEEE Transactions on
Information Theory, 50(4):679–682, 2004.

42 Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with appli-
cations to program testing. SIAM J. on Comput., 25:252–271, 1996.

43 M. Sudan. Decoding of Reed-Solomon codes beyond the error-correction bound. Journal of
Complexity, 13(1):180–193, 1997. URL: citeseer.ist.psu.edu/sudan97decoding.html.

44 M. Sudan. List decoding: Algorithms and applications. SIGACT News, 31(1):16–27, 2000.
45 M. Sudan, L. Trevisan, and S. P. Vadhan. Pseudorandom generators without the XOR

lemma. J. Comput. Syst. Sci., 62(2):236–266, 2001.
46 Terence Tao. Higher Order Fourier Analysis, volume 142 of Graduate Studies in Mathe-

matics. American Mathematical Society, 2012.
47 Terence Tao and Tamar Ziegler. The inverse conjecture for the Gowers norm over finite

fields via the correspondence principle. Analysis & PDE, 3(1):1–20, 2010.
48 Terence Tao and Tamar Ziegler. The inverse conjecture for the Gowers norm over finite

fields in low characteristic. Ann. Comb., 16(1):121–188, 2012.
49 Andre Weil. Sur les courbes algébriques et les varietes qui s’en deduisent. Actualites Sci.

et Ind., 1041, 1948.
50 J. Wozencraft. List decoding. Technical Report 48:90-95, Quarterly Progress Report,

Research Laboratory of Electronics, MIT, 1958.
51 Yuichi Yoshida. A characterization of locally testable affine-invariant properties via decom-

position theorems. In Proc. 46th Annual ACM Symposium on the Theory of Computing,
pages 154–163, 2014.

APPROX/RANDOM’16

citeseer.ist.psu.edu/sudan97decoding.html

Bounded Independence vs. Moduli∗

Ravi Boppana1, Johan Håstad†2, Chin Ho Lee‡3, and
Emanuele Viola§4

1 Department of Mathematics, Massachusetts Institute of Technology,
Cambridge, USA

2 KTH-Royal Institute of Technology, Stockholm, Sweden
3 College of Computer and Information Science, Northeastern University,

Boston, USA
4 College of Computer and Information Science, Northeastern University,

Boston, USA

Abstract
Let k = k(n) be the largest integer such that there exists a k-wise uniform distribution over
{0, 1}n that is supported on the set Sm := {x ∈ {0, 1}n :

∑
i xi ≡ 0 mod m}, where m is any

integer. We show that Ω(n/m2 logm) ≤ k ≤ 2n/m + 2. For k = O(n/m) we also show that
any k-wise uniform distribution puts probability mass at most 1/m + 1/100 over Sm. For any
fixed odd m there is k ≥ (1−Ω(1))n such that any k-wise uniform distribution lands in Sm with
probability exponentially close to |Sm|/2n; and this result is false for any even m.

1998 ACM Subject Classification F.0 Theory of Computation

Keywords and phrases Bounded independence, Modulus

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2016.24

1 Introduction and our results

A distribution on {0, 1}n is k-wise uniform if any k bits are uniform in {0, 1}k. Researchers
have analyzed various classes of tests that cannot distinguish distributions with k-wise
uniformity from uniform. Such tests include (combinatorial) rectangles [8] (cf. [4]), bounded-
depth circuits [1, 12, 2, 13], and halfspaces [6, 9, 7], to name a few. We say that such tests
are fooled by distributions with bounded independence.

In this work we consider the mod m tests, defined next.

I Definition 1. For an input length n, and an integer m, we define the set Sm := {x ∈
{0, 1}n :

∑
i xi ≡ 0 mod m}.

These tests have been intensely studied at least since circuit complexity theory hit the
wall of gates computing mod m for composite m in the 80’s. However, the effect of bounded
independence on mod m tests does not seem to have been known before this paper.

Our first main result is that there exist distributions with linear uniformity that are
supported on Sm.

∗ This work is done in part while CHL and EV were visiting Harvard University, with support from Salil
Vadhan’s Simons Investigator grant, and in part while JH, CHL and EV were at the Simons Institute
for the Theory of Computing.

† Johan Håstad is supported by the Swedish Research Council.
‡ Chin Ho Lee is supported by NSF grant CCF-1319206.
§ Emanuele Viola is supported by NSF grant CCF-1319206.

© Ravi Boppana, Johan Håstad, Chin Ho Lee, and Emanuele Viola;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016).
Editors: Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans; Article No. 24; pp. 24:1–24:9

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.24
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

24:2 Bounded Independence vs. Moduli

I Theorem 2. There exists a c > 0 such that the following holds.
For every integer m ≥ 2, there exists a k ≥ cn/m2 logm and a k-wise uniform distribution

over {0, 1}n that is supported on Sm.

This proves a conjecture in [10] where this question is also raised. Their motivation was
a study of the “mod 3” dimension of k-wise uniform distributions, started in [11], which
is the dimension of the space spanned by the support of the distribution over GF(3). [10]
shows that k = 100 logn-wise uniformity with dimension ≤ n0.49 would have applications
to pseudorandomness. It also exhibits a distribution with dimension n0.72 and uniformity
k = 2. Theorem 2 yields a distribution with dimension n− 1 and Ω(n)-wise uniformity.

We then prove three results, summarized in the next theorem, that show that k-wise
uniformity does fool mod m when k is large. (1) shows that the largest possible value of
k in Theorem 2 is k ≤ 2(n + 1)/m + 2 ≤ (1 − Ω(1))n. (2) shows that when k is larger
than (1− γ)n for a constant γ depending only on m then k-wise uniformity fools Sm with
exponentially small error when m is odd. The proof of (2) however does not carry to the
setting of k < n/2, for any m. So we establish (3) which gives a worse error bound but
allows for k to become smaller for larger m, specifically k = O(n/m) for constant error. The
error bound in (3) and the density of Sm are such that (3) only provides a meaningful upper
bound on the probability that the k-wise uniform distribution lands in Sm, but not a lower
bound. In fact, we conjecture that no lower bound is possible in the sense that there is c > 0
such that for every m there is a cn-wise uniform distribution supported on the complement
of Sm.

The combination of (2) and (3) implies that for k = min{O(n/m), (1 − Ω(1))n} any
k-wise uniform distribution puts probability mass at most 1/m+ 1/100 over Sm for odd m.

I Theorem 3. Let m be an integer.
(1) For k ≥ 2n/m+ 2, a k-wise uniform distribution over {0, 1}n cannot be supported on

Sm.
(2) Suppose m is odd, then there is a γ > 0 depending only on m such that for any

(1− γ)n-wise uniform distribution D over {0, 1}n, |Pr[D ∈ Sm]− |Sm|/2n| ≤ 2−γn.
(3) There exists a universal constant c such that for every ε > 0, n ≥ cm2 log(m/ε), and

any c(n/m)(1/ε)2-wise uniform distribution D over {0, 1}n, Pr[D ∈ Sm] ≤ |Sm|/2n + ε.

In our results the sum s of n bits xi ∈ {0, 1} is constrained to be divisible by m. This
setting was chosen for convenience, but our techniques apply in greater generality. For
example we obtain the same results if we instead constrain s to be c mod m for any fixed c.

We also note that (2) is false for any even m because the uniform distribution on S2 has
uniformity k = n− 1 but puts about 2/m mass on Sm, a set which as we shall see later (cf.
Remark 7) has density about 1/m.

Organization

Theorem 3 is a little easier to prove than Theorem 2, but uses overlapping lemmas. So we
start by proving Theorem 3 in Section 2. Then in Section 3 we prove Theorem 2.

2 Proof of Theorem 3

In this section we prove Theorem 3. We start with the following theorem which will give (1)
in Theorem 3 as a corollary.

R. Boppana, J. Håstad, C.H. Lee, and E. Viola 24:3

I Theorem 4. Let I ⊆ {0, 1, . . . , n} be a subset of size |I| ≤ n/2. There does not exist a
2|I|-wise uniform distribution on {0, 1}n that is supported on S := {x ∈ {0, 1}n :

∑
i xi ∈ I}.

Proof. Suppose there exists such a distribution D. Consider the n-variate nonzero real
polynomial p defined by

p(x) :=
∏
i∈I

(−i+
n∑
j=1

xj).

Note that p(x) = 0 when x ∈ S. And so E[p2(D)] = 0 in particular. However, since p2 has
degree at most 2|I|, we have E[p2(D)] = E[p2(U)] > 0, where U is the uniform distribution
over {0, 1}n, a contradiction. J

Proof of (1) in Theorem 3. When I corresponds to the mod m test Sm, |I| ≤ n/m+ 1. J

We now move to (2) in Theorem 3. First we prove a lemma that estimates the sum∑
x∈Sm(−1)

∑k

i=1
xi . Similar bounds have been established elsewhere, cf. e.g. Theorem 2.9

in [15], but we do not know of a reference with an explicit dependence on m, which will be
used in the next section. (2) follows from bounding above the tail of the Fourier coefficients
of the indicator function of Sm.

I Lemma 5. For any 1 ≤ k ≤ n− 1, |
∑
x∈Sm(−1)

∑k

i=1
xi | ≤ 2n

(
cos π

2m
)n, while for k = 0

|
∑
x∈Sm(−1)

∑k

i=1
xi−2n/m| ≤ 2n

(
cos π

2m
)n. For odd m the first bound also holds for k = n.

Proof. Consider an expansion of

p(y) = (1− y)k(1 + y)n−k

into 2n terms indexed by x ∈ {0, 1}n where xi = 0 indicates that we take the term 1 from
the i’th factor. It is easy to see that the coefficient of yd is

∑
|x|=d(−1)

∑k

i=1
xi . Denote

ζ := e2πi/m as the m-th root of unity. Recall the identity

1
m

m−1∑
j=0

ζjd =
{

1 if d ≡ 0 mod m
0 otherwise.

Thus the sum we want to bound is equal to

1
m

m−1∑
j=0

p(ζj).

Note that p(ζ0) = p(1) = 0 for k 6= 0 while for k = 0, p(ζ0) = 2n. For the other terms we
have the following bound.

I Claim 6. For 1 ≤ j ≤ m− 1, |p(ζj)| ≤ 2n
(
cos π

2m
)k (cos π

m

)n−k.
Proof. As |1 + eiθ| = 2|cos(θ/2)| and |1− eiθ| = 2|sin(θ/2)| we have

|p(ζj)| = |1− ζj |k|1 + ζj |n−k

= 2n
(

sin jπ
m

)k (
cos jπ

m

)n−k
≤ 2n

(
cos π

2m

)k (
cos π

m

)n−k
,

APPROX/RANDOM’16

24:4 Bounded Independence vs. Moduli

where the last inequality holds for odd m because (1) sin jπ
m is largest when j = m−1

2 or
j = m+1

2 , (2) sin(π2 − x) = cosx, and (3) cos jπm is largest when j = 1 or j = m− 1. For even
m the term with j = m/2 is 0, as in this case we are assuming that k < n, and the bounds
for odd m are valid for the other terms. J

Therefore, for k 6= 0 we have∣∣∣∣∣ ∑
x∈Sm

(−1)
∑k

i=1
xi

∣∣∣∣∣ = m− 1
m

· 2n
(

cos π

2m

)k (
cos π

m

)n−k
≤ 2n

(
cos π

2m

)k (
cos π

m

)n−k
,

and we complete the proof using the fact that cos(π/m) ≤ cos(π/2m). For k = 0 we also
need to include the term p(1) = 2n which divided by m gives the term 2n/m. J

I Remark 7. Clearly the lemma for k = 0 simply is the well known fact that the cardinality
of Sm is very close to 2n/m. Equivalently, if x is uniform in {0, 1}n then the probability that∑
i xi ∈ Sm is very close to 1/m. The same holds for the probability that

∑
i xi ≡ c mod m

for any fixed c. This can be seen by using the polynomial y−cp(y) in the above proof.

Proof of (2) in Theorem 3. Let f : {0, 1}n → {0, 1} be the characteristic function of Sm.
We first bound above the nonzero Fourier coefficients of f . Let S = Sm. By Lemma 5, we
have for any β with |β| = k > 0,

|f̂β | = 2−n
∑
x∈S

(−1)
∑k

i=1
xi ≤

(
cos π

2m

)n
≤ 2−αn,

where α = − ln cos(π/2m) depends only on m. Thus, if D is k-wise uniform,

|E[f(D)]− E[f(U)]| ≤
∑
|β|>k

|f̂β | · |Ex∼D[(−1)
∑

xiβi]|

≤
∑
|β|>k

|f̂β |

≤ 2−αn
n∑

t=k+1

(
n

t

)

= 2−αn
n−k−1∑
t=0

(
n

t

)
.

For k ≥ (1 − δ)n, we have an upper bound of 2n(H(δ)−α). Pick δ small enough so that
H(δ) ≤ α/2. The result follows by setting γ := min{α/2, δ}. J

Note that the above proof fails when m is even as we cannot handle the term with |β| = n.
Finally, we prove (3) in Theorem 3. We use approximation theory.

Proof of (3) in Theorem 3. Let f : {0, 1}n → {0, 1} be the characteristic function of Sm.
The proof amounts to exhibiting a real polynomial p in n variables of degree d = c(n/m)(1/ε)2

such that f(x) ≤ p(x) for every x ∈ {0, 1}n, and E[p(U)] ≤ ε for U uniform over {0, 1}n.
To see that this suffices, note that E[p(U)] = E[p(D)] for any distribution D that is d-wise
uniform. Using this and the fact that f is non-negative, we can write

0 ≤ E[f(U)] ≤ E[p(U)] ≤ ε and 0 ≤ E[f(D)] ≤ E[p(D)] ≤ ε.

Hence, |E[f(U)]− E[f(D)]| ≤ ε. This is the method of sandwiching polynomials from [1].

R. Boppana, J. Håstad, C.H. Lee, and E. Viola 24:5

Let us write f = g(
∑
i xi/n), for g : {0, 1/n, . . . , 1} → {0, 1}. We exhibit a univariate

polynomial q of degree d such that g(x) ≤ q(x) for every x, and the expectation of q under
the binomial distribution is at most ε. The polynomial p is then q(

∑
i xi/n).

Consider the continuous, piecewise linear function s : [−1, 1]→ [0, 1] defined as follows.
The function is always 0, except at intervals of radius a/n around the inputs x where g
equals 1, i.e., inputs x such that nx is divisible by m. In those intervals it goes up and down
like a ‘Λ’, reaching the value of 1 at x. We set a = εm/10.

By Jackson’s theorem, see e.g. [3, Theorem 7.4] or [5], for a degree d = O(nε−1a−1) =
O(nε−2m−1), there exists a univariate polynomial q′ of degree d that approximates s with
pointwise error ε/10. Our polynomial q is defined as q := q′ + ε/10.

It is clear that g(x) ≤ q(x) for every x ∈ {0, 1/n, . . . , 1}. It remains to estimate E[q(U)].
As q′ is a good approximation of s we have E[q(U)] ≤ 2ε/10 + E[s(U)]. We noted in

Remark 7 that the remainder modulo m of
∑
xi is δ-close to uniform for δ = cos(π/2m)n =

e−O(n/m2). Now the function s, as a function of
∑
xi, is a periodic function with period m

and if we feed the uniform distribution over {0, 1/n, . . . ,m/n} into s we have E[s] ≤ ε/10. It
follows that if n is at least a large constant times m2(log(1/ε) + logm), we have E[s(U)] ≤
2ε/10 and we conclude that E[q(U)] ≤ 4ε/10. J

3 Proof of Theorem 2

In this section we prove Theorem 2. Let I be a subset of {0, 1, . . . , n− 1, n} and S ⊆ {0, 1}n
be the subset of strings whose sum

∑
i xi belongs to I. Let US be the uniform distribution

over S. We are going to construct a k-wise uniform distribution starting from US and
changing the weights of k+ 1 slices of the Hamming cube. In particular, our distribution will
be symmetric. We note that since S is symmetric, if there is a k-wise uniform distribution
supported on it then by a simple symmetrization argument there must also be a symmetric
one.

Let εt be the bias of a parity of size t under US , i.e., εt := Ex∈US [(−1)
∑t

i=1
xi]. Note

that because we are working with symmetric distributions, all parities of the same size have
the same bias. Now let ε(t, `) be the bias of a parity of size t over the uniform distribution
on strings that sum to `. Note that ε(t, `) is a scaled version of the Kravchuk polynomial of
degree t in the variable `.

We note that εt =
∑
`∈I Prx∼US [

∑
j xj = `] · ε(t, `).

Now let a0 < a1 < · · · < ak be k + 1 points in I that are closest to n/2 and let i∗ be an
index that maximizes |ai − n

2 |. Finally let pi be the probability over x drawn from US that
x sums to ai.

We are going to change the pi to pi − ∆i with the goal of making εt zero for every
1 ≤ t ≤ k. The effect of the substitution on εt is to decrease it by

∑
0≤i≤k ∆iε(t, ai).

Thus our goal is to find ∆i’s so that

k∑
i=0

∆iε(t, ai) = εt, ∀t ∈ {1, 2, . . . , k}

k∑
i=0

∆i = 0,

0 ≤ pi −∆i ≤ 1, ∀i ∈ {0, . . . , k}.

Let M be the (k + 1) × (k + 1) matrix Mt,i := ε(t, ai) where t, i ∈ {0, . . . , k}. Let ∆ :=

APPROX/RANDOM’16

24:6 Bounded Independence vs. Moduli

(∆0, . . . ,∆k)T and b := (0, ε1, . . . , εk)T . Then the first two conditions form the linear system

M∆ = b.

We will show that there is a unique solution ∆ to this system.
To satisfy the third condition, note that pi∗ is the smallest among all the pi’s. It will also

be the case that pi∗ ≤ 1/2. Thus if ‖∆‖∞ ≤ pi∗ we will also satisfy the third condition and
have a k-wise uniform distribution supported on S.

Consider the expression n−t(
∑n
j=1(−1)xj)t. If we expand this, cancel factors that appear

twice, and collect terms, we can rewrite it as

n−t(
n∑
j=1

(−1)xj)t =
t∑

r=0
γt,r

(
n

r

)−1 ∑
|β|=r

(−1)
∑

xiβi ,

for some choice of non-negative values γt,r, which by plugging in x1 = x2 = . . . = xn = 0 can
be seen to satisfy

∑t
r=0 γt,r = 1.

Let αi := (n − 2ai)/n. Taking expectation in the above equation over all the x’s with
sum equal to ai we have for every i ∈ {0, 1, . . . , k},

αti = ((n− 2ai)/n)t =
t∑

r=0
γt,r

(
n

r

)−1 ∑
|β|=r

E[(−1)
∑

xiβi] =
t∑

r=0
γt,rε(r, ai). (A)

Let Mr be the r-th row of M . We construct a new matrix V from M by applying
the following row operations R to M : For every t, set Vt =

∑t
r=0 γt,rMr. It follows from

equation (A) that Vt,i = αti, and so V = RM is a Vandermonde matrix, which is invertible.
Hence,

∆ = V −1Rb

is a unique solution.
Therefore it suffices to show that ‖∆‖∞ ≤ pi∗ . Note that ‖∆‖∞ ≤ ‖V −1‖∞‖Rb‖∞, where

the ∞ norm of a matrix is the maximum sum of the absolute values along any one row.
Moreover, since (Rb)t =

∑t
r=0 γt,rbr and

∑t
r=0 γt,r = 1, we have ‖Rb‖∞ ≤ ‖b‖∞. Hence,

it suffices to bound above ‖V −1‖∞ and ‖b‖∞.

Roadmap for the following claims

To get an idea of the following claims, consider the case m = 3 and k = o(n). We first
show in Claim 8 that ‖V −1‖∞ ≤ 2o(n). Then we find it convenient to bound ‖b‖∞ and pi∗
multiplied by |S|. We show that |S|pi∗ ≥ 2n(1−o(1)) in Claim 9. We note that Claims 8, 9
and 10 hold for any symmetric subset S. Finally, in Claim 11 we use the definition of S to
obtain bounds on ai∗ and b, and show that |S|‖b‖∞ ≤ (2− Ω(1))n. Altogether,

‖V −1‖∞|S|‖b‖∞ ≤ 2o(n)(2− Ω(1))n ≤ 2n(1−Ω(1)) ≤ |S|pi∗ ,

as desired.

I Claim 8. ‖V −1‖∞ ≤ (k + 1)(4en
k)k.

Proof. Since V is a Vandermonde matrix, we can specify the entries of its inverse explicitly.
As shown in e.g. [14] we have

V −1
i,k−j = (−1)k−j

∑
|β|=j
i6∈β

αβ

 ·
∏
s6=i

(αs − αi)−1

 .

R. Boppana, J. Håstad, C.H. Lee, and E. Viola 24:7

We now give an upper bound on each of the factors on the R.H.S.

Bounding
∑
|β|=j,i6∈β αβ

Since |αi| ≤ 1, this is bounded by the number of terms,
(
k
j

)
, and hence by 2k.

Bounding
∏
s 6=i(αs − αi)−1

Since the difference between every pair of distinct ai, aj is at least 1, we have∏
s6=i

(as − ai) ≥ (k/2)!2

when k is even and is at least (k+1
2)(k−1

2)!2 when k is odd. By a crude form of Stirling’s
formula, n! ≥ (n/e)n, and so we get the lower bound (k/2e)k in either case. Hence,∏

s6=i
(αs − αi)−1 ≤ nk

∏
s6=i

(as − ai)−1 ≤ (2en
k

)k.

Putting the bounds together, we have

‖V −1‖∞ ≤ (k + 1) max
i,j
|V −1
i,j | ≤ (k + 1)(4en

k
)k. J

Now we give a lower bound on pi∗ .

I Claim 9. pi∗ |S| ≥ 2n(1−α2
i∗)

n+1 .

Proof. Using the inequalities
(
n
i

)
≥ 2nH(i/n)

n+1 and H(1−ε
2) ≥ 1− ε2, we have

pi∗ |S| =
(
n

ai∗

)
≥ 2nH

(1−αi∗
2

)
n+ 1 ≥ 2n(1−α2

i∗)
n+ 1 . J

Therefore,

pi∗ |S|
‖V −1‖∞

≥ 2n(1−α2
i∗)

(n+ 1)(k + 1)(4en
k)k

≥ enf(k,n,ai∗),

where

f(k, n, ai∗) := ln 2 ·
(
1− α2

i∗
)
− k

n

(
ln 4en

k

)
− o(1).

We conclude with the following claim.

I Claim 10. If enf(k,n,ai∗) ≥ max1≤t≤k
∑
x∈S(−1)

∑t

i=1
xi , then there exists a k-wise uniform

distribution supported on S.

Proof. We just showed

pi∗ |S|
‖V −1‖∞

≥ enf(k,n,ai∗) ≥ max
1≤t≤k

∑
x∈S

(−1)
∑t

i=1
xi = ‖b‖∞|S|.

Hence, ‖∆‖∞ ≤ ‖V −1‖∞‖b‖∞ ≤ pi∗ . J

APPROX/RANDOM’16

24:8 Bounded Independence vs. Moduli

3.1 Zero modulo m
We have that Sm consists of all strings with

∑
xi ≡ 0 mod m. If follows that |αi∗ | ≤

(k + 1)m/2n. We now give an upper bound on ‖b‖∞|S|.

I Claim 11. ‖b‖∞|S| ≤ eng(n,m), where g(n,m) := ln 2− 1
2
(
π

2m
)2
.

Proof. Note that ‖b‖∞|S| =
∑
x∈S(−1)

∑k

i=1
xi . By Lemma 5,∑

x∈S
(−1)

∑k

i=1
xi ≤ 2n

(
cos π

2m

)n
≤ eng(n,m),

where in the last two inequalities we used the fact that ln cos(x) ≤ −x
2

2 for x ∈ [0, π/2). J

We are now ready to prove Theorem 2.

Proof of Theorem 2. Recall that |αi∗ | ≤ (k+1)m/2n. By Claim 11 and Claim 10, it suffices
to show that f(k, n, ai∗)− g(n,m) is positive, where recall

f(k, n, a∗i) = ln 2 ·
(
1− α2

i∗
)
− k

n

(
ln 4en

k

)
− o(1)

≥ ln 2 ·
(

1− ((k + 1)m
2n)2

)
− k

n

(
ln 4en

k

)
− o(1)

and

g(n,m) := ln 2− 1
2

(π

2m

)2
.

Indeed, we have

f(k, n, ai∗)− g(n,m) ≥ 1
2

(π

2m

)2
− k

n

(
ln 4en

k

)
− ln 2 ·

(
(k + 1)m

2n

)2
− o(1),

and choosing k = εn
m2 lnm for a sufficiently small ε makes this quantity positive. J

References
1 Louay M. J. Bazzi. Polylogarithmic independence can fool DNF formulas. SIAM J. Com-

put., 38(6):2220–2272, 2009.
2 Mark Braverman. Polylogarithmic independence fools AC0 circuits. J. of the ACM, 57(5),

2010.
3 Neal Carothers. A short course on approximation theory. Available at

http://personal.bgsu.edu/∼carother/Approx.html.
4 Suresh Chari, Pankaj Rohatgi, and Aravind Srinivasan. Improved algorithms via ap-

proximations of probability distributions. J. Comput. System Sci., 61(1):81–107, 2000.
doi:10.1006/jcss.1999.1695.

5 E. Cheney. Introduction to approximation theory. McGraw-Hill, New York, New York,
1966.

6 Ilias Diakonikolas, Parikshit Gopalan, Ragesh Jaiswal, Rocco A. Servedio, and Emanuele
Viola. Bounded independence fools halfspaces. SIAM J. on Computing, 39(8):3441–3462,
2010.

7 Ilias Diakonikolas, Daniel Kane, and Jelani Nelson. Bounded independence fools degree-2
threshold functions. In 51th IEEE Symp. on Foundations of Computer Science (FOCS).
IEEE, 2010.

http://dx.doi.org/10.1006/jcss.1999.1695

R. Boppana, J. Håstad, C.H. Lee, and E. Viola 24:9

8 Guy Even, Oded Goldreich, Michael Luby, Noam Nisan, and Boban Velickovic. Efficient
approximation of product distributions. Random Struct. Algorithms, 13(1):1–16, 1998.

9 Parikshit Gopalan, Ryan O’Donnell, Yi Wu, and David Zuckerman. Fooling functions of
halfspaces under product distributions. In 25th IEEE Conf. on Computational Complexity
(CCC), pages 223–234. IEEE, 2010.

10 Chin Ho Lee and Emanuele Viola. Some limitations of the sum of small-bias distributions.
Available at http://www.ccs.neu.edu/home/viola/, 2015.

11 Raghu Meka and David Zuckerman. Small-bias spaces for group products. In 13th Work-
shop on Randomization and Computation (RANDOM), volume 5687 of Lecture Notes in
Computer Science, pages 658–672. Springer, 2009.

12 Alexander A. Razborov. A simple proof of Bazzi’s theorem. ACM Transactions on Com-
putation Theory (TOCT), 1(1), 2009.

13 Avishay Tal. Tight bounds on The Fourier Spectrum of AC0. Electronic Colloquium on
Computational Complexity, Technical Report TR14-174, 2014.

14 L. Richard Turner. Inverse of the Vandermonde matrix with applications, 1966. NASA tech-
nical note D-3547 available at http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.
gov/19660023042.pdf.

15 Emanuele Viola and Avi Wigderson. Norms, XOR lemmas, and lower bounds for polyno-
mials and protocols. Theory of Computing, 4:137–168, 2008.

APPROX/RANDOM’16

http://www.ccs.neu.edu/home/viola/
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19660023042.pdf
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19660023042.pdf

Approximating Subadditive Hadamard Functions
on Implicit Matrices
Vladimir Braverman∗1, Alan Roytman†2, and Gregory Vorsanger‡3

1 Department of Computer Science, Johns Hopkins University, Baltimore, USA
vova@cs.jhu.edu

2 School of Computer Science, Tel-Aviv University, Israel
alan.roytman@cs.tau.ac.il

3 Department of Computer Science, Johns Hopkins University, Baltimore, USA
gregvorsanger@jhu.edu

Abstract
An important challenge in the streaming model is to maintain small-space approximations of
entrywise functions performed on a matrix that is generated by the outer product of two vectors
given as a stream. In other works, streams typically define matrices in a standard way via
a sequence of updates, as in the work of Woodruff [22] and others. We describe the matrix
formed by the outer product, and other matrices that do not fall into this category, as implicit
matrices. As such, we consider the general problem of computing over such implicit matrices with
Hadamard functions, which are functions applied entrywise on a matrix. In this paper, we apply
this generalization to provide new techniques for identifying independence between two data
streams. The previous state of the art algorithm of Braverman and Ostrovsky [9] gave a (1± ε)-
approximation for the L1 distance between the joint and product of the marginal distributions,
using space O(log1024(nm)ε−1024), where m is the length of the stream and n denotes the size
of the universe from which stream elements are drawn. Our general techniques include the L1
distance as a special case, and we give an improved space bound of O(log12(n) log2(nmε)ε−7).

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Streaming Algorithms, Measuring Independence, Hadamard Functions,
Implicit Matrices

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2016.25

1 Introduction

Measuring independence is a fundamental statistical problem that is well studied in computer
science. Traditional non-parametric methods of testing independence over empirical data
usually require space complexity that is polynomial in either the support size or input size.
With large datasets, these space requirements may be impractical, and designing small-space
algorithms becomes desirable.

Measuring independence is a classic problem in the field of statistics (see Lehmann [17]) as
well as an important problem in databases. Further, the process of reading in a two-column

∗ This work was sponsored in part by the National Science Foundation under Grant No. 1447639 and the
Google Faculty Award.

† The work of Alan Roytman was partially supported by the European Research Council under the
European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement number
337122, and in part by the Israeli Centers of Research Excellence (I-CORE) program (Center No. 4/11).

‡ This work was supported in part by Raytheon BBN Technologies.

© Vladimir Braverman, Alan Roytman, and Gregory Vorsanger;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016).
Editors: Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans; Article No. 25; pp. 25:1–25:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.25
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

25:2 Approximating Subadditive Hadamard Functions on Implicit Matrices

database table can be viewed as a stream of pairs. Thus, the streaming model is a natural
choice when approximating pairwise independence as memory is limited. Indeed, identifying
correlations between database columns by measuring the level of independence between
columns is of importance to the database and data warehouse community (see, e.g., [19] and
[16], respectively).

In this paper we provide new techniques for measuring independence between two data
streams and present new tools to expand existing techniques. The topic of independence was
first studied in the streaming model by Indyk and McGregor [15] where the authors gave
an optimal algorithm for approximating the L2 distance between the joint and product of
the marginal distributions of two random variables which generate a stream. In their work,
they provided a sketch that is pairwise independent, but not 4-wise independent, so analysis
similar to that of Alon, Matias, and Szegedy [3] cannot be applied directly. This work was
continued by Braverman and Ostrovsky [9], where the authors considered comparing among
a stream of k-tuples and provided the first (1± ε)-approximation for the L1 distance between
the joint and product of the marginal distributions. Their algorithm is currently the best
known space bound, and uses O(1

ε1024 log1024(nm)) space for k = 2, where m is the length of
the stream and n denotes the size of the universe from which stream elements are drawn.
We present new methods, in the form of a general tool, that enable us to improve this bound
to O(1

ε7 log12(n) log2(nmε)). In previous works, a central challenge has been maintaining an
approximation of the matrix that is generated by the outer product of the two streaming
vectors. As such, we consider computing functions on such an implicit matrix. While matrices
have been studied previously in the streaming model (e.g., [22]), note that we cannot use
standard linear sketching techniques, as the entries of the matrix are given implicitly and
thus these methods do not apply directly.

Generalizing this specific motivating example, we consider the problem of obtaining
a (1 ± ε)-approximation of the L1 norm of the matrix g[A], where g[A] is the matrix A

with a function g applied to it entrywise. Such mappings g are called Hadamard functions
(see [12, 13]). Note that we sometimes abuse notation and apply the function g to scalar
values instead of matrices (e.g., g(aij) where aij is the (i, j)th entry in matrix A). We
require the scalar form of the function g to be even, subadditive, non-negative, and zero at
the origin. We show that, given a blackbox r(n)-approximation of ‖g[A]‖1 =

∑
i

∑
j g(aij)

(where aij is the (i, j)th entry in matrix A) and a blackbox (1 ± ε)-approximation of the
aggregate of g applied entrywise to a vector obtained by summing over all rows, we are able to
improve the r(n)-approximation to a (1± ε)-approximation (where r(n) is a sufficiently large
monotonically increasing function of n). Hence, we give a reduction for any such function g.
Our reduction can be applied as long as such blackbox algorithms exist.

An interesting special case of our result is when the matrix is defined by the L1 distance
between the joint and product of the marginal distributions, which corresponds to measuring
independence in data streams. Since such blackbox algorithms are known for L1, not only
does our framework generalize the problem of measuring independence according to the L1
distance, but our algorithmic techniques also yield improved space bounds over the previous
state of the art result [9]. Moreover, our framework would immediately translate improved
space bounds for the blackbox algorithms to improved space bounds for the application of
measuring independence. Note that, for Lp where 0 < p < 1, such blackbox algorithms
are not known. If such algorithms for the Lp distance were to be designed, our reductions
work and can be applied. While there are a variety of ways to compute distances between
distributions, the Lp distance is of particular significance as evidenced in [14].

V. Braverman, A. Roytman, and G. Vorsanger 25:3

Motivating Problem

We begin by presenting our motivating problem, which concerns (approximately) measuring
the distance between the joint and product of the marginal distributions of two random
variables. That is, we attempt to quantify how close two random variables X and Y over a
universe [n] = {1, . . . , n} are to being independent. There are many ways to measure the
distance between distributions, but we focus on the L1 distance. Recall that two random
variables X and Y are independent if we have Pr[X = i ∧ Y = j] = Pr[X = i] Pr[Y = j] for
every i and j. In our model, we have a data stream D which is presented as a sequence of m
pairs d1 = (i1, j1), d2 = (i2, j2), . . . , dm = (im, jm). Each pair dk = (ik, jk) consists of two
integers taken from the universe [n].

Intuitively, we imagine that the two random variables X and Y over the universe [n]
generate these pairs, and in particular, the frequencies of each pair (i, j) define an empirical
joint distribution, which is the fraction of pairs that equal (i, j). At the same time, the
stream also defines the empirical marginal distributions Pr[X = i],Pr[Y = j], namely the
fraction of pairs of the form (i, ·) and (·, j), respectively. We note that, even if the pairs are
actually generated from two independent sources, it may not be the case that the empirical
distributions reflect this fact, although for sufficiently long streams the joint distribution
should approach the product of the marginal distributions for each i and j. This fundamental
problem has received considerable attention within the streaming community, including the
works of [15, 9]. We note that the main theoretical contribution of this paper is focused on
a generalization of this problem. Nevertheless, this application serves as a very important
motivation for our framework, and we explain how to apply our framework to it in Section 5.
For the main problem we solve, please see Problem 2.

I Problem 1. Let X and Y be two random variables which generate a stream of m pairs
d1 = (i1, j1), . . . , dm = (im, jm), where each ik, jk ∈ [n] for all k. Define the frequencies
pi = |{k : dk = (i, ·)}| and qj = |{k : dk = (·, j)}| (i.e., the frequency with which i appears
in the first coordinate and j appears in the second coordinate, respectively). Moreover, let
fij = |{k : dk = (i, j)}| be the frequency with which the pair (i, j) appears in the stream.
This naturally defines the joint distribution Pr[X = i ∧ Y = j] = fij

m and the product of the
marginal distributions Pr[X = i] Pr[Y = j] = piqj

m2 . The L1 distance between the joint and
product of the marginal distributions is given by:

n∑
i=1

n∑
j=1

∣∣∣∣fijm − piqj
m2

∣∣∣∣ .
If X and Y are independent, we should expect this sum to be close to 0, assuming the

stream is sufficiently long. As a generalization to this problem, we can view the n2 values
which appear in the summation as being implicitly represented via an n× n matrix, where
the (i, j)th entry is given by

∣∣∣ fijm − piqj
m2

∣∣∣. For the motivating problem, this matrix is given
implicitly as it is not given up front and changes over time according to the data stream
(each new pair in the stream may change multiple entries in the matrix). However, one can
imagine settings in which these entries are defined through other means. In practice, we may
still be interested in computing approximate statistics over such implicitly defined matrices.

Contributions and Techniques

Our main contributions in this paper make progress on two important problems:

APPROX/RANDOM’16

25:4 Approximating Subadditive Hadamard Functions on Implicit Matrices

Table 1 Comparing Approximation Ratios and Space Complexity.

Previous Work L1 approximation Memory

IM08 [15] log(n) O
(

1
ε2 log

(
nm
ε

)
log
(
m
ε

))
BO101 [9] (1 ± ε) O

((log(nm)
ε

)1024
)

Our Result (1 ± ε) O
(

1
ε7 log12(n) log2 (nm

ε

))
1. For any subadditive even Hadamard function g where g is non-negative and g(0) = 0,

given an implicitly defined n× n matrix A with entries aij , let g[A] be the matrix where
the (i, j)th entry is g(aij). We are the first to provide a general reduction framework
for approximating ‖g[A]‖1 =

∑n
i=1
∑n
j=1 g(aij) to within a (1± ε)-factor with constant

success probability. More formally, suppose we have two blackbox algorithms with
the following guarantees. One blackbox algorithm operates over the implicit matrix
A and provides a very good (≈ 1 ± ε) approximation to ‖g[JA]‖1 =

∑n
j=1 g(

∑n
i=1 aij)

except with inverse polylogarithmic probability, where J = (1, . . . , 1) is the row vector of
dimension n with every entry equal to 1. The second blackbox algorithm operates over the
implicit matrix A and solves the problem we wish to solve (i.e., approximating ‖g[A]‖1)
with constant success probability, although it does so with a multiplicative approximation
ratio of r(n) (which may be worse than (1± ε) in general). We show how to use these
two blackbox algorithms to construct an algorithm that achieves a (1± ε)-approximation
of ‖g[A]‖1. If S1, S2 denote the space used by the first and second blackbox algorithms,
respectively, then our algorithm uses space O

(
r4(n) log8(n)

ε5 · (log2(n) + S1 + log(n) · S2)
)
.

We state this formally in Theorem 3.
2. Given the contribution above, it follows that setting g(x) = |x| solves Problem 1, namely

the problem of measuring how close two random variables are to being independent, as
long as such blackbox algorithms exist. In particular, the work of Indyk [14] provides
us with the first blackbox algorithm, and the work of [15] provides us with the second
blackbox algorithm for this choice of g. Combining these results, we improve over the
previous state of the art result of Braverman and Ostrovsky [9] and give improved bounds
for measuring independence of random variables in the streaming model by reducing the
space usage from O

(
(log(nm)

ε)1024
)
to O

(1
ε7 log12(n) log2 (nm

ε

))
(see Table 1).

Examples of such Hadamard functions which are subadditive, even, non-negative, and
zero at the origin include g(x) = |x|p, for any 0 < p ≤ 1. Note that our reduction in the first
item can only be applied to solve the problem of approximating ‖g[A]‖1 if such blackbox
algorithms exist, but for some functions g this may not be the case. As a direct example
of the tools we present, we give a reduction for computing the Lp distance for 0 < p < 1
between the joint and product of the marginal distributions in the streaming model (as this
function is even and subadditive). However, to the best of our knowledge, such blackbox
algorithms do not exist for computing the Lp distance. Thus, as a corollary to our main
result, the construction of such space efficient blackbox algorithms would immediately yield
a space efficient algorithm that measures independence according to the Lp distance.

1 The paper of [9] provides a general bound for the L1 distance for k-tuples, but we provide analysis for
pairs of elements, k = 2, in this paper. The bound in the table is for k = 2.

V. Braverman, A. Roytman, and G. Vorsanger 25:5

Our techniques leverage concepts provided in [9, 15] and manipulates them to allow them
to be combined with the Recursive Sketches data structure [11] to gain a large improvement
compared to existing bounds. Note that we cannot use standard linear sketching techniques
because the entries of the matrix are given implicitly. Moreover, the sketch of Indyk and
McGregor [15] is pairwise independent, but not 4-wise independent. Therefore, we cannot
apply the sketches of [3, 15] directly. We first present an algorithm, independent of the
streaming model, for finding heavy rows of a matrix norm given an arbitrary even subadditive
Hadamard function g. In order to do this, we first prove a key theorem regarding such
Hadamard functions g which states that the quantity ‖g[JA]‖1 =

∑n
j=1 g(

∑n
i=1 aij) is a

(1± ε)-approximation to the heavy row of the matrix g[A] (if it exists). With this in mind, we
show how to use the blackbox algorithm that yields an r(n)-approximation to ‖g[A]‖1 in order
to identify when heavy rows exist in the matrix, and then use the other blackbox algorithm
to obtain a (1± ε)-approximation of ‖g[JA]‖1 (which is in turn a (1± ε)-approximation to
the heavy row, as just mentioned). These ideas form the foundation of our algorithm for
approximating heavy rows. We then apply the Recursive Sum algorithm from [11] on top of
our heavy rows algorithm to obtain our main result.

1.1 Related Work

In their seminal 1996 paper Alon, Matias, and Szegedy[3] provided an optimal space ap-
proximation for L2. A key technical requirement of the sketch is the assumption of 4-wise
independent random variables. This technique is the building block for measuring the
independence of data streams using L2 distances as well.

The problems of efficiently testing pairwise, or k-wise, independence were considered by
Alon, Andoni, Kaufman, Matulef, Rubinfeld, and Xie [1]; Alon, Goldreich, and Mansour
[2]; Batu, Fortnow, Fischer, Kumar, Rubinfeld, and White [4]; Batu, Kumar, and Rubinfeld
[7]; Batu, Fortnow, Rubinfeld, Smith, and White [5, 6]. They addressed the problem of
minimizing the number of samples needed to obtain a sufficient approximation, when the
joint distribution is accessible through a sampling procedure.

In their 2008 work, Indyk and McGregor [15] provided exciting results for identifying
the correlation of two streams, providing an optimal bound for determining the L2 distance
between the joint and product of the marginal distributions of two random variables.

In addition to the L2 result, Indyk and McGregor presented a log(n)-approximation
for the L1 distance. This bound was improved to a (1 ± ε)-approximation in the work of
Braverman and Ostrovsky [9] in which they provided a bound of O(1

ε1024 log1024(nm)) for
pairs of elements. Further, they gave bounds for the comparison of multiple streaming
vectors and determining k-wise relationships for L1 distance. In addition, Braverman et
al. [8] expanded the work of [15] to k dimensions for L2. Recently, McGregor and Vu [18]
studied a related problem regarding Bayesian networks in the streaming model.

Statistical distance, L1, is one of the most fundamental metrics for measuring the similarity
of two distributions. It has been the metric of choice in many of the above testing papers, as
well as others such as Rubinfeld and Servedio [20]; Sahai and Vadhan [21]. As such, a main
focus of this work is improving bounds for this measure in the streaming model.

2 Problem Definition and Notation

In this paper we focus on the problem of approximating even, subadditive, non-negative
Hadamard functions which are zero at the origin on implicitly defined matrices (e.g., the

APPROX/RANDOM’16

25:6 Approximating Subadditive Hadamard Functions on Implicit Matrices

streaming model implicitly defines matrices for us in the context of measuring independence).
The main problem we study in this paper is the following:

I Problem 2. Let g be any even, subadditive, non-negative Hadamard function such that
g(0) = 0. Given any implicit matrix A, for any ε > 0, δ > 0, output a (1± ε)-approximation
of ‖g[A]‖1 except with probability δ.

We now provide our main theorem, which solves Problem 2.

I Theorem 3. Let g be any even, subadditive, non-negative Hadamard function g where
g(0) = 0, and fix ε > 0. Moreover, let A be an arbitrary matrix, and J be the all 1’s row
vector J = (1, . . . , 1) of dimension n. Suppose there are two blackbox algorithms with the
following properties:
1. Blackbox Algorithm 1, for all ε′ > 0, returns a (1± ε′)-approximation of ‖g[JA]‖1, except

with probability δ1.
2. Blackbox Algorithm 2 returns an r(n)-approximation of ‖g[A]‖1, except with probability

δ2 (where r(n) is a sufficiently large monotonically increasing function of n).
Then, there exists an algorithm that returns a (1±ε)-approximation of ‖g[A]‖1, except with

constant probability. If Blackbox Algorithm 1 uses space SPACE1(n, δ1, ε
′), and Blackbox

Algorithm 2 uses space SPACE2(n, δ2), the resulting algorithm has space complexity

O

(
r4(n)
ε5

(log10(n) + log8(n)SPACE1(n, δ1, ε
′) + log9(n)SPACE2(n, δ2))

)
,

where ε′ = ε
2 , δ1 is a small constant, and δ2 is inverse polylogarithmic.

Note that we can reduce the constant failure probability to inverse polynomial failure
probability via standard techniques, at the cost of increasing our space bound by a logarithmic
factor. Observe that Problem 2 is a general case of Problem 1 where g(x) = |x| (i.e., L1
distance). In the streaming model, we receive matrix A implicitly, but we conceptualize the
problem as if the matrix were given explicitly and then resolve this issue by assuming we
have blackbox algorithms that operate over the implicit matrix.

We define our stream such that each element in the stream dk is a pair of values (i, j):

I Definition 4 (Stream). Letm,n be positive integers. A stream D = D(m,n) is a sequence
of length m, d1, d2, . . . , dm, where each entry is a pair of values in {1, . . . , n}.

Let g : R → R be a non-negative, subadditive, and even function where g(0) = 0.
Frequently, we will need to discuss a matrix where g has been applied to every entry. We use
the notations from [12] which are in turn based on notations from [13].

I Definition 5 (Hadamard Function). Given a matrix A of dimensions n× n, a Hadamard
function g takes as input the matrix A and is applied entrywise to every entry of the matrix.
The output is the matrix g[A]. Further, we note that the L1 norm of g[A] is equivalent to
the value we aim to approximate, ‖g[A]‖1 =

n∑
i=1

n∑
j=1

g(aij).

We frequently use hash functions in our analysis, we now specify some notation. We
sometimes express a hash function H over a domain of size n as a vector of values
(h1, h2, ..., hn). Multiplication of two hash functions Ha, Hb is given by the Hadamard
product, denoted H ′ = HAD(Ha, Hb) = HaHb, where multiplication is performed entrywise
so that (h′1 = ha1h

b
1, ..., h

′
n = hanh

b
n).

We now define two additional matrices. All matrices in our definitions are of size n× n,
and all vectors are of size 1× n. We denote by [n] the set {1, . . . , n}.

V. Braverman, A. Roytman, and G. Vorsanger 25:7

I Definition 6 (Sampling Identity Matrix). Given a hash function H : [n] → {0, 1}, let
hi = H(i). The Sampling Identity Matrix IH with entries bij is defined as:

IH =
{
bii = hi

bij = 0 for i 6= j.

That is, the diagonal of IH corresponds to the values of H. When we multiply matrix IH by
A, each row of IHA is either the zero vector (corresponding to hi = 0) or the original row i

in A (corresponding to hi = 1). We use the term “sampling” due to the fact that the hash
functions we use throughout this paper are random, and hence which rows remain untouched
is random. The same observations apply to columns when considering the matrix AIH .

I Definition 7 (Row Aggregation Vector). A Row Aggregation Vector J is a 1×n vector
with all entries equal to 1.

Thus, JA yields a vector V where each value vj is
∑n
i=1 aij .

I Blackbox Algorithm 1 ((1± ε′)-Approximation of g on an aggregated matrix).
Input: Matrix A, and hash function H.
Output: (1± ε′)-Approximation of ‖g[JIHA]‖1 with probability (1− δ1).

The space Blackbox Algorithm 1 (BA1) uses is referred to as SPACE1(n, δ1, ε
′) in our

analysis.

I Blackbox Algorithm 2 (r(n)-Approximation of ‖g[IHA]‖1).
Input: Matrix A, and hash function H.
Output: r(n)-Approximation of ‖g[IHA]‖1 with probability (1− δ2).

The space Blackbox Algorithm 2 (BA2) uses is referred to as SPACE2(n, δ2) in our analysis.

I Definition 8 (Complement Hash Function). For a hash function H : [n] → {0, 1}, define
the Complement Hash Function H̄ : [n]→ {0, 1} as H̄(i) = 1 if and only if H(i) = 0.

I Definition 9 (Threshold Functions). We define two Threshold Functions, which we
denote by ρ(n, ε) = O(r

4(n)
ε) and τ(n, ε) = O(r

2(n)
ε).

I Definition 10 (Weight of a Row). The weight of row i in matrix A is given by uA,i =
n∑
j=1

aij .

I Definition 11 (α-Heavy Rows). Row i is α-heavy for 0 < α < 1 if uA,i > α‖A‖1.

I Definition 12 (Key Row). We say row i is a Key Row if: uA,i > ρ(n, ε)(‖A‖1 − uA,i).

While Definition 11 and Definition 12 are similar, we define them for convenience, as our
algorithm works by first finding key rows and then building on top of this to find α-heavy
rows. We note that, as long as ρ(n, ε) ≥ 1, a matrix can have at most one key row (since any
matrix can have at most 1

α α-heavy rows, and a key row is α-heavy for α = ρ(n,ε)
1+ρ(n,ε)).

3 Subadditive Approximations

In this section we show that a (1 ± ε)-approximation of even, subadditive, non-negative
Hadamard functions which are zero at the origin are preserved under row or column aggrega-
tions in the presence of sufficiently heavy rows or columns.

APPROX/RANDOM’16

25:8 Approximating Subadditive Hadamard Functions on Implicit Matrices

I Theorem 13. Let B be an n×n matrix and let ε ∈ (0, 1) be a parameter. Recall that J is a
row vector with all entries equal to 1. Let g be any even, subadditive, non-negative Hadamard
function which satisfies g(0) = 0. Denote ui =

∑n
j=1 g(bij), and thus ‖g[B]‖1 =

∑n
i=1 ui. If

there is a row h such that uh ≥ (1− ε
2)‖g[B]‖1, then |uh − ‖g[JB]‖1| ≤ ε‖g[JB]‖1.

Proof. Denote V = JB. Without loss of generality assume u1 is the row such that u1 ≥
(1− ε

2)‖g[B]‖1. By subadditivity of g: ‖g[V]‖1 ≤ ‖g[B]‖1 ≤ 1
1− ε2

u1 ≤ (1 + ε)u1. Further, we
have b1j = (

∑n
i=1 bij −

∑n
i=2 bij). Since g is even and subadditive, and such functions are

non-negative, we have g(b1j) ≤ g (
∑n
i=1 bij) +

∑n
i=2 g(bij). Rearranging and summing over

j, we get:
∑n
j=1 g (

∑n
i=1 bij) ≥

∑n
j=1 (g(b1,j)−

∑n
i=2 g(bij)).

Therefore:

‖g[V]‖1 =
n∑
j=1

g

(
n∑
i=1

bij

)
≥

n∑
j=1

(
g(b1,j)−

(
n∑
i=2

g(bij)
))

= u1 − (‖g[B]‖1 − u1).

Finally:

‖g[V]‖1 ≥ u1 − (‖g[B]‖1 − u1) = 2u1 − ‖g[B]‖1 ≥ u1

(
2− 1

1− ε
2

)
= u1

1− ε
1− ε

2
≥ u1(1− ε). J

4 Algorithm for Finding Key Rows

I Definition 14 (Algorithm for Finding Key Rows).
Input: Matrix A and Sampling Identity Matrix IH generated from hash function H.
Output: Pair (a, b), where the following holds for a, b, and the matrix W = IHA:
1. The pair is either (a, b) = (−1, 0) or (a, b) = (i, ũW,i). Here, ũW,i is a (1±ε)-approximation

to uW,i and the index i is the correct corresponding row.
2. If there is a key row i0 for the matrix W , then a = i0.

Before describing the algorithm and proving its correctness, we prove the following useful
lemma in Appendix A.

I Lemma 15. Let U = (u1, . . . , un) be a vector with non-negative entries of dimension n

and let H ′ be a pairwise independent hash function where H ′ : [n]→ {0, 1} and P [H ′(i) =
1] = P [H ′(i) = 0] = 1

2 . Denote by H̄ ′ the hash function defined by H̄ ′(i) = 1−H ′(i). Let
X =

∑
iH
′(i)ui and Y =

∑
i H̄
′(i)ui. If there is no 1

16 -heavy element with respect to U ,
then:

Pr
[(
X ≤ 1

4 · ‖U‖1

)
∪
(
Y ≤ 1

4 · ‖U‖1

)]
≤ 1

4 .

I Theorem 16. If there exist two blackbox algorithms as specified in Blackbox Algorithms 1
and 2, then there exists an algorithm that satisfies the requirements in Definition 14 with
high probability.

Proof. We will prove that Algorithm 1 fits the description of Definition 14. Using standard
methods such as in [10], we have a loop that runs in parallel O(log(n)) times so that we can
find the index of a heavy element and return it, if there is one. To prove this theorem, we
consider the following three exhaustive and disjoint cases regarding the matrix g[IHA] (recall
that H : [n]→ {0, 1}):

V. Braverman, A. Roytman, and G. Vorsanger 25:9

Algorithm 1 Algorithm Find-Key-Row
The algorithm takes as input a matrix A and a hash function H : [n]→ {0, 1}

for ` = 1 to N = O(logn) do
Generate a pairwise independent, uniform hash function H` : [n]→ {0, 1}
Let T1 = HAD(H,H`), T0 = HAD(H, H̄`)
Let y1 = BA2(A, T1), y0 = BA2(A, T0) (BA2 is run with constant failure probability

δ2)
if y0 ≥ τ(n, ε) · y1 then

b` = 0
else if y1 ≥ τ(n, ε) · y0 then

b` = 1
else

b` = 2
if |{` : b` = 2}| ≥ 2

5 ·N then
Return (−1, 0)

else
if there is a row i such that i satisfies |{` : H`(i) = b`}| ≥ 3

4 ·N then
Return (i, BA1(A,H)) (BA1 is run with ε′ = ε

2 and δ1 is set to be inverse polylog-
arithmic)

else
Return (−1, 0)

1. The matrix has a key row (note that a matrix always has at most one key row).
2. The matrix has no α-heavy row for α = 1− ε

8 .
3. The matrix has an α-heavy row for α = 1− ε

8 , but there is no key row.

We prove that the algorithm is correct in each case in Lemmas 22, 23, and 24, respectively.
These proofs can be found in Appendix B. J

With the proofs of these three cases, we are done proving that Algorithm 1 performs
correctly. We now analyze the space bound for Algorithm 1.

I Lemma 17. Algorithm 1 uses O
(
SPACE1(n, δ1,

ε
2) + log(n)(log2(n) + SPACE2(n, δ2))

)
bits of memory, where δ1 is inverse polylogarithmic and δ2 is a constant.

Proof. Note that, in order for our algorithm to succeed, we run BA1 with an error parameter
of ε′ = ε

2 and a failure probability parameter δ1 which is inverse polylogarithmic. Moreover,
we run BA2 with a constant failure probability. We also require a number of random bits
bounded by O(log2(n)) for generating each hash function H`, as well as the space required
to run BA2 in each iteration of the loop. Since there are O(logn) parallel iterations, this
gives the lemma. J

4.1 Algorithm for Finding All α-Heavy Rows
Algorithm 1 only guarantees that we return key rows. Given a matrix A, we now show that
this algorithm can be used as a subroutine to find all α-heavy rows i with respect to the
matrix g[A] with high probability, along with a (1± ε)-approximation to the row weights
ug[A],i for all i. In order to do this, we apply an additional hash function H : [n] → [τ]
which essentially maps rows of the matrix to some number of buckets τ (i.e., each bucket

APPROX/RANDOM’16

25:10 Approximating Subadditive Hadamard Functions on Implicit Matrices

Algorithm 2 Algorithm Find-Heavy-Rows
The algorithm takes as input a matrix A and a value 0 < α < 1

Generate a pairwise independent hash function H : [n]→ [τ], where τ = O
(
ρ(n,ε) log(n)

α2

)
for k = 1 to τ do

Let Hk : [n]→ {0, 1} be the function defined by Hk(i) = 1⇐⇒ H(i) = k

Let Ck = Find-Key-Row(A,Hk)
Return {Ck : Ck 6= (−1, 0)}

corresponds to a set of sampled rows based on H), and then run Algorithm 1 for each bucket.
The intuition for why the algorithm works is that any α-heavy row i in the original matrix
A is likely to be a key row for the matrix in the corresponding bucket to which row i is
mapped. Note that, eventually, we find α-heavy rows for α = ε2

log3 n
. The algorithm sets

τ = O
(
ρ(n,ε) log(n)

α2

)
and is given below.

I Theorem 18. Algorithm 2 outputs a set of pairs Q = {(i1, a1), . . . , (it, at)} for t ≤ τ which
satisfies the following properties, except with probability 1

logn :
1. ∀j ∈ [t]: (1− ε)ug[A],ij ≤ aj ≤ (1 + ε)ug[A],ij .
2. ∀i ∈ [n]: If row i is α-heavy with respect to the matrix g[A], then ∃j ∈ [t] such that ij = i

(for any 0 < α < 1).

Proof. First, the number of pairs output by Algorithm 2 is at most the number of buckets,
which equals τ . Now, the first property is true due to the fact that Algorithm 1 has a high
success probability. In particular, as long as the failure probability is at most 1

τ ·logc(n) for
some constant c (which we ensure), then by the union bound the probability that there exists
a pair (ij , aj) ∈ Q such that aj is not a (1± ε)-approximation to ug[A],ij is at most inverse
polylogarithmic.

Now, to ensure the second item, we need to argue that every α-heavy row gets mapped
to its own bucket with high probability, since if there is a collision the algorithm cannot
find all α-heavy rows. Moreover, we must argue that for each α-heavy row i with respect to
the matrix g[A], if i is mapped to bucket k by H, then row i is actually a key row in the
corresponding sampled matrix g[Ak] (for ease of notation, we write Ak to denote the matrix
HkAk). More formally, suppose row i is α-heavy. Then the algorithm must guarantee with
high probability that, if H(i) = k, then row i is a key row in the matrix g[Ak]. If we prove
these two properties, then the theorem holds (since Algorithm 1 outputs a key row with high
probability, if there is one).

Observe that there must be at most 1
α rows which are α-heavy. In particular, let R be

the set of α-heavy rows, and assume towards a contradiction that |R| > 1
α . Then we have:

‖g[A]‖1 ≥
∑
i∈R

ug[A],i ≥
∑
i∈R

α‖g[A]‖1 = α · ‖g[A]‖1 · |R| > ‖g[A]‖1,

which is a contradiction. Hence, we seek to upper bound the probability of a collision when
throwing 1

α balls into τ bins. By a Birthday paradox argument, this happens with probability
at most 1

2·τ ·α2 , which can be upper bounded as follows:

1
2τα2 ≤

α2

2α2ρ(n, ε) log(n) = 1
2ρ(n, ε) log(n) ≤

ε

2r4(n) log(n) ,

which is inverse polylogarithmically small.

V. Braverman, A. Roytman, and G. Vorsanger 25:11

Now, we argue that every α-heavy row i for the matrix g[A] is mapped to a sampled matrix
such that i is a key row in the sampled matrix with high probability. In particular, suppose
H(i) = k, implying that row i is mapped to bucket k. For ` 6= i, let X` be the indicator
random variable which is 1 if and only if row ` is mapped to the same bucket as i, namely
H(`) = k (i.e., X` = 1 means the sampled matrix g[Ak] contains row i and row `). If row i

is not a key row for the matrix g[Ak], this means that ug[Ak],i ≤ ρ(n, ε)(‖g[Ak]‖1 − ug[Ak],i).
Observe that, if row i is mapped to bucket k, then we have ug[Ak],i = ug[A],i. Hence, the
the probability that row i is not a key row for the sampled matrix g[Ak] (assuming row i is
mapped to bucket k) can be expressed as Pr[ug[A],i ≤ ρ(n, ε)(‖g[Ak]‖1 − ug[A],i)|H(i) = k].
By pairwise independence of H, and by Markov’s inequality, we can write:

Pr
[
ug[A],i ≤ ρ(n, ε)(‖g[Ak]‖1 − ug[A],i)

∣∣∣ H(i) = k
]

= Pr

ug[A],i ≤ ρ(n, ε)
∑
` 6=i

ug[A],`X`

∣∣∣∣∣∣ H(i) = k

= Pr

ug[A],i ≤ ρ(n, ε)
∑
` 6=i

ug[A],`X`

= Pr

∑
` 6=i

ug[A],`X` ≥
ug[A],i

ρ(n, ε)

 ≤ ρ(n, ε)E
[∑

6̀=i ug[A],`X`

]
ug[A],i

=
ρ(n, ε)

∑
6̀=i ug[A],`

τ · ug[A],i
≤ ρ(n, ε)‖g[A]‖1

ατ‖g[A]‖1
= α2ρ(n, ε)

4α · ρ(n, ε) log(n) ≤
α

4 log(n) .

Here, we choose τ = 4ρ(n,ε) log(n)
α2 , and get that the probability that a particular α-heavy row

i is not a key row in its corresponding sampled matrix is at most α
4 log(n) . Since there are at

most 1
α rows which are α-heavy, by the union bound the probability that there exists an

α-heavy row that is not a key row in its sampled matrix is at most 1
4 log(n) .

Thus, in all, the probability that at least one bad event happens (i.e., there exists a
pair (ij , aj) such that aj is not a good approximation to ug[A],ij , there is a collision between
α-heavy rows, or an α-heavy row is not a key row in its corresponding sampled matrix) is at
most 1

log(n) . This gives the theorem. J

4.2 Sum from α-Heavy Rows

We now have an algorithm that is able to find all α-heavy rows for α = ε2

log3 n
, except with

probability 1
logn . In the language of [11], by Theorem 18, our α-heavy rows algorithm outputs

an (α, ε)-cover with respect to the vector (ug[A],1, ug[A],2, . . . , ug[A],n) except with probability
1

logn , where ε > 0 and α > 0. Hence, we can apply the Recursive Sum algorithm from [11]
(see Appendix C for the formal definition of an (α, ε)-cover, along with the Recursive Sum
algorithm) to get a (1± ε)-approximation of ‖g[A]‖1. Note that the Recursive Sum algorithm
needs α = ε2

log3 n
and a failure probability of at most 1

logn , which we provide. Hence, we get
the following theorem.

I Theorem 19. The Recursive Sum Algorithm, using Algorithm 2 as a subroutine, returns
a (1± ε)-approximation of ‖g[A]‖1.

APPROX/RANDOM’16

25:12 Approximating Subadditive Hadamard Functions on Implicit Matrices

4.3 Space Bounds
I Lemma 20. Recursive Sum, using Algorithm 2 as a subroutine as described in Section 4.2,
uses the following amount of memory, where ε′ = ε

2 , δ1 is inverse polylogarithmic, and δ2 is
a small constant:

O

(
r4(n)
ε5

(log10(n) + log8(n)SPACE1(n, δ1, ε
′) + log9(n)SPACE2(n, δ2))

)
.

Proof. The final algorithm uses the space bound from Lemma 17, multiplied by τ =
O
(
ρ(n,ε) log(n)

α2

)
, where α = ε2

φ3 , φ = O(logn), and ρ(n, ε) = O(r
4(n)
ε). This gives τ =

1
ε5 r

4(n) log7(n) to account for the splitting required to find α-heavy rows in Section 4.1.
Finally, a multiplicative cost of log(n) is needed for the Recursive Sum algorithm, giving the
final bound. J

5 Applications

We now apply our algorithm to the problem of determining the L1 distance between the
joint and product of the marginal distributions as described in Problem 1.

Space Bounds for Determining L1 Independence

Given an n × n matrix A with entries aij = fij
m −

piqj
m , we have provided a method to

approximate the value ‖g[A]‖1:
n∑
i=1

n∑
j=1

g

(
fij
m
− piqj

m

)
.

Let g be the L1 distance, namely g(x) = |x| (hence, the (i, j)th entry in g[A] is given by
| fijm −

piqj
m |). we now state explicitly which blackbox algorithms we use:

Let Blackbox Algorithm 1 (BA1) be the (1± ε′)-approximation of L1 for vectors from [14].
The space of this algorithm is upper bounded by the number of random bits required
and uses O(log(nmδ1ε′) log(m

δ1ε′) log(1
δ1

)ε′−2) bits of memory.
Let Blackbox Algorithm 2 (BA2) be the r(n)-approximation, using the L1 sketch of the
distance between the joint and product of the marginal distributions from [15]. This
algorithm does not have a precise polylogarithmic bound provided, but we compute that
it is upper bounded by the random bits required to generate the Cauchy random variables
similarly to BA1 (which are generated in parallel O(log 1

δ2
) times). This algorithm

requires O(log(nmδ1ε′) log(m
δ1ε′) log(1

δ1
) log(1

δ2
)ε′−2) bits of memory. Note that BA2 does

not depend on ε′, δ1, but we are stating a loose upper bound.
These two algorithms match the definitions given in Section 2, and thus we are able to give
a bound of O(1

ε7 log14(n) log2(nmε)) on the space our algorithm requires (recall that we set
ε′ = θ(ε), δ2 to be some small constant, and δ1 to be inverse polylogarithmically small). We
can improve this slightly as follows.

I Corollary 21. Due to the nature of the truncated Cauchy distribution (see [15]), we can
further improve our space bound to O

(1
ε7 log12(n) log2(nmε)

)
.

Proof. Due to the constant lower bound on the approximation of L1, instead of 1
r2(n) ≤

‖g[W]‖1 ≤ r2(n), we get C ≤ ‖g[W]‖1 ≤ log2(n) for some constant C. As the space cost
from dividing the matrix into submatrices as shown in Section 4.1 directly depends on these
bounds, we only pay an O(r2(n)) multiplicative factor instead of an O(r4(n)) multiplicative
factor and achieve a bound of O

(1
ε7 log12(n) log2(nmε)

)
. J

V. Braverman, A. Roytman, and G. Vorsanger 25:13

References
1 Noga Alon, Alexandr Andoni, Tali Kaufman, Kevin Matulef, Ronitt Rubinfeld, and Ning

Xie. Testing k-wise and almost k-wise independence. In Proceedings of the 39th annual
ACM Symposium on Theory of Computing, 2007.

2 Noga Alon, Oded Goldreich, and Yishay Mansour. Almost k-wise independence versus
k-wise independence. Information Processing Letters, 88(3):107–110, 2003.

3 Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the
frequency moments. In Proceedings of the 28th annual ACM Symposium on Theory of
Computing, 1996.

4 Tuğkan Batu, Eldar Fischer, Lance Fortnow, Ravi Kumar, Ronitt Rubinfeld, and Patrick
White. Testing random variables for independence and identity. In Proceedings of the 42nd
annual IEEE Symposium on Foundations of Computer Science, 2001.

5 Tuğkan Batu, Lance Fortnow, Ronitt Rubinfeld, Warren D. Smith, and Patrick White.
Testing that distributions are close. In Proceedings of the 41st annual IEEE Symposium on
Foundations of Computer Science, 2000.

6 Tuğkan Batu, Lance Fortnow, Ronitt Rubinfeld, Warren D. Smith, and Patrick White.
Testing closeness of discrete distributions. Journal of the ACM, 60(1):4, 2013.

7 Tuğkan Batu, Ravi Kumar, and Ronitt Rubinfeld. Sublinear algorithms for testing mono-
tone and unimodal distributions. In Proceedings of the 36th annual ACM Symposium on
Theory of Computing, 2004.

8 Vladimir Braverman, Kai-Min Chung, Zhenming Liu, Michael Mitzenmacher, and Rafail
Ostrovsky. AMS Without 4-Wise Independence on Product Domains. In Proceedings of
the 27th International Symposium on Theoretical Aspects of Computer Science, 2010.

9 Vladimir Braverman and Rafail Ostrovsky. Measuring independence of datasets. In Pro-
ceedings of the 42nd annual ACM Symposium on Theory of Computing, 2010.

10 Vladimir Braverman and Rafail Ostrovsky. Zero-one frequency laws. In Proceedings of the
42nd annual ACM Symposium on Theory of Computing, 2010.

11 Vladimir Braverman and Rafail Ostrovsky. Generalizing the layering method of Indyk
and Woodruff: Recursive sketches for frequency-based vectors on streams. In Interna-
tional Workshop on Approximation Algorithms for Combinatorial Optimization Problems.
Springer, 2013.

12 Dominique Guillot, Apoorva Khare, and Bala Rajaratnam. Complete characterization of
hadamard powers preserving loewner positivity, monotonicity, and convexity. Journal of
Mathematical Analysis and Applications, 425(1):489–507, 2015.

13 Roger A. Horn and Charles R. Johnson. Topics in matrix analysis. Cambridge University
Press, Cambridge, 1991.

14 Piotr Indyk. Stable distributions, pseudorandom generators, embeddings, and data stream
computation. Journal of the ACM, 53(3):307–323, 2006.

15 Piotr Indyk and Andrew McGregor. Declaring independence via the sketching of sketches.
In Proceedings of the 19th annual ACM-SIAM Symposium on Discrete Algorithms, 2008.

16 Ralph Kimball and Joe Caserta. The Data Warehouse ETL Toolkit: Practical Techniques
for Extracting, Cleaning, Conforming, and Delivering Data. John Wiley & Sons, 2004.

17 Erich L. Lehmann and Joseph P. Romano. Testing statistical hypotheses. Springer Science
& Business Media, 2006.

18 Andrew McGregor and Hoa T. Vu. Evaluating bayesian networks via data streams. In
Proceedings of the 21st International Computing and Combinatorics Conference, 2015.

19 Viswanath Poosala and Yannis E. Ioannidis. Selectivity estimation without the attribute
value independence assumption. In Proceedings of the 23rd International Conference on
Very Large Data Bases, 1997.

APPROX/RANDOM’16

25:14 Approximating Subadditive Hadamard Functions on Implicit Matrices

20 Ronitt Rubinfeld and Rocco A. Servedio. Testing monotone high-dimensional distributions.
In Proceedings of the 37th annual ACM Symposium on Theory of Computing, 2005.

21 Amit Sahai and Salil Vadhan. A complete problem for statistical zero knowledge. Journal
of the ACM, 50(2):196–249, 2003.

22 David P. Woodruff. Sketching as a tool for numerical linear algebra. CoRR, abs/1411.4357,
2014. URL: http://arxiv.org/abs/1411.4357.

A Proof of Lemma 15

Proof. Note that we always have the equality X +Y =
∑
iH
′(i)ui + H̄ ′(i)ui =

∑
iH
′(i)ui +

(1−H ′(i))ui = ‖U‖1, and moreover E[X] =
∑
i uiE[H ′(i)] = 1

2 · ‖U‖1. Also, observe that

V ar[X] = E[X2]− (E[X])2

=
∑
i

E[(H ′(i))2]u2
i +

∑
i 6=j

E[H ′(i)H ′(j)]uiuj −
1
4 · ‖U‖

2
1

= 1
2
∑
i

u2
i + 1

4
∑
i 6=j

uiuj −
1
4

∑
i

u2
i +

∑
i 6=j

uiuj

 = 1
4
∑
i

u2
i .

Using the fact that there is no 1
16 -heavy element with respect to U , which implies that

ui ≤ 1
16 · ‖U‖1 for all i, we have:

V ar[X] = 1
4
∑
i

u2
i ≤
‖U‖1

64
∑
i

ui = ‖U‖
2
1

64 .

Now we can apply Chebyshev’s inequality to obtain:

Pr
[(
X ≤ 1

4 · ‖U‖1

)
∪
(
Y ≤ 1

4 · ‖U‖1

)]
= Pr

[
|X − E[X]| ≥ ‖U‖1

4

]
≤ 16 · V ar[X]

‖U‖2
1

≤ 16 · ‖U‖2
1

64 · ‖U‖2
1

= 1
4 . J

B Proof of Correctness of Algorithm 1

Throughout the lemmas, we imagine that the hash function H : [n]→ {0, 1} is fixed, and
hence the matrix g[IHA] is fixed. All randomness is taken over the pairwise independent
hash functions H` that are generated in parallel, along with both blackbox algorithms.

To ease the notation, we define

W = IHA, W1 = IT1A, and W0 = IT2A

(recall the notation from Algorithm 1 that T1 = HAD(H,H`) and T0 = HAD(H, H̄`)).
Finally, for each row i in the matrix g[W], we define the shorthand notation ui = ug[W],i.

I Lemma 22. If the matrix g[IHA] has a key row, Algorithm 1 correctly returns the index
of the row and a (1 ± ε)-approximation of the weight of the key row except with inverse
polylogarithmic probability.

Proof. Suppose the matrix g[IHA] has a key row, and let i0 be the index of this row. We
prove that we return a good approximation of ug[W],i0 with high probability. In particular,
we first argue that, for a fixed iteration ` of the loop, we have the property that b` equals

http://arxiv.org/abs/1411.4357

V. Braverman, A. Roytman, and G. Vorsanger 25:15

H`(i0), and moreover this holds with high probability. We assume without loss of generality
that H`(i0) = 1 (the case when H`(i0) = 0 is symmetric). In particular, this implies that the
key row i0 appears in the matrix g[W1].

By definition of BA2, the following holds for y1 = BA2(A, T1) and y0 = BA2(A, T0),
except with probability 2δ2 (where δ2 is the failure probability of BA2):

y1 ≥
‖g[W1]‖1

r(n) and y0 ≤ ‖g[W0]‖1r(n).

We have the following set of inequalities:

‖g[W1]‖1 ≥ ui0 > ρ(n, ε)(‖g[W]‖1 − ui0) ≥ ρ(n, ε)‖g[W0]‖1,

where the first inequality follows since g is non-negative and the key row i0 appears in the
matrix g[W1] (and hence the L1 norm of g[W1] is at least ui0 since it includes the row i0), the
second inequality follows by definition of i0 being a key row for the matrix W , and the last
inequality follows since the entries in row i0 of the matrix W0 are all zero (as H`(i0) = 1) and
the remaining rows of W0 are sampled from W , along with the facts that g is non-negative
and g(0) = 0.

Substituting for ρ(n, ε), and using the fact that y1 and y0 are good approximations for
‖g[W1]‖1 and ‖g[W0]‖1 (respectively), except with probability 2δ2, we get:

y1 ≥
‖g[W1]‖1

r(n) >
ρ(n, ε)
r(n) · ‖g[W0]‖1 ≥

ρ(n, ε)
r2(n) · y0 ≥ τ(n, ε) · y0.

Thus, in this iteration of the loop we have b` = 1 except with probability 2δ2 (in the case
that H`(i0) = 0, it is easy to verify by a similar argument that y0 ≥ τ(n, ε) · y1, and hence
we have b` = 0). Hence, for the row i0, we have the property that b` = H`(i0) for a fixed
`, except with probability 2δ2. By the Chernoff bound, as long as δ2 is a sufficiently small
constant, we have b` = H`(i0) for at least a 3

4 -fraction of iterations `, except with inverse
polynomial probability. The only issue to consider is the case that there exists another row
i 6= i0 with the same property, namely b` = H`(i) for a large fraction of iterations `. However,
if b` = H`(i), it must be that at least one of y1, y0 is a bad approximation or H`(i) = H`(i0),
which happens with probability at most 2δ2 + 1

2 . Therefore, by the Chernoff bound, the
probability that this happens for at least a 3

4 -fraction of iterations ` is at most 1
2O(logn) , which

is inverse polynomially small. By applying the union bound, the probability that there exists
such a row is at most n−1

2O(logn) , which is at most an inverse polynomial. Hence, in this case,
the algorithm returns (i0, BA1(A,H)) except with inverse polynomial probability.

We now argue that ũg[W],io = BA1(A,H) is a (1± ε)-approximation of ug[W],i0 , except
with inverse polylogarithmic probability. By definition of BA1, which we run with an error
parameter of ε′ = ε

2 , it returns a
(
1± ε

2
)
-approximation of ‖g[JW]‖1 except with inverse

polylogarithmic probability, where W = IHA. Moreover, since i0 is a key row, we have:

ui0 > ρ(n, ε)(‖g[W]‖1 − ui0)⇒ ui0 >
ρ(n, ε)‖g[W]‖1

1 + ρ(n, ε) ≥
(

1− ε

8

)
‖g[W]‖1,

where the last inequality follows as long as r4(n) ≥ 8−ε. This implies that i0 is
(
1− ε

8
)
-heavy

with respect to the matrix g[W], and hence we can apply Theorem 13 to get that:

(1 + ε)ui0 ≥
(
1 + ε

2
)(

1− ε
4
)ui0 ≥ (1 + ε

2

)
‖g[JW]‖1 ≥ ũg[W],i0

≥
(

1− ε

2

)
‖g[JW]‖1 ≥

(
1− ε

2
)(

1 + ε
4
)ui0 ≥ (1− ε)ui0 .

APPROX/RANDOM’16

25:16 Approximating Subadditive Hadamard Functions on Implicit Matrices

The first inequality holds for any 0 < ε ≤ 1, the second inequality holds by Theorem 13, the
third inequality holds since ũg[W],i0 is a

(
1± ε

2
)
-approximation of ‖g[JW]‖1, and the rest

hold for similar reasons. Hence, our algorithm returns a good approximation as long as BA1
succeeds. Noting that this happens except with inverse polylogarithmic probability gives the
lemma. J

I Lemma 23. If the input matrix has no α-heavy row, where α = 1 − ε
8 , then with high

probability Algorithm 1 correctly returns (−1, 0).

Proof. In this case, we have no α-heavy row for α = 1 − ε
8 , which implies that ui ≤

α‖g[W]‖1 =
(
1− ε

8
)
‖g[W]‖1 for each row i in the matrix g[W]. In this case, we show the

probability that Algorithm 1 returns a false positive is small. That is, with high probability,
in each iteration ` of the loop the algorithm sets b` = 2, and hence it returns (−1, 0). We
split this case into three additional disjoint and exhaustive subcases, defined as follows:
1. For each row i, we have ui ≤ 1

16‖g[W]‖1.
2. There exists a row i with ui > 1

16‖g[W]‖1 and ∀j 6= i we have uj ≤ ε
128ui.

3. There exist two distinct rows i, j where ui > 1
16‖g[W]‖1 and uj > ε

128ui.
We define X =

∑
i h

`
iui and Y =

∑
i h̄

`
iui, where h`i = H`(i) and h̄`i = H̄`(i). Hence,

we have X = ‖g[W1]‖1 and Y = ‖g[W0]‖1, and moreover X + Y = ‖g[W]‖1 (recall that
g[W1] = g[IT1A] and g[W0] = g[IT0A]).

In the first subcase, where there is no 1
16 -heavy row, we can apply Lemma 15 to the

vector (u1, . . . , un) to get that:

Pr
[(
X ≤ ‖g[W]‖1

4

)
∪
(
Y ≤ ‖g[W]‖1

4

)]
≤ 1

4 .

By definition of BA2, the following holds for y1 = BA2(A, T1) and y0 = BA2(A, T0)
except with probability 2δ2, where δ2 is the success probability of BA2:
‖g[W1]‖1

r(n) ≤ y1 ≤ r(n)‖g[W1]‖1 , ‖g[W0]‖1

r(n) ≤ y0 ≤ r(n)‖g[W0]‖1.

Hence, except with probability 1
4 + 2δ2, we have the following constraints on y0 and y1:

y0 ≤ r(n)Y ≤ r(n) · 3
4 · ‖g[W]‖1 ≤ 3r(n)X ≤ 3y1r

2(n) ≤ τ(n, ε) · y1, and

y1 ≤ r(n)X ≤ r(n) · 3
4 · ‖g[W]‖1 ≤ 3r(n)Y ≤ 3y0r

2(n) ≤ τ(n, ε) · y0,

in which case we set b` = 2. If δ2 is some small constant, say δ2 ≤ 1
32 , then for a fixed

iteration `, we set b` = 2 except with probability 5
16 . Now, applying the Chernoff bound, we

can show that the probability of having more than a 2
5 -fraction of iterations ` with b` 6= 2 is

at most an inverse polynomial. Hence, in this subcase the algorithm outputs (−1, 0), except
with inverse polynomial probability.

In the second subcase, we have ui > 1
16‖g[W]‖1 and, for all j 6= i, uj ≤ ε

128ui. Then,
since ui is not

(
1− ε

8
)
-heavy with respect to g[W], we have:

uj ≤
ε

128 · ui ≤
1
16(‖g[W]‖1 − ui).

Hence, we can apply Lemma 15 to the vector U = (u1, . . . , ui−1, 0, ui+1, . . . , un) (since
‖U‖1 = ‖g[W]‖1 − ui, and moreover each entry in U is at most 1

16‖U‖1). Letting X ′ =∑
j 6=i h

`
juj and Y ′ =

∑
j 6=i h̄

`
juj , we get that:

Pr
[(
X ′ ≤ 1

4 · ‖U‖1

)
∪
(
Y ′ ≤ 1

4 · ‖U‖1

)]
≤ 1

4 .

V. Braverman, A. Roytman, and G. Vorsanger 25:17

This implies that X ≥ X ′ > 1
4 (‖g[W]‖1−ui) ≥ ε

32‖g[W]‖1 and Y ≥ Y ′ > 1
4 (‖g[W]‖1−ui) ≥

ε
32‖g[W]‖1. Moreover, except with probability 2δ2, y1 and y0 are good approximations to
‖g[W1]‖1 and ‖g[W0]‖1, respectively. Thus, except with probability 1

4 + 2δ2, we have:

y0 ≤ r(n)Y ≤ r(n)
(

1− ε

32

)
‖g[W]‖1 ≤ r(n)

(
1− ε

32

)
· 32
ε
·X

≤ 32r2(n)
ε

· y1 ≤ τ(n, ε) · y1, and

y1 ≤ r(n)X ≤ r(n)
(

1− ε

32

)
‖g[W]‖1 ≤ r(n)

(
1− ε

32

)
· 32
ε
· Y

≤ 32r2(n)
ε

· y0 ≤ τ(n, ε) · y0.

This implies that, for a fixed iteration `, the algorithm sets b` = 2 except with probability
1
4 + 2δ2. Applying the Chernoff bound again, we see that the probability of having more
than a 2

5 -fraction of iterations ` with b` 6= 2 is at most an inverse polynomial. Thus, in this
subcase, the algorithm outputs (−1, 0) except with inverse polynomial probability.

We now consider the last subcase, where ui > 1
16‖g[W]‖1 and there exists j 6= i such

that uj > ε
128ui. Note that the probability that i and j get mapped to different matrices is

given by Pr[H`(i) 6= H`(j)] = 1
2 . Assume without loss of generality that H`(j) = 1 (the case

that H`(j) = 0 is symmetric). In the event that i and j get mapped to different matrices
and y1, y0 are good approximations to ‖g[W1]‖1, ‖g[W0]‖1 respectively, which happens with
probability at least 1

2 − 2δ2, we have:

y1 ≥
X

r(n) ≥
uj
r(n) ≥

ε

128r(n) · ui ≥
ε

128r(n) ·
1
16 · ‖g[W]‖1

≥ ε

2048r(n) · Y ≥
ε

2048r2(n) · y0 =⇒ y0 ≤
2048r2(n)

ε
· y1 ≤ τ(n, ε) · y1, and

y0 ≥
Y

r(n) ≥
ui
r(n) ≥

ε

128r(n) · ui ≥
ε

128r(n) ·
1
16 · ‖g[W]‖1

≥ ε

2048r(n) ·X ≥
ε

2048r2(n) · y1 =⇒ y1 ≤
2048r2(n)

ε
· y0 ≤ τ(n, ε) · y0.

Thus, except with probability at most 1
2 + 2δ2, the algorithm sets b` = 2 for each iteration `.

We apply the Chernoff bound again to get that b` = 2 for at least a 2
5 -fraction of iterations,

except with inverse polynomial probability. Hence, the algorithm outputs (−1, 0) except
with inverse polynomial probability. J

I Lemma 24. If the matrix g[IHA] does not have a key row but has an α-heavy row i0,
where α = 1− ε

8 , then Algorithm 1 either returns (−1, 0) or returns a (1± ε)-approximation
of uIHA,i0 and the corresponding row i0 with high probability.

Proof. We know there is an α-heavy row, but not a key row. Note that there cannot be
more than one α-heavy row for α = 1− ε

8 . If the algorithm returns (−1, 0), then the lemma
holds (note the algorithm is allowed to return (−1, 0) since there is no key row). If the
algorithm returns a pair of the form (i, BA1(A,H)), we know from Theorem 13 that the
approximation of the weight of the α-heavy row is a (1± ε)-approximation of ‖g[W]‖1 as
long as BA1 succeeds, which happens except with inverse polylogarithmic probability (the
argument that the approximation is good follows similarly as in Lemma 22). We need only
argue that we return the correct index, i0. Again, the argument follows similarly as in
Lemma 22. In particular, if H`(i) = b` for a fixed iteration `, then at least one of y0, y1 is

APPROX/RANDOM’16

25:18 Approximating Subadditive Hadamard Functions on Implicit Matrices

a bad approximation or H`(i0) = H`(i), which happens with probability at most 2δ2 + 1
2

(where δ2 is the failure probability of BA2). We then apply the Chernoff bound, similarly as
before. J

With Lemmas 22, 23, and 24, we are done proving that Algorithm 1 fits the description
of Definition 14, except with inverse polylogarithmic probability.

C Recursive Sketches

In this section, we give relevant notation and describe the Recursive Sum algorithm found
in [11]. We first give some definitions which will be useful when describing the algorithm,
the first of which will help us define a cover.

I Definition 25. Let Ω be a finite set of real numbers. For any positive integer t, we define
Pairst to be the set of all sets of pairs of the form:

{(i1, w1), . . . , (it, wt)}, where 1 ≤ i1 < i2 < · · · < it ≤ n, ij ∈ Z, wj ∈ Ω.

We also further define

Pairs = ∅ ∪
(

n⋃
t=1

Pairst

)
.

We now provide the definition of a cover.

I Definition 26. We say a non-empty set Q ∈ Pairst for some t ∈ [n] (i.e., Q =
{(i1, w1), . . . , (it, wt)}) is an (α, ε)-cover with respect to the vector V = (v1, . . . , vn) (where
each vi ≥ 0) if the following is true:
1. ∀j ∈ [t]: (1− ε)vij ≤ wj ≤ (1 + ε)vij .
2. ∀i ∈ [n]: If vi is α-heavy then ∃j ∈ [t] such that ij = i (here, α-heavy means vi ≥ α

∑
j vj).

We also define the following index set, and some other notation that is useful for the
algorithm.

I Definition 27. For a non-empty set Q ∈ Pairs, we define Ind(Q) to be the set of indices
of Q. More formally, for Q ∈ Pairs, we let Ind(Q) = {i : ∃j ≤ t such that, for the jth
pair (ij , wj) of Q, we have ij = i}. For i ∈ Ind(Q), we denote by wQ(i) the corresponding
approximation. More formally, if i = ij , then wQ(i) = wj . Note that, since ij < ij+1, this is
a valid definition. For completeness, we let wQ(i) = 0 for i /∈ Ind(Q) and Ind(∅) = ∅.

I Definition 28. We say H : [n]→ {0, 1} is a pairwise independent zero-one vector if the
zero-one entries are uniformly distributed and pairwise independent. In particular, we have
Pr[H(i) = 0] = Pr[H(i) = 1] = 1

2 , and moreover the entries are pairwise independent.

Using notation from [11], for a vector V = (v1, . . . , vn), we let |V | denote the L1 norm
of V , |V | =

∑n
i=1 vi. Note that the product of two pairwise independent zero-one vectors

H1 and H2 is simply given by the Hadamard product. Moreover, we let F0 denote the 0th
frequency moment, so that F0(V) counts the number of distinct elements in the vector V . In
the following algorithm, we let HH(D,α, ε, δ) be an algorithm that produces an (α, ε)-cover
with respect to the vector V = V (D) with probability at least 1− δ (where V (D) is a vector
of dimensionality n defined by the stream D). For some integer parameter φ, let H1, . . . ,Hφ

be i.i.d. random vectors with zero-one entries that are uniformly distributed and pairwise
independent. We define vectors Vj for 0 ≤ j ≤ φ via the following iterative process: V0 = V ,

V. Braverman, A. Roytman, and G. Vorsanger 25:19

Algorithm 3 Recursive Sum (D, ε)

1. Generate φ = O(log(n)) pairwise independent zero-one vectors H1, . . . ,Hφ. Denote by
Dj the stream DH1H2···Hφ

2. Compute, in parallel, Qj = HH(Dj ,
ε2

φ3 , ε,
1
φ)

3. If F0(Vφ) > 1010 then output 0 and stop. Otherwise, compute precisely Yφ = |Vφ|
4. For each j = φ− 1, . . . , 0, compute

Yj = 2Yj+1 −
∑

i∈Ind(Qj)

(1− 2hji)wQj (i)

5. Output Y0

and Vj = HAD(Vj−1, Hj) for j = 1, . . . , φ. We denote by hji the ith entry of Hj . For a
function H : [n]→ {0, 1}, define DH to be a substream of the stream D that contains only
elements i ∈ D such that H(i) = 1.

We are now ready to define the Recursive Sum algorithm (Algorithm 6 from [11]).
Theorem 4.1 from [11]:

I Theorem 29. Algorithm 3 computes a (1±ε)-approximation of |V | and errs with probability
at most 0.3. The algorithm uses O(log(n)µ(n, ε2

log3(n) , ε,
1

log(n))) bits of memory, where µ is
the space required by the above algorithm HH.

APPROX/RANDOM’16

Local Convergence and Stability of Tight
Bridge-Addable Graph Classes
Guillaume Chapuy∗1 and Guillem Perarnau2

1 IRIF, UMR CNRS 8243, Université Paris-Diderot, France; and
CRM, UMI CNRS 3457, Université de Montréal, Canada
guillaume.chapuy@liafa.univ-paris-diderot.fr

2 School of Mathematics, University of Birmingham, Birmingham, U.K.
g.perarnau@bham.ac.uk

Abstract
A class of graphs is bridge-addable if given a graph G in the class, any graph obtained by adding
an edge between two connected components of G is also in the class. The authors recently proved
a conjecture of McDiarmid, Steger, and Welsh stating that if G is bridge-addable and Gn is a
uniform n-vertex graph from G, then Gn is connected with probability at least (1 + o(1))e−1/2.
The constant e−1/2 is best possible since it is reached for the class of forests.

In this paper we prove a form of uniqueness in this statement: if G is a bridge-addable class
and the random graph Gn is connected with probability close to e−1/2, then Gn is asymptotically
close to a uniform forest in some “local” sense. For example, if the probability converges to e−1/2,
then Gn converges for the Benjamini-Schramm topology, to the uniform infinite random forest
F∞. This result is reminiscent of so-called “stability results” in extremal graph theory, with the
difference that here the “stable” extremum is not a graph but a graph class.

1998 ACM Subject Classification G.2.1 Combinatorics, G.2.2 Graph Theory

Keywords and phrases bridge-addable classes, random graphs, stability, local convergence, ran-
dom forests.

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2016.26

1 Introduction and Main Results

In this paper graphs are simple. A graph is labeled if its vertex set is of the form [1..n] for some
n ≥ 1. An unlabeled graph is an equivalence class of labeled graphs by relabeling. Unless
mentioned otherwise, graphs are labeled. A class of (labeled) graphs G is bridge-addable if
given a graph G in the class, and an edge e of G whose endpoints belong to two distinct
connected components, then G ∪ {e} is also in the class. McDiarmid, Steger and Welsh [11]
conjectured that every bridge-addable class contains at least a proportion (1 + o(1))e−1/2

of connected graphs. This has recently been proved by the authors. In the next statement
and later, we denote by Gn the set of graphs in G with n vertices, and Gn a uniform random
element of Gn.

I Theorem 1 (Chapuy, Perarnau [4]). For every ε > 0, there exists an n0 such that for every
bridge-addable class G and every n ≥ n0, we have

Pr (Gn is connected) ≥ (1− ε)e−1/2. (1)

∗ G.C. acknowledges support from grant ANR-12-JS02-001-01 “Cartaplus” and from the City of Paris,
program “Émergences 2013”.

© Guillaume Chapuy and Guillem Perarnau;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016).
Editors: Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans; Article No. 26; pp. 26:1–26:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.26
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

26:2 Local Convergence and Stability of Tight Bridge-Addable Graph Classes

If G is the class of all forests (which is bridge-addable), then Theorem 1 is asymptotically
tight, since it is shown in [12] that if Fn is a uniform random forest on n vertices, then as n
tends to infinity:

Pr (Fn is connected) −→ e−1/2. (2)

The aim of this paper is to show that, in some appropriate sense, this class is the only one for
which Theorem 1 is asymptotically tight. More precisely, we will show that any addable class
of graphs that comes close to achieving the constant e−1/2 is “close” to a uniform random
forest in some local sense.

I Definition 2. For any ζ > 0, we say that a bridge-addable class of graphs G is ζ-tight with
respect to connectivity (or simply ζ-tight) if there exists an n0 such that for every n ≥ n0 we
have

Pr (Gn is connected) ≤ (1 + ζ)e−1/2 ,

where we recall that Gn is chosen uniformly at random from Gn.

In order to state our results, we first need to introduce some notation and terminology. If
H is a graph we let |H| be its number of vertices. We denote by U the set of unlabeled,
unrooted trees and by T the set of unlabeled, rooted trees, i.e. trees with a marked vertex
called the root. For every tree U ∈ U , we denote by Autu(U) the number of automorphisms
of U , and for every rooted tree T ∈ T , we denote by Autr(T) the number of automorphisms
of T that fix its root. Moreover given k trees U1, . . . , Uk in U , we denote by Autu(U1, . . . , Uk)
the number of automorphisms of the forest formed by disjoint copies of U1, . . . , Uk.

Given a graph H, we let Small(H) denote the graph formed by all the components of
H that are not the largest one (in case of a tie, we say that the largest component of the
graph is the one with the largest vertex label among all candidates). In what follows, we
will always see Small(H) as an unlabeled graph. Given a graph G and a rooted tree T ∈ T ,
we let αG(T) be the number of pendant copies of the tree T in G. More precisely, αG(T) is
the number of vertices v of G having the following property: there is at least one cut-edge e
incident to v, and if we remove the such cut-edge that separates v from the largest possible
component, the vertex v lies in a component of the graph that is a tree, rooted at v, which is
isomorphic to T . The following is classical:

I Theorem 3 (see [5]). Let Fn be a uniform random forest with n vertices. Then for any
fixed unlabeled unrooted forest f we have as n goes to infinity:

Pr
(
Small(Fn) ≡ f

)
−→ p∞(f) := e−1/2 e−|f |

Autu(f) , (3)

where ≡ denotes unlabeled graph isomorphism. Moreover, p∞ is a probability distribution on
the set of unlabeled unrooted forests.

For any fixed rooted tree T ∈ T we have as n goes to infinity:
αFn(T)
n

(p)−→ a∞(T) := e−|T |

Autr(T) , (4)

where (p) indicates convergence in probability.

Our main result says that, for bridge-addable classes, if we have an approximate version
of (2), then we also have an approximate version of (3) and (4). In the next statement and
everywhere in the paper, the constants ε, η, ρ, ν, ζ are implicitly assumed (in addition to other
written quantifications or assumptions) to be positive and smaller than c where c is a small,
absolute, constant.

G. Chapuy and G. Perarnau 26:3

I Theorem 4 (Main result). For every ε, η > 0, there exists a ζ > 0 and an n0 such that for
every ζ-tight bridge-addable class G and n ≥ n0, the following holds:
(i) The small components of Gn are close to those of a large random forest, in the sense

that for every unrooted unlabeled forest f we have:∣∣∣Pr
(
Small(Gn) ≡ f

)
− p∞(f)

∣∣∣ < ε.

(ii) The statistics of pendant trees in Gn are close to those of a large random forest, in the
sense that:

Pr
(
∀T ∈ T :

∣∣∣∣αGn(T)
n

− a∞(T)
∣∣∣∣ < η

)
> 1− ε.

I Remark. It is easy to see (up to adapting the dependence of ζ in ε, η) that we can replace
i) by:
(i’) The total variation distance between the law of Small(Gn) and the probability law p∞

is at most ε.
Similarly we could replace ii) by:
(ii’) The total variation distance between the measure αGn(·)/n and the probability law

a∞(·) (both are measures on T) is at most η with probability at least 1− ε.

I Remark. Our main result, Theorem 4, can be viewed both as a unicity result (since it states
that in the limit, and through the lens of local observables, the class of forests is the only
one to reach the optimum value e−1/2) and as a stability result (since it also states that the
only classes than come close to the extremal value e−1/2 are close to forests, again through
local observables of random graphs). Here we use the terminology “stability result” on
purpose, by analogy with the field of extremal graph theory. Indeed the study of graphs that
come close to achieving extremal properties is a classical topic in this field. Stability results,
pioneered in the papers [8, 7, 6, 13], show that in many cases, the graphs that are close to
being extremal have a structure close to the actual extremal graphs, in some quantifiable
sense. Our main result suggests that the question of stability of extremal graph classes, with
respect to appropriate graph limit topologies (here, local convergence), should be further
examined.

Before going into the proof of the theorem, let us look at some closely related statements
and corollaries. Call a bridge-addable class G tight is it is ζ-tight for any ζ, that is to say:

Pr(Gn is connected)→ e−1/2.

Then we have the following consequence of Theorem 4. Note that it is weaker (it is a unicity,
but not a stability result).

I Theorem 5 (Convergence of local statistics in tight graph classes). Let G be a tight bridge-
addable class of graphs. Then, when n goes to infinity, Small(Gn) converges in total variation
distance to the probability law p∞(.) given by (3), that is:

dTV
(
Small(Gn), p∞

)
−→ 0.

Moreover, for any rooted tree T ∈ T , the proportion αGn (T)
n of local pendant copies of the

tree T converges in probability to the deterministic constant a∞(T) given by (4):

αGn(T)
n

(p)−→ a∞(T).

APPROX/RANDOM’16

26:4 Local Convergence and Stability of Tight Bridge-Addable Graph Classes

Theorem 5 states that, from the point of view of statistics of pendant trees and of non-largest
components, tight classes are indistinguishable from random forests in the limit. Let us
develop in this direction. Let Vn be a uniform random vertex in Gn. Then for a given T ∈ T ,
conditionally to Gn, the quantity αGn(T)/n is the probability that from Vn hangs a copy of
the tree T . Readers familiar with the Benjamini-Schramm (BS) convergence of graphs [3]
will note the similarity with this notion. If (G, x) and (H, y) are two rooted graphs, define
the BS-distance dBS((G, x); (H, y)) as 2−K where K is the largest integer such that the balls
of radius K in (G, x) and (H, y) are isomorphic (as rooted graphs). This distance (also called
the ball distance, see [10]) defines a topology (in fact, a Polish space) on the set of rooted
graphs, and enables us to talk about convergence in distribution of random rooted graphs, in
the BS-sense. An equivalent definition of this convergence is the following: a sequence of
random rooted graphs (Hn, xn) converges to (H∞, x∞) if and only if for any rooted graph
(H,x) of radius r, the probability that the ball of radius r in (Hn, xn) is isomorphic to (H,x)
converges to the probability of the same event in (H∞, x∞).

It is easy to see (for example using generating functions, see [5]) that if Fn is a uniform
random forest on n vertices rooted at a random uniform vertex Vn, then

(Fn, Vn)→ (F∞, V∞)

in distribution in the BS-sense, where (F∞, V∞) is the “infinite uniform random forest”.
Namely, (F∞, V∞) can be constructed as follows: consider a semi-infinite path, starting
at a vertex V∞, and identify each vertex of this path with the root of an independent
Galton-Watson tree of offspring distribution Poisson(1).

In our context, passing from pendant trees to balls is an easy task, and one can deduce
the following from Theorem 5.

I Corollary 6 (Local convergence of tight graph classes). Let G be a tight bridge-addable graph
class. Let Gn be a uniform random graph from Gn and let Vn be a uniform random vertex of
Gn. Then (Gn, Vn) converges to (F∞, V∞) in distribution in the Benjamini-Schramm sense.

The purpose of stating Corollary 6 is to illustrate the link between our local observables
and the BS topology, but we could have stated stronger intermediate results. For example
Corollary 6 uses only the second part of Theorem 5, and says nothing about small connected
components. In fact, it is true that for tight classes, the pair ((Gn, Vn), Small(Gn)) converges
in distribution to (F∞, V∞)⊗ p∞ for the product of the BS and the total variation topologies.
This follows easily from our proofs.

Also note the last corollary (and the other statements of the same kind that have just
mentioned) is of a much weaker nature than Theorem 5. Indeed, Theorem 5 asserts that with
high probability, conditional on the random graph Gn, the graph Gn is similar to a random
forest when viewed from a random vertex, whereas Corollary 6 is an unconditioned statement
that averages both over the graph Gn and the vertex Vn. It is possible to formulate a version
Theorem 5 in terms of the BS convergence as follows. Let µGn be the law, conditional
on Gn, of the random rooted graph (Gn, Vn) where Vn is a uniform vertex of Gn (then
µGn is a random probability measure on the set of rooted graphs). Then it follows easily
from Theorem 5 that if G is a tight bridge-addable and n is large enough, µGn converges
in probability to the deterministic probability measure µ∞, defined as the law of (F∞, V∞).
The underlying distance for the convergence in probability is the Skorokhod distance induced
by the BS distance on the set of probability measures on rooted graphs. We will not give
more details on these questions, since the related considerations of convergence of probability
measures would lead us too far from our main prospect.

G. Chapuy and G. Perarnau 26:5

I Remark. Our main theorem asserts that tight bridge addable classes are “locally similar”
to random forests in some precise sense. However, they can be very different from some
other perspective. For example, consider the set F̃n of graphs on [1..n] defined as follows: F̃n
contains the graph in which all edges linking vertices in [1..dn2/3e] are present and all other
vertices are isolated, and F̃n is the smallest bridge-addable class containing this graph. In
other words, F̃n is the set of graphs inducing a clique on [1..dn2/3e], and such that contracting
this clique gives a forest. Then F̃ = ∪n≥1F̃n is a bridge-addable class, and it is easy to see
that it is tight, so our main results apply. However one can argue that the random graph
F̃n in F̃n is very different from a random forest in several senses: first, it has Θ(n4/3) edges
whereas a forest has linearly many. Second, with probability 1 − O(n−1/3) an edge taken
uniformly at random from F̃n belongs to a clique of size dn2/3e, which is very different from
what happens in a forest. This last point does not contradict our results, but only recalls
that it is important here to think of locality as a measure of what happens around “typical
vertices” and not “typical edges”.
I Remark. One can modify the example of the previous remark by replacing the clique of
size dn2/3e by a path of length dn2/3e. One thus obtains a tight bridge-addable class of
graphs, in which the diameter of the largest component is of order Θ(n2/3), which is again
very different from a random forest in which the giant tree has diameter Θ(

√
n) with high

probability. In both examples, the function n2/3 plays no special role and may be replaced
by n1−ε for any ε > 0.

We conclude this list of results with a simpler statement, that does not require the full
strength of our main theorems (it is a relatively easy consequence of the results of [4]).

I Theorem 7. Let G be a tight bridge-addable class and Gn a uniform random graph from
Gn. Then for any k ≥ 0, we have

Pr (Gn has k + 1 connected components) −→ e−1/2 2−k

k! .

In other words, the number of connected components of Gn converges in distribution to
Poisson(1/2).

Structure of this abstract. In this abstract, we will present the main steps of the proof of
Theorem 4, refereeing the reader to the full version [5] for complete proofs, including several
easy results on enumeration of forests and on random forests.

2 Theorem 4 for bridge-addable classes of forests

2.1 Number of components in bridge-addable graph classes
We first introduce some notation, following [4]. For a bridge-addable class of graphs G and
for i ≥ 1, we note G(i)

n the set of n-vertex graphs in G having i connected components. An
elegant double-counting argument going back to [11] asserts that for all i ≥ 1, and n ≥ 1 we
have:

i ·
∣∣∣G(i+1)
n

∣∣∣ ≤ ∣∣∣G(i)
n

∣∣∣ . (5)

This statement follows by double-counting the edges of an auxiliary bipartite graph on the
vertex set G(i)

n] G(i+1)
n , where two graphs G,H are linked by an edge if and only if one can

be obtained from the other by adding a bridge: on the one hand, an element of G(i+1)
n has

APPROX/RANDOM’16

26:6 Local Convergence and Stability of Tight Bridge-Addable Graph Classes

degree at least i(n− i) in this auxiliary graph, since G is bridge-addable; on the other hand,
an element of G(i)

n has degree at most (n− i) (which is the maximum number of cut-edges in a
graph with i connected components and n vertices). Thus (5) follows. The main achievement
of the paper [4] was to improve this bound by roughly a factor 1

2 , asymptotically.

I Lemma 8 (Proposition 4 in [4]). For every η and every k there exists an n0 such that for
every bridge-addable class G, every n ≥ n0 and every i ≤ k, one has:

i|G(i+1)
n | ≤

(
1
2 + η

)
|G(i)
n | . (6)

The following lemma, which follows relatively easily from Theorem 1, provides a converse
inequality to (6) for ζ-tight classes. Note that it implies Theorem 7.

I Lemma 9. For every η and every k there exists a ζ and an n0 such that for every ζ-tight
bridge-addable class G, every n ≥ n0 and every i ≤ k, one has(

1
2 − η

)
|G(i)
n | ≤ i|G(i+1)

n | ≤
(

1
2 + η

)
|G(i)
n | .

2.2 Partitioning the graph class into highly structured subclasses
Balister, Bollobás and Gerke [2, Lemma 2.1] proposed an elegant construction that reduces
the statement of Theorem 1 to the case where all graphs in G are forests. As we will see in
the next section, their idea can be adapted to the present context. We will therefore start by
proving Theorem 4 for classes G composed by forests:

Throughout the rest of Section 2 we will assume that all graphs in G are forests.

We will first focus on the graphs in Gn that have either one or two connected components, and,
in view of this, we use the shorter notation An := G(1)

n and Bn := G(2)
n . We now introduce

a partitioning of An and Bn in terms of some local statistics, which requires the following
set-up, that is modeled on [4, proof of Prop 3]. Here ε and k∗ are two constants, whose value
may vary along the course of the paper, that will in fine be chosen very small and very large,
respectively:
Uε is the set of unrooted trees of order at most dε−1e: Uε := {U ∈ U , |U | ≤ dε−1e}.
T∗ is the set of rooted trees of order at most k∗: T∗ := {T ∈ T , |T | ≤ k∗}.

More generally for any given ` ≥ 1 we will use the notation T≤`,U≤` to denote the set of
rooted (resp., unrooted) trees of order at most `, so that Uε = U≤dε−1e and T∗ = T≤k∗ .

Roughly speaking, we will use elements of Uε and T∗ as ”test graphs” to measure the
shape of small components of Gn and the number of pending subtrees of Gn, respectively.
For ` ≥ 1 we write E` = {0, . . . , n− 1}T≤` , and we will be particularly concerned with the set
E∗ := Ek∗ , namely the set of integer vectors with one coordinate for each “test tree” in T∗.
For α ∈ E∗ and w ≥ 1 (width) we define the box [α]w⊂ E∗ and its q-neighborhood [α]wq as
the parallelepipeds:

[α]w := {α′ ∈ E∗ : ∀T ∈ T∗, α(T) ≤ α′(T) < α(T) + w} ,
[α]wq := {α′ ∈ E∗ : ∀T ∈ T∗, α(T)− q ≤ α′(T) < α(T) + w + q} .

Finally, if Sn is a set of graphs (where the letter S could be A, B, and also carry other
decorations), we let Sn,[α]w be the set of graphs G in S such that αG(T) ∈ [α]w for all T ∈ T∗,
and we use the same notation with [α]wq . Also, for every forest {U1, . . . , Uk}, we denote by
Sn{U1,...,Uk} the set of graphs G in Sn such that Small(G) is isomorphic to {U1, . . . Uk}. In
the case of graphs with two connected components, we just use the notation SUn for S{U}n ,
where U ∈ U .

G. Chapuy and G. Perarnau 26:7

2.3 Good and bad boxes
The main concern of the paper [4] was to obtain a version of the double-counting argument
of Section 2.1 that is local in the sense that it relates cardinalities of graphs corresponding to
fixed boxes. Given ε (hence Uε) and T∗, [4, Lemma 16] asserts that there exist integersK,w, n0
(independent of G) and a set of K disjoint boxes of width w in E∗, noted {[βi]w, 1 ≤ i ≤ K},
such that for n ≥ n0 and U ∈ Uε we have:

K∑
i=1
|BUn,[βi]w | ≥ (1− ε)|BUn |, (7)

and such that for each 1 ≤ i 6= j ≤ K, [βi]wq ∩ [βj]wq = ∅, where q = qε := dε−1e. In other
words, these boxes are 2q-apart from each other, and yet capture a proportion at least (1− ε)
of the set BUn for each U ∈ Uε. We will also use the fact (implicit in [4]) that the [βi]wq
partition the set E∗.

In the present paper, one of the main tasks consists in showing that the global estimates
obtained in [4] can be “lowered” down to boxes for ζ-tight classes. For γ, ε > 0, we say that
a box [α]w is (γ, ε)-good (or simply good) if the two following conditions hold:
(i) |Bn,[α]w | ≥

(1
2 − γ

)
· |An,[α]wq |

(ii)
∑
U 6∈Uε |B

U
n,[α]w | < γ|Bn,[α]w | .

Note that Property i) is a local version of the first inequality of Lemma 9, while Property ii)
ensures that the number of graphs in sets that we do not control, is small (as it happens in a
global scale). Hence good boxes are, in some sense, boxes that realize the tightness property
locally. We will be interested in the boxes among the [βi] that are (γ, ε)-good:

Goodγ,ε := {i ∈ [1..K] : [βi] is (γ, ε)-good} .

An important step in the proof of Theorem 4 is the following result:

I Lemma 10. For every γ and every η, if ε < ε0(γ, η) and if k∗ ≥ k0(ε), then there exist ζ
and an n0 such that for every ζ-tight bridge-addable class G and every n ≥ n0, one has∑

i/∈Goodγ,ε |An,[βi]wq |
|An|

< η ,

∑
i/∈Goodγ,ε |Bn,[βi]w |

|Bn|
< η .

From this lemma, one deduces, after a lengthy and technical proof, the following result
(which is a first version of Theorem 4 for subclasses of forests and for f being a tree). We
define the set of vectors in E` that are δ-close from the distribution p∞ (recall that for T ∈ T ,
p∞(T) = e−|T |

Autr(T)),

Ξ(δ, `) =
{
β ∈ E` :

∣∣∣∣β(T)
n
− p∞(T)

∣∣∣∣ < δ, for every T ∈ T≤`
}
.

I Proposition 11. For every θ1 and every U ∈ U , there exist a ζ > 0 and an n0 such that
for every ζ-tight class G of forests and every n ≥ n0, one has∣∣∣∣∣

∣∣BUn ∣∣
|Gn|

− e−1/2 e−|U |

Autu(U)

∣∣∣∣∣ < θ1 .

Moreover, for every θ1, every δ, every ` and every U ∈ U , there exist a ζ > 0 and an n0 such
that for every ζ-tight class G of forests and every n ≥ n0, one has∣∣∣∣∣∣

∑
β∈Ξ(δ,`)

∣∣∣BUn,β∣∣∣
|BUn |

− 1

∣∣∣∣∣∣ < θ1 .

APPROX/RANDOM’16

26:8 Local Convergence and Stability of Tight Bridge-Addable Graph Classes

Main ideas of the proof. The proof itself is long (see [5]). The main idea is to go back to
the optimization problem of [4] and show that, in order for the class to be ζ-tight, one has
to be close to the extremal point of that problem. Roughly speaking, [4] provides some
inequalities between the local ratios |Bn,[α]w |/|An,[α]wq |, where [α]w is a box, in terms of an
optimization problem for the quantities |BUn,[α]w |/|An,[α]wq | for U ∈ Uε. By the preceding
lemma, if a class is ζ-tight for ζ small enough, we can almost cover the space E∗ with boxes
that capture most of the mass of the sets An and Bn, and such that each box is good. By
Property i) of good boxes, a good box is close to reaching the ratio e−1/2 which is the
optimum in the optimization problem of [4]. The main task of the proof is then to go back
to the optimization problem of [4] and quantify the stability of its extrema. After a tedious
technical work, one finds that, provided ε, k∗ are respectively small and large enough, the
optimization problem is sufficiently stable to conclude that most of the mass in the sets BUn
is concentrated around the unique extreme of the optimization problem. More precisely,
one finds that the set BUn has most of its mass in subsets BUn,[α]w such that α(T) is close
to a∞(T) for each T ∈ T∗, and that for such subsets the ratios |BUn,[α]w |/|An,[α]wq | are close
to e−1/2 e−|U|

Autu(U) . The result can then be extended to the ratios |BUn |/|An| by an averaging
argument, and to the ratios |BUn |/|Gn| since for ζ-tight classes |An|/|Gn| is close to e−1/2.

We refer the reader again to the full version of the article [5] for the many subtleties
hidden in this seemingly simple proof by tightness arguments. J

The proof of the previous proposition, although it involves a lot of work, is the part of
the present paper that is conceptually more relying on [4]. The next result, that is equivalent
to our main theorem (for classes of forests) relies on arguments of a different nature:

I Theorem 12. For every k ≥ 1, every θk and every U1, . . . , Uk ∈ U , there exist a ζ > 0
and an n0 such that for every ζ-tight class G of forests and every n ≥ n0, one has∣∣∣∣∣∣

∣∣∣Gk+1,{U1,...,Uk}
n

∣∣∣
|Gn|

− e−1/2 e−
∑k

i=1
|Ui|

Autu(U1, . . . , Uk)

∣∣∣∣∣∣ < θk . (8)

Moreover, for every k, ` ≥ 1, every θk, δ and every U1, . . . , Uk ∈ U , there exist a ζ > 0 and
an n0 such that for every ζ-tight class G of forests and every n ≥ n0, one has∣∣∣∣∣∣

∑
β∈Ξ(δ,`)

∣∣∣Gk+1,{U1,...,Uk}
n,β

∣∣∣∣∣∣Gk+1,{U1,...,Uk}
n

∣∣∣ − 1

∣∣∣∣∣∣ < θk . (9)

Main ideas of the proof. The proof uses induction on k, with the base case given by Pro-
position 11. The main idea is that if G is bridge-addable and k ≥ 2, and if {U1, . . . , Uk−1} is
a forest composed by k trees on a subset W of [1..n], we can form a bridge-addable class by
looking at all graphs G in Gn such that W induces a union of connected components of G,
given by {U1, . . . , Uk−1}. Roughly speaking, connected graphs in this new class correspond
to graphs in G(k)

n while graphs with two connected components correspond to graphs in
G(k+1)
n . Therefore, by applying Proposition 11 to this class, we may obtain information on

the ratios of cardinalities of these sets. Moreover, the induction hypothesis ensures that we
have a very precise structural information on the typical graphs in G(k)

n . The full proof is
given in [5]. J

The last theorem implies Theorem 4 for bridge-addable classes of forests. Indeed, the
first part of it implies i): by selecting ` large enough, we use (8) to control

∣∣∣Gk+1,{U1,...,Uk}
n

∣∣∣

G. Chapuy and G. Perarnau 26:9

for all k ≤ ` and U1, . . . , Uk ∈ T≤`, and since ` is large, the set Gk+1,{U1,...,Uk}
n is of negligible

size for the rest for forest with more than ` vertices or including some tree with order larger
than `. In a similar way, we can use (9) to prove the statement ii).

3 From classes of forests to classes of graphs

In this section we extend the results of the previous section (where we obtained Theorem 4
for classes of forests) to general bridge-addable classes, concluding the proof of Theorem 4.

The method of proof of Theorem 12 will allow us to derive a statement about removable
edges which will be crucial to transfer the result from forest to general classes. We say that
an edge in a graph G ∈ G is removable if the graph G′ = G \ e is in G. For a class H ⊆ G and
a rooted tree T ∈ T , we define p(H, T) to be the probability that given a uniform random
graph H ∈ H, and a uniform random pendant copy of T in H, the graph H ′ obtained by
deleting the edge that connects the pendant copy of T to the rest of the graph belongs to
G (and not only to H). In other words, p(H, T) is the average over all graphs in H of the
proportion of pendant copies of T that are attached using a removable edge. This notion
is inspired by bridge-alterable classes, for which p(H, T) = 1, for every H ⊆ G and every
T ∈ T [1, 9]. We do an slight abuse of notation by writing p(G,T) for p({G}, T), for each
G ∈ G. Also, in the cases where p(G,T) is not well-defined (that is, if G has no pendant
copy of T), we interpret the probability as 1.

The next theorem says that ζ-tight bridge-addable classes of graphs (not only forests)
are essentially also bridge-alterable.

I Theorem 13. For every θ, there exist a ζ, an n0 and an ` such that for every ζ-tight
bridge-addable class G and n ≥ n0, we have that if Gn is a graph chosen uniformly at random
in Gn, and v is a vertex chosen uniformly at random in Gn, the following holds with probability
at least 1− θ: v is connected to Gn through a removable edge and the corresponding pendant
tree has order at most `. In particular, p(Gn, T) ≥ 1− θ, for every rooted tree T ∈ T≤`.

We first sketch how the theorem is proved for classes of forests. Fix k ≥ 1 and U1, . . . , Uk ∈ U .
Let T1, . . . , Ts be the possible rooted versions of Uk. By (8), the ratio between |Gk+1,{U1,...,Uk}

n |
and |Gk,{U1,...,Uk−1}

n | is essentially fixed. Moreover, by (9), we know that a typical graph
G ∈ Gk,{U1,...,Uk−1}

n has
∑s
i=1 α

G(Ti) ≈
∑s
i=1

e−|Ti|

Autr(Ti) = |Uk|e−|Uk|
Autu(Uk) pendant trees such that, if

the edge from where they hang is removable, then they give rise to a graph in Gk+1,{U1,...,Uk}
n .

It turns out that the only way we can realize the desired ratio, is by having almost every
such edge removable. Since the choice of k and U1, . . . , Uk is arbitrary, we are done.

To transfer the result of Theorem 13 from classes of forests to classes of graphs, we use a
nice argument introduced in [2]. Every graph admits a unique decomposition into 2-blocks,
joined by edges in a tree-like fashion. Consider the partition of Gn into subclasses H1,H2, . . .

such that every two graphs H and H ′ in the same subclass, have the same 2-blocks. Since
every subclass Hi is bridge-addable, one can use an averaging argument to show that if G is
ζ-tight, then there exists ζ ′ such that if n is large enough, then at least (1− ζ ′)|Gn| graphs
are in subclasses Hi that are ζ ′-tight. Let H be one of such ζ ′-tight subclasses of Gn and let
FH be the class of forests obtained by selecting the same spanning tree for each 2-block of
the graphs in H. Since FH is also a ζ ′-tight bridge-addable class of forests, we can apply
Theorem 13 to it, and the conclusion of the theorem naturally transfers from FH to H. Since
most of the graphs are in ζ ′-tight bridge-addable classes, the statement of Theorem 13 also
holds for general classes of graphs. The full proof is presented in [5].

APPROX/RANDOM’16

26:10 Local Convergence and Stability of Tight Bridge-Addable Graph Classes

Our next goal is to show that not only the pendant graphs obtained when deleting a
removable edge have bounded size, as Theorem 13 ensures, but in fact, they are pendant
trees. For every class Gn and every t ≥ 1, given Gn chosen uniformly at random from Gn and
v chosen uniformly at random from the vertices of Gn, let q(Gn, t) be the probability that v
is connected to Gn via a removable edge and the corresponding pendant graph is a tree of
order at most t. Observe that if G is subclass of forests, Theorem 13 implies that for every
θ > 0, and under some technical conditions, there exists some ` such that q(Gn, `) ≥ 1− θ.
Next lemma shows that the same holds for general classes of graphs.

I Lemma 14. For every ϑ > 0, there exist a ζ, an n0 and a t, such that if G is a ζ-tight
class and n ≥ n0, then q(Gn, t) ≥ 1− ϑ.

As before, we split the class Gn into subclasses H1,H2, . . . according to the 2-blocks.
Recall that there exists a ζ ′ such that at least (1− ζ ′)|Gn| graphs are in subclasses Hi that
are ζ ′-tight. Let H be one of such ζ ′-tight subclasses of Gn and let FH the corresponding
class of forests. By Theorem 13, if ζ ′ is small enough and, n and t are large enough (t plays
the role of `), then the probability that a random vertex v in a random graph Fn from FH
connects to Fn through a removable edge and disconnects a pendant tree Tv of order at
most t, is close to 1. If this is the case, by construction of FH, this edge is also a removable
cut-edge in the graph in H that corresponds to Fn.

It remains to show that, with probability close to 1, the pullback Hv of the tree Tv in the
original graph in H is a also tree. This is done by applying Theorem 13 again but using now
` much larger than t, which shows that the proportion of vertices that are linked to the rest
of the graph by a removable edge is very close to 1, and by noticing that, if Hv is not a tree,
then at least one vertex of Hv does not have this property. Details are given in [5].

The last lemma is the key point in proving Theorem 4 for classes that are not forests.
Indeed, Theorem 4 now follows relatively easily from Theorem 12 and Lemma 14 (see [5] for
a detailed proof).

References
1 Louigi Addario-Berry, Colin McDiarmid, and Bruce Reed. Connectivity for bridge-addable

monotone graph classes. Combin. Probab. Comput., 21(6):803–815, 2012.
2 Paul Balister, Béla Bollobás, and Stefanie Gerke. Connectivity of addable graph classes. J.

Combin. Theory Ser. B, 98(3):577–584, 2008.
3 Itai Benjamini and Oded Schramm. Recurrence of distributional limits of finite planar

graphs. Electron. J. Probab., 6:no. 23, 13 pp. (electronic), 2001.
4 Guillaume Chapuy and Guillem Perarnau. Connectivity in bridge-addable graph classes:

the McDiarmid-Steger-Welsh conjecture. Extended abstract in the proceedings of SODA
2016. Long version submitted for publication, see arXiv:1504.06344., 2015.

5 Guillaume Chapuy and Guillem Perarnau. Local convergence and stability of tight bridge-
addable graph classes. In preparation., 2016.

6 Paul Erdős. On some new inequalities concerning extremal properties of graphs. In Theory
of Graphs (Proc. Colloq., Tihany, 1966), pages 77–81, 1966.

7 Paul Erdős. Some recent results on extremal problems in graph theory. Results, Theory of
Graphs (Internat. Sympos., Rome, 1966), Gordon and Breach, New York, pages 117–123,
1967.

8 Paul Erdős and M Simonovits. A limit theorem in graph theory. In Studia Sci. Math. Hung.
Citeseer, 1966.

G. Chapuy and G. Perarnau 26:11

9 Mihyun Kang and Konstantinos Panagiotou. On the connectivity of random graphs from
addable classes. J. Combin. Theory Ser. B, 103(2):306–312, 2013.

10 László Lovász. Large networks and graph limits, volume 60 of American Mathematical
Society Colloquium Publications. American Mathematical Society, Providence, RI, 2012.

11 Colin McDiarmid, Angelika Steger, and Dominic J. A. Welsh. Random graphs from planar
and other addable classes. In Topics in discrete mathematics, volume 26 of Algorithms
Combin., pages 231–246. Springer, Berlin, 2006.

12 Alfréd Rényi. Some remarks on the theory of trees. Magyar Tud. Akad. Mat. Kutató Int.
Közl., 4:73–85, 1959.

13 Miklós Simonovits. A method for solving extremal problems in graph theory, stability
problems. In Theory of Graphs (Proc. Colloq., Tihany, 1966), pages 279–319, 1968.

APPROX/RANDOM’16

Belief Propagation on Replica Symmetric Random
Factor Graph Models∗

Amin Coja-Oghlan1 and Will Perkins2

1 Goethe University, Mathematics Institute, Frankfurt, Germany
acoghlan@math.uni-frankfurt.de

2 School of Mathematics, University of Birmingham, Edgbaston, Birmingham,
U.K.
math@willperkins.org

Abstract
According to physics predictions, the free energy of random factor graph models that satisfy a
certain “static replica symmetry” condition can be calculated via the Belief Propagation message
passing scheme [20]. Here we prove this conjecture for a wide class of random factor graph models.
Specifically, we show that the messages constructed just as in the case of acyclic factor graphs
asymptotically satisfy the Belief Propagation equations and that the free energy density is given
by the Bethe free energy formula.

1998 ACM Subject Classification G.3 Probability and Statistics, F.2.2 Nonnumerical Algorithms
and Problems, G.2.1 Combinatorics

Keywords and phrases Gibbs distributions, Belief Propagation, Bethe Free Energy, Random
k-SAT

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2016.27

1 Introduction and results

1.1 Factor graphs
It is well known that viewing combinatorial optimization problems through the lens of Gibbs
measures reveals important information about both structural and algorithmic aspects. For
example, suppose that Φ = Φ1 ∧ · · · ∧Φm is a k-SAT instance with m clauses over n Boolean
variables. We identify the set of all possible truth assignments with the Hamming cube
{0, 1}n, and given a parameter β ≥ 0 we define functions ψi : {0, 1}n → (0,∞) by letting

ψβ,i(σ) = exp(−β 1{σ violates clause Φi}). (1.1)

These functions induce a probability measure on {0, 1}n by letting

µΦ,β : σ ∈ {0, 1}n 7→ 1
ZΦ,β

m∏
i=1

ψβ,i(σ), where ZΦ,β =
∑

τ∈{0,1}n

m∏
i=1

ψβ,i(σ)

ensures normalization. The measure µΦ,β is known as the Gibbs measure of Φ at inverse
temperature β and ZΦ,β is called the partition function. Writing out the definition of µΦ,β ,

∗ The research leading to these results has received funding from the European Research Council under
the European Union’s Seventh Framework Programme (FP7/2007-2013) / ERC Grant Agreement n.
278857–PTCC.

© Amin Coja-Oghlan and Will Perkins;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016).
Editors: Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans; Article No. 27; pp. 27:1–27:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.27
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

27:2 Belief Propagation on Replica Symmetric Random Factor Graph Models

we find

µΦ,β(σ) = 1
ZΦ,β

exp(−β ·# clauses violated under the truth assignment σ).

Hence, while µΦ,0 is just the uniform distribution over all assignments, as we increase β the
probability mass shifts to “more satisfying” assignments. Ultimately, in the limit β → ∞
the Gibbs measure concentrates on maximally satisfying assignments. Thus, by tuning β we
can scan through the landscape on the Hamming cube defined by the function that maps
each truth assignment to the number of clauses it leaves unsatisfied. This landscape has, of
course, a very substantial impact on the performance of algorithms. For instance, local search
algorithms such as Simulated Annealing are apt to get stuck in local minima. Moreover, the
partition function, or equivalently the scaled free energy n−1 lnZΦ,β , encompasses important
combinatorial characteristics of the optimization problem. For example, the maximum
number of clauses that can be satisfied simultaneously equals m+ limβ→∞

∂
∂β lnZΦ,β .

Factor graph models provide a general framework for the study of Gibbs measures
associated with combinatorial problems [21, 23]. Formally, a factor graph,
G = (V (G), F (G), ∂G, (ψa)a∈F (G)), consists of a finite set V (G) of variable nodes, a set F (G)
of constraint nodes and a function ∂G : F (G) →

⋃
l≥0 V (G)l that assigns each constraint

node a ∈ F (G) a finite sequence ∂a = ∂Ga of variable nodes, whose length is denoted by
d(a) = dG(a). Additionally, there is a finite set Ω of spins and each constraint node a ∈ F
comes with a weight function ψa : Ωd(a) → (0,∞). The factor graph gives rise to the Gibbs
measure µG on ΩV (G). Indeed, letting σ(x1, . . . , xk) = (σ(x1), . . . , σ(xk)) for σ ∈ ΩV (G) and
x1, . . . , xk ∈ V (G), we define

µG : σ ∈ ΩV (G) 7→ 1
ZG

∏
a∈F (G)

ψa(σ(∂a)), where ZG =
∑

τ∈ΩV (G)

∏
a∈F (G)

ψa(σ(∂a))

(1.2)

is the partition function. Moreover, G induces a bipartite graph on V (G) ∪ F (G) in which
the constraint node a is adjacent to the variable nodes that appear in the sequence ∂a.
By (slight) abuse of notation we just write ∂a = ∂Ga for the set of such variable nodes.
Conversely, for x ∈ V (G) we let ∂x = ∂Gx be the set of all a ∈ F (G) such that x ∈ ∂a and
we let d(x) = dG(x) = |∂x|. The bipartite graph gives rise to a metric on the set of variable
and constraint nodes, namely the length of a shortest path.

As we saw above, a k-SAT instance Φ induces a factor graph naturally. Indeed, the
variable nodes are just the Boolean variables x1, . . . , xn of the formula Φ and the constraint
nodes are the clauses Φ1, . . . ,Φm. Moreover, ∂Φi is the set of Boolean variables that occur
in clause Φi, Ω = {0, 1} and the weight functions are given by (1.1).

1.2 Belief Propagation
A fundamental algorithmic task is to calculate the free energy, lnZG, of a factor graph G.
While this is #P -hard in general, in the case that G, viz. the associated bipartite graph, is
acyclic the problem can be solved exactly by means of a message passing algorithm called
Belief Propagation [23].

For a variable node x and an adjacent constraint node a let µG,x→a be the marginal of
the spin value of x in the factor graph G− a obtained deleting a. Formally, µG,x→a(ω) is the
probability that x is assigned the spin ω ∈ Ω in a random configuration σ ∈ ΩV (G) drawn
from the Gibbs measure µG−a. Similarly, let µG,a→x be the marginal of x in the factor graph
obtained from G by deleting all constraint nodes b ∈ ∂x, b 6= a. We call µG,x→a the message

A.Coja-Oghlan and W.Perkins 27:3

from x to a and conversely µG,a→x the message from a to x. If G is acyclic, then for all
x ∈ V (G), a ∈ ∂x, σ ∈ Ω we have

µG,x→a(σ) =
∏
b∈∂x µG,b→x(σ)∑

τ∈Ω
∏
b∈∂x µG,b→x(τ) , (1.3)

µG,a→x(σ) =
∑
τ∈Ω∂a 1{τ(x) = σ}ψa(τ)

∏
y∈∂a\x µG,y→a(τ(y))∑

τ∈Ω∂a ψa(τ)
∏
y∈∂a\x µG,y→a(τ(y)) .

In fact, the messages µG,x→a, µG,a→x defined above are the unique solution to (1.3). Moreover,
these messages can be computed via a fixed point iteration and the number of iterations
steps required is bounded by the diameter of G. Furthermore, the Bethe free energy, defined
as

BG =
∑

x∈V (G)

ln
[∑
τ∈Ω

∏
b∈∂x

µG,b→x(τ)
]

+
∑

a∈F (G)

ln

 ∑
τ∈Ω∂a

ψa(τ)
∏
x∈∂a

µG,x→a(τ(x))

 (1.4)

−
∑

a∈F (G)
x∈∂a

ln
[∑
σ∈Ω

µG,a→x(σ)µG,x→a(σ)
]
,

is equal to lnZG. The denominators in (1.3) and the arguments of the logarithms above are
positive because of our assumption that the weight functions ψa take strictly positive values.

1.3 Random factor graph models
Over the past few years there has been a great deal of interest in the Gibbs measures of
random factor graph models. Concrete examples of random factor graph models occur in
discrete mathematics and computer science as well as other related areas such as information
theory [1, 31]. The following class is already reasonably comprehensive. Let Ω be a finite set
of ‘spins’, let k ≥ 2 be an integer, let Ψ 6= ∅ be a finite set of functions ψ : Ωk → (0,∞) and let
ρ = (ρψ)ψ∈Ψ be a probability distribution on Ψ. Then for an integer n > 0 and a real d > 0
we define the random factor graph Gn = Gn(d,Ω, k,Ψ, ρ) as follows. The set of variable
nodes is V (Gn) = {x1, . . . , xn} and the set of constraint nodes is F (Gn) = {a1, . . . , am},
where m is a Poisson random variable with mean dn/k. Furthermore, independently for
each i = 1, . . . ,m a weight function ψai ∈ Ψ is chosen from the distribution ρ. Finally,
∂ai ∈ {x1, . . . , xn}k is a uniformly random k-tuple of variables, chosen independently for each
i. For fixed d,Ω, k,Ψ, ρ, we say the random factor graph Gn has a property A asymptotically
almost surely (‘a.a.s.’) if limn→∞ P [Gn ∈ A] = 1.

Much of the recent work on random factor graph models has been guided by ideas from
statistical physics. In fact, physicists have developed an analytic but non-rigorous approach
to calculating the free energy in random factor graph models, the “cavity method” [23, 24].
The cavity method comes in several installments. The simplest but perhaps most practically
important version is called the replica symmetric ansatz. It holds that random factor graphs
can basically be treated as though they were acyclic: the “messages” defined exactly as in
the acyclic case satisfy the Belief Propagation equations (1.3) (at least approximately) and
the free energy is given by (1.4) (at least asymptotically).

According to an important physics conjecture the replica symmetric ansatz applies if the
random factor graph model enjoys a certain pairwise decorrelation property [20]. Specifically,
for a variable node x ∈ V (G) of a factor graph G we let µG,x denote the Gibbs marginal of
x. Similarly, we let µG,x,y be the joint distribution of the spins assigned to the two variable

APPROX/RANDOM’16

27:4 Belief Propagation on Replica Symmetric Random Factor Graph Models

nodes x, y; thus, µG,x,y is the distribution of the pair (σ(x),σ(y)) ∈ Ω2 for σ ∈ ΩV (G) chosen
from the Gibbs measure. Further, let ‖ · ‖TV denote the total variation norm. Then the
replica symmetric solution is conjectured to be correct if

lim
n→∞

1
n2

n∑
i,j=1

E
∥∥µGn,xi,xj

− µGn,xi
⊗ µGn,xj

∥∥
TV = 0. (1.5)

In words, a.a.s. the spins assigned to two randomly chosen variable nodes of the random
factor graph G are asymptotically independent.

Observe that the distance between two randomly chosen variable nodes xi, xj in the
random factor graph is Ω(lnn) a.a.s. Thus, (1.5) could be interpreted as a (very weak) spatial
mixing property.

The main result of this paper proves the conjecture that (1.5) is sufficient to make the
“replica symmetric ansatz” work. Following (1.3), for a given factor graph G we call the
family of messages µG, ·→ · = (µG,x→a, µG,a→x)x∈V (G),a∈F (G),x∈∂a an ε-Belief Propagation
fixed point on G if

1
n

∑
x∈V (G)
a∈∂x
σ∈Ω

∣∣∣∣∣µG,x→a(σ)−
∏
b∈∂x\a µG,b→x(σ)∑

τ∈Ω
∏
b∈∂x\a µG,b→x(τ)

∣∣∣∣∣
+

∣∣∣∣∣µG,a→x(σ)−
∑
τ∈Ω∂a 1{τ(x) = σ}ψa(τ)

∏
y∈∂a\x µG,y→a(τ(y))∑

τ∈Ω∂a ψa(τ)
∏
y∈∂a\x µG,y→a(τ(y))

∣∣∣∣∣ < ε.

Thus, the equations (1.3) hold approximately for almost all pairs x ∈ V (G), a ∈ ∂x.

I Theorem 1. If (1.5) holds, then there is a sequence (εn)n → 0 such that µGn, ·→ · is an
εn-Belief Propagation fixed point a.a.s.

I Theorem 2. If (1.5) holds and 1
nBGn converges to a real number B in probability, then

lim
n→∞

1
n

E[lnZGn
] = B.

Since Belief Propagation equations and the Bethe free energy are conjectured to be
incorrect if (1.5) is violated1 [20], we expect that Theorems 1 and 2 are best possible. While
we have phrased the above results for factor graph models of Erdős-Rényi type, they generalize
to, e.g., regular factor graph models. The details of this are omitted from this extended
abstract but they can be found in the full version [9].

1.4 Non-reconstruction
In physics jargon factor graph models that satisfy (1.5) are called statically replica symmetric.
An obvious question is how (1.5) can be established in practice. One simple sufficient
condition is the notion of non-reconstruction, also known as dynamic replica symmetry in
physics.

For a factor graph G, a variable node x, an integer ` ≥ 1 and a configuration σ ∈ ΩV (G)

we let ∇`(G, x, σ) be the set of all τ ∈ ΩV (G) such that τ(y) = σ(y) for all y ∈ V (G)

1 Except in the presence of a “global symmetry” like in the Ising model, which could be destroyed by an
external field.

A.Coja-Oghlan and W.Perkins 27:5

whose distance from x exceeds `. The random factor graph Gn = Gn(d,Ω, k,Ψ, ρ) has the
non-reconstruction property if

lim
`→∞

lim sup
n→∞

1
n

n∑
i=1

∑
σ∈Ωn

E
[
µGn

(σ) ‖µGn,xi
− µGn,xi

[· |∇`(Gn, xi, σ)]‖TV
]

= 0. (1.6)

In words, for large enough ` and n the random factor graph has the following property a.a.s.
If we pick a variable node xi uniformly at random and if we pick σ randomly from the Gibbs
distribution, then the expected difference between the “pure” marginal µGn,xi

of xi and the
marginal of xi in the conditional distribution given the event ∇`(Gn, xi,σ) diminishes.

I Lemma 3. If (1.6) holds, then so does (1.5).

Non-reconstruction is a sufficient but not a necessary condition for (1.5). For instance, in
the random graph coloring problem, (1.5) is satisfied in a much wider regime of parameters
than (1.6) [8, 20, 25].

2 Discussion and related work

The main results of this paper facilitate the “practical” use of Belief Propagation to analyze
the free energy in random factor graph models, particularly in combination with Lemma 3.
A first example of this kind of approach is the work on the condensation phase transition in
the regular k-SAT model [4]. Basically, the recipe is to establish the condition (1.5), e.g.,
by way of non-reconstruction, and to study Belief Propagation and its fixed points on the
random factor graph. Since the random factor graph generally has several Belief Propagation
fixed points (unlike in the acyclic case), an extra argument such as an a priori bound will be
necessary to select the one that yields the actual free energy, cf. [4].

The Belief Propagation fixed point iteration has been used algorithmically on random
factor graphs with considerable empirical success (e.g., [19]). Theorem 1 may go as far
as one can hope for in terms of a generic explanation of the algorithmic success of Belief
Propagation. In fact, the theorem shows that the “true” messages are an asymptotic Belief
Propagation fixed point, and the missing piece is to analyze the rate of convergence towards
the correct fixed point and its basin of attraction. However, both of these tasks must depend
on the specific model.

We always assume that the weight functions ψa associated with the constraint nodes are
strictly positive: this rules out “hard” constraints. But we impose this condition at least
partly out of convenience, namely to ensure that all the quantities that we work with are
well-defined, no questions asked. For instance, it is straightforward to extend the present
arguments extend to the hard-core model on independent sets.

In an important paper, Dembo and Montanari [12] made progress towards putting the
physics predictions on factor graphs, random or not, on a rigorous basis. They proved, inter
alia, that a certain “long-range correlation decay” property reminiscent of non-reconstruction
is sufficient for the Belief Propagation equations to hold on a certain class of factor graphs
whose local neighborhoods converge to trees [12, Theorem 3.14]. Following this, Dembo,
Montanari, and Sun [14] verified the Bethe free energy formula for locally tree-like factor
graphs under the assumption of Gibbs uniqueness along an interpolating path in parameter
space. We contrast non-reconstruction (1.6) to this much stronger uniqueness property
which states that the influence of the worst-case boundary condition on the marginal spin
distribution of xi decreases in the limit of large ` and n.

APPROX/RANDOM’16

27:6 Belief Propagation on Replica Symmetric Random Factor Graph Models

The present paper builds upon the “regularity lemma” for measures on discrete cubes
from [3]. In combinatorics, the “regularity method”, which developed out of Szemerédi’s
regularity lemma for graphs [32], has become an indispensable tool. Bapst and Coja-Oghlan [3]
adapted Szemerédi’s proof to measures on a discrete cube, such as the Gibbs measure of a
(random) factor graph, and showed that this result can be combined with the second moment
method to calculate the free energy under certain assumptions. These assumptions are more
restrictive than our condition (1.5).

Furthermore, inspired by the theory of graph limits [22], Coja-Oghlan, Perkins and
Skubch [10] put forward a “limiting theory” for discrete probability measures to go with the
regularity concept from [3]. They applied this concept to random factor graphs under the
assumption that (1.5) holds and that the Gibbs measures converge in probability (in the
topology constructed in [10]). These assumptions are stronger and more complicated to state
than (1.5).

Additionally, the present paper builds upon ideas from Panchenko’s work [28, 29, 30]. In
particular, we follow [28, 29, 30] in using the Aizenman-Sims-Starr scheme [2] to calculate
the free energy. Moreover, [29] provides a promising approach towards a general formula for
the free energy in Poisson random factor graph models. Specifically, [29] yields a variational
formula for the free energy under the assumption that the Gibbs measures satisfies a “finite
replica symmetry breaking” condition, which is more general than (1.5). Another assumption
of [29] is that the weight functions of the factor graph model must satisfy certain “convexity
conditions” to facilitate the use of the interpolation method, which is needed to upper-bound
the free energy. By comparison to [29] the main point of the present paper is to justify
the Belief Propagation equations, which are at very core of the physicists’ “cavity method”
in factor graph models, and to obtain a formula for the free energy in terms of the Belief
Propagation messages rather than in terms of an abstract variational problem. Practically,
the upshot is that by studying the Belief Propagation equations directly on the factor graph
we can use geometric clues provided by the graphical structure, as illustrated in [4].

Finally, the proof of Lemma 3 is a fairly straightforward extension of the proof of [10,
Proposition 3.4]. That proof, in turn, is a generalization of an argument from [27]. For more
on non-reconstruction thresholds in random factor graph models see [7, 11, 16, 25].

3 Proofs of the main results

Here we give an overview of the proofs of the main results. Complete proofs and proofs of
the results for random regular factor graphs can be found in the full version of the paper [9].
Throughout this section we fix parameters d,Ω, k,Ψ, ρ of the factor graph model such that
(1.5) holds.

3.1 The “cavity trick”
The basic idea behind the physicists’ cavity method is to heuristically track the effect of
removing a single variable or constraint node from the factor graph, a strategy that is vaguely
reminiscent of turning a sampling algorithm into a counting algorithm [18]. The main point
of this paper is that we make this heuristic approach rigorous by using the regularity lemma
from [3]. Other applications of the cavity method to computing the free energy of Gibbs
distributions on lattices include [15].

But before we start let us illustrate the power of this “cavity trick” with an excellent
example, the so-called “Aizenman-Simms-Starr scheme” [2], which we are going to use to
prove Theorem 2. This is nothing but the following observation. In order to prove that

A.Coja-Oghlan and W.Perkins 27:7

limn→∞ n−1E[lnZGn
] = B it suffices construct a coupling of the two random factor graphs

Gn−1,Gn such that

lim
n→∞

E
[
ln ZGn

ZGn−1

]
= B. (3.1)

Indeed, since E[ln(ZGn/ZGn−1)] = E[lnZGn]−E[lnZGn−1] and lnZGn = O(n) with certainty,
summing up (3.1) yields limn→∞ n−1E[lnZGn

] = B. Moreover, as we shall explore in
Section 3.3 in detail, we can couple Gn,Gn−1 by means of a common random super-graph
Ĝ such that Gn is obtained from Ĝ by removing a few random constraint nodes, while Gn−1
results from Ĝ by removing a random variable node along with the adjacent constraint nodes.
With this coupling we obtain

E
[
ln ZGn

ZGn−1

]
= E

[
ln ZGn

ZĜ

]
− E

[
ln
ZGn−1

ZĜ

]
.

Thus, computing the free energy comes down to investigating the impact of removing a few
constraint nodes from Ĝ.

To control the effect of such an operation we use two main tools. Both require the
following definition. Let ε > 0, let l ≥ 2 be an integer and let µ be a probability measure
on ΩV for some finite set V . For x1, . . . , xl ∈ V we write µx1,...,xl

for the joint distribution
of random the l-tuple (σ(x1), . . . ,σ(xl)) ∈ Ωl with σ chosen from µ. Thus, µx1,...,xl

is the
joint distribution of the coordinates x1, . . . , xl. Now, we say that µ is (ε, l)-symmetric if∑

x1,...,xl∈V
‖µx1,...,xl

− µx1 ⊗ · · · ⊗ µxl
‖TV < ε|V |l.

In words, if we choose coordinates x1, . . . , xl from V randomly, then the expected total
variation distance between the joint distribution µx1,...,xl

and the product of the marginals
µx1 , . . . , µxl

is less than ε. Hence, (1.5) entails that µGn
is (ε, 2)-symmetric a.a.s. for any

fixed ε > 0. Our first tool is

I Lemma 4. For any ε > 0, l ≥ 3 there exists δ > 0 such that for all n > 1/δ and all
µ ∈ P(Ωn) the following is true:

If µ is (δ, 2)-symmetric, then µ is (ε, l)-symmetric.

Hence, (1.5) actually implies that µGn
is (ε, l)-symmetric a.a.s. for any fixed ε > 0 and any

fixed l ≥ 2. Lemma 4 follows from [3, Corollary 2.3 and 2.4]. (Note that (ε, l)-symmetry
is not the same as (approximate) l-wise independence, and so Lemma 4 is not saying that
pairwise independence implies l-wise independence).

The second, far more crucial tool is a lemma that allows us to control the effect of
adding a few constraints to a factor graph. Specifically, if we make a bounded number of
modifications to a factor graph with an (ε, 2)-symmetric Gibbs measure, then the Gibbs
measure of the modified graph measure is still (α, 2)-symmetric, provided ε = ε(α) is small
enough. Moreover, the Gibbs marginals remain approximately the same.

I Lemma 5. For any integer L > 0 and any α > 0 there exist ε = ε(α,L) > 0, n0 = n0(ε, L)
such that the following is true. Suppose that G is a factor graph with n > n0 variable
nodes such that ψa ∈ Ψ for all a ∈ F (G). Moreover, assume that µG is (ε, 2)-symmetric.
If G+ is obtained from G by adding L constraint nodes b1, . . . , bL with weight functions
ψb1 , . . . , ψbL

∈ Ψ arbitrarily, then µG+ is (α, 2)-symmetric and∑
x∈V (G)

∥∥µG,x − µG+,x

∥∥
TV < αn. (3.2)

APPROX/RANDOM’16

27:8 Belief Propagation on Replica Symmetric Random Factor Graph Models

Let us postpone the proof of Lemma 5 to Section 3.4 and instead proceed to derive our main
results from Lemma s 4 and 5.

To this end, we need some more notation. We write P(Ω) for the set of all probability
measures on the finite set Ω, which we identify with the set of all maps p : Ω→ [0, 1] such that∑
ω∈Ω p(ω) = 1. If µ ∈ P(ΩS) for some finite set S 6= ∅, then we write τµ,σµ,σµ1 ,σ

µ
2 , . . . for

independent samples from µ. We usually omit the superscript. Furthermore, if X : (ΩS)l → R
is a random variable, then we write

〈X〉µ = 〈X(σµ1 , . . . ,σ
µ
l)〉

µ
=

∑
σ1,...,σl∈ΩS

X(σ1, . . . , σl)
l∏
i=1

µ(σi)

for the expectation of X with respect to µ⊗l. The standard symbols E[·], P[·] refer to
the choice of a random factor graph. Moreover, by default the O(·)-notation refers to the
asymptotics as n→∞.

3.2 The Belief Propagation equations: proof of Theorem 1
The high-level summary of the proof is as follows. Our aim is to verify that typically the
Belief Propagation equations (1.3) are approximately satisfied for the message from a random
variable node to a random adjacent constraint node and vice versa. Because our factor graph
Gn is random, we can prove this claim by way of the “cavity paradigm” as follows. We take
a random factor graph G′ on n − 1 variable nodes and add a single variable node and a
random set of constraint nodes joining it to the rest of the graph to form the factor graph
G′′. Because the set of variable nodes from G′ that are attached to the new constraint nodes
are chosen uniformly at random, our assumption (1.5) and Lemma 5 will imply that their
messages in G′′ are approximately the same as their marginals in G′, and Lemma 4 will
imply that asymptotically the joint distribution of the “attachment points” factorizes a.a.s.
Doing the math yields the equations (1.3) plus an o(1)-error term.

Let us look now at the details. Given ε > 0 choose L = L(ε) > 0 and γ = γ(ε, L) > η =
η(γ) > δ = δ(η) > 0 small enough and assume that n > n0(δ) is sufficiently large. Because
the distribution of the random factor graph Gn is symmetric under permutations of the
variable nodes, it suffices to prove that with probability at least 1− ε we have

∑
a∈∂xn,σ∈Ω

∣∣∣∣∣µGn,xn→a(σ)−
∏
b∈∂x\a µGn,b→xn

(σ)∑
τ∈Ω

∏
b∈∂xn\a µGn,b→xn(τ)

∣∣∣∣∣ < ε (3.3)

and

∑
a∈∂xn,σ∈Ω

∣∣∣∣∣µGn,a→xn
(σ)−

∑
τ∈Ω∂a 1{τ(xn) = σ}ψa(τ)

∏
y∈∂a\xn

µGn,y→a(τ(y))∑
τ∈Ω∂a ψa(τ)

∏
y∈∂a\xn

µGn,y→a(τ(y))

∣∣∣∣∣ < ε. (3.4)

To prove (3.3)–(3.4) let G′ be the random factor graph with variable nodes x1, . . . , xn
comprising of m′ = Po(dn(1 − 1/n)k/k) random constraint nodes a1, . . . , am′ that do not
contain xn. Moreover, let ∆ = Po(dn(1− (1− 1/n)k)/k) be independent of m′ and obtain
G′′ from G′ by adding independent random constraint nodes b1, . . . , b∆ with xn ∈ ∂bi for all
i ∈ [∆]. Since G′′ has precisely the same distribution as Gn, it suffices to verify (3.3)–(3.4)
with Gn replaced by G′′.

Since dn(1− (1− 1/n)k)/k = d+ o(1), we can choose L = L(ε) so large that

P [∆ > L] < ε/3. (3.5)

A.Coja-Oghlan and W.Perkins 27:9

U

xn

b1

b2 b3 b4

Figure 1 Stitching xn on to G′.

Furthermore, G′ is distributed precisely as the random factor graph Gn given that ∂xn = ∅.
Therefore, Bayes’ rule and our assumption (1.5) imply

P
[
G′ fails to be (δ, 2)-symmetric

]
≤ P [Gn fails to be (δ, 2)-symmetric] /P [∂Gn

xn = ∅]
≤ exp(d+ o(1))P [Gn fails to be (δ, 2)-symmetric] < δ,

(3.6)

provided that n0 is large enough. Combining (3.6) and Lemma 4, we see that

P
[
G′ is (η, 2 + (k − 1)L)-symmetric|∆ ≤ L

]
> 1− δ, (3.7)

provided δ is sufficiently small.
Due to (3.5) and (3.7) and the symmetry amongst b1, . . . , b∆ we just need to prove the

following: given that G′ is (η, 2 + (k − 1)L)-symmetric and 0 < ∆ ≤ L, with probability at
least 1− ε/L we have ∑

σ∈Ω

∣∣∣∣∣µG′′,xn→b1(σ)−
∏∆
i=2 µG′′,bi→xn

(σ)∑
τ∈Ω

∏∆
i=2 µG′′,bi→xn

(τ)

∣∣∣∣∣ < ε/L

(3.8)

and

∑
σ∈Ω

∣∣∣∣∣µG′′,b1→xn
(σ)−

∑
τ∈Ω∂b1 1{τ(xn) = σ}ψb1(τ)

∏
y∈∂b1\xn

µGn,y→b1(τ(y))∑
τ∈Ω∂b1 ψa(τ)

∏
y∈∂b1\xn

µGn,y→b1(τ(y))

∣∣∣∣∣ < ε/L.

(3.9)

To this end, let U =
⋃
j≥2 ∂bj be the set of all variable nodes that occur in the constraint

nodes b2, . . . , b∆, cf. Figure 1. Because µG′′,xn→b1 is the marginal of xn in the factor graph
G′′ − b1, the definition (1.2) of the Gibbs measure entails that for any σ ∈ Ω,

µG′′,xn→b1(σ)

=
∑
τ∈ΩV (G′′) 1{τ(xn) = σ}

∏
a∈F (G′) ψa(τ(∂a))

∏∆
j=2 ψbj

(τ(∂bj))∑
τ∈ΩV (G′′)

∏
a∈F (G′) ψa(τ(∂a))

∏∆
j=2 ψbj

(τ(∂bj))
(3.10)

=
∑
τ∈ΩU 1{τ(xn) = σ} 〈1{∀y ∈ U \ {xn} : σ(y) = τ(y)〉µG′

∏∆
j=2 ψbj

(τ(∂bj))∑
τ∈ΩU 〈1{∀y ∈ U \ {xn} : σ(y) = τ(y)〉µG′

∏∆
j=2 ψbj

(τ(∂bj))
. (3.11)

Similarly, because µG′′,bi→xn
is the marginal of xn in G′ + bi, we have

µG′′,bi→xn
(σ) =

∑
τ∈Ω∂bi 1{τ(xn) = σ} 〈1{∀y ∈ ∂bi \ {xn} : σ(y) = τ(y)〉µG′

ψbi(τ)∑
τ∈Ω∂bi 〈1{∀y ∈ ∂bi \ {xn} : σ(y) = τ(y)〉µG′

ψbi(τ) .

(3.12)

APPROX/RANDOM’16

27:10 Belief Propagation on Replica Symmetric Random Factor Graph Models

To prove (3.8), recall that the variable nodes ∂bj \ xn are chosen uniformly and inde-
pendently for each j ≥ 2. Therefore, if G′ is (η, 2 + (k − 1)L)-symmetric and 0 < ∆ ≤ L,
then∑

τ∈ΩU

E
[∣∣∣〈1{∀y ∈ U \ {xn} : σ(y) = τ(y)〉µG′

−
∏
y∈U µG′,y(τ(y))

∣∣∣ ∣∣G′] ≤ 2η.

Hence, by Markov’s inequality, with probability at least 1− η1/3 we have∑
τ∈ΩU

∣∣∣〈1{∀y ∈ U \ {xn} : σ(y) = τ(y)〉µG′
−
∏
y∈U µG′,y(τ(y))

∣∣∣ < η1/3. (3.13)

Set

νi(σ) =
∑

τ∈Ω∂bi

1{τ(xn) = σ}ψbi
(τ)

∏
y∈∂bi\xn

µG′,y(τ(y)). (3.14)

A.a.s. for any 1 ≤ i < j ≤ ∆ we have ∂bi ∩ ∂bj = {xn}. Hence, assuming that η = η(γ) > 0
is chosen small enough, we obtain from (3.11), (3.12), (3.13) that with probability at least
1− γ,∣∣∣∣∣µG′′,xn→b1(σ)−

∏∆
i=2 νi(σ)∑

τ∈Ω
∏∆
i=2 νi(τ)

∣∣∣∣∣ < γ and
∣∣∣∣µG′′,bi→xn

(σ)− νi(σ)∑
τ∈Ω νi(τ)

∣∣∣∣ < γ

(3.15)

for i ∈ [∆]. Hence, (3.8) follows from (3.15), provided that γ is chosen small enough.
Finally, to prove (3.9) we use Lemma 5. Let G′′′ = G′′ − b1 be the graph obtained from

G′ by merely adding b2, . . . , b∆. Given that G′ is (η, 2)-symmetric, Lemma 5 and Lemma 4
imply that G′′′ is (γ3, k− 1)-symmetric. As ∂b1 \ xn is a random subset of size at most k− 1
chosen independently of b2, . . . , b∆, we conclude that with probability at least 1− γ over the
choice of G′′,

2γ >
∑

τ∈Ω∂b1

∣∣∣∣∣∣〈1{∀y ∈ ∂b1 \ xn : σ(y) = τ(y)}〉µG′′′
−

∏
y∈∂b1\xn

µG′′′,y(τ(y))

∣∣∣∣∣∣
=

∑
τ∈Ω∂b1

∣∣∣∣∣∣〈1{∀y ∈ ∂b1 \ xn : σ(y) = τ(y)}〉µG′′′
−

∏
y∈∂b1\xn

µG′′,y→b1(τ(y))

∣∣∣∣∣∣ . (3.16)

Moreover, (3.2) implies that with probability at least 1− γ,

2γ >
∑

τ∈Ω∂b1

∣∣∣∣∣∣〈1{∀y ∈ ∂b1 \ xn : σ(y) = τ(y)}〉µG′′′
−

∏
y∈∂b1\xn

µG′,y(τ(y))

∣∣∣∣∣∣ . (3.17)

Finally, (3.9) follows from (3.14)–(3.17), provided γ is chosen small enough. J

3.3 Proof of Theorem 2
To prove (3.1) we will couple the random variables ZGn−1 , ZGn

by way of a third random
factor graph Ĝ (a similar coupling was used in [10]). Specifically, let Ĝ be the random
factor graph with variable nodes V (Ĝ) = {x1, . . . , xn} obtained by including m̂ = Po(nd̂/k)
independent random constraint nodes, where d̂ = d(n/(n− 1))k−1. For each constraint node
a of Ĝ the weight function ψa is chosen from the distribution ρ independently.

A.Coja-Oghlan and W.Perkins 27:11

x

∂ x

G''

Figure 2 Attaching x.

I Lemma 6. The two factor graph distributions Ĝ,Gn have total variation distance O(1/n).

Proof. The distributions Po(dn/k), Po(d̂n/k) have total variation distance O(1/n). J

Further, set p = ((n − 1)/n)k−1 and let G′ be a random graph obtained from Ĝ by
deleting each constraint node with probability 1− p independently. Let A be the (random)
set of constraints removed from Ĝ to obtain G′. In addition, obtain G′′ from Ĝ by selecting
a variable node x uniformly at random and removing all constraints a ∈ ∂Ĝx along with x
itself. Then G′ is distributed as Gn and G′′ is distributed as Gn−1 plus an isolated variable.
Thus,

ZGn

d=ZG′ , ZGn−1
d=ZG′′ . (3.18)

Hence, we are left to calculate E[ln ZĜ

ZG′
] and E[ln ZĜ

ZG′′
]. Much as in the previous proof we

will use Lemmas 4 and 5 to trace the effect of tinkering with a small number of constraint
nodes. For x ∈ V (Ĝ), b ∈ F (Ĝ) we define

S1(x) = ln

∑
σ∈Ω

∏
a∈∂Ĝx

µĜ,a→x(σ)

 , (3.19)

S2(x) =
∑
a∈∂Ĝx

ln

 ∑
τ∈Ω∂a

ψa(τ)
∏
y∈∂a

µĜ,y→a(τ(y))

 , (3.20)

S3(x) = −
∑
a∈∂Ĝx

ln
[∑
τ∈Ω

µĜ,x→a(τ)µĜ,a→x(τ)
]
, (3.21)

S4(b) = ln

 ∑
σ∈Ω∂b

ψb(σ)
∏
y∈∂b

µĜ,y→b(σ(y))

 . (3.22)

I Lemma 7. Let U =
⋃
a∈∂Ĝx ∂a. Then a.a.s. we have

ln
ZĜ

ZG′′
= o(1) + ln

∑
τ∈ΩU

∏
a∈∂Ĝx

ψa(τ(∂a))
∏

y∈∂a\x

µĜ,y→a(τ(y))

 . (3.23)

Proof. Given ε > 0 let L = L(ε) > 0 be a large enough, let γ = γ(ε, L) > δ = δ(γ) > 0 be
small enough and assume that n is sufficiently large. Letting X = |∂Ĝx|, we can pick L large
enough so that

P [X > L] < ε. (3.24)

APPROX/RANDOM’16

27:12 Belief Propagation on Replica Symmetric Random Factor Graph Models

As in the previous section, we turn the tables: we think of Ĝ as being obtained from G′′ by
adding a new variable node x and X independent random constraint nodes a1, . . . , aX such
that x ∈ ∂ai for all i, cf. Figure 2. The assumption (1.5), Lemma 5 and Lemma 4 imply that

P

 ∑
τ∈ΩU\{x}

∣∣∣∣∣∣〈1{∀y ∈ U \ {x} : σ(y) = τ(y)}〉G′′ −
X∏
i=1

∏
y∈∂ai\x

µĜ,y→ai
(τ(y))

∣∣∣∣∣∣ ≥ δ
∣∣∣∣X ≤ L

= o(1). (3.25)

Furthermore, unfolding the definition (1.2) of the Gibbs measure, we obtain

ZĜ

ZG′′
=
∑
τ∈ΩU

〈1{∀y ∈ U \ {x} : σ(y) = τ(y)}〉G′′
X∏
i=1

ψai(τ(∂ai)).

Hence, (3.24) and (3.25) show that with probability at least 1− 2ε,∣∣∣∣∣∣ ZĜ

ZG′′
−
∑
τ∈ΩU

X∏
i=1

ψai
(τ(∂ai))

∏
y∈∂ai\x

µĜ,y→ai
(τ(y))

∣∣∣∣∣∣ < γ. (3.26)

The assertion follows by taking logarithms and sending ε→ 0 slowly as n→∞. J

Combining Lemma 7 with the approximate fixed point property from Theorem 1, we find
that (3.23) can be re-formulated as follows.

I Corollary 8. A.a.s. we have ln ZĜ

ZG′′
= S1(x) + S2(x) + S3(x) + o(1).

A broadly similar argument yields the following.

I Lemma 9. A.a.s. we have ln ZĜ

ZG′
= o(1) +

∑
a∈A S4(a).

Combining Lemma 9 and Corollary 8, we see that a.a.s. Ĝ is such that

E
[
ln ZG′

ZG′′

∣∣∣∣Ĝ] = o(1) + 1
n

 ∑
x∈V (Ĝ)

(S1(x) + S3(x)) +
∑

a∈F (Ĝ)

S4(a)

 .
Moreover, by our assumption and Fact 6 the r.h.s. converges to B in probability. Thus,
Theorem 2 follows by taking the expectation over Ĝ.

3.4 Proof of Lemma 5
The proof of Lemma 5 is based on the “regularity lemma” for probability measures from [3].
Let us introduce the necessary notation. Suppose that ∅ 6= U ⊂ S are sets, let ω ∈ Ω and
consider σ ∈ ΩS . Then we let

σ[ω|U] = 1
|U |

∑
u∈U

1{σ(u) = ω}.

Thus, σ[· |U] ∈ P(Ω) is the distribution of the spin σ(u) for a uniformly random u ∈ U .
Moreover, if V = (V1, . . . , Vl) is a partition of some set V , then we call #V = l the size of
V . Moreover, for ε > 0 we say that µ ∈ P(Ωn) is ε-regular on a set U ⊂ [n] if for every
subset S ⊂ U of size |S| ≥ ε|U | we have

〈‖σ[· |S]− σ[· |U]‖TV〉µ < ε.

A.Coja-Oghlan and W.Perkins 27:13

Thus, the empirical distribution of the spins induced on a subset U of S that is “not too
small” is typically close to the empirical spin distribution on the entire set S.

Further, µ is ε-regular with respect to a partition V if there is a set J ⊂ [#V] such that∑
i∈J |Vi| ≥ (1− ε)n and such that µ is ε-regular on Vi for all i ∈ J .
Finally, if V is a partition of [n] and S is a partition of Ωn, then µ is ε-homogeneous

w.r.t. (V ,S) if there is a subset I ⊂ [#S] such that the following is true:
HM1: We have µ(Si) > 0 for all i ∈ I and

∑
i∈I µ(Si) ≥ 1− ε.

HM2: For all i ∈ [#S] and j ∈ [#V] we have maxσ,σ′∈Si
‖σ[· |Vj]− σ′[· |Vj]‖TV < ε.

HM3: For all i ∈ I the conditional distribution µ[· |Si] is ε-regular with respect to V .
HM4: µ is ε-regular with respect to V .
Thus, S is a decomposition of the cube Ωn such that most of the probability mass belongs
to classes Si such that the conditional measure µ[· |Si] is ε-regular w.r.t. V .

I Theorem 10 ([3, Theorem 2.1]). For any ε > 0 there is an N = N(ε) > 0 such that for
every n > N , every µ ∈ P(Ωn) admits partitions V of [n] and S of Ωn with #V + #S ≤ N
such that µ is ε-homogeneous with respect to (V ,S).

To prove Lemma 5 we look at a partition (V ,S) as promised by Theorem 10 with respect to
which µG+ is ε-homogeneous. Let K = #V and L = #S be such that K +L ≤ N and let J
be the set of all j ∈ [L] such that µG+(Sj) ≥ ε/N and µG+ [· |Sj] is ε-regular w.r.t. V . Then
HM1 and HM3 ensure that∑

j 6∈J

µG+(Sj) < 2ε. (3.27)

Because all functions ψ ∈ Ψ are strictly positive, we can work out that the original Gibbs
measure µG is ε′-homogeneous with respect to (V ,S) as well for some ε′ > 0 that depends
on ε such that ε′ → 0 as ε→ 0. We then oberve that the (ε, 2)-symmetry of µG implies that∑

x∈V
‖µG,x − µG,x[· |Sj]‖TV < ε′′n (3.28)

with ε′′ → 0 as ε′ → 0. In other words, the conditional marginals µG,x[· |Sj] induced on
the classes Sj are close to the overall marginals µG,x for most x. In fact, to derive (3.28)
from (1.5) assume that (3.28) were violated. Then µG would be a non-trivial mixture of
two substantially distinct conditional measures, and it is not difficult to check that this
would contradict the (ε, 2)-symmetry of µG; the details of this argument are based on results
from [3]. Further, HM2 and (3.28) imply that∑

x∈V

∥∥µG,x − µG+,x[· |Sj]
∥∥

TV < ε′′′n (3.29)

for j ∈ J . Putting the previous argument in reverse, we find that (3.27) and (3.29) imply
that µG+ is (α, 2)-symmetric, provided ε′′′ > 0 was small enough. Additionally, (3.28) and
(3.29) imply (3.2). The complete proof of Lemma 5 can be found in the full version of the
paper.

Acknowledgements. We thank Florent Krzakala and Lenka Zdeborová for helpful discus-
sions on this topic.

APPROX/RANDOM’16

27:14 Belief Propagation on Replica Symmetric Random Factor Graph Models

References
1 D. Achlioptas, A. Naor, and Y. Peres: Rigorous location of phase transitions in hard

optimization problems. Nature 435 (2005) 759–764.
2 M. Aizenman, R. Sims, S. Starr: An extended variational principle for the SK spin-glass

model. Phys. Rev. B 68 (2003) 214403.
3 V. Bapst, A. Coja-Oghlan: Harnessing the Bethe free energy. arXiv:1504.03975 (2015).
4 V. Bapst, A. Coja-Oghlan: The condensation phase transition in the regular k-SAT model.

arXiv:1507.03512 (2015).
5 V. Bapst, A. Coja-Oghlan, S. Hetterich, F. Rassmann, D. Vilenchik: The condensation

phase transition in random graph coloring. Communications in Mathematical Physics 341
(2016) 543–606.

6 M. Bayati, D. Gamarnik, P. Tetali: Combinatorial approach to the interpolation method
and scaling limits in sparse random graphs. Annals of Probability 41 (2013) 4080–4115.

7 N. Bhatnagar, A. Sly, P. Tetali: Reconstruction threshold for the hardcore model. Proc.
14th RANDOM (2010) 434–447.

8 A. Coja-Oghlan, C. Efthymiou, N. Jaafari: Local convergence of random graph colorings.
Proc. 19th RANDOM (2015) 726–737.

9 A. Coja-Oghlan, W. Perkins: Belief propagation on replica symmetric random factor graph
models. arXiv:1603.08191 (2016).

10 A. Coja-Oghlan, W. Perkins, K. Skubch: Limits of discrete distributions and Gibbs meas-
ures on random graphs. arXiv:1512.06798 (2015).

11 C. Efthymiou: Reconstruction/non-reconstruction thresholds for colourings of general
Galton-Watson trees. Proc. 19th RANDOM (2015) 756–774.

12 A. Dembo, A. Montanari: Gibbs measures and phase transitions on sparse random graphs.
Braz. J. Probab. Stat. 24 (2010) 137–211.

13 A. Dembo, A. Montanari, A. Sly, N. Sun: The replica symmetric solution for Potts models
on d-regular graphs. Communications in Mathematical Physics 327 (2014) 551–575.

14 A. Dembo, A. Montanari, N. Sun: Factor models on locally tree-like graphs. Annals of
Probability 41 (2013) 4162–4213.

15 D. Gamarnik, D. Katz: Sequential cavity method for computing free energy and surface
pressure. Journal of Statistical Physics 137 (2009) 205–232.

16 A. Gerschenfeld, A. Montanari: Reconstruction for models on random graphs. Proc. 48th
FOCS (2007) 194–204.

17 S. Janson, T. Łuczak, A. Ruciński: Random Graphs, Wiley 2000.
18 M. Jerrum, L. Valiant, V. Vazirani: Random generation of combinatorial structures from

a uniform distribution. Theoretical Computer Science 43 (1986) 169–188.
19 L. Kroc, A. Sabharwal, B. Selman: Message-passing and local heuristics as decimation

strategies for satisfiability. Proc 24th SAC (2009) 1408–1414.
20 F. Krzakala, A. Montanari, F. Ricci-Tersenghi, G. Semerjian, L. Zdeborová: Gibbs states

and the set of solutions of random constraint satisfaction problems. Proc. National Academy
of Sciences 104 (2007) 10318–10323.

21 F. Kschischang, B. Frey, H. Loeliger: Factor graphs and the sum-product algorithm. IEEE
Transactions on Information Theory 47 (2001) 498–519.

22 L. Lovász: Large networks and graph limits. Colloquium Publications 60 (2012), AMS.
23 M. Mézard, A. Montanari: Information, physics and computation. Oxford University

Press 2009.
24 M. Mézard, G. Parisi, M. Virasoro: Spin glass theory and beyond. World Scientific 1987.
25 A. Montanari, R. Restrepo, P. Tetali: Reconstruction and clustering in random constraint

satisfaction problems. SIAM Journal on Discrete Mathematics 25 (2011) 771–808.
26 C. Moore, S. Mertens: The nature of computation. Oxford University Press (2011).

A.Coja-Oghlan and W.Perkins 27:15

27 E. Mossel, J. Neeman, A. Sly: Reconstruction and estimation in the planted partition
model. Probability Theory and Related Fields (2014) 1–31.

28 D. Panchenko: Spin glass models from the point of view of spin distributions. Annals of
Probability 41 (2013) 1315–1361.

29 D. Panchenko: Structure of finite-RSB asymptotic Gibbs measures in the diluted spin glass
models. Journal of Statistical Physics 162 (2016) 1–42.

30 D. Panchenko: The Sherrington-Kirkpatrick model. Springer 2013.
31 T. Richardson, R. Urbanke: Modern coding theory. Cambridge University Press (2008).
32 E. Szemerédi: Regular partitions of graphs. Colloq. Internat. CNRS 260 (1978) 399–401.
33 J. Yedidia, W. Freeman, Y. Weiss: Constructing free-energy approximations and general-

ized Belief Propagation algorithms. IEEE Transactions on Information Theory 51 (2005)
2282–2312.

APPROX/RANDOM’16

Towards a Constructive Version of Banaszczyk’s
Vector Balancing Theorem
Daniel Dadush∗1, Shashwat Garg†2, Shachar Lovett‡3, and
Aleksandar Nikolov4

1 Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
dadush@cwi.nl

2 Department of Mathematics and Computer Science, Eindhoven University of
Technology, The Netherlands
s.garg@tue.nl

3 University of California, San Diego, USA
slovett@cs.ucsd.edu

4 University of Toronto, Toronto, Canada
anikolov@cs.toronto.edu

Abstract
An important theorem of Banaszczyk (Random Structures & Algorithms ‘98) states that for any
sequence of vectors of `2 norm at most 1/5 and any convex body K of Gaussian measure 1/2
in Rn, there exists a signed combination of these vectors which lands inside K. A major open
problem is to devise a constructive version of Banaszczyk’s vector balancing theorem, i.e. to find
an efficient algorithm which constructs the signed combination.

We make progress towards this goal along several fronts. As our first contribution, we show an
equivalence between Banaszczyk’s theorem and the existence of O(1)-subgaussian distributions
over signed combinations. For the case of symmetric convex bodies, our equivalence implies the
existence of a universal signing algorithm (i.e. independent of the body), which simply samples
from the subgaussian sign distribution and checks to see if the associated combination lands
inside the body. For asymmetric convex bodies, we provide a novel recentering procedure, which
allows us to reduce to the case where the body is symmetric.

As our second main contribution, we show that the above framework can be efficiently im-
plemented when the vectors have length O(1/

√
logn), recovering Banaszczyk’s results under

this stronger assumption. More precisely, we use random walk techniques to produce the re-
quired O(1)-subgaussian signing distributions when the vectors have length O(1/

√
logn), and

use a stochastic gradient ascent method to implement the recentering procedure for asymmetric
bodies.

1998 ACM Subject Classification G.3 [Probability and Statistics] Probablistic Algorithms

Keywords and phrases Discrepancy, Vector Balancing, Convex Geometry

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2016.28

1 Introduction

Given a family of sets S1, . . . , Sm over a universe U = [n], the goal of combinatorial
discrepancy minimization is to find a bi-coloring χ : U → {−1, 1} such that the discrepancy,

∗ Supported by the NWO Veni grant 639.071.510.
† Supported by the Netherlands Organisation for Scientific Research (NWO) under project no. 022.005.025.
‡ Supported by an NSF CAREER award 1350481 and a Sloan fellowship.

© Daniel Dadush, Shashwat Garg, Shachar Lovett, and Aleksandar Nikolov;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016).
Editors: Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans; Article No. 28; pp. 28:1–28:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.28
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

28:2 Towards a Constructive Version of Banaszczyk’s Vector Balancing Theorem

i.e. the maximum imbalance, maxj∈[m] |
∑
i∈Sj

χ(i)| is made as small as possible. Discrepancy
theory, where discrepancy minimization plays a major role, has a rich history of applications
in computer science as well as mathematics, and we refer the reader to [19, 10, 11] for a
general exposition.

A beautiful question regards the discrepancy of sparse set systems, i.e. set systems in
which each element appears in at most t sets. A classical theorem of Beck and Fiala [8] gives
an upper bound of 2t− 1 in this setting. They also conjectured an O(

√
t) bound, which if

true would be tight. An improved Beck-Fiala bound of 2t − log∗ t was given by Bukh [9],
where log∗ t is the iterated logarithm function in base 2. Recently, it was shown by Ezra and
Lovett [14] that a bound of O(

√
t log t) holds with high probability when m ≥ n and each

element is assigned to t sets uniformly at random. The best general bounds having sublinear
dependence in t currently depend on n or m. Srinivasan [25] used Beck’s partial coloring
method [7] to give a bound of O(

√
t log min{n,m}). Using techniques from convex geometry,

Banaszczyk [2] proved a general result on vector balancing (stated below) which implies an
O(

√
t log min{n,m}) bound.

The proofs of both Srinivasan’s and Banaszczyk’s bounds were non-constructive, that is,
they provided no efficient algorithm to construct the guaranteed colorings, short of exhaustive
enumeration. In the last 6 years, tremendous progress has been made on the question of
matching classical discrepancy bounds algorithmically. Currently, essentially all discrepancy
bounds proved using the partial coloring method, including Srinivasan’s, have been made
constructive [4, 18, 15, 22, 13]. Constructive versions of Banaszczyk’s result have, however,
proven elusive until very recently. In recent work [5], the first and second named authors
jointly with Bansal gave a constructive algorithm for recovering Banaszczyk’s bound in
the Beck-Fiala setting as well as the more general Komlós setting. However, finding a
constructive version of Banaszczyk’s more general vector balancing theorem, which has
further applications in approximating hereditary discrepancy, remains an open problem. This
theorem is stated as follows:

I Theorem 1 (Banaszczyk [2]). Let v1, . . . , vn ∈ Rm satisfy ‖vi‖2 ≤ 1/5. Then for any
convex body K ⊆ Rm of Gaussian measure at least 1/2, there exists χ ∈ {−1, 1}n such that∑n

i=1 χivi ∈ K.

The lower bound 1/2 on the Gaussian measure of K is easily seen to be tight. In particular,
if all the vectors are equal to 0, we must have that 0 ∈ K. If we allow Gaussian measure
< 1/2, then K = {x ∈ Rn : x1 ≥ ε}, for ε > 0 small enough, is a clear counterexample.
On the other hand, it is not hard to see that if K has Gaussian measure 1/2 then 0 ∈ K.
Otherwise, there exists a halfspace H containing K but not 0, where H clearly has Gaussian
measure less than 1/2.

Banaszczyk’s theorem gives the best known bound for the notorious Komlós conjecture [24],
a generalization of the Beck-Fiala conjecture, which states that for any sequence of vectors
v1, . . . , vn ∈ Rm of `2 norm at most 1, there exists χ ∈ {−1, 1}n such that ‖

∑n
i=1 χivi‖∞ is

a constant independent of m and n. In this context, Banaszczyk’s theorem gives a bound
of O(

√
logm), because an O(

√
logm) scaling of the unit ball of `m∞ has Gaussian measure

1/2. Banaszczyk’s theorem together with estimates on the Gaussian measure of slices of
the `m∞ ball due to Barthe, Guedon, Mendelson, and Naor [6] give a bound of O(

√
log d),

where d ≤ min{m,n} is the dimension of the span of v1, . . . , vn. A well-known reduction
(see e.g. Lecture 9 in [24]), shows that this bound for the Komlós problem implies an
O(

√
t log min{m,n}) bound in the Beck-Fiala setting.

While the above results only deal with the case of K being a cube, Banaszczyk’s theorem
has also been applied to other cases. It was used in [3] to give the best known bound on

D. Dadush, S. Garg, S. Lovett, and A. Nikolov 28:3

the Steinitz conjecture. In this problem, the input is a set of vectors v1, . . . , vn in Rm of
norm at most one and summing to 0. The aim is to find a permutation π : [n] → [n] to
minimise the maximum sum prefix of the vectors rearranged according to π i.e. to minimize
maxk∈[n] ‖

∑k
i=1 vπ(i)‖. The Steinitz conjecture is that this bound should always be O(

√
m),

irrespective of the number of vectors, and using the vector balancing theorem Banaszczyk
proved a bound of O(

√
m+

√
logn) for `2 norm.

More recently, Banaszczyk’s theorem was applied to more general symmetric polytopes
in Nikolov and Talwar’s approximation algorithm [21] for a hereditary notion of discrepancy.
Hereditary discrepancy is defined as the maximum discrepancy of any restriction of the
set system to a subset of the universe. In [21] it was shown that an efficiently computable
quantity, denoted γ2, bounds hereditary discrepancy from above and from below for any
given set system, up to polylogarithmic factors. For the upper bound they used Banaszczyk’s
theorem for a natural polytope associated with the set system. However, since there is no
known algorithmic version of Banaszczyk’s theorem for a general body, it is not known how
to efficiently compute colorings that achieve the discrepancy upper bounds in terms of γ2.
The recent work on algorithmic bounds in the Komlós setting does not address this more
general problem.

Banaszczyk’s proof of Theorem 1 follows an ingenious induction argument, which folds
the effect of choosing the sign of vn into the body K. The first observation is that finding a
point of the set

∑n
i=1 {−vi, vi} inside K is equivalent to finding a point of

∑n−1
i=1 {−vi, vi} in

K − vn ∪K + vn. Inducting on this set is not immediately possible because it may no longer
be convex. Instead, Banaszczyk shows that a convex subset K ∗ vn of (K − vn) ∪ (K + vn)
has Gaussian measure at least that of K, as long as K has measure at least 1/2, which allows
him to induct on K ∗ vn. In the base case, he needs to show that a convex body of Gaussian
measure at least 1/2 must contain the origin, but this fact follows easily from the hyperplane
separation theorem, as indicated above. While extremely elegant, Banaszczyk’s proof can be
seen as relatively mysterious as it does not seem to provide any tangible insights as to what
the colorings look like.

1.1 Our Results
As our main contribution, we help demystify Banaszczyk’s theorem, by showing that it is
equivalent, up to a constant factor in the length of the vectors, to the existence of certain
subgaussian coloring distributions. Using this equivalence, as our second main contribution,
we give an efficient algorithm that recovers Banaszczyk’s theorem up to a O(

√
log min{m,n})

factor for all convex bodies. This improves upon the best previous algorithms of Rothvoss [22],
Eldan and Singh [13], which only recover the theorem for symmetric convex bodies up to a
O(log min{m,n}) factor.

As a major consequence of our equivalence, we show that for any sequence v1, . . . , vn ∈ Rm
of short enough vectors there exists a probability distribution χ ∈ {−1, 1}n over colorings
such that, for any symmetric convex body K ⊆ Rm of Gaussian measure at least 1/2, the
random variable

∑n
i=1 χivi lands inside K with probability at least 1/2. Importantly, if

such a distribution can be efficiently sampled, we immediately get a universal sampler for
constructing Banaszczyk colorings for all symmetric convex bodies (we remark that the recent
work of [5] constructs a more restricted form of such distributions). Using random walk
techniques, we show how to implement an approximate version of this sampler efficiently,
which guarantees the same conclusion when the vectors are of length O(1/

√
log min{m,n}).

We provide more details on these results in Section 2
To extend our results to asymmetric convex bodies, we develop a novel recentering

procedure and a corresponding efficient implementation which allows us to reduce the

APPROX/RANDOM’16

28:4 Towards a Constructive Version of Banaszczyk’s Vector Balancing Theorem

asymmetric setting to the symmetric one. After this reduction, a slight extension of the
aforementioned sampler again yields the desired colorings. We note that our recentering
procedure in fact depends on the target convex body, and hence our algorithms are no longer
universal in this setting. We provide more details on these results in Section 3.

Interestingly, we additionally show that this procedure can be extended to yield a
completely different coloring algorithm, i.e. not using the sampler, achieving the same
O(

√
log min{m,n}) approximation factor. Surprisingly, the coloring outputted by this

procedure is deterministic (its implementation however is not) and has a natural analytic
description, which may be of independent interest.

Before we continue with a more detailed description of our results, we begin with some
terminology and a well-known reduction. Given a set of vectors v1, . . . , vn ∈ Rm, we shall
call a property hereditary if it holds for all subsets of the vectors. We note that Banaszczyk’s
vector balancing bounds restricted to a set of vectors are hereditary, since a bound on the
maximum `2 norm of the vectors is hereditary. We shall say that a property of colorings holds
in the linear setting, if when given any shift t ∈

∑n
i=1[−vi, vi]

def= {
∑n
i=1 λivi : λ ∈ [−1, 1]n},

one can find a coloring (or distribution on colorings) χ ∈ {−1, 1}n such that
∑n
i=1 χivi − t

satisfies the property. It is well-known that Banaszczyk’s theorem also extends by standard
arguments to the linear setting after reducing the `2 norm bound from 1/5 to 1/10 (a factor
2 drop). This follows, for example, from the general inequality between hereditary and linear
discrepancy proved by Lovasz, Spencer, and Vesztergombi [16].

All the results in this work will in fact hold in the linear setting. When treating
the linear setting, it is well known that one can always reduce to the case where the
vectors v1, . . . , vn are linearly independent, and in our setting, when m = n. In particular,
assume we are given some shift t ∈

∑n
i=1[−vi, vi] and that v1, . . . , vn are not linearly

independent. Then, using a standard linear algebraic technique, we can find a “fractional
coloring” x ∈ [−1, 1]n such that

∑n
i=1 xivi = t, and the vectors (vi : i ∈ Ax) are linearly

independent, where Ax
def= {i : xi ∈ (−1, 1)} is the set of fractional coordinates (see Lecture 5

in [24], or Chapter 4 in [19]). We can think of this as a reduction to coloring the linearly
independent vectors indexed by Ax. Specifically, given x as above, define the lifting function
Lx : [−1, 1]Ax → [−1, 1]n by

Lx(z)i =
{
zi : i ∈ Ax
xi : i ∈ [n] \Ax

, ∀i ∈ [n] . (1)

This map takes any coloring χ ∈ {−1, 1}Ax and “lifts” it to a full coloring Lx(χ) ∈ {−1, 1}n.
It also satisfies the property that Lx(χ) − t =

∑
i∈Ax

χivi −
∑
i∈Ax

xivi. So, if we can
find a coloring χ ∈ {−1, 1}Ax such that

∑
i∈Ax

χivi −
∑
i∈Ax

xivi ∈ K, then we would
have Lx(χ) − t ∈ K as well. Moreover, if we define W as the span of (vi : i ∈ Ax), then∑
i∈Ax

χivi −
∑
i∈Ax

xivi ∈ K if and only if
∑
i∈Ax

χivi −
∑
i∈Ax

xivi ∈ K ∩W , so we can
replace K with K ∩W , and work entirely inside W . For convex bodies K with Gaussian
measure at least 1/2, the central section K ∩W has Gaussian measure that is at least as
large, so we have reduced the problem to the case of |Ax| linearly independent vectors in an
|Ax|-dimensional space (details are given in the full version of this paper.) We shall thus, for
simplicity, state all our results in the setting where the vectors v1, . . . , vn are in Rn and are
linearly independent.

D. Dadush, S. Garg, S. Lovett, and A. Nikolov 28:5

2 Symmetric Convex Bodies and Subgaussian Distributions

In this section, we detail the equivalence of Banaszczyk’s theorem restricted to symmetric
convex bodies with the existence of certain subgaussian distributions. We begin with the
main theorem of this section, which we note holds in a more general setting than Banaszczyk’s
result.

I Theorem 2 (Main Equivalence). Let T ⊆ Rn be a finite set. Then, the following parameters
are equivalent up to a universal constant factor independent of T and n:
1. The minimum sb > 0 such that for any symmetric convex body K ⊆ Rn of Gaussian

measure at least 1/2, we have that T ∩ sbK 6= ∅.
2. The minimum sg > 0 such that there exists an sg-subgaussian random variable Y supported

on T .

We recall that a random vector Y ∈ Rn is s-subgaussian, or subgaussian with parameter
s, if for any unit vector θ ∈ Sn−1 and t ≥ 0, Pr[|〈Y, θ〉| ≥ t] ≤ 2e−(t/s)2/2. In words, Y is
subgaussian if all its 1-dimensional marginals satisfy the same tail bound as the 1-dimensional
Gaussian of mean 0 and standard deviation s.

To apply the above to discrepancy, we set T =
∑n
i=1{−vi, vi}, i.e. all signed combinations

of the vectors v1, . . . , vn ∈ Rn. In this context, Banaszczyk’s theorem directly implies
that sb ≤ 5 maxi∈[n] ‖vi‖2, and hence by our equivalence that sg = O(1) maxi∈[n] ‖vi‖2.
Furthermore, the above extends to the linear setting letting T =

∑n
i=1{−vi, vi} − t, for

t ∈
∑n
i=1[−vi, vi], because, as mentioned above, Banaszczyk’s theorem extends to this setting

as well.
The existence of the universal sampler claimed in the previous section is in fact the proof

that sb = O(sg) in the above Theorem. In particular, it follows directly from the following
lemma.

I Lemma 3. Let Y ∈ Rn be an s-subgaussian random variable. There exists an absolute
constant c > 0, such for any symmetric convex body K ⊆ Rn of Gaussian measure at least
1/2, Pr[Y ∈ s · cK] ≥ 1/2.

Here, if Y is the sg-subgaussian distribution supported on
∑n
i=1{−vi, vi} − t as above,

we simply let χ denote the random variable such that Y =
∑n
i=1 χivi − t. That χ now yields

the desired universal distribution on colorings is exactly the statement of the lemma.
As a consequence of the above, we see that to recover Banaszczyk’s theorem for symmetric

convex bodies, it suffices to be able to efficiently sample from an O(1)-subgaussian distribution
over sets of the type

∑n
i=1{−vi, vi} − t, for t ∈

∑n
i=1[−vi, vi], when v1, . . . , vn ∈ Rn are

linearly independent and have `2 norm at most 1. Here we rely on homogeneity, that is, if Y is
an s-subgaussian random variable supported on

∑n
i=1{−vi, vi}− t then αY is αs-subgaussian

on
∑n
i=1{−αvi, αvi} − αt, for α > 0.

The proof of Lemma 3 follows relatively directly from well-known convex geometric
estimates combined with Talagrand’s majorizing measure theorem [26] (see also [27]), which
gives a powerful characterization of the supremum of any Gaussian process.

Unfortunately, Lemma 3 does not hold for asymmetric convex bodies. In particular, if
Y = −e1, the negated first standard basis vector, and K = {x ∈ Rn : x1 ≥ 0}, the conclusion
is clearly false no matter how much we scale K, even though Y is O(1)-subgaussian and K
has Gaussian measure 1/2. One may perhaps hope that the conclusion still holds if we ask
for either Y or −Y to be in s · cK in the asymmetric setting, though we do not know how to
prove this. We note however that this only makes sense when the support of Y is symmetric,
which does not necessarily hold in the linear discrepancy setting.

APPROX/RANDOM’16

28:6 Towards a Constructive Version of Banaszczyk’s Vector Balancing Theorem

We now describe the high level idea of the proof for the reverse direction, namely, that
sg = O(sb). For this purpose, we show that the existence of a O(sb)-subgaussian distribution
on T can be expressed as a two player zero-sum game, i.e. the first player chooses a distribution
on T and the second player tries to find a non-subgaussian direction. Here the value of the
game will be small if and only if the O(sb)-subgaussian distribution exists. To bound the value
of the game, we show that an appropriate “convexification” of the space of subgaussianity
tests for the second player can be associated with symmetric convex bodies of Gaussian
measure at least 1/2. From here, we use von Neumann’s minimax principle to switch the first
and second player, and deduce that the value of the game is bounded using the definition
of sb.

2.1 The Random Walk Sampler
From the algorithmic perspective, it turns out that subgaussianity is a very natural property
in the context of random walk approaches to discrepancy minimization. Our results can
thus be seen as a good justification for the random walk approaches to making Banaszczyk’s
theorem constructive.

At a high level, in such approaches one runs a random walk over the coordinates of a
“fractional coloring” χ ∈ [−1, 1]n until all the coordinates hit either 1 or −1. The steps of such
a walk usually come from Gaussian increments (though not necessarily spherical), which try
to balance the competing goals of keeping discrepancy low and moving the fractional coloring
χ closer to {−1, 1}n. Since a sum of small centered Gaussian increments is subgaussian with
the appropriate parameter, it is natural to hope that the output of a correctly implemented
random walk is subgaussian. Our main result in this setting is that this is indeed possible to
a limited extent, with the main caveat being that the walk’s output will not be “subgaussian
enough” to fully recover Banaszczyk’s theorem.

I Theorem 4. Let v1, . . . , vn ∈ Rn be vectors of `2 norm at most 1 and let t ∈
∑n
i=1[−vi, vi].

Then, there is an expected polynomial time algorithm which outputs a random coloring
χ ∈ {−1, 1}n such that the random variable

∑n
i=1 χivi − t is O(

√
logn)-subgaussian.

To achieve the above sampler, we guide our random walk using solutions to the so-
called vector Kómlos program, whose feasibility was first given by Nikolov [20], and show
subgaussianity using well-known martingale concentration bounds. Interestingly, the random
walk’s analysis does not rely on phases, and is instead based on a simple relation between
the walk’s convergence time and the subgaussian parameter. As an added bonus, we also
give a new and simple constructive proof of the feasibility of the vector Kómlos program
which avoids the use of an SDP solver.

Given the results of the previous section, the above random walk is a universal sampler
for constructing the following colorings.

I Corollary 5. Let v1, . . . , vn ∈ Rn be vectors of `2 norm at most 1, let t ∈
∑n
i=1[−vi, vi],

and let K ⊆ Rn be a symmetric convex body of Gaussian measure 1/2 (given by a membership
oracle). Then, there is an expected polynomial time algorithm which outputs a coloring
χ ∈ {−1, 1}n such that

∑n
i=1 χivi − t ∈ O(

√
logn)K.

As mentioned previously, the best previous algorithms in this setting are due to Rothvoss
[22], Eldan and Singh [13], which find a signed combination inside O(logn)K. Furthermore,
these algorithms are not universal, i.e. they heavily depend on the body K. We note that
these algorithms are in fact tailored to find partial colorings inside a symmetric convex body

D. Dadush, S. Garg, S. Lovett, and A. Nikolov 28:7

K of Gaussian measure at least 2−cn, for c > 0 small enough, a setting in which our sampler
does not provide any guarantees.

We now recall prior work on random walk based discrepancy minimization. The random
walk approach was pioneered by Bansal [4], who used a semidefinite program to guide the
walk and gave the first efficient algorithm matching the classic O(

√
n) bound of Spencer [23]

for the combinatorial discrepancy of set systems satisfying m = O(n). Later, Lovett and
Meka [18] provided a greatly simplified walk, removing the need for the semidefinite program,
which recovered the full power of Beck’s entropy method for constructing partial colorings.
Harvey, Schwartz, and Singh [15] defined another random walk based algorithm, which,
unlike previous work and similarly to our algorithm, doesn’t explicitly use phases or produce
partial colorings. The random walks of [18] and [15] both depend on the convex body
K; the walk in [18] is only well-defined in a polytope, while the one in [15] remains well-
defined in any convex body, although the analysis still applies only to the polyhedral setting.
Most directly related to this paper is the recent work [5], which gives a walk that can be
viewed as a randomized variant of the original 2t− 1 Beck-Fiala proof. This walk induces
a distribution χ ∈ {−1, 1}n on colorings for which each coordinate of the output

∑n
i=1 χivi

is O(1)-subgaussian. From the discrepancy perspective, this gives a sampler which finds
colorings inside any axis parallel box of Gaussian measure at least 1/2 (and their rotations,
though not in a universal manner), matching Banaszczyk’s result for this class of convex
bodies.

3 Asymmetric Convex Bodies

In this section, we explain how our techniques extend to the asymmetric setting. The main
difficulty in the asymmetric setting is that one cannot hope to increase the Gaussian mass of
an asymmetric convex body by simply scaling it. In particular, if we take K ⊆ Rn to be a
halfspace through the origin, e.g. {x ∈ Rn : x1 ≥ 0}, then K has Gaussian measure exactly
1/2 but sK = K for all s > 0. At a technical level, the lack of any measure increase under
scaling breaks the proof of Lemma 3, which is crucial for showing that subgaussian coloring
distributions produce combinations that land inside K.

The main idea to circumvent this problem will be to reduce to a setting where the mass
of K is “symmetrically distributed” about the origin, in particular, when the barycenter of
K under the induced Gaussian measure is at the origin. For such a body K, we show that
a constant factor scaling of K ∩ −K also has Gaussian mass at least 1/2, yielding a direct
reduction to the symmetric setting.

To achieve this reduction, we will use a novel recentering procedure, which will both
carefully fix certain coordinates of the coloring as well as shift the body K to make its mass
more “symmetrically distributed”. The guarantees of this procedure are stated below:

I Theorem 6 (Recentering Procedure). Let v1, . . . , vn ∈ Rn be linearly independent, t ∈∑n
i=1[−vi, vi], and K ⊆ Rn be a convex body of Gaussian measure at least 1/2. Then, there

exists a fractional coloring x ∈ [−1, 1]n, such that for p =
∑n
i=1 xivi − t, Ax = {i ∈ [n] : xi ∈

(−1, 1)} and W = span(vi : i ∈ Ax), the following holds:
1. p ∈ K.
2. The Gaussian measure of (K − p) ∩W on W is at least the Gaussian measure of K.
3. The barycenter of (K − p) ∩W is at the origin, i.e.

∫
(K−p)∩W ye−‖y‖

2/2dy = 0.

By convention, if the procedure returns a full coloring x ∈ {−1, 1}n (in which case, since
p ∈ K, we are done), we shall treat conditions 2 and 3 as satisfied, even though W = {0}. At

APPROX/RANDOM’16

28:8 Towards a Constructive Version of Banaszczyk’s Vector Balancing Theorem

a high level, the recentering procedure allows us to reduce the initial vector balancing problem
to one in a possibly lower dimension with respect to “well-centered” convex body of no
smaller Gaussian measure, and in particular, of Gaussian measure at least 1/2. Interestingly,
as mentioned earlier in the introduction, the recentering procedure can also be extended
to yield a full coloring algorithm. We explain the high level details of its implementation
together with this extension in the next subsection.

To explain how to use the fractional coloring x from Theorem 6 to get a useful reduction,
recall the lifting function Lx : [−1, 1]Ax → [−1, 1]n defined in (1). We reduce the initial
vector balancing problem to the problem of finding a coloring χ ∈ {−1, 1}Ax such that∑

i∈Ax
χivi −

∑
i∈Ax

xivi ∈ (K − p) ∩ W (note that
∑
i∈Ax

χivi −
∑
i∈Ax

xivi ∈ W by
construction). Then we can lift this coloring to Lx(χ), which satisfies∑

i∈Ax

χivi −
∑
i∈Ax

xivi ∈ (K − p) ∩W ⇔
n∑
i=1

Lx(χ)ivi − t ∈ K.

From here, the guarantee that K ′ def= (K − p) ∩W has Gaussian measure at least 1/2
and barycenter at the origin allows a direct reduction to the symmetric setting. Namely, we
can replace K ′ by the symmetric convex body K ′ ∩ −K ′ without losing “too much” of the
Gaussian measure of K ′. This is formalized by the following extension of Lemma 3, which
directly implies a reduction to subgaussian sampling as in section 2.

I Lemma 7. Let Y ∈ Rn be an s-subgaussian random variable. There exists an absolute
constant c > 0, such for any convex body K ⊆ Rn of Gaussian measure at least 1/2 and
barycenter at the origin, Pr[Y ∈ s · c(K ∩ −K)] ≥ 1/2.

In particular, if there exists a distribution over colorings χ ∈ {−1, 1}Ax such that∑
i∈Ax

χivi −
∑
i∈Ax

xivi as above is 1/c-subgaussian, Lemma 7 implies that the random
signed combination lands inside K ′ with probability at least 1/2. Thus, the asymmetric
setting can be effectively reduced to the symmetric one, as claimed.

Crucially, the recentering procedure in Theorem 6 can be implemented in probabilistic
polynomial time if one relaxes the barycenter condition from being exactly 0 to having “small”
norm. Furthermore, the estimate in Lemma 7 will be robust to such perturbations. Thus, to
constructively recover the colorings in the asymmetric setting, it will still suffice to be able
to generate good subgaussian coloring distributions.

Combining the sampler from Theorem 4 together with the recentering procedure, we
constructively recover Banaszczyk’s theorem for general convex bodies up to a O(

√
logn)

factor.

I Theorem 8 (Weak Constructive Banaszczyk). There exists a probabilistic polynomial time
algorithm which, on input a linearly independent set of vectors v1, . . . , vn ∈ Rn of `2 norm
at most c/

√
logn, c > 0 small enough, t ∈

∑n
i=1[−vi, vi], and a (not necessarily symmetric)

convex body K ⊆ Rn of Gaussian measure at least 1/2 (given by a membership oracle),
computes a coloring χ ∈ {−1, 1}n such that with high probability

∑n
i=1 χivi − t ∈ K.

As far as we are aware, the above theorem gives the first algorithm to recover Banaszczyk’s
result for asymmetric convex bodies under any non-trivial restriction. In this context, we
note that the algorithm of Eldan and Singh [13] finds “relaxed” partial colorings, i.e. where
the fractional coordinates of the coloring are allowed to fall outside [−1, 1], and the resulting
vector lies inside an n-dimensional convex body of Gaussian measure at least 2−cn. However,
it is unclear how one could use such partial colorings to recover the above result, even with a
larger approximation factor.

D. Dadush, S. Garg, S. Lovett, and A. Nikolov 28:9

3.1 The Recentering Procedure
In this section, we describe the details of the recentering procedure as well as its extension
to full colorings, which produces deterministic colorings matching the guarantees of Theo-
rem 8. We provide only its abstract instantiation here, leaving a detailed description of its
implementation to the full version of the paper.

Before we begin, we give a more geometric view of the vector balancing problem and
the recentering procedure, which help clarify the exposition. Let v1, . . . , vn ∈ Rn be linearly
independent vectors and t ∈

∑n
i=1[−vi, vi]. Given the target body K ⊆ Rn of Gaussian

measure at least 1/2, we can restate the vector balancing problem geometrically as that of
finding a vertex of the parallelepiped P =

∑n
i=1[−vi, vi]− t lying inside K. Here, the choice

of t ensures that 0 ∈ P . Note that this condition is necessary, since otherwise there exists a
halfspace separating P from 0 having Gaussian measure at least 1/2.

Recall now that in the linear setting, and using this geometric language, Banaszczyk’s
theorem implies that if P contains the origin, and maxi∈[n] ‖vi‖2 ≤ 1/10 (which we do not
need to assume for the validity of the recentering procedure), then any convex body of
Gaussian measure at least 1/2 contains a vertex of P . Thus, for our given target body K,
we should make our situation better by replacing P and K by P − q and K − q respectively,
if q ∈ P is a shift such that K − q has higher Gaussian measure than K. In particular, given
the symmetry of Gaussian measure, one would intuitively expect that if the Gaussian mass
of K is not symmetrically distributed around 0, there should be a shift of K which increases
its Gaussian measure.

In the current language, fixing a color χi ∈ {−1, 1} for vector vi, corresponds to restricting
ourselves to finding a vertex in the facet F = χivi +

∑
j 6=i[−vj , vj]− t of P lying inside K.

Again intuitively, restricting to a facet of P should improve our situation if the Gaussian
measure of the corresponding slice of K in the lower dimension is larger than that of K. To
make this formal, note that when inducting on a facet F of P (which is an n− 1 dimensional
parallelepiped), we must choose a center q ∈ F to serve as the new origin in the lower
dimensional space. Precisely, this can be expressed as inducting on the parallelepiped F − q
and shifted slice (K − q) ∩ span(F − q) of K, using the n− 1 dimensional Gaussian measure
on span(F − q).

With the above viewpoint, one can restate the goal of the recentering procedure as that
of finding a point q ∈ P ∩ K, such that smallest face F of P containing q, satisfies that
(K − q)∩ span(F − q) has its barycenter at the origin and Gaussian measure no smaller than
that of K. Recall that as long as (K − q) ∩ span(F − q) has Gaussian measure at least 1/2,
we are guaranteed that 0 ∈ K − q ⇒ q ∈ K. With this geometry in mind, we implement the
recentering procedure as follows:

Compute q ∈ P so that the Gaussian mass of K − q is maximized. If q is on the
boundary of P , letting F denote a facet of P containing q, induct on F − q and the slice
(K − q) ∩ span(F − q) as above. If q is in the interior of P , replace P and K by P − q and
K − q, and terminate.

We now explain why the above achieves the desired result. First, if the maximizer q is
in a face F of P , then a standard convex geometric argument reveals that the Gaussian
measure of (K − q) ∩ span(F − q) is no smaller than that of K − q, and in particular, no
smaller than that of K. Thus, in this case, the recentering procedure fixes a color for “free”.
In the second case, if q is in the interior of P , then a variational argument gives that the
barycenter of K − q under the induced Gaussian measure must be at the origin, namely,∫
K−q xe

−x2/2dx = 0.
To conclude this section, we explain how to extend the recentering procedure to directly

produce a deterministic coloring satisfying Theorem 8. For this purpose, we shall assume that

APPROX/RANDOM’16

28:10 Towards a Constructive Version of Banaszczyk’s Vector Balancing Theorem

v1, . . . , vn have length at most c/
√

logn, for a small enough constant c > 0. To begin, we run
the recentering procedure as above, which returns P and K, with K having its barycenter at
the origin. We now replace P,K by a joint scaling αP, αK, for α > 0 a large enough constant,
so that αK has Gaussian mass at least 3/4. At this point, we run the original recentering
procedure again with the following modification: every time we get to the situation where K
has its barycenter at the origin, induct on the facet of P closest to the origin. More precisely,
in this situation, compute a point p on the boundary of P closest to the origin, and, letting
F denote the facet containing p, induct on F − p and (K − p) ∩ span(F − p). At the end,
return the final found vertex.

Notice that, as claimed, the coloring (i.e. vertex) returned by the algorithm is indeed
deterministic. The reason the above algorithm works is the following. While we cannot
guarantee, as in the original recentering procedure, that the Gaussian mass of (K − p) ∩
span(F − p) does not decrease, we can instead show that it decreases only very slowly. In
particular, we use the bound of O(1/

√
logn) on the length of the vectors v1, . . . , vn to show

that every time we induct, the Gaussian mass drops by at most a 1 − c/n factor. More
generally, if the vectors had length at most d > 0, for d small enough, the drop would be of
the order 1− ce−1/(cd)2 , for some constant c > 0. Since we “massage” K to have Gaussian
mass at least 3/4 before applying the modified recentering algorithm, this indeed allows to
induct n times while keeping the Gaussian mass above 1/2, which guarantees that the final
vertex is in K. To derive the bound on the rate of decrease of Gaussian mass, we prove a
new inequality on the Gaussian mass of sections of a convex body near the barycenter, which
may be of independent interest. The new inequality is stated below:

I Theorem 9. Let K ⊆ Rn be a convex body with Gaussian measure γn(K) = α ≥ 3/5 such
that its barycenter, b satisfies ‖b‖2 ≤ η, for η > 0 small enough. For θ ∈ Sn−1 and a ∈ R,
let Kθ

a = (K − aθ) ∩ {x ∈ Rn : 〈θ, x〉 = 0}. Then, there exists universal constants a0, c > 0,
such that for |a| ≤ a0, we have that

γn−1(Kθ
a) ≥ (α− cη)(1− e−

1
100a2

4
√

2π
).

As a final remark, we note that unlike the subgaussian sampler, the recentering procedure
is not scale invariant. Namely, if we jointly scale P and K by some factor α, the output
of the recentering procedure will not be an α-scaling of the output on the original K and
P , as Gaussian measure is not homogeneous under scalings. Thus, one must take care to
appropriately normalize P and K before applying the recentering procedure to achieve the
desired results.

We now give the high level overview of our recentering step implementation. The first
crucial observation in this context, is that the task of finding t ∈ P maximizing the Gaussian
measure of K− t is in fact a convex program. More precisely, the objective function (Gaussian
measure of K− t) is a logconcave function of t and the feasible region P is convex. Hence, one
can hope to apply standard convex optimization techniques to find the desired maximizer.

It turns out however, that one can significantly simplify the required task by noting that
the recentering strategy does not in fact necessarily need an exact maximizer, or even a
maximizer in P . To see this, note that if p is a shift such that K − p has larger Gaussian
measure than K, then by logconcavity the shifts K−αp, 0 < α ≤ 1, also have larger Gaussian
measure. Thus, if a we find a shift p /∈ P with larger Gaussian measure, letting αp be the
intersection point with the boundary ∂P , we can induct on the facet of P − αp containing 0
and the corresponding slice of K − αp just as before. Given this, we can essentially “ignore”
the constraint p ∈ P and the treat the optimization problem as unconstrained.

D. Dadush, S. Garg, S. Lovett, and A. Nikolov 28:11

This last observation will allow us to use the following simple gradient ascent strategy.
Precisely, we simply take steps in the direction of the gradient until either we pass through
a facet of P or the gradient becomes “too small”. As alluded to previously, the gradient
will exactly equal a fixed scaling of the barycenter of K − p, p the current shift, under the
induced Gaussian measure. Thus, once the gradient is small, the barycenter will be very
close to the origin, which will be good enough for our purposes. The last nontrivial technical
detail is how to efficiently estimate the barycenter, where we note that the barycenter is the
expectation of a random point inside K − p. For this purpose, we simply take an average of
random samples from K − p, where we generate the samples using standard random walk
samplers for logconcave distributions over convex bodies [1, 17, 12].

Conclusion and Open Problems

In conclusion, we have shown a tight connection between the existence of subgaussian
coloring distributions and Banaszczyk’s vector balancing theorem. Furthermore, we make
use of this connection to constructively recover a weaker version of this theorem. The main
open problem we leave is thus to fully recover Banaszczyk’s result. As explained above,
this reduces to finding a distribution on colorings such that the output random signed
combination is O(1)-subgaussian, when the input vectors have `2 norm at most 1. We believe
this approach is both attractive and feasible, especially given the recent work [5], which
builds a distribution on colorings for which each coordinate of the output random signed
combination is O(1)-subgaussian.

Acknowledgments. We would like to thank the American Institute for Mathematics for
hosting a recent workshop on discrepancy theory, where some of this work was done.

References
1 David Applegate and Ravi Kannan. Sampling and integration of near log-concave functions.

In Proceedings of the 23rd annual ACM symposium on Theory of Computing, pages 156–163,
1991.

2 Wojciech Banaszczyk. Balancing vectors and Gaussian measures of n-dimensional convex
bodies. Random Structures Algorithms, 12(4):351–360, 1998.

3 Wojciech Banaszczyk. On series of signed vectors and their rearrangements. Random Struct.
Algorithms, 40(3):301–316, 2012. doi:10.1002/rsa.20373.

4 Nikhil Bansal. Constructive algorithms for discrepancy minimization. In 2010 IEEE 51st
Annual Symposium on Foundations of Computer Science FOCS 2010, pages 3–10. IEEE
Computer Soc., Los Alamitos, CA, 2010.

5 Nikhil Bansal, Daniel Dadush, and Shashwat Garg. An algorithm for Komlós conjecture
matching Banaszczyk’s bound. To appears in FOCS, 2016.

6 Franck Barthe, Olivier Guédon, Shahar Mendelson, and Assaf Naor. A probabilistic ap-
proach to the geometry of the lnp -ball. Ann. Probab., 33(2):480–513, 2005.

7 József Beck. Roth’s estimate of the discrepancy of integer sequences is nearly sharp. Com-
binatorica, 1(4):319–325, 1981.

8 József Beck and Tibor Fiala. “Integer-making” theorems. Discrete Appl. Math., 3(1):1–8,
1981.

9 Boris Bukh. An improvement of the Beck-Fiala theorem. CoRR, abs/1306.6081, 2013.
10 Bernard Chazelle. The discrepancy method. Cambridge University Press, Cambridge, 2000.

Randomness and complexity.

APPROX/RANDOM’16

http://dx.doi.org/10.1002/rsa.20373

28:12 Towards a Constructive Version of Banaszczyk’s Vector Balancing Theorem

11 William Chen, Anand Srivastav, Giancarlo Travaglini, et al. A Panorama of Discrepancy
Theory, volume 2107. Springer, 2014.

12 Ben Cousins and Santosh Vempala. A cubic algorithm for computing Gaussian volume. In
Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1215–1228. ACM, New York, 2014.

13 Ronen Eldan and Mohit Singh. Efficient algorithms for discrepancy minimization in convex
sets. CoRR, abs/1409.2913, 2014.

14 Esther Ezra and Shachar Lovett. On the Beck-Fiala conjecture for random set systems.
Electronic Colloquium on Computational Complexity (ECCC), 22:190, 2015.

15 Nicholas J. A. Harvey, Roy Schwartz, and Mohit Singh. Discrepancy without partial col-
orings. In Approximation, randomization, and combinatorial optimization, volume 28 of
LIPIcs. Leibniz Int. Proc. Inform., pages 258–273. Schloss Dagstuhl. Leibniz-Zent. Inform.,
Wadern, 2014.

16 L. Lovász, J. Spencer, and K. Vesztergombi. Discrepancy of set-systems and matrices.
European J. Combin., 7(2):151–160, 1986. doi:10.1016/S0195-6698(86)80041-5.

17 László Lovász and Santosh Vempala. Fast algorithms for logconcave functions: Sampling,
rounding, integration and optimization. In Proceedings of the 47th Annual IEEE Symposium
on Foundations of Computer Science, pages 57–68, 2006.

18 Shachar Lovett and Raghu Meka. Constructive discrepancy minimization by walking on
the edges. SIAM J. Comput., 44(5):1573–1582, 2015. Preliminary version in FOCS 2012.

19 Jiří Matoušek. Geometric discrepancy, volume 18 of Algorithms and Combinatorics.
Springer-Verlag, Berlin, 1999. An illustrated guide.

20 Aleksandar Nikolov. The Komlós conjecture holds for vector colorings. arXiv preprint
arXiv:1301.4039, 2013.

21 Aleksandar Nikolov and Kunal Talwar. Approximating hereditary discrepancy via small
width ellipsoids. In Symposium on Discrete Algorithms, SODA, pages 324–336, 2015.

22 Thomas Rothvoss. Constructive discrepancy minimization for convex sets. In 55th Annual
IEEE Symposium on Foundations of Computer Science – FOCS 2014, pages 140–145. IEEE
Computer Soc., Los Alamitos, CA, 2014.

23 Joel Spencer. Six standard deviations suffice. Trans. Amer. Math. Soc., 289(2):679–706,
1985.

24 Joel Spencer. Ten lectures on the probabilistic method, volume 52. SIAM, 1987.
25 Aravind Srinivasan. Improving the discrepancy bound for sparse matrices: better approx-

imations for sparse lattice approximation problems. In Proceedings of the Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms (New Orleans, LA, 1997), pages 692–701.
ACM, New York, 1997.

26 Michel Talagrand. Regularity of Gaussian processes. Acta Math., 159(1-2):99–149, 1987.
doi:10.1007/BF02392556.

27 Michel Talagrand. Upper and lower bounds for stochastic processes, volume 60 of Ergebnisse
der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathe-
matics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys
in Mathematics]. Springer, Heidelberg, 2014. Modern methods and classical problems.
doi:10.1007/978-3-642-54075-2.

http://dx.doi.org/10.1016/S0195-6698(86)80041-5
http://dx.doi.org/10.1007/BF02392556
http://dx.doi.org/10.1007/978-3-642-54075-2

On the Beck-Fiala Conjecture for Random Set
Systems
Esther Ezra∗1 and Shachar Lovett†2

1 School of Mathematics, Georgia Institute of Technology, Atlanta, USA
eezra3@math.gatech.edu

2 Computer Science and Engineering, University of California, San Diego, USA
slovett@cse.ucsd.edu

Abstract
Motivated by the Beck-Fiala conjecture, we study discrepancy bounds for random sparse set
systems. Concretely, these are set systems (X,Σ), where each element x ∈ X lies in t randomly
selected sets of Σ, where t is an integer parameter. We provide new bounds in two regimes of
parameters. We show that when |Σ| ≥ |X| the hereditary discrepancy of (X,Σ) is with high
probability O(

√
t log t); and when |X| � |Σ|t the hereditary discrepancy of (X,Σ) is with high

probability O(1). The first bound combines the Lovász Local Lemma with a new argument based
on partial matchings; the second follows from an analysis of the lattice spanned by sparse vectors.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Discrepancy theory, Beck-Fiala conjecture, Random set systems

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2016.59

1 Introduction

Let (X,Σ) be a finite set system, with X a finite set and Σ a collection of subsets of X.
A two-coloring of X is a mapping χ : X → {−1,+1}. For a subset S ∈ Σ we define
χ(S) :=

∑
x∈S χ(x). The discrepancy of Σ is defined as

disc(Σ) := min
χ

max
S∈Σ
|χ(S)|.

In other words, the discrepancy of the set system (X,Σ) is the minimum over all colorings
χ of the largest deviation from an even split, over all subsets in Σ. For background on
discrepancy theory, we refer the reader to the books of Chazelle [7] and Matoušek [11].

In this paper, our interest is in the discrepancy of sparse set systems. The set system
(X,Σ) is said to be t-sparse if any element x ∈ X belongs to at most t sets S ∈ Σ. A
well-known result of Beck and Fiala [4] is that sparse set systems have discrepancy bounded
only in terms of their sparsity.

I Theorem 1 ([4]). If (X,Σ) is t-sparse then disc(Σ) ≤ 2t− 2.

The bound was improved to 2t− 3 by Bednarchak and Helm [5], to 2t− 4 by Helm [10],
and to 2t− log∗ t by Bukh [6]. However, Beck and Fiala conjectured that in fact, the correct
bound should be O(

√
t), analogous to Spencer’s theorem for non-sparse set systems [14].

This is a long standing open problem in discrepancy theory. The best result to date (which
allows dependency on the size of the set system) is by Banaszczyk [2].

∗ E.E is supported by an NSF CAREER award 1553354.
† S.L. is supported by an NSF CAREER award 1350481 and a Sloan fellowship.

© Esther Ezra and Shachar Lovett;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016).
Editors: Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans; Article No. 59; pp. 59:1–59:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.59
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

59:2 On the Beck-Fiala Conjecture for Random Set Systems

I Theorem 2 ([2]). If (X,Σ) is t-sparse with |X| = n then disc(Σ) ≤ O(
√
t logn).

Recently, Bansal et al. [3] gave an efficient algorithm which finds a coloring matching
Banaszczyk’s bound.

1.1 Our results
In this paper, we study random sparse set systems. To sample a random t-sparse set system
(X,Σ) with |X| = n, |Σ| = m, for each x ∈ X choose uniformly and independently a subset
Tx ⊂ [m] of size |Tx| = t. Then set Si = {x ∈ X : i ∈ Tx} and Σ = {S1, . . . , Sm}. Letting
E[·] denote expectation, our main quantity of interest is E[disc(Σ)]. We show that when
m ≥ n, this is close to the conjectured bound of Beck and Fiala. Specifically, we show
E[disc(Σ)] = O(

√
t log t). In particular, the bound does not depend on n.

In fact, we obtain such bound for the hereditary discrepancy of the set system. For Y ⊂ X
let Σ|Y = {S ∩ Y : S ∈ Σ} be the set system restricted to Y . The hereditary discrepancy of
a set system (X,Σ) is defined as

herdisc(Σ) = max
Y⊂X

disc(Σ|Y).

Our main result is the following.

I Theorem 3. Assume m ≥ n ≥ t. Let (X,Σ) be a random t-sparse set system with
|X| = n, |Σ| = m. Then

E[disc(Σ)] ≤ E[herdisc(Σ)] ≤ O(
√
t log t).

In fact, the bound holds with probability 1− exp(−Ω(t)).

We note that our technique can be extended to the case where m ≥ cn for any absolute
constant c > 0, but fails whenever m� n. The main reason is that in this regime, most sets
are large. Nevertheless, when n is considerably larger than m, we use a different approach
and show that the discrepancy is small in this case as well. Specifically, when n is somewhat
larger than

(
m
t

)
we show that the discrepancy is only O(1).

I Theorem 4. Fix m ≥ t and let N =
(
m
t

)
. Assume that n ≥ Ω(N logN). Let (X,Σ) be a

random t-sparse set system with |X| = n, |Σ| = m. Then

E[disc(Σ)] = O(1).

In fact, the bound holds with probability 1−N−Ω(1).

To summarize, the work in this paper was motivated by the elusive Beck-Fiala conjecture.
We considered a natural setting of random t-sparse set systems, and showed that in this case,
in some regimes of parameters, the conjecture holds (with the bound of O(

√
t) replaced by

the slightly weaker bound of O(
√
t log t) in our first result). We hope that the techniques

developed in this work will be useful for the study of random sparse set systems in the full
spectrum of parameters, as well as for the original Beck-Fiala conjecture.

2 Preliminaries and Proof Overview

The Lovász Local Lemma [9] is a powerful probabilistic tool. In this paper we only need its
symmetric version.

E. Ezra and S. Lovett 59:3

I Theorem 5. Let E1, E2, ..., Ek be a series of events such that each event occurs with
probability at most p and such that each event is independent of all the other events except
for at most d of them. If ep(d+ 1) ≤ 1 then Pr[∧mi=1Ei] > 0.

In our analysis we exploit a few standard tail bounds for the sum of independent random
variables (Chernoff-Hoeffding bounds, see, e.g., [1]).

I Lemma 6 (Tail bounds for additive error). Let Z1, . . . , Zk ∈ {−1, 1} be independent random
variables and let Z = Z1 + . . .+ Zk. Then for any λ > 0

Pr
[
|Z − E[Z]| ≥ λ

√
k
]
≤ 2 exp(−2λ2).

I Lemma 7 (Tail bounds for multiplicative errors). Let Z1, . . . , Zk ∈ {0, 1} be independent
random variables and let Z = Z1 + . . .+ Zk. Then for any λ > 0

Pr [Z ≥ (1 + λ)E[Z]] ≤ exp(−λ2/3 · E[Z]).

2.1 Proof Overview for Theorem 3
We next present an overview of our proof for Theorem 3. For simplicity of exposition, we
present the overview only for the derivation of the discrepancy bound. In Section 3 we
present the actual analysis and show a bound on the hereditary discrepancy.

First, we classify each set as being either “small” if its cardinality is O(t), or “large”
otherwise. Then we proceed in several steps:
(i) Making large sets pairwise disjoint: Initially, we show that with high probability over

the choice of the set system, it is possible to delete at most one element from each large
set, such that they become pairwise disjoint after the deletion. This property is proved
in Lemma 8.

(ii) Partial matching: For each large set resulting after step (i), we pair its elements, leaving
at most, say, two unpaired elements. Since each pair appears in a unique set, this process
results in a partial matching M = {(a1, b1), . . . , (ak, bk)} on X. We observe that as soon
as we have such a matching, we can restrict the two-coloring function χ on X to assign
alternating signs on each pair of M . Since each large set S has at most two unpaired
elements, we immediately conclude that |χ(S)| ≤ 2.

(iii) Applying the Lovász Local Lemma on the small sets: We are thus left to handle the
small sets. In this case, we observe that a random coloring χ, with alternating signs on
M as above1, satisfies with positive probability that |χ(S)| ≤ O(

√
t log t) for all small

sets S ∈ Σ. This is a consequence of the Lovász Local Lemma, as each small set S
contains only O(t) elements, and each of these elements participates in t sets of Σ. The
fact that some of these elements appear in the partial matching implies that S can
“influence” (w.r.t. the random coloring χ) at most 2|S|t = O(t2) other small sets; see
Section 3 for the details.

We point out that as soon as we have a partial matching M as above, we can “neutralize”
the deviation that might be caused by the large sets, and only need to keep the deviation,
caused by the small sets, small. The latter is fairly standard to do, and so the main effort in
the analysis is to show that we can indeed make large sets disjoint as in step (i).

We note that our proof technique is constructive. Our arguments for steps (i) and (ii) (see
Lemma 8 and our charging scheme in Claim 10) give an efficient algorithm to find an element

1 That is, each pair in M is assigned (+1, −1) or (−1, +1) independently with probability 1/2.

APPROX/RANDOM’16

59:4 On the Beck-Fiala Conjecture for Random Set Systems

to delete in each large set, thereby making large sets disjoint, as well as build the partial
matching, or, alternatively, report (with small probability) that a partial matching of the
above kind does not exist and halt. In step (iii) we can apply the algorithmic Lovász Local
Lemma of Moser and Tardos [12, 13], since the colors are assigned independently among
the pairs in M as well as the unpaired elements. Thus, we obtain an expected polynomial
time algorithm, which, with high probability over the choice of the set system, constructs a
coloring with discrepancy O(

√
t log t).

3 A Low Hereditary Discrepancy Bound: The Analysis

We now proceed with the proof of Theorem 3. We classify the sets in Σ based on their size.
A set S ∈ Σ is said to be large if |S| ≥ 6t and small otherwise. Note that as m ≥ n, most
sets in Σ are small. Let I = {i : Si is large} be a random variable capturing the indices of
the large sets. To construct a coloring, we proceed in several steps. First, we show that
with high probability the large sets are nearly disjoint. We will assume throughout that t is
sufficiently large (concretely t ≥ 55).

I Lemma 8. Fix t ≥ 55. Let E denote the following event: “there exists a choice of xi ∈ Si
for i ∈ I such that the sets {Si \ {xi} : i ∈ I} are pairwise disjoint". Then Pr[E] ≥ 1− 2−t.

We defer the proof of Lemma 8 to Section 4 and prove Theorem 3 based on it, in the
remainder of this section. Decompose

E[herdisc(Σ)] = E[herdisc(Σ)|E] Pr[E] + E[herdisc(Σ)|E] Pr[E]
≤ E[herdisc(Σ)|E] + (2t− 1) Pr[E]
≤ E[herdisc(Σ)|E] + 1

where we bounded E[herdisc(Σ)|E] by the Beck-Fiala theorem (Theorem 1) which holds for
any t-sparse set system, and bounded Pr[E] by 2−t according to Lemma 8. To conclude the
proof we will show that when E holds then herdisc(Σ) ≤ O(

√
t log t). Thus, we assume from

now on that the event E holds. Fix a subset Y ⊂ X, where we will construct a two-coloring
for Σ′ = Σ|Y of low discrepancy.

Partition each Si ∩ Y = Ai ∪ Bi for i ∈ I, where |Ai| is even, |Bi| ≤ 2 and the sets
{Ai : i ∈ I} are pairwise disjoint. Partition each Ai arbitrarily into |Ai|/2 pairs, and
let M be the union of these pairs. That is, M is a partial matching on Y given by
M = {(a1, b1), . . . , (ak, bk)} where a1, b1, . . . , ak, bk ∈ Y are distinct, and each Ai is a union
of a subset of M , and each pair aj , bj appears in a unique set Ai due to the fact that
these sets are pairwise disjoint (they thus form a partition of M). We say that a coloring
χ : Y → {−1,+1} is consistent with M if χ(aj) = −χ(bj) for all j ∈ [k]. Note that if Si is a
large set, then for any coloring χ consistent with M ,

|χ(Si ∩ Y)| = |χ(Ai) + χ(Bi)| = |0 + χ(Bi)| ≤ |Bi| ≤ 2.

Thus, we only need to minimize the discrepancy of χ over the small sets in Σ. To do so, we
choose χ uniformly from all two-colorings consistent with M . These are given by choosing
uniformly and independently χ(ai) ∈ {−1,+1} for i ∈ [k], setting χ(bi) = −χ(ai) and
choosing χ(x) ∈ {−1,+1} uniformly and independently for all x /∈ {a1, b1, . . . , ak, bk}.

Let Si be a small set, that is |Si| ≤ 6t. Let Ei denote the event

Ei :=
[
|χ(Si ∩ Y)| ≥ c

√
t log t

]
.

E. Ezra and S. Lovett 59:5

Each pair {aj , bj} contained in Si contributes 0 to the discrepancy, and all other elements
obtain independent colors. Hence χ(Si) is the sum of t′ ≤ 6t independent signs. By Lemma 6,
for an appropriate constant c we have

Pr[Ei] ≤ 1/100t2.

We next claim that each event Ei depends on at most d = 12t2 other events {Ej : j 6= i}.
Indeed, let S′i = Si ∪ {aj : bj ∈ Si} ∪ {bj : aj ∈ Si}. Then |S′i| ≤ 2|Si| ≤ 12t and χ(Si) is
independent of χ(x) for all x /∈ S′i. So, if Ei depends on Ej , it must be the case that Sj
intersects S′i. However, as each x ∈ S′i is contained in t sets, there are at most 12t2 such
events Ej .

We are now in a position to apply the Lovász Local Lemma (Theorem 5). Its condition
are satisfied as we have p = 1/100t2 and d = 12t2. Hence Pr[∧Ei] > 0, that is, there exists a
coloring χ consistent with M for which |χ(Si)| ≤ c

√
t log t for all small sets Si. This coloring

shows that disc(Σ′) ≤ max(c
√
t log t, 2) as claimed.

4 Proof of Lemma 8

Let (X,Σ) be a t-sparse set system with |X| = n, |Σ| = m. It will be convenient to identify
it with a bi-partite graph G = (X,V,E) where |V | = m and E = {(x, i) : x ∈ Si}. Then, a
random t-sparse set system is the same as a random left t-regular bi-partite graph. That is,
a uniform graph satisfying deg(x) = t for all x ∈ X.

Large sets in Σ correspond to the subset of the vertices V ′ = {v ∈ V : deg(v) ≥ 6t}. For
a vertex v ∈ V let Γ(v) ⊂ X denote its neighbors. Lemma 8 is equivalent to the following
lemma, which we prove in this section.

I Lemma 9. Fix t ≥ 55. With probability at least 1− 2−t over the choice of G, there exists
a choice of xv ∈ Γ(v) such that the sets {Γ(v) \ {xv} : v ∈ V ′} are pairwise disjoint.

Let G′ be the induced (bi-partite) sub-graph on (X,V ′). We will show that with high
probability G′ has no cycles. In such a case Lemma 9 follows from the straightforward scheme
described below:

I Claim 10. Assume that G′ has no cycles. Then there exists a choice of xv ∈ Γ(v) such
that the sets {Γ(v) \ {xv} : v ∈ V ′} are pairwise disjoint.

Proof. We present a charging scheme of the vertices xv ∈ Γ(v), for each v ∈ V ′. If G′ has
no cycles then it is a forest. Fix a tree T in G′ and an arbitrary root vT ∈ V ′ of T . Orient
the edges of T from vT to the leaves. For each v ∈ T other than the root, choose xv to be
the parent of v in the tree, and choose xvT

arbitrarily. Let Av = Γ(v) \ {xv} for v ∈ V ′. We
claim that {Av : v ∈ V ′} are pairwise disjoint. To see that, assume towards contradiction
that x ∈ Av1 ∩ Av2 for some x ∈ X, v1, v2 ∈ V ′. Then v1, x, v2 is a path in G′ and hence
v1, v2 must belong to the same tree T . However, the only case where this can happen (as
T is a tree) is that x is the parent of both v1, v2 in T . However, by construction in this
case x = xv1 = xv2 and hence x /∈ Av1 , Av2 , from which we conclude that {Av : v ∈ V ′} are
pairwise disjoint, as claimed. J

In the remainder of the proof we show that with high probability G′ has no cycles. The
girth of G′, denoted girth(G′), is the minimal length of a cycle in G′ if such exists, and
otherwise it is ∞. Note that as G′ is bipartite, then girth(G′) is (if finite) the minimal 2`
such that there exist a cycle x1, v1, x2, v2, . . . , x`, v`, x1 in G′ with xi ∈ X and vi ∈ V ′.

APPROX/RANDOM’16

59:6 On the Beck-Fiala Conjecture for Random Set Systems

I Claim 11. Pr[girth(G′) = 4] ≤ t4 exp(−t).

Proof. Fix x1, x2 ∈ X and v1, v2 ∈ V . They form a cycle of length 4 if v1, v2 ∈ Γ(x1)∩Γ(x2).
As each Γ(xi) is a uniformly chosen set of size t we have that

Pr[v1, v2 ∈ Γ(x1) ∩ Γ(x2)] =
((

t
2
)(

m
2
))2

≤ (t/m)4.

Next, conditioned on the event that v1, v2 ∈ Γ(x1) ∩ Γ(x2), we still need to have v1, v2 ∈ V ′
(that is v1, v2 represent large sets of Σ). We will only require that v1 ∈ V ′ for the bound.
Note that so far we only fixed Γ(x1),Γ(x2), and hence the neighbors of Γ(x) for x 6= x1, x2
are still uniform. Then v1 ∈ V ′ if at least 6t− 2 other nodes x ∈ X have v1 as their neighbor.
By Lemma 7, the probability for this is bounded by

Pr[v1 ∈ V ′|v1, v2 ∈ Γ(x1) ∩ Γ(x2)] ≤ exp(−((5t− 2)/t)2/3 · t) ≤ exp(−t).

So,

Pr[v1, v2 ∈ Γ(x1) ∩ Γ(x2) ∧ v1 ∈ V ′] ≤ (t/m)4 · exp(−t).

To bound Pr[girth(G′) = 4] we union bound over all
(
n
2
)(
m
2
)
choices of x1, x2, v1, v2. Using

our assumption that m ≥ n we get

Pr[girth(G′) = 4] ≤ m4(t/m)4 exp(−t) ≤ t4 exp(−t). J

I Claim 12. For any ` ≥ 3, Pr[girth(G′) = 2`] ≤ exp(−t`).

Proof. Let x1, v1, . . . , x`, v` denote a potential cycle of length 2`. As it is a minimal cycle
and ` ≥ 3, the vertices vi, vj have no common neighbors, unless j = i+ 1 in which case xi
is the only common neighbor of vi, vi+1 (where indices are taken modulo `). Thus there
exist sets Xi ⊂ X of size |Xi| = 6t− 2 such that Xi ⊂ Γ(vi) and X1, . . . , X`, {x1, . . . , x`} are
pairwise disjoint.

Let E(x1, v1, . . . , x`, v`, X1, . . . , X`) denote the event described above, for a fixed choice
of x1, v1, . . . , x`, v`, X1, . . . , X`. The event holds if
1. vi, vi+1 are neighbors of xi.
2. vi is a neighbor of all x ∈ Xi.
There are independent events, as Γ(x) is independently chosen for each x ∈ X. So

Pr[E(x1, v1, . . . , x`, v`, X1, . . . , X`)]

=
∏̀
i=1

Pr[vi, vi+1 ∈ Γ(xi)] ·
∏̀
i=1

∏
x∈Xi

Pr[vi ∈ Γ(x)]

=
((

t
2
)(

m
2
))` · (t

m

)(6t−2)`
≤
(
t

m

)6t`
.

To bound Pr[girth(G′) = 2`] we union bound over all choices of x1, v1, . . . , x`, v`, X1, . . . , X`.
The number of choices is bounded by

n`m`

(
n

6t− 2

)`
≤
(
nm · e6t−2 · n6t−2

(6t− 2)6t−2

)`
≤
(

(em)6t

(6t− 2)6t−2

)`
.

Thus,

Pr[girth(G′) = 2`] ≤
(

(em)6t

(6t− 2)6t−2

)`
·
(
t

m

)6t`
=
(

(6t− 2)2
(

et

6t− 2

)6t
)`
≤ exp(−t`). J

E. Ezra and S. Lovett 59:7

Proof of Lemma 9. Using Claims 11 and 12, the probability that girth(G′) <∞ is bounded
by:

Pr[girth(G′) <∞] =
∞∑
`=2

Pr[girth(G′) = `] ≤ t4 exp(−t) +
∞∑
`=3

exp(−t`) ≤ 2t4 exp(−t).

For t ≥ 55, we have that Pr[girth(G′) <∞] ≤ 2−t. J

5 The regime of large sets

We next prove Theorem 4. Let (X,Σ) be a t-sparse set system with |X| = n, |Σ| = m. In
this setting, we consider the case of fixed m, t and n → ∞. Consider its m × n incidence
matrix. The columns are t-sparse vectors in {0, 1}m, and hence have N =

(
m
t

)
possible

values. When n� N , there will be many repeated columns. We show that in this case, the
discrepancy of the set system is low. Setting notations, let v1, . . . , vN ∈ {0, 1}m be all the
possible t-sparse vectors, and let r1, . . . , rN denote their multiplicity in the set system. Note
that they define the set system uniquely (up to permutation of the columns, which does not
effect the discrepancy).

Our main result in this section is the following. We will assume throughout that m is
large enough and that 4 ≤ t ≤ m − 4. We note that if t ≤ 3 or t ≥ m − 3 then result
immediately follows from the Beck-Fiala theorem (Theorem 1), for any set systems. The first
case follows by a direct application, and the second case by first partitioning the columns to
pairs and subtracting one vector from the next in each pair, which gives a 6-sparse {−1, 0, 1}
matrix, to which we apply the Beck-Fiala theorem.

I Theorem 13. Let (X,Σ) be a t-sparse set system with 4 ≤ t ≤ m− 4 and m large enough.
Assume that min(r1, . . . , rN) ≥ 7. Then disc(Σ) ≤ 2.

Note that the statement in Theorem 13 is somewhat stronger than that in Theorem 4, as
it only assumes that all possible t-sparse column vectors comprise the incidence matrix of
(X,Σ), and their multiplicity is 7 or higher. In fact, Theorem 4 follows from Theorem 13
using a straightforward coupon-collector argument [8]. In this regime, with high probability
(say, with probability at least 1− 1/N), a random sample of Θ(N logN) columns guarantees
that each t-sparse column appears with multiplicity 7 (or higher). Therefore, we obtain:

E[disc(Σ)] ≤ 2
(

1− 1
N

)
+ 2t− 1

N
= O(1).

We are thus left to prove Theorem 13. First, we present an overview of the proof.

5.1 Proof overview
Every column vi is repeated ri times. As we may choose arbitrary signs for each occurrence
of a vector, the aggregate total would be civi, where ci ∈ Z, |ci| ≤ ri and ci ≡ ri mod 2.
Our goal is to show that such a solution ci always exists, for which ‖

∑
civi‖∞ is bounded,

for any initial settings of r1, . . . , rN , as long as they are all large enough.
We show that such a solution always exists, with |ci| ≤ 7. In order to show it, we first fix

some solution with the correct parity, and then correct it to a low discrepancy solution, by
adding an even number of copies of each vector. In order to do that, we study the integer
lattice L spanned by the vectors v1, . . . , vN , as our correction comes from 2L. We show that
L = {x ∈ Zm :

∑
xi = 0 mod t}, which was already proved by Wilson [15] in a more general

APPROX/RANDOM’16

59:8 On the Beck-Fiala Conjecture for Random Set Systems

scenario. However, we need an additional property: vectors in L are efficiently spanned by
v1, . . . , vN . This allows us to perform the above correction efficiently, keeping the number of
times that each vi is repeated bounded. Putting that together, we obtain the result.

5.2 Proof of Theorem 13
Initially, we investigate the lattice spanned by the vectors v1, . . . , vN . As the sum of the
coordinates of each of them is t, they sit within the lattice

L =
{
x ∈ Zm :

∑
xi ≡ 0 mod t

}
.

We first show that they span this lattice, and moreover, they do so effectively.

I Lemma 14. For any w ∈ L there exist a1, . . . , aN ∈ Z such that
∑
aivi = w. Moreover,

|ai| ≤ A for all i ∈ [N] where A = 2‖w‖1

(m−2
t−1) + 2.

Proof. Assume first that we have
∑
wi = 0. We will later show how to reduce to this case.

Pair the positive and negative coordinates of w. For L = ‖w‖1/2 let (i1, j1), . . . , (iL, jL) be
pairs of elements of [N] such that: if (i, j) is a pair then wi > 0, wj < 0; each i ∈ [m] with
wi > 0 appears wi times as the first element in a pair; and each j ∈ [m] with wj < 0 appears
−wj times as the second element in a pair. For any ` ∈ [L] choose S` ⊂ [m] of size t− 1. Set
I` = S` ∪ {i`} and J` = S` ∪ {j`}. Identifying [N] with subsets of [m] of size t, we have

w =
L∑
`=1

vI`
− vJ`

.

We choose the sets S1, . . . , SL to minimize the maximum number of times that each vector
from {v1, . . . , vN} is repeated in the decomposition. When we choose S`, we can choose one
of M =

(
m−2
t−1
)
many choices. There is a choice for S` such that both I` and J` appeared

thus far less than 2`/M times. Choosing such a set, we maintain the invariant that after
choosing S1, . . . , S`, each vector is repeated at most 2`/M + 1 times. Thus, at the end each
vector is repeated at most 2L/M + 1 times.

In the general case, we have
∑
wi = st, where we may assume s > 0. We apply the

previous argument to w − (vi1 + . . . + vis), whose coordinates sum to zero. We choose
i1, . . . , is ∈ [N] (potentially with repetitions) so as to minimize the maximum number of
times that each vector participates; this number is ds/Ne ≤ ‖w‖1/M + 1. Combining the two
estimates, we obtain that at the end each vector is repeated at most 4L/M+2 = 2‖w‖1/M+2
times. J

I Lemma 15. For any b1, . . . , bN ∈ {0, 1} there exist c1, . . . , cN ∈ Z such that
(i) ci ≡ bi mod 2.
(ii) ‖

∑
civi‖∞ ≤ 2.

(iii) |ci| ≤ 7 for all i ∈ [N].

Proof. As a first step, choose zi ∈ {−1, 0, 1} such that zi = 0 if bi = 0, and zi ∈ {−1, 1}
chosen uniformly if bi = 1. Let u =

∑
zivi. Note that for j ∈ [m], if there are kj indices

i ∈ [N] for which (vi)j = 1 and bi = 1, then Ez[u2
j] = kj . Thus,

Ez[‖u‖22] =
∑

kj ≤ Nt.

Thus, with probability at least 1/2, ‖u‖2 ≤
√

2Nt and hence ‖u‖1 ≤
√

2Ntm. Fix such a u.

E. Ezra and S. Lovett 59:9

Next, we choose w ∈ L such that ‖u− 2w‖∞ is bounded. If we only wanted that w ∈ Zm
we could simply choose q ∈ {0, 1}m with qi = ui mod 2 and take w = (u− q)/2. In order to
guarantee that w ∈ L, namely that

∑
wi = 0 mod t, we change at most t coordinates in

q by adding or subtracting 2. Thus, we obtain q ∈ {−2,−1, 0, 1, 2}m where qi ≡ ui mod 2
and set w = (u− q)/2 ∈ L. We have ‖u− 2w‖∞ ≤ 2.

Next, we apply Lemma 14 to w. We obtain a decomposition w =
∑
aivi. This implies

that if we set ci = zi − 2ai then indeed ci ≡ bi mod 2 and ‖
∑
civi‖∞ = ‖u − 2w‖∞ ≤ 2.

To bound |ci|, note that ‖w‖1 ≤ ‖u‖1/2 +m. We have by Lemma 14 that |ai| ≤ A for

A = 2 + η ≤ 3,

where

η = 2 ‖w‖1(
m−2
t−1
) ≤ O

√
mt
(
m
t

)(
m−2
t−1
)
 ≤ O(m3/2(

m
t

)1/2
)
≤ 1,

whenever 4 ≤ t ≤ m− 4 and m is large enough, as is easily verified by the fact that the last
term is a decreasing function of m. J

Proof of Theorem 13. Assume that r1, . . . , rN ≥ 7. By Lemma 15, there exists ci ∈ Z such
that ci ≡ ri mod 2, |ci| ≤ 7 and ‖

∑
civi‖∞ ≤ 2. For each i ∈ [N], we color |ci| of the

vectors vi with sign(ci) ∈ {−1,+1} and the remaining ri − |ci| vectors with alternating +1
and −1 colors (so that their contribution cancels, since ri − |ci| is even). The total coloring
produces exactly the vector

∑
civi, which as guaranteed has discrepancy bounded by 2. J

Acknowledgments. The authors wish to thank Aravind Srinivasan for presenting this prob-
lem during a discussion at the IMA Workshop on the Power of Randomness in Computation.

References
1 Noga Alon and Joel H. Spencer. The probabilistic method. Wiley-Interscience series in

discrete mathematics and optimization. Wiley, New York, Chichester, Weinheim, 2000.
2 Wojciech Banaszczyk. Balancing vectors and Gaussian measures of n-dimensional convex

bodies. Random Structures & Algorithms, 12(4):351–360, 1998.
3 Nikhil Bansal, Daniel Dadush, and Shashwat Garg. An algorithm for Komlós conjecture

matching Banaszczyk’s bound. arXiv preprint arXiv:1605.02882, 2016.
4 József Beck and Tibor Fiala. Integer-making theorems. Discrete Applied Mathematics,

3(1):1–8, 1981.
5 Debe Bednarchak and Martin Helm. A note on the Beck-Fiala theorem. Combinatorica,

17(1):147–149, 1997.
6 Boris Bukh. An improvement of the Beck-Fiala theorem. arXiv preprint arXiv:1306.6081,

2013.
7 Bernard Chazelle. The discrepancy method: randomness and complexity. Cambridge Uni-

versity Press, Cambridge, New York, 2000.
8 Paul Erdös and Rényi Alfréd. On a classical problem of probability theory. Magyar

Tudományos Akadémia Matematikai Kutató Intézetének Közleményei, 6:215–220, 1961.
9 Paul Erdös and Laszlo Lovász. Problems and results on 3-chromatic hypergraphs and some

related questions. Infinite and Finite Sets (to Paul Erdös on his 60th birthday), II:609–627,
1975.

10 Martin Helm. On the Beck-Fiala theorem. Discrete mathematics, 207(1):73–87, 1999.

APPROX/RANDOM’16

59:10 On the Beck-Fiala Conjecture for Random Set Systems

11 Jiri Matoušek. Geometric discrepancy: An illustrated guide, volume 18. Springer Science
& Business Media, 2009.

12 Robin A Moser. A constructive proof of the Lovász local lemma. In Proceedings of the
forty-first annual ACM symposium on Theory of computing, pages 343–350. ACM, 2009.

13 Robin A Moser and Gábor Tardos. A constructive proof of the general Lovász local lemma.
Journal of the ACM (JACM), 57(2):11, 2010.

14 Joel Spencer. Six standard deviations suffice. Transactions of the American Mathematical
Society, 289(2):679–706, 1985.

15 Richard M. Wilson. A diagonal form for the incidence matrices of t-subsets vs. k-subsets.
European Journal of Combinatorics, 11(6):609–615, 1990.

The Niceness of Unique Sink Orientations
Bernd Gärtner1 and Antonis Thomas2

1 Department of Computer Science, Institute of Theoretical Computer Science,
ETH Zürich, Switzerland
gaertner@inf.ethz.ch

2 Department of Computer Science, Institute of Theoretical Computer Science,
ETH Zürich, Switzerland
athomas@inf.ethz.ch

Abstract
Random Edge is the most natural randomized pivot rule for the simplex algorithm. Considerable
progress has been made recently towards fully understanding its behavior. Back in 2001, Welzl
introduced the concepts of reachmaps and niceness of Unique Sink Orientations (USO), in an
effort to better understand the behavior of Random Edge. In this paper, we initiate the systematic
study of these concepts. We settle the questions that were asked by Welzl about the niceness of
(acyclic) USO. Niceness implies natural upper bounds for Random Edge and we provide evidence
that these are tight or almost tight in many interesting cases. Moreover, we show that Random
Edge is polynomial on at least nΩ(2n) many (possibly cyclic) USO. As a bonus, we describe
a derandomization of Random Edge which achieves the same asymptotic upper bounds with
respect to niceness.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.1 Com-
binatorics

Keywords and phrases random edge, unique sink orientation, random walk, reachmap, niceness

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2016.30

1 Introduction

One of the most prominent open questions in the theory of optimization is whether linear
programs can be solved in strongly polynomial time. In particular, it is open whether there
exists a pivot rule for the simplex method whose number of steps can be bounded by a
polynomial function of the number of variables and constraints. For most deterministic pivot
rules discussed in the literature, exponential lower bounds are known. The first such bound
was established for Dantzig’s rule by Klee and Minty in their seminal 1972 paper [20]; this
triggered a number of similar results for many other rules; only in 2011, Friedmann solved a
longstanding open problem by giving a superpolynomial lower bound for Zadeh’s rule [8].

On the other hand, there exists a randomized pivot rule, called Random Facet, with
an expected subexponential number of steps in the worst case. This bound was found
independently by Kalai [18] as well as Matoušek, Sharir and Welzl [23] in 1992. Interestingly,
the proofs employ only a small number of combinatorial properties of linear programs. As a
consequence, the subexponential upper bound for the Random Facet pivot rule holds in a
much more general abstract setting that encompasses many other (geometric) optimization
problems for which strongly polynomial algorithms are still missing [23].

This result sparked a lot of interest in abstract optimization frameworks that generalize
linear programming. The most studied such framework, over the last 15 years, is that of
unique sink orientations (USO). First described by Stickney and Watson already in 1978

© Bernd Gärtner and Antonis Thomas;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016).
Editors: Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans; Article No. 30; pp. 30:1–30:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.30
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

30:2 The Niceness of Unique Sink Orientations

as abstract models for P-matrix linear complementarity problems (PLCPs) [28], USO were
revived by Szabó and Welzl in 2001 [29]. Subsequently, their structural and algorithmic
properties were studied extensively ([26],[27],[22],[12],[7],[2],[16],[13],[19],[17]). In a nutshell,
a USO is an orientation of the n-dimensional hypercube graph, with the property that there
is a unique sink in every subgraph induced by a nonempty face. The algorithmic problem
associated to a USO is that of finding the unique global sink, in an oracle model that allows
us to query any given vertex for the orientations of its incident edges.

In recent years, USO have in particular been looked at in connection with another
randomized pivot rule, namely Random Edge (RE for short). This is arguably the most
natural randomized pivot rule for the simplex method, and it has an obvious interpretation
also on USO: at every vertex pick an edge uniformly at random from the set of outgoing
edges and let the other endpoint of this edge be the next vertex. The path formed constitutes
a random walk. Ever since the subexponential bound for Random Facet was proved in 1992,
researchers have tried to understand the performance of Random Edge. This turned out to
be very difficult, though. Unlike Random Facet, the Random Edge algorithm is non-recursive,
and tools for a successful analysis were simply missing. A superexponential lower bound on
cyclic USO was shown by Morris in 2002 [25], but there was still hope that Random Edge
might be much faster on acyclic USO (AUSO).

Only in 2006, a superpolynomial and subexponential lower bound for Random Edge
on AUSO was found by Matoušek and Szabó [24] and, very recently, pushed further by
Hansen and Zwick [17]. While these are not lower bounds for actual linear programs, the
results demonstrate the usefulness of the USO framework: it is now clear that the known
combinatorial properties of linear programming are not enough to show that Random Edge
is fast. Note that, in 2011, Friedmann, Hansen and Zwick proved a subexponential lower
bound for Random Edge on actual linear programs, “killing” yet another candidate for a
polynomial-time pivot rule [9].

Still, the question remains open whether Random Edge also has a subexponential upper
bound. As there already is a subexponential algorithm, a positive answer would not be an
algorithmic breakthrough; however, as Random Edge is notoriously difficult to analyze, it
might be a breakthrough in terms of novel techniques for analyzing this and other randomized
algorithms. The currently best upper bound on AUSO is an exponential improvement over
the previous (almost trivial) upper bounds, but the bound is still exponential, 1.8n [16].

In this paper, we initiate the systematic study of concepts that are tailored to Random
Edge on USO (not necessarily only AUSO). These concepts – reachmaps and niceness of USO
– were introduced by Welzl [30], in a 2001 workshop as an interesting research direction. At
that time, it seemed more promising to work on algorithms other than Random Edge; hence,
this research direction remained unexplored and the problems posed by Welzl remained open.
Now that the understanding of Random Edge on USO has advanced a lot we hope that these
“old” concepts will finally prove useful, probably in connection with other techniques.

The reachmap of a vertex is the set of all the coordinates it can reach with a directed
path, and a USO is i-nice if for every vertex there is a directed path of length at most i
to another vertex with smaller reachmap. Welzl pointed out that the concept of niceness
provides a natural upper bound for the Random Edge algorithm. Furthermore, he asks the
following question: “Clearly every unique sink orientation of dimension n is n-nice. Can we
do better? In particular what is the general niceness of acyclic unique sink orientations?”

We settle these questions, in Section 4, by proving that for AUSO (n− 2)-nice is tight,
meaning that (n− 2) is an upper bound on the niceness of all AUSO and there are AUSO
that are not (n − 3)-nice. For cyclic USO we argue that n-nice is tight. In Section 2, we

B. Gärtner and A. Thomas 30:3

give the relevant definitions and in Section 3 we show an upper bound of O(ni+1) for the
number of steps RE takes on an i-nice USO. In addition, we describe a derandomization of
RE which also takes at most O(ni+1) on an i-nice USO, thus matching the behavior of RE.

Finally, we include two brief notes in Section 3. The first argues that RE needs at most a
quadratic number of steps in at least nΘ(2n) many, possibly cyclic, USO. The second that RE
can solve the AUSO instances that have been designed as lower bounds for other algorithms
(e.g. Random Facet [21],[10] or Bottom Antipodal [27]) in polynomial time. All the necessary
details for these two notes will be provided in the full version [14].

2 Preliminaries

We use the notation [n] = {1, . . . n}. Let Qn = 2[n] be the set of vertices of the n-dimensional
hypercube. A vertex of the hypercube v ∈ Qn is denoted by the set of coordinates it contains.
The symmetric difference of two vertices, denoted as v ⊕ u is the set of coordinates in which
they differ. Now, let J ∈ 2[n] and v ∈ Qn. A face of the hypercube, FJ,v, is defined as the
set of vertices that are reached from v over the coordinates defined by any subset of J , i.e.
FJ,v = {u ∈ Qn|v ⊕ u ⊆ J}. The dimension of the face is |J |. We call edges the faces of
dimension 1, e.g. F{j},v, and vertices the faces of dimension 0. The faces of dimension n− 1
are called facets. For k ≤ n we call a face of dimension k a k-face.

Let v, u ∈ Qn. By |v⊕u| we denote the Hamming distance (size of the symmetric difference)
of v and u. Given v ∈ Qn, we define the neighborhood of v as N (v) = {u ∈ Qn| |v⊕ u| = 1}.
Now, let ψ be an orientation of the edges of the n-dimensional hypercube. Let v, u ∈ Qn.
The notation v j−→ u (w.r.t ψ) means that F{j},v = {v, u} and that the corresponding edge is
oriented from v to u in ψ. Sometimes we write v → u, when when the coordinate is irrelevant.
An edge v j−→ u is forward if j ∈ u and otherwise we say it is backward.

We say that ψ is a Unique Sink Orientation (USO) if every non-empty face has a unique
sink. In the rest we write n-USO to mean a USO over Qn. Here n is always used to mean
the dimension of the corresponding USO. Consider a USO ψ; we define its outmap sψ, in
the spirit of Szabó and Welzl [29]. The outmap is a function sψ : Qn → 2[n], defined by
sψ(v) = {j ∈ [n]|v j−→ v ⊕ {j}} for every v ∈ Qn. A sink of a face FJ,v is a vertex u ∈ FJ,v,
such that sψ(u) ∩ J = ∅. We mention the following lemma w.r.t. the outmap function.

I Lemma 1 ([29]). For every USO ψ, sψ is a bijection.

The algorithmic problem for a USO ψ is to find the global sink, i.e. find t ∈ Qn such that
sψ(t) = ∅. The computations take place in the vertex oracle model: We have an oracle that
given a vertex v ∈ Qn, returns sψ(v) (vertex evaluation). This is the standard computational
model in the USO literature and all the upper and lower bounds refer to it.

Reachmap and niceness. We are now ready to define the central concepts of this paper.
Given vertices v, u ∈ Qn we write v u if there exists a directed path from v to u (in ψ).
We use d(v, u) to denote the length of the shortest directed path from v to u; if there is no
such path then we have d(v, u) =∞ and otherwise we have d(v, u) ≥ |v ⊕ u|. The following
lemma is well-known and easy to prove by induction on |v ⊕ u|.

I Lemma 2. For every USO ψ, let F ⊆ Qn be a face and u the sink of this face. Then, for
every vertex v ∈ F we have d(v, u) = |v ⊕ u|.

Subsequently, we define the reachmap rψ : Qn → 2[n], for every v ∈ Qn, as:

rψ(v) = sψ(v) ∪ {j ∈ [n]|∃u ∈ Qn s.t. v u and j ∈ sψ(u)}.

APPROX/RANDOM’16

30:4 The Niceness of Unique Sink Orientations

1

3

2

(a) (b) (c)

Figure 1 Examples of 3-dimensional USO: (a) Klee-Minty, which is 1-nice. (b) The only 2-nice
3-dimensional AUSO which is not 1-nice. (c) The only cyclic USO in 3 dimensions, which is 3-nice.

Intuitively, the reachmap of a vertex contains all the coordinates that the vertex can reach
with a directed path. We say that vertex v ∈ Qn is i-covered by vertex u ∈ Qn, if d(v, u) ≤ i
and rψ(u) ⊂ rψ(v) (proper inclusion). Then, we say that a USO ψ is i-nice if every vertex
v ∈ Qn (except the global sink) is i-covered by some vertex u ∈ Qn. Of course, every n-USO
ψ is n-nice since every vertex v is n-covered by the sink t. Moreover, rψ(v) ⊇ v⊕ t, for every
vertex v ∈ Qn.

It is not difficult to observe that every USO in 1 or 2 dimensions is 1-nice, but the
situation changes in 3 dimensions. Consider the illustration in Figure 1.

Let us note that the AUSO in Figure 1(b) is the largest AUSO which is not (n− 2)-nice.
As we prove in Theorem 8, every n-AUSO with n ≥ 4 is (n− 2)-nice.

Algorithmic properties of the reachmap. Our focus lies mostly on the concept of niceness.
Nevertheless, we briefly discuss some of the algorithmic properties of the reachmap here.

It was proved by the authors, in [13], that when given an AUSO ψ described succinctly
by a Boolean circuit, and two vertices s and t, deciding if s t is PSPACE-complete.
More recently, Fearnley and Savani [6] proved that deciding whether the Bottom Antipodal
algorithm (this is the algorithm that from a vertex v jumps to vertex v ⊕ sψ(v)), started
at vertex v will ever encounter a vertex v′ such that j ∈ sψ(v′), for a given coordinate j,
is PSPACE-complete. This line of work was initiated in [1] and further developed in [4]
and [5] and aims at understanding the computational power of pivot algorithms [6]. Below,
we provide a related theorem: it is PSPACE-complete to decide if a coordinate is in the
reachmap of a given vertex in an AUSO. It is, thus, computationally hard to discover the
reachmap of a vertex.

I Theorem 3. Let ψ be an n-AUSO (described succinctly by a Boolean circuit), v ∈ Qn and
j ∈ [n]. It is PSPACE-complete to decide whether j ∈ rψ(v).

The theorem follows from the results of [13] that we mention above. A proof is included in
the full version [14]. Finally, we want to note that it is natural to upper bound algorithms
on AUSO by the reachmap of the starting vertex. Any reasonable path-following algorithm
that solves an AUSO ψ in cn steps, for some constant c, can be bounded by c|rψ(s)| where s
is the starting vertex. The reason is that the algorithm will be contained in the cube Frψ(s),s
of dimension |rψ(s)|. Moreover, we claim that this is also possible for algorithms that are
not path-following. As an example we give in the full version of this paper [14] a variant of
the Fibonacci Seesaw algorithm of [29] that runs in time c|rψ(s)| for some c < φ (the golden
ratio).

3 Random Edge on i-nice USO

In this section we describe how RE behaves on i-nice USO. We give a natural upper bound
and argue that it is tight or almost tight in many situations. In addition, we give a simple

B. Gärtner and A. Thomas 30:5

derandomization of RE, which asymptotically achieves the same upper bound. Firstly, we
consider the following natural upper bound.

I Theorem 4. Started at any vertex of an i-nice USO, Random Edge will perform an
expected number of at most O(ni+1) steps.

Proof. For every vertex v, there is a directed path of length at most i to a target t(v),
some fixed vertex of smaller reachmap. At every step, we either reduce the distance to the
current target (if we happen to choose the right edge), or we start over with a new vertex
and a new target. The expected time it takes to reach some target vertex can be bounded
by the expected time to reach state 0 in the following Markov chain with states 0, 1, . . . , i
(representing distance to the current target): at state k > 0, advance to state k − 1 with
probability 1/n, and fall back to state i with probability (n− 1)/n. A simple inductive proof
shows that state 0 is reached after an expected number of

∑i
k=1 n

k = O(ni) steps. Hence,
after this expected number of steps, we reduce the reachmap size, and as we have to do this
at most n times, the bound follows. J

Already, we can give some first evidence on the usefulness of niceness for analyzing RE:
Decomposable orientations have been studied extensively in literature. The fact that RE
terminates in O(n2) steps on them has been known at least since the work of Williamson-
Hoke [31]. Let a coordinate be combed if all edges on this coordinate are directed the
same way. Then, a cube orientation is decomposable if in every face of the cube there is a
combed coordinate. The class of decomposable orientations, known to be AUSO, contains
the Klee-Minty cube [20] (defined combinatorially in [27]). It is straightforward to argue that
such orientations are 1-nice and, thus, our upper bound from Theorem 4 is also quadratic.
Moreover, quadratic lower bounds have been proved for the behavior of RE on Klee-Minty
cubes [3]. We conclude that, for 1-nice USO, the upper bound in Theorem 4 is optimal.

Counting 1-nice. We have mentioned that the class of decomposable USO are 1-nice. This
class is the previously known largest class of USO, where Random Edge is polynomial. The
number of decomposable USO is 2Θ(2n) (a proof for this is included in the full version [14]).
We can now argue that the class of 1-nice USO is much larger than the class of decomposable
ones, and also contains cyclic USO. To achieve the lower bound we use the same technique
that Matoušek [22] used to give a lower bound on the number of all USO. The upper bound
is proved also in [22]. Thus, we have the number of 1-nice USO is asymptotically (in the
exponent) the same as of all USO.

I Theorem 5. The number of 1-nice n-dimensional USO is nΘ(2n).

Proof of Theorem 5. Consider the following inductive construction. Let A1 be any 1-
dimensional USO. Then, we construct A2 by taking any 1-dimensional USO A′1 and directing
all edges on coordinate 2 towards A1. In general, to construct Ak+1: we take Ak and put
antipodally any k-dimensional USO A′k. Then, we direct all edges on coordinate (k + 1)
towards Ak. This is safe by the Product Lemma (this is one of the two main USO constructing
lemmas from [26]). This construction satisfies the following property: for every vertex, the
minimal face that contains this vertex and the global sink has a combed coordinate. We
call such a USO “target-combed”. It constitutes a generalization of decomposable USO. An
illustration appears in Figure 2.

The construction is 1-nice since for every vertex (except the sink) there is an outgoing
coordinate that can never be reached again. At every iteration step from k to k + 1 we can

APPROX/RANDOM’16

30:6 The Niceness of Unique Sink Orientations

n

Figure 2 A target-combed n-USO. The two larger ellipsoids represent the two antipodal facets
An−1 and A′n−1 and, similarly, for the smaller ones. The combed coordinates are highlighted. The
gray subcubes can be oriented by any USO.

embed, in one of the two antipodal k-faces, any USO. Thus, we can use the lower bounds of
[22], that give us a

(
k
e

)2k−1

(assuming k ≥ 2) lower bound for a k-face. Summing up, we get:

uso1nice(n) ≥
n−1∑
k=1

uso(k) > uso(n− 1) =
(
n− 1
e

)2n−2

where uso1nice(n) and uso(n) is the number of n-dimensional 1-nice USO and general USO
respectively. Thus, uso1nice(n) = nΩ(2n). The upper bound in the statement of the theorem
is from the upper bound on the number of all USO, by Matoušek [22]. J

The niceness of known lower bound constructions

As further motivation for the study of niceness of USO, we want to mention that RE can solve
the AUSO instances that were designed as lower bounds for other algorithms in polynomial
time. This is because of provable upper bounds on the niceness of those constructions. With
similar arguments, upper bounds on the niceness of the AUSO that serve as subexponential
lower bounds for RE can be shown; thus, RE has upper bounds on these constructions that
are almost matching to the lower bounds. The upper bound for RE on the cyclic USO
of Morris [25] is asymptotically matching the lower bound. We summarize the relevant
information in the following table and describe the details on how to obtain it in the full
version [14].

Algorithm Reference Lower bound Niceness RE Upper bound
Random Facet [21],[10] 2Θ(

√
n) 1 O(n2)

Bottom Antipodal [27] Ω(
√

2n) 2 O(n3)
RE acyclic [24] 2Ω(n1/3) n1/3 2O(n1/3 logn)

RE acyclic [17] 2Ω(
√
n logn) √

n 2O(
√
n logn)

RE cyclic [25] n−1
2 ! n nO(n)

A derandomization of Random Edge

Consider the join operation. Given two vertices u, v, join(u, v) is a vertex w such that
u w and v w. We can compute join(u, v) as follows: by Lemma 1, there must be a
coordinate, say j, such that j ∈ sψ(u)⊕ sψ(v). Assume, w.l.o.g., that j ∈ sψ(u). Consider
the neighbor u′ of u such that u j−→ u′. Recursively compute join(u′, v). It can be seen by
induction on |u⊕ v| that the join operation takes O(n) time. Similarly, we talk about a join
of a set S of vertices. A join(S) is a vertex w such that ever vertex in S has a path to it.
We can compute join(S) by iteratively joining all the vertices in S.

B. Gärtner and A. Thomas 30:7

v

u1

u2

l2

l1

Figure 3 We have u, w ∈ AV , l ∈ AC, l /∈ sψ(u) and {l} 6= (v ⊕ u). Thus, the edge Fj,w has to
be outgoing for w. Hence, w u and the algorithm removes w from AV and l from AC.

Furthermore, let N+(v) = {u ∈ N (v)|v → u} denote the set of out-neighbors of a vertex
v. In the subsequent lemma, we argue that the vertices in N+(v) can be joined with linearly
many vertex evaluations.

I Lemma 6. Let ψ be an n-USO and v ∈ Qn a vertex. There is an algorithm that joins the
vertices in N+(v) with |sψ(v)| many vertex evaluations.

Proof. First, we evaluate all the vertices in N+(v). We maintain a set of active vertices AV
and a set of active coordinates AC. Initialize AV = N+(v) and AC = sψ(v). The algorithm
keeps the following invariants: every vertex that gets removed from AV has a path to some
vertex in AV ; also for every vertex u s.t. v l−→ u, u ∈ AV if and only if l ∈ AC.

Then, for each u ∈ AV : for each l ∈ AC: if l /∈ sψ(u) and {l} 6= (u⊕ v) then we update
AC ← AC \ {l} and AV ← AV \ (v ⊕ {l}). See Figure 3.

If in the above loop the vertex u is the sink of the face FAC,u then terminate and return
v′ = u. Of course, in this case every vertex in AV has a path to u. Otherwise the loop will
terminate when there is no coordinate in AC that satisfies the conditions above. In this
case we have that ∀u ∈ AV , u is the source of the face FAC\(u⊕v),u. That is, it is the source
of the face spanned by the vertex and all the active coordinates AC except the one that
connects it to v. In this case, we return the vertex v′ = (v⊕AC). We have that every vertex
in AV has a path to v′: this is because in any USO the source has a path to every vertex
(this can be proved similarly to Lemma 2). J

Using Lemma 6, we can now argue that there exists a derandomization of Random Edge
that asymptotically matches the upper bound of Theorem 4.

I Theorem 7. There is a deterministic algorithm that finds the sink of an i-nice n-USO ψ

with O(ni+1) vertex evaluations.

Proof. Let v be the current vertex. Consider the set Ri ⊆ 2[n] of vertices that are reachable
along directed paths of length at most i from v. Since ψ is i-nice, we know that at least
one of them has strictly smaller reachmap. In particular, any vertex reachable from all the
vertices in Ri has a smaller reachmap. Thus, we compute a join of all the vertices in Ri.

Consider the set Ri−1. The size of Ri−1 is bounded by |Ri−1| ≤
∑i−1
k=0

(
n
k

)
≤
∑i−1
k=0 n

k

and, thus, |Ri−1| = O(ni−1). Every vertex in Ri can be reached in one step from some vertex
in Ri−1. Assume that none of the vertices in Ri−1 is the sink; otherwise, the algorithm is
finished. Then, for every vertex v ∈ Ri−1 we join N+(v) with the algorithm from Lemma 6,
with O(n) vertex evaluations. Therefore, with O(ni) vertex evaluations we have a set S of
O(ni−1) many vertices and each v′ ∈ S is a join of N+(v) for some vertex v ∈ Ri−1.

The next step is to join all the vertices in set S, using the algorithm at the beginning of
the current section, which takes O(n) for each pair of vertices. Hence, the whole procedure
will take an additional O(ni) vertex evaluations. The result is a vertex u that joins all the
vertices in Ri and thus i-covers v. Because the size of the reachmap decreases by at least
one in each round, we conclude that this algorithm will take at most O(ni+1) steps.

APPROX/RANDOM’16

30:8 The Niceness of Unique Sink Orientations

Finally, note that to achieve this upper bound we do not need to know that the input
USO is i-nice. Instead, we can iterate through the different values of i = 1, 2, . . . without
changing the asymptotic behavior of the algorithm. J

4 Bounds on niceness

In this section we answer the questions originally posed in [30] by providing matching upper
and lower bounds on the niceness of USO and AUSO.

For cyclic USO, the cubes designed by Morris as a lower bound for the behavior of RE
[25] are n-nice but not (n − 1)-nice and, hence, match the trivial upper bound. Here, we
sketch a construction that is n-nice (but not (n− 1)-nice) and we give an explicit description
in the full version [14].

The idea for such a construction is quite simple, intuitively. Let ψ be a cyclic n-USO
over Qn that contains a directed cycle such that the edges that participate span all the
coordinates. Then, every vertex v on the cycle has rψ(v) = [n]. Now consider the sink t
and assume the n vertices in N (t) participate in the cycle. By Lemma 2, every vertex has
a path to t. This path has to go through one of the vertices in N (t). It follows that every
v ∈ Qn \ {t} has rψ(v) = [n]. Therefore, the vertex antipodal from t is only n-covered (by t).

The Morris cyclic USO satisfies the properties described above and, thus, it cannot be
(n−1)-nice. An example in 3 dimensions appears in Figure 1; this USO satisfies the properties
we explain above. The construction we describe in the full version [14] is much simpler than
the Morris cube; it is an n-USO that contains a simple cycle over 2n vertices, n of which are
the vertices in N (t). Half of the edges that participate on the cycle are backward and every
other edge in the USO is forward. For the rest of this section, we will turn our attention to
AUSO.

4.1 An upper bound for AUSO

We prove an upper bound on the niceness of AUSO which, as we will see in the next section,
is tight. We utilize the concept of Completely Unimodal Numberings (CUN), which was
studied by Williamson-Hoke [31] and Hammer et al. [15]. To the best of our knowledge, this
is the first time CUN is used to prove structural results for AUSO. A CUN on the hypercube
Qn means that there is a bijective function φ : Qn → {0, . . . , 2n − 1} such that in every face
F there is exactly one vertex v such that φ(v) < φ(u), for every u ∈ N (v) ∩ F . It is known,
e.g. from [31], that for every AUSO there is a corresponding CUN, which can be constructed
by topologically sorting the AUSO.

In the proof of the theorem below we will use the following notation: wk is the vertex
that has φ(wk) = k, w.r.t. some fixed CUN φ. An easy, but crucial observation concerns
the three lowest-numbered vertices w0, w1, w2. Of course, w1 → w0 (where w0 is the global
sink); otherwise, w1 would have been a second global minimum. Moreover, w2 → wj for
exactly one j ∈ {0, 1}. It follows, that both w1 and w2 are facet sinks. We are ready to state
and prove the following theorem.

I Theorem 8. Any n-AUSO, with n ≥ 4, is (n− 2)-nice.

Consider the vertices w0 and w1 and let e be the edge that connects them. Let w ∈ e be
the unique out-neighbor of w2 and w′ the other vertex in e. W.l.o.g. assume w = ∅, w′ = {1}
and w2 = {2}. The situation can be depicted as:

B. Gärtner and A. Thomas 30:9

w = ∅

w2 = {2} w′ = {1}

These three vertices have no outgoing edges to other vertices. Their outmaps and
reachmaps are summarized in the table below.

vertex outmap reachmap is sink of the facet
w = ∅ ⊆ {1} ⊆ {1} F[n]\{1},w

w′ = {1} ⊆ {1} ⊆ {1} F[n]\{1},w′

w2 = {2} = {2} ⊆ {1, 2} F[n]\{2},w2

More precisely, the reachmap of w2 is {2} if w = w0, and it is {1, 2} if w = w1.

I Lemma 9. With w,w′ as above, let v ∈ Qn \ {w0, [n]}. Then v is (n− 2)-covered by some
vertex in {w,w′, w2}.

Proof. Vertex w1 is covered by w0 and w2 by w0 or w1, so assume that v is some other
vertex.

If v neither contains 1 nor 2, then v is in the facet F[n]\{1},w. Hence, d(v, w) = |v ⊕w| ≤
n− 2. This is because F[n]\{1},w is (n− 1)-dimensional and 2 /∈ v. Any coordinate that is
part of the corresponding path is in the reachmap of v but not of w (whose reachmap is a
subset of {1}). Hence, v is (n− 2)-covered by w.

If v contains 1, then v is in the facet F[n]\{1},w′ , and |v ⊕ w′| ≤ n− 2 since v 6= [n]. As
before, this implies that v is (n− 2)-covered by the sink w′ of the facet in question.

Finally, if v contains 2 but not 1, then v is in the face F[n]\{1,2},w2 , and d(v, w2) ≤ n− 2.
Again, any coordinate on a directed path from v to w2 within this face proves that v is
(n− 2)-covered by the sink w2 of the face. J

It remains to (n − 2)-cover the vertex v = [n]. Let m > 2 be the smallest index such
that wm is not a neighbor of w, and assume w.l.o.g. that wk = {k}, 3 ≤ k < m. We have
wk → w for all these k by the vertex ordering. Furthermore, all other edges incident to wk
are incoming. We conclude that each wk, 3 ≤ k < m has outmap equal to {k} and, hence, is
a facet sink. The reachmap of each such wk is ⊆ {1, k}. The situation is depicted as:

w = ∅

w′ = {1}w2 = {2}. . .wm−1 = {m− 1}

wm = {k, j}

Since wm has at least one out-neighbor in {w′, w2, . . . , wm−1}, we know that wm = {k, j}
for some k < j ∈ [n]. Moreover, the vertex ordering again implies that the outgoing edges
of wm are exactly the ones to its (at most two) neighbors among w′, w2, . . . , wm−1. Taking
their reachmaps into account, we conclude that the reachmap of wm is ⊆ {k, j, 1}.

I Lemma 10. With wm as above and n ≥ 4, v = [n] is (n− 2)-covered by wm.

Proof. We first observe that wm is the sink of the face F[n]\{k,j},wm , since its outmap is
⊆ {k, j}. Vertex v = [n] is contained in this (n− 2)-face, hence there exists a directed path
of length d(v, wm) = n− 2 from v to wm in this face. Since n ≥ 4, the path spans at least
two coordinates and thus at least one of them is different from 1. This coordinate proves
that v is (n− 2)-covered by wm. J

APPROX/RANDOM’16

30:10 The Niceness of Unique Sink Orientations

[n] \ {2}

[n] \ {2, 4}

[n] \ {4}

[n] \ {4, 5}

[n] \ {5}

. . . [n] \ {n− 1, n}

Figure 4 An illustration of the path starting at v′. The dashed edges are flipped backwards.

To sum up, we have now proved that every n-AUSO, with n ≥ 4, is (n− 2)-nice. All AUSO
in one or two dimensions are 1-nice and the AUSO in three dimensions can be up to 2-nice
(Figure 1b). This concludes the upper bounds on the niceness of AUSO.

4.2 A matching lower bound for AUSO

We prove a lower bound on the niceness of acyclic USO that matches the upper bound of
Theorem 8. It follows (Corollary 6, [26]) from the Hypersink Reorientation Lemma [26]
that in a USO we can flip any edge if the outmaps of the two vertices incident to it are the
same (except the connecting coordinate). This gives rise to a particular family of USO, the
Flip-Matching Orientations (FMO): those arise when we start with a uniform orientation,
e.g. all edges are forward, and we flip the edges of an arbitrary matching. FMO have been
studied in [26] and [24].

I Theorem 11. There exists an n-AUSO ψ which is not i-nice, for i < n− 2.

Proof. Let ψU be the forward uniform orientation, i.e. the orientation where all edges are
forward. We explain how to construct ψ, our target orientation starting from ψU. With Qnk
we denote the set of vertices that contain k coordinates, i.e. |Qnk | =

(
n
k

)
. We assume n ≥ 4.

The idea here is to construct an AUSO that has its source at ∅ and has the property that
every vertex in

⋃n−3
i=0 Q

n
i has a full-dimensional reachmap.

Pick v ∈ Qnn−3 and assume w.l.o.g. that v = [n]\{1, 2, 3}. Consider the 2-dimensional face
F{1,2},v and direct the edges in this face backwards. This is the first step of the construction
and it results in sψ(v) = {3}.

For the second step, consider the vertex v′ = [n] \ {2}. We will flip n− 3 edges in order to
create a path starting at v′. First, we flip edge F{4},[n]\{2}. Then, for all k ∈ {4, . . . , n− 1}
we flip the edge F{k+1},[n]\{k}. This creates the path depicted in Figure 4.

Let U3 be the set of vertices U3 = {u ∈ Qnn−3|3 ∈ u}. That is all the vertices of Qnn−3
that contain the 3rd coordinate. For every u ∈ U3 we flip the edge F{3},u (that is the edge
incident to u on the 3rd coordinate). This is the third and last step of the construction of ψ.

I Claim 12. ψ is a USO.

The first step of the construction is to flip the four edges in F{1,2},v. This is safe by considering
that we first flip the two edges on coordinate 1; then, it is also safe to flip the two edges on
coordinate 2. All the edges reversed at the second step of the construction (Figure 4) are
between vertices in Qnn−1 and Qnn−2, and, in addition those vertices are not neighbors to
each other. Furthermore, all the edges reversed at the third step of the construction are on
coordinate 3 and between vertices in Qnn−3 and Qnn−4. Thus, all these edge flips are safe.
Note however that edge flips do not neccassarily maintain acyclicity (e.g. the cyclic USO in
Figure 1c is an FMO); we have to verify acyclicity in a different way.

I Claim 13. There is no cycle in ψ.

B. Gärtner and A. Thomas 30:11

v

3
4

5

1

2

Figure 5 An example construction in 5 dimensions. Only the backward edges are noted. Each
coordinate is labeled over a backward edge. The 5-dimensional cube is broken in 2-faces of coordinates
1,2. All the vertices in Qn

n−3 are noted with dots. Also, v is explicitly noted.

Clearly, a cycle has at least one backward and one forward edge in every coordinate it
contains. Thus, there cannot be a cycle that involves coordinate 3 because no backward edge
on a different coordinate, has a path connecting it to a backward edge on coordinate 3.

Consider the facet F[n]\{3},[n] and the USO ψ′, resulting from restricting ψ to the
aforementioned facet. We can notice that ψ′ is an FMO and the only backward edges are
the ones attached to the path illustrated in Figure 4. Thus, a cycle has to use a part of this
path. However, this path cannot be part of any cycles: a vertex on the higher level (vertices
in Qnn−1) of the path has only two outgoing edges; one to the sink [n] and one to the next
vertex on the path. A vertex on the lower level Qnn−2 has only one outgoing edge to the next
vertex on the path. Also, the last vertex of the path [n] \ {n− 1, n} has only one outgoing
edge to [n] \ {n} which has only one outgoing edge to the sink [n].

The fact that the facet F[n]\{3},v has no cycle follows from the observation that there are
backwards edges only on two coordinates which is not enough for the creation of a cycle
(remember that in a USO a cycle needs to span at least three coordinates). This concludes
the proof of Claim 13, which, combined with Claim 12, results in ψ being an AUSO.

I Claim 14. Every vertex in
⋃n−3
i=0 Q

n
i has a full-dimensional reachmap.

Firstly, we argue that v has rψ(v) = [n]. We have sψ(v) = {3} ⊂ rψ(v). Then, v 3−→ u =
[n] \ {1, 2} and u has sψ(u) = {1, 2} ⊂ rψ(v). Vertex u is such that u 1−→ v′ = [n] \ {2}; v′ is
the beginning of the path described in Figure 4. The backwards edges on this path span
every coordinate in {4, . . . , n}. This implies that rψ(v′) = {2, 4, . . . , n} and, since there is a
path from v to v′, rψ(v′) ⊆ rψ(v). Combined with the above, we have that rψ(v) = [n].

Secondly, we argue that ∀u ∈ Qnn−3, rψ(u) = [n]. Vertex v is the sink of the facet
F[n]\{3},v. It follows that every vertex in Qnn−3 ∩ F[n]\{3},v has a path to v and thus has full
dimensional reachmap. The vertices in U3 (defined earlier), which are the rest of the vertices
in Qnn−3, have backward edges on coordinate 3 and thus have paths to F[n]\{3},v. It follows
that vertices in U3 also have full dimensional reachmaps.

Any vertex in
⋃n−4
i=0 Q

n
i has a path to a vertex in Qnn−3 since there are outgoing forward

edges incident to any vertex in ψ (except the global sink at [n]). Thus, we have that
∀u ∈

⋃n−3
i=0 Q

n
i , rψ(u) = [n] which proves the claim.

Finally, we combine the three Claims to conclude that the lowest vertex ∅ can only be
covered by a vertex in Qnn−2. Therefore, ψ is not i-nice for any i < n− 2, which proves the
theorem. We include an example construction, for five dimensions, in Figure 5. J

APPROX/RANDOM’16

30:12 The Niceness of Unique Sink Orientations

5 Conclusions

In this paper we study the reachmaps and niceness of USO, concepts introduced by Welzl
[30] in 2001. The questions that Welzl originally posed are now answered and the concepts
explored further. We believe that these tools, or related ones, will prove useful in finally
closing the gap between the lower and upper bounds known for RE. This will happen with
either exponential lower bounds or with subexponential upper bounds. It is worth mentioning
that these concepts are not only relevant for USO, but could also be defined on generalizations
of USO, such as Grid USO [11] or Unimodal Numberings [15].

The authors of [17] define the concept of a (k, `)-layered AUSO and use it to argue that
their lower bounds are optimal under the method they use. Their concept is a generalization
of niceness (on AUSO) but the exact relationship remains to be discovered. They pose the
following questions: Are there AUSO that are not (2O(

√
n logn), O(

√
n/ logn))-layered? Are

there small constants c, d such that all AUSO are (cn, dn/ logn)-layered? We believe that
the techniques of our proofs from Theorems 8 and 11 may be fruitful for answering these
questions.

Acknowledgements. We would like to thank Thomas Dueholm Hansen and Uri Zwick for
sharing their work [17] with us.

References
1 Ilan Adler, Christos H. Papadimitriou, and Aviad Rubinstein. On simplex pivoting rules

and complexity theory. In Jon Lee and Jens Vygen, editors, Integer Programming and
Combinatorial Optimization – 17th International Conference, IPCO 2014, Bonn, Germany,
June 23-25, 2014. Proceedings, volume 8494 of Lecture Notes in Computer Science, pages
13–24. Springer, 2014. doi:10.1007/978-3-319-07557-0_2.

2 Yoshikazu Aoshima, David Avis, Theresa Deering, Yoshitake Matsumoto, and Sonoko Mor-
iyama. On the existence of Hamiltonian paths for history based pivot rules on acyclic
unique sink orientations of hypercubes. Discrete Applied Mathematics, 160(15):2104–2115,
2012. doi:10.1016/j.dam.2012.05.023.

3 József Balogh and Robin Pemantle. The Klee-Minty random edge chain moves with linear
speed. Random Structures & Algorithms, 30(4):464–483, 2007. doi:10.1002/rsa.20127.

4 Yann Disser and Martin Skutella. The simplex algorithm is NP-mighty. In Piotr Indyk,
editor, Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 858–872. SIAM,
2015. doi:10.1137/1.9781611973730.59.

5 John Fearnley and Rahul Savani. The complexity of the simplex method. In Rocco A.
Servedio and Ronitt Rubinfeld, editors, Proceedings of the Forty-Seventh Annual ACM on
Symposium on Theory of Computing, STOC 2015, Portland, OR, USA, June 14-17, 2015,
pages 201–208. ACM, 2015. doi:10.1145/2746539.2746558.

6 John Fearnley and Rahul Savani. The complexity of all-switches strategy improvement.
In Robert Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12,
2016, pages 130–139. SIAM, 2016. doi:10.1137/1.9781611974331.ch10.

7 Jan Foniok, Bernd Gärtner, Lorenz Klaus, and Markus Sprecher. Counting unique-sink
orientations. Discrete Applied Mathematics, 163, Part 2:155–164, 2014. doi:10.1016/j.
dam.2013.07.017.

8 Oliver Friedmann. A subexponential lower bound for Zadeh’s pivoting rule for solving
linear programs and games. In Oktay Günlük and Gerhard J. Woeginger, editors, Integer

http://dx.doi.org/10.1007/978-3-319-07557-0_2
http://dx.doi.org/10.1016/j.dam.2012.05.023
http://dx.doi.org/10.1002/rsa.20127
http://dx.doi.org/10.1137/1.9781611973730.59
http://dx.doi.org/10.1145/2746539.2746558
http://dx.doi.org/10.1137/1.9781611974331.ch10
http://dx.doi.org/10.1016/j.dam.2013.07.017
http://dx.doi.org/10.1016/j.dam.2013.07.017

B. Gärtner and A. Thomas 30:13

Programming and Combinatoral Optimization – 15th International Conference, IPCO 2011,
New York, NY, USA, June 15-17, 2011. Proceedings, volume 6655 of Lecture Notes in
Computer Science, pages 192–206. Springer, 2011. doi:10.1007/978-3-642-20807-2_16.

9 Oliver Friedmann, Thomas Dueholm Hansen, and Uri Zwick. Subexponential lower bounds
for randomized pivoting rules for the simplex algorithm. In Lance Fortnow and Salil P.
Vadhan, editors, Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC
2011, San Jose, CA, USA, 6-8 June 2011, pages 283–292. ACM, 2011. doi:10.1145/
1993636.1993675.

10 Bernd Gärtner. The Random-Facet simplex algorithm on combinatorial cubes. Random
Structures & Algorithms, 20(3), 2002. doi:10.1002/rsa.10034.

11 Bernd Gärtner, Walter D. Morris Jr., and Leo Rüst. Unique sink orientations of grids.
Algorithmica, 51(2):200–235, 2008. doi:10.1007/s00453-007-9090-x.

12 Bernd Gärtner and Ingo Schurr. Linear programming and unique sink orientations. In
Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2006, Miami, Florida, USA, January 22-26, 2006, pages 749–757. ACM Press, 2006.
URL: http://dl.acm.org/citation.cfm?id=1109557.1109639.

13 Bernd Gärtner and Antonis Thomas. The complexity of recognizing unique sink orient-
ations. In Ernst W. Mayr and Nicolas Ollinger, editors, 32nd International Symposium
on Theoretical Aspects of Computer Science, STACS 2015, March 4-7, 2015, Garching,
Germany, volume 30 of LIPIcs, pages 341–353. Schloss Dagstuhl – Leibniz-Zentrum fuer
Informatik, 2015. doi:10.4230/LIPIcs.STACS.2015.341.

14 Bernd Gärtner and Antonis Thomas. The Niceness of Unique Sink Orientations. CoRR,
June 2016. arXiv:1606.07709.

15 Peter L. Hammer, Bruno Simeone, Thomas M. Liebling, and Dominique de Werra. From
linear separability to unimodality: A hierarchy of pseudo-boolean functions. SIAM J.
Discrete Math., 1(2):174–184, 1988. doi:10.1137/0401019.

16 Thomas Dueholm Hansen, Mike Paterson, and Uri Zwick. Improved upper bounds for
random-edge and random-jump on abstract cubes. In Chandra Chekuri, editor, Proceedings
of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014,
Portland, Oregon, USA, January 5-7, 2014, pages 874–881. SIAM, 2014. doi:10.1137/1.
9781611973402.65.

17 Thomas Dueholm Hansen and Uri Zwick. Random-edge is slower than random-facet on
abstract cubes. To appear in ICALP 2016., 2016. URL: http://cs.au.dk/~tdh/papers/
Random-Edge-AUSO.pdf.

18 Gil Kalai. A subexponential randomized simplex algorithm (extended abstract). In S. Rao
Kosaraju, Mike Fellows, Avi Wigderson, and John A. Ellis, editors, Proceedings of the
24th Annual ACM Symposium on Theory of Computing, May 4-6, 1992, Victoria, British
Columbia, Canada, pages 475–482. ACM, 1992. doi:10.1145/129712.129759.

19 Lorenz Klaus and Hiroyuki Miyata. Enumeration of PLCP-orientations of the 4-
cube. European Journal of Combinatorics, 50:138–151, 2015. Combinatorial Geometries:
Matroids, Oriented Matroids and Applications. Special Issue in Memory of Michel Las
Vergnas. doi:10.1016/j.ejc.2015.03.010.

20 Victor Klee and George J. Minty. How good is the simplex algorithm? Inequalities III,
pages 159–175, 1972.

21 Jiří Matoušek. Lower bounds for a subexponential optimization algorithm. Random Struc-
tures & Algorithms, 5(4):591–607, 1994. doi:10.1002/rsa.3240050408.

22 Jiří Matoušek. The number of unique-sink orientations of the hypercube*. Combinatorica,
26(1):91–99, 2006. doi:10.1007/s00493-006-0007-0.

23 Jiří Matoušek, Micha Sharir, and Emo Welzl. A subexponential bound for linear program-
ming. Algorithmica, 16(4/5):498–516, 1996. doi:10.1007/BF01940877.

APPROX/RANDOM’16

http://dx.doi.org/10.1007/978-3-642-20807-2_16
http://dx.doi.org/10.1145/1993636.1993675
http://dx.doi.org/10.1145/1993636.1993675
http://dx.doi.org/10.1002/rsa.10034
http://dx.doi.org/10.1007/s00453-007-9090-x
http://dl.acm.org/citation.cfm?id=1109557.1109639
http://dx.doi.org/10.4230/LIPIcs.STACS.2015.341
http://arxiv.org/abs/1606.07709
http://dx.doi.org/10.1137/0401019
http://dx.doi.org/10.1137/1.9781611973402.65
http://dx.doi.org/10.1137/1.9781611973402.65
http://cs.au.dk/~tdh/papers/Random-Edge-AUSO.pdf
http://cs.au.dk/~tdh/papers/Random-Edge-AUSO.pdf
http://dx.doi.org/10.1145/129712.129759
http://dx.doi.org/10.1016/j.ejc.2015.03.010
http://dx.doi.org/10.1002/rsa.3240050408
http://dx.doi.org/10.1007/s00493-006-0007-0
http://dx.doi.org/10.1007/BF01940877

30:14 The Niceness of Unique Sink Orientations

24 Jiří Matoušek and Tibor Szabó. RANDOM EDGE can be exponential on abstract cubes.
Advances in Mathematics, 204(1):262–277, 2006. doi:10.1109/FOCS.2004.56.

25 Walter D. Morris Jr. Randomized pivot algorithms for P-matrix linear complement-
arity problems. Mathematical Programming, 92(2):285–296, 2002. doi:10.1007/
s101070100268.

26 Ingo Schurr and Tibor Szabó. Finding the sink takes some time: An almost quadratic
lower bound for finding the sink of unique sink oriented cubes. Discrete & Computational
Geometry, 31(4):627–642, 2004. doi:10.1007/s00454-003-0813-8.

27 Ingo Schurr and Tibor Szabó. Jumping doesn’t help in abstract cubes. In Michael Jünger
and Volker Kaibel, editors, Integer Programming and Combinatorial Optimization, 11th
International IPCO Conference, 2005, volume 3509 of LNCS, pages 225–235. Springer,
2005. doi:10.1007/11496915_17.

28 Alan Stickney and Layne Watson. Digraph models of Bard-type algorithms for the linear
complementarity problem. Math. Oper. Res., 3(4):322–333, 1978. doi:10.1287/moor.3.4.
322.

29 Tibor Szabó and Emo Welzl. Unique sink orientations of cubes. In 42nd Annual Symposium
on Foundations of Computer Science, FOCS 2001, 14-17 October 2001, Las Vegas, Nevada,
USA, pages 547–555. IEEE Computer Society, 2001. doi:10.1109/SFCS.2001.959931.

30 Emo Welzl. i-Niceness. http://www.ti.inf.ethz.ch/ew/workshops/01-lc/problems/
node7.html, 2001.

31 Kathy Williamson-Hoke. Completely unimodal numberings of a simple polytope. Discrete
Applied Mathematics, 20(1):69–81, 1988. doi:10.1016/0166-218X(88)90042-X.

http://dx.doi.org/10.1109/FOCS.2004.56
http://dx.doi.org/10.1007/s101070100268
http://dx.doi.org/10.1007/s101070100268
http://dx.doi.org/10.1007/s00454-003-0813-8
http://dx.doi.org/10.1007/11496915_17
http://dx.doi.org/10.1287/moor.3.4.322
http://dx.doi.org/10.1287/moor.3.4.322
http://dx.doi.org/10.1109/SFCS.2001.959931
http://www.ti.inf.ethz.ch/ew/workshops/01-lc/problems/node7.html
http://www.ti.inf.ethz.ch/ew/workshops/01-lc/problems/node7.html
http://dx.doi.org/10.1016/0166-218X(88)90042-X

Uniqueness, Spatial Mixing, and Approximation
for Ferromagnetic 2-Spin Systems
Heng Guo∗1 and Pinyan Lu2

1 School of Mathematical Sciences, Queen Mary University of London, U.K.
h.guo@qmul.ac.uk

2 The Institute for Theoretical Computer Science, School of Information
Management and Engineering, Shanghai University of Finance and Economics,
China
lu.pinyan@mail.shufe.edu.cn

Abstract
For anti-ferromagnetic 2-spin systems, a beautiful connection has been established, namely that
the following three notions align perfectly: the uniqueness of Gibbs measures in infinite regular
trees, the decay of correlations (also known as spatial mixing), and the approximability of the
partition function. The uniqueness condition implies spatial mixing, and an FPTAS for the
partition function exists based on spatial mixing. On the other hand, non-uniqueness implies
some long range correlation, based on which NP-hardness reductions are built.

These connections for ferromagnetic 2-spin systems are much less clear, despite their simil-
arities to anti-ferromagnetic systems. The celebrated Jerrum-Sinclair Markov chain [8] works
even if spatial mixing fails. Also, for a fixed degree the uniqueness condition is non-monotone
with respect to the external field, which seems to have no meaningful interpretation in terms
of computational complexity. However, it is still intriguing whether there are some relationship
underneath the apparent disparities among them.

We provide some answers to this question. Let β, γ be the (0, 0) and (1, 1) edge interactions
respectively (βγ > 1), and λ the external field for spin “0”. For graphs with degree bound
∆ ≤ ∆c + 1 where ∆c =

√
βγ+1√
βγ−1

, regardless of the field (even inconsistent fields are allowed),
correlation decay always holds and FPTAS exists. If all fields satisfy λ < λc (assuming β ≤ γ),
where λc = (γ/β)

∆c+1
2 , then a weaker version of spatial mixing holds in all trees. Moreover, if

β ≤ 1, then λ < λc is sufficient to guarantee strong spatial mixing and FPTAS. This improves
the best previous algorithm, a Markov chain based FPRAS for λ ≤ γ/β [13].

The bound λc is almost optimal and can be viewed as a variant of the uniqueness condition
with the degree d relaxed to be a real number instead of an integer. When β ≤ 1, uniqueness
holds in all infinite regular trees, if and only if λ ≤ λintc , where λintc = (γ/β)

d∆ce+1
2 . If we

allow fields λ > λintc
′, where λintc

′ = (γ/β)
b∆cc+2

2 , then approximating the partition function is
#BIS-hard.

Interestingly, unless ∆c is an integer, neither λc nor λintc is the tight bound in each own respect.
We provide examples where correlation decay continues to hold in a small interval beyond λc,
and irregular trees in which spatial mixing fails for some λ < λintc .

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.1 Com-
binatorics

Keywords and phrases Approximate counting, Ising model, Spin systems, Correlation decay

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2016.31

∗ HG is supported by EPSRC Standard Research Grant EP/N004221/1.

© Heng Guo and Pinyan Lu;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016).
Editors: Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans; Article No. 31; pp. 31:1–31:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.31
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

31:2 Uniqueness, Spatial Mixing, and Approximation for Ferromagnetic 2-Spin Systems

1 Introduction

Spin systems model nearest neighbor interactions. In this paper we study 2-state spin systems.
An instance is a graph G = (V,E), and a configuration σ assigns one of the two spins “0”
and “1” to each vertex; that is, σ is one of the 2|V | possible assignments σ : V → {0, 1}. The
local interaction along an edge is specified by a matrix A =

[
A0,0 A0,1
A1,0 A1,1

]
, where Ai,j is the

(non-negative) local weight when the two endpoints are assigned i and j respectively. We
study symmetric edge interactions, that is, A0,1 = A1,0. Normalize A so that A =

[
β 1
1 γ

]
.

Moreover, we also consider the external field, specified by a mapping π : V → R+. When a
vertex is assigned “0”, we give it a weight π(v). For a particular configuration σ, its weight
w(σ) is a product over all edge interactions and vertex weights, that is

w(σ) = βm0(σ)γm1(σ)
∏

v|σ(v)=0

π(v),

where m0(σ) is the number of (0, 0) edges under the configuration σ and m1(σ) is the number
of (1, 1) edges. An important special case is the Ising model, where β = γ. The Gibbs
measure is a natural distribution in which each configuration σ is drawn with probability
proportional to its weight, that is, PrG;β,γ,π(σ) ∼ w(σ). The normalizing factor of the Gibbs
measure is called the partition function, defined by Zβ,γ,π(G) =

∑
σ:V→{0,1} w(σ). The

partition function encodes rich information regarding the macroscopic behavior of the spin
system. We will be interested in the computational complexity of approximating Zβ,γ,π(G).
We also simply write Zβ,γ,λ(G) when the field is uniform, that is, π(v) = λ for all v ∈ V . A
system with uniform fields is specified by the three parameters (β, γ, λ).

Spin systems not only are interesting in statistical physics, but also find applications in
computer science, under the name of Markov random fields. In fact, a 2-state spin system
is equivalent to a binary Markov random field, and computing the partition function is
central to statistical inference. According to their physical and computational properties, spin
systems can be classified into two families: ferromagnetic systems where the edge interaction
is attractive (βγ > 1), and anti-ferromagnetic systems where it is repulsive (βγ < 1).

Recently, beautiful connections have been established regarding three different aspects
of anti-ferromagnetic 2-spin systems. The uniqueness of Gibbs measures in infinite regular
trees1 of degrees up to ∆ implies correlation decay2 in all graphs of maximum degree ∆,
and therefore the existence of fully polynomial-time approximation scheme (FPTAS) for the
partition function [19, 11, 17, 12]. On the other hand, if the tree uniqueness fails, then long
range correlation appears and the partition function has no fully polynomial-time randomized
approximation scheme (FPRAS) unless NP = RP [18, 4]. It suggests that the mathematical
property of tree uniqueness, the physical property of spatial mixing, and the computational
complexity of approximating the partition function, line up perfectly in anti-ferromagnetic
2-spin systems.

For ferromagnetic systems, the picture is much less clear. In a seminal paper [8], Jerrum
and Sinclair gave an FPRAS for the ferromagnetic Ising model β = γ > 1 with any consistent
external field λ for general graphs without degree bounds. Thus, there is no computational
complexity transition of approximating these models, whereas uniqueness and spatial mixing
do exhibit phase transition. This is in sharp contrast to anti-ferromagnetic Ising models

1 This property is called “tree uniqueness” or “uniqueness” for short. See Sections 2.2 and 6.1 for details.
2 That is, the correlation of any two vertices decay exponentially in distance. It is also called “spatial

mixing”.

H. Guo and P. Lu 31:3

β = γ < 1, where computational and phase transitions align perfectly. It is not clear at all
whether spatial mixing or correlation decay plays any role in the computational complexity.

For more general ferromagnetic 2-spin systems with external fields, the threshold for
approximating the partition function is still open. On the complexity side, Goldberg and
Jerrum showed that any ferromagnetic 2-spin system is no harder than counting independent
sets in bipartite graphs (#BIS) [6], which is conjectured to have no FPRAS [3] (the
approximation complexity of #BIS is still open). Based on an earlier result [1], Liu, Lu and
Zhang showed that approximating the partition function is #BIS-hard if we allow external
fields beyond (γ/β)

b∆cc+2
2 where ∆c =

√
βγ+1√
βγ−1

[13].3

On the algorithmic side, by reducing to the Ising model, an MCMC based FPRAS is
known for the range of λ ≤

√
γ/β [7], which has been recently improved to λ ≤ γ/β [13].

On the other hand, if we apply the correlation decay algorithmic framework to various pairs
of parameters (β, γ), it is not hard to get bounds better than γ/β. However, such success for
individual problems does not seem to share meaningful inner connections. In particular, it is
not clear how far one can push this method, and to the best of our knowledge, no threshold
has even been conjectured.

1.1 Our Contribution
In this paper, we identify a new threshold that almost tightly maps out the boundary of

the correlation decay regime, that is, λc = (γ/β)
∆c+1

2 = (γ/β)
√
βγ√
βγ−1 . We show that for any

λ < λc a variant of spatial mixing holds (Theorem 1) for arbitrary trees. An interesting
feature of our work is that we do not restrict the degree or the shape of the tree. This is
almost tight since it does not hold if λ > (γ/β)

d∆ce+1
2 . This spatial mixing is weaker than

what an algorithm usually requires, but in the regime of β ≤ 1 it implies (and therefore is
equivalent to) strong spatial mixing. As an algorithmic consequence, we have FPTAS for all
β ≤ 1 < γ, βγ > 1, and λ < λc (Theorem 2). Recall that if we allow λ beyond (γ/β)

b∆cc+2
2 ,

then the problem is #BIS-hard [13]. Hence only an integral gap remains for the β ≤ 1 < γ

case.
Formally, let pv be the marginal probability of v (being assigned “0”).

I Theorem 1. Let (β, γ, λ) be a set of parameters of the system such that βγ > 1, β ≤ γ,
and λ < λc. Let Tv and T ′v′ be two trees with roots v and v′ respectively. If the two trees have
the same structure in the first ` levels, then |pv − pv′ | ≤ O(exp(−`)).

In other words, if we simply truncate a tree at depth `, the marginal probability of
its root will change by only at most O(exp(−`)). Surprisingly, if we replace λc by its
integral counterpart, then this implication no longer holds and there is a counterexample (see
Section 5). More precisely, it is no longer true that the uniqueness in infinite regular trees
implies correlation decay in graphs or even trees, since our counterexample is an irregular
tree. We note that this is in sharp contrast to anti-ferromagnetic systems, where (integral)
uniqueness implies correlation decay.

From the computational complexity point of view, we would like to get FPTAS for
the partition function, which requires a condition called strong spatial mixing (SSM). It is
stronger than the spatial mixing established in Theorem 1 by imposing arbitrary partial
configurations. We are able to prove SSM with λ < λc for the range of β ≤ 1. Indeed, if

3 Here and below we assume β ≤ γ due to symmetry.

APPROX/RANDOM’16

31:4 Uniqueness, Spatial Mixing, and Approximation for Ferromagnetic 2-Spin Systems

β ≤ 1, then the two versions of spatial mixing are equivalent. Let I be an interval of the
form [λ1, λ2] or (λ1, λ2]. We consider the following problem.

Name: #2Spin(β, γ, I)
Instance: A graph G = (V,E) and a mapping π : V → R+, such that π(v) ∈ I for any

v ∈ V .
Output: Zβ,γ,π(G).

Then we have the following theorem.

I Theorem 2. Let (β, γ, λ) be a set of parameters of the system such that βγ > 1, β ≤ 1
and λ < λc. Then #2Spin(β, γ, (0, λ]) has an FPTAS.

Therefore, we get an almost tight dichotomy for ferromagnetic 2-spin systems when β ≤ 1,
since #2Spin(β, γ, (0, λ]) is #BIS-hard, if λ is larger than the integral counterpart of λc [13]
(see also Proposition 22).

The reason behind λc is a nice interplay among uniqueness, spatial mixing, and approx-
imability. We start with some purely mathematical observations on the symmetric tree
recursion fd(x) = λ

(
βx+1
x+γ

)d
, an increasing function in x. Relax the range of d in fd(x) to be

real numbers. Then ∆c is the critical (possibly fractional) degree and λc is the corresponding
critical external field for the recursion to have a unique fixed point. This set of critical
parameters enjoys some very nice mathematical properties. For d = ∆c and λ = λc, the
function fd(x) has a unique fixed point x̂ =

√
γ/β and f ′d(x̂) = 1. Moreover, it also satisfies

that f ′′d (x̂) = 0, which is a necessary condition for the contraction of the tree recursion (easily
derived using the heuristic of finding potential functions described in [12]). All these nice
mathematical properties prove to be useful in our later analysis. For degrees other than ∆c,
their critical external fields are much less convenient — the function fd(x) has two fixed
points: one is crossing and the other is tangent. Moreover, f ′′d (x̂) = 0 does not necessarily
hold.

The proof of Theorem 1 uses the potential method to analyze decay of correlation, which
is now streamlined (see e.g. [12]). The main difficulty is to find a good potential function. In
other words, we want to solve a variational problem minimizing the maximum of the decay
rate function. The main novelty in our solution is that we restrict variables to the range of
(0, λ

1+λ] and our potential function is well-defined only in this range. This is in fact necessary,
as otherwise the statement does not hold, and is valid for the setting of Theorem 1. Also
note that with our choice, the proof is relatively clean and significantly simpler than similar
proofs in other settings. In particular, we do not need the “symmetrization” argument (see
e.g. [12, 16]). We also use a trick of truncating the potential to deal with unbounded degrees
(see Eq. (5)).

For the range of β > 1, SSM does not hold even if λ < λc. However, we conjecture that
Theorem 2 can be extended to the β > 1 range as well, mainly due to Theorem 1, which
does not require β ≤ 1. Moreover, we show that even if β > 1, the marginal probability in
any instance is within the range of (0, λ

1+λ] given λ < λc (see Proposition 20). This seems to
imply that the main reason why our algorithm fails is due to pinnings (forcing a vertex to
be “0” or “1”) in the self-avoiding walk tree construction, whereas in a real instance these
pinnings cannot aggregate enough “bad” influence. However, to turn such intuition into an
algorithm requires a careful treatment of these pinnings to achieve an FPTAS without SSM.
We leave this as an important open question.

At last, we note that neither λc nor its integral counterpart is the exact threshold in each
own respect, even if β ≤ 1. Strong spatial mixing continues to hold even if λ > λc in a small

H. Guo and P. Lu 31:5

interval. We give a concrete example to illustrate this point in Section 4, Proposition 21.
Moreover, as mentioned earlier, an irregular tree exists where the correlation decay threshold
is lower than the threshold for all infinite regular trees. This is discussed in Section 5. It
is another important open question to figure out the exact threshold between λc and its
integral counterpart(s).

2 Preliminaries

An instance of a 2-spin system is a graph G = (V,E). A configuration σ : V → {0, 1} assigns
one of the two spins “0” and “1” to each vertex. We normalize the edge interaction to be[
β 1
1 γ

]
, and also consider the external field, specified by a mapping π : V → R+. When a

vertex is assigned “0”, we give it a weight π(v). All parameters are non-negative. For a
particular configuration σ, its weight w(σ) is a product over all edge interactions and vertex
weights, that is

w(σ) = βm0(σ)γm1(σ)
∏

v|σ(v)=1

π(v), (1)

where m0(σ) is the number of (0, 0) edges given by the configuration σ and m1(σ) is the
number of (1, 1) edges. An important special case is the Ising model, where β = γ. Notice
that in the statistic physics literature, parameters are usually chosen to be the logarithms of
our parameters above. Different parameterizations do not affect the complexity of the same
system.

We also write λv := π(v). If π is a constant function such that λv = λ > 0 for all v ∈ V ,
we also denote it by λ. We say π has a lower bound (or an upper bound) λ > 0, if π satisfies
the guarantee that λv ≥ λ (or λv ≤ λ).

The Gibbs measure is a natural distribution in which each configuration σ is drawn with
probability proportional to its weight, that is, PrG;β,γ,π(σ) ∼ w(σ). The normalizing factor of
the Gibbs measure is called the partition function, defined by Zβ,γ,π(G) =

∑
σ:V→{0,1} w(σ).

Recall that we are interested in the computational problem #2Spin(β, γ, I), where I is an
interval of the form [λ1, λ2] or (λ1, λ2], for which Zβ,γ,π(G) is the output. When input graphs
are restricted to have a degree bound ∆, we write #∆-2Spin(β, γ, I) to denote the problem.
When the field is uniform, that is, λ is the only element in I, we simply write #2Spin(β, γ, λ).
Due to [2] and a standard diagonal transformation, for any constant λ > 0, #2Spin(β, γ, λ)
is #P-hard unless β = γ = 0 or βγ = 1.

2.1 The Self-Avoiding Walk Tree
We briefly describe Weitz’s algorithm [19]. Our algorithms presented later will follow roughly
the same paradigm.

The Gibbs measure defines a marginal distribution of spins for each vertex. Let pv
denote the probability of a vertex v being assigned “0”. Since the system is self-reducible,
#2Spin(β, γ, λ) is equivalent to computing pv for any vertex v [9] (for details, see for example
Lemma 8).

Let σΛ ∈ {0, 1}Λ be a configuration of Λ ⊂ V . We call vertices in Λ fixed and other vertices
free. We use pσΛ

v to denote the marginal probability of v being assigned “0” conditional on
the configuration σΛ of Λ.

Suppose the instance is a tree T with root v. Let RσΛ
T := pσΛ

v /(1 − pσΛ
v) be the ratio

between the two probabilities that the root v is 0 and 1, while imposing some condition σΛ

APPROX/RANDOM’16

31:6 Uniqueness, Spatial Mixing, and Approximation for Ferromagnetic 2-Spin Systems

(with the convention that RσΛ
T =∞ when pσΛ

v = 1). Suppose that v has d children vi, . . . vd.
Let Ti be the subtree with root vi. Due to the independence of subtrees, it is straightforward
to get the following recursion for calculating RσΛ

T :

RσΛ
T = Fd

(
RσΛ
T1
, . . . , RσΛ

Td

)
, (2)

where the function Fd(x1, . . . , xd) is defined as

Fd(x1, . . . , xd) := λv

d∏
i=1

βxi + 1
xi + γ

.

We allow xi’s to take the value ∞ as in that case the function Fd is clearly well defined. In
general we use capital letters like F,G,C, . . . to denote multivariate functions, and small
letters f, g, c, . . . to denote their symmetric versions, where all variables take the same value.
Here we define fd(x) := λ

(
βx+1
x+γ

)d
to be the symmetric version of Fd(x).

Let G(V,E) be a graph. Similarly define RσΛ
G,v := pσΛ

v /(1− pσΛ
v). In contrast to the case

of trees, there is no easy recursion to calculate RσΛ
G,v for a general graph G. This is because of

dependencies introduced by cycles. Weitz [19] reduced computing the marginal distribution
of v in a general graph G to that in a tree, called the self-avoiding walk (SAW) tree, denoted
by TSAW(G, v). To be specific, given a graph G = (V,E) and a vertex v ∈ V , TSAW(G, v)
is a tree with root v that enumerates all self-avoiding walks originating from v in G, with
additional vertices closing cycles as leaves of the tree. Each vertex in the new vertex set
VSAW of TSAW(G, v) corresponds to a vertex in G, but a vertex in G may be mapped to more
than one vertices in VSAW. A boundary condition is imposed on leaves in VSAW that close
cycles. The imposed colors of such leaves depend on whether the cycle is formed from a small
vertex to a large vertex or conversely, where the ordering is arbitrarily chosen in G. Vertex
sets S ⊂ Λ ⊂ V are mapped to respectively SSAW ⊂ ΛSAW ⊂ VSAW, and any configuration
σΛ ∈ {0, 1}Λ is mapped to σΛSAW ∈ {0, 1}ΛSAW . With slight abuse of notations we may write
S = SSAW and σΛ = σΛSAW when no ambiguity is caused.

I Proposition 3 (Theorem 3.1 of Weitz [19]). Let G = (V,E) be a graph, v ∈ V , σΛ ∈ {0, 1}Λ
be a configuration on Λ ⊂ V , and S ⊂ V . Let T = TSAW(G, v) be constructed as above. It
holds that

RσΛ
G,v = RσΛ

T .

Moreover, the maximum degree of T is at most the maximum degree of G, distG(v, S) =
distT (v, SSAW), and any neighborhood of v in T can be constructed in time proportional to
the size of the neighborhood.

The SAW tree construction does not solve a #P-hard problem, since TSAW(G, v) is
potentially exponentially large in size of G. For a polynomial time approximation algorithm,
we may run the tree recursion within some polynomial size, or equivalently a logarithmic
depth. At the boundary where we stop, we plug in some arbitrary values. The question is
then how large is the error due to our random guess. To guarantee the performance of the
algorithm, we need the following notion of strong spatial mixing.

I Definition 4. A spin system on a family G of graphs is said to exhibit strong spatial mixing
(SSM) if for any graph G = (V,E) ∈ G, any v ∈ V,Λ ⊂ V and any σΛ, τΛ ∈ {0, 1}Λ,

|pσΛ
v − pτΛv | ≤ exp(−Ω(dist(v, S))),

where S ⊂ Λ is the subset on which σΛ and τΛ differ, and dist(v, S) is the shortest distance
from v to any vertex in S.

H. Guo and P. Lu 31:7

Weak spatial mixing is defined similarly by measuring the decay with respect to dist(v,Λ)
instead of dist(v, S). Spatial mixing properties are also called correlation decay in statistical
physics.

If SSM holds, then the error caused by early termination in TSAW(G, v) and arbitrary
boundary values is only exponentially small in the depth. Hence the algorithm is an FPTAS.
In a lot of cases, the existence of an FPTAS boils down to establish SSM.

2.2 The Uniqueness Condition in Regular Trees
Let Td denote the infinite d-regular tree, also known as the Bethe lattice or the Cayley tree.
If we pick an arbitrary vertex as the root of Td, then the root has d children and every other
vertex has d− 1 children. Notice that the difference between Td and an infinite (d− 1)-ary
tree is only the degree of the root. We consider the uniqueness of Gibbs measures on Td,
where the field is uniformly λ > 0. Due to the symmetric structure of Td, the standard
recursion (2) thus becomes Rv = fd−1(Rvi) (for any vertex v other than the root), where

fd(x) = λ
(
βx+1
x+γ

)d
is the symmetrized version of Fd(x).

For anti-ferromagnetic systems, that is, βγ < 1, there is a unique fixed point to fd(x) = x,
denoted by x̂. It has been shown that the Gibbs measure in Td is unique if and only if∣∣f ′d−1(x̂)

∣∣ ≤ 1 [10, 5].
In contrast, if βγ > 1, then f ′d(x) > 0 for any x > 0. There may be 1 or 3 positive

fixed points such that x = fd(x). It is known [10, 5] that the Gibbs measure of two-state
spin systems in Td is unique if and only if there is only one fixed point for x = fd−1(x), or
equivalently, for all fixed points x̂d of fd(x), f ′d(x̂d) < 1.

Let ∆c :=
√
βγ+1√
βγ−1

. Then we have the following result.

I Proposition 5. If ∆− 1 < ∆c, then the uniqueness condition in T∆ holds regardless of
the field.

Note that the condition ∆− 1 < ∆c matches the exact threshold of fast mixing for Gibbs
samplers in the Ising model [15]. In Section 3.1, we will show that, SSM holds and there
exists an FPTAS for the partition function, in graphs with degree bound ∆ < ∆c + 1. This
is Theorem 13.

To study general graphs, one needs to consider infinite regular trees of all degrees. If
β > 1 (still assuming βγ > 1 and β ≤ γ), then there is no λ such that the uniqueness
condition holds in Td for all degrees d ≥ 2. In contrast, let λintc := (γ/β)

d∆ce+1
2 and we have

the following.

I Proposition 6. Let (β, γ) be two parameters such that βγ > 1 and β ≤ 1 < γ. The
uniqueness condition holds in Td for all degrees d ≥ 2 if and only if λ < λintc .

However, there exists (β, γ, λ) and an (irregular) tree T such that βγ > 1, β ≤ 1 < γ,
and λ < λintc and SSM does not hold in T . This is discussed in Section 5. Recall that
λc := (γ/β)

∆c+1
2 . If we replace λintc with λc ≤ λintc in the condition of Proposition 6, that is,

βγ > 1, β ≤ 1 < γ, and λ < λc, then SSM holds in all graphs and an FPTAS exists. This is
shown in Section 3.2, Theorem 18.

Details and proofs about Propositions 5 and 6 are given in Section 6.1.

2.3 The Potential Method
We would like to prove the strong spatial mixing in arbitrary trees, sometimes with bounded
degree ∆, under certain conditions. This is sufficient for approximation algorithms due to

APPROX/RANDOM’16

31:8 Uniqueness, Spatial Mixing, and Approximation for Ferromagnetic 2-Spin Systems

the self-avoiding walk tree construction. Our main technique in the analysis is the potential
method. The analysis in this section is a standard routine, with some specialization to
ferromagnetic 2-spin models (cf. [12, 16]). To avoid interrupting the flow, we move all details
and proofs to Section 6.2.

Roughly speaking, instead of studying (2) directly, we use a potential function Φ(x) to
map the original recursion to a new domain (see the commutative diagram Figure 1). Morally
we can choose whatever function as the potential function. However, we would like to pick
“good” ones so as to help the analysis of the contraction. Define ϕ(x) := Φ′(x) and

Cϕ,d(x) := ϕ(Fd(x)) ·
d∑
i=1

∣∣∣∣∂Fd∂xi

∣∣∣∣ 1
ϕ(xi)

.

I Definition 7. Let Φ : R+ → R+ be a differentiable and monotonically increasing function.
Let ϕ(x) and Cϕ,d(x) be defined as above. Then Φ(x) is a good potential function for degree
d and field λ if it satisfies the following conditions:
1. there exists a constant C1, C2 > 0 such that C1 ≤ ϕ(x) ≤ C2 for all x ∈ [λγ−d, λβd];
2. there exists a constant α < 1 such that Cϕ,d(x) ≤ α for all xi ∈ [λγ−d, λβd].
We say Φ(x) is a good potential function for d and field π, if Φ(x) is a good potential function
for d and any λ in the codomain of π,

In Definition 7, Condition 1 is rather easy to satisfy. The crux is in fact Condition 2. We
call α in Condition 2 the amortized contraction ratio of Φ(x). It has the following algorithmic
implication. The proof is based on establishing strong spatial mixing.

I Lemma 8. Let (β, γ) be two parameters such that βγ > 1. Let G = (V,E) be a graph with
a maximum degree ∆ and n many vertices and π be a field on G. Let λ = maxv∈V {π(v)}.
If there exists a good potential function for π and all d ∈ [1,∆ − 1] with contraction ratio
α < 1, then Zβ,γ,π(G) can be approximated deterministically within a relative error ε in time

O

(
n
(
nλ
ε

) log(∆−1)
− logα

)
.

When the degree is unbounded, the SAW tree may grow super polynomially even if the
depth is of order logn. We use a refined metric replacing the naive graph distance used in
Definition 4. Strong spatial mixing under this metric is also called computationally efficient
correlation decay [11, 12].

I Definition 9. Let T be a rooted tree and M > 1 be a constant. For any vertex v in T ,
define the M-based depth of v, denoted `M (v), such that `M (v) = 0 if v is the root, and
`M (v) = `M (u) + dlogM (d+ 1)e if v is a child of u and u has degree d.

Let B(`) be the set of all vertices whose M -based depths of v is at most `. It is easy to
verify inductively such that |B(`)| ≤M ` in a tree. We then define a slightly stronger notion
of potential functions.

I Definition 10. Let Φ : R+ → R+ be a differentiable and monotonically increasing function.
Let ϕ(x) and Cϕ,d(x) defined in the same way as in Definition 7. Then Φ(x) is a universal
potential function for the field λ if it satisfies the following conditions:
1. there are two constants C1, C2 > 0 such that C1 ≤ ϕ(x) ≤ C2 for any x ∈ (0, λ];
2. there exists a constant α < 1 such that for all d, Cϕ,d(x) ≤ αdlogM (d+1)e for all xi ∈ (0, λ];

We say Φ(x) is a universal potential function for a field π, if Φ(x) is a universal potential
function for any λ in the codomain of π. We also call α the contraction ratio and call M the

H. Guo and P. Lu 31:9

base. The following two lemmas show that our main theorems follow from the existence of a
universal potential function.

The way we define universal potential functions restricts them to only apply to the range
of (0, λ]. This will be true in our applications (see for example Claim 16).

I Lemma 11. Let (β, γ, λ) be three parameters such that βγ > 1, β ≤ γ, and λ < λc. Let T
and T ′ be two trees that agree on the first ` levels with root v and v′ respectively. If there
exists a universal potential function Φ(x), then |pv − pv′ | ≤ O(exp(−`)).

I Lemma 12. Let (β, γ) be two parameters such that βγ > 1 and β ≤ 1 < γ. Let G = (V,E)
be a graph with n many vertices and π be a field on G. Let λ = maxv∈V {π(v)}. If there
exists a universal potential function Φ(x) for π with contraction ratio α < 1 and base
M , then Zβ,γ,π(G) can be approximated deterministically within a relative error ε in time

O

(
n3 (nλ

ε

) logM
− logα

)
.

3 Correlation Decay below ∆c or λc

In this section, we show our main results. We will first show a folklore result for bounded
degree graphs with a very simple proof. Then we continue to show the main theorem
regarding general graphs. We carefully choose two appropriate potential functions and then
apply Lemma 8 or Lemma 12.

3.1 Bounded Degree Graphs
We first apply our framework to get FPTAS for graphs with degree bound ∆ < ∆c + 1 =

2
√
βγ√

βγ−1
. Correlation decay for graphs with such degree bounds is folklore and can be found

in [14] for the Ising model. Algorithmic implications are also shown, e.g. in [20]. As we
shall see, the proof is very simple in our framework. Note that λ, ∆, and α are considered
constants for the FPTAS.

I Theorem 13. Let (β, γ) be two parameters such that βγ > 1. Let G = (V,E) be a graph
with a maximum degree ∆ < ∆c + 1 and n many vertices, and let π be a field on G. Let
λ = maxv∈V {π(v)}. Then Zβ,γ,π(G) can be approximated deterministically within a relative

error ε in time O
(
n
(
nλ
ε

) log(∆−1)
− logα

)
, where α = ∆−1

∆c
.

Proof. We choose our potential function to be Φ1(x) = log x such that ϕ1(x) := Φ′1(x) = 1
x .

We verify the conditions of Definition 7. Condition 1 is trivial. For Condition 2, we have
that for any integer 1 ≤ d ≤ ∆− 1,

Cϕ1,d(x) = ϕ1(Fd(x))
d∑
i=1

∂Fd
∂xi
· 1
ϕ1(x)

= 1
Fd(x)

d∑
i=1

Fd(x) · βγ − 1
(xi + β)(γxi + 1) · xi

=
d∑
i=1

(βγ − 1)xi
(γxi + 1)(xi + β) ≤

d∑
i=1

1
∆c

= d

∆c
≤ ∆− 1

∆c
= α,

APPROX/RANDOM’16

31:10 Uniqueness, Spatial Mixing, and Approximation for Ferromagnetic 2-Spin Systems

where we used the fact that for any x > 0,

(βγ − 1)x
(γx+ 1)(x+ β) ≤

1
∆c

.

Hence Φ1(x) is a good potential function for all degrees d ∈ [1,∆− 1] with contraction ratio
α. The theorem follows by Lemma 8. J

Note that Theorem 13 matches the uniqueness condition in Proposition 5 and, restricted
to the Ising model, the fast mixing bound of Gibbs samplers in [15].

3.2 General Graphs

Recall that λc =
(
γ
β

)∆c+1
2 =

(
γ
β

) √βγ√
βγ−1 . The following two technical lemmas show some

important properties regarding the threshold λc, which are keys to get our main theorems.
Proofs are given in Section 6.3.

I Lemma 14. Let β, γ be two parameters such that βγ > 1 and β ≤ γ. For any 0 < x ≤ λc,
βx+1
x+γ ≤ 1.

I Lemma 15. Let β, γ be two parameters such that βγ > 1 and β ≤ γ. For any 0 < x ≤ λc,
we have

(βγ − 1)x log λc
x
≤ (βx+ 1)(x+ γ) log x+ γ

βx+ 1 . (3)

In our applications, the quantity x in both lemmas will be the ratio of marginal prob-
abilities in trees, denoted by Rv for a vertex v. To make use of these properties, one key
requirement is that 0 < x ≤ λc. This is not necessarily true in trees with pinning (and
therefore not true in general SAW trees). Nevertheless, it does hold in trees without pinning.

I Claim 16. For (β, γ, λ) where βγ > 1, β ≤ γ, and λ < λc, Rv ∈ (0, λ] holds in trees
without pinning.

We prove Claim 16 by induction. For any tree Tv, if v is the only vertex, then Rv = λ

and the base case holds. Given Lemma 14 and λ < λc, the inductive step to show Claim 16
follows from the standard tree recursion (2).

In addition, it also holds when β ≤ 1, in trees even with pinning (but not counting the
pinned vertices). This includes the SAW tree construction as special cases. To see that, for
any vertex v, if one of v’s child, say u, is pinned to 0 (or 1), then we can just remove u and
change the field of v from λv to λ′v = λvβ (or λ′v = λv/γ), without affecting the marginal
probability of v and any other vertices. By our assumptions λv < λc and β ≤ 1 < γ, we have
that λ′v < λc as well. Hence, after removing all pinned vertices, we still have that λv ≤ λc
for all v ∈ V . This reduces to Claim 16.

Indeed, both of Theorem 1 and 2 can be generalized to the setting where vertices may
have different external fields as long as they are all below λc, as follows.

I Theorem 17. Let (β, γ) be two parameters such that βγ > 1, β ≤ γ, and λ < λc. Let
Tv and T ′v′ be two trees with roots v and v′ respectively. Let λ = maxu∈Tv∪T ′v′{π(u)}. If
λ < λc and in the first ` levels, Tv and T ′v′ have the same structure and external fields for
corresponding pairs of vertices, then |pv − pv′ | ≤ O(exp(−`)).

H. Guo and P. Lu 31:11

I Theorem 18. Let (β, γ) be two parameters such that βγ > 1 and β ≤ 1 < γ. Let G = (V,E)
be a graph with n many vertices, and let π be a field on G. Let λ = maxv∈V {π(v)}. If
λ < λc, then Zβ,γ,π(G) can be approximated deterministically within a relative error ε in

time O
(
n
(
nλ
ε

) logM
− logα

)
, where M > 1 and α < 1 are two constants depending on (β, γ, λ).

To show Theorem 17 and Theorem 18, we will apply Lemma 11 and Lemma 12. Essentially
we only need to show the existence of a universal potential function.

Let gλ(x) := (βγ−1)x log λ
x

(βx+1)(x+γ) log x+γ
βx+1

. By Lemma 15, gλc(x) ≤ 1. For λ < λc, note that
limx→0 gλ(x) = 0. Hence there exists 0 < ε < λ and 0 < δ < 1 such that if 0 < x < ε,
gλ(x) < δ. Moreover, if ε ≤ x ≤ λ, then gλ(x)

gλc (x) = logλ−log x
logλc−log x ≤

logλ−log ε
logλc−log ε . Let

αλ := max
{
δ,

log λ− log ε
log λc − log ε

}
< 1.

Then we have the following lemma.

I Lemma 19. Let β, γ be two parameters such that βγ > 1 and β ≤ γ. If λ < λc, then
gλ(x) ≤ αλ for any 0 < x ≤ λ, where αλ < 1 is defined above.

Let t := αλγ
βγ−1 log λ+γ

βλ+1 so that for any 0 < x ≤ λ,

t ≤ αλ(βx+ 1)(x+ γ)
βγ − 1 log x+ γ

βx+ 1 .

We define ϕ2(x) := min
{

1
t ,

1
x log λ

x

}
. To be specific, note that x log λ

x ≤
λ
e for any 0 < x ≤ λ.

If t ≥ λ
e , then

1
x log λ

x

≥ 1
t for any 0 < x ≤ λ. In this case, we let

ϕ2(x) := 1
t
. (4)

Otherwise t < λ
e , and there are two roots to x log λ

x = t in (0, λ]. Denote them by x0 and
x1. We define

ϕ2(x) :=

1
t 0 ≤ x < x0;

1
x log λ

x

x0 ≤ x < x1;
1
t x1 ≤ x < λ.

(5)

We define Φ2(x) :=
∫ x

0 ϕ2(y)dy so that Φ′2(x) = ϕ2(x). By our choice of ϕ2(x), it always
holds that for any 0 < x ≤ λ,

ϕ2(x)x log λ
x
≤ 1, (6)

and by Lemma 14 and Lemma 19,

βγ − 1
(βx+ 1)(x+ γ) ·

1
ϕ2(x) ≤ αλ log x+ γ

βx+ 1 . (7)

Now, we are ready to prove Theorems 17 and 18.

Proof of Theorems 17 and 18. We claim that Φ2(x) is a universal potential function for
any field π with an upper bound λ, with contraction ratio αλ given above and base M that

APPROX/RANDOM’16

31:12 Uniqueness, Spatial Mixing, and Approximation for Ferromagnetic 2-Spin Systems

will be determined shortly. Theorem 17 and Theorem 18 follow from Φ2(x) combined with
Lemma 11 and 12, respectively. We verify the two conditions in Definition 10.

For Condition 1, it is easy to see that in case (4), ϕ2(x) = 1
t for any x ∈ (0, λ], and in

case (5), eλ ≤ ϕ2(x) ≤ 1
t for any x ∈ (0, λ].

For Condition 2, we have that

Cϕ2,d(x) = ϕ2(Fd(x))
d∑
i=1

∂Fd
∂xi
· 1
ϕ2(xi)

= ϕ2(Fd(x))Fd(x)
d∑
i=1

βγ − 1
(βxi + 1)(xi + γ) ·

1
ϕ2(xi)

≤ ϕ2(Fd(x))Fd(x)
d∑
i=1

αλ log xi + γ

βxi + 1 (by (7))

= αλϕ2(Fd(x))Fd(x) log λ

Fd(x)
≤ αλ. (by (6))

Moreover, Fd(x) < λ
(
βλ+1
λ+γ

)d
for any xi ∈ (0, λ], and βλ+1

λ+γ < 1 by Lemma 14. Then there

exists d0 ≥ 1 such that
(
βλ+1
λ+γ

)d0
< e−1. Hence, for any d > d0,

Cϕ2,d(x) ≤ αλ
t
Fd(x) log λ

Fd(x)

≤ αλλ

t

(
βλ+ 1
λ+ γ

)d
d log βλ+ 1

λ+ γ
.

Therefore, there exists an integer M ≥ d0 such that for any 1 ≤ d < M , Cϕ2,d(x) ≤

αλ ≤ αdlogM (d+1)e
λ and for any d ≥M , Cϕ2,d(x) ≤ αλλ

t

(
βλ+1
λ+γ

)d
d log

(
βλ+1
λ+γ

)
≤ αdlogM (d+1)e

λ .
Condition 2 holds. J

3.3 Heuristics behind Φ2(x)
The most intricate part of our proofs of Theorem 17 and Theorem 18 is the choice of the
potential function Φ2(x) given by (5). Here we give a brief heuristic of deriving it. It is more
of an “educated guess” than a rigorous argument.

We want to pick Φ2(x) such that Condition 2 holds. In particular, we want

ϕ2(Fd(x))
d∑
i=1

∂Fd
∂xi
· 1
ϕ2(xi)

< 1.

It is fair to assume that the left hand side of the equation above takes its maximum when all
xi’s are equal. Hence, we hope the following to hold

ϕ2(fd(x))f ′d(x)
ϕ2(x) < 1, (8)

where fd(x) = λ
(
βx+1
x+γ

)d
is the symmetrized version of Fd(x). We will use z := fd(x) to

simplify notation. Since we want (8) to hold for all degrees d, we hope to eliminate d from

H. Guo and P. Lu 31:13

the left hand side of (8). Notice that ϕ2(x) should be independent from d. Therefore, we
take the derivative of ϕ2(fd(x))f ′d(x) against d and get

∂ϕ2(fd(x))f ′d(x)
∂d

= βγ − 1
(βx+ 1)(x+ γ)

(
ϕ2(z)z + ϕ2(z)z log z

λ
+ ϕ′2(z)z2 log z

λ

)
= (βγ − 1)zϕ2(z)

(βx+ 1)(x+ γ)

(
1 + log z

λ
+ (logϕ2(z))′z log z

λ

)
.

We may achieve our goal of eliminating d by imposing the sum in the last parenthesis to be
0, namely

(logϕ2(z))′ = −1
z
− 1
z log z

λ

= −(log z)′ −
(

log log λ
z

)′
. (9)

From (9), it is easy to see that ϕ2(z) = 1
z log λ

z

satisfies our need. To get the full definition of
(5), we apply a thresholding trick to bound ϕ2(z) away from 0.

3.4 Discussion of the β > 1case
We cannot combine conditions of Theorem 17 and Theorem 18 together to have an FPTAS.
In particular, when β > 1 strong special mixing fails for any λ even if λ < λc. To see this,
given a ∆-ary tree T , we can append t many children to every vertex in T to get a new
tree T ′ and impose a partial configuration σ where all these new children are pinned to 0.
Effectively, the tree T ′ is equivalent to T where every vertex has a new external field of λβt,
which is larger than λintc if t is sufficiently large regardless of λ. Then by Proposition 6, long
range correlation exists in T ′ with the partial configuration σ, and strong spatial mixing fails.

On the other hand, it is easy to see from the proof that, Theorem 17 can be generalized
to allow a partial configuration σ on some subset Λ where the marginal probability of every
vertex v ∈ Λ satisfies pσv ≤ λc

λc+1 . This is not the case for the SAW tree which our algorithm
relies on when β > 1. However, the following observation shows that if λv ≤ λc ≤ γ−1

β−1 , then
the marginal probability of any instance G satisfies this requirement. Thus, it seems the only
piece missing to obtain an algorithm is to design a better recursion tree instead of the SAW
tree.

I Proposition 20. Let (β, γ) be two parameters such that 1 ≤ β ≤ γ and βγ > 1. Let
λ ≤ γ−1

β−1 be another parameter. For any graph G = (V,E), if π(v) ≤ λ for all v ∈ V , then
pv ≤ λ

λ+1 .

To prove this proposition, we need to use the random cluster formulation of 2-spin models.
Let G be a graph and e = (v1, v2) be one of its edges. Let G+ be the graph where the
edge e is contracted, and G− be the graph where e is removed. Moreover, in G+, we assign
π+(ṽ) = λv1λv2

β−1
γ−1 , where ṽ is the vertex obtained from contacting e. Then we have that

Z(G) = Z(G−) + (γ − 1)Z(G+), (10)

where we write Z(G) instead of Zβ,γ,π(G) to simplify the notation. To show the equation
above we only need a simple adapation of the random cluster formulation of the Ising model
to the 2-spin setting.

APPROX/RANDOM’16

31:14 Uniqueness, Spatial Mixing, and Approximation for Ferromagnetic 2-Spin Systems

Proof of Proposition 20. Suppose G = (V,E) where |V | = n and |E| = m. We show the
claim by inducting on (m,n). Clearly the statement holds when m = 0 or n = 1. Hence we
may assume the claim holds for (m′, n) where m′ < m as well as (m′, n′) where n′ < n, and
show that the claim holds for (m,n).

Pick an arbitrary edge e = (v1, v2) in G. Let G+ and G− be as in the random cluster
formulation. It is easy to see that π(ṽ) = λv1λv2

β−1
γ−1 ≤ λ. Hence both G+ and G− satisfy

the induction hypothesis. It implies that pG−;v ≤ λ
λ+1 for any v, where pG−;v is the mariginal

probability of v in G−. Moreover, pG+;v ≤ λ
λ+1 for any v ∈ V +, where V + is the vertex set

of G+. Let δ be a mapping V → V + such that δ(v) = v if v 6= v1, v2 and δ(v1) = δ(v2) = ṽ.
Then using (10) we have that for any vertex v ∈ V ,

pG;v = Zσ(v)=0(G)
Z(G) = Zσ(v)=0(G−) + (γ − 1)Zσ(δ(v))=0(G+)

Z(G−) + (γ − 1)Z(G+)

= pG−;v ·
Z(G−)

Z(G−) + (γ − 1)Z(G+) + pG+;δ(v) ·
(γ − 1)Z(G+)

Z(G−) + (γ − 1)Z(G+)

≤ λ

λ+ 1 ·
Z(G−)

Z(G−) + Z(G+) + λ

λ+ 1 ·
(γ − 1)Z(G+)

Z(G−) + (γ − 1)Z(G+) = λ

λ+ 1 ,

where in the last line we use the induction hypotheses. J

4 Correlation Decay Beyond λc

Let β, γ be two parameters such that β ≤ 1 < γ and βγ > 1. In this section we give an
example to show that if ∆c is not an integer, then correlation decay still holds for a small
interval beyond λc. To simplify the presentation, we assume that π is a uniform field such
that π(v) = λ. Note that the potential function ϕ2(x) does not extend beyond λc.

Let β = 0.6 and γ = 2. Then ∆c =
√
βγ+1√
βγ−1

≈ 21.95 and λc = (γ/β)
∆c+1

2 < 1002761. Let
λ = 1002762 > λc. We will show that #2Spin(β, γ, λ) still has an FPTAS.

Define a constant t as

t :=
√
βγ + 1√
βγ − 1

·
log
√
γ/β√

γ/β + 1
− log

(
1 +

√
β/γ

)
≈ 4.24032. (11)

We consider the potential function Φ3(x) so that ϕ3(x) := 1
x(log(1+1/x)+t) . With this choice,

Cϕ3,d(x) = ϕ3(Fd(x))
d∑
i=1

∂Fd
∂xi
· 1
ϕ3(x)

= βγ − 1
log (1 + 1/Fd(x)) + t

d∑
i=1

xi (log(1 + 1/xi) + t)
(βxi + 1)(xi + γ) .

We do a change of variables. Let ri = βxi+1
xi+γ . Then xi = γri−1

β−ri , βxi + 1 = ri(βγ−1)
β−ri , and

xi + γ = βγ−1
β−ri . Hence,

d∑
i=1

xi(log(1 + 1/xi) + t)
(βxi + 1)(xi + γ) =

d∑
i=1

(γri − 1)(β − ri)
ri(βγ − 1)2 ·

(
log
(

1 + β − ri
γri − 1

)
+ t

)

= 1
(βγ − 1)2

d∑
i=1

(
1 + βγ − β

ri
− γri

)(
log
(

1 + β − ri
γri − 1

)
+ t

)
.

H. Guo and P. Lu 31:15

Furthermore, let si = log ri. As ri ∈
(

1
γ , β

)
, si ∈ (− log γ, log β). Let

ρ(x) :=
(
1 + βγ − βe−x − γex

)(
log
(

1 + β − ex

γex − 1

)
+ t

)
.

Then ρ(x) is concave for any x ∈ (− log γ, log β). It can be easily verified, as the second
derivative is

ρ′′(x) = (β + 1)(βγ − 1)
β − 1 + ex(γ − 1) + γ(βγ − 1)

γ − 1 − β(βγ − 1)
β − ex

− (β − 1)(βγ − 1)2

(γ − 1)(β − 1 + ex(γ − 1))2

− βte−x − γtex − e−x
(
β + e2xγ

)
Log

(
1 + γex − 1

β − ex

)
.

≤ γ(β + 1) + γ(βγ − 1)
γ − 1 − βγ − β − 1

γ − 1 − 2t < −5.68 < 0, (12)

where in the last line we used (11) and the fact that 1/γ ≤ ex ≤ β. Hence, by concavity, we
have that for any xi ∈ (0, λ],

Cϕ3,d(x) = βγ − 1
log (1 + 1/Fd(x)) + t

d∑
i=1

xi (log(1 + 1/xi) + t)
(βxi + 1)(xi + γ) ,

≤ βγ − 1
log (1 + 1/fd(x̃)) + t

·
dx̃
(
log(1 + x̃−1) + t

)
(βx̃+ 1)(x̃+ γ) = cϕ3,d(x̃), (13)

where x̃ > 0 is the unique solution such that fd(x̃) = Fd(x).
Next we show that there exists an α < 1 such that for any integer d and x > 0,

cϕ3,d(x) < α. In fact, by (11), our choice of t, it is not hard to show that the maximum of
cϕ3,d(x) is achieved at x =

√
γ/β and d = ∆c, which is 1 if λ = λc and is larger than 1 if

λ > λc. However, since the degree d has to be an integer, we can verify that for any integer
1 ≤ d ≤ 100, the maximum of cϕ3,d(x) is cϕ3,22(x22) = 0.999983 where x22 ≈ 1.83066. If
d > 100, then

cϕ3,d(x) = d(βγ − 1)
log (1 + 1/fd(x)) + t

·
x
(
log(1 + x−1) + t

)
(βx+ 1)(x+ γ)

≤ C0 · C1 < 1,

where C0 < 1.07191 is the maximum of x(log(1+x−1)+t)
(βx+1)(x+γ) for any x > 0, and C1 < 0.481875 is

the maximum of d(βγ−1)
log(1+λ−1β−d)+t for any d > 100. Then, due to (13), we have that for any

xi ∈ (0, λ], Cϕ3,d(x) < α = 0.999983 < 1. This is the counterpart of Cϕ2,d(x) < αλ in the
proof of Theorem 18. To make ϕ3(x) satisfy Condition 1 and Condition 2 in Definition 10, it
is sufficient to do a simple “chop-off” trick to ϕ3(x) as in (5). We will omit the detail here.

I Proposition 21. For β = 0.6, γ = 2, and λ = 1002762 > λc, #2Spin(β, γ, λ) has an
FPTAS.

It is easy to see that the argument above works for any β ≤ 1 < γ and βγ > 1 except
(12), the concavity of ρ(x). Indeed, the concavity does not hold if, say, β = 1 and γ = 2.
Nevertheless, the key point here is that λc is not the tight bound for FPTAS. Short of
a conjectured optimal bound, we did not try to optimize the potential function nor the
applicable range of the proof above.

APPROX/RANDOM’16

31:16 Uniqueness, Spatial Mixing, and Approximation for Ferromagnetic 2-Spin Systems

5 Limitations of Correlation Decay

In this section, we discuss some limitations of approximation algorithms for ferromagnetic
2-spin models based on correlation decay analysis.

The problem of counting independent sets in bipartite graphs (#BIS) plays an important
role in classifying approximate counting complexity. #BIS is not known to have any efficient
approximation algorithm, despite many attempts. However there is no known approximation
preserving reduction (AP-reduction) to reduce #BIS from #Sat either. It is conjectured to
have intermediate approximation complexity, and in particular, to have no FPRAS [3].

Goldberg and Jerrum [6] showed that for any βγ > 1, approximating #2Spin(β, γ, (0,∞))
can be reduced to approximating #BIS. This is the (approximation) complexity upper bound
of all ferromagnetic 2-spin models. In contrast, by Theorem 13, #∆-2Spin(β, γ, (0,∞))
has an FPTAS, if ∆ < ∆c + 1. Note that when we write #2Spin(β, γ, (0,∞)) the field is
implicitly assumed to be at most polynomial in size of the graph (or in unary).

We then consider fields with some constant bounds. Recall that λintc = (γ/β)
d∆ce+1

2 .
Let λintc

′ = (γ/β)
b∆cc+2

2 . Then λintc
′ = λintc unless ∆c is an integer. By reducing to anti-

ferromagnetic 2-spin models in bipartite graphs, we have the following hardness result, which
is first observed in [13, Theorem 3].

I Proposition 22. Let (β, γ, λ) be a set of parameters such that β < γ, βγ > 1, and λ > λintc
′.

Then #2Spin(β, γ, (0, λ]) is #BIS-hard.

The reduction goes as follows. Anti-ferromagnetic Ising models with a constant non-trivial
field in bounded degree bipartite graphs are #BIS-hard, if the uniqueness condition fails
[1]. Given such an instance, we may first flip the truth table of one side. This effectively
results in a ferromagnetic Ising model in the same bipartite graph, with two different fields
on each side. By a standard diagonal transformation, we can transform such an Ising model
to any ferromagnetic 2-spin model, with various local fields depending on the degree. It can
be verified that for any λ > λintc

′, we may pick a field in the anti-ferromagnetic Ising model
to start with, such that uniqueness fails and after the transformation, the largest field in use
is at most λ.

The hardness bound in Proposition 22 matches the failure of uniqueness due to Propos-
ition 6, unless ∆c is an integer. In contrast to Proposition 22, Theorem 18 implies that
if β ≤ 1 < γ and λ < λc = (γ/β)

∆c+1
2 , then #2Spin(β, γ, (0, λ]) has an FPTAS. Hence

Theorem 18 is almost optimal, up to an integrality gap.
We note that λc is not the tight bound for FPTAS, as observed in Proposition 21. Since

the degree d has to be an integer, with an appropriate choice of the potential function, there
is a small interval beyond λc such that strong spatial mixing still holds. Interestingly, it seems
that λintc is not the right bound either. Let us make a concrete example. Let β = 1 and γ = 2.
Then ∆c =

√
βγ+1√
βγ−1

=
√

2+1√
2−1 ≈ 5.82843. Hence λc ≈ 10.6606 and λintc = (2) 6+1

2 ≈ 11.3137.

However, even if λ < λintc , the system may not exhibit spatial mixing, neither in the strong
nor in the weak sense.

In fact, even the spatial mixing in the sense of Theorem 1 does not necessarily hold if
λ < λintc . To see this, we take any λ ∈ [10.9759, 10.9965] so that λc < λ < λintc . Consider
an infinite tree where at even layers, each vertex has 5 children, and at odd layers, each
vertex has 7 children. There are more than one Gibbs measures in this tree. This can be
easily verified from the fact that the two layer recursion function f5(f7(x)) has three fixed
points such that x = f5(f7(x)). In addition, all three fixed points x̂i satisfy that x̂i < λc
for i = 1, 2, 3. Consider a tree T with alternating degrees 5 and 7 of depth 2`, and another

H. Guo and P. Lu 31:17

tree T ′ of the same structure in the first 2` layers as T but with one more layer where each
vertex has, say, 50 children. It is not hard to verify that as ` increases, the marginal ratio at
the root of T converges to x̂3, but the ratio at the root of T ′ converges to x̂1. This example
indicates that one should not expect correlation decay algorithms to work all the way up to
λintc .

At last, if we consider the uniform field case #2Spin(β, γ, λ), then our tractability results
still holds. However, to extend the hardness results as in Proposition 22 from an interval
of fields to a uniform one, there seems to be some technical difficulty. Suppose we want to
construct a combinatorial gadget to effectively realize another field. There is a gap between
λ and the next largest possible field to realize. This is why in [13], there are some extra
conditions transiting from an interval of fields to the uniform case. The observation above
about the failure of SSM in irregular trees may suggest a random bipartite construction of
uneven degrees. However, to analyze such a gadget is beyond the scope of the current paper.

6 Missing Proofs

At last, we gather technical details and proofs that are omitted in Section 2.2, Section 2.3,
and Section 3.2.

6.1 Details about the Uniqueness Threshold
We want to prove Propositions 5 and Proposition 6. Technically by only considering the
symmetric recursion fd(x) = λ

(
βx+1
x+γ

)d
, we are implicitly assuming uniform boundary

conditions. If there are more than one fixed points for fd(x), then clearly there are multiple
Gibbs measures. Hence, fd(x) having only one fixed point is a necessary condition for the
uniqueness condition in Td+1. Moreover, it is also sufficient. The reason is that the influence
on the root of an arbitrary boundary condition is bounded between those of the all “0” and
all “1” boundary conditions.

First do some calculation here. Take the derivative of fd(x):

f ′d(x) = d(βγ − 1)fd(x)
(βx+ 1)(x+ γ) . (14)

Then take the second derivative:

f ′′d (x) = f ′d(x)
fd(x) −

β

βx+ 1 −
1

x+ γ
= d(βγ − 1)− βγ − 1− 2βx

(βx+ 1)(x+ γ) .

Therefore, at x∗ := d(βγ−1)−(βγ+1)
2β , f ′′d (x∗) = 0. It’s easy to see when d < βγ+1

βγ−1 , f
′′
d (x) < 0

for all x > 0. So fd(x) is concave and therefore has only one fixed point.
Since fd(x) has only one inflection point, there are at most three fixed points. Moreover,

the uniqueness condition is equivalent to say that for all fixed points x̂d of fd(x), f ′d(x̂d) < 1.
For a fixed point x̂d, we plug it in (14):

f ′d(x̂d) = d(βγ − 1)x̂d
(βx̂d + 1)(x̂d + γ) .

Recall that ∆c :=
√
βγ+1√
βγ−1

. If d < ∆c, we have that for any x,

(βx+ 1)(x+ γ)− d(βγ − 1)x = βx2 + ((βγ + 1)− d(βγ − 1))x+ γ

> βx2 + (βγ + 1− (
√
βγ + 1)2)x+ γ

= (
√
βx−√γ)2 ≥ 0.

APPROX/RANDOM’16

31:18 Uniqueness, Spatial Mixing, and Approximation for Ferromagnetic 2-Spin Systems

Hence (βx+ 1)(x+ γ) > d(βγ − 1)x. In particular, f ′d(x̂d) < 1 for any fixed point x̂d and
the uniqueness condition holds. This proves Proposition 5.

To show Proposition 6, we may assume that d ≥ ∆c. We may also assume that β ≤ γ.
The equation (βx+ 1)(γ + x) = d(βγ − 1)x has two solutions, which are

x0 = x∗ −
√

((βγ + 1)− d(βγ − 1))2 − 4βγ
2β

and x1 = x∗ +
√

((βγ + 1)− d(βγ − 1))2 − 4βγ
2β .

Notice that both of them are positive since x0 + x1 = 2x∗ > 0 and x0x1 = β/γ.
We show that fd(x0) > x0 or fd(x1) < x1 is equivalent to the uniqueness condition.

First we assume this condition doesn’t hold, that is fd(x0) ≤ x0 and fd(x1) ≥ x1. If any
of the equation holds, then x0 or x1 is a fixed point and the derivative is 1. So we have
non-uniqueness. Otherwise, we have fd(x0) < x0 and fd(x1) > x1. Since x0 < x1, there is
some fixed point x̃ satisfying fd(x̃) = x̃ and x0 < x̃ < x1. The second inequality implies that
(βx̃+ 1)(x̃+ γ) < d(βγ − 1)x̃. Therefore f ′d(x̃) > 1 and non-uniqueness holds.

To show the other direction, if fd(x0) > x0, then

f ′d(x0) = d(βγ − 1)f(x0)
(βx0 + 1)(x0 + γ) >

d(βγ − 1)x0

(βx0 + 1)(x0 + γ) = 1.

Assume for contradiction that fd(x) has three fixed points, denoted by x̃0 < x̃1 < x̃2. Then
the middle fixed point x̃1 satisfies f ′d(x̃1) > 1. Therefore x̃1 > x0 and there are two fixed
points larger than x0. However, for x0 < x ≤ x∗, f ′d(x) > 1 and fd(x0) > x0. Hence there
is no fixed point in this interval. For x > x∗, the function is concave and has exactly one
fixed point. So there is only 1 fixed point larger than x0. Contradiction. The case that
fd(x1) < x1 is similar.

These two conditions could be rewritten as

λ >
x0(x0 + γ)d

(βx0 + 1)d (15)

and

λ <
x1(x1 + γ)d

(βx1 + 1)d . (16)

Notice that the right hand side has nothing to do with λ in both (15) and (16).
We want to see how conditions (15) and (16) change as d changes. Treat d as a continuous

variable. Define

gi(d) := xi(xi + γ)d

(βxi + 1)d .

where i = 0, 1 and xi is defined above depending on β, γ and d. Take the derivative:

g′i(d)
gi(d) = ∂xi

∂d

(
1
xi

+ d

xi + γ
− dβ

βxi + 1

)
+ log(xi + γ)− log(βxi + 1)

= ∂xi
∂d

(
1
xi

+ d(1− βγ)
(xi + γ)(βxi + 1)

)
+ log xi + γ

βxi + 1

= ∂xi
∂d

(
1
xi
− 1
xi

)
+ log xi + γ

βxi + 1 = log xi + γ

βxi + 1 .

H. Guo and P. Lu 31:19

If β ≤ 1 these two functions are increasing in d. Recall that ∆c =
√
βγ+1√
βγ−1

, and λintc =

g1(d∆ce) = (γ/β)
d∆c+1e

2 . Thus if λ < λintc , (16) holds for all integers d. On the other hand,

g0(d) = x0(x0 + γ)d

(βx0 + 1)d > x0β
−d = β

γx1
β−d >

β

γ2x∗ β
−d

= β2

γ(d(βγ − 1)− (βγ + 1)) · β
−d

→∞ as d goes to ∞.

Hence there is no λ such that (15) holds for all integers d. This proves Proposition 6.
If β > 1, then neither (15) nor (16) can hold for all integers d. The reason is

g0(d) = x0(x0 + γ)d

(βx0 + 1)d = x0(x0 + γ)2d

(d(βγ − 1)x0)d > x0

(
γ

d(βγ − 1)x0

)d
→∞ as d goes to ∞,

as d(βγ − 1)x0 < γ for sufficiently large d, and

g1(d) = x1(x1 + γ)d

(βx1 + 1)d = x1(d(βγ − 1)x1)d

(βx1 + 1)2d < x1

(
d(βγ − 1)
β2x1

)d
→ 0 as d goes to ∞,

as β2x1 > d(βγ − 1) for sufficiently large d.

6.2 Details about the Potential Method
In this section we provide missing details and proofs in Section 2.3.

To study correlation decay on trees, we use the standard recursion given in (2). Recall
that T is a tree with root v. Vertices v1, . . . , vd are d children of v, and Ti is the subtree
rooted by vi. A configuration σΛ is on a subset Λ of vertices, and RσT denote the ratio of
marginal probabilities at v given a partial configuration σ on T .

We want to study the influence of another set of vertices, say S, upon v. In particular,
we want to study the range of ratios at v over all possible configurations on S. To this end,
we define the lower and upper bounds as follows. Notice that as S will be fixed, we may
assume that it is a subset of Λ.

I Definition 23. Let T, v,Λ, σΛ, S,R
σ
T be as above. Define Rv := minτΛ R

τΛ
T and Rv :=

maxτΛ R
τΛ
T , where τλ can only differ from σΛ on S. Define δv := Rv −Rv.

Our goal is thus to prove that δv ≤ exp(−Ω(dist(v, S))). We can recursively calculate Rv
and Rv as follows. The base cases are:
1. v ∈ S, in which case Rv = 0 and Rv =∞ and δv =∞;
2. v ∈ Λ \ S, i.e. v is fixed to be the same value in all τΛ, in which case Rv = Rv = 0 (or ∞)

if v is fixed to be blue (or green), and δv = 0;
3. v 6∈ Λ and v is the only node of T , in which case Rv = Rv = λ and δv = 0.
For v 6∈ Λ, since Fd is monotonically increasing with respect to any xi for any βγ > 1,

Rv = Fd(Rv1 , ..., Rvd) and Rv = Fd(Rv1 , ..., Rvd),

where Rvi and Rvi are recursively defined lower and upper bounds of RτΛTi for 1 ≤ i ≤ d.

APPROX/RANDOM’16

31:20 Uniqueness, Spatial Mixing, and Approximation for Ferromagnetic 2-Spin Systems

x y

Fd(x) Gd(y)

Φ

Fd Gd

Φ−1

Φ

Φ−1

Figure 1 Commutative diagram between Fd and Gd.

Our goal is to show that δv decays exponentially in the depth of the recursion under
certain conditions such as the uniqueness. A straightforward approach would be to prove
that δv contracts by a constant ratio at each recursion step. This is a sufficient, but not
necessary condition for the exponential decay. Indeed there are circumstances that δv does
not necessarily decay in every step but does decay in the long run. To amortize this behaviour,
we use a potential function Φ(x) and show that the correlation of a new recursion decays by
a constant ratio.

To be more precise, the potential function Φ : R+ → R+ is a differentiable and monoton-
ically increasing function. It maps the domain of the original recursion to a new one. Let
yi = Φ(xi). We want to consider the recursion for yi’s. The new recursion function, which is
the pullback of Fd, is defined as

Gd(y1, . . . , yd) := Φ(Fd(Φ−1(x1), . . . ,Φ−1(xd))).

The relationship between Fd(x) and Gd(y) is illustrated in Figure 1.
We want to prove Lemma 8 and Lemma 12. To do so, we also define the upper and lower

bounds of y. Define yv = Φ(Rv) and accordingly yvi = Φ(Rvi), for 1 ≤ i ≤ d, as well as
yv = Φ(Rv) and yvi = Φ(Rvi), for 1 ≤ i ≤ d. We have that

yv = Gd(yv1 , . . . , yvd) and yv = Gd(yv1 , . . . , yvd). (17)

Let εv = yv − yv. For a good potential function, exponential decay of εv is sufficient to imply
that of δv.

I Lemma 24. Let Φ(x) be a good potential function for the field λ at v. Then there exists a
constant C such that δv ≤ Cεv for any dist(v, S) ≥ 2.

Proof. By (17) and the Mean Value Theorem, there exists an R̃ ∈ [Rv, Rv] such that

εv = Φ(Rv)− Φ(Rv) = Φ′(R̃) · δv = ϕ(R̃) · δv. (18)

Since dist(v, S) ≥ 2, we have that Rv ≥ λγ−d and Rv ≤ λβd. Hence R̃ ∈ [λγ−d, λβd], and
by Condition 1 of Definition 7, there exists a constant C1 such that ϕ(R̃) ≥ C1. Therefore
δv ≤ 1/C1εv. J

The next lemma explains Condition 2 of Definition 7.

I Lemma 25. Let Φ(x) be a good potential function with contraction ratio α. Then,

εv ≤ α max
1≤i≤d

{εvi}.

H. Guo and P. Lu 31:21

Proof. First we use (17):

εv = yv − yv = Gd(yv1 , . . . , yvd)−Gd(yv1 , . . . , yvd).

Let y1 = (yv1 , . . . , yvd) and y0 = (yv1 , . . . , yvd). Let z(t) = ty1 + (1 − t)y0 be a linear
combination of y0 and y1 where t ∈ [0, 1]. Then we have that

εv = Gd(z(1))−Gd(z(0)).

By the Mean Value Theorem, there exist t̃ such that εv = dGd(z(t))
d t

∣∣∣
t=t̃

. Let ỹi = t̃yvi + (1−
t̃)yvi for all 1 ≤ i ≤ d. Then we have that

εv = |∇Gd(ỹ1, . . . , ỹd) · (εv1 , . . . , εvd)| . (19)

It is straightforward to calculate that

∂Gd(y)
∂yi

= ϕ(Fd(R))
ϕ(Ri)

· ∂Fd(R)
∂Ri

, (20)

where Ri = Φ−1(yi) and y and R are vectors composed by yi’s and Ri’s. Plugging (20) into
(19) we get that

εv = ϕ(Fd(R̃)) ·
d∑
i=1

∣∣∣∣∂Fd∂Ri

∣∣∣∣ 1
ϕ(R̃i)

· εvi

≤ Cϕ,d(R̃1, . . . , R̃d) · max
1≤i≤d

{εvi} ≤ α max
1≤i≤d

{εvi},

where R̃i = Φ−1(ỹi), R̃ is the vector composed by R̃i’s, and in the last line we use Condition 2
of Definition 7. J

Note that the two conditions of a good potential function does not necessarily deal with
all cases in the tree recursion. At the root we have one more child than other vertices in
a SAW tree. Also, if v has a child u ∈ S, then εu = ∞ and the range in both conditions
of Definition 7 does not apply. To bound the recursion at the root, we have the following
straightforward bound of the original recursion.

I Lemma 26. Let (β, γ) be two parameters such that βγ > 1 and β < γ. Let v be a vertex
and vi be its children for 1 ≤ i ≤ d. Suppose δvi ≤ C for some C > 0 and all 1 ≤ i ≤ d.
Then,

δv ≤ dλv(βγ − 1)γ−1βdC.

Proof. It is easy to see that γ ≥ 1. By the same argument as in Lemma 25 and (2), there
exists xi’s such that

δv = |∇Fd(x1, . . . , xd) · (δv1 , . . . , δvd)| ≤ C
d∑
i=1

∣∣∣∣∂Fd(x)
∂xi

∣∣∣∣ ,
where x is the vector composed by xi’s. Then, we have that∣∣∣∣∂Fd(x)

∂xi

∣∣∣∣ = d(βγ − 1)Fd(x)
(xi + γ)(βxi + 1) ≤ dλv(βγ − 1)γ−1βd,

where we use the fact that Fd(x) ≤ λvβ
d for any xi ∈ [0,∞) and βγ > 1. The lemma

follows. J

APPROX/RANDOM’16

31:22 Uniqueness, Spatial Mixing, and Approximation for Ferromagnetic 2-Spin Systems

Now we are ready to prove Lemma 8.

Proof of Lemma 8. Given G and a partial configuration σΛ on a subset Λ ⊆ V of vertices,
we first claim that we can approximate pσΛ

v within additive error ε deterministically in time
O
(
ε

log ∆
logα

)
. We construct the SAW tree T = TSAW(G, v). Due to Proposition 3, we only need

to approximate pσΛ
v in T , with respect to v and an arbitrary vertex set S. We will also use

σΛ to denote the configuration in T on ΛSAW . Let S be the set of vertices whose distance to
v is larger than t, where t is a parameter that we will specify later. Let δv be defined as in
Definition 23 with respect to T , v, Λ, σΛ, and S. We want to show that δv = O(λαt).

The maximum degree of T is at most ∆. Thus the root v has at most ∆ children in
T , and any other vertex in T has at most ∆− 1 children. Assume v has k ≥ 1 children as
otherwise we are done. We may also assume that v 6∈ S and let t = dist(v, S)− 1 ≥ 1. We
recursively construct a path u0 = v, u1,. . . ,ul of length l ≤ t as follows. Given ui, if there is
no child of ui, then we stop and let l = i. Otherwise ui has at least one child. If i = t then
we stop and let l = t. Otherwise l < t and let ui+1 be the child of ui such that εui+1 takes
the maximum ε among all children of ui. In other words, by Lemma 25, we have that

εui ≤ αεui+1 , (21)

for all 1 ≤ i ≤ l − 1. Notice that (21) may not hold for i = 0 since v = u0 has possibly ∆
children.

First we note that for all 1 ≤ i ≤ l, dist(v, ui) = i ≤ l ≤ t, and therefore ui 6∈ S. If we
met any vertex ul with no child, then we claim that εul = 0. This is because ul is either
a free vertex with no child or ul ∈ Λ but ul 6∈ S. However since εul takes the maximum ε

among all children of ul−1, we have that for all children of ui−1, ε = 0, which implies that
εui−1 = 0. Recursively we get that εv = εu0 = 0 and clearly the theorem holds by (18).

Hence we may assume that l = t. Since ul 6∈ S, we have that δul ≤ λulβ−(∆−1) if β > 1,
or δul ≤ λul if β ≤ 1. Hence by (18) and Condition 1 in Definition 7, we have that εul ≤ C0
for some constant C0. Applying (21) inductively we have that

εu1 ≤ αlεul ≤ αtC0.

Hence by Lemma 24, we there exists another constant C1 such that δu1 ≤ αtC1. To get a
bound on δu0 , we use Lemma 26, which states that

δu0 ≤ d0λv(βγ − 1)γ−1βd0δu1 ≤ d0λv(βγ − 1)γ−1βd0αtC1 = O(λαt),

where d0 ≤ ∆ is the degree of v = u0.
Hence the recursive procedure returns Rv and Rv such that Rv ≤ RσΛ

T ≤ Rv, and
Rv − Rv = O(λαt) where α < 1 is the contraction ratio. Note that RσΛ

T = RσΛ
G,v = p

σΛ
v

1−pσΛ
v

.
Let p0 = Rv

Rv+1 and p1 = Rv

Rv+1 . Then p0 ≤ pσΛ
v ≤ p1 and

p1 − p0 = Rv

Rv + 1 −
Rv

Rv + 1 ≤ R
v −Rv = O(λαt). (22)

The recursive procedure runs in time O(∆t) since it only needs to construct the first t
levels of the self-avoiding walk tree. For any ε > 0, let t = O(logα ε − logα λ) so that
Rv −Rv < ε. This gives an algorithm which approximates pσΛ

v within an additive error ε in

time O
((

ε
λ

) log ∆
logα

)
.

Then we use self-reducibility to reduce computing Zβ,γ,π(G) to computing conditional
marginal probabilities. To be specific, let σ be a configuration on a subset of V and τ be

H. Guo and P. Lu 31:23

sampled according to the Gibbs measure. Let pσv := Pr (τ(v) = 1 | σ) be the conditional
marginal probability. We can compute Zβ,γ,π(G) from pσv by the following standard procedure.
Let v1, . . . , vn enumerate vertices in G. For 0 ≤ i ≤ n, let σi be the configuration fixing the
first i vertices v1, . . . , vi as follows: σi(vj) = σi−1(vj) for 1 ≤ j ≤ i− 1 and σi(vi) is fixed to
the spin s so that pi := Pr (τ(vi) = s | σi−1) ≥ 1/3. This is always possible because clearly

Pr (τ(vi) = 0 | σi−1) + Pr (τ(vi) = 1 | σi−1) = 1.

In particular, σn ∈ {0, 1}V is a configuration of V . The Gibbs measure of σn is ρ(σn) =
w(σn)

Zβ,γ,π(G) . On the other hand, we can rewrite ρ(σn) = p1p2 · · · pn by conditional probabilities.
Thus Zβ,γ,π(G) = w(σn)

p1p2···pn . The weight w(σn) given in (1) can be computed exactly in time
polynomial in n. Note that pi equals to either pσi−1

vi or 1− pσi−1
vi . Since we can approximate

pσΛ
v within an additive error ε in time O

((
ε
λ

) log ∆
logα

)
, the configurations σi can be efficiently

constructed, which guarantees that all pi’s are bounded away from 0. Thus the product

p1p2 · · · pn can be approximated within a factor of (1± nε′) in time O
(
n
(
ε′

λ

) log ∆
logα

)
. Now

let ε′ = ε
n . We get the claimed FPTAS for Zβ,γ,π(G). J

Lemma 11 follows almost immediately from Lemmas 24, 25, and 26 as in the proof above.
The only issue is that the range of x should be restricted to (0, λ]. This is guaranteed by
Claim 16.

Finally we show Lemma 12.

Proof of Lemma 12. By the same proof of Lemma 8, we only need to approximate the mar-
ginal probability at the root v of a tree T . By Condition 2 of Definition 10, Cϕ,d(x1, · · · , xd) <
αdlogM (d+1)e. Denote by B(`) the set of all vertices whose M -based depths of v is at most `
in T . Hence |B(`)| ≤M `. Let S = {u | dist(u,B(`)) > 1}, which is essentially the same S
as in Lemma 8, but under a different metric. We can recursively compute upper and lower
bounds Rv and Rv of RσΛ

T such that Rv ≤ RσΛ
T ≤ Rv, with the base case that for any vertex

u ∈ S trivial bounds Ru = 0 and Ru =∞ are used.
We proceed as in the proof of Lemma 8. Without loss of generality, we construct a path

u0u1 · · ·uk in T from the root u0 = v to a uk with `M (uk−1) ≤ ` and `M (uk) > `. As in the
proof of Lemma 25, εuj ≤ Cϕdj (xj,1, . . . , xj,dj) · εuj+1 for all 0 ≤ j ≤ k − 1, where dj is the
number of children of uj and xj,i ∈ [0,∞), 1 ≤ i ≤ dj . Hence we have that

εv ≤ εuk ·
k−1∏
j=0

αdlogM (dj+1)e ≤ εuk · α
∑k−1

j=0
dlogM (dj+1)e

= εuk · α`M (uk) ≤ εuk · α`.

Note that dist(uk, B(`)) = 1 and hence uk 6∈ S. So δuk < λuk ≤ λ. By (18), we have
that εuk ≤ ϕ(R̃)δuk , for some R̃ ∈ [λukγ−dk , λukβdk]. Hence εuk < C2λ by Condition 1 of
Definition 10, and εv < λα`C2. By (18) and Condition 1 of Definition 10 again, we have that
δv ≤ λα`C2/C1.

The rest of the proof goes the same as that of Lemma 8. The running time has an extra
n2 factor since we need to go down two more levels (in the worst case) outside of B(`). J

6.3 Proofs of Lemma 14 and Lemma 15
In this section we show Lemma 14 and Lemma 15. We prove Lemma 14 first, and then use
it to show Lemma 15.

APPROX/RANDOM’16

31:24 Uniqueness, Spatial Mixing, and Approximation for Ferromagnetic 2-Spin Systems

Proof of Lemma 14. It is trivial if β ≤ 1. Now assume that β > 1. As βx+1
x+γ is increasing

in x, it is equivalent to show that

γ − 1
β − 1 ≥ λc =

(
γ

β

) √
βγ√
βγ−1

⇔ log(γ − 1)− log(β − 1) ≥
√
βγ√

βγ − 1
log
(
γ

β

)
.

Let γ = k2β with k ≥ 1. We only need to show that r(k) ≥ 0 for k ≥ 1, where r(k) is defined
as

r(k) := log(βk2 − 1)− log(β − 1)− 2βk
βk − 1 log k.

Since r(1) = 0, it is enough to prove that r(k) is increasing for k ≥ 1. It can be easily verified
as

r′(k) = 2βk
βk2 − 1 −

2β
βk − 1 + 2β

(βk − 1)2 log k

= 2β
(βk − 1)2(βk2 − 1)

(
(βk2 − 1) log k − (k − 1)(βk − 1)

)
.

So, it is sufficient to show that

(βk2 − 1) log k − (k − 1)(βk − 1) ≥ 0.

Since k ≥ 1, we have that log k ≥ 1− 1
k . It implies that

(βk2 − 1) log k − (k − 1)(βk − 1) ≥ (βk2 − 1)(1− 1
k

)− (k − 1)(βk − 1) = (k − 1)2

k
≥ 0.

This completes the proof. J

Then we show Lemma 15.

Proof of Lemma 15. Let g(x) := (βγ − 1)x log λc
x − (βx + 1)(x + γ) log x+γ

βx+1 . Hence it is
equivalent to show that g(x) ≤ 0 for all 0 < x < λc. Take the derivative of g(x) and we have
that

g′(x) = (βγ − 1)(log λc
x
− 1)− (2βx+ βγ + 1) log x+ γ

βx+ 1

− (βx+ 1)(x+ γ)
(

1
x+ γ

− β

βx+ 1

)
= (βγ − 1) log λc

x
− (2βx+ βγ + 1) log x+ γ

βx+ 1 .

By direct calculation, g
(√

γ
β

)
= 0 and g′

(√
γ
β

)
= 0. Then we prove (3) for the case of

0 < x <
√

γ
β and

√
γ
β < x < λc separately.

If 0 < x <
√

γ
β , it is sufficient to verify that g′(x) > 0. We only need to show that g′(x)

is decreasing since g′
(√

γ
β

)
= 0. It is easily verified by taking the derivative again:

g′′(x) = −βγ − 1
x

− 2β log x+ γ

βx+ 1 − (2βx+ βγ + 1)
(

1
x+ γ

− β

βx+ 1

)
= −2β log x+ γ

βx+ 1 − (βγ − 1)
(

1
x
− 2βx+ βγ + 1

(x+ γ)(βx+ 1)

)
= −2β log x+ γ

βx+ 1 − (βγ − 1) r − βx2

x(x+ γ)(βx+ 1) < 0,

H. Guo and P. Lu 31:25

where the last inequality uses the fact that x+γ
βx+1 ≥ 1 by Lemma 14 and x <

√
γ
β .

If
√

γ
β < x < λc, then we show (3) directly. First notice that as x 6=

√
γ
β ,

x

(βx+ 1)(x+ γ) = 1
βx+ γ

x + βγ + 1 < (
√
βγ + 1)−2,

Given this, in order to get (3), it is sufficient to show that h(x) < 0 where

h(x) :=
√
βγ − 1√
βγ + 1

log λc
x
− log x+ γ

βx+ 1 .

In fact, h(x) is a decreasing function as

h′(x) = −
√
βγ − 1

x(
√
βγ + 1)

− 1
x+ γ

+ β

βx+ 1

= −
(
√
βγ − 1)

(
(x+ γ)(βx+ 1)− (

√
βγ + 1)2x

)
x(
√
βγ + 1)(x+ γ)(βx+ 1)

= −
(
√
βγ − 1)

(√
βx−√γ

)2
x(
√
βγ + 1)(x+ γ)(βx+ 1)

≤ 0.

Notice that h
(√

γ
β

)
= 0. It implies that h(x) < 0 for all x >

√
γ
β . This completes the

proof. J

Acknowledgement. We thank Liang Li, Jingcheng Liu, and Chihao Zhang for some stimu-
lating discussion. In particular, the example of the 5-7 tree in Section 5 is an outcome from
such discussion. We also thank organizers of the “IMA-GaTech Workshop on the Power
of Randomness in Computation” in March 2015. The current work stems from discussions
during the workshop.

References

1 Jin-Yi Cai, Andreas Galanis, Leslie Ann Goldberg, Heng Guo, Mark Jerrum, Daniel Šte-
fankovič, and Eric Vigoda. #BIS-hardness for 2-spin systems on bipartite bounded degree
graphs in the tree non-uniqueness region. In RANDOM, pages 582–595, 2014.

2 Jin-Yi Cai and Michael Kowalczyk. Spin systems on k-regular graphs with complex edge
functions. Theor. Comput. Sci., 461:2–16, 2012.

3 Martin E. Dyer, Leslie Ann Goldberg, Catherine S. Greenhill, and Mark Jerrum. The
relative complexity of approximate counting problems. Algorithmica, 38(3):471–500, 2003.

4 Andreas Galanis, Daniel Štefankovič, and Eric Vigoda. Inapproximability of the partition
function for the antiferromagnetic Ising and Hard-Core models. CoRR,, 2012. URL: http:
//arxiv.org/abs/1203.2226.

5 Hans-Otto Georgii. Gibbs Measures and Phase Transitions, volume 9 of De Gruyter Studies
in Mathematics. de Gruyter, Berlin, second edition, 2011.

6 Leslie Ann Goldberg and Mark Jerrum. The complexity of ferromagnetic Ising with local
fields. Combinatorics, Probability & Computing, 16(1):43–61, 2007.

7 Leslie Ann Goldberg, Mark Jerrum, and Mike Paterson. The computational complexity of
two-state spin systems. Random Struct. Algorithms, 23(2):133–154, 2003.

8 Mark Jerrum and Alistair Sinclair. Polynomial-time approximation algorithms for the Ising
model. SIAM J. Comput., 22(5):1087–1116, 1993.

APPROX/RANDOM’16

http://arxiv.org/abs/1203.2226
http://arxiv.org/abs/1203.2226

31:26 Uniqueness, Spatial Mixing, and Approximation for Ferromagnetic 2-Spin Systems

9 Mark Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. Random generation of combinatorial
structures from a uniform distribution. Theor. Comput. Sci., 43:169–188, 1986.

10 Frank P. Kelly. Stochastic models of computer communication systems. Journal of the
Royal Statistical Society. Series B (Methodological), 47(3):379–395, 1985.

11 Liang Li, Pinyan Lu, and Yitong Yin. Approximate counting via correlation decay in spin
systems. In SODA, pages 922–940, 2012.

12 Liang Li, Pinyan Lu, and Yitong Yin. Correlation decay up to uniqueness in spin systems.
In SODA, pages 67–84, 2013.

13 Jingcheng Liu, Pinyan Lu, and Chihao Zhang. The complexity of ferromagnetic two-spin
systems with external fields. In RANDOM, pages 843–856, 2014.

14 Russell Lyons. The Ising model and percolation on trees and tree-like graphs. Comm. Math.
Phys., 125(2):337–353, 1989.

15 Elchanan Mossel and Allan Sly. Exact thresholds for Ising-Gibbs samplers on general
graphs. Annals of Probability, 41(1):294–328, 2013.

16 Alistair Sinclair, Piyush Srivastava, Daniel Štefankovič, and Yitong Yin. Spatial mixing
and the connective constant: Optimal bounds. In SODA, pages 1549–1563, 2015.

17 Alistair Sinclair, Piyush Srivastava, and Marc Thurley. Approximation algorithms for two-
state anti-ferromagnetic spin systems on bounded degree graphs. In SODA, pages 941–953,
2012.

18 Allan Sly and Nike Sun. The computational hardness of counting in two-spin models on
d-regular graphs. The Annals of Probability, 42(6):2383–2416, 2014.

19 Dror Weitz. Counting independent sets up to the tree threshold. In STOC, pages 140–149,
2006.

20 Jinshan Zhang, Heng Liang, and Fengshan Bai. Approximating partition functions of the
two-state spin system. Inf. Process. Lett., 111(14):702–710, 2011.

On Polynomial Approximations to AC0

Prahladh Harsha1 and Srikanth Srinivasan2

1 TIFR, Mumbai, India
prahladh@tifr.res.in

2 Dept. of Mathematics, IIT Bombay, Mumbai, India
srikanth@math.iitb.ac.in

Abstract
We make progress on some questions related to polynomial approximations of AC0. It is known,
from the works of Tarui (Theoret. Comput. Sci. 1993) and Beigel, Reingold, and Spielman (Proc.
6th CCC 1991), that any AC0 circuit of size s and depth d has an ε-error probabilistic polynomial
over the reals of degree (log(s/ε))O(d). We improve this upper bound to (log s)O(d) · log(1/ε),
which is much better for small values of ε.

We give an application of this result by using it to resolve a question posed by Tal (ECCC
2014): we show that (log s)O(d) · log(1/ε)-wise independence fools AC0, improving on Tal’s
strengthening of Braverman’s theorem (J. ACM 2010) that (log(s/ε))O(d)-wise independence
fools AC0. Up to the constant implicit in the O(d), our result is tight. As far as we know, this
is the first PRG construction for AC0 that achieves optimal dependence on the error ε.

We also prove lower bounds on the best polynomial approximations to AC0. We show that any
polynomial approximating the OR function on n bits to a small constant error must have degree
at least Ω̃(

√
logn). This result improves exponentially on a recent lower bound demonstrated by

Meka, Nguyen, and Vu (arXiv 2015).

1998 ACM Subject Classification F.1.1 Models of Computation, F.1.2 Modes of Computation

Keywords and phrases Constant-depth Boolean circuits, Polynomials over reals, pseudo-random
generators, k-wise independence

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2016.32

1 Motivation and Results

We use AC0(s, d) to denote AC0 circuits of size s and depth d.

Polynomial approximations to AC0

In his breakthrough work on proving lower bounds for the class AC0[⊕], Razborov [17]
studied how well small circuits can be approximated by low-degree polynomials. We recall
(an equivalent version of) his notion of polynomial approximation over the reals.

An ε-error probabilistic polynomial (over the reals) for a circuit C(x1, . . . , xn) is a random
polynomial P(x1, . . . , xn) ∈ R[x1, . . . , xn] such that for any a ∈ {0, 1}n, we have PrP[C(a) 6=
P(a)] ≤ ε. Further, we say that P has degree D and ‖P‖∞ ≤ L if P is supported on
polynomials P of degree at most D and L∞ norm at most L (i.e. polynomials P such that
maxa∈{0,1}n |P (a)| ≤ L). If there is such a P for C, we say that C has an ε-error probabilistic
degree at most D.

It is well-known [22, 21, 2] that any circuit C ∈ AC0(s, d) has an ε-error probabilistic
polynomial P of degree (log(s/ε))O(d) and satisfying ‖P‖∞ < exp((log s/ε)O(d)). This can be
used to prove, for example [19], (a slightly weaker version of) Håstad’s theorem [6] that says

© Prahladh Harsha and Srikanth Srinivasan;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016).
Editors: Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans; Article No. 32; pp. 32:1–32:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.32
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

32:2 On Polynomial Approximations to AC0

that Parity does not have subexponential-sized AC0 circuits. It also plays an important role
in Braverman’s theorem [3] that shows that polylog-wise independence fools AC0 circuits.

Upper bounds for probabilistic polynomials

We show a general result regarding error reduction of probabilistic polynomials over the reals.

I Theorem 1. Suppose f : {0, 1}n → {0, 1} has a (1
2 − δ)-error probabilistic polynomial P

of degree D and L∞ norm at most L ≥ 2. Then, for any ε > 0, f has an ε-error probabilistic
polynomial of degree at most O

(
D
δ2 log(1/ε)

)
and L∞ norm at most LO(1

δ2 log 1
ε).

Applying the above result to (1/10)-error probabilistic polynomials for AC0 gives us
small-error probabilistic polynomials for AC0 with better parameters.

I Theorem 2. Let C be any AC0 circuit of size s and depth d. Let ε > 0 be any parameter.
The circuit C has an ε-error probabilistic polynomial P of degree (log s)O(d) · log(1/ε) and
‖P‖∞ ≤ exp((log s)O(d) log(1/ε)).

Similar results on probabilistic polynomials were obtained over F2 (for the larger class
of AC0[⊕] circuits) by Kopparty and Srinivasan [9] and extended to all fixed non-zero
characteristics by Oliveira and Santhanam [16]. They have also found applications in the
works of Williams [24] – for the purposes of obtaining better algorithms for satisfiability
problems – and Oliveira and Santhanam [16], for proving lower bounds on compression by
bounded-depth circuits. However, as far as we know, no corresponding results were observed
over the reals until now.

The above theorem was motivated by an application to constructing pseudorandom
generators (PRGs) for AC0. As mentioned above, it was shown by Braverman [3] that
AC0 is fooled by polylog-wise independence.The proof of Braverman’s theorem proceeds
by constructing certain approximating polynomials for AC0, which in turn depends on two
previous polynomial approximation results for this circuit class. The first of these is the
L2-approximation result of Linial, Mansour and Nisan [10] which is based on the classical
Håstad Switching Lemma [6], and the second is the above mentioned result of Tarui [21] and
Beigel et al. [2]. Using these constructions, Braverman showed that AC0(s, d) is ε-fooled by
(log(s/ε))O(d2)-wise independence.

An example due to Mansour appearing in the work of Luby and Veličković [12] demon-
strated that (log s)d−1 log(1/ε)-wise independence is necessary to ε-fool AC0(s, d). This leads
naturally to the question of showing tight bounds for the amount of independence required
to fool AC0(s, d).

Using an improved switching lemma due to Håstad [7] (see also the work of Impagliazzo,
Matthews, and Paturi [8]), Tal [20] gave an improved version of the L2-approximation
result of Linial et al. [10], and used this to improve the parameters of Braverman’s theorem.
Specifically, he showed that (log(s/ε))O(d)-wise independence fools AC0.

Tal asked if the dependence on ε in this result could be made to match the limit given
by Mansour’s example. Formally, he asked if (log s)O(d) · log(1/ε)-wise independence fools
AC0(s, d). In this work, we are able to answer this question in the affirmative (Corollary 12
below). Up to the constant implicit in the O(d), our result is optimal for all ε > 0.

Comparison to other PRGs for AC0

Using standard constructions of k-wise independent probability distributions, the above result
gives explicit PRGs with seedlength (log s)O(d) · log(1/ε) for fooling circuits from AC0(s, d).

P. Harsha and S. Srinivasan 32:3

It is easy to see that this seedlength cannot be improved beyond Ω(log(1/ε)) and hence that
our result is optimal in terms of the error parameter ε.

It is also instructive to see how well this compares to general (i.e. not based on limited
independence) PRG constructions for AC0. Using the standard Hardness-to-Randomness
paradigm of Nisan and Wigderson [14] and the best known average case lower bounds for
AC0 [8, 7], it is easy to obtain PRGs of seedlength (log s)O(d) · (log(1/ε))2 for AC0(s, d).
Furthermore, the Nisan-Wigderson paradigm cannot yield PRGs of seedlength less than
(log(1/ε))2 given our current state of knowledge regarding circuit lower bounds (see Ap-
pendix A for details). Another recent PRG construction for AC0(s, d) due to Trevisan and
Xue [23] has seedlength (log(s/ε))d+O(1).

The reader will note that both constructions are suboptimal in terms of the dependence
on ε (though both are better than ours in terms of dependence on s and d). Interestingly, as
far as we know, our construction is the first that achieves an optimal dependence on ε.

Lower bounds for probabilistic polynomials

We can also ask if our result can be strengthened to yield a seedlength of (log s)d+O(1)·log(1/ε),
which would generalize both our current construction and that of Trevisan and Xue [23], and
almost match Mansour’s lower bound as well. Such a strengthening could conceivably be
obtained by improving the polynomial approximation results for AC0 [21, 2]. Razborov [17]
observed that to obtain good approximations for AC0(s, d), it suffices to approximate the
OR function on s bits efficiently. Therefore, we study the probabilistic degree of the OR
function.

Beigel, Reingold and Spielman [2] and Tarui [21] showed that the OR function on n bits
can be ε-approximated by a polynomial of degree O((logn) · log(1/ε)). While it is easy to
show that the dependence on ε in this result is tight (in fact for any field), for a long time, it
was not known if any dependence on n is necessary over the reals1. Recently, Meka, Nguyen
and Vu [13] showed that any constant error probabilistic polynomial for the OR function
over the reals must have degree Ω̃(log logn) and hence the dependence on the parameter n
is unavoidable. We further improve the bound of Meka et al. exponentially to Ω̃(

√
logn),

which is only a quadratic factor away from the upper bound.

1.1 Proof ideas
Here, we describe the ideas behind the proofs of the main results.

The proof of Theorem 1 is extremely simple. A natural strategy to reduce the error of a
(constant-error, say) probabilistic polynomial P is to sample it independently ` = O(log(1/ε))
times to obtain polynomials P1, . . . ,P` and then take the Majority vote among the Pis,
which can be simulated by composing with a multilinear polynomial of degree `. Indeed,
this is exactly what Kopparty and Srinivasan [9] do in an earlier work to obtain ε-error
probabilistic polynomials over F2.

Over the reals, it is not completely clear that this strategy works, since the polynomials
Pi need not output a Boolean value when they err and hence it is not clear what taking
a “Majority vote” means. Nevertheless, we observe that composing with the multilinear
Majority polynomial continues to work since this polynomial has the nice property that
setting more than half of its input bits to a constant b ∈ {0, 1} causes the polynomial to

1 In fact, for finite fields of constant size, Razborov [17] showed that the ε-error probabilistic degree of
OR is O(log(1/ε)), independent of the number of input bits.

APPROX/RANDOM’16

32:4 On Polynomial Approximations to AC0

collapse to the constant polynomial b, which is oblivious to the values of the unset inputs
(that could even be non-Boolean and possibly arbitrarily large real numbers).

As mentioned already above, Theorem 1, along with standard constructions of probablistic
polynomials for AC0(s, d) in the constant-error regime, directly proves Theorem 2. We can
more or less plug this result into Tal’s proof [20] of Braverman’s theorem to obtain better
parameters for the amount of independence required to fool AC0. The only additional idea
required is to ensure that the inputs where the probabilistic polynomial computes the correct
value are certified by a small AC0 circuit. While a small AC0 circuit cannot compute the
Majority vote above, it turns out that an “Approximate Majority” [1] is sufficient for this
purpose, and this can be done in AC0.

We now describe the proof of the degree lower bound for ε-error probabilistic polynomials
computing the OR function on n variables to a small constant-error (say 1/10). It is known
that this can be done over fields of constant characteristic with constant degree [17] and over
the reals with degree O(logn) [21, 2]. Hence any technique for proving lower bounds growing
with n will have to use a technique specific to large characteristic.

The work of Razborov and Viola [18] introduced such a technique to the theoretical
computer science literature to show that no low degree polynomial over the reals can
compute the Parity function on more than half its inputs. The main technique was an anti-
concentration lemma generalizing classical theorems of Littlewood-Offord and Erdős [11, 5]
that state that any linear function of at least r Boolean variables takes any fixed value
on a uniformly random input with probability at most O(1/

√
r). In particular, it cannot

approximate a Boolean function well unless r is very small. Razborov and Viola, building on
the work of Costello, Tao, and Vu [4], proved a generalization of this statement to low-degree
multivariate polynomials that contain at least r disjoint monomials of maximum degree.

More recently, Meka, Nguyen, and Vu [13] proved an improved (and near-optimal) version
of the anti-concentration lemma of Razborov and Viola and used this to show better lower
bounds for the Parity function. Additionally, they were also able to show that any constant-
error probabilistic polynomial for the OR function must have degree Ω̃(log logn). We use
their anti-concentration lemma with a more efficient restriction argument to prove a lower
bound of Ω̃(

√
logn). We describe the outline of this restriction argument next.

To prove a lower bound of D on the probabilistic degree of some function it suffices
(and is also necessary, by standard duality arguments) to obtain a distribution under which
the function is hard to approximate by any polynomial of degree less than D. While some
functions have ‘obvious’ hard distributions (such as the Parity function, which is random
self-reducible w.r.t. the uniform distribution), the OR function is not one such, since it takes
value 0 only on one input. Some obvious candidates (such as the uniform distribution or
a convex combination of the uniform distribution along with the distribution that puts all
its mass on the all 0s input) can actually be shown to be easy for the OR function. The
hard distribution we use is motivated by the polynomial constructions of [2, 21] and is as
follows: with probability 1/2 choose the all 0s input and with probability 1/2 choose a
uniformly random i ∈ [logn] and then choose a random input of weight2 n/2i. The hard
distribution chosen by Meka et al. is similar, but sparser than the distribution we use (it is
only concentrated on log logn levels of the hypercube whereas our distribution is concentrated
on logn levels).

We now argue that any polynomial q approximating the OR function w.r.t. this distribu-
tion must be of large degree as follows. First of all, since there is a considerable amount of

2 We will actually use the product distribution where each bit is set to 1 with probability 1
2i , which puts

most of its mass on inputs of weight close to n/2i, but we blur this distinction here.

P. Harsha and S. Srinivasan 32:5

mass on the all 0s input, we can assume that q takes value 0 on this input. Now, we consider
the distribution that is uniformly distributed on inputs of Hamming weight n/2. We know
that the OR function is always 1 on these inputs, which means that q is not anti-concentrated
on inputs from this distribution. Hence, by the anti-concentration lemma due to Meka et
al., any maximal disjoint set of maximum degree monomials in q cannot have too many
monomials, say more than r. In particular, setting all the variables V in such a set of
monomials – there are at most rD variables in V – to 0 reduces the degree of the polynomial
by 1. The important observation is that this naturally happens with high probability when
we use the distribution that is uniformly distributed on inputs of weight ≈ n/rD, since each
variable is set to 1 only with probability ≈ 1/rD. Further, we can simulate the uniform
distribution on (say) inputs of weight n/rD by first sampling a set S of size 2n/rD and
setting the bits outside S to 0 – this sets all the variables in V with good probability and
thus reduces the degree of q – and then choosing a random set of |S|/2 inputs to set to 1.
We are now exactly in the situation we were at the beginning of this paragraph, except for
the fact that the degree of q is smaller.

Continuing in this way, we eventually obtain a constant polynomial q that computes the
OR function on some non-zero inputs from the hypercube, which means that it must be the
constant polynomial 1. However, this contradicts the fact that q takes value 0 on the all 0s
input and this proves the theorem.

2 Improved probabilistic polynomials and PRGs for AC0

2.1 The construction of probabilistic polynomials
Notation

Let P ∈ R[x1, . . . , x`]. Given a set S ⊆ [`] and a partial assignment σ : S → {0, 1}, we define
P |σ to be the polynomial obtained by setting all the bits in S according to σ. In the case
that σ sets all the variables in S to a constant b ∈ {0, 1}, we use P |S 7→b instead of P |σ. For
a function f : {0, 1}` → {0, 1}, we define f |σ and f |S 7→b similarly.

We define the weight of P , denoted w(P), to be the sum of the absolute values of all the
coefficients of P .

I Definition 3. Let P ∈ R[x1, . . . , x`] and say r is a parameter from [`]. We say that P is
an `-pseudo-majority if for r being the least integer greater than `/2 and any S ∈

([`]
r

)
and

b ∈ {0, 1}, the polynomial P |S 7→b is the constant polynomial b.

We show below that the multilinear polynomial representing the Majority function is an
`-pseudo-majority of weight 2O(`).

Before we prove that this construction works, we need a few standard facts about
polynomials.

I Fact 4. Any Boolean function f : {0, 1}` → {0, 1} can be represented uniquely by a
multilinear polynomial P [x1, . . . , x`] in the sense that for all a ∈ {0, 1}n, we have P (a) = f(a).
Furthermore, w(P) = 2O(`).

The uniqueness in the fact above yields the following observation.

I Lemma 5. Let f : {0, 1}` → {0, 1} and P be the corresponding unique multilinear
polynomial guaranteed by Fact 4. If σ : S → {0, 1} is a partial assignment such that f |σ is
the constant function b ∈ {0, 1}, then P |σ is formally the constant polynomial b.

APPROX/RANDOM’16

32:6 On Polynomial Approximations to AC0

Proof. Follows from the fact that P |σ is a multilinear polynomial representing the constant
function b on the variables not in S and the uniqueness part of Fact 4. J

I Remark. Note that the hypothesis of the lemma above is that f |σ(a) = b for all Boolean
assignments a to the remaining variables. However, the conclusion yields a stronger conclusion
for the polynomial P : namely, we show that P |σ takes value b on any assignment a ∈ R`−|S|
to the remaining variables, and not just Boolean assignments. It is this fact that we will use
in applications below.

For ` ∈ N, define the Boolean function M` to be the Majority function: i.e., M`(x) = 1
iff the Hamming weight of x is strictly greater than `/2. Note that for any S ⊆ {x1, . . . , x`}
of size greater than `/2 and any b ∈ {0, 1}, M`|S 7→b is the constant function b.

Let P` be the multilinear polynomial representing M` guaranteed by Fact 4. Applying
Lemma 5 to the pair M` and P`, we obtain the following corollary.

I Corollary 6. For any ` ∈ N, there exist `-pseudo-majorities of degree ` and weight 2O(`).

We now prove Theorem 1. We will follow the proof of [9, Lemma 10], but some additional
justification will be required since we are working over the reals and not over F2 as in [9].

Proof of Theorem 1. We set ` = A
δ2 log(1

ε) for a constant A > 0 to be fixed later. Let
P1, . . . ,P` be ` mutually independent copies of the probabilistic polynomial P. Let r = b `2c.
Fix an `-pseudo-majority Q as guaranteed by Corollary 6. The final probabilistic polynomial
is R = Q(P1, . . . ,P`).

The degree of R is at most deg(Q) · deg(P) ≤ O
(
D
δ2 log(1

ε)
)
. Moreover, it can be seen

that the ‖R‖∞ ≤ w(Q) · Ldeg(Q) ≤ (2L)O(`) ≤ LO(`) since L ≥ 2.
Finally, we see that for any a ∈ {0, 1}n, R(a) = f(a) unless at least for r many i ∈ [`],

we have Pi(a) 6= f(a). By a Chernoff bound, the probability of this is at most ε as long
as A is chosen to be a suitably large constant. Hence, R is indeed an ε-error probabilistic
polynomial for f . J

Theorem 2 immediately follows from the above and standard probabilistic polynomials
for AC0 from [22, 21, 2]. However, for our applications to PRGs for AC0, we need a slightly
stronger statement, which we prove below.

I Definition 7 (Probabilistic polynomial with witness). An ε-error probabilistic polynomial
for circuit C(x1, . . . , xn) with witness (ε-error PPW for short) is a pair (P,E) of random
variables such that P is a randomized polynomial and E is a randomized circuit (both on n
Boolean variables) such that for any input a ∈ {0, 1}n, we have

PrE [E(a) = 1] ≤ ε,
For any fixing (P, E) of (P,E), we have E(a) = 0⇒ P (a) = C(a).

In particular, this implies that P is an ε-error probabilistic polynomial for C.
We say that E belongs to a circuit class C if it is supported on circuits from class C.

The above notion was introduced in Braverman [3] who proved the following lemma,
building on earlier works of [22, 21, 2].

I Lemma 8 ([3, Lemma 8, Proposition 9]). Fix parameters s, d ∈ N and ε > 0. Any AC0

circuit C of size s and depth d has an ε-error PPW (P,E) where
deg(P) ≤ (log(s/ε))O(d) and ‖P‖∞ ≤ exp

(
(log(s/ε))O(d)),

E ∈ AC0(poly(s log(1/ε)), d+ 3).

P. Harsha and S. Srinivasan 32:7

We show the following variant of the above lemma, which is an improvement in terms of
degree and the L∞ norm of the probabilistic polynomial for small ε.

I Lemma 9. Fix parameters s, d ∈ N and ε > 0. Any AC0 circuit C of size s and depth d
has an ε-error PPW (P,E) where

deg(P) ≤ (log s)O(d) · log(1/ε) and ‖P‖∞ ≤ exp
(
(log s)O(d) log(1/ε)

)
,

E ∈ AC0(poly(s log(1/ε)), d+O(1)).

Before we begin the proof, we state one more lemma from the literature. Given an
integer parameter ` and real parameters α, β ∈ [0, 1] with α < β, we will call a function
f : {0, 1}` → {0, 1} an (`, α, β)-approximate majority if f(x) = 0 for any input of Hamming
weight at most α` and f(x) = 1 for any input of Hamming weight at least β`. The following
is a result of Ajtai and Ben-Or [1].

I Lemma 10 (Ajtai and Ben-Or [1]). Fix any constants α < β. Then, for all ` ∈ N, there is
an (`, α, β)-approximate majority which has an AC0 circuit of size poly(`) and depth 3.

We now prove Lemma 9. The proof is similar to that of Theorem 1 above, but we also
need to obtain a witness circuit for our probabilistic polynomial.

Proof of Lemma 9. Let ` = A log(1/ε) for a large constant A to be chosen later. W.l.o.g.
assume that ` is even. Let r = d`/2e + 1 and let Q(x1, . . . , x`) be the `-pseudo-majority
guaranteed by Corollary 6. Let k = `/4. By Lemma 10, there is an AC0 circuit C1 of size
poly(`) and depth 3 that computes an (`, 1/4, 2/5)-approximate majority.

Let (P1,E1), . . . , (P`,E`) be independent copies of the (1/8)-error PPW guaranteed by
Lemma 8. The final PPW is (P,E) where P = Q(P1, . . . ,P`) and E = C1(E1, . . . ,E`). We
show that this PPW has the required properties.

First of all, we know that on any input a to the circuit C and for any i ∈ [`], the
probability that Ei(a) = 1 is at most 1/8. Thus, the expected number of Ei that output 1 is
at most `/8. However, for E(a) to be 1, at least `/4 many Ei(a) should be 1. By a Chernoff
bound, the probability of this event is at most exp(−Ω(`)) < ε for a large enough constant
A.

Now, we need to argue that if E(a) = 0, then P(a) = Q(P1(a), . . . ,P`(a)) = C(a). Say
C(a) = b ∈ {0, 1}. If E(a) = 0, then we know that the number of Ei(a) that are 0 is at least
3`/5; let I denote the set of these i. By the definition of PPWs, we know that for each i ∈ I,
we have Pi(a) = b and hence at least 3`/5 > r many inputs of Q are set to b. Since Q is
an `-pseudo-majority, we must have Q(P1(a), . . . ,P`(a)) = b. This concludes the proof that
(P,E) is indeed an ε-error PPW for C.

Note that deg(P) ≤ deg(Q) ·maxi deg(Pi) ≤ (log s)O(d) log(1/ε). Also, it can be seen
that

‖P‖∞ ≤ w(Q) · (max
i∈[`]
‖Pi‖∞)deg(Q) ≤ exp

(
(log s)O(d) log(1/ε)

)
.

Thus, P has the required properties. The size and depth properties of E follow trivially from
its definition. This concludes the proof of the lemma. J

2.2 Application to PRGs for AC0

The connection between probabilistic polynomials and PRGs for AC0 is encapsulated in the
following theorem (which is an easy observation from the works of Braverman and Tal):

APPROX/RANDOM’16

32:8 On Polynomial Approximations to AC0

I Theorem 11 (Braverman [3],Tal [20]). Let s, d ∈ N and ε > 0. Suppose that any AC0

circuit of size s and depth d has an (ε/2)-error PPW (P,E) such that
deg(P) = D, ‖P‖∞ ≤ L,
E ∈ AC0(s1, d1),

Then, AC0 circuits of size s and depth d can be ε-fooled by k(s, d, ε)-wise independence, where

k(s, d, ε) = O(D) + (log s1)O(d1) · (log(1/ε) + logL)

Note that the theorem above is trivial when log(1/ε) > s since any AC0 circuit of size s is
trivially fooled by an s-wise independent distribution. Hence, the theorem is non-trivial only
when log(1/ε) ≤ s. In this case, using Lemma 9 and the theorem above, we immediately get

I Corollary 12. Fix parameters s, d ∈ N and ε > 0. Any circuit C ∈ AC0(s, d) can be
ε-fooled by any distribution that is (log s)O(d) log(1/ε)-wise independent.

I Remark. A close look at the above proof (including the details of Lemma 8 and Theorem 11)
shows that the amount of independence required to ε-fool AC0(s, d) is (log s)3d+O(1) · log(1/ε).
Avishay Tal (personal communication) showed that the above can be further improved to
(log s)2.5d+O(1) · log(1/ε)-wise independence. It is open if this can be further strengthened to,
say, (log s)d+O(1) · log(1/ε) or even (log s)d−1 · log(1/ε), matching the lower bound due to
Mansour [12].

3 The probabilistic degree of OR

Notation

For i ≥ 1 and a set of Boolean variables X, let µXi be the product distribution on {0, 1}X
defined so that for each x ∈ X, the probability that x = 1 is 2−i. We also use UX to denote
µX1 , the uniform distribution over {0, 1}X . The OR function on the variables in X is denoted
ORX .

We want to show:

I Theorem 13. Let |X0| = n. The 1/8-error probabilistic degree of ORX0 is Ω
(√

logn
(log logn)3/2

)
.

I Remark. Though the theorem is stated for error 1/8, it is not hard to see that it holds
(with constant factor losses) as long as the error is bounded by 1/2− Ω(1). One way to see
this is to appeal to Theorem 2. Another way is to do a simpler error reduction specific to
the OR function as we do in the proof of Theorem 13.

In order to prove Theorem 13, we use an anti-concentration lemma due to Meka, Nguyen
and Vu [13]3 coupled with a random restriction argument inspired by the work of Razborov
and Viola [18].

I Lemma 14 (Meka, Nguyen, and Vu [13]). There exists an absolute constant B > 0 so that
the following holds. Let p(x) ∈ R[X] be a degree d multilinear polynomial with at least r
disjoint degree d terms. Then Prx∼UX [p(x) = 0] ≤ Bd4/3r−

1
4d+1
√

log r.

3 The result of Meka et al. is actually stated for polynomials over the Fourier basis of Parity functions
(see, e.g., the book of O’Donnell [15]). However, it is an easy observation that a polynomial of degree d
has r disjoint terms of degree d in the standard monomial basis if and only if it has r disjoint terms of
degree d in the Fourier basis. Hence, the result holds in the standard basis as well.

P. Harsha and S. Srinivasan 32:9

Given a polynomial q ∈ R[X], we denote by ErrXi (q) the error of polynomial q w.r.t.
distribution µXi . Formally,

ErrXi (q) = Pr
x∼µX

i

[q(x) 6= ORX(x)]

For a set of variables X, ` ∈ N and δ ∈ R≥0, call a polynomial q ∈ R[X] (X, `, δ)-good if

E
i∈[`]

[ErrXi (q)] ≤ δ.

A random restriction on the variable set X with ∗-probability p ∈ [0, 1] will be a function
ρ : X → {∗, 0} with each variable set independently to ∗ with probability p and to 0 otherwise.
We use Xρ to denote ρ−1(∗). The restriction of a polynomial q under ρ is denoted q|ρ.

I Observation 15. Let q ∈ R[X] and ρ be a random restriction on the variable set X with
∗-probability p = 1

2b where b ∈ N. For any i ≥ 1,

E
ρ

[ErrXρi (q|ρ)] = ErrXi+b(q)

(I.e., setting bits independently to 1 with probability 1
2i+b is the same as first applying a

random restriction with ∗-probability 1
2b and then setting each surviving variable to 1 with

probability 1
2i .)

3.1 Proof of Theorem 13
We argue by contradiction. Let P be a 1/8-error probabilistic polynomial for ORX0 of degree
D <

√
logn/A(log logn)3/2 for some absolute constant A > 0 that we will fix in Claim 16.

In particular, we have

Pr
P

[P(0, 0, . . . , 0) 6= 0] ≤ 1
8

We discard all polynomials q such that q(0, 0, . . . , 0) 6= 0 from the distribution under-
lying P (e.g. if such a bad polynomial is sampled, then we could just output 0). The
resulting probabilistic polynomial P′ is supported only on polynomials q ∈ R[X0] such that
q(0, 0, . . . , 0) = 0 and further, P′ is a (1/4)-error probabilistic polynomial for ORX0 of degree
D.

Let P′1, . . . ,P′s be s = log logn independent instances of P′ and let Q = 1−
∏
i∈[s](1−

P′i). Then, Q is an error 1
4s = 1

log2 n
probabilistic polynomial for ORn of degree at most

sD <
√

logn/A
√

log logn. In particular, there is a polynomial q0 ∈ R[x1, . . . , xn] of degree
d0 <

√
logn/A

√
log logn such that q0(0, 0, . . . , 0) = 0 and for ε0 = 1

log2 n
we have

E
i∈[(logn)/2]

[ErrX0
i (q0)] ≤ ε0

Define n0 = |X0| = n and `0 = (logn)/2. By the above inequality, the polynomial q0 is
(X0, `0, ε0)-good. Also define parameters r = (d0 · log2 n)10d0 and p = 1

2b where b ∈ N is
chosen so that p ∈ [1

2r2 ,
1
r2]. Note that r = no(1) and hence p = 1

no(1) .
We now define a sequence of polynomials q1, q2, . . . , qt such that:
Each qi ∈ R[Xi] where Xi ⊆ X0 and has degree di ≥ 0. Also, |Xi| = ni where
ni ∈ [pni−1/2, 3pni−1/2]. Further deg(qi) = di < di−1. The polynomial qi = qi−1|ρi for
some restriction ρi : Xi−1 → {∗, 0}.

APPROX/RANDOM’16

32:10 On Polynomial Approximations to AC0

Each polynomial qi is (Xi, `i, εi)-good where `i = `i−1 − b and εi = εi−1 · exp
(

16b
logn

)
.

dt = deg(qt) = 0. That is, qt is a constant polynomial.

Before we describe how to construct this sequence, let us see how it implies the desired
contradiction. Note that since di < di−1 for each i ≥ 1, the length t of the sequence is
bounded by d0 <

√
logn/A

√
log logn.

We first make the following simple claim.

I Claim 16. There is a large enough constant A in the definition of D above so that for
each i ∈ [t], ni ≥

√
n, `i ≥ logn

4 , and εi < 1
logn .

Proof. It can be checked that the following inequalities hold for a large enough choice of the
constant A. Firstly,

ni ≥ nt ≥ n0 · (p/2)t = n · (d0 logn)−O(d2
0) ≥

√
n.

Also, note that `i = `0 − bi ≥ `0 − bt = (logn)/2−O(d2
0 log logn) ≥ logn

4 and

εi = ε0 · exp
(

16bi
logn

)
≤ ε0 · exp

(
16bt
logn

)
= 1

log2 n
· exp

(
O(d2

0 log logn)
logn

)
<

1
logn. J

In particular, since qt is (Xt, `t, εt)-good, we must have

ErrXt1 (qt) ≤ `t E
i∈[`t]

[ErrXti (qt)] < εt`t <
1
2 (1)

using the fact that `t ≤ `0 = (logn)/2 and εt < 1
logn .

Since nt ≥
√
n, the function ORXt(x) evaluates to 1 under the distribution µXt1 = UXt

with probability 1− o(1). Thus, qt must also evaluate to 1 on some input. However, since qt
is a constant polynomial, this implies that qt = 1. But this implies that qt(0, 0, . . . , 0) = 1 as
well, which leads to a contradiction, since qt is obtained by setting some input bits of q0 to 0
and q0(0, 0, . . . , 0) = 0 by our choice of q0. This completes the proof of the theorem.

Now we describe how to obtain the sequence q1, . . . , qt. More precisely, we describe how
to obtain qi from qi−1 assuming di−1 ≥ 1. Fix any i ≥ 1 such that di−1 ≥ 1. We assume
that the sequence q1, . . . , qi−1 of polynomials constructed so far satisfy the above properties.

For brevity, let q,X,m, d, `, ε denote qi−1, Xi−1, ni−1, di−1, `i−1, εi−1 respectively.
We know that q is (X, `, ε)-good. As we did in (1) for qt, we can use this to show that

ErrX1 (q) < 1
2 and since ORX(x) takes the value 1 on an input x ∼ UX with probability

1− o(1), we see that

Pr
x∼UX

[q(x) = 1] ≥ 1
2 − o(1) ≥ 1

3 . (2)

Lemma 14 then implies that there cannot r disjoint monomials of degree d in q. To see
this, assume that there are indeed r many disjoint monomials of degree d in q. Then by
Lemma 14, the probability that q(x)− 1 = 0 for a random x ∼ UX is at most

Bd4/3r−
1

4d+1
√

log r ≤ Bd4/3
0 r−

1
5d0
√

log r

≤ Bd4/3
0 ·

√
10d0 log(d0 log2 n)

d2
0 log4 n

= o(1).

This contradicts (2).

P. Harsha and S. Srinivasan 32:11

Hence, we know that q cannot be contain more than r many disjoint monomials of degree
d. Let S be any maximal set of disjoint monomials appearing in q. Note that by definition,
every monomial of degree d contains at least one variable from S and hence setting all the
variables in S reduces the degree of the polynomial. The number of variables appearing in S
is at most d|S| ≤ dr.

We now choose a random restriction ρ with ∗-probability p as defined above and consider
the polynomial q|ρ. Define the following “bad” events:
E1(ρ) is the event that |Xρ| 6∈ [pm/2, 3pm/2].
E2(ρ) is the event that some variable in S is not set to 0.
E3(ρ) is the event that q|ρ is not (Xρ, `

′, ε′)-good where `′ = `− b and ε′ = ε · exp
(

16b
logn

)
.

We claim that there is a ρ so that none of the bad events E1(ρ), E2(ρ) or E3(ρ) occur.
This will imply that we can take qi = q|ρ, Xi = Xρ, `i = `′, εi = ε′ and we will be done. So
we only need to show that Prρ[E1(ρ) ∨ E2(ρ) ∨ E3(ρ)] < 1. This is done as follows.

Prρ[E1(ρ)]: By Claim 16, we know that m ≥
√
n and hence Eρ[|Xρ|] = pm = m · 1

no(1) ≥
n1/4. Hence, by a Chernoff bound, the probability that |Xρ| 6∈ [pm/2, 3pm/2] is bounded
by exp(−Ω(n1/4)).
Prρ[E2(ρ)]: By a union bound over S, this probability is bounded by p|S| ≤ rd0/r

2 < 1
logn .

Prρ[E3(ρ)]: By Observation 15, we know that for any i,

E
ρ

[ErrXρi (q|ρ)] = ErrXi+b(q).

Hence,

E
ρ

[E
i∈[`′]

[ErrXρi (q|ρ)]] = E
i∈[`′]

[ErrXi+b(q)] = E
i∈{b+1,...,b+`′}

[ErrXi (q)] = E
i∈{b+1,...,`}

[ErrXi (q)].

(3)

We can bound the right hand side of the above equation by

E
i∈{b+1,...,`}

[ErrXi (q)] ≤ 1
(1− b

`)
E
i∈[`]

[ErrXi (q)] ≤ ε

(1− b
`)

where the final inequality follows from the fact that q is (X, `, ε)-good. Further, by
Claim 16, we know that ` ≥ logn

4 � b, and hence we can bound the above as follows.

E
i∈{b+1,...,`}

[ErrXi (q)] ≤ ε

(1− b
`)
≤ ε · (1 + 2b

`
) ≤ ε · (1 + 8b

logn).

Plugging the above bound into (3), we obtain

E
ρ

[E
i∈[`′]

[ErrXρi (q|ρ)]] ≤ ε · (1 + 8b
logn) ≤ ε · exp

(
8b

logn

)
.

By Markov’s inequality,

Pr
ρ

[E
i∈[`′]

[ErrXρi (q|ρ)] > ε · exp
(

16b
logn

)
] ≤ exp

(
− 8b

logn

)
= 1− Ω(b

logn) ≤ 1− 2
logn.

Thus, Prρ[E3(ρ)] ≤ 1− 2
logn .

By a union bound, we have

Pr
ρ

[E1(ρ) ∨ E2(ρ) ∨ E3(ρ)] ≤ exp(−Ω(n1/4)) + 1
logn + 1− 2

logn < 1.

APPROX/RANDOM’16

32:12 On Polynomial Approximations to AC0

Acknowledgements. We thank Swagato Sanyal and Madhu Sudan for encouragement and
useful discussions which greatly simplified our proofs. We thank Avishay Tal for his generous
feedback and comments and also for showing us the improvement in seedlength mentioned in
Remark 2.2. We also thank Paul Beame and Xin Yang for pointing out that a change in
parameters results in a quantitative improvement in the lower bound obtained in Theorem 13.

References

1 Miklós Ajtai and Michael Ben-Or. A theorem on probabilistic constant depth computations.
In Proc. 16th ACM Symp. on Theory of Computing (STOC), pages 471–474, 1984. doi:
10.1145/800057.808715.

2 Richard Beigel, Nick Reingold, and Daniel A. Spielman. The perceptron strikes back.
In Proc. 6th IEEE Conf. on Structure in Complexity Theory, pages 286–291, 1991. doi:
10.1109/SCT.1991.160270.

3 Mark Braverman. Polylogarithmic independence fools AC0 circuits. J. ACM, 57(5), 2010.
(Preliminary version in 24th IEEE Conference on Computational Complexity, 2009). doi:
10.1145/1754399.1754401.

4 Kevin P. Costello, Terence Tao, and Van Vu. Random symmetric matrices are almost
surely nonsingular. Duke Math. J., 135(2):395–413, 2006. arXiv:math/0505156, doi:
10.1215/S0012-7094-06-13527-5.

5 Paul Erdős. On a lemma of Littlewood and Offord. Bull. Amer. Math. Soc., 51(12):898–902,
1945. doi:10.1090/S0002-9904-1945-08454-7.

6 Johan Håstad. Almost optimal lower bounds for small depth circuits. In Silvio Micali, editor,
Randomness and Computation, volume 5 of Advances in Computing Research, pages 143–
170. JAI Press, Greenwich, Connecticut, 1989. (Preliminary version in 18th STOC 1986).
URL: http://www.csc.kth.se/~johanh/largesmalldepth.pdf.

7 Johan Håstad. On the correlation of parity and small-depth circuits. SIAM J. Comput.,
43(5):1699–1708, 2014. doi:10.1137/120897432.

8 Russell Impagliazzo, William Matthews, and Ramamohan Paturi. A satisfiability algorithm
for AC0. In Proc. 23rd Annual ACM-SIAM Symp. on Discrete Algorithms (SODA), pages
961–972, 2012. URL: http://arxiv.org/abs/1107.3127.

9 Swastik Kopparty and Srikanth Srinivasan. Certifying polynomials for AC0(parity) circuits,
with applications. In Deepak D’Souza, Telikepalli Kavitha, and Jaikumar Radhakrishnan,
editors, Proc. 32nd IARCS Annual Conf. on Foundations of Software Tech. and Theoretical
Comp. Science (FSTTCS), volume 18 of LIPIcs, pages 36–47. Schloss Dagstuhl, 2012. doi:
10.4230/LIPIcs.FSTTCS.2012.36.

10 Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, Fourier trans-
form, and learnability. J. ACM, 40(3):607–620, 1993. (Preliminary version in 30th FOCS,
1989). doi:10.1145/174130.174138.

11 John Edensor Littlewood and A. Cyril Offord. On the number of real roots of a random
algebraic equation. J. London Math. Soc., s1-13(4):288–295, 1938. doi:10.1112/jlms/
s1-13.4.288.

12 Michael Luby and Boban Velickovic. On deterministic approximation of DNF. Al-
gorithmica, 16(4/5):415–433, 1996. (Preliminary version in 23rd STOC, 1991). doi:
10.1007/BF01940873.

13 Raghu Meka, Oanh Nguyen, and Van Vu. Anti-concentration for polynomials of indepen-
dent random variables. arXiv 1507.00829, 2015. URL: https://arxiv.org/abs/1507.
00829.

http://dx.doi.org/10.1145/800057.808715
http://dx.doi.org/10.1145/800057.808715
http://dx.doi.org/10.1109/SCT.1991.160270
http://dx.doi.org/10.1109/SCT.1991.160270
http://dx.doi.org/10.1145/1754399.1754401
http://dx.doi.org/10.1145/1754399.1754401
http://arxiv.org/abs/math/0505156
http://dx.doi.org/10.1215/S0012-7094-06-13527-5
http://dx.doi.org/10.1215/S0012-7094-06-13527-5
http://dx.doi.org/10.1090/S0002-9904-1945-08454-7
http://www.csc.kth.se/~johanh/largesmalldepth.pdf
http://dx.doi.org/10.1137/120897432
http://arxiv.org/abs/1107.3127
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2012.36
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2012.36
http://dx.doi.org/10.1145/174130.174138
http://dx.doi.org/10.1112/jlms/s1-13.4.288
http://dx.doi.org/10.1112/jlms/s1-13.4.288
http://dx.doi.org/10.1007/BF01940873
http://dx.doi.org/10.1007/BF01940873
https://arxiv.org/abs/1507.00829
https://arxiv.org/abs/1507.00829

P. Harsha and S. Srinivasan 32:13

14 Noam Nisan and Avi Wigderson. Hardness vs. Randomness. J. Comput. Syst. Sci.,
49(2):149–167, October 1994. (Preliminary version in 29th FOCS, 1988). doi:10.1016/
S0022-0000(05)80043-1.

15 Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014. URL:
http://analysisofbooleanfunctions.org/, doi:10.1017/CBO9781139814782.

16 Igor Carboni Oliveira and Rahul Santhanam. Majority is incompressible by AC0[p] circuits.
In Proc. 30th Computational Complexity Conf., pages 124–157, 2015. doi:10.4230/LIPIcs.
CCC.2015.124.

17 Alexander A. Razborov. Нжние оценки размера схем ограниченной глубины в полном
базисе, содержащем функцию логического сложения (Russian) [Lower bounds on the size
of bounded depth circuits over a complete basis with logical addition]. Mathematicheskie
Zametki, 41(4):598–607, 1987. (English translation in Mathematical Notes of the Academy
of Sciences of the USSR, 41(4):333–338, 1987). URL: http://mi.mathnet.ru/eng/mz4883,
doi:10.1007/BF01137685.

18 Alexander A. Razborov and Emanuele Viola. Real advantage. ACM T. Comput. Theory,
5(4):17, 2013. doi:10.1145/2540089.

19 Roman Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit
complexity. In Proc. 19th ACM Symp. on Theory of Computing (STOC), pages 77–82,
1987. doi:10.1145/28395.28404.

20 Avishay Tal. Tight bounds on the fourier spectrum of AC0. Technical Report TR14-174,
Elect. Colloq. on Comput. Complexity (ECCC), 2014.

21 Jun Tarui. Probablistic polynomials, AC0 functions, and the polynomial-time hierarchy.
Theoret. Comput. Sci., 113(1):167–183, 1993. (Preliminary Version in 8th STACS, 1991).
doi:10.1016/0304-3975(93)90214-E.

22 Seinosuke Toda and Mitsunori Ogiwara. Counting classes are at least as hard as the
polynomial-time hierarchy. SIAM J. Comput., 21(2):316–328, 1992. (Preliminary version
in 6th Structure in Complexity Theory Conference, 1991). doi:10.1137/0221023.

23 Luca Trevisan and Tongke Xue. A derandomized switching lemma and an improved de-
randomization of AC0. In Proc. 28th IEEE Conf. on Computational Complexity, pages
242–247, 2013. doi:10.1109/CCC.2013.32.

24 Ryan Williams. New algorithms and lower bounds for circuits with linear threshold gates.
In Proc. 46th ACM Symp. on Theory of Computing (STOC), pages 194–202, 2014. arXiv:
1401.2444, doi:10.1145/2591796.2591858.

A The limitations of the Nisan Wigderson paradigm

In this section, we show that the general hardness-to-randomness tradeoff of Nisan and
Wigderson [14] does not yield a PRG with optimal seedlength as a function of ε given our
current knowledge of circuit lower bounds.

We start by describing the meta-result of Nisan and Wigderson [14] that allows us to
convert any sufficiently hard-to-compute function for a class of circuits to a PRG for a slightly
weaker class of circuits. The result is true in greater generality than we describe here but to
keep things concrete, we stick to the setting of AC0(s, d).

We say that a function f : {0, 1}r → {0, 1} is (s, d, ε)-hard if given any circuit C from
AC0(s, d) of size s, we have

Pr
x∈{0,1}r

[C(x) = f(x)] ≤ 1
2 + ε.

For non-negative integers m, r, `, s, we say that a family F ⊆
([m]
r

)
, we say that F is an

(m, r, `, s) design if |F| = s and for any distinct S, T ∈ F , we have |S ∩ T | ≤ `.

APPROX/RANDOM’16

http://dx.doi.org/10.1016/S0022-0000(05)80043-1
http://dx.doi.org/10.1016/S0022-0000(05)80043-1
http://analysisofbooleanfunctions.org/
http://dx.doi.org/10.1017/CBO9781139814782
http://dx.doi.org/10.4230/LIPIcs.CCC.2015.124
http://dx.doi.org/10.4230/LIPIcs.CCC.2015.124
http://mi.mathnet.ru/eng/mz4883
http://dx.doi.org/10.1007/BF01137685
http://dx.doi.org/10.1145/2540089
http://dx.doi.org/10.1145/28395.28404
http://dx.doi.org/10.1016/0304-3975(93)90214-E
http://dx.doi.org/10.1137/0221023
http://dx.doi.org/10.1109/CCC.2013.32
http://arxiv.org/abs/1401.2444
http://arxiv.org/abs/1401.2444
http://dx.doi.org/10.1145/2591796.2591858

32:14 On Polynomial Approximations to AC0

Nisan and Wigderson [14] show the following.

I Theorem 17 ([14]). Let m, r, `, s ∈ N be positive parameters such that m ≥ r ≥ `. Given
an explicit f : {0, 1}r → {0, 1} that is (s ·2`, d+ 1, ε/s)-hard and an explicit (m, r, `, s)-design,
we can construct an explicit PRG G : {0, 1}m → {0, 1}s that fools circuits from AC0(s, d)
with error at most ε.

To use this theorem, we need a hard function for circuits in AC0. The best such result
known currently is the following due to Impagliazzo, Matthews, and Paturi [8] (see also
Håstad [7]).

I Theorem 18. Let d ≥ 1 be a constant. The Parity function on r is bits is (s1, d1, δ)-hard
if r ≥ A(log s1)d1−1 · log(1/δ) for some constant A > 0 depending on d.

Thus, if we want to apply Theorem 17 alongside the lower bound given by Theorem 18
to construct PRGs that ε-fool AC0(s, d), then we need

r ≥ A(log s+ `)d · log(s/ε) ≥ A(log s+ `)d · log(1/ε) (4)

for some constant A > 0 depending on d.
Further, to construct an (m, r, `, s)-design, we claim that we further need

m ≥ min{r2/2`, s}. (5)

We justify (5) below, but first we use it to prove that the Nisan-Wigderson paradigm
cannot be used to obtain seedlength optimal in terms of ε for a large range of ε.

We assume that ε ≥ exp(−s1/4) (the same proof works as long as ε ≥ exp(−s 1
2−Ω(1))).

In this setting, we show that m ≥ B(log s)2d−1 · (log(1/ε))2 for some constant B depending
on d.

To see this, note that if m ≥ s, then trivially we have (log s)2d−1 · (log 1/ε)2 ≤ s 1
2 +o(1) <

s ≤ m. So we assume that m < s.
In this case, (5) tells us that m ≥ r2/2`, which yields

m ≥ r2

2` ≥
A2(log s+ `)2d · (log 1/ε)2

2`

≥ A2(log s)2d−1`(log 1/ε)2

2` = Ω(A2(log s)2d−1 · (log(1/ε))2)

as required.
The inequality (5) is a standard combinatorial fact and can be found in many standard

textbooks. For completeness, here is a simple proof using inclusion-exclusion.
Note that if s ≤ r, then we immediately have m ≥ r ≥ s and (5) is proved. So assume

that s > r and in particular given any (m, r, `, s)-design F , we can choose t = r/` sets
T1, . . . , Tt from F . By inclusion-exclusion, we have

m ≥ |
⋃
i∈[t]

Ti| ≥
∑
i

|Ti| −
∑
i<j

|Ti ∩ Tj |

≥ rt− t2

2 · ` ≥
r2

2`

which concludes the proof of (5).

On the Structure of Quintic Polynomials
Pooya Hatami∗

Institute for Advanced Study, Princeton, NJ, USA
pooyahat@math.ias.edu

Abstract
We study the structure of bounded degree polynomials over finite fields. Haramaty and Shpilka
[STOC 2010] showed that biased degree three or four polynomials admit a strong structural
property. We confirm that this is the case for degree five polynomials also. Let F = Fq be a
prime field. Suppose f : Fn → F is a degree five polynomial with bias(f) = δ. We prove the
following two structural properties for such f .
1. We have f =

∑c
i=1 GiHi + Q, where Gi and His are nonconstant polynomials satisfying

deg(Gi) + deg(Hi) 6 5 and Q is a degree 6 4 polynomial. Moreover, c does not depend on n.
2. There exists an Ωδ,q(n) dimensional affine subspace V ⊆ Fn such that f |V is a constant.
Cohen and Tal [Random 2015] proved that biased polynomials of degree at most four are constant
on a subspace of dimension Ω(n). Item [2.] extends this to degree five polynomials. A corollary
to Item [2.] is that any degree five affine disperser for dimension k is also an affine extractor for
dimension O(k). We note that Item [2.] cannot hold for degrees six or higher.

We obtain our results for degree five polynomials as a special case of structure theorems
that we prove for biased degree d polynomials when d < |F| + 4. While the d < |F| + 4 as-
sumption seems very restrictive, we note that prior to our work such structure theorems were
only known for d < |F| by Green and Tao [Contrib. Discrete Math. 2009] and Bhowmick and
Lovett [arXiv:1506.02047]. Using algorithmic regularity lemmas for polynomials developed by
Bhattacharyya, et. al. [SODA 2015], we show that whenever such a strong structure exists, it
can be found algorithmically in time polynomial in n.

1998 ACM Subject Classification G.2.1 Combinatorics

Keywords and phrases Higher-order Fourier analysis, Structure Theorem, Polynomials, Regu-
larity lemmas

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2016.33

1 Introduction

Let F = Fq be a prime field. The bias of a function f : Fn → F is defined as

bias(f) :=
∣∣∣∣ E
x∈Fn

[
ωf(x)

]∣∣∣∣ ,
where ω = e2πi/|F|, is a complex primitive root of unity of order |F|. The smaller the bias of
a function, the more uniformly f is distributed over F, thus a random function has negligible
bias. This remains true, if f is a random degree d polynomial for a fixed degree d > 0. Thus
bias can be thought of as a notion of pseudorandomness for polynomials, and as often lack of
pseudorandomness implies structure, one may ask whether every biased degree d polynomial
admits strong structural properties. Green and Tao [7] (in the case when d < |F|) and later
Kaufman and Lovett [11] (in the general case) proved this heuristic to be true by showing that

∗ Supported by the National Science Foundation grant No. CCF-1412958.

© Pooya Hatami;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016).
Editors: Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans; Article No. 33; pp. 33:1–33:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.33
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

33:2 On the Structure of Quintic Polynomials

every biased degree d polynomial is determined by a few lower degree polynomials. Formally,
these results state that for a degree d polynomial f , there is a constant c 6 c(d, bias(f), |F|),
degree 6 d− 1 polynomials Q1, . . . , Qc and a function Γ : Fc → F, such that

f = Γ(Q1, . . . , Qc). (1)

Note that here crucially c does not depend on the dimension n, meaning that for large n, it
is very unlikely for a typical polynomial to be biased. Recently, Bhowmick and Lovett [3]
proved that the dependence of the number of terms in (1) on |F| can be removed, in other
words biased polynomials are very rare even when the field size is allowed to grow with n.
These structure theorems for biased polynomials have had several important applications.
For example they were used by Kaufman and Lovett [11] to give interesting worst case to
average case reductions, and by Tao and Ziegler [16] in their proof of the inverse theorem for
Gowers norms over finite fields. Such structure theorems have played an important role in
determining the weight distribution and list decoding radius of Reed-Muller codes [12, 4, 3].
They were also used by Cohen and Tal [5] to show that any degree d affine disperser over a
prime field is also an affine extractor with related parameters.

There are however two drawbacks to the structure theorems proved in [7, 11]. Firstly,
the constant c has very bad dependence on δ which is due to the use of regularity lemmas
for polynomials. Secondly, there is no restrictions on the function Γ obtained in (1), in
particular there is nothing stopping it from being of degree c. In the special case of quadratic
polynomials better bounds and structural properties follow from the following well-known
theorem.

I Theorem 1 (Structure of quadratic polynomials [13]). For every quadratic polynomial
f : Fn → F over a prime field F, there exists an invertible linear map T , a linear polynomial
`, and field elements α1, . . . , αn such that

If |F| = 2, then (f ◦ T)(x) =
∑bn/2c
i=1 αix2i−1x2i + `(x).

If |F| is odd, then (f ◦ T)(x) =
∑n
i=1 αix

2
i + `(x).

It easily follows that every quadratic polynomial f , can be written in the form∑2 log(1/bias(f))
i=1 `i`

′
i + `′′ where `i, `′is and `′′ are linear polynomials. This is a very strong

structural property, moreover the dependence of the number of the terms on bias(f) is optimal.
Haramaty and Shpilka [8] studied the structure of biased cubic and quartic polynomials and
proved the following two theorems.

I Theorem 2 (Biased cubic polynomials [8]). Let f : Fn → F be a cubic polynomial such
that bias(f) = δ > 0. Then there exist c1 = O (log(1/δ)), c2 = O

(
log4(1/δ)

)
, quadratic

polynomials Q1, ..., Qc1 : Fn → F, linear functions `1, ..., `c1 , `
′
1, ..., `

′
c2

: Fn → F and a cubic
polynomial Γ : Fc2 → F such that

f =
c1∑
i=1

`iQi + Γ
(
`′1, . . . , `

′
c2

)
.

I Theorem 3 (Biased quartic polynomials [8]). Let f : Fn → F be a quartic polynomial such
that bias(f) = δ. There exist c = poly(|F|/δ) and polynomials {`i, Qi, Q′i, Gi}i∈[c], where the
`is are linear, Qi, Q′is are quadratic, and Gi’s are cubic polynomials, such that

f =
c∑
i=1

`iGi +
c∑
i=1

QiQ
′
i.

P. Hatami 33:3

In the high characteristic regime when d = deg(f) < |F|, Green and Tao [7] showed that
such a strong structure theorem holds, with a dependence that is really large in terms of
bias. More precisely, if d < |F|, then every degree d polynomial f , with bias(f) > δ can be
written in the form f =

∑c(δ,F,d)
i=1 GiHi +Q, where Gi and His are nonconstant polynomials

satisfying deg(Gi) + deg(Hi) 6 d, and Q is a degree 6 d−1 polynomial. Recently, Bhowmick
and Lovett [3] have proved that one can remove the dependence of c on |F|. However, in the
low characteristic case, i.e. when |F| can be smaller than d, the only general results before
this work are Theorems 2 and 3.

1.1 Our results

Suppose that F = Fq is a prime field. In this work we are interested in the case when
q is a fixed prime, as the case of large q is addressed by a recent work of [3]. When the
characteristic of F can be small, namely when |F| 6 5, it was not known whether a degree
five biased polynomial admits a strong structure in the sense of Theorems 2 and 3. Moreover,
the techniques from [8] seem to break down.

Quintic polynomials

We combine ideas from [8] with arguments from polynomial regularity and prove such a
structure theorem for quintic polynomials.

I Theorem 4 (Biased quintic polynomials I). Suppose f : Fn → F is a degree five polynomial
with bias(f) = δ. There exist c4 6 c(δ, |F|), nonconstant polynomials G1, ..., Gc, H1, ...,Hc

and a polynomial Q such that the following holds.
f =

∑c
i=1 GiHi +Q.

For every i ∈ [c], deg(Gi) + deg(Hi) 6 5.
deg(Q) 6 4.

Note that c4 has no dependence on n. We also prove that every biased quintic polynomial is
constant on an affine subspace of dimension Ω(n).

I Theorem 5 (Biased quintic polynomials II). Suppose f : Fn → F is a degree five polynomial
with bias(f) = δ. There exists an affine subspace V of dimension Ω(n) such that f |V is
constant.

Theorem 5 was previously only known for degrees 6 4. The case of quadratics when F = F2
is Dickson’s theorem [6], and the case of general F and d 6 4 was proved recently by Cohen
and Tal [5] building on Theorem 2 and Theorem 3. We also remark that the degree five
is the largest degree that such a bound can hold. To see this, assume for example that
d = 6 and F = F2, and construct a degree 6 polynomial f = G(x1, ..., xn) · H(x1, . . . , xn)
by picking two random cubic polynomials G and H. One observes that f has large bias as
Pr(f = 0) = 3/4 + o(1), however, f will not vanish over any subspace of dimension Ω(n1/2).
Theorem 5 has the following immediate corollary.

I Corollary 6. Suppose f : Fn → F is a degree five affine disperser for dimension k. Then f
is also an affine extractor of dimension O(k).

We refer to [5] where affine dispersers and extractors and the relations between them are
discussed.

APPROX/RANDOM’16

33:4 On the Structure of Quintic Polynomials

Degree d polynomials, with d < |F| + 4

We in fact prove a strong structure theorem for biased degree d polynomials when d < |F|+ 4,
from which Theorem 4 follows immediately.

I Theorem 7 (Biased degree d polynomials I (when d < |F|+ 4)). Suppose 0 < d and F is a
prime field satisfying d < |F|+ 4. Let f : Fn → F be a degree d polynomial with bias(f) = δ.
There exists c7 6 c(δ, d, |F|), nonconstant polynomials G1, ..., Gc, H1, ...,Hc and a polynomial
Q such that the following hold.

f =
∑c
i=1 GiHi +Q.

For every i ∈ [c], deg(Gi) + deg(Hi) 6 d.
deg(Q) 6 d− 1.

We also prove a general version of Theorem 5 when d < |F|+ 4.

I Theorem 8 (Biased degree d polynomials II (when d < |F|+ 4)). Suppose 0 < d and F is a
prime field satisfying d < |F|+ 4. Let f : Fn → F be a degree d polynomial with bias(f) = δ.
There exists an affine subspace V of dimension Ωd,δ(n1/b d−2

2 c) such that f |V is a constant.

Cohen and Tal [5] recently showed that any degree d biased polynomial is constant on an
Ωδ(n1/(d−1)) dimensional affine subspace. Theorem 8 improves on this by a quadratic factor,
when d < |F|+ 4.

Our results for quintic polynomials follow immediately.

Proof of Theorem 4 and Theorem 5. Theorem 4 and Theorem 5 follow curiously as special
cases of Theorem 7 and Theorem 8 as |F| > 2 and 5 < 2 + 4. J

Algorithmic aspects

Using a result of Bhattacharyya, et. al. [2] who gave an algorithm for finding prescribed
decompositions of polynomials, we show that whenever such a strong structure exists, it can
be found algorithmically in time polynomial in n. Combined with Theorem 7, we obtain the
following algorithmic structure theorem.

I Theorem 9. Suppose δ > 0, d > 0 are given, and let F be a prime field satisfying d < |F|+4.
There is a deterministic algorithm that runs in time O(nO(d)) and given as input a degree d
polynomial f : Fn → F satisfying bias(f) = δ, outputs a number c 6 c(δ, |F|, d), a collection
of degree 6 d− 1 polynomials G1, ..., Gc, H1, ...,Hc : Fn → F and a polynomial Q : Fn → F,
such that

f =
∑c
i=1 GiHi +Q.

For every i ∈ [c], deg(Gi) + deg(Hi) 6 d.
deg(Q) 6 d− 1.

1.2 Overview of Proofs
As we saw above, Theorems 4 and 5 are immediate consequences of Theorems 7 and 8.

Proof overview of Theorem 7. Given a degree d biased polynomial f : Fn → F, using an
additive combinatorial argument we find a bounded index subspace restricted to which all
the first degree partial derivatives of f are biased. We observe that since f was biased, it
must be biased in some coset of this subspace also, and hence by a result of [11] it must
be a function of a constant number of its derivatives. As each derivative of f is a degree
6 d − 1 and biased, we again invoke the “bias implies low-rank” result of [11] for these

P. Hatami 33:5

lower-degree polynomials in order to rewrite f as a function of a constant number of degree
d − 2 polynomials. We finally show that under the assumption that d < |F| + 4, we can
“regularize” the resulting polynomials to a “regular” collection of polynomials from which the
structure theorem can be deduced.

Proof overview of Theorem 8. Following the proof of Theorem 7, we pick an affine subspace
W of constant codimension restricted to which f has the nice structure f |W =

∑
GiHi +M ,

where Gi, Hi,M are all of degrees 6 d− 2. We moreover know that Gi, Hi,M are functions
of a regular set of polynomials of degree 6 d − 2. We argue by looking at the higher-
order Fourier expansion of f that M must be a constant field element and since for each
i, min{deg(Gi),deg(Hi)} 6 bd2c, using a result of Cohen and Tal [5] we can restrict to a
subspace of dimension Ω(n1/b d−2

2 c) making f a constant.

Organization

In Section 2 we present the basic tools from higher-order Fourier analysis. In Section 3 we
discuss useful properties of a pseudorandom collection of polynomials. Theorem 7 is proved
in Section 4.1, and Theorem 8 is proved in Section 4.2. We discuss the algorithmic aspects
in Section 5. We end with a discussion of future directions in Section 6.

Notation

Let D = {z ∈ C : |z| 6 1} be the unit disk in the complex plane. Let T = R/Z. Suppose
that F = Fq is a finite prime field, let eF : F→ D denote the function eF(x) := e

2πix
|F| , and let

e : T→ D denote the function e(x) := e2πix. For functions f, g : Fn → C, define

〈f, g〉 := 1
|F|n

∑
x∈Fn

f(x)g(x).

For an integer a, denote by [a] := {1, . . . , a}.

2 Preliminary results from higher-order Fourier analysis

2.1 Nonclassical Polynomials
Let d > 0 be an integer. It is well-known that for functions P : Fn → F, a polynomial of
degree 6 d can be defined in two different ways. We say that P is a polynomial of degree
6 d if it can be written as

P (x1, ..., xn) =
∑

i1,...,in>0
i1+···+in6d

ci1,...,inx
i1
1 · · ·xinn ,

with coefficients ci1,...,in ∈ F. This can be thought of as a global definition for polynomials
in F[x1, . . . , xn]. The local definition of a polynomial uses the notion of additive directional
derivatives.

I Definition 10 (Polynomials over finite fields (local definition)). Suppose that G is an abelian
group. For an integer d > 0, a function P : Fn → G is said to be a polynomial of degree 6 d

if for all y1, . . . , yd+1, x ∈ Fn, it holds that

(Dy1 · · ·Dyd+1P)(x) = 0,

APPROX/RANDOM’16

33:6 On the Structure of Quintic Polynomials

where DyP (x) = P (x+ y)− P (x) is the additive derivative of P with direction y evaluated
at x. The degree of P is the smallest d for which the above holds.

It follows simply from the definition that for any direction y ∈ Fn, deg(DyP) < deg(P).
In the “classical” case of polynomials P : Fn → F, i.e. G = F, it is a well-known fact that the
global and local definitions coincide. However, the situation is different when G is allowed to
be other groups. For example when the range of P is T = R/Z, it turns out that the global
definition must be refined to the “nonclassical polynomials”. This phenomenon was noted by
Tao and Ziegler [16] in the study of Gowers norms.

Nonclassical polynomials arise when studying functions P : Fn → T and their exponents
f = e(P) : Fn → C.

I Definition 11 (Nonclassical Polynomials). For an integer d > 0, a function P : Fn → T is
said to be a nonclassical polynomial of degree 6 d (or simply a polynomial of degree 6 d) if
for all y1, . . . , yd+1, x ∈ Fn, it holds that

(Dy1 · · ·Dyd+1P)(x) = 0. (2)

The degree of P is the smallest d for which the above holds. A function P : Fn → T is said
to be a classical polynomial of degree 6 d if it is a nonclassical polynomial of degree 6 d

whose image is contained in 1
qZ/Z.

Denote by poly(Fn → T), polyd(Fn → T) and poly6d(Fn → T), the set of all nonclassical
polynomials over Fn, all nonclassical polynomials of degree d and all nonclassical polynomials
of degree 6 d respectively.

From this point on by a polynomial we always mean a nonclassical polynomial, and we
will make it clear when we talk about classical polynomials.

The following lemma of Tao and Ziegler [16] shows that a classical polynomial P of degree
d must always be of the form x 7→ |Q(x)|

q , where Q : Fn → F is a polynomial (in the usual
sense) of degree d, and | · | is the standard map from F to {0, 1, . . . , q − 1}. This lemma also
characterizes the structure of (nonclassical) polynomials.

I Lemma 12 (Lemma 1.7 in [16]). A function P : Fn → T is a polynomial of degree 6 d if
and only if P can be represented as

P (x1, . . . , xn) = α+
∑

06d1,...,dn<q;k>0:
0<
∑

i
di6d−k(q−1)

cd1,...,dn,k|x1|d1 · · · |xn|dn
qk+1 mod 1,

for a unique choice of cd1,...,dn,k ∈ {0, 1, . . . , q − 1} and α ∈ T. The element α is called the
shift of P , and the largest integer k such that there exist d1, . . . , dn for which cd1,...,dn,k 6= 0 is
called the depth of P . A depth-k polynomial P takes values in an affine shift of the subgroup
Uk+1 := 1

qk+1 Z/Z. Classical polynomials correspond to polynomials with 0 shift and 0 depth.

For convenience of exposition, henceforth we will assume that the shifts of all polynomials
are zero. This can be done without affecting any of the results presented in this text. Under
this assumption, all polynomials of depth k take values in Uk+1.

2.2 Rank, Regularity, and Other Notions of Uniformity
The rank of a polynomial is a notion of its complexity according to lower degree polynomials.

P. Hatami 33:7

I Definition 13 (Rank of a polynomial). Given a polynomial P : Fn → T and an integer
d > 1, the d-rank of P , denoted rankd(P), is defined to be the smallest integer r such that
there exist polynomials Q1, . . . , Qr : Fn → T of degree 6 d− 1 and a function Γ : Tr → T
satisfying P (x) = Γ(Q1(x), . . . , Qr(x)). If d = 1, then 1-rank is defined to be ∞ if P is
non-constant and 0 otherwise.

The rank of a polynomial P : Fn → T is its deg(P)-rank. We say that P is r-regular if
rank(P) > r.

Note that for an integer λ ∈ [1, q − 1], rank(P) = rank(λP). In this article we are interested
in obtaining a structure theorem for biased classical polynomials that does not involve
nonclassical polynomials. Motivated by this, we define two other notions of rank.

I Definition 14 (Classical rank of a polynomial). Given a classical polynomial P : Fn → F
and an integer d > 1, the classical d-rank of P , denoted by crankd(P), is defined similarly to
Definition 13 with the extra restriction that Q1, ..., Qr : Fn → F are classical polynomials.

The classical rank of a classical polynomial P : Fn → F is its classical deg(P)-rank. We
say that P is classical r-regular if crank(P) > r.

I Remark. For a nonconstant affine-linear polynomial P (x), rank(P) = crank(P) =∞ and
for a constant function Q(x), rank(Q) = 0.
I Remark. It is important to note that Definition 13 and Definition 14 are not equival-
ent. To see this, note that, as proved in [16] and [14], the degree 4 symmetric poly-
nomial S4 :=

∑
i<j<k<` xixjxkx` has negligible correlation with any degree 6 3 clas-

sical polynomial. A simple Fourier analytic argument implies that crank(S4) = ω(1),
i.e. limn→∞ crank(S4(x1, ..., xn)) = ∞. However, S4 turns out to have large Gowers U4

norm and it follows by a theorem of Tao and Ziegler [16] that rank(S4) 6 r(F) for some
constant r.

In the above definitions of rank of a polynomial, we have allowed the function Γ to be
arbitrary. It is interesting to ask whether a polynomial is structured in a stronger sense.

I Definition 15 (Strong rank of a polynomial). Given a classical polynomial P : Fn → F of
degree d. The strong rank of P , denoted by strong-rankd(P), is the smallest r > 0, such that
there exist nonconstant classical polynomials G1, ..., Gr, H1, ...,Hr : Fn → F and a classical
polynomial Q such that

P (x) =
∑r
i=1 GiHi +Q.

For all i ∈ [r], we have that deg(Gi) + deg(Hi) 6 d.
deg(Q) 6 d− 1.

The strong-rank of a classical polynomial P : Fn → F is equal to strong-rankdeg(P)(P).

The above notion of rank is somewhat a stronger notion, in particular the following holds for
any classical polynomial P : Fn → F,

rank(P) 6 crank(P) 6 2 · strong-rank(P) + 1. (3)

Due to the lack of multiplicative structure in 1
pk
Z/Z for k > 1, it is not clear how to define a

similar structural notion to strong rank for nonclassical polynomials. Next, we will formalize
the notion of a generic collection of polynomials. Intuitively, it should mean that there are
no unexpected algebraic dependencies among the polynomials. First, we need to set up some
notation.

I Definition 16 (Factors). If X is a finite set then by a factor B we simply mean a partition
of X into finitely many pieces called atoms.

APPROX/RANDOM’16

33:8 On the Structure of Quintic Polynomials

A finite collection of functions φ1, . . . , φC from X to some other space Y naturally define a
factor B = Bφ1,...,φC whose atoms are sets of the form {x : (φ1(x), . . . , φC(x)) = (y1, . . . , yC)}
for some (y1, . . . , yC) ∈ Y C . By an abuse of notation we also use B to denote the map
x 7→ (φ1(x), . . . , φC(x)), thus also identifying the atom containing x with (φ1(x), . . . , φC(x)).

I Definition 17 (Polynomial factors). If P1, . . . , PC : Fn → T is a sequence of polynomials,
then the factor BP1,...,PC is called a polynomial factor.

The complexity of B, denoted |B| := C, is the number of defining polynomials. The degree
of B is the maximum degree among its defining polynomials P1, . . . , PC . If P1, . . . , PC are of
depths k1, . . . , kC , respectively, then the number of atoms of B is at most

∏C
i=1 q

ki+1 which
we denote by ‖B‖.

The notions of rank discussed above can now be extended to quantify the structural
complexity of a collection of (classical) polynomials.

I Definition 18 (Rank, classical rank, and strong rank of a collection of polynomials). A
polynomial factor B defined by polynomials P1, . . . , PC : Fn → T with respective depths
k1, . . . , kC is said to have rank r if r is the least integer for which there exists (λ1, . . . , λC) ∈
ZC , with (λ1 mod qk1+1, . . . , λC mod qkC+1) 6= 0C , such that rankd(

∑C
i=1 λiPi) 6 r, where

d = maxi deg(λiPi).
Given a collection of polynomials P and a function r : N→ N, we say that P is r-regular

if P is of rank larger than r(|P|). We extend Definition 14 and Definition 15 to classical
polynomial factors in a similar manner.

Notice that by the definition of rank, for a degree-d polynomial P of depth k we have

rank({P}) = min
{
rankd(P), rankd−(q−1)(qP), . . . , rankd−k(q−1)(qkP)

}
,

where {P} is a polynomial factor consisting of one polynomial P .
In Section 3 we will see that regular collections of polynomials indeed do behave like a

generic collection of polynomials in several manners.
Green and Tao [7] and Kaufman and Lovett [11] proved the following relation between

bias and rank of a polynomial.

I Theorem 19 (d < |F| [7], arbitrary F [11]). For any ε > 0 and integer d > 1, there exists
r = r(d, ε, |F|) such that the following is true. If P : Fn → T is a degree-d polynomial
bias(P) > ε then crank(P) 6 r.

More importantly, there are y1, . . . , yr ∈ Fn, and a function Γ : Fr → F, such that

P = Γ(Dy1P, . . . ,DyrP).

Kaufman and Lovett originally proved Theorem 19 for classical polynomials and classical
rank. However, their proof extends to nonclassical polynomials without modification. Note
that r(d, ε, |F|) does not depend on the dimension n. Motivated by Theorem 19 we define
unbiasedness for polynomial factors.

I Definition 20 (Unbiased collection of polynomials). Let ε : N → R+ be a decreasing
function. A polynomial factor B defined by polynomials P1, . . . , PC : Fn → T with respective
depths k1, . . . , kC is said to be ε-unbiased if for every collection (λ1, . . . , λC) ∈ ZC , with (λ1
mod pk1+1, . . . , λC mod pk

C+1) 6= 0C it holds that∣∣∣∣∣Ex
[

e
(∑

i

λiPi(x)
)]∣∣∣∣∣ < ε(|B|).

P. Hatami 33:9

2.3 Regularization of Polynomials
Due to the generic properties of regular factors, it is often useful to refine a collection of
polynomials to a regular collection [16]. We will first formally define what we mean by
refining a collection of polynomials.

I Definition 21 (Refinement). A collection P ′ of polynomials is called a refinement of
P = {P1, ..., Pm}, and denoted B′ � B, if the induced partition by B′ is a combinatorial
refinement of the partition induced by B. In other words, if for every x, y ∈ Fn, B′(x) = B′(y)
implies B(x) = B(y).

Green and Tao [7], showed that given any nondecreasing function r : N→ N, any classical
polynomial factor can be refined to an r classical-rank classical factor. The basic idea is
simple; if some classical polynomial has low rank, decompose it to a few lower degree classical
polynomials, and repeat. The formal proof uses a transfinite induction on the number
of classical polynomials of each degree which defines the classical polynomial factor. The
bounds on the number of classical polynomials obtained in the regularization process have
Ackermann-type dependence on the degree d, even when the regularity parameter r(·) is
a “reasonable" function. As such, it gives nontrivial results only for constant degrees. The
extension of this regularity lemma to nonclassical polynomials is more involved, and was
proved by Tao and Ziegler [16] as part of their proof of the inverse Gowers theorem.

I Theorem 22 (Regularity lemma for (nonclassical) polynomials [16]). Let r : N → N be a
non-decreasing function and d > 1 be an integer. Then, there is a function CF,r,d : N→ N
such that the following holds. Suppose B is a factor defined by polynomials P1, . . . , PC :
Fn → T of degree at most d. Then, there is an r-regular factor B′ consisting of polynomials
Q1, . . . , QC′ : Fn → T of degree 6 d such that B′ � B and C ′ 6 C

(F,r,d)
22 (C).

3 Properties of rank, crank, and strong-rank

A high-rank polynomial of degree d is, intuitively, a “generic” degree d polynomial; there are
no unexpected ways to decompose it into lower degree polynomials. In this section we make
precise this intuition.

Using a standard observation that relates the bias of a function to its distribution on
its range, Theorem 19 implies that high-rank polynomials behave like independent random
variables. See [1, 10] for further discussion of stronger equidistribution properties of high-rank
polynomials.

Another way that high-rank polynomials behave like generic polynomials is that their
restriction to subspaces preserves degree and high rank. We refer to [1, 3] for a proof.

I Lemma 23 (Degree and rank preservation). Suppose f : Fn → T is a polynomial of degree
d and rank > r, where r > q + 1. Let A be a hyperplane in Fn. Then, f |A is a polynomial of
degree d and rank > max{r − d− 1, r − |F| − 1}, unless d = 1 and f is constant on A.

The following is a surprising and very useful property of high-rank polynomials that was
proved by Bhattacharyya, et. al. [1].

I Lemma 24 (Degree preservation, Lemma 2.13 of [1]). Let d > 0 be given. There exists a
nondecreasing function rd,F : N→ N such that the following holds. Let B be a rank > rd,F
polynomial factor defined by degree 6 d polynomials P1, ..., Pm : Fn → T. Let Γ : Tn → T.
Then

deg(Γ(Q1(x), ..., Qm(x))) 6 deg(Γ(P1(x), ..., Pm(x))),

APPROX/RANDOM’16

33:10 On the Structure of Quintic Polynomials

for every collection of polynomial Q1, ..., Qm : Fn → T, with deg(Qi) 6 deg(Pi) and
depth(Qi) 6 depth(Pi).

We prove a lemma relating the strong-rank of a polynomial to its strong-rank over constant
codimensional affine subspaces.

I Lemma 25. Let f : Fn → F be a degree d classical polynomial and V be an affine subspace
of Fn of dimension n− t. Then,

strong-rank(f) 6 strong-rank(f |V) + t.

Proof. It suffices to prove that for a hyperplane W , strong-rank(f) 6 strong-rank(f |V) + 1.
The lemma then simply follows by induction on t, the codimension of V .

Suppose W = {x ∈ Fn|
∑n
i=1 wixi = a}, where w ∈ Fn and a ∈ F. Applying an affine

invertible projection, we can assume without loss of generality that w = (1, 0, . . . , 0) and
a = 0, and thus W = {x ∈ Fn|x1 = 0}. Assume that strong-rank(f |W) = r, hence there exist
nonconstant classical polynomialsG1, ..., Gr, H1, ...,Hr : W → F where deg(Gi)+deg(Hi) 6 d

and a degree 6 d− 1 classical polynomial Q : W → F such that

f |W =
r∑
i=1

GiHi +Q.

Now note that,

f(x1, ..., xn) = f |W (0, x2, . . . , xn) + x1R(x1, ..., xn),

where deg(R) 6 d− 1. Thus

f = x1R+
r∑
i=1

GiHi +Q,

equivalently strong-rank(f) 6 r + 1. J

The above lemma shows that high strong-rank classical polynomials are generic in a strong
sense. We finally observe that all the discussed notions of rank are subadditive.

I Claim 26. For every fixed vectors a, b ∈ Fn,
(i) strong-rank(Da+bf) 6 strong-rank(Daf) + strong-rank(Dbf).
(ii) crank(Da+bf) 6 crank(Daf) + crank(Dbf).
(iii) rank(Da+bf) 6 rank(Daf) + rank(Dbf).

Proof. We compute Da+bf(x),

Da+bf(x) = Dbf(x+ a) +Daf(x).

The claim follows since τ(Dbf(x+a)) 6 τ(Dbf(x)) for any choice of τ ∈ {strong-rank, crank,
rank}, as the degrees of polynomials are preserved under affine shifts. J

4 Structure of biased polynomials

Throughout the paper we will assume F = Fq is a fixed prime field.
We will need the following theorem of Sanders [15] on the structure of sets with small

doubling.

P. Hatami 33:11

I Theorem 27 ([15]). Suppose A ⊆ Fn satisfies |A||G| > α. Then A + A + A = {a1 + a2 +
a3|a1, a2, a3 ∈ A} contains an affine subspace of codimension at most O|F|,α(1).

The following lemma states that for a function f : Fn → F to be biased, there must be a
positive set of directions y for which Dyf is somewhat biased.

I Lemma 28. Suppose f : Fn → F is such that bias(f) = δ. Then there exists a set A ⊆ Fn,
with |A| > δ2

2 |F|
n such that for every y ∈ A, bias(Dyf) > δ2

2 .

Proof. We compute the average bias of Dyf for y ∈ Fn uniformly at random.

E
y∈Fn

[bias(Dyf)] = E
y∈Fn

[
| E
x∈Fn

eF(f(x+ y)− f(x))|
]
> | E

z,x∈Fn
[eF(f(z))eF(−f(x))]| = δ2.

(4)

Thus, since bias(f) 6 1, we get

Pr
y∈Fn

[
bias(Dyf) > δ2

2

]
>
δ2

2 . (5)

The lemma follows by choosing A := {y ∈ Fn|bias(Dyf) > δ2

2 } ⊆ Fn. J

We will use this lemma along with Theorem 27 and Claim 26 to show that for every biased
function f there exists a not too small subspace restricted to which all the derivatives of f
are biased.

4.1 Structure of biased polynomials I, when d < |F| + 4
In this section we prove that biased degree d classical polynomials are strongly structured
when d < |F|+ 4.

I Theorem 7 (restated – Biased degree d polynomials I (when d < |F|+4))). Suppose d > 0 and
F be a prime field satisfying d < |F|+4. Let f : Fn → F be a degree d classical polynomial with
bias(f) = δ. Then strong-rank(f) 6 c(δ, d, q), namely there exists c7 6 c(δ, d, q), nonconstant
classical polynomials G1, ..., Gc, H1, ...,Hc : Fn → F and a classical polynomial Q : Fn → F
such that the following hold.

f =
∑c
i=1 GiHi +Q.

For every i ∈ [c], deg(Gi) + deg(Hi) 6 d.
deg(Q) 6 d− 1.

Note that c7 does not depend on n.

Proof. By Lemma 28 there exists a set A ⊆ Fn, with |A| > δ2

2 |F|
n such that for every y ∈ A,

bias(Dyf) > δ2

2 .

Thus by Theorem 19 for every y ∈ A,

crank(Dyf) 6 r = r19(d, |F|, δ).

Applying Theorem 27, there is a subspace V ⊂ Fn of co-dimension t = Oδ,|F|(1) and h0 ∈ Fn
such that V + h0 ⊆ A+A+A. By Claim 26 (ii), since V + h0 ⊆ A+A+A we have that
for every y ∈ V ,

crank(Dyf) 6 c1 6 3r.

APPROX/RANDOM’16

33:12 On the Structure of Quintic Polynomials

By a simple averaging argument, there is an affine shift of V , W := V + h such that
bias(f |W) > δ. Let us denote f̃ := f |W . By Lemma 25, it is sufficient to prove that
strong-rank(f̃) 6 c1(|F|, δ). Since bias(f̃) > δ, Theorem 19 implies crank(f̃) 6 r0 = r0(δ, |F|).
Moreover, there are y1, . . . , yr0 ∈W and a Γ : Fr0 → F such that

f̃ = Γ(Dy1 f̃ , . . . , Dyr0
f̃). (6)

Note that for all i ∈ [r0],

crankd−1(Dyi f̃) 6 crank(Dyif) 6 c0 (7)

This is due to the fact that an affine transformation can only decrease the degrees of classical
polynomials and thus it can only decrease the crank of classical polynomials.
I Remark. We point out that the subscript d − 1 in the LHS of (7) is necessary, as can
be seen by the following example. Suppose d − 1 = 4, m > 0 and n = 3m + 4. Let
Q = xn−3xn−2xn−1xn +

∑m
i=1 x3i−2x3i−1x3i. Now note that

crank(Q) 6 3,

while
crank(Q|xn=0) = crank(

∑m
i=1 x3i−2x3i−1x3i) = ωn(1), since

‖eF(
∑m
i=1 x3i−2x3i−1x3i)‖U3 = o(1).

crank4(Q|xn=0) = 1, since deg(Q|xn=0) < 4.
By (7) there exist degree 6 d− 2 classical polynomials

{
G

(i)
1 , . . . , G

(i)
c0

}r0

i=1
and a function

Λ : Fr0c0 → F such that

f̃ = Λ
(

(G(i)
1 , . . . , G(i)

c0
)r0
i=1

)
. (8)

We would like to regularize this collection of classical polynomials, however we would like to
avoid any appearance of nonclassical polynomials. The following observation allows us to do
exactly that as long as d < |F|+ 4.

I Claim 29 (Nonclassical regularity lemma over large characteristic). Let r : N → N be
a non-decreasing function. And d be such that d < |F| + 4. Then, there is a function
CF,r

29 : N → N such that the following holds. Suppose B is a factor defined by classical
polynomials P1, . . . , PC : Fn → T of degree at most d− 2. Then, there is an r-regular factor
B′ consisting only of classical polynomials Q1, . . . , QC′ : Fn → T of degree 6 d− 2 such that
B′ �sem B and C ′ 6 C

(F,r)
29 (C).

I Remark. Note that the above claim does not hold for general degrees, as we require
the obtained factor be high-rank as defined in Definition 13, which is complexity against
(nonclassical) polynomials. To see this, we observe that in the case of quartic classical
polynomials, the single classical polynomial {S4} cannot be refined to a high-rank polynomial
factor defined by O(1) classical polynomials. However, it can be refined to a high-rank
nonclassical factor by Theorem 22. This is the barrier to extending our results to sextic
and higher-degree classical polynomials. Starting with a biased sextic classical polynomial,
dealing with non-classical polynomials seems to be unavoidable.
We postpone the proof of Claim 29 and show how it can be used to conclude Theorem 4. Fix
r1 : N→ N a nondecreasing function as in Lemma 24 for degree d− 2. Let B be the factor
defined by degree 6 d− 2 classical polynomials {G(i)

1 , . . . , G
(i)
c0 }r0

i=1. Applying Claim 29 to
B with regularity parameter r1, we obtain a refinement B′ �sem B, where B′ is defined by

P. Hatami 33:13

c2 := C
(F,r1)
29 (c0r0) classical degree 6 d− 2 polynomials R1, . . . , Rc2 : Fn → F. Namely, there

exists a function K : Fc2 → F, such that

f̃ = K(R1, . . . , Rc2).

Applying an affine transformation, assume without loss of generality that
W = {x ∈ Fn|x1 = x2 = · · · = xt = 0}. Moreover, we may assume that n − t > c2, since
otherwise, f̃ has at most d(n− t)d = O(cd2) monomials, making the theorem statement trivial.
For every i ∈ [c2], let di := deg(Ri), si :=

∑i
j=1 di, and define R′i := xsi−1+1 · · ·xsi . We have

that deg(R′i) = deg(Ri) and thus by Lemma 24,

deg(K(R′1, . . . , R′c2
)) 6 deg(K(R1, . . . , Rc2)) = deg(f̃) = d.

Note that K : Fc2 → F is a classical polynomial, and R′1, ..., R′c2
are monomials on disjoint

variables, thus plugging in R′is into K’s variables, no cancelations can occur. In particular,

K(y1, . . . , yc2) =
∑

s∈{0,...,q−1}c2 ,
∑

i
sidi6d

αs
∏
i∈S

ysii ,

where αS ∈ F are coefficients of K. Hence,

f̃ = K(R1, . . . , Rc2) =
∑

s∈{0,...,q−1}c2 ,
∑

i
sidi6d

αs
∏
i∈S

Rsii . (9)

Namely, strong-rank(f̃) 6 dcd2, and by Lemma 25 we deduce strong-rank(f) 6 dcd2 + t as
desired. J

Proof of Claim 29. We observe that the iterative proof of Theorem 22 can be modified to
include only classical polynomials. Theorem 22 is proved by a transfinite induction on the
vector of number of (possibly nonclassical) polynomials of each degree and depth defining
the polynomial factor. One then argues that a polynomial factor that is not of the desired
rank, can always be refined to a polynomial factor where some polynomial is replaced by a
collection of polynomials that are of either lower degree, or same degree with lower depth.

We now make use of the fact that d < |F| + 4. We observe that if we start with a
polynomial factor defined by degree 6 d − 2 classical polynomials, the only nonclassical
polynomials that may arise are of degree d− 3 6 |F| and thus of depth 1, this is due to the
fact that any nonclassical polynomial of depth > 2 has degree > 2|F| − 1. Now we use a
known fact that polynomials of degree |F| that are not classical are unncessary in higher
order Fourier analysis. More precisely in the inverse theorem for Gowers norms of [16] for
the case of degree |F| polynomials, one can assume that the polynomial P : Fn → T in the
statement of the theorem is a classical polynomial of degree at most 6 |F|. More generally
[9] showed a similar fact for higher depths.

I Theorem 30 (Unnecessary depths [9]). Let k > 1, and q the characteristic of F. Every
nonclassical polynomial f : Fn → T of degree 1 + k(q − 1) and depth k, can be expressed as a
function of three degree 6 1 + k(q − 1) polynomials of depth 6 k − 1.

By the above discussion we may assume that in our application of Theorem 22, B′ is defined
via only classical polynomials. J

APPROX/RANDOM’16

33:14 On the Structure of Quintic Polynomials

4.2 Structure of biased polynomials II, when d < |F| + 4
In this section we prove that a biased degree d classical polynomial is constant on a large
subspace.

I Theorem 8 (restated – Biased degree d polynomials II (when d < |F|+ 4)). Suppose d > 0
and F be a prime field satisfying d < |F|+4. Let f : Fn → F be a degree d classical polynomial
with bias(f) = δ. There exists an affine subspace V of dimension Ωd,δ(n1/b d−2

2 c) such that
f |V is a constant.

In the case of d = 5 we have 5 < 2 + 4 6 |F|+ 4 and b(d− 2)/2c = 1, hence we obtain a
subspace of dimension Ωδ(n) as desired in Theorem 5.

We will need the following result of Cohen and Tal [5] on the structure of low degree
polynomials.

I Theorem 31 ([5], Theorem 3.5). Let q be a prime power. Let f1, . . . , f` : Fnq → Fq be
(classical) polynomials of degree d1, . . . , d` respectively. Let k be the least integer such that

n 6 k +
∑̀
j=0

(di + 1)
di−1∑
j=0

(di − j) ·
(
k + j − 1

j

)
.

Then, for every u0 ∈ Fnq there exists a subspace U ⊆ Fnq of dimension k, such that for all
i ∈ [`], fi restricted to u0 + U is a constant function.

In particular, if d1, ..., d` 6 d, then the above holds for k = Ω((n/`)
1
d−1).

Proof of Theorem 8. Following the proof of Theorem 7, there exists an affine subspace W
of dimension n − t for t = poly(log(1

δ2)), for which (9) holds. By Theorem 19, choosing a
proper regularity parameter in the application of Claim 29, we can further assume that the
factor defined by R1, ..., Rc2 is δ

2q
−c2 -unbiased in the sense of Definition 20. We may rewrite

(9) in the form

f |W =
C∑
i=1

αiGiHi +M,

where C 6 cd2, αi are field elements, M is a degree 6 d − 2 classical polynomial, Gis and
His are nonconstant degree 6 d− 2 classical polynomials satisfying deg(Gi) + deg(Hi) 6 d.
Moreover, every Gi and Hi is product of a subset of {R1, ..., Rc2}. We crucially observe that
M can be taken to be of the form

M = σ0 +
c2∑
i=1

σiRi,

where σi are field elements, such that σi 6= 0 implies that Ri does not appear in
∑C
i=1 αiGiHi.

I Claim 32. Let f , W , R1, ...Rc2 and M be as above. Then M is a constant.

Proof. Assume for contradiction that M is nonconstant. By the above discussion, letting

S := {j ∈ [c2] : Rj appears in
∑
i

αiGiHi},

we have

f |W = Λ(Rj)j∈S +
∑

i∈[c2]\S

σjRj ,

P. Hatami 33:15

for some function Λ : F|S| → F. Writing the Fourier expansion of eF(Λ), we have

eF(f |W) =
∑
γ∈F|§|

Λ̂(γ)eF(
∑
j∈S

γjRj +M).

Note that W was chosen such that bias(f |W) > δ. Thus,

bias(f |W) = | E
x∈Fn

eF(Λ(Rj)j∈S +M)|

= | E
x∈Fn

∑
γ∈F|S|

Λ̂(γ)eF(M +
∑
j∈S

γjRj)|

6
∑
γ∈F|S|

|Λ̂(γ)| · bias(M +
∑
j∈S

γjRj)

6 qc2 · δ2q
−c2 < δ,

contradicting bias(f |W) = δ, where the last inequality uses the fact that the factor defined
by R1, ..., Rc2 is δ

2q
−c2-unbiased. J

By the above claim M is a constant, and thus

f |W = σ0 +
C∑
i=1

αiGiHi.

Recall that deg(Gi)+deg(Hi) 6 d, hence for every i, min{deg(Gi), deg(Hi)} 6 bd2c. Thus by
Theorem 31, there is an ΩC((n− t)1/b d−2

2 c) = Ωδ,F,d(n1/b d−2
2 c) dimensional affine subspace

W ′ such that f |W ′ is constant. J

5 Algorithmic Aspects

In this section we show that the strong structures implied by Theorem 4 and Theorem 7 can
be found by a deterministic algorithm that runs in time polynomial in n.

I Theorem 9 (restated). Suppose δ > 0, d > 0 are given, and let F be a prime field satisfying
d < |F|+ 4. There is a deterministic algorithm that runs in time O(nO(d)) and given as input
a degree d classical polynomial f : Fn → F satisfying bias(f) = δ, outputs a number c 6
c(δ, |F|, d), a collection of degree 6 d− 1 classical polynomials G1, ..., Gc, H1, ...,Hc : Fn → F
and a classical polynomial Q : Fn → F, such that

f =
∑c
i=1 GiHi +Q.

For every i ∈ [c], deg(Gi) + deg(Hi) 6 d.
deg(Q) 6 d− 1.

Proof. We will use the following result of Bhattacharyya, et. al. [2] who proved several
algorithmic regularity lemmas for polynomials.

I Theorem 33 ([2], Theorem 1.6). For every finite field F of fixed prime order, positive
integers d, k, every vector of positive integers ∆ = (∆1, ...,∆k), and every function Γ : Fk → F,
there is a deterministic algorithm that takes as input a classical polynomial f : Fn → F of
degree d, runs in time polynomial in n, and outputs classical polynomials Q1, ..., Qk of degrees
respectively at most ∆1, ...,∆k such that

f = Γ(Q1, ..., Qk),

if such a decomposition exists, while otherwise accurately returning NO.

APPROX/RANDOM’16

33:16 On the Structure of Quintic Polynomials

By Theorem 7, we know that there is c 6 C(δ, |F|, d) such that there exist a collection of
nonconstant classical polynomials G1, ..., Gc, H1, ...,Hc : Fn → F, and a classical polynomial
Q : Fn → F, such that

f =
c∑
i=1

GiHi +Q, (10)

for every i ∈ [c], deg(Gi) + deg(Hi) 6 d, and deg(Q) 6 d − 1. The algorithm is now
straight-forward.

1 Iterate through all choices for c 6 C(δ, |F|, d). This is our guess for the number of terms
in the summation in (10).
1.1 Iterate through all choices of d1, . . . , dc, d

′
1, . . . , d

′
c 6 d− 1 and d′′ 6 d− 1 such that

di + d′i 6 d. These are our guesses for degree sequences for G1, ..., Gc, H1, ...,Hc and
Q. Note that this step does not depend on n.
1.1.1 Define Γ : F2c+1 → F as

Γ(x1, . . . , xc, y1, . . . , yc, z) :=
c∑
i=1

xiyi + z.

1.1.2 Run Theorem 33 on the classical polynomial f , with ∆ = (d1, . . . , dc, d
′
1, . . . , d

′
c,

d′′) and Γ as inputs.
1.1.2.a If the algorithm outputs NO, then continue.
1.1.2.b If the algorithm outputs a collection of classical polynomials satisfying the

decomposition, halt and output the desired decomposition.
By Theorem 7 and Theorem 33 the above algorithm will always halt with a decomposition
of desired form. The number of possible choices in 1 and 1.1 do not depend on n, and step
1.1.2 runs in polynomial time in n, as a result making the algorithm polynomial time in
n. J

6 Conclusions

Green and Tao [7] and Kaufman and Lovett [11] proved that every degree d classical
polynomial f with bias(f) = δ can be written in the form

f = Γ(P1, ..., Pc), (11)

for c 6 c(δ, d,F) and degree 6 d − 1 classical polynomials P1, ..., Pc. However, nothing is
known on the structure of the function Γ in (11). In this work we showed that in the case of
degree five polynomials we can say more about the structure of f . More generally for degree
d classical polynomials when d < |F|+ 4, we can write

f =
C∑
i=1

GiHi +Q,

for nontrivial classical polynomials Gi, Hi satisfying deg(Gi) + deg(Hi) 6 d, and deg(Q) 6
d − 1. It is a fascinating question whether similar structure theorems hold in the case of
d > |F|+ 4, more specifically we suspect that answering this question for degree 6 classical
polynomials and F = F2 will suffice resolve the question for all degrees and characteristics.

P. Hatami 33:17

I Open Problem 34. Can every biased degree six classical polynomial f : Fn2 → F2 be written
in the form

f =
C∑
i=1

GiHi +Q,

for C 6 C(bias(f)), nontrivial classical polynomials Q, Gi, Hi satisfying deg(Gi)+deg(Hi) 6
6, and deg(Q) 6 5?

A somewhat weaker question that also remains open is whether we can bound the degree of
Γ in (11) in terms of d only.

I Open Problem 35. Suppose that F is a prime field. Can every degree d classical polynomial
f : Fn → F be written in the form

f = Γ(P1, ..., PC1),

where C 6 C(bias(f),F, d), P1, ..., PC are degree 6 d− 1 classical polynomials, and deg(Γ) 6
Od(1)?

Finally, we note that the constants obtained in Theorems 4, 5, 7 and 8, unlike Theor-
ems 2 and 3, have very bad dependence on δ and d. In particular, in the case of degree
five polynomials, an interesting problem that remains unaddressed is to find out what the
optimum constant achievable in Theorem 4 is.

Acknowledgements. We thank Avishay Tal and Avi Wigderson for helpful discussions. We
also thank the referees for their useful comments.

References
1 Arnab Bhattacharyya, Eldar Fischer, Hamed Hatami, Pooya Hatami, and Shachar Lovett.

Every locally characterized affine-invariant property is testable. In Proceedings of the 45th
annual ACM symposium on Symposium on theory of computing, STOC’13, pages 429–436,
New York, NY, USA, 2013. ACM. doi:10.1145/2488608.2488662.

2 Arnab Bhattacharyya, Pooya Hatami, and Madhur Tulsiani. Algorithmic regularity for
polynomials and applications. In Proceedings of the Twenty-Sixth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2015, San Diego, CA, USA, January 4-6, 2015,
pages 1870–1889, 2015. doi:10.1137/1.9781611973730.125.

3 Abhishek Bhowmick and Shachar Lovett. Bias vs structure of polynomials in large fields,
and applications in effective algebraic geometry and coding theory. CoRR, abs/1506.02047,
2015. URL: http://arxiv.org/abs/1506.02047.

4 Abhishek Bhowmick and Shachar Lovett. The list decoding radius of reed-muller codes
over small fields. In Proceedings of the Forty-Seventh Annual ACM on Symposium on
Theory of Computing, STOC’15, pages 277–285, New York, NY, USA, 2015. ACM. doi:
10.1145/2746539.2746543.

5 Gil Cohen and Avishay Tal. Two structural results for low degree polynomials and applic-
ations. RANDOM, 2015.

6 Leonard Eugene Dickson. Linear groups: With an exposition of the Galois field theory.
with an introduction by W. Magnus. Dover Publications, Inc., New York, 1958.

7 Ben Green and Terence Tao. The distribution of polynomials over finite fields, with applic-
ations to the Gowers norms. Contrib. Discrete Math., 4(2):1–36, 2009.

APPROX/RANDOM’16

http://dx.doi.org/10.1145/2488608.2488662
http://dx.doi.org/10.1137/1.9781611973730.125
http://arxiv.org/abs/1506.02047
http://dx.doi.org/10.1145/2746539.2746543
http://dx.doi.org/10.1145/2746539.2746543

33:18 On the Structure of Quintic Polynomials

8 Elad Haramaty and Amir Shpilka. On the structure of cubic and quartic polynomials. In
STOC’10 – Proceedings of the 2010 ACM International Symposium on Theory of Comput-
ing, pages 331–340. ACM, New York, 2010.

9 Hamed Hatami, Pooya Hatami, and James Hirst. Limits of Boolean functions on Fnp .
Electron. J. Combin., 21(4):Paper 4.2, 15, 2014.

10 Hamed Hatami, Pooya Hatami, and Shachar Lovett. General systems of linear forms:
equidistribution and true complexity. Advances in Mathematics, 292:446–477, 2016.

11 Tali Kaufman and Shachar Lovett. Worst case to average case reductions for polynomials.
Foundations of Computer Science, IEEE Annual Symposium on, 0:166–175, 2008. doi:
10.1109/FOCS.2008.17.

12 Tali Kaufman, Shachar Lovett, and Ely Porat. Weight distribution and list-decoding size
of reed–muller codes. Information Theory, IEEE Transactions on, 58(5):2689–2696, 2012.

13 Rudolf Lidl and Harald Niederreiter. Introduction to finite fields and their applications.
Cambridge university press, 1994.

14 Shachar Lovett, Roy Meshulam, and Alex Samorodnitsky. Inverse conjecture for the Gowers
norm is false. Theory Comput., 7:131–145, 2011. doi:10.4086/toc.2011.v007a009.

15 Tom Sanders. Additive structures in sumsets. Math. Proc. Cambridge Philos. Soc.,
144(2):289–316, 2008. doi:10.1017/S030500410700093X.

16 Terence Tao and Tamar Ziegler. The inverse conjecture for the Gowers norm over
finite fields in low characteristic. Ann. Comb., 16(1):121–188, 2012. doi:10.1007/
s00026-011-0124-3.

http://dx.doi.org/10.1109/FOCS.2008.17
http://dx.doi.org/10.1109/FOCS.2008.17
http://dx.doi.org/10.4086/toc.2011.v007a009
http://dx.doi.org/10.1017/S030500410700093X
http://dx.doi.org/10.1007/s00026-011-0124-3
http://dx.doi.org/10.1007/s00026-011-0124-3

Lower Bounds on Same-Set Inner Product in
Correlated Spaces∗

Jan Hązła†1, Thomas Holenstein2, and Elchanan Mossel‡3

1 ETH Zürich, Department of Computer Science, Zurich, Switzerland
jan.hazla@inf.ethz.ch

2 Google, Zurich, Switzerland
thomas.holenstein@gmail.com

3 MIT, Cambridge MA, USA
elmos@mit.edu

Abstract
Let P be a probability distribution over a finite alphabet Ω` with all ` marginals equal. Let
X(1), . . . , X(`), X(j) = (X(j)

1 , . . . , X
(j)
n) be random vectors such that for every coordinate i ∈ [n]

the tuples (X(1)
i , . . . , X

(`)
i) are i.i.d. according to P.

The question we address is: does there exist a function cP() independent of n such that for
every f : Ωn → [0, 1] with E[f(X(1))] = µ > 0:

E

[∏̀
j=1

f(X(j))

]
≥ cP(µ) > 0 ?

We settle the question for ` = 2 and when ` > 2 and P has bounded correlation ρ(P) < 1.

1998 ACM Subject Classification G.2.1 Combinatorics, G.3 Probabilistic algorithms

Keywords and phrases same set hitting, product spaces, correlation, lower bounds

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2016.34

1 Introduction

1.1 Basic example
To introduce the problem we are studying, consider the following example. Let S ⊆ {0, 1, 2}n
be a non-empty set of density µ = |S|

3n . We pick a random vector X = (X1, . . . , Xn) uniformly
from {0, 1, 2}n, and then sample another vector Y = (Y1, . . . , Yn) such that for each i

independently, coordinate Yi is picked uniformly in {Xi, Xi + 1 mod 3}. Our goal is to show
that:

Pr[X ∈ S ∧ Y ∈ S] ≥ c(µ) > 0 .

In other words, we want to bound away the probability from 0 by an expression which only
depends on µ and not on n.

∗ Part of this work was done while T. H. and E. M. were at the Simons Institute.
† J. H was supported by the Swiss National Science Foundation (SNF), project no. 200021-132508.
‡ E. M. was supported by NSF grant DMS-1106999, NSF Grant CCF 1320105 and DOD ONR grant

N000141110140 and grant 328025 from the Simons foundation.

© Jan Hązła, Thomas Holenstein, and Elchanan Mossel;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016).
Editors: Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans; Article No. 34; pp. 34:1–34:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.34
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

34:2 Lower Bounds on Same-Set Inner Product in Correlated Spaces

X X1 X2 . . . Xi
. . . Xn

X(1) X
(1)
1 X

(1)
2 · · · X

(1)
i

· · · X
(1)
n

X(2) X
(2)
1 X

(2)
2 · · · X

(2)
i

· · · X
(2)
n

...
...

...
...

...
X(j) X

(j)
1 X

(j)
2 · · · X

(j)
i

· · · X
(j)
n

...
...

...
...

...
X(`) X

(`)
1 X

(`)
2 · · · X

(`)
i

· · · X
(`)
n

Tuples Xi are
i.i.d. according to P. Each
of the ` marginals of P is π.

Vectors X(j) are
distributed
(dependently)
according to
π := πn.

Distributed
according to
P := Pn.

α(P) := min
x∈Ω
P(x, x, . . . , x)

ρ(P) : See Definition 10

X
(j)
i ∈ Ω

X(j) ∈ Ω := Ωn

Xi ∈ Ω := Ω`

X ∈ Ω := Ωn·`

S ⊆ Ω

Figure 1 Naming of the random variables in the general case. The columns Xi are distributed
i.i.d according to P. Each X

(j)
i is distributed according to π. The overall distribution of X is P.

1.2 Our results
More generally, let Ω be a finite alphabet and assume we are given a probability distribution
P over Ω` for some ` ≥ 2 – we will call it an `-step probability distribution over Ω.

Furthermore, assume we are given n ∈ N. We consider ` vectors X(1), . . . , X(`), X(j) =
(X(j)

1 , . . . , X
(j)
n) such that for every i ∈ [n], the `-tuple (X(1)

i , . . . , X
(`)
i) is sampled according

to P, independently of the other coordinates i′ 6= i (see Figure 1 for an overview of the
notation).

I Definition 1. Let µ, δ ∈ (0, 1]. We say that a distribution P is (µ, δ)-same-set hitting, if,
whenever a function f : Ωn → [0, 1] satisfies E[f(X(j))] ≥ µ for every j ∈ [`] := {1, . . . , `},
we have

E

∏̀
j=1

f(X(j))

 ≥ δ .
We call P same-set hitting if for every µ ∈ (0, 1] there exists δ ∈ (0, 1] such that P is

(µ, δ)-same-set hitting.

In this paper we address the question: which distributions P are same-set hitting? We
achieve full characterisation for ` = 2 and answer the question affirmatively for a large class
of distributions with ` > 2.

J. Hązła, T.Holenstein, and E.Mossel 34:3

To explain related work and our results, we introduce a stronger notion:

I Definition 2. Let µ, δ ∈ (0, 1]. We say that a distribution P is (µ, δ)-set hitting, if,
whenever functions f (1), . . . , f (`) : Ωn → [0, 1] satisfy E[f (j)(X(j))] ≥ µ for every j ∈ [`], we
have

E

∏̀
j=1

f (j)(X(j))

 ≥ δ . (1)

We call P set hitting if for every µ ∈ (0, 1] there exists δ ∈ (0, 1] such that P is (µ, δ)-set
hitting.

The full classification of set hitting distributions can be deduced from a paper on reverse
hypercontractivity1 by Mossel, Oleszkiewicz and Sen [10]:

I Theorem 3 (follows from [10]). A probability space P is set hitting if and only if:

min
x(1)∈supp(X(1)

i
),

...,

x(`)∈supp(X(`)
i

)

P(x(1), . . . , x(`)) > 0 . (2)

To state our results, we need to introduce the following properties of P:

I Definition 4. We say that P has equal marginals if for every j ∈ [`] and every x ∈ Ω:

Pr[X(1)
i = x] = . . . = Pr[X(j)

i = x] = . . . = Pr[X(`)
i = x] .

As explained in Section 3.4.2, the same-set hitting is interesting only for distributions
with equal marginals. Whenever we discuss such distributions, we assume w.l.o.g that Ω is
equal to the support of the marginal.

I Definition 5. We define:

α(P) := min
x∈Ω
P(x, . . . , x) ,

β(P) := min
x(1),...,x(`)∈Ω

P(x(1), . . . , x(`)) .

1.2.1 The case of two steps
In case of ` = 2 we establish the following theorem:

I Theorem 6 (cf. Theorem 12). A two-step probability distribution with equal marginals P
is same-set hitting if and only if α(P) > 0.

Of course, if β(P) > 0, then Theorem 6 follows from Theorem 3. However, we are not
aware of any previous work in case β(P) = 0, i.e., when the distribution is same-set hitting
but not set hitting, in particular for the probability space from Section 1.1.

1 That P is set hitting if (2) holds is a consequence of Lemma 8.3 in [10]. If (2) does not hold, an
appropriate combination of dictators establishes a counterexample.

APPROX/RANDOM’16

34:4 Lower Bounds on Same-Set Inner Product in Correlated Spaces

1.2.2 More than two steps
In a general case of an `-step distribution with equal marginals, it is still clear that α(P) > 0
is necessary. However, it remains open if it is sufficient.

We provide the following partial results. Firstly, by a simple inductive argument based
on Theorem 12, we show that multi-step probability spaces induced by Markov chains are
same-set hitting.

Secondly, we show that P is same-set hitting if α(P) > 0 and its correlation ρ(P) is
smaller than 1. The opposite condition ρ(P) = 1 is equivalent to the following: There exist
j ∈ [`], S ⊆ Ω, T ⊆ Ω`−1 such that 0 < |S| < |Ω| and:

X
(j)
i ∈ S ⇐⇒

(
X

(1)
i , . . . , X

(j−1)
i , X

(j+1)
i , . . . , X

(`)
i

)
∈ T .

For the full definition of ρ(P), cf. Definition 10.

I Theorem 7 (cf. Theorem 13). Let P be a probability distribution with equal marginals. If
α(P) > 0 and ρ(P) < 1, then P is same-set hitting.

We are not aware of any general results in case ρ(P) = 1. In particular, let P be
a three-step distribution over Ω = {0, 1, 2} such that X(1)

i , X
(2)
i , X

(3)
i is uniform over

{000, 111, 222, 012, 120, 201}. To the best of our knowledge, it is an open question whether
this distribution P is same-set hitting.

1.2.3 Set hitting for functions with no large Fourier coefficients
The methods developed here also allow to obtain lower bounds on the probability of hitting
multiple sets. In fact, we show that if ρ(P) < 1, then such lower bounds exist in terms of ρ,
the measures of the sets and the largest non-empty Fourier coefficient.

I Theorem 8 (Informal, cf. Theorem 14). Let P be a probability distribution with ρ(P) < 1.
Then, P is set-hitting for functions f (1), . . . , f (`) : Ω→ [0, 1] that have both:

Noticeable expectations, i.e., E[f (j)(X(j))] ≥ Ω(1).
No large Fourier coefficients, i.e., maxσ

∣∣∣f̂ (j)(σ)
∣∣∣ ≤ o(1).

1.3 Background and related work
The question of understanding which sets are hit often by dynamical systems is central to
ergodic theory and additive combinatorics.

The Poincaré recurrence theorem states that measure preserving maps satisfy the property
that for each set U of positive measure, and for almost every point x of U , the dynamical
system started at x will hit U infinitely often, see, e.g., [12].

Much of the ergodic theory deals with quantifying this phenomena of repeatedly hitting
the set U . The ergodic theorem, for example, implies that ergodic measure preserving
dynamical systems satisfy that for almost all starting points x, the set U will be hit in
limiting frequency which is equal to its measure.

Understanding set hitting by a number of consecutive steps of a process has been of
intense study in additive combinatorics (where almost always ρ = 1).

For example, a well-studied case are random arithmetic progressions. Let Z be a finite
additive group and ` ∈ N. Then, we can define a distribution PZ,` of random `-step arithmetic
progressions in Z. Specifically, for every x, r ∈ Z we set:

PZ,`(x, x+ r, x+ 2r, . . . , x+ (`− 1)r) := 1/|Z|2 .

J. Hązła, T.Holenstein, and E.Mossel 34:5

Some of the distributions PZ,` can be shown to be same-set hitting using the hypergraph
regularity lemma:

I Theorem 9 ([14], [15], [6], cf. Theorem 11.27, Proposition 11.28 and Exercise 11.6.3 in [17]).
If |Z| is coprime to (`− 1)!, then PZ,` is same-set hitting.

This follows a long line of work, starting by Szemerédi lemma [16], its proof by Furstenberg
using the ergodic theorem [3] as well as the finite group and multi-dimensional versions, see,
e.g., [13, 4, 5].

One might conjecture that α(P) > 0 is the sole sufficient condition for same-set hitting.
Unfortunately, the techniques used to prove Theorem 9 do not seem to extend easily to less
symmetric spaces. This suggests that proving the conjecture fully in ρ = 1 case might be a
difficult undertaking.

The case of ρ < 1 has also been studied in the context of extremal combinatorics and
hardness of approximation. In particular, Mossel [9] uses the invariance principle to prove
that if ρ(P) < 1, then P is set hitting for low-influence functions. We use this result to
establish Theorem 7. Additionally, Theorem 8 can be seen as a strengthening of [9].

Furthermore, Austrin and Mossel [1] establish the result equivalent to Theorem 8 assuming
in addition to ρ(P) < 1 also that P is pairwise independent (they also prove results for the
case ρ(P) = 1 with pairwise independence but these involve only bounded degree functions).

Finally we note that another relevant paper in the case of ` = 2 and symmetric P is by
Dinur, Friedgut and Regev [2], who give a characterization of non-hitting sets. However, due
to a different framework, their results are not directly comparable to ours.

We hope that our work might turn out to be useful in inapproximability. For example,
our theorem is related to the proof of hardness for rainbow colorings of hypergraphs by
Guruswami and Lee [7]. In particular, it is connected to their Theorem 4.3 and partially
answers their Questions C.4 and C.6.

1.4 Outline of the paper
The rest of the paper is organised as follows: the notation is introduced in Section 2, Section 3
contains full statements of our theorems and Section 4 sketches the proof of our main theorem.

The full proofs along with he modified proof of the low-influence theorem from [9] can be
found in the Arxiv version of the paper [8].

2 Notation and Preliminaries

2.1 Notation
We will now introduce our setting and notation. We refer the reader to Figure 1 for an
overview.

We always assume that we have n independent coordinates. In each coordinate i we pick `
values X(j)

i for j ∈ [`] = {1, . . . , `} at random using some distribution. Each value X(j)
i is

chosen from the same fixed set Ω, and the distribution of the tuple Xi = (X(1)
i , . . . , X

(`)
i) of

values from Ω` is given by a distribution P.
This gives us values X(j)

i for i ∈ {1, . . . , n} and j ∈ {1, . . . , `}. Thus, we have ` vectors
X(1), . . . , X(`), where X(j) = (X(j)

1 , . . . , X
(j)
n) represents the j-th step of the random process.

In case ` = 2, we might call our two vectors X and Y instead.
For reasons outlined in Section 3.4.2 we assume that all of X(1)

i , . . . , X
(`)
i have the same

marginal distribution, which we call π. We assume that Ω is the support of π.

APPROX/RANDOM’16

34:6 Lower Bounds on Same-Set Inner Product in Correlated Spaces

Even though it is not necessary, for clarity of the presentation we assume that each
coordinate Xi = (X(1)

i , . . . , X
(j)
i , . . . , X

(`)
i) has the same distribution P.

We consistently use index i to index over the coordinates (from [n]) and j to index over
the steps (from [`]).

As visible in Figure 1, we denote the aggregation across the coordinates by the underline
and the aggregation across the steps by the overline. For example, we write Ω = Ωn, Ω = Ω`,
P = Pn and X = (X1, . . . , Xn) = (X(1), . . . , X(`)).

We sometimes call P a tensorized, multi-step probability distribution as opposed to a
tensorized, single-step distribution π and single-coordinate, multi-step distribution P.

Furthermore, we extend the index notation to subsets of indices or steps. For example,
for S ⊆ [`] we define X(S) to be the collection of random variables

{
X(j) : j ∈ S

}
.

We also use the set difference symbol to mark vectors with one element missing, e.g.,
X
\j := (X(1), . . . , X(j−1), X(j+1), . . . , X(`)).

One should think of ` and |Ω| as constants and of n as large. We aim to get bounds
which are independent of n.

2.2 Correlation
In case ` > 2, the bound we obtain will depend on the correlation of the distribution P . This
concept was used before in [9].

I Definition 10. Let P be a single-coordinate distribution and let S, T ⊆ [`]. We define the
correlation:

ρ(P, S, T) := sup
{

Cov[f(X(S)), g(X(T))]
∣∣∣ f : Ω(S) → R, g : Ω(T) → R,

Var[f(X(S))] = Var[g(X(T))] = 1
}
.

The correlation of P is ρ(P) := maxj∈[`] ρ (P, {j}, [`] \ {j}).

2.3 Influence
A crucial notion in the proof of Theorem 7 is the influence of a function. It expresses the
average variance of a function, given that all but one of its n inputs have been fixed to
random values:

I Definition 11. Let X be a random vector over alphabet Ω and f : Ω→ R be a function
and i ∈ [n]. The influence of f on the i-th coordinate is:

Infi(f(X)) := E
[
Var

[
f(X) | X\i

]]
.

The (total) influence of f is Inf(f(X)) :=
∑n
i=1 Infi(f(X)).

Note that the influence depends both on the function f and the distribution of the vector X.

3 Our Results

Here we give precise statements of our results presented in the introduction.

J. Hązła, T.Holenstein, and E.Mossel 34:7

3.1 The case of ` = 2
I Theorem 12. Let Ω be a finite set and P a probability distribution over Ω2 with equal
marginals π. Let pairs (Xi, Yi) be i.i.d. according to P for i ∈ {1, . . . , n}.

Then, for every f : Ωn → [0, 1] with E[f(X)] = µ > 0:

E[f(X)f(Y)] ≥ c (α(P), µ) , (3)

where the function c() is positive whenever α(P) > 0.

We remark that Theorem 12 does not depend on ρ(P) in any way. This is in contrast to the
case ` > 2. It is possible to obtain a polynomially large explicit bound c() for symmetric
two-step spaces.

To prove Theorem 12 we make a convex decomposition argument and then apply the
multi-step Theorem 13. For completeness, we provide a proof of Theorem 6 assuming
Theorem 12.

Proof of Theorem 6. The “if” part follows from Theorem 12. The “only if” can be seen by
taking f to be an appropriate dictator. J

3.2 The general case
I Theorem 13. Let Ω be a finite set and P a distribution over Ω` in which all marginals
are equal. Let tuples Xi = (X(1)

i , . . . , X
(`)
i) be i.i.d. according to P for i ∈ {1, . . . , n}.

Then, for every function f : Ωn → [0, 1] with E[f(X(j))] = µ > 0:

E

∏̀
j=1

f(X(j))

 ≥ c (α(P), ρ(P), `, µ) , (4)

where the function c() is positive whenever α(P) > 0 and ρ(P) < 1.
Furthermore, there exists some D(P) > 0 (more precisely, D depends on α, ρ and `)

such that if µ ∈ (0, 0.99], one can take:

c(α, ρ, `, µ) := 1/ exp
(

exp
(

exp
(

(1/µ)D
)))

. (5)

Note that this bound does depend on ρ(P). We also obtain a bound that does not depend
on ρ(P) for multi-step probability spaces generated by Markov chains.

3.3 Hitting of different sets by uniform functions
Finally, we state the generalization of low-influence theorem from [9]. We assume that the
reader is familiar with Fourier coefficients f̂(σ) and the basics of discrete function analysis,
for details see, e.g., Chapter 8 of [11]. For the proof see the full version of the paper [8].

I Theorem 14. Let X be a random vector distributed according to an `-step distribution P
with ρ(P) ≤ ρ < 1 and let µ(1), . . . , µ(`) ∈ (0, 1].

There exist k ∈ N and γ > 0 (both depending only on P and µ(1), . . . , µ(`)) such that for
all functions f (1), . . . , f (`) : Ω→ [0, 1], if E[f (j)(X(j))] = µ(j) and maxσ:0<|σ|≤k |f̂ (j)(σ)| ≤ γ,
then

E

∏̀
j=1

f (j)(X(j))

 ≥ c(P, µ(1), . . . , µ(`)) > 0 . (6)

APPROX/RANDOM’16

34:8 Lower Bounds on Same-Set Inner Product in Correlated Spaces

3.4 Assumptions of the theorems

3.4.1 Equal distributions: unnecessary
In Theorems 12, 13 and 14 we assumed that the tuples (X(1)

i , . . . , X
(`)
i) are distributed

identically for each i. It is natural to ask if it is indeed necessary.
This is not the case. Instead, we made this assumption for simplicity of notation

and presentation. If one is interested in statements which are valid where coordinate i is
distributed according to Pi, one simply needs to assume that there are α > 0 and ρ < 1 such
that α(Pi) ≥ α and ρ(Pi) ≤ ρ.

3.4.2 Equal marginals: necessary
We quickly discuss the case when P does not have equal marginals. Recall that β(P) =
minx(1),...,x(`)∈Ω P(x(1), . . . , x(`)). If β(P) > 0, then, by Theorem 3, P is set hitting, and
therefore also same-set hitting.

In case β(P) = 0, we demonstrate an example which shows that E
[∏`

j=1 f(X(j))
]
can

be exponentially small in n. For concreteness, we set ` := 2 and Ω := {0, 1} and consider P
which picks uniformly among {00, 01, 11}. We then set

S1 := {(x1, . . . , xn) | x1 = 1 ∧ |wt(x)− n/3| ≤ 0.01n} (7)
S2 := {(x1, . . . , xn) | x1 = 0 ∧ |wt(x)− 2n/3| ≤ 0.01n} (8)

where wt(x) is the Hamming-weight of x, i.e., the number of ones in x.
For large enough n, a concentration bound implies that Pr[X(1) ∈ S1] > 1

3 − 0.01 and
Pr[X(2) ∈ S2] > 1

3 − 0.01. Hence, if we set f to be the indicator function of S := S1 ∪ S2,
the assumption of Theorem 13 holds. However, because of the first coordinate we have
Pr[X(1) ∈ S ∧X(2) ∈ S] ≤ Pr[X(1) ∈ S2 ∨X(2) ∈ S1], and the right hand side is easily seen
to be exponentially small.

It is not difficult to extend this example to any distribution with β(P) = 0 that does not
have equal marginals.

4 Proof Sketch

In this section we briefly outline the proof of Theorem 13. For simplicity, we assume that
the probability space is the one from Section 1.1, i.e., (Xi, Yi) are distributed uniformly in
{00, 11, 22, 01, 12, 20}. Additionally, we assume that we are given a set S ⊆ {0, 1, 2}n with
µ(S) = |S|/3n > 0, so that we want a bound of the form

Pr [X ∈ S ∧ Y ∈ S] ≥ c(µ) > 0 .

The proof consists of three steps. Intuitively, in the first step we deal with dictator sets,
e.g., Sdict = {x : x1 = 0}, in the second step with linear sets, e.g., Slin = {x :

∑n
i=1 xi

(mod 3) = 0} and in the third step with threshold sets, e.g., Sthr = {x : |{i : xi = 0}| ≥ n/3}.

4.1 Step 1 – making a set resilient
We call a set resilient if Pr[X ∈ S] does not change by more than a (small) multiplicative
constant factor whenever conditioned on (Xi1 = xi1 , . . . , Xis = xis) on a constant number s
of coordinates.

J. Hązła, T.Holenstein, and E.Mossel 34:9

In particular, Sdict is not resilient (because conditioning on x1 = 0 increases the measure
of the set to 1), while Slin and Sthr are.

If a set is not resilient, using P(x, x) = 1/6 for every x ∈ Ω, one can find an event
E :≡ Xi1 = Yi1 = xi1 ∧ . . . ∧ Xis = Yis = xis such that for some constant ε > 0 we have
Pr[E] ≥ ε and, at the same time, Pr[X ∈ S | E] ≥ (1 + ε) Pr[X ∈ S].

Since each such conditioning increases the measure of the set S by a constant factor, S must
become resilient after a constant number of its iterations. Furthermore, each conditioning
induces only a constant factor loss in Pr[X ∈ S ∧ Y ∈ S].

4.2 Step 2 – eliminating high influences
In this step, assuming that S is resilient, we condition on a constant number of coordinates
to transform it into two sets S′ and T ′ such that:

Both of them have low influences on all coordinates.
Both of them are supersets of S (after the conditioning).

The first property allows us to apply low-influence set hitting from [9] to S′ and T ′. The
second one, together with the resilience of S, ensures that µ(S′), µ(T ′) ≥ (1− ε)µ(S).

In fact, it is more convenient to assume that we are initially given two resilient sets S
and T .

Assume w.l.o.g. that Infi(T) ≥ τ for some i ∈ [n]. Given z ∈ {0, 1, 2}, let Tz := {x : x ∈
T ∧ xi = z}. Furthermore, let T ∗z := Tz ∪ Tz+1 (mod 3).

Since Infi(T) ≥ τ , we can show that there exists z ∈ {0, 1, 2} such that, after conditioning
on Xi = Yi = z, the sum µ(Sz) + µ(T ∗z) is strictly greater than the sum µ(S) + µ(T):

Pr[X ∈ Sz | Xi = z] + Pr[Y ∈ T ∗z | Yi = z] ≥ Pr[X ∈ S] + Pr[Y ∈ T] + c(τ) . (9)

We choose to delete the coordinate i and replace S with S′ := Sz and T with T ′ := T ∗z .
Equation (9) implies that after a constant number of such operations, neither S nor T has
any remaining high-influence coordinates.

Crucially, with respect to same-set hitting our set replacement is essentially equivalent to
conditioning on Xi = z and Yi = z ∨ Yi = z + 1 (mod 3). Therefore, each operation induces
only a constant factor loss in Pr[X ∈ S ∧ Y ∈ T].

4.3 Step 3 – applying low-influence theorem from [9]
Once we are left with two low-influence, somewhat-large sets S and T , we obtain Pr[X ∈
S ∧ Y ∈ T] ≥ c(µ) > 0 by a straightforward application of a slightly modified version of
Theorem 1.14 from [9]. The theorem gives that ρ(P) < 1 implies that the distribution P is
set hitting for low-influence functions:

I Theorem 15. Let X be a random vector distributed according to (Ω,P) such that P has
equal marginals, ρ(P) ≤ ρ < 1 and minx∈Ω π(x) ≥ α > 0.

Then, for all ε > 0, there exists τ := τ(ε, ρ, α, `) > 0 such that if functions f (1), . . . , f (`) :
Ω→ [0, 1] satisfy

max
i∈[n],j∈[`]

Infi(f (j)(X(j))) ≤ τ , (10)

then, for µ(j) := E[f (j)(X(j))]:

E

∏̀
j=1

f (j)(X(j))

 ≥
∏̀
j=1

µ(j)

`/(1−ρ2)

− ε . (11)

APPROX/RANDOM’16

34:10 Lower Bounds on Same-Set Inner Product in Correlated Spaces

Furthermore, there exists an absolute constant C ≥ 0 such that for ε ∈ (0, 1/2] one can
take

τ :=
(

(1− ρ2)ε
`5/2

)C ` ln(`/ε) ln(1/α)
(1−ρ)ε

. (12)

The proof of Theorem 15 can be found in the Arxiv version of the paper [8].

4.4 The case ρ = 1: open question
Theorem 13 requires that ρ < 1 in order to give a meaningful bound. It is unclear whether
this is an artifact of our proof or if it is necessary. In particular, consider the three step
distribution P which picks a uniform triple from {000, 111, 222, 012, 120, 201}. One easily
checks that ρ(P) = 1 and that all marginals are uniform. We do not know if this distribution
is same-set hitting.

However, the method of our proof breaks down. We illustrate the reason in the following
lemma.

I Lemma 16. For every n > n0 there exist three sets S(1), S(2), and S(3) such that for the
distribution P as described above we have
∀j : Pr[X(j) ∈ S(j)] ≥ 0.49.
Pr[∀j : X(j) ∈ S(j)] = 0.
The characteristic functions 1S(j) of the three sets all satisfy

max
i∈[n]

Infi(1S(j)(X(j)))→ 0 as n→∞ .

While the lemma does not give information about whether P is same-set hitting, it shows
that our proof fails (since the analogue of Theorem 15 fails).

Proof. We let

S(1) := {x(1) : x(1) has less than n/3 twos} ,

S(2) := {x(2) : x(2) has less than n/3 ones} ,

S(3) := {x(3) : x(3) has less than n/3 zeros} .

Whenever we pick X(1), X(2), X(3), the number of twos in X(1) plus the number of ones in
X(2) plus the number of zeros in X(3) always equals n (there is a contribution of one from
each coordinate). All three properties are now easy to check. J

References
1 Per Austrin and Elchanan Mossel. Noise correlation bounds for uniform low degree func-

tions. Arkiv för Matematik, 51(1):29–52, 2013. doi:10.1007/s11512-011-0145-5.
2 Irit Dinur, Ehud Friedgut, and Oded Regev. Independent sets in graph powers are almost

contained in juntas. Geometric and Functional Analysis, 18(1):77–97, 2008.
3 Harry Furstenberg. Ergodic behavior of diagonal measures and a theorem of Szemerédi

on arithmetic progressions. Journal d’Analyse Mathématique, 31(1):204–256, 1977. doi:
10.1007/BF02813304.

4 Harry Furstenberg and Yitzhak Katznelson. A density version of the Hales-Jewett theorem.
Journal d’Analyse Mathématique, 57(1):64–119, 1991. doi:10.1007/BF03041066.

http://dx.doi.org/10.1007/s11512-011-0145-5
http://dx.doi.org/10.1007/BF02813304
http://dx.doi.org/10.1007/BF02813304
http://dx.doi.org/10.1007/BF03041066

J. Hązła, T.Holenstein, and E.Mossel 34:11

5 W. T. Gowers. A new proof of Szemerédi’s theorem. Geometric & Functional Analysis
GAFA, 11(3):465–588, 2001. doi:10.1007/s00039-001-0332-9.

6 W. T. Gowers. Hypergraph regularity and the multidimensional Szemerédi theorem. Annals
of Mathematics, 166(3):897–946, 2007. Available from: http://www.jstor.org/stable/
20160083.

7 Venkatesan Guruswami and Euiwoong Lee. Strong inapproximability results on balanced
rainbow-colorable hypergraphs. In Proceedings of the Twenty-Sixth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 822–836, 2015. doi:10.1137/1.9781611973730.
56.

8 Jan Hązła, Thomas Holenstein and Elchanan Mossel. Lower Bounds on Same-Set Inner
Product in Correlated Spaces, 2015. Arxiv https://arxiv.org/abs/1509.06191.

9 Elchanan Mossel. Gaussian bounds for noise correlation of functions. Geometric and
Functional Analysis, 19(6):1713–1756, 2010. doi:10.1007/s00039-010-0047-x.

10 Elchanan Mossel, Krzysztof Oleszkiewicz, and Arnab Sen. On reverse hypercon-
tractivity. Geometric and Functional Analysis, 23(3):1062–1097, 2013. doi:10.1007/
s00039-013-0229-4.

11 Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, 2014. Avail-
able from: http://www.cambridge.org/de/academic/subjects/computer-science/
algorithmics-complexity-computer-algebra-and-computational-g/
analysis-boolean-functions.

12 Karl Petersen. Ergodic theory. Cambridge University Press, corrected edition, 1989. Avail-
able from: http://opac.inria.fr/record=b1088586.

13 Klaus F. Roth. On certain sets of integers. Journal of the London Mathematical Society,
s1-28(1):104–109, 1953. doi:10.1112/jlms/s1-28.1.104.

14 Vojtěch Rödl and Jozef Skokan. Regularity lemma for k-uniform hypergraphs. Random
Structures & Algorithms, 25(1):1–42, 2004. doi:10.1002/rsa.20017.

15 Vojtěch Rödl and Jozef Skokan. Applications of the regularity lemma for uniform hyper-
graphs. Random Structures & Algorithms, 28(2):180–194, 2006. doi:10.1002/rsa.20108.

16 Endre Szemerédi. On sets of integers containing no k elements in arithmetic progression.
Acta Arithmetica, 27(1):199–245, 1975.

17 Terence Tao and Van H. Vu. Additive Combinatorics. Cambridge University Press, 2006.
Available from: http://opac.inria.fr/record=b1122796.

APPROX/RANDOM’16

http://dx.doi.org/10.1007/s00039-001-0332-9
http://www.jstor.org/stable/20160083
http://www.jstor.org/stable/20160083
http://dx.doi.org/10.1137/1.9781611973730.56
http://dx.doi.org/10.1137/1.9781611973730.56
https://arxiv.org/abs/1509.06191
http://dx.doi.org/10.1007/s00039-010-0047-x
http://dx.doi.org/10.1007/s00039-013-0229-4
http://dx.doi.org/10.1007/s00039-013-0229-4
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/analysis-boolean-functions
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/analysis-boolean-functions
http://www.cambridge.org/de/academic/subjects/computer-science/algorithmics-complexity-computer-algebra-and-computational-g/analysis-boolean-functions
http://opac.inria.fr/record=b1088586
http://dx.doi.org/10.1112/jlms/s1-28.1.104
http://dx.doi.org/10.1002/rsa.20017
http://dx.doi.org/10.1002/rsa.20108
http://opac.inria.fr/record=b1122796

Estimating Parameters Associated with Monotone
Properties∗

Carlos Hoppen1, Yoshiharu Kohayakawa2, Richard Lang3,
Hanno Lefmann4, and Henrique Stagni5

1 Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
choppen@ufrgs.br

2 Universidade de São Paulo, São Paulo, Brazil
yoshi@ime.usp.br

3 Universidad de Chile, Santiago, Chile
rlang@dim.uchile.cl

4 Technische Universität Chemnitz, Chemnitz, Germany
Lefmann@Informatik.TU-Chemnitz.de

5 Universidade de São Paulo, São Paulo, Brazil
stagni@ime.usp.br

Abstract
There has been substantial interest in estimating the value of a graph parameter, i.e., of a
real function defined on the set of finite graphs, by sampling a randomly chosen substructure
whose size is independent of the size of the input. Graph parameters that may be successfully
estimated in this way are said to be testable or estimable, and the sample complexity qz = qz(ε)
of an estimable parameter z is the size of the random sample required to ensure that the value
of z(G) may be estimated within error ε with probability at least 2/3. In this paper, we study
the sample complexity of estimating two graph parameters associated with a monotone graph
property, improving previously known results. To obtain our results, we prove that the vertex set
of any graph that satisfies a monotone property P may be partitioned equitably into a constant
number of classes in such a way that the cluster graph induced by the partition is not far from
satisfying a natural weighted graph generalization of P. Properties for which this holds are said
to be recoverable, and the study of recoverable properties may be of independent interest.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases parameter estimation, parameter testing, edit distance to monotone
graph properties, entropy of subgraph classes, speed of subgraph classes

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2016.35

1 Introduction

In the last two decades, a lot of effort has been put into finding constant-time randomized
algorithms (conditional on sampling) to gauge whether a combinatorial structure satisfies

∗ C. Hoppen acknowledges the support of FAPERGS (Proc. 2233-2551/14-0) and CNPq (Proc. 448754/2014-
2 and 308539/2015-0). C. Hoppen and H. Lefmann acknowledge the support of CAPES and DAAD
via PROBRAL (CAPES Proc. 408/13 and DAAD 56267227 and 57141126 and 57245206). C. Hoppen,
Y. Kohayakawa and H. Stagni thank FAPESP (Proc. 2013/03447-6) and NUMEC/USP (Project
MaCLinC/USP) for their support. Y. Kohayakawa was partially supported by FAPESP (2013/07699-0)
and CNPq (310974/2013-5 and 459335/2014-6). H. Stagni was supported by FAPESP (2015/15986-4)
and CNPq (141970/2015-4 and 459335/2014-6).

© Carlos Hoppen, Yoshiharu Kohayakawa, Richard Lang, Hanno Lefmann, and Henrique Stagni;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016).
Editors: Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans; Article No. 35; pp. 35:1–35:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.35
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

35:2 Estimating Parameters Associated with Monotone Properties

some property, or to estimate the value of some numerical function associated with this
combinatorial structure. In this paper, we focus on the graph case and, as usual, we consider
algorithms that have the ability to query whether any desired pair of vertices in the input
graph is adjacent or not. Let G be the set of finite simple graphs and let G(V) be the set
of such graphs with vertex set V . We shall consider subsets P of G that are closed under
isomorphism, which we call graph properties. To avoid technicalities, we restrict ourselves
to graph properties P such that P ∩ G(V) 6= ∅ whenever V 6= ∅. For instance, this includes
all nontrivial monotone and hereditary graph properties, which are graph properties that
are inherited by subgraphs and by induced subgraphs, respectively. Here, we will focus on
monotone properties. The prototypical example of a monotone property is Forb(F), the class
of all graphs that do not contain a fixed graph F as a subgraph. More generally, if P is a
monotone property and F contains all minimal graphs that are not in P, then the graphs
that lie in P are precisely those that do not contain an element of F as a subgraph. This
class of graphs will be denoted by P = Forb(F). The elements of Forb(F) are said to be
F-free.

A graph property P is said to be testable if, for every ε > 0, there exist a positive integer
qP = qP(ε), called the query complexity, and a randomized algorithm TP , called a tester,
which may perform at most qP queries in the input graph, satisfying the following property.
For an n-vertex input graph Γ, the algorithm TP distinguishes with probability at least 2/3
between the cases in which Γ satisfies P and in which Γ is ε-far from satisfying P, that
is, in which no graph obtained from Γ by the addition or removal of at most εn2/2 edges
satisfies P. This may be stated in terms of graph distances: given two graphs Γ and Γ′ on
the same vertex set V , we may define the normalized edit distance between Γ and Γ′ by
d1(Γ,Γ′) = 2

|V |2 |E(Γ)4E(Γ′)|, where E(Γ)4E(Γ′) denotes the symmetric difference of their
edge sets. If P is a graph property, we let the distance between a graph Γ and P be

d1(Γ,P) = min{d1(Γ,Γ′) : V (Γ′) = V (Γ) and Γ′ ∈ P}.

For instance, if Γ = Kn and P = Forb(K3), Turán’s Theorem ensures that
(
n
2
)
−bn2/4c edges

need to be removed to produce a graph that isK3-free. In particular, d1(Kn,Forb(K3))→ 1/2.
Thus a graph property is testable if there is a tester with bounded query complexity that
distinguishes with probability at least 2/3 between the cases d1(Γ,P) = 0 and d1(Γ,P) > ε.

The systematic study of property testing was initiated by Goldreich, Goldwasser and
Ron [19], and there is a very rich literature on this topic. For instance, regarding testers,
Goldreich and Trevisan [20] showed that it is sufficient to consider simpler canonical testers,
namely those that randomly choose a subset X of vertices in Γ and then verify whether
the induced subgraph Γ[X] satisfies some related property P ′. For example, if the property
being tested is having edge density 1/2, then the algorithm will choose a random subset
X of appropriate size and check whether the edge density of Γ[X] is within, say, ε/2 of
1/2. Regarding testable properties, Alon and Shapira [5] proved that every monotone
graph property is testable, and, more generally, that the same holds for hereditary graph
properties [4]. For more information about property testing, we refer the reader to [18] and
the references therein.

In a similar vein, a function z : G → R from the set G of finite graphs into the real
numbers is called a graph parameter if it is invariant under relabeling of vertices. A graph
parameter z : G → R is estimable if for every ε > 0 and every large enough graph Γ, the
value of z(Γ) can be approximated up to an additive error of ε by an algorithm that only has
access to a subgraph of Γ induced by a set of vertices of size qz = qz(ε), chosen uniformly
at random. The query complexity of such an algorithm is

(
qz

2
)
and the size qz is called its

C. Hoppen, Y. Kohayakawa, R. Lang, H. Lefmann, and H. Stagni 35:3

sample complexity. Estimable parameters have been considered in [14] and were defined in
the above level of generality in [9]. They are often called testable parameters. Borgs et al. [9,
Theorem 6.1] gave a complete characterization of the estimable graph parameters which,
in particular, also implies that the distance from monotone graph properties is estimable.
Their work uses the concept of graph limits and does not give explicit bounds on the query
complexity required for this estimation.

Estimable parameters are closely related with the notion of tolerant testing, which was
introduced by Parnas, Ron and Rubinfeld [23], and is a generalization of standard property
testing. Let 0 ≤ ε1 < ε2 ≤ 1. An (ε1, ε2)-tolerant tester for a graph property P is an
algorithm that receives a graph Γ as input and distinguishes between the cases d1(Γ,P) ≤ ε1
and d1(Γ,P) ≥ ε2 with probability at least 2/3 and constant query complexity. Fischer and
Newman [14] proved that every testable graph property P has a (d− ε, d)-tolerant tester, for
every d, ε > 0. The distance from a graph to P can then be estimated by successively running
such tolerant testers. Since every monotone graph property is testable, it follows that the
distance to such a property is estimable. Later, Alon, Shapira and Sudakov [6, Theorem 1.2]
proved that the distance to every monotone graph property P is estimable using a more
natural algorithm, which simply computes the distance from the induced sampled graph
to P. However, one disadvantage of these approaches is that their analysis relies heavily on
stronger versions of the Szemerédi Regularity Lemma [24, 2]. Therefore, their algorithms
to estimate the distance from monotone graph properties have a query complexity of order
at least TOWER(poly(1/ε)), by which we mean a tower of twos of height that is polynomial
in 1/ε. Moreover, it follows from a result of Gowers [21] that any approach based on the
Szemerédi Regularity Lemma cannot lead to a bound that is better than TOWER(poly(1/ε)).

In this paper, we introduce the concept of recoverable graph properties (Definition 10).
Roughly speaking, given a function f : (0, 1]→ R, we say a graph property P is f -recoverable
if every large graph G ∈ P is ε-close to admitting a partition V of its vertex set into at most
f(ε) classes that witnesses pertinence in P (i.e., such that any graph that can be partitioned
in the same way must be in P). We prove the following result for recoverable properties.

I Theorem 1. Let P be an f-recoverable graph property, for some function f : (0, 1]→ R.
Then, for all ε > 0 there is n0 such that, for any graph Γ with |V (Γ)| ≥ n0, the graph
parameter

z(Γ) = d1(Γ,P)

can be estimated within an additive error of ε with sample complexity 2poly(f(ε/6)/ε).

We also show (Theorem 16) that every monotone graph property Forb(F) is f -recoverable
for some function f that depends only on the bounds for the weighted graph Removal Lemma
(Lemma 12) for the family F – the Removal Lemma states that if a graph is far from being
F-free, then it must contain many copies of some element of F of bounded size. Thus,
our approach can improve the required sample complexity for estimating d1(·,Forb(F)) for
families F for which there are better bounds for the Removal Lemma. In particular, as a
consequence of Theorem 1, Theorem 16 and recent improvements by Fox [15] on the bounds
for the Removal Lemma, we have the following result.

I Corollary 2. Let F be a finite family of graphs. Then, for all ε > 0 there is n0 such that,
for any graph Γ with |V (Γ)| ≥ n0, the graph parameter

z(Γ) = d1(Γ,Forb(F))

can be estimated within an additive error of ε with sample complexity TOWER(poly(log(1/ε))).

APPROX/RANDOM’16

35:4 Estimating Parameters Associated with Monotone Properties

We obtain similar results for another bounded graph parameter, which, for a graph
family F , counts the number of F-free subgraphs of the input graph Γ. Formally, given
a graph Γ ∈ G and a family F of graphs, we denote the set of all F-free subgraphs of Γ
by Forb(Γ,F) = {G ∈ Forb(F) : G is a subgraph of Γ}, and we consider the parameter

z(Γ) = 1
|V (Γ)|2 log2 |Forb(Γ,F)|. (1)

For example, if F = {K3} and Γ = Kn, computing z requires estimating the number of K3-
free subgraphs of Kn, which was done by Erdős, Kleitman and Rothschild for F = {Kk} [13]
(see also Erdős, Frankl and Rödl [12] for F -free subgraphs):

z(Kn) = 1
n2 log2 |Forb(Γ,F)| = 1

n2 log2 2
1
2 (n

2)+o(n2) → 1
4 .

Counting problems of this type were considered by several people. (See, for instance, the
logarithmic density in Bollobás [8].)

I Theorem 3. Let Forb(F) be an f -recoverable graph property, for some function f : (0, 1]→
R. Then, for all ε > 0 there is n0 such that, for any graph Γ with |V (Γ)| ≥ n0, the graph
parameter z defined in (1) can be estimated within an additive error of ε with sample
complexity 2poly(f(ε/6)/ε).

I Corollary 4. Let F be a finite family of graphs. Then, for all ε > 0 there is n0 such that,
for any graph Γ with |V (Γ)| ≥ n0, the graph parameter z defined in (1) can be estimated
within an additive error of ε with sample complexity TOWER(poly(log(1/ε))).

We should mention that the statement of Theorem 3 does not hold for arbitrary non-
monotone properties P. For instance, if P is the hereditary property of graphs having no
independent sets of size three, then Kn and Kn − E(K3) have quite a different number of
subgraphs satisfying P, although their distance is negligible. It follows from [9, Theorem
6.1] that this parameter is not estimable.

The remainder of the paper is structured as follows. In Section 2, we provide preliminary
definitions that lead to the concept of a recoverable graph property, which is used to
prove Theorems 1 and 3. Indeed, these two theorems are consequences of Theorem 18 and
Theorem 19, respectively, which are stated in Section 3.

2 Recoverability

The main objective of this section is to introduce the concept of ε-recoverability and to
restate our main results in terms of it.

2.1 Estimation over cluster graphs
A weighted graph R over a (finite) set of vertices V is a symmetric function from V × V
to [0, 1]. A weighted graph R may be viewed as a complete graph (with loops) in which a
weight R(i, j) is given to each edge (i, j) ∈ V (R)× V (R), where V (R) denotes the vertex set
of R. The set of all weighted graphs with vertex set V is denoted by G∗(V) and we define G∗
as the union of all G∗(V) for V finite. In particular, a graph G is a rational weighted graph
such that G(i, i) = 0, for every i ∈ V (G), and either G(i, j) = 1 or G(i, j) = 0 for every
(i, j) ∈ V (G) × V (G), i 6= j. For a weighted graph R ∈ G∗(V) and for sets A,B ⊂ V , we
denote eR(A,B) =

∑
(i,j)∈A×B R(i, j) and e(R) = e(V, V).

C. Hoppen, Y. Kohayakawa, R. Lang, H. Lefmann, and H. Stagni 35:5

Let k > 0 and let R ∈ G∗(V) be a weighted graph. We define a weighted graph G(k,R) ∈
G∗([k]) by assigning weight R(xi, xj) to each edge (i, j) ∈ [k]× [k], where {xi}ki=1 is a multiset
of k vertices of V such that each xi is chosen with uniform probability, independently of the
others (with repetition). With this, we may define estimable parameters in the context of
weighted graphs. Henceforth we write b = a± x for a− x ≤ b ≤ a+ x.

I Definition 5. We say that a function z : G∗ → R (also called a weighted graph parameter)
is estimable with sample complexity q : (0, 1) → N if, for every ε > 0 and every weighted
graph Γ∗ ∈ G∗(V) with |V | ≥ q(ε), we have z(Γ∗) = z(G(q,Γ∗)) ± ε with probability at
least 2/3.

Given a graph G and vertex sets U,W ⊆ V (G), let EG(U,W) = {(u,w) ∈ V (G)× V (G) :
u ∈ U,w ∈ W} and eG(U,W) = |EG(U,W)|. An equipartition V = {Vi}ki=1 of a weighted
graph R is a partition of its vertex set V (R), such that |Vi| ≤ |Vj |+ 1 for all (i, j) ∈ [k]× [k].
We often abuse terminology and say that V is a partition of R.

Let V = {V1, . . . , Vk} be an equipartition of a graph G. The cluster graph of G by V is
a weighted graph G/V ∈ G∗([k]) such that G/V (i, j) = eG(Vi, Vj)/(|Vi||Vj |) for all (i, j) ∈
[k]×[k]. For a fixed integerK > 0, the set of all equipartitions of a vertex set V into at mostK
classes will be denoted by ΠK(V). We also define the set G/ΠK

= {G/V : V ∈ ΠK(V (G))}
of all cluster graphs of G of vertex size at most K. The following result states that graph
parameters that can be expressed as the optimal value of some optimization problem over
G/ΠK can be estimated with a query complexity that is only exponential in K and in the
error parameter.

I Theorem 6. Let z : G → R be a graph parameter and suppose that there is a weighted
graph parameter z∗ : G∗ → R and constants K > 0 and c > 0 such that:
1. z(Γ) = minR∈Γ/ΠK

z∗(R), for every Γ ∈ G and
2. |z∗(R) − z∗(R′)| ≤ c · d1(R,R′), for all weighted graphs R,R′ ∈ G∗ on the same vertex

set.
Then z is estimable with sample complexity ε 7→ 2poly(K,c/ε).

The proof of Theorem 6 is based on the following lemma, which asserts that the set of
cluster graphs of a graph Γ is very ‘similar’ to the set of cluster graphs of ‘large enough’
samples of Γ.

I Lemma 7. Given K > 0, ε > 0 there is q = 2poly(K,1/ε) and n0 such that the following
holds. Consider a graph Γ on n ≥ n0 vertices and a random sample Γ = G(q,Γ) with vertex
sets V and V , respectively. Then, with probability at least 2/3, we have
1. for each V ∈ ΠK(V), there is a V ∈ ΠK(V) with d1(Γ/V , Γ/V) ≤ ε;
2. for each V ∈ ΠK(V), there is a V ∈ ΠK(V) with d1(Γ/V , Γ/V) ≤ ε.

We now deduce Theorem 6 from Lemma 7.

Proof of Theorem 6. Fix ε > 0 and an input graph Γ ∈ G(V). Let q be as in Lemma 7 with
input K and ε/c. We will show that if Γ = G(q,Γ), then z(Γ) = z(Γ)± ε with probability at
least 2/3.

Let V ∈ ΠK(V) be an equipartition of Γ such that z(Γ) = z∗(Γ/V). By Lemma 7, with
probability at least 2/3, there is a partition V of Γ such that d1(Γ/V , Γ/V) < ε/c. By the
second condition on z∗ in the statement of Theorem 6, we have |z∗(Γ/V)− z∗(Γ/V)| ≤ ε,
and therefore z(Γ) ≤ z∗(Γ/V) ≤ z∗(Γ/V) + ε = z(Γ) + ε.

A symmetric argument shows that z(Γ) ≤ z(Γ) + ε. J

APPROX/RANDOM’16

35:6 Estimating Parameters Associated with Monotone Properties

In Section 3 we show how to express the parameters we are interested in, namely,
d1(Γ,Forb(F)) and |Forb(Γ,F)|, as solutions of suitable optimization problems over the set
Γ/ΠK

of cluster graphs of Γ.

2.2 Recovering partitions

The distance between two weighted graphs R,R′ ∈ G∗(V) on the same vertex set V is given
by

d1(R,R′) = 1
|V |2

∑
(i,j)∈V×V

|R(i, j)−R′(i, j)|.

Let H ⊆ G∗ be a property of weighted graphs, i.e., a subset of weighted graphs which is
closed under isomorphisms. We define

d1(R,H) = min
R′∈H:

V (R′)=V (R)

d1(R,R′).

We assume that H contains weighted graphs with vertex sets of all possible sizes.
We are interested in the property of graphs that are free of copies of members of a

(possibly infinite) family F of graphs. To relate this property to a property of cluster graphs,
we introduce some preliminary definitions. Let ϕ : V (F) → V (R) be a mapping from the
set of vertices of a graph F ∈ G to the set of vertices of a weighted graph R ∈ G∗. The
homomorphism weight homϕ(F,R) of ϕ is defined as

homϕ(F,R) =
∏

(i,j)∈E(F)

R(ϕ(i), ϕ(j)).

The homomorphism density t(F,R) of F ∈ G in R ∈ G∗ is defined as the average homo-
morphism weight of a mapping in Φ := {ϕ : V (F)→ V (R)}, that is,

t(F,R) = 1
|Φ|

∑
ϕ∈Φ

homϕ(F,R).

Note that, if F and R are graphs, then t(F,R) is roughly the subgraph density of F in R
(and converges to this quantity when the size of R tends to infinity). Since weighted graphs
will represent cluster graphs associated with a partition of the vertex set of the input graph,
it will be convenient to work with the following property of weighted graphs:

Forb∗hom(F) = {R ∈ G∗ : t(F,R) = 0 for every F ∈ F}.

Let R,S ∈ G∗(V) be weighted graphs on the same set V of vertices. We say that S is a
subgraph of R, which will be denoted by S ≤ R, if S(i, j) ≤ R(i, j) for every (i, j) ∈ V × V .
Moreover, for a subset Q ⊆ V , let R[Q] denote the induced weighted subgraph of R with
vertex set Q. We also define Forb∗hom(R,F) = {S ∈ Forb∗hom(F) : S ≤ R}.

The following result shows that having a cluster graph in Forb∗hom(F) witnesses pertinence
in Forb(F).

I Proposition 8. Let F be a family of graphs and let V be an equipartition of a graph G. If
G/V ∈ Forb∗hom(F), then G ∈ Forb(F).

C. Hoppen, Y. Kohayakawa, R. Lang, H. Lefmann, and H. Stagni 35:7

Proof. Let V = {Vi}ki=1 be an equipartition of G and let R = G/V . Fix an arbitrary
element F ∈ F and an arbitrary injective mapping ϕ : V (F) ↪→ V (G). Define the function
ψ : V (F) → V (R) by ψ(v) = i if ϕ(v) ∈ Vi. Now, if t(F,R) = 0, there must be some
edge (u,w) ∈ E(F) such that R(ψ(u), ψ(w)) = 0, which implies that G(ϕ(u), ϕ(v)) =
0. Hence, homϕ(F,G) = 0. Since ϕ and F were taken arbitrarily, we must have G ∈
Forb(F). J

It is easy to see that the converse of Proposition 8 does not hold in general. Indeed,
there exist graph families F and graphs G ∈ Forb(F) such that G/V is actually very far
from being in Forb∗hom(F) for some equipartition V of G. For one such example, let G be
the n-vertex bipartite Turán graph T2(n) for K3 with partition V (G) = A ∪B and consider
V = {Vi}ti=1 with Vi = Ai ∪Bi, i = 1, . . . , t, where {Ai}ti=1 and {Bi}ti=1 are equipartitions
of A and B respectively. Then G/V is a complete graph with weight 1/2 on every edge,
so that it is 1/4-far from being in Forb∗hom({K3}) by Turán’s Theorem. More generally, if
V is a random equitable partition of a triangle-free graph G ∈ Forb({K3}) with large edge
density, then with high probability the cluster graph G/V is still 1/4-far from being in
Forb∗hom({K3}).

On the other hand, we will prove that there exist partitions for graphs in Forb(F) with
respect to which an approximate version of the converse of Proposition 8 does hold, that is,
we will prove that every graph in Forb(F) is not too far from having a partition of bounded
size that witnesses pertinence in Forb(F). We say that such a partition is recovering with
respect to Forb(F). In what follows, we define recovering partitions formally and in a more
general setting.

For every weighted graph S ∈ G∗, let GS ⊆ G be the graph property of being reducible to
S, that is,

GS = {G ∈ G : S = G/V for some equipartition V of G}.

Moreover, let P∗ be the weighted graph property consisting of all cluster graphs that witness
pertinence in P, i.e., P∗ = {S ∈ G∗ : ∅ 6= GS ⊆ P}. The following observation motivates this
definition: if S ∈ P∗, then verifying that G ∈ GS is a way of determining that G ∈ P. As a
consequence, if we could find a size K = K(P) such that every G ∈ P has an equipartition
V of size at most K such that G/V ∈ P∗, then we would be able to decide whether G ∈ P
by simply testing whether it is reducible to some S ∈ P∗ of order at most K. Also note that,
in the case of monotone properties P = Forb(F), we have P∗ = Forb∗hom(F).

I Definition 9. An equipartition V of a graph G ∈ P is ε-recovering for P if

d1(G/V ,P∗) ≤ ε.

For monotone properties, this means that an equipartition V of a graph G ∈ Forb(F) is
ε-recovering for Forb(F) if d1(G/V ,Forb∗hom(F)) ≤ ε, which is the approximate converse of
Proposition 8 mentioned above. With this, we say that a graph property P is recoverable if,
for every ε > 0, large graphs satisfying P admit a constant size ε-recovering partition for P.

I Definition 10. Let P be a graph property. For a fixed function f : (0, 1] → R, we say
that the class P is f-recoverable if, for every ε > 0, there exists n0 = n0(ε) such that the
following holds. For every graph G ∈ P on n ≥ n0 vertices, there is an equipartition V of G
of size |V| ≤ f(ε) which is ε-recovering for P.

As a simple example, one can verify that the graph property P of being r-colorable is
f -recoverable for f(ε) = r/ε; here and in what follows, for simplicity, we ignore divisibility

APPROX/RANDOM’16

35:8 Estimating Parameters Associated with Monotone Properties

conditions and drop floor and ceiling signs. Let G be a graph in P, with color classes
C1, . . . , Cr. Let k = r/ε. Start by fixing parts V1, . . . , Vt of size n/k each, with each Vi
contained in some Cj (j = j(i)), and leaving out fewer than n/k vertices from each Cj
(1 ≤ j ≤ r). The sets Vi (1 ≤ i ≤ t) cover a subset C ′j of Cj and Xj = Cj \C ′j is left over. We
then complete the partition by taking arbitrary parts U1, . . . , Uk−t of size n/k each, forming
a partition of

⋃
1≤j≤rXj . The cluster graph G/V can be made r-partite by giving weight

zero to every edge incident to vertices corresponding to U1, . . . , Uk−t. Therefore G/V is at
distance at most r/k ≤ ε from being r-partite. But since every r-partite weighted graph S
clearly satisfies GS ⊆ P, we get that d1(G/V ,P∗) ≤ ε, as required.

Another interesting easy example is the property of tournaments that are transitive. A
tournament — i.e., a complete graph whose edges are given an orientation — is said to be
transitive if it does not contain any cycle or, equivalently, if there is a linear ordering v1, . . . , vn
of its vertices such that (vi, vj) is an arc for every i < j. Computing the distance of a
tournament T from being transitive, also called the Slater index of T , is an interesting
problem which has received some attention in the past (see [10] for a survey) and has
applications in many areas like psychometrics and voting theory (cf. [7]). Tournaments
do not fit exactly into the framework presented here; it would be necessary to make some
minor generalizations. However it is easy to see that, given a tournament T with a linear
ordering v1, . . . , vn, any equipartition V = {Vi}ki=1 respecting this order (i.e., such that for
every 1 ≤ i < j ≤ k and u ∈ Vi, v ∈ Vj it holds that (u, v) is an arc) is such that T/V is a
transitive directed graph with a loop on every vertex and, therefore, at distance at most 1/k
from being a transitive tournament. We conclude that the property of being transitive
is f -recoverable, with f(ε) = 1/ε. By Theorem 1, this is sufficient to show that one can
estimate the distance of a tournament from being transitive with sample complexity that is
only exponential in the error parameter ε. We shall elaborate on this in the full version of
this paper.

We end this section by noting that the definition of f -recoverable properties has some
similarity with the notion of regular-reducible properties P defined by Alon, Fischer, Newman
and Shapira [3]. The main difference is that the notion of being regular-reducible requires
that every graph G ∈ P should have a regular partition such that G/V is close to some
property R∗ of weighted graphs, while the definition of f -recoverable properties does not
require the partitions to be regular. Another difference is that R∗ must be such that having
a (regular) cluster graph in R∗ witnesses only proximity (and not pertinence) to P.

2.3 Monotone graph properties are recoverable
Szemerédi’s Regularity Lemma [24] can be used to show that every monotone (and actually
every hereditary) graph property is f -recoverable, for f(ε) = TOWER(poly(1/ε)). In the
remainder of this section, we prove that monotone properties P = Forb(F) are recoverable
using a weaker version of regularity along with the Removal Lemma, which leads to an
improvement on the growth of f for families F where the Removal Lemma is known to hold
with better bounds than the Regularity Lemma.

The Removal Lemma was first stated explicitly in the literature by Alon et al. [1] and by
Füredi [17]. The following version, which holds for possibly infinite families of graphs was
first proven in [5].

I Lemma 11 (Removal Lemma). For every ε > 0 and every (possibly infinite) family F of
graphs, there exist M = M(ε,F), δ = δ(ε,F) > 0 and n0 = n0(ε,F) such that the following
holds. If a graph G on n ≥ n0 vertices satisfies d1(G,Forb(F)) ≥ ε, then there is F ∈ F
with |F | ≤M such that t(F,G) ≥ δ.

C. Hoppen, Y. Kohayakawa, R. Lang, H. Lefmann, and H. Stagni 35:9

We derive, from Lemma 11, a slightly stronger version of the Removal Lemma, that deals
with weighted graphs and homomorphic copies.

I Lemma 12. For every ε > 0 and every (possibly infinite) family F of graphs, there
exist δ = δ(ε,F), M = M(ε,F) and n0 = n0(ε,F) such that the following holds. If a
weighted graph R such that |V (R)| > n0 satisfies d1(R,Forb∗hom(F)) ≥ ε, then there is a
graph F ∈ F with |F | ≤M such that t(F,R) ≥ δ.

Next, to introduce the version of regularity that we use in this work, we use a second
well-known distance between weighted graphs. Let R1, R2 ∈ G∗(V) be weighted graphs with
|V | = n. The cut-distance between R1 and R2 is defined as

d�(R1, R2) = 1
n2 max

S,T⊆V
|eR1(S, T)− eR2(S, T)|.

Let Γ ∈ G(V) and V = {Vi}ki=1 be a partition of V . We define the weighted graph
ΓV ∈ G∗(V) as the weighted graph such that ΓV(u, v) = Γ/V (i, j) if u ∈ Vi and v ∈ Vj .
Graph regularity lemmas ensure that, for any large graph Γ, there exists an equitable partition
V of constant size such that ΓV is a faithful approximation of Γ. Here, we use the regularity
introduced by Frieze and Kannan [16].

I Definition 13. A partition V = {Vi}ki=1 of a graph Γ is γ-FK-regular if d�(Γ,ΓV) ≤ γ, or,
equivalently if for all S, T ⊆ V (Γ) it holds that

e(S, T) =
∑

(i,j)∈[k]×[k]

|S ∩ Vi||T ∩ Vj | Γ/V (i, j)± γ|V (Γ)|2.

I Lemma 14 (Frieze-Kannan Regularity Lemma). For every γ > 0 and every t0 > 0, there
is T = t0 · 2poly(1/γ) such that every graph Γ on n ≥ T vertices admits a γ-FK-regular
equipartition into t classes, where t0 ≤ t ≤ T .

Conlon and Fox [11] found instances where the number t of classes in any γ-FK-regular
equipartition is at least t ≥ 21/(260γ2) (for a previous result, see Lovász and Szegedy [22]).

We will also need the following result, which states that a graph has homomorphism
densities close to the ones of the cluster graphs with respect to FK-regular partitions.

I Lemma 15 ([9, Lemma 2.7(a)]). Let V be a γ-FK-equipartition of a graph G ∈ G. Then,
for any graph F ∈ G it holds that t(F,G) = t(F,GV)± 4e(F)γ = t(F, G/V)± 4e(F)γ.

We are now ready to show that every monotone graph property is f -recoverable.

I Theorem 16. For every family F of graphs, the property Forb(F) is f-recoverable
for f(ε) = n02poly(1/δ,M), where δ,M and n0 are as in Lemma 12 with input F and ε.

Proof. Let δ,M and n0 be as in Lemma 12 with input F and ε and let γ = δ/(3M)2. By
Lemma 14, it suffices to show that any γ-FK-regular partition V = {Vi}ki=1 of a graph
G ∈ Forb(F) into k ≥ n0 classes is ε-recovering.

Let R = G/V and suppose by contradiction that d1(R,Forb∗hom(F)) ≥ ε. Then, by
Lemma 12, we have t(F,R) ≥ δ for some graph F ∈ F such that |F | ≤M . By Lemma 15,
we would have t(F,G) ≥ δ − 2γM2 > 0, a contradiction to G ∈ Forb(F). J

APPROX/RANDOM’16

35:10 Estimating Parameters Associated with Monotone Properties

3 Estimation of d1(Γ, F) and | Forb(Γ, F)|

The objective of this section is to prove Theorems 1 and 3. For that, we shall use the following
fact about equipartitions, whose simple proof is omitted.

I Lemma 17. Let Γ, G ∈ G(V) for some vertex set V and let V be any equipartition of V .
Then d1(Γ/V , G/V) ≤ d1(Γ, G) + |V|/|V |.

The final ingredient needed for Theorem 1 is the result below, which, for a recoverable
property P, relates the parameter d1(·,P) with a parameter to which Theorem 6 may be
applied.

I Theorem 18. Let P be an f-recoverable graph property for some function f : (0, 1]→ R.
Fix ε > 0 and let K = f(ε/2). Then every graph Γ ∈ G(V) such that |V | > 2K/ε satisfies

d1(Γ,P) = min
R∈Γ/ΠK

d1(R,P∗)± ε.

Proof. Fix 0 < ε < 1, K = f(ε/2). Let V = [n] and let d = d1(Γ,P) and d̂ =
minR∈Γ/ΠK

d1(R,P∗).
We first show that d̂ ≤ d + ε. Let G ∈ P be a graph such that d1(Γ, G) = d. Since P

is f -recoverable, we can fix an ε/2-recovering equipartition V of size 1 ≤ k ≤ K of G, i.e., an
equipartition satisfying

d1(G/V ,P∗) ≤
ε

2 .

By Lemma 17 we have

d1(Γ/V , G/V) ≤ d1(Γ, G) + k

n
≤ d+ ε

2 .

Now we add the last two inequalities and apply the triangle inequality to obtain

d+ ε ≥ d1(Γ/V ,P∗) ≥ d̂.

Next, we proceed to show that d ≤ d̂ + ε. Let R ∈ Γ/ΠK
and S ∈ P∗ be such that

d1(R,S) = d̂. Let k = |V (R)| and fix an equipartition V = {V1, . . . , Vk} of Γ such that R =
Γ/V . Consider a graph G with vertex set V (Γ) such that G/V = S, obtained as follows. For
each (i, j) ∈ [n]× [n] such that R(i, j) > S(i, j), we remove exactly (R(i, j)− S(i, j))|Vi||Vj |
edges from Γ between Vi and Vj ; if S(i, j) > R(i, j), we add exactly (R(i, j)− S(i, j))|Vi||Vj |
between Vi and Vj to Γ, thus

d1(Γ, G) = 1
n2

∑
(i,j)∈[k]×[k]

|EΓ(Vi, Vj)4EG(Vi, Vj)|

= 1
n2

∑
(i,j)∈[k]×[k]

|S(i, j)−R(i, j)||Vi||Vj |

≤ 1
n2

∑
(i,j)∈[k]×[k]

|S(i, j)−R(i, j)| (n+ k)
k

(n+ k)
k

≤ d̂+ k

n
+ k2

n2 ≤ d̂+ ε. (as n > 2K/ε)

Since, by construction, G is reducible to S ∈ P∗, we must have G ∈ P . Hence, d ≤ d1(Γ, G) ≤
d̂+ ε. J

C. Hoppen, Y. Kohayakawa, R. Lang, H. Lefmann, and H. Stagni 35:11

Proof of Theorem 1. Let P be an f -recoverable graph property. Fix ε > 0 and let K =
f(ε/6), so that by Theorem 18 we have∣∣∣∣∣d1(Γ,P)− min

R∈Γ/ΠK

d1(R,P∗)

∣∣∣∣∣ ≤ ε

3 , (2)

whenever |V (Γ)| > 12K/ε.
Let ẑ : G → R be the graph parameter defined by ẑ(Γ) = minR∈Γ/ΠK

z∗(R), where
z∗(R) = d1(R,P∗). By the triangle inequality, given R and R′ in G∗(V), we have z∗(R) ≤
d1(R,R′) + z∗(R′) and z∗(R′) ≤ d1(R,R′) + z∗(R), so that |z∗(R) − z∗(R′)| ≤ d1(R,R′).
Theorem 6 applies, and ẑ is estimable with sample complexity q(ε) = 2poly(K/ε). Hence, with
probability at least 2/3, a sample Γ = G(q(ε/3),Γ) of Γ is such that |ẑ(Γ) − ẑ(Γ)| ≤ ε/3.
By (2) we have |d1(Γ,P) − ẑ(Γ)| ≤ ε/3. On the other hand, we can also apply (2) to Γ
to obtain |ẑ(Γ) − d1(Γ,P)| ≤ ε/3. Using the triangle inequality along with the last three
inequalities, we obtain |d1(Γ,P)− d1(Γ,P)| ≤ ε. J

Proof of Corollary 2. Fox [15] proved Lemma 11 when F = {F} avoiding the Szemerédi
Regularity Lemma and thus obtained better bounds on the size of δ > 0 (and n0). More
specifically his result implies the following. For every fixed finite family F of graphs, Lemma 11
holds with both 1/δ and n0 bounded by TOWER(O(log(1/ε))) as M = M(F) is a constant.
Hence, by Theorem 16 we have that if F is finite, then Forb(F) is f -recoverable, where
f(ε) = TOWER(poly(log(1/ε))). J

The structure of the proof of Theorem 3 is analogous to that of Theorem 1. Recall that
Forb∗hom(R,F) = {S ≤ R : t(F, S) = 0, for every F ∈ F}, and set

ex∗(R,F) = 1
2|V (R)|2 max

S∈Forb∗hom(R,F)
e(S),

which measures the largest edge density of a subgraph of R not containing a copy of any
F ∈ F .

We shall derive Theorem 3 from the following auxiliary result, whose proof is omitted.

I Theorem 19. Let F be a family of graphs such that Forb(F) is f-recoverable for some
function f : (0, 1] → R. Then, for any ε > 0, there exists K = f(poly(1/ε)) and N =
poly(K) such that for any graph Γ of size n ≥ N it holds that

log2 |Forb(Γ,F)|
n2 = max

R∈Γ/ΠK

ex∗(R,F)± ε.

Proof of Theorem 3. Let F be a family of graphs such that Forb(F) is f -recoverable. Fix
ε > 0 and let K = f(ε/6), so that by Theorem 19 we have∣∣∣∣∣ log2 |Forb(Γ,F)|

n2 − max
R∈Γ/ΠK

ex∗(R,F)

∣∣∣∣∣ ≤ ε

3 ,

whenever |V (Γ)| > N .
Let ẑ : G → R be the graph parameter defined by ẑ(Γ) = maxR∈Γ/ΠK

z∗(R), where
z∗(R) = ex∗(R,F). We claim that, given R and R′ in G∗(V), we have |z∗(R) − z∗(R′)| ≤
d1(R,R′). Indeed, assume without loss of generality that z∗(R) ≥ z∗(R′) and fix a subgraph
S ≤ R such that S ∈ Forb∗hom(R,F) and z∗(R) = e(S)/(2|V (R)|2). If S ∈ Forb∗hom(R′,F),

APPROX/RANDOM’16

35:12 Estimating Parameters Associated with Monotone Properties

we are done, so assume that this is not the case. Let S′ be a subgraph of S and R′ maximizing
e(S′). Clearly,

e(S′) ≥ e(S)− 1
2

∑
(i,j)∈V×V

|R(i, j)−R′(i, j)| ≥ e(S)− |V |2 d1(R,R′),

so that 0 ≤ z∗(R)− z∗(R′) ≤ 1
2 |V |

−2 (e(S)− e(S′)) ≤ d1(R,R′).
We now apply Theorem 6 to conclude that ẑ is estimable with sample complexity

q(ε) = 2poly(K/ε). It follows that, with probability at least 2/3, a sample Γ = G(q(ε/3), G) of
G is such that |ẑ(Γ)− ẑ(Γ)| ≤ ε/3. By (2) we have

∣∣n−2 log2 |Forb(Γ,F)| − ẑ(Γ)
∣∣ ≤ ε/3. On

the other hand, we can also apply (2) to Γ to obtain
∣∣ẑ(Γ)− q(ε/3)−2 log2 |Forb(Γ,F)|

∣∣ ≤ ε/3.
By adding the last three inequalities, we get that∣∣∣∣ 1

n2 log2 |Forb(Γ,F)| − 1
q(ε/3)2 log2 |Forb(Γ,F)|

∣∣∣∣ ≤ ε,
as required. J

Corollary 4 follows directly from Theorem 3, just as Corollary 2 is a direct consequence of
Theorem 1.

4 Concluding remarks

Here, we have restricted ourselves to graphs and graph properties. No substantial problems
arise if one wishes to cover tournaments or directed graphs: it suffices to consider ordered
graphs, that is, graphs whose vertex sets are linearly ordered, with weights on the edges,
with negative weights allowed (in fact, one can consider matrices with entries in [−1, 1]).
Details are worked out in the journal version of this extended abstract.

We believe it would be interesting to investigate in more detail the notion of recoverability.
For instance, when is a property f(ε)-recoverable for f(ε) polynomial in 1/ε?

Acknowledgements. The authors thank the referees for their helpful comments.

References
1 Noga Alon, Richard A. Duke, Hanno Lefmann, Vojtěch Rödl, and Raphael Yuster. The

algorithmic aspects of the regularity lemma. J. Algorithms, 16(1):80–109, 1994. doi:
10.1006/jagm.1994.1005.

2 Noga Alon, Eldar Fischer, Michael Krivelevich, and Mario Szegedy. Efficient testing of
large graphs. Combinatorica, 20(4):451–476, 2000. doi:10.1007/s004930070001.

3 Noga Alon, Eldar Fischer, Ilan Newman, and Asaf Shapira. A combinatorial characteriza-
tion of the testable graph properties: it’s all about regularity. SIAM J. Comput., 39(1):143–
167, 2009. doi:10.1137/060667177.

4 Noga Alon and Asaf Shapira. A characterization of the (natural) graph properties testable
with one-sided error. SIAM J. Comput., 37(6):1703–1727, 2008. doi:10.1137/06064888X.

5 Noga Alon and Asaf Shapira. Every monotone graph property is testable. SIAM J. Comput.,
38(2):505–522, 2008. doi:10.1137/050633445.

6 Noga Alon, Asaf Shapira, and Benny Sudakov. Additive approximation for edge-deletion
problems. Ann. of Math. (2), 170(1):371–411, 2009. doi:10.4007/annals.2009.170.371.

7 Jean-Pierre Barthélémy and Bernard Monjardet. The median procedure in cluster ana-
lysis and social choice theory. Math. Social Sci., 1(3):235–267, 1980/81. doi:10.1016/
0165-4896(81)90041-X.

http://dx.doi.org/10.1006/jagm.1994.1005
http://dx.doi.org/10.1006/jagm.1994.1005
http://dx.doi.org/10.1007/s004930070001
http://dx.doi.org/10.1137/060667177
http://dx.doi.org/10.1137/06064888X
http://dx.doi.org/10.1137/050633445
http://dx.doi.org/10.4007/annals.2009.170.371
http://dx.doi.org/10.1016/0165-4896(81)90041-X
http://dx.doi.org/10.1016/0165-4896(81)90041-X

C. Hoppen, Y. Kohayakawa, R. Lang, H. Lefmann, and H. Stagni 35:13

8 Béla Bollobás. Hereditary properties of graphs: asymptotic enumeration, global structure,
and colouring. Doc. Math., pages 333–342 (electronic), 1998. Extra Vol. III.

9 Christian Borgs, Jennifer T. Chayes, László Lovász, Vera T. Sós, and Katalin Veszter-
gombi. Convergent sequences of dense graphs. I. Subgraph frequencies, metric properties
and testing. Adv. Math., 219(6):1801–1851, 2008. doi:10.1016/j.aim.2008.07.008.

10 Irène Charon and Olivier Hudry. An updated survey on the linear ordering problem for
weighted or unweighted tournaments. Ann. Oper. Res., 175:107–158, 2010. doi:10.1007/
s10479-009-0648-7.

11 David Conlon and Jacob Fox. Bounds for graph regularity and removal lemmas. Geom.
Funct. Anal., 22(5):1191–1256, 2012. doi:10.1007/s00039-012-0171-x.

12 Paul Erdős, Péter Frankl, and Vojtěch Rödl. The asymptotic number of graphs not con-
taining a fixed subgraph and a problem for hypergraphs having no exponent. Graphs and
Combinatorics, 2(1):113–121, 1986. doi:10.1007/BF01788085.

13 Paul Erdős, Daniel J. Kleitman, and Bruce L. Rothschild. Asymptotic enumeration of Kn-
free graphs. In Colloquio Internazionale sulle Teorie Combinatorie (Rome, 1973), Tomo
II, pages 19–27. Atti dei Convegni Lincei, No. 17. Accad. Naz. Lincei, Rome, 1976.

14 Eldar Fischer and Ilan Newman. Testing versus estimation of graph properties. SIAM J.
Comput., 37(2):482–501 (electronic), 2007. doi:10.1137/060652324.

15 Jacob Fox. A new proof of the graph removal lemma. Ann. of Math. (2), 174(1):561–579,
2011. doi:10.4007/annals.2011.174.1.17.

16 Alan Frieze and Ravi Kannan. Quick approximation to matrices and applications. Com-
binatorica, 19(2):175–220, 1999. doi:10.1007/s004930050052.

17 Z. Füredi. Extremal hypergraphs and combinatorial geometry. In S. D. Chatterji, editor,
Proceedings of the International Congress of Mathematicians: August 3–11, 1994 Zürich,
Switzerland, pages 1343–1352. Birkhäuser Basel, 1995. doi:10.1007/978-3-0348-9078-6_
65.

18 Oded Goldreich, editor. Property Testing – Current Research and Surveys [outgrow of a
workshop at the Institute for Computer Science ITCS) at Tsinghua University, January
2010], volume 6390 of Lecture Notes in Computer Science. Springer, 2010. doi:10.1007/
978-3-642-16367-8.

19 Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to
learning and approximation. J. ACM, 45(4):653–750, 1998. doi:10.1145/285055.285060.

20 Oded Goldreich and Luca Trevisan. Three theorems regarding testing graph properties.
Random Structures Algorithms, 23(1):23–57, 2003. doi:10.1002/rsa.10078.

21 William T. Gowers. Lower bounds of tower type for Szemerédi’s uniformity lemma. Geom.
Funct. Anal., 7(2):322–337, 1997. doi:10.1007/PL00001621.

22 László Lovász and Balázs Szegedy. Szemerédi’s lemma for the analyst. Geom. Funct. Anal.,
17(1):252–270, 2007. doi:10.1007/s00039-007-0599-6.

23 Michal Parnas, Dana Ron, and Ronitt Rubinfeld. Tolerant property testing and distance
approximation. J. Comput. System Sci., 72(6):1012–1042, 2006. doi:10.1016/j.jcss.
2006.03.002.

24 Endre Szemerédi. Regular partitions of graphs. In Problèmes combinatoires et théorie
des graphes (Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976), volume 260 of Colloq.
Internat. CNRS, pages 399–401. CNRS, Paris, 1978.

APPROX/RANDOM’16

http://dx.doi.org/10.1016/j.aim.2008.07.008
http://dx.doi.org/10.1007/s10479-009-0648-7
http://dx.doi.org/10.1007/s10479-009-0648-7
http://dx.doi.org/10.1007/s00039-012-0171-x
http://dx.doi.org/10.1007/BF01788085
http://dx.doi.org/10.1137/060652324
http://dx.doi.org/10.4007/annals.2011.174.1.17
http://dx.doi.org/10.1007/s004930050052
http://dx.doi.org/10.1007/978-3-0348-9078-6_65
http://dx.doi.org/10.1007/978-3-0348-9078-6_65
http://dx.doi.org/10.1007/978-3-642-16367-8
http://dx.doi.org/10.1007/978-3-642-16367-8
http://dx.doi.org/10.1145/285055.285060
http://dx.doi.org/10.1002/rsa.10078
http://dx.doi.org/10.1007/PL00001621
http://dx.doi.org/10.1007/s00039-007-0599-6
http://dx.doi.org/10.1016/j.jcss.2006.03.002
http://dx.doi.org/10.1016/j.jcss.2006.03.002

Stable Matching with Evolving Preferences∗

Varun Kanade1, Nikos Leonardos2, and Frédéric Magniez3

1 University of Oxford, U.K.
varunk@cs.ox.ac.uk

2 University of Athens, Greece
nikos.leonardos@gmail.com

3 CNRS and IRIF, Univ Paris Diderot, Sorbonne Paris-Cité, France
frederic.magniez@cnrs.fr

Abstract
We consider the problem of stable matching with dynamic preference lists. At each time-step, the
preference list of some player may change by swapping random adjacent members. The goal of a
central agency (algorithm) is to maintain an approximately stable matching, in terms of number
of blocking pairs, at all time-steps. The changes in the preference lists are not reported to the
algorithm, but must instead be probed explicitly. We design an algorithm that in expectation
and with high probability maintains a matching that has at most O((logn)2) blocking pairs.

1998 ACM Subject Classification F.1.2 Models of Computation

Keywords and phrases Stable Matching, Dynamic Data

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2016.36

1 Introduction

In the world of massive and distributed data, it is hardly reasonable to assume that data are
static. Yet, one must design algorithms that maintain a solution for a given problem that is
(approximately) consistent with the requirements, e.g., a permutation that is almost sorted.
Thus, it is important to design algorithms and data structures that are robust to changes in
their input, i.e., they produce an output with some performance guarantee (quickly).

There are a few different dynamic data models that have been considered. The area
of dynamic graph algorithms consists of maintaining some property or structure, such as
connectivity, matchings, or spanning trees, even when the underlying graphs are changing [3,
11, 10, 5]. Here, it is assumed that the changes to the graph may be arbitrary, but are
reported to the algorithm; and the focus is on designing data structures and algorithms that
adapt efficiently (typically in terms of computational time) to changes in the input. The
area of streaming algorithms studies the setting where the data can only be accessed as a
stream and the focus is on producing the desired output with highly space-efficient procedures
(typically poly-logarithmic in the size of the input). In the area of online algorithms, one
must design procedures that, even when data is revealed bit by bit, produce an output that
is competitive with algorithms that see the entire input at once.

Recently, Anagnostopoulos et al. [1] proposed the evolving data model to take into
account the dynamic aspects of massive data. In this model, the changes to the data are not

∗ Partially supported by the French ANR Blanc project ANR-12-BS02-005 (RDAM) and the European
Commission IST STREP project Quantum Algorithms (QALGO) 600700. Most of the work was carried
out when V.K and N.L. were at LIAFA (now IRIF). During this time V.K. was supported by the
Fondation Sciences Mathématiques de Paris (FSMP).

© Varun Kanade, Nikos Leonardos, and Frédéric Magniez;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016).
Editors: Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans; Article No. 36; pp. 36:1–36:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.36
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

36:2 Stable Matching with Evolving Preferences

revealed to the algorithm; instead, an algorithm has query access to the data. However, it is
assumed that the changes to the data are stochastic, not adversarial. In this setting, the focus
is not on computational complexity (which is allowed to be polynomial at each time-step),
but query complexity, the number of probes made by the algorithm. Anagnostopoulos et
al. [1] studied the problem of maintaining the minimum element of a permutation and
an approximately sorted permutation, motivated by questions such as maintaining high
(page)-ranked pages. In their setup, a permutation evolves by choosing a random element
and swapping it with an adjacent element. In later work, Anagnostopoulos et al. [2] studied
evolving graph models and problems such as s-t connectivity and minimum spanning tree.

In this work, our aim is to bring this notion to game theory starting from the basic
problem of computing a stable matching. In other words, we introduce the notion of evolving
agents, who may not report any updates to their strategy (or preferences) without an explicit
request. In the stable matching problem, the input consists of two sets A,B of equal size, and
for each member a total order (preference) over members in the other set. Given a matching
between A and B, a pair (x, y) with x ∈ A and y ∈ B is blocking if they prefer each other
to their matches. A matching is stable if there are no blocking pairs. Gale and Shapley
showed that a stable matching always exists and can be found by an efficient algorithm [4].
We consider the setting where the preference lists evolve over time. The preference lists can
evolve over time, by swapping adjacent elements. More precisely, while the algorithm can
perform one query per time-step, we assume that a total number of α swaps events also
occur, where α = Θ(1) is some fixed parameter, called the evolution rate. This assumption
is similar to previous works and models the critical regime: with less evolution events the
input is basically static, and with more the input evolves too fast. The goal is to maintain a
matching that has few blocking pairs.

We summarize our results as follows. All three statements hold in expectation and with
high probability.
1. Using the results of Anagnostopoulos et al. [1] for sorting permutations, we design an

algorithm that maintains a matching with at most O(n logn) blocking pairs, at all time-
steps after roughly the first n2 logn steps (Theorem 6). Also, we observe that any analysis
that uses their method as a black-box, cannot improve on this bound (Remark 7).1

2. In a restricted setting, where only one side, say the B side, has evolving preference lists,
and if the A side has uniform random permutations as preference lists (known to the
central agency), we design an algorithm that maintains a matching with O(logn) blocking
pairs at all time-steps after roughly the first n logn steps (Theorem 8).

3. Finally, we design an algorithm in the general setting, that maintains a matching with
at most O((logn)2) blocking pairs at all time-steps after roughly the first n2 logn steps
(Theorem 14).

2 Preliminaries

In the rest of the paper, n ≥ 1 denotes an integer parameter and [n] the set of integers
{1, 2, . . . , n}. For a non-negative random variable X, parametrized by some integer n, we
write “X = O(f(n)) in expectation and with high probability” when for any constant c there
exist constants n0, c

′, c′′ > 0 such that E[X] ≤ c′f(n) and Pr(X > c′′f(n)) ≤ n−c, for every
integer n ≥ n0.

1 We don’t rule out the possibility that a more fine-grained analysis of the algorithm may give better
bounds; instead we design new algorithms.

V. Kanade, N. Leonardos, and F. Magniez 36:3

2.1 Stable Matching
We only consider the bipartite stable matching problem, also known as stable marriage.
There are two sets of players A and B, with |A| = |B| = n. Each player x ∈ A (y ∈ B) holds
a permutation of B (A), denoted πx : B → [n] (πy : A → [n]) indicating their preferences
over players in the set B (A). Thus, for y ∈ B, πx(y) denotes the rank of y in x’s preference
list (where 1 is the highest rank).

Let M : A → B be a matching (a bijection). A pair (x, y) is said to be blocking if
y ≺πx M(x) and x ≺πy M

−1(y), where z ≺π z′ indicates that z is ranked higher than z′

according to permutation π (i.e., π(z) < π(z′)). In words, x prefers y to M(x) and y prefers
x to M−1(y).

A matching M is stable if there are no blocking pairs. Then the stable matching problem
is to find a stable matching given preference lists {πz : z ∈ A ∪B)}. Gale and Shapley [4]
proved that a stable matching always exists, and gave an algorithm that given the preferences
lists as input finds a stable matching in O(n2) time.

The Gale-Shapley algorithm is simple to describe. Only players in the set A make
proposals. Initially all players are unmatched. Let M denote a partial matching at some
point. If there is an unmatched player x ∈ A, x makes a proposal to y ∈ B, where y is the
highest-ranked player in πx to whom x has not yet proposed. If y is unmatched, or prefers x
to M−1(y), then y accepts the proposal and we set M(x) = y. In the latter case, the agent
previously matched to y, i.e., M−1(y) before M was updated, becomes unmatched once
more. Gale and Shapley showed that this algorithm always results in a stable matching.

Wilson [12] studied the problem where all the preference lists are independent and
uniformly random permutations; in this case, he showed that the number of proposals made
by the Gale-Shapley algorithm is O(n logn) in expectation and with high probability (see
also [9]). In fact, only the proposing side needs to be random in their statement. We provide
a proof sketch for completeness.

I Theorem 1 ([12]). If the permutations {πx : x ∈ A} are chosen randomly, the number of
proposals made in the Gale-Shapley algorithm (where only A makes proposals) is O(n logn)
in expectation and with high probability.

Proof Sketch. Following the proof in [9] (see also [6]), analyze an alternative procedure
where every proposal is uniform over the whole of B. If it happens that x ∈ A proposes to
a y ∈ B that has already rejected x, then a rejection is guaranteed. It is not hard to show
that the number of proposals such an algorithm makes stochastically dominates the number
of proposals of the classical algorithm. Next, by the method of deferred decisions, fix the
randomness in the algorithm only when needed. Then observe that the number of proposals
is equal to the number of coupons chosen in the coupon-collector’s problem. J

2.2 Model for evolving input
A general framework for studying dynamic data was introduced in [1]. Here we are only
concerned with evolving preference lists (or permutations). In our model, we consider discrete
time-steps. In each time-step, the algorithm is competing against nature as follows: the
algorithm can query the input locally, nature lets the input evolve according to one or more
evolution events.

A query to the stable matching input is a triplet (z, u, v) ∈ (A × B2) ∪ (B × A2) and
the answer is whether πz(u) < πz(v). One evolution event consists of the following: pick
z ∈ A ∪ B and i ∈ [n − 1] uniformly at random and swap u = π−1

z (i) and v = π−1
z (i + 1)

(i.e., set πz(u) = i+ 1 and πz(v) = i).

APPROX/RANDOM’16

36:4 Stable Matching with Evolving Preferences

While the algorithm can perform one query per time-step, α evolution events also occur,
where α ≥ 1 is some integer called the evolution rate. We further assume that α = Θ(1),
meaning that evolution events occur basically as often than the algorithm probes. We
emphasize that the rate-limiting factor is the queries made by the algorithm. In particular,
the algorithm may perform arbitrary (polynomial-time) computations in between time-steps.
We are now ready to define our problem:

Evolving Stable Matching (ESM): Given query access to an instance of the stable
matching problem with evolution rate α = Θ(1), maintain a matching that minimizes
the number of blocking pairs.

2.3 Sorting evolving permutations
The problem of sorting a single evolving permutation has been already addressed in [1]. In
this context, the evolution rate is still constant, but denotes the evolution rate of this single
permutation. We will use the algorithm Quicksort of [1]. It is simply the randomized
version of quicksort which is shown to be robust with respect to an evolving input. The first
lemma shows that the running time of quicksort is not affected by evolution events.2

I Lemma 2 (Proposition 3 in [1]). The running time of Quicksort is O(n logn) in expect-
ation and with high probability, for any rate of evolution when the pairs to be swapped are
chosen randomly.

Second, Lemma 6 in [1] states that Quicksort when run on an evolving permutation π,
computes a permutation π̃ in which every element is approximately sorted. At time-step
t, let πt the denote the current permutation, and π̃t its approximation computed by the
algorithm.

I Lemma 3 (Lemma 6 in [1]). Let t be the time-step of completion of Quicksort, then given
an element u, the number of pairs (u, v) that the permutations πt and π̃t rank differently is
O(logn) in expectation and with high probability.

In our setting there are 2n evolving permutations over some set of n elements. Algorithm 1
simply sorts m (out of 2n) permutations, denoted by π1, . . . , πm using Quicksort one after
another. (We always invoke Algorithm 1 with either n or 2n permutations.)

Algorithm 1 : Sequential sorting

1: procedure SequentialSort({πj : j = 1, . . . ,m}) . Only have query access to input
2: for j = 1 to m do
3: π̃j ← Quicksort(πj)
4: return {π̃j : j = 1, . . . ,m}

Using Lemma 3 (Lemma 6 of [1]) we can argue that Algorithm 1 maintains all permutations
approximately sorted. While the evolving rate is still α = Θ(1), there are now 2n evolving
permutations, and the total number of evolution events is α per time-step.

2 We remark that Anagnostopoulos et al. [1] use ‘whp’ to denote events that hold with probability
1 − o(1), rather than the stronger notion we use in this paper. However, their proofs for the results
used in our paper actually prove the stronger bounds. They have other results that do not satisfy the
stronger notion and these are not used in our work.

V. Kanade, N. Leonardos, and F. Magniez 36:5

I Lemma 4. Let t be the time-step when Algorithm 1 terminates. Then, for m ≤ 2n, given
any element u and j ∈ [m], the number of pairs (u, v) that the permutations πtj and π̃tj rank
differently is O(logn) in expectation and with high probability.

Proof. Fix some j ∈ [n]. Suppose that π̃tj was computed at time-step t′ ≤ t (the time-step
when Quicksort for this particular list terminates). By Lemma 3 the statement holds for u
at time-step t′. Due to Lemma 2 we have t− t′ = O(n2 logn) with high probability. During
this time, the number of evolution steps that have swapped u with an adjacent element is
O(logn) with high probability. This follows from a balls-and-bins experiment where we throw
O(n2 logn) balls (corresponding to the evolution steps) into m(n− 1) bins (corresponding
to the adjacent pairs). It is known (see Exercise 3.1 in [9]) that in this particular case the
number of balls in every bin is of the order of its mean with high probability. Therefore,
during this time, at most O(logn) more elements may be swapped with u. J

2.4 Chernoff Bound with dependent variables
We will require the following extension of the Chernoff bound. It follows from (the more
general) Theorem 3.8 in [8].

I Theorem 5. For i ∈ [n], let Yi be a random variable over some set Yi and Xi be a
Boolean random variable. For any y ∈

∏n
i=1 Yi and k ∈ [n], let Ek(y) denote the event

Y1 = y1, . . . , Yk = yk. Suppose P[Xk = 1|Ek−1(y)] ≤ p, for all y and k as above. Then, for
any t ≥ 0,

P
[∑

Xk ≥ pn+ t
]
≤ exp

(
− 3t2

6pn+ 2t

)
.

3 Two simple cases

In this section we present two simple arguments in two different settings. First, we consider
how the original Gale-Shapley algorithm performs when run, without any modification, on
lists produced by running quicksort on the evolving input. We present a simple analysis
showing a bound of O(n logn) on the number of blocking pairs, which is better than the
trivial bound of order n2. Next, we analyze the Gale-Shapley algorithm when evolution
events only occur on one side and the preference lists are uniformly random permutations;
in particular the preference lists on the A side are chosen uniformly at random, and the
preference lists on the B-side are subject to evolution events.3 We present a simple analysis
showing an O(logn) bound on the number of blocking pairs for this special case.

3.1 A simple algorithm
Our first algorithm ignores evolution of preference lists and runs the standard Gale-Shapley
algorithm to produce a matching. More specifically, it first obtains the preferences lists
for all 2n agents using the Quicksort algorithm of [1] (i.e., using Algorithm 1) and then
produces a matching by running the Gale-Shapley algorithm on these lists (ignoring the fact
that these lists are only approximately correct).

3 Note that after sufficiently many time-steps (though still polynomial) the evolution events ensure that all
permutations are uniformly random. This follows from analyzing the mixing time of the corresponding
Markov chain over permutations. See for example the book [7].

APPROX/RANDOM’16

36:6 Stable Matching with Evolving Preferences

We show that this simple algorithm maintains a matching with at most O(n logn) blocking
pairs. Note that the number of blocking pairs is trivially at most n2. We further argue that
improving the bound would require new ideas that either go around Lemma 4 (Lemma 6 of
[1]) or improve the analysis in a substantial way.

Algorithm 2 runs in perpetuity. The matching M is maintained as the output until the
new matching based on the newly sorted preference lists can be computed.

Algorithm 2 : Simple dynamic stable matching

1: while True do
2: {π̃z : z ∈ A ∪B} ← SequentialSort({πz : z ∈ A ∪B}) . Calling Algorithm 1
3: return Gale-Shapley matchingM on the (approximately) sorted lists {π̃z : z ∈ A∪B}

I Theorem 6. For a sufficiently large constant c0 and any time-step t ≥ c0n
2 logn, Al-

gorithm 2 maintains a matching with O(n logn) blocking pairs in expectation and with high
probability.

Proof. We consider the number of blocking pairs at time-step T ≤ t when the current
matching M was computed. In the following discussion, we use the following notation: for
x ∈ A, y ∈ B, if M(x) = y, then M(y) = x (rather than M−1). At time-step T , for each
z ∈ A ∪B, define the indicator function Iz(w) to be 1 when M(z) ≺π̃z

w and w ≺πz
M(z)

and 0 otherwise. (We don’t explicitly use superscripts on the preference lists π as time-step
T is fixed until specified otherwise.) By Lemma 4, in expectation and with high probability,∑

w

Iz(w) =
∣∣{w : w ≺πz M(z) and M(z) ≺π̃z w}

∣∣ = O(logn), (1)

If a pair (x, y) is blocking at time-step T , then x ≺πy
M(y) and y ≺πx

M(x). Assume
x ≺π̃y M(y) and y ≺π̃x M(x). Since y ≺π̃x M(x), x must have proposed to y at some point
during the execution of the Gale-Shapley algorithm. By the properties of the Gale-Shapley
algorithm, y should have been matched to an element of A with rank according to π̃y at
least as high as the rank of x in π̃y. This contradicts x ≺π̃y M(y). It follows that either
M(y) ≺π̃y

x or M(x) ≺π̃x
y. Define U(x, y) to be 1 when (x, y) is blocking and 0 otherwise.

We have argued that

U(x, y) ≤ Ix(y) + Iy(x).

By the union bound, Equation 1 holds for every z ∈ A ∪B with high probability. Summing
over all pairs (x, y) and applying the union bound again∑

x,y

U(x, y) ≤
∑
x,y

Ix(y) + Iy(x) =
∑
x

(∑
y

Ix(y)
)

+
∑
y

(∑
x

Iy(x)
)

= O(n logn),

in expectation and with high probability.
Next, let t′ = t − T . We need to account for blocking pairs that may have arisen

during these t′ time-steps. First, we observe that by Lemma 2 and union bound, with high
probability t′ = O(n2 logn) (as otherwise another matching more up-to-date than the one
at time-step T would be available). During the t′ time-steps from T to t, evolution may
create a blocking pair only if the swap decreases the rank of M(z) in πz, for some z ∈ A∪B.
Therefore, each step of the evolution introduces—independently—a new blocking pair with

V. Kanade, N. Leonardos, and F. Magniez 36:7

A-side lists π
1 3 2 1 4 5 6 7
2 4 3 2 5 6 7 1
3 5 4 3 6 7 1 2
4 6 5 4 7 1 2 3
5 7 6 5 1 2 3 4
6 1 7 6 2 3 4 5
7 2 1 7 3 4 5 6

B-side lists π
1 6 7 1 5 4 3 2
2 7 1 2 6 5 4 3
3 1 2 3 7 6 5 4
4 2 3 4 1 7 6 5
5 3 4 5 2 1 7 6
6 4 5 6 3 2 1 7
7 5 6 7 4 3 2 1

A-side lists π̃
1 1 2 3 4 5 6 7
2 2 3 4 5 6 7 1
3 3 4 5 6 7 1 2
4 4 5 6 7 1 2 3
5 5 6 7 1 2 3 4
6 6 7 1 2 3 4 5
7 7 1 2 3 4 5 6

B-side lists π̃
1 1 7 6 5 4 3 2
2 2 1 7 6 5 4 3
3 3 2 1 7 6 5 4
4 4 3 2 1 7 6 5
5 5 4 3 2 1 7 6
6 6 5 4 3 2 1 7
7 7 6 5 4 3 2 1

Figure 1 Instances π and π̃ demonstrating tightness of Algorithm 2.

probability at most α/(n− 1). The expected number of blocking pairs introduced is therefore
at most O(n logn) for α = Θ(1) (and assuming t′ = O(n2 logn)). The result follows by a
simple application of the Chernoff and union bounds. J

I Remark 7. We present a pair of instances to the stable matching problem with preference
lists πz and π̃z for z ∈ A ∪ B, for which the conclusion of Lemma 4 is satisfied, i.e., for
any z the number of pairs (i, j) that are ordered differently in πz and π̃z are O(logn). We
then show that a matching that is stable with respect to π̃ as preference lists has Ω(n logn)
blocking pairs with respect to π. Thus, it follows that using the Quicksort algorithm of
Anagnostopoulos et al. [1] and its analysis as a blackbox will not result in a stronger result
than the one provided in Theorem 6.

First, we define the preference lists π̃z for z ∈ A ∪B. Let A = B = [n]. Then for x ∈ A,
the preference list (ranking) π̃x is defined as x, x+ 1, . . . , n, 1, 2, . . . , x− 1. On the other hand
for y ∈ B, the preference list (ranking) π̃y is defined as y, y − 1, . . . , 1, n, n − 1, . . . , y + 1.
The rankings πz, z ∈ A ∪B, are now defined as follows: let k be some parameter, πz simply
as the elements at rank 1 and k swapped. Figure 1 shows an example with n = 7 and
k = 3. Clearly, when k = Θ(logn), πz and π̃z satisfy the conclusion of Lemma 4. Yet, it is
easy to see that M(i) = i is a stable matching for the preference lists π̃z, z ∈ A ∪ B, and
for this matching with respect to the preference lists πz, z ∈ A ∪ B, every pair (i, j) with
0 < j − i < k is a blocking pair.

3.2 One-sided evolution
In this section we analyze how the Gale-Shapley algorithm performs when the initial preference
lists are random, but there is no evolution on the lists of the elements in A. Furthermore, we
are going to assume that the algorithm knows each permutation in {πx : x ∈ A}. We call
this setting one-sided evolution.

In this setting, the standard Gale-Shapley algorithm is implemented (basic pseudocode
is shown in Algorithm 3). Note that the only time the preference lists on the B-side are
used is in Line 11. Thus, it is only for these steps that we need to query the input (since
the preference lists on the A-side are known to the algorithm). Thus, the number of queries
made by the algorithm is bounded by the number of proposals. It was already observed
that the number of proposals made in a random instance of the stable matching problem
is O(n logn). The actual algorithm keeps implementing the Gale-Shapley algorithm from
scratch after completion. The matching from the previous completed run is used as the
current matching. We prove the following result for the one-sided evolution setting.

APPROX/RANDOM’16

36:8 Stable Matching with Evolving Preferences

Algorithm 3 Gale-Shapley Algorithm
1: M ← φ . Initialize empty matching
2: for x ∈ A do
3: new_match ← False
4: p← x

5: while new_match = False do
6: y ← first as yet unproposed as per πp
7: if M(y) not yet set then
8: M(p)← y

9: M(y)← p

10: new_match = True
11: else if p ≺πy M(y) then . y prefers p to M(y)
12: p′ ←M(y)
13: M(y)← p

14: M(p)← y

15: p← p′

16: return M

I Theorem 8. For a sufficiently large constant c0 and any time-step t ≥ c0n logn, the
Gale-Shapley algorithm (repeatedly run and using the matching of the last completed run as
the output) under one-sided evolution maintains a matching with at most O(logn) blocking
pairs in expectation and with high probability.

Proof. To prove the bound on the number of blocking pairs, call an evolution event on y’s list
critical if it involves the then match of y. Suppose that after the algorithm terminates, y ∈ B
is involved in k blocking pairs (x1, y), . . . , (xk, y). We observe that each one of the x1, . . . , xk
was involved in at least one critical evolution step. To see this note that if (x, y) is blocking,
then x proposed to y during the execution of the algorithm and got rejected subsequently
(because πx didn’t change and y ≺πx M(x)). But since at the end of the execution it forms
a blocking pair, it must ranked higher than M(y). This is only possible if x was swapped
with the then match of y in some evolution event during the execution of the algorithm.

Given this observation, we estimate the number of blocking pairs by estimating the
number of critical evolution steps. Note that an evolution step is critical with probability at
most 2α/(n− 1) (at most 2n out of n(n− 1) pairs involve the matching). Let T be a random
variable equal to the number of proposals before the algorithm outputs a matching and label
the corresponding time-steps as 1, 2, . . . , T . For each step k, let Xk be a Boolean random
variable that is equal to 1 if at the time-step labeled k some evolution event was critical.

First note that from a coupon-collecting argument as in Theorem 1 it follows that
T = O(n logn) in expectation and with high probability. This is because for that argument
the distribution of {πy : y ∈ B} is irrelevant and {πx : x ∈ A} being random permutations
suffices. Therefore, we may fix an appropriately large constant C so that T ≤ Cn logn with
high probability and let m = Cn logn. As noted above, at any given step and given any
information from the previous steps, an evolution step is critical with probability at most
2α/(n− 1); thus, by Theorem 5,

P
[m∑
k=1

Xk > 2C logn
]

= O(n−C),

V. Kanade, N. Leonardos, and F. Magniez 36:9

for sufficiently large C. We have

P
[T∑
k=1

Xk > 2C logn
]
≤ P

[
T > Cn logn

]
+ P

[(T∑
k=1

Xk > 2C logn
)
∧
(
T ≤ Cn logn

)]
≤ P

[
T > Cn logn

]
+ P

[m∑
k=1

Xk > 2C logn
]
.

By the observation at the beginning of this paragraph the claimed bound holds with high
probability. The bound on the expectation follows by noting that there can be at most n2

blocking pairs.
Finally, note that there will be at most O(n logn) time-steps before a new matching is

computed. As in the final paragraph in the proof of Theorem 6, one can show that evolution
cannot produce more than O(logn) blocking pairs in these many steps. J

4 General Case: Improved algorithm

We now consider the general setting where the preference lists on both sides may be evolving.
We present a modified version of the Gale-Shapley algorithm that takes advantage of Lemma 4
(Lemma 6 of [1]) and maintains a stable matching with at most O((logn)2) blocking pairs.
The algorithm consists of two separate processes that run in an interleaved fashion: the
sorting process on even time-steps and the matching process on odd ones. The sorting process
is basically a call to SequentialSort({πx | x ∈ A}) that produces approximately sorted
preference lists on the A side, {π̃x | x ∈ A}. The algorithm runs in perpetuity, in the sense
that as soon as it terminates it restarts, though the copies {π̃x | x ∈ A} from the previous
execution are retained to be used by the stable matching process. Initially, the π̃x are set to
be random permutations, thus, for the first O(n2 logn) steps, until one run of the sorting
process is complete, the matching output by the algorithm will be garbage.

Algorithm 4 : Interleaving Sorting and Matching

1: for t = 1, 2, . . . do
2: if t is Even then
3: Perform query for Algorithm 1
4: else if t is Odd then
5: Perform query for Algorithm 5

We note that what is counted here is only time-steps; making queries is the bottleneck.
Additional computations required by the algorithm can be performed in between time-steps
at no additional cost.

The sorting process performs queries only during even steps and its purpose it to keep
the preference list of each x ∈ A approximately sorted, where by approximately sorted we
meant that the conclusion of Lemma 4 holds.

The matching process performs queries during odd steps. Our stable matching algorithm,
which is a variant of the Gale-Shapley algorithm, is presented in Algorithm 5. Note that the
{π̃x | x ∈ A} used in Algorithm 5 are static and are the output of the latest completed run
of Algorithm 1. However, the comparisons made are all on dynamic data. The difference
from the standard Gale-Shapley algorithm is that whenever some x ∈ A is about to make
a proposal, first the best y ∈ B among the O(logn) highest ranked as per the ranking π̃x
that have not yet rejected x is found. Note however, that the best is with respect to the

APPROX/RANDOM’16

36:10 Stable Matching with Evolving Preferences

dynamic (current) preference list πx (otherwise, it would be trivial since π̃x is static). This
operation is basically the algorithm to find the minimum element, which can be implemented
in O(logn) time using only comparison queries (see Section 3 in [1]). We don’t need to use
any particular result regarding finding the minimum element; instead, we incorporate the
errors that may have occurred while finding the minimum due to the dynamic nature of the
data, into our stable matching analysis directly.

Algorithm 5 : Modified Gale-Shapley Algorithm

1: M ← ∅
2: for x ∈ A do
3: new_match← False
4: p← x

5: while new_match = False do
6: S ← C logn highest-ranked, not-yet-proposed elements in B per π̃x
7: y ← best(S) . Best with respect to dynamic πx
8: if M(y) not yet set then
9: M(p)← y

10: M(y)← p

11: new_match← True
12: else if p ≺πy

M(y) then
13: p′ ←M(y)
14: M(y)← p

15: M(p)← y

16: p← p′

17: return M

We first describe the high-level idea of the proof. The sorting process needs O(n2 logn)
comparisons with high probability. The approximations {π̃x : x ∈ A} of {πx : x ∈ A} that are
being computed are used by the modified Gale-Shapley algorithm. By Lemma 4 we are able
to claim that for any element u in the preference list of any x ∈ A, the number of pairs (u, v)
that are ordered differently in π̃x and πx are O(logn). Therefore, when x is about to propose
it suffices to look among O(logn) elements in π̃x to find the y to which the proposal will be
made. Since the matching process is expected to make O(n logn) proposals, it is expected to
require O(n(logn)2) comparisons. It turns out that, during these steps, evolution creates a
blocking pair with probability at most α/n. Therefore we expect O((logn)2) blocking pairs.

We now provide the details of the proof. In order to bound the number of blocking pairs,
it is crucial that during the matching process not too many queries are made, or alternatively
that not too many proposals are made. We therefore need an analog of Theorem 1. To
apply the coupon-collecting argument from the proof of that theorem we prove the following
lemma.

I Lemma 9. Provided πx was chosen uniformly at random at time-step 0 and only comparison
queries are made, the element y chosen at line 7 of Algorithm 5 is a random element from
the subset of B to which x has not by that point made any proposals.

Proof. The proof of the lemma relies on the fact that the dynamic quicksort algorithm
used to obtain π̃x for x ∈ A and the procedure used to find the best element in line 7 of
Algorithm 5 only use comparison queries.

Let πx be the preference list of x before the first comparison is queried. Fix an arbitrary

V. Kanade, N. Leonardos, and F. Magniez 36:11

sequence of evolution steps that occurs during the computation of y. Suppose that given
these choices of nature, y = πx(k). Then, given the same evolution steps, for any other
permutation π′x, y = π′x(k). Since πx is a random permutation, y = πx(k) is a random
element of σx. J

I Remark 10. We remark that the requirement on the implementation of Quicksort and
best using only comparison queries is necessary and the lemma does not hold for an arbitrary
algorithm.

I Lemma 11. The number of proposals during one execution of the matching process is
O(n logn) in expectation and with high probability.

Proof. Suppose x proposes to y and at that point k elements of B are unmatched. Note
that it must be the case that x has not proposed to any of these elements (otherwise, they
would not be currently unmatched). Thus, by the previous lemma, each of these k elements
receives a proposal with probability at least 1/n. The stated bound follows from the analysis
of coupon collector’s problem as in Theorem 1. J

As in the one-sided setting, the analysis will rely on estimating the occurrence of a specific
kind of critical evolution steps. In the present case the definition of a critical evolution step
is a little more involved than its one-sided counterpart.

I Definition 12. An evolution event on the preference list πz of z ∈ A ∪B is critical if one
of the following holds:
1. An evolution event involves a swap of the then match of z, M(z).
2. If z ∈ A, the evolution event involves swapping the then best element as per πz to which

z has not yet proposed.

The following lemma establishes the link between the critical evolution steps and the
number of blocking pairs.

I Lemma 13. Assume that for the duration of one run of the matching process, the preference
lists {πz | z ∈ A∪B} satisfy the conditions of Lemma 4, and suppose that (x, y) is a blocking
pair with respect to the returned matching. Then there was a critical evolution event on the
preference list of at least one of x and y during the execution of the matching process.

Proof. First consider the case that x proposed to y during the execution of the matching
process. It follows that y rejected x at some point in favor of some other element. When x
was rejected, the then M(y) satisfies M(y) ≺πy

x. Subsequently, M(y) may change but has
to become better, unless there was a swap that involves the then M(y), which is a critical
event on πy. Since, we know that in the end x ≺πy

x′, where x′ is the final match of y, there
must have been some evolution event where x was swapped with the then match of y. Thus,
by part 1 of Definition 12, a critical evolution event occurred on πy.

On the other hand, suppose x never proposed to y, and let y′ be the final match of x.
Suppose that when x proposed to y′, y ≺πx y

′; it follows that best on line 7 of Algorithm 5
failed to return the best element to which x had not yet proposed. Since, we are assuming
that π̃x is a sufficient approximation of πx, it must be because the actual best element was
swapped at least once while best was being executed. Thus, by part 2 of Definition 12, a
critical evolution event occurred on πx. Finally, if when x proposed to y′, it was the case that
y′ ≺πx y, but (x, y) is a blocking pair, it must be that y′ was involved in a swap subsequently
leading to a critical event involving x’s the then match. J

APPROX/RANDOM’16

36:12 Stable Matching with Evolving Preferences

I Theorem 14. Provided the initial preference lists are drawn randomly,4 for all z ∈ A ∪B,
for a sufficiently large constant c0 and any time-step t ≥ c0n

2 logn, Algorithm 5 maintains a
matching with at most O((logn)2) blocking pairs in expectation and with high probability.

Proof. As a result of Lemma 13, we can estimate the number of blocking pairs by estimating
the number of critical evolution steps. Let T be a random variable equal to the number of
queries of Algorithm 5 before it outputs a matching and label the corresponding time-steps
as 1, 2, . . . , T . For each step k, let Xk be a Boolean random variable that is equal to 1 if at
the time-step labeled k the evolution was critical. Furthermore, denote by E the event that
during these T time-steps the lists were approximately sorted. By Lemma 4, the event E
occurs with high probability.

By Lemma 11 it follows that T = O(n(logn)2) in expectation and with high probability,
since we are wasting O(logn) queries per proposal. Therefore, we may fix an appropriately
large constant C so that T ≤ Cn(logn)2 with high probability and let m = Cn(logn)2. Note
that—given any history of evolution steps—an evolution step is critical with probability at
most O(α/n), since for each z ∈ A∪B there is a constant number of elements that evolution
has to swap in order to be critical. Thus, by Theorem 5,

P
[m∑
k=1

Xk > 2C(logn)2
]

= O(n−C),

for sufficiently large C. We have

P
[T∑
k=1

Xk > 2C(logn)2
]
≤ P

[
T > Cn(logn)2]+ P[Ē]

+ P
[(T∑

k=1
Xk > 2C(logn)2

)
∧
(
T ≤ Cn(logn)2) ∧ E]

≤ P
[
T > Cn(logn)2]+ P[Ē] + P

[m∑
k=1

Xk > 2C(logn)2
]
.

It follows that the claimed bound holds with high probability. The bound on the expectation
follows by noting that there can be at most n2 blocking pairs. J

Acknowledgments. For earlier discussions, F.M. would like to thank Marcos Kiwi who,
among other things, introduced him to the line of works on evolving data and shared
preliminary thoughts on the possibility of computing stable matchings in this context. We
also thank a reviewer for (minor) corrections in our main theorem.

References
1 A. Anagnostopoulos, R. Kumar, M. Mahdian, and E. Upfal. Sorting and selection on

dynamic data. Theoretical Computer Science, 412(24):2564–2576, 2011. Selected Papers
from 36th International Colloquium on Automata, Languages and Programming. doi:
10.1016/j.tcs.2010.10.003.

4 This is not actually required, since after sufficiently long (though still polynomial) time, all the preference
lists will be close to random due to a mixing time argument on the set of permutations.

http://dx.doi.org/10.1016/j.tcs.2010.10.003
http://dx.doi.org/10.1016/j.tcs.2010.10.003

V. Kanade, N. Leonardos, and F. Magniez 36:13

2 A. Anagnostopoulos, R. Kumar, M. Mahdian, E. Upfal, and F. Vandin. Algorithms on
evolving graphs. In Proc. of 3rd Innovations in Theoretical Computer Science, 2012.

3 D. Eppstein, Z. Galil, and G. F. Italiano. Dynamic graph algorithms. In M. Atallah, editor,
Algorithms and Theory of Computation Handbook, chapter 8. CRC Press, 1999.

4 D. Gale and L. S. Shapley. College admissions and the stability of marriage. The American
Mathematical Monthly, 69(1):9–15, 1962.

5 M. Gupta and R. Peng. Fully dynamic (1+ e)-approximate matchings. In Proc. of 54th
IEEE Foundations of Computer Science, pages 548–557, Oct 2013. doi:10.1109/FOCS.
2013.65.

6 D. Knuth. Stable Marriage and Its Relation to Other Combinatorial Problems: An Intro-
duction to the Mathematical Analysis of Algorithms. CRM proceedings & lecture notes.
American Mathematical Society, 1997.

7 David Asher Levin, Yuval Peres, and Elizabeth Lee Wilmer. Markov Chains and Mixing
Times. American Mathematical Society, 2009.

8 C. McDiarmid. Concentration. In M. Habib, C. McDiarmid, J. Ramirez-Alfonsin, and
B. Reed, editors, Probabilistic Methods for Algorithmic Discrete Mathematics, volume 16
of Algorithms and Combinatorics, pages 195–248. Springer Berlin Heidelberg, 1998. doi:
10.1007/978-3-662-12788-9_6.

9 R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge International Series on
Parallel Computation. Cambridge University Press, 1995.

10 O. Neiman and S. Solomon. Simple deterministic algorithms for fully dynamic maximal
matching. In Proc. of 45th ACM Symposium on Theory of Computing, pages 745–754, 2013.
doi:10.1145/2488608.2488703.

11 K. Onak and R. Rubinfeld. Maintaining a large matching and a small vertex cover. In
Proc. of 42nd ACM Symposium on Theory of Computing, pages 457–464, 2010. doi:10.
1145/1806689.1806753.

12 L. B. Wilson. An analysis of the stable marriage assignment algorithm. BIT Numerical
Mathematics, 12(4):569–575, 1972.

APPROX/RANDOM’16

http://dx.doi.org/10.1109/FOCS.2013.65
http://dx.doi.org/10.1109/FOCS.2013.65
http://dx.doi.org/10.1007/978-3-662-12788-9_6
http://dx.doi.org/10.1007/978-3-662-12788-9_6
http://dx.doi.org/10.1145/2488608.2488703
http://dx.doi.org/10.1145/1806689.1806753
http://dx.doi.org/10.1145/1806689.1806753

An Õ(n) Queries Adaptive Tester for Unateness∗

Subhash Khot1 and Igor Shinkar2

1 Courant Institute of Mathematical Sciences, New York University, USA
khot@cims.nyu.edu

2 Courant Institute of Mathematical Sciences, New York University, USA
ishinkar@cims.nyu.edu

Abstract
We present an adaptive tester for the unateness property of Boolean functions. Given a function
f : {0, 1}n → {0, 1} the tester makes O(n log(n)/ε) adaptive queries to the function. The tester
always accepts a unate function, and rejects with probability at least 0.9 if a function is ε-far
from being unate.

1998 ACM Subject Classification F.1.1 Models of Computation

Keywords and phrases property testing, boolean functions, unateness

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2016.37

1 Introduction

A Boolean function f : {0, 1}n → {0, 1} is said to be unate if for every i ∈ [n] it is either the
case that f is monotone non-increasing in the i’th coordinate, or f is monotone non-decreasing
in the i’th coordinate. In this work we present an adaptive tester for the unateness property
that makes O(n log(n)/ε) adaptive queries to a given function. The tester always accepts a
unate function, and rejects with probability at least 0.9 any function that is ε-far from being
unate.

Testing unateness has been studied first in the paper of Goldreich et al. [10], where the
authors present a non-adaptive tester for unateness that makes O(n1.5/ε) queries. The tester
in [10] is the so-called “edge tester”, that works by querying the function on the endpoints of
O(n1.5/ε) uniformly random edges of the hypercube, i.e., uniformly random pairs (x, y) that
differ in one coordinate, and checking that there are no violations to the unateness property.

The notion of unateness generalizes the notion of monotonicity. Recall that a Boolean
function f : {0, 1}n → {0, 1} is said to be monotone if f(x) 6 f(y) for all x ≺ y, where ≺
denotes the natural partial order on Boolean strings, namely, x ≺ y if xi 6 yi for all i ∈ [n].
Since the original paper of [10] there has been a lot of research concerning the problem of
testing monotonicity of Boolean functions, as well as many closely related problems, such
as testing monotonicity on functions with different (non-Boolean) domains [8, 9, 4, 13, 5, 7,
6, 1, 2], culminating in a recent result of [11], which gives a Õ(

√
n/ε2)-query non-adaptive

tester for monotonicity. In this paper we will use the monotonicity tester of [10], which has a
better dependence on ε.

I Theorem 1 (Testing Monotonicity [10]). For any proximity parameter ε > 0 there exists a
non-adaptive tester for the monotonicity property that given a function f : {0, 1}n → {0, 1}
the tester makes O(n/ε) queries to the function. The tester always accepts a monotone

∗ Research supported by NSF grants CCF 1422159, 1061938, 0832795 and Simons Collaboration on
Algorithms and Geometry grant.

© Subhash Khot and Igor Shinkar;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016).
Editors: Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans; Article No. 37; pp. 37:1–37:7

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.37
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

37:2 An Õ(n) Queries Adaptive Tester for Unateness

function, and if a function is ε-far from being monotone, the tester finds a violation to
monotonicity with probability at least 0.99.

We remark that the monotonicity testers analyzed in [10, 5, 7, 11] are all pair testers
that pick pairs x ≺ y according to some distribution, and check that the given function
f does not violate monotonicity on this pair, i.e., checks that f(x) 6 f(y). It is not clear
whether a variant of such tester can be applied for testing unateness, since the function
can be monotone increasing in some of the coordinates where x and y differ, and monotone
decreasing in others.

1.1 Our result
In this paper we prove the following theorem.

I Theorem 2. For any proximity parameter ε > 0 there exists an adaptive tester for the
unateness property, that given a Boolean function f : {0, 1}n → {0, 1} makes O(n log(n)/ε)
adaptive queries to f . The tester always accepts a unate function, and rejects with probability
at least 0.9 any function that is ε-far from being unate.

The tester works as follows. Given a function f : {0, 1}n → {0, 1}, the tester first
finds a subset of coordinates T ⊆ [n] such that the function is essentially independent of
the coordinates outside T . Specifically, it finds a subset of coordinates T ⊆ [n] such that
Ez∈{0,1}T [Varw∈{0,1}[n]\T [f(zT ◦ wT)]] is small, i.e., if we pick x, y ∈ {0, 1}n that are equal
on their coordinates in T uniformly at random, then with high probability we will have
f(x) = f(y). Furthermore, for each i ∈ T the tester will find an edge (x, x + ei) in the
hypercube such that f(x) 6= f(x+ei) (where ei is the unit vector with 1 in the i’th coordinate)
Querying f on these two points gives a “direction” for monotonicity for each coordinate in T .

In the second part of the tester, we define a function that depends only on the coordinates
in T by fixing the variables outside T uniformly at random. We then apply the monotonicity
tester from Theorem 1 on this function with respect to the directions obtained for the
coordinates in T in the previous step, and output the answer of this tester. For the analysis,
we use the fact that on average the restricted function is close to the original function f ,
and hence is far from being unate. In particular, it is far from being a monotone function
with respect to the directions for the coordinates in T obtained in the first step. Hence
a monotonicity tester with high probability will find a violation of monotonicity in these
directions, which will serve as evidence that the function is not unate.

2 Preliminaries

I Definition 3. For two Boolean functions f, g : {0, 1}n → {0, 1} defined the distance
between them as distance(f, g) = Prx∈{0,1}n [f(x) 6= g(x)] = 2−n|{x ∈ {0, 1}n : f(x) 6= g(x)}|.
We say that f is ε-far from a collection of functions P if for any g ∈ P it holds that
distance(f, g) > ε.

I Definition 4. A Boolean function f : {0, 1}n → {0, 1} is said to be monotone non-
decreasing or simply monotone if f(x) 6 f(y) for all x ≺ y, where ≺ denotes the natural
partial order on Boolean strings i.e., x ≺ y if xi 6 yi for all i ∈ [n]. In other words, f is
monotone if for every i ∈ [n] the function f is monotone non-decreasing in the i’th coordinate.

For directions B = (bi ∈ {up, down} : i ∈ [n]) let the partial order ≺B be defined as
x ≺B y if for all i ∈ [n] such that bi = up it holds that xi 6 yi and for all for all i ∈ [n] such
that bi = down it holds that xi > yi. A Boolean function f : {0, 1}n → {0, 1} is said to be

S. Khot and I. Shinkar 37:3

monotone with respect to the directions B = {bi ∈ {up, down} : i ∈ [n]} if f(x) 6 f(y) for all
x ≺B y.

A Boolean function f : {0, 1}n → {0, 1} is said to be unate if it is monotone with
respect to some directions, i.e., if for every i ∈ [n] it is either the case that f is monotone
non-increasing in the i’th coordinate, or f is monotone non-decreasing in the i’th coordinate.

Next we make definitions related to restrictions of Boolean functions by fixing some of
the coordinates.

I Definition 5. Given a string x ∈ {0, 1}n and a subset of coordinates T ⊆ [n] denote by
xT the substring of x whose coordinates are indexed by T . Given two strings x, y ∈ {0, 1}n

and two disjoint subsets of coordinates S, T ⊆ [n] denote by xT ◦ yS the string z whose
coordinates are indexed by T ∪ S with zi = xi if i ∈ T and zi = yi if i ∈ S.

I Definition 6. Let f : {0, 1}n → {0, 1} be a Boolean function. For a subset of coordinates
T ⊆ [n] and w ∈ {0, 1}[n]\T denote by fT,w : {0, 1}n → {0, 1} the Boolean function defined
as fT,w(z) = f(zT ◦w[n]\T). That is, for each w ∈ {0, 1}[n]\T the function fT,w depends only
on the coordinates in T .

I Definition 7. Let f : {0, 1}n → {0, 1} be a Boolean function, and let T ⊆ [n] be a subset
of coordinates. Define Var[n]\T (f) = Ez∈{0,1}T [Varw∈{0,1}[n]\T [f(zT ◦ wT)]].

This quantity has been used before, e.g., in [12, 3]. It measures how much f is depends
on the coordinates outside T . In particular, if f depends only on the coordinates in T , (i.e.,
is independent of the coordinates in [n] \ T) then Var[n]\T (f) = 0.

The following proposition is straightforward from the definition.

I Proposition 8. Let f : {0, 1}n → {0, 1} be a Boolean function. and let T ⊆ [n] be a subset of
coordinates. Pick x, y ∈R {0, 1}n such that xi = yi for all i ∈ T and {xi, yi ∈ {0, 1} : i ∈ [n] \
T} are chosen independently and uniformly at random. Then Var[n]\T (f) = Pr[f(x) 6= f(y)].

3 Proof of Theorem 2

Below we present our tester for the unateness property. The tester uses a subroutine called
Find an influential coordinate which works as follows. It gets an oracle access to a Boolean
function f : {0, 1}n → {0, 1}, and a subset of the coordinates T ⊆ [n], which is given explicitly.
The subroutine outputs either ⊥ or some i∗ ∈ [n] \ T and b ∈ {up, down} such that there
exist x, y ∈ {0, 1}n that differ only in the i∗’th coordinate, satisfy f(x) 6= f(y), and b is the
orientation of f along the edge (x, y).

The subroutine Find an influential coordinate has the guarantee that if f has some non-
negligible dependence on the coordinates outside T , then with some non-negligible probability
the subroutine will return some i∗ ∈ [n] \ T and b ∈ {up, down} as above. This is done by
picking independently and uniformly at random two inputs x, y ∈ {0, 1}n that are equal on
their coordinates in T such that f(x) 6= f(y), and then using “binary search” in order to
decrease distance(x, y) to 1, while preserving the invariant that f(x) 6= f(y). Specifically,
given x, y ∈ {0, 1}n such that f(x) 6= f(y) we pick an arbitrary z ∈ {0, 1}n such that if
V = {i ∈ [n] : xi 6= yi} is the set of the coordinates where xi = yi, then zi = xi for all
i ∈ [n] \ V , and distance(z, x) = b|V |/2c and distance(z, y) = d|V |/2e. Since f(x) 6= f(y), it
must be the case that f(z) differs from either f(x) or f(y). We then update either x or y to
be z so that f(x) 6= f(y). This clearly decreases distance(x, y) by roughly a multiplicative

APPROX/RANDOM’16

37:4 An Õ(n) Queries Adaptive Tester for Unateness

1: procedure Find an influential coordinate(f : {0, 1}n → {0, 1}, T)
2: Pick x, y ∈R {0, 1}n independently and uniformly at random such that xT = yT

3: if f(x) = f(y) then
4: return ⊥
5: else (f(x) 6= f(y))
6: repeat
7: U ← {i ∈ [n] : xi = yi}
8: V ← {j ∈ [n] : xj 6= yj}
9: Pick an arbitrary zV ∈ {0, 1}V such that |{i ∈ V : zi = yi}| = b|V |/2c.

10: Let z = xU ◦ zV ∈ {0, 1}n

11: if f(x) 6= f(z) then
12: y ← z

13: else (f(y) 6= f(z))
14: x← z

15: end if
16: until |V | = 1
17: Let i∗ ∈ [n] be the unique element in V

18: Let b ∈ {up, down} be the orientation of f in the edge (x, y)
19: return (i∗, b)
20: end if
21: end procedure

1: procedure Unateness tester(f : {0, 1}n → {0, 1})
2: Let m = O(n

ε)
3: Let T = ∅
4: for i = 1...m do
5: Find an influential coordinate(f, T)
6: if returned a coordinate and a direction (i∗, bi∗) then
7: Add i∗ to T , and let bi∗ be the corresponding direction.
8: end if
9: end for

10: Pick w ∈ {0, 1}[n]\T

11: Apply the monotonicity tester on fT,w with respect to the directions {bi : i ∈ T}
12: Return the output of the monotonicity tester.
13: end procedure

S. Khot and I. Shinkar 37:5

factor of 2, and so, by repeating this at most log(n) times we obtain x and y that satisfy
f(x) 6= f(y) and differ in exactly one coordinate.

For the proof of Theorem 2 we need the following two claims.

I Claim 9. Let c > 0 be a small constant and let m = 2n
cε be the number of iterations of

the for loop in the Unateness tester. Let f : {0, 1}n → {0, 1} be a Boolean function, and let
T ⊆ [n] be the set in the Unateness tester after m iterations of the for loop. Then, with high
probability the set T satisfies

Var[n]\T (f) < cε.

Proof. Note that if in some iteration we have a subset of coordinates T ⊆ [n] such that
Var[n]\T (f) > cε, then, by Proposition 8 the variables x and y chosen in line 2 of Find an
influential coordinate(f, T) will satisfy f(x) 6= f(y) with probability at least cε. Having such
x and y, let U ⊆ [n] be the coordinates where x and y are equal, and let V ⊆ [n] be the
coordinates where the two strings differ. Then, in each iteration the procedure chooses z at
random, such that it agrees with x and y in the coordinates where they equal, and updates x

or y according to the value of f(z), while preserving the property that f(x) 6= f(y). Clearly,
if z 6= y and z 6= x, then in each step we reduce the distance between x and y, until |V | = 1,
i.e., y = x + ei for the unique coordinate i ∈ V , which is returned by the procedure together
with the orientation of the edge (x, y).

Therefore, if m = 2n
cε , then by Azuma’s inequality with probability 1− e−Ω(n) among the

m iterations at least cεm
2 = n iterations will have the property that either Find an influential

coordinate finds a new coordinate to add to T or that Var[n]\T (f) 6 cε.1 On the other hand,
the function f depends on at most n coordinates, and hence, after m = 2n

cε iterations the set
T will satisfy the property

Var[n]\T (f) 6 cε,

with probability at least 1− e−Ω(n), as required. J

I Claim 10. Let f : {0, 1}n → {0, 1} be a Boolean function, and let T ⊆ [n] be such that

Var[n]\T (f) 6 cε

for some ε > 0 and c ∈ (0, 1/8). Then, for a random w ∈ {0, 1}[n]\T it holds that

Pr
w∈{0,1}[n]\T

[distance(fT,w, f) > ε/2] 6 8c.

Proof. Define the function MajT : {0, 1}n → {0, 1} as

MajT (z) =
{

1 if Prw∈{0,1}[n]\T [f(zT ◦ wT) = 1] > 0.5
0 otherwise.

That is, MajT depends only on the coordinates in T . By the assumption of the claim we
have that for a uniformly random w ∈ {0, 1}[n]\T it holds that

Ew∈{0,1}[n]\T [distance(fT,w, MajT)] = Ez∈{0,1}T [Pr
w∈{0,1}[n]\T

[f(zT ◦ wT) 6= Maj(zT)]

6 Ez∈{0,1}T [2Varw∈{0,1}[n]\T [f(zT ◦ wT)]]
6 2cε.

1 Formally, let (Xi : i ∈ [m]) be Bernouli random variables with Xi = 1 if either Var[n]\T (f) 6 cε or a
new coordinate is added to T in the i’th iteration, and observe that Pr[Xi = 1] > cε for all i ∈ [m].

APPROX/RANDOM’16

37:6 An Õ(n) Queries Adaptive Tester for Unateness

Hence, by Markov’s inequality

Pr
w

[distance(fT,w, MajT) > ε/4] 6 8c.

On the other hand,

distance(f, MajT) = Ew∈{0,1}[n]\T [distance(fT,w, MajT)] 6 2cε 6 ε/4.

Therefore, by triangle inequality we have

Pr
w

[distance(fT,w, f) > ε/2] 6 Pr
w

[distance(fT,w, MajT) > ε/4] 6 8c,

and the claim follows. J

Theorem 2 now follows easily from the above claims.

Proof of Theorem 2. For a small constant c > 0 let m = O(n
cε) be the number of iterations

of the for loop in the Unateness tester. Let T ⊆ [n] be the set in the Unateness tester after
m iterations of the for loop. By Claim 9 with probability 0.99 the set T satisfies

Var[n]\T (f) 6 cε.

Assuming that T satisfies the above, by Claim 10 if f is ε-far from being unate, then for
a uniformly random w ∈ {0, 1}[n]\T it holds that fT,w is ε/2-far from being unate with
probability (1− 8c), and in particular, it is ε/2 from from being monotone with respect to
the directions {bi : i ∈ T}. By applying the monotonicity tester on fT,w with w such that
fT,w is ε/2-far from being unate it follows that with probability at least 0.99 the invocation
of the monotonicity tester will find a violation to monotonicity of fT,w with respect to the
directions {bi : i ∈ T}. Therefore, for a sufficiently small constant c > 0, if f is ε-far from
unate, then with probability 0.9 the tester will reject.

Finally, we analyze the query complexity of the tester. It is clear that the procedure Find
an influential coordinate makes at most O(log(n)) iterations, as in each iteration z differs
from both x and y in at most ddistance(x, y)/2e coordinates. Therefore, the total number of
queries made by the tester in the for loop is m ·O(log(n)). In addition the tester makes at
most O(n/ε) queries in step 11. Therefore, tester makes at most O(n log(n)/ε) queries. J

Acknowledgements. We are thankful to the anonymous referees for their helpful comments.

References
1 Aleksandrs Belovs and Eric Blais. A polynomial lower bound for testing monotonicity. In

Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2016, pages 1021–1032, New York, NY, USA, 2016. ACM. doi:10.1145/2897518.2897567.

2 Arnab Bhattacharyya, Elena Grigorescu, Kyomin Jung, Sofya Raskhodnikova, and David P.
Woodruff. Transitive-closure spanners of the hypercube and the hypergrid. Electronic Col-
loquium on Computational Complexity (ECCC), 16:46, 2009. URL: http://eccc.hpi-web.
de/report/2009/046.

3 Eric Blais. Testing juntas nearly optimally. In Proceedings of the Forty-first Annual ACM
Symposium on Theory of Computing, STOC’09, pages 151–158, New York, NY, USA, 2009.
ACM. doi:10.1145/1536414.1536437.

4 Jop Briët, Sourav Chakraborty, David García-Soriano, and Arie Matsliah. Monotonicity
testing and shortest-path routing on the cube. Combinatorica, 32(1):35–53, 2012.

http://dx.doi.org/10.1145/2897518.2897567
http://eccc.hpi-web.de/report/2009/046
http://eccc.hpi-web.de/report/2009/046
http://dx.doi.org/10.1145/1536414.1536437

S. Khot and I. Shinkar 37:7

5 Deeparnab Chakrabarty and C. Seshadhri. A o(n) monotonicity tester for boolean functions
over the hypercube. In Symposium on Theory of Computing Conference, STOC’13, Palo
Alto, CA, USA, June 1-4, 2013, pages 411–418, 2013. doi:10.1145/2488608.2488660.

6 Xi Chen, Anindya De, Rocco A. Servedio, and Li-Yang Tan. Boolean function monotonicity
testing requires (almost) n1/2 non-adaptive queries. In Proceedings of the Forty-Seventh
Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland, OR, USA,
June 14-17, 2015, pages 519–528, 2015. doi:10.1145/2746539.2746570.

7 Xi Chen, Rocco A. Servedio, and Li-Yang Tan. New algorithms and lower bounds for
monotonicity testing. In 55th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 286–295, 2014.
doi:10.1109/FOCS.2014.38.

8 Yevgeniy Dodis, Oded Goldreich, Eric Lehman, Sofya Raskhodnikova, Dana Ron, and Alex
Samorodnitsky. Improved testing algorithms for monotonicity. In Randomization, Approx-
imation, and Combinatorial Algorithms and Techniques, Third International Workshop on
Randomization and Approximation Techniques in Computer Science, and Second Interna-
tional Workshop on Approximation Algorithms for Combinatorial Optimization Problems
RANDOM-APPROX’99, Proceedings. Berkeley, CA, USA, August 8-11, 1999, pages 97–
108, 1999.

9 Eldar Fischer, Eric Lehman, Ilan Newman, Sofya Raskhodnikova, Ronitt Rubinfeld, and
Alex Samorodnitsky. Monotonicity testing over general poset domains. In Proceedings
of the Thiry-fourth Annual ACM Symposium on Theory of Computing, STOC’02, pages
474–483, New York, NY, USA, 2002. ACM.

10 Oded Goldreich, Shafi Goldwasser, Eric Lehman, Dana Ron, and Alex Samorodnitsky.
Testing monotonicity. Combinatorica, 20(3):301–337, 2000. doi:10.1007/s004930070011.

11 Subhash Khot, Dor Minzer, and Muli Safra. On monotonicity testing and boolean isoperi-
metric type theorems. In Proceedings of the 56th Annual Symposium on Foundations of
Computer Science (FOCS 2015), 2015.

12 Guy Kindler and Shmuel Safra. Noise-resistant boolean-functions are juntas, 2003. Manu-
script.

13 Eric Lehman and Dana Ron. On disjoint chains of subsets. J. Comb. Theory, Ser. A,
94(2):399–404, 2001. doi:10.1006/jcta.2000.3148.

APPROX/RANDOM’16

http://dx.doi.org/10.1145/2488608.2488660
http://dx.doi.org/10.1145/2746539.2746570
http://dx.doi.org/10.1109/FOCS.2014.38
http://dx.doi.org/10.1007/s004930070011
http://dx.doi.org/10.1006/jcta.2000.3148

A Local Algorithm for Constructing Spanners in
Minor-Free Graphs∗

Reut Levi1, Dana Ron2, and Ronitt Rubinfeld3

1 MPI for informatics, Saarbrücken, Germany
rlevi@mpi-inf.mpg.de

2 School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
danar@eng.tau.ac.il

3 CSAIL, MIT, Cambridge, MA, USA, and
Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
ronitt@csail.mit.edu

Abstract
Constructing a spanning tree of a graph is one of the most basic tasks in graph theory. We
consider this problem in the setting of local algorithms: one wants to quickly determine whether
a given edge e is in a specific spanning tree, without computing the whole spanning tree, but
rather by inspecting the local neighborhood of e. The challenge is to maintain consistency. That
is, to answer queries about different edges according to the same spanning tree. Since it is known
that this problem cannot be solved without essentially viewing all the graph, we consider the
relaxed version of finding a spanning subgraph with (1 + ε)n edges instead of n− 1 edges (where
n is the number of vertices and ε is a given approximation/sparsity parameter).

It is known that this relaxed problem requires inspecting Ω(
√
n) edges in general graphs

(for any constant ε), which motivates the study of natural restricted families of graphs. One
such family is the family of graphs with an excluded minor (which in particular includes planar
graphs). For this family there is an algorithm that achieves constant success probability, and
inspects (d/ε)poly(h) log(1/ε) edges (for each edge it is queried on), where d is the maximum degree
in the graph and h is the size of the excluded minor. The distances between pairs of vertices in
the spanning subgraph G′ are at most a factor of poly(d, 1/ε, h) larger than in G.

In this work, we show that for an input graph that is H-minor free for any H of size h, this
task can be performed by inspecting only poly(d, 1/ε, h) edges in G. The distances between pairs
of vertices in the spanning subgraph G′ are at most a factor of Õ(h log(d)/ε) larger than in G.
Furthermore, the error probability of the new algorithm is significantly improved to Θ(1/n). This
algorithm can also be easily adapted to yield an efficient algorithm for the distributed (message
passing) setting.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases spanners, sparse subgraphs, local algorithms, excluded-minor

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2016.38

1 Introduction

Given graph G = (V,E), a basic task is to find a sparse spanning subgraph G′, where G′ may
be required to be a tree, or may be required to approximately preserve distances between

∗ This work was partially supported by the Israel Science Foundation grant No. 671/13 and grant
No. 1536/14 and the NSF grant CCF-1420692.

© Reut Levi, Dana Ron, and Ronitt Rubinfeld;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016).
Editors: Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans; Article No. 38; pp. 38:1–38:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.38
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

38:2 A Local Algorithm for Constructing Spanners in Minor-Free Graphs

vertices (i.e., have small stretch [14, 13]). Suppose we are interested in determining whether
a given edge e belongs to the spanning subgraph G′ = (V,E′). We can of course run an
algorithm that constructs G′ and check whether e ∈ E′, but can we do better? In particular,
is it possible to answer such queries with a number of operations that is sublinear in n = |V |
or possibly even independent of n?

This local version of the problem was first studied in [8]. Observe that the main challenge
is to answer queries about different edges consistently with the same sparse spanning graph
G′, while being allowed to inspect only a small (local) part of the graph for each queried edge.
Moreover, while the underlying spanning graph may depend on the internal randomness of
the algorithm that answers the queries, it should not depend on the (order of the) queries
themselves. The following simple but important observation appears in [8]. If one insists
that G have a minimum number of edges, namely, that G′ be a tree, then it is easy to see
that there are graphs G that contain edges e for which determining whether e ∈ G′ requires
inspecting a linear number of edges in G. To see this, observe that if G consists of a single
path, then the algorithm must answer positively on all edges, while if G consists of a cycle,
then the algorithm must answer negatively on one edge. However, the two cases cannot be
distinguished without inspecting a linear number of edges.

Given the above observation, the question posed in [8] is whether a relaxed version of
this task can be solved by inspecting a sublinear number of edges, where the relaxation is
that the spanning graph G′ may contain (1 + ε) · n edges, for a given approximation/sparsity
parameter ε. As shown in [8], in general, even after this relaxation, local algorithms for
sparse subgraphs require the inspection of Ω(

√
n) edges for each queried edge e and for a

constant ε. This lower bound holds for graphs with strong expansion properties, and there is
an almost matching upper bound for such graphs. In fact, even for graphs with relatively
weak expansion properties, there is no local algorithm that inspects a number of edges that
is independent of n [9]. However, for graphs that are sufficiently non-expanding there are
local algorithms whose complexity is independent of n (depending only on the maximum
degree d and the approximation parameter ε) [8, 9].

A family of non-expanding graphs that is of wide interest, is the family of minor-free
graphs, which can be parameterized by the size, h, of the excluded minor. In particular, this
family includes planar graphs. It was shown in [8] that, based on [7], it is possible to obtain
a local sparse spanning tree algorithm for graphs that are free of a minor of size h, where
the complexity of the algorithm is (d/ε)poly(h) log(1/ε) and which has high constant success
probability.

1.1 Our Result and Techniques
In this work we significantly improve on the aforementioned result for the class of minor-free
graphs, by designing a local sparse spanning graph algorithm for minor-free graphs whose
complexity is polynomial in h, d and 1/ε and which has success probability 1− 1/Ω(n). We
note that though graphs with excluded minors have bounded average degree, the maximum
degree of such graphs remains unbounded, and our local algorithms have complexity that
depends on this maximum degree. The spanning graph G′ maintains the minimum distances
between pairs of vertices in G up to a factor of Õ(h log(d)/ε). Namely, it has stretch [14, 13]
Õ(h log(d)/ε) (the stretch obtained in [8] is somewhat higher, and in particular polynomial
in d).

Similarly to some of the other local algorithms for sparse spanning graphs presented in [8,
9], our algorithm is based on defining an underlying global partition (which is randomized).
The global partition determines the sparse spanning graph, and the local algorithm decides

R. Levi, D. Ron, and R. Rubinfeld 38:3

whether a given edge belongs to the spanning graph by constructing parts of the partition.
The differences between the algorithms are in the way the partition is defined, the way
the spanning graph is determined by the partition (more specifically, the choice of edges
between parts), and the local partial construction of the partition. Interestingly, our partition
and its construction bear more similarities to the underlying partition defined by the local
sparse spanning graph algorithm for highly expanding graphs, than the partition used by
the previous algorithm for minor-free graphs [8]. We discuss the similarities and differences
further in Subsection 1.1.8. In what follows we provide a high level description of the
partition, the sparse spanning graph it defines, and the corresponding local algorithm. We
also explain how we can directly obtain a distributed algorithm, and give a bound on its
round complexity.

1.1.1 A partition-based algorithm and the construction of G′

Our local algorithm is based on defining an underlying global partition of the vertices into
many small connected parts, where the partition satisfies certain properties defined in the
next paragraph. Given such a partition, the edge set E′ of G′ is simply defined by taking a
spanning tree in each part, and a single edge between every pair of parts that have at least
one edge between them. The minor-freeness of the graph, together with a bound on the
number of parts, ensure that |E′| ≤ (1 + ε)n.

1.1.2 Properties of the partition
We define a partition that has each of the four following properties (which for simplicity are
not precisely quantified in this introductory text): (1) the number of parts in the partition is
not too large; (2) the size of each part is not too large; (3) each part induces a connected
subgraph; (4) for every vertex v it is possibly to efficiently find the subset of vertices in the
part that v belongs to.

1.1.3 An initial centers-based partition
Initially, the partition is defined by a selection of centers, where the centers are selected
randomly (though not completely independently). Each vertex is initially assigned to the
closest selected center. For an appropriate setting of the probability that a vertex is selected
to be a center, with high probability, this initial partition has the first property. Namely, the
number of parts in the partition is not too large. By the definition of the partition, each part
is connected, so that the partition has the third property as well. However, the partition is
not expected to have the second property, that of each part having small size. Even for a
simple graph such as the line, we expect to see parts of size logarithmic in n. In addition,
the same example shows that the fourth property may not hold, i.e. there may be many
vertices for which it takes superconstant time to find the part that the vertex belongs to. To
deal with these two problems, we give a procedure for refining the partition in two phases,
as explained next.

1.1.4 Refining the partition, phase 1 (and a structural lemma)
A first refinement is obtained by the separation of vertices that in order to reach their
assigned center in a Breadth First Search (BFS), must observe a number of vertices that
is above a certain predetermined threshold, k. Each of these remote vertices becomes a
singleton subset in the partition. We prove that with probability 1− 1/Ω(n), the number of

APPROX/RANDOM’16

38:4 A Local Algorithm for Constructing Spanners in Minor-Free Graphs

these remote vertices is not too large, so that the first property (concerning the number of
parts) is maintained with high probability.

The probabilistic analysis builds on a structural lemma, which may be of independent
interest. The lemma upper bounds, for any given vertex v, the number of vertices u such that
v can be reached from u by performing a BFS until at most k vertices are observed. This
number in turn upper bounds the size of each part in the partition after the aforementioned
refinement. While this upper bound is not polynomial in k and d, it suffices for the purposes
of our probabilistic (variance) analysis (and we also show that there is no polynomial upper
bound).

1.1.5 Refining the partition, phase 2

In addition to the first property, the third property (connectivity of parts) is also maintained
in the resulting refined partition, and the refinement partially addresses the fourth property,
as remote vertices can quickly determine that they are far from all centers. In addition, the
new parts of the partition will be of size 1 and thus will not violate the second property.
However, after this refinement, there might be some large parts remaining so that the second
and fourth properties are not necessarily satisfied. We further partition large parts into
smaller (connected) parts by a certain decomposition based on the BFS-tree of the large
part.

1.1.6 The local algorithm

Given an edge {u, v} ∈ E, the main task of the local algorithm is to find the two parts to
which the vertices belong in the final partition. Once these parts are found, the algorithm
can easily decide whether the edge between u and v should belong to E′ or not. In order to
find the part that u (similarly, v) belongs to, the local algorithm does the following. First it
performs a BFS until it finds a center, or it sees at least k vertices (none of which is a center).
In the latter case, u is a singleton (remote) vertex. In the former case, the algorithm has
found the center that u is assigned to in the initial partition, which we denote by σ(u). The
algorithm next performs a BFS starting from σ(u). For each vertex that it encounters, it
checks whether this vertex is assigned to u (in the initial partition). If the number of vertices
that are found to be assigned to σ(u) is above a certain threshold, then the decomposition
of the part assigned to σ(u) needs to be emulated locally. We show that this can be done
recursively in an efficient manner.

1.1.7 A distributed algorithm

Our algorithm easily lends itself to an implementation in the distributed (message passing)
setting. In this setting a processor resided on each vertex in the graph. Computation
proceeds in rounds, where in each round every vertex sends messages to its neighbors. In the
distributed implementation, initially each vertex decided, independently at random (and with
the appropriate probability), whether it is a center (of the initial partition). In the first round,
each vertex sends its id (name) to each of its neighbors, as well as an indication whether it is
a center. In the following rounds, each center send all its neighbors the information it has
gathered about its local neighborhood (including the identity of the centers). It follows from
our analysis that after Õ(h log(d)/ε)) rounds, each processor can determine if its incident
edges belong to the sparse spanning graph G′.

R. Levi, D. Ron, and R. Rubinfeld 38:5

1.1.8 A discussion of the algorithm for highly expanding graphs in [8]
As noted previously, there are similarities between our algorithm and the algorithm described
in [8] for highly expanding graphs (for which the lower bound of Ω(

√
n) holds). We refer

to the latter algorithm as Centers-LRR, and provide a rough description of it next. The
Centers-LRR algorithm is based on the selection of a set of random centers, which induces a
partition of all the vertices, where each vertex is assigned to the center it is closest to. The
number of centers is

√
εn, so that if we take the edges of a BFS tree for each part, and at

most one edge between each pair of parts, we get at most (1 + ε)n edges.
Based on the assumption regarding the expansion properties of the graph, with high

probability over the random choice of the centers, for an appropriate threshold k, the distance
between every vertex and its center is at most k, and the size of the distance-k neighborhood
of every vertex is Õ(

√
n/ε). This implies that each vertex can find its center by performing

these many queries (for a constant degree). Hence, for an edge between two vertices that
are assigned to the same center, we can easily determine whether it is a BFS edge (which
belongs to the sparse spanning subgraph).

On the other hand, the decision regarding edges between vertices that are assigned to
different centers is more subtle. Since at most one edge between every pair of parts is allowed,
it seems that it is necessary to determine, for a given center, the identity of all vertices that
are assigned to it. Though the number of such vertices is not too large, it is not clear how to
perform this task in a local and efficient manner. The Centers-LRR algorithm overcomes this
obstacle by defining a rule for the selection of at most one edge between every pair of parts,
which can be implemented locally and efficiently. This rule is such that for some pairs of
parts that have edges between them, it might be that no edge is selected. Nonetheless, it is
proved in [8] that the final resulting subgraph is connected.

If we compare the Centers-LRR algorithm to the algorithm presented in this work we see
that while there is a clear similarity in terms of the underlying partition (which is only initial
in the current work), there are many differences in the difficulties that need to be overcome
and the local implementation.

1.2 Related Work
As mentioned earlier, the works most closely related to the current work are [8, 9]. In
addition to the results in these works that were already described, in [8] there is a local sparse
spanning graph algorithm for the family of ρ-hyperfinite graphs1 whose time complexity
and probe complexity are O(dρ(ε)), assuming that ρ is known. Minor-free graphs are a
subclass of hyperfinite graphs (for an appropriate choice of ρ that depends on the size of the
excluded minor). In [9] the authors show that in every f -non-expanding graph2 G where
f(t) = Ω((log t)−1(log log t)−2) one can remove εn edges from G so that each connected
component of the remaining graph is of size at most 22O(1/ε) . This enables them to provide a
local sparse spanning graph algorithm for this family of graphs with probe complexity d22O(1/ε)

and stretch 22O(1/ε) . Both algorithms, in [8] and in [9], sparsify the graph by simulating a
localized version of Kruskal’s algorithm.

1 A graph is ρ-hyperfinite for a function ρ : R+ → R+, if its vertices can be partitioned into subsets of size
at most ρ(ε) that are connected and such that the number of edges between the subsets is at most εn.

2 A graph is f-non-expanding if every t-vertex subgraph H satisfies φH ≤ f(t) where φG is the (edge)
expansion of G, that is, φG = minS |∂G(S)| / |S| where the minimum is taken over all S ⊆ V (G) of size
1 ≤ |S| ≤ |V (G)|/2.

APPROX/RANDOM’16

38:6 A Local Algorithm for Constructing Spanners in Minor-Free Graphs

By using the partition oracle in [7] one can obtain a local sparse spanning graph algorithm
with quasi-polynomial complexity in d and ε−1. The partition is obtained by contracting
edges iteratively in a controlled manner. The advantage of their partition is that its edge cut
is guaranteed to be small (with high constant probability). However, as mentioned before,
their complexity is much higher.

Graph partitioning for graphs with an excluded minor has been studied extensively (see
e.g., [3, 6]), and was found useful in constructing spanners and distance oracles (see e.g., [5]).
However, compared to previous results, the main benefit of our partitioning technique is that
the partition is designed to be constructed locally in an efficient manner.

Ram and Vicari [15] studied the problem of constructing sparse spanning graphs in the
distributed model and provided an algorithm that runs in min{D(G), O(logn)} number of
rounds where D(G) denotes the diameter of G.

The model of local computation algorithms as considered in this work, was defined
by Rubinfeld et al. [16] (see also Alon et al. [2]). Other local algorithms, for maximal
independent set, hypergraph coloring, k-CNF and maximum matching include those given
in [16, 2, 11, 12, 4].

2 Preliminaries

In this section we provide the precise definition of the algorithmic problem addressed in this
paper, as well as several other useful definitions and notations.

We consider undirected, simple graphs over n vertices, where the degree of each vertex is
bounded by d. We assume for simplicity that the set of vertices, V , is simply [n] = {1, . . . , n},
so that there is a total order over the (identifiers of the) vertices. For each vertex v, there is
some arbitrary, but fixed order over its neighbours. The input graph G = (V,E) is given via
an oracle access to its incidence-list representation. Namely, the algorithm is supplied with
n and d, and has access to an oracle that for any pair (v, i) such that v ∈ [n] and i ∈ [d],
the oracle either returns the ith neighbour of v (according to the aforementioned order over
neighbours) or an indication that v has less than i neighbours. We refer to each such access
to the oracle as a probe to the graph. We now turn to formally define the algorithmic problem
we consider in this paper.

I Definition 1. An algorithm A is an (ε, q, δ)-local sparse spanning graph algorithm if,
given n, d ≥ 1 and oracle access to the incidence-lists representation of a connected graph
G = (V,E) over n vertices and degree at most d, it provides query access to a subgraph
G′ = (V,E′) of G such that:
(i) G′ is connected.
(ii) |E′| < (1 + ε) · n with probability at least 1− δ (over the internal randomness of A).
(iii) E′ is determined by G and the internal randomness of A.
(iv) A makes at most q probes to G.
By “providing query access to G′” we mean that on input {u, v} ∈ E, A returns whether
{u, v)} ∈ E′ and for any sequence of queries, A answers consistently with the same G′.

An algorithm A is an (ε, q, δ)-local sparse spanning graph algorithm for a family of graphs
C if the above conditions hold, provided that the input graph G belongs to C.

We are interested in local algorithms that for each edge they are queried on, perform as
few probes as possible to G. Ideally, we would like the number of probes to be independent
of n and polynomial in 1/ε, d, and possibly some parameters of the family C. We are also
interested in bounding the total amount of space used by the local algorithm, and its running

R. Levi, D. Ron, and R. Rubinfeld 38:7

time (in the word-RAM model). Note that Item 3 implies that the answers of the algorithm
to queries cannot depend on previously asked queries.

We denote by distG(u, v) (and sometimes by dist(u, v) when G is clear from the context)
the distance between two vertices u and v in G. We let N(v) denote the set of neighbors of
v and for ` ≥ 0 let Γ`(v) def= {u ∈ V : dist(u, v) ≤ `)}.

Another parameter of interest is the stretch of G′. Given a connected graph G = (V,E),
a subgraph G′ = (V,E′) is a t -spanner of G if for every u, v ∈ V , distG′ (u,v)

distG(u,v) ≤ t. In this case
t is referred to as the stretch factor of G′.

The total order over the vertices induces a total order (ranking) r over the edges of
the graph in the following straightforward manner: r({u, v}) < r({u′, v′}) if and only if
min{u, v} < min{u′, v′} or min{u, v} = min{u′, v′} and max{u, v} < max{u′, v′} (recall
that V = [n]). The total order over the vertices also induces an order over those vertices
visited by a Breadth First Search (BFS) starting from any given vertex v, and whenever we
refer to a BFS, we mean that it is performed according to this order.

Recall that a graph H is called a minor of a graph G if H is isomorphic to a graph
that can be obtained by zero or more edge contractions on a subgraph of G. A graph G is
H-minor free if H is not a minor of G. We will use the following theorem.

I Theorem 2 ([10]). Let c(s) be the minimum number c such that every graph G = (V,E)
with |E| ≥ c · |V | contracts to a complete graph Ks. Then c(s) ≤ 8s log s.

We shall use the following result from previous work (see Section 6 in [1]).

I Theorem 3. For every 1 ≤ t ≤ n, there exists an explicit construction of a t-wise
independent random variable x = (x1, . . . , xn) ∈ [q]n for q = Θ(n) whose seed length is at
most O(t logn) bits. Moreover, for any 1 ≤ i ≤ n, xi can be computed in O(t) operations in
the word-RAM model.

3 The Algorithm

In this section we prove the following theorem.

I Theorem 4. Algorithm 2 is an (ε, poly(1/ε, d, h), δ)-local sparse spanning graph algorithm
for graphs that are H-minor free, where h is the size of H and δ = 1/Ω(n). Furthermore, the
stretch factor of G′ is Õ(h · log d/ε). More precisely, the probe complexity of the algorithm is
Õ((h/ε)4d5). Its space complexity (length of the random seed) is Õ((h/ε)d logn) bits, and its
running time is Õ((h/ε)5d5) (in the Word-RAM model).

We begin by describing a global partition of the vertices. We later describe how to locally
generate this partition and design our algorithm (and the sparse subgraph it defines), based
on this partition.

3.1 The Partition P

The partition described in this subsection, denoted by P , is a result of a random process. We
describe how the partition is obtained in three steps where in each step we refine the partition
from the previous step. The partition is defined based on three parameters: γ ∈ (0, 1), an
integer k > 1 and an integer s > 1, which is set subsequently (as polynomials of d, ε and h).

APPROX/RANDOM’16

38:8 A Local Algorithm for Constructing Spanners in Minor-Free Graphs

3.1.1 First Step
We begin with some notation. Given a subset of vertices W ⊆ V and a vertex v ∈ V , we
define the center of v with respect to W , denoted σ(v) as the vertex in W that is closest to
v, breaking ties using vertex ids. That is, σ(v) is the vertex with the minimum identifier in
the subset {y ∈W : dist(y, v) = minw∈W dist(w, v)}.

For each w ∈W we define the cell of w with respect toW as C(w) def= {v ∈ V : σ(v) = w}.
Namely, the set of vertices in C(w) are the vertices which are closer to w more than any other
vertex in W (where ties are broken according to the order of the vertices). Notice that these
cells form a partition of V . Our initial partition is composed of these cells when picking W in
the following way: each vertex i ∈ [n] draws a γ-biased bit, denoted xi, and i ∈W if an only
if xi = 1. The joint-distribution of (x1, . . . , xn) is t-wise independent where t def= 2kd. (The
reason that the choice of W is determined by a t-wise independent distribution rather than
an n-wise independent distribution is so as to bound the space used by the local emulation
of the global algorithm.)

3.1.2 Second Step
In this step we identify a subset of special vertices, which we call the remote vertices and make
these vertices singletons in the partition P. The set of remote vertices, R, is defined with
respect toW and an integer parameter k as described next. Let `k(v) be the minimum integer
` such that the BFS tree rooted at v of depth ` has size at least k. Let Bk(v) be the set of
vertices in the BFS tree rooted at v of depth `k(v). We define R = {v ∈ V : Bk(v)∩W = ∅},
i.e., those vertices v for which Bk(v) does not contain a center. Clearly, a vertex can identify
efficiently if it is in R by probing at most kd vertices and checking whether they intersect W .
In Subsection 3.3 we obtain a bound on the size of R.

3.1.3 Third Step
In this step we decompose cells that are still too big. We first argue that the cells are still
connected (after the removal the vertices in R from all original cells). Thereafter we will use
a procedure of tree decomposition in order to break the cells into smaller parts.

I Lemma 5. For every w ∈W , the subgraph induced by C(w)\R is connected. Furthermore,
for every v ∈ C(w) \R, the subgraph induced by C(w) \R contains all vertices that belong to
the shortest paths between v and w.

Proof. Fix w ∈ W , and consider any v ∈ C(w) \ R. We will prove that the subgraph
induced by C(w) \R contains all vertices on the shortest paths between v and w and this
will imply the connectivity as well. The proof is by induction on the distance to w. In
the base case v = w. In this case C(w) \ R clearly contains a path between v to itself
because it contains v. Otherwise, we would like to show that for any u ∈ N(v) for which
dist(u,w) < dist(v, w) it holds that u ∈ C(w) \R. The proof will then follow by induction.
let P be a shortest path between v and w and let {v, u} ∈ E denote the first edge in P . We
first observe that σ(u) = w and thus u ∈ C(w). Assume otherwise and conclude that there
is a vertex in w′ ∈W for which either dist(v, w′) < dist(v, w) or dist(v, w) = dist(v, w′) and
id(w′) < id(w), in contradiction to the fact that σ(v) = w (see the definition of σ(·) in the
First Step). Since u is on a shortest path between v and w it follows that

Γdist(u,w)−1(u) ⊆ Γdist(v,w)−1(v) . (1)

R. Levi, D. Ron, and R. Rubinfeld 38:9

From the fact that v /∈ R it follows that |Γdist(v,w)−1(v)| ≤ k and hence from Equation (1) it
follows that |Γdist(u,w)−1(u)| ≤ k and so u /∈ R as well. We conclude that u ∈ C(w) \R and
dist(u,w) = dist(v, w)− 1 as desired. J

We shall use the following notation. For each w ∈W let T (w) denote the BFS tree rooted
at w of the subgraph induced by C(w) \R (recall that the BFS is performed by exploring the
vertices according to the order of their identifiers (in [n])). To obtain the final refinement of
our partition, for each w ∈W such that |T (w)| > s, we run Algorithm 1 on T (w), w and s.

Algorithm 1 (Recursive Tree decomposition)
Input: A tree T , the root of the tree v and an integer s.
Output: A decomposition of T into subtrees, where each subtree is assigned a (sub-)center.
1. Initialize the set of vertices of the current part Q := ∅.

2. Perform a BFS starting from v and stop at level ` def= `s(v) (see the definition of `s(·) in the
Second Step). Add to Q all the vertices explored in the BFS.

3. Let S denote the set of all the children of the vertices in the `th level of the BFS (namely, all the
vertices in level `+ 1).

4. For each vertex u ∈ S:
a. If the subtree rooted at u, Tu, has size at least s, then disconnect this subtree from T and

continue to decompose by recursing on input Tu, u and s.
b. Otherwise, add the vertices of Tu to Q.

5. Set v to be the sub-center of all the vertices in Q.

3.2 The Edge Set
Given the partition P defined in the previous subsection (Subsection 3.1), we define the edge
set of our sparse spanning graph E′ in the following simple manner. In each part of P which
is not a singleton, we take a spanning tree. Specifically, we take the BFS-tree rooted at the
sub-center of that part (see Algorithm 1, Step 5). For every pair of parts of X,Y ∈ P , if the
set E(X,Y) def= {{x, y} ∈ E : x ∈ X and y ∈ Y } is not empty, then we add to E′ the edge
e ∈ E(X,Y) with minimal ranking (where the ranking over edges is as defined in Section 2).
Clearly G′ is connected and spans G. We would like to bound the size of E′. To this end we
will use the following claim.

I Claim 6. The number of parts in P is bounded as follows: |P| ≤ |W |+ |R|+ n
s .

Proof. Consider the three steps of refinement of the partition. Clearly, after the first step
the size of the partition is exactly |W |. After the second step, the size of the partition is
exactly |W |+ |R|. Finally, since in the last step we break only parts whose size is greater
than s into smaller parts that are of size at least s, we obtain that the number of new parts
that are introduced in this step is at most n/s. The claim follows. J

The next lemma establishes the connection between the size of P and the sparsity of G′.

I Lemma 7. For an input graph G which is a H-minor free for a graph H over h vertices,

|E′| < n+ |P| · c(h) ,

where c(h) is as defined in Theorem 2.

APPROX/RANDOM’16

38:10 A Local Algorithm for Constructing Spanners in Minor-Free Graphs

Proof. Since for each X ∈ P the subgraph induced by X is connected, we can contract each
part in P and obtain an H-minor free graph. The number of vertices in this graph is |P|. If
we replace multi-edges with single edges, then by Theorem 2 we obtain that the number of
edges in this graph is at most |P| · c(h). Finally, since the total number of edges in the union
of spanning trees of each part it n− |P| < n, we obtain the desired result. J

3.3 Bounding the Number of Remote Vertices
In this subsection we prove the following lemma.

I Lemma 8. If k = Ω((log2(1/γ) + log d)/γ), then with probability at least 1− 1
Ω(n) it holds

that |R| ≤ γn.

In order to establish Lemma 8 we start defining for every v ∈ V ,

Yk(v) def= {u ∈ V : v ∈ Bk(u)} . (2)

Informally, Yk(v) is the set of vertices that encounter v while performing a BFS which stops
after the first level in which the total number of explored vertices is at least k. We first
establish the following simple claim.

I Claim 9. For every vertex u ∈ Yk(v) and for every vertex w that is on a shortest path
between u and v, we have that w ∈ Yk(v).

Proof. Let ` = dist(u, v) and `′ = dist(w, v), so that d(u,w) = `− `′ ≥ 1. Assume, contrary
to the claim, that w /∈ Yk(v). This implies that |Γ`′−1(w)| ≥ k. But since Γ`′−1(w) ⊆ Γ`−1(u),
we get that |Γ`−1(u)| ≥ k, contrary to the premise of the claim that u ∈ Yk(v). J

We now turn to upper bound the size of Yk(v).

I Lemma 10. For every graph G = (V,E) with degree bounded by d, and for every v ∈ V ,

|Yk(v)| ≤ d3 · klog k+1 .

Proof. Fix a vertex v ∈ V . For every 0 ≤ j ≤ k, define Y jk (v) def= {u ∈ Yk(v) : dist(v, u) = j}.
Observe that Yk(v) =

⋃k
j=0 Y

j
k (v). Therefore, if we bound the size of Y jk (v), for every

0 ≤ j ≤ k, we will get a bound on the size of Yk(v). Consider first any 3 ≤ j < k and any
vertex u ∈ Y jk (v). Recall that `k(u) is the the minimum integer ` such that the BFS tree
rooted at v of depth ` has size at least k. Since j ≤ `k(u), it follows that |Γj−1(u)| < k.
Now consider a shortest path between u and v and let w be the vertex on this path for
which dist(u,w) = b(j − 1)/2c. Denote q def= dist(w, v). By Claim 9, w ∈ Yk(v), and by the
definition of q, w ∈ Y qk (v). Therefore,

|Γq−1(w)| ≤ k . (3)

From the fact that w is on the shortest path between u and v it also follows that

q = dist(v, u)− dist(u,w) = j − b(j − 1)/2c
= d(j − 1)/2e+ 1 (4)
≥ b(j − 1)/2c+ 1 = dist(u,w) + 1 .

Therefore q − 1 ≥ dist(u,w) and so u ∈ Γq−1(w). It follows that

Y jk (v) ⊆
⋃

w∈Y q
k

(v)

Γq−1(w) . (5)

R. Levi, D. Ron, and R. Rubinfeld 38:11

From Equations (3) and (5) we get that |Y jk (v)| ≤ k · |Y qk (v)|. For every j ≤ 3 we have the
trivial bound that |Y jk (v)| ≤ d3. By combining with Equation (4) we get that |Y jk (v)| ≤
d3 · klog j . Since Yk(v) =

⋃k
j=0 Y

j
k (v) we obtain the desired bound. J

While the bound on |Yk(v)| in Lemma 10 may not be tight, it suffices for our purposes.
One might conjecture that it is possible to prove a polynomial bound (in k and d). We show
that this is not the case (see Lemma 11 in the appendix).

We now use the bound in Lemma 10 in order to bound the number of remote vertices.

Proof of Lemma 8. Let χW denote the characteristic vector of the set W . For a subset
S ⊆ V , let χW(S) denote the projection of χW onto S. That is, χW(S) is a vector of length
|S| indicating for each x ∈ S whether χW(x) = 1.

For each vertex v ∈ V define a random variable Zv indicating whether it is a remote vertex
with respect to W . Recall that v is remote if and only if Bk(v)∩W = ∅. Recalling that W is
selected according to a t-wise independent distribution where t = 2kd and that k ≤ |Bk(v)| <
k · d, we get that Pr[Zv = 1] ≤ (1− γ)k. We also define Sv

def= {u ∈ V : Bk(u) ∩Bk(v) 6= ∅}.
Fix v ∈ V and observe that the value of Zv is determined by χW(Bk(v)). Furthermore, since
for every v ∈ V and u ∈ V \ Sv, χW(Bk(v)) and χW(Bk(u)) are independent it follows that
Zu and Zv are independent as well. Hence, in this case Cov[Zv, Zu] = 0, and we obtain the
following upper bound on the variance of the number of remote vertices.

Var
[∑
v∈V

Zv

]
=

∑
(v,u)∈V

Cov[Zv, Zu] =
∑
v∈V

∑
u∈Sv

(Exp[Zv · Zu]− Exp[Zu] · Exp[Zv])

≤
∑
v∈V

∑
u∈Sv

Exp[Zv · Zu|Zv = 1] · Pr[Zv = 1] ≤
∑
v∈V
|Sv| · (1− γ)k . (6)

By the definition of Yk(·) in Equation (2) it follows that Sv ⊆
⋃
u∈Bk(v) Yk(u). By Lemma 10,

maxv∈V {|Yk(v)|} ≤ d3 · klog k+1. Therefore

|Sv| ≤ |Bk(v)| · d3 · klog k+1 ≤ d4 · klog k+2 . (7)

Hence, by Equations (6) and (7) we get Var
[∑

v∈V Zv
]
≤ nd4 · klog k+2 · (1− γ)k. Since

(1 − γ)k ≤ e−γk we obtain that Var
[∑

v∈V Zv
]
≤ γ2n for k = Ω((log2(1/γ) + log d)/γ).

Since for every v ∈ V , Pr [Zv = 1] ≤ (1− γ)k ≤ γ, we get that Exp
[∑

v∈V Zv
]
≤ γn/2. By

applying Chebyshev’s inequality we get that

Pr
[∑
v∈V

Zv ≥ Exp
[∑
v∈V

Zv

]
+ γn/2

]
≤

4Var
[∑

v∈V Zv
]

γ2n2 ≤ 4
n
.

Since |R| =
∑
v∈V Zv it follows that |R| < γn with probability at least 1 − (4/n), as

desired. J

3.4 The Local Algorithm
In this subsection we provide Algorithm 2, which on input e ∈ E, locally decides whether
e ∈ E′, as defined in Subsection 3.2, based on the (random, but not completely independent)
choice of W . Given an edge {u, v}, the algorithm first finds, for each y ∈ {u, v}, the center,
σ(y), that y is assigned to by the initial partition, under the condition that σ(y) ∈ Bk(y).
This is done by calling Algorithm 3, which simply performs a BFS starting from y until it
encounters a vertex in W , or it reaches level `k(y) without encountering such a vertex (in

APPROX/RANDOM’16

38:12 A Local Algorithm for Constructing Spanners in Minor-Free Graphs

which case y is a remote vertex). Algorithm 3 assumes access to χW, which is implemented
using the random seed that defines the t-wise independent distribution, and hence determines
W . If y is not found to be a remote vertex, then Algorithm 2 next determines to which
sub-part of C(σ(y)) \ R does y belong. This is done by emulating the tree decomposition
of the BFS tree rooted at σ(y) and induced by C(σ(y)) \ R. A central procedure that is
employed in this process is Algorithm 4. This algorithm is given a vertex v ∈ W , and a
vertex u in the BFS subtree rooted at v and induced by C(v) \R. It returns the edges going
from u to its children in this tree, by performing calls to Algorithm 3.

Algorithm 2 (Sparse Spanning Graph)
Input: An edge {u, v} ∈ E.
Output: YES if {u, v} ∈ E′ and NO otherwise.
1. For each y ∈ {u, v} find the part that y belongs to as follows:

a. Use Algorithm 3 to obtain σ(y).
b. If σ(y) is ‘null’ then the part that y belongs to is the singleton set {y}.
c. Let T denote the BFS tree rooted at σ(y) in the subgraph induced by C(σ(y)) \ R. By

Lemma 5 every shortest path between σ(y) and v ∈ C(σ(y)) \R is contained in the subgraph
induced on C(σ(y)) \R. Therefore the edges of T can be explored via Algorithm 4.

d. Reveal the part (the subset of vertices) that y belongs to in P (as defined in Subsection 3.1).
Recall that the part of y is the subtree of T that contains y after running Algorithm 1 on
input T , σ(y) and s. This part can be revealed locally as follows.
i. Reveal the path between σ(y) and y in T , denoted by P (y). Since P (y) is the shortest path

between y and σ(y) with the lexicographically smallest order it can revealed by performing
a BFS from y until σ(y) is encountered.

ii. Run Algorithm 1 on T while recursing in Step 4a only on the subtrees in which the root is
contained in P (y).

2. If u and v are in the same part, then return YES iff the edge {u, v} belongs to the BFS tree of
that part.

3. Otherwise, return YES iff the edge {u, v} is the edge with minimum rank connecting the two
parts.

Proof of Theorem 4. We set γ = ε/2c(h), k = Θ((log2(1/γ) + log d)/γ), and s = c(h)/4ε.
We start by bounding the size of W (with high probability). By the definition of W we have
that Exp[|W |] = Exp

[∑
i∈[n] χW(i)

]
= γn. Since for every 1 ≤ i < j ≤ n, χW(i) and χW(j)

are pairwise-independent, we obtain that

Var

∑
i∈[n]

χW(i)

 =
∑
i∈[n]

Var [χW(i)] =
∑
i∈[n]

(
Exp

[
χ2
W (i)

]
− Exp [χW(i)]2

)
= nγ(1− γ) .

Therefore, by Chebyshev’s inequality Pr [|W | ≥ 2γn] ≤ 1−γ
γn . By Lemma 8 (and the setting

of k), with probability 1− 1/Ω(n), |R| ≤ γn. By Claim 6, Lemma 7 and the settings of γ
and s, we get that |E′| ≤ (1 + ε)n with probability 1− 1/Ω(n).

The claim about the stretch of G′ follows from the fact that the diameter of every part
of P is bounded by 2k.

The number of vertices that Algorithm 3 inspects (for any vertex v it is called with) is at
most kd. Since the degree of each vertex is bounded by d, its probe complexity is bounded
by kd2. Algorithm 3 makes at most kd accesses to χW, hence, by Theorem 3 its running
time is bounded by O(k2d2). The probe complexity of Algorithm 4 is upper bounded by the
total probe complexity of at most d calls to Algorithm 3, plus d executions of a BFS until

R. Levi, D. Ron, and R. Rubinfeld 38:13

at most kd vertices are encountered (Steps 2b and 2c, which for simplicity we account for
separately from Algorithm 3). A similar bound holds for the running time. Hence, the total
probe complexity and running time of Algorithm 4 are O(kd3) and O(k2d3), respectively.

The size of any subtree returned by Algorithm 1 is upper bounded by s2d2. To verify this,
recall that at the end of Step 2 of Algorithm 1, at most sd vertices were explored. Hence,
the number of vertices that are incident to the explored vertices is at most sd2. Thus, due
to Step 4a, the total number of vertices in each part is at most s2d2. Since Step 4a can be
implemented locally by calling Algorithm 4 at most s times, we obtain that the total probe
complexity and running time of revealing each part is at most O(s2kd5) and O(s2k2d5),
respectively. The probe complexity and running time of Algorithm 2 are dominated by those
of Step 1d. Observe that in Step 1d at most |P (y)| parts are revealed. Since |P (y)| ≤ k,
we obtain that the overall probe complexity and running time of Algorithm 2 are bounded
by O(s2k2d5) and O(s2k3d5), respectively. By the settings of k and s we obtain the final
result. J

Algorithm 3 (Find Center)
Input: A vertex v and an integer k. Query access to χW.
Output: σ(v) if σ(v) ∈ Bk(v) or ‘null’ otherwise.
1. Perform a BFS from v until the first level that contains a vertex inW or until at least k vertices are

reached. That is, definingWj
def= Γj(v)∩W , stop at level ` where ` def= min{`k(v),minj{Wj 6= ∅}}.

2. If W` = ∅ then return ‘null’ (v is remote).
3. Otherwise, return the vertex with the minimum id from W`.

Algorithm 4 (get BFS outgoing-edges endpoints)
Input: v ∈ W and a vertex u ∈ T (v) where T (v) denotes the BFS tree induced by C(v) \ R and
rooted at v.
Output: The outgoing edges from u in T (v) (the orientation of the edges is from the root to the
leaves).
1. Initialize S := {v}
2. For each u′ ∈ N(u), if the following three conditions hold, then add u′ to S:

a. Algorithm 3 on input u′ returns v. Namely, σ(u′) = v.
b. u is on a shortest path between u′ and v. Namely, dist(u′, v) = dist(u, v) + 1.
c. u is the vetex with the minimum id among all vertices in {w ∈ N(u′) : dist(w, v) =

dist(u′, v)− 1}.
3. Return S.

Acknowledgement. We would like to thank Oded Goldreich for his helpful suggestions.

References
1 N. Alon, L. Babai, and A. Itai. A fast and simple randomized parallel algorithm for

the maximal independent set problem. Journal of Algorithms, 7(4):567–583, 1986. doi:
10.1016/0196-6774(86)90019-2.

2 N. Alon, R. Rubinfeld, S. Vardi, and N. Xie. Space-efficient local computation algorithms.
In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1132–1139, 2012.

APPROX/RANDOM’16

http://dx.doi.org/10.1016/0196-6774(86)90019-2
http://dx.doi.org/10.1016/0196-6774(86)90019-2

38:14 A Local Algorithm for Constructing Spanners in Minor-Free Graphs

3 Noga Alon, Paul D. Seymour, and Robin Thomas. A separator theorem for graphs with an
excluded minor and its applications. In Proceedings of the 22nd Annual ACM Symposium
on Theory of Computing, May 13-17, 1990, Baltimore, Maryland, USA, pages 293–299,
1990. doi:10.1145/100216.100254.

4 G. Even, M. Medina, and D. Ron. Deterministic stateless centralized local algorithms for
bounded degree graphs. In Algorithms – ESA 2014 – 22th Annual European Symposium,
Wroclaw, Poland, September 8-10, 2014. Proceedings, pages 394–405, 2014. doi:10.1007/
978-3-662-44777-2_33.

5 Ken-ichi Kawarabayashi, Philip N. Klein, and Christian Sommer. Linear-space approximate
distance oracles for planar, bounded-genus and minor-free graphs. In Automata, Languages
and Programming – 38th International Colloquium, ICALP 2011, Zurich, Switzerland, July
4-8, 2011, Proceedings, Part I, pages 135–146, 2011. doi:10.1007/978-3-642-22006-7_
12.

6 Ken-ichi Kawarabayashi and Bruce A. Reed. A separator theorem in minor-closed classes. In
51th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2010, October
23-26, 2010, Las Vegas, Nevada, USA, pages 153–162, 2010. doi:10.1109/FOCS.2010.22.

7 R. Levi and D. Ron. A quasi-polynomial time partition oracle for graphs with an excluded
minor. ACM Trans. Algorithms, 11(3):24:1–24:13, 2015.

8 R. Levi, D. Ron, and R. Rubinfeld. Local algorithms for sparse spanning graphs. In
Proceedings of the Eighteenth International Workshop on Randomization and Computation
(RANDOM), pages 826–842, 2014.

9 Reut Levi, Guy Moshkovitz, Dana Ron, Ronitt Rubinfeld, and Asaf Shapira. Constructing
near spanning trees with few local inspections. Random Structures & Algorithms, pages
n/a–n/a, 2016. doi:10.1002/rsa.20652.

10 W. Mader. Homomorphiesätze für graphen. Mathematische Annalen, 178:154–168, 1968.
11 Y. Mansour, A. Rubinstein, S. Vardi, and N. Xie. Converting online algorithms to local

computation algorithms. In Automata, Languages and Programming: Thirty-Ninth Inter-
national Colloquium (ICALP), pages 653–664, 2012.

12 Y. Mansour and S. Vardi. A local computation approximation scheme to maximum match-
ing. In Proceedings of the Sixteenth International Workshop on Approximation Algorithms
for Combinatorial Optimization Problems (APPROX), pages 260–273, 2013.

13 D. Peleg and A. A. Schäffer. Graph spanners. Journal of Graph Theory, 13:99–116, 1989.
14 D. Peleg and J. D. Ullman. An optimal synchronizer for the hypercube. SIAM Journal on

Computing, 18:229–243, 1989.
15 L. S. Ram and E. Vicari. Distributed small connected spanning subgraph: Breaking the

diameter bound. Technical report, Zürich, 2011.
16 R. Rubinfeld, G. Tamir, S. Vardi, and N. Xie. Fast local computation algorithms. In

Proceedings of The Second Symposium on Innovations in Computer Science (ICS), pages
223–238, 2011.

A A non-polynomial relation between k and Yk(v)

Recall that Yk(v) def= {u ∈ V : v ∈ Bk(u)}. In the following lemma we show that |Yk(v)| can
be super polynomial.

I Lemma 11. There exists a graph G = (V,E) with degree bounded by d and v ∈ V such
that |Yk(v)| = kΩ(log log d).

Proof. The graph G is a tree, rooted at v, and defined as follows. For simplicity, we let the
degree bound be d+ 1 (so that a vertex may have d children, and hence degree d+ 1). We
partition the levels of the tree into consecutive subsets: L0 = {1, . . . , `0} (where the root is

http://dx.doi.org/10.1145/100216.100254
http://dx.doi.org/10.1007/978-3-662-44777-2_33
http://dx.doi.org/10.1007/978-3-662-44777-2_33
http://dx.doi.org/10.1007/978-3-642-22006-7_12
http://dx.doi.org/10.1007/978-3-642-22006-7_12
http://dx.doi.org/10.1109/FOCS.2010.22
http://dx.doi.org/10.1002/rsa.20652

R. Levi, D. Ron, and R. Rubinfeld 38:15

at level 1), L1 = {`0 + 1, . . . , `1}, . . . , Lr = {`r−1 + 1, . . . , `r}. For each subset Li, and for
each level j in the subset, all vertices in level j have the same number of children, which
is di

def= d2−i . We set r = log log d, so that all vertices in levels belonging to Lr have two
children. Finally we set si = |Li| = logdi g

1/(r+1), where g determines the size of the tree, as
well as the minimum k that ensures that all vertices in the tree belong to Yk(v).

By the construction of the tree, the number of vertices in it is of the order of
∏r
i=0 d

si
i = g.

In order to upper-bound k (such that all vertices belong to Yk(v)), consider any vertex
u in some level j ∈ Li, where 0 ≤ i ≤ r. Since di = d

1/2
i−1, so that st = 2st−1 for each

t, we get that si ≤
∑
i′<i si′ . Therefore, dist(u, v) ≤ 2si. It follows that the number of

vertices in the subtree rooted at u that are at distance at most dist(u, v) from u is upper
bounded by dsii · d

si
i+1 < g3/2(r+1). Since this is true for every vertex in the tree, we get that

|Γdist(u,v)(u)| = O(g3/2(r+1) · sr) = O(g3/2(r+1) · log g), which gives us an upper bound on k,
from which the lemma follows. J

APPROX/RANDOM’16

Tight Bounds for Sketching the Operator Norm,
Schatten Norms, and Subspace Embeddings
Yi Li∗1 and David P. Woodruff2

1 Facebook Inc., Seattle, WA, USA
leeyi@umich.edu

2 IBM Almaden Research Center, San Jose, CA, USA
dpwoodru@us.ibm.com

Abstract
We consider the following oblivious sketching problem: given ε ∈ (0, 1/3) and n ≥ d/ε2, design a
distribution D over Rk×nd and a function f : Rk × Rnd → R, so that for any n× d matrix A,

Pr
S∼D

[(1− ε)‖A‖op ≤ f(S(A), S) ≤ (1 + ε)‖A‖op] ≥ 2/3,

where ‖A‖op = supx:‖x‖2=1 ‖Ax‖2 is the operator norm of A and S(A) denotes S ·A, interpreting
A as a vector in Rnd. We show a tight lower bound of k = Ω(d2/ε2) for this problem. Previously,
Nelson and Nguyen (ICALP, 2014) considered the problem of finding a distribution D over Rk×n
such that for any n× d matrix A,

Pr
S∼D

[∀x, (1− ε)‖Ax‖2 ≤ ‖SAx‖2 ≤ (1 + ε)‖Ax‖2] ≥ 2/3,

which is called an oblivious subspace embedding (OSE). Our result considerably strengthens
theirs, as it (1) applies only to estimating the operator norm, which can be estimated given any
OSE, and (2) applies to distributions over general linear operators S which treat A as a vector
and compute S(A), rather than the restricted class of linear operators corresponding to matrix
multiplication. Our technique also implies the first tight bounds for approximating the Schatten
p-norm for even integers p via general linear sketches, improving the previous lower bound from
k = Ω(n2−6/p) [Regev, 2014] to k = Ω(n2−4/p). Importantly, for sketching the operator norm
up to a factor of α, where α − 1 = Ω(1), we obtain a tight k = Ω(n2/α4) bound, matching the
upper bound of Andoni and Nguyen (SODA, 2013), and improving the previous k = Ω(n2/α6)
lower bound. Finally, we also obtain the first lower bounds for approximating Ky Fan norms.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases data streams, sketching, matrix norms, subspace embeddings

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2016.39

1 Introduction

Understanding the sketching complexity of estimating matrix norms [4, 14, 24, 29] has been
a goal of recent work, generalizing a line of work on estimating frequency moments in the
sketching model [3, 17, 23], and in the somewhat related streaming model of computation [1].

In the sketching model, one fixes a distribution D over k × (nd) matrices S, and is then
given an n× d matrix A which, without loss of generality, satisfies n ≥ d. One then samples

∗ Yi Li was supported by ONR grant N00014-14-1-0632 when he was at Harvard University, where the
major part of this work was done.

© Yi Li and David P. Woodruff;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016).
Editors: Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans; Article No. 39; pp. 39:1–39:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.39
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

39:2 Tight Bounds for Sketching the Operator Norm, Schatten Norms, and . . .

S from D, and computes S(A), which denotes the operation of treating A as a column vector
in Rnd and left-multiplying that vector by the matrix S. Any linear transformation applied
to A can be expressed in this form, and therefore we sometimes refer to such a distribution
D as a general linear sketch. There is also the related notion of a bilinear sketch, in which
one fixes a distribution D over k × n matrices S, and is then given an n× d matrix A. One
samples S from D and computes S ·A. Bilinear sketches are special cases of general linear
sketches since they form a subclass of all possible linear transformations of A, and general
linear sketches can be much more powerful than bilinear sketches. For example, to compute
the trace exactly of an n × n matrix A, setting k = 1 suffices for a general linear sketch,
while we do not know how to compute the trace with a small value k for bilinear sketches,
and several lower bounds on k are known even to approximate the trace [28].

The goal in the sketching model is to minimize the sketching dimension k so that S(A)
can be used to approximate a property of A with constant probability. Associated with
distribution D is an estimation procedure, which we model as a function f , for which
f(S(A), S) outputs a correct answer to the problem at hand with constant probability. For
numerical properties, such as estimating a norm of A, this probability can be amplified to
1− δ, by creating a distribution D′ corresponding to taking O(log(1/δ)) independent copies
S1, . . . , Slog(1/δ) from D, and outputting the median of

f(S1(A), S1), f(S2(A), S2), . . . , f(Slog(1/δ)(A), Slog(1/δ)).

Notice that the mapping S is linear and oblivious, both of which are important for a number
of applications such as merging sketches in distributed computation, or for approximately
recovering a signal in compressed sensing. Minimizing k is crucial for these applications, as
it corresponds to the communication or number of observations of the underlying algorithm.

A quantity of interest is the operator norm. Given a matrix A, the operator norm ‖A‖op
is defined to be ‖A‖op = supx:‖x‖2=1 ‖Ax‖2. The operator norm arises in several applications;
for example one sometimes approximates a matrix A by another matrix Â for which ‖A− Â‖2
is small. Often Â has low rank, in which case this is the low rank approximation problem
with spectral error, see, e.g., recent work on this [20]. If one had an estimator for the operator
norm of A − Â, one could use it to verify if Â is a good approximation to A. Given the
linearity in the sketching model, if S is sampled from a distribution D, one can compute
S(A) − S(Â) = S(A − Â), from which one then has an estimation procedure to estimate
‖A− Â‖2 as f(S(A− Â), S). In the sketching model, it was first shown that approximating
the operator norm up to a constant factor requires k = Ω(d3/2) [14], which was later improved
by Regev to the tight k = Ω(d2) [29, Section 6.2]. Note that these lower bounds rule out
any possible function f as the estimation procedure. It is also implicit in [29, Section 6.2]
that approximating the operator norm up to a factor α, where α − 1 = Ω(1), requires
k = Ω(d2/α6). Andoni and Nguyen showed an upper bound of k = O(d2/α4) [2], that is,
they constructed a distribution D and corresponding estimation procedure f for which it
suffices to set k = O(d2/α4). This follows by Theorem 1.2 of [2].

A wide class of matrix norms is the Schatten p-norms, which are the analogues of `p-norms
of vectors and contain the operator norm as a special case. The Schatten p-norm of matrix
A is denoted by ‖A‖p and defined to be ‖A‖p = (

∑n
i=1(σi(A))p)1/p, where σ1, . . . , σn are

the singular values of A. When p < 1, ‖A‖p is not a norm but still a well-defined quantity.
For p = 0, viewing ‖A‖0 as the limit limp→0+ ‖A‖p recovers exactly the rank of A, which
has been studied in the data stream [4, 6] and property testing models [11, 16]. When p = 1,

Y. Li and D. P. Woodruff 39:3

it is the nuclear or trace norm1, which has applications in differential privacy [9, 13] and
non-convex optimization [5, 8]. When p = 2, it is the Frobenius norm, and when p→∞, it
holds that ‖A‖p tends to ‖A‖op. Such norms are useful in geometry and linear algebra, see,
e.g., [29]. A k = Ω(

√
d) lower bound for every p ≥ 0 was shown in [15]. For p > 2 a lower

bound on the sketching dimension of k = Ω(d2/3−3/p), and an upper bound of k = O(d2−4/p)
were shown in [15]. The upper bound is only known to hold when p is an even integer. The
lower bound was improved by Regev to k = Ω(d2−6/p) for p > 6 [29, Section 6.2]2.

Other related work includes that on oblivious subspace embeddings (OSEs), which fall
into the category of bilinear sketches. Here one seeks a distribution D over Rk×n such that
for any n× d matrix A,

Pr
S∼D

[∀x, (1− ε)‖Ax‖2 ≤ ‖SAx‖2 ≤ (1 + ε)‖Ax‖2] ≥ 2/3.

This notion has proved important in numerical linear algebra, and has led to the fastest
known algorithms for low rank approximation and regression [7, 19, 21]. Since an OSE has
the property that ‖SAx‖2 = (1 ± ε)‖Ax‖2 for all x, it holds in particular that ‖SA‖op =
(1± ε)‖A‖op, where the notation a = (1± ε)b means (1− ε)b ≤ a ≤ (1 + ε)b. When n ≥ d/ε2,
Nelson and Nguyen show the tight bound that any OSE requires k = Ω(d/ε2) [22].

Finally, we mention recent related work in the data stream model on approximation
of matrix norms [4, 18]. Here one sees elements of A one at a time and the goal is to
output an approximation to ‖A‖p. It is important to note that the data stream model and
sketching models are incomparable. The main reason for this is that unlike in the data
stream model, the bit complexity is not accounted for in the sketching model, and both
S and A are assumed to have entries which are real numbers. The latter is the common
model adopted in compressed sensing. In the data stream model, if one wants to output a
vector v ∈ {0, 1, . . . ,M − 1,M}n, one needs n logM bits of space. On the other hand, if u is
the vector (1, (M + 1), (M + 1)2, (M + 1)3, . . . , (M + 1)n), then from 〈u, v〉, one can output
v, so the sketching dimension k is only equal to 1. The sketching complexity thus gives a
meaningful measure of complexity in the real RAM model. Conversely, lower bounds in the
sketching model do not translate into lower bounds in the data stream model. This statement
holds even given the work of [14] which characterizes turnstile streaming algorithms as
linear sketches. The problem is that lower bounds in the sketching model involve continuous
distributions and after discretizing the distributions it is no longer clear if the lower bounds
hold.

1.1 Our Contributions

In this paper we strengthen known sketching lower bounds for the operator norm, Schatten
p-norms, and subspace embeddings. Our lower bounds are optimal for any approximation to
the operator norm, for subspace embeddings, and for Schatten p-norms for even integers p.
We first describe our results for the operator norm, as the results for Schatten p-norms and
subspace embeddings follow from them.

We consider the following problem: given ε ∈ (0, 1/3) and n ≥ d/ε2, design a distribution

1 The trace norm is not to be confused with the trace. These two quantities only coincide if A is positive
semidefinite.

2 The section discusses only the case of p = ∞, i.e., the operator norm, but the same method can be used
for general p and gives the bound claimed here.

APPROX/RANDOM’16

39:4 Tight Bounds for Sketching the Operator Norm, Schatten Norms, and . . .

D over Rk×nd and a function f : Rk × Rk×nd → R, so that for any n× d matrix A,

Pr
S∼D

[(1− ε)‖A‖op ≤ f(S(A), S) ≤ (1 + ε)‖A‖op] ≥ 2/3,

For this problem, we show a tight k = Ω(d2/ε2) lower bound. Our result considerably
strengthens the result of Nelson and Nguyen [22] as it (1) applies only to estimating the
operator norm, which can be estimated given any OSE, and (2) applies to general linear
sketches rather than only to bilinear sketches. Regarding (1), this shows that designing a
general linear sketch for approximating the operator norm of a matrix is as hard as designing
an oblivious subspace embedding. Regarding (2), we lower bound a much larger class of data
structures than OSEs that one could use to approximate ‖Ax‖2 for all vectors x.

We then generalize the argument above to handle approximation factors α, with α− 1 =
Ω(1), for approximating the operator norm. In this case we consider n = d, which is without
loss of generality since by first applying an OSE S to A with k = O(d), replacing A with
S ·A, all singular values of A are preserved up to a constant factor (we can also pad SA with
zero columns to make SA be a square matrix) - see Appendix C of [15]. We can then apply
our general linear sketch to SA (the composition of linear sketches is a general linear sketch).
We show a lower bound of k = Ω(n2/α4), improving the previous k = Ω(n2/α6) bound, and
maching the k = O(n2/α4) upper bound. This answers Open Question 2 in [15].

The proof shows the problem is already hard to distinguish between the two cases: (1)
A has one singular value of value Θ(α) and remaining singular values of value Θ(1), versus
(2) all singular values of A are of value Θ(1). By setting α = n1/p, we are able to obtain
a constant factor gap in the Schatten-p norm in the two cases, and therefore additionally
obtain an Ω(n2−4/p) lower bound for Schatten p-norms for constant factor approximation.
This improves the previous Ω(n2−6/p) lower bound, and matches the known upper bound for
even integers p. Our proof also establishes a lower bound of k = Ω(n2/s2) for estimating the
Ky-Fan s-norm of an n× n matrix A up to a constant factor, whenever s ≤ .0789

√
n.

Our main technical novelty is avoiding a deep theorem of Latała [12] concerning tail
bounds for Gaussian chaoses used in the prior lower bounds for sketching the operator norm
and Schatten p-norms. Instead we prove a simple lemma (Lemma 3) allowing us to bound
Ex,y[exTAy] for Gaussian vectors x and y and a matrix A, in terms of the Frobenius norm of
A. Surprisingly, this lemma suffices for directly upper-bounding the χ2-distance between
the distributions considered in previous works, and without losing any additional factors.
Our technical arguments are thus arguably more elementary and simpler than those given in
previous work.

2 Preliminaries

Notation

Let Rn×d be the set of n× d real matrices and N(µ,Σ) denote the (multi-variate) normal
distribution of mean µ and covariance matrix Σ. We write X ∼ D for a random variable X
subject to a probability distribution D. Denote by G(n, n) the ensemble of random matrices
with entries i.i.d. N(0, 1).

Singular values and matrix norms

Consider a matrix A ∈ Rn×n. Then ATA is a positive semi-definite matrix. The eigenvalues
of
√
ATA are called the singular values of A, denoted by σ1(A) ≥ σ2(A) ≥ · · · ≥ σn(A) in

decreasing order. Let r = rank(A). It is clear that σr+1(A) = · · · = σn(A) = 0. Define

Y. Li and D. P. Woodruff 39:5

‖A‖p = (
∑r
i=1(σi(A))p)1/p (p > 0). For p ≥ 1, it is a norm over Rn×d, called the p-th

Schatten norm, over Rn×n for p ≥ 1. When p = 1, it is also called the trace norm or
nuclear norm. When p = 2, it is exactly the Frobenius norm ‖A‖F . Let ‖A‖op denote
the operator norm of A when treating A as a linear operator from `n2 to `n2 . It holds that
limp→∞ ‖A‖p = σ1(A) = ‖A‖op.

The Ky-Fan s-norm of A, denoted by ‖A‖Fs , is defined as the sum of the largest s singular
values: ‖A‖Fs

=
∑s
i=1 σi(A). Note that ‖A‖F1 = ‖A‖op and ‖A‖Fs

= ‖A‖1 for s ≥ r.

Distance between probability measures

Suppose µ and ν are two probability measures over some Borel algebra B on Rn such that
µ is absolutely continuous with respect to ν. For a convex function φ : R → R such that
φ(1) = 0, we define the φ-divergence

Dφ(µ||ν) =
∫
φ

(
dµ

dν

)
dν.

In general Dφ(µ||ν) is not a distance because it is not symmetric.
The total variation distance between µ and ν, denoted by dTV (µ, ν), is defined as Dφ(µ||ν)

for φ(x) = |x− 1|. It can be verified that this is indeed a distance.
The χ2-divergence between µ and ν, denoted by χ2(µ||ν), is defined as Dφ(µ||ν) for

φ(x) = (x− 1)2 or φ(x) = x2 − 1. It can be verified that these two choices of φ give exactly
the same value of Dφ(µ||ν).

I Proposition 1 ([26, p90]). dTV (µ, ν) ≤
√
χ2(µ||ν).

I Proposition 2 ([10, p97]). χ2(N(0, In) ∗ µ||N(0, In)) ≤ E e〈x,x′〉 − 1, where x, x′ ∼ µ are
independent.

3 Sketching Lower Bound for p > 2

We follow the notations in [15] throughout this section, though the presentation here is
self-contained. To start, we present the following lemma.

I Lemma 3.3 Suppose that x ∼ N(0, Im) and y ∼ N(0, In) are independent and A ∈ Rm×n
satisfies ‖A‖F < 1. It holds that

E
x,y
ex

TAy ≤ 1√
1− ‖A‖2F

.

Proof. First, it is easy to verify that

E
x,y∼N(0,1)

eaxy = 1
2π

∫∫
R×R

eaxy−
x2+y2

2 dxdy

= 1
2π

∫
R

∫
R
e−

1
2 (x−ay)2

e−
1
2 (1−a2)y2

dxdy

= 1√
2π

∫
R
e−

1
2 (1−a2)y2

dy

= 1√
1− a2

, a ∈ [0, 1).

3 A similar result holds for subgaussian vectors x and y with the right-hand side replaced with exp(c‖A‖2
F)

for some absolute constant c > 0, whose proof requires heavier machinery. We only need the elementary
variant here by our choice of hard instance.

APPROX/RANDOM’16

39:6 Tight Bounds for Sketching the Operator Norm, Schatten Norms, and . . .

Without loss of generality, assume that m ≥ n. Consider the singular value decomposition
A = UΣV T where U and V are orthogonal matrices of dimension m and n respectively and
Σ = diag{σ1, . . . , σn} with σ1, . . . , σn being the non-zero singular values of A. We know
that σi ∈ [0, 1) for all i by the assumption that ‖A‖F < 1. By rotational invariance of the
Gaussian distribution, we may assume that m = n and thus

E
x,y∼N(0,In)

ex
TAy = E

x,y∼N(0,In)
ex

T Σy

= 1
(2π)n

∫∫
Rn×Rn

exp
{

n∑
i=1

(
σixiyi −

x2
i + y2

i

2

)}
dxdy

=
n∏
i=1

1√
1− σ2

i

≤ 1√
1−

∑n
i=1 σ

2
i

= 1√
1− ‖A‖2F

. J

Next we consider the problem of distinguishing two distributions D1 = G(m,n) and
D2 as defined below. Let u1, . . . , ur be i.i.d. N(0, Im) vectors and v1, . . . , vr i.i.d. N(0, In)
vectors and further suppose that {ui} and {vi} are independent. Let s ∈ Rr and define the
distribution D2 as G(m,n) +

∑r
i=1 siu

i(vi)T . We take k linear measurements and denote
the corresponding rows (measurements) of the sketching matrix by L1, . . . , Lk. Without
loss of generality we may assume that tr((Li)TLi)) = 1 and tr((Li)TLj)) = 0 for i 6= j,
since this corresponds to the rows of the sketching matrix being orthonormal, which we can
assume since we can always change the basis of the row space of the sketching matrix in a
post-processing step. Let L1 and L2 be the corresponding distribution of the linear sketch of
dimension k on D1 and D2, respectively. The main result is the following theorem.

I Theorem 4. There exists an absolute constant c > 0 such that dTV (L1,L2) ≤ 1/10
whenever k ≤ c/‖s‖42.

Proof. It is not difficult to verify that L1 = N(0, Ik) and L2 = N(0, Ik) + µ, where µ is the
distribution of

∑r
i=1 si(ui)TL1vi∑r
i=1 si(ui)TL2vi

...∑r
i=1 si(ui)TLkvi

 .

Consider a random variable (we shall see in a moment where it comes from)

ξ =
k∑
i=1

r∑
j,l=1

m∑
a,c=1

n∑
b,d=1

sjsl(Li)ab(Li)cd(uj)a(vj)b(ul)c(vl)d.

Take expectation on both sides and notice that the non-vanishing terms on the right-hand
side must have j = l, a = c and b = d,

E ξ =
k∑
i=1

r∑
j=1

m∑
a=1

n∑
b=1

s2
j (Li)2

ab E(uj)2
a E(vj)2

a = k‖s‖22.

Y. Li and D. P. Woodruff 39:7

Define an event E = {‖s‖2ξ < 1/2} and it follows from our assumption and Markov’s
inequality that Pr(E) ≥ 1− 2c. Restrict µ to this event and denote the induced distribution
by µ̃. Let L̃2 = N(0, In) + µ̃.

Then the total variation distance between L1 and L2 can be upper bounded as

dTV (L1,L2) ≤ dTV (L1, L̃2) + dTV (L2, L̃2)

≤
√

E
z1,z2∼µ̃

e〈z1,z2〉 − 1 + dTV (µ, µ̃)

≤

√
1

Pr(E) (E
z1∼µ̃,z2∼µ

e〈z1,z2〉 − 1) + 1
Pr(E) − 1

and we shall bound E e〈z1,z2〉 in the rest of the proof.

E
z1∼µ̃,z2∼µ

e〈z1,z2〉 = E exp

k∑
i=1

∑
j,a,b

∑
j′,a′,b′

sj(Li)ab(uj)a(vj)b · sj′(Li)a′b′(xj
′
)a′(yj

′
)b′

= E
u1,...,ur,v1...,vr|µ̃

r∏
j′=1

E
xj′∼N(0,Im)
yj′∼N(0,In)

exp

∑
a′,b′

Qj
′

a′,b′(xj
′
)a′(yj

′
)b′

 ,

where

Qj
′

a′,b′ = sj′

k∑
i=1

∑
j,a,b

(Li)ab(Li)a′b′ · sj(uj)a(vj)b.

In order to apply the preceding lemma, we need to verify that ‖Qj′‖2F < 1. Indeed,

‖Qj
′
‖2F =

∑
a′,b′

(Qj
′
)2
a′,b′

= s2
j′

∑
a′,b′

∑
i,i′

∑
j,a,b

∑
`,c,d

sj(Li)ab(Li)a′b′(uj)a(vj)b · s`(Li
′
)cd(Li

′
)a′b′(u`)c(v`)d

= s2
j′

∑
a′,b′

∑
i

(Li)2
a′b′

∑
j,a,b

∑
`,c,d

sj(Li)ab(uj)a(vj)b · s`(Li)cd(u`)c(v`)d

(i must equal to i′)

= s2
j′

∑
i

∑
j,a,b

∑
`,c,d

sj(Li)ab(uj)a(vj)b · s`(Li)cd(u`)c(v`)d

= s2
j′ξ < 1

since we have conditioned on E . Now it follows from the preceding lemma that

E
u1,...,ur,v1...,vr

r∏
i=1

E
xj′ ,yj′

exp

∑
a′,b′

Qj
′

a′,b′(xj
′
)a′(yj

′
)b′

 ≤ E
u1,...,ur,v1...,vr

r∏
j′=1

1√
1− s2

j′ξ

≤ E
u1,...,ur,v1...,vr

1√
1− ‖s‖2ξ

≤ 1 + ‖s‖2 E ξ
≤ 1 + k‖s‖4,

APPROX/RANDOM’16

39:8 Tight Bounds for Sketching the Operator Norm, Schatten Norms, and . . .

where, in the third inequality, we used the fact that 1/
√

1− x ≤ 1 + x for x ∈ [0, 1/2].
Therefore,

dTV (L1,L2) ≤
√
k‖s‖4
1− 2c + 2c

1− 2c ≤
√

c

1− 2c + 2c
1− 2c ≤

1
10

when c > 0 is small enough. J

We will apply the preceding theorem to obtain our lower bounds for the applications. To
do so, notice that by Yao’s minimax principle, we can fix the rows of our sketching matrix,
and show that the resulting distributions L1 and L2 above have small total variation distance.
By standard properties of the variation distance, this implies that no estimation procedure f
can be used to distinguish the two distributions with sufficiently large probability, thereby
establishing our lower bound.

I Corollary 5 (α-approximation to operator norm). Let c > 0 be an arbitrarily small constant.
For α ≥ 1 + c, any sketching algorithm that estimates ‖X‖op for X ∈ Rn×n within a factor
of α with error probability ≤ 1/6 requires sketching dimension Ω(n2/α4).

Proof. Let m = n and take r = 1 and s1 = Cα/
√
n for some constant C large enough in D2

and apply the preceding theorem. J

I Corollary 6 (Schatten norms). There exists an absolute constant c > 0 such that any
sketching algorithm that estimates ‖X‖pp (p > 2) for X ∈ Rn×n within a factor of 1 + c with
error probability ≤ 1/6 requires sketching dimension Ω(n2(1−2/p)).

Proof. Let m = n and take r = 1 and s1 = 5/n1/2−1/p in D2. Note that ‖X‖pp differs by a
constant factor with high probability when X ∼ D1 and X ∼ D2 (the same hard distribution
as in [15]), apply the preceding theorem. J

I Corollary 7. Let ε ∈ (0, 1/3). For any matrix X ∈ R(d/ε2)×d, any sketching algorithm
that estimates ‖X‖op within a factor of 1 + ε with error probability ≤ 1/6 requires sketching
dimension Ω(d2/ε2).

Proof. Let m = d/ε2 and n = d. Take r = 1 and s1 = 3
√
ε/d and apply Theorem 4. Next

we shall justify this choice of parameters, that is,

G and G+ 3
√
ε

d
uvT

differ in operator norm by a factor of 1 + ε. It follows from the standard result [27] that

‖G‖op ≤
√
d

ε
+ 1.1

√
d = (1 + 1.1ε)

√
d

ε

with high probability. Next we shall show that∥∥∥∥G+ 4
√
ε

d
uvT

∥∥∥∥
op

≥ (1 + 3ε)
√
d

ε
,

for which it suffices to show that∥∥Gv + 4
√

ε
duv

T v
∥∥2

2
‖v‖22

≥

(
(1 + 3ε)

√
d

ε

)2

.

Y. Li and D. P. Woodruff 39:9

Expanding the numerator of the left-hand side, we obtain

‖Gv‖22
‖v‖22

+ 16ε
d
‖v‖22‖u‖22 +

〈
Gv, 4

√
ε

d
u

〉

≥

(√
d

ε
− 1.1

√
d

)2

+ 16ε
d
· 0.92 d

2

ε2
− 4
√
ε

d
‖Gv‖‖u‖

≥
(
(1− 1.1ε)2 + 12.96ε

) d
ε2
− 4
√
ε

d

(√
d

ε
+ 1.1

√
d

)(
1.1
√
d

ε

)
(1.1
√
d)

≥ ((1− 1.1ε)2 + 12.96ε) d
ε2
−O

(
d

ε3/2

)
≥ (1 + 3ε)2 d

ε2

with high probability. J

I Corollary 8 (Ky-fan norm). There exists an absolute constant c > 0 such that any sketching
algorithm that estimates ‖X‖Fs for X ∈ Rn×n and s ≤ 0.0789

√
n within a factor of 1 + c

with error probability ≤ 1/6 requires sketching dimension Ω(n2/s2).

Proof. Take r = s and s1 = s2 = · · · = sr = 5/
√
n in D2 and apply Theorem 4, for which

we shall show the KyFan s-norms are different with high probability in the two cases.
When X ∼ D1, we know that σ1(X) ≤ 2.1

√
n with high probability and thus ‖X‖Fs

≤
2.1s
√
n with high probability.

When X ∼ D2, we can write X = G + 5√
n
P , where P = u1v

T
1 + · · · + usv

T
s . We

claim that with high probability ‖P‖1 ≥ 0.9sn and thus ‖X‖Fs
≥ 5√

n
‖P‖Fs

− ‖G‖Fs
≥

4.5s
√
n− 2.1s

√
n ≥ 2.4s

√
n, evincing a multiplicative gap of ‖X‖Fs

between the two cases.
Now we prove the claim. With high probability, it holds that 0.99

√
n ≤ ‖ui‖ ≤ 1.01

√
n

for all i and |
∑
i6=j〈ui, uj〉| ≤ 1.01s

√
n. We shall condition on these events below.

By the min-max theorem for singular values,

σ2
` (P) = max

H:dimH=`
min
x∈H
‖x‖2=1

xTPTPx,

where

xTPTPx =
∑
i,j

xT viu
T
i ujv

T
j x

=
∑
i

xT viu
T
i uiv

T
i x+

∑
i6=j

xT vi(uTi uj)vTj x

≥ 0.992n
∑
i

xT vTi vix− 1.01
√
n · 1.01k

√
n · 1.01

√
n

= 0.992n
∑
i

xT vTi vix− 1.013kn
3
2

and thus,

σ2
` (P) ≥ 0.992n max

H:dimH=`
min
x∈H
‖x‖2=1

∑
i

xT vTi vix− 1.013kn
3
2

= 0.992nσ2
` (V)− 1.013kn

3
2 ,

APPROX/RANDOM’16

39:10 Tight Bounds for Sketching the Operator Norm, Schatten Norms, and . . .

where V is a k × n matrix with rows vT1 , . . . , vTk . Therefore

‖P‖1 ≥ 0.99
√
n‖V ‖1 − 1.01 3

2 s
3
2n

3
4 .

Since V is a Gaussian random matrix, the classical results imply that ‖V ‖1 ≥ 0.99s
√
n with

high probability [25]. The claim follows from our assumption on s. J

4 Conclusion

We have presented a simple, surprisingly powerful new analysis which gives optimal bounds
on the sketching dimension for a number of previously studied sketching problems, including
approximating the operator norm, Schatten norms, and subspace embeddings. We have also
presented the first lower bounds for estimating Ky Fan norms. It would be interesting to see
if there are other applications of this method to the theory of linear sketches.

References
1 Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the

frequency moments. J. Comput. Syst. Sci., 58(1):137–147, 1999.
2 Alexandr Andoni and Huy L. Nguyen. Eigenvalues of a matrix in the streaming model. In

Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1729–1737, 2013.

3 Alexandr Andoni, Huy L. Nguyên, Yury Polyanskiy, and Yihong Wu. Tight lower bound
for linear sketches of moments. In Automata, Languages, and Programming – 40th Interna-
tional Colloquium, ICALP 2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part I, pages
25–32, 2013.

4 Marc Bury and Chris Schwiegelshohn. Sublinear estimation of weighted matchings in
dynamic data streams. In the Proceedings of ESA, 2015.

5 Emmanuel J. Candès and Benjamin Recht. Exact matrix completion via convex optimiza-
tion. Commun. ACM, 55(6):111–119, 2012.

6 Kenneth L. Clarkson and David P. Woodruff. Numerical linear algebra in the streaming
model. In Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC
2009, Bethesda, MD, USA, May 31 – June 2, 2009, pages 205–214, 2009.

7 Kenneth L. Clarkson and David P. Woodruff. Low rank approximation and regression in
input sparsity time. In Symposium on Theory of Computing Conference, STOC’13, Palo
Alto, CA, USA, June 1-4, 2013, pages 81–90, 2013.

8 Amit Deshpande, Madhur Tulsiani, and Nisheeth K. Vishnoi. Algorithms and hardness for
subspace approximation. In SODA, pages 482–496, 2011.

9 Moritz Hardt, Katrina Ligett, and Frank McSherry. A simple and practical algorithm for
differentially private data release. In Advances in Neural Information Processing Systems
25, pages 2348–2356. 2012.

10 Yuri Ingster and I. A. Suslina. Nonparametric Goodness-of-Fit Testing Under Gaussian
Models. Springer, 1st edition, 2002.

11 Robert Krauthgamer and Ori Sasson. Property testing of data dimensionality. In Proceed-
ings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, January
12-14, 2003, Baltimore, Maryland, USA., pages 18–27, 2003.

12 Rafał Latała. Estimates of moments and tails of Gaussian chaoses. Ann. Probab.,
34(6):2315–2331, 2006.

13 Chao Li and Gerome Miklau. Measuring the achievable error of query sets under differential
privacy. CoRR, abs/1202.3399, 2012.

Y. Li and D. P. Woodruff 39:11

14 Yi Li, Huy L. Nguyen, and David P. Woodruff. On sketching matrix norms and the top
singular vector. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 1562–
1581, 2014.

15 Yi Li, Huy L. Nguyen, and David P. Woodruff. Turnstile streaming algorithms might as
well be linear sketches. In Symposium on Theory of Computing, STOC 2014, New York,
NY, USA, May 31 – June 03, 2014, pages 174–183, 2014.

16 Yi Li, Zhengyu Wang, and David P. Woodruff. Improved testing of low rank matrices.
In The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD’14, New York, NY, USA – August 24-27, 2014, pages 691–700, 2014.

17 Yi Li and David P. Woodruff. A tight lower bound for high frequency moment estima-
tion with small error. In Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques – 16th International Workshop, APPROX 2013, and 17th Inter-
national Workshop, RANDOM 2013, Berkeley, CA, USA, August 21-23, 2013. Proceedings,
pages 623–638, 2013.

18 Yi Li and David P. Woodruff. On approximating functions of the singular values in a
stream. In STOC, 2016.

19 Xiangrui Meng and Michael W. Mahoney. Low-distortion subspace embeddings in input-
sparsity time and applications to robust linear regression. In Symposium on Theory of
Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4, 2013, pages 91–100,
2013.

20 Cameron Musco and Christopher Musco. Stronger approximate singular value decomposi-
tion via the block lanczos and power methods. CoRR, abs/1504.05477, 2015.

21 Jelani Nelson and Huy L. Nguyen. OSNAP: faster numerical linear algebra algorithms
via sparser subspace embeddings. In 54th Annual IEEE Symposium on Foundations of
Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages 117–126,
2013.

22 Jelani Nelson and Huy L. Nguyên. Lower bounds for oblivious subspace embeddings. In
Automata, Languages, and Programming – 41st International Colloquium, ICALP 2014,
Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part I, pages 883–894, 2014.

23 Eric Price and David P. Woodruff. Applications of the shannon-hartley theorem to data
streams and sparse recovery. In Proceedings of the 2012 IEEE International Symposium on
Information Theory, ISIT 2012, Cambridge, MA, USA, July 1-6, 2012, pages 2446–2450,
2012.

24 Oded Regev. Personal communication, 2014.
25 Terence Tao. Topics in Random Matrix Theory. Graduate studies in mathematics. Ameri-

can Mathematical Society, 2012.
26 Alexandre B. Tsybakov. Introduction to Nonparametric Estimation. Springer, 1st edition,

2008.
27 Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices. In Yon-

ina C. Eldar and Gitta Kutyniok, editors, Compressed Sensing, pages 210–268. Cambridge
University Press, 2012. Cambridge Books Online. doi:10.1017/CBO9780511794308.006.

28 Karl Wimmer, Yi Wu, and Peng Zhang. Optimal query complexity for estimating the trace
of a matrix. CoRR, abs/1405.7112, 2014.

29 David P. Woodruff. Sketching as a tool for numerical linear algebra. Foundations and
Trends in Theoretical Computer Science, 10(1-2):1–157, 2014.

APPROX/RANDOM’16

http://dx.doi.org/10.1017/CBO9780511794308.006

Bounds on the Norms of Uniform Low Degree
Graph Matrices
Dhruv Medarametla1 and Aaron Potechin2

1 Stanford University, Stanford, CA, USA
dhruvm321@gmail.com

2 Cornell University, Ithaca, NY, USA
aaronpotechin@gmail.com

Abstract
The Sum Of Squares hierarchy is one of the most powerful tools we know of for solving combinat-
orial optimization problems. However, its performance is only partially understood. Improving
our understanding of the sum of squares hierarchy is a major open problem in computational
complexity theory.

A key component of analyzing the sum of squares hierarchy is understanding the behavior of
certain matrices whose entries are random but not independent. For these matrices, there is a
random input graph and each entry of the matrix is a low degree function of the edges of this
input graph. Moreoever, these matrices are generally invariant (as a function of the input graph)
when we permute the vertices of the input graph. In this paper, we bound the norms of all such
matrices up to a polylogarithmic factor.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases sum of squares hierarchy, matrix norm bounds

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2016.40

1 Introduction

1.1 Background and Motivation
The sum of squares hierarchy, independently developed by Shor, Nesterov, Parrillo, and
Lasserre [26, 22, 23, 19], is a powerful tool for solving combinatorial optimization problems.
The first level of the sum of squares hierarchy corresponds to semidefinite programming
on the input variables, which is extremely useful on its own, and each subsequent level of
the sum of squares hierarchy gives a larger but more accurate semidefinite program for the
problem.

However, the performance of the sum of squares hierarchy is only partially understood.
It is known that the sum of squares hierarchy is strictly more powerful than the Lovasz-
Schrijver Hierarchy and the Sherali-Adams hierarchy. It is also known that the sum of
squares hierarchy captures the best known algorithms for many problems. For example,
the sum of squares hierarchy captures the Goemans-Williamson algorithm for max-cut [11]
and the Goemans-Linial relaxation for sparsest cut (which was shown to give an O(

√
logn)

approximation by Arora, Rao, and Vazirani [3]). Also, as shown by Barak, Raghavendra,
and Steurer [5] and by Guruswami and Sinop[14], the sum of squares hierarchy captures the
sub-exponential algorithm for unique games found by Barak et. al. [2]. That said, for all we
know, the sum of squares hierrarchy may do even better than these algorithms on max-cut,
sparsest cut, and/or unique games; determining the exact performance of the sum of squares
hierrarchy on max-cut, sparsest cut, and unique games is a major open problem.

© Dhruv Medarametla and Aaron Potechin;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016).
Editors: Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans; Article No. 40; pp. 40:1–40:26

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.40
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

40:2 Bounds on the Norms of Uniform Low Degree Graph Matrices

On the lower bound side, it is known that the sum of squares hierarchy cannot solve
NP-hard problems. Such lower bounds generally follow from the result of Grigoriev [12, 13],
which was independently rediscovered by Schoenebeck [25], that the sum of squares hierarchy
cannot distinguish between a random 3-XOR instance and a random 3-XOR instance with
a planted solution. This problem can be reduced to 3-SAT and other NP-hard problems,
which implies sum of squares lower bounds for these problems. However, until recently,
few lower bounds were known for the sum of squares hierarchy for problems which are not
NP-hard. For more information about the sum of squares hierarchy, see the survey of Barak
and Steurer [6].

Recently, there have been several papers proving lower bounds for the performance of
the Sum Of Squares Hierarchy on the planted clique problem [20, 15, 7, 24]. In the planted
clique problem, introduced by Jerrum [16] and Kucera [18], we are given a graph which was
created by first choosing a random graph and then randomly planting a clique of size k by
choosing k vertices and making them all adjacent to each other. The goal of the problem is
to recover the planted clique. Although with high probability the size of the largest clique in
a random graph is only around 2 lgn, the current best polynomial time algorithm, a spectral
algorithm due to Alon et. al. [1], can only solve the planted clique problem for k = Θ(

√
n).

In fact, we have strong reason to believe that doing better than Θ(
√
n) in polynomial time is

hard. It has been shown [16, 8, 9] that several classes of algorithms, including Monte-Carlo
Markov chains, the Lovasz-Schrijver Hierarchy, and statistical algorithms, cannot do better
than Θ(

√
n) in polynomial time.

The papers [20, 15, 7, 24] show partial lower bounds on the sum of squares hierarchy for
the planted clique problem, proving that the second level of the sum of squares hierarchy
cannot solve planted clique if k is much smaller than

√
n and that the rth level of the sum

of squares hierarchy cannot solve planted clique if k is much smaller than n
1
r+1 . While

these papers use many different techniques, a crucial part of all of them is probabilistically
bounding the norms of certain matrices. In these matrices, the entries are not completely
independent of each other, but are low degree in the edges of the input graph and are highly
symmetric, so we call them uniform low degree graph matrices.

Here, inspired by these papers [20, 15, 7, 24], we investigate the norms of uniform low
degree graph matrices. While special cases of these matrices have been analyzed, here
we generalize this analysis, proving bounds on the norms of all uniform low degree graph
matrices.

Concurrently with this work, a nearly tight lower bound was proved for the sum of squares
hierarchy on the planted clique problem [4], showing that the sum of squares hierarchy cannot
solve the planted clique problem in polynomial time if k is much smaller than

√
n. Coming

full circle, it turns out that this general analysis of uniform low degree graph matrices is a
key component of proving the full lower bound. We have good reason to believe that this
analysis of uniform low degree graph matrices will be useful in analyzing the sum of squares
hierarchy on other problems and it may also be of independent interest.

Finally, we note that this work can be viewed as progress towards matrix concentration
inequalities. In random matrix theory, finding concentration inequalities for the norms of
matrix-valued functions is a longstanding open problem. This work gives bounds for the case
when the matrix function is highly symmetric and has a random graph as input.

1.2 Preliminaries

In this paper, we use the following standard linear algrebra definitions.

D. Medarametla and A. Potechin 40:3

I Definition 1.
1. Given a matrix M , let M(i, j) be the element in the ith row and jth column of M . We

use M(i, j) rather than Mij because we will often want to give our matrices subscripts
and superscripts.

2. Given a matrix M , we take ||M || to be the induced norm of M , i.e. ||M || = max
||v||=1

||Mv||.

Throughout this paper, we will be bounding the norms of matrices whose entries depend
on a random graph G ∼ G(n, 1

2). To avoid writing G repeatedly, we make this dependence
implicit rather than writing it explicitly.

To bound the norms of our matrices, we will use the moment method. In particular, we
use the following fact.

I Lemma 2. For any real matrix M , for all k ≥ 1, 2k
√

tr((MMT)k) ≥ ||M ||.

For completeness, we give a short proof of this fact in Appendix A.
Finally, we recall König’s Theorem and Menger’s Theorem as they will play a crucial role

in our analysis.

I Definition 3. Given a graph G, a vertex cover of G is a set of vertices V ⊆ V (G) such
that all edges of G are incident with at least one vertex in V .

I Theorem 4 (König’s Theorem). If G is a bipartite graph with partite sets U and V then
the minimal size of a vertex cover of G is equal to the maximal size of a matching between U
and V .

I Definition 5. If G is a graph and U, V ⊆ V (G), we define a vertex separator S of U and
V to be a set of vertices such that all paths from U to V intersect S.

I Theorem 6 (Menger’s Theorem). If G is a graph and U, V ⊆ V (G) then the minimal size
of a vertex separator of U and V is equal to the maximal number of vertex disjoint paths
between U and V .

1.3 Definitions for Uniform Low Degree Graph Matrices
We now rigorously define what uniform low degree graph matrices are. For the remainder of
the paper, we assume that V (G) = [1, n] so that the vertices of G have a natural ordering.

I Definition 7. Given an input graph G and a possible edge e, we define the edge variable
e = (i, j) to be 1 if (i, j) ∈ E(G) and −1 otherwise. Given a set of edges E, we define
χE =

∏
e∈E e.

I Remark. We can think of the χE as Fourier characters on the input graph.

I Definition 8. We say that a matrix R is a graph matrix if its entries are all functions
of the edge variables of some input graph G. We say that R has degree d if the maximum
degree among all of these functions is d.

Uniformity says that the matrix is the same (as a function of the input graph G) when we
permute the vertices of G. More precisely, we have the following definitions.

I Definition 9. Given a permutation σ of V (G),
1. If e = (u, v) is a possible edge of G then define σ(e) = (σ(u), σ(v)).
2. Given a set E of possible edges of G, define σ(E) = {σ(e) : e ∈ E}.

APPROX/RANDOM’16

40:4 Bounds on the Norms of Uniform Low Degree Graph Matrices

u1

u2

v1

v2

v3

w1

w2

U W V

(a) H.

5

11

7

9

12

8

2

(b) The subgraph of G that χH,A,B,C is
calculated from.

Figure 1

I Definition 10. We say that a graph matrix R is uniform if the following conditions hold:
1. R has rows and columns indexed by subsets A and B of V (G).
2. Letting cA,B,E be the coefficient of χE in R(A,B), whenever A,A′, B,B′ ⊆ V (G),
|A′| = |A|, |B′| = |B|, and σ is a permutation of V (G) which maps the ith element
of A to the ith element of A′ and maps the jth element of B to the jth element of B′,
cA′,B′,σ(E) = cA,B,E .

In this paper, we focus on the following type of uniform graph matrix.

I Definition 11. Let H be a graph with two distinguished subsets of vertices U =
{u1, u2, . . . ux} and V = {v1, v2, . . . vy}. Let W = {w1, . . . , wz} be the remaining vertices
of H. Given A = {a1, . . . , ax}, B = {b1, . . . , by}, and C = {c1, . . . , cz} such that ai = bj if
and only if ui = vj , C is disjoint from A ∪ B, and A and B are in increasing order but C
may be in any order (though still with no duplicates), define χH,A,B,C = χπ(E(H)) where π
is the mapping from V (H) to V (G) such that ∀i ∈ [1, x], π(ui) = ai, ∀j ∈ [1, y], π(vj) = bj ,
∀k ∈ [1, z], π(wk) = ck and we take π(E(H)) = {(π(u), π(v)) : (u, v) ∈ E(H)}

We define the matrix RH to be the
(
n
x

)
×
(
n
y

)
matrix with entries RH(A,B) =

∑
C χH,A,B,C

whenever ai = bj if and only if ui = vj and we take RH(A,B) = 0 otherwise.

I Example 12. The following is an example of χH,A,B,C for a particular H, A, B, and C. If
H is the graph shown below in Figure 1a, A = {5, 11}, B = {7, 9, 12}, and C = {8, 2}, then
χH,A,B,C is calculated from the subgraph of G displayed in Figure 1b. In particular, χH,A,B,C
is the product of the edge variables of the seven possible edges of G that are displayed in
Figure 1b.

I Remark. If H is a bipartite graph with partite sets U and V then RH(A,B) = 0 if
A ∩B 6= ∅ and whenever A ∩B = ∅, RH(A,B) is ±1. Moreover, R(A,B) only depends on
the edges between A and B in G.

I Example 13. If H consists of a single edge from u1 to v1 then RH is a ±1 symmetric
random matrix with zeros on the diagonal.

I Remark. All uniform graph matrices can be expressed as a linear combination of matrices
of the form RH . Thus, to upper bound the norms of all uniform low degree graph matrices,

D. Medarametla and A. Potechin 40:5

it is sufficient to upper bound norms of the matrices RH for small H. To lower bound the
norms of all uniform low degree graph matrices, a priori it is insufficient to lower bound the
norms of the matrices RH for small H, as if we take a linear combination of different RH it
is possible that there is almost perfect cancellation between them. That said, it turns out
that the probility of such a cancellation is negligible, so the norms of all uniform low degree
graph matrices can be understood in terms of the norms of their component RH . For details
on how this can be shown, see Section 6.

1.4 Paper Outline and Results
Our main result is the following theorem.

I Theorem 14. Let H be a graph with distinguished sets of vertices U and V such that U
and V are disjoint and all vertices in H(V)\(U ∪V) have degree at least one. Let t = |V (H)|,
let z = |V (H) \ (U ∪ V)|, and let q be the size of the minimal separator between U and V . If
q ≥ 1 then for all ε ∈ (0, 1),

P

[
||RH || ≥ 2(tt)

(
e(t+ z)

(
ln(8nq/ε)
2(q + z) + 1

))q+z
n
t−q

2

]
≤ ε .

In Section 2, we introduce our main techniques by applying them to the simple and
well-studied case of a symmetric ±1 random matrix. We then give a brief technical overview
of the proof for the general case in Section 3. In Section 4 we prove the result for all bipartite
graphs H with partite sets U and V . In Section 5 we generalize our techniques and prove the
full result. The case where U and V have non-trivial intersection is considered in Appendix B.
Finally, in Section 6 we show that this theorem is tight up to a polylog(n) factor.

1.5 Comparison with Previous Work
This paper can be compared to the recent body of work [20, 15, 7, 24] showing planted
clique lower bounds and to previous work in random matrix theory. In the planted clique
lower bounds, ||RH || is bounded for several special cases of H, but only the ones that are
needed for the sum of squares lower bounds. In this paper, we use many of the same ideas
(constraint graphs, looking at cycles, vertex partitioning), but we consider bounding ||RH ||
as a mathematical problem independent of its applications to the sum of squares hierarchy,
obtaining bounds for all possible H and greatly generalizing the previous work.

In terms of random matrix theory, our results are much less precise than classical results
such as Wigner’s semicircle law [27] and Girko’s circular law [10]. While these results give
an exact distribution for the eigenvalues of symmetric random matrices and asymmetric
random matrices respectively, we only give a norm bound and this norm bound is off by
polylogarithmic factor. That said, the matrices we are considering are much more complicated
as the entries are no longer independent and may behave in complex ways on the input graph
G. To the best of our knowledge, uniform low degree graph matrices have not previously been
studied in random matrix theory. Indeed, as noted in the introduction, obtaining general
norm bounds when we have a matrix valued function of random inputs rather than a matrix
with independent entries is a longstanding open problem in random matrix theory.

2 Warm-up: Bounding the Norm of a ±1 Random Matrix

As a warmup, we consider the case of a ±1 symmetric random matrix. This type of matrix
and its norm have already been studied extensively, in particular Wigner’s semicircle law

APPROX/RANDOM’16

40:6 Bounds on the Norms of Uniform Low Degree Graph Matrices

[27] says that with high probability, the norm of an n× n symmetric random ±1 matrix is
2
√
n(1± o(1)). While our upper bound will not be as strong, it will illustrate the general

ideas involved.

I Definition 15. Given a random graph G ∼ G(n, 1
2) with vertices 1, · · · , n, let R be the

matrix with the following entries:

R(i, j) =

0 i = j

1 (i, j) ∈ E(G)
−1 (i, j) /∈ E(G).

I Remark. As noted in the introduction, R = RH where H consists of a single edge from u1
to v1.

Note that R is closely related to the adjacency matrix of G; in fact, it is the additive
inverse of the Seidel adjacency matrix. Further note that for all 1 ≤ i, j ≤ n, E[R(i, j)] = 0,
as any edge (i, j) has probability 1

2 of being included in G. We now show the following
probabilistic bound on the norm of R. Note that this bound has an extra factor of ln(n),
but this is fine for our purposes as in this paper we are only aiming to get the correct norm
bounds to within a factor of polylog(n).

I Theorem 16. For all ε ∈ (0, 1),

P
[
||R|| ≥ e

√
n(ln(n/ε) + 2)

]
≤ ε .

Proof. In order to find a probabilistic bound for ||R||, we bound E
[

2k
√

tr((RRT)k)
]
. Notice

that

tr((RRT)k) = tr(R2k) =
∑

i1,i2,...,i2k∈[1,n]

(2k∏
j=1

R(ij , ij+1)
)

where i2k+1 = i1 and [1, n] = {1, 2, . . . , n}. Therefore,

E[tr((RRT)k)] = E[tr(R2k)] = E

[∑
i1,i2,...,i2k∈[1,n]

(2k∏
j=1

R(ij , ij+1)
)]

=
∑

i1,i2,...,i2k∈[1,n]

E
[2k∏
j=1

R(ij , ij+1)
]

by linearity of expectation. Now, note that because E[R(i, j)] = 0, the vast majority of the

terms E
[2k∏
j=1

R(ij , ij+1)
]
are 0; in fact, the only time the expected value is non-zero is when

each consecutive pair of i’s is distinct and when each R(i, j) term appears an even number
of times, in which case the expected value will be 1. Therefore, we can calculate the number

of choices for i1, i2, . . . , i2k that yield a non-zero value for E
[2k∏
j=1

R(ij , ij+1)
]
and use that

number to bound E[tr((RRT)k)]. We can think of the sum E
[2k∏
j=1

R(ij , ij+1)
]
graphically as

a sum over length 2k cycles in the vertex set [1, n] where some vertices in the cycle may be
equal to each other. We use what we call a constraint graph to represent each such cycle
(similar graphs appeared in [20] and [15]). In this case, the constraint graph consists of 2k

D. Medarametla and A. Potechin 40:7

i1

i2

i3

i4

i5

i6

i7

i8

R(i1, i2)

R(i2, i3)

R(i3, i4)

R(i4, i5)R(i5, i6)

R(i6, i7)

R(i7, i8)

R(i8, i1)

Figure 2 An example of a constraint graph where k = 4, i1 = i3, i2 = i6, and i4 = i8.

vertices, each labeled from i1 to i2k; vertex ij is connected to vertex ij+1 for all 1 ≤ j ≤ 2k
to represent the term R(ij , ij+1), and a bold constraint edge is drawn between ir and is
whenever ir = is to signify that they are equal.

In the case where j of 2k variables are equal, we only draw j − 1 constraint edges to
represent that equality, rather than

(
j
2
)
. This is because each constraint edge essentially

represents a restriction; the extra constraint edges do not add to these restrictions, so they
are not included.

I Proposition 17. In order for E
[2k∏
j=1

R(ij , ij+1)
]
to have a non-zero value, there must be

at least k − 1 constraint edges in the respective constraint graph; in addition, this bound is
sharp.

Proof. We prove the first statement by induction on k. When k = 1, the statement is

vacuously true; E
[2k∏
j=1

R(ij , ij+1)
]

= E[R(i1, i2)2], which has a non-zero value regardless of

constraint edges.
Now, assume that the statement is true for k = r, and consider k = r + 1. Assume

E
[2k∏
j=1

R(ij , ij+1)
]
6= 0, and consider the constraint graph. If each vertex is adjacent to at

least one constraint edge, then because each constraint edge is incident to two vertices, there
are at least 2r+2

2 = r + 1 constraint edges, and we are done. Therefore, we only need to
consider the case where there exists a vertex that is not adjacent to any constraint edges.
Call this vertex ij . Then, note that the statement ij−1 = ij+1 must be true; if it was not,
then the values R(ij−1, ij) and R(ij , ij+1) have no corresponding equal terms, which means

APPROX/RANDOM’16

40:8 Bounds on the Norms of Uniform Low Degree Graph Matrices

E
[2k∏
j=1

R(ij , ij+1)
]

= 0. But if ij−1 = ij+1, then R(ij−1, ij) = R(ij , ij+1), meaning that we

no longer need to consider the vertex ij and its adjacent edges. Therefore, we can treat the
vertices ij−1 and ij+1 as the same vertex, as they are equal, meaning that we have essentially
reduced the constraint graph to one on 2r vertices. Then, by our induction hypothesis, this
constraint graph requires at least r − 1 constraint edges to create a nonzero expected value,
which means that our total constraint graph requires at least r constraint edges, completing
the proof.

In order to prove the sharpness of the bound, simply consider the case where ij = i2k+2−j
for all 2 ≤ j ≤ k. Then, R(il, il+1) = R(i2k+1−l, i2k+2−l) for all 1 ≤ l ≤ k, which creates a
non-zero expected value. J

We now use Proposition 17 to bound the maximum number of times that E
[2k∏
j=1

R(ij , ij+1)
]

can take a non-zero value, and use that information to bound E[tr(R2k)].

I Proposition 18. Given a constraint graph on b vertices such that at least c constraint
edges are required to create a non-zero expectation value, where each vertex has n possible
values, let N represent the number of choices for the b vertices such that the expectation
value of the product is non-zero. Then, N ≤

(
b
c

)
nb−c(b− c)c ≤ b2cnb−c.

Proof. Treat the set of vertices as an ordered set S = {d1, d2, . . . , db}.
Because there must be at least c constraint edges, there must be at least c elements of S

that are duplicates of other elements, so we can choose a set I ⊆ Sb of c indices such that
for all j ∈ I, there exists m /∈ I such that dj = dm. There are

(
b
c

)
choices for I. We can

then choose the elements {dj | j /∈ I}. Each element has at most n possible values so there
are at most nb−c choices for these elements. Finally, we choose the elements {dj | j ∈ I}.
To determine each dj it is enough to specify the m /∈ I such that dj = dm. Each such
dj has b − c choices, so there are at most (b − c)c choices for these elements. Therefore,
N ≤

(
b
c

)
nb−c(b− c)c.

Now, note that
(
b
c

)
≤ bc, as

(
b
c

)
= b!

(b−c)!c! ≤
b!

(b−c)! ≤ b
c. As (b− c)c ≤ bc, this completes

the proof. J

I Corollary 19. Let N represent the number of choices for the variables (i1, i2, . . . , i2k) such

that E
[2k∏
j=1

R(ij , ij+1)
]
6= 0. Then, N ≤ (2k)2k−2nk+1.

Proof. Apply Proposition 18. Note that b = 2k and c = k − 1 by Proposition 17. This
implies the desired result. J

I Corollary 20. E[tr(R2k)] ≤ (2k)2k−2nk+1.

Proof. Recall E[tr(R2k)] =
∑

i1,i2,...,i2k∈[1,n]

E
[2k∏
j=1

R(ij , ij+1)
]
. By Corollary 19, the number

of choices for (i1, i2, . . . , i2k) that yield a non-zero value for E
[2k∏
j=1

R(ij , ij+1)
]
is at most

(2k)2k−2nk+1; in addition, E
[2k∏
j=1

R(ij , ij+1)
]
≤ 1 for all choices of (i1, i2, . . . , i2k). These two

observations complete the proof. J

D. Medarametla and A. Potechin 40:9

Now, note that for any matrix R, tr(R2k) must take on a nonnegative value. By Markov’s

inequality, for all ε ∈ (0, 1) and all k ≥ 1, P[tr(R2k) ≥ E[tr(R2k)]
ε

] ≤ ε

Using Corollary 20, P[tr(R2k) ≥ (2k)2k−2nk+1/ε] ≤ ε. Since ||R|| ≤ 2k
√

tr((RRT)k) =
2k
√

tr(R2k) for all k ≥ 1, this implies that for all ε ∈ (0, 1) and all k ≥ 1,

P
[
||R|| ≥ 2k

√
(2k)2k−2nk+1/ε

]
≤ ε .

Choosing k = dln(n/ε)/2e, we have that

2k
√

(2k)2k−2nk+1/ε ≤ 2k
√

(2k)2knk+1/ε = 2k
√
n(n/ε) 1

2k = 2k
√
ne

ln(n/ε)
2k ≤ e

√
n(ln(n/ε)+2) .

Thus, P[||R|| ≥ e
√
n(ln(n/ε) + 2)] ≤ ε, as needed. J

In the following sections, we generalize these techniques for matrices whose entries depend
on the random graph in more complex ways.

3 Technical Overview of the General Norm Bounds

For the general bounds on ||RH ||, we use similar ideas. The following is almost correct, but
there is a technical issue that needs to be dealt with which we discuss afterwards. We express
E[tr((RHRHT)k)] as a sum of many different terms, each of which can be represented with
a constraint graph. We upper bound the number of terms which have nonzero expectation
by showing a lower bound on the number of constraint edges needed. We then use this to
probabilistically bound ||RH ||.

In the case where H is bipartite, each vertex of H has k copies in the constraint graph so
the total number of vertices is kt where t = V (H). The number of constraint edges that are
needed to make a term have non-zero expectation is q(k− 1) where q is the size of a minimal
vertex cover of H. One way we can achieve this is as follows. We take a minimal vertex cover
S of H and set all copies of a vertex in S to be equal to each other. Since each vertex in H
is copied k times, this requires q(k− 1) constraint edge. It turns out that this is tight. Using
this bound, there are at most O(ntk−q(k−1)) nonzero terms in E[tr((RHRHT)k)] (where the
constant hides a function of k). Taking this to the power 1

2k for an appropriately chosen k,
we obtain that with high probability, ||RH || is at most O(n

t−q
2 polylog(n)). The general case

is more complicated but similar ideas apply. It turns out that the key object is a minmal
separator S of U and V in H.

However, there is a technical issue in the analysis. In order to obtain the lower bounds on
the number of constraint edges needed, we need to assume that the constraint edges behave
nicely, namely that we don’t have constraint edges between copies of two different vertices in
H. This makes part of the constraint graph decompose into disjoint cycles, allowing us to
use Proposition 17 (without this restriction, we could have constraint edges between different
cycles, which invalidates the analysis). To handle this, we use a vertex partitioning argument.
In particular, given a partition V1, . . . , Vt of [1, n] we consider the part of RH where for all
i, vertex i is in Vi. This gives us a matrix R′ where when we look at E[tr((R′R′T)k)], the
constraint edges behave nicely and we can obtain a probabilistic bound on ||R′||. We then
bound ||RH || using the bound on ||R′||.

APPROX/RANDOM’16

40:10 Bounds on the Norms of Uniform Low Degree Graph Matrices

4 Bounding the Norms of Uniform Locally Random Matrices

In this section, we generalize the techniques used in Section 2 to prove Theorem 14 whenever
H is a bipartite graph with partite sets U and V . We call these matrices locally random
because the value of the entry in row A and column B only depends on the behavior of the
input graph G on the vertices A ∪B.

I Theorem 21. If H is a bipartite graph with t vertices and minimal vertex cover of size q
then
1. ||RH || ≤ n

t
2

2. If q ≥ 1, for all ε ∈ (0, 1),

P
[
||RH || > 2tt

(
et

(
ln(8nq/ε)

2q + 1
))q

n
t−q

2

]
< ε

I Remark. As we will show in Section 6, this bound is tight up to a factor of polylog(n).

Proof. For the first statement, recall that for any matrix M , ||M || ≤ ||M ||Fr, where
||M ||Fr =

√∑
i,jM(i, j)2 is the Frobenius norm of M . To see this, note that if u and v are

unit vectors then

uTMv =
∑
i,j

uiM(i, j)vj ≤
√∑

i,j

ui2vj2
√∑

i,j

M(i, j)2 =
√∑

i,j

M(i, j)2

by the Cauchy-Schwarz inequality. Since every entry of RH has magnitude at most 1, the
result follows.

For the second statement, as described in the technical overview, we first bound the
norms of closely related matrices where we restrict which vertices H can map into. We will
then use this bound to bound ||RH ||.

I Definition 22. Given a partition V1, . . . , Vt of the vertices of V (G), we define RH,V1,...,Vt

be the
(
n
x

)
×
(
n
y

)
matrix such that

RH,V1,...,Vt(A,B) =

RH(A,B) = χH,A,B A ∩B = ∅,

∀i ∈ [1, x], ai ∈ Vi, ∀j ∈ [1, y], bj ∈ Vx+j

0 otherwise

I Lemma 23. Let R′ = RH,V1,...,Vt . For all ε ∈ (0, 1),

P
[
||R′|| ≥

(
et

(
ln(nq/ε)

2q + 1
))q

n
t−q

2

]
≤ ε .

Proof. As before, we probabilistically bound ||R′|| by bounding E[2k
√

tr((R′R′T)k)]. Define([n]
i

)
to be the set of all subsets of [1, n] of size i. Now note that

E[tr((R′R′T)k)] = E

[∑
A1,A3,...,A2k−1∈([n]

x)
B2,B4,...,B2k∈([n]

y)

(k∏
j=1

R′(A2j−1, B2j)R′T (B2j , A2j+1)

)]

=
∑

A1,A3,...,A2k−1∈([n]
x)

B2,B4,...,B2k∈([n]
y)

E

[
k∏
j=1

R′(A2j−1, B2j)R′T (B2j , A2j+1)
]

D. Medarametla and A. Potechin 40:11

u1

u2

v1

v2

v3

(a) H.

a1;1

a2;1

b1;2b2;2b3;2

a1;3

a2;3

b1;4 b2;4 b3;4

(b) An example of the constraint graph for the given example
of H, where k = 2.

Figure 3

by linearity of expectation. Denote
k∏
j=1

R′(A2j−1, B2j)R′T (B2j , A2j+1) as P (A1, . . . , B2k).

Similarly to the previous case, because E[R′(A,B)] = 0, the vast majority of the terms
E[P (A1, . . . , B2k)] are 0; the only time the expected value can be non-zero is when each
consecutive pair of A’s and B’s is disjoint and every edge of G involved in the product
appears an even number of times. In this case, the expected value will be 1. So, we can
bound the number of choices for A1, B2, . . . , A2k−1, B2k that yield a non-zero value for
E[P (A1, . . . , B2k)] and use that number to bound E[tr((R′R′T)k)]. In order to represent
E[P (A1, . . . , B2k)], we use another constraint graph.

This constraint graph is similar to the constraint graph in Proposition 17. In this
constraint graph, there are k(x+ y) vertices sorted into 2k sets. These vertices are labeled
A1 = {a1;1, a2;1, . . . , ax;1}, B2 = {b1;2, b2;2, . . . , by;2}, A3 = {a1;3, a2;3, . . . , ax;3}, . . . , B2k =
{b1;2k, b2;2k . . . , by;2k}. Two vertices ap;q and br;s are adjacent in the constraint graph if and
only if |q − s| = 1 and up and vr are adjacent in H, where ap;1 = ap;2k+1.

Now, in order to bound the number of choices for A1, B2, . . . , A2k−1, B2k that yield a
non-zero expectation value, we can introduce the constraint edges again. However, note that
due to the definition of R′, constraint edges can only exist between vertices of the constraint
graph that are created by the same vertex of H, as it is impossible for two vertices that are
not created by the same vertex of H to be equal, as they correspond to different disjoint sets
Vi and the value of each variable must be in its respective set.

I Lemma 24. In order for E [P (A1, . . . , B2k)] to have a non-zero value, there must be at
least q(k − 1) constraint edges in the respective constraint graph, where q is the size of a
minimal vertex cover of H; in addition, this bound is sharp.

Proof. In order to prove this lemma, we first show that the given bound is an upper bound
then show that it is sharp by König’s Theorem [17].

First, note that in order for E[P (A1, . . . , B2k)] to have a non-zero value, every edge in
the constraint graph must have an equal counterpart by virtue of the constraint edges; this

APPROX/RANDOM’16

40:12 Bounds on the Norms of Uniform Low Degree Graph Matrices

ensures that any edge that appears in the product appears an even number of times, creating
a non-zero expected value.

It is easy to see that at most q(k − 1) constraint edges are required; namely, if V is a
minimal vertex cover of H, then if xi ∈ V , set ai;1 = ai;3 = · · · = ai;2k−1, and if yj ∈ V ,
set bj;2 = bj;4 = · · · = bj;2k. Each such set of equalities corresponds to k − 1 constraint
edges, meaning that there are q(k − 1) constraint edges total. In addition, every edge in the
constraint graph will have an equal counterpart by this method. If (xi, yj) ∈ H, at least one
of xi and yj is in V by definition; without loss of generality yj ∈ V . Then, this implies that for
the edges in the constraint graph of the form (ai;1, bj;2), (bj;2, ai;3), (ai;3, bj;4), . . . , (bj;2k, ai;1),
each edge (ai;2m−1, bj,2m−2) has the equal counterpart (ai;2m−1, bj,2m) for 1 ≤ m ≤ k, as
bj,2m−2 = bj,2m. Thus, this set of constraint edges is sufficient to create a non-zero expected
value.

Now, we must show at least q(k − 1) constraint edges are required. Because H is a
bipartite graph, we can apply König’s Theorem, which states that there exists a matching
of size q in H. Consider the q disjoint cycles of length 2k in the constraint graph that are
created by the q edges in the matching of H. Because R′ is defined so that constraint edges
can only exist between vertices ap;q and ap;q′ or between br;s and br;s′ , as two vertices not of
this form do not belong to the same set Vi, any constraint edge created can affect at most
1 of the q cycles, due to the fact that all the cycles are disjoint and thus are impossible to
link with a constraint edge. Therefore, each cycle requires at least k − 1 constraint edges by
Proposition 17, implying that the q cycles require at least q(k − 1) constraint edges total,
completing the proof. J

I Corollary 25. Let N represent the number of choices for the sets A1, B2, . . . , A2k−1, B2k
such that E[P (A1, . . . , B2k)] 6= 0. Then, N ≤ (tk)2(k−1)qn(t−q)k+q where t = |V (H)| = x+ y.

Proof. Apply Proposition 18. In this situation, b = kt and c = q(k − 1). This implies the
desired result. J

I Corollary 26. E
[
tr((R′R′T)k)

]
≤ (tk)2(k−1)qn(t−q)k+q.

Proof. Recall E[tr((R′R′T)k)] =
∑

A1,A3,...A2k−1∈([n]
x)

B2,B4,...B2k∈([n]
y)

E

[
k∏
j=1

R′(A2j−1, B2j)R′T (B2j , A2j+1)
]
.

Then, by Proposition 25, the number of choices for A1, B2, . . . A2k−1, B2k that yield a

non-zero value for E
[

k∏
j=1

R′(A2j−1, B2j)R′T (B2j , A2j+1)
]
is at most (tk)2(k−1)qn(t−q)k+q; in

addition,

E

[
k∏
j=1

R′(A2j−1, B2j)R′T (B2j , A2j+1)
]
≤ 1. These two observations complete the proof. J

Now, note that for any graph G on n vertices, tr((R′R′T)k) must take on a nonnegative
value. Then, by Markov’s inequality and Corollary 26, for all ε ∈ (0, 1),

P
[
tr((R′R′T)k) ≥ E[tr((R′R′T)k)]

ε

]
≤ P

[
tr((R′R′T)k) ≥ (tk)2(k−1)qn(t−q)k+q/ε

]
≤ ε.

Since ||R′|| ≤ 2k
√

tr((R′R′T)k), this implies that for all k ≥ 1 and all ε ∈ (0, 1),

P
[
||R′|| ≥ 2k

√
(tk)2(k−1)qn(t−q)k+q/ε

]
≤ P

[
||R′|| ≥ (tk)qn

t−q
2 (nq/ε)1/2k

]
≤ ε .

D. Medarametla and A. Potechin 40:13

Setting k = d 1
2q ln(nq/ε)e we have that (tk)qn

t−q
2 (nq/ε)1/2k ≤

(
t
(

ln(nq/ε)
2q + 1

))q
n
t−q

2 eq

Therefore, P[||R′|| ≥
(
et
(

ln(nq/ε)
2q + 1

))q
n
t−q

2] ≤ ε, as needed. J

We can now use our bounds for ||R′|| to bound ||R|| through the following lemma.

I Lemma 27. Let M be a matrix and B, p be positive numbers such that:
1. M = 1

N

∑
V1,··· ,VtMV1,··· ,Vt for some matrices {MV1,··· ,Vt} where N is the number of

possible V1, · · · , Vt.
2. For each choice of V1, · · · , Vt, for all x ∈ [1

2 , N], P(||MV1,··· ,Vt || > Bx) ≤ p
64x3 .

then P(||M || ≥ B) < p.

I Remark. Unlike in [15], we use all possible partitions so we have that N = tn

Proof. The result follows from the following proposition.

I Proposition 28. For all j ∈ [0, lgN], the probability that there are more than N
22j+2 matrices

MV1,··· ,Vt such that ||MV1,··· ,Vt || > 2j−1B is at most p
2j+1 .

Proof. We prove this by contradiction. If the probability that there are more than N
22j+2

matrices MV1,··· ,Vt such that ||MV1,··· ,Vt || > 2j−1B is greater than p
2j+1 then the probability

that ||MV1,··· ,Vt || > 2j−1B must be greater than p
23j+3 . Plugging in x = 2j−1, this gives a

contradiction. J

Using this proposition, with probability at least 1−
∑blgnc
j=0

p
2j+1 , for all integers j such that

0 ≤ j ≤ lgN , there are at most N
22j+2 matrices MV1,··· ,Vt such that ||MV1,··· ,Vt || > 2j−1B.

When this occurs, for all integers j such that 0 ≤ j ≤ blgNc − 1, there are at most
N

22j+2 matrices MV1,··· ,Vm such that 2j−1B < ||MV1,··· ,Vm || ≤ 2jB. Moreover, there are no
matrices such that ||MV1,··· ,Vt || > 2blgNc−1B. This implies that with probability at least
1−

∑blgnc
j=0

p
2j+1 , ||M || ≤ B

2 +
∑blgNc
j=0

2jB
22j+2 < B, as needed. Since 1−

∑blgnc
j=0

p
2j+1 > 1− p,

the result follows. J

I Proposition 29. Set M = RH and MV1,...,Vt = ttRH,V1,...,Vt . For all ε ∈ (0, 1), take p = ε

and let B = 2tt
(
et
(

ln(8nq/ε)
2q + 1

))q
n
t−q

2 . Then, conditions (1) and (2) of Lemma 27 holds
true for these values of M , MV1,...,Vt , B, and p.

Proof. We must show both (1) and (2).
Note that M = 1

N

∑
V1,...,Vt

MV1,...,Vt because given a non-zero term RH(A,B), R′(A,B)
has probability 1

tt of equaling RH(A,B) among all possible V1, V2, . . . , Vt. Thus, part (1) of
the Lemma holds.

Now, we must show (2); that P[tt||R′|| > Bx] ≤ p
64x3 for all x ∈ [1

2 , N]. Plugging in
ε′ = ε

64x3 to Lemma 23, we have that

P
[
||R′|| ≥

(
et

(
ln(64x3nq/ε)

2q + 1
))q

n
t−q

2

]
≤ ε

64x3 .

We need to show that for all x ∈ [1
2 , N], Bx ≥ tt

(
et
(

ln(64x3nq/ε)
2q + 1

))q
n
t−q

2 . Note

that if x = 1
2 then Bx = tt

(
et
(

ln(64x3nq/ε)
2q + 1

))q
n
t−q

2 so it is sufficient to show that

APPROX/RANDOM’16

40:14 Bounds on the Norms of Uniform Low Degree Graph Matrices

(
ln(64x3nq/ε)

2q +1
)q

x is a decreasing function for x ≥ 1
2 . Taking the derivative of this function

yields(
ln(64x3nq/ε)

2q + 1
)q

x2

 3
2
(

ln(64x3nq/ε)
2q + 1

) − 1

This is negative for x ≥ 1

2 if n ≥ e. If n ≤ e then it only makes sense to have q ≤ 1 and
we again have that this is negative for x ≥ 1

2 . This completes the proof. J

Now that we know our particular values of M , MV1,...,Vt , B, and p satisfy the conditions of
Lemma 27, we apply the aforementioned lemma, obtaining that

P
[
||RH || > 2tt

(
et

(
ln(8nq/ε)

2q + 1
))q

n
t−q

2

]
< ε .

as needed. J

5 Bounding the Norms of Uniform Low Degree Graph Matrices

In this section, we generalize our techniques further to prove our main result, Theorem 14,
which we restate here.

I Theorem 30. Let H be a graph with distinguished sets of vertices U and V such that U
and V are disjoint and all vertices in H(V)\(U ∪V) have degree at least one. Let t = |V (H)|,
let z = |V (H) \ (U ∪ V)|, and let q be the size of the minimal separator between U and
V .
1. If q + z ≥ 1 then for all ε ∈ (0, 1),

P

[
||RH || ≥ 2(tt)

(
e(t+ z)

(
ln(8nq/ε)
2(q + z) + 1

))q+z
n
t−q

2

]
≤ ε .

2. If q = z = 0 then ||RH || ≤ n
t
2 .

Proof. For the second statement, note that if q = z = 0 then every entry of RH has magnitude
at most 1, so we can again use the fact that ||RH || ≤ ||RH ||Fr =

√∑
A,B RH(A,B)2. For

the first statment, similar to before, we first bound the norm of a closely related matrix
where we restrict which entries the vertices of H can map into.

I Definition 31. Let W = w1, . . . , wz be the vertices of H outside of U and V . Given a
partition V1, . . . , Vt of V (G), define RH,V1,...,Vt to be the

(
n
x

)
×
(
n
y

)
matrix with entries

RH,V1,...,Vt(A,B) =

∑
C:∀k,ck∈Vx+y+k

χH,A,B,C A ∩B = ∅,
∀i ∈ [1, x], ai ∈ Vi,∀j ∈ [1, y], bj ∈ Vx+j

0 otherwise

where the sum is over all C = {c1, . . . , cz} where the c1, . . . , cz are disjoint but not necessarily
in order.

Let R′ = RH,V1,...,Vt . In order to find a probabilistic bound for ||R′||, we bound
E[2k
√

tr((R′R′T)k)].

D. Medarametla and A. Potechin 40:15

I Lemma 32. P
[
||R′|| ≥

(
e(t+ z)

(
ln(nq/ε)
2(q+z) + 1

))q+z
n
t−q

2

]
≤ ε.

Proof.

I Definition 33. Define Sn,z to be the set of all ordered tuples of z distinct elements of
[1, n].

I Definition 34. For all A ∈
([n]
x

)
, B ∈

([n]
y

)
, C ∈ Sn,z, define

Q(A,C,B) =

χH,A,B,C A ∩B = ∅,

∀i ∈ [1, x], ai ∈ Vi,∀j ∈ [1, y], bj ∈ Vx+j ,∀k ∈ [1, z], ck ∈ Vx+y+k

0 otherwise

Now note that

E[tr((R′R′T)k)] =
∑

A1,A5,...,A4k−3∈([n]
x)

B3,B7,...,B4k−1∈([n]
y)

E

[
k∏
j=1

R′(A4j−3, B4j−1)R′T (B4j−1, A4j+1)
]

=
∑

A1,A5,...,A4k−3∈([n]
x)

B3,B7,...,B4k−1∈([n]
y)

C2,C4,...C4k∈Sn,z

E

[
k∏
j=1

Q(A4j−3, C4j−2, B4j−1)QT (B4j−1, C4j , A4j+1)
]

by linearity of expectation, where A4k+1 = A1.

Denote
k∏
j=1

Q(A4j−3, C4j−2, B4j−1)QT (B4j−1, C4j , A4j+1) as P (A1, C2, . . . , B4k−1, C4k).

Similar to before, because E[Q(A,C,B)] = 0 for randomly chosen A, B, and C, the vast
majority of the terms E[P (A1, C2, . . . , B4k−1, C4k)] are 0; in fact, the only time the expected
value can be non-zero is when each consecutive pair of sets of variables is disjoint and
every edge of G involved in the product appears an even number of times, in which case
the expected value is at most 1. Again, we can upper bound the number of choices for
A1, C2, . . . , B4k−1, C4k that yield a non-zero value for E[P (A1, C2, . . . , B4k−1, C4k)] and use
that number to bound E[tr((M ′M ′T)k)]. In order to represent E[P (A1, C2, . . . , B4k−1, C4k)],
we use another constraint graph. This constraint graph is similar to the earlier one; however,
it is slightly more complicated, as there is an extra set of vertices involved.

In this constraint graph, there are k(x+2z+y) vertices sorted into 4k sets. These vertices
are labeled A1 = {a1;1, a2;1, . . . , ax;1}, C2 = {c1;2, c2;2, . . . , cz;2}, B3 = {b1;3, b2;3, . . . , by;3},
C4 = {c1;4, c2;4, . . . , cz;4}, A5 = {a1;5, a2;5, . . . , ax;5}, . . . , C4k = {c1;4k, c2;4k . . . , cz;4k}. Note
that, in particular, the sets describing the sets of vertices are labeled A1, C2, B3, C4,. . ., and
repeat this pattern exactly k times. Two vertices ap;q and br;s are adjacent if and only if
|q − s| = 2 and up and vr are adjacent in H, where ap;1 = ap;4k+1. Similarly, ap;q and ct;o
are adjacent if and only if |q − o| = 1 and up and wt are adjacent in H, and br;s and ct;o are
adjacent if and only if |s− o| = 1 and vr and wt are adjacent in H. Finally, ct;o and ct′;o′
are adjacent if and only if o = o′ and wt and wt′ are adjacent in H.

Now, in order to bound E[tr((R′R′T)k)], we must calculate the minimum number of
constraint edges required in our constraint graph to bring about a non-zero expectation
value, as that will help bound the number of choices for A1, C2, B3, C4, A5, . . . , B4k−1, C4k
that yield a non-zero expectation value for the product E[P (A1, C2, . . . , B4k−1, C4k)].

APPROX/RANDOM’16

40:16 Bounds on the Norms of Uniform Low Degree Graph Matrices

u1

u2

v1

v2

v3

w1

w2

w3

(a) H.

a1;1

a2;1

b1;3b2;3b3;3

a1;5

a2;5

b1;7 b2;7 b3;7

c1;2

c2;2

c3;2

c1;4

c2;4

c3;4

c1;6

c2;6

c3;6

c1;8

c2;8

c3;8

(b) An example of the constraint graph for the given example
of H, where k = 2.

Figure 4

I Lemma 35. In order for E[P (A1, C2, . . . , B4k−1, C4k)] to have a non-zero value, there
must be at least q(k − 1) + zk constraint edges in the respective constraint graph, where q is
the maximal number of vertex-independent paths from X to Y in H. In addition, this bound
is sharp.

Proof. Choose q vertex-independent paths from U to V . Let li be the length of the ith such
path.

Note that any path of length li in H from U to V corresponds to a cycle of size 2kli in
our constraint graph; this cycle requires kli − 1 constraint edges by Proposition 17. Since
the cycles are disjoint and by the definition of R′ we cannot have constraint edges between
them, the total number of constraint edges required by just the q vertex-independent paths

is
q∑
i=1

(kli − 1) = k(
q∑
i=1

li)− q.

Consider the vertices in W which are not in the q paths. Of the z vertices in W , because
each pair of paths is disjoint and a path of length li corresponds to exactly li − 1 vertices

in C, exactly
q∑
i=1

(li − 1) = (
q∑
i=1

li) − q vertices of C are included in paths, so there are

z − ((
q∑
i=1

li)− q) vertices of W not included in the paths. Each of these vertices is incident

with an edge in H, and that edge is repeated 2k times in the constraint graph; therefore, as
each edge of G that appears in the constraint graph must appear an even number of times in
the constraint graph, any particular vertex of positive degree can, in all of its appearances in
the constraint graph, only take on at most k values. However, the particular vertex appears
2k times in the constraint graph, once in each set of vertices of the form Ci, so it must have
at least k constraint edges between those 2k appearances. Therefore, there are required to

be a minimum of (z − ((
q∑
i=1

li)− q))k + (k(
q∑
i=1

li)− q) = q(k − 1) + zk constraint edges in

the constraint graph.
In order to prove the sharpness, we utilize Menger’s Theorem [21]. First, note that the

existence of q vertex-independent paths from U to V implies that there exists q vertex-

D. Medarametla and A. Potechin 40:17

independent paths from U to V , with first vertex in U , last vertex in V , and all internal
vertices in W . This statement is true because given these q vertex-independent paths, if any
of them have internal vertices in U or V , we can simply shorten these paths until they have
only first and last vertices in U and V .

Now, Menger’s Theorem states that because there are a maximum of q vertex-indepedent
paths from U to V in H with all internal vertices in W , there is a set S ∈ V (H) with |S| = q

such that all paths from U to V pass through at least one vertex of S. Consider such a set
S. Using S, we will create q(k − 1) + zk constraint edges that yield a non-zero expectation
value for E[P (A1, C2, . . . , B4k−1, C4k)] as follows.

For all vertices ui ∈ X such that ui ∈ S, set ai;1 = ai;5 = · · · = ai;4k−3. Note that this
requires k − 1 constraint edges per vertex in S. Similarly, for all vertices vi ∈ Y such that
vi ∈ S, set bi;3 = bi;7 = · · · = bi;4k−1. In addition, for all vertices wi ∈ Z such that wi ∈ S,
set ci;2 = ci;4 = · · · = ci;4k. This requires 2k − 1 constraint edges per vertex in S.

Now, consider all vertices wi ∈ Z such that wi /∈ S. Note that if there existed a path
from wi to U that passed through no vertices in S, there cannot exist a path from wi to
V that passes through no vertices in S, as that would imply that there was a path from
U to V not passing through any vertices on S. So, if there exists a path from wi to U
passing through no vertices of S, set ci;4 = ci;6, ci;8 = ci;10, . . . , ci;4k = ci;2. Otherwise, set
ci;2 = ci;4, ci;6 = ci;8, . . . , ci;4k−2 = ci;4k. This requires k constraint edges per vertex.

Now given an edge in the constraint graph (ap;q, br;s) with |q−s| = 2, then either up or vr
is in S or else there would exist a path from U to V not in S; therefore, either (ap;q, br;q+2) =
(ap;q, br;q−2) or (ap;s−2, br;s) = (ap;s+2, br;s) by the constraint edges. Similarly, given (ap;q, ct;o)
with |p− o| = 1, either ct;q−1 = ct;q+1, which implies (ap;q, ct;q−1) = (ap;q, ct;q+1), or wt /∈ S
and up ∈ S, which implies (ap;2o−q−2, ct;2o−q−1) = (ap;2o−q+2, ct;2o−q+1). A similar argument
applies to edges of the form (ct;o, br;s). For edges of the form (ct;o, ct′;o), it can be shown
that either (ct;o, ct′,o) = (ct;o−2, ct′;o−2) or (ct;o, ct′,o) = (ct;o+2, ct′,o+2). Finally, note that
edges in the constraint graph of the form (ap1;q, ap2;q) and (br1;s, br2;s) are automatically
doubled and have no effect. Thus, this construction makes every edge appear with an even
multiplicity, as needed.

If S contains exactly j vertices in W , then the total number of constraint edges used in
this construction is (k − 1)(|S| − j) + (2k − 1)j + (k)(z − j) = q(k − 1) + zk, meaning that
the bound given is sharp. J

I Corollary 36. Let N represent the number of choices for A1, C2, . . . , B4k−1, B4k such
that
E[P (A1, C2, . . . , B4k−1, C4k)] 6= 0. Then, N ≤ ((t+ z)k)2k(z+q)−2qn(t−q)k+q.

Proof. Apply Proposition 18. In this situation, b = k(t + z) and c = q(k − 1) + zk. This
implies the desired result. J

I Corollary 37. E[tr((R′R′T)k)] ≤ ((t+ z)k)2k(z+q)−2qn(t−q)k+q.

Proof. Recall that

E[tr((R′R′T)k)] =
∑

A1,A5,...,A4k−3∈Sn,u
B3,B7,...,B4k−1∈Sn,v
C2,C4,...C4k∈S′n,w

E

[
k∏
j=1

Q(A4j−3, C4j−2, B4j−1)QT (B4j−1, C4j , A4j+1)
]
.

Then, by Proposition 36, there are at most ((t+ z)k)2k(z+q)−2qn(t−q)k+q choices for
A1, C2, . . . , B4k−1, C4k that yield a non-zero value for

APPROX/RANDOM’16

40:18 Bounds on the Norms of Uniform Low Degree Graph Matrices

E

[
k∏
j=1

Q(A4j−3, C4j−2, B4j−1)QT (B4j−1, C4j , A4j+1)
]
; in addition,

E

[
k∏
j=1

Q(A4j−3, C4j−2, B4j−1)QT (B4j−1, C4j , A4j+1)
]
≤ 1. These two observations complete

the proof. J

Now for any graph G on n vertices, tr((R′R′T)k) must take on a nonnegative value. By
Markov’s inequality and Corollary 37, for all ε ∈ (0, 1)

P
[
tr((R′R′T)k)≥ E[tr((R′R′T)k)]

ε

]
≤P

[
tr((R′R′T)k)≥ ((t+ z)k)2k(z+q)−2qn(t−q)k+q/ε

]
≤ ε.

Since ||R′|| ≤ 2k
√

tr((R′R′T)k), this implies that for all k ≥ 1 and all ε ∈ (0, 1),

P
[
||R′||≥ 2k

√
((t+ z)k)2k(z+q)−2qn(t−q)k+q/ε

]
≤P

[
||R′||≥ ((t+ z)k)z+qn

t−q
2 (nq/ε)1/2k

]
≤ ε.

Setting k = d 1
2(q+z) ln(nq/ε)e we have that

((t+ z)k)qn
t−q

2 (nq/ε)1/2k ≤
(

(t+ z)
(

ln(nq/ε)
2(q + z) + 1

))q+z
n
t−q

2 eq+z .

Therefore, P[||R′|| ≥
(
e(t+ z)

(
ln(nq/ε)
2(q+z) + 1

))q+z
n
t−q

2] ≤ ε, as needed. J

Using Lemma 27 with p = ε and B = 2(tt)
(
e(t+ z)

(
ln(8nq/ε)

2(q+z) + 1
))q+z

n
t−q

2 and following
the same logic as in the proof of Theorem 21, we obtain that for all ε ∈ (0, 1),

P[||RH || ≥ 2(tt)
(
e(t+ z)

(
ln(8nq/ε)
2(q + z) + 1

))q+z
n
t−q

2] ≤ ε . J

6 Lower Bounds

In this section, we show that the bounds we have obtained on the norms of uniform low
degree graph matrices are tight up to a factor of polylog(n). This makes intuitive sense as
our bounds on E[tr((R′R′T)k)] were tight up to a polylog factor. Unfortunately, these lower
bounds on E[tr((R′R′T)k)] are insufficient for two reasons. First, they do not rule out the
possibility that ||R′|| is sometimes very small. Second, lower bounds on the norms of the
matrices R′ do not imply a lower bound on ||RH ||. We now show how these obstacles can be
overcome (though we only give a proof sketch as a full proof would be long and technical).

I Theorem 38. Let H be a graph with distinguished sets of vertices U and V where U and
V are disjoint and for all vertices w in V (H) \ (U ∪ V), there is a path from w to either
U or V in H. Letting t = |V (H)| and letting q be the minimal size of a vertex separator
between U and V , with high probability ||RH || is Ω(n

t−q
2).

I Remark. If H has non-isolated vertices which are not connected to U or V , there is a
non-negligible chance that RH has considerably smaller norm than expected. To see this,
let H0 be the part of H which is connected to U and/or V and let H1 be the remainder of
H. We have that RH ≈ RH1RH0 where RH1 is a constant depending on the input graph G
which has some chance of being close to 0.

D. Medarametla and A. Potechin 40:19

Before giving a proof sketch for Theorem 38, we first consider the case when H is bipartite
with partite sets U and V , which can be analyzed directly.

I Theorem 39. Let H be a bipartite graph with partite sets U and V . Letting t = |V (H)|
and letting q be the minimal size of a vertex cover of H, ||RH || is Ω(n

t−q
2).

Proof. We show this by finding vectors u and v such that uTRHv is Θ(n
t−q

2)||u|| · ||v||. The
idea is to take a minimal vertex cover S of U and V and fix the vertices that S maps to.
This essentially separates the dependence of RH(A,B) on A and B which means that we
can choose u to match the dependence on A and choose v to match the dependence on B.

I Definition 40.
1. Define EL ⊆ E(H) to be the edges in H between U \ S and S ∩ V .
2. Define EM ⊆ E(H) to be the edges in H between S ∩ U and S ∩ V
3. Define ER ⊆ E(H) to be the edges in H between S ∩ U and V \ S.
Now choose disjoint vertices AS ∪BS for the vertices of S to map into and define u and v as
follows.

I Definition 41. Given an A which is disjoint from BS , letting π be the map which maps U
into A and maps S ∩ V into BS , define uA to be χπ(EL) if π(S ∩ U) = AS and 0 otherwise.

Given a B which is disjoint from AS , letting π be the map which maps V into B and
maps S ∩ U into AS , define vB to be χπ(ER) if π(S ∩ V) = BS and 0 otherwise.

Note that uARH(A,B)vB is only nonzero if the following conditions hold
1. A and B are disjoint
2. If π is the map that maps U into A and V into B then π(S∩U) = AS and π(S∩V) = BS .
When these conditions hold, uARH(A,B)vB = χπ(EL)χπ(E(H))χπ(ER) = χπ(EM) which will
always be the same asAS andBS are fixed. There are Θ(n|U |−|S∩U |)A such that uA 6= 0, there
are Θ(n|V |−|S∩V |) B such that vB 6= 0, and there are Θ(n|U |−|S∩U |n|V |−|S∩V |) = Θ(nt−q)
choices for A and B for which these conditions hold. This implies that ||u|| is Θ(n

|U|−|S∩U|
2),

||v|| is Θ(n
|V |−|S∩V |

2), and |uTRHv| is Θ(nt−q). Putting everything together, |uTRHv| is
Θ(n

t−q
2)||u|| · ||v||, so ||RH || is Ω(n

t−q
2), as needed. J

In the general case, we could use similar ideas, choosing a minimal vertex seperator S of U
and V in H, fixing the vertices that S maps to, and then choosing u to match the dependence
on A and v to match the dependence on B. However, the analysis is tricky for two reasons.
First, it is non-trivial to bound ||u|| and ||v|| as the entries of u and v are the sums of many
terms. Second, uTRHv will have additional terms coming from different choices for the
vertices in S \ (U ∪V) in the sums describing the entries of RH . To deal with these issues, we
use an argument involving ||RH ||Fr, the Frobenius norm of RH , which is somewhat cleaner
to analyze.

Proof Sketch of Theorem 38.

I Definition 42. Given two matrices M1 and M2 with the same dimensions, we define
〈M1,M2〉 =

∑
i,jM1(i, j)M2(i, j). Note that for any matrix M , 〈M,M〉 = ||M ||2Fr

Given a matrix M , we can bound ||M || as follows.

I Proposition 43. If M =
∑
i ciuiv

T
i for some vectors ui, vi and some positive coefficients

ci then ||M || ≥ ||M ||2Fr∑
i
ci||ui||·||vi||

APPROX/RANDOM’16

40:20 Bounds on the Norms of Uniform Low Degree Graph Matrices

Proof. Note that

||M ||2Fr = 〈M,M〉 = 〈M,
∑
i

ciuiv
T
i 〉 =

∑
i

ciu
T
i Mvi ≤ ||M ||

∑
i

ci||ui|| · ||vi|| J

With this proposition in mind, we first describe how we can decompose RH . We then describe
how to bound ||RH ||2Fr and the norms of the vectors involved.

I Definition 44. Given a graph H where all vertices are connected to U or V and a minmal
separator S of U and V ,
1. Let L be the set of vertices which are connected to U once we remove S from H

2. Let R be set of vertices connected to V once we remove S from H.
3. Let HL be the graph with vertices L ∪ S and all edges in H which are incident with a

vertex in L.
4. Let HR be the graph with vertices R ∪ S and all edges in H which are between two

vertices in S or are incident with a vertex in R.
5. Let l = |L|, q = |S|, and r = |R|. Note that t = l + q + r.

I Proposition 45.

RH,V1,...,Vt =
∑

vl+1,...,vl+q :
∀i∈[l+1,l+q],vi∈Vi

RHL,V1,...,Vl,{vl+1},...,{vl+q}RHR,{vl+1},...,{vl+q},Vl+q+1,...,Vt

where we take V = ∅ for HL and we take U = ∅ for HR (so RHL,V1,...,Vl,{vl+1},...,{vl+q} and
RTHR,{vl+1},...,{vl+q},Vl+q+1,...,Vt

are in fact vectors)

Proof. This proposition follows directly from the definitions of the matrices involved. J

Writing RH = tt

tn

∑
V1,...,Vt

RH,V1,...,Vt , we have that RH =
∑
ci
uiv

T
i where each vector ui is

of the form RHL,V1,...,Vl,{vl+1},...,{vl+q} and each vector vi is of the form
RTHR,{vl+1},...,{vl+q},Vl+q+1,...,Vt

. Note that the sum of the coefficients of the vector products
in this sum is O(nq). We now probabilistically bound ||RH ||2Fr, ||ui||, and ||vi||.

I Lemma 46. Let H1 and H2 be two graphs such that both H1 and H2 have distinguished
sets of vertices U and V , U and V are disjoint, every vertex in H1 is connected to a vertex
in U or V , and every vertex in H2 is connected to a vertex in U or V . Let t1 = |V (H1)| and
let t2 = |V (H2)|.
1. If H1 = H2 = H (after permuting the vertices not in U ∪ V) then letting t = t1 = t2,

E[〈RH , RH〉] is Θ(nt) and with high probability, 〈RH , RH〉 − E[〈RH , RH〉] is
O(nt− 1

2 polylog(n))
2. If H1 and H2 are different graphs then with high probability, 〈RH1 , RH2〉 is

O(n
t1+t2−1

2 polylog(n))

Proof. Consider the terms in 〈RH1 , RH2〉. Each such term is determined by mappings
π1 : V (H1) → G, π2 : V (H2) → G where π2(U) = π1(U), π2(V) = π1(V), and these
maps preserve the ordering of U and V . For a given term, let H ′ be the graph with
vertices π1(V (H1))∪π2(V (H2)) and edges π1(E(H1))∆π2(E(H2)) where ∆ is the symmetric
difference. If we group the terms with the same graph H ′ (up to a permutation of the
vertices) together, then we obtain sums of the following form.

I Definition 47. Given a graph H ′ with two distinguished subsets of vertices U and V ,
define fH′(G) =

∑
A,B RH′(A,B)

We have the following probabilistic bound on these sums.

D. Medarametla and A. Potechin 40:21

I Lemma 48. If x is the number of non-isolated vertices in H ′ and y is the number of
isolated vertices in H ′, with high probability fH′(G) is O(n x2 +ypolylog(n))

Proof Sketch. We show the result for a related function fH′,V1,...,Vm(G) where we restrict
where the vertices of H ′ map to. To rigorously show the result, we would then use Lemma 27
(which applies just as well to scalars).

I Definition 49. Letting t′ = |V (H ′)| and given disjoint sets of vertices V1, . . . , Vm, define
fH′,V1,...,Vt′ (G) =

∑
A,B RH′,V1,...,Vt′ (A,B)

I Lemma 50. If x be the number of non-isolated vertices in H ′ and y is the number of
isolated vertices in H;, with high probability fH′,V1,...,Vm(G) is O(n x2 +y)

Each term in fH′,V1,...,Vm(G) can be described by choosing a vertex vi from each Vi. To
prove this result, we start by considering each term individually, thinking of all the vertices
vi as being fixed. We then iteratively group these terms together by choosing one or two
vertices which are still fixed and summing over all possibilities for these vertices.

When we sum over the possibilities for some vertex vi, we randomly fix all of the edges
of G which are incident with a vertex in Vi and call vi free. By doing this, we always know
the magnitudes of all our sums (but not their signs!). At each point, we have the following
bound.

I Lemma 51. We can choose the order in which we make vertices free so that if we have
made x1 non-isolated vertices free and y1 isolated vertices free then with high probability our
sums are all O(n

x1
2 +y1polylog(n)). Moreover, at all times, for every non-isolated vertex vi,

there is an edge between vi and another fixed vertex vj in π(E(H)) (where π is the mapping
from V (H) to V (G)).

Proof. We prove this result by induction. The base case x1 = y1 = 0 is trivial. If there is
an isolated vertex which is fixed, there are at most n possibilities for this vertex, so this
grouping increases y1 by 1 and multiplies our bound by a factor of at most O(n). If there is
a non-isolated fixed vertex vi which can be made free while maintaining the invariant that
every fixed vertex has an edge to another fixed vertex in π(E(H)), sum over the possibilities
for this vertex. In this sum, we know the magnitude of each term, but the signs of each term
are random and completely independent from each other (as they depend on edge(s) between
the different possibilities for vi and other fixed vertices). This summation increases x1 by
1 and since the signs are independent, with high probability this summation increases our
bound by a factor of at most O(

√
nlog(n)). The remaining case is when π(E(H)) contains

a perfect matching between the fixed vertices and no other edges between fixed vertices.
In this case, choose one such edge (vi, vj) and sum up over the possibilities for vi and vj .
Again, we know the magnitudes of each term in this sum, but the signs of each term are
independent (as they depend on the different edges (vi, vj)). This summation increases x1
by 2 and since the signs are independent, with high probability this summation increases our
bound by a factor of at most O(nlog(n)). J

I Remark. The reason we needed to use fH′,V1,...,Vt′ (G) rather than fH′(G) in this argument
is that it allowed us to consistently choose which edges of G we fixed and which edges of G
were still undetermined at any given point. J

We now bound the terms in 〈RH1 , RH2〉 using Lemma 48. We consider all of the terms fH′
which appear in this sum. If π1(H1) = π2(H2) then H ′ consists of t1 isolated vertices and
we can see directly that fH′(G) is Θ(nt1).

APPROX/RANDOM’16

40:22 Bounds on the Norms of Uniform Low Degree Graph Matrices

For a given fH′ such that π1(H1) 6= π2(H2), let r = |π1(V (H1)) ∩ π2(V (H2))|. Letting
x be the number of non-isolated vertices in H ′ and y be the number of isolated vertices in
H ′, we have that x + y = |V (H ′)| = t1 + t2 − |U | − |V | − r. Note that only the vertices
in π1(U) ∪ π1(V) ∪ π1(V (H1)) ∩ π2(V (H2)) can be isolated in H ′ because all other vertices
are incident with an edge in π1(E(H1)) ∪ π2(E(H2)) which only appears once. This tells
us that y ≤ |U |+ |V |+ r. Applying Lemma 48, we have that fH′ is O(n x2 +ypolylog(n)) =
O(n

(x+y)+y
2 polylog(n)) which is O(n

t1+t2
2 polylog(n)).

To improve this bound and obtain our result, it is sufficient to show that if π1(H1) 6=
π2(H2), there must be some vertex in π1(U) ∪ π1(V) ∪ π1(V (H1)) ∩ π2(V (H2)) which
is not isolated, as this reduces our upper bound on y by 1. To show this, first note
that if π1(V (H1)) = π2(V (H2)) yet π1(H1) 6= π2(H2) then H ′ must have an edge so
not all of the vertices of H ′ can be isolated. If π1(V (H1)) 6= π2(V (H2)) then either
π1(V (H1)) \ π2(V (H2)) is nonempty or π2(V (H2)) \ π1(V (H1)) is nonempty. Without loss
of generality, we may assume that π1(V (H1)) \ π2(V (H2)) is nonempty. Let vi be a vertex
in π1(V (H1)) \ π2(V (H2)). Since every vertex in H1 is connected to either U or V , if we
look at the edges π1(E(H1))∪ π2(E(H2)), there must be a path from vi to some vertex vj in
π1(U ∪ V). There must be an edge in this path between a vertex in π1(V (H1)) \ π2(V (H2))
and a vertex in π1(U) ∪ π1(V) ∪ π1(V (H1)) ∩ π2(V (H2)), let (vk, vl) be the first such edge.
vl ∈ π1(U) ∪ π1(V) ∪ π1(V (H1)) ∩ π2(V (H2)) and cannot be isolated in H ′, so the result
follows. J

We now give a sketch for how to probabilistically bound the norms of the vectors ui and the
vectors vi and complete the proof. Recall that each vector ui is of the form RHL,V1,...,Vl+q

where the V for HL is empty and Vl+1, . . . , Vl+q have size 1. We now use similar reasoning
as we used to prove Lemma 46 except that there is only one possibility for the vertices
corresponding to Vl+1, . . . , Vl+q so we always keep these vertices fixed (and don’t sum over
their possibilities). Applying this reasoning, we obtain that for each i, with high probability,
||ui||2 is Θ(nl) so ||ui|| is Θ(n l

2). By symmetry, for each i, with high probability ||vi|| is Θ(n r
w).

Putting everything together, with high probability ||RH ||2Fr is Θ(nt) and
∑
i ci||ui|| · ||vi|| is

O(n l+r2 +q) = O(n t+s2). ||RH || ≥ ||RH ||2Fr∑
i
ci||ui||·||vi||

, which is Ω(n
t−q

2), as needed. J

I Remark. While Theorem 38 was only stated for a single RH , the techniques used to prove
Theorem 38 apply just as well to a linear combination of such matrices. In particular, if we
have distinct graphs H1, . . . ,Hk which all satisfy the conditions of Theorem 38 then for any
coefficients c1, . . . , ck, with high probability, ||

∑k
i=1 ckRHk || is Θ(maxi{||ciRHi ||})

7 Conclusion and Further Studies

In this paper, we analyzed the norms of uniform low degree graph matrices, which appear
naturally when analyzing the sum of squares hierarchy. While special cases of these matrices
were analyzed in previous works on sum of squares lower bounds for the planted clique
problem [20], we generalized this analysis, proving an upper bound on the norms of all
such matrices which is tight up to a polylogarithmic factor. This general analysis is a key
component of the work [4] proving almost tight lower bounds for sum of squares on planted
clique and will very likely be useful for further analysis of the sum of squares hierarchy.

That said, there are several open problems raised by this work. First, to what extent
can these norm bounds be improved? It is very likely that with a more careful analysis,
the polylog factors can be reduced or removed and the dependence of ||RH || on the size of
the graph H can be improved. Can we go further and determine the distribution of these

D. Medarametla and A. Potechin 40:23

matrices’ eigenvalues? Second, what can we say about the non-uniform case? How much
structure do we need our matrices to have to obtain interesting norm bounds?

Acknowledgements. This research was supported by the Program for Research in Math-
ematics, Engineering, and Science (PRIMES-USA) at MIT. We thank the PRIMES-USA
faculty, including Dr. Tanya Khovanova, Dr. Pavel Etingof, and Dr. Slava Gerovitch for
helpful feedback on this work.

References
1 Noga Alon, Michael Krivelevich, and Benny Sudakov. Finding a large hidden clique in a

random graph. Random Structures and Algorithms, 13(3-4):457–466, 1998.
2 Sanjeev Arora, Boaz Barak, and David Steurer. Subexponential algorithms for unique

games and related problems. In Foundations of Computer Science (FOCS), 2010 51st
Annual IEEE Symposium on, pages 563–572. IEEE, 2010.

3 Sanjeev Arora, Satish Rao, and Umesh Vazirani. Expander flows, geometric embeddings
and graph partitioning. Journal of the ACM (JACM), 56(2):5, 2009.

4 Boaz Barak, Sam Hopkins, Jonathan Kelner, Ankur Moitra, Pravesh Kothari, and Aaron
Potechin. A Nearly Tight Sum-of-Squares Lower Bound for the Planted Clique Problem.
ArXiv e-prints, April 2016. arXiv:1503.06447.

5 Boaz Barak, Prasad Raghavendra, and David Steurer. Rounding semidefinite programming
hierarchies via global correlation. In Foundations of Computer Science (FOCS), 2011 IEEE
52nd Annual Symposium on, pages 472–481. IEEE, 2011.

6 Boaz Barak and David Steurer. Sum-of-squares proofs and the quest toward optimal al-
gorithms. In Proceedings of International Congress of Mathematicians (ICM), 2014.

7 Yash Deshpande and Andrea Montanari. Improved sum-of-squares lower bounds for hidden
clique and hidden submatrix problems. CoRR, abs/1502.06590, 2015. URL: http://arxiv.
org/abs/1502.06590.

8 Uriel Feige and Robert Krauthgamer. The probable value of the lovász–schrijver relaxations
for maximum independent set. SIAM J. Comput., 32(2):345–370, 2003. doi:10.1137/
S009753970240118X.

9 Vitaly Feldman, Elena Grigorescu, Lev Reyzin, Santosh Vempala, and Ying Xiao. Stat-
istical algorithms and a lower bound for detecting planted cliques. In Proceedings of the
forty-fourth annual ACM symposium on Theory of Computing. ACM, 2013.

10 Vyacheslav L. Girko. Circular law. Theory of Probability and its Applications, 29:694–706,
1984.

11 Michel X Goemans and David P Williamson. Improved approximation algorithms for
maximum cut and satisfiability problems using semidefinite programming. Journal of the
ACM (JACM), 42(6):1115–1145, 1995.

12 Dima Grigoriev. Complexity of positivstellensatz proofs for the knapsack. Computational
Complexity, 10(2):139–154, 2001.

13 Dima Grigoriev. Linear lower bound on degrees of positivstellensatz calculus proofs for the
parity. Theoretical Computer Science, 259(1):613–622, 2001.

14 Venkatesan Guruswami and Ali Kemal Sinop. Lasserre hierarchy, higher eigenvalues, and
approximation schemes for graph partitioning and quadratic integer programming with
psd objectives. In Foundations of Computer Science (FOCS), 2011 IEEE 52nd Annual
Symposium on, pages 482–491. IEEE, 2011.

15 Samuel B. Hopkins, Pravesh K. Kothari, and Aaron Potechin. Sos and planted clique:
Tight analysis of MPW moments at all degrees and an optimal lower bound at degree four.
CoRR, abs/1507.05230, 2015. URL: http://arxiv.org/abs/1507.05230.

APPROX/RANDOM’16

http://arxiv.org/abs/1503.06447
http://arxiv.org/abs/1502.06590
http://arxiv.org/abs/1502.06590
http://dx.doi.org/10.1137/S009753970240118X
http://dx.doi.org/10.1137/S009753970240118X
http://arxiv.org/abs/1507.05230

40:24 Bounds on the Norms of Uniform Low Degree Graph Matrices

16 Mark Jerrum. Large cliques elude the metropolis process. Random Structures & Algorithms,
3(4):347–359, 1992.

17 Denés Konig. Gráfok és mátrixok. matematikai és fizikai lapok, 38: 116–119, 1931.
18 Luděk Kučera. Expected complexity of graph partitioning problems. Discrete Applied

Mathematics, 57(2):193–212, 1995.
19 Jean B Lasserre. Global optimization with polynomials and the problem of moments. SIAM

Journal on Optimization, 11(3):796–817, 2001.
20 R. Meka, A. Potechin, and A. Wigderson. Sum-of-squares lower bounds for planted clique.

ArXiv e-prints, March 2015. arXiv:1503.06447.
21 Karl Menger. Zur allgemeinen kurventheorie. Fundamenta Mathematicae, 10(1):96–115,

1927.
22 Yurii Nesterov. Squared functional systems and optimization problems. In High perform-

ance optimization, pages 405–440. Springer, 2000.
23 Pablo A Parrilo. Structured semidefinite programs and semialgebraic geometry methods in

robustness and optimization. PhD thesis, Citeseer, 2000.
24 Prasad Raghavendra and Tselil Schramm. Tight lower bounds for planted clique in the

degree-4 SOS program. CoRR, abs/1507.05136, 2015. URL: http://arxiv.org/abs/
1507.05136.

25 Grant Schoenebeck. Linear level lasserre lower bounds for certain k-csps. In Foundations of
Computer Science, 2008. FOCS’08. IEEE 49th Annual IEEE Symposium on, pages 593–602.
IEEE, 2008.

26 NZ Shor. Class of global minimum bounds of polynomial functions. Cybernetics and
Systems Analysis, 23(6):731–734, 1987.

27 Eugene P Wigner. On the distribution of the roots of certain symmetric matrices. Annals
of Mathematics, pages 325–327, 1958.

A Justification of the moment method

In this appendix, we provide a proof that the moment method gives an upper bound on
the norm. To make the proof easier, we consider the case of positive semidefinite matrices
separately.

I Lemma 52.
1. For any positive semidefinite matrix A, for all k ≥ 1, k

√
tr(Ak) ≥ ||A||.

2. For any real matrix M , for all k ≥ 1, 2k
√

tr((MMT)k) ≥ ||M ||.

Proof. To show the first statement, we recall the following fact about positive semidefinite
matrices.

I Proposition 53. For any positive semidefinite matrix A, ||A|| = λmax(A) where λmax(A)
is the maximum eigenvalue of A.

Proof. Since A is positive semidefinite, there is an orthonomal basis v1, · · · , vn of eigenvectors
of A with eigenvalues λ1, · · · , λn. Without loss of generality, we may assume that λ1 ≥ λ2 ≥
· · · ≥ λn ≥ 0. Given a unit vector v, v =

∑n
i=1 civi where

∑n
i=1 c

2
i = 1. Av =

∑n
i=1 λicivi so

we have that

||Av||2 ≤
n∑
i=1

λ2
i c

2
i ≤

n∑
i=1

λ2
1c

2
i = λ2

1 .

This implies that ||A|| ≤ λ1. ||Av1|| = λ1 so ||A|| ≥ λ1 and thus ||A|| = λ1, as needed. J

http://arxiv.org/abs/1503.06447
http://arxiv.org/abs/1507.05136
http://arxiv.org/abs/1507.05136

D. Medarametla and A. Potechin 40:25

With this in mind, for any k ≥ 1, the eigenvalues of Ak are λk1 , · · · , λkn. Thus,

trace(Ak) =
n∑
i=1

λki ≥ λk1 ≥ ||A||k

and the first statement follows. The second statement follows immediately from the first
statement and the following proposition.

I Proposition 54. For any matrix M , ||MMT || = ||M ||2.

Proof. Note that for any matrix M , ||MT || = ||M || = max
||u||=1,||v||=1

uTMv. For any unit

vectors u and v,

uTMMT v = (MTu)T (MT v) = MTu ·MT v ≤ ||MTu|| · ||MT v|| ≤ ||MT ||2 = ||M ||2 .

Thus, ||MTM || ≤ ||M ||2. On the other hand, letting v be a unit vector which maximizes
||MT v||, giving ||MT v|| = ||MT || = ||M ||, we have that

vTMMT v = (MT v)T (MT v) = ||MT v||2 = ||MT ||2 = ||M ||2 .

Thus, ||MTM || ≥ ||M ||2 and the result follows. J
J

B Norm bounds with left/right intersections

In this appendix, we consider the case when U ∩ V is nonempty in H.

I Theorem 55. Let H be a graph with distinguished sets of vertices U and V such that
|U ∩ V | = r and all vertices in H(V) \ (U ∪ V) have degree at least one. Let t = |V (H)|, let
z = |V (H) \ (U ∪V)|, and let q be the size of the minimal separator between U and V (which
must include U ∩ V). Let t′ = t− r and let q′ = q − r.
1. If q′ + z > 0 then for all ε ∈ (0, 1),

P[||RH || ≥ 2(t′)t
′

(
e(t′ + z)

(
ln(8nq′+r/ε)

2(q′ + z) + 1
))q′+z

n
t′−q′

2] ≤ ε .

2. If q′ = z = 0 then ||RH || ≤ n
t
2 .

Proof Sketch. The key idea is to reduce the case when to the case when U ∩ V = ∅. We
first choose the elements which U ∩ V map to. These will be the elements of A∩B and they
must occur in fixed positions within A and B. Thus, this choice partitions RH into blocks
which share no rows or columns. It is now sufficient to obtain a probabilistic bound for each
block and use a union bound.

For a particular block, we can now use the same proof we used to prove Theorem 14. Let
R′ be a matrix where we have restricted ourselves to a particular block and have partitioned
the vertices in [1, n]\ (A∩B) into V1, . . . , Vt′ , restricting where the vertices in V (H)\ (U ∩V)
can map to accordingly. Consider tr((R′R′T)k). Roughly speaking, we ignore the vertices in
A∩B (in fact we could replace n by n′ = n− r in the bound). Since the vertices in A∩B are
fixed, they appear in every copy of R′ and are already determined, so they do not contribute
to the number of terms with nonzero expectation.

For the other vertices, it is still true that if we have vertex-independent paths of lengths
l1, . . . , lq′ in H from U \ V to V \ U , in the constraint graph the path of length li becomes a

APPROX/RANDOM’16

40:26 Bounds on the Norms of Uniform Low Degree Graph Matrices

cycle of length 2kli, requiring kli − 1 constraint edges. It is also still true that every vertex
in W which is not on one of these paths requires k constraint edges. Thus, we have the same
norm bound on each block as we did in Theorem 14. To take a union bound over all the
blocks, since there are at most nr blocks, we use this bound with ε replaced by ε

nr and the
result follows. J

Lower Bounds for CSP Refutation by SDP
Hierarchies
Ryuhei Mori∗1 and David Witmer†2

1 Department of Mathematical and Computing Sciences, Tokyo Institute of
Technology, Tokyo, Japan
mori@is.titech.ac.jp

2 Computer Science Department, Carnegie Mellon University, Pittsburgh, USA
dwitmer@cs.cmu.edu

Abstract
For a k-ary predicate P , a random instance of CSP(P) with n variables and m constraints is
unsatisfiable with high probability when m ≥ O(n). The natural algorithmic task in this regime
is refutation: finding a proof that a given random instance is unsatisfiable. Recent work of
Allen et al. suggests that the difficulty of refuting CSP(P) using an SDP is determined by a
parameter cmplx(P), the smallest t for which there does not exist a t-wise uniform distribution
over satisfying assignments to P . In particular they show that random instances of CSP(P) with
m� ncmplx(P)/2 can be refuted efficiently using an SDP.

In this work, we give evidence that ncmplx(P)/2 constraints are also necessary for refutation
using SDPs. Specifically, we show that if P supports a (t − 1)-wise uniform distribution over
satisfying assignments, then the Sherali-Adams+ and Lovász-Schrijver+ SDP hierarchies cannot
refute a random instance of CSP(P) in polynomial time for any m ≤ nt/2−ε.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases constraint satisfaction problems, LP and SDP relaxations, average-case
complexity

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2016.41

1 Introduction

The average-case complexity of constraint satisfaction problems (CSPs) has been studied
in computer science, mathematics, and statistical physics. Despite the vast amount of
research that has been done, the hardness of natural algorithmic tasks for random CSPs
remains poorly understood. We consider random CSPs with n variables and m constraints
chosen independently and uniformly at random. Whether or not a random CSP is satisfiable
depends on its clause density m

n . It is conjectured that for any nontrivial CSP there is a
satisfiability threshold α(P) depending on the choice of predicate P : For m < α(P) · n, an
instance is satisfiable with high probability, and m > α(P), an instance is unsatisfiable with
high probability. This conjecture has been proven in the case of k-SAT for large enough k
[16]. For an arbitrary predicate P , it is only known that there exist constants αlb(P) and
αub(P) such that random instances with m < αlb(P) · n are satisfiable with high probability
and random instances with m > αub(P) · n are unsatisfiable with high probability. In the

∗ Supported by MEXT KAKENHI Grant Number 24106008.
† Supported by the National Science Foundation Graduate Research Fellowship Program under grant

DGE-1252522, by NSF grants CCF-0747250 and CCF-1116594, and by a CMU Presidential Fellowship.

© Ryuhei Mori and David Witmer;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016).
Editors: Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans; Article No. 41; pp. 41:1–41:30

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.41
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

41:2 Lower Bounds for CSP Refutation by SDP Hierarchies

low density, satisfiable regime, the major research goal is to develop algorithms that find
satisfying assignments. In the high density, unsatisfiable regime, the goal is to refute an
instance, i.e., find a short certificate that there is no solution.

In this paper, we study refutation. A refutation algorithm takes a random instance I of
CSP(P) and returns either “unsatisfiable" or "don’t know". It must satisfy two conditions:
(1) it is never wrong, i.e., if I is satisfiable, it must return “don’t know" and (2) it returns
“unsatisfiable" with high probability over the choice of the instance. Asm increases, refutation
becomes easier. The objective, then, is to refute instances with m as small as possible. This
problem has been studied extensively and is related to hardness of approximation [17], proof
complexity [8], statistical physics [13], cryptography [2], and learning theory [14]. As m
increases, refutation becomes easier. The objective, then, is to refute instances with m as
small as possible. Much research has focused on finding algorithms for refutation, especially
in the special case of SAT; see [1] for references.

Most known refutation algorithms are based on semidefinite programming (SDP). For
now, we think of an SDP relaxation of an instance I of CSP(P) as a black box that returns
a number SDPOpt ∈ [0, 1] that approximates the maximum fraction of constraints that can
be simultaneously satisfied. An SDP-based refutation algorithm takes a random instance
I of CSP(P), solves some SDP relaxation of I, and return “Unsatisfiable" if and only if
SDPOpt < 1. The majority of known polynomial-time algorithms for refutation fit into this
framework (e.g., [1, 7, 20, 12, 18]). It is then natural to ask the following question.

What is the minimum number of constraints needed by an efficient SDP-based
refutation algorithm for CSP(P)?

Allen et al. give an upper bound on the number of constraints required to refute an instance
of CSP(P) in terms of a parameter cmplx(P) [1]. They define cmplx(P) to be the minimum
t such that there is no t-wise uniform distribution over satisfying assignments to P . Clearly
1 ≤ cmplx(P) ≤ k for nontrivial predicates and cmplx(P) = k when P is k-XOR or k-SAT.
They give the following upper bound.

I Theorem 1 ([1]). There is an efficient SDP-based algorithm that refutes a random instance
I of CSP(P) with high probability when m� ncmplx(P)/2.

For special classes of predicates, we know that ncmplx(P)/2 constraints are also necessary for
refutation by SDP-based algorithms. Schoenebeck considered arity-k predicates P whose
satisfying assignments are a superset of k-XOR’s; these include k-SAT and k-XOR. For
such predicates, he showed that polynomial-size sum of squares (SOS) SDP relaxations
cannot refute random instances with m ≤ nk/2−ε [28] using a proof previously discovered
by Grigoriev [21]. Based on work of Lee, Raghavendra, and Steurer [24], this implies that
no polynomial-size SDP can be used to refute random instances of k-XOR or k-SAT when
m ≤ nk/2−ε. This leads us to make the following conjecture.

I Conjecture 2. Let ε be a constant greater than 0. Given a random instance I of CSP(P)
with m ≤ ncmplx(P)/2−ε, with high probability any polynomial-size SDP relaxation of I has
optimal value 1 and can therefore not be used to refute I.

Proving this conjecture would essentially complete our understanding of the power of SDP-
based refutation algorithms. To do this, it suffices to prove it for SOS SDP relaxations,
as the SOS relaxation of CSP(P) is at least as powerful as an arbitrary SDP relaxation of
comparable size [24]. Prior to this work, this SOS version Conjecture 2 appeared in [1]; we

R. Mori and D. Witmer 41:3

know of no other mention of this conjecture in the literature.1

Some partial progress has been made toward proving this conjecture. Building on
results of Benabbas et al. [9] and Tulsiani and Worah [30], O’Donnell and Witmer proved
lower bounds for the Sherali-Adams (SA) linear programming (LP) hierarchy and the
Sherali-Adams+ (SA+) and Lovász-Schrijver+ (LS+) SDP hierarchies. All three of these
hierarchies are weaker than SOS. The SA+ hierarchy gives an optimal approximation for
any CSP in the worst case assuming the Unique Games Conjecture [27]. They showed that
Sherali-Adams linear programming (LP) relaxations cannot refute random instances with
m ≤ ncmplx(P)/2−ε [26]; this implies that no polynomial-size LP can refute random instances
with with m ≤ ncmplx(P)/2−ε by work of Chan et al. [11]. They showed that SA+ cannot
refute random instances with m ≤ ncmplx(P)/2−ε when a set of o(m) constraints has been
removed [26]. Also, they proved that SA+ and LS+ cannot refute fully random instances with
m ≤ Ω(ncmplx(P)/2−1/3−ε). Much less is known for SOS. For predicates P that support a
pairwise uniform distribution over satisfying assignments, Barak, Chan, and Kothari showed
that polynomial-size SOS relaxations cannot refute random instances with m = Ω(n) in
which o(m) constraints have been removed [5].

In addition, there is a long history of related work on lower bounds for refutation in proof
complexity (e.g., [21, 23, 10, 30]). Specifically, SA, SA+, LS+, and SOS have corresponding
static semialgebraic proof systems and proving integrality gaps for these LP and SDP
relaxations in equivalent to proving rank lower bounds for refutations in these proof systems.

Results

Our contribution is two-fold: First, we remove the assumption that a small number of
constraints are deleted to show that fully-random CSP instances have integrality gaps in
SA+ for m ≤ Ω(nt/2−ε).

I Theorem 3. Let P : [q]k → {0, 1} be (t − 1)-wise uniform-supporting and let I be a
random instance of CSP(P) with n variables and m ≤ Ω

(
nt/2−ε) constraints. Then with

high probability the SA+ relaxation for I has value 1, even after Ω(n
ε
t−2) rounds.

Second, we use this result to show that fully random instances have LS+ integrality gaps
for m ≤ Ω(nt/2−ε). Recall that LS+ gives relaxations of 0/1-valued integer programs, so we
restrict our attention here to Boolean CSPs with P : {0, 1}k → {0, 1}.

I Theorem 4. Let P : {0, 1}k → {0, 1} be (t − 1)-wise uniform-supporting and let I be a
random instance of CSP(P) with n variables and m ≤ Ω

(
nt/2−ε) constraints. Then with

high probability the LS+ relaxation for I has value 1, even after Ω(n
ε
t−2) rounds.

In their strongest form, our results hold for a static variant of the LS+ SDP hierarchy
that is at least as strong as both SA+ and LS+. We define this static LS+ hierarchy in
Section 2.

I Theorem 5. Let P : {0, 1}k → {0, 1} be (t − 1)-wise uniform-supporting and let I be a
random instance of CSP(P) with n variables and m ≤ Ω

(
nt/2−ε) constraints. Then with

high probability the static LS+ relaxation for I has value 1, even after Ω(n
ε
t−2) rounds.

1 Barak, Kindler, and Steurer [6] made a related but different conjecture that the basic SDP relaxation is
optimal for random CSPs.

APPROX/RANDOM’16

41:4 Lower Bounds for CSP Refutation by SDP Hierarchies

Tulsiani and Worah proved this theorem in the special case of pairwise independence and
O(n) constraints [30, Theorem 3.27].2

These results provide further evidence for Conjecture 2 and, in particular, give the first
examples of SDP hierarchies that are unable to refute CSPs with (t − 1)-wise uniform-
supporting predicates when m ≤ Ω

(
nt/2−ε).

From a dual point of view, we can think of SA+, LS+, and static LS+ as semialgebraic
proof systems and our results can be equivalently stated as rank lower bounds for these proof
systems.

I Theorem 6. Let P : {0, 1}k → {0, 1} be (t − 1)-wise uniform-supporting and let I be a
random instance of CSP(P) with n variables and m ≤ Ω

(
nt/2−ε) constraints. Then with

high probability any SA+, LS+, or static LS+ refutation of I requires rank Ω(n
ε
t−2).

In another line of work, Feldman, Perkins, and Vempala [19] showed that if a predicate
P is (t − 1)-wise uniform supporting, then any statistical algorithm based on an oracle
taking L values requires m ≥ Õ

(
nr

L

)
to refute. They further show that the dimension of

any convex program refuting such a CSP must be at least Õ(nt/2). These lower bounds are
incomparable to the integrality gap results stated above: While statistical algorithms and
arbitrary convex relaxations are more general models, standard SDP hierarchy relaxations
for k-CSPs, including the SA+ and LS+ relaxations we study, have dimension Θ(nk) and are
therefore not ruled out by this work.

Techniques

For simplicity we consider our CSP to have ±1-values variables and P : {−1, 1}k → {0, 1}.
To solve CSP(P) exactly, it suffices to optimize over distributions on assignments {0, 1}n.
This, of course, is hard, so relaxations like SA, SA+, LS+, and SOS instead optimize over
“pseudodistributions" on assignments [4], which are objects that look like distributions to
simple enough functions. We can also define “pseudoexpectations" Ẽ[·] over these pseudodis-
tributions. As the rank or degree of the relaxation increases, these pseudodistributions look
more like actual distributions over {0, 1}n. However, the rank-r relaxations have size nO(r).
The r-round SA+ relaxation requires that Ẽ[f(x)] ≥ 0 for f(x) : {0, 1}n → R such that either
(1) f depends on at most r variables or (2) f is the square of some affine function. We know
that when m ≤ ncmplx(P)/2−ε, there exist pseudodistributions satisfying (1) [9, 26]. Condition
(2) is equivalent to positive semidefiniteness of the matrix of second pseudomoments Ẽ[xixj] of
the pseudodistribution. Recalling that we are now considering ±1-valued variables, previous
work had constructed pseudodistributions and proved that their second moment matrix was
positive semidefinite (PSD) by showing that it was diagonal and had nonnegative entries.
The second moment matrix is diagonal when there are no correlations between assignments
to pairs of variables under the pseudodistribution and the marginals of pseudodistribution
for each variable is unbiased. This condition holds for instances with low densities, but
correlations between variables arise as the density increases.

We show positive semidefiniteness in the presence of these correlations by showing
that they must remain local. Our argument extends a technique of Tulsiani and Worah
[30]. We prove that the graph induced by correlations between variables must have small
connected components, each of which corresponds to a small block of off-diagonal nonzero

2 Actually, [30] prove a rank lower bound for the dual static LS+ proof system, but this is equivalent to a
rank lower bound for the static LS+ SDP hierarchy we consider here.

R. Mori and D. Witmer 41:5

entries in the second pseudomoment matrix. Since each of these off-diagonal blocks is small,
condition (1) guarantees that functions supported on these variables will have nonnegative
pseudoexpectation. This means that each of these off-diagonal blocks is a PSD matrix. The
pseudomoment matrix must then be PSD: It can be written as a sum of a diagonal matrix
with nonnegative elements and PSD “correction matrices", each of which corresponds to a
small connected component in the correlation graph.

2 Preliminaries

2.1 Constraint satisfaction problems
Given a predicate P : [q]k → {0, 1}, an instance I of the CSP(P) problem with variables
x1, . . . , xn is a multiset of P -constraints. Each P -constraint is a tuple (c, S), where c ∈ [q]k is
the negation pattern and S ∈ [n]k is the scope. The corresponding constraint is P (xS+c) = 1,
where xS = (xi)i∈S and + is component-wise addition mod q.

In the decision version of CSP(P), we wish to determine whether there exists an assignment
satisfying all constraints of a given instance I. In the optimization version, the objective
is to maximize the fraction of simultaneously satisfied constraints. That is, we define
ValI(x) := 1

m

∑
(c,S)∈I P (c + xS) and wish to find x ∈ [q]n maximizing ValI(x). We will

write maxx ValI(x) as Opt(I).
Next, we define our random model. We consider instances in which m constraints are

drawn independently and uniformly at random from among all qknk possible constraints
with replacement. We distinguish between different orderings of the scope, as P may not
be symmetric. The specific details of this definition are not important; our results hold for
any similar model. For example, see [1, Appendix D]. A random instance is likely to be
highly unsatisfiable: It is easy to show that Opt(I) = |P−1(1)|

qk
+ o(1) for m ≥ O(n) with

high probability.
Given an instance I, we can consider the associated k-uniform hypergraph HI . This is

the hypergraph on V = [n] that has a hyperedge S if and only if S is the scope of some
constraint of I.

Next, we define the main condition on predicates that we will study.

I Definition 7. A predicate P : [q]k → {0, 1} is t-wise uniform supporting if there exists a
distribution µ over [q]k supported on P ’s satisfying assignments such that Prz∼µ[zT = α] =
q−|T | for all α ∈ [q]|T | and for all T ⊆ [k] with 1 ≤ |T | ≤ t.

2.2 LP and SDP hierarchies
We can define LP and SDP relaxations of both the decision and optimization versions of
CSPs. All of our results will apply to both.

2.2.1 Representing CSP(P)with polynomial inequalities
All of the hierarchies we look at start with an initial set of polynomial inequalities representing
an instance of a CSP and then iteratively tighten this relaxation. In this section, we will
describe standard ways of constructing these initial relaxations.

To write down LP and SDP relaxations of CSP decision problems, we will need to
represent the constraints of an instance I of CSP(P) as a set of polynomial inequalities. We
will do this in two ways.

APPROX/RANDOM’16

41:6 Lower Bounds for CSP Refutation by SDP Hierarchies

In SA, SA+, and LS+, we will represent each constraint as a degree-k polynomial inequality.
Let P ′(x) be the unique degree-k polynomial such that P ′(z) = P (z) for all z ∈ {0, 1}k.
Also, given a ∈ [0, 1]k and b ∈ {0, 1}, use a(b) to denote a if b = 0 and 1 − a if b = 1. For
z ∈ [0, 1]k and c ∈ {0, 1}k, let z(c) ∈ [0, 1]k be such that (z(c))i = z

(ci)
i . Then we define the

base degree-k relaxation of I to be the set

RI := {x ∈ [0, 1]n | P ′(x(c)
S) = 1 ∀(c, S) ∈ I}. (2.1)

It will be most natural to construct SA, SA+, and static LS+ relaxations starting from this
polytope. In addition, this formulation immediately generalizes to larger alphabets.

For LS+, on the other hand, we will have to start with a linear relaxation. Recall that
any nontrivial arity-k predicate P can be represented as a conjunction of at most 2k − 1
disjunctions of arity k. In particular, letting F = {z ∈ {0, 1}k | P (z) = 0}, we see that

P (z) =
∧
f∈F

k∨
i=1

fi ⊕ zi. (2.2)

Using (2.2), we can represent I as a k-SAT instance with at most (2k−1) ·m constraints. The
linear relaxation we will consider is the standard linear relaxation for this k-SAT instance.
For each clause

∨k
i=1 ci ⊕ zi, we will add the inequality

∑k
i=1 z

(ci)
i ≥ 1. We then obtain the

following linear relaxation for I.

LI :=
{
x ∈ [0, 1]n

∣∣∣∣∣
k∑
i=1

x
(ci⊕fi)
Si

≥ 1 ∀(c, S) ∈ I, f ∈ F
}
. (2.3)

To get a maximization version of the LS+ relaxation, we will need a base relaxation with
linear constraints and a linear objective function. To do this, we will start with LI and add
variables zc,S for all constraints (c, S) ∈ I and consider the following polytope in Rn+m.

L′I :=
{

(x, z) ∈ [0, 1]n+m

∣∣∣∣∣
k∑
i=1

x
(ci⊕fi)
Si

≥ zc,S ∀(c, S) ∈ I, f ∈ F
}
. (2.4)

We can then write the following standard LP relaxation of CSP(P).

max 1
m

∑
(c,S)∈I

zc,S

s.t. (x, z) ∈ L′I

2.2.2 Sherali-Adams
The Sherali-Adams (SA) linear programming hierarchy gives a family of locally consistent
distributions on assignments to sets of variables. As the size of these sets increases, the
relaxation becomes tighter.

I Definition 8. Let {DS} be a family of distributions DS over [q]S for all S ⊆ [n] with
|S| ≤ r. We say that {DS} is r-locally consistent if for all T ⊆ S ⊆ [n] with |S| ≤ r, the
marginal of DS on T is equal to DT . That is,

DT (α) =
∑
β∈[q]S
βT=α

DS(β).

R. Mori and D. Witmer 41:7

Given polynomial inequalities a1(x) ≥ 0, a2(x) ≥ 0, . . . , am(x) ≥ 0 called axioms such
that each aj depends on at most r variables, we consider the set

A := {x ∈ Rn | a1(x) ≥ 0, a2(x) ≥ 0, . . . , am(x) ≥ 0}.

For a polynomial q, let supp(q) be the set of all variables on which a depends. We then define
the rank-r SA relaxation for A as the set of all families of distributions {DS}S⊆[n], |S|≤r over
[q]S satisfying following two properties.
1. {DS}S⊆[n], |S|≤r is r-locally consistent.
2. Eα∼Dsupp(aj) [aj(α)] = 1 for all j ∈ [m].
We denote this set of families of distributions as SAr(A); note that SAr(A) is a polytope.

In the case of an instance I of CSP(P), we can write r-round SA relaxations in both
feasibility and optimization forms. In the feasibility formulation, we check whether or not
the polytope SAr(RI) is feasible; this is a relaxation of the problem of checking whether or
not all constraints can be simultaneously satisfied.

In the rank-r SA optimization formulation, we solve the following LP.

max 1
m

∑
(c,S)∈I

Eα∼DS [P (α+ c)] (2.5)

s.t. {DS}S⊆[n], |S|≤r ∈ SAr(∅).

This is an LP of size nO(r) that is a relaxation of the problem of maximizing the number
of satisfied constraints. As r increases, the number of variables and constraints in this LP
increases and the relaxation tightens until r = n, when SA has Θ(qn) variables and gives the
exact solution.

2.2.3 Sherali-Adams+

The Sherali-Adams+ (SA+) SDP hierarchy additionally requires the second moment matrix
of these distributions to be PSD. Given a family of local distributions {DS}, define M(D) ∈
R(nq+1)×(nq+1) to be the symmetric matrix indexed by (0, [n]× [q]) such that

M(D)0,0 = 1
M(D)0,(i,a) = D{i}(xi = a)

M(D)(i,a),(j,b) = D{i,j}(xi = a ∧ xj = b).

Note that the ((i, a), (i, b))-element of B is D{i}(xi = a) if a = b and is 0 if a 6= b. Given
an initial set A of axioms as above, we define SAr

+(A) as we did SAr(A) with the following
additional condition.
3. M(D) is PSD.
We define the optimization version of the rank-r SA+ relaxation analogously to the optimiza-
tion version of SA in (2.5); this is an SDP with size nO(r).

We can equivalently define SA+ by requiring the covariance matrix of the locally consistent
{DS} distributions to be positive semidefinite (PSD).

I Definition 9. The covariance matrix Σ for r-locally consistent distributions {DS} for
r ≥ 2 is defined as

Σ(i,a),(j,b) = D{i,j}(xi = a ∧ xj = b)−D{i}(xi = a) ·D{j}(xj = b).

These two representations are equivalent [31].

APPROX/RANDOM’16

41:8 Lower Bounds for CSP Refutation by SDP Hierarchies

I Lemma 10. M is PSD if and only if Σ is PSD.

We include the proof in Appendix B.
The covariance matrix condition will be more convenient for us to work with. A valid

global distribution has a PSD covariance matrix, so SA+ is a relaxation of CSP(P) and is
exact for r = n.

2.2.4 Lovász-Schrijver+

We now define the Lovász-Schrijver+ (LS+) SDP relaxation for binary CSPs whose variables
are 0/1-valued. Given an initial polytope K ∈ Rn, we would like to generate a sequence of
progressively tighter relaxations. To define one LS+ lift-and-project step, we will use the
cone

K̃ = {(λ, λx1, . . . , λxn) | λ > 0, x1, . . . , xn ∈ K}.

K can be recovered by taking the intersection with x0 = 1.

I Definition 11. Let K̃ be a convex cone in Rn+1. Then the lifted LS+ cone N+(K̃) is the
cone of all y ∈ Rn+1 for which there exists an (n + 1) × (n + 1) matrix Y satisfying the
following:
1. Y is symmetric and positive semidefinite.
2. For all i, Yii = Yi0 = yi.
3. For all i, Yi ∈ K̃ and Y0 − Yi ∈ K̃
where Yi is the ith column of Y . Then we define N+(K) to be N+(K̃) ∩ {x0 = 1}. The
r-round LS+ relaxation of a polytope K results from applying the N+ operator r times.
That is, we define Nr

+(K) = N+(Nr−1
+ (K)). Y is called a protection matrix for y.

A solution to the r-round LS+ relaxation for a polytope K ∈ Rn defined by nO(1) linear
constraints can be computed in time nO(r) using an SDP.

We can write an LS+ relaxation for CSP(P) in two ways. The maximization version of
the LS+ CSP relaxation is

max 1
m

∑
(c,S)∈I

zc,S

s.t. (x, z) ∈ Nr
+(L′I).

Alternatively, we can check feasibility of Nr
+(LI).

We note here that though it is more natural to apply SA, SA+, and static LS+ to (2.1),
applying SA, SA+, and static LS+ to (2.3) yields a relaxation that is at least as strong.

I Lemma 12. Let r ≥ k. Then the following statements hold.
1. SAr(RI) = SAr(LI).
2. SAr

+(RI) = SAr
+(LI).

3. StaticLSr+(RI) = StaticLSr+(LI)

We include the proof in Appendix D. The StaticLSr+ operator is defined in the next section.

R. Mori and D. Witmer 41:9

2.2.5 Static LS+

The static LS+ relaxation strengthens both SA+ and LS+. As in the case of SA+, we start
with a family of r-locally consistent distributions and then further require that they satisfy
certain positive semidefiniteness constraints. In particular, for all X ⊆ [n] with |X| ≤ r − 2
and all α ∈ [q]X , define the matrices MX,α(D) ∈ R(nq+1)×(nq+1) as follows.

MX,α(D)0,0 = 1
MX,α(D)0,(i,a) = D{i}∪X(xi = a ∧X = α)

MX,α(D)(i,a),(j,b) = D{i,j}∪X(xi = a ∧ xj = b ∧X = α).

In addition to the SA constraints, the r-round static LS+ relaxation StaticLSr+(A) satisfies
the following constraint.
3’. MX,α(D) is PSD for all X ⊆ [n] with |X| ≤ r − 2 and all α ∈ [q]X .
Observe that these positive semidefiniteness constraints can be formulated as a positive
semidefiniteness constraint for a single matrix. In particular, let Mtotal be the block diagonal
matrix with the MX,α’s on the diagonal. Then Mtotal has size at most (qn)O(r) and Mtotal
is PSD if and only if all of the MX,α’s are PSD. The maximization version is again defined
exactly as it was for SA and SA+. Unlike LS+, this hierarchy immediately generalizes to
non-binary alphabets.

For intuition, one can think of this hierarchy as requiring positive semidefiniteness of the
covariance matrices of the conditional distributions formed by conditioning on the events that
X is assigned α for all X with |X| ≤ r−2 and all α ∈ [q]X . We prefer the definition presented
here because it more easily handles the case of X getting assigned α with probability 0 in
which the corresponding conditional distribution is not defined.

We note that we have not seen this hierarchy defined in this form in previous work, but
it is dual to the static LS+ proof system defined in [22] and described below in Section 2.3
(see Appendix E).

2.2.6 Pseudodistributions: An alternate point of view
We can equivalently define SA, SA+, and static LS+ in terms of pseudodistributions [4, 3].
A pseudodistribution is a map σ : {0, 1}n → R that “looks like" a valid distribution over
{0, 1}n to simple enough functions. Define the corresponding pseudoexpectation Ẽx∼σ[·] as
Ẽx∼σ[f(x)] =

∑
x∈{0,1}n σ(x)f(x).

Sherali-Adams

A rank-r SA pseudodistribution satisfies that following two conditions.
1.
∑
x∈{0,1}n σ(x) = 1.

2. Ẽx∼σ[f(x)] ≥ 0 for all nonnegative functions f : {0, 1}n → R that depend on at most r
variables.

Sherali-Adams+

A rank-r SA+ pseudodistribution satisfies Condition 1 and a stronger version of Condition 2:
2’. Ẽx∼σ[f(x)] ≥ 0 for all nonnegative functions f : {0, 1}n → R satisfying one of the

following.
1. f depends on at most r variables.
2. f = `2 for some function ` with degree at most 1.

APPROX/RANDOM’16

41:10 Lower Bounds for CSP Refutation by SDP Hierarchies

Static LS+

A rank-r static LS+ pseudodistribution satisfies Condition 1 and a version of Condition 2
that is stronger still:
2”. Ẽx∼σ[f(x)] ≥ 0 for all nonnegative functions f : {0, 1}n → R satisfying one of the

following.
1. f depends on at most r variables.
2. There exists a set X of r − 2 variables such that for any assignment α to X, the

function fX,α : [q][n]\X → R resulting from setting X to α is equal to `2 for some
function ` with degree at most 1 possibly depending on X and α.

All three relaxations maximize the objective function
1
m

∑
(c,S)∈I

Ẽx∼σ[P (xS + c)]

over their corresponding pseudodistributions σ.

2.3 The dual point of view: Static semialgebraic proof systems
We consider refutation of CSPs via semialgebraic proof systems. Starting from a set of axioms
{ai(x) ≥ 0} that capture the constraints of the CSP as polynomial inequalities, semialgebraic
proof systems derive new inequalities the are implied by the axioms and integrality of the
variables. To prove that an instance is unsatisfiable, we wish to derive the contradiction
−1 ≥ 0. We consider the SA, SA+, LS+, and static LS+ proof systems. Here, we will only
deal with {0, 1}-valued variables.

The SA proof system

A SA refutation has the form∑
`

γ`a`(x)φI`,J`(x) = −1,

where γ` ≥ 0, a` is an axiom, and φI`,J` =
∏
i∈I` xi

∏
j∈J`(1 − xj). This is a proof of

unsatisfiability because under the assumption that the all xi variables are in {0, 1}, every
term of the above sum most be nonnegative and it is therefore a contradiction. The rank of
this proof (often called the degree) is the maximum degree of any of the terms. The size
of the proof is the number of terms in the sum; this follows from Farkas’ Lemma. Static
SA proofs is automatizable: A rank r SA proof may be found in time nO(r) if it exists by
solving an LP. The SA proof system first appeared in [22] with the name static LS∞; the
dual hierarchy of LP relaxations was introduced by [29]. A rank-r SA refutation exists if
and only if the corresponding rank-r SA relaxation is infeasible.

The SA+ proof system

In SA+, a proof has the form∑
`

γ`a`(x)φI`,J`(x) +
∑
s

νsλs(x)2 = −1,

where γ`, νs ≥ 0 and the λs’s are affine functions. The rank of the proof is its degree. The
dual SA+ hierarchy of SDP relaxation first appeared in [27]. Again, a rank-r SA+ refutation
exists if and only if the corresponding rank-r SA+ relaxation is infeasible. SA+ proofs of
rank r can be found in time nO(r) if they exist.

R. Mori and D. Witmer 41:11

The LS+ proof system

The LS+ proof system [25] is dynamic, meaning that a proof is built up over a series of
steps. A proof in LS+ is a sequence of expressions of the form P (x) ≥ 0. A new inequality is
derived from the inequalities already in the proof using inference rules. When deg(P (x)) ≤ 1,
we allow the following:

P (x) ≥ 0
xi · P (x) ≥ 0

P (x) ≥ 0
(1− xi) · P (x) ≥ 0 P (x)2 ≥ 0.

We also allow nonnegative linear combinations:

P (x) ≥ 0 Q(x) ≥ 0
α · P (x) + β ·Q(x) ≥ 0

for α, β ≥ 0. An LS+ proof is therefore a sequence of “lifting" steps in which we multiply by
some xi or (1 − xi) to get a degree-2 polynomial and “projection" steps in which we take
nonnegative linear combinations to reduce the degree back to 1. We can view an LS+ proof
as a DAG with inequalities at each vertex and −1 ≥ 0 at the root. The rank of an LS+ proof
is the maximum number of lifting steps in any path to the root. The LS+ proof system is
not known to be automatizable; see Section 8 of [10] for details. An rank-r LS+ refutation
exists if and only if the corresponding rank-r LS+ relaxation is infeasible [15].

The static LS+ proof system

A static LS+ proof [22] has the following form.∑
`

γ`b`(x)φI`,J`(x) = −1,

where γ` ≥ 0, b` is an axiom or the square of an affine function, and φI`,J` is as above. Note
that this proof system as at least as powerful as the SA+ proof system: Terms in the sum
may be products of a φI,J term and the square of an affine function instead of just the
square of an affine function or just an axiom multiplied by a φI,J term. We do not know
of any results on the automatizability of static LS+. Once again, there exists a static LS+
refutation if and only if the corresponding static LS+ relaxation is infeasible. We do not
know of any proof of this statement in the literature, so we include one in Appendix E.

2.4 Expansion
Given a set of constraints T , we define its neighbor set Γ(T) as Γ(T) := {v ∈ [n] | v ∈
supp(C) for some C ∈ T}. We can then define expansion.

I Definition 13. An instance I of CSP(P) is (s, e)-expanding if for every set of constraints
T with |T | ≤ s, |Γ(T)| ≥ e|T |.

We can also define T ’s boundary neighbors as ∂T := {v ∈ [n] | v ∈ supp(C) for exactly
one C ∈ T} and give a corresponding notion of boundary expansion.

I Definition 14. An instance I of CSP(P) is (s, e)-boundary expanding if for every set of
constraints T with |T | ≤ s, |∂T | ≥ e|T |.

We state a well-known connection between expansion and boundary expansion stated in,
e.g., [30].

APPROX/RANDOM’16

41:12 Lower Bounds for CSP Refutation by SDP Hierarchies

I Fact 15. (s, k − d)-expansion implies (s, k − 2d)-boundary expansion.

It is also well-known that randomly-chosen sets of constraints have high expansion [9, 26]:

I Lemma 16. Fix δ > 0. With high probability, a set of m ≤ Ω(nt/2−δ) constraints chosen
uniformly at random is both

(
n

δ
t−2 , k − t

2 + δ
2

)
-expanding and

(
n

δ
t−2 , k − t+ δ

)
-boundary

expanding.

We give proofs of both of these statements in Appendix A.

2.5 Constructing consistent local distributions
Here, we recall a construction of consistent local distributions supported on satisfying
assignments. This construction was first given in [9] and has been used in many subsequent
works (e.g, [30, 26, 5]). In Appendix C, we give proofs of all results mentioned in this section.

We first need to define the notion of a closure of a set of variables. For S ⊆ [n], let
HI − S denote the hypergraph HI with the vertices of S and all hyperedges contained in
S removed. Intuitively, the closure of a set S ⊆ [n] is a superset of S that is not too much
larger than S isn’t very well-connected to the rest of the instance in the sense that HI − S
has high expansion.

I Lemma 17 ([9, 30]). If HI is (s1, e1)-expanding and S is a set of variables such that
|S| < (e1−e2)s1 for some e2 ∈ (0, e1), then there exists a set Cl(S) ⊆ [n] such that S ⊆ Cl(S)
and HI − Cl(S) is (s2, e2)-expanding with s2 ≥ s1 − |S|

e1−e2
and Cl(S) ≤ k+2e1−e2

2(e1−e2) |S|.

We now use the closure to define consistent local distributions supporting on satisfying
assignments. We assume that there exists a (t − 1)-wise independent distribution µ over
satisfying assignments to P . For a constraint C = (c, S), let µC be the distribution defined
by µC(z) = µ(z1 + c1, . . . , zk + ck) and let C(S) be the set of constraints whose support is
entirely contained within S. For a set of variables S ⊆ [n] and an assignment α ∈ [q]S ,
we use the notation S = α to indicate the the variables of S are labeled according to the
assignment α. For a constraint C = (c, S) and an assignment α to a superset of S, let
µC(α) = µC(αS).

For S ⊆ [n], we can then define the distribution D′S over [q]S as

D′S(S = α) = 1
ZS

∑
β∈[q]S
βS=α

∏
C∈C(S)

µC(β), where ZS =
∑
β∈[q]S

∏
C∈C(S)

µC(β).

Using D′, we can then define consistent local distributions DS for |S| ≤ r so that DS(S =
α) = D′Cl(S)(S = α). [9, 26] proved that these distributions are r-locally consistent for
r = n

ε
t−2 .

I Theorem 18. For a random instance I with m ≤ Ω(nt/2−ε), the family of distributions
{DS}|S|≤r is r-locally consistent for r = n

ε
t−2 and is supported on satisfying assignments.

This theorem shows that the SA cannot efficiently refute random (t− 1)-wise uniforming
supporting instances: the r-round SA LP still has value 1 for some r = Ω(n

ε
t−2) when

m ≤ Ω(nt/2−ε). In this paper, we show that even when we add the SA+ requirement that
the covariance matrix is PSD, we still cannot refute when m ≤ Ω(nt/2−ε).

As in [30], we can also construct r-locally consistent conditional distributions. We will
only need these distributions in the proof of our LS+ result, so we describe them only in

R. Mori and D. Witmer 41:13

the binary alphabet case. Let S ⊆ [n], let X ⊆ [n] be a subset of the variables such that
X∩S = ∅, and let α ∈ {0, 1}X be an assignment to X such that µC(α) > 0 for all constraints
in C(X). Define DS|X=α to be the distribution DS conditioned on the event that X is
assigned α under the distribution DX . That is, DS|X=α(S = β) = DS∪X(S=β∧X=α)

DS∪X(X=α) .

I Lemma 19 ([30, Lemma 3.13]). Let X ⊆ [n] and let {DS} be a family of r-locally consistent
distributions for sets S ⊆ [n] such that S ∩ X = ∅ and |S ∪ X| ≤ r. Then the family of
conditional distributions {DS|X=α} is (r − |X|)-locally consistent for any α ∈ {0, 1}X such
that µC(α) > 0 for all constraints C in C(X).

The following is a simple corollary that we will use in Section 7:

I Corollary 20. Let I be a random instance of CSP(P) with n variables and let X ⊆ [n] such
that |X| ≤ Ω(n

ε
t−2) and let α ∈ {0, 1}X be any assignment to Xsuch that µC(α) > 0 for all

constraints in C ∈ C(X). Then the family of conditional distributions {DS|X=α}|S|≤r,S∩X=∅
is r-locally consistent for some r = Ω(n

ε
t−2).

3 Overview of the proof

Previous work [9, 30] only considers instances with a linear number of constraints and relies
on the fact that most pairs of variables are uncorrelated in this regime. For m� n, however,
correlations between pairs of vertices do arise because the underlying hypergraph becomes
more dense. The major technical contribution of this work is to deal with these correlations by
proving that they remain local. More precisely, we consider the graph induced by correlations
between variables: Two variables are connected if they have non-zero correlation. We prove
that this graph must have connected components of at most constant size. Each of these
connected components can then be covered by a local distribution of constant size and this
suffices to ensure PSDness of the covariance matrix.

Showing that a set of local distributions is a valid SA+ solution requires proving that
these distributions are consistent and proving that their covariance matrix is PSD. Local
consistency was proven in previous work [9, 26]. To prove Theorem 3, it remains to argue
that the covariance matrix is PSD. The proof of this statement has three steps: First, we
show in Section 4 that if the correlation graph has small connected components, then the
covariance matrix is PSD. Second, we show any non-zero correlation must have been caused
by a relatively dense subset of constraints in Section 5. In Section 6, we show that connected
components in the correlation graph must be small or they would induce large dense subsets
of constraints that would violate expansion properties.

In Section 7, we show that positive semidefiniteness of the covariance matrix implies
Theorem 4.

4 The correlation graph

In this section, we define the correlation graph, and show that if the correlation graph only
has small connected components, then the covariance matrix is PSD.

I Definition 21. The correlation graph Gc associated with r-locally consistent distributions
{pS} is the graph on [n] with an edge between every pair of variables for which there is a
non-zero entry in the covariance matrix for {pS}. More formally,

E(Gc) = {(u, v) ∈ [n]× [n] | u 6= v,∃(a, b) ∈ [q]× [q] s.t. Σ(u,a),(v,b) 6= 0}.

APPROX/RANDOM’16

41:14 Lower Bounds for CSP Refutation by SDP Hierarchies

I Lemma 22. Let {pS} be a family of r-locally consistent distributions. If all connected
components in the correlation graph associated with {pS} have size at most r, then the
covariance matrix for {pS} is PSD.

Proof. Consider the partition V1, V2, . . . , V` of [n] such that u and v are in the same set if
and only if they are connected in the correlation graph. We then have nonzero entries in
the covariance matrix only for pairs ((u, a), (v, b)) such that u, v ∈ Vi for some i. Ordering
the rows and columns of the covariance matrix according to the partition, we see that the
covariance matrix is block diagonal with a nonzero block on the diagonal for each connected
component of the correlation graph. Each of these blocks is PSD since each is the covariance
matrix of the Sherali-Adams distribution pVi for the corresponding set Vi of the partition
with size at most r and the covariance matrix of valid distribution is always PSD. Since each
block is PSD, the entire matrix is PSD. J

We already know that {DS} defined in Section 2.5 is r-locally consistent with high probability
when m ≤ Ω(nt/2−ε). In the following sections, we will show that connected components
in the correlation graph associated with {DS} is small. Hence, from Lemma 22, {DS} is
feasible solution for SA+ SDP while it gives the trivial objective value 1.

5 Correlations are induced by small, dense structures

In this section, we show that pairwise correlations in {DS} are only generated by small,
dense subhypergraphs that we will call “bad structures". Given a set of hyperedges W , call a
variable v an W -boundary variable if it is contained in exactly one constraint in W .

I Definition 23. For variables u and v, a bad structure for u and v is a set of constraints
W satisfying the following properties:
1. u, v ∈ Γ(W).
2. The hypergraph induced by W is connected.
3. Every constraint contains at most k − t W -boundary variables except for u and v.
We also say W is a bad structure if W is a bad structure for some u and v.

A bad structure for u and v generates correlation between u and v with respect to {DS}.

I Lemma 24. If there is no bad structure for u and v of size at most |C(Cl({u, v}))|, then u
and v are not correlated with respect to D{u,v}.

We need the following technical claim, which states that the distribution D′S isn’t affected
removing a constraint with many boundary variables.

I Claim 25. Let T ⊆ S ⊆ [n] be sets of variables. Let C∗ ∈ C(S) be some constraint covered
by S. If |(∂C(S) ∩ C∗) \ T | ≥ k − t+ 1, then for any α ∈ {0, 1}T ,

D′S(α) = 1
q|T∩(∂C(S)∩C∗)| ·D

′
S\(∂C(S)∩C∗)(αT\(∂C(S)∩C∗)),

Proof. Let B = ∂C(S) ∩ C∗ be the boundary variables of C(S) contributed by C∗, i.e., the
variables contained in C∗ that don’t appear in any other constraint of C(S). First, note that∑

β∈{0,1}S
βT=α

∏
C∈C(S)

µC(β) =
∑

β∈{0,1}S\B
βT\B=αT\B

∏
c∈C(S)\{C∗}

µC(β)
∑

γ∈{0,1}B
γB∩T=αB∩T

µC∗(β, γ)

= 1
qk−|B\T |

∑
β∈{0,1}S\B
βT\B=αT\B

∏
C∈C(S)\{C∗}

µC(β). (5.6)

R. Mori and D. Witmer 41:15

The last line holds because |B \ T | ≥ k − t+ 1 and µ is (t− 1)-wise independent.
Similarly,

ZS =
∑

β∈{0,1}S

∏
C∈C(S)

µC(β) = 1
qk−|B|

∑
β∈{0,1}S\B

∏
C∈C(S)\{C∗}

µC(β). (5.7)

Dividing (5.6) by (5.7), we see that D′S(α) = 1
q|B∩T |

·D′S\B(αT\B). J

Using Claim 25, we prove Lemma 24.

Proof of Lemma 24. Let S0 = C(Cl({u, v})). Say there exists a constraint C1 such that
|(∂C(S0) ∩ C1) \ {u, v}| ≥ k − t + 1. Let S1 = S0 \ (∂C(S0) ∩ C1). If there exists a
constraint C2 such that |(∂C(S1) ∩ C2) \ {u, v}| ≥ k − t+ 1, remove its boundary variables
in the same manner to get S2. Continue in this way until we obtain a set S` such that
|(∂C(S`) ∩ C) \ {u, v}| ≤ k − t for every constraint C ∈ C(S`) (C(S`) could be empty). Since
|(∂C(Si−1)∩Ci) \ {u, v}| ≥ k− t+ 1 for 1 ≤ i ≤ `, we can apply Claim 25 ` times to see that

D{u,v}(u = a ∧ v = b) =

1
q ·D

′
S`

(u = a) if u ∈ S`, v /∈ S`
1
q ·D

′
S`

(v = b) if v ∈ S`, u /∈ S`
1
q2 if u, v /∈ S`
D′S`(u = a ∧ v = b) if u, v ∈ S`.

In the first three cases, it is easy to see that the lemma holds. In the last case, since
C(S`) cannot be a bad structure, the hypergraph induced by S` must be disconnected. Say
U1, U2, . . . , Ut are the vertex sets of the connected components of S`. Remove all connected
components that contain neither u nor v to get S′`. Again, the hypergraph induced by S′`
cannot be connected; otherwise, C(S′`) would be a bad structure. This means that S′` must
be disconnected with u and v in different components. Say S′u and S′v are the vertex sets of
the connected components of S` containing u and v, respectively. Then

D{u,v}(u = a ∧ v = b) = D′S′
`
(u = a ∧ v = b) = D′S′u(u = a) ·D′S′v (v = b).

The result then follows. J

6 All connected components of the correlation graph are small

In this section, we show that all connected components in the correlation graph associated
with {DS} are small, which concludes the proof of Theorem 3.

I Theorem 26. Assume that the family of distributions {DS} is r-locally consistent and
that the hypergraph HI is (ω(1), k − t/2 + δ/2)-expander. Then all connected components in
the correlation graph associated with {DS} have size at most 2k

δ .

We will actually prove a slightly more general theorem that we will use to prove LS+ lower
bounds in Section 7. Given a hypergraph H, let Gbad(H) be the graph on [n] such that there
is an edge between i and j if and only if there exists a bad structure for i and j in H.

I Theorem 27. If the hypergraph H is (ω(1), k − t/2 + δ/2)-expander, then all connected
components in Gbad(H) have size at most 2k

δ .

Lemma 24 implies that Gbad(HI) contains the correlation graph associated with {DS} as a
subgraph, so Theorem 26 immediately implies Theorem 27.

APPROX/RANDOM’16

41:16 Lower Bounds for CSP Refutation by SDP Hierarchies

Proof of Theorem 27. For any edge e of Gbad(H), we can find a corresponding bad structure
We. We will say that We induces e. Any such bad structure We in a (ω(1), k − t/2 + δ/2)-
expanding hypergraph satisfies

Γ(We) ≤ (k − t)|We|+ 2 + k|We| − ((k − t)|We|+ 2)
2 =

(
k − t

2

)
|We|+ 1. (6.8)

The first term upper bounds the number of boundary vertices, the second term counts the
endpoints of e, and the last term upper bounds the number of non-boundary vertices. For a
connected component in the correlation graph associated with {DS}, let e1, e2, . . . , e` be an
ordering of edges in the connected component such that (

⋃i
j=1 ej) ∩ ei+1 is not empty for

i = 1, . . . , `. That is, e1, e2, . . . , e` is an ordering of the edges in the connected component
such that every edge except for the first one is adjacent to some edge preceding it. Let
We1 , . . . ,We` be corresponding bad structures inducing these edges. Let Ti =

⋃i
j=1 Wej

for i = 1, . . . , `. While Ti itself is not necessarily a bad structure, we will show that the
inequality (6.8) still holds for Ti, i.e.,

Γ(Ti) ≤
(
k − t

2

)
|Ti|+ 1 (6.9)

for any i = 1, . . . , `. If (6.9) holds, the number of constraints in T` is at most 2
δ ; otherwise,

expansion is violated. Hence, at most 2k
δ vertices are included in the connected component

of the correlation graph associated with {DS}.
In the following, we prove (6.9). First, note that |Γ(T1)| ≤

(
k − t

2
)
|T1|+ 1 by (6.8). Let

W ′i = Wei \ Ti−1 be the new constraints added at step i. Call any vertex in Γ(Ti) \ Γ(Ti−1)
a new vertex. We will prove that at most

(
k − t

2
)
|W ′i | new vertices are added and this will

imply (6.9).
Let ni be the number of new W ′i -boundary vertices. Then the total number of new

vertices is at most

ni + (k|W ′i | − 1− ni)/2.

The second term upper bounds the number of non-boundary vertices. The −1 comes from
the fact that Γ(W ′i) must intersect Γ(Ti−1) since ei must be adjacent to some preceding edge.
If Γ(W ′i) and Γ(Ti−1) intersect in a boundary vertex, the resulting bound is stronger.

Hence, we would like to upper bound the number ni of new W ′i -boundary vertices.
The number ni of new W ′i -boundary vertices is at most (k − t)|W ′i | + 1 since any new
W ′i -boundary vertex must be a new Wei-boundary vertex and since all but one constraint
in W ′i have at most k − t new Wei-boundary vertices and one constraint in W ′i has at
most k − t+ 1 new Wei-boundary vertices. Hence, the number of new vertices is at most
(k − t)|W ′i |+ 1 + (k|W ′i | − 1− ((k − t)|W ′i |+ 1))/2 = (k − t/2)|W ′i |. J

From Lemmas 16 and 22 and Theorems 18 and 26, we obtain Theorem 3.

7 LS+ rank lower bounds

In this section, we use the techniques of the previous section to prove positive semidefiniteness
of the degree-2 moment matrix of the conditional local distributions {DS|X=α}. From here,
degree lower bounds for the static LS+ proof system andrank lower bounds for LS+ follow
easily.

R. Mori and D. Witmer 41:17

7.1 Positive semidefiniteness of conditional covariance matrices
We define YX,α to be the conditional covariance matrix of the {D{i}|X=α} distributions.
Formally, define y(X,α) ∈ Rn+1 so that (yX,α)0 = 1 and (yX,α)i = D{i}|X=α(i = 1) for
i ∈ [n]. Let BX,α ∈ Rn×n have entries BX,α(i, j) = D{i,j}|X=α(i = 1 ∧ j = 1). Then define
YX,α ∈ R(n+1)×(n+1) to be(

1 y>X,α
yX,α BX,α

)
.

To obtain LS+ rank lower bounds, we need to show that YX,α is PSD.

I Lemma 28. Let X ⊆ [n] such that |X| ≤ Ω(n
δ
t−2). For any α ∈ {0, 1}X such that

µC(α) > 0 for all C ∈ C(X), YX,α is positive semidefinite.

To prove this lemma, we first show that YX,α is PSD when H − X has high expansion.
Then we show that any YX,α can expressed as a nonnegative combination of YCl(X),β ’s for
β ∈ {0, 1}Cl(X); the first step implies that each of these terms is PSD.

We start by generalizing Lemma 24 to conditional distributions. Let ClX(S) be Cl(S) in
the hypergraph H −X.

I Lemma 29. Let X ⊆ [n] and α ∈ {0, 1}X such that µC(α) > 0 for all C ∈ C(X). If there
is no bad structure for u and v in H −X of size at most |C(ClX({u, v}))|, then u and v are
not correlated with respect to D{u,v}|X=α.

Proof. First, recall that

D{u,v}|X=α(u = a ∧ v = b) =
D{u,v}∪X(u = a ∧ v = b ∧X = α)

DX(X = α) .

We will show that D{u,v}∪X(u = a ∧ v = b ∧ X = α) is equal to the product of a term
depending on u and a but not v and b and a term depending on v and b but not u and a.
From there, the lemma immediately follows.

The proof is essentially the same as that of Lemma 24 above. Starting with S0 =
C(Cl({u, v})), we apply the same process except we require that each constraint Ci that we
remove satisfies |(∂C(Si−1) ∩ Ci) \ ({u, v} ∪X)| ≥ k − t+ 1. At the end of this process, we
are left with a set S` such that |(∂C(S`) ∩ C) \ ({u, v} ∪ X)| ≤ k − t for every constraint
C ∈ C(S`) (C(S`) could be empty). Let X` := X ∩ S` and let α` = αX∩S` . By applying
Lemma 25 repeatedly, we see that

D{u,v}∪X(u = a ∧ v = b ∧X = α) =

1
q|X\S`|+1D

′
S`

(u = a ∧X` = α`)
if u ∈ S`, v /∈ S`

1
q|X\S`|+1D

′
S`

(v = b ∧X` = α`)
if v ∈ S`, u /∈ S`

1
q|X\S`|+2D

′
S`

(X` = α`)
if u, v /∈ S`

1
q|X\S`|

D′S`(u = a ∧ v = b ∧X` = α`)
if u, v ∈ S`.

In all cases except for the last one, the result follows. In the last case, the assumption that
there is no bad structure in H −X implies that the hypergraph induced by S`−X in H −X

APPROX/RANDOM’16

41:18 Lower Bounds for CSP Refutation by SDP Hierarchies

must be disconnected with u and v in separate connected components with hyperedge sets
Eu and Ev just as in the proof of Lemma 24. Each connected component in H −X has a
corresponding connected component in H. Let E′u and E′v be the sets of hyperedges of the
connected components in G corresponding to Eu and Ev in H −X. Also, let Su = Γ(E′u)
and Sv = Γ(E′v); note that Su and Sv might intersect. Let Erest = C(S`) \ (E′u ∪ E′v).

The subhypergraph induced by S` then consists of the hyperedges in E′u, E′v, and Erest
together with the isolated vertices in Siso := S` \ Γ(C(S`)) not contained in any hyperedge
covered by S`. Define Srest := Γ(Erest)∪Siso to be the vertices in S` that are either contained
in some hyperedge of Erest or are isolated. Let Xu = X ∩ Su and αu = αX∩Su . Define Xv,
Xrest, αv, and αrest in the same way. We can then write D′S`(u = a ∧ v = b ∧X` = α`) as

D′Su(u = a ∧Xu = αu) ·D′Sv (v = b ∧Xv = αv) ·D′Srest
(Xrest = αrest).

Since D′Srest
(Xrest = αrest) depends only on α, the lemma follows. J

I Remark. When H does not have high expansion, Cl(S) is still defined for S ⊆ [n] and
Lemma 29 still holds. In this case, it is possible that |Cl(S)| can no longer be bounded in
terms of |X|.

Using this lemma, we can prove that YX,α is PSD when H−X has high enough expansion.

I Lemma 30. Let X ⊆ [n] such that H − X is (ω(1), k − t/2 + ε)-expanding for some
constant ε > 0. Then for any α ∈ {0, 1}X with µX(α) > 0, YX,α is positive semidefinite.

Proof. By Lemma 33, YX,α is PSD if and only if QX,α = BX,α − yX,αy>X,α is. Note that
QX,α is a principle submatrix of the covariance matrix ΣX,α of the {DS|X=α} distributions,
so it suffices to show that ΣX,α is PSD. The conditional distributions {DS|X=α} are r-locally
consistent for r = Ω(n

δ
t−2) by Corollary 20. Then Lemma 22 implies that ΣX,α is PSD if the

correlation graph of the {DS|X=α} distributions has connected components of size at most r.
Lemma 29 implies that correlations under {DS|X=α} induce bad structures in H −X, and
we can apply Theorem 27 to Gbad(H −X) to complete the proof. J

Finally, we show that any YX,α can be expressed as a nonnegative combination of YCl(X),β ’s
for β ∈ {0, 1}Cl(X).

I Claim 31.

YX,α =
∑

β∈{0,1}Cl(X)

βX=α

DCl(X)(Cl(X) = β)
DX(X = α) · YCl(X),β .

Proof. We will prove that

YX,α(i, j) =
∑

β∈{0,1}Cl(X)

βX=α

DCl(X)(Cl(X) = β)
DX(X = α) · YCl(X),β(i, j).

for all 0 ≤ i, j,≤ n.
Let i, j ≥ 1. By applying definitions, we see that

YX,α(i, j) = D{i,j}|X=α(i = 1 ∧ j = 1)

=
DX∪{i,j}(i = 1 ∧ j = 1 ∧X = α)

DX(X = α) .

R. Mori and D. Witmer 41:19

Then, by local consistency, this expression is equal to
1

DX(X = α)
∑

β∈{0,1}Cl(X)

βX=α

DCl(X)∪{i,j}(i = 1 ∧ j = 1 ∧ Cl(X) = β).

We can rewrite this as∑
β∈{0,1}Cl(X)

βX=α

DCl(X)(Cl(X) = β)
DX(X = α) ·

DCl(X)∪{i,j}(i = 1 ∧ j = 1 ∧ Cl(X) = β)
DCl(X)(Cl(X) = β) .

Using the definitions of conditional local distributions and YX,α(i, j) completes the proof for
i, j ≥ 1: the above expression is equal to∑

β∈{0,1}Cl(X)

βX=α

DCl(X)(Cl(X) = β)
DX(X = α) · YCl(X),β(i, j).

When i or j is equal to 0, an essentially identical argument can be used. J

Lemma 28 follows immediately from Lemma 30 and Claim 31.

7.2 Rank lower bounds for static LS+ and LS+

We now use the results of the previous section to prove Theorem 5, a lower bound on
the degree of any static LS+ refutation. The proof is essentially the same as that of [30,
Theorem 3.27], which is the special case of P being pairwise uniform. This will immediately
imply Theorem 4, the rank lower bound for LS+.

Proof of Theorem 5. Assume that the rank of any standard, non-static LS+ proof is at
least r; by Theorem 4, r = Ω(n

ε
t−2). Assume for a contradiction that there exists a static

LS+ refutation of degree r − k. Recall that a static LS+ refutation has the form
r∑
`=1

w`q`(x)φI`,J`(x) = −1, (7.10)

where w` ≥ 0, each q`(x) is either an axiom or the square of a linear form, and

φI,J(x) =
∏
i∈I

xi
∏
j∈J

(1− xj).

By Theorem 18, we know that there exist r-consistent local distributions {DS}; let Ẽ[·] be
the corresponding rank-r SA pseudoexpectation. In addition, Corollary 20 states that there
also exist conditional (r − |X|)-consistent local distributions {DS|X=α} for any α such that
µ(αC) > 0 for all C ∈ C(X),

We will derive a contradiction by applying the operator Ẽ[·] to both sides of (7.10). Specif-
ically, we will show that if the degree of each term is at most r−k, then Ẽ[q`(x)φI`,J`(x)] ≥ 0.
Applying Ẽ[·] to the left hand side of (7.10) gives a value at least 0, while the right hand
side is −1. To show that Ẽ[q`(x)φI`,J`(x)] ≥ 0, we consider two cases.

Case 1. q` is an axiom. If q` is an axiom, then the number of variables in the expression
q`(x)φI`,J`(x) is |I` ∪ J` ∪ supp(q`)| ≤ r − k + k = r. We also know that q`(x)φI`,J`(x) ≥ 0
for all x ∈ {0, 1}n. The definition of rank-r SA pseudodistributions then implies that
Ẽ[q`(x)φI`,J`(x)] ≥ 0.

APPROX/RANDOM’16

41:20 Lower Bounds for CSP Refutation by SDP Hierarchies

Case 2. q` is the square of a linear form. In this case, the result follows almost immediately
from Lemma 28. Write q`(x) as follows:

q`(x) =

a0 +
∑
i∈[n]

aixi

2

=
∑
i,j∈[n]

aiajxixj + 2a0
∑
i∈[n]

aixi + a2
0.

Also, let A` = I` ∪ J` and define β ∈ {0, 1}|A`| so that φI`,J`(x) = 1 if and only if xA` = β.
Then we have the following calculation:

Ẽ[q`(x)φI`,J`(x)] = Ẽ[q`(x) · 1(A` = β)]

=
∑
i,j∈[n]

aiajẼ[xixj · 1(A` = β)] + 2a0
∑
i∈[n]

aiẼ[xi · 1(A` = β)]

+ a2
0Ẽ[1(A` = β)]

=
∑
i,j∈[n]

aiajDA`∪{i,j}(A` = β)YA`,β(i, j)

+ 2a0
∑
i∈[n]

aiDA`∪{i,j}(A` = β)YA`,β(i, 0) + a2
0DA`(A` = β)

= DA`(A` = β)a>(YA`,β)a by r-local consistency of {DS}
≥ 0 by Lemma 28. J

Theorem 4, our rank lower bound for LS+ refutations, follows immediately from Theorem 5
and the following fact.

I Fact 32. If there exists a rank-r LS+ refutation of a set of axioms A, then there exists a
static LS+ refutation of A with rank at most r.

Proof. Let R be a rank-r LS+ refutation. We look at R as a DAG in which each node is
the application of some inference rule, the root is −1 ≥ 0, and the leaves are axioms or
applications of the rule P (x)2 ≥ 0 for P with degree at most 1. Starting from the root −1 ≥ 0
and working back to the axioms, we can substitute in the premises of each inference to get
an expression Q(x) = −1. Since R has rank r, each path in r has at most r multiplications
by a term of the form xi or (1− xi) and Q(x) = −1 must be a valid static LS+ refutation of
rank at most r. J

Acknowledgments. The first-named author would like to thank Osamu Watanabe for his
encouragement. The second-named author would like to thank Anupam Gupta and Ryan
O’Donnell for several helpful discussions.

References
1 Sarah R. Allen, Ryan O’Donnell, and David Witmer. How to refute a random CSP. In

Proceedings of the 56th Annual IEEE Symposium on Foundations of Computer Science,
pages 689–708, 2015.

2 Benny Applebaum, Boaz Barak, and Avi Wigderson. Public-key cryptography from dif-
ferent assumptions. In Proceedings of the 42nd Annual ACM Symposium on Theory of
Computing, pages 171–180, 2010.

3 Boaz Barak. Lecture 1 – Introduction. Notes from course “Sum of Squares upper bounds,
lower bounds, and open questions".

R. Mori and D. Witmer 41:21

4 Boaz Barak, Fernando G. S. L. Brandão, AramW. Harrow, Jonathan Kelner, David Steurer,
and Yuan Zhou. Hypercontractivity, Sum-of-Squares Proofs, and their Applications. In
Proceedings of the 44th Annual ACM Symposium on Theory of Computing, pages 307–326,
2012.

5 Boaz Barak, Siu On Chan, and Pravesh Kothari. Sum of squares lower bounds from
pairwise independence. In Proceedings of the 47th Annual ACM Symposium on Theory of
Computing, pages 97–106, 2015.

6 Boaz Barak, Guy Kindler, and David Steurer. On the Optimality of Semidefinite Relax-
ations for Average-Case and Generalized Constraint Satisfaction. In Proceedings of the 4th
Innovations in Theoretical Computer Science conference, 2013.

7 Boaz Barak and Ankur Moitra. Tensor Prediction, Rademacher Complexity and Random
3-XOR. CoRR, abs/1501.06521, 2015. URL: http://arxiv.org/abs/1501.06521.

8 Eli Ben-Sasson and Yonatan Bilu. A gap in average proof complexity. Electronic Colloquium
on Computational Complexity (ECCC), 9(3), 2002.

9 Siavosh Benabbas, Konstantinos Georgiou, Avner Magen, and Madhur Tulsiani. SDP gaps
from pairwise independence. Theory of Computing, 8:269–289, 2012.

10 Joshua Buresh-Oppenheim, Nicola Galesi, Shlomo Hoory, Avner Magen, and Toniann
Pitassi. Rank bounds and integrality gaps for cutting planes procedures. Theory of Com-
puting, 2:65–90, 2006. doi:10.4086/toc.2006.v002a004.

11 Siu On Chan, James R. Lee, Prasad Raghavendra, and David Steurer. Approximate con-
straint satisfaction requires large LP relaxations. In Proceedings of the 54th Annual IEEE
Symposium on Foundations of Computer Science, pages 350–359, 2013.

12 Amin Coja-Oghlan, Andreas Goerdt, and André Lanka. Strong Refutation Heuristics for
Random k-SAT. In Klaus Jansen, Sanjeev Khanna, José D.P. Rolim, and Dana Ron,
editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, volume 3122 of Lecture Notes in Computer Science, pages 310–321. Springer
Berlin Heidelberg, 2004. doi:10.1007/978-3-540-27821-4_28.

13 A Crisanti, L Leuzzi, and G Parisi. The 3-SAT problem with large number of clauses in the
∞-replica symmetry breaking scheme. Journal of Physics A: Mathematical and General,
35(3):481, 2002.

14 Amit Daniely, Nati Linial, and Shai Shalev-Shwartz. From average case complexity to
improper learning complexity. In Proceedings of the 46th Annual ACM Symposium on
Theory of Computing, pages 441–448, 2014.

15 Sanjeeb Dash. On the Matrix Cuts of Lovász and Schrijver and their use in Integer Pro-
gramming. PhD thesis, Rice University, 2001.

16 Jian Ding, Allan Sly, and Nike Sun. Proof of the satisfiability conjecture for large k. In
Proceedings of the 47th Annual ACM Symposium on Theory of Computing, pages 59–68,
2015.

17 Uriel Feige. Relations Between Average Case Complexity and Approximation Complexity.
In Proceedings of the 34th Annual ACM Symposium on Theory of Computing, pages 534–
543, 2002.

18 Uriel Feige and Eran Ofek. Easily refutable subformulas of large random 3CNF formulas.
In Proceedings of the 31st International Colloquium on Automata, Languages and Program-
ming, volume 3142 of Lecture Notes in Comput. Sci., pages 519–530. Springer, Berlin, 2004.

19 Vitaly Feldman, Will Perkins, and Santosh Vempala. On the Complexity of Random
Satisfiability Problems with Planted Solutions. In Proceedings of the 47th Annual ACM
Symposium on Theory of Computing, pages 77–86, 2015.

20 Joel Friedman, Andreas Goerdt, and Michael Krivelevich. Recognizing more unsatisfiable
random k-SAT instances efficiently. SIAM J. Comput., 35(2):408–430, 2005. doi:10.1137/
S009753970444096X.

APPROX/RANDOM’16

http://arxiv.org/abs/1501.06521
http://dx.doi.org/10.4086/toc.2006.v002a004
http://dx.doi.org/10.1007/978-3-540-27821-4_28
http://dx.doi.org/10.1137/S009753970444096X
http://dx.doi.org/10.1137/S009753970444096X

41:22 Lower Bounds for CSP Refutation by SDP Hierarchies

21 Dima Grigoriev. Linear lower bound on degrees of Positivstellensatz calculus proofs for the
parity. Theoretical Computer Science, 259(1-2):613–622, 2001.

22 Dima Grigoriev, Edward A. Hirsch, and Dmitrii V. Pasechnik. Complexity of semi-algebraic
proofs. In Proceedings of the 19th International Symposium on Theoretical Aspects of
Computer Science, pages 419–430, 2002.

23 Arist Kojevnikov and Dmitry Itsykson. Lower Bounds of Static Lovász-Schrijver Calculus
Proofs for Tseitin Tautologies. In Proceedings of the 33rd International Colloquium on
Automata, Languages and Programming, 2006.

24 James R. Lee, Prasad Raghavendra, and David Steurer. Lower bounds on the size of
semidefinite programming relaxations. In Proceedings of the 47th Annual ACM Symposium
on Theory of Computing, pages 567–576, 2015.

25 László Lovász and Alexander Schrijver. Cones of Matrices and Set-Functions and 0-1
Optimization. SIAM Journal on Optimization, 1(2):166–190, 1991.

26 Ryan O’Donnell and David Witmer. Goldreich’s PRG: Evidence for near-optimal polyno-
mial stretch. In Proceedings of the 29th Annual Conference on Computational Complexity,
pages 1–12, 2014.

27 Prasad Raghavendra. Optimal Algorithms and Inapproximability Results for Every CSP?
In Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pages 245–
254, 2008.

28 Grant Schoenebeck. Linear Level Lasserre Lower Bounds for Certain k-CSPs. In Proceedings
of the 49th Annual IEEE Symposium on Foundations of Computer Science, pages 593–602,
2008.

29 Hanif Sherali and Warren Adams. A Hierarchy of Relaxations between the Continuous
and Convex Hull Representations for Zero-One Programming Problems. SIAM Journal on
Discrete Mathematics, 3(3):411–430, 1990.

30 Madhur Tulsiani and Pratik Worah. LS+ lower bounds from pairwise independence. In
Proceedings of the 28th Annual Conference on Computational Complexity, pages 121–132,
2013.

31 Martin J. Wainwright and Michael I. Jordan. Graphical Models, Exponential Families, and
Variational Inference, volume 1. Now Publishers Inc., Hanover, MA, USA, January 2008.
doi:10.1561/2200000001.

A Proofs from Section 2.4

I Fact 15. (s, k − d)-expansion implies (s, k − 2d)-boundary expansion.

Proof. Let S be a set of at most s hyperedges. Each of the vertices in Γ(S) is either
a boundary vertex that appears in exactly one hyperedge or it appears in two or more
hyperedges, so |Γ(S)| ≤ |∂S|+ 1

2 (|k|S| − |∂S|). Therefore, we can write

|∂S| ≥ 2|Γ(S)| − k|S| ≥ (k − 2d)|S|,

where the second inequality follows the expansion assumption. J

I Lemma 16. Fix δ > 0. With high probability, a set of m ≤ Ω(nt/2−δ) constraints chosen
uniformly at random is both

(
n

δ
t−2 , k − t

2 + δ
2

)
-expanding and

(
n

δ
t−2 , k − t+ δ

)
-boundary

expanding.

Proof. By Fact 15, it suffices to show that a random instance is(
n

δ
t−2 , k − t

2 + δ
2

)
-expanding. We give the proof of [26], which is essentially the same as

that of [9].

http://dx.doi.org/10.1561/2200000001

R. Mori and D. Witmer 41:23

We want to upper bound the probability that any set of r hyperdges with r ≤ n
δ
t−2

contains less than r(k− t
2 + δ

2) vertices. Fix an r-tuple of edges T ; this is a tuple of indices in
[m] representing the indices of the hyperedges in T . We wish to upper bound Pr[|Γ(T)| ≤ v];
we can do this with the quantity

(# sets S of v vertices) · (# sets of r edges contained in S)
(# of ways of choosing r edges) .

Taking a union bound over all tuples of size r, we see that

Pr[|Γ(S)| ≤ v ∀S s.t. |S| = r] ≤ r!
(
m

r

)
·
(
n
v

)(
k!(vk)
r

)
(k!
(
n
k

)
)r
.

Simplifying and applying standard approximations, we get that

Pr[|Γ(S)| ≤ v ∀S s.t. |S| = r] ≤ e(2+k)r+vvkr−vr−rnv−krmr.

Set v = br(k − t
2 + δ

2)c and simplify to get

Pr[|Γ(S)| < r(k − t

2 + δ

2) ∀S s.t. |S| = r] ≤ (C(k, t)mn−(t/2−δ/2)rt/2−1−δ/2)r

Then set m = nt/2−δ and take a union bound over all choices of r to get that

Pr[HI not (n
δ
t−2 , k − t

2 + δ

2)-expanding] ≤
bnδ/(t−2)c∑

r=1
(C(k, t)n−δ/2rt/2−1−δ/2)r

=
dlogne∑
r=1

(C(k, t)n−δ/2rt/2−1−δ/2)r +
bnδ/(t−2)c∑
r=dlogne+1

(C(k, t)n−δ/2rt/2−1−δ/2)r

≤ 2C(k, t)n−δ/2(logn)t/2−δ/2 + n
δ
t−2 (C(k, t)n−δ/2(n

δ
t−2)t/2−1−δ/2)logn

= O(n−δ/3). J

B Equivalence between PSDness of the degree-2 moment matrix
and the covariance matrix

I Lemma 33.(
1 wT

w B

)
is PSD ⇐⇒ B − wwT is PSD.

Proof.(
1 wT

w B

)
is PSD ⇐⇒

(
(v0 v)

(
1 wT

w B

)
(v0 v)T ≥ 0 ∀v0 ∈ R, v ∈ Rnq

)
⇐⇒

(
v2

0 + 2〈w, v〉v0 + 〈Bv, v〉 ≥ 0 ∀v0 ∈ R, v ∈ Rnq
)

⇐⇒
(
(v0 + 〈w, v〉)2 − 〈w, v〉2 + 〈Bv, v〉 ≥ 0 ∀v0 ∈ R, v ∈ Rnq

)
⇐⇒

(
−〈w, v〉2 + 〈Bv, v〉 ≥ 0 ∀v ∈ Rnq

)
⇐⇒

(
v(B − wwT)vT ≥ 0 ∀v ∈ Rnq

)
⇐⇒ B − wwT is PSD. J

I Lemma 10. M is PSD if and only if Σ is PSD.

APPROX/RANDOM’16

41:24 Lower Bounds for CSP Refutation by SDP Hierarchies

Proof. We rewrite M as(
1 wT

w B

)
,

where w is a vector whose (i, a)-element is p{i}(xi = a) for i ∈ [n] and a ∈ [q], where B is
a matrix whose ((i, a), (j, b))-element is p{i,j}(xi = a ∧ xj = b) for i, j ∈ [n] and a, b ∈ [q].
From Lemma 33, we know that(

1 wT

w B

)
is PSD if and only if B − wwT is PSD.

Observe that B − wwT is equal to the covariance matrix Σ. J

C Proofs from Section 2.5

I Lemma 17. If HI is (s1, e1)-expanding and S is a set of variables such that |S| < (e1−e2)s1
for some e2 ∈ (0, e1), then there exists a set Cl(S) ⊆ [n] such that S ⊆ Cl(S) and HI − Cl(S)
is (s2, e2)-expanding with s2 ≥ s1 − |S|

e1−e2
and Cl(S) ≤ e1

e1−e2
|S|.

Proof. We calculate Cl(S) using the closure algorithm of [9, 30]:

Input: An (s1, e1)-expanding instance I, e2 ∈ (0, e1), a tuple S = (x1, . . . , xu) ∈ [n]u such
that u < (e1 − e2)s2.
Output: The closure Cl(S).

Set Cl(S)← ∅ and s2 ← s1.
for i = 1, . . . , u

Cl(S)← Cl(S) ∪ {xi}
if HI − Cl(S) is not (s2, e2)-expanding, then

Find largest set of constraints Mi in HI − Cl(S) such that
|Mi| ≤ s2 and |Γ(Mi)| ≤ e2|Mi|. Break ties by lexicographic order.
Cl(S)← Cl(S) ∪ Γ(Mi)
s2 ← s2 − |Mi|

return Cl(S)

It is clear from the statement of the algorithm that S ⊆ Cl(S). We need to show that
HI − Cl(S) is (s2, e2)-expanding, that s2 ≥ s1 − |S|

e1−e2
, and that Cl(S) ≤ e1

e1−e2
|S|. We give

the proof of [9].
1. HI − Cl(S) is (s2, e2)-expanding

We will show that at every step of the algorithm HI − Cl(S) is (s2, e2)-expanding. Say
we are in step i and that HI − (Cl(S) ∪ {xi}) is not (s2, e2)-expanding; if it were (s2, e2)-
expanding, we would be done. Let Mi be the largest set of hyperedges in HI −Cl(S) such
that |Mi| ≤ s2 and |Γ(Mi)| ≤ e2|Mi|. We need to show that HI − (Cl(S)∪ {xi} ∪ Γ(Mi))
is (ζ − |Mi|, e2)-expanding.
To see this, assume for a contradiction that there exists a set of hyperedges M ′ in
HI − (Cl(S) ∪ {xi} ∪ Γ(Mi)) such that M ′ ≤ s2 − |Mi| and |Γ(M ′)| < e2|M ′|. Consider
Mi ∪M ′. Note that Mi and M ′ are disjoint, so |Mi ∪M ′| ≤ s2. Also, |Γ(Mi ∪M ′)| ≤
e2|Mi|+ e2|M ′| = e2|Mi ∪M ′|, contradicting the maximality of Mi.

2. s2 ≥ s1 − |S|
e1−e2

Consider the set M =
⋃u
i=1 Mu. First, note that |M | = s1 − s2, so |Γ(M)| ≥ e1(s1 − s2)

R. Mori and D. Witmer 41:25

by expansion of HI . Second, each element of Γ(M)− S occurs in exactly one of the Mi’s
and each Mi has expansion at most e2. Using these two observations, we see that

e1(s1 − s2) ≤ |Γ(M)| ≤ |S|+
u∑
i=1

e2|Mi| = |S|+ e2(s1 − s2).

This implies the claim.
3. Cl(S) ≤ e1

e1−e2
|S|

Observe that Cl(S) = S∪
⋃u
i=1 Γ(Mi). Also, everyMi has expansion at most e2. Therefore,

we have that

|Cl(S)| ≤ |S|+
u∑
i=1
|Γ(Mi)|

≤ |S|+ e2

u∑
i=1
|Mi|

≤ |S|+ e2|S|
e1 − e2

=
(

e1

e1 − e2

)
|S|,

where we used that
∑u
i=1 |Mi| = s1 − s2 and s2 ≥ s1 − |S|

e1−e2
. J

I Theorem 18. For a random instance I with m ≤ Ω(nt/2−ε), the family of distributions
{DS}|S|≤r is r-locally consistent for r = n

ε
t−2 and is supported on satisfying assignments.

To prove the theorem, we will use the following lemma, which says that the local distributions
on D′S and D′T with S ⊆ T are consistent if HI − T has high boundary expansion.

I Lemma 34. Let P be a (t− 1)-wise uniform supporting predicate, let I be an instance of
CSP(P), and let S ⊆ T be sets of variables. If HI and HI − S are (r, k − t+ ε)-boundary
expanding for some ε > 0 and C(T) ≤ r, then for any α ∈ [q]S,

D′S(α) =
∑
β∈[q]T
βS=α

D′T (β).

First, we will use this lemma to prove Theorem 18.

Proof of Theorem 18. Let S ⊆ T be sets of variables with |T | ≤ r. Consider U = Cl(S) ∪
Cl(T). We will show that both DS and DT are consistent with U and therefore must
themselves be consistent. Observe that |Cl(S)| and |Cl(T)| are at most 2kr

ε , so |U | ≤ 4kr
ε .

Towards applying Lemma 34, we will first show that |C(U)| ≤ 8r
ε . Assume for a contradiction

that C is a subset of C(U) of size 8r
ε . Then

|Γ(C)|
|C|

≤ |U |
|C|

= 4kr/ε
8r/ε = k

2 < k − t

2 + δ,

which violates expansion.

APPROX/RANDOM’16

41:26 Lower Bounds for CSP Refutation by SDP Hierarchies

We know that HI −Cl(T) and HI −Cl(S) are (r, k− t+ ε)-boundary expanding for some
ε > 0. We can then apply Lemma 34 twice with sets Cl(S) ⊆ U and Cl(T) ⊆ U to see that

DS(α) =
∑

β∈[q]Cl(S)

βS=α

D′Cl(S)(β) =
∑
γ∈[q]U
γS=α

D′U (γ)

=
∑

β′∈[q]Cl(T)

β′S=α

D′Cl(T)(β′) =
∑

α′∈[q]T
α′S=α

DT (α′). J

Now we prove Lemma 34.

Proof of Lemma 34. We follow the proof of Benabbas et al. [9]. Let C(T) \ C(S) =
{C1, . . . , Cu} and, for a constraint C, let σ(C) be the variables in the support of C. First,
observe that

Z ′T
∑
β∈[q]T
βS=α

D′T (β) =
∑

γ∈[q]T\S

∏
C∈C(T)

µC((α, γ))

=

 ∏
C∈C(S)

µC(α)

 ∑
γ∈[q]S\T

u∏
i=1

µCi((α, γ))

= (Z ′SD′S(α))
∑

γ∈[q]S\T

u∏
i=1

µCi((α, γ))

To finish the proof, we will need the following claim.

I Claim 35. There exists an ordering (Ci1 , . . . , Ciu) of constraints of C(T) \ C(S) and a
partition V1, · · · , Vu, Vu+1 of variables of T \S such that for all j ≤ u the following hold.
1. Vj ⊆ σ(Cij).
2. |Vj | ≥ k − t+ 1
3. Vj does not intersect σ(Cil) for any l > j. That is, Vj ∩

⋃
l>j σ(Cil) = ∅.

Proof of Claim 35. We will find the sets Vj by repeatedly using (r, k − t + δ)-boundary
expansion of HI −S. Let Q1 = C(T) \ C(S). We know that |Q1| ≤ r, so boundary expansion
of HI − S implies that |∂(Q1) \ S| ≥ (k − t+ δ)|Q1|. There must exist a constraint Cj ∈ Q1
with at least k − t+ 1 boundary variables in HI − S; i.e., |σ(Cj) ∩ (∂(Q1) \ S)| ≥ k − 2. We
then set V1 = σ(Cj)∩ (∂(Q1) \ S) and i1 = j. Let Q2 = Q1 \Cj . We apply the same process
u − 1 more times until Ql is empty and then set Vu+1 = (T \ S) \ (

⋃u
j=1 Vj). We remove

constraint Cil at every step and Fl ⊆ σ(Cil), so it holds that Vj ∩
⋃
l>j σ(Cil) = ∅. J

Using the claim, we can write
∑
γ∈[q]S\T

∏u
i=1 µCi((α, γ)) as∑

γu+1∈[q]Vu+1

∑
γu∈[q]Vu

µCu(γ′u)
∑

γu−1∈[q]Vu−1

µCu−1(γ′u−1) · · ·
∑

γ1∈[q]V1

µC1(γ′1),

where each γ′j depends on α and γl with l ≥ j but does not depend on γl with l < j. We will
evaluate this sum from right to left. We know that each Vj contains at least k− t+1 elements,
so (t − 1)-wise uniformity of µ implies that

∑
γj∈[q]Vj µCj (γ

′
j) = q−(k−|Vj |). Applying this

repeatedly, we see that∑
γ∈[q]S\T

u∏
i=1

µCi((α, γ)) = q
−(ku−

∑u+1
j=1
|Vj |) = q|T\S|−k|C(T)\C(S)|.

R. Mori and D. Witmer 41:27

Plugging this quantity into the above calculation, we obtain

Z ′T
∑
β∈[q]T
β|S=α

D′T (β) = Z ′SD
′
S(α)q|T\S|−k|C(T)\C(S)|.

Since HI has (r, k − t+ δ)-boundary expansion for some δ > 0, we can set S = ∅ to get that
Z ′T = q|T |−k|C(T)|. Similarly, Z ′S = q|S|−k|C(S)|. Plugging these two quantities in completes
the proof. J

I Lemma 19. Let X ⊆ [n] and let {DS} be a family of r-locally consistent distributions
for sets S ⊆ [n] such that S ∩ X = ∅ and |S ∪ X| ≤ r. Then the family of conditional
distributions {DS(·|X = α)} is (r − |X|)-locally consistent for any α ∈ {0, 1}X such that
µ(α|C) > 0 for all constraints in C(X).

Proof. Tulsiani and Worah proved this lemma and we will use their proof [30]. Let S ⊆ T
and |T ∪ X| ≤ r. Let β be any assignment to S. Then local consistency of the {DS}
measures implies that DS∪X(S = β ∧X = α) = DT∪X(S = β ∧X = α) and DS∪X(X =
α) = DT∪X(X = α). We therefore have that

DS|X=α(S = β) = DS∪X(S = β ∧X = α)
DS∪X(X = α)

= DT∪X(S = β ∧X = α)
DT∪X(X = α) = DT |X=α(S = β). J

D Equivalence of SA, SA+, and static LS+ tightenings of linear and
degree-k relaxations of CSP(P)

I Lemma 12. Let r ≥ k. Then the following statements hold.
1. SAr(RI) = SAr(LI).
2. SAr

+(RI) = SAr
+(LI).

3. StaticLSr+(RI) = StaticLSr+(LI)

Proof. The proof is the same for SA, SA+, and static LS+. We use the notation introduced
in Section 2.2.1. For f ∈ {0, 1}k and z ∈ [0, 1]k, let P ′f (z) =

∑k
i=1 z

(fi). Let (c, S) ∈ I
be any constraint. Let Ẽ[·] be any r-round SA pseudoexpectation. We begin by making a
couple of observations. Let q be an arbitrary multilinear polynomial satisfying the following
conditions.
1. q(x) ≥ 0 for all x ∈ {0, 1}n.
2. q(x) · (P ′(x(c)

S) − 1) depends on at most r variables. Equivalently, q(x) · (P ′f (x(c)
S) − 1)

depends on at most r variables for all f ∈ F .
First, note that

P ′(x(c)
S)− 1 =

∑
f∈F

1{xS=f}(x) · (P ′f (x(c)
S)− 1). (D.11)

This implies that

Ẽ[p(x) · (P ′(x(c)
S)− 1)] =

∑
f∈F

Ẽ[p(x) · 1{xS=f}(x) · (P ′f (x(c)
S)− 1)]. (D.12)

APPROX/RANDOM’16

41:28 Lower Bounds for CSP Refutation by SDP Hierarchies

Second, we see that −q(x) ·1{xS=f}(x) · (P ′f (x(c)
S)−1) ≥ 0 for all x ∈ {0, 1}n for all (c, S) ∈ I,

and for all f ∈ F . Since Condition 2 implies that −q(x) · 1{xS=f}(x) · (P ′f (x(c)
S)− 1) depends

on at most r variables and Ẽ is a degree-r SA pseudexpectation,

Ẽ[q(x) · 1{xS=f}(x) · (P ′f (x(c)
S)− 1)] ≤ 0. (D.13)

Now assume that Ẽ[·] satisfies

Ẽ[p(x) · (P ′f (x(c)
S)− 1)] ≥ 0 (D.14)

for all f ∈ F and for all multilinear polynomials p satisfying conditions 1 and 2. We want to
show that Ẽ[q(x) · (P ′(x(c)

S)− 1)] = 0 for all multilinear q satisfying conditions 1 and 2. Since
q(x) · 1{xS=f}(x) is nonnegative and q(x) · 1{xS=f}(x) · (P ′f (x(c)

S)− 1) depends on at most r
variables, (D.14) implies that Ẽ[q(x) · 1{xS=f}(x) · (P ′f (x(c)

S)− 1)] ≥ 0. Together with (D.13),
this implies that Ẽ[q(x) · 1{xS=f}(x) · (P ′f (x(c)

S)− 1)] = 0 and the result follows from (D.12).
For the other direction, assume that Ẽ[·] satisfies Ẽ[p(x) · (P ′(x(c)

S) − 1)] = 0 for all
multilinear polynomials p(x) satisfying conditions 1 and 2. Let q be an arbitrary multilinear
polynomial satisfying conditions 1 and 2. From (D.11), we see that∑

f∈F

Ẽ[q(x) · 1{xS=f}(x) · (P ′f (x(c)
S)− 1)] = 0.

The result then follows from (D.13). J

E Correspondence between static LS+roof system and relaxation

Recall the static LS+ relaxation.∑
α∈{0,1}S

pS(α)P (α+ c) ≥ 1 for all (c, S) ∈ I

{pS}S⊆[n], |S|≤r are r-locally consistent distributions (E.15)
ΣT=α is PSD ∀T ⊆ [n], α ∈ [q]T such that |T | ≤ r − 2, pT (α) > 0.

A static LS+ refutation has the following form.∑
`

γ`b`(x)φI`,J`(x) = −1, (E.16)

where γ` ≥ 0, b` is an axiom or the square of an affine function, and φI`,J` =
∏
i∈I` xi

∏
j∈J`(1−

xj).

I Proposition 36. The static LS+ SDP (E.15) is infeasible if and only if a static LS+
refutation of the form (E.16) exists.

Proof. Recall the definition of SAr. We require that

Ẽ

∏
i∈I

xi
∏
j∈J

(1− xj)

 ≥ 0 (E.17)

for all I, J ⊆ [n] such that |I ∪ J | ≤ r and

Ẽ

a(x)
∏
i∈I

xi
∏
j∈J

(1− xj)

 ≥ 0 (E.18)

R. Mori and D. Witmer 41:29

for every axiom a(x) ≥ 0 and for all I, J ⊆ [n] such that |I ∪ J | ≤ r.
Using linearity of Ẽ[·], we can write this as a linear program in the variables XI,J :=∏

i∈I xi
∏
j∈J (1− xj). Given a set T ⊆ [n] and some assignment α : T → {0, 1}, define α0 to

be {i ∈ T : α(i) = 0} and α1 to be {i ∈ T : α(i) = 1}. In (E.15), we additionally require
that the matrices

MT,α =
(
Ẽ

[
xixj

∏
a∈α1

xa
∏
b∈α0

(1− xb)
])

i∈[n],j∈[n]

= (Xα1∪{i,j},α0)i∈[n],j∈[n] (E.19)

are PSD for all T ⊆ [n] such that |T | ≤ r and all α ∈ {0, 1}T . As mentioned above, we can
arrange the matrices MT,α into a block diagonal matrix M such that M is PSD if and only
if each of the MT,α’s are PSD. Let d be the dimension of M . Furthermore, we can think of
the r-round SA constraints as being linear constraints on the entries of M . In particular, say
these constraints have the form A · vec(M) ≥ b, where vec(M) ∈ Rd2 is the vector formed by
concatenating the columns of M . Let c be the number of rows of A.

First, we show that the existence of a refutation of the form (E.16) implies that (E.15) is
infeasible. Assume for a contradiction that there exists a solution {pS}S⊆[n], |S|≤r to (E.15).
This implies the existence of a pseudoexpectation operator Ẽ[·] satisfying (E.17), (E.18), and
(E.19). Now apply Ẽ[·] to each term of (E.16). The degree of each term γ`b`(x)φI`,J`(x) is
at most r and we have that

Ẽ[γ`b`(x)φI`,J`(x)] = γ`Ẽ[b`(x) · 1{x=α}(x)],

where α is the unique assignment to I` ∪ J` such that φI`,J` = 1. Let U = supp(b`) ∪ I` ∪ J`.
If b`(x) ≥ 0 is an axiom, we know that Ẽ[b`(x) · 1x=α(x)] ≥ 0 since every assignment β to
U for which pU (β) > 0 satisfies b`(x) ≥ 0. If b` is the square of some affine function, then
PSDness of ΣI`∪J`=α implies that Ẽ[γ`b`(x)φI`,J`(x)] ≥ 0. Every term on the left hand side
must be at nonnegative and we have a contradiction.

Now assume that (E.15) in infeasible. If consistent local distributions {pS} do not
exist, then an SA refutation must exist and we are done. Assume, then, that consistent
local distributions {pS} exist but the corresponding matrix M cannot be PSD. The sets
{M ∈ Rd×d : A · vec(M) ≥ b} and {M ∈ Rd×d : M is PSD} are both nonempty, but their
intersection is empty. We will need the following claim.

I Claim 37. Let S ⊆ Rd×d be convex, closed, and bounded. Suppose that for all M ∈ S, M
is not PSD. Then there exists a PSD matrix C ∈ Rd×d such that C ·M < 0 for all M ∈ S.

Proof of Claim. The claim follows from the following two results.

I Theorem 38 (Separating Hyperplane Theorem). Let S, T ⊆ Rd be closed, convex sets such
that S ∩ T = ∅ and S is bounded. Then there exists a 6= 0 and b such that

a>x > b for all x ∈ S and a>x ≤ b for all x ∈ T .

I Lemma 39. A is PSD if and only if A ·B ≥ 0 for all PSD B.

Applied to our situation, the Separating Hyperplane Theorem says that there exists C and δ
such that C ·M < δ for all X ∈ S and C ·M ≥ δ for all PSD X. We need to show that we
can choose δ = 0. Applying Lemma 39 will then complete the proof.

We know δ ≤ 0 because the zero matrix is PSD. It remains to show that we can choose
δ ≥ 0. Assume for a contradiction that there exists PSD M such that C ·M < 0. We
can then scale X by a large enough positive constant to get a PSD matrix M ′ such that
C ·M < δ, a contradiction. J

APPROX/RANDOM’16

41:30 Lower Bounds for CSP Refutation by SDP Hierarchies

The claim implies that there is a PSD matrix C such that the set

{M ∈ Rd×d : A · vec(M) ≥ b} ∩ {M ∈ Rd×d : C ·M ≥ 0}

is empty. As this set is defined by linear inequalities, we can apply Farkas’ Lemma.

I Theorem 40 (Farkas’ Lemma). Let A ∈ Rm×n and consider a system of linear inequalities
Ax ≥ b. Exactly one of the following is true.
1. There is an x ∈ Rn such that Ax ≥ b.
2. There is a y ∈ Rm such that y ≥ 0, y>A = 0, and y>b > 0.

In particular, this implies that there exist y ∈ Rc and z ∈ R such that

y>(A · vec(M)− b) + zC ·M < 0 (E.20)

for all M ∈ Rd×d. Note that the first term is a nonnegative combination of SA constraints.
Since C is PSD, we can write the eigendecomposition its C =

∑
` λ`v`v

>
` with λ` ≥ 0 for

all `. Also, recall that M is block diagonal with blocks MT,α. This block structure induces
a corresponding partition of [d]. We can write the vector v` ∈ Rd as (v`,T,α)T,α using this
partition. Then the second term of (E.20) is

zC ·M = z
∑
`

λ`(v`v>`) ·M

= z
∑
`

λ`v
>
` Mv`

= z
∑
`

λ`
∑

|T |≤r−2
α∈{0,1}T

v>`,T,αM
T,αv`,T,α

= z
∑
`

λ`
∑

|T |≤r−2
α∈{0,1}T

∑
i,j∈[n]

v`,T,α(i)v`,T,α(j)MT,α
ij .

Overall, we get

y>(A · vec(M)− b) + z
∑
`

λ`
∑

|T |≤r−2
α∈{0,1}T

∑
i,j∈[n]

v`,T,α(i)v`,T,α(j)MT,α
ij < 0.

Finally, we substitute in XI,J =
∏
i∈I xi

∏
j∈J (1− xj) and scale appropriately to get an LS+

refutation of the form (E.16). J

A No-Go Theorem for Derandomized Parallel
Repetition: Beyond Feige-Kilian∗

Dana Moshkovitz1, Govind Ramnarayan2, and Henry Yuen†3

1 MIT, Cambridge, MA, USA
dmoshkov@mit.edu

2 MIT, Cambridge, MA, USA
govind@mit.edu

3 MIT, Cambridge, MA, USA
hyuen@mit.edu

Abstract
In this work we show a barrier towards proving a randomness-efficient parallel repetition, a prom-
ising avenue for achieving many tight inapproximability results. Feige and Kilian (STOC’95)
proved an impossibility result for randomness-efficient parallel repetition for two prover games
with small degree, i.e., when each prover has only few possibilities for the question of the other
prover. In recent years, there have been indications that randomness-efficient parallel repetition
(also called derandomized parallel repetition) might be possible for games with large degree, cir-
cumventing the impossibility result of Feige and Kilian. In particular, Dinur and Meir (CCC’11)
construct games with large degree whose repetition can be derandomized using a theorem of Im-
pagliazzo, Kabanets and Wigderson (SICOMP’12). However, obtaining derandomized parallel
repetition theorems that would yield optimal inapproximability results has remained elusive.

This paper presents an explanation for the current impasse in progress, by proving a limitation
on derandomized parallel repetition. We formalize two properties which we call “fortification-
friendliness” and “yields robust embeddings”. We show that any proof of derandomized parallel
repetition achieving almost-linear blow-up cannot both (a) be fortification-friendly and (b) yield
robust embeddings. Unlike Feige and Kilian, we do not require the small degree assumption.

Given that virtually all existing proofs of parallel repetition, including the derandomized par-
allel repetition result of Dinur and Meir, share these two properties, our no-go theorem highlights
a major barrier to achieving almost-linear derandomized parallel repetition.

1998 ACM Subject Classification F.2.3 Tradeoffs between Complexity Measures

Keywords and phrases Derandomization, parallel repetition, Feige-Killian, fortification

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2016.42

1 Introduction

1.1 Parallel Repetition and Almost Linear Blowup
Two prover games are central objects of study in probabilistically checkable proofs (PCPs) [1,
21, 16], cryptography [3, 4], and quantum computing [8, 22]. In a two prover game G, two
all-powerful provers coordinate their strategies and are then sent to different rooms, where
they can no longer communicate. A verifier samples a pair of correlated questions (x, y),

∗ This paper is based upon work supported by the National Science Foundation under grants number
1218547 and 1452302.

† Henry Yuen is additionally supported by Simons Foundation Fellowship (grant #360893).

© Dana Moshkovitz, Govind Ramnarayan, and Henry Yuen;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016).
Editors: Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans; Article No. 42; pp. 42:1–42:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.42
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

42:2 A No-Go Theorem for Derandomized Parallel Repetition: Beyond Feige-Kilian

and sends one question to each prover. Each prover sends back an answer, and the verifier
accepts only if the pair of answers (a, b) satisfy some constraint π(x,y) depending on the
questions. The value of the game G, denoted val(G), is the probability that the verifier
accepts, maximized over all prover strategies.

Parallel repetition is a natural transformation to amplify the hardness of two prover
games. The k-fold parallel repetition of a game G, denoted Gk, is another two prover game
where the verifier picks k independent pairs of questions from G, and sends each prover k
questions, corresponding to half of each of the k question pairs. Each prover sends back
k answers and the verifier accepts if it would have accepted all k pairs of answers in the
original game. Clearly, if the provers have strategies that make the verifier accept in the
original game with probability 1 (i.e., val(G) = 1), then they can make the verifier accept
in the k-fold repetition with probability 1. The celebrated parallel repetition theorem of
Raz [21] shows that if the value of the game G is smaller than 1, then the value of the k-fold
repetition, val(Gk), decays exponentially with k.

One of the most important applications of parallel repetition is in hardness of approx-
imation, where it is used in reductions proving inapproximability results [13]. However,
this application reveals a significant disadvantage of parallel repetition: the randomness
complexity of the verifier in Gk is k times the randomness complexity of the original game
G. This increase corresponds to a blow-up of k in the exponent in reductions that are based
on parallel repetition. As a result, if a reduction from Sat on size-n inputs applies k-fold
parallel repetition to derive an instance of a target problem, then the resulting instance of
the target problem takes inputs of size O(nk). Hence, the conjectured lower bound of 2Ω(n)

on the time needed to solve Sat translates at best to a time lower bound of 2Ω(n1/k) on
the target problem. In applications, k is often a large constant [13]. However, in order to
obtain optimal inapproximability results for many problems, one would like to apply parallel
repetition k times for all k’s up to Θ(logn) [2, 18].

This motivates the fundamental question of whether derandomized or randomness efficient
parallel repetition is possible: could an analogue of Raz’s parallel repetition theorem hold
even if the verifier does not pick k question pairs independently, but rather picks k correlated
question pairs? In particular, if the verifier of the original game uses logn random bits, one
could hope for a verifier that uses logn+O(k) random bits to play the repeated game (as
opposed to k logn random bits). If such a derandomized version of Raz’s parallel repetition
theorem were possible, then this would yield reductions from say, Sat, where a 2Ω(n) lower
bound on Sat translates to a matching 2Ω̃(n) lower bound on the target problem!

In [19], Moshkovitz and Raz gave a hardness amplification transformation similar in spirit
to parallel repetition where the transformed game uses only (1 + o(1)) logn+O(k) random
bits. Such a blowup is referred to as “almost linear”, and is now the gold standard for
reductions. Unfortunately, the answer size in the transformation of [19] is exponential in k
rather than polynomial in k, and hence falls short of proving the so-called Projection Games
Conjecture on optimal hardness of approximation. The parallel repetition transformation,
on the other hand, gives an optimal tradeoff between the hardness of the resulting game (the
soundness error) and the answer size. This motivates the search for a derandomized parallel
repetition theorem that uses (1 + o(1)) logn+O(k) random bits and has O(k) answer bits
for all k ≤ logn. This could prove the Projection Games Conjecture, as well prove tighter
inapproximability results.

D. Moshkovitz, G. Ramnarayan, and H. Yuen 42:3

1.2 The Feige-Kilian impossibility result
Feige and Kilian [12] proved an impossibility result for derandomized parallel repetition,
showing that given a game G satisfying two conditions called softness and small degree, the
value of any randomness-efficient parallel repetition of G is independent of the number of
repetitions. The softness condition means that if G has randomness complexity logn, then
G is nε-soft iff on any subset of nε question pairs the verifier may ask, there exists a strategy
for the provers to win with probability 1. A game has degree-d if for any question of one
prover, the largest number of questions for the other prover is at most d. Specifically, their
main result is the following:

I Theorem 1 (Feige-Kilian). Let G be a two prover game with n possible question pairs. If G
is nε-soft and has degree d, then for any game H that involves playing k correlated instances
of G, if the randomness complexity of the verifier of H is at most c logn, then the value of
H is independent of k; in particular, val(H) ≥ (2d)−4c2/ε2 .

Here, we will call G the base game and H the k-repeated game. Next we describe the argument
of Feige and Kilian in the almost linear regime (i.e., the repetition only uses (1 + ε) logn
random bits). In this regime their argument takes an especially simple form: because the
base game has small degree, the provers have constant probability to guess each other’s
question in the first round, and if they succeed, there are only nε possibilities for the rest
of the k − 1 questions. For soft games the provers can succeed on all remaining questions –
thus the provers’ success probability in the repeated game does not decay with the number
of repetitions k.

The softness condition is satisfied by games of interest. If we assume that solving Sat
requires more than 2nε time, then the games we apply parallel repetition to will be in
general nε-soft. The small degree condition – while true of some games to which standard
parallel repetition is applied – is not necessarily satisfied by all games of interest. In other
words, Feige and Kilian’s impossibility result imposes a strong limitation on the possibility
of derandomized parallel repetition when working in the “small degree regime” – i.e., when
the degree of G is a constant independent of the randomness complexity or the number of
repetitions – but leaves the fascinating open question: can one obtain randomness-efficient
parallel repetition for the “large degree regime”, in which the degree of the game G can
depend on its randomness complexity or the desired number of repetitions. In particular,
Feige and Kilian do not rule out degree that is inversely proportional to the desired value of
the repeated game.

Indeed, a few works have explored this avenue towards derandomized parallel repetition.
Shaltiel [23] considered the setting of games where the questions to each prover are uncorrel-
ated (also known as free games). Here, the degree is maximal, and Shaltiel managed to get
a modest, albeit non-trivial, savings in randomness complexity in a repeated game. Dinur
and Meir [10] constructed games with “linear structure” – which also have large degree –
and showed that a theorem by Impagliazzo, Kabanets and Wigderson [15] gives a certain
randomness-efficient parallel repetition for them. Unfortunately, neither of these results imply
new hardness of approximation results, since the reductions from Sat to both free games
and games with linear structure generate games with randomness complexity or answer size
that are very large compared to the size of the Sat formula.

1.3 Our work
This paper begins where Feige and Kilian left off: we show a barrier for derandomized parallel
repetition in the large degree regime. One may hope for an analogue of Feige and Kilian’s

APPROX/RANDOM’16

42:4 A No-Go Theorem for Derandomized Parallel Repetition: Beyond Feige-Kilian

negative result for large degree games, but, unfortunately, this seems to be impossible. The
reason is that in fact there are games for which we can decrease error in a randomness
efficient fashion, but without performing derandomized parallel repetition in a meaningful
sense. Specifically, we can construct a high-error base game G that actually “hides” a game
Glow for which we already know that val(Glow) ≤ δ; if then we apply a derandomized parallel
repetition procedure such as Dinur’s graph powering [9] to G, we obtain a repeated game
H that closely approximates Glow and thus val(H) . δ � val(G). For more details, see
Appendix C. Thus we’ve obtained derandomized error reduction, but intuitively the low error
didn’t come from the parallel repetition, but rather from the planted low-value game Glow.

This example shows that we can’t hope to extend Theorem 1 directly to large degree games.
Instead, we do the next best thing: we prove a limitation on proof techniques for derandomized
parallel repetition. We formalize two proof properties which we call “fortification-friendliness”
and ”yields robust embeddings”, and then show that any proof of almost-linear derandomized
parallel repetition cannot simultaneously be fortification-friendly and yield robust embeddings.
Nearly all proofs of parallel repetition – even derandomized parallel repetition theorems
– are fortification friendly and yield robust embeddings, including: Raz [21], Shaltiel [23],
Dinur-Meir [10], Impagliazzo, Kabanets and Wigderson [15], Moshkovitz [17], and Braverman-
Garg [7]. Therefore our results explain why their techniques have not been pushed to almost
linear size.

We now discuss these two properties in more detail.

1.3.1 Proof of parallel repetition by robust embedding

The key step in proofs of the parallel repetition theorem is to argue that the success probability
of the average coordinate i of Gk cannot be much larger than val(G), even when conditioned
on the provers winning a significant fraction of coordinates that don’t include i. This is
proved via reduction: if this were not true, then the provers extract a strategy for G from
a strategy for Gk by embedding G into the i’th coordinate of Gk conditioned on winning
a set C of coordinates. However, if val(Gn) is too large, then this strategy would succeed
with probability better than val(G), a contradiction. We say that such an analysis of parallel
repetition is by embedding. Furthermore, the embeddings given are robust. By robust, we
mean that embedding G into a coordinate of Gk is possible even when conditioning on
winning any not too large subset C of coordinates. We will give a more detailed overview of
this embedding technique in Section 3.

1.3.2 Fortification-friendly repetition schemes

Our no-go theorem covers derandomized parallel repetition theorems that can be applied
to at least one fortified game. In this case we say that the parallel repetition theorem is
fortification-friendly. Currently, there is no parallel repetition scheme that utilizes the fact
that the base game is not fortified, and hence all existing parallel repetition schemes are
fortification friendly. This includes the scheme of Dinur and Meir, which we elaborate on at
the end of this subsection.

Fortification is a property of games introduced in [17]. Roughly speaking, a (δ, ε)-fortified
game G is one where the value of so-called “rectangular” subgames of G that contain at least
δ fraction of the questions is the same as the value of G up to an additive ε. The paper [17]
gives a simple analysis for parallel repetition of fortified games, and furthermore showed that
arbitrary games can be easily fortified by composing them with expanders.

D. Moshkovitz, G. Ramnarayan, and H. Yuen 42:5

While fortified games were defined fairly recently, they are quite natural, and, in particular,
most games are fortified: see Appendix D.

Importantly, existing derandomized parallel repetition theorems are fortification-friendly:
Shaltiel proves a derandomized parallel repetition for free games, which also works for fortified
free games. In [10], Dinur and Meir first present a “linearization” operation that converts any
game into a game with linear structure, and then prove a derandomized parallel repetition
that works for any game with linear structure. The core of this derandomized parallel
repetition is the work of Impagliazzo-Kabanets-Wigderson, and the underlying derandomized
parallel repetition theorem of [15] is fortification friendly. This is because the result of
Impagliazzo-Kabanets-Wigderson applies to all free games: (1) free games trivially have
linear structure (since all possible edges are present) and (2) it is easy to construct fortified
free games (e.g. choosing random constraints for a free game). Thus, our results imply
limitations on what is achievable by the Impagliazzo-Kabanets-Wigderson derandomized
parallel repetition, and hence what is achievable by the Dinur-Meir result.

1.3.3 Informal Theorem Statement and Discussion

We are now ready to state our main theorem informally. For a formal statement, see
Theorem 4.

I Theorem 2 (Main theorem, informal statement). Let S be a parallel repetition scheme that
transforms any base game G to a k-repeated game S(G) in which a verifier asks k (possibly
correlated) questions from G in parallel. Suppose that G is (δ, ε)-fortified for sufficiently
small1 δ = |G|−o(1), and ε = O(1− val(G)); and that |S(G)| = |G|1+o(1). Then there is no
proof of parallel repetition by robust embedding for S(G).

Note that unlike the result of Feige and Kilian, our impossibility result is not limited
to small degree games. In fact, fortification typically involves composing the game with a
degree-O(1/δ) expander, thereby making the degree of the base game large.

1.4 The way forward

Despite many years of research on the subject of derandomized parallel repetition, obtaining
a parallel repetition with both an exponential decay of the error and almost-linear blowup
has resisted attack. The work of Dinur and Meir makes partial progress towards this goal,
but – not only it admits polynomial decay of the error and a large polynomial blowup – it
also goes through a costly “linearization” operation that deteriorates the parameters of the
game, so it does not achieve any new results for PCP.

We view our theorem as an explanation for the lack of progress towards the goal of
derandomized parallel repetition. It shows that any proof of a derandomized parallel repetition
theorem must do at least one of the following: (1) Use that the base game is not fortified;
(2) Not yield a robust embedding; and/or (3) Have a large polynomial blowup. As discussed
earlier, virtually all proofs of parallel repetition do not satisfy (1) and (2). We now discuss
prospects for being able to achieve (1), (2), or (3).

1 The required δ depends on the blowup in S(G). For |S(G)| = |G|·poly log |G|, we need δ = 1/poly log |G|.
For |S(G)| = O(|G|), we need a sufficiently small constant δ.

APPROX/RANDOM’16

42:6 A No-Go Theorem for Derandomized Parallel Repetition: Beyond Feige-Kilian

Using that the base game is not fortified

Is it too restricting to require that the scheme accepts a base game is fortified? We believe
not, there are no known parallel repetition techniques that take advantage of the base game
not being fortified. Intuitively, it seems unlikely that such a technique would help with
derandomized parallel repetition, since fortification is known to facilitate parallel repetition,
and composition with expanders is intuitively useful for derandomization.

Circumventing robust embeddings

Again, proving parallel repetition via robust embeddings (either explicitly or implicitly) is
a ubiquitous strategy. Interestingly, one approach that does not fall into the embedding
framework is the randomness-efficient amplification of Moshkovitz and Raz [19]. They
construct codes with local testers/decoders that have low error, and incorporate randomness
efficient sequential repetition on the decoded symbols. Their technique is based on an
algebraic construction of codes and the error it obtains, while low, is not low enough to prove
the Projection Games Conjecture. Decreasing the error of local testers/decoders does not
seem any easier than randomness-efficient error reduction for games.

Polynomial blowup

Finally, our impossibility result pertains to repetitions with almost linear blowup. As
we mentioned, such a blowup is currently the gold standard in PCP, and larger blowups
correspond to weaker inapproximability results. Nonetheless, both the results of Shaltiel
and Dinur-Meir have larger blowups. Shaltiel has a blowup that is not much smaller than
standard parallel repetition, and Dinur-Meir have a polynomial blowup.

2 Games and parallel repetition schemes

We will use the notation x to denote tuples (x1, . . . , xk). For convenience of notation, we will
call two sets ε-close if the uniform distributions on these sets are ε-close in total variation
distance.

Games and strategies

A two-prover one-round game G is specified by a tuple (X,Y,E, π,Σ) where X × Y is the
vertex set of a bipartite graph with edge set E ⊆ X × Y , π is a set of constraints πe ⊆ Σ×Σ
for each edge e ∈ E, and Σ is a finite alphabet. The value of a game G is defined as

val(G) := max
ψX ,ψY

Pr
(x,y)∈E

[
(ψX(x), ψY (y)) ∈ π(x,y)

]
where the maximum is taken over all functions ψX : X → Σ and ψY : Y → Σ, and the
probability is over a uniformly random edge in E. We will use caligraphic G to denote the
graph underlying G, which is the bipartite graph (X,Y,E). The size of a game G, which we
will denote by |G|, is defined to be the number of edges |E|. For a pair of maps ψX : X → Σ
and ψY : Y → Σ, we call ψ = (ψX , ψY) a strategy for G. For (x, y) ∈ X × Y , we will write
ψ(x, y) to denote the pair (ψX(x), ψY (y)). If the maximum degree of G is d, then we say
that G is a degree-d game.

D. Moshkovitz, G. Ramnarayan, and H. Yuen 42:7

k-fold parallel repetition

The k-fold parallel repetition of a game G is a new game Gk = (Xk, Y k, Ek, πk,Σk), where
Xk, Y k, Ek, and Σk denote the k-fold Cartesian products of X, Y , E and Σ respectively,
and πk denotes the set of constraints πe1 × πe2 × · · · × πek

for every e = (e1, . . . , ek) ∈ Ek.
Intuitively, in Gk, the verifier will sample e1 = (x1, y1), . . . , ek = (xk, yk) uniformly and
independently at random from E, and send x = (x1, . . . , xk) and y = (y1, . . . , yk) to the first
and second prover, respectively. The provers win the repeated game Gk if they win G in
all rounds – i.e., provide answers (a1, . . . , ak) and (b1, . . . , bk) from Σk such that for i ∈ [k],
(ai, bi) ∈ πei .

Subgames

Let G = (X,Y,E, π,Σ) be a game. Then we say a game G′ = (X ′, Y ′, E′, π′,Σ′) is a subgame
of G if X ′ ⊆ X, Y ′ ⊆ Y , E′ ⊆ E ∩ (X ′ × Y ′), π′ = {πe : e ∈ E′, πe ∈ π}, and Σ′ = Σ; we
denote this by G′ ⊆ G. For a subset E′ ⊆ E, we will let GE′ = (X,Y,E′, π,Σ) denote the
subgame of G induced by E′. Notice that the question set, constraints and alphabet of a
subgame induced by a set of edges are the same as that of the original game. The only
difference is that, in the subgame, we only select a subset of the question pairs that the
verifier can ask, and the constraints are induced by the subset of questions.

For convenience, when the game G = (X,Y,E, π,Σ) is understood from context, we will
treat G as the set of edges E; e.g., we will write (x, y) ∈ G to denote (x, y) ∈ E.

Parallel repetition schemes

Let G = (X,Y,E, π,Σ) be a game, and let k > 0 be an integer. Then we say any subgame
H = (Xk, Y k, EH , π

k,Σk) ⊆ Gk where EH ⊆ Ek is a k-repeated game, with G as the base
game. If |H| is strictly smaller than |G|k, then we say that H is a derandomized k-repeated
game.

A k-parallel repetition scheme S is a black box procedure for converting a base game G
to a k-repeated game H ⊆ Gk. In this paper, we will use the shorthand S = {G→ H ⊆ Gk}
to succinctly describe the scheme S, where we implicitly assume the transformation G→ H

is described by an algorithm that runs in time polynomial in the description of the input
game, as well as k. Whenever a parallel repetition scheme (or simply a repetition scheme) S
is understood from context, H will always refer to the k-repeated game that is the scheme S
applied to some base game G. We will also use S(G) to denote the scheme applied to G.

We say that a k-parallel repetition scheme S = {G → H ⊆ Gk} satisfies the uniform
marginals property if for all games G = (X,Y,E, π,Σ), the marginal distribution of questions
sampled from H = (Xk, Y k, EH , π

k,Σk) = S(G) in any single coordinate is the same as
the distribution of questions in G. Namely, for all coordinates j ∈ [k] and any fixed edge
(x, y) ∈ E, we have that

Pr
(x,y)∈EH

[
(xj , yj) = (x, y)

]
= 1
|E|

.

The uniform marginals property is an extremely mild and natural condition, which
holds for all existing parallel repetition schemes. In fact, this condition even seems morally
necessary for parallel repetition, as it says that each coordinate of the repeated game H
should look like the base game G, which is what we expect of a repeated game.

APPROX/RANDOM’16

42:8 A No-Go Theorem for Derandomized Parallel Repetition: Beyond Feige-Kilian

Finally, we define the size blowup of a scheme S to be a function ΦS,Σ : N→ R defined as

ΦS,Σ(n) := max
G:|G|=n

|H|
|G|

where the maximum is over all base games G with n question pairs and answer alphabet Σ,
and H denotes the scheme S applied to G. Note that the number of games with n question
pairs and answer alphabet Σ is finite2. The size blowup of a scheme captures the blowup in
randomness complexity in the following way: if the base game G has randomness complexity
logn and the k-repeated game H has randomness complexity at most logn+ `(n), then the
size blowup ΦS,Σ(n) ≤ 2`(n).

Winning in a set of coordinates

For any k-repeated game H, any strategy ψ for H, and any subset of coordinates C ⊆ [k],
let Wψ

C denote the subgame of H consisting of all question pairs (x, y) ∈ H such that
(a, b) = ψ(x, y) satisfies (ai, bi) ∈ πxi,yi

for all i ∈ C. In other words,Wψ
C is the set of all

question pairs in H where the strategy ψ is able to succeed in all the coordinates of C. We
call Wψ

C the subgame where ψ wins in C. When the strategy is ψ is understood from context,
we will omit ψ and simply write the subgame as WC .

3 Parallel repetition via embeddings

In this section, we formalize the notion of an embedding as described in the introduction
and expand on how it is used to prove parallel repetition. First, we will motivate the idea
of embedding by giving a high level and informal discussion of proofs of parallel repetition.
Then, we will formally define the notion of a robust embedding that we will use in this
paper. The idea of robust embeddings is implicit in nearly all proofs of parallel repetition:
to illustrate this, we show how it is implicit in the Raz-Holenstein proof in Appendix A.

As alluded to in the introduction, most proofs of parallel repetition proceed via reduction:
the value of the repeated game Gk is related to the value of the base game G by exhibiting a
transformation that takes a “too good” strategy for the repeated game Gk and constructs a
“too good” strategy for the base game G. Furthermore, this transformation is black box, in
the sense that it works for arbitrary games G and their parallel repetitions.

How might such a generic transformation work? Intuitively, it seems that one must have a
generic way of identifying a substructure within a hypothetical too-good-to-be-true strategy
ψ for the repeated game Gk, a strategy ϕ for the base game G that succeeds with too-high
probability (i.e., strictly greater than val(G), which would be a contradiction). Since our
only constraint on Gk is that it’s comprised of k independent copies of G, it seems that we
have to identify a strategy for G within substructures of ψ that respect this constraint.

Under ψ, we have that Pr[W[k]], the probability of winning all rounds, is too large. Thus,
we can use Bayes’ rule to split it into conditional probabilities that respect the coordinate
structure of Gk. It is not hard to see that, assuming Pr[W[k]] is too large, then there
exists a set of coordinates C ⊂ [k] such that for many rounds i ∈ [k]\C, we have that
Pr[W{i}|WC]� val(G), where W{i} denotes the event of winning round i and WC denotes

2 We assume that in the transformation from base game G to k-repeated game H, the scheme does
not care about the actual labels of the questions, and what only matters are the correlations between
questions, as captured by the edge set E of the base game G. This is consistent with existing parallel
repetition schemes.

D. Moshkovitz, G. Ramnarayan, and H. Yuen 42:9

the event of winning all the rounds in C. Thus for each such i it appears that we have
identified candidate substructures inside ψ (namely, the event WC) within which we hope to
extract a too-good-to-be-true strategy for G (namely, by using a strategy for the ith round
within the event WC). Thus, we would like to “play” a copy of G in the ith round of WC ,
and obtain success probability that is close to Pr[W{i}|WC], which would be too good to be
true. The constructed strategy ϕ will attempt to “play”, or embed, the questions of G into
the i’th round of WC (which we also think of as a subgame of Gk).

We call this natural proof strategy a proof of parallel repetition by robust embedding. This
proof strategy forms the basis of most parallel repetition proofs, including existing proofs of
derandomized parallel repetition, and one might expect that future derandomized parallel
repetition theorems might be proved along these lines. We formalize this notion by defining
the property of having a robust embedding of a game G into a k-repeated game H.

Let G = (XG, YG, EG, πG,ΣG) and H = (XH , YH , EH , πH ,ΣH) be games. We say the
map Emb : XG×YG → XH ×YH is an embedding map from G to H (or simply an embedding
map) iff there exist maps f : XG → XH and g : YG → YH such that for all (x, y) ∈ XG × YG
we have Emb(x, y) = (f(x), g(y)).

I Definition 3 (Robust embedding into a repeated game). Let G = (X,Y,E, π,Σ) be a game
and let H ⊆ Gk be a k-repeated game. Let γ : [k]→ R be a function. We say that G has
a (γ, ε)-robust embedding into a coordinate of H iff for all strategies ψH for H and subsets
C ⊆ [k], there exists an i ∈ [k]\C, there exists an embedding map Emb : X × Y → Xk × Y k
such that
1. (Coordinate embedding) For all (x, y) ∈ X×Y , we have that (x, y) = Emb(x, y) satisfies

xi = x and yi = y.
2. (Robustness) If Pre∈EH

[e ∈WC] ≥ γ(|C|), then Pre∈E [Emb(e) ∈WC] ≥ 1− ε.
where EH denotes the questions in H, and WC denotes the subgame of H where ψH wins in
C.

We use the term “robust” because there is an embedding from G into WC for every C
such that Pr[WC] is sufficiently large. This is reminiscent of the robustness properties of
pseudorandom objects such as expanders or extractors, where we have guarantees for every
sufficiently large subset of a graph (in the case of expanders) or distribution with sufficiently
large min-entropy (in the case of extractors). A priori, G may not have a robust embedding
into a repeated game H ⊆ Gk because there may exist large WC ⊆ H that, intuitively, does
not contain a copy of G.

Our definition of robust embedding is heavily inspired by the Raz-Holenstein proof of the
parallel repetition theorem. In Appendix B, we explicitly describe how the Raz-Holenstein
proof directly implies the existence of a robust embedding of G into a coordinate of Gk.

Although the main result of our paper does not unconditionally rule out derandomized
parallel repetition, we do the next best thing: we rule out a particular proof technique for
proving derandomized parallel repetition, and in fact, a very natural one.

4 Our no-go theorem

Our main theorem is the following:

I Theorem 4 (Main Theorem). Let Σ be a finite alphabet. Let S = {G → H ⊆ Gk} be a
parallel repetition scheme that satisfies the uniform marginals property and has size blowup
ΦS,Σ(n) ≤ O(n0.49). Then for all n > 0, ε ∈ (0, 1/23), δ ≤ (16ΦS,Σ(n) log2(ΦS,Σ(n)))−1, an
integer d, and for all games G satisfying:

APPROX/RANDOM’16

42:10 A No-Go Theorem for Derandomized Parallel Repetition: Beyond Feige-Kilian

1. The graph G = (X × Y,E) underlying G is d-regular, and has at most ε|E| parallel edges.
2. For all S ⊆ X,T ⊆ Y with |S| ≥ δ|X|, |T | ≥ δ|Y |, we have∣∣∣∣ |E ∩ (S × T)|

|S||T |
− d

|Y |

∣∣∣∣ ≤ ε d

|Y |
.

3. val(G) ≤ 1− 20ε.
4. G is (δ, ε)-fortified.
there does not exist a (γ, ε)-robust embedding of G into a coordinate of H for all γ ≤ val(G),
ε < (1− γ)/23, where H = S(G).

The most significant implication of our Main Theorem is that a parallel repetition scheme
satisfying the uniform marginals property that (1) can be applied to a single game G with
the above properties and (2) yields a robust embedding cannot achieve almost linear blowup.
As we elaborate below, by far the most pertinent property of G is that it is sufficiently
fortified. Hence, a parallel repetition scheme attempting to achieve almost linear blowup
should explicitly take advantage of the fact that its input is not fortified. Below, we discuss
the properties we require of G, and why games that satisfy these properties are quite natural,
which makes this barrier nontrivial to overcome.

Fortification is a property of games introduced by Moshkovitz [17], who gave a simple
proof that fortified games satisfy parallel repetition, and furthermore showed that arbitrary
(projection) games can be easily fortified. Roughly speaking, a fortified game G is one where
the value of every not-too-small rectangular subgame of G (i.e., a subgame of G played on a
subgraph of G induced by a set of vertices). More formally:

I Definition 5 (Fortified Games). Let G = (X,Y,E, π,Σ) be a game. We say that G is
(δ, ε)-fortified iff for all S ⊆ X, T ⊆ Y with |S| ≥ δ|X| and |T | ≥ δ|Y |, we have that

val(GS×T) ≤ val(G) + ε

where GS×T ⊆ G denotes the rectangular subgame of G on the subgraph induced by the
vertex set S × T .

One might be cautious that we require G to be (δ, ε)-fortified with potentially polynomially
small δ. However, many natural games on which parallel repetition theorems apply are this
fortified. For example, we demonstrate in Appendix D that games that are randomly sampled
from a distribution of games on regular bipartite graphs are heavily fortified. There are even
heavily fortified games with linear structure: it follows from Claim 19 in Appendix D that by
taking a free game and randomly sampling constraints, we get a game that satisfies all the
requirements of Theorem 4. Since all free games have linear structure, this also has linear
structure. Hence, our barrier even applies to the derandomized parallel repetition theorem
of Dinur and Meir.

Another property that we require of the game G is that it is a d-regular, bipartite
expander. However, this is not restrictive as an additional property: all known constructions
of fortified games satisfy the expansion condition we desire. This includes those in [17]
and [5], which create fortified games by composing games with good expanders, as well as
the random games we construct in Appendix D, which are naturally on expanders. The
last property that we use is that the graph underlying G does not have too many parallel
edges, which is a property satisfied by virtually all games researchers consider in hardness
of approximation. Finally, the reason we limit the blowup of the parallel repetition scheme
S to be at most O(n0.49) is because we take δ to be inversely proportional to the blowup.

D. Moshkovitz, G. Ramnarayan, and H. Yuen 42:11

Since n is the number of edges in the underlying graph, taking δ = O(n−0.5) already makes
δ|X| and δ|Y | smaller than 1 for free games, and hence (δ, ε)-fortification simply does not
make sense. Furthermore, we believe the most interesting case of our theorem occurs when
the blowup is just O(no(1)), in which case our fortification constraints are relatively mild.

We now give an intuitive overview of our argument. Let S be the parallel repetition
scheme from the theorem statement satisfying the uniform marginals property and the small
size blowup condition. We will show that for games G satisfying the requisite properties, the
presence of a robust embedding lets us obtain a contradiction.

Given such a game G and a supposed randomness-efficient parallel repetition H ⊆ Gk

from the scheme S, we rule out the existence of a robust embedding of G into H. We
prove this via contradiction: if there were a robust embedding, then from the embedding
we would be able to extract an assignment for G that has success probability significantly
greater than val(G) on some rectangular subgame of G. Furthermore, the fact that H is not
much larger than G allows us to conclude that this rectangular subgame is not too small.
However, this contradicts the fortification property of G, which states that all not-too-small
rectangular subgames of G have value that’s not much larger than val(G). Thus no such
robust embedding can exist.

We give more details about how we extract an assignment from a robust embedding.
Recall that a robust embedding of G to H allows us to choose a subset of coordinates C ⊆ [k]
and a strategy ψH for the repeated game such that, if under ψH the probability of success in
the coordinates C is greater than some threshold γ (which depends on the size of C), then
there exists an embedding Emb that maps G into the subgame WC of H where the provers
win in C.

We exploit this by letting C be a singleton round {s}, and letting ψH be a trivial strategy
where the provers play optimally in round s, and all other rounds independently.3 The
probability of succeeding in round s under this strategy is precisely val(G), which is larger
than the threshold γ. Therefore we obtain an embedding Emb from G into the subgame
W{s} ⊆ H where the provers win in round s.

Then, we use the fact that H is a randomness-efficient parallel repetition of G and the
uniform marginals property to conclude that over the question pairs (x, y) in the base game
G, the projection of Emb(x, y) (which are question pairs in the repeated game H) onto
round s must contain a rectangular subgame GM×N of G that has substantial size. Since
G is (approximately) embedded into W{s}, by definition, ψH yields an (almost-)satisfying
assignment for GM×N . As stated previously, this would violate the fortification property of
G.

Though the intuition is rather straightforward, much of the proof involves dealing with the
fact that G doesn’t perfectly embed into W{s}, but only approximately so, which introduces
errors in extracting a nearly satisfying assignment for a rectangular subgame of G. We defer
the full proof of Theorem 4 to Appendix A.

3 One might find it suspicious that we’re deriving a robust embedding from such a trivial strategy,
whereas in the proof of Raz’s parallel repetition, for example, a robust embedding is derived from
“too-good-to-be-true” strategies. However, one can see from Appendix B that the Raz-Holenstein proof
of parallel repetition does indeed give us a robust embedding into the subgame W{s} from this trivial
strategy. Furthermore, as described in Section 3 and Appendix B, a robust embedding is necessary but
not sufficient for proving parallel repetition, which is why the robust embedding derived from the trivial
strategy won’t contradict the fact that the success probability for this strategy is less than val(G)k.

APPROX/RANDOM’16

42:12 A No-Go Theorem for Derandomized Parallel Repetition: Beyond Feige-Kilian

5 Conclusion and Open Problems

We show limitations on a prevalent proof strategy for derandomized parallel repetition.
Specifically, we prove that any parallel repetition scheme that can be applied to a fortified
game and yields a “robust embedding” cannot achieve almost-linear blowup. We leave it as an
open problem to extend our limitation to schemes with larger blowup. An intriguing related
question is whether one can extend our results to provide limitations on derandomized parallel
repetition schemes with polynomial blow-up and exponential soundness decay. This would
not contradict existing results: Shaltiel’s repetition has exponential soundness decay but has
nearly-exponential blowup, and Dinur-Meir achieve polynomial blow-up but have polynomial
soundness decay. As we discussed in the Introduction, the limitation of Feige-Kilian is simple
in the case of almost-linear blowup, whereas the case of large blowup is considerably more
complicated, and it is possible that extending our result to large polynomial blowup will be
similarly difficult.

Our analysis takes a robust embedding and extracts from it fairly large rectangles that
are nearly satisfied. The limitation follows from providing fortified games, which do not have
such rectangles, as input. An intriguing possibility given this state of affairs is the following:
Is there a technique for parallel repetition that explicitly makes use of lack of fortification in
the input? Such a technique would be able to circumvent our limitation if it were applicable
to derandomized parallel repetition.

A direction for amplifying two prover games that is not captured by our limitation is
amplification via locally decode or reject codes [19]. These are efficient encodings with a
two query tester/decoder. The tester/decoder is able to decode k-tuples of symbols from its
message, or identify a corruption in the word. One can encode the answers of the players via
such a code, and then ask each prover a different query of the tester/decoder. Whenever
the tester/decoder is correct, one can simulate a randomness-efficient sequential repetition
of the base game. There are constructions of locally decode or reject codes based on low
degree polynomials (See [19] and many previous works), or based on direct product testing
(See [15, 10] and many previous works). The value of the amplified game is typically inherited
from the error probability of the local tester/decoder. It remains an open problem to find
locally decode or reject codes with substantially lower error than existing constructions.

Acknowledgments. We thank Pritish Kamath and Irit Dinur for helpful discussions. We
also thank the anonymous reviewers for their suggestions on the initial manuscript.

References
1 L. Babai, L. Fortnow, and C. Lund. Nondeterministic exponential time has two-prover

interactive protocols. In Foundations of Computer Science, 1990. Proceedings., 31st Annual
Symposium on, pages 16–25. IEEE, 1990.

2 M. Bellare, S. Goldwasser, C. Lund, and A. Russell. Efficient probabilistically checkable
proofs and applications to approximations. In Proc. 25th ACM Symp. on Theory of Com-
puting, pages 294–304, 1993.

3 M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson. Multi-prover interactive proofs:
How to remove intractability assumptions. In Proceedings of the twentieth annual ACM
symposium on Theory of computing, pages 113–131. ACM, 1988.

4 M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson. Efficient identification schemes
using two prover interactive proofs. In Advances in Cryptology – CRYPTO’89 Proceedings,
pages 498–506. Springer, 1990.

D. Moshkovitz, G. Ramnarayan, and H. Yuen 42:13

5 A. Bhangale, R. Saptharishi, G. Varma, and R. Venkat. On fortification of projection
games. arXiv, 2015. URL: http://arxiv.org/abs/1504.05556.

6 Andrej Bogdanov. Gap amplification fails below 1/2, 2005. Comment on ECCC TR05-046,
can be found at http://eccc.uni-trier.de/eccc-reports/2005/TR05-046/commt01.
pdf.

7 M. Braverman and A. Garg. Small value parallel repetition for general games. In Pro-
ceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, pages
335–340. ACM, 2015.

8 R. Cleve, P. Høyer, B. Toner, and J. Watrous. Consequences and limits of nonlocal
strategies. In Computational Complexity, 2004. Proceedings. 19th IEEE Annual Confer-
ence on, pages 236–249. IEEE, 2004.

9 I. Dinur. The PCP theorem by gap amplification. Journal of the ACM, 54(3):12, 2007.
10 I. Dinur and O. Meir. Derandomized parallel repetition via structured PCPs. Computa-

tional Complexity, 20(2):207–327, 2011.
11 I. Dinur and D. Steurer. Analytical approach to parallel repetition. In Proceedings of the

46th Annual ACM Symposium on Theory of Computing, pages 624–633. ACM, 2014.
12 U. Feige and J. Kilian. Impossibility results for recycling random bits in two-prover proof

systems. In Proc. 27th ACM Symp. on Theory of Computing, pages 457–468, 1995.
13 J. Håstad. Some optimal inapproximability results. Journal of the ACM, 48(4):798–859,

2001.
14 T. Holenstein. Parallel repetition: Simplification and the no-signaling case. Theory of

Computing, 5(1):141–172, 2009.
15 R. Impagliazzo, V. Kabanets, and A. Wigderson. New direct-product testers and 2-query

PCPs. SIAM Journal on Computing, 41(6):1722–1768, 2012.
16 S. Khot. On the power of unique 2-prover 1-round games. In Proceedings of the thiry-fourth

annual ACM symposium on Theory of computing, pages 767–775. ACM, 2002.
17 D. Moshkovitz. Parallel repetition from fortification. In Proc. 55th IEEE Symp. on Found-

ations of Computer Science, pages 414–423, 2014.
18 D. Moshkovitz. The projection games conjecture and the NP-hardness of lnn-

approximating set-cover. Theory of Computing, 11(7):221–235, 2015.
19 D. Moshkovitz and R. Raz. Two query PCP with sub-constant error. Journal of the ACM,

57(5), 2010.
20 A. Rao. Parallel repetition in projection games and a concentration bound. SIAM Journal

on Computing, 40(6):1871–1891, 2011.
21 R. Raz. A parallel repetition theorem. SIAM Journal on Computing, 27:763–803, 1998.
22 B.W. Reichardt, F. Unger, and U. Vazirani. Classical command of quantum systems.

Nature, 496(7446):456–460, 2013.
23 R. Shaltiel. Derandomized parallel repetition theorems for free games. Computational

Complexity, 22(3):565–594, 2013.

A Proof of Theorem 4 (Main Theorem)

In this section, we prove the main theorem of this paper, which we restate here for clarity:

I Theorem 6 (Main Theorem). Let Σ be a finite alphabet. Let S = {G → H ⊆ Gk} be a
parallel repetition scheme that satisfies the uniform marginals property and has size blowup
ΦS,Σ(n) ≤ O(n0.49). Then for all n > 0, ε ∈ (0, 1/23), δ ≤ (16ΦS,Σ(n) log2(ΦS,Σ(n)))−1, an
integer d, and for all games G satisfying:
1. The graph G = (X × Y,E) underlying G is d-regular, and has at most ε|E| parallel edges.

APPROX/RANDOM’16

http://arxiv.org/abs/1504.05556
http://eccc. uni-trier. de/eccc-reports/2005/TR05-046/commt01.pdf
http://eccc. uni-trier. de/eccc-reports/2005/TR05-046/commt01.pdf

42:14 A No-Go Theorem for Derandomized Parallel Repetition: Beyond Feige-Kilian

2. For all S ⊆ X,T ⊆ Y with |S| ≥ δ|X|, |T | ≥ δ|Y |, we have∣∣∣∣ |E ∩ (S × T)|
|S||T |

− d

|Y |

∣∣∣∣ ≤ ε d

|Y |
.

3. val(G) ≤ 1− 20ε.
4. G is (δ, ε)-fortified.
there does not exist a (γ, ε)-robust embedding of G into a coordinate of H for all γ ≤ val(G),
ε < (1− γ)/23, where H = S(G).

Let S, n, Σ, ε, δ, and d be as in the theorem statement. In the proof we let dX and dY
denote the left-degree and right-degree of G, and so dX = dY = d, since G is d-regular.

Let H = (Xk, Y k, EH , π
k,Σk) be the k-repetition of G under the scheme S. Define

z := |H|
|G| . Notice that z ≤ ΦS,Σ(n), since ΦS,Σ(n) is effectively a maximum of z taken over all

games G with |G| = n. Fix γ ≤ val(G) ≤ 1− 20ε. Fix a round s ∈ [k]. Let ψH = (ψHX , ψHY)
be a strategy for the provers in the repeated game under which the event of winning in round
s occurs with probability at least γ. Note that such a strategy always exists: the two provers
can play the optimal strategy for G in round s, and by the uniform marginals property of
Theorem 4, Pr[W{s}] = val(G) ≥ γ.

Suppose for contradiction that there exists an (γ, ε)-robust embedding into a coordinate of
H. Let C = {s} for some round s ∈ [k]. Then by definition of a robust embedding, we obtain
an embedding map Emb(x, y) = (fX(x), fY (y)) for maps fX : X → XH and fY : Y → YH .
Denote by W{s} the set of edges that win in round s under the strategy ψH .

DefineW to be the set of edges that win in round s and are mapped into by the embedding
map, namely, W := {Emb(x, y) : (x, y) ∈ E} ∩W{s}, and let HW be the subgame of H
induced by the edge set W .

Combining the fact that Emb is a robust embedding into {s} (Definition 3, Property 2)
with the definition of W , we know that

Pr
(x,y)∈E

[Emb(x, y) ∈W] ≥ 1− ε (1)

While all but an ε-fraction of edges (x, y) ∈ E map into W under Emb, it will be convenient
for us to define a set Ŵ which all the edges (x, y) map into. Hence, we define the set of
repeated game vertex pairs Ŵ to be

Ŵ = {Emb(x, y) : (x, y) ∈ E} ⊆ Xk × Y k .

By equation (1), we observe that

|Ŵ\W | ≤ ε|Ŵ | = ε|E|

and hence, W and Ŵ are ε-close. Note that some of the edges in Ŵ may not exist in EH .
However, it will be useful to think of Ŵ as a set of edges that induces a graph on repeated
game vertices H

Ŵ
= (im(fX), im(fY), Ŵ). While we use the notation H

Ŵ
to indicate that

it is a graph on repeated game vertices, it is again important to note that this graph is not a
subgraph of H.

For the remainder of the proof, we will assume that W and Ŵ have no parallel edges,
and that H

Ŵ
is isomorphic to G. We note that this is not strictly true if G has parallel

edges - however, since we know that G has at most ε|E| parallel edges so H
Ŵ

is ε-close
to a graph that is isomorphic to G even after taking out parallel edges. Hence, the same
argument goes through by simply making ε slightly smaller. For a more detailed discussion

D. Moshkovitz, G. Ramnarayan, and H. Yuen 42:15

of how we handle a small number of parallel edges, we refer the reader to the Remark at the
end of this section.

We argue that very few vertices in x ∈ X and y ∈ Y are heavily represented in round s of
the sets of repeated game vertices im(fX) and im(fY). Informally, we will use the uniform
marginals property, which lets us conclude that there are many distinct base game edges (x, y)
in round s of the edge setW , to conclude that there must be many distinct base game vertices
in round s of endpoints of W . To formalize the notion of a vertex x being heavily represented
in round s of im(fX), define the weight of x ∈ X be wx = |{x ∈ im(fX) : xs = x}|. Similarly,
let the weight of y ∈ Y be wy = |{y ∈ fY : ys = y}|. We argue that under the uniform
marginals property of Theorem 4, there cannot be many vertices with weight more than
2z = 2 |H||G| .

I Proposition 7. Take G and H to be the base game and repeated game from Theorem 4,
and let E denote the edge set of the base game G. For any fixed edge (x, y) ∈ E and round
j ∈ [k], we have that∣∣{(x, y) ∈ EH : (xj , yj) = (x, y)

}∣∣ = z .

Proof. By applying the uniform marginals property of Theorem 4, we observe that∣∣{(x, y) ∈ EH : (xj , yj) = (x, y)
}∣∣ = Pr

(x,y)∈EH

[
(xj , yj) = (x, y)

]
· |EH |

= |EH |
|E|

= z J

Below, say that a repeated game vertex v ∈ im(fX) ∪ im(fY) is BAD if vs has weight
more than 2z.

I Lemma 8. There are at most 2ε|E| repeated game edges in W incident to BAD vertices.

For a fixed x ∈ X, define the set of vertices PREIMGx to be the set of edges in the repeated
game that have x in the sth coordinate, PREIMGx := {x ∈ im(fX) : xs = x}. Notice that
BAD vertices are exactly repeated game vertices that belong to PREIMGx for some x ∈ X
such that wx > 2z. In what follows, we will let dX = dY = d.

Proof (of Lemma 8). For each x′ ∈ X with weight wx′ > 2z, we will argue that there are
many edges in Ŵ\W incident to PREIMGx′ . Then, by noticing that Ŵ and W are ε-close,
we will be able to upper bound the number of vertices in X with weight more than 2z.
Applying the uniform marginals property of H from Theorem 4, we will get an upper bound
on the number of edges in W incident to BAD vertices.

Fix x′ ∈ X such that wx′ > 2z. We argue that there are at least 2z · dX edges in Ŵ that
are incident to PREIMGx′ . Recall that HŴ is isomorphic to G, the underlying graph of G.
Specifically, this means that the degree of every member of PREIMGx′ in HŴ is exactly
dX , so in total there are wx′ · dX ≥ 2z · dX edges in Ŵ incident to elements of PREIMGx′ .

Recall from Proposition 7 that the uniform marginals property of the scheme S tells us
that, for any fixed edge (x, y) ∈ E, the number of edges (x, y) ∈ EH such that (xs, ys) = (x, y)
is exactly z. Since W ⊆ EH , we conclude that for any fixed (x, y) ∈ E we have that

|{(x, y) ∈W : (xs, ys) = (x, y)}| ≤ z .

By fixing x and summing over all y such that (x, y) ∈ E, of which there are exactly dX , we
can see that

|{(x, y) ∈W : xs = x}| ≤ z · dX

APPROX/RANDOM’16

42:16 A No-Go Theorem for Derandomized Parallel Repetition: Beyond Feige-Kilian

for any fixed x ∈ X. In other words, there can be at most z · dX edges in W incident to
vertices in PREIMGx, for any x ∈ X.

Combining our lower bound of 2z·dX for the number of edges in Ŵ incident to PREIMGx′

and our upper bound of z · dX for the number of edges in W incident to PREIMGx′ , we
see there are at least 2z · dX − z · dX = z · dX edges in Ŵ\W that touch PREIMGx′ , and
that this is true for all x′ such that wx′ > 2z.

Noticing that there are not many edges in Ŵ\W , we can upper bound the number
of X vertices with weight more than 2z. For each vertex x ∈ X, let the variable ix
denote the number of edges incident to the vertex set PREIMGx that are in Ŵ\W . Since
|Ŵ\W | ≤ ε|E|, we get:

ε|E| ≥
∑

x∈X:wx>2z
ix

≥ |{x ∈ X : wx > 2z}| · z · dX

So we get that the number of base game vertices x ∈ X with weight more than 2z is at
most ε|E|

zdX
. Reapplying the observation that there can be at most z · dX edges incident to

PREIMGx for any base game vertex x, we see that there can be at most ε|E| edges in W
incident to BAD vertices that live in im(fX).

Repeating the proof for vertices in Y shows there are at most ε|E|
zdY

vertices in Y with
weight more than 2z, and at most ε|E| edges in W incident to BAD vertices that live in
im(fY). Union bounding over vertices in im(fX) and im(fY) yields the result. J

Lemma 8 lets us remove all the bad vertices from HW , along with all the edges incident
to them, and still have a graph with at least (1 − 3ε)|E| edges. Call the resulting graph
H′W = ((X ′W , Y ′W),W ′). We remove the same vertices and the incident edges from H

Ŵ
to get

the graph H
Ŵ ′

= ((X ′W , Y ′W), Ŵ ′). Note that we still have W ′ ⊆ Ŵ ′ and |Ŵ ′\W ′| ≤ ε|E|,
and since we did not remove many edges thanks to Lemma 8, we know that |Ŵ ′| ≥ |W ′| ≥
(1− 3ε)|E|.

We would like to find a subset of vertices S ⊆ X ′W such that every element of {x ∈ X :
∃x ∈ S s.t. xs = x} have similar weights, and find an analogous subset T ⊆ Y ′W .

I Lemma 9. There are subsets S ⊆ X ′W and T ⊆ Y ′W such that:
1. |Ŵ ′ ∩ (S × T)| ≥ (1−6ε)|E|

4 log2(z)

2. W ′ ∩ (S × T) is 2ε-close to Ŵ ′ ∩ (S × T).
3. There are integers w∗x, w∗y ∈ Z+ such that for any x ∈ X s.t. xs = x for some x ∈ S and

y ∈ Y s.t. ys = y for some y ∈ T , we have that w∗x ≤ wx ≤ 2w∗x and w∗y ≤ wy ≤ 2w∗y.

Proof. For each pair of positive integers (i, j) such that 0 ≤ i, j ≤ dlog(2z)e− 1, let Si = {x :
xs = x for x ∈ X s.t. 2i ≤ wx ≤ 2i+1} and Tj = {y : ys = y, y ∈ Y, 2j ≤ wy ≤ 2j+1}. Note
that the sets {Ŵ ′ ∩ (Si × Tj) : 1 ≤ i, j ≤ dlog(2z)e − 1} form a partition of the edges in Ŵ ′,
since we removed all BAD vertices and incident edges earlier. We will call a pair (i, j) bad if
W ′ ∩ (Si × Tj) is more than 2ε-far from the edge set Ŵ ′ ∩ (Si × Tj), and good otherwise.

Since Ŵ ′\W ′ has size at most ε|E|, we can upper bound the size of the set⋃
i,j:(i,j) is bad

Ŵ ′ ∩ (Si × Tj)

D. Moshkovitz, G. Ramnarayan, and H. Yuen 42:17

as follows:

ε|E| ≥ |Ŵ ′\W ′|

=
∑

0≤i,j≤dlog(2z)e−1

∣∣∣(Ŵ ′ ∩ (Si × Tj)
)
\ (W ′ ∩ (Si × Tj))

∣∣∣
≥

∑
(i,j):(i,j) is bad

∣∣∣(Ŵ ′ ∩ (Si × Tj)
)
\ (W ′ ∩ (Si × Tj))

∣∣∣
≥ 2ε

∑
(i,j):(i,j) is bad

∣∣∣Ŵ ′ ∩ (Si × Tj)
∣∣∣

= 2ε

∣∣∣∣∣∣
⋃

i,j:(i,j) is bad

Ŵ ′ ∩ (Si × Tj)

∣∣∣∣∣∣
Therefore, we can conclude that⋃

i,j:(i,j) is bad

Ŵ ′ ∩ (Si × Tj)

has at most |E|/2 edges, and therefore⋃
i,j:(i,j) is good

Ŵ ′ ∩ (Si × Tj)

has at least (1
2 − 3ε)|E| edges. Since i and j range from 0 to dlog(2z)e − 1, there are at most

(log(2z) + 1)2 ≤ 2 log2(z) good pairs, so there is some choice of positive integers i∗ and j∗
such that Ŵ ′∩ (Si∗ ×Tj∗) has at least (1−6ε)|E|

4 log2(z) edges and (i∗, j∗) is good, so W ′∩ (Si∗ ×Tj∗)
is 2ε-close to Ŵ ′ ∩ (Si∗ ×Tj∗). Taking S := Si∗ , T := Tj∗ , w∗x = 2i∗ , and w∗y = 2j∗ completes
the proof. J

Note that Property 2 of Lemma 9 allows us to lower bound the number of edges in
W ′ ∩ (S × T). Since W ′ ∩ (S × T) is 2ε-close to Ŵ ′ ∩ (S × T), we get that

|W ′ ∩ (S × T)| ≥ (1− 2ε)|Ŵ ′ ∩ (S × T)| ≥ (1− 2ε)(1− 6ε)|E|
4 log2(z)

.

Furthermore, note that each vertex in X ′W has degree at most dX in H
Ŵ ′

, and furthermore
each vertex in Y ′W has degree at most dY in H

Ŵ ′
. This can be seen by noting that H

Ŵ
is

isomorphic to G, and we removed some edges when we removed BAD vertices. Combining
this with the fact that |E| = |X|dX = |Y |dY and applying the lower bound on |Ŵ ′∩ (S×T)|,
we can lower bound the sizes of the vertex sets S and T from Lemma 9. Specifically, we get
that |S| ≥ (1−6ε)|X|

4 log2(z) and |T | ≥ (1−6ε)|Y |
4 log2(z) .

Now, in accordance with the proof outline, we would like to retrieve a large subset
M ⊆ X ′W such that, for all x, x′ ∈ M such that x 6= x′, we have that xs 6= x′s. Similarly,
we want a large subset N ⊆ Y ′W such that, for all y, y′ ∈ N such that y 6= y′, we have that
ys 6= y′s.

I Lemma 10. There are sets M ⊆ X ′W and N ⊆ Y ′W such that:
1. M contains at most one element of the set {x ∈ X ′W : xs = x} for any fixed x ∈ X. Also,

N contains at most one element of the set {y ∈ Y ′W : ys = y} for any fixed y ∈ Y .
2. W ′ ∩ (M ×N) is 8ε-close to Ŵ ′ ∩ (M ×N)
3. |M | ≥ (1−6ε)|X|

8z log2(z) and |N | ≥ (1−6ε)|Y |
8z log2(z)

APPROX/RANDOM’16

42:18 A No-Go Theorem for Derandomized Parallel Repetition: Beyond Feige-Kilian

Proof (of Lemma 10): Start with the sets S ⊆ X ′W and T ⊆ Y ′W as well as w∗x and w∗y from
Lemma 9. We will show the existence of M ⊆ S and N ⊆ T with the desired properties. Set
wmaxx = min(2w∗x , 2z), and similarly set wmaxy = min(2w∗y , 2z). We note that, for any x ∈ X
such that {x ∈ S : xs = x} is nonempty, we know that wx ≤ wmaxx , from Lemma 9 and our
removal of BAD vertices, and we have a similar condition for vertices y ∈ Y .

For each vertex x ∈ X such that {x ∈ S : xs = x} is nonempty, label each vertex in
the set {x ∈ S : xs = x} as x1, . . . , xw

max
x . Since |{x ∈ S : xs = x}| = wx and wmaxx ≥ wx,

each vertex gets a label. However, note that it is possible that wmaxx > wx, in which case
we wrap around with our labeling. Since Lemma 9 gives us that wx ≥ w∗x ≥ wmaxx /2, we
know that any vertex receives at most two labels. Similarly, for each vertex y ∈ Y such that
{y ∈ T : ys = y} is nonempty, label each vertex in the set {y ∈ T : ys = y} as y1, . . . , yw

max
y .

Once again we observe that every vertex gets a label and any vertex receives at most two
labels.

For i ∈ Z such that 1 ≤ i ≤ wmaxx , let

Mi =
⋃

x∈X:{x∈S:xs=x}6=∅

xi .

Similarly, for j ∈ Z such that 1 ≤ j ≤ wmaxy , let

Nj =
⋃

y∈Y :{y∈T :ys=y}6=∅

yj .

Since any vertex x ∈ S received at most two labels, note that it is present in Mi for at most
two choices of i. Similarly, any vertex y ∈ T is present in Nj for at most two choices of j.
Consider the sets of pairs of vertices given by{

Mi ×Nj : 1 ≤ i ≤ wmaxx , 1 ≤ j ≤ wmaxy

}
The union of these sets contains S × T . Hence, every edge in W ′ ∩ (S × T) is in

W ′ ∩ (Mi × Nj) for some choice of i and j. Similarly, every edge in Ŵ ′ ∩ (S × T) is in
Ŵ ′ ∩ (Mi ×Nj) for some choice of i and j. Furthermore, as we noticed earlier, any vertex
x ∈ S is in Mi for at most two choices of i and any vertex y ∈ T is in Nj for at most
two choices of j. Therefore, any fixed pair of repeated game vertices (x, y) only appears in
Mi ×Nj for at most 4 choices of (i, j). Hence we know that

∑
i,j

|Ŵ ′ ∩ (Mi ×Nj)| ≥

∣∣∣∣∣∣
⋃
i,j

Ŵ ′ ∩ (Mi ×Nj)

∣∣∣∣∣∣ ≥ |Ŵ ′ ∩ (S × T)|

and that∑
i,j

|(Ŵ ′\W ′) ∩ (Mi ×Nj)| ≤ 4|(Ŵ ′\W ′) ∩ (S × T)| ≤ 8ε|Ŵ ′ ∩ (S × T)|

Therefore, the average fraction of edges in Ŵ ′ ∩ (Mi ×Nj) that are also in (Ŵ ′\W ′) ∩
(Mi ×Nj) is at most 8ε. Therefore, there must be a fixing of i∗ and j∗ such that the set of
edges W ′ ∩ (Mi∗ ×Nj∗) is 8ε-close to Ŵ ′ ∩ (Mi∗ ×Nj∗), by pigeonhole. Furthermore, since
wmaxx , wmaxy ≤ 2z, we know that

|Mi∗ | =
|S|
wmaxx

≥ |S|2z ≥
(1− 6ε)|X|
8z log2(z)

D. Moshkovitz, G. Ramnarayan, and H. Yuen 42:19

and

|Nj∗ | =
|T |
wmaxy

≥ |T |2z ≥
(1− 6ε)|Y |
8z log2(z)

By letting M := Mi∗ and N := Nj∗ , we conclude the proof. J

We notice that Lemma 10 also gives us an explicit lower bound on the number of edges
in W ′ ∩ (M ×N). Since none of the vertices in M or N are BAD by construction, we know
that

Ŵ ′ ∩ (M ×N) = Ŵ ∩ (M ×N) (2)

since to get from Ŵ to Ŵ ′ we only removed edges incident to BAD vertices. Also recall that
H
Ŵ

is isomorphic to G, and therefore has the same expansion property as G, given by the
expansion property of Lemma 15. Since Property 3 of Lemma 10 lower bounds the size of M
and N , we can apply the expansion property of H

Ŵ
to get:∣∣∣Ŵ ∩ (M ×N)

∣∣∣ ≥ (1− ε)dX |M ||N |
|Y |

(3)

By combining Item 2 of Lemma 10 and Equations 2 and 3, we see that

|W ′ ∩ (M ×N)| ≥ (1− 8ε)
∣∣∣Ŵ ′ ∩ (M ×N)

∣∣∣ ≥ (1− 8ε)(1− ε)dX |M ||N |
|Y |

(4)

Now we can prove the main theorem.

Proof of Theorem 4. Take M ⊆ X ′W and N ⊆ Y ′W to be the sets given by Lemma 10. Let
Ms = {xs : x ∈ M} and Ns = {ys : y ∈ N} be the sets that result from projecting the
repeated game vertices in M and N onto round s. Due to Property 1 of Lemma 10, for
every pair of vertices x1, x2 ∈M , we know that x1

s 6= x2
s. Similarly, for every pair of vertices

y1, y2 ∈ N , we know that y1
s 6= y2

s. Therefore, we see that

|Ms| = |M | ≥
(1− 6ε)|X|
8z log2(z)

and

|Ns| = |N | ≥
(1− 6ε)|Y |
8z log2(z)

where the lower bounds follow from Property (3) of Lemma 10. Furthermore, any assignment
to vertices in M and N corresponds uniquely to an assignment to Ms ⊆ X and Ns ⊆ Y , by
simply restricting the assignment to vertices in M and N to round s.

Since W ′ ∩ (M ×N) ⊆W{s}, we know that every edge in W ′ ∩ (M ×N) is satisfied in
round s by the assignment ψH . By restricting ψHX toM and ψHY to N , considering only round
s of this assignment, and applying the fact that each edge in W ′ ∩ (M ×N) corresponds to
a unique edge in round s, we retrieve an assignment that satisfies |W ′ ∩ (M ×N)| edges in
the rectangular subgame GMs×Ns

. By applying the expansion property of G, we can upper
bound the number of edges in this rectangle:

|E ∩ (Ms ×Ns)| ≤ (1 + ε)dX |M ||N |
|Y |

APPROX/RANDOM’16

42:20 A No-Go Theorem for Derandomized Parallel Repetition: Beyond Feige-Kilian

Hence, by applying Equation 4, the fraction of constraints in GMs×Ns satisfied by our
assignment is at least

|W ′ ∩ (M ×N)|
|E ∩ (Ms ×Ns)|

≥ (1− 8ε)(1− ε)
1 + ε

> 1− 11ε ≥ val(G) + ε

due to our assumption on val(G). This, along with the fact that

δ = 1
16ΦS,Σ(n) log2(ΦS,Σ(n))

≤ 1
16z log2(z)

≤ 1− 6ε
8z log2(z)

means that we contradict the fact that G is (δ, ε)-fortified. J

Remark about handling Parallel Edges

We end this section by remarking on why parallel edges can be problematic and how we
handle them. In the last step of the proof, we lift round s of the assignment ψH on the
rectangle M ×N ⊆ Xk × Y k to an assignment for the rectangular subgame GMs×Ns

. We
argued that each edge in the edge set W ′ ∩ (M ×N) lifted to a distinct edge in GMs×Ns

, by
virtue of the fact that each vertex in M and N is distinct in round s. This is valid when W ′
is a set of edges, rather than a multiset; however, if we considered W ′ to be a multiset and
it had parallel edges, this may no longer be true. Two distinct, but parallel, edges in W ′,
could lift to only one distinct edge in GMs×Ns

, in which case we lose an edge! In the case
when the number of parallel edges is small (i.e. ≤ ε|E|), we can prevent this inconvenience
by effectively ignoring the parallel edges.

Concretely, we can make W a multiset that has no parallel edges by ignoring parallel
edges in the domain of the embedding map (i.e. each pair of vertices that appears in W has
multiplicity 1). Since the number of parallel edges is small, we will still have |W | ≥ (1−2ε)|E|
and that W is 2ε-close to a multiset of edges Ŵ , where H

Ŵ
is isomorphic to G, parallel

edges and all. By naturally extending the notion of ε-closeness to multisets, and defining the
intersection of a multiset and a set to preserve multiplicity (i.e. {1, 1, 1, 2} ∩ {1} = {1, 1, 1}),
our arguments naturally extend to this case without any further change.

For completeness, we conclude with a note about the number of parallel edges in the
random games we provide in Appendix D. As long as 200d2 < ε|E|, the random games
we generate have sufficiently few parallel edges for our Main Theorem to apply. When
200d2 > ε|E|, since |E| = d|X|, we must have that d = Ω(|X|). For this regime of d, we can
simply use a free game with random constraints. It can be seen by the analysis in Claim 19
of Appendix D that this game is sufficiently fortified and satisfies the conditions we need for
the Main Theorem.

B Robust embeddings in existing proofs of parallel repetition

Here we show that Raz’s proof of the parallel repetition theorem directly implies a robust
embedding from G into Gk. Raz’s proof was significantly simplified by Holenstein in [14].
Throughout this section, we will follow Rao’s presentation [20] of Raz’s proof with Holenstein’s
simplification. From now on, we will refer to this proof as the Raz-Holenstein proof of parallel
repetition.

D. Moshkovitz, G. Ramnarayan, and H. Yuen 42:21

The engine behind the Raz-Holenstein proof of parallel repetition theorem is the following
lemma.

I Lemma 11 (Main lemma of [20]). Let C ⊆ [k]. Let G be a game with val(G) = 1 − ε,
where one of the provers gives answers from a set of size 2c, and there exists a strategy ψ for
Gk under which

Pr[WC] ≥ 2−
ε2(k−|C|)

342 +|C|c.

Then there exists an i /∈ C such that Pr[Wi|WC] ≤ val(G) + ε/2 = 1− ε/2.

Here, we use WC to denote the event that the provers succeed in the rounds indexed by C;
note that this event depends on the strategy used by the provers. We use W{i} to denote
the event that the provers win round i.

From Lemma 11, the parallel repetition theorem follows in a straightforward manner. We
want to show that the probability of winning every round in Gk, Pr[W[k]], is 2−γk for some
constant γ. We accomplish this by iteratively building a subset of rounds C ⊆ [k] such that
either Pr[WC] < 2−γk (in which case we’re done, because Pr[W[k]] ≤ Pr[WC]), or otherwise, by
upper bounding Pr[W{i}|WC] for some i /∈ C, we conclude that Pr[W{i}∪C] < (1−ε/2) Pr[WC]
and recurse with C ′ = C ∪ {i}. After repeatedly applying this lemma at most βk times, we
can conclude that Pr[W[k]] ≤ max{2−γk, (1− ε/2)βk}, which proves the parallel repetition
theorem.

Implicit in the proof of Lemma 11 is the following lemma, which demonstrates the
existence of a robust embedding of G into Gk.

I Lemma 12 (Implicit Lemma in [20]). Let C ⊆ [k] be such that

Pr[WC] ≥ 2−
ε2(k−|C|)

342 +|C|·c.

Then there exist randomized maps gX : R×X → Xk and gY : R× Y → Y k for some finite
set R such that
1. For all r ∈ R, there exists a round i ∈ [k]\C such that for all (x, y) ∈ X × Y , we have

gX(r, x)i = x and gY (r, y)i = y.
2. The distribution of (gX(r, x), gY (r, y)) over a uniformly chosen r ∈ R and (x, y) ∈ E is

ε/2-close in statistical distance to the distribution of (x, y) in Gk when conditioned on
the event WC .

First, we claim that Implicit Lemma very directly implies the existence of a robust
embedding from G into a coordinate of Gk. Indeed, assume that Lemma 12 is true. Let
γ : [k] → R be defined as γ(t) = 2−

ε2(k−t)
342 +t·c. For each C, if Pr[WC] < γ(|C|), then we

let Emb be an arbitrary embedding map. If Pr[WC] ≥ γ(|C|), then there exist randomized
maps gX and gY satisfying Property 2 of Lemma 12. Furthermore, by averaging, there
must exist an r∗ ∈ R such that Pr(x,y)∈E [(gX(r∗, x), gY (r∗, y)) ∈ WC] ≥ 1 − ε/2. Let
Emb(x, y) = (gX(r∗, x), gY (r∗, y)). This shows that there is a (γ(t), ε/2)-robust embedding
of G into a coordinate of Gk.

Furthermore, the Implicit Lemma also implies Lemma 11:

Proof that Lemma 12 Implies Lemma 11. We assume the Implicit Lemma. Let C ⊆ [k] be
as described in the statement of the lemma, and let gX : R×X → Xk and gY : R×Y → Y k

be the randomized embedding maps.
We now describe a strategy for the provers to play the base game G. The provers

are given x and y where (x, y) is a uniform edge from E. The two provers, using shared

APPROX/RANDOM’16

42:22 A No-Go Theorem for Derandomized Parallel Repetition: Beyond Feige-Kilian

randomness, sample a uniformly random r ∈ R. The first prover computes x = gX(r, x) and
then a = ψX(x). The first prover answers with ai. The second prover computes y = gY (r, y)
and then b = ψY (y). The second prover answers with bi.

Since this is a strategy for G, the probability that the provers win is at most val(G). On
the other hand, since the distribution of (x, y) generated by the provers is ε/2-close to the
distribution of (xi, yi) in the subgame WC , we have that the probability the provers win
using this strategy is at least Pr[Wi|WC]− ε/2.

Thus we have Pr[Wi|WC] ≥ val(G) + ε/2. J

Finally, for completeness, we give a high-level sketch of how the Implicit Lemma is
proved. This argument follows the Raz-Holenstein proof of the parallel repetition theorem.
Let C ⊆ [k] be a set of coordinates such that Pr[WC] ≥ γ(|C|). Let X,Y ,A,B denote the
random variables corresponding to the questions and answers of the provers when playing
Gk. The randomized maps gX and gY will correspond to a protocol where the first prover
(who receives a question x ∈ X) and the second prover (who receives y ∈ Y) utilize shared
randomness R in order to agree on a coordinate i ∈ [k]\C, and produce questions x ∈ Xk

and y ∈ Y k, respectively, so that xi = x, yi = y, and furthermore, their outputs (x, y) are
(approximately) distributed the same way as (X,Y) are, conditioned on the event WC .

The key to this protocol, and the cornerstone of the Raz-Holenstein parallel repetition
theorem is the dependency-breaking random variable Q, which resides in the same probability
space as X,Y ,A,B. This random variable has the property that, conditioned on Q and (say)
the first prover’s question x, the repeated questions X and Y are independent. Furthermore,
the variable Q has the remarkable property that the following distributions are close in
statistical distance4:

p(Q|Xi = x,WC) ≈ p(Q|Xi = x, Y i = y,WC) ≈ p(Q|Y i = y,WC)

where by p(Q|Xi = x,WC), for example, we mean the distribution of Q conditioned on
Xi = x and the event WC . Using a beautiful technique called correlated sampling, the two
provers can use shared randomness to (approximately) jointly sample Q from the distribution
p(Q|Xi = x, Y i = y,WC), even though they only know one of x or y, but not both.

Since i was picked randomly, with high probability the distribution of (Xi, Y i) conditioned
on WC will also be close to the distribution of questions in the original game G. This implies
that the final distribution of the output of the maps gX and gY will be close to the distribution
of (X,Y) conditioned on WC , which is what we desired.

In addition to the Raz-Holenstein proof, nearly all subsequent proofs of parallel repetition
fall into the embedding framework, including the works of Rao [20], Moshkovitz [17], and
Braverman-Garg [7]. We also believe that the analytical proof of parallel repetition given by
Dinur and Steurer in [11] falls under this framework.

C A Contrived Example for Derandomized Parallel Repetition

In this section we show that we cannot hope to obtain a strong no-go theorem that rules out
any derandomized parallel repetition in the high degree regime, the same spirit as the result
of Feige and Kilian. This is because there is a parallel repetition scheme that, when applied
to some games, actually reduces the value in a very randomness-efficient manner. We use
Dinur’s graph powering gap amplification scheme, which is a highly randomness-efficient

4 Technically speaking, they are close on average over i, x, and y.

D. Moshkovitz, G. Ramnarayan, and H. Yuen 42:23

parallel repetition scheme. For any ε > 0, we construct a game G with value ≥ 1/8, such
that the application of graph powering to G yields a game H with value at most ε, and
the randomness complexity of H is log |G|+ f(1/ε) for some function f . If |G| is a growing
parameter, then for constant ε, this is much less than O(log 1

ε) · log |G|, the randomness
complexity that would be needed if we used standard parallel repetition to reduce the value
from 1/8 to ε.

Unfortunately, this doesn’t show that graph powering is a useful derandomized parallel
repetition scheme5. The game G is constructed by first taking a game Glow with value ε,
and “hiding” it in a high value game G with value at least 1/8. The game H produced by
graph powering “uncovers” Glow, and thus val(H) ≤ val(Glow) ≤ ε. However, intuitively
the error reduction was not obtained by graph powering per se, but rather came from a
“planted” game that had low value to begin with. This shows that the degree-dependent
lower bound of Feige and Kilian is in a sense tight, and thus to obtain stronger no-go results
for derandomized parallel repetition, we turn to investigating proof strategies, which is the
focus of our paper.

C.1 The Derandomized Parallel Repetition Scheme: Graph Powering
Specifically, the derandomized parallel repetition scheme we use is graph powering, well-
known from the gap amplification scheme of Dinur. This transforms a graph G = (V,E) to a
graph G∗t = (V ′, E′). In this graph, we have that V ′ = V , and each vertex v ∈ V ′ intuitively
corresponds to the “cloud” of vertices reachable from v ∈ V in t steps. Furthermore, each
edge in E′ corresponds to a (2t+ 1)-step random walk in E. The prover is supposed to give
each vertex v′ ∈ V ′ a super-label that contains labels for each of the vertices in its “cloud,”
and each edge e′ = (u′, v′) ∈ E′ checks that: 1) the labels to u′ and v′ are valid and 2) there
is consistency in the labels of all the vertices shared between the cloud of u′ and the cloud of
v′.

The graph powering method described above is a form of derandomized parallel repetition.
If we let d denote the maximum degree of the graph G, selecting a random edge in G∗t

takes log |V |+ (2t+ 1) log d bits of randomness, as edges in G∗t are simply (2t+ 1)-length
random walks. Note that with t and d being constant, this is an extremely randomness
efficient way to ask many questions. The main problem with using this as a derandomized
parallel repetition scheme is that it is unclear how to prove that the value of G∗t is decaying
with increasing t. However, in this section we will create games G for which the value of
G∗t is significantly lower than the value of G, and hence be able to use graph powering as
derandomized parallel repetition. In fact, we will only need to focus on the case where t = 2:
that is, in this section, we will construct games G where the value of G∗2 is much lower than
the value of G.

We also observe that the alphabet size of G∗t is |Σ|dt (since we are asking for labels to
all the vertices reachable in t steps from a vertex v). In our construction, |Σ|, d, and t are all
constant (relative to the size of the game), and thus the alphabet size is constant.

C.2 A Sketch of the Construction
The rough outline of the construction is as follows:

5 In fact, Bogdanov constructs games for which graph powering fails to achieve any error reduction at
all [6].

APPROX/RANDOM’16

42:24 A No-Go Theorem for Derandomized Parallel Repetition: Beyond Feige-Kilian

1. Start with a two prover game G′ = (X ′, Y ′, E′,Σ, C), where C denotes the constraints
on the game G′, that has low constant value ε, has a constant sized alphabet, and has
constant degree.

2. Use composition to transform G′ into a game G over the alphabet {0, 1}3. An exposition
on composition can be found in Section 5 of [9]. Roughly speaking, by composition we
mean that we replace each constraint in the game G′ with a gadget that encodes the
constraint, but is itself a game over alphabet {0, 1}3. Such gadgets are called assignment
testers, and have a size that depends only on the alphabet size of G′. The game G that
we get after composition necessarily has high value, as a random strategy satisfies at least
1/8th of the constraints. More details can be found in Section C.4 below.

3. Use graph powering on G to get the game G∗2, which will have value at most that of G′.
This construction works by using composition to hide the low value game G′ inside the
high-value game G. However, the hiding was performed in a local fashion that can easily
be uncovered by graph powering. Namely, the game G∗2 will contain constraints of G′, and
hence have low value. Furthermore, due to the constant degree and alphabet size of G′,
the game G∗2 will have very low randomness complexity – no more than the randomness
complexity of G plus an additive constant. We now go into each step in further detail.

C.3 Step 1: A Game with Low Value
We start with a two player game G′ = (X ′, Y ′, E′,Σ, C) with val(G′) < ε, and the alphabet
size and degree are functions of 1/ε. Since we think of ε as a constant, the alphabet size and
degree are also constant.

C.4 Step 2: Composition
Recall that our goal in this section is to transform the game G′ into a game G over the
alphabet {0, 1}3. For this we will use composition with assignment testers as described in
Definition 5.1 in [9]. We define assignment testers below:

I Definition 13 (Assignment Tester, Definition 2.2 from [9]). An Assignment Tester with
alphabet Σ0 and rejection probability ε > 0 is an algorithm P whose input is a circuit Φ over
Boolean variables X, and whose output is a constraint graph G = ((V,E),Σ0, C) such that
V ⊃ X and the following hold. Let V ′ = V \X, and let a : X → {0, 1} be an assignment.

(Completeness) If a ∈ SAT(Φ), there exists b : V ′ → Σ0 such that UNSATa∪b(G) = 0.
(Soundness) If a 6∈ SAT(Φ), then for all b : V ′ → Σ0, we have UNSATa∪b(G) ≥
ε · rdist(a,SAT(Φ)).

where rdist(a, S) = mins∈S |a⊕s||V | denotes the minimum relative Hamming distance between a
and elements of the set S, SAT(Φ) is the set of satisfying inputs to Φ, and UNSATa∪b(G) is
the fraction of constraints of G that are unsatisfied by the assignment induced by a and b.

Additionally, Theorem 5.1 of [9] gives us that there are explicit assignment testers over {0, 1}3
for a certain ε > 0.

Using assignment testers, we can describe the composition of a game G and an assignment
tester P. For this, we will use an error correcting code e : Σ→ {0, 1}`, where log2 |Σ| ≤ ` ≤
c · log2 |Σ| for some constant c.

I Definition 14 (Composition, Definition 5.1 from [9]). Let G = ((V,E),Σ, C) be a constraint
graph and let P be an assignment tester. Let e : Σ→ {0, 1}` be an encoding as described
above with relative distance ρ > 0. The constraint graph G ◦ P = ((V ′, E′),Σ0, C′) is defined
in two steps:

D. Moshkovitz, G. Ramnarayan, and H. Yuen 42:25

(Robustization): First, we convert each constraint c(e) ∈ C to a circuit c̃(e) as follows.
For each variable v ∈ V , let [v] be a fresh set of ` Boolean variables. For each edge
e = (v, w) ∈ E, c̃(e) will be a circuit on 2` Boolean variables [v] ∪ [w] that outputs 1 iff
the assignment for [v] ∪ [w] is a legal assignment for v and w that would have satisfied
the constraint c on (v, w).
(Composition): Run the assignment tester P on each c̃(e). Let Ge = ((Ve, Ee),Σ0, C(e))
denote the resulting constraint graph, and recall that [v] ∪ [w] ⊂ Ve. Assume, wlog,
that Ee has the same cardinality for each e. Define the new constraint graph G ◦ P =
((V ′, E′),Σ0, C′) by

V ′ =
⋃
e∈E

Ve E′ =
⋃
e∈E

Ee C′ =
⋃
e∈E
Ce

As noted in [9], the output graph Ge of an assignment tester P when it is used in composition
above has size that depends only on the alphabet size of the game G′, which is a constant.
Hence, the size of Ge is also a constant. Furthermore, it can be seen from Definitions 13 and
14 that G(u,v) can have all its constraints satisfied if and only if the assignments given to [u]
and [v] are legal assignments for u and v that satisfy the constraint c((u, v)).

We will consider the modified assignment tester P ′, which acts as follows. It runs P on
the input, and looks at the resulting constraint graph H. It then adds all missing edges to
H to create a complete graph H, and puts trivially satisfied constraints on all of them. It
can be seen that if H had constant size, then so does H. Note that the constraints of H are
all satisfiable if and only if the constraints of H are all satisfiable. Hence, the output graphs
of the assignment tester P ′ also satisfy the property that all of its constraints are satisfiable
if and only if the input variables encoded a satisfying a legal and satisfying assignment to
the input constraint.

We will define the constraint graph G as G′ ◦ P ′. The high connectivity of each gadget
H will be very useful to us in Step 3.

This process gives us a constraint graph G with val(G) ≥ 1/8, since a random strategy
can achieve val(G) ≥ 1/8 in games over an alphabet of size 8.

C.5 Step 3: Randomness-Efficient Parallel Repetition via Graph
Powering

Fix a vertex v in the game G. This vertex lies in G(u′,w′) for some (u′, w′) ∈ E′, where
G(u′,w′) denotes the output of the assignment tester P ′ on [u′] and [w′]. Now consider the
graph G∗2. The label to v in G∗2 claims labels to all vertices in G(u′,w′) due to the fact
that G(u′,w′) is a complete graph. This label is valid if and only if all the constraints in
G(u′,w′) are satisfied, which occurs if and only if the labels to [u′] and [w′] encode valid
and satisfying labels for the edge (u′, w′) ∈ E′. Therefore, even picking a uniform vertex in
G∗2 and testing the validity of its label already performs a uniform test in G′, and hence
val(G∗2) ≤ val(G′) < ε.

As discussed in Section C.1, the amount of randomness used to sample a random
constraint in G∗2 consists of the randomness to query a single vertex of G∗2, which consists
the randomness required to select a single vertex of G, and the randomness required to take
a two step random walk in G. The degree of G is a function of two things: the size of the
output graphs of the assignment testers and the degree of G′. Both of these are constant
in our setting, and so taking a two step walk on G takes constant amount of randomness.
Hence, using a derandomized parallel repetition scheme, we can transform a game G with
val(G) ≥ 1/8 to a game G∗2 with val(G∗2) < ε for an arbitrarily small constant ε, where the

APPROX/RANDOM’16

42:26 A No-Go Theorem for Derandomized Parallel Repetition: Beyond Feige-Kilian

size of G∗2 is |G∗2| = c(Σ, d)|G|, and Σ and d denote the alphabet size and degree of the
game G′. Since Σ and d are functions of 1/ε, for constant ε these are also constant.

We note that to get soundness ε will normal parallel repetition, we would have had
to repeat the game at least k = log8

1
ε times, and so the size of this game Gk would be

|G|k = Ω(|G|log 1
ε). We can see that G∗2 is considerably smaller than this, and is in fact

almost-linear in |G|.

D Random games are fortified

In this section we prove that randomly sampled d-regular bipartite graphs are fortified with
high probability, and can therefore be used as input games to the Main Theorem. Formally,
we prove the following:

I Lemma 15. Let 0 < η, δ < 1. Let 0 < β < 1/2. Let t be an integer and let Σ be a finite
alphabet. Let d > 4(1+ln |Σ|)

η2δ2 . Let G = ([t] × [t], E) be a bipartite graph that is the union
of d random perfect matchings M1, . . . ,Md, and let G = (X,Y,E, π,Σ) be a game where
X = Y = [t] and for each edge e ∈ E, πe is a randomly chosen subset of Σ× Σ of density β.
Then the following properties hold with probability at least .99:
1. G is d-regular, and has at most 200d2 parallel edges.
2. For all S, T ⊆ [t] with |S|, |T | ≥ δt, we have∣∣∣∣ |E ∩ (S × T)|

|S||T |
− d

t

∣∣∣∣ ≤ η dt .
3. val(G) ≤ β + η.
4. G is (δ, 2η)-fortified.

Note that, if we set ε = 2η and assume that 200d2 < ε|E|, the games provided by
Lemma 15 satisfy the conditions we require in Theorem 4. Before proving the lemma, we
prove a general lemma about the sampling properties of d random perfect bipartite matchings.

I Lemma 16 (Random matchings sample well). Let M1, . . . ,Md be d perfect matchings on
[t]× [t] sampled uniformly at random. Let Z ⊆ [t]× [t] be an arbitrary set, and let µ = |Z|/t2.
Then with probability at least 1− exp(−Ω(ρ2µ2dt)),

∣∣∣|⋃jM j ∩ Z| − µdt
∣∣∣ ≤ ρ · µdt.

Proof. We treat the selection of a random matching M j as a result of a random process
where first, the edges of the complete bipartite graph Kt,t are ordered randomly, and then
the edges in M j ⊂ Kt,t are revealed one by one according to this random order. Let Eji
denote the ith revealed edge in M j . Let Y ji be the indicator variable for whether Eji ∈ Z.
Let Y =

∑
j

∑
i Y

j
i . Imagine a random process that first reveals all the edges of M1 one at

a time, then all the edges of M2 one at a time, and so forth. Define a sequence of td + 1
random variables X0, X

1
1 , . . . , X

1
t , X

2
1 , . . . , X

2
t , . . . , X

d
1 , . . . , X

d
t , where X0 = E[Y] and

Xj
i = E[Y | E≤(j,i)]

where E≤(j,i) denotes the sequence E1
1 , . . . , E

j−1
t , Ej1, . . . , E

j
i , i.e., all the edges in matchings

M1, . . . ,M j−1, and the first i edges in matching M j . By construction, the random variable
sequence {Xj

i } forms a Doob martingale with respect to the sequence {Eji }. We wish to
apply Azuma’s inequality to this to show that Y is tightly concentrated about its mean,
which is

X0 = E[Y] =
∑
j

∑
i

E[Yi] = µdt,

D. Moshkovitz, G. Ramnarayan, and H. Yuen 42:27

by linearity of expectation and the fact that the marginal distribution on each edge of M j is
a uniformly random edge in Kt,t. In order to apply Azuma’s inequality, we need to establish
that max{|Xj

i −X
j
i−1|, |X

j
1 −Xj−1

n |} < c for some constant c. We argue that c = 4.
We introduce some notation that will be useful for us. Let U ji denote the complete

bipartite graph on all the vertices that haven’t been “paired” up by the edges Ej1, . . . , E
j
i . In

other words, it is the subgraph of Kt,t where the edges Ej1, . . . , E
j
i , and all adjacent edges to

them are removed. LetMj
i denote the set of all perfect matchings on U ji . Note that, for all

i, the matching M j is contained inMj
i . We will let U j0 denote Kt,t andMj

0 to simply be
the set of all perfect matchings on Kt,t. Finally, for all matchings (not necessarily perfect)
M of Kt,t, let α(M) denote |M ∩ Z|.

Consider the difference |Xj
1 −Xj−1

n |. Suppose that the edges in the sequence E<(j,1) –
i.e., all the edges in matchings M1, . . . ,M j−1 – have been revealed. Then we have

Xj
1 −X

j−1
t = E[Y | E≤(j,1)]− E[Y | E<(j,1)]

=
∑
j′≥j

E

[∑
i

Y j
′

i

∣∣∣∣∣E≤(j,1)

]
− E

[∑
i

Y j
′

i

∣∣∣∣∣E<(j,1)

]

= E

[∑
i

Y ji

∣∣∣∣∣E≤(j,1)

]
− E

[∑
i

Y ji

∣∣∣∣∣E<(j,1)

]

= E

[∑
i

Y ji

∣∣∣∣∣Ej1
]
− E

[∑
i

Y ji

]

In the second line we used the linearity of expectation and the fact that, conditioned on
E<(j,1), the random variables Y j

′

i′ are all fixed (i.e. revealing more edges from other matchings
do not change their values) for all i′ and all j′ < j. In the third line, we use that revealing
an edge in matching M j does not affect the random variables Y j

′

i for j′ > j. We use the
same reasoning in the fourth line; Y ji is independent of the edges of M1, . . . ,M j−1.

Observe that, conditioned on Ej1, we have that M j is a uniformly distributed matching in
Mj

1 adjoined with Ej1 (sinceMj
1 technically contains submatchings). Without conditioning

on Ej1, M j is a uniformly distributed matching inMj
0. Thus we have the identities

E

[∑
i

Y ji

∣∣∣∣∣Ej1
]

= Y j1 +

 1
|Mj

1|

∑
N∈Mj

1

α(N)

and

E

[∑
i

Y ji

]
= 1
|Mj

0|

∑
M∈Mj

0

α(M).

Define the mapping B :Mj
0 →M

j
1 on matchings where, for all matchings M ∈Mj

0:
If M contains Ej1, then B(M) is the submatching M restricted to U j1 .
Else if M contains (a, d) and (c, b) where Ej1 = (a, b), then B(M) is the submatching M
restricted to U j1 adjoined with (c, d) (which was not in originally in M).

Fix an M ∈ Mj
0. Suppose that Ej1 ∈ M . Then |α(M) − α(B(M))| ≤ 1. Otherwise,

|α(M)− α(B(M))| ≤ 2, because it could be that both (a, d) and (b, c) are in Z, and (c, d) is
not.

APPROX/RANDOM’16

42:28 A No-Go Theorem for Derandomized Parallel Repetition: Beyond Feige-Kilian

Furthermore, observe that the map B is onto, and for all N ∈ Mj
1, the sizes of the

preimages B−1(N) ⊂Mj
0 are all the same. Then we have

E

[∑
i

Y ji

]
= 1
|Mj

1|

∑
N∈Mj

1

|Mj
1|

|Mj
0|

∑
M∈B−1(N)

α(M)

so ∣∣∣Xj
1 −Xj−1

n

∣∣∣ =

∣∣∣∣∣E
[∑

i

Y ji

∣∣∣∣∣Ej1
]
− E

[∑
i

Y ji

]∣∣∣∣∣
≤ |Y j1 |+

∣∣∣∣∣∣ 1
|Mj

1|

∑
N∈Mj

1

α(N)− |M
j
1|

|Mj
0|

∑
M∈B−1(N)

α(M)

∣∣∣∣∣∣
≤ 1 + 1

|Mj
1|

∑
N∈Mj

1

|Mj
1|

|Mj
0|

∑
M∈B−1(N)

|α(B(M))− α(M)|

≤ 3.

The first inequality follows from triangle inequality, the second inequality follows from the
fact that the number of M ∈ B−1(N) is equal to |Mj

0|/|M
j
1|, and the third inequality follows

from our bound on the difference |α(B(M))− α(M)|.
Since this holds for every fixing of E<(j,1), this implies that |Xj

1−X
j−1
t | < 4 with certainty.

The same argument as above also implies that for all i, |Xj
i+1 − X

j
i | < 4 with certainty.

Hence, we can apply Azuma’s inequality:

Pr(|Xd
n −X0| ≥ ρ · µdt) ≤ 2 exp

(
−ρ

2µ2dt

2c2

)
.

We conclude the theorem by observing that Xd
n is the number of edges in the union of the

matchings M1, . . . ,Md that fall within Z. J

I Lemma 17. Let G = ([t]× [t], E) be a bipartite graph that is the union of d random perfect
matchings on [t]× [t]. Then the probability that there are more than 200d2 parallel edges in
E is less than 1/200.

Proof. Let M1, . . . ,Md denote the matchings. For 1 ≤ j, j′ ≤ d, and 1 ≤ i ≤ n, let Xj,j′,i

denote the indicator variable that the ith left vertex gets matched to the same right vertex
under matchings M j and M j′ . Note that E[Xj,j′,i] = 1/t. Note that the number of parallel
edges is at most

∑
j,j′
∑
iXj,j,i′ , and thus the expected number of parallel edges is at most

d2. By Markov’s inequality, the number of parallel edges is at most 200d2 with probability
at least 1− 1/200. J

I Corollary 18. Let 0 < δ, ρ < 1, and let d > 1/(ρ2δ2)+2. Let G = ([t]× [t], E) be a bipartite
graph that is the union of d random perfect matchings on [t]× [t]. Then with probability at
least 1− exp(−Ω(ρ2δ2dt)), for every S, T ⊆ [t] where |S|, |T | ≥ δt, we have that∣∣∣∣ |E ∩ (S × T)|

|S||T |
− d

t

∣∣∣∣ ≤ ρdt .
Proof. This follows from Lemma 16 and union bounding over all S, T ⊆ [t] such that
|S|, |T | ≥ δt (of which there are at most 22t). J

D. Moshkovitz, G. Ramnarayan, and H. Yuen 42:29

We now prove Lemma 15, which we restate here for completeness.

of Lemma 15. By Lemma 17 and Corollary 18, we have that with probability at least
199/200− exp(−Ω(ρ2δ2dt)) ≥ 198/200, the graph G is such that properties (1) and (2) of
the lemma statement are satisfied. Call this event H.

We now argue that properties (3) and (4) are satisfied with high probability, conditioned
on H. Define m := td.

I Claim 19. Let S ⊆ X and T ⊆ Y be such that |S|, |T | ≥ δt. The probability that there
exist assignments ψX : X → Σ and ψY : Y → Σ such that more than 2η fraction of the
constraints πe such that e ∈ E ∩ (S × T) are satisfied by (ψX , ψY), conditioned on H, is at
most exp(−(η2δ2d− 2(ln |Σ|))t).

Proof. Fix ψX : X → Σ and ψY : Y → Σ. Let ES×T denote E ∩ (S × T). We have that
|ES×T | ≥ δtd/2. Given a fixed assignment, the probability a randomly chosen constraint
πe for an edge e ∈ ES×T is satisfied by the assignment is β. Thus the expected fraction of
satisfied edges is β|ES,T |. By Chernoff, the probability that more than (β + η)|ES×T |, or
less than (β − η)|ES×T | edges are satisfied is at most exp(−2η2|ES×T |) ≤ exp(−η2δ2m) by
our condition on the size of ES×T .

Union bounding over all |Σ|2t = exp(2(ln |Σ|)t) possible assignments (ψX , ψY), we have
that the probability that there exists an assignment such that more than 2η|ES×T | edges are
satisfied is at most exp(−(η2δ2m− 2(ln |Σ|)t)). J

Let JS,T denote the event that for all assignments (ψX , ψY), no more than β + η fraction
of edges in E ∩ (S × T) are satisfied by (ψX , ψY). Let J denote the event that JS,T holds for
all S, T of size at least δn. By union bound, the probability that J does not hold is at most

22t · exp(−(η2δ2m− 2(ln |Σ|)t)) = exp(−(η2δ2m− 2(1 + ln |Σ|)t)).

Since

d > max
{

2
δ

ln 1
δ
,

4(1 + ln |Σ|)
η2δ2

}
then the probability that J and H both do not hold is at most

Pr(¬H) + Pr(¬J |H) ≤ .99.

But if J and H both hold, this implies that for all S, T of size at least δt, the fraction of
satisfiable edges is at between β−η and β+η. Thus this implies that G is (δ, 2η)-fortified. J

APPROX/RANDOM’16

Fast Synchronization of Random Automata
Cyril Nicaud∗

Université Paris-Est, LIGM (UMR 8049), CNRS, ENPC, ESIEE Paris, UPEM,
Marne-la-Vallée, France
cyril.nicaud@u-pem.fr

Abstract
A synchronizing word for an automaton is a word that brings that automaton into one and the
same state, regardless of the starting position. Černý conjectured in 1964 that if a n-state deter-
ministic automaton has a synchronizing word, then it has a synchronizing word of length at most
(n − 1)2. Berlinkov recently made a breakthrough in the probabilistic analysis of synchroniza-
tion: he proved that, for the uniform distribution on deterministic automata with n states, an
automaton admits a synchronizing word with high probability. In this article, we are interested
in the typical length of the smallest synchronizing word, when such a word exists: we prove that
a random automaton admits a synchronizing word of length O(n log3 n) with high probability.
As a consequence, this proves that most automata satisfy the Černý conjecture.

1998 ACM Subject Classification G.2.1 Combinatorics

Keywords and phrases random automata, synchronization, the Černý conjecture

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2016.43

1 Introduction

A synchronizing word (or a reset word) for an automaton is a word that brings that automaton
into one and the same state, regardless of the starting position. This notion, first formalized
by Černý in the sixties, arises naturally in automata theory and its extensions, and plays an
important role in several application areas [17]. Perhaps one of the reasons synchronizing
automata are still intensively studied in theoretical computer science is the following question
asked by Černý [16] back in 1964: “Does every synchronizing n-state automaton admits a
synchronizing word of length at most (n− 1)2?” The upper bound of (n− 1)2, as shown by
Černý, is best possible. This question, known as the Černý conjecture, is now one of the
most famous conjectures in automata theory. Though established for important subclasses
of automata, the Černý conjecture remains open in the general case. The best known upper
bound, established in the early eighties [13, 6], is 1

6 (n3 − n). We refer the interested reader
to Volkov’s article [17] for a more detailed account on the Černý conjecture.

1.1 The probabilistic Cerný conjecture
In this article, we consider the Černý conjecture from a probabilistic point of view (as
proposed, for example, by Cameron1 in [4]). This leads to the following questions, for the
uniform distribution on deterministic automata with n states, on a fixed alphabet:

∗ This work is supported by the French National Agency (ANR) through ANR-JCJC-12-JS02-012-01.
1 Cameron studied the transformation monoid generated by a fixed number of mappings from a set Ω of

size n to itself. This is the same as a deterministic automaton, where each mapping correspond to the
action of a letter on the set of states Ω. In these settings, “Is the automaton synchronizing?” translates
directly into “Does the monoid contain a constant mapping?”.

© Cyril Nicaud;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016).
Editors: Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans; Article No. 43; pp. 43:1–43:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.43
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

43:2 Fast Synchronization of Random Automata

Question 1: Is a random automaton synchronizing with high probability?
Question 2: Does a synchronizing automaton admits a synchronizing word of length at
most (n− 1)2 with high probability?

Where with high probability means “with probability that tends to 1 as n goes to infinity”.

1.2 Main related results

Berlinkov recently made a breakthrough [2] by giving a positive answer to Question 1: he
proved that the probability that a random automaton is not synchronizing is O(n− 1

2 |A|), for
an alphabet A with at least two letters.

Question 2 only received partial results so far: Skvortsov and Zaks [15] gave a positive
answer for alphabets whose cardinality grows as nβ for β > 1

2 . They also proved that the
probability of having a short reset word is non-negligible for alphabets with at least four
letters [18].

Question 2 can also be simulated and experimental evidence suggests that most automata
are synchronized by a short synchronizing word, of length sublinear in the number of states.
Note that simulating the second question is nontrivial, as most problems related to the
shortest reset word are hard [12] (for instance, deciding whether the shortest reset word
as length ` is DP-complete, where DP is the closure of NP∪coNP for finite intersections);
the best experimental results we are aware of were obtained by Kisielewicz, Kowalski, and
Szykula [9]. According to these results, the expected length of the shortest reset word, when
it exists, seems to grow in Θ(

√
n).

Note finally that Berlinkov and Szykula [3] recently used the results of this paper to
establish a bound of n3/2+o(1) for the expected value of the shortest reset word in a random
synchronizing automaton.

1.3 Our results

In this paper we give a positive answer to Question 2 when the automaton is chosen uniformly
among deterministic and complete n-state automata on an alphabet with at least two letters.
More precisely, we show that with high probability, a random n-state automaton admits a
synchronizing word of length O(n log3 n).

Even if the Černý conjecture is settled in the positive, our main result remains interesting,
as it yields that most automata admit a synchronizing word of length almost linear.

Our proof also gives another way to show that automata are synchronizing with high
probability, based a method that differ completely from Berlinkov’s work. He used recent
results on synchronization, as well as some advanced properties of random mappings. In our
proof, we directly build words that iteratively shrink the set of states, using only basic discrete
probabilities and variations on the probabilistic pigeonhole principle (also known as the
Birthday Paradox). The proof proposed by Berlinkov is arguably more complicated, but also
more precise, since it gives a sharp estimation of the probability of not being synchronizing2.

Due to lack of space, the proofs are omitted in this extended abstract.

2 Knowing the probability of not being synchronizing is important in many situations, especially for
the average case analysis of algorithms, as illustrated in the conclusions of [2]. Berlinkov also replies
precisely to a question asked by Cameron [4].

C. Nicaud 43:3

2 Definitions and notations

For any integer n ≥ 1, let [n] = {1, . . . , n} be the set of integers between 1 and n. The
cardinality of a finite set E is denoted by |E|.

2.1 Automata

Let A be a finite alphabet, a deterministic automaton on A is a pair (Q, δ), where Q is a
finite set of states and δ is the transition function, a (possibly partial) function from Q×A to
Q. If p, q ∈ Q and a ∈ A are such that δ(p, a) = q, then (p, a, q) is the transition from p to q
labelled by a, and is denoted by p a−→ q. It is the a-transition outgoing from p. Since we only
consider deterministic automata in this article, we simply call them automata in the sequel.

An automaton A = (Q, δ) on A is classically seen as a labelled directed graph, whose set
of vertices is Q and whose edges are the transitions of A.

An automaton is complete when its transition function is a total function and incomplete
otherwise. The transition function is extended inductively to Q×A∗ by setting δ(p, ε) = p

for every p ∈ Q and, for every u ∈ A∗, δ(p, ua) = δ(δ(p, u), a) when everything is defined,
and undefined otherwise. If u ∈ A∗, we denote by δu the (possibly partial) function from Q

to Q defined by δu(p) = δ(p, u), for all p ∈ Q.
If A = (Q, δ) is an automaton on A, an extension of A is an automaton B = (Q,λ) on

A such that for all p ∈ Q and for all a ∈ A, if δ(p, a) is defined then λ(p, a) = δ(p, a). The
automaton B is therefore obtained from A by adding some transitions. We denote by Ext(A)
the set of all the extensions of an automaton A. If H is a set of automata, we denote by
Ext(H) the union of all the Ext(A) for A ∈ H.

2.2 Synchronization

Let A be an automaton on A. Two states p and q of A are synchronized by the word w ∈ A∗
when both δw(p) and δw(q) are defined and equal.

A synchronizing word for an automaton A = (Q, δ) is a word w ∈ A∗ such that δw is
a constant map: there exists a state r ∈ Q such that for every p in Q, δw(p) = r. An
automaton that admits a synchronizing word is said to be synchronizing.

2.3 Mappings

A mapping on a set E is a total function from E to E. When E is finite, a mapping f on E
can be seen as a directed graph with an edge i→ j whenever f(i) = j. An example of such
a graph is depicted in Figure 1.

Let f be a mapping on E. The element x ∈ E is a cyclic point3 of f when there exists
an integer i > 0 such that f i(x) = x. In the sequel, E will often be the set of states of an
automaton, and we will therefore use the term “state” instead of “point”.

If f is a mapping on E and x ∈ E, the height of x is the smallest i ≥ 0 such that f i(x) is
a cyclic point. The height of a cyclic point is therefore 0. The height of a mapping on E is
the maximal height of an element of E. The mapping depicted in Figure 1 has height 3, and
the maximal height is reached by the state 9.

3 We will also say a f-cyclic point when the mapping under consideration is not clear in the context.

APPROX/RANDOM’16

43:4 Fast Synchronization of Random Automata

1

2

34

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Figure 1 The graph of a mapping for n = 18. The cyclic points are indicated in bold.

2.4 Probabilities
Let (E, s) be a pair where E is a set and s is a size function from E to Z≥0. The pair (E, s)
is a combinatorial set4 when for every integer n ≥ 0, the set En of size-n elements of E
is finite. To simplify the definitions, we also assume that En 6= ∅ for every n ≥ 1, which
will always be the case in the following. Let (Pn)n≥1 be a sequence of total functions such
that for each n ≥ 1, Pn is a probability on En. We say that a property P holds with high
probability for (Pn)n≥1 when Pn[P holds]→ 1 as n→∞.

We will often consider the uniform distribution on E, which is the sequence (Pn)n≥1
defined by Pn[{e}] = 1

|En| for any e in En: A sentence like “property P holds with high
probability for the uniform distribution on E” therefore means that the probability that P
holds tends to 1 as n tends to infinity, when for each n we consider the uniform distribution
on En. The reader is referred to [5] for more information on combinatorial probabilistic
models.

2.5 Random mappings and random p-mappings
A random mapping of size n ≥ 1 is a mapping on [n] taken with the uniform distribution.
If p is a probability mass function on [n], a random p-mapping is the distribution on the
mappings on [n] such that the probability of a mapping f is

∏
i∈[n] p(f(i)): the image of

each i ∈ [n] is chosen independently of the others, following the probability p.
A result stated as “a random p-mapping satisfies property P with high probability” means

that for any sequence (pn)n≥1, where pn is a probability on [n], the probability that a
pn-random mapping on [n] satisfies P tends to 1 as n tends to infinity. It is therefore a
strong result that does not depend on the choice of (pn)n≥1.

2.6 Random automata
In the sequel, the set of states of an n-state automaton will always be [n]. With this condition,
there are exactly n|A|n complete automata with n states on |A|. For the uniform distribution,
each size-n complete automaton has therefore probability n−|A|n. See [11] for a recent account
on the typical properties of uniform random deterministic automata.

Remark that one can also see this distribution as drawing uniformly at random and
independently in [n] the image of each δ(p, a), for all p ∈ [n] and a ∈ A. These alternative way
to look at random automata will be widely used in the sequel, especially in the following way:
Let A be a fixed incomplete automaton with n states. The uniform distribution on complete

4 The size is often clear in the context (number of nodes in a tree, ...) and can be omitted.

C. Nicaud 43:5

automata of Ext(A) is obtained by choosing uniformly at random and independently in [n]
the transitions that are undefined in A.

3 Preliminary classical results

In this section, we recall some classical results that will be useful in sequel. Though elementary,
these results are the main ingredients of this article.

We start with the following property for synchronizing automata: an automaton is
synchronizing if and only if every pair of states can be synchronized.

I Lemma 1. Let A be an n-state automaton and ` be a non-negative integer. If for every
pair of states (p, q) in A there exists a word u of length at most ` such that δu(p) = δu(q),
then A admits a synchronizing word of length at most `(n− 1).

Random mappings and random p-mappings have been studied intensively in the litera-
ture [7, 14, 10], using probabilistic techniques or methods from analytic combinatorics. In
this section, we only recall basic properties of the typical number of cyclic points and of
the typical height of a random p-mapping. This can be achieved using variations on the
probabilistic pigeonhole principle only; more advanced techniques can be used to obtain more
precise statements5, but we will only need the following results in the sequel.

I Lemma 2. The probability that a random p-mapping of size n has more than 2
√
n logn

cyclic points or that it has height greater than 2
√
n logn is O(1

n).

The proof of Lemma 2 consists of two steps. It is first established for uniform random
mappings then extended to general p-random mappings, by proving that the uniform case is
the worst possible distribution for a p-random mapping.

4 Main Result

The main result of this article is the following theorem.

I Theorem 3. Let A be an alphabet with at least two letters. For the uniform distribution,
an n-state deterministic and complete automaton on A admits a synchronizing word of length
O(n log3 n) with high probability. More precisely, the probability that no such word exists is
O(n− 1

8 log4 n).

The statement does not hold for alphabets with only one letter, since there are cycles of
length greater than 1 in a random mapping with high probability [14]: two distinct states in
such a cycle cannot be synchronized.

As a consequence of Theorem 3, a random deterministic and complete automaton is
synchronizing with high probability; our proof therefore constitutes an alternative proof
of [2] for that property. Our statement is weaker, since Berlinkov also obtained the upper
bound O(n− 1

2 |A|) for the error term (the number of automata that are not synchronizing),
which is tight for two-letter alphabets. On the other hand, it is arguably more elementary as
we mostly rely on Lemma 2 and some basic discrete probabilities; in any cases, we hope our
proof sheds a new light on the reasons why automata are often synchronizing.

5 For instance, limit distributions of some parameters [5] or even a notion of continuous limit for random
mappings [1].

APPROX/RANDOM’16

43:6 Fast Synchronization of Random Automata

If we consider the uniform distribution on synchronizing automata, we directly obtain
that there exists a small synchronizing word with high probability, yielding the following
corollary.

I Corollary 4. For the uniform distribution on synchronizing deterministic and complete
automata on an alphabet with at least two letters, the Černý conjecture holds true with high
probability.

We prove Theorem 3 in two main steps:
We first construct a word wn ∈ {a, b}∗ such that the image of δwn

for a random n-state
automaton has size at most n1/8 log7/8 n with high probability. This is done by building
a set Gn of incomplete automata that have this property, and showing that a random
n-state automaton extends an element of Gn with high probability. Roughly speaking, Gn
and wn are built by three consecutive applications of Lemma 2, starting with incomplete
automata with only a-transitions, which we then augment by b-transitions in two rounds.
It remains to synchronize those n1/8 log7/8 n states. This is done by showing that for a
random automaton that extends an element of Gn, with high probability any two of those
states can be synchronized by a word of the form biwn, with i ≤ n1/4. Lemma 1 is then
used to combine these words, and also wn, into a synchronizing word for the automaton.

The remainder of this section is devoted to a more detailed proof of Theorem 3. For the
presentation, we will follow an idea used by Karp in his article on random direct graphs [8]:
we start from an automaton with no transition, then add new random transitions during at
each step of the construction, progressively improving the synchronization.

Since it is clearly sufficient to establish the result for a two-letter alphabet, we consider that
A = {a, b} from now on, except for the informal discussion at the beginning of Section 4.3.

4.1 Generating the a-transitions
The first step consists in generating all the a-transitions. This forms a mapping for δa that
follows the uniformly distribution on size-n mappings. We can therefore apply Lemma 2,
and obtain that words of the form ai can already be used to reduce significantly the number
of states to be synchronized.

Let αn = b2
√
n lognc and let En denote the set of incomplete automata A with n states

such that:
1. The defined transitions of A are exactly its a-transitions.
2. The action δa of a has at most αn cyclic states.
3. The height of δa is at most αn.

I Example 5. Let A be an automaton with 18 states, which has only a-transitions and such
that δa is the mapping of Figure 1 page 4. Its set Cyca(A) is {2,3,7,11,13,17}. Since
α18 = 14, the word u18 = a14 is used to start the synchronization:

{6, 7, 9, 18} u18−−→ 2; {3, 5, 12} u18−−→ 3; {4, 16, 17} u18−−→ 7;
{11} u18−−→ 11; {1, 10, 13, 15} u18−−→ 13; {2, 8, 14} u18−−→ 17.

As there are 6 ≤ α18 cyclic states and since this mapping’s height is 3 ≤ α18, the automaton
A is an element of E18.

As the action of the letter a in a uniform random complete automaton is exactly a uniform
random mapping, the following result is a direct consequence of Lemma 2.

C. Nicaud 43:7

I Lemma 6. A random complete automaton with n states extends an element of En with
high probability. More precisely, the probability that such an automaton does not extend an
element of En is O(1

n).

For any automaton A whose a-transitions are all defined, let Cyca(A) denote its set of
δa-cyclic states. They also are the δa-cyclic states of any automaton that extends A.

Let un = aαn . By Lemma 6, we can already start the synchronization using un, as the
image of the set of states [n] by δun is included in Cyca(A), which is much smaller than n
with high probability. In the sequel, we therefore work on synchronizing the elements of
Cyca(A).

4.2 Adding some random b-transitions
Let A be a fixed element of En. We are now working on Ext(A) and we consider the process
of adding a random b-transition starting from every state of Cyca(A).

Let B ∈ Ext(A) be an automaton obtained this way and let fB denote the restriction
of δbun

to Cyca(A). It is a total map, since all the needed b-transitions are defined.
Moreover, the image of fB is included in Cyca(A), as fB(x) = δbun(x) = δun(δb(x)), for
every x ∈ Cyca(A). Hence fB is a total map from Cyca(A) to itself.

I Example 7. This is the automaton of Example 5, where the b-transitions originating from
the elements of Cyca(A) have been added (in bold):

1

2

34

5

6

7

8

9

10

11

12

13

14

15

16

17

18

The map fB, which is the restriction of δbun to Cyca(A), is depicted below. An edge
p = x =⇒ q means that δb(p) = x and δun

(x) = q, so that fB(p) = q:

2

7

11

13

3

17

1

8

13

14

1

18

From a probabilistic point of view, if we fix A and build B by adding uniformly at random
and independently the b-transitions that start from the states of Cyca(A), the induced
distribution for the mapping fB is usually not the uniform distribution on the mappings of
Cyca(A). More precisely, for any q ∈ Cyca(A) the probability that the image by fB of an
element of Cyca(A) is q is proportional to the number of preimages of q by δun

. It is exactly

APPROX/RANDOM’16

43:8 Fast Synchronization of Random Automata

1
n |δ
−1
un

({q})|, the probability that a random state is mapped to q when reading un. For any
word ω ∈ A∗, let PA,ω be the function from [n] to [0, 1] defined by

PA,ω(q) = |δ
−1
ω ({q})|
n

, for all q ∈ [n]. (1)

From the observations above, we get that once A is fixed, fB is a random p-mapping, where
the distribution on Cyca(A) is given by the restriction of PA,un

to Cyca(A).
Let βn = b3n1/4 log3/4 nc. Applying Lemma 2 to fB yields the following result.

I Lemma 8. Let A be a fixed automaton of En. Consider the random process of building
B by adding a b-transition to every element of Cyca(A), choosing the target uniformly and
independently in [n]. For n sufficiently large, the probability that fB has more than βn cyclic
states or that it has height greater than βn is smaller than M

n1/4 , for some positive constant
M that does not depends on A.

For any automaton B whose a-transitions are all defined and whose b-transitions starting
from an element of Cyca(B) are also all defined, let Cycf (B) denote the set of fB-cyclic
states of B.

Let vn = un(bun)βn . At this point, the number of states to be synchronized has been
reduced to less than βn with high probability, since the image of δvn

is usually included
in Cycf (B). It has been achieved by generating all the a-transitions, but using only the
b-transitions that start from the δa-cyclic states: there still remain at least n− αn undefined
b-transitions that can be used to continue the synchronization. Nonetheless, before going on,
we first refine the construction of B introduced in this section by forbidding some cases, for
technical reasons explained in the next section.

4.3 Forbidding correlated shapes
The number of states to be synchronized has been reduced to no more than βn states with
high probability, but this quantity is still too large. For the technique used at the end of
the proof, we need to shrink this set once more. Should the alphabet contain one more
letter c, we could use the same kind of construction as in Section 4.2, and be left with at
most, roughly, n1/8 states to synchronize. This is because c-transitions can be generated
independently of what has been done during the previous steps.

Some care is required to adapt this idea for a two-letter alphabet. We aim at using the
word bb instead of the letter c in the informal description above. Let B be an incomplete
automaton that extends A ∈ En and whose defined transitions are all the a-transitions and
also the b-transitions that start from the δa-cyclic states. We are interested in building an
automaton C from B, by adding some new random b-transitions, in a way such that δbbvn

is
totally defined on Cycf (B). It means that for every q ∈ Cycf (B), the state δb(q) must have
an outgoing b-transition in C. For such an extension C of B, let gC denote the restriction of
δbbvn to Cycf (B).

The main point here is that for a fixed B, we want gC to be defined as a random p-mapping,
so that we can use Lemma 2 once more. There are, a priori, two kind of issues that can
prevent this from happening:
1. When there exists a state q ∈ Cycf (B) such that the b-transition starting from δb(q) is

already defined in B, that is, when δb(q) ∈ Cyca(B).
2. When two distinct states q and q′ in Cycf (B) are such that δb(q) = δb(q′).
Fortunately, the second case cannot occur: if δb(q) = δb(q′) then fB(q) = fB(q′), which is not
possible for two distinct fB-cyclic states.

C. Nicaud 43:9

The first case can occur, and then the image of δb(q) by b is already defined in B and
therefore gC does not follow a p-distribution when we build C by generating the missing
transitions uniformly at random6.

Conversely, if for every q ∈ Cycf (B), δb(q) /∈ Cyca(B), then it is easy to verify that gC is
a random p-mapping: the image of q ∈ Cycf (B) by gC is a given x when δbbvn

(q) = x, which
is equivalent to δb(δb(q)) ∈ δ−1

vn
({x}). Since δb(δb(q)) is chosen uniformly at random in [n], it

happens with probability PB,vn
(x), using the notation of Equation (1).

We therefore forbid the bad cases and define the set Fn of incomplete automata B with
n states such that (we add the last condition to what was done in the previous section):
1. B extends an element of En.
2. The defined transitions of B are all the a-transitions and the b-transitions starting from

the states of Cyca(B).
3. The map fB has height at most βn and has at most βn cyclic states.
4. For every q ∈ Cycf (B), δb(q) /∈ Cyca(B).

I Example 9. The automaton of Example 7 is in Fn. For the fourth condition, observe that
the fB-cyclic states are 13 and 17. Their images by δb, which are 8 and 1 respectively, are
not in Cyca(B). The fact that δb(3) is in Cyca(B) is not a problem here, since 3 is not an
fB-cyclic state.

If we forget the last condition in the definition of Fn, the other requirements hold with
high probability for every fixed A ∈ En, as a consequence of Lemma 8. Lemma 10 below
states that after our additional restriction, the set we obtain is still sufficiently large.

I Lemma 10. With high probability a random complete automaton with n states extends an
element of Fn. More precisely, the probability that it does not extend an element of Fn is at
most n−1/4 log2 n, for n sufficiently large.

4.4 Adding more random b-transitions
Starting from an element of B ∈ Fn, we can now use the idea explained at the beginning of
Section 4.3, and add the random b-transitions that are needed for δbb to be totally defined
on Cycf (B). For such an extension C of B, recall that the mapping gC is the restriction
of δbbvn to Cycf (B). Let Cycg(C) denote the set of gC-cyclic states in C. Thanks to the
last condition of the definition of Fn, we need to randomly choose the b-transitions starting
from the images by δb of Cycf (B), which are all distinct since two distinct states of Cycf (B)
cannot have the same image by δb.

Let γn = b2n1/8 log7/8 nc and let XB denote the set of images of Cycf (B) by δb, i.e.
XB = {δb(x) : x ∈ Cycf (B)}. We define the set Gn of incomplete automata C with n states
that satisfy the following conditions:
1. C extends an automaton B of Fn.
2. The only b-transitions of C are those starting from Cyca(B) and from XB.
3. The map gC has no more than γn cyclic states and has height at most γn.
4. For every q ∈ Cycg(C) the b-transition of δbb(q) is undefined.
The last condition in the definition of Gn is useful for the same kind of reasons than the last
condition of Fn is. It ensures some independence for the final step of the synchronization,
which is presented in Section 4.5.

6 Except in the very degenerate case where the restriction of δbb to Cycf (B) is already a totally defined
and constant map in B.

APPROX/RANDOM’16

43:10 Fast Synchronization of Random Automata

I Lemma 11. With high probability, a random complete automaton with n states extends an
element of Gn. More precisely, the probability it does not extends an element of Gn is O(1

γn
).

Let wn = vn(bbvn)γn . Lemma 11 ensures that for a random complete automaton A, the
image of δwn

is usually included in Cycg(A), which has size at most γn. This concludes the
first part of the synchronization: with high probability, the word wn maps the set of states
of A to the much smaller set of states Cycg(A).

4.5 Synchronizing the remaining states
Let λn = bn1/4c and let C be a fixed automaton of Gn. Starting from C ∈ Gn, we now
prove that the elements of Cycg(C) can be synchronized with high probability when setting
randomly the undefined b-transitions. We follow the idea given at the beginning of Section 4
and first prove that with high enough probability, two states of Cycg(C) can be synchronized
by a word of the form bjwn, for some integer j ≥ 0.

Let q and r be two states of Cycg(C). By definition of Gn, the states q2 = δbb(q) and
r2 = δbb(r) have no outgoing b-transitions in C. For i ≥ 3, we iteratively build a sequence of
uniform and independent pairs (qi, ri) of [n]× [n], and set δb(qi−1) = qi and δb(ri−1) = ri.
We stop this random process if at any step either δwn

(qi) = δwn
(ri), or qi (or ri) already has

a defined b-transition, or i = λn. By studying the probability that this random process halts
because of the condition δwn

(qi) = δwn
(ri), we obtain the following Lemma.

I Lemma 12. Let C ∈ Gn and let q and r be two distinct states of Cycg(C). If we add all the
missing b-transitions to C by drawing them uniformly at random and independently, then the
probability that for all j ∈ {0, . . . , λn} we have δbj ·wn

(r) 6= δbj ·wn
(r) is at most n−3/8 log2 n,

for n sufficiently large.

To conclude the proof of Theorem 3, we use the union bound: for any automaton A that
extends an element of Gn, which happens with high probability, there are less than γ2

n pairs
of states in Cycg(A); the probability that one of these pairs (q, r) cannot be synchronized
using a word of the form bj ·wn is therefore at most γ2

n ·n−3/8 log2 n, which is O(n− 1
8 log4 n).

To obtain the length of the synchronizing word, we apply Lemma 1 to the elements of
Cycg(A): with high probability there are at most γn such states, which can be pairwise
synchronized using words of the form bjwn, of length at most |wn| + λn. Hence, the set
Cycg(A) can be synchronized using a word z of length at most (γn − 1)(|wn|+ λn), which
is asymptotically equivalent to n log3 n. This conclude the proof, as wnz is synchronizing
and has length which is also asymptotically equivalent to n log3 n.

5 Conclusion

In this article we proved that most complete automata are synchronizing and admit a
synchronizing word of length O(n log3 n).

Our proof can be turned into an heuristic that try to find a short synchronizing word,
which succeeds with high probability for uniform random automata: δwn

and Cycg(A)
can be computed by just verifying some conditions on the height and cycle length of three
mappings; once it is done, checking whether the property of Lemma 12 holds for every pair
of elements of the image of δwn

can be achieved in sublinear time, as it is very small with
high probability. Experiments seem to indicate that this algorithm behaves better in practice
than its theoretical analysis: it looks like an important proportion of automata that fail to
fulfill every step of our construction are still detected as synchronizing by the combination of
computing δwn

and synchronizing the states of its image with the bj ’s.

C. Nicaud 43:11

A natural continuation of this work is to prove that with high probability automata are
synchronized by words that are way shorter than n log3 n. Experiments have been done [9],
and seem to indicate that the expected length of the smallest synchronizing word is often
sublinear, probably in Θ(

√
n). There is plenty of room to improve our construction, as the

synchronizing words we obtain have very specific shapes. It still might be quite difficult to
match the bounds predicted in [9].

Acknowledgments. The author would like to thank Marie-Pierre Béal and Dominique
Perrin for their interest in this work since the very beginning, and Mikhail Berlinkov for our
fruitful discussions on this topic.

References
1 David Aldous, Grégory Miermont, and Jim Pitman. Brownian bridge asymptotics for

random p-mappings. Electron. J. Probab, 9:37–56, 2004.
2 Mikhail V. Berlinkov. On the probability of being synchronizable. In Sathish Govin-

darajan and Anil Maheshwari, editors, Algorithms and Discrete Applied Mathematics –
Second International Conference, CALDAM 2016, Thiruvananthapuram, India, February
18-20, 2016, Proceedings, volume 9602 of Lecture Notes in Computer Science, pages 73–84.
Springer, 2016. doi:10.1007/978-3-319-29221-2_7.

3 Mikhail V. Berlinkov and Marek Szykula. Algebraic synchronization criterion and com-
puting reset words. In Giuseppe F. Italiano, Giovanni Pighizzini, and Donald San-
nella, editors, Mathematical Foundations of Computer Science 2015 – 40th International
Symposium, MFCS 2015, Milan, Italy, August 24-28, 2015, Proceedings, Part I, vol-
ume 9234 of Lecture Notes in Computer Science, pages 103–115. Springer, 2015. doi:
10.1007/978-3-662-48057-1_8.

4 Peter J Cameron. Dixon’s theorem and random synchronization. Discrete Mathematics,
313(11):1233–1236, 2013.

5 Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University
Press, 2009.

6 Peter Frankl. An extremal problem for two families of sets. Eur. J. Comb., 3:125–127,
1982.

7 Bernard Harris. Probability distributions related to random mappings. The Annals of
Mathematical Statistics, 31(4):1045–1062, 1960.

8 Richard M. Karp. The transitive closure of a random digraph. Random Struct. Algorithms,
1(1):73–94, 1990. doi:10.1002/rsa.3240010106.

9 Andrzej Kisielewicz, Jakub Kowalski, and Marek Szykula. A fast algorithm finding the
shortest reset words. In Ding-Zhu Du and Guochuan Zhang, editors, COCOON, volume
7936 of Lecture Notes in Computer Science, pages 182–196. Springer, 2013. doi:10.1007/
978-3-642-38768-5_18.

10 Valentin F. Kolčin. Random Mappings: Translation Series in Mathematics and Engineering.
Translations series in mathematics and engineering. Springer London, Limited, 1986.

11 Cyril Nicaud. Random deterministic automata. In Erzsébet Csuhaj-Varjú, Martin Dietzfel-
binger, and Zoltán Ésik, editors, Mathematical Foundations of Computer Science 2014 –
39th International Symposium, MFCS 2014, Budapest, Hungary, August 25-29, 2014. Pro-
ceedings, Part I, volume 8634 of Lecture Notes in Computer Science, pages 5–23. Springer,
2014. doi:10.1007/978-3-662-44522-8_2.

12 Jörg Olschewski and Michael Ummels. The complexity of finding reset words in finite au-
tomata. In Petr Hlinený and Antonín Kucera, editors, MFCS, volume 6281 of Lecture Notes

APPROX/RANDOM’16

http://dx.doi.org/10.1007/978-3-319-29221-2_7
http://dx.doi.org/10.1007/978-3-662-48057-1_8
http://dx.doi.org/10.1007/978-3-662-48057-1_8
http://dx.doi.org/10.1002/rsa.3240010106
http://dx.doi.org/10.1007/978-3-642-38768-5_18
http://dx.doi.org/10.1007/978-3-642-38768-5_18
http://dx.doi.org/10.1007/978-3-662-44522-8_2

43:12 Fast Synchronization of Random Automata

in Computer Science, pages 568–579. Springer, 2010. doi:10.1007/978-3-642-15155-2_
50.

13 Jean-Eric Pin. On two combinatorial problems arising from automata thery. Annals of
Discrete Mathematics, 17:535–548, 1983.

14 Jean-Jacques Quisquater and Joos Vandewalle, editors. Advances in Cryptology – EU-
ROCRYPT’89, Workshop on the Theory and Application of of Cryptographic Techniques,
Houthalen, Belgium, April 10-13, 1989, Proceedings, volume 434 of Lecture Notes in Com-
puter Science. Springer, 1990.

15 Evgeny S. Skvortsov and Yulia Zaks. Synchronizing random automata. Discrete Mathe-
matics & Theoretical Computer Science, 12(4):95–108, 2010.

16 J. Černý. Poznámka k. homogénnym experimentom s konecnymi automatmi. Matematicko-
fyzikalny Časopis Slovensk, 14, 1964.

17 Mikhail V. Volkov. Synchronizing Automata and the Cerny Conjecture. In Carlos Martín-
Vide, Friedrich Otto, and Henning Fernau, editors, Language and Automata Theory and
Applications, Second International Conference, LATA 2008, Tarragona, Spain, March 13-
19, 2008. Revised Papers, volume 5196 of Lecture Notes in Computer Science, pages 11–27.
Springer, 2008. doi:10.1007/978-3-540-88282-4_4.

18 Yulia Zaks and Evgeny S. Skvortsov. Synchronizing random automata on a 4-letter alpha-
bet. Journal of Mathematical Sciences, 192:303–306, 2013.

http://dx.doi.org/10.1007/978-3-642-15155-2_50
http://dx.doi.org/10.1007/978-3-642-15155-2_50
http://dx.doi.org/10.1007/978-3-540-88282-4_4

A Direct-Sum Theorem for Read-Once Branching
Programs∗

Anup Rao1 and Makrand Sinha2

1 Computer Science and Engineering, University of Washington, Seattle WA,
USA
anuprao@cs.washington.edu

2 Computer Science and Engineering, University of Washington, Seattle WA,
USA
makrand@cs.washington.edu

Abstract
We study a direct-sum question for read-once branching programs. If M(f) denotes the minimum
average memory required to compute a function f(x1, x2, . . . , xn) how much memory is required
to compute f on k independent inputs that arrive in parallel? We show that when the inputs
are sampled independently from some domain X and M(f) = Ω(n), then computing the value
of f on k streams requires average memory at least Ω

(
k · M(f)

n

)
.

Our results are obtained by defining new ways to measure the information complexity of
read-once branching programs. We define two such measures: the transitional and cumulative
information content. We prove that any read-once branching program with transitional inform-
ation content I can be simulated using average memory O(n(I + 1)). On the other hand, if
every read-once branching program with cumulative information content I can be simulated
with average memory O(I + 1), then computing f on k inputs requires average memory at least
Ω(k · (M(f)− 1)).

1998 ACM Subject Classification F.1.1 Models of Computation, F.1.2 Modes of Computation

Keywords and phrases Direct-sum, Information complexity, Streaming Algorithms

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2016.44

1 Introduction

In this paper we investigate direct-sum questions for read-once branching programs (equival-
ently, streaming algorithms). Recall that an input to a read-once branching program is a
sequence of n updates x1, . . . , xn arriving sequentially in time, and the branching program
at the end must compute a function f(x1, x2, . . . , xn). The complexity measure of interest
is the amount of memory that is needed to carry out the computation. Here the memory
used by the program at time t is the logarithm of the number of potential states that the
program can be in after reading the inputs x1, . . . , xt.

We are interested in how the complexity of a problem changes when the branching
program must process k independent inputs that arrive in parallel. The program now gets
k inputs x1 = x1

1, . . . , x1
n, x2 = x2

1, . . . , x2
n, . . . , xk = xk

1 , . . . , xk
n, where the inputs x1

t , . . . , xk
t

arrive simultaneously in the t’th time-step. Obviously one can process each of the inputs
independently, giving a branching program that uses k times as much memory. The central

∗ Supported by the National Science Foundation under agreement CCF-1016565, an NSF Career award,
and by the Binational Science Foundation under agreement 2010089.

© Anup Rao and Makrand Sinha;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016).
Editors: Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans; Article No. 44; pp. 44:1–44:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.44
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

44:2 A Direct-Sum Theorem for Read-Once Branching Programs

question that we investigate in this paper is: are there interesting functions f for which
the best branching program that computes f on k independent inputs does not operate
independently on each input? This question is dual to another interesting question: When
can we effectively reduce the memory of a branching program without compromising its
accuracy?

Viewing these read-once branching programs as streaming algorithms, these questions also
make a lot of sense in the context of the most common applications for streaming algorithms
like internet traffic analysis or data from multiple satellites. They also make sense from a
theoretical perspective: they help to identify exactly what makes some streaming tasks hard
and others easy.

The extensive literature on branching programs is mostly concerned with understanding
the maximum number of bits of memory used by the branching program throughout its run.
One can imagine pathological cases one can effectively process k inputs at the same cost as
processing a single input using this measure of complexity. Suppose there is a uniformly
random block of n/k3 consecutive updates that contains information in the input, and all
other updates are set to 0. Then without loss of generality, the best (read-once) branching
program uses almost no memory for most of the time, and some memory to process the block
of important inputs. When the program processes k parallel inputs, it is very likely that the
k informative blocks will not overlap in time, and so the maximum memory usage remains
unchanged. Thus, if we are only aiming for a read-once branching program that succeeds
with high probability over this distribution of inputs, one need not increase the memory at
all!

However, we see that the average memory usage per unit time-step does increase by
a factor of k in this last example. The average memory is defined to be the number of
bits of memory used on an average time-step. Arguably from the streaming viewpoint, the
average memory is what we care about when considering practical applications of streaming
algorithms. Another appealing reason to consider average memory as a complexity measure
is that some known streaming lower bounds actually yield lower bounds on the average
memory. For example, the lower bound proofs for approximating the frequency moments
[1, 4, 10, 22] and for approximating the length of the longest increasing subsequence [19] can
be easily adapted to give matching lower bounds for average memory. In the rest of this
work we focus on the average memory used by the branching program.

Note that it is standard for analyzing branching programs to count the number of states
in each layer, but since we will be working with entropy it will be more convenient for us to
talk about the memory required to store each layer. As such to present our results we adopt
the point of view of inputs as streams and a branching program as a streaming algorithm.

1.1 Related Work
The interest in the field of streaming algorithms was renewed by the seminal paper of Alon,
Matias and Szegedy [1] who gave algorithms for approximating lower frequency moments
and also showed that lower bounds in the multi-party number-in-hand communication model
implied memory lower bounds for streaming algorithms approximating the higher frequency
moments. Since then, lower bounds in communication complexity (and more recently in
information complexity) have found applications in proving memory lower bounds in the
streaming model (see [1, 4, 10, 32, 19, 23, 22, 28] for some of them).

Questions analogous to the ones we study here have been studied in the setting of two-
party communication complexity and information complexity [5, 9, 6]. It was shown in [21]
that there are communication tasks that can be solved much more efficiently in parallel than
by naively solving each one independently.

A. Rao and M. Sinha 44:3

Combining these results about parallelizing communication with known methods for
proving lower bounds on streaming algorithms gives several interesting worst-case memory
lower bounds for computing natural functions on k parallel streams. To give an example,
it is known that computing (1 + ε) approximation of the pth frequency moment for p 6= 1
requires worst-case memory Ω(1/ε2) [32, 22]. Combining this with the results of [9] one
can show that computing (1 + ε) approximation of the frequency moment on k streams in
parallel requires Ω(k/ε2) memory in the worst-case. We do not give the proof here, since it
is relatively straightforward.

A related model is that of dynamic distributed functional monitoring introduced by
Cormode, Muthukrishnan and Yi [15] where there are multiple sites receiving data streams and
communicating with a central coordinator who wants to maintain a function of all the input
streams. Recent progress has been made in understanding the communication complexity of
various tasks in this model [15, 33, 34]. Variants of this model have been studied extensively
in relation to databases and distributed computing (see [13, 14, 31, 30, 12, 16, 2, 27, 26, 3] for
some of the applications). Another closely related model is the multi-party private message
passing model introduced in [18]. Any lower bound proved in the message passing model
implies a lower bound in the streaming model. Many works have studied this model and its
variants (see [23, 20, 29, 7, 11, 25] for some of them). These works do not appear to have
any connection to the questions we study here.

2 Our Results

Our results are proved in the setting of average-case complexity: we assume that there is
a known distribution on inputs, and consider the performance of algorithms with respect
to that distribution. Let A be a randomized streaming algorithm which receives an input
stream X1, . . . , Xn sampled from a distribution p(x1, . . . , xn). Throughout this paper we
will only consider the case when p is a product distribution except in Section 4.1, where we
discuss the issues that arise when considering non-product input distributions.

Let M1, . . . , Mn denote the contents of the memory of the algorithm at each of the
time-steps. Let |Mt| denote the number of bits used to store Mt. The average memory
used by the algorithm is (1/n)

∑n
t=1 |Mt|. Let M(f) denote the minimum average memory

required to compute a function f with probability 2/3 when the inputs are sampled according
to p.

Let pk(x) denote the product distribution on k independent streams, each identically
distributed as p(x), where the resulting streams arrive synchronously in parallel. Thus at
time t the input is the tth element of all the k streams. Write fk to denote the function that
computes f on each of the k streams. Then we prove,

I Theorem 2.1.

M(fk) = Ω
(

k

(
M(f)

n
− 1
))

.

Theorem 2.1 is proved by a reduction that compresses streaming algorithms with regards to
its information complexity. There are several reasonable measures of information complexity
for streaming algorithms. Here we define two such information complexity measures. We use
Shannon’s notion of mutual information, which is defined in the preliminaries (Section 3).

The transitional information content captures the average amount of information that
the algorithm learns about the next input conditioned on its current state.

I Definition 2.2 (Transitional Information). ICtr(A) = 1
n

∑n
t=1 I(Mt; Xt|Mt−1).

APPROX/RANDOM’16

44:4 A Direct-Sum Theorem for Read-Once Branching Programs

The cumulative information content measures the average amount of information that
the streaming algorithm remembers about the inputs seen so far.

I Definition 2.3 (Cumulative Information). ICcum(A) = 1
n

∑n
t=1 I(Mt; X1 . . . Xt).

Note that both the transitional and the cumulative information content for an algorithm
are bounded by the average memory used by the algorithm. We prove that algorithms with
low transitional information can be efficiently simulated:

I Theorem 2.4. Every streaming algorithm with transitional information content I can be
simulated with average memory O(nI + n).

The above theorem is tight as the following example shows. Let the input x be sampled
from the uniform distribution on {0, 1}n (i.e. each update xi for i ∈ [n] is a bit). Consider the
streaming algorithm A which remembers all the updates seen so far and outputs x1, . . . , xn

at the end. The average memory used by the algorithm is Ω(n) while the transitional
information content of this algorithm is 1. In this case the compression algorithm given by
the above theorem would simulate A with average memory O(n) which is the best one could
hope for.

Finally, we show that if algorithms with low cumulative information can be simulated,
then one can obtain no savings when parallelizing streaming algorithms:

I Theorem 2.5. If every algorithm with cumulative information I can be simulated using
average memory O(I), then M(fk) = Ω (k · (M(f)− 1)).

In Section 5, we discuss more about the possibility of compressing algorithms with low
cumulative information content.

3 Preliminaries

Throughout this report, the base of all logarithms is 2. Random variables will be denoted by
capital letters and the values that they attain will be denoted by lower-case letters. Given
x = x1, . . . , xn, we write x≤i to denote the sequence x1, x2, . . . , xi. We define x<i, x>i and
x≥i similarly. We write x−i to denote x1, . . . , xi−1, xi+1, . . . , xn.

We use p(x) to denote both the distribution on the variable x and the probability
Pp[X = x], the distinction will be clear from context. For any joint random variables X

and Y , we will write X|Y = y to denote the random variable X conditioned on the event
Y = y and use p(x|y) to denote the distribution of X|Y = y as well as the probability
Pp[X = x|Y = y].

We denote by pk(x) the product distribution sampling k independent copies of x according
to p. Given a joint distribution p(x, y, z), we write p(x, y) to denote the marginal distribution
(or probability according to the marginal distribution) on the variables x and y. We often
write p(xy) instead of p(x, y) to make the notation more concise. When X, Y are random
variables, XY denotes the random variable that is the concatenation of X and Y .

Let X, W, M be random variables distributed according to p(x, w, m). We say that
they form a Markov chain iff p(x, w, m) = p(w) · p(x|w) · p(m|w) and we denote this by
X −W −M . In some cases we will have Markov chains where W determines M (p(m|w) is
a point distribution). To emphasize this we will write this Markov chain as X −W →M .
For brevity we will write X|R−W |R−M |R to assert that p(xwm|r) is a Markov chain for
every r.

A. Rao and M. Sinha 44:5

3.1 Information Theory Basics
Here we collect some standard facts from information theory. For more details, we refer the
reader to the textbook [17]. For a discrete random variable X with probability distribution
p(x), the entropy of X is defined as

H(X) = Ep(x)

[
log 1

p(x)

]
.

For any two random variables X and Y with the joint distribution p(x, y), the entropy of
X conditioned on Y is defined as H(X|Y) = Ep(y)[H(X|Y = y)]. The conditional entropy
H(X|Y) is at most H(X) where the equality holds if and only if X and Y are independent.

The mutual information between X and Y is defined as I(X; Y) = H(X)−H(X|Y) =
H(Y) − H(Y |X). Similarly, the conditional mutual information I(X; Y |Z) is defined to
be H(X|Z) − H(X|Y Z). If X and Y are independent then I(X; Y) = 0. Moreover,
0 ≤ I(X; Y) ≤ min{H(X), H(Y)}. A standard fact about mutual information is the chain
rule: For jointly distributed random variables X1, . . . , Xn, Y and Z,

I(X1, . . . , Xn; Y |Z) =
n∑

i=1
I(Xi; Y |X<iZ).

I Lemma 3.1. If Y and Z are independent, I(X; Y) ≤ I(X; Y |Z).

Proof. We repeatedly use the chain rule:

I(X; Y) ≤ I(X; Y) + I(Z; Y |X) = I(XZ; Y) = I(Z; Y) + I(X; Y |Z) = I(X; Y |Z). J

I Proposition 3.2 (Data Processing Inequality). Let X, W and M be random variables such
that X −W −M , then I(X; M) ≤ I(X; W).

I Proposition 3.3. Let X, Y, Z and W be random variables such that XY − Z −W , then
I(X; Y |ZW) = I(X; Y |Z).

Proof. Using the chain rule we expand I(XW ; Y |Z) in two different ways:

I(W ; Y |Z) + I(X; Y |ZW) = I(XW ; Y |Z) = I(X; Y |Z) + I(W ; Y |XZ).

The terms I(W ; Y |Z) and I(W ; Y |XZ) are 0 since XY − Z −W . J

The next proposition says that for any discrete random variable X there is a prefix-free
encoding with average length at most H(X) + 1.

I Proposition 3.4 (Huffman Encoding). Let X and Y be random variables where X is discrete.
Then, there exists a prefix-free encoding ` : supp(X) → {0, 1}∗ satisfying Exy[|`(x)| | Y =
y] ≤ H(X|Y) + 1.

3.2 Common Information and Error-free Sampling
Wyner [35] defined the quantity common information between X and M as

C(X; M) = inf
X−W−M

I(XM ; W) ,

where the infimum is taken over all jointly distributed W such that, X −W −M and W is
supported over a finite set. Wyner showed that the above infimum is always achieved. By

APPROX/RANDOM’16

44:6 A Direct-Sum Theorem for Read-Once Branching Programs

the data-processing inequality applied to the Markov chain X −W −M it is easily seen that
C(X; M) ≥ I(X; M).

It turns out that the gap between C(X; M) and I(X; M) can be very large. There are
known examples of random variables X and M where C(X; M) = ω(I(X; M)). We include
one simple example in Appendix A. Another example is described in the work of Harsha et
al. [24], who also proved a related upper bound. They showed that there always exist C and
S, where S is independent of X, X −CS →M and H(C) ≈ I(X; M). The random variable
S in their work depends on the distribution of M . Braverman and Garg [8] showed a similar
result that we quote and use in this work:

I Lemma 3.5 ([8]). Let p(xm) be an arbitrary discrete probability distribution, with finite
support. Let S be an infinite list of uniform samples from supp(M) × [0, 1], independent
of XM . Then there exists a random variable C such that X − CS → M and H(C|S) ≤
I(X; M) + log(I(X; M) + 1) +O(1).

3.3 Streaming Algorithms
Without loss of generality, we associate the values stored by the algorithm with a non-negative
integer. Assuming that the inputs to the algorithm come from the domain X , a streaming
algorithm defines a function A : [n]× N× X → N. At time t− 1, let the memory state of
the algorithm be mt−1 (we define m0 := 1). On seeing the input xt at time t, the algorithm
computes the tth memory state mt := A(t, mt−1, xt). The output of the algorithm is mn.
Randomized streaming algorithms toss independent random coins rt at each time-step t and
sample the memory state at time t as follows: mt := A(t, mt−1, rt, xt).

The following is obvious from the definition:

I Proposition 3.6 (Markov Chain Property). If m1, . . . , mn denote the memory of a (possibly
randomized) streaming algorithm, then for each t ∈ [n], X≤nM<t −XtMt−1 −Mt.

The last proposition also implies the following.

I Proposition 3.7. For a randomized streaming algorithm, the following holds,

I(M≤n; X≤n) = I(M1; X1) + I(M2; X2|M1) + · · ·+ I(Mn; Xn|Mn−1).

Proof. Applying the chain-rule, we get

I(M≤n; X≤n) =
n∑

t=1
I(Mt; X≤n|M<t) ≤

n∑
t=1

I(Mt; XtX≤nM<t−1|Mt−1).

The second inequality follows since I(Mt; XtX≤nM<t−1|Mt−1) = I(Mt; M<t−1|Mt−1) +
I(Mt; X≤n|M<t) + I(Mt; Xt|M<tX≤n) and mutual information is a non-negative quantity.

Applying the chain rule one more time, we have

I(M≤n; X≤n) ≤
n∑

t=1
I(Mt; XtX≤nM<t−1|Mt−1)

=
n∑

t=1
I(Mt; Xt|Mt−1) +

n∑
t=1

I(Mt; X≤nM<t−1|XtMt−1).

Proposition 3.6 implies that X≤nM<t −XtMt−1 −Mt for every t ∈ [n] and hence the
second term on the right hand side is zero. J

A. Rao and M. Sinha 44:7

The following proposition states that both the transitional and cumulative information
content are upper bounded by the average memory.

I Proposition 3.8. For a randomized streaming algorithm A with average memory M ,

max{ICtr(A), ICcum(A)} ≤M .

I Definition 3.9 (Simulation). We say that a streaming algorithm A1 simulates another
algorithm A2 if for every input x1, . . . , xn, the distribution on outputs is exactly the same in
both algorithms.

In general it even makes sense to allow errors during simulation. Our simulations have no
error, so we define simulation using the strong definition given above.

4 Compression and Direct Sums for Streaming Computation

The following is a natural strategy to prove our direct-sum theorem: given an algorithm
that computes fk correctly with probability 2/3 on all the streams and uses average memory
M , first show that there is some stream “with respect to” which the information content is
M/k. Then derive a randomized streaming algorithm that computes f and has information
content at most M/k as follows: embed the input stream at the location j about which the
memory has small information and simulate the behavior of the algorithm on this stream by
generating the other streams randomly, or to say alternately, sample from the distribution
p(mn|X(j) = x). The resulting algorithm would have information content at most M/k but
would still use M bits of average memory. The last step would then be to give a way to
simulate a streaming algorithm that has information content I with a streaming algorithm
that uses average memory approximately I.

For product distributions, we can show that if there exists an algorithm for computing k

copies of f with memory M , then there is a randomized algorithm for computing a single
copy of f with transitional and cumulative information content at most M/k. To prove our
direct-sum result, we are able to show that algorithms with transitional information content
I can be simulated with O(nI+n) average memory which as discussed before is best possible.
To give an optimal direct-sum result, one could still hope that streaming algorithms with
cumulative information content I can be simulated with O(I) average memory. We discuss
more about this possibility in Section 5.

4.1 Non-product Distributions and Correlated Randomness
Before we begin the proof of our compression and direct-sum results, we briefly discuss the
difficulty that arises in dealing with non-product distributions. For proving a direct-sum
result for non-product distributions using the above strategy, the natural way of using an
algorithm that computes k copies of f to compute a single copy of f , is to embed our input
stream at position j and generate other streams as randomness so that we can run the
algorithm for k copies. The algorithm we get for computing f in this way uses randomness
that is correlated across various time-steps if the input stream distribution is non-product.

Transitional information content is not a useful information measure for compressing such
algorithms as the following example shows. We give an example of a function which require
Ω(1) average memory, but can be computed by an algorithm that uses correlated randomness
and has transitional information content 1/n. Let f(x) =

∑n
t=1 xt mod 2. Consider the

following algorithm that takes as input a random input stream x (each update xt is a bit) and

APPROX/RANDOM’16

44:8 A Direct-Sum Theorem for Read-Once Branching Programs

computes f(x). The algorithm at time t uses randomness rt where r1, . . . , rt are correlated
so that they satisfy

∑n
t=1 rt = 0 mod 2. At time t, the algorithm stores in its memory∑t

i=1(xt + rt) mod 2 and at time t = n outputs the last value stored in memory. Since∑n
t=1 rt = 0 mod 2, the algorithm outputs f(x). This algorithm has transitional information

content 1/n, but one can not hope to compute the parity of an n bit string without using
Ω(1) bits of average memory.

4.2 Compressing Streaming Algorithms
In this section we show how algorithms with small transitional information content can be
simulated with small average memory.

I Theorem 4.1 (Restated). Let A be a randomized streaming algorithm with ICtr(A) = I.
Then there exists a randomized streaming algorithm Atr with average memory O(nI + n)
that simulates A.

Let m1, . . . , mn denote the memory states of the algorithm A. Recall that Lemma 3.6
implies that for each t ∈ [n], X≤nM<t − XtMt−1 −Mt. Hence, to prove Theorem 4.1, it
suffices to sample from p(mt|xt, mt−1) if mt−1 has been sampled correctly. The compression
algorithm will toss random coins to sample an infinite list st of samples from supp(Mt)× [0, 1]
and then sample Ct (whose existence is guaranteed by Lemma 3.5) satisfying

Xt − CtSt|Mt−1 →Mt|Mt−1, (4.1)
H(Ct|StMt−1) = I(Mt; Xt|Mt−1) + log(I(Mt; Xt|Mt−1) + 1) +O(1). (4.2)

The value of mt determined by the sample ct is distributed according to the distribution
p(mt|xt, mt−1).

The algorithm will store the Huffman encoding (Proposition 3.4) of Ct conditioned on St

and Mt−1. This encoding determines Ct given St and Mt−1, both of which are known to the
algorithm at this time.

Randomized Streaming Algorithm Atr

Input : Stream x ∼ p(x)
Randomness : s1, . . . , sn where si is an infinite sequence of uniform samples from supp(Mi)× [0, 1].
// At time t: the content of the memory are some encodings of c<t, where ci determines mi given si

and mi−1.

1. Let mt−1 be determined by ct−1 and st−1. On input xt, sample ct from the Markov chain in (4.1);
2. Append the Huffman encoding of ct conditioned on st and mt−1 to the previous memory contents;

Note that the algorithm needs to store the encodings of all the previous c≤t at time t

since in order to determine mt uniquely, the value of mt−1 needs to be known which depends
on the previous memory contents.

The following proposition is straightforward from (4.1).

I Proposition 4.2. The algorithm Atr simulates A.

Next we finish the proof of Theorem 4.1 by bounding the total memory used by Atr.

I Lemma 4.3. The average memory used by Atr is O(nI + n).

Proof. At time t, the expected number of bits appended to the memory (where the expecta-
tion is over the choice of x≤t and s≤t) is bounded by H(Ct|StMt−1). From (4.2), this is at

A. Rao and M. Sinha 44:9

most 2I(Mt; Xt|Mt−1) +O(1). Hence, the number of bits stored in the memory at a time
t ∈ [n] is at most

t∑
i=1

(2I(Mi; Xi|Mi−1) +O(1)) ≤
n∑

i=1
(2I(Mi; Xi|Mi−1) +O(1)) = 2nI +O(n).

Since this is true for every time-step t, the average memory is also upper bounded by
2nI +O(n). J

4.3 Direct Sum for Product Distributions

Recall that we want to prove the following theorem.

I Theorem 4.4 (Direct Sum – Restated). If p is product input distribution, then

M(fk) = Ω
(

k

(
M(f)

n
− 1
))

.

To prove the above we first show that if there is a deterministic algorithm for computing
k copies of f with average memory M and error probability 1/3, then there is a randomized
algorithm which computes a single copy of f with error at most 1/3 and has transitional
information content at most M/k. Then, we apply Theorem 4.1 to compress this algorithm
and get a contradiction if M is smaller than the right hand side in Theorem 4.4.

4.3.1 Computing f with Small Information

Let A be a deterministic streaming algorithm that uses average memory M and computes
fk on inputs sampled from pk with error at most 1/3. Let m1, . . . , mn denote the memory
states of the algorithm A. Consider the following randomized algorithm Aran that computes
f with error at most 1/3 on inputs sampled from p. The algorithm chooses a random j ∈ [k],
embeds the input stream at position j and at time t, samples and stores the memory state
mt from the distribution p(mt|x(j)

t = xt, mt−1).

Randomized Streaming Algorithm Aran

Input : Stream x sampled from p(x)
Randomness : j uniformly drawn from [k], streams x(−j)

Output : f(x) with error at most 1/3

1. Set Stream x(j) to be x;
2. At time t, use randomness x

(−j)
t to sample mt from p(mt|x(j)

t = xt, mt−1);
3. Output the answer of the algorithm on stream j;

Note that for any fixed value of j, the algorithm Aran uses independent randomness x
(−j)
t

in each step as the input distribution p is product. We show that on average over the choice
of j, the transitional and cumulative information content of the above algorithm is at most
M/k.

I Lemma 4.5. Ej [ICtr(Aran|J = j)] ≤M/k and Ej [ICcum(Aran|J = j)] ≤M/k.

Proof of Lemma 4.5. Conditioned on any event J = j, the transitional information content

APPROX/RANDOM’16

44:10 A Direct-Sum Theorem for Read-Once Branching Programs

of Aran is given by

ICtr(Aran|J = j) = 1
n

n∑
t=1

I(Mt; Xt | Mt−1, J = j)

= 1
n

n∑
t=1

I(Mt; X
(j)
t | Mt−1, J = j) (with probability 1, X(j) = X)

= 1
n

n∑
t=1

I(Mt; X
(j)
t | Mt−1) (Mt ind. of event J = j).

Since the input stream comes from a product distribution, X
(1)
t , . . . , X

(k)
t are all inde-

pendent conditioned on Mt−1. By Lemma 3.1, the term I(Mt; X
(j)
t | Mt−1) in the above

sum is bounded by I(Mt; X
(j)
t | X

(<j)
t Mt−1). Taking an expectation over j, we get

Ej [ICtr(Aran|J = j)] ≤ Ej

(
1
n

n∑
t=1

I(Mt; X
(j)
t | X

(<j)
t Mt−1)

)

= 1
k

 1
n

n∑
t=1

k∑
j=1

I(Mt; X
(j)
t | X

(<j)
t Mt−1)

From the chain rule the right hand side above equals

1
k

(
1
n

n∑
t=1

I(Mt; X
(1)
t . . . X

(k)
t |Mt−1)

)
= 1

k
ICtr(A) ≤ M

k
,

where the last inequality follows since the transitional information content is bounded by the
average memory (Proposition 3.8).

Analogously, the cumulative information content of Aran is given by

ICcum(Aran|J = j) = 1
n

n∑
t=1

I(Mt; X≤t | J = j)

= 1
n

n∑
t=1

I(Mt; X
(j)
≤t | J = j) (with probability 1, X(j) = X)

= 1
n

n∑
t=1

I(Mt; X
(j)
≤t) (Mtind. of event J = j).

Since X(1), . . . , X(k) are all independent, by Lemma 3.1, the term I(Mt; X
(j)
≤t) is at most

I(Mt; X
(j)
≤t | X

(<j)
≤t). Taking an expectation over j and using the chain rule, we get

Ej [ICcum(Aran|J = j)] ≤ 1
k

 1
n

n∑
t=1

k∑
j=1

I(Mt; X
(j)
≤t | X

(<j)
≤t)

= 1

k

(
1
n

n∑
t=1

I(Mt; X
(1)
≤t . . . X

(k)
≤t)

)
= 1

k
ICcum(A) ≤ M

k
. J

4.3.2 Direct-sum Theorem
With the above, we can now apply Theorem 4.1 to get Theorem 4.4.

A. Rao and M. Sinha 44:11

Proof of Theorem 4.4. Let A be a streaming algorithm that computes fk with error at
most 1/3 and average memory M . By Lemma 4.5, there is an algorithm Aran that uses
randomness j and r, computes f with error at most 1/3 and satisfies Ej [ICtr(Aran)|j] ≤M/k.
Applying Theorem 4.1 to Aran gives us a randomized algorithm that uses random coins j

and r′ and computes f using average memory Ej,r′ [1
n

∑n
t=1 |Mt|] = O(nM/k + n).

Since the random coins j and r′ are independent of the input, we can fix them to get a
deterministic streaming algorithm with average memory O(nM/k + n). Since this must be
at least M(f), we have

O
(

nM

k
+ n

)
≥M(f).

Rearranging the above gives us that M is lower bounded by Ω
(

k
(

M(f)
n − 1

))
. J

5 Towards Optimal Direct Sums

The algorithm Aran that we gave in the last section also had cumulative information content
at most M/k as shown in Lemma 4.5. Analogous to Theorem 4.4, the following result follows.
We omit the proof since it is very similar to that of Theorem 4.4.

I Theorem 5.1 (Restated). If every algorithm with cumulative information I can be simulated
using average memory O(I), then M(fk) = Ω (k · (M(f)− 1)).

In this section, we describe a compression algorithm that could possibly simulate an
algorithm with cumulative information content I with average memory O(I + 1). However,
we are unable to either prove or disprove it.

To give some intuition about the new algorithm, let us recall Algorithm Atr where
the compression algorithm stored Huffman encodings (Proposition 3.4) of Ct satisfying
Xt −CtSt|Mt−1 →Mt|Mt−1. This necessitated storing the whole history since to determine
the sample mt required knowing encodings of all the previous c<t.

The new algorithm that we call Acum, on receiving the input xt at time t, samples Ct

conditioned on the value of xt and mt−1 where Ct satisfies the following properties that
follow from Lemma 3.5:

Xt − CtSt|S<t →Mt|S<t, (5.1)
H(Ct|S≤t) ≤ I(Mt; XtMt−1|S<t) + log(I(Mt; XtMt−1|S<t) + 1) +O(1). (5.2)

Again the value of mt determined by the sample ct is distributed according to the
distribution p(mt|xt, mt−1). Moreover, the algorithm Acum will store the Huffman encoding
of Ct conditioned on S≤t which avoids the need to store all the previous memory contents
since S≤t is randomness independent of the input and can be fixed in the beginning.

Randomized Streaming Algorithm Acum

Input : Stream x ∼ p(x)
Randomness : s1, . . . , sn where si is an infinite sequence of uniform samples from supp(Mi)× [0, 1].
// At time t: the content of the memory are some encodings of c<t, where ci determines mi given

s≤i.

1. Let mt−1 be determined by ct−1 and st−1. On input xt, sample ct from the Markov chain in (5.1);
2. Store the Huffman encoding of ct conditioned on s≤t;

APPROX/RANDOM’16

44:12 A Direct-Sum Theorem for Read-Once Branching Programs

I Conjecture 5.2. Let A be a randomized streaming algorithm with ICcum(A) = I. Then,
Acum simulates A using O(I + 1) average memory.

The proof that the above compression algorithm gives a correct simulation is straight-
forward from (5.1). We are able to prove the following bounds on the memory used by the
above algorithm.

I Lemma 5.3. In expectation over the choice of s≤t and x≤t, the memory used by algorithm
Acum at time t is at most O(I(Mt; X≤t|S<t) + 1).

Proof. The memory used by algorithm Acum at time t is bounded by H(Ct|S≤t) which as
given by (5.2) is at most O(I(Mt; XtMt−1|S<t)+1). Moreover, since Mt−1|S<t is determined
given Ct−1|S<t,

I(Mt; XtMt−1|S<t) ≤ I(Mt; XtCt−1|S<t),

by the data processing inequality (Proposition 3.2).
Next, we will show that I(Mt; XtCt−1|S<t) is upper bounded by I(Mt; X≤t|S<t). To

show this we bound I(Mt; XtCt−1|S<t) ≤ I(Mt; X≤tCt−1|S<t) which by chain rule is,

= I(Mt; X<tCt−1|S<t) + I(Mt; Xt|S<tX<tCt−1)
= I(Mt; X<t|S<t) + I(Mt; Ct−1|S<tX<t) + I(Mt; Xt|S<tX<tCt−1).

Note that in the algorithm Acum, X<t and S<t completely determine Ct−1. Hence, the
second term in the above expression is 0. Moreover, by the same fact MtXt−S<tX<t → Ct−1
and hence by Proposition 3.3, the last term I(Mt; Xt|S<tX<tCt−1) = I(Mt; Xt|X<tS<t).

The above discussion yields that

I(Mt; XtCt−1|S<t) ≤ I(Mt; X<t|S<t) + I(Mt; Xt|X<tS<t)
= I(Mt; X≤t|S<t),

where the second equality follows by another application of the chain rule. J

Note that since S<t is independent of X≤t, the above quantity I(Mt; X≤t|S<t) is at least
as large as I(Mt; X≤t) (recall Lemma 3.1), but it is possible that similar to Lemma 3.5, they
could be the same up to some lower order error terms. Towards proving such a statement,
we first propose to investigate whether the following stronger version of Lemma 3.5 holds.

I Conjecture 5.4. Let X and M be arbitrary discrete random variables with finite support.
Let S be an infinite list of samples from supp(M)× [0, 1]. Then, there exist a random variable
C such that

X − CS →M .
H(C|S) ≤ I(M ; X) + log(I(M ; X) + 1) +O(1).
For any discrete random variable N such that X −M −N , it holds that

I(N ; M |S) ≤ I(N ; X) + log(I(N ; X) + 1) +O(1).

We also point out that an inductive use of the above conjecture does not give a non-trivial
upper bound on the memory used by the algorithm Acum because of the error terms in
the last statement of the conjecture. But we hope that the techniques used in proving the
above conjecture would be helpful in analyzing the memory used by the algorithm Acum.
Nonetheless the above conjecture might be interesting in its own right and of potential use
somewhere else.

Acknowledgments. We thank Paul Beame for helpful comments.

A. Rao and M. Sinha 44:13

References

1 Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the
frequency moments. Journal of Computer and System Sciences, 58(1):137–147, 1999.

2 Chrisil Arackaparambil, Joshua Brody, and Amit Chakrabarti. Functional monitoring
without monotonicity. In Susanne Albers, Alberto Marchetti-Spaccamela, Yossi Matias,
Sotiris Nikoletseas, and Wolfgang Thomas, editors, Automata, Languages and Program-
ming, volume 5555 of Lecture Notes in Computer Science, pages 95–106. Springer Berlin
Heidelberg, 2009.

3 Brian Babcock and Chris Olston. Distributed top-k monitoring. In Proceedings of the 2003
ACM SIGMOD International Conference on Management of Data, SIGMOD’03, pages
28–39, New York, NY, USA, 2003. ACM.

4 Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An Information Statistics
Approach to Data Stream and Communication Complexity. In FOCS, pages 209–218, 2002.

5 Boaz Barak, Mark Braverman, Xi Chen, and Anup Rao. How to compress interactive
communication. SIAM J. Comput., 42(3):1327–1363, 2013.

6 Mark Braverman. Interactive information complexity. In STOC, pages 505–524, 2012.
7 Mark Braverman, Faith Ellen, Rotem Oshman, Toniann Pitassi, and Vinod Vaikuntan-

athan. A tight bound for set disjointness in the message-passing model. In FOCS, pages
668–677, 2013.

8 Mark Braverman and Ankit Garg. Public vs Private Coin in Bounded-Round Information.
In ICALP, pages 502–513, 2014.

9 Mark Braverman and Anup Rao. Information equals amortized communication. In FOCS,
pages 748–757, 2011.

10 Amit Chakrabarti, Subhash Khot, and Xiaodong Sun. Near-optimal lower bounds on the
multi-party communication complexity of set disjointness. In 18th Annual IEEE Conference
on Computational Complexity (Complexity 2003), 7-10 July 2003, Aarhus, Denmark, pages
107–117, 2003.

11 Arkadev Chattopadhyay, Jaikumar Radhakrishnan, and Atri Rudra. Topology matters in
communication. In 55th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 631–640, 2014.

12 G. Cormode, S. Muthukrishnan, and Wei Zhuang. What’s different: Distributed, continu-
ous monitoring of duplicate-resilient aggregates on data streams. In Data Engineering,
2006. ICDE’06. Proceedings of the 22nd International Conference on, pages 57–57, April
2006.

13 Graham Cormode. Sketching streams through the net: Distributed approximate query
tracking. In VLDB, pages 13–24, 2005.

14 Graham Cormode and Minos Garofalakis. Holistic aggregates in a networked world: Dis-
tributed tracking of approximate quantiles. In SIGMOD, pages 25–36, 2005.

15 Graham Cormode, S. Muthukrishnan, and Ke Yi. Algorithms for distributed functional
monitoring. ACM Trans. Algorithms, 7(2):21:1–21:20, March 2011.

16 Graham Cormode, S. Muthukrishnan, Ke Yi, and Qin Zhang. Optimal sampling from
distributed streams. In Proceedings of the Twenty-ninth ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS’10, pages 77–86, New York, NY,
USA, 2010. ACM.

17 Thomas M. Cover and Joy A. Thomas. Elements of Information Theory (Wiley Series in
Telecommunications and Signal Processing). Wiley-Interscience, 2006.

18 Pavol Duris and Jose D.P. Rolim. Lower bounds on the multiparty communication com-
plexity. Journal of Computer and System Sciences, 56(1):90–95, 1998.

APPROX/RANDOM’16

44:14 A Direct-Sum Theorem for Read-Once Branching Programs

19 Funda Ergun and Hossein Jowhari. On distance to monotonicity and longest increasing
subsequence of a data stream. In Proceedings of the Nineteenth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, SODA’08, pages 730–736, Philadelphia, PA, USA, 2008.
Society for Industrial and Applied Mathematics.

20 Anna Gál and Parikshit Gopalan. Lower bounds on streaming algorithms for approximating
the length of the longest increasing subsequence. SIAM J. Comput., 39(8):3463–3479,
August 2010.

21 Anat Ganor, Gillat Kol, and Ran Raz. Exponential Separation of Information and Com-
munication for Boolean Functions. Electronic Colloquium on Computational Complexity
(ECCC), 21:113, 2014.

22 André Gronemeier. Asymptotically optimal lower bounds on the nih-multi-party inform-
ation complexity of the and-function and disjointness. In STACS 2009, pages 505–516,
2009.

23 Sudipto Guha and Zhiyi Huang. Revisiting the direct sum theorem and space lower bounds
in random order streams. In Susanne Albers, Alberto Marchetti-Spaccamela, Yossi Matias,
Sotiris Nikoletseas, and Wolfgang Thomas, editors, Automata, Languages and Program-
ming, volume 5555 of Lecture Notes in Computer Science, pages 513–524. Springer Berlin
Heidelberg, 2009.

24 Prahladh Harsha, Rahul Jain, David A. McAllester, and Jaikumar Radhakrishnan. The
communication complexity of correlation. IEEE Transactions on Information Theory,
56(1):438–449, 2010. doi:10.1109/TIT.2009.2034824.

25 Zengfeng Huang, Božidar Radunović, Milan Vojnović, and Qin Zhang. Communication
complexity of approximate maximum matching in distributed graph data. In STACS, 2015.

26 Ram Keralapura, Graham Cormode, and Jeyashankher Ramamirtham. Communication-
efficient distributed monitoring of thresholded counts. In Proceedings of the 2006 ACM
SIGMOD International Conference on Management of Data, SIGMOD’06, pages 289–300,
New York, NY, USA, 2006. ACM.

27 Amit Manjhi, Vladislav Shkapenyuk, Kedar Dhamdhere, and Christopher Olston. Finding
(recently) frequent items in distributed data streams. In Proceedings of the 21st Interna-
tional Conference on Data Engineering, ICDE’05, pages 767–778, Washington, DC, USA,
2005. IEEE Computer Society.

28 Marco Molinaro, David P. Woodruff, and Grigory Yaroslavtsev. Beating the direct sum
theorem in communication complexity with implications for sketching. In SODA, pages
1738–1756, 2013.

29 Jeff M. Phillips, Elad Verbin, and Qin Zhang. Lower bounds for number-in-hand multiparty
communication complexity, made easy. In Proceedings of the Twenty-third Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA’12, pages 486–501. SIAM, 2012.

30 Izchak Sharfman, Assaf Schuster, and Daniel Keren. A geometric approach to monitoring
threshold functions over distributed data streams. ACM Transactions on Database Systems,
32(4), November 2007.

31 Izchak Sharfman, Assaf Schuster, and Daniel Keren. Shape sensitive geometric monitoring.
In Proceedings of the Twenty-seventh ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, PODS’08, pages 301–310, New York, NY, USA, 2008.
ACM.

32 David Woodruff. Optimal space lower bounds for all frequency moments. In Proceedings
of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’04, pages
167–175, Philadelphia, PA, USA, 2004. Society for Industrial and Applied Mathematics.

33 David P. Woodruff and Qin Zhang. Tight bounds for distributed functional monitoring. In
STOC, pages 941–960, 2012.

http://dx.doi.org/10.1109/TIT.2009.2034824

A. Rao and M. Sinha 44:15

34 David P. Woodruff and Qin Zhang. An optimal lower bound for distinct elements in the
message passing model. In SODA, pages 718–733, 2014.

35 A.D. Wyner. The common information of two dependent random variables. IEEE Trans-
actions on Information Theory, 21(2):163–179, 1975.

A Separation between common information and mutual information

In this section we will give an explicit example of random variables X and M such that
C(X; M) = ω(I(X; M)). Let G be a bipartite graph on the vertex set ([n], [n]) such that
the edge density of G is 1

2 + o(1) and there are no cliques with more than 3n log n edges in
G. As the following lemma shows a random bipartite graph where each edge is picked with
probability 1/2 satisfies these properties with high probability, so such graphs exist.

I Lemma 1.1. With probability 1 − o(1), a random bipartite graph on ([n], [n]) where
each edge is included with probability 1/2 has no clique U × V where U, V ⊆ [n] satisfying
min{|U |, |V |} ≥ 2 log n + 2.

Proof. Set t := 2 log n + 2 for notational convenience. If there is a clique U × V with
min{|U |, |V |} ≥ t then there also exists a clique of size t × t. Consequently, to prove the
lemma it suffices to upper bound the probability that a t× t clique exists in the graph. This
probability is at most(

n

t

)(
n

t

)
2−t2

≤ n2t2−t2
= 22t log n−t2

= 2t(2 log n−t) ≤ 2−2t = o(1). J

A corollary of the above lemma is that the maximal clique in a random bipartite graph
with edge probability 1/2 has at most n · 3 log n edges with high probability. Also it is easy
to see that with probability 1− o(1), every vertex in a random bipartite graph with edge
probability 1/2 has degree between n

2 − o(n) and n
2 + o(n) .

Now we can describe the random variables X and M which will be the end points of
a uniformly random edge E in the graph G. It is easily seen that the mutual information
I(X; M) ≤ 1−o(1) since H(X) = log n while for any M = m, H(X|M = m) ≥ log n−1−o(1).
On the other hand, if X −W −M , then for any value w attained by W , supp(X|W = w)
and supp(M |W = w) has to form a clique in the graph G. Since the maximal clique in G

has at most 3n log n edges, for any W = w, it holds that

|supp(X|W = w)| · |supp(M |W = w)| ≤ 3n log n.

It follows that for any such W we can write

H(XM |W) ≤ log(|supp(X|W = w)| · |supp(M |W = w)|) = log n +O(log log n).

Hence we have that the mutual information between XM and W is,

I(XM ; W) = H(XM)−H(XM |W) ≥ (2 log n− 1− o(1))− (log n +O(log log n))
= log n−O(log log n),

for any W satisfying X −W −M . It follows that C(X; M) = Ω(log n) while I(X; M) ≤
1− o(1).

APPROX/RANDOM’16

Explicit List-Decodable Codes with Optimal Rate
for Computationally Bounded Channels
Ronen Shaltiel∗1 and Jad Silbak†2

1 Department of Computer Science, University of Haifa, Israel
ronen@cs.haifa.ac.il

2 Department of Computer Science, University of Haifa, Israel
jadsilbak@gmail.com

Abstract
A stochastic code is a pair of encoding and decoding procedures (Enc,Dec) where Enc : {0, 1}k×
{0, 1}d → {0, 1}n. The code is (p, L)-list-decodable against a class C of “channel functions”
C : {0, 1}n → {0, 1}n if for every message m ∈ {0, 1}k and every channel C ∈ C that induces at
most pn errors, applying Dec on the “received word” C(Enc(m,S)) produces a list of at most
L messages that contain m with high probability over the choice of uniform S ← {0, 1}d. Note
that both the channel C and the decoding algorithm Dec do not receive the random variable S,
when attempting to decode. The rate of a code is R = k/n, and a code is explicit if Enc,Dec
run in time poly(n).

Guruswami and Smith (J. ACM, to appear), showed that for every constants 0 < p < 1
2 and

c > 1 there are Monte-Carlo explicit constructions of stochastic codes with rate R ≥ 1−H(p)− ε
that are (p, L = poly(1/ε))-list decodable for size nc channels. Monte-Carlo, means that the
encoding and decoding need to share a public uniformly chosen poly(nc) bit string Y , and the
constructed stochastic code is (p, L)-list decodable with high probability over the choice of Y .

Guruswami and Smith pose an open problem to give fully explicit (that is not Monte-Carlo)
explicit codes with the same parameters, under hardness assumptions. In this paper we resolve
this open problem, using a minimal assumption: the existence of poly-time computable pseu-
dorandom generators for small circuits, which follows from standard complexity assumptions by
Impagliazzo and Wigderson (STOC 97).

Guruswami and Smith also asked to give a fully explicit unconditional constructions with the
same parameters against O(logn)-space online channels. (These are channels that have space
O(logn) and are allowed to read the input codeword in one pass). We resolve this open problem.

Finally, we consider a tighter notion of explicitness, in which the running time of encoding
and list-decoding algorithms does not increase, when increasing the complexity of the channel.
We give explicit constructions (with rate approaching 1−H(p) for every p ≤ p0 for some p0 > 0)
for channels that are circuits of size 2nΩ(1/d) and depth d. Here, the running time of encoding
and decoding is a fixed polynomial (that does not depend on d).

Our approach builds on the machinery developed by Guruswami and Smith, replacing some
probabilistic arguments with explicit constructions. We also present a simplified and general
approach that makes the reductions in the proof more efficient, so that we can handle weak
classes of channels.

1998 ACM Subject Classification F.1.3. Complexity Measures and Classes

Keywords and phrases Error Correcting Codes, List Decoding, Pseudorandomness

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2016.45

∗ Research supported by ERC grant 279559, BSF grant 2010120, and ISF grant 864/11.
† Research supported by ERC grant 279559.

© Ronen Shaltiel and Jad Silbak;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016).
Editors: Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans; Article No. 45; pp. 45:1–45:38

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.45
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

45:2 Explicit List-Decodable Codes for Computationally Bounded Channels

1 Introduction

List decodable codes

List decodable codes are extensively studied in Coding Theory and Theory of Computer
Science, and have many applications. In the paragraph below we define list-decodable codes,
using a functional view, which is more convenient for this paper.

A code is defined by a pair (Enc,Dec)) of encoding and decoding procedures. We say
that Enc : {0, 1}k → {0, 1}n, is (p, L)-list decodable, if there exits a function Dec which
given y ∈ {0, 1}n, Dec(y) produces a list of size L containing all elements m ∈ {0, 1}k such
that δ(y,Enc(m)) ≤ p, (here δ(x, y) is the relative hamming distance of x and y). Unique
decoding is the special case where L = 1, and a code is explicit if both encoding and decoding
can be performed in time polynomial in n. The rate of a code is R = k

n . (A more detailed
formal definition is given in Section 3.2).

Towards explicit capacity-achieving, binary list decodable codes

It is known that for 0 < p < 1
2 , binary (p, L)-list decodable codes must have rate R ≤ 1−H(p)

for nontrivial size lists, and a longstanding open problem in coding theory is to give an
explicit construction of binary codes matching list-decoding capacity. That is, show that for
every constants 0 < p < 1

2 , and ε > 0, and for every sufficiently large n, there are explicit
binary list decodable codes with rate R = 1−H(p)− ε, that are (p, L)-list decodable, for a
constant L that depends on ε. The probabilistic method shows that there exist nonexplicit
codes with these parameters. (In fact, the probabilistic method achieves list size L which is
poly(1/ε), and this is a benchmark that can be compared to.) Today, despite substantial
effort, no explicit constructions are known, even if we insist only on explicit encoding, and
do not require list-decoding to be explicit.

Restricted channels

Explicit uniquely decodable, binary codes achieving rate approaching 1−H(p), are known
for restricted classes of channels. There is a large body of work in Shannon’s framework, on
channels which are not adversarial and inflict “random errors”. The most famous example is
a binary symmetric channel, that flips each symbol independently with probability p, and
there are explicit, uniquely decodable, binary codes with rate approaching 1−H(p) for such
channels.

Computationally bounded channels

Lipton [11] considered intermediate classes of adversarial channels according to the compu-
tational complexity of the channel. More specifically, we can think of a channel as a function
C : {0, 1}n → {0, 1}n and consider families channels that:

Induce at most pn errors. That is, for every z ∈ {0, 1}n, EC(z) := z⊕C(z) has hamming
weight at most pn.
Are computationally bounded. That is, we only consider C that belong to some complexity
class C.

Natural examples of complexity classes are polynomial size circuits and logarithmic space
branching programs. Note that these two classes are nonuniform, and it is more natural to
use nonuniform classes, as such classes trivially contain channels C where EC is constant
(meaning that there is a fixed error vector e such that C(z) = z ⊕ e). Such channels are

R. Shaltiel and J. Silbak 45:3

called “additive channels” and as they are the simplest form of adversarial behavior, it makes
sense that we allow them in any class of computationally bounded channels.

Another advantage of using nonuniform classes of channels, is that it is sufficient to
consider deterministic channels, in order to obtain security against randomized channels.
This is because by averaging, if there is a computationally bounded randomized channel that
is able to prevent decoding on some message m, then we can fix its random coins and obtain
a deterministic channel (which is hardwired with a good choice of random coins).

1.1 Stochastic codes
Unfortunately, the notion of computationally bounded channels is not interesting in the
standard setup of error correcting codes: It is easy to show that if a code Enc : {0, 1}k →
{0, 1}n is list-decodable against additive channels, then it is list-decodable against unbounded
channels.1

Several setup assumptions were introduced in order to circumvent this problem. In this
paper, we are interested in a setup of “stochastic codes” studied by Guruswami and Smith
[5]. We remark that other setups have been considered and we mention these in Section 1.4.

Let C be a class of channels that induce at most pn errors. A stochastic code against C
consists of a pair of algorithm (Enc,Dec) such that:

The encoding algorithm Enc(m,S) receives a message m ∈ {0, 1}Rn and a uniform string
S (that is not known to the channel or decoding algorithm) and outputs an n bit string
that is the codeword.
A channel C ∈ C, that does not receive the string S, corrupts the codeword, generating
C(Enc(m,S)).
The decoding algorithm gets the “corrupted codeword” C(Enc(m,S)), but does not
receive the string S.
For every messagem, and for every channel C ∈ C, the decoding done by Dec(C(Enc(m,S)))
needs to successfully recover the original message m with probability 1−ν over the choice
of S. (ν > 0 is an error parameter).
Here, "success" means to output m (in case of unique decoding) or output a list of size L
that contains m (in case of list decoding).

A formal definition follows:

I Definition 1 (Stochastic Codes). Let k, n, q be parameters and let Enc : {0, 1}k×{0, 1}d →
{0, 1}n be a function. Let C be a class of functions from n bits to n bits. We say that Enc is
an encoding function for a stochastic code that is:

decodable with success probability 1 − ν against channels in C, if there exists a
function Dec : {0, 1}n → {0, 1}k such that for every m ∈ {0, 1}k and every C ∈ C,
PrS←Ud [Dec(C(Enc(m,S))) = m] ≥ 1 − ν. We typically, parameterize C with two
parameters: the complexity of functions in the class, and the number errors that they
induce.
L-list-decodable with success probability 1− ν against channels in C if the function
Dec above is allowed to output a list of size at most L that contains m.

1 Specifically, if a code is not (combinatorially) list-decodable, then there exist a received word y that
has too many codewords that are close to it. Let c be one of these codewords, and let e = c⊕ y and
consider the additive channel Ce(z) = z ⊕ e. This channel “breaks” the code as C(c) = c⊕ e = y, and y
is a received word on which decoding cannot succeed.

APPROX/RANDOM’16

45:4 Explicit List-Decodable Codes for Computationally Bounded Channels

A code is explicit if its encoding and decoding functions are computable in time polynomial
in their input and output. The rate of the code is the ratio of the message length and output
length of Enc.

Guruswami and Smith [6] gave explicit constructions of stochastic codes with rate
approaching 1−H(p) (for 0 < p < 1

2) that are uniquely decodable against additive channels.
They also showed that for p > 1/4 there are computationally weak channel families, against
which, stochastic codes with rate approaching 1−H(p) and unique decoding do not exist.
(All the complexity classes considered in this paper can simulate these weak channels.)

A Monte-Carlo construction of stochastic codes for poly-size circuits

Guruswami and Smith [6] showed that for every constant c, there is a Monte-Carlo expli-
cit construction of list decodable stochastic codes against channels of size nc, with rate
approaching 1−H(p). By Monte-Carlo, we mean that:

The encoding and decoding algorithms receive an additional input y of length poly(nc).
With high probability over the choice of y, the encoding and decoding algorithms (that
are hardwired with y) form the required stochastic code.2

1.2 Our results
Guruswami and Smith stated the following open problem: give fully explicit (that is not
Monte-Carlo) constructions of stochastic codes against poly-size circuits, under complexity
theoretic assumptions.

Necessity of complexity theoretic assumptions

As we explain later, complexity theoretic assumptions are not necessary in order to give
Monte-Carlo constructions of stochastic codes. They are necessary to give fully explicit
constructions (which are not Monte-Carlo) in the following sense: Given a stochastic code
against circuits of size nc, we can consider the “optimal channel” that given a codeword
z ∈ {0, 1}n, tries all possible error vectors e ∈ {0, 1}n of relative hamming weight p, and
finds the first one on which decoding fails, if such a vector exist. This channel succeeds iff
the code isn’t secure against unbounded channels. If the code isn’t secure against unbounded
channels (but secure against size nc channels) then this attack cannot be carried out in
size nc. This means that there is a problem computable in E = DTIME(2O(n)) that for
every sufficiently large n, cannot be solved by size nc circuits.3 We remark that this type
of assumptions (namely, that there is a problem in E that requires large circuits) is exactly
the type of assumption that implies and is implied by, existence of explicit pseudorandom
generators in the Nisan-Wigderson setting [15, 8].

1.2.1 Explicit stochastic codes for poly-size circuits
Our first result resolves the open problem posed by Guruswami and Smith, and we construct
explicit stochastic codes against poly-size circuit channels, under an assumption that is only
slightly stronger than what is implied by the existence of such codes.

2 We mention that the approach of Guruswami and Smith dictates that the length of y is larger than nc
(and in general larger than the log of the number of allowed channels). This means that a channel is
not “sufficiently complex” to receive y as input.

3 In fact, for this argument, we don’t need the stochastic code to be explicit. Encoding is allowed to be
arbitrary, and decoding is allowed to run in time 2O(n).

R. Shaltiel and J. Silbak 45:5

I Theorem 2 (Explicit stochastic codes for poly-size channels). If there exists a constant
β > 0 and a problem in E = DTIME(2O(n)) such that for every sufficiently large n, solving
E on inputs of length n, requires circuits of size 2β·n, then for every constants 0 < p < 1

2 ,
ε > 0, c > 1, and for every sufficiently large n, there are explicit stochastic codes with rate
1−H(p)− ε that are L-list decodable for size nc circuits that induce at most pn-errors, where
L = poly(1/ε) is a constant.

Theorem 2 is stated in more detailed form in Theorem 32. The assumption used in the
Theorem is a standard complexity assumption, and was used by Impagliazzo and Wigderson
[8] to show that BPP=P.

1.2.2 Unconditional explicit stochastic codes for space O(logn) online
channels

Guruswami and Smith also considered “space s online channels”. These are channels
C : {0, 1}n → {0, 1}n implemented by space s (or equivalently width 2s) oblivious read-once
branching programs (ROBPs). Below is a standard definition of ROBPs tailored for functions
that output many bits.

Read Once Branching Programs

We will only be interested in space s ≥ logn. A space s ROBP C : {0, 1}n → {0, 1}n is
defined using a layered graph with n+ 1 layers, where the first layer has a single node v0,
and remaining layers have 2s nodes. Each node v in the first n layers has two outgoing edges
(labeled with zero and one) connected to nodes in the next layer, and each node v is also
labeled by an “output bit” b(v). On input x ∈ {0, 1}n, the computation of C is defined by
following the unique path from v0 to the last layer, defined by taking the edge marked with
xi at step i. The output C(x) is the concatenation of the n output bits, collected at nodes
along the path. It is standard that for s ≥ Ω(logn) ROBPs with space O(s) capture the
nonuniform version of space O(s) computation, that reads its n bit input x in fixed order.
We remark that all the results in this paper also hold if we allow channels to have s bits of
“lookahead”, allowing them to also read the bits i+ 1, . . . , i+ s before outputting the i’th bit.

Guruswami and Smith stated the following open problem: give unconditional fully explicit
(that is not Monte-Carlo) constructions of stochastic codes against space O(logn) online
channels.4 Our second result resolves this open problem.

I Theorem 3 (Explicit stochastic codes for space O(logn) online channels). For every constants
0 < p < 1

2 , ε > 0, c > 1, and for every sufficiently large n, there are explicit stochastic codes
with rate 1−H(p)− ε that are L-list decodable for space c logn online channels that induce
at most pn-errors, where L = poly(1/ε) is a constant.

Theorem 3 is stated in more detailed form in Theorem 33.

4 A preliminary version of [6] contained an unconditional Monte-Carlo construction of stochastic code
against space O(logn) online channels, and a conditional Monte-Carlo construction for size nc circuits
(relying on the existence of “Nisan-Wigderson style”, pseudorandom generators for size nc circuits).
However, Monte-Carlo constructions can easily obtain “Nisan-Wigderson style” pseudorandom generators,
as a random function with polynomial size description is w.h.p. such a generator. Consequently, no
hardness assumption is needed for Monte-Carlo constructions against polynomial size circuits, which
are secure also against O(logn) space online channels.

APPROX/RANDOM’16

45:6 Explicit List-Decodable Codes for Computationally Bounded Channels

Efficiency of encoding/decoding versus channel complexity

The approach of Guruswami and Smith [6] (that we also use) dictates that security can only
be proven for channel families that are not sufficiently strong to run the decoding algorithm.5
Consequently, in the Monte-Carlo construction and our Theorem 2, the running time of
encoding and decoding is a polynomial in n that is larger than the circuit size nc. It is
an intriguing open problem whether stochastic codes with rate approaching 1−H(p), that
can be encoded and decoded in fixed polynomial time (say n3) against any polynomial size
channel, can be constructed (under cryptographic assumptions). We do not know whether
this is possible.

We can however expect to obtain fixed polynomial time (that does not depend on the
constant c) for encoding and decoding in our Theorem 3. Unfortunately, this is not the case,
and the encoding and decoding algorithm that we obtain in Theorem 3 run in time polynomial
in nc (and in particular larger than nc) when working against space c logn channels. We do
not know how to avoid this dependence.

1.2.3 Stochastic codes for AC0 channels, with fixed poly-time
encoding/decoding

We are able to obtain fixed polynomial time algorithms for encoding and decoding for a
family of channels implemented by superpolynomial size and constant depth circuits. For
technical reasons, we achieve this only for p ≤ p0 for some p0 > 0. The result is stated below.

I Theorem 4 (Explicit stochastic codes for AC0 channels). There exist constants p0 > 0 and
a > 0 such that for every constants 0 < p ≤ p0, ε > 0, d, and for every sufficiently large n,
there are explicit stochastic codes with rate 1 −H(p) − ε that are L-list decodable for size
2n

1
ad circuits of depth d that induce at most pn-errors, where L = poly(1/ε) is a constant.

(Here, encoding and decoding run in fixed polynomial time that does not depend on d, and
only the choice of which n is sufficiently large, depends on d.)

The constant p0 comes from a specific construction of AG-codes, and it seems that p0
can be pushed to be any constant strictly smaller than 1/12. Theorem 4 is stated in more
detailed form in Theorem 34.

1.3 Perspective
Explicit codes against computationally bounded channels give the “best of both worlds”:
They can recover from errors induced by adversarial channels, while having information
theoretic optimal rate approaching 1−H(p).

As pointed out by Guruswami and Smith, essentially all randomized channels studied
in the Shannon framework of error correcting codes, are computationally simple (and it
seems that all of them can be implemented by constant depth circuits or online logspace).
This means that the computational perspective leads to a unified construction of explicit
codes that are good for all “Shannon style” randomized channels simultaneously, while also
being able to recover against many adversarial channels (and in particular against additive
channels).

5 The approach of Guruswami and Smith (that we also use) relies on the fact that channels cannot
distinguish between encodings of two messages. Therefore, if decoders aren’t stronger than channels,
they cannot hope to decode, even if there are no errors.

R. Shaltiel and J. Silbak 45:7

We believe that the distinction we make above (namely, whether encoding/decoding
efficiency is allowed to increase with the complexity of the channel) is important so that the
added benefit of codes for computationally bounded channels doesn’t come with a price tag
of being less efficient. Specifically, our construction for AC0 channels uses “regular” coding
theoretic ingredients and does not have to “pay extra” for being able to handle channels that
are superpolynomial size circuits of constant depth.

An intriguing open problem is whether unique decoding is possible for computationally
bounded channels with rate approaching 1−H(p). Guruswami and Smith [6] showed that
this is impossible for p > 1/4 (and their argument works for all classes of channels discussed
in this paper). It is not known whether unique decoding is possible for p < 1/4 for the
channel classes that we consider.

1.4 Some related work

The notion of computationally bounded channels was initially studied in cryptographic setups.
We mention some of these works below.

Shared private randomness

We start with the notion of codes with “shared private randomness”. While this setup was
considered before the notion of stochastic codes, in this paper, it is natural view it as a
version of stochastic codes in which the decoding algorithm does receive the S.

This corresponds to a standard symmetric cryptography setup in which honest parties
(the encoder and decoder) share a uniform private key S, and the bad party (the channel)
does not get the key.

Lipton [11] and following work (see [19] for more details) gave explicit constructions of
uniquely decodable codes against computationally bounded channels, with rate approaching
1−H(p), under cryptographic assumptions.

Note that the setup of stochastic codes is lighter. The encoder and decoder do not need
to share a private random key. Moreover, a fresh key can be chosen on the spot every time
the encoder encodes a message.

We also point out that the Monte-Carlo construction of Guruswami and Smith, also
requires less setup. While the encoder and decoder do need to share a random string, this
string does not need to be private. It can be chosen once and revealed to the channel.

Private Codes

A related notion of “private codes” was studied by Langberg [10]. Here channels are
unbounded, codes are existential (and not explicit), and the focus is on minimizing the length
of the shared key. Langberg provides asymptotically matching upper and lower bounds
of Θ(logn + log(1/ν)), on the amount of randomness that needs to be shared for unique
decoding in this setup.

Public key setup

Micali et al. [12] considered computationally bounded channels, and a cryptographic, public
key setup. Their focus is to use this setup to convert a given (standard) explicit list-decodable
code into an explicit uniquely decodable codes (in this specific public key setup).

APPROX/RANDOM’16

45:8 Explicit List-Decodable Codes for Computationally Bounded Channels

2 Overview of the technique

In this section we give a high level overview of the construction. Our construction heavily
relies on previous work in the area (mainly on that of Guruswami and Smith [6]). In this
high level overview we attempt to highlight our technical contribution, while also giving a
high level overview of the many ideas from previous work that are used in the construction.
Therefore, we start with a high level description of earlier work, and build up to the work of
Guruswami and Smith. Along the way, in Section 2.2 we explain the modifications that allow
us to handle weak classes of channels. Finally, in Section 2.4, we present a self contained
problem (that of constructing inner stochastic codes). Constructing such explicit codes is
the main source of our improvement over Guruswami and Smith, and we give a high level
overview of our approach.

The reader can skip this high level overview and go directly to the technical section.

2.1 Codes for the setup of shared private randomness
We start by explaining how to construct codes with rate approaching 1−H(p) in the case
that the setup allows shared private randomness. Recall that this can be thought of as a
stochastic code in which the decoding algorithm receives the random string chosen by the
encoding. We present the ideas that are used to construct codes against bounded channels in
this setup, in two steps. We first explain how to handle additive channels, and then explain
how this method can be extended to handle bounded channels that are not additive. The
ideas from both these reductions are key components in the construction of Guruswami and
Smith.

Reducing additive channels to binary symmetric channels

We start by constructing codes with shared private randomness against additive channels.
The encoder and decoder will share a description Sπ of a uniformly selected permutation
π : [n]→ [n]. The encoding will be defined by

Enc(m,Sπ) = π(EncBSC(m)),

meaning that Enc encodes m by a code for binary symmetric channels, and then uses the
permutation π to rearrange the n indices of the encoding, placing the i’th bit, in the π(i)’th
position. Note that for any additive channel Ce(z) = z ⊕ e that induces pn errors, the effect
of the channel on Enc(m,Sπ) can be essentially viewed as applying a binary symmetric
channel on EncBSC(m), meaning that the decoder is able to uniquely decode against additive
channels, with a code that has rate approaching R = 1 − H(p) (which can be achieved
explicitly for binary symmetric channels).

Smith [19] showed that an (almost) t-wise independent permutation can be coupled with
specific constructions of codes for binary symmetric channels, and used instead of a truly
random permutation. This reduces the length of the shared key and allows keys shorter
than n.

Reducing computationally bounded channels to additive channels

It is possible to use cryptography (or more generally pseudorandomness) to handle computa-
tionally bounded channels: Assume that in addition to the seed Sπ, the encoder and decoder

R. Shaltiel and J. Silbak 45:9

also share a seed SPRG for a pseudorandom generator PRG that fools computationally
bounded channels and outputs n bits, and define:

Enc′(m, (Sπ, SPRG)) = Enc(m,Sπ)⊕ PRG(SPRG) = π(EncBSC(m))⊕ PRG(SPRG).

This means that the rate of Enc′ is inherited from Enc and can approach 1−H(p). A useful
property is that for every fixed sπ, the random variable Enc(m, (sπ, SPRG)) is pseudorandom
for the channel. This can be used to show that a computationally bounded channel cannot
prevent correct decoding.

We now explain this argument. The decoding algorithm Dec′(y, (sπ, sPRG)) will simply
compute y′ = y ⊕ PRG(sPRG) and apply the previous decoding algorithm Dec on y′ and sπ.
We show that for every computationally bounded channel C that induces at most pn errors,
the decoding succeeds with probability at least 1− (ν + εPRG), where εPRG is the error of
the generator PRG.

We consider the function A(m, sπ, e) that checks if DecBSC(Enc(m, sπ)⊕ e) successfully
recovers m. In the previous section we’ve seen that for every message m, and error vector
e of relative hamming weight at most p, Pr[A(m,Sπ, e)] ≥ 1 − ν. Consequently, for every
channel C that induces pn errors,

Pr[A(m,Sπ, EC(Un)) = 1] ≥ 1− ν

(this follows as Un is independent of Sπ, and recall that EC(z) = z⊕C(z)). If decoding does
not work, and there exist a message m such that:

Pr[A(m,Sπ, EC(Enc′(m, (Sπ, SPRG)))) = 1] < 1− (ν + εPRG).

By averaging over Sπ, this gives that there exists a fixed value sπ such that:

Pr[A(m, sπ, EC(Un)) = 1]− Pr[A(m, sπ, EC(Enc′(m, (sπ, SPRG)))) = 1] > εPRG,

meaning that f(z) = A(m, sπ, EC(z)) distinguishes Enc(m, (sπ, SPRG)) from Un with prob-
ability εPRG, which is a contradiction if PRG is εPRG-pseudorandom against f (which is
essentially the composition of the channel and DecBSC). As DecBSC runs in polynomial
time, it follows that a PRG against poly-size circuits suffices to handle poly-size channels.

2.2 A more efficient reduction for online logspace and AC0

A drawback of the approach described above is that while the decoding algorithm DecBSC
runs in polynomial time, existing constructions rely on decoding an “outer code” (typically,
Reed-Solomon) which cannot be done by small constant depth circuits or small space ROBPs.
In this paper we are interested in channels that run in online logspace or AC0. We would
like to use PRGs that fool these classes (and explicit constructions are unconditional) rather
than PRGs for poly-size circuits (which are inherently conditional as they imply circuit lower
bounds).

For this purpose we replace the code (EncBSC ,DecBSC) (for binary symmetric channels)
by a code (Encbalanced,Decbalanced) that is list decodable from balanced errors. We now define
this notion. A string e ∈ {0, 1}n is (b′, p, γ)-balanced if when viewed as e ∈ ({0, 1}b′)n/b′ , at
most a γ fraction of blocks of e, have relative hamming weight larger than p. It is not hard
to construct explicit codes which are list-decodable (with constant size lists) against error
vectors that are (b′, p, γ)-balanced and have rate approaching 1−H(p) for small constant γ.
We give such a construction in Section 3.2.1.

APPROX/RANDOM’16

45:10 Explicit List-Decodable Codes for Computationally Bounded Channels

If we take an error vector of Hamming weight p and permute it using a random (or t-wise
independent) permutation, then with high probability it will indeed be (b′, p+α, γ)-balanced
for sufficiently large b′, and small constant α, γ > 0. This means that codes against balanced
errors in particular work against binary symmetric channels.

The advantage of this notion is that the function A of the previous section can be made
more efficient. Rather than having to decode EncBSC , it is sufficient to check if the error
vector e is (b′, p + α, γ)-balanced, which can be performed by models that can count (or
even only approximately count) such as small ROBPs, or AC0. This leads to more efficient
reductions that enable us to use PRGs for weaker classes.6

2.3 Stochastic codes for bounded channels

We start by presenting the approach of Guruswami and Smith [6] to take codes for shared
private randomness (as presented in the previous section) and convert them into stochastic
codes.

Let (Enc′,Dec′) be the code for shared private randomness (presented in the previous
section). We will reserve N for the block length of the stochastic code that we want to
construct, and use Ndata as the block length of Enc′. We have that the rate of Enc′ can
approach 1−H(p) and so it is sufficient that the rate of the code (Enc,Dec) that we construct,
approaches that of Enc′.

We will set N = Ndata + Nctrl where Nctrl = ε ·N (for a small constant ε) so that the
rate indeed approaches 1−H(p). Loosely speaking, when a given a message m and “control
information” S (which will include (Sπ, SPRG) as well as additional randomness) we will
set cdata = Enc′(m, (Sπ, SPRG)) ∈ {0, 1}Ndata and cctrl ∈ {0, 1}Nctrl will be an encoding of S
(that we specify later). We will then merge these two strings into a string c = (cdata, cctrl) of
length N .

The high level intuition, is that the encoder encodes the control information S and embeds
it in the encoding of m, hoping that the decoder can find it, decode it to get S, and then use
the decoding algorithm Dec′ (which requires S) to decode the data part.

However, there are two seemingly contradicting requirements: On the one hand, the
decoder needs to find the “control information” in order to recover S. On the other, if it
is easy to identify which part of the encoding encodes the “control information”, then the
channel can focus its errors on it, wiping it out completely.

Stochastic codes for additive channels

The first step taken by Guruswami and Smith is to ensure that an additive channel cannot
wipe out the control information. For this purpose they divide the N output bits into n = N/b

blocks of length b (where b is a parameter to be chosen later). The encoder will use additional
randomness Ssamp to choose a random set I = {i1, . . . , ε · n} of distinct indices in [n]. The
string Ssamp will be part of the “control information” S (making S = (Ssamp, Sπ, SPRG))
and in order to make its length less than n, the sampling is made by a randomness efficient
averaging sampler (see Section 3.3 for details). We will pretend that the set I is completely
random in this high level presentation.

6 Some additional effort is needed to make this idea go through for online channels, as after the permutation,
input bits “arrive” in a way that doesn’t respect the partitioning into blocks. A preliminary version of
[6] contained an alternative, and more complex approach in order to deal with online channels.

R. Shaltiel and J. Silbak 45:11

The set I will define which blocks are “control blocks”, and the final embedding of
cdata, cctrl into an N bit string, is done by placing cctrl in the control blocks, and cdata in the
remaining blocks (which are suitably called data blocks). The sampling of I guarantees that
for every fixed error vector e of relative hamming weight at most p, at least an ε/2 fraction
of the control blocks, are not hit with significantly more than pb errors. This will suffice for
the decoding algorithm.

The decoder (that does not know I) will go over all n blocks, treating each one of them
as a potential control block. Even if no errors are inflicted, only ε · n of the n blocks are
indeed control blocks. We want the decoder to be able to “list-decode” and output a small
list of candidates s for the “control information”.

This can be done as follows: When preparing cctrl, the control information S will be
encoded by a concatenated code, where the outer code is list-decodable (or more generally
list-recoverable) and has block length ε · n, and the inner code has symbols of b bits, and is
decodable from slightly more than pb errors. This way, if at least ε/2 fraction of the control
blocks suffer not much more than pb errors (and are therefore decoded correctly by the
inner code) then the list decoding algorithm of the outer code produces a list of candidates
that includes the correct control information s. Decoding can now proceed, and for each
such candidate s, it can apply Dec′ on the data part (defined by ssamp) using the control
information (sπ, sPRG). This indeed suffices for list decoding against additive channels.

Extending the approach to computationally bounded channels

There is an obvious concern if we use this strategy against channels that are not additive:
The channel C may inspect the different n blocks, and try to identify which of them are
control blocks. It is crucial that the channel will not be able to distinguish a control block
from a data block. This means that we want the inner code that produces the b-bit control
blocks to have three properties:

It should be able to decode from roughly pb errors.
The channel should not be able to distinguish control blocks from data blocks.
Control blocks shouldn’t reveal information about S to the channel.

Here, it is useful that the data part is xored with PRG(SPRG) and is therefore pseudorandom.
This means that we can obtain these three properties if we use a stochastic code (instead of
a standard code) and require that the output is pseudorandom. Note that here the notion
of stochastic codes is not used to “improve decoding properties” (we can do with standard
codes). Instead, it is used to perform encoding in a way that does not reveal information
about the message. This notion of stochastic codes is defined in the next section.

2.4 Pseudorandom stochastic inner codes
Guruswami and Smith considered the following version of stochastic codes. Let Enc :
{0, 1}k × {0, 1}d → {0, 1}b be a function.
1. We say that Enc is ε-pseudorandom for a class of functions C if for every m ∈ {0, 1}k

and for every C ∈ C, the distribution Enc(m,Ud) is ε-pseudorandom for C, meaning that:
|Pr[C(Enc(m,Ud)) = 1]− Pr[C(Ub) = 1]| ≤ ε.

2. We say that Enc is L-list decodable with radius p if there exists a function Dec such that
for every y ∈ {0, 1}b, Dec(y) produces a list of at most L pairs (m, r) ∈ {0, 1}k × {0, 1}d
that contains all pairs (m, r) ∈ {0, 1}k × {0, 1}d such that δ(y,Enc(m, r)) ≤ p.

Such codes can be plugged in as “inner control codes” in the scheme described in the previous
section, and the two properties above suffice for the correctness of the construction (if

APPROX/RANDOM’16

45:12 Explicit List-Decodable Codes for Computationally Bounded Channels

pseudorandomness is guaranteed against a class sufficiently stronger than the channel, as
explained in Section 2.2).

Consequently, the task of explicitly constructing stochastic codes against bounded channels
reduces to explicitly constructing such stochastic codes with constant size lists. Here, we
benefit from the fact that these codes are used as inner codes. The block length b of the
inner stochastic code can be much smaller than the block length N of the final code. Note
however that pseudorandomness needs to hold with respect to channels (and even more
complex functions) that have complexity measured as a function of N (which in turn gives a
lower bound on b).

We first concentrate on the case where channels are circuits of size N c (which is the
case considered by Guruswami and Smith). This allows setting k, d, b = O(logN) which in
turn means that: we need pseudorandomness against circuits of size N c = 2Ω(b), and we are
allowed to perform encoding and list-decoding in time 2O(b).

However, even with these choices, it seems hard to construct such stochastic codes (no
matter what complexity assumption we use). Guruswami and Smith [6] were not able
to give such explicit constructions. Instead, they settle for a Monte-Carlo construction
using the probabilistic method: They describe a probability space over functions Enc :
{0, 1}k × {0, 1}d → {0, 1}b for k, d, b = O(logN) in which a code with the two properties
above is chosen with high probability. The description of Enc in this probability space is of
length polynomial in N c, and so this indeed gives a Monte-Carlo construction.7

2.5 New constructions of pseudorandom weak inner codes
We observe that we can relax the second property in the definition of stochastic inner codes,
and still be able to use them in the framework described in the earlier sections. Specifically,
let Enc : {0, 1}k × {0, 1}d → {0, 1}b be a function, we use the following modification of
condition (2) above:

2’. We say that Enc is L-weakly list decodable with radius p if there exists a function
Dec such that for every y ∈ {0, 1}b, Dec(y) produces a list of at most L messages
m ∈ {0, 1}k that contains all messages m ∈ {0, 1}k for which there exists r ∈ {0, 1}d such
that δ(y,Enc(m, r)) ≤ p.

The key difference between “weakly list decodable” and the notion used by Guruswami
and Smith (which we will call “strongly list-decodable”) is that this definition allows a
message m to be encoded to the same value under many different seeds r, whereas the
previous definition did not. It turns out that constructing codes with properties 1 and 2′ is
significantly simpler than constructing codes with the original properties. Specifically, for
the case of inputs and outputs that are of length O(logN), we give a general transformation
that for every 0 < p < 1

2 takes:
a pseudorandom generator G : {0, 1}a′·logN → {0, 1}q logN that is pseudorandom for C,

and converts it into,
a stochastic code Enc : {0, 1}a logN × {0, 1}a′ logN → {0, 1}q logN that is pseudorandom
for C, and is L-weakly list decodable with radius p. Here, a, a′, q are constants and q is
sufficiently larger than a, a′ (the exact dependence is q ≥ a+a′

1−H(p)−1/(L+1)). Furthermore,
encoding and list-decoding can be done in time poly(Nq) times the running time of G.

7 Note that the obvious approach to checking whether a candidate Enc is pseudorandom against circuits
of size Nc requires going over all such circuits which is not feasible in polynomial time.

R. Shaltiel and J. Silbak 45:13

This transformation works by setting Enc(m, r) = E(m)⊕G(r) where E : {0, 1}a logn →
{0, 1}q logn is a random code. The argument is similar to proofs that random codes are list
decodable, and explicitness is achieved by derandomizing the probabilistic argument using
(L+ 1)-wise independence, and using brute force decoding. (Here it is crucial that we are
allowed to encode and decode in exponential time in the input and output length).8

We can use these transformation to obtain stochastic codes that are weakly list-decodable
from radius 0 < p < 1

2 and are:
pseudorandom against size N c circuits, using the pseudorandom generators of Impagliazzo
and Wigderson [8] which rely on the assumption that there exists a constant β > 0 and a
problem in E = DTIME(2O(n)) that cannot be solved by circuits of size 2β·n for every
sufficiently large n. This gives Theorem 2.
pseudorandom against space O(logn) ROBPs, using the pseudorandom generators of
Nisan and Zuckerman [16]. This (together with the improvements explained in Section
2.2 and some additional effort that goes into making the reduction implementable by
small space ROBPs, explained in Section 6.2) gives Theorem 3.

2.6 Inner stochastic codes for AC0

Our goal is to construct a stochastic code Enc : {0, 1}k×{0, 1}d → {0, 1}n that is weakly-list
decodable from radius p > 0, and ε-pseudorandom against large circuits of constant depth d.
We want these codes to have fixed poly(n) time encoding and decoding. This is because in
the final construction, we will choose the block length n to be N0.1 (where N is the block
length of the final code). This choice will enable fooling circuits of superpolynomial size.

We will use an explicit binary linear code EncAG : {0, 1}d+k → {0, 1}n with constant
rate R that decodes pn errors. There are constructions of explicit codes with rate R > 0 and
p > 0, that have the additional property that the relative distance of the dual code is at least
p. Such constructions can be obtained by using the Algebraic Geometric codes of Garcia and
Stichtenoth [3] (that are over constant size alphabets that can be chosen to be a power of
two) and viewing them as binary codes (which preserves rate, and decreases relative distance
and relative dual distance by a constant factor). A description of these codes appears in a
paper by Shpilka [18] (in an appendix attributed to Guruswami), and we elaborate on this
result in Section 4.3.

Let G be the (d+ k)× n generator matrix of such codes, and let G(t) denote the d× n
matrix obtained by the first d rows of G, and G(b) denote the bottom k × n rows of G.
For simplicity let us set k = d, so that both are linear in n. In the construction of Garcia
and Stichtenoth, it can be arranged that G(t) is a generator matrix for a code with similar
properties, and in particular the code generated by G(t) has relative dual distance p > 0 (we
may need to slightly decrease p for this to hold). We define:

Enc(x, r) = EncAG(r ◦ x) = (r ◦ x) ·G = r ·G(t) + x ·G(b)

We note that the dual code to the code defined by G(t) has relative distance p. This means
that (the transposed of) G(t) is the parity check matrix of a code with relative distance
p, which in turn implies that every pn columns of G(t) are linearly independent. This

8 It is this argument that makes the running time of encoding/decoding of our constructions for circuits
and online channels, grow with the size of the family of channels. Specifically, encoding and decoding of
the inner stochastic code are done by “brute force” and in particular, require running the PRG on all
seeds. The number of seeds of a PRG is typically larger than the number of potential distinguishers in
the fooled class, and this means that we lose in efficiency, when we try to handle more complex channels.

APPROX/RANDOM’16

45:14 Explicit List-Decodable Codes for Computationally Bounded Channels

gives that the distribution r · G(t) for r ← Ud is pn-wise independent, and implies that
for every x ∈ {0, 1}k, Enc(x, Ud) is pn-wise independent. By Braverman’s theorem [2] (see
also later improvements by [21]) “polylog-wise independence fools AC0”, and in particular
pn-independent distributions are pseudorandom for circuits of size 2nΩ(1/d) and depth d.

The code EncAG is uniquely decodable from pn errors. This immediately gives that Enc
it is (strongly) list-decodable with radius p.

Organization of the paper

In Section 3 we give definitions of objects used in out constructions, and the constructions
from earlier work that we rely on. In Section 3.2.1 we show how to construct codes against
balanced errors. In Section 4 we give precise define several variants of stochastic codes,
and give constructions of inner stochastic codes that will be used in the main result. In
Section 5 we present the construction of stochastic codes, and restate the theorems from the
introduction in a more precise way. In Section 6 we prove the correctness of the construction
(and explain how to handle weak classes of channels).

3 Ingredients used in the construction

In this section we give formal definitions of the notions and ingredients used in the construction.
We also cite previous results from coding theory and pseudorandomness that are used in the
construction.

3.1 Pseudorandom generators
I Definition 5 (Pseudorandom generators). A distribution X on n bits is ε-pseudorandom
for a class C of functions from n bit to one bit if for every C ∈ C, |Pr[C(X) = 1]−Pr[C(Un)] =
1| ≤ ε. A function G : {0, 1}d → {0, 1}n is an ε-PRG for C if G(Ud) is ε-pseudorandom for C.

In the sections below, we list the constructions of pseudorandom generators, that we use
in this paper. We consider several choices of classes C.

3.1.1 Poly-size circuits
I Definition 6 (E is hard for exponential size circuits). We say that E is hard for exponential
size circuits if there exists β > 0 and a language L ∈ E = DTIME(2O(n)) such that for every
sufficiently large n, circuits of size 2β·n fail to compute the characteristic function of L in
inputs of length n.

I Theorem 7 ([8]). If E is hard for exponential size circuits then for every constant c >
1, there exists a constant b > 1 such that for every sufficiently large n, there is a G :
{0, 1}b·logn → {0, 1}n that is a 1

nc -PRG for circuits of size nc. Furthermore, G is computable
in time poly(nc) (where this polynomial depends on the constant β hidden in the assumption).

3.1.2 Oblivious read once branching program
I Theorem 8 ([14, 7]). There exist a constant a > 1 such that for every sufficiently large n,
there is a G : {0, 1}a·logn·(s+log(1/ε)) → {0, 1}n that is ε-pseudorandom for ROBPs of space s.
Furthermore, G is computable in time poly(n).

We also need PRGs with error that is exponentially small in the seed length. In this setup,
we only require arbitrary linear stretch.

R. Shaltiel and J. Silbak 45:15

I Theorem 9 ([16]). For every b > 1, there exists a constant a > 1 such that for every
sufficiently large n, there is a G : {0, 1}a·s → {0, 1}a·b·s that is a 1

2−s -PRG for ROBPs of
space s. Furthermore, G is computable in time poly(s).9

3.1.3 Constant depth circuits

I Theorem 10 ([13, 15, 22, 21]). There exists a constant a > 1 such that for every constant
d, and for every sufficiently large n, there is a G : {0, 1}(log(s/ε))a·d → {0, 1}n that is an
ε-PRG for circuits of size s and depth d. Furthermore, G is computable in time poly(n).

We will also use Braverman’s result that polylog-wise independence fools AC0.

I Theorem 11 ([2, 21]). There exists a constant a > 1 such that for every sufficiently large
n, every (log(s/ε))a·d-wise independent distribution on n bits is ε-pseudorandom for circuits
of size s and depth d.

3.2 Error-Correcting Codes

We give a nonstandard definition of error-correcting codes below. For our purposes it is more
natural to define codes in terms of a pair (Enc,Dec) of encoding and decoding algorithms.
Different variants are obtained by considering different tasks (decoding, list-decoding, list-
recovering) of the decoding algorithms and different types of error vectors.10

I Definition 12 (Codes). Let k, n, q be parameters and let Enc : {0, 1}k → ({0, 1}log q)n be
a function. We say that Enc is an encoding function for a code that is:

decodable from errors in E (where E ⊆ ({0, 1}log q)n) if there exists a function Dec :
({0, 1}log q)n → {0, 1}k such that for every m ∈ {0, 1}k and every e ∈ E, Dec(Enc(m)⊕
e) = m. The standard choice of E is the set of all vectors with Hamming weight t, and
such codes are said to be decodable from t errors.
L-list-decodable from errors in E if the function Dec above is allowed to output a list
of size at most L that contains m.
(α, `, L)-list-recoverable if there exists a function Dec which given a list T ⊆ {0, 1}log q

of size at most `, outputs a list of size at most L containing all m ∈ {0, 1}k such that
Pri←[n][Enc(m)i ∈ T] ≥ α.11

(α, `, L)-list-recoverable from a collection if there exists a function Dec which given
n lists T1, . . . , Tn ⊆ {0, 1}log q of size at most `, outputs a list of size at most L containing
all m ∈ {0, 1}k such that Pri←[n][Enc(m)i ∈ Ti] ≥ α.

A code is explicit if its encoding and decoding functions are computable in time polynomial
in their input and output. The rate of the code is the ratio of the message length and output
length of Enc, where both lengths are measured in bits.

9 We remark that the construction of [16] can achieve superlinear stretch at the cost of increasing the
error. In our application, it is crucial to achieve error that is exponentially small in the seed length, and
this is why we state the theorem in this form.

10Within this section we use the standard choice of letters of error-correcting codes. However, in later
sections many of these letters are reserved to denote other things, and we have to use nonconventional
choices.

11This is a less standard notion of list-recoverability, and the more standard notion referred to as
“list-recoverable” is what we call “list-recoverability from a collection” in the next item.

APPROX/RANDOM’16

45:16 Explicit List-Decodable Codes for Computationally Bounded Channels

3.2.1 Codes for balanced errors

We will make use of codes for balanced error vectors (as explained in Section 2).

I Definition 13 (balanced errors). A string e ∈ {0, 1}n is (b, p, γ)-balanced if when viewing
it as e ∈ ({0, 1}b)n/b at most a γ-fraction of the n/b blocks have hamming weight larger than
p · b.

It is not hard to construct codes for balanced errors with rate approaching 1 − H(p),
using code concatenation. The proof of Theorem 14 appears in Section 7.

I Theorem 14 (codes against balanced errors). For every constants 0 < p < 1/2, ε > 0, and
γ ≥ ε there are constants b and L = poly(1/ε) such that for every sufficiently large n, there
is a code (Enc,Dec) with rate 1−H(p)− ε that is L-list decodable against (b, p, ε)-balanced
strings of length n. Moreover the code is explicit (encoding and list-decoding can be performed
in time poly(n)).

3.2.2 List recoverable codes

We will make use of the following list recoverable code.

I Theorem 15 (List-recoverable codes, [20, 5]). There is a constant β > 0 such that for every
constants α > 0 and L > 1, and every sufficiently large n, there is a code (Enc,Dec) that is
(α, β · α · L · n,L)-list recoverable, has rate R ≥ β·α

L , and alphabet size q = n2.

This follows as Sudan [20] (see also Guruswami and Sudan [5]) showed that Reed-Solomon
codes are list-recoverable from a collection. Given a code Enc that is list-recoverable from a
collection, Enc′(x)i = (Enc(x), i) gives a code that is list recoverable, while increasing the
alphabet size. This is why we have the alphabet size of q = n2 (and not q = n) for a Reed
Solomon code. This idea is also implicitly used by Guruswami and Smith [6].

3.3 Averaging Samplers

The reader is referred to Goldreich’s survey [4] on averaging samplers.

I Definition 16 (Averaging Samplers). A function Samp : {0, 1}n → ({0, 1}m)t is an (ε, δ)-
Sampler if for every f : {0, 1}m → [0, 1],

Pr
(z1,...,zt)←Samp(Un)

[|1
t

∑
i∈[t]

f(zi)−
1

2m
∑

x∈{0,1}m
f(x)| > ε] ≤ δ .

A sampler has distinct samples if for every x ∈ {0, 1}n, the elements in Samp(x) are
distinct.

The next theorem follows from the “expander sampler”. This particular form can be
found (for example) in [23].

I Theorem 17. For every sufficiently large m and every ε ≥ δ > 0 there is a (ε, δ)-sampler,
Samp : {0, 1}O(m+log(1/δ)·poly(1/ε)) → ({0, 1}m)t for any t ≥ poly(1/ε)·log(1/δ). Furthermore,
Samp is computable in time poly(m, 1/ε, log(1/δ)).

R. Shaltiel and J. Silbak 45:17

3.4 Almost t-wise permutations
We also need the following notion of almost t-wise permutations.

I Definition 18 (Almost t-wise independent permutations). A function π : {0, 1}d × [n]→ [n]
is an (ε, t)-wise independent permutation if:

For every s ∈ {0, 1}d, the function πs(x) = π(s, x) is a permutation over [n].
For every x1, . . . , xt ∈ [n], the random variable R = (R1, . . . , Rt) defined by Ri = π(s, xi) :
s← Ud, is ε-close to t uniform samples without repetition from [n].

I Theorem 19 ([9]). For every t and every sufficiently large n, there exists an (ε, t)-wise
independent permutation with d = O(t · logn+ log(1/ε)). Furthermore, π is computable in
polynomial time.

4 Inner Stochastic codes

As explained in Sections 2.4 and 2.5, the construction will rely on an “inner stochastic code”.
We now give a formal definition of the properties required from these codes. This definition
formalizes the looser description given in Section 2.

I Definition 20. Let k, n, q be parameters and let Enc : {0, 1}k × {0, 1}d → {0, 1}n be a
function. We say that Enc is an encoding function for a stochastic code that is:
L-weakly list-decodable with radius p if there exists a function Dec such that for
every y ∈ {0, 1}n, Dec(y) produces a list of at most L messages that contains all messages
m ∈ {0, 1}k for which there exists r ∈ {0, 1}d such that δ(y,Enc(m, r)) ≤ p.
We replace “weakly” with “strongly” if Dec is required to produce a list of at most L
pairs (m, r) that contains all pairs (m, r) ∈ {0, 1}k×{0, 1}d such that δ(y,Enc(m, r)) ≤ p.
ε-pseudorandom for a class C′ of functions from n bits to one bit, if for every message
m ∈ {0, 1}k, C(m,Ud) is ε-pseudorandom for C′.

If we do not mention whether the code is weakly or strongly list-decodable, then we
mean “weakly”. In the remainder of this section we give explicit constructions of “inner
stochastic codes” for the various channel classes that we consider. We start with a general
transformation that transforms a PRG into an inner stochastic code.

4.1 PRGs give inner stochastic codes
We give a general transformation that given a PRG with:

A seed length that is logarithmic in the complexity of the channel.
Sufficiently large linear stretch as a function of p.

Produces a stochastic code that:
Inherits the logarithmic seed length and pseudorandomness properties of the PRG.
Is able to encode a string of length logarithmic in the complexity of the channel.
Is L-weakly list decodable from radius p where L is a constant.
Has encoding and decoding running in time polynomial in the complexity of the channel,
and the running time of the PRG.

This transformation is formally stated in the next theorem. We need the following
definition that formally defines the action (which we call “xored-restriction”) of restricting
functions to a subset of the input, and negating some of the remaining input bits. The
complexity classes that we consider in this paper (AC0, P/poly, logspace ROBPs) are all

APPROX/RANDOM’16

45:18 Explicit List-Decodable Codes for Computationally Bounded Channels

closed under xored restriction. (This is also the case for any natural nonuniform complexity
class).

I Definition 21 (xored restriction). We say that a function C ′ over n′ bits is an xored-
restriction of a function C over n bits if there exist strings y ∈ {0, 1}n′ , a ∈ {0, 1}n−n′ and a
set S ⊆ [n] of size n′ such that for every input x′, C ′(x′) = C(x), where x is an n bit string
obtained by “filling” the indices in S with x′ ⊕ y, and the indices outside of S with a.

I Theorem 22 (inner stochastic code from PRG). Let C, C′ be classes of functions, and
a > 0, b > 0, L ≥ 1 and 0 ≤ p < 1

2 be constants such that (1 − 1
L+1) > H(p), and

assume that n is sufficiently large. Let G : {0, 1}b·logn → {0, 1}q·logn be an ε-PRG for
class C′ such that q ≥ a+b

1−H(p)− 1
L+1

. There is a stochastic code (EncSC ,DecSC) where
EncSC : {0, 1}a·logn × {0, 1}b·logn → {0, 1}q·logn that is:

L-weakly list decodable from radius p.
If every xored restriction of C is in C′ then EncSC is ε-pseudorandom for C.
The algorithms EncSC ,DecSC are computable in time poly(nq·L) given oracle access to
G. (In particular, the code is explicit if G runs in time poly(n)).

Proof. The code will be a combination of two functions, E : {0, 1}a·logn → {0, 1}q·logn and
G : {0, 1}b·logn → {0, 1}q·logn, and we will have: EncSC(x, r) = E(x)⊕G(r).

We will use a probabilistic construction (similar to that used to show existence of capacity
achieving, binary list decodable codes) which we later derandomize using (L + 1)-wise
independence.

I Claim 23. Let E : {0, 1}a·logn → {0, 1}q·logn be chosen at random, so that the random
variables (E(x))x∈{0,1}a·logn are (L+ 1)-wise independent. Then, with positive probability,
EncSC(x, r) = E(x)⊕G(r) is L-weakly list decodable from radius p.

Proof of claim. Given y ∈ {0, 1}q logn, we use B(y, p) to denote the ball of radius p ·(q · logn)
centered at y ∈ {0, 1}q logn. For every x ∈ {0, 1}a logn and y ∈ {0, 1}q logn we define a random
variable indicator

Zx,y =
{

1 if ∃r ∈ {0, 1}b·logn such that, EncSC(x, r) ∈ B(y, p)
0 otherwise

We have that:

Pr[Zx,y = 1] ≤ 2b logn · 2H(p)·q·logn

2q logn

≤ 2logn·(b+q(H(p)−1))

Given a tuple x1, . . . , xL+1 ∈ {0, 1}a logn and y ∈ {0, 1}q logn, let Bx1,...,xL+1,y be the “bad
event” that the L+ 1 points x1, . . . , xL+1 all have seeds of G that make them land in the
ball of y, namely:

Bx1,...,xL+1,y =
{
∀i ∈ [L+ 1],∃r ∈ {0, 1}b logn such that E(xi)⊕G(r) ∈ B(y, p)

}
.

The random variables E(x1), . . . , E(xL+1) are independent, and therefore,

Pr[Bx1,...,xL+1,y] =
L+1∏
i=1

Pr[Zx,y = 1] ≤ 2(logn)·(b+q(H(p)−1))(L+1) .

Note that EncSC(x, r) = E(x) ⊕ G(r) is L-weakly list decodable from radius p, if and
only if E does not belong to Bx1,...,xL+1,y for all choices of x1, . . . , xL+1 ∈ {0, 1}a·logn and

R. Shaltiel and J. Silbak 45:19

y ∈ {0, 1}q·logn. Therefore, by a union bound, the probability that we don’t obtain an
L-weakly list decodable code from radius p, is at most:

∑
x1,...,xL+1,y

Pr[Bx1,...,xL+1,y] ≤ 2q logn ·
(

2a logn

L+ 1

)
· 2(logn)·(b+q(H(p)−1))(L+1)

< 2(logn)·(q+a(L+1)+(b+q(H(p)−1))(L+1))

Thus, if q ≥ a+b
1− 1

L+1−H(p) , then the probability is less than one, and there exists an L-weakly
list decodable code from radius p.12 J

Given oracle access to a candidate function E : {0, 1}a·logn → {0, 1}q·logn and to G :
{0, 1}b logn → {0, 1}log q we can check whether E induces a code with the required properties
in time poly(nq).

It is standard that there are constructions of 2a logn = na random variables that are
(L+ 1)-wise, and each variable is uniform over {0, 1}q logn, that can be sampled using only
(L+ 1) · q logn random bits. Therefore, in time poly(nL·q) we can go over all candidate E’s,
and find one which induces an L-weakly list decodable from radius p.

Once we find a good function E we are guaranteed that EncSC is ε-pseudorandom for C.

I Claim 24. For every E : {0, 1}a·logn → {0, 1}q·logn, the function EncSC(x, r) = E(x)⊕G(r)
is ε-pseudorandom for C.

Proof. Otherwise, there exists x′ ∈ {0, 1}a logn and a function C ∈ C that distinguishes
EncSC(x′, Ub logn) = E(x′) ⊕ G(Ub logn) from uniform. This means that there is an xored
restriction C ′ of C that distinguishes G(Ub logn) from uniform, and this is a contradiction. J

Finally, it remains to justify the claim about the decoding procedure. Given a string
y ∈ {0, 1}q logn, the decoding algorithm will use brute force to go over all (x, r) ∈ {0, 1}a·logn×
{0, 1}b·logn, and check for each whether δ(Enc(x, r), y) ≤ p. By the L-weakly list decodable
property, there will be at most L distinct values of x. The decoding complexity is O(2a logn ·
2b logn) = poly(na+b) with oracle access to G. J

4.2 Inner Stochastic codes for circuits and ROBPs
By plugging in the pseudorandom generators from Theorems 7 and Theorem 9 in Theorem 22.
We immediately obtain the following stochastic codes (that will be used in the construction).

I Theorem 25 (inner stochastic code for poly-size circuits). If E is hard for exponential
size circuits then for every constant 0 ≤ p < 1

2 , c > 1 and a > 0 there exist constants
L, b, q such that for every sufficiently large n, there is a stochastic code (Enc,Dec) where
Enc : {0, 1}a·logn × {0, 1}b·logn → {0, 1}q·logn is:

L-weakly list decodable from radius p.
1
nc -pseudorandom for size nc circuits.

Furthermore, the code is explicit. Specifically, Enc,Dec are computable in time poly(nc), where
the polynomial depends on p, a and the constant β > 0 hidden in the hardness assumption.

12We remark that it is also possible to extend proofs that random linear codes achieve list decoding
capacity to show that we can obtain a linear code E that yields a good code EncSC .

APPROX/RANDOM’16

45:20 Explicit List-Decodable Codes for Computationally Bounded Channels

I Theorem 26 (inner stochastic code for online channels). For every constant 0 ≤ p < 1
2 ,

c > 1 and a > 0 there exist constants L, b, q such that for every sufficiently large n, there is
a stochastic code (Enc,Dec) where Enc : {0, 1}a·logn × {0, 1}b·logn → {0, 1}q·logn is:

L-weakly list decodable from radius p.
1
nc -pseudorandom for space c logn ROBPs.

Furthermore, the code is explicit. Specifically, Enc,Dec are computable in time poly(nc) where
the polynomial depends on p, a.

4.3 Inner stochastic codes for AC0 channels
In this section we give a construction of inner stochastic codes for circuits of constant depth.
This construction has the advantage that the encoding and decoding of the inner stochastic
code run in fixed polynomial time, and do not depend on the size or depth of the circuit
family.

I Theorem 27 (inner stochastic code for AC0). There exist constants p > 0, R > 0 and
a > 1 such that for every sufficiently large n, there is a stochastic code (Enc,Dec) where
Enc : {0, 1}Rn × {0, 1}Rn → {0, 1}n that is:

1-strongly list decodable from radius p.
2−n

1
ad -pseudorandom for circuits of size 2n

1
ad and depth d.

Furthermore, the code is explicit. Specifically, Enc,Dec are computable in time poly(n), for
a fixed universal polynomial (only the choice of what n is sufficiently large depends on the
constants).

Proof. The theorem will follow from the following claim.

I Claim 28. There exist constants p > 0, R > 0 such that for every sufficiently large n,
there is a 2Rn× n matrix G(n) such that:

G(n) is a generator matrix for a binary linear [n, 2Rn]-code that is decodable from pn

errors.
Let G(n)

t be the Rn × n matrix obtained by taking the first Rn rows of G(n). G(n)
t is a

generator matrix for a binary linear [n,Rn]-code such that its dual code has distance
larger than pn.
The code (Enc,Dec) that is defined by G(n) is explicit (and in particular G(n) can be
constructed in time poly(n)).

Proof of claim. It is sufficient to prove the lemma for codes with alphabet size 2s for some
constant s (rather than for binary codes). This is because, such codes can be viewed as
binary codes (in a natural way) and this viewpoint preserves rate, and decreases relative
distances (or the fraction of errors that can be decoded) by a constant factor of 1/s. We
therefore focus on proving the claim for codes with alphabet size that is constant and a
power of two.

There are codes (based on algebraic geometric codes) over constant size alphabet where
the size can be a power of two, that have: constant rate, can be explicitly encoded and
decoded from a constant fraction of errors, and furthermore have a positive relative dual
distance. Such codes follow from the work of Garcia and Stichtenoth [3] and a self contained
summary is presented in [18] (the summary is in an appendix written by Guruswami).
Theorem 24 in the appendix contains a precise statement on the existence of such codes.

An inspection of the proof reveals that this argument can also be used to obtain two
explicit linear codes Ct ⊆ C with the properties above. More specifically, by varying the

R. Shaltiel and J. Silbak 45:21

parameters in the proof, there exist constants R > 0 and p > 0 such that for sufficiently
large n, Ct has constant rate R > 0, C has rate 2R > 0 and both codes have the properties
listed above, namely: Ct (resp. C) can be efficiently decoded from p · n errors (for some
p > 0) and both codes have dual distance p · n. Loosely speaking, this follows as one can
perform the argument once to obtain one code Ct, and then increase the dimension, to give
a code C such that Ct ⊆ C with the same properties.

The matrix Gt will be the generator matrix of Ct and it can be easily extended to a
generator matrix G of C. J

We now observe that the claim implies the theorem. The stochastic code Enc : {0, 1}Rn×
{0, 1}Rn → {0, 1}n is defined as follows: Given x, r ∈ {0, 1}Rn, let y be the concatenation
y = r ◦ x and Enc(x, r) = y ·G.

This code is 1-strongly list decodable from radius p by the decoding properties of the
code generated by G. More precisely, given z ∈ {0, 1}n, we can decode to a unique message
y ∈ {0, 1}2Rn that has hamming distance at most pn from z, and this message y = (x, r) can
be found efficiently.

We now show the pseudorandomness of Enc. Let Gb denote the bottom Rn rows of G
(and recall that Gt denotes the top Rn rows of G). For every x, r ∈ {0, 1}Rn,

Enc(x, r) = (r ◦ x) ·G = r ·Gt + x ·Gb.

The generator matrix Gt generates a code with dual distance at least pn. This means that
transposed matrix is the parity matrix of the dual code. The fact that the dual code has
distance larger than pn, implies that every pn rows of Gt are linearly independent. This gives
that the distribution r ·Gt for r ← URn is pn-wise independent, and implies that for every
x ∈ {0, 1}Rn, Enc(x, URn) is pn-wise independent. Braverman [2] (and later improvements by
Tal [21]) (See Theorem 11) showed that t-wise independent distributions are ε-pseudorandom
for circuits of size s and depth d, if t ≥ (log s

ε)
c·d for some constant c. This gives that there

exists a constant a > 1 such that Enc(x, URn) is 2−n
1
ad -pseudorandom for circuits of size

2n
1
ad and depth d, as required. J

5 The construction of stochastic codes

In this section we give the construction of the stochastic code. Our construction imitates
that of Guruswami and Smith [6] (with the modifications explained in Section 2). We start
with introducing some notation.

Partitioning codewords into control blocks and data blocks

The construction will think of codewords c ∈ {0, 1}N as being composed of n = nctrl + ndata
blocks of length b = N/n. Given a subset I ⊆ [n] of nctrl distinct indices, we can decompose
c into its data part cdata ∈ {0, 1}Ndata=ndata·b and its control part cctrl ∈ {0, 1}Nctrl=nctrl·b.
Similarly, given strings cdata and cctrl we can prepare the codeword c (which we denote by
(cdata, cctrl)I by the reverse operation. This is stated formally in the definition below.

I Definition 29. Let I = {i1, . . . , inctrl} ⊆ [n] be a subset of indices of size nctrl.
Given strings cdata ∈ {0, 1}Ndata and cctrl ∈ {0, 1}Nctrl we define an N bit string c denoted
by (cdata, cctrl)I as follows: We think of cdata, cctrl, c as being composed of blocks of length
b (that is cdata ∈ ({0, 1}b)ndata , cctrl ∈ ({0, 1}b)nctrl and c ∈ ({0, 1}b)n). We enumerate

the indices in [n] \ I by j1, . . . , jndata and set c` =
{

(cctrl)k if ` = ik for some k;
(cdata)k if ` = jk for some k

APPROX/RANDOM’16

45:22 Explicit List-Decodable Codes for Computationally Bounded Channels

Parameters:
N – The length (in bits) of the codeword. (Throughout we assume that N is sufficiently
large). Other parameters are either constants or chosen as a function of N .
p – The fraction of errors we need to recover from. This is a constant.
C′ – A class of functions (typically slightly stronger than the class of channels we allow).
0 < ε < 1

2 − p – We want rate R = 1−H(p)− ε, meaning that messages have length RN . ε
is a constant.
b – We will divide the N output bits to n = N/b blocks of length b, where 2 logN ≤ b ≤ N1/10

is a function of N that will be chosen later on. This implies n ≥ N0.9.
ν ≥ 2−

√
N – A bound on the failure probability of decoding (can be chosen as a function of

N).
Internal parameters:

Blocks will be of two kinds: “control” and “data”. We set nctrl = ε ·n and ndata = n−nctrl so
that n = nctrl + ndata. Let Nctrl = b · nctrl and Ndata = b · ndata. So that N = Nctrl +Ndata.
Let α > 0 be a sufficiently small constant that will be chosen later.
Let `ctrl = N0.8 and `′ctrl = `ctrl/3.

Ingredients that depend on the choice of channel class: We assume that we are given:
A stochastic code EncSC : {0, 1}2 lognctrl × {0, 1}`

′
SC → {0, 1}b that is εSC-pseudorandom

for C′ (for εSC = ν
10·nctrl

) and is LSC-weakly list decodable from radius p+ ε. We require
that LSC is a constant, and `′SC ≤ N .
An εPRG-PRG PRG : {0, 1}`

′
ctrl → {0, 1}Ndata for C′, for εPRG = 1

10 · ν.
Other Ingredients:

A code Encbalanced : {0, 1}RN → {0, 1}Ndata with an algorithm Decbalanced that performs
Lbalanced-list decoding from (b′, p+α, α)-balanced errors. By Theorem 14 we have an explicit
construction with rate R′ ≥ 1 −H(p + α) − α where b′ and Lbalanced are large constants
(chosen as a function of the constants α and p). By choosing a sufficiently small α > 0 we
indeed have R′ ≥ RN/Ndata = R/(1− ε).
A code EncLR : {0, 1}`ctrl → ({0, 1}2 lognctrl)nctrl that is (ε

2

100 , LSC · n,LLR)-list recoverable.
Note that LSC · n = LSC

ε
· nctrl. By Theorem 15 we can obtain such a code with constant

rate R′ > 0 for some constant LLR (these two constants depend on ε). The rate we allow
for EncLR above is `ctrl

2 lognctrl·nctrl
≤ N0.8

ε·n = o(1) ≤ R′.
A (2−N

0.6
, N0.6)-wise permutation π : {0, 1}`

′
ctrl × [Ndata] → [Ndata]. By Theorem 19 we

have an explicit construction with seed length N0.7 ≤ `′ctrl.
An (2−N

0.6
,min(α

100 ,
ε2

100))-sampler with distinct samples Samp : {0, 1}`
′
ctrl → [n]nctrl .

By Theorem 17 we have an explicit construction with seed length O(N0.7) ≤ `′ctrl and
N0.7 ≤ ε · n = nctrl samples.

Figure 1 Parameters and ingredients for stochastic code.

Given a string c ∈ {0, 1}N (which we think of as c ∈ ({0, 1}b)n) we define strings cIdata, cIctrl
by cctrl = c|I and cdata = c|[n]\I , (namely the strings restricted to the indices in I, [n] \ I,
respectively).

We omit the superscript I when it is clear from the context.

Permuting strings

Our construction will also use permutations to permute strings as follows:

I Definition 30. Given a string v ∈ {0, 1}N and a permutation π : [N] → [N]. Let π(v)
denote the string v′ ∈ {0, 1}N with v′i = vπ(i).

R. Shaltiel and J. Silbak 45:23

Input:
A message m ∈ {0, 1}RN .
A “random part” r for the stochastic encoding that consists of a string s = (ssamp, sπ, sPRG)
where ssamp, sπ, sPRG ∈ {0, 1}`

′
ctrl so that s ∈ {0, 1}`ctrl , and r1, . . . , rnctrl ∈ {0, 1}

`′SC .
Operation:

Determine control blocks: Apply Samp(ssamp) to generate I = {i1, . . . , inctrl} ⊆ [n]. These
blocks will be called “control blocks”, and the remaining ndata blocks will be called “data
blocks”.

Prepare data part: We prepare a string cdata of length Ndata as follows:
Encode m by x = Encbalanced(m).
Generate an Ndata bit string y by reordering the Ndata bits of the encoding using
the (inverse of) the permutation πsπ (·) = π(sπ, ·). More precisely, y = π−1

sπ (x) =
π−1
sπ (Encbalanced(m)).

Mask y using PRG. That is, cdata = y⊕PRG(sPRG) = π−1
sπ (Encbalanced(m))⊕PRG(sPRG).

Prepare control part: We prepare a string cctrl of length Nctrl (which we view as nctrl blocks
of length b) as follows:

Encode s by z = EncLR(s). This is a string composed of nctrl blocks of length 2 lognctrl.
Use EncSC as an “inner code” to encode blocks of z using the randomness r1, . . . , rnctrl .
That is, (cctrl)j = EncSC(zj , rj) = EncSC(EncLR(s)j , rj).

Merge data and control parts: We prepare the final output codeword c ∈ {0, 1}N by merging
cdata and cctrl. That is, c = (cdata, cctrl)I .

Figure 2 Encoding algorithm for stochastic code.

Description of the construction

Our construction is described in detail in the three figures below. The choice of parameters
and ingredients is described in Figure 1. The encoding algorithm is described in Figure 2,
and the list-decoding algorithm is described in Figure 3. We state a general theorem that
summarizes the correctness of the construction and will be used to prove Theorems 2, 3, 4.

Correctness of the construction

Let C be a class of channels C : {0, 1}N → {0, 1}N that induce at most pN errors. We now
show that if the ingredients PRG,EncSC are pseudorandom for a class C′ that is sufficiently
stronger than C, then the decoding algorithm of Figure 3 succeeds with high probability.
This is stated precisely, in the next theorem, which uses the notion of “xored restrictions”
defined in Definition 21. (We remind the reader that nonuniform complexity classes as the
ones we consider in this paper, are closed under xored restrictions).

I Theorem 31 (Correctness of construction). For every constants 0 ≤ p < 1
2 and 0 < ε < 1

2−p
there exists a constants L = LLR·Lbalanced such that for every sufficiently large N the following
holds:

Let C be a class of functions C : {0, 1}N → {0, 1}N that induce at most pN errors. For
a channel C ∈ C, let EC(z) = z ⊕ C(z) denote the error vector (of Hamming weight at
most pN) induced by the channel.
Let C′ be the class of all functions that output one bits, and are xored restrictions of
functions of the form f(z) = A(EC(z))) where A is either,

a size N c0 , depth d0 circuit, for some universal constants c0, d0.

APPROX/RANDOM’16

45:24 Explicit List-Decodable Codes for Computationally Bounded Channels

Input: A “received word” c′ ∈ {0, 1}RN .
Operation:

Determine few candidates for control information:
Decode inner code SC: For every i ∈ [n] apply the list decoding algorithm of SC to

generate a size LSC list, Listi = DecSC(c′i) (here c′i is the i’th block of c′). Let ListSC =
∪i∈[n]Listi.

Decode outer code LR: Apply the list recovering algorithm of LR to generate a size LLR
list, Listctrl = DecLR(ListSC).

Use each control candidate s to decode data: For each s = (ssamp, sπ, sPRG) ∈ Listctrl (re-
call that there are LLR of them) we produce a list Lists of Lbalanced candidate messages.
Our final output list will be the union of these lists.
Determine control blocks: Apply Samp(ssamp) to generate I = {i1, . . . , inctrl}. Compute
c′data = (c′)Idata.

Unmask PRG: Compute y′data = c′data ⊕ PRG(sPRG).
Reverse permutation: Let x′ be theNdata bit string obtained by “undoing” the permutation.

More precisely, let πsπ (·) = π(sπ, ·), and let x′ = πsπ (y′data) = πsπ (c′data ⊕ PRG(sPRG)).
Decode data: Compute Lists = Decbalanced(x′).
Merge lists: The final output is List =

⋃
s∈Listctrl

Lists.

Figure 3 List-decoding algorithm for stochastic code.

a space η0 · log 1/ν · logN ROBP, for some universal constant η0 > 0 (which gives
space O(logN) if ν is inverse polynomial in N).

If the parameters and ingredients are chosen as in Figure 1, then the stochastic code (Enc,Dec)
specified in Figures 2, 3, satisfies:

It has rate R ≥ 1−H(p)− ε.
It is L-list decodable with success probability 1− ν for channels in C, where L = poly(1/ε)
is a constant.
There exist a universal polynomial P (·) such that:

The function Enc can be computed in DTIMEPRG,EncSC (P (N)) (and is therefore
explicit if PRG,EncSC are explicit).
The function Dec can be computed in DTIMEPRG,DecSC (P (N)) (and is therefore
explicit if PRG,DecSC are explicit).

5.1 Choosing ingredients and parameters for specific channel families

We now put everything together and choose pseudorandom generators and inner stochastic
codes for poly-size circuits, online logspace, and AC0.

5.1.1 Poly-size circuit channels

Here we use the pseudorandom generator of Impagliazzo and Wigderson [8] (that requires
the assumption that E is hard for exponential size circuits). This PRG has logarithmic seed
length, and can be used as PRG, as well as the pseudorandom generator that is transformed
into an inner stochastic code EncSC (as done in Theorem 25). The precise statement and
parameter choices appear below:

R. Shaltiel and J. Silbak 45:25

I Theorem 32 (explicit codes for poly-size channels). Assume that E is hard for exponential
size circuits. For every constants 0 ≤ p < 1

2 , ε > 0, and c > 1 and for every sufficiently large
N :

Let ν = N−c.
Let C be the class of all circuits C : {0, 1}N → {0, 1}N of size N c that induce at most
pN -errors.
Let C′ be the class of all size N2c circuits that output one bit (this includes circuits for
all input lengths up to N). Here, we assume w.l.o.g. that c is sufficiently large so that in
time N2c we can compose size N c computations with fixed polynomial size computations.
Let (EncSC ,DecSC) and the block length b be determined by Theorem 25. Specifically, let
b = q·logN for a sufficiently large constant q, guaranteed by Theorem 25 so that we get that
EncSC : {0, 1}2 lognctrl≤2 logN × {0, 1}`′SC=O(logN) → {0, 1}b is LSC-weakly list decodable
from radius p+ α for a sufficiently large constant LSC (chosen as a function of p), and
furthermore, EncSC is N−(c+1)-pseudorandom for C′. (Note that N−(c+1) ≤ ν/10 · nctrl
as required).
Let PRG : {0, 1}O(logN) → {0, 1}Ndata be an N−(c+1)-PRG for C′ from Theorem 7, and
note that the seed length is smaller than `′ctrl, and N−(c+1) ≤ ν/10 as required.

These choices satisfy the requirements of Figure 1, 2, 3, the stochastic code (Enc,Dec) specified
in the figures has rate 1−H(p)− ε, and is L = O(1)-list decodable with success probability
1 − N−c against channels in C. Furthermore, Enc,Dec are computable in time poly(N c)
where the polynomial depends on p, and on the constant β > 0 hidden in the assumption.

5.1.2 Online logspace channels
Here we use the pseudorandom generator of Nisan [14]. This PRG has seed length that is
poly-logarithmic, and can be used as PRG. However, it unsuitable to serve in the construction
of inner stochastic codes. This is because the dependence of the seed length on the error,
does not allow linear stretch with error that is exponentially small in the seed length. Instead,
we use the pseudorandom generator of Nisan and Zuckerman [16], that has these properties
and can be transformed into an inner stochastic code EncSC (as done in Theorem 26). The
precise statement and parameter choices appear below:

I Theorem 33 (explicit codes for online logspace channels). For every constants 0 ≤ p < 1
2 ,

ε > 0, c > 1 and for every sufficiently large N :
Let ν = N−c.
Let C be the class of all space c logN ROBPs C : {0, 1}N → {0, 1}N that induce at most
pN -errors.
Let C′ be the class of all space 2c logN ROBPs that output one bit (this includes ROBPs
for all input lengths up to N). Here we assume w.l.o.g. that c is sufficiently large so that
an ROBP of space 2c logN can compose space c logN online computation with c0 logN
online computation, for any fixed c0.
Let (EncSC ,DecSC) and the block length b be determined by Theorem 26. Specifically, let
b = q·logN for a sufficiently large constant q, guaranteed by Theorem 26 so that we get that
EncSC : {0, 1}2 lognctrl≤2 logN × {0, 1}`′SC=O(logN) → {0, 1}b is LSC-weakly list decodable
from radius p+ α for a sufficiently large constant LSC (chosen as a function of p), and
furthermore, EncSC is N−(c+1)-pseudorandom for C′. (Note that N−(c+1) ≤ ν/10 · nctrl
as required).
Let PRG : {0, 1}O(log2 N) → {0, 1}Ndata be an N−(c+1)-PRG for C′ from Theorem 8, and
note that the seed length is smaller than `′ctrl, and N−(c+1) ≤ ν/10 as required.

APPROX/RANDOM’16

45:26 Explicit List-Decodable Codes for Computationally Bounded Channels

These choices satisfy the requirements of Figure 1, 2, 3, the stochastic code (Enc,Dec) specified
in the figures has rate 1−H(p)− ε, and is L = O(1)-list decodable with success probability
1 − N−c against channels in C. Furthermore, Enc,Dec are computable in time poly(N c)
where the polynomial depends on p.

5.1.3 Constant depth channels
Here we use the pseudorandom generator of Nisan [13]. This PRG has seed length that
is subpolynomial for any fixed constant depth d, and can be used as PRG. We use the
construction of inner stochastic codes given in Theorem 27 for EncSC . This construction
only works for p < p0 for some p0 > 0 and this requirement is inherited by our final theorem.
The precise statement and parameter choices appear below:

I Theorem 34 (explicit codes for constant depth channels). There exists a constant p0 > 0,
d0 > 1 and a > 0 such that for every constants 0 ≤ p < p0, ε > 0, d > 1 and for every
sufficiently large N :

Let ν = 2−N
1
ad .

Let C be the class of circuits C : {0, 1}N → {0, 1}N of size 2N
1
ad and depth d that induce

at most pN -errors.

Let C′ be the class of all size 22N
1
ad′ and depth d′ = d+ d0 circuits that output one bit

(this includes circuits for all input lengths up to N).
Let b = N1/10 and let (EncSC ,DecSC) be determined from Theorem 27. Specifically, let
R > 0 be a constant guaranteed by Theorem 27 so that we get EncSC : {0, 1}Rb×{0, 1}Rb →
{0, 1}b is LSC-weakly list decodable from radius p + α for LSC = 1, and furthermore,
EncSC is 2−2N

1
ad -pseudorandom for C′.

Let PRG : {0, 1}(logN)O(d′)≤Rb → {0, 1}Ndata be an 2−2N
1
ad -PRG for C′ from Theorem 10,

and note that the seed length is smaller than `′ctrl.
These choices satisfy the requirements of Figure 1, 2, 3, the stochastic code (Enc,Dec) specified
in the figures has rate 1−H(p)− ε, and is L = O(1)-list decodable with success probability
1− 2−N

1
ad against channels in C. Furthermore, Enc,Dec are computable in time poly(N) for

a fixed universal polynomial.

6 Analyzing the construction

This section is devoted to proving Theorem 31.

The setup

Throughout the remainder of the section, we fix the following setup: Let 0 ≤ p < 1
2 and

0 < ε < 1
2 − p be constants. Let C, C′ be classes as required in Theorem 31. We use the

choices and requirements made in Figure 1. More specifically, as in Figure 1, we assume
that we are supplied with PRG and (EncSC ,DecSC) that satisfy the requirements made in
Figure 1. That is, that for some “required error” parameter ν ≥ 2−

√
N we have:

A stochastic code EncSC : {0, 1}2 lognctrl × {0, 1}`′SC → {0, 1}b that is εSC -pseudorandom
for C′ (for εSC = ν

10·nctrl
) and is LSC-weakly list decodable from radius p + ε, for a

constant LSC .
An εPRG-PRG PRG : {0, 1}`′ctrl → {0, 1}Ndata for C′, for εPRG = ν/10.

R. Shaltiel and J. Silbak 45:27

Our goal in this section is to show that for every sufficiently large N , the encoding and
decoding algorithms specified in Figures 2 and 3 satisfy the conclusion of Theorem 31. This
setup is assumed throughout this section.

6.1 Milestones for correct decoding
Following Guruswami and Smith [6] we will analyze the construction in two steps: We first
consider the case that the channel C is an additive channel, namely that C(z) = z ⊕ e for
some fixed error vector e, and later extend to general channels that can choose e as a function
of z.

We present the following abstraction of this method (which will be convenient for our
purposes as we use several different classes of channels). We will define “milestones” (as a
function of m, sπ, ssamp and e) and will require that:
1. If the milestones occur, then the decoding algorithm succeeds.
2. If Sπ, Ssamp are random and e is fixed (that is, if the channel is additive) then the

milestones occur with probability close to one.
3. Checking whether the milestones occur is computationally easy.
We will state a general theorem showing that if such milestones exist, then the correctness of
the decoding holds even against channels that are not additive, as long as the construction
is using pseudorandomness against a class C′ that can simulate the channel and milestones.
This is stated formally in the definition and theorem below (in which we allow milestones to
be probabilistic).

I Definition 35 (Milestones function). Let A : {0, 1}RN × {0, 1}`′ctrl × {0, 1}`′ctrl × {0, 1}N ×
{0, 1}N → {0, 1} be a function that receives as input: a message m ∈ {0, 1}RN , a sampler
seed ssamp ∈ {0, 1}`

′
ctrl , a permutation seed sπ ∈ {0, 1}`

′
ctrl , an error vector e ∈ {0, 1}N of

relative hamming weight at most p, and a “ random coins string” y ∈ {0, 1}N . We say that
A is a milestones function (with respect to the classes C, C′) if it has all the following
properties: (the probability space for the statements below is choosing the randomness of
the encoder S = (Ssamp, Sπ, SPRG), R = (R1, . . . , Rnctrl) and Y (the coins of A) uniformly
and independently.)
1. For every m ∈ {0, 1}RN , s ∈ {0, 1}`ctrl , r ∈ ({0, 1}`′SC)nctrl and e ∈ {0, 1}n of relative

hamming weight at most p, Pr[A(m, ssamp, sπ, e, Y) = 1] ≥ 1
2 ⇒ m ∈ Dec(Enc(m, s, r)⊕

e).
2. For every m ∈ {0, 1}RN and e ∈ {0, 1}n of relative hamming weight at most p,

Pr[A(m,Ssamp, Sπ, e, Y) = 1] ≥ 1− ν/10.
3. For every m, ssamp, sπ, y, C ∈ C, every xored-restriction of the function

D(z) = A(m, ssamp, sπ, EC(z), y) is in C′.

I Lemma 36 (Milestones Lemma). If there exist a milestones function with respect to C, C′
then

Pr[m ∈ Dec(C(Enc(m,S,R)))] ≥ 1− ν .

We defer the proof of the milestones lemma to Section 6.3. In the next section we explain
how the milestones lemma implies Theorem 31.

6.2 Milestones Lemma implies Theorem 31
In this section we show that Lemma 36 implies Theorem 31. Our task is to define a milestone
function that meets the three requirements in Definition 35. We start with the following
definition.

APPROX/RANDOM’16

45:28 Explicit List-Decodable Codes for Computationally Bounded Channels

I Definition 37. We say that a string e ∈ {0, 1}N is (λ, η)-good with respect to ssamp ∈
{0, 1}`′ctrl if for I = {i1, . . . , inctrl} = Samp(ssamp):

|
{
j : The Hamming weight of eij is at most λ · b

}
| ≥ η · nctrl.

We will use slightly different milestone functions for different complexity measures (as we
need the milestone function to be efficient for the corresponding complexity measure). It will
be convenient to start by defining two milestone functions (a strong one, and a weak one).
We will later show that more efficient milestone functions can be “sandwiched” between the
two milestone functions. This will mean that correctness of the more efficient milestone
functions will follow by analyzing the simpler versions.

I Definition 38. It will be convenient to denote the input to a milestone function by (x, y)
where x = (m, ssamp, sπ, e) and y is the “random coins”, we define the following functions
(which do not depend on y):
Control milestone: Let µ = ε2/4.

Aweakctrl (x, y) = 1 iff e is (p+ ε, µ10)-good for ssamp.
Astrong
ctrl (x, y) = 1 iff e is (p+ ε/4, (1− 1

10) · µ)-good for ssamp.
Note that for every (x, y), Astrong

ctrl (x, y) = 1⇒ Aweakctrl (x, y) = 1.
Data milestone: Let πsπ(·) = π(sπ, ·), edata = e

Samp(ssamp)
data , and eπ = πsπ (edata).

Aweakdata (x, y) = 1 iff eπ is (b′, p+ α, α)-balanced.
Astrong
data (x, y) = 1 iff eπ is (b′, p+ α/4, α/4)-balanced.

Note that for every (x, y), Astrong
data (x, y) = 1⇒ Aweakdata (x, y) = 1.

Combined milestones:
Aweak(x, y) = Aweakctrl (x, y) ∧Aweakdata (x, y).
Astrong(x, y) = Astrong

ctrl (x, y) ∧Astrong
data (x, y).

Note that for every (x, y), Astrong(x, y) = 1⇒ Aweak(x, y) = 1.

The next two lemmata give that any milestone function that is “sandwiched” between
Aweak and Astrong satisfy the first two properties of a milestone function.

I Lemma 39. The function Aweak satisfies the first property of a milestone function. (This
in particular implies that Astrong also satisfies the first property).

This follows as the function Aweak was defined precisely so that the decoding components,
in the decoding algorithm of Figure 3 are used with the correct guarantee. A full proof
appears in Section 6.4.

I Lemma 40. The function Astrong satisfies the second property of a milestone function.
(This in particular implies that Aweak also satisfies the second property).

This follows as the function Astrong was defined precisely so that the pseudorandom
components (the sampler and permutation) are “sufficiently random” to imply that Astrong

holds. For this, we only need to analyze the case where e is fixed and the Seeds (Ssamp, Sπ)
are chosen at random. A full proof appears in Section 6.5.

Milestones for poly-size circuits

Both functions Aweak, Astrong satisfy the first two properties, and are obviously computable
in polynomial time. This immediately gives that they satisfy the third and final property if
C′ is sufficiently stronger than C in the sense that it can run poly-time computations “on top

R. Shaltiel and J. Silbak 45:29

of” computations in C. This also immediately implies Theorem 31 for the case where A is
allowed to run in some fixed polynomial time.

We would like to give tighter reductions in which the milestone function is computable in
AC0 or by a small space ROBP. We now explain how to achieve such milestone functions.

Milestone function for constant depth circuits

We would like to implement the milestone function Aweak (or Astrong) by a poly-size constant
depth circuit. Note that the third property in Definition 35 considers the case that Ssamp, Sπ
are fixed to some values ssamp, sπ, and the only live input is e. This means that the choice
of permutation, and which blocks are control blocks is fixed (and can be hardwired as
nonuniform advice) to the circuit. Furthermore, in the data milestone the inputs can be
rearranged according to πsπ , at no cost. Meaning that the circuit can compute eπ from e at
no cost. Thus, computing the milestone function reduces to several counting tasks on the
number of ones in e and eπ.

It is known that the problem of counting the number of ones in an n bit input, cannot be
solved by poly-size depth circuits. However, Ajtai [1] showed that for every η > 0, there is a
polynomial size constant depth circuit that can produce a quantity that is the number of
ones, up to an error of ηn. (In fact, the results of Ajtai are much stronger, and in particular
allow subconstant η). This means that there is a circuit with constant depth and polynomial
size A′ssamp,sπ (e) such that for every m, y:

Astrong(m, ssamp, sπ, e, y) = 1⇒ A′ssamp,sπ (e) = 1⇒ Aweak(m, ssamp, sπ, e, y) = 1 .

This means that the milestone function Amiddle(x, y) = A′ssamp,sπ(e) satisfies the three
properties of a milestone function proving Theorem 31 for the case of constant depth circuits.

Milestones for read once branching programs

As in the case of constant depth circuits, we need to implement the milestone function by an
O(logn) space ROBP for fixed ssamp, sπ. Using the approach we used for constant depth
circuits, this may seem easy at first glance, as ROBPs with space O(logn) can count up
to nO(1) and this sufficed for the earlier implementation. Indeed, this reasoning applies to
the control milestone, and the functions Astrong

ctrl and Aweakctrl can be easily implemented by an
ROBP of space O(logn) (for fixed ssamp, sπ).

The functions Astrong
data and Aweakdata pose a problem. Unlike circuits, an ROBP is not allowed

to reorder the input by a fixed permutation πsπ prior to reading it. Thus, we cannot assume
that online access to e, gives online access to eπ.

We do have that sπ is fixed, and can be hardwired to the ROBP. This means that when
an ROBP reads the i’th bit of the input e, it can tell whether this bit belongs to a control
block or a data block, and in the latter case, it can tell to which of the Ndata/b

′ blocks of
length b′, does i belong to. (All these are operations that do not depend on e, and only
depend on the fixed ssamp, sπ). The issue is that the order in which the ROBP reads the data
bits is permuted, and does not respect their partitioning into blocks of length b′. This means
that the ROBP cannot keep a single counter and use it for all blocks, and must maintain `
different counters, if it wants to count the number of ones in ` different blocks. The naive
way to check if eπ is balanced, is to keep counters for all ` = Ndata/b

′ blocks, and as b′ is
constant, this takes space O(`) = O(Ndata/b

′) which is way too much.
The solution is to use randomization. The milestone function is allowed to toss random

coins (in the form of the input y). It will choose ` = O(logN) uniform indices from [Ndata/b],

APPROX/RANDOM’16

45:30 Explicit List-Decodable Codes for Computationally Bounded Channels

and will only keep count of the number of ones in these blocks. (This can indeed be done
in space O(logN)). The milestone function will count the fraction of sampled blocks which
have hamming weight larger than p+ α/4, and use this quantity ρ′ as an approximation for
the real quantity ρ (which is the fraction of blocks in eπ which have hamming weight larger
than p+ α/4). By a Chernoff bound, with probability 1− 2−Ω(α2·`) = 1−NO(1), we have
that |ρ− ρ′| ≤ α/100. Therefore, the ROBP can safely output one if ρ′ ≤ α/2, as this indeed
implies that

Astrong
data (x, ·) = 1⇒ Pr

Y
[Amiddledata (x, Y) = 1] ≥ 1− 2−Ω(α2`)

⇒ Pr
Y

[Amiddledata (x, Y) = 1] ≥ 1
2 ⇒ Aweakdata (x, ·) = 1.

This gives that by Lemma 39, Amiddle satisfies the first property of a milestone function. By
Lemma 40, Amiddle defined in this form, satisfies the second property of milestone functions,
where we suffer an additive loss of 2−Ω(α2`) relative to what we can get for Astrong, because
of the error induced by the Chernoff bound.

In Theorem 31, we are allowed to use space O(logN) for ν = 2−Ω(logN), and as α is a
constant, the Theorem follows.

6.3 Proof of Milestones Lemma
We prove the milestones lemma in two steps, described in the two sections below.

6.3.1 The hiding lemma
The following lemma states that for a function D that is slightly weaker than functions in C′,
an encoding of a message m is pseudorandom for D. (We will later consider the case where
D is a composition of a channel and milestone functions).

I Lemma 41 (Hiding Lemma). Let D be a function such that every xored-restriction of D
is in C′. For every message m ∈ {0, 1}RN , sampler seed ssamp ∈ {0, 1}`

′
ctrl and permutation

seed sπ ∈ {0, 1}`
′
ctrl , let V = Enc(m, sπ, ssamp, SPRG, R1, · · · , Rnctrl) be a random variable

(defined over the probability space where SPRG, R1, · · · , Rnctrl are chosen uniformly and
independently). It follows that V is ν

5 -pseudorandom for D, namely:

|Pr[D(V) = 1]− Pr[D(UN) = 1]| < ν

5 .

Proof. We assume for contradiction that there exists D such that:

|Pr[D(V) = 1]− Pr[D(UN) = 1]| > ν

5
and note that εPRG + nctrl · εSC = ν/5. The lemma follows from the following claim.

I Claim 42. One of the following holds:
There exists an xored-restriction C ′ of D such that,
|Pr[C ′(PRG(SPRG)) = 1]− Pr[C ′(UNdata) = 1]| > εPRG.
There exists z′ ∈ {0, 1}2 lognctrl and an xored restriction C ′ of D, such that
|Pr[C ′(EncSC(z′, U`′SC

)) = 1]− Pr[C ′(Ub) = 1]| > εSC .

Proof of claim. We partition V into V = (Vdata, Vctrl)Samp(ssamp) using definition 29. We
have that D distinguishes V = (Vdata, Vctrl) from UN = (Udata, Uctrl) with probability greater
than ν/5, we do a hybrid argument and consider the hybrid distribution H = (Vdata, Uctrl).
It follows that:

R. Shaltiel and J. Silbak 45:31

Either D distinguishes H from UN with probability εPRG,
or, D distinguishes H from V with probability nctrl · εSC .

In the first case, we have that Vdata and Uctrl are independent, and an averaging argument gives
that there exists a fixed value v′ctrl such that D distinguishes (Udata, v

′
ctrl) from (Vdata, v′ctrl)

with probability εPRG. This gives that there exists an xored restriction of D that distinguishes
Udata from Vdata with probability εPRG and the first item of the claim holds.

In the second case, we have that m and sπ are fixed and therefore the string y =
πsπ(Encbalanced(m)) used in the encoding algorithm is also fixed. The encoding algorithm
computes the data part by xoring y with PRG(SPRG) and therefore Vdata = PRG(SPRG)⊕
y. By an averaging argument, there exists a fixing s′PRG such that D distinguishes
((PRG(s′PRG) ⊕ y), Uctrl) from (((PRG(s′PRG) ⊕ y), Vctrl)|SPRG = s′PRG) with probabil-
ity nctrl · εSC . We have that there exists an xored restriction D′ of D which distinguishes
Uctrl from V ′ctrl = (Vctrl|SPRG = s′PRG).

Recall that the encoding procedure prepares the control part cctrl by preparing a string
z = EncLR(s) and then the j’th control block is obtained by EncSC(zj , rj).

Having fixed SPRG = s′PRG the only random variables that remain unfixed in V ′ctrl are
R1, . . . , Rnctrl . This means that there exists a fixed z such that (V ′ctrl)j = EncSC(zj , Rj)
and in particular, the nctrl blocks are independent. We have that D′ distinguishes V ′ctrl
from Uctrl with probability nctrl · εSC , and by a standard hybrid argument, there exists an
xored restriction C ′ of D′ which distinguishes (V ′ctrl)j = EncSC(zj , Rj) from uniform with
probability εSC and the second item follows. J

The lemma follows by the pseudorandomness properties of PRG and EncSC . J

6.3.2 Hiding lemma implies milestones lemma
We now show that the milestones lemma (Lemma 36) follows from the hiding lemma (Lemma
41). We are assuming that A is a milestone function with respect to C, C′ of Theorem 31.
We need to show that for every message m ∈ {0, 1}RN , and every C ∈ C,

Pr[m ∈ Dec(C(Enc(m,S,R)))] ≥ 1− ν

where S = (Ssamp, Sπ, SPRG), R = (R1, . . . , Rnctrl) and Y are chosen uniformly and inde-
pendently.

Fix some messagem ∈ {0, 1}RN and let Z = Enc(m,S,R) denote the random variable that
is the encoding of the message. We assume (for contradiction) that Pr[m ∈ Dec(C(Z))] < 1−ν.
By the first property of a milestones function and an averaging argument we have that:

I Claim 43. Pr[A(m,Ssamp, Sπ, EC(Z), Y) = 1] < 1− ν/2 .

Proof. Let B = {(s, r)|m /∈ Dec(C(Enc(m, s, r)))} be the set of pairs on which C causes a
decoding error. We have that Pr[(S,R) ∈ B] ≥ ν.

Note that for a fixed (s, r) the error vector e induced by the channel C is also fixed. We
consider the probability space where (S,R) = (s, r) are fixed and Y (the random coins of
the function A) is chosen uniformly. By the first property of a milestone function, we have
that for a fixed (s, r) ∈ B and a fixed error e, Pr[A(m, ssamp, sπ, e, Y) = 0] > 1

2 (as otherwise
decoding must succeed). Let A′ = A(m,Ssamp, Sπ, EC(Z), Y) be the random variable of the
output of function A in the probability space where S,R, Y are chosen uniformly.

Pr[A′ = 0] ≥ Pr[A′ = 0|(S,R) ∈ B] · Pr[(S,R) ∈ B] > ν/2

APPROX/RANDOM’16

45:32 Explicit List-Decodable Codes for Computationally Bounded Channels

It follows that

Pr[A(m,Ssamp, Sπ, EC(Z), Y) = 1] = Pr[A′ = 1] = 1− [A′ = 0] < 1− ν/2. J

We add an independent random variable ZU that is uniform over {0, 1}N to our probability
space (that now consists of independently chosen S,R, Y, ZU). By the second property of a
milestone function, we have that for every error vector e,

Pr[A(m,Ssamp, Sπ, e, Y) = 1] ≥ 1− ν/10.

As ZU is independent of (Ssamp, Sπ) this holds also for an error vector of the form EC(ZU).
Namely,

Pr[A(m,Ssamp, Sπ, EC(ZU), Y) = 1] ≥ 1− ν/10.

This means that:

Pr[A(m,Ssamp, Sπ, EC(ZU), Y) = 1]− Pr[A(m,Ssamp, Sπ, EC(Z), Y) = 1]
> (1− ν/10)− (1− ν/2) ≥ ν/4.

By averaging, there exist fixed values s′samp, s
′
π and y′ such that if we consider the event

W =
{
Ssamp = s′samp, Sπ = s′π, Y = y′

}
.

Pr[A(m, s′samp, s
′
π, EC(ZU), y′) = 1|W]− Pr[A(m, s′samp, s

′
π, EC(Z), y′) = 1|W] > ν/4.

We have that (Ssamp, Sπ, Y) is independent of ZU and also independent of (SPRG, R).
Therefore:

Pr[A(m, s′samp, s
′
π, EC(ZU), y′) = 1]−

Pr[A(m, s′samp, s
′
π, EC(Enc(m, sπ, ssamp, SPRG, R)), y′) = 1] > ν/4.

This setup (namely, where Ssamp, Sπ are fixed, and SPRG, R = (R1, . . . , Rnctrl) are uniform)
is exactly the probability space considered in the hiding lemma (Lemma 41). By the
third property of milestones functions, we have that every xored restriction of the function
D(z) = A(m, s′samp, s

′
π, EC(z), y′) is in C′. Therefore, the function D that we obtained gives

a contradiction to the hiding lemma.

6.4 Proof of Lemma 39
We will prove the lemma in two steps that correspond to the two steps of the decoding:
decoding control, and decoding data.

I Claim 44. For every m, s = (ssamp, sπ, sPRG), r, e and y, let c = Enc(m, s, r) and c′ = c⊕e.
If Aweakctrl (m, ssamp, sπ, e, y) = 1 then s ∈ Listctrl. Where Listctrl is the list obtained in the
decoding algorithm described in Figure 3.

Proof. Recall that Listctrl = DecLR(ListSC), ListSC = ∪i∈[n]Listi and Listi = DecSC(c′i)
(here c′i is the i’th block of c′). By Definition 35, Aweakctrl (x) = 1 iff e is (p + ε, µ10)-good
for ssamp. Let ei denote the error vector restricted to the i’th block. By the properties of
EncSC , if the hamming weight of ei is less than (p + ε) · b then ci ∈ Listi. We have that
e is (p + ε, µ10)-good for ssamp, and this means that for at least µ

10 · nctrl = ε2·nctrl
40 of the

nctrl control blocks i ∈ I = Samp(Ssamp), ci ∈ ListSC = ∪i∈[n]Listi. Thus, we indeed have
that Pri←[nctrl][EncLR(s)i ∈ ListSC] ≥ µ

10 >
ε2

100 for a set ListSC of size n · LSC . By the list
recoverability of EncLR we get that s ∈ Listctrl meaning that the control information was
successfully recovered as desired. J

R. Shaltiel and J. Silbak 45:33

I Claim 45. For every m, s = (ssamp, sπ, sPRG), r, e and y, let c = Enc(m, s, r) and c′ = c⊕e.
If Aweakdata (m, ssamp, sπ, e, y) = 1 and s ∈ Listctrl (meaning that s was recovered correctly by
the first step of decoding) then m ∈ Dec(c′).

Proof. We have that s ∈ Listctrl, meaning that s is one of the candidates considered in
the second step of the decoding. Let y′ be the string obtained from c′ after the decoding
uses ssamp to find the data blocks, sPRG to unmask the data, and sπ to permute it back
to it’s original state. The requirement that Aweakdata (m, ssamp, sπ, e, y) = 1 implies that eπ
is (b′, p + α, α)-balanced. Note that eπ is the error vector used on the balanced code. By
the guarantee on Decbalanced this gives that m ∈ Lists = Decbalanced(y′) , since the correct
control is in Listctrl then m ∈ Dec(c′) =

⋃
s∈Listctrl

Lists as desired. J

The lemma follows from the combination of both claims.

6.5 Proof of Lemma 40
A good intuition to keep in mind is that we are trying to bound the harm that can be caused
by an additive channel that uses fixed error vector e of hamming weight at most p.

We start by showing that with high probability, no more than an ε2/4 fraction of the
control blocks, suffer too many errors from the error vector e.

I Claim 46. For every m, e of hamming weight at most pn, y, and sπ,

Pr[Astrong
ctrl (m,Ssamp, sπ, e, y) = 1] ≥ 1− 2−N

0.6
.

Proof. For a given error vector e we define

Te =
{
i : The ith block has a weight at most (p+ ε

4) · b
}
.

For every e that has hamming weight at most pN , it holds that |Te| > ε
4 · n (otherwise we

would have more than pN errors). Define fe : [n]→ {0, 1} such that fe(i) = 1 iff i ∈ Te. By
the properties of the sampler Samp,

Pr
(z1,...,znctrl)←Samp(U`′ctrl

)
[| 1
nctrl
|{i : zi ∈ Te}| −

|Te|
n
| > ε2

100] ≤ 2−N
0.6
.

Thus, if we choose Ssamp uniformly and independently we get that with probability 1 −
2−N0.6 , the number of control blocks that are good (have error less than p+ ε

4) is at least
(ε4 −

ε2

100)nctrl > (9
10 · ε

2/4)nctrl = ((1− 1
10) · µ)nctrl. This means that the error vector e is

(p+ ε/4, (1− 1
10) · µ)-good with probability 1− 2−N0.6 and the claim holds. J

We now show that the fraction of errors induced by e to the data part cannot be
significantly larger than p.

I Claim 47. For every m, e of hamming weight at most pN , y, and sπ,

Pr
ssamp←U`′ctrl

[weight(eSamp(ssamp)
data) ≥ Ndata · (p+ α

100)] ≤ 2−N
0.6

(here, weight is hamming weight).

APPROX/RANDOM’16

45:34 Explicit List-Decodable Codes for Computationally Bounded Channels

Proof. For a given error vector e, we define fe : [n]→ [0, 1] such that fe(i) = wi, where wi
is the relative weight of ith block in e. By the definition of the sampler

Pr
(z1,...,znctrl)←Samp(U`′ctrl

)
[| 1
nctrl

∑
i∈[nctrl]

f(zi)− p| >
α

100] ≤ 2−N
0.6
.

Thus with probability 1− 2−N0.6 the number of errors induced to the control blocks is at
least Nctrl(p− α

100), which implies that the number of error induced to the data is less than
Ndata(p+ α

100), and the claim follows. J

We will now show that permuting the data part e, produces a balanced error vector with
high probability. Let ssamp be a sampler seed that is good with respect to the two previous
claims. A 1− 2 · 2−N0.6 fraction of sampler seeds, satisfy these properties. By Claim 47, we
can assume that the relative hamming weight of essamp

data is at most p+ α/100. We will denote
edata = e

ssamp
data in order to avoid clutter. The lemma will follow from the following claim.

I Claim 48. Pr[π(Sπ, edata) is (b′, p+ α/4, α/4)-balanced error] > 1− e−Ω(N0.55).

This is because, together the three claims above give that with probability 1− 2−N0.51 all
good events happen, and Astrong(x, y) = 1. In the remainder of this section we prove Claim
48.

Let N ′ = Ndata/b
′ be the number of b′ length blocks. We now define random variables

D1, . . . , DN ′ as follows.

Di =
{

1 The i’th block of π(Sπ, edata) has weight more than (p+ α
4) · b′

0 otherwise

Claim 48 can now be seen as a claim that the sum of the Di’s is small with high probability.
We will use a Chernoff style bound, due to Schmidt, Siegel and Srinivasan [17] in order to
bound the probability of deviation.

I Lemma 49. [17] Suppose X1, ..., X` are binary random variables, such that for every set of
distinct k indices i1, · · · , ik ∈ [`], Pr[Xi1 = . . . = Xik = 1] ≤ µk. If 0 < δ ≤ 1 and k ≤ δ·µ·`

2
then

Pr[
∑̀
j=1

Xj ≥ (1 + δ)µ · `] ≤ e−Ω(δk) .

We plan to use Lemma 49 on the random variables D1, . . . , DN ′ for this purpose, we need
to analyze the probability that tuples of Di’s all evaluate to one. In order to achieve this, we
will first show that:

I Claim 50. For every v < N5.5 and every distinct i1, . . . , iv ∈ [N ′], and additional i ∈ [N ′]

Pr[Di = 1|Di1 = . . . = Div = 1] ≤ α/10 .

We observe that Claim 50 implies Claim 48 by Lemma 49. This is because Claim 50
implies that for v = N5.5, and every distinct i1, . . . , iv ∈ [N ′],

Pr[Di1 = . . . = Div = 1] ≤ (α/10)v.

We can now use Lemma 49 with k = N5.5, δ = 1 and µ = α/10 to get that:

Pr[
N ′∑
j=1

Dj ≥
α ·N ′

5] ≤ e−Ω(N5.5) .

R. Shaltiel and J. Silbak 45:35

In order to prove Claim 50 we prove the following claim, for which we introduce the
following notation: We use esπ to denote πsπ (edata). We use esπ [i] to denote the i’th block
of esπ (where blocks are of length b′). We use esπ [i, j] to denote the j’th bit in the i’th block
of esπ .

I Claim 51. Let v < N0.55, let i1, . . . , iv ∈ [N ′] be distinct blocks, let i ∈ [N ′] be an
additional block, and let j1, . . . , jk ∈ [b′]. Let a1, . . . , av ∈ {0, 1}b

′ be strings such that the
relative hamming weight of each ai is at least p+α/100. Let E = ∩m∈[v]

{
eSπ [im] = am

}
. It

follows that:

Pr[∩`∈[k]
{
eSπ [i, j`] = 1

}
|E] ≤ (p+ α/50)k .

Proof.

Pr[∩`∈[k]
{
eSπ [i, j`] = 1

}
|E] =

Pr[∩`∈[k]
{
eSπ [i, j`] = 1

}
∩ E]

Pr[E]

Let us first imagine that π is an (0, t)-wise independent permutation. In this case, the
denominator is some quantity β ≥ 1/Nv

data ≥ 1/NN0.55 ≥ 1/2N0.56 and the enumerator is at
most β · (p+ α/100)k. This is because conditioned on the v values, the fraction of ones that
is “still available” in edata has not increased, and is still at most p+ α/100. It follows that
the actual quantity is at most

β · (p+ α/100)k + 2−N0.6

β − 2−N0.6 = (p+ α/100)k + 2−N0.6
/β

1− 2−N0.6/β
≤ (p+ α/50)k

where the last inequality follows for sufficiently large N because p, α and k ≤ b′ are constants,
and for every two constants A < A′, A+o(1)

1−o(1) ≤ A
′. J

We now show that Claim 50 follows directly from Claim 51, using Lemma 49.

Proof. (of Claim 50) We use Lemma 49 on the random variables Y1, . . . , Yb′ defined by:

Yw =
{

1 eSπ [i, w] = 1
0 otherwise

By Claim 51 we have that for every 0 ≤ v < N5.5, and for every k-tuple of indices
j1, . . . , jk ∈ [b′] in the i’th block,

Pr[Yj1 = . . . = Yjk = 1|Di1 = . . . = Div = 1] ≤ (p+ α/50)k.

Applying Lemma 49, with δ = α/10, k = α2 · b′/2, µ = p + α/50, and noting that
(1 + δ) · µ ≤ p+ α/4 we have that:

Pr[
b′∑
j=1

Yj ≥ (p+ α/4) · b′|Di1 = . . . = Div = 1] ≤ e−Ω(α3·b′) ≤ α/10,

where the last inequality follows as we are allowed to choose b′ to be a sufficiently large
constant as a function of α, and the claim follows. J

APPROX/RANDOM’16

45:36 Explicit List-Decodable Codes for Computationally Bounded Channels

7 Proof of Theorem 14

In this section we prove Theorem 14. The high level idea is that concatenated codes easily
give codes for balanced errors. A similar argument also appears in [19], for the case of codes
against errors that are “t-wise independent”.

Codes with the property required in Theorem 14 can be constructed by concatenating:
An explicit outer code Cout : {0, 1}k → ({0, 1}nin)nout that is (1−γ, Lin, L)-list recoverable
from a collection, that has rate at least 1− ε/3, and in which nin, Lin, L are constants
and L = poly(1/ε) · Lin.
An inner code Cin : {0, 1}nin → {0, 1}b that is Lin-list-decodable from p · b errors and
has rate at least 1−H(p)− ε/3.

Note that this indeed gives a code with the desired properties: The inner code can be
list-decodable in constant time by brute force. Furthermore, for balanced error, list-decoding
succeeds on 1− γ of the nout blocks, giving that the list-recovering algorithm of the outer
code, is set up to output a list containing the original message.

For every constant ε > 0 if we choose sufficiently large constants nin, b and Lin = poly(1/ε)
then inner codes with the required property exist by a standard probabilistic argument, and
as Cin is of constant size, we can find such codes by brute force search.
The outer code can be constructed by concatenating:

An explicit code C1 : {0, 1}k → ({0, 1}logn1)n1 that is (1−γ2, L1, L2 = L)-list recoverable
from a collection, and has rate at least 1− ε/9. We need that L = poly(1/ε) · L1.
An inner code C2 : {0, 1}logn1 → ({0, 1}nin)n2 that is (1 − γ2, Lin, L1)-list recoverable
from a collection, and has rate at least 1− ε/9, and in which nin, Lin, L1 = poly(1/ε) are
constants.

This gives nout = n1 · n2, and the correctness follows as concatenation of list-recoverable
codes gives a list recoverable codes. Specifically: Given a collection of nout = n1 · n2 sets
(indexed by (i1, i2) ∈ [n1]× [n2]), T(i1,i2) ⊆ {0, 1}in of size Lin, we need to list recover a list
of size at most L, containing all m ∈ {0, 1}k such that

Pr
(i1,i2)←[n1]×[n2]

[EncCout(m)(i1,i2) ∈ T] ≥ 1− γ2.

By averaging, for every such m, we have that for a 1− γ fraction of i1 ∈ [n1],

Pr
i2←[n2]

[EncC2(EncC1(m)i1) ∈ T] ≥ 1− γ.

and so performing two steps of list-recovering indeed recovers the original message.
The outer code C1 can be taken to be a Reed-Solomon code, and by [20, 5], we get these
parameters if ε ≤ O(γ2) for L2 = poly(1/ε) · L1. We now turn our attention to the inner
code C2. We will use the probabilistic method to show the existence of a good code, and
such code can be later found by exhaustive search.

I Claim 52. There exists a constant c > 1, such that for every sufficiently small constants
ε > 0 and γ > 0 such that ε ≤ γc and every constant Lin, there exist constants L1 =
Lin · poly(1/ε) and nin ≥ logLin

γ , such that for every sufficiently large k2, there is a code
C2 : {0, 1}k2 → ({0, 1}nin)n2 that is (1− γ2, Lin, L1)-list recoverable from a collection and
has rate 1− ε/9.

Proof. We consider a uniformly chosen C2. For every subset S ⊆ {0, 1}k2 of size L1 + 1,
and every collection T of sets T1, . . . , T2 ⊆ {0, 1}nin of size Lin let BS,T be the event that
for every x ∈ S, for a 1− γ2 fraction of i ∈ [n2], EncC2(x)i ∈ Ti. Our goal is to do a union

R. Shaltiel and J. Silbak 45:37

bound over all of these events. We will choose nin to be sufficiently large so that Lin ≤ 2γnin .
Let Nin = 2nin and let α = Lin/Nin so that log(1/α) = (1 − γ) · nin. Note that for fixed
x and a collection T , we can use a Chernoff bound13, to show that the probability that a
1− γ2 fraction of i ∈ [n2], C2(x)i ∈ Ti, is at most

2−(1−γ2)·n2·log 1−γ2
e·α ≤ 2−(1−γ2)·n2·log 10

α

where the last inequality follows for sufficiently small γ. It follows that for every S, T :

Pr[BS,T] ≤ 2−(L+1)·(1−γ2)·n2·log 10
α .

The number of choices for S, T is bounded by:(
2k2

L1 + 1

)
·
(
Nin
Lin

)n2

≤ 2(L1+1)·k2 ·
(
e ·Nin
Lin

)n2·Lin
≤ 2(L1+1)·k2 · 2n2·Lin·log e

α .

Thus, we can do a union bound if:

k2 < (1− γ) · (1− γ2) · n2 · log 10
α

= (1− γ2) · (1− γ)2 · n2 · nin,

and also,

Lin · log e

α
< γ · (L+ 1) · (1− γ2) · log 10

α
.

The first inequality follows because we are allowed to choose k2 = (1− ε/9) · n2 · nin, and
ε is was chosen to be sufficiently smaller than γ. The second inequality follows as we are
allowed to choose L1 = Lin · poly(1/ε), and γ ≥ ε. J

The inner code C2 is over an alphabet of logarithmic size in kout, and can be found (and
decoded) by brute force search in time polynomial in kout.

Acknowledgement. We are grateful to Swastik Kopparty for pointing us to the Algebraic
Geometric codes of Garcia and Stichtenoth, and in particular for pointing us to their
description in [18].

References
1 Miklós Ajtai. Σ1

1-formulae on finite structures. Ann. Pure Appl. Logic, 24(1):1–48, 1983.
2 M. Braverman. Polylogarithmic independence fools ac0 circuits. J. ACM, 57(5), 2010.

doi:10.1145/1754399.1754401.
3 A. Garcia and H. Stichtenoth. On the asymptotic behavior of some towers of function fields

over finite fields. Journal of Number Theory, 61(2):248–273, 1996.
4 Oded Goldreich. A sample of samplers – a computational perspective on sampling (survey).

Electronic Colloquium on Computational Complexity (ECCC), 4(20), 1997.
5 V. Guruswami and M. Sudan. Improved decoding of reed-solomon and algebraic-geometry

codes. IEEE Transactions on Information Theory, 45(6):1757–1767, 1999.
6 Venkatesan Guruswami and Adam D. Smith. Codes for computationally simple channels:

Explicit constructions with optimal rate. In 51th Annual IEEE Symposium on Foundations
of Computer Science, FOCS, pages 723–732, 2010. doi:10.1109/FOCS.2010.74.

13The Chernoff bound we use is that if X1, . . . , Xn are independent indicator random variables, and the
expectation of their sum X is µn, then for v > 10, Pr[X ≥ v · µ · n] ≤ 2−v·µ·n·ln(v/e).

APPROX/RANDOM’16

http://dx.doi.org/10.1145/1754399.1754401
http://dx.doi.org/10.1109/FOCS.2010.74

45:38 Explicit List-Decodable Codes for Computationally Bounded Channels

7 R. Impagliazzo, N. Nisan, and A. Wigderson. Pseudorandomness for network algorithms.
In Proceedings of the ACM Symposium on Theory of Computing, pages 356–364, 1994.
doi:10.1145/195058.195190.

8 R. Impagliazzo and A. Wigderson. P = BPP if E requires exponential circuits: Derandom-
izing the XOR lemma. In STOC, pages 220–229, 1997.

9 E. Kaplan, M. Naor, and O. Reingold. Derandomized constructions of k-wise (al-
most) independent permutations. Algorithmica, 55(1):113–133, 2009. doi:10.1007/
s00453-008-9267-y.

10 Michael Langberg. Private codes or succinct random codes that are (almost) perfect. In
45th Symposium on Foundations of Computer Science (FOCS 2004), pages 325–334, 2004.
doi:10.1109/FOCS.2004.51.

11 Richard J. Lipton. A new approach to information theory. In 11th Annual Sym-
posium on Theoretical Aspects of Computer Science, pages 699–708, 1994. doi:10.1007/
3-540-57785-8_183.

12 Silvio Micali, Chris Peikert, Madhu Sudan, and David A. Wilson. Optimal error correction
for computationally bounded noise. IEEE Trans. Information Theory, 56(11):5673–5680,
2010. doi:10.1109/TIT.2010.2070370.

13 N. Nisan. Pseudorandom bits for constant depth circuits. Combinatorica, 11(1):63–70,
1991.

14 N. Nisan. Pseudorandom generators for space-bounded computation. Combinatorica,
12(4):449–461, 1992.

15 N. Nisan and A. Wigderson. Hardness vs. randomness. JCSS: Journal of Computer and
System Sciences, 49, 1994.

16 N. Nisan and D. Zuckerman. Randomness is linear in space. J. Comput. Syst. Sci., 52(1):43–
52, 1996.

17 Jeanette P. Schmidt, Alan Siegel, and Aravind Srinivasan. Chernoff-hoeffding bounds
for applications with limited independence. SIAM J. Discrete Math., 8(2):223–250, 1995.
doi:10.1137/S089548019223872X.

18 Amir Shpilka. Constructions of low-degree and error-correcting epsilon-biased generators.
Computational Complexity, 18(4):495–525, 2009. doi:10.1007/s00037-009-0281-5.

19 Adam D. Smith. Scrambling adversarial errors using few random bits, optimal information
reconciliation, and better private codes. In Proceedings of the Eighteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA, pages 395–404, 2007. URL: http://dl.
acm.org/citation.cfm?id=1283383.1283425.

20 M. Sudan. Decoding of Reed Solomon codes beyond the error-correction bound. Journal
of Complexity, 13, 1997.

21 Avishay Tal. Tight bounds on the fourier spectrum of ac0. Electronic Colloquium on Com-
putational Complexity (ECCC), 21:174, 2014. URL: http://eccc.hpi-web.de/report/
2014/174.

22 Luca Trevisan and Tongke Xue. A derandomized switching lemma and an improved deran-
domization of AC0. In Proceedings of the 28th Conference on Computational Complexity,
CCC, pages 242–247, 2013. doi:10.1109/CCC.2013.32.

23 Salil P. Vadhan. Constructing locally computable extractors and cryptosystems
in the bounded-storage model. J. Cryptology, 17(1):43–77, 2004. doi:10.1007/
s00145-003-0237-x.

http://dx.doi.org/10.1145/195058.195190
http://dx.doi.org/10.1007/s00453-008-9267-y
http://dx.doi.org/10.1007/s00453-008-9267-y
http://dx.doi.org/10.1109/FOCS.2004.51
http://dx.doi.org/10.1007/3-540-57785-8_183
http://dx.doi.org/10.1007/3-540-57785-8_183
http://dx.doi.org/10.1109/TIT.2010.2070370
http://dx.doi.org/10.1137/S089548019223872X
http://dx.doi.org/10.1007/s00037-009-0281-5
http://dl.acm.org/citation.cfm?id=1283383.1283425
http://dl.acm.org/citation.cfm?id=1283383.1283425
http://eccc.hpi-web.de/report/2014/174
http://eccc.hpi-web.de/report/2014/174
http://dx.doi.org/10.1109/CCC.2013.32
http://dx.doi.org/10.1007/s00145-003-0237-x
http://dx.doi.org/10.1007/s00145-003-0237-x

Counting Hypergraph Matchings up to
Uniqueness Threshold∗

Renjie Song1, Yitong Yin2, and Jinman Zhao3

1 Department of Computer Science and Technology, Nanjing University, China
song.renjie@foxmail.com

2 State Key Lab for Novel Software Technology, Nanjing University, China
yinyt@nju.edu.cn

3 Department of Computer Science, University of Wisconsin-Madison, USA
jinman.zhao@gmail.com

Abstract
We study the problem of approximately counting matchings in hypergraphs of bounded max-
imum degree and maximum size of hyperedges. With an activity parameter λ, each matching M
is assigned a weight λ|M |. The counting problem is formulated as computing a partition function
that gives the sum of the weights of all matchings in a hypergraph. This problem unifies two ex-
tensively studied statistical physics models in approximate counting: the hardcore model (graph
independent sets) and the monomer-dimer model (graph matchings).

For this model, the critical activity λc = dd

k(d−1)d+1 is the threshold for the uniqueness of
Gibbs measures on the infinite (d+ 1)-uniform (k + 1)-regular hypertree. Consider hypergraphs
of maximum degree at most k+ 1 and maximum size of hyperedges at most d+ 1. We show that
when λ < λc, there is an FPTAS for computing the partition function; and when λ = λc, there
is a PTAS for computing the log-partition function. These algorithms are based on the decay of
correlation (strong spatial mixing) property of Gibbs distributions. When λ > 2λc, there is no
PRAS for the partition function or the log-partition function unless NP=RP.

Towards obtaining a sharp transition of computational complexity of approximate counting,
we study the local convergence from a sequence of finite hypergraphs to the infinite lattice with
specified symmetry. We show a surprising connection between the local convergence and the
reversibility of a natural random walk. This leads us to a barrier for the hardness result: The
non-uniqueness of infinite Gibbs measure is not realizable by any finite gadgets.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases approximate counting; phase transition; spatial mixing

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2016.46

1 Introduction

Counting problems have long been studied in the context of statistical physics models.
Perhaps the two most well studied statistical physics models for approximate counting are
the hardcore model and the monomer-dimer model.

In the hardcore model, given a graph G = (V,E) and a vertex-activity λ, the model assigns
each independent set I of G a weight wIS

λ (I) = λ|I|. A natural probability distribution, the
Gibbs distribution, is defined over all independent sets of G as µIS

λ (I) = wIS
λ (I)/Z IS

λ (G) where

∗ This research is supported by NSFC grants 61272081 and 61321491. This work was done in part while
YY was visiting the Simons Institute for the Theory of Computing.

© Renjie Song, Yitong Yin, and Jinman Zhao;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016).
Editors: Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans; Article No. 46; pp. 46:1–46:29

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.46
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

46:2 Counting Hypergraph Matchings up to Uniqueness Threshold

the normalizing factor Z IS
λ (G) =

∑
I w

IS
λ (I) is the partition function. In the monomer-dimer

model, given a graph G = (V,E) and an edge-activity λ, the model assigns each matching
M of G a weight wM

λ (M) = λ|M |. The Gibbs distribution over all matchings of G is defined
accordingly. And the partition function now becomes ZM

λ (G) =
∑
M wM

λ (M). The counting
problems are then formulated as computing the partition functions Z IS

λ (G) and ZM
λ (G), or

the log-partition functions logZ IS
λ (G) and logZM

λ (G).
It was well known that the hardcore model exhibits the following phase transition. For

the infinite (d+ 1)-regular tree Td, there is a critical activity λc(Td) = dd/(d− 1)d+1, called
the uniqueness threshold, such that when λ < λc the correlation between the marginal
distribution at the root and any boundary condition on leaves at level t decays exponentially
in the depth t, but when λ > λc the boundary-to-root correlation remains substantial even
as t→∞. This property of correlation decay is also called spatial mixing, and was known
to be equivalent to the uniqueness of the infinite-volume Gibbs measure on the infinite
(d+ 1)-regular tree Td [33]. In a seminal work [34], Weitz showed that for all λ < λc(Td) the
decay of correlation holds for the hardcore model on all graphs of maximum degree bounded
by d + 1 and there is a deterministic FPTAS for approximately computing the partition
function on all such graphs. Here the specific notion of decay of correlation established is the
strong spatial mixing. The connection of approximability of partition function to the phase
transition of the model is further strengthened in a series of works [30, 31, 7, 9] which show
that unless NP=RP there is no PRAS for the partition function or the log-partition function
of the hardcore model when λ > λc(Td) on graphs with maximum degree bounded by d+ 1.

For the monomer-dimer model, it was well known that the model has no such phase
transition [13, 14]. And analogously there is an FPRAS due to Jerrum and Sinclair [16]
for the partition function of the monomer-dimer model on all graphs. In [1] strong spatial
mixing with an exponential rate was established for the model on all graphs with maximum
degree bounded by an arbitrary constant and a deterministic FPTAS was also given for the
partition function on all such graphs.

In this paper, we study hypergraph matchings, a model that unifies both the hardcore
model and the monomer-dimer model. A hypergraph H = (V,E) consists of a vertex set
V and a collection E of vertex subsets, called the (hyper)edges. A matching of H is a set
M ⊆ E of disjoint hyperedges in H. Given a hypergraph H and an activity parameter λ > 0,
a configuration is a matching M of H, and is assigned a weight wλ(M) = λ|M |. The Gibbs
measure over all matchings of H is defined as µ(M) = wλ(M)/Zλ(H), where the normalizing
factor Zλ(H) is the partition function for the model, defined as:

Zλ(H) =
∑

M : matching of H
λ|M |.

This model represents an interesting subclass of Boolean CSP defined by the matching
(packing) constraints. It also unifies the hardcore model and the monomer-dimer model.
Consider the family of hypergraphs of maximum edge size d+ 1 and maximum degree k + 1:

When d = 1, the model becomes the monomer-dimer model on graphs of maximum
degree k + 1.
When k = 1, the partition function takes sum over independent sets in the dual graph,
and the model becomes the hardcore model on graphs of maximum degree d+ 1.

For hypergraphs, the study of approximate counting hypergraph matchings was initiated
in [17]. In [5], an FPTAS was obtained for counting matchings in 3-uniform hypergraphs of
maximum degree at most 3 by considering the correlation decay for the independent sets
in claw-free graphs. In [22], an FPTAS was given for 3-uniform hypergraphs of maximum

R. Song, Y. Yin, and J. Zhao 46:3

degree at most 4 by the correlation decay of the original CSP. All these results assumed
λ = 1, i.e. the problem of counting the number of matchings in a hypergraph.

Our results

We show that for hypergraph matchings λc = λc(Td,k) = dd

k(d−1)d+1 is the uniqueness threshold
on the infinite (d+ 1)-uniform (k + 1)-regular hypertree Td,k.

I Proposition 1. There is a unique Gibbs measure on matchings of Td,k if and only if
λ ≤ λc.

This fact was implicit in the literature. Here we give a formal proof. It subsumes the
well-known uniqueness threshold λc(Td,1) = dd

(d−1)d+1 for the hardcore model on the infinite
(d+ 1)-regular tree and also the lack of phase-transition for the monomer-dimer model.

We then establish the decay of correlation for hypergraph matchings on all hypergraphs
with bounded maximum size of hyperedges and bounded maximum degree when the activity
λ is in the uniqueness regime for the uniform regular hypertree. The specific notion of decay
of correlations that we establish here is the strong spatial mixing [34] (see Section 2 for a
formal definition). Consequently, we give an FPTAS for the partition function when λ is in
the interior of the uniqueness regime, and a PTAS for the log-partition function when λ is at
the critical threshold.

I Theorem 2. For every finite integers d, k ≥ 1, the following holds for matchings with
activity λ on all hypergraphs of maximum edge-size at most d+ 1 and maximum degree at
most k + 1:

if λ < λc, the model exhibits strong spatial mixing at an exponential rate and there exists
an FPTAS for computing the partition function;
if λ = λc, the model exhibits strong spatial mixing at a polynomial rate and there is a
PTAS for computing the log-partition function.

I Remark 3. The theorem unifies the strong spatial mixing and FPTAS for the hardcore
model [34] and the monomer-dimer model [1], and also covers as special cases the results for
approximate counting non-weighted hypergraph matchings in [17, 5, 22].

For hypergraph matchings, the case of critical threshold is of significance. There is a
natural combinatorial problem that corresponds to the threshold case: counting matchings
in 3-uniform hypergraphs of maximum degree at most 5. Here d = 2, k = 4, and the critical
λc = dd

k(d−1)d+1 = 1, which corresponds to counting the number of hypergraph matchings
without weight.

Unlike most recent correlation-decay-based algorithms, where the strong spatial mixings
were established by a potential analysis, we do not use the potential method to analyze the
decay of correlation. Instead, we prove the following stronger extremal statement.

I Proposition 4. For hypergraph matchings, the worst case of (weak or strong) spatial
mixing, in terms of decay rate, among all hypergraphs of maximum edge-size at most d+ 1
and maximum degree at most k + 1, is represented by the weak spatial mixing on Td,k.

We construct a hypergraph version of Weitz’s self-avoiding walk tree. Then we show that
weak spatial mixing on the uniform regular hypertree implies strong spatial mixing on all
smaller hypertrees by a step-by-step comparison of correlation decay. This was the original
approach used by Weitz for the hardcore model [34]. Compared to the more recent potential
method [20, 19, 27, 28, 29, 22], this method of analyzing the decay of correlation has the
advantage in dealing with the critical case.

APPROX/RANDOM’16

46:4 Counting Hypergraph Matchings up to Uniqueness Threshold

Hard

Easy

Uniqueness
threshold

[Liu-Lu 2015]

[Dudek et al. 2014,
Liu-Lu 2015]

Figure 1 The classification of computational complexity of approximately counting matchings in
hypergraphs of max-degree (k + 1) and max-edge-size (d+ 1) when λ = 1. The blue curve is the
uniqueness threshold. The non-continuity of the red curve is due to rounding.

On the other hand, due to a simple reduction from the inapproximability of the hardcore
model in the non-uniqueness regime [31], we have the following hardness result.

I Theorem 5. If λ > 2k+1+(−1)k
k+1 λc ≈ 2λc, then there is no PRAS for the partition function

or the log-partition function for the family of hypergraphs stated in Theorem 2, unless NP=RP.

Figure 1 illustrates the classification of approximability of counting hypergraph matchings
when λ = 1. Each integral point (d, k) corresponds to the problem of approximately counting
matchings in hypergraphs of max-degree (k + 1) and max-edge-size (d+ 1). The landscape
will continuously change when λ changes.

It is worth noticing that in our reduction the hard instances contain many small cycles,
while from the algorithmic side the worst cases for the decay of correlation are trees. This
obvious inconsistency between upper and lower bounds and the ad hoc nature of the simple
reduction seem to suggest that the current hardness threshold is not optimal.

We then explore the possibility of bringing the current hardness threshold from ≈ 2λc
down to the phase-transition threshold λc. We discover a reason why getting the exact
transition of approximability could be so challenging for this model on hypergraphs.

To state our discovery, let us first review the current approach for establishing computa-
tional phase transition for approximate counting [6, 26, 30, 31, 7, 9, 10], which consists of
two main steps:

(from all infinite measures to finitely many infinite measures) The uniqueness threshold
λc(Td) for the Gibbs measure on the infinite regular tree Td is achieved by a sub-family
of Gibbs measures with simple structure: the Gibbs measures that are invariant under
a group G of automorphisms on Td. For the hardcore model, these are the so-called
semi-translation invariant Gibbs measures, which are invariant under parity-preserving
automorphisms on Td, and the threshold λc(Td) for the uniqueness of all Gibbs measures
on Td is the same as the threshold λc(TG

d) for the uniqueness of only those Gibbs measures
that are invariant under the group G of parity-preserving automorphisms.

R. Song, Y. Yin, and J. Zhao 46:5

(from finitely many infinite measures to finite measures) A sequence of (possibly random)
finite graphs Gn is constructed to converge locally to TG

d , the infinite tree Td equipped
with the symmetry specified by group G. For the hardcore model, and more generally
antiferromagnetic spin systems, Gn are the random regular bipartite graphs [6, 26, 30, 31,
7, 9, 10], which converge locally to the infinite tree Td respecting the symmetry between
vertices of the same parity. The “random” and “regular” parts in this construction
guarantee to preserve the local tree structure in distribution, while the bipartiteness
respects the parity of vertices.

For the model of hypergraph matchings, the first step follows. We show that there indeed is
a group Ĝ of automorphisms on the infinite (d+ 1)-uniform (k + 1)-regular hypertree Td,k
such that λc(Td,k) = λc(TĜ

d,k), i.e. the uniqueness of Gibbs measure on Td,k is represented
precisely by the uniqueness of only those Gibbs measures invariant under Ĝ. This gives a
natural generalization of semi-translation Gibbs measures to the hypergraph model.

However, we show that there does not exist any sequence of (deterministic or random)
finite hypergraphs that converge locally to TĜ

d,k unless k = 1 where the model degenerates to
the hardcore model on graphs. In fact, we give a complete characterization of the symmetry
described by a group G of automorphisms on Td,k that there exists a sequence of finite
hypergraphs that converge locally to TG

d,k.

I Theorem 6. Let G be a group of automorphisms on Td,k with finitely many orbits. There
exist a sequence of random finite hypergraphs Hn that converge locally to TG

d,k if and only if
the uniform random walk on Td,k projected onto the orbits of G is reversible.

See Theorem 27 and its proof for more details of Theorem 6.

Discussion

To summarize our discoveries for the model of hypergraph matchings:
Theorem 2 implicitly but rigorously shows that the worst case for the decay of correlation
among a family of hypergraphs with bounded maximum degree and bounded maximum
edge-size, is achieved by the infinite uniform regular hypertree.
However, in the current inapproximability stated by Theorem 5, the hard instances are
not locally tree-like, but rather, the gadgets locally converge to an infinite hypergraph
which is not a hypertree (see Section 6).
And finally, Theorem 6 gives an explanation of this inconsistence between upper and lower
bounds: the extremal case for the decay of correlation in Theorem 2, which is achieved
by an infinite-hypertree measure, can never be realized by any finite hypergraphs.1

Altogether, these discoveries deliver the following very interesting message: In order to
establish a sharp connection between computational complexity of approximate counting and
phase transitions for hypergraph matchings or other more general models, a more fine-grained
definition of uniqueness on finite graphs is necessary.

1 In fact, aided by numerical simulations, so far we have not encountered any family of measures on the
infinite uniform regular hypertree Td,k realizable by finite hypergraphs, whose uniqueness threshold is
below 2λc. This seems to provide some empirical evidence for that on finite hypergraphs, the worst
case for uniqueness might not be locally tree-like.

APPROX/RANDOM’16

46:6 Counting Hypergraph Matchings up to Uniqueness Threshold

Remark on exposition

For convenience of visualizing the results, all our results in the rest of the paper are
presented for independent sets in the dual hypergraphs. Note that matchings are equivalent
to independent sets under hypergraph duality. The only effect of duality on a family of
hypergraphs with bounded maximum edge size and bounded maximum degree is to switch
the bounds on the edge size and the degree. We emphasize that our notion of hypergraph
independent set is different from the more popular definition used in [2, 3]. We call a vertex
subset I ⊆ V in a hypergraph H = (V,E) an independent set if no two vertices in I are
contained in the same hyperedge, while in [2, 3], an I ⊆ V is an independent set if it does
not contain any hyperedge as subset.

Related works

Approximate counting of hypergraph matchings was studied in [17] for hypergraphs with
restrictive structures, and in [22, 5] for hypergraphs with bounded edge size and maximum
degree. In [3, 24], approximate counting of a variant of hypergraph independent sets was
studied, where the definition of hypergraph independent set is different from ours. In a very
recent breakthrough [2], FPTAS for this problem is obtained when there is no strong spatial
mixing. In [8], the hardness is established for a class of hypergraph models including ours.

The spatial mixing (decay of correlation) is already a widely studied topic in Computer
Science, because it may support FPTAS for #P-hard counting problems. The decay of
correlation was established via the self-avoiding walk tree for the hardcore model [34, 29],
monomer-dimer model [1, 28], and two-spin systems [20, 19, 28]. Similar tree-structured
recursions were employed to prove the decay of correlation for multi-spin systems [11, 25, 12]
and more general CSPs [21, 23, 22].

2 Preliminaries

For a hypergraph H = (V,E), the size of a hyperedge e ∈ E is its cardinality |e|, and the
degree of a vertex v ∈ V , denoted by deg v = degH(v), is the number of hyperedges e ∈ E
incident to v, i.e. satisfying v ∈ e. A hypergraph H is k-uniform if all hyperedges are of the
same size k, and is d-regular if all vertices have the same degree d. The incidence graph of a
hypergraph H = (V,E) is a bipartite graph with V and E as vertex sets on the two sides,
such that each (v, e) ∈ V × E is a bipartite edge if and only if v is incident to e.

A matching of hypergraph H = (V,E) is a set M ⊆ E of disjoint hyperedges in H. Given
an activity parameter λ > 0, the Gibbs measure is a probability distribution over matchings
of H proportional to the weight wM

λ (M) = λ|M |, defined as µM
λ (M) = wM

λ (M)/ZM
λ (H), where

the normalizing factor ZM
λ (H) =

∑
M wM

λ (M) is the partition function.
Similarly, an independent set of hypergraph H = (V,E) is a set I ⊆ V of vertices satisfying

|I ∩ e| ≤ 1 for all hyperedges e in H. The Gibbs measure over independent sets of H with
activity λ > 0 is given by

µIS
λ (I) = wIS

λ (I)
Z IS
λ (H)

= λ|I|

Z IS
λ (H)

, (1)

where the normalizing factor Z IS
λ (H) =

∑
I w

IS
λ (I) is the partition function for independent

sets of H with activity λ.
Independent sets and matchings are equivalent under hypergraph duality. The dual of

a hypergraph H = (V,E), denoted by H∗ = (E∗, V ∗), is the hypergraph whose vertex set

R. Song, Y. Yin, and J. Zhao 46:7

is denoted by E∗ and edge set is denoted by V ∗, such that every vertex v ∈ V (and every
hyperedge e ∈ E) in H is one-to-one corresponding to a hyperedge v∗ ∈ V ∗ (and a vertex
e∗ ∈ E∗), such that e∗ ∈ v∗ if and only if v ∈ e. Note that under duality, matchings and
hypergraphs are the same CSP and hence result in the same Gibbs measure, which remains
to be true even with activity λ. Also a family of hypergraphs of bounded maximum edge
size and bounded maximum degree is transformed under duality to a family of hypergraphs
with the bounds on the edge size and degree exchanged.

I Remark 7. With the above equivalence under duality, from now on we state all our results
in terms of the independent sets in the dual hypergraph and omit the superscript ·IS in
notations.

Given the Gibbs measure over independent sets of hypergraph H and a vertex v, we
define the marginal probability pv as

pv = pH,v = Pr[v ∈ I]

which is the probability that v is in an independent set I sampled from the Gibbs measure
(such a vertex is also said to be occupied). Given a vertex set Λ ⊂ V , a configuration is a
σΛ ∈ {0, 1}Λ which corresponds to an independent set IΛ partially specified over Λ such that
σΛ(v) indicates whether a v ∈ Λ is occupied by the independent set. We further define the
marginal probability pσΛ

H,v as

pσΛ
v = pσΛ

H,v = Pr[v ∈ I | IΛ = σΛ]

which is the probability that v is occupied under the Gibbs measure conditioning on the
configuration of vertices in Λ ⊂ V being fixed as σΛ.

I Definition 8. The independent sets of a finite hypergraph H = (V,E) with activity λ > 0
exhibit weak spatial mixing (WSM) with rate δ : N → R+ if for any v ∈ V , Λ ⊆ V , and
any two configurations σΛ, τΛ ∈ {0, 1}Λ which correspond to two independent sets partially
specified on Λ,

|pσΛ
v − pτΛv | ≤ δ(distH(v,Λ)),

where distH(v,Λ) is the shortest distance between v and any vertex in Λ in hypergraph H.

I Definition 9. The independent sets of a finite hypergraph H = (V,E) with activity λ > 0
exhibit strong spatial mixing (SSM) with rate δ : N → R+ if for any v ∈ V , Λ ⊆ V , and
any two configurations σΛ, τΛ ∈ {0, 1}Λ which correspond to two independent sets partially
specified on Λ,

|pσΛ
v − pτΛv | ≤ δ(distH(v,∆)),

where ∆ ⊆ Λ stands for the subset on which σΛ and τΛ differ and distH(v,∆) is the shortest
distance between v and any vertex in ∆ in hypergraph H.

The definitions of WSM and SSM extend to infinite hypergraphs with the same conditions
to be satisfied for every finite region Ψ ⊂ V conditioning on the vertices in ∂Ψ being
unoccupied.

APPROX/RANDOM’16

46:8 Counting Hypergraph Matchings up to Uniqueness Threshold

3 Gibbs measures on the infinite tree

We follow Remark 7 and state our discoveries in terms of independent sets in the dual
hypergraphs. Let Tk,d be the infinite (k + 1)-uniform (d + 1)-regular hypertree, whose
incidence graph is the infinite tree in which all vertices with parity 0 are of degree (k + 1)
and all vertices with parity 1 are of degree (d+ 1). A probability measure µ on hypergraph
independent sets of Tk,d is Gibbs if for any finite sub-hypertree T , conditioning µ upon the
event that all vertices on the outer boundary of T are unoccupied gives the same distribution
on independent sets of T as defined by (1) with H = T . We further consider the simple
Gibbs measures satisfying conditional independence: Conditioning µ on a configuration of
a subset Λ of vertices results in a measure in which the configurations on the components
separated by Λ are independent of each other. The Gibbs distribution on a finite hypergraph
is always simple. A Gibbs measure on Tk,d is translation-invariant if it is invariant under all
automorphisms of Tk,d. Fix an automorphism group G of Tk,d. A G-translation-invariant
Gibbs measure on Tk,d is a measure that is invariant under all automorphisms from G. For
example, the semi-translation-invariant Gibbs measures on regular tree are invariant under
all parity-preserving automorphisms on T1,d. The natural group actions of G respectively
on vertices and hyperedges partition the sets of vertices and hyperedges into orbits. For
example, in the semi-translation-invariant symmetry on regular tree, vertices with the same
parity form an orbit. We will show that λc(Tk,d) = dd

k(d−1)d+1 is the uniqueness threshold for
the Gibbs measures on hypergraph independent sets of Tk,d. Furthermore, this uniqueness
threshold is achieved by a family of Gibbs measures with simple structure.

I Theorem 10. There is always a unique simple translation-invariant Gibbs measure on
independent sets of Tk,d. Let λc = λc(Tk,d) = dd

k(d−1)d+1 . There is a unique Gibbs measure
on Tk,d if and only if λ ≤ λc. Furthermore, there is an automorphism group Ĝ on Tk,d
which classifies all vertices of Tk,d into 2 orbits, such that the threshold for the uniqueness of
Ĝ-translation invariant Gibbs measures on Tk,d, denoted as λc(TĜ

k,d), is λc(TĜ
k,d) = λc(Tk,d).

This proves the uniqueness threshold stated in Proposition 1.

3.1 Branching matrices
The automorphism group G on Tk,d can be described conveniently by a notion of branching
matrices. For an automorphism group G on Tk,d, the natural group actions of G respectively
on vertices and hyperedges partition the sets of vertices and hyperedges into orbits. Let τv
and τe be the respective numbers of orbits for vertices and hyperedges. For each i ∈ [τv],
we say a vertex is of type-i if it is in the i-th orbit for vertices; and the same also applies to
hyperedges. Assuming the symmetry on Tk,d given by automorphism group G, the hypergraph
branching matrices, or just branching matrices, are the following two nonnegative integral
matrices:

D = Dτv×τe = [dij] and K = Kτe×τv = [kji],

which satisfy that for any i ∈ [τv] and j ∈ [τe]:
every vertex in Tk,d of type-i is incident to precisely dij hyperedges of type-j;
every hyperedge in Tk,d of type-j contains precisely kji vertices of type-i.

The D and K are transition matrices from vertex-types to hyperedge-types and vice versa in
Tk,d. The definition can be seen as a hypergraph generalization of the branching matrix for

R. Song, Y. Yin, and J. Zhao 46:9

multi-type Galton-Watson tree [27]. Since types (orbits) are invariant under all automorph-
isms from G, it is clear that the above D and K are well-defined for every automorphism
group G on Tk,d with finitely many orbits.

I Proposition 11. Every automorphism group G on Tk,d with finitely many orbits can be
identified by a pair of branching matrices D and K with rules as described above and satisfy:
(1)

∑
j dij = d+ 1 and

∑
i kji = k + 1; (2) dij = 0 if and only if kji = 0; and (3) DK and

KD are irreducible.
Conversely, any pair of nonnegative integral matrices D and K satisfying these conditions

are branching matrices for some automorphism group G on Tk,d.

Proof. Let G be an automorphism group on Tk,d with finitely many orbits. It is trivial to
see that the branching matrices D and K are well-defined and satisfy

∑
j dij = d+ 1 and∑

i kji = k + 1.
A vertex v of type-i is incident to a hyperedge e of type-j if and only if e of type-j

contains a vertex v of type i, thus kji 6= 0 if and only if dij 6= 0.

The irreducibility of DK and KD follows that of the matrix
[

0 D

K 0

]
, which is a

consequence to the that every type of vertex and hyperedge is accessible from all other types
of vertices and hyperedges, which follows the simple fact that the incidence graph Tk,d is
strongly connected.

Conversely, let D and K be a pair of nonnegative integral matrices satisfying the
conditions above. We can start from any vertex (or hyperedges) o of type-i and construct an
infinite hypertree rooted at o with each vertex and hyperedge labeled with the respective type
according to the rules specified by the branching matrices D and K. Since dij = 0 if and
only if kji = 0, the construction is always possible. Since

∑
j dij = d+ 1 and

∑
i kji = k + 1,

the resulting infinite hypertree must be k-uniform and d-regular. Since DK and KD are
irreducible, no matter how we choose the type for the root o, the resulting hypertree contains
all types of vertices and hyperedges.

We can then construct an automorphism group G on Tk,d according with orbits being
the types just specified. For every pair of vertices (or hyperedges) u, v with the same type,
by generating the hypertree according to D, K starting from u and v respectively, we obtain
an automorphism φu→v on Tk,d which maps u to v and preserves the types of all vertices
and hyperedges. Let G = 〈 {φu→v | ∀u, v with the same type} 〉 be the group generated from
all such automorphisms. Then D and K are branching matrices for automorphism group G
on Tk,d. J

3.2 Extremal Gibbs measures
Consider a special automorphism group Ĝ on Tk,d defined by the following branching matrices
(D̂, K̂). Assume that there are two vertex-types and two hyperedge-types, both denoted as

{+,−}, and the branching matrices are defined as D̂ =
[
1 d

d 1

]
and K̂ =

[
k 1
1 k

]
, i.e.:

1. every ‘±’-vertex is incident to a ‘±’-hyperedge and d ‘∓’-hyperedges;
2. every ‘±’-hyperedge contains k ‘±’-vertices and a ‘∓’-vertex.
See Figure 2 for an illustration.

Fix a ‘+’-vertex v in Tk,d as the root. Let µ+ (resp. µ−) be the Gibbs measure on Tk,d
defined by conditioning on all vertices to be occupied for the t-th ‘+’-vertices (resp. ‘−’-
vertices) along all path from the root and taking the weak limit as t→∞. Note that for the
2-coloring given by D̂ and K̂, on any path any ‘±’-vertex has a ‘∓’-vertex within 2 steps,

APPROX/RANDOM’16

46:10 Counting Hypergraph Matchings up to Uniqueness Threshold

Figure 2 Classifying vertices and hyperedges of T3,2 into two types ‘+’(black) and ‘−’(white).
The hypergraph is represented as its incidence graph where circles stand for vertices and squares
stand for hyperedges.

so the limiting sequence is well-defined. And by symmetry, starting from a root of type-‘−’
gives the same pair of measures.

The µ± generalize the extremal semi-translation-invariant Gibbs measures on infinite
regular trees. For hypertree Tk,d with k ≥ 2, there are no parity-preserving automorphisms.
Nevertheless, the symmetry given by D̂ and K̂ generalizes the parity-preserving automorph-
isms to hypertrees and has the similar phase-transition as semi-translation-invariant Gibbs
measures on trees.

The µ± are simple and are Ĝ-translation-invariant for the automorphism group Ĝ with
orbits given by D̂ and K̂. In fact, they are extremal Ĝ-translation-invariant Gibbs measures
on Tk,d. We will see that the model has uniqueness if and only if µ+ = µ−.

3.3 Uniqueness of Gibbs measures

I Lemma 12. Let µ be a simple Gibbs measure on independent sets of Tk,d. Let v be a
vertex in Tk,d and vij the j-th vertex (besides v) in the i-th hyperedge incident to v, for
i = 1, 2, . . . , d+1 and j = 1, 2, . . . , k. Let pv = µ[v is occupied] and pvij = µ[vij is occupied].
It holds that

pv = λ(1− pv)−d
d+1∏
i=1

1− pv −
k∑
j=1

pvij

 . (2)

Proof. Since µ is a Gibbs measure, for any vertex v in Tk,d, it holds that

pv = µ[v is occupied] = λ

1 + λ
· µ[all the neighbors of v are unoccupied]

On the other hand, since µ is simple, conditioning on the root being unoccupied the sub-

R. Song, Y. Yin, and J. Zhao 46:11

hypertrees are independent of each other, thus

µ[all the neighbors of v are unoccupied]
=µ[v is occupied] · µ[all the neighbors of v are unoccupied | v is occupied]

+ µ[v is unoccupied]
d+1∏
i=1

µ[∀1 ≤ j ≤ k, vij is unoccupied | v is unoccupied]

=pv + (1− pv)
d+1∏
i=1

1−
k∑
j=1

µ[vij is occupied | v is unoccupied]

 .

Note that for any two adjacent vertices v, vij , we have µ[vij is occupied] = µ[vij is occupied |
v is unoccupied] · µ[v is unoccupied], thus

µ[vij is occupied | v is unoccupied] = µ[vij is occupied]
1− µ[v is occupied] =

pvij
1− pv

.

The lemma follows by combining everything together. J

Equation (2) gives an infinite system involving all vertices in Tk,d. If the simple Gibbs
measure µ is G-translation-invariant for some automorphism group G on Tk,d, the marginal
probability pv = µ[v is occupied] depends only on the type (orbit) of v.
I Corollary 13. Let µ be a simple G-translation-invariant Gibbs measure on Tk,d with
branching matrices Dτv×τe = [dij] and Kτe×τv = [kji]. For every i ∈ [τv], let pi =
µ[v is occupied] for vertex v in Tk,d of type-i. It holds for every s ∈ [τv] that

ps = λ(1− ps)−d
∏
j∈[τe]

1−
∑
i∈[τv]

kji · pi

dij

.

Applying with the branching matrices D̂ and K̂ defined in Section 3.2, the system in
Corollary 13 becomes{

p+ = λ(1− p+)−d(1− k p+ − p−)(1− p+ − k p−)d,
p− = λ(1− p−)−d(1− k p− − p+)(1− p− − k p+)d.

Let x = kp+
1−p−−k p+

and y = kp−
1−p+−k p− . The system becomes

{
y = f(x)
x = f(y)

, where f(x) =

kλ
(1+x)d is the hardcore tree-recursion. Since f(x) is positive and decreasing in x, it follows
that there is a unique positive x̂ such that x̂ = f(x̂), which means there is always a unique
simple translation-invariant Gibbs measure on Tk,d. It is well-known (see [9] and [18, 32])
the system has three distinct solutions (x̂, x̂), (x+, x−) and (x−, x+) where 0 < x− < x̂ < x+,
when kλ > dd/(d − 1)d+1, i.e. λ > λc(Tk,d) = dd

k(d−1)d+1 ; and the three solutions collide
into a unique solution (x̂, x̂) when λ ≤ λc(Tk,d), which means there is a unique simple
Ĝ-translation-invariant Gibbs measure on Tk,d if and only if λ ≤ λc(Tk,d). Recall that µ±
are simple and are extremal Ĝ-translation-invariant Gibbs measures, and hence it also holds
that µ+ = µ− if and only if λ ≤ λc(Tk,d), therefore, it holds that λc(Tk,d) = λc(TĜ

k,d). In
particular if λ > λc(Tk,d), then µ+ 6= µ− and the Gibbs measure on Tk,d is non-unique.

To complete the proof of Theorem 10, we only need to show the Gibbs measure on
Tk,d is unique if λ ≤ λc(Tk,d). This is implied by the weak spatial mixing on Tk,d when
λ ≤ λc, proved later in Theorem 21. With the weak spatial mixing on Tk,d, the uniqueness
of the Gibbs measure is implied by a generic equivalence between weak spatial mixing and
uniqueness of Gibbs measure (see e.g. [33]).

APPROX/RANDOM’16

46:12 Counting Hypergraph Matchings up to Uniqueness Threshold

4 The hypergraph self-avoiding walk tree

We call a hypergraph a hypertree if its incidence graph has no cycles. Let T = (V,E) be a
rooted hypertree with vertex v as its root. We assume that root v is incident to d distinct
hyperedges e1, e2, . . . , ed, such that for i = 1, 2, . . . , d,
|ei| = ki + 1; and
ei = {v, vi1, vi2, . . . , viki}.

For 1 ≤ i ≤ d and 1 ≤ j ≤ ki, let Tij be the sub-hypertree rooted at vij . Recall that all
hypertrees considered by us satisfy the property that any two hyperedges share at most one
common vertex, thus all vij are distinct and the sub-hypertrees Tij are disjoint.

Let Λ ⊂ V . Let σΛ ∈ {0, 1}Λ be a configuration indicating an independent set partially
specified on vertex set Λ, and for each 1 ≤ i ≤ d and 1 ≤ j ≤ ki, let σΛij be the restriction
of σΛ on the sub-hypertree Tij . Consider the ratios of marginal probabilities:

RσΛ
T = pσΛ

T ,v/
(

1− pσΛ
T ,v

)
and R

σΛij
Tij = p

σΛij
Tij ,vij/

(
1− p

σΛij
Tij ,vij

)
.

The following recursion can be easily verified due to the disjointness between sub-hypertrees:

RσΛ
T = λ

d∏
i=1

1
1 +

∑ki
j=1R

σΛij
Tij

. (3)

This is the “tree recursion” for hypergraph independent sets. The tree recursions for the
hardcore model [34] and the monomer-dimer model [1] can both be interpreted as special
cases.

For general hypergraphs which are not trees, we construct a hypergraph version of self-
avoiding-walk tree, which allows computing marginal probabilities in arbitrary hypergraphs
with the tree recursion. Moreover, we show that the uniform regular hypertree is the worst
case for SSM among all hypergraphs of bounded maximum edge-size and bounded maximum
degree.

I Theorem 14. For any positive integers k, d and any positive λ, if the independent sets of
Tk,d with activity λ exhibit strong spatial mixing with rate δ(·), then the independent sets of
any hypergraph of maximum edge size at most (k + 1) and maximum degree at most (d+ 1),
with activity λ, exhibit strong spatial mixing with the same rate δ(·).

Under duality, the same holds for the hypergraph matchings.
We then define the hypergraph self-avoiding walk tree. A walk in a hypergraph H = (V,E)

is a sequence (v0, e1, v1, . . . , e`, v`) of alternating vertices and hyperedges such that every
two consecutive vertices vi−1, vi are incident to the hyperedge ei between them. A walk
w = (v0, e1, v1, . . . , e`, v`) is called self-avoiding if:

w = (v0, e1, v1, . . . , e`, v`) forms a simple path in the incidence graph of H; and
for every i = 1, 2, . . . , `, vertex vi is incident to none of {e1, e2, . . . , ei−1}.

Note that the second requirement is new to the hypergraphs.
A self-avoiding walk w = (v0, e1, v1, . . . , e`, v`) can be extended to a cycle-closing walk

w′ = (v0, e1, v1, . . . , e`, v`, e
′, v′) so that the suffix (vi, ei+1, vi+1, . . . , e`, v`, e

′, v′), for some
0 ≤ i ≤ `− 1, of the walk forms a simple cycle in the incidence graph of H. We call v′ the
cycle-closing vertex.

Given a hypergraph H = (V,E), an ordering of incident hyperedges at every vertex can be
arbitrarily fixed, so that for any two hyperedges e1, e2 incident to a vertex u we use e1 <u e2
to denote that e1 is ranked higher than e2 according to the ordering of hyperedges incident

R. Song, Y. Yin, and J. Zhao 46:13

Figure 3 The construction of TSAW. On the left is a hypergraphH and on the right is TSAW(H, v1),
both drawn as incident graphs. The ordering of the hyperedges incident to each vertex in H is
given by the subscripts. Each vertex or hyperedge in TSAW is labeled by the name of the vertex
or hyperedge to which it is identified in H. Dashed vertices are the ones deleted according to the
ordering of incident hyperedges at the cycle-closing vertices. Dashed hyperedge is deleted because
its size becomes 1.

to u. With this local ordering of hyperedges, given any vertex v ∈ V , a rooted hypertree
T = TSAW(H, v), called the self-avoiding walk (SAW) tree, is constructed as follows:
1. Every vertex of T corresponds to a distinct self-avoiding walk in H originating from v,

where the root corresponds to the trivial walk (v).
2. For any vertex u in T , which corresponds to a self-avoiding walk w = (v, e1, v1 . . . , e`, v`),

we partition all self-avoiding walks w′ = (v, e1, v1 . . . , e`, v`, e
′, v′) in H which extends w,

into sets according to which hyperedge they use to extend the original walk w, so that
self-avoiding walks within the same sets extends w with the same hyperedge e′. For every
set, we create a distinct hyperedge in T incident to u which contains the children of u
corresponding to the self-avoiding walks within that set.

3. We further modify the hypertree T obtained from the above two steps according
to how cycles are closed. For any vertex u in T corresponding to a self-avoiding
walk w = (v, e1, v1 . . . , e`, v`) which can be extended to a cycle-closing walk w′ =
(v, e1, v1 . . . , e`, v`, e

′, v′) such that v′ ∈ {v, v1, . . . , v`−1}, denoted by e′′ the hyperedge in
w starting that cycle, if it holds that e′ <v′ e′′, i.e. the hyperedge ending the cycle is
ranked higher than the hyperedge starting the cycle by the cycle-closing vertex, then
vertex u along with all its descendants in T are deleted from T . Any hyperedges whose
size becomes 1 because of this step are also deleted from T .

The construction is illustrated in Figure 3.

We consider the Gibbs measure of a rooted hypertree T with activity λ, and use PσΛ
T to

denote the marginal probability of the root of T being occupied conditioning on σΛ.
Note that each vertex u in TSAW(H, v) can be naturally identified (many-to-one) to

the vertex in H = (V,E) at which the self-avoiding walk corresponding to u ends, thus
a configuration σΛ partially specified on a subset Λ ⊂ V of vertices in H can be directly
translated to a partially specified configuration in TSAW(H, v) through the one-to-many
association. We abuse the notation and still denote the resulting configuration in T =
TSAW(H, v) as σΛ, thus PσΛ

T is well-defined.

APPROX/RANDOM’16

46:14 Counting Hypergraph Matchings up to Uniqueness Threshold

I Theorem 15. Let H = (V,E) be a hypergraph and λ > 0. For any v ∈ V , Λ ⊆ V and
σΛ ∈ {0, 1}Λ, it holds that pσΛ

H,v = PσΛ
T where T = TSAW(H, v).

Proof. The proof follows the same routine as that of Weitz [34], with some extra cares to be
taken to avoid the complications caused by hypergraphs.

Denote RσΛ
H,v(λ) = pσΛ

H,v/(1− p
σΛ
H,v) for the ratio between the probability that v in H is

occupied and unoccupied conditioning on configuration σΛ of Λ ⊂ V . We write RσΛ
T = RσΛ

T ,v
when v is unambiguously the root of T .

Let d be the degree of the root of T . Suppose that there are ki children contained in i-th
child-edge, where the order is determined during the construction of TSAW(H, v). Tij is the
subtree rooted at the j-th child in the i-th child-edge. Let Λij = Λ ∩ Tij and σΛij be the
restriction of σΛ on Λij . Applying the tree recursion (3) for the self-avoiding walk tree T ,
we have

RσΛ
T = λ

d∏
i=1

1
1 +

∑ki
i=1R

σΛij
Tij

, (4)

This defines a recursive procedure for calculating RσΛ
T . The base cases are naturally defined

when v lies in Λ, in which case RσΛ
T = 0 if v is fixed unoccupied or RσΛ

T = ∞ if it is fixed
occupied, or when v has no child, in which case RσΛ

T = λ.
In the following we describe our procedure for calculating RσΛ

H,v at v in the original
hypergraph H. The problem comes that the ratio at different neighbors of v may still depend
on each other when we fix the value at v since there may exist cycles in H. We resolve this
problem by editing the original hypergraph around v and imposing appropriate conditions
for each neighbor of v.

Let Hv be the same hypergraph as H except that vertex v ∈ V is substituted by d vertices
v1, v2, ..., vd, where d is the degree of v. Each vertex vi is contained into a single hyperedge
ei, where ei is the i-th hyperedge connecting v, and the order here is the same as the one
determined in the definition of TSAW(H, v). At the same time, we associated each vi with
an activity of λ1/d rather than λ. It is now clear to see that an independent set in H with
v occupied has the same weight as the corresponding independent set in Hv with all the
vi occupied, and so is the case when v is unoccupied. Therefore, RσΛ

H,v equals to the ratio
between the probabilities in Hv with all vi (1 ≤ i ≤ d) being occupied and unoccupied,
conditioning on σΛ. Let τi be the configuration for vertex vi in which the values of vj are
fixed to occupied if j < i and unoccupied if j > i. We can then write this in a form of
telescopic product:

RσΛ
H,v =

d∏
i=1

RσΛτi
Hv,vi ,

where σΛτi means the combination of the two configurations σΛ and τi.
We can obtain the value of RσΛτi

Hv,vi by further fix vertices in ei, the hyperedge containing
vi. Since now vi is contained only in ei, we can see that

RσΛτi
Hv,vi = λ1/d

1 +
∑ki
j=1R

σΛτiρij
Hv/vi,uij

,

where ki is the number of the vertices other than vi which is incident to ei and ρij is
the configuration at vertices of ei in which all the vertices uij′ other than uij are fixed to
unoccupied.

R. Song, Y. Yin, and J. Zhao 46:15

Combining above two equations, we get a recursive procedure for calculating RσΛ
H,v in the

same manner that equation (4) has:

RσΛ
H,v = λ

d∏
i=1

1
1 +

∑ki
j=1R

σΛτiρij
Hv/vi,uij

. (5)

Notice that the recursion does terminate, since the number of unfixed vertices reduces at
least by one in each step because in calculating RσΛτiρij

Hv/vi,uij all copies vi′ of v is either fixed
(when i′ 6= i) or erased (when i′ = i) from the hypergraph Hv/vi.

We now show that the procedure described above for calculating RσΛ
H,v results in the

same value as using the hypertree procedure for TSAW(H, v) with corresponding condition
of σΛ imposed on it. First notice that the calculation carried out by the two procedure is
the same, since they share the same function (Equation (4) and (5)) when we view them
as recursive calls. Furthermore, we have the same stopping values for the both recursive
procedures. During constructing TSAW(H, v), if node u corresponding to walk is not included
in the hypertree, which is equivalent to fix u to unoccupied in the sense of causing the same
effect on the ratio of occupation to its parent node. And when node u in the hypertree
corresponding to a self-avoiding walk w = (v, e1, v1 . . . , e`, v`), with that w can be extended as
w′ = (w, e`+1, v`+1) to a cycle-closing vertex v`+1 = vi for some 0 ≤ i < ` via a new hyperedge
e`+1 6∈ {e0, e1, . . . , e`}, and e`+1 <vi ei, then the node u along with all its descendants are
deleted. This gives the equivalent effect to parent node of u as if u is fixed to unoccupied, or
one of the children of u (i.e. the node corresponding to w′) to occupied, which is what we
did to fix the vertices vj for j < i in τi. Eliminating a hyperedge with no child also does not
affect the final value of RσΛ

T .
Thus, what is left to complete the proof is to show that the hypertree TSAW(Hv/vi, uij)

with (σΛτiρij)’s corresponding condition imposed on it is exactly the same as the subtree
of TSAW(H, v) rooted at the j-th child vertex of the i-th child-edge of the root with σΛ’s
corresponding condition imposed on it. This is enough because then the resulting values
are the same for both procedures by induction. The observation is that both trees are the
hypertree of all self-avoiding walks in H starting at uij , except that TSAW(Hv/vi, uij) has
some extra vertices which are fixed to be occupied or unoccupied depending on whether
the corresponding walk reaches v via a higher or lower ranked hyperedge, or reaches i-th
hyperedge of v, which results in the same probability of occupation at the root. J

A hypergraph H is a sub-hypergraph of another hypergraph G if the incidence graph
of H is a subgraph of that of G, and for hypertrees this is samely defined. Note that for
hypergraphs, a subgraph is not necessarily formed by a sub-collection of hyperedges, but
maybe also by sub-hyperedges. The TSAW of a hypergraph H with maximum edge-size at
most k + 1 and maximum degree at most d+ 1 is sub-hypertree of Tk,d.

I Proposition 16. Let T0 = (V0, E0) be a rooted hypertree and T = (V,E) its sub-hypertree
with the same root. For any Λ ⊆ V and any σΛ ∈ {0, 1}Λ, there exists a configuration
σΛ0 ∈ {0, 1}Λ0 for Λ ⊆ Λ0 ⊆ V0, extending the configuration σΛ, such that PσΛ

T = PσΛ0
T0

.

The configuration σΛ0 just extends σΛ by fixing all the vertices missing in T (actually
only those who are closest to the root along each path) to be unoccupied.

Theorem 14 follows immediately from Theorem 15 and Proposition 16.

Proof of Theorem 14. Given any hypergraph H of maximum edge-size at most (k + 1) and
maximum degree at most (d+ 1), by Theorem 15 we have |pσΛ

H,v − p
τΛ
H,v| = |P

σΛ
T − PτΛT | where

APPROX/RANDOM’16

46:16 Counting Hypergraph Matchings up to Uniqueness Threshold

T = TSAW(H, v). The distance from the root v to any vertex u in T is no shorter than the
distance H between v and the vertex in H to which u is identified. So the SSM with rate
δ(·) on T implies that on the hypergraph H.

Since H has maximum edge-size at most k + 1 and maximum degree at most d+ 1, its
SAW-tree T = TSAW(H, v) is a sub-hypertree of Tk,d. Thus by Proposition 16, we have
|PσΛ
T − PτΛT | = |P

σΛ0
Tk,d − PτΛ0

Tk,d | for some σΛ0 , τΛ0 extending σΛ, τΛ. The SSM on Tk,d with rate
δ(·) implies that on T , which implies the same on the original hypergraph H. J

5 Strong spatial mixing

In this section, we show that for independent sets of the infinite (k+1)-uniform (d+1)-regular
hypertree Tk,d, weak spatial mixing implies strong spatial mixing at almost the same rate.

I Theorem 17. For every positive integers d, k and any λ, if the independent sets of the
infinite (k+1)-uniform (d+1)-regular hypertree Tk,d with activity λ exhibits weak spatial mixing
with rate δ(·) then it also exhibits strong spatial mixing with rate (1+λ)(λ+(1+kλ)d+1)

λ δ(·).

By Theorem 14, this implies the strong spatial mixing with the same rate on all hypergraphs
of maximum degree at most d+ 1 and maximum size of hyperedges at most k + 1.

Unlike most known strong spatial mixing results, where the spatial mixing is usually
established by an analytic approach with help of potential functions, our proof of Theorem 17
adopts the combinatorial argument used in Weitz’s original proof of SSM for the hardcore
model [34]. Weitz’s approach gives us a stronger result: It explicitly gives the extremal case
for WSM as well as SSM among a family of hypergraphs with bounded maximum degree
and bounded maximum edge-size. It can also easily give us the SSM behavior when at the
critical threshold.

Assume the hypertree T = Tk,d is rooted at some vertex v. For ` > 0, let R+
` and R−`

denote the respective maximum and minimum values of RσT achieved by a boundary condition
σ that fixes the states of all vertices at level `. By the monotonicity of the tree recursion, it
is easy to see that R+

` (or R−`) is computed by the tree recursion with initial values at all
vertices at level ` to be ∞ (or 0) if ` is even, and 0 (or ∞) if ` is odd, with the root v being
at level 0.2

It is easy to see that fixing a vertex u in T to be occupied has the same effect as fixing
u’s parent to be unoccupied, therefore to prove SSM, it is sufficient to prove the decay of
correlation conditioning on a subset of vertices in T fixed to be unoccupied. Another key
observation from the tree recursion is that fixing a vertex u in T to be unoccupied has the
same effect as having a local activity λu = 0 at vertex u. Now consider a vector ~λ that assigns
every vertex u in T = Tk,d a local activity λu. Let R+

` (~λ) and R−` (~λ) be accordingly defined
as the respective extremal values of RσT (~λ) achieved by boundary conditions σ fixing all
vertices at level ` in the tree T = Tk,d equipped with the nonuniform activities ~λ. Clearly, by
the same monotonicity, R±` (~λ) can be computed from the tree recursion with a nonuniform
activities ~λ with the same settings of initial values as the uniform case R±` = R±` (λ).

The following theorem shows that basically the decay of correlation is dominated by the
uniform activity case.

2 Note that although the all-∞ initial values corresponds to a boundary condition σ that fixes all vertices
at level ` to be occupied, which may no longer be a valid independent set in the hypertree, the R±

`
achieved by this choice of initial values is actually the same as the RσT with a boundary condition σ
that fixes exactly one vertex per hyperedge to be occupied at level `.

R. Song, Y. Yin, and J. Zhao 46:17

I Theorem 18. Fix an arbitrary λ ≥ 0. Let ~λ be an assignment of activities to vertices of
Tk,d such that 0 ≤ λv ≤ λ for every v ∈ Tk,d. For every ` ≥ 1 we have

R+
` (~λ)

R−` (~λ)
≤
R+
`

R−`
.

Translated to the language of subtrees, the theorem means that the extremal case of WSM
among a family hypertrees with bounded maximum degree and maximum edge-size, is given
by the uniform regular tree with the highest degree and edge-size in the family. Technically,
Theorem 18 measures the decay of correlation in terms of logR = log p

1−p . Note that for

` ≥ 2, it always holds that p+
` (λ) ≤ λ

1+λ and p−` (λ) ≥ λ
λ+(1+kλ)d+1 , where R±` = p±

`

1−p±
`

.
Theorem 18 implies Theorem 17.

We now consider a slightly different hypertree which is exactly the same as Tk,d except
that the degree of root is d. Denote this hypertree as T̂k,d.

I Lemma 19. For every integer ` ≥ 1 and any assignment of activities ~λ to vertices of T̂k,d
such that 0 ≤ λv ≤ λ for every vertex v, the following two inequalities hold:

R+
` (~λ)

R−` (~λ)
≤
R+
`

R−`
, (6)

1 + kR+
` (~λ)

1 + kR−` (~λ)
≤

1 + kR+
`

1 + kR−`
, (7)

with the convention 0/0 = 1 and ∞ =∞.

Proof of Lemma 19. The proof is by an induction on `. The proof is similar to that of
Weitz [34] except for the parts dealing with hyperedges.

First consider the exceptional cases when the denominators in (6) may be zero. Assume
R+
` (~λ) = R−` (~λ) = 0, which only happens when the activity of the root is zero. We adopt

the convention that R+
`

(~λ)
R−
`

(~λ)
= 1. Assume R−` = 0, which only occurs when ` = 1. Then

R−` (~λ) = 0 also holds, and by convention we have R+
`

(~λ)
R−
`

(~λ)
= R+

`

R−
`

= ∞. Note that these
conventions are consistent with our induction, such that assuming the induction hypothesis
R+
`

(~λ)
R−
`

(~λ)
≤ R+

`
(λ)

R−
`

(λ) , for any k assignments of activities 0 ≤ ~λ1, ~λ2, ..., ~λk ≤ λ, there exists α ≥ 0

such that
∑k
i=1R

−
` (~λi) = αkR−` and

∑k
i=1R

+
` (~λi) ≤ αkR+

` .
For the basis, ` = 1. We have R−` (~λ) ≥ R−` = 0, R+

` = λ, and R+
` (~λ) = λr where λr is

the activity of the root. The hypotheses (6) and (7) are true since λr ≤ λ.
Assume (6) and (7) are true for an ` ≥ 1. We will show that they are true for `+ 1. The

following recursion holds

R+
`+1(~λ)

R−`+1(~λ)
=

d∏
i=1

1 +
∑k
j=1R

+
` (~λij)

1 +
∑k
j=1R

−
` (~λij)

=
d∏
i=1

∑k
j=1(1 + kR+

` (~λij))∑k
j=1(1 + kR−` (~λij))

,

where ~λij stands for the restriction of the assignment ~λ to the subtree of Tk,d rooted at
the j-th child in the i-th edge incident to the root. By induction hypothesis (7), we have
1+kR+

`
(~λij)

1+kR−
`

(~λij)
≤ 1+kR+

`

1+kR−
`

, so immediately,

R+
`+1(~λ)

R−`+1(~λ)
=

d∏
i=1

∑k
j=1(1 + kR+

` (~λij))∑k
j=1(1 + kR−` (~λij))

≤
(

1 + kR+
`

1 + kR−`

)d
=
R+
`+1

R−`+1
,

APPROX/RANDOM’16

46:18 Counting Hypergraph Matchings up to Uniqueness Threshold

where the inequality is due to the simple fact that if ai ≥ bi > 0 and ai
bi
≤ t for all i, then∑n

i=1
ai∑n

i=1
bi
≤ t.

This proves (6) for `+ 1. Next we will prove (7). Recall the tree recursions:

R±`+1(~λ) = λr

d∏
i=1

1

1 +
k∑
j=1

R∓` (~λij)
and R±`+1 = λ

d∏
i=1

1
1 + kR∓`

,

where λr is the local activity assigned by ~λ to the root r. Observe that if
∑k
j=1R

−
` (~λij) ≥ kR−`

for all i ∈ [d], then R+
`+1(~λ) ≤ R+

`+1, which combined with (6) for `+ 1 that we just proved

above, would give us that 1+kR+
`+1(~λ)

1+kR−
`+1(~λ)

≤ 1+kR+
`+1

1+kR−
`+1

. In this good case, the hypothesis (7) easily

holds for `+ 1. We then show that the opposite case where
∑k
j=1R

−
` (~λij) ≤ kR−` for all i

represents the worst possible case, and it is enough to prove the hypothesis (7) under this
condition. To see this, assume to the contrary that for some i0,

∑k
j=1R

−
` (~λi0j) > kR−` . We

then construct a ~λ′ that satisfies
∑k
j=1R

−
` (~λ′i0j) ≤ kR

−
` and has an even worse ratio between

1 + kR+
`+1 and 1 + kR−`+1. Let ~λ′ be the same as ~λ except that for every j ∈ [k], ~λ′i0j is

uniform and is equal to λ everywhere. Clearly, it holds that
∑k
j=1R

−
` (~λ′i0j) = kR−` . On

the other hand, by the induction hypothesis, for every j we have 1+kR+
`

(~λi0j)
1+kR−

`
(~λi0j)

≤ 1+kR+
`

1+kR−
`

, and
hence

1 +
∑k
j=1R

+
` (~λi0j)

1 +
∑k
j=1R

−
` (~λi0j)

=
∑k
j=1(1 + kR+

` (~λi0j))∑k
j=1(1 + kR−` (~λi0j))

≤
1 + kR+

`

1 + kR−`
,

where again the inequality uses the fact that if ai ≥ bi > 0 and ai
bi
≤ t for all i, then∑n

i=1
ai∑n

i=1
bi
≤ t.

Note that ~λ′ only changes the activities of all the subtrees rooted by the the children in
the i0-th edge of the root. So we have

R+
`+1(~λ)

R−`+1(~λ)
=

d∏
i=1

1 +
∑k
j=1R

+
` (~λij)

1 +
∑k
j=1R

−
` (~λij)

≤
R+
`+1(~λ′)

R−`+1(~λ′)
,

and R+
`+1(~λ) =λr

d∏
i=1

1

1 +
k∑
j=1

R−l (~λij)
≤ R+

l+1(~λ′).

Combine the two inequalities, we have 1+kR+
`+1(~λ)

1+kR−
`+1(~λ)

≤ 1+kR+
`+1(~λ′)

1+kR−
`+1(~λ′)

, an even worse case. So for

the rest we only need to consider the case in which for every i,
∑k
j=1R

−
` (~λij) ≤ kR−` .

For every 1 ≤ i ≤ d, we can choose 0 ≤ αi ≤ 1 so that
∑k
j=1R

−
` (~λij) = αikR

−
` . Fix i

and by the induction hypothesis, for every 1 ≤ j ≤ k we have R+
`

(~λij)
R−
`

(~λij)
≤ R+

`

R−
`

. If all R−` (~λij)

equal zero, then
∑k
j=1R

+
` (~λij) ≤ αikR

+
` trivially holds as we argued in the beginning.

Otherwise, note that since not all R−` (~λij) are zero, we must have ` > 1, so if R−` (~λij) = 0

then R+
` (~λij) = 0. Thus we also have

∑k

j=1
R+
`

(~λij)∑k

j=1
R−
`

(~λij)
≤ R+

`

R−
`

. In conclusion, in both cases we

have
∑k
j=1R

+
` (~λij) ≤ αikR+

` .

R. Song, Y. Yin, and J. Zhao 46:19

Observe that λr ≤ λ and
∏d
i=1

1+
∑k

j=1
R+
`

(~λij)

1+
∑k

j=1
R−
`

(~λij)
≥ 1, it holds that

1 + kR+
`+1(~λ)

1 + kR−`+1(~λ)
=

1 + kλr
∏d
i=1

1
1+
∑k

j=1
R−
`

(~λij)

1 + kλr
∏d
i=1

1
1+
∑k

j=1
R+
`

(~λij)

≤
1 + kλ

∏d
i=1

1
1+αikR−l

1 + kλ
∏d
i=1

1
1+αikR+

`

.

Now it is enough to show that for every ~α such that 0 ≤ αi ≤ 1 for all 1 ≤ i ≤ d, it holds
that

1 + kλ
∏d
i=1

1
1+αikR−l

1 + kλ
∏d
i=1

1
1+αikR+

`

≤
1 + kR+

`+1

1 + kR−`+1
,

which is equivalent to the following:

1 + kλ

d∏
i=1

1
1 + αikR

−
`

−
1 + kR+

`+1

1 + kR−`+1
− kλ

1 + kR+
`+1

1 + kR−`+1

d∏
i=1

1
1 + αikR

+
`

≤ 0. (8)

If αi = 1 for every i then the inequality (8) trivially holds. By symmetry, we only need to
show the LHS of (8) is increasing in α1. In fact, the partial derivative with respect to α1 of
LHS in (8) is:

−
k2λR−`

1 + α1kR
−
`

d∏
i=1

1
1 + αikR

−
`

+
k2λ

(
1 + kR+

`+1
)
R+
`(

1 + kR−`+1
) (

1 + α1kR
+
`

) d∏
i=1

1
1 + αikR

+
`

.

To prove it is nonnegative, it is equivalent to show that(
1 + kR+

`+1
)
R+
`(

1 + kR−`+1
)
R−`
≥

1 + α1kR
+
`

1 + α1kR
−
`

d∏
i=1

1 + αikR
+
`

1 + αikR
−
`

. (9)

To prove (9), we first observe that R−` is increasing in ` and R+
` is decreasing in `, which is

exactly the same to prove as the same property of the hardcore model. This gives us the
so-called sandwich condition:

R−` ≤ R
−
`+1 ≤ R

+
`+1 ≤ R

+
` ,

therefore R+
`

R−
`

≥ R+
`+1

R−
`+1

. We are now ready to prove (9):

(
1 + kR+

`+1
)
R+
`(

1 + kR−`+1
)
R−`
≥
(
1 + kR+

`

)
R+
`+1(

1 + kR−`
)
R−`+1

=
1 + kR+

`

1 + kR−`

d∏
i=1

1 + kR+
`

1 + kR−`

≥
1 + α1kR

+
`

1 + α1kR
−
`

d∏
i=1

1 + αikR
+
`

1 + αikR
−
`

.

The last inequality uses the fact that R+
` ≥ R−` and 0 ≤ αi ≤ 1. So (9) is proved, which

finishes our proof of Lemma 19. J

APPROX/RANDOM’16

46:20 Counting Hypergraph Matchings up to Uniqueness Threshold

Observe that the subtree rooted at the child of the root of Tk,d is isomorphic to T̂k,d.
While at the root of Tk,d, we have

R+
` (~λ)

R−` (~λ)
=
d+1∏
i=1

1 +
∑k
j=1R

+
`−1(~λij)

1 +
∑k
j=1R

−
`−1(~λij)

≤

(
1 + kR+

`−1

1 + kR−`−1

)d+1

=
R+
` (Tk,d)

R−` (Tk,d)
.

Together with Lemma 19, this completes our proof of Theorem 18.

Calculation of the decay rate

The WSM rate of our model on the infinite (k + 1)-uniform (d+ 1)-regular hypertree Tk,d is
the same as the hardcore model on the infinite (d+ 1)-regular tree with activity kλ. The
WSM rate on regular tree has been addressed implicitly in the literature [18, 32]. Here we
provide an analysis for the decay rate for the completeness of the paper.

Let fd,k(x) , kλ
(1+x)d denote the symmetric version of the tree recursion on T̂k,d and

substituting x = kR. Since fd,k(x) is decreasing in x, it follows that there is a unique
positive fixed point x̂ such that x̂ = fd,k(x̂). Let f ′d,k(x̂) = − dx̂

1+x̂ be the derivative of fd,k(x)
evaluated at the fixed point x = x̂. The following proposition is well known for hardcore
model (see e.g. [18, 32]).

I Proposition 20. |f ′d,k(x̂)| = dx̂
1+x̂ ≤ 1 if and only if λ ≤ λc. And |f ′d,k(x̂)| < 1 if λ < λc.

We write f(x) = fd,k(x) if k and d are clear in the context. The main result of this part
is the following theorem.

I Theorem 21. For any positive integers d, k, assuming λ ≤ λc, the model on Tk,d exhibits
weak spatial mixing with rate δ(`) such that for all sufficiently large `:

if λ < λc, then δ(`) ≤ C1|f ′(x̂)|`−4;
if λ = λc, then δ(`) ≤ C2√

`−`0
;

where C1, C2, `0 > 0 are finite constants depending only on k, d and λ.

Theorem 14, Theorem 17 and 21 together prove the SSM part of Theorem 2.
Denote g(x) = f (f(x)) = kλ

(
1 + kλ

(1+x)d

)−d
. It is easy to see that x̂ = g(x̂).

I Lemma 22. If λ ≤ λc then for any x > x̂ we have g(x)− g(x̂) ≤ f ′(x̂)2(x− x̂).

Proof. By the mean value theorem, for any x > x̂, there exists a z ∈ [x̂, x] such that

g(x)− g(x̂) = α(z)(x− x̂), (10)

where α(z) = g′(z) = d2kλg(z)
(1+z)d+1+(1+z)kλ . We will bound the maximum value of α(z) when

λ ≤ λc. Consider the derivative of α(z),

α′(z) = A(z)
[
(d− 1)kλ− (1 + z)d

]
,

where A(z) = d2(d+1)kλg(z)
[(1+z)d+1+(1+z)kλ]2 > 0. Let z∗ = ((d − 1)kλ)1/d − 1 be the solution of

(d− 1)kλ = (1 + z)d. Note that
[
(d− 1)kλ− (1 + z)d

]
is decreasing in z, therefore α(z) ≤

α(z∗) for all z > 0. Due to proposition 20, if λ ≤ λc then |f ′(x̂)| = dx̂
1+x̂ ≤ 1 and hence

x̂ ≤ 1
d−1 , thus α

′(x̂) = A(x̂)[(d− 1)kλ− kλ
x̂] ≤ 0, which means x̂ ≥ z∗ and α(z) is decreasing

in z for any z ≥ x̂. On the other hand, we have α(x̂) = f ′(x̂)2. Thus for any z ≥ x̂, we have
α(z) ≤ α(x̂) = f ′(x̂)2. Plug it into (10). The lemma is proved. J

R. Song, Y. Yin, and J. Zhao 46:21

Proof of Theorem 21. It holds that R+
2 = R+

1 = λ > x̂/k. Note that kR+
` = g(kR+

`−2).
Due to the monotonicity of g(x), we have x̂ < kR+

` ≤ kλ for every ` ≥ 1.
Consider the case λ < λc. First consider the (k + 1)-uniform d-ary hypertree T̂k,d. By

the mean value theorem and Lemma 22 we have

kR+
` − x̂ =g(kR+

`−2)− g(x̂) ≤ f ′(x̂)2 (kR+
`−2 − x̂

)
.

We apply this inequality recursively. Since kR+
` − x̂ < kλ, for any ` ≥ 2 we have

kR+
` − x̂ ≤ kλ|f

′(x̂)|`−2. (11)

To bound R−` we apply the mean value theorem again. There exists a z ∈ [x̂, kR+
`] such that

x̂− kR−` = f(x̂)− f(kR+
`−1) = |f ′(z)|(kR+

`−1 − x̂).

Since |f ′(z)| ≤ kdλ for all z > 0, combined with (11) we have

x̂− kR−` ≤ kdλ(kR+
`−1 − x̂) ≤ k2dλ2|f ′(x̂)|`−3.

At last, R+
` −R

−
` = 1

k (kR+
` − x̂+ x̂− kR−`) ≤ C ′1|f ′(x̂)|`−3 for some C ′1 > 0 depending only

on d, k and λ. This only gives us the desired decay rate at the (k+1)-uniform d-ary hypertree
T̂k,d. Move to the (k + 1)-uniform (d + 1)-regular hypertree Tk,d. The only difference is
that the root has d+ 1 children instead of d. By the mean value theorem, this will multiply
at most a finite constant factor C ′′1 to the gap R+

` −R
−
` at the root of Tk,d, where C ′′1 > 0

depends only on d, k and λ. Overall, this gives us that

p+
` − p

−
` ≤ R

+
` −R

−
` ≤ C1|f ′(x̂)|`−4

for some C1 > 0 depending only on d, k and λ. This finishes the case that λ < λc.
Now we consider the critical case that λ = λc = dd

k(d−1)d+1 . We still start by considering
the (k + 1)-uniform d-ary hypertree T̂k,d. It is easy to verify that in this case x̂ = 1

d−1 ,
α(x̂) = f ′(x̂)2 = 1, z∗ = x̂ and α′(x̂) = 0, where α(z) and z∗ are defined in the proof of
Lemma 22. And we have α′′(x̂) = − (d+1)(d−1)3

d2 . By Taylor’s expansion for g(x) at the fixed
point x = x̂, we have that for any constant c > 0 there exists a constant x0 > x̂ such that
for any x̂ < x < x0, it holds that

g(x) = g(x̂) + α(x̂)(x− x̂) + α′(x̂)
2 (x− x̂)2 + α′′(x̂)

6 (x− x̂)3 + o
(
(x− x̂)3)

≤ 1
d− 1 + x− x̂− (d+ 1)(d− 1)3

6d2 (x− x̂)3 + c(x− x̂)3.

We define a sequence x1 = kR+
1 , x3 = kR+

3 = g(x1), . . . and generally x2t+1 = g(x2t−1). The
sequence is strictly decreasing because R+

` is decreasing in `. Furthermore, limt→∞ x2t+1 = x̂.
This is due to α(x) < 1 for any x > x̂.

Denote ε2t+1 , x2t+1 − x̂. Let c be some positive constant such that (d+1)(d−1)3

6d2 − c > 0.
Denote β = (d+1)(d−1)3

6d2 − c and γ =
√

1
2β . There must be some sufficiently large t0 such that

ε2t0+1 ≤ γ√
2 and for any t > t0, it holds that

ε2t+3 = g(x2t+1)− 1
d− 1 ≤ ε2t+1 − βε32t+1.

APPROX/RANDOM’16

46:22 Counting Hypergraph Matchings up to Uniqueness Threshold

We apply an induction to complete the proof. For the basis, when t = t0 we have ε2t0+1 ≤ γ√
2 .

Assume the hypothesis

ε2t+1 ≤
γ√

t− t0 + 2
(12)

for some t ≥ t0 and we will prove it holds for t + 1. First, notice that h(x) , x − βx3 is
strictly increasing when 0 ≤ x ≤ γ√

2 . Thus, we have

ε2t+3 ≤ ε2t+1 − βε32t+1 ≤
γ√

t− t0 + 2
− β γ3

(t− t0 + 2) 3
2
.

We only need to prove that γ√
t−t0+2 − β

γ3

(t−t0+2)
3
2
≤ γ√

t−t0+3 . Let t′ , t − t0 + 2. It is
equivalently to show that

t′
3
2

(
1√
t′
− 1√

t′ + 1

)
≤ βγ2. (13)

Note that

t′
3
2

(
1√
t′
− 1√

t′ + 1

)
= t′

3
2

(√
t′ + 1−

√
t′√

t′(t′ + 1)

)
≤
√
t′(
√
t′ + 1−

√
t′)

≤
√
t′

1
√
t′ + 1 +

√
t′

≤ 1
2 .

Since βγ2 = 1
2 , we just prove the inequality (13), and finishes the induction (12) for all t ≥ t0.

In conclusion, for any t ≥ t0, it holds that

kR+
2t+1 − x̂ ≤

γ√
t− t0 + 2

.

The rest of the proof is exactly the same as our proof of the case λ < λc. J

6 Approximation algorithms and inapproximability

For 0 < ε < 1, a value Ẑ is an ε-approximation of Z if (1− ε)Z ≤ Ẑ ≤ (1 + ε)Z. Recall that
x̂ is the unique fixed point solution to x̂ = fd,k(x̂) = kλ(1 + x̂)−d.

I Theorem 23. If λ < λc = dd

k(d−1)d+1 , then there exists an algorithm such that given any
ε > 0, and any hypergraph H of n vertices, of maximum edge-size at most (k + 1) and
maximum degree at most (d+ 1), the algorithm returns an ε-approximation of the partition
function for the independent sets of H with activity λ, within running time

(
n
ε

)O(1
κ ln kd),

where κ = ln
(1+x̂
dx̂

)
.

For the critical case where λ = λc, there exists an algorithm that for the above H returns
an ε-approximation of the log-partition function within running time n(kd)O

(
(1
ε ln 1

ε)2)
.

By duality, the same algorithm with the same approximation ratio and running time
works for the matchings of hypergraphs of maximum edge size at most (d+ 1) and maximum
degree at most (k + 1). By Proposition 20, |f ′d,k(x̂)| = dx̂

1+x̂ < 1 if λ < λc, therefore, when

R. Song, Y. Yin, and J. Zhao 46:23

λ < λc, the running time of the algorithm is Poly(n, 1
ε) for any bounded k and d, so the

algorithm is an FPTAS for the partition function. And when λ = λc, the algorithm is a
PTAS for the log-partition function. The algorithmic part of the main theorem Theorem 2 is
proved.

In particular, when d = 1, the model becomes matchings of graphs of maximum degree
(k + 1), and the uniqueness condition λ < λc(Tk,d) is always satisfied even for unbounded k
since λc(Tk,1) =∞. In this case, the fixed point x̂ for f1,k(x) = kλ

1+x can be explicitly solved
as x̂ = −1+

√
1+4kλ
2 . We have the following corollary for matchings of graphs with unbounded

maximum degree, which achieves the same bound as the algorithm in [1].

I Corollary 24. There exists an algorithm which given any graph G of maximum degree
at most ∆, and any ε > 0, returns an ε-approximation of the partition function for the
matchings of G with activity λ, within running time

(
n
ε

)O(
√
λ∆ log ∆).

With the construction of hypergraph self-avoiding walk tree and the SSM, the algorithm
follows the framework by Weitz [34]. We will describe an algorithm of approximating the
partition function for independent sets in hypergraphs with activity λ. Under duality this is
the same as approximately counting matchings with activity λ.

By the standard self-reduction, approximately computing the partition function is reduced
to approximately computing the marginal probabilities. Let H = (V,E) be a hypergraph
and V = {v1, . . . , vn}. To calculate Z = ZH(λ), it suffices to calculate the probability of
the emptyset µ(∅) as it is exactly 1/Z. Let ∅i be the configuration on vertices v1 up to vi
where all of them are unoccupied, and p∅i−1

vi the probability of vi being occupied conditioning
on all vertices v1 up to vi−1 being unoccupied. Then we have 1/Z =

∏n
i=1(1 − p

∅i−1
vi)

and logZ = −
∑n
i=1 log(1 − p∅i−1

vi). Note that (1 − p∅i−1
vi) ≥ 1

1+λ for the probability of
vertex unoccupied by an independent set and λc ≤ 4 for any d ≥ 2 and k ≥ 1. To get
an ε-approximation of Z, it suffices to approximate each of p∅i−1

vi within an additive error
ε

2(1+λ)n . And to get an ε-approximation of logZ, which can be obtained by getting an
ε-approximation of every − log(1−p∅i−1

vi), it is sufficient to approximate each of p∅i−1
vi within

an additive error Θ
(

ε
ln 1
ε

)
.

By Theorem 14, we have pσv = PσT where T = TSAW(H, v), i.e. the marginal probability
of v being occupied is preserved in the SAW tree of H expanded at v. And the value of
PσT can be computed by the tree recursion (3). To make the algorithm efficient we can run
this recursion up to depth t and assume initial value 0 for the variables at depth t as the
vertices they represent being unoccupied. The overall running time of the algorithm is clearly
O(n(kd)t) where t is the depth of the recursion. By the strong spatial mixing guaranteed
by Theorem 17 and Theorem 21, if λ < λc, then the additive error of such estimation of
pσv is bounded by C1 ·

(
dx̂

1+x̂

)t−4
for some constant C1 > 0 depending only on k, d and λ.

We shall choose an integer t so that C1 ·
(
dx̂

1+x̂

)t−4
≤ ε

2(1+λ)n , which gives us the suitable
time complexity required by the FPTAS for the partition function. And when λ = λc, the
additive error of pσv is bounded by C2/

√
t− t0 for some constants C2, t0 > 0 depending only

on k, d. We shall choose an integer t = O((1
ε ln 1

ε)2) to get the desirable additive error for
every marginal probability, which gives us the PTAS for the log-partition function. This
completes the proof of Theorem 23.

APPROX/RANDOM’16

46:24 Counting Hypergraph Matchings up to Uniqueness Threshold

Figure 4 The infinite hypergraph that achieves the uniqueness threshold 2k+1+(−1)k
k+1 λc.

Inapproximability

For the inapproximability, by applying an AP-reduction [3] from the inapproximability of
the hardcore model [31, 9], we have the following theorem.

I Theorem 25. If λ > 2k+1+(−1)k
k+1 λc, there is no PRAS for the partition function or log-

partition function of independent sets of hypergraphs with maximum degree at most d+ 1,
maximum edge-size at most k + 1 and activity λ, unless NP=RP.

Proof. The reduction is as described in [3], which is reduced from the hardcore model. Given
a graph G(V,E) with maximum degree at most (d+1), we construct a hypergraph H(VH, EH)
as follows. For each v ∈ V , we create t =

⌊
k+1

2
⌋
distinct vertices wv,1, wv,2, . . . , wv,t and let

VH = {wv,i | v ∈ V, 1 ≤ i ≤ t}. And for every edge e = (u, v) ∈ E, we create a hyperedge
Se = {wu,1, . . . , wu,t, wv,1, . . . , wv,t} and let EH = {Se | e ∈ E}. Clearly, the maximum
degree of H is at most d + 1 and the maximum edge-size of H is at most 2t ≤ k + 1. We
define

ZH(λ) =
∑

I: IS of H
λ|I| and ZG(λ) =

∑
I: IS of G

λ|I|.

Note that by the above reduction every independent set I of G is naturally identified to t|I|
distinct independent sets of hypergraph H such that a v ∈ V is occupied by I if and only if
one of wv,i is occupied by the corresponding independent set of H. Thus ZH(λ) = ZG(λ′)
where λ′ = tλ.

Recall that G is an arbitrary graph of maximum degree at most d+ 1. According to Sly
and Sun [31], when λ′ > dd

(d−1)d+1 , there exists a constant c such that unless NP=RP, the
partition function ZG(λ′) can not be approximated within a factor of cn in polynomial time,
which means there is no PRAS for the log-partition function logZG(λ′) when λ′ > dd

(d−1)d+1 ,

i.e. when λ > dd

b(k+1)/2c(d−1)d+1 = 2k+1+(−1)k
k+1 λc. J

The reduction in Theorem 25 transforms a hardcore model on a graph with maximum
degree d+ 1 and activity 2k+1+(−1)k

k+1 λ to an instance of hypergraph independent sets with

R. Song, Y. Yin, and J. Zhao 46:25

maximum degree at most d + 1, maximum edge-size at most k + 1, and activity λ. In
particular, it transforms the infinite (d + 1)-regular tree Td,1 to the infinite 2b(k + 1)/2c-
uniform hypergraph as shown in Figure 4. This infinite hypergraph has the uniqueness
threshold dd

b(k+1)/2c(d−1)d+1 = 2k+1+(−1)k
k+1 λc.

7 Local convergence of hypergraphs

For the infinite (k + 1)-uniform (d+ 1)-regular hypertree Tk,d, a group G of automorphisms
on Tk,d classifies the vertices and hyperedges in Tk,d into orbits (equivalent classes). We
consider only G with finitely many orbits. By Proposition 11, such group G can be uniquely
identified by a pair of branching matrices (D,K) defined in Section 3 that classifies vertices
and hyperedges in Tk,d into finitely many types (labels), where the incidence relation between
vertices and hyperedges with each type is specified by (D,K). We use TG

k,d to denote this
resulting labeled hypertree.

For a finite hypergraph H = (V,E), we also consider the classification of vertices V =⊎
i∈[τv] Vi and hyperedges E =

⊎
j∈[τe]Ej into disjoint types.

Given a hypergraph H and a vertex v in H, write Bt(v) = BH,t(v) for the t-neighborhood
around v in H, that is, the sub-hypergraph induced by the vertices in H at distance at
most t from v. For the labeled hypertree TG

k,d, since once the type of the root is fixed
the neighborhoods are identical (in terms of types), for each i ∈ [τv], we can denote
TG
k,d(t, i) = BT,t(v) where T = TG

k,d and v is any vertex in T of type-i.
The following definition is inspired by those of [31] and [4] for spin systems. Intuitively, a

sequence of finite structures locally resemble the infinite tree structure along with the suitable
symmetry which exhibits the uniqueness/nonuniqueness phase transition at the critical
threshold, so the measures on the sequence of finite structures may have local weak convergence
to that on the infinite tree. The existence of such local convergence profoundly leads to several
most important phase-transition-based inapproximability results [6, 26, 30, 31, 7, 9, 10] and
is a key to the success of random regular bipartite graph as a gadget for anti-ferromagnetic
spin systems.

I Definition 26 (local convergence). Let Hn = (Vn, En) be a sequence of random finite
hypergraphs, whose vertices Vn =

⊎
i∈[τv] Vn,i and hyperedges En =

⊎
j∈[τe]En,j are classified

into disjoint types, and for each i ∈ [τv], let In,i ∈ Vn,s denote a uniformly random vertex in
Vn of type-i.

We say the Hn converge locally to TG
k,d, and write Hn →loc TG

k,d, if for all t ≥ 0 and
i ∈ [τv], Bt(In,i) converges to TG

k,d(t, i) in distribution with respect to the joint law Pn of
(Hn, In,i): that is,

lim
n→∞

Pn
(
Bt(In,i) ∼= TG

k,d(t, i)
)

= 1,

where ∼= denotes isomorphism which preserves vertex- and hyperedge-types and the incidence
relation.

Consider the natural uniform random walk on the incidence graph of TG
k,d, and its

projection onto the finitely many disjoint orbits (types) for vertices and hyperedges, which
gives a (bipartite) finite Markov chain. It is quite amazing to see that the reversibility of
this projected chain determines whether there exists a sequence of finite hypergraphs that
converge locally to TG

k,d.

APPROX/RANDOM’16

46:26 Counting Hypergraph Matchings up to Uniqueness Threshold

I Theorem 27. Let G be an automorphism group of Tk,d with finitely many orbits for
vertices and hyperedges. Let D and K be the branching matrices that corresponds to G as
defined in Section 3. There is a sequence of random finite hypergraphs Hn →loc TG

k,d if and

only if the Markov chain P =
[

0 1
d+1D

1
k+1K 0

]
is time-reversible.

We say a uniform random walk over a hypergraph H is a uniform random walk on
the incidence graph of H: that is, a random walk moves between vertices and hyperedges.
Then the Markov chain P is the projection of the uniform random walk over Tk,d onto the
equivalent classes of vertices and hyperedges (i.e. the orbits of the automorphism group G

that corresponds to the D and K). Meanwhile, matrix
[

0 D

K 0

]
is the adjacent matrix for

a directed bipartite graph that describes the (weighted) incidence relation between vertex-
and hyperedge-types in the following way: each directed bipartite edge from vertex-type-i to
hyperedge-type-j (or vice versa) is assigned with weight dij (or kji). So the Markov chain P

is also the random walk on this directed bipartite graph where the transition probability of
each directed edge is proportional to its weight.

For the bipartite Markov chain P , recall that due to Proposition 11, P must be irreducible.
Then the time-reversibility of P is equivalent to the following: There exist positive vectors
~p = (pi)i∈[τv] and ~q = (qj)j∈[τe] that satisfy the bipartite detailed balanced equation:

pidij = qjkji

for every (i, j) ∈ [τv]× [τe]. Without loss of generality, we assume
∑
i pi +

∑
j qj = 1.

In fact, it is easy to check that ~pD = (k + 1)~q and ~qK = (d+ 1)~p, therefore the ~p and ~q
are respectively the left eigenvector of DK and KD both with eigenvalue (d+ 1)(k + 1).
Since both DK and KD are irreducible, due to the Perron-Frobenius theorem, the only
positive left eigenvectors ~p and ~q are the ones that are associated with the Perron-Frobenius
eigenvalue (d+ 1)(k + 1) and are one-dimensional.

Furthermore, it must holds that ||~p||1||~q||1 = k+1
d+1 . Denote ~p′ = ~p

‖~p‖1 and ~q′ = ~q
‖~q‖1 . We

have ‖~p′‖ = ‖~q′‖ = 1 and p′i
dij
d+1 = q′j

kji
k+1 for every (i, j) ∈ [τv] × [τe], i.e. ~p′ is the

vertex-stationary distribution and ~q′ is the edge-stationary distribution. We will mostly use ~p
and ~q in our proof of Theorem 27. Recall for the automorphism group Ĝ defined in Section 3
such that λc(TĜ

k,d) = λc(Tk,d) = dd

k(d−1)d+1 , i.e. the uniqueness of Ĝ-translation-invariant
Gibbs measures on Tk,d represents the uniqueness of all Gibbs measures on Tk,d, the branch-

ing matrices are given as D̂ =
[
1 d

d 1

]
and K̂ =

[
k 1
1 k

]
. It is easy to verify that the resulting

Markov chain P̂ is not time-reversible. It then follows from Theorem 27 that there does
not exist any sequence of random finite hypergraphs that converge locally to Tk,d with the
symmetry Ĝ assumed by the extremal Gibbs measures µ+, µ− whose uniqueness represents
the uniqueness of all Gibbs measures.
I Remark 28. Given branching matrices D and K, instead of considering Hn that converges
locally for every type to the TG

k,d as in Definition 26, we can alternatively define a sequence
Hn that converges locally in average to the TG

k,d: that is, for all t > 0, the Bt(In) converges to
TG
k,d(t, I) in distribution, where In denotes a uniformly random vertex in the finite hypergraph
Hn, and I denotes a random vertex-type chosen according to the vertex-stationary distribution
~p′. This definition looks more analogous to the local convergence defined in [31] for the anti-
ferromagnetic 2-spin system. But we will see the two definitions are equivalent: A sequence
Hn →loc TG

k,d also converges locally to TG
k,d in average, since by double counting the portion

R. Song, Y. Yin, and J. Zhao 46:27

of vertices of type-i must converge to p′i as n → ∞; and conversely, a sequence converges
locally to TG

k,d in average must also haveHn →loc TG
k,d, simply because neighborhoods of

vertices of different types cannot be isomorphic to each other.

Proof of Theorem 27. We will prove the necessity of the reversibility of the chain by a
double counting argument and the sufficiency is proved by explicitly constructing the sequence
of the finite hypergraphs.

Double counting

Let Hn = (Vn, En) where Vn =
⊎
s∈τv Vn,s and En =

⊎
t∈τe En,t. Assume that Hn →loc TG

k,d.
For TG

k,d such that there is a hypergraph sequence Hn = (Vn =
⊎
s∈τv Vn,s, En =⊎

t∈τe En,t) converging locally to TG
k,d, we show that the Markov chain P is time reversible.

The proof is by a double counting of the number of vertex-hyperedge pairs with specific type
combination.

Since the 1-neighborhood of the vertex with each type in Hn converges in distribution
to the 1-neighborhood of the vertex with the same type in TG

k,d, for sufficiently large n,
we have all but a o(1)-fraction of vertices in Hn whose local transitions between vertex-
types and hyperedge-types within 1-step are given precisely by D and K. Thus, for every
(i, j) ∈ [τv]× [τe], the total number of incident vertex-hyperedge pair (v, e) with v ∈ Vn,i and
e ∈ En,j (counted from the vertex-side and from the hyperedge-side) is given by

dij(|Vn,i|+ o(1)) = kji(|En,j |+ o(1)).

As n→∞, we will have (dij |Vn,i|)/(kji|En,j |)→ 1, or equivalently

|En,j |
|Vn,i|

→ dij
kji

for all (i, j) ∈ [τv] × [τe] such that dij , kji 6= 0. Thus there exists positive pi, qj such
that qj/pi = dij/kji for all such (i, j). Since DK and KD are irreducible, we have
unique corresponding positive left eigenvectors, which is (pi)i∈[τv], (qj)j∈[τe] here, such that
pidij = qjkji for all (i, j).

Construction of Hn

Assume the Markov chain P in Theorem 27 to be time-reversible, and let ~p = (pi)i∈[τv] and
~q = (qj)j∈[τe] be the unique positive vectors satisfying pidij = qjkji for every (i, j) ∈ [τv]× [τe]
and

∑
i pi +

∑
j qj = 1. The sequence of finite hypergraph sequence Hn that converges

locally to TK,D is constructed as follows. The number n is approximately the total number
of vertices and hyperedges in Hn (where the approximation is due to rounding).

For each s ∈ [τv] and t ∈ [τe], let Vn,s be the set of dpsne vertices of type s, and En,t
be the set of dqtne hyperedges of type t. We then describe hypergraphs Hn = (Vn, En)
where Vn =

⊎
s∈τv Vn,s and En =

⊎
t∈τe En,t.

For each s ∈ [τv] and t ∈ [τe], let Ns,t , ddstpsne = dktsqtne. Sample a uniformly
random permutation f : [Ns,t]→ [Ns,t], and create an incidence between the i-th vertex
in Vn,s and the j-th hyperedge in En,t for every (a, b = f(a)) with a ∈ i+ dpsneZ and
b ∈ j + dqtneZ.

Note that as normalized Perron eigenvectors for irreducible integer matrices, the ~p and
~q must be rational. Then there are infinitely many n such that Ns,t/|Vn,s| = dst and

APPROX/RANDOM’16

46:28 Counting Hypergraph Matchings up to Uniqueness Threshold

Ns,t/|En,t| = kts. Without loss of generality, we can consider only these n, since otherwise it
will contribute at most o(1)-fractions of bad neighborhoods.

Viewing multi-edges in the incidence graph of Hn as different edges, it holds that each
vertex of type-s is incident to exactly dst hyperedges of type-t and each hyperedge of type-t
is incident by exactly kts vertices of type-s. Therefore it is sufficient to show that for any
finite r > 0 the probability that the r-neighborhood of a vertex in Hn has no circle is 1 as
n → ∞, i.e. almost surely the r-neighborhood of a vertex in Hn is a hypertree. This can
be proved easily by a standard routine of Galton-Watson branching process (see e.g. Ch. 9
in [15]) since the neighborhood is of constant size and the probability of reencountering a
vertex or an edge from a population whose size goes to ∞ goes to 0. J

References
1 Mohsen Bayati, David Gamarnik, Dimitriy Katz, Chandra Nair, and Prasad Tetali. Simple

deterministic approximation algorithms for counting matchings. In Proceedings of the 39th
ACM Symposium on Theory of Computing (STOC), pages 122–127, 2007.

2 Ivona Bezakova, Andreas Galanis, Leslie Ann Goldberg, Heng Guo, and Daniel Stefankovic.
Counting independent sets in hypergraphs when strong spatial mixing fails. arXiv preprint
arXiv:1510.09193, 2015.

3 Magnus Bordewich, Martin Dyer, and Marek Karpinski. Path coupling using stopping
times and counting independent sets and colorings in hypergraphs. Random Structures &
Algorithms, 32(3):375–399, 2008.

4 Amir Dembo, Andrea Montanari, et al. Ising models on locally tree-like graphs. The Annals
of Applied Probability, 20(2):565–592, 2010.

5 Andrzej Dudek, Marek Karpinski, Andrzej Ruciński, and Edyta Szymańska. Approximate
counting of matchings in (3, 3)-hypergraphs. In SWAT, pages 380–391, 2014.

6 Martin Dyer, Leslie A Goldberg, and Mark Jerrum. Counting and sampling H-colourings.
In RANDOM, pages 51–67, 2002.

7 Andreas Galanis, Qi Ge, Daniel Štefankovič, Eric Vigoda, and Linji Yang. Improved in-
approximability results for counting independent sets in the hard-core model. Random
Structures & Algorithms, 45(1):78–110, 2014.

8 Andreas Galanis and Leslie Ann Goldberg. The complexity of approximately counting in 2-
spin systems on k-uniform bounded-degree hypergraphs. arXiv preprint arXiv:1505.06146,
2015.

9 Andreas Galanis, Daniel Stefankovic, and Eric Vigoda. Inapproximability of the par-
tition function for the antiferromagnetic Ising and hard-core models. arXiv preprint
arXiv:1203.2226, 2012.

10 Andreas Galanis, Daniel Štefankovič, and Eric Vigoda. Inapproximability for antiferro-
magnetic spin systems in the tree non-uniqueness region. In Proceedings of the 46th ACM
Symposium on Theory of Computing (STOC), pages 823–831, 2014.

11 David Gamarnik and Dmitriy Katz. Correlation decay and deterministic FPTAS for count-
ing colorings of a graph. Journal of Discrete Algorithms, 12:29–47, 2012.

12 David Gamarnik, Dmitriy Katz, and Sidhant Misra. Strong spatial mixing of list coloring
of graphs. Random Structures & Algorithms, 2013.

13 Ole J Heilmann. Existence of phase transitions in certain lattice gases with repulsive
potential. Lettere Al Nuovo Cimento (1971–1985), 3(3):95–98, 1972.

14 Ole J Heilmann and Elliott H Lieb. Theory of monomer-dimer systems. Communications
in Mathematical Physics, 25(3):190–232, 1972.

15 Svante Janson, Tomasz Luczak, and Andrzej Rucinski. Random graphs, volume 45. John
Wiley & Sons, 2011.

R. Song, Y. Yin, and J. Zhao 46:29

16 Mark Jerrum and Alistair Sinclair. Approximating the permanent. SIAM Journal on
Computing, 18(6):1149–1178, 1989.

17 Marek Karpinski, Andrzej Rucinski, and Edyta Szymanska. Approximate counting of
matchings in sparse uniform hypergraphs. In Proceedings of the Workshop on Analytic
Algorithmics and Combinatorics (ANALCO), pages 72–79, 2013.

18 Frank P Kelly. Stochastic models of computer communication systems. Journal of the
Royal Statistical Society. Series B (Methodological), 47(3):379–395, 1985.

19 Liang Li, Pinyan Lu, and Yitong Yin. Approximate counting via correlation decay in
spin systems. In Proceedings of the 23rd ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 922–940, 2012.

20 Liang Li, Pinyan Lu, and Yitong Yin. Correlation decay up to uniqueness in spin systems.
In Proceedings of the 24th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
67–84, 2013.

21 Chengyu Lin, Jingcheng Liu, and Pinyan Lu. A simple FPTAS for counting edge covers.
In Proceedings of the 25th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
341–348, 2014.

22 Jingcheng Liu and Pinyan Lu. FPTAS for counting monotone CNF. In Proceedings of the
26th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1531–1548,
2015.

23 Pinyan Lu, Menghui Wang, and Chihao Zhang. FPTAS for weighted fibonacci gates and its
applications. In Proceedings of the 41st International Colloquium on Automata, Languages
and Programming (ICALP), pages 787–799, 2014.

24 Pinyan Lu, Kuan Yang, and Chihao Zhang. Fptas for hardcore and ising models on hyper-
graphs. arXiv preprint arXiv:1509.05494, 2015.

25 Pinyan Lu and Yitong Yin. Improved FPTAS for multi-spin systems. In RANDOM, pages
639–654, 2013.

26 Elchanan Mossel, Dror Weitz, and Nicholas Wormald. On the hardness of sampling in-
dependent sets beyond the tree threshold. Probability Theory and Related Fields, 143(3-
4):401–439, 2009.

27 Ricardo Restrepo, Jinwoo Shin, Prasad Tetali, Eric Vigoda, and Linji Yang. Improved
mixing condition on the grid for counting and sampling independent sets. Probability
Theory and Related Fields, 156(1-2):75–99, 2013.

28 Alistair Sinclair, Piyush Srivastava, and Marc Thurley. Approximation algorithms for two-
state anti-ferromagnetic spin systems on bounded degree graphs. Journal of Statistical
Physics, 155(4):666–686, 2014.

29 Alistair Sinclair, Piyush Srivastava, and Yitong Yin. Spatial mixing and approximation
algorithms for graphs with bounded connective constant. In Proceedings of the 54th IEEE
Symposium on Foundations of Computer Science (FOCS), pages 300–309, 2013.

30 Allan Sly. Computational transition at the uniqueness threshold. In Proceedings of the 51st
IEEE Symposium on Foundations of Computer Science (FOCS), pages 287–296, 2010.

31 Allan Sly, Nike Sun, et al. Counting in two-spin models on d-regular graphs. The Annals
of Probability, 42(6):2383–2416, 2014.

32 Frank Spitzer. Markov random fields on an infinite tree. The Annals of Probability, pages
387–398, 1975.

33 Dror Weitz. Combinatorial criteria for uniqueness of Gibbs measures. Random Structures
& Algorithms, 27(4):445–475, 2005.

34 Dror Weitz. Counting independent sets up to the tree threshold. In Proceedings of the 38th
ACM Symposium on Theory of Computing (STOC), pages 140–149, 2006.

APPROX/RANDOM’16

Sampling in Potts Model on Sparse Random
Graphs∗

Yitong Yin†1 and Chihao Zhang‡2

1 Nanjing University, Nanjing, China
yinyt@nju.edu.cn

2 Shanghai Jiao Tong University, Shanghai, China
chihao.zhang@gmail.com

Abstract
We study the problem of sampling almost uniform proper q-colorings in sparse Erdős-Rényi ran-
dom graphs G(n, d/n), a research initiated by Dyer, Flaxman, Frieze and Vigoda [2]. We obtain
a fully polynomial time almost uniform sampler (FPAUS) for the problem provided q > 3d + 4,
improving the current best bound q > 5.5d [6].

Our sampling algorithm works for more generalized models and broader family of sparse
graphs. It is an efficient sampler (in the same sense of FPAUS) for anti-ferromagnetic Potts
model with activity 0 ≤ β < 1 on G(n, d/n) provided q > 3(1 − β)d + 4. We further identify
a family of sparse graphs to which all these results can be extended. This family of graphs is
characterized by the notion of contraction function, which is a new measure of the average degree
in graphs.

1998 ACM Subject Classification F.2.2 Computations on Discrete Structures

Keywords and phrases Potts model, Sampling, Random Graph, Approximation Algorithm

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2016.47

1 Introduction

We study the problem of sampling almost uniform proper q-colorings in sparse Erdős-
Rényi random graphs G(n, d/n). A classic sampling problem is to sample proper q-colorings
of graphs with bounded maximum degree when q ≥ α∆ +β, where ∆ is the maximum degree.
There is a substantial body of works on the problem [16, 1, 25, 3, 20, 14, 15, 13, 4, 10, 19].
The best positive result for this fundamental problem is the MCMC sampler for q > 11

6 ∆ by
Vigoda [25], and the best lower bound is due to Galanis, Štefankovič and Vigoda [9], which
proved that the problem is intractable to solve when q < ∆, even restricted to triangle-free
∆-regular graphs. The critical threshold q = ∆ + 1 is of great significance because it is the
uniqueness threshold for the ∆-regular tree [18].

The studies of sampling proper q-colorings of graphs with bounded average degree, in
particular the Erdős-Rényi random graph G(n, d/n) with constant d, was initiated in the
seminal work of Dyer, Flaxman, Frieze and Vigoda [2], in which an algorithm was given
to solve the problem with q = Θ(log logn/ log log logn) colors, substantially fewer than the
maximum degree Θ(logn/ log logn) of the random graph. Several improvements have been

∗ This work was done in part while the authors were visiting the Simons Institute for the Theory of
Computing.

† Yitong Yin is supported in part by NSFC grants 61272081 and 61321491.
‡ Chihao Zhang is supported in part by NSFC grant 61373029.

© Yitong Yin and Chihao Zhang;
licensed under Creative Commons License CC-BY

Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RAN-
DOM 2016).
Editors: Klaus Jansen, Claire Matthieu, José D.P. Rolim, and Chris Umans; Article No. 47; pp. 47:1–47:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.47
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

47:2 Sampling in Potts Model on Sparse Random Graphs

done since then. A significant step was made by Efthymiou and Spirakis [8] and independently
by Mossel and Sly [21], in which the bound of q was improved to a constant f(d) which is a
large enough polynomial of d. Most recently, in a breakthrough by Efthymiou [6], an efficient
algorithm was given to solve the problem when q > 5.5d, in linear of average degree d.

In all aforementioned results, the algorithms are FPAUSes (fully polynomial-time almost
uniform samplers), meaning that for any ε > 0 the algorithms terminates in time polynomial
in n and 1/ε and returns a random proper q-coloring according to a distribution within total
variation distance ε from the uniform distribution over all proper q-colorings of the graph.
For a much weaker goal where the total variation distance ε is fixed, an elegant combinatorial
algorithm was given by Efthymiou [5, 7] to solve the problem for all q > d, approaching the
uniqueness threshold.

In this paper, we consider FPAUS for proper q-colorings of G(n, d/n) with constant d.
We give an algorithm which achieves an improved bound q > 3d+O(1).

I Theorem 1. For all sufficiently large constant d, all finite q > 3d+ 4, there is an FPAUS
for proper q-colorings of G ∼ G(n, d/n) whp.

The result is established in a more general context, namely the anti-ferromagnetic Potts
model. In the q-state Potts model with activity β, given a graph G = (V,E), a configuration
σ ∈ [q]V assigns each vertex v ∈ V one of the q colors from [q], and is assigned with the
weight

w(σ) =
∏
uv∈E

β1(σ(u)=σ(v)).

The Gibbs distribution over all configurations σ ∈ [q]V , denoted by µ = µq,β,G, is defined as
µ(σ) = w(σ)/Z where the normalizing factor Z =

∑
σ w(σ) is the partition function. When

0 ≤ β < 1, the model is anti-ferromagnetic, meaning that adjacent vertices favor disagreeing
colors. In particular, when β = 0 the Gibbs distribution is the uniform distribution over all
proper q-colorings of G. In [19], it was discovered that sampling from Potts model is tractable
for any q when 3(1 − β)∆ < β, and the lower bound in [9] shows that it is intractable to
sample in the anti-ferromagnetic Potts model on triangle-free ∆-regular graph for any even q
when q < (1− β)∆.

We give the following sampling algorithm for anti-ferromagnetic Potts model on sparse
random graphs.

I Theorem 2. For all sufficiently large constant d, all 0 ≤ β < 1 and q > 3(1−β)d+4, there
is an algorithm such that for G ∼ G(n, d/n) and any ε > 0, the algorithm terminates in time
polynomial in n and 1/ε and returns a random q-coloring of G, according to a distribution
within total variation distance ε from the Potts Gibbs distribution µq,β,G whp (with respect to
the law of G(n, d/n)).

In particular, when β = 0, the above algorithm is an FPAUS for proper q-colorings of
G ∼ G(n, d/n) for q > 3d+ 4. Theorem 1 is a special case of Theorem 2.

Our algorithm on graphs with bounded average degree asymptotically approaches the
lower bound in [9] in terms of maximum degree.

In fact, the algorithm in Theorem 2 works for any family of graphs characterized by
a particular contraction function. We introduce the notion of contraction function to
generalize the connective constant [24, 23], a notion of average degree extensively studied
in statistical physics. Therefore, the algorithm stated in Theorem 2 does not only work for
Erdős-Rényi random graph but also for families of sparse graphs with a proper notion of

Y. Yin and C. Zhang 47:3

bounded average degree. In particular, it holds for graphs with bounded maximum degree
∆ when q > 3(1 − β)∆ + 1, which also greatly improves the existing upper bounds for
anti-ferromagnetic Potts model on graphs with bounded maximum degree [10, 19]. The
definition of contraction function and the full statement of the main result with it are quite
technical. We defer them to Section 2.

1.1 Techniques

In most of the previous works [2, 8, 21, 6], the sampling algorithms were based on block
Glauber dynamics. For proper q-colorings, if the degree of a vertex is much higher than q,
then the standard Glauber dynamics will have torpid mixing around that vertex since the
color of that vertex will be frozen for most of the time. In previous works this was overcome
by using block dynamics, such that within a block the high-degree vertices are hidden in the
block’s “core”, which is separated from the block’s boundary by an intermediate “buffer” of
low-degree vertices. It is not hard to imagine that the construction of such blocks can be
quite complicated and the efficient construction of blocks crucially relies on the sparsity of
Erdős-Rényi random graph G(n, d/n).

In contrast, we use the correlation decay technique. This approach was introduced to
multi-spin models (e.g. colorings) in the seminal work of Gamarnik and Katz [10], in which
they gave an FPAUS for proper q-colorings when q > 2.844∆ where ∆ is the maximum
degree. This was later improved to q > 2.581∆ in [19], which remains to be the best bound
achieved by correlation-decay-based algorithms for proper q-colorings.

Our algorithm heavily relies on the computation tree recursion introduced in [10]. The
basic idea is simple: sampling with the estimations of marginal probabilities, which are
computed approximately by a proper truncation of the the computation tree recursion. With
correlation decay, the approximation is accurate enough so the algorithm is an FPAUS.
A complication here is that the degrees of vertices are unbounded. We overcome this by
introducing a computation tree in terms of blocks and establish the decay of correlation
between blocks.

The blocks in our algorithm can be constructed straightforwardly: they are just clusters
of high-degree vertices. Due to the simple and generic construction of blocks, our algorithm
may work for general families of graphs, and can be applied as a generic method for graphs
with a few high-degree vertices.

The idea of block correlation decay was introduced in our previous work [26] to establish
the correlation decay for proper q-colorings of G(n, d/n) for q > 2d + O(1), by a block
modification to another recursion of Gamarnik, Katz and Misra [11]. This recursion is
suitable for proving “correlation decay only” result. A drawback of the current approaches
based on correlation decay is that we do not know how to use this approach to get an
algorithm achieving a bound which is close to q > 2∆ +O(1), even on graphs with maximum
degree ∆. Sampling proper q-coloring in G(n, d/n) for q > 2d or smaller q may require
new understandings of correlation decay in multi-spin systems, or may have to use other
techniques such as Glauber dynamics.

2 Preliminary and statement of the main result

Let G = (V,E) be an undirected graph. For any subset S ⊆ V of vertices, let G[S] denote
the subgraph of G induced by S, and let ∂B = {u ∈ V \B | ∃w ∈ B, (u,w) ∈ E} denote the
vertex boundary of B. Given a vertex v in G, let distG (v, S) denote the minimum distance

APPROX/RANDOM’16

47:4 Sampling in Potts Model on Sparse Random Graphs

from v to any vertex u ∈ S in G. In case that S = {u} is a singleton, we write distG (v, u)
instead of distG (v, S).

Potts model

The anti-ferromagnetic Potts model is parameterized by an integer q ≥ 2 and an activity
parameter 0 ≤ β < 1. Each element of [q] represents a color or a state. Let G = (V,E) be a
graph. A configuration σ ∈ [q]Λ on a subset Λ ⊆ V of vertices assigns each vertex v in Λ one
of the q colors in [q]. In the Potts model on graph G, each configuration σ ∈ [q]V is assigned
a weight

wG(σ) = β#mon(σ),

where #mon(σ) = | {(u, v) ∈ E | σ(u) = σ(v)} | gives the number of monochromatic (undir-
ected) edges in the configuration σ.

The analysis of correlation decay introduces Potts model with boundary conditions. More
formally, we consider an instance of Potts model as a tuple Ω = (G,Λ, σ) where G = (V,E)
is an undirected graph, Λ ⊆ V is a subset of vertices in G and σ ∈ [q]Λ is a configuration on
Λ. Given such an instance Ω = (G,Λ, σ), the weight function wΩ assigns each configuration
π ∈ [q]V the weight wΩ(π) = wG(π) if π agrees with σ over all vertices in Λ, and wΩ(π) = 0 if
otherwise. An instance Ω is feasible if there exists a configuration on V with positive weight.
This gives rise to a natural probability distribution µ = µq,β,G, called Gibbs distribution, over
all configurations π ∈ [q]V for a feasible Potts instance:

µ(π) = PrΩ [c(V) = π] = wΩ(π)
Z(Ω) ,

where Z(Ω) =
∑
σ∈[q]V wΩ(σ) is the partition function. For a vertex v ∈ V and any color

x ∈ [q], we use PrΩ [c(v) = x] to denote the marginal probability that v is assigned color x by
a configuration sampled from the Gibbs distribution. Similarly, for a set S ⊆ V and π ∈ [q]S ,
we use PrΩ [c(S) = π] to denote the marginal probability that S is assigned configuration π
by a configuration sampled from the Gibbs distribution.

Block and sparsity

Fix any q ≥ 2 and 0 ≤ β < 1. Let Ω = (G,Λ, σ) be an instance of q-state Potts model with
activity β and v a vertex in G. We call v a low-degree vertex if degG(u) < q−1

1−β − 2, and
otherwise we call it a high-degree vertex.

I Definition 3 (permissive block). Let Ω = (G,Λ, σ) be a Potts instance where G = (V,E).
A vertex set B ⊆ V \ Λ is a permissive block in Ω if every boundary vertex u ∈ ∂B \ Λ is
a low-degree vertex. For any subset of vertices S ⊆ V \ Λ, we denote B(S) = BΩ(S) the
minimal permissive block containing S. We write B(v) = B(S) if S = {v} is a singleton.

I Definition 4. A family G of finite graphs is locally sparse if there exists a constant C > 0
such that for every G = (V,E) in the family and every path P in G of length ` we have
|B(P)| ≤ C(`+ log |V |).

SAW tree

Given a graph G = (V,E) and a vertex v ∈ V , a rooted tree T can be naturally constructed
from all self-avoiding walks starting from v in G as follows: Each vertex in T corresponds to

Y. Yin and C. Zhang 47:5

a self-avoiding walk (simple path in G) P = (v, v1, v2, . . . , vk) starting from v, whose children
correspond to all self-avoiding walks (v, v1, v2, . . . , vk, vk+1) in G extending P , and the root
of T corresponds to the trivial walk (v). The resulting tree, denoted by TSAW (G, v), is called
the self-avoiding walk (SAW) tree constructed from vertex v in graph G.

From this construction, every vertex in TSAW (G, v) can be naturally identified with the
vertex in V (many-to-one) at which the corresponding self-avoiding walk ends.

Contraction function

Given a vertex v in a locally finite graph G = (V,E), let SAW(v, `) denote the set of self-
avoiding walks in G of length ` starting at v. The following notion of connective constant of
families of finite graphs is introduced in [24].

I Definition 5 (connective constant [24, 23]). Let G be a family of finite graphs. The
connective constant of G is bounded by ∆ if there exists a positive constant C > 0 such that
for any graph G = (V,E) in G and any vertex v in G, we have |SAW(v, `)| ≤ nC∆` where
n = |V | for all ` ≥ 1.

Let δ : N→ R+ be a function. Given a vertex v in a locally finite graph G = (V,E), let

Eδ(v, `) :=
∑

(v,vi,...,v`)
∈SAW(v,`)

∏̀
i=1

δ(deg (vi)). (1)

I Definition 6 (contraction function). Let G be a family of finite graphs. The δ : N→ R+ is
a contraction function for G if there exist positive constants C > 0, γ < 1 such that for any
graph G = (V,E) in G and any vertex v in G, we have Eδ(v, `) < nCγ` where n = |V | for all
` ≥ 1.

It is easy to see that graph families G with constant contraction function δ(d) = 1
∆ are

precisely the families G of connective constant bounded strictly by ∆.

Statement of the main result

Now we are ready to state our main technical result.

I Theorem 7 (Main theorem). Let q ≥ 3 be an integer and 0 ≤ β < 1. Let G be a family of
finite graphs that satisfies the followings:

the following δ(·) is a contraction function for G:

δ(d) =
{ 2(1−β)
q−1−(1−β)d if d ≤ q−1

1−β − 2,
1 otherwise;

(2)

G is locally sparse;
(proper q-coloring) if β = 0, then G also needs to be q-colorable.

Then there is an FPTAS for computing the partition function Z(Ω) for every Ω = (G,Λ, σ)
with G ∈ G. Consequently, there is an algorithm such that for all G = (V,E) ∈ G, all ε > 0,
the algorithm terminates in time polynomial in n = |V | and 1/ε, and returns a random
σ ∈ [q]V according a distribution within total variation distance ε from the Potts Gibbs
distribution µq,β,G.

APPROX/RANDOM’16

47:6 Sampling in Potts Model on Sparse Random Graphs

3 The computation tree for blocks

In this section, we introduce recursions to compute the marginal probabilities on a vertex
and on a permissive block respectively.

When β = 0, the model becomes proper q-coloring, and the feasibility of a configuration
becomes an issue.

Let Ω = (G,Λ, σ), where G = (V,E) be a feasible instance of proper q-coloring. Recall
that an instance Ω = (G,Λ, σ) is feasible if there exists a proper q-coloring consistent with
σ. For a subset of vertices S ⊆ V \ Λ, a q-coloring π ∈ [q]S is (globally) feasible if it can be
extended to a proper q-coloring of G. A q-coloring π ∈ [q]S is locally feasible, if σ ∪ π is a
proper q-coloring in the subgraph G[Λ ∪ S] induced by Λ ∪ S.

I Proposition 8. Let Ω = (G,Λ, σ) where G = (V,E) be a feasible instance of proper
q-coloring, v ∈ V \ Λ be a vertex and π ∈ [q]B(v) be a locally feasible configuration. Then π
is also feasible.

Proof. Denote B = B(v). Fix a configuration η ∈ [q]V such that wΩ(η) > 0, this is possible
since Ω is feasible. We denote by η′ the restriction of η to V \ ((B ∪ ∂B) \ Λ), i.e., the set of
vertices that are either in Λ, or not in B ∪ ∂B.

Consider the configuration η = π ∪ η′ ∈ [q]V \(∂B\Λ), it can be extended to a configuration
ρ ∈ [q]V with wΩ(ρ) > 0 in a greedy fashion, since every vertex in ∂B \ Λ is of low-degree.
Thus ρ witness that π is feasible. J

With this proposition, we do not distinguish between local feasibility and feasibility of
configurations on permissive blocks. For a permissive block B, we use F(B) to denote the
set of feasible configuration. Note that when β > 0, the set F(B) is simply [q]B .

3.1 The recursion
Let Ω = (G,Λ, σ) where G = (V,E) be an instance of Potts model and v ∈ V \Λ be a vertex.
Let B = B(v) be the minimal permissive block containing v. Let δB = {uivi | i ∈ [m]}
be an enumeration of boundary edges of B where vi 6∈ B for every i ∈ [m]. In this
notation, more than one ui or vi may refer to the same vertex. We denote E(B) :=
{uv ∈ E | u, v ∈ B} the edges in B. We use B̄ to denote the inner boundary of B, i.e.,
B̄ = {u ∈ B | uv ∈ E and v 6∈ B}.

Recall that we use F(B) to denote the set of feasible configurations on a permissive block
B, it is easy to see that, for every x ∈ [q],

PrΩ [c(v) = x] =
∑

π∈F(B):
π(v)=x

PrΩ [c(B) = π] .

This identity relates the marginal probability on a vertex to marginal probabilities on a block.
We now define notations for some sub-instances and give a block-to-vertices identity.

Let π ∈ F(B) be a configuration on a permissive block B. For every i ∈ [m], denote
πi = π(ui). Let GB = (VB , EB) denote the graph obtained from G by removing B \ B̄ and
edges in E(B), i.e., V ′ = (V \ B) ∪ B̄, E′ = E \ E(B). Let ΩB = (GB ,Λ, σ). For every
i = 1, 2, . . . ,m+ 1, define Ωπi = (Gπi ,Λπi , σπi) as the instance obtained from ΩB by fixing uj
to color πj for every j ∈ [i− 1] and by removing edges ujvj for every j = i, i+ 1, . . . ,m.

Y. Yin and C. Zhang 47:7

I Lemma 9. Assuming above notations, it holds that

PrΩ [c(B) = π] =
wG[B](π) ·

∏m
i=1
(
1− (1− β)PrΩπ

i
[c(vi) = πi]

)
∑
ρ∈F(B) wG[B](ρ) ·

∏m
i=1

(
1− (1− β)PrΩρ

i
[c(vi) = ρi]

) . (3)

Proof.

PrΩ [c(B) = π] =
wG[B](π) · Z(Ωπm+1)∑

ρ∈F(B) wG[B](ρ) · Z(Ωρm+1) =
wG[B](π) · Z(Ωπm+1)

Z(Ωπ1)∑
ρ∈F(B) wG[B](ρ) · Z(Ωρm+1)

Z(Ωρ1)

=
wG[B](π) ·

∏m
i=1

Z(Ωπi+1)
Z(Ωπ

i
)∑

ρ∈F(B) wG[B](ρ) ·
∏m
i=1

Z(Ωρ
i+1)

Z(Ωρ
i
)

.

Since for every ρ ∈ F(B) and i ∈ [d],

Z(Ωρi+1) =
∑
y∈[q]

Z (Ωρi | c(vi) = y) · β1(y=ρ(ui))

where Z (Ωρi | c(vi) = y) stands for the sum of the weights of all feasible configurations σ on
Ωρi satisfying σ(vi) = y and 1(·) is the indicator function. With this identity, we can further
write

PrΩ [c(B) = π] =
wG[B](π) ·

∏m
i=1

∑
y∈[q]

Z(Ωπi | c(vi)=y)·β1(y=π(ui))

Z(Ωπ
i

)∑
ρ∈F(B) wG[B](ρ) ·

∏m
i=1

∑
y∈[q]

Z(Ωρ
i | c(vi)=y)·β1(y=ρ(ui))

Z(Ωρ
i
)

=
wG[B](π) ·

∏m
i=1
(
1− (1− β)PrΩπ

i
[c(vi) = πi]

)
∑
ρ∈F(B) wG[B](ρ) ·

∏m
i=1

(
1− (1− β)PrΩρ

i
[c(vi) = ρi]

) . J

This identity expresses the marginal probability on a permissive block as the function of
marginal probabilities on its incident vertices, with modified instances. We now analyze the
derivatives of this function, which is important in the analysis of correlation decay.

I Lemma 10. Let p = (pi,ρ)i∈[m],ρ∈F(B) , p̂ = (p̂i,ρ)i∈[m],ρ∈F(B) be two tuples of variables
and

f(p) :=
wG[B](π)

∏m
i=1 (1− (1− β)pi,π)∑

ρ∈F(B) wG[B](ρ)
∏m
i=1 (1− (1− β)pi,ρ)

.

Assume for every i ∈ [m], ρ ∈ F(B(v)), pi,ρ, p̂i,ρ ≤ 1−β
q−(1−β)di , then

|log f(p)− log f(p̂)| ≤
∑
i∈[d]

2(1− β)
q − (1− β)di − 1 · max

ρ∈F(B(v))
|log pi,ρ − log p̂i,ρ| .

Proof. For every i ∈ [m], we have

∂f

∂pi,π
= −(1− β)f(1− f) · 1

1− (1− β)pi,π
.

For every i ∈ [m] and ρ 6= π, we have

∂f

∂pi,ρ
= (1− β)f ·

wG[B](ρ)
∏m
i=1(1− (1− β)pi,ρ)∑

σ∈F(B) wG[B](σ)
∏m
i=1(1− (1− β)pi,σ)

· 1
1− (1− β)pi,ρ

.

APPROX/RANDOM’16

47:8 Sampling in Potts Model on Sparse Random Graphs

Thus,∑
ρ∈F(B)
ρ 6=π

∂f

∂pi,ρ
≤ (1− β)f(1− f) · max

ρ∈F(B)
ρ 6=π

1
1− (1− β)pi,ρ

.

Let Φ = 1
x , by mean value theorem, for some p̃ = (p̃i,ρ)i∈[m],ρ∈F(B(v)) where each p̃i,ρ ≤

1−β
q−(1−β)di , we have

|log f(p)− log f(p̂)|

=
∑
i∈[m]

∑
ρ∈F(B)

(
Φ(f)

Φ(pi,ρ)

∣∣∣∣ ∂f∂pi,ρ

∣∣∣∣)∣∣∣∣
p=p̃
· |log pi,ρ − log p̂i,ρ|

≤
∑
i∈[m]

 Φ(f)
Φ(pi,π)

∣∣∣∣ ∂f∂pi,π

∣∣∣∣+
∑

ρ∈F(B)
ρ 6=π

Φ(f)
Φ(pi,ρ)

∣∣∣∣ ∂f∂pi,ρ

∣∣∣∣

∣∣∣∣∣∣∣∣
p=p̃

· max
ρ∈F(B(v))

|log pi,ρ − log p̂i,ρ|

≤
∑
i∈[m]

(1− β)

 pi,π
1− (1− β)pi,π

+ max
ρ∈F(B)
ρ 6=π

pi,ρ
1− (1− β)pi,ρ

∣∣∣∣∣∣
p=p̃

· max
ρ∈F(B(v))

|log pi,ρ − log p̂i,ρ|

≤
∑
i∈[m]

2(1− β)
q − (1− β)di − (1− β) · max

ρ∈F(B(v))
|log pi,ρ − log p̂i,ρ| . J

3.2 Bounds for marginals
The following lemma gives an upper bound for the probability PrΩ [c(v) = x].

I Lemma 11. Assume q > (1− β)d. For every color x ∈ [q], it holds that

PrΩ [c(v) = x] ≤ 1
q − (1− β)d ,

where d is the degree of v in G.

Proof. Assume x = 1. For every i ∈ [q], let xi denote the number of neighbors of v that are
of color i. Then pv,1 ≤ max βx1∑

i∈[q]
βxi

subject to the constraints that all xi are nonnegative

integers and
∑q
i=1 xi = d. Since β ≤ 1, we can assume x1 = 0, thus pv,1 ≤ max 1

1+
∑q

i=2
βxi

.
We now distinguish between two cases:
1. (If d ≥ q − 1) In this case, let λ = 1− β, then

1
1 +

∑q
i=2 β

xi
≤ 1

1 + (q − 1)(1− λ)
d
q−1

♥
≤ 1

1 + (q − 1)
(

1− λd
q−1

) = 1
q − (1− β)d ,

where ♥ is due to the fact that the inequality (1 − a)b ≥ 1 − ab holds when 0 ≤ a ≤ 1
and b ≥ 1.

2. (If d < q − 1) In this case, due to the integral constraint of xi’s, the term
∑q
i=2 β

xi

minimizes when d of xi’s are set to one and remaining xi’s are set to zero. Therefore, we
have

1
1 +

∑q
i=2 β

xi
≤ 1

1 + dβ + (q − 1− d) = 1
q − (1− β)d , J

Y. Yin and C. Zhang 47:9

Algorithm 1: marg(Ω, v, x, `)
1 If v is fixed to be color y, then return 1 if x = y and return 0 if x 6= y;
2 If ` < 0 return 1/q;
3 Compute B(v);
4 For every ρ ∈ F(B(v)), let p̂ρ ← marg-block(Ω, B(v), ρ, `);

5 Return min
{∑

π∈F(B(v))
s.t. π(v)=x

p̂π,
1

max{1,q−(1−β)degG(v)}

}

Algorithm 2: marg-block(Ω, B(v), π, `)
1 Compute Pi for every i ∈ [m];
2 p̂i,ρ ← marg(Ωρi , vi, ρi, `− |Pi|) for every i ∈ [m] and ρ ∈ F(B);

3 Return
wG[B](π)

∏
i∈[m]

(1−(1−β)p̂i,π)∑
ρ∈F(B)

wG[B](ρ)
∏

i∈[m]
(1−(1−β)p̂i,ρ)

;

The recursion (3) holds for arbitrary set of vertices B (not necessary a permissive block),
thus if one takes B as a single vertex, it implies the following simple lower bound for marginal
probabilities on a vertex.

I Lemma 12. For every feasible x ∈ [q], it holds that

PrΩ [c(v) = x] ≥ βd

q
,

where d is the degree of v in G.

3.3 The algorithm

We now implement the recursions introduced in previous sections to estimate marginals.
There is a slight difference between the case of β > 0 and the case of β = 0. If β = 0,
our algorithm may encounter an infeasible instance and we need to check the feasibility in
advance.

The β > 0 case

We define two procedures marg(Ω, v, x, `) and marg-block(Ω, B(v), π, `) calling each other to
estimate vertex and block marginal respectively. We assume Ω = (G,Λ, σ) with G = (V,E) is
an instance of Potts model, v ∈ V \Λ is a vertex, x ∈ [q] is a color and ` is an integer. Recall
that for a permissive block B(v), we use F(B) to denote the set of feasible configurations
over B(v).

To describe the algorithm for estimating the block marginals, we need to introduce some
notations. Let B = B(v), and we enumerate the boundary edges in δB by ei = uivi for
i = 1, 2, . . . ,m, where vi 6∈ B. With this notation more than one ui or vi may refer to the
same vertex, which is fine. For every i ∈ [m] and ρ ∈ F(B), define ΩB and Ωρi as in Lemma 9.

Let Pi = (v, w1, w2, . . . , wk, vi) be a self-avoiding walk from v to vi such that all interme-
diate vertices wi are in B(v). Since B(v) is a minimal permissive block, such walk always
exists, and let Pi be an arbitrary one of them if there are multiple ones.

APPROX/RANDOM’16

47:10 Sampling in Potts Model on Sparse Random Graphs

Algorithm 3: marg(Ω, v, x, `)
1 If v is fixed to be color y, then return 1 if x = y and return 0 if x 6= y;
2 Compute B(v);
3 If ` < 0, then return 1/q if there is a feasible π ∈ F(B(v)) such that π(v) = x and

return 0 if no such π exists;
4 For every ρ ∈ F(B(v)), let p̂ρ ← marg-block(Ω, B(v), ρ, `);

5 Return min
{∑

π∈F(B(v))
s.t. π(v)=x

p̂π,
1

max{1,q−(1−β)degG(v)}

}

The β = 0 case

We slightly modify our procedure to deal with infeasible instance. Let Ω = (G,Λ, σ) be an
instance of Potts model with q ≥ 3 and activity β = 0 where G = (V,E), v ∈ V \ Λ be a
vertex, x ∈ [q] be a color and ` be an integer. We define

The only difference of this version of marg is at step 3, where we check whether the color
x is locally feasible. We return 1/q if so and return 0 otherwise.

4 Correlation decay

In this section, we show that the algorithms introduced in Section 3 to estimate marginals are
accurate, if the input instance satisfies the conditions specified in the statement of Theorem 7.

I Lemma 13. Let q ≥ 3 be an integer and 0 ≤ β < 1 be a real. Let G be a family of finite
graphs satisfying the conditions of Theorem 7.

There exists an algorithm such that for every feasible instance Ω = (G,Λ, σ) of Potts
model where G = (V,E) ∈ G with |V | = n, Λ ⊆ V and σ ∈ [q]Λ, for every vertex v ∈ V and
every color x ∈ [q], it can compute an estimation p̂ of PrΩ [c(v) = x] in time polynomial in
n, such that

1−O
(

1
n3

)
≤ p̂

PrΩ [c(v) = x] ≤ 1 +O

(
1
n3

)
.

To prove Lemma 13, we introduce the notion of error function to relate contraction
function and the accurate of our estimation algorithm.

I Definition 14. Given an instance Ω = (G,Λ, σ) of Potts model with q ≥ 3 and activity
0 ≤ β < 1 where G = (V,E) with |V | = n. Let v ∈ V \ Λ be a vertex, T = TSAW (G[V], v)
be the self-avoiding walk tree rooted at v in G and S be a set of vertices in T . Assume v has
m children v1, v2, . . . , vm in T , let Ti denote the subtree of T rooted at vi. We recursively
define the error function:

Case β > 0:

ET,S :=

∑m
i=1 δ(degG (vi)) · ETi,S if v 6∈ S ∪ Λ,

q + n log 1
β if v ∈ S,

0 if v ∈ Λ.

Case β = 0:

ET,S :=

∑m
i=1 δ(degG (vi)) · ETi,S if v 6∈ S ∪ Λ,

n log q if v ∈ S,
0 if v ∈ Λ.

Y. Yin and C. Zhang 47:11

In the above definition, the set S specifies the boundary of our recursively defined error
function ET,S . The error function ET,S will be used as an upper bound for the error in our
estimation algorithm. If the function δ(·) is a contraction for a family G, then for every graph
G = (V,E) ∈ G and vertex v ∈ V , as we shall show in the next lemma, there exists a set of
low-degree vertices in TSAW (G, v) at certain depth. This set of vertices, as it will become
clear later, serves as the boundary S in our computation tree.

I Lemma 15. Let G be a family of finite graphs for which δ(·) is a contraction function.
Then for some constants θ > 1 and C > 0, for every G = (V,E) ∈ G with |V | = n, every
v ∈ V and every L ≥ C logn, there exists a low-degree S in T = TSAW (G, v) such that for
every u ∈ S, L < distT (u, v) ≤ θL and every self-avoiding walk in T from v of length θL
intersects S.

Proof. Let G = (V,E) ∈ G be a graph. It follows from the definition of contraction function
that for some constant C > 0, for every ` ≥ C logn, Eδ(v, `) < α` for some constant
0 < α < 1.

It is sufficient to show that, for some constant integer θ > 0 it holds that for every v ∈ V ,
every L ≥ C logn, every P = (v, v1, . . . , vθL) ∈ SAW(v, θL), there exists a low-degree vertex
vj among {vL+1, vθL, . . . , vθL}.

Let θ = max
{
dlog1/α

(
q−1

2(1−β)

)
e, 2
}
. Assume for the contradiction that every vertex in

{vL+1, vL+2, . . . , vθL} has high-degree. Since θL > L ≥ C logn, we have
∏θL
i=1 δ(deg (vi)) ≤

αθL.
On the other hand, since δ(d) ≥ δ(0) = 2(1−β)

q−1 , we have
∏θL
i=1 δ(deg (vi)) ≥

(
2(1−β)
q−1

)L
.

This is a contradiction for our choice of θ. J

We now define the error of our estimation.

I Definition 16. Let Ω = (G,Λ, σ) with G = (V,E) be an instance of Potts model, v ∈ V \Λ
be a vertex, x ∈ [q] be a color and ` ∈ Z be an integer. Let p̂Ω,v,x,` := marg(Ω, v, x, `) be the
value returned by our algorithm. We define

EΩ,v,` := max
y∈[q]

log
(

p̂Ω,v,y,`

PrΩ [c(v) = y]

)
with the convention 0/0 = 1.

Let Ω = (G,Λ, σ) with G = (V,E) be an instance of Potts model, v ∈ V \ Λ be a vertex,
x ∈ [q] be a color and ` ∈ Z be an integer. We can recursively identify each vertex in the
computation tree of marg(Ω, v, x, `) with a subtree of T = TSAW (G, v):

the root of the computation tree is identified with the root of T , i.e., the single vertex
path (v);
assuming the notations used in the description of Algorithm 2, if marg(Ω, v, x, `) is
identified with a subtree of T rooted at self-avoiding walk P , then for every ρ ∈ F(B(v))
and i ∈ [m], the routine marg(Ωρi , vi, ρi, `− Pi) is identified with the subtree of T rooted
at the concatenation of P and Pi.

With this property, the following lemma relates our error of estimation to the error
function defined before.

I Lemma 17. Let Ω = (G,Λ, σ) with G = (V,E) be an instance of Potts model, v ∈ V \ Λ
be a vertex, x ∈ [q] be a color and ` ∈ Z be an integer.

APPROX/RANDOM’16

47:12 Sampling in Potts Model on Sparse Random Graphs

Let S denote the set of vertices in T that can be identified to the leaves of the computation
tree of marg (Ω, v, x, `). Let T = TSAW (G, v), then we have

EΩ,v,` ≤ ET,S .

The key to prove Lemma 17 is to establish the one-step contraction of EΩ,v,`, as stated in
the following lemma:

I Lemma 18. Let Ω = (G,Λ, σ) with G = (V,E) be an instance of Potts model, v ∈ V \Λ be
a vertex and ` ∈ Z be an integer. Let B = B(v) the minimal permissive block in G containing
v. Assume the edge boundary δB = {uivi | i ∈ [m]} where vi 6∈ B.

Then it holds that

EΩ,v,` ≤
m∑
i=1

1− β
q − 1− (1− β)degG (vi)

· max
ρ∈F(B)

EΩρ
i
,vi,`i

where Ωρ
i is defined in Section 3 and `i = ` − |Pi| for the self-avoiding walk Pi chosen in

Algorithm 2.

Proof. Let π ∈ F(B) be a coloring of the block B. We use p̂Ω,B,π,` = marg-block (Ω, B, π, `)
to denote the value return by our estimation algorithm for block marginals. Let x denote
the color that achieves the maximum in the definition of EΩ,v,`, we have

EΩ,v,` = log
(

p̂Ω,v,x,`

PrΩ [c(v) = x]

)
≤ log

∑

π∈F(B)
s.t. π(v)=x

p̂Ω,B,π,`∑
π∈F(B)

s.t. π(v)=x
PrΩ [c(B) = π]

≤ max

π∈F(B)
s.t. π(v)=x

log
(

p̂Ω,B,π,`

PrΩ [c(B) = π]

)
.

By our algorithm, all the marginals in the recursion satisfies the upper bound in Lemma 11,
it then follows from Lemma 10 that for every π ∈ F(B), it holds that

log
(

p̂Ω,B,π,`

PrΩ [c(B) = π]

)
≤

m∑
i=1

2(1− β)
q − (1− β)degG (vi)− 1 · max

ρ∈F(B)
EΩρ

i
,vi,`i . J

We can use Lemma 18 to prove Lemma 17.

Proof of Lemma 17. We apply induction on T := TSAW (G, v). The base case is that v ∈ Λ
or v ∈ S. If v ∈ S and β > 0, then by Lemma 11 and Lemma 12, it holds that

EΩ,v,` = max
y∈[q]

log
(

p̂Ω,v,y,`

PrΩ [c(v) = y]

)
≤ q + n log 1

β
.

If v ∈ S and β = 0, by Proposition 8 and Lemma 11, we have

EΩ,v,` = max
y∈[q]

log
(

p̂Ω,v,y,`

PrΩ [c(v) = y]

)
≤ n log q.

If v ∈ Λ, then EΩ,v,` = 0.
Now assume v 6∈ S ∪ Λ and denote B = B(v) the minimal permissive block containing v.

Assume the edge boundary δB = {uivi | ui ∈ B}.

Y. Yin and C. Zhang 47:13

It then follows from Lemma 18 that

EΩ,v,` ≤
m∑
i=1

1− β
q − 1− (1− β)degG (vi)

· max
ρ∈F(B)

EΩρ
i
,vi,`i .

Recall for every i ∈ [m], we define in Algorithm 2 a self-avoiding walk Pi containing uivi
with every intermediate vertices in B. For every u ∈ Pi such that u 6= v, vi, it holds that
δ(degG (u)) = 1). With this property, if we use Ti to denote the subtree of T rooted at Pi,
then

m∑
i=1

1− β
q − q − (1− β)degG (vi)

· ETi,S ≤ ET,S .

We can then complete the proof by using induction hypothesis to show

EΩρ
i
,vi,`i ≤ ETi,S

for every i ∈ [m] and ρ ∈ F(B). J

We are now ready to prove the main lemma of this section.

Proof of Lemma 13
We can assume v 6∈ Λ, otherwise, the color on v is fixed by σ.

Let T := TSAW (G, v). For every `, let S` denote the set of vertices at which the procedure
marg(Ω, v, x, `) terminates. Then it follows Lemma 17,

log
(

p̂Ω,v,x,`

PrΩ [c(v) = x]

)
≤ EΩ,v,` ≤ ET,S` .

Note that distT (v, S`) ≥ `, since δ(·) is a contraction function for G, we have ET,S` ≤ nCγ`
for some constants C > 0 and 0 < γ < 1. This implies that for some constant C0 > 0, if
` ≥ C0 logn, then

1−O
(

1
n3

)
≤ p̂Ω,v,x,`

PrΩ [c(v) = x] ≤ 1 +O

(
1
n3

)
.

To bound the running time of marg(Ω, v, x, `), we can apply Lemma 15 to conclude that if
` = Θ(logn), then the algorithm must terminate at depth L = Θ(logn) of T , i.e., for every
u ∈ S`, it holds that distT (v, u) ≤ L.

We use T` to denote the subtree of T obtained by removing all descendants of S` and
let L(T`) to denote the set of self-avoiding walks corresponding to leaves of T`. Let τΩ,v,`
to denote the maximum running time of marg(Ω, v, x, `) over all colorings x ∈ [q], we apply
induction on T` to show that for some C1 > 0, it holds that

τΩ,v,` ≤ nC1 ·
∑

P∈L(T`)

q2|B(P)|. (4)

The base case is that v ∈ S` or v ∈ Λ and our bound for running time trivially holds.
Otherwise, denote B = BΩ(v) the minimal permissive block containing v. Assume the edge
boundary δB = {uivi | ui ∈ B}. We have for some constant C2 > 0, it holds that

τΩ,v,` ≤ q|BΩ(v)|nC2 + q|BΩ(v)|
m∑
i=1

max
ρ∈F(B(v))

τΩρ
i
,vi,`i (5)

APPROX/RANDOM’16

47:14 Sampling in Potts Model on Sparse Random Graphs

Recall that Pi is a self-avoiding walk from v to vi containing ui with every intermediate
vertex in B. Let Ti denote the subtree of T rooted at Pi. Then we can apply induction
hypothesis to obtain

τΩρ
i
,vi,`i ≤ n

C1 ·
∑

P∈L(T`i)

q
2
∣∣∣BΩρ

i
(P)
∣∣∣

(6)

for every ρ ∈ F(B) and i ∈ [m]. Furthermore, by our construction of Ωρi and the definition
of permissive block, we have |BΩ(v)|+

∣∣∣BΩρ
i
(vi)

∣∣∣ ≤ ∣∣∣BΩ(v) ∪BΩρ
i
(vi)(vi)

∣∣∣ for every ρ ∈ F(B)
and i ∈ [m]. Plugging (6) into (5) proves (4).

Since G is locally sparse, we know that the term q2|B(P)| is bounded by a polynomial in
n for every P ∈ L(T`). It remains to show that |L(T`)| is bounded by a polynomial in n. To
see this, consider the contribution of a walk P in L(T`) of length k to the quantity Eδ(v, k)
defined in (1). The contribution of this walk is at least 1

poly(n) since k = O(logn) and for
every u ∈ P , the value δ(u) is bounded below by a constant. It then follows from the fact
that δ(·) is a contraction function for G, there are at most polynomial many leaves in T` for
our choice of `.

5 The FPTAS and the sampling algorithm

In this section, we prove Theorem 7, by using the correlation decay property established in
Section 4.

Proof of Theorem 7. Let Ω = (G,∅,∅) be an instance of Potts model, where G = (V,E) ∈
G. Without loss of generality, we give an algorithm to compute an approximation of the
partition function Ẑ(Ω) satisfying

1−O
(

1
n2

)
≤ Ẑ(Ω)
Z(Ω) ≤ 1 +O

(
1
n2

)
.

Since our family of instances of Potts model is “self-embeddable” in the sense of [22], the
algorithm can be boosted into an FPTAS.

Assume V = {v1, . . . , vn}. First find a configuration σ ∈ [q]V such that wG(σ) > 0.
This task is trivial when β > 0. When β = 0, since G is q-colorable, we can also do it in
polynomial time:

If the graph is not empty, then choose a vertex v and find a feasible coloring of B(v).
Then remove B(v) from the graph and repeat the process.

If G is q-colorable, then G[V \B(v)] is colorable as the boundary of B(v) consists of low-degree
vertices, thus the above process will end with a proper coloring of G, which is the union of
colorings found at each step. The process terminates in polynomial time since G is locally
sparse and thus the size of every B(v) is O(logn).

With σ in hand, we have

Z(Ω) = wG(σ)/PrΩ [c(V) = σ] = wG(σ)
(

PrΩ

[
n∧
i=1

c(vi) = σ(vi)
])−1

= wG(σ)

 n∏
i=1

PrΩ

c(vi) = σ(vi)

∣∣∣∣∣∣
i−1∧
j=1

c(vj) = σ(vj)

−1

Y. Yin and C. Zhang 47:15

For every i ∈ [n], let Ωi = (G,Λi, σi) where Λi = {v1, . . . , vi−1} and σi(vj) = σ(vj) for every
j = 1, . . . , i− 1. We have

Z(Ω) = wG(σ)
(

n∏
i=1

PrΩi [c(vi) = σ(vi)]
)−1

.

Note that the graph class G is closed under the operation of fixing some vertex to a specific
color, we can apply Lemma 13 for every Ωi and obtain p̂i such that

1−O
(

1
n3

)
≤ p̂i

PrΩi [c(vi) = σ(vi)]
≤ 1 +O

(
1
n3

)
.

Let Ẑ(Ω) = wG(σ) (
∏n
i=1 p̂i)

−1, then Theorem 13 implies that

1−O
(

1
n2

)
≤ Ẑ(Ω)
Z(Ω) ≤ 1 +O

(
1
n2

)
.

This approximate counting algorithm implies a sampling algorithm via Jerrum-Valiant-
Vazirani reduction[17]. J

6 Random Graphs

In this section, we prove Theorem 2. We first prove the following properties of G(n, d/n).

I Theorem 19. Let d be a sufficiently large constant, q > 3(1− β)d+ 4 and G = (V,E) ∼
G(n, d/n). Then with probability 1− o(1), the following holds

there exist two universal positive constants C > 0, γ < 1 such that Eδ(v, `) < nCγ` for all
v ∈ V and for all ` = o(

√
n), where Eδ(v, `) is defined in (1);

if β = 0, then G is q-colorable;
there exists a universal constant C > 0 such that for every path P in G of length `,
|B(P)| ≤ C(`+ logn).

Note that the first property in above theorem impose an upper bound on `. This is
not harmful as our algorithms for FPTAS and sampling only require the property holds for
` = O(logn). Thus Theorem 19 and Theorem 7 together imply Theorem 2.

It is well-known that when β = 0, G is q-colorable with high probability (see e.g., [12]),
we verify the first property in Lemma 20 and the third property in Lemma 22.

6.1 Contraction function for random graphs
I Lemma 20. Let d > 1, 0 ≤ β < 1 and q > 3(1− β)d+ 4 be constants. Let G = (V,E) ∼
G(n, d/n). There exist two positive constants C > 0 and γ < 1 such that with probability
1−O

(1
n

)
, for every v ∈ V and every ` = o(

√
n), it holds that

Eδ(v, `) ≤ nCγ`

We first prove a technical lemma.

I Lemma 21. Let 0 ≤ β < 1 be a constant. Let fq(d) : R≥0 → R≥0 be a piece wise function
defined as

fq(d) :=
{ 2(1−β)
q−1−(1−β)d if d ≤ q−1

1−β − 2
1 otherwise.

APPROX/RANDOM’16

47:16 Sampling in Potts Model on Sparse Random Graphs

Let X be a random variable distributed according to binomial distribution Bin(n, ∆
n) where

∆ > 1 is a constant. Then for q ≥ 3(1− β)∆ + 2 and all sufficiently large n, it holds that
E [fq(X)] < 1

∆ .

Proof. Let λ = 1− β. Since f(d) is decreasing in q, we can assume q = 3λ∆ + 2. Note that

E
d∼Bin(n,∆n)

[f(d)] ≤ 1
∆ ⇐⇒ E

d∼Bin(n,∆n)
[1− f(d)] ≥ ∆− 1

∆ .

Let g(x) := 1− f(x), then

E
d∼Bin(n,∆n)

[1− f(d)] =
b q−1
λ −2c∑
k=0

g(k) · p(k)

where p(k) =
(
n
k

) (∆
n

)k (1− ∆
n

)n−k.
Define

g̃(x) := 1− 2λ
q − 1− λ∆ −

2λ2(x−∆)
(q − 1− λ∆)2 −

2λ3(x−∆)2

(q − 1− λ∆)3 −
2λ4(x−∆)3

(q − 1− λ∆)4

− 2λ5(x−∆)4

(q − 1− λ∆)5 −
2λ6(x−∆)5

(q − 1− λ∆)6 −
2λ6(x−∆)6

(q − 1− λ∆)6 .

Then

g(x)− g̃(x) = 2λ6(q − 1− λ− xλ)(x−∆)6

(q − 1− xλ)(q − 1− λ∆)6 ,

which is positive for x ≤ b q−1
λ − 2c.

We now prove that

b q−1
λ −2c∑
k=0

g̃(k) · p(k) ≥ ∆− 1
∆ .

The expectation of g̃(k) can be computed directly:

E [g̃(k)] = 1
n5(q − 1− λ∆)6 ·

(
C5n

5 + C4n
4 ±O(n3)

)
,

where

C5 = 1− 2λ+ (12λ− 20λ2 − 2λ3 − 2λ4 − 2λ5 − 4λ6)∆
+ (60λ2 − 80λ3 − 12λ4 − 14λ5 − 74λ6)∆2 + (160λ3 − 160λ4 − 24λ5 − 50λ6)∆3

+ (240λ4 − 160λ5 − 16λ6)∆4 + (192λ5 − 64λ6)∆5 + 64λ6∆6;
C4 = 2λ3(1 + 3λ+ 7λ2 + 46λ3)∆2 + 2λ3(6λ+ 18λ2 + 234λ3)∆3

+ 2λ3(12λ2 + 69λ3)∆4 + 16λ6∆5.

Since C4 > 0, thus for sufficiently large n, it holds that

E [g̃(x)] ≥ C5

(q − 1− λ∆)6 .

Y. Yin and C. Zhang 47:17

We also have that

E [g̃(x)] =
b q−1
λ −2c∑
k=0

g̃(k) · p(k) +
n∑

k=b q−1
λ −1c

g̃(k) · p(k)

It can be verified that g̃(x) is monotonically decreasing in x when x ≥ q−1
λ − 2 and

g̃
(
q−1
λ − 2

)
= −

(
1+2λ(∆−1)

1+2λ∆

)6
< 0.

Thus we have
b q−1
λ −2c∑
k=0

g̃(k) · p(k) ≥ E [g̃(x)] ≥ C5

(q − 1− λ∆)6 = ∆− 1
∆ + h(∆)

where

h(∆) =
(
1 + 10λ∆ + (40λ2 − 2λ3 − 2λ4 − 2λ5 − 4λ6)∆2

+(80λ3 − 12λ4 − 14λ5 − 74λ6)∆3 + (80λ4 − 24λ5 − 50λ6)∆4)
+(32λ5 − 16λ6)∆5) · (∆(1 + 2λ∆)6)−1

.

It can be verified that h(∆) is positive for every 0 < λ < 1 and ∆ ≥ 1. J

Proof of Lemma 20. Let v ∈ V be arbitrary fixed and Tv = TSAW (G, v) and ` > 0 be an
integer. By linearity of expectation, we have

E [Eδ(v, `)] ≤ n`
(
d

n

)`
E

[∏̀
i=1

δ(degG (vi))

∣∣∣∣∣ P = (v, v1, . . . , v`) is a path
]
.

Fix a tuple P = (v, v1, . . . , v`). To calculate the expectation, we construct an independent
sequence whose product dominates

∏`
i=1 δ(degG (vi)) as follows.

Conditioning on P = (v, v1, . . . , v`) being a path in G. Let X1, X2, . . . , X` be random
variables such that each Xi represents the number of edges between vi and vertices in V \
{v1, . . . , v`}; and let Y be a random variable representing the number of edges between vertices
in {v1, . . . , v`} except for the edges in the path P = (v, v1, . . . , v`). Then X1, . . . , X`, Y are
mutually independent binomial random variables with each Xi distributed according to
Bin(n− `, dn) and Y distributed according to Bin(

(
`
2
)
− `+ 1, dn), and for each vi in the path

we have degG (vi) = Xi + 2 + Yi with some Y1 + Y2 + · · ·+ Y` = 2Y .
Note that δ(degG (vi)) = fq(degG (vi)) where the function fq(x) is defined in Lemma 21.

Note that the ratio fq(x)/fq(x − 1) is always upper bounded by 2, and we have fq(x +
1) ≤ fq−1(x). Thus, conditioning on that P = (v, v1, . . . , v`) is a path, the product∏`
i=1 δq,β(degG (vi)) can be bounded as follows:

∏̀
i=1

δ(degG (vi)) =
∏̀
i=1

fq(Xi + Yi + 2) ≤ 22Y
∏̀
i=1

fq−2(Xi).

Let d′ = q−4
3(1−β) , then we have d′ > d. Let X be a binomial random variable distributed

according to Bin(n, d
′

n), thus X probabilistically dominates every Xi whose distribution
is Bin(n − `, dn). Since X1, X2, . . . , X`, Y are mutually independent conditioning on P =
(v, v1, . . . , v`) being a path in G, for any P = (v, v1, . . . , v`) we have

E

[∏̀
i=1

δ(degG (vi))

∣∣∣∣∣ P is a path
]
≤ E

[
4Y
∏̀
i=1

fq−2(Xi)
]
≤ E

[
4Y
]

E [fq−2(X)]` .

APPROX/RANDOM’16

47:18 Sampling in Potts Model on Sparse Random Graphs

Recall that Y ∼ Bin
((

`
2
)
− `+ 1, dn

)
, the expectation E

[
4Y
]
can be bounded as

E
[
4Y
]
≤

`2∑
k=0

4k
(
`2

k

)(
d

n

)k (
1− d

n

)`2−k
=
(

1 + 3d
n

)`2
≤ exp

(
3d`2

n

)
.

Since q − 2 ≥ 3(1 − β)d′ + 2, it follows from Lemma 21 that E [fq−2(X)] ≤ 1
d′ = 3(1−β)

q−4 .
Therefore,

E

[∏̀
i=1

δ(degG (vi))

∣∣∣∣∣ P is a path
]
≤ exp

(
3d`2

n

)(
3(1− β)
q − 4

)`
≤ 1
d`
· exp

(
−` log

(
q − 4

3d(1− β)

)
+ 3d`2

n

)
.

Since ` = o(
√
n),

E [Eδ(v, `)] ≤ exp
(
−` log

(
q − 4

3d(1− β)

)
+ o(1)

)
.

Then the lemma follows from the Markov inequality and the union bound. J

6.2 Locally sparsity for random graph
I Lemma 22. Let ε > 0 be some fixed constant. Let d be a sufficiently large number,
q ≥ (2 + ε)d and 0 ≤ β < 1 be constants. Let G = (V,E) ∼ G(n, d/n). There exists a
constant C > 0 such that with probability 1 − O

(1
n

)
, for every path P in G of length `,

|B(P)| ≤ C(`+ logn).

Given P = (v1, . . . , vL), we are going to upper bound the probability

Pr [|B(P)| ≥ t | P is a path] (7)

for every t > 0.
A vertex v is a high-degree vertex if degG (v) ≥ q−1

1−β − 2. Thus the probability (7) is
maximized when β = 0. Note that conditioning on P is a path gives each vertex at most
two degrees, we can redefine the notion of “high-degree” as degG (v) ≥ q − 5 and drop the
condition that P is a path. Thus it is sufficient to upper bound

Pr [|B(P)| ≥ t]

with our new definition of high-degree vertices.
Let G = (V,E) be a graph. We now describe a BFS procedure to generate B∗(P) :=

B(P) ∪ ∂B(P). Since B∗(P) is always a superset of B(P), it is sufficient to bound
Pr [|B∗(P)| ≥ t]. For a vertex v ∈ V , we use NG(v) to denote the set of neighbors of
v in G.

Initially, we have a counter i = 0, a graph G0 = G, a set of active vertices A0 =
{v1, v2, . . . , vL} and a set of used vertices U0 = ∅.

(P1)

1. Increase the counter i by one.
2. (If i ≤ L) Define Gi(Vi, Ei) = Gi−1[Vi−1 \ {vi}]. Let Ui = Ui−1 ∪ {vi}. Let Ai =

(Ai−1 ∪NGi−1(vi)) \ Ui. Goto 1.

Y. Yin and C. Zhang 47:19

3. (If i > L) Terminate if Ai−1 = ∅. Otherwise, let u ∈ Ai−1 and let Ui = Ui−1 ∪ {u}.
a. (If |NG(u)| ≥ q−5) Define Gi(Vi, Ei) = Gi−1[Vi−1\{u}]. Let Ai = (Ai−1∪NGi−1(vi))\
Ui. Goto 1.

b. (If |NG(u)| < q − 5) Define Gi = Gi−1. Let Ai = Ai−1 \ Ui. Goto 1

The following proposition is immediate:

I Proposition 23. Assume the algorithm terminates at step t, then B∗(P) = Ut−1 and
|B∗(P)| = t− 1.

Let R = {r1, r2, . . . , rL} be a set and each ri is the root of tree Ti. We now describe a
BFS procedure to explore these L trees. For a vertex v, we use C(v) to denote its children.

Initially, we have a counter i = 0 and a set of active vertices B0 = R.

(P2)

1. Increase the counter i by one.
2. (If i ≤ L) Let Bi = (Bi−1 ∪ C(ri)) \ {ri}. Goto 1.
3. (If i > L) Terminate if Bi−1 = ∅. Otherwise, let w ∈ Bi−1

a. (If |C(w)| ≥ q−5
2) Let Bi = (Bi−1 ∪ C(u)) \ {w}. Goto 1.

b. (If |C(w)| < q−5
2) Let Bi = Bi−1 \ {w}. Goto 1.

Now assume G ∼ G(n, d/n) and for every i ∈ [L], Ti is a branching process with
distribution Bin(n, d/n), i.e., each C(u) ∼ Bin([n], d/n). We can implement the (P1) when at
each step i, the vertex u chosen from the active set sample its neighbors NGi−1(u) according
to Bin(Vi, d/n). This random process can be coupled with G(n, d/n) such that B∗(P) found
by it is always a superset of the one in G(n, d/n).

We now construct a coupling of (P1) and (P2) with the property that the later one always
terminates no earlier than the former one.

At each step i ≥ 1, let u and w be the vertex chosen from Ai and Bi respectively
(u = vi and w = ri if i ≤ L). Then

∣∣NGi−1(u)
∣∣ ∼ Bin(|Vi| , d/n). We couple it with some

x ∼ Bin(n, d/n) with the property that x ≥
∣∣NGi−1(vi)

∣∣ and let C(w) be a set with x

elements.

I Lemma 24. For every i ≥ 0, the following two properties hold:
(i1) There exists a surjective mapping Fi from Bi to Ai in each step i.
(i2) For every u ∈ Ai, we use ni(u) to denote the number of w ∈ Bi such that Fi(w) = u.

Then for every u ∈ Ai, ni(u) ≥ |NG(u)| − |NGi(u)|.

Proof. We apply induction on i to prove the lemma.
When i = 0, we let F0 : B0 → A0 be the function that F0(rj) = vj for every j ∈ [L].

Then both properties hold trivially.
Assume the lemma holds for smaller i. If i ≤ L, since by our coupling, |C(ri)| ≥∣∣NGi−1(vi)

∣∣, we can construct Fi by extending Fi−1 with an arbitrary surjective mapping
from C(ri) to NGi−1(vi). For every u′ ∈ Ai, if u′ ∈ NGi−1(vi), then ni(u′) ≥ ni−1(u′) + 1
and

∣∣NGi−1(u)
∣∣ − |NGi(u′)| = 1; otherwise ni(u′) = ni−1(u′) and

∣∣NGi−1(u)
∣∣ = |NGi(u′)|.

Induction hypothesis implies both (i1) and (i2) hold.
If i > L, we have to distinguish between cases:
(If |NG(u)| ≥ q − 5 and NGi−1(u) ≥ q−5

2) We construct Fi by extending Fi−1 with an
arbitrary surjective mapping from C(w) to NGi−1(u), the same argument as i ≤ L case
proves (i1) and (i2).

APPROX/RANDOM’16

47:20 Sampling in Potts Model on Sparse Random Graphs

(If |NG(u)| ≥ q − 5 and NGi−1(u) < q−5
2) In this case, by induction hypothesis, we know

that

ni−1(u) ≥ |NG(u)| −
∣∣NGi−1(u)

∣∣ ≥ q − 5
2 > NGi−1(u).

Choose a surjective f from F−1
i−1(u) to NGi−1(u) and construct Fi from Fi−1 by replacing

the mapping on F−1
i−1(u) by f . This is safe since u 6∈ Ai. The same argument as before

proves (i1) and (i2).
(If |NG(u)| < q−5) Construct Fi = Fi−1. Since everything does not change, the induction
hypothesis implies (i1) and (i2). J

The first property above guarantees that (P2) terminates no earlier than (P1) and thus
its stopping time is an upper bound for the size of B∗(P) found by (P1).

(P2) can be modeled as follows:
1. Let X ∼ Bin(n, d/n) and X1, X2 . . . be an infinite sequence of independent random

variables defined as follows
For i = 1, 2, . . . , L, Xi is an independent copy of X;
For i > L, Xi has following distribution

Xi =
{

0 if X < (q − 5)/2
X otherwise.

2. Y1, Y2, . . . is an infinite sequence of random variables that Y0 = L and Yi = Yi−1 +Xi− 1
for every i ≥ 1.

3. Z = mint {Yt = 0}.

The above process is identical to (P2), thus we have

I Proposition 25. (P2) terminates after step t if and only if Z > t.

Note that Z > t implies Yt ≥ 0, we turn to bound the latter.

I Lemma 26. There exist two constants C1, C2 > 0 depending on d and ε such that

Pr [Yt ≥ 0] ≤ exp (−C1t+ C2L) .

Proof. By the definition, Yt+L = L− (t+L) +
∑L+t
i=1 Xi = −t+

∑L
i=1Xi +

∑L+t
i=L+1Xi. We

know the distribution of Xis and we now compute their moment generating function. For
every s > 0, it holds that

Pr [Yt+L ≥ 0] = Pr
[
esYt+L ≥ 1

]
≤ E

[
esYt+L

]
= e−st

(
E
[
esX

])L (
E
[
esXL+1

])t
.

Recall that X ∼ Bin(n, d/n), we have E
[
esX

]
=
(
1 + d

n (es − 1)
)n ≤ ed(es−1). Let p =

(q − 5)/2, we have

E
[
esXL+1

]
= Pr [X < p] +

n∑
k=bpc

esk ·Pr [X = k]

≤ 1 +
n∑

k=bpc

esk ·Pr [X ≥ k]

≤ exp

 ∞∑
k=bpc

esk ·Pr [X ≥ k]

Y. Yin and C. Zhang 47:21

By Chernoff bound, for sufficiently large d, we have for some choices of s > 0 and C1 > 0,

∞∑
k=bpc

esk ·Pr [X ≥ k]− s < −C ′1.

Let C ′2 = d(es − 1), we have

Pr [Yt+L ≥ 0] ≤ exp (−C ′1t+ C ′2L) .

This implies for some constants C1, C2 > 0,

Pr [Yt ≥ 0] ≤ exp (−C1t+ C2L) . J

Proof of Lemma 22. By Lemma 26 and the union bound, the probability that there exists
a path P in G of length ` such that |B(P)| ≥ t is upper bounded by

n · n` ·
(
d

n

)`
·Pr [Yt ≥ 0] ≤ n · d` · exp (−C1t+ C2`) = O

(
1
n

)
for t = C(`+ logn) and sufficiently large constant C. J

Acknowledgement. This work was done in part while both authors were visiting the Simons
Institute for the Theory of Computing.

References
1 Russ Bubley and Martin Dyer. Path coupling: A technique for proving rapid mixing in

Markov chains. In Proceedings of the 38th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’97), pages 223–231. IEEE, 1997.

2 Martin Dyer, Abraham Flaxman, Alan Frieze, and Eric Vigoda. Randomly coloring sparse
random graphs with fewer colors than the maximum degree. Random Structures & Al-
gorithms, 29(4):450–465, 2006.

3 Martin Dyer and Alan Frieze. Randomly coloring graphs with lower bounds on girth and
maximum degree. Random Structures & Algorithms, 23(2):167–179, 2003.

4 Martin Dyer, Alan Frieze, Thomas Hayes, and Eric Vigoda. Randomly coloring constant
degree graphs. Random Structures & Algorithms, 43(2):181–200, 2013.

5 Charilaos Efthymiou. A simple algorithm for random colouring G(n, d/n) using (2+ε)d
colours. In Proceedings of the 23th Annual ACM-SIAM symposium on Discrete Algorithms
(SODA’12), pages 272–280. SIAM, 2012.

6 Charilaos Efthymiou. Mcmc sampling colourings and independent sets of G(n, d/n) near
uniqueness threshold. In Proceedings of the 25th Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA’14), pages 305–316. SIAM, 2014.

7 Charilaos Efthymiou. Switching colouring of G(n, d/n) for sampling up to Gibbs uniqueness
threshold. In In Proceedings of the 22nd European Symposium on Algorithms (ESA’14),
pages 371–381. Springer, 2014.

8 Charilaos Efthymiou and Paul Spirakis. Random sampling of colourings of sparse random
graphs with a constant number of colours. Theoretical Computer Science, 407(1):134–154,
2008.

9 Andreas Galanis, Daniel Štefankovič, and Eric Vigoda. Inapproximability for antiferromag-
netic spin systems in the tree nonuniqueness region. Journal of the ACM (JACM), 62(6):50,
2015.

APPROX/RANDOM’16

47:22 Sampling in Potts Model on Sparse Random Graphs

10 David Gamarnik and Dmitriy Katz. Correlation decay and deterministic FPTAS for count-
ing colorings of a graph. Journal of Discrete Algorithms, 12:29–47, 2012.

11 David Gamarnik, Dmitriy Katz, and Sidhant Misra. Strong spatial mixing of list coloring
of graphs. Random Structures & Algorithms, 46(4):599–613, 2015.

12 Geoffrey Grimmett and Colin McDiarmid. On colouring random graphs. In Mathematical
Proceedings of the Cambridge Philosophical Society, volume 77, pages 313–324. Cambridge
Univ Press, 1975.

13 Thomas Hayes. Randomly coloring graphs of girth at least five. In Proceedings of the
35th Annual ACM Symposium on Symposium on Theory of Computing (STOC’03), pages
269–278. ACM, 2003.

14 Thomas Hayes and Eric Vigoda. A non-markovian coupling for randomly sampling color-
ings. In Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer
Science (FOCS’03), pages 618–627. IEEE, 2003.

15 Thomas Hayes and Eric Vigoda. Coupling with the stationary distribution and improved
sampling for colorings and independent sets. The Annals of Applied Probability, 16(3):1297–
1318, 2006.

16 Mark Jerrum. A very simple algorithm for estimating the number of k-colorings of a low-
degree graph. Random Structures and Algorithms, 7(2):157–166, 1995.

17 Mark Jerrum, Leslie Valiant, and Vijay Vazirani. Random generation of combinatorial
structures from a uniform distribution. Theoretical Computer Science, 43:169–188, 1986.

18 Johan Jonasson. Uniqueness of uniform random colorings of regular trees. Statistics &
Probability Letters, 57(3):243–248, 2002.

19 Pinyan Lu and Yitong Yin. Improved FPTAS for multi-spin systems. In Proceedings of
APPROX-RANDOM, pages 639–654. Springer, 2013.

20 Michael Molloy. The Glauber dynamics on colorings of a graph with high girth and max-
imum degree. SIAM Journal on Computing, 33(3):721–737, 2004.

21 Elchanan Mossel and Allan Sly. Gibbs rapidly samples colorings of G(n, d/n). Probability
theory and related fields, 148(1-2):37–69, 2010.

22 Alistair Sinclair and Mark Jerrum. Approximate counting, uniform generation and rapidly
mixing Markov chains. Information and Computation, 82(1):93–133, 1989.

23 Alistair Sinclair, Piyush Srivastava, Daniel Štefankovič, and Yitong Yin. Spatial mixing and
the connective constant: Optimal bounds. In Proceedings of the 26th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA’15), pages 1549–1563. SIAM, 2015.

24 Alistair Sinclair, Piyush Srivastava, and Yitong Yin. Spatial mixing and approximation
algorithms for graphs with bounded connective constant. In Proceedings of the 54th Annual
IEEE Symposium on Foundations of Computer Science (FOCS’13), pages 300–309. IEEE,
2013.

25 Eric Vigoda. Improved bounds for sampling colorings. Journal of Mathematical Physics,
41(3):1555–1569, 2000.

26 Yitong Yin. Spatial mixing of coloring random graphs. In Proceedings of the 41st Interna-
tional Colloquium on Automata, Languages and Programming (ICALP’14, Track A), pages
1075–1086. Springer, 2014.

	p00-frontmatter
	Preface

	p01-backurs
	Introduction
	Our results and techniques
	Embedding for Hausdorff metric over pointsets in R-1
	Embedding for Hausdorff metric over pointsets in R-d
	Probabilistic embeddings
	Embedding into high-dimensional l-1 space
	Embedding into low-dimensional l-1 space

	Related work

	Preliminaries
	Notation

	Embedding for Hausdorff metric over pointsets in R-1
	Embedding for Hausdorff metric over pointsets in R-d
	Probabilistic embedding

	p01-ZZZ-Blank
	p02-basu
	Introduction
	Technical overview
	Model of computation

	Preliminaries
	Factorizations from a polyhedron
	Proof of Theorem 2
	Computing on a Turing Machine

	Open Questions

	p03-bliznets
	Introduction
	Preliminaries
	Basic graph definitions
	Problems and approximation algorithms
	Satisfiability and Exponential Time Hypothesis

	Hardness for 3-connected H
	Deletion problems

	Connections with Min Horn Deletion
	From MinOnes (F) to Quarantined H-free Edge Deletion
	Lifting the quarantine
	Completeness

	Conclusions

	p03-ZZZ-Blank
	p04-charikar
	Introduction
	Outline of Key Technical Ideas
	Hardness of Min-TSS
	Approximation of r-round Min-TSS

	Preliminaries
	Formal definition and notation
	Planted Dense Subgraph Conjecture

	Hardness of Min-TSS
	Recursive extension of PDS
	Hardness of fixed-round TSS
	Hardness of round-unbounded TSS

	Approximation of r-round Min-TSS
	Hardness of Undirected Max-TSS
	Revisiting the directed-edge construction
	Translating to undirected edges

	Application to Minimum Monotone Satisfying Assignment
	Lower Bounds for k-Contagious Set

	p05-chen
	Introduction
	General case
	The special case with a constant number of machines
	The special case with a constant number of resources

	p06-chlamtac
	Introduction
	Our Results
	Related Work
	Organization

	Preliminaries and Notation
	Relationship Between Problems

	Minimum p-Union in General Hypergraphs
	Densest k-Subhypergraph in 3-uniform hypergraphs
	Overview of our Algorithm
	An O(n4/5)-approximation

	An improved approximation for 3-uniform Densest k-Subhypergraph
	Minimum p-Union in 3-uniform hypergraphs
	Interval Hypergraphs
	Open problems
	Finding a Set of Minimum Expansion
	An LP-based algorithm for Minimum Expansion

	p06-ZZZ-Blank
	p07-cohen
	Introduction
	Background
	Streaming and Online Row Sampling
	Our Results

	Overview
	Analysis of Sampling Schemes
	Asymptotically Optimal Algorithm
	Matching Lower Bound
	Future Work

	p08-feige
	Introduction
	Framework
	Problems, Relaxations, Closures
	Assumed Properties of Problems and Relaxations
	Integrality Gap

	Oblivious Rounding
	Approximation Ratio of Oblivious Rounding
	Approximation Ratio for Optimal Solutions

	General Results
	Proof of Theorem 16 via Minimax

	Application: Welfare Maximization
	Auction Preliminaries
	A Fairness Property
	Impossibility Results
	Impossibility Results for Optimal Solutions
	How to Fool Oblivious Rounding

	Oblivious Rounding in the Literature
	Conclusion and Open Questions
	Appendix for Section 2
	Missing Proofs
	Approximation Ratio of Reasonable Oblivious Rounding

	Appendix for Section 3
	Proof of Theorem 16: Missing Details
	Rounding Optimal Solutions

	Appendix for Section 4
	Gross Substitutes and the Configuration LP
	Proof of Lemma 22: Coverage is the Closure of Unit-Demand

	p08-ZZZ-Blank
	p09-halman
	Introduction
	Binding constraints and the integer knapsack problem
	Algorithm via a primal DP formulation
	K-approximation sets and functions
	A more efficient DP formulation
	Algorithm statement

	Algorithm via a dual DP formulation
	The 0/1 knapsack
	The dual DP formulation
	Algorithm statement

	Concluding remarks

	p09-ZZZ-Blank
	p10-im
	Introduction
	Problem Definition
	Our Results
	High-level Description of the Algorithm
	Justification for not Encapsulating Clusters into One Polytope
	Our Techniques

	Monotone Multi-cluster Polytope Scheduling
	Algorithm
	Key Properties Used in the Analysis
	Competitive Analysis: Proof of Theorem 2
	Discontinuous Changes
	Continuous Changes

	Bounding the Number of Migrations

	Non-Clairvoyant Scheduling On Unrelated Machines

	p10-ZZZ-Blank
	p11-khuller
	Introduction
	Our Contributions

	Background
	Global Algorithm for CDS
	2-hop Local Information Algorithm for CDS
	1-hop Local Information Algorithm for CDS
	Inspiration

	Improved 2-Hop Local Information Algorithm
	Algorithm
	Correctness

	Analysis

	Improved 1-Hop Local Information Algorithm
	Intuition
	Algorithm
	Analysis

	Future work

	p12-kim
	Introduction
	Notations and Preliminaries
	Private Storage Units
	Uniform Utilities
	Concave Utilities

	Public Storage Units
	Concave Utilities
	Concave Utilities and Convex Costs

	From Electric Power Flow to Network Flow
	Hardness of Networks with Cycles
	Missing Materials from Section 3
	Uniform Utilities
	Concave Utilities

	Missing Materials from Section 4
	Hardness of Online Demands
	Concave Utilities
	Concave Utilities and Convex Costs

	p12-ZZZ-Blank
	p13-kortsarz
	Introduction
	Problem definition and related problems
	Previous and related work
	Our results

	New valid constraints
	The algorithms
	Dual-fitting analysis of Algorithm 1 (Theorem 11)
	Primal-fitting analysis of Algorithm 2 (Theorem 12)
	 Reduction to the minimum weight leaf edge-cover problem
	Analysis of the algorithm (Proof of Theorem 16)
	Proof of Lemma 18

	p14-makarychev
	Introduction
	Our Results

	Preliminaries
	k-means
	k-median

	Reduction from k-means to k-median
	Algorithm for k-Median with Relaxed Triangle Inequality
	Local Search
	Proof of Theorem 7
	Detailed Analysis of the LP Rounding Algorithm
	Detailed Analysis of the Local Search Algorithm

	p15-manurangsi
	Introduction
	Summary of Techniques
	Organization of the Paper

	Preliminaries
	Max k-CSPR
	Unique Games and d-to-1 Conjectures
	Fourier Expansions
	Noise Operators
	Degree Truncation
	Influences
	Binary Functions
	Boolean Analogs

	Invariance Principle and Mollification Lemma
	Hypercontractivity Theorem

	Inapproximability of Max k-CSPR
	Parameters
	Hypercontractivity for Noisy Low-Influence Functions
	Reducing Unique Label Cover to Max k-CSPR
	The PCP
	Completeness Analysis
	Soundness Analysis

	Omega(log(R)/exp(R,k-1))-Approximation Algorithm for Max k-CSPR
	k-Query Large Alphabet Dictator Test
	Conclusions and Open Questions
	Proofs of Preliminary Results
	Mollification Lemma
	Proof of Lemma 11

	d-to-1 Games Conjecture implies One-Sided Unique Games Conjecture
	Proof of Dictator Test

	p16-marx
	Introduction
	Our contribution
	Overview of the algorithm
	Organization

	Notation
	The Held-Karp LP
	An approximation algorithm for nearly-embeddable graphs
	Combining the Held-Karp LP with the dynamic program
	Thin trees in 1-apex graphs
	Analysis

	Thin forests in graphs with many apices
	Analysis

	Thin forests in higher genus graphs with many apices
	Analysis

	Thin subgraphs in nearly-embeddable graphs
	(0,g,1,p)-nearly embeddable graphs
	The modified ribbon-contraction argument

	(a,g,1,p)-nearly embeddable graphs

	A preprocessing step for the dynamic program
	Uncrossing an optimal walk traversing a vortex
	The structure of an optimal solution

	The dynamic program for traversing a vortex in a planar graph
	The dynamic program
	The dynamic programming table
	Merging partial solutions
	Initializing the dynamic programming table
	Updating the dynamic programming table

	Analysis

	The dynamic program for traversing a vortex in a bounded genus graph
	The dynamic program
	The dynamic programming table.
	Initializing the dynamic programming table.
	Updating the dynamic programming table.

	Analysis

	The algorithm for traversing a vortex in a nearly-embeddable graph
	The lower bound for graphs of bounded pathwidth
	Edge Balancing
	Constrained Closed Walk and ATSP

	p17-mcgregor
	Introduction
	Our Results

	Graph Properties
	Preliminaries
	Local Fractional Matching
	Local Fractional Matchings for Weighted Graphs
	Exact Degree Distribution

	Data Stream Algorithms
	Arbitrary Order Graph Streams
	Adjacency List Graph Streams
	Extension to Weighted Graphs

	Conclusion

	p18-raghvendra
	Introduction
	Preliminaries
	Algorithm

	Performance of the Algorithm
	Conclusion

	p19-stephens-davidowitz
	Introduction
	Our results
	Techniques
	SVP
	CVP
	Deterministic reductions

	Related work
	Directions for future work

	Preliminaries
	Lattice basics
	LLL-reduced bases
	Lattice problems
	Known results
	A note on decision and estimation

	Reducing SVP to uSVP (and GapSVP) via sparsification
	Sparsification
	The reduction
	Corollaries

	Reducing CVP to GapCVP
	Deterministic reductions
	The deterministic CVP reduction
	The deterministic SVP reduction

	p20-syred
	Introduction
	Preliminaries
	Constraint Satisfaction Problems
	Fourier Analysis
	The Basic SDP Relaxation for CSPs
	Approximation Resistance Characterization

	Weak Approximability of Predicates
	Low Degree Advantage
	Symmetric Predicates
	Monarchy

	p20-ZZZ-Blank
	p21-babu
	Introduction
	Notations and Tools
	Property Testing
	Partitions and the local views of the graph

	Global Partitions
	From global partition to Local partition
	Discussion
	Missing Proofs of Section 3
	Algorithm Approx

	p21-ZZZ-Blank
	p22-bapst
	Introduction
	Background and motivation
	The regular k-SAT model

	Techniques and related work
	Proof outline
	 Two moments do not suffice
	Quenching the average
	Non-reconstruction
	A branching process
	Belief Propagation

	Non-reconstruction
	Belief Propagation on the infinite tree

	p23-bhattacharyya
	Introduction
	Structure versus Randomness for Polynomials over Finite Fields
	Applications
	List-decoding Reed-Muller codes
	Algorithmic polynomial decomposition
	Testing affine-invariant properties

	Parallel Work
	Our Techniques
	New Ingredients
	Reed-Muller codes
	Polynomial decomposition
	Testing affine-invariant properties

	Some Open Questions
	Organization

	Preliminaries
	Classical and Non-Classical Polynomials
	Additive Derivatives and Weight Degree
	Bias and Gowers norm
	Rank

	Inverse Theorem for Classical Polynomials
	Proof of Lemma 26

	Equidistribution of regular factors
	Definitions
	Equidistribution results
	Preservation of Locally Characterized Properties
	Local Characterization
	Main Result on Property Preservation

	List decoding of RM codes
	Polynomial decomposition

	p23-ZZZ-Blank
	p24-boppana
	Introduction and our results
	Proof of Theorem 3
	Proof of Theorem 2
	Zero modulo m

	p24-ZZZ-Blank
	p25-braverman
	Introduction
	Related Work

	Problem Definition and Notation
	Subadditive Approximations
	Algorithm for Finding Key Rows
	Algorithm for Finding All alpha-Heavy Rows
	Sum from alpha-Heavy Rows
	Space Bounds

	Applications
	Proof of Lemma 15
	Proof of Correctness of Algorithm 1
	Recursive Sketches

	p25-ZZZ-Blank
	p26-chapuy
	Introduction and Main Results
	Theorem 4 for bridge-addable classes of forests
	Number of components in bridge-addable graph classes
	Partitioning the graph class into highly structured subclasses
	Good and bad boxes

	From classes of forests to classes of graphs

	p26-ZZZ-Blank
	p27-coja-oghlan
	Introduction and results
	Factor graphs
	Belief Propagation
	Random factor graph models
	Non-reconstruction

	Discussion and related work
	Proofs of the main results
	The ``cavity trick''
	The Belief Propagation equations: proof of Theorem 1
	Proof of Theorem 2
	Proof of Lemma 5

	p27-ZZZ-Blank
	p28-dadush
	Introduction
	Our Results

	Symmetric Convex Bodies and Subgaussian Distributions
	The Random Walk Sampler

	Asymmetric Convex Bodies
	The Recentering Procedure

	p29-ezra
	Introduction
	Our results

	Preliminaries and Proof Overview
	Proof Overview for Theorem 3

	A Low Hereditary Discrepancy Bound: The Analysis
	Proof of Lemma 8
	The regime of large sets
	Proof overview
	Proof of Theorem 13

	p30-gaertner
	Introduction
	Preliminaries
	Random Edge on i-nice USO
	Bounds on niceness
	An upper bound for AUSO
	A matching lower bound for AUSO

	Conclusions

	p31-guo
	Introduction
	Our Contribution

	Preliminaries
	The Self-Avoiding Walk Tree
	The Uniqueness Condition in Regular Trees
	The Potential Method

	Correlation Decay below the Critical Degree or the Critical Field
	Bounded Degree Graphs
	General Graphs
	Heuristics behind Phi-2(x)
	Discussion of the beta>1case

	Correlation Decay Beyond the Critical Field
	Limitations of Correlation Decay
	Missing Proofs
	Details about the Uniqueness Threshold
	Details about the Potential Method
	Proofs of Lemma 14 and Lemma 15

	p32-harsha
	Motivation and Results
	Proof ideas

	Improved probabilistic polynomials and PRGs for AC0
	The construction of probabilistic polynomials
	Application to PRGs for AC0

	The probabilistic degree of OR
	Proof of Theorem 13

	The limitations of the Nisan Wigderson paradigm

	p33-hatami
	Introduction
	Our results
	Overview of Proofs

	Preliminary results from higher-order Fourier analysis
	Nonclassical Polynomials
	Rank, Regularity, and Other Notions of Uniformity
	Regularization of Polynomials

	Properties of rank, crank, and strong-rank
	Structure of biased polynomials
	Structure of biased polynomials I, when d<|F|+4
	Structure of biased polynomials II, when d<|F|+4

	Algorithmic Aspects
	Conclusions

	p34-hazla
	Introduction
	Basic example
	Our results
	The case of two steps
	More than two steps
	Set hitting for functions with no large Fourier coefficients

	Background and related work
	Outline of the paper

	Notation and Preliminaries
	Notation
	Correlation
	Influence

	Our Results
	The case of l = 2
	The general case
	Hitting of different sets by uniform functions
	Assumptions of the theorems
	Equal distributions: unnecessary
	Equal marginals: necessary

	Proof Sketch
	Step 1 – making a set resilient
	Step 2 – eliminating high influences
	Step 3 – applying low-influence theorem from [Mos10]
	The case rho = 1: open question

	p34-ZZZ-Blank
	p35-hoppen
	Introduction
	Recoverability
	Estimation over cluster graphs
	Recovering partitions
	Monotone graph properties are recoverable

	Estimation of d_1(\Gamma,\mathcal{F}) and |Forb(\Gamma,\mathcal{F})|
	Concluding remarks

	p35-ZZZ-Blank
	p36-kanade
	Introduction
	Preliminaries
	Stable Matching
	Model for evolving input
	Sorting evolving permutations
	Chernoff Bound with dependent variables

	Two simple cases
	A simple algorithm
	One-sided evolution

	General Case: Improved algorithm

	p36-ZZZ-Blank
	p37-khot
	Introduction
	Our result

	Preliminaries
	Proof of Theorem 2

	p37-ZZZ-Blank
	p38-levi
	Introduction
	Our Result and Techniques
	A partition-based algorithm and the construction of G'
	Properties of the partition
	An initial centers-based partition
	Refining the partition, phase 1 (and a structural lemma)
	Refining the partition, phase 2
	The local algorithm
	A distributed algorithm
	A discussion of the algorithm for highly expanding graphs in [8]

	Related Work

	Preliminaries
	The Algorithm
	The Partition P
	First Step
	Second Step
	Third Step

	The Edge Set
	Bounding the Number of Remote Vertices
	The Local Algorithm

	A non-polynomial relation between k and Y-k(v)

	p38-ZZZ-Blank
	p39-li
	Introduction
	Our Contributions

	Preliminaries
	Sketching Lower Bound for p > 2
	Conclusion

	p39-ZZZ-Blank
	p40-medarametla
	Introduction
	Background and Motivation
	Preliminaries
	Definitions for Uniform Low Degree Graph Matrices
	Paper Outline and Results
	Comparison with Previous Work

	Warm-up: Bounding the Norm of a +1 Random Matrix
	Technical Overview of the General Norm Bounds
	Bounding the Norms of Uniform Locally Random Matrices
	Bounding the Norms of Uniform Low Degree Graph Matrices
	Lower Bounds
	Conclusion and Further Studies
	Justification of the moment method
	Norm bounds with left/right intersections

	p41-mori
	Introduction
	Preliminaries
	Constraint satisfaction problems
	LP and SDP hierarchies
	Representing CSP(P)with polynomial inequalities
	Sherali-Adams
	Sherali-Adams+
	Lovász-Schrijver+
	Static LS+
	Pseudodistributions: An alternate point of view

	The dual point of view: Static semialgebraic proof systems
	Expansion
	Constructing consistent local distributions

	Overview of the proof
	The correlation graph
	Correlations are induced by small, dense structures
	All connected components of the correlation graph are small
	LS+ rank lower bounds
	Positive semidefiniteness of conditional covariance matrices
	Rank lower bounds for static LS+ and LS+

	Proofs from Section 2.4
	Equivalence between PSDness of the degree-2 moment matrix and the covariance matrix
	Proofs from Section 2.5
	Equivalence of SA, SA+, and static LS+ tightenings of linear and degree-k relaxations of CSP(P)
	Correspondence between static proof system and relaxation

	p42-moshkovitz
	Introduction
	Parallel Repetition and Almost Linear Blowup
	The Feige-Kilian impossibility result
	Our work
	Proof of parallel repetition by robust embedding
	Fortification-friendly repetition schemes
	Informal Theorem Statement and Discussion

	The way forward

	Games and parallel repetition schemes
	Parallel repetition via embeddings
	Our no-go theorem
	Conclusion and Open Problems
	Proof of Theorem 4 (Main Theorem)
	Robust embeddings in existing proofs of parallel repetition
	A Contrived Example for Derandomized Parallel Repetition
	The Derandomized Parallel Repetition Scheme: Graph Powering
	A Sketch of the Construction
	Step 1: A Game with Low Value
	Step 2: Composition
	Step 3: Randomness-Efficient Parallel Repetition via Graph Powering

	Random games are fortified

	p42-ZZZ-Blank
	p43-nicaud
	Introduction
	The probabilistic Cerný conjecture
	Main related results
	Our results

	Definitions and notations
	Automata
	Synchronization
	Mappings
	Probabilities
	Random mappings and random p-mappings
	Random automata

	Preliminary classical results
	Main Result
	Generating the a-transitions
	Adding some random b-transitions
	Forbidding correlated shapes
	Adding more random b-transitions
	Synchronizing the remaining states

	Conclusion

	p44-rao
	Introduction
	Related Work

	Our Results
	Preliminaries
	Information Theory Basics
	Common Information and Error-free Sampling
	Streaming Algorithms

	Compression and Direct Sums for Streaming Computation
	Non-product Distributions and Correlated Randomness
	Compressing Streaming Algorithms
	Direct Sum for Product Distributions
	Computing f with Small Information
	Direct-sum Theorem

	Towards Optimal Direct Sums
	Separation between common information and mutual information

	p44-ZZZ-Blank
	p45-shaltiel
	Introduction
	Stochastic codes
	Our results
	Explicit stochastic codes for poly-size circuits
	Unconditional explicit stochastic codes for space O(log(n)) online channels
	Stochastic codes for AC0 channels, with fixed poly-time encoding/decoding

	Perspective
	Some related work

	Overview of the technique
	Codes for the setup of shared private randomness
	A more efficient reduction for online logspace and AC0
	Stochastic codes for bounded channels
	Pseudorandom stochastic inner codes
	New constructions of pseudorandom weak inner codes
	Inner stochastic codes for AC0

	Ingredients used in the construction
	Pseudorandom generators
	Poly-size circuits
	Oblivious read once branching program
	Constant depth circuits

	Error-Correcting Codes
	Codes for balanced errors
	List recoverable codes

	Averaging Samplers
	Almost t-wise permutations

	Inner Stochastic codes
	PRGs give inner stochastic codes
	Inner Stochastic codes for circuits and ROBPs
	Inner stochastic codes for AC0 channels

	The construction of stochastic codes
	Choosing ingredients and parameters for specific channel families
	Poly-size circuit channels
	Online logspace channels
	Constant depth channels

	Analyzing the construction
	Milestones for correct decoding
	Milestones Lemma implies Theorem 31
	Proof of Milestones Lemma
	The hiding lemma
	Hiding lemma implies milestones lemma

	Proof of Lemma 39
	Proof of Lemma 40

	Proof of Theorem 14

	p46-song
	Introduction
	Preliminaries
	Gibbs measures on the infinite tree
	Branching matrices
	Extremal Gibbs measures
	Uniqueness of Gibbs measures

	The hypergraph self-avoiding walk tree
	Strong spatial mixing
	Approximation algorithms and inapproximability
	Local convergence of hypergraphs

	p46-ZZZ-Blank
	p47-yin
	Introduction
	Techniques

	Preliminary and statement of the main result
	The computation tree for blocks
	The recursion
	Bounds for marginals
	The algorithm

	Correlation decay
	The FPTAS and the sampling algorithm
	Random Graphs
	Contraction function for random graphs
	Locally sparsity for random graph

